-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathreal_utils.py
89 lines (50 loc) · 2.51 KB
/
real_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from sklearn.model_selection import KFold, StratifiedKFold
from torch.utils.data import DataLoader, Subset
from engine_real import *
from model.resinf_foreal import ResInf
import torch.nn as nn
import torch.optim as optim
import wandb
import pickle
from sklearn.model_selection import train_test_split
from dataloaders.data_loader_hyper import TrajDataRealFromExistTopology
def stratified_k_fold_cross_validation(args, k, device):
kfold = StratifiedKFold(n_splits=k, shuffle=True)
results = []
numes = pickle.load(open('./data/micro/numes.pkl', 'rb'))
rs = pickle.load(open('./data/micro/rs.pkl', 'rb'))
new_numes = []
for nume in numes:
nume = np.array(nume)
new_numes.append(nume)
cc = list(zip(new_numes, rs))
random.shuffle(cc)
new_numes[:], rs[:] = zip(*cc)
for fold, (train_ids, test_ids) in enumerate(kfold.split(new_numes, rs)):
run_name = f"SK-fold_{fold + 1}"
if args.use_wandb:
wandb.init(project=f'real-stratified-k-fold-num-{args.fold_num}-{args.use_model}-1', name=run_name, reinit=True)
train_numes = [new_numes[i] for i in train_ids]
train_rs = [rs[i] for i in train_ids]
test_numes = [new_numes[i] for i in test_ids]
test_rs = [rs[i] for i in test_ids]
train_subset = TrajDataRealFromExistTopology(train_numes, train_rs)
test_subset = TrajDataRealFromExistTopology(test_numes, test_rs)
train_loader = DataLoader(train_subset, batch_size=args.train_size, shuffle=True)
test_loader = DataLoader(test_subset, batch_size=args.test_size, shuffle=False)
args.K = 2
args.layers = 1
args.trans_layers = 1
args.hidden_layers_num = 2
args.emb_size = 4
args.trans_emb_size = 8
args.n_heads = 1
model = ResInf(input_plane=args.K, seq_len = args.hidden, trans_layers=args.trans_layers, gcn_layers=args.layers, hidden_layers=args.hidden_layers_num, gcn_emb_size=args.emb_size, trans_emb_size=args.trans_emb_size, pool_type=args.pool_type, args=args,n_heads=args.n_heads).to(device)
print(model)
print(args)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
final_result = train_test_faketopo(model, train_subset, test_subset, train_loader, test_loader, optimizer, criterion, args)
results.append(final_result)
wandb.finish()
return results