-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathatmosForcing.py
152 lines (112 loc) · 5.67 KB
/
atmosForcing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import sys
from datetime import datetime
import extrapolate as ex
import numpy as np
from netCDF4 import Dataset, num2date
import IOatmos
import grd
try:
import ESMF
except ImportError:
print("Could not find module ESMF. Required")
sys.exit()
_author_ = 'Trond Kristiansen'
_email_ = '[email protected]'
_created_ = datetime(2014, 12, 16)
_modified_ = datetime(2014, 12, 16)
_version_ = "0.2.0"
_status_ = "Development"
def help ():
"""
This function creates atmospheric forcing files for ROMS
def createAtmosFileUV(grdROMS, outfilename, output_format)
To check the file for CF compliancy: http://titania.badc.rl.ac.uk/cgi-bin/cf-checker.pl?cfversion=1.0
"""
def laplaceFilter(field, threshold, toxi, toeta):
undef=2.0e+35
tx=0.9*undef
critx=0.01
cor=1.6
mxs=10
field=np.where(abs(field)>threshold,undef,field)
field=ex.extrapolate.fill(int(1),int(toxi),
int(1),int(toeta),
float(tx), float(critx), float(cor), float(mxs),
np.asarray(field, order='F'),
int(toxi),
int(toeta))
return field
def getERA5Filename(confM2R):
return confM2R.atmospheric_forcing_path + ''
def createAtmosFileUV(confM2R):
if confM2R.show_progress is True:
import progressbar
progress = progressbar.ProgressBar(widgets=[progressbar.Percentage(), progressbar.Bar()], maxval=len(years)).start()
# Create the objects for source and destination grids
getERA5_1DAYfilename
grdMODEL = grd.grdClass(nor, mytype, mytype, useESMF,'atmos')
# Create the outputfile
outfilename= abbreviation + '_windUV_' + str(mytype) + '_' + str(startdate.year) + '_to_' + str(enddate.year) + '.nc'
IOatmos.createNetCDFFileUV(grdROMS, outfilename, myformat, mytype)
# Setup ESMF for interpolation (calculates weights)
print(" -> regridSrc2Dst at RHO points")
grdMODEL.fieldSrc = ESMF.Field(grdMODEL.esmfgrid, "fieldSrc", staggerloc=ESMF.StaggerLoc.CENTER)
grdMODEL.fieldDst_rho = ESMF.Field(grdROMS.esmfgrid, "fieldDst", staggerloc=ESMF.StaggerLoc.CENTER)
grdMODEL.regridSrc2Dst_rho = ESMF.Regrid(grdMODEL.fieldSrc, grdMODEL.fieldDst_rho, regrid_method=ESMF.RegridMethod.BILINEAR)
# Loop over each year and do the interpolations and write to file
year=2050; month=1; day=1
if mytype == "NORESM":
filename = getNORESMfilename(year,month,day,"TAUX",atmospath)
cdf = Dataset(filename,"r")
U10 = cdf.variables["U10"][:]
TAUX = -(cdf.variables["TAUX"][:])
TAUY = -(cdf.variables["TAUY"][:])
magstr = np.sqrt(TAUX*TAUX + TAUY*TAUY)
magstr = np.where(magstr < 1.e-8,1.e-8,magstr)
windE = (TAUX/magstr)*U10
windN = (TAUY/magstr)*U10
time_in = cdf.variables["time"][:]
time_calendar = cdf.variables['time'].calendar
time_units = cdf.variables['time'].units
scru = np.zeros((len(time_in),np.shape(grdROMS.lat_rho)[0],np.shape(grdROMS.lat_rho)[1]))
scrv = np.zeros((len(time_in),np.shape(grdROMS.lat_rho)[0],np.shape(grdROMS.lat_rho)[1]))
# Loop over each time-step in current file
for t in range(len(time_in)):
currentdate=num2date(time_in[t], units=time_units,calendar=time_calendar)
print("Interpolating date: ",currentdate)
# Eastward wind
grdMODEL.fieldSrc[:,:]=np.flipud(np.rot90(np.squeeze(windE[t,:,:])))
fieldE = grdMODEL.regridSrc2Dst_rho(grdMODEL.fieldSrc, grdMODEL.fieldDst_rho)
# Since ESMF uses coordinates (x,y) we need to rotate and flip to get back to (y,x) order.
fieldE = np.fliplr(np.rot90(fieldE.data,3))
fieldE = laplaceFilter(fieldE, 1000, grdROMS.xi_rho, grdROMS.eta_rho)
fieldE = fieldE*grdROMS.mask_rho
# Northward wind
grdMODEL.fieldSrc[:,:]=np.flipud(np.rot90(np.squeeze(windN[t,:,:])))
fieldN = grdMODEL.regridSrc2Dst_rho(grdMODEL.fieldSrc, grdMODEL.fieldDst_rho)
fieldN = np.fliplr(np.rot90(fieldN.data,3))
fieldN = laplaceFilter(fieldN, 1000, grdROMS.xi_rho, grdROMS.eta_rho)
fieldN = fieldN*grdROMS.mask_rho
# Magnitude
grdMODEL.fieldSrc[:,:]=np.flipud(np.rot90(np.squeeze(magstr[t,:,:])))
magnitude = grdMODEL.regridSrc2Dst_rho(grdMODEL.fieldSrc, grdMODEL.fieldDst_rho)
magnitude = np.fliplr(np.rot90(magnitude.data,3))
magnitude = laplaceFilter(magnitude, 1000, grdROMS.xi_rho, grdROMS.eta_rho)
magnitude = magnitude*grdROMS.mask_rho
import plotAtmos
print("Interpolated range: ", np.min(magnitude), np.max(magnitude))
print("Original range: ", np.min(magstr), np.max(magstr))
grdROMS.time+=1
print(np.shape(windE), np.shape(grdMODEL.lon), np.shape(grdMODEL.lat))
plotAtmos.contourMap(grdROMS, grdROMS.lon_rho, grdROMS.lat_rho, fieldE, fieldN, magnitude,
'wind','REGSCEN',currentdate)
plotAtmos.contourMap(grdMODEL,
grdMODEL.lon,
grdMODEL.lat,
np.squeeze(windE[t,:,:]),
np.squeeze(windN[t,:,:]),
np.squeeze(magstr[t,:,:]),
'wind','NORESM',currentdate)
# Rotate to ROMS grid structure
scru[t,:,:]=(fieldE*np.cos(grdROMS.angle)) + (fieldN*np.sin(grdROMS.angle))
scrv[t,:,:]=(fieldN*np.cos(grdROMS.angle)) - (fieldE*np.sin(grdROMS.angle))