diff --git a/coq/src/putnam_1996_a4.v b/coq/src/putnam_1996_a4.v index d7f832ea..f1ccd011 100644 --- a/coq/src/putnam_1996_a4.v +++ b/coq/src/putnam_1996_a4.v @@ -5,7 +5,7 @@ Theorem putnam_1996_a4 (SS : Ensemble (A * A * A)) (hSdistinct: forall a b c : A, In _ SS (a, b, c) -> a <> b /\ b <> c /\ c <> a) (hS1 : forall a b c : A, In _ SS (a, b, c) <-> In _ SS (b, c, a)) - (hS2 : forall a b c : A, In _ SS (a, b, c) <-> ~ (In _ SS (c, b, a))) + (hS2 : forall a b c : A, a <> c -> (In _ SS (a, b, c) <-> ~ (In _ SS (c, b, a)))) (hS3 : forall a b c d : A, (In _ SS (a, b, c) /\ In _ SS (c, d, a)) <-> (In _ SS (b, c, d) /\ In _ SS (d, a, b))) : exists g : A -> R, Injective g /\ (forall a b c : A, g a < g b /\ g b < g c -> In _ SS (a, b, c)). Proof. Admitted. diff --git a/isabelle/putnam_1996_a4.thy b/isabelle/putnam_1996_a4.thy index 5b947aeb..6ad1eb6e 100644 --- a/isabelle/putnam_1996_a4.thy +++ b/isabelle/putnam_1996_a4.thy @@ -9,7 +9,7 @@ theorem putnam_1996_a4: assumes hA : "CARD('A) = n" and hSdistinct: "\a b c::'A. ((a, b, c) \ S \ (a \ b \ b \ c \ a \ c))" and hS1 : " \ a b c :: 'A. (a, b, c) \ S \ (b, c, a) \ S" - and hS2 : " \ a b c :: 'A. (a, b, c) \ S \ (c, b, a) \ S" + and hS2 : " \ a b c :: 'A. a \ c \ ((a, b, c) \ S \ (c, b, a) \ S)" and hS3 : " \ a b c d :: 'A. ((a, b, c) \ S \ (c, d, a) \ S) \ ((b, c, d) \ S \ (d, a, b) \ S)" shows "\ g :: 'A \ real. inj g \ (\ a b c :: 'A. (g a < g b \ g b < g c) \ (a, b, c) \ S)" sorry diff --git a/lean4/src/putnam_1996_a4.lean b/lean4/src/putnam_1996_a4.lean index c3771b9e..3bc3877e 100644 --- a/lean4/src/putnam_1996_a4.lean +++ b/lean4/src/putnam_1996_a4.lean @@ -12,7 +12,7 @@ theorem putnam_1996_a4 (S : Set (A × A × A)) (hSdistinct : ∀ a b c : A, ⟨a, b, c⟩ ∈ S → a ≠ b ∧ b ≠ c ∧ a ≠ c) (hS1 : ∀ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨b, c, a⟩ ∈ S) -(hS2 : ∀ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨c, b, a⟩ ∉ S) +(hS2 : ∀ a b c : A, a ≠ c → (⟨a, b, c⟩ ∈ S ↔ ⟨c, b, a⟩ ∉ S)) (hS3 : ∀ a b c d : A, (⟨a, b, c⟩ ∈ S ∧ ⟨c, d, a⟩ ∈ S) ↔ (⟨b,c,d⟩ ∈ S ∧ ⟨d,a,b⟩ ∈ S)) : ∃ g : A → ℝ, Injective g ∧ (∀ a b c : A, g a < g b ∧ g b < g c → ⟨a,b,c⟩ ∈ S) := sorry