diff --git a/lean4/src/putnam_1991_a4.lean b/lean4/src/putnam_1991_a4.lean index 5e44ac8..8a7275f 100644 --- a/lean4/src/putnam_1991_a4.lean +++ b/lean4/src/putnam_1991_a4.lean @@ -17,6 +17,6 @@ theorem putnam_1991_a4 : (¬ ∃ p, MapClusterPt p atTop c) ∧ (Summable <| fun i ↦ r i ^ 2) ∧ (∀ L : AffineSubspace ℝ (EuclideanSpace ℝ (Fin 2)), - finrank L.direction = 1 → ∃ i, (↑L ∩ closedBall (c i) (r i)).Nonempty)) ↔ + finrank ℝ L.direction = 1 → ∃ i, (↑L ∩ closedBall (c i) (r i)).Nonempty)) ↔ putnam_1991_a4_solution := sorry diff --git a/lean4/src/putnam_2006_b4.lean b/lean4/src/putnam_2006_b4.lean index a2c374e..f2249b6 100644 --- a/lean4/src/putnam_2006_b4.lean +++ b/lean4/src/putnam_2006_b4.lean @@ -11,7 +11,7 @@ theorem putnam_2006_b4 (hk : k ≤ n) (Z : Set (Fin n → ℝ)) (hZ : Z = {P : Fin n → ℝ | ∀ j : Fin n, P j = 0 ∨ P j = 1}) -(hmaxeq : ∃ V : Subspace ℝ (Fin n → ℝ), Module.rank V = k ∧ (Z ∩ V).ncard = max) -(hmaxub : ∀ V : Subspace ℝ (Fin n → ℝ), Module.rank V = k → (Z ∩ V).ncard ≤ max) +(hmaxeq : ∃ V : Subspace ℝ (Fin n → ℝ), Module.rank ℝ V = k ∧ (Z ∩ V).ncard = max) +(hmaxub : ∀ V : Subspace ℝ (Fin n → ℝ), Module.rank ℝ V = k → (Z ∩ V).ncard ≤ max) : (max = putnam_2006_b4_solution k) := sorry diff --git a/lean4/src/putnam_2008_b3.lean b/lean4/src/putnam_2008_b3.lean index 902ac7f..0aa8cbd 100644 --- a/lean4/src/putnam_2008_b3.lean +++ b/lean4/src/putnam_2008_b3.lean @@ -13,7 +13,7 @@ theorem putnam_2008_b3 (contains : ℝ → Prop) (contains_def : ∀ r, contains r ↔ ∃ᵉ (A : AffineSubspace ℝ (EuclideanSpace ℝ (Fin 4))) (C ∈ A), - finrank A.direction = 2 ∧ + finrank ℝ A.direction = 2 ∧ sphere C r ∩ A ⊆ H) : IsGreatest contains putnam_2008_b3_solution := sorry diff --git a/lean4/src/putnam_2009_b4.lean b/lean4/src/putnam_2009_b4.lean index 4cd7bea..832a203 100644 --- a/lean4/src/putnam_2009_b4.lean +++ b/lean4/src/putnam_2009_b4.lean @@ -12,5 +12,5 @@ theorem putnam_2009_b4 (hbalanced : balanced = fun P ↦ ∀ r > 0, (∫ x in Metric.sphere (0 : EuclideanSpace ℝ (Fin 2)) r, MvPolynomial.eval x P) / (2 * Real.pi * r) = 0) (V : Set (MvPolynomial (Fin 2) ℝ)) [AddCommGroup V] [Module ℝ V] (hV : ∀ P : MvPolynomial (Fin 2) ℝ, P ∈ V ↔ balanced P ∧ P.totalDegree ≤ 2009) -: (Module.rank V = putnam_2009_b4_solution) := +: (Module.rank ℝ V = putnam_2009_b4_solution) := sorry