diff --git a/lean4/src/putnam_1963_a3.lean b/lean4/src/putnam_1963_a3.lean index cfaca34a..07471de0 100644 --- a/lean4/src/putnam_1963_a3.lean +++ b/lean4/src/putnam_1963_a3.lean @@ -15,5 +15,5 @@ theorem putnam_1963_a3 (f y : ℝ → ℝ) (hf : ContinuousOn f (Ici 1)) : ContDiffOn ℝ n y (Ici 1) ∧ (∀ i < n, deriv^[i] y 1 = 0) ∧ (Ici 1).EqOn (P n y) f ↔ - ∀ x ≥ 1, y x = ∫ t in (1 : ℝ)..x, putnam_1963_a3_solution f n x t := by + ∀ x ≥ 1, y x = ∫ t in (1 : ℝ)..x, putnam_1963_a3_solution f n x t := sorry diff --git a/lean4/src/putnam_1963_a4.lean b/lean4/src/putnam_1963_a4.lean index c7b09311..a431c528 100644 --- a/lean4/src/putnam_1963_a4.lean +++ b/lean4/src/putnam_1963_a4.lean @@ -10,5 +10,5 @@ theorem putnam_1963_a4 (T_def : ∀ a n, T a n = n * ((1 + a (n + 1)) / a n - 1)) (P : (ℕ → ℝ) → ℝ → Prop) (P_def : ∀ a C, P a C ↔ C ≤ limsup (T a) atTop ∨ ¬ BddAbove (range (T a))) : - (∀ a, (∀ n, 0 < a n) → P a 1) ∧ (∀ C > 1, ∃ a, (∀ n, 0 < a n) ∧ ¬ P a C) := by + (∀ a, (∀ n, 0 < a n) → P a 1) ∧ (∀ C > 1, ∃ a, (∀ n, 0 < a n) ∧ ¬ P a C) := sorry diff --git a/lean4/src/putnam_1968_a3.lean b/lean4/src/putnam_1968_a3.lean index ff32f1a1..d8ef807c 100644 --- a/lean4/src/putnam_1968_a3.lean +++ b/lean4/src/putnam_1968_a3.lean @@ -15,5 +15,5 @@ theorem putnam_1968_a3 ∃ (n : ℕ) (s : Fin (2 ^ n) → Set α), s 0 = ∅ ∧ (∀ t, ∃! i, s i = t) ∧ - (∀ i, i + 1 < 2 ^ n → (s i ∆ s (i + 1)).ncard = 1) := by + (∀ i, i + 1 < 2 ^ n → (s i ∆ s (i + 1)).ncard = 1) := sorry diff --git a/lean4/src/putnam_1969_a5.lean b/lean4/src/putnam_1969_a5.lean index 30935e05..39ae1bb2 100644 --- a/lean4/src/putnam_1969_a5.lean +++ b/lean4/src/putnam_1969_a5.lean @@ -17,5 +17,5 @@ theorem putnam_1969_a5 x 0 = x0 ∧ y 0 = y0 ∧ x t = 0 ∧ - y t = 0 := by + y t = 0 := sorry diff --git a/lean4/src/putnam_1989_b3.lean b/lean4/src/putnam_1989_b3.lean index 8bb9d026..d17db207 100644 --- a/lean4/src/putnam_1989_b3.lean +++ b/lean4/src/putnam_1989_b3.lean @@ -28,5 +28,5 @@ theorem putnam_1989_b3 (μ_def : ∀ n, μ n = ∫ x in Set.Ioi 0, x ^ n * f x) : (∀ n, μ n = putnam_1989_b3_solution n (μ 0)) ∧ (∃ L, Tendsto (fun n ↦ (μ n) * 3 ^ n / n !) atTop (𝓝 L)) ∧ - (Tendsto (fun n ↦ (μ n) * 3 ^ n / n !) atTop (𝓝 0) → μ 0 = 0) := by + (Tendsto (fun n ↦ (μ n) * 3 ^ n / n !) atTop (𝓝 0) → μ 0 = 0) := sorry diff --git a/lean4/src/putnam_1990_a6.lean b/lean4/src/putnam_1990_a6.lean index 520d10c8..a6f5ebcb 100644 --- a/lean4/src/putnam_1990_a6.lean +++ b/lean4/src/putnam_1990_a6.lean @@ -10,5 +10,5 @@ If $X$ is a finite set, let $|X|$ denote the number of elements in $X$. Call an theorem putnam_1990_a6 : ((Finset.univ : Finset <| Finset (Set.Icc 1 10) × Finset (Set.Icc 1 10)).filter fun ⟨S, T⟩ ↦ (∀ s ∈ S, T.card < s) ∧ (∀ t ∈ T, S.card < t)).card = - putnam_1990_a6_solution := by + putnam_1990_a6_solution := sorry diff --git a/lean4/src/putnam_2003_b3.lean b/lean4/src/putnam_2003_b3.lean index 02232f47..9a8aa86e 100644 --- a/lean4/src/putnam_2003_b3.lean +++ b/lean4/src/putnam_2003_b3.lean @@ -6,5 +6,5 @@ open MvPolynomial Set Nat Show that for each positive integer $n$, $n!=\prod_{i=1}^n \text{lcm}\{1,2,\dots,\lfloor n/i \rfloor\}$. (Here lcm denotes the least common multiple, and $\lfloor x \rfloor$ denotes the greatest integer $\leq x$.) -/ theorem putnam_2003_b3 (n : ℕ) : - n ! = ∏ i in Finset.Icc 1 n, ((List.range ⌊n / i⌋₊).map succ).foldl Nat.lcm 1 := by + n ! = ∏ i in Finset.Icc 1 n, ((List.range ⌊n / i⌋₊).map succ).foldl Nat.lcm 1 := sorry diff --git a/lean4/src/putnam_2018_a3.lean b/lean4/src/putnam_2018_a3.lean index 82ed0275..0c4f47c8 100644 --- a/lean4/src/putnam_2018_a3.lean +++ b/lean4/src/putnam_2018_a3.lean @@ -8,5 +8,5 @@ Determine the greatest possible value of $\sum_{i=1}^{10} \cos(3x_i)$ for real n theorem putnam_2018_a3 : IsGreatest {∑ i, Real.cos (3 * x i) | (x : Fin 10 → ℝ) (hx : ∑ i, Real.cos (x i) = 0)} - putnam_2018_a3_solution := by + putnam_2018_a3_solution := sorry diff --git a/lean4/src/putnam_2022_b1.lean b/lean4/src/putnam_2022_b1.lean index 86ee4f4d..75e9c315 100644 --- a/lean4/src/putnam_2022_b1.lean +++ b/lean4/src/putnam_2022_b1.lean @@ -11,5 +11,5 @@ theorem putnam_2022_b1 (Pconst : P.coeff 0 = 0) (Podd : Odd (P.coeff 1)) (hB : ∀ x : ℝ, HasSum (fun i => b i * x ^ i) (Real.exp (aeval x P))) : - ∀ k : ℕ, b k ≠ 0 := by + ∀ k : ℕ, b k ≠ 0 := sorry diff --git a/lean4/src/putnam_2023_b3.lean b/lean4/src/putnam_2023_b3.lean index 4cc7e8e4..e5d46331 100644 --- a/lean4/src/putnam_2023_b3.lean +++ b/lean4/src/putnam_2023_b3.lean @@ -16,5 +16,5 @@ theorem putnam_2023_b3 (hn : 2 ≤ n) (a : (Fin n → Icc (0 : ℝ) 1) → ℕ) (ha : ∀ x, IsGreatest {k | ∃ i : Fin k ↪o Fin n, IsZigZag ((↑) ∘ x ∘ i)} (a x)) : - 𝔼[(↑) ∘ a] = putnam_2023_b3_solution n := by + 𝔼[(↑) ∘ a] = putnam_2023_b3_solution n := sorry