-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopologyf19.tex
350 lines (275 loc) · 20.1 KB
/
topologyf19.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
\documentclass{article}
\usepackage{amsthm}
\newtheorem*{definition}{Definition}
\newtheorem*{theorem}{Theorem}
\newtheorem*{lemma}{Lemma}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage[margin=1in]{geometry}
\usepackage{hyperref}
\usepackage{tikz}
\usetikzlibrary{cd}
\usetikzlibrary{patterns}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\im}{im}
\renewcommand{\theequation}{\roman{equation}}
\title{\href{https://math.umn.edu/sites/math.umn.edu/files/exams/mantopf19.pdf}{Fall 2019 Manifolds and Topology Preliminary Exam}}
\author{University of Minnesota}
\date{}
\begin{document}
\maketitle
\section*{Part A}
\begin{enumerate}
\item Give a precise definition of the product $\alpha * \beta$ of two paths in a space $X$, including the conditions under which it is defined.
\begin{definition}
Let $\alpha, \beta: [0,1] \rightarrow X$ be continuous functions into $X$. If $\alpha (1) = \beta(0)$, then the product
$\alpha * \beta: [0,1] \rightarrow X$ is defined to be
\[ (\alpha * \beta ) (t) = \begin{cases} \alpha(2t) & t \in [0,1/2] \\ \beta(2t-1) & t \in (1/2,1]\end{cases}\].
\end{definition}
\item Suppose that $X$ is a path connected, semilocally 1-connected space whose fundamental group is $\mathbb{Z}/2 \times \mathbb{Z}/2$. How many isomorphism classes of connected covering spaces does $X$ have?
% See Hatcher prop 1.38
\begin{proof}
The isomorphism classes of covering spaces correspond to conjugacy classes of the fundamental group.
Thus, this question is equivalent to counting the conjugacy classes of $\mathbb{Z}/2 \times \mathbb{Z}/2$.
Note that $\mathbb{Z}/2 \times \mathbb{Z}$ is abelian and abelian groups have exactly one conjugacy class for each group element (since $h g h^{-1} = h h^{-1} g = g$ for any $g,h$).
Thus, there are $|\mathbb{Z}/2 \times \mathbb{Z}/2| = 4$ conjugacy classes, and hence there are $4$ isomorphism classes of covering spaces of $X$.
\end{proof}
\item Give an example of a space $X$ with open subsets $U,V$ such that $X = U\cup V$, $U$ is simply connected, $V$ is simply connected, but where $X$ is not simply connected.
Then explain why this does not violate the Siefert-van Kampen theorem.
\begin{proof}
Let $X$ be the annulus of inner radius $1$ and outer radius $2$, shown below,:
\begin{center}
% TODO: Make this picture prettier.
\begin{tikzpicture}
\filldraw[pattern=dots,draw=white] (0 ,-1) arc [radius=1, start angle=-90, delta angle=180]
-- (0,2) arc [radius=2, start angle=90, delta angle=-180]
-- cycle;
\filldraw[pattern=crosshatch, draw=white]
(0,1) arc [radius=1, start angle=90, delta angle=180]
-- (0,-2) arc [radius=2, start angle=-90, delta angle=-180]
-- cycle;
%\draw[thick] (0,1) -- (0,2);
%\draw[thick] (0,-1) -- (0,-2);
\draw[thick, dashed] (0,0) circle (2cm);
\draw[thick, dashed] (0,0) circle (1cm);
\end{tikzpicture}
\end{center}
and let $U$ be the left half of the annulus (shown crosshatched) with $\epsilon$ extra and let $V$ be the right half of the annulus (shown filled with dots) also with $\epsilon$ extra, where both $U, V$ intersect in $\epsilon$-fattenings of the line segments $\ell_+ = [(0,1),(0,2)]$ and $\ell_-=[(0,-1),(0,-2)]$.
Then $\pi_1(U) = \pi_1(V) = 0$ since both are contractible. Additionally, $\pi_1(U \cap V) = 0$ since both the $\epsilon$-fattenings of line segments $\ell_+, \ell_-$ are contractible so regardless of choice of basepoint we are in a contractible connected component. $U$ and $V$ do not violate the hypothesis of the Siefert-van Kampen theorem, because the intersection $U \cap V$ is not path-connected. However if we were to ignore the requirement of path-connectedness, we might conclude that the theorem says $\pi_1(X) = 0/0 \cong 0$.
But we know that $\pi_1( U \cup V) \cong \mathbb{Z}$ because the generators are the trivial loop and the loop which contains the hole in its interior.
Thus, we cannot choose $U,V$ as in this example if we wish to use the Siefert-van Kampen theorem.
\end{proof}
\item Explain why the inclusion $\mathbb{R}^2 \backslash \{0\} \rightarrow \mathbb{R}$ is not a covering map.
% See Hatcher prop 1.31
\begin{proof}
Suppose $\iota : \mathbb{R}^2 \backslash \{ 0 \} \rightarrow \mathbb{R}$ were a covering map.
Then it is a theorem that the induced map on fundamental groups $\iota_*: \pi_1(\mathbb{R}^2 \backslash \{ 0 \}) \rightarrow \pi_1(\mathbb{R})$ is an injection.
On the other hand, $\pi_1 (\mathbb{R}^2 \backslash \{ 0 \}) \cong \mathbb{Z}$ and $\pi_1( \mathbb{R} ) = 0$ and so no injection from $\mathbb{Z} \rightarrow 0$ exists, contradicting that $\iota$ were a covering map.
\end{proof}
\item Define the \textit{degree} of a map $f: S^n \rightarrow S^n$ for $n > 0$. Explain why $n=0$ is a special case.
\begin{definition}
Let $n>0$ and $f: S^n \rightarrow S^n$ be a map. Then there is an induced homomorphism on homology $f_* : H_n (S^n) \rightarrow H_n (S^n)$. Since $H_n(S^n) \cong \mathbb{Z}$, then $f_*$ must be multiplication by an integer (otherwise it would not be a homomorphism). The integer $k$ such that $f_*(x) = kx$ is called the degree of the map.
Note that $n=0$ is a special case, since $H_0(S^0) \cong \mathbb{Z}^2$, and so ``multiplication by an integer" must be more carefully defined.
\end{definition}
\item Suppose $X, Y$ are spaces that are both abstractly homeomorphic to $S^7$. Show that the ``degree" of the map $f: X \rightarrow Y$ is only well-defined up to sign.
\begin{proof}
Let $\phi_X$ be the isomorphism $X \rightarrow S^7$ and $\phi_Y$ be the isomorphism $Y \rightarrow S^7$.
Note that $S^7$ is homeomorphic to itself via both the identity map $id$ and the antipodal map $a$.
Suppose we consider the homeomorphisms
\[ g: X \stackrel{\phi_X}{\rightarrow} S^7 \stackrel{id}{\rightarrow} S^7 \stackrel{\phi_Y^{-1}}{\rightarrow} Y \]
and
\[ h: X \stackrel{\phi_X}{\rightarrow} S^7 \stackrel{a}{\rightarrow} S^7 \stackrel{\phi_Y^{-1}}{\rightarrow} Y. \]
The antipodal map has degree $(-1)^7$, while the identity has degree $1$.
Now if we consider the map $f$ given in the statement of the problem, then if we consider the homeomorphism going through $id$, we could get a positive sign,
while if we go through $a$, we get a negative sign, hence the degree is only well defined up to sign.
\end{proof}
\item Let $X$ be the space of upper triangular invertible $2\times 2$ matrices:
\[X = \left \{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \in M_2 (\mathbb{R}) : a \neq 0, d \neq 0\right \} \subseteq \mathbb{R}^3\]
Determine the homology groups $H_*(X)$.
%See Hatcher section 3.B
\begin{proof}
First, note that $X \cong (\mathbb{R} \backslash \{0\}) \times (\mathbb{R}) \times (\mathbb{R} \backslash \{0\})\subseteq \mathbb{R}^3$ by the map taking $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mapsto (a,b,d)$.
Thus, we compute the homology groups $H_*(\mathbb{R} \backslash \{0\})$ and $H_*(\mathbb{R})$.
Since $X_1 := \mathbb{R} \backslash \{0\}$ is the disjoint union of the strictly positive real axis $\mathbb{R}_{> 0}$ and the strictly negative real axis $\mathbb{R}_{< 0}$, which are homeomorphic via the map $x \mapsto -x$,
we have
\[H_n(\mathbb{R}_{> 0}) = H_n(\mathbb{R}_{< 0}) = \begin{cases} \mathbb{Z} &n=0 \\ 0 &\text{else} \end{cases} \]
Which means that
\[H_n(\mathbb{R} \backslash 0) = H_n(\mathbb{R}_{< 0}\sqcup \mathbb{R}_{> 0} ) = H_n(\mathbb{R}_{< 0}) \oplus H_n(\mathbb{R}_{> 0} ) = \begin{cases} \mathbb{Z}^2 & n=0 \\ 0 & \text{else} \end{cases}\]
%NEED SOME EXPOSITION HERE.
For CW-complexes $A,B$ a K\"unneth formula tells us that the following is a short exact sequence:
\begin{equation} 0 \rightarrow \bigoplus_i \left ( H_i(A) \otimes H_{n-i}(B) \right ) \rightarrow H_n(A\times B) \rightarrow
\bigoplus_i \Tor \left ( H_i(A), H_{n-i-1}(B) \right ) \rightarrow 0 \label{seq:Kunneth}\end{equation}
We will first compute $H_\bullet (\mathbb{R} \times \mathbb{R}\backslash 0)$, taking $\mathbb{R} = A$ and $\mathbb{R}\backslash 0 = B$.
Rewriting the above sequence for our case, we see
\[ 0 \rightarrow \bigoplus_i \left ( H_i(\mathbb{R}) \otimes H_{n-i}(\mathbb{R}\backslash 0) \right ) \rightarrow H_n(\mathbb{R}\times \mathbb{R}\backslash 0) \rightarrow
\bigoplus_i \Tor \left ( H_i(\mathbb{R}), H_{n-i-1}(\mathbb{R}\backslash 0) \right ) \rightarrow 0\]
First, note that for every $i$ we have $H_i(\mathbb{R})$ is torsion-free, so $\Tor \left ( H_i(\mathbb{R}), H_{n-i-1}(\mathbb{R}\backslash 0) \right ) = 0$, hence
\[ \bigoplus_i \left ( H_i(\mathbb{R}) \otimes H_{n-i}(\mathbb{R}\backslash 0) \right ) \cong H_n(\mathbb{R}\times \mathbb{R}\backslash 0) \]
When $n =0$ we have
\[H_0 (\mathbb{R}) \otimes H_0 (\mathbb{R} \backslash 0) = \mathbb{Z} \otimes \mathbb{Z}^2 \cong \mathbb{Z}^2\]
When $n>0$ we have
\[ H_i(\mathbb{R}) \otimes H_{n-i}(\mathbb{R}\backslash 0) = \left (\begin{cases}
\mathbb{Z} \otimes 0 & i=0\\
0 \otimes 0 & i \neq 0,n\\
0 \otimes \mathbb{Z}^2 & i = n\\
\end{cases} \right) = 0 ,\]
and so
\[H_{n}( \mathbb{R} \times \mathbb{R}\backslash 0) = \begin{cases} \mathbb{Z}^2 & n=0 \\ 0 &\text{else} \end{cases}.\]
We now use (\ref{seq:Kunneth}) with $A = \mathbb{R} \backslash 0$ and $B = \mathbb{R} \times \mathbb{R} \backslash 0$ and the fact that every homology group of $A$ is torsion-free to see
\[ \bigoplus_i \left ( H_i(\mathbb{R} \backslash 0) \otimes H_{n-i}(\mathbb{R} \times \mathbb{R}\backslash 0) \right ) \cong H_n(\mathbb{R} \backslash 0 \times\mathbb{R}\times \mathbb{R}\backslash 0) \cong H_n(X).\]
Arguing as above we see when $n=0$ that
\[ H_0(\mathbb{R} \backslash 0) \otimes H_0(\mathbb{R} \times \mathbb{R}\backslash 0) = \mathbb{Z}^2 \otimes \mathbb{Z}^2 \cong \mathbb{Z}^4,\]
and
for $n >0$
\[ H_i(\mathbb{R} \backslash 0 ) \otimes H_{n-i}(\mathbb{R} \times \mathbb{R}\backslash 0) = \left (\begin{cases}
\mathbb{Z}^2 \otimes 0 & i=0\\
0 \otimes 0 & i \neq 0,n\\
0 \otimes \mathbb{Z}^2 & i = n\\
\end{cases} \right) = 0 ,\]
and so
\[ H_n(X) = \begin{cases} \mathbb{Z}^4 & n=0 \\ 0 & \text{else} \end{cases}\]
\end{proof}
\item Suppose $X$ is a space with open subsets $U,V$ such that $X = U \cup V$ and both $U$ and $V$ are contractable. What is the relationship between the homology groups of $X$ and $U\cap V$
\begin{proof}
The Mayer-Vietoris sequence tells us that the following sequence is exact:
\begin{tikzcd}
\cdots \arrow{r} & \tilde{H}_{n} (U \cap V) \arrow{r} & \tilde{H}_n(U) \oplus \tilde{H}_n(V) \arrow{r} & \tilde{H}_n (U \cup V) \arrow{r} &\tilde{H}_{n-1} (U \cap V) \arrow{r} & \cdots
\end{tikzcd}
Since $U,V$ are contractable, $\tilde{H}_n(U) = \tilde{H}_n(V) = 0$ for all $n$. Thus, we have the exactness of the sequence
\begin{center}
\begin{tikzcd}
\cdots \arrow{r} & 0 \arrow{r} & \tilde{H}_n (U \cup V) \arrow{r} &\tilde{H}_{n-1} (U \cap V) \arrow{r} & 0 \arrow{r} & \cdots
\end{tikzcd} \end{center}
and so we have that $\tilde{H}_n (X) \cong \tilde{H}_{n-1}(U \cap V)$ for all $n$.
\end{proof}
\item Suppose that $X$ is a path connected space, $A$ is a path connected subspace, $p \in A$, and $C$ is the mapping cone
\[ \left ( X \times \{1\} \cup A \times [0 ,1 ] \right ) / \{ (a,0) \sim (a^\prime,0) \}. \]
Use the Seifert-Van Kampen theorem to express the fundamental group $\pi_1 (C, [(p, 1/2)])$ in terms of the map $\pi_1 (A,p) \rightarrow \pi_1(X,p)$.
\begin{proof}
The Seifert-Van Kampen theorem tells us the following commutative diagram:
\begin{center}
\begin{tikzcd}
& \pi_1(X \times \{1\} ) \arrow[dr,"\Phi"] & \\
\pi_1(A \times \{1\} ) \arrow[ur] \arrow[dr]& & \pi_1(C) \\
& \pi_1(A \times [0,1] / \{ (a,0) \sim (a^\prime, 0)\} ) \arrow[ur] &
\end{tikzcd}
\end{center}
and in particular that $\Phi$ is surjective.
Noether's first isomorphism theorem tells us that $ \pi_1(C) = \im \Phi \cong \pi_1(X)/\ker \Phi.$
Since $A \times [0,1] / \sim$ is contractable (e.g. onto the point $(a,0)$) we know that $\pi_1(A\times \{1\})$
is contained in the kernel of $\pi_1(X)$.
On the other hand, the surjection $\Phi$ is constructed by a quotient of the free product $\pi_1(X\times \{1\}) * 0$
by the normal subgroup generated by loops in $\pi_1(A\times\{1\})$, and so the kernel contains \emph{only}
points in $\pi_1(A \times \{1\})$. Thus, $\pi_1(C) \cong \pi_1(X \times \{1\})/\pi_1(A \times \{1 \}) \cong \pi_1(X)/\pi_1(A)$.
Strictly speaking, we have computed $\pi_1(C,(p,1))$. However, since everything we have dealt with is path connected,
we obtain the isomorphism $\pi_1(C, (p,1)) \cong \pi_1(C, (p, 1/2))$.
\end{proof}
\setcounter{enumi}{9}
\item State the \emph{unique path lifting} theorem for covering maps.\footnote{I think they are asking for thm. 1.34 of Hatcher, but I am not 100\% sure.}
\begin{theorem}
Let $p: \tilde{X} \rightarrow X$ be a covering map, and let $\gamma: [0,1] \rightarrow X$ be a
path in $X$. Let $\gamma_1: [0,1] \rightarrow \tilde{X}$ and $\gamma_2: [0,1]\rightarrow \tilde{X}$
be two lifts of $\gamma$. If there is any $t_0 \in [0,1]$ such that $\gamma_1(t_0) = \gamma_2(t_0)$, then
$\gamma_1(t) = \gamma_2(t)$ for all $t \in [0,1]$.
\end{theorem}
\end{enumerate}
\section*{Part B}
\begin{enumerate}
\item Give an example of a compact $2$-dimensional manifold $M$ for which there exists an embedding of $M \rightarrow \mathbb{R}^n$ into Euclidean space of strictly smaller dimension than that given by the Whitney embedding theorem.
\begin{proof}
The Whitney embedding theorem states that a $d$-dimensional manifold with or without boundary can be properly smoothly embedded in $\mathbb{R}^{2d+1}$. Here, we take $d=2$ and so the embedding certainly exists in $\mathbb{R}^5$.
Consider the subset of $\mathbb{R}^2$ given by $I^2:=[0,1]\times [0,1]$.
As a closed and bounded subset of $\mathbb{R}^2$ the Heine-Borel theorem tells us this is certainly compact.
Now consider the map $f: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ taking $(x,y) \mapsto (x,y,0)$.
This is a smooth, proper embedding of $I^2$ into $\mathbb{R}^3$ a Euclidean space of dimension strictly smaller than $5$.
To see that the map is smooth, note that $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 1$ and $\frac{\partial f}{\partial z} = 0$.
%% Does this hit all the requirements of proof? I'm not sure -tk
\end{proof}
\item The cylindrical coordinate change is given by \[(x,y) = ( r \cos (\theta), r \sin (\theta)).\]
Express the vector field \[(x^2+y^2)^{-2/3} \left ( x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) \]
in $(r,\theta)$ coordinates.
% For further details see Lee Intro to smooth manifolds, example 3.16, pg. 64
\begin{proof}
Now recall that the change of coordinate map $F$ which sends $(x,y)$ coordinates to $(r, \theta)$ coordinates are $r = \sqrt{x^2+y^2}$ and $\theta = \arctan(\frac{y}{x})$, and so
\begin{align*}
\frac{\partial r}{\partial x} &= \frac{1}{2 \sqrt{x^2+y^2}} \frac{\partial (x^2+y^2)}{\partial x}\\
&= \frac{1}{2 \sqrt{x^2+y^2}} (2x) \\
&= \frac{x}{ \sqrt{x^2+y^2}} \\
\end{align*}
and by symmetry $\frac{\partial r}{\partial y} = \frac{y}{ \sqrt{x^2+y^2}} $.
%
Now we compute $\frac{\partial \theta}{\partial x}$ and $\frac{\partial \theta}{ \partial y}$.
First,
\begin{align*}
\frac{\partial \theta}{\partial x} &= \frac{1}{1+(y/x)^2}\frac{\partial (y/x)}{\partial x} \\
&=\frac{1}{1+(y/x)^2} \cdot \frac{-y}{x^2}\\
&=\frac{-y}{x^2+y^2}.
\end{align*}
Next,
\begin{align*}
\frac{\partial \theta}{\partial y} &= \frac{1}{1+(y/x)^2}\frac{\partial (y/x)}{\partial y} \\
&=\frac{1}{1+(y/x)^2} \cdot \frac{1}{x}\\
&=\frac{1}{1+(y/x)^2} \cdot \frac{x}{x^2}\\
&=\frac{x}{x^2+y^2}.
\end{align*}
%
The chain rule tells us that
%
\begin{align*}
\frac{\partial}{\partial x} &= \frac{\partial }{\partial r} \frac{\partial r}{\partial x} + \frac{\partial }{\partial \theta} \frac{\partial \theta}{\partial x} \\
&= \frac{x}{\sqrt{x^2+y^2}} \frac{\partial }{\partial r} - \frac{y}{x^2+y^2}\frac{\partial }{\partial \theta}\\
&= \cos \theta \frac{\partial }{\partial r} - \frac{\sin \theta}{r}\frac{\partial }{\partial \theta}\\
\end{align*}
and
\begin{align*}
\frac{\partial}{\partial y} &= \frac{\partial }{\partial r} \frac{\partial r}{\partial y} + \frac{\partial }{\partial \theta} \frac{\partial \theta}{\partial y} \\
&= \frac{y}{\sqrt{x^2+y^2}}\frac{\partial }{\partial r} + \frac{x}{x^2+y^2}\frac{\partial }{\partial \theta}\\
&= \sin \theta \frac{\partial}{\partial r} + \frac{\cos \theta}{r} \frac{\partial}{\partial \theta}
\end{align*}
Finally, we change coordinates on $x,y$, leaving their differentials unchanged, then we substitute using the expressions for $\partial/ \partial x$ and $\partial/ \partial y$ which we found above and reduce using the Pythagorean trigonometric identity to see that the vector field in terms of cylindrical coordinates is:
%
\begin{align*}
(x^2+y^2)^{-2/3} \left ( x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right)
&= ((r \cos \theta)^2+(r \sin \theta)^2)^{-2/3} \left ( (r \cos \theta) \frac{\partial}{\partial x} + (r \sin \theta) \frac{\partial}{\partial y} \right) \\
&= r^{-4/3} \left ( (r \cos \theta) \frac{\partial}{\partial x} + (r \sin \theta) \frac{\partial}{\partial y} \right) \\
&= r^{-4/3} \left ( (r \cos \theta)\left(\cos \theta \frac{\partial }{\partial r} - \frac{\sin \theta}{r}\frac{\partial }{\partial \theta} \right) + (r \sin \theta)\left ( \sin \theta \frac{\partial}{\partial r} + \frac{\cos \theta}{r} \frac{\partial}{\partial \theta} \right ) \right) \\
&= r^{-4/3} \left ( (r \cos^2 \theta + r \sin^2 \theta) \frac{\partial}{\partial r} + ( - \sin \theta \cos \theta + \cos \theta \sin \theta ) \frac{\partial}{\partial \theta} \right) \\
&= r^{-4/3} \left ( r \frac{\partial}{\partial r} \right)\\
&= \frac{1}{\sqrt[3]{r}} \frac{\partial}{\partial r}
\end{align*}
\end{proof}
\item Determine the Lie bracket of the vector fields $x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ and $y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$ on $\mathbb{R}^2$.
% See Lee pg. 185
\begin{proof}
If $M$ is a smooth manifold with or without boundary and
$X = X^i \frac{\partial}{\partial x^i}$ and $Y = Y^j \frac{\partial}{\partial x^j}$
are vector fields, then the Lie bracket is
\[ [X,Y] = \left ( X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{ \partial X^j}{\partial x^i} \right ) \frac{\partial }{\partial x^j}.\]
Since we are working in $\mathbb{R}^2$, then $x^1 =x$ and $x^2=y$. Define $X:= x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$
so $X^1 = x$ and $X^2 = y$. Similarly $Y:= y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$ has $Y^1 = y$ and $Y^2 = -x$.
So applying the formula for the Lie bracket, we get
that the term in front of $\partial / \partial x$ should be
\[ \left (x \frac{\partial y}{\partial x} - y \frac{\partial x}{\partial x} \right ) + \left (y \frac{\partial y}{\partial y} + x \frac{\partial x}{\partial y} \right) \]
which simplifies to
\[ 0 - y + y +0 = 0 \]
and the term in front of $\partial /\partial y$ should be
\[ \left ( x\frac{\partial (-x)}{\partial x} - y \frac{\partial y}{\partial x} \right ) + \left ( y \frac{\partial (-x)}{\partial y} + x \frac{\partial y}{\partial y} \right ) \]
which simplifies to
\[ -x - 0 + 0 + x = 0.\]
Thus
\[ [X,Y] = 0 .\]
%Sage code to confirm:
%M.<x,y> = EuclideanSpace()
%X = M.vector_field(x, y, name = 'X')
%Y = M.vector_field(y,-x, name = 'Y')
%
%(X.bracket(Y)).display()
\end{proof}
\item Give an example of a surjection $f: M \rightarrow N$ of manifolds that is not a submersion.
% Would love some back up on this one.
\begin{proof}
Consider the projection map $\pi_1: \mathbb{R}^2 \rightarrow \mathbb{R}$ taking $(x,y) \mapsto x$. There is no right inverse to the projection map, since $\pi$ is a many-to-one map. Hence it is not a submersion.
\end{proof}
\end{enumerate}
\end{document}