-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththeorems.tex
69 lines (48 loc) · 3.13 KB
/
theorems.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
\documentclass{article}
\usepackage{amsfonts}
\usepackage{amsthm}
\newtheorem*{theorem}{Theorem}
\newtheorem{proposition}{Proposition}
\newtheorem*{lemma}{Lemma}
\usepackage[margin=1in]{geometry}
\usepackage{tikz}
\usetikzlibrary{cd}
\title{Useful theorems for Manifolds and Topology Preliminary Exams}
\author{University of Minnesota}
\begin{document}
\maketitle
\section{Fundamental Group}
\begin{theorem}[Siefert-van Kampen]
Let $U,V$ be open, path connected topological spaces such that $U \cap V$ is nonempty and path connected. The inclusion maps of $U \hookrightarrow U \cup V$ and $V \hookrightarrow U \cup V$ induce group homomorphisms $j_U:\pi_1(U) \rightarrow \pi_1(U \cup V)$ and $j_V: \pi_1(V) \rightarrow \pi_1(U \cup V)$. Then $U \cup V$ is path connected, and $j_U, j_V$ form a commutative pushout diagram:
\begin{center}\begin{tikzcd}
& \pi_1(U) \arrow[rd,dashed] \arrow[rrd, bend left=10,"j_U"]& \\
\pi_1(U \cap V) \arrow[ru,"i_U"] \arrow[rd,"i_V"] & & \pi_1(U) *_{\pi_1(U \cap V)}\pi_1(V) \arrow[r,dashed,"k"] & \pi_1(U \cup V) \\
& \pi_1(V) \arrow[ru,dashed] \arrow[rru, bend right=10,"j_V"]&
\end{tikzcd}\end{center}
Since this is a pushout diagram, then $k$ is an isomorphism.
\end{theorem}
\section{Covering Spaces}
\begin{theorem}
Let $X$ be path connected, locally path connected, and semilocally simply connected. Then there is a bijection between the set of basepoint-preserving isomorphism classes of path-connected covering spaces $p:(\tilde{X},\tilde{x}_0) \rightarrow (X,x_0)$ and the set of subgroups of $\pi_1(X,x_0)$ obtained by associating the subgroup $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ to the covering space $(\tilde{X}, \tilde{x}_0)$. If basepoints are ignored, this gives a bijection between isomorphism classes of path-connected covering spaces $p: \tilde{X} \rightarrow X$ and conjugacy classes of subgroups of $\pi_1(X,x_0)$.
\end{theorem}
\begin{lemma}
If $G$ is an abelian group, then the conjugacy classes of $G$ are all singletons, so if $G$ is finite, then $|G|$ is the number of conjugacy classes.
\end{lemma}
\section{Manifolds}
\begin{theorem}[Sard's theorem]
Let $M, N$ be smooth manifolds with or without boundary, and $F: M \rightarrow N$ be a smooth map. Then the set of critical values of $F$ has measure $0$ in $N$.
\end{theorem}
\begin{theorem}[Whitney embedding theorem]
Every smooth $n$-manifold with or without boundary admits a proper smooth embedding into $\mathbb{R}^{2n+1}$.
\end{theorem}
\begin{theorem}[Coordinate formula for the Lie Bracket \cite{lee} prop. 8.26 verbaitm]
Let $X,Y$ be smooth vector fields on a smooth manifold $M$ with or without boundary, and let $X = X^i \frac{\partial}{\partial x^i}$
and $Y = Y^j \frac{\partial}{\partial x^j}$ be the coordinate expressions for $X$ and $Y$ in terms of some smooth local
coordinates $(x^i)$ for $M$. Then $[X,Y]$ has the following coordinate expression:
\[ [X,Y] = \left ( X^i \frac{ \partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i} \right ) \frac{\partial }{ \partial x^j} \]
or
\[ [X,Y] = (XY^j - YX^j) \frac{\partial}{\partial x^j} \]
\end{theorem}
To add:
Global Rank Theorem p. 83 of Lee
\end{document}