Skip to content

Latest commit

 

History

History
143 lines (101 loc) · 4.2 KB

README.md

File metadata and controls

143 lines (101 loc) · 4.2 KB

TongWen Core converter

A fast converter between Traditional Chinese and Simplified Chinese and a helper DOM tree walker.

Installation

Install by npm:

npm install tongwen-core

Install by yarn:

yarn add tongwen-core

Examples and Usages

Note: Example scripts are all written in TypeScript.

An example for how to use converter:

import { createConverterMap, createConverterObj, LangType, SrcPack } from 'tongwen-core';

const dics: SrcPack = { s2t: [{ 台湾: '台灣' }], t2s: [{ 台灣: '台湾' }] };
const mConv = createConverterMap(dics);
const oConv = createConverterObj(dics);
const result = [mConv.phrase(LangType.s2t, '台湾'), oConv.phrase(LangType.s2t, '台湾')];
console.log(result); // [ '台灣', '台灣' ]

The difference between createConverterMap and createConverterObj is the former use es Map and
the latter use plain Object as internal data structure. Use depend on your environment,
but the es version is highly recommended, due performance boost can up to 2.x time faster.

Note: You should provide dictionaries when creating converter, no default dictionaries.

Here is an example for using converter and walker in web page.

import { createConverterMap, LangType, SrcPack, walkerNode } from 'tongwen-core';

const dics: SrcPack = { s2t: [{ 台湾: '台灣' }], t2s: [{ 台灣: '台湾' }] };
const mConv = createConverterMap(dics);
const parseds = walkNode(document);

parseds; // parsed result as an array
import { walkerNode } from 'tongwen-core';

// customize by passing custom function(s)
const parseds = walkNode(document, { isRejectNode: node => false });

parseds; // parsed result as an array

Dictionaries

Dictionaries that included in this project is use only for test, you can use them but not recommmanded, since they are for v1.5 New TongWenTang Core algorithm.

In practice, we recommend to use tongwen-dict.

API and Types

For converter

// The source dictionaries collection
type SrcPack = {
  s2t: Record<string, string>[];
  t2s: Record<string, string>[];
};
const dics: SrcPack = { s2t: [{ 台湾: '台灣' }], t2s: [{ 台灣: '台湾' }] };

// Converter type
type Converter = {
  set: (src: SrcPack) => undefined;
  char: (type: LangType, text: string) => string;
  phrase: (type: LangType, text: string) => string;
};

For walker:

// ParsedResult
interface ParsedTextNode {
  type: 'TEXT';
  node: Node;
  text: string;
}

interface ParsedElementNode {
  type: 'ELEMENT';
  node: Element;
  attr: string;
  text: string;
}

type ParsedResult = ParsedTextNode | ParsedElementNode;

// WalkNode
type WalkNode = (node: Node, anf?: Partial<AcceptNodeFn>) => ParsedResult[];

interface AcceptNodeFn {
  hasTargetContent: (text: string | null) => boolean;
  isRejectNode: (node: Node) => boolean;
  isEditableElement: (elm: Element) => boolean;
  hasTargetAttributes: (elm: Element) => boolean;
  parseTextNode: (node: Node) => ParsedTextNode;
  parseElementNode: (elm: Element) => ParsedElementNode[];
}

For more detail, please check the source code.

Recommanded for development

  • Editor: Visual Studio Code
    • For best TypeScript support
    • Packages: prettier - code formater, TypeScript Toolbox
  • Environment
    • node
    • yarn
  • npm scripts:
    • test:test for any TypeScript error

Story

TongWenCore and TongWenParser derived from the core converter of New Tongwentang extension (version 1.5), which a browser extension that provide functionality for convert charaters between Traditional Chinese and Simplified Chinese who developed by softcup.

TongWenCore and TongWenParser extract from the extension as a independent repository and totally rewrite with TypeScript to make it more solid.

Convert speed of TongWenCore is faster than New Tongwentang Core (about 3.x time faster which tested in certain case). Convert Algorithm have been redesign, the idea was originally from cookwu and t7yang who implemented in TypeScript.

Lisence

MIT