From 3df3d05c39d7ceb5d499ae7e4acbf16c41c7971c Mon Sep 17 00:00:00 2001 From: SergejKr <121165023+SergejKr@users.noreply.github.com> Date: Fri, 6 Sep 2024 08:56:23 +0200 Subject: [PATCH] Replaced numpy.asfarray with numpy.asarray using the proper dtype. (#169) * Replaced numpy.asfarray with numpy.asarray using the proper dtype. * Newer version of numpy return np.True_ instead of True. Changed this in two doctests. * Changed to correct dtype from int32 to long. Changed doctest to use assert --------- Co-authored-by: skrylow --- KDEpy/BaseKDE.py | 5 ++--- KDEpy/NaiveKDE.py | 2 +- KDEpy/TreeKDE.py | 2 +- KDEpy/binning.py | 14 +++++++------- KDEpy/bw_selection.py | 4 ++-- KDEpy/kernel_funcs.py | 3 +-- KDEpy/tests/test_api.py | 2 +- pyproject.toml | 2 +- 8 files changed, 16 insertions(+), 18 deletions(-) diff --git a/KDEpy/BaseKDE.py b/KDEpy/BaseKDE.py index 0ed0e78..6c46ac4 100644 --- a/KDEpy/BaseKDE.py +++ b/KDEpy/BaseKDE.py @@ -190,12 +190,11 @@ def _process_sequence(sequence_array_like): Examples -------- >>> res = BaseKDE._process_sequence([1, 2, 3]) - >>> (res == np.array([[1], [2], [3]])).all() - True + >>> assert (res == np.array([[1], [2], [3]])).all() """ # Must convert to float to avoid possible interger overflow if isinstance(sequence_array_like, Sequence): - out = np.asfarray(sequence_array_like).reshape(-1, 1) + out = np.asarray(sequence_array_like, dtype=float).reshape(-1, 1) elif isinstance(sequence_array_like, np.ndarray): if len(sequence_array_like.shape) == 1: out = sequence_array_like.reshape(-1, 1) diff --git a/KDEpy/NaiveKDE.py b/KDEpy/NaiveKDE.py index 487060b..eb51d9d 100644 --- a/KDEpy/NaiveKDE.py +++ b/KDEpy/NaiveKDE.py @@ -123,7 +123,7 @@ def evaluate(self, grid_points=None): # For every data point, compute the kernel and add to the grid bw = self.bw if isinstance(bw, numbers.Number): - bw = np.asfarray(np.ones(self.data.shape[0]) * bw) + bw = np.asarray(np.ones(self.data.shape[0]) * bw, dtype=float) # TODO: Implementation w.r.t grid points for faster evaluation # See the SciPy evaluation for how this can be done diff --git a/KDEpy/TreeKDE.py b/KDEpy/TreeKDE.py index 167997d..197c231 100644 --- a/KDEpy/TreeKDE.py +++ b/KDEpy/TreeKDE.py @@ -136,7 +136,7 @@ def evaluate(self, grid_points=None, eps=10e-4): obs, dims = self.data.shape bw = self.bw if isinstance(bw, numbers.Number): - bw = np.asfarray(np.ones(obs) * bw) + bw = np.asarray(np.ones(obs) * bw, dtype=float) else: bw = np.asarray_chkfinite(bw, dtype=float) diff --git a/KDEpy/binning.py b/KDEpy/binning.py index 7bc1604..1ab05b1 100644 --- a/KDEpy/binning.py +++ b/KDEpy/binning.py @@ -104,16 +104,16 @@ def linbin_cython(data, grid_points, weights=None): dx = (max_grid - min_grid) / num_intervals transformed_data = (data - min_grid) / dx - result = np.asfarray(np.zeros(num_intervals + 2)) + result = np.asarray(np.zeros(num_intervals + 2), dtype=float) # Two Cython functions are implemented, one for weighted data and one # for unweighted data, since creating equal weights is costly w.r.t time if weights is None: result = _cutils.iterate_data_1D(transformed_data, result) - return np.asfarray(result[:-1]) / transformed_data.shape[0] + return np.asarray(result[:-1], dtype=float) / transformed_data.shape[0] else: res = _cutils.iterate_data_1D_weighted(transformed_data, weights, result) - return np.asfarray(res[:-1]) # Remove last, outside of grid + return np.asarray(res[:-1], dtype=float) # Remove last, outside of grid def linbin_numpy(data, grid_points, weights=None): @@ -197,7 +197,7 @@ def linbin_numpy(data, grid_points, weights=None): unique_integrals = np.unique(integral) unique_integrals = unique_integrals[(unique_integrals >= 0) & (unique_integrals <= len(grid_points))] - result = np.asfarray(np.zeros(len(grid_points) + 1)) + result = np.asarray(np.zeros(len(grid_points) + 1), dtype=float) for grid_point in unique_integrals: # Use binary search to find indices for the grid point # Then sum the data assigned to that grid point @@ -337,7 +337,7 @@ def linbin_Ndim(data, grid_points, weights=None): # Compute the number of grid points for each dimension in the grid grid_num = (grid_points[:, i] for i in range(dims)) - grid_num = np.array(list(len(np.unique(g)) for g in grid_num)) + grid_num = np.array(list(len(np.unique(g)) for g in grid_num), dtype="long") # Scale the data to the grid min_grid = np.min(grid_points, axis=0) @@ -356,7 +356,7 @@ def linbin_Ndim(data, grid_points, weights=None): # Weighted data has two specific routines if weights is not None: if data_dims >= 3: - binary_flgs = cartesian(([0, 1],) * dims) + binary_flgs = cartesian(([0, 1],) * dims).astype("long") result = _cutils.iterate_data_ND_weighted(data, weights, result, grid_num, obs_tot, binary_flgs) else: result = _cutils.iterate_data_2D_weighted(data, weights, result, grid_num, obs_tot) @@ -367,7 +367,7 @@ def linbin_Ndim(data, grid_points, weights=None): # specialize routine for this case. else: if data_dims >= 3: - binary_flgs = cartesian(([0, 1],) * dims) + binary_flgs = cartesian(([0, 1],) * dims).astype("long") result = _cutils.iterate_data_ND(data, result, grid_num, obs_tot, binary_flgs) else: result = _cutils.iterate_data_2D(data, result, grid_num, obs_tot) diff --git a/KDEpy/bw_selection.py b/KDEpy/bw_selection.py index 5cf2659..77a8d81 100644 --- a/KDEpy/bw_selection.py +++ b/KDEpy/bw_selection.py @@ -55,8 +55,8 @@ def _fixed_point(t, N, I_sq, a2): """ # This is important, as the powers might overflow if not done - I_sq = np.asfarray(I_sq, dtype=FLOAT) - a2 = np.asfarray(a2, dtype=FLOAT) + I_sq = np.asarray(I_sq, dtype=FLOAT) + a2 = np.asarray(a2, dtype=FLOAT) # ell = 7 corresponds to the 5 steps recommended in the paper ell = 7 diff --git a/KDEpy/kernel_funcs.py b/KDEpy/kernel_funcs.py index 0447933..f966198 100644 --- a/KDEpy/kernel_funcs.py +++ b/KDEpy/kernel_funcs.py @@ -252,8 +252,7 @@ def __init__(self, function, var=1, support=3): ... return np.exp(-x) / normalization >>> kernel = Kernel(exp, var=4, support=np.inf) >>> # The function is scaled so that the standard deviation (bw) = 1 - >>> kernel(0, bw=1, norm=2)[0] > kernel(1, bw=1, norm=2)[0] - True + >>> assert kernel(0, bw=1, norm=2)[0] > kernel(1, bw=1, norm=2)[0] >>> np.allclose(kernel(np.array([0, 1, 2])), kernel([0, 1, 2])) True >>> np.allclose(kernel(0), kernel([0])) diff --git a/KDEpy/tests/test_api.py b/KDEpy/tests/test_api.py index 6cb82b0..ac3fa02 100644 --- a/KDEpy/tests/test_api.py +++ b/KDEpy/tests/test_api.py @@ -51,7 +51,7 @@ def test_api_models_kernels_bandwidths(kde1, kde2, bw, kernel): assert err < 0.002 -type_functions = [tuple, np.array, np.asfarray, lambda x: np.asfarray(x).reshape(-1, 1)] +type_functions = [tuple, np.array, np.asarray, lambda x: np.asarray(x, dtype=float).reshape(-1, 1)] @pytest.mark.parametrize( diff --git a/pyproject.toml b/pyproject.toml index da39a02..8bdedca 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -2,7 +2,7 @@ name = "KDEpy" version = "1.1.9" dependencies = [ - "numpy>=1.14.2,<2.0", + "numpy>=1.14.2", "scipy>=1.0.1,<2.0", ] description = "Kernel Density Estimation in Python."