-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastCloningPrimer.py
723 lines (652 loc) · 71 KB
/
fastCloningPrimer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
# -*- coding: utf-8 -*-
"""
Author : Tom Fu
Date : 2020 Nov 7
FileName : fastCloningPrimer.py (for the BioFoundry Project at the HMC BioMakerspace)
Description : Find primer pairs for fast cloning
"""
import primer3
from Bio import SeqIO
import pandas as pd
import sys
import copy
import math
from Bio.Seq import Seq
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import os
import time
#################
### TESTCASES ###
#################
# TODO: when I run:
# ==============================================================================
# fastCloningPrimers(royaTestPlasmidSeq, royaTestInsertPlasmidSeq,
# royaTestVectorSeq, royaTestInsertSeq, maxTempDiff=MAX_TEMP_DIFF,
# destinationAddress='fastCloningPrimerInfo.csv',
# benchlingAddress='benchlingfastCloningPrimerInfo.csv',
# benchling=True, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE)
# ==============================================================================
# benchlingfastCloningPrimerInfo.csv is empty. However, when I run the provided
# test cases, the correct primers are outputted.
# from
# https://benchling.com/roygoli/f/lib_mvm3FehI-biofoundry/seq_s57xycXu-copy-of-biofoundry-copy-of-pdms123/edit
royaTestPlasmidSeq = "GCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCCTCTAGCAGCCCGGGCTGCggccgcTATTTCTCCTTTCGCGCAGTACGTGGTTCGCGGCTTAATCCTGCTGGCAGCGGTGATCTTCGACCGTTACAAGCAAAAAGCGAAACGCACTGTCTGATGCTTTTTTCTGCAACAATTTAGCGTTTTTTCCCACCATAGCCAACCGCCATAACGGTTGGCTGTTCTTCGTTGCAAATGGCGACCCCCGTCACACTGTCTATACTTACATGTCTGTAAAGCGCGTTCTGCGCAACACAATAAGAAAAGAGAAGGAGGAGAACCGGgtgACAGAACCGTTAACCGAAACCCCTGAACTATCCGCGAAATATGCCTGGTTTTTTGATCTTGATGGAACGCTGGCGGAAATCAAACCGCATCCCGATCAGGTCGTCGTGCCTGACAATATTCTGCAAGGACTACAGCTACTGGCAACCGCAAGTGATGGTGCATTGGCATTGATATCAGGGCGCTCAATGGTGGAGCTTGACGCACTGGCAAAACCTTATCGCTTCCCGTtCTAGATTTAAGAAGGAGATATACATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGCTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAATAATGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAATAATAACCGGGCAGGCCATGTCTGCCCGTATTTCGCGTAAGGAAATCCATTATGTACTATTTAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCGATATCGGGCTAGCCGGCCCGACGCACTTTGCGCCGAATAAATACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTTTGAGTTATCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGTGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGAAATGACGGATATCGTCCATTCCGACAGCATCGCCAGTCACTATGGCGTGCTGCTAGCGCTTTTAGCCGCTTTAGCGGCCTTTCCCCCTACCCGAAGGGTGGGGGCGCGTGTGCAGCCCCGCAGGGCCTGTCTCGGTCGATCATTCAGCCCGGCTCATCCTTCTGGCGTGGCGGCAGACCGAACAAGGCGCGGTCGTGGTCGCGTTCAAGGTACGCATCCATTGCCGCCATGAGCCGATCCTCCGGCCACTCGCTGCTGTTCACCTTGGCCAAAATCATGGCCCCCACCAGCACCTTGCGCCTTGTTTCGTTCTTGCGCTCTTGCTGCTGTTCCCTTGCCCGCACCCGCTGAATTTCGGCATTGATTCGCGCTCGTTGTTCTTCGAGCTTGGCCAGCCGATCCGCCGCCTTGTTGCTCCCCTTAACCATCTTGACACCCCATTGTTAATGTGCTGTCTCGTAGGCTATCATGGAGGCACAGCGGCGGCAATCCCGACCCTACTTTGTAGGGGAGGGCGCACTTACCGGTTTCTCTTCGAGAAACTGGCCTAACGGCCACCCTTCGGGCGGTGCGCTCTCCGAGGGCCATTGCATGGAGCCGAAAAGCAAAAGCAACAGCGAGGCAGCATGGCGATTTATCACCTTACGGCGAAAACCGGCAGCAGGTCGGGCGGCCAATCGGCCAGGGCCAAGGCCGACTACATCCAGCGCGAAGGCAAGTATGCCCGCGACATGGATGAAGTCTTGCACGCCGAATCCGGGCACATGCCGGAGTTCGTCGAGCGGCCCGCCGACTACTGGGATGCTGCCGACCTGTATGAACGCGCCAATGGGCGGCTGTTCAAGGAGGTCGAATTTGCCCTGCCGGTCGAGCTGACCCTCGACCAGCAGAAGGCGCTGGCGTCCGAGTTCGCCCAGCACCTGACCGGTGCCGAGCGCCTGCCGTATACGCTGGCCATCCATGCCGGTGGCGGCGAGAACCCGCACTGCCACCTGATGATCTCCGAGCGGATCAATGACGGCATCGAGCGGCCCGCCGCTCAGTGGTTCAAGCGGTACAACGGCAAGACCCCGGAGAAGGGCGGGGCACAGAAGACCGAAGCGCTCAAGCCCAAGGCATGGCTTGAGCAGACCCGCGAGGCATGGGCCGACCATGCCAACCGGGCATTAGAGCGGGCTGGCCACGACGCCCGCATTGACCACAGAACACTTGAGGCGCAGGGCATCGAGCGCCTGCCCGGTGTTCACCTGGGGCCGAACGTGGTGGAGATGGAAGGCCGGGGCATCCGCACCGACCGGGCAGACGTGGCCCTGAACATCGACACCGCCAACGCCCAGATCATCGACTTACAGGAATACCGGGAGGCAATAGACCATGAACGCAATCGACAGAGTGAAGAAATCCAGAGGCATCAACGAGTTAGCGGAGCAGATCGAACCGCTGGCCCAGAGCATGGCGACACTGGCCGACGAAGCCCGGCAGGTCATGAGCCAGACCCAGCAGGCCAGCGAGGCGCAGGCGGCGGAGTGGCTGAAAGCCCAGCGCCAGACAGGGGCGGCATGGGTGGAGCTGGCCAAAGAGTTGCGGGAGGTAGCCGCCGAGGTGAGCAGCGCCGCGCAGAGCGCCCGGAGCGCGTCGCGGGGGTGGCACTGGAAGCTATGGCTAACCGTGATGCTGGCTTCCATGATGCCTACGGTGGTGCTGCTGATCGCATCGTTGCTCTTGCTCGACCTGACGCCACTGACAACCGAGGACGGCTCGATCTGGCTGCGCTTGGTGGCCCGATGAAGAACGACAGGACTTTGCAGGCCATAGGCCGACAGCTCAAGGCCATGGGCTGTGAGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATTCGAGCTCGGTACCGGATCCGTCGACCTGCAGCCAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAAGCTAGCTTGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTTCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGT"
# from
# https://benchling.com/roygoli/f/lib_mvm3FehI-biofoundry/seq_cttcEI6n-copy-of-biofoundry-copy-of-e-coli-iram-annotated/edit
royaTestInsertPlasmidSeq = "GCTAAAGTTGGATACTTAAGAAATGCTTCATAATTCAGTAAGGCATTAGCATAATGGAAATAAAAGTGCAGAGACTATCTCTATGGATGATTAATACTGTCTTTTTATTGTCACCCATAAATAATCACCAGACTAATACTATCAACTTGATATTTGAAATGTGATCACTTGACTTTTGATACGTTATTTTATAACGGTTAACATATTTATAAAAACAACGGCCGTGCCACACGTCCGTTTCAATACTTAACGCACATGTATTTTGGTTTAGTCATCATCCGGTTATATGTATTTTAGCCAGGAACAGGTTAAATCATTCCTATATAACTCAAAAATTGAAACCTTATTCTCATGTCATGCTTATATTCATTATTATCGTTATATAAAAAGGCAACCATAATGTTTAGCAAATTGGCACAAAGTAGCATAAAGGCTATGTTTTAATTACAGGATGTTCAGTCATTTGAATGTATAACATTATAGCTAAACAAATCTAAAACGAAGTCAATAATTTATTGCTTTCACAAAATCTCATTTTGTTTAACATCCATTGAGATTCCTTGCTTTAAATTTTATTTTATATAAGCCATCATTTTAATTAATTTATTTTTTTGAGGGGGGGGTAATATACTCATATGCAAAATCAAGAAATAAACATCCTAATGAACCATATTAAATACCGTGGGATAAGACATAACAAatgAAGTGGATAGTAATTGACACGGTAATTCAACCTACATGTGGTATATCTTTTTCAGCCATATGGGGTAATATGAAAATGATCATCTGGTATCAATCTACTATATTTCTCCCTCCTGGCAGTATATTTACACCGGTTAAGTCTGGTATTATCCTTAAGGATAAAGAATATCCTATTACTATTTATCACATCGCACCATTCAACAAGGATTTATGGAGTTTACTCAAAAGCAGTCAAGAGTGTCCTCCAGGAGAAAGCAAAATAACAAATAAATGTTTACATAATAGTTGCATTATAAAAATATGCCCATATGGGCTCAAGtaa"
# from
# https://benchling.com/roygoli/f/lib_mvm3FehI-biofoundry/seq_s57xycXu-copy-of-biofoundry-copy-of-pdms123/edit
royaTestVectorSeq = "CTAGATTTAAGAAGGAGATATACATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGCTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAATAATGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAATAATAACCGGGCAGGCCATGTCTGCCCGTATTTCGCGTAAGGAAATCCATTATGTACTATTTAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCGATATCGGGCTAGCCGGCCCGACGCACTTTGCGCCGAATAAATACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTTTGAGTTATCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGTGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGAAATGACGGATATCGTCCATTCCGACAGCATCGCCAGTCACTATGGCGTGCTGCTAGCGCTTTTAGCCGCTTTAGCGGCCTTTCCCCCTACCCGAAGGGTGGGGGCGCGTGTGCAGCCCCGCAGGGCCTGTCTCGGTCGATCATTCAGCCCGGCTCATCCTTCTGGCGTGGCGGCAGACCGAACAAGGCGCGGTCGTGGTCGCGTTCAAGGTACGCATCCATTGCCGCCATGAGCCGATCCTCCGGCCACTCGCTGCTGTTCACCTTGGCCAAAATCATGGCCCCCACCAGCACCTTGCGCCTTGTTTCGTTCTTGCGCTCTTGCTGCTGTTCCCTTGCCCGCACCCGCTGAATTTCGGCATTGATTCGCGCTCGTTGTTCTTCGAGCTTGGCCAGCCGATCCGCCGCCTTGTTGCTCCCCTTAACCATCTTGACACCCCATTGTTAATGTGCTGTCTCGTAGGCTATCATGGAGGCACAGCGGCGGCAATCCCGACCCTACTTTGTAGGGGAGGGCGCACTTACCGGTTTCTCTTCGAGAAACTGGCCTAACGGCCACCCTTCGGGCGGTGCGCTCTCCGAGGGCCATTGCATGGAGCCGAAAAGCAAAAGCAACAGCGAGGCAGCATGGCGATTTATCACCTTACGGCGAAAACCGGCAGCAGGTCGGGCGGCCAATCGGCCAGGGCCAAGGCCGACTACATCCAGCGCGAAGGCAAGTATGCCCGCGACATGGATGAAGTCTTGCACGCCGAATCCGGGCACATGCCGGAGTTCGTCGAGCGGCCCGCCGACTACTGGGATGCTGCCGACCTGTATGAACGCGCCAATGGGCGGCTGTTCAAGGAGGTCGAATTTGCCCTGCCGGTCGAGCTGACCCTCGACCAGCAGAAGGCGCTGGCGTCCGAGTTCGCCCAGCACCTGACCGGTGCCGAGCGCCTGCCGTATACGCTGGCCATCCATGCCGGTGGCGGCGAGAACCCGCACTGCCACCTGATGATCTCCGAGCGGATCAATGACGGCATCGAGCGGCCCGCCGCTCAGTGGTTCAAGCGGTACAACGGCAAGACCCCGGAGAAGGGCGGGGCACAGAAGACCGAAGCGCTCAAGCCCAAGGCATGGCTTGAGCAGACCCGCGAGGCATGGGCCGACCATGCCAACCGGGCATTAGAGCGGGCTGGCCACGACGCCCGCATTGACCACAGAACACTTGAGGCGCAGGGCATCGAGCGCCTGCCCGGTGTTCACCTGGGGCCGAACGTGGTGGAGATGGAAGGCCGGGGCATCCGCACCGACCGGGCAGACGTGGCCCTGAACATCGACACCGCCAACGCCCAGATCATCGACTTACAGGAATACCGGGAGGCAATAGACCATGAACGCAATCGACAGAGTGAAGAAATCCAGAGGCATCAACGAGTTAGCGGAGCAGATCGAACCGCTGGCCCAGAGCATGGCGACACTGGCCGACGAAGCCCGGCAGGTCATGAGCCAGACCCAGCAGGCCAGCGAGGCGCAGGCGGCGGAGTGGCTGAAAGCCCAGCGCCAGACAGGGGCGGCATGGGTGGAGCTGGCCAAAGAGTTGCGGGAGGTAGCCGCCGAGGTGAGCAGCGCCGCGCAGAGCGCCCGGAGCGCGTCGCGGGGGTGGCACTGGAAGCTATGGCTAACCGTGATGCTGGCTTCCATGATGCCTACGGTGGTGCTGCTGATCGCATCGTTGCTCTTGCTCGACCTGACGCCACTGACAACCGAGGACGGCTCGATCTGGCTGCGCTTGGTGGCCCGATGAAGAACGACAGGACTTTGCAGGCCATAGGCCGACAGCTCAAGGCCATGGGCTGTGAGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATTCGAGCTCGGTACCGGATCCGTCGACCTGCAGCCAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAAGCTAGCTTGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTTCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCCTCTAGCAGCCCGGGCTGC"
# from
# https://benchling.com/roygoli/f/lib_mvm3FehI-biofoundry/seq_cttcEI6n-copy-of-biofoundry-copy-of-e-coli-iram-annotated/edit
royaTestInsertSeq = "GCTAAAGTTGGATACTTAAGAAATGCTTCATAATTCAGTAAGGCATTAGCATAATGGAAATAAAAGTGCAGAGACTATCTCTATGGATGATTAATACTGTCTTTTTATTGTCACCCATAAATAATCACCAGACTAATACTATCAACTTGATATTTGAAATGTGATCACTTGACTTTTGATACGTTATTTTATAACGGTTAACATATTTATAAAAACAACGGCCGTGCCACACGTCCGTTTCAATACTTAACGCACATGTATTTTGGTTTAGTCATCATCCGGTTATATGTATTTTAGCCAGGAACAGGTTAAATCATTCCTATATAACTCAAAAATTGAAACCTTATTCTCATGTCATGCTTATATTCATTATTATCGTTATATAAAAAGGCAACCATAATGTTTAGCAAATTGGCACAAAGTAGCATAAAGGCTATGTTTTAATTACAGGATGTTCAGTCATTTGAATGTATAACATTATAGCTAAACAAATCTAAAACGAAGTCAATAATTTATTGCTTTCACAAAATCTCATTTTGTTTAACATCCATTGAGATTCCTTGCTTTAAATTTTATTTTATATAAGCCATCATTTTAATTAATTTATTTTTTTGAGGGGGGGGTAATATACTCATATGCAAAATCAAGAAATAAACATCCTAATGAACCATATTAAATACCGTGGGATAAGACATAACAA"
royaTestInsertSeq1 = 'TCACTTGACTTTTGATACGTTATTTTATAACGGTTAACATATTTATAAAAACAACGGCCGTGCCACACGTCCGTTTCAATACTTAACGCACATGTATTTTGGTTTAGTCATCATCCGGTTATATGTATTTTAGCCAGGAACAGGTTAAATCATTCCTATATAACTCAAAAATTGAAACCTTATTCTCATGTCATGCTTATATTCATTATTATCGTTATATAAAAAGGCAACCATAATGTTTAGCAAATTGGCACAAAGTAGCATAAAGGCTATGTTTTAATTACAGGATGTTCAGTCATTTGAATGTATAACATTATAGCTAAACAAATCTAAAACGAAGTCAATAATTTATTGCTTTCACAAAATCTCATTTTGTTTAACATCCATTGAGATTCCTTGCTTTAAATTTTATTTTATATAAGCCATCATTTTAATTAATTTATTTTTTTGAGGGGGGGGTAATATACTCATATGCAAAATCAAGAAATAAACATCCTAATGAACCATATTAAATACCGTGGGATAAGACATAACAA'
richardTestPrimerForward = "CCCGTTCTAGATTTAAGAAGGAGA"
richardTestPrimerReverse = "GTCATTACCCCAGGCGTTTA"
primer3pySeq = 'GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCTACATTTTAGCATCAGTGAGTACAGCATGCTTACTGGAAGAGAGGGTCATGCAACAGATTAGGAGGTAAGTTTGCAAAGGCAGGCTAAGGAGGAGACGCACTGAATGCCATGGTAAGAACTCTGGACATAAAAATATTGGAAGTTGTTGAGCAAGTNAAAAAAATGTTTGGAAGTGTTACTTTAGCAATGGCAAGAATGATAGTATGGAATAGATTGGCAGAATGAAGGCAAAATGATTAGACATATTGCATTAAGGTAAAAAATGATAACTGAAGAATTATGTGCCACACTTATTAATAAGAAAGAATATGTGAACCTTGCAGATGTTTCCCTCTAGTAG'
vectorPlasmid1AddressGB = 'biofoundry-copy-of-pdms123.gb'
vectorPlasmid1AddressFA = 'biofoundry-copy-of-pdms123.fasta'
insertPlasmid1AddressGB = 'biofoundry-copy-of-e-coli-iram-annotated.gb'
insertPlasmid1AddressFA = 'biofoundry-copy-of-e-coli-iram-annotated.fasta'
vectorPlasmidSeq1 = 'TTCGAGCTCGGTACCGGATCCGTCGACCTGCAGCCAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAAGCTAGCTTGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTTCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCCTCTAGCAGCCCGGGCTGCggccgcTATTTCTCCTTTCGCGCAGTACGTGGTTCGCGGCTTAATCCTGCTGGCAGCGGTGATCTTCGACCGTTACAAGCAAAAAGCGAAACGCACTGTCTGATGCTTTTTTCTGCAACAATTTAGCGTTTTTTCCCACCATAGCCAACCGCCATAACGGTTGGCTGTTCTTCGTTGCAAATGGCGACCCCCGTCACACTGTCTATACTTACATGTCTGTAAAGCGCGTTCTGCGCAACACAATAAGAAAAGAGAAGGAGGAGAACCGGgtgACAGAACCGTTAACCGAAACCCCTGAACTATCCGCGAAATATGCCTGGTTTTTTGATCTTGATGGAACGCTGGCGGAAATCAAACCGCATCCCGATCAGGTCGTCGTGCCTGACAATATTCTGCAAGGACTACAGCTACTGGCAACCGCAAGTGATGGTGCATTGGCATTGATATCAGGGCGCTCAATGGTGGAGCTTGACGCACTGGCAAAACCTTATCGCTTCCCGTtCTAGATTTAAGAAGGAGATATACATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGCTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAATAATGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAATAATAACCGGGCAGGCCATGTCTGCCCGTATTTCGCGTAAGGAAATCCATTATGTACTATTTAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCGATATCGGGCTAGCCGGCCCGACGCACTTTGCGCCGAATAAATACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTTTGAGTTATCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGTGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGAAATGACGGATATCGTCCATTCCGACAGCATCGCCAGTCACTATGGCGTGCTGCTAGCGCTTTTAGCCGCTTTAGCGGCCTTTCCCCCTACCCGAAGGGTGGGGGCGCGTGTGCAGCCCCGCAGGGCCTGTCTCGGTCGATCATTCAGCCCGGCTCATCCTTCTGGCGTGGCGGCAGACCGAACAAGGCGCGGTCGTGGTCGCGTTCAAGGTACGCATCCATTGCCGCCATGAGCCGATCCTCCGGCCACTCGCTGCTGTTCACCTTGGCCAAAATCATGGCCCCCACCAGCACCTTGCGCCTTGTTTCGTTCTTGCGCTCTTGCTGCTGTTCCCTTGCCCGCACCCGCTGAATTTCGGCATTGATTCGCGCTCGTTGTTCTTCGAGCTTGGCCAGCCGATCCGCCGCCTTGTTGCTCCCCTTAACCATCTTGACACCCCATTGTTAATGTGCTGTCTCGTAGGCTATCATGGAGGCACAGCGGCGGCAATCCCGACCCTACTTTGTAGGGGAGGGCGCACTTACCGGTTTCTCTTCGAGAAACTGGCCTAACGGCCACCCTTCGGGCGGTGCGCTCTCCGAGGGCCATTGCATGGAGCCGAAAAGCAAAAGCAACAGCGAGGCAGCATGGCGATTTATCACCTTACGGCGAAAACCGGCAGCAGGTCGGGCGGCCAATCGGCCAGGGCCAAGGCCGACTACATCCAGCGCGAAGGCAAGTATGCCCGCGACATGGATGAAGTCTTGCACGCCGAATCCGGGCACATGCCGGAGTTCGTCGAGCGGCCCGCCGACTACTGGGATGCTGCCGACCTGTATGAACGCGCCAATGGGCGGCTGTTCAAGGAGGTCGAATTTGCCCTGCCGGTCGAGCTGACCCTCGACCAGCAGAAGGCGCTGGCGTCCGAGTTCGCCCAGCACCTGACCGGTGCCGAGCGCCTGCCGTATACGCTGGCCATCCATGCCGGTGGCGGCGAGAACCCGCACTGCCACCTGATGATCTCCGAGCGGATCAATGACGGCATCGAGCGGCCCGCCGCTCAGTGGTTCAAGCGGTACAACGGCAAGACCCCGGAGAAGGGCGGGGCACAGAAGACCGAAGCGCTCAAGCCCAAGGCATGGCTTGAGCAGACCCGCGAGGCATGGGCCGACCATGCCAACCGGGCATTAGAGCGGGCTGGCCACGACGCCCGCATTGACCACAGAACACTTGAGGCGCAGGGCATCGAGCGCCTGCCCGGTGTTCACCTGGGGCCGAACGTGGTGGAGATGGAAGGCCGGGGCATCCGCACCGACCGGGCAGACGTGGCCCTGAACATCGACACCGCCAACGCCCAGATCATCGACTTACAGGAATACCGGGAGGCAATAGACCATGAACGCAATCGACAGAGTGAAGAAATCCAGAGGCATCAACGAGTTAGCGGAGCAGATCGAACCGCTGGCCCAGAGCATGGCGACACTGGCCGACGAAGCCCGGCAGGTCATGAGCCAGACCCAGCAGGCCAGCGAGGCGCAGGCGGCGGAGTGGCTGAAAGCCCAGCGCCAGACAGGGGCGGCATGGGTGGAGCTGGCCAAAGAGTTGCGGGAGGTAGCCGCCGAGGTGAGCAGCGCCGCGCAGAGCGCCCGGAGCGCGTCGCGGGGGTGGCACTGGAAGCTATGGCTAACCGTGATGCTGGCTTCCATGATGCCTACGGTGGTGCTGCTGATCGCATCGTTGCTCTTGCTCGACCTGACGCCACTGACAACCGAGGACGGCTCGATCTGGCTGCGCTTGGTGGCCCGATGAAGAACGACAGGACTTTGCAGGCCATAGGCCGACAGCTCAAGGCCATGGGCTGTGAGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAA'
insertPlasmidSeq1 = 'GCTAAAGTTGGATACTTAAGAAATGCTTCATAATTCAGTAAGGCATTAGCATAATGGAAATAAAAGTGCAGAGACTATCTCTATGGATGATTAATACTGTCTTTTTATTGTCACCCATAAATAATCACCAGACTAATACTATCAACTTGATATTTGAAATGTGATCACTTGACTTTTGATACGTTATTTTATAACGGTTAACATATTTATAAAAACAACGGCCGTGCCACACGTCCGTTTCAATACTTAACGCACATGTATTTTGGTTTAGTCATCATCCGGTTATATGTATTTTAGCCAGGAACAGGTTAAATCATTCCTATATAACTCAAAAATTGAAACCTTATTCTCATGTCATGCTTATATTCATTATTATCGTTATATAAAAAGGCAACCATAATGTTTAGCAAATTGGCACAAAGTAGCATAAAGGCTATGTTTTAATTACAGGATGTTCAGTCATTTGAATGTATAACATTATAGCTAAACAAATCTAAAACGAAGTCAATAATTTATTGCTTTCACAAAATCTCATTTTGTTTAACATCCATTGAGATTCCTTGCTTTAAATTTTATTTTATATAAGCCATCATTTTAATTAATTTATTTTTTTGAGGGGGGGGTAATATACTCATATGCAAAATCAAGAAATAAACATCCTAATGAACCATATTAAATACCGTGGGATAAGACATAACAAatgAAGTGGATAGTAATTGACACGGTAATTCAACCTACATGTGGTATATCTTTTTCAGCCATATGGGGTAATATGAAAATGATCATCTGGTATCAATCTACTATATTTCTCCCTCCTGGCAGTATATTTACACCGGTTAAGTCTGGTATTATCCTTAAGGATAAAGAATATCCTATTACTATTTATCACATCGCACCATTCAACAAGGATTTATGGAGTTTACTCAAAAGCAGTCAAGAGTGTCCTCCAGGAGAAAGCAAAATAACAAATAAATGTTTACATAATAGTTGCATTATAAAAATATGCCCATATGGGCTCAAGtaa'
vectorSeq1 = 'CTAGATTTAAGAAGGAGATATACATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGCTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAATAATGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAATAATAACCGGGCAGGCCATGTCTGCCCGTATTTCGCGTAAGGAAATCCATTATGTACTATTTAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCGATATCGGGCTAGCCGGCCCGACGCACTTTGCGCCGAATAAATACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTTTGAGTTATCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGTGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGAAATGACGGATATCGTCCATTCCGACAGCATCGCCAGTCACTATGGCGTGCTGCTAGCGCTTTTAGCCGCTTTAGCGGCCTTTCCCCCTACCCGAAGGGTGGGGGCGCGTGTGCAGCCCCGCAGGGCCTGTCTCGGTCGATCATTCAGCCCGGCTCATCCTTCTGGCGTGGCGGCAGACCGAACAAGGCGCGGTCGTGGTCGCGTTCAAGGTACGCATCCATTGCCGCCATGAGCCGATCCTCCGGCCACTCGCTGCTGTTCACCTTGGCCAAAATCATGGCCCCCACCAGCACCTTGCGCCTTGTTTCGTTCTTGCGCTCTTGCTGCTGTTCCCTTGCCCGCACCCGCTGAATTTCGGCATTGATTCGCGCTCGTTGTTCTTCGAGCTTGGCCAGCCGATCCGCCGCCTTGTTGCTCCCCTTAACCATCTTGACACCCCATTGTTAATGTGCTGTCTCGTAGGCTATCATGGAGGCACAGCGGCGGCAATCCCGACCCTACTTTGTAGGGGAGGGCGCACTTACCGGTTTCTCTTCGAGAAACTGGCCTAACGGCCACCCTTCGGGCGGTGCGCTCTCCGAGGGCCATTGCATGGAGCCGAAAAGCAAAAGCAACAGCGAGGCAGCATGGCGATTTATCACCTTACGGCGAAAACCGGCAGCAGGTCGGGCGGCCAATCGGCCAGGGCCAAGGCCGACTACATCCAGCGCGAAGGCAAGTATGCCCGCGACATGGATGAAGTCTTGCACGCCGAATCCGGGCACATGCCGGAGTTCGTCGAGCGGCCCGCCGACTACTGGGATGCTGCCGACCTGTATGAACGCGCCAATGGGCGGCTGTTCAAGGAGGTCGAATTTGCCCTGCCGGTCGAGCTGACCCTCGACCAGCAGAAGGCGCTGGCGTCCGAGTTCGCCCAGCACCTGACCGGTGCCGAGCGCCTGCCGTATACGCTGGCCATCCATGCCGGTGGCGGCGAGAACCCGCACTGCCACCTGATGATCTCCGAGCGGATCAATGACGGCATCGAGCGGCCCGCCGCTCAGTGGTTCAAGCGGTACAACGGCAAGACCCCGGAGAAGGGCGGGGCACAGAAGACCGAAGCGCTCAAGCCCAAGGCATGGCTTGAGCAGACCCGCGAGGCATGGGCCGACCATGCCAACCGGGCATTAGAGCGGGCTGGCCACGACGCCCGCATTGACCACAGAACACTTGAGGCGCAGGGCATCGAGCGCCTGCCCGGTGTTCACCTGGGGCCGAACGTGGTGGAGATGGAAGGCCGGGGCATCCGCACCGACCGGGCAGACGTGGCCCTGAACATCGACACCGCCAACGCCCAGATCATCGACTTACAGGAATACCGGGAGGCAATAGACCATGAACGCAATCGACAGAGTGAAGAAATCCAGAGGCATCAACGAGTTAGCGGAGCAGATCGAACCGCTGGCCCAGAGCATGGCGACACTGGCCGACGAAGCCCGGCAGGTCATGAGCCAGACCCAGCAGGCCAGCGAGGCGCAGGCGGCGGAGTGGCTGAAAGCCCAGCGCCAGACAGGGGCGGCATGGGTGGAGCTGGCCAAAGAGTTGCGGGAGGTAGCCGCCGAGGTGAGCAGCGCCGCGCAGAGCGCCCGGAGCGCGTCGCGGGGGTGGCACTGGAAGCTATGGCTAACCGTGATGCTGGCTTCCATGATGCCTACGGTGGTGCTGCTGATCGCATCGTTGCTCTTGCTCGACCTGACGCCACTGACAACCGAGGACGGCTCGATCTGGCTGCGCTTGGTGGCCCGATGAAGAACGACAGGACTTTGCAGGCCATAGGCCGACAGCTCAAGGCCATGGGCTGTGAGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATTCGAGCTCGGTACCGGATCCGTCGACCTGCAGCCAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAAGCTAGCTTGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTTCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCCTCTAGCAGCCCGGGCTGC'
insertSeq1 = 'TCACTTGACTTTTGATACGTTATTTTATAACGGTTAACATATTTATAAAAACAACGGCCGTGCCACACGTCCGTTTCAATACTTAACGCACATGTATTTTGGTTTAGTCATCATCCGGTTATATGTATTTTAGCCAGGAACAGGTTAAATCATTCCTATATAACTCAAAAATTGAAACCTTATTCTCATGTCATGCTTATATTCATTATTATCGTTATATAAAAAGGCAACCATAATGTTTAGCAAATTGGCACAAAGTAGCATAAAGGCTATGTTTTAATTACAGGATGTTCAGTCATTTGAATGTATAACATTATAGCTAAACAAATCTAAAACGAAGTCAATAATTTATTGCTTTCACAAAATCTCATTTTGTTTAACATCCATTGAGATTCCTTGCTTTAAATTTTATTTTATATAAGCCATCATTTTAATTAATTTATTTTTTTGAGGGGGGGGTAATATACTCATATGCAAAATCAAGAAATAAACATCCTAATGAACCATATTAAATACCGTGGGATAAGACATAACAA'
vectorSeq1X = 'CTAGATTTAAGAAGGAGATATACATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTG'
insertSeq1X = 'TCACTTGACTTTTGATACGTTATTTTATAACGGTTAACATATTTATAAAAACAACGGCCGTGCCACACGTCCGTTTCAATACTTAACGCACATGTATTTTGGTTTAGTCATCATCCGGTTATATGTATTTTAGCCAGGAACAGGTTAAATCATTCCTATATAACTCAAAAATTGAAACCTTATTCTCATGTCATGCTTATATTCATTATTATCGTTATATAAAAAGGCAACCATAATGTTTAGCAAATTGGCACAAAGTAGCATAAAGG'
testOutput1 = 'ggccgcTATTTCTCCTTTCGCGCAGTACGTGGTTCGCGGCTTAATCCTGCTGGCAGCGGTGATCTTCGACCGTTACAAGCAAAAAGCGAAACGCACTGTCTGATGCTTTTTTCTGCAACAATTTAGCGTTTTTTCCCACCATAGCCAACCGCCATAACGGTTGGCTGTTCTTCGTTGCAAATGGCGACCCCCGTCACACTGTCTATACTTACATGTCTGTAAAGCGCGTTCTGCGCAACACAATAAGAAAACTAGATTTAAGAAGGAGATATACATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGCTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAATAATGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAATAATAACCGGGCAGGCCATGTCTGCCCGTATTTCGCGTAAGGAAATCCATTATGTACTATTTAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCGATATCGGGCTAGCCGGCCCGACGCACTTTGCGCCGAATAAATACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTTTGAGTTATCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGTGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGAAATGACGGATATCGTCCATTCCGACAGCATCGCCAGTCACTATGGCGTGCTGCTAGCGCTTTTAGCCGCTTTAGCGGCCTTTCCCCCTACCCGAAGGGTGGGGGCGCGTGTGCAGCCCCGCAGGGCCTGTCTCGGTCGATCATTCAGCCCGGCTCATCCTTCTGGCGTGGCGGCAGACCGAACAAGGCGCGGTCGTGGTCGCGTTCAAGGTACGCATCCATTGCCGCCATGAGCCGATCCTCCGGCCACTCGCTGCTGTTCACCTTGGCCAAAATCATGGCCCCCACCAGCACCTTGCGCCTTGTTTCGTTCTTGCGCTCTTGCTGCTGTTCCCTTGCCCGCACCCGCTGAATTTCGGCATTGATTCGCGCTCGTTGTTCTTCGAGCTTGGCCAGCCGATCCGCCGCCTTGTTGCTCCCCTTAACCATCTTGACACCCCATTGTTAATGTGCTGTCTCGTAGGCTATCATGGAGGCACAGCGGCGGCAATCCCGACCCTACTTTGTAGGGGAGGGCGCACTTACCGGTTTCTCTTCGAGAAACTGGCCTAACGGCCACCCTTCGGGCGGTGCGCTCTCCGAGGGCCATTGCATGGAGCCGAAAAGCAAAAGCAACAGCGAGGCAGCATGGCGATTTATCACCTTACGGCGAAAACCGGCAGCAGGTCGGGCGGCCAATCGGCCAGGGCCAAGGCCGACTACATCCAGCGCGAAGGCAAGTATGCCCGCGACATGGATGAAGTCTTGCACGCCGAATCCGGGCACATGCCGGAGTTCGTCGAGCGGCCCGCCGACTACTGGGATGCTGCCGACCTGTATGAACGCGCCAATGGGCGGCTGTTCAAGGAGGTCGAATTTGCCCTGCCGGTCGAGCTGACCCTCGACCAGCAGAAGGCGCTGGCGTCCGAGTTCGCCCAGCACCTGACCGGTGCCGAGCGCCTGCCGTATACGCTGGCCATCCATGCCGGTGGCGGCGAGAACCCGCACTGCCACCTGATGATCTCCGAGCGGATCAATGACGGCATCGAGCGGCCCGCCGCTCAGTGGTTCAAGCGGTACAACGGCAAGACCCCGGAGAAGGGCGGGGCACAGAAGACCGAAGCGCTCAAGCCCAAGGCATGGCTTGAGCAGACCCGCGAGGCATGGGCCGACCATGCCAACCGGGCATTAGAGCGGGCTGGCCACGACGCCCGCATTGACCACAGAACACTTGAGGCGCAGGGCATCGAGCGCCTGCCCGGTGTTCACCTGGGGCCGAACGTGGTGGAGATGGAAGGCCGGGGCATCCGCACCGACCGGGCAGACGTGGCCCTGAACATCGACACCGCCAACGCCCAGATCATCGACTTACAGGAATACCGGGAGGCAATAGACCATGAACGCAATCGACAGAGTGAAGAAATCCAGAGGCATCAACGAGTTAGCGGAGCAGATCGAACCGCTGGCCCAGAGCATGGCGACACTGGCCGACGAAGCCCGGCAGGTCATGAGCCAGACCCAGCAGGCCAGCGAGGCGCAGGCGGCGGAGTGGCTGAAAGCCCAGCGCCAGACAGGGGCGGCATGGGTGGAGCTGGCCAAAGAGTTGCGGGAGGTAGCCGCCGAGGTGAGCAGCGCCGCGCAGAGCGCCCGGAGCGCGTCGCGGGGGTGGCACTGGAAGCTATGGCTAACCGTGATGCTGGCTTCCATGATGCCTACGGTGGTGCTGCTGATCGCATCGTTGCTCTTGCTCGACCTGACGCCACTGACAACCGAGGACGGCTCGATCTGGCTGCGCTTGGTGGCCCGATGAAGAACGACAGGACTTTGCAGGCCATAGGCCGACAGCTCAAGGCCATGGGCTGTGAGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATTCGAGCTCGGTACCGGATCCGTCGACCTGCAGCCAAGCTTAATTAGCTGAGCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAAGCTAGCTTGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTTCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCCTCTAGCAGCCCGGGCTGCGAGAAGGAGGAGAACCGGgtgACAGAACCGTTAACCGAAACCCCTGAACTATCCGCGAAATATGCCTGGTTTTTTGATCTTGATGGAACGCTGGCGGAAATCAAACCGCATCCCGATCAGGTCGTCGTGCCTGACAATATTCTGCAAGGACTACAGCTACTGGCAACCGCAAGTGATGGTGCATTGGCATTGATATCAGGGCGCTCAATGGTGGAGCTTGACGCACTGGCAAAACCTTATCGCTTCCCGTt'
###################
### PARAMETERS ###
###################
# (copied from primer3 with subtle changes according to our first primer designed)
SEQUENCE_ID = 'MH1000'
PRIMER_OPT_TM = 59.0
PRIMER_MIN_TM = 50.0
PRIMER_MAX_TM = 70.0
PRIMER_PRODUCT_SIZE_RANGE = [[100, 300], [150, 250], [301, 400], [
401, 500], [501, 600], [601, 700], [701, 850], [851, 1000]]
MAX_TEMP_DIFF = 7.0
PRIMER_MIN_SIZE = 18
# dictionary of delta H and delta S values for pairs of sequences,
enthalpyEntropyValuesSequencePairs = {
'AA':(-7.9, -22.2),
'AA':(-7.9,-22.2),
'AT':( -7.2, -20.4),
'TA':(-7.2, -21.3),
'CA':(-8.5, -22.7),
'GT':(-8.4, -22.4),
'CT':(-7.8, -21.0),
'GA':(-8.2, -22.2),
'CG':(-10.6, -27.2),
'GC':(-9.8, -24.4),
'GG':(-8.0, -19.9),
'TT':(-7.9, -22.2),
'CC':(-8.0, -19.9),
'CA':(-8.5, -22.7),
'TG':(-8.5, -22.7),
'AC':(-8.4, -22.4),
'AG':(-7.8, -21.0),
'TC':(-8.2, -22.2),
}
###################
### WEBSCRAPING ###
###################
# CHANGE
def primerDictToNEBPrimerSeq(primerDict):
"""turn a primer dict from primer3 in fastCloningPrimer to the NEB readdable format"""
NEBPrimerString = ""
for primerPairName, primerPairInfo in primerDict.items():
currentLPrimerName = str(primerPairName) + "Left"
currentLPrimerSeq = primerPairInfo[0][2]
currentRPrimerName = str(primerPairName) + "Right"
currentRPrimerSeq = primerPairInfo[1][2]
NEBPrimerString += currentLPrimerName + "; " + currentLPrimerSeq + \
"; " + currentRPrimerName + "; " + currentRPrimerSeq + "\n"
return NEBPrimerString
def NEBWebscraper(primersSeq, phusionprimerOptTm):
"""Use NEB to check the melting temperature and annealing temperature of all primers"""
# open the tm calculator headlessly
options = webdriver.chrome.options.Options()
# options.headless = True
cwd = os.getcwd() + '/chromedriver'
driver = webdriver.Chrome(options=options, executable_path=cwd)
driver.get("https://tmcalculator.neb.com/#!/batch")
time.sleep(1)
# set the enzyme to phusion
driver.find_element_by_xpath(
"/html/body/div[3]/div[2]/div/div/div/div[2]/div[1]/form/div/div[1]/div/select[1]").send_keys("P\n")
time.sleep(1)
# set the primer input
driver.find_element_by_id("batchinput").send_keys(
primersSeq)
# set the primer concentration
driver.find_element_by_id("ct").clear()
driver.find_element_by_id("ct").send_keys(100)
# blur the focus to produce outputs
driver.execute_script("document.getElementById('batchinput').blur()")
# fetch the result table
rows = driver.find_elements_by_css_selector(
"table.batchresultstablex>tbody>tr")
table = [[col.get_attribute("innerHTML").splitlines(
) for col in row.find_elements_by_css_selector("td")] for row in rows]
# close the chrome driver
# turn into a dictionary for easier manipulation
NEBprimerDict = {}
farthestTempDist = 0
for primerIndex in range(len(table)):
if primerIndex % 2 == 0:
# left primer
Lprimer = table[primerIndex]
currentLPrimerName = Lprimer[0][0]
currentLPrimerSeq = Lprimer[1][0][1:]
currentLPrimerTm = Lprimer[2][0]
currentLPrimerTa = float(Lprimer[3][0])
# right primers
Rprimer = table[primerIndex+1]
currentRPrimerName = Rprimer[0][0]
currentRPrimerSeq = Rprimer[1][0][1:]
currentRPrimerTm = Rprimer[2][0]
currentRPrimerTa = float(Rprimer[3][0])
# primer pair name
primerPairName = currentLPrimerName[:-4]
phusionPrimerLowerBound = float(phusionprimerOptTm)-5
phusionPrimerUpperBound = float(phusionprimerOptTm)+5
if (currentLPrimerTa >= phusionPrimerLowerBound) and (currentLPrimerTa <= phusionPrimerUpperBound):
if (currentRPrimerTa >= phusionPrimerLowerBound) and (currentRPrimerTa <= phusionPrimerUpperBound):
currentfarthestTempDist = max(abs(
currentLPrimerTa-phusionprimerOptTm), abs(currentRPrimerTa-phusionprimerOptTm))
NEBprimerDict.update(
{primerPairName: [['left', currentLPrimerTa, currentLPrimerSeq], ['right', currentRPrimerTa, currentRPrimerSeq]]})
if farthestTempDist < currentfarthestTempDist:
farthestTempDist = currentfarthestTempDist
time.sleep(5)
driver.close()
return NEBprimerDict, farthestTempDist
###########################
### SEQUENCE PROCESSING ###
###########################
def fileParsing(vectorPlasmidAddress, insertPlasmidAddress):
"""Take in two addresses, one for vector plasmid and one for insert plasmid,
turn into biopython seq objects"""
if vectorPlasmidAddress[-5:] == 'fasta':
vectorPlasmidSeq = SeqIO.read(vectorPlasmidAddress, "fasta").seq
insertPlasmidSeq = SeqIO.read(insertPlasmidAddress, "fasta").seq
return vectorPlasmidSeq, insertPlasmidSeq
elif (vectorPlasmidAddress[-3:] == '.gb') or (vectorPlasmidAddress[-3:] == 'gbk'):
vectorPlasmidSeq = SeqIO.read(vectorPlasmidAddress, "genbank").seq
insertPlasmidSeq = SeqIO.read(insertPlasmidAddress, "genbank").seq
return vectorPlasmidSeq, insertPlasmidSeq
else:
sys.exit('Unsupported file format.')
return
def pseudoCircularizePlasmid(plasmidSeq, goalSeq):
"""Reorder (pseudo-circularize) a plasmid sequence so that it is essentially
still the same plasmid but contains the complete goalSeq. Note that there are two
scenarios:
(1) plasmidSeq = vectorPlasmidSeq; goalSeq = insertPlasmidSeq
(2) plasmidSeq = vectorSeq; goalSeq = insertSeq
We assume that the non-vector section will be longer than 2*17=34 bases.
The first output will be a pseudo-circularized DNA sequence which is essentially the same as
the input plasmidSeq, but will be prepared to be put into primer3. We also output the
starting and ending indexes of the goalSeq in the pseudo-circularized DNA sequence.
"""
# 1. get two segments of goalSeq separated by lineared plasmid seq
finalPart1 = ''
finalPart2 = ''
for index in range(len(goalSeq)):
currentPart1 = goalSeq[0:index]
currentPart2 = goalSeq[index:]
if (currentPart1 in plasmidSeq) and (currentPart2 in plasmidSeq):
finalPart1 = currentPart1
finalPart2 = currentPart2
break
# 2. get the indexes of the two parts in the plasmid seq
part1StartInPlasmid = plasmidSeq.find(finalPart1)
part1EndInPlasmid = part1StartInPlasmid + len(finalPart1)
part2StartInPlasmid = plasmidSeq.find(finalPart2)
part2EndInPlasmid = part2StartInPlasmid + len(finalPart2)
# 3. generate pseudo-circularized plasmid
# 3.1 part 1 is at the end of the plasmid sequence
if part1EndInPlasmid == len(plasmidSeq):
nonVectorSegment = plasmidSeq[part2EndInPlasmid:part1StartInPlasmid]
arbitraryMiddleIndex = len(nonVectorSegment)//2
output = nonVectorSegment[arbitraryMiddleIndex:] + finalPart1 + \
finalPart2 + nonVectorSegment[:arbitraryMiddleIndex]
# 3.2 part 2 is at the end of the plasmid sequence
elif part2EndInPlasmid == len(plasmidSeq):
nonVectorSegment = plasmidSeq[part1EndInPlasmid:part2StartInPlasmid]
arbitraryMiddleIndex = len(nonVectorSegment)//2
output = nonVectorSegment[:arbitraryMiddleIndex] + finalPart2 + \
finalPart1 + nonVectorSegment[arbitraryMiddleIndex:]
# 3.3 the plasmid sequence already contains the complete goalSeq
else:
output = plasmidSeq
# figure out the starting and ending indexes of goalSeq in the output sequence
outputStart = output.find(goalSeq)
outputEnd = outputStart + len(goalSeq)
return output, outputStart, outputEnd
def primer3ShortCut(seq, goalStart, goalEnd, primerOptTm=PRIMER_OPT_TM, primerMinTm=PRIMER_MIN_TM, primerMaxTm=PRIMER_MAX_TM, primerMinSize=PRIMER_MIN_SIZE):
"""Take in three outputs of pseudoCircularizePlasmid, call primer3 to create primers,
with parameters if needed"""
goalLen = goalEnd - goalStart
usedLen = goalLen
if 100 < goalLen:
usedLen = 100
LsequenceMap = {
'SEQUENCE_ID': SEQUENCE_ID,
'SEQUENCE_TEMPLATE': seq,
'SEQUENCE_TARGET': [goalStart, usedLen]
}
LparamMap = {
'PRIMER_OPT_TM': primerOptTm,
'PRIMER_MIN_TM': primerMinTm,
'PRIMER_MAX_TM': primerMaxTm,
'PRIMER_MIN_SIZE': primerMinSize,
}
RsequenceMap = {
'SEQUENCE_ID': SEQUENCE_ID,
'SEQUENCE_TEMPLATE': seq,
'SEQUENCE_TARGET': [goalEnd-usedLen, usedLen]
}
RparamMap = {
'PRIMER_OPT_TM': primerOptTm,
'PRIMER_MIN_TM': primerMinTm,
'PRIMER_MAX_TM': primerMaxTm,
'PRIMER_MIN_SIZE': primerMinSize,
}
return primer3.bindings.designPrimers(LsequenceMap, LparamMap), primer3.bindings.designPrimers(RsequenceMap, RparamMap)
def plasmidPrimerDesign(plasmidSeq, goalSeq, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE):
"""Uses the primer3-py api to find the primer info for isolating the current
goalSeq from the plasmidSeq"""
preppedPlasmidSeq, goalSeqStart, goalSeqEnd = pseudoCircularizePlasmid(
plasmidSeq, goalSeq)
leftPrimerInfo, rightPrimerInfo = primer3ShortCut(
preppedPlasmidSeq, goalSeqStart, goalSeqEnd, primerOptTm, primerMinSize)
return leftPrimerInfo, rightPrimerInfo
def cleanPrimerInfo(leftPrimerInfo, rightPrimerInfo):
"""read primerInfo, the output of the previous function, and turn it into a more
readable and analyzable data structure"""
primerPairDict = {}
leftPrimerL = []
rightPrimerL = []
for key in leftPrimerInfo:
if key[-8:] == 'SEQUENCE' and key[:11] == 'PRIMER_LEFT':
currentSequence = leftPrimerInfo[key]
primerNum = key[12]
if int(primerNum) <= 2:
primerTM = leftPrimerInfo[key[:13]+'_TM']
leftPrimerL.append(
['leftPrimer'+str(primerNum), primerTM, currentSequence])
for key in rightPrimerInfo:
if key[-8:] == 'SEQUENCE' and key[:12] == 'PRIMER_RIGHT':
currentSequence = rightPrimerInfo[key]
primerNum = key[13]
if int(primerNum) <= 2:
primerTM = rightPrimerInfo[key[:14]+'_TM']
rightPrimerL.append(
['rightPrimer'+str(primerNum), primerTM, currentSequence])
# update resultant dict
primerPairNum = 0
for leftPrimer in leftPrimerL:
for rightPrimer in rightPrimerL:
primerPairNum += 1
primerPairKey = "primerPair" + str(primerPairNum)
leftPrimerCopy = copy.deepcopy(leftPrimer)
leftPrimerCopy[0] = 'leftPrimer' + str(primerPairNum)
rightPrimerCopy = copy.deepcopy(rightPrimer)
rightPrimerCopy[0] = 'rightPrimer' + str(primerPairNum)
primerPairDict.update(
{primerPairKey: [leftPrimerCopy, rightPrimerCopy]})
return primerPairDict
def primer3Only(plasmidSeq, goalSeq, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE):
"""A quick wrapper for non-fastCloning specific primer design"""
leftPrimerInfo, rightPrimerInfo = plasmidPrimerDesign(
plasmidSeq, goalSeq, primerOptTm, primerMinSize)
print(' _________\n / \\\n | /\\ /\\ |\n | - |\n | \\___/ |\n \\_________/')
print('PROCESSING')
print('author: Tom Fu, Richard Chang; HMC BioMakerspace')
return cleanPrimerInfo(leftPrimerInfo, rightPrimerInfo)
def tempDiffRestrict(primerInfo, maxTempDiff=MAX_TEMP_DIFF):
"""Checks the differnce in annealing temperatures between two primers.
Difference should not be greater than 5 degrees."""
for key in primerInfo.copy():
if abs(primerInfo[key][0][1] - primerInfo[key][1][1]) > maxTempDiff:
del primerInfo[key]
return primerInfo
def TaqvectorPrimerDesign(vectorPlasmidSeq, vectorSeq, maxTempDiff=MAX_TEMP_DIFF, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE):
"""Find the primers isolating vectorSeq from vectorPlasmidSeq; meanwhile
getting two overhang sequences that need to be attached to the insert primer
pairs"""
cleanedPrimerInfo = primer3Only(
vectorPlasmidSeq, vectorSeq, primerOptTm, primerMinSize)
rightTempPrimerInfo = tempDiffRestrict(cleanedPrimerInfo, maxTempDiff)
for key, val in rightTempPrimerInfo.copy().items():
currentLeftPrimer = val[0][2]
currentRightPrimer = val[1][2]
if (len(currentLeftPrimer) >= 18) and (len(currentRightPrimer) >= 18):
leftOverHang = currentLeftPrimer[:16]
rightOverHang = currentRightPrimer[:16]
val[0].append(leftOverHang)
val[1].append(rightOverHang)
else:
sys.exit(
"The following primer pair is not long enough for FastCloning, thus removed", str(val))
return rightTempPrimerInfo
def TaqinsertPrimerDesign(rightTempVectorPrimerInfoWOverhang, insertPlasmidSeq, insertSeq, maxTempDiff=MAX_TEMP_DIFF, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE):
"""Find the primers isolating insertSeq from insertPlasmidSeq; meanwhile attaching
the two overhang sequences to the insert primer pairs"""
cleanedInsertPrimerInfo = primer3Only(
insertPlasmidSeq, insertSeq, primerOptTm, primerMinSize)
rightTempInsertPrimerInfo = tempDiffRestrict(
cleanedInsertPrimerInfo, maxTempDiff)
outputDict = {}
outputL = []
primer4Num = 1
for vkey, currentVPrimerPair in rightTempVectorPrimerInfoWOverhang.items():
for ikey, currentIPrimerPair in rightTempInsertPrimerInfo.items():
# vector primers
vcurrentLSeq = currentVPrimerPair[0][2]
vcurrentLTemp = currentVPrimerPair[0][1]
vcurrentLOverhang = currentVPrimerPair[0][3]
vcurrentRSeq = currentVPrimerPair[1][2]
vcurrentRTemp = currentVPrimerPair[1][1]
vcurrentROverhang = currentVPrimerPair[1][3]
# insert primers
icurrentLSeq = currentIPrimerPair[0][2]
icurrentLTemp = currentIPrimerPair[0][1]
icurrentRSeq = currentIPrimerPair[1][2]
icurrentRTemp = currentIPrimerPair[1][1]
# attach the left overhang to right iprimers and vice versa
newiCurrentLSeq = vcurrentROverhang.lower() + icurrentLSeq
newiCurrentRSeq = vcurrentLOverhang.lower() + icurrentRSeq
# save current info
outputDict.update(
{('vectorLeftPrimer' + str(primer4Num)): [vcurrentLTemp, vcurrentLSeq]})
outputDict.update(
{('vectorRightPrimer' + str(primer4Num)): [vcurrentRTemp, vcurrentRSeq]})
outputDict.update(
{('insertLeftPrimer' + str(primer4Num)): [icurrentLTemp, newiCurrentLSeq]})
outputDict.update(
{('insertRightPrimer' + str(primer4Num)): [icurrentRTemp, newiCurrentRSeq]})
outputL.append(
[('vectorLeftPrimer' + str(primer4Num)), vcurrentLTemp, vcurrentLSeq])
outputL.append(
[('vectorRightPrimer' + str(primer4Num)), vcurrentRTemp, vcurrentRSeq])
outputL.append(
[('insertLeftPrimer' + str(primer4Num)), icurrentLTemp, newiCurrentLSeq])
outputL.append(
[('insertRightPrimer' + str(primer4Num)), icurrentRTemp, newiCurrentRSeq])
primer4Num += 1
return outputDict, outputL
def primerTemp(primerSeq, primerConcentration = 500e-9, saltConcentration = 50e-3, magnesiumConcentration = 0):
"""Calculates the annealing temperature of a primer using the NEB calculator formula
"""
temp = 0
seq = Seq(primerSeq)
dH = 0
dS = 0
symmetryFactor = 0
initial_Thermodynamic_Penalty = [0.2, -5.7]
symmetry_Thermodynamic_Penalty = [0, -1.4]
termial_AT_Thermodynamic_Penalty = [2.2, 6.9]
gasConstant = 1.9872
dH += initial_Thermodynamic_Penalty[0]
dS += initial_Thermodynamic_Penalty[1]
if primerSeq == seq.reverse_complement():
dH += symmetry_Thermodynamic_Penalty[0]
dS += symmetry_Thermodynamic_Penalty[1]
symmetryFactor = 1
else:
symmetryFactor = 4
if primerSeq[len(primerSeq)-1] == 'A' or primerSeq[len(primerSeq)-1] == 'T':
dH += termial_AT_Thermodynamic_Penalty[0]
dS += termial_AT_Thermodynamic_Penalty[1]
saltEffect = saltConcentration + (magnesiumConcentration * 140)
dS += (0.368 * (len(primerSeq)-1) * math.log10(saltEffect))
for i in range(len(primerSeq)-1):
dH += enthalpyEntropyValuesSequencePairs[primerSeq[i:i+2]][0]
dS += enthalpyEntropyValuesSequencePairs[primerSeq[i:i+2]][1]
temp = dH*1000/(dS + gasConstant*math.log(primerConcentration/symmetryFactor)) - 273.15
return temp
def vectorPrimerDesign(vectorPlasmidSeq, vectorSeq, maxTempDiff=MAX_TEMP_DIFF, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE):
"""Find the primers isolating vectorSeq from vectorPlasmidSeq; meanwhile
getting two overhang sequences that need to be attached to the insert primer
pairs"""
currentLen = 0
rightTempPrimerInfo = {}
bestFarthestTempDist = float("inf")
# for value in range(-5, -3):
for value in range(-5, 5):
print("VECTOR")
print(value)
cleanedPrimerInfo = primer3Only(
vectorPlasmidSeq, vectorSeq, primerOptTm+value, primerMinSize)
temprightTempPrimerInfo = tempDiffRestrict(
cleanedPrimerInfo, maxTempDiff)
# check phusion for temperature
primerSeqNEB = primerDictToNEBPrimerSeq(
temprightTempPrimerInfo)
temprightTempPrimerInfo, currentfarthestTempDist = NEBWebscraper(
primerSeqNEB, primerOptTm)
if temprightTempPrimerInfo != {}:
if bestFarthestTempDist > currentfarthestTempDist or len(temprightTempPrimerInfo) > currentLen:
bestFarthestTempDist = currentfarthestTempDist
print(bestFarthestTempDist)
rightTempPrimerInfo = temprightTempPrimerInfo
currentLen = len(rightTempPrimerInfo)
print("UPDATE")
print(rightTempPrimerInfo)
# go on and find overhang
# rightTempPrimerInfoNoOverhang = copy.deepcopy(rightTempPrimerInfo)
rightTempPrimerInfoOverhang = rightTempPrimerInfo.copy()
for key, val in rightTempPrimerInfo.items():
currentLeftPrimer = val[0][2]
currentRightPrimer = val[1][2]
if (len(currentLeftPrimer) >= 18) and (len(currentRightPrimer) >= 18):
leftOverHang = currentLeftPrimer[:16]
rightOverHang = currentRightPrimer[:16]
val[0].append(leftOverHang)
val[1].append(rightOverHang)
else:
sys.exit(
"The following primer pair is not long enough for FastCloning, thus removed", str(val))
print(rightTempPrimerInfoOverhang)
return rightTempPrimerInfoOverhang
# elif enzyme == "phusion":
# return rightTempPrimerInfo
def insertPrimerDesign(rightTempVectorPrimerInfoWOverhang, insertPlasmidSeq, insertSeq, maxTempDiff=MAX_TEMP_DIFF, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE):
"""Find the primers isolating insertSeq from insertPlasmidSeq; meanwhile attaching
the two overhang sequences to the insert primer pairs"""
currentLen = 0
rightTempInsertPrimerInfo = {}
bestFarthestTempDist = float("inf")
for value in range(-5, 5):
# for value in range(-5, 6):
print("INSERT")
print(value)
cleanedPrimerInfo = primer3Only(
insertPlasmidSeq, insertSeq, primerOptTm+value, primerMinSize)
temprightTempPrimerInfo = tempDiffRestrict(
cleanedPrimerInfo, maxTempDiff)
# check phusion for temperature
primerSeqNEB = primerDictToNEBPrimerSeq(
temprightTempPrimerInfo)
temprightTempPrimerInfo, currentfarthestTempDist = NEBWebscraper(
primerSeqNEB, primerOptTm)
if temprightTempPrimerInfo != {}:
if bestFarthestTempDist > currentfarthestTempDist or len(temprightTempPrimerInfo) > currentLen:
bestFarthestTempDist = currentfarthestTempDist
print(bestFarthestTempDist)
rightTempInsertPrimerInfo = temprightTempPrimerInfo
currentLen = len(rightTempInsertPrimerInfo)
print("UPDATE")
print(rightTempInsertPrimerInfo)
# go on
outputDict = {}
outputL = []
primer4Num = 1
for vkey, currentVPrimerPair in rightTempVectorPrimerInfoWOverhang.items():
for ikey, currentIPrimerPair in rightTempInsertPrimerInfo.items():
# vector primers
vcurrentLSeq = currentVPrimerPair[0][2]
vcurrentLTemp = currentVPrimerPair[0][1]
vcurrentLOverhang = currentVPrimerPair[0][3]
vcurrentRSeq = currentVPrimerPair[1][2]
vcurrentRTemp = currentVPrimerPair[1][1]
vcurrentROverhang = currentVPrimerPair[1][3]
# insert primers
icurrentLSeq = currentIPrimerPair[0][2]
icurrentLTemp = currentIPrimerPair[0][1]
icurrentRSeq = currentIPrimerPair[1][2]
icurrentRTemp = currentIPrimerPair[1][1]
# attach the left overhang to right iprimers and vice versa
newiCurrentLSeq = vcurrentROverhang.lower() + icurrentLSeq
newiCurrentRSeq = vcurrentLOverhang.lower() + icurrentRSeq
# save current info
outputDict.update(
{('vectorLeftPrimer' + str(primer4Num)): [vcurrentLTemp, vcurrentLSeq]})
outputDict.update(
{('vectorRightPrimer' + str(primer4Num)): [vcurrentRTemp, vcurrentRSeq]})
outputDict.update(
{('insertLeftPrimer' + str(primer4Num)): [icurrentLTemp, newiCurrentLSeq]})
outputDict.update(
{('insertRightPrimer' + str(primer4Num)): [icurrentRTemp, newiCurrentRSeq]})
outputL.append(
[('vectorLeftPrimer' + str(primer4Num)), vcurrentLTemp, vcurrentLSeq])
outputL.append(
[('vectorRightPrimer' + str(primer4Num)), vcurrentRTemp, vcurrentRSeq])
outputL.append(
[('insertLeftPrimer' + str(primer4Num)), icurrentLTemp, newiCurrentLSeq])
outputL.append(
[('insertRightPrimer' + str(primer4Num)), icurrentRTemp, newiCurrentRSeq])
primer4Num += 1
return outputDict, outputL
# WRAPPER FUNCTIONS
def plasmidPrimers(plasmidSeq, goalSeq, benchling=True, destinationAddress='plasmidPrimerInfo.csv', benchlingAddress='benchlingPlasmidPrimerInfo.csv', primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE, enzyme="Taq", maxTempDiff=MAX_TEMP_DIFF):
# Use NEB to check temp
if enzyme == "Taq":
primersDict = primer3Only(
plasmidSeq, goalSeq, primerOptTm, primerMinSize)
tempString = "meltingTemp (in degree C)"
elif enzyme == "phusion":
tempString = 'annealingTemp (in degree C)'
currentLen = 0
primersDict = {}
bestFarthestTempDist = float("inf")
for value in range(-5, 5):
cleanedPrimerInfo = primer3Only(
plasmidSeq, goalSeq, primerOptTm+value, primerMinSize)
temprightTempPrimerInfo = tempDiffRestrict(
cleanedPrimerInfo, maxTempDiff)
# check phusion for temperature
primerSeqNEB = primerDictToNEBPrimerSeq(
temprightTempPrimerInfo)
print(primerSeqNEB)
temprightTempPrimerInfo, currentfarthestTempDist = NEBWebscraper(
primerSeqNEB, primerOptTm)
print(currentfarthestTempDist)
if temprightTempPrimerInfo != {}:
if bestFarthestTempDist > currentfarthestTempDist or len(temprightTempPrimerInfo) > currentLen:
bestFarthestTempDist = currentfarthestTempDist
print(bestFarthestTempDist)
currentLen = len(temprightTempPrimerInfo)
primersDict = temprightTempPrimerInfo
print(temprightTempPrimerInfo)
print("FinalPrimersDict")
print(primersDict)
# go on
outputL = []
primerPairNum = 1
for key, currentPrimerPair in primersDict.items():
currentLeftPrimerSeq = currentPrimerPair[0][2]
currentLeftPrimerTemp = currentPrimerPair[0][1]
currentRightPrimerSeq = currentPrimerPair[1][2]
currentRightPrimerTemp = currentPrimerPair[1][1]
outputL.append([('leftPrimer' + str(primerPairNum)),
currentLeftPrimerTemp, currentLeftPrimerSeq])
outputL.append([('rightPrimer' + str(primerPairNum)),
currentRightPrimerTemp, currentRightPrimerSeq])
primerPairNum += 1
currentDF = pd.DataFrame(
outputL, columns=['primerInfo', tempString, 'sequence'])
currentDF.to_csv(destinationAddress)
print("Check out the following file for your primers:")
print(destinationAddress)
if benchling == True:
benchlingL = [[currentPrimer[0], currentPrimer[2]]
for currentPrimer in outputL]
benchlingDF = pd.DataFrame(
benchlingL)
benchlingDF.to_csv(benchlingAddress, index=False)
print("Your benchling-ready csv file is:")
print('benchling'+destinationAddress)
return
def plasmidPrimersFile(plasmidSeqFile, goalSeq, benchling=True, destinationAddress='plasmidPrimerInfo.csv', benchlingAddress='benchlingPlasmidPrimerInfo.csv', primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE, enzyme="Taq"):
if plasmidSeqFile[-5:] == 'fasta':
plasmidSeq = str(SeqIO.read(plasmidSeqFile, "fasta").seq)
elif (plasmidSeqFile[-3:] == '.gb') or (plasmidSeqFile[-3:] == 'gbk'):
plasmidSeq = str(SeqIO.read(plasmidSeqFile, "genbank").seq)
else:
sys.exit('Unsupported file format.')
return plasmidPrimers(plasmidSeq, goalSeq, benchling, destinationAddress, benchlingAddress, primerOptTm, primerMinSize, enzyme)
def fastCloningPrimers(vectorPlasmidSeq, insertPlasmidSeq, vectorSeq, insertSeq, maxTempDiff=MAX_TEMP_DIFF, destinationAddress='fastCloningPrimerInfo.csv', benchlingAddress='benchlingfastCloningPrimerInfo.csv', benchling=True, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE, enzyme="phusion"):
"""Wrapper function that generates 2 primer pairs for the given circular
raw vector and insert sequences
Args:
vectorPlasmidSeq ([str]): vector plasmid
insertPlasmidSeq ([str]): insert plasmid
vectorSeq ([str]): vector sequence
insertSeq ([str]): insert sequence
"""
if enzyme == "phusion":
rightTempVectorPrimerInfoWOverhang = vectorPrimerDesign(
vectorPlasmidSeq, vectorSeq, maxTempDiff, primerOptTm, primerMinSize)
outputDict, outputL = insertPrimerDesign(
rightTempVectorPrimerInfoWOverhang, insertPlasmidSeq, insertSeq, maxTempDiff, primerOptTm, primerMinSize)
currentDF = pd.DataFrame(
outputL, columns=['primerInfo', 'annealingTemp (in degree C)', 'sequence'])
currentDF.to_csv(destinationAddress)
print("Check out the following file for your primers:")
print(destinationAddress)
if benchling == True:
benchlingL = [[currentPrimer[0], currentPrimer[2]]
for currentPrimer in outputL]
benchlingDF = pd.DataFrame(
benchlingL)
benchlingDF.to_csv(benchlingAddress, index=False)
print("Your benchling-ready csv file is:")
print(benchlingAddress)
elif enzyme == "Taq":
rightTempVectorPrimerInfoWOverhang = TaqvectorPrimerDesign(
vectorPlasmidSeq, vectorSeq, maxTempDiff, primerOptTm, primerMinSize)
outputDict, outputL = TaqinsertPrimerDesign(
rightTempVectorPrimerInfoWOverhang, insertPlasmidSeq, insertSeq, maxTempDiff, primerOptTm, primerMinSize)
currentDF = pd.DataFrame(
outputL, columns=['primerInfo', 'annealingTemp (in degree C)', 'sequence'])
currentDF.to_csv(destinationAddress)
print("Check out the following file for your primers:")
print(destinationAddress)
if benchling == True:
benchlingL = [[currentPrimer[0], currentPrimer[2]]
for currentPrimer in outputL]
benchlingDF = pd.DataFrame(
benchlingL)
benchlingDF.to_csv(benchlingAddress, index=False)
print("Your benchling-ready csv file is:")
print(benchlingAddress)
return
def fastCloningPrimersFile(vectorPlasmidAddress, insertPlasmidAddress, vectorSeq, insertSeq, maxTempDiff=MAX_TEMP_DIFF, destinationAddress='fastCloningPrimerInfo.csv', benchlingAddress='benchlingfastCloningPrimerInfo.csv', benchling=True, primerOptTm=PRIMER_OPT_TM, primerMinSize=PRIMER_MIN_SIZE, enzyme="phusion"):
"""Wrapper function that generates 2 primer pairs for the given circular
raw vector and insert sequences given fasta/gb files
Args:
vectorPlasmidAddress ([str]): address for vector plasmid
insertPlasmidAddress ([str]): address for insert plasmid
vectorSeq ([str]): vector sequence
insertSeq ([str]): insert sequence
"""
vectorPlasmidSeq, insertPlasmidSeq = fileParsing(
vectorPlasmidAddress, insertPlasmidAddress)
vectorPlasmidSeq = str(vectorPlasmidSeq)
insertPlasmidSeq = str(insertPlasmidSeq)
return fastCloningPrimers(vectorPlasmidSeq, insertPlasmidSeq, vectorSeq, insertSeq, maxTempDiff, destinationAddress, benchlingAddress, benchling, primerOptTm, primerMinSize, enzyme)