forked from LsNatan/NICE
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
65 lines (45 loc) · 2.68 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import os
import torch
from torch.autograd import Variable
import numpy as np
from torch import nn
import quantize
def calc_loss(output , target , criterion , model, args):
loss_for_psnr = criterion(output, target)
loss = loss_for_psnr.clone()
weight_decay_loss = Variable( torch.FloatTensor([0]))
if (args.gpus is not None):
weight_decay_loss = weight_decay_loss.cuda()
#act_decay_loss = Variable( torch.FloatTensor([0]))
is_weight_layer = False
if (args.enable_decay):
L1 = nn.MSELoss(size_average=False) # nn.L1Loss(size_average=False) #
if (args.gpus is not None):
L1 = L1.cuda()
#moduls = model.layers_steps[model.training_stage:]
moduls = model.layers_steps[model.training_stage]
for m in moduls:
if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear) or isinstance(m, torch.nn.LSTM):
is_weight_layer = True
for p in m._parameters:
if m._parameters[p] is not None:
#quantize_target = quantize.quantize_for_decay(m._parameters[p], bitwidth=model.bitwidth)
#quantize_target = Variable( quantize_target , requires_grad = False )
#print(torch.max( torch.abs(m._parameters[p].data) ) )
decay_mask = (torch.abs(m._parameters[p].data) > 0.5 ).type(torch.FloatTensor)
if (args.gpus is not None):
decay_mask = decay_mask.cuda()
clamp_weight = torch.clamp( m._parameters[p].data , -0.1 , 0.1)
quantize_target = Variable( clamp_weight * decay_mask , requires_grad = False )
mask_weights = m._parameters[p] * Variable(decay_mask)
if (args.gpus is not None):
quantize_target = quantize_target.cuda()
weight_decay_loss += L1(mask_weights , quantize_target)
if (is_weight_layer):
factor_weight = 1 if (weight_decay_loss.data[0] == 0) else Variable (loss_for_psnr.data * args.quant_decay / weight_decay_loss.data, requires_grad = False)
#factor_act = 1 if (act_decay_loss.data[0] == 0) else Variable (loss_for_psnr.data * 0.0 / act_decay_loss.data, requires_grad = False)
loss_for_dcay = factor_weight * weight_decay_loss #+ factor_act * act_decay_loss
loss += loss_for_dcay
#print('loss_for_psnr: ', loss_for_psnr.data[0] , 'loss for decay: ', loss_for_dcay.data[0], 'weight decay before factor: ', weight_decay_loss.data[0] , 'act: ', act_decay_loss.data[0])
return loss_for_psnr , loss , weight_decay_loss