-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathLlama-2-7b-hf.txt
371 lines (26 loc) · 3.51 KB
/
Llama-2-7b-hf.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
<s> Vaswani et al. (2017) introduced the Transformers model for sequence-to-sequence (seq2seq) tasks. It achieved state-of-the-art performance on machine translation and summarization tasks by introducing attention-based recurrent neural networks (RNNs, e.g., LSTMs) to capture long-range dependencies in the input sequence.
Transformers are composed of self-attention and feed-forward layers. The self-attention layer computes a weighted sum of inputs by attending to each input at different positions, whereas the feed-forward layer applies a linear transformation to the output of the self-attention layer. In this post, we’ll explore Transformer architectures and their training.
The architecture of a vanilla Transformer is shown in Figure 1. It consists of an encoder and a decoder. The encoder takes an input sequence $x \in \mathbb{R}^{T \times D}$ and outputs a sequence of hidden states $h_1, h_2, \hdots, h_T \in \mathbb{R}^{D}$. The decoder takes the hidden states of the encoder and outputs a sequence of hidden states $d_1, d_2, \hdots, d_T \in \mathbb{R}^{D}$.
Figure 1: Architecture of a vanilla Transformer.
The encoder is a stack of $N$ identical layers, each of which consists of a multi-head self-attention layer and a feed-forward layer. The multi-head self-attention layer has $K$ heads, each of which computes a weighted sum of the input sequence using different sets of keys and/or values. The feed-forward layer applies a linear transformation to the output of the self-attention layer.
The decoder is a stack of $N$ identical layers, each of which consists of a multi-head self-attention layer and a feed-forward layer. The multi-head self-attention layer has $K$ heads, each of which computes a weighted sum of the input sequence using different sets of keys and/or values. The feed-forward layer applies a linear transformation to the output of the self-attention layer.
The input sequence is fed into the encoder and the output sequence is fed into the decoder. The two sequences are concatenated and fed into the final feed-forward layer
h h,
KKKKKKKKKKKKKKOKOOOOOOOOOOOOOOOOOOOOOOOOMMO̶OANOOAMOO̶OMMO
O�OMMO
ONNO$OAMONOO
O�O̶O
OO
OOOOO
OOOOOOO̶O
OOOOOLLOOOOOOO
O
O�̶O
O̶O̶
G
O
O
OATOOOO
0OgOATO0OATO
C0OO00O0M
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.\\OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO