-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathendless_generation.py
115 lines (98 loc) · 3.69 KB
/
endless_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
from pathlib import Path
import torch
from transformers import (
AutoTokenizer,
GenerationConfig,
PreTrainedModel,
PreTrainedTokenizer,
)
from utils import FileStreamer
@torch.no_grad()
def endless_generate(
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
text: str,
log_file: str,
min_new_tokens: int = 1000,
max_new_tokens: int = 10000,
) -> str:
streamer = FileStreamer(tokenizer, log_file)
input_ids = tokenizer.encode(text, return_tensors="pt").to(model.device)
generated_tokens = model.generate(
input_ids,
generation_config=GenerationConfig(
# use_cache=True is required, the rest can be changed up.
use_cache=True,
min_new_tokens=min_new_tokens,
max_new_tokens=max_new_tokens,
penalty_alpha=0.6,
top_k=4,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
),
streamer=streamer,
)
# Decode the final generated text
return tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
def main():
parser = argparse.ArgumentParser()
# Which experiment to run?
parser.add_argument(
"--experiment", choices=["attention_sinks", "transformers", "windowed"], default="attention_sinks"
)
# Model args
parser.add_argument("--model_name_or_path", type=str, default="meta-llama/Llama-2-7b-hf")
parser.add_argument("--revision", type=str, default="main")
parser.add_argument("--trust_remote_code", action="store_true")
# Input text
parser.add_argument("--text", type=str, default="Vaswani et al. (2017) introduced the Transformers")
# Generation args
parser.add_argument("--min_new_tokens", type=int, default=1000)
parser.add_argument("--max_new_tokens", type=int, default=10000)
# Where to log
parser.add_argument("--log_file", type=str, default=None)
# Window size for windowed and attention_sinks
parser.add_argument("--window_size", type=int, default=512)
# Attention Sinks-only settings
# Attention Sink window size is calculated with args.window_size - args.attention_sink_size
parser.add_argument("--attention_sink_size", type=int, default=4)
args = parser.parse_args()
# Initialize the model, either via transformers or via attention_sinks
if args.experiment == "transformers":
from transformers import AutoModelForCausalLM
else:
from attention_sinks import AutoModelForCausalLM
kwargs = {}
if args.experiment == "attention_sinks":
kwargs = {
"attention_sink_size": args.attention_sink_size,
"attention_sink_window_size": args.window_size - args.attention_sink_size, # default: 1020
}
elif args.experiment == "windowed":
kwargs = {
"attention_sink_size": 0,
"attention_sink_window_size": args.window_size,
}
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
revision=args.revision,
trust_remote_code=bool(args.trust_remote_code),
torch_dtype=torch.float16,
device_map="auto",
**kwargs,
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=bool(args.trust_remote_code))
tokenizer.pad_token_id = tokenizer.eos_token_id
log_file = args.log_file or Path("demo") / "endless_logs" / args.experiment / f"{args.model_name_or_path}.txt"
endless_generate(
model,
tokenizer,
args.text,
log_file=log_file,
min_new_tokens=args.min_new_tokens,
max_new_tokens=args.max_new_tokens,
)
if __name__ == "__main__":
main()