-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
1055 lines (890 loc) · 52.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
B sign denotes quark type (b or anti-b): label +1 corresponds to anti-b quark and -1 correspond to b-quark.
"""
import numpy
import pandas
from collections import OrderedDict
from sklearn import clone
from sklearn.metrics import roc_auc_score
from sklearn.linear_model import SGDClassifier
from sklearn.isotonic import IsotonicRegression
from matplotlib import pyplot as plt
from rep.utils import train_test_split, train_test_split_group, Flattener
from scipy.special import logit, expit
from matplotlib import pyplot as plt
from sklearn.metrics import roc_curve, roc_auc_score
import root_numpy
from itertools import combinations
from sklearn.base import BaseEstimator, ClassifierMixin
def data_tracks_preprocessing(data, event_id_column='event_id', N_sig_sw=None):
"""
Initial preprocessing for tracks:
* initially remove NAN samples by IPs filtering (they are not used in efficiency tag calculation
* add event_id, set weight (to 1 if MC), add maxpt-pt, max(PID1, PID2), sum(PID1, PID2), cos phi
* apply selections, ghost probability < 0.4 and at least one PID > 0
* add label if B and track have the same sign
"""
# remove NAN smaples
data.loc[data.IPs == numpy.inf, "IPs"] = numpy.NAN
data = data.dropna()
# data = data.loc[numpy.isfinite(data.IPs), :]
data.index = numpy.arange(len(data))
event_id = data.run.apply(str) + '_' + data.event.apply(int).apply(str)
data.loc[:, 'group_column'] = numpy.unique(event_id, return_inverse=True)[1]
data.loc[:, event_id_column] = event_id
# all weights are 1, because this is MC
if N_sig_sw is None:
data.loc[:, 'N_sig_sw'] = 1
print 'Initial statistics:', get_events_statistics(data)
add_diff_pt(data)
# add cos(diff_phi)
data.loc[:, 'cos_diff_phi'] = numpy.cos(data.diff_phi.values)
PIDs = {'k': data.PIDNNk.values,
'e': data.PIDNNe.values,
'mu': data.PIDNNm.values,
}
for (pid_name1, pid_values1), (pid_name2, pid_values2) in combinations(PIDs.items(), 2):
data.loc[:, 'max_PID_{}_{}'.format(pid_name1, pid_name2)] = numpy.maximum(pid_values1, pid_values2)
data.loc[:, 'sum_PID_{}_{}'.format(pid_name1, pid_name2)] = pid_values1 + pid_values2
data.loc[:, 'label'] = data.signB.values * data.signTrack.values > 0
# preselections
# ghost tracks remove
ghost_cut = '(ghostProb < 0.4)'
data = data.query(ghost_cut)
print 'after ', ghost_cut, ' selection, statistics:', get_events_statistics(data)
# loose preselection on PID
threshold_kaon = 0.
threshold_muon = 0.
threshold_electron = 0.
threshold_pion = 0.
threshold_proton = 0.
pid_cut = " ( (PIDNNk > {trk}) | (PIDNNm > {trm}) | (PIDNNe > {tre}) | (PIDNNpi > {trpi}) | (PIDNNp > {trp})) "
pid_cut = pid_cut.format(trk=threshold_kaon, trm=threshold_muon, tre=threshold_electron, trpi=threshold_pion,
trp=threshold_proton)
data = data.query(pid_cut)
print 'after ', pid_cut, ' selection, statistics:', get_events_statistics(data)
return data
def plot_features(data, features):
"""
plot features distribution in data separately for classes (`label` column is expected in the data)
"""
for n, f in enumerate(features):
plt.subplot(numpy.ceil(len(features) / 5.), 5, n+1)
mask = data[f].values > -999
mask_label = data.label == 1
x1 = max(numpy.min(data.loc[mask & mask_label, f]), numpy.min(data.loc[mask & ~mask_label, f]))
x2 = min(numpy.max(data.loc[mask & mask_label, f]), numpy.max(data.loc[mask & ~mask_label, f]))
plt.hist(data.loc[mask & mask_label, f].values, bins=80, alpha=0.3, normed=True,
weights=data.loc[mask & mask_label, 'N_sig_sw'].values, range=(x1, x2), label='positive')
plt.hist(data.loc[mask & ~mask_label, f].values, bins=80, alpha=0.3, normed=True,
weights=data.loc[mask & ~mask_label, 'N_sig_sw'].values, range=(x1, x2), label='negative')
plt.xlabel(f)
plt.title('%1.5f' % roc_auc_score(data.label, data[f], sample_weight=data.N_sig_sw))
plt.legend()
class CalibrationProcedure(BaseEstimator, ClassifierMixin):
"""
Calibration class: implements 2-folds calibration with calibration procedures
* logistic regression
* isotonic regression
"""
def __init__(self, logistic=False, symmetrize=False, random_state=42, threshold=0.):
"""
:param bool logistic: logistic regression (for True) or isotonic regression (for False) will be used
:param bool symmetrize: symmetrize samples or not. If True then add inverse predictions with inverse labels
:param float threshold: threshold for lables: y > threshold is 1 class and y <= threshold is 0 class.
"""
self.logistic = logistic
self.symmetrize = symmetrize
self.random_state = random_state
self.threshold = threshold
def _compute_inds(self, length):
ind = numpy.arange(length)
ind_1, ind_2 = train_test_split(ind, random_state=self.random_state, train_size=0.5)
return ind_1, ind_2
def fit(self, X, y, sample_weight=None):
"""
Train calibration rule for input probabilities `X` with target values `y`
"""
labels = (y > self.threshold) * 1
probs = X
weights = numpy.ones(len(probs)) if sample_weight is None else sample_weight
ind_1, ind_2 = self._compute_inds(len(probs))
calibrator = SGDClassifier(loss='log', random_state=self.random_state, penalty='none', alpha=0.01) if self.logistic \
else IsotonicRegression(y_min=0, y_max=1, out_of_bounds='clip')
est_calib_1, est_calib_2 = clone(calibrator), clone(calibrator)
probs_1 = probs[ind_1]
probs_2 = probs[ind_2]
if self.logistic:
probs_1 = numpy.clip(probs_1, 0.001, 0.999)
probs_2 = numpy.clip(probs_2, 0.001, 0.999)
probs_1 = probs_1[:, numpy.newaxis]
probs_2 = probs_2[:, numpy.newaxis]
if self.symmetrize:
est_calib_1.fit(numpy.r_[logit(probs_1), logit(1-probs_1)],
numpy.r_[labels[ind_1] > 0, labels[ind_1] <= 0],
sample_weight=numpy.r_[weights[ind_1], weights[ind_1]])
est_calib_2.fit(numpy.r_[logit(probs_2), logit(1-probs_2)],
numpy.r_[labels[ind_2] > 0, labels[ind_2] <= 0],
sample_weight=numpy.r_[weights[ind_2], weights[ind_2]])
else:
est_calib_1.fit(logit(probs_1), labels[ind_1], sample_weight=weights[ind_1])
est_calib_2.fit(logit(probs_2), labels[ind_2], sample_weight=weights[ind_2])
else:
if self.symmetrize:
est_calib_1.fit(numpy.r_[probs_1, 1-probs_1],
numpy.r_[labels[ind_1] > 0, labels[ind_1] <= 0],
sample_weight=numpy.r_[weights[ind_1], weights[ind_1]])
est_calib_2.fit(numpy.r_[probs_2, 1-probs_2],
numpy.r_[labels[ind_2] > 0, labels[ind_2] <= 0],
sample_weight=numpy.r_[weights[ind_2], weights[ind_2]])
else:
est_calib_1.fit(probs_1, labels[ind_1], sample_weight=weights[ind_1])
est_calib_2.fit(probs_2, labels[ind_2], sample_weight=weights[ind_2])
self.calibrators = [est_calib_1, est_calib_2]
return self
def predict_proba(self, X):
"""
Predict calibrated probabilities for input probabilities `X`
"""
probs = X
calibrated_probs = numpy.zeros(len(probs))
ind_1, ind_2 = self._compute_inds(len(probs))
probs_1 = probs[ind_1]
probs_2 = probs[ind_2]
if self.logistic:
probs_1 = numpy.clip(probs_1, 0.001, 0.999)
probs_2 = numpy.clip(probs_2, 0.001, 0.999)
probs_1 = probs_1[:, numpy.newaxis]
probs_2 = probs_2[:, numpy.newaxis]
calibrated_probs[ind_1] = self.calibrators[1].predict_proba(logit(probs_1))[:, 1]
calibrated_probs[ind_2] = self.calibrators[0].predict_proba(logit(probs_2))[:, 1]
else:
calibrated_probs[ind_1] = self.calibrators[1].transform(probs_1)
calibrated_probs[ind_2] = self.calibrators[0].transform(probs_2)
numpy.random.seed(self.random_state)
calibrated_probs = calibrated_probs + numpy.random.normal(size=len(calibrated_probs)) * 0.001
return calibrated_probs
def shrink_floats(data):
for column in data.columns:
if data[column].dtype == 'float64':
data[column] = data[column].astype('float32')
if data[column].dtype == 'int64':
data[column] = data[column].astype('int32')
def union(*arrays):
return numpy.concatenate(arrays)
def get_events_statistics(data, id_column='event_id'):
"""
:return: dict with 'Events' - number of events and 'parts' - number of samples
"""
return {'Events': len(numpy.unique(data[id_column])), 'parts': len(data)}
def get_events_number(data, id_column='event_id'):
"""
:return: number of B events
"""
_, data_ids = numpy.unique(data[id_column], return_inverse=True)
weights = numpy.bincount(data_ids, weights=data.N_sig_sw) / numpy.bincount(data_ids)
return numpy.sum(weights)
def get_N_B_events():
'''
:return: number of B decays (sum of sWeight in initial root file)
'''
N_B_decays = 7.42867714256286621e+05
return N_B_decays
def compute_N_B_events_MC(track_file, vertex_file, name=""):
"""
Compute number of events in the generated MC files. Initially, remove samples with NAN IPs
"""
Bevents_tracks = pandas.DataFrame(root_numpy.root2array(track_file, branches=['run', 'event', 'IPs']))
Bevents_tracks = Bevents_tracks.loc[numpy.isfinite(Bevents_tracks.IPs), :]
B_events_vertices = pandas.DataFrame(root_numpy.root2array(vertex_file, branches=['run', 'event', 'vcharge']))
B_events_vertices = B_events_vertices[B_events_vertices.vcharge > 0]
B_events = pandas.concat([Bevents_tracks, B_events_vertices])
B_events['event_id'] = B_events.run.apply(str) + '_' + B_events.event.apply(int).apply(str)
B_events['N_sig_sw'] = 1
N_B_events = get_events_number(B_events)
return N_B_events
def add_diff_pt(data, event_id_column='event_id'):
"""
add difference between max pt in event and pt for each track (new column `diff_pt` will be added into data)
"""
max_pt = group_max(data[event_id_column].values.astype(str), data.partPt.values)
data.loc[:, 'diff_pt'] = max_pt - data['partPt'].values
def group_max(groups, data):
"""
max is computing over tracks in the same event for the same data
"""
# computing unique integer id for each group
assert len(groups) == len(data)
_, event_id = numpy.unique(groups, return_inverse=True)
max_over_event = numpy.zeros(max(event_id) + 1) - numpy.inf
numpy.maximum.at(max_over_event, event_id, data)
return max_over_event[event_id]
def combine_taggers_old_scheme(tagger_outputs, tagger_keys):
"""
Copy-pasted formulas (5.1), (5.2) from [TODO link].
Formulas by themselves are not readable, please refer to context.
:param tagger_outputs: output of tagger for tracks.
There are 4 taggers, each having
tag_n - tagger output.
prob_n - probability of right tagged.
"""
pb = []
pnb = []
for key in tagger_keys:
prob = tagger_outputs['prob_{}'.format(key)].values
tag = tagger_outputs['tag_{}'.format(key)].values
pb.append((1 + tag) / 2 - tag * prob)
pnb.append((1 - tag) / 2 + tag * prob)
pb = numpy.prod(pb, axis=0)
pnb = numpy.prod(pnb, axis=0)
probs_wrong = pb / (pb + pnb)
tag_result = numpy.ones(len(probs_wrong))
tag_result[probs_wrong > 0.5] = -1
return tag_result, 1 - probs_wrong, tagger_outputs.weight.values, tagger_outputs.signB.values
def prepare_B_data_old_scheme(data_with_predictions, tagger_keys, flavour_column=None):
"""
Old scheme: combine taggers all together and return B data (tags, probabilities, weights, b-quark labels)
Also if mass and time are in data then mass and time are also returned.
"""
# collecting all together,
# setting tag_n = -99 if untagged
data_combined = pandas.DataFrame({'event_id': numpy.unique(numpy.concatenate([d.index.values for d in
data_with_predictions.values()]))})
data_combined.index = data_combined.event_id
mask_mass_time = False
for key in tagger_keys:
data_combined['prob_{}'.format(key)] = 0.5
data_combined['tag_{}'.format(key)] = 1
for key, d in data_with_predictions.items():
data_combined.loc[d.index, 'prob_{}'.format(key)] = d['prob_{}'.format(key)]
data_combined.loc[d.index, 'tag_{}'.format(key)] = d['tag_{}'.format(key)]
data_combined.loc[d.index, 'weight'] = d['weight']
data_combined.loc[d.index, 'signB'] = d['signB']
br = set(d.columns)
if 'mass' in br and 'time' in br and flavour_column in br:
data_combined.loc[d.index, 'time'] = d['time']
data_combined.loc[d.index, 'mass'] = d['mass']
data_combined.loc[d.index, flavour_column] = d[flavour_column]
mask_mass_time = True
# getting predictions
tags, Bprobs, Bweights, Bsign = combine_taggers_old_scheme(data_combined, tagger_keys)
mask = ~numpy.isnan(Bprobs)
tags = tags[mask]
Bweights = Bweights[mask]
Bsign = Bsign[mask]
Bprobs = Bprobs[mask]
if mask_mass_time:
return tags, Bprobs, Bweights, Bsign, data_combined.mass.values, data_combined.time.values, data_combined[flavour_column].values
else:
return tags, Bprobs, Bweights, Bsign
def prepare_for_epm_old_scheme(estimators, datasets, keys, calibrator_tracks, calibrator_B, N_B_events,
flavour_column='K_MCID'):
data_with_predictions = dict()
for key in keys:
probs = estimators[key].predict_proba(datasets[key])[:, 1]
probs_calibrated = calibrator_tracks[key].predict_proba(probs)
data_with_predictions[key] = pandas.DataFrame({'prob_{}'.format(key): probs_calibrated,
'tag_{}'.format(key): datasets[key].tagAnswer.values,
'weight': datasets[key].N_sig_sw.values,
'signB': datasets[key].signB.values,
'mass': datasets[key].Bmass.values,
'time': datasets[key]['time'].values,
flavour_column: datasets[key][flavour_column].values},
index=numpy.array(datasets[key]['event_id']))
result = prepare_B_data_old_scheme(data_with_predictions, keys, flavour_column=flavour_column)
tags, Bprobs, Bweights, Bsign, Bmass, Btime, Bflavour = result
Bprob_calibrated = calibrator_B.predict_proba(Bprobs)
print 'eff tag: ', 1. * sum(Bweights) / N_B_events
print "D2:", numpy.average((1 - 2*Bprob_calibrated)**2, weights=Bweights)
print 'eff:', 1. * sum(Bweights) / N_B_events * numpy.average((1 - 2*Bprob_calibrated)**2, weights=Bweights)
mistag = numpy.minimum(Bprob_calibrated, 1 - Bprob_calibrated)
tag = numpy.ones(len(Bprob_calibrated))
tag[Bprob_calibrated < 0.5] = -1
prepared_data = pandas.DataFrame({'tag': numpy.array(tag, dtype='int32'),
'mistag': mistag,
'flavour': numpy.array(Bflavour, dtype='int32'),
'decay_time': Btime,
'Bmass': Bmass,
'resolution': [50*1e-3] * len(Bmass),
'probs': Bprob_calibrated,
'weight': Bweights,
'signB': Bsign
})
prepared_data_missed = pandas.DataFrame({'tag': [-1],
'mistag': [0.5],
'flavour': [0],
'decay_time': [0.],
'Bmass': [0.],
'resolution': [50*1e-3],
'probs': [0.5],
'weight': [N_B_events - sum(Bweights)],
'signB': [0]
})
return pandas.concat([prepared_data, prepared_data_missed])
#return prepared_data
def estimate_taggers_old_scheme(data_with_predictions, tagger_keys, N_B_events, model_name="",
random_state=42, logistic_combined=False, flavour_column='K_MCID'):
"""
Compute combination of taggers and estimate calibrated output quality (effective efficiency) by bootstrapping.
"""
tags, Bprobs, Bweights, Bsign = prepare_B_data_old_scheme(data_with_predictions, tagger_keys, flavour_column=flavour_column)
Bprob_calibrated, calibration_B = calibrate_probs(Bsign, Bweights, Bprobs, random_state=random_state, symmetrize=True,
logistic=logistic_combined)
auc, auc_full = calculate_auc_with_and_without_untag_events(Bsign, Bprobs, Bweights, N_B_events)
print 'AUC for tagged:', auc, 'AUC with untag:', auc_full
plt.subplot(1, 2, 1)
plt.hist(Bprobs[Bsign == 1], alpha=0.4, bins=70, weights=Bweights[Bsign == 1], label='$B^+$')
plt.hist(Bprobs[Bsign == -1], alpha=0.4, bins=70, weights=Bweights[Bsign == -1], label='$B^-$')
plt.legend(), plt.title('B probs')
plt.subplot(1, 2, 2)
plt.hist(Bprob_calibrated[Bsign == 1], alpha=0.4, bins=70, weights=Bweights[Bsign == 1], label='$B^+$')
plt.hist(Bprob_calibrated[Bsign == -1], alpha=0.4, bins=70, weights=Bweights[Bsign == -1], label='$B^-$')
plt.legend(), plt.title('B probs calibrated'), plt.show()
roc_curve_result = calculate_roc_with_untag_events(Bsign, Bprobs, Bweights, N_B_events)
tagging_efficiency_combined = sum(Bweights) / N_B_events
tagging_efficiency_combined_delta = numpy.sqrt(sum(Bweights)) / N_B_events
D2_bootstrap, aucs = bootstrap_calibrate_prob(Bsign, Bweights, Bprobs, logistic=logistic_combined, symmetrize=True)
D2 = numpy.average((2*(Bprobs - 0.5))**2, weights=Bweights)
print 'Efficiency, not calibrated', numpy.average((2*(Bprobs - 0.5))**2,
weights=Bweights) * tagging_efficiency_combined * 100
print 'Average AUC', numpy.mean(aucs), numpy.std(aucs)
return calibration_B, result_table(tagging_efficiency_combined, tagging_efficiency_combined_delta, D2_bootstrap,
auc_full, model_name), roc_curve_result
def estimate_new_data_old_scheme(estimators, datasets, keys, calibrator_tracks, calibrator_B, N_B_events, model_name='old'):
"""
Estimate trained tagger on the new sample by old scheme. Compute final quality: effective efficiency.
"""
data_with_predictions = dict()
for key in keys:
probs = estimators[key].predict_proba(datasets[key])[:, 1]
probs_calibrated = calibrator_tracks[key].predict_proba(probs)
data_with_predictions[key] = pandas.DataFrame({'prob_{}'.format(key): probs_calibrated,
'tag_{}'.format(key): datasets[key].tagAnswer.values,
'weight': datasets[key].N_sig_sw.values,
'signB': datasets[key].signB.values},
index=numpy.array(datasets[key]['event_id']))
tags, Bprobs, Bweights, Bsign = prepare_B_data_old_scheme(data_with_predictions, keys)
Bprob_calibrated = calibrator_B.predict_proba(Bprobs)
percentile_bins = [10, 20, 30, 40, 50, 60, 70, 80, 90]
D2 = numpy.average((2*(Bprob_calibrated - 0.5))**2, weights=Bweights)
auc, auc_full = calculate_auc_with_and_without_untag_events(Bsign, Bprobs, Bweights, N_B_events)
plt.subplot(1, 2, 1)
compute_mistag(Bprobs, Bsign, Bweights, Bsign > -100, label="$B$", uniform=False, bins=percentile_bins)
compute_mistag(Bprobs, Bsign, Bweights, Bsign == 1, label="$B^+$", uniform=False, bins=percentile_bins)
compute_mistag(Bprobs, Bsign, Bweights, Bsign == -1, label="$B^-$", uniform=False, bins=percentile_bins)
plt.legend(loc='best')
plt.title('B prob, percentile bins'), plt.xlabel('mistag probability'), plt.ylabel('true mistag probability')
plt.subplot(1, 2, 2)
compute_mistag(Bprob_calibrated, Bsign, Bweights, Bsign > -100, label="$B$", uniform=False, bins=percentile_bins)
compute_mistag(Bprob_calibrated, Bsign, Bweights, Bsign == 1, label="$B^+$", uniform=False, bins=percentile_bins)
compute_mistag(Bprob_calibrated, Bsign, Bweights, Bsign == -1, label="$B^-$", uniform=False, bins=percentile_bins)
plt.legend(loc='best')
plt.title('B prob calibrated, percentile bins'), plt.xlabel('mistag probability'), plt.ylabel('true mistag probability')
plt.show()
return result_table(sum(Bweights) * 1. / N_B_events, numpy.sqrt(sum(Bweights) * 1.) / N_B_events, [D2],
auc_full, model_name)
def plot_flattened_probs(probs, labels, weights, label=1, check_input=True):
"""
Prepares transformation, which turns predicted probabilities to uniform in [0, 1] distribution.
:param probs: probabilities, numpy.array of shape [n_samples, 2]
:param labels: numpy.array of shape [n_samples] with labels (0 and 1)
:param weights: numpy.array of shape [n_samples]
:param label: int, predictions of this class will be turned to uniform.
:return: flattener
"""
if check_input:
probs, labels, weights = numpy.array(probs), numpy.array(labels), numpy.array(weights)
assert probs.shape[1] == 2
assert numpy.in1d(labels, [0, 1]).all()
signal_probs = probs[:, 1]
flattener = Flattener(signal_probs[labels == label], weights[labels == label])
flat_probs = flattener(signal_probs)
plt.hist(flat_probs[labels == 1], bins=100, normed=True, histtype='step',
weights=weights[labels == 1], label='same sign')
plt.hist(flat_probs[labels == 0], bins=100, normed=True, histtype='step',
weights=weights[labels == 0], label='opposite sign')
plt.xlabel('predictions')
plt.legend(loc='upper center')
plt.show()
return flattener
def bootstrap_calibrate_prob(labels, weights, probs, n_calibrations=30, threshold=0., symmetrize=False, logistic=False):
"""
Bootstrap calibration:
* randomly divide data into train-test
* on train calibration rule is fitted and applyed to test
* on test using calibrated probs p(B+) D2 and auc are calculated
:param probs: probabilities, numpy.array of shape [n_samples]
:param labels: numpy.array of shape [n_samples] with labels
:param weights: numpy.array of shape [n_samples]
:param threshold: float, to set labels 0/1
:param symmetrize: bool, do symmetric calibration, ex. for B+, B-
:return: D2 array and auc array
"""
aucs = []
D2_array = []
numpy.random.seed(11)
rand_array = numpy.random.randint(11, 1e5, size=n_calibrations)
for random_state in rand_array:
calibration = CalibrationProcedure(logistic=logistic, random_state=random_state, threshold=threshold, symmetrize=symmetrize)
calibration.fit(probs, labels, sample_weight=weights)
probs_calibrated = calibration.predict_proba(probs)
alpha = (1 - 2 * probs_calibrated) ** 2
aucs.append(roc_auc_score(labels, probs_calibrated, sample_weight=weights))
D2_array.append(numpy.average(alpha, weights=weights))
plt.figure(figsize=(18, 6))
bins = [10, 20, 30, 40, 50, 60, 70, 80, 90]
plt.subplot(1, 2, 1)
compute_mistag(probs, labels, weights, labels > -100, label="$B$", bins=bins, uniform=False)
compute_mistag(probs, labels, weights, labels == 1, label="$B^+$", bins=bins, uniform=False)
compute_mistag(probs, labels, weights, labels == -1, label="$B^-$", bins=bins, uniform=False)
plt.legend(loc='best')
plt.xlabel('mistag probability'), plt.ylabel('true mistag probability')
plt.subplot(1, 2, 2)
compute_mistag(probs_calibrated, labels, weights, labels > -100, label="$B$", bins=bins, uniform=False)
compute_mistag(probs_calibrated, labels, weights, labels == 1, label="$B^+$", bins=bins, uniform=False)
compute_mistag(probs_calibrated, labels, weights, labels == -1, label="$B^-$", bins=bins, uniform=False)
plt.legend(loc='best')
plt.xlabel('mistag probability'), plt.ylabel('true mistag probability')
plt.show()
return D2_array, aucs
def predict_by_estimator(estimator, datasets, features=None):
'''
Predict data by estimator
Important note: this also works correctly if classifier is FoldingClassifier and one of dataframes is his training data.
:param estimator: REP classifier, already trained model.
:param datasets: list of pandas.DataFrames to predict.
:return: data, probabilities
'''
if features is None:
data = pandas.concat(datasets)
else:
data = pandas.concat([data[features] for data in datasets])
# predicting each DataFrame separately to preserve FoldingClassifier
probs = numpy.concatenate([estimator.predict_proba(dataset)[:, 1] for dataset in datasets])
return data, probs
def result_table(tagging_efficiency, tagging_efficiency_delta, D2, auc, name='model'):
"""
Represents results of tagging in a nice table.
:param tagging_efficiency: float, which part of samples will be tagged
:param tagging_efficiency_delta: standard error of efficiency
:param D2: D^2, average value ((p(B+) - 0.5)*2)^2 for sample
:param name: str, name of model
:param auc: full auc, calculated with untag events (probs are set 0.5) with B+/B- labels
:return: pandas.DataFrame with only one row, describing result_table
Use pandas.concat to get table with results of different methods.
"""
result = OrderedDict()
result['name'] = name
result['$\epsilon_{tag}, \%$'] = [tagging_efficiency * 100.]
result['$\Delta \epsilon_{tag}, \%$'] = [tagging_efficiency_delta * 100.]
result['$D^2$'] = [numpy.mean(D2)]
result['$\Delta D^2$'] = [numpy.std(D2)]
epsilon = numpy.mean(D2) * tagging_efficiency * 100.
result['$\epsilon, \%$'] = [epsilon]
relative_D2_error = numpy.std(D2) / numpy.mean(D2)
relative_eff_error = tagging_efficiency_delta / tagging_efficiency
relative_epsilon_error = numpy.sqrt(relative_D2_error ** 2 + relative_eff_error ** 2)
result['$\Delta \epsilon, \%$'] = [relative_epsilon_error * epsilon]
result['AUC, with untag'] = [numpy.mean(auc) * 100]
result['$\Delta$ AUC, with untag'] = [numpy.std(auc) * 100]
return pandas.DataFrame(result)
def calibrate_probs(labels, weights, probs, logistic=False, random_state=42, threshold=0, symmetrize=False):
"""
Calibrate output to probabilities using 2-folding to calibrate all data
:param probs: probabilities, numpy.array of shape [n_samples]
:param labels: numpy.array of shape [n_samples] with labels
:param weights: numpy.array of shape [n_samples]
:param threshold: float, to set labels 0/1
:param logistic: bool, use logistic or isotonic regression
:param symmetrize: bool, do symmetric calibration, ex. for B+, B-
:return: calibrated probabilities, calibration class
"""
calibration = CalibrationProcedure(logistic=logistic, random_state=random_state, threshold=threshold, symmetrize=symmetrize)
calibration.fit(probs, labels, sample_weight=weights)
probs_calibrated = calibration.predict_proba(probs)
return probs_calibrated, calibration
def calculate_auc_with_and_without_untag_events(Bsign, Bprobs, Bweights, N_B_events):
"""
Calculate AUC score for data and AUC full score for data and untag data (p(B+) for untag data is set to 0.5)
:param Bprobs: p(B+) probabilities, numpy.array of shape [n_samples]
:param Bsign: numpy.array of shape [n_samples] with labels {-1, 1}
:param Bweights: numpy.array of shape [n_samples]
:return: auc, full auc
"""
N_B_not_passed = N_B_events - sum(Bweights)
Bsign_not_passed = [-1, 1]
Bprobs_not_passed = [0.5] * 2
Bweights_not_passed = [N_B_not_passed / 2.] * 2
auc_full = roc_auc_score(union(Bsign, Bsign_not_passed), union(Bprobs, Bprobs_not_passed),
sample_weight=union(Bweights, Bweights_not_passed))
auc = roc_auc_score(Bsign, Bprobs, sample_weight=Bweights)
return auc, auc_full
def calculate_roc_with_untag_events(Bsign, Bprobs, Bweights, N_B_events):
"""
Calculate roc curve for for data and untag data (p(B+) for untag data is set to 0.5)
:param Bprobs: p(B+) probabilities, numpy.array of shape [n_samples]
:param Bsign: numpy.array of shape [n_samples] with labels {-1, 1}
:param Bweights: numpy.array of shape [n_samples]
:return: fpr, tpr, thr
"""
N_B_not_passed = N_B_events - sum(Bweights)
Bsign_not_passed = [-1, 1]
Bprobs_not_passed = [0.5] * 2
Bweights_not_passed = [N_B_not_passed / 2.] * 2
return roc_curve(union(Bsign, Bsign_not_passed), union(Bprobs, Bprobs_not_passed),
sample_weight=union(Bweights, Bweights_not_passed))
def compute_B_prob_using_part_prob(data, probs, weight_column='N_sig_sw', event_id_column='event_id', signB_column='signB',
sign_part_column='signTrack', normed_signs=False, prior_probs=None, functor=None,
for_epm=False):
"""
Compute p(B+) using probs for parts of event (tracks/vertices).
:param data: pandas.DataFrame, data
:param probs: probabilities for parts of events, numpy.array of shape [n_samples]
:param weight_column: column for weights in data
:param event_id_column: column for event id in data
:param signB_column: column for event B sign in data
:param sign_part_column: column for part sign in data
:return: B sign array, B weight array, B+ prob array, B event id
"""
result_event_id, data_ids = numpy.unique(data[event_id_column].values, return_inverse=True)
if prior_probs is None:
log_probs = numpy.log(probs) - numpy.log(1 - probs)
else:
new_probs = prior_probs * (1 - probs) + (1 - prior_probs) * probs
log_probs = numpy.log(new_probs) - numpy.log(1 - new_probs)
sign_weights = numpy.ones(len(log_probs))
if normed_signs:
for sign in [-1, 1]:
maskB = (data[signB_column].values == sign)
maskPart = (data[sign_part_column].values == 1)
sign_weights[maskB * maskPart] = sum(maskB * (~maskPart)) * 1. / sum(maskB * maskPart)
log_probs *= sign_weights * data[sign_part_column].values
result_logprob = numpy.bincount(data_ids, weights=log_probs)
# simply reconstructing original
result_label = numpy.bincount(data_ids, weights=data[signB_column].values) / numpy.bincount(data_ids)
result_weight = numpy.bincount(data_ids, weights=data[weight_column]) / numpy.bincount(data_ids)
if for_epm:
result_mass = numpy.bincount(data_ids, weights=data['Bmass']) / numpy.bincount(data_ids)
result_time = numpy.bincount(data_ids, weights=data['time']) / numpy.bincount(data_ids)
result_flavour = numpy.bincount(data_ids, weights=data['K_MCID']) / numpy.bincount(data_ids)
return result_label, result_weight, expit(result_logprob), result_event_id, result_mass, result_time, result_flavour
else:
return result_label, result_weight, expit(result_logprob), result_event_id
def get_B_data_for_given_part(part_probs, data_calib, N_B_events, logistic=True, sign_part_column='signTrack',
part_name='track',
random_state=42, normed_signs=False, prior_probs=None):
"""
Predict probabilities for event parts, calibrate it and compute B data.
Return B data for given part of event:tracks/vertices.
:param estimator: REP classifier, already trained model.
:param datasets: list of pandas.DataFrames to predict.
:param logistic: bool, use logistic or isotonic regression for part (track/vertex) probabilities calibration
:param sign_part_column: column for part sign in data
:param part_name: part data name for plots
:return: B sign, weight, p(B+), event id and full auc (with untag events)
"""
# Calibration p(track/vertex same sign|B)
part_probs_calib, calibration = calibrate_probs(data_calib.label.values, data_calib.N_sig_sw.values, part_probs,
logistic=logistic, random_state=random_state)
plt.figure(figsize=[18, 5])
plt.subplot(1,3,1)
plt.hist(part_probs[data_calib.label.values == 0], bins=60, normed=True, alpha=0.3, label='os')
plt.hist(part_probs[data_calib.label.values == 1], bins=60, normed=True, alpha=0.3, label='ss')
plt.legend(), plt.title('{} probs'.format(part_name))
plt.subplot(1,3,2)
plt.hist(part_probs_calib[data_calib.label.values == 0], bins=60, normed=True, alpha=0.3, label='os')
plt.hist(part_probs_calib[data_calib.label.values == 1], bins=60, normed=True, alpha=0.3, label='ss')
plt.legend(), plt.title('{} probs calibrated'.format(part_name))
all_events = get_events_statistics(data_calib)['Events']
# Compute p(B+)
Bsign, Bweight, Bprob, Bevent = compute_B_prob_using_part_prob(data_calib, part_probs_calib,
sign_part_column=sign_part_column, normed_signs=normed_signs,
prior_probs=prior_probs)
Bprob[~numpy.isfinite(Bprob)] = 0.5
Bprob[numpy.isnan(Bprob)] = 0.5
plt.subplot(1,3,3)
plt.hist(Bprob[numpy.array(Bsign) == -1], bins=60, normed=True, alpha=0.3, label='$B^-$')
plt.hist(Bprob[numpy.array(Bsign) == 1], bins=60, normed=True, alpha=0.3, label='$B^+$')
plt.legend(), plt.title('B probs'), plt.show()
assert all_events == len(Bprob), '{}, {}'.format(all_events, Bprob)
auc, auc_full = calculate_auc_with_and_without_untag_events(Bsign, Bprob, Bweight, N_B_events=N_B_events)
print 'AUC for tagged:', auc, 'AUC with untag:', auc_full
return Bsign, Bweight, Bprob, Bevent, auc_full
def get_result_with_bootstrap_for_given_part(tagging_efficiency, tagging_efficiency_delta, estimator,
datasets, name, N_B_events, logistic=True, n_calibrations=30,
sign_part_column='signTrack', part_name='track', symmetrize=True,
random_state=42, normed_signs=False, logistic_combined=False):
"""
Predict probabilities for event parts, calibrate it, compute B data and estimate with bootstrap (calibration p(B+)) D2
:param tagging_efficiency: float, which part of samples will be tagged
:param tagging_efficiency_delta: standard error of efficiency
:param estimator: REP classifier, already trained model.
:param datasets: list of pandas.DataFrames to predict.
:param name: str, name of model
:param logistic: bool, use logistic or isotonic regression for part (track/vertex) probabilities calibration
:param sign_part_column: column for part sign in data
:param part_name: part data name for plots
:return: pandas.DataFrame with only one row, describing result_table
"""
data_calib, part_probs = predict_by_estimator(estimator, datasets)
Bsign, Bweight, Bprob, Bevent, auc_full = get_B_data_for_given_part(part_probs, data_calib, N_B_events, logistic=logistic,
sign_part_column=sign_part_column,
part_name=part_name, random_state=random_state,
normed_signs=normed_signs)
# Compute p(B+) calibrated with bootstrap
D2, aucs = bootstrap_calibrate_prob(Bsign, Bweight, Bprob, n_calibrations=n_calibrations, logistic=logistic_combined,
symmetrize=symmetrize)
print 'mean AUC after calibration:', numpy.mean(aucs), numpy.var(aucs)
return result_table(tagging_efficiency, tagging_efficiency_delta, D2, auc_full, name)
def estimate_quality(tagging_efficiency, tagging_efficiency_delta, estimator,
datasets, name, N_B_events, logistic=True,
sign_part_column='signTrack', part_name='track', symmetrize=True,
random_state=42, normed_signs=False, logistic_combined=False):
"""
Predict probabilities for event parts, calibrate it, compute B data and estimate with bootstrap (calibration p(B+)) D2
:param tagging_efficiency: float, which part of samples will be tagged
:param tagging_efficiency_delta: standard error of efficiency
:param estimator: REP classifier, already trained model.
:param datasets: list of pandas.DataFrames to predict.
:param name: str, name of model
:param logistic: bool, use logistic or isotonic regression for part (track/vertex) probabilities calibration
:param sign_part_column: column for part sign in data
:param part_name: part data name for plots
:return: pandas.DataFrame with only one row, describing result_table
"""
data_calib, part_probs = predict_by_estimator(estimator, datasets)
Bsign, Bweight, Bprob, Bevent, auc_full = get_B_data_for_given_part(part_probs, data_calib, N_B_events, logistic=logistic,
sign_part_column=sign_part_column,
part_name=part_name, random_state=random_state,
normed_signs=normed_signs)
Bprob_calib, _ = calibrate_probs(Bsign, Bweight, Bprob, logistic=logistic_combined, symmetrize=symmetrize, random_state=random_state)
plot_calibration(Bprob_calib, Bsign > 0, weight=Bweight)
auc, _ = calculate_auc_with_and_without_untag_events(Bsign, Bprob, Bweight, N_B_events)
return result_table(tagging_efficiency, tagging_efficiency_delta, [numpy.average((1-2*Bprob_calib)**2, weights=Bweight)], [auc], name)
def prepare_B_data_for_given_part(estimator, datasets, N_B_events, logistic=True,
sign_part_column='signTrack', part_name='track',
random_state=42, normed_signs=False):
"""
Prepare B data for event parts (track/vetex) for further combination of track-based and vertex-based taggers:
predict probabilities for event parts, calibrate it, compute B data and p(B+) / (1 - p(B+)) (see formula in description)
:param estimator: REP classifier, already trained model.
:param datasets: list of pandas.DataFrames to predict.
:param name: str, name of model
:param logistic: bool, use logistic or isotonic regression for part (track/vertex) probabilities calibration
:param sign_part_column: column for part sign in data
:param part_name: part data name for plots
:return: pandas.DataFrame with keys: `event_id` - B id, `Bweight` - B weight, `{part_name}_relation_prob` p(B+) / (1 - p(B+)) for given part, `Bsign` - sign B
"""
data_calib, part_probs = predict_by_estimator(estimator, datasets)
Bsign, Bweight, Bprob, Bevent, auc_full = get_B_data_for_given_part(part_probs, data_calib, N_B_events, logistic=logistic,
sign_part_column=sign_part_column,
part_name=part_name, random_state=random_state,
normed_signs=normed_signs)
# Roc curve
fpr, tpr, _ = roc_curve(Bsign, Bprob, sample_weight=Bweight)
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], 'k--')
plt.ylim(0, 1), plt.xlim(0, 1), plt.show()
Bdata_prepared = pandas.DataFrame({'event_id': Bevent,
'Bweight': Bweight,
'{}_relation_prob'.format(part_name): Bprob / (1. - Bprob),
'Bsign': Bsign})
return Bdata_prepared
def compute_mistag(Bprobs, Bsign, Bweight, chosen, uniform=True, bins=None, label=""):
"""
Check mistag calibration (plot mistag vs true mistag in bins)
:param Bprobs: p(B+) probabilities, numpy.array of shape [n_samples]
:param Bsign: numpy.array of shape [n_samples] with labels {-1, 1}
:param Bweights: numpy.array of shape [n_samples]
:param chosen: condition to select B events (B+ or B- only)
:param uniform: bool, uniform bins or percentile in the other case
:params bins: bins
:param label: label on the plot
"""
if uniform:
bins = bins
else:
bins = numpy.percentile(numpy.minimum(Bprobs, 1 - Bprobs), bins)
prob = Bprobs[chosen]
sign = Bsign[chosen]
weight = Bweight[chosen]
p_mistag = numpy.minimum(prob, 1 - prob)
tag = numpy.where(prob >= 0.5, 1, -1)
is_correct = numpy.where(sign * tag > 0, 1, 0)
bins_index = numpy.searchsorted(bins, p_mistag)
right_tagged = numpy.bincount(bins_index, weights=is_correct * weight)
wrong_tagged = numpy.bincount(bins_index, weights=(1 - is_correct) * weight)
p_mistag_true = wrong_tagged / (right_tagged + wrong_tagged)
bins = [0.] + list(bins) + [0.5]
bins = numpy.array(bins)
bins_centers = (bins[1:] + bins[:-1]) / 2
bins_error = (bins[1:] - bins[:-1]) / 2
p_mistag_true_error = numpy.sqrt(wrong_tagged * right_tagged) / (wrong_tagged + right_tagged)**1.5
plt.errorbar(bins_centers, p_mistag_true, xerr=bins_error, yerr=p_mistag_true_error, fmt='.', label=label, linewidth=2)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim(-0.05, 0.55), plt.ylim(-0.05, 0.55)
plt.grid()
def compute_sum_of_charges(data, name, event_id_column='event_id', bins=60, sign_part_column='signTrack', show_with_signal=True):
result_event_id, event_positions, data_ids = numpy.unique(data[event_id_column].values,
return_index=True, return_inverse=True)
used_weights = data[sign_part_column].values
result_probs = -numpy.bincount(data_ids, weights=used_weights)
result_label = numpy.bincount(data_ids, weights=data.signB.values) / numpy.bincount(data_ids)
result_weight = numpy.bincount(data_ids, weights=data.N_sig_sw.values) / numpy.bincount(data_ids)
min_max = 10
result = {}
result['ROC $-\sum_i charge_i$'] = [roc_auc_score(result_label, result_probs, sample_weight=result_weight)]
plt.figure(figsize=(16, 7))
plt.subplot(1, 2, 1)
fpr, tpr, _ = roc_curve(result_label, result_probs, sample_weight=result_weight)
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], 'k--')
plt.grid(True), plt.xlim(0, 1), plt.ylim(0, 1), plt.title('ROC $-\sum_i charge_i$')
plt.subplot(1, 2, 2)
plt.hist(result_probs * (result_label == 1), bins=bins, weights=result_weight * (result_label == 1),
range=(-min_max, min_max), alpha=0.2, normed=True, label='$B^+$')
plt.hist(result_probs * (result_label == -1), bins=bins, weights=result_weight * (result_label == -1),
range=(-min_max, min_max), alpha=0.2, normed=True, label='$B^-$')
plt.legend(), plt.title(name + ', $-\sum_i charge_i$'), plt.xlim(-min_max, min_max)
plt.show()
if show_with_signal:
plt.figure(figsize=(16, 7))
plt.subplot(1, 2, 1)
fpr, tpr, _ = roc_curve(result_label, result_probs - result_label, sample_weight=result_weight)
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], 'k--')
plt.grid(True), plt.xlim(0, 1), plt.ylim(0, 1), plt.title('ROC $-\sum_i charge_i$ - signal track sign')
plt.subplot(1, 2, 2)
plt.hist((result_probs - result_label) * (result_label == 1), bins=bins, weights=result_weight * (result_label == 1),
range=(-min_max, min_max), alpha=0.2, normed=True, label='$B^+$')
plt.hist((result_probs - result_label) * (result_label == -1), bins=bins, weights=result_weight * (result_label == -1),
range=(-min_max, min_max), alpha=0.2, normed=True, label='$B^-$')
plt.legend(), plt.title(name + ', $-\sum_i charge_i$ - signal track sign'), plt.xlim(-min_max, min_max)
plt.show()
result = {}
for mask, bname in zip([result_label == 1, result_label == -1], ['$B^+$', '$B^-$']):
result[bname] = [numpy.sum(result_probs * result_weight * mask) / sum(result_weight * mask)]
if show_with_signal:
result[bname + ', with signal part'] = [numpy.sum((result_probs - result_label) * \
result_weight * mask) / sum(result_weight * mask)]
result['ROC AUC'] = roc_auc_score(result_label, result_probs, sample_weight=result_weight)
if show_with_signal:
result['ROC AUC, with signal part'] = 1 - roc_auc_score(result_label, result_probs - result_label,
sample_weight=result_weight)
result['name'] = [name]
return pandas.DataFrame(result)
def plot_calibration(p, labels, bins=[10, 20, 30, 40, 50, 60, 70, 80, 90], weight=None):
"""
Plot calibration plot: probability vs true probability by percentile bins.
:param array p: probability
:param array labels: labels
:param array bins: percentile values for numpy.percentile to compute bins ranges
"""
if weight is None:
weight = numpy.ones(len(p))
bins = numpy.percentile(p, bins)
bins_index = numpy.searchsorted(bins, p)
pos_tagged = numpy.bincount(bins_index, weights=labels * weight)
neg_tagged = numpy.bincount(bins_index, weights=(1 - labels) * weight)
p_ = pos_tagged / (pos_tagged + neg_tagged)
bins = [0.] + list(bins) + [1.]
bins = numpy.array(bins)
bins_centers = (bins[1:] + bins[:-1]) / 2
bins_error = (bins[1:] - bins[:-1]) / 2
err = numpy.sqrt(neg_tagged * pos_tagged) / (pos_tagged + neg_tagged)**1.5
plt.errorbar(bins_centers, p_, xerr=bins_error, yerr=err, fmt='.', linewidth=2)
plt.plot([0, 1], [0, 1], 'k--')
plt.ylim(-0.1, 1.1)
plt.xlim(-0.1, 1.1)
plt.xlabel('probability')
plt.ylabel('true probability')
def estimate_channel(part_prob, data, N_B_events, name="", calibrator_tracks=None, calibrator_B=None,
logistic=False, prior=None, mask_to_invert=None, for_epm=False):
"""
Estimate trained inclusive tagger on the new decay channel
"""
print "Calibrate tracks"
if calibrator_tracks is not None:
# calibrate parts predictions
part_probs_calib = calibrator_tracks.predict_proba(part_prob)
else:
part_probs_calib, calibrator_self = calibrate_probs(data.label.values, data.N_sig_sw.values, part_prob,
logistic=True, random_state=13)
if prior is not None:
part_probs_calib = prior*(1 - part_probs_calib) + (1-prior)*part_probs_calib
if mask_to_invert is not None:
part_probs_calib[mask_to_invert] = 1 - part_probs_calib[mask_to_invert]
print 'tracks AUC', roc_auc_score(data.signB.values * data.signTrack.values > 0, part_prob),
print 'calibrated tracks AUC', roc_auc_score(data.signB.values * data.signTrack.values > 0, part_probs_calib)
plt.hist(part_probs_calib[data.label.values == 0], bins=60, alpha=0.5, normed=True)
plt.hist(part_probs_calib[data.label.values == 1], bins=60, alpha=0.5, normed=True)
plt.show()
plot_calibration(part_probs_calib, data.label)
# Compute p(B+)
if for_epm:
Bsign, Bweight, Bprobs, Bevent, Bmass, Btime, Bflavour = compute_B_prob_using_part_prob(data, part_probs_calib, sign_part_column='signTrack', for_epm=True)
else:
Bsign, Bweight, Bprobs, Bevent = compute_B_prob_using_part_prob(data, part_probs_calib,
sign_part_column='signTrack')
print "Calibrate B"
if calibrator_B is not None:
Bprobs_calib = calibrator_B.predict_proba(Bprobs)
else:
Bprobs_calib, calibrator_B_self = calibrate_probs(Bsign, Bweight, Bprobs, symmetrize=True, logistic=logistic)
alpha = (1 - 2 * Bprobs) ** 2
print 'dilution, without B calibration', numpy.average(alpha, weights=Bweight)
alpha = (1 - 2 * Bprobs_calib) ** 2
D2 = [numpy.average(alpha, weights=Bweight)]
auc, auc_full = calculate_auc_with_and_without_untag_events(Bsign, Bprobs, Bweight, N_B_events)
print 'B AUC, without calibration', auc, auc_full
auc, auc_full = calculate_auc_with_and_without_untag_events(Bsign, Bprobs_calib, Bweight, N_B_events)
print 'B AUC, with calibration', auc, auc_full