Skip to content

Latest commit

 

History

History
697 lines (592 loc) · 27.5 KB

README.md

File metadata and controls

697 lines (592 loc) · 27.5 KB

tristan Project Status: WIP - Initial development is in progress, but there has not yet been a stable, usable release suitable for the public.

This package contains my helper functions for working with models fit with RStanARM. The package is named tristan because I'm working with Stan samples and my name is Tristan.

I plan to incrementally update this package whenever I find myself solving the same old problems from an RStanARM model.

Installation

You can install tristan from github with:

# install.packages("devtools")
devtools::install_github("tjmahr/tristan")

Overview of helpers

augment_posterior_predict() and augment_posterior_linpred() generate new data predictions and fitted means for new datasets using RStanARM's posterior_predict() and posterior_linpred(). The RStanARM functions return giant matrices of predicted values, but these functions return a long dataframe of predicted values along with the values of the predictor variables. The name augment follows the convention of the broom package where augment() refers to augmenting a data-set with model predictions.

stan_to_lm() and stan_to_glm() provide a quick way to refit an RStanARM model with its classical counterpart.

tidy_etdi(), tidy_hdpi(), tidy_median() and double_etdi() provide helpers for interval calclulation.

draw_coef(), draw_fixef(), draw_ranef() and draw_var_corr() work like the coef(), fixef(), ranef(), and VarCorr() functions for rstanarm mixed effects models, but they return a tidy dataframe of posterior samples instead of point estimates.

Example

Fit a simple linear model.

library(tidyverse)
library(rstanarm)
library(tristan)

# Scaling makes the model run much faster
scale_v <- function(...) as.vector(scale(...))
iris$z.Sepal.Length <- scale_v(iris$Sepal.Length)
iris$z.Petal.Length <- scale_v(iris$Petal.Length)

# Just to ensure that NA values don't break the prediction function
iris[2:6, "Species"] <- NA

model <- stan_glm(
  z.Sepal.Length ~ z.Petal.Length * Species,
  data = iris,
  family = gaussian(),
  prior = normal(0, 2))
print(model)
#> stan_glm
#>  family:  gaussian [identity]
#>  formula: z.Sepal.Length ~ z.Petal.Length * Species
#> ------
#> 
#> Estimates:
#>                                  Median MAD_SD
#> (Intercept)                       0.0    0.6  
#> z.Petal.Length                    0.8    0.5  
#> Speciesversicolor                -0.4    0.7  
#> Speciesvirginica                 -1.3    0.7  
#> z.Petal.Length:Speciesversicolor  1.0    0.5  
#> z.Petal.Length:Speciesvirginica   1.3    0.6  
#> sigma                             0.4    0.0  
#> 
#> Sample avg. posterior predictive 
#> distribution of y (X = xbar):
#>          Median MAD_SD
#> mean_PPD 0.0    0.0   
#> 
#> ------
#> For info on the priors used see help('prior_summary.stanreg').

Posterior fitted values (linear predictions)

Let's plot some samples of the model's linear prediction for the mean. If classical model provide a single "line of best fit", Bayesian models provide a distribution "lines of plausible fit". We'd like to visualize 100 of these lines alongside the raw data.

In classical models, getting the fitted values is easily done by adding a column of fitted() values to dataframe or using predict() on some new observations.

Because the posterior of this model contains 4000 such fitted or predicted values, more data wrangling and reshaping is required. augment_posterior_linpred() automates this task by producing a long dataframe with one row per posterior fitted value.

Here, we tell the model that we want just 100 of those lines (i.e., 100 samples from the posterior distribution).

# Get the fitted means of the data for 100 samples of the posterior distribution
linear_preds <- augment_posterior_linpred(
  model = model, 
  newdata = iris, 
  nsamples = 100)
linear_preds
#> # A tibble: 14,500 x 10
#>    .observation .draw .posterior_value Sepal.Length Sepal.Width
#>           <int> <int>            <dbl>        <dbl>       <dbl>
#>  1            1     1       -0.9315514          5.1         3.5
#>  2            1     2       -0.9565635          5.1         3.5
#>  3            1     3       -0.8873909          5.1         3.5
#>  4            1     4       -1.0384317          5.1         3.5
#>  5            1     5       -1.0680745          5.1         3.5
#>  6            1     6       -0.9813867          5.1         3.5
#>  7            1     7       -1.0067503          5.1         3.5
#>  8            1     8       -1.1124061          5.1         3.5
#>  9            1     9       -1.0205787          5.1         3.5
#> 10            1    10       -0.9786489          5.1         3.5
#> # ... with 14,490 more rows, and 5 more variables: Petal.Length <dbl>,
#> #   Petal.Width <dbl>, Species <fctr>, z.Sepal.Length <dbl>,
#> #   z.Petal.Length <dbl>

To plot the lines, we have to unscale the model's fitted values.

unscale <- function(scaled, original) {
  (scaled * sd(original, na.rm = TRUE)) + mean(original, na.rm = TRUE)
}

linear_preds$.posterior_value <- unscale(
  scaled = linear_preds$.posterior_value, 
  original = iris$Sepal.Length)

Now, we can do a spaghetti plot of linear predictions.

ggplot(iris) + 
  aes(x = Petal.Length, y = Sepal.Length, color = Species) + 
  geom_point() + 
  geom_line(aes(y = .posterior_value, group = interaction(Species, .draw)), 
            data = linear_preds, alpha = .20)

Posterior predictions (simulated new data)

augment_posterior_predict() similarly tidies values from the posterior_predict() function. posterior_predict() incorporates the error terms from the model, so it can be used predict new fake data from the model.

Let's create a range of values within each species, and get posterior predictions for those values.

library(modelr)

# Within each species, generate a sequence of z.Petal.Length values
newdata <- iris %>% 
  group_by(Species) %>% 
  # Expand the range x value a little bit so that the points do not bulge out
  # left/right sides of the uncertainty ribbon in the plot
  data_grid(z.Petal.Length = z.Petal.Length %>% 
              seq_range(n = 80, expand = .10)) %>% 
  ungroup()

newdata$Petal.Length <- unscale(newdata$z.Petal.Length, iris$Petal.Length)

# Get posterior predictions
posterior_preds <- augment_posterior_predict(model, newdata)
posterior_preds
#> # A tibble: 960,000 x 6
#>    .observation .draw .posterior_value Species z.Petal.Length Petal.Length
#>           <int> <int>            <dbl>  <fctr>          <dbl>        <dbl>
#>  1            1     1       -1.3809285  setosa      -1.587834        0.955
#>  2            1     2       -1.0053184  setosa      -1.587834        0.955
#>  3            1     3       -2.0321063  setosa      -1.587834        0.955
#>  4            1     4       -1.1646054  setosa      -1.587834        0.955
#>  5            1     5       -1.1044528  setosa      -1.587834        0.955
#>  6            1     6       -0.9158609  setosa      -1.587834        0.955
#>  7            1     7       -0.8546550  setosa      -1.587834        0.955
#>  8            1     8       -1.6653748  setosa      -1.587834        0.955
#>  9            1     9       -1.5790256  setosa      -1.587834        0.955
#> 10            1    10       -1.5077607  setosa      -1.587834        0.955
#> # ... with 959,990 more rows

posterior_preds$.posterior_value <- unscale(
  scaled = posterior_preds$.posterior_value, 
  original = iris$Sepal.Length)

Take a second to appreciate the size of that table. It has 4000 predictions for each the 320 observations in newdata.

Now, we might inspect whether 95% of the data falls inside the 95% interval of posterior-predicted values (among other questions we could ask the model.)

ggplot(iris) + 
  aes(x = Petal.Length, y = Sepal.Length, color = Species) + 
  geom_point() + 
  stat_summary(aes(y = .posterior_value, group = Species, color = NULL), 
               data = posterior_preds, alpha = 0.4, fill = "grey60", 
               geom = "ribbon", 
               fun.data = median_hilow, fun.args = list(conf.int = .95))

Refit RStanARM models with classical counterparts

There are some quick functions for refitting RStanARM models using classical versions. These functions basically inject the values of model$formula and model$data into lm() or glm(). (Seriously, see the call sections in the two outputs below.) Therefore, don't use these functions for serious comparisons of classical versus Bayesian models.

Refit with a linear model:

arm::display(stan_to_lm(model))
#> Please manually fit model if original model used any 
#> arguments besides `formula` and `data`.
#> stats::lm(formula = stats::formula(model), data = model$data, 
#>     weights = if (length(model$weights) == 0) NULL else model$weights, 
#>     offset = model$offset)
#>                                  coef.est coef.se
#> (Intercept)                       0.33     0.80  
#> z.Petal.Length                    1.03     0.61  
#> Speciesversicolor                -0.72     0.81  
#> Speciesvirginica                 -1.59     0.83  
#> z.Petal.Length:Speciesversicolor  0.74     0.65  
#> z.Petal.Length:Speciesvirginica   1.10     0.64  
#> ---
#> n = 145, k = 6
#> residual sd = 0.41, R-Squared = 0.84

Refit with a generalized linear model:

arm::display(stan_to_glm(model))
#> Please manually fit model if original model used any 
#> arguments besides `formula`, `family`, and `data`.
#> stats::glm(formula = stats::formula(model), family = model$family, 
#>     data = model$data, weights = if (length(model$weights) == 
#>         0) NULL else model$weights, offset = model$offset)
#>                                  coef.est coef.se
#> (Intercept)                       0.33     0.80  
#> z.Petal.Length                    1.03     0.61  
#> Speciesversicolor                -0.72     0.81  
#> Speciesvirginica                 -1.59     0.83  
#> z.Petal.Length:Speciesversicolor  0.74     0.65  
#> z.Petal.Length:Speciesvirginica   1.10     0.64  
#> ---
#>   n = 145, k = 6
#>   residual deviance = 23.3, null deviance = 142.0 (difference = 118.7)
#>   overdispersion parameter = 0.2
#>   residual sd is sqrt(overdispersion) = 0.41

Calculate (classical) R2

calculate_classical_r2() returns the unadjusted R2 for each draw of the posterior distribution.

df_r2 <- data_frame(
  R2 = calculate_model_r2(model)
)
df_r2
#> # A tibble: 4,000 x 1
#>           R2
#>        <dbl>
#>  1 0.8269287
#>  2 0.8286182
#>  3 0.8309418
#>  4 0.8337803
#>  5 0.8316979
#>  6 0.8295612
#>  7 0.8325530
#>  8 0.8318201
#>  9 0.8276650
#> 10 0.8280340
#> # ... with 3,990 more rows

Interval calculation

Two more helper functions compute tidy data-frames of posterior density intervals. tidy_hpdi() provides the highest-density posterior interval for model parameters, while tidy_etdi() computes the equal-tailed density intervals (the typical sort of intervals used for uncertain intervals.)

tidy_hpdi(model)
#> # A tibble: 7 x 5
#>                               term interval density       lower      upper
#>                              <chr>    <chr>   <dbl>       <dbl>      <dbl>
#> 1                      (Intercept)     HPDI     0.9 -1.03894068  1.0757546
#> 2                   z.Petal.Length     HPDI     0.9  0.03453807  1.6560589
#> 3                Speciesversicolor     HPDI     0.9 -1.42748700  0.6884022
#> 4                 Speciesvirginica     HPDI     0.9 -2.38524882 -0.2048360
#> 5 z.Petal.Length:Speciesversicolor     HPDI     0.9  0.06651501  1.8544207
#> 6  z.Petal.Length:Speciesvirginica     HPDI     0.9  0.46379409  2.2085139
#> 7                            sigma     HPDI     0.9  0.37288522  0.4534112
tidy_etdi(model)
#> # A tibble: 7 x 5
#>                               term interval density       lower      upper
#>                              <chr>    <chr>   <dbl>       <dbl>      <dbl>
#> 1                      (Intercept)     ETDI     0.9 -1.01524062  1.1076903
#> 2                   z.Petal.Length     ETDI     0.9 -0.01548979  1.6149531
#> 3                Speciesversicolor     ETDI     0.9 -1.49737884  0.6347173
#> 4                 Speciesvirginica     ETDI     0.9 -2.37986191 -0.1925737
#> 5 z.Petal.Length:Speciesversicolor     ETDI     0.9  0.07317261  1.8652106
#> 6  z.Petal.Length:Speciesvirginica     ETDI     0.9  0.44271242  2.1940697
#> 7                            sigma     ETDI     0.9  0.37262531  0.4531580

The functions also work on single vectors of numbers, for quick one-off calculations.

r2_intervals <- bind_rows(
  tidy_hpdi(calculate_model_r2(model)),
  tidy_etdi(calculate_model_r2(model))
)
r2_intervals
#> # A tibble: 2 x 5
#>                        term interval density     lower     upper
#>                       <chr>    <chr>   <dbl>     <dbl>     <dbl>
#> 1 calculate_model_r2(model)     HPDI     0.9 0.8234095 0.8349006
#> 2 calculate_model_r2(model)     ETDI     0.9 0.8211217 0.8338705

We can compare the difference between highest-posterior density intervals and equal-tailed intervals.

ggplot(df_r2) + 
  aes(x = R2) + 
  geom_histogram() + 
  geom_vline(aes(xintercept = lower, color = interval), 
             data = r2_intervals, size = 1, linetype = "dashed") + 
  geom_vline(aes(xintercept = upper, color = interval), 
             data = r2_intervals, size = 1, linetype = "dashed") +
  labs(color = "90% interval",
       x = expression(R^2),
       y = "Num. posterior samples")
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Pure sugar

double_etdi() that provides all the values needed to make a double interval (caterpillar) plot.

df1 <- double_etdi(calculate_model_r2(model), .95, .90)
df2 <- double_etdi(model, .95, .90)
df <- bind_rows(df1, df2)
df
#> # A tibble: 8 x 9
#>                               term outer_lower inner_lower     estimate
#>                              <chr>       <dbl>       <dbl>        <dbl>
#> 1        calculate_model_r2(model)   0.8189694  0.82112172  0.829535546
#> 2                      (Intercept)  -1.2148612 -1.01524062  0.006074363
#> 3                   z.Petal.Length  -0.1528441 -0.01548979  0.780169581
#> 4                Speciesversicolor  -1.6635555 -1.49737884 -0.395108335
#> 5                 Speciesvirginica  -2.5544321 -2.37986191 -1.256114326
#> 6 z.Petal.Length:Speciesversicolor  -0.0711872  0.07317261  0.974786719
#> 7  z.Petal.Length:Speciesvirginica   0.2931280  0.44271242  1.323619152
#> 8                            sigma   0.3660297  0.37262531  0.410974065
#> # ... with 5 more variables: inner_upper <dbl>, outer_upper <dbl>,
#> #   est_type <chr>, inner_density <dbl>, outer_density <dbl>

ggplot(df) + 
  aes(x = estimate, y = term, yend = term) + 
  geom_vline(color = "white", size = 2, xintercept = 0) + 
  geom_segment(aes(x = outer_lower, xend = outer_upper)) + 
  geom_segment(aes(x = inner_lower, xend = inner_upper), size = 2) + 
  geom_point(size = 4)

Predictions for mixed effects models

This is such a finicky area that it will never 100% of the time but it works well enough, especially if the new observations are subsets of the original dataset.

cbpp <- lme4::cbpp
m2 <- stan_glmer(
  cbind(incidence, size - incidence) ~ period + (1 | herd),
  data = cbpp, family = binomial,
  prior_covariance = decov(4, 1, 1), 
  prior = normal(0, 1))
#> trying deprecated constructor; please alert package maintainer

Add a new herd to the data.

# Add a new herd
newdata <- cbpp %>% 
  tibble::add_row(herd = "16", incidence = 0, size = 20, period = 1) %>% 
  tibble::add_row(herd = "16", incidence = 0, size = 20, period = 2) %>% 
  tibble::add_row(herd = "16", incidence = 0, size = 20, period = 3) %>% 
  tibble::add_row(herd = "16", incidence = 0, size = 20, period = NA)

d <- augment_posterior_predict(m2, newdata) %>% 
  dplyr::filter(herd == "16")
d
#> # A tibble: 12,000 x 7
#>    .observation .draw .posterior_value   herd incidence  size period
#>           <int> <int>            <int> <fctr>     <dbl> <dbl> <fctr>
#>  1           57     1                4     16         0    20      1
#>  2           57     2                3     16         0    20      1
#>  3           57     3                3     16         0    20      1
#>  4           57     4                2     16         0    20      1
#>  5           57     5                6     16         0    20      1
#>  6           57     6                6     16         0    20      1
#>  7           57     7                2     16         0    20      1
#>  8           57     8                5     16         0    20      1
#>  9           57     9                9     16         0    20      1
#> 10           57    10                3     16         0    20      1
#> # ... with 11,990 more rows

Plot the predictions.

ggplot(d, aes(x = interaction(herd, period), y = .posterior_value / size)) + 
  stat_summary(fun.data = median_hilow) + 
  theme_grey(base_size = 8)

Samples for mixed effects models

coef, fixef() and ranef() only give the point estimates for model effects. draw_coef(), draw_fixef() and draw_ranef() will sample them from the posterior distribution.

ranef(m2)
#> $herd
#>     (Intercept)
#> 1   0.585052547
#> 2  -0.307232667
#> 3   0.398094621
#> 4   0.007847365
#> 5  -0.218798043
#> 6  -0.459476477
#> 7   0.907308051
#> 8   0.670980547
#> 9  -0.289507045
#> 10 -0.586808540
#> 11 -0.124260855
#> 12 -0.075497166
#> 13 -0.764195670
#> 14  1.039507689
#> 15 -0.589869444
draw_ranef(m2, 100)
#> # A tibble: 1,500 x 6
#>    .draw .group_var .group       .term            .parameter
#>    <int>      <chr>  <chr>       <chr>                 <chr>
#>  1     1       herd      1 (Intercept) b[(Intercept) herd:1]
#>  2     2       herd      1 (Intercept) b[(Intercept) herd:1]
#>  3     3       herd      1 (Intercept) b[(Intercept) herd:1]
#>  4     4       herd      1 (Intercept) b[(Intercept) herd:1]
#>  5     5       herd      1 (Intercept) b[(Intercept) herd:1]
#>  6     6       herd      1 (Intercept) b[(Intercept) herd:1]
#>  7     7       herd      1 (Intercept) b[(Intercept) herd:1]
#>  8     8       herd      1 (Intercept) b[(Intercept) herd:1]
#>  9     9       herd      1 (Intercept) b[(Intercept) herd:1]
#> 10    10       herd      1 (Intercept) b[(Intercept) herd:1]
#> # ... with 1,490 more rows, and 1 more variables: .posterior_value <dbl>

fixef(m2)
#> (Intercept)     period2     period3     period4 
#>  -1.4923155  -0.8623434  -0.9683822  -1.3216858
draw_fixef(m2, 100)
#> # A tibble: 400 x 3
#>    .draw  .parameter .posterior_value
#>    <int>       <chr>            <dbl>
#>  1     1 (Intercept)        -1.369444
#>  2     2 (Intercept)        -1.535243
#>  3     3 (Intercept)        -1.209551
#>  4     4 (Intercept)        -1.488341
#>  5     5 (Intercept)        -1.269371
#>  6     6 (Intercept)        -1.145897
#>  7     7 (Intercept)        -1.871921
#>  8     8 (Intercept)        -1.051208
#>  9     9 (Intercept)        -1.250272
#> 10    10 (Intercept)        -1.368299
#> # ... with 390 more rows

coef(m2)
#> $herd
#>    (Intercept)    period2    period3   period4
#> 1   -0.9072630 -0.8623434 -0.9683822 -1.321686
#> 2   -1.7995482 -0.8623434 -0.9683822 -1.321686
#> 3   -1.0942209 -0.8623434 -0.9683822 -1.321686
#> 4   -1.4844681 -0.8623434 -0.9683822 -1.321686
#> 5   -1.7111136 -0.8623434 -0.9683822 -1.321686
#> 6   -1.9517920 -0.8623434 -0.9683822 -1.321686
#> 7   -0.5850075 -0.8623434 -0.9683822 -1.321686
#> 8   -0.8213350 -0.8623434 -0.9683822 -1.321686
#> 9   -1.7818226 -0.8623434 -0.9683822 -1.321686
#> 10  -2.0791240 -0.8623434 -0.9683822 -1.321686
#> 11  -1.6165764 -0.8623434 -0.9683822 -1.321686
#> 12  -1.5678127 -0.8623434 -0.9683822 -1.321686
#> 13  -2.2565112 -0.8623434 -0.9683822 -1.321686
#> 14  -0.4528078 -0.8623434 -0.9683822 -1.321686
#> 15  -2.0821850 -0.8623434 -0.9683822 -1.321686
#> 
#> attr(,"class")
#> [1] "coef.mer"
draw_coef(m2, 100)
#> # A tibble: 6,000 x 9
#>    .draw .group_var .group       .term .fixef_parameter
#>    <int>      <chr>  <chr>       <chr>            <chr>
#>  1     1       herd      1 (Intercept)      (Intercept)
#>  2     1       herd      1     period2          period2
#>  3     1       herd      1     period3          period3
#>  4     1       herd      1     period4          period4
#>  5     1       herd     10 (Intercept)      (Intercept)
#>  6     1       herd     10     period2          period2
#>  7     1       herd     10     period3          period3
#>  8     1       herd     10     period4          period4
#>  9     1       herd     11 (Intercept)      (Intercept)
#> 10     1       herd     11     period2          period2
#> # ... with 5,990 more rows, and 4 more variables: .ranef_parameter <chr>,
#> #   .fixef_part <dbl>, .ranef_part <dbl>, .total <dbl>
draw_coef(m2, 100) %>% 
  select(.draw, .group_var, .group, .fixef_parameter, .total) %>% 
  tidyr::spread(.fixef_parameter, .total)
#> # A tibble: 1,500 x 7
#>    .draw .group_var .group `(Intercept)`    period2    period3    period4
#>  * <int>      <chr>  <chr>         <dbl>      <dbl>      <dbl>      <dbl>
#>  1     1       herd      1    -1.6614772 -0.8450444 -0.8612593 -0.9988943
#>  2     1       herd     10    -2.1102399 -0.8450444 -0.8612593 -0.9988943
#>  3     1       herd     11    -1.2134057 -0.8450444 -0.8612593 -0.9988943
#>  4     1       herd     12    -0.8685274 -0.8450444 -0.8612593 -0.9988943
#>  5     1       herd     13    -2.2248655 -0.8450444 -0.8612593 -0.9988943
#>  6     1       herd     14    -0.4510703 -0.8450444 -0.8612593 -0.9988943
#>  7     1       herd     15    -2.4719634 -0.8450444 -0.8612593 -0.9988943
#>  8     1       herd      2    -1.5590489 -0.8450444 -0.8612593 -0.9988943
#>  9     1       herd      3    -0.5611966 -0.8450444 -0.8612593 -0.9988943
#> 10     1       herd      4    -1.6242694 -0.8450444 -0.8612593 -0.9988943
#> # ... with 1,490 more rows

We can visually confirm that coef() uses the posterior median values.

all_coefs <- draw_coef(m2)

medians <- coef(m2) %>% 
  lapply(tibble::rownames_to_column, ".group") %>% 
  bind_rows(.id = ".group_var") %>% 
  tidyr::gather(.term, .posterior_median, -.group_var, -.group)
  
ggplot(all_coefs) + 
  aes(x = interaction(.group_var, .group), y = .total) + 
  stat_summary(fun.data = median_hilow) +
  facet_wrap(".term") + 
  geom_point(aes(y = .posterior_median), data = medians, color = "red")

draw_var_corr() provides an analogue to VarCorr(). Let's compare the prior distribution of correlation terms using different settings for decov() prior.

sleep <- lme4::sleepstudy

m0 <- stan_glmer(
  Reaction ~ Days + (Days | Subject),
  data = sleep,
  prior_covariance = decov(.25, 1, 1), 
  prior = normal(0, 1),
  prior_PD = TRUE,
  chains = 1)
#> trying deprecated constructor; please alert package maintainer

m1 <- stan_glmer(
  Reaction ~ Days + (Days | Subject),
  data = sleep,
  prior_covariance = decov(1, 1, 1), 
  prior = normal(0, 1),
  prior_PD = TRUE,
  chains = 1)
#> trying deprecated constructor; please alert package maintainer

m2 <- stan_glmer(
  Reaction ~ Days + (Days | Subject),
  data = sleep,
  prior_covariance = decov(2, 1, 1), 
  prior = normal(0, 1),
  prior_PD = TRUE,
  chains = 1)
#> trying deprecated constructor; please alert package maintainer

m3 <- stan_glmer(
  Reaction ~ Days + (Days | Subject),
  data = sleep,
  prior_covariance = decov(4, 1, 1), 
  prior = normal(0, 1),
  prior_PD = TRUE,
  chains = 1)
#> trying deprecated constructor; please alert package maintainer

m4 <- stan_glmer(
  Reaction ~ Days + (Days | Subject),
  data = sleep,
  prior_covariance = decov(8, 1, 1), 
  prior = normal(0, 1),
  prior_PD = TRUE,
  chains = 1)
#> trying deprecated constructor; please alert package maintainer

VarCorr() returns the mean variance-covariance/standard-deviation-correlation values.

VarCorr(m3)
#>  Groups   Name        Std.Dev. Corr 
#>  Subject  (Intercept) 8116.1        
#>           Days        5426.2   0.128
#>  Residual             1351.4

as.data.frame(VarCorr(m3))
#>        grp        var1 var2     vcov        sdcor
#> 1  Subject (Intercept) <NA> 65871265 8116.1114205
#> 2  Subject        Days <NA> 29443287 5426.1669244
#> 3  Subject (Intercept) Days  5645130    0.1281837
#> 4 Residual        <NA> <NA>  1826242 1351.3853075

In this function we compute the sd-cor matrix for each posterior sample.

vcs0 <- draw_var_corr(m0)
vcs1 <- draw_var_corr(m1)
vcs2 <- draw_var_corr(m2)
vcs3 <- draw_var_corr(m3)
vcs4 <- draw_var_corr(m4)

vcs3
#> # A tibble: 3,000 x 7
#>    .draw                             .parameter     grp        var1  var2
#>    <int>                                  <chr>   <chr>       <chr> <chr>
#>  1    73 Sigma[Subject:(Intercept),(Intercept)] Subject (Intercept)  <NA>
#>  2    73               Sigma[Subject:Days,Days] Subject        Days  <NA>
#>  3    73        Sigma[Subject:Days,(Intercept)] Subject (Intercept)  Days
#>  4   243 Sigma[Subject:(Intercept),(Intercept)] Subject (Intercept)  <NA>
#>  5   243               Sigma[Subject:Days,Days] Subject        Days  <NA>
#>  6   243        Sigma[Subject:Days,(Intercept)] Subject (Intercept)  Days
#>  7   600 Sigma[Subject:(Intercept),(Intercept)] Subject (Intercept)  <NA>
#>  8   600               Sigma[Subject:Days,Days] Subject        Days  <NA>
#>  9   600        Sigma[Subject:Days,(Intercept)] Subject (Intercept)  Days
#> 10   310 Sigma[Subject:(Intercept),(Intercept)] Subject (Intercept)  <NA>
#> # ... with 2,990 more rows, and 2 more variables: vcov <dbl>, sdcor <dbl>

Filter to just the correlations.

cors <- bind_rows(
  vcs0 %>% mutate(model = "decov(.25, 1, 1)"),
  vcs1 %>% mutate(model = "decov(1, 1, 1)"),
  vcs2 %>% mutate(model = "decov(2, 1, 1)"),
  vcs3 %>% mutate(model = "decov(4, 1, 1)"),
  vcs4 %>% mutate(model = "decov(8, 1, 1)")) %>% 
  filter(!is.na(var2))

ggplot(cors) + 
  aes(y = sdcor, x = .parameter, color = model) + 
  stat_summary(fun.data = median_hilow, geom = "linerange", 
               fun.args = list(conf.int = .9), 
               position = position_dodge(-.8)) + 
  stat_summary(fun.data = median_hilow, size = 1.5, geom = "linerange", 
               fun.args = list(conf.int = .7), show.legend = FALSE,
               position = position_dodge(-.8)) + 
  stat_summary(fun.data = median_hilow, size = 2.5, geom = "linerange", 
               fun.args = list(conf.int = .5), show.legend = FALSE,
               position = position_dodge(-.8)) + 
  coord_flip() + 
  facet_wrap(".parameter") +
  theme(axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        panel.grid.major.y = element_blank()) + 
  labs(x = NULL, y = "correlation", color = "prior") + 
  ggtitle("Degrees of regularization with LKJ prior")
#> Warning: position_dodge requires non-overlapping x intervals

#> Warning: position_dodge requires non-overlapping x intervals

#> Warning: position_dodge requires non-overlapping x intervals

ggplot(cors) + 
  aes(x = sdcor, color = model) + 
  stat_density(geom = "line", adjust = .2) + 
  facet_wrap(".parameter")