-
Notifications
You must be signed in to change notification settings - Fork 51
/
DataReader.v3
367 lines (355 loc) · 12.2 KB
/
DataReader.v3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright 2019 Ben L. Titzer. All rights reserved.
// See LICENSE for details of Apache 2.0 license.
// Utility for reading data items from a stream of bytes, offering routines to
// read bytes, integers, LEBs, etc. A data reader has state for whether an
// error occurred, keeping the first (earliest position) error. Read operations
// only succeed if all of the data they expect is in the current buffer and
// instead signal an end-of-file error if they would go past the end of the
// current buffer. When the caller has more data to supply, they can use the
// {append()} and {divest()} calls add data to this buffer while minding proper
// aliasing.
class DataReader {
def var data: Range<byte>; // array containing data
def var pos: int; // current position
def var limit: int = data.length; // read limit within array
var startAddr: u64; // address of pos = 0
def var ok: bool = true; // true if no error
def var error_pos: int = int.max; // first error position
def var error_msg: string; // error message
var onEOF = DataReader.setEOFError; // EOF callback
var onError = DataReader.setFirstError; // error callback
new(data) { }
// Return {true} if the input has been completely consumed.
def done() -> bool {
return pos >= limit;
}
// Return {true} if more input remains, i.e. {!done()}.
def more() -> bool {
return pos < limit;
}
// Return the number of available bytes.
def available() -> int {
var diff = limit - pos;
return if(diff > 0, diff);
}
// Set the current position to be {npos}.
def at(npos: int) -> this {
pos = npos;
}
// Set the current position to be the same as {this.limit}.
def atLimit() -> this {
pos = limit;
}
// Set the current position and limit to be {npos} and {nlimit}.
def atl(npos: int, nlimit: int) -> this {
pos = npos;
limit = nlimit;
}
// Calculate the address of the current position.
def addr() -> u64 {
return u64.!(pos) + startAddr;
}
// Calculate the address of a position {pos}.
def addr_of(pos: int) -> u64 {
return u64.!(pos) + startAddr;
}
// Reset the current data, position, and limit.
def reset(ndata: Range<byte>, npos: int, nlimit: int) -> this {
startAddr = 0;
data = ndata;
pos = npos;
limit = nlimit;
}
// Record an error with the specified message {msg}.
def fail(msg: string) -> this {
fail_at(pos, msg);
}
// Record an error at {pos} with the specified message {msg}.
def fail_at(pos: int, msg: string) -> this {
onError(this, pos, msg);
}
// Record end-of-file for a read beginning at the position {pos}, with message {msg}.
def eof_at(pos: int, size: int, msg: string) -> this {
onEOF(this, pos, size, Strings.format1(msg, size));
}
// Peek a single byte, if available, or {-1} if EOF.
def peek1() -> int {
return if(pos >= limit, -1, data[pos]);
}
// Check if {length} bytes can be read.
def peekN(length: int) -> bool {
return (limit - pos) >= length;
}
// Consume the next byte if it matches {b} and return {true}.
def match1(b: byte) -> bool {
if (pos < limit && data[pos] == b) {
pos++;
return true;
}
return false;
}
// Check that a string of {length} bytes could be read and record an EOF if not possible.
def checkN(length: int) -> bool {
if (limit - pos < length) {
eof_at(pos, length, "expecting %d bytes");
return false;
}
return true;
}
// Skip {length} bytes.
def skipN(length: int) {
if (limit - pos < length) {
eof_at(pos, length, "expecting %d bytes");
return;
}
pos += length;
}
// Skip an LEB.
def skip_leb() {
while (pos < limit) {
var b = data[pos++];
if ((b & 0x80) == 0) break;
}
}
// Read a single byte.
def read1() -> byte {
if (pos >= limit) {
eof_at(pos, 1, "expected byte");
return 0;
}
return data[pos++];
}
// Read {len} bytes and return an internal alias to bytes which store them.
def acquire(len: int) -> Range<byte> {
if (limit - pos < len) {
eof_at(pos, len, "expected %d bytes");
return null;
}
return data[pos ..+ len];
}
// Read a 4-byte little-endian unsigned integer.
def read_u32() -> u32 {
var range = acquire(4);
if (range.length != 4) return 0;
pos += 4;
return DataReaders.read_range_u32(range);
}
// Read an 8-byte little-endian unsigned integer.
def read_u64() -> u64 {
var range = acquire(8);
if (range.length != 8) return 0;
pos += 8;
return DataReaders.read_range_u64(range);
}
// Read an unsigned 32-bit LEB-encoded integer.
def read_uleb32() -> u32 {
var b = read1();
if (b < 0x80) return b;
return read_xleb32(b, false, "LEB out of unsigned 32-bit range");
}
// Read a signed 32-bit LEB-encoded integer.
def read_sleb32() -> i32 {
var b = read1();
if (b < 0x80) return i7.view(b);
return int.view(read_xleb32(b, true, "LEB out of signed 32-bit range"));
}
private def check_leb_ext(b: byte, signed: bool, shift: u3, msg: string) {
if ((b & 0x80) != 0) {
fail("overlong LEB");
return;
}
if (signed) {
var upper = i7.view(b) >> u3.view(shift - 1);
if (upper != 0 && upper != -1) fail(msg);
} else {
var upper = i7.view(b) >> shift;
if (upper != 0) fail(msg);
}
}
private def read_xleb32(first: byte, signed: bool, msg: string) -> u32 {
var result = u32.view(first) & 0x7Fu, p = pos, shift = 7;
while (p < limit) {
var b = data[p++];
result = result | u32.view(b & 0x7F) << u5.view(shift);
shift += 7;
if (shift == 35) { // consumed (special) 5th byte
// check upper bits of last byte and extension
check_leb_ext(b, signed, 4, msg);
pos = p;
return result;
}
if (b < 0x80) { // no continuation byte
if (signed) { // perform sign-extension
var rem = u5.view(0 - shift);
result = u32.view(i32.view(result << rem) >> rem);
}
pos = p;
return result;
}
}
eof_at(pos, 0, "unterminated LEB");
return 0;
}
// Read an unsigned 64-bit LEB-encoded integer.
def read_uleb64() -> u64 {
var b = read1();
if (b < 0x80) return b;
return read_xleb64(b, false, "LEB out of unsigned 64-bit range");
}
// Read a signed 64-bit LEB-encoded integer.
def read_sleb64() -> i64 {
var b = read1();
if (b < 0x80) return i7.view(b);
return i64.view(read_xleb64(b, true, "LEB out of signed 64-bit range"));
}
private def read_xleb64(first: byte, signed: bool, msg: string) -> u64 {
var result: u64 = u32.view(first) & 0x7Fu, p = pos, shift = 7;
while (p < limit) {
var b = data[p++];
result = result | u64.view(b & 0x7F) << u6.view(shift);
shift += 7;
if (shift == 70) { // consumed (special) 10th byte
// check upper bits of last byte and extension
check_leb_ext(b, signed, 1, msg);
pos = p;
return result;
}
if (b < 0x80) { // no continuation byte
if (signed) { // perform sign-extension
var rem = u6.view(0 - shift);
result = u64.view(i64.view(result << rem) >> rem);
}
pos = p;
return result;
}
}
eof_at(pos, 0, "unterminated LEB");
return 0;
}
// Read {length} bytes, copying them into a new array.
def readN(length: int) -> Array<byte> {
if (limit - pos < length) {
eof_at(pos, length, "expecting %d bytes");
return [];
}
var result = Ranges.dup(data[pos ..+ length]);
pos += length;
return result;
}
// Append more data to the internal buffer. Reuse the provided
// buffer {x}, i.e. *alias* it, if there is no remaining data in the
// internal buffer. The caller may specify an {expecting} argument that
// it is expecting a given number of bytes, and thus this method should
// preallocate more space to avoid future reallocations.
def putk(expecting: int, x: Array<byte>, xpos: int, xlength: int) -> this {
if ((data.length - limit) >= xlength) {
// Enough space to copy into this buffer.
for (i < xlength) data[limit + i] = x[xpos + i];
limit += xlength;
return;
}
var avail = available(), diff = 0;
if (avail == 0 && x.length >= expecting) {
// Reuse {x} in-place by aliasing it.
diff = pos - xpos;
data = x;
pos = xpos;
limit = xpos + xlength;
} else {
// Not enough space. Copy the old data and the new data
// together into a new buffer.
var combined = avail + xlength;
var nlength = if(expecting > combined, expecting, combined);
var nbuf = Array<byte>.new(nlength);
for (i < avail) nbuf[i] = data[pos + i];
for (i < xlength) nbuf[avail + i] = x[xpos + i];
diff = pos;
data = nbuf;
pos = 0;
limit = combined;
}
startAddr += u64.view(diff);
}
// Append more data to the internal buffer.
def putr(expecting: int, x: Range<byte>) -> this {
if ((data.length - limit) >= x.length) {
// Enough space to copy into this buffer.
for (i < x.length) data[limit + i] = x[i];
limit += x.length;
return;
}
var avail = available(), diff = 0;
// Copy the old data and the new data together into a new buffer.
var combined = avail + x.length;
var nlength = if(expecting > combined, expecting, combined);
var nbuf = Array<byte>.new(nlength);
for (i < avail) nbuf[i] = data[pos + i];
for (i < x.length) nbuf[avail + i] = x[i];
diff = pos;
data = nbuf;
pos = 0;
limit = combined;
startAddr += u64.view(diff);
}
// Populate the given reader {d} with the range of bytes from {this.pos} to
// {this.pos + length}.
def sub_bytes(d: DataReader, length: int) {
if (limit - pos < length) {
eof_at(pos, length, "expecting %d bytes");
if (pos < limit) pos = limit; // consume remaining
return;
}
d.data = data;
d.pos = this.pos;
d.limit = this.pos + length;
d.startAddr = this.startAddr;
this.pos += length;
}
// Set an error on EOF.
def setEOFError(pos: int, size: int, msg: string) {
onError(this, pos, msg);
}
// Record the first error for this reader.
def setFirstError(pos: int, msg: string) {
if (pos < error_pos) {
error_pos = pos;
error_msg = msg;
ok = false;
}
}
}
def EMPTY_BYTES: Array<byte> = []; // used instead of null
// Optimized utility routines for decoding data in byte ranges without the overhead of constructing
// a {Decoder} object. Uses layouts to avoid byte-by-byte reads, both combining multiple bounds
// checks and using native (full word) reads when possible.
component DataReaders {
def read_range_u32_u8(r: Range<byte>) -> u32 { return r[0]; }
def read_range_u32_u16(r: Range<byte>) -> u32 { return Ref<Layout_u16>.of(r).val; }
def read_range_u32_i8(r: Range<byte>) -> u32 { return u32.view(i8.view(r[0])); }
def read_range_u32_i16(r: Range<byte>) -> u32 { return u32.view(i16.view(Ref<Layout_u16>.of(r).val)); }
def read_range_u64_u8(r: Range<byte>) -> u64 { return r[0]; }
def read_range_u64_u16(r: Range<byte>) -> u64 { return Ref<Layout_u16>.of(r).val; }
def read_range_u64_u32(r: Range<byte>) -> u64 { return Ref<Layout_u32>.of(r).val; }
def read_range_u64_i8(r: Range<byte>) -> u64 { return u64.view(i8.view(r[0])); }
def read_range_u64_i16(r: Range<byte>) -> u64 { return u64.view(i16.view(Ref<Layout_u16>.of(r).val)); }
def read_range_u64_i32(r: Range<byte>) -> u64 { return u64.view(i32.view(Ref<Layout_u32>.of(r).val)); }
def read_range_i32_i8(r: Range<byte>) -> i32 { return i32.view(i8.view(r[0])); }
def read_range_i32_i16(r: Range<byte>) -> i32 { return i32.view(i16.view(Ref<Layout_u16>.of(r).val)); }
def read_range_i64_i8(r: Range<byte>) -> i64 { return i64.view(i8.view(r[0])); }
def read_range_i64_i16(r: Range<byte>) -> i64 { return i64.view(i16.view(Ref<Layout_u16>.of(r).val)); }
def read_range_i64_i32(r: Range<byte>) -> i64 { return i64.view(i32.view(Ref<Layout_u32>.of(r).val)); }
def read_range_i8(r: Range<byte>) -> i8 { return i8.view(r[0]); }
def read_range_i16(r: Range<byte>) -> i16 { return Ref<Layout_i16>.of(r).val; }
def read_range_i32(r: Range<byte>) -> i32 { return Ref<Layout_i32>.of(r).val; }
def read_range_i64(r: Range<byte>) -> i64 { return Ref<Layout_i64>.of(r).val; }
def read_range_u8(r: Range<byte>) -> u8 { return r[0]; }
def read_range_u16(r: Range<byte>) -> u16 { return Ref<Layout_u16>.of(r).val; }
def read_range_u32(r: Range<byte>) -> u32 { return Ref<Layout_u32>.of(r).val; }
def read_range_u64(r: Range<byte>) -> u64 { return Ref<Layout_u64>.of(r).val; }
def read_range_float(r: Range<byte>) -> float { return Ref<Layout_float>.of(r).val; }
def read_range_double(r: Range<byte>) -> double { return Ref<Layout_double>.of(r).val; }
def read_range_u128(r: Range<byte>) -> (u64, u64) {
var l = Ref<Layout_u128>.of(r);
return (l.lo_val, l.hi_val);
}
}