forked from salesforce/BLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoco_karpathy_dataset.py
126 lines (93 loc) · 4.6 KB
/
coco_karpathy_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import json
from torch.utils.data import Dataset
from torchvision.datasets.utils import download_url
from PIL import Image
from data.utils import pre_caption
class coco_karpathy_train(Dataset):
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):
'''
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
'''
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json'
filename = 'coco_karpathy_train.json'
download_url(url,ann_root)
self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
self.transform = transform
self.image_root = image_root
self.max_words = max_words
self.prompt = prompt
self.img_ids = {}
n = 0
for ann in self.annotation:
img_id = ann['image_id']
if img_id not in self.img_ids.keys():
self.img_ids[img_id] = n
n += 1
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.image_root,ann['image'])
image = Image.open(image_path).convert('RGB')
image = self.transform(image)
caption = self.prompt+pre_caption(ann['caption'], self.max_words)
return image, caption, self.img_ids[ann['image_id']]
class coco_karpathy_caption_eval(Dataset):
def __init__(self, transform, image_root, ann_root, split):
'''
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
'''
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
download_url(urls[split],ann_root)
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
self.transform = transform
self.image_root = image_root
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.image_root,ann['image'])
image = Image.open(image_path).convert('RGB')
image = self.transform(image)
img_id = ann['image'].split('/')[-1].strip('.jpg').split('_')[-1]
return image, int(img_id)
class coco_karpathy_retrieval_eval(Dataset):
def __init__(self, transform, image_root, ann_root, split, max_words=30):
'''
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
'''
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
download_url(urls[split],ann_root)
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
self.transform = transform
self.image_root = image_root
self.text = []
self.image = []
self.txt2img = {}
self.img2txt = {}
txt_id = 0
for img_id, ann in enumerate(self.annotation):
self.image.append(ann['image'])
self.img2txt[img_id] = []
for i, caption in enumerate(ann['caption']):
self.text.append(pre_caption(caption,max_words))
self.img2txt[img_id].append(txt_id)
self.txt2img[txt_id] = img_id
txt_id += 1
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
image = Image.open(image_path).convert('RGB')
image = self.transform(image)
return image, index