forked from stasi009/TakeHomeDataChallenges
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgist.py
71 lines (53 loc) · 2.28 KB
/
gist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
from sklearn.cross_validation import StratifiedKFold
from sklearn.metrics import roc_curve
def validation_roc():
Xtrain_only, Xvalid, ytrain_only, yvalid = train_test_split(Xtrain, ytrain, test_size=0.2, random_state=seed)
train_only_matrix = xgb.DMatrix(Xtrain_only, ytrain_only)
valid_matrix = xgb.DMatrix(Xvalid)
# retrain on training set
gbt_train_only = xgb.train(params, train_only_matrix, n_best_trees)
# predict on validation set
yvalid_probas = gbt_train_only.predict(valid_matrix, ntree_limit=n_best_trees)
d = {}
d['FPR'], d['TPR'], d['Threshold'] = roc_curve(yvalid, yvalid_probas)
return pd.DataFrame(d)
def sort_neighbors(X):
Xtrain = X.loc[X.index != 'Missing', :]
countries = Xtrain.index
neigh = NearestNeighbors(n_neighbors=Xtrain.shape[0]) # return all neighbors
neigh.fit(Xtrain)
distance, indices = neigh.kneighbors(X.loc[['Missing'], :])
distance = distance[0]
indices = indices[0]
countries = countries[indices]
return pd.DataFrame(zip(countries, distance), columns=['country', 'distance'])
####################################
params = {}
params['silent'] = 1
params['objective'] = 'binary:logistic' # output probabilities
params['eval_metric'] = 'auc'
params["num_rounds"] = 300
params["early_stopping_rounds"] = 30
# params['min_child_weight'] = 2
params['max_depth'] = 6
params['eta'] = 0.1
params["subsample"] = 0.8
params["colsample_bytree"] = 0.8
cv_results = xgb.cv(params,train_matrix,
num_boost_round = params["num_rounds"],
nfold = params.get('nfold',5),
metrics = params['eval_metric'],
early_stopping_rounds = params["early_stopping_rounds"],
verbose_eval = True,
seed = seed)
watchlist = [(train_matrix, 'train')]
gbt = xgb.train(params, train_matrix, n_best_trees,watchlist)
gbt.predict(matrix, ntree_limit=n_best_trees)
xgb.plot_importance(gbt)
###############################################
dt = DecisionTreeClassifier(max_depth=3,min_samples_leaf=20,min_samples_split=20)
dt.fit(X,y)
export_graphviz(dt,feature_names=X.columns,class_names=['NotFraud','Fraud'],
proportion=True,leaves_parallel=True,filled=True)
dot -Tpng tree.dot -o tree.png