-
Notifications
You must be signed in to change notification settings - Fork 563
/
Copy pathflexmatch.py
81 lines (67 loc) · 3.55 KB
/
flexmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""
@author: Baixu Chen
@contact: [email protected]
"""
from collections import Counter
import torch
class DynamicThresholdingModule(object):
r"""
Dynamic thresholding module from `FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
<https://arxiv.org/abs/2110.08263>`_. At time :math:`t`, for each category :math:`c`,
the learning status :math:`\sigma_t(c)` is estimated by the number of samples whose predictions fall into this class
and above a threshold (e.g. 0.95). Then, FlexMatch normalizes :math:`\sigma_t(c)` to make its range between 0 and 1
.. math::
\beta_t(c) = \frac{\sigma_t(c)}{\underset{c'}{\text{max}}~\sigma_t(c')}.
The dynamic threshold is formulated as
.. math::
\mathcal{T}_t(c) = \mathcal{M}(\beta_t(c)) \cdot \tau,
where \tau denotes the pre-defined threshold (e.g. 0.95), :math:`\mathcal{M}` denotes a (possibly non-linear)
mapping function.
Args:
threshold (float): The pre-defined confidence threshold
warmup (bool): Whether perform threshold warm-up. If True, the number of unlabeled data that have not been
used will be considered when normalizing :math:`\sigma_t(c)`
mapping_func (callable): An increasing mapping function. For example, this function can be (1) concave
:math:`\mathcal{M}(x)=\text{ln}(x+1)/\text{ln}2`, (2) linear :math:`\mathcal{M}(x)=x`,
and (3) convex :math:`\mathcal{M}(x)=2/2-x`
num_classes (int): Number of classes
n_unlabeled_samples (int): Size of the unlabeled dataset
device (torch.device): Device
"""
def __init__(self, threshold, warmup, mapping_func, num_classes, n_unlabeled_samples, device):
self.threshold = threshold
self.warmup = warmup
self.mapping_func = mapping_func
self.num_classes = num_classes
self.n_unlabeled_samples = n_unlabeled_samples
self.net_outputs = torch.zeros(n_unlabeled_samples, dtype=torch.long).to(device)
self.net_outputs.fill_(-1)
self.device = device
def get_threshold(self, pseudo_labels):
"""Calculate and return dynamic threshold"""
pseudo_counter = Counter(self.net_outputs.tolist())
if max(pseudo_counter.values()) == self.n_unlabeled_samples:
# In the early stage of training, the network does not output pseudo labels with high confidence.
# In this case, the learning status of all categories is simply zero.
status = torch.zeros(self.num_classes).to(self.device)
else:
if not self.warmup and -1 in pseudo_counter.keys():
pseudo_counter.pop(-1)
max_num = max(pseudo_counter.values())
# estimate learning status
status = [
pseudo_counter[c] / max_num for c in range(self.num_classes)
]
status = torch.FloatTensor(status).to(self.device)
# calculate dynamic threshold
dynamic_threshold = self.threshold * self.mapping_func(status[pseudo_labels])
return dynamic_threshold
def update(self, idxes, selected_mask, pseudo_labels):
"""Update the learning status
Args:
idxes (tensor): Indexes of corresponding samples
selected_mask (tensor): A binary mask, a value of 1 indicates the prediction for this sample will be updated
pseudo_labels (tensor): Network predictions
"""
if idxes[selected_mask == 1].nelement() != 0:
self.net_outputs[idxes[selected_mask == 1]] = pseudo_labels[selected_mask == 1]