-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraduseminar.tex
977 lines (730 loc) · 26.7 KB
/
graduseminar.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Beamer Presentation
% LaTeX Template
% Version 1.0 (10/11/12)
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND THEMES
%----------------------------------------------------------------------------------------
\documentclass{beamer}
\mode<presentation> {
% The Beamer class comes with a number of default slide themes
% which change the colors and layouts of slides. Below this is a list
% of all the themes, uncomment each in turn to see what they look like.
%\usetheme{default}
%\usetheme{AnnArbor}
%\usetheme{Antibes}
%\usetheme{Bergen}
%\usetheme{Berkeley}
%\usetheme{Berlin}
%\usetheme{Boadilla}
%\usetheme{CambridgeUS}
%\usetheme{Copenhagen}
%\usetheme{Darmstadt}
%\usetheme{Dresden}
%\usetheme{Frankfurt}
%\usetheme{Goettingen}
%\usetheme{Hannover}
%\usetheme{Ilmenau}
%\usetheme{JuanLesPins}
%\usetheme{Luebeck}
\usetheme{Madrid}
%\usetheme{Malmoe}
%\usetheme{Marburg}
%\usetheme{Montpellier}
%\usetheme{PaloAlto}
%\usetheme{Pittsburgh}
%\usetheme{Rochester}
%\usetheme{Singapore}
%\usetheme{Szeged}
%\usetheme{Warsaw}
% As well as themes, the Beamer class has a number of color themes
% for any slide theme. Uncomment each of these in turn to see how it
% changes the colors of your current slide theme.
%\usecolortheme{albatross}
%\usecolortheme{beaver}
%\usecolortheme{beetle}
%\usecolortheme{crane}
%\usecolortheme{dolphin}
%\usecolortheme{dove}
%\usecolortheme{fly}
%\usecolortheme{lily}
%\usecolortheme{orchid}
%\usecolortheme{rose}
%\usecolortheme{seagull}
%\usecolortheme{seahorse}
%\usecolortheme{whale}
%\usecolortheme{wolverine}
%\setbeamertemplate{footline} % To remove the footer line in all slides uncomment this line
%\setbeamertemplate{footline}[page number] % To replace the footer line in all slides with a simple slide count uncomment this line
%\setbeamertemplate{navigation symbols}{} % To remove the navigation symbols from the bottom of all slides uncomment this line
}
\usepackage{graphicx} % Allows including images
\usepackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables
\usepackage[utf8]{inputenc} % Tällä toimii utf-8
\usepackage[T1]{fontenc} % Ja tämä liittyy edelliseen
\usepackage[english]{babel} %Suomenkielinen tavutus
%\usepackage{tytiivis} %Tiivistelmäsivun laatimiseksi
%\usepackage[dvips]{graphicx}%Saadaan kuvat toimimaan %I commented
\usepackage{lastpage}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{gensymb}
%###
\usepackage{epsfig}
\usepackage{times}
\usepackage{enumerate}
\usepackage{float}
\usepackage{epstopdf}
\usepackage{amsfonts}
\addto\captionsfinnish{%
\renewcommand{\refname}%
{References}%
}
\addto\captionsfinnish{%
\renewcommand{\contentsname}%
{Contents}%
}
\addto\captionsfinnish{%
\renewcommand{\figurename}%
{Figure}%
}
\addto\captionsfinnish{%
\renewcommand{\tablename}%
{Table}%
}
\def\rg{r_{\rm S}} % Schwarzschild radius
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bc{\begin{center}}
\def\ec{\end{center}}
\def\beq{\begin{eqnarray}}
\def\eeq{\end{eqnarray}}
\def\msun{{\rm M_{\odot}}}
\def\d{{\rm d}}
\def\Ledd{L_{\rm Edd}}
\def\xte{{\it RXTE}}
\def\Ginga{{\it Ginga}}
%\def\deg{^{\circ}}
\def\rinf{r_{\rm spot, \infty}}
\def\Tinf{T_{\infty}}
\def\Te{T_{\rm e}}
\def\phip{\phi_{\rm p}}
\def\phis{\phi_{\rm s}}
\def\alphap{\alpha_{\rm p}}
\def\alphas{\alpha_{\rm s}}
%\def\muv{\mu_{\rm v}}
\def\rg{r_{\rm S}} % Schwarzschild radius
\def\betaeq{\beta_{\rm eq}}
%\def\Dop{{\cal{D}}}
\def\Dop{\delta}
\def\taut{\tau_{\rm es}}
\def\source{SAX J1808.4$-$3658}
\def\sourceb{SAX J1748.9$-$2021}
\def\mumin{\mu_{\rm min}}
\def\mumax{\mu_{\rm max}}
\def\phiobs{\phi_{\rm obs}}
\def\ani{h}
\def\thetas{\theta_{s}}
\def\tstep{\mathsf{t}}
%###
%----------------------------------------------------------------------------------------
% TITLE PAGE
%----------------------------------------------------------------------------------------
%\title[Short title]{Mass and radius constraints for neutron stars from pulse shape modeling } % The short title appears at the bottom of every slide, the full title is only on the title page
\title{Mass and radius constraints for neutron stars from pulse shape modeling }
\author{Tuomo Salmi} % Your name
\institute[UTU] % Your institution as it will appear on the bottom of every slide, may be shorthand to save space
{
University of Turku \\ % Your institution for the title page
\medskip
\textit{[email protected]} % Your email address
}
%\date{\today} % Date, can be changed to a custom date
\begin{document}
\begin{frame}
\titlepage % Print the title page as the first slide
\end{frame}
%\begin{frame}
%\frametitle{Overview} % Table of contents slide, comment this block out to remove it
%\tableofcontents % Throughout your presentation, if you choose to use \section{} and \subsection{} commands, these will automatically be printed on this slide as an overview of your presentation
%\end{frame}
%----------------------------------------------------------------------------------------
% PRESENTATION SLIDES
%----------------------------------------------------------------------------------------
%------------------------------------------------
%\section{First Section} % Sections can be created in order to organize your presentation into discrete blocks, all sections and subsections are automatically printed in the table of contents as an overview of the talk
%------------------------------------------------
%\subsection{Subsection Example} % A subsection can be created just before a set of slides with a common theme to further break down your presentation into chunks
\begin{frame}
\frametitle{Aim}
\begin{itemize}
\item Determination of masses and radii for rapidly rotating neutron stars
\item Constrain the number of possible equations of state
\item The properties of matter at extremely high densities
\item Study the effects of polarization measurements on mass and radius constraints
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Contents}
%\begin{minipage}{0.5\textwidth}
\begin{itemize}
\item Introduction
\begin{itemize}
\item Neutron stars
\item Accreting millisecond pulsars
\end{itemize}
\item Methods
\begin{itemize}
\item Modeling the pulse profiles of accreting millisecond pulsars
\item Bayesian inference and Monte Carlo sampling methods
\item Test our tools and methods with synthetic data
\end{itemize}
\item Results
\begin{itemize}
\item Polarization measurements may be used the get
significantly tighter constraints for masses and radii.
\end{itemize}
\end{itemize}
%\end{minipage}%
%\begin{minipage}{.5\textwidth}
%\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
%\end{figure}
%\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Neutron stars}
\begin{itemize}
\item Most dense objects that can be directly observed
\item Typical mass $M = 1.5 M_{\odot}$ and typical radius $R = 12$ km
\item Supernuclear densities (5 to 10 times the nuclear equilibrium density $n_{0} \approx 0.16 ~\mathrm{fm}^{-3}$ of neutrons and protons)
\item Are created after the gravitational collapse of a core of a
massive star ($> 8 M_{\odot}$) at the end of its life.
\end{itemize}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Neutron stars}
\begin{minipage}{0.5\textwidth}
\begin{itemize}
\item Composition of the innermost core is unknown.
\item Equation of state (EOS) gives the relation between the pressure and density (or mass and radius).
\item The EOS of a neutron star is unknown.
\end{itemize}
\end{minipage}%
\begin{minipage}{.5\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{eos_mr.png}
\caption{Figure 2 from Lattimer and Prakash (2004).}
\end{figure}
\end{minipage}
\end{frame}
%------------------------------------------------
%------------------------------------------------
\begin{frame}
\frametitle{Neutron stars}
\begin{minipage}{0.5\textwidth}
\begin{itemize}
\item Observed masses and radii constrain the number of possible EOSs.
\item Upper limits for compactness
\begin{itemize}
\item The general relativity (Schwarzschild condition)
\item Causality condition
\end{itemize}
\item Lower limit for compactness
\begin{itemize}
\item Fastest observed rotational frequency
\end{itemize}
\end{itemize}
\end{minipage}%
\begin{minipage}{.5\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{eos_mr.png}
\caption{Figure 2 from Lattimer and Prakash (2004).}
\end{figure}
\end{minipage}
\end{frame}
%------------------------------------------------
%\begin{frame}
%\frametitle{Bullet Points}
%\begin{itemize}
%\item Lorem ipsum dolor sit amet, consectetur adipiscing elit
%\end{itemize}
%\end{frame}
%------------------------------------------------
%\begin{frame}
%\frametitle{Blocks of Highlighted Text}
%\begin{block}{Block 1}
%Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat %rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan %dolor.
%\end{block}
%\begin{block}{Block 2}
%Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, %per inceptos himenaeos. Vestibulum quis magna at risus dictum tempor eu vitae velit.
%\end{block}
%\begin{block}{Block 3}
%Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum %neque consectetur orci, sed blandit justo nisi ac lacus.
%\end{block}
%\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Neutron stars}
\begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth} % Left column and width
%\textbf{Heading}
%\begin{enumerate}
%\item Statement
%\item Explanation
%\item Example
%\end{enumerate}
\begin{itemize}
\item The highest observed mass rules out many EOSs.
\item We aim to find out independent knowledge of both mass and radius.
\end{itemize}
\column{.5\textwidth} % Right column and width
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{eos_mr2.png}
\caption{Figure from Demorest et al. (2010).}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Accreting millisecond X-ray pulsars (AMXP)}
\begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth} % Left column and width
\begin{itemize}
\item A subgroup of low mass X-ray binaries (LMXB)
\item Gas from the accretion disk (stripped from the companion) is channeled onto the magnetic poles of a millisecond pulsar.
\item A pair of "hot spots"
\end{itemize}
\column{.5\textwidth} % Right column and width
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{schematic.jpg}
\caption{Figure 4 from Romanova et. al (2004).}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Accreting millisecond X-ray pulsars (AMXP)}
\begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth} % Left column and width
\begin{itemize}
%\item Roche lobe overflow
\item Recycling scenario
\begin{itemize}
\item The evolutionary progenitors of recycled radio millisecond pulsars%From $B \sim 10^{12}$ G to $B \sim 10^{8}$ G
\end{itemize}
\end{itemize}
\column{.5\textwidth} % Right column and width
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{schematic.jpg}
\caption{Figure 4 from Romanova et. al (2004).}
\end{figure}
\end{columns}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Accreting millisecond X-ray pulsars (AMXP)}
\begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth} % Left column and width
\begin{itemize}
\item Some of AMXPs show outbursts
\item SAX J1808.4$-$3658: Nearly coherent oscillations detected during outbursts
\item Similar outburst evolution: SAX J1748.9$-$2021 (in the Figure)
\end{itemize}
\column{.5\textwidth} % Right column and width
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{outburst.png}
\caption{Figure 1 from Sanna et al. (2016).}
\end{figure}
\end{columns}
\end{frame}
%--------------------------------------------
\begin{frame}
\frametitle{SAX J1808.4$-$3658}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=0.8\linewidth]{data_sax1808.pdf}
%\caption{Figure 2 from Lattimer and Prakash (2004)}
\end{figure}
\end{frame}
%-----------------------------------------------------
\begin{frame}
\frametitle{Methods}
\begin{itemize}
\item Pulse shape modeling
\item Bayesian analysis
\item Monte Carlo sampling methods
\end{itemize}
\end{frame}
%--------------------------------------------
%--------------------------------------------
\begin{frame}
\frametitle{Pulse profile modeling}
\begin{columns}[t] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth}
\begin{itemize}
\item Schwarzschild + Doppler approximation (S+D)
\item Oblate shape of the star taken into account
\item Mass and radius affecting the light bending
\item Time delays different from different locations
\end{itemize}
\column{.5\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{fig2.png}
%\caption{Figure 2 from Lattimer and Prakash (2004)}
\end{figure}
\end{columns}
\end{frame}
%-----------------------------------------------------
%--------------------------------------------
\begin{frame}
\frametitle{Pulse profile modeling}
\begin{itemize}
\item Observed spectral flux from an infinitesimal spot:
\be \label{eq:fluxspot2}
\d F_{E}=(1-u)^{1/2} \Dop^{4} I'_{E'}(\sigma') \cos\sigma
\frac{\d \cos\alpha}{\d\cos\psi}
\frac{\d S'}{D^2}
\ee
\item $D$ = distance, $\psi$ = bending angle, $\Dop$ = Doppler factor, $(1-u)^{1/2}$ = inverse of gravitational redshift, $\sigma$ = emission angle relative to the spot normal, and $\alpha$ = emission angle relative to the radius vector.
\item Integration over the spot surface
\end{itemize}
\end{frame}
%-----------------------------------------------------
%--------------------------------------------
\begin{frame}
\frametitle{Pulse profile modeling}
\begin{columns}[t] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth}
\begin{itemize}
\item Energy spectrum (energy dependency of $I'_{E'}$)
\item Blackbody + Power-law according to observations
\item Heated hot spot + Comptonization from an accretion shock
\item In this thesis two-component power-law
\item $I'_{E'}(\sigma') \propto \sigma'$ either isotropic or "Hopf" profile
\end{itemize}
\column{.5\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{spectrum_numflux0.pdf}
\end{figure}
\end{columns}
\end{frame}
%-----------------------------------------------------
%--------------------------------------------
\begin{frame}
\frametitle{SAX J1808.4$-$3658}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=0.8\linewidth]{spectrum_sax.png}
\caption{Figure 3 from Poutanen and Gierlinski (2003).}
\end{figure}
\end{frame}
%-----------------------------------------------------
\iffalse
%--------------------------------------------
\begin{frame}
\frametitle{Example of pulse profile comparison}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=0.5\linewidth]{jpulsec3.pdf}
\caption{The light curve comparisons with an oblate star ($R_{\mathrm{eq}} = 12$ km, $M = 1.4$ $\msun$, $\nu = 700$ Hz, $i = 45 \degree$, $\rho = 10 \degree$, and $T_{\mathrm{eff}} = 2$ keV). Figure from Nättilä and Pihajoki 2016 (in preparation).}
\end{figure}
\end{frame}
%-----------------------------------------------------
\fi
\begin{frame}
\frametitle{Bayesian inference}
\be \label{eq:bayes}
p(\textbf{y}|\mathcal{D}) \propto p(\mathcal{D}|\textbf{y})p(\textbf{y})
\ee
\begin{itemize}
\item $\mathcal{D}$ = Data
\item $\textbf{y}$ = Parameters of the pulse profile model
\item $p(\textbf{y})$ = Prior probability distributions of the parameters
\item $p(\mathcal{D}|\textbf{y})$ = Probability distribution of the data given the parameters
\item $p(\textbf{y}|\mathcal{D})$ = Probability distribution of the parameters given the data
\end{itemize}
\end{frame}
%-----------------------------------------------------
%--------------------------------------------
\begin{frame}
\frametitle{Ensemble sampler}
\begin{columns}[t] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth}
\begin{itemize}
\item Independent walkers moving the parameter space
\item Stretch-move algorithm instead of Metropolis-Hastings
\item New sample is either accepted or rejected with a certain probability
\end{itemize}
\column{.5\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=0.8\linewidth]{stretchmove.png}
\caption{Figure 2 from Goodman and Weare (2010).}
\end{figure}
\end{columns}
\end{frame}
%--------------------------------------------
\begin{frame}
\frametitle{Results}
\begin{itemize}
\item Synthetic data
\item Posterior probability distributions
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Synthetic data}
\begin{itemize}
\item We have generated a synthetic data similar to \source \ using the pulse profile model.
\item Parameters assumed to be physically reasonable
\item The variability amplitude $A$ determined mainly by observer inclination $i$ and spot co-latitude $\thetas$:
\end{itemize}
\be \label{eq:amplitude}
A = \frac{F_{\mathrm{max}} - F_{\mathrm{min}}} {F_{\mathrm{max}} + F_{\mathrm{min}}}
\ee %https://arxiv.org/pdf/astro-ph/0510038v2.pdf
\be \label{eq:amplitude_incthet}
A \approx \frac{(1-\rg/R)\sin i \sin \thetas}{\rg/R+(1-\rg/R)\cos i \cos \thetas}.
\ee
%\item Assume uniform or non-uniform prior probability distributions for parameters
%\item
%\item Obtain posterior probability distributions for the parameters using ensemble sampler
%\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Synthetic data}
\be \label{eq:amplitude_incthet}
A \approx \frac{(1-\rg/R)\sin i \sin \thetas}{\rg/R+(1-\rg/R)\cos i \cos \thetas}.
\ee
\begin{itemize}
\item Switching $i$ and $\thetas$ has no effect on $A$.
\item However, the variability of polarized flux depends on $i$ and $\thetas$ separately.
\item To study this, we have created two datasets which differ only in $i$ and $\thetas$.
\item We assume either uniform or non-uniform prior probability distributions for parameters.
\item We obtain posterior probability distributions for the parameters using the ensemble sampler.
\end{itemize}
%\item Assume uniform or non-uniform prior probability distributions for parameters
%\item
%\item Obtain posterior probability distributions for the parameters using ensemble sampler
%\end{itemize}
\end{frame}
%-----------------------------------------------------
%-----------------------------------------------------
\begin{frame}
\begin{center}
\frametitle{Synthetic data}
\begin{table}
\caption{Paramters of the synthetic datasets.}
\label{table:params}
\begin{center}
\begin{tabular}{| c | c |}
\hline
Parameter & Value\\ \hline
Radius $R$ & 12.0 km \\ \hline
Mass $M$ & 1.5 $\msun$ \\ \hline
Inclination $i$ & 5 $\degree$ or 75 $\degree$ \\ \hline
Spot colatitude $\thetas$ & 75 $\degree$ or 5 $\degree$ \\ \hline
Spot angular size $\rho$ & 10.0 $\degree$ \\ \hline
Distance $D$ & 2.5 kpc \\ \hline
Temperature $T_{\mathrm{eff}}$ & 2.0 keV \\
\hline
\end{tabular}
\end{center}
\end{table}
\end{center}
\end{frame}
%--------------------------------------------
\begin{frame}
\frametitle{Synthetic data}
\begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.2\linewidth]{synt_sax_eq2.png}
\caption{Equatorial spot}
\end{figure}
\column{.45\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.2\linewidth]{synt_sax_pol2.png}
\caption{Polar spot}
\end{figure}
\end{columns}
\end{frame}
%-----------------------------------------------------
\iffalse
%--------------------------------------------
\begin{frame}
\frametitle{Burn-in and autocorrelation}
\begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment
\column{.45\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{weights_example.pdf}
\caption{Log-likelihoods after burn-in removal.}
\end{figure}
\column{.45\textwidth}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=1.1\linewidth]{ac_fpol.pdf}
\caption{Autocorrelation.}
\end{figure}
\end{columns}
\end{frame}
%-----------------------------------------------------
\begin{frame}
\frametitle{Sampling methods}
\begin{itemize}
%\item Marginalization over different phaseshifts
\item Four simulations running parallel on 22 processors
\item In each chain (processor) ~ 70 000 samples out of which 20 000 removed ("burn-in") and thinned with factor 5 (to remove autocorrelation)
\end{itemize}
\end{frame}
\fi
%--------------------------------------------
\begin{frame}
\frametitle{Posterior probability distributions}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=0.55\linewidth]{fpolf.pdf}
\caption{Polar spot with only uniform priors.}
\end{figure}
\end{frame}
%-----------------------------------------------------
%--------------------------------------------
\begin{frame}
\frametitle{Posterior probability distributions}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=0.55\linewidth]{fpolprf.pdf}
\caption{Polar spot with non-uniform $i$ and $\thetas$ priors (blue lines).}
\end{figure}
\end{frame}
%-----------------------------------------------------
%--------------------------------------------
\begin{frame}
\frametitle{Posterior probability distributions}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=0.55\linewidth]{feqf.pdf}
\caption{Equatorial spot with only uniform priors.}
\end{figure}
\end{frame}
%-----------------------------------------------------
%--------------------------------------------
\begin{frame}
\frametitle{Posterior probability distributions}
\begin{figure}
%\includegraphics[width=0.7\linewidth]{neutron-star-magnetic-field.jpg}
\includegraphics[width=0.55\linewidth]{feqprf.pdf}
\caption{Equatorial spot with non-uniform $i$ and $\thetas$ priors (blue lines).}
\end{figure}
\end{frame}
%-----------------------------------------------------
\begin{frame}
\frametitle{Results}
\begin{itemize}
\item Only upper limits for masses and radii when only non-uniform priors
\item Both upper and lower limits when prior information for $i$ and $\thetas$ applied
\item Correct $i-\thetas$ solution not found without prior information.
\item The size of the spot is well constrained but the distance is not.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Summary}
\begin{itemize}
\item AMXPs show coherent oscillations at the spinning frequency of the pulsar.
\item These oscillations may be used to constrain masses and radii of pulsars.
\item Tighter constraints for mass and radius from polarization
\item Future
\begin{itemize}
\item Develope the model
\item From synthetic to real observations
\end{itemize}
\end{itemize}
\end{frame}
\iffalse
%------------------------------------------------
\section{Second Section}
%------------------------------------------------
\begin{frame}
\frametitle{Table}
\begin{table}
\begin{tabular}{l l l}
\toprule
\textbf{Treatments} & \textbf{Response 1} & \textbf{Response 2}\\
\midrule
Treatment 1 & 0.0003262 & 0.562 \\
Treatment 2 & 0.0015681 & 0.910 \\
Treatment 3 & 0.0009271 & 0.296 \\
\bottomrule
\end{tabular}
\caption{Table caption}
\end{table}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
%------------------------------------------------
\begin{frame}[fragile] % Need to use the fragile option when verbatim is used in the slide
\frametitle{Verbatim}
\begin{example}[Theorem Slide Code]
\begin{verbatim}
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}\end{verbatim}
\end{example}
\end{frame}
%------------------------------------------------
\begin{frame}
\frametitle{Figure}
Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.
\begin{figure}
\includegraphics[width=0.8\linewidth]{eos_mr.png}
\end{figure}
\end{frame}
%------------------------------------------------
\fi
%\begin{frame}[fragile] % Need to use the fragile option when verbatim is used in the slide
%\frametitle{Citation}
%An example of the \verb|\cite| command to cite within the presentation:\\~
%This statement requires citation \cite{p1}.
%\end{frame}
%------------------------------------------------
%\begin{frame}
%\frametitle{References}
%\footnotesize{
%\begin{thebibliography}{99} % Beamer does not support BibTeX so references must be inserted manually as below
%\bibitem[Smith, 2012]{p1} John Smith (2012)
%\newblock Title of the publication
%\newblock \emph{Journal Name} 12(3), 45 -- 678.
%\end{thebibliography}
%}
%\end{frame}
%------------------------------------------------
\begin{frame}
\Huge{\centerline{The End}}
\end{frame}
%----------------------------------------------------------------------------------------
\end{document}