-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtool_recognition.py
167 lines (126 loc) · 5.7 KB
/
tool_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torch.utils.data import DataLoader
import time
import copy
import datetime
import config
import dataset
def train_model(model, criterion, optimizer, scheduler, dataloaders, device, dataset_sizes, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
for phase in [config.PHASE_TRAIN, config.PHASE_VALIDATION]:
if phase == config.PHASE_TRAIN:
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0.0
# Iterate over data.
for batch in iter(dataloaders[phase]):
inputs = batch[config.DATASET_KEYS_IMAGE]
labels = batch[config.DATASET_KEYS_TOOLS]
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == config.PHASE_TRAIN):
outputs = model(inputs)
preds = torch.sigmoid(outputs)
loss = criterion(preds, labels)
# backward + optimize only if in training phase
if phase == config.PHASE_TRAIN:
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
# compute running corrects
for i in range(len(preds)):
prediction = preds[i]
label = labels[i]
corrects = 0.0
for j in range(len(prediction)):
if prediction[j] > 0.5 and label[j] == 1:
corrects += 1
elif prediction[j] < 0.5 and label[j] == 0:
corrects += 1
running_corrects += (corrects/7)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == config.PHASE_VALIDATION and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def test_model(model, dataloaders, device, dataset_sizes):
model.eval()
running_corrects = 0.0
with torch.no_grad():
for batch in iter(dataloaders[config.PHASE_TEST]):
inputs = batch[config.DATASET_KEYS_IMAGE]
labels = batch[config.DATASET_KEYS_TOOLS]
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
preds = torch.sigmoid(outputs)
# compute running corrects
for i in range(len(preds)):
prediction = preds[i]
label = labels[i]
corrects = 0.0
for j in range(len(prediction)):
if prediction[j] > 0.5 and label[j] == 1:
corrects += 1
elif prediction[j] < 0.5 and label[j] == 0:
corrects += 1
running_corrects += (corrects / 7)
test_acc = running_corrects / dataset_sizes[config.PHASE_TEST]
print('Test accuracy: {}'.format(test_acc))
def main():
print('Tool Recognition start: ' + str(datetime.datetime.now()))
image_datasets = {x: dataset.tool_data(config.DATA_DIR, x, config.TRANSFORM)
for x in config.PHASES}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=8, shuffle=True, num_workers=8)
for x in config.PHASES}
dataset_sizes = {x: len(image_datasets[x]) for x in config.PHASES}
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# change the code to load different models like resnet-18/34/50/100,
# alexnet etc. from torchvision
model_conv = torchvision.models.resnet152(pretrained=True)
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 7)
criterion = nn.BCELoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
print('Training model')
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, dataloaders, device, dataset_sizes, num_epochs=1)
# Save model
print('Saving model...')
torch.save(model_conv.state_dict(), config.TOOL_MODEL_PATH)
print('Testing model.')
test_model(model_conv, dataloaders, device, dataset_sizes)
print('Tool Recognition end: ' + str(datetime.datetime.now()))
if __name__ == '__main__':
main()