-
Notifications
You must be signed in to change notification settings - Fork 1
/
ZSignTac.v
379 lines (344 loc) · 13.1 KB
/
ZSignTac.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
(* Ugly tacty to resolve sign condition for Z *)
Require Import ZAux.
Require Import Replace2.
Require Import List.
Definition Zsign_type := fun (x y : list Z) => Prop.
Definition Zsign_cons : forall x y, (Zsign_type x y) := fun x y => True.
Ltac Zsign_push term1 term2 := generalize (Zsign_cons term1 term2); intro.
Ltac Zsign_le term :=
match term with
| (?X1 * ?X2)%Z =>
Zsign_le X1;
match goal with
| H1: (Zsign_type ?s1 ?s2) |- _ =>
Zsign_le X2;
match goal with
| H2: (Zsign_type ?s3 ?s4) |- _ =>
clear H1 H2;
let s5 := (eval unfold List.app in (s1++s3)) in
let s6 := (eval unfold List.app in (s2++s4)) in
Zsign_push s5 s6
end
end
| _ =>
let H1 := fresh "H" in
((assert (H1: (0 <= term)%Z); [auto with zarith; fail | idtac])
|| assert (H1: (term <= 0)%Z); [auto with zarith; fail | idtac]; clear H1;
Zsign_push (term::nil) (@nil Z)) || Zsign_push (@nil Z) (term::nil)
end.
Ltac Zsign_lt term :=
match term with
| (?X1 * ?X2)%Z =>
Zsign_lt X1;
match goal with
| H1: (Zsign_type ?s1 ?s2) |- _ =>
Zsign_lt X2;
match goal with
| H2: (Zsign_type ?s3 ?s4) |- _ =>
clear H1 H2;
let s5 := (eval unfold List.app in (s1++s3)) in
let s6 := (eval unfold List.app in (s2++s4)) in
Zsign_push s5 s6
end
end
| _ =>
let H1 := fresh "H" in
((assert (H1: (0 < term)%Z); [auto with zarith; fail | idtac])
|| assert (H1: (term < 0)%Z); [auto with zarith; fail | idtac]; clear H1;
Zsign_push (term::nil) (@nil Z)) || Zsign_push (@nil Z) (term::nil)
end.
Ltac Zsign_top0 :=
match goal with
| |- (0 <= ?X1)%Z => Zsign_le X1
| |- (?X1 <= 0)%Z => Zsign_le X1
| |- (0 < ?X1)%Z => Zsign_lt X1
| |- (?X1 < 0)%Z => Zsign_le X1
| |- (0 >= ?X1)%Z => Zsign_le X1
| |- (?X1 >= 0)%Z => Zsign_le X1
| |- (0 > ?X1 )%Z => Zsign_lt X1
| |- (?X1 > 0)%Z => Zsign_le X1
end.
Ltac Zsign_top :=
match goal with
| |- (?X1 * _ <= ?X1 * _)%Z => Zsign_le X1
| |- (?X1 * _ < ?X1 * _)%Z => Zsign_le X1
| |- (?X1 * _ >= ?X1 * _)%Z => Zsign_le X1
| |- (?X1 * _ > ?X1 * _)%Z => Zsign_le X1
end.
Ltac Zhyp_sign_top0 H:=
match type of H with
| (0 <= ?X1)%Z => Zsign_lt X1
| (?X1 <= 0)%Z => Zsign_lt X1
| (0 < ?X1)%Z => Zsign_lt X1
| (?X1 < 0)%Z => Zsign_lt X1
| (0 >= ?X1)%Z => Zsign_lt X1
| (?X1 >= 0)%Z => Zsign_lt X1
| (0 > ?X1 )%Z => Zsign_lt X1
| (?X1 > 0)%Z => Zsign_lt X1
end.
Ltac Zhyp_sign_top H :=
match type of H with
| (?X1 * _ <= ?X1 * _)%Z => Zsign_lt X1
| (?X1 * _ < ?X1 * _)%Z => Zsign_lt X1
| (?X1 * _ >= ?X1 * _)%Z => Zsign_lt X1
| (?X1 * _ > ?X1 * _)%Z => Zsign_lt X1
| ?X1 => generalize H
end.
Ltac Zsign_get_term g :=
match g with
| (0 <= ?X1)%Z => X1
| (?X1 <= 0)%Z => X1
| (?X1 * _ <= ?X1 * _)%Z => X1
| (0 < ?X1)%Z => X1
| (?X1 < 0)%Z => X1
| (?X1 * _ < ?X1 * _)%Z => X1
| (0 >= ?X1)%Z => X1
| (?X1 >= 0)%Z => X1
| (?X1 * _ >= ?X1 * _)%Z => X1
| (?X1 * _ >= _)%Z => X1
| (0 > ?X1)%Z => X1
| (?X1 > 0)%Z => X1
| (?X1 * _ > ?X1 * _)%Z => X1
end.
Ltac Zsign_get_left g :=
match g with
| (_ * ?X1 <= _)%Z => X1
| (_ * ?X1 < _)%Z => X1
| (_ * ?X1 >= _)%Z => X1
| (_ * ?X1 > _)%Z => X1
end.
Ltac Zsign_get_right g :=
match g with
| (_ <= _ * ?X1)%Z => X1
| (_ < _ * ?X1)%Z => X1
| (_ >= _ * ?X1)%Z => X1
| (_ > _ * ?X1)%Z => X1
end.
Fixpoint mkZprodt (l : list Z) (t : Z) {struct l} : Z :=
match l with nil => t | e::l1 => (e * mkZprodt l1 t)%Z end.
Fixpoint mkZprod (l : list Z) : Z :=
match l with nil => 1%Z | e::nil => e | e::l1 => (e * mkZprod l1)%Z end.
(* tatic for 0 ? x * y where ? is < > <= >= *)
Ltac zsign_tac_aux0 :=
match goal with
| |- (0 <= ?X1 * ?X2)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 <= X1)%Z); auto with zarith; apply Zle_sign_pos_pos)
|| (assert (H1: (X1 <= 0)%Z); auto with zarith; apply Zle_sign_neg_neg);
try zsign_tac_aux0; clear H1
| |- (?X1 * ?X2 <= 0)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 <= X1)%Z); auto with zarith; apply Zle_sign_pos_neg)
|| (assert (H1: (X1 <= 0)%Z); auto with zarith; apply Zle_sign_neg_pos);
try zsign_tac_aux0; clear H1
| |- (0 < ?X1 * ?X2)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%Z); auto with zarith; apply Zlt_sign_pos_pos)
|| (assert (H1: (X1 < 0)%Z); auto with zarith; apply Zlt_sign_neg_neg);
try zsign_tac_aux0; clear H1
| |- (?X1 * ?X2 < 0)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%Z); auto with zarith; apply Zlt_sign_pos_neg)
|| (assert (H1: (X1 < 0)%Z); auto with zarith; apply Zlt_sign_neg_pos);
try zsign_tac_aux0; clear H1
| |- (?X1 * ?X2 >= 0)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 >= X1)%Z); auto with zarith; apply Zge_sign_neg_neg)
|| (assert (H1: (X1 >= 0)%Z); auto with zarith; apply Zge_sign_pos_pos);
try zsign_tac_aux0; clear H1
| |- (0 >= ?X1 * ?X2)%Z =>
let H1 := fresh "H" in
(assert (H1: (X1 >= 0)%Z); auto with zarith; apply Zge_sign_pos_neg)
|| (assert (H1: (0 >= X1)%Z); auto with zarith; apply Zge_sign_neg_pos);
try zsign_tac_aux0; clear H1
| |- (0 > ?X1 * ?X2)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 > X1)%Z); auto with zarith; apply Zgt_sign_neg_pos)
|| (assert (H1: (X1 > 0)%Z); auto with zarith; apply Zgt_sign_pos_neg);
try zsign_tac_aux0; clear H1
| |- (?X1 * ?X2 > 0)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 > X1)%Z); auto with zarith; apply Zgt_sign_neg_neg)
|| (assert (H1: (X1 > 0)%Z); auto with zarith; apply Zgt_sign_pos_pos);
try zsign_tac_aux0; clear H1
| _ => auto with zarith; fail 1 "zsign_tac_aux"
end.
Ltac zsign_tac0 :=
Zsign_top0;
match goal with
| H1: (Zsign_type ?s1 ?s2) |- ?g =>
clear H1;
let s := (eval unfold mkZprod, mkZprodt in (mkZprodt s1 (mkZprod s2))) in
let t := Zsign_get_term g in
replace t with s; [try zsign_tac_aux0 | try ring];
auto with zarith
end.
(* tatic for hyp 0 ? x * y where ? is < > <= >= *)
Ltac hyp_zsign_tac_aux0 H :=
match type of H with
| (0 <= ?X1 * ?X2)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%Z); auto with zarith; generalize (Zle_sign_pos_pos_rev _ _ H1 H))
|| (assert (H1: (X1 < 0)%Z); auto with zarith; generalize (Zle_sign_neg_neg_rev _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux0 H; clear H1
| (?X1 * ?X2 <= 0)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%Z); auto with zarith; generalize (Zle_sign_pos_neg_rev _ _ H1 H))
|| (assert (H1: (X1 <= 0)%Z); auto with zarith; generalize (Zle_sign_neg_pos_rev _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux0 H; clear H1
| (0 < ?X1 * ?X2)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%Z); auto with zarith; generalize (Zlt_sign_pos_pos_rev _ _ H1 H))
|| (assert (H1: (X1 < 0)%Z); auto with zarith; generalize (Zlt_sign_neg_neg_rev _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux0 H; clear H1
| (?X1 * ?X2 < 0)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 < X1)%Z); auto with zarith; generalize (Zlt_sign_pos_neg_rev _ _ H1 H))
|| (assert (H1: (X1 < 0)%Z); auto with zarith; generalize (Zlt_sign_neg_pos_rev _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux0 H; clear H1
| (?X1 * ?X2 >= 0)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 >X1)%Z); auto with zarith; generalize (Zge_sign_neg_neg_rev _ _ H1 H))
|| (assert (H1: (X1 > 0)%Z); auto with zarith; generalize (Zge_sign_pos_pos _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux0 H; clear H1
| (0 >= ?X1 * ?X2)%Z =>
let H1 := fresh "H" in
(assert (H1: (X1 > 0)%Z); auto with zarith; generalize (Zge_sign_pos_neg _ _ H1 H))
|| (assert (H1: (0 > X1)%Z); auto with zarith; generalize (Zge_sign_neg_pos _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux0 H; clear H1
| (0 > ?X1 * ?X2)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 > X1)%Z); auto with zarith; generalize (Zgt_sign_neg_pos _ _ H1 H))
|| (assert (H1: (X1 > 0)%Z); auto with zarith; generalize (Zgt_sign_pos_neg _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux0 H; clear H1
| (?X1 * ?X2 > 0)%Z =>
let H1 := fresh "H" in
(assert (H1: (0 > X1)%Z); auto with zarith; generalize (Zgt_sign_neg_neg _ _ H1 H))
|| (assert (H1: (X1 > 0)%Z); auto with zarith; generalize (Zgt_sign_pos_pos _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux0 H; clear H1
| _ => auto with zarith; fail 1 "hyp_zsign_tac_aux0"
end.
Ltac hyp_zsign_tac0 H :=
Zhyp_sign_top0 H;
match goal with
| H1: (Zsign_type ?s1 ?s2) |- ?g =>
clear H1;
let s := (eval unfold mkZprod, mkZprodt in (mkZprodt s1 (mkZprod s2))) in
let t := Zsign_get_term g in
replace t with s in H; [try hyp_zsign_tac_aux0 H | try ring];
auto with zarith
end.
(* Tactic for goal x1 * x2 ? x1 * x3 where ? is < > <= >= *)
Ltac zsign_tac_aux :=
match goal with
| |- (?X1 * ?X2 <= ?X1 * ?X3)%Z =>
let H1 := fresh "H" in
((assert (H1: (0 <= X1)%Z); auto with zarith; apply Zmult_le_compat_l)
|| (assert (H1: (X1 <= 0)%Z); auto with zarith; apply Zmult_le_neg_compat_l);
try zsign_tac_aux; clear H1)
| |- (?X1 * ?X2 < ?X1 * ?X3)%Z =>
let H1 := fresh "H" in
((assert (H1: (0 <= X1)%Z); auto with zarith; apply Zmult_lt_compat_l)
|| (assert (H1: (X1 <= 0)%Z); auto with zarith; apply Zmult_lt_neg_compat_l);
try zsign_tac_aux; clear H1)
| |- (?X1 * ?X2 >= ?X1 * ?X3)%Z =>
let H1 := fresh "H" in
((assert (H1: (X1 >= 0)%Z); auto with zarith; apply Zmult_ge_compat_l)
|| (assert (H1: (0 >= X1)%Z); auto with zarith; apply Zmult_ge_neg_compat_l);
try zsign_tac_aux; clear H1)
| |- (?X1 * ?X2 > ?X1 * ?X3)%Z =>
let H1 := fresh "H" in
((assert (H1: (0 <= X1)%Z); auto with zarith; apply Zmult_lt_compat_l)
|| (assert (H1: (X1 <= 0)%Z); auto with zarith; apply Zmult_lt_neg_compat_l);
try zsign_tac_aux; clear H1)
| _ => auto with zarith; fail 1 "Zsign_tac_aux"
end.
Ltac zsign_tac :=
zsign_tac0
|| (Zsign_top;
match goal with
| H1: (Zsign_type ?s1 ?s2) |- ?g =>
clear H1;
let s := (eval unfold mkZprod, mkZprodt in
(mkZprodt s1 (mkZprod s2)))
in
let t := Zsign_get_term g in
let l := Zsign_get_left g in
let r := Zsign_get_right g in
let sl := (eval unfold mkZprod, mkZprodt in
(mkZprodt s1 (Zmult (mkZprod s2) l)))
in
let sr := (eval unfold mkZprod, mkZprodt in
(mkZprodt s1 (Zmult (mkZprod s2) r)))
in
replace2_tac (Zmult t l) (Zmult t r) sl sr; [zsign_tac_aux | ring | ring]
end).
(* Tactic for hyp x1 * x2 ? x1 * x3 where ? is < > <= >= *)
Ltac hyp_zsign_tac_aux H :=
match type of H with
| (?X1 * ?X2 <= ?X1 * ?X3)%Z =>
let H1 := fresh "H" in
((assert (H1: (0 < X1)%Z); auto with zarith; generalize (Zmult_le_compat_l_rev _ _ _ H1 H))
|| (assert (H1: (X1 < 0)%Z); auto with zarith; generalize (Zmult_le_neg_compat_l_rev _ _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux H; clear H1)
| (?X1 * ?X2 < ?X1 * ?X3)%Z =>
let H1 := fresh "H" in
((assert (H1: (0 < X1)%Z); auto with zarith; generalize (Zmult_lt_compat_l_rev _ _ _ H1 H))
|| (assert (H1: (X1 < 0)%Z); auto with zarith; generalize (Zmult_lt_neg_compat_l_rev _ _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux H; clear H1)
| (?X1 * ?X2 >= ?X1 * ?X3)%Z =>
let H1 := fresh "H" in
((assert (H1: (X1 > 0)%Z); auto with zarith; generalize (Zmult_ge_compat_l_rev _ _ _ H1 H))
|| (assert (H1: (0 > X1)%Z); auto with zarith; generalize (Zmult_ge_neg_compat_l_rev _ _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux H; clear H1)
| (?X1 * ?X2 > ?X1 * ?X3)%Z =>
let H1 := fresh "H" in
((assert (H1: (0 < X1)%Z); auto with zarith; generalize (Zmult_gt_compat_l_rev _ _ _ H1 H))
|| (assert (H1: (X1 < 0)%Z); auto with zarith; generalize (Zmult_gt_neg_compat_l_rev _ _ _ H1 H));
clear H; intros H; try hyp_zsign_tac_aux H; clear H1)
| _ => auto with zarith; fail 0 "Zhyp_sign_tac_aux"
end.
Ltac hyp_zsign_tac H :=
hyp_zsign_tac0 H
|| (Zhyp_sign_top H;
match goal with
| H1: (Zsign_type ?s1 ?s2) |- _ =>
clear H1;
let s := (eval unfold mkZprod, mkZprodt in
(mkZprodt s1 (mkZprod s2)))
in
let g := type of H in
let t := Zsign_get_term g in
let l := Zsign_get_left g in
let r := Zsign_get_right g in
let sl := (eval unfold mkZprod, mkZprodt in
(mkZprodt s1 (Zmult (mkZprod s2) l)))
in
let sr := (eval unfold mkZprod, mkZprodt in
(mkZprodt s1 (Zmult (mkZprod s2) r)))
in
generalize H; replace2_tac (Zmult t l) (Zmult t r) sl sr;
[clear H; intros H; try hyp_zsign_tac_aux H | ring | ring]
end).
Section Test.
Let test1 : forall a b c, (0 < a -> a * b < a * c -> b < c)%Z.
Proof.
intros a b c H1 H2.
hyp_zsign_tac H2.
Qed.
Let test2 : forall a b c, (a < 0 -> a * b < a * c -> c < b)%Z.
Proof.
intros a b c H1 H2.
hyp_zsign_tac H2.
Qed.
Let test3 : forall a b c, (0 < a -> a * b <= a * c -> b <= c)%Z.
Proof.
intros a b c H1 H2.
hyp_zsign_tac H2.
Qed.
Let test4 : forall a b c, (a < - 0 -> a * b >= a * c -> c >= b)%Z.
Proof.
intros a b c H1 H2.
hyp_zsign_tac H2.
Qed.
End Test.