-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict.py
executable file
·126 lines (97 loc) · 4.37 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import glob
import os
import pickle
import shutil
import subprocess
from src.build_data import build_dataFrame, DataGen, group_data, slice_data
from src.evaluator import Evaluator, TriadEvaluator
def scorer(path=None):
if path is None:
path = './scorers/v8.01/results/test/'
if path[-1] != '/': path += '/'
# keys = glob.glob(path+'keys/*')
# keys = glob.glob('data/test/*conll')
responses = glob.glob(path+'responses/*')
# combined_key = path + 'key.tmp'
combined_response = path + 'response.tmp'
# with open(combined_key, 'wb') as f_key:
# for filename in keys:
# with open(filename, 'rb') as readfile:
# shutil.copyfileobj(readfile, f_key)
with open(combined_response, 'wb') as f_response:
for filename in responses:
with open(filename, 'rb') as readfile:
shutil.copyfileobj(readfile, f_response)
cmd = 'perl scorers/v8.01/scorer.pl muc results/key.tmp %s none' %combined_response
proc = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
print(proc.communicate()[0].decode('utf-8'))
cmd = 'perl scorers/v8.01/scorer.pl bcub results/key.tmp %s none' %combined_response
proc = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
print(proc.communicate()[0].decode('utf-8'))
cmd = 'perl scorers/v8.01/scorer.pl ceafe results/key.tmp %s none' %combined_response
proc = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
print(proc.communicate()[0].decode('utf-8'))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("model_dir",
help="Directory containing the trained model")
parser.add_argument("test_dir",
help="Directory containing test files")
parser.add_argument("result_dir",
help="Directory to write result files")
parser.add_argument("--max_distance",
default=15,
type=int,
help="Set the max entity distance to build data")
parser.add_argument("--triad",
action='store_true',
default=False,
help="use triads")
parser.add_argument("--keras",
action='store_true',
default=False,
help="Use keras model")
parser.add_argument("--clustering_only",
action='store_true',
default=False,
help="Use saved linkage files to perform clustering")
parser.add_argument("--compute_linkage",
action='store_true',
default=False,
help="compute linkage, for clustering_only option")
args = parser.parse_args()
with open(os.path.join(args.model_dir, 'word_indexes.pkl'), 'rb') as f:
word_indexes = pickle.load(f)
with open(os.path.join(args.model_dir, 'pos_tags.pkl'), 'rb') as f:
pos_tags = pickle.load(f)
df = build_dataFrame(args.test_dir, threads=1, suffix='auto_conll')
if args.clustering_only:
model = None
elif args.keras:
from keras.models import load_model
model = load_model(os.path.join(args.model_dir, 'model.h5'))
else:
import torch
model = torch.load(os.path.join(args.model_dir, 'model.pt'))
model.eval()
print("Loaded model")
if args.triad:
n_files = len(df.doc_id.unique())
test_gen = DataGen(df, word_indexes, pos_tags)
test_input_gen = test_gen.generate_triad_input(looping=True, test_data=True, threads=4, max_distance=args.max_distance)
evaluator = TriadEvaluator(model, test_input_gen)
evaluator.write_results(df, args.result_dir, n_iterations=n_files,
clustering_only=args.clustering_only, compute_linkage=args.compute_linkage)
else:
test_gen = DataGen(df, word_indexes, pos_tags)
test_data_q = next(test_gen.generate_input(looping=False, test_data=True))
print("Loaded test data")
evaluator = Evaluator(model, test_data_q)
print("Performing fast evaluation...")
print(evaluator.fast_eval())
print("Saving result files...")
evaluator.write_results(df, args.result_dir)
scorer(args.result_dir)
if __name__ == "__main__":
main()