generated from pitmonticone/LeanProject
-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathimplication_stats.py
executable file
·330 lines (269 loc) · 10.4 KB
/
implication_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python3
"""Generates a plotly scatter plot to visualize equivalence class statistics.
Example usage:
$ lake exe extract_implications outcomes > /tmp/out.json
$ python scripts/implication_stats.py /tmp/out.json --outfile stats.html
"""
from __future__ import annotations
import argparse
import enum
import json
import logging
import sys
from pathlib import Path
from typing import Final
import numpy as np
import numpy.typing as npt
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from scipy.sparse.csgraph import connected_components
LOGGER: Final = logging.getLogger(__name__)
@enum.unique
class EquationDataColumn(enum.Enum):
"""Known columns for the equation DataFrame."""
EQUATION_NUMBER = "Equation Number"
STATEMENT = "Statement"
DISTINCT_VARIABLE_COUNT = "Distinct Variable Count"
OPERATION_COUNT = "Operation Count"
IMBALANCE = "Imbalance"
EQUIVALENCE_CLASS = "Equivalence Class"
IMPLICATION_COUNT = "Implication Count"
IMPLIED_BY_COUNT = "Implied By Count"
OUTCOMES_INDEX = "_outcomes_index"
@enum.unique
class EquivalenceClassDataColumn(enum.Enum):
"""Known columns for the equivalence class DataFrame."""
CLASS_NUMBER = "Class Number"
STATEMENT = "Statement"
CLASS_SIZE = "Class Size"
MINIMUM_DISTINCT_VARIABLE_COUNT = "Minimum Distinct Variable Count"
MINIMUM_OPERATION_COUNT = "Minimum Operation Count"
MINIMUM_IMBALANCE = "Minimum Imbalance"
OUTCOMES_INDEX = "_outcomes_index"
IMPLICATION_COUNT = "Implication Count"
IMPLIED_BY_COUNT = "Implied By Count"
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
prog="ImplicationStats",
description="Render implication statistics using plotly.",
)
parser.add_argument(
"file",
type=Path,
help="json file containing output of `lake exe extract_implications outcomes",
)
parser.add_argument(
"--outfile",
type=Path,
default=None,
help="Name of output file",
)
return parser.parse_args()
def load_equation_strings() -> list[str]:
"""Load equation strings from file."""
equations_path = Path(__file__).parent.parent / "data" / "equations.txt"
LOGGER.info("Attempting to load equation strings from %s", equations_path)
with equations_path.open(encoding="UTF-8") as file:
equation_strings = [line.rstrip("\n") for line in file if line.strip()]
LOGGER.info("Successfully loaded equation strings.")
return equation_strings
def equation_implies(proof_state: str) -> bool:
"""Determine whether an equation implies another equation.
Uses the proof state of the potential implication to answer whether an equation
implies another equation. Assumes no unknown implications are true.
"""
return proof_state in {
"explicit_proof_true",
"implicit_proof_true",
"explicit_conjecture_true",
"implicit_conjecture_true",
}
def load_outcomes(
outcomes_path: Path,
) -> tuple[npt.NDArray[np.bool], npt.NDArray[np.int64]]:
"""Load outcomes from file."""
LOGGER.info("Attempting to load outcomes from %s", outcomes_path)
with outcomes_path.open(encoding="UTF-8") as file:
data = json.load(file)
LOGGER.info("Successfully loaded outcomes.")
outcomes: list[list[str]] = data["outcomes"]
outcomes_binary = [
[equation_implies(proof_state) for proof_state in equation_proof_states]
for equation_proof_states in outcomes
]
equations: list[str] = data["equations"]
equation_ids = list(map(name_to_id, equations))
return np.array(
outcomes_binary,
dtype=np.bool,
), np.array(
equation_ids,
dtype=np.int64,
)
def name_to_id(name: str) -> int:
"""Extract the canonical equation number from the equation name."""
return int(name.removeprefix("Equation"))
def equivalence_classes(outcomes: npt.NDArray[np.bool]) -> npt.NDArray[np.int32]:
"""Assign each equation to an equivalence class, based on outcomes."""
mutual_implications = outcomes & outcomes.T
_, equivalence_class_indices = connected_components(
csgraph=mutual_implications,
directed=False,
connection="strong",
)
return equivalence_class_indices
def operations_imbalance(statement: str) -> int:
"""Calculate measure of how imbalanced the equation is."""
sides = statement.split("=")
count1 = sides[0].count("◇")
count2 = sides[1].count("◇")
return max(count1, count2) - min(count1, count2)
def construct_equivalence_class_data(
outcomes: npt.NDArray[np.bool],
equation_ids: npt.NDArray[np.int64],
equation_strings: list[str],
) -> pd.DataFrame:
"""Construct a dataframe with interesting data on each equivalence class."""
LOGGER.info("Processing data for %s equations...", len(outcomes))
equation_strings = [equation_strings[eid - 1] for eid in equation_ids]
distinct_variable_counts = [
len({c for c in equation_string if c.isalpha()})
for equation_string in equation_strings
]
operations_count = [
equation_string.count("◇") for equation_string in equation_strings
]
imbalance = [
operations_imbalance(equation_string) for equation_string in equation_strings
]
eqc = equivalence_classes(outcomes)
equation_data = pd.DataFrame(
data={
EquationDataColumn.EQUATION_NUMBER.value: equation_ids,
EquationDataColumn.STATEMENT.value: pd.Series(
equation_strings,
dtype="string",
),
EquationDataColumn.DISTINCT_VARIABLE_COUNT.value: distinct_variable_counts,
EquationDataColumn.OPERATION_COUNT.value: operations_count,
EquationDataColumn.IMBALANCE.value: imbalance,
EquationDataColumn.EQUIVALENCE_CLASS.value: eqc,
EquationDataColumn.IMPLICATION_COUNT.value: np.sum(outcomes, axis=1),
EquationDataColumn.IMPLIED_BY_COUNT.value: np.sum(outcomes, axis=0),
EquationDataColumn.OUTCOMES_INDEX.value: range(len(outcomes)),
},
)
equivalence_class_data = equation_data.groupby(
EquationDataColumn.EQUIVALENCE_CLASS.value,
).agg(
**{
EquivalenceClassDataColumn.CLASS_NUMBER.value: pd.NamedAgg(
column=EquationDataColumn.EQUATION_NUMBER.value,
aggfunc="first",
),
EquivalenceClassDataColumn.STATEMENT.value: pd.NamedAgg(
column=EquationDataColumn.STATEMENT.value,
aggfunc="first",
),
EquivalenceClassDataColumn.CLASS_SIZE.value: pd.NamedAgg(
column=EquationDataColumn.STATEMENT.value,
aggfunc="count",
),
EquivalenceClassDataColumn.MINIMUM_DISTINCT_VARIABLE_COUNT.value: pd.NamedAgg(
column=EquationDataColumn.DISTINCT_VARIABLE_COUNT.value,
aggfunc="min",
),
EquivalenceClassDataColumn.MINIMUM_OPERATION_COUNT.value: pd.NamedAgg(
column=EquationDataColumn.OPERATION_COUNT.value,
aggfunc="min",
),
EquivalenceClassDataColumn.MINIMUM_IMBALANCE.value: pd.NamedAgg(
column=EquationDataColumn.IMBALANCE.value,
aggfunc="min",
),
EquivalenceClassDataColumn.OUTCOMES_INDEX.value: pd.NamedAgg(
column=EquationDataColumn.OUTCOMES_INDEX.value,
aggfunc="first",
),
},
)
# Filter outcomes by equivalence class
needed_indices = equivalence_class_data[
EquivalenceClassDataColumn.OUTCOMES_INDEX.value
]
outcomes = outcomes[needed_indices, :]
outcomes = outcomes[:, needed_indices]
equivalence_class_data[EquivalenceClassDataColumn.IMPLICATION_COUNT.value] = np.sum(
outcomes,
axis=1,
)
equivalence_class_data[EquivalenceClassDataColumn.IMPLIED_BY_COUNT.value] = np.sum(
outcomes,
axis=0,
)
LOGGER.info("Data processed.")
return equivalence_class_data
def make_scatter(equivalence_class_data: pd.DataFrame) -> go.Figure:
"""Construct a scatter plot from the equivalence class data."""
LOGGER.info("Creating scatter plot...")
color_col = EquivalenceClassDataColumn.MINIMUM_DISTINCT_VARIABLE_COUNT.value
equivalence_class_data[color_col] = equivalence_class_data[color_col].astype(
"string",
)
figure = px.scatter(
data_frame=equivalence_class_data,
x=EquivalenceClassDataColumn.IMPLICATION_COUNT.value,
y=EquivalenceClassDataColumn.IMPLIED_BY_COUNT.value,
color=color_col,
hover_name=[
f"Equivalence class of Equation {n}"
for n in equivalence_class_data[
EquivalenceClassDataColumn.CLASS_NUMBER.value
]
],
hover_data={
EquivalenceClassDataColumn.STATEMENT.value: True,
"count_str": [
f"... [{n} total equations]<br>" if n > 1 else ""
for n in equivalence_class_data[
EquivalenceClassDataColumn.CLASS_SIZE.value
]
],
},
title="Implication Statistics",
log_y=True,
log_x=True,
)
for data in figure.data:
# Customize hover template to look more like the info you get in Graphiti
data.hovertemplate = (
"<b>%{hovertext}</b><br>"
"%{customdata[0]}<br>"
"%{customdata[1]}<br>"
"Implication Count: %{x}<br>"
"Implied By Count: %{y}<extra></extra>"
)
LOGGER.info("Scatter plot created.")
return figure
def main() -> None:
"""Execute script."""
logging.basicConfig(
level=logging.INFO,
handlers=[logging.StreamHandler(sys.stdout)],
)
args = parse_args()
outcomes, equation_ids = load_outcomes(args.file)
equation_strings = load_equation_strings()
equivalence_class_data = construct_equivalence_class_data(
outcomes=outcomes,
equation_ids=equation_ids,
equation_strings=equation_strings,
)
fig = make_scatter(equivalence_class_data)
LOGGER.info("Saving scatter plot to %s...", args.outfile)
fig.write_html(file=args.outfile)
LOGGER.info("Scatter plot saved.")
if __name__ == "__main__":
main()