You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
If one "naively" saves a tf privacy model, it will face an issue.
Let say, you save the model by TF recommended methods, such as tf.saved_model.save(model, "model.tfmodel")
or model.save("model.tfmodel", save_format = 'tf')
File /usr/local/lib/python3.11/dist-packages/keras/src/utils/traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.traceback)
68 # To get the full stack trace, call:
69 # tf.debugging.disable_traceback_filtering()
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File /usr/local/lib/python3.11/dist-packages/keras/src/saving/legacy/serialization.py:365, in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name)
361 cls = object_registration.get_registered_object(
362 class_name, custom_objects, module_objects
363 )
364 if cls is None:
--> 365 raise ValueError(
366 f"Unknown {printable_module_name}: '{class_name}'. "
367 "Please ensure you are using a keras.utils.custom_object_scope "
368 "and that this object is included in the scope. See "
369 "https://www.tensorflow.org/guide/keras/save_and_serialize"
370 "#registering_the_custom_object for details."
371 )
373 cls_config = config["config"]
374 # Check if cls_config is a list. If it is a list, return the class and the
375 # associated class configs for recursively deserialization. This case will
376 # happen on the old version of sequential model (e.g. keras_version ==
377 # "2.0.6"), which is serialized in a different structure, for example
378 # "{'class_name': 'Sequential',
379 # 'config': [{'class_name': 'Embedding', 'config': ...}, {}, ...]}".
Hi, thanks for the open source, a great work.
If one "naively" saves a tf privacy model, it will face an issue.
Let say, you save the model by TF recommended methods, such as
tf.saved_model.save(model, "model.tfmodel")
or
model.save("model.tfmodel", save_format = 'tf')
It will resulted in an error:
`---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[19], line 9
----> 9 loaded_model = tf.keras.models.load_model("model.tfmodel")
File /usr/local/lib/python3.11/dist-packages/keras/src/saving/saving_api.py:262, in load_model(filepath, custom_objects, compile, safe_mode, **kwargs)
254 return saving_lib.load_model(
255 filepath,
256 custom_objects=custom_objects,
257 compile=compile,
258 safe_mode=safe_mode,
259 )
261 # Legacy case.
--> 262 return legacy_sm_saving_lib.load_model(
263 filepath, custom_objects=custom_objects, compile=compile, **kwargs
264 )
File /usr/local/lib/python3.11/dist-packages/keras/src/utils/traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.traceback)
68 # To get the full stack trace, call:
69 #
tf.debugging.disable_traceback_filtering()
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File /usr/local/lib/python3.11/dist-packages/keras/src/saving/legacy/serialization.py:365, in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name)
361 cls = object_registration.get_registered_object(
362 class_name, custom_objects, module_objects
363 )
364 if cls is None:
--> 365 raise ValueError(
366 f"Unknown {printable_module_name}: '{class_name}'. "
367 "Please ensure you are using a
keras.utils.custom_object_scope
"368 "and that this object is included in the scope. See "
369 "https://www.tensorflow.org/guide/keras/save_and_serialize"
370 "#registering_the_custom_object for details."
371 )
373 cls_config = config["config"]
374 # Check if
cls_config
is a list. If it is a list, return the class and the375 # associated class configs for recursively deserialization. This case will
376 # happen on the old version of sequential model (e.g.
keras_version
==377 # "2.0.6"), which is serialized in a different structure, for example
378 # "{'class_name': 'Sequential',
379 # 'config': [{'class_name': 'Embedding', 'config': ...}, {}, ...]}".
ValueError: Unknown optimizer: 'DPOptimizerClass'. Please ensure you are using a
keras.utils.custom_object_scope
and that this object is included in the scope. See https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object for details.`The text was updated successfully, but these errors were encountered: