-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathalt_bn128_ecdsa.cairo
102 lines (79 loc) · 3 KB
/
alt_bn128_ecdsa.cairo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// Implementation of the ECDSA signature verification over the alt_bn128 elliptic curve.
// See information on the curve in alt_bn128_def.cairo.
//
// The generator point for the ECDSA is:
// G = (0x1, 0x2)
from bigint import BASE, BigInt3, bigint_mul, nondet_bigint3
from alt_bn128_def import N0, N1, N2
from alt_bn128_g1 import G1Point, ec_add, ec_mul
from starkware.cairo.common.math import assert_nn_le, assert_not_zero
// Computes x * s^(-1) modulo the size of the elliptic curve (N).
func mul_s_inv{range_check_ptr}(x: BigInt3, s: BigInt3) -> (res: BigInt3) {
%{
from starkware.cairo.common.cairo_secp.secp_utils import pack
from starkware.python.math_utils import div_mod, safe_div
n = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
x = pack(ids.x, PRIME) % n
s = pack(ids.s, PRIME) % n
value = res = div_mod(x, s, n)
%}
let (res) = nondet_bigint3();
%{ value = k = safe_div(res * s - x, n) %}
let (k) = nondet_bigint3();
let (res_s) = bigint_mul(res, s);
let n = BigInt3(N0, N1, N2);
let (k_n) = bigint_mul(k, n);
// We should now have res_s = k_n + x. Since the numbers are in unreduced form,
// we should handle the carry.
tempvar carry1 = (res_s.d0 - k_n.d0 - x.d0) / BASE;
assert [range_check_ptr + 0] = carry1 + 2 ** 127;
tempvar carry2 = (res_s.d1 - k_n.d1 - x.d1 + carry1) / BASE;
assert [range_check_ptr + 1] = carry2 + 2 ** 127;
tempvar carry3 = (res_s.d2 - k_n.d2 - x.d2 + carry2) / BASE;
assert [range_check_ptr + 2] = carry3 + 2 ** 127;
tempvar carry4 = (res_s.d3 - k_n.d3 + carry3) / BASE;
assert [range_check_ptr + 3] = carry4 + 2 ** 127;
assert res_s.d4 - k_n.d4 + carry4 = 0;
let range_check_ptr = range_check_ptr + 4;
return (res=res);
}
// Verifies that val is in the range [1, N).
func validate_signature_entry{range_check_ptr}(val: BigInt3) {
assert_nn_le(val.d2, N2);
assert_nn_le(val.d1, BASE - 1);
assert_nn_le(val.d0, BASE - 1);
if (val.d2 == N2) {
if (val.d1 == N1) {
assert_nn_le(val.d0, N0 - 1);
return ();
}
assert_nn_le(val.d1, N1 - 1);
return ();
}
if (val.d2 == 0) {
if (val.d1 == 0) {
// Make sure val > 0.
assert_not_zero(val.d0);
return ();
}
}
return ();
}
// Verifies a ECDSA signature.
func verify_ecdsa{range_check_ptr}(
public_key_pt: G1Point, msg_hash: BigInt3, r: BigInt3, s: BigInt3
) {
alloc_locals;
validate_signature_entry(r);
validate_signature_entry(s);
let gen_pt: G1Point = G1Point(x=BigInt3(1, 0, 0), y=BigInt3(2, 0, 0));
// Compute u1 and u2.
let (u1: BigInt3) = mul_s_inv(msg_hash, s);
let (u2: BigInt3) = mul_s_inv(r, s);
let (gen_u1) = ec_mul(gen_pt, u1);
let (pub_u2) = ec_mul(public_key_pt, u2);
let (res) = ec_add(gen_u1, pub_u2);
// The following assert also implies that res is not the zero point.
assert res.x = r;
return ();
}