-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
62 lines (40 loc) · 1.91 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Flatten())
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1/255)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('keras training',
target_size = (64, 64),
batch_size = 3,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('keras test',
target_size = (64, 64),
batch_size = 3,
class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 2984,
epochs = 10,
validation_data = test_set,
validation_steps = 416)
training_set.class_indices
test_set.class_indices
import numpy as np
from keras.preprocessing import image
test_image=image.load_img("single_prediction\download (2).jpeg",target_size=(64,64))
test_image
numpy=image.img_to_array(test_image)
test_image=np.expand_dims(test_image,axis=0)
result=classifier.predict(test_image)
training_set.class_indices