forked from Auquan/auquantoolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pair_trading_params.py
254 lines (218 loc) · 11.8 KB
/
pair_trading_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from backtester.trading_system_parameters import TradingSystemParameters
from datetime import timedelta
from backtester.dataSource.yahoo_data_source import YahooStockDataSource
from backtester.dataSource.nse_data_source import NSEStockDataSource
from backtester.executionSystem.simple_execution_system import SimpleExecutionSystem
from backtester.executionSystem.pair_execution_system import PairExecutionSystem
from backtester.orderPlacer.backtesting_order_placer import BacktestingOrderPlacer
from backtester.trading_system import TradingSystem
from backtester.constants import *
from my_custom_feature import MyCustomFeature
from backtester.timeRule.us_time_rule import USTimeRule
from backtester.features.feature import Feature
import pandas as pd
import numpy as np
PAIRIDS = {1 : ['AAPL', 'GOOG'],
2 : ['ADBE', 'MSFT']}
instrumentIds = ['AAPL', 'ADBE', 'GOOG', 'MSFT']
class MyTradingParams(TradingSystemParameters):
'''
Returns an instance of class DataParser. Source of data for instruments
'''
def getDataParser(self):
startDateStr = '2007/12/31'
endDateStr = '2017/12/31'
return YahooStockDataSource(cachedFolderName='yahooData/',
dataSetId='testPairsTrading',
instrumentIds=instrumentIds,
startDateStr=startDateStr,
endDateStr=endDateStr)
'''
This is a way to use any custom features you might have made.
Returns a dictionary where
key: featureId to access this feature (Make sure this doesnt conflict with any of the pre defined feature Ids)
value: Your custom Class which computes this feature. The class should be an instance of Feature
Eg. if your custom class is MyCustomFeature, and you want to access this via featureId='my_custom_feature',
you will import that class, and return this function as {'my_custom_feature': MyCustomFeature}
'''
def getBenchmark(self):
return None
def getCustomFeatures(self):
return {'my_custom_feature': MyCustomFeature,
'pairvalue_prediction': PairValuePredictionFeature}
def getTimeRuleForUpdates(self):
return USTimeRule(startDate = '2007/12/31',
endDate = '2017/12/31')
'''
Returns a dictionary with:
key: string representing instrument type. Right now INSTRUMENT_TYPE_OPTION, INSTRUMENT_TYPE_STOCK, INSTRUMENT_TYPE_FUTURE
value: Array of instrument feature config dictionaries
feature config Dictionary has the following keys:
featureId: a string representing the type of feature you want to use
featureKey: {optional} a string representing the key you will use to access the value of this feature.
If not present, will just use featureId
params: {optional} A dictionary with which contains other optional params if needed by the feature
Example:
positionConfigDict = {'featureId': 'position'}
vwapConfigDict = {'featureKey': 'price',
'featureId': 'vwap'}
movingAvg_30Dict = {'featureKey': 'mv_avg_30',
'featureId': 'moving_average',
'params': {'days': 30}}
movingAvg_90Dict = {'featureKey': 'mv_avg_90',
'featureId': 'moving_average',
'params': {'days': 90}}
return {INSTRUMENT_TYPE_FUTURE: [positionConfigDict, vwapConfigDict],
INSTRUMENT_TYPE_STOCK: [positionConfigDict, movingAvg_30Dict, movingAvg_90Dict]}
For each future instrument, you will have features keyed by position and price.
For each stock instrument, you will have features keyed by position, mv_avg_30, mv_avg_90
'''
def getInstrumentFeatureConfigDicts(self):
# ADD RELEVANT FEATURES HERE
ma1Dict = {'featureKey': 'ma_90',
'featureId': 'moving_average',
'params': {'period': 90,
'featureName': 'adjClose'}}
ma2Dict = {'featureKey': 'ma_15',
'featureId': 'moving_average',
'params': {'period': 15,
'featureName': 'adjClose'}}
sdevDict = {'featureKey': 'ma_15',
'featureId': 'moving_average',
'params': {'period': 15,
'featureName': 'adjClose'}}
pairValuePrediction = {'featureKey': 'prediction',
'featureId': 'pairvalue_prediction',
'params': {}}
return {INSTRUMENT_TYPE_STOCK: [pairValuePrediction]}
'''
Returns an array of market feature config dictionaries
market feature config Dictionary has the following keys:
featureId: a string representing the type of feature you want to use
featureKey: a string representing the key you will use to access the value of this feature.this
params: A dictionary with which contains other optional params if needed by the feature
'''
def getMarketFeatureConfigDicts(self):
# ADD RELEVANT FEATURES HERE
ratio1Dict = {'featureKey': 'ratio1',
'featureId': 'ratio',
'params': {'instrumentId1': PAIRIDS[1][0],
'instrumentId2': PAIRIDS[1][1],
'featureName': 'adjClose'}}
ratio2Dict = {'featureKey': 'ratio2',
'featureId': 'ratio',
'params': {'instrumentId1': PAIRIDS[2][0],
'instrumentId2': PAIRIDS[2][1],
'featureName': 'adjClose'}}
ma11Dict = {'featureKey': 'ma_r1_90',
'featureId': 'moving_average',
'params': {'period': 90,
'featureName': 'ratio1'}}
ma21Dict = {'featureKey': 'ma_r1_10',
'featureId': 'moving_average',
'params': {'period': 10,
'featureName': 'ratio1'}}
sdev1Dict = {'featureKey': 'sdev_r1_90',
'featureId': 'moving_sdev',
'params': {'period': 90,
'featureName': 'ratio1'}}
ma12Dict = {'featureKey': 'ma_r2_90',
'featureId': 'moving_average',
'params': {'period': 90,
'featureName': 'ratio2'}}
ma22Dict = {'featureKey': 'ma_r2_10',
'featureId': 'moving_average',
'params': {'period': 10,
'featureName': 'ratio2'}}
sdev2Dict = {'featureKey': 'sdev_r2_90',
'featureId': 'moving_sdev',
'params': {'period': 90,
'featureName': 'ratio2'}}
correl1Dict = {'featureKey': 'correl_r1_90',
'featureId': 'cross_instrument_correlation',
'params': {'period': 90,
'instrumentId1': PAIRIDS[1][0],
'instrumentId2': PAIRIDS[1][1],
'featureName': 'adjClose'}}
correl2Dict = {'featureKey': 'correl_r2_90',
'featureId': 'cross_instrument_correlation',
'params': {'period': 90,
'instrumentId1': PAIRIDS[2][0],
'instrumentId2': PAIRIDS[2][1],
'featureName': 'adjClose'}}
# customFeatureDict = {'featureKey': 'custom_mrkt_feature',
# 'featureId': 'my_custom_mrkt_feature',
# 'params': {'param1': 'value1'}}
return [ratio1Dict, ma11Dict, ma21Dict, sdev1Dict, correl1Dict,
ratio2Dict, ma12Dict, ma22Dict, sdev2Dict, correl2Dict]
'''
Returns the type of execution system we want to use. Its an implementation of the class ExecutionSystem
It converts prediction to intended positions for different instruments.
'''
def getExecutionSystem(self):
# return PairExecutionSystem(pair=[instrumentIds[0], instrumentIds[1]],
# pairRatio=0.3,
# pairEnter_threshold=0.7,
# pairExit_threshold=0.55,
# pairLongLimit=20000,
# pairShortLimit=20000,
# pairCapitalUsageLimit = 0.10*self.getStartingCapital(),
# pairLotSize=200)
return SimpleExecutionSystem(enter_threshold=0.7, exit_threshold=0.55,
longLimit=10000,shortLimit=10000, capitalUsageLimit=.85,
enterlotSize=10000, exitlotSize = 10000, limitType='D', price='adjClose')
# enter_threshold=0.7,
# exit_threshold=0.55,
# longLimit={'ADANIPOWER.BO': 100,'RPOWER.BO': 100 * ratio},
# shortLimit={'ADANIPOWER.BO': -100,'RPOWER.BO': -100 * ratio},
# lotSize={'ADANIPOWER.BO': 10,'RPOWER.BO': 10 * ratio})
'''
Returns the type of order placer we want to use. its an implementation of the class OrderPlacer.
It helps place an order, and also read confirmations of orders being placed.
For Backtesting, you can just use the BacktestingOrderPlacer, which places the order which you want, and automatically confirms it too.
'''
def getOrderPlacer(self):
return BacktestingOrderPlacer()
'''
Returns the amount of lookback data you want for your calculations. The historical market features and instrument features are only
stored upto this amount.
This number is the number of times we have updated our features.
'''
def getLookbackSize(self):
return 90
class PairValuePredictionFeature(Feature):
@classmethod
def computeForInstrument(cls, updateNum, time, featureParams, featureKey, instrumentManager):
# def computeForMarket(cls, updateNum, time, featureParams, featureKey, currentMarketFeatures, instrumentManager):
lookbackMarketFeatures = instrumentManager.getDataDf()
prediction = pd.Series(0.5, index = instrumentManager.getAllInstrumentsByInstrumentId())
if len(lookbackMarketFeatures)>0:
currentMarketFeatures = lookbackMarketFeatures.iloc[-1]
# IMPLEMENT THIS
z_score = pd.Series(index = PAIRIDS.keys())
for i in PAIRIDS.keys():
if currentMarketFeatures['sdev_r%s_90'%i] != 0:
z_score[i] = (currentMarketFeatures['ma_r%s_10'%i] - currentMarketFeatures['ma_r%s_90'%i]) / currentMarketFeatures['sdev_r%s_90'%i]
else:
z_score[i] = 0
instrument = instrumentManager.getInstrument(instrumentIds[0])
#z_score = z_score + instrument.getDataDf()['position']/20000
if currentMarketFeatures['correl_r%s_90'%i] < 0.5:
z_score[i] = 0
if z_score[i] > 1:
prediction[PAIRIDS[i][0]] = 0
prediction[PAIRIDS[i][1]] = 1
elif z_score[i] < -1:
prediction[PAIRIDS[i][0]] = 1
prediction[PAIRIDS[i][1]] = 0
elif (z_score[i] > 0.5) or (z_score[i] < -0.5) :
prediction[PAIRIDS[i][0]] = 0.75
prediction[PAIRIDS[i][1]] = 0.25
else:
prediction[PAIRIDS[i][0]] = 0.5
prediction[PAIRIDS[i][1]] = 0.5
return prediction
if __name__ == "__main__":
tsParams = MyTradingParams()
tradingSystem = TradingSystem(tsParams)
tradingSystem.startTrading(onlyAnalyze=False)