diff --git a/.dvc/.gitignore b/.dvc/.gitignore deleted file mode 100644 index c21593608..000000000 --- a/.dvc/.gitignore +++ /dev/null @@ -1,9 +0,0 @@ -/config.local -/cache -/updater -/lock -/updater.lock -/state-journal -/state-wal -/state -/tmp \ No newline at end of file diff --git a/.dvc/config b/.dvc/config deleted file mode 100644 index 83f03c0bb..000000000 --- a/.dvc/config +++ /dev/null @@ -1,14 +0,0 @@ -[core] - remote = gdrive3 -['remote "local"'] - url = ../../suite2p_data -['remote "gdrive3"'] - url = gdrive://0ACw_QYaWTX7mUk9PVA - gdrive_client_id = 81639168383-ardpa0rrsolgo9geqekdeef5k78n3hh2.apps.googleusercontent.com - gdrive_client_secret = _2kMgM7BoFg27ID9zSNmdpy_ - gdrive_user_credentials_file = tmp/gdrive-user-credentials.json -['remote "gdrive-travis"'] - url = gdrive://0ACw_QYaWTX7mUk9PVA - gdrive_use_service_account = true - gdrive_service_account_email = travis4@suite2p-testdata-dvc.iam.gserviceaccount.com - gdrive_service_account_p12_file_path = creds/suite2p-testdata-dvc-b0d23791539c.p12 diff --git a/.dvc/creds/suite2p-testdata-dvc-b0d23791539c.p12 b/.dvc/creds/suite2p-testdata-dvc-b0d23791539c.p12 deleted file mode 100644 index cd82c0cc9..000000000 Binary files a/.dvc/creds/suite2p-testdata-dvc-b0d23791539c.p12 and /dev/null differ diff --git a/.dvc/plots/confusion.json b/.dvc/plots/confusion.json deleted file mode 100644 index 70a3b0dd5..000000000 --- a/.dvc/plots/confusion.json +++ /dev/null @@ -1,30 +0,0 @@ -{ - "$schema": "https://vega.github.io/schema/vega-lite/v4.json", - "data": { - "values": "" - }, - "title": "", - "mark": "rect", - "encoding": { - "x": { - "field": "", - "type": "nominal", - "sort": "ascending", - "title": "" - }, - "y": { - "field": "", - "type": "nominal", - "sort": "ascending", - "title": "" - }, - "color": { - "aggregate": "count", - "type": "quantitative" - }, - "facet": { - "field": "rev", - "type": "nominal" - } - } -} diff --git a/.dvc/plots/default.json b/.dvc/plots/default.json deleted file mode 100644 index 7885140fa..000000000 --- a/.dvc/plots/default.json +++ /dev/null @@ -1,29 +0,0 @@ -{ - "$schema": "https://vega.github.io/schema/vega-lite/v4.json", - "data": { - "values": "" - }, - "title": "", - "mark": { - "type": "line" - }, - "encoding": { - "x": { - "field": "", - "type": "quantitative", - "title": "" - }, - "y": { - "field": "", - "type": "quantitative", - "title": "", - "scale": { - "zero": false - } - }, - "color": { - "field": "rev", - "type": "nominal" - } - } -} diff --git a/.dvc/plots/scatter.json b/.dvc/plots/scatter.json deleted file mode 100644 index fb1ea4166..000000000 --- a/.dvc/plots/scatter.json +++ /dev/null @@ -1,27 +0,0 @@ -{ - "$schema": "https://vega.github.io/schema/vega-lite/v4.json", - "data": { - "values": "" - }, - "title": "", - "mark": "point", - "encoding": { - "x": { - "field": "", - "type": "quantitative", - "title": "" - }, - "y": { - "field": "", - "type": "quantitative", - "title": "", - "scale": { - "zero": false - } - }, - "color": { - "field": "rev", - "type": "nominal" - } - } -} diff --git a/.dvc/plots/smooth.json b/.dvc/plots/smooth.json deleted file mode 100644 index 79d0b38ab..000000000 --- a/.dvc/plots/smooth.json +++ /dev/null @@ -1,39 +0,0 @@ -{ - "$schema": "https://vega.github.io/schema/vega-lite/v4.json", - "data": { - "values": "" - }, - "title": "", - "mark": { - "type": "line" - }, - "encoding": { - "x": { - "field": "", - "type": "quantitative", - "title": "" - }, - "y": { - "field": "", - "type": "quantitative", - "title": "", - "scale": { - "zero": false - } - }, - "color": { - "field": "rev", - "type": "nominal" - } - }, - "transform": [ - { - "loess": "", - "on": "", - "groupby": [ - "rev" - ], - "bandwidth": 0.3 - } - ] -} diff --git a/.github/ISSUE_TEMPLATE/bug_report.yml b/.github/ISSUE_TEMPLATE/bug_report.yml new file mode 100644 index 000000000..313f94367 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug_report.yml @@ -0,0 +1,60 @@ +name: Bug report +description: Report a bug. +title: "BUG: " + +body: +- type: markdown + attributes: + value: > + Thank you for taking the time to file a bug report. Before creating a new + issue, please make sure to take a few minutes to check if this issue has been + brought up before. + +- type: textarea + attributes: + label: "Describe the issue:" + validations: + required: true + +- type: textarea + attributes: + label: "Reproduce the code example:" + description: > + A short code example that reproduces the problem/missing feature. It + should be self-contained, i.e., can be copy-pasted into the Python + interpreter or run as-is via `python myproblem.py`. Please include as much + detail you can about the ops.npy that was used. + placeholder: | + import suite2p + << your code here >> + render: python + validations: + required: true + +- type: textarea + attributes: + label: "Error message:" + description: > + Please include full error message, if any. + placeholder: | + << Full traceback starting from `Traceback: ...` >> + render: shell + +- type: textarea + attributes: + label: "Version information:" + description: > + Output from running `suite2p --version` in your command line. + validations: + required: true + +- type: textarea + attributes: + label: "Context for the issue:" + description: | + Please explain how this issue affects your work or why it should be prioritized. + placeholder: | + << your explanation here >> + validations: + required: false + diff --git a/.github/ISSUE_TEMPLATE/documentation_issue.yml b/.github/ISSUE_TEMPLATE/documentation_issue.yml new file mode 100644 index 000000000..66eea639e --- /dev/null +++ b/.github/ISSUE_TEMPLATE/documentation_issue.yml @@ -0,0 +1,22 @@ +name: Documentation +description: Report an issue related to suite2p documentation. +title: "DOC: " + +body: +- type: textarea + attributes: + label: "Issue with current documentation:" + description: > + Please make sure to leave a reference to the document/code you're + referring to. Please report where in https://suite2p.readthedocs.io/ you see this issue. + validations: + required: true + +- type: textarea + attributes: + label: "Idea or request for content:" + description: > + Please describe as clearly as possible what topics you think are missing + from the current documentation. Make sure to check + https://colab.research.google.com/github/MouseLand/suite2p/blob/main/jupyter/run_suite2p_colab_2021.ipynb + and see if this documentation should be added there. diff --git a/.github/ISSUE_TEMPLATE/feature_request.yml b/.github/ISSUE_TEMPLATE/feature_request.yml new file mode 100644 index 000000000..addc1b490 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/feature_request.yml @@ -0,0 +1,27 @@ +name: Feature request +description: Suggest an additional feature you'd like to see in suite2p. +title: "FEATURE: " + +body: +- type: textarea + attributes: + label: "Feature you'd like to see:" + description: > + Provide a clear and concise description of what problem you'd like this feature to address. + Then, provide a clear description of the solution you'd like to see. + validations: + required: true + +- type: textarea + attributes: + label: "Attempted alternative approaches:" + description: > + Provide a description of alternative approaches you've tried. + validations: + required: true + +- type: textarea + attributes: + label: "Additional Context" + description: > + Add any other context or screenshots about the feature request here. diff --git a/.github/ISSUE_TEMPLATE/installation_issue.yml b/.github/ISSUE_TEMPLATE/installation_issue.yml new file mode 100644 index 000000000..236b71db3 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/installation_issue.yml @@ -0,0 +1,22 @@ +name: Installation issue +description: Report an issue with installation for suite2p. +title: "" + +body: + +- type: textarea + attributes: + label: "Describe the issue:" + description: > + Let us know what issues you are having with installation. + validations: + required: true + +- type: textarea + attributes: + label: "Provide environment info:" + description: > + Please run `conda info` in your suite2p environment in your terminal/anaconda prompt to let us know the versions of your packages. + validations: + required: true + diff --git a/.github/workflows/test_and_deploy.yml b/.github/workflows/test_and_deploy.yml index 3d8a9fa6a..e3efee390 100644 --- a/.github/workflows/test_and_deploy.yml +++ b/.github/workflows/test_and_deploy.yml @@ -22,7 +22,7 @@ jobs: fail-fast: false matrix: platform: [ubuntu-latest, windows-latest, macos-latest] - python-version: [3.8] + python-version: [3.8, 3.9] steps: - uses: actions/checkout@v2 @@ -32,14 +32,17 @@ jobs: with: python-version: ${{ matrix.python-version }} + # these libraries, along with pytest-xvfb (added in the `deps` in tox.ini), # enable testing on Qt on linux - name: Install Linux libraries if: runner.os == 'Linux' run: | + sudo apt-get update sudo apt-get install -y libdbus-1-3 libxkbcommon-x11-0 libxcb-icccm4 \ libxcb-image0 libxcb-keysyms1 libxcb-randr0 libxcb-render-util0 \ - libxcb-xinerama0 libxcb-xinput0 libxcb-xfixes0 pkg-config libhdf5-103 libhdf5-dev + libxcb-xinerama0 libxcb-xinput0 libxcb-xfixes0 pkg-config libhdf5-103 libhdf5-dev \ + libegl1 # strategy borrowed from vispy for installing opengl libs on windows - name: Install Windows OpenGL if: runner.os == 'Windows' @@ -54,25 +57,24 @@ jobs: run: | python -m pip install --upgrade pip pip install wheel setuptools tox tox-gh-actions - pip install dvc==1.11.0 pydrive2 - # For debugging purposes, allows one to ssh into host machine. - # Follow instructions in https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account - # to add your ssh keys. - # MAKE SURE TO COMMENT OUT IF NOT DEBUGGING! -# - name: Setup upterm session -# if: runner.os == 'macOS' -# uses: lhotari/action-upterm@v1 -# with: -# ## limits ssh access and adds the ssh public key for the user which triggered the workflow -# limit-access-to-actor: true -# ## limits ssh access and adds the ssh public keys of the listed GitHub users -# limit-access-to-users: chriski777, carsen-stringer + pip install pydrive2 py # Added py due to pytest tox issues requiring py module. - name: Test with tox run: tox env: - PLATFORM: ${{ matrix.platform }} - + PLATFORM: ${{ matrix.platform }} + # ONLY UNCOMMENT SECTION BELOW FOR DEBUGGING PURPOSES: allows one to ssh into host machine. + # Follow instructions in https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account + # to add your ssh keys. +# - name: Job failed. Activating debugging mode via up-term. +# if: ${{ failure() }} +# uses: lhotari/action-upterm@v1 +# with: +# ## limits ssh access and adds the ssh public key for the user which triggered the workflow +# limit-access-to-actor: true +# ## limits ssh access and adds the ssh public keys of the listed GitHub users +# limit-access-to-users: chriski777, carsen-stringera + - name: Coverage # Only run coverage once if: runner.os == 'Linux' diff --git a/.readthedocs.yml b/.readthedocs.yml index fdb8de367..e8ccddd25 100644 --- a/.readthedocs.yml +++ b/.readthedocs.yml @@ -18,7 +18,7 @@ formats: # specify dependencies python: - version: 3.7 + version: 3.8 install: - method: pip path: . diff --git a/.style.yapf b/.style.yapf new file mode 100644 index 000000000..55240b9b8 --- /dev/null +++ b/.style.yapf @@ -0,0 +1,4 @@ +[style] +based_on_style = google +split_before_named_assigns = false +column_limit = 88 diff --git a/.travis.yml b/.travis.yml deleted file mode 100644 index 3072537aa..000000000 --- a/.travis.yml +++ /dev/null @@ -1,70 +0,0 @@ -language: python -jobs: - include: - - name: Python 3.7.1 on Linux - dist: xenial - services: - - xvfb - python: 3.7 - before_install: - - wget http://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O - miniconda.sh - - bash ./miniconda.sh -b - - export PATH=~/miniconda3/bin:$PATH - - conda update --yes conda - - name: Python 3.7.1 on Linux Bionic - dist: bionic - services: - - xvfb - python: 3.7 - before_install: - - wget http://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O - miniconda.sh - - bash ./miniconda.sh -b - - export PATH=~/miniconda3/bin:$PATH - - conda update --yes conda - - name: Python 3.7.7 on macOS - os: osx - osx_image: xcode12 - language: shell - before_install: - - wget https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh - -O miniconda.sh - - bash ./miniconda.sh -b - - export PATH=~/miniconda3/bin:$PATH - - conda update --yes conda - - name: Python 3.7.7 on Windows - os: windows - language: shell - before_install: - - choco install python --version 3.7.7 - - export MINICONDA=/c/miniconda - - MINICONDA_WIN=$(cygpath --windows $MINICONDA) - - choco install openssl.light - - choco install miniconda3 --params="'/AddToPath:0 /D:$MINICONDA_WIN'" - - PATH=$(echo "$PATH" | sed -e 's|:/c/ProgramData/chocolatey/bin||') - - PATH=$(echo "$PATH" | sed -e 's|:/c/ProgramData/chocolatey/lib/mingw/tools/install/mingw64/bin||') - - source $MINICONDA/Scripts/activate - - source $MINICONDA/etc/profile.d/conda.sh - allow_failures: - - os: osx - - dist: bionic - - os: windows -install: -- conda env create -f environment.yml -- source activate suite2p -- pip install .[data,nwb] -- dvc pull -r gdrive-travis -- pip install coveralls -script: -- coverage run --source=suite2p --omit=suite2p/gui/* setup.py test -after_success: coveralls -deploy: - skip_cleanup: true - skip_existing: true - provider: pypi - user: __token__ - password: - secure: iIUxK/XrLFS0yu7MwkXaAfuX0/CmaIVe+vFMOOdw+b1P1Yx+Lj+t074wrUS7/Ky0ZO9gY8PELnvqF+HQNbRUprMOl+P+4rdpJ5lw4LPWOMUSD14jiTaal3hYICOZSs/0sKFLYga0+/aCEYhOFfKOsPthlE6VDpUnmCvihGwZAFItnWJdq+/hKkLjOgLQbTCxLlQrudUYDRJWzgomoStjYt/B53YaoY2U2IC/RqfI5e2kOeNTK4qxWC6RnpjA81w0KMywkbWeSwB372j2+z180nvXEvsdln/QIq1bCpM3saKf2JjDDeKpq8r16sJ/pIr2OPldRMTa/UE6CvkssGWy7qA8lNbw/uwnMFIr/yvJboLJk/jG/4JjUWtJnNpDyzVt/o1DbimQDlQiacTwGmHlo4E/DrGQpbneSTU7Dfjg6ka5mvoxp2htMRRDfX1m9rdc/B7yjS49dN34GrWjcJiq24mlhYuACCLjZJvNF/CSUJg5JqR9aXpNjak0NOPs/JDs0mDWZNfdbcjff3+RXNEdpQVqYvayJsmEubnUoIPNm671Dc4xab5saEaxeS6oxwabCThQNhswksDEfzWtW8/7oAv2DfjfBEUClvjV6iD+NqWsRtotUrOXfSA/I6KjVsXVUBh+PhePwKceCT+M0Dp5WiRNbog6S7uEcCd2Nd0as38= - on: - tags: true diff --git a/README.md b/README.md index 9be9f9733..d36167386 100644 --- a/README.md +++ b/README.md @@ -1,11 +1,11 @@ # suite2p sweet two pea -[![Documentation Status](https://readthedocs.org/projects/suite2p/badge/?version=dev)](https://suite2p.readthedocs.io/en/dev/?badge=dev) -[![Build Status](https://travis-ci.org/Mouseland/suite2p.svg?branch=dev)](https://travis-ci.org/Mouseland/suite2p) -[![Coverage Status](https://coveralls.io/repos/github/MouseLand/suite2p/badge.svg?branch=dev)](https://coveralls.io/github/MouseLand/suite2p?branch=dev) +[![Documentation Status](https://readthedocs.org/projects/suite2p/badge/?version=latest)](https://suite2p.readthedocs.io/en/latest/?badge=latest) +![tests](https://github.com/mouseland/suite2p/actions/workflows/test_and_deploy.yml/badge.svg) +[![codecov](https://codecov.io/gh/MouseLand/suite2p/branch/main/graph/badge.svg?token=OJEC3mty85)](https://codecov.io/gh/MouseLand/suite2p) [![PyPI version](https://badge.fury.io/py/suite2p.svg)](https://badge.fury.io/py/suite2p) -[![Downloads](https://pepy.tech/badge/suite2p)](https://pepy.tech/project/suite2p) -[![Downloads](https://pepy.tech/badge/suite2p/month)](https://pepy.tech/project/suite2p) +[![Downloads](https://static.pepy.tech/badge/suite2p)](https://pepy.tech/project/suite2p) +[![Downloads](https://static.pepy.tech/badge/suite2p/month)](https://pepy.tech/project/suite2p) [![Python version](https://img.shields.io/pypi/pyversions/suite2p)](https://pypistats.org/packages/suite2p) [![Licence: GPL v3](https://img.shields.io/github/license/MouseLand/suite2p)](https://github.com/MouseLand/suite2p/blob/main/LICENSE) [![Contributors](https://img.shields.io/github/contributors-anon/MouseLand/suite2p)](https://github.com/MouseLand/suite2p/graphs/contributors) @@ -15,8 +15,8 @@ [![GitHub forks](https://img.shields.io/github/forks/MouseLand/suite2p?style=social)](https://github.com/MouseLand/suite2p/) -Pipeline for processing two-photon calcium imaging data. -Copyright (C) 2018 Howard Hughes Medical Institute Janelia Research Campus +Pipeline for processing two-photon calcium imaging data. +Copyright (C) 2018 Howard Hughes Medical Institute Janelia Research Campus suite2p includes the following modules: @@ -25,12 +25,12 @@ suite2p includes the following modules: * Spike detection * Visualization GUI -This code was written by Carsen Stringer and Marius Pachitariu. +This code was written by Carsen Stringer and Marius Pachitariu. For support, please open an [issue](https://github.com/MouseLand/suite2p/issues). -The reference paper is [here](https://www.biorxiv.org/content/early/2017/07/20/061507). -The deconvolution algorithm is based on [this paper](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005423), with settings based on [this paper](http://www.jneurosci.org/content/early/2018/08/06/JNEUROSCI.3339-17.2018). -You can now run suite2p in google colab, no need to locally install: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MouseLand/suite2p/blob/main/jupyter/run_suite2p_colab_2021.ipynb). Note you do not have access to the GUI via google colab, but you can download the processed files and view them locally in the GUI. +The reference paper is [here](https://www.biorxiv.org/content/early/2017/07/20/061507). The deconvolution algorithm is based on [this paper](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005423), with settings based on [this paper](http://www.jneurosci.org/content/early/2018/08/06/JNEUROSCI.3339-17.2018). + +You can now run suite2p in google colab, no need to locally install (although we recommend doing so eventually): [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MouseLand/suite2p/blob/main/jupyter/run_suite2p_colab_2023.ipynb). Note you do not have access to the GUI via google colab, but you can download the processed files and view them locally in the GUI. See this **twitter [thread](https://twitter.com/marius10p/status/1032804776633880583)** for GUI demonstrations. @@ -38,6 +38,15 @@ The matlab version is available [here](https://github.com/cortex-lab/Suite2P). N Lectures on how suite2p works are available [here](https://youtu.be/HpL5XNtC5wU?list=PLutb8FMs2QdNqL4h4NrNhSHgLGk4sXarb). +**Note on pull requests**: we accept very few pull requests due to the maintenance efforts required to support new code, and we do not accept pull requests from automated code checkers. If you wrote code that interfaces/changes suite2p behavior, a common approach would be to keep that in a fork and pull periodically from the main branch to make sure you have the latest updates. + +### CITATION + +If you use this package in your research, please cite the [paper](https://www.biorxiv.org/content/early/2017/07/20/061507): + +Pachitariu, M., Stringer, C., Schröder, S., Dipoppa, M., Rossi, L. F., Carandini, M., & Harris, K. D. (2016). Suite2p: beyond 10,000 neurons with standard two-photon microscopy. BioRxiv, 061507. + + ## Read the Documentation at https://suite2p.readthedocs.io/ ## Installation @@ -53,15 +62,16 @@ Lectures on how suite2p works are available [here](https://youtu.be/HpL5XNtC5wU? -### Installation for Linux, Windows, and MacOS (intel processors) machines 1. Install an [Anaconda](https://www.anaconda.com/download/) distribution of Python -- Choose **Python 3.8** and your operating system. Note you might need to use an anaconda prompt if you did not add anaconda to the path. 2. Open an anaconda prompt / command prompt with `conda` for **python 3** in the path -3. Create a new environment with `conda create --name suite2p python=3.8`. +3. Create a new environment with `conda create --name suite2p python=3.9`. 4. To activate this new environment, run `conda activate suite2p` -5. To install the minimal version of suite2p, run `python -m pip install suite2p`. -6. To install the GUI and NWB dependencies, run `python -m pip install suite2p[all]`. If you're on a zsh server, you may need to use `' '` around the suite2p[all] call: `python -m pip install 'suite2p[all]'`. -6. Now run `python -m suite2p` and you're all set. -7. Running the command `suite2p --version` in the terminal will print the install version of suite2p. +5. (Option 1) You can install the minimal version of suite2p, run `python -m pip install suite2p`. +6. (Option 2) You can install the GUI version with `python -m pip install suite2p[gui]`. If you're on a zsh server, you may need to use `' '` around the suite2p[gui] call: `python -m pip install 'suite2p[gui]'`. This also installs the NWB dependencies. +7. Now run `python -m suite2p` and you're all set. +8. Running the command `suite2p --version` in the terminal will print the install version of suite2p. + +For additional dependencies, like h5py, NWB, Scanbox, and server job support, use the command `python -m pip install suite2p[io]`. If you have an older `suite2p` environment you can remove it with `conda env remove -n suite2p` before creating a new one. @@ -72,12 +82,11 @@ To **upgrade** the suite2p (package [here](https://pypi.org/project/suite2p/)), pip install --upgrade suite2p ~~~~ -### Installation for Macs with Apple Silicon chips (e.g., M1) -1. Set up a Rosetta terminal following step 1 in this [link](https://dev.to/courier/tips-and-tricks-to-setup-your-apple-m1-for-development-547g). -2. Open up the newly created Rosetta terminal and follow steps 1 & 2 in the installation section [above](#installation_section) to install anaconda. -3. Use the following command `CONDA_SUBDIR=osx-64 conda create --name suite2p python=3.8` -4. Follow steps 4-7 in the installation section [above](#installation_section) to install the `suite2p` package. +### Dependencies +This package relies on the awesomeness of [pyqtgraph](http://pyqtgraph.org/), [PyQt6](http://pyqt.sourceforge.net/Docs/PyQt6/), [torch](http://pytorch.org), [numpy](http://www.numpy.org/), [numba](http://numba.pydata.org/numba-doc/latest/user/5minguide.html), [scanimage-tiff-reader](https://vidriotech.gitlab.io/scanimagetiffreader-python/), [scipy](https://www.scipy.org/), [scikit-learn](http://scikit-learn.org/stable/), [tifffile](https://pypi.org/project/tifffile/), [natsort](https://natsort.readthedocs.io/en/master/), and our neural visualization tool [rastermap](https://github.com/MouseLand/rastermap). You can pip install or conda install all of these packages. If having issues with PyQt6, then try to install within it conda install pyqt. On Ubuntu you may need to `sudo apt-get install libegl1` to support PyQt6. Alternatively, you can use PyQt5 by running `pip uninstall PyQt6` and `pip install PyQt5`. If you already have a PyQt version installed, suite2p will not install a new one. + +The software has been heavily tested on Windows 10 and Ubuntu 18.04, and less well tested on Mac OS. Please post an [issue](https://github.com/MouseLand/suite2p/issues) if you have installation problems. ### Installing the latest github version of the code @@ -87,21 +96,16 @@ pip install git+https://github.com/MouseLand/suite2p.git ~~~ If you want to download and edit the code, and use that version, -1. Clone the repository with git and `cd suite2p` +1. Clone the repository with git and `cd suite2p` 2. Run `pip install -e .` in that folder -**Common issues** - -If you are on Yosemite Mac OS, PyQt doesn't work, and you won't be able to install suite2p. More recent versions of Mac OS are fine. - -The software has been heavily tested on Windows 10 and Ubuntu 18.04, and less well tested on Mac OS. Please post an issue if you have installation problems. The registration step runs faster on Ubuntu than Windows, so if you have a choice we recommend using the Ubuntu OS. -## Installation for developers +### Installation for developers 1. Clone the repository and `cd suite2p` in an anaconda prompt / command prompt with `conda` for **python 3** in the path -2. Run `conda env create --name suite2p` +2. Run `conda create --name suite2p python=3.9` 3. To activate this new environment, run `conda activate suite2p` (you will have to activate every time you want to run suite2p) -4. Install the local version of suite2p into this environment in develop mode with the command `pip install -e .` +4. Install the local version of suite2p into this environment in develop mode with the command `pip install -e .[all]` 5. Run tests: `python setup.py test` or `pytest -vs`, this will automatically download the test data into your `suite2p` folder. The test data is split into two parts: test inputs and expected test outputs which will be downloaded in `data/test_inputs` and `data/test_outputs` respectively. The .zip files for these two parts can be downloaded from these links: [test_inputs](https://www.suite2p.org/static/test_data/test_inputs.zip) and [test_outputs](https://www.suite2p.org/static/test_data/test_outputs.zip). ## Examples @@ -130,9 +134,10 @@ Then: ### Using the GUI -![multiselect](gui_images/multiselect.gif) +selecting multiple ROIs in suite2p with Ctrl -suite2p output goes to a folder called "suite2p" inside your save_path, which by default is the same as the data_path. If you ran suite2p in the GUI, it loads the results automatically. Otherwise, load the results with File -> Load results. + +The suite2p output goes to a folder called "suite2p" inside your save_path, which by default is the same as the data_path. If you ran suite2p in the GUI, it loads the results automatically. Otherwise, you can load the results with File -> Load results or by dragging and dropping the stat.npy file into the GUI. The GUI serves two main functions: @@ -147,7 +152,7 @@ The GUI serves two main functions: Main GUI controls (works in all views): -1. Pan = Left-Click + drag +1. Pan = Left-Click + drag 2. Zoom = (Scroll wheel) OR (Right-Click + drag) 3. Full view = Double left-click OR escape key 4. Swap cell = Right-click on the cell @@ -168,35 +173,24 @@ from suite2p.run_s2p import run_s2p ops1 = run_s2p(ops, db) ~~~~ -See our example jupyter notebook [here](jupyter/run_pipeline_tiffs_or_batch.ipynb). It also explains how to batch-run suite2p. +See our example jupyter notebook [here](https://github.com/MouseLand/suite2p/blob/main/jupyter/run_suite2p_colab_2023.ipynb). ## Outputs ~~~~ -F.npy: array of fluorescence traces (ROIs by timepoints) -Fneu.npy: array of neuropil fluorescence traces (ROIs by timepoints) -spks.npy: array of deconvolved traces (ROIs by timepoints) -stat.npy: array of statistics computed for each cell (ROIs by 1) +F.npy: array of fluorescence traces (ROIs by timepoints) +Fneu.npy: array of neuropil fluorescence traces (ROIs by timepoints) +spks.npy: array of deconvolved traces (ROIs by timepoints) +stat.npy: array of statistics computed for each cell (ROIs by 1) ops.npy: options and intermediate outputs iscell.npy: specifies whether an ROI is a cell, first column is 0/1, and second column is probability that the ROI is a cell based on the default classifier ~~~~ -## Dependencies -suite2p relies on the following excellent packages (which are automatically installed with conda/pip if missing): -- [rastermap](https://github.com/MouseLand/rastermap) -- [pyqtgraph](http://pyqtgraph.org/) -- [PyQt5](http://pyqt.sourceforge.net/Docs/PyQt5/) -- [numpy](http://www.numpy.org/) (>=1.16.0) -- [numba](http://numba.pydata.org/numba-doc/latest/user/5minguide.html) -- [mkl_fft](https://anaconda.org/conda-forge/mkl_fft) -- [scanimage-tiff-reader](https://vidriotech.gitlab.io/scanimagetiffreader-python/) -- [scipy](https://www.scipy.org/) -- [h5py](https://www.h5py.org/) -- [scikit-learn](http://scikit-learn.org/stable/) -- [scanimage-tiff-reader](http://scanimage.gitlab.io/ScanImageTiffReaderDocs/) -- [tifffile](https://pypi.org/project/tifffile/) -- [natsort](https://natsort.readthedocs.io/en/master/) -- [matplotlib](https://matplotlib.org/) (not for plotting (only using hsv_to_rgb and colormap function), should not conflict with PyQt5) +# License + +Copyright (C) 2023 Howard Hughes Medical Institute Janelia Research Campus, the labs of Carsen Stringer and Marius Pachitariu. + +**This code is licensed under GPL v3 (no redistribution without credit, and no redistribution in private repos, see the [license](LICENSE) for more details).** ### Logo Logo was designed by Shelby Stringer and [Chris Czaja](http://chrisczaja.com/). diff --git a/codecov.yml b/codecov.yml new file mode 100644 index 000000000..2d1964a67 --- /dev/null +++ b/codecov.yml @@ -0,0 +1,10 @@ +ignore: + - "suite2p/gui/*" +coverage: + status: + project: + default: + target: auto + # adjust accordingly based on how flaky your tests are + # this allows a 5% drop from the previous base commit coverage + threshold: 5% diff --git a/docs/gui.rst b/docs/gui.rst index 7831ca59d..8dc1e56c3 100644 --- a/docs/gui.rst +++ b/docs/gui.rst @@ -65,9 +65,9 @@ Correlations with 1D var You can load an external stimulus or behavioral trace (1D) using "File - Load behavior or stim trace (1D only)". The GUI expects a \*.npy file that is the same length as the data in time (F.shape[1] from "F.npy"). -You can then look at the correlation of each cell with this trace. And -it will be plotted along with the cell traces if you select multiple -cells or in the "Visualize" menu. +The length should match the number of frames in "F.npy". You can then look at the correlation of each +cell with this trace. And it will be plotted along with the cell traces +if you select multiple cells or in the "Visualize" menu. .. _rastermap--custom: @@ -198,6 +198,18 @@ and it will ask you to specify a file location for the new classifier. Then you can load the classifier that you built into the GUI, or you can save it as your default classifier. +Applying a custom classifier +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Go to the "Classifier" menu and click "Load / from file". A window will +pop up and allow you to select a classfier from a file that you have +already built. Upon loading, the GUI will recolor ROIs according to their +iscell probability according to the new classifier, but they will retain +their previous category and the ``iscell.npy`` file will not be updated. +If you want to apply this new classifier to the ROIs category and update +the ``iscell.npy`` file, then click the classifier probability box, enter +your threshold, and press enter. + Visualizing activity ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -316,4 +328,4 @@ non-rigid registered. The metrics suggest that non-rigid registration should also be performed on this recording. .. image:: _static/reg_metrics.png - :width: 600 \ No newline at end of file + :width: 600 diff --git a/docs/inputs.rst b/docs/inputs.rst index a2e58faa1..ce31e666d 100644 --- a/docs/inputs.rst +++ b/docs/inputs.rst @@ -93,11 +93,22 @@ imageJ and suite2p can recognize (see matlab tiff writing Bruker ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +**Single Page Tifs**: Using Bruker Prairie View system, .RAW files are batch converted to single .ome.tifs. Now, you can load the resulting multiple tif files (i.e. one per frame per channel) to suite2p to be converted to binary. This looks for files containing 'Ch1', and will assume all additional files are 'Ch2'. Select "input_format" as "bruker" in the drop down menu in the GUI or set ``ops['input_format'] = "bruker"``. +**Multi Page Tifs**: +To speed up the processing of input from bruker scopes, we recommend you save your .RAW files as multipage tifs. This can be done using the Bruker Prairie View system. + +In the PrairieView software, set your preferences to convert your raw files to multipage TIFFs. + +* Preferences > Save Multipage TIFFs +* Preferences > Automatically Convert Raw Files > After Acquisition + +This will cause the GUI to be unresponsive for some time after each acquisition. This should work for both single-channel and 2-channel recordings. + Mesoscope tiffs ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @@ -118,10 +129,10 @@ you're using this and having trouble because it's not straightforward. Thorlabs raw files ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -Christoph Schmidt-Hieber (@neurodroid) has written `haussmeister`_ which -can load and convert ThorLabs \*.raw files to suite2p binary files! -suite2p will automatically use this if you have pip installed it -(``pip install haussmeister``). +Suite2p has been upgraded with internal support for Thorlabs raw files (Yael Prilutski). +Specify "raw" for "input_format". +Designed to work with one or several planes and/or channels. + .. _hdf5-files-and-sbx: @@ -148,10 +159,18 @@ Scanbox binary files (*.sbx) work out of the box if you set ``ops['input_format' When recording in bidirectional mode some columns might have every other line saturated; to trim these during loading set ``ops['sbx_ndeadcols']``. Set this option to ``-1`` to let suite2p compute the number of columns automatically, a positive integer to specify the number of columns to trim. Joao Couto (@jcouto) wrote the binary sbx parser. -BinaryRWFile + +Nikon nd2 files +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Suite2p reads nd2 files using the nd2 package and returns a numpy array representing the data with a minimum of two dimensions (Height, Width). The data can also have additional dimensions for Time, Depth, and Channel. If any dimensions are missing, Suite2p adds them in the order of Time, Depth, Channel, Height, and Width, resulting in a 5-dimensional array. To use Suite2p with nd2 files, simply set ``ops['input_format'] = "nd2".`` + + + +BinaryFile ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -The ``BinaryRWFile`` is a special class in suite2p that is used to read/write imaging data and acts like a Numpy Array. Inputs of any format listed above will be converted into a ``BinaryRWFile`` before being passed in through the suite2p pipeline. An input file can easily be changed to a ``BinaryRWFile`` in the following way: +The ``BinaryFile`` is a special class in suite2p that is used to read/write imaging data and acts like a Numpy Array. Inputs of any format listed above will be converted into a ``BinaryFile`` before being passed in through the suite2p pipeline. An input file can easily be changed to a ``BinaryFile`` in the following way: :: @@ -159,10 +178,10 @@ The ``BinaryRWFile`` is a special class in suite2p that is used to read/write im fname = "gt1.tif" # Let's say input is of shape (4200, 325, 556) Lx, Ly = 556, 326 # Lx and Ly are the x and y dimensions of the imaging input - # Read in our input tif and convert it to a BinaryRWFile - f_input = suite2p.io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=fname) + # Read in our input tif and convert it to a BinaryFile + f_input = suite2p.io.BinaryFile(Ly=Ly, Lx=Lx, filename=fname) -``BinaryRWFile`` can work with any of the input formats above. For instance, if you'd like to convert an input binary file, you can do the following: +``BinaryFile`` can work with any of the input formats above. For instance, if you'd like to convert an input binary file, you can do the following: :: diff --git a/docs/settings.rst b/docs/settings.rst index 828b4e8ec..90a7ff18d 100644 --- a/docs/settings.rst +++ b/docs/settings.rst @@ -77,7 +77,7 @@ Suite2p can accomodate many different file formats. Refer to this - **nwb_series** (*str, default: ''*) Name of TwoPhotonSeries values you wish to retrieve from your NWB file. -- **save_path0** (*list[str], default: empty list*) List containing pathname of where you'd like to save your pipeline results. If list is empty, the first element of ``ops['data_path']`` is used. +- **save_path0** (*str, default: ''*) String containing pathname of where you'd like to save your pipeline results. If no pathname is provided, the first element of ``ops['data_path']`` is used. - **save_folder** (*list[str], default: empty list*) List containing directory name you'd like results to be saved under. Defaults to ``"suite2p"``. @@ -247,7 +247,7 @@ ROI detection settings 1.0. - **high_pass**: (*int, default: 100*) running mean subtraction across - time with window of size 'high_pass'. Values of less than 10 are + bins of frames with window of size 'high_pass'. Values of less than 10 are recommended for 1P data where there are often large full-field changes in brightness. @@ -355,4 +355,4 @@ Channel 2 specific settings Miscellaneous settings ~~~~~~~~~~~~~~~~~~~~~~ -- **suite2p_version**: specifies version of suite2p pipeline that was run with these settings. Changing this parameter will NOT change the version of suite2p used. \ No newline at end of file +- **suite2p_version**: specifies version of suite2p pipeline that was run with these settings. Changing this parameter will NOT change the version of suite2p used. diff --git a/environment.yml b/environment.yml deleted file mode 100644 index 8f41240bc..000000000 --- a/environment.yml +++ /dev/null @@ -1,30 +0,0 @@ -name: suite2p -channels: - - pytorch - - numba -dependencies: - - python>=3.8,<3.9 - - pip - - mkl - - tbb - - numpy - - numba - - matplotlib - - scikit-learn - - h5py=2.10.0 - - pip: - - scipy>=1.4.0 - - pyqt5 - - pyqt5.sip - - pyqt5-tools - - torch>=1.7.1 - - natsort - - rastermap>0.1.0 - - tifffile - - scanimage-tiff-reader>=1.4.1 - - pyqtgraph - - importlib-metadata - - paramiko - - pynwb - - sbxreader - - suite2p diff --git a/gui_images/multiselect.gif b/gui_images/multiselect.gif deleted file mode 100644 index 46ff32f42..000000000 Binary files a/gui_images/multiselect.gif and /dev/null differ diff --git a/jupyter/Run Suite2p.ipynb b/jupyter/Run Suite2p.ipynb index 9571d0bf8..c195bb916 100644 --- a/jupyter/Run Suite2p.ipynb +++ b/jupyter/Run Suite2p.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -58,17 +58,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'look_one_level_down': False, 'fast_disk': [], 'delete_bin': False, 'mesoscan': False, 'bruker': False, 'h5py': [], 'h5py_key': 'data', 'save_path0': [], 'save_folder': [], 'subfolders': [], 'move_bin': False, 'nplanes': 1, 'nchannels': 1, 'functional_chan': 1, 'tau': 1.0, 'fs': 10.0, 'force_sktiff': False, 'frames_include': -1, 'multiplane_parallel': False, 'preclassify': 0.0, 'save_mat': False, 'save_NWB': False, 'combined': True, 'aspect': 1.0, 'do_bidiphase': False, 'bidiphase': 0, 'bidi_corrected': False, 'do_registration': 1, 'two_step_registration': False, 'keep_movie_raw': False, 'nimg_init': 300, 'batch_size': 500, 'maxregshift': 0.1, 'align_by_chan': 1, 'reg_tif': False, 'reg_tif_chan2': False, 'subpixel': 10, 'smooth_sigma_time': 0, 'smooth_sigma': 1.15, 'th_badframes': 1.0, 'pad_fft': False, 'nonrigid': True, 'block_size': [128, 128], 'snr_thresh': 1.2, 'maxregshiftNR': 5, '1Preg': False, 'spatial_hp': 25, 'spatial_hp_reg': 26, 'spatial_hp_detect': 25, 'pre_smooth': 2, 'spatial_taper': 50, 'roidetect': True, 'spikedetect': True, 'sparse_mode': True, 'diameter': 12, 'spatial_scale': 0, 'connected': True, 'nbinned': 5000, 'max_iterations': 20, 'threshold_scaling': 1.0, 'max_overlap': 0.75, 'high_pass': 100, 'inner_neuropil_radius': 2, 'min_neuropil_pixels': 350, 'allow_overlap': False, 'chan2_thres': 0.65, 'baseline': 'maximin', 'win_baseline': 60.0, 'sig_baseline': 10.0, 'prctile_baseline': 8.0, 'neucoeff': 0.7}\n" - ] - } - ], + "outputs": [], "source": [ "ops = suite2p.default_ops()\n", "print(ops)" @@ -81,30 +73,19 @@ "## Set Data Path\n", "`ops` and `db` are functionally equivalent internally in suite2p, with the exception that parameters provided in `db` will overwrite parameters specified in `ops`.\n", "\n", - "**Tip**: Since it's common to change datasets and keep the same parameters for each dataset, some might find it useful to specify data-related arguments in `db` and pipeline parameters in `ops`. " + "**Tip**: Since it's common to change datasets and keep the same parameters for each dataset, some might find it useful to specify data-related arguments in `db` and pipeline parameters in `ops`. \n", + "\n", + "**Important**: Please make sure to have downloaded the test data before running the following commands. You can run `pytest -vs` to automatically download your test data into the `../data` directory. The command should download the `test_inputs` and `test_outputs` into separate subdirectories in the `../data` directory." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'data_path': ['../data/test_data'],\n", - " 'save_path0': '/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq',\n", - " 'tiff_list': ['input_1500.tif']}" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "db = {\n", - " 'data_path': ['../data/test_data'],\n", + " 'data_path': ['../data/test_inputs'],\n", " 'save_path0': TemporaryDirectory().name,\n", " 'tiff_list': ['input_1500.tif'],\n", "}\n", @@ -122,49 +103,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'data_path': ['../data/test_data'], 'save_path0': '/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq', 'tiff_list': ['input_1500.tif']}\n", - "tif\n", - "** Found 1 tifs - converting to binary **\n", - "time 4.90 sec. Wrote 1500 tiff frames to binaries for 1 planes\n", - ">>>>>>>>>>>>>>>>>>>>> PLANE 0 <<<<<<<<<<<<<<<<<<<<<<\n", - "NOTE: not registered / registration forced with ops['do_registration']>1\n", - " (no previous offsets to delete)\n", - "----------- REGISTRATION\n", - "registering 1500 frames\n", - "Reference frame, 11.14 sec.\n", - "----------- Total 41.45 sec\n", - "Registration metrics, 8.95 sec.\n", - "----------- ROI DETECTION\n", - "Binning movie in chunks of length 10\n", - "Binned movie [150,252,254], 0.58 sec.\n", - "NOTE: estimated spatial scale ~12 pixels, time epochs 1.00, threshold 10.00 \n", - "0 ROIs, score=85.03\n", - "Found 300 ROIs, 7.00 sec\n", - "After removing overlaps, 296 ROIs remain\n", - "Masks made in 7.86 sec.\n", - "----------- Total 15.75 sec.\n", - "----------- EXTRACTION\n", - "Extracted fluorescence from 296 ROIs in 1500 frames, 1.95 sec.\n", - "added enhanced mean image\n", - "----------- Total 5.16 sec.\n", - "----------- CLASSIFICATION\n", - "NOTE: applying default $HOME/.suite2p/classifiers/classifier_user.npy\n", - "----------- Total 0.19 sec.\n", - "----------- SPIKE DECONVOLUTION\n", - "----------- Total 0.07 sec.\n", - "Plane 0 processed in 71.79 sec (can open in GUI).\n", - "total = 76.70 sec.\n", - "TOTAL RUNTIME 77.02 sec\n" - ] - } - ], + "outputs": [], "source": [ "output_ops = suite2p.run_s2p(ops=ops, db=db)" ] @@ -192,20 +133,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "len(output_ops)" ] @@ -219,20 +149,11 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'xrange', 'Vsplit', 'regPC', 'frames_per_folder', 'ops_path', 'meanImg', 'tPC', 'corrXY1', 'Ly', 'xoff', 'reg_file', 'badframes', 'nframes', 'NRsm', 'data_path', 'refImg', 'yrange', 'yoff', 'max_proj', 'Lx', 'corrXY', 'ihop', 'Vmax', 'input_format', 'first_tiffs', 'Vcorr', 'filelist', 'Lxc', 'frames_per_file', 'regDX', 'date_proc', 'spatscale_pix', 'nblocks', 'yblock', 'Vmap', 'tiff_list', 'xoff1', 'Lyc', 'meanImgE', 'xblock', 'yoff1', 'save_path'}\n" - ] - } - ], + "outputs": [], "source": [ - "output_op = output_ops[0]\n", - "print(set(output_op.keys()).difference(ops.keys()))" + "print(set(output_ops.keys()).difference(ops.keys()))" ] }, { @@ -244,28 +165,11 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[PosixPath('/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq/suite2p/plane0/Fneu.npy'),\n", - " PosixPath('/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq/suite2p/plane0/spks.npy'),\n", - " PosixPath('/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq/suite2p/plane0/ops.npy'),\n", - " PosixPath('/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq/suite2p/plane0/iscell.npy'),\n", - " PosixPath('/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq/suite2p/plane0/F.npy'),\n", - " PosixPath('/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq/suite2p/plane0/stat.npy'),\n", - " PosixPath('/var/folders/16/dgpb94r94mv3nbtx7nrsx6qc0000gp/T/tmpru26a3nq/suite2p/plane0/data.bin')]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "list(Path(output_op['save_path']).iterdir())" + "list(Path(output_ops['save_path']).iterdir())" ] }, { @@ -277,23 +181,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "output_op_file = np.load(Path(output_op['save_path']).joinpath('ops.npy'), allow_pickle=True).item()\n", - "output_op_file.keys() == output_op.keys()" + "output_op_file = np.load(Path(output_ops['save_path']).joinpath('ops.npy'), allow_pickle=True).item()\n", + "output_op_file.keys() == output_ops.keys()" ] }, { @@ -319,37 +212,24 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAEAAAEoCAYAAAApGOhBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZxk11ke/Ly1dVVXdXf1MvuMNJJFbFnEn20MxizGGIjBgQAJhB3bYXMSAslHQgIJYMBgIDiBxAET4MPYrIY4jsEmYBYBNha2AcuWJY0lzaLZepneqru27qo63x/nPqefOnOru0ea8Yyk+/5+9euuuvee5T3veZfnvOdcc84ho4wyyiijjDLKKKOMMsooo4wyevpT7mY3IKOMMsooo4wyyiijjDLKKKOMMvrkUAYCZJRRRhlllFFGGWWUUUYZZZTRM4QyECCjjDLKKKOMMsooo4wyyiijjJ4hlIEAGWWUUUYZZZRRRhlllFFGGWX0DKEMBMgoo4wyyiijjDLKKKOMMsooo2cIZSBARhlllFFGGWWUUUYZZZRRRhk9Q+hpBQKY2SEz+wsz2zCzN97s9jydycw+28weMbNNM/uKm92e3cjMPm5mL7tJdd+W8Ch/M+rPKKOMMsro6Utm9v1m9ks3ux0xmdnLzOzCLtc3zezOT2abMto/XYvfZGZnzewLb3CTrhuZ2Vea2flEBl+gfTWz15nZr93Etr3FzF5/s+q/2XSr6gUzu9fMvnXEtVtSB++HbjkQIFEm7UQQ5pMJUdvn498O4AqASefc99zAZt4wegopgB8B8CbnXM05984nW1jS761k3FfM7L1m9pzr0E445+5xzt27R/0nzcyZWeHJ1BUbQ+fc4wmP+k+m3Iz2R7cy6PJUc5Se7mRmbzazH3iqlJvRE6Nk3m2Z2Vz0+0cSnX/y5rTs+pBz7sedc6nOqdJuTuzNoMQunr7Z7XgmUpotMrNXm9n7+H0/ftNTmH4awHcmMvh3o/p6vfzC60XJGDkz+y/R71+R/P6Wm9S060b70Qt7AYyfbNqvDr4V6ZYDARL6MudcDcDzAbwAwPft87nbATzonHPXWuGtMsmfQnQ7gI8/kQd34fVPJeN+DMBFAL/8BNt2QyiTketHTxLsG0n7BV1ih+dm01MI/AuUGGJnZu+Ifv9/kt/vvQF1vs7MthO5WTOzvzKzlzyRspxzr3XO/eiTbM9VcnQ9ys3outMZAF/HL2b29wFUbl5zduipYlduRWA1o4yeID1h//Va6AbN7ccAfE1U9jcD+MQNqOuayDzdqnFloKeKzv1k0C09WM65eQB/CA8GAADM7DMTx2/NzO6XFJ63AHgVgO9NHMQvNLOcmf0HM3vMzJbN7O1mNpPcT4TvW8zscQB/mvz+z8zsITNbNbM/NLPbpW5nZq81nwa/amb/w8xMrn9b8uyGmT1oZi9Mfj9qZv/LzJbM7IyZfdd++i9tfI351KXVpP5PN7OPJjx4k9z/LDP706SvV8zs182sLtdfaGZ/l7Tvd8zstzXwMLMvTVZH6Fw/b0S7HgNwJ4DfS3g9lvTxXeZX8R81s2+T+19nZr9rZr9mZg0Ar96t3865NoC3Y3jcR/LQzCpm9qsJfx4ys+81QQlNUG8z+wwz+7CZNcxswXYQ1b9I/q4lfXpJ4uC/38z+q5mtAHjdbjw2s7cBuE348r0WIcn74NPbzeytyRh93MxetBuvnuL0RMG+m06WGRHSEoDPMrNZ+e1VuLEOyW8ncnMAwPsAvEP1MMmyoCWjHXobvKNMehWAt+oNiR37aTN7PLENbzazSnJt2sx+P7E/q8n/x+XZe83sRxN7sWFmf2RR5oHc+zIzu2Bm/97M5gH8iu3iqyTPfLOZnUuu/UBk00L6spmVEzu7nNjxD5nfJvljAD4XwJsS2/Sm5P7nmM+6WzGzU2b2T6XOt5jZz5vZe8ysCeDz92GH35Lw50EAn77bgCR28S6p6+fM7A+S9r3fzA6b2c8k5T1sZi+QZ8kr+lpfKdfyZvbGxD6fMbPvjGzwlJn9spldNrOLZvb6TFdcTZGM7epjJfR8837punnfsrxH2d+XjN2qmf0K79/HXHu1mZ1Oxv6MmX1D8vtdZvbnSf1XzOy3U+odM7NNAHkA95v3ZXfL0rvKL0zu3ytO+Jdm9giAR5LfRvrW5rcj/G3Sn98GMJJvCc0D+BiAVyTPzwD4LADvivqaGisl115jO7HKaTP7DrlG/fQ9ZraYzJPXjGqMed33Y2b2fgAtAHfa7npl1sx+z7wP/qFk/r1PrqteeGUiIxvJXP23ZlYF8AcAjiZjsmleL13veO+LzOuddfP68iofQ+5VHXxLxm0jyTl3S30AnAXwhcn/x+GF/WeT78cALAN4JTyA8UXJ9wPJ9bcAeL2U9a8B3JeUMwbgFwD8ZnLtJAAH7whU4VcFvgLAowDuBlAA8J8A/JWU5wD8PoA6fLC3BOCLk2tfDb96/enwwnIXPNqYA/A3AH4QQAk+eD4N4BUj+h/6IG18M7xi+AcAOgDeCeBgwo9FAJ+X3H9XwpMxeAf5LwD8THKtBOAcgO8GUATwjwFsSV0vTMp6MbyCfFUyFmN7jVPy/c8B/FzSzucnvPmC5NrrAGwn/M0BqOzR7yq803Z/8n1XHgL4iaT+6WSsPwrgwgiZ+gCAb0r+rwH4zIjXBXnu1QB6AP5VIg+V3Xg8gi9D5e6DTx14+c4DeAOA+272nLzR8zz5/lMA3i3fPxPAXwFYA3A/gJfJtTsSvm8A+GMA/wPAr43g96sTWdmAXw38Bvj53QHQB7AJYC25dww+TfBxAAvw866SXHsZgAsA/j28EX5bIpf/AR6ZX4YHrmaknd8EP+eWAfzHuM/7mPevAXAewCqA18Lrlo8mPHmTPPsseKO2DL8d6tcB1OX6CwH8XcKD3wHw2xjWk18K4CNJuX8F4Hn7HEPy5M0A/mXyWz757QcB3Cv3/mzSlwb8XP5cufYeAG+U778N4P8bUefrONbJ93sSXs0lPPz5pLwmgC9MxvrepG8fB/CP0ni+Fx8AnADwDvj5ugzgTbvIUVzut8HblRV4R+2oXHPJ2D6SjPP/AGA3e34+nT6cdwBOJWOWT2Tx9oT/J5P7fiYZnxkAEwB+D8AbkmuzAP4JgPHk2u8AeKfUcS+8Hvh78HbiXgA/scu86QH4SXidU8HuvspzE/n6HHj799Pw9pQ2LcwJAN+RtHs86eenwW+PZBu/VdpRTfjwGnj79kJ4/XGPyPE6gM+G13Xj2NsO/2XCvxMAHoDY4RQ+OAB3SV1XkvaW4fXZGXjgJg/g9QD+TJ79agBHk3Z9Dfx8P5Jcey2ABxNeTsPbCLUJ70z4W4X3oz4I4DtutpzejDkR/fZqAO9Luwf787E+mIzJDICHALx2j/ofSORkBsD7sWP/Rs61ZMwaAJ6dfD8i8vqb8HY2l8jQ5+xH9lL6+jqM8CeS3/YTJ7w36VcFu/jW2PHL/w28X/5V8HP79SPa/Wp44Pvr4cFwAPgXiTy/HsBbkt/2ipX+IbzfYAA+Dz54f2Gkn34kadMrk+vTI9p0L7zPdE/Cjynsrld+K/mMw+u28xiWO9ULl5H4CvCyp228ELXjusV78P5EIxmPYjI+PYj+jOp+Ha6WmVsubktt+81WRiOUwya8w+oA/AkShxbeAX9bdP8fAnhV8v9bMOx8PYQkwBKFsZ0MOAfqTrn+BwC+Rb7n4IX/dhHOz5HrbwfwH6Qd353SnxcDeDz67fsA/MqI/oc+SBuPyfVlAF8j3/8XgH89oqyvAPB3yf8vhQcpTK6/T+r6eQA/Gj1/ioI6YpyoNE/AO8ITcv0N2FFIrwPwF3uM+1vgJ8oagAG8A/C8/fAQEagC4FsxGgT4CwA/DGAuKo+8jkGAx/dod+BxXFdc7j759Mdy7bkA2jdrLt7ID54c2PcBeEe4BO8YN5BitLG7w/BqiOFJftstCHgZnpjj/tLk2n9Jnr8WEOCWNiLYAQE+C8BfJ7+9El4XfiuGQYBvhHfuCgC+Bx5IKSfXDidteDk8SHMaMkeiOl8nYz0G4D8DOC881KBlAt7If3/Ch5fD25Vnp/B8N0ctDw9E/Vd4mQoOJtLlSMt9ObwD9MKkrP8O0YXYBVjOPtdX18A7eW8A8MXwTnoh4f9JeGe4CeBZ8txLAJwZUebzAazK93sB/Cf5/i8A/N9d5s0W5T/5bTdf5QeR6JXk2njyfFrQ8s8wAsjD1SDA1wD4y+ieXwDwQyLHb5Vr+7HDXyzXvh3XBgL8olz7VwAeku9/HwnINqKsjwD48uT/P4UE9cnY0yYcAtCFLETAbxP5s5stpzdhTmzC+1v8tDAaBNiPj/WN8v2nALx5j/pfK99fCeCxEfeGuQavf9fgQYJKdN9bAfxPAMf30f8geyl91fl0Elf7hfuJE14u10f61vD+wSUM++V/hb1BgAr8QsUUvA/y2RgGAXaNlVLKfSeS+AVeP7WjPi8iWTBLefZeAD8i30fqFXhbuo3EBifXXo/RIMDj8MDmZFTey3A1CHDd4j148PE+uWbwvs61gAC3XNyW9rlVtwN8hXNuAn6gnwOPygB+cL46SXtYM7M1+CDgyIhybgfwv+Xeh+CDsENyz/no/p+V+1fgB/+Y3DMv/7fgV5MBH+A9NqINR6M2f3/Uhr1oQf5vp3yvAYCZHTSz30rSZhoAfg07vDsK4KJLpCShuO/fE7XzRPLcXnQUwIpzbkN+O4dhvp3H3vTTzrk6/CRqA3i2tG03Hh6Nyt+trm+BX615OElF+tI92jRU1h483ov2w6dYvsr29E09f6eZbcDzeBHeSAA+YHyPc+49zrmBc+69AD4M4JVmdhv8ivgPOue2nHPvQ5QGF9EAwKeaWcU5d9k5l7oP0MwMfsX23zjnOEY/DuBro7J+yDnXdX7LyncA+I/OuQvOuS68IfiqZLy+CsDvO+f+Irn2A8nz10I/6pzrOOf+CD5A+U3n3KJz7iL8itsLAMA596hz7r1Ju5bgAYfPS8r4THgj+N+cc9vOuXfAr9iQvg3ALzjn/to513fO/Sq8k/yZ+22kc+6vAMyY2bPhjedbU+75NefcsnOu55x7I3xA/Ozk2jz86t2vwmcMfHM0R2L6p4kOOA+/cqhvJ/k/zrn3O+cG8M5jDX5Fdss596fwAffXXVXi7nz4DPi5+++cc81kTPZ7nsQ3wGc1/G0iB98H4CU2fBjdTzjn1pxzjwP4M8g2qIyuK70NfgXt1bhaRg8gWekWG/N/k99hZuNm9gvmU/Ib8EBb3YbTyEf5Bmm05JzryPfdfJUh++aca8E7laP6+IcAfsvMLpnZT5lZccS9twN4cWRXvwEelCPFPsK12OFzI3ufTvvyc4CwPeIj0o5PxbCvM8ofuB0eDL0sz/4CPLj6TKOvcM7V+YEHrkbRfnysVPm3nS0em5ak7qeUcS6pY9e55pxrwgeZr4Ufw3fbzgHS3wvvr3/Q/FbKf7YXA54g7SdO2K9vneaX7zlvEv/j3fDA5pxz7v0pbRwZK5nZl5jZfebT9dfgQRj1Y5edcz35vpc+i/s7Sq8cgPdH9uuv/5OkbefMb/XY7fyf6xnvxTrX7dHONLrV4zYAt/6ZAH8OjxD/dPLTeXh0qy6fqnPuJ0YUcR7Al0T3lxMnOlQT3f8d0f2VxMndi87Dp9ek/X4mKnPCOffKfZR5rfQG+P48zzk3CR9McR/LZQDHkmCHdCJq549F7Rx3zv3mPuq9BB8ETMhvt8EjWCSHfVLiDH83/AStYG8eXoZfjU3rV1z2I865r4M3+j8J4HfN7zEa1b749914nHa/0n749EyiJwL2EUhpSTmpynkPhyGmXYOAhJ6M497EaMd9FD0ljEhCbwPwnQA+H8D/ji+a31/4kPn9dWvwKxjqdPw+/CrBqX0E2G9PdMBB59zLnXN/M6JvR+GzBBR8iUE30m58OAHgXOQU7ZeOQpw659wmvBzsB1jO6DqSc+4cfIbZK+G3dihdgZ9T94iNmXL+7AnAZ688G8CLE73/0uT3kftE92pO9H03X2XIviU2cRYplAB9P+ycey58hs6XYucshLQ6/zyqs+ac++cj2rkfO6y297Y9ufAEyPy+3V+E1zezSQD7AIZ9nVH+wHl4cG9O+jDpnLvnRrT1aUT79rFics59SSJXNefcr48o4zZ4/wjYY6455/7QOfdF8P7Aw/CyAOfcvHPu25xzR+EB+p+zZG/5k6A0f24/cUI8b0b51ml++X7nzVvhefW2EW1MjZXMbAx+JfqnARxK5s978MR1GXB1f0fplSX4jMj9+usfcs59Oby//k747Ou4Pq33esV7Q7osGZ99y/w10s2K2wDc4iBAQj8D4IvM7Pnwzu2XmdkrzB/+UjZ/iMXxEc++GcCPJUYDZnbAzL58l7reDOD7zOye5P4pM/vqfbbzlwD8WzP7NPN0V1LvBwE0zB8CVEna/almtuuhOU+QJpCkeJnZMQD/Tq59AD5A+U4zKyR8+Ay5/osAXmtmL07aXzWzfxgFrKnknDsPn8L0hmRMnge/4v7ruz+5a5nvhTcK3469efh2+HGbTvr9naPKNbNvNLMDSWCwlvzch1dOA/h9jrvRbjwGfKCWWsaN4NPTgdy1gX2X4YGUcSliNyOS6jDgaiOyVxCQ9sxejrsakXGMcNyvA91UI5LQ2+BXkt4TATQws8+FT0/8p/D7Cuvwafvaph+DB1GOmFnaSv1+ScfoEoATNnxa8SjQbTc+nAdwm6Vn5OwFbl6CBxgAAAngODuiDRndePoW+FTdpv6Y2INfBPBfzewgAJjZMTN7RXLLBLx+WDN/2NQP4frSbr7K78L7PZ9lZiX47WypDruZfb6Z/X3zGQoN+HRYvikltk2/D+Dvmdk3mVkx+Xy6md09oo3XYoePw6f03wgiaL8E+EPO4DMBSG8H8N3J+NXhdQ8AwDl3GcAfAXijmU2aP0zsWWb2echoN9q3j3UN9C/N7Hgyn74f/iwYYJe5Zv6Qy3+U6NEuvC/WT659tcQCq/Ay8mRfzZzmF15rnLCbb/0B+KD4uxK//B9j2C/fjf4cfhvgf0+5tlusVILPxFsC0DOzL4Hfcni9aKRecf6tTe+AP2R73PyizDenFWJmJTP7BjObcs5tw+sz1WWzZjYlj1zPeO/dAO4xs3+c2P3vwnCG1PWkmxK3kW55EMD59Na3AviBJIj6cniFsQTvnP07jO7Hz8KnCv+R+bTj++D3tY2q63/Drw7/lvkVtQcAfMk+2/k78I7sb8DvO30n/CFhfQBfBp/ieQY+2Pgl+JWw600/DL/3dB1eiMNqh3NuC34/8LfAB7/fCD9Zu8n1D8OnxL4JXoE+ij1O8Y/o6+DT+C/BrwT+UBLIPxn6z/ApXgXszsMfgd+vcwb+EKDfRdKvFPpiAB83f0LszwL4WufTe1vw4/d+8yuBo9KhR/I4oTcA+E9JGf825fkbwaenA+0L7HN+Ne/D8EakZD497MvSCtzNYYA3IscTp3o/QUAa7eW4f6mZfU5Sx4/gxunbG2ZEzJ/a/Za9GuCcOwO/BeE/jmhfD15nF8zsBwFM8qKZvRT+EKFvTj7/PenHk6W/ht9G8b2JI/IyeFn5rZR7d+PDB+HBlJ9Ifi+b2Wcnzw3JUQr9BoDXmNnzza/A/Dj8+Qlnr0P/MrpGcs49lti6NPr38HbvvsT+/zF2tqT9DPw+3CvwfsT/vc5NG+mrOL+F6V/By+1leP9iEek27jC87mnAg2p/Dq9PWcdXmT+t+r85v+XmH8BveboEn5HCM0+uon34Mj8Mn/VyBj7QTluhfNLknHsQwBvhddsC/HkBmg79i0n9H4U/EPU98PqHuv+b4QOhB+F9nd/F6C2lGXm6Fh9rv/Qb8ON0OvnwxPPd5loOfvX7Enz69udhZxvDpwP468S3exf8HvczT6aBaX7htcYJu/nW4pe/Orn2NbjapxxVrnPO/YlzbiXl2shYKZn33wUP7KzCb5HabUvlNdE+9Mp3wusMHrD8mxgtS98E4GzC59fCxy1wzj2cPHc6GZejuI7xnnPuCvzhoz8Bn7n3KRjWMdeTbmbcdusdDJh9PnkfeCf5NTe7HTegX/8cPh3pprcl+4wco7O4+nTinwfwv5L/XwzvwK7AG7F3A7gtufYs+D3xG/AHh/5PAL+cXDuJnUOgjiRlrCcK9F4Az03uKyVlrgC4kvxWhg/STmPHif6u5NrLcPVBNDkA/y/8QSwb8GeC/LhcfxX8wTZP9O0AejDPBQy/IeHXkBxEBn8q79/AAwEfgXeS9NCmFyW/b8KftPwOeFCV178YwIcSHl1O7plIrv0JgG8b0eareCLXwsGA8Gn+v5zw9DI8sHcW/sCuyeT/r5VnfxLeObzqlHxEbwcYxUP57R6RgQcBfOWo+/fgw23wwC7fwPDfdpGjuNzXJrKxAm/Aj8s1h+EDqq7qQ/bJPvqB3y7SA3DHzW7LU+ED79ifu9nteDp98CR9LOxiC7PPM+uT2PtfvdnteKp8cJ3jNksKzegZQOZT3k7BO7HfAL+SeafzKXJPWTKzI/DpWh+AR+zeDf8KtZ+5qQ3L6JNC5t+t+7Bz7nqn6D4tycz+Gv7k5l/Z474S/Kn4z3M+He9pRWb2VgCPOud+5Ga3JaOMdiMz+zJ4QM7gV8FfDP+6rMyBi8j8mQmfDw8kHoLf/3yfc+5f39SGPYXpevtYZnYW/qT1P75ujczoKUHJFoAS/BuhPh0+U+dbnXPvvKkNu0XpRsdtt/x2gIyuKz0b3qlfh18t/KqnOgCQUAn+hN8N+NcD/R8AP3dTW5TRDaNkf9mzzO/n/GL4tLfMgIwgM/s8MzucbAd4FYDnYR/pzM6fqH/30xQAKMDrwyeVLppRRp8k+nL41NpL8EHY12YAwEgy+BTbVfjtAA/Bv2YxoydOmY+V0fWiCfhsxCb8loQ3wstTRul0Q+O2LBMgo4wyekpRsir2c/AHrF0A8Ia9VrWfyWRm3w7gR+HTiB8D8H3OuXff3FbdXDKzK/BbKL7SRQcZZpRRRhlllFFGGT3dKQMBMsooo4wyyiijjDLKKKOMMsroGULZdoCMMsooo4wyyiijjDLKKKOMMnqGUNp7j1Pprrvucv1+H4PBAIVCAYVCAblcjqcVwszQ6/XgnEOhUIBzDoPBwFeS3M97CwVf7fb2diivXC6jUCig3W6j2Wwin8/DOYdcLjf0zNbWVqgvn88jl8uFep1zsOR12MViEYVCAb1eD51OB71eD4PBAOwDy2T5bJu2W69p+fq7tiOXyyGfz4fvhUIB29t+O22/799OMz4+HsrO5/MwMzjn0Ov1YGaBT2wPeaztLhaLKBaL6PV62N7eDs+zT+RBv98P/R4MBtCsD7an1+uh3+8HfpPP/X4fuVwu1Mm26HeWmcvlAr91DMhvlqft4Ljn8/nAS237YDCAmYXnC4UCBoNB4BvL4G+5XC7IRj6fD/Up3yg3+gz7FdcbE+tiGWwzyzezULbWQZ5rnZShfr+Pfr8f7iHP2W/ySsct/p/16v9sI9uh/UrL/NF2ra6upr5/OqOMMnp60h133OGoT6mbqA9UL6oepb5R2672Wu1RqVQK+nlra2vIRgAIdrDX66HX64Xv1PMsS+0r28RnaOfUH2EfopOVr9KB+j3Wn2rX1WbTFqqvoLY/zXaqPWO/aUNog/k8ecgPeUli3bFtV/8ltllqt2J7oXyI/Y98Pj9Ud1w261Rby7L5oa8V2zTlldph5ZO2i+Op9cXjGctv3G8tK/5dy4/lPc0Op9ldvT9N5lj+XjKpY5Pmk8Tt0Pv0L/lB225mjjL2VKQ0Hyb+bRS/0uha7r0VaZQMAUiVoVhWtJz98iKtzv3I6xOha8lWv1XHcj99uJ5tT/TLvgrcNwhApayKOhYaBjYMaJU00GGwk8vlUKlUQtDW6XQAAGNj/nWSDO5p9AGgVCoFo8hy8/l8CGY1kO50Otja2kK32w1GhvUDCAE02xobDi1P71HFTyeI7eUzg8EgABsKXCgAAeAqR2J7exv9fj84T3yW9yoAQYeBv9MRYln6XByc0/kgj7UtOsZquBm4k3cKiNAhIz/UKYudFX62t7evcnBiMIe/EUwBMCQPWi+J4BL7SN7rd3Vad3MKlXivOjCDwSA4b+qkKLjBe/V5ygllV5+JQYu4TTFv0hyGUc7dXv0j3XHHHW4wGKBUKqHb7SKfz6NcLoc2drtd1Go1rK2toVqtolKphPnb6/VQKpUwGAywtbWFRqOBsbEx1Go15PN5tFot9Ho9jI2N4ciRI3DOYX19PfCF8wbwcjE+Po5Wq4X5+fkgL5y7Oi69Xi/MAwUPO53OkFNEnlUqFdRqNfR6PTQajSHgrlwuh7pqtRq63S5mZmbQaDRC/9rtdphDExMTQyBUPp9HrVZDsVgMeojlt9ttmBnGxsbQ6XRQKBRQLBbDdQABuGT/SqXSkG7tdDpXgZMHDhzA9vY2ms0mms1mCCzogFMPUodWq1V0Op2hMS2Xy0H/dDqd0C/Ov+3t7dCWQqGAiYmJwEP2hbJMfnQ6HXS73VBGsVgMPKKeYBvo2BeLxdA3zmXqO9VXtBXb29tBJ+l1zoVisRjmXKfTQalUGtJTrNs5h2KxCACYnJxEp9MJ5VImKE/ke5oOVj1MG5DL5UJ7NUilzAwGA2xvbwc7FQOFcWChNkQdu36/j1KphO3tbeTzeZRKpdBmtpHlr6+vG/mi83+UjU/THzpOHEsN/nmNAaUGeFqe6nW2RUFOEuuhXCp/1OZoX+KP9jH+LQ4iqdupY3ROaZ+VTxogx98VBI4DQbXxatPSgpzYdmn/YxBZQY1R9iGN11quLvzEbdZP3MY0uxY/y+8qA9of/S2uM43S+qxtjoP6UbzY7fpuAIDyQOdQHIDt1oa9Atu0PuwnGI7BqE8GjQo8r4UGgwEuXLiA06dPY319HVeuXMHi4iIuXbqEtbU1bG1toVgsYnx8HHNzcxgbG8P4+Djq9ToqlQrK5TJKpRLGx8eD/p+YmMDs7Cymp6dRLpevOTC+lsD5RpBzDvfddx/e+9734t5778WDDz6IXq+HAwcO4O6778bnfu7n4uTJkzh8+DDq9TpyuRw2Ntt7ficAACAASURBVDaQy+Vw2223YWZmBouLi1hZWcH29jaKxSLuuusulEql1PoGgwEuXbqEj370o/jwhz+MRx99FBsbG8jn8zh+/Djuvvtu3HPPPXj+85+PWq0WZHRzcxPtdhsTExMYGxuDc25Iv2l/1J9vNBo4e/Yszp8/j1OnTmFhYQHb29vheq1Ww8GDB3H8+HHMzs7iyJEjOHbsGIrFYoi3tra2gt8T6+mYKEPXa0wHgwHW1tZw/vx5nD59GmfPnkWj0UCz2Rzyq1/xilfgpS996XWr91rK2TcIQKIBpHJTQ6gKUY24OgKxo8CB0hXRYrE4tGKgyp5OlAaNdGLMDKVSKTi5XCmPkXHWpYo4bXVYGcq25vP5ICQ0WBpcq+GlMOu9dCjV2PPZYrE4tELOlRPySw06ea8Urz6oQWWgqfzWLAB1NmnslR90UtNWw1kmAQCODR1O9iFt9SCNj2ow6CypUDMQooPNOjjBdQwUAIkdIpXJUYY8dhwV9FBjrTKojl88zlq28k+DCdarGQ+xMxGXF19Lc6DYpjQHJm4XA712u41CoTAEnDE4BIByuYxutwvnXFCyY2Nj6Pf7KBaLIajRYIryoUEVg8dut4tOp4NarYapqSnUarUQHI2NjWFsbAzNZjMEkmaGbrcb5ky73Q66pd1uB+Xf7XaHQDs+u7W1NTTm7Eur1QoBcaVSQaVSQaFQQK1WCzJImWOQxWwV5xympqbQarWwvr4+FNiOj4+HIJNtKpfLGBsbC/OdAWMul0OtVsPY2BiKxSLW1tYC0KJ6qlAooF6vY3NzE1tbWwEEYYYO5wsBCeqC1dVV5PN5TE1NodFoDGVPDQYD1Ot1tFqtMJ4cs3K5HOqfmZnBysrKEPCyvb2NjY2NEHhrxhcDwziDhvKo9VN+OKdZx2AwwPj4OLrdbtBjtBc6h0qlEswMzWYzOA6sS50BAjoEWzgXy+UyxsfH0el0UCwWsbm5iU6ng3K5HMZIATzVn+Q5+W62kynHMeE9W1tbAQynblZdpMA3+0sZZH0KEnEulUolOOcCAMDrY2NjqFarqNfrQ/M+LQMgDtS0XbGu4f8EiMhrtlOzuBT84bMaXGtdai8pOwQAFAzUtsYBkmZgpQX9/EswToEd8l19FA1Y4+wH9kX5RJ2nej5ehGB9+tso4ET7oO3Stsb6X/lI+xLb8VHBqYIjnLc6j2OAX+Ukzd/RcVUaBYDHYxyPtdrpOIiObX7ME22n8lTL2i04TLOhuwX3MV/Tyk27dy+KfYDdgIZPFjnncPHiRVy4cAHb29uo1+uo1+uYmJjA1NTUvoOVRqOBP/uzP8Pf/M3fhKBzY2MDCwsLuHz5MhqNBlotf74rA//p6WnU63WUy2VUq9VQ56FDhzAzM4OZmRkcPXoUs7OzV9W3uLiIc+fOod1u44477sCxY8eu8tdPnz6N+fl51Go1TExMoF6vh/lw+PDhofK63S4eeeQRAMDhw4dRLBYxNTX1RNmKc+fOwczwyCOP4G1vexve9a53YXV1NVxfXl7Gww8/jPvvvx+33347nvvc5+LlL385Jicnsba2hmaziYWFBdTrdSwvL2N1dRXFYhGlUgnLy8v4tE/7tJC1TGq1Wjh16hQ+/OEP49SpUzh//jyWl5exubmJ7e1tLC8vo91uA/A268CBAyHGoA9x8eLFoPdnZ2ev4uuFCxcC3/v9PjY3N7G0tISFhQVcvHgRS0tL6PV6YUwZSPd6PZw9exa1Wg1Hjx7FxMQEKpUK+v1+8Bf5zOzsLCYnJ4eC/bW1NSwtLWFjYyO0n3ZcifJLO0G+NJtNADsLuZubm0EPr6+vY2lpKfhbtBu02Y1GA+94xztw/vx5fMEXfAEOHz78SQWWrhkEoKLUdH0NLElU5nS6dVVK07XpTOnKCRmvilsdC0WQ8vl8WIVUR1RXzHX1NzYcoxSkOkY0HHRQzPwqngZHGlxxlYUOma7ydLvd0G4FCPhsuVwGsOPgkcg/DRh5n/aXTgPrVEdMx0YdM109UHBBUXxdMVPnR402nTOOg2YxKE+Vt3pNA7U0xFxX1+PUQ23LKLAhbosCBup0pa1CpYEBsVzpyp4G5rpio+3QdqUBCbGDqGXFjq62LQa04vZwjDUYip1WBg06txmgUu4p52NjY2EOMvgDEFa4GVyyPQzm6/V6qJt11et1lEqlYJAoy2NjY5iensbKygqc86v49XodGxsb2Nrawvj4ONbW1gKfGCxTTxFgI784D7nyz/6Wy2W0Wi0cPHgQW1tbmJiYQKlUwsrKCvL5PKrV6hDg1Ww2USgUUKlU0Ov1QrubzWYIrKemptDpdNBut7GxsRECNBohBjNsFwM1M8Pm5mbIPGD57Bt1Qq/Xw/z8fBhDZjgsLy+HlXsGg/l8PoAmXG3f2NhApVIJhpLBab/fx/T0dBhzBt18vtfrBWNNfhDwYwCv23LGxsZChoiCxwqWqX6m/tRrbBvBKedc0DOUeV2tJZCjeooAAp0EAkUEAfj98OHDaLfbwbnkfGk2mxgbGxsK9LmKwnbQwJOnBJsoQ5rpUSgUUK1WMT4+HnTn5uYmNjc3g61RHUMQIbZhfHZsbAytVivIfblcHgKSaT/ZL9URCv6q7Yx1PdtNfsX6kvqcdaqeVFuvpJltvK5bBTTzgfKvOlBlSfWd6vBYL/OjALYuMLCetD4qX3RrHnmn8qD6OA5k2Xde4ye2b/xfs2a0Ph3H+BO3XX2JWAZi28O61Pal3c86lHd6n/ojOmaxTYxJ7doowGFUnQo0xAF//Js+M4pUltJ+T2tH2j27lRfP69j3SHt+VJsoOzc6qKCe6Ha7WFtbw/b2Nqanp7G4uIgzZ85gbW0NvV4PKysrKJfLmJ6ext13341arRbsGEnnLct+3/vehw984AM4c+ZMsEMM3FZXV8PihJlhcnISgJeXjY2NYJ9nZ2exvb2NiYkJHDlyBLVabcjXJHW7XZw7dw6nT59Gq9XCysoK2u02br/99pBpd//99+O+++4LmZAnTpzAc57zHFSrVRSLRUxOToYgent7G4899hgeeOABtFqtcP/Ro0dx9OjRkavuo+jSpUs4f/48+v0+Tp06hcuXL1/la5NOnz6NZrOJWq2GS5cuwcyD4gRSlpaWcOXKlaBfCXYXCgXcddddmJ2dDfZtfn4ejz32GC5cuDDkW3BBhoH++vo6PvGJT2BhYQHVahWtVivoj0ajgUKhgMnJSTSbzSAXChIOBgN0u12srq7i0qVLWFpaQrPZHFoAoV1ptVpYXl4OiwArKytYXV1FqVRCvV5HrVZDLpdDtVoNi0TMxNR4dHl5GSsrK9jY2Ah2mzEU7djExEQI2sfGxjAYDNDpdNBsNocA0na7HWxBo9HAxsZG+I1ZoQoKdzodDAYDfPCDH8Tf/u3f4uu//uvxohe96Jpk4snQvkEATaniKgYdezUQqow0WKdBBDBkxDRwi5E2lhMHzLEzQQar86JGNi0Aiw1RmtOj+wCLxWJwlPm8BtZ8jgGP9otOTLfbHULS1dmgo0zh03T7eHUYGAYJFCCI90bqSpU6jpqKm+aE6wqIOp4cbwVc4mCREyt2HNMcE135YFCkDhDL1y0kupcyzdCpk6DOlRoVvV+fV+dQy2NbdUz1eTrD2m7yIN6SoE6o8iZepdJ6dZzSniXFBl9lR/mt7YnTrAEfqHe73WBwzQzj4+MBAKDTqzwloMd0+u3t7bAaT5lgEHLo0CF86qd+Ko4ePYqVlRXMz8/j0qVL6HQ6Q6tL3W43BDLdbjcEpePj46hWqwB2HA+mQRMp3tzcHOIhrzebTVSr1aHgkXK7vb0dEGw1iprO3Wq1Qt8PHTqEcrmMK1euBMdf57rOGzo8nU4nXCNPCJ6ZGSYmJoYAUmY/UQ8SVGDWBIAQQJI35BcBBoIxAEKqOOcBedjtdkOwquAM+8Xgn79RTxEVP3jwIPL5PObn54NDQD6x7dSZGhyS72wP7YqultOoEhiiYdftIRoUsa5GoxHqoqyyj/1+H7VaLTyrTsHhw4dx4sSJIFd0XimbtEdsF8dIQVXym2fcaDbY1NQUcrncEIjCdlHeW61WcGQpu7lcLmSrUIcTcFX9z/o0C4tjn7ZKrQGTOuFqr6hP0oJ3LVMDNZWxtGCRf5nBx4CaRBmIwQQNlOMAXynWdXGwRNnkyo86c3Gb4+0NvIdzTHnDseD9nO+UGbU5cZt1ZZ9jqfpZAWcdo7SgcVRgrBTbC+17HIDG7YjLTgMd9PkY4NgtQNf2xf0ZFRSzjrTv2oe0+mKZ0vrj72m/pdUVk8rhKD6ynLQ+7lZu/D32Z24UDQYDXL58GZcuXRrS70wzX15eDvOYvlCpVEK5XMb6+jrOnDkTUvN7vR6Wl5cxNTWF48ePY3t7G+fOncPjjz+Oy5cvY2lpKdjt9fX1sOJKfwTw2880YKStKJVKmJqawmAwCFle29vbIVCj3eYWg2KxiCNHjmB9fR0f+chHsLi4iHw+jwcffBAf//jHMT8/H7Yubmxs4MEHHwyLkltbW3jRi14E51wIAmdmZoJPw0UFM0O1Wg06glsYdhuv2dlZnD9/HhcvXkSr1UI+n0e9Xg++FknHnwHzyspK0MkMfBcWFoKvUCgUMDc3h4sXL+KRRx7BnXfeibm5ubDSv7y8jEajEfw0XYTUlfV8Po9OpxOy55rNZtiaDXh/pVarBZ+SNntsbAzlchmTk5PB7nJRYXZ29io7Sx+DgbpmgReLRYyNjWFqaipkn+gCabvdDgE4wQNm5fX7/QCSc5HLOZ89WS6XwxbRjY2N4KPGmXfcAstYj6CBmYWtmfSt6Vvdeeed2Nrawvr6+pPKFLkW2jcIQOZqcKnEjurqBhGuWPlquhowjNiWSqXgQGo6fByUpe3l5GocnY/Y6GvwFRsUvVcDUQ4mU3Y1tVM/LIf7jVqtVlBEAIKTzwyCOBgjIMDVObZTMyd01Zb9ViPKVQzyRldq6KzGASz5QqWje5PjMuNgNE5R5BizPZrxQWWsz7A/CrjE7dH7dVz5DMuO6+I1vUdlleWpXLK+OBhheSprKi/q1MTGO5apmOdpzpXyMAamYmMfOywsV9uo5fEedewVTCFRATJgjFfoqNApt+12G9VqNQSF6hRzb7JmyNAAHTx4MBiEycnJIO/cu8f5tr6+jq2trZAOxgC5UqkMyR4Nk3MuZAoo6MO2MJCq1+shjY57CamoFxYWwt57Blz8ThQ8l8uFcwLonGgGRLvdDsAgg3bqE86rOMuGulYDQmbJsB/tdjv8BiDoSQDY3NwMZwJwHtJBoDxRnnmdMqLzhjLRbDaH2shVcAZnlMPNzU3Mzc2FNlB+CIRQlzDbgME3ARO2h2PE4JTAkcon5YjbMHK53ND5Bs65YJxZHrdvUI/T8SEP8nl/jgNXacbHxzEzMxPqIZ+5GkT+0BFRUId8Vp6Nj4+HVX32pVKpBJugIDH1N7fB6DknGsRwvqi8qCNIG6Dp8/xd/2d7NbshzvjibyqHqldiwIB6iXIYb9UblZ3Gj37XlHjq4FhnKUirFOtiJQL8BAHUjigYmcvlwj30S0iU41GBacwvBaVi4Jj38xq/k+9qv9ku6mD1Q+K+aztoz/hd/ag4u0KfUR2l8rFboKp9VxsYAy36l88oL0hq2/T7KIr9HABD+i0GqNI+e5WZ1r74fvUVlA/xfFE+jeqXljOqj6PAgutNzjmsra2FlH/OA65233XXXZiensbFixexuLgYdNj8/DwADz7TpjOzbGtrC7fddlsIsC5cuIDFxcWhxRkG9s65sEqsPjSws/WW2wGbzSYGg0HQuQzalpeXMT8/H4Lc9fV1lEol3H333Th06BAeeOABnD59OvgSH/3oR3HhwoWhlX5ugYszf2m3KpVK2KZAAJ8r1pxHTCk/dOhQ2KoVE2X3wIEDAXSZnJzE9PR0WIWnbzM7O4t6vY7bb78dJ06cCIuY29vbaLVaePzxx/H444+j0WgEW8BtnqyHdoK+GbdGMk4BEHhZLpeDrwMM+7HFYhGtViucB9XtdtFqtUK8NzU1FbYZViqVoF9qtRpqtVrw96if1BelLc/lcpicnAw+a7vdxpUrV9DtdlEqlTAxMYHJyUlUKpUgD+vr62g2m9jc3AwZC/RV6PfSX9za2kKn08H4+PiQXdLsMfJDY0fyjdl/CgbzGoGM5eVlfOxjH0O73cYLXvACzMzMXI9puivtGwRIQ8ZJVOg0SLxXHQoqLTrOqny1HA18WW+8Mk2FoUEhmcp9qEQdqTD0fy1LBSrNeHKA2Q/+TqdfV3n5u/Yn5h//J2+AnYOyyBt1APU7y1SQQPnH/axaf5rDpUGtAiwMlnRVhwEP+aWOURzI8n51bBTgiI0926KKYxQCruOkq5OsQ9ujY5gGCPBaLMtp4IiOY3wtDc2PQYnYaU8DBNK+a7ZDjO7G/8dggTqKOs7sS1wGn9VsHQYd7IeZhSDLzMLecO5z0voos3rAnm6dYfD18Y9/PKTTM22eh+npnKDTzWCHc79cLg/tQet0OkN7qxmo6VhSfigzi4uLQ4Hm+Pg41tfXw1545RtTyrgaCyBsTyAIyTlcq9VC6pvOvdnZ2aH5rFlVNF6sm8/yLACVNRoTAFfVweCXKXLMeiAoq/1VPcn+OucCEEswk8ESVzKY3m9mmJmZgZmFdjLlTcECbmPQwD6Xy121/Ym6hvKjAKHqfB6qyMNF2R/qKBpWDQx5sCWBDa68TE5OhjGbmprCyZMnMTk5GVazVldXh+a6cw61Wi2s1DNIp52hvSBIpnq5VqsFJ4qrJepMMCNDM+34LNP6dZVLA3vOO441A27qdTq95J/aYOqZWJ+RNAOP1znP+D/boHooDuZ0W1DMU8qw2hgSeRTbHv6mupq2bBTRLmj6P0EgtkP1jLZBwbA00v5QbrUe9nmvQDeug+B8XL8G7nxWrylv1B7GgIna7bTV+XiseI3lxXIT16W2Ks32jgq24/tjvyduV1p5sX0ddT2tHPZpFLiT1q80mxMH7GlyELdf70kDFkZRmn3fDSh5IsTyuGrJfeYqT/1+PwSP3W43bG3b3t7G0tIS2u02nHMhDZtzjraWgePCwgLW1tZCGjlB92KxiImJiWBLdaFBfUTaGZ4JwEWMzc1NrKys4NKlS5ifn8fq6mpYoWX6PM8c6HQ6WF1dDfqXc4t9qFQqmJ6eDsDx3NzcVfZSD92lz0PwgEExAFSr1dTzEgaDAc6fP4/Lly+Hfejlchl33HEHzCzs0addqtfrOHDgAG677bYAPtD+NRqN0Of19fWQwcA2dzodrK2tBXsFIPho9Xo9jAH179jYGGZmZnD8+HHU6/Uw7xX0ZkaAczuZj+TN+Ph4sA8MxlutForFIqanp8NKv54zRV3F2C/2/WMZ5flK+bw/nJqHFRIEYLr+xsZGyDjQM4zIAwIgtHuVSiXoWbVLalPom5RKpZDByDIptypXly9fxuzsbMjqvJF0TSBArOA09YdoDwdEV2U1QFCnOlZ+FBw1arpnRxUmkXpVknGQrgOi9fAeNbb8jQNLp0kzAHhdeaErMVzVoiJT5VQul4PDNxgMhvY9s07yT8EQ9iEO8pRH7C8dbw3+tb3qPDEQ0e9q2HXc+D+FPA6kYyeGAZbyXvfAqFHlylxsONXh16A4zRGIA1sdW5VBPhOvJmi96phpf7U+9iF2gHU1SGVT+aerKvxOPvB5jjHbxTJjMIBl6wpNPB+UH9p+zll13pQfNBgEA7gXnsaXc4PBEg0k9YDuW2cKPgEfouKFQgFnzpwJiv7kyZPhQD3uaWZWDY0b+81TZjc3N4NRZxCpaeh0Ahj4cJ5WKpWh/fm1Wg0HDhwIKWJU1tVqFfPz8zhy5AhmZmZw6NAhPProo5ifnw99pB6o1WohAG61WigU/IF9KysrQyeZU2dUKpWgZ/Q0d5UDXQHlvObbErgaqSACT7clqMMx1gMC+Qywc9Aq0XYzC2O9trYWghkGvb1eLwTYAIayPth+YMd4cssGZa5SqWBycnLo8EOujGimFe0LHYbBYBCu1ev1EPxr0KeOABF7bkvhs6urq0H+8vk8Tpw4EbYx8IyKAwcOwMzCKgUzAZh6SbCH8qb2ZHx8PKT4E9zUVQKOP8ulraFsKMCl858HFtGGqN2gg8S5wTHl2QXkIYBgzxSIioFsBQXoyBDYUEBZdYzKrAbZHB+2T9NH4+1waSs9qu+o69i22A4opel4LYvzhcCY8oDPqY7UjJUYzFDbxr7q4oHKgN4DXP0WAQ3qFXDhHI/HR4N35RP/j0EAtUfkk9a/H4rtCseSARiJsqP1xf6D2kIltXva1jj4j0GC3QCBuDx9Ju0T93Wv8tLamPaszptRgFjcp72C/th/0Wuj2vJEiQEr/YNGowEAIdW+UCiEQOfy5ctBpqempoLOpExvbm5ieXkZGxsbQ3OH+pDBaqPRCH6zBvv0m6kvY/+Nvvf09DSOHz+OgwcPYjDwJ9xz5V3rZ5r35uYmTp06FeqgvwIgnC3AgLBSqYRDBgkCcPGDOp330s5S3zSbTTz++OMBTAAwtAKuY7ewsIBz586FQxZpe7h1YmxsDAcPHgwgQK1WQ71eD29KIM/pR8SyQX1BoEbjONr7fD6PgwcPDgHttGk86G9qaiqMS6/XC0G9cy7YI7Uj1K0cRx1fLsywnTyUT8EVtpl6RQ9T5/gDPluVCzzcGtFqtYLPR3lhedSzCtzoIlN8LpzGrKqb9dW44+PjIRNBszcJmNCn7Ha7OHXqFObm5nDs2LFd5/+TpWsCAajgmFpOZnDi0eHXvSEapGhaboxu6gFGRMT4HJka77HTcqk8RgX2ac6CBmax0md5CiDoviOii1QMDP45wTWI11UA7S/RQCo/KhyuenIysA1EqtieGAjQk791JUSNLcdMVw81WOcY0rEg+KG8V8CAfSFx8utKtgbDeq/yW4kTjxQbR3XA4uA+RgjV8VFexY5ALI+8J3Y+Y8NMvrHv2k510OLVJu238kd5EIMcabKtc0n7m9ZX/a59oAOvz1BW+BsPUtO09mPHjuG2224Le/O4is1VcpbT6/VCUNjr9bCxsTEUPAF++0Eul8Pc3BzW1tYA+EDyypUraDabWF1dDYfRkI+AV+yUeTMLp7mTb5xP7AMBCgWpzAytVgtra2u4/fbbMT09HdBetqff7+P06dM4ffp0QLDpBFGuda8vV71XV1dDsEcUmkg708GYxcAVXPZNtx+oYaTcMRuD6DrrJLLOMxE0s4cH1jm38yYEBW3YB+oGGnK2jwCDzh0eeshy2M7YuZ+amgrP09izDQxUaT80DZ5zns7UysrKELBGHcmxJvBDXc00Ps7BXC6HqakpTE9PY2ZmJqQfTkxMhJWAwWAQVkDUqeWhQNzWwLoZpNG4U++Tf+oEFQqFcPiS7ltstVqhbuoO7qnU7SZmFrasUIY4HjrWaqt4GKeek0HniLpS7YYGJwoyktICE7WzGvjrmJI3rEftYlowyHrVto/S07EeVyBB7buu1CgopjaDNkzngm6zU2CH8ka+0fZT52m96pxqO+PsRp1fnBu6PSLW/xpox7Z/lAOpcyiNn/GzMcijQLYu6rDtvC+WpXgsYlulfaI+SwvcY9ser9hrXaMCcl3B2y34V5up5Wsf44A+rc3alngcY1+EQVnaGKWNyahr15O63W5YQaaOpc6iPB06dAhHjhzB0tISzp49OwSgMghm0EtbzDkAANPT05icnISZB22ZYUD+qB3VjClu1dF5z7hC3zS0vr6O9fV1rKysBP97amoqAMMrKytYXFzE+vo6crlcCOoBr4t4uj993Wq1GlbcaUsY/NLuMFuuUPCHCS8tLWFxcTG81YCxxWDgMxjb7TZmZ2dD3MHYiEE3967XarVw5sDU1BQmJiaC70IfgXqbr0nkobq0hVztL5fLQ9vTCBjzPo5joVDAkSNHMDs7OwRa8pwFgtBMuacPwz7ww+1VrGNqagozMzPBNrKtPPONYMzMzEyw6dxaSVsZn4tAu1koFMKWUudc2E5JP4w2gTJGX5UgDm0vwR+eMcA6dEGcPGHwzwUbzhGNgTTGJd8Zd21vb+MjH/kIxsbGMDc3d8OAgH2DAHTsKJSq8GPDR4VFB07f5UzSFWoiQRr8a/Ck99Ewq6PMyaiHRgA7iH/sFGhwFhsV9kUNII2Q/k6BoROrmQeK2mvKBydebOR4erTyh3UpyEK+a7u1fN4T85jESadBNseIfdXshbTVlDibg/xk32M+Kw9iR0HvIXHSkU8a0Os+pNgJ1ToYsMeODOVB+0IexCtPGhjHfOCKlZatxjtevVXHM81J0T6pA61yq/KX5tyog6681faRB/F1PqvXOM7sC/fV0ejV63U89thjOHv2bJB9ZgdQ/mngyQdNPaeS1Lbz9THFYhGNRgMrKysBrSdvGEyXy+Uw77g3nrqHfGbgyGtEdClHikSrDB88eDC8Hq9YLOL222/HxsYG5ubmsLCwEPhBnuXz+fAaGn6nAahUKjhw4EBIORsbG8PExARqtVo4GZeAIB0BMwurzZRPBphE+XO5XAh4qc+I3jMA1ZVIHmZ44MABrK+vA9gJXqjDuC+Pcy6fz4ctFpwD+s75arUa5jRlgyvgnCMKOKqOp+EneESninNXV3o4NvG+be4J7ff74a0UKq96vorqkmaziZMnT4YMAIKuly5dGpLHmZkZjI+P4/jx4zh79mwATOhEaIBMfmsgrPaSfeNz5BsP/yE/BwN/SBEPj+Rcr1Qq4ZwH8kgBVwUe+L/aJb4GEUDIGNOtF3EgpfZQ5xN1BJ+JA/MYUFB/Qe268oTPUU/EwTf7ST6pftQgkJ8YpFYZiG2C+hSUeRJ5FwOvqjvU91H9rtkAHI84ANb+xNv1FAjSuaS6PO4b5U/vIX9IymcdS7UD6nPEPFM5YT0xoDoqmE7ru9al1/lJC+LjoJjlqa1langv7QAAIABJREFUP9KC/Lie+P/YJxnls+wGsOh9MRgV9ysuR+22gmp7AQFpPN8NJHgixFPXW60WVldXQ4DD/dWdTgeXLl0Kh+5xr/XGxgZKpRKmp6eD/mS8QFvOc2T4KjfOcQVhzSxkdzEbjJlXlCXex9iDdpkAr/oAtFeDwSBsSVBfvNfrBRBiMBiE/e8zMzNhK4JzLvhE9Xod8/PzWFtbC3Yxn98554cryeQZFzF4yBz9336/j8uXLwd/VdvMbRCHDx8OCy5sF/lDW0w/lLER33bDoJt+Cs9fom9FQIDBNXUUt3QUi8WQBUrfA9jZxkd+094xE4Lzke2h3mI/uc1BdbjqZOpblletVkOaf6vVwtLS0hBozrOr6Hvp+QXMmubhkqyPGWLMUOS8ov3jdlbNVFQfklmsHEfV5byPfqyCP1xYpj3hnD979ixKpVIAxq437RsEUMOug0HlzxRhIlWxI0pFpsaOAh8HYGSIKnFdWdaJAewEx2wXgJBiroGwOiZaLu9ThamGXl/RBAyn6LLMONhX54eCwsBagxOWwX6zTayLAhevKKgTQuHieIwyYiqErFeNjRpjNfoAwkqhOrsxGKBtVGOrY0enS+9VHug1bb/yMnbu2K44IGadunqqMqErJtpu5RPlOwaGtA0xEEOFwnGM5SmuS/kYj99ugTy/x+Omjll8X+wMad1ar2aKEN1m0MXVfB7CQoNRLpfxsY99bAgZZQDL8skbKlEN1rm/fmJiAhsbG0Myx/HneHa73XCqr8opMwrUIaVzT6XNMs0spKXTaLbbbaysrADw85777tbX18Pz3W43bBVoNpthhZvGx8yGjDANLt83zzJ0hbHf7wdDyv34NEKa7k8+MLDgHkbKP9FzHVsF1qg/VZdxO0Sj0QhvVYidCI41X8NIgIKgDesGdsAFjgXBmXa7HQJ5GlM92I/UbreDntRUfj0XgXOFY8b26uo9g00CQOpwMOOCKY08y4CHy3IPpZnffjA7OxtW0fVtNDTyXAGhc8P5pbqA8sbxUKCHfaMsU+dpFoFe0+8EPVhubMfUPqgToXY3LRjiirWCVOpsa9Clc97Mwn2xbSdv4oBYbY7OUepgbScBAdVhGuxpZpCSlk9eKbDMuaL2MtbvcbCmzirHWX0Myip5poG38os6i3NOdVVsZ2OK+aO/x/YqLUAkcbxHyUUM+vN3zVKK+R1/Jy/itqeNV+xzxQBbWn/5XPxXZS4O4tNsu96ndjWtnTFPRoEOMaXxJ62stOtpZaTx73rSYDAIgfTy8jIef/zxoLeazSZWVlaGgiZgJ6uTQT/g7Ru/6zYSAtC6rTiX89mBXChkNhEPEGT8wPNXYsAOQNiyQF1LsLXb7QabxNiEK8/OuXDI92AwCMDA1tZWCCDV3hLkZ+o6swx03//i4iLMfLaiZqxtbGyE1HRmx7EsAvAa/GpWFLMve71e2FfPFXnV19zapsHr0aNHw/YBjgHvY4DtnH/NHVfnCUZwLBi0avafvnWJfeU8o32MF1b7/X4AuelPah06rvSBuHKub0pinymnXPxg36rVasj01AVByheBHvpd9B3Vn+R4AgiLM5oFrgdCjlroi3181q0AAEGTpaUlAAiv1LzetG8QABg2gjqo7KymPFB4icbQSVCUDrj6LQMx6aoHSVfalWk06nHQxrap0R1lPNRR0Lax3QzSKUSxouXvXJHToJ91UDB4jxpQvY/OqQbovKZOZsyXuG8xGq6OFgN0OiFpQaeuFGj5ujrBMpWXasDTHBK2T4NTBWz4DHnOOnWliPUpIMRyNY2Qz6rhiR3VGADQsVJwRye0OsVx4K1Oj75Pmzxg2epgxCtxen/aMxyz2KlOk2kNCrTMtPoYHDNNScdA733BC16AkydPolAo4Pz583jkkUeCY6Cr/jR4VKo0ViyLcqwHBJEXdApU3ubn58M8o3HX4GhsbGwIeNNVPU2Jp7Eh/69cuYJcLocHH3wQR48eDUgyX5vTbreRz+cDKMBUPd2rzZN6G41GMD6zs7O4cuXK0Cnz7B/RfA1iGGhqAMg5yJUP8pBtoDOjQGi73Q4rA0xn1/Hu9/uBVzRoNOwEOTi36LhRzhgs62n/nJd8HRMdEgbVPMuh0WhgbW0N+Xw+7PckX9hP59zQCgfnsLaZhj8GigDv7BHA0jMZdL99s9kc0rMKNPCcAp4RsLa2Fk40pgPmnLtqtYYn/VYqldBvjrdmx3Q6nSDHfF3S1NRUOEk4DcxUAFl1O4DgNFBG1W5QRjT1UW2qypeCJdQ5nI+07RxndXxU9wLD5wjFgRWvU5/r76r3ySt1kNSWOOeGggHVTaOCNfaH/yuf+L86iCyTNkDriduuNjPmR+xPKFihGS9qr3Wuqn1RHur/qgPZf+Vn/Bx/Y7/VnsQAtfJcbTvlJW3cVBbi8Y3bpPZLf2eWBR18BRJ0rLVMtRUsO7aTWlccgI/yl9Io7su1lhE/r23ZLbBPk+9rve9aqNVq4eGHHw6nynO/v27jjRdA1Md1bieDijpMfVbq6X6/j+Xl5bCwyBPSeZ2LBZoxpr42MJzNov5Ip9MJ23ipA/m6YcoYdW+9XkelUgltnpiYCFvAmMnI9PNGo4EzZ84EG8nDD9m29fV1XLhwAYPBIKTfcyFjdXUVjUYjbIcj39RvjrP2eKp9sVgMYDvnL0/Apw/nnAtp79SVxWIRhw8fDq/I3dzcDCviLId+l25x5uIHfQqOPTMBuYChrycGEMAFPdMBwJBOBfxc5xuj5ufng/+ki3K0uXyD1Pb2dsgaZZ3tdhsbGxshc4FjTftLIJnxKX0J6u148Vr9ilqtFmJb+j3cBqg6ivfH85lyqYvlahtpFykLPOB6fn4eJ06cCEDK9aJrOhNADyDihCOSTgfLzDA5OYl6vY7BwB8upSAAHUUFFGJjx/rUAVCjk+YwqLNCo6RggRoEdcBZv5arijvNWdAsgBjZ5gRmm+JDBfXQCg4220mkjo4whURfR6TBsDoVac6PgguxQPMZDfDVgCrf4wBdnQv2nx/9TevmZI9JjZ+uglABklec/JqmzjrZp1xu54CtmF/KJx2vODNCr+mYUr40m0CNdpoTobzS75SRGEDR++L/tZx4TDkWOu6xIxg7bfHvsaNAMEvBM9ZVq9WCcgWARqOBCxcu4NSpU8Eg0bmPsx+IjnOs+T/HkIEqV1XZFwYvRLv1fbN6EB/3/VHXcM+8yhGNAI2aczvbevgaoytXrmB5eRlHjx5Fs9nEhQsX0Ov1wp41GppqtYqVlZWhld319XWUy2WYWXhXrgZV+kYD8pTOBfUkV6HjlTk9mIYgx9TU1FDGAMcnl8sFI89DzRS47Xa7Q9fn5uaQz/utDUzzVMOZz/szELhaXiqVcOTIkYC68+Cjw4cPY2ZmBrOzsyFtkGmgBAFWVlbw8MMP42Mf+1iwE4PBIBzARPCCaaDcBsF5x/RS53YOPaQxZVt5jeAM7+H2CO6XZLYHXyVE/hNEqNfrIQui3+8HMIfjybrm5+eHMpl6vR6uXLkyFBDFK+m8j1sAzCys7uhrkdSx4HyhDNBRGwx8RgjfaayyRuBTdRfnJvWl6hXad97HPvDAqn6/j83NzasAfuqYNNA6jXgtDm61vaqntJ0xCK9ZE6pz0kiDYAVM1BFTcJK/qb7klhPyUHUs5zLbqkEsy9LV/niRIM5SoxMb8ynmDfmTZse0P7FNp+xoMK3P8DrL1uu6FSKtbvoU6iDrvQo8sP1x9ouCC2nBsbZZx0rtsX7XtvH+uA9p9egzrDe+FgMsyu+0Nqf1Ja2utPpiUj9vN+BiL+r3/evmuMe83+9jaWkJjz76KC5cuIBLly5hcXERgNcJ1JvATuYmMHwugwKUDAbJdz3/xTkXstGAnTOnaAsoR0yp5zyjTU/bFkN9NRgMwko+fXMFEAiwO7eT1k37MT09jdnZ2QAW0wfigbx8g8H09HTIHtzc3Aw+PO0G26BZAo1GI/SJNpx9p43hNgJgB9gg78lfBQ5yuVzIElDwRQ845bY81rWxsREOcSaYwNR4wOvciYkJzM3NhTMUaIeoB/gmhStXroRMC4IK7A/9N7XHzAAEEDIi+PpC9ifWFSxrZWUl+BD9fj9sKyA4TWBHDz8mGMRDEzVW4IIh/6fO09iH5aoNpMyp3VRgWeU+jmk1nmG/+Gyv18Pi4iLK5TIOHTp01dlqT4au6UwAdbAomHqCpO7xpZHTlQ9lJhmpSi02Iqr4OXFGKcw4gIuDMQ4A2xi3VQPMuG46B7xGJ1pRbg4U03QZ9OrhW+wHjWlsBNlWlhGTCkkMhKgRV2EmjzUYU2PLa6qANQ2GAskyNVhjGUTFlPg7n+cEjldZOFZ0TjRTRCcRy4wdRkWEVbZUNnSS8TddbY5lRR2A3Qy5Os10ltICejreOoaKbALDbxaIwYV4JScGq9KcQAWy4nvTHOu4r4rUm+2sOOtq69bWFt71rncNOcJMtdOAliuF6lDSALLfTO2i4aW8KSqrr7DT09EJDPBQujhQ1bRfghM6d2lguV9wdXU19OnixYthnBiMkl+FQmFov6CmoxG9dc5nFywuLgbQlIfvqCFkmbq3js6SrrKyLvYJQHi13fz8PAaDQXB2CITSSZicnES5XA6ph9VqNYxLu93G+fPnMTExEfpC9L7dbqNWq2F9fX1IF/OU/maziSNHjuDEiRO48847w0FKBJJ4YJEGCwRnzp07N6RLqH+4vYQGPQZPeT9TEzlXKpVKkE3eQ1lptVpDK+0rKyuo1WpDDgpB2K2tLUxOToY0w37fn2594MCBEPDHAY3KWrvdRqPRCDyIbSAPjaMTRDnnKgr7xLp5KKfKGtMOFaQEEOSKOpdzljKsWRZskwbD7I/afK7oKRhDeef3uB0aKMZ/Y12mmQlqO0bpONVbtKe66shytI5R+lP1ehogoDZDZU9XwTk32W4FpGJwQQNxzTpTEHc3iv0ODe6pH9WP0vI0uE4rk2WQF7HNi30B+jmc2zp27KP6gXF2C8tR308DOPIrtlXx//qbZvjFY6z9SQu21TfV39P+j21rmqzqPfFz8fU0ny8tmI/LVNoNoNgv9ft9nD17Fh/60IfwKZ/yKZiYmECz2cRDDz2EixcvYn19PbzWjgExdaHKnc5pjjftI/U7gACmUYYIAjBAJU9pJ7giT91HwFu37aqfpcCgLjRxZZqBLu2stoFnEukrVScnJ0NWAXXP+Ph40N3tdjsEcXx1Ir9zmyMzGJ1zIeuPujPWp9ziRuBRQRAePEwb3263cfHixeDvrK6uhuyHXC43lAVBUIY+V/y6Xs5r2vCxsTFUKhXMzc2Fc5PimIxgy9mzZ0MQTjvGRWQuvrAuXb0fDPxrm7ndQwEajjGwE8+1220sLi5ibW0tHDitH2YxUL/Eckh/jPOMGRjUW6qTC4Wd89uYWUj+ATsLZ8Cwn895oBlNfF7njNoZ2mMCVYwlV1ZWMD4+junp6Sc8v2PaNwhA5aUBpa4k6CRtNBrhtSEaLGsZqsg4AJodEGcKkEkUbgopGUjnhEiL1kWHR1eUid7EK9SqNGIjQaOnCiteJaXDxd/JLw0YAQxtW+DKAVNSiYLFiBKJfVLDrQG2Gg5dTVHnhvfEATT/515c5bEG8hqYAzsrN8BOAKOOEOWD98evSOQBKTQaqsAVSUtz8ngvUb14vPiMZlvEIM4oJ0F5pbKr33UOpMm8yoYifbFjECOEqrhUDmOAIs1h1UBfFYzKdVpWDUnnmSLUZhYQcO6nZsYAgUAeGMdxUuMeyyflifNR28n5xfHiqjWN6GAwCPvziZyTZ1SSW1tbmJmZwfLy8tBp6DT6VPqq+Nl/ddh5WAzbydfTxGAYZZ/BIIN9GuHDhw/j0KFDmJycDPzlYUorKyth3igIpiu4nAe9Xg/VanUoVb5UKoWVBw0sp6am0G63w0E+lUolHFzEvYlsM9+Rm8/nQ5ZELpfD5cuXw35+9o0rDZ1OB8997nNxzz33oF6vB2dIg0LKBQ+Y5B5SpkESGOJz7CvTDScnJ5HL5cLWAeVJtVoNK95Mg1QHhivqtVoNc3Nz6PV6If2x0+mEd1lPTEwEmSDCPzExEZxB2hE6gVeuXBna0lIoFIYAGHU2dM47t5N5oun9XHHhM9wTqtsO4kCDckiZ4ZyK5UUzOphCqc4ly2Rf2CbaQupiAlyqM1QnxbpN57LantiBIf/YZrZbeRjrKOW7gql6r+pB7aPWq3qDjib5p3ZS/2p9MXBHnUeKHXu2T4FSbW/MIwVmNMhSXR4vnqivFq/KKngQl602gfYotvXUUfFYqLzFb0Kh7WcbFJjQLMRRNlTbqLKnoIzyTuUyzbbr+MfyqN93kxe133qf9iENcIjLSgvm42difzSm3YL/tPk2ijY3N3Hp0iX85V/+JT7xiU/g/vvvH8papL6izuHYKWDIwJUZBLSvsb0cHx8Peo26qNvtYn19PazIa/BNP4B79QEMnVhPm0Q7rmnarFOBOwaAU1NTQwenMrgjmNrr9YLv0Gq1QgYE/QgCxPRlmarPucctjjy4jgCKZjsywOb8oa1lneQb+UGemu0cvN7pdLC8vBwyE9l32l7acy5C8EA9rsATDFGd1uv1MDU1hYMHD4YMM2bPcUyZnQggZCZOTk6G/vHMBNrFiYmJsIDMFXpNcae/RDvFg2zVJ6tWq+FNUGNjYwGEoU3nczFoqxmZbK9mdDEOoRzzfupu+n+aAUDwQrc7sA6NCxhXsRyNbTS2jLeSa8b91tYWNjY2hjJAnixdMwigHeIkUTSbzFLFHgdO7PQo5UvlQkZSIFWhEhAoFApDB+fxOTI4Lpt1c8WIRINCY6UKTSedphwBO+k6fE77qU4BlSYHkoNOoWEdbAsdRVWu7D8Fg/dqH9Rp0XRD1qf/a//VOJNXykOulOkKLHnDdurE0tVhzULQlbzYUUozZGmrA+qEqRND0gBIAzIlfZ6TTp3g2ACnORlspwbx+hv7z/5pv2LggffyuyLo6owqGBSDAByX2BFSXir/0hxOHQ8GUzRmXJkFcBV6StBIEVbOARpl3bPOPjEIp9NIxR07HZznqiBpKKmLFLy7fPly0CWUu+3tbVSr1bCyTOWqfKah0bcJMFDnnmoAYSWXc5iAg3P+pGCWz7oZ1B05cgSf8Rmfgbm5uTDHuf+RWQh0mmP5oUFhgM6gkRkVBBHNLBxyVyqVsLCwAMBnGNVqtaGD9CYnJ8OBPGwnA2emHDrnwuGB/b4/66BQ8K/cyefzeNaznoW5ubmhlXANbJ3zqx084f7s2bN44IEH8NBDD+H8+fNDgI7KKPtEHamrziyf/dWTh7naoe8xpo1YX18Paf9ccScqz9Opez1/IrSeVcC6V1dXg3wwe4UOyWDgt5FoNgFln/qR+o9zQ50E6muOhepQniRMGeUBVCyDOoNAhcoPece5QdlkGUq6Sh0DDgqSqR7br23nXCAfaGP0Hs4Z2jjd3qV2Vyl28DguaX1T3TLqeQUs1H5pAEiiLLI/sX7SQJb2lDozLTjVLCXtg4Lj8biQ57E95ZjrfNLrHCP2nbY9DXCIx4h6V+VK79czk2JgJraJJPVV4roV8ImBCbVx5H0MQu0WJMf90/8VuFAfg+XGfklcZ1yX9lGfif+mtWU30EB9jvhZBcNGkXM+u+mBBx7Agw8+iKWlpfD6On1e5y3tZ3wOl+o6XSlnpp+CvPSrebDq+vo6Go1G8AkIFGgf6YdyT/jhw4evOo+AgbzaR5bB1X9u96K9YHu4cq8LF/TbAYQsAjMLWwPHx8dD+jzjAfoKrVYrvOqYdpWABsESBuWcW+QXbRTBcfKKADF1OIETHnC7tbU1tBDL7QCFQgH1ej2s5nPrGQP2tbW1wO9erxdWnScmJtBut7G6uhqC8mq1iqmpKRw7dgyTk5NBlvi6ZQUSdJGHgAivV6vVIEsMlJvNJsbHx1Gr1dBsNkP6PmMnfRNcuVwOJ+f3+/0gC6pTqdc1O4Vzl9+ZScJMDn1uMNjJmqCvovaBMk0/Qxe7aAeYVQhc/Rp0gs8KhsRAKwGHjY0NVCqVcMDhk6VrBgH0uwZPitLGTkAcOMXoswYk2nkOAMvQsuiQsA4yQwNknfj8nsvt7AOmYMZGUvtCB0BTOmKEOjBTVmrUOPEZrj5SgKgE9L2adORZt/Yx/qtOEetVR5LlqMLN5XZe1aZtpbFjIKAr6Or0sjwtP86c0EmWZujVgaSCYEpZHBDHCLs6AHEdLI+kRobXFOTQ+zT4SCOVc3UO1OFQxyqWg9iQ8f+0VQOlGDTQtqSVp/XzN52X6uTrNXU+gZ3tMgBCcMc2EPnl3jHN8AAQgiwCbUTq6WQqD1VRa3u530yRU+WzzkcGXOVyORgAggdsV71eD+eTVKvVMM+q1SqKxSJmZ2fDPnMAIdWPZdBoMS2boEitVgsp4leuXMHS0hL6/X54//zy8jIAYGpqCs95znPwkpe8BCdPngzvmCW4QEPcbrexsLCAhYWFVDCAQQ4DWz18hynkzIqYmppCtVoNq+0MqrnqQBCiWq2GFV4aYvKGexX1tUNmhmazGZyJY8eOYWZmJrRXUetcLhe+Ly8v4/z583jggQfwiU98AgsLC0OvPFQ5V5ll4ECwQhFyyvHhw4cxPj4e3m5A2ev3/QE7mr4KIBwuxVf0cWWDASS3k/CVkLR3CwsLITjle6TpXAE7oLA6NHSSOX4aIGiQRlmgg6kH3tH5piOg4Cv1G8G3WGaoLxSEAIZTnjV4px2JQdG0wEb1SOwDxNl8LEdttILR7Av1oqZFxg6Z6nyWn8/nA/80e4C8YZ9jvscgAMtTog0fBVzoahHbRB0IIKx66bYPtRcKoKifFNuP3fwtDVjV7qrfkCZ31M3qV1DW1J7qmHJ8dNFHidljnU4HzWZzKMMnDpZjH4flq75XUlmLAZF47GKbuFtgPSpwV0oDtkbZ9niep5GOa8wXlYndQAytc1SbYwAjpkajgT/5kz/BAw88MGQrmLauPjRX0OnTUi4IyuuY0r/lK+hKpVJIP2+322GL38bGRgBjGeAySGdQy7lH0G1sbAyHDh3CzMxM2FPOLDSer0JdSnnkYgQDaC5sxCCMAgOajWjmt7JNT0+HLDiuHs/OzuLkyZMAgLW1NSwsLKDb7WJiYgKtVgubm5uhbgb+9KUI7Ovq9+rqamgTdR8XIXX1u9lsBoAB2IlVuJDBucn+T01N4dChQ8Hm8PrGxkbY8ke7zQCdr4AksABgaNGH8soDEi9cuIBWqxUOCGQ/9I0MtOPM3uN2AWbp0W4S8CF/NGbTlH/yhVtXWafqd41Z1MaNmqdsI2MgjYmop1T3KtARx4aa+aV1k/iMzrXYNhPc4RjPzMzsCfDtRdf0dgANPPjRlQxV5GR8bGhjxnCyaQCrgQkHT1foNTjUwwr5DNvG+tPq5oRSR1v7QGdAkW4VSPKDv9N5ZPoqhXqI2YkwKSigB4QAw4eqaD3aRiV1DtXZYVlqnPVeDZAUiIkdMR2PGPVSA6V8Yz/JTx0HXid/ecIq0VpOsngyKiCi6TysR1cyB4NBSL/W4IJ9VcRYwYzYIeD9qiA4FupAqxOyF4gQ16Ok8qnKJTZQ8Tzk/zFQkQY+pIEWaaTOGINqBpmtVmtIPqrVapAd5ZUqe7aLafpErHO5XFiZpFKnLlBlS7lguxkMc65Rzmv/P2lv1hxXcpzvZy/E1ntj4QLOaKSRZIcdIfnK4e/gT+lP4XvrylfS2L8YyeMZDoccEiCxdWMlgF7+F/g/1U/nnKY48olAAOg+p04tWZlvvplV1W4XY8ectBwgdxiUvb29eP/+fXS73XJ8zHg8jmazWVLrT05OyhFxg8EghsNhOROYo/O4dzQaxWTysLkhuqXX68Xvfve7+Nd//ddoNBpFZ5FWtrGxEU+ePCmyub+/Hy9evIg3b96U1HXIMvqLnYTRHY1Go6xhn81mMRgM4tmzZxGxYOZJW2N+Qj7Q7+zoD4ByPwOi3JetViuePHkSe3t7sbu7W8bZpxcw7peXl/Htt9/GX/7ylzg8PIyTk5Oysdx8Pi/GG0CF7EJ2kCHCmNdqi4gOa/W3trbi8vIy9vb2Yj6fx9HRUSlrOByWox/RPzs7O7G7uxt7e3tlY8RerxeTySQ+//zz+PDhQ4zH4zg6OoqTk5M4PDwsfQhgrdVqZd0nbaV+sP6kcK4iOiNiKfLllEzqD0kEOEMHAlANMiDEKccbcTpTg/74mH4yQZMdfjuNlgs+w7l0W22bretsY2wDGa9MvnKZPHSqJ/2SI/mZ4Ldtp77GGYwLoD0iSvaIgwwmASjLxFl24pxJ5Owt62PqaoyV9bPbT1+uyj6z7vc7Mulimcj941Ne3HbbdsYPHY8etA63TXM/Wq5ym7nH2SR+PvdNttFuvzFs7veqPsif+8oOvOux6srvqGor33k+mtDwe/L783Or6s73h4eH8Ze//KWQnMgdehmHzPPMp/awASwENLoOnA0RzP/YezCyN+9lvhGYyLqBdjkSfnl5WaLh9h+Y05CnRGo3Njai0+lEp9Mp8sr7+XxnZyciIk5OTuLs7GxpCZcj/mtra9HpdMoyPwIGXm44GAyKo89md5AijCmkxO3tbVlnzrxiGVqr1Sp2AtvjtfDoFvoLOaBt6J2rq6s4PDwstr5er5fsCUgeNnhnSeN8Pi9ZeVtbW9HpdMr3bM787bffxsuXL0sbsWFgRd4REUv2Dvtoh7dWeyDTd3d3lzLXjBuQCeSKZQQmx5EF+tdr900WGN9jN0xo0Q63KZN9npPWYxA0ZBF4uSTj3Gg0yvLMiCh/2+fycsrxeFyWdPxfrp9FArihWYEyeFbQsFeOYvl/nGA2icC42qECbGVFiSPmaAWKK2I53TsTErkNKBuAlAURgOLIBX8DvnAo+CH95+LiYskoY4hI+0CoPYkRbPeRAQZtN7Dxd3mcrHAR6gwpieo0AAAgAElEQVRY+LExxllxZMTHZ1EPEweMcV4KQN1sOBhbnAsivjbqOTpoucjRGK7s+Lu+tIV2+7sc7TbBUwW2uBzdsDG2U059rYxpR1WZ+TLRkt/j35kU4HcVgKwiWVwPlA8GgP9xInAQUb79fr9EV1GYtdrirF/ubbfb0e/3YzKZxJs3b0qWgOc6c8brASOipAaSgeC0PbIGGo2Ho31wlNfX18sGNXYsARkXFxdl47pHjx7Fs2fPYjwex/r6epydnZV34Xz1+/344osv4vnz52V5wPX1dbx58ybevXsXrVYrzs7OCrBoNh+OvHn+/Hk8evSo6Ab6A2d+c3Mznj17VlLhnj9/Xup+cHAQ4/E4arVaWUsI2YFj/uHDh2LkaD9yzeZ3x8fHJap/eXkZtVqtnCSA81Sr1WJnZydOT0+LrJLZgRHq9XplZ2brrb29vajX63F4eFjWPkY8RN3fvXsXL1++jNevX8fR0VGMRqOlrAvaEbG81pfIzmSy2CzQjhaR1jdv3kRExC9+8YtygkOtVotOp1P2OWD9/traWjx79iz+7u/+Lvb29uIXv/hFASCk2j958qTMX06/+OGHH6LRaMSf//znYiuYe5AD3jdiPp+XTQJt8AHDtI9xMnHpDasgmKi/N/5jblk3sLdCtosGFPP5vCx/yLrIxGd2qGxPV0Wi6UciXegBb3BJ2/nfTmX+jP7KJEPE8vI//s96FdnlOfrKBKH7knfX6/USkTRA50gv2zbqg71GLr1DtaPnBuu2IQbuxjd5XvA8JEPOgGOO8HeWP7AIspEzxHwf44vzZ6zA9yYAaCeZAAaxVc6vgw2rnO5MNPk+EwL8n0mnKsfZuNW2s8opr7K3+WfVle17dhhyn+RnMnHhcjPeqKrzKoKB6/7+4Tg7B7MiomTWkHbvSChkELim1WqVFHNOUuFIVeri9HzLpGUf++QN2DxWPjEG/WrMXq/XyxF8rudkMol2u13mDQ4xKeBg+cePH8fTp0/j8ePH0e/34/r6Or7++uv4/vvvl7LJ6Jv5fB7dbjeePHkS0+k0/vznP8fZ2VnZAJAIfaPRiMePH8fjx4/LckRnW1B/20IHtQigPH/+PCaTSakLso/DyLGGHGXrLDH0GJmB1AH85IDPxsZG9Hq9GA6HZSlAvV4vJEG32y0bALNnzvHxcbx58ybOzs4KmW+9BJnPnjIQteA2Z12jd33kID4fPhRyD2lBlgFLFSw7EDDIBjIWEUVH2e6g30wEUF/GLNslY1HrBdumiMVSgBzMQ2dSrklOyqJNBCharVbs7e39VR/iY9cnkwAIJcoGhZ2dfytqvrOxpYE5JRBDbaBAp3NPTjs2UESQEGKAEYCq0WiUzZ0YDIy+hcu7XaKkzBxhIIgyAMhJK4bpYTDNRFEnonb1+sNGV9QrM9oRC+KEetIfXGbv3ce0HSF1eqS/t8NsRx5AmwmIbCARVtqF4wObm9d0mlGrcuTtcGej5rHP7bYRdDaImbZsRKkHYwuYtPNuQstgOAM6LjvpTPRs8Ggnyt2gIBts3+PLAKYK3Lg//byB0SriKGKxMSDyc3d3t7TGOmKxuSPRaqLLbEA2m81KWj9pXBFRnEj6O2evMCYGBsgjx7oZOGDgmRs4dChO1jU6Klev12N7ezu63W5JVST9kOj+7u5uvHr1qjhVV1dXJfownU7j4uIiDg4O4rvvvovvv/++GG/qAyD58ssv4/e//33c3t7Gq1ev4vj4uKRJ4pQaZDUajdjd3Y21tbV4//59cfpIUWcsMWKkp5OtwZg1Go24ubmJy8vLAvCsHy8uLorj2W63S2pgs/lwRBFr4r2LM/OXcT4/Py+b8aALIRDG43EcHx/H9fV1vH79uhyF5I37IH1tJyw/BomTyaQAH2QbPUvEx3N5e3u7lH98fFxko9VqxT//8z/Hr3/962i32/H48eOyF8N8/pA1gBx2Op0YDodlQ1HvfWB9QZ2oD44Idik75CZgIULPz89LZhzvYDxoowELRBvf2SmNWBAMzAvv0+HL0bWsh603sRfZ3lOGbTs207bT4N8OofVlJjNpJ31Fv9vm8Ln1YCb9aXsmf+34cwGOmQdswgQIc6DCDjIXts8bYtl+on+MgZydZ1zDO7gv24IqsOlxiVjemDDXge99r2Ui44SIBZlv4Ox25H1dLFdV9c6OdRVpvcppXtVW7gNLIG9+X8anzFk7A1UEQgbmmQTIcym32+/2fdYjuc25P6rKrapn7q+q6+DgII6Pj5dsKH2Hs8UyG/oRvQVR1ul0YnNzM9rtdjm2l+g5mN5p2yyLBd8g10TBiepCJPo4t/X19ZIdZ1IYHU3UGL/C40W59NX9/X3Z+2AwGMTe3l589tln5eQcjgr2vjkQnNjN/f392NzcjG+//TZev35dliQau9AGouuk1ru/nT3BngDoNeQYYoG9aZAlCI16vV4CBSw5RKZ9ihIZAOhWp+ejsym/0+nEYDAoJwRFRAncnp6exunpaVxdXRWSJyKWdDI/zuizH+Al0NSlVqstnfZgMoQN+MBz19fXZfyHw2Hpp7ycjqzBwWAQ/X6/ZIJzehNkDAEl+u7+/r6QOmAQZ267z+x72oeIWGwGzw/j7jLwLa13kTnbM4igo6OjQtj8rdcnkwBOz8FY0dDsaFiAqpwvXwiHd+R06lg2VjCPXHb4+N5pj9SJv+0kASZITzE5YefRChsFlp1b2Kqbm5uy+VRm9fnZ2toq65JRkAY7Bln0A0aWMq2EuQzI6H+ULf1n58nMPWNGvwC2qgxaBg++D7AOEMKB5N7MDnp8qgAqspAjGXmC5YiMy6b+HkOPHT849rTBINVgwUDD/WNgiyy6HH/ni0lN2a6rAVuVgc/Xxz7/GBjI8ypikR3x6NGj4txQD5RjrVZbAvc7OzvF2aOtKFXY2hcvXhQlZoeWtbxk0ODcYLQnk0lxTB39xHH03Ge8YMgx3KS9R0RxmG30Dg4OYjAYFCf//Py8lLW2tlYMN8fsvXnzZslARTxkLPT7/Yh4WJ6wvb0dm5ub5Sxb1hGS4s0SCRxcbyhG5J325iUBREwwTpAVGxsbBSh8+PAh2u12dLvd4ugSxaDeAIZarVYyLNrtdjGwRBnIVGDOHB0dlQ2CDPDev38fL1++jIuLi5hOp6XdAMFarVaiBRh9CIdGo7F03KMNLGOcwfzV1VUhQ3DarOsx4BsbG/HZZ5/F8+fP4+nTp0uyQHomAMlr+SFTyEgYj8dlzmZ9YUfG9aTd+X/bLs5Gnk6nZe0oBDkp1tgW+ht7wFja6WduGEjwburIfQYZyEL+3/Y2O4rWf/QB2T0GZXZYbVszoQIA8v05msw8qXLsIU2ou51u7vP7KR9n0LaFNccXFxdluYvLNVjDCbIDlMmN7LC5DbYDXPS776V/P+bg8y7KzY52lU3KDqrHBz3EWmrwmsfV4J+6O1vQ78/tdF2qxsVjYp2b28hnYFbq5r4yyHYmlPFFtpt8ZyyV7bvrktvB/1XjtOrynPgYBjAR8NcwB9fd3V28efOmZOnhmCP/ZN9lDMQc4V7mODbu/fv3cXp6WlLwwQgOXDA/GAPGClIU23V7e1s2zQMHeI8AnH6IKRMYnFTExbvoG7K0jDMvLy9jNBrF8fFxvHz5Mo6Pj4ttJssH3dzv9+Ozzz4rewCwzw342fgSe089TWBbJiEqTFZgQ7GnDjIyH2lXJkZNGBNINP5335icH41G0el04smTJ0u70Z+fn5f9lS4vL8vpB8x9yAgcds8X3sF7kR0TchFRdDe2j2XD7EXBPMI+QP7s7u6WLEn2SsAesgRkOBzG9vZ2NJvNuLm5KVkO1N+ELG0E74Ff8GEYP7IRcraU/WaILOywy3DWFnMPGb+/vy+ywBjTZ5eXl3F8fByz2cMS0L/l+mQSgIZlpWUHF8CfHX+E2M8iNAZ1XidBgx0RpCwrJf72RIpYACxHwK1oqDdty0rTxoGBqQIaBj82gLn9/IbpctQvYnk3X9rljbjoM/e5Mxq4nHLC5KgyQtzHdzj+uZwqZ5d3OmLh/1HOXAYruSzXLdcBuQLEZsPr/jU4QKYMPgy66Ov8HpRUFTDhPspBrgxm8t/U1YDLMpvlxMDS5FoeO64ss75MkhjMVLUr1yPiARx0Op3iQPGbyDF9imPmuecdS+kH5sbx8fGS8kMW0R2UCflA2h1OKhFbDBlOM+/0GBA5QJnTf45sTafTuLm5KeUDAHAC2f+AOXtzcxOHh4clBY8sHjIdkIvRaBSPHz+O7e3tsrbQ+pFjVDnzmH7DkLx//z5evXoVo9EoZrNZyaqZTCbx29/+NtbW1uLt27dljp+cnJS0QyKYjIudIdLLB4NBcZqn02lh9gEgTm+HMAD8kOI4m83KRkDz+Tw6nU7s7u7Gd999F19//XUcHh4ukX9eF5cdIiIZpGCym7HJZoCPgY3TzGu1hzWSOzs7hTyKiLLZEQQBQIs2wMB3Op2YzWbFsSGae3BwEP/5n/8ZL168iKOjo1If9L8BbhVBaF2IPs7pl557tok4loAZ6xKAHr+zbDP3AWNsQoUseL7yjPVi1ThZV9LmrP8ZI8Aq+sR6irluXWx9ZgLHP3yf62mw7T6gn10+c9C2O5MdJhmpI3KRdSUXNhvbbh1D+SYe3A7rT4Nh95Wdr5z14X7PF/JmLOHx4nK/+cr19xpU5qXHg3fanjkDg/Gy04y8VNXf76KdyI6JIu7xHDTOyfMiX4w1erPKmf4YCeD7LB95Dvle358d+PzeqrLzfX7nx/rS9/lvIuvYqlarVXSiyX7sDnqVNeGcW8+mcFzoMYjMiPiJDGNzM2mEI8bfnU5nKVjHfMGGmJDCEUPHZXuB/idbGGeT4/ZIXXdGLP0RsXAsfbINBD11BDPd3d3FeDz+yV5kdorBMpCJzebDiQoXFxclo5F2eM4RRKMtXOjwKgzOXHYQBExDQHNjY6MsjZjNZmV5ImSEcayj7rzD8kVkH78mr4unvuhbMAAZh1dXV9Hr9ZYIj+l0WrIQNjc3i3NPf4P/qgjD6XQaJycn5SQMgtAmCwmq8ON9fUzkORvT8hax0LUEoLjfGIDvrYPIInTmCTYczHRzc1NOa2q320vY+1OvTyYBAII2ntl4I8AIBBOiyuH6GAhAQA0ysuNvBQcQcqfni/dUMep21GxcDEB9DB6f+eiHXJ7b4Hai5BASjuxCabgc1x0BcXsxrjbeCBegJbP/MFdcNrxZaHl3vgy0LMSuuyMUmV1DRijf4AQDwHtMWLh//ZkVD8AKI8DEzASUAa4Neza2NsI8ZwLAysD1MQFgRVd1bwbuBgyUY+CYy/KcyNHGDBgoy99nsB+xvKkYCs7ls+YVY8oO7K9fv/5J3cwSo0e8pgqDYLa92+0WBxWDh4L98OFDYVMx9L/+9a9jOBwWphaFTjvZMXg+n8f5+XnJCnDaIYbD0UMM0GTysMFfrVaLb7/9NgaDQYmKY3SRD8DIYDCI/f396PV60Wg8LAH68ssv4/379wW0zGazsnNwRJQ0+++++y5OTk6K4xHxkGFQr9fj3bt3sbW1Fe/fv4+bm5viwPd6vZjNZuX8XPQWzD56A2M+m82i3W6XefnZZ5+VeczyDzYjQu69iSPZBqPRKL799tu4vr6O4XAY4/G4MOfookziIs/MAWThw4cPJeLuOc2PHe/5fF4i/rD58/k8zs7OyvuQj3a7Xebw2dlZvH37tjj/yBQAcjKZlOVdR0dH8V//9V/x1VdfxcHBwdKZ50Q9cEJoh+ed56r/N5Bg/jG3AKOASGTXcwYdC3jDpmIryL7B5lAGdqPVahWAa9DIfLTNpk6OVjD3rN+wecib9doqfVTl0HA/5ILLXnW/HUTIoax/M3ADWzirj8tylvVtJit4pwFevV4v61JtY23P7KwiEx4H23YTE7YLxi4f60874thct8WBEbfXthmZ8zFvXlucSSieyWNE/1IPvvNcyM63cRR9kHGf5yBjbFzl9lbhGkcCc/9k+anq++x0ZwenyjG3c5Lvy31Q9Z5V4/2pF8umfvzxx5LhQjp6q9WKRqNRnELS5r3fDKnZ2EJklHF1ajSfGx9FLGclMaeyvpnNZktlIzvM4fF4XBxGzyOIcTAn6f/YeMpBB15cXJQ+daDS+ghsC9Zm6eDz589jPB4XzBkRxSmnnuhc9DQ6mqwFL31gqSJRd9qNjGK7HA33Zzjb3nuLPud79nxA1xHwiYhyfPF3331XfJT379/H8fFx2UeIox3dl4yjxw1C4+bmJhqNxhKusawzB7GzZB0+evQojo+Py4bMjIOPGoTgJ7PbPhv9wxjP5/OSyfn+/fuS7u/lCoy9jxIme5F6Q+KDH5Ej9DX9ADHGvLFdMybgx34lcoYdZ26Akc/Pz0sfPX78eMk3+iQd8Mk3KkqbAZwdaBsCTx4uO/PcZ6fUStEGMEeWAWGU6TQl6pLT+238GDyedzTDCt4pmL6Xd3KPwbbrQPqKU+QM+Ng1lHM1eS9tAaBY8VNeZtD4zkLAOHBZ4Az0DIxclg1pBg1VjJ9ZVk8oT4oMuHi/jTjj50iZMyEsc1XOMBd9h4NQxfIzqbKRzkDezn8GRyYUcp18jwGE+432oNB9rwmxKgffBjUD1NxPuY/o51WABfnD0G9ubhaDAOsIw08/kh3gfucddkRMBkYsdm3nGep/e3sbo9GoyKJTPGu1WvR6vfjVr34Vz58/L7J5dXUVJycncX9/H+vr60UB39/fx8uXL0uqIkb86OgoIh4MhNeaYVCurq7i9PS0GGjmDzoAIsHydXh4GIPBoERRms2HM3rpGyLutO/du3clCkF2QrfbLSnIEQ+ZCv/93/8du7u7ZalPp9OJRuNhV2PqzfF119fXZQ8DHGBYduZUt9uNvb292NnZKell0+nDpkX7+/uxvb1dNoj84YcffpIWh8H6/vvvi3PNhoPoNPrJ6X0mUrEj19fXhaBARiyT6BH62OtNkcXLy8ulqAx1jHhYK3hwcBB/+tOflpYaoINx3iC1/vznP8dXX30Vh4eHS7sSb2xslM2ZIBNytpJ1DrLqutMm612AHI6s92GgjTim1ku5j9CxJtvRCwBNbzBoPYEOyrqQulrHZKeLq8qptM7iMqGQnSrqj512mxkz3mEcYpuT8Ql623YbUE2buNeOru0oujgvg7NtBcTXarUCVE1uM9ZVttD1BURbjxpAZgfROCf3o8cGPFfllBqPIQ/I4Gw2W1r760AHz1c5tnYObFct+1Xkii//73vpG+M7ykdX2/5l3GScRRv/mhOeP/vYle11LjPbXr+3qs1V91bJwyoZ8VWr1WJ/fz9ev34dJycnBQc7Io2eyNkw3Oe57qVFET/dp4o5mJcJcC978zgABGHORqmMF3MW28rnBL9qtUVkHJKClHpsMvICEXx/f1+i9Q5kEWk1hqVdV1dX0el04re//W00m8148+ZNOSWoVquVzWLH4/HSun/mmckX9BLEO/cxZ52RYWcdwp1x8KbK3vzQAQ4cTvopYnEEJPbv+Pg4Pnz4UDbetR6CdGFzY97NPCIIA8aKWASKwQEmbTKJYLvNeINLCGSwdJQ2j8fj2NvbKxjOWR70JRiD/R7Qz9gBt4M65cCfySh+6E/stP1LZ9HkZQH2Ne0zeQ4xB8DPPmaS8r2f3c+5PpkEoIFUignKumEuGrm1tVUArtkqBNDG3CDEhtWOORElDBcdmlOJ6XSYEwbCaUgRC2cLAOcyGRjWM+ZUKH4MSmG6LJD1+iJ9gwgjSgTGrdlsLqVpGrSyTwKGCaWLUqE/TQigoBBcJhNCVfU5pILH0lEIjxF1dnQiM3oGMZSF3Bj0MTHd/37OZIvriRxmx5bL8mmAaJY/AwFPPMbVTognvOuYZRpZ9FzJhEC+srF3ZONj4MqEQiZCct38206KgYIBuEFVxCIzgPQ2ykLGic4TlWYDmfX19aK0UczUwen/vBPmF7kx4YccIX/U/9mzZ/HFF1/Ezs5OjMfjpV3rJ5NJWaO/t7cXGxsb0W634w9/+ENMJg/7D+Asc+4v6/Bx+jBYs9nDZnebm5txcXFRQIkdR2+MyPF5l5eXZcMgIiqOKHc6nTKfT05Oyhr+TqcTe3t78eHDh3jx4kVJwbu9vY2Dg4Oo1R7SN8fjcfR6vbIh0Xg8LmQJKYS8DzCPHkEfjEajAoQgMvmezfx81vPV1dUSAcA4Acj4bjqdFkOFHvMxquhhDGAmhwzsGXOAKPd4ngJakRnqxf4Jk8mk7Kr7zTfflHbu7OyUuj169Cjevn0bs9ksvvnmm/j+++/j5OSkOG5OMQdA5R37AQnYIvqDeZWdkewUoCMhfwwOsh6ln1cRetTTaeoGX44+ZJ3N524rBIIBPG13u0ysVum+TCg4Imi9ZB3B/Dd5RP2zTUYObV94HynMeZ8C60zvJ+L3M3ew8ZRFfSyfbFCW05AB5MYxzroySW9C1NEi/285oq0eT9/D/PqYc2hMZvvCe5GJjN+qyCPa4bGtIo6qyCfLgv92GbbvOeCBA1f1PPPFfZnJiKo+8hxcZdMzPsh/+7OsC/xdFRFRRQbk967SLVXX+vp67O/vx/X1dRwdHRUd3mw248mTJ7G/vx+vXr2K9fX12N7eXnLQnJ2C7gMneP5bHnGUfBwsY8FFxuB0Oi32G0KH/XSYS06ZZt6ip7ErrHEnrZ45y/uZE6PRKLrdbrFZEQ8RZnbKx/aBA2azWYxGoxIo2d/fL0fVjsfjsskhJD8EeqvVin6/HxsbGyXDAvzBMsTb29uy8z5L8Lgn+1zYZ/SiHWg2NwVLI7e2FWRK0Hc46AQkyBjgSDp0q51j+h8CwIQrdowTGjz26EHqhLPOb/uPHv+Tk5NyAhG+KBF7MlU5FajZXJzidnV1FdfX1yUQZBmkvpYrZMs+hHWH8Tp6PiKW7D2yj57xXgERCxtscov20j76nTl3dXVVxhwZzeTrp1yfTAJY6PwiV8yfMQhOS1lVRsSiwdmZt6BlIiJisfZ/Op2WNaA4HCYAnB5sgMvEsONBeWafKCdHz51RgBMNQCBNhkli4O1ojtfKZlBlwAe5wEQ3qZENNeCn6sfKm3fwHhMEfG7ni+9yir4zLDxGHmcr+uyQ5mwH18F9kgFANtR2KP0eO7UZ8Gbw5z5xHc0C5ncbGNkpAeD5Pu5xWVVlVjnnOQPEY5/lIAOmTMRZeVVdRNBRbrC5Ozs7xQlgjjQajXL8CulWzGfOkcXQIMeMMVGzer1e5mle88a44sQDNm5vb+PZs2exvb0dEQ/kA2v5iHYzvtfX19HtdmNnZ6c4MjaopLkyR630TUSgL3BmeW5ra6uQnjs7O/H3f//3cXd3F19//XUxOqSd4xz0+/3o9XrR7/cLicFpAcgL+wacnZ2VzCJ0BvqJSIPTX9FNo9GoGGjmMxsPkR1wd3cX7969K+OCk/j69euYTB5Of+j3+wVMOGoBaOAdOMRkBJB6niMr7OZvp4bUuojFOvKcou65hXG2Ls1koXUI43l2dhZnZ2dlx2aAGWPEMVc//PBDyWhAliC2mFfIMJdPKTDZY7CJvkAPZR3I93ZK/JznPv2TiQT6BH3XbC5OF7CzlKPGBvVE9vjM6a1ev2sg5TbZOcxXtlFZ/1vPWV87Mg7Iz84EZdm28Twy4KBC7hPX0TYeMAkBgK51tItlTTj7mUhBBnD4+dxyYznI0TH3m/92ez2WPJuDOO5vz5E8FnxukoZn8vN+Hw5BJiZMXmXC26S9+8H19o9tcxVJTx9Zpv2825gJAJfh/vRYuh8/5mxXkWGrHPtcTi7f91Y5/f78Y4QBV7PZjOfPn0etViu7qzNmT548KWvw+/1+2VOGPWiM6awHTKh4fGzb0VnGK9SXyPR8Pi+OzmQyKZvSQXgz7+7v78uyOzu3OI2snSa126nfvGc6nS456ZDC/X4/ut1uyXicTqflJITpdBrHx8fFxvr0G3Qk6/s5gQd9wUkB+Ef0F4TA3d1dWQtPfa+urpYy7HAAce7RHxAf9/f3S9mAEKTobb6n/5kvlIGDbv0WsbwhO/0IsQl24DnIfnwi40kIDy/PoC70nfUiAQcTJBGLY2DZQ2lra6vsYTSfz8uyvYuLi7i4uCj40P2OTsa2Uwfw5vX1ddmI2f6osTbzyfbJNok5wsZ+2Q/GniGTkCkQyRASHL0LlmPpzt9y/awjAu0o+4VEB2DeENB6vV52lYS5M4OI0+7U4uxo827/TWfn+uCkUjc60RuJGbChLEgXscFAUDMwsIL2dxmgUj7RRtKZcBpoBxkK8/n8J2vlKYMJ7nZh/O3IRiw76jmiQLkYMgObiJ8e4YRScbo85ZkkyP2DQjCAzOSOQQl1ou4Ry5tawToCmHKfe1xydIkyDA5WOd7ZKa4y7lWGmDZk8oN+5l5HNN1G/85G3Q5+Bm8ZhKyqYwY2BmyMVy5jMBgUZRuxOLsVR/D09LRkpGD4I6IoZs64Zz7ByKLsYcvJohkMBoVlZ/NAb/aHHKBg0SnIAcby4OCgnCAAGYehOT8/L0YXEF+r1cr8o48d3UJOccqR452dnXJUEe+r1+vlzOBerxfn5+fx6tWrePPmTekjsigwPjD/jhbTZlhu1u2bpXbEZWNjowAFSFnm02TycFwh8jebzUoGQ7/fj1arFd9//30xqp5vXPV6vYCPnZ2dJSNG1B1iwgQEUXXYectJt9uNXq9X1k0fHh6W8cxLzxgDHHCDR4+Z5xlzkb5mqRZ1Rgezk/vp6WlJQ724uIh2u112uWbuMMdpO6SQAQ/yZvBDG3g/Y00WGOAK4EZfGUTbiZnPFzsSOwsDvewlB4yHnR/Aj7+zznKmgwl+6oKctlqtApoMHiHImJuMi51uR0a4qhwZ+su6ETtIxMl22jo9IpZsaiY+TLRYj2eihXZ5WQL9zV4UZFnQF4wT/ztiShnIufGUdTFjYRLA9tcEgOcCoDmDT7eFK1UxsKAAACAASURBVNtlR57y59lW2I758jy0vspYgf4wAWOn0eXZjmabt8oJzw4m73c9sqNa1Y5cZ9vhjCFWPfsxJ3wVGeA2rCo3EwuZhKlqQ1Wb2u12/OIXvyhL6mazWZydncXV1VWcn59Hu92OJ0+exMbGRnz//fdxeXm5FN3d3d2N+XxelrXWarWyc/xstth81admWeZxmHEU3c/MLdLTceYjFsfjIkO2dT7Fg+ACz2A/nVGLQ+vjB9nUj2VmR0dHsba2VvDR8fFxcWhns1mcnp6W0wzwi9BhrVYrLi8vi1Ma8aDz0eHWa4zh9fV1jEajklXg3fjp+2azGTs7O+WYxtlsVo7t5fla7eGkB7K0G43GEiHCyQUmFyEi0FE8h27IBCwZFjimEcs+GpgrBwS8TMHyYAfdfpmJRfoBJxlsQjalyUZIAMadOhhjIAfMH2c/bG1tlT5Bnjzfsq6z/aI9EDG+mB/0qceAOoIfHMyg7Pl8vrSk5Oden0wCtNvtMmBZYRr4mVEC4NOxBrgMYk6LcHpGNjJE6BzJZaC8KyKpOQiJswkycWDwYsab/810cll4+KFPAKMAQE8eQEMeQC7q4bQaGDiEB0H3GADU7FzbMGVmnXvt8Bg0QUxQJ5dJvSJiifgxSPBkNZkA4OJz6lOr1YrCnc0Wu4B7snjcAeOWEcqin9wmvjOYNqBZZXgNPvy827jqWQNWR1Bs+CKWlwtwVUULfI/TJjMAcB0tm+4rP2fm1WXB+NsZXltbK1Fp5hSRXtjLk5OT8rwZTeYNZEKj0Vja8ZdNhTAwOfsEWaVcHOjJZBLffvttYUdRzIAJ1rKziz9tIrUdII5sUbaPLGTn/62trZjNZsUoYJgh6jh+bn9/Pw4ODuLrr7+O4+Pj0u+UA8jAWEdESXeEWDg9PY2IKPsFYPiRcYDJfD7/SeYEYAgZ63a7ZTNEnD/rDjYf4jvv/BsRS5veeGOczGbjjCF/9B9t9Pu73W48fvw4Op1O2VwQohgHi7ZWRfSRa0CH9YIdZM8V7sVoImvoJIha9LTBlvUG7fZ8oR/cNz6RwY4mOpgsue3t7UKQXVxcxOnpaRljk70GGOhT9AsgIus42gUAty5jjhFVyFFl2pX1DwSbN0Gyo21y2SnBdgDcZ35PJr9dBhfPOxPJ8kx9kEXLQHb4nAVoUAkoz/of+0SdnA0BEKtyeKkLtj2T9sihyWT0nsl/14P5kYkUynPED33B8kZkysSI7QT9lm27f/s55CfLCe81GVHl8LstuXzb60wGZLuVZTXLcf7fOCQ/l8uoulY596sccNe3qp7+Ll+r6lOFBXx/VR9V1QtSEgLActXv92N3d7dkuiG3kKLYRWdEvX//vuynZUfMP8g70XIiuDhNEYuMofF4XFLnLbcmUVkzTZ3QOY5GYze538sf7BPwPNl5ZDuCKQ4PDwuJz1GKyO7V1VXJFvBabnAH2ZEQmfaHnAWYHXWWMxhXQ1gMBoOCzcjYOzk5iYODg4I5ptNpwUj832q1Cq7DQWe5BFFx5u39/X0ZZ6L+1PX+/j62trZiOBxGt9uN6XRaNpXkvREPgaLLy8tyAoE3FjWh7Ywq8Ac+gnHxbLZYboA8mBgGN0LMm0hFN2Zd6qw7Lw3J+jH7AyaXse/2TXN2OfYq61bbtIhlfMHY2Z5CEPV6vY/O86rrk0kATyY6xmwQSoTOYeMCDI7ZdDoLlnB9fb0wZwa5/M2gIChsQkEne81Xdg4x8n6OweR7hMQGwYPAM36PGSje68/5PysoJjDCDFsIoDHowcnJDHXE8lFokAW83ySKDafbw/c4ZGb1EDiTInbwAT+AejNoGcA7OpWNOWWZxOC7TASYmHG/Z9BLPews+IcycqSBZ6oiMpaX/FmWEf5eBZysRFyemUO3pSoC4n7JypDPczkec/ov191tYE6w4eXNzU1cXV3F69evo16vx9nZWVFu7IRvhxhn244T3wOukTUi8cxBymVtLdFtyzvr9Wu1WhweHkan04kvvviiOL+kz83ni9R2E4Iwxsy9Wm2xHo6N9ebzebTb7TJX+R0RxUGs1+vx5ZdfllTJs7Oz+Oabb+L4+DhOT0+XdJ+X8VxfX5c2sSkhUQM7uBhv9ADzjTQ59ATPQ2KQZdFsNkvU26cYTCYP+wAgO4AH+t7GDeBH2uLV1VUZV+9AjN7kO4gX9kIxOYc8ffjwIc7OzpY2n8rA3Ex6TvWmP0y2WeejXwwauSciSsaSIxPWaxk85/lopzwiSpTAmVP8nx1wbBgOtXWvSWLaZhIUEECdXK/cT14iwbiSpUWfGwA5K4+5YeCDHDnyYr04mUxKFouzBE045rHOZAD6x0SHn3WdTBr6QhdRJjLgCLWJfvcfdTG4s9OCnOBYY9/RsXYqkGUHO7KTm8ngKsceGbDNs+2zs+donAkG3mWygfoYcDttlzI8F+gDZLbKHnk8KYPL9jXbY/dHfi7jEJNMxiy5XZ572Va6ztnRrqqD7131TMYkVX34sWsVieDv/9qzn/ou6vz69es4OjpaisqytK3ZbMbZ2Vmxa2A6cDx7ALXb7Xj8+HEhU9E54FvvN2M8trW1Vdbig0dtSyCT+D+TZxGL+U4A0A5f3oCwVnsIPGG7rEOsL3FUcaybzWZcXV2VXfJNdrNMiLnFjv/ME+YSOokgCVFpxoF+ZQM75hjkNnJu/dJut+NXv/pVNJvNODo6KnW27aQtnjvr6+vR6/Vid3c3ZrOHTAbqaZyGM++9kKxTwO3GMPQ1vgUkvJekoRe91IBnKRcMurW1Fb1erzj55+fnhUzwvKdsZIjMP/sz3OdNJZEZ+ob2e284jk627jIO8n4AZGTZfvEMFz4sY++LemQy3PM6+35/y/Wz9gRg0tnJAzxRWa7b29totVoFGOZO8Of8hl1CwfBeBIzf/LAWImIBSLLTxwTNrIonggFqNjCwR4ChPCAGCACejY2NsgNzRBTQj7BSVy9LMNPl1FXqZACRgRMXBsnGPYMjt6HZbJaNOtjN1A5HxHLaJMYTBZw3hnKqkJm4DLqoh+v34cOHpfbYEUBeqqLoHq/cJzbuEBe0zUCgqo/4nQHEKtBqsFGVieGyDUA+dq0CJAYmVQ58VRv424bT6UOZ9PjlL39ZmHzkFVafsUWu2R2XiC9Kj8skYaPRWFoaRFS62WwWp9+ECQ4GjoQNpiOYp6ensbe3F9vb2yUSwLzFQENmjEajODs7i4hYmte8bzJ52DyO+qFcO51O2ZH25uYmtra2Ynd3N37zm99Ep9OJ6+vr+OGHH0oKuTdTBNggHwYGMOqkm3nTUDunnn+z2axsWhixfDwhgIFNh87Pz8vGpWR4rK09HGs0HA5jc3OzbJLjJUQG97PZrDj1dmjQC4y5ySVv+IPjD0g6Ojoq2R8Ry7uH43xnY2dnzfaEZQjUgwhCdmzoI/QU7+x2u6Uf2TjI5IHnK8aed3npRb1eLyDAMoxcmTSgbwEApIVGRCGm0Lu03+UaKCHHEGaQ6dSFfmJeYKvsHCNb/Bi0GtTVarWS0UJ9/GO7nm2dSWYTG1yO+JO2CpHCPLcdBIhmcGX9WJVF4KUjGTcYWNtWMXfYryOPm3eXRk6w5dTB54W7nvQxn1U5f57/yDDtytkVOAutVium0+lS5lG2f1VkBONm55wxM/Fm0s/tsbxRd2PDKhI+2/I8ZtnOVREIOXhRRZZU2Xb3+yqn33VZZdvzmH7sWnVflfO+yqn3/7lf8rMfu2azWfzxj3+MP/zhD3FxcVEy0u7uHs5Z/+KLL+Lx48dl3xnW2OPYs4E1mJ9laWSw4QyRos5lgm44HMb+/n7U6/Wl04DYA6tWq0W3213KRHNgiDnhTeusP9GJ2G5IBTa889yq1R4ydjqdTtmct9/vR6PRKNiBaPb19XXUag/LKZ49exbdbjc2NzdjfX09nj59GpubmyWrAlkh46JWqy2dS2+sidOJDSUDgfaAqTqdTvT7/Xjy5En87ne/i7u7h2P8sOcs24CcRv/RfoIS1BGiGQLDSw3BXqzDt/zUarXSpvn84RhmBwjAPsgoY+oAQ5Zn63rGGz9qbW2tLK+w/kPPogMJEjto6UwHdCKZAugpdBJ2kGxSAirUJ2OeKp8EPGWdxffIhduJL2gsBM7Ie/CBH2nz33J98lM40zSKNBWEhobSGTkiskpJ8ZmNDsYlM0qAF8rEwGbn0WwZdec7hNRgkLIZKHewU4YMBrKDDthnl3CvgfKmhCY+aBcXA2mH1oynwQttYTJZ6aEEc1omaazUj3RpFHrEAihSV4NZ+hNlwYRw5IP31WqLtdYGG3nCApxRTBmE0SYbs1XOv9/jcfa9vCMTEmYzTRJlUGZHP9crK3K/N//vsvJcyGCqar7ki7b5OxSZlY3no0mlTIbg8Du6heyimDBeHKWHQvQGnU7f5zmiTCaaJpNJOd89jzXvms/nS8fLQJqhi16+fBk3Nzcl/R0yiv7BuT84OIibm5sCTh49elQMJO/GwfbGgWtrazEej8tcb7fb8Q//8A+FkCTTwaSoo9DMSfrHBod+5ns7YL4w3pSFXqE+HjucEpyPyWQSnU6nfN7tdkva3sXFRezu7pb9GKx7PQ8tK9nZsuwiG9SNMtDz8/m8MPwANMrBUaXvkD87opa/KjBuHY5NyPqd9Ez0LgYWkoq22gECxHrOI4f0MfV1dJ160ze0gYyIer1eSLSIKNkJJslNhFMHyAjKjYhCJpk8pU4mXagP9sIOoI8Cy7qF7Al0iXVvlZOGvOVxcsSdPraOduTPNsZZgc5ayOO/itxnnPjBKc/Re+tD5APbiZz6lASPFW0zILXjbmLJNofveHe2EbZN2EyDUd7lJZJVDmR2Zi2f4Bb+d9YKRGwmfjzm1gEmfDJW87jwfsYnt/tjxIifc3DGF9+7/6r6wu9aRUTk+/OVnRnXsaq8qndW1X/Ve1aRHPm7VdeLFy/i3//93+Pbb7+NiAXuhIx++fJlWbLEGBKhjlg+bhoH3ifNkGGGDkBfgtObzWb0er2SykwUHSzh01e63W7MZrOl9f44rRk/RyywKI4wexxgszc3N8s9tmNra2tl4z4CCGQIcqb8/f19iZBfXl6WOU56PZu1mTTmN/YiYjmrOBMYYB0ydn0CEac17O/vx97eXjx9+jSOjo6W5h2yBFlJn+HHQM78+OOPSzvhYxdZrnd8fPyTYxXtD9Cui4uLGI1GZTNFNuZj7pHFiGySUW5da9xuWQZnouPYK4ksRi76qNPpRK/Xi263W5Zkg+fy/mcma7GFzurIpHwVOWp8nXURQV0/m/Vrlf9hP8OExtbWVpHL+XxebNPfcn0yCTCbzZY2iTDQsdJHyDCQNoA2AFWKNjtNTAaMsycF99/f3xcn3+wW9QHIsJ6X+iOA2SjRLq+9z8aIetrBzDv7GuitirggOHaGWGNkxU3fUW6OZGVDjDKxYEJiECkiqoFiYcdrys9ph373qou+BbxDrLjfMljnMwwF4+AJwd8mJdyvvJs+ys5IdiJ4B3LMGNJnGYwgZ77XRFIGPTbk/tvgfRXIq5Izrioglz+jD1zPqjajeB2Bdf/87//+7xI4tvNGWZ6nEbE09o6i07coNTtjZrbtYFopo3tms0UKbr1eX4qEz+fzOD4+jqurqwJWmDekyePsj0ajwrSi7NFVNhAm4ebzeTnnl3Xc29vbcXp6Gv1+P6bTabx58ybevXtXsiboOxyq+Xy+dNROq9UqmRRkEGGk6D9nAyDnGBRHSDHeXj7gLAvGYDabxfb2dhwdHcWbN28KICJlv91ul6UKkL1epsXcIP0fWfZccBYTzyE3Jj+tE2xA84aQlmWTRNQFwtXzxIQCc5m9K9CvnU4ndnd3o15/OJVic3OzpPsx571pbQY//A+QzI4w7bTehBjw3DbRSSYD9c5tQmYNJEw6MVesL4jI2CGDeGVMcrac7Qk/WQY9T/2+VbqIC2BlPW4SmctRZmy7da9tLzJKPQBM2ZZgR2hbbjMyhl7KBAVjaFnOkZ582caZTHG5rod1TpbrnNnAMhIwFr9NgJiIzKSixzeTwrZlvN/zqkpG/D/6nvYzJtTDY2t5Nnh2n2acYyDusqoc6ez8Z4eesvIY+v+POeKWvY85+/k567KqZ1Y571XjktvncfgYCUDU30u6IqI4uu/evStOFWvHubKTa6zEuwkIerlrq9UqSwbQHxcXF8XxYokw+hOiv9lsxnA4LPgcOe10OmUtPRv1MRewsc40NI7OegNMTHsgxHy0IOVZJimXvvQxgiY/wFMRD3LJqUomTLHb7Xa71Kdef1i+2+l04v7+vuzTsLu7G48fPy4ZBoPBIEaj0dKaemNo+0XYgqurq2i1Wks6Fj0CxsK/ow/cbnTGhw8fSuYA35tg53/slL9zBm1ELMkk74yIsuyCbCeIBJ4jW4ulnN4MkTKx84600xbe582jqRvyyfhFLIhexs/trtVqJfjKfLB+N6axzrbtZs5Yv7MHFvJAMOdvuT6ZBLi8vPwJWGOS2LnLwJCBw7BmI4QS8aT0Z9zDzuTz+UOqCYNgRr9We0hJcZo6AA6gxqYiZg0xAgAvb+RAZzsbIDspDI7JAwbdKZkoHMpvNBrR6XSWogZOM7SCjYifCKvJEIN8g0rGg++ow3S6OIMaVpI+cL8zdmbaPIZ2xg0IuZhUboMNr42X34H82FE0KcBE4hmDAKdXZUc4s3A8g9wZoJoEMGjN86AK/FNudprpT2SCz1EeOVLvfuMZtyv3ofvP4MrjUgWk/a6IKOl4ea57Hb3Hn3cxJrTJO6R7fDLoz6RP1gN8BhhAju3A0weksNGnRCGYx5PJJB4/fhyj0WiJ6JhMJjEcDuP09HSJPHD7MTzshnxwcBCnp6fx4sWLGI1GZS+EiMWeBrTb7a/VaoXF99nAb9++/QmZZEfA44hxQaYw+k43ns1mxcCzY263241msxmvXr2K09PTGA6H5YQDIjD0R9bnljUcL4gDnw1MnZAhNoeybqrSM+gqwIojI/SFZQPZqtrl2WvtGTtAF0s5NjY2ynFX9BX1ypkGeUmC5d0AGiOdbZN1D/9DvNquuGyDzCp7QD/iJAPSrIMcEWIuQPxExE8Am9toXW09brtvRznrmOzMZIePqEan04larVZIrPl8/hOZsW43SefUUuTDYJb32sGE/DP5jQ31PbwjYoE1GGuPDe0BkALI6UeCIdQFR8D2kzKMffjM/cDlPrCOQQ5Je/b4Z8fZ78r3InP0G98Z0zAWmQjge89zZMA2DnmvIicsR/47O+xV5Et2iLOzXiXHrnOuS65H1fuq/nYZVQSDbXl22Fe9J7cn3+fyuGxD8rWzsxP7+/tlg1ZISG/STUYrhLXT9Bk/E6HoZWQGvdjtduPZs2fx29/+Nur1erx48aKk6NuRxOnF4Ybo4iShWq1W9HazuThi2AQGehg9Q3T6+Pi4pFATvANnohPq9XqJPLPfAXbEmYHYy06nE8+fPy8bBG5ubhY7y9Lgu7u7Jb+DeU3mnscTZ9OBKewzmZQEOyBqvv7665KBEBFLzjibLrJEYDabFefY/ebjXylnNBoVnZL3V/K8N47Fua/VamUdP4FY6zZnctFGAhiMv7OocarR78iXszoZVzAtda7X62UZB6c0TKfTQvgYu9j/ADd4XhF4aDQahXyi3ZyG5HobR9HflO+L9zB3vLw8Z3hAqm1tbcX9/X051ejnXp9MAqB8s7HnMmiJWGxORGXdMBsBOhQjYDCEc0rkjM5GSWXBBPAxMZiAsCk+xof3GnS5bA/AfD4va2ucUk87M1iiDkT23Waz4aS0sLmQjW2j0SjEg/vYxio7q/RfxHJ6JMLKmhiuWq22tKumwbcdUkd0zGJ97J0oCYM27s3gKYM82meSyUbGl5/BiNg5pq52JP25IwQGM5nhtSNiI+zoqC/qTltMHljWM1HAtQrYcJ8BQxXQttOZ+yKzkh4Hv9/kHHKPk+H+QGmb3bZ8RizWbaOsMTTOSiEFEefc+43Qdzk6yAZ96AqY8devX8d4PF5ah8xGQB5rn+PearWi3+/H/f19DIfDqNfrcXBwUNIiJ5NJPHnyJHZ3d8s6OuYpugX5ckYEn9NW+uru7i729/ej1+vF/f19/PDDD+U8X8g45pxPJHGGhfv34uKi1NMRQMoBwG1ubhYGPSLi9PS0rJMjzdJjbyfDzgGRCk5KcKaY5clzA3mkLV7eQfq7N51FFtE7dlpoJ45GXq9P/dH1jUajZGAQObq7uytrVakDQANZyVHrvFbeWUIAFBNl7Xa7rN0DBFEv9xfOpTdd8ruzQ5t1C/3Ehp7WX4wDxEpVJNcAxDoxEwB27ngO2ci2yCQu9s16DhDT7XbLmBqgOcuI93k+A+DpTwgwomfW/SaMib7hZPhoP/rYdbbsOVpn/euNDHFYkEkD1ip76XGifNtfjx8XMmcymucYNxy17GSb5KCsTDp73lqf26Zbx1c5urmuJgQMrF2vKue46ofLpGl2xnMbshxTr1VOsuXZ5Wb7nt9pjFRV9sfsu/+uas9fIyE+RlZUXWtra9Hr9WJra6vs1WISPWKxwRvBI2wI85l5CEHAXMpr7tnA9x//8R9jPn9Yo49TinNGJJ90b/awGQ6H5fQAlkuxt8+jR4+i2+0uLdFh4/G1tbXY39+P7e3tGI/H8eOPP8bZ2VnJWHPAxDhzMllsvor+xmZhS4jud7vd2N/fj8FgUKLIRPGxZ6ylRz7Q9xANrHO3c+86RDzoy06nU4IfFxcXSz7N/v5+See33oA8YJ+V2WxWnHL6iPvBDVdXVwU3sG+RN8YzgYZcYl/Qq+jmTC4jKxHLmUez2aws3UBfYItt96n/+vp6sbP0H/4khC31nU4f9kdhr4qIxUlb2Kper1d0NnLf6XQKKeSlUPiI+J34a/SRgzHOLsv6hnfblmHH2V/CJ7HVarXyXb3+sIcGJ1H8LdcnkwBUFOGF7YhYPhrKhsoKMQ82CsrAuFRKHWKFCkA1CPEkMZiiPoAyJjHODPUgBRdBsbEkQnF1dVWc95ubm6Wzf2EDnWIDuwWTipPktnGZNaMfAU6TyaQAda9hyaA0s/dm5CzMsGdmpqz8MnBizFAS3Oc65HQa2utsDDvV2TC5zr7fRtTf2TmhXbw3G9/szDsKxTvz70xQZNDAbwM6T27fx9823CbAchTCwN7vXWX0Pwa6cnTR/e8+MMHj96Ac2fjHm6/lzBDkAoBuJ8ZMNvXxhqHMDXZ8Zdd/O/+AThQpxoPot9/Fur1Go7GUFo0BM+BHZthXoFarxXg8juFwGMPhsDw/HA7L+1utVrTb7aW0e/rC0WsTR4BtUv6QHQwr6xxxTnDyuYcxY0xz9st8vjh+DQPopT6szZxOpyXLwXuJcJwRmxxZhzuSY1lGBliCQJ+aUacf7Pw5qoHe81o27/RrpwGQwnp99Kb1tuUb55xxgEn33IE83tjYiJubm7L+EWNvO+M5gdxgsKfTxak5zBlvooje5b7swBtsGxxm/UFbXY/s6GOPIhYRW+qLPcx6znYa3W0SqkonVjlpvqx7qmw7epCL/RBsYwBxtsnIHUQGYNl1Ridjl61LqDvLZ+gfok4OWHhvH5PxBvGe3yY8uJiDznLJ5LbJhdyXVaTEx+5jfLiYf063NaFicqKKvGXMbKtyBPBjdsh1yrY344GP2btsy/P7TOBQhu1uFVFhRybb20xmVcm3dU5VvauwQ1W7PuXK7YhYXpL3t5IA8/k8/uM//iP+9Kc/xatXr+L9+/dlzbsdJDCtsSk4jHlOti5ENhFyr11GD7548WJJb3I8KsR6t9stG+9BsmMvuKgnNq/X6xXdDRHHGOOoT6fT6PV60Ww2YzweF8f80aNHsbm5WRzj6+vrn/QTQUB0Bw4gfT2fz8s6fXQRZPPNzU3JPry6uipH0HqNvYOFBCB9jJ7nDwSjlyWQih/xsInxcDgsugW9Qd/WarWCRyifE4XQT/f3i5OSTHSjU5HBLI/0F5vpQZpQb0iCnKGHzUbvQwhFLI6D5T3WixAKZFw4sGvClgATZJMJcerto6bt45JJ7sxRYxrGlOCV/Seu7P9mPUO/8TlBZGSD9kHq4KuxN9ve3t5fne9V18/KBECQLAhmguzMmGE2aPCPHRA7c4B9dyADhpFCWOhcFJONM04Ca1y9od90Oi1LA6gDCg6j4NREFJaXDFCmoz5EFhEmGKJcV9fDETwMdM5QsBG3Q0U/ujyyIOw4MBaUS0q1ASKXHceIZQDCfYxTTpGyA059eNay5PJszHgeAogMDxMPBt/Ul741sMrObQYizgpYZUwzCOZ72mwm2bLjC6Vq8omyMjliwsLvrALhGYS4zrlv+Tu/D3l2vfictVpOh3M/IT8G9HyfM18yCQaxANOPc4fxJQ2L9CqDe8taxCJt+/b2Nn788cfC8lKP7KxSTxhfGFWewdm8vr6Ozc3NeP78eWHrx+NxYdTZJRgljFyyjtzEKLKNnKA3ptNpnJyclPnITvU8e3Z2Vth/dMBoNCryz5p9g/1ms1nWXB4fH5exISXx/Py8LA+4uLhYcrRJWQTE2QkGTJE9dH9/H+/fv18iEpHdPOeYJ/QB8oBT3Gq1otfrxcXFRXGCHWl2hB2dQ13m8/nSzuvOfqAujDvyU68/HHNJXaqcZOYXv3GSScfE4ad/yGxh92z6AP1u+bUup2+tBw0YkGHkFhnzfKZv0W+PHj2KXq9XIgVepgZZZF3IWBk0UcfszKxyLqy78s/H7qcNBm3OIkP32AmFrMAJMLGAHHjuYdsp00sgKBMbbqLCJAByhW5ChxkHAWohJxgz5rNtGX3luWP7Z73KfeAUk7A504Bxti0yNuNecJbrQP/Y6eZZ5MDjki/bqiq7RFvc/vyM28r8s7zk354z+b0fu1Y56auIjSqH/WPvWoUpqsiJ/FwVobDqvRlr57+zo+Hr+++/j//3//5frE5hUAAAIABJREFUvH37Ng4PD4vjZfItn8Lh8ur1enGKIZ7Rg55Xlq1abbFPAA7ZeDwuDjzOLeQAmOD8/DwODw+j3+8XshyZH4/HSz4ES3HADicnJ2U+EuWGqCV7gWgqdYM8J5UepxldwHI/suHOz89jOp2WKD32FicRMpJMCZaeYddYDoz+MBFdq9VKsBN9TuCQTIqbm5vSV55f+D23t7cFu0Q82AjGG7IFx5OLzA/8oOyXoUuyXNtPIlCL3qRcsqUgXtjMmRPLkB8cdmN52g15g3wyxsiF/SB8MdoJZpzP52U55t3dXVkOQhABcoY+w+/LBCI2xksBecZLZ9xXnj/4ZhHLR8DP5/NCgpEF42yHWq0WFxcX8fLly7Ix/c+5fvaZAmwiggGhQQxQVkJW0HZIcoTA0XIAC5OBMmg8BtyMNQPCYDMADCTpQr1erygqwJ9TdzOA5TMuAxsmKmsXfaSHI0M2BChAHG0ifdxn4wwQ4jkbeurOPfzt/wG4VX1EmSg1R148FoAOHBNIBr4z2EYGHOnI0Tf6kP51X9PfACgmn0kGP0tfZYYwgx/ayXO5PlX1WAUwMnAH4GVZt7y4fh5rjyPPMPYec8uG6+j6rSIFDKTspGUnKxMNlnuTdSg/yyL3OHWctmGomXOTyaScloHsIH/OAOJ5jDIkAQqcdiKT1B1GFnYYBYxsU/Z8/rBuj2e63W589tlncXFxET/++OMS2UCq+/n5eaytrcXJyUnM5/Ml1pf6t1qtYqRhvRkPjg0iw4hN6c7OzuL+/r7sjuxoDE7O1tZWcdIBR0RInBnDWkc+IzPDhMTNzU1Z5uC1iBikVqtV+takiY0sMmjCifeZ8DABhsyhewE5zBHkIEdwIWDn83kMBoMlgOYNnCKikCnWfbVabWkplNP2ACez2ayMA86aM0lMntkRc7/xPkARMumImUkVz3H6lM8yoeL5ljNl7OBCpAFG0Y8bGxtl6QzyVEVMM/erHKGsJ3OdDWxMqGcy3/aFvmJJkAl89x/9z9+e9yyrA4xbbzrzyo4L5VpX0sfoIEAiOoq/MwHjPqJMSAITaDkaavvOXKFPjEmYA9xbBcZzP3FRBzCV2+xxom/5nnfxf5UzSxnZ5mVbkmXFWLHKCXa5vNc4EDxQ1f/53X5v/oyyqgiNrN9WlcM7V7XB7cyO0see/Wvf+R5jy6qx+Fg5n3/++VL0lZR35IssJmO9iMVx0Di13W73J3uSYOsvLy+Lra3VHojWbrdb9qLBSaR8svWwP+hpsHWn04nPPvssPv/88xgMBktBITtcXOg5iEEHj8jUefToUanDZPJwitD5+XlZZgfWd/CRPYYgG0ajUXHCZ7NZWc5AAILyImLJeWXDRY6gwwl1n5ishsSEiIBwiIg4OjoqxxienZ0tndC2vr4eg8Egut3u0gZ+EYuT0Dg1if5xhq8JBZOQVfMNPUkmA8S5iUfbNvQ/S0HoH4iLWm1xjLmDgRHLPhkYxVmkJow54hmbbN0HxrOc0v/gDOpLfyDzkCuczIMd5lnmkYlm+ilnzEGWeF5jG9bW1mIwGCzJCPMWrPhzr59FAlj5WilkAoB7qwysnQU21XCZDCqDCbOCgA4Gg+h0OsUQM1BO6QdM2tEBRJqN4p3UhwgCdXdHu40Mut/FxCR7AOUYsbw+nIF2KqLfbwWGAOFU0DcoTRS1U3sNOnxlp83fe60LZQLUNjY2yjql+/v7simj2+TyDN6ZJCgMAJ/vrwKTdiKqDBj9bTLGcgMwRK6yTFaB7XxlYFH1HUrZRt6kgyOfBhJWADaqdpbcF3xfVZ8MAAyATQzw7kx88H+ODLrvUNIG1k59t1NOlJ8yAfbIJUrLDoIN+M7OTnFa2dGVFEHrHYyJs1kArACZ6XRaDBrznzQ+iAVSCFGiGFeeITLu9DUDauahl0148zWIzK2trXj+/Hk8efIk2u12DAaDGAwGcXFxUYAD/cdZ9a7Hhw8fotPpFLnzhj4w9YyPj2aKeAArsOncQ2oj/Ud9mffI1c7OTjlRwQSlMwVYn4kM0GbKBvgwftSV8ZvP56UPmB/MGUfZ0cV2zLzEiXdQPvPM49NoNEoaJuN0eXlZoirz+bz0gYECZfKOrAusswA0kDU+Doq/nSlgotS6wM4aINCOGveYGDV5cH19XfrN4LNerxeA6isTarmNq5yJrE9tz0yeuK/oY1J2J5NJ2YEcm4otcTYePyaYvfTMNpT6mCy0HebzTFI4WuV5znJEg04u5A25zwDPdgod6sxG9y9jgD1Avi0TrjMy6jbQb8w/2xqTs0SYIFjpV+Z6JoMy2VPlJGcbkz+znTOJmJ1Yjx9jy7MRsYR3KNvkhN/re6rIg0xyuD75edtcX6sIvSpCLZdXRYpUzbuqOZjHxvPOcld1/fGPf4zRaLSEn01MZeLHZBQpyhzFRvAmR/5xwjjTfjZ7WP+/u7sbv/zlL+P9+/eFuCTCC0kLNrX9hcyMeJBlMp743zYFu0QaNXbP+sV2lmdGo1GcnJwskXr0I1jaR4aiI9jLgKUF9OHGxkbMZrPS1xEPDh1LFJmrzGUHMyyH9Xq9ZCWgP9BL4/E4jo+P4+TkpNi4tbW10u/tdjs+//zzGA6HcXx8HAcHB2Xegxvm88XSQnSU9zEzUYp+cNCVOoEnwC7ocPw1Ag28HycavIU9vr29jX6/XwI5OOkOSGK3M3bG/rJpMUsnkCX8T48vpI+DsNbf2O/pdFo2VoxYbETJJsksrWCeZOIA7GGiAZtIOxysNgkBFuEIy3q9XjJUP4U4zNcnkwB21PlZpTjzZQfJm4Bl5e6NFBAolAzCBGDrdDrlyC4UmA2f0yd59+3tbZydnZUUHiIHABGYPpSYHRQLF06KUwRhLNkUAgEkzQMhgkAAvJIKRNQGZeYoVL6sYBkbkwdmq+h7iATeS/08thlwAzw9vhADXo+JLBiUut52/qmPU1wNBLLcAGJQjiYqmByAGANkK02esXHL7LzHOMt2BjV+3mw/bXUfZNDj9lJeTqeqeke+cAIMGvyM+zD3h/saJZMjSyip7Jiw1MRRTc8RxoH1Sq6D02ORG7cD0M38/OKLL2JnZyeurq7iq6++itevX1cey+PxMnCu1R6ybtrtdmHmiYCyKRifXV1dlZTBWq22tGkOa+WZK3m9NPXGyLlPqWOn0ylpjuyJAIGwtrYWl5eXcXJyUtau068sKbq8vFzaIMgEKKchMH7UiyOX2u12iX4zNl7DD7hBP0OiRMTSEgoMGM+iDzx/zWJbR1nWmYcmgXMaX8RyVozlGaAB6cKcd5aH34UcIDPoO4AMMmXC0iSHHVtHk5hvfD6bzaLVahW9ic6h/zD+mbBzOdQP2+DILXWi7txn/YX8QR4DqnxcFM6f19dank3s577PV9Y/TmfNjpQdPOxIu90uURgiGcg89jjPNc9/ymQjKkCySWj0lh0Y6msd6+w37gekst7Tep52Ih/WO8gjNsqkZ66H+yX/b7I7E/vUhfLQy+hQ8JAJAOaTs2Votzdwy3Llcc44g3L9Huq3ikDK78kAPmco5LKyHVvVN1n+/pYrO/6ZBFj1jr8GyKuc+2zT/9pzmQDgMhmIXaxqF8fEOnvOttj3ImfYuvX19XIOu5fUef04sri+vl6c/qurqzg6OorDw8Po9Xqxv79f9gNgnT443HbLGH80GsXbt2+j2WzG06dPo9FolPX3jvzmja+dGey9hXjnzc1NnJ2dxfHxcYzH46LnyZADq5tIY46zWSKR2ogoATtnBWG3kGPwrbEx+ht97Qg4EfzhcFiOGeZ45PPz8/I+sAWZUhAB6Fx0LLoDjOGAo4kA/CTkCUIe+c9+l3UWZMVsNivLJajjfD6Pfr8f/X4/bm9viwzQH5wswPI/7IXtIZlX6CzLrO0G7bLPWeUr+fQL2g6GazQacXV1VeYcOjrvS5B9Omw/PiS2xacXmNC1f0hWK3au1+vFYDAoy2I+++yzj+qMj12fTALAjhsE21G2w0MDbCAQRhtGA4KIRZojA4izkI/aYkANmpweZqfLStCOQ0SUKDfrOCMWxhGBsKPqtCMuUodguwxSnOoIS+MIAH3JngX80JdETJ16akfLwmy2zY47fWanxEbGyskAHOeA/mbDEe5HQGHMeLfBELLhDVq4z+PM+/w5isljko0q7+b+VWDBDrDHP9cjR3ZsPM2uZ4IgO925XQbDKCbqkVl62pkVaAY8/OQIUC7LbfGz/tw/XP1+P05PT5fO3jV4tYx5jtCPgHkcrVw/2oQeoAzk+O7uLn788cfCtnIEEP3nSBJl05cYafetd05FYbPUgLbgQJEBxFw9Pz8v2QC8y2NpBp+5CclA/d69exdnZ2exvr5ezi3u9/sRsXC0rUMwkkQW0AHoB0CbU4VJS7QzQ10hX0lTo2x0AxsDRiyOJ0XnQwqgv+gLRywzaeTorNeLUlcbccsdDpgdZY8xxCrMOw4DDjDyB1Gb5Z0ys60BXNhOkJ7Is5Zfz2fmg8kx2xNAhvUk7crzjj4wMUM5lnPqCkB0XfwOxtN6iUwWkxN2tqocHsbZ3zOXkBVsfCZCTbDSJuY80adsb22Hbduzc4cN5H/ehUxn0gq9aqCIXPO/bTORJOTFjjdyT/9xAUy9V0i2v7w/2xnrN77Ljrwv2sRljONIuZ1tj4+Bu3W7M7oMZG2Hsw10W3Jdq2TK1ypnlrZkx9jv42/Lx6q5ZVlbRVC4XVWf53pWYYBVZebyVzn0q77zc7n+VQREJktynT7//POyfKzZbEa/3y/ZZRGL5SDMM+zRYDCI3d3dGA6HZf19vV4ve81AWFNWo9GI6+vrePfu3dKeLxypy6710+m02Cdsq+cn8wkdiM3c2NiI7e3t2NraKmQ+9YVQsB7C9mGHiBSfnp7G0dHR0qZ92Bjqw0aHEVF8GbIWjo+P4/379+X0HeZN1mvYKi8phFAnWwA8go6n7ZRrQvHi4iLOz8+LzrHzbvsL4UPf12oPR/i12+24uLiIk5OTElDgXT42OAeDms3mT5YM4jtgF5zanueqfR7Gl6xvYwPIA8qiz700nXscGIRIJjsy+0fYrYhlO8lY0a5Wq1U2luToyFqtVnxTB/Ig05g3xrjYbOwH8wrMbB1qYgV7wphEPOyRUa/XYzgc/mRu/5zrk0kAGwaUPEY4Oyv8TQcijBjlHF1HCDLbDYtG1J2JyADT+USkEazs7EUszpFEsNgEhLVATDIb3eyYGthSPoDKIIUfmCaz77BLXsfBwMI2MtGoN+8mcgiDmUkQlIid7Wyw+S4DOd4H8MfBN4AGnNMvvM+pZDZgGVjRBwbU/o6xy1H/bOgZq9xGl893vgCVVkJVhjcDSpMIBiRWXICOzDa6bM8T14Mxy0Y/A6NMBlhJGuyZxPKcqAJidoAt26Sc25lGxgzWkQPmJUqPNYC8DwXL3Hdf8l7L8d3dXbx69apEx7NTZSfKzr7bhiFjLDFWzebDKQKtVivu7u7i5OSk6BAIL4DMZDIpaWo8ixPLO+hzkyQ4q4wZu58Ddth4cDablR10MbYAD/QKDDPXxsZGjEajAkaOjo6W1qQj+5xZfHR0VNhpMgEATrDyEVEyJgAfpLI3m82yASFOaLvdLsy+62xnnPFmLxYcKzYyQgacPUI/RsQSeED/8C6YfxPRdp4gRDz/0FtVkVgTy7QlO0HoP88vO6M4nswn2hSxfOqBHTfbCsrxOlzPXQNFz230lO0efeW5ybgCKJDJWm2xgVMmyz2X7HjwHEDPQJP7ma+AWLffxDX3ZYKDe91PHk8Tphl4eqNIxo162ZHnyo4rcxwyzsQr7851QgZwKmgbBJyP4Yr46d4EjIOxUP6xvNg54zP3s/vKtgodmrGM7Vy2X/4+21W3PzvHVfdxZbzg7y0Dfrbq/uwUU7btZf5+1VVlI11m/s72a1Wbq8rP91UREh+rcxXRkOtXhXPy9U//9E/xP//zP3F5eRlv376NiEX2iTc/A7u2Wq3Y2dmJzz//PB4/flz0sDMJTBJHPMjT7e1tHB4extnZWUyn05KhRhYbOBgdbQKLucD3LOnjp9frxfb2djx69Kg4udaZJsnRlw7YMdeJpLO8zrbJ2Jp56owrjjokI2F7ezv6/f5SQAHH0EfnDQaDcsrAdDot+x/kJYjoVfRIRJQTBiDE0T/z+bzoZDbcZTNCyAV0mvuTUwOw98iScbAd3YiFX0i5yA7fgWn87GSy2O/NkXXGmnaAI2ezWdlXgNPcHPzkN1lv3W53yaYy3s42tI/C2BBt534IaoLFjUajECVkEIB3yISp1+uFwMCWW0d4qRn3GLPwnbMv8SMZf89tZOv/cv2s5QD1er2AHBqWI9IZjJgNYtIwubjHTIpBOx3ijaScMkjqklNYEEKnV7izUGQ4ArBiAFcbMztojuLg7JgAYJDpEzu61Nn35j4AoPF/RPxE8bDOCCDn6Cd9T2aBmc9sJLMjazARsXw6gB0+gxWAjhWCWSvKpg+ZbO6rDKYtzB6DfK/ZVe4zcKZOVgR8Rxty/QzuM2jI9eAzgynkjLlhWUSeDfqqnAA75gYa+W+PoQ19bhOXx8BtzH3s/mdXeoyBwaudb+aaDaNl0kt8vGsp7zQLjCK2LI3H4zg5OVkiGNhM09GJfLRcvV6PnZ2dpXn34cOHkq7tI2AYH+S5Xn9Yk4fzwoUBZr2+o3u813IA2cbaQJxfymKdoNfgsbEdyxQADoxDs9mMvb29ePLkSczn85KFxM66NiQRD/sBIB8mMtjIqd1uLzHRtJe5BRFg2aauXs+NjDpbAbnAeLP2EUDH/cgX/VllV2wP0MFeUuI9CYhGmSwCoLLJE+MFiLED7Og6YCzrNMa50WgsydDd3V10u91oNptxfHy8tHs94+7IvR152kLf8T+yZt3BPjl2PD3uBh+sr+QZsnvYiJJ2+7grxqZK71nXYNP5qXJcedZzJf/vZXiMCUtjMkFpAiATEV5axzpj27s8P5B17KUdETsBbg995h/KY674XkfxqpxLR+1MnOdgBsDUqcFcWW7ymNm2ONvQxAL3OkrlpT2ryJncJpMY+cr3Zpmoumwr87MmZKqcYuutbENzvarKqLovP0P5+d2r3lX1eSYHMkb52LWq3p9CetTr9fiXf/mXGI/Hxd4S7Y5YLAvEsRwOh7G3txc7OzslawAHjPR7dA/4ANxnPD4ej2M0GhUc3+l0Ym9vr5zjnrGtl96Qxdfv92N7e7ssd3v37l3J2qH99h0oi6g9zqiJfa8ZR+axcZ7vJlmdrQzOuLm5KRkSdvywT71eL4bDYXQ6nWKj0L/oksvLyzg4OIjRaFR8HOu7yWSyRALg1+BAEyWGIAGPef8vMN719XVsbGzEcDgsyxOvrq6WMEPEIlvSWcCWNestdJqXF5N5nWWcdq+trcVwOCztBSM9erTYzBbfC7zFeECiRCywmrNCISscZDVxhdzymzojh/StMRCEARmYOOnYabAfviL9hF4lE5U+8lIR+0vMcS8xN9b8v1yfTAJwNBMV5BgEBBiFayPmI0OoeHlxcvbdGJz8pYr+/wARI3h5eVnKB9wYnGXnFiFi0w6nenIPisAOGUAAxgnnGEfTINXOlZU5ygHWlMluI4kAsAEYUUpPcNK2iFICWliLxCQ5PT0tjKuBkkF3xCJKY8bVbeL/7Ng76owSrAIvdgSyIa/KCOAzAzxPLBxDJiDylMkE2sgYejwcOfF9/O93Zwc7A47svDMPXC8TUtyTHXED5QxyPLd4px0E97fvqSIyMii3A1elUDBM7ELvvSCIJNspQwYwDmSumAi0QxXxQJBtbm7GkydPYm9vr0SMT09P4+rqKkajURwfH5d5w3tQkI7qYvjQPTDsMO+AAeSZzWggBLwWGX2HQ0HkAtaXd7darbKRjGXezLx34Md4cfzgzs5O1Ov1GI1G5Z52ux27u7tLGTGz2eJIofv7+xgMBmXsnjx5EkdHR0tygewB6HBWGTccH+ZYq9WK6XRaSJjr6+sl2bd+w/nD0SY9n7XYRGJsNOv1egwGgzIu7NRr4oRsLwxilcOM7LBkwQ4SLL5BXJYXIjOkTdpZy+9AX5MtRn2okzPQ6KPz8/NiJ8zi03dkTwCEqva4sNyYLON9vj8vtbLuMHh39g1A2pFqAxTGzE4iZdJP9KkBJ/d6fvO+bId4nvnqdb8G2OgNLpfvOYYjAch0JNFOeR5j5oF1px0Yv5f5XTUv0IEG8iYMuAfShHncaDSWiH1AIHOGaBhg+Pz8vBxFRn0YG9siE2j87z73s7YlHmfLEpftUyYE+HtVv1EW99hmWNZMFGQixLYwkw0msfN45zpW1S3f4/+rnHzjhFVXJmo+ds/HHPlV31EPE4hV7fpYHT///PN4/vx5vH//PubzeVxcXMR8Pi82YTqdlszZ4XAYvV6vLHdDf4Fz7FzVarWyRAjiEjzJee1gWebv9vZ2kfGIKCQ5OJ8sn52dnXj+/Hk8ffq0kL44Wo78mqSbz+clA8pZxBELp7GKoKOvrctns1lsbW0V28q7PY9ns1lpE5sObm1txd7eXgyHw0KGeJ+ywWAQz549i8FgELPZLL755pv46quv4t27d5X2DD+G/RDIqGi1WiWF3VmAtnmMFzYfOXEqu/cuwF9y8ANyxjYaHe99FDY2NmJvby/29vaKM2uCAYfd+zQwf8Fczvy9vb0tZdfr9eLzkF1N3ZA7j6HtEd/7JCdwIn1DcIbxZmkqAQ/jTmSVZ3kH9+Sl7SaQmUPIOuUggz7qlz5wtunfen0yCcCgA4LsMNoxw6lE4LzmAqCSDROgwAMFUMrPAlgQEpxgongRsQTOTALY6FAm9SQS4TWg3GMmknobWDkqxfsjFgCBdpnFq9VqhY2kzQBkg8lG42FzsF6vV5SY20/alZmnfr+/tNu5yZf5fF4iQ66v2Tr62Ew7QDgbQ4NHxoPJZCVM1CobpCpmnf6242o5yeBl1fIGO9oGTS7HANByQV+4TjzPswaDJn/oM+TLkRfaZECdr1yugWtV5MQyZiXndmVSw+/N5ID70Ewn6Xvz+bycEkFbkQO/28COpTfegwJibnd3N7788svo9/sxnS7WCTYaD6l1zWazHA8DsHAbcB4NspFXIrGDwSA+fPiwtBu/mXzvDZCj0z4jeD5fRIcZV+sUjzHlz+eLnXcBCRhBjDW7BLMGj/Q9HGobhOl0WjIAMNrdbjeOj4+LjmOzGZOdGNnd3d2ywSpzmqUAtVptidTAWWEDIoAO7aE+zebDxkLZccTptoEF6PkEAwNZgCLyxXjz7kePHpWNgyA3mK/eKHA+X17nTlnedBVCizqaTKYdlIF+y/MHB83zAHCQHW3kynsqUA87jc5MwD5l58XAw/rCjhj9av2HXAK06QPeiQ3gc4MUO7PoegNL23b/0C76BkCPjJnkpa8zyUBfWddgu+xs2BFCbhzJc19Z5kxOmMjgqnIK7YgZHKM3uZgngFqyHiAXse2APJ7lf+SMjBrk0s7+KifejoPtDn1IfR19tdy7DY7OZkIlA9EqJ9kEpeU0Bwtoh9vlMVvlHGeM4XpaD7h++f88xh9z3rPdz9/nMjLW8D35d+7LT7lcvsurwg0u+/e//30hSd+9excfPnwoS74gnfv9fnF6ybQh24Y5yHydz+fFkVpbWyunemHfI6LocQJ7kHmDwWAJX1MHCLFOp1PK8xIyMDF230t5aCdYgSg9RKP9B+51oDLPFcg7dL/J54hY8lPOz88LDt/Z2Ykvv/wy6vV6vHnzphxFeH19HWdnZ2VN/m9+85uSdcGxw1dXV0u702On0HsQJK1WK/r9ftmwERnwcjb2PKDNZDNY13PiA077eDwufYuTD05vNBplLLy2HSKAwOvm5mbR4fV6vXyO/madv8v3xnnsqYS9brfb0ev1otPpRKPRiJOTk6XN4omc41uBQRuNh2xLsids4+lH6wcyrLvdbmxvbxcSDByIHWZZA/1OAA3ZI8gElvW+E+gu+hysax8Ee8bcur+/j/F4HIPB4JP0Q9X1ySTAeDwuf9u5RmBQhAyWjU42qACN7NiZ6UGYiI7beQBE2EHkyCMDBeqGcYaJZMISNfDZnlZItNUCycSzgxzx03VYEfETMMFEYeKZvQfwsmYYINhoLNarcD62AU2tVlsClI6cYbAph/rl8UD5ks5Ju8h6iIjiSNAOp8LQF/QzBgAFbOCc+4j3G5wgG7SB7026mHF2f9CvyCKXAZlZRhtxjzf3UVeDltyHvMvZDZRv0oK62TE3Keb+NUGTHRG/17/dhxmc5L535MBlcCFTjKFTRHGEGf+81MVOwt3dXVHkGFoyAiIihsNhPHv2LOr1elHgFxcXcXp6WjZCcd8ho8zjWm1x7M/m5mbRC/Tt5eVl9Pv92NnZKWmGyA3Gwsf8ISvWW7TRSp+NPr0uHcBjsiODDlLvvHxpfX09RqNRzGazktXDsUesU4TMIE0TQ0ymA5H7u7u72NzcjM3NzfLubrdbNgFiSRH7DFxfXxdy5+zsrBB2EIlkUZANYRmgHzjtgOedGUR5LC9xnyIzdgwiFo6P9ZizSTjVhawoQApyieGHBEHed3Z2Yn19PU5PT4vdQC9AnAACaC+OvTPMmLvsFcG9lHV5eVlkFxm1sUeWAYl2fqy7PD8htq17kEnbEeY3xAB9Y+DI/GYOEvmzY0h96Hs7fHa0TB5WkQBcJhqtz4kmMi9NnDnTze0zcQtYJ1hgh5kMFWQp61ra4bX66GuTEE559Q8XGAadh/7gGf5HrizXBqbZYeVZ19WOLHJJHXy5r3MWJvfzjkxIIU/YeN5PuQakXKsc12xfs1x4PvndtpN+h21M1XhYTrJd9+/s8GX8VtW2qu9ye1f1xSoSYpU8VdU3kxSrrlUkR76m02n88MMPcX5+XpzCnZ2dkt12cXGxtIyXZyAxIbKx6U5Rxq6SoYqtOTo6iuPj44K5cVrbO6EnAAAgAElEQVSxG61WK54+fVrKjYilc91x5ggqQNri9I5Go0JW4zdELOYPugICMkfVwdq26ZkQtt3Lm9RCQnDEH7qKZWJ7e3vR7/eLTcfWoa9dPnoSLOM9eNBN7vN6vR6dTieeP38evV5vKQuPeyaThyUfEJEEGZ1VhU2hPuz5YKyfg00Ri9PciOZHRImeU08vvyBDfD6fF+zmMZtOpzEajUqAhDoTIMCRpuxer1ecY2dLg10hqcA/Ozs7JRPUmzPf39+XzIDJZFJk1SdPNBqL5RcOKmB7idKDmRgvSCHGm89NEmAXWLrq5ROME3/bRvyt1yeTAKQxWMHaoLtiABwcWZghR334sZNjVn4+nxcwBTjjIkqBYbPxRSC87oWL+lAX6grLY+CJo4FTh3CgmAC0sFGANOrpchACNo9w9NzKplarlfMlidq12+3odDolHQahogyDJ78XgbQTapLEYI3lF/V6fWldNHXivsyI0ufZwczAgffhTNqQOXMgtyVieZMMK1rKN+Cy822H2Y6vySfKQlFXEQOZADCwcH/zt9ub+9qK05E53+e6uswMcpxt4rq4b10fR43cLu5hHrrfmRvci3L0PCZtCTINQHt3d7fEYnqsYJkdeby4uCi74t7e3pZIMXXHIZvP52WJAsQeBODNzU3ZhO7NmzdxcXEREQ+p7a9evSrZDPV6vaQEUg7p17SNzyOiRC5glPk5Pz9fWrrEM/V6Pfr9flHeNzc3SwYeB/j09LSUUas9nPuKgceR3draiul0WogKUu4NQCBHrq+vS58DZtBNd3d3cX5+Hs+fP4+bm5t48uTJkuNTlZFE9AV9CRDDecN5ov0QOehm9BTrFmknkQ+v6QfgMSboVtqMrHhDKEjRiCjr3JFBtysilgypgRX/s5bQES3qjJ2wfqrVaiX1DwPu70wamCDLJGCVo4OsIS/WnfP5IpOL8aLvDEYiFtEoMuiYpyZzLJ/WBcgx+tIkBfXBhmYQ4ohxRCzNc+awM9X8vOcX5Zj4o7yqy9kTtBGiEtuQCfGIRRScMmzfHLnKDrD1KNE423ITiYBpIkPYeO9tBElgfIBMePwZB9t22wHbR2dI2NFHTvycP/f92Xmtclizs2nyys6xHQdsL/cbJ/jy59m2+15jU97pZ/KV52Gej35uVfur+iK/a5UTXnXfqvf4e/fnx0gBP5/79Pb2Nv7t3/4t3r59u3QsIFHQTqezdJINDi1kOzbABAAOkR1MggU//vhjHB4extHRUbG99Xq9LDHgBBzSrVkPXq/Xywa6xpWz2azs6cXpQRFR3s+c9tIi5jX3II/oJJbnNZvN4g8gd7wfnQwJ4QwaB0OI0J6cnJTd94fDYQyHw9IvnU6nBD2QG2y99y0A8xCom8/nZSNGz2Gy/NiwkSwN63H2PLBziY2bzWbF2UbXOvhkn4C62o/zMgTmXavVKvr75uYm3r59u7TEi6g2BBD1wTFHzsgG4F76e2trqxzJiM0mQwWH3X1AEMTZA/iNtMkZUdPptBAgjUZjaV+nra2t4jvyDNjXPwQWrPeQEZM4ZAiQvYmtwDfz/Kc9tPH/cv2sjQGzMXcHel2gDROGNxstGmXHmc95nyPfXHTWzc1NWUdC+RhVC2zEwsFhww5YzfF4XJibKmPBoGVlgOKjPay5YcAN9CMWafKcMwnQpb2ZqMhrWtbW1grIhbVn8lgJUH+Pk8FJ7kfe7yiKCRwUgUEt65vNbrktdvpoK5O2ipm3UFsGMgHh/2lHjqKZZMgOuQmBXFcDVoM718/gIxti3u+25braic/ttzPm/jCYM7HgeuayXR73oDDdvxncoCi5HMVmnqMQIYvs/KMAMVrOCskOAwqwVntYEkPU/+TkpJRLm51NgkNEFs/Tp09jOp3G0dFRWS6AfsBo0Kfs3Ht2dhYRUcg2iDVS8klptyM7mz0c29Pv98uRhdfX19HpdEoforxhgYmuQzDwTuY+cwqdsbOzE9vb2yUyCGNNZIG5DkkKkGg2m/HixYslBxMij0g1ZMjGxkapg7MFMMqdTqccr4Thoj8joqTAEfkws40+ss5HZpvN5lIknAg9jiv//3+0ndlyI9lx/rMAcAWxEiSb5PS4R9ZoRlJMSLde7hyhK/tR/BB+Gd/4CXxh3yjCkkO2Y2TZmhmNujndzSabxL5wBYH6X8C/xFfZBU6PpH9FdJANFqrOkifzyy/z5ImGEhmmRgNRftIB0zT1olDq+KkMMy5pmlqn08msTyW+dG894Ep1DOQHv6tuhdVnrgHVpAZqxEqBvupg2kV79YxodG3UM4wx9zDerHXahO3A/gA0GSvWNm1TWUJ2ldBF16BvWWNKFCiojf3UKKISt1y8l72cZstjP1Vfq1Og4LBQWGTQqCOr40Y/+Zv+NFumzzOXmm3G99RRh+DH4Yl6W9+nABzcpMWj9NnqoKt88GzV6dpPLnV+4hjrePA8vUdtnBJG3KtkdpRf/X4eca42Na9/asfVzqpOWGUH9f7YjojvdC3G7/FdfcdjDrp+tookyPt/HIfHCIOIa1YRAJHIyHvWP/zDP9gvf/lLu7u7s4ODA7dVpKCbZYMWELMQzbpFx2zpzOEQpekyW3A4HGYIAI3OMqds2WOsG42G2y/WPXaoUFjU0OFUnVJpUYQ1SZY1V5AXxW3IVdz6C/G7sbHh1fopGG5mri/Bcuvr63484nQ6dcygzrTZIijQ6/U8Sl0ul/2o4o2NDdvf37f7+3sfk+jMMaZmy1OFtOgpGIp3V6tVazabmcwiJWTRL+gd7KbaF9Y0NhAdWKlUbDgc+vxj07FBjCEFjZEzJXMVp+NngLk6nY7v8QcXgZPY1sE8UA8I+4sdh5zBH6GGEu8k4yJJEq+5hvyypRyiBHlnTtgOwVUsLk80QJaQUQ0aaDA8j8CbzWYZWwW+NbOMT4lsaTYD86XHX/8h13uTANohBlyBngqcRsxRCAiiGiUEVQ2M2XLCYjRfF5qm9ejnOuh8Vw2kpsUBYAC3GiHSPqtRxlFmoQASisWipwjnZQUo+8XiMFvuU6KPeg/jTPQmpg0y9maWEZCYBsX8qKGnnVo0JI4T80Z/aLcqb/odQYum2UYyhXFW0AiA1r/Tf2RFmS/NfGDR6Lwqg6nOO+BCCRrGI45P/DuAR4FFlCfmTWWW/kUCQbNf1AHQeY1OEW3iikAlOviML++LhIO2QedP54N34ghpQT0lxdRIm5lHr6MuIDuoWCx6arYeiQOxmCSJyxt7FGkn6Vb7+/u+FpV8Y68eji773EnTZs8X98Gsa8SAYnDM/2g0yqSZl0qLffA8g+g9DoHK+2g0svX1dc+AwABS7wOW2cy86jLjp5EGxplsCSLYzJMaSSU3cZxZR8Ph0KMnGtmgWjHnDrPm0jR1AkgjNOzjQz7MlnvkkWPmBx3BZyrDs9nMGo2GlUolL3KIgUeXMeZcZIBo9oCZ+RYUGHW1VxsbG87mo/dYD/SBtUT9BsaQsSA6DOkAoOI+1pamDyqRQJ+VKFN9BSDVSJa+Hx0C6aRkaJIkXrgIUEYqLuCs1+t5/8yyEXRkiXeo7WAdRxJDCWMlnFVPcakdjQ6jElxqNxg7dIjaKdVp+l0lLVRXq4NE35BHzQbQLEMtSMocqX1jbWof6Btzw9hoX3Hkcah065XaIO4BHCMDOp7R2dP50n7quCphoeOikTN1bOJ8RmCvWC2SALFtkbinL4qZaEt0gNW5UznMIxB5X7TrXI859VxR3uN38673cf5Xvf+x52p7VJZWPXvVs/75n//ZXr16ZbPZzN6+fWvb29u2sbFhT548sfF47Jl3zBP2KE1TJ811fzo6FWeN9UBkdDKZZHAuun17e9vTs6lRAwGIQ4QDDnZAtjUrDD2Kc4qjhH9gttz3Tl+UmAYP4KiTMWi2zBxQp1hPGcLWQ0aia/BP0PP8Tv/BAjjjvKNardrBwYFtb29bv9/3I+fYVglBwbPwh3CK6SfRdc3OZA64X08dAF+Vy+XMfBPgqNfrVqlULE2XwUBN8ydqTZo8Nmpra8uq1art7OzYYDCwwWDgmZfgF8aZoqfoUJxkMAaRd/q5trZm7XY74wfouNJXbCeOP2NqZhlfDH3HeCkGBI8pEcu9EA6sTe7V7Dzwm/qUGhxQP1n9MHAXmQ+VSsVPciBT/I+53psEUMUblaKybShtdXzMloKqxlSfrUYaoImh5Tlq4JVIUMdbmUlVYqQtE8Vi4mGzeA8pv9FxRYCYWCVDUDr6btqkRAURF5RJBML81DHi+C9lK3d2dnycETLaTbSBfzGLgblg3si0IM2YcdMog9kiZVSBId9HuNVAAzT4qQta363PiWQPStQsm64ZnXr9yd8ZR32HgmS+w7v0fu6Lv6us0rcIShhb/Z3FHteNEhTxWchiXvRCZQUgF8Gl3qdgUKPber9GufTi3TCyyC7FW2g34BVngOeyVtkjhtFkriGhdO8uhoz2f/DBB7a5uWnn5+c+NoD0H/zgB/bhhx9m9rtXKhU7OTmxzc1Ne/v2rQ2HQ3fGUJ5sMUJ20UuaWg6oYS8fY4NBwmG+v7/3yv70V9O6NLW9VCpZo9GwcrnshsPMrNFo2Gw282wGjBxGFEeb7AMcxMvLSxuNRtbr9by9OJHIGwBDL8Ze5XM+n9vOzo598skntru7a59//rm1223/DnoWx3o2m3mkR2UyrkFkXll3fupcQ9SgT1X/rq+vW7Va9X16MO8Qo2QKIIsYeC1wqtX9NXKtJHWhUHAZQFdDaDCHgA/GF/JHicK86u2qf1UPqiMGSaB7MvmM9am6iTFV3bm9vW0HBwdOOEFIqc3ivZBO0ZnSn8iH2lIladXRU4KG++gbY4c90IK/KpOauq7Os5I8OhfYSvQY5AfzpEScksyMBfNPhEjXg4JR1Uk8C4eAexV/6P26HmgvMq/RzFiwV8kv8I1WiNasAXUKuRgPdTxoP/KmGEHnnvsBz3opKUT/kBGekWeP9WLOol5Qe7zK2Y+f5dlnJQ30mbGP8Znxu1yryIN45fUl7zmxTXnvjN/T+VWSRT+nD/yua16vt2/fOjFNCji6BsKdABHyB9YgKMVecuRBHRfwKk4VRQE1srm+vu5OKhlrrM1er+fyjX7nWQTbcPL0yG+yi9jWoLgLu3F/f+9RbdYTDjIYROeb/rNVgX7gjEffRTOKqIeA7zEej91pKxQKbvsLhYLjmHq9buvr69br9ezs7Mx6vZ4XAma7JGPIHM3ni5NDICfQNWwrZsteu932UyDMluvFbFlHhRpDyJniF+z/cDjM6FnGJGK+NE09ZX97e9vG47G3n3FHpm5ubjIZGOhnzQCAxMHfAntRl4hnQ4BrYA5iAPsLMc6cql0uFhd15jSQon4dNgmdD6ZUR17v1YCCbo9XcoL38k+DHoVCwWtb1Wo1a7VaTvb/sdd7kwDRuNHgPPZVFxD3RHZSlRqTruCU9BYccAyyOvAIcJqmzsQADAuFgu+l0O+aLQt9UZlS0zn5iYOjjFu/3/eq2vRBnR7uV7ZSwU+apr7FgbbQTrNllsLW1lYmPZWjtDTypcYdRg3nTKuiqmHmnbxX51LBmG51YK+xPifKgVl+ehqLSgkTfV907KNho/8RsKH0mKsYOeFzNZj6Mxpg7UOeDMfxUXnX+1VR8J1IOMR20q9VRlzfEQkJfW+8IriI861OSl5/I8GBYedvGG6t7Mq4aIQSR+r4+Nj29vYyzgdGRLOEOCcYY8+pGBh6jg08Pj52JT2ZTDwN7tmzZzaZTOzrr7/2lH+ULse8ALqJ3JPiDwDZ3d21p0+f2vn5uTUaDXv27Jltbm7aYDCwNE2t1+u5EdBK3RgEzolnzz8GBaNM5V+ixIXC4oibL7/80qbTqV1eXtpgMPDjAy8vL/34G814IjVvNpvZ/v6+dTodm81mXtQPhwiCBb3JloAkWR7vR9VxnODd3V27vLz0eXl4WBQUYisGz8BR0Ug7Bg1QUalUMnv01GlTo0tBJXVsGFv0OrIKGEHemDt0uTrumtKnW8YgJzTqhKyg17EVAB2eqToAQ867AMwaoeei7+g/dXTVqYrrlLFgnGkfep2x5/P9/X2rVCqe4TEajXxsK5VKrtOOPogOhzoSqi/y7HqMtnOPgkglAnAw+TttUrKCOQUU0f9I1tJWnseYKlGq+oaxS9PUTw1RQlaBfZ4zxbOQE2REbaTiA9Y/75/P507eaaFjvottw76ro6LkkTqeSsro+OuloN5sSTboGOaRwjq+XPpOxi6uX31WtEsaGNHP8xz8vEttV57d1M/j33TcFEvm9XvVu1d9toqA+C7Xqr4rTookQJQJHU+92GPOusK+4oxyqbxqtJnnKZGrGJOIOqcJsCceHYQeZh84Mnh9fe1keKPR8KwrMLFu+VFHCoIYEp6xAZ+oHZnNFjUKzs/PnSAlI5j1qvhUx5N1Cu6A1GAsCKaVSiU/xYBU/tvbWzs7O7OjoyN3klmLEA13d3fWbrft/Pzcj70bj8e+/lkvZsvgGH4M46K2AVzC+BcKi7o9WuAYR1ezzFR3IkdKTHP0oJnZYDCw8XjshDhbriEpmD/IHYoNa2aj+nnImmaW6pY6xZzoUM2WVD2qR0KaZbeicayiEr+Kp9WPw7/CxmFzwVbgG95DdgqBWw3oaTak6gn8tlKp5LII/iADoNVq+fadP9X13iSACoHZshgfC0bTeJUNYrB0gGBINJWHhcOlTh/fQ+Eg6DAw7I9RR8VseXQYDgDtNFsWfKAfOhk4ILQHMKtpgTwDoVPHnD7zXJx+BShmy5R5FDJFNAD2V1dXLrTD4dD3SDKW9AHhVMdZIx9qqBUUmWXPE0Z50i6cPbNloSqzZcRK9xjxeZJk2X2dc95FGyFMVCb4u46fAjA1aBopQHlp5EwNohqqaDDj7xHYMk5qSPPAEJ8zzhE45hEI8RkKaJVceuwf98Z55p36LHU+9L7YJpwsTYHVvjDHKLjpdGq1Ws12d3ftxYsX/lyiTdPp1A4PD+173/uezyuOZa/Xs3a77dkma2trVq/XrdlsupKH3EJG7+7u7De/+Y0rzmaz6Yap1WrZ5uamvXr1yt6+fWtbW1u5yloN/cHBgRfzU4Dd6/Vse3vbPvvsM9vc3LQ3b97YdDq1drvt+mU2m7ljHI3MwcGBXVxcZJjdJElsd3fXWq2WA5mXL1/a5eWldbtd12sXFxeWJInXPDAz37agMoP+JJoJWQHYIpMBMo/+n5ycWJqmtr+/b+vr6346g6aPv3371mWIIoWsTQAEkXc9mUFJT005xOBqaiQ6SWVRgT1EKKQBtoUCRETf03Rx7jJ/BxgQPQCkEB2n4A/gEjCWpqmTMxydqM4qThtABSAXCQIIbSUy+Zx+AiqYF4228V5dewAj3SvL3zc3N+2HP/yhVatV3x86my32j1I75+rqyiNNpHSqE4FeUGdcSVaNbMS+cS82DKCi0Q36zTMV9CmIfXh48PlhHiOJjK7VaI9Z9iQbtTnoFtquxIJm3ylxqu/R9/I7cq2f60XUFLKRvhHRY/0wlwB7LTClhEjelefo0w91GBgPxQeMCXMZiZ88giX+znPVVsXxUPxIu6JdUfyi74i6gP6pPVKdw3dXOf86PooHHiMP4nMeIyfynO48suKx76h9f+x7fK59j8SD/o3r+PjYbcTx8bEdHh5ami6CaQS7cEY2NjZsd3fXtre3vVI7AYBSaVEMrtlsWr1e9zXM98zMMWqlUvFIL39HT1A0jkw7PTOedcacUqQQnUzhQGyQZieQHQiOJcOBYAC4Hb1LRJsLW8n32U6YR5QlySKVvtVqWavVsr29PSuXy3Z7e2uDwcD6/b4NBgO7vLz045DZfz4cDv3kBGwhPouSkTi6cWscugMShYAE7QZTra2tWavVcrtF2jo2En2FbLA+lQRnXNlHjz6jbpHZwmeq1WruY4EDJpNJJhsUPQ+ueHh4cD1ZKBTct0MfEsyAtMKmQ/AjfxHjQQBRV2g+n3tWAs/k+xqhJ/uKDBMwDvJ4f39vV1dXXndJ7STPgwBG9/LdWEsAjKOFYrmPOYf8+FNe700CaAQDZ5tJMMsqcC3YANOmEQ1AJGc8wvIx2CgadUbNzEEa4IjBU0OsKRnKqisAo61a2EIv7qfNCHChsNjHw/2AE1KoWKAItjrWMepB2wA3jBkVQCkWgaJhgfMuM8vsVVEWVvuhjg79B3CokVGjrel/OPmAF51vwIGCc+1XBId65RlJfW9sO/dohE0d7ryLxaiOSVTaqthWgYDouMf3qYOdlzERwZGSFpGpzzPceUZex1SfFfu3yrHKIwq0/8gIwBilr9FcDDbvoVgPa5R1ibHjQskPBgN79eqVnZ2d2Xw+z0TLMcjj8djevHljnU7HFePW1paNx2P7/e9/b3t7e/bs2TNfX5eXl75fkb193W7X09twlmgbhX0uLi58fxo6BEZ7PB7bL3/5S5tMJjYej61er7uCT9NF5P/+/t7JBpjyjz76yMkz9MdoNLLnz5/b1dWVPXnyxIFQv993Q0jEP01TP7oG4MLRQvSX+UCm2MuILmTLAffV63UnKjCKnU7Hj2FiftRpR8fCmt/d3Xka42w284wMjCd1BdAduoYV/EOiIp9mlqk9gm5D9rWYHTULAEuMuxb+Yc4BYkmSeEommQUALEDt7e1txiG7urp6J/Kkdok+8PzoNOv500q4mpmDZMANwAHZZzyVdFaSVqM329vbHvVXfQWIAVDX63W3M7Vazdc6eon3RaJC/849EAvMi87z5uamrxP6M51O3fnVaDEOKe3ALjMujLUWoFVdq9F7Ba16L/dF55R3FAqLtGIAmxLJjDFgGScBEM37sZG0RQGgkg/aJ2SKPqMnGLPYZ56bdynhofZB7Uuebcd26ZyoXYo2TMda5UMxoMpgHkHBdyOxoG3W+6NDrw58JLH0vvhe7nnsvlXvzbui/c77W2yX/j2vr3Gc9d48O593v34vjyT6u7/7O/vFL35hhULB9vf3rVareSE71il6uFwuW6PRsL29Pet2ux50wunb2dmxw8ND+/jjj61er1uptNjvPRwOPattPB67H4C+Yu/5ZDKxm5sbGwwGXhPAzPzIWSUl0RN8psEo1igyxXrE4U2SxOvolEolPyEHQhRdAKldKpVsPB57QTgCCeg9st7Qy/gnENS1Ws2L+3KVSiU/cWE8Hlu/37ckWUTKr66u7O3bt+4IMn9KbKheAithG7Eh3KfkHQ41hQ/v7u7cCVY7zJzzHMbWbFkXAqIE553PtE4A2IBngp3wVZIk8TFQ0o+2o5PVbyOTkfoVtBu7TSYXASx8r0ql4n6p+pVKyKPTwR0Eg3DYIQoKhYKTDoyJZiEQTAAzmGWzq7FjjCtEMCfhaeCAZ1I3A3nGtqkP9sdc700CIPg4VjRA0zZomIIIraoZnc7b21urVCqZtDTSRVTw1NnjvUwmikgLLrBvnrbRblIsaAsRd923q8wSz6U//F9rBgByRqORR4/4fD6fexqPRkYAZlpIEEGDNVWniXFkcSAEGO28tE51qhEe/VueUw6IYJx1zw/sKwuLuVZChIsx0LRYNVBKDkRjznO1fwpE9B6UDTKhv0eHNl7I4GOGfpXhVmec/yvAVxAYjbNGQ+LY87v+PTr++nkEDzon6rjoMwDwOq554AEFixxq5gzEHpkrk8nEGcrr6+tcUknX8cPDg/X7fbu6urLNzU2vCjwYDKzdbjtoxonF+GqEjyyiarVqrVbLbm9vPe2LNK9isWhPnjyx3/72t/bFF19kMnAqlYqNRiMrlUruGLJGbm9vfXsBLD3OFXvy2aM4GAwyDqKO3cuXL90BheS7v7+3s7Mz35vHHj72RLK3jHU2n8+9qBJRFzKsmG/YeyKHqifN7J2j7Di9ACcV0AY5w7s6nY5/F4e1WCza4eFh5hgedC4AkL8RSTLLAjr+UQgoz6nR0ycgZEjZ1AKSGGx+0gdIZjN7pwgQhhiZApQCFCIA4TPWn6ZvYifQlTF6omvezN5ZF1HnzufzzHazSKRqOr3ZMtKMvr27u7Pj42OrVqu+jezJkyeZuh1mCxv05MkTH5OY9kmb1LmLth0AxPdUdzBeyOB0Os1sSdC28DwlryDDImlNYEHHGhyicoSO06webBFrhO/RV2y7gjf0AXPJ+2hnJPNx8pU8V0KUcWNsIBKQF60Mrf1Q3LXKfuvvSvzTF32GBnV0i4FmDMQMAHUo8xzX+HskpNV+6bxE2xe/qySDPk9xSByDeD32N72izdcAQp5THj+L7c8jJx5rM2PwPkGHPCyQ5/DHz5Iksb//+7+3Dz/80LrdrtstyH3swdraomI/hWuHw6GToox/kiwI1Ovra0vT1KOYk8nEnj9/bq9evfIjYtG32ML19cXpMJeXl+4Ql0rLOhts1Wo0Gq7bNHWfumHoftaS6t9+v+92Hl3J2qJgneLV+XzuZ9Pr/M9mi1MO9Ljg7e1tdz6JEivu73a7fhwuY/Pw8GCdTsdrCfX7fQ8aPDw8+PGL4DQwrgb6lPShbZCH+CsaMdb6MJPJxGsMgHnwV/LqgnEMHvIFoQJGgYAwW+os9CA+1Ww2s06n4+TL9va2O+7qfG9tbbnfohmPhcLy5Df1uZAFrR2mehR/AJuBH6QyQ8DKbJHlMR6PXT7R+TjgkaCgfWAEcJnaZH0P34VcgGwbDoc2Go0cg62trfk2GYpw0oY0TT1ArLUe/pjrvUmAWCxDDQ0OB0qBAYJNwcD6S0vL/ZZEpWAEKdahi4/MAWXMiQKpg6jRAU2DQxiVKcT4MUFMGBOjhg/QrxEZgCDRg/l87ud9ogxgyzQthe8pgwOwQiBZVLSHNpktI3ox7V2BSzTeqjDyGHCYLD5TA8s8Q+YwFzwbMKxjTtvi9ZjTylwyV7Rfo/QqW/p/+hT7nueM6+d8JzrUOg4RAPAuBcf6HW2Xypr2WcdWgUwkEUYtk1IAACAASURBVLiU2IhtVydBnQkFWxgU2qIysApskC5H2jGGQLfQUPBGi2MpoFdHjPocZgtle3Z2Zv1+3xlpLQyEbqACvrL3Zst0X46Dubi4cMWPnigWi773mdT84XDooJ/INmz2xcWFlctlJztJh1RZBLiQUg75kSSJO+/IJmDh9vbWqx8DhgAx5+fnPia6x0t1D23EiYuEpa57Ut2IJNDe9fV115eAtPF4bK1Wy+/VdPitrS2PfvAegCJRn+vrazs/P3d9QGYC+gu5Y4sExljTLjGQAAXmTeVHs4/QsbSJ9UcWBqSQnlO8trbmRaBg8yGMIGFZW7DzHAEJeQwrj26HJFaizcwyBALfUzvIGNJuBVvIqTrW0TlSPcjaVMIH8EGEi4jU7u5upngk93I6BO9XXaLEuzrKkQhARlQnmS2Pt0IuxuOxp4IqdmAccDweHh6cvFBdqDYJWVBixWyp55XcxWHRdNPouOvWFJVn9rOij9J0maGCTdYoGvOCQ6JzA2mhzi8YRMdEAyZm75Lrqwhrnofc0Z68AArjwrpG7tSR1zWoNiz+X6/owK5qa3RiuFfXYt731UbSPn2m/sx7nz4n73f9/2PEht4TyY3H5ifvihjife7n56ooYB5hEdu1vb1tf/mXf2n/+q//apeXl65LiLLqVhE+Q/6JrOKcFQoFd6BqtZpNJhM7OTmxk5MTu7y8dBnD+cHRL5UWNX7Ozs6caNO1o1liGmmm36xtHFP0Gp8RTNNgGBkI2Nvr62vPGqzX6/58IvLYbrZJqM41Wxy7Wi6XM6Qfqfo3Nzc2HA7dflDviD35k8nEcQZ9UL8l4s8Y3ecz7BYOvPogOKdkXRBoYUsHxB+ZZNxHfxgntU26zvFHFLerPTFb+iwENtC54EaViSRJHMMQyGUbozq9jB9ZgIpTtbAh78HWK8FOFiZtJCOFZ2IjicTzObJntgwqIH+8izlSjAAOVz0eg6SqP7EbZL/u7e05UWO2zCT8Y6/3JgFojBpwOmqWn2KsBg8gwd9YMGqgUQSrjAzCpJFymBcthEV0XxlLADRtUiUJI6kskQJfUjYAWYDJJEncgKNsMLz0BwZQAR0gCgBEBgGsmKa5QHoguIwj/1SIlP1XMKYGlzHhvggOmBP+DuDROeF3QBTCSFs1WqL3q/FHDlYx1/p3BZzKhqqipC+8V/sEiFNwuMqB1zZE454HkpAVnq0Ogy7mONZ58h3HIA/YRCdf11Rcg/o+M3unXVwKFLlIYwYsIm9sCSBLQMm6+XzuhBnjgWM3mUzsxYsXdnh46PsPOfkCpd9qtdwIsUeq1+u5010sFjMOHo5Ru93OFLohun9zc2MnJydeT+DJkyd+TA2OHKCf9s9ms4xRT5LEms2mp0pubGx4pPv29tYBBYQHOoPIMo4rhEeaph7NphghjjhRiFKp5McEfvDBB/bjH//Ynj9/bqenp37MG4w1Y0X6YalUctKE9DStPEs0JUkSj+qYZQv74WBqPRCcHuoHoJsuLy8zxQEBNeVy2aP86ggr4IH4xAFUBxfZRd/h7PMZgBTZ293dtd3dXWs0Gi47aZpat9t1cEuEQd+pa5H2aAEigA8GHB2nMqP793EC+Q7rir6p3kRWoo6m/7wHGVHHkGgAkR8u9lCWy2Wr1+uewpumqRPWHD0ViXn6oHoP3aJkZdSBkYCO2wmIvus+3uj46PYclQ/sj9omzTzUrATepyAvBg/yMjWQT/aFAgw1iq/gl/6kaZohCrFNXEo4aHYJejViKQWIzL8S6qtwEXMS8Y6OT57tV1Cvc4K+R5+CzyKhTfvznGVtl17quKrNUvI8z0apzYt2LQ9b6JX3+WNEgH626pl5uCXvvZEw0L/lXXm4I9r8VW14jAjJa+uHH35o1WrVU9IZd43kmi3XsDqGihe1+B74nIJ2WqSaf7PZzDMGx+Ox9Xo9x9QQxzhUimnSdJmmTR0A7B/RUwjc6CAiI4PBwKOrlUrFi6cmSeK+A7YdnYLDOZ/P3SHUNadZdqS4U9cAhxzymW3ChcKi3gzBlkKhkMkCZqy0WC1zyzv1RDDdM87ahcgED00mE3f+mRcuMMeTJ088Os3RdOgqDWpyoZs03R2ZIdiB3ibAQCCiWCw6ZtKaBPhZzH+lUrGtrS3PzmRLCnMfCWFkkMw5+oc9AOMQmELnFAoFL048n88zWXdkL+Bz8SzWBFtkdNu32nn+zhwqIQDuQOZrtZrVajUPStHmRqPh/flTXt/pdAB1nlaxtSgSdbYBPxpR4F5NJ4zOHu9SJ14XZ3TmMEgIgtnymDZVYmbLqvzswadqvxpGjXDr8zibEfBHBgOMFgSAmbmwEeVnYecpRhYywqEOtW5H0DHib1owiv6hXGLKvBpPFL6yjRrZUSOvAIPxUYMRoy08T2VBDZw6xmr81ABqX9W4Kfmk90dAofNPG/IiKhHc6js1OqHP0O9FsiCPHNPvRYOt39FximRFjLJEQBTv07mNQCuCBf3/w8ODdbtdz2hRMInBIoLMPOM8ItPI287OjqVp6tXst7a2rFarWb1e95Q0UvmRiel06kf8mS0JpiRJPGVKwenOzo4fEUQUfjgc2ps3b5xVPj4+9v33nU7HisWiffjhh/b69etMkSKzZXVaTgegWv98PvctCowJRguDTOozjjbghX3SOOMYSJzSi4uLzPoplUr2zTffWK1W87FjfIhImy2PUJvNlicvcLH+GCsthIaMABAwyMw5axoZ47gjihTiHM1mMyeH0NN8B7KW7U8AAJ5NphMGkGdozRnVaeqo4Rzu7u566irFpzhSEvuCnmq1Wp6SXigUfH7Q3dvb207QTKdTLzCI3pzP57a1tWXT6dRTP3XdQ3yhp7Ebulef58XsHMCS6kXWZCQ+cVwhj5Hr29tbe/HihX300Ue2vr7uhS0nk4nPX7PZtPX1dXv58qXLCetaAVF0PtTRUj2u9kkj7+hc1YFRz9BHtrKoo8m7FSOo3sNB5nk45ugIZB1HQHGA6kuIj0Kh4GMEgQbmgICaz+eZ/be8B1nGMaEfGlRg3UUCALmK5Ak/1Y5yf7QjeU5idLLVtuc5jGqjsO2Ms45dtOsxqMK747rQMdf2PkaIR2cd3EHfIr547HqMCMj7nPleNV6PtTk6/REf5Dnvup6ivV5FOuR99r6Eg9miQCBHBBJth+SCPMPZ4bnYO80ABvOyLjTbVbEGBO5wOLTBYOBrVsliLeSqZJuSoWmaepaZblvY2Njw2kRaUV91CeuxWCza7u6uNZtN297etqurK+t2u/79QqHgNYNI1aYAMRlLsXAc2whms5mn4OMY6hZjHEZq+LBljbnXjGjFJeoPaDBQHX8luDVDD+c/yge2l22UZuYkDoFZnOOI07BF6tCq/8TfNBM71jlR+detbZAfZB9WKhV7+/atF0qGCFD7o3qG4K2uKSLp+IicUEHgArlgi8doNDKz5dY3bC79Vn2KbGuAQ3WWyh9t2t7eznyXjAwybHi3Ztb9qa/vdDoAneX/amQ06pnnyCGECCusC+AQxUJ0i3cxqEyaLgIEiwkxs3dACG3ie1qojwVzdXVlo9HIQYgPzv8JBkd+mVnmzEsUBG1Rxw0hhjnE0YGdQtGygCMZAHiJ0YQIYDBUqmgVLOrCYOxRpEpyqGLQFGidUy4lJHD0aBvCyhUdcF0AEWTmOajMvxpEVRz0U510s2VKkgIWBbDq2EcjHIGRyrDOcRzbaGxRlDq2kejIAwvqcHPpmMTPI0hfRbTp/dpWlT+9aCd7sZBzHCF9LkfARPBPeiAp219//bUTCOvr69ZsNt0J4/i/Tqdjo9HIZV/3AONksd7u7++dPZ3P5zYcDi1JEuv1evb69WsbjUa2v7/vxxOenZ1Zt9v1uTw7OzOzhcx/9NFH9v3vf9/v5f2TycTPkh0MBlav163f72dAEcxzmi4i/bu7u9bv930/Jc6mGkDSEElDUxDEffP53DqdTqZYH/NM9MXMvKgMhuXh4cEODg7s5uYmUxRRSU4ck/F4bJubm54ib2aut8jU4DPWYLfbdT10f39v/X7f5cRsSdrg7KIP1WBDatAure9ilk3NJirBczGGjAMnGrB1gjbPZrNMlXoFZMwDhAzkDc/VIoWaBYcOx6ZAnGD8MdqaTUK7GQddf+rYsNVLHRDeo3qG+8hcgGy7vb21t2/fetQfcgfy6uFhsZWu3+/b69evc/VLjEjnOSl6KSnM3xW00E5su2YIIosKLNUZVtuuWSGsT95HO9EXRKYguAC/PJN1QiTOzPwkDXSZEmqRfCgUCr6PNpJNSlzxnai/1SbyU2t3rLroOzKheAM9rmQM88M4qUzRlojVdMyZGxzCmBGhThmXtkPHQMchz6mOzq/+XWVP14EGUqItjXOn74x91vdEBym2mfujLef7eU54HiGQ18bHPlPbTd/je+OV13b9TrFYtKOjI8+eurm5sclk4u/SIwLRh1pRXVP2e72eOzC1Ws0qlYqNx2PH7cgODiXZhpC6YBfWH1FhHH7mgzFn3okUs/Xr7OzMBoNBRu63t7et1WrZ/v6+HztYqVTs6OjIWq2WTadTOz8/z8w7P3FkG42G7e/vm5l5LSBIYkh/1g2ESrlc9lpJmok8nU7dXqkto3/YEUh1M8vYT9L9aSOnLZCtxlxxj84nWZN8vrW15SfGsIVhOBxap9PJZFzELV30F8ddt0/hIBPw5F34PGtrax4c4jP0ovp36+vr1mq1rNls2t3dnXW7XTs/P7d+v5/ZwqhyiL1hzNHVOzs7Hv3HyQeHgBEKhYI1Gg2vmUBwGDKJ0yaULMeJ1yAGWRDMB1iLucWWIfv4hNgu7CS4mJMlmPtog/+Y671JADUe0VAzeDQMBkcdi+hIohRwogGYmoKpoD8yejgB3hHZXhAdLAwmP7UNo9HIq4crmKEa9+HhoX300Ue2u7trZtniQkQJmGzYO2UtEQBdhLB/bBdQB1adZIRFFUde5oSCKmXiGC/u59IUQ96lbVQjz8WYA4B1vDWFU7/DHEQHM8+AKqmE8KuDz3jQ3kjw8AwFVkmSvJPyGI12BCNqNGP7VgEm/Xse0aDj+hjoiH9XEiGPAHisH7E9+p08QBMJAGTPbJmGikFmzukjYByZwPHb3Nz0SD6V83/1q1/Zq1ev7NmzRUX/N2/eeEo5e+SoVK+pdgr0Mcww1Ovr677fn0gu63lvb88dINa6pgQiz8fHx3ZwcOCRZIBvpVLxo9bSNPUjhlD01DTQVOfBYGDVatXm87nV63X7+OOPrd/v2+9+9zt3jDhOEcCDsaSvukWJCAPvpz+6bpQ1hjw8PT31/plZZksTkQ0M/M3NjZMHRMB5FsQhUXxACZkXrEui9MPhMBMBVdnn+bSXdawkIVF2MgcgSiCTtA2bm5tOGFGwEh0MeNRoPGQLzhpO4PX1tRMBtBGZjvqL+aE+A4ae/pCloPoR5x+ApqCF72kERSOpzB9b0fgO8gJwoD2vX7+229tbe/XqlQNkgA/tH41G1ul03ln/Kk9R16ic5ZGGzDX2iKgY78e2Y5vUkdRtCIwVbdX35jk7cW74jMreCvgAUZubm7a3t2dHR0dOIKossieUvaRJkrxThJh7sU0avdK6QsyvOgn0hWew1s2WKcZ5xLmOu2KrCApXEQnxmdyneEqzTDQzKZL56ozq85Sg4DPtayQO1KnX+c2ba33vqkyEPLsYn5fnmK8as1UERt5zIomh7YnvX/WuvGvVe3Td5j03z7brhe0jBR+nTFO4Z7NZ5vQYnqtrYDqd+pG2+/v7tra2OJIO/QtWppAeNVcgYcvlssu94kvFF2aWwb9c3HN2dmanp6f29u3bjM6vVqu2u7trP/nJT+wnP/mJ7/3Xazwee4ZisVj0IoA4q1qni/VB2naxWPTTfWiXBsZ0XRH4xMk0WxY5ns/nnqavRADp8pqNRmBE/RXmjPHB3urJPTjNjFmpVHJyI0kS6/f7XgCSvfX6nLu7u8yWBvS06jUc4mKx6AUSdYsD2zAgSNSZp52QF4whW0MhJiAicKAh5ZUc1+wJ1dOcdAVpwTWfz51Q4HQhCjuS7YGsspY57YbsLvQ/Y42+g4xQPae4CR3G31kn6leNRiPPMNHaANFWf9frvUkABlcdf70UvAIaNdIdnVMGjQWh+zNVwUVHWh17/m6WPSaIdqjBgYlRg0lqC2lDPBNnAqBORXAz8xQgBS6kQZstjSzPxaGguqPuV2UhqjEHDOrCJaKhaYZceSw/lzrLzJGCcj4zW+4J5js6B0owaBqSmbnSisaG+YjOc57c6N8gADQyFA05wEyzItQ440hEUiXv3XljE9tKP+K7omPPe3gW8xPnZRUhEfsagbl+N68P2n/kmOfkgaTYX32WOjFmS6IJeeT34+Njm06n9vr1a1e+7COloAtggv34X3/9tU0mE6tUKl4pH2dJq9zSfxQ+rDt6pVqt2nQ6dYNdr9cdpKdp6pE+CDtSjjGgEBtPnjyxVqtllUrFM5M004i9fJ1Oxw31aDTyLQhpmrpTjoNHQcC1tTX76quv3AG7v7/3M9wrlYoXu4EIaTab1uv1bDQa+ZyzvorFog0Gg0wxTk1dx8FhTRKlpM/MofZRTwWgjkCxWLR2u22FQsELJt3c3Nh4PPZ9noyfygLVnHHazczHGv2iEW912DRziUwoDCUFgmJxVMDJYDCwh4cH293ddYCEw4/cVyoVz+CAYGLvPPM5mUyclKF96HJk2mxZDIjnoDdZQ3yueypZQ+hQ5pP7eZ6uV+6heBWRJCJTGqGDjIFMIlpSKpWsUqlk7CTRJ4Ct6pk8Pa2OuUaoeF7U3yq3zJc6tWq7lfxQ3aXkSGwT7dEMtugIY6fZY6v6Wo/wYg3OZrNMxEez5ZSAZJ50r7Ee36RVqXVOcbL5f3QYGBvNcFjl2MZLAwWKAzRqGp/BPWofuRe5oj86H9EhXmUr8+y+znkMOtAGtXPRseVnJCLynPlVDn/eWMR2rhr3VUTAn/KKuCwSDnFcog2PBM+3tZOz3M2W+I4sPQjvdrttk8nESSzkDYwF3oGM5QhW/s465LhbJbwU46vPoIVywe26JTDqwE6nY5PJxNrtthMWYNl6vW4HBwf27NkzPxaVd4MVCRpAJEcfA6c9TVPb29tzfYzvohF49BG2l3FBV+JI41TyXHQOc8da0PR15hlspVFj3U8fa8WgZ9HJ6Cwi2wRS2u22R78hPNAJmmGHPojkLba+UCjYeDz2QohsK2Aei8XFVgwyEIiya/0i+tXpdJxAwvHXotTVatXnDaxmZpn9+cgy38GnYw40gM1JBGTN8Y/sD7AS82JmGVIGmcW2c9FvDYAwdnqUrpL8aidGo5Gf7KDH7xIw+UMLBb43CWD2rhJSA8fg8A8n1+zdKq4KcMyWlSd5LiCWRa/vVQXPQlEgwsCqw69Kg+/D9rMgeY9G4Im8cNYpE2O2BKLqsDJh/M4zWWzstwEcamVKxlEBI0pef0dZaGqeMkFqSBkDxmkVKzybLQtdqHHm0ghEjAQpIFdga7bMHmAx5IE2jZZzj4JM3qUKiWdzKeGgDi8GijGNBlLvUfnUS2VXF7k+I88xj/fyeyRlomznEQR5ZAPPzAMzzFME0LwrL6qWB4Qw4iguzpetVqvO7L59+9ZZXB1rnoku6Pf7dn197UqWlDMMrq4ljaopcMappl1E/DF+tBEjgaPDmtEUZQgBXU/U9SgUCjYYDBz4YMDU6Wq1Wv5OWHqOCdXCNtfX19bv963VatlPf/pTS9MFy8vRhoCdcrlsZ2dn1uv1MoaGKCbztLa2ltlWtL6+7lEc3o0jjSPOfkfWEBF/gBIOJHI7Go18fetWhXq9bhcXF05mUjOhXC7bcDj0yriVSsUuLi5cjtSw5RGD9A3i1mwZARgOh/59jO58Pndnne/f3t7a+fm5HR4e2tHRkV1fX3sWipl5Ch/rgzkbDoceHSASgJOMLdBCf+g8gIPqONY3+ktTQ3ke6wrdpzZUHUXV9UTjVH9jFxgztTcQyNfX17axseGFjrSejJJMUY/wnmg7NTtISRu1D4yv2jH6SN/5p3KtOigviqyyEnGF2hLGhuiLVgfXKAyZRBBugGzarMS22mDNXOCZyD3kAHYQ0of7IkZRm8c79P95+l37GueMsdd1h05WG6JjGTP3aB9rMA9/6aW2lkvbp+1SAoDv5jmssc/694hBFT9EedH1kjeWeffr31a1Jw9H5WGA+Pn7EAfRcY/jrc+KJEd8Vx5WilepVHJdqdkvW1tbmWO22SPPvOoawN6YLbB7u902swWu5/gzCs3FoIgGljRN2myJzdA/rCt0pdpjHE7dvobuph4PbeNZGnDTavkaeESPkNnDVr9Go2HdbtePWCSSzxolGMpYYT9wpLGfFOvTwuLMF+1Gv0COK8nKvTiz3KNbBSBkeCdzpv4WxRy73a73nf3y2CGVMXAVUX8NrMxmMz+KENzHWDM+2CUq3l9dXVmSJI6HCKTwLLJTqtWq7e3t+T5+grXYbYoR6zotFAqefcDWh0ql4nNNLQDNQiCQAFkCNgUvgRHAXPwDU2Lr+F2JS+ZF9S9zoSQB99zd3WVO9yGrlRpyZKt8+OGHucHOb7u+03YAnDll4ZX5QeAZeNhxZbmj8WKRE92FxVElqqwYf9OINEpBQWQkAIje5ClO/akCRCqLOtJcSjTkjQWTS7SFCCnOi9nS+dciKvo5AqBkiLKmKFTts86F2RJcquLFYYsRKMYvbjNQQ6p7HSM5oE4giz6SMboI1IArwNJ54r3IoEZo8gytAi0dE42WqONPH9RoRjnhPu23fq5REu2PAlZ9ZzTQ0YhH4Bv/FtuqIEbbrUp31fcYq6g86BNjN51ObTAY2M7OTiY1kH1dPBMggULHWSLahjNdr9ft6dOnViqV7KuvvrLT01MzM49QAzLoW6m0qN3BWfRmi4J2BwcHrmfYO7W7u2sHBwfWbret2+1aqVSy3d1d63a71mw27fLyMpNuz3F5hULBz/Ztt9sZonBra8vT9w4ODuzHP/6xNZtNd/LJSPjiiy9sPB67LqxWq04ksA3i2bNnliSJDYdDm06nVqlUfD86KYjVatXHgXGB9ECuIFD4P+sDWeeeQmER0b+6uvKCphcXF26oKDJYKCxTxhnT6+trJyQAcfSrWFwcw1ir1WwwGDjYf/nypTPuEBlkPDCeZsszh1lHOGHqrKND5vO5VatV++EPf2j9ft9evnzpDhd6la0khcIiQ4WtWjj9OHroPUAf81soFHwrA+Oq+guSANKUzBVdL2RVjMdj14uqYxSYAA4BtKyPQqGQyS4zy1aX10KJrHHGQu1wobAs4Mnc8m4iWbr+8xxuTfNUnaLbJJR4jbYdIK6yFfW7vpfvKNhXgkT1GTZA26htitFu1ZOAXvbyqtzpe7C5jK3qfuQ1nkKg8qCgLq99mlWI/VPCXNuOoxQzSfR9EaOgpyHQ1E4oCcM7kVW17YrnFNvoHGt787BSJDf4PLZH5yg6tio7kRCJMqXtUxmIVyQH9FLSSO+Pz81zvqNdfuzKIx2+rS957fquRMDFxYVdXl5au932DKnt7W2rVqtWKBS8kN36+uJYQOyF7vPWd4Lj6/W6FQqLY/bQ43HedK1DPEA+UIlddQ3yR7YhFzpYyUbFLkmyCDB0u1378ssvM/up1UehLarTda/2fD53f4C6IRyLCJY2Mw8+0EfNhsDGUwtAtz9GwhJimtOSdIyxAcwNfcZ+YINms1kme1Kj8fgVSv5DYkIugxUgQDgukS2T2CG27JFZeHt7a+Px2LMzNHBKRh9FGPku8qpBp/l87hhpe3vb9vf37fDw0HZ3dzNF/xhzSBHduoH84EuRLac+W6FQyByDyf38ztZR7CzPh9ABE+lWAOZdyS30K/JM8EWxgPafvvT7fbu5ufEtM8wThaXn87k1m007Pj7+/0sCaNqHgg0EMDo/6rBFYKDfo9FMJO/Shcm9ChQUHMCY4dyaWWYiYgqG7t/Vfc5myyN12KYAcGKRY/AxwupgRxYeFpG+ABJg0VToVxkVBQUKEuKY00aepwtJoxYaMeG9CBYslhI+CiR0HCCDlJHVd8R+EeHVxaf9VWOi/Y+Me4w46P06dnlsszoW8V1RfmlT3vu4H1lUIkC/z7ujAcyL8nB/7FM04tGJ1/nKAzwKrhj3+J08gMBcKbtNmreCPJ1jKvWura25cUQOkV+MEI4hig3DqdkA9AN2GFYYw4HyJm0rTVMnHkiBR0fgwM9mM3vy5Il1Oh1n11utlnW7XY8mYKxrtZpdXV1ZqVSydrvtBqHT6dibN2+s1+t5lJWo8u3trYMZTgOYz+e+l410fvbEaZr01dVVhrwCCEBUmJk77BgUjA9GBoYdPcWZ8YPBwI9Fury89IwK3kVaIdsLiP4DDPlZKCwyBWDuK5WKdbtdN0xPnjyxp0+f2u3trRdmZG1wooLKhIJEJXWRXZz7tbU1G41Gdnl56To1FhaczRapg1988YXPHfs5ySggO4DTFvhuLL4EOQLQQRavr6+dtIl1A1S/IZdE0tS+ADZYC0oMq65SHa7OWrVadVlhDJlH7RM2iraSicb/sbcKBpVc1zngdz7HpugV9RkEB+tQoy0xO0t1aST4kWV9D84p65tnaRYZn0cCFMIwprZq9G6VXtQxiRE+1g/PVBI2L3KsjjjPVFJFf1dSQscBHaCODX9TPa3ZGDxb389PHSvGIpIuXOiuuN1DZSHaW+0/P1cRAXnjHm3XKhyqY5DnUEeM8W12Nw+b5Nlv7ZPet4oI+Lb7vo0YWIUj4ndi+37+859bp9PJbHsiG04dJ+aEbWAa8FBMhQ7b2NiwVqtlOzs7dn9/b71ezyOWGuShzYrdi8VFbTBSnXWeIR6wrThREMlJkmSOntO1R5ZYr9fLyBjbBc2WhEAecYgMa80vftdtgESrcQbRl2qjBm96sAAAIABJREFUCDzoFkX8HbZNqE6hb6xFgiG8wyyb8YBOGo/HGXuE04/zTjYhdnhzc9MajYZvI1hfX/c9+0rKslcdQgH50Qi+1kjSACaRcbKm7u7uHG/FLZrgk5ubG9/axbYFijMSNNGMJ7CQmWX0Itl7FKMEb+oWAz5DltmDz98Vs0A6mJn7ThzpF/1O7sP243OqLHIxRgQBiP4ryXVzc+P1i7go4kztuu9yfaeaACwwGokCjo6hGh++A9BkMLjfbMm4aiGs6DSZvZuyzHMw/Ey6sth8pm3SBYvAA3jVwOPImC0Z/Ag6FLyq0cER0XGgBoF+FwWB4DAeOq5cETTk/dNn654VdWh1fxLKXskC3ovi0bFkXtRB1OwJ2q9ZGeqYR2dUQYBGpDVNJm+MdYGrwVYgEqMO6tAqkaIASz/7NmIiOvM6BzpnKrvRWc8Dd/qsvHbEeyNgimMc2x/Hne+rvGkUkojAw8NDptpsuVz2iCJrotls2mg0ymy/MbOMcry7u7PLy0v7z//8T9vd3fVtASjbJEncySmVSm545/NFitoHH3xgtVrNSqWSDYdDP+qsVqvZ3d3dOyl2XKRu6R5eM7N2u+1KXQ11v993udPMnm63a2/evHEHRR1IxoWCQYwV9+LUUlGfPfTz+TxTWA+DhSNplj1PXucXkpFidZzcUCotjh3EoLJukX0i88qMb21t+Xyhv9QR5l4M08nJiR+rNp1O7fT01E5PT924mi0j1mQUKLBQm6KghDEjo+D29tbJB/QA/aJ+RJIkfrRRvV63vb09r3nAUZEYeCJbZA5UKhUbDodutAE8pNpBRJhZpohskiwL/5GOqQQpYJNokOpTChMRoVCHBmeYfpmZZ68QfdCIrRJtzJ+m6xLJ2tnZceDB32N2leqbaINUp6P7o3OIHlXbp9lr9I/7aGO86KMCev2bRs3UJunnjKP24+HhwTMOeYeZZWw77VdnU0l11gG4gUJn+kzGSN+x6lplO/RzJeejLeFvtFuJHB33vHZo5kF0NqON1c+4dOtDnm1SZ0htjtoe7Y/aJ31OHBvFj3l/1+/mETGrnh2/Hz97H0Igz3bnvSd+L298ou1+jJjQd+X9nesf//EfbW9vz9Ok2TpHMTi1kZADZuZV6M2y+/mVUMbG4byB/bH/efOAHeNZ6E7VVWQVak0ocDY+CXYBwiJJFtFbiqAqUUd2Gn1Bn+n2J9Y2zhiRZGr46BiYLXQIziPPi3OgOlTHQgN9hULB+6vbH5RQJqDIKSWkuEPYEDQxWxZr57PBYOBrlvlKksQj3uhNnGoN9DEO6g9AfoBFOGkIXat+GGNMVsZoNPI6BEmyPI1Kj/e7vb11LKM1jvg/QZJSaVHo0GxxzGEMuNJnJaV0SyrjxFgT+Uee8G3UfuJPmlnmlCD1jcA2erwxelnJArVhtBWCBQIDLMH7kbmLiwvH5N/lem8SQA2SOpRqaDQ6qI4k+4s4hzJJFqmwTNL6+ro1Gg2bThcVwgH8ylLnGQeEBMNNGhGsoZIE2lYudRAUfGnUgr6jvCBDFHTwHQXnXAhNTJnTVNA8I6XvVDCi7cxjLfWeyDLFKI5GShQ0RCXNeDAXeUqMfkSZUfClMqNEimYwrHJ2I0jQ9wNgFXRyn5IX2leVq1UAQt8X71sFUrR9On+aEaBtjwSKtjESEnnGfxWwiOMXjZCOXSRetO8Yb5VZZBoGFECMAjw4OMgU0CQDgKj61taWV89vt9uZ6BkG3cycpVdnvlar2ccff2x/+7d/a3t7e/brX//a/umf/slevnzp7YfFJQq5ublpvV7P1xtGZD5fVO/HcDIfHKtGKjWst27jKRQKvmdyOp36XkGOKGSPfLlctoODA9+rWCgUrFwu+xE2V1dXTphh0NmDyV7ECOIxtsi9zg/zmCTLauYUxMFgcpQcUXKMDTJKMUXGDUNKlIKrXq+7wdW9hmbm20a0yCKRIvrIsyBXFURwaVq4ps6ZLdOxIQw0K2MwGDg5xVFV9BPDr8QrwE3XJHpbnWwz8zlXPaH3aBYNexXjGiQ6pnJvttwOwxgWCgWvy8D3IQ2Ya8gngHy5XHZ51boaCsaxu3lX1B0650oskqlSrVY9RRbyfDQaOSnCnksInBhxi7hCdTefR4dWbaymJkdbGvW2gjLGhd+VtFcbyFhHW6pEp9rHCI517tVp136ojmeM1aboT8ZG71eHKc8p1jGl/doXJS7ivEciQEF1vBT4Ml+6hri0f4pvdKy+zaFV7KBtjORS/P4qu63Pje/Xv+U51XnXqjmMzn2eDV916ffjFfGjPjvOFc4Zdg4bl6ap2xzNHGKtP3361J49e+Z4dzZbnFxzfn5uFxcXVq1W7ejoyGazmX3zzTdepR0SQfGj9onUasXq6+vrTuYjUw8PD+7YKm5VTKsOvWb2gldw6PJ8Dda14mF1iNkrDu7RbF/2Z0Ocqy4CA2nwTaP3/A0bzDuZKwhpzVRizLAZ3A8RraSwZuDhiJIVx/f4/87OTqYvvEcjz4w1qfKQRtQegohADjUazjYHSHWcX0hyiCBsGOuZbD6KSvMMjpYuFotWLpc9uKG1jRgXyJKdnR3HpgQRwGJaB4GgEveCp9DzkAWsIfoEdtBgEziHsQW7oXfZHsC4acYkGZ/IJ9mqai/ApZ9++uk7uuGx671JABUiNX4a0c271tfX7ejoyH70ox/Zxx9/bPv7+zafL/aNfv755/bNN9/4YgKA6cJUJ1ijIgg4xo+UGlgQAJAaJQapWq1auVy2yWRi/X7/nZTPqEx5NleeE4wAcymDp4oJIddIq1m2MIQyiDHVjz6pc6vtVcWoYEEjRvqdPLAUnX5VMHxXi0xxoTwZr0jaaPvoK44Z46eMo2YDqDHX50ZQoMaWcdKxj99nDCLojPOi86rzH4FMJG50fKNTH4mA6OzTNmULtb08N669x0AMxo6/q4zoxVygjDSCnCSJH6k2n889kn13d2e1Ws0mk4k7vRg0zvFNkiQ3konsIAcK0FUGR6ORffnll35MyunpqQ0GA093I6sHB6der3uRPJwfVai3t7fW6/U8HW08HnsUGMDBulOFzhhubm7adDr14jTMc6/Xs6OjIycliTjE7+M04UAxXpAUZsvCqRhKBSr0I03Td46CA7RAdNze3vpWhFarZRcXFw6ItMiNmXnBQcgezlImcr65uWm1Ws2jEMypRkXL5bITGaxz9GkE52ZLMKLrC0cSw4gMarooa4rPABVEiWDzNaMCQkNT+dM0W8yH7Ab6poQY0X3dmsG4AVyUlFR9ReVtgAj7KWezmcshIJz6EPP53C4vL72gH/oAXaCOvln2yCZdz5Ad6ALGHZuhekZ1kdoR5mljY8MODw/ts88+s48//th2d3dtOp3aq1ev7De/+Y3bdrXj6hBGXcdYaVQ66gCehV3FPvIZgJRolxJoOhf0iefpZ2ojmEe1K7r+YvvRa/QxBho000AdnjxbpvZa7br2Izr2+r0828B9eZghksKxz3F+ov3Lex4/Izmg7VIcGW2b3sNPtePapkhS6Hve13HnHdqGvDZ/G0Gg6z3adR27PGyjOGFVu/X7j/Vz1ff/4i/+wq6vr+34+NiKxaIXHmOtEYVmPaVpagcHB/bTn/7Ums3mOxjl6OjIfv/73/sebpyrcrns5C9bzJS8xS7RH5zr29vbzNY+zUAA729tbdnR0ZG1Wi07Pz+3Fy9eeCq64i6+oyRAxHmqBzQrC3+EavTYML6rNQkUZyZJ4vYXx44Lm604WbOLlIRWe8A/9RUY60g+mmXropktiXqOP8cGapAA8gW8Qh0iahGxD502rq2t+QkD2E/6Xa1WHYspFtzZ2fGTANieQHSeiv6sZ8YAojxJEg+QjMdjJ74hhiaTiaVp6uQRzyB7BHmdz+eZYxl1C+nu7q63FyIAXIr+pq6B4mKCR/V63WsMmJnXjkCOq9VqJoPh6uoqsw0EXQrmpI1aCJCgGvdC0qytLU67+i7XdyIBMHzqFPqD/o+hUkBmZlatVu3TTz+1n/3sZ/aDH/zAz+Rtt9vWbDbtX/7lX+z3v/+9dTqdDAgDmM1mywrIqiA16sJkAVI1rQ9hYj8rYO4HP/iB3dzc2H/9139lzk9GMXHxzsheRidM012UmVZjyP/5R1+0iIQ6HJpRAYlh9m7hEz6LQIFLHT9tk0aKAETaPwXdaszzov6AmthmNVLRgWax08b4PQUe+h41+JGx1UhV3jtVtnheNNxceQA1Gn8FiQpedaz1PXlGWp38PNKBd2hEKr4rz9grcNJ78voYZYbj9vQseM1awTCVSiV3tKnOS7VhNTqlUikTXS8Wi+5A0S7YX+YfAK/A8+Hhwdrttv3qV79yZ+76+trq9brvVdOCK6enp1Yul61cLvv+vSRJPOWQ1G4zs8FgYPP53O+9v793ZpjK/8wXTC7P02wFivDN5/MMyVipVBxwwTrrvuxqteq/o+iHw2FGfpV8hRTAkAMQcOqTZFFolYI+GEjOSKfKLOMFqMDRrFar7sQPBgM3+MiKHlPEtgbdQgB4YlsF9oOMCGXoIYDQ6eowcp+SBxjMWq2WSbMHKGAXIAUgCNBRbG1h7ZXLZS8Cq6dHkI5HezkaiPoG6GnaBnjO0wnaHtbOBx98YM1m04HS1dWVvw9gRDbL+fm5ffnll3Z5eent0/WYpsszrFV/AJgBv5o2a5ZNm+fnKkdIiehqtWo/+tGP7G/+5m/s008/tUqlYvP53M7Pz514Ojk58WKLClJZO8ix6oE8El5TQ4ncMD+klUIOPX361I8j41QfrmjH4xUJAHUwI3H1bQEQlV3FTTEyzhjkPSc+I+p0JcJ0vmLGXszIU9JInQquaId4DvepDY5/V8ykzpWSGXEe8uyjEkURC8R71Y7H+/QzHb88pz069fp7fGbeM+J46PqMzr7+XeeTMcuT1VWkAtdjtl7v+dnPfmavXr1ynV6r1ez169de60VJtXq9bmZmx8fHuXuOC4WCNZtN+/M//3P77W9/a19//bVdXV155LZQKGRqpHBsJ/Y96niKxpmZEwlg5PX1dS8OfH9/b7Vazf76r//azs7OvFo/a0LxJTKnY6rrg3HX9c5WH/2/BgTzcDbOMlmIRKYfHh7czyA7jHdGwgGSRP0AnEGcU7WdRJ2RCar9a98hGXjW2tqaH5eohKbKodpwyI+8DF76xj+i4uASHX9ki0wBajpAGlCZn8wy+sG4o3s4CQA7RraEOuUQURoomc1mnjnQbDYdi/I3+jkejzP14Obzuc8jJISSMszbfL4o0re/v++Z72whvbq6eqfmxXg8ttPTU7u4uPBtoFzgGmwHdhf5g9hg/sB53/WowPcmAdSIKSBgYrVQBc5CsVi0arVq3//+9+2HP/yh7e/vZ6IIn376qf33f/+3/e53v/MFgiAyGbxDFyOLIDpYuo9ie3vbja2ZeeGG6XRq/X7fXrx44caXvvA8gBcRQU3JVQPKYkDhajoeoJc2AHAB/jwLAOkT8n/MmaaKYtQ1gspFv3lGNA58X9uq32fMFKBF51IZTp3/CFw0dVeNXRwz2qlgIQIFjZiosqFNOmfRyDLmamS1/9EwPvb/CODVCOcZES6NyqmMrmpPBHjq7Cg41u/zWRy7CATyyI0IiOJzx+OxV6YlfYy0PgwwBufVq1eZ8QK0q1xTDCZJEt9fzTtxRpB9+k2UGkcMoi1NUzs5OXEHVg0IckwxO5Q2xqher/v+QDNzh+L29tbPkYdBxjigA4jK3tzcuALudDpuVFmfvV7P99YdHx9nqrInyWLfHWfbsg8zFsMhnR2SjrFHhygpkiTJOwVpAHHFYtG63a47eI1Gw6M+nCOPccVJxBDr2iPiD4iDDDg4OHB5goBtNps2mUx8nDl5Ad3w+vVrd6bznELVUUTiuYe1TuYCY0sWiK4t1eeQPuh02k+fOVpIQRLHAAGeWNOQJWbZVHHVk4yJ2hXaz7xBBui2Ns0AIdui2Wz6MzhzWYsWMX8ABT11gf4DaHkf2Qe0XW17/BdtPvq5VqvZ9773Pfvkk0/s8PDQbfb6+rr1+337n//5H3v+/HlmKwPv08wazWjLc6ToI7KtuozPSIEdDod+0ohiBNVxZCWpM6K2RdsR8YaCdbMsea0EjOpk1du6DYT5U9vGfYylrkEdPx2fVfZdAw15BIuOH32L90W7pIEKdQTimPGMmGmhz9T2qi3lHn2nzmG043nOufZF/xbHL+/veZ+vkk2el4cr9Io2PuIw7tGsVSULHmvbqvfxM69dx8fHVqvVrN1u22w2y0QwKS5qtkxrLpfL3xphpN7I+fm5490kSRxLU7yMIr55xA3rie2EEHzoCoh5trKdnJx4QUDNJuU76+vrXqiw0+lYr9fzon7IJ2PNeKk8sn0NYlb3besReopxsb1k4aG/ceDTNM2k4uOXkFWAk8laU1JW51Oxu9bgIROPMcNuqR4iG0B9l9lseVQ4BNDOzk6mMDNZdUTxmVeI8X6/nwnu4MuA3yAKdLso2wr4SYYhGQmMiQYR6LNZ1g+IQcWdnR3HsVq7h9MZlGChfQ8PDy4nt7e3mboKikd1OwMXxEOtVrO9vT2r1+tebBlSzGyhT6gdpSfjgUXpG0QSGAfdi71mjMrlsrVaLfvRj37kWRzve703CaBRQLMlyOL/AE6dFLPFoiKFQZURws3A6xmXhcKy+AdRJU170UWqCj8qfjVWZsu9xVdXVw5Yo7MGgfBnf/ZnVq/Xvaoows+io+36Xt6DocfxIToGmNY9kYxlBLnsO1GDh0IE8AAcdI+wAhYEm3GkfexfAlzRBi6MUJxHvQ8gGOeB36PSQUmuik4o8ZMHeOLcMr/81PbFdqgjrc4B31Ulzt9V8a4CYPoe/al9zFPe+n/aoiykjk98v7ZN5S4SBThYEZjFS5+nFzJWLpfNzDL7mlFGaZq6Iry5ufFI4M3NTUZ2mB/Wmma5cJ+SiRgMxolnol/IGprNZr5vEUeASEatVrNut+uG6uzszJ/JNgaeW6/XrVar2XA49BQ2M3NjNp1O3ZDgiOO4Ua0YsHRzc+Pj32g0rNVqeWEcyBMyE0qlkkc8dMsQaeIw+PxkfHhvoVDwsVZCESeVFHiiOfP53I/DoxAQcw0o0v19pLXzXSV/ptOpt/Pi4sJBz8PDgzUaDWs0GlYqlazT6XjqHoXwkJ9I8MJgP5bxhCwjG9gNdVIZKwgNyBklAgBdeWStOse6T5ZxUbk2Mwcz7M1EH0c9wFxi5/Q4TC3OqFsByF4hWrK3t2edTsfTXqM+VpCq2R3Yro2NDdvd3fV1w9pRIlXHmfGKkSL6r6mh0fFQ0Kj36RjStjwyOI+ozCMmcDY0QqRbd/Q77GuuVqt2eXnpmTq6JZE1n+f4adoq9lXJBo2URZzCWCLPCj51/DV4wXpQkjnamegYozNV7+qlMpM3d8xtxAQKtnm//s4VHfo8e8TvsW06X9oe/Zv+zHOE43eiHY59yxuXvHfkYZC8931bW+I/7TNzprglz44/1g5dJ3FN670cAdfpdGw2m9nh4aHjdbNlwTMy0/K2gOpFAT5IcNYCqfxpmlqn03GdB7YHyyILSmLzj2wzdDQZf+12216+fOnH0XJBFB8cHNhf/dVf2bNnz+y3v/2t/e///q+NRiPPVORIu6urqwwZgAyvr69brVaznZ0dfy9yxHGGyBN6g7XN3xlnM3PsgH9QLpfd2WRe8E8gv8FiSjyjN7Qwojq5tB//A7+GrDLVE+iAmJavxzaC13BAeV+aph7AZU6xU+An2ovzDknNOPK+JEk8kk3bGF/mRqPj/CP1nsxJ3WpNev9stqgThF7Wkx2ogaC4lDlcW1uzSqXixAH17XRcdd1pQV6zRTCt1+vZYDBw8oNxbDab1mq1rFar2e7urr18+dK3DhAYMlvYFDJLNUhMlkypVLL9/X375JNP/v+eDgBQMMvuKcOg0+BoFCaTiX3zzTf2+vVrW19fd/ZpMBjY8+fP7fT01FM+eIY6vBhSQDR/R7Cik4XS0DQPM8sALcCCChKAhj5wlAPpwLAxFO2KwEFThJgkSAbNflAAoOOKQUUQAawAUb7PIleFyTNUkbLIouFWgK2sM+Oq3+X5jDFGSduvYCMv3VOv6AzymRJLMXLAHHPRFv0O/1cjjWLW/8eoCFcEm/pcbTvtUyWkoEbbqM/LI6jiBchT4iE69xEw5LVTQY4Cw0jWKNjLA/jNZtNKpZKn02oUU6sDE1lNksRTpIm0EaXlSL+1tcUxb0RscZiUwTVbrlXkmffh4PBdPdaFlEXIs5cvX2bGCHkhhX1nZ8dGo5FHTkldKxaLXi250+lYpVKx8/NzH38MrkaxOeJoNpt5GnKz2bRms2lmy4q1Ozs7bjDRg8zX1dWV9ft9Txnb29uz6+tr63a7fpoAqZC9Xi9TO+Hm5saPjVN5Q5+maeo1UMiK2Nra8ntxYEmzhFm+uLiw6+trB4E4dLDnAJY0Td3p2tjYsNFoZIeHh3Z4eOjjAdHAthD0sGZdoPfQM6ojAEK0V3Vb1MHIOyQBYwE4IM0Rghj5Q9dh4LFDtE0L8hGxZ61Ge6TV4yH3WEOA4OFwaJVKxczM11ms60DUIUkWJx9obQtsBf0iGsO6Yr8l4zefL2u5EL3he+qYs24UhOtFn8fjsX3zzTf2zTffOKA1W5B0z58/tzdv3mSiUsg6QFKjZwqc8nQ0Okoj6aov0BUKLukP86d9hYTZ2tryyAkOAfKhe4t5JrggBjz4p/YyErjRJip5p/iK+VSyOo+sVwCqJAp9Vyc9zp3qfbVh6jzGQAXP12dqxsAqMlrvVbumz4okRrRH8fdvs6fq5GjfdE6+q0Ovf49O+WPPiU6/2vKIMR77bh6hkPd/xn2Vbddrc3PT9vf3PXONtT4YDLwiPnv0e71ehjyM16tXr+zk5MQmk4mvK5wo9m5zxNx4PM7ISiS+wP8ca6vbVjk2TosSs/Y0Qoq+IJuq0Wi4XXp4eLDBYOBHA7ONUcm2YnGRyVyr1TJOvJm5k4ztzyO+SKPn/2SVmZkTBErCaT0j5kL7xrvMzKPFWl9MfSBkRtPowUuqb/GVdGsYWB7CgwK7yKcGapTo5FhknsFc61YECAD6CTbBzvIO+qr+ECSPklvocrZSgsG4h8xv5Jgx0rpJ+jNJEn8P5IeuIcgs1YVKChcKi9MOCHoMh0PfvkfmGfeB4cgEubu7c6IAjKP1kDRzkL5T8Pj4+NiOj4/f0ffvc703CcBLFZhpCmFeOnmaptbv9+0//uM/LE1T++yzz/zc6hcvXtjPf/5zOzk58cgNQsl70jR1xaHpxRpFUiMDoFPgwoSRDqITyLO4Hyfs5ubGXr9+7Xtc0zT1RR+LPinQ5llqQEkjAkAqMKS/Wm2ScWUB6+faXkClOnPMU4zsMk/ab9ocnd8IpJlXdX55poJt+qapR2bZaF4kEPRZmmFB25iraMB4RjTyLFYF4/p3/gH4o+FRYKGf63jFZ+V9voqooG0aFckzzhE00Da+z7MVBMR3cyk4i/2LcqIKRJ11FDdKFHCA84cBw1igvHne9va2K3HkGsZ3Z2fHzMwdVE3NVaKAn8ihRgqoIkzaVsyKQT9B/gFIYG3jubsUeGm1Wt5v5BcGF33Ee6h1wEkAbJOgQGCz2bSdnR0/45boOHM7GAys3++78WVNkY6HQcVZVHKE56lMoycgLb/66it/poI5LdLUbrczpFy9Xrdnz57ZdDq1i4uLzHar6XTqz+EIPZzQ4XBow+HQSSRI3vl8nnFuo4wyt3wGQcQYYWg1jRBwxNYAlW2NnOKgsuWCfkBeqPOErJmZg5dms2ntdtvlTtOhlRBE1jQioBlbGHPWMxklqu81QlytVjN26ebmxsbjsdtM1iHjCblERgr7GB8eHjyzgEwFiDPtt9oDtWWRhJzNZtbv9+3zzz83s4UDcHBwYGma2osXL+wXv/iFnZycZKIyupYhWpRIZ94VQ/A+vq/2UaNdeZkX6oTyfyqZa4FEyHmIEm2vOlCazYD8IT/RAdNxVedcyQ/tAzKEHorZa3lORiT3lQDhivaP7yK7EQsxvvFS0BttO3Om9jQSBdHhZzx0fPMc/bz/R3vLlWf/8q68v+d99zFCQNv82PviHK4iABSvsK713lXtfqw/PPfbHAPsNW1ot9vWbrd9axzrhBT1o6Ojd55xcXFhv/71r72uipl5wTgyz7rdbqYAYZIknmoegxRpmnokOmZWEZUFl+jaUpKwUChYu922f/u3f7OXL1+6rq3Vak506xirI8raxhG8u7tzW8e+f30nDiJONtvTyF4gDR5bgMPcarW8CC/jMJ1O3xkXIvngpfF47ISw6sS8k5ZYs0SYyTqgOC2EC+uYMY6OM7JC5mOz2XR7yByUSiWfHy7miT5g9xh3sjw0jX17e9uq1aoVi0V/lp4ohB3FR8TemS2zsSB0cJRpIxgAm03xZ7IkzJZp/Ur+7+zsOLmB/eVd2G3G6+bmxnq9nl1eXnqtKTIjWJPD4dAxE3WiNDMGWQB/4qNiz7FHpVLJ8dYfcn3nb2EE1Rgoi8+iVAP59u1b+/nPf25ffPGFtVotMzO7vLy009NTL+5Ah/R5sB6kbjKJyhApGDOzzH77CAyigcxTnghop9Oxq6srZ/u4H1CFEGlf1ZDD6ihZwmRGkEAqC+On7eZz2s1eHoBwdJpQwHEeiHYxPprSE7dE6MVCi2QDmQpE4qIRzRNIVfrads1OUCJEHVUFThqFVWDAnCiIVINKG5QMMDN/Xky3pE0qK3nOeHxfHAtdK9r2vDbps/Vdemlbtb1KHOgz9Xu0WeUEZajvUYZ9Pp/7vCF3+gyMACnxOK3FYtGdIZwQFDNrmb1hWu9C247i4z1KntE3nq9gQMkgJaLQNZubm54KDEhZW1tzJwoi4KOPPrJ+v+/3EiFE+WLIYXL1aJzLy0srlUr25s1ymBSjAAAgAElEQVQbOz4+tqdPn/r+xIeHRYHD58+f29nZmUdb6NP9/b01m0377LPPbGdnx96+fWsnJyc2GAxsfX3dq81CBCgpqYaDwoAYYgx+mqbuEEJuaBSkUCj4tqher2f9ft/BCfqKPutYsJY5IrFUWhzRpxklyBqkH5HxuPbRL8wp73x4WB7HpGOm0U/sBDUsRqORk7ow95AtjAd6me+wZvg+MolOxhDXajW3VbptQx0f1hrOnaa50hdsHfNRLBYzVe7v7++t0+n4lhSt8KyRYvSDHmfF1jSiTGbmNRuis6VjGSP0jBd28uzszK6uruzLL790UqHb7dqbN28c2Cqxq1kb9DeSMNjIaJOYE91vHK/oYEVH6/7+3vr9vtf1UGKRImlKukMyKgmv9lmLFEadzxzzd7NlJFEJRO4HazA2SozxHOSI7+RF2nX+oj7VOdZ082gTdDz1e3lOPuuTd+J8RPIi2tD4L85XbEN0qOMc5znxj+G9VXgwr515DnuUv2/DltqX+Nxop5UEyntGfJ/2RwmKx4gMvQqFxV7rN2/e+HYjzpKHEO12u158+/j42B3S8/Nz+/d//3d79eqVyzFEGanuo9HIiQUqtxNFpQ4BUVbWitpiyFjV+fGf2TIzGXmcTCb21VdfWbvdtnq97sVusUuNRsML4a6trfkecsUK2PUkWWyhIKqreot+8HcIaXQVUWDmZWdnxw4PD21vb8/G47G1222P7rNmqDcQT2rgwulkqwYBUw2qKT5lHNmSyKkz+DnYWAgAsrs0K9vMfEtZo9Gwm5sbu7i48ACOWTbrGgdfca/ZMniK3GqBQ8abNY4vRbv0fmTMbEFqQPCQ6Y1so/t13TGH2NBKpWJ7e3u2ublpV1dX7r+BfZUoS9PUM8TVjoGZaRcZJmwBBIeB00ajkV1dXdnZ2ZmTBRADmpGofiT6gW2qcav9d72+UyaAgkQcfCY+RhWZXB3s4XBoL168cAWhe0PNlsccKCuqexwxVrx/c3PTFx1CyIJkD0W5XLZisZipehqVPKkymmEQnUqMGyzY1taWKyx1tHUB0H6cKE0N4orGTFNsIslC+gwCp8DVLFtpmb7wL6ZcqoMZC2rlRSF0W4PKQwQmtENZxbyoO0AwOr8akVJArwYu7iNEEWs7aHOMhNOOPAOvY6A/o1zr9/U+vbTNsQ38TaP5keigPdoffedjUYW83xUYxHliTHRcMbYaFWW+IOHm8+XRJbPZzAE0TDMRURwGnss4w9BGuVRQClBI08XedPQGSpWo6Pb2tj158sQeHh6s0+lknDLNLCqVFvunOFdWlTMVzdFBT58+tW636zoFvdVoNPx4lo8//tg++eQT++qrr+zrr7/29gFqisWi75P86quvbHd3189/H4/H9urVKzdiOs+z2cw6nY79+te/tlarZcXiosYA64bj9zTtnHnAQGKocCi0SjHn7KKXYJLRFUmyYLy//PJLGw6HzsYDUij2Y2ZeaI45397e9u0krVbL1tbW7Pnz5/b27VtPZcMQQoio3kRGydrA2CN/EDHIq0b21YlFfs2WxQExvoz51taWO9XIHfqdehKMOQ4f78BZRWeXy2WbzWZ+5A+yHHU0hp52QG4wlvP53O0Lcvrw8GDdbtcJAbZSMF60gf4xLmS8bG1tZYgZAAQ6IupvdXQ1IyDeiw7o9XqZDDbFBWrX9Hv0Q4kn1iRtBqQx7/QrSZZbNdAtcSsZdkcjfEocqv5GVwHmGQPFJ7wjZi+w9lYBMWwAMobu1v/HYp9qrxiv6ORzqcONvOnf1bmPdigS+PH5cb41G0J1tMo24xQdNO7JI514V/yMz9U2RUIgPusx5/yx9+Tdo7/nOf7xioRB3vMeuxRvqSzr3xUDxLHkX8Rg3/b+TqdjL1++9O1d6F2ik9i10WhkvV7PvvjiC1/DnARgttyOh82gPxyHxl53nEyKn9ZqNTs4OLDr62t78+aN2xGc10JhcRIM6eZmSz2FrEHiqV1DD+GImS30x9XVlZMCT5488e2LkK9KaE0mk0xxU6LUYAezrP+DrdFq9dQfQO8UCgV3PqnvwvOw3ziX9FmJadYEtoStB5o5wZxxD7bp4eHByUbuwcHVaHuSJB4dr9Vq7hDX63XfooFs0IdIkJIJQpvRxegyJTE0Y+H+/t738EO6IPPY6a2tLSe2yRpBF6H7b25u3B4iEwRkGRv8NPrC2GNPdS3xfN6pupV51qxX1fHMnermm5sba7fb9vr1a+v1epntAtgC5gIZR9aoT9BsNu3Zs2d/MBHw3iSAGtaYfgfrrWAkOnjR8ddn8jxVcFFp6cAxwdwX0z8UVMDm6Z4eNVZm5spDHdvojCrTw55aAAipumZLtkgXBEJPNXB9PkJOfyOTr0IDkEBYIxAwyxbh4XmwqPxfIzyALn1fNLj8pJ3sUVUlGx1WIoQIr6bBzOfzDLjW+eJdaui1T8iIsnJaIIv7td0AIwVWfB4dcS7GQp12dc7zAI46/fqZ3vPYc1WO432rSAdti15KGmhfdYwiIaCXsuDMH2QXfURh0iaKbaIj+D4GrFAoOBOtWT+s07w+4lDO54tzWMkAYD8/TrueFICxxZhPp1M/871SqTiT/ebNGyuVSn7EYHSiOfJwf3/fsxsmk4mdnp7afD633d1dq9VqzlQT7b6/v/fjAMku4LuTycTHLW6LKZVK7oBwJGG73bY3b95kDA7fUWOLoWPMNROHudK5MFuk+9Mu6hhsbW1Zr9fzKApjru/W/W+kyBHdYG9pkiyiJkdHR250GSP6X61WbWdnx3q9XubIJEjZNE0dCG1vb9vR0ZGfagAAQh7QJ+gZ9l8i/4BKBUYQMcgipIFWb9dCgUpa44iSWZAkiR/BqLoJfVMoFFz3Q/LwD9uIHST7ZTQaeQQJYg0iQnVqnnOiQJm+bm9vW7lcdoeTZ0a9oc6mZrjpe6OTGCPbCnpUl0VdqzqO9+j4qd1SshA5Zt5pV4xuAw710qhK7DPkFnOsY6/6OYJd5oWxzmuzjoXqZ/Qfz1RCSh18xi3iF57NT3RqXLe8g/v0n2Yc6HwzXjpOfKYyAE5S+xoxor5XHY0oFxp4iY5wtJnxesxWRgc9j4CIY6prK4+8eB+CIf4e2x9xR57zv6qv8Xd1WN6XeJjP5/b69WsbDAbvnG9OJBPdpI4i6e3oSYhJHK9ILPEuzeZjvSlmQHa0WCoZsJwvj0OJfcAZhFAwW2ZqETBUva7R30ajYWtra55iPxwO3eEFyytur1ar1mg0HHeCcyF1dd0pmYMfwtqcTCZ2d3fn2dC0T8lw1VFalJA+k5lhtjiCuFKpuN64u7tze6s+DN8plUp2dHTk9QmUiEB27u/v/eQciACeA04iONPtdu36+tqKxaJnUzB2w+HQiVuwFGPSarWsXC7bYDCw4XDoNheMpEQPa1udf+QCW4DuwEaga5SAQJbVF0DOeZaS/szDxsaGVSoVz0yAZCfjlTFJksSxn26pURmAPGm3277FVtezrl/dngCu3NzctKOjIz/p4w+9vhMJwOIEBKB4MNpmS9ChUfT4d7PlHrb4L3aeTqM4YK/iEWQ8m0UZ9/exwHSbAkIFc6jAUiOWGq2k70TPFRiYmUcEtGCHpgQixIwR9yrwUQFV1lcNPOMcFSz/R6muMmIoNAUftJV7o1OrDKmCjjxDH42x3qtOD58pgRDTW3XM1BHnXu6LfVSiSA0SfYpGMq/deSCFKwJwfYcaYr1HwRw/8xj9POc+/q5zoO1nfLR9q/7pO/X/GDicaoAu8n99fe33694znSedr8hKcz8GUw25GiEIJT37FgPN3/g/qVbKEuP84azVajX78MMP3eA8PDzY3t6eZxQVi8sj9S4vL/3YwI2NDZtMJn5M0unpqe3s7PjZ7aenp5kURwDIzc2N75NMksQLv+Gk6v4/XQv0AUeGSOXW1paTjow1EQBNq4coNFsy4FokDoPH2BNBgIjQNUk0QKvsU+gRfbS1tWWtVssJUvQ/AGVtbc329vasUCj4MXeQqBh+nANIAvQfABB2nSi96ji1IRod1jHCbiBnzBFyTt/UtiDz+nx1hCM5bbbcH6g6m0vvJ2tG0wSR+dvb28wRdmp/oy7TfmL/otM4Ho9dhu/u7mx/fz/XLqieU4eMS50Bddr1OeqIKwiOjg/OuEa40BPav6jnsJXIB7ZYCW7kgMrktENtd1xzOufqyEKwKSBX2w5xxZhrNh5zrrhI266OuM6Brr88coXPoxOqchCdc51XLuQ/7zm0XUmVKDOKN/hM14G2NcqDOura3vh5bJP+Pc/ZX+X8PvZ5tO9R7vIwQPx/tO2x3fH/+nyd30gCPObMxzFRQl3bHtsQL4q1UqgUPdHv963dbpvZcj84F7JP1BsnmAw1JbRw6vQcc/QxNQJi/RCyxiDGsVG1Wi1jPzmXfmNjw1qtljUaDW8DTmIsLqwkKNsROI6ONqMnHh4efGsT9We0lovimtvbW0/Rnk6nXisn+hjgbuZMI9OaicuFTtTAAX4OBDvHIpOliJ7RowAbjYbrJiWK8ZeUKGEetE4Jc6bZi9Vq1ZIkcdIB34c6TVpcGDIcP5K5wRaqDUdu0cdgOfAn/QB/YhfUjscabmbmY03f1R9kS0aj0XBZqNfrHhThCENIes00NTPfQgGuwllXPKZrhEALfU/T1NcOY64Zq2TJUU+r1WpZq9Wyer3+rWt81fWdTgdQ4cgzNGqAERgVNk0rNMuec6lGL0+xqcOqyhOjCtCLgFAjZDs7O86Q8V2yAHRvrLJD9FOFSJlPFi4RUMCATiQXAmNmvgdYgYwe3aFOqgJJBCMSAIyTtjFGpBF4mDZdAHxHmdo0TTPHssRxULJC26BOcGSlozPPPbxDoznadr2XuVN55MpzcuNY0Qb+Fh11nXf6p/MRiQEFQvpMfb8ykvp+/q9ZJ9q2eEVArESPEjQRDKhc5QEF/WlmmeronMPLuPN8+kVK1/+j7U1747qS+//qheLSC5urKFmy7LE9M8FggizAPAryGvKSA+RJAgSYSWzYGXvG9lgSKa7N5r52/x4Qn9OfW75NW/7jfwFBJPv2vWepU/Wtb9Wpg+PndFQcWYyHga8JAWQHBwr5wvHnHTjMKHLkE+WNUVldXY2bm5s4OjqKiCiM9fz8fHzzzTdxc3MTy8vL0Wg0KhHRvMcd40976NPq6mrc3d3Fn/70pxJFoG1cOHjtdrsoeYgGO095neOImzyMiNJfWHaMYcS0Yi+1DAA57De3jKCXeVev1ytFDSl+ivElHf3Jkyexs7MTw+GwyA361k7Q9fV1OV+Y9Dbuhymfm5srBe7snAEW0XHICONHtgCy67EEwKDPxuNxRSZ5JmMAEcB9zebDCQ250jN9AxSa0Wfd8jl2D0dzMpkW6GM9WyeOx+NCkjgbjnVGG/muyVaPEWOG3DI2BkUAB+xVozGtglxHAlgXIPfYd+t9MuzQK8iZbbpJAd6HfvDP3Mc8ZVDjjDHAEusL0o/3oUdwHABRfqYdf5MCtJ2IHDJm8iVfJqMN+ADYeQ+sv+fnGbv4st3lsr2x/rc99jttZ9wfBwHqHPiIH9u8uufX2UPmw/2qIzd4tp0jPzuTUT8ls3VzlO+xjc52su6Z2en/OVeWN56TCYA8ro85/nXt9c95rH7qGo1GcX5+HgcHB3F8fFxs6f7+fuzt7ZVjbDn6DWINLMn553wv721nPNGzkHI4ixQczMSYsTuZBxHTgoOk2DsiOxgMotvtRr/frxDJ6DvbG3QjziLEB1kDkAIOfPI9CPXxeFy2C2DTb25uYmVlpfIOxsGp4vxOoTnjMhxv9A12nO9ETDP8vN3J/Ws2m4UwwXlkvvA9ut1uIVywhdhsItrZH2HMWJfoDwiX09PTkhVwcXFRyegAy4BJbm9v4/Xr18XJp2/4ZY5820+Yn5+vFIckK4U22UaaVCbjmzFjuwJHy7oWgWuboDvBTPYtnZWNH0h7yLSkb2R+IC8mzuzbGtezNYcg0NLSUiwtLcX6+npsbm6WotO/9PrZJAALEUGLqGYH2AFB4BFU7nV6DsJk8MT3Zjlyjhw4Wug2OBrGZ/f395Xj+WD4YOYQmrzNwOAVEAjIdOSm0ZgeVZGJAZMgEVEUgCubksIbMd1rggBl4iOTJrzDzjV9MqtsZo/x5NkGb47M0B76hSAzp3ZWeZ4NPUrRxA+KDWVAv7IDncFBNpoZpFjmDBrs/GRHPxvg7OT7XwY4XP6OZdj9MinguXL7cr/rLn/uMa1rcwauXF6PnoucOUNbSZdnzSCbpI/ZwcCp2NjYKEY1YprmnvvIPHoeSHtHcbO2MLyAXFL82+12Yb5J4yWF7cmTJ6W4Dmy5jTfAhAJq7EWDceXniCiV8F+/fl3249/f38fKykpERIlMsybn5+djOBxWMhsy2UV6ttMTmQMcfWfFUM13dXU15ubmYjgcVtIPcdBx/gEkgArSJ1kLGI+FhYXyc6/XK6llZBxYp8F+k8rmM3SJhHDKQKPxsCVgMpkUI4cuZt+kSaMcCUFWkSOPDzo7IkpUyCmU1oMYbQATsoT8O9WTZ0wm02MP3RavZzIR7PwzZxRdBHjZSbMeQMdngITMZ2efcTARA0iEMDApgcNOpgNnI3/77bcVXcL92emxzrQOybrMOggbbAdwlpPDPQabjsI7ws5l+eB/UovrCJw60pOfbRcZa9rOujOZYh1kPWsSBznnslOcC3Bm214n/wbgHr+c2u/xz/e7rbQdvZHTbTMx4Hd4DnKmIvI9K4vPeMT/sh3M8z3Lhhkb1BEUuc1ZjuuIhLrv+XN/J7cjkxR+xiwCIL+77vt168/vzu1xm02azrpIg2dLHU41OpKK7rlSPxXu7+/vS0FcnPq8FcRr+vLyshLZBBtcX18X8jRimpUKoeAMn16vVyl4i43CloNVcDTB9rZB2BwXYWs2m6WO2NXVVdlDv7S0VPQ5tsuF5dCzYGocbIIRZHU54o999RHpBANz9hi21xnGjB2kP3NEf3u9XtmixxbIhYWFODk5KXacKPXR0VHpg0k75gICwv4ffgunIXk7Af2j8DN2Fh+Q9lIrwjKKg44s+LhJbLX37d/f3xeZNUZwnTfXDABvgUsiphnm+D9s7QPvdjqdWFtbK3PCtgDGBvl2ZgZOP1sHTHqZSMd3NOnFGEK8UVsJXNfpdGJjYyOWl5fLvb/0+tkkgJkfjCoKIaKaCoVBtjHCaDDYTrt0+hyCZwcSA8UiJNJig4EDQCpp6WC7WmGa6BDGF8NOVInv8i47awgyC5kIBHt+qXpq4Ej6E0ym9/87cpNZKy8KnIgMTiJ+vKeai/tMsgAkETLmCjDrzxhfPufvKP2Ih8ikWcnsvLsdjnw64uMoEMqxzjn38+gTAJG5BUSY/TVIfQzU2GDRfrfD761zxOu2Shhc83t+Lhf9M1D1ZYPu7xiIuf15vP2dDCqRLYOIVqtVjCisLIrr5uamVKnd29uLfr9f1h2fI2s+Dxj5dcYO7wcoAKbt/PM/YKDdfjgXlj3e7EFEHhiTlZWVWFhYiO3t7aKvUPoUPPrss89KxHptbS0mk0kp7Ia+AiRQOAiZur29LRVdm82H/fFkErA2zs/PKxFIMitY7ycnJ0WJNxqNUnSn2WyW77LnjjNkIyJevHgRy8vL5aiz0WhUkTMbRGSNjA7GiDOiNzY2CkBgTyVp+qRUApJs8DGmEVPAxrqG5Dg9PS3R8Nvbh2MFkVuTpVkWTH4gF6Tm0xfI2OyAMweAAJxw5uD29rZsB2B90AbaQxvtyNI+dCJjy3fRm41Go9iBTJASGaadWQdYF9NW5tRrh7awnrkX+QJUs4ZdOTo7BrzDjv1jJKOJbbeFucG+5wy/fPnvtjFEzWmnnXv0SNb5yKAzySBW/Dnv8X5P2ggO4F6DMYN121HmkqgUn9nZZoydOpqJJHCRbbXH23o9kyuZAHAmlslvcJMxh0ky2zrWa7Y5s0gijyOy4HvqbKmvOmLAcpflMLfnp5x4y9Msp3jW93iv32NbmXFF3TPz+9zuuntmtbHO5vOcur9lLFl3LS8vx/Pnz+Pq6qocU4sjtrGxUSLJ6Cxk7/LyMkajURwfH8fBwUGcnJyUbQFgT+QCJ8eECSR4v98vOsrEKQ48z/K+/kbjgWDm2FR0DhFY7AsYvd/vF4zPOifyi63i3+3tw5G4VOyPeHAoIeGvr69jb2+v2FyKiTJmrVarRNt7vV7JICOzazKZlDRwUsFpG449Ti/jxvF+9i3a7Xasrq5W9sTzdxzFp0+fxsbGRrFNCwsLsba2Vuw5em9hYSF2d3cLQcM6Rc5pH/3F9zs/P4/j4+PikENs4OtAsqBXmX8KtzPvzCtEE2sKe+aabrYpyLgJWMgrMkxwlJ2tiL7mmeBDntHtdiu4kyxyO/hPnjwpxBkFmJFh6y98IMaBsbH/x1oAF2IbBoNBPH/+PNbX14vtB3MsLy+XGlePre+fun42CeAIcEQ17dsGzSRBxDRSYaPDgrDhYTL8vOzUOtXFQAkACjDldzu4PB/nAeekzvkCQJKGagcJJiciiqJxChTA0v8jbD7BAADhDAQEAGXhSWcMPQcILG1BoPg77XYBE7N4KFlvqTCJQ/sBA1woq4WFhaJ0DXaz0+yx4+J9AGHuNZlEH/25v2vQWjc2/jvjnh3wDCj4e36X5T4Dd7chyyxzbEec95g4yP3JSs7P5m8GmnXZFnnd1UX8fK8zViaTSaU6OkqTtXFyclLYeBd5ub29jYODgwpQ5nO/v649/OxoGaQd651nOo2QNYMBheHmPOPt7e1COj558nAm72AwKESADamPczFzi/FfXV0tKfKMP9/Z39+P+/v74uQzvugk1jSfZ/Kt0+nE8+fPY2NjIyaTSTH8nDmLnHDcEs6ej4ljXfNc1r73qV1dXZX2DgaDAlJ8VBCnqZAZQNRnYWEhDg4OYjgcxuvXr0t9gLu7u3j79m2F7PAev8vLy+JIZeCbZRwdlCMSdmovLi4qKamscesg5oV1QSSBcXeEyOsa8sc1JhijTCjiLPE3Ci6xnoiW2CYS/XfEHJ1qQMOaYS1kO4H83d1Viz6SfujMAdtN9D7tcSSe/ls3oPds87Pd5B7Pmecu61vrc/89P89Zg35enWMDGMIm2RHmnfSPebNj4ncQwMBhsHMTMbXrZPCxBQDdDRnEnPFcR5tYp8xjBreWZfqBLMwiAerGzVcmhx1QAAjTFjAN7clzlu0if3NGQ57/Wc655xW5t5xlOfGVbTr3Zf3iex9zjD3mde+uw4z5/jpcwTtzW+quuuwVnlvX9vx7tvE5S4AL3Tk3NxedTqdsT6LgK/IdERXZoE2Qizg4rAMwo8lZr8lWq1X2ztNfHD7u9f589CN9i4hYXV2NRqMRu7u75Yhf95V1TFYdx7FxQWqMx+NCdFMM+OjoqBDY9N2nIJCFB5mOY0z9moiHwCl2tNvtFod7PB6XGjvocpzE7C9h751pYWzVarWi3+8XW+9AU7PZLCcZNJsPxYYp9NtqPdRL4ai/X//61/GXv/wlvvvuuzLnBGhp4/n5eQkkkE0ArhoOhzEajcqcoStzVtNk8hB9pz9k2w0Gg1I3Ad07mUwKAYxuhXhw9qGD0uCArCOdpYC88T3qPHA/RBSYbXl5uULMHB0dVTK5WBee40ajUSlIiy0hoGR7/OTJk1hfXy/z2GhMs17JziQLwP+Qs2azGbu7uzEcDuPVq1eVYyR/zvWzSQA6YmXNojY48r0R9cylgVQGAvyOIFiZOT0TI4MRw2k1GHRbzBRimAHnJhR4Ps+GtfE+ITt1MGooPzvgEdVz1TPwpb0RUfa/OI0kR84RXI+DxxkFwgKg7xlo5/n0ZQcNZitfdoAgAlg8tBfF4fnOc54d/myssiNuwJTlinsM5lGmjEcGSn5PHelQZ1izkq0DH7TNY+H+MC7Z6c/zabLDc2YgUAfe83cctawD0vyciYrxeFoLwgQRwBlH1ErPjgX94DtON7PzZJLCpJkdL0CBCaqIKUMNM00a193dw1GBzLNTwlGiGOl+vx+Hh4clDf7v//7vY3V1Na6urmJnZ6fscWOvHCl1TnvFyFhmMSZcPkaPlH7GFjZ9f38/7u7uYnl5OVZWVuLDDz8sf6PSL+ALeUG+PebWA6zLo6Oj4vgyHhAhzWaz7LknSkIGCACp2WzG5uZmKQCE/mRevQZ4Bs8jY4O5MMBkDWSyFQNpEs99bTQahbjxGkIXuc6LiS7rKp7Nekbv8z3GmTFyNMQOPHPB5/TDJwIwNqxx5Ie+mwjkGX6+CRKiPtRXAIxge1gnTuuFBAIEchl01uk+6y+TlrSjTjdZj85y0PiO5djPQXZMQFinOGCAfgCQ8RzbIL6PPgKwQnzRT4NXnut6NbZnJnLdH9oYESUr0tkh2cG1DvSzuAyircN9b3aAsr3yhS60zkcuaDuZkIwF3/PzPVee5+yEGu/UyUbuq7Mf3L88Ln6Hrzr5yp//FBFQ97ttbl3763DDTz2bv7lNGdvMIgvymMwiGGZ9//Xr13FychIHBwclqm8sa71shxJ97kCbHb8sn7ZH6Fn2RaPbcYpZL7TbW/Z4DqfEUKCWTEV0ne0N574fHBzE9fV1CQQyxpCGkNRHR0fFLtInAhk+YtX9wimjAG6n04n9/f2C5/keGMbHKUNGom+azWaxu+fn54VkISjBGBL0IBiCXTPxiE4gawNSYm5uLlZWVqLb7ZYtyK9evaqcchQxzd6E7MGemaBhu4MDxdgZ5o0+one5Fz3D1gVsrLdN4PBj68AdbFPB3rG1wHUIGIPRaBRLS0uVrAJwG3iIMSSrHFkky+L09DSOj48rtQjOzs6i3+8XO20yl+dxROLFxUWZN3Tr3NxDocsPPvigkADGqm4bRBnr4OzsrOAoMjbb7XZ89tlnj+qffP1sEsAOFZNsw5WLMkVMHXM7KSxuFsVIvIoAACAASURBVGB2ROscMoMfjIgZRdpkYGYyAMByf/+wd4ln4PzDIAKgAO7e97u6ulqUT7P5kKoL+MzKzYbZjBMpRfSPbACfiUyfnHZscO9tEJPJtFqoU1CyM+CfUdqOFLnohsEXfXJKZXZkUbr8zWDFICyDE/7VESI2DMx/jngjNzk19zHn3G2gjQYr3JcBTx2JZeBcZ9TdR75vsMR77NDkq86wW578Hf7ue72W6Dtjybs9LgaEHG3C83COrJRMTiFDOF8udAJB4IwS3m1jz1jTXtK4YMgjoih6HGrrmsFgUJRjRMQ333xTHCP2hGG0MEZra2sxGAxib28v3r59G7/97W/j97//fayvr8fh4WHc3NyUlP/J5CE6j16hzd5mgIPLmsaJBVjh1LCmzP5zHNPZ2Vmcnp7Gp59+Gr1er7DwEdMIJNXyG41GGQvegXzc3NwU0hIwguGlnTc3N7G7u1uONNzf3y8poRjx4XAYV1dXcXh4WACjt0tQnwFdjF6CHGS8XCQS3csaAcgBdJwpxb22IxATyC/OHPPCXj4ABf+zRrBfjmx53XjtM7betoDzBzik73b+GBs+Y168fmmvCd46/cSYAmR4DxkApPrn6Ede89hI22Iu5s56zevdttp63pkUs5yNusv4wVkO/N3Pyynr1l+MIwS/Iy05wk6fGRtSfCOiFB6j2jj9sz2tGwPWO2uK9jr7x+9nvByF57PsVDLPfIZO9Rj63rp5ys606/EYS5hAiqie4MRlHJBtvO+jPbbhxhh814RZHfGU7Vx+R773MRn8OY66x9LPzfdk3FBHOswiJmbdxxghI7Pmue55dW1wP+rG5P7+Pv7nf/4n9vf3S2bskydPYnV1Nebn50u0luw2nofDy5Ysy73fD/ZxH1qtVsHB2ANvz0Ffkl3m49W8zevu7i729vZiOByW/fZ8hpOOHWg0GsV+fvjhh/Hhhx/GeDyOnZ2dIvcUP8Rese5YLzjO9GFtba04rRFRnFiODUbfLy0tlZRt7DX/lpaWYnl5uWB88NPy8nIF35gsto6ATKCNOKwUv8O+7+3tFQecInTj8TiGw2Gcnp7GwcFBNBqNODo6KhgkYprpzBrHnp2fn5fgp0lG3us548IG036veds+n1IUEYWQ4B5wgjG0nX76TZaHs0jBTbQDrDEej6Pf70e/3y/ECpiu0WiUY/zIksHWUPcK4iRvVwEbjMfjUncDfYfMr62txatXr8ppPdgl3mP75jVu/5aAFCdfve/13qcDOEXEgGY8HpcJzMCe708m0+IQjlC5CqMZchQiQmGGBiNLNAmmLTPjtBGDTNTeLJlBudN5bIDtTEMYOIpgg44TTfsjHkABioJ7Ae1EMGk3iiwiKim1jIlT9QFhVlAG3lxeRDbGCJP3M7HYTTJwmdHieU7/Y+4cJXWEx04wckF7cIhtwLIsZQfYYJR5ttzxubMkuHh+Br/ZQLNwvRgzCM7ONz8buNnBzelxGbQZZNRFjQyY3V7mtS4d1HPktVYHFChmgoFnvWIgUaYoWP5hxHA8kXHWn0GsASrt5Lge1g9rEeVoEtHZOOPxOP7hH/4hut1ufPnll/GXv/ylwgZjVH3272AwKICAzyD3KDZI1gDHGCHXvBvD7ggaa5199lTsZw8g87C4uBjPnj0rdQm++uqrGA6HcXx8XMgGDNHx8XHZ04eTAgOMfK+srMRwOCzkjWs0eOsR0XMKK5HlMB6PYzQaFQOFzEEIvXv3rqTzUwAHeaRCMg4R7zVhYkKMOffast7h716H1l/IK+N9c3NTwBd769h/Nx6Po9PplPOfLTOMDTqAcaMdEVHIIyIQ/EwEyHrFn7t91gvWF3Z+6a8dJ/+M/eOc6slkUuTJtu34+LjI62QyPeaT90OQZILYkZOsExj7DOoNUkxoWg9nQGgdhm2HaGAM6Q+2yYSJCQrL0v39feUsbda6iUK20Fjf+tnYTmTcssLnJjDpA+mi+RmWf+wT+t2X5YHxoR+ZHDHZ63mwLNE329KIqOCUPHZ87mfYrvC7bTTfz853dt69lj2HjH12mDN5kcckf39WG/yzbWpuR25zHjfbWX+/7qr7e35OHifPr+e7rq3577mt+b11f4+I+Oqrr+Krr76qFIUjHX9raytevHhRKuS7oj2RXdLLG41G9Pv9IhdZPtAdnU6n1LzBzrdarXKaDHpreXk55ubmitOFfrDuj3g41YDIcKvVKuQF9m91dbUUKYYAd2YZ+gqd0el0ImKKyyeTSYWUhtTv9Xrx4sWLePbsWVkbziZgbjitAPuJI8wzm81meSfYiKi4jzjGztIOxqTf78dgMCg61HoF+318fBzHx8cFfxLIJJh5eHgYnU6ncjQgjnOz2SxZfyYHIRSw0QR+nFFlDEuQgHoLpLZzT7PZLIWJHaSwPUBmqOR/dHRUORHAbUO2zs7OSmFCUvHPz89LWygczbw1m81yqgP9gmCCHEGfYxsajQeCCf0OpqCApGvQYSs6nU6pP7G1tRVbW1ulPRFRtvM1m83S1mazWZ6DnW80pttMxuNx5SjM97l+NglA5+3QWfkgsCwWjK3TVGH2EEgLjNMheaZTRVgkLB6ehdDjxCNgvkw+0A4iHBFTR3thYaHsHzo9PS2Ox9nZWRHe29vbUsyDaB/j4OO6DFhxJNhTC1OG0OBsmeBotVqVVF36bBY/YhqlRonzPpxe//MCszGzYkXRAGAymZCjLAYSLurCd7ncBi5/l77wjrqogdtpRrEukoDDwX3ZMa8zxHXAIIN3O/+ZGKJ9NoI4/CYT+I5ZXf/dJEnd5xk01LXdjj7r0ITFY2CIdtN2ZNpg/vLysqxJQDBGjv3z7Jm1A2gnJwM3iD6iDufn5yV9jYvvE53gXvaZra2tFSKL8X7y5EmpQOs9gb/61a/i5cuX8b//+7/F0OGEr6+vFwcZMoPodqvVipWVlZI+GDEtYNNut2NjYyMGg0Gp3vrnP/85fvjhhwpgJUVwMBjEyspK6adlZ2dnJ46Pj8sxPjin7Mcj0r+4uFiJYGSnDwCO/F5eXhb9TH+ZbyKaPItic2RkMN8mf1ivtBvABVCgHRBKBgh2FHFmx+NxSTXFYYUoxhGH2We80K+8g3RRAyjv//b6x3a5LV43pDbSF3Qov2dwjvG+ubkpURO/i7nIY+E0dGQ325H19fXo9XrR6/Xi4uKipHMCNFlnkEX0ywDdpAu60o5unXPk9E5H5U0AO0CAbc195HfmlqMwnU03mVQL+jHnBobZJlqf8V7WRMT0jHNAOO1hjAC8Jj/zdhLWufceY2uRP2//I1rm6D9jBx7x+FgGM9liQOxsB8ufSXA+ryPdMhllnWNC3JfJBxNmPLfuO26/153tpufNv2ey33/PY8KVbXt2xrMdqSMM6vRDfpbXyKx3PEYo5HHJtjw/I2Nt/z0HNnLbHyMrqJUDUYoO4vkrKyvxd3/3d9Hr9eL4+DiGw2Hs7+/H+fl5SY3GwaNtrAUwNTLZ7XZjc3MzPvroo+h2u5Ui2dg01ryzAfr9fkRMa15RiA5snmUXe9ztduPp06fR6/ViZ2enrPmjo6OCqYmCn5ycxNLSUqysrFS2yDQajVhdXY1erxeNRqNE9TudTqyursbTp08LRsEmcsJQp9MpRQ/v7+9jb2+vHCNM3SKK+kKiRFS347bb7VhfXy8ENlsCyITrdDolUxAHFZJmMplUzqMfj8cl25gxur29LUQKWwKQPY5Zpn/oReyGM0AIENk+g0FwVgmY4vyz9x8cgVPMMzPGI2sCDAfBT4ajbSa6lq2qzA0YIGJ6ZDx6Gscbm0BWAzLFCVnOegL3Yu8p+ghZThCGdpH9MhgMYnFxscgRWxTYAoIdmUwmZQ10u924vb2Nvb292NnZibu7u3Kqxu3tbQkw/5LrZ5MAVrCOWFiBIQQwaT6igQG2wWOhUWwiRyc8odnBAxRkxx7nykwWEaaIaTQAEoHnOMXZUWz66aIOjuS7/5xc4OdZMFmAFAh0lN2L32ej02aA+NnZWVFiEVUlaIfY7+W+iOqWDLIonMlg0MgYuG28h3u4z3Psv9nxZexs6HAY7GDnMWH8bfwiqhXJ3W/kx/3OoMltrDOUvMsEiL+bSQnGzs43Y+c287MzIGgH7zNpYLCDgp8FNNye3C4DMD93VhTF4+20Ys8r69XFMW9vb+Ovf/1rPHnypMLSo4i9H2s8HhfDgwODgUImGA9HyEh/xvljff/xj3+M169fl1oAOEgw26Teozfa7XZ8//338d1338X5+Xl0u92SHs+JAtznIzyRY/bjka2AYX769GlMJpNSXfjw8LCMj+X87u4uvvzyy/j8888Lg+zMIYACxXwwvoAn0ta4PzP0yBBO5PX1dSlIhP5j7UMknJycVHSvnTMTamSF8AxYc9oC64+OpW0AEpwZ5poogo8Asu43ccl8mxCIiErlameBGIy6P5Yn7qMvFJGkqJ8dUXQAf+d7JrOdTWGn2yRWtqXWNfwOmFhdXY319fVYX18vEQza2u/3y9wiI5zw8Pbt27KWXcgVcoG16PWd/7fucNqlbVydo8GY+Pt1hAnPMCj0+3k+Yw9WwNagn4hIZWfX6y3ix5kJfN9OOH1FbpBr/8680V7WuEkk3sd8sg5Mrjrd31um6t5hIsXjl8fS368jXOmjbbudKV+2ZfmiLcYC2VH177Z72Sn3/X6OP/PnxqTuX3aauTc/M48TY8J9s5zn3GaPxU/dk4kH40d0bB1ZUPe7+1ZHxMwiQ7gGg0E8ffo0xuNpbRiTTGR/caLLwsJCdLvdQmwa10VEiUSurKwU5xPdhx5bWFgoUW7Wg/sP1iPAhu2FrPOedbIKwPjYRRw49spnzEl011vkyKDCgW00GpUz2Wkvjmyr9bB1jq1x3p4GZqGQIAV+0U8UIr67uyt1ejyPYCVjSbLAIACazWYlMk4QARIDLOVgCP2FfCXTEGd9NBqV54N3MmEIliCqPplMKqcH8TvB1OXl5YITaDdzgk1nrF3Hh/dCPFBo+Pr6Oo6OjiqnKlgecbwZ05WVlej3+3F2dhaj0aiMDbgMe4ktJJJOJqh1LzgJ/QW+tD8GHmJd0A9khtPiOp1ObG5uxtbWVqmzAYHGSQRec/jI2AgyNvElWHv2t37u9V6FAREGK2aDKdh9O4kGo1b8fg5KJB/txwVwtLOLsrLRAxxETPfOMoksED5zNoAjDKTlR0wdbBYO70BR+LmAKhcxMYgmMnR6elomysePIJgR1WPwbKjZhwXDl1NtGWvGydkRPhc1p2Rz8S7PgyMDNpQAXTutXAimn8uYW24AdfTBqd7MK86PQZCdkdyPTFDxfrc799nPcD/dJismO9wA+myoHdEz+ImIH62bOiOf7/HY+t3ut0G2v2ew7ohTHVBzG1DWTnXHyCwtLRWFHzElQDA+gGHaa+NBe3FiMgClbodlyABncXExrq6uCsmA/ri5uYl3794VhwKQ4Uryfte7d+/Kv4goz3RBP9YMwIC1AUMN4QmTe3JyEn/+859LwaKvv/66kr0Eu43zTcqjZRKHE7DEOrZsM6bz8/Px/PnzwhIzFrSXvZ4AGDvBZv5vbm5KaplJI/p8fn4enU6nZEIAyByR9xoD+GQnz/rfTh1zbIIvk2Toat7DmPH3s7OzHzmSEdMsFrKUPAasX8ac9zCnJgE8ZjzHbXc2m4skZSfZ+gY5zeuRNchnKysrsbGxUQADxNOTJ09ibW2tpPQCPgEGo9Eojo6Oiq7OZGleW9kBy04K8okOnnVZl5iczE4OTi/9doagHQ2nfeL48xljaPlze/k7hcjoM/3wfdjtPBf0F0LebYIQc9YHMoUc5ro6tiURUTADRELGSx7TOnLLfbLNZj1np5bxrZMFPs9tzPe6Lw7g2KHzZd3l8c1Oe3b0cxv4/TEn18/O48fleZ9FctSNS927Zr3j5xADvrfOftdddhA9DnVzVvd7RMSzZ8/i+fPnhfzFiVtYWIiVlZVYWVkpUX3rX/6xdsiOQXZJ3wYzOAOQ90RUo6kZq+GwkjVwcnJS8ILrFaGHbbO5Dg8PSwFbZJSMJhyuwWBQ7DF6vtFoFHwzGAzK+fBgmuXl5bi6uort7e24u7srTjM4AdIiYhr48v+Li4vx4YcfxubmZrx+/TrevXsXFxcXlcAf4z0eP2QNcVIBWyogqJ0hQKYyWY9gN9ajC/IRRCEzku19k8lDBkG73S6FFNFDPIMsOzKfyWLwdm07sZAVnU6nYEO22Ple5hOsZB0GAeAgs7E133fmtNPxsS0OEnC6Af1HXxP95xk428i6j2MEh9FOPgMPoMsjqgHYiAfc0ul0SoYa7WX+ySzwVgGOsSZDkoKNkDgvX76cqTNmXe9VGBDgZmeQxQujzaTA4Dm9BoORQUc22AZjKDmEwhEXjB6THxFl4HB2GdisNAzA7DSYlPAk0yfApD8HlNiZxbFnewIGCYE2UeIx5n+UFEaBduJs0BZYPL7jdMCI6bGJVrxeeH4ngudoFoDfxAHKnZ+9EFlg3grg+bNxRuG6j/45Ylol3E5QVm51IBZywrLq9trB8HeyITaQYK75ewYx2YGxo2Ej/Fib/bkdY0cJDLAsV/zufjKWZpuzvDEWXoN8jzT/7JSzDnAsnf7H+wz4c1GcTBLhbOJ00y9nCuCcsdbs8MGCAhBg+zGkdlowNMPhsBhLjAXrnOfRPhjqhYWF6PV6MRqNinOGIw/BQVRhMpkUw2tCCPl1hoTXip1T2GOn51u/RjwcV0Q0w9FuHJRWq1WITLIRWNc4MHNzcyVDCV3I3wFkEKS3t7c/mk/rJ8AF4+d1bifeMmd97vFh3Fqt6ZFSZAzwPXTtZDIp7fI8W97IDDF4dvr2eDyupFbmNe/Uc+5BDl23wk5gneNtcsT6w/qCMWD+8vNJGzw4OKg8e2lpqVTDJmJi2aFfWeYMpqxDnAERMc1SQcb43+23TNBfnmkCyPfw7OyM+fnGD+hZ7J9tDusgt8UOKrLI72AOyAZk2SDe2Q1+Bm10oIH/res89x4X5ts1huqIc/pjos6Zi3YcPWYmC7Lep/22R3UONHo9O+mWYT/fmTx2VG0762ye7e+sKz+v7rM8JrOc77pn142lxyL/XHfvY/1w+x9rk/uXCZKIHx+dma/Hnv3y5cvo9Xrx1VdfxZs3b0qFd7Yb4QANBoNyLOzp6WmMRqPitDpgZFyCXBMUI/Xax9k2Go2CH0x6YTsgwdHX3W634AGyapHtTqdTsgrIPEOvs5aJxhLEIyJ7d/dwpDBF+tjmR7E9orARUXk/DjeYFxxkIjEiCl5vNKaZnGQSvnz5MgaDQYxGo7LND9xCdBdHHBtwfHxcnsFzWcsUqqPgaaPRKEV8cbydwWd/yvoTomB7ezuurq4KUUJQJZMD/KNGAXYB4mRubq7s0ceZtp/gDAxjfeQLuYmISiZ19k0c+LWtsM2JmNY+QJ+B05A//CVOkjCOyL4SmIOtmbbPHlsHdLBdJqaazWm2Bu1lPa6urkbEQ6FECmKy/sBJkDHve/1sEoAByEaLQXVKHKyUJxiAYPDBcyKqysyL2WkQdo4dATRosNJj3ytne2LcWchODXYaB585RQ9HzECVvrH/B8Gy0+20J9KmUaARUZwPGM6IqBwPiBK7v5+eTAA54M8NGjy2sxxc5o5IV110wuDBIMERIQNk5ojxsVGwIebZBp91cmGHnX8sJt5blzrq59PebEiz414Hknh/drStSNy/DP65nB5Efw1s+S7KjPbacbUjYXIBpZnBjkEGl0m77HjAQHIZuBmwA9KROa5MkI3H07OyDVTpC86U171JHcaJNWFH2cVAI6JE7z03ToOjbXnfGnLKWoe8oz+0E0CBo+H1TlX9k5OTSqV/CDr6jU5hfABHTuHmtBGqzPIM2gJ5mNfBu3fvot1uV+oKkJXE8+w4bGxslGgx/WJMGHu2OtA2WHyMoGXTegXAZv3P/CFvOYPIxC36Mss133Umk8Gj1wWgzPqMOcJwM8deJ5YXdDb38A+9zhxaN3kte/0i/16L/gwdZ0AGQdRuP+xdNOkK2UTE4uLiopBTkBZXV1elKnS73a6AI8iibDdzlD7bCmTOus2OSXb2PP45UuwMPOsh60r0CD/ntvFMk++eD2TBusMEP883eYm8k76KI+Tn2bbTBux6rsUBmLNtQRdYF/u4zDz2xht53WU75is7w16PvCsTVHmMM/nidVtnS/ze7AQbO2b7g97yes8ObB154Of53Xk88rMyHqm7Zjnqtskeo7wG8v3Wk5lU8NjUjeus/tQRAHVreFY/B4NB/P73v4+1tbVSkBZnkToArVarsocf/UR2K7iXd7gQG/q+1+uVI9CwW+x/hhxA5zrzAMfzyZMncXFxUeq8jMfTQuQ46uhGp7IzFi6ITfvB1NjC6+vrUpkfsphsPWwPa/zg4CDevHlT9mfj4C8vL8fW1lasrq4WXbGwsFAqz6OL37x5U/AN9tLbJCAimIvJZJpx5ICeiXfWN983lkSuPE7Ycb6D7RmPp8fynZ6eluOCwUbIG7qUjACyF7EX6E+2BTLvnU6nFKAkKIHetW9B/1zgF0zG5xQkts9BdgdtxZY6o9z2GEccrEdNO2z/6elpCUJQ2J0MEE40cmYa2zDm5+cLccWzJ5NJKQzo8WYskC9kr9VqxdnZWQkqcToTx+GCKefn52N9fb12jf/U9f+pJgDK2GkWTKD3ekdM0wBR9GZhskL35OFMREwjsYAYM36AeQQNQ+50IcC1q+tT9ZSiFAi3I/9cZvcBYhFRKm17XwYsF23xXj8rfJQZ74+IstcXJwBA7EXI9/nMTCqXQQSOG+9wioydI+bPETrIGM+ZDUuOaNE2hDiDkTowwHxzv+XJY+Z3+Xl1zr/l0e9xdI9xqotY8BnPmuVE+x5HUTOJYAfVl9eAmV2DL7fTfTN5ku+1bLh9jvjxfx6TiOkRMfQJ5tHEj50vjBprnywciq4YAHAZ7ONEm0lH+bP3ivXA2md9k/ZHtWKi2IxPzpDxGGIYfeQR0YXl5eVSQAiQsr+/H6urq6VoEAaN96CPAE/8nfHgHRR96ff7cXJyEm/fvi3peQAhSAN0kqOezN3V1VXRa3aEORMZoEUF3GfPnsWbN2/io48+irOzs8pJCowXRWaoR8D7kV3mg5/pLwDMrLmjmcy/094iouhxwJQddOSQbSIAH4MidK4/Z75NELnWhWU/t4+xttNrPcbcIGvZ8XQU1DrT88b6QZ6RI9YPugoyB3sA8KFfzD9FnHZ3d+Pk5KSyD7XZbJa1w++5X3UOSCZXM2kBULf+cZZAtgm2GYB4frcDzDpyO6wrrNdMKti2I5+8x/gFO+h5QFZzDRGihuhOMIhBd50+ph+2u2Q7gYHQn7blHkvk0YA1X7apnk/6ab1n+wAmQPdnosr32b5bbrMznZ1lk7sZ95hAzxih7m+2h1k+82dufx1h4Z/zex673E/b7cdIhTon/LE+MzZ168ffreurn1XX7roLgvnw8LDi6HJcbUSUjLTl5eWyrYp94cPhMEajUSXzNweljo6OYnNzs2xnQq9BvLfb7XI0Ljo31xqCVKCuwGAwiMFgEJPJpNQKmEwmZR847eB+1lxEFN+AVHsyqhYXF2Nzc7MU5JtMJsUZxnHGocXRNcbodDqxsrJStgOura2VugWj0ajoF8aU8SKjF+efcbOfYV3M6UxgkkajEcvLy9Hr9Sr+CQQHtorU/OPj47KVgPWBjoIAwLm+urqKs7OzogdNuqL/sW3YJQIlPuUFPUWRu4ips99ut0tEnfpCjDdZncZ019fXcX5+Xj6jD9QiMOZhvmgf42tiGtIgonq0LxnknKi0v79fToiwbcd24GPavnrLK/MM3mH88UNJ7wfbsh3n+Pi44F8CQ2wLabVa5RSKX3K9FwlgxW1GHOAeUWXYDeK4j4HNe9P5DpNpQAXA5GKA7dCYkQRo4eCiZPy7I9UIsPvK72amEFD6QvvzWAA6fM66nViAilO0Ofah2+2WdCwmPzsSEQ9pLywAH4vEQnZfeK8de0ABz8MJYnHzPH62MrKTzfzYubLRchTH7bOD73snk2kBKL+D9rhNBk4mDeqMJfcxt37eYyCBNnn83J9ZYIUxd1swbplsyM59HZDy/XVZAPm9PCsDNn/HfzPQ5BmkgqOkSEFnDXMPcu7PI6qZEhgs2gIo93p32wyMeQ/Kn88AyESxvS+QVD8YXRN6BhUYRxxgHykXEfHixYtYX18vzhfGA3acdMC5ubmS8ojBBEB5PtgryFwOBoPY3NysjDVEhlPw0FGTyaRS/IzxQcfRPkg7RzqQxx9++CGurq5KwZk3b95UyLV2u12MDuOcU5UBVLTF6w79y9+crQP7bX3J3FuurRsd0fU9ziZBDugD4AyDjiPttWYnxWvc8sQ429GlgCTyzbzxrIhpnRdnNyDHee5Yu055pEgkgIy0WaJ19/f3hXDD/pyfn8f+/n7s7OyUiAuZZhFRbBcki+ctE5wmidFZWQda5/BdwJZJgOyQ8ByPP89Av2dblqONbo9JAJxeO5/MG/9n0sc4hXExsMs4J2dE8l1sqfWX7Q3ZGhTnZKuG+8D6Qb6c0ZTHkWuWw2cnm6ysOhIhZ834OSZcbGc8t9mG+t3ZUXabbIf8rLo2zHKIbdttJyPqaxPkZ8xyjmeN9WOf53bnPud769aHibm6PteNq9vjNhj/1F189vXXX8e///u/x+7ubqloHzHF2ehdZJmTNsheG41GhQRwm/iZAFwOGIBnsSt2xC4vLyunAKA7eRZ7zCmAChGKbvO6tpwR8W00HtK3+/1+3NzclILbvLfZbMby8nJ5B/cwR0+ePInl5eWIiIIlsDUnJycxHo/j1atX8fvf/z62trZiNBrFF198ETs7OzE3N1dqLoAXtre34/j4OA4ODorzR4acsxLBTjmdHLs1Ho8LWdNqtWI0SURLtwAAIABJREFUGlWc9vF4HNvb2yVrkPGlHyY8cLTxTdBH+FCdTqesL/QmWzlot+0ujjxOe8R0ex7ySsYJdc+wh8wbtVPOz8/L1gn8Q0gQ5Ih5wemHtHLUHnuTgyjWl0tLS9HpdErEPSLKlsGIKFkvzAnFGsGqZGnyN2+lwC9tNpuFlPIWUpPOJycnFWwD7qaY4C+9fjYJYKNGwwCnTDrA3ml5fM6AOipuY51BoA07UQODtcyQY7CZWL5nFt5HRFgJcdlpReG57wiuDSmKFlKB+xDEvD/e7DzjYUeGyTbraPCTo7huO2PstE6DIKfYcA+/Z7KDvnHVRQAZc/63wc0gyXJk42QA6qiXLwME3ss7zJrzfsY2O7Z14MXfcXs9Nn5nbovnxO3yc/nn8cnOeQZu2ZjbWTBwytcswEPbHIn0GGawYJLOhmIymZRK5ES6TdCdn58XIsypxxFTVttZQcgiBJ3JAjtmLmBDW53SjxJHGXa73dja2ooPPvigFPbBAJ2ensbe3l5cXFwUVvzw8DAipkZpMpkU4wy7vrCwUCri3tzclO9wseYprNNut0tNBesTDFrEA1lxfn4eR0dHlUJ6bBnynknah8yQLQQYYI2jB0zM+WQCDOEXX3xRspcw4gAq62KOMuS7znKiQBGyZBuBvHht8LvXB3YE2cU+0Cb/zLOZozpQ32g0Sn+9xnDMTRzXZSph3/g+68qZTUTPWD9e2yauaY/XCBc2CDuQdSdjgdMPCEb+DG4pxAhQxT4DHJ1lMR6PC2jlXs9bdvoipoV6sa12+t3vOkeI7/lnbC9r39/JGUn0hTGzE2FSx+NBhXD+7nm0Y+7vONOg7v1Z79gu8x3LKfPKdyIezjZnT2u2UZmU4X/rwjqnMutu3+MASsYMHm+e7/dnAiDjjjoHs+4z4wnLtu/zPXU20M/JsllnC/Nz6siFxxzkuuf4WbNIglnP+zl94ve6efZ769r+U/OQPz87O4vd3d1oNpvx7bffxu7ubgyHwxgOh7GxsVGKArKfv91uV4pWYqPQQ9jhiKl9t95dXl6OwWBQiHna4+xa5pWaOji0tANHjH6hZ5eWlkradcQDBnH0l/5i3+xY2m9AX19eXpbj++7u7qLf75fihB7LZrNZagrgQHMP9md+fj5++OGHinNNlJmUcJxCSGNqM2D3MpFlbIZusXM6Ho8LjvGWq4gogcXr6+vodruVwOnp6WmcnZ1VMjcnk0khI5z5hI31qT5kkVBUEVIGnT0ej0uRZm/JhpwGy+DcUsMI28aJPfggYCgIJHQ+vghRdzItyJTDlho/4viTvYCdZZs2GQbYUXw1+z7uJ849mBNdz5hS6BISzMdsOugFzmCrALabbQKDwaDM4y+93qswYAaXGOGsnFn4gFO+x4Sxz8WRHV82ghh7GyhXxufvRFwiplEYfsbpdkouigVQTaqFK/TXpS07zQkhyWmyTunhHyCACTaocYo0DgmkgLcAmFDIACMz/DbuEdNIdJn4drVAF0JlUGZAiPAyrjzb42QjhTAbSPBMf0ZbAcoYAYNBy54ZPH/XZJTlh3u4LK+PgQQTPwYqORvAjk82vD9FFNQBCT/f6UrOTLFz4bl1G3Nfct/53fNTRyDgiPJu1pLn7/7+vkQGYFn7/X5ZC+gMj1WOGNCW7AhlIiZH9VkfS0tLpdrx3NxcvHz5Mj7++OPY3Nwsx7rQH6rbHh0dxWg0ii+//LKknxGxAOSQgs66ZewBQJwQgDEgK4d14eKJGeSfn5/H27dvS5vQJ/QV0pJ16Aiki+FxQQpgbE10oaNMoL57966QJqTPkUHg73rfotel1xw/o8+QC88nazwDfsaDZ9guZGLRMms5tRMTUT16dDKZFEBEu4jimPRlneHImaSyLqFysAlUO7ImR71OeRdjio00uLbOZr7Q+9hSslQcOW40GmVLjEEKdqTRqO7RpF+01+veY20daALF69+23ZH4Ol2bLz/LxD6AyUA+fw8gR3u9P9KfAQJZTybLsgzkzAB/jp4Ff2TgxTiDRYyXaANRQubI68IEAu3IkWHPUV7/tDGTKplk8hq0XvYzsx3NdqPOoc7rtc7O5iDALNmoc1zdrrrxyDbR7Z31nPy9We3Odt9XdvCzHa27ZrXfz6z7u/82q/11bczv/s///M84OjqKiIdUfU4ewUlDXnGwLZM4unNzc7G5uVkyAmb1HznCoaLYHanZRGzBxS4qy7pYWFiI1dXVYq9Igd7c3Iy1tbVy9vr9/X2MRqPY398vhQydcYONBqvglDcajeKIEfVvt9txeHgYu7u7ZQsWfSPgMDc3F8fHx+V+qvhfXFzE7u5u/Pd//3fc3t6WoxNdbNGEATUR6J/xPToEO2B5Q6eja2g7tRzQhxwJeHNzUxxwSAfGAxKDgoh1WNt+0M3NTSF1cM6d0YRNQ885Ah9RDRrg3KI/8I84/tCnJzgLm6KLPmIQu4F9JuuqTvebjLaPidPP3nvLMBkQZ2dncX9/X7aTQthjnz12tN1+qmtXUGOKubB94+/IKv3m6EqC5L/0eu9MACt6GzB3GsHlAnhGRMVpduTe//tZvNsOKaAbAEY7AMZMJhEuhNBRBAQWFoajPYbDYSm84Is2Z8c64sfF6LxYDBAx8ggVwozAIyB2+EhzAih5XO08834vLJMw3G+H2leO7tvptsHJzpsNZB4PfjbYZ/w8L3y3znjy/Awc6sBKjpj4OW6f5y9H6DL4qHuOgXGdQ5O/44imxyNHIbMz7zHkwrmw0nK7TTT4PXXAy2Pud0RESUnLzyaySBTVCtv6gX4j3yhePmOOGBs7VXYoLYcRUzllLEh9e/78efzud7+LTz/9NPr9fjx9+rREB3DGARmXl5clMvH1118XZtjPxoHy2asw32aQHU3wmrITiaEhik4f7+/v4+TkpBhU9CQACzaZsbQDX5fODYNu52QymRQjBzFpBwNQRB8dOcDQYoS9rqwbkCfaQ7vzGoZtR2YsL9arOVpo2eVek5M4yuhaO+7WeRhM+klGQQb4dTreDhmy4nWdSS7r8Twe8/Pzsba2VggXO6t8H7nyejg5OakAE/pB2iT3W0ZpE229uLiIJ0+exNLS0o/sFjLAnGS9a5Im63Xrk6wT63434DKxbRuBjGXH0s4+Y5vbDGnlIpsUOmPbRSZubFPq9CJty7oSma0bA8aV79FHZJX1hgzXPRfd6PWUnfNZNrrOnqGLM97KNvUxp65ufTA+rElIkewI+xnZBmVSzv3Nf59FJtTJW26Dvz+LtKj7OY+Zicl8X7bjs8aBn/O78hjUtcdYZFZ787MjIv7jP/4jhsNh0T1EUtvtdrHn8/PzcXFxEYeHhxX7DDagSBqfo5OyTsCJR++D4c/Pz8vxZvkYwsFgUGzn0tJSbG5uxtOnT0u6t7cG0PaIB5xOvZ7RaBSff/557O/vF3LXOCJnU3kuIqbkIfu1we30le2HYItGo1ECiRAcFBVcWFiIg4ODssXg9PS0gq8iomyzILBgbEG0nvaDA5rNZhlH1o9tmoOexoytVquMPWnoRP9NZkKesnedfmJLsBndbjfW19dLlgf3TCaTSga2izheXl7G0dFRJfU9IkrqvDEN8kybsAHWu+hUMF/Wp2QM8Hdkh9pCzCf9h9ggS7XRaES3242lpaVCSjC3FFI2YUAADHvu4/zu7+/LNu/xeFzqAWXdnm2Ej3Vmrk3o/5LrvWsCZLBu40sU2QAMR5SFA+D1s7JThmE32Ha6uZ0rwALKgwEx68hAe2+kU1CYcJjE4XBYiTZxGaRFRGVB0V4cHsC3q1HTX+5xBkE2CB73OqBqAgZwzT2MFxF1gCD9yc6j2TEbOpSCHUk7EXZkDXTqjF92APmfaqIs9myIaT9/cxonbUVGZhl7j2kGBnX9znOQv8N9Bqd2MDIwoc1+7iwg5TnJAM5OjddOBkN85nbzex4Tz4Xl3anQjK3T+29ubsp6mUwmlboUEdN996TPZ8DnvudsmogpIGVN+7usHci8Fy9exD//8z/Hr3/963j27FkxzFRlNflnXQRwYO5o1+LiYqltkIEsz8KQke5vMu/+/v5HBAp94DmsUfrBHFmm+LkuOg0Bwhyx1hkz5g/CAOfRMmDGnD1tgAHGCABk8OO1bCeVNuPoO5rr+TcpBZihXYBSdCTOkQlf+uMsK97H2JIV4b7Sj7u7u5LuSTtYtx4f3ke7GHevc57N/GcwaQIcO9Pv90s9BqJGEVHJGmFPJKQbthBQxTjST4Nc5h2SwaQRwJbIg2U060/6ydqxo5dtELbd5HzW516Hls+8Trgf+XJ2mm21Tx9BjvwO2kGaKGnGmcy3vsn61euQcQawIqt+jrOebDPoa9bx6NbsvHnskXl0i7chZBth/ZrHlM+tX9zO3Bc7uPk9+Vn5b8iE8SKfM1++aOcscqMOG9W99zGne9b36sYv9ys/r659j7Wx7p78c35+1kd+9k/1N7ch//75558XJ473EDFmH3y3243Ly8tylC7rirR8SDW2B5oYbjQaxaGlGN39/X1lKwzFz7CXJpGxn3Nzc7GxsRG/+tWvYmVl5UfOKXbQWJ+LVGuy9nIGjLN0IqbENiQpW3Pv7+9L4e+IabAtIkqKP2nx2FBHbrHh1AMyoY5uZ7vD8vJyLC8vl62Fo9Eo9vb2KoV7nQWNbmTrVz6RyA4s40TWn7dNtFqt6Ha70Wq14vT0tJJ95sg0jjfvJ4g6GAzio48+isFgUOoQMY+uk2BdPRqNYjgclkAnDjrbEZgTY1f+x9kny5MxcE04Lj7P6wr/DCyYSWGwEXobWcK5J3Oa/rjovOsPQGb4hATGFzmAqDYe5Gq1WqUGBnJBmyyHZDe+7/VeRwTaYfcAO2rHAGaCwNEeGm8WHwNg1oMBAmBggPMA+b0oIQSU93qPTURUHGveDXuDIBl42hFlDHJUoC49MSIqYMGVqiOiFFgDnGan1w6h+w2w89h5nkwuOK2c8chV3rOjZqDmhWNQmy+D4zqn0zJhEFRnsAzEWBwGVQatfhdKxuSEo0O038/ie7TRDmGec34HbPodHoccbc1t9v2Wobq5zm3JTv9jc+G1UeeIey6z4jTop09WpsiVq8PzLtaQTwuYTCYVox8xddh8hq2dGdqNLDJ2yMXd3V2sra3FZ599FltbWyU6YbLCRdoYAyIYu7u7ZX6IqCI7Xvdcd3d3hR22zpqfny/pYRFRIS/ofybKstORwbmdKv7OzzjuLpw0mUwKecGcQMRgJO248rv1Zh0oQwbm5+fLMYHoGa9nAA+kDnqPPY9+vvtDFN/ZDeh8r2PLvMfFTq71VSa26AtREMiELM++6sCE92TS1ry+vIatw+bn56PX6xVZsi7BZgEM6Zv7aicb2RqPxz8CwB5H7sf25LRSxqXOCaHd2HjrUv/N45EdWI9p1sWMg4ki5DPrXS7AZdYR2eHmom0uSMy4ziJBPc6MI+PEnDE/Xrf8bIDH9xjXbGPcb8uMn8+/bOft5GfH0I61ZTJnhvndeRyynczyXWfj6bdl6jHnPN+Tndksm1lOZznu/n2Wbau7zzq/Tv58fx0mntXnujU263qMUHiMqKgb57r7vvvuu8reb7AyxSupvE/tHwJn7JnGebu9fThSjQgq1czZxkaqNvvEJ5NJZY+3n+1AgG3w8vJyrK6uloJr2XbW6e2IaVr/+fl5ibxD/NvWYIPIcMAWQcg2m82S4s16wsZOJtNC1qPRqHL0HbYQJx9CGzxgnMNlQoDsQcbj/v6+bFvEHqN/HWkmqyIiShaAMRBjDUnsNHOccRPJ2CK2HqD7IFjJIOFkgPF4XAmyuvAfNotxA/M1m9NtcWQ12L4hy8whBICDlIwRxBCFcSHXnbHKWEN6kRnH2DJ+mVQ+OzsrpP3d3V0hBiKiEOuTyaTIne03MuXTAiKmvujd3V3JcshZoBS6ZgsAuJuAAnaNuXqf672/YSCejQgAy+l5TL4XD4MK2DHg5R2ZhWex44wY1MxyNisd1X472sqFA+CiGY4us2DtzJtYMIg2EdBoTKNT7q+BO6DaxIKBYY4e2NHmbx4bAwXaAHDlnSw8xjobet6BEJpo8YIw+LLhzIAlO70ZhDj9k+9nI+3ok+Uw//NYZmedscogxkY1A3gDS49/BsLZQaEt9J9ncK8dodwfy+csp99j6nWYHUnLfwaM2XHxmmGNuU8YbeQ9ky28l3RlFxXC8RqNRpXUbcbIlVQ5e5XINfqBviI/GCX2V/Me2FacUtqMM3BzcxNHR0fxzTffxPfffx/D4bDoAEegzfz7+LmIKL/Dvtcdd2YQ0e124/j4uCJTnh+zyCbA7BTY+UY3MYeuwkuKP9/1OFqueb6zqBhXDLALddqx8r48gBORl83Nzej1ejGZPOyfZ09lJv/qwCx6wJlNgESTKI7gRFSdrqyvrI8xnkRl2J+aHSzmLusdwIQd0AwuGB87o44ysHaYJ/rLPMP4O1pmA5/nERCPrpufn4/T09MCeJkjO5acOMDndY7MrPkxQOJvyKz/cVmHImNObbW95/mPOXZ87p9nEdNkVVD1G5Dn7DwHHmyH82UCFD1jmcuA3sSo+1JHAnAZM/G521JH2tpm5fv9HLfT68M/+z11znYmRf1ZXZscaKhz1CKqJ+JkB92YLdvmunY89rc85nXEgm1h/jyP5SzHPrc3/6t7j8cm4+s8ro+Nd+7frHX07bffluy95eXl4pjMz88XvX53d1fSn3HakHEcrV6vV9E94/G4pKc7CoqNmkwmlXRvnoNjasyJrkYfoq/YjoUNzvoGZ253dzd2dnaKc3xxcRHn5+fR6XSK80rBOOMxxoooM1iG+gVsQex0OiUFnNN9XE/Hx/yiixkLEwneGsspRMydi+5iU3xaCdkVyI8DMWzZ4MjxyWRSxnEymZStjkSmmS/6DPkBIU87iZ5jJyEarq+v4/j4OBqNRoVoNt5BH2Ojl5aWSlYHW0TI/ANb2ilGByEryB2f+/QdjqP0tocc3V9cXCwyjDPP+wmkgHOZGzI5kJXRaFTGdjx+OAGKGhIm+pE5ZMTb2rHtjAPjBYYG47LWmENww9HRUbTb7Xj58mW87/VehQGzQoqYKsTsqBgg8J08cVx1TJ6Bf26HmWae68/N4pkpAnxQqMNCub+/Xyr3ugAffbJz74giQsnvi4uLJXWH75v54x+gE0UDYMjphla6dYbICtBRieyA+ns2Yox1njvejZPAd92vOhnIINyfA5z8d8tWBuK+x4aNPmfDmf83aPPYeOy4MhAyWcCYZBIJJ2HWc7LDxXPd5uy8P/ZZdrb9HY9/BjE5FSqPZx2AdTtM/KDAIBUACz4ZxBk/4/E4NjY2YmFhoRBsXGbI2WPFGDkyiMK0w0OhGwDE6elprKyslLVNCiAGmqJco9Eojo+PY2dnJ7799tuS+kaKF0XfHCngZxN4HLHX7/djOBzGkydP4vnz53FzcxM7OzuVTCPOVmYdOxvAeoG0SafgMb6MDXUNMvmIjkI3Ie8mpDCqMNiO1ph1BpxgCKlO7zYDoBwNevXqVWxsbJRzlieThyJS33zzTXz77bcFrNh58+VoK3LKODirymmcJtWsD+18M0adTqfMM/IOMMhOH98B9Fn/1ukzE6eMUSZJkePRaFRsANX8ycwiNXIwGJQ1RwEp6xk7yxRFarfbJRPGhQdz1B9w6fHm/zq9nXVrtiWMM/PEXNm5r7PTyIL1jnW77Qnv83y6Lf6OZQDQRtputu3ob9qcMYf7T1Xq7Ohzn5/jaJlTjw1isUt1jmT+OTv2dY5q3ZVtkx2tPJ60b5Ztp1+2J9k+ZWc325t82U4YT1l2fG/dGNVdP0UIZLxa9578/895dx1G5u9176rDzrMcd493nf2fFeSqu05OTiJiWlh3MplWtMdGGItGTHG6q6iTNXB7e1uOL8UWWc4IshlDgtMJUmHPfLIWEd1Go1EcU5OuRK7RZbe3t3FwcBD/93//F999913s7e2VDD1sGPqSdkVM5Rob2mw2Y319vWwfYtxdQJjUfQIRROc5vo4AX6fTKYXmvJWB95rUpF1Uj0enuFq8L68T72kfjx+i8aurq9Hv90vfOaGBYnnGYwROWq2HkwsajUasrq7G8vJyNBqNUl/FWy3tXE8mk7LtAvLHwQv8G5xjtmyzXYBMrbr6PgRkbF/tTxK4AM8wJ8zp/f192SpBxB3dDXljfGY7D1HjjAafemWyAGKGObaPBcYjU9X99HrBF3RWCFgTUgYsgwxAcv//SgJwWenbcbDTZGWGQmEwLdgMehYUBJL//T6+izOPM+LCI45WRkRhTQDy9IGJu7u7K1ECg2v6NZlMKntncvqiFSaT2Gw2C4Pq81NPT08LYIMlRIGTukxfs1GkPR6TiGmqkAGMv8eYMQYoBF9mEPk9AxbPqecmGy2DZDN4jJXTkA0S6bP/XhcxMcg2eHAbPHd2cuxc56yBOsc799uOUB1Idts8Fo7w5EhaHaDj+Yy/14THJc9JBmb+n3cjq3Z0M2iw42jCDAY/YuqQeY59wTCPRqOi/D1WKEH228Hasl7sSDEWTtfj3Y1GI4bDYQwGg7i/v49er1dJi8P539nZiR9++CHevHkT19fXsb+/XxwDF7nhXbRvdXW1GM1cbJSIe6vVKicRjMfj2NvbK8424wzAyQA3A2EUPeAIo0lU2LILcGDsAUNra2sls8ngAoDm6Dj6o91uR7/fL9WWJ5NJqSANE25i1Wv81atX8a//+q/x29/+NtbW1krU5uzsLD766KP405/+VI6iIitgln7jfV6PgCZSMG0zmAtHZ+0QmhDBNvAu2xCvT28H47vofK9J3s89/pn2WU+4ABPtZc5MxlG06Pj4OE5OTirOsr9nAAGgBpxzL9EW3s3arnN4M8jkyoRT1oduv7/jcfV41NkryyJt9Pg6+4Xx9TowoIbcv7m5KQRAtiu0zwQP9/A77bTNc+SJewHDLo5mMg1wyLvpr2sWZUfRujmTALZdJjA8P76Xy0SFSQDuzRkadfYEOXFQg/d7K2V22jMxRhsyZpzlwM/6+8+5dxZG8ZXJj7qrDg/4efmfn1X3u7Ftxh8ZE/jvnjP/M/k5i3iImNYfWV9fL7ri7OysPANHl7lER15cXESn04mVlZXo9XqFDMCpQbexRx+nnQr6xh4U9KMuCnvW19bWotVqFXIdbDyZTAqmZt3wHNbf7u5ufPHFF/Htt98W5x8nGvmkUjz21XiDLQTYSbIfB4NBtNvtGA6HcXPzcDzw2dlZrK2tFXvNPeAJB0xceJH17G1lxjgcZYdcMI6sTQjj0WhUqcXEWgRjNBoPkfb19fViQzudTvR6vYpOwrmNmBYSRGeQobi2thbPnz+Pra2t4lyPRqN48+ZNHBwclP3vyB9+DKQ785izDlqth20JFxcXhRAHr0Boszawi+Ap9D8ZD6wL+sA68NZn8AMX+MCYwOsGMh2CxfYcZ3xhYSH6/X4ls455sH9LRokxJrIMkWU7wnoAk5GxMBgMYmVlJW5ubkoW68cff1z6/L7Xe9UEsMJiwLNzxkQbKHHZaXTEiklw9U1HfDxpgBcbK6J9VqKwLQYXAFYuoliuAxARRWmYuYM1BJjYGUfgWbwIAA4LANrvcFXKiKikv0ZUj13CWJPq4ugYffU4ZcMPSAbw5Mt9MljjnYDLRqNRgCTOk0GT2WmUh/fAMO84em6LCQtkqU7+Msix85QjLF7YPBciKX+fz3hvBrP8jXGy0vbPGSwxvnZQmE9H0/3+DL687mZds4BHJmEykRHx49RP3sV+QB+xFxEVRt8OLOuFNYpR3d7eruwzM+uPUYD957seE+8xN5nDPr3j4+OiL9g71W634927d3F2dhZzc3NxcnISu7u7sbe3F9vb20WGGRuKh+E4ID9mgM1usw8L5+Ls7Cz29vZic3MzNjY2CvEBAMJhYD2Mx+MKULi7uytHGbFvHJnJR8hZjzI+zAv6yEYQQ8ixgSYlJpNJyZ4YDAaxtbUVn332WXQ6nbi9vS19Go1G8fr161LoEYO/sLAQL168iD/84Q/xL//yL/HZZ59Ft9stsnVxcRFbW1vx9OnT+OMf/xh/+tOf4m9/+1tJwWTN1hFpdSnZgEHLdL7XNsTZERFRychgPCFRkOvcDr8nr3nrG//vz02Qe715vWL0cQxvb29jNBrF2dnZj6pFmwxwEUZkyymO7XY7zs/PY29vr9yDLDmK7T5mXZudo6wrfJ/tgefEdjc7XyaCrd89hxlnOJpvPYuNoX8uIMY9tpvIAXPE/KB7kGNsFvNjXcyahOSxk53HlL97LACUfrfHxlWuTZjZVnv8ZznA/tlbINCpDq7kQEd2/g1cGQuqiPsIZ89ZdvzzGOS/5c/9t7p7fU8egzweeS6yQ899mVDJ7TIRlG22++T31cmE7etP9Y2L+TMuiXi8TgHXP/7jP8bKyko5QWcymZS982RsmXg2EcDaHo/HlTR7Mv2MGY3p+R7R51arVcgDcMba2lqsrq5WMnavr69L8Mw2FKfr/Py8FJnb2dmJnZ2dosuJ2JPRRiFDZ+rZeaXd+/v7cXR0VIgSUsvRPScnJ3F1dRV7e3sxGAwKEYL+pVo891tHUeRtMpmUtc38kZmAjjaxibOL04w+z4SPiTmwE0c2d7vdEtnf2NiI4+Pj2N7ejv39/XI8IDqX7R5bW1vx61//Oj755JN4+vRpxcH/y1/+El9++WXBWjmoFzEtwogM5xOWwDB8B98J/JmL/UGMUHiSCDvji35nTZNxYH+z2WwW/JWzBt1OcBhjyXtPT09Lqj579XknhDxbJMCXrp2B848NYi5dAJC+oWP6/X5sbm7GyspKGdvFxcW4uLgomYO/5PpFJABA0sKbjRcTAAjFyDmKyHedFgwA96LBSPs9vB+j5MiaQYiPp4iYRsoQLCs5p9yykFjEKC4Wmt/n9vA54J+J5n6UJxFODc2eAAAgAElEQVQoBJrv5WNLDF68sOgfE5+dJz5DQfgzR7EQ+mx4EGYDbBQRGR2Ahhw9gd2DJQakErl1VXP6wvc8vn6mgXeOAmWjjVzYYc+G10bZY5DBeQbAls06A+520KccATJZwdj4uyYT/Hf32QDNzzYY4FnIDG2xI20w6z6giAEDzPny8nI0m80Crkm1gnHnQrbZe42zhVKmHTwfIIDRItUpEx/oDfp/fn4e33zzTWxvbxeWt9frxdLSUuzt7ZXzcknjG4/HZQsARYxgnYl+2KG7u7uL4XD4I5LKxomx/+GHHwqxgDPgs2/7/X6JBkAY4kgzp0T+IS8cleb9RFeYM/rCvff395Xq94z/ZFLdMsCz5ubmYmtrK16+fFl0HmBkfX09VldXS6RmOByWYw3b7Yf6Db/97W/jD3/4Q3zyySfR6/VK+hzGj+I7OLnNZjO2t7dLRAYD7zXu0w6QffQCusmZWdkJwqAiw61WK3q9XtGvZ2dnhSS2/LM2IXxmkXx57dgGZWcCHZrtpkElc4/DyraVq6urWF5eLuAZucTZtYPMXsWI6TnWrVarkEuMA3Lp9mXd6H7WRan9PZPI2HPrHqf3GswxZn6unVhseyYjTABkIplnAK7s6HMP88D3sy3nstObCQhSff1dbHtO88x20pd1imXGNiZjIO7nnjwGlmmTBnnuso3DvjjQknEd4Jwq4/QB/Y9jxlxnIiA7utlm+e91djVfJicec5gzTpj19zqnP8t9JgJ4jttS18a6fruvfF6XRVHXnzpMk8ds1vVv//ZvlUhyRMRgMIjj4+M4ODgo0XDexVYjnGrIRE4JYnvYyspKbG5uxtzcXLx586bsVcahIjLMWkG+G41GwYzGNxAAzMNoNCoyzbrifPujo6OSOUVUGbKKvdgmZWkD+hRbyDGE9P/s7Cz+9re/ldR1ZB3ifjgcxvz8fHS73Xj27FksLy/HcDgsAYWIKBkCrVarbG9Ah0dEcYJxILkfO+Ng2mg0KrgKRxGdlkmpiOkRdC4M22q1CiEwGAxid3c3Dg8PS5ADsuWDDz6I3/3ud/Gb3/ymONpcS0tL8fHHH5ef9/f3K9s60fVkECJHBFacQk9RPXAHfbEt4X+i42SbEGw0sWmfhzoI4DnqwrD2eQ/YM9ebAHOzDQZSgUyAtbW10l9OysBmeJ4gT1qth2MsGZvj4+Pih9IG8Db+MPgJ/M1FvYDHAoQ/df1sEiAbnszez3ImEWwbaAspk7SxsRERUQp5ICxMPAAm4sfGxErTxR8Agww2zgZt8DENZojIEDA7j6LinRHVvfMsVBtNG1LYqsvLy7LQWLhMvNNWGb9sxFFaAHo76BmImoGl3Va6Nix2VCFkIGX4HooXhQX7xeK1QoP1Yk4Ye9pq1srA0HJDe7LMWSaZIwMhR9KRIcugZSgbYH+e/2b5rgPMBmp5HjN441l1UYRMNjhiOgsw5TXF/NEWZNypr76yPFj2WU8AwPv7hyNzRqNRcepx/HBKHGU1AYUMGRhj7JlrR+EdsfQ6hMBrNBpxenoax8fHxQm20wGY4Tlzc3PFMaeN9/cPZ4hPJtM0w4iIfr9fgA7jSUVWywlyxt62yWRS0sMODw/Lz4zF2dlZSVU0seNIZk5DRs8gR47oIv8GgjibLm6EEer1enF+fl7W78bGRjx79iwGg0FcXFyUCAjZEZPJQ9bFxx9/HJ9++mmcnZ3F9vZ2vHnzJlqtVrx8+TI+/fTTWFlZqWQhIMMLCwuxuroan3zySUkXXVhYiN3d3RLt9hGhJq6QGTvoXq+sFUDbkydPYmtrq+hTgwOYfIO4+fn52N/fj8vLyxKdsJMKaRJRrRTMmoyYVvf1ejaAMGGHLPv+iCjyh50z8UDkirmnfSYNILQAkaenpwVIUYzTTqgBaJ1DmJ2aOuc0zwe6xrp4YWEhBoNBRETs7+9X6uPU6R2eg/ywBpzZZT3AmreTzVo31qD9BAZMWGbH2Wua/zMJ7f6yth0BR35MzvnKY1ZHetc5ibOurNP9fesNj71TcnkP+oi1wNjTfmw7OhY9nEE1GCETCdnRdtuzjGXs4is7vlmO6uxbfobbkduUHfdZBIbXCW22rMx6Vn5ObqPxSd19yIzXZ3b+6vrJ9erVq/jiiy8qjmrEw/y6ho1Js263G71eL7rdbkRMs7Kc1bu1tRX/9E//FPPz8/Hu3bvY39+Pbrcb3W63UveENWX5oYAnhCe1aG5vb8u7x+NxDIfDQpBylOrZ2VnZV44T12g0SoYCjje4Gb0FBsA5x14YVxqXt9vtWFtbi7W1tZItAD5YW1uL9fX1on+dYYMewNmjn+hsggPgb2xzljECiOAxngs2wV5g43q9XqysrMT9/X0cHh7G3d1deTa1Z3q9XvzmN78pWdFsn4yI+OCDD+KTTz4pBADOtbOtBoNBvHjxIprNZqX4Kn2LiBIMjKhmhGPjIALAl5Zd8CJZnhRl9Ek66GD0jnU184nNvr+/L0cXghtwsCHNR6NRqXmEHWUtgKUajUbJBCBT7P7+vujHyWRSCgQSVIiYZoM0Go3yWQ4okQEYEWU7H1teIQJYd+C6X3q9V00AK7CIHztrWWlbidkxx8AYkJyenkZElMg9kSYGjfuyIcao0waMlZl/mG3S1TDU/G8j6agSwoeQ0kdHdtx3G14MKX2GveKZOD04Tx7X7Lga2DCWPMcG2v3OY8S4R0xZR57LewAasLEYCM+znQ2Kb9g5Z94Avz5v1CDU42UDmQGD+5Wd5Rw1smPN38yw8hy39zFDnZUvc+PvANjt5GcZzc+3Msx94vt1oIXxZe085swzlgZmuW8e13yhND1eON2wmq1Wqxy9w7OdOm+AjBPCPGGonRGAQWBcUY4G5FSWdaYOThIGngi7z7w3OUN/Md4uaojSH4/HxYgB8AFcFxcXxQisrq5Gu92O09PT6Ha7JeoKOwtodqrt2dlZKaCEzmGuTDZaVhgPQBEghTaRWcS/paWlEk24ubkpKYB3d3elXsBgMCjM+vr6eiEoGGvmknnqdruxsrIST58+Lfsvu91urK+vly0AdnxZy7R5cXExXrx4UY4s7PV68fXXX5ejheyoQdhYlrJus25FH21sbMTTp09Lv13o6eLiIhYXF8tRTr1eL9rtdhweHsbNzU0BgFyk89FWok4AMMbTGS3WNXxet57zz4Aqf4e1QL0K6zDLPhk2BtYUCmIbCIQu5FN2MmfZdv6ZtLWeoj1cOTvLYD6fm42se3yyw869HitkwaSoC1QxfsYXlhvaWWfb83uyTfd48SwijRzphdxDpjPedY59Ju0jqsUR/fc6Etzjnh1hz5f7GjGtQu2+ek7J2IuIEp3ze7Dn2Pds87LsOFjhNuY5r2t7nkN+h7DIsjNLjrNNfuw92bn2u/1/nV3nMwcj6vrs3yOiYtcfIz38DMtHfudj43p5eRmvX7+Od+/eVWQdB2Ztba0SbML5wy6QQUCEnT3hb9++LRHz77//Pvb390ukvNPpFJnFZlkOIdGxc9hFsAhR3+Pj4xgOh/Hu3bs4OTkpWXWupI+MQi5TXK3X65XCgGBvp2PbEc/+B3jh1atX8emnn8b29nZ88803pVbQBx98EPPz84VQBiNBzOJ4GpuMxw9bC6mNAEmAPBjXMJcEY+yfeA55H7UbIqIQMpPJdFuzAzFkAjabzVI3KSJidXW1bLu8v7+vFD1EPmhTr9crc0DWGn1GTk36GFuDDU0O09aIB126ubkZW1tbZa+9yXF0EdkkFGok8wQcaPkgg2U8HpdjKJkXt5lgCyQD2V3U1eDdED+QTOBfCAKu+fn5ggGHw2FcXl5WMkbwC+lHs/mQUUtWDbUdLi8vo9FoxNraWq3e/7nXzyYBslMPSGHCuOzYZafdCskO093dXRwcHETENOoZMU2Vw1Hgc9qRo0Jm+MfjceUYKIqP2CG1YcoG2f/YA8h9Bltc/hkQTdTJSh5QSp/YCgDQo00ASwMCRwZ5Hv2h3YyF+2RjZUc7O6AY/UZjmm4N4K0zniw6FzrkQui96HN0Lwuu5cRG2LJH+wyMDOAM2FB0dtR5j5+TjbkNqceV5+a1kMcmG+v8zlmRgseMNu+xw5i/X+c88l2UoL9n0Jn7iZJlPfEMDIgBJEbNz7PTCmDn3cir00ltNHBw6iro+rxbG0ucwcFgUNIDvYWHf9kBiohCyAE2XLyPdc4xShSgMXu7trZWUsQWFxfj+Pi4GAXGgH3dpOFBSDKnjtJxQgCMurN0Iqank2DEG41pIR2eh2NNMSYyJNrtdnH0V1dXYzAYlPcMh8M4PT0tKW/MD3PgrKZ+v1/S+4fDYamzAKOOLGEkfXa0qyrTTwgQ2wn6bv1vfWh9jKO+trYW3W63AKiIKBkrHgcDAOsSwKB1LdtMAIcQFC6EhROOXNle4OTzN8uWdZ5JcoAAQMZkNe8y+cCaJ3OF3yG2iD6x/aWOtLRO4GcTAFnHZt1nh57r9va2FC/y2sv6i/GnXehut8960jLDWjIgzM+37vPn2bbX6ULWH2POHHm8kA8cXhPh6AlngdhOZbKVfiL7dfOTbVOdrfJ6QaZYx7OI8LpMGPQMY2dinz7VObW8P+Mq35f74+sxYGsSh2dlh5j/M7GaZdRyy89+7mPtqXPWM9Y1XsnYw+OQ5YD7Zr3XOmNWmzIO4drZ2YnT09Oyj9ty7z394D+cD+oFoM+89//+/r4cy0d0HiIMucGJiohyVCC2i+1LOHc8dzwex+vXr+Pm5iZ6vV7s7+/HDz/8EHt7e3F5eVmwPbLrGmFee5AW2EHSuXPUmu94b7YJPewZ2w6vrq5KevrV1VUcHR2VmgFcZGu5ECJjCP7gFBMHz2w37OM4UMH8kmG3tLRUCjcuLi7G4eFhGR/wDGv98vKybLHY3NyMDz74IC4uLuLt27eFwN3d3Y3FxcU4OzuLw8PD4ldl/wJZubu7K3UiCCJC+tjG0R4TzA5IGrOsrKzEixcvYmNjo0IOgAPR0XwHvAVmyYEmSCDsAiQ/8s0a8Hr00fHYeogb/qftnj/GinklG/zg4CD29vYKTsRnZKuVAx3IDNiSWgX4tsjnL7neKxOgjgCoc1qyA2VDEBEVwc5KyoVmsmGMiMpCxwjA+gGIMNAIIxNERItnZ4fakSwuOzImGDCsfoYdUgsaShMBs/L39gU75yxUGMV2e7qPk/td8Ij2ZABkwcgREubFbQb4872chkw7iYR5UTP+VqjOVPB8ua+0zaQMbahzsh3V5n6TLciVnUfLmZ33TITMMt4mIDIJ4c99MT5eKwZ4ua8GfBn4Me+zogUZxBrouM/+me/UERCMH+1lDkkBzCw6MoscsI7tACEPGCxknLWCEYMw4G8eB+SOff1mj2FcnSLtYpzoDgNd5MDEHgbeZ7UvLCyU9LDJZFrlvdPpxPX1dSnY8uTJk3j79m1sb28X5xNQQJvoc24TZAnONePD+uj1emU9ZeYcIIMBYg8/GRh3dw+1DRqNh8gyQGx9fT2eP39e1hVAgywf1vLa2lol7Z10t9evX8d//dd/xfX1dbx48SJevXoVm5ubJRLBkamkbZJRMR5X9+WbyESneB0wDqQl2jG+vr6Op0+flqJFjcb02DwTLLQZIEj/kLkcEWq1ppWHKfgKyAEU24Hnc9tH+mZSwevOet92z0CP5/Md1pbXHfJp3Q74gfy2LreN+6lrlgNKW63XeLfXF59npy0/y2Njh9u2gTFhHbBmc0p61n8eX+t/xoXnWofSP/+MTQEEMv4+rok1YnvtjBA/k3e7blHOnLMdsz00lqhzxrnoD2s+f5YdzWwL0AvOtMjbXLjPY2W5qXNu85Ud8bq22M5lMrfuu7bbdbY8j5H/PsuZnmXrM35wv3JfjB+MlY1j6vrsZ9a9a1a780WVe5xK5genKgecuFxjC/yLzoWQg9AfDAYzs0ncvsXFxZLijdMPMU2mgavHHx4elroFxvV5jtDHEVHsIsEKk3hkNrLusMW3t7eFCBgMBoWcPzk5ib/+9a8VnHJ9fR3b29uFtGWLm30f6iIsLCxUHGLS770NmTa5jgr4D9IzIiq1gegn2yZcXI9xt11D3ugv63phYSEuLy9jZ2ensp3i+vq6ZDlwohOkjTM7r66uSrYAY52DZxClbB9kjHJRUpxiSA36gpMOYWSZrCPOvOadPg/2jIiCKXkODjbvsy5G93DqDv6j1xDEi9eWjw48PDyM4XBYiDjWEFsePKf2AxkrY+FcWP59rl9EAtQxj1nhW3EZKCAMXrQ8N3fC3/X3+SyiWgQwGxqDf4MpvmfnLxsGp4W6fzyLCALRPcBINtpOuTFzHlFNySsTIqCW2xwxTcejXfSFMXEqbo5m5D7zOUoGYI3i8BjYGWPsibbzDPrpqutZTgxw+Vt2eH7KyCJXnhPusXPrLRl8bmBJX3i2ASbz6OdZDk2MuB/ZQc/KL4ONLFdePyYLeEcGCTzbANcOlJ/ltvKdPGZuG1eWI/7m7S58h7UBiMCwoKQNnDEQ7G3jZ8snDjfvJXpOWjHbPTAee3t7ZdxwlphvHCOMEnsN2a/ImcB89/r6ugAP0sbPzs5KehxtiHjYZ7+xsVGc37u7u9jd3a2kcpOZgOz7vGK2ERiIIL9sz1lYWCjbFeijK8wij8iSHWWz18PhMDqdToxGo9jd3Y3xeFwKGqGnzs7OSgQA4MH89Xq9+O6772I0GsXp6Wl8/vnnsbu7Gy9evIhPP/00nj17Fp1OJ54+fVoACRlQR0dHMRqNSqQA5ylndSFjdliRE0gkmHDGim0P9IMMleXl5QJMMZgcRXV0dBSrq6sxHA5LOyOi1IYAhABIIV/H43Gp9QDBgazC4lOUiigPqfisN4hswJKJUwgX2wtHcvg5F4hkviGEIqonKtg2ZXI1r/06PZPJGT6zjuS5/n6dw+arjrykj36XbZbtfp2jZZ3o9+S2cKFXkAG3H/1h+4kT5Ewok9smd7KznQkHnsdndXNDNMvYwONdp+czjuCeTKTneXIwBDyBLJpYc//sxDtgkMmCusv2yPKXZcmBmjq86LnM+K4uqJBtDX/LMpTbMqsvmWyYRWb4b57HWWsyf5/762Tc/fK69QV+bTab5TQSkxBsezIGglSHfKfeDLbXUVki7VzIrv0CCg16iwpryUffTSaTOD09LfaY1H9jataPcSGOETUMGBccP7IVONrPkVyIU/Q/2QqTyQO5t7u7Wzkumcg/Ohbn1kcc2v9x8VzSwS1jDoZS+4C+es8/2wzAOBAEkDUfffRROS2mToZpY6/XKwVoj4+PS4HIg4OD2N7eLkWNGQ/WK0Q/7SWbwUcnk9HBe9HdPjYR+XTQlrnr9/uxsrIS/X6/siUrEyPIGWn6zLMJWOby6uqqEBrgqmazWfbbQ2SQDWt/j/dETH1U5Ju5ITvABI63TpEhB/njPrHWWJeXl5eFCIAgQvZZs/bV3vd6729a2XPZQNf9Pf/vz62sGNisCLPhys830+7PUOyApqwYI358VruNTB1oMfhikdrh4Zmku1ixmgRA4dtweT8SEUmez+VFbOIjGzdnGNBu2mYBdh+JaKD8UBJ8xvjgxKNkqWbuzATm00DBbTYRUAf26uaJBZeJmzogw/xlBt1zxOfIlg2I5Ydn+l25DSZibHhxUP2Zv2dHPz/P8prBn8fIV3bmfZmocJuRQ8uCo5p5zxLrDQcOpdVoNCrRXsaZdvskARMQRJ5NIiwuLhbHGccf0gzFjEGGTDB5xvjd398XUgtZgD3miJdnz56V/dKsXQqr0eeDg4PyfVLB5+fno9/vl0KBOzs7hTRgr5d1D86qGV2O4qPaOHPk9F2PK/OAzFxcXBSjkglWfietzc/mqL+rq6v485//HFdXV7G6ulrZh08kg2gMBnt/fz++/fbb0mYA2t7eXnz//ffx4sWLUiV6bW0tJpNJrKysxMLCQhwdHcX+/n5Jg0OvWM8wxiYe0Z1kOEAqkBkwGo2i0Xio0YCMUaeg0WiUVFYXLDMAzvLvuQYosJUD5p61ANCAWIJwYfz8LN4NYLOjhcxi4Fmz6A2M/mQyKeNlB4wIB2tjaWmpvINtAER5GBPrjXz9lH6jfcYDdmpmOb3WnXU2wpftp+WeNc6Y1LWdZ2bbXgeYsgPm/mQ7yjxnQsJ/8/Owuc42Qu5z27Mdd5/53JEy34++QGb8HY8hoBs5yTbNtpn0VafcIqf0q66vdbY3j61/dxv8d8Yoy08dqWS5ywRFdsjr3pXHwRfvz864CZh8eS34b3X3ZWKnDnu6bX5OXnt178rt++CDD+LNmzeVGh049xFRdBy61tFxHCb0MdFQ3oFu9ZFoyCZ7trGDJq95vkl/HG1IY+9HZxxMmLMPPx+35nWB7oO4azablUwAcMZ4PC7bDUajUaVN1Fyhr9hm+kjl/aWlpXKCAPbCvkPOvCCSzvvZXmB8TbupM+bjyCMe1iwF+sbjccmQGwwGxTayRhcXF4uT3Ww247vvvovPP/883r59G8fHx9FoPBDnp6enMRgMSpHX6+vrOD8/j263W7Ik8BkyTkXfMOfGI8yX6zJFTIvnMYa00/4adSi8dYQtGox1o9EoeI/MCmc8jsf/j7Z3e24rO863GyB4xIEgwZOkkTwe2xMnrlzEV6n867nORcqVSlKVVGI7Hnk0kigeQAIgeMbhu+D3LDzo2ZRHrvrtKpVIcGPvdejV/fbbvXrNyglGrVZrqYAgF3V3IuJHxyxjn/AJceqRZ/ul4GZIHU6yyNncBIM8T8hlrVYrxJmPOIQs+Wuuv+qIQP9uhZWZvirlZMKABZjZVqd0oEDMTGcWlEnFsDKoWVnaQPC/IyMoEjNTbr9BmA21GW8Mq9NaaJ+BOD97UdIOkwW0EwWUU0szu8fvTmuyU2RAwth5/pwaBAPmNH6DBwwCBQRzRMK/Z6Vt4IAc+H4yGvhObifjws9Oz/S8Ac4NNjF8BixZJquAgtuWwQ33OZvAQNjzmPth2bTy9HOrHP/8/Kr1yWcZ5DAPEbEk/1wGy8gbitMAFMeGcV1ZWaRVu8/uu2tMGFxhQLe3t5dS8b3u6/V6dDqd4mDzDP6xj5qxNPlF1DViEVUeDofR6XSKQY94qlXgAmqs5Xq9XgoBoqivr6/j4uIi3r9/X6rvWradxgbAoQCS9RiAy3Po7AecdiLe/IzuaLVaxSgwNzioGB9IHcvgyspKjEaj+O677+Ljx4+xsbERnU6nFAnC+OBA/+///m+8ffs2Tk9PyzoiijKbzeL8/LxsN8BgNZvN2NvbK4ThdDqN8XgcZ2dnRZaQN2QB59vyhx5xASCOdjRguru7i83NzfJdqvcy5uxjdcEeyASfJkFb2MuKHBJNuL29LfMCsWMnr16vx3g8XnLUDYyQEQBLBvEGhtZLLhKFDNBmxshnSZtQQGdzbBJr3frkOX1TpV/9v9e0Abd1inUxwC3ro0wisD7cR7c34xA7gNbx3mLgPmAn6GNV9hV/MxnJ+DNXGRPk+axyFH3ZtnOvnXeDTmMRywJ9rNp6kbOzmAeTIrZNZLiYAHAfqsgXg2Lfk+WANtlBr3KA+W5VZiF9tvNpW2EbmMmO596Xv5OflfGWv1flhFeRPPl3/8tXtu/ZpmeMndekcZuvf/zHf4zxeBxbW1tln7G31EAI8EzsN7ad/9Hl7O138Ov29jba7XY5NrbVakWv11sqgodMsy3BOMSEg7G+sReOLLqEzD4i1q1WqzwXksFbCOr1etm7TjucWv7w8BAXFxdxcXGxFIVlay/6F52AvqA92IPsDz0+PhbnmgyC+XwRcOGZkA04lxAB9Xq92PxOpxPb29vF5jH+kCmDwaCMBaQB68bFFj99+hTv3r2Ld+/exXA4LLYGDESfqSmE7uh0OtFutyPiqc5DrbbI0MSHQBYhaJgLAo7cD3HD+OfsqHa7vXSkOoTI/f19+S4OMltKIhZZJrbNbGtot9vFppKJEhHFqSZY4WLDtdqPMzjI9jMZ7HVp4tpEj/1Sxou6Bv6Z4rO1Wq2QCAS12I7JcYVfcv1kEsAOwnMOUnaeWHhmibkns0V2GvmdCAwRDvbh2khHLJgm2majmQEFz3a6DcJmwsHts7MUsczM85kJC5QJwALDbDIDEIjyM5HhfmDYnCYM0HeEiAvFnAmAPCaZ6LDTFrEAJJPJpKS0Mob+G0af/hsI+tlV82TmGfnIc8vYGkjzLBwh5s5tQp4Adc5+MHAzK5vHylcGAjzL76GdzE1+lsF6HhvPjWW26r0ZBNhIZmBg42OFw73PAXwKxjnSjuPL+Dsixjrhc/+NOUBG6DdOO8wmCpnCbqSLMy9mRa1Y6bMJCNYTkSoMOroEB3I0GpVKuOx7w5BRGT7iSfcQLXh4eIjRaBRra2txdnYW/X6/rIPV1dViFF++fBk///nPS2V+UtBOT0/j3bt38eHDhxgOh0vOrokqDIznz2vb0Rn+MQ7IX71eL+tsdXW1nK4wny/2QjJ3p6ensbq6Wqovk34GucDJC4wBhItlYj6flwrpyObq6mp8+PChzBlrleiRzxbHofbRavP5ogp1o9Eoxp4oy8PDQzkzmIq7+/v7ZZ88ESv05vv378ua4Z2Mv4tVMsYcl4QxBgTQN0eCIUTQK8gfa8BrkrFjzhxxtu63g2HHDjKNvhCR4n/kyCmJyIh1k3VwlbNUpVeqHBw7SfnZWe8QFWI9oltsp2yPeEaV42k96P9Z/yaUTDZnrIDuzvbe72f9uX/GEdyHPGXgnx18R4xM3GcSIIPIbEuyXarCaMZYyDZrNhMjyKZtUZ4LnuOxMt7Lc5Qv2ybLuD+LWOzHtWxlBz1igR/yHPu7bjvvyO+rIomMZ6tsexUB8JzDn8cwj9Fz9v1LCQCPT+7z3/7t35atUX/+859jOBzGZDIpDg+kJ86/Az3YOTuHd3d3JcobEUskAiT1mzdv4uDgIObzefzf//3f0nFykGsH5YwAACAASURBVP042eg/FxwGA6AziCKTjv74+BjdbjeOjo5KNBi7bz3vNU5b0d0eT5w1R/kpDFyv14vziK4Hq2ADCCyAe8nau7+/L1vp2IeO7DLOvJvj6qgx4EJ7JgOQBTA4MkN0mjmaTqdLxxHWak+ZqhyxiJ00LrMfQTFHnFOyGPv9frGLWa/Y7hN1j4jSHwKN1OoBZ3GUMjpvNBot1Uugro+Pf2fcqV9Au7P+wiZAWjHvkJ5kkqBnGR90eMRTVgDP4H3WzfgXxmlcyAnvQPYpbt3pdMoxiJAkyBGnYXDa0Wg0Ktmr/89JgMzq2hHlcwMBL6js5NtgOe3TBtURaxRCFQlA+wxusoHMitQMuFPbaZsFn3ZZ8VeBAH8nR/aZdN/HlR01DJkdnpwdQBsyKHEkvwqkPfe/MwPy/JmNxSh4nLKhqSKHuN9trwIM7gf3eyyt5Pg/F05ELhlLywjP9bjl/zM4Mbik3XbYLPeZIKoCnHzusfD45fG37PI+f24Z9Dha7g2O8jzxPs+bj/XymjNBRpSZzwG67NP2+/x32oZDBUsNow8zz/E/MKCk8DmN2XrCRY5wMFgHW1tbxYjQrvPz8wJ2kY3pdFqADGnTeS37/GKOPZrP59HpdGJ/fz/evHkTe3t7hfWGTMD4kpoXESUdjGfjFPPO+/v7kvYHu10F5J2Gjr6wXMzn85IFQUVkSJpMnLGdw+l/OPaNxtOpAjyPsTYQxdF0VWlXoWZMSR/EUPJ+n6dbq9UKcCCbodFoxN7eXsxms1JZdzablcjIbPZ0ljR7R+fzeYmqsJUDHc3fcar52ftZmT871Mh8JhKoTF1l67JDT38dOa2yL17Ps9nTdhkAj4mYWm0RgYlYbAkzMUGxSJOfvp5zhNyG7Izb/mVHx85K1lesVQCcSYDcHv9u/WXSFRvm79i2+9lVtse6m3Yz5vzLutgg0zrbetHkgrNwTPjbhpsAMDGdyb88Vm47c1JFCHg+HRnL9sBz+Tl5qPr5OQe4yiE1Keb3OFsBQF01h4yx58nkSXaSPbf+l+9zG93v5z6ruqrGPq/xKsfeOPVzuC2/K/+tyrZHRDkidXt7u+wXp2q5nSYcFweacMJxVE32e0sSadxk93U6nXh4eCj7zM/Pz8uaN6bzOka/8syIKA5Tp9Mp/kPE03rZ2dmJ/f39UsQPWaCtPAfZj1g4ZBzHNpvNijNsLBGx2J6Qi9lhR3DaWOu3t7ellgwV3r3HH1sI1iKqyz04e0T1GROvDR9bB3GP040MkEHY7/cLXuI+O9CZ1PP8RCyKi6K3uQfiyGvZpDh4D7vrTARwfavViv39/Wi326XwI7qJjAbGkFo8V1dXMRqNYjQalT5QFwHbR3SdLAh+9xzh9xi35tMNjD8ZKzCa6zAwfpA6PpaevkfEUj2H9fX1coQlBBZ/5ztkcOSsHftAf831Rd+yU1OlBFFCVuhW/r4/O1nc42g8wNhC6is7Tm5nBnMsZjNbvIMiHhhyM55ZQbk/CD1GypEbK3RAaCYwaL/TIg0m+N/RfX/XRi+TH7mtVh6O1vIsxtrz7AwFj5e/g/LPDjCXlYrBTjbIGdQYoHpM3G5HfPx9O6EeOy/0DGSdhunPq4BCNrAG6pbHKkCc/+Z/rJvcn9yOvFbys31/7u9z7clAgfQ3M/GMH++cTqdLjpMJIvfTpBhjCzD38Tvz+dNRmTCuMJ+sHc8RgJBsIZMLHP9mx4KoM04ma5f09IhFxXkUPNXkuSAVHh8fY2dnJyaTSWxtbcX29nYcHR3F7u5uOf5vMpnExcVFKfq2trYWOzs7JZLRarXim2++icvLyzg9PV1ypDB8zN14PF7aO2e9yLpm/ohMeP7tXLElAvCAzLnaLuPabrfj1atX8bOf/SzOz8/LGc6QHzihOVqP4XQKnp0mHGp0pQ0qcsP8Y/zyqTGAVRxbnydM5P7i4qIQChsbGzEYDIoDzbvRCyafvUeT83qpP3B7extXV1c/qmKNPkJv2pHzEZS0P+tr62l+xrgzjtZ9AEdvl8kOETqC++34ery9Xj/3+1/6zLrHfTDx43/Y2udse7YvjDHvcvu9lcR62acImRj3WHiu/DzrwwyOaUO2y9m2YW/9jqpn5O9mW551eJVtwL4/RxpXyZfHwP2tIrCfc469tqtsu9ud7brvcyo/n2eCqYqAyVgzr6/cJt7Bz85yfc7hz6RRfp6vPId5bKra43fZ+c/zUuXkV/3/uf5wUbfGNahYm4yjiSrWYs4KRscQnSVy2Wq1Ymtrq0Q0b25u4vT0NL7//vs4Ozsrdipisf0wZ5dCIkB+sg7YZuftKo1GI46OjkoW2Gg0isFgUP4ORmAu7fTa0c94Dj36+Pi4VAQW20pbsevui/ETbUCfe5sNMsI7SDU3QW/dSRSZ4oou5g0GMH4ns8OBDtoYsSBYaA/ty5eDsrTfthI8iA8FzmP8bCvJusMHQn7m83nJfKBv8/lThmG/34+Tk5NCft/f35c0fJxtZKLRaJQTJzyOZNBhI6bTaZkTCJXhcFhOd4qIQgpZb9JPb0lw4WpqR0DsREQhxkxOr62tRafTiW63W3xR2y7mNOIpGBOxIPgJ2Eyn07KN4kuvv4o6sEGxA2cFnQ2dFSj35ciAFSAXwua9MFWOqJ8dsYgAwLSgJGB0/M6894TL4MMGMYMH3ulID4sr71nLqYRuN6kpCCsLfz6fLy3aqoiJIxI8z8Alj6+3ZnCZoTPgBNjSXu+fsTw8d6GMrOCt2EwC2ZAbRHgsWbzZcWZOPA6WET53JKXqfdlwOuqfDXgeB8bL41oFttyvDA4sazyvChB4Lfh+ty87YPm93OffIxbp6DieJrBMpLHu6aNZeZS75YwIsPeMsU5hwk1+0c+IWFLeTnsaj8dRq9VKBVeehyHF8V1bWyuV4NfX1+P6+rq0h36RMUC/ME4ww1SUdRr/fD6PZrNZ0hBJSRuNRmX/Gvvout1uSSs8ODiIZrNZnGanLUfEklMNwbi9vb0UVccQWTYAdXYeXr9+XQzrbDaLo6OjGAwGsbOzU4xnr9crY9lut6PX68XKykoMBoNS6OjTp0/lhAIYawCX99wDNtBrjJudNdponUv/GQvS/6xT0YPz+VNxJMDqYDCI+XxeahLA2s9ms2LccaYBbjawvINtBBQB4rv83c48EXVnmCA72C4c3vv7+yL7BpKsE9pgXe1oEfLI5y6m5MwPZN46izXr8XtOZz+n67iq9JfvsZ3JUSv+zlgyRtmm+r78Xp6Lc20d5Kw75tcYA7kxYZBtqR0g23buzU5/xHLavp1sxpP5daCAPqFfnH7vNtmeVGGkqrHOtsJji7NQhTNMkrh/VfPh9vAdbCv9zu30959zWN1u9IPbyndpb36mP8t4rUp2nYGQn8+9nyNf/HnV/5+z7VUOfxUOyXPp9lWNZb6q/g4W2tnZWYqcRyxnvoJLkU/kn3djw8lYo2I8aw/CdDgcxunpaTk1B91FZL5ery8RA9gAnENs52z2tDe8Xq+XlHvW+v7+fskQQMeCCbClyBIO4Hw+L863o7T0//b2duloW2oVOBpbq9VKMAMdD2bw9jZqFUwmk1Js0Fsq8xqyfWLMqejP9kkyKHPk3/il1WoV0hr8wfsYd8hvrx9nH/B+xoYtDdhAMkoifnwymzP9cLaZd+srnHmKNHMftZQoBoj842zjZHNPRCyNAX0nc5AsT2QU+4wd5+g+6wAceIhrcFdElOfTfmTGpzpgp2u1WjmRiiAHtQzoE7oTDPXw8FBwK/gFWUW2TM59yfWTSQA7VjZyNqhZyWYnme/iLPh+AxyELRtY2mGnIzuyduz5H0YKEOjCZGQZ8CxHSMwWZSVsltROHn30JBkAOK3K/TNoq1KynmTeB0jJjpfHNM9LZttRVsyv58bgJBMzjIH7UHX5e45eWZ54juefNjKWdo4MrlgolhHSovN8MRY2AlUElg2zow2f6xvv8P/5mZ77DAYy4H6OCDBg8P1VgD33zWvF3+F5mQAjColTSVr0fL44GxggwfyhHJFLr4PpdFqYXZ/VSpEg5NNpZhEL5x/mmL/BfOJgsl2Id0QsiCMXyYHhns1mhbmHfTfhQDRjMBgsMeQYlYgnZpZjiwaDQfzmN7+Jly9flm0OEVH2rbOHjGq6FxcXSyCI4jb8jgNspnl9fT2+/fbbOD8/j7OzszKHtJ21YGa/Xq8Xo7q9vR0Ri6wH70Gkyj9GnuMQAWwPDw8l/c6yEvHEcDPOyI2PPDTggiQws+61icwCHAAuyBVRBWTNepaou2uyYODr9aeK1cPhMDY3N8uarNfrJWqF4eYECheA8/aCTIKZ0ECnWj9zlCNzYjCdCQDsFYDTxEnOOkAuMiFgm8i+Q0dinM6anQzPSdYr2ZZb32Q7nAkAA8kqJzO3xT9nG+a22Km1zoVo8HhxZcc662HGKZNUfOa25LnJutWf2Q4ZA2V75VRPBxe8TvK4VJH9GZfwubdi8Lfs6Oa+2zHN76XNdmCeczw9zoybiRre7XnKfcnPzM625TlH+jPJZTlwH92H/O4qMuGnEgFV66bK+fdlZ+S5q0qeuarGDme11+vF6upqbG5uxtnZWXHssPMRi/3bTpcmC4rvEvWnPgtEP3oZ/WP8bkeUPrCmSK3HnnMu/fr6emxvbxenFR19d3cXl5eXpW8m3FynxYQo78c+YxOMJckipB0UwWPteL54PsQJNoMMCbY2YmN5DgELbCPtAG+Amb39ERzllHcHGhlrUs35G/aKSDrbGdgyx7hB4LBmyCZwtgiBBTAR2CPrH+YVrAZ+Y07RHRRKjFgEM5zJgcw4m4L3Q9bjyEOANJvNIgPj8bgECcBoBI94D6cr4OTzHE7boU0+vc3Z6tRfgAxA7rBH9lVoB2vWdpfx9JqBhGHsWRdXV1dxfHz8V50Q8EUkAI1wSkoVs5kdTT43qxuxXM3WBt1ODAbSTLsZSit9GL/8jMwWuy8GCbQZ42hmlO9lRztiURmYZ9rxsuOHMPkzKw3eyUICBFpJur0oh1ptEUWsSo3zXBgk2BHL4CQTCL6yY2pF7mifBdhABwXlNlURLSgH+s385n5kwJ3BDfcbUFhWs9Nc1efsdHuuPS4ZRH0OCFSB5wzGMjjIYC+3Mf/ssTFYzaSA2833Yf9Ju4uIUgDIRIcdM4wN1dN5FvLmeXBGCPd5nkndhk3FMaYdvV4vvv322zg+Po6PHz8unQX/8PBQjrzr9/tFV+BI2tjTT4xJq9WKx8enCv5XV1el/Y72mk2OeCIDPn78WN7/4sWLkl5PP9g6QDSfo3gYOwAPbaHKfb1eL0z3w8NDfPr0qYwT87C5uVmcdadNdrvdUlmYSApZDERKGHuMWLPZjN3d3eh2uzEYDArrD/BD33Hc3MrKSjkiiChPvV4vEXzeY7mDRGJOcXwxwhhM9CIRIXQkhhPyhnVDOqLJzXa7XYjeyWQS3W63ZDyQOgngZZyJtkCecAqAnUNkiX45QwoZNzng6Kvbl5071p7XLPrQYAtSzXbKwJcx8UkaZPVUOeLIMno0OzOZBLCu4F3Ygeec/+wEZrxgW56dJGfKZF1rkrbK0WTuaWMm47MDnB1BO325H5kYcR8cAMhOED9zVWX42R5Xtdfts01k/NFt+VnW3xHLTmLGS/TRWQZV5ABA3Lbd7/C9nhdjJu6pIgPynGbHuIqg4He/y1dVP6vamec2r41833NXlYOf25o/8+f52Z9r218iDVZWVqLX68XR0VHZi9xsNmM4HBadSjYaJDrOHFXzb25uioPE9znlxoE39tIT9QTb4uQS4WSeVldXY2dnJ7rdbpFXor7ezmU74/R07DAEPencEbGUoo2ss+UgYoE10ddOqyeVnnfjFOJQchLQcDiMi4uLuL6+XmofW+gIPNAm5ndlZSW2traKLeSdOOvMtfEI5DaEPScbOeXc2/xoizOx7HtA7HQ6nXISDn6ISQCIGE4NwPmHLEAGsFnz+by0gyNrCR7QTjvZONa0CwxqQgL7CClC23DS7XsQNMBG2Xa7EDEy4yxC5tRp+IyZsxDQ6aw723x8I9YFGSLYNdYA3/P6Rf6NicCWnB4F5t3f3392zVddX3xEIErA/xAcX2Y03CmnFSHgNnI5cmgDx5XTv63oEMaIZYfZzLqfw7tQAE7x4bsGD04d82Rnw8jk2om3I2xjE7FgWvkddpPv+V203cQI91Y5tQab2TnMEQgULgCXhWUiAiDJvV74LlABW2cDhsDjcNjQGUD6OwYALjrGeAK2XTAuy0iWoQww8/zxcyZ9srOcnfkqOUPuGSvLA9+zPFU5/znK42dnsGOHwmDL/XLbq4DCZDIprOLLly/j9PQ0xuNxRERhNp06ZhlF2XFMGcbDaU75soFCR1jmHh+fjtThHbPZLPr9fvzP//xPMURZ33CEysHBQTEA7NniPvpUqy0K1zQajZJyz9ji8MJcozdglYnAHh8fR7/fj8FgEL/4xS+i2+0unS07Ho/jd7/7XXz33Xfx9u3bYkBwwtEBjClEA7+PRqOi/AE7Zvzn8yfH//LyMmq1Wtkfn7OfIAyoYYBh2d3dLSCN4w+te9rt9hKAIo00Ikq1aZ7Feckcm0PqJgX6AFbYFIMTxp6tB8wpZ0xTbJBIuU+yQM/Y0DM/PtPaJARRCFIJmQ9HHtA76AUTuplMJhvCTifADF2AruN3+uZihUQpWD+OZpl84/0GD+gigAxgEv1tR5jLzp71hq/sqDjaZvL1OQeEtvl5tiW+z+9zAKHKaTWhwPN5F/oqO/+MfZXjav1jXWzwad3NWvQzeK5lOtvirMPdTz8rkw+ZDHC/su3z30yYu39V2W7uswl+g2na5y2L2f7mfhibMP8mqx29d4ZBtr1uZ1V/n3Ok8xj5mdnJd1t9T9Xz8jPz79lJt33PclBl25973+euKuIh4il769e//nV8/fXXRXdSSR4nFJ1nh7jb7RbseHJyUiKykKlZd+C88zxIcc95xI+zSSEfrFuQXxx3nDfspB20i4uLQmLzj8rqPukoIkqaPjaU9e/CxS6oSkFgAh3GtcPhsNhp1ph9DYjqiCenn4ix5QK9zz/wresEGBsx9vYz0Pmj0Shub29LCjpjaBLSZOH6+nq02+3Y3d2N3d3dWFlZibOzs7i+vl7KOmi327Gzs1P66z5GRCH70Qkcd8hYn52dxd3dXSF7GIvRaBT9fr/4RPTL4wNxFBEFt1kHRSxsMhjUdQrwachMwK8AZ7L1czKZlIAUJD9bBbGnrAuPISdWYHPwB8ligTSj+B/v4HcyWyHfyFB0VkFERKvVKn1dWXnauvn/jASwkuLnrIiYiOwI2bHzgrTDHvFj4GAHjMnP73WbmAgYIwtNjsJMJpMlZgkhcPqqgUM2BPQFwc9OG/cAGg0G/XwzomaMssNukJPfnY2Sn22QidMAY+/9MIx3Tp2zYuZ5WS74nLb7pAVHHLiPFBhXlvWYmihhvnm+iQ+iwk7FYYHwPoMpFLLlyM/zGGYiyMo8g78MTCx3BrcGPx5jFJKdfTvWeW55j//u+fJ6fA4o0Ba/y2CBKuqw3hA6rAH3g4rjODIUaiOqzD4s5oA547swvwY6LurH5zgwtJPjcyzjERF7e3tLgINo+Pn5eQGwvBdDiILGMDA2OJk4yuxPhGnG2UOvcO7yd999F+fn5/HixYtSnObu7i5++OGH+PTpU2HrGRPPJQ6sCx55/UJmoFs8D2yDIHUNmWFNUpvg4eGhFF3yNZ/PCwgcjUZl+8BgMIharVaiPOx/vL6+Lic7QJxQcfry8jIeHh7KnkR0szOFAC/0PxMC8/m8OPiAGAgAUu0o2MczSVN1NIW9+bXa05YFzo/GyM5miywHZ56R0cLzrq+vY3t7u6xX6yJ+xxEni4PMiKy3TeQ0Gk+nLuSUQ9Yia8ZgGhACWVDlOPIZWyoiojzX9jk7uNZl1mdZl1hfPeek+B+6zvojz79l2uQnayBi2a4YZNvpzg55zthjLqw7uEzS2KbwL+OW/BwAZf7cBKL1dsRy0S3bjHzvc4QB42s7l68q/FR1ZXsDCWDb7tpKPAsQm4s9VslmxI+3egJmrfedHeS2ua1VY1Ulq5k4Qe64P4/Lcw6+5TUTSG7D5wiJKoffn+U5zG3xmLq9eZ0+N8e/+MUvypxSxIxIO7YDu4wM4wyxvtBTOMzYRfQa+995LnjXhbA9zzhDjUZjSdfxPvAIpD/Pu7y8LNvUkNHBYBA3NzelsOz9/X05ds61ASKi9LnZbC7JOOezt9vtst4gNfjfTjokA59zjKCzaJhbnl2v10tkHNvjNcwao532F9iewLbGiCiEN7JAmxl3yz86MCIKBmIb4ubmZuzv75f6AWSeYY9WV1cLWXB2dhYXFxdF3txG8D5ygLxcXV2VgAnZKLe3t/Hx48d49+7dEoZDZ4JlXFQPO8988j0fYYg8E5gABzJv4EBOHLi9vS0yBumzvb1djpBGxo0LWS/IJYFKcCHjwJYQb+eAFIAYAI+g+yAmXFcILAhWr9Vq8e7du/jVr35Vud6fu774dAAm2cbUSsYCy4UAZcbdTlJOb7Vw5mdFLO9pBDQ7kmhjHLGcsu80mBzp5R0AACtaG4jszDHhEYtCKTb2TtnMDjzPcVuc7pIdPxsyM38820aARZSNhmsQ8LsjbnY88pYNywJjTvsw4lVgiXZhIPie245h4f2ZdOA9Lg5ix5RxzuRIFVGTgbzHt8qoAzYNIrNCrXqGDXom0zwnXl95zt2O50BQlvkMXixfZsGrQAKO8srKSnz69CnOz8+X5NkZHs7sIT2b8Yehd9+n02n0er2o1WpLhJ2LqCE/MK2eT9oB2WDgj4GCra7VamXfGsYWBh/nzQVEyRQgNZx3AlAYYxN1FHWBbY6IUhjw/fv3Rclvbm4WoJXnlZR6G2yMvGWT9uLEMz4YbsZkPp+XIoU4spPJpOxnnM1msbOzEzs7O/HDDz8s7eP3Vg7qLEDwRET0er2YzWYxGo1KUSIz8Pf39+UkBI5AhNRYW1uL/f39mEwm0e/3fwR2metms7nEhKMvYb7Zv2jHgc8BIXY8qc8wmUzKdg8TTyaEOcrKBSchGCOiADzrpvl8XuYe3Y2uACDUaos6GyaDOV2i2+2W9vAOTiY4OzuL0WhUDL/1uvUc8428myiyvuO7vky62snJDoX1m0lR23Z/xrOtK6vI1OwIMXfWh8hI/tkEAfNc5Zyx1tyeKn1f5fDRLjvyzjhwv7Kdtm7Odj07yHlMbAvyPHhLJt+x3eVnkxq2lx5zZDYHAqrald9RRaTkebOsmljJY29y1IGTLOvZnlaNYf7fc57lLX//c7JRRQx4XixfXlN5TDxW+Rn+LOPN3K/n+l41vlzoRNeq2draisvLy2JLrVexh+ytpr4ObXt8fDqTfjKZFJ3Jd0ajUbFL2Cvvbwf3kQrvYq3OyDKhQLbb4+NjXFxclKN7PQ6Wdx8x7mwsk2i0i7bh6GL7SMvHf7i+vi54FfzjbDZIduoBkOllHefsLhxxxpy5hzTAf3H/OH0BfECAA0cTh9KFnp1Bi1Npm8bf0Afe6gH5T7YDz/L+djvJ9HtlZWXpRICIJz09HA6XvnN2dhbHx8dFtiCGcOAtOxHLp6cx1/xOlgX9BBfS5kyu4OAjj7PZrGx5wdmmr2C2ZrMZrVarZEOQMUDGQ7vdXtr+aEKV/yEGnNmCHN3f3y8dL+m+sH7BMycnJ5Vr/XPXF20HYNAYfDrj1DArMjuqsMLcx5WjYY54ZQPqaDMDkNnmKhIiYgGCDBayA4mCzg6YHY/cJr/bVTy9hYB/KCQbTQOFDLqqDHBOo4xYdujdZhfJsBFxCitp2x4TLiJaGYiZleN3O/C001Ea2gswBKCSKsRlo4XC4xnOMMExM5BigWYjb+faYMBRlKqx9v+AECtJnl8FNv2dLI9+VyZTvL7srLsPeSwzIHFbWHuO1jiK5jZZtgCE9/f38enTp7LfPzvKzF8GPXzmdZwzPGDkuSc7bnyOYaEaPccaofhwAnu93tLePiK9OF1UCHYhGzsL6LOIiNFoVJx+ovjIoWWSdY38OVuB8SR9DANIoSB+9rxYh04mi7R9xhAyIuJJ+UcsIsVkbjQajZKm32w2iwwR1W80GtHpdOLk5CTa7Xb8wz/8QxwfH8ft7W0Mh8PY3d0tJCaEDuCh2+3GxcVFYe1rtVpJuyRtkqOgkJP7+/vCpLvYDvNjWWXeccCtTyBQGFvG17UnbCP4HuPMnPF3WPR6vb5UvwHGnfmwA93r9eLy8rKsVSIc3utpQhoHxpEgACXAu91ux97eXqytrRWDzpnBm5ubMZ/Po9PpxGg0iuPj4x9lvvA7YwDYo6/00+Dcejc7IJ4LdHAVGW5bZn2YbRVjmKO+mZRGJnL/uD/rUeypZYHLQP85oiH/q9L7VbY4Z0SZiLDz72dY/1b1ocqBznjEc4zsmZChDbwXObctRk97vv0OBz7yHGEPciYjz7E+dLZPlWxkecr3uY22DVy8P4+nnas8j5/73YSC8QPvyvdmp9x982e25Z8jRXyPr885+/k+9z2P9+euWq1WUpRx3BxQmU6nS2fVu1o+JKX3hmM7KDQbESU4wLyi3ziZ4P7+vjiDvNOBG5zj+/v7EhVFr06n06U0f2TLkW0cR342PvMY2z7wbGoMOZLNOBF1p5+Ofuc5jFjsEUee7WivrCyOyTOWBqN3u92y9Y0+QhTgbLdarbKGSUl38dyIKM44mIo2+LhbiJXpdBr9fr+0y0E+ouw4urRtOl0UB0ReTEaT2h6x0MlXV1dlzK+uruL9+/cFz7MNcHt7u2AX63SIFMurZdh6azZ7yvSE2AHPsg7oJzoZ/5L6F6wtEwL0a2trq6xval+Qvch84ts67R9dacxNFoz7SXCGMSaT8OHhoYw/4/ol108mAazMMMh2UAAZWTFmp8UKNztSZnyz7nEUoAAAIABJREFUIWCgiYTxfsCWDRdtYmBh7/LzrMizcTJDyee02+DGJIHBOwbUffa2gtw/O7Q8A2VkR5Pv0l4TIk5vRuExPiiZPAYRsZQqy99Qbk4V8kKuAnW0gXnBEUFB8r3c5gz26SP7opwC6n77vchPHlunPxlIeu48V7QzkwP0dzZbHJdogGeHwaDNkSLLqAEdcpXTOB1tqQIKjJ3bkoGbiYsMDLwmbQyZ/3q9XhzL1dXVwogyrhFR0r2RH9pE351Fwpzc3d3FYDAoDjrMNwCyVquVKC1HwJGyxX0oYNYe+8ru7+9L9Jl+kHZ1enpa2sAYOgqBgSYKizH3vnMUNetrPp8vHWvotYFxpzo77WbN0T50jY0Ezr5/9lYIG2KuWq1WCI67u7ti6F+8eBHX19fFAWSfP0Uc19bW4vDwMMbjcckOeHx8LHs/r6+vy9gDtkj7NDNNVgH3z+eLUyR6vV60Wq04Pj6OT58+Fdmx3JI6yVYSnA0cJdI+fUwPF+AT+XeEdDZ7OgVifX09Li8vY2Njo6QuIg+k68Hke4+lSazhcFiIJqc8075arba0PYb+k3WGbK2urkaz2Yy7u7tyTCRRClIGWdfM0draWrTb7aJrxuNxsXPMg6O5W1tbBRQgs86Isa2zjuF+PjPxmfWEv1flMFu/5ih51kP5ypjB+hu9YuDndZ31Gs9Cv2YH0jaW3/M/5CWDvyqHMl/ZtmRslPttm+D54PLfkHdkJbeX321LTJCYoOIyhuE56ElkPGK5dhGXbYHn/S9hwzxOxkZ5bvL4WzYYO+OvKhKgyuH3ODxHzORn+PeqflrmMtGQ5S0HgvKYVK2/fH2OTKi6rq+v49OnTwXj9Xq9UlSP7DBjDWTPWZ68Y2VlpWRpDYfDQvpi27hYr5CwjL3JO/ArZEO73Y6Li4vo9/ullg/Ywf4DepBoLdFx6zFsJDrb0X+ccWy7i+E6g9jBO/RTniO+QxCB/hrHIme5kr3njD5ELPab49OQiefsMqLQJnLZ/95qtcp2OHDHzc1NOSnIpMrFxUVsbGzEN998E9PptJDQFB+OiHK+fcQiUwInlvHGDtpPwFeZz+dlm2Cj0YjT09M4OzsreN52q9PpLBX8g+hpNBqlACR2mXkCZyJL/H0yeToWeXd3t4yBnW+KHdfr9eJ8IyO85+HhIU5OTkp7yFagWObOzk4ZY9d8IjOEbBzjWfAj7XYBS/xs1jmkFlk8Jp9+6vXFNQHsDNuxMZPBZSVpwa9yVMyuVxlfvgfLY6OT2eiIhXOcAYr74vbwsxW1DScG1so/t5E+eAzMKBKRBZBVRb1RfjivfudsNitpP2ZLHTmxMvSePVKSUTpVkRUbTxsqp7igVDy/CLeVLG2nb3bKAcw5im3AQZ94pxdIBn1VERneS9vdrkwEWI7sWFYZc57Dd+1suj08g/dxr2WdfzmKzhi7z7SXtiCb2fl0ezPY8We57xm8orhcBJIUea8R+vr4+Fgijo4meVw9phhWHBLSorLcGjzQbxddi3iKcO/s7JTj9Di3fjAYRKfT+RG48Pgz9uwtJ9pgQoIUeafmz+fzYliQ/U6nUwwH31lZWSnV+RkDnHmyACAqWTP1er2AAYP6TBR4/xl9cNsZt5OTk6IPe71e9Hq9sjZgwV+/fl2i2Y+PjyXVj4wL2uDieaS5Acj6/X5sbGyUY34AUxQT5DhF5pfx9//z+aLgE06zs0pMStgxQA9CaGbClX1+RBq63e5SWr7bNJ1Oi3G2HmNOszyaQMq6CgIU0MPn6ExIhM3NzQLu1tfXS6Xnu7u7Ehno9/sxm80K4TWZTOLy8jLOzs5KzQbkK2KxNYK1hN2x/qzSK/zLDor1hL9rveIxt77mu/7f7+Vz1mjWTdYljlxn5y6318+3owVecRutJ7Ntz0SxnTv30e/J7bas2o7ZCTJQto7N8o6+xbaDM/xd3suz3T7eb7tlBzhnsrgfz10mvz2XzE3ul7/jMfb9/j9jL2PQLI/8bznnyrY9/2xc5vn0vZYDj0vGMrQpZ1M+t8Y8Hsaneexzn/zZlxAAEVEK+OIEkdHlYtWkgTtqGRFLOgysjHOddUyuP/Pw8HTCAHaSe627iXhSRd6BKdYFbbLs0lbSyElld2E8vuPUf/pA1pnHHCIBYoS/5eLZOLWsG8h26vi4fcbT7Le/vb0tJxNh49fW1uLk5KScMHR4eBhbW1tF1iCwuQiUgi/wP3gfRLOLCUdEXF5exuXlZZlj5tY6wAGa6XRaCvSSQQcJZD8NzEOtAXAVshIRpb+j0ahgGXym2WxWjvAdjUbFdvNstmRyWbeyJ5+1gL5A3+CTMH7tdrsUxXZxx5WVlbKdcjAYlLEYjUYxHo8Ldmm1WnF3d7e0FcCFASE22GJhx302mxXMwHgg0z5Bgfnb2toqxwSSNdjv9+NLri8mAWw4s7OCcq0CClxO4YtYTj/MysqKkfu8aGwcIpa3FvB3P9+LxN81iWAgZabMx1xZkUM08DwcPbcBpxdAaSXtrII8Ho48G5Tke1lIKN48higcIkqeU8+NF9F8vih2xZjA/pq5dER/NpuVKBlg3eOdHUMbaha6ZYT9rVyAeys++uVxsUFmjJxe5jb4d5MYBmMZHPI83knfGKPcXqf6535nEIsM2dgaWPt/M6nMZwbrlk+PrUGIFSIXDDtHBDHmZHfYkciEFEwxhVV8Ma+ZRMAx4p1UEKaPzDtOKmMHuFhdXY1Xr17FxsZGfPz4sfQVJh+ygfFpNpvlGYw1zmCv1ysRVCK1jDdMPuuTzxx5wPljTBw9MEi1PMPeY5BqtVphuNE9EDAAc4Nk5MrpZazLx8fH2NzcLKBoPp/H3t5edDqd+PjxY4n+dLvdWF9fLwTAeDyO0WgU+/v7cXFxUcgOHxtFdgjji/OPszyZTOLq6mpJDsiMsB7AuEGsRETRmTnby+DeZBHjwzoHQK6uPh03dX5+Hvmaz+eFWEVmkRvL6Hw+L2mr9M2Es4G6I1Gz2WxpGwrAhXVwdXVVsh981CFH/tCv+/v76HQ6sbGxEUdHR3F4eBjn5+fx+9//PgaDwZK9AeiyFaRer8fV1VXpM8CZq8qpr3KcrCOqHCN+tl7NznTVz1V/e86Zcpufu6xTfT9z4r2rWfdV6Xo77JkY4H/+uS+ZUPhLbXQf7RDZtmen0XLmoAfPqiK8naFlXeTv2rFCjzn7DvLQ5Iad1qoAA2NiGamSIbedMc8Bpuccc+NP7jPB6PGrIo2q7vP/tld+ju1wxh/W0Yyl5yOPhftomfB4VPUhf5bb8NzFPuvT09Po9/sxnU6LI+P0b/CL58HY2PqYtjjrExmirT4WEFILnYdOh0jGBlg2vC6ZMzudzWYz9vb24vDwsFSfJ5DhVHPWjrewoI95Fs5/xGJrA/vhsbvYd4IUXi/GdGAJ9rq7PxQw5nhBb7Vm73i3242rq6vodDrluxk/kKnIu9vtdsFJRKHBcmtrayWAUa/XYzQaxcbGRuzu7sbj42Pc3NzEn/70p5jNZmWOvI4dJDSmItpOdX76i05hzrG9BGBWV1dLIWHrKmcb8A62KDBOZH6SKcHzI5azjJmLKj1GO3HwcdhZFy4gGbE4OQo9fXt7G+PxOC4uLkp/OYIT3YlO83oAR4EvHEzBr0LGyOgg25OfX7x4Ebu7u8+u9arri2oCcOHk5qiCga2Nana4swLF2aVzVcDAStaCkaN2LGIcBqc6VrGwjuogaOzX8MXkwLhlY2OmzBECp3kwdhFR2BwTBrzTkYKIhVGlvY78826Up4GIBZ42A+QNAlEwKFqDb8bN2zBQ+ijJiFhiIj8Hkgwys3EzEcBzcgoZ48f887P33dgY5XfQL5NJduazU+6FWkVkZPn0XDvKYqfNjj1tqCKkPA525JmfPFYZSNCuDHD8N96ZQSAKjf44RXplZaVEKjGYJjncHow5ZI3XOYCIZ/L9Wq22BHphniMWe7txkBuNRoxGoyILrsZrp53jbbx9YT6fl4qvONkYB1hn1gX9oo2k1pEKT2Vg5h3lT98paAfLW6/Xyxiiezw+3iphWc0RlhxJZL74rkFno9GIo6Oj2NzcLHvQ19fXY3d3N77++usYj8extbVVjhh88+ZNGduHh4f43e9+F3/6059+FAUxwRnxBCr39/fj5OSkbM1gXO30M37Iju0B/6O/ACsGBybBLL/UICB6dXd3V4pd4TRxSgKEBimQ9BWCESLS2w+8zt1/skVYO079dDTBwDriifE/OztbcrjQtbZlAIHz8/OYz+cxHo9jc3MzXr9+HSsrK3F5eVnkCceftQAhwEkFgFDrGjsdJrmss23PMyaocgjtHNj5yQ6OdQa6FdmwrfB7qkgB23b/jTE1cW3HwU6GnTi/L7cvO/J2IC2PJv64rLt92VaCrZDPKoLf/2PbrEctdxHLBBBtd/YIa5gIVJ5/p0XnfufxyVd2cvM42jZBJrP+6Q//u095Hj7n9Ob7rHey7D4nR9luZ1vsQFnua5aDiOpsiPxe7qvqq//PWPMvEQBcbPcjigjmQ3+iw8FYDw8PJXuA5yOnkM3gaGwh78k6GyxJ5BM8ih0bj8exu7tbnmMszpw4sNBoNKLdbseLFy/i1atXsbOzE7VarUT2NzY2Ynt7O1qtVnFsWWvT6WL/ODI4n89LRpbXJk7mZDJZcsjX1tYKoQ7Ww9nM2x+9rY6tjBQ5dJTc48s6gxjGVoCDOa2HPtfr9VJnIOLJPnP0H4T/yclJmQfIAPwr0uwjFnVBwFbGWhCW+DzWG8gtUX6TSczH9vZ21Ov12N3dLfaZLFFq5zAOzgKASOHiXYwt+JbIPO1l7pyJyhxFRMFGEA74TxBEyBq1CpztOZ1OC5lCJorlg/UwHA5Lxh9jzrppt9uFCMoZJBA5rNVOp1PaW6VnP3d9EQnApFlZ2rGxwbYgZCPxnFLi7wZI/h9g6PQWR/95LsLHYjWI517+bmNN6hCThFD7mVy0JYNY75tH2PndTpf76oiSjbVBsZ1aGyMiUtkI8047eaS28M7nHEeUgAu1sQiobGqgHrEAbSYmchu4z/3w2BlY2FG2Uc5GjxSzyWRS9gpnIoT38j/zYmBqht//83M2zG6//5YNvMfKoCVnq7idnneewZghk1XA1P3JhALRQUfQubxFxLLj6J/XDJHLtbW1UtAFGbVjzwXZBVFE+2gX6fMYFq+hyWRSIvE+P53+IqeMM8+j0NHl5WVx4oiY2oElWwEDSKSArQm0h0rEFI9rt9sxGo0iIpYICwgKFw2CjWbPOvdRSInxe3x8LKmPEA2k8M3n8+LU0n8iJvTbWUa1Wq0cQ1iv1wsoYu/+7u5uHBwcxD/90z/FcDiMw8PDeP/+fZydncWbN29iPn9KEXzz5k3c3NzE+fl57O3txdu3b38EanCekdvhcLhE+hm0Wb7QR+izzc3NAjjpW8SC/MOJQ7cC/Kzv2Y9vQDqdTkskHCYfOYWVZ22ZhEKn8Nyrq6sCONGJrAf65L2QbK/AFpq4zUR1v9+Pfr8frVYr9vb2ioGHgCRFFCDA+dxv3ryJg4ODODw8jP/6r/+K09PT8p61tbVSC4LoAvrfNpGx47Kdt51C7twP6znb+aorO2/WXXyXZ5uAMAZAriCFeB7PMt4wCAXkOXBBW62L+azKEUO3YvefI0M8dn6HbXse62w30N85+p+xk++zbnBbTGSzpckRV+Q3y4Btt20HY5sDOr4yQePxdl+yU2u5gORlTRpf5D7m9mcbl9vF36vuydgh9zGTBlV/yzLk8TEZ4DVgcjNjHhNozz33Oaf/c2uS9zoLCz0b8USonp2dFf1p5816oIrowiGlEGqttqjRhLPIXuvBYFCIdZxnMq+oL3B4eBjtdrs4pN42Np1Oy3bX1dXV6PV68dVXX8XOzk7c3d3F1dVV0X9sLbCtsQ3HVjebzVhZWSnb2MAo2bll/NiXX6/XS7/n83kJDmDTcZytqyBoiZozjp5PxpssPcaKNUzG3/r6eqmBw/j0+/1CCkOKsI1vNltknnkfPVsisHfYXOTPdY0iFkcG3t3dLdURAnPxGdjIa6XRaMTh4WHs7++XbIB+v78UNImIYrvRBzzj8fGxEB2MZ61WKxmftVqtpN+vrDzt6XemScQi8AWeJOWeffmMv9tMP9hSA4Fg0oCTFJBpMiGHw2Gcnp6WAAXvbLVacXBwUOoocerAbDYrBI+zv5CDbrdb1tqXXD+ZBLCC9ULnZxf4iFgUiMuRzaw4LQg26ChoR8WZYI67AMhlJ8gKD+aEi/c7PZfvoVRQiCxG2CYcbqJFVUbiOeOIoJqtzE44n+e25jHylY2F32dDk9N0PFb0z8oPpRSxiBTgkDBuzG8V68/Cei7i4bZnYJYNuw0NICwilpwK5MTjZ6coO9lum+XNQNYKmGgk7WBMn2Pu/R4bb7/bRQvdhwzqPK/IoMfFaWYZaPndztjxfXmNRkQhe7J8ERFgL7iLNwKseA/Oaa1WK8rRY41BQ67sfOFM27HiMwAEfV9fX4/xeBzHx8dFwSIHtVqtRKORb4AH57GyDxJjRToZ8k3GA2Mwm83KHjCTFvTB8+MjEHk/bDLgzm2bzWblKDjWHcbEEQuejyPkvXM2UjiZ7E37m7/5mwKSXr16Ffv7+yXiv7m5GYeHh7G3t1cM2+bmZgEn7XY7Xr16Ff/7v/9bDOXd3V1sb2/H/v5+7OzsLG1nODs7i+vr66jVntL9IBOQV4AStoLo0eXlZemjHTRIA2SK7wIaMNbIBfNjsABZkkk4O+cRUVLraC/Vl29ubopcEiVjfnH0sBtOg3VWA2QXhILJren0aY/l3t5e/OY3v4lWqxUfPnyIm5ubUv260WjE3t7e0okGq6ursbu7G5eXl0tEBg4gUSWAuQFL1nnWl/TDJD9r/S85/P45k9jWjXbsWf8ZE/g5zJMzTOw4eUse74IA4B3Mn0ko5MGOrx2w7GS7n8/ZYf/ufx473pfJU9vCbI+ybreO999NvkGQ+h2ASNaIgxIeU/+cAzNVc07b/Tz353MEf3a0nJVpYsIBFjvAvsfPeQ6LVNm53L4qx9oy+jksyFi5feg3y5Vtu9tWhQOec/Sr+uj+VV1ELefzebRareh2u0vRy48fPxYnyLLr/+v1enE4a7Va2a/sCujIIbro4uIizs/PYzAYlP3jjnAal+KQUtAOh3I2mxUnimj82tpavHz5MrrdbgwGgzg7OytOIluqyCIgOwB/ghRzfAFnPzKPEQsdgw3GJlnXOOPUskJtGXCv15gdZ6fYs5ax9WQKjsfjgiWJ8BPl393djRcvXhTcCg7Y3t6Om5ub8jx0IjaB6DgYhUAbOpdxMPHDXIBpvZ2NOfdJQBAU+HPUQOp2u/H69evyPcaZaLlJAGwp2xKbzWY0m81yJCHb6zIGts4Hc1DrCIIKGw0p4AKorj8ADmo2m6VoIeuIo4ghW66vr2N7ezva7XY8Pj7Gp0+f4vj4uLyXYA32GlKF7QbGPvg6bBX0EZFfev1kEiDix4YIAc6K3gaDz5gMfud5BhdMFAsOAcjRASbJUTUz9KTbwPQZAPA8FhbAjcXKoFY50b4sWCxQC5fHIBsC+m5G0A5ZNl6MG4LnLQwGQB5zf99zlvthYeY74/H4R6y7Mwhog4kSOzlmCk2WAEgN/Pguv6OQAdP0FVBvw4Oy2tjYWIpGGwAw34BXAw3e8Rxo83z4M4+x28P3fflvOU0QJ9SZCfw9Z4TQFoOciOX1ZqDttlQB1CwvGdADFplv0p8wQo6+OyXQGQMeP/7GBclgNtXp8Mih5YfnklFwfX1d9j+dn5/Hhw8fisHCiMFuU+ilXq9Ht9stSvb6+ro4kBR1GQwGpdjP1dVV0Serq6tLlVrRXZ4D9JfBudlp5M7RY8CTdQmgyWlmZuF5tqvq4rDh6EZE2TOH8b++vo61tbUCFFij9/f3sbu7G+12Ox4eHmJnZ6dEym9vb+Pi4iK+++67+PTpUzGQERF///d/HwcHB2W++v1+iT7zHubba5/+9Pv9qNfrJeUN4Mg/nOzpdFrmFPBg/YB9QJ85uuUo7NnZWYkGEb1hjpHtRuPpqJ33799HxFPhSacAYj8gWNhbaefVehX5hdkHlHp/ep6Hly9fRqfTiaurqxgOh4UA8PpE7+HYQx4x1sjQZDIpe3xrtVqJLFg/5J9tW21fqoj9rGOyrrEdze/hedhu1gjPsJ6bz+dlnmzHrOftCNu2Mrd5y1zW11X9MBFR5Sz6Gb4/2+/sINpJNHnt5+d2WbfnPrjvrDU+91gzzjwPx4m/Mc/OxmE8kX8TQW6PxynbAEe5TbJk+eAdyLExlec9O+uZCPDcZ3lyG7NsZrkw2ZAv40Tfi22gvznymZ+X7XrVe2zjqwiKbMM9FlnOfUGgn5+fL8nQcDiMjx8/FieG/mWSwrgO28Y/7wGfz+fFcb26uorBYFBS35kH7D16gDo/tIFtbPP5vKTMs9WPKOnGxkYhky8uLoqtR19nubDDDYFBRBXCGH3qYqsQABRmo69k7NEHdDWEf0SUGj1gVgjbiOUMC9t2yzHBCdoyn8+XCu41Go0Yj8fx/fffl9o+tI0icuxfHwwGcXV1VbI6aTdF666vr2M4HJZif7SL54AjkJubm5syv9gasBx2HWedNvf7/Xj79m28ePEiarWnIyuvrq5KEcCIKPLhLD/GC0zaaDTK3DEHrA3sJ462x9vBJfwKr1vrt9XVp2r89fpTNufW1lbs7e3FdDqN8/PzeHx8OlmJrENILUgJSA2yEfgM38c1YIj64yviL0CAcyoAWzC//vrrZ9f5c9dPJgGsVLPysZL3/zaSNg5ZOWXnmJ/9OaAxp2T4wkgAUmu12lI6PwCedgEOeQ4TYGVrRs9ngdLWHIHl2ShEj5UNM04tTg2g1M5WVVYDTgPt9d+qjEs2rh7v6XRaUrBQjkRGAQC12uIYF6KYTtvPziufIeAZrBl8cpH+xXcjYgmsYRQYD8bOrKyBgoGsI0f0z2PgCMxPMcK8y86rIyf0z3Kf1wBjkQEMDiJy5/FA3qrm0bJIW3PbIpb3jONI52iK2xex2BtKyj7nAqM4nfpux5bUQs8LRhAGtlarFYcVUoE2Um/CbeJvlquzs7Oy9304HMZ4PF5yHgG2kHubm5slrXowGJT343zf3NwU40xdAI8bayAiSsVZZMtFapiTiFjaXw5oYC3DvtugMb8QMY5es65or+UOo8e845jjDNbr9RgOh7Gzs7PkFGHMOKquXq/Hixcv4vHxMc7OzuL4+Dj+8Ic/xPHxcQwGg7J/7Ztvvom/+7u/i+vr6/j48WMBdOiwXq8Xr1+/LulwAIfZbLZ0njDygmG0XODA0jfk1fKL7JMVQd0IR04sS/w/mUzKHG9ubsb19fUSmH94eIitra0YDAYl48RrzSnVs9msMPNEQ0zsRERx6O2MNZvNogcgBanLYJDY6XSi2WwWIEaGxWw2i2azGRcXF0tnKyPzjcZT3QN0OmB1OBwu6RXrAOsRO17YqxxtzPrc+sngtep+xoH3ODKW22bdi9ybTLAuzdkDTt/nc9v/nNVW1aeI5X3ZxiC5z9xLVWgAZsYdvtf4gWfbZmSH223LjixOtG2K9WfEohAVTo5tru2W8RD67TkSwP03IWr58jh7DC0vjqBWyYL7WmUjua8qMu5n5bbRDmcnMifc/9w8+Hn58nwytg4u+F9+XtV8V41L/u5PIQAuLy9jNBrFzc1NXF5eluNfSTlnz7LbgF3ymNTr9VKp3Nv+sD1gAJzNwWCwVPiOi3mfTCYxHA5L0bp6vR43NzdxenoatdoTkcl+78fHx3JGO7js6uqq2Ep0xubmZtm/fXl5uZSRB6Y2PkfP2PdwAA78Q+BhdXW1FGbr9/txfn5edCckALrJ70M3gA3sazkoyv32Sxww+fDhQ4zH4+h0OtFqtcr4QqAcHBzE+vp6dDqd2NnZiZubm3j37l1xxp2dSEbGeDyOjx8/xvn5ebHZzBP3UO8Ie4Y9xJ+6vb0tmRtkYCK/ZF10Op2YzWbFLiG3Lu4HbrKs274SdXeA0QEA2k3byCzc3t6Og4ODaLfbcXp6WuSf9UmAFMID/Izv5vYgI8j17u5uHB4exs3NTQwGg1KriFoN6F5klOxLZAo5M+Ymw4AaAJ1OJ3Z3d0uRwC+9vuh0ACbaKRVVoMCDYkclYtn55T5/ZgPpqHImD7xQ7HRZQTK4gMwqw2EnlvbwHT6DGTLbheKzseTKTp+j0n4PCsGAj+gOERyn8kQs7yFECeB8eF9TngMiRvQHMAB7hvI1CRIRRbk6AjmbzUrdAJMCKHofjxKxAC+OWOfLkUw7QhmYInve32m2z4Y8Az7PDX3ie5bHKkOcAaTlzHLoeyyHAGraQLtzJooBrGUtP9PtoH8ZBGa5dspWHt9sbCIWRexwUCACUOSQbRQwqdVqSw4tyhKHnqwN5MbgijQ/A1ccUsbEaxwladDB94gW46xydGDEgo01K40TAEhh6w9OfsTixAKYX2QducDJd5E46gt4LKjw61Qz5DGTCDh89Gs+XxyfxztrtdqPxoy0NNI6SUH78OFDzGaz+Nu//du4u7uLt2/fxtdff10q1yIHFI/jyJnpdBpnZ2dxcnISEU/6o9frxa9+9at48eJFnJ6exsXFRYlmwIDf398Xo4oDzVo9ODgoqZmQDYAVHBLmwLq+Xq8vpUCiv0wIOGtoPp8vkQEGmNvb22UNonOoAoyhHo1GxZGjFgZjzXtdO2Vra2uJlGQbBLrWqaKdTqdEl4iUAHBvb29jY2MjXr58Gff393F1dVWqEiM3FAa8vr6OwWBQjmpqtVoxn8/LNhjbkYiI0Wj0o/oMXosmc59zNqpsjMlg5ixncHHZ5kMOP+dQGvhZp/p72WbbXlXZGy7WvUmCKqfM76AtJgTyGDD/Pj4MXZP1u50Ny7DJGPRAHneel7eEMec7gc6yAAAgAElEQVTIPO/IZEG+AJ3chyxjL52yXkUc588yCWH7m/viuTUJ7nmpkjH/7uflfmWbx5XtP+/N41UVAa8iGp4jcSzPeV358zymVWvLl+XGMprvy9d8Po8//vGPMR6P4/z8PP70pz+VQnHgB9te+oK8EbzBUcPJxoahY6ihA3bY3NyMq6urJSyH3BHFZ1xox+7ubolue/sgY4M+pK6PA3CWf4gOH+tGf4zFHHHFhoDLWbeO8K+sPB0R/POf/7w4aXaUI6LYVTA+++3r9Xpsb2/H5uZmvHjxIu7u7kodBt6PLlhZeSryyokOZLxxpOBgMIhWq1Uy6hgf6iAYmzGnR0dHpW/UfmCP+9nZWZyfny9tFXDWho/xMxnUarViPB7Hzc1N0YNgIeYGu8m2hfl8XrKQISTImDBmc/Fd168wliULxbUt6DdZfZPJpGwfZTsMmQkEXJBBtttNJpMiu/hobHVYW1uLnZ2dIksUImw2myXzlaABWZn0gSBas9mM3d3d6PV6peYW7Y6IQqrc3NyUjBXkChLuS6+fTAJ4zymKxg4YV5WBYXJsDHimlaWdZSbO+xGzMxWxXJDEES+3IYM2AwQm2ZEDt5tFCKvl9nN/lZNHnxztymCrXq8vOUkwUxELsIyy87PMBGIkmQva4XlhPFhArnRtw04b/Q4EbDablTRf5srpQhFRHCG+C4CwoczGmzZELI6lY9w9D/TDUQZSYnD4iMb58lhn5t1K31strEwMPjKB4f1ijBltctTSpBlGjX7Zac/MusfOFWB5h5/hseR9yEVOoeRdGTgYNOBI3N3dlRR59iDX6/US8YTRxJmhfxh3CASYUZy2er2+RPI5xYv5NDB3Rg/PggCwjkD+kKcsd/P5IpMGBcwYTiaT6Ha7hQW+vLwsGQvIuNsMGYGhs0wSiWP8MbisT+SPefaZzN4CA1PuIj30d3d3N1qtVtze3sanT5+KEWs2m/E3f/M3pR2dTieur6/LMT+j0SiGw2Fsbm7Gx48fY2VlpZwYADiZz+dxdHQUf/rTn+L9+/elqCJy1ul0Ynt7O25vb+Ps7KzoDYoRMq4422w/uLq6iuPj46jX66XaL/IK4Qjg2Nraik6nUwiejY2NAg4YM04LcDQZkMBa3tzcLPuhyeRAdzLGbJOAeEKfQIYwj06RBqRERCEkfA+ZJbXa057B6+vrsleWKtCsR3S9f97d3Y1utxvb29vx4cOHGI1GxfGlcNN0Oo23b9+WOeVvzAfPhPijmCVZOei8TDCiS7Jjnu07OtFRONY537XcWB9Z71r/ZEIWfWh9zX3+ux1Gvu825itnIKBfcp95Rg5I5PHw//wM+LTzyz12zH2P+8i8QLpW2fZ6fXFaCk6BcQGfcT+AE1mfzWZFj3MR6fK2Ac+5L+vWTNgw98ZAz82T7bvtbnbI6RPv83MzgZTlxW31XOX+ZVvsQEgmEPJY5J89vx4b9xNbYHyaZcx9rBpHj+VzJI+v3//+9/Hu3bu4vLyMk5OTOD09LXbXji/j5znZ3NyMnZ2d2Nraiuvr6zg7Oyt6pNVqLQWEyH5qNpuxs7NT8LT1ABjHgS0i2kQ4sSvr6+vliDZS33PmCGNuHDUajUpqOwECoqzgAr7nAnk49BDBPJN3gsVrtVocHx/HfD4vtWNY4wRLuNf6ZGtrq2TI0U+21UFEm+xsNpuxv78f3W43RqNR9Pv94tje3d0tESWk3kOi4Iy/e/eu4O16vR6Hh4cxn89LNhyReetk2gyuYQtlRJQMhkbjaVtGp9MpeogjFcnOJBhCv2u1p9oM7XY76vV6XFxcxHQ6LXMPaROxyL60z0fkHJzBcZDgCNcjQKaRqXq9XrZEzGZPhfcImnCSAbJCdh3zZD2ETCNTEVG2V4Cp0MONRiP29/ej0+nE3t5eIaMajadTLTqdTiEYOK1hNnvKkhgMBqVWG6TN3t5evHnzZilo9SXXF5EAvjILWgUO/DsCySSgaCKWj6hj0AFggBd+9mVH0kwZBg7gbdLBTpKdedhI2o6CxWHG4NiBsEI2GWGjkX9HuSJECIUN/GQyKSlUZsV5lw0XTGTEIrKA4DuFnj6aNbPDa2E2SxixKPJI2+kP+4oMAiOiRFItFwYH2WmmPTiBzKeNIZ+5P54PFDLjgEEyc2tAYecfg1X1rvw9y0cV2cQcOTIZscgGwQCwyD3mfpdJhLyOTCQZ7Hl8aY/llIt1lMkqX8PhsBhqopI4oLQD9hPjiPPIMwGv9/f3pXIrMkv60s3NTWF/KfRGNMLzynh6PeEUcpkcMbD12oxYOP8GqkQ0+DvG1kSYyS6MNUraEXvmMcsW8wNZ4T3KMN6O6JkwonAOxpn52t7ejvF4XKrK//KXv4zXr19Hv98vtQ0wrFQH/sMf/hD39/dxcHAQb9++LZGaer0e/X4/Op1OtNvtePPmTZyfn5fIMXM4nU7j+Pg4xuPxj0A/kW+2ZTQajVJVH7ljvE5PT4uRtwyj6yeTSSn4Axgz+ULEEgcHvWkZZD7RWxTF42il09PT8u77+/s4OjqK169fx9nZWfzwww9LRZFwpgGMVN9nPToCYZBJPyAuMO4mXNGx6AfvGby5uYler1e2JkBIX11dxcnJSQwGgyUdnjOOKHDF+JgAZNyybUHPWTfZceGys+XoNWuEeWcd2EFlbdt28ExkygSA90Vm3eg14fbaqbZu5n/rafREzi7IpL91aR4bO3wm5rkXG0eb7Pi6/cgRZJWz/ACivMfOLm3GrtLHjMd4bs5mYrwg8UxIes7sDLt/tpvZ0bVuzs50xk++306+ZTK/JxMslsdMhDNWjJdxj9dGnl+3x++tIo/cbq6qYEgegzw+VcSD5879yvPsv/n7//zP/xz/8R//UeSTbVzoUpPayF6OVu7t7RWdDjbAsSHaj53Anm5ubka73f5RkThkCwex2WzGwcFBIU/Rs8ih9aO3xZEujcM9mUxKhsDNzc3SkbWuH0T2wsbGRrTb7TKWYBvWEPqTOXD/aSNrBl+GWgX8Tzo8uIe07hcvXpQsvpOTk5JGf3p6Wk4NAGM2m80S7Y+IYgM4o96BIPwLxoLMDTBYs9mMly9fxsPDQ+k7WzDI1nNQBnliGzOZzA4Ur609HZM4n8+X7DeyRR0bTjEAEzpjLiIKeUBwiD65OO/Gxkbs7+/Hy5cviyNMnSr0I4QVOA+/CTkiCAHuQE/joz0+PsZgMIiIKPgIm+qjC/FdWa8ZV6KTIMsgsqhBUKstMhWwF7z706dPhehn2wDvIbv04ODgR2v/L11ffDoACs6OlQ2mmVx+ZwJNAvA9mBxYOCLN3tuYFSXPMBtD21gkGSSY9bdiN3CnnQBLJjkDhKykDTSy0s/j4bZkZW2HwU60x5W+opBQKtPptDBu8/niOLGIKESGz/fmfTaAtA8DikJ2NABAPZ1O4+LiojwLwgHA6eyITAAwf1WRHAMu3uk2OwOC+XIhQYMjG2lngzB+XAaFjIXZXt/DgjZIyMCRufX80jeDr0wUeU3l93ucLQP0M0dQTHZlGcygCaCbCQ0DQ5NFGBWMMs6wyTxYXubGBXSazWZJVf/06VPU6/UlMoA1DvgwieaxpWo/a5b93fQHhy2P9e7ubjESGH/OqMUIuFYB38O5w6F0ihksMG2zY8X8oNDdr0yGZlBvArLRaMRXX30V29vbcXp6GldXV/H+/ftYX1+PXq8XL168iNXV1fjhhx+K04+zCFFACvn79+/L+iXajM67ubmJP/7xj/Ev//IvsbOzE7/4xS/i6Ogo3r59G41GI3q9XkREfP/99/H1118XNh39Tj9IAUWXMP+k88Ossz4wzD62z8c7sYaYU+o8MPesD4CVix8ZDMxmT1keKysrJQLg9NaVlactWhcXF2W8kEdHZJEhyBFk3Q5MRJSoCBlf1leOmNdqtQKABoNB/Pu//3s5pxmde35+Xo6rss7CpiIzXPP5fAnYEwmyXrWOrrrcPv9uB96Ft5gD1gzOO+1E/vN7TZJmR9s2PesvZ7K5nb6/VqsV4s8RHJ6DvNkW5r+zDm0rTcLaDnBZDvg+85ZthK9arVbGLpM7ZCdhj0xmWAcx536H5wvd7bFkPG1n/F3k3/3nHSbVM4FPn0xCmTCxLCEnOHHGH84A8NxWRaszdsg2m7lwZM9/5+fshOfPDfhtkz2u+fccQMhkfsaXvowxLYtVlwkJX//6r/8aw+GwfO6j2ByhdzuIVHK87OHhYbHnOHIvXryIXq9XiqV2u904OTlZ2v+PzJBNYBvI/Dl6ii3F6bm8vCw2gQtilYzE1dXVODo6io2Njfj48WNcX1+X+/FFyAIwto+I4vjj5DcajSXSgr6gr52liPzSJvs81jvGmPP5E6l8cHAQOzs7S6TFyspKHBwcFL2JXfcRdzjCBFusxzY2NqLb7cbe3l4pcHt9fb20jWEwGJRaP6zdiIjd3d14/fp12YrG5xCUBB663W5xgF3XgCMbXTuHa2VlJXZ2dmJnZycinrYHHhwcFJsbEWVvPvOJLqSuAfJJ3YiVlZUiM6xBsCd41Nv/IOTRWWBX3hkRZZ6xq7Rlc3OzkAEErfIzVlZWig4He4BJ+/1+8desa9GR4BGyK1mrDsKCM8GIltEvuX4yCcAk2qGLqN4/yH02rp589sSgoAAwdJzoIZNU5ezYyOUovlPfuMdRcRsWR8C5SPll8hEmFhzkAJf7anbWBohF5EgVFyCUdvA7wulCVwYVCEB24OkzSsqKl/E0S+gIH4bc7cRZoeiH223DxfYNGEKzf8yZ+8WYOGJK2zM4tEFnfjx2BhS0g76ysGgDc+o+0G7LBk6iwVUGOPxzhKQq0yQTDR57SCf3PcsH7TF4NNi1sac9jipkhzQDKY8J8monilRt/jmV2O/HqG5tbcXR0VEcHh7GcDiMq6urwvQiA9vb23F0dBQ3Nzfxhz/8Ib7//vtKwsHrfz6fFxYYoMxeMSL4doIYA5No7P+azWalMNvNzU1hZWGhPfYGEMhip9NZSnNzBIlxpR+0AeOQyRkMDOPLVoe7u7u4ubkpYAvZ3t3dLU7l9vZ2HB4eRq1Wi++//76kJOIM8zyvN4wLe+6J6vd6vbi5uYmLi4v45S9/GaPRKD58+FCiGFRk3trairdv30ZExK9//eulyOfd3V1JV6QYzs7OTtze3sbx8XGJFNAm1xBBnnKkk7Gg/7DhrFf27mNXWMvos1arFb1eL46Pj4tsk5FApktElLOJieQDPMnYMmggS4TP2u12KZJkMonMNNYXAJT+WDaJPHz8+DE+ffpUyDXG1o679dJkMilpg9ZHEA6NRqNEGHg3+ik7FHaAqi7bdUdU0aFVOIG1muc8k7bZmXPWTda7dqh4hnU395rIt62mXf7MjlceCzuNdgBtZ/w9t8E/Q0igR50Bx3uwY1wmkGmHMxtpP+PpDELPMbYy63HWDpcdG8YVYtXVz3ku7WO+bDd5hsfTtobPwIDZcc9bsJ6TS8umSRuTRdmWVjnQlo88r/SV36sCQvzPWOcsNj+Xn9F5bnMmoqp+z2PpNvCz7+WC4AXn8U6cbn42uUeUnDWO3SFjjjUO1vzqq6/iZz/7WRwfH8d3330XFxcXS9sC5/N5OccdzEQqdC7s5yxWnExS5Umn9lZAdOzOzs4SXkIHsZUVPU8mnwNgrG30FXvgKUoIaYz+J8LuLE+etb+/H2tra+W0AuwK/bq9vY1+v19wKin1FCqezWZxfn5etgUig6x9MgNevXpVdEetVisFZZlHshmPjo7KCUDNZjPOz89LP+7u7paODCbwR3HAev1pK1+v14vd3d1CWpO1h32Zz+fR6XQKLmQ8HCja399fwljr6+uxt7dXAjDr6+uFZECeISFwsiHpnR1Zr9fj8vKyOM/MXSbsPN/gCvAS+hSsMplMCiHiOkDY2JcvX8bOzk6cnZ3FcDgswRXjBvDpeDyOwWAQk8nkR0clkwkTschi7Ha7pV4BMr66ulq2zBweHsbR0dEzWvHz1xedDuD/M+C1svGis6LLbAcTDSBBaVLYgqqlTjOJWFaIKI5arVbSmQASgJSIRbo/qXQ2NPTHUXgMohWoUwcNVrLTxuKsMgyOEPLMHB2IWFSupg0GXtyPUDrd1Sl3OCgmRRh7nkMmAXOBsbeDj3HySQIcOQX7iIE1A4nwG4BkZ9/zkIkQPuMiOmvgURXJcBbCcwAjR7jNBNt5B2gxfwZjvpxFYlAIyKKwpBngiChbQ3AGMsix4ffaspNfFT3w+mAsDBSrgFR+LylJjDv/E/X1HGA0MWwPDw/R6/Xit7/9bdzf38f79+/j/Py8zCOy8qtf/WopPZzosOfEaeQQJxhn0gExAqRmUUmd7Bfm1qRUo9Eo1WgxXPSduQSc4CTSvtXV1bJnzMevMcfMvfUa4z6fz390tB8X9yBPdq7ZW/n4+HQEzYsXL2I6nZa9+X/+85+LYYmIePXqVczn8+Ic3tzcxNHRUcznT0z04eFh2V8JS85exu3t7Tg5OYmrq6vY2tqKFy9exOXlZVxeXkav11syYru7u4X0cYrmdDqNly9fxsbGRgyHw/iv//qvciIDhfDIDvBeVIwhWx/QX5DD29vbsbGxERcXF7G5ublUcAmQiQ6hf81mM7799tv4/e9/X2SdOeVoLPTE5eVl1OuLrBZ0saP9Kysr0ev14je/+U1sbGyU/fqz2SzOzs7KfkTaFrEgAlnzdgSwVbTdtR+syzY2Noo82HlwFhlyDhlHpg4yjsx5LVQRiVV6Idv2bOetZxkvEyfs5Y2IJSIgYwV0i7NDvLZM7tmBqcrUY/xyto7XnZ0kf577b1LP38s6mp9NQH6OGOB/bA9rEb3LeCBj4CbWhouAmaRCLoxdbF8d7cX5YyuAHU7ICoC3bXu2SX6+xzTbHOMj/ubv+f0ZW9qm5WeYgM9rI8uFbXuWCd5jHe4MFmSccch4w1lRVRgxEyFVtj2TUp8br/wsfq663r9/H7e3t7G7u1vGFRlCP4EVIQEcQcd2sXd/MBiUonurq6uxvb0dzWYzjo6O4ttvvy04mRN8/A700NbWVnz99dfRarXi3bt3cXZ2tjSfs9msbEfY2toqR6cSLDRBenNzEycnJzEcDostdZFZbCQ6CVsA0YUOu729LcQ3c4/sgA1pH7LgbUuWFzuO2AECGmzzGg6Hsbe3F7VaraTKPzw8xIcPHwqGms1m0e12i21rt9uxubkZ3W63FIq7urpaOqkGH4vaA5PJJAaDQWxubsbR0VHJUgS7UWOm1WrF69evo9PplGMCIR2olg9pzljM5/OyVYE1ZZ3MXNTrT1sskS3GGAxHgHM8HpcsUeYGx5xaC2QUYCPJLMWxZwzAlhBBzWZzKfA2n8/j9evX8fOf/zzW19fj9PS04N2bm5s4Pz+PT58+xcXFRVxeXhbcu7W1FW/evIlOpxOj0Sja7fbSMdvgQcsPRAMV/snwY6sj2S4uLkmWgtfjy5cv4+v/v8DzX3P9ZBLAxsIKmd8zg++rXq8vKY6I5er83hePoFLECeH14NkQsKARCIM5K04UMUYMxWPh9D0RUYyvnWEbOsB6xCJSSPqLncCssG0oeG524GezWTnbEyNkNgmFwz87obQHxWgHHebS+4kgRmiDjStC7kKC/h1Hh31DOFKMEwYc+XHqFxcpVXaKeD970SncZSbdICpHkgy+UMaz2SLrIBMqdvaZI8s6Y8HC5X6exx4dE1tONXPbaT8KNBMejgjQFoOtHPGyvBsgMRaWUxMDXh85WoDMmQgARHsMcX4p5IZcsB4BTpw/T7VTorcfPnyIr776Kn7961+Xo+hQcqxtxsHkDH+3Qa/XnyrHr6yslKJ+jOPW1lZcXV0tge/ZbLa0bYa1a+KL+cbYbm9vx3A4jMvLy7IOs+xaVxEhoM3WVYAXgyEDiogogLxqv9kvfvGLaDQa8eHDh/j48WMxELT/5OQkZrOnI+d6vV602+2STtdqtYpeINUdQuP4+Dg2NjZiZ2cnNjY2ot/vx9XVVfzyl7+M9+/fl0q+//Zv/xYXFxfx7//+7yUTA5kfDofFaacfjAFRCrIykFWKUSKz6H6+AwDgc/b193q9UiE/O9PI4ng8jv/8z/+Mm5ubslfx97///ZKO3tvbK4YdYpRTUHDKAL5fffVV2SbR7XZjPB7Hu3fv4uTkJHq9Xuzv78fl5WWJ3Dw8PCxtdeNs7HzRZuaGzBHWPftOkfcctaT/dgKRTwg1skNceTg7s9aD2dHPDgtOgklJ1oX1Mw4GIMdbbayfnO3Ez9g9j1MeP+7jb7YPfCfjlar7eJbXIZeJbssYz89ttDxzTafTpfoitJm/8R7kAPtu8h97ZhKYdcR4cm+eS5MsfM9OkW2J5wV9xVwjZxnPMMa2U9nu+n7Po/Gbg0Z5DG0ffeU22Tkzdsxzx3oxicE44via1Mq4LRNPDgZkzFrl2Lt/JhN8X34W7c7ERhW5ldd1RJStVswztoL1jL7FqV1bWyvRfxxPMgU5Ao3tcmSvEak8OjoqFe8h8yOe9m6j03z6DuewYxeRedtWtsFxGg1zY7nG6bRjCT63DqAAr1PBwbk8g9TtqjlB3z0+PpbINHM0Ho/jv//7vwvh0O12f7SlBlJ9NBrF+fl5yYjAIScgCnnONrHNzc148+ZNbG9vx3Q6Xdom4W1YKysrS6cUYCtxhF3bqdvtxsPDQ7x79y7Oz8/LSQTca5nIR/1eXl5GRJSaDOh6by0mm2A+XxQipEo/NoJMPbZe2JH2uqNN1umMows/O8BTrz9tCX316lU5Ppd6CAcHB/Gb3/ymyOerV6/i48ePBae0Wq14+fJlCTLhExI0effuXdze3i7t90enObuE3yeTSfT7/YJb8ROoVRDxFPyg8r8JaHTd/v5+yUD8a64vygTIiqxK+Xgy+JmICosaw2YDa0NASk0G1eyFw9HCoEwmk7i+vo5Go7EEtEwSOHqCkLHnxIobAENfiGjhANk5wYDbgbRD5whgjr5m5xghN9sfsVwIjr4bbNAvxik7/iYeUKYAaQNTj7MNvRWIwYMrixJxNYBlfnL030bWYIHfTZrQNgCsLwAibQdw2vl1FMRABTmJWJynjDzaifYcmGTBQDLuZj0t234WrDp9d8QqrwEDqExWGITSNn/X4LxqDRvgGLTl8bXcIUsuVIWDy7thrFHepOydn5/H2dlZXF9fF8U4Go1KBJgx7Ha78fr16/jhhx/i/Py8pFdDktBu1myttjg+BtkjajabPe1HZ993t9st21NwxOv1xfGW7JWnzZ4fogeNRqPsX8QIY2QAPiYFcET5GR2CfoPFzWuB55CmjtPEnFFQ5+joKF6+fBl/+MMfyvnwJuC8ru7u7uK7776LlZWn44Curq6i3W4XwGB9fXl5Gfv7+7G/v18Iktvb2/jw4UMcHh7Gixcv4o9//GO5f2VlJc7Pz5eMLfPPVgbrYO+bZ62abCVyDXFiuby/v4+dnZ0y5ru7u/HNN9+UNvA+iJaVlZUYj8dFtra3t2M+n8fJyUn8+c9/Lm1gr+SHDx+W5vnbb78t7aG4FSTCb3/723KSxLt374osAUhubm6Wjnt9eHgolamzU2tS1ym4vgwcuMd6E3sznU6LHAOyIhYE18rKSsnoMqGaiXtf1kFuswkHyxwANz/TNthktqNpji7nNQTwzPrV+g/cgA2y3c1OsPGI54Q1YeLa77DutI01RrKzy+fGRnlc7BjmQIkdeexZJhdMFmTbaKewSs8zzv6M70Eq8s5MGFg2TABlTGVc5Pl2RgFzlUkKty2TRR4bsIYzbcA8Js3dHuM8r0nmzGnonq88Xoyh/+Z5zbKR7Thzme93/6sIOQcH+B5Xxue+jo6OikM2n8+LropYBDu8bbfRaJTK6djTlZWV4pjiCHI/65T1TqV39mwTfQerkwJ9f38fJycnsbm5Gfv7+yUiyp5+V6aPiDg8PCxRak43YJ0Zf9fr9ZKxx3ZAtjaMx+MSVSel35gffLe+vl4ID8ae94Apsd28D5zJ/BFYAa8yzhGxlAHJOmJbhE98IdJ/e3tb9sJfX19Hu90uzjy6C/vL72xZY16IMkN2n5+fF/KazISLi4vi0FM8j7awJcPp+sgV67Fer5d9/Mwn37F+aLfbhXjBRlGEcjJ5KmrY7/cLPnBBQPAGRxoyx7SFYNXq6mr0er14/fp1vHz5suD26XRaovnOPobkGo/HBXdub2/Hzs5OjEajcjQvGAGSCTtssguyw/5QvV4vuM1HH0LQEOxot9uF0J/NZmX91Ov1vzoDgOsnkwBcVixMuh0PG0A7zQiCHaHSiMYi9d6Gk0HknWbEvfhQ8HbeM4HgaKEVezYKNq6AlsxI29m1U+77DNBwpDNAyMqbhUSkhvYaIHoceBcLx0wpl6OlBkrZaeFZjpjDCJvIQch9pJAVfs5OsGF3xMdgL889JIOdA0dMrCxRoDYM9BEw7gsZwWE0yWPH3+1BUZGxQnt4r0GRAZ+Bj+cbR5L5tJG3U8hlGeE5doy93nzxNz+f7/u7JmO4kCnATb1eL3U6HH3AoZ7NZsV5wfhhVHu9Xqyursbl5WWMx+PCEnuvE/vmer1eSSuEJfY6d4o8V6vVikbjqQo94NBHF2I4ccZIsfLxf4xHJjAZB/Z58V3mGVIRMEMV4EajUYwn84esITPIOeNvWWPdA2roC/q03++X9DyMCAaFeWm320tOPpXx19bWot/vl4KI3333Xdk3uLu7G7u7uyUyw7hGPJ0v//Of/7wcqYMz6hopABF0wObm5hJBiKGzPuh0OuUIQaItBuaw5PV6Pfb390skdTwel6Opzs7OClEGKcyYXlxcFDLnl7/8ZdRqtXj//n2RCbJd2u12bG1txcuXLwtoQOd0u91CYJH6yjihK3FYKXgFwTgcDssRjmRHOBqCnDHvzBdEKp9zL3O9urpaCCzbPPQ5kYpWqxX39/dLp1hYxzWarysAACAASURBVFhvZGfBuoX7MimQ9Y8dk0y+uh+QOehlO3/cbz3ndZnJWt7tve38PQcs7Hi5v86Ay3bfz+D37Oxzb5WjhrzbOalyZLFNHstsKzIZQz9MNNiRqMIEbLHy3PIuQChtYIxzRN062HJb9T5f6GTazXdNNNjeU/zQ8mGH2XNpm+u2ZJyXZYDnW675jkmg3GePofGisZ9l6Lkry6bvzVjR8ogc5e9wPffeb775Jj58+BD9fn+pH0Qd0ePgehwybML/R9uZLUd2HWc3T6GAxlRAAWgMPZCUTFmyKTssv4jf0E/iO9sXti9shxySJdJsk+xGA40ZhXmoqv8CsRKrsg+opiP+E4EAUMM5e8id+eWXuXMvLy9nMVmOQvOWFI46MynACSc40hB5ODTU2IHoj4g8uYZIPHYRvbu6upr7/skWA19Vcg8Hi/WFHcLxpwK/I7bVzvvZrEVklR8CkGQ0QIDg1LOFF+xt3UZwjq12Js0t9/ZnmBecdnAwMo094gx7F23e3d2NnZ2dxGQRkVsBLi4uclsBZAhyTmYkTjZrwzoAPcK59xAk09MPVeyx0+fn51mE8OrqKt69e5cONWQKdpo5joj8Lqf6UOOBYshsyUOOnEn44cOHjP6ztYJjd/G/7Ddhu6nNtLy8HHd3d7GzsxM//PBD4lWfVoU/ZTtg/eDgIvoVn2ZtbS0JHrIvRqNRnqQEGRMRKdP8/1OvTyYBKmMZ8fEeZSsT/jcJwOcc9a6GnwsmG9AIODR4bPt8BVY20rQbJ8FOFa/bUTKJYKNclbufYXbLIIIfA5sfU+xU1mSR1TH3hUJAudkoGeh5fngWgski5l5Ok0ZZoqxY4J5PC7fbw1XnxNkHKE/uj0GAOeaMUOSESBdApEYUHJ0yq+fxor8ADcghp3vxWae12kHhMzhJOIPus+WkRhrs7MGsek3wOX+eMahgoQ1EWDbrPR15qbLCHGMoGUO3zaCJsWAeNzY2ksCBRd/d3c1snfn5+VheXs7MgJubmxxDKsRCuBgIsv5NXqysrMTr168zZQu2N+JxSwhVWHEQILdYq4AFQDBt7vV6cXp6OqEHcLC63W6mkvE6+8bIcPDWEQom0XbGt2ma3Ms3MzMTw+HDqRsXFxcZMUFOXYiIoj2QMpwVzL748Xg8Uavj1atXE2tyfX09tre3c8/kyclJGvmjo6N4+fJlVrXH8MzOzsY333yTBB33d/Gf0WiU+spRQeub2dnZjMqwp29rayt6vV6cnJxE0zRpzBmHm5ubePbsWbx//z7X2fn5efz3f/93jEajPHrKThLtuby8jPfv38fa2lrs7e3F9vZ2FnZibeBQs3UA8sEp62Q7XF1dxR/+8IfY2dnJ6EHTNBmdQc7Zu0pfGRdnpFkPWEa8NqvupK8AXiJo7LVk/omgmyxl/XtdP3W1ObR2+G2z0bUAVNvEaq8NevmO7az1lsn5CjSrA2lHlvHDrlS97rXg16qjx/t/ykmzjvV41c8QZYVcNWj0Z2sba8TX68rzUvtnW4f82NZGTG5DQzaNpRh7r+Pq6Jvw99zRbz4PqGV7mVNqkYWKJyEy7IDx+doO2l8d5EpWIaeVoDF+QofU9lhWKhFgmeEzFetxef7qVT9bX6t/t2EGk1X1ORQw8zYtbAwp3NhSgnFsAUDPcJwd0WwwIIEAR0LH44dsgNXV1XS4m6ZJB49tSjjkODWj0Sjt6nA4TGcXvH9zcxP7+/tZ3BXMiF3z/n7fA7mC9OJ/Bxysw7wusP3OaqoZOAQZ+v1+/OxnP4vl5eW4uLjIbDPLLXJAtJtgB/MCRnEBXXCMCQ6cduwWgbjFxcWJ5/H3aDTKWgQUp2P8cbi9fcLbIXq9Xkbr6SsZHTjaEDxfffVVvH79OnZ2duIPf/hDDIfDWFpaiqWlpUxztxysrq7mFgjqE/X7/Tg7O/toy9/u7m62cXl5OX0FxoW9/+PxOHEVJMbq6mr0+/2JzJb/+Z//ySMbKVrobc5gMGww2zQpQOgMC/Af7XEgt43U5gI3gTnQHWzJYLwjYoIg/r9eP7kmQHVWea8y01aQNt4ocSJUgEUmjQGADTToNtvKZeVrQ8iisUOIA+eoPBesG4aM+5mh5jV+bLB4jc8CVNqUOf0woIl4jF6zwNucLKfVch/3m3YyTmYzzcA72uB0OV43QWCGknlwHyABKoACLDD+3N+ZH4wffUOoUWIG4ZWlb5omZcTz2QYQDCgYI6d+8RlnH3ibAHNqcoBn3Nzc5KIlbYp2VMfdmRKMIc6A02jdnwpKrUAYZ4NT5Mif9Vw5WmKAZxBD3yzbrrlB35hXZ4w4bZBtJGtra+nkQi6cnp5mkbiLi4v48OFDno9Ltg5KmHFlvkn7JCX76OhoQlewFgEAOHwcUYcOwxlCpubn5yfSiHkuVeNJzXeEjvlGt1DQkxRy+oh8eK0jX8wfhNPS0lLqMD4XEQmeAUoUq/FnAT7IORFXSJfd3d0sAEhbzDQ3TRPb29uxt7cXEZEnJiC3VAaOiMwsYGsRa8FAhugP8n13d5d776mNcHFxkZWGrf+tv5E/Z/zwDJ8U4K06AIHb29v4+uuvs7+QF6urqznHAIXp6emMxJCpwJwTCfj2228nKhk/f/48jTP6m1MRiJQh9/TFGRR2fvmfeSfDhvWJPeC7bG+jejf7bF++fJkRFcBe0zRJ9tQMt0og2jHyZ2zTqiODPkefoLvRb7YzzKMjXL5fddJdeNXj5mebwKettmnVHttJs0Pny3rWgQP+b3P46vc9jnZISTM29rHNcd/cZju7jCHOcbXB2ObaJs+F8YGJKNuHOmZuG5+jDbWfxmgEYTyPjI9xotvNvbAx1Q65v2RQua1VjmvmXyXTuaotYO1VwsXyQXtNVvm311Adxza86HtbTuu9kYk6L20OwldffRXD4TDrmaDnNjc3Y3l5OfuOU2eMRgYYtpDj0rrd7kSB4+vr67S1Z2dnsbe3l2QAjqKdGOQER2t1dTUWFxfj5ORkonYB+hW9h9ONTaUeDQ665wK5Q+dX4qcGlSCfifCjz8AllYRCt0MAEz3mec+fP4/19fXMejs/P4+jo6PcxmbfAfnFPnr/Pen1BCLQCYw5mQaMydnZWQZHKGK7srKSJxBUTMG2C2yxMxYcnCTrkzFzbQWwHrUiPnz4kCcgMCYRjwWfcejR1xBP1CCKiIzAo29ub28Tm3U6nRyLmZmZWFlZyToIOzs7ufe+aZokNtBBKysrcXd3F+/evcvtqi9fvowvvvgiFhYWcgsFsg3ud6YE2w2xs8iLM7vRtaxjBwa99qk/tL6+Hr1eL7MBpqamknxgGyiY//96/aSaADVy0KbkcWoAGSgiBMkCbucLAQMceFE6woswON0LoI1QAG55lg2G03hQKjbSXuSecKKGKCE7hHZUKSiFwjaj2GacaQOXWT/GwIwmYzQaPR6zguHjOWbq3U47qRAkPN9EAeNKpI5nEt1aWFjItCM7/gYmlen0HHD/CooAeePxOAtx2AHHieOZfJbxtxLFiXJmhh1sR6AAAwYgyLfbzt9+v9vtThAW3A/jZMKjgifLl2XYsl6jgpYhG7cq545cmEypESTG0E4B9zbJxFih1Fz0EEaY/sF2Ly4uZmVdCrzAZiPbb968SVB4fHwcJycnOU+kgff7/VhbW4vhcBi7u7s5JldXV/H27dtkqR1NwggRmWCdz8zMRL/fz7XnvXnT0w8V/wGmOMoUySPtjXFdWVmJw8PDiIiUS/Z9k0nj85eZG/QNABYn7cWLF/GXf/mX8e7du9je3k5HFbmampqaqHDrKHllk529grG6vLzMCIaLPJ6enuYRNU3TxNraWhwdHU04nVTjJ7UfmXn58mXMzc0lULPOH40eUtFxfrk/Mol8kV5PlsHd3d2P7jPtdDppJCE9KNxlg4isXl1dxYsXL3JvaafTSR24t7cXs7OzmSmBXiY1FF3MecgAx6Ojo7i6ukoA9+bNm/jqq69ia2srQe7FxUWe9dzr9SbsZMRj6jptZv1ATPE/RBqkSafTSf0GICPl8tmzZ0mudTqd+Ld/+7esCwBAZVztZNupMSB3m60/rQ8dpUW3o9/d3+HwoWp3dZzt6Pm3dWTVvVXnGX+YXKYNkPm+L2vPZKYzFmgz2KdNh3ssTMC3jRXvVWK+tt/2yO1gDt1+k7Em89w+xsBOJM/xeALgiUbarjsa33ZVItrPqlju/Pz8o/6xVqutqYQHDqBte5VHYwx/98cc8zqH2F8712DYWuS6yn0d/6ec/npV+a/fo/3GiybX3CfG0Z/zc/7u7/4ufvWrX8W///u/x/7+fpKDOPNkuEFs0v+meaiLwpGsZOk6Usrzz87O4g9/+MOEniESi+4zEXV/f5/7zgnA+Cz3iEesXQN73e5jmjvZV3wWuSEDgSNuwSjOVsCmoucd/bY+Y7yRT9rIGkQOLi4uYn9/P9vV7/cj4sGmQhBT9I++IksRk1ulmQuyGXDicdixD2AZ63Fwg2sZ/fKXv4yXL1/G73//+3j79m3iCuYTksZBVy7uQVtNlM3NzeUpBefn5/Ef//EfSTQwdzjO2HuyNclkgBTZ2NiI169fx2AwSPLDft1o9FjcmW2KYD9wABgIogOyiro94/E48c/t7W18+PAh7u/v4+3bt/H999/Hr3/96/jFL34RKysrEz4IR19bRrDP6DJsuW0R82rsPjU1lbIPJlhcXIxXr17F1tbWxJq/u7vLWgSdzmNtq//v2wHMsPO/fzMpNipVmdXq1WZCvKh93ISZaQC5z8+tixGnqi4mO+W1fd4jTzSxjXCgjQCCylTzm36YHLAzSbtpswEAz+F/92k8HqcSsNKvwKhpmolUYOaJReRoN6870uZ2mQXmd51HPs84177yfN+HVCzmHyXqvvo3zhx7pBhDyybPHo/HmTZExM3tQGnRJjIC7JDbaWsDpSYtUB583/cAMCBbjvQgJzVbwhEYLoNK95N1YqNhwghmEnmsAOGp+aIvJibM8NJO+o1zAcjjnHPY+vn5+Tg5Ocn9gPQFlhjdUcEhbYE95/OMHdF52GXYctYhUU+A4+3tbbx48SJmZ2fj+++/j5OTk5QBr3HGBYeU52HohsOH/X3MGRFXxgJnGePC/6wpxh7FTxrj27dv8yxa5sgRdq+XWjneuhL55Ddzw5GINVsFQN3v92NpaSnG43Gcnp7G1tZWVt6/ubmJbrebJyMAQpwNMTMzE2dnZwn6R6NR7h10tVtS5ZzJw/55dAHZUMgbwJG1C8kCcEMfcJII8trpdPJ4ymfPnqWTw/xeXV1NbAE5OTlJ2WO7irc4rKysZAVlZ3gcHx9Ht9uNn/3sZ0k0HB0dZXFMRyftTFlH4zwz1wA4tkCwlWZ6+qEC9+LiYszNzcXLly9jdXU118PJyUm8ffs2tyaY9IFEqToNnWfnzbqi2nbro7a0djtKzFvNmqLvbVFo61ITolyVbG4jAkycM38ecwcBTO5bnng+49LmpFedbKeNcbq/v0894suEgPtfLzu8dhBptx0rk5XVaeSqJLWdF/pQfxg7ywTj4kCKr0que4x8T3RQbSfPYR6xH9i9NseaNrHGTXrzOv+7H/wYi9i5Ny4yeeZxo/9t5IP1cyUG/PlKHniObD9c+LDOE/1qG59+vx9/+7d/G03TxO7ubs4f278ovOagF3b29vY23rx5E2/evElc0TSPZ9LjkF9eXsb29nacnJxkWjdz2O/3Y2VlZWIv9WAwSN3N/mzsBASCyWQHNcgE4MjDubm5rJmDrE1NTeU2BeoeQFKTSs+Y8Yw2oiMiEmcQjEAusCPd7sN2soWFhSQ+qD0DMdzv9/P0GGMz5hYswbrCSZ+efjgf/vnz57G8vJyOaMSDv0N9H+tQO5lN02Tm2Pn5eQwGg7TDo9HjUXo4zZAMxr1knWFjTfATBENXci+PEziV6LnrBoGTIiIODw/j3/7t37LGFMcF2gcgsImMHBwcpG9xfHw8URQamYZMQE+urq7GwsJCHB8fx8HBQZ4wMBw+nAjw+vXr2NrayqyFw8PD2Nvbi52dnbSlZC/Ozs5mhuFgMEgsR3Ca8UJPE1wl+xUdzrGP1t/D4TC2t7fj22+/zcDXeDyO1dXVeP369Ufr/FOun7wdoCr0qrCsxHAsYSsAALwHSEWRIrhWfE5ZtKPpfTwoAgSUBW8CIOLjQi5ecChBJsfKPeLp4oU26IAbgzo/qzrvfAclikOJkTLBwvNd7dN9s1G20Bj0oEA9Xr63HaDKWkEcUHytDcjYCNqgcSEXjnY4KoKyqoCrjTH2uLr9TvNj0dFeR3I8LialaJvvX8GXx5pUNIgEzytjgAwx//QZ2eV/HA2z7nWdOVJhpVsv+uK99LXtTk3iNctNW+ojRAzGCVba63B/fz/Zb4AD56eiIFdWVrJC/bfffpvn3yLXLop2dHSUxetcUAjnngwjR5xYQz4XnbR4jKbJIAoPWYdRrRaH29FDIsyWA5xtZMxEEuwuxo80+m63m9kRRCpYc1NTUzEYDCacCkfwnLXDOLCGmC9AnQvJML53d3e5h7zTeaxG+2d/9mcxOzsb//M//5MF9+7u7tJBxlmBVOBYIAAKhejYawgoZK8mc2wdBpHA+CwuLiZxdHp6OlH1HcOJLE9PT8fFxUUSbgA22HjWc0TkWsVGRDyQBnt7ewkmKlDh2QBdClhBap2eniZ4ur6+jsPDwyyIuLOzk6CCKLjXmjNC6Bd2gHZafolCMNZEDNbW1mJlZSVOT0/j9PQ0CxQuLCzEyclJfha72aZbrPP9etUbfA55ckov79sG4UjgBHMv6y3bdtaQI0wmMKy/rO+MO6oDZb1W9UTV9bTDttWOLc8w6UD/qxNY28acmvzn+dgP1nYbyeEot/ENdr1WI+fzHgvPk4kAyNi2yN9TJIevaj/8LOO6uga4Z42ic9WxYO8x42bbztiYrDFRYGxHG9p+GG9ktw0z+DXsup9lDFTxB/ahjollpY0IqdjzKRLE9r7t/YgHW/6b3/wmfvjhh9wuhC1BHiFsZ2dnY3NzM+7v7+Pbb7/NFOypqancDsAz5+fns9Ar9mU0GiV5c39/n+fDQ/ySXYBjQ10oR37JzmJ9gL3seFt3IwueU6LGbMNxNNs6yMEOMgbQvbbXEMTgVPAJev3g4CDu7u4mzqPHid7Z2UlZ5bQy41vvZ6d2AY45GIZ96/g+ZI1ByrMG8MUohDcej7MAH/vo7aPwmz3vtrU8CzkZDh+33wyHwzy60CQ+dizi0Vkme5C2YRsgttkmurOzkw44OpR1BHE4HA6zfhhFi5umiaOjo5xnbCZz78w65u/58+fx4sWLJFyGw2FiHLYM3N7ext7eXrx//z729vayLWAenjU3N5dkFltETLaOx4/HV0LUN81jQWbrcsYNPARxhP+4vb0dq6uruRX1p1yfTAJUo+7IXRugsKE0I2UFaecEoBnxMTDiwklCEfqenmAuD6LvZQPo+/B8gwSASxug4HL/a2TDC4t72+Hk+bVfBiiOplQH2E4B48oY036EBaIF9sz9QnDrGKGUGFcDBH+2Oqi+zFy3sdQmTwwWbIzrMx3pqKQL79nJNYnje1R59N9Vrm20DYT4rAGujTRjghwYCFSShna2rSt+m5Rhfjw+3mvsvVx1rgxSKlCYmpqKly9fZoqWC/YwjhyZwtXpdDJNsNvtRr/fj+fPn8fr169jbm4u9vb2ommaVFY4L8PhQ5ow+7ENsJHXnZ2dibnt9Xqxuroam5ubWThoe3s7j/qDxKBdABGMD44qn0VOMT7Ly8vx/PnzTF1FvxD5JToLATEcDrNf19fXcXR0lHOPfDDWdmYgFSA9aMfy8nJ0u908Gol1HPGor5AlrzdAXMRD8R62YqA7Z2dn4+zsLA04RABj/eHDhzg6Osoo0bt373KLxuLi4sTaYm8/xosxQq8jD8gcupTr8vIy7u7uJjKxGBfSI5ExCB3STQGg6H/mGtLHKcPo4H6/n/PG+GHLSKEfDAYJ9oh6QQywv9WFqKihcH19nUB6Z2cnqxmTdWAd6tNNGDvrOhPlliHkCoITgM1nyNA4ODjI9QSZhW4hRRPQibyh25wFY33d5iixLqrz5tdYH9hC5thkK/cxSVBtP5iAdlantM0+G2MgJ7Yl1ltt9vMpm++sLa/D+mzaaVLSoNz9iZg8cox7V3vFhW3n2egV23YwVA0Y8Dzuz+e4V7VPVQYqUWTH1J+3LIA13B/3pc6Hryo3FSs8ZdvrfPBjvFRlusqUsYXvU+fcZEP9qc648Vm17xCPFT94zo2bKoapz6mv1WtmZia+/PLL+P777+Pdu3eZjg3OtJNNHZ/T09OJo3u93azbfdjHjf2C0KWKO4G2vb29OD4+Tj3tbW4QCRQitH/AuNteIMPD4TC38xHZNk72+qrZvCaWcTSRk4WFhdxbDhGBPPN5bAxZhfgT2G8cY4hpyH9vEfC+/YjI7zfNw5ZLyGT6dXR0FKenpxPbIEaj0URdHcja0WiUWG5ubi6DK+AiB6OQO77rorLeHkLxXuNPiJHb29skPrze6BdkDzbHuNfEO2uEIwWJmjuzrGmaxAoRj8d+I5vj8WNBRxMA1ApiOwJZgnd3d1lMEQJme3s7cVPTNLmFkTEw7sYmswXQ2I1+gQVevXoVf/7nfx739/e5/iBzz8/PM8ASEbG3t5cZK5Az4Kq9vb347W9/G19++eWEr/4p108iAeoiYYEBSplQLibJbBwLEqfCjChOvNPiEBQbcwOFiEnG20QCrBuCzkV7KjtcI+RtxsnGvK3P3JcFZCXeBlzs7JmY8PNRVABmZyzQLtrMa7BNTr+s0QsbKIMa7unnEqGswITXABL0sypoz5fHA+VrQoRF4BTuGp1weh2/Hb0zqHQksI4tCtlgrgIfXwYLKCCDZ5MFtNlGiLGtZIijOvW9+ttr0cQFz3FqVgUL9f5+ri/OHsVZtsPgTAuyLxgDUpjW1tZia2srpqYe90/7eBfS4WyMYcipUsu+MKdz2uDiFJFayPien59nP9g7zZ6zZ8+epSxTsM99iojMXCC6z5gNBoNYW1uLtbW1+P3vf5/On1NDydTp9Xpxfn6e77PGcCbRTZ1OZ6Kie6/XS6afvtKGiMetASYNONGAdXh/fx9ra2vx4sWLmJ6ejqOjo/jhhx9Svnl2xIND+uLFi1hYWIhvvvkmIh5S8I6Pj3Pt4gwfHBzkWp2aejibGMPL/CHn3P/i4iL33TGPJl0tp4ALiBfPC/1n7Pjf7UGuyPiIiFhYWMhMB/Syix4BRvguKf7cn9eoTDwcPu41RAcD/HZ2dmJ2djaPiaRIJmmTnGHc7XYzEwMbMR6PU07Qr7wfEWn07+/vJypxX1xcpFwPBoME24BFkxe2GXZwKiFs22TnGR1qW2M9aufdDhAOqaM9yGF1vq3HuG8l/R29N4lgncbrvr8v2z+eQ9scZec+zkar+KDNRjx10Q6PK8+0M2Ms4kg4sm4SgO+5r9WBfIpcYh6faqf75LlwxLqS3763X+O5Dg6h9yqJVMeQ/iGrPMP21muHuQf8V9teSfY6d5WYc7uwP8hwHa+nCKmnHPEqg5Y135s5rxjU687fMR77satpmnj+/HlW2mdbE/YdXb6zsxOnp6eJ1cHwRL/BHVROX19fz5NLyB7ElvBdO2vYOhwtTlqJeMAhFGcjxdrjwBbBNpLJus8YkYr2PgPeGJk5Q8/Yftp/YG1V/WgMiL0jOoyvw/+QBTipbEPkaFcyGC8uLiYKwWJXqSsQEVnziGxD0uEjImvY4MPRD8sbMkgmBzgFfAa+jnjQHWRVWndBdjRNk8dFQiC5SDDrlzR78B7/U3jQfqRPLmPrCHZxeXk5s/NcMwn7SuQfOaCfMzMzOfeQHra/nCxArS8flx0ROb70gcxRE+zIEs8kUMZpCJYTxmg4HMbGxkY0TRN7e3uxt7eXMssJGHNzc3FxcRFff/11/PGPf4z19fUfXe/1+kk1AWzAbXQc7axsKoshYtJAVIeY1+ykWsnyHDtMXHzPg29nic/YOcIIeCFXQ8rr1bnz95xuhzLg/ggfl5W4DYWd8Wq4Pd7V+Yf1r3tGzLxZKXI/g2/agjPk+QK4jUaPRxnR3+ro8hrPtvCb/LGyNMlhVtCGtjrnTv33sxxlxEgZPPI6n4et43/fEybXoNRybYPuNeB5NWiqYNWkice6AmcDaGQHZtJbD9wm5sDMqp/rzyFb/p8LpyYisho8R6F4fbBPHGX5+eefx89+9rOIiEyFw1EhSj0YDGJ7ezvW1tZic3Mzjo+PMxV/YWEhK65TzZW+W3YwFh8+fIhvv/02v9vpdDJ6yxo0UYLB8TnwOJscjcQPpxQwj0S5IR5szMbjcRIArC9+s+YNnJwaxvwSTWaNe21Duo7H4zzhgM9gmJFzAMZoNEpj6BR+wBbr6/j4ON6/fx/dbjeB29dff51p8hGPJPDs7GwMBoMkNbytAOLERycy1uzNhDBxhJj1A/FhHWUnw2uOz3S73Ynqy/Pz81mYkrEGwDDnzK3HjLULEQGoQMaZR0AHcugTDJqmySMrX79+HaurqxMFmZBBZ2bYkaZ/PJc1YR2AHl5cXMytIjMzM3F0dJTtGY0eUm/JpgC0zM3N5dYJZBLdY1LVDpBtx1O2k7a3EY3Wm7atbc7XU84Z8+H7YF/4DnJtPVadq3pP60LbnYo7kD/sg/Xpj11+fn2u+8v4egyxEbTLzzKB4HYzNxU7oSe4mHu/Txvs5HscjRcsN7VvloE22aGN9KOOV5WL6lihh0zcV2fdfztLwJlU9TKJ4efx+YplbNvb7tOGfY0jaZMxNTrNsu52VWe+Em71s5Wg+7FrcXExtra24rvvvss0fL7nCCs6Gwcd/W8HGVvtjCucN+QWMsDbW1nno9EoBoNBbk8Zj8fR7/fzqFX2sIM7LGdgVpzkiMfCluBPHG2fjsOakZUvkgAAIABJREFUing8hQScRR+dVVnlxJlOJhL8XO5FxB5il9+QAp1OJ3U/AZbRaJRFfdF/4/E458EZQBQAbpomCQYCE+PxOI+zYwzAC6SY20GOeKzez7hB3jG39Mt6B6IAG8d2OObXY20/wg4yUf/V1dW4u7vLLRDIt4swRjzoo16vl7J2eHg4QTYyDxGRMouecyCn0+lkEHJhYSGLRM7NzWWGC99lqwTfNZGMrPiIzZWVlXTib29v43//939jd3c3hsPHormMIfPEeBwcHEwciQiZA+G/u7sbq6ur8atf/epH13q9PpkEeMpZqWyZDam/56iCFVZ1nDDoXDZmvi8KAIBTQYdT4CAHapv4LG0mC8FGFyFiYVD93w6cx6gq3rbIuUFQHTOUmjMbSH2KmDTYTnEBWNthMvPvPlfHnddpK2MACHF7HSXy3FUiiEXhvtVok8kAz4OPTGKu+W1H38YcdtCGyBcOSHWqzaAbdPGejUO92oCN28C9DBZos5UEishy6/HjtwGes2gMRNx/A1WDBZ5fCQv3k/aPRg9pZHNzc2nYLadWspubm7G5uZmKaX9/P6PWGJeIyDNhP3z4EDs7O2nQMW6ktrFvjrRmnler0jJ+RCmqA42Sh123A4HcYFTu7x+OwBsOh7G2tjbhRDVNk+3q9XpxeHgYTdNk5gERWTv+GG2vCQyXHRhS45kXZ7M4ioHTRx/IkrEOvL29jePj49jb25vYg2ww8eHDhzy6xqcezM/PZ5ohz8PBxpg1TZPO7dTUQ7GljY2N+Oyzz9IwHx8f5/48TjoxSKAtOPImkCFqHClhDNATjA/jASA5PT3NsZ2dnU0ZcSFTA6l62oiJXMgFZwZYb3Mf1lW/34+tra3Y2tqKV69exeeff55HGB0cHKSjzn5XMlksq5Bb6Hw7gd6nyAW544rOZAyYQAXMk5JqEtFXdSboK2uX5z/leNbvWfZ9/3pvOzSASMaY121bsUMG51WP+dms79pHLuy/9XK9mA/3kf63OY/un3VtJfd5vY4LESrWOWP/1Bwgu22OaNWJyD/PanNuPGcRk1tCIyZP+mkbq4p7+E7FV36eyWuPQ5uttSzZzrIuGYuKGUzy1zb7qnPsMal23cRYlYc2J7w6DZZxt62un0qyeAyeIgz+FAHgz5Fqjb3ktBvaSmYUkVmvvdnZ2bTNJp0hdMmKQ9+j0xcXF+P58+fR6XTi+Pg4K7dDlOKkX1xcxPHx8UQ9AmTMeJXK+7xft0RGRGYsumq95Zj7OesLnVm3RYKF0DGsWd5Hr1xdXU1gutHoMVDY6TzU5Nna2oqmaRI7odshs3mWa7tUHETaOllotAn7DR6gX85CQq7Yl86Y4Gd0Op3M7DDB47VOm5qmSaxHEADigYw5tgwQNOA4PupMRUQ6/tRfuLt7OKGDgtOQVD5RqNfrpeM+NTWVdXKqH8ZVfVPGhXZMTU0lXmKc0LcQLVNTj4UHHXjks5wyZfnmRCzPL/gXrBURuRWHgBq1BujP5eVlYi22l3zq9ckkgJWTASxKtjrWjrJihNoUoaNBnhw7vXamzEYSAQPIOqLhwQMU1XvbAHFvt6UqZ7eZhVeJBf/dRhKgHO0U1LbMzMxMsKh22PxZSAmnPJtRNrDCafB8RkxGFUwAALR4NpFF2lNBjxeGAXW9qsGmDXWMmHv6i4LzHPg9jAttNuBnvGs6p/vkeeSnOtJe0J6PCswtL/5eBWjVia/EWhswY25x7twWExxuV3X2axtN5FnGbORxpJgvy8h4PE4FCUP59u3bXHej0SiVGiwq0WEIAFhuFyLCUSJK7HQ5FD8ODWSDI5pE8tkShO5wqiz/Ly0t5fesDyAESEu8u7v7qCgVYwubi+NqJ5oxBChRCdk6hrmEbKkGn3XF2b6WL0AWxpKUOkAQEZCIh2gxoACgRZ/29/dTJgAwnU4niY7Nzc3odrtJHEDGXl1dxf7+fqytreW9KfiEPFl+6xq2POKcMwcAMNpvIisiMuqNTaj7/pFX9IRBK1kLAFRALpWsu92H87ORf6oQs3e2risTr96axvNWV1fToXOhQMaENjIuEAIc19Q0zcSxSoCLZ8+e5f5R60pH4UzE2jFp0wWWAes9PmvbVZ0O7m977OdUZ8U6z84g69ZHS1nvAsafwhaVhPazrJ+rrmbdtjlS1abX79W+tZHizC/9qu13/6nDYVuOzrHNsjPaRmLYzpgcdbvast+4KvnxYzLkMay4yM+u2In21eCDwTD23TikzSYbp/G+I7SWCWPCatf92+32eNfLY+Tn+apttW6kzR4Xk0mWhUqE1HXg+/ypq9vtxosXL+L8/DwLtrEVKiJyX7zJavQpZPDCwsLE2sEmgSXIRmIc2ZtNDZ6FhYX44YcfJgqpNc0D2XdychJHR0eJBRgHiAIXB5ydnY3FxcW078ZUEKWsT5MSfA5fwDLE3ybqWfO0B/tuh45jfqkkj21w5t78/Hy8ePEivvrqqzwiz8cq43jf399P1NAhy4x5ZjwYZ05scK0Bth/iNCPDbDPjb+QxIjJd3kEJ3sMhdzACpxk7CtmPzNj2UwgQonJ5eTlr1kCUn5ycZAYdZIL9BwKhEAXdbjdWVlYm6hmARZADk6y8XvtHXR+OnISEYC7AmRBABEGYH+sw2srn9vf34/3797G/v59BMgoFcuTvcDiMg4ODPGobuSEo1O12c1woAv3mzZtPWu+57j/1g3YazTpFTBqIysi3OTL8ro6iFWxNAeV9GwOnWPq5dgSd9m0gwPfMzCH0BvdW4jbANRL31GXD7/a5LTYqKBfa5MwD35MfxsnKoH7GDh4CbkeuzYDayFWSBjlo66ufWYGW55cfxsLOPO2sBo3ntpELlYTwMyNiQlHzgxKA9fZnGQOAg9tS+9gGgj1Gnl8uP4N78rtmwjh7wOmCvM8zDZJrloPbVdvcBh68/YM0dq9Zxnt6ejoN1GAwiPfv38d4PM7iJTMzM3m+OuACQ0ak1noEh5vjZKampmJhYSGZdNbo/f3jedMYZsYZkGEnkXFwu0l/w9AyB7C06Jfnz58n8QIrjyKen59PEgFlzNxCOngtWQ5qBJi5t2ODLsBR39zczM87EoJR5HUAivfrdbvdia0kzCv3GA6HMT8/H2dnZ3l8EoWWhsNhpmguLi5GxOORfRzbc3BwEG/fvo2tra24v79PkiciJtJLvS6bpklQgoyZ+KA/Pq6qRodHo1EaczuLRBe8rtjjiAwCFFkby8vLcXNzk/tPkb1erxenp6e5lWA4HE6Qy6PRKM7OzuLt27dxf38fx8fHsbm5Gb1eL8+K5tgiMiQAeV6LkBfsocXGQIIgr8j7ePxA8BLRYq7RF96bORqNMiWzEsJturbaAX/GeqXNiapOZCW7qvPi7xh8Wv9ZfkzeVozBfNc+OHPDF7YBO8j4+f5tNsevGfAx9namTW7UjDj30aQJMmvAWceYz6FvkAuPf52Ltnnj/za7zjNMCLnttvUmXmyLbdufyrbwZ/nfASD6RTtt5xkfzwlkgscO2+XnVVtoUopntcmM5bLNyfdc1nF2P+zMuF/Vsa9ET223+/IUbv6xi6gtBeNubm4yIgxhSfvQTbarOGIRkQ6ht6ahx4hGY5Nubm4yJRoHGNx5d3eXkVP2xKPnbPMjHouuEb0dDAYTzr2JIfaNk3LOWqOfbboJzE96PHNnvYpNxhEkrRwCxYUCIyLrLhAhHwwGsbOzk8fTIa/oDXBTp/NwrCFp5V5fxgxcrBHrRewM84qtRrac/o9TbHzCs/gx3qGwY6fT+Whrh+0z7SZ4xfhaF9/fP24nwNE/PDyMi4uLfAbf84lgTdOkDR+NRjkHYDeCBi6kSBDLJ7Xg6FMnia0WyB/BKeoAgdsc/JmamsrtnrOzs1nH4ejoKLf1Yes7nU4WmR6NRnFwcBDHx8cpx5YXCgVyrPF4PI4ffvjhT651X59MAlTFXZUPk2jnsiprG2T+b1Oydti5J4sBAYLRAyx4jykgsgLOtrZzXxtvf4f+ABQAXZ5k2JkfU/oW6qrAWJz8cC+Av4uTGayg6KygfdlJiHgkACqhUKPqHve2sYmYjKIzB96H70VSQVCdD2cpQGjULADGLWKyGGBETKQO8brJjQrIKlji/gYTjJ3JKCtWxpU5QSbpg/83yWED7gujV/tqoqwafY9tXRuOkvgywKlXG5Fxd3eXRoe0eFKwUKT05+LiIplu2s3YXF9fTzjttT888/j4OA0k69mRH8g/5sXMPMbHoPny8jLm5+c/Wh8oUNqOAeRM+5WVlQlDtba2lu0ik4HfnU5nIlKLU0rROcCM+4Hx49kU8CH6SQE8g5D7+4c6CVxEaLjveDzOwoqODPNDVgdrHGb85uYmTxJA9k12sA+eaAIGh+wOxgEZ4FxoDCvRcz5rOwBTb31rpx7D7P37EAIUiIKMgLgBuLC9w3+TpUCbkQ/uDehdXl7OKM7JyUmmKUZEFgBcXV1NcGIy7Pr6Ora3t6PX6+XxP6TqWX4qMWqgDHDkswbdJgzQFd6XC6ghk4Q1gm1hPgBMEEHVabTjZ31mZ9yfZx79f7VJBtjWv7ZDJvr8Oes2k7n1/pZ5O67oCX/O9s7RFaczM+ZPOVIeI56DLq5Yw88ms4Xn2FGJeCQjbVfsdNm2mxzhqiRBvYcv4yzGBL0SMbnnmXl9inRxX/16xCQGaZt37m3M59e4lwG25bbaNeMqEzqV2K9ya3IGzOB+eB3W8W276r3r9WPfq8RFxQ9P/f0p96/Xs2fPYm1tLcbjcWxvbycx7C0ARH4hxmnnaDRKG+81Q+TbJ9Rw7jsEA9FeiHbm6OLiIgvQgjnaSC4wORHr0WiUKdrMHzpvOBxmFhVH//V6vTz21VsNPF/IF/1H94Id6Gen00ncHvG4pXd9fT3W19fj5uYmj79zscRvv/023rx5k1gBe9I0Tdp0UsBvb2/TRoMdaTO+Ce1lnqyjsKtN0+RpARSWHY1GebQvOMuEPo6oCTr6gd0Gt1FoEhzhUwxYk5AEU1NTsbm5mbLioObS0lKS4F7Txiw4x0Tt2U6BTa9r38EFxpMTGsiEwTGnoCGkEbWDGH/GwT4JAQTjTBOLtf4HNoFjHKemHopqU8wR+bJNgVQCm7n+0KdeP4kEsBDRCDuQFSiYvbWD0sZethkOBod7e/Ix2HaWcMhYkAhHfZaVk411NWB2Hu28cAGs7aDYKaukhyMMbU6ex83PRxgrkGgDQG6jwZCNqg2glV1tK32nHXU8AC+VAHmKdHG7+A17bEemOt0wnI6iVELDIA2ixhVHbTycPoXC4p7IjAFfG9jlde4JSLGDy/cMNC3/7mcdf/5vW1POevCPHfwq035mBe04Zr44ai8i8ii9breb0VUcLUewGD8bpOFwGG/fvk3jGRETKXMme1DEGEeUNKCBqJjHmef5Qh7t8NI+DLSjgl4nV1dXuQVgPB5nISKzyMfHx5naCBmGIaFdONzWSRhKtjFh7F2xljVVUxN5H/DCZ5l3DIFT/r1erUusS5kPCAv2qDNfED1O4bu/v0+QQGSG+xFZYJsHsgoQYm1GRDrhtANH3fLvfjL+HiciP5xC0O/3c44BL2QzzM3NxWeffRazs7Px/fff55GD19fXuTWAdba0tBRra2s5ptfX17GwsBARDyTIaDTKEzSGw2GmbwPubm5uYjAYTIyzyVjGgb6ZwOZzEEH0ke+yzhgr20kTY74fY0/aLkCW9lsPWT8gL3ZC7DzbJlkXcx8u39ttfuqyzrL+rHbaz6jEwlPPt/3iNesyxtXrsOroagvsHFfHlO8xz/QNHWSnlov22RbVca1OpeeJ/01QGENwL8bUNp7X6b8/73nz/FX7UcfHGTPGkmAw99ukjC/rwfn5+Qm9RnuwEYy55ZY1gv4xoVIv8Ijtr+W7kkh1bPjftsV4+Kn5qxjA2O8pAqfKoXHAp16W8ZmZmdjY2EiiG2fm/Pw8HWkKtTkr0TKGvnGGFjop4uOMEYjyTudhexNp3daTta+18Ku3jSAnBFZwusB/EA3cZzQaxcnJycRJAWAQ3w9ni++CV5qmycxG7OXc3NxENXm2rLHdzTqWfeVkBpiANL6jHzi8zB19ZRzAJs7EwGkleIqzCH4YDAbp/LJ9zFjLdoKx9hrCnpClSVQdGw8JgN1EdoiyMz/ILlsql5aW4te//nWe7MQW0eFwGEdHR3FwcJDkN9F4MjN4HoQN7XQWJrjv9PQ0x7XT6UzUYmAs2G7ogNRo9HiCGuNtP4YsGXwRSAEKD6LrZ2ZmEnc8e/YsI/zOwkX+mqaZyBoAwx0dHUWv14t//ud//uS1/5NJADvl/F1ZP5Q1jeX16ojYyFkBGlRUBe/3DERs2Ktj7f9tNKrBbDNkvqyAEULv7TEobwNIlcGNmDyex+PAOLJwHSWuxoN72kjyup00hLC+x/xw/zbDbHZpNHqsUl0Jm7ZohIkJywWfrwCYvrKAImLCobBzjbGuZA8R0ampqY9OAsAIwCKavLFy8LwxNhg3DJDl0ErShtEy7Lb7cqqzCSK3wc5QG6huI4WqPPK610wbCWQAaAOKESXVDdbcsm2CAGWO0+sxYS4gA8yWouAYGwyyZR2Da0eZaL3Hx8f4IWdEV72WmEdX3u92H6qywsJy3CGKHccXwxDxeEyp01/5PFWL5+fn49mzZ7G6uhpN83C2+8HBQQwGg3RaqUzrFPCpqamMwAN2LedUFT4/P89nMs9UxDdQqvrBzjWGlPXFeDPnEA88E7Dh+eFZJuyqQ9k0TTLcGMuIxy0pjJkBJ+0lE2NhYSG++uqrrI8S8XCsD1WXz87OUicA2pir+/v72NjYyLTQ0WiU+yiJ+BMhgQwAtHIcE0bcfUcuyUDgfwAjGTZkkVh3oAeQEcbD5JmBou0Xc8rYdDqPxbE4rcE6zs6zdYSdlh9zqp0tVW28v2d7aDv4FHlgYqMSANYFtiWVFGgjJGofrDurfqk6tY0k9rP8U3U09iPiMRBg3GSCtzrAthuVFGBMrYf9ngmIaj94lse4EgI/ZmOesmfOhuB94yPaW2WiOsptwSdIYZwXLnSU03l5NljCQRD6B7aw80XfPI5tDnglRNqIGpOZ9M1zxW9nRPg+6O9KMPg5fs19bmtz23VxcZF1WBjL1dXVCcIbfd/v99PJczQTstKy4GryEZMF9owpwVSMi7fZUsHeWXQ4j86UMRldx9Gv0wbLz8XFRZ464DHHqWPdMof021uzkB1vAcC+kzHGlrLFxcU8Itn4AbkEQ8zPz+eYeGsd75EdwZg+e/Ys5ufn02ZWcuTm5ibPogdXsPXAmJ6x8XrAVpl8830jIkkP7kHwCOIO2SLjkVoB4AiK55JJsLS0FK9evYovv/wyut1ubjMFb5yensY333wTu7u7Ezag0+nkUZXUNwC3EGmnVsPp6Wns7+9n4Gs8ftwuysWcY/ddK8t6e3p6Onq9XszNzWVGJ8Q7uIw5gwxZXl7OsSRrAQzIs52F4ywTghurq6vR6TxkrP7Zn/1Z/P3f//0nrfuIn0gCOAJZjVybI8YipEjH/f1jFWwbXS9ap7lVUFMddRwNs+vVqXG6ssmHqmgNKjyx7kc1hlbMboPv4X6ycNxnFEh1vm0U7MQ5al2Bl5/rqDkKludwf4BnGzioxh2HgfHzfHv+PCaeE55tR4D5Q3EyVyiFiI9JEq429p42oTgxJPQdBtZ7d7yv11kklgnajIKFFa/gqcoVY9LmfLc53pYpz1MdUxwgnlXlm+9xVeKlDcBX4gxWm7XO2Nqg4NgDvvib9HHa5r44UmbSCiXrvvj1pmnSaFQjAwtKDQIMs9c7FzLhFHPSpt1WH13E9wAn7CVDOTM+3j/HfOI4m9zDGV1bW4v19fVkn0mFtEFZWVmJ+/v7ODg4yDHEiVtaWorl5eVYX1+PlZWV3HIxGAzi4OAgox39fj8rBjtzgcgO801EPOLxvNupqakkTDD0pJPf39/nVgbWseUcPdQ0D2cFQ745K8kkBN9h3DD0TdOkQ86cMw5sN3j16lW8evUqiRrGeX5+Pvr9fpycnMTOzk589913SXIQseB+3W4398Wur69Ht9vNqtWzs7NxdHQU9/f3mcnBPj1egyxgTyugCnm08wGDD8nkFFg7Kuhur1nkluwKwCrEDLJjwgG5H48fjyikfdYJ/r/NOfbr2PaFhYW4v7/P+fB33G47c3aa2pyeNqceXeZ1aVKf71tf2g7bIbOuM66wI8zflQBp07PGKJ47v/ZjRAS6GL3odvhCBzsS5x/6AIlR+2t89NRVyTraVNtM/z3+fA+dCGZxO4zrjNmMn2xnvGbANaw76w/WPH0w0dI2FpYHO5rYEtv1aoNpV51T23ffv8pLxQx813a9Dd/5HnVNtbWjTebaLhO2NeOC+jyj0ShWV1fjl7/8ZZ4YUIMhfjY6u9bu4uhSE0RsN+A1ZAd5X1hYSCeK5/Fd5hmbRIYXOJKoOMQn6wz7jR3A0XJhbq9F2jUcDnPbFjaK9tNPMq1w2NHpzvojIk3aP883Zpmfn4/l5eXcVnZ9fZ2ZZuAhthdA+tZTAIxrkEmwP7oCEps5pG/oP74P6eK6ZZ1OJ+sCLSws5AlKEBHYKBc55FmMK9F68AY2+osvvoher5en6wwGg2iah1MHPvvss/j8888T6+/t7eXWA7ALTjNrHFn67LPP4tWrV3F+fh5//OMfY3d3N7ch0BeCJvZFwJjIO/emz+zVh7A4Pz+PZ8+e5QlD+L8RD/h5dXU15wlywUWXwRE8d2FhIWsmMHczMzOxtrYWX3zxRYzH4/9/RwQi3NXRN+itzjrK04a6OtwWeBuqymAaPJjlZFF6z1pVfLTBbbNTTtt5DyPLQnLb3D4rCKcNVhKkAo46flV52iDa0NDGyvxzH55JBBeHDIVmsABraseXz1Tmmv7zN4a4Gg6nN/4Y0LBjCfi2kXd0F4Nf5cDGn+fDlKFYcfZQCMhddWZ9f485v52tAgNsuUIG7cDa0bGxs0Kp4MxZJfV+FUB7fVSA7nZzVULDoKEtsjU/P5/OjKMWRANcRAbjy9pxZXeeZ2CPQWzbU14Z9aZpsiAg98Lh4V4G3qPRKNPYaS/t7HQ6H0WxAY4w6fQT4Iphpk0wsKTuRTwYTGesGIDboa3AfjgcJit/eHgYh4eHcXp6mnNAIRk7cAYvRKe73YcjcV69ehVra2vR7XYnDGKv14udnZ149+7dhC7E2NJP1kvVV/xP31wJmH5YPllvOA/sw7czy9gDCKw3IGishzmWEcfZkXNIvcPDwxiPxzmmfI8zpkejhyI7GFOAHKmQKysrsb6+Hr1eLzY3NxMYkfVCNWX2cI7H43T6nf1hJx5QZruJ/kHukX2fgMB1c3MTx8fHKfu2WTyr2jeebbKQ8XbKJacbPHUhq8iyL7fHuqja36qP7KC2OdPVdkZ8fM58bUfFCvX7tB/9VHVytdkm66uu5ZnVjvuqEXk/i2fwfn2udXa9N58xRrFe531n71Q78ZTTapxSx9QYg8+7nX699g9d63FHL9pGtOGF2h7rZPpo2aIPPAtn0Y4392FtMF9V7vjBtjuziedYdipu83h4/IwPeN5TcuSxtG3n+ZUEcF9/7J71Qu5wLrH7FOhFT+J4RsSEXsZGMq/GW6RZE8H1mmSOwaPoVGeCMgbICkQy/bPNMVFFUbter5dZdyYn0L/j8eNpOswxmVnoAWdOWY8TSOKekCXIoMla7ATp/hD+2FRsoHUu/cGGPX/+PIMF7P0+OzuLw8PDmJubmzhW0djH21+MZ2kjY8qzaRufxZln/TCPEBq1av54/HBcLtshOp1OYg3sHHjRRCtk/NXVVVxdXcXW1lZMT0/H999/H8fHx1mwkpMjrq6u4i//8i8T83PiFP2EfOh0OtHr9ZLoI1uBrZ6Q4hcXF3FwcJDySpbqcDhMcgPZpKgw8wfZEBFJkBEoJGhY9Rg/nnPWoP2N0WgUS0tL0e/3s2AzxBU+BmvxV7/6VWxsbHzSuuf6ZBLAhrgy9EyoF63ByM3NTZycnOQCqg4J9/wxw2uBsdJrY/adNmrDaRKjXgay7q9BMAJhh5rFZrBvQ8nvykCzMO1c21jRJoC2F7LvZceW7/g34+YMCzvzpLdYibtvVqxWnLTVKVr+29GKyvJz2enD+WgjNvi7jpMjj3bkAddOlaUfLsbiLIE6D1b6BvWXl5cTMuB+8Jv1YBaRuagEC7LSBhQqmDCAstzW79JuV4w3mWOn1Pf3XMO4tkUycFZQkgbrRK0NyHCQKlCDLBgMBkmueN3hPDZNM7EXHiNEX6xgHd03yTQeP6Ybsl8dmTYAZsyXlpZSkbviPwbcc89c2zFmPPjOzMxMLC8vZ9oWxhvZJILPWDH/9I0xIYUcx5PCMdvb2/Hy5cv4/PPP46/+6q/ib/7mb2JpaSlOT0/jd7/7XRa2Oz8/z6jIyclJOtQ43xhZr9GImNjj71RNg30AutcsgBDghtFkzbkmiJ8X8QB+nj9/HisrK9Hv96Pf72e0/cOHDzEcDmN5eTlmZmayKKX3G25ubsbZ2VnKK0Btc3MzXr16FS9fvozz8/N49+5djMfjTNOcnp7OoomMV9M8pHRyhOLFxUU6XPSTegr0i3GGRGiaJqPv6NKzs7Ms7Oq1bUeLtWEAafKNz0xNPaTwAiZYK9T08HdMxNdx9/zRFut8X7e3D0eIVZtHf+xUM8dtBKbXTJtjZNtou1Ej1NUZ8ve4twGsn2O7ZztoncznvbarPTZmqG0wZjBpjh5hjtpspnWOMRftMC6hXcin57LNvtb7/5g9QmcaKxnzcQ9jtPqsSki4/25DxSCMmwkAtx0MUTMFPG+Mj+fLAQNHmt0Oy4UjusaJ3L/OW72PL9v3SkJU3MNzXBTUctmGw59au24fjiDFVnFcXZRvNBplxJQx7vf70TRNRk2peu691GRWVLlCluiD5Yo2I7+0AfxVcRE0AAAgAElEQVTFOEBOICd2VHHuR6NRHjuHHagOL/eHALCNN54lxR6H0sXw+v1+3jMi0jEmzR17SzvIWIh4PNnAeg2HmoKFTdNkJJhifhBiEB1sV+S6vb3No4gZH2dN4LgzXvSfn2fPnsXKykosLS1NOK+Q7NgxFz7GuYak4Jl8jznDPvH//f19bplAj5yensbu7m6cnJwkPqT2zmg0msjKOzw8TBJgamoqyYJOp5NOOj4JWYHsuyf6brmxTHS73ej3+0k4zM3NJQnAd7HF+B4uUE3b0Rv2Kby1hGr/1Mfodruxuroaf/3Xfx2fffZZnJycTGQNQupDXPT7/SfX+VPXJ5MAVdnayfdr1RC3MXV2BqjWyeTV51VGpBoP7sWg2SFhMZq0qMbDCtSK12CB91mU3JOF5cXltsOA8xw7345MsJAc8XMk2MCtzSCYpPDYYFRJM8HwIaw+tsuOogWay2Nmw8q9+R5GH/BL/7lqOrnTGlGgABz36SmAhgNhZpE2MYZW+oBo9k+b6UeeGCcfeWPZoJ3Mn2XBY+AIg8fOY819zZJ73XhODbJ4Jv9zX4+ZQYpBgNcJfa3AxeCIqHklYXhuWyTY96ngOyJy36aNniN2fAYHE3mann48Mx2j4nmhLd5jbtmxHGKw0EN+NlHS0eihUu7V1dVEuj/6oKbJ0R7WqtfC4uJi/OpXv4qZmZn43e9+F2/evEmZ5L6Mk50Jnlf1LQCKvWdff/11vHnzJnZ3d+Nv//ZvY21tLXZ2duJf/uVfsqK/HYbz8/OMeHOcEpGeNtKQtcGeetptoM96QDZIeXSUh6JIFMixw4R8kUq6tbUVr169iuXl5XSmIY6IsBt0AIiYE5zuXq8Xg8Egj6y8vb2NhYWF/B+wi5OP7C8vL2d0iC0F1MLwWrCzy1hg9J3ZxNp2/QSvT/SQo1UmVuiv1z7Pmpubi5///Odxd3cX33zzTQJ3t4nPVkeVPrQ5FG1Obdt69/pB7pHrGvmvDqDv6ffasAXf8Zo27qjt9L2sA2zbfT/GqS3Dy+03Ae/3DJZZa3ZcLQvMDbrP/anBjTpfJrkrKVL3MHtMKk7x35VMr1u0IDxrMVMTKqxz637bWD+3Esy1zciX5dcZcx4XjzNRa885Mondtu1jvm2bnZr/lAxUmbWtsc2vslfl3T8VU/v/atsZ27a14/+fIgEuLy/j4OAgLi4u4u7uLrOprHvA5jyPzzBGo9FDrRH0KGnbyHuVY+YGZ8rp+d4uZuxi55y+gZmNATyGzjjiOwQl6BtYzhX7cd6rLmR7GacldLvdLLKKXev1enkU8unp6QR5YaeQNnDsHfaOaDLYhd9N02Skn+AIdj8iYn19PbECRAlEDQXvjEfJZjs9Pc15Oj4+jg8fPiQpwvbAtbW12NjYiOXl5ZynTucxk3M8HueWBbaG0X/LrElx1ht1HSCtIQ6mpqbi/Pw8pqens1YS83d7exuzs7N59O79/X28ffs2t9WBlzjBotN5PAXCTv7l5WXO+d3dXSwsLMTKysrEtkX7Geh19AbbG5hX/Izz8/PUUdYffJ8xgTxCvhhXTikgw/PZs2fR7/djbW0tCRPGHjlle6kDOJ96fTIJYEfahvgpIsDfMTvK+3buqvKqYMTPMDBBEdQ0LTtl9X78b0Dh9rjtCJMdeRQUl526qmhNLHhx+95Oa0bxVuBtZV+BAoLE6zbK4/E4HRWeZSeAv7vdbhICHjN/pxpIjLMVpmXAKZFOobLBRiEAghzVdgo+9+P12hZer4xbnfO2NFwbaDuVyKYBro2ZwTzEgokGkwkGxjyvymsFtL6qIUUmPFcGWRGP5/RipCtIawM1Feg7csf+Yz7vPWVWPDbodV3wPGTHewDtnPC/1zZAG6NPkRZk031gvHBoa3ZMRGT0wAVWxuPHivg4j1NTU6l8IRess2gnqWzoC1LmSbMjsnJ6epoGnDZWxwmZoF2MAb/Z94qsYVyZj/fv32c2xIcPH3JPP8bdYNvRFfb5DYfDiYrCjBvbbC4vL7N/tAl5wDi5YJMdE+rDIANEKVizEY/E4vX1dUbXSeMjyo0jHPFYAI/vsg/v8PAwj/V79+5dvH//Pvr9ftzd3cXOzk6OGZGTvb29CecdHUEF6NFoNEEsEOWxk8Fvrw/kCDIBkMSaQJ+xPqvD3uv18kQLHD30OuvBZ2N7/ytpnRBdHreaFVf1Aa9Vp8Y4wPoEO8Z9n7qfv9uGKbisK6vutf7iaiMpnyIWTDi2ZaG4T085gFwVA2GDqgNfHWG/b7DJ3KDn7UzWuXI/3V/moC3j0PaA1+v4jEaPKdq1/ybX7Uh7HAhu4Ji4/RWP4JA7mML8IFPGP22ZpPTF0c3qfNu+eh4qbjMJUOWb51gW63efkqP6vDZCgTGscmmdjf2rmNs26VOv7777Lo6OjjLj7uzsLAaDwUdzZzkZjUZ5NBlOinUWsmvChr5ZP1ieh8OHrXEcFUeEnfnEKTNOrAEo2mlnjXVH5XZsnAk/no/z99RRhIwFmJVtE8gweAL5wLklgMfpMtgBbHGn81ABn3pVOHe0A3sCBvM6YJvb0tJSTE1NZWFcjrCjT91uN7GqyRTWORlxOzs7WbOB50ASvXjxIgl8MsvA0FS1n5uby+g6NnN+fj6LHM/Pz8fKykrMzs5myv3p6WlilNFolLbs/Pw8FhcXY3FxcaJmggnGk5OT2N3dje3t7bwPWJ/2s5XPehF5ZS0xloybjxumtgOyx5zwGWw934XwsZ7gOzybtpCheXl5macJeatI0zTx4cOH+P3vf599oPhgROS2CGoRVN/hU65PJgHsGFXjb2BvBq8NLFQjz/sRMaHs7SgxqTwPpcI9qiL3c+x41P7wYwXX5ixZGdjJNrPvZ7QBDp7DGALgI2LCicmJ6X587Jk/a2avjUixUaBtOEX+HyXp/tloM3cmJ/hhQThawLPtvHHhwNvRQxmZNbPMwLLigNkI2Og4AokisSPoMUHhV9LBQIk2+X2/h7HBWapZGjXbo17IlqO8FeSZ9W9zlumLnW3m22vEIMtgzlkxda5gUG34+b4LAtJO+l/BlYEJfXZ/TbwY6JlxNZvvdQz7Sju8ll291WPHXHoenZYL08x7EZEpbXzXNTYooGh9gVz4HsPhw77/3/72tzE7O5uFYjBSyLezDbxVhWdDKPi1Ss6wd46Uf++J5Nm07ezsLK6urnJ7hx04xox7E9VgzND39NukF/Jk+SS67f2Blhs7PYznxcVF7O3txdzcXGxsbMRw+HD2MAUBLy8vk+EnusEc3N/fp4Hd29vLIlc//PDDhA5zJImoe6/Xy+0WjAeRdeYbAFCzNlhzyKSfZb3F+kVf8BzWAWuJWgikhQISrf+R02+//Tb3LzI3jDXjRJtqppx1g50cr8tqY6rd9W+vW+5nh8j3sd7iqs5pm621jFYb7/u3XdWxrzb8KfKirT1uiy/WSL2fCQjjqIhJ/cS6MvZwvxgj5M5rtQYMTELzmuXMfXRUvY5vxUrGNZYlnlUJ+4jHrYjYJuMLk8+Mh9vg47ZYi9hb1qnlyJiO/tWM0Do32PdqK7w+bKP8mYoZffmZnsf6uw1fWybsWFeyyWPnua/Xu3fv4ve//30SjdiPwWCQts1OU8TkFkx+Y5MY+6ZpYn5+PklwMgmwd2AmsjGRFXSvbSaEp+UY22iSxzLtOaxY3Bk5bfJDn7i35zwiJkiNiEjSAmIeu0S6P04beODu7i63gBEA4Jg4xpegHGsw4tEfcHZSRCRWOTg4yPljqwIkibN7xuNxzgf2jGJ4h4eHcXBw8NF6hVSAxIAE8RG409PTcXp6mkX1ID+wwUtLS7GxsZHH2R0fH2cWAM40Y9nr9TLKfn19HZubm7G0tJTp/mRdLCwsxOXlZezu7ibhYPIUe+zaSqxp5oPxW1xczOLKyDREBzWEeKaLGjpI6iAteh8d56KLYCPWOP7N9fV1nJ6efkR4dTqdlKlXr17F+vp6ZjtS9Jnsg//L9ZMyAaqj0WY0nzKWXDZ8BpB2XGoadf3bzmnEpNKoTo0ds+qQ+7M21FbwlY3nvtX5MRjjeQiJjbdBdpvThKJytVp+cAoYHzvvFkjGAgGszjlRVINgp9jZaTUg4H8bfStOAwGDX3+exWGW1s687+t0fNh9xgGZpF/MmQFop9PJav4sfBwL+mlQym/Lk//nbwOE6uRzTxsfz4vHk/baOUa2+J5lijHyd9pSbem7n++ChAbbzrColwGP2+ioJfdExs148h23xWvFxtcKzEQX/amgzsQC/7voGeuC9hoUmCywfoiIXBu3t7d5zIuL5aHMSeOzbkAuFhcX04A4Ijcej3PvFrLNdxgb1jxs/Xg8zuhF0zQTheMw5I6cdLvdLEJEKj6AqzpJyCFtdAoxEXrkDaKB9loGuZgD5K/KOPvHyTyIeDyFwpEtG1myWVycajgcZsGni4uLOD4+TtDAWjehMxgMMqpAJWciIhBJjAX3QQ4uLi4+OqoRp4V1Yxtgm2A9x/hCVPDsqnNtD/l9cnKSnyPd0eQhsoxOmp+fjy+//DKzNngfgMNcer55tu17mwPTdnm92Y4zhyYDqkNi+94mT/xY1/vzf+ryPYwLql3ns1zViXhqTDxu9X/0i7N7AH1EvRxdqnaD71aiovaH9hpP+P+a2WQbi87mO3ym4qbqhPo1+ut5j3i0n5UA4ELveE9sdTKtY3kG42miFSCN3mKebYs8P4y7bbMdajuFrvDuNeL15/k1KVyxr3+3vWaipW3sK+5Glk1stLWxba38wz/8Q3z99dextLQ0cZY6BFJE5Nnvxh4m6rEVOLuXl5dZTDAiJrLLkH1nMDljA4wGLmQcXQvF+MJjaFzG+sIuEoFmL76zVyyHc3NzmZZen2FcafIA+bUz6Cys29vbLOp3fX0du7u7cXZ2FsfHx5mdwL3IrOAIWvQ82+CQd9oLwYLzPx6PYzAY5HGE4/E4i/phX7GH2PaZmZkkyiMenWJfZOyRmcBc0G7IAdLqIRecnUh2ZNM0sb+/HwcHB7G3txcHBwcTNTg4WhGim3R7bDBZl9Si+Oabb+L+/j7n1jgRHUDmHdkG4CQCjFNTU7ktZX5+PjY3N6NpmizAF/F4TLW3hLBW2FZQM1/RW9ZPyBBYCr13dXWVa8cBLOYE272xsRFffvll3N3dxfHxcVxcXOSzWas/9fpJRwS2XdUJjZiMVtqRaFN0VnZ2ah35B0yNx+PWff61LW3/e1Cr4rXh8qQ5pa0CFX/HCphnca+21+yYuH8mLuwgmQjw/VDaLJgKcGw0HW30vnvabqeDolYmDezQ2MjbmTeANIjiB6VgAG2AUAGMU6UdmfDn7ERx8QzmjwqlEZEKypeJGd+vGjw+6wwAj68NI21GUfAdG+aIyfPTKwCnPW6nZfqp1DavSd53RKqCigraPB+k5FViCLn0/eraQbYr0WW5RC68Rsymts0Pl2Wcv71n0I4Rz4Yh9xiPRqOMwPMMHCXWHMYaA0X/rLA7nU4ClkoIGnDTJoMqA9YK2hkbk3+8R59Zp9PT07G8vBxXV1dZvIZCO4Aug1U7g7SxaZqJrADrJkCCDaznjzEzmWXdypoBxPM5ZJpjD09OTnK8AC4YYIoFLi4uZiGd+/vHvZBU0j07O0uSgPZRVIh2I6+s3/F4nEX/KMJoVp57IDu9Xm/CuWb+6LfljmgRmSWWP9tMEy3Iqr/DWHpNA2j6/X5mASAz6FEA47NnzyZIoepYVCei2kc+47bU1y1fdk4t54wRr9UUZ6+ftutTHHS3n9/ocNZgG0bwOER8rBtr+2q7mU/bA9aMxzMiJmy7x9Hkq/tiYh9w6vtY/uxc891aL8DELOvROKI6ohUPWc7rfPsyMYHu4Lf3S1vX1ewikyLGaBGPx7h6fOu8VBvoDBeea33mvjpoYCKBz5jwNbHD83+MEGiz9cyDx9+fNxata9D3q2TEeDyOf/3Xf83z1Q8PD7Pg3Pz8fG69oogemGtqairtpKPwEZEOG+n0Z2dnMR6PMwuNz1GsbX5+PsbjcRYUrDJPX1lDfo1xtY/Ae2BXSICZmZk8Zm9xcTHm5uYSNzklH1zA/8YSll8wN5XZIyIj2uzVx5lE37Mfnc+fnJzE4eFhRr4hlylui7Pc7XbzfqzftbW12NraiqZpYm9vL05PT3Pvfbf7cNzs27dv4/j4OJqmyeg77Sa6jrON3VteXo6lpaWYm5ubKCxIv+sc+eSD29vbzGxgzNAfPPP4+DixCcX+jo+Pk5Bg3rC56ClOQ+h2u7GyshKrq6spO+/fv5+oT8RaQR4cgbfvYGzZ6/WSkCX9H4KBrRZgeBxuxoz1wJaFwWAQ19fXeUR5JeuQT3SNx4nsB8bEJ3OB266vr2N/fz9PLyKrEoIDsvKnXj95O0A1yFZAFdDbWTOoqN9FmfADQLNBtYJomiaFskYZ2gBDmwFDwdhh5X0mxpVEq9KmXf7N35VcsCNr8FcdDphL9z3isUBP7WsFPXYoKmvL3yxwAwBnGdS++W8vMowli9WCzfygiG2UK/Ci3W3yYQfHcwNg8li62Ij7NxwOU8GjrMyYWxZMXDBfdozawG0FKXZYvR68bQCWl/nmfpWcaYsy1DnnmTUKgbFEfhj7Kr9WVJ5zr2lHXyy3yJozRUgV4zkoPaKfzKOd9rb1Zb1QycUKfCz3yArtwTE2COTHmQOk5JnhxnliDEzaOaURlh7ZxmAY2Ho+kFOAF//z2XrkEu3sdB6Px2KNeW0RVVlbW0tHj3teXl6mwax6iHG5ublJ0Mf4I8N24syOO2vDGQsQSKPRaIJ4YW6Zfxd/tJ4iekExJNbv69evY3V1Naanp2NpaSlGo9EEEQDhxntEXCIi97sSXZmfn8+UTUAacw5AYw58di9j4iwK5qD21frCn6ufZzzRO3Y4kFV/D1k3+QpJcnFxEb/73e9Sdtg+YnBrB6U6eW0Oi3WkI7zVtleHvM0B8TpnfPwsO2VP2d42HOHX3Z4a7WWdOt3besTt9tjU9pjQ8Bwb+NnhRnZsR00u1TG3Hq0OqZ/D3w4SRMSETqmkU50L6xFeq4QB48frtT21zdVu1b8Nyvm8U5e5V3W+a/udwVMznoz3+J+r3s9rk/FmHpETf9fv056KA3jdEWSPeZ3PtvH02rWM2ba4X7xfsaavf/zHf4zd3d0J2UNvQSQ+f/48Op1O7O3tTWAuYyfWU8THWNz6y6QMGVvoLCLcbBPDtpkMAn9gfzxn4JGmabJyP2tzZmYmer1eLC8vx/LycjpwEZEF/iDd0Zf0gde4P44zdov15S0QGxsbOTecSOBK/jjtnDpk4mh+fj59DohlyATIAsbz/Pw89vf3E1NBlJMFQEV70uxZJ4wpY2ldRvG5/f393JoxNTUVy8vLsba2FrOzsxPkKXUkfC+IAestnFUc3OpPgNEhyinoR8COsXZm5u7ubnz//fdxeHiYmM1zDgGAzkW+wUjGitRzAqtCgoEDwHisX7a6OFAAuYQ+pzCij7N0cNW6n/Z1u93MeKB+D585PT2NH374IS4uLuLbb7+N9fX1WFlZSf08GAzizZs38Ytf/OIjH+FPXT+JBPBvTzITWj9XjRTAlu9Xo+MoeNvzDcrrPTAgAMo2Zeq/bfgqSOA1hNIAnj67nWbKah8RNhSo091qW1HIlVk3UOD5LBrvq/NzzGK6gqqVLwDY2waqsxMxeTwhc41Rg63E+JrBBzC0gTcUZZvTbQa7gg87Cn4e7W9z5GF8AcQGqpbbyiIC9CsQ5D3LIvLA/QDevFZZStrGhYJlbxNt8ph5TupVAQI/GFXug2xbxlBKviqTadl0W2r/6RMyZ/nhc8wT7eMy+Hc7kW8MGHPibAL3mdf9GvNA1kxEJNOMk8hrEQ/kBaw8uoeoqmWNQj41ywVwwVYC0rhZs8gI40cUC0KuylDTNPk/TjkF8aoss64pksf6uLm5ScPInnf2ZLIWAdzWJR7X8Xic1fHH48fz5536x/voB55pvYlOc9bN1NTDyQMXFxcfbXtAJu/v7+Pw8DDW19djamoqDg8PY3d3N4EORY52d3cjIpIc8FpztIu9dTjjz549y1oDMP1kHSDL19fXcXh4OBGtA4gACjD+kMlEyViH6OBu92H7hgs2eg0iE16vft9pnnNzc3F4eBjn5+dZLMhrCJmqhVyrbaeNvqojzGvVSce+VP3izJA2UoDvW6fYQa821+PY9r8dKNtY1gKArEYTWVtteMd95/5814SMSQDuUckfxhK9agfZbUS/1TbRXpPkjvbzWWe7tM2rXzPJilwTSbOzWZ0Iz5fvb5tSCWYTLrTPMsbrlQj3+DHmbZmSfk6dQ8sY7bDTzhj64jtucx0/P6P2wQRMXedeQ9XZN1ng71WsaJtu/ORn+Hr//n1sb29H0zTR7/ezneAkbAJRyHpUdQ3EWP/PzMzE0tJS2iHjVmwinwM7Y1e4B84XFzaGsa3yjA2enZ2dqGUAWfz8+fPY2NjI4rL0kb5x7Bp97nQ6iWvr84m+Hh8fZztHo4fifPQX+4fjOjMzEycnJ5nCTdp3p/MQhd/Y2IgXL14kwc2xdaTiowf29vYyfRwb9Pz589ziCvFANhvjZP3jOQQnQFp8/vnnaf86nU4WrltcXIxerzeRfePthqxF5sQZSWAP5JgtCESuLy8v0+7iCPO6nearq6vY3t7OTIrj4+OJrCeu6qvZR6KukeWkjTBYWlpKR5xxgkBy0XHIBdbj7OxsZrogZ9bt9vtYW6w17DxbwZGhiEgy5/DwMFZWVlJnvXjxIjY2NqLf72ddj596/eTTAarzXx/aZqzb3qvG1E55m0PDZaeqKkCzR/58xGMEoLbZEQH3zylFfLcSGTbiLDizohX02mAbXJOeA/DlPQNxjCDvOfXIjKkXH/2oIMjvGWADsgGkjrozZ4yJI4MYgWqkiRjQTzsXjmCZOLDRAMC0OefOPuA9V/DkYoHxLEAesuZ5qrKKkWJOkQUUqZ0bFL3TkumznUbGkX5xmZypkTrk38a9Aigr4Kp0GDfLCP1AbiuAspzyTN/bjrwBFLLHOrFy437Imkkfkw08z5FYnGfkycaXNhoYmcTgM1XOmF+M1Hj8WKTF6W8LCwsTDjvjbHICY4HcWN5NeJj5Zs8gxIT1SXVMkFcMOMy028V8Hx0d5fYfIvsULKLd6+vrMRwOY29vL05OTiYMIp/nuwav3JN1xrx43TOOziChfRGTegenGtlnzq+vr+Py8jJZeo4zOjs7i07noSowBpjIB8+ACMAeQOSQHUEUoxpzQBsE6dzcXHzxxRextbWVlZuXlpbi8vIy3r9/Hzs7O3F4eDhxzJLJSduWTuexSGm1W9XxtG6wM+s1VEE9zpCLLvIMHzHI2PsZVff5MnCpBEB1TuzA2Ka3OSZVpowD7LxbZ3nvqPtfdYjv43tY/tDdlVSt2MX23tjEuISxr3bEzl2NqBs4e73Tdts+ZMjPqAR727wYI6G7eaZtn8frKR3n+3psqw2zHHhuPM5+Hm3idWde2nGuc8VYeN4tr7TH9sptd0ChyottJRdr1La5bd34e5Zvk2Bt9rmSALxmTFzf91qrpFvFexWP/9d//Vd89913sbCwkCnMZABgzzhz3kf60Raiqq6ZA84hQIVOpV04vowxn2M9omPH44fj6iB3K0mGjnaGI3hsYWEhyU8Ceaurq7G+vh5LS0sTW7nAbVdXVxOO59XVVRL+zLeduYuLi7RF9XQsbOPW1taEg3h2dhZHR0dxdnaW9/U20Y2NjazsPzc3lyQ9WW6zs7OxsrIyYSvweZrmYV8+v1lHl5eXcXJyklv7sA/IIzqQOhozMzOxuroai4uLuXY8N6Th83yy6gh4dDqP2RIEWMBZvEYRwoiHyvYbGxspE+iDu7u7WFpaioWFhbT9bOubmpqa2M5nnIqj7GAwZD9HDLMO6D8ZgZzOwLiurKzE1dVVHB0dJUmEn8b2hKmpqdyHD5lEoIejh8Ey4HvWAxgR2QIzkfmBPLo/EZH3Xl1dTbKHTI1+v/+RPvqU6ydlApjd9Otm0ytJwORW4x8xCTAMzuvn+B9n2kbDwlwNPkybnRU/j8ViJyYiJpSdHRiEBqNfGVAuTyzfdWpeBRMsOEefeba/x2fpG0yZFYNT3Q0AqtPFHKEUSQX2/55LR765jw2bQY4BiA29+2FZsuOGk2PChvaawYRFhPQhNdefRzHQdoMWZAglTz9MKBl8OGLpfed8fnFxMRc8DgmgASXsQkb0j3Z7DBhP5h45NgB0Hy2zyJ2BkcEf68DgoEYGGZcKsLiXX7dM1LVvEGzAY9Dle9oQ2CG284GziBPsY2FwUAG43JvxBQhTJR7j4+M7Wdcw6zaGlfjCSHtsAALMOxfzar3IPflezTox8DeZ1qazDIgYXxtXZJDnX15ext3dXZKJ1i3IFzLIeJpkwxgiq8gVY+UIdxtoJsrOawsLC7G6upopiYeHh/HmzZsJJt6AEJ3X6/XSaXcWhtfCaDRKg4yxZnyc0s9evm73YTvBL37xi/j5z38eS0tLaaQ3NzdjamoqPvvss9jZ2Yn//M//zKwMyy1rwqDAOhA9j4wAkFgfTktF93iN0X9qAbiIEvPPswDw1uG24bbHXrf8z3qvDnh1LGzTWG++T9tnfT8Tw+hWZ86YSHAb7ADZtjOXBn6Wb/ru/63Dqs2w7arOb80C8NiyNhxIYL3X7/G6M+s87n4uus3jwN/OkgIwRzxmaFmv1vmuc8u4ecw9lgD3NseYeajbHLFXtNXPtbzbhlSbR788pybf2+bFc+31wP34XlsQiPWHnaDd4KHaTuasjhl6yuPVRmSA4azrPVaWCeTV48X7bXL5T//0T6k/SP3f2NhIRw4nezgcTjg3JoQYM0fL0V0uYofetSPNfY1fsAFk15GlVZ1XbDz4CExA9XZnp+FQk2Vwf3+fTil4jbnj+FoIaHAhWRfP+BYAACAASURBVFzIEtlqZE1Y5tnKR22bu7u7GAwG6cRSNZ85Yx/4d999FxcXFxN71LErtINsNMZhbm4unf6rq6vcvnF2dpYO4f/+7//Ghw8fJhzkbrebWxjRE7Ozszkfy8vLMTX1eOw1+95xXE9PT7Megbccct9erxfr6+vR7/dzLnC0m6bJGgaM+fLycozHD1ssIPSZT9YARAoZBLa5RNT5LnIBxkA+KbiI78AefvAjbad2BPeHDMA+k7UAcWZcxFqBOCHIAWlGLQkHT7HfrLG1tbUJXcF6iYjMANnb20tMMh4/FAxss7Ofcn0yCeCrKlVHIe10V+BgkMFVnf7qIPMMK0azgnayiMpGTDKyKGkUpcGEU8H8Xo3i8H3aw7PsHALyuBdOB0bX/eWZ7hugGmVlUGn2r7LGPKsaepx5lL3JGjP53MdR3IjIo0Tor9OxeJ7Tp+r8OoISER+NBZ81OGK87XDBtvk4FlKOuVBGNfXY88mYGLzwtyOeXqT0E3BGP2AHUaakF7WROSZBUEL0zwDX0Z9alIaLe/uyIjQI8lyYKLHhjXhM7fNVQaDniza2PYe/LfsGs1ZoXst2GqrTwfzi1GIkaoQPBxRwbLnj+TjfGHXLQQXCKFifMVur9pts4Ifzbz3eyBHPsDOAXFbAz2sGnMzHeDx5VBbjDwCzM8S68nM5UohxJP3PfUdOO51OMtOAdsayOh/Wh7SHaIiJhfF4PJG2ib7r9/vxxRdfRK/Xi8FgEB8+fMh24uQOh8M4OjqK8/PzBKsQJRRBBNxZL5GOzxxyMgEX4zYzMxNbW1vx/PnzXOsAnk6nk8TD1tZW/MVf/EV+nygHn3NmCKmOZDBEREYpLD9kpFgP0S4TA4y39bFBNbbR2WnWh21rvm0N+6rODWu3Tff7c22OsfvAayYFkDPW/FOEg+/j9lUSgwu7bh3PZ2zfIya3MdnJrQ50W3+qI8Y6j4iJde9oNd/zPU1AR0SSA9Y79fipOkbWr9zXWQC27e43/TRu4H3jFj5XZcpjYR2EfkdfYJsBtc40qrbTgQfWN2vNdsnyYVn1GCMPxlueb6KZOA3+PnrV6491VkkrY1PbT4+XifEqA9iAin/dN2Nn96vaactRROSZ8J4z+rW4uJjOoKPXEI+WR+Ya3MKYDIfD3OJovOzTUZDl09PTODw8TAfdOIIf7g9Jwxg7U5C0bYgEHDvsDd/DZlAPBhkA5+GYYXfIiMAGYc9sa2kPNgPSYDAYxOnpaVxcXKRzaWIQkqPX6yVhPR6P03m/vLzMvfpbW1sTWXPoA9rlo/v8/YuLi5ibm8uoMU7ryspKRETWMbKTHRG5HQA5PD09zXPt8S/oC5iH6LcL83U6nXj+/HksLS1l9tzKykqsra3FYDCId+/exc3NTQwGgzg6Oor19fXMVCEoRc0Hxmw0GqXNRZ4cgAFb3d7epgzQB9o0PT0d+/v7sbe3F69fv45Xr17lVslOp5M6AJKB4CvPWFlZyc91uw+nQ/X7/bTZHIfoDAYwwfLycgZUWN83Nzexvb2dxL6DG/f393FychL7+/uxuLgYTfOQVfCb3/wmXrx4Ef+X6ydlAjxl4A1abCD5jJ2v6rj6XmZGeS3iY8Pmvw1qKqHAd90+O6ZehBOD0n0sfOM0tNo+FnLbM61M7SS3ORsYQwSgkhTcB0MDw8XeEYSvDbhxHztldrrbfjudtN7HSvKplMqqECMmI6Ft9zYYrGCO50U8LGr2ddnRw8iSsuN7oTSGw2GmBDkrg75ZxpkTxtgpPQY9ju75soPoYkUYMjPl1J7AeLF/nMsAz9ku3M9j7BRnZKYCBu5lR7OuAc8J69pkidvmdWA9wDOcnmWwXZ1/UrXNkqLU/T2yI2g3ss/rjIXXq+fX2108Vjyv0+lkZd+ISGPgMW2aJs9d9zrvdrs535XgsyPuAoSAcMsSsmOQztjMzs5Gr9dLZ5fvUftiNBolcEUvzs3NTQBl3gN8zMzMTKT1QWjxWfZHotdYb4BE9KkBRCULkH2yhgw+2e/W7/dzP6nb6Yj91NRj8UXLirORvA48jhGRxpyxpN/n5+eZavfFF1/E/f19DAaDGAwGcXBwkIZ8Y2MjFhYWsuDUz372szg/P8/6A6RoYty93Ytx41xi9JH3/yGDVTdbVhgfSC/kx7VprN8Yd+Yr4jF7q+2qRHPVb75M6vHdSgrUCKYdROtgLuss44U2+2ZdU8kA3mft4JDZkbWO5P4mPqsNdxurc+nfJqFYo5UQrzIK6YPdwdmxg4jdqfbLDnt1bC1HbmPFYnb0TT5UG1fHuM7fU1jHtoT2mPT1GFuHG3e43YyZbXfNuKzyaEcZYtfBCZM2jDX2uhKdtodtNpTgAN+xvajjiI4yZnVbsXNtz6tzU/H2j13IxP39fe5Xp+Aa926ax21gRE6JaqP3wQfOSvKcohMZS2dp8MP9nYVh/TMajSaKu+EYek1HPBba46SYpaWlnAcIUkhSZIgxxR5AjPOeiYDqGzA/bL89OzvLbXaj0WPQyNiA03tev34dn3/+eWxsbMTLly9ja2sro+fT09Oxt7eXBXQZB0eOySjDiSdLGJvGGFH/x3KPo7+yspIp8zc3NxNH92En0WMQYK775LVhLIi9Y+wIqDD+xr18t2kesv729vYmtkCQLYIjD34AT6EnjE+s8yg6SPFE15wgu+P8/DzOz8/jxYsXiad7vd5HpCT9Rx7Q269evYpf/vKXmZWxv7+fxAFtQKZmZ2djbW0tMz8iIj+3urqaBB1+Db7h3d1dHB4eZubK5uZmnoDxf7l+UiZAjQS0OYn1fwS+LnaD0YiPlVjEpDNtprQCCpjkapDbWHkbd0fjrTyq48/7LJ6IybPRWVBVidvJoV2+L/+7j20kiscdRUNk32nAAF/a4XRDQC/KCuG10+Y5YUGj2FEWBgYscu+1gbUzi21ZqUDB8+pxdvSzAkGnAVaGHVmj7TZAbQ4rv31/z1UFOwAMnGcUHIoWA2enhT54zukTC5kiKyg0p6jTRsbQ8g84og8Ae4yNxx5QU2WFq5IvFRjagOBcksrkNWqypAJBr4sKXE0WGjw4u4Z7OCrqCBP3xVA4OsM9XRxyOHyops/2gPv7xzNnkTFACUaDdo9Go5ibm4vz8/McS2c+1L7aSAKIWEPImtdfdV4Yj+np6VT4rHMX3vEJAl6HETGRrfLhw4ecd/YBAjYqOKfasPWhI2ERMVGsFBnkWdYDfB+QiTxfX1/Hzs5OnJycJCD1mNNf1hcRI4r9MPbejzo/Px9N81DUh+OPOG4PoHd7eztBILx48SJ6vV4cHR1liiIpnefn51mrALKAvaasWxMQzEFNE3z58mXu67u9vY33799PjJ1tZd1+ZLJgPB7H559/Ht1uN/b39zP6BBHi+UF2GL82R+6pq+rvNhLS7zHXbU5Im4OIXNTPt9mNH2uTdT3rxfrBxXTrVSPeXNgkZDni41R1243aFgNR2mtnnB/0sgsWQuyYBETfOrPA98IRs62rY+i17cimbaKBec3YqcRMtZ1ujx0m398yaHlhLp6SUewkf7tvxm6Onrs9/O0ggtcb/9NGCFx/nvFgfRt/cHkvtT9HZo/tA5dxGDqM+aWv2Fi3122w3f/UNX55eZlp4HwHGasEovfJ/z/OzrQ3ruw4/9Ubt943biK1jWY0tmfsBDASJA4SBAj8Kh8hr/IBk08RGEYMw57FM5pFEiXuZO9NNsne/i/4/xWfLl1OJF9AkNR9+96z1Kl66qk6dbBpjDWOJffE+WcLGGtRcbviOc26vA+jaACFPwTHiLI2m02r1+u+Z5655V1s3UPewNZsGeC4ODN7hywCG/M8iDtsF+uX/4NbsZOlUsmazaafeEOEen193TY3N32ferlc9iKEZubp9Jwm0O127fT01KbT6QL5r84vczQYDOzw8HAhiw7ihSwBxm5vb8/JbzAqAUf8CMaTflGXoVAouP0hA4+IOCR+KpVyYoTIuJJtrCfIkFQq5RmJ6De28IEdsZcR+1OMELyK/EIYQJxAaFH/hzVIcCCbzS4cIYxTP5lMbH193X7+85/b8+fPfavFdDq1ZrPpOEaPokamGMPRaGTn5+c2HA4tm83a9va2LS8v28HBgdeTYF10u127uLiwhw8f2scff5zoj7/v9d4kgBr2aLhV2UfDyN/q0EV2zyy50GAkDzDGmu7NM9XY6TNUifA5CkijSGZ3SgXAiOLWiBYTzu8An0ntURCioFqdTGXOogFVJk0Vp4J7M3MBRsjJYsCYIGiwpwoq4xihDKMjrPOqxk4jB8zNZHK3T0xTFdVhTwJsGAolEQACKkNE7BgL9jSj0BSoxUKG9FENDgybLs5sNuv7flAwGjnm/thmyAAMBooCxRPlU/c+oRC1ABYGg99qO5Vkol8oTfZIEUXVtaoZMJGY4LpvrgCkmoqOIVUZTUp11OiV9kfXt44Pe5m1fyovkUBQQMezGfvovMzn8wUGWp1y3n15eenggTGk2A1rkDFS51TXGvckOSxa2HA6nXpVWQgJ5oHn8V7OqiXCgZFlHDOZ2/R+jBtrWg2gRvZSqZQ71DjGnCmvRFckRBUAMt+ahoc+5R0qezyXe2hXu932fvNcxhVdkkqlfHzoB3NHmiRONzJEBhHH++ipAZqVUyqV7OHDhwuOFTpiPB57wcFms+m6gTVHfQgFxQoMr66urFAo2OPHj213d9fTFiHsqPA7Go18+4HaNbO7TCJd/1tbW7azs2N7e3v2xRdfvBM1UsCrc6d9THKylaBVux/tVHTckxwqvT/qfpWraCMVQ6jeVEeH50TCTB0aHH+cBiXc4/jSpyQHSu0UY6iEQHTA4jN0TlSfqcOGTEFwqU3iNxCcmk2guEDxmI5j7EvEYdpexR2sIT5D75stRqnVnjD+kXRRLBEd4ajLIymmNiK2VccdZ4XsJcUwROG0SGaUO32XZmXp+3EWIzHCvVpvBbvOvcyjjjMXc6pzSR94X9yPHteBtvN9nANOQanVal6tfmlpyQlQ5hkZ0GCI6kXdOoANYN2pDBCVNVusK8A8RCeTcWH+cDY5ZhcHFYeXOgcPHjywWq22IOuqj5gX2q04P5PJuF0EI2QyGY+uc2FbKViYTt8FKjX6Tm0C3ZueSqWs3+97uv3BwYFjjXq97qcFcA59v99fiGDrSQtapJH2aYYZW+rI/gOrYVevr6+t2+1arVazarVqw+HQ35lOp219fd2y2dt6ORsbGzabzdzmaVX8SqXie+XJGtEsErXrL1++tE6n41mV5XLZsdFkclf7i/Eyu9tiSCAAwiGfz1un01nQm2CbRqNh1WrV8QCYgzUPPjCzhSMJyQLN5XJWqVSs0WgsbIPg+MdcLme7u7u2s7Nj4/HYTk9P7fz83IsnFovFhW3NZKGw7QCyiLFaXl629fV1+9WvfmVnZ2f2pz/9yb7//nvrdruWTqe9fsbTp0/t2bNnf/VWALMPJAH0ioxcvEeNod5/H1hQ5ZuktJmo6Dia3RnuaHAx0qpAcV74Xg0rykUXs6aWYfBxLni+CisLGIUZQW8ECThWZu9GeLlHswti/0i/HY/H1u12F5xjLoxdNLZqiDSNWgkfIocoHlXk/BujwMLW8dV2qmJXpg6lq2CH/jNu/EbfBcBWucF5p3/IjZm945xqXxTAMb+axgewV5nTPqCESCNHuZq9u2+OZ7HXikq8OIPK7is7qmAjgj+dN3X8mVM1goBFXUM6TjxTQRDKSVnfXC5n/X7f3w3goq8wwTqutEHnm/lV54T2aGSE9aTgKckZZ50yJ6xRFC/GF8NNdeSbmxtf91zsZ4RcUnadUyB0PMkYoM06jrHtmm7JHAFsMPYq+4AbUudHo5HV63V3UnHAAejqLCgJNZ1OnekmQnF+fu6VadF7ZDjxTHWONDU36kfWHbqV9ihRSMqomS0USFSnPzo3egKH6hA99on1xXGI6fTtEUxkc2DItZggurpardqnn37q0RXaNRgMnFggDZ9sAfb50V6NeLIeWAfZbNZqtZrl83lrtVpefZt3pFK3W0zq9bqlUik7OjpayLBhPhl/1uHR0ZFXk0ZXcPqBFrhSQG52G5lhfHXd87fqlSTbrr9R/Rltul5q+1R29DfRlqutjG1QG4l8KaGg5ACRWbXdrGe1jwoMkbPoVLOe+V7tKt+p3k2y3WrbaYPKtRINgFHV8+gXxQbRKdR1GueA8Yrvpf2KbxR30V5kEKdbcWCcgzgGvEfHTsm2pOwoJRPi86J9Rnb1XREjgDPUTqn9UnmDPMI50barrteMq3w+79Xnccb4LWtRsxp0fvS5kezQ8Y1rV+9VeU0itLjy+bxtbW3Z1taWPXv2zCqVirediC0OHJhwdXXVt1UR/ddzzSFYlYRG76g+YwxiZg5R/fgssBlp/uA09vaTxVcoFDzbSscnkqrY1Nls5jhgPB5boVCw8XjsEX1OCDK7tVfqzM7nc69AT5ZHzK7JZrMLx+LxPrO7iH6hUPA98V9//bWVy2XvG2OgRRE124ICgdQcUP3K2JfLZZ9XyG/wJX9z9CFzVa1W3Z4Ph0PfBkfdHsh5/CbGXzNoZrOZY3XaPhgMvODe6empZz1oAeZ8Pu+kAGQC2EozPVOp1ELNh9XV1YUtb+Vy2TY3N61SqdhoNLJKpeIkgQYCwDDp9O3pADs7O5bNZn0LA3UAKKKoxPqTJ0/s448/tlarZd9++60fZch78vm8bWxsWLVadT0HbtWtAshAOp1eIHXy+bwfVcx7y+WylUolLxD5117vTQJEhaIOOp8h8JFdV0MFoFOnPxIACihQQDwf0M0+bzUwKFR+rxFPXRQsSnViGViiRbp/E8CqDLVmNmgkXwGEMpj8ljbGcYu/V/JEswriWCjRQLQJxU0feQYKNc5rbCuLg0sNlpIiZu9G7PR+BfFqnHXs1bGPjiL3x/eo04fjAxuazWa9cJxWBsXx0yreOgZUosUhUzCPMwnDyDgyD4ApCsJFtln7zfhQiTSbzS5E7KMzzr6ptbU1VxYqI7qvV8eHSIgqNtqsfaPPEfTEFNMIzlOp1ML+bp6pxo/fIlMRDPJ/dfJ13jWtGhlGNjQrRzNQcNbRM6TIlUolMzOPxjIOS0tL7iSmUresPGlhyBFrTEmuWq1m/X7fBoOBk2wYv5gyqI6V6ipAOuvt+vrajzPa2NjwLAaMEEaQophXV1d2dnbmY6DnCav+oHCqEn7KrNMvMmwwsAAkxgMdqX1k/tQRwfAjexBi6pggI5opxJyocZ/P7+onqP5RvYAOQNbMzI8FZC9mKpWys7MzG41GtrKy4mmJjPHm5qY9f/7ctre3LZVKeZbF8fGx9ft9T//H/kwmE+t0OnZ4eOjOPDKi9STS6bsihYVCwZrNpqVSt+c9t1ot1+FKoFWrVdve3rb5fO734NyTfUAEJpfLWbvdtr/85S8ONLn6/f5CtFMzeJQwUHuOflGHL+qG6KAnXUkEgH6n36su1vfFP7qW9Bn6vTr++hscVf6o/cTB0HZEpy5m+sT+aduUiFCHXe0a7UZvKlHKd4plNPoXM6K0PUrU0S6179wb8QX6ElmhbWqTwBn6DF2n2m+9IlkRHVNwFmQ5+kGfjaOOXtK2JREGjIUWsdOx02ivEl5Rd/MbLdrM30paMi5kNuXzectkMn60WKwFwJgQ9YsFH9G3Oi/6LmSY7yJeUpnTz7n+4z/+w169euUR8I2NDdva2rJGo+FRXE6Qod0aMNNgBGOT9F4lV9CFs9nMo6I4UTiSyB3/V3yo2WiQejh/ZALweblc/qA90sgROE9Jc4gplVt0PHod55e1zD5w1SuQ0Ohd7DCOPrg9nU5bq9Wy4+NjMzPfUpLJZFyudPsxMkGAQDMJwYS0Y3V11UqlkuMCnOtyuezHM1I0D9IU+cTxZMuEbhFAnrG54GZ9N9+DtSEsbm5ubDAY+DGC4/HY6vW6jyX1Csg2IVOFTB/ka3l52Wq1mpVKJccXtE+PLUTesNtKLCB3rVbL9vb2Fo6AxA8cj8cua9j0zz//3PL5vH3xxRee3cCe/vn8Nst3aWnJms2mPXjwwM7PzxdO81lZWbHt7W0PSlFYcjQa2ebmptVqNdva2rJut2uj0cjJjEqlYrPZzHq9nhd4/NDrgzIBFOipsfopkBCVkBoEBXNquPS5/FsdH0CYMrCa3s/z1PFgcaFg9F3qgCrTqlFgdbIBgtovlKm2l+dFJ15ZUJ4L06SRiDgGanRxsnU+MKbxYo+hsk8YrajgorHGoVSniygjjgTgQA2Wjg3/juBFowwxQp80hoBXDJLZXYpaZJLJFMBhwhFScMQYY3wwaspmAzbM7gwW8sXnKtssbPrB/ThcpPhSYVwjuEoe8UxkTvd1MS4YEACUgmBIj3Q67fueWScKHOJ65tK1oM4YYxXvY06iTKrTpiAokn8Ydl1/Or5R9umHOioKoki5I7Kez+ddWcY2ZDIZazabnmLP2byk8jF/sL9m5iwvERH0CnJC2zSKBkBRAKmZLMjFxsaG5fN5r+DLKR1EJvibPfP7+/sLVWSfPHnizvvBwYE7wZAq/B7gQBTazFwXIHcAbtL5AEsQBdyr0TrVzdPp1FlqDLOuL7O74lk6fxpF0XWpJBDriYrV8/ncjajuIYRZVxnXbBMAxOnpqR0cHHjRPlL8s9msRyqIeB0fHztIY82zNtA1RCQYr+3tbatWqwvtAchoX/v9vhWLRatWq3Z1deXZGmZmlUrF1tfX7bvvvvN+UszoyZMnZna7Z/T8/NwzGIh8z2Yzz1xIp9NOjEX7HZ1vPrtPV3BFm6Wktl6RbGBOk2x3dOzVLumzuLiP52hGlBKbyDUyqgQva1WBq/ZdAwBJTrjaQ21XJAGUOIjZc/GZ6FYliFXP46zpXLHG1BGL86R6lUujs6rDdW7ukxl13PWKpKiOhX6mfdZgQ5QRxoTUYJUTxTiq93TelGigz1HfRH3B37SLtvKM6HiACXUOdG5x0HA+NCUeMsHsjnhinJT416AD7VUMGWWK6z//8z/tv/7rvzwLCf3E9jei8Ohm+sc84DySeaq1iFQmaDftAq+pLaWvWuwa554tU2Akxh08mM/n36kWn07fZuTV63V3OP+vC31NFhh4SQmm+fxuexf2GMeYgA7jg+NOUCSVSjmG060Q6gNgB8gY0MJws9nMisWiPXz40JaWlrx2DiT7fD73YoRahR7dANYg+JTL5TzLEVtDVFmdaz1WEHxjZgunYrFthIuAhmYbaN0o3YqDLULfKnkBbtFtAmdnZ9Zutx3TEZ3nXRxDqFtScKqvrq6cBNCq/Bo8QlYvLy/t6OjIiQctAq1jtLa2Zs+fP7ednR07PT214+Nj63Q6fmIBOms8HttgMLDBYOCBntPTU5tMJr5d4dGjR5ZKpazdbjuBmM/n7eOPP/askD/+8Y92cnJi4/HYtra2LJvN2uvXr+3FixdWr9ft3/7t3xYCAe9zfRAJoA5ZdBC4xyy5UE90buNzI2CIIESdIwWCyuRqqpgyRBFIIGTKynIvURsUjR7FoU4+74lRYf0eAEK7lJFX1hoHic/1t3GcuAAv8/ldMThVVowR70Bpmt1VqNX0PdqHIVcnXY9g1D84FBgnjZJoWjBRMi36oewoc0hVfPqh400b6GeMzLDQ6DfOCmNFf2DRlRjQugFKRugY6zhls3fVStXQ0SeAmZIajK866ZoumsTaK2ig7xjfmMmivwVgsA7oP/IDkFFQFUGKtksVtkb/IZaQcdhijQ5EoIxMqFwzbjFjQIEWl+oB3qtzhE6ABFDmG1mFyCsWiz4+6+vrfpwQ7G21WrVXr14tpM+R4oYBVfCjZ8CyPjQKz3zoWtOCS6TMc/xcqVTy51JpmAq+4/HYer2eDQYDy2az1ul0rNPp2Gw2s3a77UQnxw1RGPTy8tIBHs4oYBoZ0TlBftV5j6CF8QfcDAYDz8BATjXlbjgcukwiV6w/XUtKROFga6RsNrsruMdnFNXB8aUyfyqV8siDrh10xo8//mgrKytebwHARD9yuZwfAUjb9Hxh5tHsNsKhWRakEjcaDVtbW1uoI4O8qv5gTtk/il7MZrP24MEDe/z4sR0dHfmxR2r32AKAzGpkC5vImlX7Ex2F+Flch3pf1F98Hv8d9Vt8p5KC0f7rGKkOUFJX7Rj6TWWa1GwuPStb28I77nPIo0OvejUSGXE8o/5DJyq+MrMFmdbxQsa41K5HkkHfkWRbYjBDZZE26Ljq+NBv1m4MwqCb0W1KsDBWtF+zCHm3RuXBAoo7I3ZReVDcE7FXHKOk7RLq/OlnPI/PtWaH9odsG8VYcf1EgkvvQScr6a82Mslmq95OwixRFv/1X//Vrq+v7c2bN3Z1deXONBlGOGFknil+mk6nvhVA+0OwCULj8vLS5T7iD82uQHZ0uy57qHUfPI4oDrUWehsMBgvbBYbDoV1cXLw3CWB2twVBMR0Y4vr62i4vLz2rbTK5rbxPYAhnkrlC50MGqa+BI8764dQZxayQSYw32LFer3uGAwSOBnR4JnaNsZ1MJm6X5vO5b4si5d7sNhMQGVfSRTMi2Da4vr6+cIQkUfjl5WU7OTmxt2/f+hYmAhngXsgL+gtOgPDIZrOOYdjvT4V+xgcCnLmhWJ+eUgE2YOwhKnR+0SUQE6x9cF2lUvHtIr1ez39L3Z2VlRW/R4sCY2t5n2ZR4Qfhg+TzeavX61YsFm0wGNhwOPTM1KurK3vz5o0tLS3Z8fGx2696vW7ZbNZevXplb968sel0aqVSybrdrv37v//7e8u82QeQAOqA0bEkoBCdeP08ydFX8J7kCPHvCE6VDTW7OzoEx0wJC2WZeb5Gsfg9jizgVo2b7uXBgCLEasiSWFcFNZoVYHYHWFSxM860V4FMNGYaNdcoAc9Iag/jg2JB0TBmVH1VY8fCYpHcl4KnfVJAA2Op7DZgXZ+FYdU2AFsoqQAAIABJREFUqsFXJ1OdLeaJ904mtwXOGCMcfM1iwIAoucS46Vxq1EBJHwVkGpXGKYB9VAcHmcRokjIV0+i5MDr0k7HCYURmkWdkJEaMaKtGdO6LHCTdx9wjH0qW6JzTN9ZEkvPAXCszHKPDumZZN5HoU0BNO1W+VldXbXd31512ABTnvPIuwEehULDZbGblctmNSKVS8bQ+lT/Glz1iGIWLiwsHD4AV3kt/WMMYLHUsaCcAB8cVOZjNZn5EIGBibW3N3r5968c7DYdD29vbW9jfDxghOlEul50E0KgBUR5SFDHSg8FgAcgpOGE9AIyYD+YBYFmpVKxWq9nGxsZCxMjsLvvn+vraOp2O9fv9BScCsoY0RXUQIAAhGiCnAEOc2wtxMxwOF86GVscZXTccDl2/zGYzazQaXqGZ99AH1jAXRX1ubm6s0+kskKYrKyu2vr7u64johBJnsZ9m5pWkG42GyyLzAAE3Go3s8vLS216pVFxfMH/oYcAga+3/IgHuu6LuiOud5yQ5xPE+/k6yW6rPoj1XUEcbkogA5pZ7lcwEvGlmgMpXdDZjm3mO9lcDJXHMuCLhFe14HE8dZ96hmIFnqFOATdBgB78HJEe8oe1Lej/9iGQ+7wAzoUNwlGibPpf7sdP6GeOqTpQWodU+Yx8Yc81CU1nXjDUllFS+9N8qX7qdJmm+9F6ypXD04rwroaCkBX+wocwdF3Y1CRsqho5kU7x+85vfWKFQsJOTE5vNZlapVDyNmfuZY/Q9mUlEm1kviodxjPmtzgnPVRxDRFfXGMfzIT8aVFAsjY2ElECnr62tWa/X85T197nAooy9+jxq08Ft3IPckhGoZBg2CJ1NdhhrTzP6kEu1p4yxEt6MKVmI8/ncCWkCHhSWVZ1H4b+rqysvRjidTv0exTdKHGsBPWwoNXGwYSsrK7azs2P1et23k5ydnXnhW2QWGSLgQpQeRxyigPm+urry1Hm2IUAqKEmQydxtx1V/hu/m87t0fvBO1BnIJfK7urpqm5ubVq1Wrd1uu00mQ0PlNZ1O2/b2tn3++efW6/UWMsPxc4rFohWLRUulUgvO/Pr6uu3u7lqpVLJOp2O9Xs9JADOzg4MDx62QNrVazU+FaLVaXotqb2/Pvv766/eSd673JgHUIKJYkxwKjAmf81t1sBQ0KDtodkc2qBHg3xo51Xbp55GU0Pv4m4Ws+zDVYSUqx0QiREmGA+Wri1WVo44PxgxGS5+pUV1l9lB2KIb4flW0KEtl8BF+Bak8QyPjGFfazDt4NspJ05cj4w5zrQYehpd0K+6JKYd8jpFlcWq7tco+bKsCMLM7cggwyT26tw0Gm/dyP9FD5ABDRv/VsMc9fhgK2ggTqEQGzyaKSwoxlW7n87k7ZspQQijoPCOTyvqzFvTScVYwEoEfYxB/q/cqsFKQCRuL7GNY1LnFwOjnGlFWeWE9YFzpo5JW9JOoPeNOu4bDoTPppBdqlJhnrK2tebo6J4JMp1NrtVou42y5KJfLvl+OvirgJhNCST36wpjh2GkmDWsum816ajfgAllTnXt9fW2NRsMeP35sFxcXtr+/b6PRyOsDUCUXmdCxTKfTfmYy89RoNBaqQJOBwPtVp0GeQOiRzqrOBXoxnU5brVbzgouPHj2y7e1tPzLLzBzsaUGlvb09e/36ta/T2WzmpyZobQdkVmsyIFPMA/deXFz4Wmu3236GNNWMr6+vrVgs+u87nY798MMPNp1O7ZNPPrGVlRU7OzvzLTHIkW7h0vVNxgUkSi6Xs06nY4VCwYsrNZtNz5q4vr72WhWz2cxKpZINh0Nn+CuVitXrdet2u3Z0dGTtdttubm5cTlOplB0cHLhugDRKp9MLxz6ib4nS3XepDEdSNDoX0cG/z3FFLtR51ncgM2o/1HlIcmT0c2RA7Wp0ZgDWgFvVo/yJWEcd6xhlVZJASQl9r+pZtZnYOCUzk2wKtkNJVfQUmS06zvRTswRiX/T+iG2ig42ujNkRSt7jQKmcKXmv/WB8NKChDrGSkoxnxBSse4hDdVz0Qv9ppo4SROpQgs8iea32aDa7O1KRvik+xLHDbvBu5E5/g36gLTi8XBrF1LXDPKgd5N1Jc3vfBd4YDAb2+vVr329eLBZtaWnJC78R1b+8vHSHdT6fu+5DF+v40X8+10AEJCSp4uBC5hQdrI6WBqh0rbCtEjsK/mDLG0ffve/FOM5mMyfUwTbYD5xElTuwEJgOW8ZJO8yvmXlmzGw288ivmXlhw2q1arlczrrdrrXbbcdO19fX9uLFCz+6DjnkHdls1rcmkJHHVjX1GRR/kDFBUT8lOSDGmRuK2+XzeXv8+LE1Gg0bDodWKpWsVCp5EWazu4KLHO9H8UjIo0ql4jUI+v2+lUolXyesJ8XAZBrkcjlPh1cZQSZubm6cMKcuEO8Gs6TTt4X2SqWSzWYzzzQBq6dSKSuXyx4AwumHoNC1ORwO7auvvrLpdOqO/Pr6ug0GAz/KkTnd2dmxRqPhZD3bAhg3PeIXbIrvkk6nbWNjwx49emT1et2ur6/tf/7nf/w4ZbBcq9Wy77///r3l3eyv2A6AQlTwq8aPgYxR6Wg4k8BD/DfGiImLgIHBgsXnewQ+pozppUpJBU+PlkBBx/12uu8bhcO4aBq/Gj811IwdyhGBxhlHmelY0U+NUiT1R9lvfb4CLtqgQIf2Azb0WQrsGS/mRou30F5tG0pFlbgaO5ycuJeedC81rJrKqw5vUupkjBCkUilnSfXYEsaA9CiimcimGn7GTqPNSoLoNgDWgTLhKBj2MeOwoeiI0jGWGv1V4EHblBDTQkHxNAJdayqjgIYkAo3fIT8K4nSuMXwA6ii7sd/8OxKIyDhgj3HnWXGtI9MReMCg53K3JxccHBzY06dPPQKuTtnV1ZVXa2WvluoQNf4UY6GvuoUkRh0bjYanyg2HQ1f69EnXnP4buTw/P7der2e1Wm2BiDMzN067u7tWLBbtu+++c2NfKpWs1+tZp9OxpaUlu7i4WADQGDBSGwHeVNIHHCjxphH4bPZuXyD779LptIMYjFE2m3VDxXuq1ap98skn1mw2nf3HUdBjMlOplGc5/Pjjjw4yNjY23BirriAbgmJIzEepVHI5GI/HXtyvUCg4+76zs2PVatXBLnLWarV8/XY6HY+UsT5Zz8giawOi6fr62sFOKpWybrfraa1mZo1GY6HyMXYH8I396vV6LvMQlOiMjY0NT7Hs9/sLOgvQhIwDxGgPqZ56qa6Izj5yzWeq36MNVx0SHZCoX6ITfd9nXEpM6N/q8KgDG51v3XMNYa4Zhcg5pJsSztqe6KTzJzrw6L77xg/MkUTeKtlJG2mf2eJeYp0PdInaQu5XPRlJuzh/6FbarHhIn0s7FQPqMWlkUamt0eKMOJmMEe3WsYnEUCSJ0Es8j9+wZnA2cezuyyphnMwWbbtGFDUKr+OsJBJ6iPEg6wa5UpIOudQsoIgX0NvYVp1bdYgVF7/PVSqVPCOs3W5bv993uS+Xy7a8vGyTycSOj4+9TxpkAv+Z2cJaYZ5jwE73/TPO6P4kkogAHPiZ/oFHSKfGycIpM7sll8/Ozrwd71MksNPpLOyzV6c9lUp50XD2/7MdjwAXmIM2QXSBxyJ2oW26V79SqViz2XS9TnZDtVp1Arvb7TpuQB51zWUyGavX617fwOyuVkMkIBlvMjKQ/XQ67fMC8Y+t5qSEi4sLW1lZsWazadls1vr9vu3v79vbt2+t0+nYzc2N26rNzU1bWlqyfr9vh4eH/jwi+Ry1h/xroABdh+6ghsHKyorbPvB7JpOxjY0Ne/Dggd3c3Njbt2+t1Wr5WkG2dNwg6BSvQ2oMBgMfv9FoZIVCwcrlsp9sMBgM7OTkxFP42co5Ho+t1WrZbDazQqFgDx48sI2NDZtMJnZwcGDtdtvt/ubmptudbDZrT58+dXtN9qGeFIGssYWHNYH87+/vv9f65/ogEoDFHRllvmfBcEXnMemZ6tzrpYoZoQTwq0JgQhF+FRhNj9JIpjq8yjopU4ZxIr0ER5Wqn7yT9sUIgRoJZcjN7ow/xgzHD2CsY6ZZDrr/HoWpbLyOGQaJZ/Fudd75vzpkkazg97RDHXqzxdMN1BGKqW5qzJUs0qNzUI6M2+Xl5cKxZZo2xTtgWCMBgRzquLCAWDTap2iQNfVKHVOUF2BobW3NlRZVVHmGgi0ABH/oE8XnmB/kXPeaa2rRfesI50S3HwAYGXclABTYIR8RPDBHuu75XOVG05M1dQyHkN/E9cZapD26VhUUaVoeY8J6p9/0S4sY3dzc2Onp6UK1dpWv2ez2nFvIIFLFxuOxtdtta7VabkSVEOT5ChIw8Pl83j7//HObz+duQIhCx7ab3dX+UPJhb2/Pfve739lHH33k6Y56RAwg5OTkxF68eGEvX7608/Nzd9QpaKfRru3tbd9i8Pbt24UoEql1FNUbjUYewac4Iaw74zWbzfzUAIyXElFkTJiZFzmsVquescBeOOQdsAPJkU6n7eTkxDqdji0vL9ujR4+sVqvZ69evbW9vz8kH9DKyTJtarZY1m03LZDKeFprJ3FZVfvTokX3++ee2u7trlUrFJpOJR/m73a51Oh2bz+dWr9cdCFAgkDVCJA/i6OjoyM8EJjqmRzbO53MHQf1+3wsTqUPD2ul0OjYYDBYIRzJEyFypVCo2n8/98+l06iRyv9+3tbW1hVMwCoWCDQaDhb2KXFHXJ+kXdXz4zU/dH/+OTguXOtjRIUtqG/pcHTl1uHWftrYBPa6Ovup50lZV70eCL7ZLbV8MesT3JxEiimFw4uiPkgARc+k4qV7mO83WU9JB3xn1ueImPtP2M4bxO50LHRPFT5Ec4aKAnpm57sVpR59q8IV3oD/pA7gFPQ5e1KwY8JPiDQ0eaNuYK4384ghpJpzOpRIEPIetQ3FsmFfkLomUY7zBj7o+dDx1XhUr6vVTpACysrKy4gViiTqfn5+7HWFMqWWkeAWnnkCWBguQA9YcmI/fYL/poxZNJd07m816vRsipGCdw8NDzw7LZO4K75rd1TXAfmqWBfcQ7b+4uLBer2etVssj66rrkAcwHuncZNgxT4o/kD9sE0dIT6dTP1VIyQUyvgqFgm/tg8jGPmLDGNfV1VVrNpuWy+U8UMaaIwMSIpygBraBQoCqVyElNPCpGbLT6dTJIiU7xuOxvX792t6+fetbDqbTqZPik8nEHj9+7I7w/v6+b1HjRIrpdOpHMmJrIYNYY/TxwYMHfnxhOn0b2WccOcUHDNdqtWw4HC4cxVcqlZycAzfV63VrNBpWq9VsfX3dt2rocZDT6dQzNszMMVIqlbKXL18u1N3RukzLy8vWbrft8PDQTk5OFjK10FWpVMqzGCqVip8EAJk6nU5dZ+bzedvd3bW9vT3fCsN2yw+pg2H2ASSA2WJKPSBaU3QRIjVUZvaOkOnC4opgQg2YOgnqwCEoSRFNZZEj8Ae08n+zu9Q2Pe/24uLCrq+vfVEg2DoOsa/aZ4wFjgPKACWqznEkDjRiSr9QCIyVGuwYJVAHjndHBl8BEvcqYABU0iYFPfxWWWGeqe2LDh39gVWO1XNRPFrYhHboH9g6mDwUjSpnFguRQKKFus9JK57imPJ72sGC1XHEEVpeXrbt7W1PLSLNX8cWxUDEIpIOKPSYYqjt0ZRMJaC0nUS3AK/IJr/HMCHPzHvSpeQJ86VrFzlBjnWNaduo3qrPUGCv8qwElhJytAGAr2SUztHq6qqvBX57cXFhL1++9GjqeDz24n/MA0a90+nYaDSyfr9v3W7XqwQDAJUMQ9HT/kwms8DW93o9Oz099XsxmvwbeQcEIZsUH/ziiy/s5OTEqtWqra6uWrFY9LnJ5XK2t7dn3333nTvFk8nE0+3imqYNROVJBQcAkEpIVVkcXEjJQqFgrVbLgZfqLqIDWqE3KYMok7ndp392dmaDwcCPPNLUyvl87pEWBSiDwcBOT0/tyZMn9i//8i92fn5ur1+/ttevX9vh4aGDELbVmN1tF2DrBEw9Rwhxti42gFME0LGk6AEuqFOAIYZAAFyura3ZwcHBQqEmImlm5s85OTmx1dVVzyxBrmazmUcsOYaICAv2DdAESEffcaY1zgpZAYBWnCC2BWBDFSyortD1iO3m//fZE9Wh8f/32XbFAJEEUFuDPuK+SEao/UQX6DvBCoBuSBr0ulaSZu2ok6WfRd2na0x1QyQv4nrQcVAby3hH+6xbghQP6PNYZ9EJU8dZ7dh9Y807GTvujfdwH2Og5Cb6Tm0VlxLp6mArQUoqMXpN7RpzCS4AKNNf1hz6nTFWYh6Zov3RvuPQkdWFLYFoUpkAj/AebDJOFzaedyaRYurgq/3U/ysBoPKp2RO8m37quo4X797Y2LB2u23n5+e2urpqDx8+NDPz4qPYA8UO4A1IBNrJOmC8GRONiNO35eVlL0oIuUm/lpaW3EZEOcZpgkAhwwoZpVjb+vq627F2u+0p551Ox46OjjzdHQJQs97I+lPCEKcWW0N0FpkDK2DPIWbZLseaZQ6xHRxhp9u3lCjHdmoAjEwFCh/zOc4+W/DICgPn3NzceGaYBgk0iKJrAJyKTFEY9/r69gg77CbbEjl2T7MJIaWvrq78+GOIgtFoZKurq/bRRx/ZRx99ZIPBwPb3963T6TgRsrR0e7Te7u6uXV5e2g8//ODz0G63vShyvV63TCZj7Xbb6x7oaThgSOYV/EFft7e37Z/+6Z+cmGQNn52deSaQ1l5ALggknJ6e2nA4tNPTUz99KZvNLmy1IJCLzut2u16jqlarWTabtb29PTs4OLDx+LbgJbKPTFJDY3d31z777DNbW1uzbrfrQZSf//zniev9vuuDSACUZjRSCIgyzMrwq5GOv9HP1Cjye+5TBz8CARQgi0yZcU35w7FW5c/vea86WrxPo7jcr0LOu1DGOL2RBIn3Kgmh42GWXGRIHSlllfVdzJOyS0pSwLqqU6WAgt/rbzFssOyqFHgm9zI29FG3GMT2xSuy/RpFxggB8lhAzWZzYX8zcw5bh1GAHGCfFhkejCmLW51mbRftjey87oeibbrfln5gXNjSgcFiD5zWEVAZ0LmmLQpc1FlWRlrnXL/jwrAw3pGUY1wYO13vRP4x4nqxbrXPrF3eD/DWOdex5reMtRJtyBHfsQZiqqKSCzCpOEdELDDGGEyO15nP5x49QGZwUPk/fcJIIkO5XM6Ojo6s0+ksZAgw1+pMqIGnD+pYnJycWK/Xc5BwdHRklUrFyuWyTadTN5YYEYArxeZY3xrlUbJPnQYAc61Ws1qtZsVi0fr9vrVaLSfQGE+cW/odo1LMFSBWSRDmCECOrtBn4IQ3m007Ozuzs7Mz+/bbb61cLttvf/tb297etuFwaN99952ZmTsJkEq8m89w8thiMZlMrN/vO/BaWlqySqXiwIJ5ZwzL5bJls1kbDAbW6XTsZz/7mX3yyScuh+l02orFohUKBTs8PLR+v78QlWHtrKysLNShgQhA3yFPuVxuoT6BOjU3N7dnKlP0FHuArM1mM98Pen19bdVq1cmbarXq6aroLNY6ekAdyuiwcK8SxdG+6L1Jtl2d9+gAqV1XnEE71LFQGea7pEvbxnNiFoES6LF9EWtE5yrJwYq2TX+bhIWUqFPSTPWtZqUlEe5cGmSI74/P199go9GfiqGUVOBznRMze8e+KJbRS7Gc6nDWK/p4NBq5AwPJDy7To+TQ5+gUdIEGSHivym0S/mB8wB2rq6teWA7Ajw6PgRyzuwKh+hz+r1sEzO6IKcVwkXzjUuykxJzOEXMat0X8FAlwcXFh6+vrHlnlWZyaU61WfXzH47GngkOiKfmF88kzwFnMB3PD2IGT0U0cywtZmk6nPQjH/IJDmE9kXAsZqj1lfHkGskbUX9eVkjsxa4E/YGedK5xx5CGdTi9gTcV3YBLmT/FasVj0sT09PfV0cRx9HHe14ditbDa7UJCXsSBYurq66tth5vO5Z6FxjCxtmUwmCxlkzB24FewKuQXJoZk1rOvoJ/D8paUlP46QrIvpdGovX760nZ0dW19ft263a2dnZzYcDq3X69nOzo7t7u5auVy2fD7vWx7Pzs483V/rGSBb+Hu6ncps8TjQXC5na2trNp1O7fHjx+9kizSbTZcHxQi5XM6azaZnPBJkMjM7Pj6209NTd9rNbrfe1Go17wM6HBLT7A6nktVJZiVyh27k1Itms2n/+I//aM+fP7ejoyMbjUZWrVbtt7/9beJ6v+/6IBJAhUzTgZIMLVeSYlMlGRn2+5ScOuxq+Lk3MufxPjN7x6HgeSjpSCCo0dZ2qNFWwUfBMQ4sVDWOLEYF/Po+JlzbqQCH/wP66a9Gm2G4iLIpQ86/eY8C6Dj29F3/H9MTeSassI6VGkhlzBkf/tYFwe9pH8V1tECJpsrj0LN/CvlEucL6pVK3EU+t+cDCRUnTR7M7Q0B7GDNVaCjoTOb2TE+cBFhgzVZRUgOHMcoefUKmYBFRWgreVOZjlEEBGGPGewF5quy4dCsPQEKPduF7NQgQWXyPvERSLGl+YcXpn5J4GlFgnGL2A3MB4aNVW4lecN4w6xbWGoaZ1O/V1VUHn/ye1Hf0hM4ZBgYHHIeOcWP8iVYRhQfYYkjVcVWAg/M6mUx8OwFF4dg3rqmasNG8QzNDSCdkXbLFQOUeVh5ndXt72+r1uvdJwYUW5aPds9nM9xCamWcXoBPRvexVJONCU9yYK55dLBat0Wh4hObLL7+0SqVijx49sq+++spOTk5c32kVaCIvpJBy7N+TJ0+sWCxap9Oxzc1Na7fbVq/XbXl52Y37ysqK1zOATIIMSKdvi/Ps7Ox4zQGK+bB+iLqQaaIE3/n5ucsvBIHqGIAoept0WOSg3W6/E9lQUM15341GY4EsA/hpsUf6lXRFh17/n0Ta6d/x3/z+PiddHUW1eep8R0dG/x0JCSU0uDRKrM9VXaXOPb9XskHHgHdo1F11c7TXvB+dpnZd172OgToK6Ekl99UhibhFMxoiGFcsouPDs7BX3M/zNGMuYhX0nY65YjvFctoH1oeOF2NBwVB0FXrKzBZsdtzWwViTVUP71LYr5oyX2k09ZpTCqRosQL9GQkgzP8F4EFgx01DHlUvlMimbU51+lS2zxawAlemk9ffmzRtLp9PucGEDe72ezWa358fTBuwFz9d2awbC9fW1YyEdG8W8jAGOOUVUIbCJbKtPobKseFMj2rQVG39+fu4EKXYQ2whJq44/2301/Zto+nx+e5oPbSPVHkzBOPN7sshw3nknjjDyizyTFdDv930fOFkCtVrNNjc3/dQinGccSMZ+NBp5CrniayWLsfXgIx2z0Wjk7a/Vaj52YCpIMf0MWc7n81YoFBaOp0WOSb9nOyNH4II15vO5vXr1yivo//DDD+4IgyNzuZyTI2dnZ3Z4eOhFFZFVTiwAV/Bu5pY2qW+CXqGgH2t2NpvZ4eGhR+TB+tQ5Qgbn87m1223HCsPh0In2s7Mzz1JhiyMFwJWUYp7Beko4ob8gcyaTieOZTCZjzWbTnj59+s7a/pDrvUmA6DTr5+pwm72bFRANBN/fxxzznOg4RFCghpJ2qTHjN+po6+f6bFWSyrYpU4twaDu5jz8ADdpEW5hMHUMlPZQUQQhItYnCS4Qojh1jqqACYVcAQOpSNOKRBdPxiXPN+zFEgOTIsOtnqvxRhrovR5k8ooEa/VfHkr51u92F3zPeOPGkLWG89fQBjUyb3TGnOHLMeewHYzGZTLyIG8ZAs0CYU1KQKOwxn88X6gZoGzB2vFMv2obhw6CqYeTf9A8GnnHRZzLWyLWuR3XQaS/3QDoRTVfyhzFTsKL9izpBQaCSGApcWefq/CsY1+rEEBaFQsGeP39uGxsbtry8bJ1Ox46Pj206ndrbt28X1g8Ov45dKpVaKF6nkY6oa2DTketM5vZ4NsCZFrRU4MgcEo1mPjU7hz4ypkS05/O575eEFTYzL1JD2liMEmi2QLfbXSAKIStgsCm2xJYFdS7W1tasXq/7u1S/83x0DFVrt7e3PcV9dXXVU/S1H6TesneeQk3T6e2xQD/88IOdnZ3Zjz/+6OsN5382m1mtVvNifshnrVaz4XDolfQ3Nzd9XMbjsVWrVTO7BVFkPjBHZmb7+/t+JjTVgLvdruXzeR9v1iGAD9uBHqNApILgmPkBsCyXy1atVm1tbc0JNCXUNAJKUazT01Mn5dB32A5OMUCeeLY6jlxR38fPdU1HB1nvve858YrPjThBf6/R70gERLI+OvMaDIj6hs8irlHnIpIA6CMcIy7FA6pLYvSbqHHED2p7VFfyHmQBXa5Ootp6HSsu7a/aNbN3o836nY4xY6AOId9jSzQQgT1Tp4T6I9ifGD2nDUR4samMO6AefcW/dV60z0qYRxtOf6IcTqdT6/V6vmZJG48XOhzHkLFkfJMwX5K8Kb5AFjTLSskr/q+6I+ITsMB9BIDZHdEymUzcoSICSVQaYjObzS4QIUouKQmAw0071b5HnaD2MvYb+4U9B2Pg+OIEcb9mWiCLyAUOIP2Yz+fu8DJGOOl8rviW4oXUqykUCj4fpL6rfKD3CaKsra3Z+vq6tdtta7fbZmZuY2ez26LEZBOw5QQCge1x2HK2DZrdruFWq2UXFxceNcaeIwMEa6hpk81mFwJhZE7wO+YPohjnk2zEWA8Ip5iCu3qKFWu90WjY7u6uNRoN/y1HKTOWk8nEfvzxRxuPx9bpdNwXWFlZseFwaG/fvrXLy0v78ccf7fDw0DOFIKOQBchFxfI8nzWpuovPhsOh/fnPf7b19XW7vr62k5MTL+yn+JO21+t13wKsJzywpszuiglig3UdkN2hWA/ig/ZhwwkckQHBHKJjWSd/7fXBJADGLOl7VTgxGhDTRqORSoooqCHniiCA7xSg8rmmWSURESwmzRBNDa2hAAAgAElEQVTQaAH3qTMcgQqKKYlsgPFTJwqjqGAq/s3zEQj6xO9guTCuqVTKlQDCrSAFoB7nSfdYR3KDZ2ibdIxxStTgKsuNAkERkMqqSp73qHJWQkQLr+l+QUgCjbKRBseCI1qAQ0IUVx1Hxi+COMY3Rst1/xAKhAiq7jdUEgvjhGFkjFCmGGvmWo03ihSmMKZAMoYa3VcSIQI95FgNOHOr64G5VCUJ0IHs4V3co87qfD5fyAyIIB5doCSafk4fFURrf+iLth/niL3zW1tbfhzd6uqqM7Jmt/uz6V8ul7PRaOT7rPmMz5lXPZ5SIzBxzZA9QGomhdvQB4yLZrioHAKOKfaGDJIGpmcqUyjO7DYFjSjFysqKb38oFApOiEWyhmg346l7Ds/Pzxe2e7TbbY+kALDa7fZCxgFrz8z8FADW2cHBgW+ZITWOQknlctnXeqvVssFgYK9evfKCh2bmgKjVavl6Z76y2axVKhV7/vy5VatVe/HihacI1ut1TzflWU+ePPFCSr1ez7rdrjUaDd/OwWkBRIsoygTQ6/V6Dj44qk8jTYwb1YKVDGRdq9OlMo4O07OU9fQC2sFzaC+gUlNjzcwjM2obut2u9Xo9L5SkelevaOfuc+bVieXeJCf0p677bCA6AEdHnXD+r46+kmvar/8LV/xUu5SU5Fnq/EfHX8ckgjMlW5PIA5xZ1W+sW/qsIBa7qISFgt2funT81JlXh1qJBT7n/RrJUjJaSTA9Bk/tPX2CyFPbrmQvmTG0T7OpiGCqQ4MtAHPppYSJyg92V3HPdDp1wK/EXRw7nqvPph3q1KvMcg9/qIugmR3gxaR1wTyoHMeAEu3Rv+P10UcfWa/Xc+f/5ubGdZ1mRirZo4QB9h1SBzJWdYGuB52jSMThpNEOdBnPXltbc4ynbZvPb4MvHJWm+BHsjDzo1kXFQRHjY2vN7rIey+Wybwsjo5Q/muFAG2kntsHsFnfwXmpH4SiCG3K5nG1ubnrAiCMUSfsnusy+fwrekckB3mZ89LQZxkTlledoxtt4PLbhcOhYiHoN/GEPOlnEnASwtLRkGxsbXtgwnb6NxNdqNavX65ZKpez09NROTk7cuSXYqVH0SqXia6NSqdjm5qYT10dHRz7P6ACCImdnZwv2QHULY0t/mEuIjdFoZK9evbLvvvvOySB8HLAcNh/iEbxEtoFuWaagOX4Z21zAJJxMlMvlfNsluAqyBkyKn8bWwaurK2u1WpbL5bzGAycN/TXXe5MA0TipcoqGOwKG+4xtZPDjb5MYab2PZ3DhjBAp5/9quM3uItGqoJTlVkGKIF+NcWRlFbAoCaD9Q4EBLpLGS9uJAOqYMSbq8GuEgL5CFGj/YgaBmbkBilGFeCk7nfS9srqRSNCxAjToflkUjsoDTBi/Z9Gb3RWWwWnBIBEZo0gbrCrsGe1Xp4yxY1HhiJIuiwHT96jBJpVKlUaMiAB4cDRIx1JjRBEjlVcUAsebcQ9nz+o83DcvfKcyretHgYnKIO+H4Y5gdD6fO7mj0RqcTgV+pKrHrIOoTxg7JQx4j4IdjWAjH7DY6oxSsAZnW51/ig+RUqZyp/oONp351ag8zqu2HYPGXjyO6gO0IjfMLU7L8vKyffTRR7a7u2s//vijff/99y6PGBLG2+w2xQzgNpvNfD2xxUGjLegBCvGQLTGfz529BtBns1nb3Ny0XC5nBwcH7mhwjA9zrBkGZne1AjQjA2f65ubGXr16Zf1+39bX121jY8MNNQCP4lT8Ic0eUE6/OXYsl8vZ+vq6PXnyxHZ2duzJkyc+p6TjYYwPDg5cnufzuadcQpr1ej178OCBZyiMx7cFJK+urvx0gNFoZKVSyR49erRQSbpQKNj19bWnwJLWmMncnlIAyUNECSefSD6ywDpAz7AtgzoGpM6m03cnWUynt8cYmtmCjCOPrDX0ZavVWtCjXPc5ymoPI8iI90eSHcCv1/sSC/HeJKc6EunqiEeCTu2MkgVcaneUkFG9qfdGu84aVn1036U2TAtv6bjQT3VU1bkBPySNkf6feVeiOTrCGrzQ6LE6lui8OI7aTh2zGP2PTrCmYmOPuTRDEduRSqV8XXGEKOuH7U7oO82UiA4sjprKO7ZOo/aMrzoSEcNoBFyj2nyvNpa5jsQD84MjRMCAKxL2Km86z0lYmu9oc7yq1apjLByNQqHgKcuKl8hYW11dtfPzc9fB2DzGUckUfqeBFSUmzN4NDtIX7Br6kXoMzCnPQe9CdjLWBE10bplHM3MMxhyYmRPwSsKgtzkykTZfXl5ar9dzfKqp/UoOptNpLzpcKBS8Oj59TaVSfrIUGXfYLNLv+T/OP88mwwF7wb71ra0tJwZYJ/P53GvAaB0arcOBPWR9IrM4pDpW4DFIkW63u5DtSECCTN+DgwM7OTlZsPnIGRmAZATS7p2dHfvoo4/s448/djnY2NiwarVqx8fHvu0Ekkhr/JjdFiTEJwDvEWghUJJO3xXavbi4sJOTE2u3216rwMx8G0ixWPSjJjkekoAjOgliljXFdmFIpHK57AX9wECnp6cuo/yJxUdVN9Fv5Pjt27eOe/6a64OOCORiMf+UQUcJKLMaFdJPPSPJ4PPuyC4mOdTqzEYWLL5bGVztYyQD1Aj6AP5/UBmJATWGaog0VUpBC7/lXv0uKnBVpgA9Nc78GyWMoGvEVsdWnbUYBaffGFgVSDNbiJ6q86qML/1lrOinGgKi+jqHGFMMejTmSjrkcjmrVqu+0DiCL5VKWT6ft1KpZCcnJ3Z2dmZm5sSAMoTMj5IvKHjGSAsVsViJGCpzPp/PF6rF0ndNTWNMNMKlUQ9IjvgHeUbGVNaQY11vug6URKKtSSQbbYHtVKdBiQtkXzMbFDwr4NYImEb7lZihrQoMkEv9jZIXtCeuH/Zx7e/vO+jE2CEfAA3WC+TBcDi0dPo2dZp0OiLZpM8xf8gGcsy7qVGghEahULBareYRJiVPlpeXbTAY+Dm7jC19Bgjp+mW8kb9UKmUPHz50tphtG6o3+I2ZLaRdItPMAURWPp+3VqvlGROz2czrGlDITjN30BXoEUAKR/a8fv3aQU42m/V1y9YV1gIyhFFNpVJ+gkGhULBPP/3UPvvsMz9iiCMBNzY2rFgs2vfff2+vXr2y8/NzPyJwY2PDLi8v7csvv7Rnz57ZYDCwXq9nxWLR2u22VSoVlwlOiCDrYXd317a2tmw4HNrLly8X9vqr4zKdTm13d9eazaZNp7dbG5A9JTUZZ7UdahuQF7aWXF9f23A4tG6366RGKpXyNEIl2zRqprqgVCq5/EcCjis610mfq+3Ve/T/9xEH0eYn3ZvktHDffQ4+V5LjrjYyybbHtpu9Gy1WDMAzVb9FhyaOk/Zf7bu2IepibY+mt/J+2pU0H0m4Qb/X/6vDFrEH702yFSq/Eb+pnlaMxqVOBb8hoqpkB6ejlMtlP/KMduBAcH46BDBrAGdPsRi6SokU+qAYB3JfHXHFINoOMK5iEh13+ql2Q9uiOCCJSPopUknHW9/JnyQMqeNNFXpsBcTtZDLxU1LQy3oeu2aw8SxdY4rVFe8ha8iZyjTPoc3gJbIeM5m7IwJ5HroVx535Qn9SqwZ9zbO0JgUkuxLkZLkVi0VLpe6OL6Q9g8HAgzFckNPRxkKk6zZQJSEYM2QHMgCCgLYzT6zVbPa2vgz6nvGkCK1mH/L82Wy2QGxrRkIqlXKHlrFQ/wUciAyQlUaAiyAZfdMTcHCkmefJZOJbTEqlkmPlhw8f2vPnz+2zzz5bWEvZbNZ++ctf2vPnz+33v/+9/f73v/ftgOVy2Z9fLBYds4EvOKYPnASJgf0fDod2cnJib9688VOhGK9MJmODwcDrB+n2GM1uVnK3UCjY1taWH2PIVpJqtWr1et3HIZ1OOw5S4hW5Z1uJrmGyZNrttk2nt0chlstlP9XjQ68P2g4QjW00+HzG3ywCDFRkz/WeJIc7AgM1lNHo6SApScD9avh4HwtC36+LURVZEkAzuyu8Fp0SlL4qSAUvKEGUSjTo6uDF1Cx9R0zLo/+RjcdAJSlmHIxoNHiHGiCNKvIeBZ9KhKgzF9up7KM63rxTt0LwbDXQzCeAttlsWqPR8Ps49xtHkJQZWDTmhNQedV5xtGDHYZFpO/M9mUzcudStGkRNkA/+1j5pmh7ziHxq9B+HHlYe+aNNSSRaUrZGBIa6tpJAM+9AITF37LdSWcOZjaBa1x7yhxNKn3QtM258j0FRGWZtaFoba4e5ymZv0+aePHnimSEcd8R+MxR1Pp+30WhkxWLRlpaW7OLiYmE/f7/f977Tb8224Xg8ZEKjPnrcqLLsCv4LhYIXYEqlUnZ2dmZv3rzxNcn6UmPAuM5ms4WUMYrIQVg8fPjQUz1xnpeXlz0NvNvtLhSem89vsynK5bKtra3Z8fGxdTodn3cFyTDumpkAyNG9nMw3z+b3RNjS6dv0dtL8KA6opAYyzefr6+v2q1/9yn79619btVp1Bp7q0isrK/b06VN36Pf3963f79vS0pK9evXK8vm8bW1t+TFROBdE/m9ubqzf7/tRhpBEAMPz83MHxsyHFsFaW1uzwWDwDhEKwaKOD/MyHA59PAGo2ezt+dhsKel2u3Z8fLwAdknBJaK3urq6kDVBBgfjz8kAtE/XO/ohOsNRXyT9JtpkZDTpfq6IHyKGiP/W50RCIumZSVd0ZpP0nto/xRf8Xt8Ro+j3kQAxSKAYIjrxkeBTJ5t3aBuTxoBLcYDOR2wP+gYdq+9QMo/f0nf9TDGVRlPVtmsgRrGI6nLaRdS+XC5brVZbcFB5NxEwJeZpP/9PyjLQ+VOcpGN2XxaA4k10sMqC2V3GJc9VmWM80Q9kVamuY5uDjpPaj/sIrCSy4L7PiX6ic0lzpxCjYj8cPWobVSoVr5mDbdBUeOaT+ZjP5+7AM4dKgDPutFc/w3HW9aAV1tWv0KCI2a29q1Qqvi0Lopn5I5OAe9lnTtabbi2dz+ee/UaxSMgRLjImSOdn7JhT3SKnUfbl5WV3+vktmBGyQSPrjKvZXW0n5K7X6znmRZYpWItcQmwPh0OfV7ZL4JSzTgi+ULSOZ5GZOJ3e1iY4ODjwtZlKpXzstJAw7aRGDkEm5rdWq9nf/M3f+Ok7EBToRyL6n3/+uR0dHS0EU05OTqzf7y+kxoNlkAnmTQkRCB0KD1L4TwlQ2smRoeAo8C/bR5AfChVDYm5sbHgWYKvVsi+//NLlmSMhwdnZ7N3xlxqUYfwymYyfLAUhFE/p+pDrgzIBkhz7aNi4VEEpG6zP0+fwWWQ09Ts1xPoedZBRxCpw/FZT2tTJju9RAiAaT/qjpAW/YywiuCI6pAoxOmH8XtukY6vjAbCOY8rz9bkYOGVNNWIcowtmdyCVzwHv9EOBLe9R4oIxjJVbZ7PZQoXVi4sL63a7C/KizjOOoVZ8V5JmPp979dRisehF01AMgAoiCaurq1ar1bw/9FO3AKCYlU2m7/peJSSUudZ511Q4ZAJFTEouzgPv1ogE8xYdbR17lb0kJzGuIyUb+B5SRdtPgTPmjGfTBuRGC1xp37knkkmsUWRPZR9Ziutc12A2m104simOA7+liAog8uTkZGEdKZmUz+d9PjA47NeaTCZeT0CLzXCyAKn+yCvGHMMW5ZpoLgaBaAX7++bzuRecAfzw9/LystXrdXdEeV4ul/M1tbq6as1m09nlUqlkFxcXnvkA2bG3t+f7CZF5SJnRaGRv3771SD8GSWVMIzXUHWDsIOYmk4k1m037h3/4B0un03Z4eOhrp9vtOsjiOewJ5IQNSDjY9FQqZY1Gw371q195Oh3yhQwOh0MHJxsbG/bP//zP1m637c9//rNHCKfTqX3xxRe2tLRkjx498v2BpPeTAdPr9axUKrkcXV5eOsFInQeK9yH/AA2AnBblNLtzFNbW1pzRp8gicnJxceFO/zfffOPrHWDIcYQAdo1sXVxceBVp1iukDyBSi6Sqboi6IukzdVbV/qmNjISjfp6EFeL9970/yZHh0nWG3oxk5H02XW14tO1KaCgG4nsl3KO+5R69/74+Jjnoel8kGCKZQBu0LzHoor/jUvumdlqfn0QKqGMKCUt2TyaT8Qgp8q6EARcAX/FH1PXFYtHXGIVEAb7oW3QdR9uhN3gHDpdGfnkG45eE87T/zF38t46VZoWCXfg8Cf+qbVcslTRPSe3RuY5kE/dGrBCflcvlrFKpODmOE5tOp73oG89m3DKZjJ9GE7cAgE0VR6OfaaumZoMJVLY10KJjwpyi18iM41QDnCIz8xTtcrnsNo9n6gk0HOccA1HIMY7seDz2vfvUkiGYFANDGpRQ8ou24yAzNkSWuR+nu9/vu72EuBiPxx7F17ouEBiKq6LPkUqlPBCiR9hqdgL2iwwDMARBEBzeXC5nDx48sEePHtny8rK9evXKo+pEsSMh2u12PajAuEAozOe3R1N+9tln9vjxY7eN+/v7vv1kaWnJ1tfX7dGjR7aysmK/+MUv7OzszFqtls9pt9u1y8tLq9VqtrGx4ZkTbMujv9hu5k3HS2uaMGfz+V0xb2SZaD41pjSTItb5gLy5urqyfr9vJycnCzqAd6i+p/gfMgDhxjpfW1uzBw8e2CeffGKPHj1KXOPvc/1V2wGSnH11IqKiUsMXHf1oFNXA6DOUuY4gJBqRCEw0lY/vUFBq3NQpjs4e79F0Hf09yiwqXP2e/2vbIniKzph+pkpf/1ZjDImgz42RPk3ZATxq33TOksbpPuaWP7CbOj+0CxaZfTq6J4kxZEHDkqHscbZox/LyspXLZavX6zadTp0AYI+32WKl3vl87saB1EHangQEUAg6Z0Tu46Xyx4WB1LFSw6jElcpelB0FplxJ0RSVsyRiQv/NezSFUb/n//psirloFFcr8+s64X267vRIGmRQI9wqKxhX5g35gRSCgVbijbkmFf/bb791Y760tGRbW1u+F6xWqy0UbRsOh3Z2draw/z+TybiDC+OPPCiRw1wARgGcONaQDcvLy+60lUolT1E3My9eR3QkSV/V63Xb2tpygmgymVi5XPazaq+urqzRaNjGxobNZrdH3Gha5/HxsWUyGSsWi7a7u+vn8OpxRMVi0VZWVqzT6XhKoZ6VTTQDmaCojoKcTCZj3W7XarWaPXnyxD7//HNrNpuWSt0WpaOiPo40RYPOzs7sq6++si+//NLHn/VeLpdtY2PDfvazn9lnn33mEXRkZTQaOVAgZW82m1m1WrW/+7u/s5ubG3v79q0XeySNuFQq+XF/REYymYydnZ254Sf6g+HVqKjqCgAcFaS73a7vf1xdXfUaB9gVopg4MOPx2Pr9vgMS+sO60KgAERy1CZBySnijX+r1uq2srNj5+bmvLa12fp995zu1t9H+R5sVr/i92nZ9RlJbfuo5ahuTdJv2RaOGSq7yN+OngF1/n/SupPFIaq/+ic7gTwUjzO6cZwXUkTDVIEPEKqyhJJImyY7f9zd/1KbF3y4tLTkATqfT7pDrOEbchJ1SR5n3lEolK5fLlk6nXV9o5XZ1TNgPTPp6EkmCDGN/9D6VEf13tLv0VW14tO1md/ogCVdE4B8JkiTCJ+LhpDbRbnRm0jYGvbCT1GAhQp/J3NYrGo1GXh/FzFz3o2c4epdxZDxwaIlsQ6Iz7ujJmG0bL10ryB2ZnRwtZ2buzGGfzMyxIVkAOJVU/wdnZrNZP74NjDOdTt051YLT6A2VHZUzskw045XIMH0BF6iu4R76MBgMfOsYfca+Qw63Wi0nrcFWpMXzTPAb71leXrZ+v++YOsqxBnboC1X/SevHdlHgjuLLZmaHh4fusGN/sH3YNrYU6rhQrO8Xv/iF/fKXv7RMJmOvX7+2Fy9e2PHxsRdJXl5etvPzc+v3+/b48WOrVCr2+PFjJ+fN7rbzkl2J/e52uwtZCmRKsBWY7A31gVg3jCfV/PEBIF7wUzRYBg5B7sFhkI+aXarBItZD1J3oRdXxBEgePXqUSGC+7/VBJEBkFqNTqg54ZMUVROjnylqa3TkfusjUSKuyUQIgiXBgQpOMt062RsY1TQvDGpUcz9ZCdtpeNSS0XY2f9jsam0ho0E7aaHa3nywCtwhqlOnWyDXzw33qxMd+4uCo8deCJNH4aLqdCm86fRuFXF9ft2q16g45BT9wKBkDCmupc8F9athYuPGMV5U/rfbKvi+YUI34a1Q+Ai0F4dpfFj5jpZF2lJ0SR3qhBGF5yUjgfVp0TteIykUEIto+fqPrNQJOlU1dm8h3u91emEscD4BGJpPxImaMA2y7bkugf0q60E6MNG1TIIhTr6QSckFRR1LQlbSpVCrWarXsm2++sZ2dHU8R46iVSqXiskYVaC0sCJhARjje5vT01GUGsmo+v02Vo1AM5+XC3iqLi2EnRY21DUNNhISjdiAiCoWCPXjwwHZ2djyzhYyCUqnkDufTp0+tWq3aZDKx4+Njd9j39/dtMrk9hoaUyFwuZ7VazcmBtbU1q1Qqtr+/7/PI3lmIgvl87gZOt3fMZjN3vG9ubqxYLFq9XrdHjx55JIZ1xTpjL2qpVLJ8Pu97+ufzuf3www8elZ9OpzYYDOzp06f27NkzW19f97nBWA4GA9fVrM3p9LYo6NOnT+3ly5d2eHhok8nEizWamR0dHbkuHY1GXu1/NBrZzs6ORzT5HqNPu4imlMtlazabTjzwHTKs9U50qw8RBAgRAAdglAjX6uqqzyXVkNG9RFMBxqwR9BrEF1slkG0tQBadivvs9E/dq/b1PkeSf6szc5/zGd+R5OirrYrAzWyRdFdnjLGJqd7o1hiNTOoX7+G5sRiqvk//H8kGxQJJ0Xt1FpVs1QwAxSmKm2L/dU7jd+hy9Lj2E7uuxDV9AOxDfmFDFQhju1X2cSqjveY+dCHZUGwdVNuh/cFxIwNHHWElG1QG6YfaRf7WQsFRtnDOdD71QlfyRzOoGDPFvMxXlG+VYf083h9tvI7LfdfBwYHt7+/b0dGR7e/ve3FjjihFb1FIjnnQ/sbgkI6hpoxzxrqe5hB/ow6OvodnKaZifLGZpVLJptOp94F9/eqkUTdiNBr5/BKUqtfrvrVKs1dYczjiFLFdXV21o6OjhWOE6S/tBt8ix7qPHuKK/fe8C8cPskJrULF//vT01J1hgmcEMsAdOmbIPPYacqNYLDqeSaVSC/UqsMvYbmwZeOTx48f27NkzJwDK5bJtbW05mdTr9ZxgefjwoS0vL/uee8g8ZACZW19fd2Lq5OTETk5O7Pz83OWPwA9rcGNjw9bX1+34+NiOj48XTvNAX3DyEA400XWzO/yNLEAaKVmFviqVStZoNN7ZhsK6K5fLdnNzY+1222234kTIfJ6pwUldB+AW1jCBJcXuejJKv9/37MckPfQ+13uTADQ2iYUETGtKsDbmvnQrJQf0/gg6orG6z+FRh1UBBn9rNFHfERUa/9Z0miSjAeOTZDBj25hIFlxMgYqMdBxHnCB9vkZ66Q+Oqs4JfVFwoGBRjT7v0vmirbQ7yWijdEgxVYcV4ca4cPan2S2Lq44FoJUjUWBnYdGYQxYaGQUaNVRiQskMCt8AqnH6tD96rqcSX4wFKUGAP6LbZFsowKPfKoOMe9zvSTtiCqFGcQB7UbZ1TpEPBbkq3/HfvCOCB4wLhgFZpx26ny+CR20Lv1XFSVEynBEAHDKqWwcgF3De6C+GgWcSFccYAi7ZX//w4UMHkNSFSKdvz6klg+Ty8tKy2ezCyQtkPOAc4lBBhOXzeU//Nrt1rA4PD904MhekFfLcfr/v5ACOrB7/pwQcKXew21dXVx7Bns1mtra2Zs1m0w4PDz0jhorJFM6ZzWYOENrtttdDWFpasn6/7yD/wYMHNpvNbG9vzwEQBQtTqZQDJY1865YYogirq6t+PrCORblctnw+bxsbG64DyE4wu638/+LFC3fwdZvM2dmZ7e/vW6PR8H3ul5eXXqAHMKgRq0KhYOVy2T7//HO7urqyH374wbrdrsvMZDKxb7/91ttDP6+vr21vb8/bjYzs7Ox4poXuw2NNZLN3+/j5nrXVaDR8OxJ7E8nEYH2ReYJsqLygmzVzSCMTrH2NKJC1M5vNrNVq+RpDB6qu1it+lhSpi0SB/js6/fG7pN8rHtDv7rtPn4uOiUR6JBzoB7pRHTyeo87ZT70XnMEcKE65r51c6uzr85S8UEKBS4lm7lOylbbzW+2bRikVeNKW6JzSNmw7uCCCVxwK9sriZHHyATrC7C5Nm3dpFIy5xs5zHnyS7OkFLsN2UAgNvaTYBz0MFtNnoDOUZNe6PDqOGvXl9/ytRImZud1RglJP2lE8Fu2wPlvXt2YPRAJA5Y41kTSGv/vd72xvb8+3zmlqfDz5BXIXJ0pxiY6Fyit9rVQqXgtAC/zhGFGLgDlhHlhbqVTKj9dDPjXaPJ1OvWAk5CuOHA73YDCwbre7gA1oH3axVqstOFrqBEJArK6uWqlU8qg2xL+SFHH941RD/IOp8vm8F7GDIMHeamFhnVu2E2pBP8guLXpIdhkZAmREsl2RbDnIHbAbhF6z2bT19XVLpW63pymxt7GxYc+ePfNsPGRga2vLptOpNRoNP7Jxd3fXfvnLX1qhULA//elPdnp66lgZndXr9Ww8Htve3p6tr697WyK5jLxhP8noq9fr1u12fU6wn+iW7e1ty2aznmWXTqd9WwfFD5FTcARHHELsFItFK5VKCyeGsabxQcDmrVbLgzrpdNqPSKQYuZIUcfsIMkuApNFouLzPZjMnBZj/g4MD29vbs48//tgx6IdeH0QCqJJRNi8qcVU+0Sip4x2fo+BA2f1ouFAWEajEZyc9V514FTI+VwZdlTNKNKltSQILmCd1uVQqmVlyIRo1HIyVOn4oIwV3Cmbou/4ujsN9JI0aFISR6CukghIMqjz1WShLinRFw4PhUwNCf2BLaUfclvMAACAASURBVAMMKgv1vndOJhM/HksVnjqgOCq0DxaO+VK2l36yIFWGMYKMkbZXASj30lYdc22XFpRhXBkn2q2/0+dohoc+U8kHnf/7noOsJV04vwpsKQrIOzG63MP3vJ/1g+FTEIpyxUmBBID9LhQKPhfZbNZT5Hge+0QhBwqFgkfAcdKZi3a7bWa3rCppdDhASnRR0I1xVRIAMAsrjoNG20mLOz09tW63630bDAZWLBatWq0uGCKdczNzBY4TSnoaxX0wRABbPYOW6sXNZtO+/fZbN3KQVRgbLTZEH0iLr9VqtrS0ZIeHh14dd2Njw46Ojnzdkn52eXnpxpM0PzItKBy0urpq6+vrnubOPGIIq9Wqp7QDuFqtlr19+9a+//57J2QuLi5cp7x588Z1xbNnz6xarfrJBf1+340rc8s4AqQoEmlmnppP9f/RaGSbm5uud8zMwQ86nFoMyAp1Asrl8kLK42w28+wNxh4g+fr16wUZQPZIEwUA6xpUnX91deVbCNAd2C+1t6x7xlajkDw76oIkMiDpuySnNn6nfycRAvF7Bc6qU8wWHfP4TLW9ik2S8ImSpdHx0kvHJQlTaOqumTnJhT7gfp6tZLTiJO5T26NzGa8YSEkKquiV1Gezxb3V+jsNoug7iMrHTDZtf0yF5nPsMe+H7Ieo0+wGngfW6PV6jg8ghHVsuVf3mGsQBIJE50/xB3OoUTuex72MgT5HMR+fqx1mbYNT9dlJ2FHbFwmdKEdJ86347qfWcJSNN2/eWLvd9pNoILUgyqk3o/KtJIMS1rpOsBW0H1tG/8nYQDbOzs4cx5EOTyaczhk4k3XGHmycJ5U9nCme1ev1bDQaeYRdgy36b0inVOquvs/W1pZlMhnb29uzTCZjf/u3f2uTyW0xxzdv3rjcY38g2FXvQnZwHCTvymazTtLSDmSG7yn2yn1Kcup88j3HAzIHzB/BDYIRbOPj1CMwLccMglmQDcaIjDK9IB12d3dtc3PTg2X1et12dnbs+PjY9vf33fFWvZTJZKzf7y/U6alUKra5uWmTycQxGbiwUqlYrVazfD7vBTU1K481DA4hIwT8BfnOGuU0MeorLC0t+elQYCRqebFdBlsK5mHbDJF5SJPV1VVLp9MuF/gtrBeyl7XWFmsefMV6ov/UVeP0A8gidPCHXh+8HYBFH6PQXOoM6b3xPr3UsVZHXw2jMq4oBBSmOrAxEhwd9Kiw9B5tt7aNhcz/zd7NNlCnE2UXQQDfRwIDh4p+qCHQe/g7jidKESWJ0KjCiO1LMhbaHwRV24ox43lq9PkTo1K0j8gXFaxhIgGxeowZinE4HDpriIDTPpysyeSucBtnjxKBoO2qENLptCtJPdpvPp+7omAhki5mdlfdHQcfB0yj8xBJOke6dhTMa1oSz4zzpGOvQBdCQudDZU4JHo0mso5UAXNfJAxwehTskGoFsaJRRYAUv1UAg+PK85mPQqFgg8HA2u22F9iDFYcIQsmaLZ60wLhi4KbTqRfLy2QyVqvV/Nz2yWTihVgwrLlczvuTz+et1+v5ni+MgQIvjFC73Xamvtvt2nw+t2az6VV9ca4xqpnMbZGsg4MDS6fvMlhoB2udvX0KqDnRgv3wbGHAMcVQkPLWbDZtZWXF/vu//3shJY26AexXH41G7qRSdfjw8NC2trbs1atXPj6cwatpzpw2MJvNHGhsbGw4m5/J3KX5AvYw0JAayBPgPZW6jTacn5/7cY5LS0se2VCA9+WXX3rU5NNPP/V0xWq16kYR3ce7kSneuby8bFtbW3Z2dmZra2u2vb3tuhK2H9a90+lYq9Xy/X+MpUb52T4Ag59KpRxEQwCzpxn5RNewpklVRE+Nx2OvmaJFzNCZjAsELqCaYlWz2cxBLORPKnWboorcqsMa7UD8XO0ol+qbqD8iORnfcZ8d1t/E90U7rv/WdmjAIOIVtfPqnMb+JhEq6E+1nxqN1bbo7yLBn2TXY2YglxISPAP7hL7VeUh6RhxLxkIdWCWWeQcyo8RydGRxTsjc0ZR8opI6rpCQELWRmNB7ANWQaETBNHOPtYSdZnsN2UHgEQ0isGaITpP9B25SHaJknY5jJNR1fpXcVedfnX7u45n6LsUUKkP0nfmIcx0DEVFGo0x8+umn9u2331q327V0+m47EQ4HMsY7wVZm5sQw79MgBvZD1xa6H1Ig7sPGTjIPOEa0X2Vf8RIYTfdnE0Wn/Vr8Dl0NHsH+oLuRX95JKjhOVtzeAtZkTeVyOSfVwaZkLc7ncycHFKNqBuloNLJ+v+/kFw6omXlmHMRMOp1eqJGh6wf5BCvq+LK1gDEmkMBJO9RcoJ0QgIzR+fm515hBPqlvg2ygi7BJ33zzjW+fgBzERmNTO52Off3113Zzc2NbW1v2+PFjK5fLvu3BzDyLEGIGcuHt27d2enrqhYr1mHAc8EePHtloNLLDw0OvH8H8QtyAzVXWeIYW+cV+s5WPNY6uQla0DWAwcBnkQavVcvzE+mEt5nI5D/Igp+Be8GC327UXL17Y9va27ezsvLPW/6/rg0gAFE90lPmeKzojMarJPfxfjbMqlsh40YbIoPIOBC++I4IU/q3pbapUFRTo76KDpUpXU6FY3Dj0MKvaV56v/VTmWcECz4tRAGX4FVTxG/6PI6iKPZIQGr1ljBUYqJLX/Vo4OjxHjYAacxwg9gphBGDAdNxvbm68SjjAHaVP3zVaRsSVvekoIbO7SBlyxcJDCWqUVJ1p+oMiiAUCzWzBkVNFzLuRK2XoVb4VROh8AdDUuOg8MYfKaDP2Wj2U30fgyfswhACfGAFTIKcO/3x+VwGez/V4tbhOtFiZklVm5nv0UHz0jfREDJquM8aE75j3tbU1Z2RjlFUrpOP0A27MzN+Ng67rF9AFyI2VhNvttssWzjmp+Dhu6XTaq+oqiIY1ZrxYGxho2suY48iVy+WFtYexWF5etidPntjXX39tZrdGM5/P25MnT8zs9mgeDB4RAEix09NTr1qvGTLIMO3HKHHN53Mv9jmdTu309NTG47Eb5kaj4dEHdA9yAEF4fHxsf/nLX/woR0Ac+qBUKtl8fhtN+frrr90gNxqNhSP+WO+kj7Jv7uXLl/bll19ap9Oxfr+/4BxTXTiXy9mnn37qR+idnp7aycmJOx9qs4hCQbSh56hUrcdAQYAqaUNmGOQB8qbpjMgwuhLnCd2BPocwHAwGNpvdbcnQ5+VyOQd/ZrdZEY8fP3bdoTaYPkZ9lvR3lAP9Pto7/S7pUodTM4503H/q/fqZOq4f0o5IiEZdppmE6AcyxJIys5SYUB2vhHsSplJbru3Xv9HbZncYS7c46Ltjf2M2WSRc1JarXeQzJcCRM5wXte+KW3BIKIJqtrjtLV4AZewG65B7dRzQLWzr0lMEYh/UFib13cwWtsHpWlQnPj5D5UKfm+SEq21XOUfXIlNcSmzqe2Nwimcr3lC8rNdvfvMbm8/ntr+/78EZxaOQ3UTv1RZD7EaZZN4iho7rimwqMtCwl+l02iO3Oga0Sfd3o+sgt0ul0kLhXoIPzCd4Xe261uFRvYpOx2m8vLy0wWBg5+fntre35+nnGlwxswWnOZVKWblcXtiacn19bd1u18c26k/Fasg/489RmePx2Gq1ms3nc2u32459Cc7wbJU9LerL9gfVZ/l83mq1mp8yxBafSqXixT7b7banup+cnDgO4R0E2Xj3aDSy09NTL/I3Ho/d4dYMIeST4swcX7i7u2v5fN63HYCH1tbWHPO/evXKXr9+bYeHh/5b2ru2tma9Xs+xzPr6uhMZiqvNbCGTkd/gA8X1ToCH9c7zWDuaaYSs6glLyDEy0u/3vYgza4PTf/DFILaUbNIgy+Hhodcx+tDrg2sCRNY5Gq/oqOn3en9UvHGx6z3R+Y0Ovd5Hu9TBVscuKs0IbFgUyt5yf4wmqKMVlRz3qkLW95jdMWYoCZ6BEGn0NIn91+8imwybrcaM5yroVAOh7VQFqkaQOcUImNkCc4oSgAnWC+UxHA6tUqksHA/C/nyOYVFFFY0448hvYXlpq34fZZQigQqCGGfYXsYL0KLGVr+jrzDM+jnjreRAUpqryoVGNyIQVeWiQF1JAAUeESjF96lcJq1HZAfFpOsom12seq9gknfyh/dAiMBej0ajd4CuRhw0gqJjDqhJp9N+vi9HyJHqp2DF7NbxJXWcvWpmi+svl8t5FVpkFTDAWiPCT5EcBT1ErGh3TN2jXzhxgBJSu5F1ADWOf6/Xs83NTQfdyBtzxFix7kejka2vr9ve3p5nyJyfnzvjXi6XbTqdeqVk1g/HyqluABwBzJCrYrFos9nMawnMZrfF8NbW1vw4wmw2a99//72trKzYr3/9a3v48KEXI8R5hVxrt9v2zTff2B//+Ed7/fq1zWa36fTIFDqLcdnc3LRUKmX/+7//69skHj58aJubmz5uBwcHLgNHR0f21Vdf2enpqT+PbRcU5GNP3x/+8AerVCq+TUBrOdTrdfv000+t2+3a119/vXCOLwSIyhbEAvPMmLKlgaOKkFd1FPmzsrLipBWEEd/h0HMf+gg7wd+sP3QSKdk4FOqsRt2gV7S7+vd9zpQ6SKq79XMuJcf09/xGdZ86+6pvIokRv1PHOLbzvrGIn+tajX3kXrXXrE11FpS4Vz3COMSxUadRHXTNoEPvaIYY61PfGYMLSXOhzrumAmuUV8eRo8fYyxorq6M3OZ0DPasYi7lM6jekGuOq84fMQJIxjkrU4CTRj6Qig5Gs5z1qS/VvrmjX1fbFNkbcynpWeYm2U5+ptkO/u4/YiOtCr3q9bn//939vqVTK/vCHP7wTaNItHpr6P5/PnWzXfsznc9/eRzYBkWywHdHiTCbjxzZzmpO2kSi4BhWoiwPZw7tUv0HGajvQv4wTARTmnQDEZDJxfECmAzI7mUwcH0AusfbMzJrNpmWzWS/Yh64lIs37sH/YdvAtMoAc00ei5hSe3dnZcRzEGiOVPZvNut1kvUCom91ms1IrCH3ERZ0cbC/4r1arWblc9gg+mPrk5MQuLy+t0WjY5ubmQvHf8XhsrVbL9vb27OXLl3Z6emrD4XChUCQ+As42ssUW4IODA8cS6scgO5PJ7XYh7sP2ImfdbteJBrA5gR/mRglTggJkESBT9Jc1yzgypuA8MJnqB7Aqcob8aV0GtmhcX197pgbv0K1KbCVAF1HTimzZ1P9j7cx2I7uScx07MznkPHAmi6Uqqbu67VZ3G4YB+8YwbMCP4tfwrZ/ET2EDNtBXtgG1e5TULZVqYHFK5sDM5JjDPhc8X+S/Q5vVKp2zAYJVyZ17ryFWxB9/xIqVJH7yTx7h977rO5MAaihUYamjqkpCnXU1PGpgdWAZqPidSBoo464OkF4KDlhcys6qwlInQ0FCmi5rESB0eo9GGtSQqFFXQ6mOSXyXbmuI46PRA4xadBbNsuwrTrVGd9VB1e0USmQwduq46nhpujufaVEr3kPb1HFFVog8Xl9fW6PRcOVMdXW2AKAoFERhiMgOMMumhjMOpA7hcPF3+qBEgZIXZuaGLY4/7wFk4ZQUi0VXAIAj7lUmOwJGWEaVHV03kbRS8Jgn18wjigOmkbYoyKF/Kr+RGcVBQVmTUkZ/ASMYeAgZBREKEnRds7YxADiVtJ2IgKYURiWKEYa5JfWKbSbIPke9sWecgkLMBX0n9Q/AidMW16sCIkApxlgdf7IfNDW21WqZ2YMCJ4uD57IGifzzGQXqcNSpuo+hv7i4cOBt9nBMz8nJibeJmhoYmSRJvkViAMzTNPWsDGQTUAII01oCgB3Y6F6v5wUOad/nn39u4/HYNjc37Sc/+Yn99Kc/9Qrio9HIXr9+bb/5zW/s1atXdnZ2lqkpoXVB0nSZUUG9goODA7u5ubFut2u/+c1vvJgo/UI+2MKgkTbknYi86tmjoyNrtVpWrVZ9i0Gh8FCYcGdnxwaDgUf4AXXFYtELRrHuKCSJTqAyP8WptLASn0M8YvABNkR9yTTRiAIyGvWYpmXOZjNPf2Zu3r59a3qpYx0dG/17nv1+DHxEx/sxe8tnmgEVHfPYBp4ZHQglHmlDHuEQ5YHno+fUXkfCUtumulkzprhYP5E44Tu8i2fHcY+4AXuqRaoiQaDt4z30lc8jplK7o+9U0o4L/aFZV6TvU5cDvQCxr5F5daxxunifZhtgy+lzXi0L1ok60EouqG2MRIdmU2j2FynBmlGmpEo8nhN5U7yq2EoJPp7HeCpm1P/rZ4yTjpGud+7hUowWx0uv3d1d+8d//Efb3d21//qv//JaKTjx4AidJ3SpZovSb5zker3uGVpm5luoICvn84cCtt1u1y4uLmwwGHimG/3CjmpqOkS6FjzFfvV6PVssFk4QaLSVveQUccMmrK2teTYZW1DTNHUSApnDPpbLZY/GX19fe8Yi2QsnJyc2HA4dk8znc9/epesTwp51h85AtnSv+Pr6unU6HXc8OTqWiDEkPXMwGo38fTj8ZOUwPxS+Q56vrq58HHd3d50A4Tk8P00f0s+n06mdn59bt9u1y8tL29vb820T1PU5Ojqy6+trq9frPmYaEWd9ccKRYpJCoWCj0cjxDXKGveW4RPU/1NaiizTDl5oM2Hy2M5IFmSSJyz9kBTLQ7XY96IQ/SGQ+Xqw3cCJkLeuGIAnf1T7RVsYZ/bm9vW27u7vuLykpiq79vtcHbQdQI1YoFFzJRyOsSu0xh1+NsoIPFv9jTCbvU9bWzBx0x+fmMcYMfjTOtD06SgoWlByISlcNPwqR+5U44W84j9oXjB19x3BEpgkDTDtjajnOrqbuqyFEqTIO2hc+08iNXuqQ8T4lOgCgsUigtpHFizCPx+PM8S566oKOh6YRq1KNznYkTDSKrs43Tm6MvvNd5o6Fz/dIJYNpRNHSdn33Y+lxOuYYAwVItEO/o4RRdJIBGgrM9fnMXQSAkQAwM89ugNmNgA8SRskADA4GlCNbGK/oDKjDoYQibVNmHCNMHwGTSnbQTgoA8n/StThyDjmiaB0GeW1tzdrtdqYeBXPC/NOWRqNhBwcHvtdLiwUiwxqNXSwWbjw1zXZtbc02Njb8+B9lxnEcr66u7JtvvrH5/KEgIDUIcO4VZF5eXnqEmr3ub9++/ZZjQr/b7bYXTKLC8v39vT9f1zSg6/z83F68eGHb29t2fHxst7e31ul0XMaYTxzar776yrrdrq+jTqdj3W7Xfv/73/vRVMxtqVRykENKH3qMMdPaAoDVcrnsRwBSXwL7VK/X3ZCurKzYYDBwsEThRrYIAEYAFOintbU1u7+/t88//9zSNHVAdnh4aJ988okdHh7a9fW1/eIXv7Dj42Pvz83NjbXbbY+uJEnihRfNzIsv6UkDrG0tJKSyqPKPzVPHXUEBun19fd0JHgglrWugukntRbTtj13RSaQf+lzVYxELoIsinuA7qj9Vf0RHjOc9RmDo/9XZUocsRusjjtB3xiguYxa3UXEvxDvPUZJNx1H7on1SZ17JbG3jY2QLF22IOj/OTx4JgyOoqcxq68yW5DdEpxZq5bs63/RNMyEiGR5xjmZO6qXjjd6O46M2k79HXMh9iuH0pADuZSxjQErHj0txYJ7DrtgiZh/ov5W00Wfob2Q3ylHeVS6X7a/+6q+sUqnYZ599Zv1+PzMGUS8wtlrXAZ2FTQYHoTeVNKJYK1lgZ2dnbgMICuj/qayv0WAlQebzuZMIXLqOS6WH4noahYZYrtVqGaeQ6CqEM3KZpqlncXU6HSsUHk4Mwm6/ffvWSqWSV+5HbiB2wQ6akcV4QjppVgNOJoGmy8tLOz4+9vnVTBtwQrFYzFTAZ/5ZexrMYj6Jxqu/kCTLos/j8diazaZXtwdHscbTNPWsgGaz6fv63717Z9Pp1DY3N21jY8OKxaIXd4aEJgqupJ+ufQr9kUUEicSJCrQXTNVoNNz2sSUDPwtSiL9DAhHV56hEMGy1WrX9/X0vwMfc6FbJKGdqv3D89ThL1fPIw2Kx8G0XZubkI/eYmcsY+Az9kCSJZ0Iin9Q5+JDrgwsD0lmz5X5bdY40epbnjOjzonLh3jzjo58rONFoJpc68mooIqHAs2IbWESxH2qQeA6pKrGveQYs9p/7oxFRo6r/j21E0ShA0TlAwTBX6lwhSABJZZWVFFCQqeOgRkcXMN9n4TE3EVCqc6eVgmmfpvTRF54Xx5UFpcCBOVLAFMGTkk7xR+dJnSfajwNGtVfGjAgy6VPaX+2fgkH6qXOgEao8AKrRnjzwrZEGZFXXk8pw3jplzheLhe8nxsirvOK0wroqEKBPGH9NVUaJoUNI49LoHWx1JOF0rbDHHUJmbW0tE+Ekc4Expw18lwKFq6urHqHXPXEYUPo5n8+t3W7b/v6+R63Zv4hTz9iS7kX7uUfX8/39vZ2fnztxhLMLyUQKInOqZ8pD6ulax9BACGgBpo8++shWVlbsl7/8pZk9gD9SEiGxSqWSdbtdu7m58UwCooGVSsXPq1fCJkkSj/YhE6xV5sXsIUsBcPHHP/7RvvrqKyccNjc3fR1TsPD8/NwKheVxTcw5MnR0dGRmD4Rit9t1I14oFKxarVq5XPZoAkTG9va2bW1tZYiHwWBgtVrN+8qWAuQlTVOfx/F4bKurD0f5TSYTazQaXiSpUCjY3t6eA0H0rB4HabasJaLyQQFBAAbHFbL2aCuV0olYEVWi0BJ6qVKp2Hw+t62tLY++oKvIZDg4OMiMKetOHSTVL9E2q46M+inPVkQiVC/e+5iN1mc+FkGNlzrx2rbYJ32W6lrVPXnOVF6/+TwvQhTfrf3WNuhY6MW4aCZL1Ou0F9lTfBPfre1X8K24TO0RbVAQrOMSMZqZOUGuREie3YIU40K/AZRjO3QLVcQKKi8xYq44JkbSeQbPhYREX+OEEliJGbG8E7uv/YsYV217JDMUU8b5ylureuVh7ffJorbvRz/6kU2nU/vd735nvV7PI8OanWVm7khjfyC9GS905vX1tY8xWStJkrhNmE6XJwHoyUuMK//GrqD79GIN4CjSPrW3OOOMOVF0DVTNZjOr1+tu47BhZM2ZLev1MGda3wjsotkaYBaKtULAjsdjJyYKhYdaWWTs6bzyfhx58IfiVggA6vyos4vTiq+g38M5BUeCXarVqmOGJEm8FgIEgGZramCGdnJSD3gPxxSZR37JGEKWcfZxzpEBbCMXWQGFQiHTBm0/W1D4YT1ic1W3TqdT3ybQbrft8PDQAyTUO0CO9Qhn8AMyxNjQP63LACFKoWDu12KHnU7HisVi5ths2gsuAytorQ4ykrnIPvyQ64NrAkQFFBW7Ohfvc+YfAwJmlhGWCDbUkY3vj8rULLu/URV1TIuLTnZUsNpmbQMOA+/RSIaCGhYhz9QFSDtRgkpwRACiPwpk8oCWtl3HVJ0pBBFBQxEBWPksOpCqqPXdyupxaaReI74sbgVi0WmPFwpC51HHA8VI2xjXvC0OzHdUhtpelSH+joLG0aNAHsWISBXT9mFo4hXBWZxXwIbOIf3Ssdc+0S8UpH5XxyCCoAgWFLxh+LlPUy9hZDFqafqw3y2PwABQ0D5to9kyw8BsCdgAkgpMiTAlSZIx1DjRGAkz8+MEAXTI/Hw+9+qzgAKipXoaBPK4trZmf/d3f+eF7prNpi0WC+t2u3Z6eurzNB6PPbOl1+t5NDnKFu2GAEHBIwPUC9Boi4JvnoVB4h6yMlQv6NqOz2HdYvxI+VRW2sy8sFyz2fT0Xhxkns860uwMvguAUCKIOTk9PfW2s98UWQKQ0b+zszPr9XpOGpB1wb2QATjmjBHpe8hQrVaz6XTq2ysgXmhHXlZOqVSyjz76yBqNhp2cnPjpAfxOksSPBjQzJy9JLVxdXbWLiwtPtVwsFk7QDIdDe/XqVeY0DPQlBSmRcUBZTNHVfY0AE/aWmplnmzCGtPExG62OqcpTdDairY5OZbRhefZfn5X3WdRfMdAQf2I7tR0xk5C/K3GAA8n9kchWhw/5oO98T9PUo1PHPdpWtTVRd2p7Yz/VjrC+GX/0fJ4zGLEb7YokQB4+op/cAzmQh+vUbkGQ52E1xox/q33XDEzsPJE5fZf2TaNmeXKlc8q4sS4htbEZ2HytBcKlBL++X9sU5zDafpUfbFgeCYCcqKzoe5TEibKZdynuefLkiU0mk8xJI/P5PFNvB+eE7VZsYUO/YdM4KQUdqjVIcBwhbHGGwQWxcJ4SvDpPEJzoP3SiBkKwv+AFtQG8kxNj2u22LRYLrwmjBSaTJLFOp+N4jwhxq9Xyd/f7fa9STy0A7IYe14p9g7yAhGfsVE8yB9jBJEkyhf9IjSd7odFoWLVazZD1up4ZW+YDbKdYFjwXt9dVq1Unq9m+m6apb6Vk7eDs3t3dWa/XcwIF2dXaJWypMFvuhWcbCA4za0ULkDIuyHipVMocz8iP6jE9NQmnm8r8nU7Hj5lmiwrt122keVlYmr3J35BR3g2JFcnL9fV1a7fbXpeCa3193bfZQshNJhOv9YRc1Wo1P974+2wL+M4kQGRio7GKjjhKCiGOCoxLDeP7DE90QvPIAf1cv5sHCPR73P8YMRGBhBpJFgnGIZIAZktml/GLjpe+Uw2BCkrsg/ZXxyUajmiAFNRwb6FQcMUJaNG9NJqCqmOrCoK20j9YYRStLmQlIXAIkBdtM8oEZ/p9af+x3xAzmsaswIIFRHoN71WGXtPRuXT/oJm5w899ODpxDvT/8XkK/hTQKBBVMMT3dDx4L+OvMogBUVDC2Mb79d3qaDLXpGGTUkdfWRPz+TzzXPobiQll/nFu+L+SDRxXo0XQlIHX9YjCpa93d3e+lw2FT19gUXXfGHvV0jR1uaNI3Nramn366af205/+1DY2Njy6y9jO53M7PT31I+devHhh/X7fXr58aUdHRy7jCkJIV1eghGxw9jwV3zEcgFqNNuk8auZaTAAAIABJREFUMW6qH3AEv/jiC1tdXbWbmxsvKIO8YfCZz+hYIhvNZtOj26TIcrJCs9k0M3NSAlBCP6+uruzy8tLXW7FYzKRwYtAA3ZPJxEGP6iG2b5TLZR8zUvsUuGtGAu2g3ghAr1QqWavVcqYe2VDCxOyh8NPR0ZHv6y8UHo5VGgwGTvqcnJw4GQh5k6app/qResjn9Pn+/j6TgstagTgql8vugDQaDZvNZn4+MvtNAZjFYtErSZMiS8YBhbkgHjQ69z4SIOqFqNPUeYyOCPKoNorv66U2Me+eSCbEv+cRANGWP0Y6qI1Ux1kjvZrKG8cn2hDVfUrqR+JCdT3jFMkWnqkEYrSTeZiF5+u4q17Qd+aNizr8vFPxjNbnYK2pfVVArLZL5yzPOddxinODXud72PXokNMn3XZllt3fTzsVa9Bn5gWdos5GHH8+e8yG6n2KtyKBT18Ye7XVKnc6Tu8jASIBF9ebXiojrVbLXrx4YfV63aPKkIb9ft8JnEaj4Q4lBDs6jywoMKCZubPIOGA30vRhn329XvdMLIhdDUCxjpAtSBnNNIl+A+tSn8G8YttoB8fwrq6u2rt37+zo6MiLWJPSXywW7eLiwg4ODjxyi62s1+tmtqyLAe5EzsEazC+OHQGU6Bew9UBT77mPS0kP5ET1FpkEWsAwZqDyHbYT8J6rqytbXV312jicGpCmqdseiICbmxsnD8bjsddkUN2HQ4ujq9hQcS9jxm/28BcKDxl71AhAj+FoJ0mS2TYC2QhhonPAu6vVqu/FNzO7urqy09NTS9OHQA4ZAlosmbWqAUbmQoMn+AO0U7cGQGQwF+Vy2Ws7UMhRfSb6yHYKAijIMVkf4/E4N9D4p67vTAKwgFSRqYJRBjQCAFVgulgVvCuTGvdQxGepkuOZynZFgkKVY54hpD15ZEJ8h75XnVpNaeIHUMR3VfFrhBhlpI52bEsE9jqusS8RLEVQwlgq+MMxo12a6oNTRttUiXAh0KT48Ezmg+gr/dWI/v39vf9dMwxoJywqf0dxmS3T8tWJJrUL51EBXFy0pINxsciQQxwuLURIhJN98+qIJ0mS2a/F54vFIhPlVUCikQ+ICRSIOrqadsiaQ0kw3igIdU7zCAYlYVTuuDDuytriHDcaDVssFt8aYz3WTmWEvV+MiwJG1j991LldLBYODNS5J10vGkUFajhikAfcyzzqGiblWuW3WCx6IT32tf3sZz+zw8NDm81m9vr1a3v9+rXL+Gg08gjK69evrdFo2Mcff5wBQTiatDFGxgFh29vbtlgs7OLiwjMENF1WjQtnL9MfoiLIBtkNOo8coXN7e+sp/zDNOIjMI0402wEARFS3pV1bW1vW6XT8mEIY62KxaC9fvjSzB2b7+PjYzB5OLGC7h4LqbrfrhAhjxxhT+A9WnjbjDO/s7GSAlm5JwEkmjR+wNJvN7Pj42J9fqVS8QM/FxYXbIj67vr624+Nj3w+6traWqfVQrVadOIJ4wohrVWAF8YvFQzZJJPJubm4cwCA3OPLtdtv1JlETbEihUPCCW4AxdAFt7nQ6XuhI7UC0HYxl3j3aB9Ur+h11tKJe13WoJOljznre3xRX5BEA0Z7HPqn9jH00W25t0+icOs55pAd9VkJcsUtsB/2PDp2OSWxfxDz6fv0bz9TMLXQ+342XZpzRNuycfgc7rvWKuB8bp5kQZtl0fLVhOp+0UYMDiqGQdT0jXe/FyYbcRf6xc2rfIQsiRqJfSqyq3Chpq0RpxH/6XZ1vghoaYMm7T3Wj2n617XmyqPIS5eh9V7FYtM3NTc80on3Pnj2zs7MzOzs7c/Ifgv7u7s5arZY70L1ez9L0gbDc2trKPB99Svo7TrSSrzhZSuLQTzAQuA97HU9nAX+laerp8eAqMAap1jhhZma9Xs/+8Ic/2KtXr5yEBgegk3k+WAKHjuc8ffrU7T3zoFh6sVg4ZtL+ILsE4SC8VJ/o0bYqO6wr7Pzl5aVjWc00jPU4kmSZSYm91W0gtB87wrn2Kntkmq2urlq/388csUcgkHZVKhUnTDTrplAo+Klg6A6yETY2Nmxra8tOT099a8jV1VWmOB52lywHCu1CSHEkMrUhyGQpFApee4HIP3PAeJHFZ2aOPTR4p0f34Tup7C0WC7fljUbDsReZKUpU8ByyLsG94/HYhsNh5thAMj0Y/5cvX9oXX3xhH3300Xde72bfozBgHlMd70Gh0gGN/KrjG6Nf+nyz7D49ZUSVcIiOcB4pofeoMY5GVC9dVNFQRjYtGjsFNmrQAKIa3VdyQKOFqsjfBw6i4ldDHQEKn8Hg6phpqouCO/2OOqrMbSQ2zMxTtIjMKaGj6bWq+KikqkwmypH5LJfL1mg0nBC4ubnJpCSxIGGjUdStVitTlTuOlzrsKCCUJAsaUKE1MBTsqAOO/Ci5FD8jTUyNObIdSTGdfwX0zEvMPtHMByU+IuB97G8qV5oSqyALOSMLgn1po9HIlRjfN7MMCzyfz105Il8YHBQwfVTQyfgjD8gI/WVtzWbLSugqP0qYQLaUy2Vfj2xnUH1k9uDg/vznP7e/+Iu/sKurK/v888/t66+/9igBEQ3SGjc2Nvw4I7MH5/fdu3eZcVVQAOFQLBat1WpZrVazk5OTTDpmkiS2sbFhh4eHvl5I+cPYYRRvb289wwGQhIPIvGGUzMwLNzFWWkMBPU67W62WryNNqSMd3sy8sNNs9rC/H0eZ+dD9epAIyBljgIxh2EkRvLu782dRZKpcLtvu7q795Cc/sW+++cbG47EXKyIbBMONE7G7u2urq6v25s0bu7q68jayhWBtbc22trYypMdoNPKsgUJhmeFwfn7ubeh0Op5Kij7QI4yYA61OzR4+wCapgf1+34EoYwMBSdoqBAdZDLPZzKMYrBH2ZfJ9s+WZy2ofVD7jFe266gPVI9yr9lOvx0h2JRN4/mM4Q9+j+kuxSZ5TrNgj6ma+G2Ve7UF8l7YjYhDuVXsWL+1ntPFxrPII/7y+xjnKmyf9DnqTNj/WVuyb2ZJ4VyKed+uYxcAD64/xUl1MbRZwADYc0M36UcKcCCygWm07fVC8oU4i+kNtO+3TsVLiXbcHxXFS0gSdpqQR78dmMV7R8Y+kg7ZD10geBszDwfHz913giEJheSQsFw5UrVaz8/Nz6/f7fmRrrVazra0tS5LE+v1+ZmzIJiDDi0LDpIBD6psto7+KP3Gk1OliyyVBB+yoHpeLvPJuPYoX4mI2m7nDyrns3W7Xzs7ObDAYZJxhHXeK7xI9n82WWw2q1aoXe+33+5mx1xO0lJDS32qTscPIK8/S4BTkhmbm6DYGiBKVX035J0KvWHyxWDhJM5s9HJv47t07q1arPndpmrpdJnNAHfI0Ta1er3uEm60bhcLDdoX9/X37wQ9+4O+bTCb28uVLe/36tW81BNfwvY2NDfvzP/9zOz8/t6OjI992Qb8IpmpGCqQBxfXATa1WyxqNhmcxktFLP+bzh4LCnFxltjxSGpuqp7OQ/Qj+Ys2wZWSxWAZXzMwDKMgB8gieGw6H3nZkXolCDZyaPRzxeHR0ZO/evbPnz5//ybWu13cmAZT9eEy5ALTVwGNgYqRR2Wm+m8dk66XPUwWbB2L4TCPr0Rk2e7y4kBrd2BZ12NQJ1L5p23g/ABsDiUHRtjDG+pwIEiIx8pjyfwyYcalRo204kfoOlBHvQSnqfEejRSROU+tY8NGR1Kg874QdU+BWrVbt4ODAzzS/urqyXq/nUYE0TT11lnfSX96PwmM+VLnmERUoSx0v/bvOORcGCucwphKiXJkXnVPeaZatqB/nMa69SEKpMYzrKf5fwS2XOug4a+vr6x49ZL5IdcbQXlxcWL/fdzlXoIXsaLSfceEeHHWAbJR1LSAJeNSCgowR78dpgjxgrJA9juMjOsy4QCJR/f/09NRevXrlRxRBLsEkD4dDN3zD4dBqtZrt7e1Zq9Wyzc1NN27qhCgg5ufk5MSOj48z+1Jns5kXoGOcF4uFNZtNe/r0qR9J1O/3rd/vu9Oqc81awmmP4JJId3Q4NDMHZp7q/OgrmHAMJuQc87++vm7b29u+hp8/f+4Rdwwc4IWCVPP53J4/f24/+MEPrNVqeSrmH//4RysUCjYcDn0tj8djj/CXy2UbDoeeilqtVq3X6/kRS+Px2DqdjheTVKeC/foAT1JScZi1hslgMMg4C4xDpVLJRCn4Gyw/BALrHFCgUb7BYOB6R7NjJpOJ7ezs2MbGhqVpav1+3wFftVrNZElsbm56MSzNtGHMer1eZo+uyiGfRUJAbWF04tXZUZ1i9u1CrvoO1X2RMMjTVbF9+oyox7St0T5HZzj+jb9HW6zPp5/oJ35w/FX3xshufGYc48dIgehY6hhpRoDqGHV+88YgvkfHUvU0NhLgih3kXh0H/q/Rx0i+6NxRHLTVannkS2urqN3k/XH8dLtExJyKA/Uz1h9rI5Jc/GZM1CHMCw7pWOt80NZopyJRou/l3xoo0HniGXE96fVdCQAij7Sv3W5/K7uXvdaLxcJGo5E7mCsrK56qnKapH1eLk6S+g+pCbFGUUQh6s2UGn5L/OKPD4TCDsdkKRrE05ABni0wsSAWcd5wubBy4EMcMPEl7iVLf3NzY/f29tdttq9fr7qjhjEIYM++RxGKMaLPiEsXNOIdgWOwCBWorlYpVKhU/gYZtd7o+wE66hsFIkMN6ognvmkwm7hxTZ4YtipAASmSsr6/bxsaG943AJ3aHuXz+/LkdHBxk8Pne3p4dHBzYmzdvfHzZdqnHBC4WC89I1ZO4CEiByXiXyvhoNLLz83NrNpu+1UF9LrC7EurMBWn3+AismVjAmnWDc4/cEwgzM9/OCImC7oT8IJAQfRQNkmEzNahLzaYPuT6oJkA0mkoKINiRAIgKSA1ZnoFG2UblqZkFTAKf6xWBBO1Qx18Blz5bDYj+HRCtBlH7jMDEqGweuOA3aU76HASIcWPha3vUecBJoN96X2yHOo55YIG0I6LnKGQ1gAizfpc+Mr6MkfZdF6PKSYwc6P20SVlPWFeMIqymkgrME3N2e3ubqbyq5At9AiQzl4wFYx8deG2Xyo5mUygjaLaMCJFeZma+305BBXNHH3C0F4tFJpqqjn4ERsgA4xwJLAUejwFUjAHKdW1tzVPrr66uPK2KvcUoXhhPHDyNxLOXTCsfo8wABsg484xDRvpeoVBwY5amqQMRDBlRHVLduQ+Z4TzfNE3dKdzb23PmGNJCZfby8tK++uorq1ar9jd/8zfWaDQsSRJX3hplHwwGHtWaTqf2+9//3n71q195dfZIjOkaxQiobkSv3N7e2unpqc3nc9vZ2bG1tTW7vLzMpHTDIhPZVjKFfXv39/defZ/j8YhAUFQR44Su1Xmaz+eelg94I6qv2UV6ygH92t3dtRcvXtje3p6TCAqKptOpF1kcDAaeXbK9vW31et12d3et0WjYq1evrNfr2XA4NLMHlr/X69nbt2+tUql4tWXkGrKGwlXT6dSOjo4cWJbLZWs2mw7qVlZW7Pr62o8qNHvYvgBIJMI0ny+rYg+HQ5tMJnZycpJh6RkDMiCUGIDQ0oJQqt+JajDXpIgSqbm+vrbpdJrZgsEaazQamXOeFXjTNi38qASQ/l/1nzri0e5GDPCY4xHtotqBSBZEfaT2WN+jzqc6SnkEgv6gA9Hl6qTF78fx0ffH9qrzHT/DXmthrLznRRJA/42u4YpEBM/SrWS0gbWsz4iEiNqESPbovEeCQ22X4qnYXs0I0H/rfci9Rs9xvugTOhvbru+NZI6+N9pNxX3Ig5IBOj/qIEXgT/Yj74o4UMcZR5eaNRDE2q4or3m2XedC26mEdiSN8i4i6RcXF57ezpFrUT4hKMkIKxaLjg00G5L/K5aDnOXkncVi4TobEoK2oo+R32KxaM1m0+r1umd8oofBW0TH0zR1/YdjZ2a2sbFhBwcHtrm56dF79DXYZX193XWt4kZwCH/D6azVatZutz16y71kdJmZnZ6eWrfbzWwHBNPQNz7XbcU472wfQLY4xhC7rKnmzBmkMCcKYdPZKw8mVb2ELLMG1OdhLii0THSfcdHsjNlsWbeGVHywIkSMym+pVLJms2mffPKJ47fxeGwXFxe+Ts7Pz+34+NhJCJ6HI807kf16ve6ZnsiX1pFgmwQkCnaYcWD8JpOJkw1kHq6vr1uv1/M6QBwziW1H9skYqVQqtrW1ZZ9++qnN53P7+uuvvX4CmSWsK4ooQzgy7xE3oydqtZodHBzY3t6e7e/v5wYp33d98BGBKDUVPgXsasy5RxVyJAvUSEYDo4Y0Cq2yh7xDU9DyyAVVwBisyCZru/ihnxqtYJEw6QgJRis6wSwyxk+VshoKJSXosxqoaAjU+Gt/1ACqINEW3cvOAla2XOcSZ0THR519HQvtMxfKH+Zd+0sEMA8o4FyYWSb1djQaZfaQsWCViWXxKxjXMYjAKQ/cYJAfK7qXF9lALnmn2TJdkvnRfV68j/+r8cbp4kxbJVmYU4wJz1dApHISCS/mld9xHTAGq6urzkiqQ71YLDwSWalU/BxyjCpKLDLzPJN3qKOuayACMcYCw0REVQEoxoC1Gkktit+hnCERzs7OXJbIeMChXV9ft9FoZKPRyPb3922xWHjRPgws21QgTJLkoUI8GQI4jYtF9vg52k2KJBF6XefM62LxEGlnr/eTJ0/c8KyurtpwOLQ3b97YYrFw2a/ValYqLc8unk4fKhmz9sl02NnZcRBaqVQcaCsxaLbco99sNt34E+k3e0hJgyCB7AHobG9v25MnT7wSP+nqKrONRsMj/5yqwBYD0t/Z+w+gB3B8/PHH1ul07Pj42M7OzrxvgBacYq0mjt0iJRAnHUeZqEe1WvU5QC/hYLHOIR6QZ80YQn+QXUCdC9JJkQfGi/aYmQMi1gS6Uh0gijyyBol46L5p2q0Eq9pilTfVZ2pP8pzixxyUvGfFz/L0kjrb8R70gH6uv1WXKRmQ11a1NQrAeY62RR067Q/6E1nQSJUSyKzhGEjRdkVig3ZEu55HAugYaRt1PNR26d/fd2mmX2yj4hO1Cxr4QZ/G9qpTaGa+XYVCloy3ZsQpaUNWk5IQjL/2K86nOlasfd2TjO5FN+aRANoHtbHaVnVkY98JXjC3sTCqZi9qfxSrxLUU26hyxmfv+47OCUR2v9/3VHHISdLoOQYOhy8GTND5GmGlTejrRqNhu7u7jh3Oz889sk96OWuO56Cbyd7gaF8cRpx5jvnDKSUVHCzXarXcfuPA1et1S5IH8nRvb88uLy89ywr8CinNVjIKJbJtT0/AoQAtR+4h72oL0C0qW4vFMkJPe2kHsqRbI1TuNLWdABlp7nr6l+oy5Jg5Y0uk+gIERCAYwF+j0cgWi4VjpdFoZN1u18lp3YrIiTV7e3uWJIl1u10rFAqeIcgFmYH+r9Vqnm2qJ1GwNTBNU9/egG+BQ68ZhgRIyGAhHZ/IOX1UB5pnlEolDx4xvswFNhZyARyHvM5mM5dxsCb6ArKKrZyQ8pASYBVwAXYAXUAb2+22bW5uWrlc9rH6kOs7kwBqVBEegDfCYpZN+1bjoZHoaIijslK2gyvPsYrOmX43vouJUyWqEQiEXRlYVea8i/5jONQJBOgr8MCQ8mz2t8SFRh95LyBXL5zxGO3QeYnOXDS+jDvtwUnGCESgoM9QxxvwrwQDV1RsGFwdd7MlAcDiVcPJAiIyqiSCFvrSMWHcmQcitQp4aZcSN+qYA5qVlUMOVAaVKFDHAAdUq3gq0OceFJOCJgWVRAgA+5GkUNlR5jZmj6g8m2ULLyr4j+AdB4/5igAL54nq6Di3CggZ3xidITqpa4T7VJ9A5pBWRpRb191isfD5js+jv9xzc3PjR85ocTbaBFGH00tFdbYA/P73v7enT5/a4eGhb32Ie8HW19f93Nd2u21v3rzx9aGphXopsaY6SdcduoGic69evfIigmn6ULHXzJxIQD5wDDHeFBK8vLy0g4MDK5VKntqO/EOkcJIAeghwtb6+buVy2WWYuUrT1EajkQOiUqlk9XrdXrx4YQcHB5amqZ2enlqv1/PoNfLFvnlNb+x2uzYcDh3gYdzZn7+ysuLyQAXj3/72tz6vFKZimwBppCcnJx7tgawCIEFYoZ9UB0KucEIGxCMAQNNY1embzWa+F5H5gXRQh5H3UOiH9cC7AeNK8LJFJ01TJ32m06kTPwAInBrWWYxCRwdS7bf+Pc9m6zPog8p2JB4VhOr96twr+R/XiV5qf6IDrHaYz9VZ5n5Ad2wDTiE6OWIH/Ymku9o7tWuaxqn69LHx1XF6jHCJxAcOsRbsA+jHuVa7EP/GXOmlOIu2q/2PBIAGF/S5GjFGNvkONlQJFZ7B2MVtZTquSjDoezR1mfFh7eHIqu1g/rHheaSJYlUCLPQvzh+4A9uOw6BjGx00syWeiuQVl8p5JMYj5nrsWiweUvz7/b7jl7dv31q/37erq6sMHsURov3oNDPzdP1Go+FbCtjjHUlf0vdvb29d16uvgEPKPM5mMyfWIUKZb/b8M084rVon5/7+3gaDgX3zzTd2cnLiZA92mUr0EBRU1k+SxPtEdJmtKhxPe3l56W1lTsfjsY1GI6/dg22gP2SpckViVn0cxXwRQ1Hv6uzszJ9Vr9cz9gW54hl6XDIYG6dXAxGq/3geJxYwh/P5w/adbrebORJZCY/RaGTj8dgKhYJ1Oh2vCTEej63VavnYELHH1pXLZVssHrJg5/O5b980WwZHKJTLmJJleHFxkcmEIFtvNnvYSjyZTNzZZj3W63VrNBqOQcDVjDukGCTP9va2DYdDxz3Ya7DA5uam/ehHPzIz80wGbD/BKQ1UUiMoSRLPttFsNQ1GkMG4ubnpxNnl5eV713ne9UE1ASIzHI2JMrIMGp+bLQ2IOiaRkc4DF2pgUQZqNPmtzg1tUoPMu7VdjzGm8Vm6L0PbjPFSxzI692aWcWZZVDyXSVUWWQkQbZdGLaJzp+AuEgsKFPR5fB8DqEBRx57xUqdaC2QpyIttRrHhXNGmqJxUbngehkaPySK9lvYr2NG5xlAhuwp0SNkG9EPOxLTQSEwpAYOjW6vVMmlp6sQpqNExUeWCQ4FMqMKNx04qyFR5VAJBgYeuOeRE+6BzFkmnNE09ug9zytjP5/PM0YiDwcCfo4Ub9Vn8RtaI6Khcq7xolpHOvTrHukZw8JUIuru78zSvCFx5P2AQ0giQViqVPN1+NpvZ+fm5/ed//qf97d/+rW1ubtp8PvcoM9XiOcLtyy+/tP/4j//w90cQqw4DBk/HKW6PIFqWpqmTZxSPAxDEbSJ6KgOyCeFGCjvPZQ4gQ4haN5tN6/V6zuQz5oeHh2Zmvk2BOgnIZqVSsWfPnnkaIIb51atXdnJyYqenpx59UL21urpqz549s/39fSuXy/bll1+6fOmeRfYKmz1kENzf39uvfvUrm81mtrGx4UAGo1goFDwLotvtemQH5x8wh3xCDJC1wPgUCsuq/Wyr0PnRLSWkXbK2iVipjkceGGueD/Dmoi4LabcUNQKQXVxc2OXlpS0WC9ve3va1CZjudDqWpqm9e/fOn6UZStHuqn2OaziPCIgOuuqqiBX0nkgyqM1QpzE6zPo7Pi/P6Vc9EZ+jBIDqSnWqmEe+p8/Q7xNZ03Woz1UHT+0stlntrT4zOvrxiuONfPHu6NznfVd1k2aUgYXipRhEMRx2D90dsQrPpf/o3TiemlnBc7li5qJG0YmC5n1Po2ixzypX6CLI07x7IPUj0aXvjTKhgZZIAEYSjHln7JnTKM+PEXN5pNljlx6/RvQcPdTv9zPtQXfy7rh1DGIA7MN4Yrdw5jXLiq1tREj5SZLEsyWwlWBFtiPoFlACFgQjqU+QJIlvC+WEGqLn4FIi1hRBPDw8dDmGkCDyb2Ye4W00GlYsFn28IINI4U/T1LPl+I2NIEWd/ydJ4sVp9Sg8bJHOK/IAiaHbf7SYbMRZ4AW2VUynU3diCbpotg3yp8UCcXJns4cU/MFgYJeXl76NTjOAFItTlLdarfoWBYpJ63YCs2VNr9Fo5HvkIcQ12NZut21/f98zB3m3Os74AOAqCAP+zTzXajUnHnQLBW0hwwWbb7Y8Ehkc1Ww2/b5ms+kybmYZAgVcSp2JQqHgJ1aAeXVrNsEwfMl6ve66rlqt2tbWlhej/pDrg2oCqBMVwUGekeeKRkAddn2GKn11TtSpyjN2ylyhmLVdsS1qmPOASlTckXCIfdY2ARTV+Cnzj7OvJANCoQ6ALlytAqlt1u9o2+L/o6MYwRuGUTMQdI5QvixAs+VxeOp8Iif6ue5xjhFc/clzdFkYLFAcBRRm3r5KnTfSaM2yZxcTGYtyoVskzJaphzgpUZZQDhg2lKdmFJiZs5yReFEjx/4u3sNRZ+q46dyjlDS1nvZqOqU6+nnklMqvfo5CK5fLGZJEC9bpPDJejCPvoV/qVCkQRwnHtGj6CBgjqoTzomscOUHZI8e0mTEhdYsUQs2CITOA52uRGWS9UCjY+fm5/du//Zv9/Oc/z+xrxGiQRjgej206nTqzS9S5WCz63KpOietDnQbGlfGYzWaZGhuatUF/mJObmxvrdDo2m818jx0yxL5KwAPkkxpIjoGcTCb29u1ba7Vatre3l6nKPxwOrdvtemYLRRWr1ao9efLE+0/BPH441onxJcOA+d7Y2LDnz597UcXpdOrP0K0TOMbz+dyPE5rNZvbq1StvR6VSsU6nY/1+3+ft9vbW6vW6gwNOlGB9anEq1iLkEOtWATp9ID1xPp97JEmJBbPl/mTdqgKAZi4BF5ruyFrpdruZky107SITq6ur1mw2bXt72+staP0TCgjpenzsio5HtH2qP/L0iTpzeaSBrgP+H++PRGoeCRBJ7mgr+VuMfEd8ot+NeMQsW1fIbJkZoBFjXYcCP3v5AAAgAElEQVTaduxTnkOnOj6ShfFefX/eGKlTqv2IY4YMsZUF26Lkh/YlZuDF+Y+Xzj1zQFvUrpsto/Ux0MPFvKnjSftYW2QJcmkmgTrmcd+3yoE6V5D92C91hDRQpP3TLEP0N2PN1ivtp8pbHCNkBucgro08Aj3OxZ8iBCA02SeNA6sEJu0lo4ytfjgrmp15e3vrxXJxttFti8VD1gGp6jiCFxcX7ihCsioJw/Yn5octWJDWjAP3QVxAYJMNqEUNwZZ8j21U9Xo9Q75BsILFqNVEZgCyoCce4AhyggXYgGAfdXQYb91eEbEahLk6sxo51nPolYAjM4MI+s3NjZPaGxsbtrOzY4PBwIkdiumy3sn4LBQKdnl56VlqbEXUgB7tVH8BWSaAxNaMyWTia4/nYtPVzkLmsVWIoBs4IUkS63Q6jiUKhYJnwTGOhULBMyDX19ft8vLS/07bqZF0cXFhs9nMCwcSjb++vvZx1C0ykA27u7vuzJNxOJ1OvdAxpNBwOMzgTtYybSTCr9tTwDsauKDv1H+iSOJjPvj7rg+qIBANfh4DqYY8KiYUgiokNdIIFb81qqnv03vViVSHFmGM7VHAHR1qbbNGaumDAgc14BotwKApAcCPOvUaCVCmGWOWJMtoJk6OjiV9YPHp/PCuSErwTIyfRo5pE0CVe2kvigdGFEOmhpD+KUEQ26eRXL6vc5OmaSZtinbSBuaSlBzGDBlQtk+dUT7XcdVUZp0zlROiyygNTdmmzzhSKpcRPDIHAAmYROY3rgnGhH7lZXQUi8XMlgeAjYIElV9td5T7CA65RxlfjWYoMYEiZK4ZR1hv+l0ulzMF2yLoQj54Fs9nbNVh1L+bLckSzajRNclzNe2/UCh4VV/Su5ALyAD6ASnA91+/fu0srpn5HkkAyPr6uu3t7dmTJ09875c63ZwtH8lNZAEHkagKY0Y0XOWOcaY9qsOUUOL/EFYYat7HetA1RardH//4Rzfm/X7fXr586dkQFxcXZvaQgkhEgjWKsQfkAQBGo5Ftbm46gQGoIXoPIWD2kEYHGYQBZz1RtBL5+eijj+wHP/iBffnll96Pjz76yCNcEDOLxUNNi9ls5oWpiGoAZpFxM/NMAdYjGUTsYQQ0X11dOSuv20mYx3q97pEHyAj2piJ/6DbAM+ucyA5rn/mn76wfSBEz8/OPAb48K03TzOkAUffkXao7or5U8uqx7+rv95EO6gBHx1ezEfOer+2IzhlXDGjkEQH67zzHnM9jsAJMojZHbTvt5/3YFLXd+g4dY54ZCRP6hB1ATiJmUFvE31Q3EplCD2BT6DtrDpIqtiPiPsUXKieKIek7tlqdfMZMyWyezVrU8aAf/D3iujiW6Byd20jEqA5gvtS2xvnjBx2jWQ5qk/KCHypzOn8aNIpYJRJWeXORt17ixZGoZuZBCRwa5LrX67k+R39FLEG72M+M7Wo2mxkbr+vl9vbW+v2+nZ6eZrZIlkolj24SXOEdZFnhFGEvsf3gKgr0ccLM1dWVNRoNTzsnW44oNAQH2+hwUCHeyfosFApOlI/HY68L1G63nagmXVuPtS4UCk7qsuZw4iksiANJ8EKJYS7sPpFm2gwO4l3IphaVq1arVq/XbW9vL1OYkHHWLDGtzwBxwprUsVaHnYANfgt6AKICgoj5MzPHQxoZJ8KdpqlH5c3MiTn6j+OvPhp6Cj3CONPHi4sL7wuZzDjterw1c8laRe7m84etCbRza2vLbm9vvR4RuoO0/7u7O7u8vMwQEMxVoVBw4mCxWHh2CdmBSkayntiSqNmorVbLT2b4kOs7kwC8UJVTdP6jg6HOp15R6UYQwefqQCqDG5+j/1YlTVsxHqpsY3tiSiSKRfcLopzUeKHY1cDiqPBMdXQUJCCAut9K+wrzquOnhleZftqtY6KgIwIaiu4lSZJxMngmC5qFzP/ZAqDOGYt2sVhGiJXE0ewMFpSymfQLOdPxx2jA1qmRjQy4GmElWdQJp22R4GGsuIeL8cCoa8q1zqtGNgAWMV2Iz3knmQr8kAqkRIe2nbapEx37YLasIsoz9HvMH0CR50bQzLzc3NxYs9m08XjsZIA+W2WLdjC+MbsBBcpcIY9RdlWWIljW1C59p85dBKfIH5EJ+qdAkDkgKovcY/xUnu7v7204HHoUQ7eS1Ot1P+6K71xdXblBo7oxZxFDZKnjj/NLDQNNW8OpMHsw0BwFlCRJpko8+g5ChbljPfFeiv1hgHEsMdqMJ+NQKpXs7OzMWe3BYOB68fr62trtthe/++abb+zy8tJarZZvsYDNJuoA+KDeAPIznU7tD3/4g71798663a7LCNEC5E5li2r7FCcyM3v27Jn97Gc/s88//9xevnzpe/chhJBVxjc6XwAP5AZCR7enULlfU4PRVURmcMCxD/f399br9TxbgL6wPgAPzDPRB7U96hiyvmkbbZnNHraxKBBkPVBHQp+la1HXl67VaOeRNXU24hpX243O1L/pD1e01dGR1988K9o5vXS80NXxmeo4R4csOoCRHFDbASGrtj06jzw/6i2dy0iCMI6xn4x9tKv0kTWsBe+UAOD/ZuZODm3TqCKf6Tjpv/k//dd5VhutWEqzWbCTKkt5cqH/VuzAFT/T76ssats1+yCPiNJ1oGOmJKbqZr3IzNF3aRsj4RXbr6neinVV5nQc0RG6Dv/Uhc6BZAVjQZReXl5m9qgTZU6SxLMFzcy/w9+0IJpuNQP7kuFABBuyljV3d3fnle+1aCpENv4DAQvagYO2s7Nj5XLZTk5O7PLy0tvfarXs8PDQ5vOH7WXs68de9Xo9GwwGLiekY7Pti9oEafpQj2VnZ8c6nY7t7e15sTfaj85Xhw5nOUkSr7gf9SLYGzuEnKFbcADb7baZmRPbGojpdDo2n8/9VCcyF0ajkZ9sAL7lhBmy+cDdkG2KQcimxJlvtVru1CdJ4ls1yHhgzVxdXXnVfwiJarWaiZBjo7DNumYjplU/U5+BnICBCESZWaagI/LA/ICFsOGrq6tOeA0GA5tOH4pLcmTi3d2dHy2M/tvc3PT1wwkD2B+2xej6pL30mzlutVpebHkymfiJTshzuVy2p0+f2j/8wz/Y1tZWBhd/1+uDTgd4TBHnGUc1+NFhUqDA/ToYaoyj0YuMKwMXL02n50JY8qIFCqw0zU2NHPcpm6skA8aSNrNQES76rMaXz3VvLG2DBFCDrOOvkYZoqJSYUDJE/xYdYZ6LMdSqphhn+ry7u2vlctkGg4Ef1QXA5d8KbEmLVWUPm6cMoUa2metIPjGPpPouFstIvbJ/Ot5m5o4IpIWCWh0P3YfPd1U5q9OsDqfKMAqPOdVUYHVa1bBTvIzUbRhY3hvXEyBFCynFNcqzUaZEGxWMKZBSeeBZHPXCc5hjJWGQNcYHZxlniXFAfrgHcBMJDrNlGid/I4JpZpmMFRS1rrFIElCURrcxkIqGocKAqPKfTqfWbrczDpOZeXokjitpi5ubm7a3t+dGhohIqVTy8+nb7bbt7OzY0dGRvX37NsM0026KvHGxLnieRofNzPfe03ZkRvUYcqJHAKpjoEAWkvDdu3cebdHjoG5vbx00AfZxfvlbmqYe1ddU/3q97usUnQvQ2NjYsPX1det2u3Z8fOzRIfQ5oBFgc3Jyktn2c3FxYRcXF7a5uWn1et3G47H9z//8j719+9aN/mKxcFBJxAuCjC0BELSMI/qC0x8YV+YD2eDIRXQifUbXs4+VSA/nFGsRQtaXkhSMM4UR2XuJLWFuaZd+D93KGNbrdT8aSWU62mW98pzRSBxwnzpRfB5tjz4rfl//H9+tjnH8bvw374vfV7nTNiluYRx4HrqIPvMd1m0ksfWd2D69J+Ii/VGbwDv0bzr2ELra9jjm+j7VszELD/3J+dkUNlOdG/GQrhPGVYk2wL+mvsd+5Tm36gAo+cva4P8q49iVaM8U5ykpzRyrbdex0u8jC0qw8H3aSH+ULKGv5XLZdQuV6vPstf5bMW+8aEtcN3F8aWPeM/TiBBwq3pOezRi32+3Mfm+z7DYpIrVgUooBqhMDDmCMkDdkiC1j4DMlGtB/agfi+BCNhsyGUPjDH/7g1eyLxYdjBomct1qtDBnHmJ6fn9v5+blnADQaDavVatbv9734HbKjBHuSJNZsNv3IQOSU7WdpmnofIQmKxaLVajXPjCObEN2uOgyMqGSe4mXmg+ADeIcaWGQLIIdmZn/9139tn3zyif3ud7+zzz77zOd9MBj4MyqVio/Pzs6OjxEZkDjzrVbLT/eBJME+IdP0F71we3vrJzaAGaivQACNgMvt7a2f4ECwAXyNnCt5QcYedptikegN+qo2k2wEsvy0cCEZBxRWnM/n1mw2nQiDqPrkk0/shz/8oV1dXdlnn31mX331lb+XbTRgINaC/pu2grHL5bIfl8ypGJ1Ox1ZWVuzTTz+1ra2t70z2xeuDMgGiYlLQoGyGOi5qiBBYvqPP5W8oYCKV3Jun5PhBAfN3ZdFRhnlsMewQ96thjwOqyl8VrLZf3xPTFiOI4n5l3yNTzBVBmbZNF7+ydQqUNBoBoMWpwDljXNmTlaap78HBMUB5LBYLu7i4cKdaFXZMx4EA0L2xakTVUSXyqFexWPQ2wAKjQHXxK9GigENT6FDCEAg8S6O+yiwzTkqsxPGPoIjFi0IDYOBUsdCVRGAcUBKkd6HguJBTBXIKOJln1gv91MhDJFNipon2S0EZfcJw6T70SDgxJ6TaMS66dgHOOt7IDjKNgxUBjM4P/ybSqkWCFPiqUwKZwJxrNJnogR4xRyR9sXg4HnA0Gvnev8vLS49qkHZIFWKiI7e3t9ZsNn1Lwe7uru3u7noq29dff+3HQLJGxuNxJsMmOiox6nR3d2dbW1s+nqSkMb/qfBGN4Lq+vnaHEAaafWgYSI7taTQadn5+7oBtfX3dLi4urFqtWqvV8qN4NAtkNBrZ+fm5p7mx/sm4gE0HqJGCqBWIcV5JsWy32w6sSKFcWVnx4lLtdtt+9rOfWa/Xs1evXjmpxsUpBIwxoAGnnKKhOCCACCWX1AnVaDEAkQtjv7W1Za1Wy05PT204HLpOA6DB9CfJ8rg/JQ6VfCRDLc9xr9VqnsaITlaHX4llXVPR7v2pf6ttV0crz6nV9qmdyHO6VJcowRLbq05bJAfUWda2ckUHFJ3xWPvV0VfsoQ66tlPJGMhudOljBABtV0IV+x3bHcdS267BAnVw9Xd0QMEurAPFTcidBhzUKda6NBpkwVkD9MZ5xGEEH5hZxgGMfWKdqk3UrA61z2qH6J9GSCF19NIxj58x79hxHbNIbJllT0wAn2Cf2AeuW+p4V8SVvF9tWvw8EugRY8dxj9d0OvVK6pPJxEqlh4Jm7JMmg4jj2iAs1THCmTOzjFOMA0OxVrbM4Qija3GCtSaE+gM8DxKCgBEYD0IVmcAhBYeCWYrFoh+ppplWPJPv48SaLW1FrVbztHVwoWZFkG14c3Nju7u7nuKP/gfPgFWZJwgis2UGJqQ7W8WYczIK6Ys6y2Q0KKZWHwofBlzLd7755hvPoGALGzaJ7QjUAtjY2LDNzU1bLB5OCdBA1XQ69XFHh4EzwFvNZtP29/ftyZMnZmZ2cnJi4/HYHeskSdymj8djx1GMF9gYfATWKRaLfi+kOqQVcgx2pW1gOtWvupbJItnb27NC4aGII6cukKbfaDQsTVMvVEww4ezszCv37+3t2ZdffumEaly3kD1gmJWVlUxNAvQEBRF5xt7ennU6nf8nAsDsA0kAdToAPDpwqjAj6I/PUiMdQQT3xL8p+xtBBe9Up0ydGL1g3/R+3qWkgC4mjYjTJ1UE0RgpmYHDGfe9qXGJjrwCg7yxi6SEMvuqdGiHgknmz2xprFT5MAb8n3boKQBpmnpVT80QQLh5L2PCAlDgGqMvGjHBYDPPmjWhz2UB0Redb13cgHPmE1mKxWE0C0THnPlSOY/zw3yT2YCi1HFU0M57UACz2cyVKvOpiiJN08wWAZ0n2sf4RfCocqIkk85nzDThmYBAdbZw8haLRWa/NCQH34Us4PkKdACImgKlzjtzznioUdM5jIARp51xU9CuY0cfFRwiK5AKtHllZcWr4DK+kDpEVXGuIXToB3sA0RX39w9HXLbbbbu8vLR37955JIV1a5bVE6wbfojOK1AHjCETWj+AMaeKPREOnoUDv1gsMwMAf4PBwDMdJpOJr5lSqeQR/NnsIe1cU++Ya43Y4WgXCgWPtEA8rq+vZ7YpUP0WcIrze3R0ZF988UUGeLIlg/EpFAr261//2vU0c3x/f++Rcd6ne/CZN5xw5GGxWG510guibXNz03Z3d22xWNjx8bETKOgcSEHACO8mwwQQiBzrljLWLDa31+tlyB7VD0RBCoXlud6kf6pOVaJY9ZjqkGiX1abz/6h/om3XS2266ljFAWbfrnsT79XfeY50JCciDlEgpiRA/I7iDx0nfVe017F92nd+P0Zs0PYYbcauottYI3n2Jzp+9E+fq0CX9qgNn8/nbq+jY1koLIvDYoOvr6+/5RBHGdBjAHUMGCd0OWtNbaPZUkerPte5UnvGWGjQQm2F2rYoa3He9HNIALIONJIb7Q/Ykb6hDygGDJhXkkLXTsTTUbbiGtQ1ovPO5+9zEnD0Li4unNSBnKEPd3d3nt6P7sHZwuYr7oK0QQeORiO3CRRJAxtRg2JlZcXq9brrfzPzYstKsJKJhr2q1WreF9YHkVMwGDapXC7bzs6O750mGKYZbqTGY/sVy3Y6Ha9hQNYdBICuKdYOpFqsLYF8cJwwJMlstjxX/v7+4dSX09NTm0wmPr7oAtrL+1jH1WrV1tbW3CFnTiENeDfBi8lkYp999pljAiUZIAfYkkaUHhKGOQMvsD63t7d9Cwn1FwqFgtcUG41GTq5Pp1M/Cpi5hIxge2KtVrP5fO4R+PF4nMkE5RkEaNjWoOuLtTibzTLbUXRetMBitVq1nZ0de/bsma2srNjbt29tMplkivChK8Ew1L06Ojqy6+tre/Hiha2srNjGxkYmUKlZrRRZ1i2ASqIRgNMAV6PRsO3t7cz2mO97fRAJgEKJTrhZflEYs6yR5O88Kypk/cEQqIJF+PVZaszVaVeFrsZIjQ8LVxcwwEsZWX0GQAvhiY6IOjLqSGMsWKiaKsb3eF4eCMqLQjAmpO1zRQZV50tJC50ns+VechQe0QsKXPBejCtjz57WvKitWfZ4RdrKM/T0ACKwjIFGYgEatJm+8XeNEMQ5jQaV9/Jb0/917HFSmZsINlUGFfzgINFO1oCSJCrz8XMWPE6cpq+yBvLkXMdBneq8dQrhonKm9yqJhSPCXOm+K9YD1VkXi0XG0HApYag6AIddwRyyxX3INgocB1yjTpAROHgUYkOxsk6VpNK9nMimZgeRndNut21ra8vevn3rewppN7LAfkmqAtfrdd+DRwoe/Uf2AN4Ycp1biAQMOD88h/NtC4WCjcdjT2FD5gBojI0694xpofCwzxEHHzJndXXVrq+vfZ2S0jsej63dbnt6Z5IkHolYLJaV7dkioWQI65Qo02Kx8HTDmGnEHDM3RLU5Y1f7SNFGKuTivBwdHbneoto0afiVSsUzFtAByD6kw8XFhe8f5HPV35HYRl9SRZoCmPQbUFIqlXzuWC9kiADAcLIgjNQ+MJ/oG/bOYreiXPF+5j8+h9/RgVCbmUcS/Kl7HrvU8YmkjTppqptUj6ieijpZ28DYq11X2673qgOW52BGEkH7r/cqDuA5MTtO74lESSQrdQ1oO5QkVwdAsYr+ziMW1LlW/MR4KBGtn8Xnq07OK8zGc3RPsBKV6GFN51V5ol/qYCom1L5wH84nz41zzrzo1rAoQ1EO+RzSUuc74hJ1wGmzEvPoZiXjkKMoB2rf9Hcewa86LEmWxXPBmu+7FKezjY31Q0E1tojguPF85l2z05g70smV2MU+ckwgGZA49GwXAxOyzxzyGtIWAtjM/BQUjqJle+3FxUXmqDe26dH2drttGxsbdnt76+QquhJCQiuyb29vu7yT7o/DyFa/Wq3mdlnPvNdAVrFY9CMJwWJEf6vVqpMcSt5iZ8FhRMiZbwKOnFyAw1woFJwQgcwh8KSBsFKp5NkTkDvIE+/gBIUkeajKX6lUfIsbxWer1aptbm66Q68Exu3trV1cXNhwOMzYXtYoxBpZsJVKxZrNpmMoAlDgYjIGxuOxDYdD6/V6vkUBPUPkvtPpOE5S/cS/zexb+pVnrq+v+/gjI6zjQqFgjUbD+8h2vVJpuQX05OTEiQoIFb4LboW4KhaXJ0hNp1PPyqjVaq6nCSKpbfy+1wdvB1DljYAxIWoo1QlgYPk8pi9Fxct71DnQd/FMNVoYTSUK9J3RoGuKm1m2mBoLRBlvdc51PzLpGyj1PAWOoVWAr4y8gouY5qmgQgEDAB9CgbRvvVDsKLy86IELQmlZzI7vkNbLQgHEsLgYU96Pk6LOByBIDS1KBxngPtqB4WGseD/v0s/VUBMVywPo8f84BJp+xqVgS+WQuYx7I5lX+sKz1RjjZOEE0AZYcD1KD6eGsVCZV4Wv8hqBEQ61EmUYjN3dXavVan62eB5ZoMYHYkMjZ2tra07MrK6u2kcffeSF6k5PT/39KDklD5gDJdF0LQB6ebeub+5B5nStQ1BhsElFu76+9vnhvQAa1oNu+8BRJGJfr9ft2bNnXtWWZ1xfX2eiFLPZzIbDoW1ubnoxH9Y6DisO6f39vZ2fn9vx8bFvm1CijPWGQVfijJS4fr+f2YdJ4UXmH3mcz+fWaDTc6EAWMH5EFJDtcrnsEWQAzGAwcP3EvjfWe6lUyhStU2MeHTzS/lVvqaNBBATAZ2ZOLgBS2BtYKpWs0Wj4+oKwKxQKDiSJ5uvfJ5OJ9y3qW83qQu/geADsWIuqFzDugARkHKdIM8pYX5wUwPNICwUg6fphnQC4mQdknv7hANFexn97e9v39Z6dnTkRovqC32pH1LFU26xrSe2w3h9tlt6bRyDEz6LzHduU90zVL7rmtU3R4dT+6ripYxOJCdXLinOio6kONnPDuKjzqM9n7tXOaTtjdBx5Uyc9kii6xvgez9e5jX1V/aV1PCIhwr3oQd6l46+yr8SFOtNqe+N80s5IAChG5HnoDCUAVLZ4ButJwX0kBegHDpj+H/0A2az6j3bTX83iiGQPY6Sf69hF+ecZKh/q/I1GI6/Z8tj13//939Zut21lZcX6/b6n2iuRYvZQIwIHm/Pdr66ubDQaeZo4W7s0Mq1p86p7uRgvDcZQgV+xDxF/MATzqoGQer1unU7HHVPatLW1ZV988YUf/bZYLDzNnH5ST2dvb8/29vbs6urKrq+vPcpKEVvatLGx4VF8MA3bBTY2Ntwh5FQW7CwyQcAEEoq5Is2d7xMsKJfLfrrBeDy2Xq9nZssi2zwHHMqJARD3kOhkp3IRXKMt+EWQ/JwGgawpqcr8EgRgnvUcexzaZrPpW0mZZ7YwIPMaOENHUAEfGVEMrVk+V1dXdn5+br1ez0kl5Bd9AHGwtbXlto+sBj26UvXA7e2tdbtdJyPYsjmdTm13d9c2Njb8RCQi/5ymdHt7a4PBwI6Pj63ZbPqWJzJs8AGo8cO2QGRR5f/q6sqGw6FnaDB3/7+uDyoMyOLWSGZ0CLnU0ERFmAcUoqOvTgSCEdluNRZqzACkPF8j7xg+nHeezYJiopS9V0XKc+NecZxnNdjKfJtZBqTyPfpIKirCrgA+Aq5oLGNkwCzL3kVQoYZa50GZe7Nl5gX79TQdiUsNIk4sSkCNIu/niil0ODPci1EFdADUI/hQ4iLKHuOK0aC9EZQ9FoFShYT8KrETIxeadkXkUWWYiDlsJI4Se9nMzMda970pYKM9KpMKSHA01Ilm7nQMhsOhK0H6petXHXDeoWALg4FDm6apGw9YYeQsEhFx7iOo1zlSWVEnPQJx1hosK+uNZ5D6jtzrcUAUDOJdOAoKZDhqjRQ4mFxkFJA8Ho+daec+2kBaV7lctslkYsfHx9btdj0CT/+1NgTFfPRvl5eXNplMnOQgZRJjBUhj3Cg2pHqDcQPE4JDTFrInlLhJksRGo5GnrrHGtIo0ssNzkAH+zXjpuuB9e3t7liQPBYcUdOPEADI1FZ41PpvN3EE3Mz/bt1Ao2M7OjkfbKSZEpgjjitygTyjwBzCFQCGdEccLPaIpp+xLxJgjn0oCYI+UNFWQxtgiL3pGtmZ+cT9RCVL/mS+e+/z5c+t0OvbLX/7S1yDrJK7D9xHQqgPUNqv+5DuRlOZSvaS/85x5bQc6IDqhejHGrGPmVu0Ra9Usq9f4UWKGv6t+1fVDe1jvsV+0E+eK76pu07GKzmdMN+eZ4BrsEJ8/lkmo+sXs29sA4xjmOfms5UiA6/0653HsdM2rjKle0kyVKB+0Qd+htoj3xKBFnmzTL7L9VHfps5A1xW66BrSvRJ9xhFUW0X1KGCt+iKSRyo7iypiVGOctSRKPjGowRq80Te0Xv/iF/fu//7ttbW3ZkydPrNfr2cnJidXr9QyxmqbLI2ZxLnFo0IlaA0lxJFhTg0msv0Kh4DpZv2uW3XpweXlp19fXmXPh0fsEIJ48eWKHh4d+VOvXX39td3d39sknn9ju7q49efLEHVWiyozP7e2tZ42R2l4ul63f7/ucEH02M9+LTnE6MhKZO0jsk5MT6/f7nt1FsIdTcJABotlpmvoe+0qlksHcSZL4FjowHPOKg89FZt9oNMr4BbSRKvfIeAycgQGm04fjfalpoPhL9StbHSBdzMz39JuZ12rAhk2nU8+8xQFm7eF7JUni+EH32mugAwJiNpv5dgMyEvSYZNYE89hut91JRw60dhOkC4WFaRO4Ax+lXq/b06dPrVwu2+vXrx1PUti4UCi4o09dAkg2sAvR/Uql4v5OkiS+VSZJEtve3vb50SAPa+f/x14wCjwAACAASURBVPWdSQBViDrAfI4xiSwyC18NrTow3BOjCGoceAaXCqQ+Vyc8khLKeptlU98BqXn3s4i0f2oAeJf2me/GtGlNJVVlrwuDBapATtOZddzUoOs4aySD/2vKHALP85V5Nlsu8ru7uwyQjYALuYC1AzTrHKvi0M+QGRY7IAnljiOEA08byTjQfdMKiohWKNjGMVfiRtuvc0c/FcwylhpVUGKKvzMXjB+gAAIAA0nVUpwfFBT3ojgwsgry9Hd0jmPbtd1c7Gej7yi1vHllDSGDKN80TT3dOUkeir+cn597tHFlZcVevnzpThgyre8CIGnEQdeRRjf5HmsAmeN+0r6ZP2SJsQJ48BkOIAY5SR5Yb+QRpc/YDQYD+81vfmOTyeRbVW4BfNpPTftWQoC+kDFxdnbmjhsyj2NI1Lvdbtts9lArgr7rdgLmlHZrMT1kBOcZPZIkD9GNyWTyrW0VZADwHtYuF9stSI3DIAIcIJj4tzL3AD50izpkd3d39vXXX7uDQVth8JWMgJTDWKpupXIuaahJsjy+CieEFEQMK2sOgFQqlezw8NDMzN68eWNXV1d+P3v+AOOq/zXdUx0LjXgxXnyPbCBknowC9BnzQnYIc8C8QzQBELVWA+0BHL99+9bOzs48HVKJbnVqo4MXiSPuY82qXooYQZ3bqF/4jj43z8bkOYV6RYcVmxAjmovFIqNnNVNFbbr2Vx2u+Flsm9pZ7oMYxxmNY6tjod/T5yse4CJDgX4oXuJ9sW86NrQ3kknoWiUpeFecszwCRolqnh0zKmmvki2sHz2aODodecRNlEnta1771MbqPYpNItGDjUVP6hzj/GFfIO6ZM/6mNVxwXhRjxPUU8RPvjfdyoeOpyK71YKLzaGb2L//yL7a5ueknQFDzplRaHqOmz9Zz3CGdSdXW7BnwAHOODaXgKQ4PsoceVPwNRtL6C8gfTjV9r1ar9uTJE6tWqzYYDOz169d2cnJii8XyuDuO5b27u/NtYxSRVYKGwA2EOf3kM9qGTJL6z3V3d2fD4dD3t1N/BrlEVytxyLwoZlH5WywWvh2DonScvEMQaTQaeX0CyBawFxFmbOrGxoalaeoFH8lmYG1RoJHUftWZ6gMp+Y4ssJWAY/RYD2QbUGiR7L/NzU3b39+3u7s7r7WEHa5UKjYYDLxKPzKMrJFNrAQv7VPdrqn2ZBdrgJS5jNl6EPucegDOLJfLfiTj9fW1vX792m0qRy12Oh0/QnA+n9uXX35pw+EwE3hWvwDiRrEJco6sz2YzJwyoI/XDH/4wI3/f9/rOJACXGofHlGhkepmQCCrUuKpyi0ZRlYASCDw/Kut46eJiMaDINTXdbOlQxyJQalSjoc67UPg4KOokcuEUqmGkTwBWQHpM/4jGLxpFhJ+FyPN4FkKtyoax4fksGIQQRaEAlwUFq4qhULCjAIvn0Wbeq4CBsdD5BMxoNCEqB4CCpsyooqXNfAcgr/tulTTRTA7th/5WkKVgGplRAgCwj1zQT8YLMoq5wQAoUaUEiq49/VFwFZ1hnCv6pGsqRlgeI/SYR0ifQqHgWwt2d3c95V2zALhfiZYYqVGgjfxxn44NfVdSUdO6mRPVHYwJbCpRhcFgkGH6yebQc+AhZGI2Bv3H8CJPkCakdiXJQ2XllZUVOzk5sePjYzdwjBVkGH26u7tzUEaUgL7GtFqMCAafTAHmljnCYPM81jMgSKPTOvelUskNGrLAuCRJYu1223VJs9n0VH2i65AqPAsCQ402EQmIOt6lDgBECdsRmGd9NrpOwTSnnGBkVb6J3uhaJS1TnUfdOqG6hTGmPWbmc6FOC0X6SqWSkyaMOZE7xk3nl/Hm3zc3N5njKrFVMWONcV5ZWbHRaGSvXr3KHOPF+uKKaz3PidKL9acOY7TFel+evVSHTb+T16b47rzP0A1KAEdyn7FRrBH1Tl4743vURiFnYB2zbFRe8Q6fsY4fc1p1LsyW8kYGB84E6457sWcxaw9Zj8EU9CNrH92qoHixWGS25yiJoPOvz9T7NMNPyQQlJmi7ZpYquc/zlAx5n2ypfOscMAY4DYyhPiPaKbWTSorQHvQS44zMqR02s8z59Tgo2JE8OVXbyVhEG804IfcQALqu8q5ut+s2jUJn7LsmcBL1APu5sXcawW02m55VQTQWZ5r5xzGN44tO0vomivf1feg59tIfHBzY06dP7f7+3r766isv3sY8zmYzOzw8dBuO3WP8sQ/IKjhXx75SqViv13OnngjudDr1I4ZxrDndhueRkcbpOaTCE3BI09TXMrIGRllZWbFarWZ7e3u2s7Nj9/f39u7dOx8j+gPhgYwhA+AP7seWYkOwdSsrK+5sk0VwdHRkg8HAbZeZeRbfzc1NxqHGCac/zD9ZClp/i/ULfoCsZgzJwmO7KScoKa6PmYTY7UajYYXCMsOETE+2irAlstfr+Rix/Vafx9/K5bLV63XHNzzv/v7e3rx54+teTyooFAq+jeH4+NhJmnK5bM+fP7fJZGKXl5d+TCgX7y2VSra1tWXNZtMajYavoyRZ1qBoNpu2t7f3LbLu+17fKxNADQlXnqHkUsMYHemoZFWpq6OozqoaayZbDTLtySMMFEijVLRvtJ8+01+UkgKWSF7oOHCf1jXgObovzGwJdOmzpqbxb3UYlYnWPqPYNF1XjTTP0AWrBlkVIXOEUsRhY9HjhHMcFczhfD73NBidKyUfeJ8ywUQE1dHQcaRNfNfMfK+WpkMpINK5A0grKaVReE3X1HSnCMQZF40y6TsxGhg77sewEHlWh54iKJEUgeXTSqIKNBmXKKd6j5Io6uDiVCuo0vWiLD5KGKVPW3XNAHrevn1rjUbDzJbgTyOVKocoXS7WohKMOLEalaavtCuuV8CEgvOVlRU/3YC1BijRtH4MDHIRHW8FRLyHMcVgbm5uWqfTsWazaWZLYovnYQToO46rAtE0TW0ymViapl5oCCOqjkClUvEaBOxbY+1zP844AEFJWRxI5k+LA+K0tlote/LkiXW7XRsOh340qO6HRKYgRSAhlSwkoqT95m+Mk1l2Gwe/McBEH2grgAkSB51JvzHmt7e3riu0sBAkioLo2WzmYG5jY8NKpZIbYNVDyCtjCMhnvm5vb61cLtvHH39sm5ub9vbtW3v37p2dnp76vldA0urqqu3t7Vm9Xjcz8/O6zSxT6VjJNF1XSqTQNnVYOA5Knb68I1nVnujFPKDP+AxZig6srkn02mPOWh6JoO/kvrxLHRVd82r7FGcocaGfa98Un+TdE9vG/9XZpB3qhDPu2l/WnZKeeRgDHaSZedEBxyYjl0pY8zzWBnKDbUFeuE8z7tg+g/zppWOtOEgxiZIF3KNzreQjMoqtikSR4i1dh9ht7sWxiFmezEnEsPG5UUYYW8gDtYH0XcdVcaXKEG2j6DL6S9+p60uDJzrO+lxkJ2+cufLWT6vVsk8++cQ2Nzcze+DJlCuVSn6k63w+d+cRx5znQj4zphSWJSPAbJkNoqSJkihmyy16zF1cC2ADIruVSsWjshcXF76Xn0xQAmAQ7oo/kC9IWUhanDlwL2fAx/nEGabeUL1et5WVFet0Om5DNJ2e70ynU7f97AUHN9Bv+ri9vW0HBwf+zIuLi4yfVKlUbHd310/s0cKBUSeTwXZxceE1dVSv1Ot129/ft6OjI/vtb3/rGXAU04skIfpAdYvZg52uVquZ4CP9Bw9yBCFjs7KyYq1Wy/b3990xR1YglczMt82SlVEqlXy7XqVSsa2tLRsMBnZ5eenrkyMVG42Gy6zqSZUL9CDz0el0bGdnx+r1umeBgnFub2+9SDIBUPDlzc2N31ssFm1ra8ueP39u0+nUTk9PvdAfuBa8RI0N1iFbRZAx5OzZs2f25MmTXDv9fa4PygRACEgXVfZDwRoDqk4bikmjxMqOq8CiSFXJ6v04W1wImDqesd0qwHmGPzrULHr9Pu9g4ehi0O8AVAFledUoUUQaefdJKS33ffF/DE8kTNRxRFCUeVeDxHsAwQiaGjTAACyxtglGkOfovlqYPiU6NN00ZgdoxIF504IvjJECE76rBpeFpm3X1EFN/ZnP595fxl+dK54RCSQFXQq8YgQDZQmoh2hBcZAGHSMbKg9kjaAISBGn8A6OV55RV+UZQStzpGuBdyODSi7E+WJOSH/nUhlM02VUFiOuDqsSFjqOPD+uSwWMXJrVQx+YLzVKMNXX19deGVfZdsAvax7gQHaJAqF6ve5nBNN+1W2FwkOa+P7+vrVaLY8C6znvzP/m5qYdHh46e68Em65f1jNGiqiFOnqwxoeHhy63EBuNRsPrnLDvTrcAqaOgukV1DXIH8YCR00hYofCQBcK+PZ5D+vpisfAozGKx8CJ3vANHPTqDrHO+h/OCTAEmiKioc0UKHUBD9wjq2iHLBh1ERAB5qlQq1ul0PL0UIkftkx5hZbYsTkqWRK1Ws93dXWu323Z6euoADDklurS3t2d/+Zd/aa1Wy968eePRFICkkoOMcyT8WEOQGqxXZAVShjogWqSL9YTOArjp3yOw5FKyV8c32tp45Tkr6oBzj+IL/bfabLXN8Vl6L+1Ve6h6Tp+lKekqk0oUoHO5h/dGoj6SC1y8K+pUbZtiDo1uq33n2eo8x+iyEv48S51MZIt1RwQPZw49T3/ynH5tt45LJB8j4ZP3/TjHKi/oyZj1ETM06EeewxLlRYM9kUhSAod+oEM1Q0KfzaWEnGI+JZG1/Tpfqif08zwCPY+semzN/vCHP7R/+qd/sr//+7+3+Xxu//qv/2onJyfeb1K8NX0dp4l263ZHUt0hj7U9jA+OMQQtOAeHib4T+U/T1HXWbDbzvfJExyEBmG+ip9hAsgWur6+92CqON3p4a2vL9vb2rFQq2dHRke+lpw7Q1dWVZzokSWLv3r3z7ZS0F2zWbrd9DREgI7iFX0ABQXwCJXHJcOM3R/wVi0UvZsiJNsxru922g4MDMzMvfsh4zGYzr4XQarWsXC575kCj0fD6B/f39zYYDKzX69lwOPQie2bZ4xtZR3rKkK5FItbUEyCzDbylW7Ah06bT5dF6iqUgcSAkKZpHtJ9TAbDZ4OZut+tZLlp7AJ1MgI51pxmg1CzQrGZOeAITjkYjGw6HViwWXb7UbuAXlUoP20VarZbt7u5akiR2enrqWzLIuGBbLe2FOIG0x5ep1+u2u7vrZMHJyYl1Op1vkbLf5/rOT2ChohxgMaIRVYUTnSVVqNEg5jGYarT1XpSofo7CLBaLmf2p/D0aSRRTjPhxn0audYIVPKsjbpbdEgHLqMxinnHj0tQQ3qXPYzHpffHCUMGuqeFSJx+FGx1sBQGq2GHN4gWTjZKOTj5GlX/HCC9AnmcTjWdOANTRKHPBrFLQhYWEUiiVSl5JvVAo+P4k9uRxcS/KX416BJ2AMbNlsT2MIpcWalNGlPFVecWpiuAOuUFmuRgHzRaJRh6QRfvVaGjf+C5KK4J1JaMUlJtl944qaWO2jJJXq1VbLBZ+5CHsc5qmmRMDtL6DOjd66bpRmVDjY7ZMmyUSrWOtdQ1Y5+o8MGYaFZjP535sUbfbzR3TJElsd3fXfvrTn5rZQ6olY0D6Ftk5a2trtru769kfjL1mXagjrnMNOIrOK0aawoU42UTK2cevAJwxot+smSRZFj0FBE4mEzs5OXHm/u7uzgHOfP6wB9DMPK1wdXXVAUCz2fSK98wBfecHGY8yxhpX/Q25B5DT7xIR2N3d9ajB8fGxF6birOrZbOYM/+npqUeK0I8w8+ganHaVJ3QcYI8x1jowhULBJpOJ/frXv7ZqtWonJyc+39xXq9Xs2bNn9md/9mdWq9VcPxH9B5hwsgSgyMw8asI4cCyR6nElWQHEABjGEt2DzGj0VHVLnm1HflRHRj0U13Meiagkr/5GZqMzGPVDtJfIuDqc/Cgprvo9Oszabn2vYoRoY5V0UHuojqleSpTzvogNVIdhH/V+bS/vVsBN+xULKcbgR509dJc61qqDNftSCeOIn2iXEhJ8R3ET36FtfEe3PiguIeJIMVqqjWO/6TfOgfYpzrHiErCgZknQN8Uluq0IjMM8Ko5FtzP26M9oo9XOamRS14XOpcoR9ylxlydDev3zP/+z/fjHP/a/tdtt35fNdxl72mz2kD0wm818WxTzlaap4yvmQnEnP+AddQYLhYLfz9/MHpzrjY0Nu7u785MO1taW57s3Gg2vbTOdTm1jY8OePn3qkVii7BcXF17ckJOXzMyrv9NXnEoz8/3Xs9nMnT2ew7nwkBgUvmPLnBaJJTUcO8W7Ly8vHSOYmdsc9ZWILtM28AhywKk+hULB2u22O8dmWR+JrR6QJjjA9/f3XmD45OTETyng5ATaQ3YxdoYq9cw9GGwwGDh5jU3lXWSLgP2Yc9qJH3BwcGAHBwfeN/rSaDTsxYsX9uMf/9gWi4Wdn5/by5cvrdvt2ng8drklWg55roWvCUiAEzRjl+146rutrq7a5uam7ezs2HA4zNRJINCgRQUp/E1doul0at1u187OznxrDKc2QEJBqpExwZjriUhsdcCnuLm5sX6/b1988YU1m007ODj4ll35kOuDTgdAmQLizLL7w/KYcoQfA6ZstBraPEcjggNVpHmdVpCgilW/p8pdgYUqK+1vBANKJMDg6B4jxkiNO+9ScALY16PEcCqVOTbLnmsfmXsMI5dWkIypcPp9Za1pp7K6Og9m5v0lFUcdSp6nDjpzTH9jpAZWmbnSCK86PgowGFuN6KOIMVTRidQj1vr9vi9WnAGNxDJeKk9xvHVcAeCMlSpv/q4gC6dXQTpGj98YBgVICji0jawpLZ6n86YgQ7+v/VDyQS8cHE2VV1JH+6bZG6wN3Q/Nu/Q4RC5NR49kn8oEv7WQHUCX8YGIAhBpBog6zHlg1myZZpZHKFarVdvf37eXL1/6esWw7e3t2eHhobVaLQcIutaSJLF6vW6bm5tuMFlPulbpbwT3ZstjSZVZh0QjjRKZg8RgPEqlkm1sbHh0g/eoHBQKhcz5wYwRjiWRG0gb5HSxWPi2FVIiOdWgVqtZp9Ox9fV1Oz09tW+++cb6/b7PV3TQVH/yfi2CqA62krHMQ7PZtP39ffv000+tXC7b5eWlra+vW7fbtUqlYsfHxzYejz06//TpU5tOp9bv9x3MAV6QPwgOxitG65CDra0tOz8/93FRnV0sFh08KiABiNzc3Nj//u//+tYF1hukO2PJudXNZtOazaZNJhMbj8cO3NI09TXLGOlaAkhD7ui6Qtexn1IdkOhQ6Gdq93VM1HGN9j3v0r/lOdMRU0RnDj0e24m8RJIBPRMdb3QC60nnHnurejb2TTEPzqs6w7FPMVuPv2lmI32IhYbj+EYnEZIOjKB2FL2vn9NOzeZUEkRJA/qhdl3HOI/0oa16vxIQ3IMtVjJUAw18b3193SO0tJ/n5zn82pdIWmi2H+tWnXElR9RRj/Oh48B7GE+d63jxTPoQ2xrtc97YKhaMa03fmSSJ/fjHP3b5/uqrr2wymVi1WvXPcFY044notKZQY2vJWsIBVjyt2DdNU9drkAmk48/ncyuXy34CQavVsmq1aqurq27nptOHs9avr6+t3+87aclaKhaLXpwY+5gkidtEUuax7VtbW/b06VM/8pbr+f89TaXX69l8PndnD/s3nS6LEa+vr9vOzo7t7e1lUvPZwlUsFj3SfXNzY6PRyGsMYAcgV8CGOIHT6dQajUbmKD6CXdgIyAZ0jzqkzB37xwuFghPA/X7f8SPzSGCX8YD0Ys39H9reozmuLDn7z1tVMIUyKIeCo+sm2W40mgnFhLRQhL6BNlro0+gDaau9It7QQlpI06Oxze5hd9OAAGHKGxRMmf8C/1/iqeQFm9Sr90YwQKBu3XtMnswnn8yThz32vAssgk/F/PKTf+AdnqlZv+yTr1Qq1mg0rN1ue9YDAbX19XXb29vzPlSrVavX6x5k6vV6NhqN3OZpQDGXy3k0n7kgiDEej/14TOw+OoAMicXiNtjJlqD5/CaTU4+OpJ28q9PpeIFIMD14k3oOkDDolWKx6KdlsL6QS0iR2Wxmp6en1u127bPPPvNx+Z9eH0wCqDOmFZXV4VAjoKBbnRoF+WmGQp9p9u6+N2VQlcHV52vaVnSSY3vT2Oh4j76TRYGBQsgUjKqTyHNUCZrdHhfIpYBKBZn3Yzx4lqaA0k+ehxNq9m4hQi5N11bjE1PseC5KWseQ76oB1HkxWz5OxGx5f7u2BwDERXuUUGEBaarZfD73o8H0eShIlO3KyoobEvqhrDzkEEpbnf4IagEJjC3t5rPhcOgp5DyTOgzqyGuaEmPDnKvsqwFXBzOCShxEIsHa/gg8FFSlvYctIwq8lWDT6BByQuo/rDNAmqgw/eT9cV3Sn0igpclJkiRLhYaQB5xYgC5kE2tbgTAEAuuAbIWrqyuPBDx8+NAePXrkxYdWV1et1WpZJpOxWq1mpVLJms2mt5VKvcyzgnfeoYAzRo7U6WdcuDQyx30UaiJtsFAo2HA49Dkg0lEul93wY/CUTCEChiEEfJ+fn1utVnMHk+OMIHQ0W+T6+toqlYo9efLEfvazn1mhULBOp+O6EV1yenq6RIYxb3osEuuC+VFyFJlF5nUdUQwJUornE+EB4BweHlqSJC4bpVLJNjc3l2o1LBYL1y3q0OFkK8Ha7Xat2+062ERHQJCoHQJgFYtFS5KbFFONtnHMlJl5tAswBIFE8aCrqys7OjqyVqu1pLd5p+qz2Wzm43NycrLkCEU9oSBE16he0XHnb3c5/Xc9K+25kbCL90anK75P35XWtnghy9h3daLNbo+vUtuuz4qYIbabizarrtV1bXa7Z1XxDVfcZqeXzqeuEX2u2ht+1yKDjCe6U/GVEtr6ffCPrgcd1zRiRmUzzpE6wqz5iNOm06n1+33/nAruins0GwHcwVqIzrI64Zr9oJ+xxQvbwBpnDHhvdNg1yKCXrjdsQcwI0YwLnWfNDFX7wbP0HfFzrouLC/vtb3/rR9WSxaXHuypBpG3QegtENJXkwLnEodW5UdIO5xjHjOgsfccx5dhbnCwy9ZAj3jWfz5ecJmwd9gZCYmNjwx49emRffPGFPXjwwIrFoj148MBOT09tNpvZkydPHA8cHR3Zjz/+uDQvKi/YlDSZAjMoudrv963dbntqPydrUUsGZ5JMQarqQ0SwLrmX7AiyDXu9npMT4DDW2MbGhh+Ze3Z2ZovFwo8s7Pf7rgMzmcxSfTF8AAgbCuKBbxeL262EMShlZu7oqgMOhiOYMJvN7NmzZ+8cFYh8/fd//7d99dVXls/n7ejoyN68eeNjSHHdyWRiw+HQsxbJfsAOo+OIqPf7fScQkE/WeavVspWVFfv5z39ujx8/trOzMzs+PrZCoWD1et3MzLMvVSeSyce88dn19c0R0mAI2qzyybpg6zXYbXd312azmQdRGOfr62trt9v/V1sDPqowIJc6YPyuTpyyRPp5NMKRVY/fS7vUwOLspBELURGqwdRIrH5HIyL6Nwwl6Zg4jDoZ+i5l1tLIDQWy6rCr8otjoUQA/Y7OD3OCkVSjze8a+aR/WrwQZx9linMAyFeATptVeBV8oDzMbh1czcJIc1SVcFF5Qkkw3jqnpLjqPOjCG41GvqgwKnrpXAMS1GEF/PE9NdR6aRsrlYofc0KEuVAo2GKx8NRodQwAGSgU5FqjHPpujRxpdCGChRh5wEACnlDivF/7jCzzE9mFfeZ+xm11ddUqlYpXwjczB2codIACcsi6wBAgW5Fgif9XUKIEheokPaJQ1wWGQMm0xWLhZx9vbGzYX//1Xy8V+GNbiZn50UL1et2N4m9/+1vfL0gEADknM2IymdjZ2ZkdHR35mCiBwxggVzrnqguoL0CaPWtNAS/Hy8TURO0v3yP97PLy0jY3N+36+tqKxeISk681NlRGcrmcO6b5fN5+8Ytf2N/8zd/YkydPbDQa2ddff+3pent7e85yQ84RvYGsod+qN5UsAVhpNWPW92g0shcvXthwOPQiie122wEo+z3X19ft/Pzcvv32W5dpzg3O5XK2s7OzpJc1M4K54Of19bW1Wi1bLBZWqVRcxhmber1uSZI4IABMzedz/5uCfOYPIEC9A4qz4QSy1hqNhh0fH9t0OvV0y1zu9jQGCByIG8BetNfROeZ3dQL1/rge05z/+Ht0BqPN1rbgIGrb4nMZr4g74qXjq9/FNkKCIYfo4Ehoq22PDnIcI3U8FYuoE50WyVcyPT43YiUdM/1d8Y3aGB1PJftpCzoBp572olfUydEMAHQEtoQ2aGo331P9rH9TTKFjoVkBOoY4kth+dcpUNvT5OrY6B2p/9J/KC+OfyWQ8WqdOEE6gZsnq85UEUOJK5QCbrrZD5zcSS9G26/YX2s7cpWUfnJyc2GAwsPPzc091RqdqoVsiwcgM9gCnFL2Eo6cyoDVUtD3aT+oMQXiSsWZmbjsZQ8gAbBc2WedaHT3axdotlUr2+PFj+/zzz72oNY5ntVq1zc1N16Po4EePHlm3210qxstawWFFP4/HY0/JJ0tV68QwXjiuk8nE7SdrivaDzxTb6dYYdCQZeOAdAji8F3u+ubnp38e+ra+vW6VS8ej22tqaY1Yl6ZELiOjj42M7OztzHFMsFj1lnSAIthqsj67F1rJlT3HL8fGxra+vW7VatcVi4QX5zMyOj4/t+fPnXuOJsWbNkzlBezOZzFJmCXoL2SXgQ6QeOWK8Ly4urFAo2F/+5V/a/fv37dmzZx4Aun//vq2vr9sf/vAHP7KRbEVOieDv1DhAT0KKIQ/MBXYeIg7ZWiwW/h22atRqNXv48KFdX1/bN998Y19++aVnRtxFQN91fTQJEB00VTiRudZ7o2JDKaQZM2WREEJVxgoqYoqYLhh1imkP/9donAINFh9GA4ECIEamrWQWtgAAIABJREFUOIJiWE2tVo2DzPOUydeIcnT86Icqe9qpKVdqnEmvRgnyXKIbfI8xox9EzzSlXtkmzinneTiHECFcasAjCKGvOic478ydGkQlFXgHY8SiBWhpKqBeCoo1qyDKHgZPQQOXVrlVwkQdUX3edDpdqlLKfTiPmj2iZBTPVgdYAbKOC2OXBkI1IsiY8EyMG2PL75qhwbjqmlLQpO3S9O1isWhbW1tWLBYdIEC+xHROwAJ7nUlTV1CsQDiSHMwThE0kZTAGus9O55R+K5kF2Nzd3bVf/OIXVq/XbTwe2+npqZ2cnLjDz/aSfD5vW1tbVi6XbTab2X/8x394mpdWtGU+Wq2WHR0d2atXr1weFfDTLmRZ1yf9xWlmLjDoFJkhkgk4YnwWi4UbFwywGiC2G3D+7Ww2W9pmoEV21BYwb4ClX/3qV/b48WMzuzHar1+/ducbELW/v2+z2cyOj4+9fZraqPKi/WRtRFtEuv3V1ZUNBgM7OztbIkUZT7Y2zOc3hZGotsxzF4uFNZtN29zcdHkiBZP36tywPnDAqRRMu4n0KyjWdTQcDpf2/fEswDg6lu8iU1S8NjPfL6q2CRDImBO1pLCjZqYwjmpf9Upz4ON96tylkQHxOfG7ae9jjPRd0VbH9yh5mnaBLbQPuVzO96gyvxpp03/ME9/RbDWVB9WrimPuIijSyADVDfRdbYX2N9o8JbBxlsyW1xQYBydMbbXqRLVJ0eFUPQSQVtuuZHokbpTk4Yrkhd6ntkMj62qDFbPpczUrTMeK+dYxVWcyTYbn87k7zjgQmUzGs90irtVxVXKFz/TZ+r67yDd9LvKhxIricQ0YpJEA6Ew+0yBTqVSyQqGw9HzGnygwTrZmluk/s9t6S0T4ifxyD2RDkiR2dnbmpA76jO14OMuaUVAqlZx8jr4Bth/im/c8fPjQfvWrX9nW1pYdHBzY999/b+1225Ik8T7n83nL5/PWbDbt8ePHlsvl7OnTp17rh+h7JnNb4f/q6spOT0/99AQChirj8/ncnT+1u7PZzHq9nkfe5/O5Z65hA9h+sLm56en4yJ7a+o2NDWs2m5bJ3KSjU8SQ6viXl5f28uVL3yuP3dKtn7lczlqtltckWCwW3k/kpt1uW7vddrnPZDKe/ap2mj5fXl5aqVRy+0ZbaRPjwvz1+333DdRmcbShfjadTl1PmS0f0atE1MXFhfV6PbejYFuy8DSrARk6Pz+3P/zhD/b69Ws7OjqyTqdjuVzODg4OvA6Zrh/6ytrRelWKG8B52A7NosB+53I5P4mJwstra2vui7HGLy4urN1u24sXL+zt27dWrVbfWevvuz6qJoAaen4quFbnCYOoRo570kCHGog08B8VMgMZlaIaZVXmsU1mt4ZQAaPZMlObJIkvjGjseG9kaTWyQAEO2qT7odOIBFXoaeOvzpGOoUaqYBB1fJRVUgccw0X/FLCSMsMzuQ/WGyZRiQnmSp1IHBUWmTKoauB4J/3Q8cJh1DFnrhQ4oHh1gZndplfrWDOmcd6jI6LP1b/zfyWvdL+Q7uGEzURh6pzpvmdkEdDDeKr8xv9rVCfKA/9nfpXIwQilRQvos8o6ShPDpCCFOV0sFu6Q4rCq86RODQZMU/ViMSaezzzpePM5RpI2p+mEcrnspAGV/ofDocsXMru1tWW//OUvPWWt3W7by5cvbWVlxTqdjp9hWygUPIVcz4CFzWWvl5k5I8z+MyLjmnWCLqDdStSgB6OO0yMOj4+P7fLy0k8nAIgAUGDJkbVarWYXFxf+jzmkqi/3ox8bjYYb6+Fw6GQA67xYLNr9+/c9Ta7Vatnx8bGdn59bv99falu5XLZ79+75usR4En2AUVfiR7ctIVPoQ/4OcNIaEUqA8C6VL+ShVqt5JsiLFy9c1nDstc6FyiiABOIPMBOzoLAFRLMYN92HyhpjvU2nUweVbJfgHwUDKW6l42RmngUCQbO+vm6dTsfXsEZMVcdEpzyNFIjkpMou99z1vPjceJ/qFP1MsQR/Uyyha16j1IpNdN7TbDs2I822M67MqW7v4ln63mib1X7Hvt81LtG50z4uFrdBF8Uw0Z6q/jBbPlZPI/f0jW0nrEOVRd7N70ru67pC1u+aV9qs92hQRr+jRAN9VpsdSaBIqGq/lTDBMVTig2cpGc3Fs1m/6OiIF+I88TfmKpI4arMUQypG0HnW9ah/00wDfTd2RN/LRcQWZ5L50HlSnZvN3haAw4apM4N+1XYsFrdRWZwy7LXiJuZVI8uZTMYzxoj6kuqOziXSu7m56bVTcICvrq7cFlIU9unTp7a/v+9Zea1Wy/r9viXJTZCGInTUFQCblMtl++STT7zyPFkFFIUFE5IxnMvllmoIMCeqH9QfgUxBf/EdirmSSg/OggBRf6BUKrkjyfyAqyCc1WZvbm7avXv3bGdnx87Pz73g+3w+XzoBARuEraMWzfX1tW9FrFarnuHGnGrWG/UXkKlyuewnSYDp1BaOx2PL5XJeBwdyiHWnWRboXbI+GDfmJpvNWr/fd5IJmVGsBkZiPAn8np+f2+9+9zsveJnL5axWq1kmk/ETJ/CBptObI5DH4/HSyQEcS4wOAusjm2qHkGUwJgQP7TG7OZL5+vra3r596yc8/PDDD/av//qv9uzZMzs4OHhnrb/v+qhNBHGfh9ndhQHVSTN7d399NI56RScgGjf9vxoJZc9jBE2/q0YDdt9seb819yuQUPKCf6qgdYEjUBhLNTJqoJUppg0IeWSQlFXX9ykg5tn6fRQKwhoNznw+X1oAOkaaxsWzEVq2Diizq8w8v9NOFiuKSi81VEr8qIGkT+rImt0CFDXy2j8FAhhH5FnlQ51pjRJov5UEUpKB5yNLtJV7Gd/5fO4kEc6Opp+q8aVPyAfKVKMojBEpe/wNw6wAlufiUPFP28YVi+7p5wqcVO7Yu6cRCI0gKSCPMqDASQkddYxjumjUORoB45mLxU2WC3vCqtWq7ezseET+8vLSlTVzc+/ePavX60tH5SAr7PV69OiRmd2k+OGMU5347OzMo9/X19d2dHTkBYbU0Ov8EFWh3RHcA6YwIsgn3yUarACZqrHs4Wu325bJZJzhB2zp/He7XZdbHJ1qtWqPHj2yq6srHw8YaORkPB7by5cv7YsvvvAziTleSdPUOSN4Z2fHzMza7faSrlQdoXqedmsGC5emA+oYqB3QDIokSbxatKbVHx0d2WAwsE6n40f7cIQSTjeOkqYdkrpINAw9ROYBfWLrAlFESEOz5RoQtJc2K0AA+FEJnVRaPZtZnblKpeJrXGUrOvJ3Ofv6mTrlaffrZ6qb7iIW9PP4rnilOcFRZ+m8IzMxkh2JBX2fOpSxL4o7VLfddT9zrld0cKN86zP0++rwqo1A5pE5tfkRWymRy7PSsJwSGUqma6RN+x+zNtHraXMV5S3OPevV7N1jeaNcRCxJnyJJHJ1ubT/tYdzQwZHUwv5rPZc0+WPcmAvWMPfFLJTYJ5xhxZyMhc6tYlRwQcQy/F/fH6/d3V3r9XoebcQmaHYW79OsQ+ZUiy/GQBbvIzON+3GqdZ95zCA2M8+GIhBF5X7mhzayl3tlZcU2NzftwYMHtra2ZoeHh3ZycvJOZhZOFWRtHB+O6FMSjLFpt9s+1sxlNpu1crnsJK0G4YgK019kCl2u/cCZo21soyQFn2Bdp9OxyWTip+6ofTEzxxjYZk4sIPNA/Rb250PMl8tl6/V6Xgmf/eoXFxdeOBKi3My8SCAEuhJoMYDGfKPDyNAkAEGR3HgENeuPoAPjC6nE6QhKuHNBmmh2Ju9aWVmxXq9nJycnniHHeoL0aTQaVi6XfQ1w6kW/3zcz80wTih+zxx95imtOsTwFfzOZjPcdjFSr1bwoJoSMnp7BuCGDo9HIDg4O7A9/+IP9n//zf95Z5z91fTAJoE65To4aJQVnkfU2uxtYxO/Gz9Lel+bg894IWjBU8XsYjDRFGQ2MtkEdMIxlVN6kvcR0EdqDIOheaHXu4tgDODUdV9PteOddTDPAUSNt6qAjtABIJVd4roLomBJJRDWm1CgppBFknZ9o0FSeeL4WMkQZAKCVjOF5KBz6qNEe/qaAC4dYCZroVClISItYkHpLO2C7o3JU8KkgTcGQGn7GRQ1uBCP8nUwExlD7yjgpWx9BLBfPZ7zV4Z7P5046aLuU0VUZJeOAsYrZHrw7ppMy96TWKTGFw44xUICic0ORv1wu52mMpPUzFjh3pJDxO0fesHZwCDHqpJ2poST6wPFCut+M/itA1+gjY63zS5p4JpPxSAdpbaRkYhyIqM/nc2fEAWr0i4toPpFwrYyrclAoFOzJkye2tbVli8XCGo2GlUolLyyEM315eWnPnz+3n//859ZsNl0ncI4z6+78/NyzKNivj8Mf00hj7Q/VIawRCvupPKse5h7AAmmNOm4XFxf29u1bL5oIMOKEAdqt+pk1XyqV7P79+7axsWGj0chOTk48m0KzQXRLmWaHaaaMEsO0HzCO0cf558pkMn4+NYWzlBhUsEQkIW47YmzTSIE00iDNNkaHLu2Z+ty0v6kjkPa9qKvuIiOUoEV2VK5jPxSrvA/fqE5lXeMw8gzkknnUdvE8tbkR83Ap6a06TTGHXpHY1rnVZ6ojq8S7EhHcp7aJ96o9xCZoeyKxovMa5xB9pLgitoU1quOoDi/vi6SMPkPtN8+KY6hZcXEdYNvz+fxSxoXiScVSccyVvOH7ur7RAzqWER9gE2ibplvrGN8l52kXTg4p38guEeV+v+94TvGhtkX7G8kY8IgSCklyW61ei1+iAxkz+h7XCbaCubu+vrZ+v+/6td1u22Kx8CitOsBsa+VIQd1KwLPZDlAsFq1arXq6+p///Gd7+fKlO2RktlKUj4w7lZ9cLuf2Zn193beWIdPVatXbyJ56M/Oq8diIfD7vDj/96HQ6Np1O/UQHTj3I5W7rc3HEHTYYIgXsjj1aX1+3RqPhjub29rYTDmx9Mbu1G2QizOdzPw7P7LZGG+uF/f/INtkFBGTQk9hlLs2a0wDf1dWVFyrkNAo9RhB/YD6fO9ZjrNkWQhCh3+9bp9PxWg7qcxSLRdvb27NPPvnEyuWyR/g5yQc5YmuKBixYG5D3YBZsrwYq+TvbUNiWsLKyYo1Gw7a2thxrt9ttb2c2m3XiYDweW7/f9+yM/8n1UdsBVNHwNzUcumBj1kA07ihPfldgrI5rNMr6HFUg+lOVkzo/6mSlkRTxbzxLDWqasdP/Y2RiVgH90kgR74vKXJ17QAzp82bLaer0Tff96fPUkUSBqMHEeWBxqIMNQDa7dUZ4hzq4KHtSZgFJGtlkgWq2Ruwz86XGnX+ArZhuhuFSA6Jjq2k4ei6rymRapFqfr06psqkK7GAFtQ8x2wPnDEWMc8uF4lbCTSPp3AuJFB02lf2YJaFrJ4LKOAd8TwGJOiu6BiJZwIV8KChGLtRQxhRGABGKFflaLBaeqqYyB/GgTnR0ENiacHV1ZZ1Ox3q9nmWzWRuPx37+Le29vr62k5MTq1QqZnbL3jI30+nUqtWqR2ExwoeHh3ZwcODn0tNHzZBR8IhjrkCI+/P5vBsG6g9Mpzep6fV63aP6rVbLfyJ3tHk0GtnR0ZE/F5BAX3AmiQggN+wPBghtb29bpVLx0wXq9bo1m03r9/v28uVLOz09XQKqp6envr9xa2vLoyM40ex3Qw9i7FkPCqh1feHUEVHBOKLvlDyASed8XuaAeg6M0+rqqh+LOBwOrdFoeLG+6+trOzw8XKourXvti8WiNRoN29vbs3q97tEUIgynp6cO8Fk3o9HIisWiywxRIjNzOWAdqN4gfZM5Qz+zpli/7Mc8Pz+3yWTiGTDIHroRHfg+vac6I83ux59p5G7UL2nO4fs+5xlpBIUSm/H7rKO7bLv+PepHdUjVvqPHlNDSbENkUomD+D4lpmgnYJHvxOdGUkHHIZIEavt13NS55HmRQFcZmM9vi6vxbtYaejTabiUKomOojvtdpIfKDVckUqKcKuAmrVjlUMkKxXL8HgMDmoGoMgC2MbtdM7yXeY+YjHbEoIaOi2YcvG88FMsy73cFfLgvbS3Hi2NrLy4u/Ig69AjfwTYqSYnNRC9zD/ehp3ULKmPG2JNlxpgyVjjni8VtUICCypCgSZIsRew5Nx08RW0YnkXK+Hw+91NRcKKwFeqkocur1ap/h/3+tOny8tIGg4GtrKx43R8CBKxLbMvm5uZSgGt7e9vPme92u9ZqtXzs8vm8bW9v297enmMMZJYINvp9NBp5tgHjMpvNfPsaDnq1WrVms2lv37616+trPyFmdXXVT1Dg+FhI/t3dXd/3f3Z2Zr1ez7FZuVx2Yp21odhUM0w1sKbkNtmvKuMQ/MgQeAD8lM/nrdFo2Orqqp2dnfnpIMih+joaFEEO2cM/mUw8bV91LX5Uo9Hwwn8QI9QvgFQaDofW6XSs1Wq5Ldd2QAyhB5BTzfBTnK9Z1NgBslQ5tejs7MwxDAV/W62WdTod+/HHH+3o6OidNf4h10dtB4gONn9T46uTGpWXGqbIkqvBjEpTDW0EG2p8owGODr1GltSAxogtRk+dXv6u74gMthIGKGmN7ADaAHa0w2w5lRFgoFFrDJ4aLM0wmM1mzu7p+3lmJCTMlkGEkjA4+YyDMnZ8F+UEgAHQowSokInDxns1+qBGIRop+qYXoFnlD+WhR5bF/pvZEnDReVRFpHOrzppGaFEEzAPPY061FgPjq22ez+cerdVxxVjhaCjhoCmfKDcUBu9Kkzftv0bnI9CMINvsJiUtOtkKQrSNzFeS3BQNgrWezWZLkVqN1uJ8AjR4bozycL/KA9/lc2Re07FZ04z3ZDLxZ3MMnKahIzeXl5f29ddfW6/X8yKHgOaVlRUHFxzxY3bjwD1//tzevHnjJINWAtY1pwZTHV1AZqFQsGazabu7u743LEkSfw5yur29bffu3fM0/KOjo6WjGGGIAWEw8kpI8X70JyQeGQcURyIz6Pr62tbX121nZ8edZuS+2+3a69ev7eDgwL788kv77LPPrFwue0rh27dvHUBOp1MvdMNWBY10QPiMRiOXCV3bCuYBg1RkrtVqTiwACGezmR/nWK1W/X3r6+v22WefWalU8u0Uh4eH9vr1axuNRp7lAMGk81Uul21/f99qtZrLF/LHflEiB5BXpHgCwNQhU5JTM7WQL9ZzzCTS6tfMKYQHFaHRzScnJ2ZmLtOAfZUr/X909vX/amP1d+ZHf0a7Hp8TnVsutd9p39G/q43hihiDSwMC2E7N5Iu2TnEAP5WY1XWEzlNdloaXFO+obUcGWJO0Ldp21dtqUxULxQs9rDYukpCLxcLJQdqm95AVA6DVPjA+atu0r3Futc0aUWP8GUN0ecRKfC+NDErLqIxzwOfoSHWiowOu9lifTzu1HyoXyJtmYCAn+syY0q2XYrdI1igRz8Xz00iveN27d8+y2ezSSTrgN55L1pxWvmfMcPbQffP5fKmSPM/AqV5bW/MMAzC1OnoaVdWMVB339fV1u3//vl1fX1uv1/M2q74mUr9YLDy1mn3UkPylUsn39WuRN/wETvI5Pj729+DYEcxpt9s2nU79OYolcrmc7z/H3kHkU5gWOweWYHva/fv37dH/v+WQlPVMJuNbLiH11V/IZDIetQe3n5+f2/HxsSVJ4o6sHnd6eXnpGX0bGxu2ubnpR9ItFjcZFd9995398Y9/9JOIuI95QUbQE9heJf/iWh0Oh0tkEeNUKpWs2+26fQJTgq0Hg4HjFLA/GR1KbKqDzX38y2RuihiS8UmGBs57JnOTKdDv9+3i4sKDBejgzc1NJ6QgE8AiSXJTm2F7e9tKpZKZ3WBKtgqcnJzYdDr1bMPFYuFbBBkvCJfT01NvM/WGqBlAraLr62t7+fKlffPNNx4M+tjro7YDaKQtjdmNBhhDGhlPZar5W1SuaixREtzP9zWqTBvVmY2GQKPe0dHQBcVP3pFGbijDqX02ezdVUUE/CkYZenXWAHEwUNo/CAsUJgafd2A8VFGh2HQvlTrB9EMXLYqYyJ0yz+qYqROMImL8NjY23AHTsdMjTvhdAYZWqYd1VSPKeMAi037erRFrBc3ID+/i+C0z871mZrdAD2dNgUxk3lW+cLTiBcDToic6vjoOGxsb/l5SeNkHzfvTgK2ukRjdU5lCbrSmgd6nz44klBJFRLA16oFiJqWaOcpms37Oqzr/WvSEFCsFIcg2oFSjmWtra9ZsNt1RpYjPixcv7Pj42FPyASYqr8gLz2LeiXRNJhN78+aNDQYDj5TUajWPHODks+b++Mc/ehoip0hMp1Ov3YD8I8f0U//xrJWVFdvY2LBGo2H7+/u2trZmw+HQC8ucn59bq9WyJEmsVqvZ1taWffrpp3bv3j17/vy5HR0dWbfb9TNycdoVJEAIsmYgtXK5m31wudzNsXbsc9vb2/N5ojox0WwiGpPJxH744Qc7OTmxTqdjr169sp2dHSuXy1YoFKxarS5V2WcuisWiNZtNG4/HXlsBMKSAAWCm+lXX8Xw+d51HZINsCHTG7u6u6wcMeKVS8cKOyBPFgNBD+m4IOYBpt9v1vZNs7UIHKMhC9+JA4dTk83kHqIvFzbGJFL5Cz6vDrzpQdTL95Nrf3/f0R0hYUj8h3EhRNbMlu44s6qV2Tv8f9ZHqIr0iCaCOSXQQ08gA/Y6uF7Wzmomk9kyfx33RkVIiTDGA9lNtdprTqWSy3qO4iHs1E0oxjWYP6vfRiaQeQ7yhn2NRVGRcSbNIlEynU5cJ2qJ2BrmJY6z2X/UrcqkOrGYcEEEze3fbIjYSWY8Os84ddkwdbg0qmC1vJYqZZypjzJuOnc6lEkXoA5UTDc6Y3WJDJQVolxZCnk6nPhaq41QetI30N2Jo7tVxiNgwymbahUwhfxxdh5wx9pxvr/VLFKPQV7AVDloud7sHHl0IiaQ1lpBRHEPsjNnN/m72dWezWdva2nLdq/qQTLbFYuEp/fV63Z0tsEi/3/dte9Vq1QsHM2d6/KESCtls1gkFZBEHFYzE8Yakg5+eni7hOLLC3r596xkGbDsEHwwGA3vw4IHt7e1ZpVKxo6MjOz09tU6n489j7tjCABFB1poW1R6NRnbv3j2r1WpOYlIbqNfrOXGuwZkkSaxardrTp0/t4uLCXrx44SQDxwrS9nw+b7VazarVqiXJTSHC4+NjMzMPBIAzmBfko9lsWqVSsSRJnCwhck+WA/+SJPH6A9TIqdfrXvuGQo9avBd9CM7WDBGyGZivbPamzsTr16+XsjUhGiqVihc/1rE3MycM6vW67e/ve60gbQ/zr9sYlLADk8YtOtPp1DNkyABlm8q3335rx8fHXt9JCyR+yPXRNQHM3t2fpwpJP1cgFw1kvFRhKTOtbLM+W50yVZyqTDVtmcXK75Eh1eejqPX3yFrjHJktRxbMlqslR/IggpJIHDB5SZIsKWAYKjUIEaxFZjoWsOP9CpKU/ECpoQyYP/b+6zjD9quTjRLFkAPQVYEyhvSb/UUAc46tMbOlwnGamUG0k/dzP0ZWx0ideY3MUJmTNEIFN2bv7rFU8iiSA8yjRvP4LqlZEEAa/cMhY/+xEgWR1dS9eeoYxCuSRkqE8LwYxVLiTGUJ+UsDEsgDjooWCQIkEK1Xp5NnEw3FIQIEqn6IawOiZHNz05rNpp/ru7u76w7l0dGRPX/+3B05nsE88n5kRDNH1EhjHHVrAMezMKc4UWa3BoD3kQqI/OvxNxgX9IbuLy4Wi0tRyVg4EkMG+IRxns9vKugeHh76/bwXox7nAtnjeaTcUbiPKrjsp9d0Pa1Uv1jcHK137949u76+tv/6r/+yyWRif/d3f2fb29tWq9Ws1Wo5gdFsNi2Xy/lzx+OxM+WaJaOEKe3m76oXzczJA1LozMydnHq9btvb205IkQZ4cXFhBwcHVqlU7IsvvrBs9maP//7+vrVaraXoFOuWM53Zs0nlZGo1QEDoPKKLtObE5uam7ezsWLVa9b3G1WrVDg8P7fj42EkjdawymZtMCt2LSLQHHbO6uupRrcVi4esAQkijmZEwjLY52jC91FFNuz8S4KpvdA3qmlS7xN/uwhr6LORD3xMxg/6MZK62O2b96XOUNKBdqou1b/ovjbxV0l8DJmnEhbY/khM6HnH8tE1my1uvaLteiquUOGet0Q617XwvtsnMPCU5l8s5CayBA35GRxpHEP0d+82l3+HdSnhCAES7pmMf26x2Xfuk9l/ngiAGa1X7Mp/Pl2qBMH5Es5Ug536VoTg3+l7uV6JIMYi+630XdgdHcTAYeGQSYgDHQveH8y6IA96l7WcvO3YLbKd6W0kunC2teXJ9fe2R4nK5bElyU9T17du3S9mfYCglQ8EbZAioXoaIIB1/Y2PDv49OIEJPNiNBMZxFCrdBWjD/OHH0YzabecFkagMUi8Wl7QWMBbgWjAuO4KQdSBDGDBvF/7X9VPBPksSJYtUxOr844LyTI+4ymYxVKhV7/PixXVxc2NHRkeMLCHOIl0ajYX/xF39h5XLZjo+P7Te/+Y0fv8jcrq+vW7VatUql4uNZq9WsXq9bp9PxPfGKHVkXzJ1mxK6vr9v29ratrq7a6empEw7RHwOfYRNxwslg0JoVbMOgXgDjQBYkmSMbGxuWzd5u95hMJtZoNLyWAPivVCrZo0ePXE44alL1N7LDWtdMR+pSXF1dWavVcnIMooXsHLZxbG9v27/8y7+8d93r9cEkQDTWanziPVzqsKeBBb3nru9ERz86CtER0+exkJhElJ0abpRIBCVpzgPvVjDAvcoeR0dbFXU0aFGJa7EhjDCLV8GvOuS6MJRtpl0w0Wl/j4QCBol3zOe3RcY0Eh+dNZwaDDHP0AIfEZyoYeRdCvY1fTmCAICa7k3SlO4INvgO7WU7A0BDI2zMsTrMOt9q6LRf/D98bOiPAAAgAElEQVRGcng+QF0Bh+5Z08gKc8pRI5qKF6MoKksoDjNbkiWAikaakE+NGnGh/JgH2sc7cYQxQEqS0Q5Y3ZjqjOOiwCkCdNrDd4nK47ROp1MvjsPc7ezs2O7urm1tbdnx8bH9/ve/t+Fw6OlaEYiTroc8MB4487QB48TvyDXvjqmiCrYBexqdUVnV6AWAp9vt+r4vM1sCmpVKxc8x5l8ul/PKuprSCLHGWmG9K8gCVJC9UalUrNVq2d7ensv52dmZZbNZT+8HXGGIF4sbVv7hw4c2mUzs66+/tl//+te2v79vuVzOTk5O7I9//KO9fv3aHj16ZM1mc+k85JOTE2u1Wks1RNAFmqrNOzVNXrOIICd0rjU7yMxcHgAhHJs3n8+9DWQIIOdKmiHf6I7RaOTZFOgSzchizbNVAx2+tbVl9XrdkiTx2hI7Ozs+v4eHh64PWBvIW7PZtE6n4++C9EA3v3nzxqbTqVUqFdva2rLV1VVPsSyXy75Ni0t1G2tD7Uu0z/yMn3G//tTvqbMaHTP9qc9VParP0QhPJB/4XH/GdqnNTetvtNnqzOv9mk2VRk4oRlJdyWfY0mjb1dZodl50DrPZrM9/TFdnbrnY/gS41sBItO1KTCgu4dlKwmu2Fc/neVzqRCt+0bbqpQQ27dMxpO88m/erDVasE8mT+FPnKspebD/tXiyWt+rp3DBvmiKtzrJWoMfxiGSEkgmK2TRAo/Ot61hJqth/vdhPj0xcXV25I2W2vH1N8RjjqzLNOGiW1srKikcmcbS4h9OlIEKQx+vra3dIwUjlctmazaY1Gg0rFAq+tQmnnOr6OM1E3mezmZOkKysrTqAyHlrD6vz83LPjcKIpvousEWWn/arTlfzq9XpeWI+sgiRJ/Hi3ZrNpKysrHhEHb0GckXGHcw55UqlUbHd315Ik8XR1nGawOri43W57FiEE+8HBgWccknnKfELWkfYPNuX+SqViZ2dnnt3I+mKfum5XOj8/962TpNAjj2QWIpesofF47HaKe3u9nmcAQCix/YQsKNrR7/edpNetJKxf7tOi6LSZtcwagvDSDJfZ7KZY4mg0slqt5rKNHObzeScJOCb7+vrasySePn1q5XLZvvvuOzs5OVnyiyCxwApgwXq9bsVi0QsZTqdT3zJKpspsNvPtDY8fP7Z/+qd/+n9DAmAAlP1NY5+VYVZjyRXBRto9mpaml74HxRej7srsq0JFIFRpRkMbHb0ICHimAoY4FpEA0OdHsBMdXIRa06HjuGlUSkGH/k0XR5IkvpD1M2WM1XGJKYCa5qREg84JCwRHiXaoMdbMCr5PNJCIoO6hxlBohoGOE/OnAC0aRpWBmIKpbVIAxFjzbi4ljvRveh//13fr9zQqEZ1dIr7MGQ4bhk3lQ8eedqvDlCY7kXzSZyCb+jnrhTajIDFYRJKVnOK9MMsabUeWYDTZH02aO6w446dzu7Jyc9SNnnnPEXztdttOTk5sZ2fH7t+/bw8fPrQvvvjCtra2rNfr2dHR0VJmDMofJz6SarwPo006mOoVjMdoNFoyaCq7Md2WM3hhjqljQSQZmdAiRzgH5XL5nTN4ITEAO+1224v7kJ5Gu9VRQR4BbGbme9aTJLFWq2Wrq6v23Xff2fn5uW1vb/t8807aCnlC1AOm3uyGOPm3f/s3e/nypf3www92eHhoZmbHx8d2cXFh5XLZzs/P7dWrVx51x6FhnugnBpp2s95It9foIfM6Ho8daLfbbY8GoW+ISrAVBaNMn66vr33OlNwhKwq5ZQ3kcrl3sjsYK95JG9m/qFFA0kAbjYYfs/j69WsvYonskQlD8UnkU+ck7t3MZrP26tUrm06nvk+RlEjGUXWF6ga1ddGRT7NP0fmPz8HGRnI/XmpL49+1Persa1SFZ/O52hBtT1of9P1xDN5HikQboXgiOkx8JxK6ESuobUfPqx5Dl/GZ2jm1d2a2ZKsYL92+omQDz0OXIeOKo+I48Q7apVlM2HYlCRaL5VovtDWOMQ5HWiCAsdX7FRPG8cS2ax/QkVEmIp6LwQ+dZ/QScsZYMg5q+3mObskxuyVpuCeST4yN6sAo49o2+p6GXczMj7vtdrtuMzY2Nty2MufoUY4QxE7TXiVrsFnoLGw76e6ZzG1GJPLI+Ks+1CAUn6+vr7tTRMo9RD4yVygUPMUaGwIZy/0EppToYl1BXiRJ4oGimAFKEEC3v+KYMia9Xs/Ozs58Ox/9VLKHbYZkwjLOKysrnoXX6XTs+PjYRqORZ0JWq1VbX1+3brdr3W7XMzaRMTL7IAaY/+FwaGdnZ5bJZHzrwObmpgcZmD+2tXGkIpFoyBLeh41hrzxFgTOZjB0dHdnR0ZHN53Pb3Nx0J1Xr1zB+8/nc098Xi4U7/ZoJrBhUMxwIYPA7tX6UGI2+GeOsfUYu0aFkDSDnavsgjKj7dH19beVy2QMHJycn1m63vU9kAN67d88ePHjgstntdn1+wC6arUAQAiIpSRLfEsZWBsaT7bW//OUv7enTp++s9fddH0wCxHS7yH7rZ3ox8NHoR0Wqi9HM3lGY+jxlqGNUUyORqjhjGxTIRAYWpluVLm1SxZzGtKbdo8469yi4pU0xUpD2D/CuTLKOje5VUsWsRo7+oJjoh7L7jIcaNp6vQAHlqsZJgQ19UrlQZz7+jI49jgfvitG/bDbr+1+1b7qguZSpVhnUqIXKCCy4RhoUtDDXOOzqoPEcjbJDduiFEtQqsIAm2kuRr/l87uAfxU5/AEqQMdo/FCjjobKI8Ynrlv7gzMJE0z5qPmgmBTKK0db+xfWKcmVLAA6ygl/GjXmgf8gg4wbT3el0rNlsWr1ed+Lg8PDQZZo5Rc4YK7ak6Lxp8Rm+qzKFEYjZAEooaVSEnxhYHFXS35GzyWRirVbLJpOJjcdjP35uNpt5DQSzmzoWSZJ4UZ9nz555PQQMoW61oE/Mkco8Drimp1IBt9/v+77/i4sLq9frfkQgTi/RdU1hHA6H9vz5czs4OLDhcOjyQJFAJQBxqpHhJEn8GEeMrDroepSSpq0yh6z/XC7nRSBVronUUD250+ksAbzhcOj7RTH0sP7M1dXVlYNZ5jcSxzj+gJfr65vKzPV63Y+QRGbMbtJW8/m8bW5u2uPHj61UKtnh4aFX/cXZ6PV6XpyRQoOtVmspu4K+v3371rNLiIrhmOmYRIcxzUnmik5wdD70HrX36pzFZ8f3YHvvemd00Ph7dNrTnCWdKyUl0ggB1ZXRFqtdjziIZ/L8SACos6fRa+xFWnYWWzx4Fu9lPhU3xPHUSHrafChJgf5Soj0GUfhO2vibLUfe9F4NyOjY4pxpViY6NI04V8KfdikO0yxKvfQ+xYwxoyTKGvZNMZ0Gj7SGh44F9kqDIErEsKd4sVj4NiV9hmYx0S+Va2ytZkjod7HtcX2amWdgMaY4jhC7EEToHfpECrnKeJTri4sLOzs7c9uO7dX918zPbDZbqgWjczWbzdxpJ4igc7KxsWGFQsGJFtLPwU0bGxuub9HjpPlzj5JnnPLE2LE9Qeu4aNFD5pNINnay1WpZr9dzQpkxUgwzGo2sWq163QK29THmZ2dnNh6PrdVqeaae1vbSWgV8B/lmXIbDodst3SKpxwzjWE4mEyuXy7a2tubRbsgZZEKDPpoFcX5+7lkTs9nM/49DrroZ+65bDkejkZM8yB39ZOuEbkVBZjc2NlxOVlZWvE4AsjSfz5eOQ9T1w5wjczE4xLomuKmydnp6urTtAFmZTCZ2cnKydHIBeLxYLNqnn35qn3/+uU2nU3v+/LkX4GbbEMdQgxcHg4HPMwGefr9vvV7PDg4O7OrqymXyb//2b+3v//7vUzOr3nd91HaANONitpx6xL3x8w8x8gy82btR1Gh41ZHHoKcREPoMFLeSCMoCq0PP7zErQZ0U7QPAQtuPgkDo4vhEoHDXpUBFFX7cy6LpcdrvyELrfMT+YOxoH86BLhpNkdG+Jkni6c+qmJT1j4REmvMd5UTbSrrUdDp950QADKk6sAoYmVvdaxzJmTgmyrIr4FOZUPnjXo0EcOnY0+a4DvSZGA2YSTV2MTKjjqaSH9reSNCY3SgvTTvjWiwWHhHH6dbiYnpUDzJHOwBumiao469yo2mCrCEcY7MbxUlhNkiUOCf0E6DQ6/Xsxx9/tOfPnzu4wBCrfOMQ7u3t2Zdffmn9ft++//5763Q6TjzoNgEMIOmJFOEB5DEfvIdxYMww4kR3FbhFgEUaP04z1ZU5JoitFldXV9bv9z0FXAkljZApiHr48KFtbGz4iQJra2ue1sZax5hdXV1ZrVaz8/Nz3ws3n8+9mj9jRKQAo6YAlghCJD6J5AOqAA1KYuIYcD8pkZnM7Z5EBYdcgCTkBDllfQDCaCMF+Sj6tLa2tlR8KUmSJaKCaAgOCesd9l6dY1JMkVv6d3197TUb6Eu73bZs9qY2wZMnT7wy8HA4dFDy6aef2vb2tn3zzTfW7/cdZNAf5H00GtmLFy98PjOZjM8V2QSs9bucc5XN9znl8e9pDrH+rs9MwxQ/db3v+fH/0a7ru9UGx2dHIiCSAO9rO/pW8YPa1Yh3uAc9hn4wuyUKYpuiLudebZP+H91L25Swpp1qE2kL/0eW4zMZZx0PJc7TCKHYFzPzLBnsgtlywUEylnSMtR2RNEjDg3o/uk6Jam1b7KeuASUctL/x74xNxF9KukCA4OCBHzQApkEpJV+QmUhOgJXIIkwrWoxzViqVvNp4Npt1O4NjRxtyudvz5VWPRYxuZh6hxDZiN/V++sRzsUWMl0bgFZticxkL9tvzj9R10t2pc0MGIkfrIdsQAWxBIFUeB5BsMWw8/2g//Tk/P7dut7t0eoZiIMZFSYBOp+Nb8DY2NtzOaGFtZAQ5IyMDG8s61iCK2W1dIrYjgME4EhAHH/kbDAZWLpe9/8wD2W+LxcLnnswe2gC5oPWN0kgy7s/n87a3t2dPnjyx6XRqR0dHNhgMrNls2urqqg2HQ98SR9ac2lzmjW0GyLseK6gEJvvoKTCoRIHqXNYuGSXImZJ1zGMmk/GjnHk3gSGtP7dY3J52hO198OCBtdttL54I6YTeUpntdDqOSSApNHhSKBRsb2/P/vEf/9E+//zzd9b5T10fTAKo0UxT5grM9VJW8y6mOhqfNHJA28Fz7zKE0cFUZ9zM3lFckVhQNjlG59VARkZJFXV8LgshEhYRCOjPeKH0AHpq7JRh13bcNT7q2GuaYJpjogwmbVBDh7Ot8xQVkjJuMaVYDbAausjia6YBhf1YCKQsmd2mNwMINNLCP/qFglagyJhpaq+OSZSxNOZenXPtP8qKcdD7kNMIJCKIUPY/zqsSPnxXo9GwoQo0VF64UIC0H+IEQ0m6c4yQsA4iOKTtSr4hO+gP3bMKWVMul5cq92JotOgfSp0U81arZS9evPAKqkq66MV3Li4u7Pj42IbDofV6PWfNeR/AFyeKfnDEGhFcxguihr3+yA/rB8PG2KrsK2FDJIFxhmAjYs8Voye8E0PFlhJS/J48eeJkC1F51gsgATKi1+vZaDSyxWLhWSgAF6LZpHqyd01T3NUgm5kDTS7eyZpeXV11wKIyniSJn1pQKpU8Mv/27Vs//xjjC2kEgFlbW7Nqtepr+PT01AEW75vPbwr49Pt9297e9ogOshr3syqgQbezFlQf5HI3VY4hUiAmIEAAN/yddyRJ4sClWq36uHJsJPtN2drAXn+yMyAjdDzIHqGaMjKkznjU46qbIlnAmlZnOo0Q0Ofopfpe3xP/f5c9THtPdCxjn9RJVaIyrQ36eXQC433R8aMtaQRAHItILNA+xSPqcOg2mTR7RJu03WpPVUaxF0pW8A7WZSRuldyOdlUzBiL2iI5rHAfGifRktroAholqgqN0PCOZo+9WAkj/RlsiOX6XDKreip+lkQCRRIl4jfHX53If9iLiZ5Wl2Jc479iKuC65tre3XddAhGJzZ7OZdbtdMzO3a2ApbASRWX0PfcaxpG1KtNBHZIw5Zmud6l3uS0vfxtZqWj7744lS41gPBgPrdru+bU6z+/L5vBOl/X7fhsOhVavVJecW+wuxwZww79gAIv/696g/WXN6mhBp9ARl2FqnRTgVZ6sznclkXPdDpivGp/1Uj4fc0Zo2hULBjz3EsYUsZ8sAF/cRhcbuqi+EjNIWxoJ50WAJGXla32A8Hlu1WrXj42PPhFAsru9E5ijWi0MOrqF/KysrXjeAeUGu0I/Iopl51iWYXYMRo9HIMQu1L9jKiLMOsaAnNdBeaggQaBuPx+7LmN1gALbSaGHolZUVz3TlVKpOp2ONRsO++uqrd9b4h1wfRQJEBzgqVjXqUeGq45XGDvN/ZT7j+9MMKcKkijEqaCZYnaS0qABtVGOljqf2Mzo+Wkld26b94DsKINPARSRC4jjo82KbtN8R3OilConvIaAsTi4IAFVs+g6dLxSkyomOB0YepckzNItBjao+S1PjUJAwgjhIZuYKDpKA+eOdPEPTe5XhVSMdwVkkYJAlZfEUEKrToJkUtIf2MT56qTNNdDgWH8MoM28q3wDH6JQQleV+DFB8Nyn6zIECFt6j7yKSi+ONo6brlDFlrlUuIpClnUR+YeU1PQ9Ayrz2ej178eKFPX/+fCl1UPsFE5/J3O7XxOlPc2CJCjBvGIBWq2WlUskLD+reXPaNkQWgJJrqQ3WQde3SJ9rJXLJGVf8qAahjTMoiZ/6yL/z169c2Ho9tMBg4y75Y3NQtoG84oURI0G3s+2NOkPtM5iYFkbOPISKm06lXCCfyrLpSswXYdqJnUZMNQE2ISqXihQWRR8AA+/iRXSWkyJyaTCaexUDKIsdMmd2QXaTzIS8K/CAlAEXIsG5TYs4x/qurN2c/M58cFwZQJkoPyw/4ohgo+pho6LNnzzyzg2gOegA5mEwm3g5AOTLB/kVAd9QRKoc/5YjH9fUhdis6rmk2Te1gdCbj/TrHsQ/8Pzrq6riqrVGwjv1kPej3o+1WbPK+8VB8od+JdlvnQ217vC+N4Ig2hnWmpC6XBjrUxkX8puBecZLODTYZXKF/512KA3l2tA/YdcAy68XMXDfwftWtzKvZrX3i2XFrFve8jwDQ/us4c6kDoe9HJyj+SiMhlAigHyqXep9iR30ez9BgAvOvdj7tWllZsZ2dHTOzpWJkRGJxnqj5glONvsaZUnJDt7IoeYSOVCxH24guKyGspAnbCJjv7e1tr0CP48Tc8g7aC1GP4wvRr1kARLXRt91u187OztwJzOVyVqlU/HQC5hfcoJg3yjl4A1sW/R/mKRJDl5eXfjY9Nk6dQY0c03Z0PtgBu6LkDMcqEpXGbiuJQhQbOWLrBGQ174egvr6+ORqafpIxh9xEn0cdbTAKwR4utnKUy2Vv49XVlZ2cnPgWPfDFYrHwgEk2e1PAmOK+7JUn6EGNBtrB2ID3IALYGoPezWazbjM7nc5SccTJZOJBIPwbTo5YLBa+3ZSsVrIse72er30IeY7GBGdSM4pMBI6C5Bjg3/zmN3Z0dGTffvutvXnzxh4+fJi61t93ffQRgVEZqgGLhhZFqI52GqiITpc659FwR8CsBisaS2V79dL2xEsBgRpSfTeLI80J5/1xvFQhRIdd06f5TnyeXvqZOopp48R9kbmP4wpIMLs1wupUxjnTMVCnJjrwqqyi48K7MRZqMOkDbBr7ZmA69WxaVTTZbHYp0o6S0H15EBoKFDTqQJYBAFoda74LiFdwpGOqyoP+xlQ3jaabLbOmyAHvxOBoBFznIc65El3cr4aZfqB8MNxc9JECeLRb15uSAPQ3ZiJgmNUw4iynkSOqJzBAg8HAqtWqNRoNV4wYcZT81dWVTSYT+/bbb71Yjhpi3SJB/2ivmS1FxHVOAStczDGnG0CUAKBg7ZHFmGbPs2KxGZ1rJbrUwWGOGSP2qWUymaUjZ3B4MUrs10fmfvjhB6/HUK/XnYVmjcSqzQAP3SNKdXrakCSJdbvdpb9HmYYMuLq68qg/exP1PfQNQJnP5+3y8nIpRRP54RiqWq3mWwt4npJRp6enfrweEQfmA7DHuJGtwJgXi0W7vLz0dD/aValUvL4AoLNQKHjxPSobI2sQOlQvZq2yHUAjYrncTSGuk5MTrwqs5BUpoWRAkaGDM6BFISEPWLtUGtZL5TBe0bHV76g8Roc4zaF637vSCIBox/S76IzoYOmz9FK9pGvlQ8jyNFwR/ylxwH0aAU0bl2hT9W/x2Tw/Lehhln7UIz81OqjORryPsdFx0K0IGp1WR9bsVl8h79wT26dzoWsdskFPxdAsPJwUgLUGJlSvRtwCfmDd8Vx1uuMcxDFJWxeanaFZFrSdPqVhLb5LWyHyotxq+1S27porxps1ryT8+6719XWr1WqeZUYVePQOY09EFDkCW6kDBZGA/dT9zirDkBQ4Tbp//Pr62m2nngg0GAysUql4Cja4hQCP4kp05GKx8H3U/MQR5H3IEg4ZVerZB050GXvL9g0y7iBIKpWKZbNZr4OjwSGz5aw95h7MSuE/JRNwNhXPIHtkEqg+0DpGmUzGT00AS6kdoQ0QzqorcFapRYA8YyvNzAsLQkKAoSGXzcztrG512dra8tMRBoOBlUolJ/s14yCfz1uz2XQ7TXDv5OTEdTfRcj2+slQq2dbWlmUyGavX67a+vm6dTse63a5nNSJjs9lsqSYCdhwiANyYzWa9UOLFxYVtbW050QIRlSSJVSoVH3vGGsceHNNqtez169du18HkmkmCjiKzjzbz+crKijUaDfurv/ore/78uf3+97+3f//3f7cHDx6k6qr3XR9MAqgzn+bsRAYzzUjedaUZWq5oFPU7aoxoY5qSNLsF3fG9KGUUmtnyUXIoB21jdHIUkESnyGz5mME0kkCjCpr+qn2MY6Lt14hEnK84H5F8UIKCZ6ozqBFG7td3qIFKc/C1vShslO5d4BLDiaLiGbQL44ajxZixmBRg6P4kdZj4uwIM5pCFqYRGZHk1Kh7nnjbM57eR5fgM+h1T6hXk4ZRBimjmhI6LfjfKir6bjBgyMWJkBqNrdmN4taotc0WRFK2rgKLDUKnjulgsR4UgFrQ/yIYeMYPsX15e2vHxsYOFxWLhDDlKFgacSro6L5oOSVsymYwrZNrBSQVaNE2/Q7Sc9cJc4xyS1qVKvVgsWq/XW1rXmkrLmtKxirpVxyLKOIZMibj5fO5FDfk+xp/Ud93SwfF/uhb0GCWiJfQf8gPwkc/nl84gns1mHj1S4IDjypql/6wjgAgkUaVSsZ2dHbu6unJAliSJtdttm81mfrzeysqKPXr0yI6OjjxK+Omnn9qrV698TAAoeqYxWxk4colj9168eOFjjL45Pz932UT2AaLVatXMzPf2bW1t2fb2to89YLDdbpuZOUhU5zCSH8wThZvQg6urq35sETLFmkRekiTxIliMu87pfD63k5OTpf2NUWfE/6tO+imyIO33+J74jDQbgKxHEiDt+Uo0/dQzozP9Pqdav8M9sU3ISAx+aB+0rzEgcdelgJ/3qR7Tdyl5oHY47Yq2njYquctPtdHoKHQF7dH+63ujY63v1v7o++fz25M5eKdGuGNfNYtRnUeIN+ZM5xlZ4Xcdj0jgRGyrjj7v0vmgTTxTMYuSEmoXWccxjRrdxXP1n7ZB5cXsFmPRFx2vn7qKxaItFgsnATqdjtty9BJ2QedW206fwQE4z0Qy9QQonk2ABKLAzJysBbOA80ajkR0eHjoJpEdfY7vBCeo0DQYD63Q61uv1fBvVfH5boZ4Lm97v9+3q6spKpZJtbm66PDUajaX1rJh4sVj4UXk4nuPxeAmD6LyyVs1uTy7iMzCH/l31JuuD8aFGEfMMtoFYgEhgC0C5XH5n+xpONsS6rmGCA6xFTp6BWEcGFEdC0iPnBBEgVubzub1588axHE624g6IFEiti4sLP3JvZWXFzs7OfMsiWXOQI9hQ7CZbBdKOkQQT43ewhjVg1mq1/HdI+l6vZ2tra9ZoNKxYLFqtVvNxo7gmjn+/37ckSWw0GvnJAKwblXGcf9qHLwCWYo188skntru7a1999ZX98z//s3355ZcfTQCYfQQJoFcEA2o8VElpJPIuZRQdb2U9cDDUmY0ONu+NikmdJf2+OtzvIyf4vhoTNQq6eNL6hMHR70Wwot/jHjWyytqrAYjKQJWJfs7/GTdVXCw0/R6Ond7LfGAIYtQXNleBhbYPJ4u2wq7hRCjg0LbQHk0vJC1Zo9kK4GgTgJ85IOIOo6xtoM36LD2jln7wTh3TtH4rsNdnMwdxLaAwtT8oUlXCCrKUZGCOeGcEtLRRiSKeQTqUglwujk8j6ori0wJvAB0MFdFlzQRR4Mr8nJ+fL40dc69gFMWM0ry4uLB2u+2R/2KxaMPh0JIk8bQqChsqsCd9jXmEbNAUvEwm806VXfb/UehlOp26QUMmIYyIKuA4qkOPg0sfmWNN1Y76g3oBEAdkkADANIKthFGS3BSUYc1i5NlvDlhGrymw56gf5pE0XGX+kUnAOvMEqcNckxKIITczB368czwe+/YAnXcqBFcqFS+0xJwBdqbTqbVaLQcJVOtl/k9OTpz0e/z4sa2urtrXX3/twAhiIJfL+fPH47Hvu18sbo/1YR4BFmw7AkweHx97uy8uLuzg4MBOT089TRTgA/EUSUK+h/xxvjJ6C50HaaNnCfM7bWRedRvP+vq6DYdDr3egkUEle+Ol9iPNTqY529H+Rx2gOpF705zv+D79f7T9auejI/o+x0dtuzpb2ofYDtWTqv+irU17dyQW9R3xio50xDfxXrVR3KcZaLF/fA8HBvmJjq8Sg/pMnqV6BxuEroyOThwndVSVLEfvKR7SvmnUXJ1z7DrrlLWrtl0DQbRJbafOneIYlRkda9V50YZqMEEJP/0X5UMxnZIBvDtNnnVOuD8SAbTnQ+YPJiEAACAASURBVC4cvHv37nn6dz6f98KB4BWVSeYMecEmsNebMQVPEN1cW1tzJxwiHWeQudEMMWSr3+9bLpezQqHgziB6lfGg39hZosV6fjs4i76AN3W+IV2VjFdHlXnTjJVcLucn1aC3lYRS7EC71UlGntN0LmPGPWyVYfyQS+wPWyk0s+7i4sL3yBPFZquEbrMEL2NvtEr9bDazzc1NMzPr9/tLGJ9INWPJefdkF04mE3vz5o2TPzjeZFpQ0HFtbc0Gg4H9+OOPfmLS5eWl1et1P1ngzZs3dnp6aqenp0vZjBcXF3Z6emrffvutj9X6+rqVy2UrlUq+BYI50W0A4Cb8g3w+71mLg8HAcQ8ZqWDPfr9vpVLJ+3p+fm7j8XjphAau9fV1L7IM2cNYUY8BwgayqlQq2d7enu3v79u9e/dsc3PTkiSx+/fv24MHD+zJkycftMbj9VE1ATSSqcYWxaMgmkUcQcFdhjIaqKgQo6KLbdM2opDVYEcnObZH267PSAM1d7VLf+f70WgwbjG9V7+v0QZ1MmNb+JsaTGU1o6LmO0TflN1mrlDmjJk6LfFSw0VfcRbVwcOZQYnr+KO4dN7pD8qWBaEVg3UMiXIC3LWiK5+jjHHgNJqt6Y4KXhR80Mco99puHUOUpxpfBUcoViLJxWJxCVjoRbs0OgmoiamHmk6u31UAruAJA868c7HHKwIiCAX6gsPEmGjUn4g0Y6lZDTyDtjM/uu5IweLi2DoiDKR0AipIB2PeGBMi00QJALiQMDjdSuAgN0Qv9HMFr8grzrQWsOFznokzyTgi3/SDaz5fLtrIWmV86R9yjTHXyBIp+hjWwWDgsjMcDn2vHZWScW739vas3+/bYDDwNEfaSnE7DJyCeQWeABAtLsl6V9KLPmuaKE7xy5cvfY42Nzd9PSOPnK+cy+VsMpk4yIOQ2NnZsfv379v+/r5dXl7avXv37PXr10vZRayX09PTJQeKSDqACR3FthN1rDRVFvAAKNKIPc/odDp2dXXl1bDVgce5ge1HlzFegOL5fL5U3Z/3RudxPB67c8Qa4fQD1adpjk4kgtUmRht1FxGgn93l4P/UFcmA+Oz3Ofr6LrXvaje1Dz/VrugAK5mW9nkaiI/9fx8eQq/oPMRxjPOguh/9roEFs2XCPTq7aW2LNiTNtjMWivk0ShoJCVK50d+xlpDaYWwp+hqHRMcY+aZ9rAm1YZFUUd2tdl7HVvVCJCZYC7RTZQv9j5OVZju4eL5mGui4KmGHE6lzqfPBpWtWcceHXGtra/b06VPb2tpyHLC5uWmtVsu3ESVJ4tsDot2mP0T3cVzBAthhovgQzuhRtkNBgtI3xpP3QTarDVIMRVaIEkNa20f9Gb1oB+OPzFFVX0kzCCzsgmJDsAvEsuJbyBJtF3K9urpqpVLJ+8a7GDP6oOM5n889kk6bmHcIb2SrUCgsYfx4mg+BE3Adz6WeAIUBx+Ox2ykz8zarbLAuHz16ZIVCwTqdjhezM7vd+8+WgtFoZPfv37dGo2HD4dCOjo78qGFOj1hbW7OzszM/GaBcLvt2QOSDyD/+CNkNBBYIJLEVgOwNsDj+hdlN9p5mBJiZ4yayE54/f27dbteePn1qn3/+uc9PJCLNzN9HwcXz83PrdDqOX9lmMZ/PvSgipwWA8Wgj1/+UADD7HxQG5P9qRHUBRqOmSi8auaiUo7JVpyYqbu7RZwKYoyOkl4KZNDJBn69tRelre3VM1CCkAZP4efxeZHQjgZDWfnVmtA+MBYpMHXvtC/eqU61zkySJL3CNXgFstY08W6MjjJE6jfRBFa+OpaY687synNpuxgmHlqgrSp+0GnWwcA45OiaXy7ljo/Ouc8L7uEeJD2Wf1bFRWeEIGk3vYZzVSPMdXUsaqdBoTQQC/D0SdNyHk6hkTpLcnlQQ5Ui/pw6pAlP+htNL22Gg+VvMbEGhqmxriinjCogABHKWLO0iMgG5oHJIG9jHrVXnIRGSJHEDzjOVFMG5VkKMSPvKyoo7wrxX5RYjgBMNSFBFrjLNvOkWHeRVQYlmlWiGAc9cXV21ZrPpwAVZp9ow2xSGw6G12+0lUnIymXgKGwZ8PB57SiRrSsE9fcLYQ2ogQ6PRyKPXAFbNcKJNpLtRgInIPtWCtXhTrVbzdUakWyOQ4/HYTk9PrdPp2J/+9Cfb3d31fZHsxddtH4Ap5pVtC6w71rU631opGpCvRzOamc898kNWiZlZrVazjY0NOzg4cIcFPUQ/WavMM2NK5gKyjg4C/CEbpMzS9uvr66WCRRqlS7Pb0fmMTm6avvgQp1zXjH6mz4r2PdqZSNBHW8x3YnuijueeNOc36tA0kkDbk2b/43PR07p+YlvUYUwbP7UF6A7tM3bD7F3iQOcuOj8Rl+jf08YOB0Xtq9pKHHhtdySto2MU28M8oyPUpmsKMmMJXiBzSLMGaLs6/PSVvmmbFL8oMaHjQzYdbdIxivhD5VTtcCQb4jhEciWuFZ6v86xtjtj7Q661tTUvwNfr9fxdEBzqTGOLzW4JSY1U4+iRgm9mTlITBcV+MIblctn3pRPBV2IIYhp9zxipnUEPUuMFuVDCiLWC00pUN00W6CsElGZCcj/PYl5wQpXQ1y0IRHvJLMNxXSwWXtiQn2trax5Zpo2MOeNJ5Xj6jMO+srLiKfMQ7eADzThjzMbjsZXLZe8nRMD6+rqnspONwUkRSZL4yT3UthkMBpbJZKxWq/lpN6VSyYv7YWPBXVycXnN2dmbHx8f29u1bP9aQ9ZHP521ra8t2dnbsiy++sEqlYj/88IOdnp56n7DZmpWiBAn1eNiyQrAD3EhWCwTE3t6eDYdDe/PmjbXb7aVMkRcvXtjbt299ayDPjyfxkGFJNsZsNnMiBnKeWgy5XM7q9frSejg7O7P9/X2rVCqpNuljr4/eDqAKU42eOuvqUEanOhpm/q/CoIo97V51xtT5pG0sbBRC2ru1DxFs8DnKOpIG+j2cwQiCImjRd6rhjwDLbBkYKFOnY6LEgD43RiW0zQAGs1vCBAeKv6nh0DlnHDUCFtvBvYBqPVaDsSCCd3V15ftllc1mzNnXhTNHFI4FpxEysxsHbjweLx27pc61Mqb0FaCAMVIlpIr6LoCLIdR+cqmTQvRZtyCoQ834Mt9aDVkBE+MbTwhANuK86dzzO7LLWkOZa1SH9zC+OEHM03w+9yJtZuZ7MCHg4vt0HdJnXbfMizodGxsbls/n7erqytOjM5mMO6PT6dTToVqt1tJzNV1OU+4x4Mw5MqGKWIkUnOH5fO4MN/MIWEFGdHzor243WSxu6ykwNswPLD/6IJJy/F+dS+aQ7Re63iiWY2a+jhaLmwq6m5ubVi6XfU89EQ4MIYaWyMx8PvcKyurcIyOMEe+ZTqcejWfv4YMHD6xer9vp6am9evXKiTGAwuXlpbXbbZvPb7IINjc3bX9/396+fWuj0cj3HrKnHzJNT2fQ7KYkuakdwDixL3BlZcWq1ap1Oh13yovFop2fn3vxJ77PdhiK/Q0GA3fQ9QxhMhGazaa/i2rA0+nUTk5OloDL9fW1DYdDOz099d/TUqp1/BlzlQN14gGYehwmJzuQ0TCbzaxardpgMHBgiYykkQBpuiztnkgG6BVtt/6LdjbqnXipzqLPem906LgngiR9fyTy4/ui7ebv8TuRjEh7dxpBEQMnPAfbEMkEdV7j+9P0Pn3QKGAkodP6yhiqzYnEgWa+0B5SeafT21oYakf4qU4/z0FXRkKDv+EsKvHLvdpuxg9dmCTJEuhnPDRtXMcjZklEXKjjjG2Mzr7OJzpRHUTGTXEXc5gW3FEHScdbL5W9SBYpvvqYC0eKY9WoBwOOUaKBvjKPzJP+znzRX9L00aMqpxcXF1ar1dz54e+Qt+hrKr6T5QQJxIXcrK+v287OjuXzed8WpRgfZ57PlNQgMwv9q1F42k06vpJv2neIeM34hDxAvgleMV9s0ctkMksBK4gK1iLjBonRaDQsl7s5jYcz5pMk8Ww6yDHej0NOVX+wMAQMz240Gp5Kv7KyYj/72c/syZMn1m637T//8z99Ox1yjQNbKpUsSRI7Pz+33d1d29/ft6OjIzs7O3M9ocWir6+v7fXr1/bmzRt78+aNHR8fe1E/3XaB/apUKvbw4UNrNptWKBTs2bNndnZ25nJQr9dta2vLx4e5x2dgrUFKgEvW1tac4JhOp7a7u2sPHz603/3ud3Z4eGhHR0dmdkNoIROXl5d+skS9XreHDx9avV73SD5bC8hW4KQGTlJAF56dnZnZje7j1AQKTz59+tQKhcL/CgFg9hEkQIzURSMUHQycGlVM/Ix/Q4GoE69ObzSS0SmnXeoIq/JTY6rAmu+ZvZt2Hx0l7WtsR5qTmOaUpzG1cRzj2CgbHQkUmCKMmgJErjTHTvueBlRwROOYMU4oLtrFPWlkCkYDRlSP89O0feYqSRJX5ih8nAo9EoR3YGBZhOqgMQcQHrSPVEScONqj0cRoNHlXBAyMo9ZT4HOcdz1XFZBBmwD+aTKmGQDReVYSJg1wpsm82a3B4J5IdOk802ccTI1ykjKmjqzOOXOnwEr1QpocIk+kZJmZK35YVSKgALu1tTUrl8tenEYBCnv1eTaOPNFqLQaDUdZ76L9G55VYgnEHePA80r3NbMkoMteMt+4TYwxwIHF6u92urwn2wzP3FPwhjYyonFb1n8/n1u12l2phINv7+/teaVdPnlA5r9Vqtr29bWdnZ9btdt15ZG4hIZBzjjTKZDJWLpftk08+sV/84hfWbDbtz3/+s7XbbQcZOKOz2cy2trZcVqrVqj148MCy2ay9fPnSoxKFQsEymZszkQFVOAbIKIw7pATzyD5I/Uy3BrEeNOJDdWIi79Pp1IkIKv7GmhmLxcLPmCaCZnabZZLL3exbPjo6eidrSjNlOKEEMIczQ3YKGVOakaWZDsPh0LdZ8LfpdLq0R1QJhg+J/EZS8a570iKP0b6rrtJnppEA8R61U4oX0ggG7o86kbZGnR37FZ1x/f5dIAwHP9rDNJykkfo02xkdeP6f9p04b4w57YlOQ5z3u8Ytjk3afTi4OC2RWMbWRj3EGtTTfuKFXkf38c5Idui4M35aOC7azLtwnGJcjaTzHZUZUs7RQfRdCRQNkKk9ZEz0nazp2MeIjXWe9VJyjHsZ44+9wEidTsf6/b5dXFz4Vif2fGNn0em8czKZuK5Xpxz8xwkQSgLQJ5xeZIWta2Tf8W6cV3AUTi0Os8oYxYRrtZoHi9Cd6PVut+vt4mKMVSeDD+lroVCwZrPp2Q7oZ/oF+V+pVKxery/hBM2M4fjbbDZr3W7X2u22H+XHOkDG1U7xGXOOXTW7wWmlUskxD9kY2WzW7QNrj4J52HLkmXlg3XBk76NHj+zhw4dWKBTsxYsXfvoCgYWrqyv79NNPbXd3187OzjzKnsvl7OXLl36EIf8g7fv9vh/TSAYI79UgCQV66Wu5XLbPPvvMCwZ2u12bTqdWLpcdK7FmseOz2czHhbGm7+zNZwzX19ft4ODAfvvb39qrV698+2GpVPKCgBT9I4U/FstmLPFl2FYxnU6XtihQGJNMAuamWq16tsf/1vXBJEB0flUhmt1GhgFCekXjf5cBTfue2TIzrgowOrWxTXc5Riyk6HxpNFqfrYZbjSvKPQKXtPGJhkedJ+27gsIImBAkVQAYEhSjGkwFtbEvevH3mMqeNidpgJEFqc9DsSkQYJFEYIDS5acqYj3qiitGE/ScbNLIIRl4B4BLwbqmJ6uC1XTlCLKU3FIHjj7FNEeyEkjfUmVAJE+NgRaFw2FUgMJzVRZoA/3SOdM2KmnG35inmM1AypyCFhxTs1uDpOtCQTU/da+ckhi6jpSAQ441lR2jxL5+IkjqOKFsGX/ehSHmfRrpmUwmViqV/HmVSsWjFzj5uj6Yp42NjaX5xOgjb6wl5gl5ZC5JvVsslutHQGBQJT9JEj+b2Mw8I4Yo82Aw8NMHtOglqWRsPdD20AbmkQwEUv1I36PtsOjn5+d2enq6VGhR09hXV1dta2trqYAQ22DQk+znM7s9LpAsj62tLZ+/x48f26NHj3wv6eHhoY1GI5cLjKYei5jJZBycXl1dWb1et36/v9Tv6fTmNACqCBcKBa8JgfyhOynQ02w2lzIlSAW9urqyTqfjBOxoNHJgSIElohysEeYHfRUBjb4fhx99iTzO5zd7PzXdGVJGSQP0CuOPbCF3EDaq21R/Mx7RMU77GT9Pcx7VIY12WX9/n7PCPKsdu8uWqY6Jek/fF51B3qPOn35P71X9p9hGndPYTx0jbVckctHbzCn6U0lIfW6as67PUrwQAzTvu3T8NOig5D/PJDqpepZ2Rgfc7BbPxDodtBn9rcQxRAL2V9sXx1TtZNwWEWUePKf95qdmT+qFE6F7vrHtbBFS4j/ilpg5p2OQNj/RViqxoPZU26029GMvHEX0xGQy8aLJjAlp1NgT+oNuxrbioENkI48a0WYt4pxOJhOP+NdqNccf4KPJZGIbGxtWrVb96D/mQDMLkANSv0ulkkfCLy8v/dx3Ir7qd4Av9dg77DBYkb3wehoLjh7RdbYi5PN5r3ug0f3BYGD5fN62t7f9+Ller2fHx8f25s0b34uPDWVOkAFk3Mw86MQRtdg/xpXABbaGNYl+oC+bm5vWaDRsa2vLsy4hvAaDgf3pT3/y03pms5ln+ILz5/O59Xo9q1Qqls/nbW9vbymLsVQq+foEzxwdHVm327VyuexbG9mOgF0jEw9yBxmsVqtWLBa9jgRzRlBRA6Kj0ci3EYLTk+QmG6Tb7ZrZzUk/bLO4vLy07777zl6+fGm/+93vlo4j/PnPf25fffWVDQYD++677+z4+NjK5bITJNRjIlgFdkRPLBYLfxe6jUyU7e1tLwIIloxZx/+310fVBFBWWZUPlyoiNcRRUSEEac6zvk+fqf9PM6jx+/p3NQ5qAKMR0L4psUBb1RjdBRS0ffp+HIbo2EeQwuc6xmooogOuxSe0uiUpTWlgSA0qhknT53WcNGLET4RQGW41snpp3+bz+ZLDjpzonn/6FYGOgmaN/pNWw9+0YioOgbZbmXcFV7wzgh4lWjSjgM91PiOISGNpmR/2aMf0Kfa8Y0RVccXFr4CJK4IHlV3aQj9U1nSeab/2E4OhsswetRiV1LbxHk2J1DlWGeN9RHOV8db5AQwRSSBLQZ+NzMQIvc69GnmiWBgQxgV5AIBns9klNl3XC+1gjCBSqECsKW8aldOK7eiqi4sLW19ft0qlYma3+9bJdiGD5cGDB9bpdNzoAtBpF23AMc1kbs7OLRaLngqH8WMOact0OrXXr1+7s6k6kEgHDmyxWLQvvvjCBoOBffPNN2Z2E40+ODiw6fRm6wbAq1AoOGEASYQ8AYza7bb1ej3XYYPBwA0yQKLValk2m/Ujn0hTJDtgbW3NzyNG71SrVU+9IxuE92v9E74DkQBhR5vjWlHHnS1Jqk9IKYVwuLy89Kg8F2NLW5Q8RabREUr2It+65tXOki7LOwaDgTWbTdvd3V3SJ9EupZHBH+I4/pSDqTY92r67npXm7KYRCGrb1WamOVasN438avvS8EhaG+hHtPdKesTvR0wU+xOxhZK0qmfvGit1tjWKrlggjh39QN+pPEZyPM4bz0bHco86zto31gyZXZCWYApIV9YbgQ7WJuv8Lgdd5T2OsbZbxx08wPe0zfo7bY+YAR2P0wGRjVMa7ZC2Jy1zJF6K31SGaEPE1rz3f0IAcK2vr9v9+/e9CBrZm0RLkyTxaCURdoh0Dd4Mh0NvI/aOYA8EutoAnGSK0yXJzX5zyOPxeOzkbD6ft+Fw6GtiMpl4phiFUJMkse3tbSsWi3ZycmInJydLReZoO9iGC+dZ8cz6+rrt7e25DdQMAa0ZhCwr+QuOwP5QIJYtfNjwRqNhzWbTTyQyM08jp93YQogIMuU6nY7vpeckBC3EqAVn2WZ7fn5u7Xbb1tfXrVar2dbWllWrVSuXy7a5uWk7OzseQaet33//vR0eHrq90QLXBEY0QNPpdDwIUqvVbG9vz7MvFouFnZyc2LNnz+zHH3+0arVqjx8/tk8++cQePXpk7XbbtweurKw4ScB4cUoEmQjYcnRFNpv1bFH24xN1n8/nfnwfz6TuDzJP4cazszNP0c9ms/bVV1/ZP/zDP9j+/r79+te/9r7dv3/fPvvsMxsMBvb999874UCglmg+64OaC7R3MplYPp+3Bw8e2O7u7lJm9v/29cEkQIwgR+ecK83wRYDCd1BiadFpNYBp+7Sic8nCTWN804y2KnHuVQZQlbP2ESCcZohV+fJMNZyqoHkfyjKmhqpzynvVCeJ5OBtEiHRh6HwQlY+GkPYAtuOYsphjf1jcWmBLladmWmBcNQMAkMFn3Mf48iwlDRgT2qP7lJETrgg4+L/+5DtaYE0Boaa/87fIquuWAPqhjpSCBAVTtFEdewV5CiJVocYtH9HpRv70dwW4CoYBXhgGHUuAznw+X3JUVN4AZRo51v19SZI4Ew3RA+GkukMdQd0uEfupxCKg4erqys/i5Xka/cFxpL98F+ChzvdoNPL1QT9w3E5PT93B41mMD9/BqST6oQXx1KmDrNICPqq/mDM9MojUMdYH4IcI+nA4dKBhZkvkhxIHyNhoNPI9eUTyqSbPOpvNZjYcDu2HH37wtQGgQnY3NjacTKCfmtkyHo/t9evXPjdEGMgiyGQyzuKjh46OjmyxuCkqSOEdyBIcYOo99Pt9n2ei4Nls1smpfr/v24noGwWDWGvIJUaZz5MkscPDQ5dlBfYUQ1SdApGKHlDSEDAbCyua2TvHBPI9juYaDAZLtS20fgk/NTOA46mQ98Fg4PJF2uH+/v5SReG7nPY02672LM1xj8+7656f+iw+L67jtHajHz6UnNfv3PXd97WDn0oox7bomMXP0u5NI0lidFPHTjOdVM+jS5DTiNnUTsSf0W4pnoip27E9XGnki2I63Veu45vJZFxnxbHD3kQcw3f1+YozFDtF55k2aD8VDzJuGrHWz/kOAQ2+o3MFoazPVJIlkvWMH9/V32mvPk/nD12lc3nXVoufujKZjDUaDVtZWbHvv//es47QZzi+6D8d6xhgiuns2E8lcoiYV6tVq1artrW15dFdHd+NjQ3r9/vuvHIMG+8FQ7Ife7FY+JFstHs0Gi2dL8+40sbFYuH7sNHF2Nwvv/zSstmsvXnzxuWDGjJK7kJaQZxAfpDhBR4hu41ib7/85S+tVCr5lrpCoWC9Xs9loV6vLwUjKLh3dXVlh4eHNhgMvH/Yz3K57M9Hn0CUUEyXLRM7Ozu+tYesB+r1gIeYOyLbpNwTvADnrK+vW6vVsuPjYycrcNiLxaLVajX77rvvrNPpeHSfwEKz2fQtFBAa2GrNziAjrtVqeZ/ZqgP50m63PSBRLBZtf3/fdnd3LZfL2du3b52owq85OzuzxWJhjUbDsySz2azt7++b2c32g88//9wz8548eeJjUCqVvOYF2UIEZPb29qzZbHrwwsz8ZITV1VXb29vzmk2Kyf9fXR+1HSA68yj3yLZGBpgrOsE8R51a/RmNiio+BSTRwKsDFp+lylg/1z6qEo2sL0YlzQjxfNqlhljHACWk0dm0sY2EhxqyyGKbLRffYQGiJHTfFe2Ixk37z7xyH0oNMErkVMEY4wKbhWEA1OLM6Psw9kRR6T/OE+OvKYMoAFjZuy6NqtM3NfRpQE8deSVhmAcWpRozBR7MIw4y6WuaIqgRPCWAkAXmEKcYEoC9zPyNsVK5Yj1pBoHOscoYY6yECVehUHCjhgOpsqGkElFN3vn/tfdtsZFdV3brFB/FZ1Wx+Cq+H91NdcsQJBlG4EDxABIwycgO4Ey+Zj6C+RhE+XCAJEg+7NgB5nMyQJK/BEiQgQZBMoMxnNgDTGzHsGNEAeJYkx65x5IgS90tNbubb7JYZLGbzWLdfBTX5qrTt9jVT9ZtngUQJKvu4+zz2nuvs88+GsKpjjPrlIqF8vpEixIrShQBsBVZ/s/y8R6Wm8YqHXsaEOzP2geVcKDjzyiDarVqSVhYdiX72A9YJo4zTQqo+8DISrMM7ItUbgw7JwmgK76sL7LKbK/u7m7k8/k6I4FhcryGe+f6+vqwtLRkIW/O1fY0sg0BWFZf5kigwaBEJVfiDg4OkM1mkUql8Ktf/coMAnVmaZCxPQ8ODuzcXwC2ssF9mlwd4JFEnO8Y7tnW1ob19XUbjzxqUfsP/yaTTwN0a2vLoqd6e3vR29uLnZ0di7zQ1TuuloyPj2NsbMwUNo+J4hzH62hcLC8v15FabGMmZeRKEMvJhEoanZNOp82QomFSrVYtazHfT4fp7t279n4ljJlPgDk2KpWKJchiYiPfgWwEnQv12gfd518b55yrjtNrdV5TpzvuGYTv8PIztS/UEdQf/z5fDl+3q+POsujfvE9tHL1e9bDKrt/rHMNxqP29kR6j7oxbDVeSgf1UdaTfdqqX+L/qA39eVfih2QRtKb2Hek7v6+7utrKq3aeEKecYrc+4toxrZ71Wn6+LAgq+R6Oi1DbVEGu1NZTU1v6n9aPv83U736nREryH1ylZrvX9qCQAy5HNZjEzM2Nb8jQ3D20ibhVj+3EbHNtSt9oNDQ2hWq3lq+EcyT3RQ0NDmJubw8jICLLZLLLZrG0b43symQzS6bTlHaDNofYmw83puDJpGzPx3759Gzs7OyiXy1ZGrupzxTibzVpenNHR0Tpbh/2A275oy2oyaP7NdzBvzebmJorFokVDkARmhMLExIQdA5fP55HNZrG3t4ehoSGMj48jiiKzazVB840bN2x7Ax1gRrXRAe3r68Pm5qblChoZGbG2ZiTG+vo6KpUK5ubm0N3djWKxiKWlJft+YGDA9CZX8ulEFwoFswl6e3uRzWYtAd729rY58+3t7ZiZ87K34AAAIABJREFUmcHCwgL6+vpw7tw5vPDCCzbHkWhidAWJHtoNJIzion11sYN5pbidQBdvisUienp6bOsD647jsKOjA2NjY+jp6cHGxgb6+/tx4cIFjI+P2yLKysoKZmZmUCgUTEft7e3h9u3b2N3dtYgDPjufz+Pll1/Gzs4OANQlLs5kMpiamsLo6KgtWjzp8H8fD0UCALhvkgXiE/T49/B/34GOMyh8FlYVof6vDc/P1eBkuXR10Xf8fQKC7/RlUOWh1+gETeiqLx1fKiqGQvl1QMXBd8UZOqrwlCjQ9/NZfts1Umq+w6iKRBlDn6zhPbpKrJ+p48I24PPU4FCly/fwXZxkdRWV79cwQh34zjmbHNk3aNyz/dTIIavNcF462Er2qAEap6DZBsrYK7vNCY1OqYaE6YqH9jM1LCibOp9afr9PAPXHnil4L2VsNMEwpG5/f78uU7qSUlS8jCbg2ON4rFarRnzQaaEhpE5ynGPOlXQqGXWeKYcaw6wXDbW8c+dO3Yoz99pzrzzHirYdmW22LUNSlTxkPXCCpkOsBhf7ih+hQHZa611ZeRpLAIw84d9cOeOY4fYFRiBks1kUi0VLaKOrNhwHOgaoPPXMbV1NJvmWSh0nWaSzzqNsuHqTy+XM2NGoBs5/NEYqlQqWlpYs5JMRGVtbW7bXkGdTU3GzbekMkEBjmfl/Z2enjS9+TweHfUTP12UfZB3RSND2Ojw8xNLSEjY3Ny3ElA68Rs8wJFb1EEOD7927h0wmYwYYDTQaRc45i1jhvMn5anJyEqlUCktLS0YGchsOZeRqS6lUsmewf7GvtrW1WQhvpVLB6urqfQSq7yD6zr2vZ/hZIyf0JPg6kL/9VWFft/Ld+k4lBuIcP1+fa/SSfs/x7d+v5VAHkWVVu8a3J/y6VHl8AoDvjrtG9bQ//+t1RCNCw3+278DyeRrB6C+YKGmiBKiSDbyOZdRncz7W/q59wSebOT8654xw0/eqUa+r9X4bcx7Qcvp92tevCt7DOZHlo/7TcG99J6E2kNpTlM+323wbmfeSxPQXi9S+0rbRtnxUpFIp5HI5nD9/3lbAaS9FUWRJV3d3d+vyxtDe5VYP2kJDQ0PmqLNNc7mcRQDQcWdCP+oO5gdgmD+jxuhcArCkdKxDRj5xXzkXMDjP6hGDAGw7KSPURkZGMDw8jLGxMURRhHK5jM3NTZTLZUs+19XVZSu+1IsM/+ZxsiSNt7e3LWSf5dFTfADUjS/2M2aJ5yoxoweYP4DOKyPaKpVabhtGJ1IHZTIZ0/tcTBsdHcXAwAAODw9RLpeNyOYxjCTmmUSbsjCSkDlw2KbUeUxoNzo6ir29PVy9ehXXrl2zPpNKpex0nlwuh7GxMeTzeSOS/DodHh6244Or1aptBc5ms5Y0L51OY3FxEVtbWygWi3aywMHBgUV00BbjlhL2X84z2lYff/wx8vk8crkcpqen8cYbbyCTyeA73/kO1tbWsL6+juvXr9sWDJILjB7lUZtcNMnlcsjlcjg8PDR7oKenx0ivoaEhI+2fBR6KYtDJxlfC6myoIo1TaHwWP/Ofr4a+fy8nOv1eyQd/4vcN8TjHWcvjK1JdtfPLx7L47DHv1Qlb66WR7PoZ2Ug1DHidTugackplqit2fBZQnw+BTiNwTKJQRg3R5/N9OanctA7UGW9EaMQZWcBxojl16nit7ygDxyunfCfriEavHiHI8tOx11UN3YKg0LIQJ61A6RhQI0BZSRI9fCbDjnwyhG2p9UqSQg0Vn9ChMVGtHh8j6BvI7DNadnVgCb6T9cZ6pHJVJzydTtuKI/sLV71JRlAm33H3x6FuHWEGdo1kIZFHJ79ara3Ud3d32143HYt8Po0R/s1ysK/y7FqOIZ3rdLVGjXwSIOxTGgGjERxUnnRSNUqG443kA51UOvfqWHDss19FUVTnwLOPkMQgMUDnnFsz2FYsv570wHfR4S8WixZNoXOBngrAvk1ZSP7QwOezue2DKyms/729PSwuLtoxe8vLy9Y/OPZ16wmTI3LVZmNjw0LruFeQWaSdc5Ypn+ONRhkdea7wK8HDiAYaoSTtNjY2bCuAEmmVSsWOHiTxxQiFO3fuoFgsGoFAQqdcLtsKEFALL+T/ztWih7q7u9HX14f+/n4jONraalsFeLIK9QzbkUYsExfyM5I5i4uLmJycxMDAQN2Y9+c29vM4MiAODyIG/PvjfuuzfQdN56y4a/zn+GVg39ZVPB3rcQ6zPk8dbs4LKvtJMit8W6NRGdSWUZJBSQifSFBZlcz3bTKtS3/sqyOtvzkH+nrQly2OkFAdoLpNFwto82iZON/w7yg6zjvA7zRiju9Tmfw+oxEEjdo2rh2UrOFztB/xfs5bSiqpTattz+upr/12VDlVb6o+8/u/9iuNYn1cdHZ2YnR0FEBtkWBxcbFugY1zqpaLn3OPPwALn+7p6anLdM49/6w/Jv1zzlmyPM7pfPbExISFsvMYV7ZXsVhEFB1H4tHxYmZ4v74Zmcls79Sd/f39GBgYqOt3zACfSqXsfHnqYuo42ix+P6dup71Cfcns+QMDA7h79y5WV1eRzWbrwt65pYG2IFfV6Svk83mLkGhvb7c5vlwuo6enx47s5eIGr61UavvUufo+NzeHsbExXLp0yXTN/v6+6SMdU9z2yKSRbJ+Ojg5zwNPpNLa3t7G+vo6NjQ2LIDw8PMTW1ha6urowPz+PmZmZOnlJkLBuqGeLxSI2NjawtraGg4MDS2BIcp1H87IOGEnAiFwmOkyn0xgcHARwfJTjyMiILRyurKzYUcKsj7GxMZTLZfT39yOXy2FzcxOXL1+2LZbcxhhFkR1xyW2NjORbXV217Syscx4/rPI/Czw0CRD3mb8n7UGGQ5wS1Os4kKhsdGKOc/T9CZzOgoZt+SyrEgO+MtdoBV2x9BlXvlP3hHHQ+89VB883tjQkm8/Rv5Xd1euoHNQo4fOUQdS6ilOIDF+mEQwcGwJ8ryafUjadz9B38X+yoRrSrQaEvwrN1V41sCmXhtqroQvAmFgAdRMr24LvZt1ongHKo+2nIdp+0jb2Af6v7chnaV+h4tZ+wzrwiRR/3Gh9UzEq+AyWWR1blYljgNfTSFIF5YMGmzrOXHGkMuTqqTpR7DOscyVr6ISw7rVfqqysMzpM2u9J7rBfkOmuVCqmlJWIoIPW1tZmSo9ty8+7urqMVVcy6vDwsC7km23OOqPzzvLEyax1qOVm2+hYoqPJPZa6KsXkPloevpur80BtNYXhifv7+ygWixZSz+dpFAD7g54kcHh4aCvUURRZOCGNOb6fDnMURbYiQrZbt0Wwv7N+2V/5TM1azHlZV3Ky2awZTRp1wrGk2xgmJyeNEKpUKuZ8c+WbzjLnC65iMCEh+xtD7XWlUse3Ztfn3FmtVi05Umdnpx0RyP5CQoX1rrkHfIceqBmLy8vLdlQS+zOjcnwilO8hMaX1xNUWjrelpSUjixo5waz/uL/9a+IIhGYcd4Xqeh/qCOrc6zvQnKv1mb5DyvnGf0acvP5CA69XMtD/rtEz46496d2+vlA9wrmmESGhddaIrFA9zPGpBLySDRyzGraubcb3afnVHvCdddVF+j4lGtjOOgf6q/h+v9Bkgb5N1cgm9O1HtTe1nfU371EiVMvqt63WjdYZ36ERbH6baV/Q7QV+v4kjLnzb6XHR0dGBiYkJi1jjliLgeJ7TPs7tbfl83tqGxP6dO3cwMDBg+7I511cqFVsR1vqOS46WTqftWLienh4sLy9bREa5XMbGxgaiKML6+rpFW/GYQzr4rCtGIvAov1wuV5cIkW3Q399v28OYp4eyp1IpW1nmVhb2+52dHWxsbJg93dvba23W19eH0dFRzMzMYHJy0uwVRsRxawPHE5PIsa8wSTB13Y0bN+zEA0ZGOOfMke3q6rK6KpVKWF1dRbFYxNDQkK3IX7hwAQsLC6bvuSeeRMXh4WFd0kQSIoODg5ibm0N/fz8+/fRTXLt2DTs7O7alYGVlBdvb28jlclhYWMDo6KgdJTg8PHxfG6uP1dbWhkKhgNHRURwcHGBpaQmLi4vWj7iFkFEhL7zwAnp6enD9+nVcu3YNh4eHtm2OCwqMSmFkB5119kcSA8x/dPfuXeRyOZw7d87sHLYjIwCZl4dzdjqdtkULbvs4ODiwkyWq1ar1O42ufhZomgTwGU1VkMo4+w69z0D7v33jgZOgOl1xK4YE38vfbW1t5qwo26wrdCqLrhJrWfW3Oq++LOpMUckA9Znz9TlxpIPWsYaUsx78+vFJCN8w4vvJgDJkmZMViRvgmBWnHMo2EzTueZ2GbbMO4gwAv9z6HcvKd2pSLBoj2gdUAaZSqbrEZwDsiA99j5IrKi8AW6nWOuMkrkQKw7TYJmrUqCHEOo8zelk3lIvOhW8csnz+c2gkaMhanOHhh6Ez/Fsda9YjyR8qB44NQiNYKLOeNpFKpcxRdM5Z5loqLz+clERNOp02B1QJCp1ISQbRUKOS495uXsNn5/N529LB5928edMcTlWa7Ct8Bseu7mek8tWxoath+r/OI8Bx1nc6j2SUKWMqlTKDgisP7HNsYya3o4Kl3IxkYf8BUOfYElRAOzs7tkVAjUg63tyvt7GxYePa31ZCcoRjkYaAzoflchm5XM4cb67ekDyggcswRT6LGXFppPBMYM6RHF8a3s6kjhcvXkR3dzfee+89C6lURr2npwcHBwcYHh42+ZmYRxMmdnR0YGhoyEJONzY2sL29bSsQnK9IMDHJlUaG8Bq2IXMGaDTNwcEBNjc3LTpA+zmJSt2acu/ePezs7Fi5mYWa2aH9esrlckbmbG9v1+Ug4XzHvsY+UyqVbAw1IgDiHFQfcffyHt9BUV3t2wqN/ta+SyJMCTTVa1on6jzHOa1x5dP3+yQ74RO9+p1POjSqN3U01YnXsmlUnf8cJX/jHEffIWS5Vafw/ZoYNy7iUec6oJ68V2LC1/s+YeDrKn7GccT+yXlZCQO/jqnjVK/57erbRHo/v/ehxIn22Thnnt9p//O/UwdJ69AnY/hen2TwyQK2G8Pj9ZlKilBHKMnypOBcbWV+YWHBiPq9vT3bEkZ9GkURstkszp07h/7+fgvZp5PEpLtjY2PW10dHR+tsh2aQTqcxPz+P7u5uLC0t4cMPP8StW7fsFBhGBGQyGQuFJ9FK5yydTuPixYtYWFhAd3e3JbArl8tYWVnB+vo6isWiEbUkuCk/V8EZtUVSgiQIHf6NjQ0sLy9jfX0d2WzWEgTmcjm89NJLePXVV1EoFKwP+Pa+gtvwstkspqamrG3OnTuHwcFB3Lhxw/TvwMCAkeXcIz88PIxbt26Z3cHPZmZmbC4gWc5tINwG0dXVZdskuEWAkXxra2vIZDIYHBxEFEWWh8E5Z8TOzs4O+vv7MTc3h9dffx3nz5+3Yw39CLW4/udcbRWfpAn7/MDAgDnWvb291hdpW+jc0Nvbi9nZWUxPT9sJEYxyoJ5hXp6uri6Loujo6MCNGzdweHiI0dHRuuTXrAtu3WC+HwCWu4Lz7cTEBObn5zEwMGD5Mx6m3z8pPHROAJ1wfaXSSLnTMAfuV0js6HyHr4A4QfJ/Ttw6Weq1nExUAflEg69ofaWu96msKhPf6zvgVKIMg+IETGVNuVUxqjLSTuCXQR0lNabUoOB3ysJzYqbRpM4kmSw1IrQ8/IyTHxWLlpVy+XVFIoahV1pen6FWRUXjmGdxclCq00+jmQ6mrobTQKLRz2fTqAdQ9yzKodEhPnvuEy9aP1pfqrTVYdO9jEoIqSOq7U3oyr2+g9dp5AbrQ/u39it1OLXO4xQNnRiuPvI+EgtkMbmvTuu8s7PzvjqhsamGpK5k8ho+m6HqLItmyqcyYwjb1NSU7bculUq4ceOGJV1xrrZXs1gs2ioDZYuiyJQ3STKujmq/8Y1BKiD2YZIabFsNedWwQyWlSHb5BjzbgOONnzFZIcPwAVhSO0YpsE743PHxcWvzUqlkCYF6e3sxNDRkYelUXIyS4ZhyzpkRQOeb8jGErlQqWYI9Zvt1ztX1efa1KIrQ19dn5z339PRgbGwMGxsbFkqvEQc0LkniplIpCyG8fv06qtWqJUvinkTOMcxnQZKCBJYazyQMGJrf3t6Ora0t69fd3d1GgiiJSpKHfwOw7Qc0ntrb280QYb0yKzSNYNYTo5f8fse2YBSORvocHh6akcOoAgB2DBNXj9g/Ke+FCxdQrVbx4YcfxkYW+WNW/1ZnLw4nEQUnQXWY/yx1bKhrdTU07p0+0aD2AXD/aUVxz9D5Mu47jYQjfDvDf7bqBp1zVR/4cvjPVlKE+l31rzqKhB9F5+sT3WrgP5/1RRtOs54DMAcijhjl/K4OvhKRnA/VfuL7ddXfXwDQOuE41IUF364E6o+b1fGvber3Q7+/87lKMvl6V3+UUNDnaR01GlNan2q36XWcs3197/cbn5h6Emhra8OFCxdQKBRw69YtrK6uYnNz00LyGflE3Uq9MDg4aHvtJycnTff45X5YdHZ2Ynp6GoVCwbLRM4kcV4Z7enowPj5uczIdr3Q6jdnZWbz22msYHR01e9K5WnRAoVDABx98YMcSAjA7hXq/s7MTQ0NDlrCws7MThULB7NhqtXaKwksvvYT5+Xk7vo+6qb29HVNTU8jn8/dFyD4Ifv/hogeft729bWHzTHJMB5c6lhFsLL9GuAC1pLbnz5/H1atXsba2hlQqZcckrqysYHNz0/yezc1NOOeQyWRQKBTwpS99Ce+88w5WV1cRRREuXryIvr4+HB4e2lG1q6urWFtbM13b7J542o9EKpVCPp/HF77wBbzyyisoFot47733sLa2hnw+bws9o6OjGB4exvT0NEZGRowsmpqasoWgsbExDAwM4ObNm1hbW0M6nUapVMJPf/pT3Lp1C21tbXaUIvsfjz5eXV3FysqK2UkrKyuWKJB6bGhoCBMTE6fi+CseKhLAd3B8x0EVjU5IccpaV5L8a32ok6ukgj9xK4vMiZPKhBO3Kk0Nm/bl0/L4sqqS4bMINThUIWtkABWf7mGLUzi+ciSUuOD9Sqr4SsB3ZoHjfeuagEPf6TP6Smboc3T1mPWlzrnuheKztMyMVuB7Nbybii8ObFeuAJIU0NBqH6qM4/6nc6jf6b3qlGl9+QpdDRe/PzNigXWsKwxUnmpscMJWZ9k3uLSeeR0Vq55vzjpiu/mOp99PSJrQGWSmVZaHjjnrTYkN3eNI5aARDpRLT5vQvksHnXWsZaOT29vbi4mJCdvDtbW1hc3NTSsjow44Vhm5EEd8aEQEI2e4d15JPSooJsejg0456WSqsc2/mTNADUn2N9aljm0SDZogkKHgzjkLdaQzyPdSifEZdDzZJ6empmxu5J53loltzH5CJpt1yHmXe+uz2az1p1wuZ4SLvyKlkTjcrlAqldDT02NHAjG7MCMf2tvb7Rxj9heusu/u7lpyQW4xiaLIjLTLly+bvIzyGBgYsBDJTCZjJIHOl93d3UZ40Hnu6+uzfYua3JLl8uXUqBCgFpnBfqtbIfw5XUOCuaeUBA+PyGJ98H2M6GAfYAIkGhtsx/b22p5YJkvq7e2tM2j5Xo59hU8OnISTvved8bjrffKBcwJJAPZTnfd0PGt9sr/6ZdDnxzlvvl3TqC7i/vfl8Os0Tp/75LLe58/JcXWjz9B7OeY4L/ikhtpDujDgEwt8Lp1z9n+uavH9GgXJ93P+ZpnjCBy/rtVm0AUdLTfLp9GX/rYdBd9H2fwyaNvHtbHfd1Vn8nvaBKrf2E5qy2h7s0xq6+nfSurqtbpwoXYP65/ztZJhTxp09HiM3dLSEtbW1uzYXhK5XAnv6enB8PCwJYF70s4P7cdCoYBCoYByuYz9/X0jU8vlMtbX11GtVi30PJ/PW+g7y+RHiLS3t+PSpUuWeyCXy6GtrXbqAPU4E9syg30mk7GtDyS+qQe4cKF4EMH6sJiZmbFnFgoFLCwsWB0BsFV46vK1tTXcvn3bjkO8c+cOcrmcPW93dxfvvPMOfvjDH6JSqWBiYgIXL14EALz//vuoVqv43Oc+h4WFBbzyyisYGBiwcZvNZvGVr3wFn332GarVKqanp9HW1maReOvr69je3sbc3Nx9+QYeBalUyhYvSGxMTU1hZ2fHki+z7dVv4ELLwcEBlpeXsbW1hXQ6jZGREczPzwOAJZGsVqu4cuUK+vr6kM1mMTExgUuXLqG9vZZQsq+vDz//+c9RqVRw8eJFTE9PWzTq9PQ05ubmnnnYfyM0TQJQSSjD6jvm6nDqBK9OM7/zGV2gPmwsbuJS1lyVCSd2Na75o0aC//w4ReFP+L5DrWXT79UZ1JA61p3/HnX0dH+6hhsp4UHF4CuruPKoUiFjqYQHy8AJj8pLQ6wbrYJQ8WqGdD6PK1S6X5ky8X2q0DgB0Rmio8K90XREqUCVwfdD/fh87u1Vx1hD37UPaB/iwNaw2bioEzU4tTx+PTBnAVdEabT6qyPci03yCoCFHPOdwLFBpe3T1tZmK5m+IayGs65UsO105VdD37XNdEWTJAI/48oj97yxLemUcdwzjF/HAp0phljzWn98aqgr5VaiYWJiAhMTE0ZQ3Lp1y5Kt0ElUMo7lJ8nEZ+tnGgLOsjNqhGOM+9NZdiozDfnnuGPII0MHdTsDQ86YhE7HYi6XMxKDJIDWha5s7+3tWRJFDQHd2tqyUzQGBwexvb2Nl156Ce3ttVMq6DxyJYNjrVqtZf3lPn9dfeW+OJ5tzHF4586dutMctI9qudn/2TbLy8u4dOkShoeH8cknnyCKorrTPNgWuv2B15CcoHNPAmhkZAR9fX22skDZ9vb2rMzcj6/zKvtYb2+vESlMCMXEghwPd+7cqSPUANiWmP7+fkxOTprTRMMgn8+bkcHEQXSk2L66+sn7eXQQ372/v2+RLrlcDrOzs7hw4YKd533lyhX87Gc/s9MCGJFF558Elr+tS+dSnfce9J2vq30y76TnxX3u6zn/cxL86vz4c1/c8+LkbFSmuOfpHOD/nCQfn+UTj/odP1eyrdE16vhynLFeWBZeoyt6SkyqDlX5ANTpRa0zXf0E6h1Uv83VCQVgcz6/pw5Ssj4uQkMdMtoHWj+8Tu0Kf7uC/2y/Dfw64E+jvs5y0F6gfeKT3NTrWs8aiaA2lm8vs361vn2bR+1dgnaCyvGkHMuT0NXVhbm5OczNzQGAJWhzzln01u7uriVpe5oYGhrCq6++amfT6wk6u7u7GBwcxPj4OKanpzE7O4vx8fEHOmQdHR22dY76jkn7eJoOAMtcf/fuXbtmaGjoPls6bo560vD7rf8dx0lXVxempqbuIyaAGpG9srKCa9eu4fvf/z6+/e1vY3d31/byb21toVQqWV6GfD6Pubm5+4g75xxmZ2frPuMC1fDwcGwugCeFTCaDl19+ueH3HR0dZkNwYYNbPxYWFu5rux/96Ed499138b3vfQ/r6+vo7OzE5OQkfvKTn+Ctt97CF7/4RYyMjODNN9/EO++8g08++QQAMDk5iRdffBH5fP6pyfooeOgDCBs5n5zwfefRNw74DKD+vFWfJdV3abiZstZ0bFkeDVeLm8yB+r1o+rnvUPIzvc4fSFzVo2Lm5KAOF1dnlVnX/1VhKhmi+0P9MvF9mgRHy8dyK7PPZFmawVRZdg3Ri1McrGs608rUa73FhXap7Kq0KCeNbCaMKZfLFiXA6/geP4SVK5/aj5hNlM6qZupVw51GNQ1ztoGuKHCy1K0GvFYVu5IqXV1dxiozK6juZ1cjio4IM4Gz3aj8KQ/vYz3SAGN7+gYb64nOIstMZ1czyipRRnB8cVWR/Y6Oia7KqZPt5xhgPXMMa+g5+wvbjn1Fw6r5Gd/tnDOChU7n9evXzVFn5l/dl09HlHXCPk4HMYoiW2Fnu3AfIRll1jvHEduNhh5Xj5X4UJKPY4V7uikz2439i32PK9Zx0RMcf6y7TCZjxMThYS0BEUP9OI64us/xScKA9aEONbcIZDIZSyrIdmOdkQwgacE+QOeDET48V5oOmxrImUwGCwsLGB8fx+Liou1V1BMoeL1GDHE13jlnIZ6FQgGfffYZ1tbWLDMy++y9e/cwMjKCtbU1m2P0PXTqJyYmMD4+jlKphIODA+Tz+bqznDke1HFhG3d1dWF8fNxW49PptLUjozxKpZLNo/l8HiMjI7h79y52dnZQqVSwvb2NnZ0dIzqUFKMjT93HkFZGA4yMjGB2dtbOMx4cHKzbSjE/P4+7d+9ia2vLykv5fZxkoMb9rc6efhfn0Cp8/RvnzCshzx9fr+t3cc5+nDz+NYSSkrxWHe64lXm1f7RO/Peqfmf98HnqoMc5d1oWdVipn+iQ6me+069h/3FRBH4bqHOsul2dUr/+lexVO4J9gYSwZnnXuvFlVacWQJ0uph7zHXBex/HCutToN76DdpC2r/YrXsdrucUnlTpOcstns261fThvcDsP9adP2mvf4A+v4zUqI5+lUROqMzk3+LLw7ye9Ct+KaDTGgafjdD/v0Pq8fPly3XcffPABvvvd756ZetW62N/fx9WrV3H16lW8/fbbp1eoR0TTJACNGk7gvmEO1O9V9o0Ff4Lk5zrBAsfKQg0gn+lWp1vDu/wOqCuHAOpIAxqsQH2UAxWFP2mq862rsvpeOlm6ssN3akieTuJU2DSWVAnToGZZ9H4Nr9U618ldw/JoEKoDSudMQ/y0nujYqbHCstGh0DbVdvPv8+9ne6qTTcOczoLuIdcoEDoA+h41bsi+8xgUOvZ8PokDbUftG354HeuHDqFPgKmBpW3jO/tsHyW9+Aw/iz5l4nPYXnQs1Lhm32WdMdRYjTu2F8OLKSef7/f5Uqn0D6Io+vdIMJxzbwUZTh9BhmeLN954A9/61rfu+7yRDH6Itk8mx+k6/3PfodfvdC7jtb6zr3Oq2hX+d74Tp/OsFA50AAAIx0lEQVScOqG+DcLv43Q7r/dX2fU5LJeWW3Wa2gj+vX6Z+Z2/IurXGZ+ttoAfFUUdoCSb6kKWTfWZvs+vJ3VO9V1aRxoZxfdRp6ktoM4miUu9RvWXD79sSoBr1CV1I3WsOvXaD7VdWHbWh5Kjapv4pA1wbG9oP/HJKD5HyxfnHMXZxHqP2gxx7aCEGG2tOGJM79X3nGWcdfmfFs56vSZRftdsoZNkBDVCkOH0kfTyA2dDBufcX0RR9IVnWaYnjSBDayDI0Bo4SYazMKe1OpJefiDI0ApopvxnQcZWR5Dh9JH08gOPL8PDxAS99agvaSEEGU4fSS8/EGQICAh4vvA8zAdJlyHp5QeCDK2AZsp/FmRsdQQZTh9JLz/wmDI8/xuDAgICAgICAgICAgICAgICAAQSICAgIB6JDpE6QpChNRBkaA08DzIEBAQEBAQEPAE8DAnwPBgQQYbTR9LLD5wBGZK+TwoIMrQKggytgQfIkHj5kHwZkl5+IMjQCmim/GdBxlZHkOH0kfTyA48pQ9OJAQMCAgICAgICAgICAgICApKNsB0gICCgDs6533DOfeSc+8Q59/XTLk+zcM596pz7K+fce865vzj6LO+c+5Fz7uOj3wOnXU6Fc+4PnXOrzrlfymcNy+yc+8ZRu3zknPtbp1PqejSQ4fecc7eO2uI959yX5btWlGHKOfc/nXMfOufed879o6PPE9MWJ8iQqLYICAgICAgIePpoigQITsGzQXAITl+G4Ay4jwD8IYA3AbwI4Ledcy+ejiSPhNejKHpFjkL7OoAfR1F0AcCPj/5vJbwN4De8z2LLfNQOvwXgc0f3/Fvn3P2HbD97vI37ZQCAf3PUFq9EUfTfgZaWoQLgn0ZRdAnAFwF87aisSWqLRjIAjdvi7wOoAkgD+C8tIENTSJpuB5Kv35Ou24Hk6/fH1e3OuW+6YMs/dSR9rAPJH+9JH+tH5Xn6xH4URSf+AGgDcBXAPIBOAL8A8OKD7muFHwCfAhjyPvsDAF8/+vvrAP7laZdTyvZrAD4P4JcPKi9qDtovUDPe5o7aqK1FZfg9AP8s5tqWkwHAGIDPH/3dD+BXR+VMTDucIEMz7fB3AexRBgDfAPCN0+5XTcodN94/AjAm9fLRaZczptyz3niJLbPfFgB+COCvn3b5G8jQqK+1rAxeOb8H4NeT2BYxMjRqi38OYAPHur0E4LdPu9xNyhY31ltWtx+VKdH6vUH5m9EpLVH+o3IlWr+fUP5m2uEcgAMA5xFs+add3kSP9RNkSMx4T/pYf4AMT6wdmokE+GsAPomi6FoURfcA/AmArzZxX6viqwD+6OjvPwLwd06xLHWIouh/Adj0Pm5U3q8C+JMoivajKLoO4BPU2upU0UCGRmg5GaIoWoqi6PLR3zsAPgQwgQS1wwkyNILJgFp00CaOZbj5gHtbCRGA/+Gc+3/OOZ6dOhpF0RJQqxcAI6dWuubRqMwTABblulZvm3/onLtytKJAtr3lZXDOzQJ4FcD/RULbwpMBiG+LzwO4Jbr9IwB/+5kX9smhZXU7kHz9nnTdDiRfvz+mbh8BsA1gONjyTxdJH+tA8sd70sc68HjjvVkZmiEBWtrYeQCeB6cgkUZoDBLnEJwhZ0BlcADKqJchKdlDX4ui6POobWX4mnPu1067QE8YLuazVm2bf4faytMrAJYA/Kujz1taBudcH4DvAPjHURSVTro05rOWkCNGhkZt0YdaJABRBpB/hkV9HDwPuh1IqF7xkDjdDiRfvz+Cbp9Abbyz/C0jSxN4HsZ74vpYAyRuvCd9rAOPNN6BJmRohgRoWWOnCTzPTkGS2iVxDsEZcwZUhpsAenEswySA28+kwI+JKIpuH/1eBfDfUGNAV5xzYwBw9Hv19ErYNBqV+SaAKbmuZdsmiqKVKIoOoyiqAvgPqI8saUkZnHMdqI2X/xxF0X89+jhRbREnwwltsYEaEUDkAew+y/I+Bp5n3Q60sF7xkDjdDiRfvz+ibuffWv5Tl6VJPM/jvSX7WAMkbrwnfawDjzzeiRNlaIYEaEljpxk8J05BoozQOCTNITiDzoDK8C5qzkDknOtELfnZnz3Twj8CnHO9zrl+/g3gbwL4JWpl/52jy34HtX3SrY5GZf4zAL/lnEs75+YAXADw81Mo3wPBsXKE30StLYAWlcE55wD8RwAfRlH0r+WrxLRFIxlOaIs/B/CCyDAJ4C+fVXkfB8+JbgcSpld8JE23A8nX74+h228CGMRx+U9dlmbxnIz3xPSxRkjaeE/6WAcea7wDTcjQDAnwLoALzrm54BScChJjhDZCkhyCM+oMmAyoTSDbAH4ftf1HfxpF0fvPpOCPh1EA/9s59wvU6v/Poyj6AWpy/Lpz7mPUkqT9/imW8T445/4YwP9BzRm76Zz7XTQo81E7/CmADwD8AMDXoig6PJ2SH6OBDH/gatmcrwB4HcA/AVpXBgCvAfh7AN5w9Rl3k9QWjWSIbQvUyl9BLdnQDwAU0fr68HnS7UCC9EockqTbgeTr98fU7WsAsgBWgy1/KkhEHzsJSRrvSR/rwOON96ZliJrLUPhl1AyFqwC+2cw9p/2DWsbjXxz9vM9yo8aE/hjAx0e/86ddVinzH6MW2nGAGqPzuyeVF8A3j9rkIwBvnnb5T5DhPwH4KwBXjjrpWKvKAOBvoBY+cwXAe0c/X05SO5wgQ2LaIfyEn/Dz9H+Cbn+m5U60fk+6bj8qU6L1+xPQ7f8ijPdnUuZEj/UTZEjMeE/6WH+ADE+sHdzRTQEBAQEBAQEBAQEBAQEBAc85mtkOEBAQEBAQEBAQEBAQEBAQ8BwgkAABAQEBAQEBAQEBAQEBAWcEgQQICAgICAgICAgICAgICDgjCCRAQEBAQEBAQEBAQEBAQMAZQSABAgICAgICAgICAgICAgLOCAIJEBAQEBAQEBAQEBAQEBBwRhBIgICAgICAgICAgICAgICAM4JAAgQEBAQEBAQEBAQEBAQEnBH8f23r0YbY8tdNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.subplot(1, 4, 1)\n", - "plt.imshow(output_op['refImg'], cmap='gray', )\n", + "plt.imshow(output_ops['refImg'], cmap='gray', )\n", "plt.title(\"Reference Image for Registration\");\n", "\n", "plt.subplot(1, 4, 2)\n", - "plt.imshow(output_op['max_proj'], cmap='gray')\n", + "plt.imshow(output_ops['max_proj'], cmap='gray')\n", "plt.title(\"Registered Image, Max Projection\");\n", "\n", "plt.subplot(1, 4, 3)\n", - "plt.imshow(output_op['meanImg'], cmap='gray')\n", + "plt.imshow(output_ops['meanImg'], cmap='gray')\n", "plt.title(\"Mean registered image\")\n", "\n", "plt.subplot(1, 4, 4)\n", - "plt.imshow(output_op['meanImgE'], cmap='gray')\n", + "plt.imshow(output_ops['meanImgE'], cmap='gray')\n", "plt.title(\"High-pass filtered Mean registered image\");" ] }, @@ -362,62 +242,27 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "((296,), (296,))" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "stats_file = Path(output_op['save_path']).joinpath('stat.npy')\n", - "iscell = np.load(Path(output_op['save_path']).joinpath('iscell.npy'), allow_pickle=True)[:, 0].astype(bool)\n", + "stats_file = Path(output_ops['save_path']).joinpath('stat.npy')\n", + "iscell = np.load(Path(output_ops['save_path']).joinpath('iscell.npy'), allow_pickle=True)[:, 0].astype(bool)\n", "stats = np.load(stats_file, allow_pickle=True)\n", "stats.shape, iscell.shape" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/chriski/opt/anaconda3/envs/suite2p/lib/python3.7/site-packages/ipykernel_launcher.py:9: RuntimeWarning: All-NaN slice encountered\n", - " if __name__ == '__main__':\n", - "/Users/chriski/opt/anaconda3/envs/suite2p/lib/python3.7/site-packages/ipykernel_launcher.py:13: RuntimeWarning: All-NaN slice encountered\n", - " del sys.path[0]\n", - "/Users/chriski/opt/anaconda3/envs/suite2p/lib/python3.7/site-packages/ipykernel_launcher.py:17: RuntimeWarning: All-NaN slice encountered\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAEAAAEoCAYAAAApGOhBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXxkV3nm/z2qfZFUWrvd7na3Md4dMAw4rD8cCCEEmGEmBOKEdVhDICEhCYRA4gkGDAEmJGFLYDADGMKWhLDFBmLGBGwHCDM2tvHSbrvdbnW3lpJql0o6vz/ufY5OVZek0tZSd9/n86mPSlW37j333Hur7vO8z/u+xlpLhAgRIkSIECFChAgRIkSIEOHUR89WDyBChAgRIkSIECFChAgRIkSIcGIQiQARIkSIECFChAgRIkSIECHCaYJIBIgQIUKECBEiRIgQIUKECBFOE0QiQIQIESJEiBAhQoQIESJEiHCaIBIBIkSIECFChAgRIkSIECFChNMEkQgQIUKECBEiRIgQIUKECBEinCaIRIAIESJE2CIYY64xxlwVPr/cGPPgVo9pu8IYc6Ux5tNbPY4IEZbDqXpNG2P2GWOsMSYe/n+DMeYVWz2uCBFONpyo74j2dRtjDhhjfnEzthXh5MRpIQIYY84yxpSNMbGtHks7ootye8EY8xFjzNtOlvVGODkQ3jBPGWNS61iHNcZUwu+yQ8aY97d/pxljnm2MuSVcbsIY8xljzG7v/ZcaY763hm1fY4yZDbetxwvWui8RIpzs2MBr+lZjTI/32lXGmGs2ZJCdt/kbxpgfhtfwYWPMN4wxT9rgbVxpjJkLt1E0xnzfGPP4tmUKxpgPG2PGjDHVcB5e1rZMdH8U4aTFBn1HGGPM7xhjbgt/1x80xnzBGPNzGzxW/zd+0hhzvTHmgrZldof3FBPhWG4xxjy7bRlrjHn4Ro4twuZhW4kA4Rd+LTwJx8KTMr/e9VprH7DW5q218ytsf003yJsFXy08WRAqj9YY8+W21x8Zvn7DJmxzxRuObmGtfY219u3rHM9x59FGrDfCyQljzD7gyYAF/vM6V/dIa20eeArwAuC/e9t5HnAt8AFgGLgYaADfM8YMrHO7AO8Jv0f1+PsNWGeECCcdNvia3gX8+jrX0RWMMb8P/CXwTmAHcBbwIeC/bMLm/j78rhoG/hX4gjeOJPAtYC/weKAf+EPg6nCMESKc1NjA74gPAL8L/A4wCJwH/CPwrPWNsCPeE16zZwKHgI/rDWPMIPA9YJbg3mIY+J/AteG9R4STENtKBAjxnPAkvBR4FPDHWzyermFCm1wEjgFPMMYMea+9BLhrE7epG44Rgi+qLxtjTPtC29ENEuGUx4uBm4BrCK6DdcNaew/wbwTfk4Tn+vuAq6y1n7HW1qy1Y8ArgDLwe53WY4x5U+gqKBljfmaMedpqx2KMeaUx5p4wevAVY8yu8PUW+3D4mrMQSywzxrw3jJbcZ4x5prfs2caY74Zju57gpiNChO2Ajbym3wP8j6XuH4wx/9kY89NQ4L7BGHOh994BY8wfGGP+nzFm2hjz98aY9BLr6Qf+HPhta+2XrbUVa+2ctfafrbV/GC7TY4x5szHm3jDa9/nw5n/NsNY2gc8AZxpjRsKXX0QgQPyatfa+cBzfJCA6f26M6esw/oeH3wfTxphxY0wkQkbYzlj3d4Qx5lzgt4ErrLXfsdY2rLXV8Df+6nCZVPgb+oAx5ogJXKeZ9QzcWlsDPk94fxHi9wjuJV5urR0L7zE+C7wDeN8S99uXmcB1NBOO7f3rGVeEjcd2FAEACG9g/wXvJDTGPC6M8haNMf/XGHO5997Zxpj/E94wfssY80ET5o+234yGN5/7w2XvM8b8ZvjD+hHg8Yooh8sueYGZMN8mvJEeAz6x0o+oMeZFxpj7w/f+pNv58PbhZcaYg+FN82uMMY8NbwCKxpi/8ZY/xxjznXA74yaw8BS89x9tjPmPcA6+EN48XOW9/2xjzE/MYmT9Ed0fPWYJlMpfD9cVA55PcCPg79MHwn2ZMcb8yBjzZO+9rxtj3uf9//fGmP+10oattXPAJ4GdwJAJ3BQfDtdXAX7BGHNheDNVNMHNlVNpTZv7Yrl5MMbsMcZ82RhzLJznv1nmPGpfb0fiFL5nw2N7d3icP9jpCzbCSYMXE5z7nwGeYYzZsd4VmsCm92TgnvCl8wluqr/gL2etXQC+BDy9wzrOB14HPNZa2ws8AziwynE8FXgXwfV9BnA/8LlVrOLngZ8REPz3AB/3zvVrgR+F772dDRJQIkTYAGzkNf1lYAZ4afsbxpjzgM8CbyAQuL8O/LMJIunC84FfBs4GHtFpPSEeD6SBf1hmLL8DPJfAabQLmAI+2PWedEA41hcDE+H6IPg++oa1ttK2+JfCMXZy8r0duA4YAHYDf72ecUWIsMnYiO+IpwEPWmtvWWaZdxO4Ay4FHk4Qxf/TNWzLwRiTA65g8f4Cgmv2S+E9hY/PE9x7nNdhVR8APmCt7QPOCZeNsI2wbUUAE+SxPpPwJDTGnAl8DbiKwBLzB8CXzKKyfC1wCzAEXEmgNHdabw74K+CZ4Y3vE4CfWGvvAF4D/CC0uoowr3SB7QzHsxd4Fcv8iBpjLgI+HI5tVzjW3awOPw+cS2AF/kvgT4BfJLDnPN8Y8xTtKsHN+S7gQmBPOC/6Uf4HAoVykOAm4796c/Ro4H8Brw7H+FHgK2Z1eU3/m+BLEAJy8VPgobZl/p1gXgcJjt8XzGIU478DLzLGPNUY85vAYwksUcsiHONLCb44x8OXf4NArewFbgb+meBmYhR4PfCZkBC1r2vJeQiFja8SkJ59BOfF55Y5j/z1dkOcnh3u8yPD5Z6x0r5H2H4wQa7tXuDz1tofAfcSnI9rxY9DMesO4AYCKy8sRskPd/jMYTpH0eeBFHCRMSZhrT1grb13mW3/QSiGFY0xurZ+E/hf1tofW2sbBM6tx5vACtkN7rfW/l2YqvVJguthhzHmLILz/21h9OP/EFy3ESJsKTbhmrbA24A/7fAb+wLga9ba60OB+71AhuC+Rfgra+1D1tpJgmvkUjpjCBgPI/NL4dXAn1hrHwyv5yuB55m1uRyfH4rgNeCVwPO8bQ/T4bsqfH+czt9XcwTzvstaW7fWbpvUzQgRfGzgd8QQnX/TtR1DcG39nrV20lpbIkj1WWt60R+E12wJeBKtPKrjNeu9ttQ1+3BjzLC1tmytvWmN44qwSdiOIsA/GmNKwEHgKPBn4esvBL5urf26tXbBWns98EPgV7wbxj+11s6GPw5fWWYbC8AlxpiMtfawtfannRbq8gJbAP4svFGtsfyP6POAr1pr/0/43tvCz68Gbw9/AK8DKsBnrbVHrbWHgBsJUiiw1t4T3jg0rLXHgPcTCBMAjwPiBDcPc9baLxMIKMIrgY9aa2+21s5baz9JkFv8uG4Haa39PjAYkusXE4gC7ct82lo7Ya1tWmvfR0BIzg/fGyMg058kUBNfHM7/UtANx0HgPxEIMcI/WWv/LVQwLwXywNXhufIdAjJ/RYd1LjcPlxEILH8Y2ipXc1PSDXG62lpbtNY+QJBPudSNXYTtjZcA13mC1LWsL6L9aILz9wUEgmAufF3rP6PDZ87w3ncIUwreQPAdddQY8znfkdIB77XWFsKHfvB3EYhYWmeZIOJ3Zpf7M+Z9tho+zYfrnWqLFN5PhAhbj42+prHWfh14gCCQ4KP9+log+I3zr68x73mV4PrBBAX/VMTzNwmuy+EVCP1e4B8k9hGIjfME9QNWi8+HIvgO4DaC32VhnA7fVeHYhunwfQX8EUFw45bQwfffOywTIcJ2wEZ9R0zQ+TddGAGywI+8a/ab4etrwXvDa3YfgXjnB8c6XrPea52u2ZcTBFHvNMb8u2krIhhh67EdRYDnhhH6y4ELWFSX9gK/5kWiigRK1RkEP5ST3k0kBD+UxyG8qXwBAcE8bIz5mmmrgOmhmwvsmLW27v2/3I/oLn9c4Vgmlp+O43DEe17r8L9uAEbDm/pDxpgZ4NMszuUu4JC11nqf9edrL/DGtrneE35uNfgUgd34F+hgQTTGvNEYc4cJcvyKBMWBfDXxq0AM+FkXBPvzITkZtdY+NVRfO+3bLuBgm6XpfjqTluXmYQ9BFHO5qMpS6IY4dbyxi3DywARpQ88HnmKCQqdjBHl1jzTGPHKt67UBPg/8gEVX0s+AB4FfaxtDD/CrwLeXWNe11lpFLSyB82k1eCj8rLaXI4heHCIQKSH4DhV2drnew8BAuD7hrFWOLUKEDcVmXdMh3krg7POvl/bryxD89hxaaWXW2mfaxSKenyH4vqjTKpC34yCBS7LgPdJhkGFNCInQq4ErjTEiDN8Cntl2fUPwXdUgyKVuX8+YtfaV1tpd4fo+ZKIq5BG2GTb4O+LbwG5jzGOWeH+c4L7/Yu967bdBfaw1Iww+/S7wAbNYX+BbwK8ar5NJiOcTfG8cV/PLWnu3tfYKAtftu4EvdrjmI2whtqMIAIC19rsEdvX3hi8dBD7V9uOUs0FxjMMEUWf/x3PPMuv+F2vt0wkEhDuBv9NbbYt2c4G1f2a5H9HD/rjC8Q6xOXhXOLZH2CAf54UEKjrhOM5syzP35+sg8I62fcjaoAjIavAp4LUEDg5foMEE+f9vIvgCGQjVx2lvjBBY+O8AzjDGdIrUdwv/GD0E7Gn7IjuLzjdVy83DQeCsJaIq7edEO5YjThFOHTyXQAC8iMDJcSlBas6NLKbKrAdXA68yxuwMBb0/AN5qghZgGWPMTuBjQB9BFd8WGGPOD9NtUgTkoBaOdzW4FniZMebScD3vBG62QWrBMYJz+oXGmFgYuTunm5Vaa+8ncHr9D2NMMrRXPmeVY4sQYaOxade0tfYG4FZaI4afB55ljHmaMSYBvJGAJH9/DeufJhANP2iMea4xJmuMSRhjnmmMeU+42EeAdxhj9gIYY0aMMevuHGCtvZOgxtMfhS99ikC0/IIJ6h0ljDHPIEjVvDIcawuMMb9mFtudThH8zq72+ypChM3Ghn1HWGvvJkj5+6wJapAljTFpY8yvG2PeHAaz/g74n8aYUQhSp8NraV2wgdv6IRbdSf+T4F7i48aYneE4riAQLv+wLahIOJYXGmNGwnEWw5eja3YbYduKACH+Eni6MeZSgkj2c4wxzwhvKNPhRbHbu2G8MrxIHs8SN4zGmB0mqLabI/gxLbN4Uh4hUN2S4Kx3q73AlvsR/SLwbGPMk8Jt/Dmbdwx6CfataIJ6Cn/ovfcDgn1+nTEmHo7vMu/9vwNeY4z5eRMgZ4x5ljGmN9yna0wXfYyttfcRpCB0KoDYCzQJOgnEjTF/SvAFQ7iN/w94GcGX5ouBvw73Y724mSBC+UfhjcflBOdKp2Jmy83DLQRiytXh62ljzBPDz7WcRx2wJHHagP2LsH3wEuATNmhROqYH8DfAby4hIHUNa+2twHcJr20btOx7EUHUYRy4nSB/+InW2k6OoxSBkDBO4DwZBd6yyjF8myCt6UsE18M5tKZLvTIc3wRB3ZLVkJffIEh5mCRICzsupShChBOMTb2mCdwArpCwtfZnBAL+XxNcp88h6KA0u5aVW2vfD/x+uJ1jBGL26wgK+UKQevcV4DoTpGXeRHANbgT+gkC0HA3T4H4x3P7NBIUR30+QSvkXS3z+scDNxphyOMbfDe8xIkTYTtjo74jfCT/7QQIifS9BDS/VyHkTQe20m0zg+v0WrTb+9eAvCO6VU+E9xJMICnfeTvCb/vvAi+zS7YJ/GfhpeM1+APj1Nud0hK2GtXbbPAgqU/9i22sfJqhICcGP0XcJbgqPERQKPCt87xwCpa1EYKH5W+Dj4Xv7CFTjOEH0/7sEUeciQXGti8LlkuE6JwkK6EBwwr8T2E/wQ3UH8Dvhe5cTFKDzx9tDcGH8LBzLvcA7vfdfQpD7N0FAjo/bZ2/ZawhafrXsg/f+g8Dl3v+fBt4aPr+YoLJ2GfgJQQThQW/Zx4Svlwkqin+ZoAiX3v9lgsJ9RYKb+y8AveF73wZeucSYj5sT771XADeEz2MEPUhnwvX/keaCQAw4QPCFoc++m6CYn+mw3iuBT680h95rF3vnwO3Af11q+RXm4SyCm6cJghu0v1rmPGpf72vCc2OSIO1ht/eeBR6+3D5Ej+gRPaJH9Ige0SN6RI/oET2ix1oextqVnMsnJ0zQQ/ZOa+2frbhwBIwxNwMfsdZ+YoXlksD/JUgzmDshgzuBMMb8b+Aea+2fb/VYIkSIECFChAgRIkSIEGGjsd3TAbqGMeaxxphzjDE9xphfBv4Lixa3CG0wxjwlzOuJG2NeQtBf+Jsrfc4GFfUvPEUFgDiBjSqyGEaIECFChAgRIkSIEOGUxHrz17YTdhJY2ocIbPK/Za39j60d0rbG+QRFh/IEtvTnWWuX7Ed6mmCMIIXiS1s9kAgRIkSIECFChAgRIkTYDJyy6QARIkSIECFChAgRIkSIECFChFacMukAESJEiBAhQoQIESJEiBAhQoTlcSqlA0SIEGGDYIyJLEIRIpzisNaa6FqPEOHUh7XWQPTbHiHC6QBd7yuhaxHg7LPPtgsLCySTSRqNBrFYjHQ6TSwWA6DRaJDP5ykWi+RyOTKZDPV60A6y2WySTCZZWFhgdnaWmZkZUqkU+XyeWCxGtVql2WySSqU444wzsNYyPT2NtZb5+XnS6TTxeDDUeDxONpulWq0yNjZGs9kEYG5uDqU29PT0YK2l2WzS09Pj/urz9XodY4L5Mca4VgmZTIZ8Pk+z2WRmZoaenh7i8Thzc3Ok02m3rXw+T6PRYHBwkJmZGbd/tVqN+fl5ms0mvb29zM4GrXxjsRixWIx8Pk8ikaBerzM7O+vWX6vVMMaQSqWo1+vE43ESiYR7H6Ber7vt9/T0kEwm3baMMdTr9da2D8YwMjLC3NwclUqFSqXC/Pw8sViMeDxOT08PjUYDHdNms0kul6Ner7cc03Q6zfz8vJs37dfc3Jybd40lHo/T29vr5lD7Yq0lFou5+ajX6zQaDbeORCLh5qjZbLKwsODGMD8/z8LCAolEwu3bwsKCW6eONcDCwgKpVMqNa25uzh1fvW+MwRhDIpFgfn7ezV0ymSQej7vta9vWWhKJBAB9fX3U63W3Xp0TOp807z09PSwsLLhzb2Fhwa1Tx1THX+PV53RexmIxFhYWmJubo6enh/n5efdX4/IfOre1n3rNGMP8/DzJZJK5uTlisRjJZNKNWWPU+qenp1f84rC/tNISrTDXrW75CCc37A3dL2su36xRRNgI2F9Z3fLm65szjgjbE/am7pc1j9u8cUSIECFChNWjaxFARK9WqxGPx5mfnwcCsiVyCJBOp2k0GlhrSSaTxGIxUqkU8/PzJBIJR2p8MiXy4pMqkcdGo0G9Xiefz9Pf308+n3fkKJVKkUqlqFQqjkgaY2g0GsTjcWKxGLVazRHfWq2GL2Ro21rWGMPs7KwjYtq+tZZqteoIcSaTIZPJEI/HyefzQCB0zM7OtpCseDzuCFl/fz/VapXp6ekWYpvNZh3J1JjS6TSpVIrZ2Vn36Onpoaenh3w+TyqVIpFIUCwWndAikUMks1AoUC6XmZ2ddSJIT08PiUTCCQcSJJrNJtZapqamiMVi9Pf3MzMzQyKRaCHGhUKBarXqjqeOWTqddtsfHBxkcnKyRXiZm5ujVCo54j03N8fCwgLxeJxkMunIrU/SRaj97ev8McawsLDgtrGwsEA2m6XRaDhhZHZ2Fmute1/nsDGGSqXC3Nwc8XjcbUvHX8vVajUntogsp9Npstks9XqdRCJBuVymXq+TTqfdMdJcxmIxR9a1D74AYYxxy+qYaJnZ2VkymYwTAjTX/vgkCGl/dQ5qe75IpGspmUxirXUCgN5PpVLkcjkKhULXXxyrgf2ldQoBH/MCF6/oStzcNnif9/yNWzaKE4fVCABafrsLAfapYL6z1aM4OWB/5fQVAk67a30FAUCkX8vZm7a/ELDu36oIq0K+fNQ9L+dHt3AkESKcnuhaBBBpEAGbn593BFWigKKJqVTKOQFE/gAX4Ra5FEkUmS8UChhjHIEyxlAoFEgmkyQSCScqSFgYGBhgcnLSRfELhQKlUonZ2Vmy2SzFYtERS5HlWCzmiJcfMW00Gm6MIppyIVSrVUZHR5mdnaW3t5dkMsnk5CSxWIxcLucIbTwep1KpEI/HyWQyNJtNN+5KpeKIdX9/P/V6nVqtRqlUcgRN5FBRbI1LRM0YQ7lcds4DrV/7pkh/s9lkbGzMEVs5HCYmJlzkXmQwFos50UTR9lKpRCaTIZFIOGFG8zEwMOCOuUi3Pt9sNp0bQvMxOzvbQuBF9ufn50mlUs4hIrLuP/zX5OyQsKL3NDaJU9Za5ziQ8NFsNp0QJCFHwgDgBIRMJuPekzih8SWTSXbu3EmtVqNarQI4sl+pVEilUi1Ef25uzp33vnNDcyqxSeeQ7/SIx+Pkcjmy2awTOsrlMuVy2TlG5IjwhR0JJzqn9dlUKkW1WnXnfTqddm4LiQaA268VvwuuW70boGuI8Ivsf+zUcC6eFqTghuMJvf+avQE4C5gAKiduXOuF+U4gBOj56QTz9dW7AU53nBbXegdCfzKQ/JXg/7ZFYsDGQoRfZN8XACKc3LAXtP5v7tyacURYPboWAVKpFI1GwxE/YwzZbNYJAM1m05FnwIkEPT09zk4/NzfnovGKvouE7Nixg0suuYRdu3YxOTnJ2NgYDz30EPV63RGzhYUFGo2GIzKNRsOR0mw2Sy6XAwLiXCwWnQ262WySTqcpl8sttmy9X6lUyOVyLeRRRHZubo6RkRFHQBUB9u3c1WrV7fuOHTtIp9OMj4+3RHkbjUYLYVNUf35+nnq97t7TnCiCb4yht7fXpVL4FnIRW4kKck0AjkBqbjRfEhgkxgDOKi4RR3PYaDQcWfXFGe2XyL9ei8Vibt09PT2Mjo4Si8UYGxtz7gHNk8Yu4qv9hkUhRuORYORHy5X+IWGop6eHXC7Xkh6icWkdSvPQtnSuah/n5+fJ5/PusxpjLBZj586d7Nmzx51Xk5OTLYKCXAUal46RxAo/raBSqTgxS2Pt7++np6enRUTRuHS+V6tVFhYWKJVK7txVWofmX+eWPuunVyglw09P0PxpLrqFbpC6uWFaVjBYiuQv93ooELzTvsG9/Bbzl8tsZOtwOhCCrtEPNL3/t31Fmi8Czzsxm7oyPN+v3H5OF0X2JQYsF+nfLMHgrfaP3fOrzLs2ZyPrRHStL42TXRyIsHosRfKXez1yA0Q4MbgO2KxIVht+Ev62X7r9ftthFd0BFCVU7rQi6YAjHbL4z83NMTU1BeBIn0/qRM5kc242m0xMTDgbeTabJZ/P09fXRz6fZ3BwkKGhIYaGhhgeHqZQKJBIJJidneXYsWOO7Pb09JDJZBZ3LtyWUgwKhYLLIffz/RUNl+W9p6fHRWj37dtHOp0mn89TKpWYmpqiVCo5UqpcfEXue3p6XJ0AzYkIoAgm0BI5TyaTru6BxBPNrdIL4vE4qVTKEXoRc+WR12o1arWa23eJCADlcpmJiQlHoJUmIeFGcyAy7efoi6iKKMpOL0FFEX2RaGFhYYFyueyIr5ZPJpNks9kWp0GhUCCTyZBOp51LQcfAz1n33SOyvPvH2k8lSaVS7hiL9PvHSuKU6ggorcMXKVTH4bzzzuOCCy6gUCjwsIc9jJGREbLZrEvl0JyIjDebTScMSQDQ+a7rIB6P09fXx8jICPl83pHwTCbD0NAQAwMDTtiS+0ZCg9JBNP++UOLvL+DGJ8gNIdfE3Nwcs7OzLtVntegmWrLkMmuN8n/MtggA2w3v6/K1Uw1d2fqPAg0gDuZJwWM7Y8KmnQsAaHm+KbjSLgoC2wzd2PxPt1SA0/ZaXwWpP5kEAF+w3jS322mAtUb5I3dAhFMWP7GLgsA2QtexGBEa36ovO7ny2NPptMsr96PHiob6Bfb8ugKKUP/0pz91dnrZ5lVMT8Q0mUy6NARFPmWFTqfTjsgoL9/Pra5UKi35/oKf5nD06FFH2lSEcHp62uXC+8JHLpdz+6d0AqUnKEVB0dp8Ps/MzExL9BtgaGjIETzA7Y9I7tzcnNu2PqtaAH7BO6UGAMdtQ+4J5cnL9SAS7e+vCLfIpkisIvnVatUddxFRuUMkBgwODmKMceNUIURZ5v00BpFREf90Ou3mwRdX/CJ5vjggcq2iinNzcy258UpTyWQy7vNanwpbisTLZdHX1+eOWX9/P/v27aOvr49YLMbRo0eZmppqKchnrSWfz7tIfSqVainoJ/Iu54TqDEBQZFKCSCwWc8dVLgQ5MnRO+MUDZev360L4qSS67nSs5YqRcCDBRfOnuVkt1mybXKvl/xWGt7wieLodxYA3cnoQgZWg+gD2BmAHUAd2Abm25Y6A2XEiR7YSvri5q9+mJL8bbBXJv8q8q8UNsF0QXesBTqa8/wibj7Va/iMnwMmH9lSA9ve2V2rAdW3PN1jp24YkfyV0LQKI+EkMUC68n/eeTqcdWZqamnL5+O1567LgK+qcyWRcasF9991HIpFgYGCAffv2uYJ6ymlOJpNUq1UmJiaoVqtObOjt7SWVSlEul50zQSTSt6HLqi7iI1KUyWRa8vPz+TwjIyPUajVXPT6Xy5HL5RgbG+OMM85gcHCQHTt2cM899zA2Nub2UQXt8vm8I8DVatUV7JucnHQV9kUSY7EYmUzGkTO/mrtIOeD+h8Xot7olKJ3BFxFmZ2ddQT5Fhf00Ba1XooFs7Pl83lnKdayLxaIjqCK9zWbTEWzA5f6LtMtJIDFEKRsSiDKZDH19fS3FD5XaoIi3xixy79cZUN0IkX+RZB1zEdt6ve5cFEpZMMYwNTXlzr9YLMaePXtcGoNqVIyMjGCMIZlMunOmXq9TrVbdPohQ+ykxPT09ZLNZZ/FXLQwJProe5FxQ7QKReblYJHABLo2hVCq5/dI5K5FO3Tt0beiYqnaBXzdBRSh9IeqE4xXmlMn9j7AIVwvgewR1ACBICdjWWFkAWFd9gG4FgCvttkwNiBChE05V4h/VB1gfyvnRKLofYZtgky/ibgWAn9htlTgwzO4AACAASURBVBrQ9V2/X0gMcIXUFK2s1+uceeaZnHXWWUxPT1Mul10UW1FyrUeF7URiS6VSC3mCIP2gp6eH4eFhisUiEBDJ8fFxKpUKU1NTrtCdb1uXzV1kSdXcARdFFgFShLxer7siayJP1WqVYrHI3r17GRgYcEXzNJ75+Xn279/P/v37Xc6/RBKJG9onEdt4PM7U1JQje6lUyrkUFMUWeZd4oJxtoCX9QGKASK9aNqbTaSqVirO/KxqezWadJb+9Er7SM2Rn90Ub7YNEAokHGp8EBlh0FKjoodajcfqFGAH6+/vd5xWV1xhEVFUwUd0g/I4SEqAmJyfdPCiy7efAS/iRUKE0DYkvPT099Pf3MzAwwODgIJlMxglLKm65sLDgUk1UuE81BuTSUI0AOVR0bUiQksNFwpMcFvF4nHK57N5PpVJO/NK2VQhQHQmUbgI4V47SbkTm27se+A4BFeP062RIaNgSrEYI8OoCbCQebW/s+PqPzZO7+nwUEewM8ySwtxI4ADwXgD2yVSPy0V3UX4R/XekAq3UAbOM6Aac7omv91EV7vZsI68NqhIDNqgvwcXtFx9dfbj674duKsLw74MThBCp3q3UAbKM6AV2LACKrIp9qs5dIJFx7sXvvvZcDBw44Ei53gAiRyDYsRrEV5VYuvLYFcOjQIRfxnZmZYXJykkolKCstoigynU6nXbRYrfYUnRUR8lu1+b3tRfD9tmu+RX10dNS1x0skEuzdu5dSqcTw8DBHjhxx8wGLEW61LdT/SmHIZDKMjIy4vPpUKkVvby/5fJ5iseiIrcYq0qtoM+CIXqPRcBZ0uR+0L4rEq1CdItCaB+Wsj4yMMD09DeDIsoh4f3+/s5zr2CvFQrUV/J7zuVzORfN1bigC7rcB1L5p/IATRCQeyR6vvHcJCRKitG0R+fn5eXK5nBMB1JXCP181N4qQa78qlQr79u1zDgClmjz00EMt5+Pg4CDZbJbdu3dz4MABJ5hYa6nVam7eATffOjY6l3Sead/0Oc1bf3+/O4/kwJicnHTFIyUIZDIZKpVKS7cFpWhoH3Tc9dx3U6gNIuBSNSQSbBmWEgJ8wt9BANjsooCPtjd2JQQsVRjsfd7f07Z42DL3dVuXCrCyAPD3vIDfOuuTHd9bdevAK81JnQqwHbBdigJG1/qpiaUi/lHrwPVhKSHAJ/xbURjw4/aKSAjYRGxdKkC3F+sGpQRcak7KVABYhQjg55krUirSpWh+X1+fI/4q9Hbrrbe6PHBYJLAiRBIBZOf2ybry63t7eymVSi46rfdFLEU6Z2ZmKJVKLvoOi44CCQEiaorW+hXp1aNdkXwVS5ucnAQColqpVEin00xPT7vPNxoNlypQqVRchFsRW6UhiMzGYjFX0V8kUnnfgBNHRMqUjy+bvG/396vBaz0i2n6dBJ+gymYugiyyCouFCFXDQF0V/PED7lirDaMECok2voVdIoCOhcQZFUX0c+YVoffz02u1WkshR4krfl0EkWgdM43Xj977LhSddyLrclwotUG1DNTqsVAoOLGjUCgwNDTkoui1Wq2lBsDCwgLZbNZF22FRtNJ2dT6qKJ/SKjSP2jedy353BIlU/nv+/xI9tF45Afzz33eRCH7bxNWgPQ90XXmhKzkCPAHgRNYD8F0C3ToDtgqfAF621YNog9nROfK/nQUAgNea54AFrgmEgA1xBKwW2yg1wP4HmEct/f9mYTvWA9gO2I7X+qmCyBGwsVjJEbBV9QB8l0AkCKwe5s7Okf/tLwBsA2yD1ICuRQCRY+UvK8IOi3nKAI961KPYt28f8XicgwcPcvfddztC40f9RQx9e7qi+X6l+VKp5MiPX2NAy4i4jI2NOZIoIuWTo1Qq5SK8flE5EVgRq0wm02JJHx8fp6enh9tvv51du3YxOztLo9FgeHiYQ4cOUavViMViThRQO0I/V3tgYID5+XlmZmYcCR4aGmJ8fNwJG8pzFxnWvEpkEdH0CaBf6V9zK+eFKu37gkgqlaJWq5FOp50tfWZmxpFDzanmSm6DdDrt8vlVuBECci6xAXBkWWPwUwmSyaRzFmSzWUeqVcthZmaGYrFILBZjZmbGHVfVJZADIJVKtRTWkzChMUt4aReKAHK5nBOw/JoMfr59pVJxIoDSOPwUmFQq5WoEFItFqtWqy8f3XReAc5nMzc259Bntt463746p1+vuPM7n82SzWfr7+8lkMq4mh8bpdwUQ0W9PuVDhRp2jEgx0rFQfQSKZ1t8tVAyq/fm6ISFgBcv/dm0L2I43Av8K/MIJ2t5GkILNIBfvGg1Em+fxRc49+uA2Kwa4NF5rnsOHLLzWLDoC1lQPABbJ/GocAXHgKgtv3bqbBfsfnZ+fKGwXB8BKiK71Uw+RA2DjICEgKgB4iuHrBL9TfwrctN2KAZ4giMyvxhGQBu60cMHW/bZ3LQLIou63nhPZyOfzlMtl9/rMzAwPPvggP/vZz1z018+VFkTo/SiznovU+HnXioj7bd6y2WwLcc5msy2F+PL5vIsAqztBpVJx4oOIk0QJuRskBBw9epSFhQXGx8eZmJhg165dVCoVHnzwQZrNJoODg87CXqvVyOVyrtWhIrvT09OurV+9Xnf534qA+x0NNKfKL5ewoCi0bOSC3/1AIkd/f3+LY0DHRxXvRUpFClXVv9FotLw/PDzsUhtUeFApAZq/ubk5Fy1PJpOcccYZLo9ebRF37tzp2jwmEgn6+voYGBhwLo9UKsXk5CR33nknt956qytCqIh6PB534oVy8ZUGIdJbKpXc/EngkEDh17OQS0EuCh2HarXq6hLI7dFoNNxy9XrdiQiFQsG5IObn552Yo+OpbY2NjblzDALiPT4+3pISIyGrnaArBUAuGc2/PuO32/S7W0g0kcgQj8fJZDJO5NG5ploR+pyfDrNebEiRqE3I+V8JPzZPXrIugL/MWnD5S4Fr1vTRE4pPdHi+PoLwAffsLeEhfcuDd/NHZ74buHJda17OyLe8yW/11f9fa54DdE4L2HQMA/mt2fRKOBEugJMNl78a+OhWj2JlbPy1vnlY+7UeYbthKwSAl5vPLlkXwF8mwmrwIffMPCz4e4VN8XeNV0J6ba7S9WMtit3WfYOkd07S21/m2JZsPUDXIoCijfqraK8fbZ2dneUrX/mKa1WnPG3Zj307s6LEIkGKmPrt6UTOfNeBiFt7Czu/OrqEARWlayeqyrv3i8j5reMUFS2VSq6Yn/bp0KFDLodbZBQWOwJIYFCUV/ur9oRyFxw9etRFijOZDKlUygkZiiSLAPrjUtcAETZty28RqNZ2Y2Njrpicn4svp0RfXx/pdJrJyUmq1Sq5XM4dl1qtxsGDB+nt7XX7our4tVqNfD7P9PS02346nXZV+iuVCmeccQZ79uzhYQ97GIODg859EI/H6e/vp7e31+Xz63yqVCrcf//9bt/8HHqll6hNoUiuL4oojUM1IVRLwa83ISfGwsIC1Wq1JdI+OTlJPp93ufU6J1XPoa+vz6UszM/P09/fz8jIiCP8vsVe29FxqdVqzMzMuDnwUzPkRlFkX8dJRF1tAv1zWkU5/XNNqTZylGgbOq8U8dc1q3PYd1msBiL7G+oC2IYQ8V9JIFgO5prNyxNeGFx83jO5tnV8osNrqycEH1h5EYDdf8t7GPCW/91VbwmW+Nm+0nLln72Jh5v3uJfsW8DMWPib9QpLXwSet851dIE4raQ/TyAEbCFE9rfCBXCywXx086516/Ens8ai6xtzrZ9YLHeLHgkAEdYKEf+VBIIIH1p5EeCzpsFn+RvvldduznCEr4ZR92ev97f9BAkBcaBQd/9m8zV2cOTkEAFEmkWcZRc3xjgXgPKp5RhQZFIF42TLFvmTdVrkGHCEXI4D2b4lBPg2c0WtRYDUsz6Xy5HPB3dRImQDAwMuQjo4OMjExISzgYuEqZCeRAA/OiprtfZBbfw0zkaj4YQOWMxR9+sPqPK7b7HfuXMnO3bsoK+vr6W6/kMPPcTk5KTrFy8BRmMQyfMt4blcrsUqn0wmKZfLbp5FLPv7+6nVaq6dYyaToVgsthQX1JhLpZIr2ieXRE9PD4cPH3b5/No35f3X63UuuugiLr74YgqFgiOyPjnVeaECk5VKhcnJSWZmZlpaAOpz2lcVKuzr66Onp8elDvhzksvlXMQ7k8m4c1UPRdTz+TzDw8M0m03K5bKrvN/X10c8Hqe3t9edE7Lw9/b2Ui6XXQeGVCpFX1+fcwT4KS2q+i8BRueHxqrz3neetBev9IWkbDbrrjEtq8/7hF91Hvy2ku3ni+/oyGazTihbC5aK/J+MPaP9SH+ngoCJ8Wnmir3w8J72j66INwJ/C7xqnWNcD5aK+L2s7f3Vo0sBYBNwHfBw4Lftl/jGv8ATzHs4ew88/oFvcw8Phz/Zu4FbOwFCQB7oVF35m57N8Je3xj64VOT/RNUGOFlwal/rW4f2W/XIBRChW/iR/k4FAV9iP0SRAv9kfuNED22bozsBYFPxVbtI9L+6Crv9qrD53yY9wxUu2nH7ca9fYm9xz28zl23qGNqxqhaBIlN+7rtIsXKtZdVXATcRGOXx+9ZjP2ddBFEkXMRThNCvui4y61e/V+RVkVCRIRGyw4cPO2IGOCt7LpdzkWVF5gFHrET+/W4CIurKqQZcJFfRegkO1lpyuZxbv7YtUnfGGWdw2WWXMTw87MjgxMSEixhPTU05Igi4+RbxlcggQi1BRIUEFZlWkbtkMsmRI0GFrtnZWfL5fEshvb6+Pld13i8cqHx7vzJ/Pp93tQ7i8TjT09PEYjHOOecchoeHWyLhPrFVUUBVuD9w4AC33XYbd9xxBwcPHmwRdOQGkPgkR4JECt8JoXNJaSY619LptLPFa26UTjI9Pe1s/4q4q15AuVwGAvdJpVJpqVWgbU9NTbnzQ+6VXC5HNpt1aSS+m0Dnvl8g0BdH/DoXqlvhV/7XOZBKpdwYEokE2Wy25byQaCahwj9//KKYOk/j8bhbxymPx1j44cokql0A+LF5MrzBwg/XvulX7odXhdY58t6PWXn1pM53APivrdUNAGuNCK5HAFibC0C4DugDzv42fG3oV+m5NpjT6w/C9y98Gt+54/GLC7/Owm3ADeqCcQD4f2vY6gYIAe2F/lQjIA4Uuvj8N+2WCQERusMrD8GrztR//o3r6o+b7eCgtqNrdwPA9o/+t2OpW/RICIjg8LruHF/tAsDLzWfhW9fCtwAiEWAR6xEANtgFsBz5/6qFm8CZEIpV4N/WsJEN+DZpL/SnGgFp6C2UVvz4JfaWEyoErKowoCBy57crUy61LMZ+dXeRLFmzla8vW7ZvofYdAbAYyc9ms464S5DQsr6FX4R1dnaWdDpNtVp1RNYfV6FQoFgsuoi0CHMulyORSDA0NOTyzAGX8611qMWebNkSRfL5vLOIj4+Pc+zYMebn513/+YmJCQD6+/u54IILePzjH8++ffvo7e1129G4Zb0/cuQIR44c6SgGqFCjiK0emnc5JrTNXC7nou0i1alUyuWNy0mhFAaRac3NzMyMK6bn12+oVCoUCgWGh4c588wzGRwcdOOVi8TvvGCtZWJigoMHD3Lbbbdx1113ceTIkZaWhzq2Enn880Hj8wvkSaAxxrBz506y2azrbqBzT5XzS6WSExkA14lCLfoqlYoToyQgNJtN1xJSYteRI0ecIDU9Pe3OYQk+Er80j377Qx0/iRy+M8AXmlSzQa4Tv5imikaqQ4ZIvsQACTD+OSOBq73GhH/NbgROKhfAY8Iv6pXEgfEOrz0p/Oz3Vr75MI+wnfO7JQh0KQZ0EgC6If8vo/tc4O4Khm2dAADez/XdloU2cnX9nYD5ATwRful7/8R1r/8vcAlwSWKJG8XV1wrYMFxp4CM2KBS0s4vlt5kAELkAjoc5c6mbVr3e3THsJAB0Q/43/lrfWix3a35dF8tEOE3xuvB6W0kceLDDa28OP3v19vq+PTHYJgJAt5H/x4WPjqkBW1jd81JDYnya3kKJXbGHVlx82zoB/N7qItUimdVqtSXKn8vlXL6/T27UEk6Rf9+mr5ZssqSLHCnSr+ipyIsipICzW6tGgArYQZAfL/IkQucXYRNZU/R2dHSUo0eP0tfXRy6XY2BggOnpaWftFnlVi7iBgQEGBwcpFAoUCgXXOk/LFotFV9xQpLi/v59HPOIRPOtZzyIWi9FoNFx0VsRv586djuyeeeaZ7N+/n0OHDjnrerPZdKRaokcymXR57LFYzOWwLywsMDAwwK5du4CgbWKxWKRWq7m5U16/ajCoy4JaGer4+qKDtq+5zOVy7Ny5k9HRUUZGRtxx9rsX6LiXy2Xuuece7rzzTsbGxpiYmKBcLjtxJ5VKufaGilrrmCuyvrCw4I65XAaZTMbl6mezWcrlMqOjo1hrOXbsmFvX4OCga/0oAWF4eJiRkRFGR0ddYcT+/n6azSZnnXUW9Xqd6elpjh07xsTEBGNjY24O5R5Q1wDVhvBdLuoEkUqlXOcBXSNAy3MJENls1rlQVAvCWutEIokqfsqIUnKUfiAHgdbjF+L0nRqaj9MOj7Gdn8PxosCB8O+TOvwwPckuLwTku/gx61IM6Jlsjfp3EgVg6Zv7bqzAy5OC9dr/1y4APNreyL/OP5VGLMWoCdw6PA6OTPTzbZ7AfNvy1/8b/MsHn4thpflf6fzfZHP3vs1dfYQTiW5uXLsTA8zR1qh/J1EANvNaP3kQuQIitOB1tvNzOF4UUEX7N3e4dt9sTyMhYL32/7ULAH9rX+iev8p8GoBzn/V/uftrj1znmDr0J27Bi9a5/uVx/tDPNnX968GqagKISDcaDfe/SIQIomzLhULBRVf9goKyYWvZfD5PoVCg2Wxy6NAh5xJQ5FiRf1mg/WhlNpt1bd16enpc8T25AkSGC4WCI8qpVMq1gfOJpaKzpVLJFa5LJBLs2rWL6elpUqkUU1NTblsiX4VCgX379rF7926XHlCtVjl06BBHjhwhl8sxNTXlHBLxeJzR0VF2795NIpGgWq0yPj7u5kNkPpPJsGvXLldob/fu3W7shw8fZnp62lX0T6VSTuwQMa/X6y4Srv0HnI0/FosxPj7uovrlctm5BtS9QMLP8PAwk5OTLgItZ4ds8P39/czOzrp51dyOjo7S09PD2NgYx44do1QKrDCTk5McOXKEAwcOcPDgQY4dO0axWGxxXWg/AEekAVdfwC8WqHEpYg9BAUeAvXv3ug4Oxhh6e3tdnQPl7yeTSXbt2sX555/P6Ogoe/fudYKUrPY7d+50EXR1v7j//vuJxWLccccdjnQDTvDS/EiEUncCvdde70L7p+OkuhFKdVE6hwQmjd8v/Kdry2/7qNoK+l/ikq5hiXdKfzjl8UNzPNlfCn7qQCfi346lhIBuBID25VeZIuALAd+cXPzZaycHfk7wf2sm6I/PLb65VCu6q8Lxu/d+l7ULAesTAABujs+RYY5H2xvJUuM704afcAlnmx+wbwK+NbT4maefC1f99hvh9cH/PW+tsOBqF13lrX0d3uoTjSgdYBtjtTmrltWmCPhCwDeOdnetn6xEfzli/0u0xvgiAeA0x9+Y48n+UvBTBzoR/3ac7ELAUq3o7gz33b33WtYuBGyMAOD/3+Cv+dCzXssdX3v0Ktd4tff80JrHdaKxbdMBZOH2C/f5OdaAi0QrWq3osgqQqQiZKvjLpiwSKSKl9cEiAZQwoPdFsNTWTURG0U0VDQQcoRPpV9tCRURlNx8aGqKvr49sNksikXAt4RTdHxkZ4YEHHnCkqlKpkMlkyGazzM/PUyqVOHz4MPfeey/33XefI7Iaj4rRnXPOOTzykY+k0WjwwAMPMD4+7joEiJQqAqw5HxkZIZlMcvToUUf6ZFH32woCzp4ut4aOWSwWo1arUS6XXaRZro54PE6pVHLEM5/Pu970ajOonHhtR7UPlApRr9eZmZlxBfYkTkhAmJ6eZnx8nGq1ysGDBymVSi41wS/aJ4Is14Z//rTXlZAbBWipw6B0Ezk94vE4Q0NDbv3j4+Pu3Mjlclx22WU8/OEPJ5/Ps2PHDleLQa4BnYe9vb0MDg6SSqWYm5trqX2g81dkG3DjkTNGwlQ7IfdTWuSymJmZcfUMtA0dD+2j3CV6iPwrRUXiCSwKDLou/DodEdpwFUH++OcIhIBuvim7SAcAgnW9kJVbBnYQAnyib94JR18d5BaMAyMvKmO/vugOWCkC+DLgZZ4AcIfdy4XvWOFDLSLB64G/XuED7Vi/AADw9DvgexdCillu/OEvcf1jAW7jDGB8MA+UefoocCvwFCgq0f7NdeZvzvNN+xSeaZ6+yhFcBbx1zeOPEGFpHC8ELNUJwBwF+w7gA4uvd3Otn6xoJ/adrP8R+Y+wJrwuTMFaCVtI/v/Yvo13mbevbyV3diFy+CJB4beg+OFVbmTjBAAfKRq8lE/wJroQAW6C4G7oY6scwdXAm1f5mVMDXYsAsFgLIJFIOHIjcu23/VP0fmFhgeHhYUf2YDF/X/n0jUaD/fv3u0r0PqFVQbNSqeSIXzweJ51OO/IpYupHP32rtUQBkUpVv1elftneAUeY/TZuhw8fZmBgwJH8mZkZt65kMsnMzAxzc3Ouzd6hQ4daer9D4FgoFIKb0Hw+z9DQEJlMhsnJSYrFIvV6nVqt5izeSpEQwVUKhY5Bf3+/29/2lIB0Ot3SsUBiRTqddkXs6vU6+Xyevr4+R3QVVda4VaNA+f5yCVSr1Ra3h5wKikIfO3aMXC5Hf3+/y9efm5vj6NGjHDhwgFKpxPz8vNtv1SZQW0K/YKQEB1Wy1zmm4+OLRhJ4AOcKkRiSz+fdOvUQeU6n0+zZs4fdu3dzxhlntJwLiUTCFVtURF0Re4kpciRMT0+7ehESKDQev3q/P07td/v/ftpNo9FwdRgymYwbk4oh1ut1VwtA8y3hSMfSJ/26NnQM/W1HYoCHMlzyxn/ntuZjg1TxJqv8tvTguwBeF67neQS1Aeos/3ulz14NtZcazM3we099J5dxM7fw83yOF7hFD//KOZg3AmvIz77RPrpjuYNl8VwD/7iaD2yMAADw8xfcwLu5nO9/52lc/7TF1+8ACFMEbDMgSdffCe991Nt49X98lHP/4UG4G5553w3ASorHNkbkAjgFEV7rV8L0W5Nw0xyvfuJfBq+ZN7QsWXljD/k/Of2+r69b4rn/WiQIRFgV1vPbvkn4Y/u24/5fsxDQjQDQjiuBN6y0kI/NEQCELDUue9Z3ueVrT1l+wZtg9QLA9sK2rQmg9mgiUPqryLEKlYmY+YRCOcmw2Nde5Hx8fNw5AhQdFYHx1ynxIRaLkU6nHUlVxFaOBJFmbVPj8PPZRZphsdCcSPb8/Dy1Ws2tv1wuUywWHQlU/QO1CKzVaoyNjTkrv1rHyemgWgbFYpEdO3YwNDTE8PCwG5Oi9DMzM8zMzNDb2+si7YlEwhUePHr0KA888ADFYtFVhFeO+HnnnUcymeShhx5y+fwTExOuNoIi+TouiiDDYhvBgYEBR5rn5+fJ5XJuDMrN990XKgipCv+KsM/MzHDfffdhraW3t5eRkRHuvfdebr/9dsbGxloq3+sYKMLvR/RVbb9QKFCtVqnVak7g8dsMilRrrpWOIOGnWCwyPDzsxCOA6elpV6RPDg0JW35HiN7eXtelQOdfrVbj8OHD3Hzzzezfv59jx4611EsQ6fbrAWiftX++00XCmV/Mz2/vp+X9iv+JRMKlXvjigupK6G/7ue2LZCoGKYFlu+MGu/jFeLm5ZZklu0A3qQBXw208Forea3WWjhp04wKQA0B4YbjOAsF2lvvtejNksHAp0EtQAOdK2PnE/YvLHIQPX/ES7HM+yTX/vPJwfDz5HT9a/OeqFeZHboB/1D4vlxaw/uJ/S2EOuP5pQXeAS+o95I4ucP1Zi+9/axL4OXj6Y+CT//58DrCPr//XX+GWDzwF3rANBQAR+28uM/8R+T/1cSX0x2eDa90dbv86MuTTi/dXJ2Orv9WiU/S/kyAQCQAnH+y7F5+bN61zZd2mAvhosvxve5cugGfaL7X8/w3zq6sfS4h3mbd3FALal1k1VhIE5AZ4g/Z5ubSADa7+vwxSNPgNriX2rHl+8LWnHr/ADwmC+fWVcv+3BiL2fivApZY50TCKBK6Effv2WbXQm5ubc8XeRNSVi+23LSuVSi15zyr4Bjjiozx65ZEr0ioyIxFAy6m6u3q5l8tltx1FlROJBOeffz6Dg4PutVqt5vKiIYj0KhKtWgHxeJzBwUHS6TQjIyOk02kmJiYcSZLwMTMz4wr8KbI+MDDgouJyCMjGLkJ79tln87CHPYxLL72U0dFRarUaxWKRo0ePcvToUZdC4efAy2Z/7733MjEx4QgpBA6Dnp4e9u3bRzab5eDBg9RqNXK5nLOdKwVDY9Hn5RYQiVduvVIMRkdHKRQKbhzj4+OuNV8ul3OR6NnZWY4cOcLc3JxzG8zPz5PP59m1axeDg4NMT08zNjZGsVh0BNXPn/fPo9nZWYwxLpVAc6kUBjlC9FmfeCuVIh6Pu4r5cjloeyLU+XyeZrNJX18fe/fu5TGPeQx79+515269XmdoaMiJC6Ojo2SzWY4dO8aPfvQjbrrpJg4fPuwcBZVKxdXMkMClsfrFMf3rQeeUf33oGtDrcpwoRUQCTrlcbrlmdA356Q++A0Hz7ndr8LeVTCapVCpMTk6acFyb1Yx1RdxgL2sh+r4AIKxbCIDu6wIA/d8b48mpG4kRXHv/9Por4Cdw2Y3f5ZYrngKfW+JG4Ta7GC2PA89eYgNjwHPbXnsugUNNXRaUGuC5A3hdeP5cC9VXwhfKz6eXEs8pfIPETXD3BbsBmDEP8pjldnAl4t+O4+oGtAsBG0/+fTdAnHmuMpcDcCbwInuja+l4HfD0Ufj3I5fw2J+7jefd+im+9PoXlntRMAAAIABJREFUwmtg98V386D5/BpHcIJSAZYSATZBALDWmq281k89rHEqn01wrT9JL+hYr66TwKmKpUh+FPnvHtbaLf9tt+9uJfq+ACCsWwiAtYkBaTqHRdcoAgjrEQPgePLfjhXFgNU6AY6rG9AuBGw8+V/JDaAigbvtXTz4tXOPX+DTwOc6nExd48SkAiwlAmyGAKDrfSV0LQKcffbZVlFYP7c4k8lQq9VchNLvQ+5Hov3c+3a7sh+59FufyfLtb1ckUdZmv0K9IsCFQoEnPOEJ7N4d3ADLHj4xMcHc3BypVIpqter24cCBA0xOTroq8LlczkWpS6WS2y9FpCFoIQe4nO10Ou3GrPGI4IqIZbNZLrzwQp7whCewc2fQB6rZbDIxMcH4+DilUsmJFcVikSNHjlCr1Vy6QG9vr2tvV6vV3H5YaxkZGWFubo5Go8HIyAjNZpPe3l43brWvq1arZLNZarWamy/NvTGGbDZLX18f559/PsPDw5TLZcbHx5mYmMAYw5lnnsnQ0JArEHn//fdz1113tbRkVHE6CCrhJxIJ8vk8Y2NjjrhK6JC1XVF4zd3CwgL5fN7VEtB55ReG1JiV5uG3vlPdBL/FoYpNivwDLi1iz549XHzxxS7VQPn5ao04PDzsigDefPPN3HfffZRKpZYaBBKjVDNC57jf5lDnhAQBpZ3416HOIX1W15BSAYwxlMtlt4+aCy2r89Cfo3aRQdew2m9KwDl69OiW3yhAZ+LfjlYh4KYVll6iX+FyQsA/1nnhmZ8C4MX8b85jscLrPnNsxfFxW4d1L5VWXidIO1DBumfDGz77Li7jZj7Fi1e8kVA00Njn82bexeHLz4ELgAuD169/Q1Aa57jc4NWSf+hcOPAEoD0l4DO8kHFzPyl7CZeZ25b8nP2P8MnX4dhb8oyatf7gn8B6AO1CwCY5ACIRoDPusrvd8/NMp95hS2ENU/mL8KrrP8AT+D4f4xV8zyxPa5dr9ecvczLXAYiw8dgOIgB0Jv7taBUC9i+1WIiHdX65GyFgpbaBS2CpqH8nIWCjRQCf9PvvHScGrCUNoFPhwBOA5UQACQAr4+qVF1kSJ64eQLsQsFkOgG5FgK7TAUSw/CKAsi4rRx8CUpHJZKjX6664HgQWbAhIoaLSItewaI0XMdI2lW8OtAgHcgoALcTbGMOuXbvYt28fw8PDTE9Pt1StbzabLkd/dHSUdDpNPp/nxhtvdPUHRJar1Sr1et3l4auFnYirCGomk6FUKrnq7SKOss5rf9U+r1wuc/DgQarVqsv5VkRZ+fgil3Ii5PN5ent7GR0dpV6vs3//fpdf32g0OHz4MMYY0uk009PT9Pf3U61WmZ+fZ3p62gkyIunangQXRZsVxS4Wiy4iLuFF76uYnwooKoqs8astoYQZpXOoCJ4KICpaLheCxqj3tF0/3UTnoEi1tuc7R/QZwBFynTMal0SLZrPJ9PQ0uVyOu+66y+3n8PCwG1sikeChhx5iYWGBu+66i/vuu4+JiQmXUqDzEmgRAXQ9+CKWb9uXKNCeDqFzX/CLXkqE8gsoSjDQMppnP83AX7fGqcKTfg2NUxftIkEoCnTqFPBp+K3z38+v8DV+jluBRdJ/wI50JwAAXGLg2W3r/h6duWSaoE7AboLo/ufgFZ8Nbm7+gj/kG8ts5o/t23jpM94O74Cnea1uzEcXl7nL7qZvVWRm+0GRfuE37Y38hf0jfpf3AIsugOMo1EfAXGHhicAVsPpaAFExwNMBIv7nmQc5zzzIXXb3KgWAbtF2b/YteAWXAPB+fp+Vbgm7IfengwAQuQAiBGgXCUJRYDWdAlaJ1RD7Z9ovrVkI6MYFsCGFA7cY7US/mzoBG4PTsxigj1WVw/Ajz35BveHhYRqNRgvRVvs/EWTf9p1KpVyBPpEYnxjG43H6+vro6elxkXGt1w08FApE4kV8Go0Gu3btYmgo6BE1PT3NxMQElUqFWq3WQsaq1Sp9fX0MDw+TTqddioC2U61WXbRaEX1Fzn0hQiKEyKw+l81mXYG54eFhLrjgAmZnZ7n99tupVqtMTk66KvrqmlAoFOjv76dQKDgRQ1ZwwOWqK3KbyWRaahzIaj87O+vIv+ZKok2xWCSVSrUQ7HQ67Ujx1NSUs/nruIgkHjx40HV/KBQK5PP5FmeH8vIXFhbcNvyofD6fJ5fLtdQRUD69rPx+BwjVcYDFSvuKZOs4ifBrmz6p9js0+NFvvzaB9nlqaop0Ok1fXx+zs7Pkcjl3jJLJJMVikfvvv99Z8XUuSdhSxN2PxAMtXQp8sUcE3Be3JBj4jgHtm0/2oVUUE/z5aRcSNCcSCvzuAttJALjD7l2xq6uPp9hv8N31CNgSAtQK8AJ4kx1xb3dN+jvhhvBvWN/rOMu/jzTO3t+O2+zDuMR0joi8y7ydd74DvvyYZ3I7FwWv3fAGMH/plvl93s9Xef6qhn4iMGLv55jZu6bP/tg8macBj/bu8zqRAvNR4KPvYJHMX9VhqaWwMQLAb9n38WHzxtV9KMr/PyFYe9S/HUsRjtUdx1tWcLacrEgXJ6gXhlZesEtsVwHgJfZDfNKcuHzpkwnduAB8fMk+k19dz9eghIA1Rvw3CmsVApaqDXCyk/6VIFGgOzFAlf3fzOrcAFsnAGxV/n8ndC0CDAwMuJxyCAhIJpNxRHBycvK4nugQFNarVCqux72iz+rTrnz7bDbr+tNns1kGBgZchFnFA/1ifyIxIuDJZNJZ/NU1oFKpcPjwYddBQLn5KvA3MzNDoVBwnQJEwFQxH3DbaY+2ipQr+jw8PEwqlaJcLrvt9fT00NfXx86dO+nv72dmZoYHHniAQ4cOuTmSi0KkVw4KP1qsfS6VSgAun12Rcb/VnJwZlUrFCQwqNKeIfD4ftBXTNuVgKBQK5HI57rvvPhqNBuVy2e2/L8AovaJcLjM8POyIv6LyIrPtAoSi6o1G47jzpK+vj/7+fpeKMTY25o6nv33fUi8C3qk7gHLitW2RXM21Ugg0Zjkkstkss7OzTE5Oksvl6OnpoVQqkc/nXf0GaHXGaN8lCvkt/3S+qXCkUgyUmuCnw8TjcXcsAFevQnPVXmNAx13pCJpb3y2j9frdNTRHWofqe/jCxYmEvaTthdfcz/xHYowzvOznlDIwyzv4Lu9d5VZvoiVF4Ifd3SS0CwLLOgP8rgBLZCNsJP7bz32D//Zz5/B7176Tv+L17LSvB+ChoXMwz3j+8VSkpd0fS6cGaJm1pA6wNNEfsfevaX3taHcIdI4QvrXteTdCwMYJAP7frsSAbtpWnYSwl7b+b36yNePoBu2CwPLOgCh3H5Ym+unixKZsb7u5AV5iP9TyNxIDWmHe1J0Q4Jb5wHIeuKWwn5YUgU0WAJaqBbCZWMkh0NLuT/93gpZZS+rACUB3qQBvbnvejRCwdQJAksbKC51AdH3XryryPhlOJpMuKi3CoUivItMTExPu83pN5EykSFXKy+Wye10t3kSyfeu/IqiKHiuirKjmPffc46qfq81eKpVyD7XNs9a6fZK1XYRT0VKt229ZqMr/2WzW5a6nUimmp6ddCz2R8T179nDmmWdy+PBhbr/9dsbHx1taByqqLpKnOSgUCi4KXi6XmZwMmn+rXkCpVHIkWmNVwbd254QK4Sn63dfXx8zMjCPQIoma32w2S7FYdO8p7UCWcgkm6o6g7YgMa//8jg2K0mt/tR5to6+vjx07dtDb28vU1BTFYpFqtdriuvDJP7RG9EWGZc/Xe1q/n6cvIq1lrbWuroXGqhQJFUqs1WpuzqE111777VvuNQ/+3PgdGXyLvsi56moMDQ05gaxUKjE5OemOsc4TXwTwhSqJEHLZ+IKBXAravgpl+rUCtgLmtjYh4N/g4pfth9R+fvyRCynRe0LHc8BzAazlfWBRAFAxv25zhW+zQRoBcInZz212iXzHDrjmNuA22HPtwZbX/2RiichBe27/Ww0X2h9xh/lPnTewxloAKwkA63EDdEJ3pKCd4F+1zHvdo5uI/0vsh/jkoZfBgZDpP8mb1+/ZoFp1s+NHT3qYn7QKAfbSrRUCfBfAWt4PsH4B4DJzG7ccp4YujW7qAmwFVhIATiU3QBTxXxu6FQJONawnLWA5dPxtb8/tXynXf4tqAWwO2gn+1cu8tzm4zN4AwC1h8WL/tcY260fZdWHAJz7xibZarbriZ7VajXw+7wr0TU1NObv30NCQy0k/cuSIs9n7VmfAkTBZ/4vFoiM1qVSKoaEhR4xV9A7oGN32c9cBzj33XPbt2+cs07KzK89dfdd3795Ns9nkBz/4AQ899BC9vb2Uy2WXK6/ih/39/a5egGz/+gu0RGzPPvtsCoUCyWSSqakpenp6GB8fd8UH9RlVv282m1SrVScc+N0Jjh49ysTEhCvkp+X9yLD2S+0EfSga3x7RlzMCFi3x6XSaQqFAqVRyToBcLufaEvrkM5FIuMKD/nypzoNIu9/20U8tEDGXeKEaDbFYzIkAco74bR4lKsj5IBIPHJcLLwFHdRpEwv22fXIE6LyJxWKum4JEJqU1qBCgu3iMaWnxp8/7hRHVnULj9OsCiNj7JL63t5cdO3a4IovT09NMTk46kcIXdnTctV3f0q8UFi0rkcT/X8dTaRdh7YMtKR605P3vY4A43PR3j6RBquWt1RUG7ISlw/NdEX2WSBXwHQDlJX5cOxUN9BEKAe0iQHtKwE57LwC/wA2cwz28/Wnv4v3f/i3+gj9oWW7MnLP89jYZPtFfygGwkULAiYQi/D4kBCwZ/f/eCse/CVy++TdmW1EYsN0NIGyVGNAd0V8qVcCfuvUdr3YR4GRNCfCJ/lIOgI0UAk4kFOH3ISFgu0f/t0thwHas3CFgpcKAndC9eL7RWMkZ0K0QsGK0P8SpnhpwskFkfyk0iR3nXtwMbHhhwLPPPpujR49Sr9ddlLler7uo8/z8PPV6nWq1SqVScWQajicoIl2Kfiri61uX4/G4K/jm26BVXT6dTjuiJ2KWyWQcGZ2cnGR0dJShoSHXQm12dtaNPZfLuVZyxWKRqakpYLFvuxwHWn56etqNT0Sst7eXSqXiqvVns1lGRkY499xz6e3tpVqtcv/99zsLuV9MUYTO7yAg0aFer1Ov18lms644oV8F3684r7lSYT2f2PsEWALDzMwMMzMzrt2cHB7JZJKRkREGBwfJZDKOeOrYKiIvsrywsODcFCK1flcEHXO/aJ4KJEoIUoeDhYUFjh075twfwHEtBNsL5/ndJNrz5yV8aBxyg7Tb6DVH6gSgbfb19bl5zGazVCoVN/86VhqLRA9tyxenVBhR8+VH3XWeac40tyL1s7OzTvRSe0w//98Xc+SMgcWWgzpvlY6gbWpOdV1KiJMg48O+NPhrrln+u2FT8cPgT4yVahY8jrUJARuHl9u/pkARuIr3mRV+wC9p+34ORYGRix/gg/w2vfYp7OFg20eWvhn6Vy7nX7mct5/1Ln5v6MPcN7GPL/K8tezGpuCY2bth9v9Nx4NB8U12Z9b0cZ/wr7oOgHCCgwX2FcFf87ETu92WMYTiwHZOERCeb69hiAng/Ws/xh5OFQEAAoK/Wfb/7Qaf8G9X8n/y42GsTQjYGrSTfF8U2AwnQITucYX9OACfNS/fsjHEV7yXPbHo+lZDhF/58n6xNZE0ESS10hMJTKcD26NIqYisPqcIsciiSKd6zvvugfZK66pOr3WrwF+j0eDAgQPUajVnf1fkFnBiwfT0NIcPH6ZWq7kCbolEglqt1tLfXQTbLxyYTCZd+7p4PE4+n+eiiy5ybgGlBvht3kQkAScqaH78rgiaZ72vcbcTNUXStS5ZvDUe/9j5EX8dv97eXvd6X18ffX19zM/PUyqVGBkZcfUYfJu/RAg/muxH5P3//eizn5eudYjcKo1B8+87CERU21tN+sTXP//8c8md6OHcanuaMz9PXi4AtX2U40QilV9/QaKH3AV+AT+dh34ag1wK/rhE2H2Ro1aruY4YEtEgEBvkKvDTVXxhoN3Wr/NMYpLmRsfGdyz46R7bCe5euKub4tUIAcsn6fsR/k6ugHYHwFvtH/Movu7EiuNjwysgFAX+h30JF3F7C+FfTUrAcz7xeYYY5/s8Ycll7Gj45InwvC9/qsVh8VWzecUDt60Q8GBtkfBLAGh/fQl0cgGsG0/aftfhicBWkX8/wt/JFdDuAHijfTv/iX9wN3MfXse2VQRQpH81KQHdwO4KnzwRnvH5f6TJYsrXd8xzNnRbPk5FIaCTCyDC+tEa9V8KqxECts4F0AkR8d86XGE/7gi/BID2108k/PSA7YKuRYC7777bRdzj8XgLeYNFcq68Y6CFuPlRdEVKRdx8MiZC47dA03r8nG29r0in8vcVwbXWMj4+TqVSca4BEbd0Ou26E8gJ4LdLU90AjdePwirCbK1lenraFfIbGhpiaGiIyclJCoUC8/PzHDp0iCNHjjjXhOZOhFyOhmQy6WopyEmhtACJDpo/3w0AuFZ6vhVetnzVE+jksvB71A8NDXHs2DEOHfr/2XvzKEnu8kr0Ru6ZkVtlZS2t7pZbFpIQSEZPaEAY2WjYJDYvWCNbBp7EgDHI4MEjv/F4bN7gMcbYz5zhGJ6QNWC3jpkRwgIvLAKesNEBjMBClhBDSzRSq7url6rKfd/j/ZF1v/oiKisrsyqrKqs7v3PqVGZkLL/4RURV3vvd736nUCgUBNySSGCpArsvEKRr8Ernft0pgGCT49OmfrxvnIZ/JAe4vc6OO4kHPQad5fd6vWvAtiYUCOTpXcH6+UgkgpmZGelKEQwGUa1WbYQF1wcg56HJK8uypCyDz4fTK4DkGLfRpRb6PDlmqm30fnSdv/ZG4PPBZ4bPCj8DVtUL2kOArRx3K5wY37piQNy/JgjuR6cKcBICNgIgbOEjxV/HIXxPFv2C8dVNHyuCEr6PK6G/8PRTAFDmP289jbPGxfjCynK+7xd/8Ln/hDr8+PzP3Yw3/MNnNj3mYUPL/ne9rpagX4P/TSoAGAN1ArjO2Lgk4BwNJ9jfbV8AHU5CwE4AWPig9Vt4Dr4jS242voDNxt3Wm/EE2gBW/9BtlwLgdz7zfrTgxtfe+Aa84nOf35Zj9Aot+7/ZOozPGLft2LF3Inb979d5FQT3e0cVsJWgzN/ZDeB86A4wiiDo1+B/J4D/d43rNywJGKcY+Fs/6/W1UR+Bkc5Ua4kzQZDuR68d0oFVUESAy9At05ySbe2+zqw/AacG8ARKdMsn8GYWOBgMCsiem5tDLpezER2tVguJRAKZTMZGHujz93q9ME0TMzMzsCwLZ86cQSaTwTPPPINcLifGgwAE/PO89fkbhoHp6Wns379fiIVKpYLTp08LYNMgkaHN3GhQB0AAOwE6sOpoXy6XYZomarUawuEwotEoPB4PTpw4gUwmg0QiIR0O/H6/AEpd56/7z2vwbVmWEAf1et2WYdbAk10ENOBl5loDZJJDzH7ztfYJ0PcG7y2SErwnSRDRU4HXzuVyIRwOSylHIBBAOp0WoqVcLttq67XSwFmSoO93Hp8dA2iKyB+CdY6P7+lXockvvW9NvDlbAWpFBBUiBPgMzj/vBz4LWtXA2M0ygK1/Fx49GQCsVQB8uHj7Gtn+ZuOwdTPaANoY3qDRCfh7EQCiAFiJH+J5+PwNNwMKgL3e6pIB26UIcNb9jwUBoGOLBABjqE4AYxC7WQYwLgSAM5wKgA9av4VDODaSfd9p3bri/7g9ZqyiAFiJH+J5+Nrr3mB71l9udcmA7VIEOOv+zzUCgDHuXgDnXpyfZMB67yexNjTwZ+xmCcA4x8AkgHZmZ0aVAJb1xzo7TbUAgJ4ZYNZtU4JP0EJ5P5fXajUB5wRmBKAaiPE4dHCnHHtmZgYzMzM4efIk8vm8mPcR1Gv3esrw+blpmojH42g2m0gkEnC5XDhz5ozU6LdaLczPz2NmZga1Wg3ZbBZut1v6yhMs63pyAmnWYfM8mWXev38/YrEYms0mjh8/jlAoJHNMEKrVANrwT5dNNBoNMXHk+XAM3A8VB8FgEKZpwu/vyoIzmYz4J7CsQ1973WZOA1IqB9gpgXNN0KlBL4NEAM9Fl3dQ/k5jPhIoJAac3QK0bwFN85xGfATsbNtHBUYkEpH2gKVSSfwLSProTgfcJwkvfZ/zPQF7s9mE1+u1EWXhcFi8H1gWw3Hp+SKRwPngurpMhcfVnQb0/cxnjGUizutAYoVjPveil+x/NMTAZ63XwI2nN739YWv7pPe9wliyEwH3XXsbjJWk5ut3dCS7HL3A/ybj48YdfUsC+pIBTtn/eaoM2Avx19YvwY8fb3r7O61bRziajcM4bScCPn/dzTC+1X398h0dybkT9xi39y0JmJABOx29ZP/nBzEwid7RC/zvRjhl/+OsDHBtvEo3mGGlAaDu805wq4G5zooCq3Xk3I+WaJumiUAgIOuzrprO8xr8A6sZWWa4KffvdDoinaahHh3WaSIIdMFPrVaT+utarSZKASoHCKby+TwSiQQSiQRCoRAAyGvTNGGaJsLhsGR46ZvA+SFA5bwQ2OrWfMxk0xCQANIwDITDYUxNTSGRSGBmZgaxWExMDTmXzrZ1AGQcBMY+nw9ut9vWg77dbiOTySCdTovcvNVqiUGfs80g7wNgtaOABqc0Ekyn0wJwCb5JXnCcujxDEyV+v19q6mlqqLP+BNJs30ciQtf2UyKvwbKTsNKqEq5D00te/0gkIhlyXhftPcBj6evM/VYqFQHxzWYT5XJZgDiJDpYhOAG8LkHhfa6fKa0c0EQTz0ebTbK7AYkUXjtuq8mlc5ME6BX9/QAYL7K+vu4f79+13mczK/wF46vyM85hLKk3Kqn5BeNm289Oxrt3sl9UPwJgBEaAzrjzW93P3mt9cLCdnad+ALsdV1jfxRXWd3t+9l7rg/Cr3s43G1+Qn3EO47R6o571fzTeYPvZyXib9dEdPd6oox/AP/xI97N3WB/ZqeFMYk2Mlx/AJHYu+hEA46ACGEc/AGAIJUCz2RSjtHw+DwC27DOBHQEWAQc/1/XdWvrP18yEs488zdgqlYqsx221zFyDYKcJXb1ex8LCAorFonzOMbJenhJojo2tA7XZmsvlQqVSQaVSkbaC1WoV+Xwe+Xwefr8foVAI2WxWxs7MO8kH7lvXcmuDOwLfdruNdDotJQ50que22WwWHo8HkUhEMvu5XE7AJ2v2SSJwfk3TRDAYRCqVkmvD8oZCoSDlAcViUQAtTRw5Lg02gS4oDwQCqFarco8sLS2tMaxzZqr5WS+DOmbeTdOUtowE09oUUGfYCWo5FnotsCxAqx84Fl533j8ul0vaOepSEpIj3FYTDCQAaGypQTUAUbZUq1VUq1WZAyo09P2rM/ycW+2z4TQl1MQP7zFdgqNLFDiWWCwGl8slRBnPm6oJp5ni+Rx9mduwhTb+AMDW6v/7hVYJ3GaMtl7fqQjYzSAB8G7rT/CxwRyixjY0GSDqgDxw5z92l28IDSYEwK7EeuC/GxZa+FMAW6v/7xdaJXC7cc9I9+1UBOxmkAB4m/VRfNJ4zy6PZmuhyQBRB2SAw9/qLr97NwY1iUlMYixjXAkAYAgSgIABsJu4UapMMMIgWNF1/gSkzAKzHrlarQqw147xXF8TBuFwGI1GQ0gC1lDrLK0uOyiXy6hWq+Kyzywss/I6exwMBmWbaDSKgwcPolgsYmFhwUY2UOpeKBTg8/mQTqfFAI+gk+M3TVNAF9vyEej5/X7s27cPoVDIZkqXzWbRbDYRi8UAAEtLSygWi5KR9nq9CIVCAtJ1tpqEAa9FrVazgfhWq2UjFehIzzIHtqUj2KXnAedWkyYEvVxfg1VNCmnCg4oNXSJCcodgnyCf94Hf77f5QLTbbVl3amoK1WpV1BdUPBDQkkzRpo6GYcg+OUcsfaCfRKfTketgGIbMNc9dZ+V5rXUnAJ6TBuSapOIzoEkV7lsTJlzmJFT08+Ysk2F5DRU6lUpFyiqohggEAlI6w/uJ9/f5Eldb3+jZr5UEwHf/4GXAxwDErW7fdgC3FP8S9751Cwd9vQWEgcP3/vIWdjJcjLN5FYH/u60/EUJgW8mAA8GRlgMwnGoAvr/ziwBqPTaYxFgECYAf/Na/WWFpVtVQP2/di78fQaJ8J0sBxtl8j8D/bdZHhRDYi2SA828p3x/+CoDyLgxoEuMRf7aOkvK3jbXrOZdNYstxr/G2sSkH2EsxFAmga4l9Pp8ty6+N2zQo194ABOAEykAXpOkspgZ6Xq8XyWRSQGsoFILb7Zbaey1F16ZzVCgQ6NZqNQFFWg5PI0FmxCuVCmKxmJQS8IdjJcjn+pwTZlWZidcglioAkiisRQ+FQjhw4ADm5+dF8j81NYVisSjqB84fe9XrcdRqNUQike5FXFmHREW1WrWpNHR5AgAEg0GUSiWbFJ5Sfs4fx0t/BwLTZDIpHRV4nbTjPRUVnF++J+gl+QKslohwrFodwDmgzN9pHkhTPxpD6vp77R+g909Qrq+P2+1GsViUbalE8fv9UifPOdDGg9qLQmfQCdw18UGPC5I1VCkAkNdaKcBz5Httwgiseg9ojweSEZow4PG5TaVSsXXS0PPIkpbzJbpAv40XWV9fw9KKu2sLQGr1n/XV1jfw0/hn3PRX99tKAYaOEnDbL963+v65wOE/Xp8UOGzdLGqAT1q34G3GvUMf0kkE2MoCxix0ecBeVwfosL4IGK/b7VGcf6Ez/T8wXmT77AfGi7qf1wBg9Vm/xHoMP4tv4KbPfxZubO3vojO7348UuNO6dctqACcRYCsLGJNowQ0P2kIGtOAeW6JyM2F9BTBu2O1RTGIsohc5wGUTMmASuxwDkwAESE5gwtZiOqupXcsJjmmUB6zWPuuOAsz66iwrM5mtVgvhcBiHDh1CMplEuVzG448/jpMnTwoA1KZnziytzp42Gg1LsrQkAAAgAElEQVSEw2F0Oh1xhWenAH5G0K1r5UOhkOy7UqnY6qt1XTVJCWaFCS51+8NOp4NIJAKv1ytO/ZZlCYHg8/lQKpWQTqcRDAZtpnzBYFCAKrP2AATYtttt6Yaga+k7nQ6KxSL8fj/C4bBkv3ltdA2/NvLjZxy7LqEgqcFtCbS1GoBlHL1q6ZnNJuhlJwLOKe8zBgkHHdokkKQLQbFWeehj8T7gPUMyR7dBZPcA7YnAe1yrXFi+wLFxPMzOm6YpgF17avCZ4tzoWn+9H45Pl6toskBn/7meNi/k/UdzQJJY7BzBeaF3wLkeTpl/P5nWi/7wIXz3A6vvHzV+Bo8C+Dvr1QC2WArQWud1j/grvBVAlwTYEvkwhtHLD2DbgT9r/xeqI+sGAEy++I9bOGX+TgJAx+UffxRH7lp9f9S4CncA+IzVtczcqfp/TQCMghAYp1g11Vv9G7YXlQAAYH0dGGOF7yT2QkwIgJEHa/9vsT45Fj4AeyEGJgHi8TgymYyY4xFAEsBp2b/Owmp5NPuncxstgyYIYnkB90Fzu0ajgYWFBQQCAYRCIUSjUZukXJcocN8EkPQy0IAyHA7La3YKYKkBz4UAyu/324BfoVAQNQCPxcwvCQCdMabPAIEhACwuLiKbzcLv96NSqaBcLiMejwNYBdo8dwLTZrMJn8+HcDgsoI9ZepY8aMM7tuLj+Wh3ed0ur1KpyL4JWIPBoGTj2dbR6/XKNSGx4na7ZS64bw2gCVhJ8vB6ULbPsXJ77SfBMZOI0cQO571Wq8Hv96NWq9kMBgmAdTZeEzUAbPvU14bKCKdhns/nsxFXThm/lvzr0hdeHwDyXrcL1OelywH0HDg7LGiTTG2+6CzB4POo/QY0AcJ5YmnNuEWpZid9woHt8S3o5QGwHkGwJfD/BaNbErBBPIhX4lNv+DXg3cDLbviyLP/3i38JEgLDxriWBexatn+EBAAAoNXN9jOM19kz/9YXJ2qAfpG2Arb308b2/D3q5QFwxHhhz3V3AvyvB/S3QgCMY1mAB+09C/rXRL1L+jGMG+wEoPWVCSl43sVvG+uXBExiR2NCAAweA5MAlJxrME0QqrsAMIPJ0gACMNbbA7BlYrWknICLQIcgiZnVEydOSHbcCao0iNJgX4MqZkwJ1gl6PB4PKpUKTNNEo9FAOp2WNojtdls6CNTrdbRaLWklx20JYnkMZnM1SUKwSjBWKpUAAKFQCIZhiPEgW/eRfNDZa22Ap+czEAggl8tJ14Dl5WVbTTpBYCgUgmVZWF5eRiAQkLGTDAgEAvD7/aIwoGKCZAil7DRnZGaarfaq1aqtnEP7BhCU0uwwFotJxr9UKoligwQQx8V5BCBZc15XyvlZOsK2lXoMmqzgeekyFt4LTkJK+zrwXEgAcL8kJ7RRIPetyRQANtUFAFEbcDxaws9nQBNoWiGjSyOovOB2TgNF3pOcK/1s8rpS3cJ78lwJp9S/F9AfpnWL9Qxg7JD5cJv9wz8GPPSxGxVxUBbTwM0YBo4TEdCvK8BeNgq8/bVsGbh+14BJjDausL5ry/T3Avr9DQB3PrY7yz9OREC/rgDj9Ddp2Ljt1VQ37M3xT2IXw0kYTJQBk9iFGJgEoCs9gZSWZWvwTdBG+TLrwbkewTKz0QydQdXu9YFANztAQiCfzyOdTtsIhlqtJkCKyzTIIsBMJpOSoe50OqjVaiLXZm25dqKnZNrlcqFcLttc2QFINp31+lryz+MSaPIcWFrgcrkE/HJfgUBAuhroTD5BdigUQiAQgGEYch08Hg9mZ2cxPz8Py7KQz+dRq9VQKBRshAhBbjAYFLCoiYxoNAqv14twOCzzqOXw9AggEaAzyRyr1+sV0oHki1Yr8L6gDwPbMhJs61p+LaGngoHj4nueF4knXVKiPQnY+UCTRTSKLBaLtvuTGXzdRk9n16l6cKoJeJ3p1M95aTQaiEaj8Hg8SKVSYuxIdQYJGA3iNQmh5f18z3uN5+9yueD3+8Vbo5fahteGRovs9tFoNETdQyPKcYutZP/F5M+4frXWv0f0ktl/1boOrzr2zdED/z5qgO/gxfj4G/5j981jABbuA3A9EJ4DSvehMw/chjeurP1GteWvjHiQo4vNtADckwSAB0ALuPNLd+D213543az/RA3QO7aa+ReTP+NFq7X+A0S/MoHtinNJ5q9D1/h7HH9TW3D32mRvEgB+AHXg8Fdvx22vvnPdrP9EDbA3wpodkU/OoGqArwP4wgMAXtPtWPzwAwC+pFZ47crvL6nXk5jE6GNgEgCw14gTtGozObrQE5QRXFEWz5p3AkYayGljtVqthmAwiPn5eczOzkrGOJPJoFwuI5fLIZVKiXxddxvQJoEAJJNMwoG958vlsoA9bfDHVn8kBFh/zzpqtoOj03o4HEaz2UQwGJRjm6aJYrEoZID2SSBA0w78BK5sP5hMJuFyuZDL5WSdcDiMmZkZ2Qcl7SQfms0mpqamBHzPz89jeXnZBhwJoFutFkzTFLDK68asPOX0pmmKvwAAVCqVNQ73uo6dSgGC/FqtJkaO1WpVzl2b801NTcl1qdVq4mNAQE2/CZrX9QLMvHdYsqBVJFQq8DwJnvX9wlIPtnXU5QLOY1Bt4PV6Ua/XZTwcE9Ujeo4KhYLNsZ9EGOeO6gmWWvTyuND3jSbLeDy9vgb7mrDitbcsS+aF42E5zK4bAx5Y+88z/BxAG3YNE72+iPaKX8Z9+I/HPr7u59Yz9tcjIQXiwCf/+leFfGjDjSdw5SoBIJfCA+CbQOlVwI0r5oFfBoD77Pv7poVbX/rx3q2rHLHecsZOfSnfk0C/R7zL+jDu/Mc78J6X/wk++tXfESIAWCkP8AC//eo/BL70vgn436Zow70pv4ydJABY478dBMDN1uGhljNGrRQg0Nd/d88l079brTtx+Fu34+0v/Sg+8dB7hAgAVsoD/MDtL/sw8NU7JuBfx3olcF/Y/uz3oO1wR0YE9AvbVywPgP8PeORVwIde0110F4BnnYTAJoiATzjm++0TlcEkesfAJIDOwBLQh8NhyQoXCgVbDbZul6brpQlYwuGwgCqdrQyFQpiZmcHFF1+MeDyOdruNUqkk5EEkEoHH40EulxPQS9NBAiGCRwIen88nwI2Z2KmpKdRqNZsbP+XSNJjTxmycA5ZFEPjr7DCz2bocQdd7c/+W1XXs5/ioSmg0GjBNE6Zpolqtolwuw+/3y0+n0xFATRBL2TsVAIZhIBAIIBqNIpVKCVhklwNd186M/MzMjDjiE2iyFMAwDBupQdLBNE1p00gCQJd3eDwelEol2zXnMTmPJBymp6dRKBRsHQx0eQcz87y/eL15bBos6kw8SQ9tFKil8nzvbP1HQotj1GUr2rCS58XryfMDIIoO/Rx4PB4hDQDYXutxahNDrWTRygRdisB7jPuxLMtGFmizQT2vugOB9rrYtehBAKz5bGG4f2SPGtfhRdZDAIaT/W8UJAW2RAZ8ysDbPtV1/j+Jg3jfL/7Z6heEJwH8+IfAjc8Drvil1W2+DqDWBOBdu7/r7sM9P3gXbh2iJLGt/vxrB/RRynMHUQHsSGvAbYyPG3egSyH9DtrWh4UAQB3djGEL+LMvvQ8wd22I53wcMZ6DK6ynAIyf7H+7YiOAr8MJ9ofZdtB4m/VRtNAlAEjAOonYW60797Q3wD3G7ehSOO9By7oTh//x9u7f7e6JA3Xgzq/eAYynqG53op8HDj/bATJgkCBhsCUygLJ+pyKgha6679MF4ANR4NpXdZd7AHwawLMA4ls4LrAW/DuXT8iASThiYBKAIIWZR2aZCTyoAiAwI2ghcNG94AkaKbenIgAAEokELrjgArhcLqTTaQHqmUwGlUrFZkDI7LCzdpvt7oLBoIBnSs1LpRLi8TiSySRyuZzN2JBmfLrNH7AqhXdmmdky0OPxwO/3S924ziiTgCDZQYIiGAyK3J/GfAAkO53L5dDpdBAMBmGaJmKxmJQlFAoFITNMs/vNkgQAlQ7M3DcaDQSDQQSDQTl2NBpFqVSCYRgIBoNSZkAzQJI72WxWMtfxeFyy9Zxrzq12s/f7/dLtgNtTLcLzazQaUl7i9H9wKhcAiHGd9hXQapJwOCwKDc4DSQmqDPg5CYROp4NkMgm/349MJmMz1QMgxAmz9DxfAnuqFbRHAb0iuC73VSqV5N7V/gLa6V+bSGrQrs0vtb8FVQDaKJH3JO8/rq+JAc4Ny3ZIFvBe3pXoRwA41xuKCDDw3ZXV+3UF+GXrXd2/hG50jat7Off3+Es5KlXAQZwE/m5loM+1gB+vZPm//IRa65WAZxrAAwCavXd0hYF7sHGmn/Gpt/6a9LC/9d5VJUQVoWGG3zcI7PuRAcOAf9dZu29FZz68zpq7EyQErL8HFt4IHPjiWnPAiRpgOyKGH6w8Qv26AvRrF7gTMUrH/88Yt20JzI9aBUBg/zbrowL8nUqsc0URAKwSAtZXgIXXAQe+stYc8LxXAwxggivrbRMRoAH9rqgCSAq82QI+/UD39e/rFV4DXAUg93Ugt87/9lHFJ6yxJQLebN1te/8p4x27NJLzKwYmAbQZms5GssUeAJGCE6CxLzkz6z6fz2acRnDtcrlE9k9QWSwWkcvlBJQzU0x5PQEZs7kENpTpt1otVKtVMaE7deoUisUigK60/cSJE6JmYH0+HdK1/Fp3KdBt8oBVl3v+FAoF6YKgt3G5XIjH4yL5rlarAuyY5WbJA/dhGAai0agAXgLZUCgkfgUul0sk96Zpigyf5EilUpE5p79COByWbHmhUMCBAwdQrVYxPz8v56dr4ElksPSD+yNgZeaf19flcsn5k8hhppkZ7WKxKCSGYRgoFApChGh/CWbLCcYpqec9R5NE/lSrVTF7ZJ0770F9XgBkGQE3z4nvaTxJJQlJInpcaMNCmlPSv0GbCPK9Jg00QcZjcyzOzgBaQaGNAHWnB9b483px7rTCAYCtfIHdGWhAybGMfaxLBJxc+X1w6F3eYXxcLNw+Y70e/+7YiiN4C8APACyh+09af4FYyfxsVRWwxtzvyft6r4gHgdZrgFf+HPAgsKYcAInNDWAlCPyDqOAzt9wK/MqtwKe378vCqLP+rrOlHSUEWCGy7mVn99ayfbHxugkRsPV4eOX3tUNvuRvAnzFOPgA7YRhIFcBezfozNvzPUnP8XgnjhgkRMFRsIxGwmdiyKsBp9PepB9ZZ8QHgB68B3n898AkAC871BigFWE8BsN66Y0oE9Io3W3dPCIFtjKFIAGaSCaba7bbI0wmACP6ZqdRyaN3Gj9lUAiJmNSuVimT90+m07JdgiUCR9eXMLJumiX379qHdbmN5eVnKBZgNpxyeoKxUKsHtdiObzQLoAnsCcmazq9WqSNo1kO10OsjlcojH49KysFKpIBKJAIAAPRoU6tIJEgw8JkEugSI9EpLJJKanpxEIBERFEQqFxDiQhAjl8mzV5/F48Mwzz9gAJhUXzFSTDAkEAjIGrRZghj0SiSCdTsucs96c4JJtD9mej5nuQqEgXgpUjBBg89rpTDgz9ASufE+SQNfl8/gE/rVaTer5WcZAFQDBrb6HtXIhlUrJPjVQB+y19dqskmPWHRB4f9K7gFl3XmuWzJTLZdk3ywx0aYKW9XNcHC+voS4D0esBq8aTXIfzTcKDYyJBEolEROWgjTT3XljYyDdgvXZ/znC2BLPuQpcASGBV8gkA3wFwBQB7V7NtjgdWCIAe8c1XAdf137qE7t+nMIrymvGZW24FAPz8vfdudZB9Yyvg36kCcC7j690mA54BcKzbwAELN6/dZkIAbCVSAJJ919hNoD8usZtdAQj+z6WsP9CbDDgJYOHnu6/5W8eEABiv2IwqYEei9QDw/t0exO6FUwXgXMbXEzJg9DGUJ4CWb+t6dG2oR/ChJf4EK8xea0Cla7vdbrdIs1lnr9sEUu7OGvpwOCwgsl6vw+/3Y3Z2VjKmOsvOOm0CXda5U6ZN132uV61WZR96/JSTM4OtZeasg+c+mL0PBoNivEZQVygU4PP5RAFB5UIwGEQsFoPb7RbFQTwetxkrajd+zjPVEsxg8zqRMGDpAcszCJxZvpDP5xGNRrs3hccjng2RSER8AQqFgq3OnQQQyQ1m3XWrQGC1Rl7Xo+tWjbpGHVg1U5yampKWh1SikFwCIHPOoAJEqwcASAkK/RBISpHwYZcG7aqvwTYBOv0bdG0+CRSqYLR5pu4uQBJGGzDy+eE5a6JM+w74fD65z1haoY9PMoikky4poKKE6pBwOCxlHyQDMpmMnN+uxIIxeElADVj9OnYAd1tvQR1vx3u2idg23glYPwLwCIBLAEyvfPBSAA9BMr3WxwDj3Vs7Vqx2BvnAcXSLA4eM67oT0K8U4LN/9GbgSeDmv74Hn/3dN3fnch7A2dV1/v6WW1bf/Io1UjXAZgmAXuB/kPV3gwxwxjaLO4cMfqnaa1+kHgZwNT5ivRt1vB+/s0tJLOuu1dfGO3dnDDq2o65/FHEuZP/7xcmNV5kEo08nnJ7r7mAYS3bZ/3qkwI4YBm41mNkfVBFw2AJu2301QC/wP8j6EzLAGZ9e+T18l6ihugMQDDFzrWvwCTS1473OouqMKR3nmeEkMGY2m7J2kgPa1OzAgQMIBAI4c+aMrZ7c4/Hg0ksvxYUXXmird49EIjh27BgCgQDOnj2LfD4vYCwSiSAQCKBSqcg5MetO+TfQlZYTKLLlG4mMcrmMarUqgLnRaIizP8+XZIYGhzzG1NQUTNNEs9mUTPHU1BTa7baoGQjYCfQItKk+IEBcWlpCoVBAJpOR8RJE6npwbWLH68CyA10GEA6Hcdlll2F6ehqPPfYYlpeXZRsCWQJrdhLQoJbB66Rr1JkJ530FwHatSdRQNcDtOI/RaBShUEg+Z8s7kiLMvjebTVSrVVt5Ae87vidI13XyvHa8B6h8IaGhyxNILJDk4BzzGSkUCmvmRXchIKnD11yuSy1IDnCZ9k7gsTinWtofCoUwNzcnhBMJKSpOdCcDkk67EjrL3isotUwtyKK7rbcAAPyivQZW9dejc2EzLu2CfNRXfpzeAf7ur42IgJdZdpnfQ8ZrHMsfwzfO/gw6889ueqzrZd9ute7Erb/3cdzzR+/qvv/jj+Oet74Lr/nvn8MDb3mjw7V4JZ4LvNf6IABgEXO495Z/312+CWJgpwiAcYpRd5YcPob7gjWe0ZX+f8TqPlh+bL9viXXX+iB/UPB/tfUN2/tHjZ9Zs5zLNhvrZftvtg7jZuuwfK5f70ScywTAejF8Edp5FBsRAYOC/8DKPmqjA6/rgfvtUQy8FnbX/12Mq4C01cVhJ3EQV33yR93lO1gmMCwBMAkdn954lQFjYBJAtyxjJlXLjAm+KOvWcmqdoSSQ2r9/P2ZmZmzggzXlBETMrOdyObjdbvj9fsRiMViWBdM04fF4pG3g/v37EQ6HUa/XUSqVkEgk4PV6cejQIZRKJRw9elQk/5SZ1+t1hEIhAf7M3FPiT4O16elpHDx4EGfOnMHU1BQOHTqEQCCAXC4Hy7KQyWQEMNKlnllby7KkTzxr/t1uN8LhsBjpXXLJJUgkEpIldrlcyGQyePLJJ9FsNrG0tIRcLiftA5eWlpDNZm016iQLfD4f2u02ZmdnkUql0G63xdSP2WASLD6fD8BqWYJu7xcIBFAulwUET09PY2lpSa5Lq9VCPp+XUgzug1l6nWmnIoQETyQSkc4CzGyzhILXnsqFcrm8pi0g1Se8xzQZwfuN147SfA3cOUat1OB93Wg0JKNPBQGz9ByjNnrUHQII3pmh57EI3J2mfzxPrZDQRoEkTZwlDXzmtKKB4yNRwLnn8tnZWUQiEVF4FAoFmdtIJGIrU9me6FdZebKr8mXiNoDVv0w1dAFqbhHdvKre/s3y6iPWO/Be479vamQDZ/EfW/l9DYAjWHV/vw4wLh/+uE5SAABC4QpKuBLAE2s3WBNkfTf+h7BKDtyOyO99tNvK6xDwwO+uQwAEgPf+1z+Wt260gUPYlEhhK8Fs/rBkwE6pAJxAf73ygJ0lBHb7y1W/mv2H1ev1avr19lxnNJmffgDfuR6wuu6g260XTlJgO0MD/lusT26iceIkeoXzP9d65QETQqBHaKC/mY4AgSFq3rcYTmJgd1QA9AHYBtIgDKRfEJS3HrSB56LblWgHg9n8YcmA81sFMDrwzxj4Wz9BFrP9OosIQLKQNOxrNpuIxWKYnp7GM888Y3M1bzQaaDab2LdvH37yJ39SQBSBZSaTwfLyMqrVqmTn4/E4EokEOp0OSqWSSOCZJa3X63jiiSdQr9fRbDaRSCQQjUYRCASQTCYRCARw4sQJnD17FsFgUIAwwSil+gRZc3NzYuans7OZTAahUAhXXnklAoEATp06hWazieXlZfFMaLfbAoxZM99oNBCJRDA3N4fFxUXJTBOkTU9PI5lMCtA8fvw4lpaWkE6nRb6/uLgIwzDE8wCAlC0wKBMniDYMQ8gKAkMqGagw4PkfO3YMlmVhdnYWPp9PujNo+fjZs2dtWWZ2hCChUa/XJfOuOzMQoFarVblGPFfdPQJYLQfQWXNtntfpdATAanWJaZpyDQuFAizLQj6fl8+ZcafhI7P2zI5Xq1UbyGdbPyoKXC6XtE6kwSBLZAi4mWHnck0QUG2hSwp02YQm2HS3APoN8Lj62SPBwi4V+tkMBAK4/PLLEY1GEY1GkUgk0G63UalUpHtBuVxGPB4Xom774iC6X5HWEVO2FoDcyuvAgdVaewH/3EePTeHGI7jGvjBgDZwxMN69kukfNB5Z+e0HjF8bYrsB4oXm9/DPqZ9GMzmnlvavgR5WAjaNNBYxi5f/1y/gIE7inre8y04E9PA6SCKFW/74L3Gv8bahjjWq6MyHByYCxqljwE4RANbnAOODFvDI/xhg7buxvSUB16IL5B/eYL1+n/cmCN5rbI3gMN5pl/VvFE4yYJRxtfWNLasBNopppLCEuY1XnMSWY6cIgD1vLDqs7H+HCACWB2xvDGDyt5X13270Lwm4Fmvmcx9O47GXXoqrrjs65NhGE58y3jEwETAhAAZZZ7jvgwOTAAQYJAFoJKezuZTGE/TlcjmUy2Wp4yfwYw0/g4Z2uVwOJ06cwOnTp0WOTnBJqXaxWMSpU6eQSqUEPAaDQRSLRfz4xz/GzMwMDh06JFLvpaUlmKYpzvjhcBjpdBqVSgUABCxxbM1mE6VSCYuLi1JfT3l3tVqFz+dDsVjEww8/jFKphGKxiHg8Ll0RmPlnaz6a5kWjUVx00UUi3Wd9f6FQwNNPP41yuYz5+XnpOJDNZgVgM+NvWRZKpZJk6kOhkLQL1M7vWp7O7gcEvCw54HrxeFyICqogUqkUisWiECJ6fmj4pztD1Ot1KWFot9uiyKD0nr4C9ALQ9f+69r3dbou6hKQLz4VgnMQGX3M9ehZQ4cF55/qmaco1N03T1kqwWCyKsoCkDFUttVrN5l9QLpdtRpWcc95LPAfuX9f3a5NGANI5gufg93d15SwfIZHCe5/zqUsHSBZwzqjoCIVCkvXXKoVms4l6vS4lOfF4XEiSWGxMmhvXFtY4LfeKdxifAgD8kvXX+KzxRsc+KuiWBgxWFkAlQD9VwGbq/l9mPSCy/0Hjp6f/uet1CAy97SDxNC7GL+M+vCn9P3HN9CP2D68F3vsf/rjndnNYHPlYRhlrwT+/7Ixe4rgesHcu3ykFgPFGwMmDnUuxVfCvY5Ds/mYy/5sB9aMsD+gVo+7CcT7GesDeuXynFAB7mgAYNnoRANtQFsAY+9r/rcSNNaT3T/X86OCYO12sAf+HVu6BZ3ff12Cvx1DdAbxer4B3dgbwer1SY2yaJnw+H0qlkpQEVCoVyd726glPEJPNZlEulxEIBDA1NQXLspDL5bC8vCwSfoJYZvEp6wYgbvHRaBTJZBK1Wk0k6pFIRFrpzc/P44c//CGOHDkimWeuUygUpCygWCza2gOyvKBWqyGfzwu4Yk0+XfxzuZwNIOq5O378uABQ1r83Gg2cPn0ay8vLQlhwebFYFL8C3f+9VCpJppoEB4EhlROU4esuAtrgULeyY/cCglS2RyQ5w2OlUinZloDV7XZj3759qFQqNlWF3+9HPB6Hx+ORzzwej7QPzGazcv35w7aFPBcduvsECRm32y0dCnhcEkP8zXOg2SEA2RaAkAv6niKIprM+wTfBNJcR2FMxwFaOLE/gvc3MPO9X7gvAmueCc6FLAfx+v81zQJdFsGUj72VeexJ29Xod+/fvRzQaRblcRqfTwfz8vM23A+iSA/Pz84P+OdiFWP8r1hoCwBaDEwFAf5C/GeO/zYL4OSziKjyGh4bYxmn7tp5VzGeNt+CzAIAYvs2FH+vej+/9jd4EwCDxPetyvNA4Iq8ZXLbVoBpAlwgI8P+C88ui5Xg9+bJgj+1WA2wlhm/9t5noB/I3k/nfLIi/AGdwFf4Vjw6xjfNZv3/l902bGsHw8W3rBXiJ8bi8ZnDZJCax7TGE2u+8CkddvzeVBwCcnR5fRRDVALpEgK8vt75nX/mQZX99XhABw5QBDKcGGJgEYO08ZcfM0JIIIMCjuR8zuwRbrDkmEAsGgwJKK5UKTp8+jWw2i3q9jmKxKCBYA2o64NMFn8CH4Irt4RYXF9FsNmWszKqy9pnS/Hw+bzN3C4VCqFaraLfbWFxchGmaIpumnwCPSQDLbHEwGBTyg1J7nUWm70GtVkMoFEIgEECxWJSMdTAYxJkzZ2ROmKnlsQAIOK1WqwLitNGgNoRjdpfglg7+9Gxg1pwGesViEclkUtbVcvhgMIh8vvuHhMchwREOh4UEOHPmjJQGUJnAunxmrVkiod3xtSEf7yVmvp33D/fJeaF5IEsGWNdPiX80GpUyAe4/n88LYcHrVyqV4Pf7bWZ7rPtnC0jd5pCqD3oo8Drq7heaQNDtEVliwvxMtkkAACAASURBVDnUpoe61SDJDSondEtAln2QHOCzqQkfEgLz8/O2konp6WmbeSTXZXeIvRHljVexrTs6o8DNxhPtKwEAV7p71/tXEcRT9ctwg/8ruO/kbcDLgOdZrwYA/ILx1Q3374R0V2Nwd/pBwf+7rA/jMVwFAPi28Yo1n2vw71w2CjLgtXNfwhd6vMbrATvwd8a5RwRYn7O/N6IAXnkJgN2RdU5iNZ5I/xQA4Mrp7/f8nITB663P4PNLNwPXAc+zuj3mftX4+w333+tZ72XtsZW4wvpu1wsEwOPGS9Z8rsG/c9mEDBhtWF9Ub1qA0aMd4TkTw8j/J0TAhjHO4F+Hzvbr10cuutoO/J1x3hAB2xMDkwDOPuXMWLIkgCoBgjHW0TNLThBGYFcqlfDMM89g37592Ldvn2RjKW9vtVpIJpMwTVMk6OVyGZlMRkC32+22ATwCo+XlZSEAWKtdq9VQrVZx7Ngx8ROYn59HOBxGLpcTIEcQq1vXmaYpUnbDMJBIJFCr1ZDJZOD3+yXTXavVJDNPwoNAj5llAlcSHiytaDQaYkaoWxrmcjl4PB5pE3jgwAE8//nPx9NPP42FhQVp81YsFgV0UpURi8Xg8XiENGGtO+vImSkmeKTUHbAb+xFgUqrv9/vRbDZRq9XEP4CeEUtLSzZzQJInpmlKll8DYV1Hr30SODcEuAS3uo0ex02ihQRMu93G9PQ0pqenMTU1JfeOZVlIp9O2dn0s8eAxtTyf46HfBYkNZ7tC5z2j6/fZxpHbkBDQmX3OCe8VbYSoz5/H0W0aAUiZAsG8VlJUKhU0m02Ypol4PI6ZmRnxmTBNU+Yim83uQItA+gJsZrvRxN1W10yQpQQ7Ejd2r1PG0/1H9RDspoAN+PBI+hrEp3PIXz+PF377EeClwB+dBDAA+F8vvgOgus5nm80DFxGR1y+xviavr8JjAD4BAMghjgZ8mIVdW6mVAsOGRVz0DzcD6vVw//r1F4nx/9JgfW5F5t8n+Ln1OcAqGDAOWcCz40AC0BdgM9uNJj5qdf0r3mN8cmT73DCu6d5jzWT3/noU/SX/1+AR4Frgj44BGAD8rxffwmif9RdY37YZCr7AEs0QrsK/AvgLAEAK02jDs6ZUSCsFhg0b4FVxLsvgN6zzV8Df+mL37+E5TQScS/Hclf87T47v/5xpY4D6y3EOTRJMCIGhYmASoNVqIZ1Oi8xcy89dLheq1apkkHVtNAEeiQPWjNPsjpnmWCyGeDwuMnxK+UkqNJtNafEHQMAXs9k6u0o/gUqlgkajIVn4fD6PU6dOodVqIRwOY//+/VJ/n0ql4Ha7ceGFF+LkyZNSm8+MPMEquwPQrZ8mdcwEA6uSbDr1N5tNybwTjFKqHo/HBYwHg0HJons8HiwuLtpKJzweD5599lnEYjGZO84PM9IApFNBr7ZvrNvnXPFYzKYDkMw4SQxec+1gT/AYDAbFpJCZ83a7LeQQ1QrchuUk9XpdCCLtCcB2f8xccx9UCNC1n+fp8/lkrinln56ehtfrxdTUFCKRCKrVqrSUZFbd4/HA7XYjmUyKyaDL5ZLrQyVEKBQSgqbZbIrBIEF9p9NBMBiUFoVatUEgTzKAc8R7RJ83VTN8VnRHAqe5IgBRIvB6kFihgoD3da1WwzPPPIOLLroIPp9PjC1LpZJcv0QiAZ/Ph+PHjw/652AHYxQEQGjru7hR/ZP5cp9/Mjdaq5/zdY/1H3r6Brzk4n/Ct596OXAWwDsBHMkBDxv4HQO4zHq1jQD4AIDfH3LITlCwXlU12wBuFHX48TQu7vlZDnE8ga7SYRGziKCIWSytAf1bIQLWhKcL9N5jfGI0+xuzGJQAOHdiZ8oANoxr1LP+SJ9n/Rpr9XO+7rF+vzKB9xt/iudZrwcM0bRs67O+2WhjlVjWz/ppXIAIipjD4hrQvxUiwBnnMgEAbHx+awD/djby2UsxjiqA5w6hZNjmYBvAPRv9FADnVfwKtqMzADDknxICkWAwKDXHBGbBYNBm+Ma2awQ4BDKxWEwk4cFgEEePHhUCwefzIZFICAhj+79UKoVCoSCAkNJ2ZkOZIWV2mCZnnU4H+XwehmEgk8ng5MmTKBQKmJ2dlfaEp0+fRjqdFjXB6dOnuxPj8eCiiy7Cc57zHFmXxy+VSohGo2i328jlcojH48hms7bMLcsKmOmfnp5GNptFLBYTE0WqH4BV+X44HEapVJJyByosuF6n00EqlbKZ9RFssr4d6GaAKU9n1ntubg7VatVmisjMNgGpx+NBsVhEIBAQiTzQVTJoI0IuIwmUTqdFrt5oNJDNZuU+AVZJG4Jd1vczo846eq0YYaafAFqXGlSrVSnj0O0OOQ/saMDSCY6ZLSqB1Uw/zRd5HUjIkLzhfrVJIUE872+OnfclCQG26+O5E9hz3NrngMFni+en2wjyHtBeChybVi6QbKvVajh79qxk/Unu6A4LhUIB2WwWJ0+OmznMVgiAEPBuAB/rfkmgAmCguHGDfzz8XIP7Xtv0IwuuMPDtL78cuH7l/QFg+bMXrlmNYOADGB4c6OwfQcEcAKfe4yPGf5HX/QiBHOLrfvYsDuEv8OuYRho34Ct4Mb47xEj7B1UAkgljwtQDvOehzRIA22caOMrQkv/1QL+zLGBvxugVAAPFNRs86/xcg/te2/QjCwaMUT/rB7YwFg36AUhZAAA8i4vw5/hNzGIRN+Ar+Gn88xaOZA+qAAiK11MFnIuhz3U9UkDWGXXtx16McSQAxix0hn89QmBsVQCbJQDOWdPA7SECBiYBCPiBVTMz3aedAEm7lTPDTOAXCAQkk0/n/H/5l3/BiRMnxNH/1KlTIikvlUriwK/BI4EnATDrxWly5/P5pN6fmdxKpYJOp4OZmRkBQIVCAel0GrlcDn6/X2T/Pp8P+/fvx9zcnGSSCeQikYi0WrMsC+FwWKT7zOgXi0UBeQCQy+UQjUbR6XQQj8dxySWXIJvN4kc/+pFkbdlOkeQJHfh5rgR3BJPValWOz/MBVpUZBOQEuK1WCwsLC3J+QDcbT9UCjQApY69Wq0IeMAPOfVG6ziw+ATSVF9p0z+/3I5/PC2Gja/cpcWfmH4AQSbrEg1l2KgdIlJBM0mMIBAJCGNGwkmaH9GbQ2XiSLSSz6H1RqVSECNAmlFyPgBxYVSTQn4FlAjwfqhQ0AUDwT+WDsysCyQVNCPD68vrRr0Kb+2llDMdz8uRJ1Go1nDhxApFIRPw4SAaxS0UqlRr0z8EWgsB+I8JhKwRAEPgU8Idv+m28r0frvzWlABuBfmd8AMBdsJMB/QD/mrC63Q+uV4sWsOLq1a1d7+UBMGx2sFcwoZRyA70aiH/E+C89iYAW3LZSAIb2BXiJ9TVchqcEFPRSAQwbVg+FtPHzK3LYG4AuiD//sgW6VMB447gSAQT2G5UFbJ8CYE0pwEag3xkfAvAxQO6xdbL9W4mblQqAMYpnnc3F1nvWndEtAXCvAP61G2hfgCus7+Iy/Ag/i26pQy8VwLDRC/Abrzu/iIBeoUsFZD7OdyXAuBIA/VQAz7V2tSRg2qjtLWXAs8ZECbADMfCfEg1iAEh2n5lcvt6/fz+azSZOnjwpmUm2xWNfegIZ1uMfPXoUpVIJkUhEnPK1c73ukw5A6sUpzaZzfjQaRbPZRD6fR6lUQjwel0yyZVmSzWZLPLrnU1lAYmN+fh7JZBKRSERk6yRB2FauWq0ilUqJ8V2hUJASBMuyBJQT4NEQ0Ov14qmnnhIA1mg0pId7JBJBIBBAMBgUIiSRSCCTyaBQKAgQJOHidruRy+XEmZ77o3SdLv71el2MD0kwcO44fp6j7gpAHwG3243l5WW4XC6Ew2HE43FUq1UUi0UUi0VbLb2+FxqNBvx+v4B2ADLX2rCRGW+en7PsQLfuc7vd0jqSwF+7+rdaLeRyObRaLUxPT4tyhICfGfdIJCIKDhJMrJ3n9SyVSkLKcHxUKfCeBlY7DHA/LC0AIB4Fbrdb1Au6xR+JLV5Prs/9cT5IiLjdblQqFTF9pLqA++H9QTKGZNKZM2eQzWbh8XgQiUSEoOK4fD6frW3ntseBA8DCAvDmA11r61H+U/cYuPtNbwEwpAJgwPhfL/wFfPR//GZPY7ztilGAAh0/bgNfBXC1G0g6vu/3IgI8aOMQjgEA0pjuuc9vG6/AW6xb1ywfFvz3Av5c3rsOditEwHgbBtpq/gcB+muyH72E4TvcFSDwYqD2HeDGFwNfBkY930Nl/oeMT77iV/Hnr/jNnsZ42xWjftaf7fOsO0Nn/FcJgbXxA+NFeKv1rjXLhwX/6wH8DWvkz8HQ6ofznfiYxPZELyIgbQXGVw2wFSLgnDQM1K7/vVQBg3cFYBhahtwvZmdnLQAC9AzDEJAcjUbFFJCSctaB09SM9d4E5Np0juZ9AKSGnxlSghm2XNN916empiSb6na7xcWdZmyxWEzKDGq1mgAdSsQbjYa09COR4PV6sW/fPiSTSaktj0QiyOVyKJVKQgLwmO12W+r9vV4vyuUy6vW6KA0ILJnlbzabyGazSCaTuPTSSyWLzdaGlKqXSiWcPn0amUwGxWIRuVxOpPy1Wk0AIQkGZpyZdSYI5fzz2gGQDgOWZUnJAevWSRJQeaAVCMBqLT3NChcXFwXQ0zPBNE3k83kEAgH4/X5EIhEsLnaNg3j9CPSpDiCRQF8Bmkrqenh6H1D9wHuKfgy61Z7X60U8Hse+fftwwQUXoFKpIJ/Pi7yfnSLS6bSoBXTmvVqtCoGQz+dFXcHjaICuuxxox35gNaPP9biNvp95vaia0V019P2uyz5IHOjOELplIMenyQMA8qyR8GJw/E899ZQBAIZhbAsF+0nrFgDA7+EDOPs/fxK3vunj+OvF/7NHj/dBoleHgCDwoIG7X/GWvltSDXC19Q08+prrBj/kJ2r49v5r8bz2DxHzDOq9DwwPUkfzz+thAEfQu0vAO9Q6/XKxmhDQpQO9YhDAP6gngI0MoHDkCGD8vz3XHmifvWP8vygMmukf1ifAsixju571O1cIof9U/n9QOjyDm3/jHnzmqVuB5+4sCUA1wOXW93Dk31w9+I4PA197/k/jefgh9hn5LYxwZ2IUzzrjBda3NyQ+BgH8g3oC2EAvn/WjgPHhgTY/p8Im+fdgVfrvSNkNS5JYlrWt/9tHGv06BIybCmBYD4AxMgjUhMDYEgFbUQOccyTA4MHnfaMYWAlAgEXpdLPZRC6XQzgcFrk+ADH9WxkEarWaANFAICBgj5logul4PI6DBw/C4/HgqaeewsLCAgBIhppyfO0SXy6XpRc90DW0m5ubE1BaLpeRzWYxPT2Nubk5LC8vI51Ow+PxYHp6Gul0GolEAktLSzawy3Z5BImFQgHLy8ticsea8WKxCACYm5vD85//fCQSCVQqFWSzWVEkHDlyBMViUbLU0WhUiASWQRw6dAiGYSCfz6PZbCISiUg9eqlUkvZtnAfOC8scWBLBGnq+p7Sf4FKTHeFwGOVyGZFIBF6vF4uLizbpfa1Ws0nGOaeVSkVUAgTKPC+2YYzFYsjlclLHfvz4cSkHIZFBxQPnE4CYDwIQQoCvuS9mvjudDqLRKC6//HJks1kcP35cyBGSBywloUKFXSVIOjDDT5DNWnpeX5fLJaUMnFe683N+af7Ijgk8F54HVRXFYtFWy6+z+9pLQGf2+XyQnKIhIgBRG3DcnCcqKDgXusWmNvDkteWxqSzYqfgj/D7wpu7rn537BjaXy1tp+/eg+icRBu5+cX8CQMejxs8MVQ4ws38JPnTnO9+yV9evIQXut4Cb+Hd42Gz15jLUfw+IT/chrO8YruNa9HcQJ/Dv6RfwzpVzuqs71hcaR2xEAAH/ZkoBbB4AR7FBHexm1AB77wuCBvmD+AWMQ/yp+X8Bv9F9ff1l/4TbR7jvYVQAR4wXDlUOEDiQgQ/dv+dnrJjts3EgBZzP+iCU5EbPOqMnAXDTytzd331uXmI8biMCCPg3Uwpg8wAYh+YWYxBa9TSIX8A5FeMG9B1xwPoRFoxLu2+eNIYjAna5LEAHgf9YlwlsRg1wHoP/YWMoTwBt8Ecgyew4M89UCQCQtnJer1eAMOXfzHgS5BAYmqZpy/xrAzWSC8yW0/2edeLaBK9QKEjJANvgEZARlHEf8/PzSKVSokxIJpNIp9OSgScgj8ViKJfL8Hg8WF5elhaEqVQKp06dQiaTQblcFrCaz+dRq9Xg9/ulb308Hhdzv0qlInL+SCQi506AWC6XbT3i3W63uO5z/ATsBPnMghP4+/1+lMtlyQCzZ3wul4NpmohEIlhaWhJFBY+l2w1SOcB9hkIh+c168nK5LOqQdDqNdruNWq2G+fl5HDx4ELVaTYwZdRcCytg1gOX5EzCT5CFgJjFSKBSwtLQkngdOY8F2u41UKoUjR47ItQuHw6jX68jn83KNAEi3BW5LQEzzQpIjBNzagJGkjdM3gM8MS1FIyJCs4fPi9/ttigDdAUH7YHCeeI68f6PRqNwrnENeR31OVARwrGwvyff0GtjOeJtxr+09lQFbiY2y/lsOVe/fbi/A4ZklQVIg9mADYFMOGxEwbAxHBDyCbiaQcQhAps/6GgwMKhB/r/XBtWqAu+xj7JXp30pHANuX4d/ouyY2JgL25peDXiBflwqMY9xu3GN7f2ePUpFhYzul/wBs9f7t1vpAn6TAbpEBjwP4vnr/HMDRkNMem3nWe8b99uenV6Z/Kx0BNMC17tj0bvZ09AL556NR4rjGAetH8luIgGFjjIgAxp4vC5gA/03FwCSAzkJS6k9JPwDpO86MIoFbIpFAoVCQ7CYBCjOnzMouLS3he9/7Hqanp5HP52292dlaj1lSGr2xK8GBAwcQi8Xg8XiQz+el1VksFkO9XkepVBKZPjPpwGq9figUsvVpX15eFlk9gXCr1UI2mxVgSnBer9eRTqdx6tQpIQU0gOS8sCsA54rrEtTSUV/L3bWxXr1el/FzbnU/eYJmAj76LjD7zblbXFwUwE/ZOMkdZuaZEWdnA14vqgg0EOa6JD6OHTsmreeazSYWFhawsLAgmWlgNWPt9B3QtfGUwXNdzhkVBbVaTcgHZrt5XixrMAwD2WwWxWIR8XgcMzMz4nnAVpEE3JFIBJZliXIgEolIGQD9MKhqIflFOT0z6tokk/4KbF2pPSXozcBrwDKaQCAgbRQJ+DWgJ0HEZVSv0ACQWX3djpP3KU0EAcgxq9UqwuGwEAf62dgLcZ3VNc97h/FqWbaeB8AaM8BNRsZzAC9ceU3Q/+fu38Tb8Qn8BX4dFYSAG1f+Gd3v+KfFoQ01lMGJgGtgrwA/FAO+n++fIeT6gwCD9UwDRx39emD3LgWwrYHeRMC5+wVhnFUAOtrwwL1JW/Orra4B3XtUu731CIE1ZoCbjGYyBh5tt0G/M14Ax7OeAB7NjO5Z36noV/t/PpYCbBTnhQpgzGPBuFSIAIn/vPL7Q0PsaIyIgD1hGrgeETAB/1uKgUkAbdJGYzpmW5lxpEkfgSFB7tzcHMrlsq1NHFsAejweBINBcc9fXl4WkEmARvDIzKUG87FYDJdccgle//rXY2ZmBo8//jj+5m/+BsePHxcA1Gg0hIgIBAIIBALIZDICRKkSoHt/u90W+bbb7Za2apRS0xOA46TUmoZ1zWZT2gKyRSFr5E3TxNzcnLTac7lcME0TPp8PlUoF5XJZMto07Gs0GiiXy6jVapL11u3imLXXmV5eHwAC8piBDgQC4ifQaDSklRyz5E7DOpopct5ozMg2iIx4PI6pqSmZc943AKRsRJss0jiQ56jr7LVXAfcBrHapICGgu1EwE0/CQKsycrmckFORSMTWcYJED0kpACgUCrZafpIq2viQ4+U1531KkM11tIqG7Q05TobX65VMvFYCcL44hy6XS1pIcnuSBrzWJJ/ogWGaptyvurUhFR+6q8ZuxSetW9aoBPrGYxa+2SPhRLA/lCHgl43+JQE3Wj3d///c/ZtIYxr34yacxgX4W/wCGm0/gPfbV3SSAR4Ahwcf3rCKgEvQbTbw/fzacoCfA/AAAC3O/z4Gj56eAO9U53fXOPxDHocxTMIZJADutG5doxLoGw9aePRraxcT7A+lDnjE6F8ScI3V0/1/XMC/M/isP5pZ+6y/0Q18vr35Z71n3KTm7v7JczaJczfusP5wzbIPG++zvV8lA7o1LAueS7rdgwaNMSMCxj4mgH/kMRQJoDO1OoNsGIa0VOt0OpLJrtfriMViKJVKAnqZsQ4Gg+IV0CuTydprZkt1T3YNUguFAp588knEYjGEQiEsLCwgl8uJI77P55Pe8kAXqHq9XjEfJKFA2XetVkMmk5G66WKxKFngVquFUqkk4EmrB3SpQrPZRCwWExVDp9NBJpPBBRdcINlbZtid21PqT9k/54skBQBbq0BtKsdxURHgbAXn9XqlJIFyfZYiJJNJLC4uSq08lRDMdvt8PpRKJSF7kskkms2mZM4DgQBisRj8fj9CoZBcU3aFaLVaME1TiAwSMFq5wOvM0EZ6nCNm10lE9DIRZEaey1j3z7IQ+hBoRQUJDS3lp0SfSguqG3humhBjdl+XZnDeSGRxGffHsbJTRjgcRqvVQjgclmeM92Gr1ZLuEiTMlpaWpGuEs1RAA30Acq7O55lkBwAbobOn4jELuMr+z2FoMmA9IqBP67/3GR9GotX1LrkPvyzLE60FZJ69AHhsnQ1fiSFJgMHjEgDXzwJHl4DvoAsMLgfwU37gc/VuDXET3TKB11wEwANcu9ka3Hf2mC/nsk2QAuupAHRYvzGIKmCc469Wfr91g88Z6613HoUHXf+PV9rvqaHJgPWIgBG3/tvuuATA9RcAx04D30L3Wf8pAJf7gX+oA6fa3We9AOBVlwBwA9c+ucmD3dRjvpzLNkEKDJLZtu6YqAImMR5xh/WHeBaH8AjaaPeoC5x50wksf+DCXRjZJMYn7l/5fdMGnzPWW29nYuDuABdffLFFsE/HfoJ4SuQJVObn51Eul8Ucjs7szG4GAgFEIhHJrjPbSRk9x8RaZZ0JJlmgfQjm5+cxNzcnYI7mdRwrx0t5NcsWqE7Qpm/sER8KhaR+3TRNlMtlccs3TVPAF+vUCc6CwSBKpZLU97OmvlwuY35+HuFwWDogMJudyWRk3wAE1Oua7U6ng1wuJ20JAYhMnhlnkicEjwTWzPIyiz09PY1AIICzZ8/CsizMzMzg4MGDOHPmDE6fPi0ZeqoKONfRaNQG4kk48DrQm4GKCJ5rLpezKUSy2ayN6KEigqZ6Tt8IXRPPsoVqtYp6vS7nyG1isZiMmeaFAITM0NeL9xLJCk0khMNhpNNpUbk0Gg1bOQIBdy6Xs42PAJzEBoktjpPXU5MVNFRMJpOYn59HIpGQUo5yuSzHo1cG1SxnzpzBk08+iaWlJelwwGul98/7iOUc9E8gkcLxe71enDhxYu84CD+mhnjV7nyBJwnQKzJ/t7/3BzWslgYAQBjA2wGksE6pwObO7X+jCwwOAJi7BvjhI8AhE/B6AN9KYtN6KWB8a1O7700COGMslAHjGE6QP0gMRgRYpwBjnVtvzbrb2B1gpKHNP185uaec8b/R9c3c7wamrwGOfqdbDuRxA64VY5AtPeu9SABnTJQBOx6dNODq3bF1Teyp7gBjEL2UAIz7cVNPEqAOP5YvVyRAHF1lwFn0VgiMiQpgEqMMJ8gfJEZPBIy8O0CxWIRpmuIDQDBCwE2peb1ex4kTJ/RA0Gq11tTjs8+6YRhSX00AQ8DGDD5r15mlJhDTDunHjh1DoVAQ2Xo0GpU6aGZq2+22dA2guWA8HkcqlZJxERzWajXpI09wRZBHIEzgTyLDMAykUikhE5gxzmQyME0ThmFg//79Nld2khLRaFRMDMvlshgqNptNVKtVkbNTzs25Z1s4EgIEn9pzgeCZIDadTgtonpqaQiaTQalUkj7yNGIkSPT7/aJE0Jl3eilUq1VRHczNzQkApYoikUigVCrJPLPzAmX9J0+eRLValfnlXAOwES0AJBOvgT+BerPZlLmlCkRn33V2nnX+VHlw/DznQqEgahNez2q1KoSAbgtIsgRYVS+QANDtDbXZIdfVPg4slyEZwvIV3WkgFoshkUjIPtLptPgj6HuAY2fJB/fB8ydZxONRfbCnYpeA/8BxbQ14uEednQfAb6v3AQBXoavrtZEAWzu/uZXLmWwDeASwngsYjkzg0KBgEODvXH+FCPjSyqLXDnnISTA2Ug90QxMAS1YYs0ZpzTrrLR/bmAD/vmF71r8DWFcAxg/s6wz9rA8C/J3r3z951ncyNAHwrDWDQ8bymnUWrAQOGP0sYicxbLwY38F38OI1RIAfdeATakEAOPDCo1g4dRD4gPouMAH/k7DFRuqB7YuBSQAanJlmty2XrmumJN2yLAHw1WoVkUhEDMg0+CH4JYjSLdF0CzVmJwn4CRC5T4KWVCol8mdmPQmA6Fofi8WQTqfF5f706dOyT5YxcL/xeByxWAz5fB7RaNTWgpASfBIiBOIEbuwEwMx7tVoVwDo1NYVkMolqtWpzijdNE6ZpwuPxIJ1Ody/MiiydWWkSHvo354fHZQs4zh/r3QlSKYE3TVO6FLAdHrs88FqTcDFNU8A+Ze3cVpM/zWZTxrm4uCgAttVqYWpqClNTU/B4PEilUqjVaigWi6JW4P3DcVMBQNNJkke6TaVWh+isN8sFtKGebvFH40YSBbrlpS6tIHFCkz8eh/L/Wq0m86LvawAC5qmmoLeBLmvQbftYWqLbYWpzRl0KUC6XZS4CgQBmZmaQSqVQLBbX+BLwvLS3gb4XOMfT09Py3ExisOinAJB4dh2jHQ96N+tOAvh9dMmAw5sdmdpdG0jp7ygDZox6xrDg37Gt9QcGHpjrvp0AhJ2LPQX0J7HpWPOsx9ZddeMYFvw7tm18wsCD8e7bybO+exE0+QAAIABJREFUc9GLAJjE8NFPAcB4FofW/ezAS9fW183sX8Ly4QuBZ7HGMmgSk9jNGJgESCQS8Hg8yOVyAOxZTII1AkNmatkCjvX/zNJSNs42b8zYEjBp0zUANod+DQ4JcLRUmvuKx7v/hQKBANrtNo4fPy7AUGeFK5WKmPoVCgXJnFJST6m2z+dDKpVCJBLBmTNnpPaawFhnsQOBgGTnS6USarUaEokEEolEd9I9HkxNTSEcDku9figUku1dLhfK5TKy2SzK5TJCoRBmZmZQqVSQTqelm4DP50M8Hkcmk7FJzKvVqrSN0wBZS+JN05SuCYFAAMFgUNYlgI3H42LcaJomFhcXUalUxCuAtfXa+b5cLktpBfdTKBSwb98+7Nu3T+aDRAPLBgj8teqCgFWXPQCrLQw1SNZZdgJupxs+SQLOBctTKPWnykIb+pGsItlBoE6lBAkCZuypWtBO/rqLAkkH3jO8d1utFvL5PCKRCADIc+b0daAKhp0PtLcFyQvdXpDPIJUMLAmg4oX3RCgU2ntKgF2KQQiAzDf3d+X9w0QJXUJ4hP4805cDlol1/9Kn3CvZQwbBfhiw3rFKtJ29JG43R9sEKXCh9ZO4wngGwCo4mMT2h876L1nhXR7NJLYrpq9Uz3qPJgxrnvWb1LP+31af9eMHZ+2AchOkwJx1ubQFnTzrOxc6679gJdCCG8Ae9frZhRiEAPgnXI80kj3LAdaLYj4M3IXV1sGTmMSYxMAkgAbrlBcTGJVKJQFABIOsaaakX2dMQ6GQyNwJ4gKBgLTHAyAAtdVqCZjTRAF/697yBFg+nw/lchmlUveJ0630CMxIKFDiTSd+lgvobDK7AySTSTlvAjmv14tEIiHlDjwOOwmwEwDLJGgQmEgkEA6HMTs7CwCSHQe6oDWXyyGbzUrPegLjcDgsHQoqlYqARU2OcH8Eqyw9YOa+XC7jqaeekn1mMhmb/wDQJQqWl5dtCo54PI5Dhw6h2WxicXFR5pBgnfthCz2C0Hw+j3w+LyQSTfg6nY4N3DJILjl73pMg4hyxiwIz77pmn6UBAASUk1hiCQYAKbnQbfxIIpCQ4b0GQEoBEokElpeXbZ0MtBkfz0G30uR9zN/chgQOSQrOP+eXqpBWq4VoNCrzQs+DYrFo8yAgwcBnjfejYRhiOEkzTN7rrVZLiLNJ9I+M54C8Xo8Q8F5RQPPr0eF2/E6nRHC4rgC9wvhBtxYY6C0HfmHrCGAo//C7DFj/gu73RtWne9/nt+aObswBwDPyfpIZ3LmYqAHOjzAe6/+sX1pfANTfLtxvwHoCXcLgP6wuPvS3W8so++IAcETeT571nQun7N+D9goRMIlBQrv/r0cIXIkn8HX826H2W4s7ZHhj1BVgEud3DEwCMJNJyTZr6gnANFgkaKEknqDV7XYLGCII0XXmzCRrB3adTSXJoFuzUapPUA5A9s9tmdHle6esnNL1bDYrzv30KSCIIhFw0UUXIZvNyrqUXBNABgIBcc6v1+soFotSZ760tASPx4NTp05h//79OHjwIJLJpMjol5eX8fTTT4s5H7spcP4TiQSuvPJKhMNhnD17FseOHUMul4PP50OxWBRDP2BVmk6Qy7FWq1Vp+cfafgJWAkKSG7w23F8oFMJP/MRPIJPJIJvNotlsCnlDOb1WBrAcAIC0SGSLPq0oITmja9l5DQnCtZEgrymPSaM7qhM4Z7xXuQ3bMHo8HhQKBTEupIKEZAvng0Ca2wCr7QcLhYLckyROSETEYjGbDwaVBxwLg/PLfZJM4LmwwwWvB9tV5nI5UcekUikpSQmFQkKw6K4TJCcCgYAoIOjJQc8NADZvjElsLSLxIorXYzAi4Kb1vgzonveb/8LQrxb4uCYAGP9tgJ1qwz+tCgigW9YAADkAfzb5ojPamHQJmMT60e9Z1+SlxP89wE614V8/VcDEGHAswzNRAow0kkjjlXgQD+KVG6oBFoxLe3/wpNElAvh6EpPYpS4BA3cHuPDCCy0tLSZQ01lmXWPebrcl60jgU6vVYJom2u229IwnqNdtB7WBoNNQjSZwlmVhampKDNVYV83+76FQCNFoFK1WC6lUSkAZ68CBVUC3b98+cbCnKqHZbGJ2dlY8AAzDwCWXXIJ2u43Tp0+LDLvVauHAgQMol8twuVy47LLLcNlll+Gpp57C0aNHBazRjI7zxvOYnp6W/u/FYhEnTpyQDDYAyfqSyEgkEkgmk7KfdDotx9Bt+QgoAci2BIMkJQjSK5UKIpGIAEWPx4N8Pm/rdW8YBqampuD3+5HP58UTgkDS5/PZrhs7BLB2nuUkyWQSXq8XTz/9NM6ePSvyfB6LhIizLp5khM/nEyKJvgXaX4LXlfcUx0iyRncT0HXzJIZM05SuEiS6Wq2WdCTgMUhYaKKJc03ygSUh5XJZ5lCTZRxrp9MRBQVbWJJY4DkGg0H4/X5RIvDakxDgdSBpoE02dcmKNnXM5/MwTRPhcFh8KR566KGJg/AQsVFpQKXUbQVaezDRe4V1CQCG8zLszBcG6w3qiJ8fYANVRiAkAAD858kXnN6xfd0B1gtnKcCsUdo73QEmsW1h/eLqa+NvB9iARMAE9I9tLFjd/zdUARwylifdAYaMjUoDcugqJ7+CG3p+vi4BwHiu4zLsBTLgxysG089x9V/vvI5ztDsAAZPuz87sJQEHM7IrAxB3eAJ8bs9MMUsLCGwACEDWrurcHwABlJ1OR9rs0c2d5QHNZtPWKYAZWQK0ZrMpPd8jkYiYo506dUpaCxKMsRWez+dDLpdDoVDA7OysqBtKpRIWFhak9V4sFkO9XrdJ9RuNBiKRiBAooVBIti2VSjJvJCe0oiIUCsHlcqFQKKDZbGJ5eRmnTp2SDD6DwBOADURyznWfeF4rfS2Artyf46KPQTAYRCaTgcvlkvHq0g4AIssniOd1I7jk+0gkggsuuEDq1jlHPP9oNIpwOIxMJoNqtSqEBv0eLMsSIicUCuGCCy6Qrga6RSLJHW5PFQDLV7TZHkkkjr9YLMq9SNKL9zTvLX6uDQ1JMJDwYZmMLpHRnQ/YiUCTGPzR5SpUF7TbbRQKBWmNyHaaVBjo8gkeR4futsBzDYVCME1TyArucxJbjzUlA6/syjTXyAI3jN5/x49YP4GL88dXpLdjEDxd53+UD6kvOhNCYJPRH/xbX7O/N16xjUOZxCQm4H9PRAvuiQpgG8JZMvDaFdeLu433DrejvQD614sfd+zvJ6TAJqM/+H/c8f4F2zCCgUkAZhgJqtnCjhnYSqUiwIOZR4J5bZimJfu6hR3XJ8BknTbBMbej2qBer4v02eVyiTFbvV6X95S8u1wuUScQ/BGsxWIxXHjhhcjlcsjn82i1WpiZmUEkEhFygi31lpaWpG2g3+9HqVTC/Pw8AGBhYQHhcFh6ty8sLMhYmCWnHJ/951mjrXvRU2IPrGaJ9Tm4XC7JhLMTAf0BtDeCdprXxooAJNuvTeIoKefc+/1+UVeEQiEZB7cnCcKafBo9ksQJBoNIJpNiOkjATN8Dr9eLmZkZuFwuaXNHs718Pi/3G68ZS0tovEjpO7s7sFsElQMcL+8v1trrOSIRwvuM14j3Oc9Nt7fkPa/37/QCYDiVCFxXKyb0+vR/4LXhfLNlJQkA7T2hOx+QUNDnqRUAXM7rwHu4Xq9jdnZ2DXEwieGjl+Q24zkgioFR0SyXG8dHtCdnPA5c8VMQ8qFfMuNDQyaUPmRNiIChYuPMv5MA6BezRmliDDiJdWMgFcAk9kQcMDKiBpjEaEKDf71sEDPB8YqzAOb7r+IE+RvFjzsTImCo2Djz7yQAtiuG8gSgO3ogELDVQxPA67ZxzEazpptgh0CWAEzX+2tCAIBI0ZmpbrVaAvx5DAJmAmi/3y+giVJ0v9+PRCKBRqOBTKabkaOzvt/vx9GjR9FoNBCLxaSrAcNZ406zQY6H55RIJNBqtfDYY4/B6/VKCzwdBHiUydNkkPOjyxT4m8CU7ei4DQA5X7YX1C7ynBt6GTDTy3pzLRnXbQdZs09TQ0rQWdeey+UkO37mzBlks1kBjwTQzN6TlKHkPJPJyDXn/JFMosEdAbauy2emnPcI549qASoN9FxSjq+N/vQ9yX1yDkgEcD12aOAyXg+em2VZkkHnueuuBhwryQEqGWjQB8BmPkjQTpKE5Id+zjhGbstx6fPRc6a7NtATgsfx+/3i5cBxsMRjEsMFgX+/0oCe9biDxOEVoH2bsfr+trVA2vpXwPg/NneINfGD78OoWbBeYcD4CwvA91c+UDz0sASA3m5CBDhiczL/9QgA62sTNcC5HJbDy3OrMQH/k5hE7yDw7wf0e5EDg0SsdgYAkA/sk/d8vT1xdp3XgI0UGJYA0NtNiABHbE7mvx4B8DhGrwYY2BNgZmbGYoa3UqlIZpaGbnT8J/Dx+/2oVqvweDyYn59Ho9FAqVSS+nG+J8gBVk3M9A8z0gRBzH6TCCDJQIm/x+OR+nyd8Q2FQraaaW5L8NzpdBAOhyUjHIlEkMlkUCwWbS3lqDKoVCoIBAIol8swTRO1Wg3tdltavC0vLwshQfO8bDYrwJT7JbBkmQA9E0h2sAyDQJ9gngRHOBxGIpGA1+tFNpvFwsKCrUMCpeUEs1QQkAhgZrndbkvHgkAgIK8jkQhisW7TYSoOKIs/ceKE+B7QbT8SiaBUKomJINsBEqhGIhFYloVarYZUKiUO98z+a2DM98xo6zIJAEIYAKsZdS3957okOAiqtdu+3+8XkEwlAwG8LkvRChbdDhKAzWjS6VHw/7P37kGS3WeV4LlV+bo335n1bHW3ZKnbli1sZPAYlsAM7OwQjGdiEMtgxh7PIgJwGEIE3hHBzCxmsDHMLIS1oV0cQIgh8IwdeDHLrrzLGlYxG7DDsuEXloyEZLWk7pa6nllV+bw331V3/6g+X333VmZVZlZWVVbV/SI6KvPmzfv4/X7Zmed85zsf54zkAteqnwjguqA5IdcosNdFQHtnaJNBXQag6/5JGLBLgy6PyGQy2NnZQaVSkfG72xEiqBuchPj0IcOviAD32f0vkxDQr/UnCfp95bwDewQAsO/rZ1QiICABxhKDqAAOIwMCT4CzFe5L+7eRENCvjZMkCOJ8ROAJMBlB8N8vxksE+MF+v/ApA0YlAgISYCwxiArgMDJg7J4AdPanUzlN/wig2GKuUCiIIR9ro7UxWa1W8wAqXcetM64E98yIEgzrvwQ2oVAIqVRKarwbjYbUblNdQGO7WCyGlZUVAfbM+juOg3a7jevXr0vGOp/Pi2s+5eaUbG9vb6Ner0srQUrHy+Wypz6eSgI62TuOI9cPQJQVBI7VatUDJjOZDJLJpGSmQ6EQMpmMGPo5jgMAuHz5MtLpNKrVKra3t8XYD4DUnxM8kmChooNjFIvFMDc3h9nZWeTzecRiMaTTafE5qFQqHmf5drst7Q9J0jCbrFUNrHW3LAu1Wk2y4WwrqN3+OZ/+taANI7kuKM3XJoe6iwUBOOeALS61QSCwq6jQxoZavs/r4TXqbha8PvpecGz5XpIxbP3H9a67VLAcQxs2MnhObXJIrwdNcmkSjQQK9+X6oiqDn2H6Cmhzw6AcYELiMAJA7fPEj/0M8NxvD3TY3mqBg75u/uaA17AH5ochAwIC4MQiUANc3Bi3WiCIIII4ehxGAOh9jk4GDEoA9AiC+WHIgIAAOLEYpxpgYBKAUmYCnEajIfLrSCSCarWKZDIppncEQ51OB5ubm0ICMNtJcKezrvq5LhHQ7er8fd15TLrjEzDq7Dod/y9dugQAWFlZkVrvSCQC27aRyWSECMjlcrAsS1QPrI1nq71msykAP5fLiUSexAXfs7GxIY77ulabIJPZX76uAR+z/5cuXcLs7KwYLZKQKBaLAiir1So2NjYE7Ok2cX6JPpUQ8XhcADGz9RsbG8hkMh5Xe3oLUFVAZYBpmuINsLm5iVKphDt37og/QLfbxfLysofs0G0fG40G6vW61PXzny4P0eaQOqPO9aFBbb1el24TlPzrNpHch2sJgLTh47iTOOJcElyT/NEeExwjXbfP+SVQp7yfnxnOK70iODbM/uuOGzSRZEkIx4TgX69/rTzgMXQZC80ntUcB74MkilYnBHF43Ou+1Lu93rDRS+4/Qmhw7z67B/jHViIA4MhitGMkAD7oPoXPGh86tuNPYhh/r78aICAAzm/o/3bcl/YA/0UB/T/sfgZ/bPzz076MIM5pPO5+YmSJv45ecv9h33+85QE6BvAJOCgCAmCs8a3on54ZdznAUCQAs93ahEy3XiMQ1f4BBBasndbvYYafEmWCJ91KjeALgAd4EegQTDNITFDazZIDtgrUknIehyUKrVYLjuMglUpha2tLZPDveMc7kMvl0Gw2sbq6ilqthq2tLalvj8ViqFarnt7sbFuowWE4HEY0GpVrTSR2TZq63a5I+jm25XIZrVYLGxsb6Ha7SKfTyGazuHr1qmyjsz4BMYGidprnuQkcSY4AQLFYFODL8SARMjU1JTX3zPhTAUIlwNTUFObm5tBqtVAul4Xc4LwyqAapVqtyPCo2OBfMlgN7Ne66vSQz/Mzm67WjXfVJ3PgNKek9QCWLVkDwdZ6bY6oVCHwfx1mXotB/QAN4zgVf533ojgAcG62M4TZNYGhHf318TZCw7IH+CvRbYBkEPyetVks+nySBqGQIYjd+wv3Nntt/z/hZAMD97gu4Oe5f3COC/6PHQV83vYL7DvlVdMwKgItGADAI9kkGBOB/uHi/+3s9t3/O+IkTvpIgBo2AAAjiOGMcBICOYcE/4+gEwAKGUwNw3yHJgIAAOJbgL6wRf3ENHAOTAJZleeTKBEe63R+zigQj/EvZPcEUCQLdn50gjmBEZ2GBXXCWTqdFSUC5ebvdRq1WE0DN49H4b2dnR8z8XnnlFQFGNEYjoKMyIJ/PI5PJoFAoYHl5GQ8++CDe/va3Y2ZmBltbW2i32yL5Z3aegI3XrMsMCHDpZUAQSyBMMMksM++NGf56vQ7btlGr1XDt2jUkk0nJ0gOQY9At37jbmo9jo1suttttMWas1+uSMdetHtvtNtbX16Wl4cbGBkqlkgDJWCyGUqmEZrOJra0tVKtVqe1nFpr+DNqtn60XSbzs7Ox4TCK1mSBBObsK0NSOa4r7EkizVMVv9EdPBnpLcL2SKOLY60y4dtLnOtQmfFyPvCa9fWpqSlQuvHeCdM4VSReSKNoYUBMXJMH8pRFaJUPDSCpJdAtOSv11CYgm2bS5IcclIAIGi5vGtwy033PudTxsvHLgPu7/dZcM+pzaOAZCwK8AGKtx4IQRAEEE4P+04yvut+Ddxguncm4/HxmUAgQRxOlHLxA/KiFwchEQAJMWxwX+GQOTAPV6XTLvzMASUBuGAcuyPHJ2/guHw0in0wI8CUyZmSQxAMDTYo3Ah4Z+BGz0HiCgIXDhuYE9ufPDDz+MRCKBF198Ea+++qpkk2kCCEAAVKfTQSaTwdWrV+XcNP5j7T1l4Cwh0HXqPDeBOEEqAXYymZQ6ezr227YN27YlS2+aJhYXF8WX4KWXXkKpVEK5XBaygdLxcrmMSCSCWCyGRqOBZrMpWV5gl3zIZrMolUpC3miPBgLq6elpyZ6zdSJVDjSOIwAn6CYhtLa2JnJ+GicCuyDTtm0ZC22+pwkT7dfAOdeGfATNumRElwposokZdY43uz1sb28jHo/L+UlExONxVCoVj7keVQraa4DjxusAIOQRlQ9afUEDRt01gK/r69MeGLojhpb48355b9qkkAqUqakppFIpZLNZuK4r64mfGZJWXK/0T+D88n44L2c9ltwcLhvFkd/fTwVwbNGrZ+CApQEf+7F/iX/xgtcPoJdJIHAYATCMGqDHV9JB3gAnRAB80H2q72vnTyXw3/uehwE8fhoXcqrxmruAB4zR6177qQCOK9wf2f1r/NGYjtfDJBA4/wTAD7uf6ftaoBIIYpJj1NKA0WMYNUAPAuAgb4CAADiGeML3PATg5471jAOTAAToBDcESoxGoyGgnrX4zLiyfr7dbgsg9cua/VlOAJJ5Zqs9x3GkNp3B97P2nvs2m03UajXk83lPrTWBPN35mVEHgPvvvx9XrlzB3/zN34jUniB8ZmZGADLJDGa3p6enkc1mpcYd2DP8C4VCmJ2dRSaTwezsLNLpNF5++WW88cYbkvllmUUsFkMmk0E2m5X7JHADgNXVVZTLZSQSCfFi6HQ6qFarqFarkuk3TVMy7gSLGvTp9nuU/dNPgPfL+WadPY9FszkqMjjfmvxhlpvXTcWBdvvn/Gq5u557gnKCavpRELDSbJJAnJl9jhcJEp7Dtm2USiUhKqj+0B4EDF0CwOe6Fp8Sem0cqJ9rLwOOt2maaLfbcBzH87nxt/XTY0GFhN83g8RHJBLBzMwMkskkkskk6vW6dLggUaNNH1kmoEkJrUggoXXW4yhEACX/gJcQ0NuHicPUAMb/Brg/tPtvX6sufytAn3/Axx4FPnb3pcG6ABwUvfjmbxzyui+CjP8JhJ8AAICO2v6vTvBaTj+OQgRoyb8mBEYtBThMDWD80S4R4P7I6ESA8dagC0AQQZz18KsExmcG2Ct6ZffXDnndFwHgP4HwEwAA0FXbj4foH7hFYC6Xkx0padYgR9eVE/TQcC4cDkvLOgJBAkeCQwIdZo1Zb09QC0Ak89otHdgzbmNbNNabR6NRzMzMYHNzE+12W7L4NBak9J4g9+GHH8bc3By+8Y1vYH19HYlEQsA+pd1UMdRqNQHDzOKHQiEUi0VRK0SjUcTjcVy5ckXKDpLJJF577TVsbW2JZJvBY+istAbMrO+mTJzPCYhpZqid+ZkZ1qaLLN9otVrS3lBLyXk/JCcITvka38/x0PXylJazNp3XnkwmUavVPN0S/NeklSSxWAzT09OeFoaa+NDkCMkkTQiwLIJrstlsolqtyvrzd5/Qbvv0rOB+JFFYU8850mUUGlRrgoXkk2VZmJqaEmWFBt38HGmzTBJEDBIVJNhyuRxmZmYwMzODSCSCeDyOcrmMcDiMVColHRtIZLHcZXl5Wci4aDQq/gkkQwqFQtBGaEzxnHsdAA4tCRhnjFf2P5nhvt9XPgHA/Tng0Sd/C9s9eO2TUgK47wKMr+1/PL7oRQAcFIcTAm7QInAs8RV3t0ToJEsCLoLs3/0gYHzWt+1x4J98srca4KSUAO53AMaX9z+e5HCDFoFBBDGh0YsAOCgOJwTcAVsEDkwC5PN5V5umUerO5+z/ToM1gnWCKw2UCKwIxAEIEIlGowJQuZ3v0e7m2l09kUiIHJ7mgVoyrmXndO9nRpnH2d7exsLCLiO2urrLyhHI0tBPG+zx2qg8oAqhWCxKdjyZTMK2bYRCISQSCYTDYayvr0tpA7P9BLwABDhTps77NU1TiBNmswEISCboZUeBTqeDQqGAYnE3I0pJPN3qdS06yRo+Z6lFIpFAvV6X4/N1y7LgOA7i8ThqtZooAPiYsng/6cCSCsr19VphBwYtWdetDfX5/dJ6HkObPtIVXxMLJKG4zbIs6Y7A9/N4zPZrQoulHCQiIpEITNOUMdPlIbq7BT8rLInRKgkd2miwV7cErrl4PI5r165hYWEBqVRKymTq9ToikQjy+bysw+3tbaytrcln5vbt2ygWizKmXEskHDY2NoIfCkFMZLjvP2SHK8Cjv96bCGCMgxBwvx/AvwGQBvBhALtfVccA+hnDgn8dBxMBAQkQxCSG+8FDdrgK/OivfRrb6O9jMw5CwH0vgI9j97P+U5DyrbMA+v0RkABBBDFpMSz413EwETAoCTBwOQABMGX+GpQDECM2GrRpYMWMslYPsF6c//SxCJx0X3cCIa0UIAnBrK0GfDSFoyy60WjIe3QpArAnVy+VSpKhZStCKhx4PF4fHeZjsRiSySQqlQpc10U2m0WtVgMAIThYl00Xf3+HBW3M5i+zIAFC8MssuZbn69ZzAFAqlcRskMCawDkcDksmnm37eG7tKB8Oh+E4jlwbywvC4bCYCtJwsdPp7JtPbfDnui4cx9lnAqlN87QfAACPbF2Pjy4licfjcj+8d3Z7IJDmdel51uuNgF4Dc5JDVGT4iRDOD9Ud+n08NssGgD2/Cs6f3/cC2Cu30QSAnnuqC/iv0+nsO34sFpOWnPrYJG02Nzdh27b4SujPpCadgjjeuOFelsdvNpZO8UrOWdwBPv2LP4Of/LXflPKNY2kdyG/NxyAEwGTGxSoNCOICxRvAH/7Ko/jRf/NpfN54FMAxtQ6cBrCNXbKvl39LEEGocH9y77Hx70/vOoI47zG+0oChSABdq0+gR1BNQC4Hvgs+2RKP9d08jt6XgFU7sesaaK0EoNReA2UCQGblmb3ndQPweALw2ghQKe0m4KSknPJz3g+vkzJrAuN4PI54PI7t7W1x1a9Wqx6n/+3tbcna87pILgC7qgOqCSjzp1Q7FouJwoFEBp3odStFAs21tTWEQiGPrwDLMng8LeWfnZ2F4zge7wRtesdMMz0AeM/sCOAnVTQZQIBNcoGhjff0GJH8oZs9gbh2ztfZcc4F51GvH61E0aUVBNTValXKRzjHvAddh8/rozpAg3StyqCaQq9b7cSvWwdqzwEAntd0+QXnlgQRVSUkT6jk4Jg2Gg3U63Uhp0haNJtNFAoFuQe2CaSXgu5CEMRu0GquF4T0t20ZtI2LJgD8zwNCYAxxC/j3v/Kz6Gf5dhRSwH1ePfk5AA6AT2H3+7i1WwLQK46mEBhVBRAQAMPE79/9++M9Xhv1sx7EMccrwB/+xqP4fJ+Xj0IKuDfUk8ew+1n/HQAfAdDcLQHoFWdRIRDEeEITAP7nASEQxP4YVQUwXm+AgUkAAJKBJPCj7FtnRjX4ImgnEIxEIgiHw7BtW4ANgSuDj3W7PGZ7DcMQd3e6n9M7gHXcBI7sW2/btie7ryWcMWXZAAAgAElEQVTjBI4M3RWAYJmkwNTUFOLxONLpNGq1mmRbO50ONjY2kMvlkMvlkEwmpdSB5yFwZikCt3M8eI5EIoFUKoVUKoVqtYrl5WUxLiTgJ2nArDLBLbPQruui2WyK/4EGwq1WC6lUSqT2lKYvLi5iaWkJ9913H2zb9nRS4HixmwLLG3h+AmjOBx/zfnVZh1YUaENHkhTAXhkEwb1hGAJ+tQdAp9NBrVaTeyPJQY8EAn/9OudbE0QEw7ouXgN4ncHnmPjbWPK6qVKhkkBn9wnoSYzw+Hre/OUDXEf8/JCUIJlDUoidGHhfnH8aaa6vr6NarcJxHBknllpwfP3KniD24il4iYCnADQAmBgd/Pfb5ySJgF93H5PH/9L41Imd99jjm4D768DP/MIT2Ebd89JRVAHG23f/us8DiGFXBfDYAW8YS/wrDEcEBOD/KPH78BIBv4/hP+uTGB9zf2HvsfEbp3glY47nAfdJ4NGf+y1so+F56SiqAOPNu3/dGwCi2P2l/OGRDxfEOQ4/+O+3T0AEBOGNxzEcEXA8xoBDdQegFNwwDHFrp9Fbq9WSfdgBQL8O7MnAAXh6whOI6DZoBEzM/vrr/DWQ0aZs/EfygKCZJn10jCeQBXZBE2vDCeQIgHVLOQC4fPkyZmZmBHwR4FerVYTDYdRqNQGdiUQCU1NTsG1b6sk5lgDE9Z7hui4ymQzm5uY8Y00ig94BNOvTpnx6LEm4aAKCUnHbtiXrT7D7xhtvoNlsIpFIIBaLYWlpySNND4VCKJfLHkd+llyQCGBWntfC+wH2ZPLcxvXAayVwB/YUF3oNaJ8CgnRNNnEfrSbhOuA90GuC5SME0loKr7P/PA8z6VxPHGfew87OjhhIcn1z3nR5A0sUtLqB69g/dyQEGo2GrFF22mBpC8tu2D5SexyQAHEcBxsbG1hdXcX29raUT3AsSRqQZDlJJcB19zm8Yjx8YucbND7m/gIu9fiR3L8BXRAnFdoMUPsD9Nz+HPDbxjG2zfv1u38fB4xn7p7bpwQ4Po+AIMYVvz/gtiBONrQZoPYH6Ln9a8B/MH7m+C6Gv9M/AhhfvHtunxIgUADsxRPuT+Nx47cP3zGIIII49RiYBNCya4IIAFLnToDKlnkMx3FE9q6lx8BezTyz/ARHuj5ekwUamDFDTvKAYJWSfmbCmcFOJBJYWFjAPffcg3w+D2AXnLZaLdRqNRQKBdTrdZimiXK5jK2tLQB7NeN02l9ZWUEymRRg7TiOyML5HgbLE+r1uhAP9FTQJRGdTkdAcDQaheM4KBaLYqRHMoLlFRwnXh/BrO64oGX9JAy06oFeABzLTqeDF154AZZlSdcDqgeoQuB52MqQ722323J8OugD8ABanT0nQNbPde07SQ5dy69LT/RjHlv7RmhJP4/P+9Ut/AjMuf4ItHWGn8cn8cHr1l4OXJccJwJ8Xj/VD7olZq+sO70dSNzw/bpenwoIXeLB9afLJWq1GhzHEeKJigIqH7TKgqqb89Ii0BvDSa4+poBjP+B/H3b/4xxnRtCvAHjJvRdvNV4f4xn2x1nP/vs7BPTbNs5wv4RdaTAAxLG7vO4qBKR+eOwxrBogiEGDWf9+wP8+7KoAzmL2X8dZz/77OwT02zbOcJ+F97P+JIAvHu85gxgm/sch9z/efuv9wq8ACFQBQezFsGqA8cfAJAABla7zZ720zs4Ce272zLpOTU0hlUohEomIyRrBqpZBM3QNuB8IEQTysT+rzxp+y7KwuLiIS5cuIRwO48qVK3jTm96Eubk5mKYp52bJQKlUQrFYRKVSwYsvvohGoyGO8AR19XpdJOjM4hLY1et1tNttxGIxj0S/2Wx6stPaPFED4Z2dHTiOg+XlZbkmZvl5r/Qj0HX4/kyzBrAkBWhupzPfzOAz000vAZImLBmggkC/l+3utMQe2DOP1ECfAJrrQs8nwTC3aUm+XgM646/BtVaL6LHUpnoMrkPOF2vjeV3pdFoe8zgApFSD1+H3P2DGnuufa8VvdElShmOjz8UxpRFms9kUY02qXHgt9KXQRAFVKrwfbmdJDMsLqFagpwdbampjzZOI6+5z8vd41ADjqbX6EHoTAVfce/HgP3x9pB+EBPuHlQesYx7A8ZIAQQwX7ruwJ/+PY1cNoHmzIQmA8GYFnZn0gHtrmX9ACIw7fhy9iYCU+1a84x+/BPwfJ31FQZxmuN+BPfk/yb7zyJGPOZ5wf1r+Ho8aYFjgzzh+AoDA/tDygDcd+6UEccrxY+5vDaFO0r87T54QGEoJQICtM6zMLDKL6pdua7m1dvPXbd+APUBHwKVBlQaUuuYagMeYjdn5dDqNS5cu4aGHHsK1a9eQSqUwPz+PRCIhADwajYo0utFoIJ1OI5PJ4MaNG5Jl1ccmgGKXAII1Zs2pQCCgIkhjaBBJPwBm0XmP29vbqFarIo8nQCcZQMNCjqUG8FrOTRDNsgx/t4FIJILp6Wk0Gg0hZJjxJnGhTfFImFAJ4jiO+Alo40XtsK+z/bxuDZxJpFDJoOvk9X1zbejQNfTaxV8TI7qDhQbummAgucD7pKJAn4/76fviPXAuuFa0UsFPcnF99BqPaDSKfD4vhIsmJ7QBov/zUK1WpeSG5TGhUAjNZtMzJnqN8pp4rWwraFnWsZcDEPz3e+1ohMDx/ed5HcD3qecN53V86v/8CTyB3f8P/8V3/jZwC/gP6+/DFvLy40dn84et9X8OD+NJ92F8xNilIZ50vbXs3H5R47gz/j3P6ZP3u3EAH94rA+Dr7rsOLgUIb1b2PR6cDAB61/337psexHBxDcB71PPK9qv4jf/9MXwCu4mPj373E8At4LeXfwxbmMEvGaebxbkIcdwZ/57n9Mn73TiAn9orA+Dr7ncEpQDAHvjv99rRCIFRgf/JxNBZ/ffutp403rn71H3Wd7x3juWygjiF+DH3t/Y9Hq5UqVcJ4/9ytIs6JAYmAbQUWrdCI/hpt9swTVOACzPgBE2su6d8Xtf/A/CALGbY/SBagxf9Xkq16eZ/+fJlfPu3fzve/OY3Y3FxUbLv0WhUyAp/NjwcDsM0TTmerhM3TVO8DZhF1SZ1zJgbhiFyfxICPJ6fQOE96CyvboWna8r9me9e2WkSIJwjlhxwzLSZI9UTNIbTc8zj0ZSRHQ04Ro1GwwPAWVuvlRqaANBAn/Ok/R20GkD7OvC6CIhJHBHgc2wIfLWMnnNE8oOmkJoM8Tv1V6tVOa/fHJDB8/G6OO7crtcE51/PsSYtuNYjkQhSqZT4MdDdH4BHNVKv19FsNoV0I6hnKQDHkfepDS057yQZNGlEc0F2tziuOIgA0PtMkk/AUwDeAeA7fdvNBPCX7rP4CnZ/Ef4PX/L+AOIPojr+Yt8xD+oG4Af6/bYFMRlBo0DA6wcwiheAJgYYwxEDY26NdsHi9wG8Ffs/6+lQB8+4z+HLdz/rv/r/en+kfcLdex4QAuc3aBQIeP0AAgLgYAJA73PefQIO6gbgB/r9tgVx/kITA4zhiIF/Mr6L6RFDGQPqrCbBjDZ5o+RZu8MDEEO0brfr6RbADKcGyQRs0WhUAJoGM7oOXPsEENB0u13k83lcv34dCwsLSCQSklknWaFN2gj0ut0utra2sL6+LhlvZlR13bc/K03/Ae1dQA8E27Y9XQIIkLXbuzav0wSBH/zrOn8NsHVpBIkWPV8kLzgnJGJ0HT0Az3NtjqfnRysNqIpgm0BdvqHfq0kdAvpWqyX3zOPr+2EWX6sb6PzPudBjxvvX5Sg6K6+BvT/bzbVE0kO33uN46/CTAhw33fKPdfaa6NCEAued5orJZFLWEsE855xGlVod4C+J0euFigGW7DD0OHJ/lpqQtNL3FkTv1oAMEgC9IoI22ojgL/C9AF7yvBa0ATx6uO8/HSXAQTEo8O8F9oM4/ejVGpDx5QM/6y20Ee37ehBHC/eDp6MEOCgC4B9Erwjq/C929AL7ZyEGJgG0lBiAyM0JfjUpoGv8p6amRK4ci8WkxzmBV6VS8Ui3SRzQ9T8UCsE0TXQ6HclcExADeyBO1zizvprnYXaZoNTfqq7dbqNYLOKVV17B7du3USqVhATQGWjLsuTedfs5APKcbQtZbsAxIKDjsRKJBMrlMgB4QCqDxoY8H8+lgaQG3wRxBJ/a/Z4Sf75Xj6Oux+fxCYb5nEBUu+pzTchCupuJZ7kBFQDRaBRzc3NIJpNSP7++vg7btmU96evntTBIBPGYAMQQT5MonGMGM/R+3wGSC/qeI5GIdGmIRqMyPpxbjoFWKfBaotGoh9QhucRr1+PD6wTgqb/nZ4fzxPvlPLOrBUkckg68D/886s4NXHe1Wk2ULpwjTZqw48C44zAFwCAKgcPj5DNw/qzGE+5PI4Ld8qFLWMEKLqF9t1xgkBg24/+k+6ELWxIwaQTARMQj7sGvPx0QfKOGP8P/CfdxRLBrfnsFd3AHVwIi4Jhi0giAIPbiMAXAIAqBw2OySwEGiWEz/u6zQUlAECqePOS7/SNH+24fmARgEKwSSBNY0yCQoI2mcVr+TcA3OzuLWCyGcrksTvIApDc6TfgImLRBGoGtlkBHo1FYliWSeLbqy2az6HQ6iEajYtxHANlqtVCtVlGpVFAul7G6uoqbN2+iVquh3W6LgSFN33RWmo9DoZAAPrbYS6VSKJVKiEQiuHTpEtrtNlZXVz215ul0WrwFWJOvVQ26kwANFnU/ee30T18DnRHmWPM1Zu41SUDChccjmGXGXnsPUElAwEx3en3NLJkgcWKaJu69917Mzs5ibm4OMzMzcF0X1WoVr7zyCm7evAnHcTzqAX8mmiSKzvhzHAiAST4QoPOeNFjXEnzdGjEej8s8E8ST9PFL47W6gYCc65F/tQkiz6tVJFodwPttt9uoVCpSwkA3/0gkgu3tbTSbTUQiEWQyGfnMVavVfaQRnxuGAdM0xUOCShhtPOjP+huGIUTdacbplgIcrZ1cBG1cwgqm77rDXcEdrGBx4Pd/xHjqHEn//Yz4MbbvOscxsHHgYQRAEGMNC3XMoYDpu05xV3AHq7h0ylcVRBCTG6dbCnA6XQEYxjvPk/Tfn3g4L79ZTjYGNg48jAAYQwzVHYDAkT3XmUHU4JgZSp19ZWxvbwvoIcDW9dLMpluWJQ70zWZT5OMaSBH0ENjocxuGgVKphEwmg+3tbSSTSXFcn5qaEvC/urqKN954A0tLS2i1WtjY2JC663q97gHV2mwul8uh2WzCtm0xXWPJAjPu09PT0olgZ2cHhUJBwLY2P2Qdv5ad+30D2N+d0nMa+jErzPMRYOpsPYFdPp9Hs9lEuVyWfTRZoLPjBLOhUAipVAr5fB6ZTAau66JYLAKA9Kwn8Nb1/aFQCPfeey++53u+Bw8++CDy+bxkmW3bxn333YfnnnsON2/e9KgCeAx/mQPPp70kaNoYiURkrHgdnAveh1ZRcN1qs0l9LhrzaY8KXYrB69TEFM/F/bkGSRT5jS01eUDPBX62aErJe+a1x2IxIc6q1apHqaDfp1trUg0QiUSk5GB6ehqWZaHVasm5+dk+sEXgJ+/+Z/Tzw7GOBPa9Mv6TVP9/UDztfr88foRN4fe9fmff9ktYHeo8k0cEPIXBv+QPksL9FgIiYDcI6k+8LOARd3A1wEfvftZ/9eKpB/7A/UF5/AHjC31eX9m3fbHHtrMVvwzg46d9EUGcoSCw75XxP+/1/8PG2SYCDlIcDvMb4XwHQf2JlwU86R5JDTCUJ0AsFsP09LSnxR4AMQH0Z/yZKdcGfO12GysrKwJ+KdPXJQVstQfsmazxXKxl9mesmdkFgHK5LKRANBpFPB5HKBTC2toabNtGOBxGtVrF+vo6CoUCVlZWRIpNoGaaJgzDEAWBdvZn9p8lETs7O0gkEuh0OuKsb9s2CoUC5ubmMDs7K8RHp9NBuVwW8MmyATq1E9R3u13Yti0dCJLJpIA9fws5gloCVoJIEhKRSMQDLAkM2TZQkxLMdkejUWQyGSwsLOD69euIx+PodDpyT5VKBXfu3BGjR2bQY7EYLl++jHe/+9347u/+bly/fh2JREKy1vV6HQsLC5ifn8ezzz6L5557Dq+//jocxxHA7u8k4DfU00EDRE1E+PfVCgutjgDgUWRwPEmicF37r0OfR5sI6uvgnGizQe1loQ0D/SoXAFI+w1KETqeDSqUC27alDaVWgHButQkj15Zpmkgmk0JAOY6DQqEg+3At9SQBPunufz4kEQAAt7f2+uLk85tob5+mfHa4rP8jxjMeIoDRa9thcRihMEgcbxmA/9jj+pLnF2NABgwaY1cBHEYEfNTd//yCEQEfML7gIQIYvbYdFocRCqcfv9zjeUAEBDFcTBbgP92s/1HjbJYB8DdDQAYMGmNXARyBCBiYBIjFYiIJ12Z46XRa6v4pt9dt6+REd7OzrL0m2NrZ2ZH36Fp9uvgT8NMx3W/Mp53gXXe3fd0rr7yClZUVyRInk0lYloVCoYBSqSTt8Qh+WAIQiUTQbDYRDoeRSCTQbDYRi8U8gK7b7aJUKkmGltejDeIIFN944w0hFlqtlrRv4+upVAqmaQowIxCOxWJCqjDzT/LCbxBI2bmuQ+e9cF+2HtSu+7r1IEExjxUOh7GwsIArV65IVrzZbAIAZmZmkMvlUK/XEYvFUCqVpK0h/RsefPBBvPvd78YDDzyAZDIp/gwkVyzLkjp3gumVlRXYti1jqEE270krAbTppC470aSRVlNEo1GYpilreHp6GslkUjoN2LYtJSYMf+lLq9XyXJMuYfDL83X5iDZU5BrmXGgFBo/NOet0OmLax7KVZrOJdDotrv6aaKBnA6+PbRyBXcVEIpHA9PS0kEscB65L7WEAYD8BoLcPSgTcPUbn03ub1r4zBWwevD+AkciG3nE0qX+vGJQAGJYomMw6f31N/i/6YVnvk1YF9FrDhu/1yQO6A3cGeNoYDxHgJwD09kGJgH7HAHofQ+8/wWTDoATAKETB5IUmBgJCIIhJj7MD+s8ewB/2t8gJqwIWenzfrBne19cm73tl4M4AHzFOhAgw9v3w7xOXL192CRiB3UxlJBJBLBYTgF6pVAR0MfvMjKeuHydQpmM9CQLWvmtASpBDUsFvOmhZlgAxZtHZ7ozHpKqg3W7Dtm2PGV04HBZgru+PQFwbxcXjcekYwOuLxWJIpVIAdg33CFKpGCARwXZvW1tbSKVSkqVlxp//XNfdV3POLLvOHuuxIJAksGPWW9f785jaGV7PpeM4Mpazs7NYXFxEJpNBvV6X66c6gsZyJGps28bKygqWlpYwPT2NH/qhH8IjjzyCq1evelQIWoZv2zZWV1fx8ssv49lnn8WLL76I9fV1yXbrsQS8Rnp6LQF74JrkAeec5MDCwoKQBMyGcwy4tmjIF41GsbGxIWUuJKu4H8eNZQP+sgOuQw30NWHA1n6aLOJa1mUQ2mBTl0IAELKKpIQOqnRIvMTjcWQyGSQSCWSzWUxPT+POnTvY3NyUzwDHu91uY3Nz0wAAwzDcviQAww/Se+0/NiB/+vG0+/2SvR9FBaBjVBXA8cawX/oHlI8MFMdJBgxTSze5a9T9DGAc1v1vFE+Ap4W8NAzDcA8E8MB+kN5r/wkG8sPGH7g/KNn7o4L7s6ECOCwCQuC4w/08YLzvGI/vunvf7UEEcWgcJSFxjGRAL/DfLyaQBBgqRvEE+Mjed/sguw+sBCAQ0vJjgm6qBKanp1Gr1cTZnDJxAJ6MbDgc9vR6Z403Zff+9n/a0V8bEVKuz2wmgW+r1ZLsNgEuM6faBM4vy2bNvzY1ZOu4nZ0dyeqTOGD2tl6viww7l8shFAqhVqshkUhI1pUeB5Rns1yh0+nAtm3UajUPScJMvd9bQYNiXU5BoM1rIkjVJoNskdhut5FOpwUw0y8gk8kIsTIzMyMAkWPNueQ8EVjOz8+j0+lgfX0diUQCMzMzUgKgQTIl+rxm0zRx+fJlaVmYTCZx48YNNBoNmQPuT8JGryWdYdfzSTIjEolgdnYW8/Pzct8E8Zw30zRRqVQQi8WQTCYRCoWwtbWFdrsthAEjEolIR4xkMim+FjRM5HhqRYtWLfB17QnA8D+m1F+/h58F+lVoNYRe+1TYaHKt0WigXC5LGQhLc9jGspcx46HRjyQ4R8BfR7+ygFGOczLhl+lNmspg3KqA8/nb9lAigJn94+wQ0I8kOEfAX0e/soBRjnMyQVD/cd/zIM5SHDcREEQQJxNjVgUMA/zPUzCzf4wdAgYmAbrdrkjagb3WbQTGNGqjjJ2ZXGCvn7pu6aazm6xFZsae0msCOQIcnoOGaXyd5ABBKjOwlmUhk8mg0WigWq1KJwKel9fqB0DMsJL40OZ9BFXpdFrKBghIKWXP5/MIh8Pi7l8ul9Fut1Gr1WQMWNc9PT2NRCKBdrvtqc0mgKbEnmOtwbTOPLuuK8QCjf8SiYQcj8Datm1RXMRiMYRCIQH6uVwOmUxGzlMqlVCr1cSYkPPDOSBZQQNByvtLpZL4LMRiMaTTaQHsrMFnFwGWlKTTaVGGUJquySDOq+4CwDHwG//RKyKZTCKfzyORSAjxAOwpVvQ4mKYpJo48H+cqGo16fCmo7qAShAQFpfu8bpInvE4t+ScRwbWjPRl4Dbwngnl2DNCmlXwv71nX9tPXgJ8bEhIce5bEkDTwqwqGjnGC/8dc4FOTDzD+E/4evgv/Hyzsljl9Ee/FNqbxXnwRX8R78XvGzwI4unJgtPB/CU8qGTDZ8YPuHwAAvmB84MTO6X6m9/NDVQH+OK7WgOcU/B8U/zf+K7wHfyntAb+If+j5rH/O+AkAp1UW4M/UB2TAWQn3872fn1sy4M9c4Acu3v8fQUxe/KX7bQCA9xhfP+UrGSGO2BqQMTAJQABB8zICDdZqE6zrLDal/qz79wMgAJ6Mt64FpxcAzQiZ1febxjEDy7p+gkAAIpkmOItEIgLUeW5dU81j+rOozWYTyWTS06s9FotJSzzt8h6Px9FqtTA3N4dsNotIJILl5WWsrKwI+CwWi1JHz+vX48FrIllCcK1bu3W7XSSTScmS6zIAHodlDux2QOKBQLFUKklmmVn2mZkZXLq02+6IY02PAcuyhPTJ5/MyjyxhcF0Xd+7cwZe//GW0Wi1cvnwZ9957L+bm5sSg0TRNuR4aHOoSAdblc478ig3tCwAAlmUBgAcYt1otzM/PY35+XsaXbfM0wcJrNk0TsVhM7o9rjmuZigAa7yUSCTiOg1Ao5Clp4djqNaQJA36OdNkLt/m7DgB7JA+Pxc8Sj8/38LOlP3dcn7p0huQJ2yJyjWtVwUgxLvD/mLv/+YQRATqL/0H3Kfzh1o9iNX8J5l0S4LOvPwp0Q6g/YKGGZM9j6LKC04kPYTxEALP4J+yG2zOOJ1NAAkA/PogMaJd7b49kBj+nnwAABgT/GvAfV9vACwT+dRb/h93P4I9f+2dYeeASLOyWP/7xNz4IdIH6t5soI9vzGLqs4HTi4wiIgOMJu9mbNE/Ednpu7xV+AgA4p+D/z9z9zwMiYMJjXL8TjhjHpAIgAaAfTywZoAH/mNsGDkUCMHQ7OwIWAhUCNr6HDvgEPcyUMitLcMfXCZxIKhDE8VgE3Dwvs+csE6APAcF+oVAQUE2wRCBGYESA1+l0kEgkkEgkEIlEUC6XBQiGw2G0Wi3p407ZuG3b0pWA1wAAyWQSs7OzAn673S7W19c9Um4qEwjcCVRd15UyAgJGAjjWeRN4s1xBO8LzPbrjArsPaDWDbqcYj8dRqVSwvr6OnZ0dLC4uSgafZQHr6+swTVM6OHD+kskkbt26hUqlglqthueffx7r6+u4fPkyrl27hsXFRcTjcczPzyOZTAop1Ol0UCwWUalUUK/X4TiO+EtQ7QHsSeVJCBCwcp2QRGJbPI4Vyx54H1SopNNpUZqwfMWyLOTzeRSLReRyOZRKJblOANLiMBqNwrIsbG9vi3KA4J9eDyQ4uFapJKE3A0sRKMUnqcFWjWydyfukioHzpj97unykl0Ek55uEEODtqKBVNfpzPTExgUQA47Ov/SQA4I/L/2zfa5977cfxvgf+ozz3g/7JIAIYR/2iH5UMmNxOARr893ttGGVAuzwcEXDkOC4FwAWNP/7rDwIA/vSv/+t9r33hr9+Pf/Dt/6s894P+ySACGAEhcNxhN6eGIgIubAREwBmIUdWDk9spQIP/fq9NLBkAjE0BwBiYBNBZzUajISBQG50RwFGmTzkys73AXi277gqgJfk686xJBNM0BTgT+LPOm2UKdLEnmaDl0iQnKMUn+GHmmNn9RCKBxcVFqZcm8K7VagLWQ6EQNjc3PW76rCFPpVJiFLi6uiqkQalUQqPREMDGa2F2mQQKW/E1Gg3JxGtJONUYHFfOA0kRGvlRas+SByo5aPJHQoXHZqu/ZrOJl19+Gc1mE7lczlOHzzIJ0zSlpj8UCmFjYwM3b96Ua67Vami1WigUCrh9+zYuX76MbDaLubk55PN5uK6LbDaLWCyGYrGIjY0NFAoF1Go1TzkDACFr/CoQEh1UOJBUoDKgUqmIRwPXGH0K6EHhOI6QRjwP2/H5S0T0XIdCIVlD9H0gCUbCSJNdJFw4fvpYWhnA8hDOp/Y+IPinqoDEGeeR48VjUyXD9eq6LizLknOwDCAWi6HRaMiYDBUnVfs/aUTAq4P9wPv8a/8NgEd7vkZ/gckwCByF8e/1JX/MyoDbbeC+yP5t3RDwSQC/M+qBR+sQ0IsMINDvpQg4cSJgnHGBFACe+NpgWZde5ACD/gKTYRA4ijIgMAXsFQT6vRQBAREwYAREwBmJ4y0lfJ/7aXzeeHTfthYi+MIXAHx4xAOP2CHgTJABY4qBSQAtNdct2GgSx+cENgAEiGrgy8y0dk9nXT8AT200pfDpdNojxSdQIiBKpVICsHkM/mMdtV9qTXDPloXMKlcqFaRSKVEBAEbJ7yQAACAASURBVLteBdpATbcCpBEgs/aO46BYLGJpaQlbW1uedn4AkM1mkUwmBSCSgKhWqx6Z987OjpQBMLT6gaCdGW8+JrGQSCRQr9fFL4BkAIkXliJokoDjUq1WcfPmTaysrEj3gytXrkjWWQPob37zm7h16xYKhYLHtJHGdpubm1JuQBPJeDyOmZkZTE3ttozc3t6GbdvY2NiQtcT1xrVA8K3XH4mUdrstx2VrR/oOFItFNJtNmKYp72WXB455NBoVYEx1BskE3U2C10KDQa5Dy7IQDofRaDRkXkjs6K4XU1NTsG3bA9R1tweuEZIJ+nV933qMODbcj2tAewqQ+KrX6zL3/Px0Oh0pgaDa4dA4DeO/SSMC+sU19YPwELJgMggAxjBf8oex/P4Mfy9SYAAVwO0BSalQF/hw+AgkwGhxkBIgktlPBAxKAPil/73KA04sLir4HyTepcbmELJgMggAxjB+AQEBcFgkYjv7iIBBCQC/9L9XecC5j4AIOEPh/+7v9XvhcBXA+9xPD3S2KNr4/h/8Ap758Mn6rFwE8M8YmASgYZzOtBP4AvBI6pmd1FJ7/Zquw9c17ATtNKyzLAvJZFKM3SgX17Jw7Z6ugQ8z31pKr83mWMPNbCkBZLVaxdLSkmxrtVpwHAeGYYgzPLBrHsh68Ha7jWq1ikgkgo2NDWxtbXnay6VSKSSTSVy6dAlvetObxJm/2Wyi0WigUCjgjTfewPLyMiqVigfsavM/gn0Cdp6DY8e/NEkkKKfqgUBWd0FgdwWWF2hioFAoIBwOo1wuo1QqIRQKyXvYkcBxHBkDEi56TbiuK90ZtN/D8vKyzBm9JCjRJxjVfhORSEQANev42QHBNE3E43FYliW+ApZlIRqNolaroVQqYXZ2VurkqSAgQbK0tCTAnOfk+GuzSo5xpVIBsEsOUYWg743XyOvjXGiDTH4GtOs/x45zxvkE9ow4ueY5drpkgmSaVhuwDKDZbMo64jlYZqBLbSY6FBFwA8CbT+s6rg1ooPiYAfyAC/xZ1ffCgD3gTyWuq8evALgPwO27f0c1Nzyi7J/Zf00K6Md8/efdXUXA0HH3B+iHXeB3vD9GCfQPKg/oFxr09/MKCOLwuAng/tM6+bsGBCeD7jdRcRAZEID/YUKD/n5eAUEcEGeSCOj1e+ms3cNR42iyf2b/NSmgH4s64C9c4J+OcAKqAJ52gUe8c0Ogf1B5wEWIgUmAWq3m6aeuzcv88n5uJxBinTb31VlMAjFmiemqn0gkpATAcRwB2o7jwDRN6VNP4z+5obukA0E+M6wEkszMW5aFarUqPgHMWhOI6bZ2BKWUTes66m63K2PT6XQQj8fl3lKpFGZnZ3H16lXMzMxIzTrJBMrpI5EIMpndX4w0DNRGgMxUs3TBsiykUimpPdcqChIvWoZOAElgCEDKOoBdsoPXT+m5lqKznCOTych1EtizqwCPx7HWJn4EmsyOs9RCm9txbOjnoNUbzM4TAJumCcuyRM0QCoUwMzODnZ0d6cCws7MjaoidnR2USiU4jiNdK9rttnRMYO08y0143fo+KLcHIPOnATXXvJ9ICIfD4r7P0Fl7Dei1WsXvh8C/ersul2m32+h0Oh4iRntkAJBx1cQEzSK1WWffOC4FgN8Q8JB973zKuGvDN8lR6QH+1WsAJpMMmOvx3ASQO4Vr6REHqQP+KQ4hAQ5Zv7/T//UvGB/YRwT8oPsHA/sCHKUMYOiOAOOIQAFwgSIA/OOMo5QBnDtTQL8h4GH7ngki4KB74muTeB/O3b/xU72KfnGQOuDv/t0/w/+DH+j/5sMk/4/0f/09xtf3EQF/6X7bhVEDDEwCFItFMcfTIEZnI7e3tz3AiZJ/hs7W6+w0AMn0MrtKIF2v11GtViWrytpl7bBO4MisciwW85ALbP/G99GwTYNMkgGUpwN7jvMEx3STZ5BU6HQ6yGaz6Ha7sCwL6XQaCwsLyOVy0v6v2+2iWCyK6VskEkE2m/U4zt9///0olUooFAoeZ3gCeGbobdtGJBLB9PT0vrpyZqQJ4lkrT3WENmEEICURukadCgYSFhzXZDKJe+65B/feey82NzdRrVZlfOhlwDHR2Xo6/rN0RANnrgWWeXAudcs6nVVniQjni8egEz6BLTPfsVhMMvfFYlEIhVgshnK5LACa56ZqhMfWhArnjfdqWRYajQZqtZoAfbZXBPYIMt0qkOaEHG9eP8kxfj64djlnnFeSX7xOKlNIWulyGa0K4HqgykR7c+h9PXEX9H/F/Ra823hh0P8qhothCIC78a/dp/ArxiQZz1QO36Xv+06TCPjbu38f6vM6CQESAH/re73f+8YQ/bL+B+3bBMb14+s78BV8Ge/et/0k2wSeaNwF/ZP44+fUVABBBBHE6DEMAaDfM1FEwKjqyNF8ZsYXBwF+p8c2fxwfUdAv63/QvnXURqrtHyYm7XvvpGJgEoBgjsBTqwGYbddZfn/rMd0KkIAWgGSACUB1dwDWaBOo+FunUf68s7ODfD4v12rbtmTQCZwikYgYGhL4RiIRcYKPRqNwHEeuh/dFxQDvi6B9Z2cHjuOg0WggFAp5ZPyu6yIej2NhYQGWZaHT6aBcLqNarSIajcJ1d93/Q6EQMpmM1PDPzc0hHo8LaNZ18AA8oJpqhXQ67cmqM8tNAAlA/BSYZXZdF1euXIFt2zK+CwsLKJfLyGazovbI5/MylslkEvl8HtPT0yiXy0gkEkin01hbW5MOBZZlCQlTrVY9NffaAJLjz7Z3fqM7nTXn/XMsaGbH/bkPQbplWUKclMtlIZJIYDHrzww9wbQuTyE45zlYRlCv12VeWIff7XY9YJ4Zda0w4drRnhYkLrj2WWbDf37fC86nLhfQRpG8Dr5XKz+45jWp4vcg0MSMP/7Ov50cAgAAPvuzP4UtNw8YPzzmC+od7iXAWDlojzRGJwImIfzg/oxGrDPwru6T3ufGR3zbv/YkfvVdjwNDZPvPQ3z3ExfzhxDDvQIYd077KoIYZ7if8j43Hru7/XcAdPeeBzHGGIUAmMgwcFztZ08mBgH8kx9sy3qUIMGtywAuKvDXYQxaB5zL5VxKp9PptKeGm6CCQEW3PaNUn4BFS52ZXY/H41KbD+yZ9ulMvSYdCPRYr00HfrbqK5fL4sZOWTgN4whqdf05jd7a7bbI+VkzTjUDgV8ikUC5XJZj61psnQVPJpOYm5vDQw89hEuXLol0n9dbq9Wkm8Dly5eRTqexvLyML3/5y7hx44YATJYMaAM4ZudbrZa8f3NzExsbGwIiKfVn6B7zU1NTSKfTQugwms2mOMh3u12kUikBqslkEtlsFvPz8yiVSqKs2NraQrlcliw4SYBut4tGoyHeCe12W4Cu9nCgIz8BMjPeek3x3ukVQWd+KhioHmG3CJaQcIwog9flDjRdNE0TlUoFpmkKmKYyw7IsNJtNaefH66FvBctjmL3XqhK9jSoBAnOSHwTeJG64vrUCgEQCOzpQEcHPrQbumkTQhAC7Z3BftnnkuOj3bm5uGneP6/mPwf01wPjFgf6rODxGBP9yLf+lAeM/u7jxpHEivgCHkwA6hiUDTksJoIH/Qz22DRvHoAoY1BjQH/4OAn3CTwQwvvlz9+LBF16H8fa9baO0BTwL4bquse+z/knA+PnTuqLTjYAEOJ/hIQJCALq7f41RXcfPYLiu2/O7fawxLvA/UWoAxrD3dlr3oIF/vMe2YWP8qoBBjQH94e8gMI44r50A+Hk/LAZ2MNHGZclkEqZpCjAh4NCyZdZ3JxIJAfoauBC86WwpDeYI1m3bllIAegWEQiEBZbojAB3O3/GOd+D69euSzWcv+GKxiFgshmw2K3XR2iRPGwzyPpk5Nk0TruuiWq1idXVVwDyBKbBLaOgWgI7jYGVlBS+++CJefvlldLtdT6959ptnH3vbtvH8889jeXlZst/sKw/s1qHTe0D3i2+325KN1xljXrMGoa7rIpPJwHVdaRE3PT0N27bF9NFxHOk1z1px1v1ns1kB/JVKBY7jiGqAwFrXmtM/gGUVBOtaAaBl7qzvj0ajHoNIri3eM8EziSNmwUkmUBnB8hRNHABAMpn0zHMmk5Hrpvyf5A6BM49PsE4VCOdby/xJgoXDYY9aRa9xrjt+ZqiE4ZxRFaHXpCZIAAiJo9U2LBPR59PeA9vb22g0GkJy6TaUJ2YMeESX/yXVjevG3X8nFe6lw/aYxDr/XvGQ+qe3HT0mqefBQWF8ZE8BoON5vH3fPH/B+MC5IwDOWty8+++kwr1ygic7o/Hnp30BA4bxWI+Mf/dULuV8x0SC93HFWbm3uPqntwUB7DcC1OqAixgDlwMwMwwAly5dQqFQkAw8M+a6b7k/o0sgRkDIOnBtVqeD79NgTdctdzod1Go1OcfOzg62trbw0ksvodPpSCZY176Xy2VMTU1hbm5OgBiN9bgf74lGhazpJrDUEvtGowHLsjy12ZSeU5K9uroq2fIHHngAmUxGZOU87le/+lXcvHkTt27dkpp1qigo7eeY0pyQz6vVqmTrtes7iRgC/1KpBMMwpD5et2WkW77ruuJhwEx1LpdDPB6X8odisegBoslkEq1WS5QRpmkKWK/VagLCSRIkEgnYti0lElQMcMy0HJ5eANqokGoDzmk8Hpc2iTwuO1doiT3l+QTpnB9eu86+s0ygVqvBcRzPfHCtcF5IRBCAa6IC8Jau8P0E9ySj2AVAq2V2dnbk3rRZIUtc+PnhZ4ikivYw4BhpAkATQyQuWN7D90x6/B33NeC/Bb7HfQ3/2Xig/45P9yA1DjCIYRAA9sv+D1YeAByuCjgrhMHg8Yz6O2ovgdOOH3nmT4DCaV9FEP64H+MnAQj0+2X/A2VA//hz9ff7TvNChg1+zQ386zeISYv73f0lijeNbzmBM/P3w2EJk7NCGFy8uMiAv1cM/N8g5fLM8DMjqmXPBIaUZhPI0KiNBnJ0cAcg4JkAhFJySsN5TG3qx+0EMATmtm2jUqnsa682MzMjmdRoNIpMJoNKpYLNzU1RA/C8BNDM/DLDT5BGkEmgzIw1+60T7DG7a1kWyuUybt68ic3NTSwuLiIej0sd+J07d7C2tgbbtkWazcwtM+UEsNrdnUCSc8FzA/DMA5UElPkDkMw7+9bzfkzTlP0Zrrvb4i8SiaBarSKd3gUu5XJZiBL+nZqaguM40tmBxEk6nUYymUSpVJJWgmz7SFBPcK4NHUk2aEKAKoZms4lEIiHjTWWINuzjMWnWR+d8Hovj3Gq1kEgkpISEa4cqBwJ1EgQ0j4xEInAcB+l0WkgKTTr4S2VM05RSE84tFQv0ouCcUn2hyzOo0GAJBwkUrm2CepIF2luB885tzWZTPns8br/uAO6vDfAfxLBBNQBLA/zPD3jf2l1p59qTJ9Mm0A/49fODCYF+XgHjA//ujwDGH43tcEeO78cpEAG95P+32weWBbhP7qkAjI/4SgNeOvh0w3QFGDmu+T4Hr57Mj0p3pBaLJxfHbRLoB/z6+WkTAu77AeNzp3d+f3wfzgYR4H5qTwVgPKZKA7p7j0/VFyDj+6yXzziApBqApQH+54e970xEP6+As3QPkx+95P/vcz99LGUBwMX0CRiYBCBQnp6extraGjY3NwVEEIAQjOua73q9jkajIUCOmWwNcre3t5HP5yXTC8AD1LTLOTPOWsbM6yDZQMCmTdsoMzcMQwzxdB91uvZTwk0pOJUCkUhEABavWWfTqVowDAPxeFyAOoE3jQGXlpbERM80TTQaDTm3ru9mC0HWgfs7FGgZOYGwaZoyPixV4JjQNI+lFZSyJ5NJALvlDNlsFtlsFnfu3PHU8XN/AOLPQIIHAPL5PHZ2dlCtVqWtYzQalYx9q9WSTghsgUhSIxKJYHZ2Ft1uF1tbW551weuanp5GPB6XrD3l9zRU5PokWUMJPLfr7hEkFSzLkrWaSCRkjAncuQ6npqaQSqWEaCCRpFvqkXDgObl+OfdUOZBgIllDJYHudkG/hoWFBWQyGbkenoOdCTY2NlCtVoUE4nXptcH7pimiPjfJOx6f7+0XY/MD6BX9ygOOUjbQSwUwQAxT/394aQCwXxUw3uy/8UeTRwQwjkwA+EH8MB4BA/gCHEQE9CoTYIyVAPCD/YP2OyEi4KL4AQwD6iehNMD43OQRAYxJJQAYfYkAnCAB4Af7B+131okARj9gfwTA30sFcDrhVwWckzk7gfCD+GE8Ao6LAAAupkpgYBKAIKbVamFtbQ2dTgeJRGIfUKb0W9f6s95eZz+ZIQUg223bFkBD8KuBG7czy0qPgEaj4alHJwjM5/Mi6QcgmV6Crkgkgk6nI33ftUyb5+Q1VqtVAf3M4jPTzHtjBpnHarfbHrUCM/10mtf1/voxx4zkhyZXKNvnGJKMAHZLEYC9TDGVG6FQSGT68XhcVBfM6odCIaRSKayvryOZTOKd73wnVldX0Wg0UKlUkMvlpNachA7r0TOZDIrFIpLJpBA8xWIR5XIZlmUhkUigXq+jUCjIOmm1WojH40in0zLfHGuWQ3BdcN4JwHntrG3nOUkMABDCgsfVrfH0HHDO+DoNIllKwTILx3GEXNHlJ4ZhIJ/Po1QqiYkfpfUkOEhekSQi2OcYkjTiPGQyGSSTSczMzCASiUjtfiKREC8O13WRSqXEo8KvfOFzjgHNEnmvvE/6VFDdcirlAH6gf0S/gOMOY8UL/gc3DDw+6T+JAD4+WjyE0QwCd9/zbncDML73qBfRO+6L7CcCBjQB9MdBIH+s0QvkE8wPSgDoY50QERDELkGgwf8klAWQCODjIA6PUwX5BPODEgD6WGedCPAD/TOV6R8mzsp9xTGaQeBB7QbHE583Ht1HBBwn2A9iL4YiASidZ1uzer0uGXMNPAkYdUszgjT2ete9y5vNpjju8/jAXhaYGU0CfwJsAh0+18qAbDaLTCaDVqsl2WfeRywWQyQSQaFQkGsg0Kb0mzJwlgPwesPhsKfunOCKreVYpkBARhJDZ6/pzq6VApRkExwSlOnx41jzsS6F4JjyOABE6j49PS3GiYZhYHFxEY7jCABknX8ikRByZH5+HrZtizqg0+kgk8mg2+3CcRwZe8dxxEyQMn2CS6oKuL8228vn80gkElhdXcXa2pqsHY7Xzs4OksmkEC4kd0gMUCmiOxVwLLkmtCmfbonHjhHRaBSlUgmxWAzFYlFe4zpj3TznXLv1k8SqVCpCNNFIkfPONavLY3j/LO3g2gqHw4jH42g2m9ImkuqVcDgspQQkEqhWSSaTQk7Yti2kA+eB65PqBxJFXLNaEeMvH5B1dJwqgHHHiAqAYcJPBExCaPDfXxnwRQDvHWD7MoB7hjj7nqHgVwxvScDYQ4P+UbsH9Il9ZQHjiH6gfVgCQL/vGImAi6ICGDT8RMAkhAb//ZUBTwH40BDbRwtdEnCWwq8GGEv0A+3DEgD6fWedCBhjTI4C4CzHsETAyRkKatA/aveAIIaPgVsELiwsuDrDz+wmQYR22GdfeGYcaWIGwEMMEMzx/Rrwst6eWVWCP52x1FlekgKGYSCTyWBmZgaxWAzlchntdluIgFQqJWCYEn0en+UAvI50Oo1wOCyO+KztpkSeoB+AxyfAcRxMT08jlUpJFwXtxl+pVDyt5Th2up4bgKetXDwel7EjqKOPgR43rSLgeJNM0RL9UCiERCKBbDYLAJ76+XvuuQezs7OSze50OjJOsVgMGxsbQpyQwGEJRKvVwsrKiqgLdnZ2sLGxIfNlWZaoHrrdLqrVqkdVoevqCcR17TzLGLgOtZ8AzSB5LpZCkFjxK1B0hwgCb44ns/jcXxMIutxFEzEkdgi+eX08n860cx55vyQCOCeXL19GJpMRb4p4PC5tJlutFhqNBtbX14WYIkFTKpWwsbEhc8Tr4HyxJEEbJFJ1c1fFcfxthI4rNAFAA0A/KXCIMeBw7QD7x+PuJ+TxE8YvHf2AY4teRMAXe+wXwuBEwDG0BzzF0GUCxxqjEAFLAJodAB2M4wea26NF4EWJ067xP/7oBfif6rPv+IiBsxS6TOBYYxQiYMwEgHsSLQKPKTQBQANAPylwMsaAQKW711Y7HeocsOckx6BEQNBV4MQj4QL20T/77oAtAgdWAhCYmqYpWVHtBk+Q5jc74z/Kqv2kAzOmulSAwIiZXQJpAn0SBswsM6tKMBWLxRAOh3HPPfcgFothZWX3Vz2d1gk6m82mALh4PC7HIDhkO7d8Pi8ZVGZqmd33u85zm27fRnWAdqXnNes2eXyN98EsMIE9QTwJBBIwBK4Eucx+6570rF/nuU3TlEyz67qYmZlBKpXCysoKIpEI8vk8MpkMotGodCBgy8bZ2VkUi0WRmXNNsMyBAJrKAI4Fr7NWq3nWAZURADz+D8zuE0TTF4HSek106BZ6HBOOD8mi7e1tGdNsNovNzc1965wkDMebhA6PpctZ6MHAe+M99CINOAZUA3C8SAzwc1Cr1UT9QK8IdmYgSUFvBBJaCwsLmJ+fx+bmJl5++WWUy2XxJ+D5XNeVUpCpqSnUajW5Z5JuZzoGUQAM0BkA2E8EDCP/1+BfbztuImBwX4D3ojfo90cXwOu+bX5i4HyBf8aJlQq8agxHBHgIAOAkZJrnPfxEwKTJ/3vF4L4AH0J/0O8P/34XgxQ4sVKBsjEcERAoACQGUQCcBAGgwb/edjaJgF7fGc4hrwdxbJFwez8fAxlwWAz8y5/19tqQjs9p3Fav1yWbrKXTADxmgJTa67Z/lOETNPtLBjTQZ9YS2KvtJkAOhUKoVquenvDamI2g3XEcyd6zfMF1XaTTacnIt1otAdCWZYkDvwZ5vMZGoyH3RMKC7eVIgjCTzyw8r5/H4Rgyg6vHR5dKcGw4L9qUkcQCz8v54ns5xhzzhYUFmKYpNejRaBS5XA733XcfbNuGZVnSYvDq1asytu12G1/96lfx2muveaTk9GYg+AWARCKB2dlZrK+viyKD46pBP8ePa4dkEOdd1+8zW88uA/ynOwroNcIuFSQnSqWSB5yzSwIJDSoLeK/hcFja77FTBkkqbcan75/mjPzscO3p9c151nNaq9Ukk8/5IrGiyypYhrC5uQnXdWHbNkzTxJUrVzA9PY1SqSTricCfnwUSAuxUoL0lzkWMWBZAkN9P7n+QUqAXAXCScZAvwHjMA7vYKxU4nwTAiccgRMAadoe+C+wRAEEcNQjy+8n9J1kpcJAvwKSaB174GIQICMD/oXEaZQG9CIDzFywVCAiAEws/+D+FGLgcYHFx0dUtASlF1+3IQqEQarWaxwldA3tdAkCgp7PhPBbl8wTtBCfa0I8gXWfJCdAdx8H8/DwefPBBTE9P49atWwJoS6WSgD5mTOl0r0Gobo0HQEoTCOxKpZInuxyLxVCtVgFAgB1VCSQFuF33mGcdPIHlzs6OZOc7nQ6i0aj4IGgXeg046WTPbLRWS3A/zjNfm5ubw9ve9jbMzc0hn89jdnYWc3NzWFhYQKVSwfz8PJaWlrCxsYGrV6+iVCohk8kgFouhXq9jc3MTX//61/HVr34Vtm173PQJnjWIZ+16vV4XooQ+EgD2zScVBqxtJyEC7JU4sCbedV3UajUZH9471ynBOjPe+li5XE46C3BdabKKwJwEBDs2+Nc6FSTam0GPOcfG36aQqg2ek7X+PG8ikcDMzAxM0wQAKUlhWYQuadje3sbVq1elk8ILL7yAQqHgMbqkFwTXGz+fwK5qYH19/cxKBg8E/gOqABj9SICDCABm+w8iA05fETCICuCg6OUpMGA84gJPBz9y+4afDNgEUPaD/n4kwGg/3C5yOQCjHwkwqQQA43CwP6gKoF9cDDXAqcQptAU8L+UA/jhuFYDO9h9EBpxNRcCY4lMu8Fjw3T5UDEoAjKgGGHs5QKvVElAH7GX2CUQikQhs20Y0GvXI9XWttza3IzDTEm46x+se7toQjuCYvdG5rdPpyPEocbdtG6urqyI1p9zZMAzJRhOINxoNNJtNITMajQYsyxKCgOUFBI9UPHAMdnZ2YNu2p8UgsOdZwFpx9p6/O0EeIoClCSQK+Bpb7/E1lgcwE83SCx6fAJIlFrpDA+dpenoayWQSkUgEb3nLWxAOh5HP58ULgBl/0zQxPz+PmZkZIRNM00S9Xke9XkcymcQ999yDb37zm6LOaDabSKfTmJ2dRTab9ZQzbGxswHEcIW1IJhDIJhIJyVCTKKB5n+68AEDWCrPkdNmnXJ4gl0oLlhBozwdm1HVLQQJykgQE8LFYDIuLi3K9bMlYr9dlXVJlwPnVXgRUOnBdaFWDLiFhmYA2lLRtGzMzM3jooYeQSCSwvLyMer0Ox3HQbDYRCoUwMzPj6WgQDoeRy+VQKpU8ahr6atBskWqKer3uMVY8NzEk+GeM3gXAG5oYOClvACoCdHiMAz/5Xhg//7fYL/cfY/gBfy8C4C/6fAl+7wX9MUFVQBnAJn9QDvrDMsjgjBqT2AVg0KAiQIfHOPBTH4Lx2DMAbp/UJQUxSFAVEGT+R46T8gDoF5oYuFAEgB/w9yAAvs39y55v/brxnuO8srMRw2b/x+QR0C+G8gQgKAEgrdkIOAkCt7e3pY0dsAeEdY20bmXGIMnAbCoJBm2cxxaCmoig7Jry7VwuBwDY3NzE8vKymNCxPp0O7qlUCsBudjaTyYhxn+M4AiBjsRgSiQTK5TJisRimp6dRq9XEH4H91wm0tcpBqyb0GGgDP23yx6w4gSlBLw3j2H1AewIwk6xb1hEUElhrg0UAouBIJpNIp9OidsjlcgJCCZ5zuRySySTa7Tay2ax0GWg0GigWi7h58ybW1tYExALA29/+dszNzcl8bW1tSfaZ5+F865IA3s/W1pZktiORCCzLkux4JBIRkM2yE5ZocAx4nyRHdGtAEicE5wCwsbEhhoUsmeAcc22HQiHU63UsLS0B2G2toNAF+gAAIABJREFUyHHQnS9IsNAng0QY1zUAj0KAHRI2NjakXID//PNw6dIlpFIp1Go1VCoVIQD05zMWi8l8JxIJIY841lxD3W4XiURCiKdqteopKTmz8Ygx9u4Ag4D/33R/ArdxcuUAvbL9vYD/vtfjAPBe4K+P4aIe6THuvbYNEiQHLiIZ8KoBoI3RZP8BEXCUmETw3yvb3wv473s9DgAfAr50TBcWxNEjIAAGjpvGt5xqd4CLUQ7QJz7V43u817YBguTAhSUDRpX/HyMRMDAJoGvQAYhkPx6PSw01M7cEWhrY0uCNGW1tkqdr5nVHAF0+wN7vunyBr2lTto2NDal9r1QqsG3bAx4JFGmuZpomqtUqQqEQyuWynJ/gu16vS7aWvgC6vIGZfACwLAvAnuSegFurHgB46stZ281acWZkNXil4oBEjM5eU17P6+V7/CUBPA5r31mfXqlUkM1mBfDyWI7jiGP+1NQUFhcX0el0sLGxgdXVVdy4cQOrq6sol8titHj//ffjbW97GxzHwcrKCorFosj02RbwypUrcBxHxpylDiz/YMa+3W6L4kCvCwJYLfnnmJI40dJ6+ilwfHQbRa4l/u12uzLHpmnCcRxZ92wBaFkWyuWyKE44ryQu/J0LqErQig1d+1+pVOQ+ut0u4vG4kCJUptCXgetwamoKqVQK8XgcjUZD/CdINMXjcRSLRSwtLQlpxjVP3wOWE1iWhWg0ikqlMuh/BWcjRlQA6Bg0+38b9wHAgeUAp90hwPhTF+4nDRgfdgD8FcamAhgG6A9bDuBXClwYUuACZZUmJCaRABg1jM+5cH/XgPFTN7D7Wb99ylcURBDji9NQABxUDnBuVQDDAP0hywH8SoELSwpMQAzsCXDPPfe4WqacTqcBQDKizJxS/s0MMwEtzdUIQBgEwASbNN2j0R9d9TWYZtZdm/MRNLOtHEsGmN0mEUCwrdu1cQyYbSYYNk3Tk/m3LAvValWytXSP18QGARzPo03iIpGIKB44Tmz/xuxvrVYTIEngS1WCrv3WLe906ztmfre3t6UePpvNotlsSk1/Op3GzMyMlBO89a1vxUMPPQTXdXHfffdJ9h+AKA/Y7rBQKOBLX/oSnnnmGdy+fRsAYNs28vk8vuu7vgv33nsvCoUCbt++jddff10AN7PsqVRKst4AsLq6CgDIZDLidk+ywbZtuQbduo/jVy6XRXXBMaZBo+5Q4VdLaAULy1UAeNY0VR6WZclxCLhJ3HBfbbZIwoFrlESQJnJI3HDNUSmQSqXks0LVC30I3vnOd+LatWvY2dnBrVu3UKvVhGyjEgeAmDyWy2WsrKygUCgIeURlgGmaHuKKJpl35+PM1g0GsRseVUAIMP7cBdb+9IhH7eEFMEqmX5MA/coBDooLQQQM08dZx/AqgMAT4GyHRxUwDRj/swt0f/eIRw28AM5jnGVPgCBOOEbJ9CsSoF85wEFxIYiAUZUAI6gAxu4JkEgk4Loums2mSORZg0zwQxBGUK5b+rF2m8CXAJRya4JeLQ1nZpgAXrfBI+ghMNa1+ywp0O0HAUhm9e4AyT/W8JMsYJa/2+0ik8mI5L9UKoligc7/+ppZN1+v1wV80jNhe3tbjqPr27XrPYEkgTxBIAFjKBRCLBZDLBZDo9FAo9GQ8ZuenkYul0MikUCj0cDa2pq0sYvH43jLW94i15FKpeA4Dl577TXxHKhUKjBNEysrKyJpn5mZQSgUklZ1CwsLeO2117C0tCSmilQ3pFIppNNpNBoNbGxsCClh27ZI5V3XRaVSQTqdlvKDWq2G1dVVTE1NIZlMAoCAasuyMDU1JeoIy7KQSqVE6RCLxUTSzjFjtwBtkkhigfJ80zSlE4Imqpi9j8ViHhKLtf7M4tMckOfh+iLABiCkjt6HyhL6FziOA9M0hVwqFoui2gD2vAP4OJfLIZPJIJ1OY3l5GdVqVUiMVqslxNetW7dkTvmaNi5k+QZLAXh8TYwFcYYjhLtO8oDxvCYA/EB+UJPAEcwACfYPIgq+1xiOCDgDBID7+N5j44mTOGMg/7/QMQ1g9ysCxn/SBIAfyA9qEhgQAIOG+99h7//Z3zjVSwkiiJMLgv0DiIKvG+8Zigi4EATAsHEC7QGBIUiASqUioL7RaAiw0mZnrVYLkUhEMuUEj1rWT+IgFot5ZPO5XE4AtG3bIo3udrvSp57nIfDR7eV4HF0nTQAOwOOuT6CtSxyYkdWGbiQaWJrADgJsq0YigBl4jg0zrdp5ncSIdpMHIOdkNpdEh2mantp+kgW85ng8DsMwkEqlBJACu9ls27bFVf7atWu4cuUKtra2xNtgampKpPrhcBg3btxAq9XC3Nwcbt26hWg0imQyiampKWxtbSGVSiGZTOLq1avY3NwUNQTncHt7G6urq7Bt2wOIOd+cU3ZvoKs+1QAcr0KhIABce0cQQLOlHd3vdctKdmEgKcT518aEnAvdro+meKlUCpFIBIVCQc7darWwsLCAK1euYGNjA3fu3BEFAO+bx6eKRMvyqU5g6QyNLHkfJC663a58VjjfVD6wPIKlEXxvPp+X0gT6XNRqNayvr3sUEtrHQ5tHcq2xVIEqiZOLG+rxm0/wvGchvggC74+6/xq/+vrH8a33/jUeMf4L2ePjvnf8MoCPv7oDXPszrP3B+7HwvgoQ1Xv0AvLc9kX1+Bng6b8PPHJU5UCfGLVDwIgEgPvw7l/juZHefvjxHx/steEIAbZq6vdaEOcnngKB9+PuJ/DENz6K+7/1b/HPleS552f9ay7wrt/F65/5Rdz7gQ31We8H4rn9qT77HLWTwOmH+67dv8bXjun4CvQD3sfuL+w9DggBbTB8jtoOB3FwjNgh4EIRALbRXw1wQqDfHwOTALoNGgEeAQYzzNrtnICbwM+yLDFfoyogFovBsizE43GRqq+trUn2l2QAQSAzq7qbgK6Zp2s/a8FZ301gT8DGY5BEyOVyYmZI+X06nfaAT+1VwPcR3BFQkqhg9wOSDczm63EjkUHwr2v4SRDoayQxwRpvkgqXL19GOp1GoVBArVbD0tISotEo8vk8FhcXEQ6HcefOHQH9BIskCthbfmlpCcViEQAk20xwWa/X8corr+Cv/uqvkM1m8cADD2BhYQG3bt1CKBRCPp8HALz++uu47777MDU1JS33ODY7OztIJpNiXEgSwbIs2Lbt8WoAIMoOmhGStGk2m1Iy4VdT0OeBcw/A02nANE10Oh00Gg0Z12w2KyqP6elplMtlUQREo1EZ90wmg2KxKOPF9Uj/CW2ISXKEa10bAwK7qgm2JQQg+1EZowkiElTlchnPPvssWq2WmFdub29jc3NTWjRq4E8ygWuGQb8FAFKuwDEj6TK+INB/s+/5Yftd9NgD7L9q/Dt81AU+8cK/w/+E3d+dVewCAR0pAOh6v0SMzwKAAfyJC/wj9cKfuMA/Uvs+/Q+AR/ja3993DV6SQMXTRv9M/yClAqOUA4wY7sPHQwQYTxxMBIweAdi/GLEHyJ8wfgmPu8AnX/mlwz/rTe8249MAMMiPyFFJgrMT7ruOhwgw/q0iApTaSqLXtnMb/E0R8T0/bL8gxhnX3efwivFw3+f+fQH0fd0Tjxn9M/0DlAqMUg5wYeKUwH6/GNgTIJ1OuwRRlGbrTC0l+cws6rr4aDQqPejn5+dRqVRQq9WQy+Uk22lZFvL5vLRdu3HjBl5//XUBvTwvj0nQyOPzfAQ9JAKY0SUBAEDk3wTkfNzpdJDL5VCr1TxmdMxuU2LO8/vLGOh3wOwuAE92lfuTuOD1EWjqcdREAFUO4XBYZOkkT1KpFC5duoRms4nl5WV0u11ks1nMz8/DMAysra1hdXVVCA6dLachXyKRALBb229ZFrLZrFwrCZKVlRVcu3YN1WoViUQCiUQCS0tLQihwPbzpTW/Cgw8+iLW1NRQKBXS7XZTLZZGyl8tlxONxZLNZNBoNvPrqqygWi0IK0RCw2+1KPb1WBeh2e9pMEIAY5XFdsASBppUkYuiPkM/nsfX/s/fuUZLd5XXoPt3V9Tj1rurX9PS8pdEIRiAJsOACkWy8ZEggli2bGF8pYQWw8TVccOJLnERexNeKfQkQyMVZl/h1SaTgGwIGbG4wWsYSEbkSD2MJj5AYaZoZTff0s97vV5/7R/X+6jvVVd2nqqtfo/rWmtVVdV6/8zvnTNXe3/72l0hIuz+fz4e1tTVRugBN8otO+rx2vFdI6lDhoVUiHBPnVnsasAsFy0ZojFkulwWQ89h8plgaQXKN979uZahNB1n2QENDfX/pNoH62KOjo1haWhpg3WA30L9VDImA9njA+ucAgAe/8Tt4152/h1nj/QCaYCAIwAfgPekEypFvoSNY/0ofl1KTBHgUwI93X9epN0A/CoABxW4qArYjAfamLKC/GHoCHKygqejHv/wA3vHTf4yzxrsANJ/1GJo48/7LVeDkZ7A7YP36IAGAXVQEfKj7soOsAhisJ0A/7YSHRMCgg8C+l3BEAjCcegP0oQAYxu7GwD0B6NCvwTH/MusLtOqYCboJxqrVKuLxOG6//XZUKhXMz89jbW0NgL2u/sYbb7TJw5kdpqRbt6OjZF678FPizEwp68wJEAmiKZGm5B9ognS6pBMY8dxJKlDiT5Co+9Jns1nUajVb+zWCRaoBCMAI5Agk21v7MbgOvREIiOv1ujjL12o1RCIRHDlyBI1GQ2rzL1++jHQ6LYTE0aNHbeCwWCxienoalmUhkUhgampKjApN0xTpucfjQTgcxvLyMnK5HEzTxJEjR5BKpZBKpRCPx5HP5+VYsVgMpmlienpaAD2vx8zMDLxeLzKZDC5cuCAdGWiER3UAPSBIXtTrdSl9YCabpSXhcBherxfJZFJIJBInmlSh4aTf74ff78fZs2fxwx/+EACkpABotpfUBFcqlbKpWuiqr7P9o6OjiMfjePnLXw6v1yv1+uvr61hdXRVfA44NaKlrWJ/Pe5zH1aaG2vtB+0h4vV4bIcb7o73shN4YHDfNPHnf6a4Jg4uz6I8IGEbH8AKjaODoxtv3fA0wHreABx8DuhEAQBPQtxMB4xt/1zZer7V91r7+kgW8u8t3ylaKAL3OdRcPNf/8nfuBDu7yxvv2djTDuI6i+VXUetYf2zD9+/TDu0gAYGO/h58I2M04yEB/78KN/oiAYQwynjdu7ZkIaF9/S1JgK0WAXmcf47I1gZPG6oD3+uUtlv30gI+1v+FYCRCNRi2axNHpnllyAnMCNAIZyv/9fj9isRhe8YpX4FWvehXy+bz0kM/lcgAg2e3Tp09jdnYW2WwWjz76KC5evIhisQgAAggJjii19nq9sCxLMvBUFxBsMYNK0MM2arlczqYEAFrdCjgmgkiqDQjY/H4/gsEgwuEwMpkMUqmUdErgOmwDSMKBpQoEWzRj4zGZBSZpUKvVbJliZtsJCgngAoEAQqEQzpw5A5fLhYWFBVy7dk3M4ggMuT1VFwTmbrdbCAX6MwAQQmNxcRFerxfRaFTO85ZbboHH48Fjjz2GG264AZZl4a//+q9RrVYxPT0t50nwSXk95f5utxvFYlGk/brDAokWbUap1wEg3SaoyKBHgs60p9Npm8yd50dVgN/vR7FYRCQSgWVZWFhYsJVujI+PI5VKidqkXq+LVwIJEs7n7OyslElEIhHk83m8+OKLWF5eluuaSqXE0FGTByy74DipEtEmgfysUqnIfU/wr4kDkgl6G+6DZRhUUDD8fj9GRkaQy+WwsrIyYAfhg6UG+Lr1OrzJeGLX9r/bQVWAjgd/7XeATzr8Ir6w0RbzPxlABjB+3oL1RQPGr1iwPmU0uwm8pculf+vgv+xHlvJo/Hpgo3Sht7AW7O+No53XAwDrbrXeIw4P8ODGPDzQ6bwf2mbjMQC/4PBA+xfXsxLgz62fwNuMv9rvYfQdHVuN3v8A8HAfTtG/Chj/fhCj2p9YT9jfj8T3ZxyHOQbfHWCoBjho0Y8yAOhRHXDA4rI1Ia8dkwEbv4NwvtP/pVsRAIyDTwQMXAnQDjx0Gz/dog6ALNMyawL1tbU1rK6uolAoIBAIwO12I5vNSgaYxEIkEsGxY8dw9epVrK2tweVyIRgMisM+s561Wk3a7lEZwPpoqhVYj86670gkAtM0BVDxmFQSsFaeY9aO/qZpyrlGo1FRINCojp0MSASw7l/XfBPsMqPN8gXK13U5BffDGnLW0lP67Xa7EQgEMD09jZmZGVy8eFH6w1PJQCk4yYByuYy5uTmMjo5ienoauVwOwWBQALk2M0ylUpiYmMDExISQFaVSCQsLC5iamsKRI0fw/PPPy/qjo6NYW1uTcymXy3L9y+WyZMJ5D+m6eYJ/qko435xDADbwWqlUEI1GZc5jsRhOnz4tY+DxCP5HR0eRz+fl3gqHw7AsC8vLy7h8+bKMIRwOS3mFvs5nz56V8eTzefGhiEQiuP3226WTxIsvvij3EgF2sViE1+sVIF6tVlEoFJDJZIQwIpjnOFh+QtJNB9UdJHK0wR/vT/pz8D62Nlp3ApDuHWx92K5A2XnsnQIgYTXTZnGjvM2a12c88Il/gQc/6Wxd61Nt3wvnNtROf2EANwL40RYb92n8s1VcmQ5gHs1E+rEetmsnALaLX/5aa4J+CcDvGx/svvKDVvf3DzwP4HsAtlPN1GAnCu53NM5hbB3zVpOgnjWS+zyS/Yl/+tCD+LhDwsz61Z0cafBqgCX1erqH7doJgGHsdwwVAAc1+lEGXE+xrSrggtX9/fkigG9g++92wE4UHHxCYKvoqRxAG5gxK0kgTZBBQM1aZoJUyrBrtZpkoVOpFPL5PILBoICjSCQixmsTExOIx+NIpVIoFAooFAqSVaYsW0vkGYFAQFzoKZ3WrQtZu00wxlp53f6PYFwDYp5ntVrF6uqqZM+pEmAWdmxsTDK8Pp9PxpNMJm1gjwCOxAoz/iQAeFzOd6PRkNp03W2ALv6ZTEZKHritJkSCwaAN5NMZ3+12S218OBzG3Nwc/H4/xsbGEIvFEIvFpMc95xUAstksTp06hVKphHQ6LWCUzvMAEAwGRTVSr9fh8/lkTACky4Q2OwyFQtJCkDX+JETYdpDnPTExgUajgUKhgHw+j9XVVdTrdayurop/RL1el3sHAJLJpJA5N9xwAwzDwPz8vNwTLHsJBoMwTVM8FwjWLctCJBIRAiudTiOVSsk86dKNWq0Gn8+HaDQq5oWZTEZaOFIdwetKE0vef7zvgFaXCn7OdXmtx8bGhMDiXGqZP1UhgUAAlUrF1sVC+1Dsf1yEUzUACQAn8XXrdduvdEDj7dZnEEEawHLH5eIbYPxux+XWL3fer/XbzZaWo/flAQCN3w4At26QKU91mltlEvjBDveLU0UCNivo9fvtCAHj6GYiwFrYWg2g45esT24mAtrBf6d48EbggWUAl50dSOIhDImAnQUJACfx59ZP7OJIdjfean1uy2ddfAOM3+y4vBv45+fOFAGDLQtY2uL9doTASHwzEbCeGKoBDmdUMVQD7G4wq78jMuAvO3wX/uThKOnrSAS0g/9OccEEzt8A4Nkej/hlHGYioKfuAAQUui0ggQPrj3X2moB7cnJSMpmmacLtdmNpaQmFQkFMAcPhsCgDKpWKAM3JyUkkk0kx89MmfroOmgA8Go1idnYW165dQzabhWEY4iFA8FQsFsXHgICNLQGZpSbYogmi2+1GMBhEJpOxSawJsFwulxgD8nNK3qlw8Hq9IvP3eDy21mycX8MwEIlE4Pf74Xa70Wg0kEwmUSgU0Gg04Pf7N7nXE1xPTU0JKZNIJFAul6Uunq71zMAfPdr8tUywPjExgYWFBWQyGbhcLqTTaTGjSyaTmJmZEVd7tvDzer14/vnn4fF4xNiPtfs8TyoPOJ+8T/iP+6GPwtjYGILBIKanpxEMBpFOp8XMr1aryTxUKhV4PB5cu3ZNSJd8Po9nn31WTBqDwaBccz0eGh3G43GsrKxgYWEB5XJZTBNJ5AQCAXi9XuTzeSEfdHcIqh1KpRKee+45LC4uwjRNHD9+HIZhIJfLoVQqyX1OrwWeK+eF9zF9NHT3Cd4jvE/aiQIqYILBoHSyYAtFt9stJTl8ZnQJDUN7DgwmBqECcE4EtIf1N8DybUDWmsVZY37TcpIBh6ks4HPGOwF0LgcAuoN/p9H4cAB4LYD6BjEQAIwf7/bFeRH44I2dF3UiBoCeyAGgd2VAP2EjApwQABJHASzAWcaAMSgCYM3heuPbr3IdhPUskDgPLNVP47wxt2k5yYDDVBbwFePtADqXAwDdwX+v0RspsHuxhN6UAcPYzxiECmBIBBzo6EQAbPX5ASQHbESAEwJA4iSAF9Dbd/ugCACn4xzsfDv+1U9pMUEEwTUz8LpOn+8p7Q4EAgiHw5LltywL8XhcQC7JhUwmIyZxhUIBy8vLWF5eFsDO7Cpr4dnejOCGSoJKpYJkMmkD6ATaLF8g4GOLOoJSgiGSCqZpCvAjseH1epFIJFCpVESaT8KA8mugpR5guzpKyHmO2kWerfQoAadagFnyUCiEer0uGWOCd5ouUtFQLBaxtrZmW5cZdBI2lM+TdFlaWhIDQI6F88S+9wsLC1hZWQEAlMtlW3Y/GAxKm0AqC6rVqmS5KW3XRFCpVLI57adSKTF0ZBu8WCwm9wjLPnhf8Xpro0CeGwAhJGhKSDUBAXC1WsXFixflfElexGIxucaWZSGZTGJsbExMD6lU0D4Lfr8fly5dgsfjwfj4OOr1OsbHx0VdQqKJXRFyuZwtS89z0QoK7Q3B97zuVNhQ2UDSTZcIsAQjGAyiWCyiUChgZmZGDBjT6bT4d5Ds0aUWO4vdNQS8ZE3jWGQJuXRnFcA3b2sq2xsYxXoMGOmiHD7s/gAMJwSA8R+6qwG4HFznTWh2qNPfSTY/gG497LeID1qbiIB2kN9JGdCNCOjFD+CXrO61EuHyIjIf6xGCPHgKeOD0xpvtvAEGGU4JAL3u4SYDLlincTYyh5V0SwUwitb/U9+8Gbh5FKhjFNYkYKx03s9h9wdgOCEAjH/vrBRge/A/uHKA9ieskzKg21M49AM4SDE0BDxssZ0yYMd+AH9p7RsRoP0A2uOD1u/gk890Tpp0jQtjwHkaLDvxBhhU9EJUcN3BzLljEkC3tCNApozY4/FIFt0wDKkxpsSYtdWBQAC5XA7lchmFQkHq1gnQRkZGMDc3J/L9VCqFdDotGU/KwNnerdFoYGlpSQBZqVTC1atXJTtLJ36aBtJ0jgoAZnMjkYhk/wm62ZIvm80KuCJQpkkeTQYJxqLRKBKJ5jcWTfhY963N/wDINpS1E9gS1KbTaRw5cgQ333wz5ufnpf1fKBQSs8HR0VFpK8d6b2bJSdYweF6GYYjSolgswufzia8BSYlMJgO/3y9zEo/HkUwmbaCTbvyU9lMFMjMzA5/Ph3Q6jVwuJ4QGM9yBQEDArza102UklNdTZVCr1ZDP54XEIUmj/RyKxaJc07GxMXg8Hpv7PtDyqiiVSjhy5AhyuZyUCdCzYGVlBV6vV5QSLCegCSDJlfHxcUQiEfEaSCaTKJVKSCaTKBaLmJubw8te9jJMT09LOYhuC0iDQV2Hz/uSY27vDMD3JNJImoyMjAhJxDKZWCyGeDwOj8cj5NrIyAi+/e1viy8AyQfOK+/zvYsQmg3uACC85Zqfst6FNCIAgM8C+M3MxwGjLOUArkYDujNtDUAcCTyaeB2+DsCNChpooIHRAZ9Db3G39SV5/Yhxz47314sCwPgPzb9bkQG4BTB+bONH3skuXzIfNB0fs5foJfPfi+x/d+N+OCMCuM6wJGC7+Ij1PqQRBQD8ZwC/m/ltwEhKOcAoms/62Mb6pQYwjgS+svwT+CoaGyRBFZXrLNvYiwKAAH9nvgC7F73QbkPQfxhjrIUu6gcvU7wboUuQ9ptw7AT4HYH9btn+AxhbEQCDiZ+GMyKA6xzOkoCeSAACaIJuZuKZQdTdAQgu6vU68vk8rl27hqWlJclSmqaJdDqNUqmEYrEoWc90Oi3gmhJyXe/PsUxMTGB0dFTWJyBkdp691emETtDIrCcz2dVqFUeOHIHX68WVK1eQTqelNABoKRq0UoBkBEEsVRK5XE6UEMy4ci4Ilgmu+V6rAUg+mKYJr9crpEYulxNJNwBbhp2AmOeuDRwJHDmXbrdb/vLasCUi1QvawJAGjaFQCJZlIZPJYHp6Wpz3K5UKXC4XUqkUDMNANBpFKBSyqSHcbjdyuZzNmJDeBOz6QGKFBAVr31k/T3BL+T3vN4JmEjEkWUiGENQWCgUpV6BTP9tTejwe5PN5keTXajWUSiVbCUg6nZZ7j+UqusQhGo0iEomgWq3aFB6pVAoulwsnT54UoiGZTIo5Jr0bdMtKvgcg2Xn+JcnBsgnez+FwGGNjYygWiwgEAvD5fJiZmUEsFpPnIZ1O4+rVq1KaoEkfkiiDDUr5tSKAne03YtYEZjdeP+l8zz+Fr4E/h+NGGdaTANo8AS8DeIU3D5SboGEKK2hgFNcwY1tP+wTshiqAoL8T4L/b+lJPREB7KUC/JQAkAzrFw796Lx7COwDsAlztoAbY7Wiv+28nBeKeBDLj070l2TfFdkTAEPj3Gz+Fr4F3+ayRhPU3ACrAD9ESbC4AuNmblGd9cqOW/mobrXSQfqRvF+2lAP2WAGyV7f996z55/Uv9tOcYxks0SK5pRcCYtLUEALwZwA0brz+2J4Pa89iq1Gi/lUd77va/D2qA9rr/dlJgEivwziZRnnfuJbM5tiMCDifw1+GYBKDRn25fBrTk6AQljUZDsrDMxK6urmJ1dVXA7djYGEKhkHQFiMViiEaj4lB/6dIl6dXeyRQtmUyKeV2xWBSQT3BPiTWBoTZS033RKYtn7TaVDVxGgzhm0IPBoGSGCSZJfDDDDEAIB4Jt7fYPwKZQoCEiZfTsbkCCguDUCizyAAAgAElEQVSMJoDZbFb2p+vsSUYA9laEuoQDgNT0m6YpGXLOb61WkxrykZER+P1+jI6O4vTp0/B6vXjhhRfEcK9WqwlAJhAnqZBKpQDAVltfqVRQrVYlK86SgEwmYysh4XYkEjg/gUBAiKNMJiMlC/Q40OUObBFIKT7NEmn8SGANQJQG2mSvUChgZWVFygKoNuBYeGzDMBAKhRAKhcQckefEspVyuYxEIiGGiIuLi1hbW0M6nUaxWLS18+MckIjhebEMgOPU969uG0lPgUAggHg8jmg0ikwmg0wmIwaFfr8f6XRa1iXZpUsPBhsqZTtutn4YtMdrNxjoJzuP4W34M+Q3CIS8MQfrO4Dxmo2F79y8/hsBoAJgA9g/Yb0SPvRBdPycBXx+5/OiFQDtn/ejCNipB8CO4pNG99r/Ax4kBUgGzBnnN6/kyCDQ6tI6UMcugv9fiAPfBfDC9Wed/jP4EnIbz7plPAvrbwDjto2F9wNQgqUxNK0sms9680f3Y9aPweznWT+gMSgPgGEMY6ARaP1+xGsBdMOdv77x/+nHDpgi4NMW8N6dj6mbCel+EwF9xU8ah0oNoIOkAMmAf2F8EkCbEtCRQaDVpXWgjsMP/hmGU0fwqakpa2ZmBqVSCblcTsCDrkMmUG9vZ0ZwG41GMT4+jtnZWfh8PqysrMAwDMRiMTFMq1aruHTpEn7wgx9IPbbufc76bWaqCdqDwSBisRimpqbEkG9hYQFra2vwer3Smg5oSfFdLhcqlYqATGZ8SXgQOOXzeYTDYYyPjyOfz9tAFzO/VC9Qut1oNOS8yuUykskkGo0GfD6feAzQwE6bz5FU4VxynOFwWCTlrHXXbfMI9kmcUM1QqVQQDjel1sFgUEoxeGyPx4NcLifKCErEAci4XvOa1+C2227DysoKHn30USnRiEajWF1dlRp7v98vjvPtngr0OtC17iwNIaimCoCEEsGu9p0gmcBz9Hg8QphQncFr43K5BDjz/DTojUQiosigcoDdD9bX10V5QKBNdYvX64XX68XExIQYNZZKJayuriKRSMh1m5ycFOUJuw5QdUA1CAApESFBoQG5fpY4Ts4N1Qosc+CxfD4fjhw5gkgkIn4OxWIRKysroqzgfVosFpHP5+W+XFlZGUwv4df2sXkXAkDL/N+oPnvDYxtvXMDC62M4elsSqAPfvNBaj2E9CdTOAY+HW5n/UTRwl/FtAC1FwD/GH+PKz59zNt4tyIFuoL9bOCUCtusCsJP4ttUCxD/ETQCA+40vbL0RyYDZjX9LAF69sew5ABfUunusAthxOCEDuhIBT2IDng4u3mwBf9EE/c9ar8LfwX/HquHfZqOtPQEsyzIG1zd85/Ekmhl+Afcbn92hlELP3zGLG18z33zWn+rwrP8NULh5BI967pLPXGjgLcY3ABwes8DtugDsJB63bpfXz+JlAIZqgOs92Dd8x8/7r/ex+UEhAD7tcOxbkAO9dh456P/PdI1eyIADaA64ZTghA7oSAXMATndZ1m/080huPed83rcLx0qAYLDJzDOrq033tDcAW+MxG+7z+aSGf3p62lY/TQAOQGr9deaTEm62FmTPdwI7oJXBZPu8ZDKJSCSCaDQq4DGfz8t5sHaaHQI8Ho9k22nYp88JgCgXmN1naUA2m0U8Hkc8HscPfvADcbFnlpgya5IU+XxeljPzzHIJZnZpVkj5fzAYRLVaRS6Xk3PlGIBWaYAmDdjRgICxXq8jHo/jyJEjGBsbQzKZxIsvvihZdB4baALSI0eOwO/34/nnnwcAJBIJpFIp8S5ga8W1tTVRAYyOjqJQKAigbW/fyP0XCgUx3eN1JImhz4Ht8yzLEuJFXxeeP+eO7/V4eF9R8QEAfr9flA5UZ1QqFVFU0EuC21Liz/3zs1wuZ2uLyHMmkVKr1bC4uAiv1yttImmSGQwG4fV6sbq6KnNIJQaJBmb8OUYSTDxWrVYTxQjVCmyVyPs6m80in8+jUqkgnU4LGcPz4Xj5HLWX3fQd/RAAN8BeEvBccx/VOwyMfQAw/nf76m8E8PhdzddjAO74WhL4CJqedT/bLEK48TFg7s5pnL66hG8eB95wDnjTcy3J/19bN8trKQV4ziEBsEV0qvvfjhRwqgh40Pjdrh0Cdhqv+ZMNxP5q4Ic33uRso08awFMWbn7l9/BGPI6ncCs+iE8AAB56/T/EV5/+WbXugAe820GA/1YL+EqPP3LG70DXL/a13n8wPQNg7KvHcPZnrgJfcpr9P3ymgJ1ok9cCeHxjwRiAOx6bb0qMCwD+XvMn2akngefuOIFzK1fwzSngDefX8bYLrR/fT1ivlNeH5Uf5x43f7NohYKfxhi9+r/ni1cCzx17W937+yGqWDr3L+JNBDGsY2ElfnD2IfgiANoXAW63PyWt2wtiTcEoAbBGdSoq2IwUOpSIAsAP7bnL/fTQF3FFsm+nfIu46ha7f7Y/1u19ut/cdAhwrAU6cOGER4AWDQZGts6ac2U5mUwlWzpw5g5MnTwIA1tbWpM0b5fcEvi6XC/F4HFNTU7hy5Qqee+45MaWj43oikZBae+2irnuks2bfMAz4/X6baRzBIQFTvV4XsFypVARkE2zSVwBomv6x7RoBPsfBmn+2gyOwZWaW4FZ7H3DMtVrNlkWn7J9150ALXNIUT9d0U2XBDDNLAkzTFPVBMBjE+Pi4mBlms1mRrNPXIBqNisqDr10uFyYmJjA5OYmRkREUCgU899xzACBkjdfrRTabFVKDYN40TUQiESGCSPowA86e9SRMqOzQJQ1UDbDkgnOv21HyuCQG2KqRUn7TNLGwsCDHaC8b4XuWfnDOqR7ga4JtAHKvcB1tDlkoFESl4HK5MD09jdnZWczOziIWi4mRY6VSwfLyMlZWVlAoFKR0QKsVeC/wHuQYdckAxxUIBITUoZcBx7q+vo5sNotisSi+EeVyWQwG6Zmwvr6+cyWAUwLgJIA8WrXYD6DlQP9cax/WFQPB168gH5jctIvHN31ij5tHgUxdkQA3Asbzm9e7z/p9PGxsOGH/XJ8/FJQqoB8SQMd2ZMBuqAGsz268cAEP//y9GEUdr8Dfdmy71h6ftZxL437R2EvH3UHFMwBe7mzVcYf3T49EwDMbfzkK6+vA5E9c6aIEcA7+D5oSoFvQCLC9cRM/u3kUWK03SYBvTQF3nAOM5/Z8mAOP3VADWH/aev0HP3MfRtHArXgKrzK2749N0O8kDicx8AiAu/d1BHTRGTQRsGMlgFMC4Dya3+sbLSBu/OjTUqOuCQDGnhEB/ZIAShXQDwmg41CSAcNoxl0O75++iQDGVsdxvu+BKwGYBab02efzCVCmVJpgiKBtamoKU1NTYvi3uroqWWuCPqCpLhgbG8Py8jIWFxfFcI6A3DRN8RNYXFxEMpkUcKiz2Lqmn0Z2NM0jeN6YHMm+MvPPbejiT0k5W+A1Gg3E43EBUQSCHFcwGBQpOJUHzMhyDFQ4kAggACXpQAd9KhVY009zQZ291W76utsBiQl2DACayoBUKoWVlRXJvnMcLAtYXl6Wtom66wHJhEwmI8cjwGbNPsEz5yYQCGBychLHjh0TWX4qlUI2mxUjR20UqME+Zer0MSDY9/l8cLvd8Pl8QiZQ+q/nh/OhjQ85t16vV+6RarUqx9cGj5T+a7NBmvaZpimES3stv762VIpEIhFMT09jenoaR48exfHjx1GtVpFIJLC2toZkstm7zuv1IhQKiZJF36skBVgWw3khcaWNEoGWEoI+CJpc4JyQMKlUKlISotss7nrcAOAX0HTvu7zxWQA28M8wTljAvFp2rjnfnQgAXSoAANkGcPpPllq95+rN9oKMM0bzV8rDX34P8HPv6e9cBhC9egIMCvxbnwWMX2z7sA7cgW9hFPXm3G0TTgmAgwj+t+9P/kyX110IAacEANd1QAS0g3/GD94E/CfrH+Itb3gM+CaVAYcv8+8kWCIAtEB/p2f93H+9Ary4sW4DeNY6Ifu42biyR6MdbAwK/Ft/Chg/u/nzH8O34EIDL//i9mSfUwLgIIL/7Z/1R7q83jtCoBv4P9DKgPY4D9z4j57G5cQp1J4KAQCCyHUE/wwu2xUyYADZ/53EEPRfJ+GUAOC6OyIC9LaDbQfYKXoiAZjlJUgicNB1zAQYBJQ0t7t69aqAEfZXJ9jR2WESAGxdR+d4DZToxE/JOSXxAATQkGygtJvAyO12S929lssTSPF9KBSS7QjWmVWn7BpoyrKpZiAQBFr13WzDp40EtWu/1+uF2+1GNpsVFYE2EuR+aEhHoMyxsT2cdnfntWC9O+fC5/OJMoEqDACicGCbPJYcjIyMYHW1abbB8fBzEh1TU1OiCuG5sf59dXUV8Xhc9p3JZGScPDeWBRDgchnnAYCAc14DegDoTD3vQ6DZypHqD56T7lahjSR5LQzDEOk+ATTJiGq1Kr4KLpcLoVBI7n92NcjlcjInuqZfd6bQHSd4vFgsJqUf2ihQqxRICPDaUXnCshuaG7L0xOv1wuPxoFAoyD64XxIVXq9XlDEcr1NVUF9xcuPfCwDegCYR0M0ksIdoBwP87HE0XcMX2kGuChICZ2iI2K8KgNtu4RHQTREwiDaBg44b/2Te8boE972oAQ5KbAYFOuP/zKalexndwL+OZo27gWba7fokAIAWAcBSgU7P+gqAhbc3SQJlVyZBQuCwkgG7Fa/8YgdpVJcguO9FDXBQYvOzrjP+j2xaupexW5n/PYtzaGb/nwK89yRxEy7ipvhF4E37PTC0svg7IQO2MRDspggYEgDDGEzsbrmFYxKAMmnWhGuQQpUAs+c0b8tms7h27RosyxIzQbfbLf3V8/m8gHn2nmfWlsfSdc6st/b7/VK/TRDJWmfWdmtVALPEGiRqszmOu1QqiTyf2Wquz0w3AIyPj4uaoVQqCaHA8gKSCJR5M1tN0oH71TJyAJsywCQVdNabGWEC9ampKVmf+6Y/A7fnNaPsXZvLVatVIXN4XbkPljTkcjkEg0EEAgFks1kB0tlsFuVyGYFAAABspQn5fB5ra2u4evUqpqenUa/XheQBIAoJTXoAEHWFNkfUxAfPhyoE3SGA+6IagOdBoMvuDUArc09zPd6DgUDA1k0hHA6jUqmI3J73XjAYRCaTka4Q9KQgCbS+vo5cLoerV6+iXq8jlUphamoKwWAQhUIBq6urqFarcLlcopAoFApCCGgjzEajIR04SKyRBOH9qr0SaPiniS4A0rlDE3b02dD34Y7iSaNzScCtAO5B09E8svPDtJuBAU0wwM9DAF7xbrVwGXaTul0MpyUAB4EAoBqAigApC+gxdKa/EyHwWeunD6QaAB+zgF/XX7JOwH+X8gBm9p0oAvooB+hOCFy/BACw/bMeA/CyX1YLV7Bnz/phCqoBqAjQZQG9hM70dyIE/sh6x4FUA+ABC3hQP3dOwP/elwcc2Mz/x4zOJQF3WXjrmc/jW3fcgQhSez+uPQynJQBDAuA6C2b2nSgCdlwOoGP3/RYckwAERbVaTSTzlMWbpikSbWZWWWtcLBZt7fqYiSyXyzbQDsAGfnjMVColWXcCV53RXV9fFxm6NpkjQUFASaBYLBZhmuYmGTUzp1oqDUB62kejUQGSIyMjiMfjMi4qGfiXknpmaglKaTrHUgR9Hsz48ths/0bVAg3weB1YYpBItEyicrkcAMh+KYH3+/22zDD/UdXBTDGz9JVKRToJEERrssPtdttMHdlVgeoOzgPvgXQ6LW0jef9Qfs/7gSCUdfc6u69BPUEvwTG3IZgmOKY6oVKpwOPxSMkK7wO+pkqBY+b9wX2zzWA4HIZpmgiFQkin0/D7/UJ+0AAwFotJ6z9NhpXLZSwsLCAYDIqfBssi9P2jiQxdVsNzojqGygauowkD7cugPQJ06Q6fESoreD08Ho/T/w62jnaXf00KvBo7iqcBZLEZGDAj+AyA2foY5l014FbAeF/bihslAJesaSkHkPj8ABQBKjqB/Ef+3/3PmPcL9J3GgQT7G6Gv+DSwQQD0k/XfApZ3AvgkBvowBRxkWL8FGB/e1yH0FBrsM/SzHrPCSBoZ4DbAeG/bihtZ/2etE/usALCwFz/mOh65T6DvNA4k2N+ITc/6gwb6y/rvv09AP2H9a8D4lwPeabvLvyIF7sC3BnywAcYgFAEqOoH8IfB/CUQngE9iYKDgf+/CsTFgJBKxvF6v1MITeOVyOQFDzMzrvu18TSKAmX6WDAAQSbyW0xP8MntLgMPSALa6Y8aYwePxNeXdBJA8LgkMHrteryOXywmIYsaUzv6BQECIA7Y4LJfLSKfTSCaTIrcnsCbQYyZWg1eCbo/HIy0CmYUngCcpQEKBdegcA0kVyvSZIeYcawM8ZoJpSKez7/R54LF4PVhKoa8liQTOv/YDoPs9r4k2T9SGi/r6EIiT2GApAsfB5WytyAy37jYwOjoqJnjpdFr8AzhOElbsqFAqlUTN4PF4cPr0aXi9Xly5cgXJZBLhcFh8DHw+n9xHMzMziMfjIsUvl8tCWFy+fFkMAdkmkO0eSd5op3+tBAEghA0JLhJsJJD0nGnlDQA5F86F7q5BsE/ChO0UWVLAZz8Sici9+MQTTwymjdB20aH+30ks3hTBESOz5TqZ+hi+76p1zCA6DqdEgCYOtigHwLSD/S1t/yVy2rrQubd9n0FCQCsBNvkEHJZoZ+nvAi5/eFL6B7c7HLQkwjuR/js0DOwzHDgROA7rt+zvjQ8fHmPAbrFohfGCkdnZsz7wcDKd2z/rE9YVrBontl3PaZAQ0EqATj4B10N0f9Z3Iv3fXSLgonq9UyWA9a/t741/OcAWgdvEVvX/28WemAT22iZwm3KAYexBPNDhmj04vCZbxcCNAbUZnW7nZhiGZIVZm6/d2gFIJpYEANfXPdsJglg7ryXelmUJwAUgdefM/gMQwEOwRTDFbL3OoGsAS2DK7CrX0xly7bzvcrmwtrYmwJ7tDtmKjsCX3gUAbG7vHCvXJwlgmiY8Hg9isRgMw8Da2hrW1taQzWYF6Pn9fgHoWurNDDxl/X6/X2rZ6Sifz+flmASXpVLJds7aBI+AksZ5BOC6DR7nm9ecknoek47z+vrwWLy+PBbnXKsU6L7PeWPmnHNG8KzHSyWG3+/Hy172MmkJCQDJZBLlchlutxu5XE5UElRI8FrV63VMTk5Kd4n19XX4/X4pWYnFYqJiKZfL8Pv9ou6IRCK2DLw+d96XVCDwPUk1EhZUkbCMhEaOBPKxWEzmQ5NnvFZ6Hnl8rk8SgWQVySzO8Z7FOWOT2R+es+yvO8R2BAAAhF3tHuJ9xOeN7kRAJ8XAVgQAwwVMXH0Rq0eOd15OomAbMuC01dI6D4IQ0KD/uiEAAOAx4OQvrGBpF7Ow1s9gk/S8UweKQUQPPQpeMuHk/4N9CRfgXUuiHIl1WcGZ4dOE1VIwDIIQ0KD/eiQAtrcy7T+snwfwt/bPdqsDxYEtCXAQXzHevsns763W52yvu223J/FeozsR0EkxMCQA9jc6EQD8fEgE7Dgc//JnvT6BMYEgwTTQqinXkmQCT52BJugjCCJo0Rlu1oFrIkB/bhiGqACoMtBgivX92gSQoEr3Q2epgJaYUzatx0rTNb6nuzzrumm0xvNkppnADIAQIZwz7o9gNB6PY2JiAqOjo2L2RoKBfgDRaBT1eh1ra2syhwRxoVAI4XAYExMT0g4wn88jm81ibW1NFBGRSAS5XE5MEplpZmtFXm+d7aZ0n+3lKHfnuixPYCkDwS7HqE3uDMNAMBhEpVKRenrOhSYhuA3njcQCuwHwuF6vV+aB5QZHjx7F0aNHhajhPLN1YTqdxuLiIi5fviwkB30luD+XyyWdKyYmJuByuTA+Pi7me8lkUlr0jY2NIZVKCUmiyQKqF0hi8H7ks8TXsVhMSCZeK84L19VGigBkLvi86W4dJGZ472jCgfc9SzaobtjzOGds/7qdLNir0MC+U6b/YzXg8853d/PV7+H38D7848U/xpUj5/oaEkE/iQBNCLSvw+XtRAG3ufTF88A+XPL+gw7mp+0fd6vTeytgRQ3gHcBvfrbZVvHX8AnEjcGc9D+1/rRjY3urSyvKfuLlcGYS6DQOUynAoQ0XMFt7Hn+A9+B/rv9nJF1H+9oNQT+JAE0ItK/D5e1EAbdZ+W8ngEpfwzhUsXUHgP7jV6y/bRratoU1wFaUZzFYk8CBlwL0GBrUd3u9q50BtgoN7Dtk+t/+y/8Rn2svLxrGLgYxWZs3VTcCQC8fEgE7CsflAMePH7e0oR7N5wg8mKVkVpjZb7fbjYmJCQGkzFQSTDN7zDaAuqZcG54RVI+NjUmWlGPR8n62kiOoYU91bbAHtPrcUxJPF39tTAe0fAp0Cz6dIWe2l+MAIHNAEFupVISE0O3oAoEAQqEQ/H4/IpEIIpGIGM+trq7i8uXLWFtbk+1oXMc6cYJrjtPn88E0TUxMTOD48eOYmppCPB6Hy+XCysoKUqmUmNotLi5ifn7e5smwtLQk50RQqTsfsM6f14/bsVadpADHRfJCE0a8J4LBIHK5HIrFotSj8xoS6OuSAqow+I9tGQmcq9UqFhYWkM1mEQgEMDExgUgkAsuypCyD2zFb/+KLL4qqw+/3I5FICDgOhUI4ceIETp48iWAwiKmpKcnus0xhYWEBi4uLqNVqKBQKyGQyWFhYQDKZxNjYmNT/U9WQy+WErNJmfbx2HBd9BXQHBz5T/EwrLPgMk8zR3Rao3uFxdcafhBqvl2EYWFxc3JtyAMCe+T+Eca/1EL5g3O9s5VkLj199FQCgCg/ei/8Lzx955eb1HJQEdItOhMBW8b/i/8QH/uvv4+zPPyV9nA92tLcx2yADupEADwJLbzAw9X8Dxn/cWOfTsN1zJ6xnceXHzwGP/aDn0Vj3vRxblsH+GXDLuW9v+viC8WM9H2u34rCXAxzIcFl4pNYsUKjAjV/BpzFv3Nhhxf6f9U6EwFbxa/gE/vmffRJH/v4lLBln+j7uQY7t2wAyei8JsN55d7NXZYfYLTXAoGOvygEAe+b/MMYT1ivxOuPp/R7GSyjW295vkAHbkQA69pAM+JT1ro6fv9/4oz0bw3bhtBygJ08A3Q2AgINgmcCRkn3tOM76Y4JuOtATpBAQRyIRjIyMSLs87VRfr9cRCAQkQ83MvB6LrqvWxAGXUx2gPQMIZplR5T9tVmgYBkKhkLTGIxgGWvXzegzMtrL+Gmi1iqNywePxYGJiArFYTIgC1s83Gg3J4GtgTem+lntTQk4DRo47EAhgZmYGx48fx/nz5zE7O4tQKIRMJoNnnnkGS0tLWFhYQD6fF2B99epVuabr6+sik2dWmZ8T2NPrgde73WtAqwWYza7X69KbngoMqi94XTgHPG/eQ4FAAOPj44hGo0KaMNu+vLwspRn0JrAsS4wdK5UKjh49Kh4WbrcbV69exdzcHKampnD06FEp/Zifn4dlWTh79ixuvPFGMQ/keZKkuHLlCl588UUAQKFQQKPRwMLCAtLptBAgJI/4fLCUhZ4TzL7zGuRyOeRyOTlvPkOaNND3NgC5/zQhRDVCKBSSDhu8P+iFQSJBt9JcXl7eOxLgkMa91kNdl21FCjxu3S6vq/Dgn+Df4ukjKpW8AwKgPZwQAlpVMEifgcFHtx7mY8Bds903uxX4zCf+Af7RZz7XJAFeDdz40adxB+zA/HG8sS8ioJ0EYPbfIt4bBfAZ4JY7Di4RMCQBdicesVpp4wrc+Cf4t3je0KTf4J51J4QAFQLT1vVLAjiPnZMABP7WOfv7gxx7SQIc1njC6kDMb8SQFNiNaAf/DAN4oIfdvBn4yOvfj5/C12wf37pLtXndSADg4BABA/cEYGab2XTKjjcOJuvp2m9dz6z3o6XNdJhnSzPK8LWDOcEN+6gzq0zATtWANh7U+2ivMecx9Li1AmFkZERa7PHY7AG/vr6OQCCAUqlkk/uzPIFgim7vHA99EiiJJ6i96aab4Ha78cwzz2Bubk7q/LlfzpNWFmhHfa2IIAHCbgIXL17E3NwclpaWcNtttyEej2NxcRFPPvmkOPozY0zigRnvbDYrwF9fN84dPxsdHRWygOPW7vZUTfDeoMEflQwulwumacIwDOnO0N6ujveJ1+vF9PQ0jh49KgZ+vE7ZbBZer1fKFUigsA0grwlBdzAYRDablZaV1WoVfr9f3hcKBVQqFayurso81et1hMNhaQfIkgIqYPSzQJm/LmNhu0rtW0HSSGf3+dxwzgDIdlpxwWtAUqq99aTP58OpU6dQq9Xw/PPPo1KpyH2vryXv84G1CbxOYyvw377OdgoBNyr4KP433L30zYGMbbvoVhJwXcdTwDt/7b/gA//HvwOeAW7+6PfwKvz1ptXeiMcx+mgDc298OfBN50SA8W4L+A0A5+3ftfzd8TnrrahjtOO2560mMaDJAOvvbmz/3xwPwRbWfWoMD/e3j2EMPjyo4qP4EO7Zo3703UoCAKDh/CffMFQY91jAuwG8oe1Z7xP8W2/b2P7P+9z+nWoMn+lvH8NoxVbgv32dIRlwwOIngY+//n/Bm/CXmxY9Zd24a0RAtyBBcFDIgO3C8TeCbqlHGTEz/ATABKQE9kCLPNCmZRoo8R/BTbsxn35PczQtNWcmmRl+gjVtdkfQQ0DL89AtAlnLT/k1ATgz1gSPo6OjiMfjkrXXWVh9nqwrpwSbknl2UKjVasjn88hkMlKjrd30OXZmkrWTPOdA13jzfOjBoLszXLt2TbLty8vLUtNfKpXkvDnHlUpFpOhUHmgJur4PaArIUgo9Nt4PLPEgKaLnncCenRfq9bpk8AmYgWamularoVwuI5lMConi8/kky63VGSRyuG0+n4fH40EikZBOFvPz87h27RoikQhqtRoWFxdlztiRYmVlxQbeSSKUSiUhLDSxQA+H9iw+r6smbEi8sLUk21EI/7YAACAASURBVDtyHkicaV8EjiUYDEpHCxJNJKD4PLAlI4kOqixo2kiiS88bCaxh7Dw6kQFvNL5nUwPcbeweAbBdZl8vP9gqgK2iBjwG4K4tVnkKyPzGNM5/4ju4FU9tWvzwM+8BysB9r/oDzL365cC2l0RV5m91XABvN74iYF/HJJbx9W+8Dbixcz7Y+rstIuAL1ls67vte46ubPjMebhIBQwJg/+Nu45s2NcA9xu4RANsZBurlg+w2cDijl+ugugFs7vY6kLDe1iICHrLu7bjO/cYXNn1mfKZJBAwJgL2PIRmwF2EBnzGAd26z2huAT935brwR/33TIoL/3SAC3m/80ZZqgMMUjkkALc0n2GUmUxsCEsAxK0zAx+ymBssERQQlunc5yQFtFtheRw3YVQhUKHAc7WaCBFKaWADs4Edn2gngSR4Q1OVyOdu2LB9YX18XA0WeL7PhJBe4j0ajgUQige9///vwer3SApDgjASDVhvwHLREXJdX6PFociaZTEpdfTqdlk4EJBCochgZGUEulxNJPb0N9DzzurErhO7mwBKQdgNIziWBL8Ers9sEwloxQUKDRBDns1AoYGVlBT6fD5OTk+KfQEPAYrEI0zSFpKK6hFn0QCCAYrGIlZUVmKaJUqmEF198cZMChefArHswGBSTQc4HM+u83izpaFdtABCCgfvldnytzTGpkOBx+BzwWaIXQqlUQjqdFh8ATbjxPr106RL8fj9M07SZepKgoUKGz8gwOocTFYCT+BJ+BvfgiwPZ1zAA4EfAY6e2BuQRdCQAAOD2l7dQ//lPfAcXvvuaLmqAwfnypxHBw3fei/t+sfXjnioAef8Q8Kf3OScAGEMC4OBEOxEwjP0Mgv+72953it1tBUgVgLz/LPDwO5wTAIwhATCYcKICGMY+xLwF/KHRVOB0i1l0JACG4Tx60oZpl3cN4HXWEmj5ARC8EqByGy071qQCQTdbmDEIyjUJoLP4BIpa6kwQ3U4+cLzaLK1dHs2xAhCFQbVahc/nE1M+ngON82hwp9ULzOTTy0ADY4LCTCYjTv3aQZ9zQxM6dkLQ3gCUkeu5JHAfGxuTDDAd6inFZ1eDdj8IAnSOkZl4+gMQpHMMnLd2gMvgNSCRo0kCqjhoDsjrSRKFhIeeYwJvXo9qtSqmi8FgEKZpolAoIJVK2do0Ehxzu2w2i3w+L94AOotOIolzwf3wPigUCptaNdLbAmiVSGhyS5eCkNjg/JKo4LG1ykI/M/ovjQ6BZmafBEwnzw62kDxz5oyoNricKgBeS63gGcZgop08+LhxPz4Ouz/AMHYa8wC28AboEA9fejfwlIH77v0D+4IHANz3MmCtd6NAp1GFB5/C+/HDz57FZz/7A7zj731580pfA+69vzvYH8bhiCERcFCiHdjr93tTpgFsJgAAAH8F3P+L3cH+MA5mtJMHQ2XALkQfPT+1AoDxKetdh0aev9fREwlAWThN4RgEgwQiBJca1BJ86l70XJeZTsr5NQgGYMtgArBlpzWh0N5yjVlyHksDIx6bKgYSBQRbzMBrabrOohIoEljz/LTigFl9gsD2+SJJwjERYOssOIBN5QicG56HbqvHc9Yt48LhMEqlEnw+HwKBADKZjFwHbfanlR2cT4JZrQrgcbVngHaj19ePc8axcb/6mvB6ud1uWY9ECtseptNpmS8Cebb8o1lgIBBAoVBALpdDvV4XciEUCklbRJIEHJ/b7ZauFSSgXC6XeA1QfdBoNMSEkSQUM/kkcKwNI0INrnn9eN76vmMZB5Ul+v5rr9Un0aI7DWhViya32G3B5XIhEomICoD3DEtOWBrg8Xg6kkLDaMUXjPv7VgN08gd4o/G9nQ5pGBI14LHsxmsfcFcbmfUXwMPp9+C+T/wB/kviH6D2cAh3fuAvUDrjk1Wewq24cOnVwJs7CfSf6fCZs2DNvy4L4GdF69t40Phd/CI2KwGQ7PuQwzhgsZtlPy+teATOs/Ttmf+tYu8IAePPOxABy7t6yGFsE68znu5bDTAE/rsdBvCgetveLeC8gVuxteT//8P/hMdwF4DBkgAkFXRZQKfPDno47g4QCoUsAp5yuWwDSQTXlCQT0AOtVnwET+ztzuwnYJfgc58a3LRL0em0rg3o2tcn0G6v/9eZdI6PcnqOf319HfF4XEC93laDb5qvcfzMsGtAq03+mO1l2YAGhyMjI/D7/WK4yPXZOYB17toLgJJ+zp2u4Qcg4Pvo0aOyPwCSDaahH+eSoJwKgkqlYiNJOL8kQNi2jpJ5ut2zJINzwGtHXwHOtb7OnCttpMg5oRS/VqsJ0A0EApiamsLs7CxisRii0SgmJiaQTqfxjW98A/Pz8zK2QCCA6elp5HI5rK2tIZPJyPUkSUGyhPMcCASkln9tbQ0ul0vaN/J6cT4572xJqVUTAORcNQHFe4TXl+QRyz60yoM1/tqLg+SWJpM4d1RG+P1+xGIxFAoFlEol2Z73FffBVp/r6+vD7gDbRK9EgOMWgsNwEN26BABAaeNvqNUx4LHu5rj3Wb+PiziL7y6/GgCwnjeBsrHJ5G+vYhMJgP4NAns67rA7wDAOVXQD6bsr4R9kdFID9GsQ2NNxh90BtoxeiYAhATDI6NYloM2smiTAFu0An7JuxFO4DY9u1AjmEUQOQTxi7JKxxwENaze6AxA0AbCBcKCzkZ8GpDQsA2BTEehsu872A3aZv5ZSE0wRkGuDNKoJtOkgP9efMXNNEgCAuM0Xi0UZA7O5brdbJPWUsjOryn0TPFIZoM+HBAABGGXcujUewR/X16CQy3WNPN+zKwABrD4/oGmUx/Xz+byoLSqVigB+Am0a2xFsU+Gg6+T1vFqWJe74JFg4r1pVQad++iNwv/o+0eQRQXShUEChUNhU9sB7sl6vI5FIYGJiAqOjo0gkElhaWhLlBDslLC01dUVUCehyEtM0xWiQnQQItD0ej3gNsLUjVQe8l8vlMhKJhDwjJEe0eoBmgyRHaDAItDwTvF6vlG9ow0b9DOoSG02QcTnBPMtXEokE8vm8dLPQzxDvKe0LMIzBxZAAaIX1EcD4Z7ux59Mbf58B4ANudVYW8PDC/UDZ0wT+Oi5YnYmAWQvwAnhhsCRBJ/APDJ4AuGg15+WsMT/YHQ9jGHsad6M3RUAf4bKAAID0gJ/1TqUAGDwBcMFq/p943tiKNB3GTmJIALTiwwB+a1f23F+3qo/gN1CFGzkEbZ/fbX3pJUcEOAnHJIDuDAC0/AE0KCQA1UZ7BMG6Llz7BBDIMwvMLKsmG3g83aaO4JkyfbYJ1HX9mqjQJAbX0bJ2Zl4JkAjCSCqQDLAsC36/3wbYAQiwJlCj2R0z4DyuLlXQ5AXd+kkqEMzxHDRI45g0mGMXAz0ugsRkMimqAXoM0EiP456YmECj0cDKygrS6bS026OhHjPQLIfQBoFUBvA8qP5gcB4J8nU5AABbezyCaoJiXvNyuYxisShdF6rVqvgpjIyMIJ1Oi1y+WCwKCUDVST6fF2UAiRzK4EdHR+H1euVe4pjr9Tp8Ph+8Xi/K5TJ8Ph9OnDiB6elpmKaJQCCAUCiEYrGIa9euYXFxEYlEAplMRuZJKxs4nzwnrYThfahJHV0+wfnRdf/6Germ76BNF3kM3WJQqzOGJMD24bQsYEgAtML6iP1ve2hywPoOYLxm8+tmnFav23/gbhj3RazOCoALbcmv9NZjtsU5q/Pr5zYfh33DAWftwzTY110BhjGM6z2svwWMWza/3j52kQAYtzq/XuvwrKumKoaDjqsa7OuuAMM4GOG0LGBIALTiw21/28M5OaABf5ffoQ9YHRUAd1tfsr1POD7mMIA+ugO0gw0CCC0X15J1rgO0iAOup0EOwY3eZ3tveu2mro/n9XoFBGcyGanJJkDVZQEE/1r+Tpd4lgMw60wgaBjNHvZAi1hgSQLQqpGv1WqyHo9FwkLL5rmNnhseV59je0tFrXogYNXZdx3aP0EbJfI9a/x5/GKxiFqtBrfbLUCb15CAkyQA55Nt6OgVoRUVBL66vIAZbp6DBp3MsvMzStkjkQji8TgSiQTm5uYE1FJ+z/0QOAeDQQHtWoWhSxDW19cRiUQEiLM1JcsNOJemaQpwD4VCuOGGG3Dq1CmEQiEhNqampjA6Oopjx45hcXERTz31lKgy9H3LZ4LqD15rzgXJFt4jbEnI50OXZJD40c8Yz59eAGypyHNn2QhVAlSr8HnVpM0wtg4C/Huth4Zgv0MQ7BPcG/+sOwFg2+479r92AsBhOCEAtgutBji3xbbnrE1EgPFciwjg3357iQ8yzhrzogYYxjD2O6y/tf91TgDsYoxv8ayPW5uIAONCiwjgXydkwG7HeWNO1ADD6C0I8J+wXjkE+x2CYP+31N9uBMDAwwEBsF0M1QCbwzEJoLPeGnBqkzudrdZkgVYN6MyoNqTjeno/GqC0y5Xplj86OopyuSxZY24D2OvQtdGeJgIIvkulkmTp9bH1eVPiTkk9ywG0a78mG/gvl8sJ+NUEhAZhnAcNGjVI15ncdjk7VQ4E28z8AhBgz+0J4LU5YqPRwNrami37Tt8Afe4E/azV533Bcet6dy7T8n6OR3cM0OoCHhuAANZIJIITJ04gGAwim81ieXlZxkmQ22g0kEwmkc/nxWuBRAlNEFkqoUtWKMfnNWRnAgbnze12Y3p6GuPj41hfb3ZgyGQyArBJPExPT+PcuVYqsFwuI5/Py3paGULpPxUMAKQkQd8/VKRoYozj0sQA51uXWLCFIZexw4EmoLT55NAYsLfYbwLgQ9a/6rrs3xjdl+1WOAH6g4u2H7l3dVEA9BOfBnDeAurbrtmVCAA2kwF6WafYCxXARWt2WBJwCON9Wzxcv7c7dTYvndgK/Lev14EIADaTAXpZp9gLFcAF6/SwJKDPGBIA9tgzoA+gow/AFh4AvcSQANgcPXUHIHgiUCaw0eBBu5ADLaCh3c91T3gtQ24H/5Rq6xZvdL3X21GuTjCs6/GZnSag1sfiPwIt7WCvs8sjIyPi5A40waMmFDhe9l3XYJ5t6UiWcA50X3e+J/hnllZniglOdbcFzo3X60UwGBSwq6XgBIIej0fmyjAM+Hw+WytHLqMUn63zuA5bHHJdr9crLvM8T153Xh9m95kZbycLtNEdAJtSgnX2kUgEoVBIMuscp87YU+JeKBRs94pucail/noeAUj5AOeS553P5+F2uxGLxXDixAnU63Vks1lks1msra2hVCohn89jcnJSDAzD4TBOnjyJfD4v/gPa6I8ZerfbbfNGCAQCiEajYjJI0gholdLo8oL2e4XzQ9KL9w/noN3Dg/PO6wW0/C96DWsBMI72tekw+oitwP9OwvoAYPy7/rd3mvHvuv1rWioAoFM5wBYxKAIAAMpwRgAwOhABgF0VsCneawGf3h8TwmEcntgK/O8krA8Bxr/ZlV07CuOWlgoA6LUcYB+jAxEA2FUB11NYxwDj6n6PYhj7HXua8W+PAREAexb3WMCXDs+Ye1ICdJL3E4gSXFKKTOCiSwM6Zdh1nb5239dAR5sDUtbMMXEfOiuqM9LcLzPEBI66ZSFBGo8Zj8elPIB14QRs2gGfNd3aZ8Dn8yGfzwvo18qH9nPVPgIEiQRwzFrrTK72T9Ayfzrb87woK+fcEVByH5wjAALuXS4XlpebvWpocNhoNFAsFmVetCKjXC7b5pDnqomCsbExm/EhPRt4zlqdoN3qSXiUy2UsLi4inU6jXq+jUCjY5pznC0CuE0sdKpWKreUhSSHTNGEYzc4KPp8PpVJJ2u2xrWC1WrURCEeOHEEwGEQymUSxWESxWEQ2m0WhUEA+nxevApIFoVBIAL/b7bYRELwGvCZutxumaWJmZgaxWAw+nw/VahXXrl2zzZ0mrXTbSz57nDfLsnD8+HG4XC6srq4ik8nINWPnCX1P6TaGw5KA/QwSVIP58tBEwXaqAOsDAznk5v3uEL/0VQ6w0/hDAE/u3u6tc2h+684ZwHkAxwGUAeOv+t/n49btw5aTL+HQRMF2qgDrQ7s9mv5iXwgApwqAPsM6P/jygK9br8ObjCcGu9Nh7G6c37jPLhweYLhd7BshsIPYExXAPZb97yEgAxyTAAR8BG78R6CipeisgSdA1JJvADZyQCsKuEwbDQItsM9aZr7XYF8rEDRoBWA7rtfr3dTyjuuw7SGPoQ3rqtUqisUi/H6/EBEEk5qo4BxpcApAJPharq3HRuWDriP3+/02vwJeB+6Px83n8/B4PJI1p8yd80h5v27jSKd+Eh1UHHAsuvVhsViUnvI8B46Vc68z8NwfVRb6/Ak6OXZNavD68f6p1+tIJpNy3twv55VGjpS683OdEWeJAUE376FGoyHdAOr1uq1rAD0hRkdHEQqFcPz4cSEmNIhnt4VarYaJiQmYpin3nWma4g+hSzQ8Ho88D+VyGYFAACdPnsSxY8fEN4LKkUgkgmAwiFKpJOUH7d4PVFNogunIkSOYnZ3FlStX8P3vf1+IHH19qZTQ106XQmwVOvNvLWz+bBj9xMH/snAS7RikVyJgX4C/jjp6UwFshPV6wPgf3ZfbSgTqAF7cWDDX+nwn3gGPW7cDgCMyYFgSMIyDEIci898hrDsB4xvdl+sSgW7qgJ2QA1+3XgcAjsiAXksCdObfOrb5s2H0EdcJ+G83+TuMRMCuxj0dSMVDQAb0pAQgqG7PsBJQjI2NIZvNCqigXFyb9BEkE+TremctxQdgAye6Zp6AX9e2c7tOYFw717PXO2XarHUnMPL5fCiXyzBNE9VqVVq8MQqFgk3qT+DENnJa9UAChDXhHB/31z52AlntYeD3++H3+5HNZgV4Ay05u2maIp0vlUqIx+MCUgnAScyQvKAEXBMUdLovFAqo1+tYW1uDaZpy/tyOmXiSILyOurUjz53zrss0SECQPNJtGmmEpw0SNehvz6ZXq1W43W4bgTQyMgKfzydlIwBs7RBHRkYQDodFzRGJRDA+Pm4zE2Snimg0inPnzsHtdiOdTsu4crmcEAuU4VMtkM/nbSQIVR0cr34OXC4XYrEY/H4/EokEksmkeFPkcjkpMYnH4zAMA4uLizaFDa8n55/P4eLiorR8JKHB7gfFYtFWjqPLJlKp1Lb/DxD0b7VsSAbsbjCzPyhPAJYAWB/YeUlAr7En5cznje3NAR8G8BX0RQAAgFGx0InI6Qjs7wSM/9FhPAQMff5o3IoAGJoCHs5gZn9QngAsAbA+tP8lAYc1jCtdnvUOwH63jAK3IgD6NQUk6N9q2ZAMGIbT2J22gfZ4xLhnW3PAA+EDcIDJAMOpGVgwGLSAlqs/JfbMmNOsTAMyZl41cNFGgASjWhauTQR5PP4l6aCVAFrqrEGnBki6pV4gEIDH45EaeWZjuZ7b7RbJv2EYyGaz0iM+k8nA6/WKsz7P1eVyYXJyEtlsFrlcTkAeAWqpVLKBd31OWtZO0MvPTNPEkSNHMDExgXq9LioGGhNaliXu9swg85ijo6MoFAqiHGBwLJqAqNVqMi9sb0fwShO7YrEo4Fp3EmBWmxl4XabA86DrP4kB3jPaFFFn4UdGRpDP52VeeD7t/gm8hpxbqlFIVDBM0xRSqFKpSEkAyQ+v1yvAnmUJExMTuOmmmzAzMyPHXV9fx9LSEq5du4ZsNiuA3TAM6WJQKpUEzOdyOTQaDbluNCfkfRkMBnHmzBmYponl5WUkEgm5h0kYeL1ezM7OwrIsLCwsyDo8d6oPqDrweDywLAuhUGjTXGSzWds4/H4/AoGAkDCZTAY/+tGPjI17s+N/DFuRADoOLhHwyDbLd7H9lOPo/COzW3zI+lc9GwGyBEAD/k6fDSKctAbc9SAJ8CSA7wJ4n1r2/wD4/A723cEPoFNYtwK4GTC+YzV9B7aK+cH+WOhEApw15mFZltHtWR/GwYv3WR/p2QiQJQAa8Hf67CUTOykD6OAHcNCiEwlw3piDZVlbf7dvQQLoOLhEwHZmftu3/9v1OG9dN8oAYBCtAXceJAEI9jUpsGcEQCcVQLfYIyKAz/t24ZgECIfDljYWIxh3u90icda18UCrtRmBCIEzs8i6vh+wS/MpU9bZc50J1vXMHAdN8AhC9XH9fj9cLhfC4bBk19fX15HJZGSsbN3mcrng9/vh8XhQKBRQKBSQy+WwsrIi+zVNE9lsVrLZPD6zrS6XC4FAANVqVbLFBIBaCk/ypJ0AIMly5swZnDhxAn6/H5FIBI1GQ4A8WxLyL2vm5+fnZZ5dLhdOnToF0zRRLBaxsLAg0n5es2KxCMMwpPVdLpezdS4gSGT2nh4KmnDRknd9HiQhtAs9OwuQHCLw5Xjp30DCSBNLVGHUajUBvCQfSDZUKhVZxhp7KiGYwadqgCRAOp22kRQnTpwQo0ea9hGsUy1BSX+5XEYul5P7mF0LmIXnPQhAymS8Xi+OHTuGmZkZVCoVrK6uIpFISNtCPkdULgSDQRSLRSwuLtraUB4/fhyTk5O4ePGiGA6yS8KpU6cAAJlMBmtra8hkMlJuoctoSEoEAgE8/fTTW/5QALYnAg4WAbAd6O8W+0kGOPk/eWdfJN0A/14rAXYt2NrPIUDfdj+Mfvc3awHnAStqwHjc4Q+GARIBJAHaywCGJMD1H90A/3WjBCCo3ylAbycHDgHg7xQkAdrLALYjAYDtiYCDRQD06+C/j2TAeQf/1V5HJMFLInohABh7QAQ4JQEclwNo6T7rrSmpJxgnwCIoJPjS0mxd69/uyA+0pN5Aq+yAx9ZEAIPraMDKzzgmTQL4fD6EQiEhKLSjfjAYFAA2OTkJ0zQRDAale0A0GsWPfvQjUTfQ/I1ZdyoSgKaHQD6fFzKDHQuoItCZfJ4HgTkVEgTdbD8XCoVkv+l0Gl6vF+FwWGroM5mMAPhUKoVUKoX19XUkk0nJsEciETlnegXQwZ/gmEBft9TjNQEgKgGtvKDqQ5sher1e+Hw+yYizhz2vkc766zIPLcnnvdfeZYJKAq0q0YZ7/Cyfz8scUuHBbQuFghgckqygMuXSpUvwer3itzA2NibzxPdsAcixlctlW90/gX+hULB1ZxgbG4PX68X4+DhM0xQTQ238qE0heU09Hg/8fj9KpZIQJkePHsXJkyexuLiIarUqmX0+XySleM/6/X4bOcd7sv0abxXG0e5EwPVBALRvu5eEgNMvlMEaCTKuCwIAaIH1Ls79Pe9nJzG7ca16LTW4zwIebjv+X1rAT/Y2pqEHwDA6xXVBAAAtsN7Fub/n/Rzi2GlbQONqdyLg+iAA2rfdQ0LACQGg1xuSAQc/+iEAAOAzFvBO+/V9pfUEnjZeN4BB9RaOSQDdEUBntJmRbm8VqEENgXC3XuTaXZ7mfTo7DNjLEJjRJejnuDShwHFq93Ofz4djx44JaCfwLhaLttpyljcEAgGsr68jHA6L434kEhE5PEE7xwo029xRPm9ZFgqFgq0kgeemz4egmcaEWvnAcRLcEbhStcCscjAYhMfjQTAYhGmauHr1KgqFgrSxu3Lliq2+3+PxoFarifdBOBwWEoAAk9e3XC5LTTnBaC6Xk+sGQEA7rxn3Q1k/rwtd/gEgEokgFothampqk4Sfx69UKkilUjbVBQEsCQPtIaCNAkk0aGNAZvYjkYgQN/l8HqZpypg1cCaxkc/nhcxZX1/H+Pg4UqmUEEhsqQhASiQYHo8Hk5OTqFarSKVSQjqQKJmcnJTnqFwuC9mgPSL0eQJAKBTCxMQExsfH5V7kdSABVyqVUCwWZeyRSEQIHF4/emVQObGTOFgEANAE7zshAvYjDDgnAtC2rvMfDb2A/UOtDhgEiN9pzBtNIuA5wHjO4bV9LTYTAH3E0AtgGL2A/UOtDrgOQPxOol8vACdxsAgAoAned0IE7ENcMJwTAYB93SEhcDDjS0bvRMCbsYkA2M9wTAIArbr19nZ92oiPxmyU5rPWmzXOuu6fpnn8XGeUGdpUTpv86Q4AzJ4CkKw967A5rnw+D5/PJ3LoQCBgyxJzH6Zpilzd5/NJtjmRSIgSgm31wuGw1NBrOT+PSSVEezcAPY8EdgSFBK+c73w+bwOgBLLaBLFSqWB8fBwnT55EoVDA/Pw8SqUSVldXRX5P0zca0nEuR0ZGEAqFhJyoVqsYHx+XNngARIHA4/Ncte8BjSHpXcBrrFUaIyMjiMViYrh44sQJzMzMSI0+ABSLRfEi4BxeuXIFly9fFuPA9fV16ZoQCoUAQJbprg4kADg+ElnlchmFQkHInmQyCdM0EQqFYJomIpEIKpUKgsGgbJ9KpfDCCy+g0Wjg7Nmz8Hq9WF1dFW8E3kc8tvauqNVqorggiTI2NoZUKoVAIAC/349gMIiJiQlRTVQqFfGqWF9fRygUQj6fR6PRQCgUEg+CdDqNxcVFJJNJVKtVuU8Nw8DCwoIQJySNRkZGbG0fSQqwJMRptAN+p14BhzMeQb9qgPVE8+9IvJeteiUCGDtXB3QqExgMAfDdHtd/tbx6i/UFAMBXjXsHMRAVX95i2U8P9lAkApxG+3T9pfNth8B/f6LU5LvhC+zvOJxGpzKB/SYA7rS+CgD4hvGW/R3IIYndAP7tgN+pV8DhjKexp2qAXokAxoFWB/TKEO3FDfXoFst+fLCH6pUI+Av721da+9vysycSgCCfUnFm43XdPmuaKZNnZpjLCapZW6/d9PUxmNlnplkb5xFcEtwQPOsWdgSpOrubzWaxsLCA06dPSwZcg7JyuYxoNIr19XXkcjnEYjEBRgRmBJelUgmlUknOlfJvkhSaLBkfH0cgEBB5OjO0PCeevzZFtCxL5OWs547FYkIyUAERDocRiURw7NgxBINBXLx4EblcDuVyGaFQCJlMBqlUCm63G4VCwdadgBL1SqUi4xkZGREnfYJEndXWGXgaKQJN9QTLLJj9JwHkcrkQj8dtx4lGozh79iwmJiZQLpdRqVQEu4rnlgAAIABJREFUsHq9XpimKfNBlcOlS5eQz+cRCoUwNTWFYrEoDv0kjqiGYFtFXo9QKGRrX5nNZuH1ehEIBBCPxzE5OYnZ2VlEo1EEg0HbfcZa/UajgVQqheXlZfEmoDpCeyzw2SDRVKlUpGuAYRhIp9PIZrNCsoyPj8Pv9yMcDssxSULwOliWZavpZ3kDSZ6pqSmUSiWMjIwgm80in89LZt/r9drucdM0hbCh2mKn0d4y8OCpAnYSvREABP6M3ggARr9EwM7i4GT8vwsSAV817sVbrC/gLdYXBkQEbAX+29fpTgaMrWXkdW08vP0ueyECXg3gD7usS0KgS1nAWWN+SATsURD4Mw4LAQDsP+DvFN8w3oI7ra/iTuurQyLAQZw35nZVAQBsbhl48FQBO4l98Afolwi4buIqdo8I2Ar8t6/TnQx4l/Upef1Hxvu332UvRMCbgVd+sTPwJyGwl2UBPZEAut5b1yzzNd9rebLuYU5AyG0I2gn2mEnXbuyaeABa7fO4DwBCJhAgEbhSfg9AstwrKyvyGQAbobC+vo5CoSD909kyrlarIZlMIpFIIJ1ONyduA8BzXASEPGcCQr/fj1tuuUUM9wBIFrp97ECr9Z4mH65cuYInnngCZ86ckZIAv9+PaDSKQCCAYDAIl8uF5eVl/PCHP8Tc3BzW1tYEqLNnPa+RYRiYmZmREoOrV6/a1BSlUglut1vaJZZKJcng05yQ5RGcr/X1demioFsv8t6gYgKAmBxGo1FRLFQqFalXHx0dFQd7khwjIyNYXl5GKpWCx+PBiRMnEIvFcPnyZVy5ckXIB0rqWSrCMSUSCUxMTEiXB5Iy1WoVJ06cwC233IJjx44hEomgXq9Llj+dTiOVSsGyLMTjcfj9fuRyOem8oL0nPB6PEEeLi4vIZrNCRpHo4DW2LAtut1vIgHA4LJl6Bp+dVCqFXC4nNf4ARCFC5UokEhHFCxUDNErMZrMwTdPWBSMQCCCXy4kvwKDi4IH/nZYE7MwPoD8CgLE/RMBBDqoCgN1QBnSKDTLg4b8P3Nf8P1mD/55Dm/11IgS4/PMA3ju89ocpDhMBcBiCqgBgqAw4CHHwwP9OSwL20SDwJU8EHIRokgET1mmsGicA2MF/z6HN/joRAlz+JQC/vL/Zfx09GwMSlFNKDkAAO9DyAtDgWsvb6aKv96Fr/elczv1yn1yuSYhqtSpqAQ2g6FHg8/lsZnJspTY3NyfZ1FqtJuZ/lIeznjqVSqFUKiGbzSKdTiOdTtva8JHE4DmwOwA/j0ajIjfPZDJYWVmxGSyydEGXU5DEYCab5oPf//73sby8jGg0Cp/Ph2AwKNdmbGwMV65cwcWLFwUU07meWXlmrrXSgll5SsFZ/lAqlQQoAi2Ay2x9IBBAIpGAy+WSmnieAzP5NLvjXGmlg3bpX11dRS6Xg2maQuJQjWBZlpgzhkIhGR87NZw6dQp33nkn1tbWcPnyZVy+fBnXrl0TZYjb7ZbSDpYLsHQin8+jXC4jFovJvv1+v5BBfr9ffATGxsbg9/vFWM/n84lPQaPREK+JSCQiBpSmaWJhYQG5XE7mxuPx2IgQn8+H5eVl+Hw+UZZorw22ZyyXy9K2UHdhYF3/2NiYjLVUKiEQCAgRxW4BJB10Jw+WBdBDwTTNfv4POQShgbxTQqB38D8YBUB78Itl9zsGHLzYrAbYt7jvz7Zc3LMqABh4G8Bh7F0cZgXAQQ+qAYYxjO1DA3mnhMABaBUItKT9L8mOAbupBugtVrcx0uxZFQDsWRvAQURPJAB7nlN2rLP9hmHA4/EI2GIQgGs5v5b7A5CMLNBqE8jQ2xJkarUAQVW7CSGN1Xg8TS6w1z3BEY3yCGZZs55Op2UdZt8BSPaUoInmcQRaBNw08FtcXEQqlbIpBEhcaAKAIJQdBChlJ3hfXl5GJpP5/9l78yhJ7rNK9EZVLpGRe1bW2lXdXa2mu2W1kECNLI/lI2FAHj/MwzMIYwYziDPCxoDHYpgRiz24YYwxHvsgDg/sMX7HYuzBRvgMAszYYHk7kh/GkmzkbnW3eq3uqq4194zcMyveH1n3q19m5V57dX3n1MnIyFh/EVGZ9373ux+cTidcLhfm5uYQCATg9/tRqVQwMzODeDwuRoesU6fZHEkTXdeRTqdrSBVeJyoCSIiEQiGEQiF4vV6kUilEo1GkUilpMwhAwC3PW3WZJ+inF4K6v0KhINeIPgeqrwKDIHxwcBBLS0tYWlrChQsX4Pf78dBDD2FsbAymaeLixYsAIKBZleirrQ1ZwsESi3K5jFQqBZfLJecdCAREWcDrzjH0+/2w2WxIp9OIx+O4/fbbcezYMbkP+/r64PV64fF4MDs7i1QqJYaOJMCoUqEnhmVZQgSoZpEOhwN2u73Gn0A1sCwWi0in08hmszL+VM5QocEODYVCAcFgUMibYDCIVCqFQqEAn88n57m3Y/Oc/gn668mAjYn6L5XeDAF3c6hEwNaoAOriixbsp1JtF7NHkp0TAc2imQcASwC68Aioj2btAvej8yDorycD9mNjQiUC9lUAvUezdoF7M3YIuO826gH+viHglsft1ov4V/j/2i73H6w/7pwIaBLNPABYArDVHgFdkQDMNPb19Ym7PAAxhaOsnVlPgi4V9DPrqGboAUiGUzUrI0AnsOK2CZpUhQGwmu02DAMul0tqxglunU6n9IUnyKKknRJ4Sr/ZX55glx0FKMdmuzn1WNROAwR0HDeqGijRZhae9dr0G6ivLed5EbzSXd/hcIgpHOvGKfkvl8sia+c+KNEnOCRZQ4CcyWREyk/5Os9d13WMjY1hYGBAzonqDaDWlE8tFaHjPgBRF6ht8Cix53ipmXX1WnHbXq8X4XBYfAnOnDmDQCCAQ4cO4ezZs1hYWBBfAY/HA5fLBQBiVMiWiWz7Nzk5Ca/Xi3g8jpGREcRiMQwMDMDpdAoBoOu6+BmQTCIZ0NfXh+HhYYyPj4vnwNLSEpLJalawVCrB6XSK+oVGhexuEIlE5P4lQaCW0rCEheoIdqzgfRCLxcRrgH4cHF8qJtiKUCXLLMuC3++vMXvkee25+OE6sPTM5n+pbowCoF3sth8Hp9C9OeDa2Bbw30NQGdA1GdClAeD3vK8K5LXfbb/sfmx87CsANi/2wX9tWL9TfdXe13q5zfYI2DFxuu5/5end9p3YJHYd8J9A9+aAuzeoDOiWDNhuA8Bm0TEJoAJ0urYTcDB7zmy6mnUHUNMST21lBqz6CRBUcnv8jNJozlNNCFXwrxreEZRSGUBAefz4cQwPD8PpdCIej2N+fh6VSgXT09M15ncE/GoNPQ3U1DZ1rPFWM90ARKbNrC3bs6n95OnQT2DO7Dcl9AT2XJ+ECM+RY8qMtmVZUuNvGAYGBwcBAAsLCzBNE8ViUaTqats+VS2QSCQEcPLcs9msGCDSNJElCyRhCPgHBgZkX2qdObdP0EkX+7GxMZG4u1wukeir5+HxeFCpVKR2PpFIiDoil8vh8uXLWFpawpUrVwREE/wvLy8jFAqJmR/vz1AoBNM0xUl/ZGRExqVUKiEYDAKoEhdUPvAaAcDMzAxM04Tdbodpmjh79iwSiQTcbreMN8krGhGqLSvdbrcYRKptMOuVH+xi4ff7EQwGYRjGGlNOVV3CEphgMIjFxUUh5ZLJpJAMVPOwTKOvr0+2raov9kTUEwCN5m0yKfAW60k8pT3ScNqLND7xL+8CZqvLaj+6qYeyC+NU+0W6jk5MARkuALl17a1nMqA+RgB9PAbR2R22EEBCPrZ+u/pKMoBZ/n3wv7PC+nL1Vfuh7T2O/di9UU8GMMt/y4B/YC0B0GjeJpMC37JO4l7tbMvp/WgWm1EK0IkpIMOL6nd7ud2CTaNXMmCnRVckAOXjAIQQYEZUdbpX/QIIaFRlAMGU2i1AXVet/yeQUiXraqaUoQIY1oRTRg0Ao6Oj0o7O5XKJMztQrc/m+dntduRyOamz5jzOZ6ac2XWCdB4rz43HSfUAJfY0bqM/AsdF13UZT4Kz/v5+kajT7I1EQ7FYlBIFh8MBTdPEKA4A5ufn4fP5BOSz/MHj8Yj8vp6sYbab40nQ3tfXh0gkUlPuEYvFalzq8/k8YrFYjeKAgBOAdAGg2eLNmzfhdrtRKpXg8/kQCoXgdruh6zr8fr8oLqLRKNLpNK5duyaGhwBgGAYMw0A0GhWfBl4vm82GQCCA48ePIxgM4pVXXkE0GoXL5cLAwIC0COS2JicnYbfbkclkkEwmkUgkEA6HpZyD3QIo6adpYbFYRKFQQDKZFKNHturj+FLpwfU4XrzWJGJUEkq9x1mGQ1d/r9db072Ax8Ht8HhJ3LDun5HNZuWZJZGQSCSQTCaRzWY7/Xew86MRAdBquS1QCABV8M9Iw4t33P0E/of+GLTbq/Osv6++7k1CoBs1QC8EAFNkv9PDugwXAPvK9AMAvg3gJoADNd+WpbwDdr1Ys2Yp76jd1LhrzdZXXQ66i9N3/Dre938+BPw98Ev/10fwKO7A4PtqteiN1ACNOgXslwFsX6jgf58Q2NvR67PeKKy6f2mN1ACNOgXsyTKARgRAq+W2SCHwLevkmulbhwzoRg3QCwHw/pXX9/awLsML+W4Pfy8QmQFwGcBROLD6nZiFAQO1v4XT8Na8ZzJnI2O7lAIdkwCUcNtsNsmAE0RSiswaZoIgYLWMQO1tz04AzCarjv8E86pigKSCShKwj7xqqKeWGJAIqAejmUwGMzMzArZV8O9wOGAYBkzTrClVyOfzksUnKcGMrdrykMBPHTMqI0zThMvlgq7r0qqPbQcByHiQTKG7+2233YaJiQlcuXIFly5dEgVGX1+fEAD0UwgEAigWi3K8BPUscWC2mH+sQ1fl9zSM4zXlMY2MjMBut+PmzZvS0cDlctW0YVQVBsCqV4CqyCCYLhaLuHbtGlKpFIaGhjA8PCzlGYZhiKFiJBKRP8rsCYx53tlsVsZ+aGgIk5OTGB8fx+TkpFxTmhAahgFd13Hz5k25n1kqwHErl8tIJpM4cOCAKBRoIJnP56U7QC6Xg8/nw6FDh5BMJhGNRpHNZuHxeFAoFJBOp4XgYU1/NBoVkoetEAnymcnnvcDngDX+LMugj0F/f79cK67PNoYAau5x3o981ti9IRqNikJiT8UzWmdEgA7AA+CtK8t+dmN/MLT7skgggJ868SSA2uWsv9/LRIAa9aRANz+bm+li34fOiQA7qsCfcS+gKwaZ+RVS4NF7gBGgZLpg9+SA53RUHqyg36Y8N5/T0SwICHoFBae//Ac47fyD6psvA4/+0Cfks3alAIx98L8zw/ryPhGwl2K9z3qraFcKwNiT4J9xWuuMCPAACGC11eqjG/vd3gnAv7VUAfXgvp4U6Ab8v7/F/E6JABeggnfPq4ATyscRHwAb8LlxDONFJBBAAAl8FQ/ih/FlOLHaOvtzCw9judyvrPxIh8ew86MrTwC73S7ZYRU0ENSrLf1oSsZMsuoOT/CuGgOq2X4SA6rcv95sjuBadddnFlttN8hsJ4kCl8uFmZkZkacTNOu6LmCKLvTM+APVlmyUTrP+nplsdgUAsEYRQSm/3W4XjwKV0PB4PAiFQshkMmJmyPF2Op1Ip9OYnp4WIK92F6ADPpfn/nkePI6DBw8in89L1py139wW1wEgZQN06FdryalEcLvdiEajopigBwTr3lkuwDFRSxm4L7Xt4tTUFHRdh8vlgs1mQzAYhN/vr2n3p95DzMBrmiYdDDweD06cOIGTJ08iHA4jEAhIS8Dh4WF4vV5cunQJ165dQyQSkRaBw8PDyGazOHPmDI4ePYp0Oo1kMgmv14tYLIZAICD3BDtEUPUwMTGB0dFRmKaJq1ev1tT6kzwhMJ+YmMDg4KCUNvDe43mQOOF9XO+7QN8Jj8cjpSWFQgGmaSKRSAipoWmatIdUyTZ2zyApxu36fD65//dcOUAncQLAW5X391vANwF8ev0/GFT5fyfLTmAauPRfgUvbSwA8Zn0AT2i/tUV724yfykBzIuDH695HAL2FiYP+KiA/XCWLngEAO0o/bAdOWVg2DSwfXWnpebn1s9PxWbYx/rPfnULJXKswaBf7BMDOC+2H9gmAvRib9R+t09jTBEA3cR/wwGu/KG+ffZOJ5S+6gUfW/93eDbjfSaqARcuDIW2r3Ew3y/2/GRHwg3XvrdYP4ykf8ML9gA784803AADeeOD/4NX4Z6Thwae1twMAftz6i4046G0z/msXWqc9woPBoKW67tNlHoC8B1bBIgAB4WoW2maz1WTPVRBKgKy2kqN0mvtVa/9VIzo1g15vPmez2TA+Po57770XPp8Ps7OzmJubkx7wmqYhEAhIr/VcLgev1ysZX03TEIvF5Bi5XZWoIOBiezySCJqmScaeNfbAqrrAMAz4fD4BuJSLcwzS6TRyuZyAftU8EIBIwzmGLGNgRrpYLMLj8UjnAdarq87+PKZEIiHrkFhhS73R0VHMz89jbm6upiUjx5tlCKoygWaGbrcbHo9HZPEEoSynUD0g+vr6pD69XC6LOWA2m0UqlRJViaruGBoawl133YVTp04hGAzC6XTKPeZ2u6WdXiwWw7PPPovnn38eqVRKOii43W6Mjo7KWLAGf3BwUIA9FQB2ux2Li4uYnp7GiRMnRFUwNzcnDv2893mvs4MDlQDJZLLGAFC9d1m+YpqmeEOwG8SBAwcwOjoqypJEIoH5+XnpEEAlQSaTgWmaKBQKcLlcNaCfCg6+Z2eAdDqN/v5+TE9PayvXbvc3se1ECXACwJtRzRg0i1O9/Wig9F/1AWgXhzGFP1g8DW24p13WxttanH8bkmPjiICNkOi32m67aLNfvZP2TBbwLxrQCEc/tjKOT1i10+pnK7FuefAzFj7wQ78KJwp4BJ9E6H2rnXg6VQPUh2VZ2p541vdjP3ZQbGQpAFBbDtCpGmDNNixr73y3d6IEOAWc/NHnMYDm7Xp6NZ+sB/ZqKUCr2DAi4MkW59+G5Ng4ImCzvtubqQDqo40i4FQH98gHAZzIN/6M5Xwzudpp9bMNinpigITBeoLPe7vomAQYGhqyCEKZ4WQPe8rzWWfM7CdDzeSrrQVJEtAMT3XIV2vTKdnmNikvByCmcpT+E1Sq5AHrpE+dOoXh4WFUKhVcvHgRsVhMSACfzwefzyfrsbtAIpEQAsNut0s7OWCV/CAopgyb26AXAmvzS6WSbI9AlnX/hmEIiUAgTsBOAoFlFpTjO51OHDx4EKVSSerbSRAwE93f34/BwUHJsudyOWQyGVE+eL1eOBwOXL9+HdevX5f+9CQ8isUiXC6XkAv8I2DneNOXgM78BOsEw4FAFWUNDg7iNa95Dfr6+jA7Oytjm0gkRHlBjwHTNKWFHWvc+/v7RVqvaRrC4TDuuusunDx5EsPDwzXlJty/2+1GoVCAZVlYXFzE008/jZdeekkMCIFqLb/D4cChQ4dw9OjRGtKGCph4PA6fz4dr166hWCxiZGQEDocDly9fRiKRqOnEUG+aGAgEhEDgsQCr3hpsF1gul2EYBpxOpxBBmUxmTckL39tsNni9XrkuLLVQuzz4/X65TiSo+OxQTVMsFmEYBq5cubIrfiiMWxcxox1rv+CvWMCFNsvchyoR0Cq6IALqwX6nJEBnqgELLTsDtAL+jaJDxUPvpEAvv1hb/ajYwO11QgB8GLAyGm57/Cyu/tEdrZdtQwLsxNgnAfZjP26N2C0kwGnrcZzWPtR+wS+uqPZaxb8GHnj1F1su0g0RUA/2OyUBOgL/4xYw0+I7oxXwbxQdKh56JwU2+ru9U/CvRhMioBMCAGhNAqixySTAZkSnJEBXngDMbgMQQMHMN13LVWd+tTwAQE2GmwCZ4F7t615fWsBpAjZm4ZmJpgyd3gEkF0hGUIp/4cIFuFwuMekbHR2VLHMoFKoxbTNNE0tLSzX1/yrApUxd7W/P2moCQAJvZnTpp8BMvNPpFNDm8/lEog5AzOtYHqCOG8d3YGAAo6OjIrUvl8vw+/1IJpNyjOFwGMPDw1heXsbs7CwymQzK5TLcbjfm5+cFVE9MTMA0TXGSZ8241+uFruuIx+MCVNl+j6UQvOb0S8jlcjXKkP7+fiQSCYRCIUxOTuLOO+/E4OCgmNLRUZ+GiQMDA9A0DUtLSzh79izOnDkj48+sud/vx/DwMG6//XacPHlSygJ4r+RyOWnX6HQ6pTVjMBjEvffei2KxiOnpaTF7ZCcCkkFqC77+/n4sLS0JWKb3AVULajkFgzX7drsdgUAAHo8HiURCPA9cLpd4HJAIoX8BgX2pVEIqlRKVAM+Hz4VaqsHMv2pMqZblUHlD0m1gYAC6riMSicizRX+KnRLWxwDtF9fOH7cudrwN/f0x5B8ONV/AAyDcwYZeUL5UWhACjYB+vSKg0XKdEwDqqxqbAzgfsz6wKdvtLXpMgTUqDeiEAABgndSQ/VEAj3ew8BPKNncBAbCTwvozQPuF7T6K/bjVo+gHHMntPopbN05bnfyjrcbb3/BH+Pg33918gTCA8fYA7wHrCzLdihBoBPQbSf2bEQUtY9yqfVWjFTGwjli0dlJ/014IAK5XRwR0SgAAVV/Aw05Ab/Pbd0bpErQLCIBuoisSwG63IxaL1YB5Ag+1BzxNzAh2meGldJx/xWJRwAqBMw3TVAM8ZndVoz1mMAn4+/v74XQ6xS2djv8E6YFAANFoFOfPn8f4+Dj8fr8A8WQyKaUAfX19yGazAsCZ1SVAogFbOBzG8vIyFhcXhbSgPN2yLGQyGenT7vF4kM1mRbav1mmz7aBhGAIky+WyZOHZW54qCRIRHo8HBw4cwPj4OFwuF7xer3QH8Pl8AjiPHDmCYDCIcrmM+fl5AewzMzMol8uIRCJSe2+32xEKhYQcYAZ7ZmZGriPNIEkUUAVC0z/1XiDwLhaL8Hq9GBgYwKFDh0R9wMw2M/aFQgFutxs+nw9ut1tq+i3LwuXLlyUrX6lUkE6nceTIERw9ehRDQ0NybVhrT3k8iSGqQtxuN44cOYKrV69idnZW1BeZTAYAMDc3J4RXLpcTt/9cLofx8XEpzeDnVFTwuNiKz+/3Y3BwUIgHfqaW1ACrqhFd14W4yuVyQoiw7Ibt/aiGcLlcci3ZIpIZfrr/67q+pvUmyyiy2ax0Y+C9zWPa7LAuAkziq9MNl/1Y9fV33vE43vfkh/BfH/lNFPEX+Ev8VEdkQKTdD7qjAO7v6LBX4wWr5xKBzQur+/MAqsqBLtQAjM31DOjG2K/HyCvn3IIQ+OgDP4d3nvrz7rbdgABQ7Q+3u2Z4K8O6AWgH1043XPbPqq/7ZMB+bFdsBAFwqz7r64l68N8JGTDbboG7gQcOfK2r43jA+kLPJQKbFuMW8LYe1nvS6koNwNhcz4At+G5/QTnndoTAL64sO9NhK+A9RgAAXZYDMGMJQCTgAGrk/wSyzFQSPLI+mssTmBHkUFmgboO1zASbJCJU0E2Qo/Zip8Ta7/dLVp8AStM0jI+Pi4y+UqkgkUjIMXk8HiSTSamrpoSexAWzvi6XC8ViUQAVAZ7b7RbDPAByXKyZZ2s4OsOzjlwlBwhkSRQQdHOMjx8/LmUGAwMDQnzwunDcZ2dn4ff74XA4kE6nxQeBrv6JREKuIX0DHA4HpqenBZgeP34c09PTuH79umTjdV1HOp0WgoLXFIBcn1KpBKfTKWSN1+vFsWPH8MY3vhGHDx+WkgsCX443AFEnAMDVq1fxzDPP4Pnnn0c+nxdvg76+PoyMjOC1r30t7r77bgHFbHVHAiUYDIr6oq+vDwMDAyiXy7h48SKef/55kfJTyUIjwOHhYZimiXQ6LWQXlSg2mw3JZBJOpxPj4+Pwer2Ym5sTUE6CJBwOy71rmqbI+qlEoSkkSZhsNotoNCp+EVyG40mPBWC1AwPJBxIX7BigGhOqBEEmkxFCgJ0JVAPNa9eubbpksBF2rycCCP4bxfw7/LgP30QF/c0XAmrLBZq1AnyiR/DchgTopP4f6LbVTJtLchTA3aia2HUbTYiAVkqA9kRAr5n7dj8SNmG7LYgA6y80/NW/eRPeon2+OuOJNtdhF6kANrscwLqxdl49EUDw3yj2CYH92I+NiZ1cDtCNAgBAbblAk1aAffMmXjf8bNfH0o4E2JT6/0YKADUeRLVssZfkfRMioJUSoD0RsFnf7b0qAlr4A7QiAl6oG5t2ZMAuIgE2vByAIEmt7Vc9ASjlZ7YfgHyu1ver3QNIAnBbrN0mgGT2lO3r6Dlgs9mQTqelPzpl2fQEYPadGXCCdJYRxGIxAFW5fjQalR7yPC8AkglPp9MClGjOp7YKdDgcAvr4udPpxNjYGAzDwOLiIhKJhJxbOp2G1+tFMBiEzWYTubfayg2AqAoIQh0OhxAHy8vLcLvdYgrI7C6VEF6vF5qmYXBwEBcuXEBfX58oG/r7+0XNwGvA0gEqEghOHQ4HZmdnkUgkUCwWMTw8jLm5OdjtdlFfBINBZLNZaTNICTuVFoVCQYzthoaGRObO6+h2u6UjACXtTqdTTPSmp6dx6dIlAbaZTEaM/27cuAGXywWHw4GjR48iGAxK54JUKiXED68tx5Fkk8vlQjAYBACR5tP9P5fLYWRkRIz2AAiIZ/kJvRh4rzgcDjEWZLkEry/VGxx7KgimpqZq7gHeeywfyefzck/y3uMfa/5ZQgBACCDes2p5AAAZW5JaJHFUH4OdGlffMYIKbPgRfKktAbAm6sE/4zGtVurfKgj8O1j+Ke2RNd0BGr3vLDo8vssrr70SAV3G1nYRUON30NuPkBZZiLxWSwQoSgHt3wIZ9+dXP+ui9r+RQdhFAKSnrE8C2s93cOi3WOyD//3Yrui1JGCjzQD3enQL/JtvqPH/3+URD6BI/VsFgf8DHSx/r3Z2TXeARu87inbgn/E1AGVUExZboOLf2i4CarwXvREBLVoHvqDv+twbAAAgAElEQVTVEgH1wF+NDaz9b1bOutOiYyXA8PCwGAMSXDDrTkBH4MH53DbrmFlGwHppVQlAB3m6uHN5LktgxXksFwBQA4A4rQZN1Ni3XT0eOsIbhiFt+txut0jrl5eXkU6nZTtq+zav1yst92hup+s6BgcHMTY2Bl3XcfHiRan3ttlsSCQSUt5A8z2a/HEMVYd5jhMBut/vx8DAAMbHx6WEgcCUioPBwUGR2s/NzeGv//qvZT/0DVhcXITdbsfg4CByuZyAVDrhm6aJ0dFRXLp0SdQJJHl4Del5QGUGQWU4HBYHfALOQCCA17/+9XjggQeERGBHBpomEsDSDG9qagpf/vKX8c1vfhOmaYpCggQE1STHjh3DfffdhxMnTgjJwDaOLFVgZp0E0iuvvIILFy4gEokgmUxK3T+z7yxFUUsxXC4X4vE4otEonE4ndF2H3++v8UVQgbfaApDGig6HQzwHVOUDCRlgVc2hEih89lRjSPpqcB2eN0k1klgksOiNwH1pmgZd15FIJJDL5ZDL5bCwsLAjlADAWjXAq97xItJq39cOoyMDwU6IAJUE2NJygC4vRS+KAEUJoIL7j1jvxPRKq59+VDCEBcxhDADgQBFHcRmHMYWHtOfqNthrpgDoTC5YPyanAfgAvAvA7/W4zeaRcVdfv2He3+BcGwdlwfXAIOkEZvOHkNGuy7ztAg87QQkArFUD7JMAOzOeth7Cm7V/3O7D2NQo+quv3RABzZ71+s9bLbPZsVOVAOshAzoxEOwE2KskwJaWA3RKAjDuR/dEgKIEUMF9O0+A5iTAJn+3H1bJeADzvwfACwT+I5Bo9N3epkvAFkYjBet2EQEbrgRg9p6SelVGbFmW9BrnfK/XKzXaqhyZgJz1yZQ5EwARkFCOTtAfj8clG0ygpdY6q4789CQwDAOmaQrABFazrGyLx2w0zfSYGeW+CdAJdEl6UILP7DfXZTtBAnOC82w2K6oJZuwzmYyAdRIkpmnWjBcd3PP5PEqlkhwvx5xAjrJ/Hj87IjidTkxOTuLll18GALjdbrjdbkxOTgKotqJjKYDb7UapVEI2m4VpmlhcXIRhGAI61XMnyOZ+eLy8xoFAQNrTLS4uolQqYXp6GouLiwiHw1ICQrk67wNmt+fn53Hu3DnMzc2hWCwim83W1Lz7fD4xAHz55ZcFhIfDYfj9fng8HlFKsE0jlQmpVApXr17FmTNnEI/HkUqlYBiGgONoNApd12G323HixAlpobe4uIiFhQUhP5ih53GoLS8p4WfZCBUAVI5ks1m5F/x+P3w+HwBIFwTeb7lcTlQiasmFw+EQlQvNNamQYIlFOp0WxQqVKtye2koSqKoiDh8+3Om/g3WFdqyWCGiG0ev/eR55h7On/XXcSQBoDO5JEPB1x/kB1AUVAZdXjrPLjgFPaL+FJ6y341U4hwrOoR8rXVlQwWFcAwDMYQwGsjiMKQDAP1qrNRV/iF/FF37v31bfvBeoAvROo4MfCZ+tO588gEdOA3gS+KAd+I0udtdlvNbzHDJuwJ1pv+wpVH/8vwzgpnU/fuQ9z+HSBwDfbwO+z1wHfhl48U8271h3QmgHa4mAZp4A+6B/e6MTcP+09VDNK4A9TQh0QwbwWe/181s5Tmsf6pkI6LiTABrL/EkQ8HXH+QHUB/nnz658t3fZMWBjsvu9KvHaf7ePWFcAXJX3xYoTsRPvAS7/ZfX319EedruJoWb7W5Ww7uTo2hiQ0mhVllzvek9QwoyoCtqpJGDGkh0FcrlcjcO6qhhwu92SmVVLC5h5JjBlxj4YDKK/vx+5XK7GwI7HY5qmSMfpBwBATO9KpZL0YqdEmllZgj+SDqznJgEAQNoIEsjR/E41OuR5EcSRDKC0m+CYwI3AP5lMYmRkRDwX7Ha7GLqpY0WAncvlMDQ0hOvXr0trw0gkAofDAb/fD7/fL87zuVxOHPDZVk4FpCQZ6J0AQJzsl5eXkUqlBGwGg0FRV+i6DpvNhkuXLkHXdZw6dQoHDx4UM0KCV2azY7EYzp8/j29/+9uYmpoSOb2qNKFZn9vtxsjICDRNw/PPPy9lEgcPHsTIyIiM282bN+UemJubw9mzZ7G4uCjbY9kFfSDobfDCCy8gEAhImYCu60JgDAwM4MSJE0gkEnj55ZflGQAgBIh6b5FY4HXmmLKkgT4QvF8p+VefNapmksmkEEb8jICey5G4I5HGVz5/9KKgWoL+EN3G7daLOK/d09U6nWJyNa5qVYkdDQFVYN9Nx4B1xU4nABiXlel/WXk9idUfD2o0IAke0z6OP7V+DjZU8CqcAwBU0I9pTOBVOAcDORjINtz1r+IP8avv+UMAwEOeZ4HHOj3oDrP1b9VqiQAdwJMA3vsIEACqpMPp7rfbRVgfBuAH/vzRt+AR7anOVhpbeXUCM/8OGG+U1NiD0coMcD92RhDME+B3Cu5vBULAegKAH/joIz+HX9K6NAnd5fGE9XY8pn180/dDIE8yQAX2G1Y20CZ2PAHAeK7B9H0AHm3w3d6EJOhdBcDgd2qnZEBn38Hz2m0rREA1HP0F+M/OI/nwT0EPx5A/+h7gsvrFuf0qgN0K/hkdkwAEKHTmV2XZzHAzQ6lK7lVgz2wvM93qn5plJ6ikvJm10DSZIzBSZc7MhBYKBTFtY528KrVnqzfWjGezWQH6KjhSDQtZd00Cg68E8zTvI2nBloAq8Kf6ga74xWIRgUAAQLXun8Z/3K5qRMgsNs0Tr1+/LkCdrvv0T4hEIuKyDwCzs7OYm5uTY2KLwEKhINnrehKDbfOY4ebYqaUALKVQvQRY2852jdFoVDo18PjOnz+PdDqNcDiMO+64A3feeSc8Ho9ck+vXr+PMmTOYmprCwsJCjacE6/NZm692gxgeHsaBAweQy+WwtLSEM2fOSKmBWg9fKBRgmqYYBVLVQDUJM/K8bkC1k0IgEIDb7UYmkxEiaGlpCcPDw4jH45LhJ6nR398Pn88nxIhqCEm1AJ35TdNEPp8XYgWAzFe7aKgKA5aJUGlCckl9RkjY8NkjIUCCyDAM8ZTI5/OYnp7u4V9INW63XgSArsmAXqLjrH43cWrFG2BHOv/zeLph/ZVzOLsynW+yfhNTwIs4jn5UMIFpXMZRIQEKcMKJAibQ/n65/91fwnPjp6tvHi5hM6T6AKpEwIf5ZmOvH0sBGMbrAe0/V6effBT4U+vnAKA9QCgDKQAvrqy78J4NPcz92I91RzMgr4L9vRzM/jPsrwe0FRLzTx+plkcBwK9pH227rb2S+X/CejsAbCkZsJHxde2NeMD6ws50/mf7v27KAtSWgZ9YmTabrN9hd4Deox0ZsP7vdpczC9ffVdUB85cH1r29/aiNrowBWRdOMK/K7OmGr5IBbIvncrnECZ9KAoJO1sarGXJmUNnbnBl8lh4QCKnZUnYEoPSZWXpN08QAkO9Z482Wc5Sjs56cGXSn04lgMIhSqSQ16QRjlFzzWHw+Hw4cOIBisYhkMlljFqiWFJAsoDs/Jf4Eq06nEwMDA8hms0JUcKwIHDOZDK5duyaGgIODgwLoeG4cl2QyKRnqsbExLC8vY3p6Wkop1OtbLpcRDAalPtzj8Qhhwe2rJRckORYXF3Hs2DEMDQ1hdnYW+XweoVBIyBVeTwLay5cvY2lpSUikUCiEpaUlnDt3DjMzM6JIoMokm80KecLjICnFcgjDMOScWEfPFoCZTEZMASuVCrxerygk7HY74vE4NE1DKpUS40aWCPh8PiGEWIJRLpfhdDpRLBZx/vx5KfcAgImJCdx2222YmJhANpvFs88+i9nZWTmfXC6HYDAIj8cj15XGiwDEMJLlDcBqKY7H46nxxOA9od7/JKj4HNHLQO3kYVkWdF0XgoeEkrrPjYheFAK9RCsVQE+EQTN/gG0nB9T9W3XzLLQFv5e7O/4ntN/Cr1n/DW/Uvg7g69Ip4ApugwdpKQVoFb+N3wV+4ncBAP/F+u94SXscwIew6W2CNjDWSP//bnXy3yWfQlFfIbqt1Uyh9THgxRWZYBnAj3zgOaBNK+L92I/dHHtBFbBG+v/Xq5P/vvApFJwrajnrnUIEWJ8EXrzFzD23TCHQQgXQC2HQzB9g28kBFdiTEFAJgpk2392NFH4tYkgzu/IHaB9qicDu+W5fT+x2BQCjYxJArb9nPTEBN7OpAAS0plIpUQ0QnDM7qUruCWoI6JhJL5VKyOVyNVn6TCZTI41mZprLUM5Ngztmi9UMJ5ULBEk8Bq7LTgRsq0cw73A4xOeA++Q2gsEgxsbGJGut67qANErdeSwse2AGW836c97i4iIcDoeAZpIOxWJRShRoWqf2lKd6gmoCgm/uI5lMCkGj6zoOHToEu92O73znOwCqmXb2nFfNDJeWlpDL5URJQPWFYRjSmk8lbDRNQy6XE8KnUqmIIz+vC1BVKdBs8NKlS7h8+bIQDuFwWEgWj8eDXC6HxcVF9PX1Saad15z30MzMDIBqi76lpSWpme/r64Pb7YbL5UIqlUIkEhEiY2hoSMwRCdTj8Tg8Ho+cK0sKeL9QIcEyApoJmqYpbRspxx8dHYVpmsjlckJ6sFSEPhhUqqj3Bw0EqcBgu0I+ezxWtllkaQDVAmwDSWKI7QAHBwfFq8LpdMLtdouS4cCBAy3/BzDbz2gF8OuX3czYsLIAqgEazV8Tyw3m9dV93tdgmd7in6y78BrtJWVO/TF1+iOgA7JAia67MLSI/47/gt+wfh/ffvk0cHIdPxRYCmADnviJd8jsrfhRWh/2vwLsK/eC7dEK/tT6ObzzE38O/I/VZUoAXlSy/sMAxv/3ypsbwIsdl0t0Fw9ZTwMA/lF78+bsYD82Jb5m3YsHtW9t92GsK/aigaD7M8two0qU9z9SwUesd+I/PflRQAED9dn/ehPAnaoOYLaf0ep/af2ymxkbVRZANUCj+Wsi3OA3QESr/TyyiQmBesDfjgBgdEIW7PBQSwEY89pt23Ak64/NNAT8gvUAAKwkaNYXHXcHCAQCFmuqKX9n9l8FnwSBbM2mZvmZDQZWywtUubxaT83adLWcgAQC69SpImCGl/PoPs91AEhdPl/Zyo9AG6iC1YGBAaRSKfFAYDaa9eDMujIbfN9994nRnd/vx/LyMpaWljA/Py/KhXQ6jXQ6jVwuJ33gOe4cAwA1xoQEedwGnf95LBw3khH8Y628WjbBDggEiZTvT05Owmaz4dy5c6JWIKBnq0GqItT2hSQ0WCbg9/sRCoWEwNB1XVQVavcAqjN4jcPhMCYnJ6FpmqgASH6wNR4N8NRSEhol8vzoOUDSgKoLtWuC2paPYwQAfr9f7lGPxyP3caVSkWV0XRdChPtgd4q+vj5MTk7C5/Nhbm5OuhX09fUhGo1C0zTMzs4iEonI/VgoFODxeODz+eBwOBCJRGruRxI0iUQCU1NTQqDwPi8Wi0KU8b4hycbzVr0rPB6P3JulUgnRaFSuJbfH6zM7O9vUQbhXYL8VaoBm0ZUpYEfRCPy3it6JgH+y7gKAOvC/fUElAFA1CbwNl3EUa7+064Nu+qp5YKcO++3Ceh7QfmBDNtXb/hVX+z979G34hcVPA38LvLhidHfPT6JKtb8VePHHgRCAyW8Cn3/16/Fj2lc29FgI+uujFQmw2d0B9qOz+Jp1LwDsaPDfSUlAvbeAOm+9YX0H0L5vQzbV2/4/uTr9R4+8Hb+U/Djsf72qArjnpwHtM9XpndgusFV3gF6B/XYQr4xuTAE7ikbgv1VsJhGwxdFICdC9ieC+EoCx0QQAQX99tCIBNrw7gOp8TsCgaZrIsGkaqNbUMxvtcDhqTP1Yj01FAAE/1yO44XuVbHC5XNB1vcYETe0wQDUBt02gzHZ8rD9XW78RMBWLRVEwsGyA3gMkPmgS53Q6cfLkSdx5551CHLCEgX/z8/MwDANjY2M4duwYYrEYrl69ipmZGQHGzNKrZIbaLYHgmy0S6fhOsKe2WlT9ClRyQfUw4LhkMhlcuHABDocDuVxO2i9SVUEHfF5PkjSqNwOPi9ltyubZWcHvrxbYkZRgDT/PM5PJSHs+oAqQVUm6zWaTdn1UQbDlHskZ1QDR5XLJmJXLZanRV7tREFDzOAioWZ5hs9kQCASQz+dRKBTk3uB14D08ODiImZkZqesnaRKPx4X0mZubk3p7kjfsnABAugTUk0LFYhGxWKxmn6q5n8vlEnJDbTfIz0gokBhiB4J4PI58Pi+Kg1wuJ14X9M9oFee1e3oiAraqLKBRbIp/QFexPkXATiEAAEjbQMZp6/GOSIDNjFYEwFYTBL9w7dPAl1ff3/M2AA8A84/68QqOw4NvIQcA/xvAqzduv83A/37srtjJBMBOiFYEwFYTBO+e/TigcBv3PAJoT27d/jc6HtM+3hMRsFVlAY1iM/wDuorNVgRsYdQD/t7KA3rtGrAfzaIZ+N/I6FgJMDIyYqm9yplhZkaTknYCdIIwtklTgRQNzwisCTRVwz+CeQJwADWgluCe5QbMaBL40PBO1/WaGnIGVQYkGEgSqIZtXI4mg5SqBwIBDAwM4NWvfjWOHj2KcrmMF198EdevX5cMfiqVQjKZxODgIMrlMnw+H44cOYJsNouzZ8+KGVyhUJDaepIHqmFiIBDA0NAQlpeXEYlEYJqmdFQAUGNER/KAhn8AhOhQFResBec+2B6P2fVMJiOZ/voMPstAWA6QzWaxvLwMwzDgdDqRyWTgcDgwMTGBUCgkbQpN0xSi4OrVqskHCQOg2rEgkUiIlwGwquJQZfNUNHBs6BnAzL3qA+F2u6UjQrFYFMUHrynvX9M05b4h4dDX14dAIADDMKQVYyQSqXHuJ+mjElNOpxMHDx5EqVRCOp0W4oOtL3mPEaiTRFOVG6qZn0pa5HI56TJAws3hcMAwjJpzZPcBKle4PZpGsoyF0/ShSKfTuHLlSttewt0SAdupBFh/dJv5bxXtyQBm/4HmBMDrrWpR+le0H9uYw1pHPGB9Ae9paPa3GpupBFCjU9B/v7X66/05rXvDM2b/2dauvsc9PgBo11Y++xiA54Cvf+peeFZAng/A9/wkgCTw4sqhdJs1nLP8GNWqBcztSIB9JcDODGb/geYEwL3W1wAA39Ie3IIjah/t1ACbqQRQY6tAP7P/2s/Xvpf4AKBdWrseZf+n2szrJKasQRzWlrpca220UgIwuiUCtlMJsO7oNvPfKvYIGbDb4ynrTTL9Fu3zW7LPRoqAjVICtCMBtlQJoGYqCc5UcMmsNkGaruvweDxIpVKSVef6AKQunUCK2VqSAASdKtgiQCaoYX07M+IkFAiqVfM+GsqpGXQSCQTPdrsdLperpixBJS8IrAcHB3HXXXfh7rvvRiaTwfnz53HlyhWYpgnTNMVEzu12o6+vDwMDA3A6nfB6vQCq4PfmzZs140pgyVIG1pAHAgF4PB7Mzc0hnU6LVF3TNAwMDGBiYkIIGbfbjXw+LzXoNLHL5/OicKAPAQEirxsBJgAhUzhWqocCQSqPOxAICKHBcoZCoYB4PC6ycxrxsb7f6XRKa0Z6D/CPQJ33GceA91ggEIDT6RRPiUKhINtiVwqXy4WRkRHccccduHbtGtLpNBYWFpDNZkUNQiM9qhdGRkbgcDhw48YNIUESiYSUEDidTgwODgqBxW4IVA2oCofFxUU5hlAoJO0F6QNAAE81yPLysnQsIOEEQMicYDAIXdcRi8VEDcGxIaEQDAaFwGAXBJYvpNNpUVzQIJHb4PPI0o39qI8+rJ8I6F4J0I4AqJ+uj00hCJ601rgNf/0f/jXwBrQkAgj+Bfh/2Ko6+f/nNt9Rh6v/Y0auXcX89xypOuwBwNTa9aznOzqDdccawF8fvwu8qDRN4I+BL3zKhQeuAtqRlQ/+qvdjmLOqCqv3Wr+Jb3UhKXjIenrfH2AHRjsCoH66PraSIHiz9o8tiYBuWwz2EtZ3Nm3TtfupB/z18du1z7oajYB+L+UBU9ZgD2vtR0cR0dZPBOwR8B8qzyBmG18zj1H/2brj4Sbj/rndO55bBfybrdOrP0DHv/pVgE6wpus60uk0gNWMNKXOHo8HhmEgEokgFouJ+zxVBKpkn3XtAGoyoipQV70FeByUWlPCrpqrcR6Amk4GBE0kDwDUSPPZjo/ZYWbLaYxH9//5+XlMTU3B7XZLlwGC1Ww2i0QiAcuy4PV6kUgk4PF4MDo6ikAggHA4jOvXr4trPc+N+2NmmD3tZ2dnhdigLJ8GdBzn5eVl+P1+HDx4EIlEAslkErFYDLFYTEArx1dtJaeWRVBaz5p8tX2jqs7gK30f6M6vuvkvLy9Lq8dcLod0Oi3XX9d1DA0NiWHf5OSkZNwJZIvFIvL5PKLRqFzPyclJHD16FIFAAP39/YhEIrh06ZJk2ukfkE6nJcPvcrmQSCSks4Db7UY0GkUoFEI2m0U6nUYoFBIzSdW3gvX6LHehOoKAmQoVy7IQj8dlDKmeyGazMAwDmUxGSAB+RpUFCQQAQmBxWt22qnTh82KaJoaHhzEwMADLshCLxZDP55HP5+F2u2tUEuFwWEwlqZagCWe5XEY0GpXzaRfdlAXsbhUAgyB+I1UBa2OjPAA2VSFQ33d4vpYI+Ae8AVM4jHcoznhrsv7vX3kNWLB+RoP2Ggv4FcD6lobnjgGv43KHAUwB85NHatdfIQdIBqgEQCs1gKoA6DWY/a+fR3LgxWngnl8GrLtrl3+j9nX8nfV6AL37ABD8dxuqUmDfLHBnxEZ5AGyHQoBEwFZl/dVQCYDNVgMw+18/j+TAd6eBe34NsE42X77X2C7w301ZwK5WATAI4jdSFbBLQwX9rT5rSQjc32Ycn2sD8kkONCIDfsMCPth4fVUBsNWh/eL2dQpQCYNezQK78gSgbJ+yZ9blZzIZkV+ztphgmCUCBHhqJp51zGr/cgJ+td2ZqgYgIKOMmdJ4gudCoSBgiZleSt1ZfkACoVKpwOPxSOaeoHB0dBT5fF7k5QTpBEnJZBKXL1+G2+3GfffdB5/PJ4aFNKojGIzH4yI7L5VKOHfuHF566SVxZy8UCgL4CBIJuOmVoNbzsy4/n89jfn4elUoFw8PDcDqdSCaTQsqwHMI0Tclsq2RKLpeTEge677M9HpUZLKFgnTkVCOp1qlQqIssnQGVWn50RgFUjSJZ4FItFjIyM4NixYxgdHRUSQQXhpVJJTBbj8bioS4aGhuD1ejEyMgKfz4epqSlEo1EkEgkAQDabRTQaxfT0NAzDQKFQkM4SAISsMQxDDPZoSmhZFlwuF/x+P3K5nLTFzGaz0qoQqErrSYTQmI/mina7HYlEAqZpYm5urqYUQW0vSQBOYoCElsPhEG8MlRyiASKvNY0rWcKRzWal1SVLMPiM+Xw+Kc9RWwvyHACIWqeTILjfyi4A2x8boQpoHe0IAAL8ZiqAbSkRWCEC+t9Qxs/jSRzHK42XO2UBl2tnaa+zgA+uvHkLcBPAZ1fevlVvs9/DFhAG1G4H3XgA9FIK0CwI9l8AoP1JdbqtaqCLaEQAPIzPIYEALuJ4V9vaJwB2RrQjAAjwm6kAtrNEYCPA/meV6bd2u7IN0O5c9yH0FAT7LwDQPlKdbqsa6CK2O/tPcL+VXQC2PTZCFXArRzvwry430sFyqlKAhEATAqBRbFUpwGYEQXwvioBe1ABdlQNQSkwjMxVQLy8vSyaS9ciUMxeLRXHkJ7jM5XKSfVczqipQJ4BU3c4J5FSFAA3l1M8pYyeI4/LsN882apRM02itUChgYWFBACkVDwS0uq4jlUohlUphbGxMMvAulwvZbFYM6uiTkM1mxaGdCgHVzV1tP8fjttvtUg9OoKZ6N3C8vV4vlpaWEIlEMD4+Dp/PB6CawU4kErhx44aYKVKKb7PZpFygVCohEAiIKSOVDsPDw6JSMAyjpic9xxCAqAv8fr94BTDTDwCJREIIErVrg9PpxNDQEMbHxzEwMIBKpSJydcrkAcDn80nmn10VWGJA+bvL5cLw8LCAayo+jhw5glAohNnZWSwsLMi59ff3wzAMAcXFYrGGhKlUKmJsSJBOoLy8vIx0Og232y3XgIoAeiwAVaBP4oH3M7P/AIRQobqArQh1XZdrzc9ZrsBtk9DiM0FyjaQV72veq/QhSKVSQsZREaMadqpGkhsRe0MBsLXRjQLgK9qPrSECttUjYB74yj+8CV85+qPV90er/4cPWeeBUyeq4P9yg/UUCZ32WBXUT79Jwzda7csGPHvpnpXJSsu+W9YN4MLEIfwCNhCRt4hWkt9euwE0UwAMYxFedOvgvB87IbpRAHxLe3ANEbBTPAKA3gkBAv/PtlyqSZTXzrIWAG24p0PpKTbD/b8ZAbBRvgAbEXtCAbAfGxedEgCbFNupAmBsZjvAzY6OSQACPGAVgKv1+QRPdEcnuFWJArqwM3tJ6T+zk/yjQRud/wHIvlwul5i6Mcutgn9K5kkwqNsDINM0yGNbNqfTKcfDY2KNPEEvHdVZAnDu3DkcPHgQExMTUvpAJ3zW4uu6DrfbjVAohGAwiBs3bgjIJflQHwR8LIegGoLnQDBOp3m2kqOJoGVZMM3qj0MSCQS6BIbsL28YBjRNQzKZxIEDB2Cz2UTaznILEinsJMDSDcMwpBzA5XKJFF0t2UilUkKu2Gw2eL1eHDt2DAcOHIBlWZifn0c0GpXsNe8v1s2z3MEwDCwtLSGRSCCdTotJI43x6HnA+8HtdsPn8+Hs2bNyXX0+n9T1U7lSKpUwNzcHXdflHldbG6rtBEmG8D4juUJzPzr7U41Cnwk+H6rLPz0ceH1IOqhqGe4nk8nIvcCyEKozeF9wGyzRsSxLSJ9SqSTED4kFEgB8zlQFRjehgv3t7AKwddGtGqD3zgDtohERsK0xD2C+lq2//gMnGoP/RvEYYL1fw9puzrXxL5eO4a4X6ty4xgDtqxas72iYv9uPflQwON0aILM8YCMVAd2zfZsAACAASURBVGo0Kh3oNtqVAPwM/hd+X/tv8r6VSeC+AmD3RiMi4FYJ6zuo/lJdAf6NSgCsha08orWxEaUA260AqA8V7G9nF4Ati27VAHvED6Dn6BX8R7Ci4OswqAo4Cjz1+9VEBzP9zQgAzt8LigBGK2VAr34AQBckAFDNUjO773Q6awzkKpWKmAKWy2XE43EBTAR3BFPcFl+ZbVVbz6nZb4ITZvDpbM6yAhUcM3iMBEckBgqFgsitVRKD2XkqCAgA2T+eII9y+3K5jMXFRXzta1/D6173OoTDYVQqFckyx2IxZLNZaeH2yiuv4Ktf/arsn6C8HsRx/6qigeemlkfQ3I3SehIO9F9QW8px+1RfcP+s0af6gHX1JCaYWWebPbaai0aj0nueYz4xMQEAUqZAnwQSQIZh4PDhw1IyQvn/1NQU5ubmMD8/X1PiQVDqcDhw+PBhjI2NweVy4ZVXXpH7i6C8UqkgnU7L/eXz+VAsFvHSSy+hXC5jYGBAFBXJZFLGnSqIpaUlcd0n+Hc6nQLGOU4kX7gNAnOCa5ZVqNdHLSlhe0OqAvL5PNLptKgKSBSQlPL7/bL9TCZTc3/TrJElOT6fTzoUFItFRCIRJJNJLC8vY2hoSJ5NljuEQiFYloWbN2/KtkhO9Rp7nwBgdEoEbB4BsKPjBQDjFmCiJQFgPasBjwLaT1uw/BrwMeALvwKk+Pm8Bm3EqpILStz9rovVCQ9g/YQGDADaJy2cfc9twDVgZLr6fC5NePBu/BGKaO11sd5uAdsR7AwAJFsutx/7sZOjExUAQX+9B4B1E/ILdisVAFsdO0EBsOcJAEanRMAtSgDEnjkAvMkCEuvYSBndEwEA8EENb/lgFeB3mv3fjm4Buy06JgEIDF0ul0iM1cwkM54EnMBq1p01xwTmNCcjqFLBODOh9bJogjFVtq6CFwIkLke1Av8o0aYDP1sB0iuAGW8A4gZPkqFcLguI4jnzmBcXF/GlL30Jd911F7xer8iz6fieTCYF7LEtnJp17u/vlzZ2zFhTQaEqHFSDPo4rx4P15Rw/VbXB8+E1yeVyCIVCYqAXiUSEfGDPekrbKRmnqoElCLquwzRNTE9PIxAIYHR0tMaVP5FIYGlpCfl8XjodOBwOuN1ujI+Py/nTMI9/LperxriOCgNe74GBAUxOToqpYqlUkm2opRMExpVKBQMDA9KmcWpqSo7DMAyEQiHEYjG5bvl8Hl6vV/wk2FGCRIzaPQGAfMbx4vnyOvAcdF2X+5BlJSqxAKx6BailKiSteC2pMuH2SFb19/djaWmpprMFCTj1nnA4HPD7/RgaGhK/BY41UC3r2I9OoxER0Ar0E8l2UhDXeew4NQAA5IF2KnWaAN4EgHcB2jMW8BoArwEif6zhmQrwl/8C4GSDlfldbgO0eav6o2IeuOPfX635RivCgWlMrP98dkAQ9FsfBhTPxf24hWK3qwE+i7W1/29dmd/os/qoIQC2OfO/mUHQbz0BYJsMx27paEQEtAT9XPYWIAZMrI8AYHRLBChGgW/RPr8jSgD2SnRlDKi20iP44DxmlAlWmVEFIOCVteIE5S6Xq8awTXXFp9ydgIyAi/vjdtSst+ojoIIstb0dl1XbqxHc9fX1wev1ipEb5dkEd9wHM67M2tvtdly/fl2c9gEglUrV1Gnruo7R0VGMj4/D5XKtAd2JRKJG3s1zYTafALFQKAiZAaxK1C3Lkm1xnHk8qpqAEn31PTPfJHS4P0r71RIOwzAQDAZx6dIl8XuIxWK4evWqqCEikQiAamtAlgEAEFl6X18fUqkUIpEIUqkUTNNEKpVCOBwWAoPZcmbvSQgAwOLiopBByWRSsu9Uo5BosiwLhw4dwtGjR/HKK6/IeRw6dAiFQkGM8qgYicViIu8vFAool8swTRNOp1NUERxLKgWYwWfZgN1uh8/nQzabRblcRiaTgdvtxuDgYE05Ca+j1+sV1QnJCDr68/6jtwX9AehRwDaBJD94/XnufH5IigBVIiEejyOVSkmbQJpPdtodYD8YnWT65xu831giYL1hrZj3a/dv3T61/2jBereGgY/MVLsArJAG1ps0/O1qYxcsz2roO9gk81AG8LWV6aO1H8UmdPziLv4FvRwCtEfX3j3WB4BcC//Ofcn/frQKdtLoxkBzo6Jr878OY7erAJZDgPYrwPX6Dz4AZDPbcUT70Vmmv14xYOGWIAI2KtYnPL3lYj2S/1ahqYZzrWJkZMQCqqDT7/cjnU4LGUDgXd9PnjJnyqZ9Pp/UmTOrroJ91T+AIBdADdAhGGZmlcZuVA4QtKqt1LhdOekVt3TTNCWTy+W9Xi+AascDSu2ZYVUz9WorQ0q36c5OkM5ssmEYCIfDYmIIQMAc27gtLCyIxF0F4pqmCfhlPb7aaaHe0K2/v1/M+Hi9eJ4ARGrPa6d2ZmCdPa8lAAGWdPsfGxuD3W7HpUuXJKtOR3qfz4d4PC7HXSwWxcAvk8nAbrcjFAohEAhIicX8/LyQBoZhyDWm3wDnDw4OIp/P4+bNm5ienpbrSAUAPQgIbAnyA4GAtAPMZrN41atehXvvvRfnz5/H1atXpXa/UCjg5s2b0u2A4xGLxeT6k1ji9WNmX/U84LIkWFiKQgUAS0xILLndbmQyGSGP1G1yfa5DsopKFzWLTzKHqon6Z4JEjEqY8drzGhcKBSwtLWkry+1b5fYc9dCtWWwsGUBFwJYZBKrtAh/RVuc9B+ATK+8DjW8j62kNX3oQeOgZC9Y/a4j+NhD+VQs4C8AGXP28BlqnETxcBFBqsC07gGPqtp8DLt0PhPqBgZ8FXvfJxsZllP5vtjdAL2H9NJD6lB3Z/ur/45GPJJF93+rn7g0CB5ZlafvP+u4LKgJ2kkHgekI6gnS5nvVNQLtvo49ma8N6G7D0KQ+yqP7eOfQnS8j++urnG/msA/vf7euLTodud5MBjVoChsoziD19AHh45dw2whCQLQMfrttWoxaBSrRTAtR7BtyKpQB83ttFx0oAAlMA0naMknUCI7WOn1l31mz39fWJaZra9o8ATm0NyHW4HQb9APgZM5gAJHvMfVLGzmMn+Ob7dDpdA6wIqtl6jWAKgPggsJ1cMBgU4z3un67rlHHTeC8cDmN0dBSFQkEM7aiEYH/6YDCI4eFhzMzMYHp6WkA+gRwAMXljEBiqgI/ZYQBSe89jB1ZLCvjKrglqC0Bm2HktSDKw7d/Nmzeldp5AloqGZDIpY8rrmcvl5DPLsiSrr0r9vV6vGPIR/JLwGBgYgK7rWFpawuzsLObn55HP56VEhARFKBRCpVLB3NyckExAtZVfJBJBOByG1+tFOp3G888/j+npaTHQo2kgwbrahpElAWqLSFWhwe4PHFe124BlWdJyke0Lec5Ut5imKYoEu90Ot9stBoMqucZXtc0j71PDMITkUP01qN5Qn0G2sFTH0Ov1IpfLCQG0XWE9VX3V3rKth7HO6JQA4LIbRwT0UhpgPbcOBcAjWi0RwHlqJGrfWx9emfgrYBjAyz+s4W8B5ABc/LAGG4Ajb7Zgb7C7doaBjO/eD8QA3KwAD86uzq8H/YzDmMIUDne49a0J7TMAPlOCNbZS8//LGwcGdkJYf1N91X58e49jt0YvpQHW89ujAACAlwHcsTLdifQfAP6oyfx3K9PfvQ94dmX6dT0e23aH9mkAnzZhja3Iod69t571vRPdgN7drQqI2cZriADOq4nnGpxfp8RA/bptQH991JcENDMKPIZXum6he6tF1ySAWqdPR3i+V7sHkASgjFo1pgNQ0wZQVQ0QCKpZc2ZVCbDq1QsqqcBpZoTphs79EVxzmsBNdeDndigJ13W9psWc2uLP7/cjlUohm82ir68PyWQSTqcTDocDwWBQzOfi8bh4KeTzeVEOWJaFkZERjIyMiBHclStXRIlAwJlOp+V4SJxwjOtbvJFsGRwclPF0OBySLa73G6jvUpDNZgUQsvyDdff0cGALRJ/Ph8XFRanx13UdkUgEbrcbgUAA+XxeJPU0I0ylUlhcXISu6/D5fEJuMIvOWvh8Po9UKoVisYhMJiOkjApeXS4X/H4/gsGg1PXTL8But4vxXjAYxPd+7/ciGo1iamoK6XQamczqNy27EHCMy+WySPdtNhs8Ho9cf5Yd8P5mqGQL1S9UvqhqDRIeg4ODCAQCmJ+fRyKRkFIOp9MJj8cD0zSRTqdr2v1xrHgfk/SiP4DavUA9N3onqEoLPjskObY7tLdUiQDrqd1KBHRDAKjrbCwR0GmwDGBdUQ/628W11cm7Vl6ZBfz2yusLT2v4Z2WVzwJoVgL87gbzYm0O4UF8Fe/Xfr9m3k5QAWTcq9MEAdkVDsD9nq0/ns0M7cerRID1N/tEQK/RjQqAZQBbGZbycGoriJ7PerPMf7fPeqrBvN0QLZ/1X1+7/H5sd/SS9d79REDXUQ/u60mBRsRBj9HIG+Dh2OfRN7D63obKLakC6CY6JgEIvJlV1DStBmwR5NHZnGCOJQJcl2QByQRmUYFVwMlMOTP7BOzMnhIEqyCMx0WAXy+TrpdSNwLRPEfug+/ZjYAAkOdhmqa001OVAsyqElyzXp/nQSm5Wk/udDoRDAaRTCZx8+ZNmKYpYJHgVz1XAj7+MTtPU8JKpQLTNGsAnuofwDGniz2l5NwWAbyqDKB8PB6Pi9LBNE3xULDZbJLBZ/cEXjNeS9UFn0oBt9stJouU3FMtwPIIwzDg9XqlfIJqlFKphJmZGVy4cEEMDAFISYaqWPnud78r6gle42KxKJlx7k+twed1Iwjn/aCaYarBWv5wOIyRkREsLy9jdnZWCBQCcfpCpNPpmn1TYUKQrqoB1Iy+qqCJRqM1ZA/vYb7nPaDrOgqFAlwuV82zVN+WcCeESgRst0LA+r2V/bcFYgTzvZAB3UfSCfhb1IerUZ/xVwkAdXozfQGsX248n+ZgjFYdBRsBgfr4QWX6oX94GgEkcDe+A56mDaumA6etx1FWmYktDAKBRlm/jLs6352pBQx7MVQiYLsVAtYfrOx/hwGxrp71uoy/SgCo05upCrCaPKj1z3qr7gCdPOu7Jfu//6zv9iB43Tm/kXZFbCDobxQDiOIHY/8k7zXFZ8BaALB4dVP3vxeiY0+AUChksXa/VCpJmzkCboIP9nYnYKYCQJW2E9Rye5SAM/tPsEmQQ8BL8MrtcPsqAFfJCvawp1qB7fkIwinfJziuLylgNpjt7Aj6QqEQBgcHMT09jWQyKTJtwzDEwZ1+ABMTE9JOMZPJoFKpQNd1MaAjuD1+/DhCoRC++93v4hvf+IZI1bktte6cLQ7VkgfDMKREgOuqBAAl48BqBwdK/NUOCk6nEy6XS4gcmgYmEokaV3qHw4F0Oi01/xwztZ0dgThBJ2X+quEjDROXl5cxMzMj66rqCx4DSQD2vOd1JihmlpyqDJ/Ph1QqJSCex03jxHQ6DdM0RYHB82UrP5IXHDd6FNR3t1AJJN6LIyMjOHjwIJLJJBYWFpBIJGqMKQnueZ/QWJDrk2RhdwASajRrtNlssj01609ygMfJ1odUVqilAnxmeV2Wl5cxPT3dU92gdX51Wru9mzWVbTQA+5zXaP5WkgIkAoBOyIBuSYC1SoCkc3XapQOlMmC8AHgnFmF6hmSZToEBo132vx0J8LIyfUfTpVrsv44I0P5kdbpdu7BejcVOW493tNwrOI7PaP+hx730FgQAnAbWAoV6YLCRUuFePAEs5XeVdqTH/TYA+5zXaP5WkgIkAoCtIQP4rLd6lnt61ttk/9uRAOt+1utQvKbo+zfrWd/JsROedWDfE2B90e3QtQbB77Q+UvP+o9qvdbn9Wzs67RLy7aHbcY92vv2Ceyg23BNAzRxSQk+ZPfu7Z7NZAZeHDh1CsVhEMpnE/Px8DSil8RnJAABi7EZAqmbrCbLUenY1w0uygJJ31bSPQI4Zb6AKEinX5n7dbreAZwCSgQaqWVgCNYLRw4cPI5/PC7ij2z8BFkmGRCKBcDgsIJSgnkCX7fKKxSIWFxcxOzsrgEw1lmMG3el0IhAIyPUol8vS8i4Wi4nygiBcVUQQLFcqFfh8PiENCNY5fqzxZ1be5XJJBpkdDOLxuBAnBJokJdh1gfcGOyyo7SBJIBGcElCzXh6AqCZY3kDCg8DYZrMhEAgIOLbZbPD5fDV18QTL9B0geaB+bpqmnFu9rJ7kFceOZAPnpdNpAKsqF66XSCTkHlLLZOoNK9UWgewUwO25XC4YhoFEIiHXms8PnxOWu/A68J5X2w2q58DxHxoaQjAYFFNKwzBERdFLWK9dnV4OrTzT7XTZddEO1O+eMoERbKQ5oP1/AoNvmAMAPOd8Le5emd8tKGAQ6K+3HKBXkKACfzUa/fDvtH64m5jFGBII4CntEZl32nocx/HKBu+ps5gG8I0mn9WDhYy7FkxsR1inVqd7ftbbgPpbsUygFdDv+VlfAfrrLQfo+VlvUti/Vc/6Tovd9qzvR31o2ChzwHoCYD/WH9eHBhFFuAbwWwvA9y/eWgRAN9FxIbDqCQCsGv+pnzEryhp7n8+HQCCAQCAgWWcAAm5VeT3/COBVWXu9PJ91zQRVBDpqRpTgSiUaWEsOVGXwBEkAJEvq8XhqQBNf1Wwss7Z082f2lmoBAsVSqYR0Oi2g3m63w+PxwOl0wul0iq+Cy+WCaZq4cOEClpaW4HQ6Zd90byfYDwQCIv3nuSeTSSwuLkrdvNPplO4DHo8HAGo8Bux2O3K5XE1mWe0mQNWCZVmiCGCZRrFYFLCoaZr4IfB6EaSS3CBpQ58EEgClUkla4fE4VOLGsiyMjo5iaGhIsvcqgHa5XDI2lOxz+xwXAnQAUrrBVny8DwmoC4WCtHMkOaHeK8FgUK4ds/Q8Djr/c5vlchnZbFbaRJqmKe39uDwJIF3XhUQCIOuSNOH9y7FxuVxwu90C/kkqUW1BAoj3Iefb7XYYhgFd12EYBiYnJ3HkyBEhPdbbIrAvVv3BV65U/7Qf6nlT1XFsUgKw3aUB7VUAjE7q/Nsv4/sEEHjDHCrlflTK/Ws+TzprVQPtQs30109vdovAlwGca0IANIvNAAVjmK0hALYz/jwD/B2qPgZ/ntkdP/j7YoCmdF/U3rC+7TUrAdju0oCtLgloB/S7ftZ/oPn0ZhsEvgzgXDNnvyax1wmA3fis70ej6CTBunu9AHZzHFpcuuUy/uuNnowB1awns9uZTEaIgUKhgMXFRck22u12XL16VWTaJAyYJQYgWVECes4juFKzm1yP2VCCbtUkjVltADWO7QSJzDwDkJ7tbEunaRqi0ajI41Un/Eqlgng8jjNnzsA0TSEWKHFX2x/yPE3TFNm32+2W8+C5UDGxsLAgLQmZPVdl6YFAAMFgUPrP89wpmSfxkc/n5bhVMz0AApDpDk8SRtd1mKYp5QGUlFMBwP0AqwQLACm3yGQyQgR4vV44nU4hThKJhEzzuAg8Vdk7rwvbLF65ckXAL49VbbUnN/GKsoIO+VSU0NDP4XBIi0KWLFBZQI8AZsipiqB6gPflxMQEAODGjRvIZDKyvMvlkhIGtdWlej9z/NVpXgeOl0r4kGShkoSKDaoauA0+Oyxv4DVVyRbVq4HH4/P5kM1mMT09jYWFBWmzqJoc9hLaz1Zfi36g1Lgr27pjO5UAnRMAK/Go0sD6E6purXMjwNSjQCI0Cu8DizKvGyDQSXQK/l/u4rP6bGGrdbcz6ksF+P609qFN2d+fdrhcvSx4p9UN8zlcDgHWP2zSPrZRCbATPQGA3hUBjE7Bf7N2nMDufda3OvbKs74fDeJzK69l1LFXnYH/ZioAzt8vC1h/1JcK8L02vHbZWzm6IgHqDfdU4EBQTRAViUSQTCYxMjIiWWECPwIk1em/3thP7ZPOPwIlqgMo21YNBAnAVVk3M61q/bgqLWcmn6Z3NDrkebGUgCAvm81KOQSPXz1/p9MpxIRKmrBtn6Zp8Hg8sNvtmJubw+zsLOLxOAqFgowVM/A8p0KhIGQCJfs8V1VSzuw2/RCcTieSySRM0xRAzWvEDD+3R9k6ZeYkCNTrxv34/f6aVngcF03TEAwGpRzA7/eLVL9YLIrcn0BXNQ7keaj16pTUc1/MdpNUIPBVM+rqtqmiUEtH8vm8AGU1087zoPcBj8MwDOkywGXV0glglaTiGPN4AMi1UMsCWKfPMgAqQyqVCtLptBgGquPCV2b/gWr7SrVdJRUnKpGjjrPdbkcqlcLU1JSYT6plPRsRjmQVHBT9zT9fb6heAYwdUyrwaAO5YA0hsPbjdsD+M+634k0XvoKXT9QWYdtswE+ZTwF3/mTzlc+uNyvxVQDAHUcfxMuXO9tWO6CwVfFe6zcBxQiQ0alPAMtctGYa3jbxx9aqx8AAIkhof9NiaeBvAPywGzDeDeCngex9nWcMW5mPbVb0xarPOssCGn3eNtZenpqwGgzZbi4VaPasNyoH2Cjw33l8CgBwzPM2vGzurmd9vWE9UH3Vvt7b+n9g/YpMhxFFQftMy+XlWf81AG8Dst+3s5/1/QDwubrvdhtWCQEAeLizzRDkNy0JuGABH0aVZGgVT966ioNmfgCd+gTsRzU6Ngb0+XwWM+EEF2rdMY35mJ2kpJ1lAUC1Tlp1mydoVj0ACM6B2rIBYDWDWigUarLS9bJ9taxAdVLn8dIojvJ5NQOt9mBXjQK5/3rgTck5Ze19fX1wu91CBui6jvHxcYRCIfj9VVSkGtTNzs7iwoUL4i2gdjFQ/Q24jtvthsfjkbIEAn/KuQ3DEA8CwzCQyWSQSCREZWCz2ZBKpUSxwWOnbN/tdgv4pCEfwTBB6+DgIMbHx7G0tCSt7VRAfPz48Zoa/ng8LsQI55HEMU1T7ie1SwTHSR13ANKyj+UDzKhrmgan01ljgMdz4vUql8uitNA0DYZhiGSfCpLl5WXxXGC3BV3XhfgZGBhALpdDIpGQTDuPn/tjmQfPNRAISPtIl8uFo0ePIhwOY3p6Gjdv3hTFAs+LZEkgEJDShVgsJtfLNE0hdXj91HIItYUkI5/Py3VUW0ly3GlUeenSpQ0zD1oPCWB9D4DHASjbULsFdNs54FvWSdyrnW2/399r/llHSoBGBEB9fGLtF3crEsD3FPDF//sB/Cu99tfpbP4Qbv+dqdofIc1iQ4iAH6yZ02nGb9NBwafrxvxt2ur8u4H33vFbAIAXcQpfTT6I3/BXnd+Y7T9tPb4m8299CsDHamZ1TQSoBMC7tP9XptUMoQ3Az7iBvgXgkx7gAKrAoNWP+42sE+7FGLBRrIcEsL4HwG8BULahdgvotnPAs9b343Xat1svhFoDwPrYTCVAq2edYL9+ma0jAYAqEfCzNXN2zLO+SUECgNEtEaASAL+u/T8yXf+sP+IHclE7/pettC3POrBvDNhz1BMAjeLh7r9nmxEBH33pPwFPdLCBPUwEDFrXa94vaYdk/vfhO/hi7M0AgGdC9+Mv8VP4xOK7ajL91sKtm/nv1BiwYxIgGAxaBBjMmHLasiwBrywboPQ6n8/DMAwxvwOqmVGayKmydmAV0BDEqRl8vtLADVjtyU63fK6vGrnRuZ/ZarVOngBYlfSrdf00W6MSgFlwj8eDRCKBWCwmZAdBGsH+2NiY1PBXKhUBsCsXCIZhwLIsXL9+HdevX5eMLhURPC8ur6ouaK5IKTjnj46OYmJiQsYhFoshmUxKn/jl5WVks9mamnnK55eXl+HxeGpaxhGcUrru8XgQCARw4MABXLlyBdlsFi6XqwYQ+/1+5HK5mvp+lhSw5p0ZftbkqyCd15X3JkkAAnKqCkgAqR4SVGSoihLK+tnlgNeSQJ3Xjfc0SzVU40XeewcOHMDc3BwikUhNu0m1dSTvGYJ5mu6Vy2WEw2HcfffdCAaDOHPmDC5duiT3JwBpWTg5OYnv//7vRyAQwI0bN3DhwgXE43GYpilkmkpG8ViolOH5qOQIx4j3CsdcNaKcm5vbsB8KBAblukyfSgKQKGhGDPTqAfAt6+SaeZ2QAMBaIqDjMoBWBED4/2/v3cMju6sr0fWTVO+3Xq1u9cvttqcb3Nc29hATXmFuMJAAZhLCJAy5mIRkEkK+8dyQXGxMQmJiGC4z8f0uQ/iGODFjAhkIGfAwMSEXYgI4JHEnjW3c2G27X9ZbKtX7XTr3j6q1tatUT6kkVbXO+j59VXXq1Knf75zzk7TXXnttVFj9mNrWgAwAagOAZkEB8X/m/l/cf+q9jd+sx5aJgFo0Mwvjdg+A4DAw3ibTu2XUkwAt4H5jFL8dugf/Bn+Gq01r80ZtdknN3GazhPX4JIBXA/iB9Ua8CE/hxa97HlCBXqvvKYR6o6YBeksCmBHAqstcaRKgnYngZj0Avm29ZMO2TkgAYCMRsNNlAN2s9Z0lAmrRbq0PavBP1JAAVUGc+WZvjv1JAD8O4FHrbTiFJ/CSnzwLKA/eXn1PO9gkwBbQCQGg0QMyoGMSALhiiYB6EqAV3oyH8IfxX4czvI0D2mbcYd2L+8xdPTlWz7sDAKjJOjNA02Z99QQBg5FcLodisQifzydmZQ6HQ7KTlLCzYwADQV03XU9W6OwrsG6cNjw8LK3WgHWZNrPy2nhQ+xowgKrvGqCl21Qt+P1+BAIBLC0t1SgYdOnC1NQUTp06BQBYWlqSc1AulxEKhYQIcblcmJqaQjqdloCUkncqJHTAprPpzK673W4535yHw+EQIzzd/o8lB8x+a/JDqzeo7mD9/draGrxeL5xOJ1KpFObm5qTWP5/PC1lAzwSgEryzLSPVBaFQSBzveQ049/oSj/p7DIB4UHCeJIMot9efZQA+NTUFn6+in5udnUUqlYLL5UIikZDzum/fPgQCAczPz0tpBskRGjkygCaZou8nEkQ0f+Q55r3M+ySVSuHxxx+Hz+fD3NycXG/u5/f7cfToUZw8eRJ+vx+ZTEYk/2yNWCwWxVSQrEYNGwAAIABJREFUpSxAhUAgQWaMQSaTkXtHd4bgc3b0oIEkz2WvYF4H4BoAdQZRzRQCDY/xtsbSf6B33QLqVQLmAxUiYGPw/3UAtzY+SBsFwIMfNQgCuK3Bfst1gXKjYKBZgBBAEvADSLX8+h3FNdXr+/HYHbjL8QfoJ5OkHw99A3feex+QBqy7AHNvmw+MoBIUvGvd86IXGAUwVn3+FF6E677evJ/xlPUcACCbrxCFjsX9NQSFudy7cW0W5s0ArsKGtd5MIdDwGLc1lv4DvesWUK8SMP9XhQjoZfC/MY++jnrJfzdrvR8xCMG/9duVR/N7bXYcRmW9v7u3pWWjAEarxMITOIWb/tI2Lus/PAbg5sZvdUsAbBK6RKDy/DeA2/uYr7nBAs70z9/2h/BmPBR6M4Ajuz2UjnGHtfEfEL2tV4RAK3TVIpDZfErlGezXS+m16R9r6nU9NAAxp2OmkmA9s24JyCBQGwbyURvZMahnQKWzo1rar9sQMsPL4+k6f7aTI2nAQJmExoEDB/D8889LYMoafGbjw+EwEomE+BNoE8RAIIDx8XEhLSjl1uSFrkHnmHTbQgZ4JE/W1taQzWZFDs8WfyQxeD5GRkYwNjYmXQ50vb0+bzQx5LUFIIElyyhI2pDkoFoAAAKBgHgh+P1++P1+jI6Owu12Y35+HufPn0c0GpXrVe8D4XK5asgQADUmiDrAppKBwbnL5UIoFMKBAwdw3XXXwePxIB6Pw+12Y2lpCV6vF7Ozs0gmk/D7/ZiamsLhw4dRLBYRjUbhdrvh8/mEEOD9R4KD50tfJ87B7XZjYmICi4uLcl6ociAplUgkkEgkalQrXq8XXq8X2WwWZ86ckdIFrjfW9PNcBgIBrK2tIRQKIRQKIZVKIZlMIh6PY3V1VRQ6VGhoD45yuYx4PI6hoSEhd3jvEfdad2z4PXCX6ZSaBnCu8uOYBIqLbfduimb/kLX6R41BPRUBrVQAjd6rJQC+Xve8CRHQDFVRwim97fj604ebZMo7yfz9rvsuJHMB3P+y97YnAq6zeqoGaBgAjFhwUr7qWN8GACj1+B+GLhQAxFf/9Gfw9rvux+c+9otAm2y6+S5gfRrA4c0NrxXES8p8teH71ptQWT8PAhdxCyLlGA7jEgAgPDlXeY9w7+/9ALuEeWD9eTeB/4bjNAn0WxEADOqpCGilAmj0Xq+z/624ooe20AKwVQvB7cYgBPvNYH5vnQhous+3qiVAh3r//T8LVHwvTBM2G4B1HdChUK0nsC5t3Ga24fdc/+OxuucNiIASukyXbg2bMgW83dp+NcANDf7ecluPyYBuFACDikYEwG6g41ubruwMVLXhng4wdEBGiT7r07UzPbPdBANPgiQAANlPfwdBooCZTy3NZoabhAUDSpoB1vsbkEAgGUC1QqFQgN/vh9frxZEjR3D06FEcPnxY5N7Ly8sYGhrC6OgoAoEAJicnZayJRELk1tqNnt/JXvWciyZAuA1Yr4/XWXEaJOpyiuXlZbhcLoTDYQwPD8Pn8yGZTMo1WFpagjEGwWBQAt5MJlPjzUBJuy5xYMCbyWQwOjoqASZbCZLQ0WqRYrGIcDiM48eP48UvfjF8Ph+i0WiNemFkZASLi4s18n6tTOA8qfLg9dElE7oOnqQT96cZozbt0/4F7IwwMzMjPgkkaUKhEBKJhNwjlmVJCQVr6xnc69IHoOKDsLq6KgQMCQASJBwLUFExOJ1O+P1+GGMwMzMjCgu+z3smGAwKycFWj06nExMTEwiFQigUCpidncXy8rLcV5pM4rqkaoPnZ2FhoWZdNYMmBpoSAtU/DKYqDb77mbvw2+GPyNuOQwAmqy/OAcVErcS5XYkA0DsVQGs0a3HQYPs8mpr+P3iHgQfAMa0CeLZuH7QOHohGWcI/uvbX8egzP4qzpzbKojegx0RAVxixeksEvMN0RwRUvQI+Dwve38rgfvPr7T9zeOst8LqF9QjwF69+A37q1MPAu4AjWMLFJybam0T1Ieql/zQR5PZ2JQJA71QA/YKtrHUbm0NbFQAAHALMj233SBpjJwmAZtDEQFNC4Fc2kZn+VP9ki9fxWOfbLwA4ih0lAgQPmM7VADtBBDRDj1UBS+ZIV0SA9grod/RL8E90pQRg4Kc9ABjYUw0ArGfUaW5GJ3ygIqWmXJ8O+AzmGOAzgNQSf0rgdbZSP6eMnNt5HJ191y0KSR4wW67l0sB6D/lCoQCv14uXvvSlGB8fF4M/n88nddzJZBLDw8MYGxtDIBCA2+3GmTNnMDMzg2g0KiZuzHJTGZHNZrG0tITZ2Vk5Jxw7z6dWAfAcaJIDgLTXo8yeBnBUHxQKBfh8Pvh8PvEDYMtCPV9+juaL+XweoVAIxWIRfr+/RrLPa63bBVKZwMDU4/Hg+uuvx4/8yI/g+PHjSKVSOH36NJLJJNbW1nDgwAF4PB5YloWVlZWaTDnJGs6bc9XXiWRDoVBAPp8XQ75UKiUtD8+fP49kMikmiSsrK8hmsyiVSkgkEjXGfz/84Q/lns7lcuI/MDU1JTX9AGqUEbwWfCwWi1heXoZlWQiHw3KP89yMjY3BGINYLCbnjIQIt+lODLx+5XJZgv9yuYx0Oi3kgl5r4+PjmJ+fF1NHlimwYwIJHBI3VARwPXSDe607OlIGzOEAHK+qvjgPfPCJO/Hh36z8Isw+ZOA+BRSj3ZcJdIpOvQBq0WWPw6/+NfD61wIH1TZV818CKoWh/1/1EQDeZ+HBE1v7wxnKo5IV7oQA2E24Uf1rYwFvBPDZHf5n5R2m5vn979i4S6NWdztNAACVQCSbehjhx+bWN24lA/x+C/jozp3vVgF9u24CjdANAdCpF8Bu4MEtfn43PQGuNFiPbNy2WwRAP8K61ENlwK9YfUYENCMAmuD9p4GP3lRLBLDmv75UYBNeAAMP/m1/hQW8G8DtO3sOSADUP98T+I4FvGJr57tjEkD3UtcZ9HrJvpZv+/1+TExMwO/3S292GtkxmNRyfQZkbrdbZOrafFCrEOpLAxjwU2FQ7yNAyT4l5vWKAtZ/U3XAzC7N9q6//nqMjY0hnU5jcXERCwsLEvDTTd7j8WBiYgLBYBDlchmPPvooCoUCMpmMBGHaHHB5eRmzs7O4ePGiBGQsqdDz0i36dPDLTDTHzExvLpdDIpFAOp2WvvEkLHh+WDNPrwR2NGCwy3KDSCSCTCaDcrlcU2ZA5YB2m7csS66b2+3G0aNHcfPNN+Pqq68GAMzPz+PSpUsSfDudTjidTkxPT6NcLmN+fr6mBSDPv75f9DxJ4ujvJ2mUSCRQKBSQSCSwtLQkc9amhyxtWFtbQzAYxPLycs1xLcvC5OQkQqGQ3E/sKKH9GXQJA+8bl8uFYDAo+wKQTL8259PrKJlMynmnmoHnWqsz+FneU7lcTsoUnE4nksmkKDc4Fn4v74VCoYB0Oi1dJrh2m0EH+43KBAAAb7SAFzZuvv/G9+J+VMzrPvnE7bjn5z+Ce1BRBgSwiOSfTAJ1/+j3yvisngDotEvApvA1RQQsr2/+eVQCAOs3DcwXLTx4S+Nf2g+q/bvGk6aS5d82bOwOsAEjDb7fXf15BaQsAgBwd92+H+7RPw7vaHCcNmoBBv+7EfA3g8cPhHLt97sS0FEbwQ5QTwB02iVgO9Es8N/SWt92dKpVGDww+LcD/nXoYL9RmQAA4OPWBvXanoImArSf7FvNOhGwXQRAN2qA7UKjUgD+bX8rgFvU9sfq9r25N+elUYA/CJn/etxn7uorNUDHJACDI90GkIQAgxNtjDc0NCSZSAakupe6boEHrAdEDFBYv18oFGoCdh6fgaA25OP7Wkmg39Ny8GAwKKQBnf6TyaRI0JlhnpiYwA033CDGdysrK7hw4QIcDgei0aj0ePf5fCIh93g8uOqqq5BKpSRrm0qlJLMdj8cloIxGo5IZp0ybRIr2Aaj3MSBBwvmUy2VROhQKBczPzyOfz0t3AhocUlpOAzkGqaOjo8jlcvLDa5hKpaSunRnw4eFhjI+PI5/PI5vNIplMChlAssjv9+PQoUMYG6vYXy0vL2N+fh6ZTAbxeLxmbMFgEAcPVlKoNE/MZrPIZrOSQWc2nNeY50jfUwzUuZ2Sf+0RoQkQfpe+v3g/jI6OihLk/Pnzcq8xsNc+F/oepZKiVCphdXUV2WwWmUwGTqdTCA2dvS+Xy0ilUnLeaPJHUPnA8bOlIssl+EPDwFwuh6WlpZrzBEBUICRo3G63dLbg+ao33+wGv2zdh6fw1/jOja/d+OZ1qPymOQO851cfwHtueQB4BJV/Kl6Btg64vXBD190C9PPGhECXKgANEgFf++uazQ5UDdxuMUIK1GPL/3ZT5r+tZECXuAW1/yA0w93W5ogA3Q6wEQGg92mGrdxbX7OA12/PP39x936EcnNt92mJ9/fRvdABdKnAZqG7Bejnu0EIbNtat7E59Ihc3ku4YE3gH/AmvO1X/+duD6UH6FIFoPH+08CHbwLuPl27fSey/5T57zYZoPFGAK/vYL/HrE0RAVri3yzDv52Z/5PWaZw1N23LsTshAtqaAn6nN/dCxyRAvelefd06AxMtey8UChIIM5DVRmo6C0rjQUIH7jrzqwNj3T5PB8Tctz6zyc+73W6pzY5EIpiampKMfD6fF/KC7vUHDx7E2NgYFhcXsbKyAgASTLJl29GjRwFUjPMYjI+NjeHw4cNYWlqS7HexWMTs7CxWVlYkcOdcdO17fbs8BuX8XpZk1HcN4GeZDdZt4aanp4UMyOVyWFlZwdDQEHK5HNLptATvVE2sra1hdXVVyB+HwwGXy4VIJIKjR4+iUCjI+aBSgPdJOp3GhQsXcOLECXg8HqTTaaTTaQlaKVPPZrPSIQEAVlZW5Ps5H5ZH1Jd7aPWEDmAZ0DKrznOgvSu0gsIYg0QiAQA1svrZ2VkkEglEo1GEw2FMTU3B4/GIoSKPT7NIXpNIJCJ+CuzMMDQ0JMoDzomlC2yZSI8IoNYDguPlmHndfT4fnE6nKDBo0GhZFnw+n1wTjtHhcCAcDqNcLteU7vCnFQnQLPt/r3UHzuAG/Fdze2VDA8b47gfvwgHM4j03PoB7//A/4M7fuQ9Xf/FJPH/ji4G3AJjdeFwd+DvjG30CetkmrecQAmDdRLCbvgvN83DfBgC803oCcL+n+QFakQGb8gP4m7rHNooAwo9KpqBTbJYIAGoCfetfVx7N/2iy7/ss4ONVpdUnANwL4FZg0fJj0myizcLX1HnuMSHQNshvBU0A8PkOlgV0Ch34s1yAz+vfHwR0k0fvv5z7g3WP/TW6elg/V3k0n+9g308DuAcwW4gDr0Q0y/5bl4B/OnQSR81ZAF8FfmVHh9WfEAKgRTeBTeGZ6uO1rXdrRQbspB9At3/bN0kEAF0G+o9YwI/17jyctNYJn14TAlty/tcEAJ9vsiygK08AYL0VoA64KTNmhp5BPrP0WjLOoFUHIfW17gA2ZPN5PAbx9V0DGLAPDQ1JizStGOC+NPmjnDqZTIqsn4E4gzu2nePr1dVVCbKy2awEhJRvezweMYLL5XKS4aUpHwN73YpNmy0ykNfGiiRIeP4pE2e5hd/vRy6XEyUDzxGN32hKSBUCs9+cF8FsPjPh3L++rMLn8+H48eOYmJiAZVkYHx9HIBBAJpMRsgOo+BScO3cOp06dwuTkpJRiBIPBmqA2k8mIioL1+vVdHDhvKk60IoDbSBTQ2I/3FN/TmX5eHypP3G53zXnL5XKYm5sT00S2/GOHAY6b14j32vDwMAKBAA4dOgSv14tUKoWFhQVRU2g1iMPhEM8Bp9MpSgetlNGt/bSBJTP+7CxBsgioEGuRSAQjIyNIp9PSxpDrkOuDngcciz5n3eILJACa4DRuxgVUyKK7bvwD3IU/AB6qvGe93aD4LwHHu1FpMfYJwPyw+bEY/HdCANRL//VzrQbYCdT/K90sQ9gY36559Qheg+Cnqi/e1eJjPTEA/Js22xQhUO+ifBw1XRC2Gwz+G73eQAi8z8Ln/u+34Eum0pPO9c//Cm/6zW+go3aGX2vBwG8jIdAT7DIZ0E1Az3072b9e+q+fazXATmBra30jds4LoNEo9bb+IQQY/Dd63YwQ+NIvbd94rlTcZHrUzrDvfAH6Bc80ed0hGbBTOGNqEzw3A7hhZ4fQMR5p8ve5A3JAB/2t3tsuhcCWsEkyoGMSgPX7DHp0sKLr6OvJAoKBOfdhvTPl6PXmd8C6DJ4yeQb+NCnM5/MberSTeNBBtG49B0BKEwqFAqLRKGKxGIaHh5FOp+HxeGp6rReLRSwsLCAcDldOWDWzzHr4UqmESCQiWVifz4dSqYSZmRlcvnxZ+tJzjgxs62vJGZg7HA45x9zf4/EgEAjA5/OJ/wCl6WNjY5LVX15elkdgvZPAyMgIUqkUZmdn5bjpdFoIEpIFzEbTrI/Z9rW1NXg8Hvj9fuzbtw/hcFi6C4yNjWFychLxeBwXLlzA4uJiDeGzuLiIWCwGl8uFiYkJMbZjEM16dWbMKZEnCUPCgKST9qVgYEsySpshavJgdHQU4XAYCwsL4llAWXw4HJbz5HQ6pS1iMpnE+Pi4mPUVi0XMzMxIJ4VCoVBTa+/3+zE+Po4DBw5gbGxMyhwcDgdisRgWFxeFZOK6SaVS8Pv9cs/k83lZP7wPuA5IBuiSC14zluRwTQEQVQcNMbPZrChgeO+RHCEZpFsdAus+AE09ANCgQ0D9HwsAD9/4U00//5VrbsVtf/h1mKAF3A0sng0ATbKx3Wb+mxEAjV7X4lZ0XxLw2sa/TVvwKgwO6v+1fsfvA8fvuh4vM59o+LmLZhmmhhh4ZXdD7QiNgv92+51Hhcmp4gwq5+QWVDIH/YD3bfwH4acPAXfh5evvf7zFH9EWBMCrX/c1fOuvOtFH9gF22CyQ6JQA6Dbz34wAaPR6N9BsrfdHWN0pRdGfhEA3eOtuD6BPQB+Aph4AaGAM+Cmzue4ARF8QATej65KA4zc1znpvylqoPuhvt18bMmC38Ej18Y0Awrs4Do1mwb9+vwUR0IoAGCh0aRbYMQmQzWY3BNnaDJCZxPqsfi6Xg9frlcy0ztTqbC2DTwbePK42dNOt2nTAws/qlmsAauTYDOrX1tak3pzHZhs4LUNnMJbP53H69GnEYjExOSTh4HA4kEgkUCwWsbKyglSqErw4HA6cO3cOL7zwgpAMDB51hh1ATX92HeiyNtzn82FychL79+9HKBSSwJPHASoB3759+3Dw4EGR4c/Ozta0Ykyn04jH40KgMJOsyy3qyylY907FgcfjweTkpJgrFotFuN1uTE1NSdDMIHV1dRWXLl3C5cuXcfLkSVx77bUIBoNIJpPI5/OYm5sTSXypVEI2m60pVeA9w4A1n88jlUrJPcF2hLwfSBS43W5pXQhU3PBJLLBEpVwuSzvHSCQi3+d2u3HttdciEAhIOcXMzAwuXbqEVColKgcSTPp6BYNBTE9PY3R0VO4v3n8OhwOBQABer1e208CRwTmz9Ly3WLbA+1cbDDLgJ5mgjSTZKUGvGRIefr8foVBIyJaFhQUAkHuaJTL1uMvc15II2IAGREAzvOXGWkv2yRuTqM/Gtu8aQCWEs+Ve3eHW6mMzMuC1NYHtkeQPEUZsw17f7/p/nm/DfADAB7r7TC22gxToBNmNaoDHUPknoRPlZA/MAZuVADxpHcPL899F/G4APw687HXfxFvjX8FDAL536Xp85Dc76SGG9ez+1yy84XV/gYe/9VN446u/iGGU8OWTb8dbzz6IEobxFfP2zo53swU81uN/jAfMB0Cjm64BNvY2OikBsNEa5nBrImADtkoEdItw9btivfwdyT9GTciA4zfVtPu959vvw5h2+q3iPV0PqVMCoNVndpEUqP+/7hFUztOPN9lfo0fmgA3RLvjvEMzutyMDOlYB3GEB9/V43j3yAdDoyhNAO/ozwND14jrrzgCSkmoaBbL9GgMVBvC65R7rretN8JjF1uoBHndyclIC1UgkAofDgfPnz2N+fl4k+QzKANQE+7r7AKXVzCpns1m88MILSCQSCAQC0ibQ6/XC6/VKkA9UgvEnn3wSbrcbKysryOfz4nLvcrmEgGCAxkCaGVktW6fU3ev1Ynx8HNPT03C5XEgmk8jlcnC5XMhkMlheXoYxBqOjo5iYmMCxY8dw8OBBnDt3DrOzs1hdXUUsFhN1A8seGEjq/vas+WfgGQwGpa3d6Ogo3G43Dhw4INfJ6XQiFApJNnvfvn3w+XzIZrN47rnnsLCwgGg0iosXL2JqagrBYBA+nw+RSKTGZZ/Xwu/3Y3JyEul0WrwVSKxoI0kG1rorAIkBttujiiCXy0ktfiqVEhXK/v37hVCgrD4cDouxI+8ntg+k+Z/+bpasMGO/urqKRCKBZDIJh8MhsntgvQyGKgJtXkiCyuPxIBwOw+fzwbIqbRNjsZh8jzaG5JrkfOgFsba2JvMkpqenpR0kVTMsRSDhRrPAZuioO4CG/oPB/rEdEgP1PWdbKwAKDZ5vBxlQxVRlDv5nl3C177ktH733+bStEgCdKgAaYRGAAyhdU/uXZRlACtuuBmjqAQDgOvM8rNv3401/8gX8H/hv+Jn/56vAFyvv3fL33wduB/BAd9/3l6/7abzvr+7Bx2/8oBiO/fmxyhXt6E//zdb6Y6+IgAEmAIDBqv3vFv2XO99KkcLuuhnsJgFgXVX72pzfnXH0Ch11B9DQRAAz+50SA92oAcLWxufbQgZU8frKd/zqw/8Zp/B4D7+nV+gDVUA9ETCPyt/38d0aEGqz+z0iBIDOSYGGuMNaf+wVEbANBADQBQnALKo2qas3Y2PAzqw6A24GGszW66CTx2Y2lAERgxvdQUAHfSQavF4vQqEQJicnEYlEEAqFsH//fgkoZ2dnce7cOQnkeAyqAPj9JBp0SzptIpdOpxGLxWpKA1wulwSzTqezJojK5XI1XgiUmTNTnslkajwNGEzyPPP8+f1+yTqTpCgUCjWkAWv5R0ZGsG/fPgQCAaytrSGTyWBmZkb25/dScVF/LUqlklwHBq0ej0eM+0ZHR6VEYGhoSOrxSXJo07/JyUkcPHgQxWIR//iP/4hsNotXvepV2LdvH0ZHR7G8vCwExuTkpNTiDw0NIZ1OI5lMIplMiqcBM+TaKE+XgbBEhQoKkgc0egQgge/Y2Bj27dsnhFQ6nRYTvcuXLyMcDuPEiRNS4z89PY3l5WUJ3Hlv0tjQ6XSK/wPd++nVQAJCX0cSCNpzIhQKYWpqCpFIBB6PB8PDw4hEIpiZmcH8/HyN+kAba3o8HmSzWRnXyMiIdCPgvREIBITE4DogIVTffrITdFImAKAmkK953Y4MqP/cBhQ6fL+XZEAF1899r7v9rb+T5983L+vgE6/Exsz+IGEGwLVVRQBJIFQyBs1qCHvVHrANzAOA9ZdvwxcX3gjzgoW3fecz+O8/dju+dAtg/bOBud2qEAHtSgIAvON1nwbuAT5+7IMN368PFAAVLNzc4P7ntq2SAR81A08E2BgU9J+tYSu8FcCfY/MlAY3WdLPtg0oMdFImAGBjIN8pGdCOAAi3+fy2kAEVfPLh27vb33qnPH+P+UwHn7gWm1MD9Bk0EfAIKi2Rf6zJvtupANgMOjQObJTt70gBcEeD+5fbtkoGvMLsrhIgn89L4MPsKSXplCsze86AGlg3lhsaGhLJd73UmYFLIyd4XV8OQD7LrDyD1lKphGg0WhOkTU1NYf/+/ZiYmMD8/Dwef/xxJJNJpNPpmtZrACSg9Hg8ItWm8oDBPMcQjUZr6rcZfPK7qZhgcKV9DpiJZ9aWGX9NPrAOv1gswuVyYXV1FeFwGKOjFa0k29ANDw8jHA7D4/HU/IyMjMDr9SKXy9XUjDPjTaKG/gbaWI5lAlRvhMNhLC8v48CBA6JSWFpawvDwsMj7Seaw5IPu9EeOHEE2m8Xp06fx2GOPYXp6GiMjI1hYWMCTTz6JS5cu4ejRo5icnJTznslksLCwgOXl5ZruCNo0kfcJv1PL5OtLU1wuV8215nnja94P4XAYa2tr0jZvbW1NxkCFQKNWhby/6TGRSqVETUHSiftr2T9LNUhgTExMYGxsTEpofD4fpqam5PrOzMyIkkUbZY6MjGBychLRaFS+i6QHSaIXXngBpVIJ4XAYExMTcDqdWF1dFbVHIpHYVHvADX4AnUIH+ZoQaBv8d4sCek0EfN+8rCawv/JAo7+tKALqUDLAV1H5ubvuPtshAkDwZuAD+DDwbuBv8Up885GXAebv8KUbAesJA/NuC/gjtCUCHvzffxmYXf9nv1mAQHQcFHRBBlgfB8z7GrzBWn+bDLDREgzgt6IIGDxshgiwrtqGtd7N938CMO/t/XGbYYMfQKfQQb4mBHrtBRC2ek4EvMd8piawt9EBzpgKyQ9UOgBo7DQB0KkKoA0RUB/snzU39cYvoBdkAGv9e0gGdEwCUPLM4JXO/Q6HA/l8XjLJ3MYAieUC9dl2Zrwpj2Z9NGXuqVRKsuEMxqlCcDgcCIVCNT3v2YJvZWUFCwsLmJqawqFDh3DkyBGcOHECExMTiMVimJ2dlblQqs+MKdUMDCSBdVk+vQxY+qCVEKxFT6VSIpUfGhqqIUmYZWf5gdfrRT6fx/DwMEKhEBwOhzjI69aJ2WwW0WhU5O0OhwPBYFBk7xyvdrYvl8tYWVlBPB6XbDGwXktOEoDj1MZ8AKRm3RiD5eVlOJ1OPP3008hkMti3b59cb34nx0ryhOoIZr+BCnHyrW99CxcuXMBzzz2HmZkZAMD8/DxyuRyCwSAymQwuXrwoWffh4WFpv0cDSioB9D2lu1FossrpdMp1TafTQrasrKxIfX8ulxPVhtvtllKUhYUFuV9zuRyKxaJcM03uuFwuecxkMrIGKLXX6g6eK36n7irB66+7OAwNDWF8fFzaLF66dElMLHnvUQlD80nen/rP0iIQAAAgAElEQVSaxGIx6YQQCoUwPDyMixcvolQqIRAIyPdRRdEt7rXu6A0h0BHaqQC2H983L8PnrNtwAHP4HfwuYn3jjNNLL4AekAGlBtf2w2ZrrQC7xJ9XH/lP/5f+CHjGdQPwbgAfA3AC+BLfO1VHBLSA+WbzYGBDsLCZphttSgSsj2/imDY5YKMhrgwyoH6ttwr2t6II0OiUGNgKrMb+sDsC61KPCIFO0E4FsAPoXyKgD0oBNBr933az2VIrwC1jm8oCgB53A9gOr4AtkAOm0wzg+Pi4BVQCRAbfzIAXi0WRoCeTSXHzZza83kSQmVgGWaxpZtBWLBYlQGaWt75NHuu1dQs/ZndDoRCCwSCmpqZw4sQJjI2NYXl5GadPn8ZTTz0l8mkG/aVSCQ6HQ+ZE7wKOHYAQHwBkuzZKDAaDSKVSNVJ6Zmq5zev1iklfsViUrDyN2dLptMjfGeA6nU64XC7JDB86dAgTExPi1s8AP5PJyPETiQQeffRRPPXUUygUCmJ6VywWxTAPAILBIPL5PNLptKgnSF7wOrGm3eFwYHR0FNPT0/D5fOLGf+rUKezbt0/KA+isz2OeO3cOjz/+OObn56XsI5lMSuDO/vUkMHK5nATV2gCSNev0WeC9s7a2hmAwKOeAqg3ek3TkZ9BNhQPBeVCy73Q6pesC70vOZ35+HsvLy0KCsMxCtyokacV7VxNFXBe6+0Q4HMbU1BQCgYCoQKhIYXlHKBRCJpPB4uIiZmZmMDs7K2P3+Xxwu91iZkijweXlZSn7SCQSkvU/cuQIXC4Xnn76abm/OI+RkRGcPn3aAIAxZvf/Im9AtwRAc1LD+hHA/P36c2D9dSewfgLAE8DSJT9mUdvL/Rfwx/g0fhm/gD+u2d5ZOUA9Oi0N6J4A+AqA2zraczNEwGva77ID+PP2uwAAfvrXAOv3gKGx6oYOSgLakQBE3AWczQOnfIDvZJfLqgERQAKgoQqgS1iWZfpzrfcO1ssB893158D6646PcdXgSryBbtb6ZoiA/igJ6HStbyb473at37KJ72j4vVUCoBcqAMuy+vdve7cEwDaUA7RDK3Kgs3KAenRaGtBnBMAgQZMBJAk6LAnoGo1KAVqh10RAHbje26FjJQCz0AzC6s3FstmsBHkAaiTTuq0eH3WLMp1N5vEBiOybgTFQcTKnMRtryBmIMXgGIBnvQqGAWCyG559/HufOnZNacSoZmJnn9zudThw4cAAnT55EPB7Hs88+i2g0Ki7+ukyARAADR7/fL8oEEgAkPEhi6Cwx6/SZ3aXcneeNygNNGNBZPxgMIhKJwOv1wuFwSKlFoVBAPB4XCTjPky5R4PWhEuPIkSPwer3SUcDlcokUn0F0NpvFwsICCoUCRkdHkclk4Pf7hfyhmz/PUT6fF2NFXbNPWT9r1JnVB9Yz+cyMUz2h2yoyYOf+LImgGoM171RuyI1eJRl4n/A+JQlULBal+wCz5yxrYFkGCRHeCyQqOB/e6xwXrznfIxlGA0atwqAvBD0bOJeVlRXxJjh+/DgcDgdWV1eRTCaF7Dh27Bj27duHp556CvF4XNQEnA/v91QqhfPnz8v1ZFlCPp8XNUH/ovcKAAb/9a87IgOeqDxMHE5hAudq3nro0m2YPhbFV55/M27DQ1scZSOPgK1l/L/S9Sd0QN/DMoFN4ues++X5580vdv35hkHAf6n+EG0IAKA2AGiVCTzbwz7vm1IA2JDgv/51J2SAdQhAqfpIjFS2mcs9GuA2ofu1rgP6wVYGAL1rCbgra30XFQA7ij5QAHSC3qsEGnkE7O2A/7R1Up7fZM5u/YCNgv3tIAAGGF11B2D2kq8ty5JWe5Q7M6jWnQJ0DbdWBeje53xfu/6zZR8DfUrhg8FgTWs7muWRKKBZGyXmy8vLOH/+vDj26/ZyGvxMLpfD/Pw8kskkYrGY1Krz+xjUapM89ooHgEQiAY/HI+eLLvis9WddOckQZpa1D4Iuf2CGORaLSaaYJEx9xp7nkOC1YGDM8gCfz4dcLge/34/jx48L2TI3N1dDVgwNDYmDfbFYRCwWQyqVgmVZIkGPRqMIh8Pwer0yT8uy4Pf7a4JSXk/OG4CoL+SGrH4nA3Wn0ykSfBIBQCV4Z9eCQCAgmfm5uTnMzc0JEVMoFIQ0WltbE/PCSCQihMvi4qKUXvD71tbWEAgEEI/HsW/fPmSzWbl+vDc5XhIlmuggUcb7l2MeGRlBIBAQIoXEBAkQ+jhwO7/DGCNdGCKRiJxXto2MRqNIJBJS2sBaf5YkkIzQ5yOTych5DIfDNfdQf2EzBEB3KoD694HWZAD/+a8JDKqYPhxF7ixw5PASUDVY2pwKgNi+ln+dZwiJ12A3iQBNAGwG29UnvFmWmDaSowC+mHob8C+7OOgdwCP/9qX4MfMPG7+vByqAvYBGKoD694HWZICs9auwXtpRfbQO9T8RQHS/1n8eg0wE7NZa75UKQL5vB70AdhybIQB2QQXQCptTARB7O+jX0ATAnsB2lAVsAl15AlAmDkCc5eu9ArS8n5lcBt4M1HSwBKAmO61r3HVWH4Bkj5n5zefzyGazkn3XXQWY6Y/FYjh//jzOnTsn49AlEAzgdGaerduoTABqA1iv11sjSU+lUmIkFwgExHiQJnAMRukUzwBVKyJ0CYDuWsDzwzlxnKw1Z30/9yE5weuizzFl9/v374dlWVIXfunSJaTTaSQSCalNp28B58YglNl9EhSLi4uIxWJyTViPzhp0yudJRLAVIFv28bryeFotwLITljAwy87WhG63G+FwWIwFeT+SZGEdP+9dTUjRLDGbzYqKIZlMolQqIZlMyj3ncDiwsLCAeDwu90u9egGA1NPzHtYmhbzmJCCcTifC4bBcT5fLJcSO0+mULD39DKhUSKfTSKfTQtBQGXL27FlRdrD0gV4XvA+y2ayMg/4P2mMiFAqJn0X/wYnuiIDW3gY6uNfPNSHQaWlAfQBgXQMgB7iqGaF/jL8Mzn6xDKhCBwJfwWaJAOJvmmzfffSq7rcXKALwItP5B94LfPvf3oRXmn/atjHtBejgXj/XhECnpQGNgr9GJGA/YetrvZkyoD9KAIh+Wus2ukDMdEcE7CIB8EnrnVsM+G3YUOgDAgDoggRg4EADPAb82kRPkwDaPE278DNAYgBtjJFgmQE51QD1poDlchmpVAqJRAKRSATj4+NIpVJIpVISDPt8Pni9XhQKBWSzWfzwhz/E6uqqKAV0vbbOmPO7uE1nxHWPem3KBqwTFOxuQKKEwR0N/Gh0Vy+z57FIYugfBqv1zvZ6O88NTfq8Xq8oFHg9GPCSyGC9PgPH5557TozhxsbGkE6nJfDUknxKx6nMYOaYrvoMTr1eL4wxWF1drdkOrLeSBCBkQKFQkKx/LpdDLBar+R7OjVl3j8eDfD4vZAz35Xterxejo6NSWsDjaTJqcXFR2uvlcjm5Jy3LEp8FnjeqFXjO/X6/eGOQ2GFZgtPpRCwWk4y7z+cT871YLCZlHSz1YLBPR39+v9vtlrIBkhTpdBoLCwvSBUOTV+l0WkoUSI7xfgFqTSFJHnDtxuNxRKP93qDbgUootX3oxhOg6TFYGTBWCRD6jQCoR3cBQSPsbuBPZUCjsoB+CApuQSVDmATwk/6vAp0mO2LAvfgAgJ+u2WzeZ5cE9ALdegI0PY5SBPW7ImDra72/An+Nflrr30Nv1ADmvXukJMANoF9FiAo2AbCzoDKgJ2UBNpqiYxLA7XaL8zwDM0rZ63u4s00ZA28duLKGWgZQJRYoodYGgqzb1iUC+Xwe8/Pz0rqPddt0aWe988jICKLRKObn5yUQYhBPMoBjoUSeGWvW4HMOWs7NzzBbzoCd5AeDQ/on8Pg0novFYjVkA5ULAGok+FolQPC79Xbd6o+BpVYX0OeA20ulksj4KX3XJR1s/6dd92mkyKCc9wL7zpP0WFtbg8fjQSqVqvGB8Pl8EqTS9I6BK8kRzp/ZfGa+SRLRQK9QKEh7O2MMVlZWUC6Xpb2ew+HA0aNHMTs7KwqCY8eO4eLFi3JOaMxIOT49DdhGb//+/dJ27/z583KOSWRkMhm5N3nvh8NhkeoDla4HADAxMYF9+/bJuacp4srKCgAgHA7XmGXyPtLkB69TLBZDMpkUFYLT6UQmk6khsLgmeb8YY6SrAc+7vqZra2tYWFiAx+PZVJvAHcMdAO6rFuI2RG9bAdroD/ycdb8E+FstBdgt3ALgN6x78McIdF4O8Fng4Tt+uuFbdimADRv9CbsUYBP4LICfRfM/7X0m/7fRG5y2TkqAv+dKAfpEBQB00R3gxIkT1urqqgSDDKh16zNmFtmmLJ/Pw+l0SpDCwLJekk8CQZuYMQuqDfNoyEbTPdZIe71eOJ1OMUuLxWIiWwfWFQqUQlM2z6CRsvNyuSy1/LlcToJRANKijwFgLpcTCTqzxZSJMzPMAJEqCtZy69aEOvDjdzFQ04SIJg7ogK/LMZhB1l4JWpZOskaXGmgFhyZ3aL7ncrkkYGaWmVnyRCJRo67gMUkS8LgAxGdBv8dzUO8fwflzDm63W2rWSQDQKI9SdhJNVCwUCgVcvHhRrj/ntra2hquvvhpOpxOnT58WE0HOgQTM+Pg4fD4f4vE4MpkMLMuS7gqajCoWi6Jg4DXUKo5CoSAEFX0VqJ4g8TQ+Po7p6WkYY5BMJgFAfB94Ttxut5SUJBIJuSZUG1CVUSgU4PF4pAOCJhF4fvg9Ho8H8XhcSjGoyjh37lx/OQh/Tw3jy6j9R6ED87Y9idst4AHT/HUXOGsdwUlzsSfDutP6ID5i7tnwvFO0IgG0EqCRcVdfO7vfXL3H2Qmg/vU2Yi90B7DRGfQ/5VvFHda9uM/cteF5r2Fds3GbObdxm43+6w7wCuvr8vw7331t3Zv23/aG+KwFvMM0fz2gaEUCDLQSgB0DGPTXv95G9Lw7QDQaley0zoAzy8+sIoMWBoY668+MNIMuHQjzGAzGSDDoIHF4eFjM94BKsMSWhGx1Rhn78PAwMplKDSaDMgZ5zExTiq07FjCwYnafY2PQTcWAfp/j0woDZrhpvqaDTZ3t5bGGh4dFys95EFpNobPGPL+cH0kBOuvrFoiU6Lvdbni9XmkbBwDJZBLBYBBDQ0NIpVLSZm54eBgHDhxAPB5HIpEQA0OOleZ25XJZ5kkFAEkQGtCR2CGhoI0BgfV6fwCSlSYJkMvlcOHCBblGoVAI2WxWgnL6FwQCAYyMjCCbzUrZCFUmbK84PT2NfD6PgwcP4tKlS0K8AOsdJRYXF+X6AJBMOg0YGXiz7IT3B7BOONB/wbIsIX50xp7HiEajKBQK0n1AqzhY2+/xeIScYpafa4TqFe3uz+/VJA8ApNNpIXi4Rtj9gMaRfY231L22ZdHNcbvV+vUmSYFOYX0aML+0/vpO64M1j9uJnejd3VPUB/s7EPzbsNErWA8CRlUK3GHdW/O4nWDA34gMsDE4eMXL/7rm9Xd2aRwDgc9arV9fAaTAFYP6YL+PFABEVy0CgfW2bAxIde2+NqzTte+sN+c2ysx5HNan8xh6HwbZzEwz88qAVZcM0P2c5AKDTWbonU6n1HFr13mSCMYY5PN5GacOohm4aTk+lQMMvBkI6xaCfM36bQbRDB5ZxsC56zp+nhudtdedEvR5opKAn+MxnU4nJicnxXGemWG/3y+But/vRzKZxMrKSk3bumw2i3Q6LY7zlOgHAgGEQiEJHjlGjsPlckmQSVKD91AqlRJZOokS3T2CY6KiIhwOIxgMYnFxUdoNkojJ5/NIp9MYHR0VAsHtdovBH4mpdDqNxcVFRKNR/OAHP8D+/fvh8XikbAVATdkHiSpeV5YtkLwhYaGDbypF6AWhg3iOjdee908mk5H3RkdH4fV6cfnyZQniSbBwniRteJ15ToeHh5FOp+Ve160p6ZfAcdFzg8oYn88nJBbNDQcGWiVwS//9cu1rdKEOOGsdkeftVAHWpwG8DvjaoVcDv/QtAI0D/5YqgE9Vr+uvdDa+Zm0C+zr7b8NGH6KbFl3WgwBuBf5i8g3Azz8MoHHg31IF8OHqWr97a7+/7ez/lYUalYC5dRdHMoC4QtQBwICrAAYEHZMAzCayNpoSfQYbNGkDIOZn9eZ32sVeqwr0cwaEWmbOzLPH4xFJNAN9BqOlUgmhUAjGGCwvL9ccl1lZBrLam4CBsc7QU8LPMgUG1gyG2WqOn2Ggp0sa9PnhfHl+6v0UeG50nT9JCQbFDMwByHMdXJJEYPkFvQBGRkaQyWQkS0wfBcuyEIvFEAqFEAwGpaY+l8tJyYPb7UY8HpdgmdeFHR90cM97hOeI30NjQXZRCAaDOHz4MMbGxrC4uIiLFy+KQoEmePl8HisrK6IiCIVCmJ6extzcHFKpFEKhkMjec7mceFXo7gwkq3gfraysyHmKxWJwOp1wOByIRCKIRqMSlPv9fmQyGfh8PrnWHB9JCJ/Ph0QiIQG6z+cTlQOVCJOTk/JdLpcLgUAApVIJCwsLNX4LxWIRyWQSi4uL8ppqCd0pQZ9/nnN9H+ggnmScbofJzg5UNJTLZUQiESQSCfj9fjgcDrlH+gbNgvzvNVAzfs+6YomAQgz4RujVeIP5VucfYoBfrwDQ6LJMoCMCAED0kBt/i1fhTutVG/bpqgSgSga87d99BsMod/65HiFbXQ4ef+v9bNjoFeIlB/5m+DV4i/l6+523ER0RAADmJ0P4Nl6JO6yNbUy7KgHoERmwWcRLlaRKaGR7zWdtVNAsyNfb9TabCFBggF+vANAYICJgz/kB9Bm6ahGo3f51+zIAUvOtA1kdxDPTqoNqBse6phxATQaddeQsA0ilUiKt93g8kgGlCZ/L5UIwGBTjM5YHMIjnPFjjruu3dW03M6V6H+1HwGPo1oj0BqAXAI9HuTcAyczyvFDlwFIEBnk8BwwgGfSurq7CGAOfz4dgMFjTatDr9UoGmdeARAe/d21tDaurq0IQaF+B6elpLCwsSPDN8TDIBCoZ63379mFpaQmrq6sSPGo/AV7ffD4vvg5DQ0MIBoO46qqrcP3112NychLPPPMMVlZWJGPOYLRcLmNiYkLulUgkgsOHD2N4eBgXLlxAOp1GMBiEz+fD0NAQEomEqBuoTuA9yhp8khK8jrlcDj6fr+Y9kj68vlqaT1n+5OSkZN7ZSjKXy8HlcknXAN7XvK6RSATDw8OIxWKynnTpSz6fx+zsbM29yUCeygO32y3PU6mUqFaoTtGdLHS7Sd539AGwLEu20RySJJnu4rHraBTo71E4w8DDFvCw9eoN73VFDDTCFvwCeoJPWW0z/l/47jvxtpdXiACd9adHgDYPbAbrqs0rA7IpmwiwsTMIjRTxZQv4snUryhjGMMryuNvEwJbxYWtHgnzrms0rA+Ilh00EbDMaBfo2tgEDQgTcZM5u8CMhMdBLnxIbjdExCUB5tw7iGZgC60GNblmnM/98JBnAIIVZaf5Qhg2s97Zn73pm8xlgsq6fWXsdODEQrHfbZ7ZWqxC0Y3ogEJDj0YyO8nBK8DVxUC6X4fV6kc1mRQnAoIzlBlqePzw8LIExA69sNlvTeYBz1P3hGRwGg0EhS5xOp9TCl0olJBIJ6T7AsgkqAXTpQb3/AoN+HpOO8m63G4lEQq7X8PAwxsbGMDExgUwmg8XFRSF/eCySEE6nExMTE5KpZxtAkhZUUzAgpTEdVR4TExNy/a6++mocPXoULpcLDocDMzMzSKVScl8wINdtESmBJzEzNjaGeDxeM292A0in01hbW4PP5xNPCN5/JJJcLhd8Ph8mJydrlBKs4y8UCohGoyLFT6VSEtTT0Z+dAbhGeH1IgmjVBwkJfj8DfnZ24P3IloVut1uORVJGkwYApFSG6gHtz0DCpm/RjSrgCoD1JwCuAcwrWu+niYE3fP8R4D50pgLQ6AERQBUAAIyZHIB1A0CNKes5zP/pMUCLTj7VZpxPAl8ovbP6ojbYbxf8E1stDciq8e4UIfBRAO/fma+ysYuwPofKWq/rHEH1Cx+/bK1nQ3eTEKAKAAD2mziAdQNADX9qEakHJoCY2vjhNmu9B0TBVksDqAoAdk4ZsJfXejeqgD0NHdS3UgE0+0wfo1Ggbwf/O4OuPAF03bc2nmPwSzf5+qwkPwNAiAQGozrg1y7tuhyA2VxdKqANA0kclMtlpFIpUSnoY2tDNp2hB9Zb8/EYNH9zuVziMM8gWJcz8DsYfGrDPnYz0OeIRAod2Rns83uBSrkF32cQSRWD2+1GOFxpPE5igqUQdH8/fPgwotEoUqlUDQnCcXEMDEyHhoYwNjYGv98vte/s8MBryLGUSiVcunRJgk16F/CaMah0OBzw+/04ceIEEokEnnrqKQCVbPTly5eldCOXy0ldOgkDkkS8nzweD0ZGRrCysoJYLCZmkYlEQswOKfNfXl7G8PAwEokEcrkcvF6vyPSpxpicnBTyoFQqIRKJIJ1Oi5+EviYs36CyI5fLCZFA6T3HrLPovL8ZuOfzeTlfvH9o9kfCgZ00+Jr3EM89rzPvV97TVAlwPXJsejwk4Xgv0UyT35FIJDA5OYn9+/d3+uug/3AllgLMrj99/TfXM/6JVzvw6PCP9u57WhAAW+0M8BFzTw0R8JP4S9x/3XsrzbS7wQ83buqUANgsdLCf7bNKGRtXGC6vP73tu+vBz9LL/XgUPypqAAAoY3hbhrDVf7rvM3fVEAFv8v1PfP66X+je5W0XSgN0sK9JABu7D7sUYAsYAAKgEWwCYOfQFQmgM5B6u86UM+jUwQt9BIwxkvVm5p4mgpSbM6uqg2M+17J0Znt1fT0D7HQ6XUMAaCNDBo4MiHRtvnbqN8YglUpJ8MR5MHBbXFyUAE+78+sAjUEllQXaEE8HdazlZ9aaZnnAeskA6+2BdSf9TCYjgbjb7YbH45EMejKZlGAdQA35oYkDehKkUiksLS0hmUxKJp9u8lRtlMtlJJNJPPfcczUlEzyfIyMj8Hq9QiZwnlRMGGOQTqdx6dIluTYejwehUEhUBOzeEIlEhKiZnZ0VU0Ga5ZEsYQBMv4d4PC7XmVlwyvdHRkYQj8fFo4Bzy2azNd0WeF+yNIHvG2MwMzMj9zLPL00ruQ54fzLzTu8IXlcqNXiPaGNFAKIw4Lrg5zweD4LBIBKJRI23BQkNjp/H4PgCgUCNIieRSNR4V3i9XkxPT+P48eOd/jrYXdTX/18hBID1J3Ub0ur5pfWnwYeKeL3vW1i61Y/TuEm2f/L62/Getz4APNDhF+5QGcAGH4DPdtn8ukODwO0ECYFsamfKAz66vYe3scuwPle3Iaeeq7U+sZLCbaGvY+bVo3gMNwPArvhjdIoNPgD3/UJ3B9glTwANEgLxkmNHygPstb6O+vp/mwBQ6CagH9Dg38bOo2MSwOfziTFavekaAyIGJcxqMiDR7dF04ExpMtutAajxGdC1zXzNAFBL4oF1PwGOj5/huJkVZ2BPA0Bm6evd1kk4MPCnyoCycY6LsmvdJ54BliYPtCkgZeCUnusyC+0Az2CRQat2m9dBH93wGYB6PB6Mjo4iFovJWHw+nxwHAMLhsGTs5+bmsLq6KmP2+XxyDQFIS0F6JFBmrmvYmXEvFosIhUIYGhrCM888I2USOpjVhpIkCpaXl0V1wTIB+jysrq4in88jkUggmUwK0cLSh+HhYSwvL0uJBlst6vuHz9lVgMH56uqqtBr0+Xzw+XxIJpOivGCQzxIUADhw4AD2798vBEs8HpfSFTryA0AoFILf78f8/HwNqcVrTFNGdrbgOOPxuJBaJJRcLhfC4bAE8lQfsNsFv59lELlcTr5ft7GknwA9NkqlEqampuDxeDA7q1LP/QYG+pT/XwFlANafAOZd7ffZgHjlZ+KLKdzwM2dwBjcAAK7CBeCNHZYCbAMBoFsCtoT+B6VdKcAVgoPWMw23v2Cubbj9/agEB3tZJnwlwfocYN7efp8NSFd+ph+KovTmf8YZ3AigUhqwmyUBuiVgS9yh1nq7UoA9ir2+1hnoU/5vlwG0QbtSAJsA2FHcbd3ZcPuHzUd2eCSbQ8ckQDablbZ62imdATWwHuzTTI/BHrO8rANnQKJb7ukguVFgzkw6Te508AysO6LrNnv17emy2WxNxpm19qyVp9pBB/LMBAOQzC0NBjknngeSIQyISUyQAKn3O6BSguMiGGSzTp5zIHnC55TzaxPBbDYrCoRQKIRYLAafz4dSqSS14swSkxTgWBhYss5dZ7vpO1BvsshgnX3m2VYvHA6LmkCrGqhiYMlFqVTC3NwcPB6PZO/z+TxWV1elE0Q0GkW5XEahUBAihpJ6YN3gTpd9sENBKpWS0gzOk8E26+l5TnkP8hxpt3z92bm5OUSjUTEjZABP1QNQIWLC4XCNi7/T6RTfgWAwiAMHDsDv9yObzSKbzSKVSiEej4snA+ei/Q4OHjyIoaEhzM3NifcEy3A4R7bCTCQSNWaWAOReZfcAlnwsLi5Ku82+wC2mfaA/4AoATQA0DPaxkSSo2S8NTH0xjlM/8wSewKnaHR8wQgRYcQPzTgv4snqvx+iYAGiFXxkccqAbNUAzAqD+vWaEgI3BhyYAGgb72EgS1OyXBo48tITymx/HE/jfej6+btAxAdAKdw8OOWCbBfYW3zG3tg30bQVAC7zDNCcCbAJgR9GMAKh/r58JgY5JAAZv2vmcgSNQG4S7XC7JODL7y6w3JdMMTuoDd2aW9fdyXzqw6zIDZpQZ5DNT7/F4UCwWa+T6zNQzmNfPtRP70NAQAoGA9HHXxoUM5lniwMy6dmOnXwBNDZnx1oaBNO6jwR3l41QfkHxgkMrgnsQDgBqJN0kJHcCzLp0kBokBBucszeC14vh1pwd+FwP+WCwmagpeW92akISQVlKQ/GFAy2Oz7IOqEZ7/TCaDy5cvS5u9+fl5uT9YyqBLT2iOSAf9lZUV8fiYgy4AABQISURBVAUIBoNwOp3IZDKi/KBTPn0A3G63kE7MogOoIXioaPD5fDKXQqGAlZUVKQWgAoVrha0HSXxRoZDNZhGLxYRAIKGTTqelDAAAgsGgvKaHhMfjgd/vRyAQEIKDpQLZbFZIGs6D3z8yMiLGhdxGMufy5cs4ePAgIpHIln6Z9ByaCKgnBAacAKhHJ4RAI+R+Anga/6Lxm9Vg/z8CwL/D7nYBaALLZeB8UxzF8VDtG5ssAWhUz9vLf+B1WUCvcdB6xiYC9gA6IQQaIfGTDjyFF/V+QDsE65iBeekacHyo9o1NlgAsWhtZuEnTu4WpywJs9BaaCKgnBGwCoAPoYH9AzP/2Mu627uxbIqBjEoBBpQ6cmXFk0MLsqQ6iANRI+JkhZzBCibtuKagDXd2yjwGTNg2k9JrBucvlkqCSrviaiNBt8djaDcAGgz06znPOugsBJd+UwzObyuCd42k0Z30O9bgByDxZVsFA0+Px1KgbOF76CHA8/G5m54GK7J+u9Pl8HrFYTCT1PJ5WAWjnfk36MENNVQbJBq/XK9/PgNmyLKyuropygD8siyBxwfNLQoXHZCs7kjMA5B4zxiAUCknXBq06IbmgyxgOHjwohFCpVJLgm5lvBsvMgmcyGRSLRTEk5P1GqT3HrL0p6t31SXRRru/3++F0OqVFIO8XEio879p7oD6gBypqnPn5eSwtLSGRSMj9TFWOvs9IjpE8oxqF5ymTyUiLRMuyMDc3J2RRX6GDYP+IVTGRuWhOyms+H0SYd60TAXwkSaDfM+8C8C7gYcspn7WuA37/SeBudbwsALy+zXn8hAW8dxf+kTgLFN8Var9fB9jJf9Y9/s7VAC+Ya1uqAbiPhl0nvDdg3r5OBPCRJIF+z7wdwNuL+LK1/i+bdQPw+2dq1/rvAPjddl/6IQv40C6s9ScBvH2o7W6doBEBsF0IjRS3VQ2wV9d6J8H+PdZvAAA+aP6TvOZzG1XYBMCu4cPmIy3VANynn9FVi0AGPszwMzPNjDQDRWYtGcRROs4AlsGJ2+2Gy+WSAFS3DqRsH4BI/5lNZ3DF2m7uw2OPjo6KYRyP98ILL0jASeM4fkab5zFzzSwqe83rOnYGmwCEzOBrXf8OoMYfgXPm8XStue4WoOu+6UXAbC/3Z9aZQZ02hNPZbABiDJdMJqVEgMQGz7PH44HP50MoFMLKyooE/zw+SQuSIyRAaDKnTRrT6TTC4bAE3pFIRHwDdKabxns8lt/vh9frRSaTkVIA3QFCm/dR3k5TxxMnTsDj8eDMmTNIpVJS7kAfAK/Xi2KxiImJCZk/OyVow0SHw4Hx8XFpR7iysoJ4PC7tKRlkk2Ci+Z9WhnAfXkN6Bmg1TbFYRDQaFXWAvs+pNNGlKYVCAclkUsZdLBaFgNMlNjxP4XBYyJx4PA6n0yn7ARAVBksfisUiEolEp78O+hIkA64EMOjvRhUAAN954iW4FQXcbZ4EUAkKWuITVu3zHSQCrN/asa/aFnRjDsggvx0ZUI+9WCO818CgvxtVAAB8859fhlegDJh/ANDBWv+QVft8B4kA6672+/QzdqIcwF7rzUEywIaNfgOD/HZkQL+iq+4ArE9n8GpZltSVF4tFqRvXQS4z1gyKAUhGWRMLusUcM+gMarTXAMeinfKZ+S2VShgbG8OhQ4ek3jqRSODSpUtIJpPy3blcDrFYDKFQqEa2Ttk369rX1tYkO6pd+jUZoo3bmNElqaHbITL4063imJ3l8TkWLcPXmX8+Zz0868y1CWIymRSVAs8Jj3vgwAEJ/BKJBPx+P6LRKHw+H8bHx0WW7na7a9ol6laBzJgz+Ob8xsbGAACJREIM9uLxuJQzsDSB4Dnw+/3weDzIZDLwer3Yv38/VlZWREqvFQf5fF5KNJiZD4VCKJfLOH/+PNbW1pDJZDA+Po5isYhkMikEBv0sSFKQwKIvAa+nluaPjIxgdXVV7muPxyMkCO8PdhkgOcV7keUHunzG5XLB5/PJec3n89LSMhAIyHliGUv9fcdrQRWOLmEpl8vw+Xw1qgIAiEaj8plAICD3J+d7zTXXYG1tDWfPnhXFwZWAQVcDdIM3mPX2gQ9br8Yrq691UNAwQ/iJBnWFu6AIsH4LMB/b+nGupLrdTgMCd2wFufDYto7FRv9AmwFqc8C2a/1DDdb6LigCrLsAc2/7/dqhl7L/3UbHwf+FAnDU2X6/Kxy2GsCGjd7BMKBth0gkYrH2mUEva8NZa60N1nR/emYsGfhpkzXdv5zEAJ37uS9QG3DrIFl/1ufz4dprr8XVV18Nv9+PZDKJaDSKpaUlrK6uIplMSh04CQYt16dqQH8Xs7IsdeB7DPBpDkfXeZ1d5w+DcC3np8ScgSIDPWa4tTqBQXgoFBLpPcemz792uednOL5cLodIJAKv14uVlRWphY/FYjh+/DjK5TLS6TQ8Ho/Ui6+trSGVSiGVSkmgTOd6kglUCrAmn9eLcnoSLprAICECQBQdbHM4NTUl6pBkMllDamijPGbqWatvjIHH4xGSoj4oTyQScm1ILEQiEWSzWWQyGQSDQSEAeB9zXwbxlNz7fD6srq7Kfa39InTpCMklEhGsxWc9PxULVBjochiWgugOAVwbVAbQD4HPy+WyKDp4D6RSKRSLRaRSKSkT4fqcmJjAyMiIKCMymQwuXrxoquuqv92aFNopAAaZDOikg0Ar1GcHf/c7FnCmgw/uABFAJUAvCIC9CHdspel7nRIDlmWZQVrrVzI66SDQChvW+lct4LEOPrgDRACVAL0gAPYkLhSav9chMWBZ1sD9bW+nALDJABs2GoPrvR26KgfQGU22TuM2Zh49Ho9kKNmujdJ6ZpKZkQUgwZ/D4RCJNffVgb6WWOtAWtepT09PY3p6WgL2mZkZxONxZDIZpFIpqTXXATez6ToLr7dpCTjHTvk4gz/Wp3PslJVryT8VDR6PR4JJSsmBSrDPGn8GtiRKjDEIh8MSHJME0OdCZ7YzmYyYKDIYXltbw+rqKtLpNCzLwtjYGOLxOE6dOiWtExk8UiJPlcHa2hqSyaTU+dPlH6jU3afTaeTzeekEwJp23c1B+w/Ud5RgAG9ZFubn53Hy5ElMTEzg2WefFbUJs+DaWwGAEA+8NkNDQxLcR6NRpFIpTE5Owu/3Y2lpqaZzQCaTkTGzHl+3PeQ95vP5pCwkEomITwNVMezKwDFRmcGSmEAggIMHD0ogPzIyAp/Ph9HRUTEjZJs/Sv15fUkmcE3w3goGg/Ld+XxelC7hcBhHjx7FNddcg/HxcTgcDjz++OP43ve+J90CaKDIzhHs7sBxDxKupBKARtgKAbAl7IAiwHxs8EsCdhKtgv5G+9oKgcHCVgiALWEHFAHm3sEvCdhRtAr6G+17BSoE7BIAGza2Hx0rAUKhkKX73TOzyecMVHR9OiXpOqDRQRz31872DMI4LmbbGZzzeHyPqoSRkREcO3YMExMT0s4wnU5jYWFBAkjKxQGI7BqABLoMEGnsRo8A1sYz2ATW5fl+v18CNwbtDodDAkQdqGmnfZIRrOmmmoHnjwEpzyUJEK2e4NxJQjB4Z3ZYqy3C4bAEyWwll8/nceLECTmf/C6OgyUHi4uLSKfTSKfTYiro9XplfMViUcgAXmN6ALAVHYmDdDotc9X7Dg0NIRgM4tprr8WhQ4dw+fJlPP/880ilUjUdKLTnBP0dKOkvlUoYHx/HVVddhampKVy8eBFLS0tYWVmROn6e84MHD2JpaUmuB1s/AhCSi4RSIpEQAicWi4lyQa8HAHLNqH45cOCAZOOnp6dhWRYSiYSc50QiIT4Co6OjmJycRC6XQzKZRKlUQjweRzKZFKJDG/0FAgEhl0gelMtlBAIBnDp1Ci95yUtw9OhReL1ePProo3jkkUdw+fJlKWU4duwYcrkcVldXpWtAoVDA5cuXBy5bYMOGjc3BVgLYsLE3MIhKABs2bGwOnSoBOiYBjDG/bFnWf93SqHYZV8IcgCtjHvYc+gPN5mD/o2DDxpUPmwSwYWNvwCYBbNjYO9gOEuAxy7Ju3tKodhlXwhyAK2Me9hz6A83mcCUTHIOCQR8/YM+hH9DJ+Ad9jsDgz2HQxw/Yc+gH7IX1PujjB+w59AMGffzA1ufQm6atNmzYuNLwy7s9gB5g0Ocw6OMH7Dn0AzoZ/6DPERj8OQz6+AF7Dv2AvbDeB338gD2HfsCgjx/Y4hxsEsCGDRs2bNiwYcOGDRs2bNjYI+iGBBhoyUQVV8IcgCtjHvYc+gNXwhxs2LBhw4YNGzZs2LDRITomAQa9bgK4MuYAXBnzsOfQH2gxh4GfGwZ/DoM+fsCeQz+gk/EP+hyBwZ/DoI8fsOfQD9gL633Qxw/Yc+gHDPr4gS3OoWNjQBs2bNiwYcOGDRs2bNiwYcPGYKMjJYAx5vXGmKeNMc8aY96/3YPqFYwxF4wxTxhjzhhjHqtuGzXG/LUx5lz1MbLb49QwxvyxMWbRGPOk2tZ0zMaYO6vX5WljzOt2Z9S1aDKHDxljZqrX4owx5ifUe/04h0PGmL8xxpw1xvzAGPPvq9sH5lq0mMNAXQsbNmzYsGHDhg0bNmz0Dm1JAGPMMID/AuANAF4E4OeMMS/a7oH1EK+xLOsG1Qbt/QC+YVnWNQC+UX3dT3gAwOvrtjUcc/U6/CyAF1c/88nq9dptPICNcwCAP6heixssy/pLoK/nUALwG5ZlnQRwC4Bfq451kK5FszkAra/FfwDgAPBVY8yduzHwbmETfruDQSf8bLLPXK7+2AT/NmPQ1/ugr3Vg8Nf7Ftf608aYDxg7obftGPS1Dgz+eh/0tV4dz/Yn8izLavkD4GUA/kq9vhPAne0+1w8/AC4AGK/b9jSA/dXn+wE8vdvjbDDuowCebDfm+msB4K8AvGy3x99kDh8C8L4G+/XtHOrG+RUArx3Ea9FgDq2uxV0AngNwDMDXAZwD8KLdHnsHc2u01j8G4P3V5+8H8B93e5x143sVgJfUrZOGY0aFgP0+ABeAq6rXaLhP59Ds/uq7OVTX8EuqzwMAnqmOc2CuQ4s5tLsOHgAXqz/u6ra+X+vVOdjrvT/GPzBrvTqugV7vW1jrLgBXAygCOA7Aaa/3bR3vQK/1FnMYmPU+6Gu9zRx6dh06KQeYBnBZvX6hum0QYAH4ujHmtDGGvRT3WZY1BwDVx8ldG13naDbmQbs27zXGPF5lGMm+9f0cjDFHAdwI4O8xoNeibg5A82vhBPCsZVnPozKffwBw2w4Pt1e4DcBnqs8/A+AtuziWDbAs628BROs2NxvzbQD+zLKsvGVZ5wE8C+ClOzLQFmgyh2bouzlYljVnWdY/VZ8nAZxFZR0MzHVoMYdmuA3AnwG4AcAPqz83VrcN6loH7PW+rRj0tQ4M/nrf7Fq3LCuPyv8qcQATlmUVYK/3bcOgr3Vg8Nf7oK91YGvrvdM5dEICmEZj6+Bz/YCXW5b1ElRKGX7NGPOq3R5QjzFI1+YPUWGibwAwB+A/Vbf39RyMMX4AXwJwh2VZiVa7NtjWF/NoMIdW1yKCWjJjGX1EZrSATfj1FwaO8NtjZN9l9cg59NVc2sBe7/2DgVvrwOCv9y7XOp+vYH38fTOXDnAlrPeBu8eaYODW+6CvdWBT6x3oYA6dkAAvADikXh8EMNvB53YdlmXNVh8XAfwPVBiRBWPMfgCoPi7u3gg7RrMxD8y1sSxrwbKssmVZawA+jXV2qm/nYIxxoBI8/6llWX9R3TxQ16LRHNpci3H18YMAYugTMqMNbMKvfzBwhN8eJPv0I7A+h76YSwew13t/YODWOjD4630Ta10/1+Pf9bl0iCt5vfflPdYEA7feB32tA5te70TLOXRCAvwjgGuMMVcZY5yoGIc91OHYdw3GGJ8xJsDnAG4F8CQqY39ndbd3olIn3e9oNuaHAPysMcZljLkKwDWoyLf7Dgycq/jXqFwLoE/nYIwxAO4HcNayrP+s3hqYa9FsDm2uxUsBHFZzyKMPyIx2sAm//sGgEX57lOw7pB45h76YSyew13t/YNDWOjD4632Ta53Px7A+/l2fS6e4Qtb7wNxjzTBo633Q1zqwpfUOdDCHtiSAZVklAO9FxejsLIAvWJb1g24nsgvYB+A7xpjvoxKM/S/Lsr4G4KMAXmuMOYeKSdpHd3GMG2CM+TyAvwPwL4wxLxhjfhFNxly9Dl8A8BSArwH4Ncuyyrsz8nU0mcPHTMXd9XEAr0HFgb5v5wDg5QB+HsC/qnPgHKRr0WwOra7Ff6tu+waAfw/g36DPST+b8OsvDBLht4fJvp9FxUDoZPXnn2ET/LuBgbnPGmGQ1jow+Ot9s2vdGOMCsAQgBGDRTujtCgbiHmuFQVrvg77Wga2t947nYO2yA6X9Y//YP/31A+AnUHEhfQ7AB3Z7PB2M9xgqAc33AfyAY0Yl6/ENVDocfAPA6G6PtW7cn0dFylVEhcH9xVZjBvCB6jV5GsAbdnv8LebwIIAnADxe/aO0v1/nAOAVqMjlHgdwpvrzE4N0HVrMoZPr8EL1ZyDWenXs9nrvn/EPzFqvjmmg1/sW1/rTAD6IAfrbXh3/wK33QV/rLeYwMOt90Nd6mzn07DqY6ods2LBhw4YNGzZs2LBhw4YNG1c4OvEEsGHDhg0bNmzYsGHDhg0bNmxcAbBJABs2bNiwYcOGDRs2bNiwYWOPwCYBbNiwYcOGDRs2bNiwYcOGjT0CmwSwYcOGDRs2bNiwYcOGDRs29ghsEsCGDRs2bNiwYcOGDRs2bNjYI7BJABs2bNiwYcOGDRs2bNiwYWOPwCYBbNiwYcOGDRs2bNiwYcOGjT0CmwSwYcOGDRs2bNiwYcOGDRs29gj+f4vsPyEHipYfAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "im = suite2p.ROI.stats_dicts_to_3d_array(stats, Ly=output_op['Ly'], Lx=output_op['Lx'], label_id=True)\n", + "im = suite2p.ROI.stats_dicts_to_3d_array(stats, Ly=output_ops['Ly'], Lx=output_ops['Lx'], label_id=True)\n", "im[im == 0] = np.nan\n", "\n", "plt.subplot(1, 4, 1)\n", - "plt.imshow(output_op['max_proj'], cmap='gray')\n", + "plt.imshow(output_ops['max_proj'], cmap='gray')\n", "plt.title(\"Registered Image, Max Projection\")\n", "\n", "plt.subplot(1, 4, 2)\n", @@ -442,45 +287,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "((296, 1500), (296, 1500), (296, 1500))" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "f_cells = np.load(Path(output_op['save_path']).joinpath('F.npy'))\n", - "f_neuropils = np.load(Path(output_op['save_path']).joinpath('Fneu.npy'))\n", - "spks = np.load(Path(output_op['save_path']).joinpath('spks.npy'))\n", + "f_cells = np.load(Path(output_ops['save_path']).joinpath('F.npy'))\n", + "f_neuropils = np.load(Path(output_ops['save_path']).joinpath('Fneu.npy'))\n", + "spks = np.load(Path(output_ops['save_path']).joinpath('spks.npy'))\n", "f_cells.shape, f_neuropils.shape, spks.shape" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIIAAASvCAYAAAB1p1GEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5xdVbn/8c8zvZdkZtJ7AiGBEECaICCCelEUK1gveuWqP8Vy7eUKdiwXGyo2UEDARu8lQugJCWmk955MJsn0csr6/bH2mdkzOdOSM/37fr3mNWfO2WXtM+fs8uxnPcucc4iIiIiIiIiIyPCXNtANEBERERERERGR/qFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiAxpZjbWzO40s01mttrMHjKz47qZpy74PdXMViV5faqZNZrZstBPlpldaWY39NW2iPS1jIFugIiIiIiIiMjRMjMD7gb+4py7InhuPjAGWH+Mi9/knJvfYX3HuMjW5aQ752IpWZhILygjSERERERERIay1wMR59yNiSecc8ucc88AmNmXzGyxma0ws2+ncsVm9mcze3fo70SWkZnZT8xslZmtNLPLg+cvMLN/m9ntwEozSw+mS7Tv48F048xsYZCFtMrMXhc8/2YzW2pmy83syeC5fDO7KVjGK2b29uD5K83sLjN7xMw2mNmPQ+3s8XJk+FFGkIiIiIiIiKTE1K8++HNgfrcT9s6yrde95XNdvH4isCTZC2b2RmAWcAZgwH1mdp5zbmEP1z3DzJYFj59zzn2qh/O9E/8+nAyUAYvNLLHOM4ATnXNbzOy/gWrn3Olmlg08Z2aPBfM/6pz7vpmlA3lmVg78ATgvmHdUsLxvAAuccx81sxJgkZk9Ebw2HzgFaAbWmdmvgKbeLMc5V9/DbZYhQoEgERERERERGa7eGPy8EvxdgA8M9TQQdETXsB46F7gj6Pq1z8yeBk4HaoBFzrktofbNC2UVFQftWwzcZGaZwD3OuWVmdgGwMDGvc+5gaBlvM7MvBn/nAJODx08656oBzGw1MAUo7eVy1hzF9ssgpkCQiIj0GTObCmwBMp1z0YFtzchjZk8Btznn/jjQbelrfflZMzMHzHLObUzlcvtTUD/jJuAyYINz7ox+Wu+rwKecc08la4OZfRK4FsgHpjjnqvqjXSLSd7rJ3OkrrwLv7uQ1A37onPtdH607SlByJdjPZYXW25lwho0BVzvnHu04kZmdB7wFuNXMfgIcBlyS5RnwLufcug7zn4nPBEqI4WMA1pvlyPCjGkEiInLMzGxrMKpGXehn/EC3SzpnZteaWcTMaoOf9WZ2g5mNG+i2DRVm9mro8x4zs6bQ318f6PZ1cC5wMTAxFUGgYCQdF9refWb2gJldHJ7OOTfXOfdUsjYEd7mvB97onCvo7yBQsN+6qIvXLzCzeLB9tWa2zsw+0mEaM197ZEOwD9xuZtcF3TsS0/zZzL7Xl9siIiwAss3sqsQTZna6mZ0PPAp81MwKgucnmFlFCte9FTgtePx2IDN4vBC4PKgBVA6cByxKMv+jwCeDfSJmdlxQq2cKsN859wfgT8CpwAvA+WY2LZh2VGgZVweBKMzslG7anKrlyBClQJCIiKTKpcHFXOJnd1+tyMyU0Zoaf3POFQKjgHcAY4ElCgb1TBDkKHDOFQDPAJ8Off5/kJhukHxepwBbj6bOQzftLwm2/2TgceBuM7uyh20Yg+928Gpv2xS0K/1o5uul3cH2FQGfB/5gZseHXv8l8N/Ah4FC4D+AC4G/90PbRCTgnHP449jF5oePfxWfbbjbOfcYcDvwgpmtBP6J/76myh/wQZVFwJm0ZfvcDawAluMDVV92zu1NMv8fgdXAUvND2P8On7VzAbDMzF4B3gX8wjlXid/n3GVmy4G/Bcv4Lj4AtSJYxne7anCqliNDmHNOP/rRj370o59j+sHfDbsoyfNT8anHGcHf44H7gIPARuCq0LR/Br4X+vsCYGeHdXwFf1LVjD9JOgt4Hp8qvRy4IDT9lcBmoBbfZegDodeuwvd3r8WffJ0aat+/gMpgns+E5rkWf3F3SzDfq8BrQq9PAu4K5q0Cbgi99tFgfYfwd9umdPFe/gPYC1Tj7ybO7fAe/Rp4MGjDS8CM0OsXA2uDeW8AngY+1sl6rsV3Gws/lx68jz8NPfdWYFnwHj8PzOtum/E3mr4JbAP2B+9ZcYfPxH8C24EDwDdC738jMCq0jlOCaTJ7uNwM4Arg5Q7b9nngvuBxNvDTYP37gBuB3NC0XwL2ALuD/50DZnbzHXgq8V6H2vJfwToW9uB/mwv8X7Bt1cCziTZxlJ/z0DT/hS8MGgPqgG+Hvgcb8d/H+4DxoXkc8ClgA7Clu+926PkvBu9pWnjfkKQNd+Avllzw94Jg+tn4gNJBYB3w3g6f/98CDwXzXsRRfmeBW4E4/vNWh79A67iNFxDaBwXP7QfeEzyeFWzPGR2mmYTfR13Ycd+GD3zdhv++HMbXABnTV/tm/ehHP/rRj36S/SgjSERE+tMdwE78xdu7gR+Y2Rt6Mf/78H3lS/DZBA8C38NntHwR+JeZlZtZPv5O/X84n/HyWnwwAzN7D/4C8cP4u/xvA6rMLA24H3+hPQF4A/A5M3tTaP1vA+4M1n8fPtiSyEx4AH8RPzWY/87gtcuAr+NH/yjHZ47c0cU2Poy/wKwAlgJ/TfIefBtf6HEj8P1gPWX4C+Jv4kcn2QSc08V6juB8Qct7gcQQtafia7p8HBiNv0t5n5lld7XN+ODElfjhfKfjC3Pe0GF15wLH49/nb5nZCc5nkb2Av/OZ8H7gn865SA+XC/5/c7yZzeqwnNuDxz8CjsOPpDIzaPu3gm1+M/6zdDH+/9Bp16EeOB84AUh8hrr63/4U37XgtfjP85eBuJlN4Cg+52HOuT8BnwBecD5b6RozuxD4IfBeYBz+/3hnh1kvw9/dntOLbb4r2L5w1kyyNrwPmBu8XOKcuzDYnsfx/6cK/Gf9N2Y2N7So9+M/84X44NhRfWedcx/CB+kSmYw/pgtmlmZmb8N/txK1ot6ADxS16+rhnNsBvIj/DHX0n/hCsJPw36lP4INRIiIi/UaBIBERSZV7zOxw8HNPxxfNbBL+4v8rzrkm59wyfDr0h3qxjl8653Y45xqBDwIPOececs7FnXOPAy8DlwTTxoETzSzXObfHOZfofvIx4MfOucXO2+ic24YfyaPcOfcd51yLc24zPt37itD6nw3WF8NnFJwcPH8GPrj1JedcfbB9zwavfRxfpHKN80WMfwDMD/r+H8E5d5NzrtY514wPWJ1sZsWhSe5yzi0KlvVX2obovQRY7ZxLBE1+js8+6a3d+IAD+IyR3znnXnLOxZxzf8FnOpzVzTZ/ALjeObfZOVcHfA24okMXo2875xqdc8vxF/KJ9/J2fAAgUXTzCtoCOD1ZLs65BnxAK7GcWfhMk/uCZV4FfN45d9A5V4v/nyT+z+8FbnbOrXK+C9O1R/EeJlwbvDeNQbuS/m+DIORHgc8653YF7/XzwXRH+znvzgeAm5xzS4P1fA0423zR7YQfBu9RbwIViS6ho7qcKrm34ruO3eycizrnluKDm+ECsPc6555zzsWBkzj672xPjTezw/hgzd3A/zjnEiMPleEzx5LZE7zeUQQfAJoZ/J+XOOdqetkmERGRY6JAkIiIpMplzrmS4OeyJK+PBxIX3gnb8Hfye2pH6PEU4D2h4NNhfKBpXHABfzn+bvseM3vQzGYH803CZ8t0NIXgoi+0vK/jM48SwoGVBiAnCEJMAra55KNVTQF+EVrmQfyoHEdsd1BQ8rqgvkENvlsNtL+g7NiGguDxeELvj3PO0f796qkJQRsTbf9Ch/dkUrCurrZ5PP5/m7AN32Wrq/cysR3/xAckxuMLazp8FlVPl5vQGlDCZ5HcEwSIyoE8fC2kxDY9EjyfWEf4fQuvr7dal9PN/7YM32Wos8/l0XzOu9PuvQwCa1W0/1we7ecH2j5DvTEFOLPDtn4AX7sqWZuO5TvbU7udcyX47MFf4uv/JBzAZ1MlMy54vaNb8d1D7zSz3Wb240SBWBERkf6iQJCIiPSX3cAoMwsXaJwM7Aoe1+Mv0BPCF38J4aFOdwC3hoJPJc65fOfcdQDOuUedcxfjL8jW4jMFEvPNSLLsHfhaKOHlFTrnLkkybbJ5J3dygbkD+HiH5eY6555PMu378SOOXITvPjI1eL6rIWgT9uCDM34Gn/kyqfPJjxRkplxKW+BlB/D9Dm3Pc87dQdfbvBt/kZ4wGT+87r7u2uCcOww8hs/MeT9wRxDU6u1yHwPKzGw+PiCUyCo6gM/umBvapmLnCwJDh/cxWMfRCn9eu/rfHsDXz+nsc3k0n/PutHsvg25Zo2n7PnZsf0+9A19H52iGHt4BPN1hWwucc5/spE3H8p3tuKyuJ/RZU18BTgq6e4Iv/jrJzNqNwhZkP54FPJlkORHn3Ledc3PwXfneiu+mKiIi0m8UCBIRkX7hfN2M54EfmlmOmc3DF5BN1ElZBlxiZqPMbCzwuW4WeRtwqZm9Kci2yDE/3PNEMxtjZm8LLm6b8cVgY8F8fwS+aGanmTcz6Ka1CKgxs6+YWW6wzBPN7PQebN4ifADhOvNDvuaYWaI+z43A1xJ1ToKuQO/pZDmFQXur8EGxH3QyXTIPAnPN7J1BcOYzJA+mHcHMMs3sBHztorH4Ib3BBxU+YWZnBu9Vvpm9JQjmdbXNdwCfN7Np5ofr/QF+hLJk2UPJ3I6/OH4XbQGcXi03eO6fwE/w3ZQeD56PB9v1MwuGDzY/lHCirszfgSvNbI6Z5QHX9LDN3en0fxu06SbgejMbH3z2zjY/BPnRfs67czvwETObH6znB8BLzrmtR7NxQVs+jX+/vhZsU289ABxnZh8KPpOZ5od/PqGT6Y/lOws+gDi9p41zzrXgC3p/K/h7Pf77/VczOytY/1x8d7YnnHNPdFyGmb3ezE4yX2OrBt9VrKf/MxERkZRQIEhERPrT+/CZELvx9TauCWqegO8ysRzfZeYx2oYyTSoILL0d3xWkEp8d8CX8sS0N+EKwnoP4or3/L5jvH/his7fjRxK6Bz9KVQyfDTMfP/rQAXzQKFyfp7O2JOadiS9AuxPfZQfn3N344sR3Bl2CVuGHmE7mFnx3nV340cxe7G7doTYcAN4DXIcPNswCnutmtsvNrA4/etF9wXynOV+0Gefcy/h6OjfgRzzbiC/W3OU244Mat+JHxtqCz3a5uqfbErRlFrDP+RpCCb1d7u34DJx/dAgWfSXYlheD/8kTBMWNnXMP4+srLQimWdCLdnelu//tF4GV+FGkDuI/M2lH+znvjnPuSeB/8UGLPfhspCu6nCm5w2ZWH7T9EvyIWjcdxXIIuo2+MWjHbny3rh/hR3lLNv1Rf2cDPwS+GXQr+2IP57kJnwl3afD3p4N13oYPxD2CH0HuXUnn9oHWf+KDQGvwI/vd1sN1i4iIpIS1ZVuLiIiIiIiIDD1m5vADCnwh+PuLQIFz7toBas9DwPudc4fNrC7UBTk8TQwfSE+4DH/D7IvOubf2T0tlJFJGkIiIiIiIiAx1zcA7zSzZiH1HLega3evrZufcJUHdu640Oufmh362Hl0rj3S07ZaRQR8MERERERERGeqiwO+Bz3d8wczKzexfZrY4+DkneP7acNdQM1tlZlODnzVm9htgKb4w/E+C11ea2eXB9BeY2UIzu9vMVpvZjYngi5ltPdagVGftCx7/T/D3KjP7XPBcsnZ/KdjmFWb27WC6fPMjTS4P5k9sz+lm9nzw/CIzKwzqn/0ktIyPh7b9KTP7p5mtNbO/mpn1djkyMHozfKaIiIiIiIhI564t/jm+dlcqLePa6u4GkQD4NbDCzH7c4flfAD9zzj1rZpOBR4HOCtEnHA98xDn3/8zsXfhtOhkoAxab2cJgujOAOfg6cI8A78TXAuuJXDNbFjze4px7R09mMrPTgI8AZ+JHn3zJzJ7G1/MLt/uN+Jp7ZwTT3Wdm5wHlwG7n3FuC5RWbWRa+PuPlzrnFZlaEH2Xzv4Bq59zpweACz5nZY0FTTgHm4uu6PQecY2aLerMc59yWHr5XkkIKBImIiIiIiMiQ55yrMbNb8CNnNoZeugiYEySsABSZHwGzK9ucc4nC/ucCdwRF6vcFQZfT8YXfFznnNgOY2R3BtD0NBDU6544maHYucLdzrj5Y713A6/CDLYTb/cbg55Xg7wJ8YOgZ4Kdm9iPgAefcM2Z2ErDHObcY/HsZLPuNwDwze3ewjOJgGS3Btu8MpluGr29U3cvlKBA0ABQIEhERERERkdToWeZOX/o5vlvUzaHn0oCznXPh4BBmFqV9uZSc0OP68KRdrK/j6EupHI2ps/Z11Z6O7f6hc+53HScKsoouAX4YZPjcQ/K2G3C1c+7RDvNfgK/LlBDDxxesN8uRgaEaQSIiIiIiIjIsOOcOAn/Hd0VKeAz4dOIPM0tk4WwFTg2eOxWY1sliFwKXB3VuyoHzgEXBa2eY2bSgNtDlwLMp2pSu2rcQuMzM8swsH3gHPsuno0eBj5pZQbCMCWZWYWbjgQbn3G3AT4N1rAXGm9npwbSFZpYRLOOTZpYZPH9csM7OpGo50oeUESQiIiIiIiLDyf8RCvzgu4r92sxW4K+BFwKfAP4FfDjo1rQYWN/J8u4GzgaW47Ndvuyc22tms4EXgOuAk4Ll3p3C7UjaPufcUjP7M23BqD86515JFJJOcM49ZmYnAC8E3eLqgA8CM4GfmFkciACfdM61BEWjf2VmufiudRcBf8R3+VoaFIOuxA9zn1SqliN9y5xLZeaaiIiIiIiIyPAXdI/6onPurQPdFpHeUNcwEREREREREZERQhlBIiIiIiIiIiIjhDKCRERERERERERGCAWCRERERERERERGCAWCRERERERERERGCAWCRERERERERERGCAWCREREREREZEgzs5iZLTOzV81suZn9j5kNyutdM7vSzG5I0bLqUrEcGVkyBroBIiIiIiIiIseo0Tk3H8DMKoDbgWLgmgFtlcggNCgjpCIiIiIiIiJHwzm3H/hv4NPmpZvZT8xssZmtMLOPJ6Y1sy+b2cogi+i64Ln5ZvZiMO3dZlYaPP+Umf3IzBaZ2Xoze13w/EtmNje0zKfM7DQzG2Vm9wTLedHM5oXbaWbFZrY1kblkZnlmtsPMMs1shpk9YmZLzOwZM5sdTDPNzF4ItuW7ff1eyvCkjCARERERERFJiZP+ctLPgfkpXuyylf+58nO9mcE5tzkIsFQAbweqnXOnm1k28JyZPQbMBi4DznTONZjZqGD2W4CrnXNPm9l38FlFifVnOOfOMLNLgucvAu4E3gtcY2bjgPHOuSVm9ivgFefcZWZ2YbDc1vfGOVdtZsuB84F/A5cCjzrnImb2e+ATzrkNZnYm8BvgQuAXwG+dc7eY2ad6856IJCgjSERERERERIYjC36/EfiwmS0DXgJGA7PwQZybnXMNAM65g2ZWDJQ4554O5v0LcF5omXcFv5cAU4PHfwfeEzx+L/CP4PG5wK3BshcAo4Plh/0NuDx4fAXwNzMrAF4L/CNo8++AccE05wB3BI9v7dnbINKeMoJEREREREQkJXqbudNXzGw6EAP24wNCVzvnHu0wzZsB18tFNwe/YwTX0865XWZWFXT9uhxIdD2zJPN3XN99wA+DbKTTgAVAPnA4UfOoB8sQ6RVlBImIiIiIiMiwYWblwI3ADc45BzwKfNLMMoPXjzOzfOAx4KNmlhc8P8o5Vw0cStT/AT4EPH3ESo50J/BloNg5tzJ4biHwgWDZFwAHnHM14Zmcc3XAInyXrwecc7Fgmi1m9p5gXjOzk4NZnsNnDpFYtkhvKSNIREREREREhrrcoBtVJhDFd5u6Pnjtj/huXEvNzIBK4DLn3CNmNh942cxagIeArwP/CdwYBIg2Ax/pwfr/iQ/mhAs4XwvcbGYrgIZgucn8Dd+d7ILQcx8Afmtm3wy26U5gOfBZ4HYz+yzwrx60S+QI5gOkIiIiIiIiIiIy3KlrmIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICKFAkIiIiIiIiIjICJExwOt3A7x+EREREREREZHhxjp7QRlBIiIiIiIiIiIjhAJBQ9g/l+zkqlteJhqLD3RTpBe+/PSX+cOKPwx0M0RERERERGQEUiBoiNpX08QX/7Gcx1fv46UtBwe6OdILD299mF++8suBboaIjBBr99bwu6c3sbe6aaCbIiIiIiKDgAJBQ9Suw42tjx9auSfpNC3ROCt3VvdXk0REZBC68qbF/PDhtVz++xdwTqX5REREREY6BYKGqNqmKACj8rN4duOBpNPct3w3l97wLH98ZnN/Nk1GmA/ftIj33vjCQDdDRJJwzlFZ10xmurGtqoHKuuaBbpKIHKMfPbKWx17dO9DNEBGRIUyBoCGqLggEXXRCBduqGthT3XjENPtqfDeAXzyxQXeBJSUaWqJ89s5X+OFDa1qfW7i+kkVbD/LHZzbz+4WbBrB1ItJRbXOUWNxxzswyADbuqxvgFonIsdiwr5bfPrWJ/751yUA3RUREhjAFgoao2qYIABfPGQvAgrX7j5jmcEOLn7Y5yrp9tf3XOBm2/vridu5dtpvfLdzME6v3sb+mrebI9x5cww8eWks8rqCjyGBR3eCPFadPHQXAxkoFgkSGsrtf2dX6OHwMFhER6Q0FgoaoumafEXTm9FHMGVfEN+5exd9f3tFumqr6FtLTDICn11X2extl+NlaVU9RTgaj87P4yaPruH/FkfWpdKEpMngcDgJBsyoKKMzJYIXqxokMadsONrQ+XrgheWkAERGR7igQNETVBF3DCrIy+PKbjwfgpme3tJvmYH0Lc8YVcfyYQhZuUCBIjt2e6iYmluZx3nHlrNtXy3cfWA34WlX/74IZAHzr3lXcu2xXV4sRkX5yKMgMLc3P4pITx3Hf8t2t3YZFZOiprG3m9KmljMrP4vlNCgQNVX9bvJ1nFcgTkQGkQNAQVdsUoSA7g7Q044LjK/j4edPZXFlPJBZvneZgfQuj8rM4//hyFm85RH2QRSRytPZUNzG+JIdPXziTwuwMACaW5rL0fy/mS286nneeOoEXNx/ks3cuY3tVQzdLE5G+5gNBcUrzMvnoudNoicZ5er1uDIgMVZW1zVQU5XD2jNG8sKlKNSCHqK/8ayUf/NNL7UYBFhHpTwoEDVF1TVEKczJa/z5+bCEtsThbD9S3PldV18Lo/CzOnj6allic1XtqBqKpMgwkTjT3VDcytjiHGeUFPP+1C5k3sZjr3jkPADPj+vfOZ8EXzicnM43rH183kE0WEeCWTd+h8ISvU5ybxcyKAnIy01i3VzXjRIaqytpmKgqzee2M0eypbmKrbroMaU+s3jfQTRCREUqBoCGqtilKQXb7QBDQLthTVd/M6IKs1tfW6uRfjsL+miZO+NYj/OX5rRxuiDCuOBeAwpxM7vv0uZw7q6zd9NPLC7jytdO4d/lu1ij4KDKg1tc9D0BxbibpacZxYwoVCDpG26saePsNz/K1u1YOdFNkhGloiVLXHKW8MJvXzvDH3uc2qnvRUJSZ7mt4Lt1+aIBbIiIjlQJBQ1Rdc/uMoOPGFFKUk8HC9f6EoLElRlMkTml+FuOKcyjMyWDdXl2US+9t2F9HUyTONfe9CsCEktxu5/nk+TMozM7gmvte5frH1tEUifV1M0WkC1kZ/nB//JhC1upYcEyWbD/I8p3V3LFoOwfqmge6OTKCHKj1Nb/KC7KZOjqPccU5vLCpaoBbJb0VjcWJxHym9ctbD6l7n4gMCAWChqjapgiFOZmtf2emp/H62RUsWLuPaCxOdaMfKaYkNwsz4/ge3AVuisT42l0r2FOt/srSZn9t+8KyF55Q0e08xXmZfOCsKSzacpBfLtjIPa+oeLTIYDBrTAEH6lo4HBSRlt57Yte/SMvy3Tk0Iqf0p8o6fzwuL8zGzHydoM1VxOMKJAwlDcHNsdljC9l1uJF7l+0e4BaJyEikQNAQVdscpSCUEQRwyUnjONQQ4Q/PbGkdKSaRNTRvYgkrd1V3mZmxYmc1dyzawUduXtx3DR/h4q6tmHfHAMtgta/G3/H+z7On8N23z6UoFIDsypvmjm19/IdnNrcGJ0Wk/yXuOE8rKwBgS6ienPTOwqo/kjf9F5TkZbJ468GBbo6MILXBiLFFuf44fM6MMg7Wt6jr/xDT1OLPxT9w1hSml+Vzl26WicgAUCBoiKptilLUIRB04ewKSvIy+dEja1uHkk+cLLx2xmiaIvEu+yK3RH2QYu3e2iETpBhqYq4tEHfvK0PjDtD+mmbys9L59ttP5ENnT+3xfPMmFHPuTF/DYFNlPT94cE0ftVBEupPY90wrywdga5UCQUcjEcw3i3PC2CJdgEu/StzMy8lIB+CMaaMAeGWH6swMRv9Y/w+uW3TdEc83BIGggux05k0sZtP+uv5umoiIAkFDQVMkxu0vbW83skBdh2LR4LuH3Xzl6QAsCu5SJjKCzpw+ivQ04/mNnfclr2tuy9j43J3LWgNDkjqxeFsg6OVtQ+NO8r7aJsYU5fR6vrQ047aPncnKa9/I7LGFPLZ6L9GYPlMiAyES9/v3yX4i1Y8AACAASURBVKPySDPYUqlA0NEIB/OPH1vI+n216pYj/aYp4o+huVk+EDSxNJeinAxe3a26X4PRd174Dn9d89cjnk8EgnIz05k1xncPq2uO9nfzRGSEUyBoCPjtU5v4+t0r+dgtL7Nk20EisTiNkVi7GkEJp0wu5cQJRWwLhhNNdOMpzMlk3sRintvU+egSiZTjqy+cyfObqnh41Z4+2JqRLdw1bKgUCKysaaaiKPuo5y/MyeQzb5jFoYYIL2/TXUuRgRCN+/17VkYak0fl6cLxKIX34SeMK6ShJcaOQxq+W/pHYyIjKNOfvpsZc8cX6/s8xCT+j7lZGcys8N11NyorSET6mQJBQ0D4JHPlzmrqg7sGHTOCEhI1IACKctumOWdGGSt2VlPTlLxWS2K5Hz57KjmZaazYWX3MbZf2wneTq+pbhkSdjsq6Bkbn96wuUGfOP66crIw0Hnt1X/cTi0jKJTKCAC44voJnNh6gtpNjAaCR/joRzuqcNaYQ0AWc9J+OXcMATpxQxNo9NcriHkIaQxlBc8YVAbBMw8iLSD9TIGgIaGyJMauigMLsDDYfqG/N3CnM6SQQNDqv9XG4sO/5x5cTizsWrNmfdL5EWmpxbiYnjCti1S4FglItfDcZGBIZMgfKP8eK+A+OaRn52RmcO7OMJ9cqECQyEBIZQQBvnTeOlmichesPsLe6iT89u6X1RgDA6t01vOZ7T/Dt+18diKYOauFg/vSg3tJQCOjL8NCxaxjAaVNKaY7GWbnr8EA1S3qpocXvb/Oy0pk0Ko/pZfks0AiEItLPFAgaAupbYuRlZzC9PJ/NlfWtGT3JuoYBzKhoywjKzmj7F582uZQJJbmdjk5Q2xwlKyONrIw0TgxSjVX7ILXCFxEleZm8uLnzmk2DyeH4hmNexokTitl+sIGI6gSJ9LtwRtDJk0rIykhj+c7D/G3xDr77wGq+etfK1td/8uha6pqj3PzcVrZXqdtTWDgjqCQvi9K8TDYrECT9JNGlKHxud8a00QC8uHlo1B2UcNcwH9B7/ewKXtxUpUxMEelXCgQNAQ3NUfKz0pleXsCWA/XUdZMRNHd8UetjM2t9nJZmXHRCBS9vPZi0Nk1dU5TCoLvZcWMLqWuOsr+2OZWbMuKFM4IuPmEMD6/cO2KGVR9fnINzsK9GI9KJ9LdwRlBmehpzxhWxfMfh1hsLL4eGQd9YWcf4Yl8gftMBdXsKa4m1L+g6rSxfhbel3zRHYmRnpLU7txuVn8VxYwqGzI0lad81DOCs6aNpicVZqUx8EelHCgQNclWNVWzNvJ7MrHqmleWz63AjlXU+ONNp17BQjaCOjhvri1vurj7yYry+OUp+EAiaGnQv0xDDqRW+GPvgWVNojMR4cs3I6C41riQXgD1JPnsi0rcisfYB55MnFrNqVzWHGloA/708WN9CJBZn9+EmXjerHIBtynZppzHS/n2cXl7A2r2qzyL9oykSa9ctLOHMaaNZsu2QMm6HiERGUF7wvzx1cgngBxEREekvCgQNcn9f93eaM9dxMO0pppf7egQrgyLOnRWLTk+zpM8DzKrwxS037Ks94rW65rYh6aeO9uvapkBQSrUfcaaI9DRj6yC+0IqlsGtgIsNg9+HGlC1TRHom6tpnssybWEJ9S4xlO9rqiqzeXcOew03E4o7TppSSl5XO1gHuGlbdEGHvIAoeN0Xav49vnTeOQw0R7l++e4BaJCNJYyTWrlB0wpnTR9HQEhsRtR2vuXcVT61LXutyqEgMH58TZASNLshmWlk+S4ZA3UgRGT4UCBrkcjN8FoWlNzM9yPRZvtOfuHdWIwjgyS+cz2OfP++I52d1MUxlbVOUgiDLaFxxDpnpNuAXAcNNuEZQVkYa40tyBvV7nMq73ImMoN2HB89FnchI0TEjaN7EYgA2V9Yze2wheVnp/Oapja1ZoJNH5zFldP6A3gzYVlXPyd95jDf9fGFKg9LHorlD17DzjytnWlk+9yxLXntPJJWaInGys4/8Ts6f5DNK1u498ibfcBKPO/7ywjauvHnxQDflmDS2xEiz9rWe5gVZmiIi/eWYAkFmFjOzZWa2yszuN7OS0GtzzWyBma03sw1m9r8WdGo2syvN7IaOy3PO8ZnPfIaZM2cyb948li5deizNGxbyMn0XLUtrYVowQsnS7YlAUPKMIIAZ5QUcFwxtG1aan0VZQRYb9h0ZCApnBGWkpzGxNE8ZQSnWcdSwKaPy2XZw8AaCmqOpK1xYkJ1BUU4Guw4P3u0VGa46ZgRNLy8gP+iWMLE0j2++ZQ7Pb6ri50+sB2DK6Dymjs5jW1UDzdFYu1HF+stDK/cCUN0YGTSZhB0zgsyMN84Zw4ubq1rrLYn0lR0tz3Kw7Bssr1ze7vlxxblkphvbBvGNpVRIjJoLqc1Y7msfvulFDtW3tP7dGImRl5XRrtbTSROK2VvTRKVqc4pIPznWjKBG59x859yJwEHgUwBmlgvcB1znnDsOOBl4LfD/ulrYww8/zIYNG9iwYQO///3v+eQnP3mMzRv6EhlBWDO5WenMrCigJRpnVH5WuzsJvTGzooAN+4+8axSuEQQwsTSXnYcGx8n3cBHOCAJ/sbV9EAfbUj2CxYyKgqRBSBHpWx0zgtLTjBPG+YEFinMzueL0SZwwroil2w9TXpjN2KIcpozOZ8ehBq66ZQmv+d4TRPu5/si/Q90/BsvIXI3RI4M95x9fTiTmWKpuHdLHdrj7AF8/Miw9zZhUmsf2g4Pje9JXwoNrrBtC2U8L1+/npS1tBfkbWmKt3cISTpzgszSVFSQi/SWVXcNeACYEj98PPOecewzAOdcAfBr4alcLuPfee/nwhz+MmXHWWWdx+PBh9uzZk8ImDkHOB2bi5u8Q/P5Dp/H+Myfz54+c3u5OQm/4QFDdESOHNbTEWu8Qgw8EDZa7sMNFJNp2Nyvu4kwZncehhsigHTmsY2HUYzV7bBHr9tUmHbVORPpOuFB9QqLuXFFuBmlpxrtPmwhAeUE2ZsbU0XlEYo6F6ytpjMR4cGX/Ho83V9Zx8ZwxrY8Hg+bIke/jjHLf5XrHIM7ulOGh2XyWXLJj6OQgg284e2LbE2SN/jcwxGpYWpxNoX1YY0u0tVB0QmLEX40cJiL9JSWBIDNLB96AzwICmAssCU/jnNsEFJhZEZ3YtWsXkyZNav174sSJ7No1svvdJy7E4/hA0PTyAn7wjpOYN7Gkq9m6NKuikNqmI4eGb2xpPxrFhJJcDtS1pDwrZCQL15eIuRiTR/kLse2D9OStIZLaFOUTxhVyuCHCvhqlPov0p0j8yKDulGBQgPTgpsIbg6DLRSdUtHs9YcHa/i3QWtccZVpZPoU5Ge0uogZSxxpB4ANnWRlp7FAGrfSTptiRtfYmj8pje1XDsL7R8rOV3yC74lGAIZWxPr4kq90gLY2RGDVl3+NnS37W+lxhTibTy/IVCBKRfnOsgaBcM1sGVAGjgMeD5w3o7EjU6REq2cHraLNehotEIChK6grszgwKRnfsotMYiZEbSlWdUOq7pe1SVlDKtCTJCAJaC7QONvUtLd1P1AuJO16Pr9mX0uWKSNeSZQSVFWQBUBXUrpg0Ko9nvvx6PvOGWQBMLctrnfbNc8eydHv/dX2KxR1NkTj5WRm8ZkopT67ZPyhqgjQn6RqWlmZMLM1VRpD0m+bYkTdTJo/Ko7Y5yuGGwZlhnGpD6dx0Wnku60Pn3PUtzcTS93PTqpvaTXfiBBWMFpH+k5IaQcAUIIugRhDwKvCa8IRmNh2oc8512ql34sSJ7Nixo/XvnTt3Mn78+GNs4tDWGghyqcugSHQH2BIKPrRE40Tjrl2q6oQSfxGwawjddRnsWmJt2VWxeKw1ELR9kF5ANKQ4EHTq5FLOmDqKXz65YVjftRQZDMI1fZJlBCVqBCVuDoAPBmWk+1ODMYU5XHryeG79rzM4bUopOw429lt34foWH7jKz07n3adNYk91Ey9squpmrr7XHE1eNHtSaR47Dg3O/bgMD7F42/lDskBQIoNvMA9AkSoleZnsHELft7njC1i7t4a91f6mbm00eXblvInF7KluYl+NRlcVkb6Xkq5hzrlq4DPAF80sE/grcK6ZXQStxaN/Cfy4q+W87W1v45ZbbsE5x4svvkhxcTHjxo1LRROHrIZEICieuoPCmMIccjLT2BoqvtkYdP8KF6+bGGQE6eQ2dVri7buG5WVlUF6YPWj7ujdGUxsIMjPefOJYKmubOVif2mWLSHvhGl/JAkHzJpbw4GfO5ePnTU86f1qa8av3ncLrZpVz0ZwxZKWn8f2H1vRZe8MSo5TlZ2dw4ewKMtONZzZU9su6u9KSpGsYjIxuOTKwwt/h5miyQJC/sTRYzydSac64oiHVNexNJ1YQd3Dfcl/uojbm662Nzhndbrozpo0CaFdYWkSkr6SsWLRz7hVgOXCFc64ReDvwTTNbB6wEFgNHDBkfdskllzB9+nRmzpzJVVddxW9+85tUNW/Iag5O5FviqTvgpaUZU0fnsyUcCGrxgaC8rLZRw8YW+YDR5srhf1LRXyLR9hlBADPK81mzZ3COftEYaQvWpOoCZ1qZv2s5WLvDiQwX4RpfybqGAcwdX9yaAdSVaWX5fOScqTyyai+HG/o+iBsOBOVmpXPK5FKe23Sgz9fbnc4ygmZWFFDTFNXQz9JnwoGgZDWCJpX6QNBI6KI4Z1wRWw7UE+nnkQx7I3zONKE0mznjinhitc8EanC+6PeEwgnt5pkzroiC7Axe2jzw2Y8iMvwdUyDIOVfQ4e9LnXO3Bo9XOucucM4d75yb6Zz7tgv2is65PzvnPt1xeWbGr3/9azZt2sTKlSt5zWte03GSEac5GPK3KZbaOx/TyzsEgiIxLKuSeFpbQCItzZhWVjBoRmsZDppDQzgnhpI/Y+ooXt1dTU3T4OvXHw4EdXYh2VuJQJACjCJ9KzzUebKMoN76j5PGEYu7fikaXdfs948F2T5L9azpo3l1dw0NLanZDx2tzjKCjhtTCMC6fYMzqC9DX0us7XicrGtYblY6FYXZw37kMPBdqJqj8UE9hHzUte0rovEor59dzpLth6hujNCCz/jJz2hfkD8jPY35k0pYtuNwv7ZVREamVA4fL30gEpx0Rl1qgwTTyvLZfrCh9W5KQ0uUghn/x49WX9HuLsaM8nw2H9AFe6q0qxEUBILOmj6auIMlW/uvEGtPhS8kW+KpyQKYWJpLRpopI0ikjzWFArmpCATNm1BMcW4mi/thX9UQZAQlslTnjCvCOdi4v+9uTLTEWthes73raUJZnXHXlo1w3Bh/X2wwX5jK0Bb+PjdFk5cLmDWmgDV7a/qrSQNm3kQfeH1lEAdMoh1KAZwzs4xY3LF8x2EiwWvJ9stzJxSxfl8tLdHBm+0kA+/a56/lc//+3EA3Q4Y4BYIGuc7uPh6raWUFxOKutY91eIj4pfuXtj6eXl7AjoMNNEc1hHwqRGLtRw0DmDepBIDVewbfyVv4xDN8N/JYZKSnMbUsn9W7B9/2igwnTaEaQanI6EtLM39zoB+yROuCQFBBtg8E9Ueg5X+f+1/ecvdbqI90HqQOH5PD7+nogmzKCrKOGI1TJFVqW9qCP8kyggBOmVTKmj21rNpVzR8Wbh62tfgqijMYnZ/Fsu2DNxAUDvLE4jGmBsW8dx5qJBbsO5Ltl+eOLyYSc2zYr6CydO5fG/7Fk9ufHOhmyBCnQNAg13eBIN+XfMsBf9La0NIW6KlqbOubPKk0l7ijdaQDOTaRUEZQ4gSgIDuDisLsdl31WqeJxQe0r3hTOCMoRYEg8AURF2891G5UIxFJrYZQ1kAqMoIAZpQX9EuWaNuoYT4QNGV0PlkZaazvw65XL+x+Aeg82wKgpYt94qyKQnUNkz5T19wW/OksEHTqlBJiccc7fvMc339oDbe/tK2/mtevoi4adKEafJnUCeEgT9RFGVOUQ0aasa2qnjidZwSdON6P5qhh5EWkrykQNMhF4snvPh6raWX+7uqKnf5A0xgKBIUPTBNK/Mhhuw8rEJQK4UBQuFvB1LL8dqO4JXz/oTVc/vsXB+yEoDk0aliquoYBnD19NHXNUV5VVpBIn2mKpP74Mb28gMra5j6vaZaoEZQf1AhKTzNmlBf0adcwMwNgX037mnzr99Vy+e9eYNGWg+1Gfux4EXf82EI27KvVyGHSJ+pCGUGdBStPmVQKQCTmP4M/fWw99y/f3feN62eRWIT5k0rYVFlPdePgq68Ivo0JsXiM9DRjfEkuG/bXgfn9W7L98rSyfEblZ/HAij0aRl5E+pQCQYNcuCtR+O7j9S9fz82rbu5y3gXbF1DdnDyAUJqXyYSSXH7+xAY2Vda1Dh8P7U9ux7UGgobOMJ2DWbtuBaFCgtPL8o/ICHLO8dcXfb2KgQoEhTOCwic1x+rM6X6I1Bc1MoZIn2mKprZGEPi6cdC3tXrAjxqWM/5OHtl2V+tzk0flsqMfhox+y6+ebvf3k2v289KWg3zuzlfa1Xnr+J7OGlNAfUuMXTpeSh9oiHTfNaw0P4vp5e0LEF99xyt92q6BEIlHODnoVv/qIM2cCZ/jJWpCVhRm+2L75m8EJtsvmxnHjynkmQ0HeNdvn++fxorIiKRA0CAXiSc/6bz51Zu5fsn1rKlak3S++kg9n/33Z/nYYx9L+rqZ8Ysr5gNw37LdfPbOZUnXM644B4A91TqxTYVwhlcs9L+dVpZPVX0L1Q1t731tc5SWoOvUyoHKCIqlvlg0QEVhDjPK83lBgSCRPtMcTW2NIIA5QbeFvs7ma2iOklGwjjWHVrY+N6k0j4376/jzc1uIx1OfddO6SIu1y5LdftAH6ffVNtMY6TwjaPZYX8B21S5lOkrq1TeHikUnGT4+4dTJPivomkvntD7XF9+XgRSJR1q/bxv6OCh9tMI3zxL735K8zOAZv3/pLED/1pPHAb6ekGp0SleeWtf3o3jK8KVA0CDXWUZQwsbDG5POl5h27cG1nS77tCmlFOVk8IsnN3RYZ9uBKSczndH5WexS17CUCAf22o04M/bIoYcP1Lbd8RuoQFBfFItOOHvGaBZvOaiRMUT6SGMfZARNKMmlNC+TVTv7dp9U09QCaU3tMh8mjfK17a69fzW/f2ZzytcZCfZFZjGeXl/Z+vzWA3447ljcsetwW+ZmxyzJkyaUkJ+VzsINlYikWn3QHSzdMmiOJs8IAnj7/PGcO7OMD541he+/40QA9g6zLkaReITywmwKczIGbVHlcEZmIiPomkvnAn4fA50H6N93+mR++M6TADSwhnTpypsXD9ui8NL3FAga5MIHiWQZGY3R5Jk6PbloNzNOGFcU/NV2Md7xgmF8SS47DzX0oLXSnWi4WHQobThxZ2tdaNjXA3X+f3jq5BJW7arm0ADs6A83tp08pjoQ9LpZ5dS3xFiybfAWexQZyhpa2r6zqcoIMjNOnFDc58HpyvpazFyHQFBu6+PHV+9L+ToTSRPlhel86R/LqQ9GLttWVd+6j95xqC37oOOxMisjjXNmlvHU2v3DLgNDBl5jxH8X8jIKOu0aBv7YetvHziQzPY1pZb6bWLLBKIaySCyCmTGromDQjtTXGGlfIwh8MPsrb57dZdcw8CM0Xji7AoCXthzs45bKULf9oK7R5OgoEDTItQsEJbkQb4gk//KHDy6dTQPwmqk+hThRuK7jvMCgPtAONe2Gj4+3Bd/GFuVQnJvJ8p3VbAiygg7U+RO997xmEnHHgNxlPtjQFmhMZdcwgHNmlpGZbkprFekjdS3djzL0yNZHeMM/3tCrQNHxYwrZfKCuT4siV9b7QFM482HyqLbaJ31xc8Lht+dj502mtjnKpso6mqMx9tQ08frZFZhBdWPXWZKXnDSO3dVNPL9J3V4ltRqC73N+ZkGXXcPCEoGg/hjprz8l9lczKwrYVDk4z08bIm37rvCNv6teN42ZFT6o3dV+d0xRDnPGFfVJ0FuGl6q6zgPDIl1RIGiQi4a6EiVOOsMn351lBIWDOfsbOr/Q/p+Lj+eRz72Oqy+clnRegNnjCtlb0zQgGSnDTbhrWCJVGPxd9vmTSvjnkp1c/LOFrNpV3RoIesPsCsYW5fC3xTv6vb2HQoGgVBaLBijIzuCcmWX8buFm3n7Ds8R0B10kpcLDTde2JO8+8f0Xv8/+hv2dvp7MhNJcmiJxqvrwmFDVcBhoXwtlZkUBj33+PD77hlnsq2lOfe0M50cNG1Ps63hsrqynpjGKcz4zdvKovHY3TZIdf9984liKczO5Z9mu1LZNRrxEV8+CzMIuu4aFjSnMITcznS2VQz8QFD73TZynThmdz4G6ltbsvcEkPNhGuCZkRnoaowr8aIjdddl984ljWbLtkAbWkC715bFYhjcFgga5aJJi0e2yfaLdZwR1decoPc2YPbaI/3rdlLZ5Yx0LYPruYx+75WXe9dvn+c79q3XRfpTCd3/CgSCA7112Yuvduz8/v5UDtc2kGYwuyOYj50zl+U1VbOzHvvDOuXZdw7pKRT9a7ztjMgDLd1Yf8yhEkVicPz27pc+HtRYZKmpb/PEhKy2r00BPmvnTgN7UEJpY6mv17OrDEbwONfn2dsy6OW5MoQ/IALtTXLsucVQbXZBOmsHmyjpqg/1JYXYGsyoKQlMlP7bmZKYzZ1wRmwdploIMXYlAUGFmYY8zgtLSjKll+Ww5MPQ/j01JCrVPLPWZNYNxpL7GUEZQx/O9RIZQd5mY/3n2VKaV5fOd+1envoEyTDiq6hQIkqOjQNAAisUdC9buo66LOxnhg0fihDh8Qd6TrmFN0e5PGMLTdzwwJUaJWbLtEEu2HeKm57YM2uJ8g10k1tYdLHyHCHzf8X9/8QLedvJ4ntlQSWVdC6Pys0hPM9584ligf/uK1zRFaQ51ZevpiWdvXHzCGL76H7MBWLbj2GoFvbT5IN99YDXv/M3zRGMqQC1S2+yzACryKjoNBKWbvzPdk+NEwoQSf/G1s48CQbG4o7bF10tLtt9JXPylunuYC40aNrE0j00H6luPz4U5GUwry8esbd/S2Xs2ZXSeajZIyiWygEpzSqiP9DzDZ3pZ/rCoEVQXCqwkblgmCsjvGITft84ygqDtPLu7AHxxXibvOGUCa/bWUN2om1xypNxMU9cwOWoKBA2gb927io/++WX+8vzWTqdJViw6HAjqtGtYrPusoc7W0/HAVFaQTV6Wv1h492kTgbZRVKR3usoISjhlcgn7appZsfMwZQXZAEwelUdhdgbfuHtVv/WH31vd1DqyBUBjJPUXfWlpxn+/bjpFORm8sv3wMS1rWzDE88b9dbz/jy+1dq0Le+zVvZz63cf5VYeR8kSGo/rgRkFFXgV1keT7jURGUGfHkmQm9FEgJuFwQwsuzQdZknWBSWROPvrq3pSuNxEHisQjHDemkDW7a6hr8vvsguwMJo/OJzywQmfv2eTReRyoa+nyJo9IbyVGoarIL6c51tzj4O20snx2HGpsdyNqKKoPdXVNnKdOKh3MgaBQsX7Xfl+QaH/cxY8IEnX0mqmlOAdLNbCGJDGqME1dw+SoKRA0gJ7deACA9fs6z66JdpcR1JOuYT04WegqEARQUegDEpeePB7wo6hI70VDBaI7CwTNn1QCwKu7a1pHqjEzTp82CoAbn9rUx6309lQ3tquH0RBtYEfNDm5bfVtK15OWZrx2RhlPrNl/TJk826oayMpI40fvOollOw7z3QdWU9sUYdmOtgDTH5/ZwsH6Fv6xZGcqmi4yqNUHwduuMoISgaDeZPwV52ZSkpfZZ1kGB+pasPQgEJSkS2pFUQ4fOmsKt724PaW16xIZQZF4hFMml7D5QD07gmBXQU4GV5w+iSvPmdw6fWeBoClBUevwxenG/XUaSUyOSVPEf9bH5vvRpA439+zmyYkTiojFHU+t6/8BJ3qjvjnK1i72KXXNbd/1xHlqWUEWOZlpbD84+LqG9SQjCI4MEnU0f1IJZrQ7lxFJKM1PVyBIjpoCQSl0sL6Fj9/6ctJMhI6ao7HWk8SuaqOEDx6JLJ8edQ0LZQT15E5vxHXeNQzg1x84lcvmj+e1M0YzKj+LbYPw7stQEH5v4y550CPRFQ/g5CAoBPDDd54EQGU/pYDuqW46ojDqVY9fxY8W/4jq5tQOHf2OUydwoK6ZZ4Lg6NHYVlXP5FF5XH76ZD501hTuW76bb9y9ist+/Rzbqur5/cJNLNp6kJzMNHYcaqApkuJCsyKDTGO0LSOopqUm6ShfrYGgXnQNAzh1cimLtvZNV9XtBxuwNH/c6qw22YUn+IvhjSnMkEy8P5FYhFMn+xE1F27w+6SinEwy09OYWpbXOn1nx9bENImbPLsON3LR9U9z1S0v0xId2lkZMnCag6zwirxygB4fhy86YQwTS3P59b839ulIf0drf00T1z28lrnXPMoFP32q024u9S1t+6hEIMjMmDexhOeO4dyhr4SzqI+oERS++drNQBx5WRlMHpWX0n2dDG3h7/HognT2DMIaWTI0KBCUAtuq6mmKxPjri9t49NV93Pzclm7n2V7VQNz5uxmbKju/Uxh30daRTBJdw8LFM3syaliPagSFDkTJMoLmji/m51ecQmZ6GlNG543oQpjVjREeXrnnqOYNF//urEhgdkY6p072AaB5E4tbnx9TlMMb54zp0wKtYXuqm9rVw2iMNrKvwQ9jmupA0OuPr6AkL5O7lx79SDvbqhqYEtQLmDexGOdoPTl8z40v8IOH1nLh7Ap+8I6TcA6+/+CaQXlSLJIqjdFGcGmMyhlFNB5NGlRJViPo/k33c9eGu7pc9pnTRrG5sp7P3PFKahsNvLz1IOkZvq2dZSrNLC8AYNMxFpkPc/hjbSQeYf6kErIz0ngo2NcXZGcA7W/OdHZsnT22iJK8TJ5e7zMw1u319Y6eXLuf1//0KX7z1OC8IJfBLXHui3PJYgAAIABJREFUV5ZbBkBNUEerOxnpaXzi/Bks23GYFzYNvtGnfrVgIzc+3ZbpvHJX8vOL8CiI4fOnN88dy7p9tYPuvLQxtH/oeL7XLiOom4LRALMqCti4r46Glqj2HdIui+zECQVs2F/H3urU1/GU4U+BoGNU3RDhsl8/x5f/uYKWoFtLJNb9TjpR5+VNc8fSFImzuZN02JiLkUYWcGTXsKy0rE67hiWCRtCzlP/wTqW7uxOnTS5lybZDVDeMzMJ137h7JZ/861I2dNGlrzPRToaP7+jGD57G/1x8HPMnlbZ7fkJpLrsPN/bLicDe6kYKsv2FUWFmIY3RxtaLoINNbZkAj2x9hAc3P3hM68rKSOPSeeN5ZNVeHlzR+yBbNOa/Q9PLfZeMqaP970S67P5a/5351OtnMne8D67d+uI2VuxMbUBrJFOB7sGnOdZIOtkUZvkupsm6h7XWCIq1BZi//uzXueb5a7pc9kVzxgBw3/LdKR+xZ/HWg4wu8vuaaDyatIbG+KBg9VfvWsmSbanJTGrNCIpHyM1K57zjylu7ixXkBIGg0H67s2Nreppx/nHlPL2uEudca9bvV/9jNo2RGD9+ZB2v7u7ZRbxIQkss0hrYhd7dkHn3aRPJyUzj8TX7+qp5RyUedzy46QlOn1bIK/97MQCrOgkE1UeOrBEEtA6m8fCq1NYMO1aN0S5GDeumHENH08sLWLevljnfepQ/Pdv9zWYZ3sLXaWfP8DeO71l29DdSZeRSIOgYFedl8rHXTee+5bu5Kdg57+7BSfEDK/aQn5XOR86ZCsDPn1jPN+9Z2TpUbULMxUjH1+dpLRYdHFxKckpS1jWsNwelS08eTyTmuH/Fbp5at3/YB4TqmqM8v/EAdy7azpt+trD1btXS7b0v3BcOBHUcFjmsoiiHz7xhFk/tWMCBxraU5wkludS3xHo9ekR1Y6TX8+yoriRS/BAABVkFNEQacEE51UNNbdv+pae/xFef+Wqvlp3MZy+axawxBXz3gdXEellLY1NlPS3ReGuQJxEIAnjfGZN4+ksX8JN3z+PUySVML8/npAl+us//bRkPrNjNwyv3dFm/4x8v72DJMRZq3F/bRHN0eHZHu/7x9cz8xsMjprtdUyTW689oV6rqmju9+DkWLfEm0q3rQFDHjKDOumJ1NKO8gCe/cD4AC9buT0VzAR+MWb2nhsK8ts9S0kymNGt9fOeiHe1eW7r9EAvWHsUFr2vLCAK4eM4YIE7ulBt5bvdCoO2CLjMts8tj66mTS6mqb6GytplN++spK8jiE+fP4OHPvg5gUHZlkb51rMHyxkgzRgbF2f741dMaQQA5menMm1ByzIMyJHPvsl38+t8bj6oG1qMbFxMp+xP54x6iND+LaWX5rNxVzR2LtnPTs1uoboi0lluobzly1DDwQeGTJxbzk0fX8eyGwfO9agoHgpLUCMpOz2593J3Tp45qfXzHou3KChrhwjfvx5dmcv5x5fz00XWDsmi6DG4KBKXAJ86fwaRR/gIdfJCnYzDoQF0zj6/2J6bbqup5cOUePvzaqcysKGT22EIeWLGH217czvWPr283X9zFSbcgENQhI6g0u7RHXcN6VCOom65hYfMmFjN/UgnfvGcVV968mJ8+tq7b5R+L5mgsZUU2N1XW8d7fvcBNz27h9pe284W/L+/2gPqnZ7bw/j++xFfvWsm6fbVsq/I72pe3HlsgqLv/S1O0ic899Tk+/vjHW5+bGIyQsXZv+wu6GxZs4Gt3raCytu3E49YXt/Hp25cSicU557oFnPbdx3vczgN1zexs2Nj6d15GXrv2Jk5Auwpm9VZZQTafOH8Ge2uaeGlL79LXV+/xF9GJ+krFeZlkBBeKk0flM2V0Pu95zSTMjMz0NO6/+lwKczLYfKCeT9/+Cp/861Jue2nbEct1zrG/pokv/XMF77nx+aParpqmCC3ROGd8/0muvv2V1uX2d9Bkyatr+dstv0n5CWQs7vhlMApbb4oHx+MupcGU/hKNxXnTzxdy4f91Xsuitz575zIuveHZ1psJqRKJN5NpuW2BoEiSjKC09jWCNh/e3Ppad5+V6WX5TB2dx4IUZhlU1jbTFImTkdGWbdPZfuafnzibzHRj9Z627BrnHO/8zfN89M8v86nblx5xc6UriUB34ng4b2Ixlt5IRt5Wrl5wNdBW2y0/M7/LbteJ7MQHV+7hoZV7mB50ZRtTlMOsigJue2lbj24ayfDw+4WbmPmNh6kPRpKLxx2HG3p3/GyItGBkUJTlj3O97aJ9yuQSVu+uSekNiUjs/7N33uFRVdv7/5xpyaT33khC6IQWmnTpCgiKIIggYgUVG1ZQ7IINFVBRUOnSe2+hCAFSIaQH0nuvU39/7MkkgdDu5X7vvb/reh4eMjPnnDlzzj57r/Wud73LwMsboll8IJG1ERl3vX9epfgNlXrBZmjnacuV3Ere3hrHh7vjuf/r4/T4+DBGo5HyupYZQQAz+7UC4JdTafynWLWm8fm+XhBaZ9BhqbAE7owRNKy9OzELhvPZhE6kFlbftHzub/vfME2TjnR6o54FY9qjMxjNTYj+tr/tTu1vIOgemFwm8e7o9s3eG/zlcRLyKghPKuSnE6nM+v0CT/9xgZJqDesiMpBJEtP7BADw+cOdeXtUW/q3dmFDRCabL2ax3NQZyoAeuWRaLEzOaYNT7GDhcEddw+6IEWS8c0aQJEl8NqETA0OEYOHqs9d4b3vcbetTK+q0hCcVNguA04uq+eVkGkVV9dRq9PwcntpMf6dGo2PAomMsuUftvvdfyiMivYQPd8fzzrY4tkRmcS5dlBXcrFvFpRyx4LZxt232/sV/gBFUWX97facGq9aK88msbMx29w12xtlaxTdNAMOSag1fHkxifUQmczcKoCGloIr52y+xOzaXM6nFVNXr0BmMd9Q+NiazjB4fHya3XARXjhaOqBXqZkFkQ2lYevntA9e7AYuGtHVDkuB8+t1d2/icClQKGYGmttLkxjK5m6CLd/VzaHGfFU/04IVBQUwO80WSIMI0DhLzKtl0IZOvDibS69Mj3P/1CQBuhVmcTikiPOnGjiwVdVo6f3CQZ1ZfAOCgCQxeciSZtvP3N9NF+FfZzpgcuiw8gMPGh5iU9jYFf61HU5DMunMZFJTXYihOh6un/uHjJxc0jovUu9Bo+GTvFUZ+G/5fl9k8mlDAteIarhXXcCyx8J8GqRPyKjiVUoSXvZoPd8cT9Q/MKy2ZVm9AY6jFQm6Jq1rM1VmVN3bLk9EcCEoua5xrbzdHSZLEkLbunE4tpkZzb1qlZ5gymkap8btvVoLVI8CJ5wcGcSW3gsPx+Yz74VSzlvJ7YnPZchcdAhtuZcMaGOxqA1Lz+ashs2+ttL7l9Wlocb9wVzxqlZzXhoWYP1s4rgOZJbX8eSHzZrv/V1q9Tk9JtYbYrDK+OZTE2bT/LD0ao9HIqxujORyfT3FVPc+uvsC72+L+T777zwtiHK44KYCKtREZdPnw0G31Buu0erZczMJgMFKrrUcuKVEr1KhkKso1dwcGhAU4odEbOJd270TemzJwDl6++9KsChNQK5MJ36S1m615DgDRQRBEx6yc8sa15no/dVwXb8aGet2y+cr/tVU3EYu+vjmIzqhDrRDlrXfCCAKR4Brd0ROVXMa2qL/LgP6XrWlHOq1BS6CLNS42Fv9xc+7f9p9vfwNB98hGdvQgcv4w4j8cwabn+lCvMzDm+1NMXxXBZ/sSzG0fL+eUs/lCFkPbueFhLwCeLr4OPDswiOcGBlGr1fP6phi+2J+AwWDEYNSjlK4rDdM3loY11W1pag2LpEyS3VX7eIVMcUfZiXaedvw+sycz+gYAsOZsBqOWhJNf0fJ3GY1GZq+N5ImVEczdEE1FnZYZqyIY8tVxPt5zheN7N5L13QiO7t/KC+sizaDMpgtZ5FfUs/rstX86i7XxfAaLDyQS4GxldtJBaP7sjctl0JfH2RmTYz7fhgA1Ma+S0Z082Gui9ANM7O5DWmE1JXfZsrGiSUbrdveloexPorEEws5Sycx+rTiXXmK+1odN2fiRHTw4nVJMQWUdF5p081m487L576Q70DUyb2Nq37z2gbVYKa3Irmx0PBpKw5JKGwGptLK0G4ChU9mn6L6mO5eLL3MnZm2hIMDZmoS85voZkRmlnEm9eaYjrbCaQBdrFHIZZEbAT/35OHsmafP70jvQucV9egc6M29kWz5/uDND2riRnF9FXFY5D3x3kjc2x/L90RQKKuuprGt00uasi2R9RAaf7r1C/0VHWXP2Gsn5lUz95RxPrIwws/4abEe0GE9N2/ZW1evMzvP14thXcitaBBb2xeUy5MvjZJU2B37rtHr2xLZc1pZfUcfJ5EL+2LaL9frXCZKJgMP94POolvWg257R2H7th+z7LvDbAxw/8o/pPGU1adubVnhrRtCO6GwyS2qoqNOy7lwGyQVVnEgqZP+l3DsWOtQbjKQU3L0+181s04VMNt1FQL4jOgcnaxUKmcSmC5mEfXKYw/H/OCMm0cTua+gKeOkeacdcLarGKGmwUVkR7BCMrdKWC/kXbtjueo2gktrGuaO0/vag1ND2bmh0BladvnrL7Wb9foE3NsXc9ngN7dp1NI71W5WrDWvvgcEIs/64QExWOXM3RqOUS/QLFoK6m5oAQSeSCvls75UWAfGm3bwa1kCFXIYka5J5NejNpWG3A4K87NXmvzc+24deTeahvkEueDuob9kqG/49zMF/xt7ddoluHx1i7A+nWXIkmSdXnWf12RuZlv8OW3oshTVnr7E1KptZf1xg4k9/ceByPmvPZXAl91+v1+Rp8ve+PZzMyeRCzppEm2+X5Fp7LoPXNsWw4Xwm9fo6lDIVkiThYOHQrET7TqxfaxdsLBRmP+deWIPO3mM9fYlIL6FWc3fjtajaBNxIYp1t7W5j/qxBoB1g+soIEvIay9pa8lNbu9mQVVp7z0Dpf9ZqNHUYTeWm1/vpWoMWS/mdM4IazN5KybD27qyPyGDV6fR7xpb/2/67rErTuC5pDVokSeK+YGdOJBXe9TP4t/1v299A0D00J2sVVioFYQFOOFmr0OqN9LkuCJ32awTF1Rqm9PIHoxGaZMN7tXLCzrJx4csuq8Vo1KOQWhaL9isXwUdDJ6em1rCtrcr2roAgtUJ9W7HopvZwNx8CXa357rGulNZozRmhwsp6fjmZxrvb4qio0xKVWcZJU/C7/3IeL62P4nhiITP7BvCq9X4eiX+R1lXn+dJqNQ5KPe9uj6NGo+OXU2k4W6soqdaw/1Ljset1eqIzy8gsqcFoNHIquQiNzkBlnZYzKUXkV9Q1KzvRG4y8uUVk/hytVWY207Te/qQWVjN3YzQAL62P4oejyfT9/Cgvro+iul5HRkkNbdztkMsknK1VqOQyJvbwBWDj+UyOJRZQXqttsQTheke/ok6DhAy5JL89I0gn9pUkqdn7Q9qKtslP/X6e/ouOMm9zLH5OVmZq9MHL+by9LQ57tZI3R7ZtJkQeea0Uo9HI+ogMNkRksOx4CrPXivKJd7fFMWNVhFmrpKu/ACDtVHaoFWqyqhoDqtL6UgxGA9lVjUDGuB3jmH1kNgklCUTkRgAQniV0NSLzI2/5W5taO09b9l3KY31EBvsv5fHI8jNMWHaGKSsE2LL0mChZSy2sMmcT04urG3WBEveaTjId2XehcHY51JWDrh6SDkD5jZm01u62JOZXMmNVBDJJYs1TvTj15mBeHBIsPncTzunu2Fze3hrHz+FpFFVqeG/7JYZ9I36jXCbx6p/RZBTXUKvRU1ajYVULpT6DFh83s8wS8ys5k1rE+ogMjlzJZ9SSk3x3NJnFBxI4lVzEBzsvE5lRyssbokkrqqbfF8f4cFe8ACnTTnBs1XzeXXeixSzQyxuimPZrBE/qN9NWlknRkC8ZxQ8s0U0AoK0sE7WkYaNuEAD1J39Af5caFhevlXC1WIwvtVJ+y2zsyeRCXt4QzYIdl9hyMYtarR6ZBDNWnee5NZG8vEGw2bLLam9Z5/7BzssM/Tr8npXVvLE5ljc2x1Kn1VNdr2P/pdwmbcQNJORVEJFewrilp/l0dxzhSYUMb+9OiLst59JLKK7W8NKGqH9YQ6oBAAv1dcBKJb9nXbAS8yuRZBoc1NbIT31Dd1t/zuedv2G7BjZowzrRtBPRnWiQ9Al0ZlRHD5YcTr5pGVZKQRWHr+Sz6WLWbRlgGcW1SBLU6qvNWij12puvYZ187M2svyBXa+q0BvoFu7BmVi/eHNmWyzkVFFTUsSM6m+krI/gpPI3vj6bccJyqeh00lIY1Ccy+mtzO/Hduda6pXFuOpcLylmurTCYR4m5DzwCnZomHBmvlYn3LUsrqeh3jl51h6NcnmoFB5TVa1py9RlZpTbMgsKRac9elRvfCUgoquVZcTW1dPZqoP+klXeHxTjbsnHMfCrnE/O2XSCmo/Ld2qyqp1rD4QCLzdzQmJBpAa6Vc4ufwf305UUFFPQNDXFEpZMxeG8keExMoIa+yWUn39dYAWm6PykZjrMVCJsrD3azcKKi5O20uS6WccV282Hwxi92x9wYMSiuqwttBzYRuPtTrDIxfdtoMboMogYtIL7kpYFFSK7Y1IMZ4iIl57WprQcS797N99n0sndKNijodFzMak0EtgSfBpnX6Su69SxT8M1ajqwODSQeoCeveaDSiMzQygu4GCAJYMEZUICzcFU9U5r1hkP5t/11WXX9jR7opPf0oq9GyNerOWbB3Yzq9gaMJ+f91LO6/7damuP0mf9ttraYELO1BJje/NW9EG9acu8aKJ3ow4ttw8ksreVGxlXSDJxbdp9A/2AU2PylKMoZ/AqGTUMhlHHhlAAt3xrP/ch5fHUxEZ9DjSDUVyNDUCwe9AQgKSTwMbi5kFFzCwcIBuUxuFp9rWFjsVHZ3phFk2t5KYXVXi1InH3uOvjYIo9HI4gMJLDueymf7EqgxIdL+Uh5JF4/g2uY+wMj+F3owctlFjicWMqGrN/Pb58PFPwDY7ziFkaXr2OGynAEps2m/4AAAy6Z24/N9Cby8IZrqej2LDiQQ4m5LRHoJjlZKlkzuyhMrIxgb6kVeeR0RJjZMkKs19moldVoDAS5W5nOeMziYvkEutPWwZWIPX06lFJFeVI0MA+tVH+MXXshpzXPsju3A4739Aehg0p45+togkMBCIcPdzoIv9ieYj+topeS14W2YFOaLUi5jR3Q2L2+I5udp3RnewQOd3kC1pg61pMRScWuhUWgsDZNdh9e29bClnacdl7IbA7bHevrR0dsOmQTvbb8EQL9gF54fFERaYRWbLmbhYKXkYHw+KQVV/P5X8yztnuvo6T2s8hkSBAkJIvPd4LCAAAsLagp4aMdDNzCAMiszmbhrIgBx0+PMQrTX06JvZcFutkAeb29tpOy72KgoqtIQnlRIeFIh8bkV7InNxc3Wgt0v9SO09BDva7bAV0BlLvj3gyHvwoF3Yf9b8NcywAjlmSBTwOB3oP9r5uM3aAsVV2vo6G1Hv9aCTTCjbwCWV48yS7mf875DqG03kVUbNuLZcQALxnYm9MODAKx+qicBztY88N1JZqyKQG80mrWklk3tRlJ+JQWV9fQNcmbBjsvUaQ3MGRzMD8dSmLLiHCDGFIiMMcDSY6nI0XPyr9NojN681U3PtbxiVp6GsPqzjLj8OqOMetqoPNiXHExfEwOiwfIr6lGhZaAsFkO36bgMeJrQwli+Oe+E1Ko/L/Z1pVwjManzAySuf5MRST9x6re36Dn9c06nFDEwxBWZrDkImWJqUdqvtQsJeRU8vPwvbC0UqJVy7gt2aVG3IK9ciGQ3MEYKKgXDr4uvA88NDCQqs4z88jq2R+dw3+dHzR2oJvXwZe6w1lTV6dgRncOrw0LIq6gzMwwS8irMnaO0egNK+d3lNV7fFGPW6wBRtrczOofDV/LZ9kJfQn0cGPltOKmmgLGvVRZPFXxKd0MwVq2+JcdEnHl2YCC7Y3J5c0ssh14ZcANwezvLLa/B2ikWG4uRBLpa37SD5N1aUn4VkkyDi1IBRz8ixMGecCdH9AY98iZrVQPw3wBqVGkbgaiyutsDQZIkMaNvAPsu5XEyuYjRnTzNnxmNRhbuiue3M1fN76UXVZNdVouDWkVZrYbMklrGhHpia6lEozOwOzaHQBdryrVV+Np4U15fTv3aR+Dpk6Buucxz5fQwCirr8XZUM2NlBI/19ANgQIgLX+yHt7fGcaSJoHUDcLoiPI0fT6QS6GrN+aulWLcW61bTNdDbsfFaVWgqRAMHSY5arr7tHL7v5QE3/ayVizWrz17j1Y3RuNpa8NrwNqgUjWP4YHyemUm8+WKWeS2atvKcmYUxoZs3Xz/ahfNXS3j0p79o427L3pf6N3tuy2o0OFipbnmeMZlleNpb4mZnecNnFXVaLl4tZVAbVyRJorRaw+64XKb29COrtJbRS06h0RuY4xrFd6ofxE7JQJ8drJvVmzE/nOLB709RpzVw8JUB5kD/ejueWECtRs+oJuPnXlkDWO1opeSZAUF083Ng0s9nAXhmQCBLj6XyRB9/uvqJLp1743IF42JGmGCZ3gPLVWwgR34SV5sl5jku1MeemKxyTqUUMr6rT8v7VRZi4bGNiGsPovatx0ohfBkPaw/Syu8ewFowpj1RGWUsPpDIyA4e//TvSy0qxcUtnbCAITzW05f1EZmsOJnGlxNDATidWsS0XyN474F2zOofeMP+ZbVivtGbgtlgVxueHRDIpDBfrFQKuvg60NHLDguFDJ3UCIi2lLDs6ueIWinn5Q1RHHt90F2vCffa6nR1yLDASF0zRlADKHS3pWEN5m5nycG5Axmw+BiJeVV093e6/U73wMprtVgqZVgo5Lff+F9gJdUatkdl82iYbzO22P+iXc8IAujZyol2nna8u+0SZ9NKMBiNvDAoyNxE5Z+1z/Yl8OupdH6f2dOcTP/b/vvtf/tJule2JFSwDXo8CSM+hdSjTA7wZXJPUUq0/une2JxZhOOF7WL7B96GulK4vE283vYMxKwHXT2eBh1LfPuyIjGdFdEPYB+ix70qjVwLJbXpx6H3O2YgKFgjHv6MU1+w3OUP3G28WDRgEdA4Mdgq1NQ2pQ8XJUPZNQge2uwnmBlBcgu09XdPk5YkiYkhSraeS6TG6ImTtYrPH2rDoN1zUNWXEJkczEjb1rRd9wK2fIWEkYXZsyAlB4NMxc+tvmHG5Mcgsgt+++axPcCLSVcfpB4VIzp4IJMk3tgUwzumev4GPZfSGq1ZT2lXTBYKDAwK8cDX0YodMTkUVtbjZK1i/6U8hrZz54cpXbFUikVssilYeHVYCDtjcvjIPwaPYwLY+Vn5NS9qX2TjeW9kEoS1EgutvZXS/JvXPNWL9RGZtPO0ZemxFK4W1/De9kvUavQ81a+VWfh1zbkMhnfwILe8DmQ1qOU2WCikOwaCuC6ulCSJLc/34UxKMX2CnDmSUMCIDu5YKOT08Hci4moJk3r48v5YkTVa9Ehn5o1sy8rT6Sw/nsrJ5CI6edubg/aJ3X3YdDGTeT0tyNQ7kxu1j98Mi1gU4YSVowsKmaIZEDTQZyBnc8/eli1Qqak0l51c3zoVAIMB6ituCO6e6tcKVxsVF66VmkurDr0ykHqdgby0ODK2zmf7pfuAbhRU1rPqcAxfyZciqzdCQ2J10Jvg3xdm7odLW2H7c6aTfxOyI+H4F9D9SbAS9/WBTp5YKeWEJxcyrosXlGVC1Gqcc6KYnXsEjHr6SSchfy3DFIng/T5YdefoawOxUMrxNgESzw4MYvEBIZ7ev7ULg9u4MaqjR7PguK2HHb+dSefpAYGoVXJ2x+ZSUFRMsVZJ/9YuZuZcNz8HlluvwD19Gz932cIz0Y8ARhQ+3zIkbh6xxgB22Uxkfs3n9Dz/KhX+76OL38V3CXZMfPJVNDoD4+WnsJHqoP1YAD4Y2wFvBzWPht2PZGdJw5V3GfMh2xfF8VDmT0QsjuPJ8tm8O7o9nX3szUFovc7Aoz/9BUDs/MHEm0qYKut13O9cyjPGYzxWdB/5FXX8HJ5GdmktV4urzcLmjqZnp6Ft9lcTQxnZ0ZORHT3RlOXR1kXJucwauvg5sCc2l40XMtkdm2MW4XewUjYT01+0P5H2nvYk5VfyxMoI9rzUr5nDk1Fcw4sbovCws2BSmC9D2rqbP6uu17H5Ou2YQ/H55jLLowkFlNVqzSCQLTX8avkt6poyRsgvwM5+9JNkHBz0G8NHtCXEzZbXNsVwMrmIPkHOpBVWk1pYxQ9HU9j8fB+sVAo0OgNRGaX0bOXUDCyKLN+BzH0je9M7EuTqw57YXKb9eg4bCwXLH+/O3VhBRR2bLmbh52TFqeRClJZabKoEAOKq12MwGiipK8HVqtGJa2CPNujwNO0sdielYQDd/R1xsFIyZ10kvVo5s3JGGGqVnB3ROfx25iq2lgqeHxTEov2JDPnqxA37f7DrMm+NbIutpYLkgirGD4nhcG49zno9KUBdTT4c/Qge+KrF73e0VuFoLcCOzc/3Nb/f3tOO7v6OZhBo38v9WX32Grticiir0fDt4SSqNXqKTSW+kiQA65t13azSVJmBNLVCfVuNFrmsBVAw+TA4+uPrJOaMrSatj7AAJ4a2bxyjEekl2FoqCHG3FUF7Rw/KajTEZpUzoas3RxIK2BOby0fjOrJofwJGo2CX7IzO5mRyAd0DXNAbDHywK55jrw3Cz9nqxnMB1py9JpiN7d35eVp3zqWX0N3f0RxE/3wijR+OpTCjbwAavYFdMTlU1umwtVCwIyoLb0M2eht3OpYdh6bx4Zan6TDhF4ZbxhNX504uziw+kMibI9sQ7GZLbFYZcplEBy97NDoDM1YJttrF94Zy+Eo+g0NccLO/8ZzLa7TkVdTRxuNGQElvECXdSfmCLdrL9KxdK67Xnz43AAAgAElEQVRGZpnJ70+Np7O3u7l719P9W/HCoGCWHktl/LIz/PZkGIPauLH23DVOpxRzPLGw2T35R61Oq8dodxKAXoF2bI0UY6p3kDNFVRq2R+XcFAg6W7YaleM5qAtAktVjoxJglbu1O3/l/nXX52KhkPPqsBBm/XGBBTsvc1+QC+52FvQIuHswwWg0cpXfkORRZFYM57MJnamo1XE6pQij0YgkSY2lr/uEb/Xkfa2aPRdl9WKONcsZyCTeHt2u2fco5DLaedoRV9oImLTkP3nYW7J4YmfmrIvipxOpPDMgqBm4+n9t9fp65Fiio7yZD2T2t5V3wAgqSYcrO6HnM6Bs9MN8HNWolfJmGn0t2bvb4vByUDN7cPBdn7/RaCS1sIqCinpUChkvrI3EyVrFrhf7/ctAtqT8SrJLa7FTK5oBXLticnhzSyw1Gj3rIzIY0taNl4e2xkr1nxvG5pTVsu5cBo/18jP7iPfKarSNLMKG8SRJEo909+Gj3fHsMpV/RmeUcfqtIf/09xkMRnMSLjaz7I6AoE0XMrFSKXig870H9/+2e2f/uU/Qf4sZjTBkPuREwrkfxT8ASQ6zDoN3N3zt5HBlTeM+n/tBK9F2l1lHIfkAxO+EqjzQ1GCRFcEcBYy1S+FVSwWKOj1WkpoNmlym5EWiMQFBvj59UEmZRFRdJdJYQLuSNKgtA7UDWr0WuSTDuiCRWn29CHwHvQl/jIOKbPC/Dzw6QedJ4N2tcWGqKqC+vhKOfQoD5oH8uiGSGwtRqyFucyOzovOj8NMAXipO4VkLCzbdf4LJ6vMo8s9AfQnnpU6EyeLopk0BLXwRfJmT6RXYViRDp0eRtR/Hc+0eFMcPexoKE+hyYSXb7JOp7PEicoyM7OhBqK89H+++wrAAFcWRW0nOKyfZ4M1faW34rr+OfrFv41SfDVkKqPThjSlL0Xv3xMFKicFocsr1OgFASBKUXgWnVowJ9WJMqBf8/Dq1jm0ZnDubX1VfslS5hAei3enk0w57dSMAhMEANcW0dnc1U3Qf6e7D90dT+Dk8jU/2XiE8uZCYrHLc7Sw4mVzID0eT+fpQEirvWhwtHTBKmtsCQS1pBDWYlUphdlDHhnqZ31/5sDe1G+Zj2/sbLE0LpAS4lkQy2V/FcoxMlh/jHccCZuR0wyaoF58+1I5X65fhGbuB4qAJZClEmVyVXIGNXgsFCTQsYQ4WDvRw78H+q/tvee4ACSUJZiZQlaZJuYu2DmpL4ND7kLAHpu8Cn8aA116tZFqfAKb1CeDA5TzqtAZzkOd+8W26yM8zWhWNfuYhxmwoovDCFmRKIzPa9ae9d1fmtX0CXFqLgyksoMtj4NcLcqKgwwTIvwQ/9oOYDdDnBUCMjaHt3RkaoITDH4jxra0GBz/oOwc6PiIYfJpq8AyFIwuhppjALlPBoVEofnxnV747EMdDPYL44pHOLV6XYDcbPn5I6MHMHhTE7IpvoHQN79m8y5tTX6HTBwdRyCS2Ph4IXwuw+JnCT2koW/moaC5IoH3oV97sFErpkq2EVcbAn6Lk6wNg54Y8KsuGMt9uG7j2gCDhCFgq5bx4f+sbzsnZ1pI2T//Opt9eZGL9fg6qrvHs8Y9Zig1lNVp2ROeglItx2EFKR7Z4FjqvOSjlXVErJT6v/xjXq7k8Ky+h16ctZwtLa7SEBThy/moJK1Vf0U96GpgCBj2qJe15zrUNzz1/BiSJgSGZhCcV8ldqMdUaPXL0fLbnElaWFpycN5j+i46RkFfJw8vPmDUl3toSx2cTOlGn1dMjwImfwlOJySwjBlFu1gAEGY3GZhoZrd1ssLJQmB0nZyvlDaVD4+UnUdfkwMwDYOUM8duRjn7MiIqtII3jwVBPPtuXwKrT6ZxKKWpWanIuvYTBbdxYdTqdz/YlMK6LFx+M6WAe0yX1+aAUHYAGhnRlR3SOGQzMK68za8ndyoqq6jmaUMCPx1ObMYpc2utQV4jf5aoXgci0fdP4feTvuFuL69GgPdcwH1VpqvCy9iKnOqeZXtCtTCGXsWpGGPsv5/HTiTSe/E2wcg5dycfDzpK/3h6C0QhFlRpWnm5kETpYKXlmQCCnU4r4cHc8AK1c1RzOXS/OvyIfZFDX9kE4/wu0fRCCBt/ROYFwjDc/14c//rpGQWUd7TztaO9px7pzGXxzSIBAn4zvyLvbLvHDlK4sjDVSpwdt/HbQ20KrAc3m6UptJXqjHpkkE6VhtaVQVQg2d5Adjd8Bfz5hfjnLwo62931Ez5HTCPvkMPsv55nn9PicCtZHZDKkrRtvjGjDqCUn2RvXqKM1b2RbJvf049Gf/mLc0tOkFFTx/pj2HDl7gbY7RxNgUDAt6m0qEUDK2bRi3OwsqNXozeOuwXaawPbwpEL2xOUyZ11UM/ZGrClh0JTVBTB3YzRvKdaxymI36AA51HZ7GnWfp4WPcOZ7ZKvH8jNw3iqU732+5FB8Pofi83GxUWFRlY0GBVvnTaD/omPm4077NYIOBTsZafEnhY/vwjWw+Tz6zOoLnEsv4ZPxHdkXl8fqp3qagdXpKyOIySwDCSrrdHw4rgP3t3MnuaAU61ZLWXLpAr96/4JCLiPp41Eo5ZI5eNp8MYsv9ifS3d/RnGjacD6TDt52qOQynG0sbn+PTdYAgjRYQUVj0DZ3hC9P9w/hdEoRj3T3QSWX8cOxFOZtjmHu0BAzy7HhGLVaDcggrJUjkeX1qBWizNDDyoNqbTVVmipsVDbcjQ1t785T/Vrxq6l7qp2lgugFw29ggN7OCivrwVqU25VryvHFl/uCXdgTl8uE5WdY8GB70oqqsbFQoDcY+XjPFRQyiSm9/FEpZBRX1XOtpBTJqXEeupl9OTGUHSmZ/GaSVGpawtrU7jfN818eTGJLZDaTw3yZFOZ7S1acTm/gjc2xuNtZMndoa3Oy8GYWnlRIr0Cn2zJjNPp65JIKHbA8ZjlT203F3sK+SeL1NkBQdRGsGiVYzlkX4KFlIrZQWSGTSbR2t2HV6atM7eVnYlJf9/06A2vPiU5uxVUa5j/Yzjwu67R6Rnwbzsz7WjG9bwD1Oj0vrIkks7SGV4eFsPZcBkGuNjc89wWV9Ty8/AzbX7jvluOlsLKe8KRCHgz1xEIh588LmXTxdbgpIxDEfZiy4qxZIHzmfa148r4A3O0seXF9lHm75IIqkguqKK3RsOiR0Jse799pBoORRfsT2B6dw9bILHa/1B8n6xvHYHJ+JWlF1Yzo4HFXx6/WNOmg1yRxMa23P262FiTnV5KQV8nB+HyKqupxuYv5qyVLLqgy6+h9dSgJTwc1Q9q6YaWSt/i8lFRreGNzLACjO42+a6b03/Z/Z38DQf+sSRL0ekb8be8L4Yug6zS4tAUifobxPwqQp7oQJq+H+O0QuxHST0D7ceDdTQTBg98Rx9DrxLYZf+G3+UkM1R7ILe2Z7T+C9zN2k/zHaOqcfJAURlRtRuFXcIgDRhG0FNeXYtz3FvrKbHQ1qSgtJaz0BrItbOD4pwJoqjDpo+TGwrXTcGUXPH8arSlrrK4to0ouhxNfQEE8DHobMs+BXCW0VvJF2RHtx0FFLux5DS5vheIUUFpjoa3m8ZTXxLEBbDxI7/872UcXMrqDC6rsc4wqWc0IBxmoQ2DCz+IaNphMBg9+A46taH9oPpyeBaW7oOezePr3ZWmvUtgySwAJJmwmSxWIz/k0cf17vyUC+Pgd2P35MAz9AHo/j9yoh0vbYfcrAsAy6IRuTNfHxUH8+kJOFOqRn/OSNIi9Gb68kjCFr2x3oRn5AGllaQTKLCHtOESuhsyzMOIzwbTIj0eqzOElTTxP+SeyL11PVFoQr97/DI/2bEXvz47w5UHBZPB3kXC1sqdSU0mttkaUFaodm18Dk5lLw6QmmZfE/QLkcA4Sr+urRJbIVOphE/4RNsXn4comcPEHSQZrJkDmOfwt7Nhj5UEHQxKkwFaLnRiLnZE+q8DT5Ig4p27FWQYnOn1OpXEvdqVJsKwXVj6tQQmWcgvapd1ZG/WZB2YS7CCyUCW1RVCQABhFMFTUyOzg4LuCudNgRiMc/wxkSs689XKj1lNmBFLWeeg9G8XFVShW9GOjfXvi5RJlchcu1l3jYuo15vR6mxvyyE6B4h8IANS7B5xbDoGDxHhwaS3uwcVVEPk7uLSBKRvBqVXjMV68KP4vSYOfBsFfP8CFlTA3Dqxd4MpuvA68TZy3FbIHDoFBL66/JAnwS1tjZiABkBcnrkWJAA0+lv0MxfdzYO4A1Eo5RJnKLNw7QfZF4QBO+VMAxy4hhHXtCoBq2h8UH1tKTdJxXqqdxUTZCaZUbsRPdR5rTQk8sLnF8XW9tfNzI3rYZxzfm8sgeQyTNZv51jiZHx8JQXbgHRxk1QT3HUz2mfXYUMOjOYvY7bSCbwLP4xwjSgufVh9nWdU4GmhsPz7enc0Xs8xMm/kPtudaQiRDTkXCzufBq5NgaBn1Yr7Z/jxUF/Goby8enfwaRkki8/QGHI6+hZ2hjLOW/fBVdeNdh0NkVBrZWDbYXGYRl13Og9+L7mevDw9hS2QWk3r44u9ixaL9iTy3+iID27jy2Y4LvC39QS+HyfwxtS0WXh34cGcsMZmC2bLK8TeKks9zxvp+vAI70rHsGPbZx8ChHfj1FhdrwBvCST/3I3zVFouwWUzvPZavDidzzCQMHuhqTVphNaeSi7iUVc5XJjbTjugcLBVyZvVvRbCbDTUaLShBLpMzNtSLVaevYqmUcf5qKbFZZXjY39pBrNPqGfntSYpMrey/f6wrBZX1fLw3Fo2xCseKchjwBi45Z0F/jeyqbH67/Btv9nwTaCw1bgA8KjQVeNl4UampJKNSBBHXl5O1ZF39HOnq54iHnSULd8Vz1tSZ6KEuXkiShCSJspRpffwprKznUnY5T/TxRyGX8WTfVgz9+gTZZbVM7WvPEtP0EFiWB04O5IYMhWsXYfdc6Psi1JaCb29o1f/GE6krF0Bu+3Fg7YIETO8bAGUZELeZCVHLSFO0Z+Vfo+jobcfUXv482NkLe2Ml86PEtdBVF8CBt8HSgZpRC8yHrroajqE2HzkSttXFlFfliEBt0hoBOjedL5pafVUzEIjhHyM7+B4DKvaAcgbD2rlz+Eo+i/YnkFxQZdb6mdrLj3aedrRysWblqXSyy2oZG+qFh6wcdzcF47t6szs2h3dGt2VG7WqerDQxpmSwUPkbr2pfwNZCwaEr+fx25ipJ+ZUEu9mw4oke+DiqeWb1Rc5fLcLP3oKMci1z1olgq6EkzWAwEp0hysJSC6uYHObHwBBXVi/7iHbSNR5RncXg3B6ZlRPUFKEe9q5Yz4Z/LEpvkw7CuR8Jy4lkWbt4PqqWkOXFMKo+ggGWcVwx+HHs6+2ctzjHt7pHyDa68GbxetopM8EAu9Z+QKuZq9hy4RoaPRjA3OXz3W3CF0kuqCLE3VZoBTZpnWxnqWDBjsss2HEZSVGOTWuILmgMJpsyRT4c14FajZ6D8XksPpCIVm+kf2sXDl8RLEF/Zys2PNObCcvO8MXDnRnQJBteWadFqzeag7yPdscTl1XO+md6IyEEyn88kQomPFdHNe083WnnKcqRnx0YRHxOBX9eyMLFxoLpfQNQyWU8+P0p1Co5BYp6lPYwLtST1IsGAhzFGtIA5OZV5xGsaoHtodeK58DaBVoNEOOzib0zuh3WKjnxuZUcvpJPYn4lcpnE5otZZJbUkJhXybLHu9HWw868z+H4fOytlISZ2EOphdVmMfUGhvCYUE++2J9AVEYZH+2OR6WQEeJuw4/TujPkyxN8sCueqMwy3O0s+Tk8DZVrLRY0Jr5uZsFuNngUCzDb08qD8pyLcHoJ9JnTTJZBrZKz+JHOHIrPJ7O0ls/2JbDkSDIn5w1GIZdhZ6lg2fFUDAYjL97fmrIaDe9si2NvnNCgTCmo4pfpPW56HjGZZTyxMoJHuvuYy990egPZZbX4O1tTq9FjMBqxtlCgNdajlFmYicoJJQn08uzVTJMTYH3CeiQk+nj1afyiohTYOFX4iK1HCFbQlZ3gFAQPfg3hX/KpTslkpjDy25OEBTgxvIM7M/oGIEkSV4uq+XxfAqFSCnIMrDwNk8J8zUy61MIqrhXX8P7Oy6QXVWOhkJmZk8+tEZqOJ5NvbNAxrbc/q89eIyqzDF9HNW52lry+KQZnGxVvDG8DwJnUYl7eEEVpjZZtUdk8OzCQeSZQIOLd+3GzbTm5cTathKIqDe52FuRX1LPydDorT6fz8zSRKOzu78jjvf14ZaNoOrDpYhaP9fQzl3T+qy2/og73FspnW7LZ6yLZdymPNu62pBRW0fOTw7RyseaLRzrTrcn5Prv6ImlF1fw+syf9g104dCWf/q1dbst0qtHeWBoGYl4bY0oOn0ou4mB8PmvPZtDVz8E8bx2Kz2ftuWs80MmTA5fzeWZAIHvjcpn/YPuWWazAeZPkxlDTWvW6qfHDjL4BfDC2ww3b/94EQJyy4hyrn+p5z8psQcgBXMoup72X3b+tVPH/F5P+zaJP/38pThlNGiT2vsJhvfib0CopTgGVFcy5KICOmhIRBPr1AcUtavfXP8a4qiiCXTvx1pCvGbJtNO9ZBHCx+DLRlhYcfPgAnyauYX3C+ht2ddIb0EoST7WbxreJa9hr0R7fhP2gUMPzp8HWE1IOweanQK7kT0sZH7k4cZ+lJ6kyA4c8H4TD7994Tm1Gw8B54NVVOOMrhoiyuE6PwNCFsOZhSD0C9n4QMgJ6P98IWgBknodfTWVpE3+DDuNb/u3aOlg9HjKagA4encTi6OgPVi5wTQR9RqU1Uv9XIewp4YQClF6DjY9DXix0nwFpJ6A0XRzDvaPIzl7veHh0ghl7wdLk+Bz5EE5+xUvevhxTSURkFaDW1oHKVrBCrl3XclumBMcAdDVlKGoLhfPVYQIHCuxYGOPA8se7szByJj7FVynRVqE2woq8fAgZCaMWiaAyZj1Yu4GVM39YKVhcfxVHuSXhk8IFYLDcVPYQNgvUTnDyS+j0KKisxf0syxCAgVEv/perQFcL970Ml7ZhLM+kfvACLMNmCFCsvgKMBkASAFzcJnBtA+3HMWv/TDQlqfxRaeRS8RUe8/ZgvGTP/LQ4urXya/m+mayXbSDnKhtZEffX6fk21wRCKq3BwkawbNSOcOxj8VteuSR+x9kfYb8IUlGowdZdjLHKXDFunzstwMmY9cIxAqq6TKVPuaDeL71/KQN8bq7NAYiyzE0zGl/7hInx+PtYsHFrDky1ZEUpkBsNW56C0V8KIOmPcTdu59VVaIDtfkXMDW0fFOOsrlwwHOrKoP1DImjd+rSYQwL6ic9zoyHofgFIZUcK1kEDmHUT0xuM6DQ1VH7VAxdtDobAIcie2Hbr39LECivrCfvkMEfsFhKkSaRM7Y+Do7NgPJpMa+nEaYuBDCpvctzQx8R575hNbbtHqBj5PWW1etp42GLU6/h6TxR9pVj6jHhMAG3732r+xTKFKOVLDwc7H6jIEuWrcgtI3INBoUbWAoOu3DmUNMmP1nY6jpZ7ISu4jCOVrNYPw1aq4UOfi1iUpbCpuiuZRldW64cxVRXOPNmaZscxSjLW2c5k2IOTcFs3rOWLM2oR9Hq28bW2TjDDzi4TL588zFNHjIQnFbJkchfGdfFm5m/nOdpEm6ZngBPZZbVm8MrZWkWV3TpUDhd4vcfrTO8wHRDgTof3DzAu1AulXIZcLvH8wCCqNTq8HNTYWSrZEZ3NtqjsZh3pLJUyLi8ciVwmkVCUwsQ94/m0sIgxk3aQU1/GiNNCF+vp4Ed4qcdrkHqUsAsLqDPqCbEP5N0+7/PxuY/xsfGhuK4YC7kFs7vMZsb+GYwNGssn/T65ychpbnFZ5Yz5QcyPXzzciUlhTeaLynzQVDVfFxA0+tzyOgwWKcw8MBOAN0vK+d7Ng/GtJ/CWcy9Y9yiYStmQZDDmO+g2DXQaMdcn7hNzYoO1f0gwAQMHNbL8AINMxeLQfQztEkR3VSZsmIKxPJPOpnltbKvRfOIYBttfYK21ks+dReD7VnEJ6UolB62tmFxRxXJHeyLTM0ROQpLBYxtAVwf58dDvFVCagoajn4gkUfuHxLoQ9pTQLzv3EzwbzuE8S2atvwKAHVVUYM3coSHMHSpazn+29zKbw2OYKj/Cs73dsL64HDBi9Aylps8bWF89JJ4r4A/146glHRNrNnBp3AGWXlayz9RoIdjNxizo7uukJrOkljnybbxiuZMV3p9wzaE3+y/lUlqj5aUhwRxLLCQtO48VQ4z06dMfydYDyrPQLemOwmASK520BtqNEUxZWQuOfnEqLL9PrEMmMyAhu4X7p3Vpx54CFx6SneSCIYSOUjpXjR7M0r5GltGt2bYfjuvAE30COJFUyJNrduPtYM2vU0eh0Rl4aUMUaYXVyCxysA78DqVMSeS0Jo0L9DoxJiztOZ1SxNRfhF7bw918ePn+1gxY3MhU6ubnQGRGGWNCvfj+sa7m9yf99Bfn0ksI9bFn9uBgnll90fyZlUpu1ku0bSfmvDWj1xDqeiOLYcKy00Rm3Fhubem1EaV9FO/0eoclkUsYHzyeN3u+SdypRUxJXc3cbnN5qtNTN17E9VMgsUknyBGfQp/ZN2yWVVpDvy+O4WilpLSmOTNlai8/nh0QxIVrJbjaWjDtV9EE4uzb96NSyNgWk8K3yZMA+LTfp4wJGgPAteJq3tgUa9ZrbABNDsXn8/QfzTsXBrY5SKHsKBIS0U9EN098NVh2JLi0ZtmV1SyPWU6YhRua8kzW5OaDc2uYuqlFEFY0xsjknW1xZnH2V4eFNCsxVsoltHojE7v74GFvyfdHU1g4tgPF1RpeHRZi3i6vvI5qjY4566LMXeaOvz4ILwc1y4+n8s3hJHa/2I9vDydxLLGQsaFeHCmfj6Pamrf6TWde+DwWD1jMyFYjKawpZMimIbzUZQ7fRf9g/o646Y26iKybJNbDh38V/snSnmDjDoVXTCduBdoacnu+x7DwADapFqJBiVWnMWyxmcKaM6mMNxzkI+Vv4vyNjqS0fZ5+j71JXnkdf6UVmQGVBusd6ETvQGf+Si02A66rJrchTHUVTVYkdVmxeBSeYUb504QbOpvHSAPrKNTHHoVcRkZJDfZqJT38HdlwvnlHTidrFbMHB/NEH3+Uchkbz2fgZmvJ4LZuvLc9jq2R2Rx8ZQD9vmh89tq425JVWkPUguFIEjy3+iIPd/fh/Z2XKa/V8tXEUFq72xCVUcZDXbxRq1oGBhrYwHtic+ngZc/LQ29kRzc1rd6A3mDEUiknMqOUCcvO8On4Tkzp5UdJtYaXN0TxeG9/Onrb4+2gJj6ngosZpUzp6UfnDw6gMxg5OW8wueV17L2Uy7qzGVTW63hhUBAWCjkXM0oJTxLrt5e9JXOHhjBvSyxe9pYsndoNe7WSF9ZG8vnDneni64DRaOR4YiFd/RzYeOkYP1x5HYAv+n/B6MDRN5x/gz/XYLvm9KOsVsPcDdHmcuimtmpGGIPbut3wPsDstZGcy77EgTljWX2mwKxlGehizbyRbfF1UptL88trtfT97AidfOzNCaHRnTz4+KFOzVhRDfhDA1voz/OZRFwt4cuJoRiNRo5cKWBQG9cbAKRVp9NZuEswiKf38eetUe2QJJBJ0j0rBY3LKmdbVDbPDwrC1fafY1P9h9hNs8F/A0H/KqurgFNfw6lvxOubLMK3NG0tD+6cQHvXTnzS7xO6re7GC6EvsDNhPe0sXPh6/FaOZhzl5WMvt7i7k4UDG8dsYsSWEQTaB7J2xCqslDbNy72yLsCZ7/k87wRr7W0Z5j+MyPxIjk88CusmikCs17OC+TP0feHw3cqMRsFosna9OQshP16UZbW9ceK6wcqzoSgRyrPg5NeAESavA9e2ogyutkQE7pYtiKEVp4rF06ADC3sY8w20Gyd+v8EgjpV/WbCzMs/B2B+a69UY9HD8MzplbgRgL774Dngb3NoJ4CJuk3Ai7X1FENBqYOO1jVgBJxZBtSkI7PcK9H+NodseoE9RJrn2ntQrVKx2HSwAoKaglI0HWLuyvD6DZY72OOn1nKizF+BARbYAF4pSQHNdbbilAzgHQ9sHRICqdhLOQpcpQjjZoBelTZZ23IlN2j0JZ0tnlt2/FBL3UrPvTaSKLNRdpvKdbxtWxK0Q27WZxMbEjeb9QvSwJSODxU4O/GEvvqsbFvyudxEg6ONbwEF0XaMsE77tKP5WWAoG1/HPwbMztB4OB98Tn3l3BwtbGP8T2DZhSOyYA4n7yJq2iVEHRRC9oM8CJoZMbPE3afQaEksS6eTaSQSIRSniHh1qAD2NMGkttBl5R9eIH/sJppMkCSdtdoRgi+15DUrS0AJ6ScJSaQNubcV4rswR48WvD4xb2ujAlqQJYLaB5ttmlGA/3OH9amZnvhfXbuhC6Df3rnaNyigl2JiJ7bUDELVWAKg9nxXAjK07eIpFumrDLNSSFkX/uY3A8JetxfP2yEoxjqvyxfjOFAEWakcB+li7imC4Ilfcaws7COgvgDErZzEGLqwU90btBHPjKC8vwe7Q60gph2Hk5+K5Tdgtnm0LW6jIolJmh5WtA/Jy4Zhi6ymeC5PzfFwfSph9OdZVVxt/sNIaHAOgwNRRyNIeXo4BTY2Ywz1DBQAX0O/Gi2U0Qtox4bS7tYc+syluNRan6hSk8MXUV5Uwu/Qx3MqjcfVryzSXZLbo+vHZBSMedmrKa7WoPDdgsL7I08ETeSn0OfHMWtjw7OoLHLh8Y0dIlVyGvZXS3GnIX8pDhY7f33wClUKGCxVQV0Z41TVmn3iF1RXQZXYMGqOO7mtEZvWx8kpGVVfTuV5DtwBfDNfN1WODxiKX5IRnhTPLewhfpG5Cjozo6TECULmyC1oPg44PC0aitk6AO9ZCsFxvMNL1nT95X7maMf17orp2XKwl7ccKtm6xtGgAACAASURBVGltKYxZIkB6gMIksPcBlRXbkrex4MwCgjUafgl+nDnV8diobFgxfIV4RurKRaJh6yxIPQo+PQVjrqkOmX8/sPMUc3SDyS3E2qGwgN8fFACuthbCvwS5Am3v5+mWLhoXjAoYxaKBiyB6Pb8cm8cSJ7EuzPEYSF5dMccqknlB5sJHumwOdX4Dj5Jr4rvKmojwe3YRz0FlrgCYO06Ah39p/LwkDX4eBHXlGGUKNhvvx9VYxCAEkFDjNxirx9dC/mWMvz2AXq9DgUl0v9VAoR3SMM4lmdAQ6TOHcqU7hqo8HJd3hj6zKeg7nx8OJzK0gxcDQlz5aHc86yMyqNPq8VLrOSl7GklXJ8b4zAOUrJnBtbwiTura8aj8BC6Uo5AM4pntNl0A2HqNYPMWJIgkw60SWgAVOZC0XyTHfMLQdp5KSr0DwWt7oTRq4LnT6LIjWXb4Cn6DZvBQWGui46Lpsk2UAca6jCag8DjXjG5M1bzD7OGh2NtY8eXBJPyc1LwyLIRpv0aYwZamAXW9Ts+amMN8e+n15kCQ0SiSRddOw1OHMTgF0fGDA9Ro9Bx9bSCBrjZcLaomPLmQBU26jfUOdGJid18GtnHl4OV8s26heZjJoJ+3HK/aZDYX+aFFwecTOvHJlQcAWFZnSf/uz7PW2oLPIz4n8vFIlHIl726LY+25DMaEepFTVoujlZJvJnUh7OeZKO2jmd1lNsuil/FM52eYo1Nj3PMqc91cCLe24nedM50f+EEwY7LOi/l003TBXHQMEOXO1YWCpTVk/g2+2chvw0nIq2R4e3c+Gd+Jd7fFcTA+Hx9HNTJJIqOkhiBXa7NmGoguhyHe1ewvF+DyvLB5TGs/zfx5amEVz66+iKe8ggUPdaO1vzcApdUa+n1x1Kz9NrjfES4UHwLg0COH8LC+jgFpSsjhEsKn3q3YXZ1O76pKUqxs2Nn5Vdj5kvAlH/3jpsPvoaWnzSw3EA03rGpzGF+9iUIc6PzwWwzt2pqk/EqGm7qAArwwKIjZg4MJTyrk+bXNO586WilRK+XklDd2b/J2UJtBfgCrgO/xtnVjw4RvGPTnIN7q+RZT200ltyqX4VuGs1AVwKGyK5yyUuNs4cjxLm8Kvyf/Mvw8EIa8J+4hCLBboRJz7/lfYcy3sP0FKEzgkjGAjrWNAOTzmpeZa32INloRLBtlCiQTC+lcj6+ZesYTnYlpffCVAcRklnHhainzRrYxl0AGvLUHMJLS9mcUV026bhZ2oLSisraO+bVT2GvohaaBmn+d/T6zJ70DnZi9NhIXGwtmDw7mjc0xZmBgYIgrPVs5mTUVNz7Tm9c3x9DG3ZZfpnZmxPyVJBt9kMvlOOhLednrCo/PWSjmEoMWzv6ILukgP9UNY3HZQBri3JYYKgaDkbNpxZTWaJm9rvE+bnm+L939HUktFOB4kGvzEstZv5/n/NVSohcMY825DOabGrE80MmT1MIqs/6hraWCI68NpOcnRwD4dHwn3tkWx1cTQ3m4e6P21/qIjGZNUEA0CflgbIcb3g/1sUdnMHI5p4JHe/iw6JFQTiQVMn1lBI5WSiqky1j5rQTg4z4fMC7k4RbvQ/ePDomOyk0aYwC8HaZgQMzrxNn0ZbtxIJdL5fRo5cL3Tw7klY3R9PB3Ylb/VhxPLCS1sIrFB66gav0WnV0788PAVSw+mIhcksy6QSBkKvydrQh0teaVjTFsfq4PXXwdaP/+ATQ6A32DnPlwXEf+vJDJoz18WXoshdTCKnbO6Ue9Tk+b90QC9shrA0kpEPPHGyPaNNO30ugMhLy3r8Xf6u9sxY7Z9922OQIIH+VyTjn+ztYUVNShVsnxcWysJfh/7N13fJRV1sDx3zM1mUnvpAAJVZAuIChNRCmurh3QXXt/Lbvqrn3FtmLva8GK2BVQKYo06aGG0NNI722STJJpz/vHnZkkJIEEkSRwv374mEx9JvPUc8859/llB5i3Lp0dT0whwKfldbyLkYGgDrPkAdj6Afz7sDdbxelysuzwMsbHjifAcPSLvKnfT2V4xHCeG/ccY78Yy7jYcSzNWOodBbI5bby6/VVCfUN5fcfrTZ4baYrktyt/4/N9nzN361zeOu8tJsRNaPYem/I2cesKUd52ca+LWZO9hg2zNogTpa5e11mRJYJyRn+RSdReqsqgz8TIxydTP2FEZDuat7pcIpPiq9nighgY1SOWK2vqyep3Pvm1JXx38XciGLL5fyIgEDdKlCXpjLy89QU+2f85Zq2RzbmlIshzwdOiPEVVxWerLRfBxtpyuOY7caKgqiKwZGg+ZXF7zPhhBmeGncnc8XPFDTUlsOltGH0bql8k9c56jFojWVVZXLTwIvz1/jxz7jMM8etB6IY3+fHgNzwaHup9vTcmvcGkuIktr1NfzIRD7p17WF9xwRbWR2TOOWxNegg1+xs760muSGX20tkA3DHkDu4cemeLD390/aP8mPYjv13xmze1HhDlm6ufg6n/bVcPEipzYP1rIqvq7DsaehPZ68Dl4JrFl7K7toDky1c19BGxlomL50aNH084px12fg5DZv6x93HaRfAxqEer+4J6Zz1PbnySO4fcSZxfNLw7riGo4uEfTdEZ07FW5dEzdzfq1fNJNwfSK6hXi6/plZ0oAjPhIuUcVRXLpDOIC+GNb8KkR0XJXeFeEWDUGkWWWVUB/PV/Ipss8X3SUg/QK9MdsOx1HlQXwfVLxHbicjZkIJ7/pAjctqKwppD8mnyGRgxtuDHpa1h8pwiC+XcTF/9HUWqMJSj2DOz9L+auknUkFm3m6qoaHispFRmBt6/HaY7gjZUpbEovZdqZUd4RsMn9I9h+II03/D4hyFfP4Cr3hctFr4nS1X1iUoLPA/yZGxrMmh6zCJ0oSo8HfSp6U4VoDJS5bNxtM/CmofnI4LX+ZxBZXczLagmXV1Xzvb84Qd5hHIT+wJKGrEODnwi01Za59zn+InhZb6Fm5/eY69x/B79I7z5QUABVZLxFDoSNb0D4GdD3Ah6o3MmK6gy2qd3RX/czj258nM15m1l51cqmC+mwwS+PiOMriEDI+AfFAEFwT9DqvWWXJH4getnFDBfr0JvDG+7T+cKNy7GG92X0F6MBOL/7+bw6SQzivLFhDh+l/YBOo2dW/1lYbBbW56zn8TGPc/equ/li+hcisFx8SJSLRg0SwerFd4mSMNUpshZuWdU8qFt8EFJWiIv3fYtQtUaUPlNEgPMIzlG3o4kZhmKrhhE3iouhukrYu0gEUz1lix4fTYWsRs2EQxLEsoX1Rd33I2q9BY1nPe11ngiq6XzAUYfLNwSNuz9URcgQgsbdKs5lHLWiJO8vr4vA9h9VWyHWC8/23UhNvYOb57xCpTGGxY/NYsvPH3LuTjEC7grsgea6xSxJzuehZbneXkjeQNA120XA2Z2htCx9Kf9a92/0io4dV60RwcyUX0VwSqMT+7ebfyOz1sjBnGIuCMgS+4+qfNi3GEdJGnYXlGojedByBZtcA70X/VEBPvx8z7m8szqNvRuX8plxLkbENlXl3wt7n2mETHmAQd+ILNW5RSVMr7EyuldvrC4bSy9dSlxAHPmVtSzelcfN58aLEXBVhd3fcM/h71ldsZ8r+l7Bd4e+459KGDek74Bek6n0C+PysnXEOBx8WlIj1glPxlxgnChn1hnF+cHP/xRl/DNeEUH4Rg6X1PDGqhQemtrfO3Pc2kPF3PjJ1obSbOCqs2LxM+q9fb505hR8u38IwK2Db+XuYXc3/RLrLPD6YPH+AJOfgHH389aqFL5MzGbpPeOYk/hvVmSKQND7U95vKI9S3QN1708UAWZrGf8K8WOP0cDo2jpWhcWwdtYGd6DoFfi/bRDWckPkrxKzeMh9oR1ADWumlRKS9H7DPiBiANy0AtVg5t6vdrHtcJk3wHP7hF5sSishKaehMfwrVw0hPszMpe+0XCa/8v4J3DZ/O3l+TzHCaOATnzCG1SWJIN6w/yPbks30hdN5triUyTVWbo2KIF+nZVV2HkQPF/uM8sOi7LylQU6PzI2iNBWoOe8ZPsjrxX0HZok/nzkCZfjfxMBgQAzFGz/Hd+NL+Cm1XFA/l0NqLIbQNay6/T5izdFiwHXZv8XxcNoL7N6xkbrsnYzK+B8MnimCUv7doCBJVAIAacTylO0a7IZAUusC6aXJY5NrACN7hvDNbWNEpofLKZYz8X1slkIyxzzHTUuryCoTg58JYWayy60MjA6kODuFV4YVMtq2BdJWYjcGs8M4iuCKPfgZClCjhhCTv6dhHXf7vt/LPLwnBpvTRXyYmbN6BDOiRzCXDI3h440ZZJdZ+TJRZCZ1C/Rh/k2jufq9TZTW2Di3dxjrU0sw6DQ8NuMMugX6Mq5PGGU1NsY+vwqA724fw9LkAr5IzKRbgA8Zpc3LGJ+6ZGCTgLHGUMjHN4xiQvyZ3ttUVeXD9Rk8s0QMTB14eqq3v84Ti/fwVWI2cy4ZSFmNzRsg8yzzT3efy9XvbfIGY7V+BzDFfQLAk+U1XH71QjFoBeIcSSuCF5W1dsw6lfVv3Miucj2/Os/ibxdPZdaeW8QASiO7XfFc6XoWT8xo6sAoftmbR3eliL/5fMvrPUVWf/KU+RA9tEkWpVnnpMbRkInl76Nj5yMT0W14mZL8LFKzc3ms4iJS1eZN8df9axIHCqq82YL3Tu6D06Xy1mrR9uT2Cb0INRuY1D+CXdkV3rK0lozrE0b3EBOXDI1hVHxDKwabw8UV726kR6iZ88+I4IN16ezJtXgzPbUahZRnpuFUVUqrbVwx/x1q/Zaw5MoFzYPTXZMMBJ0sB8sO0je4b0NjLJdTnKw16g3y2vbX+HDPh1zW5zLmjJ1z1Neb8t0Uzu52Nk+f8zQzfphBtb2asrqypgdMGoI5Yb5hRJmi2FO6h1i/WJZdvow6Rx1jvhzD3wf8nX+MaH6B8/Gej3ll+yuAyO74Me1HEq9JPAF/jc4nrzqPN3a+wRNnP4FJ3/IsKo1V2aoY+6Uox3pxwotM7dnGTJHG7LVwaDn2xXczPCaYu/tcTarDwt6SvSy5bEmrT3tq01N8e+hbFBSSrt2BcmTj7j+R0+Vk9BejmdlvJg+MfOCojy2oKWDKd1MI9QllzdVrxI2qyoGstVy5puHEcEqPKbwy8ZXWX6ha9Mai3/TmTcqPYW32Wv5v1f8BcEXfK/jPGJHh8+WBL3luy3PsuHYHiQWJ3P6bmD3sows/YmTUyHa9R2N1jjq0iha9Vo/dZUevaXnEwHPh7Rn1PZVU1ldy7+p7mRQ3iZe2vcT42PG8PfltEaBc+i9xYRo9TGTsRZzBiPkjsLlsJF+XzMa8jdy24rZm+7E/VW0FvDZIlEM+mA7m0Kb3u5ziotQvquUSF7frl1/P9sLtLLl0Cd0DGpU8Oe0ioLvjU/E3uGW1CMaVpooyWa1eZImk/CoCj7ZqKM/gqthY9us1THUaeDF4pCh5jBkhMjAC42DYtdhC+tH3SXFSmnajgarFDxJUIy7GVEWDojeJ12vkuYQh/Kixsml2Ior78yxMWcizW5719gUaF30O6/I2EOcfR3ZVQwr/3yotnF1bx11REcTYHeTqxfa4PDuXGHM03LlJnNxvegsCYgAFDi4VGV0gSlLjRsPo20XJn08gHF4ngslxo0F1Ufnt37AVJhPudIly3cI9bPUxcmO3SM6qrePj6fOh+9l8tOcjXt3+KhtnbcTf0EKj0Yps0TdrxA1NeoUc1baPxHd1zn1iBN4vHIvNwjlfngOImRHfmixKNuYmzmVR6iKMWiMT4ybicDlILEjk1YmvMnPJTF6f9DrndW9hVhZLnghAVRXA+AealcI1U7RflDz7hYsA9493U7t/Eb5aI/z1Xeh7Qds+m0d5pvicyd+J4HbqSpGNCKI8zVEvskRG3CCCaL+/IHobjroNRlwnZlvsP4Pd1dl8sGceL/e5BsOur8RghLH1hq8n0op9hZzRzV+M1Koqa9+5g2ifOmLyl2JyiHW4IHQ0H4X/i8n25dzs+gWAJE1fNOXporl70X4WLLqW50NFVtfP2Xn0cLizhM+5R2Rmzv+ryMQ783IRHPL0UgSxP4gcAOYIalI34FuTw/vOGXzomM4M/xQeuuNmfIJjqHc4KX51HLHWfSI4rfOB3d9AYTKlGg0Te4gLoEcjxjMzLZFRZiu1Gg3zzn+f0TEt7AN3fg6L7+L6qAi2+/pwjk8UG+oKeLy0nKsGXgcTHwKjP58mvsxL+z/hvrJKbgo4A0bdAiue4JUzz8MUeSa3D3HPmOlywpczRcDv/Cfh7LtEpmZob9jwGgREi/Wg0XFq+Z58Hlm4h4t66bBkJXP3uVH0CtJhiRzFrR9vIl3dTm2UOIe5Km4yjw+9RwQw9GYRjLfkif1fY0HdUW9di+oTzOb8Tdz2222E+4ZTXFvMI1V2ZgUOAKcNa2kqruoC/IwBcMdGsNVw28ZHqaotY6QxjM+qU9hx7Q6U8gx4w12qFzlIzN478iYRhE1dAd2GYLWU8fzSfdwSvIOYzEVo6srF93rVpyJI9eVMUWY66EpI+RV7aD/6vNZQ2h5ADXdO7EWJw5dbx/UkYs8HcHgDZUNuIT9tD0npuYwd2AtrvQ2fniNJGDCS9K3LuPHgc4yxlvHfwkLG9+jOlITpPD5hLulZ67hk9Z0iKHjBa7y5+z3mOYvY4YpFm7NNDChc8jYMu+bYG8neReL6In48VpuDrPdnE2rWE37V694MTY93ft7E7VunoVFUFoRewvMBOxlkCOWLtP2ipNXgD876poGW+PHwt0VN960Hl4u+o/nNL8jrw88k0VeL3SeI83xjwFoijnkeOl/qAnqyWB3PDwUR3DvrIj7ZVsqvhyr4zPdVxqti9kBG3gy2GtS9i1ActQxyl+0m1wVDfZWoCrjkbXhvPPgEUnvNTyxIqvAGWVrz2Y2jGB9uxZqxiUeTu7FwfzUG7Cio1NNyJkmPUBMjNQeZVfsVwwMqsU98jIt+DcRiUyirsWFzz0Loq9fyjyl9eG7pgYag9FW/i31t0X6IGU6Fy5ehT63gjG4BLLu3ocedqqo4XCp6Zx15edms+XQO0f466s+8mttWQa9wM9nltXxy/Uiu/XALAeatOOO+B+DRkjJmVlWLAZeYEZC2GiY8KAJ33ceIYOneH5p/sEveFgMEqStRDy5FKdpHPXrmJHzJHosve3PK+Fj/AuO1yWz2MXJLNzF4mpyZB+f+A3XcA2zMrGZk6WL0v/wLepzDT9ZBzMkcyF9GdONJ5XPY85337Sx+Cfy99Hqm93CR5D+eJe6+XB4GrcKoHoEcKLISFejDntymDeF99VoUBcIj0/jxpusxan3ILLXy3u9p/LAjl6vPiuPrbQ3nMZP7RzCmVyhn9Qzhr29vaPbxPeXRHq/PHMo7q9M4WFiFIfxXfMLWsP3abafKuXurgSDZLPoEWpm5kvvW3McL419gWryI0qPRNm0QC/yU9hMAS9OXcmnvS5uOLB/B6XKiVcQOONgn2Nu8s09w09pWT2aRv8GfCFMElOJdeX10PgwMHcjClIVc3ufyphcvNJ19waQzYXfam8160VEsNgtWu/W4IrKqqvLNwW+Y1H0SEaYINuRu8AYCJsROaPiOjmJf6T7vz8XW4qM88ij0vjDwUiqjB8OPfyUgpDe+ZfvbPH28ikqdasf3JG2uqqry3aHvqHfWHztjAwjzDWN4xPCGE04ARSEhVgTQBoUNItQnlIzKjFZewc0v3DvNeXuV1YnRa3+9f5PvaW6iyGZKrUj1fvcAWZasPxQImvztZHoH9Wbu+LlM+W5Kk/4IHp6GkACHLYebbbN/tpLaEjIqM/7Q5zyaNdlr2F64ne2FYlSpzuFOkQ/qDrO/avZ4z6ww1bZqkovF6OzC1IUnLxDkGwT/3A/VhbhMwazLXkuUOYpuft1QUESQISC6yVMWpy5meMRw4gLivLdlW8SJxid7P+GJMQ2NhNHqxYXl2XeCtVSU0U17vvlyRA8VfdZUFQ78TOmWxwAXltgRcMG7Ijtj4W0iCJS6ErZ+gCG4J+u7ReLrqkH75T6C/KNFiWXxIZQ+F4iTuZ3zsdmslAy8iGi/aA7+ciO9Vac3CARwaZ9L2V64ncVpiwGoc38n3QO6NwkEVcaNJH7A9bD5YW8QCKBo/APEDL9FBAL6Xij+eTjd63tpilh2Y0OavaqqVMUOb5IBe02YP5nGWHbFX4d27D1QlkbS3k8hawmvRl8gAkZAQqDoi5Vemd5ibxWC4sRFQyOPrX+M9Mp0vpjxRfPHA5x1I5x1I+V15Zj0Jow0nXmluLZhH1LrqMWkM2HSm6i2V6PX6NEoGsJ8xUVWSW3zhqqAWJfOb6HPXmsiGk2ZrdGwceQ13Fb5O19M+5xBEQ2fe27iXOID47mq31VHf73gHjBljvjncWCp+F56jmue4Tf5CfHPY7go83lo+bVkV2Wz78ybGPqX1476lj+k/MDmvM3MHT/3hJw/TGk8dbuiMOGud3liwxMs1EWys+8d6LZ9SFTpFh4pvZx0vQ5ixfZbdHg1UU6nCBA46qkIaBj0uSgumid6XMyV5zxOkd0izpeu/AQ2vAHbPhRZbjNehv0/iwzPaS94/1ZmWw32BbO4PfNnZmtXEWC3whuvgjEAY0AMsdb9cPGbMNzdGPyce3DumM/E5Be8718VMxTOex6+Ggc4yfvtYTjrPhEoLEkR5aihvUUfO99gLL7+gJ18SzYY9JiH3wATn/a+3uVDb+OHvN95jXQuveoLQnxDUQdexsfzh0D+2objskYr+s0sukOUDXvKrnW+Df2bDiwRE4QE94Ql/2RqQTIXdu+DkrFNZPy5240EAF8B8wIDeJ0gou0Oyg/8BL9/3PB9mSMgvB+7YwdxjWU7Xw/+JwOSvofD61Den4jiE8BTPlWgiO3N1+XieyNcUZaKXoVLQvRUhyew6ZKfIFCUlVVotYSE9SMg8iwcO8Q5lCkkASY8JHpT5myFJf8U5YtF7nM3RYNJdfEUQBFi/zr6DtE3zJNBHdYPfrpH/AP0ioatEx8C31AcWz4gynoQtmhEoGilArtFX86QlF8IAQYCuJODspJ0HFruR9+aCoiLwcdhgxmvEJz0EmvSl3F7rYp91+fQLRSdfzQMvooII7i2PEPZzPmEq4r4WwcdvQ+j18C/en80GXT0/79vWn3ozVNHU6Q8SOT+T+lW+ysEhFNoLRRBoLNuJPusvxNRZ8X462NwxkWiBDVqcPMAe7+pYt9vLRVlasX7xfoKGHU67tSWgb2cpIxtaOw1kDBJHBsDYmHFE/gUH+Dq8ve42gj88DSj9X5khvejR9V2vkw4i94jbmbkQJHZpJz3GK6M9ZAk+tM5b1nddOKC6S/B19fg+9Zg/h7Sm/N8S6lWfVjd+2HeO6BnqGsfia7+rL5/IjZVQ6/y9fD+HZhqy/lvcF+M2vE8bFqM3sfMgbOeImnFApY4R5OpRvHFxEpM9cUYd35EGO5BjjIw/HAjv5jCUEbMhPOfZN6v25i39hDx/VSuHzaUKXUZXOxOtrz88zF8nleAr6qCwZ+gAZfw89RJ9Dv0GrxTAzNegu5jUNJWod/0NqStJBqYrTWCVYNr+2oGKw+yu7gX90zuw9jeYSTensDmFf/lYfefwDHkatj4mdh3pf4mAnkrn2rylVnHP867B83cGrEfv+RPRfn00GvEvq3HWJRJj8KqpzGuf4Xnyv6JvdtwSoN8iEpNxn7uv8gx6+HQfPFi/S+C319ESV3JOY46sa35R0POVi62r2VwRDR/seoYXlzKxaNuFRPrZG4g4KvZLDI+AQVAzPXMvecO7vsxi98Oi2PvI8rHzK5IZnrNP9hTHcv9E2OJsaXz7eYUKsNH4lK0WJzplPm9y5s/r+Cxv35Dv3Bfnv3rIGYM6sZ5PY1o6iv4NTmHe3Q/EJdpoTJNx07Vj18Me8npfgmac+8lKaeS2yeIa5tXVxzC30fH19uyufcrMWOyn85BWFgFfv6xp0oQ6KhkIOgE2lYo0tq2F25vNchQUFNAUW0R1w+8nt8yf+PhdQ+z5LIlLTfIA5yqE51GfE3BPqK0LNgYTKhP09FsT3Dn3mH3sjl/M0CTLIU7h9zJXSvv4s2db/LihBebPDfT0lDjGesfi0N1kFaRRu/gltNsT6brl19PSnnKcWVUJBUn8cyWZ1iRtYIPpnzQJBCQVpHW5tfwOO5AkJvFfTIZYAjAV+fbcOHcirzqhimuax213hkm2qKktoQ7fruDB896kFHdRrVrORelLuKZLc8AtCkQpNPo+HTap81uN2gNLJi+gFj/WD7Z+wnr89bjcDm86/OJ5AkE9Q3pS5G1oTmv6plyffPTTR6fWZXJ8SqpLcFis7CjaAerskSWxmf7PmsWCMqtbhhV3l+2nzmb5jAjYQaz+s867vduj1tX3EpKeQqrrlxFuKkN01u302HL4Sa/HxnYzLRk4nA56BXUi6pG/axSK1I5WC7SnldlrWrX9McPrXsIp8vZbB/WZkY/MPrxcfKHvLbjNWL9YrE6rOg1en678rcmD820ZPLYhsfo7t/dm7nncDmotIkSgY15G6mx17Bg/wIu73M5ob7ufbJWJ4JAx6IoFPUYTXGiWEcrPQH5wVeJBvJGf1F6eHAZbH6b2PIt4qJt4KXiYtNght7n41JdzN83n0JXIT9n/kz5oXeYP20++8v2c1mfy5q9bax/Q2p2TlUOIMqIAYZHDGdi3ESmxU8j3Dcc49YnqXfW0zuoN6kVqRTGDW99qnRPFl/jgIbbgv0LmLt1LosuWUSvoF7YXXYy3YMa6+LPYqLOABFncHC/kxi/GIIuftv73F6BYh+UXtFKIOgILtXlDXSV1ZUR4hPS4uP2lOzhmqXXEGWK4vuLv6e8TpSvhPqEcrDsIFa7FZPehNVuxVfvi5/ej2pbNQHGALSKllDfUBQUCmoKWnz9P2r+5DpqGAAAIABJREFUfnHSvSpnjTcQVF5Xzuf7RaPzK/teedRgS5Wtiv9s/A9X9LmCsTHuSQZa6MtX76ynoq6iaalsI54ZafaW7j3qoBXAfzaKwNdZUWcRaAzkwp4XHvXxx2Nhqrjg3Nf7XAaPuA7m9gSnjfzh10KR2B9P6R7DiqEPE7XwDgDKz/wr5DY0n/25NoeA3LU8sPYB3jv/Pcb2nyFKaCpzxcCNKaRZcBEAgxn99Ytx5iVh+uY6qDzMbpM/9sgBjMjcLrIUhsz2Pjy7KpvL9r3R5CUsNguqwQ+nRgsuJ7k1BaKfT2MF7n4ho26jsuQ3sBaRbwoARy3mXpObPNTP4McTY57g+uXXs7skmYlxE8lpdOwpryv3njviEyCae/9wKyS7AwaOWtFLLiBa9Nv59KImr6/UV4usuRHXi2C6rUaU7OpNFOX+gn9dHlGBsZQ7aqHnZSIDoapAlCWbQli4aQ5YtrPEUcKA63+GlN9g3UuUVuVSZwQUiFG1hPnFkGTNZf6Y+5jdfzYFC0aCasfi648nfFxZX0lCYAKBxkDv39KkN8Gkh8U/mxVWPysyVUxhIiPRkiOyQZ020ePqyP5/isL6c28jf/9CrgwZIrIqMn4nfPNz4v7QPjDy31BbxqcHv+azADM/DpuNeeqL4qJbZxSZT+H9wejHjF/FTLS7igzUaxR8TGEw8iY0GV9SVFvIdTk/UhgljhX6iQ+DohBmEkHl4tpiwkMHNF/vThCDTkPUjEdh2kOkrX0EspaiGsxw+3pKArsx/ZtJTI+fztxbV6OqKm/vepuRWieju41u/mKKIjKOJv5blOkGxsHIm7CYQ8CdWbn/798y0BTVNBvSM0hUmiYa/Jemoi3PJCE/iTe7jeZ9ez7hez9glTsQRGAsOQljwX0qnlOdQ4+ARm0e+k2Fm1bAdzdiKNiJZzqNwak3cHdwNJqqPGxBvTH87yYR0HLUiTYdU57C5/eXeF4/D9U3BsVymOGr/85wHdyg+wWXokWzWfSxskcM5mPHGD4OK+aDic/TrzQT2+5vWJL8MRek/sbNxQcYFGTkZmckr34+l6vKirxB6UMGPRv7n8fkyNFim9v1OWfyOTa9iVmRIaStuoXzHVqezc1E8YsUAyClqXDDcqirRPPRhSwy/oevw+7CVf4RX83LZWbOfjCbIEKsN1XhfeAfe0V/RdUlPmf5YRFQXDsXeo7DNPo2/nkeIjPwjMkiIHrkjM2egYv1r6CvyCIKoN8M9Oc/Svb2V70Prb/8fYxRg2CV+7y6zwVw5afib5uzjcTfnwBq+Dq2HxdPd5+rJUwQpaob3xSZxNs/wW/7J7xvDCS5/xU4cncxwr4drApLA/7Llp53MDT7Jfxzd3CZAay9bsE05HIWrHiH54HdZfvh1QFQW4FvQDSTfYPh273812Xnv56J3VRACy5VwWYMpmfu2xh2HqZbVF8s+/oQUVvFwxfcCBod8cZq5v28m76aHJ4PWcalNifdixD7jsa9Y09BsjTsBHh287PYXXY25G2goKaACFME42JamNYWKLIWsS53HQumLyCrKouH1z3MhT0vxE/f8oXQj2k/cmXfK3l49MNiJCx1ISOjRvLRhR+1ujzzkufx+o7X6R3Um4WXNMzs88zmZ1iUuoiLEpoe6Fdnr/ZeSK+6chWTv53MsIhhxAe2MhXuSeJSXd6TvolxE5sFv47lYNlB9pTuQafouDD+QpakN5RhxfjFcHa3s4/ybCGxIBGDxkCdsw69Rs+wCJGCrKKiqqo30ODZjlTPf43uQxW351TlsLd0L9/+5VuWH17OR3s+4tLeLc+aZnfZ+THtR+ID48mozGBaz2ltKmXzSKtIY1fxLsx6c7vL2bYVbvMGB1stx2inxamLeWzDY0yLn4ZJ1/bP0VZrc9ZSY69hWvw0lmcsZ1r8NFRUfkhpmg77wQUf8OzmZzlsOUw3czdGRo1stayrNQXWAjbkNk0z9df7c0HPpqUbKeUp7C7Z3ez5novzxvveI9ejxrc11uJzGj2u8f1LM5YCMCpqFHH+DRktbeVwObyB0OGRw1GOyCzdnL+5SbDLR+vDjIQZOFUne0v3klIuZpW4rM9lVNZXsjJL9HgZGTWSlPIUzHozudW5nBNzDhG+Ed7P0nhbavy5HC4Hyw6LPlJ/SfgLBu2xGwIeyWKzUGQtahLg9ZiRMAMfbcPUsBmVGewoEo0lL+8jGjFaHVaWZSxjYOhA9pbuZVDYIJJLkukd1PuYQQpPECnEJ8T7t8ypymFLwRYGhg4k05LZ+oWzqgKqaAp8hNK6UtZkr2lyW3f/7mRVZfHfcf9ttr/PqMzg4kVNM++eHPMk6ZXpzD5jNjF+Md7br/jxCg6WH+TS3peyMHUhQ8KH0Duo/QMEi1IX4VSd9AzoyYjIEVTZqvg1U5QLmHQmJnefjEFrYFXWKoZGDOWN8xounj1lqgmBCQxow0WS1W71rifnxJxDlKnlbNI9JXu8AcnGpvWcxrLDyzgv7jyCfYLZlLeJAGMAQcYgUspTsLlsdDN34/uLv+e6ZdeRUZnRcmnYH2B32VmSvgSn6qSbuRtjo0Ugp/G+56KEizBqW5/NxPP5PNtla5KKk8i0ZDI9fnqLQfqf0n7yZvPF+sUyPHJ4i/tMp+pkUeqiJrdNj5/ergGMY2l8TjAsYpjIFqu3QHUxmXqddzDO4wzfKIK0PmyuzvTuT4KNwVhsIhMovyaf+MB4hkcMb//CqC7K6spYnbMWvUbPRfHT0KBpkj2xr3Qf+8ualqrEB8YzOGywN1jZM6AHI8zdRQsBo78oCbVbxQWdwY/FGT83yS5tqazZU/7fP7g//UL6UVBTwIY8sZ60eO7ksougV1B3d28v9/mn3SqyPKryxQi/b5DooaRrecrsLflbMGqNjOo2im8OfsNfev3Fm8HusT53PYXWwibrceNj88W9Lube4feiUTTMWjILh8vBkPAh3uPFhNgJ3uy7n9J+4qp+VzEsYhj3r72fKT2mHLPPZlt8nyJKbJocV2orROlkSLz4GzR63Nndzm6yn/Sod9bzc7ro7zWlxxRWZv7GDf1nc9/oh7xl4o29POFlLuh5AcnFycxeOpv+If0ZGNp8Ku4/w46iHWRUZqBRNFza+1KyqrLYWiDKsqbFT6POUcfqbBE89Rz/2qLx8ai9n+eXw79QbRclzo2/i0JrIetzxSyUre7TnTbxT+cjSrML94q2DIGxUJGFqjrJMfhgCE4gMmKgKF+21YhyZr9IEbx02cXtJSli+zOFiQBJxEASC7eSXZXtPYZlWjLZVriNM2x2BgT1Ya+jkgO2cvxdKoN1gWxwWXjmnGd4atNTxAfGc2aYu1eQow4K91DkG8C60oYG0VPMPQiIGiaO8arTu85RVwkpv+KwW1ns7tU3SROIxeDL9roC77YxIbZ5/9fjoqoisKnRivcOiQetgd9zfvdmynqvRyoyRYntEYGSnUU7Sa9MJ8AQwJQeLczCWl0kArTVxVAtBlKcxgCKfQOIiByEJnMTFpuFFWYTE1VfQp0uqC0FYIfRSIZBj58KF9o14vtSnVBfI7JgqwvAXg8J48EnCItDS1W9k+ggX1amL8G/3kqOXofZ5eK8mlr07iND438AS/38uM6UwH3TPxDtDbo+2SPoz3TRwouotdeCIk6UcqpzjvrJosxRfDz1Y5yqkxuX39gkg6EZBe4fcT/TE6azNH0pL29/mVsG3cLM/jNbfcquol08sv4RZiTM4K6hDTOVHSw7yL2r722SAu95jyhzFP4Gf949/10e3/A4G3NbboJ3spn0JjSKhuoj+l+0VYQpgrK6MhwuB34GP3x1vpj0JjIr254Rcs2Aayi2FnsvXBQUFEXxXsx5fvdofL/nds/PM/vNZPYZs1mbvZZntjyDy+Vq9X0DfQJ5aORD/Gfjf7Ad0RyvLQKMAVTbq4/6Hi1yrw9Rpihenvhyu9+3JbnVudy24jaxnfwJDFoDNw+6GbPezEvbXvIGE/RaPZGmSGodtUyLn8b1A6/nrV1v8WPaj/jqfKmx1RzjlVsW6BOIy+VCURRGRY1idfZqnC5nk8coisKkuEmMjBrJazteQ6tocbgc3osqoGEdOmL9afHnFkb/W7rfc5tBa8CgNVBibaV0pQ3ig+Kx1FsodR+EjxQXEEduda63x4xnXQv0CaSyrhIXLnFxhFgf9Rq9eC0F/jninyzNWMqBsgNNlvvIbavxZ/PV+eJwObDamzdrbAutRotZb8Zqt/Lo2Y/yxo43vP1yWnrNUN9QLDZLk32mr96Xp895mic2PIHVYSXA0MbtTMGbVdLY8MjhjI0ey1u73jruI+K42HFEmiMpsZYQ4x/Dgn0LMBvMfHjBhy1mgz2+4XEKawrJsGSgU3S8MvEVzghtnskzL3keXx/8msfPfpz5++aTXpHe7DFtodVouSjhItbmrKXC3Uco0CeQuePm8tbOt9hTImZjQYH7ht/XLLuuvcckf4M/Go2GyrrKoz7u7wP/zv6y/Wwv3I7T5STUN5Qnzn6Cpzc/3WSdn5EwgyCfIBbsW4CfwY+HRj3EmOgxHCw7yL9//3eTjLcTpX9of0ZFjeKzfZ81WS8CfQJxupzHPCb6GfyYFDeJlVkrj7m9WB3WVgP0Oo2OKHMUeTV5mHXmo35Wk97E3cPuJqMyg415G70ZZyeSj84Hf4N/ixm64aZwwk3hRJmiKLIWkVWVhcPlwKk6mdpzKjqNjolxE7l/zf3YXDbCfMP+0P5RURSm9pzKntI93pLRI++f2X8mY6LHsKtoF8klyWzNFxfbeq2eKHNUi89rTKPREB8QT1pFGmaDmY8u/Mh78dfYfzb+h/U5672/B/sE48J1zG3gj/pLr79ww5k3cM+qe1r+vhUx8JZbndtkPa5z1hHiE8Lrk14nIUjkcazPXc+cTXNwuVwEGANQFKXJ8iuKwsOjHqZvcF/uWHnHCTufMBvMqKp6zO1Er9Xjq/PFUm9p9TFmgxkFhWpbNRqNhkdGPcKk7pNYmLKQLw58gdVuxak6CTAE8Nqk14j2i6bOUcej6x9lV/Guk3pVFBcQR0FNgff4FmmOxO6yY7VbsbvsmHQmXLjafZ4U6hvKNWdcw/+S/tf8euMo9Fo9T4x5ghe3vtjsbxzkI4INnuPH8TDpTThVJ/Xu/mLtokCQMYiK+grxHSlg1BqxO2243Oeb4b5hlNaV4VJdRJoj+WTqJ7yb9C6LUxe3+JIDwwZyZd8r+ebQN+wr2dfiYwAR6LDX0i2wBwkh/dmUvwmXy0Wobyj3jbiPORvnNAkW/xkCjAHcNfQuXt3+6jGrGQCi/aIpsBYc+7zInXGKRk+AMcD9vavgcqA67WgMJnE+76gXt+uMxPrHkV9T0OycW/CEc5oPmmk0ogm/02kjUNFiddpx2CygaFE0enHuqdGhGEzotUbmjJ3TvgmCOjcZCJIkSZIkSZIkSZIkSTpNtBoIan1qFEmSJEmSJEmSJEmSJOmU0tHNojt+WqoTRFGUW1VVfb+jl0NqIL+Tzkl+L52P/E46J/m9dD7yO+mc5PfS+cjvpHOS30vnJL8XqSPI0jBJkiRJkiRJkiRJkqRTiywNkyRJkiRJkiRJkiRJOt3JQJAkSdJpqN5Z3zBbkyRJkiR1IQcLqiivaf+MqpIkSZIgA0GSJEmnoWc3P8usJbPIr87v6EWRJEmSpDZTVZULX/udS9/Z0NGLIkmS1GXJQJAkSdJpKLkkGQCLzdLBSyJJkiRJbVdZawfgcKm1g5dEkiSp65KBIEmSpNOQopwykzZKkiRJp5Gc8lrvzx086Y0kSVKXJQNBkiRJpyHFPYmAKidvlCRJkrqQ3IqGQFBJtewTJEmSdDxkIEiSJOk0pLQ+m6QkSZIkdVq5jTKCUouqO3BJJEmSui4ZCJIkSTqNybR6SZIkqStpnBHU+GdJkiSp7WQgSJIk6TTk6REkS8MkSZKkrqS8xka4vxFomh0kSZIktZ2uoxdAkiRJ6jgu1dXRiyBJkiRJbWa1OQk26QHIkxlBkiRJx0VmBEmSJLVDemU6C/Yv6OjF+MM8PYIcLkcHL4kkSZIktZ3V7sTXoCMmyFeWhkmSJB0nmREkSZLUDtcuuZYqexWz+s9Co3T9WLpTdXb0IkiSJElSm1nrHZgNWoJNBvblWzp6cSRJkrqkrn8VI0mSdBJV2auAUyeA4nSdGp9DkiRJOj1YbU5MBi0xwSIjSE56IEmS1H4yECRJknQcunpvHU+zaFkaJkmSJHUlte7SsOhAH2wOFyXVto5eJEmSpC5HBoIkSZKOQ1fPpPH2CFJlIEiSJEnqOsrM81hj+zsxwSZATiEvSZJ0PGQgSJIk6Th0+YwgdyDo1315OF0yrV6SJEnqGlymJACig3wAOYW8JEnS8ZCBIEmSpONwqvQI+mprJq+uONTRiyFJkiRJx9S4H1BskMgIklPIS5IktZ8MBEmSJB2Hrh4I8vQIAifv/Z5GWY3ssSBJkiR1bvWOhmzcAF8dfkadLA2TJEk6DjIQJEmSdBy6emmYR48wH+xOlT25lR29KJIkSZJ0VLW2hkEYRVGI8DdSXFXfgUskSZLUNclAkCRJ0nHo6s2iPX2B+kaaAThYUNWRiyNJkiRJx1RjazrBQaifgdIaGQiSJElqLxkIkiRJOg5dPSPI7hSBoMhAPRH+Rg7IQJAkSZLUyTXOCFJVlRCzgVI5fbwkSVK7yUCQJEnScejqPYIc7kCQyajQv1sAe/NkaZgkSZLUudU0CgQ5VAehfkbZ406SJOk4yECQJEnScThVMoJMBoWRPYI5WFhFhVWeTEuSJEmdV3V9w3HK6XISajZQZrV5y50lSZKktpGBIEmSpOPQ1TOCXO4peA06OLtXKKoKm9PLOnipJEmSJKl1lXU13p8dLgehZgOqihzIkCRJaicZCJIkSToOXT0jSFXF9PGK4mJIbBBhfgbeWZMqR1UlSZKkTqu8rtr7s8MlSsMASmV5mCRJUru0KxCkKIpTUZRdiqLsURTlJ0VRghrdN1BRlFWKohxSFCVFUZTHFUVR3PddryjKW0e+3oIFCxg8eDCDBw9m7NixJCUlee9bvnw5/fr1o3fv3jz//PN/4CNKkiSdeGnFXbu5sicjSMWJQafhgQv6sTunkn15lg5eMkmSJElqmaVxIEgVGUGAbBgtSZLUTu3NCKpVVXWoqqpnAmXAXQCKovgCPwLPq6raFxgCjAXuPNqLxcfHs3btWnbv3s3jjz/OrbfeCoDT6eSuu+5i2bJl7Nu3jy+//JJ9+/a1c1ElSZL+PD/syOroRfhD3HEgXIgSt7N6hgCQUtS1A1ySJEnSqctS31pGkJxCXpIkqT3+SGnYJiDG/fNsYIOqqr8CqKpqBf4PeOhoLzB27FiCg4MBOPvss8nJyQEgMTGR3r17k5CQgMFgYObMmSxevPgPLKokSdKJdaioa2fOeDKCPL2OeoSa0GsVUoqqj/Y0SZIkSeowFltDjyCn6iTEnREkZw6TJElqn+MKBCmKogUmI7KAAAYC2xs/RlXVNMBPUZSAtrzmhx9+yLRp0wDIzc0lLi7Oe19sbCy5ubnHs6jSaaim3sGNn2xlT66cDlv68+RW1HTpfjpOd48jp0sEgvRaDfFhZlIKZSBIkiRJ6pxqbE2bRQeb9CgKlMjSMEmSpHZpbyDIV1GUXUApEAKscN+uAK1dER3zSmn16tV8+OGHzJ07VzxBbf4Ud7shSTqmRbtyWXWgiHfXpnX0okinMLvLSU65taMX47i53JlADpfDe1ufCH9SZWmYJEmS1ElZ7Q0BH4fLgU6rIchXT5ksDZOkTqm0tpT5++a3eH0vdazj6hEE9AAMuHsEAXuBsxo/UFGUBKBaVdWjXlXs3r2bm2++mcWLFxMaGgqIDKDs7GzvY3JycoiOjm7nokqnq1/2FgJg1Gk7eEmkU5mCyoGCrhs08QaC1IZAUO8IP7LKrNTZnR21WJIkSZLUqjpH00AQQKifUTaLlqRO6tH1j/LC1hc4UHagoxdFOsJxlYapqloJ3AM8oCiKHlgAnKsoyvngbR79BvDC0V4nKyuLyy67jPnz59O3b1/v7SNHjiQlJYWMjAxsNhtfffUVF1988fEsqnSaya3KZ1vJcgCyu3C2htT5+fto+GFHTkcvxnFzHVEaBtAn0g+XCunFNa09TZIkSZJOmjq7k9UHitidUyF+bxwIcg9khJoNcvp4SeqkLDbRU9PmkttoZ6M73ieqqrpTUZQkYKaqqvMVRbkEeFNRlLcBLTAfaDZlfGNPPfUUpaWl3HmnmFxMp9Oxbds2dDodb731FhdeeCFOp5Mbb7yRgQMHHu+iSqeRW3+9E21kKibrQLJKZSBI+vNM6BfKT1sKqal3YDYe9660w3hmC/M0iwboG+kPiJnDBkS3qb2bJEmSJP0pHE4XE19cQ4GljvgwM6sfmCgCQe5uEQ0ZQQYOyf52ktQpKe4NVpaGdT7tunpRVdXviN//0ujnZGBiK8/7BPjkyNvnzZvHvHnzWnyv6dOnM3369PYsniRRUlsCwLTB4XyfWEWd3YmPXpaISSdejzBfXCpkllq7ZNDEpbpAadojqGeoGY0CaTIjSJIkSepguRW1FFjqCPMzkl1mxelSqXfYQC/u92S0hpqNFFpKcDhd6LR/ZEJkSZJONE+fX/XYbYOlk0zuLaVTiqqKnc2gGJHZkF0ms4KkP0e4nzgTzSrrmkGTlppFG3QaIvx9yKuo7ajFkiRJkiRADLQAnNs7FIdLpcBSR72reY+g8X3Dqapz8NmmzA5ZTkmSWqdRRLhBZgR1PjIQJJ1SFPcqHRkokt0yZXmY9CcJ9ReBoK66jqktlIYBdAvyIb9SBoIkSZKkjpXpHsw7p3cYADllVmwOu/d+TyDo/DMiGNAtgN/2F578hZQk6ag8pWFHnm9KHU8GgqRTiqqKVTrMX/w/q8zKop25zN90uOMWSjol+egVgkx674lqV6PSvFk0QHSgL/mVdR2xSJLUpezPt1BZaz/2AyVJOi5ZpTUYdRqG9wgGIKe8FrurUSDI3SxaURSGxAWyL98isw4kqZPxlIbJQFDnIwNB0inFUxrma1DxM+rIKrNy39e7eHzxXqa/vg6rzXGMV5CktnGpLnqEmLpsU3JPIKjx9PEAUYE+5FfUyZNpSTqGaa+vY/rr6zp6MSTplJVVZiUuxERssC+KIjKEbC2UhgEM6BZAhdUuBzIkqZPxZATZnXLgpLORgSDplOIJBNlcNrqHmMgsbejfsi/fQoqcVUI6QZyqk+6hZjK7aI8g1T19fOMTaYBugT7U2p0y00GSjqLOLkY2cytqcbpk0FSS/gxp9b/gCFyCUaelV7gfyTkVTS4mGx+/zugmJm3Yl2c56cspSVLrPD2C5PTxnY8MBEmnlMaBoPgwM4cKq1EUCPARPYNk7xPpRPFkBOVV1GF3ujp6cdpNVdylYUek6sYE+QIiBV+STiepRdW8suIQrjYEdiqsDRejSTkVbXr9PUVpTHj1O9anlBz3MkrS6aRQ/xWlumUADI4NZPXBYlw0BH8aH7/6ewJB+TIQJEmdiac0rHFZp9Q5yEBQByqtrqe4qr6jF+OU4vIEgpw2ekX4kVtRi6rCHRN7A5BXIVOG28rhdPFlYpZ35FtqSmQEmXC6VHK7ZNCk5R5BvSP8AEgpqjrpSyRJHenpn/fxxsoU1qYUH/OxFbUNI5ub0krb9Pqzlv2VspA5PPXz3uNexmPJLrM2yYSVpFPFkNgg8YPSEAhqnBHkZ9TRM9QkM4IkqZORpWGdlwwEdaBL3t7AyGd/w9EFswk6K9Uldjb1znrvBS3AgOgAjDqNzAhqh0W78nj4h2TeW5ve0YvSKXkygoAu2TDaM2vYkT2CeoaZ0WsVDhbIMkrp9FFhtXnLIb/Zmt2Gxzec0G5Ma1+Gj9X25wXXx72wmgkvrvnTXl+SOoLdZWdkzxDxi9Kw/RxZ2jwgOuCUzQgqqa4nr0Kew0pdj6c07MjtVep4MhDUQVwu1Vt6sWxPQQcvTdeXV1HLop253oygemc9vcMbAkHRgT5EB/mSJ5sIttmOrHJAzIwjCY2Dtk6Xkx6hZkDMbNKZ1dmdPLd0v/ckUjSCFuUvRx6Y9VoNvcL9OFQoM4Kk08e4uavZlS1KvA4WHHvd9wSCRvYMZmdWRZvKyTxyymtJLz7xgdaymoYsJdnsXerqGh9vK+srOaObPwCK4sCoNYrHHDGQ0TvCn6wya5cs1z6Wc+euYuzzqzp6MSSp3TwZQTan7BHU2chAUAdpnEGwOb1taeVS6677KJH7vt6Fwz1QZHfa6RVhZkxCKBcPiSY+zEy3QB+ScyoprZbleG2x2V3ukHi4TF5UuNU7Gk4uXaqLCH8jRp2GzE4+c9j3O3J4//d0Hv4hGQCHSwV3j6CWarb7RfnLAKDUZX2zNZtXfj3Y7PbWRtPLamxU1TdcUGaXW4+ZqVvpLg0bHR+K1eYktx0j9YoCi3fltfnxbVHvcPLAt0ne3wst8jgndW1VdQ3bZHldOYqiMLFfOHqdiq9O9LI7ciAjMkAEiEqrT70Lzjq72CfVO8TAztbDZR28RJLUNp4eQYeKyrnkrfVY6mSJWGchA0EdZG9eJSCaGCfnVnbw0nR9KUWe0VWxStc76zHqtHx569m8MWsYOq2GG8+Jp8BSx5M/7eu4Be1CigLn4NdtCWU1Ntk42K1xIMipOtFoFHqEmjp9adiCzVkAbEgtwWpzUGd3oiiek8rmF4yDYgLJr6yjyCIz6KSuRVVV/vX9bt5Ylcq6Rr1+vtuew9jnV5GY0fziyXNbgI+Om86Nx+5Uj9lPrtyTERQvylXa01NrTEIoi3floqoqG1NLTsgMfS/9cpBVB4oYHBsI8KdkHEnSydT4YrG8TmQof3jdSCb2C/EGgo7scRfuJwJBp1r/zcYzE27PLOf939O58t1NHbhEktR2noygzzank5SHpqlfAAAgAElEQVRTyfbM8g5eIslDBoI6yI7MCow6DZePiGV3TiXnPL+Kn5JO7Ajh6aLe0ehEoFFp2JHOHxDJTefG8/PuvHaN3p6Oam1OFEMJStA6AHbnyGCly6ViaXTB5nJPv949xExWJ84Iyim3si/fwogewThcKqlF1dTaGz5HnbP5Be+w7sEAbD1cTnW9rOmWuo79+Q0Bmb99mOgddHl7dSoAu7KbnoCqqsoXiVn4++jY9tgULhgQCUDGMco9K6x29FqFoe4GtsfqqVXbqC/QX4fGcLjUyk2fbmP2vC2c99KaP5x1uS6lhAl9w3nvbyMASCvp3OWqknQsjQOkZfUiWKvVKNhVGz46H6B5RlC4vzsQVH3qDGKkFVfze6Og9m3zt3t/PhVL4KSTz1Jn59J3NrS7311beQJBirvR+x55TdFpyEBQB9mWWcaw7kFM6hcBQG5FLS/+0jyVXTq21KKGE3DVvUq3Vod64cAoVBX2yCysoyqzNvz99FqF3bltmx75VGRzuNieWcb93yYx8aU13ts909b2CDWRVWbttOVzqw4UAXDnxF6A6H9SVNUQCK11NA+KDowOQK9VuOuLHQyd82un/WySdKQvE7MwaDU8fclAAFbuL8LpUslyZ+0dyG+aubM3z8Lvh4q557w+GHQa+kb6Y9BqeOXXg0ctD6ustRFkMhBo0tMt0OeYDWpLaxouTKcOigIats3SGtsfbnBbaKkjLsSXqAAfjDoNOSc5S7Goqo67FuwgKfv0PVZIJ1aFtWFAr6KuYb1yOB2YdGKihiN7BIW5M4JKqk6N0jCnS+WGj7dyw8dbvbc1LpmTg3TSifDllix2ZlXw8q+H/pTX95ReX3hmOPFhZlkJ04nIQFAHqKl3sDfPwsieIYzrE8bUgeKk0Gpzyguu4+CZuvsf5/f11ofbXC2fBHinxpaNcI+qtFFadZ8I/zY1Tz1VvfbbIS7/3yYW7sxtcrsnI6hnmJlae/t6hJxMu3MqCfMzMrFfBAadhkOFVeSWN2QL1Dmaj5z66LXeGVocLpWDcnuRuoDyGhvfbs/mkqHR/G1MT4bEBbH6YBGl1fXe0orduZVNjrOeEdBLhkYDEGw28Mj0/iTlVHL4KFlBu6t/wBn1OiCmtd6dc/QASGF1wzYU4KNn+X3jmty/Jf34+32UWi1U6zei88lHURRign1PejnvsuQCliTnc8nbG7A5ZJaC9Mc4XA7m7LzR+3t5fUMmn91lb7VHUENG0KlRGrZ8T4E3iA3wy33jm9y/PVP2CZL+uKXuSYv+rEbrFbXiPDM8QMegmEA5GN+JyEBQB9iZVYHTpXJWzxAUReF/1w7n2UvPpKS6vtM3nf0jvtmWzfmvrMVqEwfupcn51JyAshPPBfi1Z3cnJlicBLRUGgbgZ9QRE+TLoULZP+Foimsa1sOEcDPpxadOmUFRVR2F7eh909q64ulNMDA6AIC5yw9SYe1co5D5lbXsyCynb6QfWo1Cv0h/knMryakQ36dG0bYYCAK4Z3If788frz8sg9RSp/dFYhZ1dhc3j0sAYGLfcHZlV3DAHcg+t3cYqUXVrNhX6H3OprRSeoWbiQjw8d52ljsImnKU40SW+j123WEq6ysZEhdEZqmV8prWt/+S6qb70ISwhlktw/2NbMk4/kkjvt6/EJ/o79limQdAbLCJnPKTcy6hqiplNTYSGzWuXbm/8CjPkKRjq6ivoKguy/t7ja1h+7E5bQ2zhh0RCPLRa/H30Z0SPYJUVeX939Oa3NY30g+dRpTZdA8xse2w7LUi/TGqqpJeXE2Ev5HiqnoebDTpwIlid4oyT63GyaCYQPIq6yg5RYK1XZ0MBHWArYfL0CgwvLvoLaAoinf0PfEUngXgkR+SSS2q5uut2STnVHLngh1c8OrvzHx/E5vSjv8kOLe8Fh+9hhCzwXtScLQpCvtG+nGgQM6IdDSF1Q1/n4RwP3LKrU17MbWgKwQKKmvtjHp2JVe/1/YmiznlVib3jyDtuelNbveUhg3oJgJBPyXl8dpvKSduYU+AMf9dRXpJDX0jxbS7o+ND2JxextNL9gDgpzdjc9maNdwEODshlIz/Tmf26O58vS2bFfsK2Z5Z3iW+Z+n0tOZgEcO6B9EvSqzvE/uFo6rw7fYcAP4xpS/9Iv2Z89M+rDYHdqeLxIwyxvYKa/I6vcL9UJTWg8AAqDoAkoqTGBInGjTvOkpWUHFNQ0aQqqoYdA2nX+P7hJOYcfyzMxZWi/d1IoK6sScxI2hzehnDn17Bkt35TB8URYS/kX98s6tJybYktdeR53DV9ob1ye6yo9fq0Wl0zQJBAFEBPkfN5usqDpdaScqp5LLhMd7bFEVh8yOTWfvgRIZ3DyLpGJmIJ1JVnZ2Hf0iWF/CnmNIaG1V1Dm6f0Iurz4pjxb7CY86a2V529zmmqjgY5J7QQJaHdQ4yENQBth4u44xuAfj76L239Q73I8ikZ2sLM5qcCoosdWLKamDZngK2udNZcytq2Zxexv1fJlL66bWQtaXdr51ZUYxvzzdIr0z3nhS0lhEEMDohlEOF1a1OJXy6yK2oxeZwkV5czWXvbGhycG88et0r3IxL5ajZat9vz+HM//zS6TJijvTB7+mAOMFyulQe/DaJjanNm+MVVNbxwLdJVFjFjGlxISa0GoWXrhzifYynNMxHr/Xe1pFTYtocrlZnH4rzrYfsRC427Qbwzhhm1puB1rcXRVGYc/FAgkx67v82icv/t5F56zL4dONhznt5DS73Nq2q6lGzISTpZMgoqaGfO+gJMDg2iAh/Iz8l5WGMWEpe/Q6eufRMcitqueydjby3No0am5MxvUKbvI6vQUtssC/7j9a3xyaaSicVJzEoJhBF4aj9cUprGi5kPaXLD17Yjzsm9mJ0QgjlVnuj2S+bW74nv9V0+vJasW/WaMR2HRvsS2mNzZt9+2dKzitFF7ADg07hrkm9mX/TaOodLhbuzPnT31tqu3qHs0nD8s7uyN51NfaGcxK7y45BY0Cn6LwDMo2N6xPOmoPFvPLrwS49cOG5HrhhbDwAD0/rD4g+SD1CzfSJ9KfQUn/SJnT4bFMmXyZm8dmmzJPyftLJcdg9sUB8uJmxvUOpsTm9WbQnit0lzk0dLoc3i36vDAT9P3vnHR5F/XXxz2xJNr0XQgIhBAJIDVV6EQRRKSIIqDQRFRW7YkUUKQqiSJGiSEcg9N5JJQmBEAjpvZDeN2XLvH/MZpOQgNj193qeh4fszuz0+ZZzzz33H4H/iKC/GBqdnqtpxUYFUC1kMoEeLe0JSixAFEU+PniDHwKSpU5MFOHOEs96PYT/AMXpf+HR/3ZcNnRoXT1sic4qbeCH8MpQb/rrQnBIPoxu19O/etuJ5aFoFRlsjNp4X4qgh9pLBt2nbt7+1fv6t8M/Po/T0TnUaPX0W3KOV3de5esz8USkFbPzchpLjsdQVqUhv96kpdZXKeIu5R71epE390RSUaPjZtY/V2ml0en5ObzufTl7K4c9VzKYsvEyY74LYPmpWKo0OtZcSKDP4rPsvZLBpoBkyqu1uNtJfgTjfd2Mv68/AN334oMA+EVk8uwPoX/6uVRpdJyPyW2g0vrsSDRdPj1lJPSqNNKy4bJwZgYPh03D6XxpDnPaa8BABFmaSPe2qcphtVDKZTzcwdVoUPlTcAr7IjJIyqsgq0QarL+3L4pun53+Syae/+H/GcJ/gJ2TpX7wHkgvVJNfXkMrRwvjd3KZwIsGk3QTh0u8H/waPT3teaqnBzG3y/jKYIzZx8uh0fYGt3XmxM3bnDcYOtdHtVZnfP9Lq0uxUilp42x5TyIos6RuYF1LvM4d4s27I9vR21CC/om1QU2S6Xq9yFt7rrP2YmKjZQAlVRIRpNFL73FbZ4kMC/0LAktns3dg1vxnvp0l5wE3G3xcrejTyoETN27/qyfh/2uYveUKXRee+sMj/X8W1JqGgacyTd37U6OruaciaHTnZgB8ey7hL/fK+iNxObkQO3MlHZtbk/TFIzw/0KvBci9DW5f8F6Xu1/qglf2NAa//0BCiKP7uqrW1AYhWDhbGuWn4H5ydoqs3N7NSKXGzUf1PWU78m/EfEfQXIzqrlEqNjh6edo2WDe/gTGZxJYcis9gSnMrCI9GEpxbB2U9hSUuoqJc+lRoIR16HlR2h6p/Nqur1Ipfi8jBTypnYw4Pyai0nbt6mj5c9HzzSntcfastC9wgA5OpcKPp10YZCw/lbmVjdFxHU2smSrh62rLmQ+Id4FP1bIIoiz2wKZfaWcKNHzombt40qkuWn41h3MZGN/skkFdSRPh2aWdPO1YqNtcTkHbhdz28nKe/PSQcordKw8kwc83Zd5eUdEUYlyq/BuZhccsuqecLXHYBV5xKMyyIzSlh1LoEdl9PYE14Xyf4xMAUTh3NsTp8FNCR/ahVBAN1b2vOIoRLQpbg8ozHt/aCsSsPnR6IpuE+5tSiKzNt1lRmbwxj61UXj4GxfhHTc3xsmiwUVNcjNE5nhEYKgMIMRiwCYb+bHz6OkfdkrDETQvllQc/fBxJxBdQPQjKJKY6WS+Jxyiipq2G0g2O7lqfKvR40asq41JuX/DcgIh9Ksv/sofj3yYqV+LvYYFCbddbXyai0Dlp0HJPP2+ni6T0vMlEKD7z4f25HwDx/ixxk9WT3FF3sLk0bb/PDR9njYm7H2YiILDt1sYMpaWFGDIJP6mFrlQhd3WyIzSu5KfiQV1P3+zv6phb0547o1p6xKy5Hr2Y1+m1lcSXm19q4qVrVG+r7aQOgOaOuIjZkSv4jMJtf/I5FfKZW1LtPUBQHGdnMjMa+C4KTfnvINcDWtiKFfXSD1fyDN5+/Gpbg8qrV6fg7/dyi18uqZq8sEWQOPII1eg1KmxERu0uRYr3tLO5aM7wRICvx/IxLzyjl8PYuh7VwQBAGZTMAv3o9NUZuM63g5Sf13Uv5f0+9eMQQD/6f7+T8Yer34m8ar94v1l5IY+OV54n5jQY8arZ4Nl5Jo5WiBh705zWxUOFqacOMPDupqDalhtcqgVk4WJOb/167/E/AfEfRHQWdISdLqSMwrbxR1SS9Usy0klYtx0qCpp6c9ZEdCsr9xnYfau6CQCczbdc34XXBiAQR8DdpK8F9et8GMulKShP94X4eo14t/SYTwTnxxIJRDV5Lo7G6Db0tb4/dTe7dkdt/myLaNRZV+iUhLqRrCoZ1rm0zXqY+0AjWnbt6mSqNDrZMaLHOFOVpDI1NdnHrXCLIgCLw1wofcsurf5U30b4Ioiiw5EWP8XL9U8SXDM1mLb87GE5RUp5YSBIFZ/VuRkFtORFpjVVD9iFtCbvk906NEUeRyUoHUMeo0zP3+KIuP37rrurV4Z891Vp6J5+C1LI5cz+ZgZBMTHHUhnP4EUgKorGjcKf4clo6rtYrpfT0BKT95bFc3Tr1eV4Xjp+AUUgsqmDesDXOHtKa8Woup8ylKNPmIotjAS+dOSXr9Sjm/plP+/MgtNgYkc+DavSfqOr3IT0Ep7L2SwcmbOTzZ3Z2KGi0b/JPR6vRG8ql2sFZYXoN5yw3MMc+ATk9A35eh+3SIPoj1xbcAsC2RrmNVyiUI23jXfXs5WbL9ud4NUuNqz7O+yurXVBf7NWTZvfBL3lV/GPbPgfWD4OT7f83+/ijUVMDGYfDDw3/3kfx6RB+q+zvF/66r1fejae3UkAhSymUEv9+w0o5CLsPR0pQhPs5G9cCdMFXImdyrBaHJhWwOSuGJtcHGSHhBeQ3IDMo7A/nSxcOWwooa0gubJmvSiuoCNndOXgVBYMXELng5WXDwWuO2rTZFLSmvgg/2RzVKu1JrpGOoJaVMFXJGdXTlfEzun1IBphZSOqo09hFFEUqzISeaMV2bY2eu5Oew365YXng4mnFrgkjKr2BzUMofdMT/f6DTi6w4FUtmcWUDldmW4H+H8X92PZ9CRzPHRh5BJjITzBRmjVLIavFkDw+sVAopmPovhF9EBnq9yHuGdDCABcELWBmx0vi5pYM5MgES/wI/ropqLcWyMGSqdGJul3I5qeBfoy77O7A8fDkrwlfw1IYQxq0J/MO3fz7tPJ1+6sS+a5Iv5S/Nme6GHwOTScqvoH+Pm+yK3YEgCHRws/nD1f06UeonaokgL0dLkvPK/xVt0f86/iOC/gBUhO+kepE7y1d9TffPzjBs+UU6f3qKbSF1ypb3/K6z/EAQG05fY0AbR1ysVZLc/adHjQSPg6UpS5/ojLmJnN4eZrR3tSIhPrZuRxn1Uk4ywsHBG7yHw8WlEqn0Czh2I5uJ3wcTmlxIiVrz26NsZxfC3pkQsBLOSSoDsiNh+5OQayAbdBrQ6wlZMZEPr48g0Ox13hvqho8yjz5ekvRwQBtHaXCfdAEA20EvkiBvzeO5a0nZ/Bw3U5tO3doanMLAL8/z/NYrxOeUI1NKHX1FSRpatUTsVGZHwNVtdz2FHp52KGRCI2Ljz2Tu/06Epxbx/cW6iPrJO9LiZrXXs8ZuJ/5PqWhrL2ekomHHNapTM8yUclaeiadKoyOjSM3KM3Goa7TG6jTWKgU/BafSecGpu5ZS3nY5jUnrQzgWmYbuu16szp5CTEpjAqS0SkP3z8/Q5oNjfHkyhnOxubR1saS9wZjZP/6OTi/jCuUbH4PAlbB5NKXLOhIUUncOOr3I5eRChrV3Nqa6ATze1Y02zpa8MbwtQ9s5k1qgRi9KEcWR7exRUqcYq17sgf7I68bP9RVBAO+Nakdfg9dIeGoR+eXVfHs2/hdLKZ8xVNhJN5SI3Xslg+8vJkqDrFuHYWUnqCrl+wNn2HL4FG/vlXx+3nrYhyE+zgTF55GYV0G1Vo+9hQnR2aVodXoKKuopVzwNpaof+QpGLaPSuT0AtvmSeqjSyQdOfwSf2sP5xU0eZz9vR0Z2dEUQwM1GhZOVKaHJhfwQmMxo92rmKI+TkHV/RHN4SiHeHxzjahPE4q9BYUUNfRef4529kU0OKERRNE6Ez8fk/vaSpbm34JaBlLiyGfzmwA2/33jUfzESzkj/F6dBE6bg/2jEHYfm3cGqGcSfvutqSXnlKKyvMrZvGaViY8N2vfAr/KuSLsLqPpB4joFtnBosqlXCpRWqEWqJIEPVva4eUpCjKcPokkoNBep6VY8qG78ngiAwpVcLwlKKGg3qYw1+DSWVGrZfTmPZiVhCkgoINKxXaTiGGn2NURU72MeZsmqtkRj+M/DJoRvGlFEq8uDrDrD2QVTftGep7QHSE2/8poF+aZWGLcEpAJjIZRy4mknM7VL0epH0QjXfno3nZtY/Wwn9dyMirYhvzyXwzt5Io9/HyAdcibldxrV7pDD+U5BbVhdUsFJaNSSCdJJZ9L2IILlMwLeF3R+e4vJXISK1mPbNrHGyMr3rOiqlnHau1vcku8qrtYSlFP7uwEt6kRqz5juxaLWa/PIaJq0P4fOjTQfx/gMEZl7mp2snCE0uJDKj5A/359oYJQXuMsqleWbQbwxqb7vmTzfvSg6krmNJ6BJAqoQbn1NGlUbHgauZTfq93cou/VU+cLWB09ogSCtHC0qrtP/q1M3/FfxHBP1eVBZhcvx1TPWVzMr/El9HHSsGm9DZzZJPDt00+nSImiquql5gl8lnvDCotZTOVWqI/J1dKJEo8ad5wrc5UTNt2FU6jU9MtmKWGSCt02og3L4hKY/0OkgLAo8+MOY7MLNDs3kMV+NSGh6bulAimaIPgSgSllzIeNklhJPzmbwhhEFfXmjYOeTFwveD4MR8iDtJcUV1Y3VHdbm0zRv74MwncGkZ1FSg2zkV4k+h3/2MdIyre6Fd3Yc+pSdRC+Y4ikV0OzUJYU0fto1zxv+dIdgWXofDr0nb7fgELbs9hPcz3wIwRXGegovfG03MapFZXMlHB28aPx+5noVMKXX0pbcOoDUMCgpMzCF0/V1VQSqlnIdcyojx92PPxmWUVqghNYhdy19lw4oPqblydxIJ+GdPqAznnFagNg7C94SmYG0qI/zDh1DKBfwMaUR+L/XF78U+fKRewiOVh/Hwf5fjyreZojxVt72wTVimnuW9Ue3wj89nd1g6G/2TOXz2Al/vPEpmUSU2lLPQ4wpypOtSn3Sqj12hUjlYIfog8iJpnRbFIQ3WUddoWX0ugcKKGjQ6kdXnE6nR6lk4piPH5w1gQBvHhtLkgkR0mx6muiCVFZoJLNA8iykahKNvsSckAb1Oz8kbWQzTXOD5ouWYnXiNoOFpvDm8LQPbOCEIAq8Oa8OYrm60F1IJNX2JvgHT6fRjG+JVzxp3U6GtQBe50/hZp2v4bng7W7H9ud40tzXjYmwu8/2iWHE6juM3Gqd6GA+9vJpulcGsUa4kJyPB4AUSyeLjMewMTSPj1LdQnEZVwiVmR07irOnbjPUx54kOFrhE/8gs/T5O6J7Db/NynIQSZvT1pEqjJz63nML65s1thkv/y5XQew6Vwz8FwM7w/lcNXwjtHwdRBxeXQGZEk8draapgbCuRA4p3mdSijLMxueSVVbNUvpb58q20CP2UYcsvGNu9JiGKKH+ewhTZGVacljxaxFMfURK28+6/uQt+DEymoKKGn8MziMxoPDFccyGRYcsvUlmjY8bmMB5dFcCEtUF8evhmE1u7B9IMVeYeXwV6LVzfBXtnQEHTni3/KMSeqPv7HqqaPwuiKLI1OIXc0iqCEvKZuC74/ryk8uMh8wp0GAOdnoTY45LipAlcyb6FWfPdnC1axLQT0xotryVr7oXRfqN54/xr4Dcb8m7BmU9p51KrLhKxo5RbBpJ12cloBJl0DlWGdszH1QpThYyraUVkFKnJNaTMFlXUsCkgGUFW115U75osEXSahoPgp/u0xNHSlCkbL7PqbB2hdadxZ2FFDU+tD2HqxstciM1tYPZemX4Z0sPo5+2AiVzG0SZSzT4+eIMz0b+/xHtYTCqjZFKASsyMgFpyvDyHEYXbeaf6O0oOvS8R2sBPQSl0+uRko/tfpdE1IIwuxeWh1Yvse7Evm6b3oEitYeRKf6ZvDmPNhURWnI5j6sbL3C755fv6v4y0AnWjoE7t9+8YAgapBWpjdP+dkT5YmMjZcTmt0W/+achX1z3zrpauDcvH62uMiiC19u4pzT1a2hGXU06JummV8m9VI1Rrdb/bl+Ve0Or0RGYU062FrdTHnPwAsaTpNM8HWzsQnlpESFIB52JyGgUzJ6wN4sl1wRy4+vvSRJs635+CU/4rEnEXZBQXoRXqVDW1hPwfpWDWG57dKo0eW3OlMUjxa6Cu0VJsu5wE5afG73R6Hf29HdHqRXp8fobXdl/j9d2RXE4qoEStYWdoGjVaPdN+COX13ZG0fv/YfVlC6O9QBA1o44hKKeOtP6FU/X/4dfiPCPq9MLPjE8tPeM/ic2wENVsKJjM+ZALfikvQ6fXGCWv/0qMAPCBLpZ91PqSFoBYEmLoXPHpD/CnYPgE+tUW+eSSCppLeuXuYLJykysSeNI+xoK0k4cZlaXBcWcTSBDdulJpRNX4zyuoihG3jqS6rF0kMXi2RTD8/Az+OIi4llRUm6+h5excWt0N5T7GD22e+lYgDnRb2zoLsaxCyBnZM5ODiqbyxuy5NjeoyWO4DwFbtQ+Qi+RwlbH0VeWk6p3XdkRXEQfB3UJiEoiCWMtGMtKn+IFNKg2tdDYoLn+OhSYFNw6EkHR4YDxN+AIUJePaHtxOJVrTHK3ELQ746Z0zfEkWRA8eOMlN+nL6yG1hTwcXAQJyUUgdXqrJCI5NK+uaamMLt63B+UeN7lnsLbvixruh5flAu5cmMRajXDoUfRzGlYguzS1dhcngulDTBdosi2pMfo13mDUUp0nfqQqJSbnPpVgZc/1m6P3f85n5RVFFDfnn13TuLkkwpnfAu20wI2It2WRt27f2ZIV+eYaN/MqQE8MGtx9lptgxHcwU/OO3mlukM9pgsoNupifjuHwI5N6BZFyiIR16SRlWfl+o2evwd2Pcc0zqa0tZBSe61Y7SPW8NZ07f5IPlZhl+dS6TqecamL+UVxX6UaPGPz2s0yFLXaGmRc4bewi3apu2mzNSFYtGC3pUBDdbdcCmZ7w3VvTZN60ELe3Oe7tNCMlStKsHXtpL43DLjgCft2jnkooaV7ivp+swXHDMfw2LtFB6UR9P92GjKl7RFu2cWC5RbaJm2HyK24Bb4Ia8M9kQhr2sC2zhbMUwWgbNQjCItoNG1rRj4Fnq7FsbP+vy4RusIgsDothaoYg9yOloaoPtFZHLwWibLT8Wi04sNyNeEjFzWK1fwiDyULrkHib18AgekDn3Tics0K5RSQFV7p6IUpGdiZdkbLDfdCCfeo2PstzgJJcyv+hp/szeZ7JyKTNBz/MZt8krrkagqmwbHWWmwTLEbOB+AKhMzeHIzzDghrRv4TaNzAyAnmq+djuJcEc+zoqSQ+bibGsscaTL4sDyMxLzyBqmHgPS8GoztxeI0uqiDWaT8Aefkg9y8EYkQ9C02R1+gfFV/2DFJUjzeB87cyqWdoVR4QHxeo+VhKYWkFapZebbuXoWnFvFjYMr9q/90WqnNMLGCbs9I12jiFmnZKl8I23Tv3/+dEEXKY88TquiB3qoZnP3sV7VH97cLkeDEgru2WRFpxXx08Ca9vjjLlI2XCU0p5GrafSgSrm4FQU5Jm/EsyOwFog5N+E+1O22wanRBQ2JPnxIIMceMn++mGqiPtLI0TqedhfIciXzKvobi3AIcLEyYpTzFVdULhIdcwC8ig5TCOpVBZWmGRG7KZfT2cuBcTC6Tvg+h1xdnmbgumG6fnebbs/FQT5VUU3Ybtj0h9ZX1oFLKGdlRqka2/HQcZ2/lIIoiMbdLkcvqfI6q66kML8TmUVOfCNryGGx6CKvqXB7t0gy/iAzKqjSUVWm4XVLFzawStgSn8uJ2qZ86E53DB/ujGrTBt0uqGhLJTaBErWGseg92gjRh16b4g5svfJa4rg0AACAASURBVJADH9ymstXD9JbFYHt1DRyYi16n45NDNymr1jLmu0CjAnLJ8RjafXSCnaHpvLjtChdic4nLKUcmSJHpfq0dGdZOKvDgH59HZHoxLtamVNbo+OLYv0+RUK3VNUhl/DXIK6tu8NvJG0KYs/UKr+26SlJeOXll1fwcns7oVf4k55fTXxZFYXExhyOzcHaJJ74ikIc7unLmVmPC4J+GQrV0nt8OXktHh46Ua8rRi3o0eg3VumosYo5hpqm657vdw2B8O/KbS2wKSG60fOGRaDzfO8qk74N/8Xmvj5Vn4hn45fk/zbsqpUCNukZHN1dT2P8CBH9H6Y4nm1x3UFsnarR6nlofwszN4Sw/HWscYxSra4wkcmDib0sdAsmv6PmtdXYU745sx0uDWyOKcCTq7oGu/zXE3i7jcOT9ee1V66qQKSqY2d8DpVzg6U2XafvhcXw+PPGHPDdFhnRPQdDy7IOe3C6tMhKBAfH59+V/Gt1E+ldWeRb9vB2ZO6Q1lRodFiZSVdxJ60MY9c0l5vtF8fnRaHLLpD5Hpxd5e+91Fh+7xZjvAlh4OLrJfelp6BHUxsWKWf1bEZ5adO/A4V8IrU7PitNx/+8qSiv+7gP4t6OyRsdNk8484uuKoNDD6Y/B3gvnHH9eVzjy2m5Lfp7zID3V/lTJLVAJWj79+RH2WlmApwdBzTpjNe2I5AF06zDkRIOuBro9jbB+EF1lSRyqfJBFp0w4a6rC3m8SWjMlIGNHvjchB2/Q1cOWR/Vt6C6LJ/rAElp26kflpVXYl8WQatOLQNMBTE7/ls36aWAYS+4xXSj9EXQEWniTnRxNs5woTj2wlIURKp6TH2W64hQHY/rxxnYds92SaJ+xB2rK2aIbzsfa6azVPk6Q6lW80/cSKevAVtU0hlddgTOfIFo24yfNEE6Ifdnh1Rr1oytYEPkdb1i0wfWmH6SFAAK8fAUcWje8qBaOlHZ8lg7X5jNIFslXpxx4Zag3oghjYt/FXdmwQ+sncwdklLq0R1uSBNpKSnRVVLd7FNOQddD3VTj0ikRyaaqgvHEEzbW8bkAZqvehlywWvn4Aph2BVgOgqhSSL0HQKhTpkoIlbc98WnQeiHjyA9rrRRSGSkzIlDBqKfSYCQdfhpwoeP4iCIaLnxcHsUfBd5o0wXTrCiYWpKQk8fGmfQwRw4hqPokvnhuLXhQxkcvQ6kVUgg5WdQdtJbG9F+Mz/DnJSNWjJ3SfTmhSPt6n56EQymkR+TVXTFPZdOkptDaB2Ihl2FRFwOZHGVAcxHl9F1oJtxEy4sDcAQbPhwfnQvAa8OhJlaCGlL0AiHotgqYSjr/De9YuDM3e0ODaeZeFGZ+r1xR+vKbwY0D118TllGNuIufkzds8+6AnN1NzWas05LdXw4/2ryFWxDBTcYLKI+9i9uhSLsXnszUkBRcKGdHegWHtnBlWfgRaukoqrLX9eL0kndkyFdE7plGVdZMijRIXUcFbU0ZjY2FG8HxnqrWDybzSB+WJ+Vhr8nhcbiAJJm0HvQb2TJfup1UzuLYdhnyAl5MF3eSJ5Jm2wGneRShKhuzrcHMFABWdxmPZaw7sGQKALvGsNEh77FuJxCxOg2Pv8H7ccTCB8hoz1C2HEpiQb/QGW3shEW9nS47PG4AoQnX0UWSCNGh7gX1wch9nTC1Z7bYYXVoocqVIlN6TTrIU/FWD6T9qCsL+5yXj3NbDoPs0OPomVOSh0qtR7XuCJFPYf6kfm/WDoG3T7VatQsLOtmXdZ5kcWj4Ivs9Kz0FJJtg0r/vRDT9JBWOAc5IfMQ6hmCarwcQS3aD5OJ3+gNZCFjezSvFtYceV1CI+OXSDLQ9cxf7SRzD7PGVZsVgDVYKK5YrVsHe1cZuWBVFQmgiJ5+G169KEX6+FpPPg8oCUJiSK5J5Yil3Y13Somk7zwTMQBIHAhAJeHtqmwXmm3i7AXcjj+4t138llAr7iLZYdcGBy4Wpa9psIzXuAtcErJj8Bbu6H6lJo3h3tvuepFMxQOrYlu0BNq5ZShThaDYLki3D0DSkVts8LTV/svxNFKVhWZXNY8zB5zQYxOn0558+f5IdkO7bM7IUgCL+8jSZQUqlh2g+hJOaWU2YYcHZrYcv+l/o1WE9do2WJwQPM3ESOt7Ml1zNKuJZeTD9vx7vvQKdBvLaT8hZDefynBFILZAxVdqLfpWVwc69E1vScBQ++AhYOZFbeAlXdz3O3PoarTieREkpVQ0XQl21g5GLoNAGQiKxTqfUUkJYuMOFHOPYWBK0iYPJQVLu3gx7WVbxOymEXzppVMBZpklmpq5aeA2BUh5bMP1BHSIbWS0vpJY8iyvB3zbi1sPs5SeU08O0Gpz6zXyt2hqaj04vM+imcr57sQnJ+BbMHeFGj0/OEt4B85yTchHz2yEZxIHUGGtO6SWxl7T3d/TSThu7ELyKTnaFprLuYRGFFDaYKify2MzdBXaPluS3SBG9yrxZ0bG7DnvB03t13HVOFnO2ze+PbonFhC4DI9EImyC/xncoJqKJSYQLdngaldCPMHnoPNpzkFl60r06iZpE7e0zcKREt8CzOIWhdH2w6jmBdkDW2lPHh/kiaUUDrW2vJ8RrPp5Z+qMQhIDNn0/Se7L2SwVt7IonOLmVGP09kgsAPgcksm9AZlVJ+92fpH4ZlJ2LZFJDMgDaOLBrbiRYO5vf1u6ziSvouOQdA0hePkFlcSaZhwnLgWlYjj7mFPqk8m7qYr/VP8U3mCKx8NvHWRfik43H8IjJ5fqv0bNmaNzZK/yeguEoigvo0705qWQIiIpXaSjQGJa5l7i3Myswodet812308LRjci8PdoamszM0jVn9WxmX5ZdX82NgCgJ6LicX4heRwXMDvO66rfqIMqgvvjuXwJdPduFiXB6fH4nmxxk9cbe7v/sJUvuoLE1H6eBZNz5EIl58hDQe8X8HyjPAazC56YFgLvVRmpsHUV7bDtWlDHhiEwse60Bcbjm3sktZfT6Rao2eDx/twJXUIjoLiTxsdovDCQ8jil1+dZufUaTmxW1XoJ6i8cXBraV2MzqHjw7ckCqsTuuBo+Xd09j+DFyIzaVTcxsc/qL9TlofTLFaw8C2TtiYKe+5ro4qBGD2YCeK1Xr8IjKNNgEHr2Xx6rA29/z9L6F2W493c6BTcynQN3NzONP7erI5KIWWDuaM6dqcg9cyufDW4Eb3Pae0ignrgrFq33C7yaXJeFh78PbD7XhhUGs0OhHfz6S07OzSKuzMlWwJTgV0rJzcidd2RnMltcioeIrMKOHjxzoQl1PGjstpPNbFje4t7RDvSA0D6Oxui04vEp1detd+5q/Eqegcvj0bT0JuGWumdv+7D+cvw39E0O+EmYmcg3P7SdE0YR50ngSWLugPvMi8yJ1YFVUyaVEsJ0xiifZ8js4jZ7H3eB2zn1VTjI+lizSR7HZH6XRBDqKOrdrh5GDPHM3rzJEfQaNz4MeaBynBkqtpxVxNKybF+2veyX4T78QfMUncQK2gfXH+QPxlPfHXzeVrk3WUOXRgUtYk3lPsRCXT0ZIsXHZNwUUUOK3vzvNX3AGBZdqneFwexHcm36KK+wr7eKlTLsKadWYv0MvdgtBkWKUdyyBZJJ1e3s4LxVaEb/mOXNGWL0pnk1FjwU8zeyGTCZy2tuG4rBKlS3MW5bWDvBgpuu7o3eR17TXyWSpvLGWD8A27MyNw2R5HquiKuzwf0dQaoVpiskWgXC4HREo1Fej0OhxUDhRUFZDXaRzuMUe4tGkAVRU5jHDyBRsPkCuktLnuM6D1ENb/sB5Zqj/rtI9TjAWzB7UlJ+g1HpOHoL/8PbLyHCldQNSDypaTdpOJy6vklawDkHWMK/q2hOl9mC4/yVl9N3qZZOF89A1IDYIbEplCUTLFKnfe+jmSdQXTUZRloD+zEBlSY17SYSom0afZIpdKFWfeDmfkZ9VMtLyOwrkNS+Nc2d8vjc6G6JfP5floQz9GIWrg2jZuqboRceJnegnSfeorl1j5N7WboADerHmBJarNKNOCoMNYrHqu4GDmCSbZmuLaYTzIDMqYwe8CUBW313gvtD6jUbp1hfOLGCJTkCXaM6PmHeb3MePw5VtcEduwsF0M/R+ajOzAXMi7xXT5KR5e6YwVlagx5dGI2fQsklQeaba9+CbXl31ZPeli4c1M3QnMrnzPnvK2vB3ZDBl6giwX45qcCSdehMtrpQPpMFZSkAGWQhUdE743HmOSrAVeFlKJd7lMwNxEgfmDExh52RlNTgynTd9BZuMO3sMkcsHCSTKWzr0p3Vd7L1QKFcNkEVR5TwJze+lf8+5GIqhcU46jWd3kVW/bEiJ3gpMPtHsUvuvR4BleplxPYbeeHErbTzNFIc2EArJERwJyO5K7cCaiKDKQfDJwwWT4RxScXEqU3ouJiot8mP0KKCFR5slT2s9R14DfzP4ILewgYgsUJsLEn8DUCpp1hfJccOkAZxZA6HrGyQOxVhXyWpNvV51Cwk4ldb6VunoRkJ7PQdAqye+j9VAY/hkErJDSQQFGfQk27rBvFqqKDEkpM3g+cp9RcPoD1pquYnV8Z57p05IfA5NRZl3BtmABAAE/L0clF+ggmnLykSC0h17jScUlop0e4V3N86iUAiNdy5gV9bRRfWiEiSX6vq8iXPkR5zIpCjlVcYb2kUfobTWEF9KGk58Ri6O79Dt1WRHvqJczyjSMcdWfYtH6QbbO6kVZnD/WOxeijZRJ5O1ug/dP7xdh6Iewte45ExFQIGJFNbsyrXjvqwtcXzACa5VSUjFmhEnKyxPvgvdDYOUKppY0hSqNjuDEAgb7OP1mAqY+dHqRTw7dYEqvlnRws25yHTEjHAG4om/LgXhnhqlMKTu/En/NK2QWV+JuKYPInSyIaY7c1p2PHu1wX/tefiqWG5kljOzoaqxydTWtmOT8CmP59iqNjlXnEghLKWKwjxObZ/QCYMIyP9ISbsKQptt+ABLOIFTk8kZRJwqVNex78UGCg95CdWsx3SxdkDn6IASsRAzfjPhSKIgNU/TSlQqJCDo8D1w6UOngXrewIhcOzgX3HmDbkpPXNvD29VV1y30ekUjREZ9DwhnMdo4DQOPRj8C0SpRiNc1kkkpVhkCV3AS2jAHg8SGfMZ/WyNGhQyInDs7tx6tr9vGg8gpRSOq1ahs3GPoBnPuc6wnHad1yIBZKCxBFvBzMiflsJG0+OA7AW3siMXU5zI68QKI8n4FbiSCTUnueE/dx6nYnLFvkUZsYUOn7DDTrCQdfors8AUtTBV8ck7z7JnR3JzGvnOxiSfGzKzSdV+T7maE4wY6jH2E/cRqfH72Ft5MFqYWV/BiQjO8UO/RpYcjkcmjuS3J+BTt276Dd7YMMlBeBywAouoa69/PgO6vuOjb3JXpqBDN2JTBHv4uZej96yuqUed41fhDhxyDZu2w0WU6a3okWQi5KQUdC+lku2mi4euETug1bDKc+pLvMHfAEBNq7WmNmIkcUITm/wugd93eivFqLpWndkLpKo2tEUNVo9cb0aP/4fPZGZPDG8Luw9XfgWD3lRa+FR1ghX0WIaTQBfb7GusUAAhLyDRM0GNDKgmdL1gEwT76XSstIahNve7eSCMwzt3J57qdw9r7Y91ef6+HILBQygUqNDlGEJ7q7//KP7gNlVRq+Ph1Pu2ZWlFRVgCigkquwMJHalPKacqOiwEIvYq7XU5kXLQXXnBpfR6VcxuLxnbFSKdkclIJOLxqVdeei0tisXEpHVzOmVr/P7rB0ZvZrhUz2y21zrvYGZh7H2XNlGpN6erA/IoP43HJe3XmV3XMeRCn/5WSLGq2edxYs4DuTVfDEJiMxDRCdk0NWuzUcLazgXPdHmN3jdcpPzgek8WHlvmkoDaof4dp2pg98G0LWojXLZHRJH0KSC0CnwTRgKftNfkCuF5levY/Is5V0GfbUr+p/1h/xp1f+cd5vlsYrtV8mnEXwHkZ/b0cScsuJTC/mk4M3WT3V9763+3tRXFLCiz/64+HiyKnXB/01+zSkGF6Ky+OxLm6NlueXVxOeUigFOQwecrmVubz/SHs6NLOmU3MbFhyOZmdoGuN9m7PgUDRyGQxr58LEnh6/6li0hvv/cCd72ljVjTlqjfVTCyQvNZBSi+9sI+/mz5hRVpcJYaWSyK6fZvbC3ESORqdHpZQTmlxIqPorPrr2AW8O92PVuQRq6hmHF5RX8+rOq8TcLiM0uZCjr/ZHFHQIQFlNXcpnLYG1JzyD0koNg32cf9U1+KPxTcS3mNjrOBY1iIi0on8EOfVX4D8i6A+CsWG1kkpIy0Z8DpE7mak4wUzFCaplZjQf8hwlNq4NfpdXmYcPPnduTsKzB9Bm32Sq2eOMVtew4DCUu/U3emEse6KzsTEY3bkZcWefxyT8TQBO6npQhjnjn3qOySZyPtxvQvKkObRv4YJyXQi77R7k8zEdWfbFeyxS/ECs6M6bmjnUSjvUqDjVaQUdri/GUShhds0baGWm1Jjas3KyL2du5RCaXMhy7USWM5EURy962ekZYLaE7JIqZAK8NLg1g9pKZpu1EVmZwhRmnpDKMLe6e+MtU1li9nIAbB3H0wVnAXAUS4m1G4TP8z9J6VG3DlHZaiD6qC8BqYHRilrcLN0oqCog18ET93aPMrf6Olg6EfXs0QZRl1rYdnucdxI9jZ/fGdmOb5Xfsf7CJzwXewxiDoOVGzy0AHxG8cWqK+RrC3hIFoGXkMW7mtkkis35RjueKkyQa/RcNX8Z6xt70cuUyPQaSLrI/urBxMVGoTDNIEVshjs5VCttUOsVOERvxwZQW3lS2mEqzS8v4oLwIqiBFBiqcMM7TIr4faiZwRh5YINBdfs9A6kl9jcrJzFdsxse+0aaCAEHxe5c9rzApwV5DBv+KR2tLJhxaQlnrD053LFuAFKL+p4Tmic2oNRr4dJXCLpqCnwm87zPYwzu7k68XRIxkYnM5Ruey/Fg3twQ9OuHMivrOO2FVNrL0rATyqFen2PxzA72fSmlEnXu1A2fkM0Em77Mk7Fv4i+bS2tZFq5aQz57LQlkYgXRB6DNCHh0JWO+PERzfRZL2yVilXQUK9e6SF99PNq5GV+dKiNnxmWauXtJHjkAj37NvqNzKLW2YEZJmaSqQQSndqj6vdjkttQadYNKYTrvoaBoJhmm11buG74Q2j9GQVoMdmffxvnYk7Qz7DJe35wB8hs8y2kQIUHvhr/YkYzeH/FU34fpdVgaoE987FG4vBa9phqXseuZFm9DtVZPt9pOadJWqYS5qTSpxK6l9A+kEvEuHeHwq3gRD0iDlbWRa3GzcGOMtzRhra10ZGcqbXN79HZGtxottWN2nhLpFn0AEs9J/0BK4RzwJrh2lD6/EgEmFqCqN8B45CvaHnuLjrHfkLF6EeZ5vqxW7UQvykjRO9G/5AgAO3RD6N7CmQMPLmJp3GmenjSLrgEZbA1JJSxdRmeTtg2e77OWjzGs/DCyC18AsETzFIPdtPTJ2wsV0K9iK1GKrbARAnp8Q//BoxFXdGaUXEo/+VC5DUddCELoUKxzpTQihaCnWlSSLTjjSSZcXotYEI9Qks5yp0XEZuazRvkNm3UjyZE344zuAQC2BqfiYq2ihb05vXxGgWtniTT7rrukBhy9HLpPI7+8mtSCCnxb2CEUJHD6Uihvhlrw6XhfJveqSzGUHiaNpEJq1gWcfPg5LJ3tl1PZPrtPg8llfURnlbItJI0LsXkEvDu00fLSKg0VceE4iHK6dutDdMRt1mlH85rCjz6yW1QcGwdCNsSd4CNRoABb0myXoG/3mFSCXRTRVxSw9chphsuv4qZNh8e+4dThnbwSs5yOzafx5OSFKGQCbrZmrLmQyPt+Uax7pjs2ZkqmbrzMldQi2jpb8H3P25LXhUNrVgnLaJZ5i23bVjBp8gyiMktQymR0cq9LX7xx5DtcRBvO67uy97nedPWwRasbwMRIJWPN3DhwLYuuQi/8+ATx+4G42EIKdRHa8O6TcUgOx+v6LgAqzVTgahhkvnYDVnaEC0sgcie7XJ3BrJ6cyPcZ6X8TC4kM+lnyCVOOX4t/YAWbApL5YpQW4j/EQeVAlaiDDr4QfQAL/y84p3LARKwi4YlTHI+roHNzaw602Mvn1EWta3Q10O0ZKgK+ZmrgOwwItmGN8yC4eQDU+Si9BnN9/BiOiP15f/91TOwl4/vKC19gJorSuzjsI7Rr+vMzCxgnc0WrV1IhE1B3mwo2kspWkR7CAK/+XLqVgbWNnbHq357wdN7ee53jR/3YYXoAJVr6Z6yn7xIP5pke4WUCiXbywTU2jGtL2tC1ylCo4tlDKA4v4oOiyyCHbJOWaKydoajp9LsObVqzdpo949doWclITrQ9jFuPMaCpQDz6FoJew08mS9FYt8SsRglyJ6i4TYJFFSvtHVFmHSfiu1NQlEIrYJliEO9o5+Db0haNThr7JOSW/3Yi6PwXUsBm2uEmxwYNEH0IlGZ1fmtIarKskiouJxXwxs+RnHljEN7Olqy/lMiyE7F88vgDPNOnJcn5FdhbmHD65m16aq8we8oEvvTP59uz8fRoaYeHvbmRQL0bQpIKEQQYIEQyV3+Q3sTwoqsTAbkLiRoRwYjWZrw4yAu7+H0oo7+H7DToMBZZ9AGclZmALUqZEg87MxaN60hURgm7wtI5FpWNk5WpVMn2PqDV6Xll59UG39Ungq6mFdHa2VIiy+tDr5eucb3rnJRXTkBCPs8+6AnAhktJ/BAopXCZuRZhameCkBKAVZbkd1SafRW9hRSMsfQaillVNpWVWVLbaQhiNYXWThbUaPVkFlUaFVjWUT8wWB4JefBR3wKePmfKqejbjOzYdBXBtAI1VioFuWXVZJmuQSGrwdFGx9t7r5NeqMbD3oyItGK2h6QyvV/T45H6OHgtk9cVhoBb2CYp8HR1O+Jj3xAedxXM4BN7Kyi8QWzgB8zt/woEfgSAWpBh3X+eFGi8ulW6puc+RwF86ZTCE1lTqb66k/6ZmyiTWaFqPwKL6H10DXiBsJpKej4y8xePrxYPJX/FQGUoSWorsJbGC+KxNxFGr6CHhzebDesdjcomc3Ugu+f0wVTx+xV6B65msudKOmZKBSM6NCZKNPte4JbqGGFFbakuO46p1T0Upn8ARFHEylRBWbWWwIT8JomgZSdi+Dk8g/mPtEYwKL3z1fl0cTI1qs2WjO/EpPXBjF0dSH65pI45eTOHR7s0w9zk/qfktUUw3r70Nm90fxMvR0+SDJ6qT/i6cyk+jzxD+tbZWzmN2sjorFI6y+O5M2GyuLpx2nbtPK4Wvi3sWP2TZJ/w0hAv5gxqTdsPjxuXbwtJI+Z2GS3szbl1u9RwXNLxltbUpaM1s1HRzEbFztA0doamkbz4kT8kSHa/CE0uxN7CBG9nS6o0OrI4gqkL1BQOYvyaIKb0bsGisR3/0mP6O/AfEfRnwcIRph+VVAeZ4Zg+uQFTDx+u5UqeO/N7zWdx6GLy1I19LYxoNRBFq4GMRYr+2pqbMKqTKz4fSuafg3ycpOpjBnQbOYPN10K4XSnnjMMU1j3d3VghKeDdIcaH+eDcOvn+Tt0wLuk6I5rZ8dEEX97eex2VUkbAu0NxtDQlZfCjXE4v4vTuSNBDyNvDcLVR0dndhk7NbXhl51Um9ZAaaIVcxoW3B2NiiIbUf3lyK6VIhlyQg5kdtB7yy9fQ1gOePw+5McQrvInOUTO6UzOQy6DD49DhccrVuRD1JVYmVpRUl6AX9bhZuhGVH0VuVT5M2gZbDNLhu7zMtSkKwzu4sO7p7gbzYG+eiZnGw7lhtJTlst9+JqdveOPvF0xZtZbnBz7AkyFLsRbV5MstQKvnxYc6MbyDC7O3hLOsbDyPykNYVD2VDearcbmwGG8Tfz5TSAz9h6r5BJXYo6+WYU0Fy5XruGk7mNfe/BgzUeRGVgoPpO/g1Zq5jJEH8pBcGnjtZgTbdMPZphvOYNlVughJ3BA9GaK4QZDWhxeGPcD0oZNA+400aLVtyYSNEehV+ZSIaqIHvc4wO0+KK6T0uNTS1CavSf1Uimp9DeYqO3jGD6IP0an/K3QypNHMHujFiK5yHt0PhxIPMc93HrKxqykM+IE+N36USDAgV7Tlbc0cPu2rwNPBiXdG+lCs1vDG8La42qi4qtvAoKDpfGsipQlVthzM4e5jGJodj2MzXy6bqSjLiuCh3q+Dypolc6eSXVKJlacZ+C/Hqc2IJs/jhUGtmdK7JfYWkvzdP8OfjVEb2TBiAwevtiFDV8GMqWfg4EuSSmjcOsrlStTqXJzNG0Ynaj0KaqEX9ZJZ+5E3QF0A/V+T0gEBB3sv8OwoVfwCeCUCldAMUZPF2V1L0LYeQZ9h4wiJzOIJX3cEQeDg3H5YmynB0QJ6P49MFLEUBN65I3MS83sM2BUmUrpYSgDq2P3Gr9dcWwNgJIJqJ20OZlKVsxsFN0gpTaGVjWEAO+576dy2jpNULzNPQos+Dfdl3cSAuedz6C9/z+yCY5AHy7gEIqQPWcXHN5rzZs0aMgvLWaqdTJCdGe+O7gyjpfdz3kNmeDlZ4OlgwZGYH3g6JIFY1XQAXs9/DD+TK2SJDhwTBiDvMYVevbRw4CZ4Daba0p2rp7fRR3aLB8I+IOvqUtxENVEKZ4rb+jIg+gRkx0P2cbB0odqxA9EWfVD0e5nn9iZjVpbCAZOPsU04wzW9F8erO+HiZcrXVv3w9GzNcG8X4g7exKysmi9P1lVyXPe0L7vCMumuHUtXszwG2BbCqY+oSLtK3LUrBGvbUmCvY0TZfh4DBpmas+PkWPK1fSkXLPF8cBzxsTfxOvks8sIEaaMevQnKHUVkSVve2H2NTx5/gOa2Zo0utVTxUCSjqJLCpAjevaDGzMyCb8Z5IdSomfxjPO/n+1MsNGdCHy8+n+DLh37N2JRoTf+KM/jES+RlsPUoYwuM/gAAIABJREFU1MU5DJNFUHr6daYfzWb06LGMzNlA86jV1Lde1qcEMqK6BASYmPctRHizcsJTcGMf+c6lTM+Yz+vfvMobTwyjf8ZGPjSJpIWZM6Z7g6QN2HvRrELy/3o64Q2urDzM1oL2+NONr54dTETAMV7PfJOOopbvdGOYPdjHWI2ri+H/2hSYa6I3m7UP87T6HIUODQeqa7LOsdXSiqA3Y0HUU3XhIyiSyAyNlStKN1+I3IkIxJjekRrTvJ4kvO3Iur9tW/D2w3q6eNji7JQG8eBg7khmWSY89ZOkytv/Al6JZ0EA95BZDH5qJySewy4niASfLribWJBRniERQVauFI5cBFEruKYtlvyC5Kbg1g3iTmAdd4IpwBQVdEIiDm8r5LTqMFFKPVZZoxn5JUmHFpGKDeamFqDJoVJfI7URTu3h3GesBTJMHXlX+y4kSz58Q9SneNE8mtf0WxDM7BDbDqNr5C6CTV+mmVAIpdCFVBBAU5nEdt0wxsoDsNjyOB7ANvk4uvQZSotuw6m6LlWauZtXi28LO6xMFZRWW2I6cRMY0jgE32nwqXRPlf1fwa3XbACmvr8MB4tTQA4aQaC6OAXThxcjlmQwMWQ1x/S98HYeTZVGhyBIaTS/CQWJiP4rEPQa9NnXkbl1MS66XVLFtfQiRrZWwYWlUJwKsQbPqXnXjcT7j4EpLDxS54kRnZFPxvGvcE8IZJeiGLvj5QQWzGeqvwPtXK3oWhXGBpNllBxZxagex7mWXsyzP0jP5fpnujPigbpAYW1a7eYZvbA3NyE0uYCPfLKYmbIUPTLiH1xKwG2pv6z63AmVKNJMaQEag/+Ie08pxTF7HsVBC0GdiFZXg95/OVMHvkVpFw0Hr2Xx0napMMCicR2Z2rsl4SmFXM8oYWb/psmMsJTGSoLcsiqcrVTkl1czYV0wj3dx4+EHXHnAzRp3WxWJ1wPxuvgKsk5PSko4A577KZyk/AoefsCV/PJqtl26gZdQSJrojJ4arE0tYMcknGRacHMhb980TBXm4GiJZdtRmKnTqYzeIQXrBrwpqb2bQGsnaRwcl1NGCztTKEmn2+19JCjb4q0qp9/Nj+nksJSVZ+IZ0cG1kSooOquUR771p1NzG6IyS7A0iI+e6efE18eKUcgElozvbCQCpvdrBWU50r3QVEnjg1YDGmwzPD6dJ2XZlIlmWKUFSX0tEJgtYF9SBfV4jxpdDYVVdWmm6sk7wHuk5Km5bTyc+1xSJVu70TFsE6a6sSQfWoaM5uzpuYsPRnfkZPAc7E6+gm/YOzBoDFg41O1ApwGZom6MXFEAAStI857Kg7or5No8QOUTi+HCywBUFqVgvnUcwwe+z4A2g5nRz5OZm8O5ll7M+Zg8Rnase45LqzRYmSq4mVXK7C3hTOjuzhvD2951cj1xXTB9rXMh5ijtdAq26kaQmZHCRNk58H2WgqxEdJoqnNOk97GnLI7EsMO0Hjqjye39UShSa4xp0Hfz+Eqr9T07GWl8RmrnPrXo4mHL2K7N2RWWTt/WDlirlJy4eZuI1GL6t7l/MkujEzGITlkbuYbQt0LxfE/yop3RzxN3OzO+MSiCQpIKsTRNRi6X0aeVPW1crMhPjaRrs29IpqGCuaT615lOl9aUYqeyY3gHF04bChDsuSIpqucNa8ObeyIZtvwClj5SELW0uhRRFBEEAUEQ6OJuS3aJNB+Zt+saE3t4NLgOURkl3MouxdpM2eC5+r3Q6UUmfi8VAUlZMprgpLqqa9881ZV5u66xOyydWf1bGduP/1X8RwT9mfDsD7NOSZ2ApTSpjC+WXsw+zaRJVV7lPYigepDLBMZ2k/w61j3ty+HIbJzvKCupUMiRDfuQdQdvMueOMtl3a3Q3PNuDwIR8FjwuRbs97M3xdrY05vp6OloYjSnbuVrhaiMRTyqlnMe6uNHHywFb87rIz90iAbVyw4Iq6WWLK4rDRGaCp43nvU/c1Ao8etIGaNOssUyvvEZqkD2sPIgukAZkbhYSU59bkduA/KltfO5Ec1szJnR3Z2BbJ6NsWBAEXnmkBw+vX0pzIZ/EWDegzlvoye7uvDqsDQqZQEhSATM3hzGldwucrEz5ckJnpmysxGHwS0SdjWeaeh4bWc2A8n0ghxi9BwtmjuOhr6UKPjMf6srsM28ywNbRuO+OM1dDxadc+DKCY9W92dgxmYs1Prwybggr4vIY07U56poR7A5LZ4qjBcPauzC6ogY7A+GB0jBxbD0Eu/ZWyLMON7j+9QcVTaFWMQL11EGe/aV/d6Co6o6BoXN77Md/Cb0ncyMhhVTzB/hk3xXysaHl6EcAeGlwXVrI3CHegDe4bwb/r6D3i+R7dOOzQ+P4P/bOOzyqKv3jnzstk0nvnZACJHSI9KqAIgrSFFTsouuquDZWXfVnXV3Lrl2xISIqigpIR3rvkARCT+9lkkwyM5n6++NmJhlSQEVg3fN5Hh+Z3Dt3zsy999xzvuf7vu+KiDS+6Hk9d8+TBZWMEf8HQGqUf9MKx5jnaQuVUoFa3cBVi8bz8tCX+es6OQl2YV0hVd5+lNdWUe0fSeDM9e733LR4Atk12WTcluG2oYNcrvNk9Un3a4fTIYua189t/cMDO8iCiqEEQpIax3XJjHroU/cuMwbGu//tmui6+ZWrEMtPL+dA2QGeHvg0XP0vjJIFDK1X/zJajSgkBSHaECYmT2TxycWUG8ubhCC1FtDCLYvBpJdF2XNBklBM+QTzghnMqenHQ6qfsAR0JG7INL4a4QWMYlLjYMXnDKdLqK8XdzSupAbo1MzbmcdHtmupdPpTiy+jLW+QEOrD+kdHuO/jsjuW0mBrIM4/Dt/EW9Db8qj/4UFqqqt4yjab451XYDAdIb3DICTvIHkyV1eK1/DH6dM48dz0eEeWHiziqaXFPCgtJLvbA6y9YXiLvmLenf3Zl1vFtDk7SQ735WRZHX/5Sv59N3IDGCDn9kj45Ap8Ds2lC34MVqeDAexOiedstzFKcYC/2L+GNV8TClSc+pn64wcwSsUU9H8J85FVdC3Yy5OOLMaqk1GdcDL1tZlMv6I/Nw3owKyv91NW18CH07rRac2tfK6WKHKGEPzlOm6x9+A5221Ycyahwc7LpjB6K0/xo30o42MCUCgk/jm1L9CXe7/cw7gTzzJKlc795ROZOqwXz27exVeaf/KF5jW2r15OjLIpOWiV048PnVO5x7mWT6zjqOlzLROM7zHk51lyOKKpitcAFPC5+VFKvwrkIVUNuf5h/GQu466EYUjRfeUk5LoQnBHdkLI3k2bYQJpmAw2oqf1Gx+WSPAjNcsTxvu06vkptEmO1aiX3X56EwWwjzNcLpVLi6/1/5dWyG/BSPufeb0TsCDYVbMJgNWD2DkSr0mLuNhG2yhNuo81IQP97YPFfqOl8FfXWLB7o/QBZVVmsy1uH1WFFrWh8pqm8YPTzsgNPktCqlUzoFc26XDnvUYg2pKlP8A2XxXKHA7a+KU/O/p0CgCWwA7nWWkZH96egrsDdp+rj0iAD+Tk35G9y5b7wVDk0s9H91pyS6fNJSBrnfu192c3cvT6aBukfJPmGUqMvbRJkhj0iF0vQ5xArVbDA/jjMA7pPJTRzEX8H8PKHv2wCqxFH+iICFRYco15C0XU8FB/CkjCKzFMGzNVm3l/5CrPVC3nbNomMhPuZMaYfdoedelu9+3dti5V/G8a+XL1nLg9JggnvyXnuuk50//nhe+5mwXEHFC8AoHDmWhKj+yOZazHv+ZIvNK/DKiPa0c9xh/9ezCdLYXTjrOvoCsxOFVpDLo6igxzr/giphh1ydTalRi6E0e9uKkxOvPfPQelQoHIqqJ83nQAfb0i5hup+f2PGh9vIq3WwLH4hnUsbBaDwrjjKj2H68gZOjP+JLrERvLmmSRQGKPrlAyYY51DjFYqfwoy9wUTQ7if5q3Ic11TtIlgy8FxYMEv9fNm34woGDv8XN2yPo8Hm4J75+xjTNYL/TOvNW2uP8/PWffxd/S175nWhR78RdA16m8SKHAjvhnTXajp5+cE8WQjSKxREKbSyON9lnCzej3lRDvmO6Ut1VDc4dQqnJFG3/R38U8fjH9aFj25J49WVRyk3NPCPnzJZmVHC1pNyDkaL3UGkv5ZxPaK4/+v9KCWJR6/szC9H8+igO8Rjw0dSqohk0crV6H94lOlF4wgOCsLucLLkYCHR6e+T4+PNdL9DJFc2Fh3Z/BqHk+6iW7w8oSutL0Xlm8vHmxP4eet+tnk9jLfKQqkzkNvVqTiRwFpPeOcxYD1GWco4gooOAVZ8I3vhnVeBSZJwlmQgvZcGgx+EPrfKCyIg5xVUKOkS6Ye/VsW/ftzO0KjP0eZvJgJY1/FRki/vg/TZGF7vsoWxh4bx4DcH6Brtz11DE9yhfe+ul8ftGYWek+ThKTqm9uyLr0ZFgE7NlLRYnl1ymGcWZ/J4xjX425vcFeUz1hOW3CQyW0vkcM3HrfcSI1Vwn9dqGuwO+lQspVKnY2NjGCnI47VT1U3hrybX8zh5lOxazN8F496A0kwUuz/mdfUcUhT5zLI8wM3dYkCh4KohA3jt+MP0z/0LKxbPJ3TwrUhZS+m9+1HU2DBK3lT4pnDCbwDD45Sod71Phx3vYUei/so3MTZ7XtcOmIlu58d4bX2N+ddGQUggx1+6mltf+Yxtu+2M7T4BnE6+2n6K15anMyUZbjAupJuhG++uT+Pd9SdZ+/BwOkU0fUeAvPTNPFr0OANKjsqljBRwR9gxzFVF8HMR7PmEoJJMFMhumzvtT/IfxdsEHPwEht/cdN7PMztPV/LvtceJlcrp6VPN9vKunCyrY+OxMvKrjDx2VRd8vVRk1exCF78WU3FT+o/WFvvvGJLA0RID/5rSk0CdmjVHSlh7pOSchaDsinqMFhvKxmG+63ny7o19OFlWR/eYAGKDvKlvsFFltPDj/gJuz/07J5yxjLHdSPfABm7keV6N8hQ4Yqw2qk1nJBVf94JcRXbkExAY32IBUG/WE6QN4t0b+1BuaOCmT3eSX2XCT6tiQu9oAna/yWUVSxip9AeU2Jw2TDYTOrXszLuyWwSrGisfLj1UxNJDRfzyyHCSw/1wOp1M+3gHRossIu1/Zox7Ufe34nQ6+eeKLHcIHchhvS+vOEhj2j/G94oiKcyXuGDdWXNB/RkQQtB5wuF0oDfr8VH7oFU1s5krlOAbjsPpwGK3sKNoB+He4XQM6Ii/xr99R1AbjO0e1aZ99fq0OLafrGRcG9vPZEzXCMZ0jXC/HpgY0mKfzhG+PHNtV8b3bHnMML/2k7QZrUbUSjWFdXKoT5lRVsenLJ0CQMZtGW2+91wwWOV408SARLcQFKwNxkvpRbmpHHuzMu9Gm1HOw9AKLst8cwYkhjB35ggCvNUoFRIdgnX0en4NOi+lxwNsZJdwTr9yjfv14ORQMp+/Cl8vFQ9ekcy1725lWMm/8Fc7WHyFHhJGkRzhz/JZQ9FpVHirlbz1ywluaSYKIEngG8YrU3rwwNcHSB17L5c3inCT+8o2bD+t2iO5YVAbHeQ70/vw5KblrCuCSpMsBFWb26/a02BrFhp2Rpn0M2lTVIrpS/eYvqTYHTy69DR39o9v32KZMg5SxnGq+hT/2CqvGhbVeSbAbEvMa4/DlYcpqi/ijtVNK0blxnKqTHK7T1SfoF9kP/e27BrZLGtz2DBamyY3zUUgwCNMrE16TT/rLp9lfEZCQAJXdJDDe/RmPSqFCj+N5yDJardy37r7uLPbnazNW8uEpAn0Ce/j3v7ElicAeGrAUyh0wZj63wXrPIUgh9OBQlJgtpvRKrVIksQd3e6QhaDWRGkv3zZz3rRJdB+kh9P5z9OrWG4fyKr7ZsgT6kaW3D+E4pr2qzL07RDEa1N7MrvROX95lzBOltfx/IRuHuf/2W3PUmGqYNGERXSPCQB6EPTIRuavzKIuR4/BKocGVd/0DUEKDfyz0c7dzN2kVSu5oV8cQzo9htn6MJPaWf1Jiw/m2EtXo1RIvLvuBHO353hUmzGH9+ZA4DWk6VexMO1r/jokhk+35fLp9gLKFaEMmvIIny+azQFHMj0U2dxz8geCJYnZtntYtCURP+0sRlo2ExG1gIX+FaRn5zFa+VfWbErj9Q19eU/1LT/bB1H/8WkGK066VwRrnDqGKzNYr3wMGm/dRMnGfNtovrKPZvIZOSvm3NqP55a8zj92ZFGHjruHJVBZZ2HG/qf4UPMWnaV8FthGcbjjLVzTPQJlWGc++WQXn1jGoFZKDPVdxF/qC/nospsYUquHyB6w+bWm30Hhy54xX/BG5QccrTrKmmBvXki7iZSuEyE4EanyFPpFD/Js2eUEBYcwKz4P/yNyCOFVDa9iDkxm7z9GtBALH78qpcV1cuNna2n+FBoeO5zxSeN5bNNjZNdkkxqS6uFWMVqNBPS+EeIHU2Ashl9m0imoEz5qH9blraPeUk+gtpkoO7Rlpi3X8ywhIIFtRds8xSOFoikB9PqXAMgfNgt75jukBKewOme1W2BusuFLnoL2yL+DX4Sc/6tgD8qj72F3Oih1tqxstPDegUxeDmG6YI42D9HqeQN0mwRV2XB8FRz4CiqOyeEkvW6E1PHyeWtMCK94Ihdvhcqd7JmgjmiAsd19cTqdLPV5hi/zJ/Of7XYebBThZ66dyZ4SWTBsr3pTbJCu9SS6fW+B3jc35ahDrvS0qsQGjSlxChxmEgG0/mjv38LBTS+wN2s+dx+Yz7MNtVACe3+qw5h/iOFVi9w5wxVA0b7DpCo9w5hY8RihgM2p4EXbLZQ5A7lF2sDghnTY/g6B29/hF8DhJaEodbIl/GaeNkzh9l6JbFz+DfP0/+LY5/dxYuw/+UI5i597D2X+wesIp5Yr65ZwRJlMl6f2olBI/LDoGyZn3Mds9XeU+nXD2KBlqZ/8OxX7BNJr9+Nk9ZzE6cueZfTHWaw9Usq0D7dyuKSeB5SbmKzcCuVbMa38nMMd43gQHzKu+RLJy/PZUDXjO6Jih4BSQ4PTxrPbnuWvAeG4RhQ1DU3hGLVqL/y/mgIP7GFE6ZeMuH4UBSQx4ZNDbhEI4NWVWShx8NN6Mx2qthEnlZNzvJj6sGL08Wr6bH2D8BmrmOb1Ev45dTxtzyTdmMhknYVD1lgeV34HFqASPrGN4wQdeE31ERs+mU3MU5/KyW6jPsXbq4TPtnVipmYP3pKF+oGPYDiwii7SCXINKgjsQNjEj+H7EZQlDELdYypseQIftQ/eKm9sOLBO+QzNro/kEO+8XTDlEzj4jRwanzAMv2kL+PruAVg+Ho0q7xQ16Nit7keX4VMhLgS6XkfKkQ856P8TNccc7Dmawlr/d7iiWyyOL65lRlkx0R2G8l3xWJK9CjiplO9D/dHl9OmfBJnfQvpCbux2PcWBuWTv3o2/xnOMZfj2boIe307m0WPsNwTgpT8BCjjujGWVoz9zTeOYEV3MjYYneP4MgQRkx7ULD9F18IPgyt7TmEvpauUettq78dTsfxAZ2HTfpQ0YSVlOIONO/B+fZO1ipqqpsqLOaaKD4QAdDAegcdh10JHEmh7jcRo3M8A6oOkaGjCTyIGz4JvpciEWQAN8C1Tm+rFzzirSzDuZoT/FDA0gp8XiU80qNtt7sN3RDeeC96jsNZbgQbdyWK8gNcof07p/MUBxlDm2a9gh9WXudaFErZyNsjHfDiUZHHXEI+FkpyOV+H7j2H5gE1fXbodvb4KJH8KWN+HyJ7Fr/DFZ7W2GVnuw7gWwNdAw6oUWi9nf7s5j0c9LGSEdZKZ2KWpbAzvs3Tj5ng+bbZez2dELvdFKjcmKPXQeSoWNQD89rppd5aZyOL0JVv9DPle9ptEl0o/FMzqC8SQE9+T6tDjm7chl3o5cgn00xAXriFZU8UKPKrx6jOdkjeycUSok8iqNXP7GL/gn1uOq++dwOqC2SA5XK9wH7/Ql0FTF04PuZ23AIIapP2C08gCjOUA/xTECjXVk+tcATfO9aJUvQQ2V1GQtgX5PylEthlL59wQ4vQGHUsPREQ+TIDXNcavMVSTW+aE9/BNxUT1JCYR8vQX/DvPIPZjP6NLPcQJ2pw+hkpoK7NRaat1C0KQ+MXSO8OPad+VQswBvNffM38f/je+GVqXAaLGjVSswWx0cyNMzKjUCi81BeV2D2yl9tnmB02rGlLkU767jeGHHdyzM/x6r/a+4Cqe/u/4Ep6qK8W0Ugqobqukec26hsn8GhBB0HjhYdpBbVsp5BQZGDeSTKz9psc/7B9/n4/SPUUkqJneajEJSEOYdds6OoHPFW6Pko1taZjt3Op18nvk5Q2OG0iW4jZxEzWiwN1BWX0acfxySJHlUWzhXHE4H05ZNI1gbTEaFLPiUGz3LipfUlxDpc+52P7PNzPai7XTw60ByULLbEZQU2BQ/o1KoCPMOo8xY5hHvWmWualMIaotBSZ7C2I4nr0BxDkKE6+GjUipY+dAwas02jBYbUQFNIR7doptyYmx/ug8rs5fjdN7p0aFd2zOacd2jzimBoQurw0q1uZownRwu4a1RUu+UHVkVjWp/VUNL8abB3sD3x75nWso0t3PI9ff2aOEIOgOVUkHmc1d5lD9uq92Vpkoe2/SYW3SxO+0e4Vh11roWAsnZaJ6cLtY3loK6AgrqCtwi4nH9cQ8hyEW5sRwnzhZ/d9G8Xb8Vp9PJW/vlSmouUXT4wuGEaEPYOG2jx74Hyw+yq3gXu4p3AbCzaCcrp6xs0ZZKUyVhujAPEevMbSabCW+VfC26rpPfIkq3hZdKybBOoVjtwSi0nsJKr7jAlu6nVrjhsjgW7MqjS4Qvr01tKdRa7Bb2lu5FQmoxEHjyajljVo/GauOZFZkoJSWDx78D++ZCeMukyK2FX7WG6zp+4IpkHrgimdxKIy+vkCdxJ8vqeMR0M92SxvHphOEA3D0hiRuutLpzZiy0vs7PP2Rw2bUzGbNsBLEBXjx2yyQGFNUytnsk1XWDGbdcHvRXXfUSITs+5MrafVyplMt9366SK1xt7jiL4R19KFHH8m5pT54qfwxt5RHGNbxCkLWEPEc42rB4/j425cyvAMBjY1NQqxR0ifQn3E/Ly5O6c2JwR8oMVzNhnpzY/ehtY92r4tMui2Ph3nz6xvtTb5X73blqK0NuksU2Bt4nJ14vP0Z8bD/iVRpqF8lhQ1lVR3lxx4ssuEZ2eRCbRsCsbYSvyOLanlGEdggC47M4jHqeqw6ge3RACxGoNQYkBPP4uBg+bKbR+qp9SQ6UHYcnq0+2EILqrfXUNNSwuSrdvTAR6xfrzl1QZ63zFIJaoaCuAF+1r/vZZbaZUWvOWDkc/jgMfQSAwqJtkAmpwfJ1WWWuYtnpZTy55cm2PyTtdvn/0b3RnPgEk81ESX3LipdRAd5Y7A3uxO911mZhC0q1nEQ3rDMMmSVXSszbKVeI1JzxLGxH8JUkiev6xOHsHYs9Yg8H6uaQb3jYLQIBbMzfyL/3/ptHLnuk7e/UGgpFiz9Vmavw1/hTa6n1SF5KcAK31O6F4EBuUXfDUVuBd8keLjv0TItjVDr9GNUoAu3XDsTXL4DjJdUMVGQx23oPWx09sKBmct8Ybto/AAUOHlAu5jLFMUKS+tA1Qsf7Oyt5N280Zsw8//MRoBfv2ibyoGoxzl8G07djHLaGPSyN2k2qvgiLU8XOvs/QtbGPmDx5OplJSfQIVRARmyYv8DS6W/Ou/5T4lf+H4shPJAfEkDlzAgvmz2G6fiUHwscwQnsCky2VreZEDpmMgOwIsQR1QINnn1+l9nK7gPcW7mRF9gqqG6qZM0YuqNB8HGS48nn44T5YcD3kbIF1LxCr1LAnpi+XnbydXp06Mmt0FyI3zSYi+ydsteClbipFvUAjX/NbvL256YsxeAG7vYcywLiHK6SD4ICblFCFP6ttaSQpijCP/D+UtVa+33+EB1RLML+xlmO2DiiS5GfUf3T/5FpnLrlhqSwOD+TB2Vso/WEcPg0GuPo9tLpgArwCKDOWEegl35u+al/3M8zUeQya7lNgzdNyiGXGd3JjVVo4+QusfZbuIcmgOMHSDk8QfcW9jI4PanpmTHgX1DoC6kqRKkuYWr2Z1YvvZvG6FG427mRlUDTLdJvZFLSBESFN/VL17g9g/evu1+q8HbLTrnFN7rAjni/V19MvMZypJ2bDK5H0BqrtvbhRkYVN4cXLd07gssQwHE4nKoWCEQvmYnW0LOvdnDZFVy8/uPxpDMZ6nPF3eohAAKO6RpF75etsWfU2M1UrMDk1OCUF3vFp7BzyCfd8vp1EqYiX1Z/zuW0sPzqG42d8ArLgUPkh93FqG2ohsrP8u33SlObBrvbBx2JmYPECdjpSsTm7kRzhz6LaVJYZOvNUzEEGVi1huCMDY40Xui3bqd38KrvsIyjUNnCVbSsrfSfzkfFG3ri+F1JqBNbE0ez77H5eqhqFCjuZzgT8fX2pqGvg2x4xfFj0GKaa+Uw++ROO9/ujMFVxqt6LZ6uvZtfpKv45uQdBOg0R/l50bRSwVUX7oLYQTFXgG+kWO17YauHx8D3U+CZyVJeGrct4LEsf4VvVelTYeToqjiVeEvNPmUlVlTBWsZtPIp9lb8ZurlfuZH+yfJ88kLSLtxqHneV522HTXLAY4Kd7oTxLrtS75ml5h7t+4YXeJnbsK8Wfev5l/YRPC8dxm2o1YaWn2b9uDpNNTzE6NZLp/eK4+8u9+CT9G6fmjDH8+wPkBa7Tm+Q0BzFpsP4lxgAowaIOQBPRhcsKZGfsAlU8NI5vkwOTeWfkW7y8/DZq6opkcU8bCCXpcsjgtAWgUPHPbc+wMPsb/lleAWGye6mqLBPm3ygXYQA+Ab7wT+JNpZUX9x5gHuC4bzusmk6wuZ4KLw01X19P5C3LQBsgR0DEBDA1LZbbtJuJLtvE2BOTuO3zenwxcpmUxz+mjeX6r3PZm6vMEHDjAAAgAElEQVRnycEi1h4pwd+uZ8EVJkL6jGfUB4d4eEznpsV0m4WaQ0tpqK0gNH811tNb0WEhd3lHFsU5UHrDKzNUqMzdeXHZET7emo5v5zfcP2V5fRnBar+mnKJ/coQQdB7YXLDZ/e+dxTvdq+7N+SLzCwBsThuDouXyw5E+kS0cD38Uh8oP8db+t1ids5rvxn931v2f2/4cy04vY+dNO9sVT3YV7+LuNXezasoqYnxjPLall6eTU5tDTm0Ofmo/JnaayFdHvqLUWOreZ2vhVqZ2bpmsuDX2luz1cHW8OuxVlAp5kuIOaUEWgsJ14ZQZyzxEimpzNXF+vy4z/5n8ljKVkiQR4K1u12I4e/NsDpUfYkTsCJKDPKvpnKsIVGYsI6syi00Fm/j++PfsummXW3V32YorzLIQ1NwRlFWZxTPbnqFfZD++yvoKjVLjkTvI4mi5Ct0cfUPjb9y2ZoKqjSoaHxz8gFi/WCYkTeDtfW8z78g8tMqm1QaH0+EWr0AWK84mBNVb63lp50s81PchIn0iKa5rqrYyPHY4Xx/9mmNVTZb+LQVbGBg1kKTAJA+RstRY2u61b3PY2tx2rlScYcN1HbO5EOdifd56j9fNf4d8Q77738X1xbIQ1Eqohmub2WZ2Oxd91b5oldrzLkrPv2tAm9tK6ksI1gajUbZv822ez6w5p2tOs6Noh1ukrDRXelR0O5OXd71MUV0Rq6asIjrttjb3+zW4JhEdQ314+ppU1h4p5b4F+9D7fs0uZzpV5nEEa+VVpeaJU6f168B1vWPQqpVMSbsLh9OJv1btFoabr2AWJA8nZNCDcHoTtvRFSGFdYMsb7B79I/16deWmNXdyf+9hvDykJ1iXgt3Ca+UObpu7m+GdwnhrWu82+w9fLxX/uKYrdofdbe+WEzYHEOqrocZk9ah6dEO/OFZkFHLE6z5oHIPuKd1DpalSzjXlyl3VmMy1ylzlISKrzxhUKRSSZ5UyXTAKXTBDfkXOT0mSSEvUQHMhSONLB/8OeCm9yKzIZHzSeE8hyFbPwgML+fbYt+6/xfrGklcrL1t7CCltkG/IJ9Yv1j0RNdvMrfdLjc8nVx/UKagTod6h5NbmsjZ3bbMv0vZn2R12d8621sYLDqcDi8NClE8U3ipv9/dojTm1WQxIvZLeZ4pAjdgcNn44/gPjEse1+n0kSWJX7edsK9qGQtFSCJ97eG67QlC5sZwQ7xAUkgKH08GnGZ8SpA1iaqepHkJudUM1yYHJHNMf43TN6VaPlX/1SyQHJZO79kN0mQsIvHI2ytxtOLpNpj5rLUV+fQlZeyMAk6sfhGoJbxV0C/Mh2N+XNeNSmbstm8fHpjBjYDwH8qop0CfyZZWJObekISkkCkzpmHfnM7JLGBuPyf3jm/aJdEtJIjj7c2yNbc6zVNIDO6f6PcsV1zZVf1UqJHwTQlhRlcW1ksS+0n3ubXnGEpi5QXYy7HgP3x3vcS+ABCNrl0AteA+fzejLn2Le11+BTXbcZVRkkBaR5jG2cT+DaXLoWh1WMsozSAlOobqhmmBtMFXmKgyhyRA/VBaBFGpwWMEnDGXRPg5od0I+0CzauTxmNNsjbmTyZQnUnNpLUcFmsKazuctIbtIbIbov/Uc9g8Vo4GBWJr06hCDt+ZTgtNuYFJyCl1KinyRRZmjgxepHGJR/glhHMQMUR6Ex95WPbx2OpFt53H6crIxPidRFkmkqZna/2RArL2y6xnTRvrKr01fTTAiymQjwCoDhj4E+B44uk8Me790Mm1+H3Y0VRuOHMuHWx1vmEtIGwKSPkIAAIPNfV3CVaS8Y93LKEcXByL7YzelsdHi6KPR9b4aC4/LE/roPoK4UCvfCojtxJoxgT/LbzOwURlKYD/nz9uBXuIlMaxT9FEfxliyU9ZrFoE4RHk1xqJyykwqYf/V8JEliT8ke3t7/tlscbW2Rx82Ix/EDhrWxOX7IDRz2H8aABb9gREuPxFi+vm0AgxQKvvzraDKLarl2sTwGHdqriEONbXEt5gJNY/iYvjA7W/6t981FmTqBzTkmjpzK5vWdchv33DaaQVX16DMKKO6YhDr2GQxH1vJaUQ+UxQeYXPEhd6lWYrMqKCGYy6Y8yoGE7qzMXsm2Qn+GxAyh/+NLuH5nLs8szgRg3SMj2HqyggEJwWT1TOTvP09isvYnFI0u7+iMD5ho30+9czQn1+xguyGcd9Xv8ouUSDhV9JU8QzpdvKz8GCohsPIA8fyAM+spnCqg9y1w+ZMsWSznjDs4bj7JPRPgyyuZWfICMzXwWFgINNZrPl20C/x8CbI72GYp44vwKG4f8z1s/Y/8X3M+G40XsLnZ1OI/GrlIykFHIn0Vh/k6bB63Zs1gd9ZpPlR/zOwzRSDA0ulKNLnbqe89nW8iO3Jb3wdRb39XFv5HPYvGJ1QWi9O/gxWPYezUFyrk/uilIS8RFxBPQOwAck+vacqHJinlojNdxmK1W1m4XX42ru8yEqrkc6Hf+LK87x0rYft7OE+uJUhdAoRg9QmDa/6OrbE6dEhAPJiLqa08BhmLZFdqgwGq83gjKR+WPgM42ei1mRssz3K9cpO88LXoBV4PnMqrOydQZlbwuu4rpipXwVbIOLaOqvqbqF71MuY8Jw3qQPwLNxJQ0VRspM7pR4EqhkhrEWG2UMpVSnblfMXDiVN4fJgfz+3wfGaW/3gnXUpOyvk2L39KTgHxJ0YIQeeB5g9hgG2F2xgW21Y3DKkh8qpgSnAK8w7Po8HegJfy1wsMv4ZvjsrFQ8/m7nCx7LRc3edwxWH6R/Vvc7/5R+YD8ne+ocsNHttW56x2/7tnWE/6RfRj/pH5rMtb5/57enl6u0KQe5IBrM/3nAg/seUJHuorV8VKDGgKkXIJQVlVWR7n5szzdCnhmihMWjqJFwa/wKROk9zbrHYrFoelTVFiV/EuthVtY0vBFo/wpSOVR7gs8jJqGmooN5WjVWqpNFXidDrdg0UnTt458A7H9MfIM8idYUl9Cbm1ucT4xlBYVygnNm0HV7hZezkiWsNsM/PhIfmBNyFpAqty5CTozfMTmWwmj8lPqbGUxMBE2mNV9iqWnV6GQlLw8tCXKTE2raKnhqSiU+k4WiXH50tIbCvaxrYl20i/Nd2jokFJfYn72muN8+EIai64WR1Wj+/aXKxZn7eer7K+8nhv87buL20KASuuL6ZnWM9WB4u5tbn0DOvp4QiSJIkw3a9zJ2bXZHOw7CCTOk3i2W3PEukTyV97//Wc3mu2mZm8ZDKDogfx5sg3z/kzm3Pd4us8XhcYCloIQc2vW1cozw8nfuDBPg9yvokP8cFfqyK/ykRA6nEcwLRl05gzeo77enU6nW7ByiWwtGZbb+76yDfk0yusFySOQJU4Qg5BGnw/gxonBxkVGTy19Sk2Tdskh/SotfSKg11PjUKjVLSwS5tsJpaeXMr4pPFukfjDQx8yJ30O669f73aHbXhsJI4zhN20+CB+/FsykxsjFEZ1GMW6vHWsy1vXou8HGLHQsyrk2UJMfyuuCbGf2g+D1YC3yhu1Qs3AqIFsKtjEE/2f8Eh+n12T7eFkifWNRafW4auRHTEul2l7FBgK6BTUyUMIao3vj39PmHcYhfWFqBVqQr1D6ejfsUWS/gZbQ5v2doPF4HYmZlZmttjueqZ7q7xJCkhqEcLqorS+lPcOvsd7B99zuw8b7A0sPLqQqZ2nolPrWHZ6GS/teomsqiyeG/xcq8dx9c/Nn+PnwqnqU0xcMpG0iDQ+v+pzDlcc5t0D7wJyXr8hMU2ir96sp6N/R7qGdOVwxeFWj5dbm0tyUDLxY+6DMY2VHrtNQAEExA+gB2BVvUGtyYbfRjUGs42re8Tw72m93cd4/jq5AmLfDkGtlgp++pqu3DwgnuRwX57/+QgJoTpWVD3Kf5x2rh37HzjyrNyW4Q+DIoQufeUKc+8deI/+kf3pH9Wfm5bfhNFmZEj0EG5fdbv72AWGAlCqMQ79G0ftdfRNGAN9bpFFhZzNoM+FXjciSRIT+3lzSM5rSmZFJmkRaR79RG5tLnqznn2l+3hq61OA7HS9acVNzEidQU1DDR38O8hCkMUghzsWHYBbF0NNPqSMl0NKFkylxCeIiPpqpLj+MOMHIiWJyY2fExCThuann8EK6bXZOGZsdS96anR+9E4bxOqc1fQa8QiRPpE0S5JAhL+W9+68HIc1ncW7j1NdcBjMcujk6ctnoQ3tRuUOOTzyw0Mf4qX04vrOTblWwr3DKakvoc5Sh1JSolVq3fefe+zhHQTTF0DFSdnh5hcJ174FKdeAwwbJo9tMKN2c0Nvm8+iXP5GttzLq8tE01Mri5rzoBLA2PXdr/KPg1iZHkLuCpy4UKaontzebQMbd9gk4nQxVKHhjVSal9XPYZdrEeocNlaL1NvUOl6/V4vpij78bbUYWHV9E34i+HmPf1nA4HUhIHn3LuB5RXP3KDL7YnsNV3SLdrrw+HYLoFh3AD/sKmNg3iDePP9HqMbMqs7gmsTEdgmsBoDHn3uU9ILVDJK/vXMeEXtGE+XkR5ufF3urveWnfe0QGvMeIwXfwIgCXYbLcid3ZwIHCeiL8vdE7T1GjP8nszbOBJqd03w6yE6xjiI4AnZprGlNV3DIwnqPFBr7Jn0mPhv2c6v43xqQ/xPWWzVyv2iyLao3TqwRkAWuNaiRfGAfTMSqc2xu+5sWqK2hwqnk2cDWfKaaSVLONSEnPxigD2YEOnhkwg0pXniugR4IZX50OpnxG5apX+eG4gdW+TeLSqaBosNXSIbQrev1R3lSbuSWuP++mDCayx1VM63AlUv4uFusz6F5dSnLePlmk6TAIek6DsiyKNB1J10dQWv4i88p2sNOaiVPyRtOQDTRV6XORO+oJOgV1Ys6+fzM3cy6hQYlMHNaKKN9/JvS9jeyVTYK1a24R6BVIjUYrO73CUmRXUFhnHE4Hi08tdu//S1XTc6jKYYZbVsrVZOMHIwF5O1+FYwsw+UVAv7uxNSawD4rqA9nF1AbFy46otf8nO6WaM/FDFMue4DXVfFLVZdgJQtlxCJOOLmISizBoffBz1GPxicZSV0WP8uXkaOW8kxwBnGpKFUF8bZ1KHd5sc3SjR9/BvDypO9e/Npdy1dsA7Cg/yLrKdIIdTh4fOpn3mz2S8+ryIX4QjvSFKIY92vI3/JMhhKDzQPMkbh39O/LopkeZnjKd6V2m463yxonTY9LoSmbcPbQ7NqeNfaX73Jbx34ITJ+/sfwedWsfMHjOxOWxUmasI04UhIWGxW9iQvwGQBx8Vpgq5elc7x3Oxt3QvnYI6tbmvy3J8qPwQY+KblVXF6bHiGekTSY8w2RK9IltWm8O9wzlUfqjN0KIlJ5fw5r43eXPEm/SL7EdOTU6LfX7J/UU+VrMKTyqFijBdGJsKNrnzBoE8GTxbGNMfhRMnO4p2MCd9Do+mPUrPsJ4e2xscTQLd63tfZ2TcSPf7Zq2fRb4hn4XXLmxVMLx7zd2tfuaekj0kBSa5V3L6hPdhR/EOTlSfaOHKgia78e6S3VQ3VNMnvA+FdYVUmirb/d1c4RV11jrKjGVNuTLO4McTP/LtsW+Z1mUaUzpNcVfQA8irzWvVYVNvrfdwgeXU5pAS3HqoS7mpHG+Vt9vCXFRXhN6sJ7+2yS0T7x9PuC6c/WWycBLrF+t207j+5uLxzY8zNGYoKoWKHqE9OFB2wOM4Zpv5d19Px/RNg4djVcfIqc1xv86oyHCHuCw8tpAQbQhDYoaw9NRS/DR+FNcXU1xXjJfKi80Fm9EqtZjtZk7XnEZv1nvkbuoZ1pNCQyFrc9cyNGYoBosBnarJNh7mHUZebR5V5iqk9uwJjdy+6naqzFV4q7z56aRcnWxKpykeDh+7086m/E10D+3ucX/uKNqBwWpgTe4aVuespn9k20Jzc9bnrefLI1/KybDP4Lj+ODG+MdiddpxOJ3an3eMad/HTiZ+4MeXGdvu/38qjY2OYuy2HeiWY7bKg88SWJ9zhGV8f/ZqPDn3EB6M+oHto9zaPs+TUEve/T+pPuq+xnNoc7v/lfu7vcz9DY4a6QwptDlur16HxjNvpg4MfuF0wJ6tPuoU7l5j/5ZEvubN7s7LCEujP0Dd2l+x2/3tYzDBOVZ9i2elljI4f7XHdeITzNJJnyPtN94sTJyuzVxKhiyAtIs39t0JDoftelpDFTEONwd2OkXEj2VSwiS2FW6huqMZH7YOX0otvj37LqZpTBHgFUNNQ4w4r9lPLDpgSY0m77awyV1FQV8CoDqPcQm2psdQtJLnQN+h5YccLAPQI7UG0bzQKSUG8fzzr89bj1SxvlsVhoai+yOOedOHqnzr6d+Sk/iSFdYUe+7kEYa1KS1JgElsLt7ba/k0FmzyO6av2ZeGxhbx/8H2K64u5s/udfJbxGQBrctZwe7fbZZfFGbiEf5Cf62eGq+XW5uKvaVnO3bW4tK90H+vy1rnFeJWk4sNDH9IluAvZNdlE6iKpMlfRO7w3cf5xzM2cS0l9CV5KLw+R7pj+GH0j+rb4HA96TUUBTKk/wbqsUiZdFnjWa1Bv1qNRatyTo5gQMNlrmT0uluqGat5dLI/38hv2oZAUBGuDOWEsRj9oJljrOFl+kjnpc5iTPoeNN2x0ixRz0ud4fM62om1Umat44fT3rHMW8HHSIFJUKjKKtvJ99g88nPYwQbZ6sNWTW5uLQlIQqg3lQNkBJiRNYHXOarez6uP0j/k4/WOP47uq/6zPW0+NpYYOfh04VH5Ivr4TxsHDGbIAENYJbPUQkcLmia/z9J5XmNj7Zh7q+zeUZ5SSduKkqK6IEG0IleZK0svTifdvym14svokj216jISABOaNndfmbzwiLYa9scWwUX79/qEPPLZXmisZEDXAI99mz7CefHToI8J14fiofZAkyX0flBnLCPJqJuT5Ni7guM51x8Hy/x0WMLe/sAXgFajjvjuv59WVWYzo5cdHq0rQKDSctnqGbLn6ij0le/j++Pc8OeBJuR3RPT0//wzuHBnNiIXyl9+Uv4m+EX1x4uTbo996hLK7iPX1nPjvLN7JyuyVhGhD+Om6n1rs78LmsDFr/Szi/OJ4ckDLMNSJaYGAGb3Zs6Ofe1dXthRugeMt3kL3kO6kV6S3ex95ecHiB3sRHejt3s/17NhauLXF+NcMJEUrOV191GO8B7JwH+gVSGSgk7tGhDG+ZzR6sx4nTvIN+YRoQ3ji2jhAzisZbDNxo7UHA/2TGFfjx5qDpxivPUDEVY/LiY7VPnTyTUZaeoRlhTV8Y54JEozr7cva+GDuSbiSjcd7kdLFj+dXTAcrzFwz06NNmRWZsgDnF47i+n+jPLIDMv7u3n4aedHD0kx8e2X3Kyw8thAArS6EjhHJPLP/eXzUPqy8e43nDxiSgDcwHhi+cD9ovViu0dNd6eRQn1ugeEOL33x1zmpCvUM5XiWftP2l+xkRO6LFftAYPVCV5X7tenYFeAVgsNZRkTquaYxk1jPv8Dw+y5SfDa4Flx4h3cgpyyBbF4A+MMbjWj9tksde+YZ8iuqK3M8ol0O6pM+N6EuzoSwLaovkIgmGIogfAilXg8NC9LKHqbEAV/0Tek6jNvFqFKv+jiV2ELbe10LKtbzx8z4mZD1GR38nW0On8dyxOGJCg/D29uZgvtx39U8KYmCvE2RW2ph2XQCv7oVpsVewsEA2FlQpJLKOLAAfHQ/XGPkhKIT1nXsT0/Nu3tv/Nu8rFXjWD/7zITUPhbgIXNQPPx84nU6GfDuEqzpexTMDnyGvNo/3Dr7Hmpw1beYXcSncJfUljFk0ptV9/ggmd5rMjyd+vGCfB3Li2ozyDB5Oe5gwXRhjfxhLYV0hEhK3dr2VeUfaHiycK2qFmn0z9jHg6wGYbCaWTVrG5oLNvLZHtlKrFKrzEsbz386cMXN4eMPDrTp3+kX281glB3iwz4PuFdvzhUpSYXO2fS46+nf0EEPSItLYV7qP5MDkNle6fw0bbtjA09ueZlvhNgDGJ47n59M/t/uekbEjubnrzR6DgdTgVI8H6YXgju53ML3LdD7P/JxuId14dvuzHtsnJE1gQ/6GVgeSd3a/E5PN5HYGAgyKGsTHV8qThy8yv+DNfb/NnfNb8FP7Ea4L51TNqbPv3A4DIgewp3TPObmzxiWMc4vQlzqXRVxGYV1hi5XgS4m3L3+bwrpCdz/bFhOTJxLkFcTcw21U1zsPTEqehFKhZNHxRSwav4guwV0wWo1MWTqFgjpZlIr0iaRPeB9WZq9ErVDzQJ8H+M++//BA7we4t9e95BvyGffjuLN8koxWqWXxxMXk1eZxz9p7zuk9Q6KH8NGYj/jy8Je8vvf1s7/hDO7qfpd7MN4aLw55kdqG2t907OY80f8J3tr3loczsy1mpM7gq6yvCNYGc0OXG/jo0Eft7t89pDtF9UVukTolOIVbu97qdrE0596e99I1pCsPbXjot32RC0ByYDJRPlHypPkcUEpK1t+wnj0le3hs02O/6rOifaLpEdbDw2k9JGaI+1l2Nmb1mcW7B95tN+8d4A4ha4/bu93OF4e/OKfP/a247ksXhXWFXP3D1ThxEucXx4rJK1qkC/gjmdZlmnsif6FwzRUqTZWM/G4kQ2KGsLNo57kVqjiPzL1qLrPWz8JgNXBjyo0e44g/OzN7zCTfkI9OraPaXN0iMsGFhMTqKat5aMND7rHh3/r+zb1gA3J/YXPYPMa454OeYT1JL0//1e+L9ommqL7InUZi4dGFvLTrpXbfc3XC1azMXsmsPrOoqDzO13mrWt3PT+2H2W52F0bQqXTMHTuX6cumn7UP+iNJDU7ly6u/ZODXAz3uoyG+8Xw0ZRlv7XvL/ZztHNSZz6/6vNUFkf9C2lzhFULQ78TusLP01FLi/eM9VqdOV59mV8kud84RjVJDp6BOBHoFeqygrMtbR2l9y5XrX0uUTxRWh5UKUwWSJOGr9vWYEPp7+TMmfgzLTy9v08beHI1SQ0f/jhzXt7Ik0AyFpCAlOMXDeeNCq9IyPmm8h0MkozyDjIoMYnxj6B3em9U5q9sUaVQKFb3Cernj6iVJontId+xOO5XmSvw1/pzQnyDeP54hMUM4XHHYvSpaa6llVfYqnE4nI+JGcLTq6AXLx9QWYboweob2ZGP+xhYPcrVSTeegzjidTo7rj3v8JmG6MHzVvu5qVmfipfQi1i+WAkMBHfw7kFub2+LchevCGR0/mpP6k+6Vmc5BncmtzSUxMJFQ71C2FW4jJTiFrKostEot1yZey6qcVa0KC2eSEpzCqZpT7YZ/+Gn83OEkrmN28O+A3qzHYDGgVqq5JuEadpfsJtQ7FJ1KR0JAAlsKt9ArrBeHyg+16jRw4avxpcHegNVupWtIV45WHXULBN1Du2O0GRkYNZBKUyVbCrfgrfJmZNxIdhbtRJIk97F9Nb4Mjh7sttoPjx1OtG80NQ01FNYVEuAVgN6s/00P3tboGNCRSlOl+zeJ9Yul3lrvseKmUqi4quNV7geSxW7hl9xfqLfVY7VbkSSJK+KuIM+Qxwn9CY9jW+1WhsQModZSy9qcte5rr19kP7fbz+l0siF/Q6vJaFtDo9QQ5xfHqepTxPjGUG+t90hI6iJMF4berG9xj6cEpxDjG8P6/PWc6zNIo9SQHJjMkcojBHsHE6AJoGtIV9LL0ymsK0QhKVBICpSS0v1vH7UPfho/8g35XJN4DWty1pzT9fx7UCvVdAqUf9fm97JaqaZHaA+PML62GBY7jEpTZYt+tVdYL45UHcHhcBDgFUCUbxTH9cfPKezKT+NHYkAiSoWSA2UH3L+7WqlmbMexbC7Y7HYRtEfnoM7UWmq5PO5yJElie+H2Vge2Mb4xSJJEv8h+WB1WVmWv+s2CfLguHKPN6OEICfQKpMZSg0ah4eqEq1EqlOwt2esRYlRUV8TG/I0AdAnuQrRPNJsKNtE/qj8J/glsyN/A8NjhqBQqnE4nq3NWn3USDNArvBfdQrphtVtZdnpZm8lbY/1iCfIKIrMykwGRA0gMTMRgMbAyW07ynhqcihO5z28vBNdb5c01idewKmdVq6FraqWacQnjcDqdrMhe0ebvnBqSilJSklnRZO1PCU7hmP4YTqeThIAEBkUP4kjlEQ/HZnOUkpIuwV04VnWM0fGjyTPkEe8fT4AmgG1F2yg1lrZ5PQ6KHkS9td7dd14WeRmdgzqzMX8jRXVFBHoFUmetw+l0Mjp+NIFegWwq2OTRL3mrvInxjTkvCwOtoVPrsDqsbX6HMF0YChSUGkvpFd4LnUrHjqIdHvskBiZSVFeE2WbGW+VNtG80p6pPuccqTqeT5dnLqW2oRaVQkRCQ4O63VQoVyYHJbseUi64hXQn1DvXISTkibgSVpkqUCiUmq4nqhmq3E/xo1VGPBZSxCWPZX7q/3XGQQlIwOn40p6pPeTjdm+O61rYXbW+1wEByYDK5htyz9kn+Xv54Kb0I8w7juP44CQEJZNdku9s8NmFsC2fZ5oLNFBgK6BrSld7hvbE5bCw/vZz6xtCTPwrX/bc6ZzWBXoE4ceKv8Xf3z2qlmqSApBbnrD20Ki0xvjEev3OkTyQOp4MIXQR+Gj86BnR0b9tdvJvUkFQOlB2gwFBAUmAS+Yb8s4bud/TviMFq8HDynStdgruQEJBAsDaYClMFBYYCYnxjWJe37leHxiskBV2Cu5BV2fYCmp/GjyBtEEarkdSQVDIrMtt1HgV4BVBvrW/R33UK6kSpsVROan0WjpcaiA/xQadWE64Lp7i+GC+lF0qFEqWk5NrEaz3C6vaU7PEYY7mI9YtleOxwd98Z4RPBFXFXYLQZ2VW8i1pLLaM6jKLcVM7Oop2A3E8UGgrbTdmhVqoZFjOMHUU7UClUhHqHYrFb8FJ54a/xR6PQoFAo3Mdsb052Znt7h/fmWNUxd7EUg8XAqpxVLX/Z1ucAACAASURBVO5dlUJFt9BuOBwOwnRhnK45zcAoWUhZld36HGFg9EBMNhOHymSH/pl9/YUkTBeGwWKgwd7A6A6j5VQIxnJOVp+kwlSBwWJgUPQgEgISqGmocYvtzcfcfwKEECQQCAQCgUAgEAgEAoFA8D9Cm0JQ66V8BAKBQCAQCAQCgUAgEAgEfzoudrLoc6uL/V+AJEn3OJ3Oj8++p+BCIc7JpYk4L5ce4pxcmojzcukhzsmliTgvlx7inFyaiPNyaSLOi+BiIELDBAKBQCAQCAQCgUAgEAj+XIjQMIFAIBAIBAKBQCAQCASC/3WEECQQ/IGsyizm2SWZZ99R8F/Pcf1xHtn4iLtcpkAgEAgEAoFAIBBcigghSCD4A/nLV/v5ckcuDoeIgvyzs690H2tz17Zb7lQgcHHloiv57th3F7sZAoFAIBAIBIL/QYQQJBD8QRyuOIykrAOgymi5yK0R/NHYHDYAHE7HRW6J4L+B4vpiXtz54sVuhkAgEAgEAoHgfxAhBAkEfxDTl09Hl/A2ACU15vNyzB7zevDGnjfOy7EE5xdXSJjdab/ILRFc6gixUCAQCAQCgUBwMRFCkEDwB6JQGwAorT0/QhDAvCPzztuxBOcPtyPIISb5gvaxO4RYKBAIBAKBQCC4eAghSCC4ADzy3SEMZpFE+M+MSwiyOW0XuSWCSx3hGhMIBAKBQCAQXEyEECQQXABqTFa2nKi42M0Q/IG4QsNE2I/gbAghSCAQCAQCgUBwMRFCkEBwgahv+H1OEadTVB67lHE5gsQkX3A2XNeKQCAQCAQCgUBwMRBCkEDwB/PK5B4A6H9n5TDhNLm0cU3uS2tNF7klgksdIRYKBAKBQCAQCC4mQggSCP4Amos2HYJ1qJUSVfW/L0eQEIIubSx2Wei7be7Oi9wSwaVO83vZ4RBOP4FAIBAIBALBhUUIQQLBH0DzFf8gnYYgnQZ9/e9zBAkXwaVNeZ3LCeQgu6L+orZFcGnTPDRsw7Gyi9gSgUAgEAgEAsH/IkIIEgj+AJqv+Af5qAn20YjQsD855XWN4o/kZF1W6cVtjOCSprmoW1n3+/oFgUAgEAgEAoHg1yKEIIHgD8BDCHI5gs6jEPTisiOsPyrEhksJi112eQR6K9mbo7/IrRFcyjgcTfdybpVwjwkEAoFAIBAILixCCBII/gCaizZatZJgHw1V5zE07LOt2dz5xd7fdTzB+cVVPr5bjC97c/WiypugTaz2pnxhOZXGi9gSgUAgEAA8vfVphn479GI3QyAQCC4YQggSCP4AzsznE+SjprLe8rvEgTNDw3Qa5W8+luD8Y23M+9I5woeKugaKa8wXuUWCSxWjrZkQJPJJCQQCwUVnyakl1DTUXOxmCAQCwQVDCEEXkO/35rMio/hiN0NwAWge+gGQEulPtdHKqfK633zMM8Ulk9WO0WJrY2/BhcaVADhAJwt0v9cBJvjzYrQ0CUG5lUbhHhMIBAKBQCAQXFCEEHQBeXxROn9dsF8M+v8HOFO0uSIlHIB1Wb+9QlDz68ZbrcTphOOlv11YEpxfbI2hYTovWQj6vTmhBH9eTNZGIcgpUddgo1KIhgKBQCAQCASCC4gQgi4CYvL+58eJp9gXHehNh2AdGYVt244dTgev7n6VnJqcVrc3F5empMUAkFFQ/fsbKzgv2J2yI0inkQCoNlrb213wP4zR2ij8yJcKuZUiPEwgEAgEAoFAcOEQQtAFwu5oEgb25YqKQv/tFFWbMFnsbW63O1puC/fzardUdHZNNguyFvC3DX9rdXvzHEGXdwkn1FfDwXwRz36pYG8MDdOq5dfVJiEECVrH5QiSGpWgnAqRMFogEAgEAoFAcOEQQtAForpZmEhFXcNFbIng97Iio5jBr67n3q/2tbnPmYmdAUJ8Ne2e+7OFDDZ3BPWICaB3XCD7cqtwOESo4aWAyxHk1egIqhGhYYI2MFvla0UCFBIcLzNc3AYJBAKBQCAQCP6nEELQBUIvhKA/DYV6E9B+OIfV3jKJc6ivV7u5QFzhZJIktb69mVAU7q/lmp5R5FQamfXtAeoaRNLoi40dWahTSnJFN70IDRO0gdnlCJIkhnYK44d9BZitbTsMBQKBQCAQCASC84kQgi4QzUOChBD0342pccLmaMfBY2pWHtoVJhbi64XeaMFmb+kWgpZ5hc7kzATUE3vHMDo1nGXpxezOrjyntgv+OByNjiC7006QTsOGo2W8v+GkcGwJOFJUy77cKvdrs7t/kLhtUDwVdRb254mQYYFAIBAIBALBhUEIQRcIVylpf62KinbyxAgufVxCUIO1dUEH8FjdtzZWkwrz1eB0QlUbIUMux09lnaVV8eDMcDNJknji6hQADGbhCLrYNBeC6hpsnK6o5/XVxzhWKsJ+/te584s9TPlwB8dK5GvB7QgCEkJ9ACitNV+s5gkEAoGgEVHZVyD481NrqcVkM13sZlx0hBB0gThUcQiw0znCTziC/stxJYk2tpMs2mhtcgRZHLLwE+LrBdBmwmjX5LCizsLWkxVYz3AOtRZu5uOlAqC+QYSVXGwcjaFhdoedmmaJomtE0uj/eVz38srMYgDMtsZ7WZKIDNACUFwjhCDB/7N33vFR1Pkbf8/29EAKSQi9gwhiRRALFrCBp6eep3f286x33p0Vf3pWLGfHgqIoKhYEAem9d0gCCYH03vvuZvv8/pid2d1kEymBBJzn9fLlsjuZnd2d+c7383yf5/moUKGisxEs41GFChWnF8bNHccNC2/o7MPodBwVESQIglsQhBRBEA4IgrBYEIRov9dGCIKwVhCEw4IgZAmC8JzgDTsRBOFOQRA+bGu/u3btQqvVMm/ePOW55cuXM2TIEAYOHMj06dOP4aN1HaRXp/Nt4X8wxq1mUI9wqptUIuhUhqz2sThcba4cNfsRQU639DjWSwS1RQRWWeTMIYG/fLGTK9/ZiMPlm5DYXa3JnnCFCFIVQZ0NEdky6OG9W0czdXQSAI0qEaTCC1n1I1vDBARCDToiTDoqVCJIhQoVKjodLW34KlSoOD1RYi7p7EPodBytIqhZFMXRoiieAdQCDwEIghACLAKmi6I4GBgFXAg8+Fs7dLvdPPnkk1x11VUBzz300EMsW7aMjIwM5s6dS0ZGxlEeatdBVXMVAGERlSRGhdBocwUt6lV0DDJKG8k+gV14ZGuYKILdFXzlyOZPBHmtYQmR7a/8WxyBSqG8aguH/WxFNldrQiHMIBFBalh050PEZw2bMronj18xBFAVQb93uD2iYgct9177dpcvLBqksaFctYapUKFCRadDJYJUqDj1IYoiBY0FnX0YXR7HYw3bBvT0Pr4N2CKK4koAURStwMPAU7+1kw8++IAbb7yR+Ph45bmdO3cycOBA+vfvj8Fg4NZbb2XhwoXHcahdA2FGLYleG0BpvTrpP1G4+v1NXP72xhO2/2Y/S1hbSpyAjCCvIighyoQg+LqOtYTFISuFfF3DSup92yp2Ej9oNAKhBq1KBHUJ+BRBAJEhEknXqOY3/a5RZ3UgCwfLG6Vr3OGWzhX5Sk+IMikkkQoVKlSo6DzIDT5UqFBx6mJhzkKuXXAtO8t2dvahdGkcExEkCIIWmIikAgIYAezx30YUxRwgXBCEyLb2U1JSwoIFC3jggQdaPd+rVy/l38nJyZSUnLryLadbqgLCjTolGDS/ndbjKro2ylw7iBj2FAiONnOCbE5f8S8rggw6DT0iTBS3QQSZ7ZJqID7CxDu3jAJgSVoZjTbp7+3O4IRCmFGnWsO6AETBmxHkXU2MMOkBVRF0OkIURZ5ZsJ+bP9n2m8GiciZYVIhesYbZ/axhAIlRJkpVIkiFChUqOh2qIkiFilMfB6oPAJBVn9XJR9K1cbREUIggCClADdAdWOV9XoA2e1+3OUv+xz/+weuvv45Wqw38gyATa1lCfyqixpsJE2rQ0ifGSwRVq0TQiYD/ueNow7Z1JNh4uCrAluWPEmE+AIK+AYujDUWQ21f8p1alKo97dguhpN4a9G+anVIhGGnSM3W0JLZblFrKc79Ig5k9SFg0SASjqgjqXLg9Igi+sGgArUYgwqRTM4JOQ6QU1fPdjkJ25te2snpmVzbx1opDSuc/efwfkRRJrcXB6owK7F51n3xf6xMTRlWTXb2OVahQoaKToRJBKlSc+tAKEregdgFsH8eUEQT0AQx4M4KAdOAc/w0FQegPmEVRbDOsZffu3dx666307duXefPm8eCDD/LLL7+QnJxMUVGRsl1xcTFJSUlHeahdB7JqRKsRiA03EGbQUlATnAxQcXxobPYVUqX1x9YW8HBFE3/5Yie3fbY96OsebxYMorbNbl3+iqD/2/p/yuOe0SEBdi9/WJySckCrEQKIz0qvncTuDP5eYUatqgjqZDQ7XAiCRDz6dxyJNOlVIug0hD/5s7+kIeC1l349yIfrstmeVwNAtUW6rkf3knor3Pv1buzuwHNiQJy0QJBbZT5hx6xChQoVKn4batcwFSpOfWgEieJQid32cUzWMFEUG4BHgX8LgqAHvgXGC4JwOSjh0e8Db7S3n7y8PPLz88nPz+emm27io48+YurUqZx77rlkZWWRl5eHw+Hg+++/5/rrrz+WQ+0SsDqkSb9WI60A94kJ6zLWsMpGGylF9Z19GB2GKr+OXEV1x0a2zdtTDEht3OutrVu9y6HAIGJtQxFkD5LnA5AUHUJZvU1RC/ij2UsEyYNXiF5is+MipG5jwTKCQAqMXneoir2FdW18IhUnGv5B3/43nagQvWoNOw3h3/kvvaQBi92l5IJFhkiWwMWppQCUN0jE7z3j+3HT2ckAFNQEEj4D4sIByK3qGvcFFSpUqPi9wuVRF9ZUqDjVISuCVCKofRxzWLQoivuAVOBWURSbgSnANEEQDgH7gV1Amy3j24NOp+PDDz/kqquuYtiwYdx8882MGDHiWA+102F2SKvHWo2k8ugXG0Z+tQWPRzxhkrUXFu/hxk/W/Ob+P1qfw58/2y5ZW04D1PgVaIfKj61zWFWTbx/bcmpava4oggRPm4og/65wIboQ5XF8hBGXRwxKDlgdPkUQwOp/XUykSUedl4xqqSKQEWqQBrs/fLS1zc+k4sSi0eY7Z/xvOpEhOiXjScXpg6omOxoBhiZEsDO/lhHPr2DKh1sAXybU4QqJ7CmosRIdqicm3MhTk4cCUN4kkdRyRlDvmFA0gqoIUqFChYrOhlo4qlBx6kOjkSgOVeHXPnRHs7EoiuEt/n2d3+P9wCVt/N1sYHZ7+549O/Dlq6++mquvvvpoDq/LwtKCCOoTE8qK9HKuencj4SYdCx4c1+HvOa/mboQQD2szVzNxWI82t6sy27E43BTUWOgfF97mdqcKarw2DEGAl5cc5Kze3Ti7T7ej2ke12c6g+HCyKs3kBVVuefM98LSpCJLbx58RM4pDdRnK87Fedc+yA+XsL2ngtvN6szitlKcnD8Xm9hJBXkVQz+gQxvTppoTNOlzBJycVjfagz6s4eWiw+ex+LRVBeWoe2GkBs92Fxe4iPsJItdlO9zADFw+J44vNeQAcqmji1aUH2Xi4CvCR0gU1VkKT5vPEhtW8cfEbRJh02JAmJrIF1KjT0rt7KDmqIkiFChUqOhUej1o4qlBxqkNWBAUjgvxFElaHi1DDUdEhpxWOp328iiOE1SkVBFrvpL9vTBguj0hWpZl9hSfGliXnlezMr213uwarRFgcLDs29UxXg2zZuP+i/gA8u2D/Ue+jxuygT0woseFGCqpb28tEQVYEubF48588HpGpM7awMEXqbicHO5t0hgBiIDbcAMAzC/Yzd2ch1324mZkbc2lodmJTMoJ8l2X3UAO1XnJLbjkNgYNYbrWqIuhsNNl9ZFzrjCBVZn464J7Zuzj/1TX0e3op23JqiA03MmFQnNIVEmDmxlzlsUzgFtRaaNJvYVn+MgDiwo0gtJ6Y9I8LJ+c0UARN+2W/Qo6pUKFCxakGl6jes1WoONXRXkaQ/3Pjpq/F5f79kr8qEXQS0OySikS5vu/rbSF/MlBU235Ojmw7yixvPBmHc8JRbXYgCPD4lYM5u0835fMdDWosdmLCjPSNCW2lCBJFUSHZEDzUe0maiiYpa2lJWhngs4YZtQY8okchB+K9iqCWaGh2YmvRUhogOtSg5BT55w75D2JXDk8AQCNIhFRulfm0sfqdKmj0I4LkrmGgZgSdTtiR5yPV82usxEUYGZoQ0eb2TXYXZruLkrrAcHhJFSiNBxq/W3D/2DDyvJbhUxnfbC/kxV8zfntDFSpUqOiCUK0kKlScPnAGidXwr6HqrE4qmn6/zgqVCDoJaG6hCBoQF4ZfUyglZPREYOn+8nZXZ+tPQ0VQ91ADRp2WcQNiqGqyHxXTK4oiNWYHMeEG+saGUdCCCLL7taSPMAmUN0q2P7kL3N7COiobbSxMlQKnjVqJ+JHDB2PDgxNB9VYndpdsa/OdHN3D9FgcbuwuN442iKA3/3gmj142EI8I76/N4rL/bWBFevkRf2YVxw+zzddFKkARFKKn2enG4VInlqc6khPL0EfvUP4dG26ke5gh6Lb9vWT/wbJGWvI6USF6PzLZ9/yA+HDsLk+XaSRwLDjVSSwVKlSoUMOiVag49SETQHa3bNO3KJmdLa/x4t8QTZzOUImgkwC5G5Q86Y8JN7LpiUt5cYoUgC3n2pwotLc6K6sVThdFUI3ZTozXfpUQFYJHDOwk9ltobHbh8oh0DzOQ3C2EikY7Tj8iqdnhI2C6h+uo8BJBhV4iqNrs4P21Wcgr/gatdCzyoBPl7SgEEiH4wMUDAOl3kMOgWyqCABamlOJw+xFBfqoTo07L8KRIAN5dnQVAZtnp8XueKvC3hrXMCALUwOjTAA3R72FKXKD8OzHKFEDaAowbGMPyf1zEE5OGAJAZJLBegKDWsDOTowD410+pHXfQJxnqea5ChYpTEf4LOKoiSIWKUx8Oj1RbZ5RX43J7uPjN9dzobarTkggqqW9u9fe/F6hE0EmAzWsN87+5JHcLJSlK6iZV1cGStGCdwoI953B5MNtdhBt1FNc1nxaT+GqzQ1HdJEaZAChrsLX3JwGosdjRR2/n+9LH6OYlYRr9rD31fo+7hWl9iqBa3yr+xsPVCEjft0IEeT3n/oXjS1PO4Kazeyr7tbtbE4Ky9eStFYcCCKmWHvYekaaAfxf+jtntzoDF0T4RlF9t4aut+ewrrDvpx6ai4yHoGvm17jGKGouU53Y+M5Fv772AoQmRxEVI16NEyAYrKrxh0X6k74ikKO4a15d9hfVKdtuphuqjIN1VnHiIokiZuayzD0OFii4P//v27oLqTjwSFSpUdAQc3ppqW245KzMqAMiqNFPZaGuVG9TSwv97gkoEnQTISg+nJ3ByH+fNi6nuYCLIHsSGUhtEdSSrgc7tK3XVOnyM7da7EiRFkPS9JshEUP2RE0HlDTZMib9QYctXinj/jBdZAQTQLVRLeYOdikYbP+wqom9MKBFGnUTCCMEVQQAf3nYWH/15DBcOjCVSfg+rA7s3I8if5Dmnb3f+NqE/dVYHNldwRRDAGT2jlMdSttGREUF1FkeXZ8KbHW7WZVYGJTO7CswO3/UVaA2TOhE88XMazy9K58aPt3bpQGC7y83fv9mjdL5SERwaQyV1jlJyGnK4aFAsgDLugC8UPqOsETSBY69WIyjjQ8uV5wmD44BTV6FZbfZ91q58vf5e8M3Bb7jy5ys5XHe4sw9FhYouDf851bc78jvvQE4B5FVbOnwBW4WKjoZSc2uc/OOHFOX5vYV1AVEbseFGilUiSMWJhOxPbBlYJbcSr+zgAdVi953gn9w+BgiuipFDiC/oHwNIeRanOiRFkFSE9ewmKa7+/VMqb67IDNhOFEXKvd9Jjd8qdrZfkR4RIrUerG+DCIoK1VJjsfPdjkKqzQ5euH4EZ3lb1Q+MlzJCWmYEAVx7ZhJXj0yU9uElguqtTuqsza22lT+H0y1Sa/W9d0s2W6/V8MtD43j8isGMGxhLXpW53UKssslGUa2Vca+vZdz0tW1u1xXw+aZc7pq9i3WHKk/q+4qiyPUfbubj9Tm/uW2AIsjTWhGUW2UhRK/FI3LCOgV2BL7eWsCyA+V8sUXt+uSPljlugkb6vW1uGzPvOIf1/75EIni8SIwKQa8V2FdYj6AJHHufvWYYA+KksanldSwrAA9VnJqkvL8iyOZU7RWdjR1lUqZVcVNxJx+JChVdG/7zrqzKRnbm1XLf17tVwiMILn1rfZefN6pQ4VByV504XB56RkvzrtJ6Gw1+uZ79Y8PIqjw151wdAZUIOgmQ5WmyX1FGjwgpbLSjV9+tfjk2smXIn8CQIauEhiVGEmnScfAUVAR5PCJNNidbs6u596vdmO0uxRoWadLTPy6MZqebGesCi/m1mZVc8NoaXl16kLNfXs3i1FIAsiv9iCCTVNjJNo300gYe+97HKncL0yKKMGd7AcMTI7lkSDw3jpGsXhavQsSgkUiplgoeGUadlhC9lsOVZkU51nLbRK+FsLrJx1gHCzMc3SuaRycOYlB8OI02FxWNbU9gJr61gYveWKecK1159d7htcSt8ko7TxZyqiykFTewp6C23e1+3FXEvL2Fyr/9i/tIky8TavIZCRi0GrK6cJG/KVuSxMu2SBUS6gOsWqKi8rG77IQYtK06QRp0Ggb3kEid6PDA6zm5WyiXD48HWiuCEiJNRJp0HDoFx2KAGj9FkNotr/Mhei3KS/eXnbIqs86G2e7imvc3kVrUdQl8FcePAFJe8PDykgxWZVTw2abczjuoLohGRyMaY5kyL1Ohoqui0e6te73ztYuHxGHUaSitb6bR5quPRvWK4kBp4++2qYtKBB0nRFFk8nub+Gh9dpvbOFokl8vQaTX88exkVh2sUNQ5HQF/IkgmEYIpgmT1S7/YMIYlRp6SAcNfbs1n5Asrue3zHaw+WIHGWE6K+WulwArRa5VtzX5KqbxqKdNn5kbpJv/6ckkx5E8EhXqdHg3NTsoamrl79i788z6GJ0nFX63FwXivPeTaM5OYOjqJ60ZJip9g1rCWiA7Vsz23BgR30G3lrKNKc9uKIH/INrEDJQ1tbtNkD3yPEx1YfjyQrY57C+oRRfGkkVabsySC9rcko19vz0cQfN+nf3HvHw7eq3so/ePCONyFiSBZHdeVz4fOQH2z7/tY9PCF3HyeZOFqOab7Y3iiFOAeFdb62pev8ZbXsSAI9OwWqqgVTzX4r6r5f2cqOhcL9pXyyHf7jqqD5u8ZFY021mZKCw/7CutIL23klSUHO/moVJxIBM67PJR6IwX8G4SogMfX/Yuw/u+BoHZWU9G10WCT5u4hRqlmiA030jM6hLIGWwsiKBqHy3PKLsAdL1Qi6DghCAL1Vgc5la1b/jrdHjweUbGNOIKEAZ/btztuj6i0H+8IWBy+ATouwohRpyG3qvXxHSxrJMKkI7lbCMMSIzlY1hRgK+sq+Hh9DpPf20RlEFVTy1wjY8IvbK9dwMFaadL2/HUjlNfy/L6DRluL1oF1zVjsLg5X+IigMKOkCKqzOhj72lpJYaPxrXKHGjXcP6E/4wbGcO9F/QAp/+PdW89iaGK4dDxea5hTbHt1PCpEL8mPvURQy+IwyStnrLP6Bq55h+e1ub9hiZEIAuxvgwgKFkR7NDlKJxuyck0m4+6YtfOkvO9mrzrGP0Np6f4y9hTUseFwFSneFeLEqJCALlABiiA/IqhntxAG94hQzrGpM7bwnrfLW1eBrOiotahyeJAUh+mlDaw56LMlDuxhYnCCdF03u9omCc/t1x2A3jHaVq/J50iw7jQ9Io1HZBdemFLC/L1dx/LTYHXy854SekQalX+r6Fz4k+ZZlWZun7WjE4/m1MFtn23n7tm7cbg8ihrQ4nC1soiq+G18sTnvlGiS4E8EhRk1is216TRootKRyKqX5iwaQyUeT9dVkh8N9hc3KPM5FacPmr2NmuIiBUYkRXLrub1IjDZR2tBMk81Xj4/uFQ1ASlHXH6dOBFQiqAOQGGWirCGwIBBFkcHTlvHXL3fi9pIALTOCwC/QuANXgP1XMDQCjEqOZm+QG3FGaSPDEiIRBIHrRiXR7HR3qcICoKjWyuvLMzlY1sjugtafoWWXGtEpqWHSqtIAOK9fd1b9cwIAOVVmsiubuP7Dzby/xleARxilQN/N2dUB+zPppZvcXr9MF0HwDR4uj4tnrh7Gt/deQHxEYNcu2d4lK4LasoYBipVNq5GKwpah4t1C9YQatAh+ZMPn+z9vc39hRh0D4sLbVAT5WwRuOjsZgNKG1gWtxyN2iRt9nZcIarS5WHeoSiFoAApqWhOcHYGNh6tYfbASg1ZDk82ldNR78Nu93PjxVv76xU6mztgCQJVmJaG9Zyl/61/cm/wUacnRIQzuEU5JfTNmu4uUonreWd25Ia7vrDrM0/PTFKVVjZcA8rf4/J7x+opMrnl/M2+uOKQ85/Q4sbok4r49RdBNY5LZ+cxEbr0gTnlOHgfk/3tETyuFW3yEMaiVV8bOvFouemMtj32fwuM/pnaZ4nRTdhXNTjcPXjIQ8FnDPt+Uy6zNv7/MqRXp5dz08dZOtd3Ki0K3XZDEuIExpJc0UlhjZUduTacd06mAHO+iUWWTTVGEppc2MuL5FQGqYRXtw+0RefHXDG7wtmzuyvBfwImN0CmPC9QOrAFIDO0NgMZYfsTK4com2wmbq3UErvtwszKfm7Mtn+s/3NyhLg0VnQNFfCE4WfLoRSRFh5AYFSJZw+y+OVZilJHYcAP7fqdkoEoEdQCSvFIzGR7vzU8UYVNWNWikyVjLjCDw2X7KgxTi/nC4PMzcmMOegjryqi3tTi6bbIGtrMf06UZ6aQP//CGFmz7eSrXZjscjklnexPAkyb4wpnc0ZyZHMXtr/kkt/q9+bxOT39sESMoPd4v3D8N9ZwAAIABJREFU/jXN1/pWtnP5o9xcgyakQPm3SSN9nn0V+5Tn+sSEodcKZJY3sTWnhrRiiSAZmhDB9qcn8t19FwAwb08gCSYKbiKMOiU/CMBk8Gvh3o7dSyYD9Br9b24rk4EmbyxLMLvIgLhwIPC7ae8cGNkzqk1F0ObsajQC7Hr2cp6cNBSAsiCdw6Z+tIXXlnW+HL42yA3Z7RH5bkchF7+5nj1BCMLjwaqMCv7yhaQ6mjwinkmanVQU5eJsw1ZR6Foe8O+Wv/Wyxy7iiuE9GJkcxSBvbszeIzzmGrOd+XuLO6SYzKu2MHNjDqIoKl7o99ZkMXdnEesPVdHY7MLpFtFqBGosji6dG3Uy8OWWPD7d0DofwulxYnVKxYHN1TZho9EIxEeayGnw5ZPJHQH9r/GWqqAekSaqzfZWY6GMl37NoKjWd72uP3T0GXPP/XKA73YU/vaGR4iM0kYe/m4fRp2GySMTAMj3TvxfXnKQl37N6PQCWhRFUorqT9p5/cjcfewuqOvUbiQygd2ru47xA+NosruY8OY6bpm5/cR8D+X74cD8jt/vSYZBJ02NKxrtFNf5iAC3R2RRSgkz1mVT2IEq7qNFV+486Y9TKWjZf7EuJtyn5M2uMKv2MD9E6aV8O62p7IgtzOOnr+PiN9efwKPqGDRYnTy3MJ204oagi+cqTi3YlXxe33kaH2GkxuwIUAR5RA+je0X/bnPgVCKoA5AUHUJetYW0Yukk2p5Xw5db8pXXBa/lp9XqsctBd08NBq2GsnZWgAHWH6rk1aWZ3PjxVi59az0L9pW0uW2T3fc+To+Ts/t0w+kWWbCvhN0FdTz07V625dZgdbgZlhjhPUaBOy/sS06Vhe157a8W/uvHVP42Z3e72xwpMsoaOVjWSLXZzpiXVvHRusCspT0FtQyKDych0hR08lNsepuwvh8DIhcOiGHymVIHtFqbL+DXoNMwNCGSfYV1AZM3u8tDQpSJIQkRaDUCqzIqlAkgSGyy3Vv8Tz4jgYsGxfLBbSOV1/3bvPujprmGF7a9AATvGtYSCd5Ab4NObHPbgfHhAfYjQFElBMMZPaOobLKzLjOw05bHIzJvTzETBscRF2EkJswgnX9+N/Qas51bPt1GWnEDC/aVtFmQnkg4XB5unbmNrdnV1FkcxEUYA16vtTj4ams+QMBEvSOwMKUEg1bD6zeO5J9JB/jE8C79friEqvrW/mFRFPG0IO5aFvbDEiP57C/nEGHSKwHCW/xUTe1h5qZcHv8xlZ/3tn29Hylu/3wHry7N5H8rDzN42jIarE5FDZdW3EC1Vw00uEcEDpcHSxed/GaWN/L0/P1tEnPHg205NVz0xloWpZbyy74SBsSFsfWpy1j7r4uVbZzu1oogl8cV1ObldDuZmzlX+XewbKCWfxcfYcQjBnYzVLb1iGRXmpk0IoEnJw1FpxFILT66yUtacT1zthfwzIL9gDT5PZ6GBePmjuOeX58CpHMnPsJEr+4hfLYpj135vnF4U1bHNUWobLJxzsureGFROusyAy0KB8sa+fs3ewIy4QC2ZNcwdcaWoMrSEwHZIpde2nnZe04v4Ws0uJXjkdHR3UoBWP1fmH8fWNsP2O/qMEYcwpQ0l4pGWysi7+vtBby54hD3fR18DtRRBFu91cGMddmtcp1WpJcz8X8bWJFe3iHvc6xwulurGVvCXynfVZSLbcF/PjcgPkR53GR3tZsB+nuDzSmRy4K+IcA23xZEUVSCpd9ckUmzw015g02pl040nG4ndba2x3z/62uvnzUoveTUy0xVEQjZXeHyc1l0CzXg8ohUmZsDthuVHE1OlaXVvOH3AJUI6gDIqp7rP9yCKIrs9ypOzkyWbEoyEdTKGvbz3QhvD+PusM2tmPW8ags3frxVGWhbStaWHyhn1H9Xsttvou1ye5izLZ8FKT6FjMvjYkzv6IC/3ZFXy58/l7IChnkDTQEmnZGATiOw8XDbRWqdxcHPe4tZkV6hWHaOF+M0+ylZ+iYv6b5gS3rgCnxRbTN9YsJI7hbC/L0lAZMfj0fEo5cVQx7GDYzFLUqT25ak27DECHbk1fK5bFEQnFQKq/GIHgw6DWf3ltq+jx/YXfkbp8fJYxMHcccFfXjjpjOZc8/59IrxdVNqy+71UcpHymMlLLoN0gigh/f8kcP3gu3XqNPQUhHU5Gg72OwMr9Lrrtm7ArKVShuaKWuwccXwHoCkWkiIMlHqPf/eXnWYs19ezY486byqNjuOSHGTXdnEQ9/uxe4KPPZnFuxn/TG0fS+qs7I9V2rfWmNxBJynAB+uzVJabHe0janabGdUryhuObc3yfk/A6BzWbFktm6XWm914sH3mXWCrt0g797dQzHpNQFWmZbfmT+cLuk3/2HX8as35LHkQy/ZuqewVgkNr7HYqW6SiSAp36r2JNjDyhtsR7Xa6nR7mPTuJubuLOSgN9x+3aHKVhbRY8U3Owooqm3m0bn7SC1u4JIh8SRFh9A/Ltx3DB4nFqekdpHHmbPmnMUdS+9otb8GRwNNjib6R/X3Hn/rzoAtz5d4LzEcrFAva7TR7HQzYXAcf79kAH1iQjlc3sSUDzfza1ppq+2DQV5ECDNItsVZW/K488udxzwBanQ0YjZu4oL+3Xn31tEAJEaGUNVk54+fbFO2q+vAzKDFqWVUmx3M3prPXbN3KZ9JFEVu/Hgryw6Us7YFCS77/09WIKRs+c3oxCYMDrf33BKcSgdRGVkVHawqcdkhfzN4XHBwUcfu+2QjYRb6qFTKGiwU11mJNOkY3SuaK4f3UDKDDlU0tYoE2FtYR7+nl3bIyvK7q7N4c8UhVqQHdstM9yp9/VWlpfXNQYkhm9N9QrJPqs12Bj27jO93FbW7nf8C07Yubkdsdvrud5cMieWvY/vwxZ3nMHV0Eh+szWZn3pGTm9VmO/9beShoruWpDqs3dwXBeUTZT/5E6ox1OTy/6AAPfbeX2z7b0e7cp6Pw+IbHmfDDhDZf97/PrvfeMzRC5xL4IC1EV1k7tqN0W8ivtpyWjQRkAsi/HowKldR+qcW+8cgtuqXFdgKzZH8vUImgDoB/q+VzX1nD0gPl9IwOYcIgKRvC6LUTuURXYJFflgrAZcJeNh6u4o7PtysBm99uL2BPQR3/WyllU6QUBt7M1x+qoqHZySd+1oV5e4p5bmE623J9E2CXx0VMuG8lcNHD4/jXFYOVf8sKBYBQg46zekezNadtImidX1F/5+xdAVk7x4IBQgnfGl5jVMab3KFbza0On6xcFEWK6qz06h7CZcMkOeqy/WW4vCtR/u2Jv7nvLB64eADNbumm05IIGjsgRnk8IikSY9wqNLELWZm/EoCbz+0FwBVn+Egzp8fJQ5cO5KWpZxDhbQPuH/jdnspHxpF0DZMVQaIYvGsYwITBcfh3LANosLfdFeys3t2UALQV6eX8sKsQURTJr5aUDP1jfYVtYpSJxamlvLkiM+D3HCwU0V1oUiaY763O4qfdwSd+j32fwpL9ZRws8xVZzQ433+0obFe91hZkUsLicNNkcynKNRlfbfORnRWNNjZlVfHmCqnzG4segR0zldcbmp1c+Noath6hCqfa7CAmzAh1BejyN/KV5g9YRCOHNnzfatuS+mZEP0WHQWsIqgyRodUI/PvKIbj8FAzrD1W1KbGWM3tK62043R6m/bKf1KJ6SuubeXbBfiqbjn2iuTK9gjjq2Gx8lL5ly5RJ+0hv17lgSqucKvMxrXhbHS5+3F0U8LcOl4cLXlvDnz/fjsPlYca6bH78jcLip90+++bhCjNWh4u7vtzFlA+3HPUx+UMUReqtDtZlVvKHMT2V51sSkBCYEeQfFp1WnYbLEzjGy9axcL10vR2JNUweD0qDrLbmVJrRReynSSPdO/rHhbMms5LU4gYe/m5fK1LtUHlTq9BmeaXT4nBjdbjIKG3EI3LcxP6nt5/jtbDCny/ojV4rBLzekZkLyw+UEWnSKfeyIu+5Wt5oU7pmtlRDHvB+7mAW4+PFrvzaVqSA1S4dR2d245QtoHa3vZUiyL/D2/FgT0Gt9NsW7wZXM6JGhzP1pw7ZN0jXZmcVKaUNZorrmrn+7HDmPziW87wB8BcNisWo0wRkhwFs8No0P92Y02pfRwvBe/nkt8hWkRtdVPsR9X+bs4e/zdnTSkX43C8HmDpjS4d3IdyWIxVRn25o/3PK95ToUD0v/5rRocfQ0bA6fOOkiIf/TjmDy4b24NU/jESnEY5qQevLLXl8sDabW2Zu7xRF9YmEzSmdYxEm2OKtFRqszlah2s0OF/+ct5GL3lgX8PyPu4vZU1CH2e5iR+6JVw6uL1oPBG/MAIGqtXWHqjDqNEwc1qPDxsdjxX82PMFlP112wq3MC1NKuOSt9SxMObKFpFMJLm8ci3/dFu1t4JJWUue3nYsBXiIot/rUsN12JFQiqAMw6YwELvcSFdVmO6lF9YxIiiQ2XCIBZMsPgM3tvSG7HNAgFTXn2bfyD8dMXi/6E6tXSitp8irOxsNVyqrO1NFJyn5kqeXqgxXKtkomjOArBmRS4d7x/bhkSBxnJkfzyMRBvHHjmfxlbJ+AMFuAsQNiOVDSEHR1uM7iUCbTcRFGUovqeXvV4fZX49N+guLdVDTaMJdng3+R5HRzsSYtYPPhFl9Xk1qLA6vDTa9uoTx4yUDO6BlJfbOT4f+3gmd/OUCe3wRpWFIoWo2gFGYtiaDrR/Xk1RskW1eN2cGUMRJJIhd0N47pyS8PjeOSob7Cr2Voc8v9+hdzoigy8quRvLf3vYDtDZrfJoIiTZI9R1aWBFMPXT0ykcevHATAs+c/C7SvCDLoNPz0wFhMeg3PLUznyZ/3syi1lDzvINc/LkzZVu5KNmOdb1J3j3YJK41P8m73+SxMKeXxH1J4Z/Vh/jMv8PeSIZNy/oWoHEB9LCvPFX6rNL27hzJlVE++vPNcfvzb2FbbljfauGPWTmasy6Exewfs/RqW/UdaoUZq/1vaYOPFI5yI1pjtxEYYIO0HAL5yXsp6zyiudSxnmm4OX+mn87H+HUBke24Nop8iyKg1tqsIAvjL2L4B//7bnD1c8NqaoIV4ZaP0GSoabXy3o5Bvthfy8Ny9zNyYy7c7Cnlgzh5l28835XLbZ9uDvqfYUMKn+rfZbHyUD/Tv80ftesan/JulxqdJFqqZWvkRP+0pIiHSxOSRiQCt2tzvL25g4v82HJNN7f8WpvPEvLQA372sZtxbWM83XrvFEz+ntXpfGR6PyCcbcjgzOQqDVkNWRZOi7iipbz7m1cV6q4PRL65i9IursLs83HdRf247XwrEHJoQ0Wp7p8dJszP4ODNmzhhuWnyT8m95AhKml643WRHkP7a0PF/6xkrb5noJi3u/2qUsCORUmTHErmNjpdQ1sH9sWMDfPvzdXuVxQY2Fq97dyDO/SBawlenl3Pf1btJLG5R7U361lUMV0pheewxEkN3lG6vklTaAKaN7kvXK1Xx193lcMzKRXt1DOkwRZLG7OFDSyI1nJ/PIxEF0C9UrqkB5rOkZHcK6Q5UBRVh6mXR/7GgiyOZ088dPtnHrzMBrTyZxWxbyJwNZFU3YXW4c3vPN5rIpSjMZ+wqPXylid7m58eNtXPDaGsRKKU/uB8d49IWbYdtH5FY0cMun2xQb79GixmxnwpvrFLX1yYD/+6SWVOHUlLOw9gHmZs7l9gv68N195/P13efxp/N682taWUABLF9DLRfujgVaLxPU8nyVLfL7S+pJ9WZeyVk8n27MDbBJyjbIomOwT7dnvZUXC812d7u/S1l9Mya9hocuGUhOlaVLt2e2OHzjn/+YHGrQMTI5SlFJ/xZEUWTpfmnxLK/awqqMzrXwdTTk3JXoMIEDJY18vD6HUS+uZOL/NgRs9/Ta91lteQhBX6MsbsjuhJ7RIRh0moDGH/6wOd0UdXBI9+6CSuU+6o9Sv465hbVWBsSFkxRl6vR8q7VFawCwu05s17oP10oK8c7MsjtR8F94k2uwaEW4EajK7hMTikbwNQr4PUElgjoAJr2W6TeeGfDcFcN7EOvNNdHrfCecbCmgvhBED4y4AYC/6laRJNRyeepj7EvZw57COkINWqrNDr7Ykkez082Us3oGvIe8YvTKEqnAzawqwth9SyARZK2GpnKmXTuc2Xedpzx/87m9+MNYFyO/GklOvY8AOLtPNzyiNJGpt0qBsRa7C7dH5KyXVvHFljxuN21h3jkHlRXGH3cXUV9TxfLZrzLl3dV8v1OysZTlpMH8e+HziTzy2oeEf3I2fDEJPNIEo6HZyQQvEbTTM4T3XVMZLObh3PIhuBwUeQemXt1DAUlqvzmrGofbw3c7Cnl7pa/jklxwtUUEaTUCU8+SiLRJZyS0IsAEQWB0r+iA3J1gXd78mWX/Yk5+31n7ZwVsfyQZQUO8xWaPKG2725r00g8+MFrqytMeEQSg12o4t6/P6vba0kwyShu43bCBeNF3A5atjTIMOHlAtxiAM8VMqs125v+GqqfRSwTJE+G04nplYpBTZT7qVbGKBivG+F+5bCQseXQ8w5MiuXRoPEN6BBbmZ/SMpLzBhlbwMELIo/ynf/pezJLUXrnegb3J5vte25rkOt0e6qxOydaRvRp6ns3okWeywn0uAPfqlnGxNo3J2l1cFtvAy0sOBmQ3GXXGdjvEAQE5VABa3Fyn2cqi3a2DiWXFj8sj8tW2fECyS872FlZ7C+sVy9fLSw6yNadG+WwWu8sbMF9L7ed/4CrtbpKFaq7TbudN/Uyu1e4gTmgkV9OH7p5auucu5u7xfUmKMhEVoueDtdnKvkVRVIjXf/+UyoQ31ikrpA6Xh1eXHqSwxtomGSPL6psdvu9qvV8ujT9J90UbHabeXX2Ywlor913Un/5xYXy6MTegG83RFBkej09RuO5QpfL43vH9GJYYyQvXjeDru8/jDK86yh8Ot8OXEeQKHGdERLLrs3lnzzuIoqgQ/+EGryLIe237j08tVyqjQvTEhhvJrTJjsbtYfbCSD7yTtZwqM1pdM06P9LvIYf+jekVz7/h+bDhcpZCx8veY7y0k5+0pZlVGBRaHm2vPlMbCA6UNSvB03TEodgpr21YlAlw8OI4Zfx5DTJjxuBRBB0oaKK6zUlhjZcTzK2h2uhnuVWvFhBupsdhpsDqVQOr7J/Sn3uqzLjRYncrnXJtZyfIDgcXZzrxanpyXdtRkQ2WTjUnvbgSgwC9/zuMRlbGwoMaKxyNic7ZfNHcU6iwOrnhnI9MWHMDh8Vml5TwwkAjORamlvLIkg3WHKpnmJQuPFnLmns3poSgrDbsmhA9cN5DjSYQVT3Pgy4fYkVfLLynHlnH284Fd1MX9i4NVhQHf74mE/yLYnsIqNCGSSjG1KhWTXsuFA2IRBIHrRyfhcHlYleGzbsmryZVN9uNuuiGfPy0tKvL97HCFmSkztvBrWhndwqTiZubGXFb6HY9OI80Zjva7W3+okkHPLmuV4/LG8kxmb8ljd750XVWb7YqtvCXqbA2sySxjWGKkMo5e9e7GgNywrgSrPxHU4h5+Xt/upBXXH1Eu3YaCPRQ272XaNcMINWiDEkg3f7ItKClxKkAmgrpHCAxNiGDeHun6qGyyI4pSE49qs520WokYv3VsON/cex4HX5zEvAcu5I4L+vDS1BEkR4e0mTH08pIMLnpj3VHfMx5Y9QCf7P6RZfvLWr1282cb+WBtdivlkqwICveOjyOSIomLMNJoc3WJXKu82hObaVfvnfvIHSZPJ8gduwG2lm7lq/Sv6CYvWPnN210eF0adluRuktX+9waVCDpeeDxQtIvYgmWY8E3urxuVpGQEoHGgEaSv2uz0qiPqvMXO+Q+waupePnBN5X7HPxE8Lgp+nkaEUceLU84A4I3lh9BqBMb2j2HRw+O4oL9U3M+5+3z+eHYy6aWNuD0iWcIMDD0Wc9MFPgm467ub4X9DFPIFUZT+Az7b/xkA6TXpyvajk6NJFqr4+6x1jH5xFe+vyWbE8yuYu7MQA05+MrzAy8ygz7Zp7HjyYiYMjmPmhhwqZ9/OpPzX+VP1B/x3cQb5cx8ncc5Fyn6/MrwuPSjeiTNX6hJWb7YxRnOYOa7LudnxPIVD7mGT+wz0q56lbvGzSrvJ3l4iKCbMGGCp8V9NkAsumZDxJ2xkhBp07J52Oc9eM0x5ruXE3J9cCaYI8u/85j9ZkAk+raBFEHyWCKV9fDsqkehQA/nTryHE6Gl3W7lgjDZKqyqNjt+2HNw4JhkdLi4KLyG2KYM/pt7Ny5pPETa+pWwjf6eySmic5gBxQiMknElUcxHRBA6MoiiSVlzPfV/vVjqqyXJ1ucPXN9t91i27y0NhkNWdYEXR1uxqduTWkFNfgCFmM7Xhnym2PIDIwlXcppVWSrqHGegbE0ZFo41pIfNZYnyWgbYM/uV4ABtGLIckSbJMEFQ02miw2Civb+bsl1axMEhxIk++e5hcULIH+l/MqzeMpLHfZF52/pl7Qt8jc8qvADw+1DtJFnyfw6Q1tWsNkzHvgbE8f91wAF7WfcEHhg+x7mttp6hqstMzUjqHcqssysoawF3j+gIwbvraAItYmXeFa/qyTF5dmsnnn75LTFMmn4XdTxoDOezpya9Jj7HrD1t5NPE7Phs2mz2eQUw3zOLOoRIpKrWSd3DJm+t4/McUhkxbzjY/y2hhrZUHv92Ly+1h2YEyZm7MZcKb6xj23PKA3DIZ8op0dmWTMpnOqTQzNCGCCwfEkCxUMS/kFe4fqeHXtDKyK5sCPlN6aQPvr83mnD7duGpEgkKe+qMt+8P3OwvZUxB4TK8sPcio/65UiBaA287vzT8ul6xGBp3Ga8dsjYCuYe7g7/nFgS+otdW2VgTJnnVXcGWhjAFxYWRXmvl8k48UszndZFeaEbRWhYi69swklv/jIubedz4XDozB5REVhahsy7B77UEHyxu5cEAMj18xmAcvGQBIKiEZdVYHLy7O4J1Vh6lssh2RnSSv9siUD91C9cdENMm49oPNjH99HasO+opcmQSLCTNQUGNl1IsrefHXDKJC9NwwpicaATZmSedseqlEWN15YV+AVtf+7bN28MPuImosDp6cl8bY19YoWX/tYdbmPPK9RbZJ75tO1Tc78YgwKD4cu8vDnsI6hj63/JgJkaOBrKhbdqAcp5cIsrlsCILArmcvZ94DY3n6auke+NmmPO76chffbC88pjyTnCozWtwMF/IpOJxKlqsH488Zw0THW3zvuoTrbYt5Rz8jIMetzuKgyebE6nAxZcaWgFb22ZVmnpiXqpCZG8sWI2hc6CLS+fdPqXy5Jc+7XRNFtVayT4B9o95fuSY40eikczwhLCFgu7N6RdMzOiSgq6icL+HyiEG7XbbEz4d/Znn+8qCvya25/RdSnG4PZQ3NPHLZQF6cMgKA73cVUt7QrDRU8G+qofHORQqPUpX21M8SMeifD1httvPR+hxeWJxBTpWZcQMlu31bhdOEH8ZTZpzFPeP7MaKnT2l9IhR5HYG2FEEAg3pE4HSLR6RSeWLzI4T2/pK4bg30jJZaVedVW7B4CUaPR2Rnfi0frM3u8EYXJwPyPc3pcXDp0PgABcWOvFqeWbCfR77bh90p3XemntWTgfERhBi0aDQCL02VLHexEcY2VTfbvZYxefw+EnhED1tKtzAj/SX+/u1eFuwrDliAFLwZnGUt7mul9TbCjTr6xkp1xsjkKOVa6qjsweNBdlVrImhRxk4uevdrXlycccyLC1NnbOGpn9MUO2nLrM1d+bUd2uChM+DBCaJ0X35ozUO8tfstn3K5BREEcNnQeFYdrCD3FOnK2FFQiaDjhghfT4Gf/kp63/fIfPEqMl+ahKm5giE9IhiWGIkbC0lh0gqsxeEdNGu9q//d+9MvKZ7/uW5mo/Z8mgbfyHX63fx67wjG9I6mn1DGSsN/2DhqNSa9ljOTo7lieAIJ4TrOr5nPhGQtVoeb3fm1uJFO3kln+PJwnE3eSUqOVDyz8CH4YAwgrXCBRF7IiDo8j83Gx3hZ/wUA76yWVDdvrzrMeM1+ztX4VDjM/RMPjXAy3J7C4KbtuEWBW3XrucWzhL6HZrHGfRYv6B7jOeed5HYfz6fRj9MohlCxeTZ2ezM1s24iUmhmj0cqvv404QzeTXyDRe6xhKd9RUlJCbqwHNIbpZBe2c4QDIoiSLZsuIKvNMSGG9FrNYgEHzyrm303nt+yhvlbuGQiSCb8ZBxJRpAMOU/EI3qCkgkKEWSSiKDfUgQBTB6ZwGe9VzPH9R9+NU5jqNZbiBxcDHkSITe2fwxa3Lw3tT/Zr0zmvXNrEXUhMPZhBNFDiulv9BHKmTRCmgjfNXsX13+4hVUZFby8JCPA0iQHDOu1gd9DS7tPYY2VS//7I+u37Qh4/rbPd3DLzO1K4e7yuKhuruaDfR/gcbsQvv8Tr+pnkfvKJPZMu5wBceEU1Fo5z7WHFM8Afhz3Kz97JrDLPQhXxhK2bV7LD7sLiTDpiPVUY3pnIKYZo+hmLw7awr2qyY4hZj1LC/4phZ72uxiTXsuAxBg+d1+DrftQho4aB6Zo+tZLQbiCnwLP4HLgPoLf+py+3blrXD8MOLlRKykKNNUHufq9TTw6dx8Olweb0821zhWsdN1FdyTST86oAOmmdd0oaVzZkl2NgIcQbBTWWrE53SxMKWGEkM/HBsmueNfdDzF7yCdMdkwnLflPnHvmCN7/2zUYjUYedTyMRqvH8NlFsP1jnpw8FINOg9MtMn9vCQ63h1/TyjDpNTx4yQAuH9YDq8PNoYqmgO/RI8KTP6cFTMCsDpfMPfPC4gye8NoLS+qbSe4WyiOXDeIF3WzOEdP5q34VZruLy9/eyAWvrlEKvWVeqf1Ht4/BoNMEZJvJqAhSyBbVWnlq/n7u/HKX8pzT7VHCuvcW1rG/uIFrzkzk1RtGEmLQttpHSzg9TiwuX1jLs1yrAAAgAElEQVR0Wwowl8flUwR5M4LkMUXOMoPg2QX948LZW1ivjL8AQ59bzv7iGkTBrhBRWo3A0IRIQg06zu7dHUHwkRyyyqm4zkpDs6SIGTcwlkcnDiI+0kRchFEhwQD2FtTzxZY83luTxcS3NnDBa2vweEREUfrvqZ/T2JxVzevLM9nsnaAX1h0pEWSgzhI4njbZnPy4qyjo7wYSUVxncXDrTF/g9Ete5VhMmIFB8dI5EBthDFBNnNevO5EmPX1iwnh/TRbvrc5SXn904iAuHRLXSiEhT6aLaq2szCinrMHGhsOBmSAOl4e+Ty1h9pY8NmdVU9lkY3FKKQathsQoEzanR8lQk4nvc/pKTQi+3yk9v+gk5DAc9qqiHC6P0jxBPg/jIoyc07c7Fw+O44lJQwL+rmVDirZQa3HwzfYCnG4POVUW3tZ/zFLjM1wkpJArJvLM1cOYcdvZ/BLxJwBu0G7BVV+i5PxMmbGFkS+sZEdeLalF9WzMqqKi0YbbI3LDjC38uLuY++fsJq/ags0pL1KEsrugjv8uziCtuJ7L35ayRy5/e2OHB876qxQEjQtBLxGCIbqQgO0EQeDaUYlsyqomq6IJq8NFaYNNyRWTbb3t4YVtL/CfDf8JSrrKixIOl0chIMobbHhESO4Wwl/G9uWJSUPYkl1DndXJnRf2JSbMEEAuVHmLvGUHynn4u71t2j8zShuZuTEHh8sjdXXyXpPy9h6PdP3L8Ihww1nJgLTo0zJKQFZT6yP3c/UZiUSa9Ep8QmNzcKvLyvRy7v1qN5e9tf6IyZ1tOTUMbWPx4WhhdbZNBMmLZLlHYBsxCNK4VGDfTlJ0CLlVFi59az3//CEFQOnOCTD+9XVB99GVIQfwOtwORZUpQ878keYg3mzUNuZD8S2IoMomGw/M2cMDc/YQ41W4LTnCBggATfbAOeY/f0gNzKfUSL9vy+y90vpmTMmzsYRLC3ED48MVIuhY7WE2p5st2dXHrQoEyK2pl8Zyv309u+se6ru9yRdb8gJyOY8UoigtGH2/qwh5t/4LNVaHiz9+so07Zu087uPvTIi40AmB43a4UapNBFoTQQ9eOgC3R2RpEEXZ6QyVCDpeaLTw5x9h/ONoy1MwVaZiKtsNbw+jW+Zcljw6DovTTFK4VLApiqDaXDCEQ1gcvbtLN5mnJg2l58QH0Hoc9F50M73EMu7SLmewpoSeB2dBjWThuntcXzbeYkC//D9ct2Ict2jXcc9XvlamynsALrzqlKX/huZ6SPlWeu9fHlTChhW7GsB+aTCcYAwMgW60WLlNu4ZGMZTbu82BkO6QvYrzl13Nd4ZXqREj+PnSNdhCevCC/mushJBw51c89eTzJF/5KL3/9iP3PPIc2zRjiChax8ZFX3GhWyrORo69gh6RRoYmRPL1PeezImwKetFO6pYlhPT+jOe3TQN8XVguGhTb6mewu2zw7c00m6WC0WFvhOXPBGQSBUNLQqjS6pv8B1UEudtQBHkLQ60msJA8EmuYDH9bWrDiUp6cRBqkm++RKIKMooNLGxdK/zj/74T+YzeM/jNYq+Gra2HXLC5NdJKV+Dwj54xE98FoIlNnIfQZC4OugGTJEvVGt4VMHikRQeu9gZhv91jJdZb5fLoxl15CBdN0c2hoMrMqo6JVN5GsFkTQjt07WSo+wrjlk1mzQsrF8r9p5lT7ipL/bvsvM9Nmsif1S+U5TV0uQslexvdwEiGaGSYU4hl4JbdeOZ7Vj09gLecQ5Shn7OobeMMwi3l/6s0LUb9idDUR7azgJd2XpBTVU2OW5Mwfr89hVUYF76/Jwhi/nBRXKQyYCP2kbhMxXhIyITIENBo4+07CsxczUePL6AEw1ubhqTjwm7+LjK+uEDB4iaThQgEZZY0sSi3l3z+lMn3hbl7VzyLM08Qz+u/4s3Y1D1g+ZphQQAg2hjSn8p7nVaYadpGTsokFhudZbfwPpZVVrMuspNHm4pZ4SZn1fdS96GL6ctO5/XCjVSZaAG6PSAlxHL7wTXBaYPlT/Ll3PYdfnszOZyfyxZ3nMEmzk8dcX5IQYeSJCyP5yPwYg4UiDmQX4MhczrO6b7hEs4/hiZHkVFko8fObt5w8L9hXgthYRk1dHcndQhjbw81EnURKJ1VuZsLgOC7V7GMY+SxOLWPh9gxSN8znjJ6RxEdIiqhB8eEB+9RqBMobbQGqBofLw38XS2pH/0D/t/wk+ZuzqimqszIwLnB/7cHp9lMEuWytbKgyml3NivJHVgTJ44BM+kLwa/2ucX3549nJPDlpKP+83Bfub/VI11HAmO1FVKiee8b14/tdRWRVNClEkM3pYZFXtTAiyTdx7xcjHVO4UYdGgDl+Kj65m9yZ/13JuOlrKW2w8f2uIm6ftYOP1+dw+6wdVDbaKK4/siDk6FADJfXNZJb7tn/ulwM88XMab60IbpF49pcDnPXSKrbn1qLBw1TNZow4eODiAex57grFYhnrdy5fNjSe/908CkAJrn5n9WF2F9SSEGmie5iB3t1Dya40BxQEinKi1orFq0bJqw4ki+Rjf2FxBrfP2sF9X+2mtMHG41cO5r/XS+qM/8xLw+pw8cbyTCKMOu4a1w+NAD/vlfIATXrtCbeIDdr8ODP07+JwexAF6X4V7By9akSgwqVlZtCBkgZeWJTeqph5Yl4q0345wLfbCzBlLWaK1mfPXOceTVSonmvOTOT7J2+Fe1YBsNXwEFOnzcDp9qlDX1kiZQqlFNXz0GszePTrzTTZXURiYVNWNc8u2K9YSW87vxerH7+YCJOO61sEw3d07oz/9zDn3jGc2Vc6H1raQAHuuKAP3cIM/OmzHUpQtKzYPpog///MS1UeVzbZ8HhEasx2BngJiDRv/qOc49EzWlIv3D2uH1He8NPkbiEkdw9Vtml2uMFSzdWa7eRWNvBrWhlTZmzmQEmg0i2zvJGr39/Eq0sz2XC4KuAaLay1sii1lJTi+gDSGOBCbwOONZmVPPVzmtLFEaDC7Hus8drTPvvLORi0moCQaxk5VWbun7OH1QcryK22KBbP9lDi1yntSPN72oPV6Zfb1mJMHuBtrnGgtOE3j83tljvFNpMUHUKWd/vtXuVbS9LP2o4lRxRF5u0pbhUC3plwib7cMbkhybl9uyEIvuwom9OtEEHB7lUgkdLy/fpgWSM3fryV5enlLE8vV5RoK9IrjrhbW2FDa/WQf0OZt2+RxujSehuLUkvZnFXN9GWZrM7djd1wgGrNOu68sC/n9u1OXLg0zzjWHLXPN+Xy58938Pwin9tCFEU+25gboNg7EhTU1nPh9DX89YvgpMyGw1V8sCbrqAL1y4MsvviTxN/vTcXYYyFwZPeq/GpLhzaD6Ai4PW4QXBiEwLmd3eM9H/0WcOXaKj7CRP/YMFKPQA18OkElgjoCfcfDuMdAa4TPL4MvJ0vPr59Ok70JEZFEUboZWqq8WRi1udCtHwgCBp2G/OnXcOe4fpAwEuKGQWU6+lkT+YtuFZYkb0DuAamjliAIGIp9wZR/1/2K2e4i1CiREAH2prP/Crf9BHX58MuDyvNiyrfKY4U4crugSFJodHNVMbmPyHTdTNKM95Bt+guXa/cx03UNZa5I+FcmPLAFUWtkt2cwNzv+jz69+2J8YB0V5z2F6f6VjBgghVH/7eIBRJj06LQaGpMvIcpdx6gDr+ERBe53/JOrxl/AjmcuJ8yoI8yoI6LfuTSLBgaa9vm+Y1FUJv6JUSa+u+98Hp04SHnZXrwTslZg81q37IKAuH0GlKUE/lZFO+GLSQhNXsKohYWsTSJIFCF3A456Xxtvf3JHWaEXAokgvVbfel9twL84DBYYLSsH9Bo94frwthVBjX5sdvEusDXAn76HydMhKhkGXCa9ptHDksfhneFo6rwKtXpvMXjOPRDaHe5djfuMmzlPyCAhwmc5nHdzAjc0fs00/bdYNn/MR4YPuVe3jPJd87nv693K6sXrN46kp99kCKTJQt7GbwkV7OgFN3F73pZukpv8MnI03u/LacVaKCkCXFve9b3+w+3w+WWcO/9CbtJuQiOIOHqPB2BgfAR742/iL44naRRDuVmzliFzL2CSfQWzXJP5xHUdF2oPklVcwfmvrmFXfh2vL8/kvq93szrD77ub/IYSxBUbJn12JU/psucgujf36ZYGfPVGjQ5Xcw18ejE0+ymOyvfDoWWtfqqxYgoIGsRhUxipyeN84SD3D7YwJeOfDE95BQBR0HKTdiOv6L9gePEPLDM+zUHT3cTPvxFN1kre0nzAw/mPMFqTQ0+hhqSUd5i/r4T4CCOXhuZTLMayIe42AC4cGMsvD43jTq+tDODxKwbz4pQRjLz0FngyH0Jj4Yc7oLmO+AgTlyU4+MTwLvfqlvEUX8IXV2GoOsBLpm+ZsOFWXmt+ift0S5lteJPnIyTS8d8/pSrWzqLCPJIFn8RYgwdmnM8u4S88mH0/rJyGIHrg3PsQqg/xVdFVfGl4kx9Mr7Alu5rqVe8wxzCdj8b5rg9ZERRu1JHyf1cQH2Hks415nPfqGsZNX8sds3YweNoypXjRaQRcbkllNWdbAVNGJzEqOYpPN+YiiigdI9qCv2rHv2uYzW1r0x5mc/tIopaKoPYyguTP9+YfR/H3SwYwxdsk4N7x/bhypLSfZldz0L+7Y2wfAHbl11FvdSpWwud+OUBiYharq95XtpWl8EMTIpRisiXMdknlEMwmNf6NdXy943CQv2oN2S076d1NVJvtNNqcSpDt8gPl3sIhsPj6bkchZwlZ/E//Ebmm23nX8BH3mNbxtwn9JUtNnmSp8e+KOeO2MUR6raT+2Wcr0isY1EP67nrHhOFwe7hw+lplkisTQQdKGpROW4cqGgPUJi3bcMuTxZ7RIYwfFKuoBh7/IZWtOTU8d+1wBveI4KJBPovhngLJIvZbbbfbwzML9vP0/DTlOBW4naxfu5wLzKu5RruTQUIxgqa1FVFG35jAoPGWNqubP93G7K35pBbX89qyg7yz6jB1FgdrvN3Y3l2TxXklX1Nu7Ifz3nU87HgE18hbAt8kwZed+Kb+0wCrwaU133OXdhk52YeZZ3yR+3Mf5VbtWtJM9zFWk87Nle9itEnFnSiKDIwP5+u7fTmHD18qZeXtL2l9btZaHFz5zgYW7Ctu9RpIilQ5uN5id/Hq0oMcrmji/FdX8/ryTGU7o96NS5D2H+w6T+4Wytz7LqDJ5lRyzs7vJxEkLy7OoNps54l5qdRZHKSXNihKxJbYllOD2e6izuLgvFfW8PT8/dRY7JzZR5rzPDp3HxmljYraJ7mbtMpt0mtZ/+9LmHbNMK5KdjK35mZ0OatYlVHBs598z8+G5/nI8D47jQ9yc7dDFNU2s3R/GTd/so21mZLN8snV7xLWezYgZftleAmdhP9n773Do6rWt//Pnp6Z9N4TauihQ+hNUERExIoF5Ryw93I8dgFFURQRKQqKIogiIkUBaaF3CC0hkBBSSS8zmcn09481lQT0nO/x93vf73We65qLYbLL2nuvvdZ67ud+7idYwy8nS3lq1QmWulJU3QVLwnUq4kI0ngqLG0+VcdO8PZ7rudxCyqgkSUQEqlpMt1mSmY9cJjGyg2AN/ZGzvP9iFQNn7/Bo5dnsPgLZBTXM2nSOn08UM/rjzD/tIFfofQJxVzGCQrRKInQqPtl2gVFzM1u8BrPNLj6uftJobSQh1DsGJYSJ8dYNBN3eUzCqrk7J8bW8ykZe+DGLx1ceZ+f5CvrO2uYHblzL6o1Wzv1F5c/duisWu4WkcC2HXx3J6mkZtIrQeYCT6kaLh2lyLSAoOkhDo8VOo9nG8v0FFNWYPOnyNoeTBzJSSAgN4M31Z3E6nczadM6jhwpiTHh7w1n++fNpmqx2cirKm52jzAfsT44QAY91J0p4atUJHlh2iEWZecgDxJo3SBXEW+M7o5TLPIygdzae+7e0nHbninHLtwLz/rxqZv2azVs+4NC1zFeLateFEqoMFvZerGLetgt+wEyAUs77m3P46Pdc9vwLaXR5Ff7PJCE0wI8RtLrgI1ThB5AHFHpYhSaLvcV+v+t8BcM+3MU/f/73dOb+KnP7ZAFyf9aaO4CeEOYjoeLjy6UnhZKZW9liwaT/rfZfIOg/ZQGhcN8aSBkI7klEX0rDr0K8NiFHRMYM296CtdOgIhvCW7V8rLtWQPf7wFwPkhzd7QsgOYOKsz/AusdhwzNCyDYuHUbPIlUqI4YaAl1AUMOZHzyHsvW83+v4n98E8T2h9XCaetzn2cZgMYCxBtY/ARYD9JoCwMLyydyt2IUJV+65LJXP7LeRnhgKCjXEdkF69gx3Wt4gz5lAWmwQUkgCMWNfQRbvL57ttvDu4wCIlupYLL+TrY4+Xi0ll+l0Wo472hGpuej9cUE/WtcfYLPqZV7Lv48B6gKei/VSlc37P8WpCsIkE13aKUnYwJP+BEBTA/w0FQoPiPsHmOsLYee7kPkB5O+i8tQqz+ZWvY+g6O9vwDfjMWe+5723NhNc3g8nV9JoFoNLs9Qw2R9oBDVWw3nh0DTZmlDIhGCdzWGD0pNQeFCAeCXHsTvtSEhIkkSgKtAL4B35EpaOFkDeiRUwtwMcXAiWRrE/EiT395xyd2gUXVslUzZtG6QOhrjucPtSuOEduGUeTFoGHcd5tpe3GoTUWEmPPVPRqWQk6Jz0yPtcOO/ADOXXdJUEW+1uuZfqPH1Ia+7qk0zb6EC/qO2FDR/xkvIHrgR2ZE/kXXSznOB8zlne+00swAe2jaCb3LUY15cLIAtwGqthwkLQRkCld7H+hvJbKhRxtO010vPb7EnpdB4ykXdTvkTfbgIAddF9mWO7k2PydBTYGCA7S6yznENLn0Urd/D2+M78nuGdpO0+72dkkIsR5HYu5Qro8zf6y7L9Hqc8qiMOJAFAbp8Bv74o+tqiQbDqbtEfm+oFW23NVNg7F1oPQ+r1IKFSI6vVM/hn4d8ZKT/BnYpMKoM7I718iR30BiB/5BLvyW58H25bjAIbGsnKdMVMtmrHMahyNQ05u7i9ZzwJDSco0nXjHzd18OzWPSkUtcILWIbpVDyQkYpMJvHswXe4vU17IWa/92OxgQs0LnWGc6Nxvfgb0M95ijh7CZvtfXhF8Tzb7T3oVbEWGQ4OF9Rwj6uKUo+909irfpoMmbi3raQyJHM9DqdEmLFAVGfrPBEGPw/g6VeBzkYSijbQwSL2Sz7+vgBkK3JIOTab+3pFs+Jv/QjVqogJ1ngqKZbUmTyLopvjDczpcJFKvZkeM36nz8xtGC12buuRwP0+1dv+iBFkK9jr+d5Yetwr+mwzt+hkg4sR5AJ8dCp/jSCTzeQZKxxc31FJjdRx4JURvHpzR6YOiQEEk9EXOHZbcriWUK2SX06WUGkwM65bHE8Mb8uwtCgMoUv5Je8Xz0JycLso4kM0PDqsDcEuIMhXUNjXfBe04ToVax8bQHpiCJLkdUrqzfXcu+leztc0Xzj380lp7D1zG6Pn7qa41kSP5FD0ZhuLM/Pp+tYWj5aPyWJHgY1vVLO5Xe699y/0DSBMpxIpNbtf9Nwft/mm9oXp/FOJMwLLoanBr4z6U9+f5GB+NSYXCPXFnkuMkR1mhvpbXq98gQnvr/MAJC1VguokFZCiNaNVKfh8ski53nz2CoPbRXJnnyTR5tFp3Ns3idcTs7DqK4mlmryD6+HS7hbv9fXM5iqUsOpwEQNmb2fER7v4Yne+GOfnpTNstxeIuU2+1wOo+6Yiuk0uk/yei5upcyCvmoGzd2B0MaM+2prL4sx85m2/wOGCGpxOeKi7jqW2f9JVysfS5U6UiT2Z8eobfHRHuv9JlBrMvaZRRhQdZUW8sfw35Nh5V/ElrypX8qbyWyYrRNp6uiyf2covAVilmsUE62/0aBTsH/c70iM5zHPohwcJNszVz+VCuZ5RczPJLTfwxrqzXKlvokLf5JfyNXtzNlO/PoLD4WTZ3kss2Z3PCz+epMp2FnzeR4vd4plnW3rfQKSSdIgN8miPuNN386saeWrVCX44Wsz8HRe57fP9zNh4jiv1TZwtrcfh8E1NcHKxwsChS4I1svpoEY6gvWxrfJynbhSOzKLMPM81xLkBBkMFYToVfxvcGk32T2gdBuYpF/DSNzt4rGomOsmModejhGg1vK9aRmqIggP51RwuqOGZ70WQLN/+IzJdDh1ig8gqrmfzmSuE61R+4LC7THjXRMEA6RwfjCRJfHRHuocBBSIt9cs9+RTVt8ykiAhUNWO3mCx2Np4qZWKPBD6/rycyCQ/rpqKhie8OXW4Geh7OKeBZxRrCXCnTJXVeEGfSogN8secSizPzyS03+OkTXo/dcKHSO8a1xNL0rbTae+a2ZrpzIz7MZND7O7E5XUCQrdFvbVvTaOZCuZ5prkqffVxpo9VXpetdqmrE4XBy7lIxn30+l2GykzxR9DyFq56jQm/+UwDP/V/sZfKnm8T1lp2Cmkuw/zM4ueoP923JimqMDJ2zk5NFdR4gyD23RQdpkMkkOsQFeeZgEJqc4M909zXf9KvL1UZ6JIcyuV+K5+9towN5eFArsssaqNCb+WLPJb7w0czLr2rkq30FrDxUyKFLNeRXe0HmuS5WqG/FRpvTQmywhsOuNEI3UCXJxXUoZd7+HuEjQ7HykDf4+2fMZLFzokiAzMW1Jk+f+/bAZc/1Xp2edrX5Ai71Ju/9+3hbLjk+a2lfhu+OHH/G3vXsaqA1LTbII+sA0ORJk3Tyj59Oc+eiA3R8YzO3fraPr/Zd4qlV3iD9plMieNoSEGWy2Hlg2WG+3JPvpzf2/4VVGMR9ClaF+v3eYG4g643RPD2qjec338D7sLQoLDaH3zX+b7eWV33/tX/PWg0RjnXRIeGwfHUjDTkbICGWOJkY9BqTennKUtNlYsvHiWwLExZArwdFZbGINhxo1YdpheuYf/4nhplcg8jAZ6D1UAB2RHzAxCYxkDVcOQUhImJuc9qF0zroOcjfKZz88FYYTdXwwzDRpnPrYP3r4piDnxfb1hV5dIWej1rM38tnYer3Aj93HkCHWB+ENTAahwtPDNVeW8PHbQO7pbH+xAvc1PgLj077gEc0IX7iygCPDWvDsdpbCayYB4jomrXqPIOrHsGqCkSBGr6fjMNwBVqJMs9mYyWWe9bg2P0ooepQ6sx1NEW2R3lhKwx6BqwmWPco1BfDmHdxHhNiyU0HF4BPekNFbBTRSiUVCgXWw0ugy4PCcT+0GFoPw2oQ4JTC6cSWvQH2fQv6MhrbDQRA7rD7Rfvdk4tfalhTA2z5J/T5G+x6D3I3Yx//GRaHhTB1CLXmeuyXdsMqweIgIBxMNTj73Y3M6YQvR6ELkWg014tS6ZuEA80MrzYUm/8BW18TOjfRnSHAu4D+tUAwU/Y1XGTSlI1/+MzcQKKqYBeneyQgnfoe6awd0u/BVp6N4spJHAl92GPrxNDy5cxMOc+ISY8SrlNBdR5v69/k4fKJPLkqiHfDNvJg3ecAxN46g2NnyqFqNR1WD6SNNIfO0mU+atjAHlUFTxMlQNXoTqDPx3rHMmg9FrpMgq/HQu1laBSTX/TQaRDkzQXuGBfs0mroANwMxhrU8mB6LD/K9BEZWNZ+yZd85Nm+9+AJZHTTwfwFEC8mDpPN5Kn2lBKhQ5KuSknqcT/s9AKDAAFBcdTZDEAcHHVVkDvsA96snSbe2SyfBVmP+6DtSMFA+u0l8dvIN6HwIFE3vQ+aEHKGLuLVLQfY0GMCemUTTn05wf0fEdsW7MVZeoKF0x7HYn4Iw5w0HlJtZ0C7QcgOVZAx8R64Kvp/LdtWKABSut0FBxdBUn84uJCG2AzeD57J1LaNdFNcBkmO/bd/sMXUgZdkL7Dn2eEYjrVCseMJuksXOe5sT2l9E0cKaujTKICBVapZVDqDOeAQFO0J9tl89sgEkuV1EJUmaCN9p0NkO0i7CeenPZmnEn3FGZyIVHwEfp4O535BsjUxc6gWEnqBzUyGppAsAnH6xDZeu7kjU7KnoSg4wibrS+xydAcgSaknI9KErG0Sh/KryS3X0ya6+f1ZlbOKwoZCXu7zEracTZ7fG/Z/DBHC+bkeI8hkNTVjBPmmhukUOvRWvZ9DeC2LCxF9u87sdbCMNiNapdZvO0mS6Jkc5lkUhulUPO5iTnRd7mqXzYRWqeWW9HiPxtTu3Ep+ySplcr9kFuwUoG6bKJ1HCPT7w0V0Swzh64f6YrTYSAzTsnpaBqvOGJjtWi9tL9zO6arTzDg4gxVjV/i1a3TnWH55fCC3LhCOvZuaPrFnIid8tJC+O1TIu7d1JTO3kh7SRYIkEzOtk3l1+gNI39+LrOKsp9iB227uGsfizDw/QAjg0aFtiA3W8PX+S0RUHuKRnNmQbWfEjZ8Qqk2gzmhlQ1apR+xXLpPAYWOxysU8lODZpgW8uymJZQ/0RCo6ACSJPwAPyLfwjnI59vULYNpOWkd6mT83dYnzfO+aGEJXWwOcep+pboJADbAcSp4sJCI4kAN51QzvEE1ZvYkGk61FMXQQzo/bqgwWqgwWvvx1H1O1z2JxKtAAZcHdsIZq6Hc5i4UuIftrgZVLHujNN9uOoKi+wPs5AmworjVSUmeif+twGs129l6sYop8Mw4kVh+JRid38M+aN1DKLtAgBZE0WASVrgbe3Ka+ZQ4xfabAogEMlp2iyhnCvYodnr8/qViH0almsW0cY4Ly6KSqggbB5NFiATSYiw5Dl4cB+PSeHvx+rpxwnYqh7aPYcvYKT41sx9+WH+XdiV34dPtFahotjOoYzZ4LVTz1/QkOX6ohUK1g1d/7U91oJqdMT63RSn6VweOI5+oPok35hvGJj7PeRSRqsjd5GA3Xes8BOsQGk1VcT3yISD+UJNFN3dp4pXUmD5gx6P0d2BxONjzZz+8Yq48IgM9tikARZOjXTsaD9SmsOlxE2+hAwpM3sKtYwcwFBqUAACAASURBVBiHBr4ZD+M+gSNLoVxE5IMlIz+q3qGtrJTXrVOYcctsSBsOK+9kXGgWnxWK8TcySO0R5QbonRLGCpfTO3m4AY0UyflyAS67wZSurupfnePFv5Ik4Zs5+LQLXJKpS9G1bn6fIgPVzVLD8ioNNFrsDO8QjVohJyVCCOXrm6zcvmg/RTUmjl+u86R8AkgXt/K0Yi33yrcxyPxpi6Wv3Q7zhQoDraMCsTucTP7yINFBGj65qzuf7bzIzd3iPCmkebUF4BpOW2JbtokK5EiB15ldsDOPZVO8IJgbpAuMsyAhmDA39YqjymBG32RjyZ58Pt3hDW62d73jNY1mimuNBCjllDeYGfvpHl66MY3IHS/xiWw7uF6rQZzlQc0GSn4fCa1/EuBvVBoPfn+R4WlRIqMAAXbdXzmXOzS72bYvmVHbxvpfSPd7mj+Yq+zLPfn0bx3hqfZ28EAmmY13c8vnM1G3bcJKczZ9h9hgfj3tDZ5GBaopMV+bEeQG5ItrTRTWGOmTGoZKIeOu3kkcuVxDv1YRHgacL/jRZLWjUcrZn+cVmX9w2WESEy+Ca9ic2DORDVmlAnxwYUtmu5kRHaNZcdAf2IkJgbqrrkcpl/HTowPYcvYKS3bne875Z+xIQQ1Wu5ORHaLZnlNBpcFMhE7tAVNzrugZMHsHBbNvbnF/p9PJHJ906dbRaqwGracowTafqoBv39qZg/k1bMgqZX9eFU1WO2qFjLxKkao1adEBNj45CLPNzsH8Gs9a4GqNvLTYIHbkVGC22VEr5JjtDjHNSU4/gKmkzsTbGwQra/btXdGqFJS6qq7pm2yUNzQR41PQZN/FKnbnVrLbVSE2JULLZ/f0xGJ30CvF65P8J83pdDL391wskrhP4ZowLvlcrt6iJyRKidSCWDTArd0T+OFoETllfw2j7v9G+y8Q9J82ycW+cC1W612iufE9H4a87zCk3QRJNwiGSfKA6x8ryUuDPhYoBuSzaSMYdtLllHSZKFLJRryGLut7sBpBqfCcE3w6+Kg3gTc9v7tpcwCGOhfKPvgFGOkChO5fS/b+jby04RJdExLoM20nAUp5M9AGIPPFYf6VNq5jGqWc8X97HZyvgSTR/GiC6j/6rif56ouvve2duJiQvF0o+z8G5Wdg3aM0+bTFktQPU5yosuYGgszdJhG0410485MAcooOwY2zof+jWMt3QX0O5oBwCOsBKQOg6gKV+mPER3ehoioLa91lyHwfdFFgN8PINzCX7ITs5WglOXb9FdCLhYHxykmIjEDW1IDZ4B045T9OAcn1HBx2wQ6pPA8nvhUfl5k3PAmpSQQaqqhVKlm/aTo3y2REOBxgEhEMe+5vyEKCobYAnUOOof4KFC/3v3kBYTBhkThP7maoLwI3YOAyt3B5qeFPCvGFJsHLl+H9FGRZ34l+22EsdJ+MQhsODgcySSLDYqby8xNMLpmJZL0ZHAmw+0NSa/ezQ70ffIgCBSMXkdruBtTmUuYdu42nFT/zkXIRafJSFBYVTWEJgAUCY0EXCfp8jO7nrVDBlF/FM9nwDJxZA33/fv1r0IYTAKya5mJGPbgWDizAabcgnf6RjLPvwKVI8Q4hgCCjzegBgtpEBbL/HyM8Drn7mNaO48DgFbwOUgVzQZIEq++7SdDrIVAHulIknLD8FgECpQ6G+9ZCxVnByALoN11sX18EEd5oBcCjw9oyuV+qqHjQ/0H/a7vlUyScSDIZGm0gjn5TuPHgZ7BiDEgyaDvqj58xV0VLR7wKZ9fC9/dAQBjB42YyL7G33/byzrfR22hjr0pDqFZFWJ9bYM/L/M3+K49Z2wES0746wBFkNLSdwN78Gsazi/HyAzhlSn56YwpKlQbw0SoZ+4Hnq/R8DrYFA1A0liHd+hnG0z8QcHIlklwt+kXmbPEBXgZGaNO5x/g8NhQcfGUkscFqOCDGtmcUa9hlEfd5ufoD1PPz4NbPmaM6QINxE/2/C+Lj4fMI0YSSpopAa6gg8/CnHHeaeHHnQqzmekgRVP66iLZADYEOB01W4/U1gtyMoKuqhjXZmgjThKG36q9bUfBq8wWCGq2NRAY010t7fVwnz+KtpZQvg9XgBZCcTqg4x9sjY3j71i5crND7AEGBHiDIYndwc9c4wnUqAfAitD9iQ7yL4zf3i/nlXPU5WrKuCSE8M6od49Pj+XLvJX47XcaNnWOZufGcp7LZ+pOlvDq2Iwt2XuQOXTY2q4yfGMFryf2hw81wdh18Pc7DZW60GNCpAtnwWH+kX1+AUpkYZ7NWESBXce+YWdjyd3NL3TycMhXYTWg3P8P6KccYskgMSJHUs1b9BvExsbxSkuFpb3n8SEaXbmfLhZ+Y/953fGT7mjeCotEoQNZUj9JpptIZQpS+BI59hWrYP3hieFtMVju390rwv/hz6z1fV9hG0loqY4D8HKu+ms+J0FHsu1jNb08PZuyne3A6aeYkHMqv5mB+DamRWkIwMFJ2nArCGH/bZLLWzUXmsHK7+S3+GbmHdhOeYvSeRxgRY8Tt2Tbro8YaUOkIubiBJ49NBeC87DEW/9ZAp5QY0uMCWPlQL5bsLyK+bBtvKb8B4IULGl6KAGVFFsWjlxDRexLSnxBYl8V0wqQM4z2WYpeUNCoi6Kb/hHMJ76KuzuagszOTX/5cpPnZTLB/PjWyUCwnBdBuzP0Nqm+H2xYzPj2e8S4A887eSazPKuXBZYfJr2rkxTWnyK9s5MUxaTw+vC3PrT7JWpdgrMFs45bP9vq160hBrSf1wS6rRQkoA7zOrNlu9tMDu5bFh4p5YYRLEDn7nRsZ+VGmBxzI9Um7c1fpXLrfyyZVyfGAQPf2S6aszsQZp5MmQEJiTJdYlh+4zLmyeoI67uOFzH2MibhB7LzxGW9D7lnN5cO/0DZvJQCxvQUblrajICiOMbadfIYAgsxWBysPe53iacPiOXq5lvTEUNZfmQzA+ZkneX3dGYoayghs9x41zk9oGx3IwHY6Gq2N6JQ6xnaJbabjIslaTneK0KmbaTq577/bgWwXHUjOFT3ztl2guNZEWrSWoNNfYx48DXVoHHZ1CIqaiyCDKKmBRVFrea36Iax2R4sVyd7/LYeMNhFszy73VKMa3C6Sub/nos5Zxw8GIwG97qHGWkKQLIgmh77F1Hw3I2hC93jiQwNYmJlHhb6JwmqjB9QRFy+u3Wg1EqJV8sSIdvxwpAinEzZklSKTRL+NCvQCIU+uPEGjxc7fBgkwZ/e+vSyXMkVad/zf+aUqgeWW5wiQLCRc2Q7ze0FNHvbwdpwtfY7M3EoGtYsiOljN1E/X86NCsA2bgUAA1iZQapr9XG+yEhKgpFJvZuambEZ1jGHB5B78smUbAw4/ARIsUn3M7bIArMiwOW3YHDYPi73DVeC1TiPBdYCg7kmhyCRRsRHJythQsf/7k7zZBG6JgZ0+YMTlaiNpsUEcuFBOWMoaGip7YDe2obyxFk0QKCTRnpQIHTvPV7qxIUw2E6/dPJCkMC1hOhUvrTlF53b5GAKPQZNY7zmdTo+P0yslzJPeXlhj5IPNOYzpHMsdvZNavB63bTxVilIucVvPBLbnVFBca+JKfRP6JhvBGoWnwu7X+y5xT79kvtpXwMe/52K2Odj45CCOXa5l7fESglzFjf8xtg2dQvuT8Z4Az38+WQyuab9TXDCd40Oo1JtZlJlHh9c3Mz49nvVZpaREiLE/M7eS1UeKKKwx0jM5jIw2ERTUliPXXkBnjCNDdo4+se1ZiJNd5ysZ0zlWgNZKQCbezVm3dUGnUvDq6gPcI9/BcvsYzl/R0yM5jJJaEwmhAZTUmZj4+X6eGNGW0Z1iOFJQyyMr/DU0L1cbPWPwovt6MiwtukWAzWyz02i2c6SghhEdopsVn7melTeYmb/jIjJNCbpWEBMYLgIvLnOnhvm+41czAPukhrPvYvW/BAD+v2z/BYL+KpMkeP48DQVb4PiHRHS5A3XBGjEoZjwHGY//S4czuUSNA9qOgvRHIGeTN/9+yIvi820fcDTRoIsAxKLlWiLFvnRNQ9oYyOgPXe/w26ZDxs08qC5hTOcYD82zJUuJ0JEScc0/t2wtAEp+ptJiSL8T8oQuUmPrIYR0u1v8LaYLmPUYjVVQ+D0ATb0e8JSOd5dXt3SdBGc3wBoRSWTCIk80xBySKICgHvdC35c9p61YNYC0oAROVmVhjUsXjB2A+B4Q3xNzxX4kJDQB4dhMZlDq4J6VGA+8B7ZS5Dgx528HrVgYKgsPQkoi9sNLoPAM7J8vjqcJgb7TBEOp10MYL+2AgpVE2e0UKZXMiQjj9zZ9+TbvPPQRC3XH8XnIZQp47CCB3w3GYDdDxhMCBAlOFE6/rQlUWki7EYb9Q6SudbzF79a6Hc+ChoI//7wCQmHMe6AvE31N48MKc6XjqdQaov6+FuZ2hAVeEJOItjTVlqBxmLA45bwTNZeZg8Vz6JYczlOyu2mwanld+R04gckbMJkK4cBboA7EDRf6gpcoVOJz6wIYOwfULUfQr2kxnWHC5+LIF7YKzS5jDYz/DLLebX4+8AOBDpcdJkgVRHz70XDcCwQFqlzaTaFJ8Lh/RTQAHjsI2RuhzXDR/vge/n9XqJqBQCAir56yl1ebzH+SlI16EwxlAgDt/bDQevoTVtPknS2dIUlI3e4UqYbDX4WrQCAAVFqifUkAAaEw6BnG7pzFAfkznJTS+KppOAq1g/AuIxk88U6Mvz2N9sxKpIReLhDoOqYNR/HoHrBbqFEHMHTvUzw/5mWmtL4VItvDtrcEwBsYDSGJ9Ck6xNr0Y5w2RRJr7wh1cjBW0RjUiu76fHpKuWQ529DaJoAOfnkMFBqORqdiw8i83f/kot3AaEMjH1VWo4+LwaRRU2TVo/MZruo7jIGcVcTYneTJmmgsblnE0WRvmRHkcDqwOCweMKal6PO1zC3wD9deYLeK1NE5PpizpQ10rvoVPvgQguPA1X0NFgPRWuGwsvEZOPa1KFwwfTdJ4an0SA7lmVHt6RwfTJvoQPR7FlHsjOSOUBk4W4vU2swPwFSLacBDzc5vdVixO+zNhPNlMolnhiRCyVHeTTjPrKAyJO1wrDYbChw8Maojn2y7wIebz5FbUsnY6LOYND355S6XM9Ptbjj1I87Lez1M0OLDn5M26CVkRQfh+Nfi42vBcdx/8R2MARHw8HrI2wZbXiH+0k+ACBxsvKGO2D2VUFHJHOVp6glC+9JZYjSB2L8axztFy2myKkCCIFsNsoiO5Ab3pr7sIh/qXmB1/Pew+0OI7coL7QJFyrfiqsVj7mZoMwLLkFfYss3JvgsV7FK9yiT9Nyyu6gooOJBX7SE7fbknn4f7xSM79zN0vYO5S5czQjpKRZvhbFe/Q6TkWswaJLprdlNojSKpY38GPvAERXoBKOzQedliRqtBtBEnFOwT7OCr7APlYppQU1UWTLy8HtnaUQwfupDW23ZjUIRTaAvhQ+ViaACC4kjMuPOP53G3SRIBd38FRYeR113GkTiEeareqA+JNqaPfpAIdyRZpYVhLxNuacR0SgC9jQqVCG5seRWiOwo2rTqQnilirnczpdzC9G5drXY+1QV1KrlHCNxtRwtqyfPo14lx1LfYht7iBWqvBwTd0TuR4lojLw0Kh03PoxnxGh3jgjxAUH5lIxrMREr1FDvFu/fLqXwCRYCe+HCJgkonjw5rw8s3dsDhcHL3JhXZNaI9I1LDaRsdSHpSAFtd01L5ia+JcTcgNBkmfgnJ/YizOyBvJdaQVB6/bbjr0uTQ+TY6HvoSLU0Y0VBSZ2LGxnMeh1OhNLP5mSHUm+v5VSyrUCvk9EwOY22OoEhtvPQz2577jK7LuxJ+LJzMuzJ5cEAqwztEM3TOLkCAYF3e92qR+VpsiKgUZbM7ULicu8oGd4qRAEa6JISw9Vw5X+69xKReiUxXb6Hd8WWweBn2gAiy7z1MirMYgzaJwO4TGL5/PjHmnvR4x+qn6xGuU1HTaCG/qpFZG7P95s8X15xijOww0ysF+y91Wy+0qdW0DWvNmeqsFsdkN6hudwodEacTbluwn5I6EwtdaaFgR5KJ/uLbj9z6ZABfP9SXIe2jPCLRX+zJ9/TLL10aUk83LUYv02J/aCuTU9two8GMoXEkty07ymr7s4TU5EFSf6TS42xXP89eRxdmLCrAaJfT13YMlPCFbSzBGNnq6MUQ2SkeVAh5il17djJsxE1+1/b2hrN8ta+AHc8PJeeKnkSpkofz3qVkRWfuLFjtJkGSIFVjkZKQOZ04JAlL9noUnUVmg7tankYpY8atXfixTAQpG62NLDuzjGJ9MW9kvOE5Z5BGSVpsMNllDWgSVvJ9eTb/dJ7yCzYnuADWzFxv2teYT3Zz+q3RDMyfxZ7UfLQpR9Fnz0aSuStpirF3TOdYj4YUCFDXrVnqAXgUS9yuEg6nQ2yj8K5L3ADvjI3n2HOhim3ZFYzsGINWJW8RIFh5qJAfjhbTr1W4R8ewuNZERUMT6phf6Nxa4sCB8YAoOrD3YpWfCPvKw4VsOFnK4HaRuNVNm+xNxIUEcPqt0SzZnc/8nTkERXr/FqAIoFWkFnCSKl1hvUt33s36sTucnqI4Px0vJqNNBGetc9CmFPHsxTaMUu9GuWE+6wLa88bvsxjcLhKrCwi6p18MR88GMaZzLA2VxXyvmkFXWQFXnOGcK+tOemIo5YqfCYg5DHWvU1Jn4pW1p3llrVcvKD0xBLlM4rgrhVcmibS8R1YcZ+qgVrw+TuhC1TRaOF0ixNizyxpYc0yMOY8Pb8OLY7zSBn9kp4vrCEhaisMsWLnxQf7BMjcQ5Av+XO0nt3KxiwtrjC1WqP3fZv8Fgv4Cu1R/ifHrxvPtTd9S70Leg1XB6JQ6v8nhXzGTbzn0VkM81Yz8TBMKxivoI9tCtahcdC0gyNeJaHTYPLpAviZJEpN6Jf5b7f1PWKPK63j7OeUyGfSbjqmhyAMEWRw2zwseESBQKbNMBlO3wA8PgCSH9Ls9h3DTvH3vq8lmQm/RkxAoornWLhOhvl4wNG6cDZKE1W5FLVejkKmwdZ4I/d8ApYbGhnOQtRBJocFs8bKjFK6Vva0qF/Jd6Hj6vdBvmh8I0BSWAAUriWkzGkpENKeoqQaePSMW2zYzdkMOspos0EWiaz2c8sqzMOI1UPqwVFQ+qSK6SOg0vtl9NVhEH7xU37Jw5TUt47E/3iYwSjCQzv0CqUMEqNH372gcdjq/vY1ATLw97AbP5tHBGjY9NZgFW4LJMxpo03UAJPbGlN1cZ6TFXHOlpsXo1r9kE7+E6ovQ/1Fxr91A0DVy2wGmbhXg3O8TNsJx7++BSqHd5BtZ8rPgePHs/0pTqATo2WkCtBv9p3cr1Hujw0abEd2Y94Rwfc8H/vy5Bz+P3WYhbs8c4pyV3KR2ReDD24jUkb4PQvYaGPMuVaYqaptqaRfW7trHCxTpNhU1QhPqo9xVZKTdTppcCWNmweiZXmd0+Xi6nZ9HN4Cln8INMwBouvET9D8+zFdhy5hSO9X/+Ld8ynlnNWQtxGmqAZWK0xrhkDTowsHeyPlON9G1+0OwR0Te3WBMXGwP8qpPUfn7axAZ0qzpLVUNszqsHodSpxC/eRhBdhvk7RCpmPKWp2a/1DDfMbGxWrABXaBg+0ATzyg/pMfR4xCSLFJjXcOE/uJWSJ/iSrNbBx3GQf4u+P5e1MDPib0h/i2gnpf7BcBBV7W+n4GdyVBfIoAjcz1N++Z5jutr9ZZ6wh2ItNqaPHH+rO8FG7JaVKSUAFoNJrP1d4RWHiVwRC4/HS8m4ci7nFJvQ91ghV6vEeSKbJI6EJ48hklfBtsFAFWcu4m0gS/Cqe+9J5er4Oa5sO8TIUQuU6CbvgXCUiC6PRTsQbHnA+6QP0yvKIg9uQHCUgVD79wvhHQcD1rxPOUTF6Kd3xudw8R71nu4ZeqrdGmVSOaeS8y6nM39vRL4IXkMExtKUXzvSuWN7gSjZ4j7HtVeaLzVXYaMx1Gl9GXakEryKxsJHzebwDX3cCTsNV6qv505W7yOxcxN52hz5E2GN6ynodHIu4ovaCOVwuVNlMuj4IFfYfs7KDLfpa1MxdzgJ5k6ROTiXF1NMk4dRl1DMZya4f2x7SjR126YAa2HUn85i5DfHkeFkWDJKAD57A2kOZ20V5zE3mMq5oS7KdtwH3H2Uojq8OdBILe1GS4+iAyOcQDB78C2t4noc3vz7VU6mlIHQfVJGjuNA4MTjnkrRxLdCa2xmiBNOPomGwPaRLA/r5rIQDWJLmFedypvoFrBmM6x/HS8mPYxgZQ3mEkO1/LziWKfuqHim3t+BKhu8qaf+KaGHS47TJfILh4wNz40gDl3pAtw+siXYG0io80L7Mwu43H5L4RJepKlCkbKT3B04h6OHD3MnMtesOHJG5KoqNHykEvEXyaTPKkqBqsBhVzG1meGUKkvZOs6sU9uWAIxCYPEc7xlHiSLVDNVuxHQawrKAU/538+0m1Ac/JybZIf5yeFeP3qvvsHSQDzxlBhK/HYb0TEatnr/73ag3IEDSZJIidCx6u/96RgXRIBKzszb2vOua7kz+dfJfDdW6MylROiwOZzct/QQfVLDGd0p1sMIilKaYcM/6R3jXadNG9KaNqu977bcVM2ShR/ztKIQZ2QnGPoyzkNLuD/4BM/We6sr3tg5lpRILT2SQnn9l7OsOV5M/9bhxAZruNLQhBIbbyu9bOpbZAc4qKkgLbwPZ6qzWtQIGto+GpVcxkMDUz2gkBvoe/S74yxWzsUgg7dc2/uOz92TQgnVKqkzWunfWqxPtSoFAUo5RTUm2kUHUmsUqZ5BGOkjy2GxYzyPJIt3OiJQDYHxhEZE8ZhlEXe2NvPRaS09zDuYp5jPzfLD3Ow4LAZVJRxydGCWTaRsPjOqHUuODmKZ4VYyFU+QuX0Tab2GeQJb9UYrX+0rEM/6o0wAHpEfYIDsDOaCXEqd4agVcsIcNUhOO1ZJIthup0Eux/zTVLTRXSCqPQmhAQSqFcSHCb/hm3Umz334NedHSg0lpNYUce9NCz0sooWTe/LrmTIWXs729Cn3+h0gOEBBsMrJ5So9vpK2L6w8xOvyPcxGrNV/fmwA9/0sMiUsdgtOp5N+rcJJCA3APRr6ArkpETq+fbgvjx3wf8aN1kZUcpVHv88NRO25UEV8iIYqg4W+s7bhcDr56qG+DG0f5bf/uux9BMT/xod3LiRSJ9alBa4qeKrwA5ypgwuzFtLtra2YrPZmlfhWHynC7nDy7A3tedCF1buDSUEaJQ9kpDI/01th0Gg1EqAIIDVCx13yXbyv/ILJllfY5+jq2aa0zkRpXZPn+94LVTgkESwYotnD2ERxD09fymZo1Sre+OAItggnCqBbsoaZN4ixInz9a8hkop/0Vl7iQrmBqkYzivCdWJ2gU8FVclf0axXO8of7Ut7QxNA5uxjRIZqlD/am1SuiyIq7CIXd4aTnjN9pyVYeKuTpke09xYJ8f1cpZB4f9bV1pzmUX0NyJCgCL0CgWGckXAsI8mFiX80AdBdSKKhq/C8Q9F/792xviXB+fsz9kZRgkaAarA72OIn/jrkrRF2zUhRCIBmgwQfc+CNGUJAq6N9u019tvguylpxyd8l2EINlrVmkacXqRKqJxW4BlQ7u+0mkQPgsXN2Dqy9lvsoocng9QBAOmLYLkECu4IfzP/DV2a9Qy9XIZXKhv+QCIdzAmkWlwxzSGuqF5oU8dSBQiNV97oe3+Ak3u809ScWGtvEAQZIkedusUOOMaIO8VgB8uoAIDAqlPwj0J01vFX3IlwHyH7XRM8XnKruhexvWnSxlhKsyiNtaRer4cPIAwJsq6bvodkczrsWA+B9b+9GAAEx806OuZgS1ZNU2/3cnSBWEw+kQQIryz+ny/CWmULUIAl7P3EwCEOOMThcLA574184rkyMf+ZrQPDI3wPf3QnACxAr2Bcn94bUKkCTu+mEkFaYKTj/4x9UmfMe9SRsmeffxdUZ7PQiXxEKWxkrY/jaoQ4joOBgeWgHfTGCt5m3h+wx+QbDlOt1KVqYAeC6rNIADpaSAV4ppWHezAIJS+9Ex0utk1FvE4iU+ogNUn6JC7a/T4zZTyXHMcgmlTIkK4eTbrF5NIXf/8ESf93wEu96FkW94hLOpLYDio9B1EtBcI0h8qYF53QRLosf98PsbfFy4CeRgDk9DPX27YAuuEuOO4eiXoI4UIJAkhwmfQ+Eh+HGKSGM8uVKkMpmvypFXaoVQeFw6PLgR9n1CU9YSP/0xt9WsuovwklOCoehr6hDodKtIjdz8CmR+QFKpq/z47GTeDx7DAONvVCrjiArSQufb/PcPScCg9Eb2r9RdhG9uFc+9063Yk/ozoXQjT4RHM6brneJ+9vmbAIHcNmEhLL2BOVVLhDiEKkiw3iLawODn/M8Xlor0wDoayy8Rb+lP51aJIEnc2iOe8+V6guJ2MOPUMoL7TefGzTNFWlPFOVjhAjbajoL2N4rvruDN4HZR7PvHCDEnnbqR0NzNLFF9zIfWOxiny2KxaSQ9ZBcZ3iAWxsG/P0ewBJ/aJiDDSU2H+3gjdSBM2QSXdiGL7sQLwfGeJjdc9dyS68o4rFFjv20J8gtbof0Y6HYnmPUeJmVIVAeMNgPjN0pESg3Mj/2VqJrjkLMRKSQZRb/p9IhsC+nnBMDW8V8bW65pqYPgby07AACmAFearsMGY2YLwL5gD+sOfkCy1UZPs5mOtnc4TFseGdqGF8ekEahWiKIatibaDvsUcNJdXcbzYRd4OGgVrbuOQzPiZZZlnqPflZV0lhWQGJ/IHIuebEBv8KaG1Zi8QNCx8mOsyV3DkMQhTN06lRtSbmDusLnexjqdgu0JcHIFU1nh1YTysd5rB9Mb+EU+HTfk0i1JQ7tu/kxQ99rEvQ6SySQaSr1Rh9rBT0P635qfQKkRwBBiPnPiFI5t1dW8TQAAIABJREFUcga2qE7MqfyCSVHVPF80mHuHtGaxi2zh7jdXA0HRQRraxqhEW4sOcfmKT+Sj9IQIaFlNZCQoQaMCm4XAQq/24KnKU1g3Posy/R5SIwQF6mB+DcfyKziwfxdHmxK4S30IzfzpYNHTM62WKEbTtUN72isroSaPbSnP8dr5VqxWzeBT1WcA2FKngDoIqc1wRhceRM4k7Mh5YFAYb9/c0xOIUSvlPPTVEfZdrGZEh2imx12g36XPiZVqmWudxHPKNXygXkBfKYkETSQSUovpurEhGnJnCSaN9apKZD2lXMbIj1Ihl4MLnPBdr0iSxPbnhlLTaPFzaDMCy7jH8C1BgZ251H4c8oOLuUV7BoXFwSHSeVzmD7Z2igvhu0N1mGRhFNbWUUh/upBHer/hbD94nNHyo8QFqXirxlsMZlhaNEPaR/HmLyouVcYwUHaGc6UNHiDoTEkd4ESNlSipnn5SNvcH7OeiLZkbmt6lbVQQvz8/DJrqsZz/DU7OIkgTRoO1AbMkE8Dn2A+QySS6JMk5q3yWpWeextgk5qq6KyfIayzCJknMqTpI+y0v0L/TXaDSkhqXzmPD2rLQhcmV7ppBhMUm1u2GCqTYLuyVzUWvVvOD+nYeef49Or35G13zl1Cv9QLnPQLruLVnKBvyxXrRrYO356XhpLsUGK5m9HVLUcFVQNCr+16loL6AVTevIkwT5qd3s3p6BhX6Jj7ZdoE9F6r4cMt5PyDIZneQ7fgERYiRsqazxIf0IiE0gIsVBrKK68C17FXIJI69PorzV/Tc9vl+v/PbHU6Ucoku8d7Akm+wOipIjSR50RajzUgEEaRG6hgtOwrAdPlG9jm64KZxbT1XTqKzjF7yC5yqHcGUpftIbWejCQXFCh8IIKkfzxf9CDY4qOhLPSL1msv7QR2M7OJW7IoApIBwBjae47ArLdJtn97Xnme+y0fvYuUlh2t5fnQamvytpBxbzvqBg2ivOIS0axubHxzH7atKyCqu40xJfTOQx22jOkazLbuCHTnljO4Uy7J9l7ijdxIhthqO/bKAnxyDmdQrkeyyBr4/uxFkZvLyEvz0ycKvWp+4xzlf37gZI8iVBnr+ip7RnWP5327/BYL+AitvFCJV9eZ6qkxVBCmDUMvVBKoCm0Xr/qy5y5pfDwhyOxS+57hW2XK3kxujjfnrHOz/ofkCVC210bfUu9luprZJAEFxujjPbx67KnrpjtTXNNUw7/g8Hkl/hHKjeG5xgWJ/q8MKcq/TsTBroee4CpnCb7HgEZR0WLD4MFQUN7wLv9+HreskcAZDkr9ApNvczmGMLqbFv4NAsN2Lm0Bl4L/93NwLy9qmWr8c77/aPpiUztvju1xz0Pc1d/+0+4hvX4+h858yi8N/km3JrHbvO1Xt4yiAAILABaT8/wkE/RvmHrfA1Uf+J81PcWmtPH1KMNMUPpUBXX24wiTeX7fWxPXM/W5f1zpPFEyFiHaw8Vk4uUIwomRyoQE29CWkHS5WxIAnPHpoJXrh+Nhc1YLs2nCcqkAaXGNtbm0u80/M95ym3lXFzj1OVLQeDJUHmzXHlLUCs0yGOigQ5ed9ISkB65ElNFULwC2oLAsk1zh1eb+oIAew52NoNVQAQ+dF5IzE3hCWSr25HrVcLbRLyrKgogDWPym22feJ+LjMmZyB+uHNzdqVaami309TUeii4fkccX/aj4ZXigTQs6AvBMX6A0ETFjHfdoVhsiC6dntAAI39HqGpbA/YrzQ7R015FiAJpqk2UgiAtx4uxlN3qmLORsFEcltAKAOq1gBQlvE2USPuuvqwrM9bz1v73/L8vyo8RYBAgTEw6WsqTRUU5C7k9X2vM+aOXSJlpstVbJOAUHhgPZQcFXpn2vDrs1tSB6FLHYSvMld0kIYP70jnoc3iftcHRsGrZUK/7ouRVHcYw6O1h3n/8i5aXdwGoSmib/qaJMHdq6CpDttHnXiBH8EOH6tEEGGtfRB1ziAmqg8zo+kO1toH4UTG9IgYrHYrSrmyRf0vN1DptiQUHJIkGtJGE5buc09902nlSgIGTOfihl+56ATn/dNg39sitTSms+f+OIEPVBYmSDbSrn3HPOYG1ltkR/4Jc1c7M9qMwjmcshHOb+b1g6Ji3Omyep62/cqjhofpHCkjonQnl3LWMbckk2dq60ju/zhz259jYuEs2AfxAWGwdzZkr+GuqJ4EKl0VVsuhf1go2QSTW3fBw6yryRe6HDIkHDj56sxXdIoQqQzNtLCunBJst/6PwcHPPT/bEjNQGCsEM87H7gw+hKsuo99cXn9xG0FJ/TC55mlDXYEQBi45TsOutyBerBFqFddIFfaxlTkrmX14Nvvu2UewKhjFlA0wpw0ZlT/yqSqLuON5LE4SwEXDzncgqC0lrYSWmkbuWseYDdw/MIrZRwBTLTlbXvBqdB1diu7GD2BhhgCt43tCQykmyQCR3pTk0pPfkJL1PW3vXEtbqZiLzkTWh3xER3MWH8kn8TRrIbQDVJxDc34dhwPW48hYDRdFgkz68Du4cv4Svzn68YhsAyeDhtF9iKjIS88H0OVuJit2FpUqJ+OrTcgPTuLN/m/AoUX0siuBWBTYmWz5kZGliz3tPx53F87qn6l2YQqRV84hl+Qt67ZZm0BfCoeWoGysYK86k2xHMtWRvWljzgYjHt3KcE24cKLLTonUZWMNEeGtiTg8D05ZYOjLoNCwWDYbpfwKlB6jf+k3OLU6pOAEamxxPHTDHc2a0LdVGMv2XeJ4YR0TeyZQXGtipX46g3r3ZPG+BBbbb2Hf30dgWHIAasS70y0hBJlMYv0TAyleMZJReSvZcHoT1vZTkIDo35+gQHPVPGGDgzF347wsIyXSldamCcHScRycnEVgYBzUNmBuf4PQaIxLB5mc52/sxMPbYX3WUozWBpDJOK2/jE3uBW1ystfQ/5CL2dduNNz6OQGKAEw2EyVnVtO10WfddXYt5Zou2I31PGtZAt/nsFlzmTQuk5k6CqxirOTb26hM8zLsG62NaJVaHHif49U6aVcDngD7SkQxgx9zf2Rat2moFDLev70rXRJCSArXktR0nm+bnuJg+yHcnTsMk8VOZm4F0cEaLDYHTpxICMb4E92foG10D45druVKXT3ubGx99UWCFRq6JSYSFSRSJb94oDfVBjP/WHsau6qAxce9APPV7X5sRBLfuGJ2pvpiOPkj0Qc+Y6RcrEWHyE9zQPYkMhx8ZptAlLmOp9SCRmhtXIJSY2eCI5ZyoChjOlz6WRzs7pWiwEzWKlIV1WQBjfs/gbLLnnPL71oBtZdpt/llYq/sZFO2d9xKOvoym3umU3zsV4q6PMGkO28WDOAF9wBOuvGbZ9sOXfO5r/9zLN6dz7j5e/nARxfKbZ/d24ObusQxcPYOvjtUSJ3RysxN2Ry7XMsnQSv4SLWMAKuZ4toRjP3sNwLbC100yvxZ326pELe5CQPXA4KCNUo6xAZ5Ksz9b7f/AkF/geXWisHpbPVZ5JLco8cQo43xi7r/K+YGKa4HJLnBhEqTN5/2WkCQe+ERFRDlae//bWawGtDINTTZm1p0yssMZZ7vR64c4dMTIi/dDaZcS8QVvPdqf+l+9pfuJ1YbS7Ba5DjHaGNQypR+Dv/VJpfkfoOHG7gw2Ux+pXrlcWKAs0e2he7X1oVyo/4xWi8QdHWpU4fTgVwSE6pOKcQaHU5Hs5L1f2RugM2JkzpzXYuCs3+FqRSyPwSBDBYDMknmuR8mm8nz7P8MQ+d/ar7nuBYQ5J5IoDkQ5BaX1lv0Hmba/yvmHmOA/xxLMCThDzcp1heTFn59t9KXCQO0nHonScJpBRj/qahEluIjyJ/xONjMgvXiihI5nU6/6wYotzbQaG30vN9Hyo/4OWpnXGm37udboQuDSppZU3xPzOVZqB1OFDIhpmQrO0HTpYOQGE+SvhqCdVRsfBqKTon0pEnLRLXAL0f6H2z/fIjqQF3BbuLUWgowY9j9Huhd7VLqwN3GR/ZBQylSfHfP7r5j4aqQIKpD4vio66MCBHKbTC70bZ49C9oIkd5prAZ1MPqOY1myagBfyZQc7+liIQRGY+o8Hk75VMVzWY1cDh0mepgJLdqtC6DkONgtAqyRJJxmPQVnD9Otx4gWd5l5cKbfnFaV1BsKzsLQl0Am40qjAKVkkkykyfpUyCnWFxOmCROgY3AcBN/S7Pj/qrl11koMJaL/xXaFV4r5NXc12UdOsjy1G29dOA7p97QMNslkQgtr0FPiXtwyD9Y9ij64La26v8ySvUW8c/YKIDF1UCu+OVDAyor7OLOlmyfd5mprxgga+CIc/5hacy1hmmtXapEkidt7JhIZqCI6LATGzW22TbmxnBXZK9heuJ2tk7a2cBR/+/Doh3xz7htOPXDqD8Egi91CrxW9eLbXszzsqhDmngd83z9Tm6Hgxl3T72HAkWUcCzyD8qcOUJXLE1E6CkODmaQ3kLzxaSYqNIL1NWUDxKaL9LJNzxFYfRGSM+CWT6FgNw0534KjhiYfzbXahmIIUBNps1KhUFCoL+T8uZ/E/QJRlvv7yYL5JlfxXkQ4IzqMpF9QLCT2hYAwFMFxgpF3/jehCRgQChU5xJz9Frfqq3u81VecZdC+Z/m7I4g6SQ8S6I8thd9FhcsGrZcB/GcYvd+eE3SIEn0JwRHBApS/90dYeQe9Zbmc8ymZXV96HAx7yFHdCYj1hrPsFNIXw2kI1kJYKA6Vjvz6SxAmGAvl+Ttp/dtLAgQC4fil3YgpLByKt3iOfXnkK6RsmUH4dzeyXqXmIctLdDSLFJeH1WsZlRBHq5hWfNnhZuS75yA5HchXuYCQsFZEpXYiVFvMF8axPDI4he5DX/YGF9rfBG1GEmis4pBDgPdrctfwD0cY6t9fJxh4SH4/YZKekaXrBBsxJBEkOSsmjIbirVTvngnWPCJO/4Q8Lr55alhDGSwdDfXe9OlECRLlVVDrYkj1norpylGglgiLmQsOE47Fg8VY5HQIULrOtb86GBJ6oWy8And8DdkbIG8H0u1Loe1IwoHhLTzP3qlecC05XMucSek4nE6PqDKIdKY9L43g/qWHSI3QIXOxiiRJIunmF6mYv4X+Z9+k0/EIxiaYmFe9GQew3d6dPGciQWnDuKNLML3SxvD68VoGto2gylTFy7tf5oXeLwDegJe57SjI/k3o7QHmViLQ6TTVYnQxN+t8QCCAbPX/Ye++w6Oqs8ePv++UTHpCSKihShFBFFBBEUGwsq6u9afLqmtdVyzf3RX7rn1dsazuWteGDVFRFKRLJ7TQQgktJCG990yfub8/bubOTDIJIZQEPK/n4XnCtNzM3Ln3fs7nnPMJ074Pqlfrz/jaACL69MZmgHxzGDx5kN3VB1mw6zMeGXAzSzLieXXxXj7sOodLa3fQp0c3igc/TH2vbrDm8YadN5fSEv9wtsJeQVJkUtB5z+a2Qcp/tPL8M29ocbGUwCDR/zu3t/+ORU9C6V7GsJcbjZC/oZZ1i9cx0zMJNyaiB/qPcalZi7nWWM/ymnIiLYX41h0t+2AMsS43xkn/IOWKbvyjbAsv7pzOsuuXE7Xo/3gz+SD/2+PPOGu84uMVZybogSDrF1eDw4mSdDoM+S35Z/8fcz/4O7calxKt2HnBPAMAlyGcmohedK7XyqVcphjAwR6Dfz9XIzujXPs+9BmLbfOLYAnTViYedoNW4t35NG3iweuhaNnbPF3zIldtuV1bSBOoyklhkH0ZPQ1w3oFHObC+gp93fMLDllgMf5ynZS73HKmtmLztS67tH8kHDZn4X244RFSPOdw87HI+XhLJICWXia5qjIbfc92IHry3KoOtB3KBCBbuKuKPEZsZDdxnmsd7q24mepC/AuGpa7rzUkDbxvjw4ECQ7xohMNgbOAHsM7ZPJBnbVuH2nKv3MztVSSDoONhXqfU3KbOVkVqUyplJWr1mj+gebCzc2Hz/kGa4PC59520pEGRzNV1C83ClYX3j+rKhcAN2tz2oSVpHUO+sp0tkF3Jqc0IGAQrqCzAZTCgorC/053h2idACby0GghqlidrcNj04lBSZhNlgbnJwCFzjzGwwB10sBJ44AkvaFEXBZDA1+zk03p6kyKRmH+NRPXrQJ9ocrafAHmnmSWBWWYW94oQFglpj3DfjSAhP4KJkrYzC7rEHBdmOt8DgT6jvEwRfgOfV5QXdF2PWLpA6arllSwIzglrKPDzW8uvyDxsIapwRVOWoanFQi8EIYxv1yDBHUD32AbKqs/CFSOpcdU32K7fXrR/De8X0ajZ471t9r3EgycfW93wcBrDYizE9sBTmXIFr8GTs1WXgPkj/i5+FLa9SWHkA4nppZaNRiXDbj1pT3OE3aSVhX92kpd8DVb16MrCmlNzICAp7nQsFWTD6PhhyFZTth7pSrQyv2zBcXhdut40IU0STz3MJddiH30TII350w9TlsOv0m/IbejQ1nlhoblny8jN+Cxe/EPI+XVyy9i+AYomh38hJTR7q9DjxqJ4mx+0y1QWP52gDKwgOBAXwql6u/OFKRnQZwedXft7ydrVSlb2KMptWThy0j5jC9NsjBlwGZ96vrXjWkouf9P98+1xigBHAA5ZwtudVY3N5mDK6N09MHsSILx5jR+mOZl8qsKE4QO+G8vTGt4cSuER3KHm12vGutdmon6dr73WZrUw/ty3KWkSUOYpxyeOCHut7D9/b/l7IQJDb68bpcQZlAjP0WpSN72MOj9UyvIAcs3bh/8WIq3lo8xxiVBUmPePvyXfuXVqZY856uPQ5rCYLHxmtFHc/AxrK+vtEdafYXklFlz5QewhLWDR4tX1v+c4ZEBWJoTIbvrgWKrMgsjNV9kpm9klm5qq/hC53HX6T/+eMX6jf4w/k1e1fCD3GkrP7OwA+NPi/r3W9zoGJUyCuFzVVu2GrFhQ6ktLuovoihnRu6Ao96DK4aynMvpOqYVdBgTZErRn/CI5f/s3KgvVgUHB6ndj/dxERqkpVQ8C4vvuZ5MXXQl0mAMX2Uvpv+wIu/KtW+tjtTIhKxJb2flAgKDsmiYuSzwNbBZHlGXxj0Y4Nad7+1IcXUG4yUl6+k4KxL9Br2PVQX6YF2BzV+uq5Kx+ZgN3lhbjfk1ebR4LRRG5tLjfMu4HZv53N4ITBFG3/ANK00rH89W/Q/7SJ4HHxTLYWEHP3uQjT7XODg7LJ51B24YOw4v9ITBiE0VOB68BiGPUX7XEF27RSw+ocLdt0wuNaxtdlL2mNy/O3wKEULRCUMR92/ZfE+jIORERgVRSiVa82mD60Dm74FLbP5M1tbzN8g52JljitdLRxCWwzEqMtRJiN2FweeidEYjQoGFEwG+G+8adxXj//OfGLu0Jknyf0J2vMPxm9/k8cCL8NyqEaExf260EPz0TKCy5g863+Ho53Xah9lz5I+4BNRZv4eNfHgH/Cy5l8rrZ4iL0Gyg9QWrwRkjrjiE7E6wx9vNnTuRdMzdTet4WPQV5qQ+sElfyIWAiL5E/L/ky1o5rbzpvG6d0AFD6MuJtL7zufcCAcqNozU39N58S/U7r/f/QwRVCgOvXycbvN/x1xVB2C1dp5lB//TH5sDMRr185mVfW3b8B/HtFV58OHE6GuCM5/ANu+5bxa8T9YDs+bYZiSzaPuPxFpdOO7moguSON3Jcv4XRhstViY39DavdxopL/LDcueJwyY37DwgXt6byZ763heSSawH5K9aAc75v6JiLF/YaAxCtvy5/T7bIqi9YK8/mMwmujq8fKK+xZS+jzAm/03kbjm77hH34/5ypfZlLqHgp+e4wfL1diiPgJbKdtKtumvVeOsIc4SByNvpT5jBthKsI68DS5sdB43mvl06Cfctu1mpkTO5l9owcnKkX+AEfeCx8m+b3/Pjfs/gnAYM+lRzus6DIfHQWpRKuPHPw45Gxic9TnvTL6ZqQsqSC/IJ2LwRr7N3chjvW5lSvkrlC2E3sv/wd88bh4N167/PnVfznPu2xjsPYgHhWSljA1pC6Cvf/Myq4MzLztZgq8T9UBQwPgtMKnA52b7tww0fEBh5kS6DxzR5P5Tyakd5moHZbYyKuwV3HPmPRgUA7WuWj0jqHtUd6xuq96jpbUO1RzSo5fNDdA8Xk9Q4MI3Wx1qGUzwZz4MSxyGisqhmkMhH9ee6lz+1W1CBYIK6wrpFtmNCFNwnxzf/0MFgnaX7eban65tMoAvs5VRVF9EuDGcGHMMZmPTjCA1oLGiUTHiUrX7XV4Xeyv26stWNs5eMCmHDwT5LngjTf5+I40/O1VV/RlBYdoJLDDo1Fp1rjqSo7UBWGsuJutd9Ty19qmQB8tjye3VliMtsZYEZwQ1fPbHs4Sx1FqKy+tqVUZQRcDFRUZlRtD+F5gRdCyU28qZc2BOk+ywo5GSn8KtC27F4XEw9+BcfjigrcxXZC3S94vjHcgK/G6FStFurPF3KjDr8Uj8ZeVfuHXhrUz+YTK7ynZRatVex/cZju05FtAyBQHG9RwX+oXwl6A2Gwhy23AkDcQS3QWzpWHVsP7jsV+irZzSJWEAEaYICodf7w8CgVZGNeVbvS8Qt3ytzWIDVRHxdO4/iV4RXcjqchr83w6tiXt8b222LiAD5pGVj3DeV+ehqmrICYTM6szDv2ENfAGAxvZW7qV/XH/evNhfkmZUjJR3H9bq1epa46JvLuKmeTcFHYO7RXXTMvLC4/SBXXOBIF/5X+CF79EKXHWxcbBwe4lW0lJur4ThNwY38T8CQ3vEkfLYRLb9/VL6J0UHzWI3d0wIDPiYDCb9WqBV5ZUNXB4Xr29+vcmAKNR3dXXe6qYDp0Z875WqqkxbPY37lzVdeCDUKpa+wF+5rZwn1zzJ6JmjKaz3n4dcyaPgnuXw0DYY9zfcY/yvO6tsM88kNTSePbdRL52zb9GyBiM6MWvfLD7c+aHe2xHg9KThWEwWKnxLDQf0mVjZsBqb12DWMmEuehQe3ELWJU+3+B4E6TeBqoH+gGfpts9YN+s6bs75vslD6+J7a0HZXudS05Bd0SOqxxF9nnl1ecHf917nwV92kZXsbypbZVDYNGka9QaFSxrKc2qMJrj0BaobtnVraRrz6zL1Y1/R0Ku1fmYT/641Am84hvnO3+d104I4+6sOwF1L4IHNMNi/pPkdzkdZPtDfzyarPl8LrvQbB49lac3MJzwBQHxkGN3iwnF6nFz5w5X8ddVfWZCllc4uytZKmwpc/uNcrsem9Sq8+r9wwUMw4BJMlz0XMjPPl9mbeMMMephjOVR1EL74HTwbD/+boPWm+v138GBDv7Z7lmvlzxHxWj+8Sf+AuJ5Yu2u98BJ7axNZ9Td8BH/dAzd8DH/bA8Ouo3ryv/g4PoaHuybB2AePuM/jmclaNlaXGC2Mn1GZQa2zlsevPJ2JpzffWsBn9KU3kdfTv2rYZyZtkFth+ZlNTzYtNc2vy9fHFr7vo2/Cy666tAVLJk+HGz+jeITW6LuwIQg0odeEJq+X7ajUrrN6joLbfsL1QCq1inYs299Fa+7iu37KrM5kVJ9OWEwG/jwhuIdWYAns2l7DqTEaubSqTL+tbO88HMue1f9v3zPX/+ROfdkf73+vzEpw1lJh4Vbtu12yV5uUef9CqCvWgi7j/objzuVc43ie25yP8ZVnEjeZVrE3Ygq2gP491d2G4rzle7Z4B7LX5C/DLRswEfpcqGUi3j5Pvz1HdZCe2DcoIxHAvn8hUyrXcd3PN8JHk7Bm+49T1smvwk2f6YtLmIwGVjwygQ9uO4fEi+6Fq97EdMkzAMR2SuIF962MOfssPas98LwVOBawNkz41HtCT4bGxiXwmOteckz+ZWMre52jZWF3O5MbA9bOuHfPB3yw4wNe3vQyDyx/gHRPLTuuegVFMTB565+46TQPbyf7FwH4c+lLPNA1gd/06oGrvhSjJRpvvwms8QzjDtNiFoU9TrxSz/vmW3GpRu6KDM6M3bljhv6zSYXoxf7jcmJEIkX1RaiqirsyCwMKCeEJTce/tcUMyPgUzrzplA8CgQSCjjlfmdWY7mMY0UXbgXzlPr6T55EOqLNqtNWdkqOTmx1gNp7V9jWpbikjyKSYGNxJm4lv7aBAVdUm5TDHS52rTp9FDDUoL6gvoEd0DyxGS9Dtvv/7Vt0I9MGOD8ioymiyPGheXR6bizczLHEYiqI1eG08+x0YiDAZTHpEObMqE6fXyciu2hKijT+LVmUENWQjBWZl1ThqgqLWgT2CfCsOBTbMbq06Z52+fwQGNZozP3M+cw/O1UvvDuejnR/xyqZXjni7cmr8ade+gadX9eonreNVGlZYV8jE7yby+ubXg/azUL9PVVUqHP737EDVATqH+1e58KVMtyVAF8pTKU/xj3X/YFfZLtbmr+WXQ7+06nm5NblcP/d69jZkcgSatmoa20u3s7FwI0+tfYpn1j2Dy+uiuL6YAfFaM89jnRFU76oPGrj6MiYA9lU0XSGusUpHJcnRycy4Yob2fGtZy09oRmpRKqBdAL288WU9iONbuezyPpcTbgzXB4Xje41v9rWSIpMwKAY9mNSYzaWtGhZuDCfcFI5RMTJzz0y+3PMloAWfukd1p9BogJgWLuANRrj1RzwPbaPGVUd81+H0TRpKSn5Ks9lKqqqyPHe5/reGer8yqjKa/52NBAaCnl//PKvzVusZr5f0uYRJvf2D2k7hnY5pI/qi+iLqXfVNAgV9Y/s2CQgWWbWAhNVlDdrfAsufj1VQ1bfq4mV9LiOjKkPfDz7d9SlbS7RykdYEOQ/HYFD0437ge9DcexwY9IsyR+mp8a3JCPJZnbeaGbtn8M+N/wy63TeB4jt/FtUXMXXZVO5bel+T15h30D/I8V1oBwaMrC5r0DHW95jAYJ/NbcNsMFPrqmVhttZjwtfHAxqOAz1HoVpi2DrsKjaeeVXQNuxK7AP3b4Dw2KDbP9v9GY+tfgzWc6x9AAAgAElEQVRVVUOWiNx+xu1YjJYm/SR8kz0AFZZI+Ns+LVAR0YnMxL76faH2Ma/q9f+9RhNbIyPpF9eP7uGJbOvUjefqmx6r+8T2CZo49H22vWJ6tSoQ5Bu4T0+dzjU/XsPeir14VS8fpH3Avop97CzbSZeILgzuNJgdpTvYbPRgMpi4uLNW0l5z73IY+xDV5rCg1z2327nEhMWwNaG7FgRpNHi1uW3EhsXy8eUfc3Gvi7UArG/xi1u+hqeK4aHtLH36OozJ/ozkzKqA61BfVmdCv6DX3lmmZVul5Kfo74HvmrSwvlDvCZJ77h1aqXBCP20Vvz98r5WmNOKbBFRQ6BTXmzP6TiQ9KhY1cyWZZiOqwQxTNzYsKtEy37Vfj+7a78np3EcrRWrg9Dh5aZe/lFa94OHDvmZjb9x0FjeMSuacvp2odlRz7dxreWDZESzqYDCQfPfX2P+WxXNxL1I+RstGUlD0MjKfxdmLueL7K/gyXTtn+b6jekZQwzV2fl0+ZaqT0sjg7ItbBt9CYyoq76e9r11fh0VRHaVNGIQZwthbn4/b69a/P5nVmcRHhrHvxSu5uNEiI4HHs4dXau/jgPF/5+PRWsbM/p/uxp7+o/6Yb6PDSZ3yJcv+8AV3DzyLtJjOxDQs4mAOyKrv7TVQ5LGivnUWvDtay/4yR8Ltc7WgS2QC8dERpKkDWO09ixv/+l+KY88kvWdwNmWh6iRs8CWE3buMDWf7V8IrGXIl3DEfRt2Orde5+u3ZN3/GxnFa+4jrB/r72h3qPkT/2YGC9eLH9P9bo5pOtvRLjCLKYtKaxp9zh76gzQWndea9KSN58NLeuL3uJpkygecT31inuclXi8nAWu+ZrO10Hn292ne/0qlN1oWaFFicvVjPYr136b1MWf0Xtl/9Goq9mun5t+Kw+jNcvbfMYlu4ts177l4Af9mF4fafqLp+Fh5jOKcbcuGsW5j6xL/xDJpMlTl4nLbL4h8PKoBp25f+96auErvHTvXXN1G4ezZRHg99DZFkZS+HzZ9AYZrW12vp31E8TrjokZB//6lGSsOOgf9s/Q9OjxOr28p3+7XU3oGdBjKx10S2FG/Re9b4AkEf7PhALytojfQKrSnh8KThrMxdyWuprzV5TGDfEtAukjcWbmTpoaX6bGigTUWbiDBH0DeuLwbFwKy9s9hdtvuw25JRlcG6gnVcN/A6os3Rrf4b2iKwf82ynGVBASiP6iG9PJ3rBzYd7Foaasd/OvhTk7+pub9xW8k2KuwVPDRCKycxG8yklabp77VH9QQFeIwGI1nVWbyW+pr++8/rdh6bijY1eW2TwcTm4s0hPzcf30AlMLtEReWV1FcIa+gvsrN0p54R5DsRf7jjw6BARGvUu+rpHdublIIUfsj4oWnTy4bfva5gHV0ju+qDrcP9DQBl9jLmZ/qX8WycrdWSwCytUNt0sOrgYX9/W/gGbV/t+SpoUL8yd2XQxYaKyqq8VUGzB7m1uZyVdJa+7b6Zsh8zfgz5NxypjYUbAa3Xhm87/zDkD/p+0JwtxVvYX7mfR1Y9woTkCUH3+XpYvbHZ3wPkyTVPUumoZEjnIazMW8nCrIVBgbmj4fK6+OHADwxPGs6QBO2ixnfR0Tm8M0sOLWnS0K+xtJI0OoV30ss+P0//nLUFazE0M5eRWZ1Jfl0+F/a8UC/pDBxggjag8PXQGBg/kB2lOxgQP4ChiUPZUqytfRxniWPWb2Zxx+I7sLltvDzuZZ5Yo81QmwwmYsNim2Qr+ewq34XH6yEpMgmL0cLZXc5mS/EWfV8JN4bTPbo7O0p3tGq/dnldqKh0Cu9Et8huWN1WJv8wmdvOuC2obBWCsyGnp06n3Fau9xUb3W0020q28e2+b9lf0br+cKnFqfrP3+3/ju/2f8e53c5FQeGq/v7Bd7gxnAHxA1iWs+yYnR+aC3b1ie3DpqJNQe/dkmytb43L6+LlTS/rx87d5f7j/ksbX/I3wj0KaaVpmAwmpo6YypJDS/jbqr8xPHE4czLmMLbnWDqHd2ZZzrJjeswKDGi9tvm1Jsd+m9vGnIw5+v9VVdUv+OdlzuNgVXDafHN8+//2ku1B27+uUMuUq3PV8cqmV/TA1MHq4GOzw+Ng1j7/st9zMuaQXZ1NQb0/6PJ0ytOsyF3BBT0uoF9sP/3c6fA4mJ46HQMGahw1jO05lpW5K/XnzT3on9n/z7b/0Dm8MyXWEj1Q5Gs8C1DlquO1Q/Ph0Hz9OSqqXrJmMVrYUOhv9D6m+ximnj2VM5PODJpg8gWCRnQdoQeTrW4rr+yZoR+Lt5X6s80C9z2fnWU72Vuxl+sGXodRMbKlaAvXDbyOWmctK/NW4vUaIWAiIsIUQXJMMvsr9uvvbWpxKtHmaBIjE1mTt6bFfUtFpdwePGn3+OrHGZQwiIVZC3l7u1ZCNa7nOE5POJ1Pdn1CYX0hwzoPI+ns+2HpvXy490u6HOrS5DhR76pnbI+xrMhdEXIbUotS9XP/qK6jWJG7glc2vRLyvLU2fy1ndD6DovoiFmQtCJokCCXwem9N/hoAUgpSeC31NdJK0zij8xnsKN3Bz9Zsig7z3XN4HMw+MBu31028JR6zwcwZnc9g7sG5PDjmelYVpzKx+wX0Ovg9tOKr45u0ndh7Il+kf8GbW97UJ4RBmzjyZZsCvLR5epuORd36wtvbl5JTq52jt5ZsbdNxJupC7boOtKDhq6mvUmItweq20je2L6vztBVsfRNkvmsf34TXN/u+YX7WfBZkLiAhPIFIsz/zMcIUwZgeY7hz2J2M6zmOOxbfod/36e5PyajKoH9cfz24Obantj89v/55/Vw99+DcZifONxZupEdUj6BjSlyn0xjcdSRsfIZPBpxH1+juULSeIQlD2FOxh3+mfxI0ATK2x1hSClIwmyzQEHAdPmAyP2f+zCsjfqMtpNJ5gBYIKtuk/WsweXw90RYj/8nYA+N+R1ppGhGVNpbduIxPdn3Cp7s+1T+TtIq1TOw1keyabL7e+7V+nRkYtJ+V8T0l1hIGdRrEI+c8gs1tY1nOMrY6/d/h50dcQXm1f+Js3sF5rZpIC7RpmxbcOafbOSw95F+x8bPdn7EiZwUqqp4BdqDyQMj9andlNZYu5ZQphZzX+yIqSrayMncl9c76kJMfpdZS/TP1XVO/VrCMs8++EvYvJM3i/w68UOF/j99O/4xBAW0/9o2+UWvK3703bH0T+g4gxZADzuDxr+/zdimgTHgSDmnBoH71VaTGxvBaxWZ+iYnhino7inUvS6IieW3dc0GvQe/BkD2P++J66uOtU5VyLEsO2qBdf/mxMuGbCVjdVhQUYsJiGNRpEO9e8i7F9cX8aemfmD5+OoM6DaLeVc8Nc29ocnJujbOSzmJyv8m8kvpKk2wWn+FJw+kS0YVlOct4dfyr/HvLv1uckTyv23m8Pelt7v/lfv1kcDgGxUC9q/6IBvhtZVSMPHP+M3y992v2VOxpcv9pcafx3iXv8fKml1mTt4ZwUzi/6f8b7j/7fm6Ye0PI8hGjYuT6gdeTUpBC75je2D12+sT24aeMnwg3hfPpFZ/SP64/01ZNY1XeqqDnmg1mwoxhjE8eT0xYDN/s+wbQZgn/fPafOa/bedyz5B6cXidPnPcEl/e9nHBTOFOXTdUvHlvSPao7s387mxc2vEBKQQoOj6NJVtO4nuN4fcLr5NbmctvC29pULmVSTLx04Uu8l/ZeyHR8n3BjOB7Vg8vr0gNCze17PkbFyKV9LmVH6Y6gE3RrxVviUVGpdlTTN7Yv+XX5qKpKn9g+HKxu3SDmSMWYY5jUZxILshbg9DiJMccQExYTcvtNBhNe1UtCeAIer4dKRyVThkzhUM0hTAbtfb1p3k3HJBPA9/tiw2KpsFcQYYrAq3pb7H0VKNIUic1taxIAMRlMJIQnUGIt0QNXta5aRnYZyavjX+WeJfccUdlQazg9TsJN4UH7T5Q5ihfHvsiTa59sVf+nmwffzIMjHmTKgink1zXMHDZzCjEbzBgVo55p52MxWkiMSKRHdA/yavMorC+ke1R3nhj9BP/e8m8+vfxTsmqymLZqGm6vm+9++x1xljjSy9O5dcGtzL9uPvMOzmNN/ho+v/Jz/rryr6zNX0u3qG7UOet4YvQTPLr6UXrF9NJnxm4YdAOPnvsoqUWpPLb6MRweB5HmSGb/djY/ZvzIO9vfafX7GGYM478T/4vdbefB5Q/i9roJM4aFfGyUOQqzwawHqv40/E/cPvR2FBQeXf2oPohqrZ7RPSm3let92erd9dw3/D7+OOyPgBaojQ2LpdZVy9RfprbpPNecOEscbq+bLpFdmDJkCv/d9l+eHv00T6x5IqiENjYslusHXc/MPTObfE+6RHah1ll7THuNnd/9fN6a+BYf7/yYGbtn4PA4sBgtvH/J++TU5vDc+ucOe8w8Up3DO+PyukKW+xkUA7FhsSRFJJFVncXE3hN5YewLTFkw5YgywEBbSKLCXtFkBaVeMb0othbr56Z4S7xWBtno/T4t7jTuGX4P8w7OI6XAn8UTZ4nTyxVdHhfhpnD9d/SM7kmprVR/bYNi4OkxTzN7/2yyqrOIMEVQYa+ga2RXrK7gMnub20aMOYZrBlyDy+tiTd4aal21IbNxLUYLXtWLy+tCQaFHdA/y6/J5eOTDTBkyBdCC47/k/EKf2D7cfebdvLjhRf554T+Znjqdib0nMnv/7CZZw92iulFlr2py3PH9LQ63Q1vtDe0Y9fakt6lx1OjB5Zgw/7lnYq+J9I7tzUc7Pwp6ndHdRjMueRyvb3692eOfj9lgpntUd/Lq8hjZZSR7K/bqi3CYjWatVO/caQyMH8idi+/E4XHw8MiHmdR7ErfMvyWoRHhA/ACyqrOINEfy+vjXqXXW8tiax5rNdh6fPJ5Xx79KZnUmdyy6o8Xv3e1Db6fUWqqXeh1O18iuOD1Oal212t9Xm6e/F/efdT/pFelBwcOW2Nw2wo3hXNzrYqaPn65vr92tLVISaYo87PscqHN4Z76/+ns+3PkhX+0JLlsxKAYu6HEB43qO462tbx2TlVBjzDG4vK6Q+1xrdY/qTrm9HKfHicVowWwwU+eqQ0Eh3hJPlaOK0+JPI78uH4Ni4LXxr/H4msepdlRjUkz0i+9Hbk2ufj2dX5fPZX0u49kLngW0gPSVP1zJ3WfezbyD89hRuoMwY5j+vkaYInj1old5Ys0T1LpqCTOGkRSRdNjrqMv6XEZyTDKz98/GbDDzxeQvSIxI5J4l95BWmqa/9qeXf8r20u1agFkxYFSMeFUvL497mcdWP8aLY1/krW1vYXfbeX7s8zyy6pGQFQWHc/PpN/PXUX8lJT+Faaun6d8No2LkxbEvEmuJZdqqaUGfe5Q5iihzlN77bOrZU7l9qLZG5RNrnmBZzrKgYyagTwC09Rwbbgxn+vjpPL32aUwGE6qqBiUTmBQTvWN7t3gd6PaomI0GHhr5EJuLNgcd42PCYkCFWEssdrddD/50iexCsbWYOEucPwPJ4wKDkW7RPah2VGNr6GsYZY46bFDYp1tUNyrsFUSZonCrbp6/4HmmrZ7G+d3P5/UJr3Pn4jvJqMzgjTHPMm3d09S7rFgsMbw/9mVy9/3Ec0Ur8bjtYDA1lI4qWkNzRWHBdQs6VB/Vo9BsY2IJBAkhhBBCCCGEEEKcWpoNBEmPICGEEEIIIYQQQohfifbuEdT6NdQ7OEVR7lVV9X+Hf6Q4UeQz6Zjkc+l45DPpmORz6XjkM+mY5HPpeOQz6Zjkc+mY5HMR7UFKw4QQQgghhBBCCCFOLVIaJoQQQgghhBBCCPFrJ4EgIYQQQgjRZqqqsrVoN7kVR78SkhBCCCGOPwkECSGEEEKINttRtoPbF9/M+Ldm8kt6MV6vVP4LIYQQHZkEgoQQQgghRJvVOGoAUIxW7v58M8v2lrTzFgkhhBCiJRIIEkIIIYQQbeZVvdoPigeAWrurHbdGCCGEEIcjgSAhhBBCCNFmHlULAPkCQRX1znbcGiGEEEIcjgSChBBCCCFEm/kygs7sGYXJoFAugSAhhBCiQ5NAkBBCCCGEaDNfRpDFDJ2jwyivc7TzFgkhhBCiJRIIEkIIIYQQbebLCAoze0mIskhpmBBCCNHBSSBICCGEEEK0mS8jyGyExOgwyuokECSEEEJ0ZBIIEkIIIYQQbebxNASCTF4SosIkI0gIIYTo4CQQJIQQQggh2szq0paLNxm99IiPoLDaRp3D3c5bJYQQQojmSCBICCGEEEK0md2lZQQZjV4mnt4Fl0dlxd6Sdt4qIYQQQjRHAkFCCCGEEKLNbAEZQSN7dyI+0kxKRlk7b5UQQgghmiOBICGEEEII0Wa+QJDB4MVoUOgWGy59goQQQogOTAJBQgghhBCizexurR+Q0agtIx8XYabK5mrPTRJCCCFECyQQJIQQQggh2szp8TWG1noFxUeaqbZKIEgIIYToqCQQJIQQQggh2szdsHy86gsERYRRLRlBQgghRIclgSAhhBBCCNFmblULAHnRMoPiIs1U2aRHkBBCCNFRSSBICCGEEEK0mashI8ijNgSCIszYXV59WXkhhPi1mJtWwJxtee29GUIclqm9N0AIIYQQQpy83N5GpWGRZgCqbS7CzcZ22y4hhDjRHv52NQDjBl5LYrSlnbdGiOZJRpAQQgghhGgzj9eXEaT1BYqPCAOQPkFCiF+d6EEvET3oJebvKGzvTRGiRRIIEkIIIYQQbeZWtWXjA0vDAKpk5TAhxK9UToW1vTdBiBZJIEgIIYQQQrSZLyPIqwaXhlVZpWG0EOLXKb/SRrXNxbqMsvbeFCFCkkCQEEK0o5SMMvYV1bb3ZgghRJv5egR50DKA9IwgKQ0TQvxKZZbVMfKFpfz+o41klta19+YI0cQRBYIURfEoirJdUZRdiqLMUxQlPuC+oYqiLFcUZb+iKAcURfm7oihKw31/VBTl7VCvuXLlSs4++2yGDh3K+PHj9dsXLVrE4MGDGTBgAP/617/a+OcJIUTHMOWjDXyyNivE7Ru5/M3VlNTY22GrhBDi6OmBIG9wRlCNBIKEEL9S+4vr8HhVAA6W1rfz1gjR1JFmBNlUVT1bVdVhQAUwFUBRlAhgLvAvVVUHAWcBFwD3t/RiVVVV3H///cydO5fdu3fz3XffAeDxeJg6dSoLFy4kPT2dr7/+mvT09CPcVCGE6BhUVSUlo5znfw4+jgUurZyaXXmiN0sIIY4JjxrcLDraYsJoUKRHkBDiV61nfAQAWWWSESQ6nqMpDVsP9Gz4+fdAiqqqSwBUVbUCDwCPt/QCM2fO5LrrrqN3794AdOnSBYBNmzYxYMAA+vfvT1hYGDfffDM//fTTUWyqEEK0H1tAwCev0t88ML/Kpv9sdbpP6DYJIcSx4m1oFu32ascxRVGIizBTZZMeQUKIX6ffDO/OnPsvoFOkmawyaRwtOp42BYIURTECk9CygACGAlsCH6Oq6kEgWlGU2OZeZ//+/VRWVjJhwgRGjRrF559/DkB+fj69evXSH5ecnEx+fn5bNlUIIdpdvcMfCMoq86cH51UGBoI8CCHEychXGuby+jOA4iPMkhEkhPhVcXu8+s/v/H4kXWLD6ZsYRXaZlIaJjsd0hI+PUBRlO9AXLfCztOF2BVCbeU5zt+N2u9myZQvLli3DZrNx/vnnM2bMGFS16VMa2g0JIcRJJzDbp7zOP0MemB1ULxlBQoiTlMerDX4CA0FxkWZyK6zYXR7Czcb22jQhhDhhHG5vk9v6JUax/mB5O2yNEC1rU48goA8QRkOPIGA3cE7gAxVF6Q/Uqara7HI4ycnJXHHFFURFRZGYmMhFF11EWloaycnJ5Obm6o/Ly8ujR48eR7ipQgjRMQRmBJXVOfSf8yttmAxakNsmGUFCiJOUb9l4X2kYaCuHpeVVc9snm9prs4QQ4oQKGQjqHEVhtV2u80SH06bSMFVVq4GHgEcURTEDXwEXKopyCejNo/8DTG/pda655hrWrFmD2+3GarWyceNGhgwZwrnnnsuBAwfIysrC6XQya9Ysrr766rZsqhBCtLvAbJ/yen9GUFGNna6x4URbTEHBIiGEOJm41aYZQRUNx7pNWRXtsk1CCHGiOdxNr+X6JkYBkF0u5WGiYznS0jCdqqrbFEVJA25WVfULRVGuAf6rKMo7gBH4Agi5ZLzPkCFDuOKKKxg+fDgGg4G7776bYcOGAfD2229z+eWX4/F4uPPOOxk6dGhbN1UIIdpVvSOwNMyfEVRS46BLrAWXxyvNooUQJy1viB5BRdV2/WePV8VokBJ/IcSpzdlMaRjA8r0lDOnebOtcIU64IwoEqaoa3ej/vw34eScwoZnnzQBmhLpv2rRpTJs2rcntkydPZvLkyUeyeUII0SH5GkGbjUpQj6CSWjv9EqOosrqol5RhIUQHoqoqn63L5qqzepAYbWnxsY1XDQN4d8pI7vtyK2V1DnIrrPqsuBBCnKpClYb5jn2vLt7HpWd0ZVDXmBO9WUKEdDTLxwsBwNL0Yj5em9XemyFEh+XLCOqVEElZQGlYcY2DrrHhRIYZsTokI0iIU5WqqtTaT64VtLbnVvHsvHSemrPzsI/1qE0zgs7pm8BHt2vtI/cU1hyfjRRCiA7EFiK7O9pi4o2bzgJg5b6SE71JQjRLAkHiqN3z+WZe+Dk9ZDqkEMIfCOqdEElZrVYaZnd5qLa56BobTlSYSVYNE+IU9u3mXM58dglbcyrbe1NabXtuFQC5FbbDPjZURhDAGd1jiQwzknKw7NhvoBBCdDBWlyPk7deNTGZAl2jWZsjqYaLjkECQOGZ2FVS39yYI0SH5yr4GdY2hsNqG0+2lpEa7WEiKsRBpMcpqEkKcwtYc0AIhd85IJaOk2cVUO5TNh7SgVUmtHVVVW3ysN0RGEECYycD5/Tuzer8EgoQQpz6rq/nMzwsHJLIpqxy7S673RMcggSBx1MxGrQHk5mxZGUSIUKxONyaDwqCuMXhVyKu0UlqnNVJNirEQGWaUHkFCnMJKax0kxViwuzx8tu5Qe2/OYbk9XlIytOBNWZ2TwoDGz6F48GcENQ4ajerbiZwK60lXGieEEEfKFpAR1PhYOG5gInaXl62HTp7MUHFqk0CQOCqqqqKgBYKyyqztvDVCdEz1Dg+RYUb6JUYC2hKiVVZtUNQpMozIMJP0CBLiFJZZVs+EQUlcPLgLi3YX4fG2nGHT3jYfqqTK6uKOsX0B2FfUchaTqvpLwxuXh/XqpB338qsOX2ImhBAnM5vT3wfSrQYfC0f374xBgU0ycS46CAkEiaNSY3Pj9GgXgAVykSdESPUON1EWE307aytHZJVZqbZpgaC4CDNRkhEkxCmrxu6itNZB/6Rorj6rB6W1DpbtKW7vzWrR/1ZnEhVm5N6L+gOw9zCBIF+zaGhaHtazUwQA+ZVyjSCEOLXZPf7jn8cbfF0XbTGREBVGSW3oPkJCnGgSCBJHxVfeAhIIEqI5lVYXcRFmEqLCiAk3kV1WHxQIirSYqHc0LakQQpz8fP3AesSHc+kZXekZH8FXG3Paeaual1thZfneEu6/eADd4yLoHhfOvqKWV/0KzAhqHAhKjm8IBMk1ghDiFGdzBgSC1KYTfAlRYZTXSSBIdAwSCBJHpbRWS4Ec3DWGgiqbDGSFCKGsTusPoigK/RKjyC73B4Jiw010jwvH7VUplYsDIU45dQ1lnzHhJkxGA2MHdGZ3B15cwTepc3aveAAGd4s5bEaQl+ZLwxKjLYSZDORJRpAQ4hRncweUhnmblvx3jrJQUe9scrsQ7UECQeKolNdrA9fhyXHUOz2U1cnBTYjGSmsdJEVbAOjT2R8IirZoA8NeCVoPjdwK6bMlxKmmzq4NBqItZkBbPbCsztlhBwPFDWULXWO1Y9bgbjEcLK3D5fE2+xxvwCRQ44wgg0EhuVMEu/I7bvDrVPXzjgLmphW092aIY2BvUQ1bDklvmfZ2+w8vMuyTc5u9v8LqD3iHzAiKDqNcxkqig5BAkDgqlQ0Nb4cnxwHw2/+ubc/NEaLDUVVVzwgC6Nc5kvxKG6W1DuIitIGhr5nqje+vJ69SgkFCnEp8q2XFhJsAGNg1BoD9xR1zGfmSGq3ku0tsOACnd4vB5VHJLK1v9jlqCz2CAG4Ylcy6g+Vsy5HVck6kB2Zu46Gvt7X3ZnRIqdkVLE3v2L26Al3x5hquf299e2/Gr97W2m9QjHYc7tB9HfMq6/SfG/cIAugcFUZ5B50EEL8+EggSR6Wq4WB27chkTu8WQ1GNnWqrLBErhE+N3YVTKSOxISOob2IUXhV+3lFIbEMgKLmhmapXhc/WZbfXpgohjoNahy8jSAsEDeoaDXS8QFCt3cXVb69l1f5SIsxGYhq2d3DXWEDLSGiO2kJpGMCtY/pgUGDFvtJjvNWiOd6AlelkgqGp15fs44kfdpx0LQ1ayswTJ05ZMw2f86v9AfNQGUGdoyxU21y8syKD9IKWe68JcbxJIEgclUqri6gwI9EWE09OHgLA7kJJ/xbC59u9c4geMB2r4QAAI3t30u8zGxUAws1G/TZZPUyIU0txfTkxQx5nW/kaALrFhhNjMR2XQJDd5eGpOTvbNMDYlFXBjrxq1hwoo2us1tMMYECXaKLCjGzKar4spaVm0QAx4WZO7xbL1kOSEXSiFNX4F/PYnC3ve2OZpfWU1TnJrej4vasCg1VSQt4xFNWEzpAsCAgEhQqKJ0RpE4CvLt7H7Z9ukslz0a4kECSOSpXNSXxkGABDe2izhrvza3hnRQZrDsjMnxB7yvcB8NHBR3hjyxv0TYxi5j2jAYJ6Znx42zkYFJi5MYd3VmS0y7YKIY69vLpMAOYcnAWAoigM7BrN/uK6lp7WJtMX7eOrjTl8venIVyUzGBT9Z19ZGECYycAFAxJZua+02eyJwGbRoQJBAKP6dGJbTiUebxyRmDAAACAASURBVNPXqLa6ZCWdYyy7zD8glRXbgtU53PoS3ltPgnLFqoBgQVZZ8yWax9Pq/aWk5Va1y+/uiD5cu5+7P9scdFuV1Um9w38cCxUIimsYM53XL4HSWsdJsf+JU5cEgkSrLNpVxIjnl/DVxkNBt1dZXcRHatHtztEWesSFs+VQJa8u3setH29q1WvX2F0nXWquEK1lVGP0nz/b/RkA5/ZNAGBojzj9vkvP6Kqv0vPq4n3H7PcvTS/m8n+v5oetecfsNRtzur3MSMkiNVsaWQrRmNWplVAbFX/m36CuMRworj3m5z5fM9ka+5HPMldZ/X0rusRb8QZk+Vw0KIn8KhvZ5VYKqmxklgYHsbTSMC2QFGrwA3BWr3jqnR6yypoGwC58ZTmjXvzliLdZNC+r3B8wCPxsBWQF9LvachJkqQUG8r5JzQ0q+zveFu4sZG9RDbd9solr3knpcCWt7WVxej6/7CkOOtYWVNlB8Wd1hyoNu3JYNz6/8zze/v0IAHIkw0u0IwkEicOqtbt4a9kBKq0u3l91MOi+CqudsCh/cGhozzgW7S7S/291ulusZy6rczD82SV8sDqTwmpbyJlCIRpLza7g+y3HL7BxLHk9YfrP3aO6A2A2Gvjlr+P57M7zgh479eIB+s/uNvQBKKtz8Pj3O4Jm1uelFbCvuJYX5+9ptrnh0ZqxLotn56XzysK9x+X1hTiZ1Ti1wIev1Aq0htGVVtcxX2mztCHLoS3lI76sA8Vcxir7//HJrk/0+85rCF4v21PMBf9azpVvrdHv83hVVNWLEW1SyOUJHYTSs4ZDlK35+iidyAHuqa6gyobJoNA11qIv7CE0viBZ11jLSZGRkVFWgrnTWkb0jmNJejEpB8tO2O/+81dbueJN//d9XcaJ+90dmqIdswoCgnQltXZQWu6XZjYauGhQEknRFiLMRgkEiXYlgSBxWH/6Ygt7CrULt9wKmx79XppeTHr9T2SYXiG1KBWAYQEZDgBn/GMxd3ya2uxr+9JM/7VwL+e/vLxJxpE4cTxelYU7C/F6Vb5JzeFPX2xGVdUOma114/vr+dt3aUG3fbQmk5X7SjrczKfV5Q/K+AJBoPXdSIgKC3rspCFdee3GswDY1WiwVG1zUdnCShO78qu54s3VzErN5fP1/u/RjrwqIsOMVNQ7WXWcGrXuyNNK3OocoTMBhPg1q3Vp3+XgjCCtYfSBYzi7rqoqpQ1B4NzKIy8F8gULDGbtvLy+wL9C0cAu0cRYTLw4fw8ADrcXq1P7vm/KqsCLlzCj1hC/udKwAV20v/nhWdt5cs5OFu3SJo0Cgz9SwnTsFFbZ6RobTkKUJai0SPhXxrtyWHf2FNZQ38HPXV8d/Dfh3X7m7ksUIsxG/rlg7wnpLWN3NZ082lskGUFAM4Egx2EzgvSnKwq9EyI5VH7qBIKcbmlkfrKRQJBokcerkppdQYzFxFs3nw3AnoYB6j2fb8YQpg0s82q17IzhveKavMbajLKQWUFfb8rhrkb1tSky09BuPl6byZ+/2spPafk89v1OFu8u5tHZOxj14i8hZ2nrHW42Z1dgO0HNjVVVpTig+SWg/+7SWgcvzt/DHz9N5eznl3ao4FW903+R0Cm8UwuP1AxuWFr6d++kUFrroKha+5tH//MXRrywtNnnvbp4n55dsGBnIaD13cgut3Ln2H7A8Vul6EBDr5Nqmww2hGisviEQZFD8l1yDjsMS8lVWFy6PSkJUGKW1jpCDuJafrx0//jCmT5P7DAaFc/oGH79mbsxhXloB767MwKCoRIdpfYWaKw0zGw2clRynP/e+L7fw/ZY83g7oiTZvR8ERbbNoXkG1je5x4cRHmMmpqG9xIuHXpqTWgcVk4LKhXfGqsCS96PBPake1Ti04Gx2ucvnQruwprOGD1QcP86yjV9Fon0nuFMGs1FwW7SokvaDmiI8xp5IHJ2nXVflV/uvS0loHSmAgKMTy8YF6JUSeMs2/M0vrGPT0Qh6etY0V+0rae3NEK0kg6BTn8apHFaHNKqvD5VF59uqhnH9aZwDSC/2ZCqqqLS/r9Ggni4sGJvHO70fy6R/PDXqdjZnBvUMKqmw88cPOoNsGdY0mvbCGd1dmkFHS9iaaWw5V8q+Fe/UBdEdUVudg1f72aaa9v7g25Mk7rSGrY2l6sX7bd1vyqKh3sreoljnb8sgo8Q9a7vtyCze8v55Jr6/U3+ucciuzt+Qdl0DMwl1FjP7nMhbtKtRv862KErjN4C+P6Aisbv9+2LhkorCukDV5a4JuG9ojlutHJgNw6b9XMeblZQ2Duua/x5uzK1i1v5Q/XtCXv106iAMldVidbrbmainvF5zWmW6x4SzYWdSkt8fR8pWeAVR2sGwsIY5EncPN9uPQDNXm1r4fTm9AD54YCzEWEx+uyaK2Df18QvFlA43qowVsjnSmucrqok/nSK4Y1hUAleDj+O9HawGinvERALw4fw8Pfr2NNQfKSIwxYzlMRhDAl3ePJibcpP//b9+l8cbS/fr/py/ad1Tnf+FXWG2ne3wEnaLM7C+uY8QLS0+KgbvT7dWz0I+1n3cUcM6LSzlQXEtSjIUx/TrTPymKrzfmHpffd6y4GybjzEYD0284i/hI83FpNt9YeZ2TsMQlGKO0su8Jg5MAuO/LrUz+z5om1/G/JlcMS8RsVIIzgmrsRAQkereUEQTQp3MkORXWDjV52RZ7i2r4w0cbAfhpewF3fJrKofL2aWoujowEgo4hj1fl5x0FLfbEOdEe/34H5770C4XVbUu39tXyD+0ZS1K0hfhIMwdK6vB6VcJMBjpFaBeEvgtco0HhN8O7c/HpXYJeZ12jemZfTfa0ywcz857R7Hj2Mq45uye5FTamL9rHS/PTm2xLvcPNa4v3tXjRXG11cevHG3l/1UG+P47NcRv7YsMh/nUE/VGenrOL2z/ZxL4TnGJbZXVy2b9X89dvtze5r7ghmJMaYpnZqTO38pdv0vSyAI9XZXN2Jf0To6i0uvjDxxuZv6OQi15dwSPfpYW8QHl5wR6GP7s46LZFu4r05qaHs3yvNsMQeOExa1MOqqo2qZfvSDXXNrcDvBaGJw3H4QkOUF32/WXcv+z+oNsMBoXXbzqL4clxejp/4GxlqAv5G97XSjgmDE6if5JWfpFdZmVDZjlhRgMjeneid+dI0gtrmPj6Kv15c9MKmN3Qa8nh9rBsT3GT1z6cabO1Er2RveOxu7wdaqBRUGWTLEPRas/O3c3v3kk55pMINq92nK9z+o+LiqLQKyGS/Cobby8/NqsE+gLgY/prkzZHGlCptGqrgPqOU4HNogEmnd6FhyYO4NM7ziUyzBh0X3S4gXBTyxlBoC0jf8+4/iHvu25kTwC2dbCeLSdj70JVVSmsttMjLpy4gJHprDasJneirDtYxpVvreGWDzdw5VtrWLw7dJZOVlk9E15dEbQqWmuoqsoDM7dRVudkxb5SkmIsGAwKo/t1JjNEA/OOxO3R9kEV7dp7zAna5rJ6B5ak5UT2nsGaRy9m2uWnM7ChxBM4bgG7k4FbddEjPiKo8XhJrYPYCP+xsaVjIUDvhEhsLg9bDlWyYu/Jm0XzzE+7KWh03jyZ/55fEwkEHUPfb8njgZnb+N/qTMrrHK0e4E75aAMTX1tJtdXFjJQsciusrNpfekwuRmdvzaPa5uKDVZlter5vmcr+idHakrddoskorqO83onT7eWM7toFZ+MBLmiRbtBWCnl35UFW7ivRl8venlNFmMnAvRf154LTEokNN3PDqGTO7KmljRfVBL/et5tzGfXiUt5ekcGZzy5h+d7QA9YZ67KxNQxEdxdUh3wMQHmdg6fm7DxmZU1//3FXk0baLcmr0gIVM9ZlN7mvyuo8bsvo+nq5LNhZpM9AfLnhEBNfX8nmhpUzfIOJiwYlcc+4foSZDPp+kNlwwkvLq8Lm8jD14gG8f+sobE4PU2du1X9PUY0dVVWZ/NYavtig9av5YHUmNXZ3UHr6fV9u4fr3/H0omuP1qmzILAcIanr5wepM5qYVsCOviq6xFv32UIGgtQfKOP/lZaRklKGqqtbUrwVZZfWs2FtCtc3F1pxKvTxuc3YFN/9vvR5AORy7244BM+HG8KDvSeAFgmfhE2ANPl7cMCpZ//mpObv0n+/5fHNQlp9vHx47oDPjByXRLzEKgG25lSzdXcxZveKICDNSFrBP+YI1D329jUe+S8Pt8TJ90T7u+mzzETXOtDrd2F1e7rqwH9c3bG9H6kVxyRurmPLRxlYN5K5+ey2X/XvVYR8nTk5frM8+bIDBd5zzHWsOx+3xkpJRxvPz0lnZQiq8w6sN2GqdwYF/Xz+wZQEXzJ+mZLV5cOU7po3ul4CiHD4QpKoqy/cW69+PXNdKDJHp2Nw2/f5ABoPCXy8bzKCuMXx192iG9dSaP184IBGv6m1VRhDAAxcPYPs/LuWSIcETRq/ecBZRYUZ25jd/7j7RyuscnPbkgg4dQAklr9KG0+2le1x40OTkmgMdNzC+eFcRewpr9FW83vrlQMjHLdxVSHa5lQmvreSb1NZ/Lo0bsydFa/trYnQYFfXODh3w82UE2T3ad7x/UhQ55dbjPvFcHvCe9UqIJC7CzE3n9NJvyyqr/1U1eA/cR5weJ+f378yi3UV6JmlBTQU1MZ/5H3+YjKDeCdo46Yb313PHjNQOlUhwJPIaetL5VpFWFMgut3bo75TQSCDoGPB6VfYU1rCgoWRlVmoOV/13Lde/t75VX+qUjHIyy+p5ZHYaz85L5+FZ27j9k03c9VnzTZYb+35LHgt3FgbdFjgz39JFaktKax0kRIURZtJ2lQFdojlQUqunQsZatJkmq6vpwHv2fRfw49SxXNpwsffHT1O56r9r2VdUS1peFcN6xGI2+nfBrrHhzHvwQh64eAD7i2uDmvc9OntHUGnMfV9ubVLv7vZ4+XZzLhcOSOQ3Z3bXgx6gXdBWW13YXR42ZVXw7sqDfLUxhx+2Hdusodas9KSqqrbEJP5m2YHu+XwzD8zcdsS/u7DaxpJmZtBAaxq8KcsfbJi9JY/5Owp5+sddeoCnc0Pz4k6RZj6/8zye+s0ZnNPH3xcir9LKnsIarnt3HQBnJscxflASy/42nj9e0JffnKk1Q96VX01aXjXphTX8/Ud/EANgT1ENXq8aFJg4XO+ClxfuIa/Sppc8BPp6Uw65FTbuGNuPtY9djKLAnG35vDQ/PWgg8+L8dAqr7fyyp5g3fznAeS8ta9JzKNBdM1K5Y0Yqf5m1jRvfXcP0hiXd5+8sZENmBTNb2djc4XZgUMyEGcOCAkH7Kv1LxNs3vQfr/hv0vGvO6snp3WJobM2BMv65YI/+HaxoKMf67fAeKIpC30TtwuKpObvIqbBy3/jTAG3w5bMtp4pXFvkz2DZlV+iDr0e+TWNHXtP9ctGuItIbNbD2DZxH9u5Ep0ht32lNeVh+lQ27y0NRtZ3ff7jhuNTIO91erA1BsoJWNKDdkVcdlMlW73BLT42TTGp2RchJArvLw99/2s21764LmYKfU27l6005JEZr+/CcbfkhS6p35lVz6RureKehp83bKzKY8tFGPknJCgrWBvJ4Vdyq9j2pcwUHZs7oEcvTvxlCRkkduRVWciusPDcvnT99seWwf+vyvcXM3JgTtBLgwZJ6jAaF05Ki6RkfQcZhykBX7i/lzhmb9b+nPOJLMgz/CXk+b2xE7078/OA4lvzlIt6/dZQWCHJov89VnQ85G8BRB5XZTYLcBoNCfGQYU0b3ISlGG4w/NGkgRoPCsJ5x+rHI61XZcqiiXQeavkmFfy7Y027b0Bafr8/GaLJijN2uZ4R3jbWwKauiTStSngiNF0hIL6wJOWHj8fj3h+fmNc0eb07w+V4lMlz7bBOjLXhVOtxCE4FcDX+zL0jbPykat1c94qyoI1Va1/QY0iVg0s3h9uol+r8Gvgb5oAW8LxuqldH+7p0UbE4PRdb8oMe3pkdQoM3ZlSHHBR1ZQZWN/Cobz/z2DLb9/VL2v3glg7vGMGNdNrf8b8NJX/Z2qpNA0FGyOt3c/9VWrnxrDSv3lTK0Ryy5FTYKG7J5fFHSjJJaLnljFc83nLS25lRy7+ebg048vj4nW3O0g8DB0rqQKxkcKK4NWp1HVVVeXriXd1dqGSm1dhffb8ljT2ENqgpj+ieQXW5l4FMLuPbdFGakZAW9nqqq/HPBHn7/ofaF/WDVQV5ZtBeXx0tJrYMuMf6D/oAu2pK3vmyIsDDtgqLG2XQGMynGwtm94pl68QBWT7uYe8ZpjdXeWrafnfnVnN0rYFBvq4I9P4O9hlF9OuHxqqQ1DEbfXh48K/TelJE43V6+2eyv6Xa4Pdz/1Vbyq2zcdn5fhvWMI6/SppeYLd5dzFnPL+GMfyzipg/W6+UigbMdvoFpY3PTCrho+opWXTy1ZingkloHFfVOTAaFzDKtzM7rVamsd5JdVk9qdiWZZXXM2pTDB81kGYVazWvKRxu594stlNTYm5QCpmSUcfXbKby9IoOLO5VwZ7dMHpu9Xc/iuWp4d+4abubr6Dc4U8nk0rDd4NX+3t+N0NL1T+8Wg1eFxxtKs24clcyAhjKkcLORZ68eyus3aTPcry7ex+/eSdF/f2DJ0Z7CWm54fx0XTV+h37Ymo4z/rT7YbCbUpqwKhifH8Y+rztBvu35kMj3jI9jQ0H9qRK94kjtF0jM+gjUHyvhwTZae5eR0eznYMCjKKKnjrWXaPrU0vVgP1lZbXXrAQFVVfXnZsQffYJ/lduZsOYTXq+rf6YOl9SFPcIEXCgAurxOTYsFitAQFgqrs/pO91aBAo5mjuEgzi/7vIjY8MYlP/ngOZ/eK1++bsS6b695dp+83AJ0agniRYSa9h8fp3WOYNES7ULluZDLb/3EpFpOBWz7cwHsr/fvW5uxKHA0D38yyeu5rNBDdlV/NfV9uYfJ/1rD2QJkexPMFEPsnRekzQXmHWa3I7fEy9l/LufuzzXy/NY91B8t5Zu7uZh/v9apNykFr7a7Drpjyc0DT2azDXCwHfo6+nx+etZ0/zmh9MP7Xav3BcnJa6EXzxpJ9fLSmbRmpraWqKr+kF3Pj++u5c8bmJse/wBJc3/k10F2fpfLEDzvZU6g9btX+0pClxZ+kZHGgpI5XF+8jp9zK/1b7/y6TUWnyeIAamwuM2vbUOKpRvcHnEV8Z9bjpKxjXcExsaRb130v38/byA/rKW/d9sQVVVbE5PaRmV3B6txgiwowM7RHL8j3FLfY88mV/LtpVFPQdWJu/FmhaGhbKoK4xRFtMeNwOLKVacNm9/Fn45HL4aBK8dRZ8eHHI5158ehdSn7qE9Ocv5y+XDARgeHIc6QU1uDxePlyTyfXvref9E9AUtzm+Zrk1dneHzHzI/f/svXd4VPW69v9ZU9MLaQSSEAIJoffem0jHhjSlWBEFsW1RQRRFaQIKglQpSu+9hJIAIRBCQkhI771n0ibT1u+PNZkkgGXvd5/znvP+9n1dXMCsWW3W+rb7uZ/7Kal+gsDQG00cvpdFs4AjrIxYwheyFYxxyuTT0YFU1BpY08CT6X8KjCaR2BwNXs7WjT4PTigiJqe80Vw4x9y+BUEa2/+q4ld4WglRmWUWD623B7dC6XyToJp5pJWn4WImgP/O/O2/G3VBzLrUMK3Zc7CPn6T6O/0g9892/6dxNa6AfWb1W4FGy4oLT3oADQt0Z3igO9893xHgv5yM+p+EhlkEepOewQHu9PJtAkBKUSUl2sakt0H883fz8fd96tbbTNx48380Kfk46gKEnbwcEQRBsg0xBwbvpJUQ+jcVtv/B/x38hwj6P4RcJmBVnsyvHodYPqoZJ98dYDFTg/oOcvuNNJIKKjloJi8WHX7A/dh4unzduArQr7N7WlQZWr2J9l9e4HZKMRuuJCKKUnRs5NpgBqy4wvH72ZRW6cgsqaGospYks3fPxqvJfHgoiufMqo0vx7fn1b4t6OnbhKjMMr4584hdt9LoszyInTdTCU0uZktwCreSiwlPL+W7c3FsupbM6ovxhKeVWCJ2AF3MVcH23E5ncIAbtmppcNLoNPAHrK8gCPjEbuZzvxSm9vLmbHQeWr2Jzt6O0j5lGbB5AByYDmGb6eojLXjPRecxen0Iqy82nrSM7uhJT19nDt7NxGQSMRhNfH7sIRdj8/lqQntGtvNgWm8furdwZmtIKt+dfWSZDNfN4+rKX9aRA1q9kW/PPKLPd0FPqCE+OhRFRkm1hdx7HA1VX38nMlJXJWZ0R0+0ehMnorKZ/etdui67ZEkVK6io5YdLCWy/kfrUY/T//gpLTtQvnkVRtCzKey0Pou93VyyKhunbbjN9WxhqdLwjP8GOmoUsKfuCn5XrAXChnLV9tSzW/kBA+S1Oqb9gpXYpXFoM11fxYnsHfprala8mtAckFdNL3b1Y9VJnZLLGix8rZWPfiDrUVYezRsvJe6nkZyQia5AmsfNmKsvPxvH+Acm7qLy68UI/q7SG9s0caGXOTbdTK1gzuTOH5/YFoKmDFb1aSoPx8Ab+VN+dfURVrYEUs+m5Ui40ksZ/cfwhC83nfHVHGP2+v8LULbeJyiq3vM6vKc6hEEx4VMWz9evXaB4vyX7La/RPTBzLq/X0+OYys3fe4YeL8cTnVaAz1aIwK4LqTNUBqvT1k6caQQaap1fLaepoxbBADw6/3deSOgnSu+b32VlWXYjHqtl+UqpvWbZ1NrfTAPfGiiInGxWvPKUiUEhiYaMo1OMt+bewevn9jO1hDFt9DaNJ5MDdTGzkRlqn7cdFLpEBb+wO/0PiparWYDGWvpFURGiyNEG4mVTE/YxSdt1Ke4Jc++mKlA6qMZNBBqOJ7t9cZsLGG089B0jk0YrzcRZC7K+IoIbm4pW1BvI1Wq7E5ROfp2l0PeXV+v8ny6MajCa+OhXzTyuzKrR6pm69zfObbj11e3haCT9eSeKbM4/+KYl4ebWepSdjLH1AYUUtCw9EklRQyc/Xkp4gjC/G5vP67voKlNtDGvebDVOtPj8WzefHohtVuKtTfWSUVDOpSzNcbFUsOhrNjgb9r0ar59zDXAYFuCEIkjdWtc7IpundWDDcn8yS6kYqXJ3BRFZpNSXVOhQy6fgG0Yj25DugqV+8+ZlTORsiu6yG7TdSmbXzTiMVw53UEtYHJbL6YgIVWgMKmcDV+EKySmt4c084YanFeDnf5nTKaZZOaI9SIXsi8NMQdcR3bK6Gaw2KFySVSQqhyMJIPrz24R/u3xAmfTVq8zPWd54KEzZAiZkoK02DtJt/uK+NSoEgSGNJRy8nag0m/D8/x3dm372V5+M5aibmTCbxnyqbbXpMNVGjM7LoaDSrLvw9T7+GytWcf9Fr8b8KRpPIwJVXn2h/ocnFlFbrEZTSM7XOCeZnx71M6tKcke082HQtmUVHo5/q55aYX8GJyOwnPv8jHLib8Zdp1n8H8XkV1OiNTOkppR1N7+2Dl7M1Hx2KYuyPNxopWLPLtHTycmTX7F4YTCJhqX++0HxxcygTN96k0Gw5ML23D238pPcpsyITV3OK2H9VSv6/ggqtntMPcvj5WjKdv75oUbfWKYK8nG0Y0NqVo/f/fcU5tHojs3+9a/FhvJVcjCB7sq3ZWynZPqsnz7TzQC4TCDbPqURR5Fp8wb/N/P7PoDeaGPHDdc78m4mwv0JD0lFn1CGXCSw2ByjvpJYgyhsHxWuNtbxx8Q3CcsOeejwrpZwRbT2Y3d+30ecXY6TgqVZv/Mv5yz8Drd7I0YisRkrSv4NLsfmsuhD31PlPnfK0tVv9fLNhn3ArSWqfoiiyNTjlTwNH/07su5PxpxYh/4GE/xBB/4dQ6zWs1SxkSPkxpuWvRq6rYNsr3TgwtAI5Rn4LSyc3OZresd9wTLWEd4x72ROaxsDiA9y1eocZ8kvMkF/CT8iht/CIQboQvn+hU6NzLDoazeqLCRy4m8nx+9JisaJay8IDkhKpbhCs0RuJzCprlLIyzt+awKb2fD2xA7+/0Yfj8/pjMIlknVnBpzWrCQqLaFTm7+sGMttfrqdQWlOF2rZ+gdqxeb0q4dMxfhRrpQFAU54JP3aBHHNKk14L0Yfh0hJIvwVBX8GB6QwP9LDs38XLEX6fDOs6gtbcWNNu4GSjopWbLXtup/MoV4Ofmy3x3zxLcydrPhwZAMDkHt6ScmHvPVp/fo7D97KYP6w1M/v5AuBoreTT0YHSfQSnWCp07XujDy91dsUGqZOKy62grFpH7+VBFi+b+fvuN5og1VEdj1dgEUURjVbfqLxmnnmieDk2n7V/EHWrI2xGtffAjVKuHdpoub5fb6UhEyR+rKCiloKKWjTmCUFd56nR6skp17LndrqFhPri+JNpCUtOxNB12SVCkwpZo9xEvNUsPlEewNC8F4Zuc3hWfpf3mj7ktu2HKHeNhgzJq+essRcauTOEboCr3yAL3cD4zs3o3ECR0sPXGR6dgvjzT73Hhhjo78rQNm4oZSI3HT7nROlz3LRaQLD1x4xrpaCrjxP3zVH6kMQikgsrGbjyCqPWBVOjM1KjM1JcpaO5kzV2aFk/2pXjc/sA4OlozdF3+nHi3f4IJSmwcywf2F1ghnMs33fIISKjjIPhmYz7USINXuwuTTIHB9STtacf5FJerbdUTQtNKWbSxpt0VmSwy++K5XvvOwXzFkdYqtzNbCeJPBr3U4jFJPxqXAEXYvOo1hm5Gl/Ij1eSWHUhDoOoQyVTP+ER1IgIkgn1i6Y/gEIu49R7A574/HpCAUrHSH6O/RLOfQoxxy1KLWdrGYRtgUOz4OIXYKjlo1Ft2PtabwthPc0pllnZX2JN/cBtrZLzW1g6cWYiJLWokm4+TjRHek81WgOnonK4kVTEwZZnUV74mBYPf7bs/9OVJ70dymv0dP7qIjO2hWGDFhkmbiQV4eloRa3BxNStt/nyZAxrLyVw1vGoIQAAIABJREFUrMHk9tA9iTyvizqdiMxBZzCRXlxNdlkNB8MzWXMqnP7fX+G9ffcpr9ETmVVGvqaWj0e1wU6t+MtKaZkNVEz5mlqO3c/GJEpkfGFlLenFVUzccIPOX1/ko0NRnDd7WVTrDP+rcvqzSqsthFodNFo922+ksvNmmoUU/bu4YJ6sFlXWPlUt0bAyYvdvLnE1vuCpysq6Z51VWs20rbf57Fg0v95K43dzZPrr07Ecu5/NiB+us/J8PL8Ep2A0iZRU6SykXx3aeNhzPDKbuXvvcTWugFqDkWP3sy3pzXF5FfwWlmFJl37cJ87dwYpW5vaz4fRtNl9L4mZSEZ2WXkSrN/HByAAmdWmObfplNirX0UeZSDs3NS3Jtrz3BqOJl7eEMmDFVaKzylHIqpGb77Ei5ghs6AmFUmqoIAiserET74/wJ3n5GItydtnpWJISYtlyPRmqSzClhbInNI0RVvH4CrkMkUXyY5to1Oi4l15KSGIR8+XHuGXazaKQRXjKNAwLdOdaQuFTf/OkggqyS2tQygV87UysPlv/7Itq6snyi+kXn9j3sYcHoRsx1VagNptF6z07Q7dXYMo+6D0XnFvCoZlSqthfoFNzR5QYGCaL4L2hrTgzfwAtXGw4a059f2//fbp/c4m8ci2ZJdVPlLd+HBuuJjFk9TULGXQ8Mpt9dzLYeDX5idTgnTdTGf/TjUbvckOyP6Xw7y/IwtNK2BOa9re//6+gLsCVUlhFcWUtK85L1VL33cnAwUqBQi7dR7VMAG05giDQ01dSYu+7k8HlpxQH2H4jlYUHIhsRpU+DVm/kVFQO/zgSzbzfIv7we6IoPpFS/DSEphSDYKB7ax0n3+3P4nHtmNrLx7K94Tw1t6wGX3uR3q5abFVyLsX+sfVBQ1JiV2gaCHpc7VQ0c5SCBIIgWFJCb6cU8+2ZWIuX5eMoqdIRmlz8VEX2P4vghEKWPqaErTUYLYT5tpBU3v39PqsuxNMEDSokAkLboArpM+2bkllSQ8q/gSj44GAkgYvr53MVWj1pxVUI8gbtK/RnCF4F+dI6wcVOzfBAdw6GZ1JcWcu1hEJm7bz7VPN7URTJKv33EACiKHLkXhZJBZV8fvy/t2pZpa7+96gL7LUwp+PfTCpGppACXf/o+Q8AsiuyuZ17m4+vf/yHx9w2swdfjm/PZ2MCLe/ioXuZxOdV8NGhKIauvvaHqjeNVs8+c9GUx3EyKoc3d4fz+q5wy28/c8cdPjgYxYn7Tw88/hE+PfKAjVeTWXLiybVGUkElrnZqHM2qcIBlkzowOMANXxcb4vKk9p9YUMm3Zx/x0aGov33eCq3+nyatQFLmLzoazdgfb/wnxf8voPjrr/wHfwprZ4SxayAtBO7vhQ13UdRW0FtfzQz5THY9eobPkz9gkiwfZNBVlkSnE+MJtj4NInyj3Nn4eEdgZP/32dTBkR9ibCkTbSmtlhpXXUrO2A5NWZb6MiE6f/ZVDuN2RCV1j7LOu+WnqV3plfgD7g+3IVz5APrNB2snOrqIrPS5zeSC3wGYpLnFjrsTmOA7mYeV9kRnl+PlbI3OIKWFqZrcJKz2AkHpDgxvMRxVUQzb1Ou4Z/DjveDV5JsnjBXF8VLUb99U6P023P4ZKs2TjJvrLbc39OE/2N7SjTs+c/ApuwOJ5knmc79A8hW4uxV+e4ln2y0lPDicT+zP0bXnWGSyQdz8dJjlOGM7efLVqVgumtPpnu/anAUjJJKIqiKQKeju48z7I/xZdzmRR7ka2njY09exhB6pk3lTZcszuhUkFlTww6UEy6Snr58LoSnFnH6Qy4vdvdDqjZjMHWx6SRWyZIlgeXdoa7bfSCUmp5yG65861VBddLqy1kBmSTW/vNLdEvFMLqzETq1gSBt3AlTLCZBlc1vbjnwkRcuMDtbceJhMithMeiXuZfHVqVh8XWz49JlWHDiwG4HOiMj44VICC4b7czA8Ez9XW3q1bIJSLmPP7XSORGShwMAO5SoGyc2D5bAvUA78CGpKEWMO82HZchDkMPgfUJELnafS360nVjW5kBcB9/dA8ErQV2M16ltUchk6o4kebiL89hboq6Dbq/DMt2Dl0OhVvvzBYMqqdZLHkCCgS7iC6vf66E0TsZQNha/xQ5s93DcLTmyp4ez6eTgYh+BSq+HE9hCEdhMAkbHpKyD4EBMBaudDcTcw6OiWdQdSrkOxtAhzTL/BNwBJsEG1hW0hqRhMIi1cbFg8ri2TujSjp28T/D47a7mWl7dIJJiLrYriKh3+QhYHrb5FnSMN6mKz7gzLkdR7taKSD/W/cJLvydc4svl6MlN7eTPbnEZkp5bjaK0iu6wGUQSjqEMtt0ElU1Krq4DUEMgMo7q4fvJc02oYJN+EqAPQabKkeQeoKobcSGg9nMcxpac3++9mgqzBIBe2CcI2MWLsSX5BxzjVPTjXYAIiU2LVZRoDco7T11tLqXUeznG/I5ebqGk1BttuLzH/wANSCqssnieejlaIIsxqmsLbVh/xlm4hF0w9ef9AJB2FFNpn7QfAKukMkYuX8vmJWMIbVJ7TaPUUVtRyISYPg0mkrLqWm+qPOGnsz/eGqUzp6cPaywkYjCLtPGz48UoiIPAot4K+fi7YqaW+7UFWGS62qkYm3f2/v8JUeRDfKbdzqnYNp6I86dWyCfnlWuQygSFt3Gjrac+DvzCfbThBLdBoOXwvC7VCRq3BRGphFWeicy1E4cmoHE5G1U+iRndoyqYZ3dFo9URnldOvlYulrf93Q2NOC57Rp0Uj/zWQPME+OhTF892a88PkLgCcf5jLvN/vWxYff6R6rMPV+ALSiqqY3V8iKxp6zyUWVNLmMU+r7LIa7K0UuNurSS6sYvbOuwQ2teeZ9k0Z18mTAA975u+7z53UEm5/NpxVF+K5lVwf3Q9NKWZGHx/yYq7zheI2vkIe7+vnsSU4hWNmRewPL3chpbCKdS93oauPEw+zNcz7PYJzD/M49zCPzTO6E5ZawtLx7fjuVCRblWsIMnUjPk/yzhrzYwi1BhMelCAgMibnDAsKTnBI0Y9ZiousuDSFV8WJtBdSaeuqoLOXI4vGBFIePwt/UyqcnM1IpTWj1JnMuL6IrF7z+e5snIXc/up0DCZvPZ5GkWyFQOX0Q7gfmA1HXoPXg8Bk5KWKveDsCbIAmqm1OFBJe1k6+1TfEhzRA11ta1QP97NEdMBN0FCrUiDHhCLVhJWyK5tufcUSxW7mKM6zE/PiOXQDozu8y9GIbJacjOHbSR0s7+W56FzmmhfvA73k7Cmayp7SAayUhqAnvIz+FEFfwY21mHyao3b0AW1WfTqE/wjpT/tJUqrYyXfBqIdx68ypsAKobGH3BGkMSr5Ci+Sr/NbEg17VwdC6PzRpRldvJ8JSS3iUq7EoAL48+dBCRM7u78uSce2e2u7q+osdN1OZN7Q1kQ1SA89G5+LpaI2/hx0tXWwtfjMvbwll84zuuNipG6kFU4uqGNQgiAAS2VlapbOkUNehrpKj3ihyM6mItwa34lJsHotGt31CSfuv4GJMHhsbpPdOWH2adabvWfloLhcKPHhzUCvOlUljQ5VcAeUZkBNJgEczyz4PssoprdYzvpMnTuZUjtxyLSYRbiUVMdrs+fc0fHY0mqP3JeVQmpmUd7dXP9Hv3Ekt4eUtt9k9p5fltwtLKeZibD5fjG3LyagcnG1UhCYX4dLiFG9eDSPk5RCslHJeH9iSdp4ORGSU8tOVJLp8fZGZfX3JLK1it/5L1D8mMNL/TKPqRBqtnrSiKjp5SYGrhiRUTF4+9oFfsafB93VGHS5OkiLoRzOBUVqtZ/VLnSmp0tHEVkVVrYHCiloW7L9PVFY5fq62aLQGrn08xDI+/R3ojSZ+vppsSXusNZgY39kTByslLV1t6fVtEAP9XdkwtStN4vfhRiveGN2HN692Z7asKeGoLIoggMH+0u/5/bk41k/pgo2q8bWkFFYSllrSiFADqR//5nQsZ+YPtKi4j0Y0VoGlF1eTVlSFu72AhWa6sEj6O3gNfJIMKlvmD/fnhU23LP0JPL1Yx/HIbBYeiOLw233xcLB6whvnz1BapcPJRmlp37/fyWgwP7H+s13/rRBFkW/PPQAz31FXLdnBSomLrYpbyUUIzhXYKuzp16wfAPnVUh9l4q8DRm8OasWbg1rx/bk4Nl9PZtS6YMu2hPwKuvrU22mUVes4G51HcEIh52PyaO1uR09zihpI79r8ffVeoyqFwIoXOnEnTUpde5hTzmTqTb+fhtIqHTtvpdHNx4niKh0quYz9dzOZ3NObbg2uJamgktbujZWt/Vq50q+VK+/tu8/l2HyKKmu5ZbbkuJNWwrH7WTzX1Yu/wkubQ+nj58JSc0bC30VD0j4yq4yhbdz/5Nv//8Z/iKB/BzpPkf50mS4pYLKkBeHrrjH09elCy+h8EtyfpZUuDnlZGtfVC3ESK2HyHspTwwnJVzM2ex008UNwawM31zEaGG3OyFpd+xLqlt05kGaFAiOzrOJoYixkoryQifJb3MlqQ6rPWvI1tYiiyE9Tu9C94Cg83CodIGQNhO+A4UsQTi9kMkDAaPKbdMPj9rfM4SSa0rvoVY4kqgS8FCp21/RgC8MR5NKEcF/MrwxvMRwuf8UI4Q4jlHfYW1M/uJQbqqHTy/DgAFz+Uvqw3SSJXMgMg1bDIPkK8thjDAeGu5VDUDw4eMH8CFCoJSLh7lZIvMiH3hpMVveQ6wwIV8JBWwpePcE1AKwcsbFvytRe3mwNSWXhiAAWjPCXfIYeHIBzn4C9J7Khn/H+kCkEPSpAnxNNM4dOELEbpa4Mf1kZH/tlsjKlBbtD0/FuYk2guy1rWj/gjRwDHx2SIjbBiYUWk76M4mr23s4gqaCS9w9EImCipZBHCp5YU0sNVhwMjmJGwRqGq1sSVBtoSe2KyCizGB0nF1bSys0WO4VIgEwafL/oWsN790GGic+L/oFanUCY0JlDuj58f0pHgLqKnNJajIdfY6fqDhsMEwn1mMama8mcispBMOrY0uIWrR0VmDpMJvFOLLdN7RipeMAgeTSVQ77CbtB7IDOnbtk0QXj9MsSehDajoWkHy7N0BLDxARcfaN4N9k2DO1uh5+vsf6sPp+88wi92o0QCAUTshoI46D8f2ozlk2fbEJ9XQWt3O4g5Dms+gVdPoIreByp7To8I4kZcNt/3qoGDM3nDeJDN8gm0bebA3Ly1klJJcRwTArJ8EfLXcq9JNy6UJ/F2x8lQXQy3fnyyHTbtBCO/gj3PWT56wSmR9QV2dFdl8Ps7U1Enn6N30Ncw/TDrp3RBozVQVFHL+qBEBAEOvd2Xc+vnMk9xEuoCMCOXIfR6A66vIL+4hBmR7Tkv/5xDtivZph3GEeNAbiUX01cWw8eKA7SV5yL0nM+YyD4ExRVg46vH1c4OdX4MtbpK2DUOgCpHB2giTVarWw2BrAdw7E0w6qT+pCAWto8CQw28fRNqSkBXzZy+XgxIXMmwwBfp7ODOZ9fTnvgpOp2ZwP0e07ApKgArR3g3HC4uhhs/SH8AOeAKxNt0o011BC+mLYX0r7ng/SyT08ZjL1STKnqSW65FjY6BTSRV1S+qtUS0eI2p8QNZptxBib07ygHv43BuEU5ZVwlwb83Z6FxqdEasVXL+cfgB5x5KJuaejlZ0s9fQrKiE6fLL/GSYRCdvR5b5JzNKcxj38igqbBz5wLSALcE08GCRfMyWn5WUH2M7eXLmQS4CJr5Tbgfg+y4lvJ/ckt/DMiit0tG9hTNONiq6tXBmx41UqmoN7A5NZ0pPb5xtVdxNK0GtkNHJy6mRsfylR/kkFVTydl8PDoQmsnzrXh6KLZkkC+VF+XXuiW340fAcRqS2VHdvW66nsOFqEvOGtuLjUYHcSi5i7aUEfnmlB1q9FOn1bmKD3mjiSlwBA1q7YttgEbH4+EP6+LkwttMfL76ehrJqHXqjiJu9mm9Ox3IwPAtnGxVNHa1o38yBDVeTmNnX16JcOxqRTY3OyPsjAri2bzUjsOcCPQGeUAs9jtk7pbHN3krJc12bcz+jjC7eTkRmljFqXTAfj2rDvAam5NmlNQQ2tefQ2/1IK6pizq67xOVVUJOfyKYrrvT087AQP4UVtY1UlyrBwIz0z6nc7cghRX0K9XHHTSwueZbQinaAwL6rEVgr5Yzp6Cl5E2Rfw51S7IQa0sSmxMbFYo2WF3t4U3p2GYPk0QySR9Pzem+GBbrToeQSfeU1fG5/BlttHph5xlkKKUixUHGIUF07jquXQAVQMQH38izcTamYOk9D9vAIsmppgvuCPIRdtyZw7mEus/v7IopwNDQSUQB3pQPZYiUaGyeYuAH2T4Ptz0Dz7hAuvcO0HMTMu5N4xbqaCmsvqIZBYjg8lAILboK0qFULUudk7DOPYbc3MqxwAiigpuVwwKzGSwthxMivmTukFZuuJaMzmBjaxp1PDkfRo8GC4Q3DPgBGKkNZSWMy4wmYjJB0GaL2QdvxkB0hKUe7zMBYfR+1V09IykJvfOw98u4t3WfMMen/RQlQni2NIf3eg+x7kjoYSYHbC7OR/p7nAZHXvaYQXD7E4qM4LNDdQgIB7LyZxjtDWuNmr6ZAo+XA3Uye7dCU1u52ltSu3aHp7A5Nx8NBzaAANxLzK9hzO/2pKp+7aaUcj8zhtQEtKayspaWrLYUVtU8oC7NKq5m54w4gFdJQyAXm7o2weKeApGaD+spwkZllFFfquPTBYOT/AiEkiiIXYvJ5e284cpmMz8e05duzj+iki6KnKoGuZR9yXtzGS82LOJ1bCnIZlWNWwdklcH4RbZ4/bDnWtpAUTCKsPBfH6I5N+WJcO4tPYnBiYSMiKC5Pg7+7veWaG5Z2r9Qa6P/9FV7s7sWqFzsRmlyMs62Ksmq9Jf3+bHSuhQia93sERZU6pvf2YcF+SYmmksuwbxMLIpTVluFk5YRaIWdooDteztb8dCWJsmo964MS6S7E41kjKa5fkodwXNOJ0iodzrYqFh9/yLnoPMIXj+BRjobVF+uLMggK6VqOJhzGx8EXgKqaEhytlShkAgaTiLONktSiKsLTSnhxcyhbXunO8chszkbX32+dAudSbB6udmpUchm9/VyeeFYxOeWsuZjAK31b0Km5IwfCM1l7ubFSvK5q6vBAd8pr9Jx+kEt/xxJmFv3ATCtA+y4ABpnZLLoszbKvj4sNU3tJAaFOSy/y6ehAZvbz5URkDs92aMrUrbcp0NQw2N+VfxyNpq2nA5+NacsHByIprdbz6ZEHLBwZYPEXbIhxP93ATq1goGcWjZKwu8+GeztheTOYdYYOvgNY+WIny3OEx6oVlqZD6EZiK0YDktVCWnE1+9/sQ5+n/GaPI7WoiqGrr/HhyADmDmmFQi5r1Pb/1XS+0iodF2PzEAShURW0P8Phe1mEpeZjZ445N0z1b9fMgZDEIqwUFbjauCLPlnwWcxLOAE9WYPwzPNe1+RNViOPzGhNBK87Hse9OvU/qL9dTaOvpQEx2OYFNHYjIbFwh82x0HmXVeovlQWx6HjpdAPnlNXi72INMRlJBJTtvpvLl+PaoFDIOhGfyY1C9unv/W314/udbPP/zLVRyGf1au/DF2HY8zC7n9YF+T72Xdp4OnIrKocc3lxt9/snhB/RqKQX69oSmMat/yydI1dzyGuLyKiypm38XR+5lNfIJ/O9KRfvfCuH/spv3/zznvX8Hkq/CwyOSmgJApoAPE8DamRtrp9NJcw1T3/k4Pbuofh9NDti4glwJZz6QiJvHoBFtABEH4ck89TDv1+ndMVBSE8Qch1Pzwb09vHkNCmJgx2hpQQlg1xTmhWFUOzLji1XsU337xPEy5d4MrFrBEJ+V3LMtoZVOx3G9i3SsYV9AeRYdS+rTZhzk1tyccQci9sD1lWCshYUxoK+Be79C95mwazzk1ksC8+Vy3MasRdZ9Zv2JRVGKDqYGQ/MeMOMwXPoSInbRCG0nUDNiOVvvljK3cBnKnHBpofw42ozlgHIiLz98k7u2Q+hplSXdf3ESerf2+D96DQUGZg7wZ7HdKbi2nGybtkwtfZNc0QV9A67Uilp6yuJRufoRVGDLKsUvvKQIRidKC8IU/9dombgDtWDgkcmHiaaVlnzaGX18cLBS4ppwgA5le3mthRUb8woYVGOOwPebj7Y4A3XKRYTHKrYUydxwNRXyOExNWrOt3U4Sr+5hlXLLE9vLZE44qOXIZDL4IA7k/yLvW5wMmweCIJMIivAdUjQ34FmoKQUnH4g+JH2377sw6lswGuDmWrjyjfS5W1tp8t9nrrS9DsffgcjfEF0C0A1fhvrgy5SJtjgJVSQpWvNZ1VR2qlbSx09KKYyeGiYRQZe/lBYXvgOk6ypJgdYjQaGS2pLaHtZ3oVpbQ7qhCW1lmY3vyaU1DP0M7D0h+jCG6CPoPHtg4z8I46Wl5InONGvmjTB5Fzj7Nto1o7ga74IrmC4uRl6aQqTJjxVOS9lVPhuVUC9hLVZ4cL3Wnx99iuhipcSvJIMdTo5E9lkJR99krY3ADifJy2fdkHUM9xkGawKh8mmV3wQs3WXgOIg7DYBJYc2LhlkktpQmG9FNJ0jPaNeE+vYwfAkM/FB6VrvGS2mbLQdJ9+XWhiyXfiQcXcYQuyxkBi1iyjUEs3F1gHYXu5Qr6CxLxkZoPOHKMLnhIyukY0sf7FX23MrTgKM353ruYO5vEZx6dwAdvRx55psjLK1dTWtZDumTTtLTKlPyAzOj1q0j6sLG8u5KG286lyzHiBwFBn5VriAPFz7Sv82sPl7MCTRwt9KdGyGXWVv+vvmZ+nOm/yF+OnSeLNGV90Z3463BrUg4vJRVEQJFXiO4n1FGNx8ndr/Wmw5fXgAgbtmzvLDpFgqZwMMcDUaTiFoh46Hn1ygLpUXcAcMQXlZcs1xfjKkFC2SfkaSVFDCXFg5izcUEzsfk4etiw7WPh/Lar3cJiivg+W7NeZhdjsEoEvThYPbfzbR4MHw1oT0z+/la0uYA0r4fazlPdlkNkRllf0gO6QwmOn91EaVcYPusnszeebdRIYGF7SrQx19ml3EUVYIN77Sp4FiclmzcsEFLrNUc6ZXS7kSLGkGAKx8OITytBFu1gmGB7ry64w5z+vvyKLeC9UGJKDAwQXaLAd27oL1/kGEuJQzKX4jOHCbd0D2fVi19ybBux7tn1mLlcZa7/dZglR+LxqUzlwsdef7KUE4a+zJf/57lWr+Z1IGlJ2MsZZK3eR5nROlBy3bj1EPI8yLhqtR/VLWdTMTDWAbKHxJkO4bhfXpA0NeNfp8Ukyd+sly0qLCauA5OvNNoe1/tT4Ra1V+DKMgRrJ3hrWCIO4027Q5Wjw5TLnfG0WieWNt7SlWwFFYw9yZk3ZHGtbIMiDnGUeMAThr7siIwBXWniew9tptf/BIY3XQA5/Ju8PPwnxnoNVBK2axT69k1bdzu5WppDLVxBTPJ9I1+Om+6PMD95fWIiZfR+w5G5duHHRu/wzvvIj7yEuzfPcCoMy8B8CAtC+HjZERrZz49Et2ouEIv4RGvKC6RIjZjgeIoBpmaDLmRiV71apGGiKq0RlZbBZo/qLK5MIZ+ZyYzsfVE9j7ay9ud32Zel3mPHeSARHRbN3n6WA1g51GvJHbwanS+48Z+rHP4hLIaPcfe6c/MHXfo6uPEiUhJnXfwrb4EJxSyOzQNjdaAp6MVm2d0Z+LGm8gw0VwoJEt0Q0TGR88EcDOpmNCUYroL8bSW5ZAvOnHN1JWPhvmy9koyYzp7s3CEP8PWXKenrzM6gwm1Us7Bt/parmnnzVSLiqhjc0fKaiTPxr+DSwsH4e8h9R+iKHI1voAevk1wsFJKldJE8LC3wselsXLiVlIRs7eFcFr1OV4BXbDuMJ63D8bRRxZrIS9TTE1p6ayknxNUygSWD1jOeE05nJiHOGED3+Z05276k9WJlk3qwOoL8ZTX6GnuZG2uwilwISaPt/bc461BfrjZq7mbVtJoMd4Qs/r5WrwOATp7OxGVKak573w+ArlMYPiaayQXVjG9t08j/zmX9l+iM9Wyd8xeOrt1tnwupofSeVMmGmwJbGrP+MpDzDPsBicfjBX5TK3+hI/fmoObnZpha641UmlbKWV8Ob49wwPdmbbnIPl2q2hqMOBr783tmlw+K6tm6vjtZDr1wtFGyXdnH3H+YR7zh/vz1alYRrX3ICSxyOLRUwc3ezVanZEKc38b89UocspqWHc5kSm9vPngYFQjNZm9WoFRFLFRKRr5TtXBiQp6yeK4aOrBM7JwtqjWNtr+UrOmxKlVvKCpZKmNvzT3cWgGVk6EqfrwwaFoKgwwd0gAK87H0dfPhfiUVH5XfYuHDbxYPp+WQh7bvvoE38VBjY7du2UTwlJLcEZDGXaIyHBGQxOhgs+cv+R9D1cAoov0MP8+fNu0fmf3dojPb6XlOslawcNBTb6mlnGBDoy0SWKC7gxCkkTknzX2YrlhOlmiG+M6eeLnasv1xCKOvN0XhVlJtvBAJMVVOib38GJcp2YsPRljeZ+6t3DmszGBTNsaxis9PHC3U7D8ciZfjG37h0TE05BRXM2gVfXFSqKWPIOjjdKSAWCtlLPifDwj23lYArgPssp4YdMtOviIJFl9CsCnvT5leltpLrM7NI0lJ2JwbPULPbxd+Cr8BKO9m9O2VscjtQp7UcatIRul5/Y3cCupiGnb6n2FZvXzZemE9pRX60koqGBbSMoftsGpvXxwslGyJTiFax8OponKwKStkSQWVCKXCbzcxZ05D19BjhGlYMTWyR1mHGV7hIYNV5P4dXZPhrRxZ+aOO5b07tGyMH4e04T1YRrsS2NZZnjFcj5BXkX3XkdxsLJh+zPbGykzy2v0XHiYx+F7WRY1Uh1m9PEhsKkDXxx/yEB/V/a81rvR9hOR2SzYH0kbD3suLBz0p7+XKIr8fC2rfiHLAAAgAElEQVQZeyuFxT9VJkg+vjP6tODL8U8qikwm8Q/VmXUp49aqp/ue/i/EH0Yd/qMI+q9Aq6Hg3QtSr4PSFib8CLYS893tvT3E5GgaSfgAqUOvw7i1MHoVppRgem/P4VvlDp6R38NBkAgCsd8ChK7TMUXs5Z3rMjar1tE7cxtkAuE7waYJqOzh9cvSwrhZV+j3rpTb695OkqOrbJADoab2zNAtYq/qO+j4EiRchKYd8U6/QbD/QdbWZgE2FCuUkB0jLUL7LwRdBRysJ4I0xhr0Jj3Kbq9Al2lgqJVILblSUooAvHYJyrPApRVJFxfxXO5pFtkomdbwdxAEGPuDpGIauQysnSXioKZE8qSpw6OTWD86yXxrZ2mBW4cBC2HgRxC6EQrjIOYoLyMtkntWXYMqYNAnUJqK8tp3XLFOwMuUQ0lGPygIAaB59SOC1QsByBE8uBXwMaMz12FbbZ6UagDJCoEYp6G0qIzEzlBKYNIWsnDlkdGHkfIIIuw+xtqrI2+XvcLe29Jk55TqKJn2lYAVxx2dGOThD7oquPVj3SHBzgPNm3ewz7mJkBuF6/UVltsTe89l7QMlr1T/iltJEm8+mgNKM2PfYw5oNVCWDll3cTKVQQ3Qf8E/RQLVGGrY8mALr3d8HVulLbi0gnduwYEZkmKrWTdo0U9KAXTylsi7wLFS/njoBkkR5zcUrn8PfkMkUij9hkQY9Zvf+GQdnofI3xCKE1AffBmABXZr2DV3BEV5JqrPJaBrNh0qzdEElY3058XHiFL3tvX/rmtLU/dRcflH2qZL7012pxeRl6bT1G8YBK+Gw3MsuygARdplSLuMHLB//zaC89OlpD4uNuAyDnnbcWijjtLh2Gt8VbYIlczIKWNfBgyfgHPWFVySLvG8PJ/tgidqjR61Tz+MmhgM/iNRvBdB1Z3lkCndV7WhWnr3Ww6CaPPi160t9HpDisAnXIAmLaU0isRLUjqfaERmqOFz9Q5mYfbeGrkMZLJ6xYF7e+i3QNpm7QxvXpeIswYDtRfg9cZK6T8p1xCS6yeJtzzX4loayz2TP12tCpDVmpUzPebg04CsrtBVQJ934MIiOnaPY4b8Ek0OrabI2o6LhmDM4hncTwwCjw6AgFZUYCXo60mg+fchPRTyHmAXtplQp8Wkmjy5WdWcAXJpYL/lPJGliiDYvx0f6ya8ULegbD0Cki4z9mQXxqqhQrBHldAert4mANiqguGZnkBzIjLKGnkY/Xw1idhcDe8PD0Ahl3EvvYTX25lQJtT7pb2suIaotEH4OJmgU3vo//BLLik/5Fab95gb1ZKRa+sl3GnF1RRX1hKbXYY1Wo7dz7ZE4dZeTmwUYQtJLGRmP1/iE+L4UHGQm6YO7L3dgZd7eqOUyxi44gomEQa3GfVEtKy8Ws+z64Op0Rup0cNbe+7RTF1L/+5+7LyVjh3VvJn8HtZKHaOV93HoOArv6I3MsnZmXM3X9JDVR6ZD1O+zxzCSBHlr5qzJJVWUiKcADzsS8iuJTM1HhxIlBqbIr7BM+StEIzWccnho9Tor9JPZaxzJuJiFEAOjtb/h4n8ZHVBwYCo+BgMOTj48b+4DJshD2WSYwCNRMi//9swjCwn0tvwkI0oPssswkkumHkxrXsCYgJHgN0hKLcqPwfbRQQbKoUS0Y3jVWQiqT/UEeOg8gg6lUvuyQmchgcI6LaNt7nEcCu/xmzkIYmj7HApdOcLUA1L7kCug91tYdXoZHh2WSKD+CyTy+fyn4DdYMkO295D6wA4vQHk26RUCz2cc5Xn5DUgBUo4wQangF5rh5dYW8m7Up131fB1uroOqQph9Fg68AiYDjFgKnp0g5AdoNxHtyQ+IKFax0/gsQyd8jXtzV4Tm3amL4ee3nMTXmZ3o3NSJL431QYQqROyiDyH0fotvnutA26Y2LD0djwvlHFQvs3zP5NaWqN4/UH2xnpx9HBWlaTgazIvXztNgxJdwYx2UZ4JrACaHZtQaa1HKlShkiicVQQAdX5TmDR1ehIJHYNBKf1/4DKbuh4ocaby4sQ6ywmHOeYnwdvFHf+RNnim9h0mzmhT3UbR0fYbgT6RKZIMD3PjgYBTx+RVsuFrvTZJbrmXR0WgUMpHf1SvoJUZzuslMvtGMYVb/lmSXaXFNO8V61UZkZpK9pN2rNIk4wRgnL/IeCVxI6sICeQ3drL0JdZ/KtpAUNFo9DlYS6ZlcWImDlYK2ng6EpTZe5MyTH+ftJuE8GHOC3eEFtIjbxhh5GJsNE7hq6sKDrHILEXQkIpuPDkWxYLg/fm62FnWFIMCF9wcR4FGfchmeXsps+Xn8ZdmQlA1JZ9hsfhlMXj1ZkdOVRWyBcjC6tgaTTvKj6zIdQtYgxB7nixmvWBZZDZFWVGUhgeoMy6f08uHLEzGAyO7gWGqwQq2Q4WSjpOwppt2/3krD0VppSbePyizDjTJkVSbC00ro7eeCSiENCA1JIEcrBTqT9I6V140zogjJQQh7X+B4i2c55PkhC8Z0RTi2E7KbQ7/5yM9+xEH1Mg7mTuBwthZHeS3exiweiFLq56WFgy1pSEtGuzMvBClJpyQFrK2pUqhg90S8px2EgFH4udpRWq0nzlxBMD6vAmul/Aki6I12JtLDz3OKvmiw4YVNtyit1pGvqeVM9JMGxhW1BlQKGSeet+WjvRE8Mvng3dyLaHPa8mLlXl6Qh/CzYQIVonS9hhaDUKisYOQytCcmAVAjl0kq+8x6kqA3cBPYZXyWPReGcUX1A1czujJWoSNQlglaCFJLpHPxRQHo1ujawlJLaO0gcln3Nlfk/bnXYyVvRUwkXl7BHI96X0/TvDBkSmuYvFsK8hYlQvgOhCOv4az6nJ6GCF71s2VmZBteTP6cIXIp8Jth1wWfykjGyO/gL2TzrO57gh8kkiXk0VaWwbH7Pgxv68GcX++SkpnFEuVeNClyCmtf5VKsE4FN7Smr1hOfns2vv5zBZOrFO3mLcSiOpEw+llVndHRo7kgfPxfyNVryNVpLaiDAmPUhtG/mwLJJHcgr11rUeXU4E53LtN4+LNh/n2vxhRx9px+bryez+XoySd+O5npCIdnnVnNGeQG8RvGC2UKtoSJodAdPtoakoLDX4lpTgcI85udY24FJhxYj4q9jEVzbwLPLoWlnSAuW5so2j60HgY42JdhTzTfKHSTY9uRUnA2jOzTlzT33LG1LgYHfbNfRRUhgctUnRImtETBZqr4FOJrwPjQK8h7ynteHfFTQkf4e8KndKRxkDTyCyou4v3EiYW7SPPBCTD59/FwITyumq48T7lmX2KRaD5fhfenEzHpvKe8fuM+pHAc8PVOIL5PmaBUVOTg41CtLHa2VTO7pzYQuzYjN1XDwbib772bi3cSag3ez6N9aWhuHJhdbVOQAx+9ns+NmKs0ppEbzGHFalERN1GH0vd6h0qhEpZBxP6OMVRfiaSnkckG1li2GccS6PkuAKYmIeCOVz0h+kcmFlTzK1XAzqYiQxCJCPhnKqgvxeDhYWTxmQao6u+hoNEEfDqaFy5MFHf5fwn8UQf+VqK0AhfW/rsQAPjkcxcHwLI7M6UD35E1SilXAM5btvp+eZoQsgq0fz0QoSpRMYXUV0qA/6WdOJZ+iRFvCzDZT4PhcaRLnP8Ky/6XYfG4mFrK0R620wBcEyAiDHdI5Zvv4Ei6XVC33S0Ex5yI4eCKKIp12Nza1vvLSFdxsGufP/xG2R29nXcQ6JrSawLcDnlQkPRWVhVIlq5Ffw9E3IOVa/baX90oT6u6z6xe5+hpY0RIMNdwL+AB/ex0OXm2h6wzp2Vz7Hm3KTazy6/No6fpKvZLrKUg1edDEvzeOySfZaRjF7GUHpPMVJcGD/Yy85EaJaM8J9WK8BGm0eOg8nH/kDWeqSyIzKncy12ooNzyTGe41mHWDVkHuA9j7vLTo1+RAr7fAq3v9SfNjQO0gRYY9u1ClM1JVa8A9+bCU7lNTApM2SQQcSJOnr+oHQRbGguNfSP4bIDgrmHlB81jWfxmTWk+q36CrktLAOr4Etq4cSzyG3qRnchtJ0k/OfdgypP77rgHw7l2JqMu6B149wNqp0bkQRUk95xoA2eHobJsh+o9ErWjAwlcV0fGwNOm/M/0O1oonc8JLtCUUVBcQ2CTwyeOfmAeOXnTMkFIgomdGw8Y+UPio/nudp0HX6VIKXIcXoN2Ev/17VZ79Ers76zDKlKTOiaW1lzuIIqv2X8AlZie7Wicy2KMrft4DWXNvDben3cZWactnIZ9xIe0COpOOxX0WS79jVTHkRUntvA4mk7RAVJhn+4ZaQJBSyL5rzjVra95rKrW78BnhqOVqaZ/4s+A3BFFli4iITPgbtQH0WljXQSKazAqF0w5TyO3xD8nE1lArtR21PfzYBX2rYXQrlwjU6Cmh8FO3+og+YBBlGJGh8RuHm0sTSa1oMoCrP5sd5pOV+IBvZo2RJuWdJtc/s/3TpOuv+wk8OqIvSEAtmicETfwk0iw1RPr35N1SWu7drfX3onaU+kJzCexaUcFb+oVcF7uiEA1McEzmpdqj/K4bRJKqDTsXTia9qBJx/1R66+9KhIAoYhmmusyASRulf0fth2NvAVBg1ZJVVWOINLSgpYczfoVBTG2ahW3RA2xlegbW/MAbtsG8YDjDCsMULhp78A+3W4j2zfg2pTU/DFbwbNirAJSJtvSq/RkdSt4e3IrN15MJEDLZOlJFi4HTQGmFKIrsDk3n+KnjTFcE4RHYhxvxebiaipijvIC8RT9SAt/C+fxcnKngtHocY41BCHWKUIUVNY6tEGxdsSqJB4/20ID8KxUcuTrgN6wfHcG3IIjbprZMk19hvesSptncwSvzFAYU3DEGcMPUgQ9GtML06Ayqggf8YhjLW4ozlmMN9W5OkULOr4496e7eDS5+bn42DqC2x1RdQoT9EJJr7Lip8aCZrYkp9lH4ltxE02o8PWJeRIeSn6d3Y8zjfiV5D/ni1zPsLWvPvVdscLG3lQhhkwHkKok0NfeD24QXeN07BwZ9BK2GgyBg2P08ipQgKp3bYzf/JggC1fpqksuS6ehWn9rDipZSH/tJKom1xXjbe2OlsOJpMBiMBF0LwsfWQNsO3SH7HrFpQbycf5HFfRaz7Pay+rYOEHdGak+dpzz1eAAmfS1+iyVCK/jjoU8oRH4Py+CzY9H0aOHMa8+W80nwJwBcrHXGs6IQhi+GsM2QH0Npq0k8jIujnywGuWB+rxc8oMqmOd/vWcJx5SmehjMTjuNTWyOlhA1bDMrG959TmcOoI6NY0ncJq+6u4qWAl/i45x+bozZCXX/SEKLYiKw2pIWi+PVZDKIMmQCyAQvAtQ3oKjE6eNN2j0iH5g5EZJTRWUiio4ca15II9ukGMsUzj4WlkjJVlClBNCH4DuCqqQtD09eTbdue5tN+gkOzpSCK0rY+7bkBKt2782rmeCYqbjPxHztxsrNhypZQdAYTLVxsOX4/k+nyIO7SkRSjK4lWUpsmcBx7Fc8x4+FrlmOdNfYiz2c8s2e9iaC0Ysz6EGJzNUzt5UN+eQ1300v5cGQAS0/FMn+4Px+MDEAURQ7dy2L14etctfoIW1cfKIpvfJHjf6S20zTkMUdQePek29mX0Jv0LOi2gNc7vg4XPoc7W+CTFIoiz7Lz5GXS273N6ejGKtTPxgTyY1AS1ToDbwzyY0twCnNkZ1is/I0oeUfau4go3riM7+IrtBPS+FhxgKWGmajRs9z2AAF9xlDhM4KMgx+zr7o3P6o2UCLaM0C/ke2vDeCd3+5hZaziXeMeThr7ESYG8kKTVC56SMrm5YGzGN/rA7iyTAoK1kGmBJOZfGo1HKb8hvjbZIS0YL5w+p79BS044f4L7cuucanVIvpN/ghbtYK4kjjkgpy4m6v4rDgUN0GFj8yae8ZyXnPpzvvh5pTF57cRl5HDJzcF4uX+GA06bKhFgy2LupuYOrQb8ZXWNNHn43t4FHIzYWWQW7PE+BrHtN1YqtiNXDCxTD8DFXoKcQZE2gtpvOqVx8uFP1lup8q5LdsK2zLQOo1u+scMt62d4eMUqR2IIiP39iJPrGWY9zDWd5grKRFTrsPDw412K1Q2w01fv8iv8BtDiLYVw3K2YEUtj0w+nDf25LypJyWiPZuHyemkzEJu44Ts3EfSTmaF4g/OTux0qvd+DJsWho3yMW+fpMuw9wUqXDphX/wAgAShJQFiKoWiI8eN/VlumMZ4WSivtlfSI3EdRlGo73+AFe4r/j/27js8qip94Pj3TsskmfQCaUBCCISOAqIgUpSqqNiwV6y4umv52Xtf3V3r2lbFgoiiFOkivdfQQk0C6b1Okqn398eZkiEJEIwQ8Hyex0fI3DucTDn3nve85z30D7dg3P0Dg7XeAto1+kj6Vv+Lr3rv4YKSH9GUieVS1ao/QUqdmCwrTqeASO63TCF14MX8uDkHq8NJ5uvjUBQFVVVJfFLcSwzoFMamrHLENd3bv9x2QSeeHp9Kl6cXAN6sJlD5OOpn9parPKz7GYs2kMMaK1fFi2vRlL5TuKfPPSJDNCAcVVUZ+N0Arquo4FZTMiMU37pLK6yRhBftA1utK/uxQJTUGP8O6AO8pRv2L4Zp1/icW6IGc7v1capDU7nKuBl98S7ax8RxRfHHANQbwkmvDycs0MDfK65jkCadoZE7OL/KtZGC6qRYDSZI58DoMFMdfxGjD15FkslG/6BSHi5/ja/tl7DI2Z9kJY/Vzp58aPgnqzv34NaMFVQFdRHX2Dzfz2nv+s+I7LaAYkUsX55cUck9g57Czz9CTGoOul+UI4g7Fy5+gbK8Q0zbY2NYagyXvu+78+v3kwdRZ7MTFxrgqo+kkmW8kVw1gqhn9mPY/yuYi1FX/xulSry2D1nvpzjxcgC2HMpnvuFJOmtEIDY3tD9xFZvJdLbjvvDPmXnfBZz32lKfrOmNT41k4GtLPZ+DHTkVvHNtXz5deYh5O/LZ/tyoVqnp1gY0+0vIQFAbUG2txuF0EGoMbfSY06mSliPqMDRVCHFPXhUBBi2d3FvQ5m2HOQ/C6Ncg8UJ6TRU3tDtvbUFlfVWFPbMgMIort73FwSpR56ZhoMdsMzNo2iCf03667Ce6hnc9oX9i8uLJrM9fz8QuE+kQ1IHxSeNpH9j+mOfsL9/PVXOu4pcJv5Ac1AHMRZC1GnK3oo55A1UR6YHFdcXe5yraKzqji57wDqSPlrdNBGPOuUUMYqffCGPeEAGhvfNEBsrFL8BPdzA18Hauf+ifPPLxTA5r4pkzxTfN81+L97EkvYiXLomhf5QTZetUkSXjUhKYwpW686kIX8awhGG8P8J1U2C3Nt++Y3HYxW5fHQeLTBC3skwxGNL7NznbcCzT907n1Q2vckXyFbw8+OVmj3N/tr4Z+w19o/uKz822b6Fwl7jZvPhFbzbYH2B32un3TT8AFl21iFhT4+ULl/1yGVlVWaTdktZswMPnu5C5EuY/DuP+KQIJLQiUNW6gBT4bCcExcOOPnh//sOkI/zdzJzG9X+fSpLEkhiTy+sbXWXHdCsKN4Tz0+0PsLdtLnjmPR/s/yq09bj3GP9KM6gLmFqzjqbXPeX7U8LteWlfKNXOvQa/RM3/ifLQabVPP4stWL2p2zX1IZDb2u4mSuhKKaovoHtG9we9tpbC+hItnjgZgxy07UPYvhMXPYk8Zy/vK9azZV0D7iFDevqaPpyglDru4uT1eWxx2UYfAYYGH0kRwKnMFGEyiPsnR5zud4iYl9hwo3CneVwBzMU5VYe+7lxOrKWNa1N+5t+hlNA1uRNP8DLwXEcEHgb3xP7BILM256jPofrl4PQ4ugfiBIgPErXif2BHx14c9P6rXmjA6fOuIvKXewkOG2fjZKjGrfmxzJnsynJyqgg0dfoqNOf5XMKFuFv+xT2Sm40Ie1M4iQmvmIraiU5xs7v4k2kH38MTMnQQWbWGq4U1xM3wM+51xfNnne14f3wnSfxUDx05D4burxAED74HhT1KydzVqWGeiMmdBgwzE5mQPfYcLF8egMRTy0e2xjIkbivO9c9DU5OPQ+bMlYChdTHVcrT1IkU7HW0PfYmx4b/h3d7Ek8caZIkD3/XViSZWzwY4ofsEQP4CaiV/T8+UVGLQatj53SZNFWfMr61BQ+C33JxRF8aTpu6lbprJm3Roco15mcHIEOk2D5zCXiCzZQfdTGRDKwYqDfLvnW3478hurJ60mxE8s26QsExw2akPjOW/aefSN6ss345qfLDjapoJN3LHoDj4c+SEPLH3AOyhvgU5PiODagVfHNirGu+pAMTf/TyyTGn9hOu9uFZsz/HTuM3T96W5xUESyCJzsXwiqg6xO19BpzENi958+IhPz96wlPLTiH4Q6oeKoLnTauGm+wbGjrM5dzX2/3cdXY77iwd8f5NKkS3nqvKda9Dsez6g35xFbs4aA2Bk8X1JGO4c3Q+OykJmcUzKHPDWCzwz/8vx8vzOOzdHBjLaUEXHzbFj8DNn+Jl4sXss7RSVstfWi9sqvGX9OJ2+GA8AnF5LZ93ESt7+FCvwSHMwl1dUEue6Xf+r5MVdOnESvl36hR8pB/tZtLI5fHvBkQHiEdRKfb9WJRdVTHNSN+Bpv//yBMgltvxso2vgT39ovpqupnv/YXmRn4h1ceeUkFn7yBPM1w/jPedWUpi1gVaGe4Zrt+GvsGB9YI67t/mFiAilno6jLqCjYnXbmHJrD82tFvcbJvSbzt3P+Btmb4H8Xi8HZerHLY2ncSHSmCDJy8giqzqAeA+EDriE9eTJ3ThWDu5Gd9Pyr4HZCEH3b3MAA9APu5hxjKrpDSwg/8BO5agQGUwRR5qZ3SwV4xvgkP9f2pZstnWmB72C0i6ybHDWS/UEOHnJtP/14aTk397xd3DupRxXZ1RnFvc2YN8TkTV0F6pudeNd+JZucqZ4sPzR6uGsJOOz0+l1k/z5eVc9bwUbCjeG0C2hHelk616VcxzMxw0SQLN+bIXVO/ce8FzmLITULWegYwBjtJlGH8MYfYeZdkLuV2ojuBBRsavJ3rVGNaHFyn+0hQjHzH4NrV81OF8KQh6Fgl5h4qspBDUlAqS2Dix731Ng8kDSE77ucx1PnPYVOo+PC6RdSYang/Jjz+XRUg1IA2RtFja19C8RnLSAChj5KflY67de9hHLDD5Ayml+2HmH3zDd4Rv9ds+8P/uGUdDyPyL0LoPMI/tVlAF/u+97z8PJrlxPh30Rdn7UfeIP8xlCor8Da41pStlwOKDxySQpxYf5M7BdH8ff3kpGVyXlWb0ZTjhpJvFKCTdWS7tebnpfcwkvLy3jB/DJ7nB3prjksMsorjvj+u88UQc4mKr67gwKLgXHW13G6NsOeO2UItVY7iVGiCLfbbdqFTNbNo6jTlSTb9/NTeRJqVQEzQ24ltHwHA3UZrLClUouRbw2vEal4i42vGrOAj/c9yA5EJtDdYX150GYUY4zx71Dd5zou+P4CHi2r4vIb5nLhQt/r0bRx0+hlscLnrom+oFjXhJsi7kFTxooJjLTvRX3VJjgVLRq1QXaaRg93LkL9+goUi7etiwL8ebRdFB8m38DQnjdTPetRgjJFoIuEQXDFR+RqY4kNMaIoCnNfu57LrN7Jt2rVn3cjjfwQHMRnZXUMumej6G+cTvigP7iCcm87rmBG5x20t9WRaRCZkndVVPJQeRMbdLiXPA+YjDr2Lfo/NZ1SQnj73HL2bF/PF46xPod3VnI9mWwN2bX+bLF15DyNCHJtcqawSU3l/Bgt/Yp+xnLuZPy2fIbqF4RVF4yfOZfz69/nzvFDeGVeus9zvX99Px5sUFQbYHjXKA5V7ic4eAff3vBUk2PzM5BcGtaWTZg1gZK6kiaDNRqN4lMg7GjdY0W0vs5eh1FrRIntC/euanRcnb2uyUyKpuwt34epwwDig+Kp2vg8QYYgqq3VlNWXeQJBFZaKRueVW8ob/awpqqqyp1Qsu1iVs4riumLW5a3j89GfN3tOXk0en+8Qjy/MWsiUflMgJN5TqPt/Oz/n3a3vcknHS1hyeAlrr19LkCEIorvByOdQVZXSuhIi/SMbP3lsP/EfQFB7mOy6aCQMEJF6RSuCLLH9uDW0E2g0vP+3pmdw/zGqK/8Y1SAYNuoVilOuZ8bMH7ihVyCRlzzOFVv/zVe7oc7WYBB3MkEgENlmiRc2/nl4YrOn7C7ZTWJIomdm5+O0jxkcO9hzo59nFrNJWwq34FSdOJwOsquzWZe/zjPQ2l3qnbVZmbOSvtF9sTpt3J6/kDt63cHIS14SN2utoOFnbX7mfO7qdRcvr3uZXHMuH18sZkOyqrIAKKotajKgWNug7pLdaUeXOBQeWN8q7UPnJ244j+pnr+2fwIVdorhi3osYdUaRqYM3ndhsNxPpH0meOU8sDTsZQe2pyvE9t8paRbBB9AubCjZRXCfWeOfU5NAxuOPxn9M92z/BW5D7pvk3kVuTy/abt3uDSToDJQ2+89W2aoK7joWuY9EBfwf+PqpB4MitQYZkpaWSAF0Aeq2+6eOmbBQ3D8GubJB+NzXfbo1GZJ0Bavve2FU7eo0e/ILQAGGTPibk5yu5v/glUKCw/TD2GHoz/Mh7vBoRTrqfni05KxjiHw6PZ3gzEvRGEXg6WlRX8V98f+w7fka39l8YHTV83PkjVqTnEhwUxCdh03i84GuwwTeBt3F9zdciCHTxC5SrgYQtfQw/bNjR0efOD+G7NB4u/5mHdT97XyM1kBDMWHfO5s4dvbjEuYb/+H2MEhgBd60Hq5mDVQpzFy3gjoGRhHQZBlu+JDfiAlZXdeShvh3BaMTZ93osDou4Dlz3ncgSGXAn+IcR2c/1+3XqLmq4LHtVLP+Z94j4+ZTNsOlzkZ149RfEBUTB4vmYOr/LYyudjLxpK/rhT8Dch9AO/hsDhz8FqooyfShYKyiqLYLEOBHQC+ic+UMAACAASURBVIr19nd/2wZ2K+8v3knemu+4vpuW3je+CRoNJiA80ECP2OBmd+aJCfEnvTSdNzeJ4NXRgSDl3FsZfM4tPLD0Ad7bW8jMCTO9DwZGwlhx3j8W3cnGgo2ehzIrM0VwGzx96eFScQO5vXg7ZfVlhBtPLMBeYxWD5whjBHqNXiyjbKE5UwazPbuiURAIRJFigA4dt/LuVu8AsTqyM0xeJgJenUeI71PFEdjyFZ0GPySKyLfvJfpDjY5a17Kc6LAkKiozGBo/lMm9JnPzgpuptB57172MClHUPSkkiQhjBIXmpmtX/BGR4RGsURwYA/z5fNj9PJ2X5Vku/rn+bdrp1/kcvy5wJO3r1vB6kJalYe35X3Qq3DSTD1c9wYYaI4s7nUvCgP8xrJtr0wu9v1iSB/BUPomGAOg5iLTd3/N8xQa2JA7i1TRRgyd55zvk732NUREOltq0GBa/zUCjFqL6Qd42bKqWzOABpNw1Dfb+irr4GTJiLifxxndBq+DMXEXx17cwhemwdTro4Hnd12KDAgWSs16Gjz9kTF0ZY5gLS0FRg7lCW01pzBCW9xzD4OB2vLf1PR7o+wChIXEQIjZJsDvt3P/b/azL974enuWI8f0hpo8IAvmHgaIlIlfc7/Txj6Q2PAJTxT7Y8k+CDfBv/Vo2OrvxbPkcAqjhuw4vcf11N/PUTxfB4Z/ZmSkG5tlqNO0oxWAuFTXpQjrA9u8gQ9RhyR72Lglb3uBx53SWWOO4KWgqXwUq3NvhOuhwPvYN/+XhQO91bFtwOAf3f8szqhP9w7vEMv/vrhZLm2P6UFxXwjd7vuFeWy0B/qGo8QO5t3gFU9SlENINJk2DqZcxec41GJ0qBIp7nQqHBTBic9o8r4nZbhZ1W8a9LYJkLp+aPqV/jch+GKPdBF3Hw7558I7r/u6CvxEw/Gkx8aWqqEue5ZAaS4a+C/1yvkMN7Uh+XSYf1bxNgCuA6Ey8CM1134AxhNK4fuR0uYg+YSkohgZLTzoPB1sdz29/m537f+SyzpfRL7qfZ9v4esdROzsmDBT/DbrP58cxXcfCRXd5dnONCQ3kMcdoehoKuOKcDmRsWkCSxhWEuPTfkLGcOZ368XT6//jx6k/oljQKc9qHPs/55sY3GdFxBGM6jfFtwwVToMeVIpAW1Q22TsVw0ROwRbz/D47s4jk06oZPCLI5ePvnpZy360UwBnOhbS02VUvapE30TxVL+sZHFPPjlyvJjtzBinYXcd+1s6AiSywN/nCg6NN0ftBpCPaRL9Ft4T3MNzzJdmdnPnOM57IPVtFRKeS7dt+ToNxAttqO3sohXtB/DUDcYTGeuJ2VYqlTzSI0BvE+PdSgNvEWZxe2OrvQXikjMiacHfu8y8FsmSuh3HV/uvhZiiPEtSIifiAh0b0w6U3U2GroF92PbUXbOFJ9hF5J48XrHd1djDfmPgTBceL7svET8VxBsaKER8URMc4xhrJn5UzCd39BO2cxDH7YG8yN7AJx56I8vBOsNbDwSchYzu6+V0D+cnYEBDE0JJ6gm6dRumMBEd2GiL4ffLYGOP/Wl7B/tRJb96vZmraNwUoaucEdgVqKL3qELFsVZYVZnNPuHHE/AOR+MIaelsVMVSK506rjGddlPc8UAeH9YeDd4jtz7u2irRod7J0Pmz5DCYhgi/ENXol4k6t3/x/o4ZqgnVQrQcyvSmSmYyjjAvd6Nm3Z7kxisWMAPzqGEhPbgdJaO9P67qbj+mcwYuV2zRwoBhKH4nfZ2zD8cRSDCb+SffDpMJ7wm4Hf4q+5U5tCXWA8vcMdrDhiY82M31llmM1SZz++cozmWr8NzNp/Ln0iv2e5tgzFPFkEN89iMhDUSqqt1Ty16ikGtB/ALT1uOeHzVFWlxLUF++6S3VidVvpF92vRvz1z/0xeWPeCZ5lVobmQ6IBoqm3eG87s6mxSwlKaPP9w1WEmL57MeyPeIyUshWvmuopN3rKDCksFqRGppBWnUVrn3da3yUBQ/YkFgorriqmyVnn+DJBvbjr6DbC5YDO3L7rd83dzE2nb7lnQJYdFUbpdJbs4P9Zb1PGHfT/w6oZXmX3FbJJCfIvKqaqK3WlvZjDa4GfhSY0fPx5FISqxJw886t2Vy/1+u7eVPBmqqvpkiD29+mlyqnMI0AfwwYgPms38yK7OZtK8SVyWdBmvXfgaBeYCPtz+IZ/s+IR7e9/Lue3OpcC1JCi7OpunVj/FvIx5hBvDKasvY3jCcGpsNUz61RsI21++n9+P/E6tvZYdJTt4dvWzjLxh7Qn9Hg8sfYDk0GT+fu7fmz2m4efu3a3vUmurZcZ+UUenYdADIKMyo8lAUG6NN0W3wFxAfNDxt62stlaLYGITbE6bCDK46RsHWRVFITRQpd5eT4AuAD+duLuwOMSAy2w1E+IXgkHjuyVsSx09sMyoyKBvdF/sTjsrclZ4fn6o4tCJBYKa4H79DlcdJinU+z1Yetg701ZSV+LzXhyP3WlnyPQhDE8YznsjmtgFDhoV6lZVlbL6MhZmLeT6btc3m/317tZ3WZi1kB8v+9HzHsZ0vwDitsCMW7G060v0ZW8T7lQ5UvoPjMuugfpCdvoZGGI3+CxLOa72vdC16wmdzofIZK7zi6d42UFRZDLmYpj7MFhr+F29nPLKCq5LstHugocI02ig7wR4pyu6c2+mY6RJBN/Sf6U8Ywva8kOY7lnMfT9kMqhwGg/oZrPY+RAJumLxukxe5sn2S24HuzP/xRVZh1g28Fa4+AXigDsaNPOJlU+wsWAjS65Zgj71Uki91OfXcKpO8XoOulcEiLR6ka5uLhE3m2O9mUIaRJHtAdNE0cyDFQdJ7XeLKKTsXtaoKFhcL2NRbVGT7ycAOgO3jujN5zoTv5hmUJ67iosSLgLEbF1MiJEf9/9IlH8UwxKGNTp9XoZ3KVqBuaDR9399/npW5YrJkZJmJgMaBoHgqECQS0ZlhufPmwo2MbrTaGwOG7tKd9E3qq9Pf1xlrcKgMWDUGT0DTpPBRJAhyBMYaone8aGemhf7yvYRZgwjOkDUMIsJ8Sft+UsYMkMsJw7QBVBrrxXX2A4jfJ8otIMYqLvsKd3Ddb9exxejv/AEy8P8o6Ayg8TgRE9WVFPXexB92f6y/by9+W3CjeGEGcPoGt6VXSW7WvT7bS3cyisbXuHBvg8yvMPwJo9JigpkZ60YBJc76+Hab8Sy4/8Opl3JOmrCuhNYdRDFFWjvfMsHfLTmO6j+mv0a7wy63ZV9VtbnGq5J9e0PLQ6LCNgbXMtfkkdyyFkB6zZwxM8IT+Vj/uEu+h6aR53NQKU+DNByOGUE5w16QgRZivdyRKPw/PoXeVutJ+7cW1HOuYXUBp8PTeeL2DX0Mw6veIaBmn3epS7AoXZj6Gw/BKUHKOt8BS+nx5CgFPOpYzyvX90XZ/A2Xlj3Ap2KFpFVlUWoMdSnMPeWwi2sy1/HfX3uw2wz8/Wer733TIoC10wVQeBe14idVr+/DiZNQ9PpQkw6Ixm7vufAb88wet0/uVILV2rXoCphcMtsbkwa5nOfV6zVEOVwEnb9Z1iL0zGseFEsrQ7rBL2vgQ8GQMl+EgZfB4kpmL6ZyAbjFPrHxmPRhHLF6JdoH9ien+z5aPfP4IdLf+DOxXexhArQmxgfN4yBoQmiDtfThZ6lsdfPu57C2kJSI1IZmzgWTf/bMM5yBUKunI09rCNfn3c96w96i80DHInoAM5Kqq3VKK6JG8/3MWGAa3fOcph6Kf3tW8UAsPvlkDwSUiewc9oVrCjexgNdb0AZ+piYJHBNPih3LCQZEHsmPkmlpZKbpg/hwtBEPsjLRTP8SX6J7kCvukJSjCFMXjKZA+UHxFLxho2MEUWyHTu0nvezT1QfTwDIff94Qoze63FiZCB2dJRf/A4MTuSFogns1bzN2yMeYWjHkayO6cLzv4vC+dt10C0gnIJa3yWDC7IWsCBrQeNAEIiMFndm9SWiaP/vj1xEnc3R6FCjXsudlw7jBTWKZ3pXwYwJ5A182hMEAhiQFEXykzMY+uMAsGRyr6KghCdhcVi4t89wbu99F+7ywZEDr0Xd+i7divbQTZPNJN1y0p0JxCmlBFfUcrmmEyWE8KzuGyxBCfjd8rNYDm0w8fH6YpbnOHi9Zx6JnVNFLbMVb0LJAd5RbuaTdCNWh8hKe7BonshAHTWVy5fdh7X/VdD/UbGS4KPzKZ1xPcS0Iyr1ShRFIdI/khpbDUPihrC9aDtHqlwZTf0bXJlvmS3+f+l/IH2OmHhwl+lwfbYAul/1JFz1pGcp7eGqw3wTpOfx3teKenH+oeK/60S2atXaF4AG116Nhoi+3o0ojhYZ1wUeP4ROb+SCAZthyfM4oqOhaDNHNE6emiUmi7bdvM2TWWu6dQZf/nQDEUoh44a/wDObRBZofeJQGP4f8Tt0dX1WrnJN9FcXwL9SRQ1R4JnS//O0IbVeZOQN1K/i6dit6A1+1FUnkVr0ChenRtO1fRDFyw5RnFfNXUMS6Th6OPPCRvDAL1mEJPyX0OB8fr/kdbRAjSGARVkLOK/ducQbgrjcugq0rqCuFSiASQ3mqm/TLPYU27/fbwaPGiOI00QScoLlTs5kMhDUCgrNhTz4+4Okl6WzPGc5iSGJDIoddPwTEYNtt0nzxOB61XWrCGwwQ1BaV0qlpZKkkCScOMmuyiYuKM7zZfzloFjfPD9zPt0juvPGxjeY3Guy52YaxI1tYkjTWSLf7/2efHM+n+74lDt6ejuootoirE4rSSFJpBWnkVOTg821PrusiV0/imuLPY8fy74ysa69c0hnDlWK9MJ6R33T56owdbfvjmGHKg75HquCgoLaYKVhWnEa/dt7O9Gf9ot11L8f+Z2EHgnYHDayq7PpGNyR1za8xqaCTUy/dHrj9c9/guJaEfwqrC3EbDNjaGHmTK2tltsW3sbQ+KFM6TeFI1VHmHNojufx9fnrGRgz0Occq8PKD/t+YHOBiOSvyl3FgfID3LxAVP63O+18sF0sYesd1ZtQv1AqLBWeQVZZvXi/1+Wt88n8ig6IZkXOCp+Ag16rP6HPQXZ1NitzVrIyZyX39L6n6UAc3mCh22c7vXVgthVu81mycKjiEAPaD2j0HEeqvSnF+8r2MXX3VHpE9mBMpzGeoNm2wm0U1xUzquMolmYv5bEVj/HEwCe4NuVan2SfT9I+4af9P/H9+O+JDPAdVFZbq3l1/atM6DyBC+IuYFXuKlRU+rfv7xlMmW1mbE4bZruZGFMM/np/zFbzCb1mTfEU1nTZX76fHpE9eGX9K/ya8SvxpnhyanLYX75f7FbUQg2DVDtLdpIQLLZaXZm90ue9KDQXkhDU/DasRbVFfLT9I0Z0GMHQ+KGez+Ky7GXk1uR6BrbN+fXQr3y28zP0Gj0ZlRlE+Ud5Bo1zD80lpzqHe/vcC8CcQ3Morivmnc3v8PSgp71PEtQO7liABrCrdlAgJtJEvla8wStMQdw54DmUk3kvkkVbTMAT47qQXprOPzMXcfcN0wjQB/B/RWZeX2xl9PgUwnGIrbgDI8SOkn4mUfui4/nQ8XxMqgrWWhx+gZzf08l/c8czMiSbTsFgHfAsSpfR1Ol0/Hfjm4zoMIKUsBQ25ItU+4yKDM97BOK7/fya51mQJdLCN+Zv9Okfft7/M69ueBUVlRfOf4EJyRPE591pE4M5QHVYWXJ4Cd3Cu9EhWGRQ2FTvzPTu0t0khyVDsivw4LRhd9o9n/m8mrxjfr79DTCyXz03zZ/BTwdmsPVmMRM/MCmE4tpiXl3wKoqi8O9h/+ZQxSFGdRxFe5MI+GwsEHXD6ux1bCzYyNhE3/TyBe50eGBb0bZGwaSCJnbpy6jMaNTeQxXiWqVVtGwu2MyQuCHcveRudhTv4JXBrzAuaRwgvi9XzbkKq8PKeyPe80x6BOoDCTIEUWmtPOnv+oHyA1z363WEG8P57erfPP1SUf1hzzEhfiHU2mupsFQc99/55YC4d5i+d7pn2WdpvQi894vuR7uAdvjr/NmQv4HRnUb7nqzCjfNuZF+5uJ6/eMGLAKSEpbAoaxEV9RU+9zHH8m36txwoP8CTq59k0VWLmrwOPzgiiSOr6thWAjuKd1Brr0NvDBKByzXv4nfrDOz+YZTVlZBRk0O/iHB0sRbYBw5Uz2txoFws/9pXvs/n9dmUv4mHlz/MK4Nf8fQrNofNE0SstlZj0+kxXPMxO+d/yMcFXSiL/gaqM9jTvhu29j1AtUNkMl+ufZFdpbv4Zs83PNL/Ec/r1dDQ4cOxDV3Fp7Pmk9JzANHlm3lteyDv3ToYm16B/B34R3ZjzisrcThUPrrxHC7p0Y7n1og+150F+3Hax2gVLXf2EjWI1uevR6touaX7LZgMJtbnr6fKWuX9XUPjYfQr3oY8caRBRrKD63e+R22EiZSwZPTnPUegDkzx3UVQwWljQ4F3Sc+IDvH8MPgtuiQOJiM6hvbnXE2BpYxv1zzLA30fIOKW2aJ+ilYHCQNwTF7GF++/iEUjMorX5a1jff565mfOZ1DMIFLCuxLiF+LpNzYnDqCfu91aLTht7Cje4ZlEW5+/nos7Xgw9rhA1FP3DoH1P5mfM499HBYEAtvv7g1lcL93fS5/XJtqV7dNxMBxeA/evB5O4xtdYKrjBngFhIQzqdzV9DP7eekVNcH9uVunsOJ7MZtGRpbyw6v8I8Qth2TXLPJ/DdXnrGNB+AD/u/5EhcUOI9I8k2BDsuU98d+u7nonO9oHtya7ObtTHn4hwk5btz48g0E9HXk0epo4/UZebzf+teYbHrVU812B5eXpZOjanjQJzUzuYiu9Cc3XSGkqIEJNfTfVDJn+Ft68VE6S2v20nNjS+0XF5dd4t1I9UHyHWFMvy7OVsrjpE2tpn2ZDorZfKpGlQlYvTP5J333uLv+tF9mehaiIubCEDHTY2mJNInfQZFoOBqWoRV3W4kGGxcRxem0X0pd2x6VwTS67vx/0OJ/c4VQ4Vm1mTvYVP079hfNJ4omP6YdD6Ua+ATe8HYR3g2m8o2P4J1B8gKl6M/9wTVV3DutI+sD1ZVVnN98kaBXqIWjeo9uYLp+iN4LTx7Jpn2Va0jd5RvRtd80CM+UAE+20O2zEWBjXg+o4R2wdunUXebJFlOD/Du2QsrTiN3lEic9LfFEB+YA1D4kaj734ZuAJBa/PWUlBb2PQywsAISLxIZAtGp4qJpm6Xwri3RLbXnllQlgXrPsBmq0U7+O+8Edqd8b1iMOg0fLhMLD29ZkAsNtVORFQUaHfjNB2mzAk/VexmYlRXHl7+MBvyNzA4djDvX/89RSs/52NlEo9aPyAgZzXcMofPvv6SyfxCdugAlldEsT9sF7HxvbhPH0F67Q66tz+3cV3Ts5CsEfQHVVoqmTh7IjW2Gl4d8irvb3vfZ+bwVBkaP5SVOSuPf+BJeHbQs3yb/q2nYzlaSlgKGRUZYmDVArd2v5Wpe6Ye/0DgiuQrmHVw1nGP89P6ERMY47lJaqsCdAHU2et8gldtyYTOE/g141ecR6/PP8pNqTfxbfq3nr+7Z6P/bBd3uJjl2ctb/Jk7HUL8Qlh+7XLW56/nvt9807ev6nIV6/PX+2Qstbb/DPsPb216y7Pkr605OojbWrqGdfUMUk9Ep+BObb7f+CNuSr2J6XunnxHfmaMpKMSaYpv9nkzuNZnFhxdzuOpwk4+P7DCSlTkrTzoA49YxuCPtA9r7DIZPhILCxhs3cueiO9lRsuMPteF4Loq/yCcw3xJaRcuA9gNYn7+eZdcuI9I/kpfWvcSP+3885nm9Insxbfw0wLvZQEv1jurNjuLjvzan6hpzJusT1Ydvx4nr8m0Lb2NL4ZbT3KLjcxfevWn+TaQVpx3zWH+dP72jenuC38fTcNIx3hRPuaW8yczytuboa9gXo7/gjkV3HOOMk+cuASE1LyEogRmXzsBkMDFm5phmr0drrl9DsCGYx1Y8xsKshcy+fDavb3yd9fmtVI7gNNApumbvHV4b8hqXdb6MTQWb+Hr31yzPWX5qG+di1Bp9lk4GG4I9Ad+T8bd+f2Ny78mt0bS2QBaL/jN9tesrLoi7gJSwFHJrclmQueC4A+iGwo3h+Ov8qbZWYzKYyKvxHbAZNAb8dH6eTtqdreGm1+i5KuUqFmeJtLaRHUYy59AcLA4LYcYwAnWB5NTkHLMNqeGp7C3bi4pKh6AOVFoqqbRWYtAYmJgyEavDypxDczxp1e52xATGkBqRyvai7S0KgMWZ4hgUM4hZB2eREpbCgYoDPs/dUHRANOMSx7G5YDMajYadxTsbDRwNGgNDE4YS6hfK4arDbDqqgJ9G0dA1rCvpZaLOg4JCqDGU8vpyQv1CifKP4kDFAU6VEQkjKK4rZmdJC4p4N9AltAuFtYWeTq5jcEfq7fWE+oU2O/iNN8VjcVgYljCMWQdn4VAddAnt4plBtjlsZFVlYXVYGd1pNIerDpNRmUFCUIIne2p/uYjG94zoSY2thoHtB/Jrxq/0je5LdnU2g+MG8/P+n7E6rU224WgJQQlUWiqP21mHGcOINEZi1BnZXbqbcYnjSC9N99zc+ev8iTPFcbDiYLPPERMYg91pp7iumHOiz6HWXsvesr2exwP1gfhp/SirL0OjaBjVcRTbirY1WsIXoAsgMSTRp05SQ11Cu3Ck+ohnCVjvqN4MihlEvb2eH/f/6MmwUVAY1WkUuTW5LV5KcbRu4d2otFRi0ps8n2OT3sTELhMx6oxszN/I9uLtx3mW5gXoAogxxXiyItx6RfbCoTrIN+cfd2moUWvkvJjz2Fiw0fMadAvvRpwpjt+P/H7cYJCf1o8uYV3YU7qH5NBkz2cRIMQQQqAh0NN3BugCmNhlInMPzT1ufRMAnUbHlclXsiZvTaP+92TpNXoSghJ8+kWj1ohWo221QUjn0M4UmAuot9cTZAjCpDc12denhKUwLGEYq3JWefrAhm1KCk1Cp9Gxt3Rvs9/dcGM4NdYan8f9df7EmmIbfS7cDBoDE5In8Nvh35pdXuTz+4R0Jqcmx/PdcesY3JE+UX2YlzHPExByX2Pd751TdTL30NxG7dcoGsYmjmVf2b4m+4dAfSB6jZ6YQPH5TgpN8ukXGuoX3U8EdrOXA9A9ojuxgbH8duQ3n+O6hnUlJSyFeZnzcKpOEoISGJs4lu1F2xstQ2sJg8bA2MSxLD2y1Fv3xcWdvXNezHmszFl5zOXWDXWP6E56aToqKp2CO3FOu3PYXbLbk1FcWlfquV4cLco/CpPBRM+InsSYRB0vm9PGD3t/aFGwRqNouCL5CtblrTtmuxUULul4CdnV2Y0+x25aRUuAPoBqazUBugAuiLuAFdkrPEHAIEMQXcO6srlwc6Pn7hfdj+3F2z2fLY2iIUAXQKfgTqSXpTd6DTSKhm7h3Tw1Dxs+V7fwbp57qtakoNArqhe1tlpSwlLYXbqbSkulz/frwrgLSY1IBUT2VEsGoEatkRhTTLMTfxpFw4iEEewt20uEf4QnaBPqF0q1tRoVtVH/fDQ/rR8dgjpwoOIA8SaRCTKyw0hMBhM7inewqWATKWEpzb7H3SO6E2uK5bfDvzX5OMAFsRcQbAgmrTiN4QnDWXJ4CcV1xQyKGYReo2dt3lpSw1PZVXri197BcYOptlafUMASRL97uOowFoeFQH0glyZdyuyDs6l31OOn9SMhKMHTJ3UI6kBZfRmKolBtrUav0TOxy0Q25G8gyBBEgD6APlF9mJ8x/7j388ejVbSEG8OJDoj23C9O6DyBtOI0/HX+nvsRBYU+UX2wq3YyKzOJDoimqLbolAbRYgJjsDltPkviUsJSyKzMPLHAvqoS5R9FvdNCvb0eg9aAXqOnY3BHdpfubnbccTSNomFMpzGesgJrc9c2+dmJNcVyaZJYdl1jrWFN3hpGdxpNemm6J0usNWgUDV1CuzR7v6+gMCZxDHtK9zQ7QXIi/0ZqeCrpZemM7jSavWV7G/ULflo/JnWb5KmBWVxbzLLsZdTZ6xpdx/8sBwqr6RUTx+VdxjLr4CwsDguR/pGM6jiKmQdmnnA72ge2x+60U1JX4rmvCDM2X6P3DCMDQZIkSZIkSZIkSZIkSX8RzQaCmq60KUmSJEmSJEmSJEmSJJ11Tnex6BZszdK2KYpyt6qqnx7/SOlUke9J2yTfl7ZHvidtk3xf2h75nrRN8n1pe+R70jbJ96Vtku+LdDrIpWGSJEmSJEmSJEmSJElnF7k0TJIkSZIkSZIkSZIk6a9OBoIkSZIkSWpzzDYzt/36II/MXI3TKROIJUmSJEmSWsvprhEkSZIkSZLUyOyDs9lSuhxrWT0jd3dmXK+Y090kSZIkSZKks4LMCJIkSZIkqc1RPWUEFV6cu5uKWutpbY8kSZIkSdLZQgaCJEmSJElqc+ptDgBiQ/0prLKw5mDpaW6RJEmSJEnS2UEGgiRJkiRJanNKaiwAdAwPBKC63nY6myNJkiRJknTWkIEgSZIkSZLaHKtDZAQFGEQ5wxqL/XQ2R5IkSZIk6awhA0GSJEmSJLU5docTAKNeBIKq6mUgSJIkSZIkqTXIQJAkSZIkSW2OzZURpNdqMPnpqJGBIEmSJEmSpFYhA0GSJEmSJLU5dqfICNJpXIEgi6wRJEmSJEmS1BpkIEiSJEmSpDbH5vAGgoKMOlkjSJIkSZIkqZXIQJDUpizeXcDctLzT3QxJkiTpNLM7xdIwnVaDyaijWi4NkyRJkiRJahW6090ASXI7UlrL3d9sAeCyPrGnuTWSJEnS6eQuFq1VxNIwGQiSJEmSJElqHTIjSGozVh8sOd1NkCRJktoId40gvVYuDZMkSZIkSWpNMhAktRlV9aIQqEF3ch/LHTkVHCyqac0mSZIkSaeJ3akCDYpFy4wgSZIkSZKkViGXhkltRlWdCAQ5nSqqqqIoygmf63SqTPhgDQBZb4z/u6JIcwAAIABJREFUU9onSZIknTruGkFajYYgo15mBEmSJJ0mTqeKotCie3NJkto2mREktRnu+g92p4rF7mzRuWk5FX9GkyRJkqTTxOYQ1wQV1bV9vN1TN0iSJEk6da76eC3/XrL/dDdDkqRWJANBUptR7VoaBrR45neNq75Q+2Bjq7ZJkiRJOj1sTnFNcKgOwgMNAFTU2Y51iiRJktTK7A4nO3IqOVRsPt1NkSSpFclAkNRmVDWo/2BuYSDoSFktADJj9cTVWR04XTU4JEmS2hp3RpDD6Q0ElZmtp7NJkiRJfwn19nr+u/2/2Bw28ivrcThVquXyXEk6q8hAkNRmNMwIauk2wbkVdSd13l+Vw6mS+txCXp6353Q3RZIkqUk21ZsRFOEKBJXWyECQJEnSn+3LXV/yUdpHzNg/g+xyMdna0klaSZLaNhkIktqMqjo7QX6ifnlLLza55SIQVGOx45BZLsdVXisGU9+uP3yaWyJJktQ0u9Pu+X+4SWYESZIknSq1dhH8sTgs5JS57rHlZKsknVVkIEhqM6rrbcSEiho/LakR5HSq5FXWo9eKdWHyQtW01QdK6Pn8IrYcLmP8e6sA0GrkWjpJktomhysQ1LBGUJnZcjqbJEmS9JfjzgiSOzdK0tlFBoKkNqO63k5MiD/QsotNidmC1e4kNSYYgKp6WUy0IadTJbuslk9WHqLGYueq/66jsEoMpvQa2QVIktQ22VVvjaCwANfSMJkRJEmS9KdTVZFdr6CQ7arDWS3vryXprCJHgVKb4C5CFxPS8oygkmoxMOgcZQJg7o681m/gGezxmTu48K1lGPXaRo9ptTIjSJKktqlhRpBeqyHYqKPMbKWkxkKvFxaxPqP0NLdQkiTp7KQiAkEOp0pWqTcjyB0gkiTpzCcDQVKb4A78eDKCWrC8y3uuCCK9tXAfhVX1rdzCM5PDqfLTlhyg6ZkcnVwaJklSG+VQvYEggAiTH2nZFVz/6Xqq6+18t+HI6WyeJEnSWcsdCHpz4T62Z1cA4FSh3uY8nc2SJKkVtSgQpCiKQ1GU7Yqi7FIUZa6iKKENHuuhKMrviqLsVxTlgKIozyqK2MxbUZTbFEX54Ojnq6ys5LLLLqNPnz706NGDL7/80vPYwoUL6dq1K8nJybzxxht/4FeUzgTuIEX7ED/0WoWKuhNPPzUfFQgCPBetv7pNWWWeP2cUm5s4QgaCJElqmxwNloYBJIQHkJZTyYGiGgBiG/T5kiRJ0p+nXbAfANUWuTxMks4WLc0IqlNVta+qqj2BMuABAEVR/IE5wBuqqqYAfYALgPuP9WQffvgh3bt3Jy0tjeXLl/PII49gtVpxOBw88MADLFiwgD179vD999+zZ4/c5vpsVlUnbviDjXrCAw2U1px4QVB3RlCSa2kYyECQ26LdBZ4/F1U3fk1r5AVdkqQ2yp0J5P5/56hAn8flDmKSJEmnRqi/qNMmN2SRpLPHH1katg6Ic/35BmCNqqqLAVRVrQWmAE8c6wkURaG6uhpVVampqSE8PBydTsfGjRtJTk4mKSkJg8HApEmTmD179h9oqtTWuTOCgv31RAT6UVpz4jf47kBQYmQgac+NokdsMOn5VX9KO8806w6V0ic+pNnH621OfttTeApbJEmSdGKceLePB28duPMSw+kZF0xJCyYMJEmSpBPnrQUkMsevHZAAyJ3DJOlsclKBIEVRtMBIRBYQQA9gS8NjVFU9BJgURQlu7nmmTJlCeno6sbGx9OrVi3fffReNRkNubi4JCQme4+Lj48nNzT2ZpkpniCrXDEOQUUeEyUBJC2Z6q+stGKIW4FBqCAnQE2Hyo6L2r5np4nSqfLkmk+p6Gw6nSkaJmYGJ4ehdRaH7JIjVnN3aB3HNufEA3PX15tPWXkmSpOY0LBYN0C5YLAXTaRUxYXCM64TV7mRuWp4sbCpJkvQHrXxsOD1jxXBOZgRJ0tmjpYEgf0VRtgOlQDiwxPVzBWjubqvZu7BFixbRt29f8vLy2L59O1OmTKGqqqrJGzdXuSHpLFVdb0MXtBNVYybK5NeipWE55kz8Ilewo2QTIIJJf9Ut5DdklvHi3D08P2c3OeW1WO1OukQHEREo1nantg9i6h0DmX73IAYnR3rOM8sZHkk6a9kcTj5ecYh6m+N0N+WEqaqKA98aQRd0juDCLpG8cFkPIkyGY2aOfrT8IA9+v40lMuNRkiSpxRyqKAqtoNA+xEhogFgaVlYrl+RK0tnipGoEAR0BA64aQcBuoH/DAxVFSQJqVFWtbu7JvvzySyZOnIiiKCQnJ5OYmMjevXuJj48nOzvbc1xOTg6xsbEtbKp0Jik0l+If/x1vbH38uDf4R6u2iG0t3YOGYKPeU3Poryavog6A7UcqOFAoCqp2jjYRGSQu4CH+ei5KiSI0wMClvWO496LOAGSWNFVIWpKks8EPm7J5Y8FePl2ZcbqbcsIsdicgBiJ2V9HoQD8d39x5Hl3aBRFl8qOkxtJsxo972VhOed0paa8kSdLZpKhK9KEmPx0GnYaYUJGR6b7PlCTpzHdSS8NUVa0E/gY8qiiKHvgOGKIoysXgKR79HvDWsZ6nQ4cOLF26FIDCwkL27dtHUlISAwYM4MCBA2RmZmK1Wpk+fToTJkw4maZKZ4jKOrHde2ZVBhEmP+psDmqtJxbMqbGKi5K7jkSwUdfkVul/BRklIviTWWrmlXl70GsVkqNN9IoTdYIaZgTotBou7ysCrFmlMhAkSWcr9/f+TCquXF1vB8VVLNrZOJMpPNCAxe7EbPV9rKi6npd/3YOfTut9nlPgcKlZLkOTJOmsYbGLvvW6AR0AMckaZNSRllPJpe+vYm+BrMUpSWe6ky4WrarqNiANmKSqah1wOfCMoij7gJ3AJqDRlvENPfvss6xdu5ZevXoxcuRI3nzzTSIjI9HpdHzwwQeMHj2a1NRUrr32Wnr06HGyTZXOAFUWEQiy2OuJCBTZK3kV9Sd0rtkmZi1sDm/BaYvdeUYtg2gt7i3iVRWySmt5ZFRXQvz1PDa6G30TQhnTM8bn+E4RYheezCa3lpck6Wxg0IlLvc3hPM0tOXFmS4NAkNq4Lw/x1wNQVecb9H/ml138b3Umy/YVAZBfKSYKVFVlc1bZnxKs+eeivVz0z+Vyt0pJks4adtf1Qq/1/iwu1J95O/LZlVvFf5cfOk0tkySptehacrCqqqaj/n5Zgz/vBIY1c95XwFdH/zw2NpbFixc3+W+NGzeOcePGtaR50hmsql4s77Krds5LjABgwc58HhzZ5bjn1trqQPEuHwg2io91db0dY8Mr2F9AZomZQIPWM0s+qns7QMyez3pgcKPj/Q1awgL0FFSdWNBNkqQzj7vG3pkUCKqx2FGOkREUZBSBIHfGj6qqVNbZPBsFuANE0zdl849LUlixv5jHftrBhzecw/jeMY2e74/4cJkYEBVUyn5UkqSzg90prhcajfe6ERvqz94CUfGj1vrXm2yVpLPNH9k+XpJaTZXFu+a4Q0QAg5Mj+HbDYepO4EJTZxPnujOCvAOEv97ysMKqes7v7C0CnRAecNxzIk1+LarJJEnSmaXe1Y/aHGfO0iWxRbFotzvI31CQK+Dv3hhgxuZs+r60hF15lQCUNOjT/rc6k61HygF4YNpWXpq7p9Xa6XR6X9O/6iYFkiSdfWzuQJDi7ePcE60AO3MqT3mbJElqXTIQJLUJNRbf4nMPjUyhsMrCZ6uOX9y0zi6WhnkygvzdA4S/VsFom8NJea2N7q4tPgH02uN/xSNMBkpqLOzOq2TCB6splNlBknRWqXHtCmi1nzkZQWaLHTS+u4Y1FOzvG/BfvFvsDtZwlnpwssguLaq2cKjB8tcv1mS2Xjsb1LL7q25SIEnS2cfhmjhQGmQE3TY4kXsv6szfRnahoKr+L1mCQZLOJjIQJLUJNTbf4MPAxHDG9mzPf5cfanIr+W/WH2b8e6tQVRVzMxlBR9eOONu5C8FGBYmt4jtGHD8bCFwZQWYr13+6nh05laTJOheSdFYxuwJBZ1LGSo3FjqIR14WmagS5M4IKqyzM2pbLqgMljY6JDfGnb0KoCHTnemevO51g33giGk44VP7FrjmSJJ29bK4AvKJ4A0F9E0J5Ymw3ol33mbLPk6QzmwwESW2C2eoNBLmLed57UWfqbA5WHyxptETs2Vm72J1XRU55HdWubCKb01Us+qjaEX8FNofTk8kTZTKw68XRLHxoqM8xheZC3t/2Pk7VNysg0uRHbnmdZ0DzV8ukkqSznbtmmLt+zpmgoq4OxZUR5N4RsiF3IGjq2iwe/mE7VocTrUbxOSY80ECkyUBGsRmz1UHfhFCAVq0d13DC4UwKtEmSJB2L+566qf7XXaxfBoIk6cwmA0HSaeUO+tTZvFk/dXYR2OkZF0KQn443Fuwl9bmF7MptvB558Z5CUEQmjPti5b5AVdT9dereDHptKRM+WAOIwI7JT4e/wXew8+TqJ/l0x6fsKfWtjxFpMmBtUES2zNw4A0uSpDOXOyPoTOoTK+q9WxM3lRHkDvgfKq4B4PExXfnitgE+x0QHG4kI9CO3QlxT7hySyHX9Eyivbb3XoVpmBEmSdBayOVxLc5vof0MDXPfZZ9DkgiRJjclAkHTazNySQ+KT8ykzWz3BH4AqqxgAaDUK5yWFk+/aiWXR7gIAHA2Kc7786x7PrLF79iLSZECjnN4dXFbsLz5lW2uqqkqp2TuwiTT5NXlcvV28Hk1lBDXU8LnaGlVVuWvqJpbsKTzdTZGkM4Y7EFRuPnNu2svrxM40GkXTZI0gP50Gg1aDzaESFqDn/mHJDO0SySOXpHiO6RAeQGSQwfP3mBAjYYEGys22VttGvmFGkAwESZJ0trA5m8/IlBlBknR2kIEg6bT5el0WALO352J3ei8mVoc3EHHfsM6eP3+w7CDbsyt4bvYu3ydSxLnuQJBOq6F9sJHcct8C1KfSrV9s5M2Fe8kuq0VVVVbuL/bZXaY1HT0j464RdKI6NNhZLCLQ0KZ3EDtQVMNv6UXc/92W090USTpjuAsa11jsnqDQ6gMl2NvwdvIVFhEICjGENLlrmKIonuVhYYEGz88eHNnFc0yH8AAiAr39YfsQIxGBIgPSXUD7j3IvB4sP8ye/op6nftnpqdcmSZJ0pnIHgJrMCPIXfW5FK2ZXSpJ06slAUBtgczjp9MQ8pq7NOt1NObUUUc9hxuYcz+4w4BsIOrdjONPvHsQz41NRVXjsxzS+23AEgGWPDhNBD03jdcyxof6e5QCnQpnZSn6l999zZ9nc880W+r28hFu+2MgPm7P/lH+7wFUbqF+HUC5KiSLQT3ecM3yd3zmC6wd2YGS3aNoFG9v0IGZ9RikAUc1kPUmS1JjZ4r2RL6q2sGxfETf9bwOfr2693bNaW2mtWAoc4hfSZEYQeOsERQQaGj+oNfNT1oeEBHjrBkUHGT1Bo9bKjnJnBMWH+bOvsJppG47w6crj73YpSZLUlnkCQU30vyEBMiNIks4GMhDUBhRVi5osr85PP80tOXUcTpX9BWLGNz2/ypPVA97MHrdBSRHcdWES15wbz4GiGjQKbHx6JImRgax4bBgjuoU1Oi8uzJ+8ylMXCBr8xu+c//rvnr+7Ylzsya/yZOzsza9q6tQ/zB0IemZ8KlPvGHjc41V8M5MUReH1ib34320DiDAZ2vTSsK2HywGw/0nZVVLTquptHCmtPd3NkE6S2WInzHXjXlhVz/YjYmfAvFMYLG8p99KwUL/QJmekwbuFfFhA40CQX/QCpu/7DrNuGwAmPx0GnYbwQHFOWSvNZLtrBCWEeTMr66yy4L4kSWc2hysT89eMX9lXts/nsSA/HYry19udV5LONjIQ1AYUuQbybTlN/2hL0wv/UOZIbnkddTYHSZGBAPTSHvA8dnQgyG1Ap3AAxvaKITrICECAQYdB72h0XkyIP9lldfx7yf6TbmNL1Nm8AxWr3UlJE1ve7yus/lP+7UJXLaR2wcZjHueuidHc7DqImfVjFYt2OtVWW1JxMspdQbWiagu1crB1ytz42QaG/nNZq9VVkU6tGoudpCgT4AoEZYtAUFveWbHSvTTsGBlB7mWtESbfQNA/r+5NtxjRH4ab9Kx/ciSzpwwGvP3k4VLzH2rfmoMlfL4qg6p6G6ZOn+IIWu15bOq6w+zMaby5gSRJ0pnCvSS31l7L1XOv9nlMo1EI8ddTIQNBknRGk4Gg06C42kKpK1BQXG3hxbliF6czJcmhotbKnVM3c9+33jotTqfK2oMlxxwoHiqu8dQFyi4X2QUjukUDkKr1Fla22Zsu8nxpnxgeHZXCm1f19vl5vcMVSGuwNGxAJ5El9O7SA39abZ6mVNfbKKyqR1W9xfTcNmaWMWtbbqv/m+6MIHdw7HiaC7QBxIcFkF9RT11NJeaixstGPlp+kJ7PL2qVdOBaq53MkpYNxhoGoQ7/iRkqVfU2np+9y1NP5a9up2vHPvdn7WR8uvIQd03d3FpNkk5QjcVOUbWFczuKPjG7rJaNmWUALf7+nSo2h40K41xABIKaqhEE0N/1O9VZfQNF1/RPIKWdCHxp0NA+xEhnVyCsa7sggvx0bHC9Bifr0R/TeGVeOp+tykTxz2BJ4cc+jz/y4/Y/9Px/xKLdBZS34cxOSZLavmNNGoK4x5W7hknSmU0GglpLC2bKB7z6G+e+8hsAr89P98zOiqdp/DwOp9qq2UL1Ngf/XX7opGdEc1xFmA8UiW173196gKSn5nPD5xtYn9H8zfWtX2zkudm7ya+sI7tMDOKHdRWBID/Fu0TBWrSnyfMDDDqmjOiC6agaOO7dsBoGOEamtuNf1/YBIL3gz1mS5dbwPSuorPe8PtcP7ADAD3cPYteLo+kYEcjMrTmt/u8XVtUTaTJg0J3Y1/lYgaBuMUHYnSp735tI4Ed9qa/3HfjPTcsH4Pe9vrt2OZwqu/NaNgP+4LRtDH97OfW2Y99sNGS22IkL9Qcg608cxH66IoOp6w7zw8bDsGcOOFoeENpbUEWt1c6D329j2b6iP6GVp94rv6ZjsZ/4+9XQa/P38lt6oScILp0a7iWpAzuF46/XMnt7HnU2B3Gh/mSVmttklteqnNWgE8tAw/zCmu2zesaFAE0vFXXvjqhRfPtFnVbDgMRwVh8oweZwNjtRUG9zMPiN3xnzn5VN9lHu7etpsNR25WPDeXdSX8B3d8tTqaTGwj3fbGH6pj+nJl1zLHYH36w/jO0MymyWJKl5zmYC8G7JUSa2Hilvk9cQEPVXT1c/LElnChkIag0Hl8J/ekPedshajX3pK9ibGCyZLXYemZHm8zPrUTdNVXWNO94Plx0k+ekFbMr6YzOYbkvTi3hz4V5GvrPCpwPflVvZZIFls8XuM+NaVJhLFBXoNAo1FjvvNFh+1Wi5TuEeeCEEsjd5AiQbMsrILq/1bA/vhxWtxjt7aSs8alew47A4xMDy6C0uz+8cAdBkcOqnLTnsym2d1P2GMyKfrMzgyzWZ/D97Zx1YZfm//9dzet0bMHp0d0lLt4CiggKKImJjYCDYKCoI0iDSjXTDRrMxNtjGAtadrHf6PL8/nrOzjQ3Ej/iJ74/rn509eT91x3Vf7+ttp5TzSp9GhC8YQvfGHjiqFXSo58rNlALCUwsf2DhFZxb9pbJlFupQe53iROKJh9reaK5hUGWUnk2LWs4AdDRIyo1rl05V2czN6q+x3D+OrErqkHkHIhi59CKp+Q+v0jkTLZEjf4VAyrJbibb2PAAS71EExeWUPDKja1smoMzTsOsFCPjuL+2fV6Jn2JILvL3jBodupjN9w7Vq27SZf4IvDt16JOV9KFz+VfoWjX9N1VN5EHwkPIOdNQ0wLWYozX3gcRQyyTjr3O2cB25ntoiPlViPEFEZRQjyYlbeeYvaHjruZJegVsiYPaAJBWVGdl5LwWS22LIc/jeg1FDRLjqoHDBZTDXOTndu4MZnI1vy+ahW1daVe6EJglBt3cTOdUm+W0bTT4/R5wf/GsmgzEIdaQVaojOLa2wXc0r0jOtQhyXPtrEtq+9hz9gOvkzt2YDsIv1/ZICUlFOMHHOV+vnfgc1Xkvh6fwh7L9c8kfMYj/EY/1uw8OBJn6FtapGaryXMGgarM5qZtPoK161ejv9pPLHwLDM3/99XId+riH2Mx/greEwE/V1o82H3NChMhlOfw4HZKC4sYueKedU2Xe4fW1URcmU543JWIaOi05uYV4rOaObF34I4HiGpLy7HSQOspWfu8K9i17UUfj4ZYzsHSLOolX1rRi27yBMLz1bZz2S20Hr+Cab+FiQtsFhof3Yam1XfoZQJnIupOqgrvbdCurkdgOSL22yLAhPukpqvpbaLBqWpjHCvzzFU6qz/q0TQvbPGtV3sqOWsISy1QnGVVaQjvUDL+7tvMmrZRbKL/35nudzsGySC6WRkFjP7NcbDUY2TpiI8rJmPE0U6E6N/vcjnB+5/jcOWXGDUsov3XV8ZyXll3M4qoUhzjPfPvV9tfWZpJtllEuFSPiCqFmYRewa+qQUp12joYY9GAXmiEwClUWeqbJpyV4uno5q0fC2f7AunsMyIKIpss2ZyS77PQDI6s4iGc48QkpxPeoG2ChkQmlxQ4z41waSJwEgRno4qEnNL2Xs9lc8PRGA0W3jyp3O8sD6wxv2OR2T8pcayRGdiivwUQ259aC3k5r+k+rscJ2U3OxWZVeP6Ur2JEr2JDZcSH/qY5YhMLyLQmj3tXqTmlzHwx4CaB/QnP7Ue4ABcXgYWi3RNt/6A0pqPV37MyvgjNM2mCjJbRE7cyiT7zDKJDH/Accr9XC7GPpgw+vZoFK3nn8BgeqwseBSIzCjCyfs6twsicfSUCMn2dV2Z1LUe3Rq5M3dfOKvPx7MyII7Z20L+w6WVkFcqtVHtXPuhkUshr+X1fGUIgsCMPo3xrsEfrVwRVBNGtK3Ny70bAZBWoCWhBnVsZdP89AItB25UhPVqDWbulhpo6uNEvxYu1fat525Psd5UYwit3qAnJiYSClOlb/AByCzU4R+d/ZcIOr/9ozivfoec4n9eeXc2OssW7l2ak0SYegZDLj4Dpv8+1d+FOzn/1RkxH+Mx/ttwryJoQ8SGKv8PaeWDs0bBF4duIYoiMZnFBCbc5bP9f60P/0+gWGcku1jP6ahsojKKKNb93wxh84/JpsOXJx/JWOYx/v/EYyLo70LjSnH/L7nlNRwSzkF+IgB9c3dxOVYagIui5J+zK7iCBFJhhBOfMCh/J8/K/W3Lb2cVszIgjvO3c9h8NQmoSP0bmHD3X2Z+P9wbxtKzsUDVkJphSy5wO6u4xtAzURT59A+pQg+yqpGSzm3EoySGFrIU6pniicuRwsNqkccPitWUFhdUVEgxx+DyUgCi4+KxV8mp62ZHQm4JqflaKcQndDOq4mR0lYmgzHAoeHhZe3lo2L2KIIB2dV2qzFZ0//YM/RZV3O+wFGmdxSJyNDzjT2WksdnFxOWUUFAp48y9FfDHw1vw1sCm1fZt5FmRVWb39dQaDaUfFjGZxeSXGui7yJ+0gornuTN6J0fij9j+H7xnME/ufhJSr4NB2s5YnAknP6tQhtzaJ/1dPwjFV24c03yGI9IMePPCC7Zj6U1m0gu1TOlRnzefbMKZ6Gzaf3mSxafv0EJIZrlyCUUpVRUuoihyPSnfRhiuDIhj1pbrvPbbeeYqtuNOkS0l/J+h8ux6Qw8H7mQXM2f3TTZdSeKSlVy4lV49DDAqOYu8HbNZuvMIhO0GbQF6k7lKSOa9yMvN4mtlpU5PSZb0baffgHzpu9wfmkbLecerKGZ+OhnDW9tDWXL6wSbl8Tn/Qlhb2G64tp4RSy8wac1V6X7cE7K2PSiZ+NxSdl+/JwQx5ljF7z9ehZOfsXfTL6RfPywR2YErpXUWM2x9BoLW2jZPzdcit0tg28vd2NQthTqpxxm97CJ3Sw1sC0xi5ubrpAQfBWMpRB+6b/GLrMbEgQ8IH8VQxr7gJFwplrIJ/oex81ryPxqC+O9AZEYxno5SU+/tJJnz13bVIJcJrH2hCwAbLycCEJZaWKUtmLYhiIE/BgCw7kL8v+2Z5JZKxMdzjZ5HHXUYAO2+GXD34dPdlxNBVSYIyirevU9GtOSDoc2BmuuNyqTB6nPxvL3jhs1TKcOakbKOq8bW/lRGXTcpfDXl7j1KIpOBouWDaL69JyxuDVeX37f8OqOZqb8FMf33a/T5wd/m6/RncC2MwlfII7eolMIyI79fSvjHfPJe+j2YDQdPc2fhE/je2YpaMOGuT4OvveHO6b9Env+TKNIZeWF9EK9uCmbELxf47eLDv0d/BoPJ8pfCmx/j0eBIWAZfH36sPvunYDRbqmVr/Pn6z1X+d7VX8fqAJoQkF5BbYrB5CNqr5P+2ctYEg9nAj0ErbNmIh/9ygadWXP6PlumfwrWEu+hNFu5klfyni/IY/6N4TAT9TRTrTUwKasK0lNG2ZctNY6gny2HZb79jMlsIuJ3DwvXbeEO32qb+eUJWwZg/7R7PnS8H0UaRSkl8ENEJ0kDTQSV54WQU6qjjosFgshCSXLPk8mp83kPJMUVRJDcni589DlDbThqYxWWXkFOJlIiKiSElLZ3Y7BJ2BkuEjLeTmtzCYgT/b4i11MEsCvTWXyA4LJx6zkoCmuzgGcU59MFbOfr9C4Sc3QPbnwN7TwD8jHdY6XuSLzTbySzQklesY5zlNByfC4BBEFDLpMwvRpkMtoyXBqMPEcZyP0UQQPt6riTklnI96S6xVk8jo7mic3omOptinZHd11N4fWsIO64lP/Bcg34+z5M/naPDl6dsXieSCkZk3YtdiP5qGDP7+SGTVQ9H6N3Uiwmd6vL79K6YLSK9vjvLL6fvsPZ8PHutA/eH6VCKosjQJecZsuQ8AIK8YrDxdeDXzL0wl7CcMMirMOBm3UDIjpKuP3SzpAhh6WPoAAAgAElEQVT5xgfOfCV54FRCI1M8asFEvKUWjYyxsLgtGMpIy9ciipKyY2IrJ/rLJDPUpWfu8LliEyPlQXQJeq/KsQ7cSGfCysuss3a8I9IKKSoq4n3Fbl5THOLXOsfxj8mxZc57EPSVFCLNazkRUklJtPZCPAC1alAGmK5vYrLiDB/FvQD7ZsC2SRy6GMK45ZdY7h9bLXxDjNjH4pwZGEQ5R83dWK2eLq2ID4A1/WB1XwB+PnUbrdHMq5uv22bfl52N5eDNdOJySqkhIsWG2BxJiadRPqAKNhmkkL0Uqxpv3ww48h5yq1w7PfQ4xh+bY9g2BUteAsl5ZeiMlurHvbUftj9b7fBPJXxBncNTpGtODpQGbdFH4M4JOPo+ROwFwD/tKPYNV5OU8Ct9wz5iuWop+VkpnI3KQhaxBw16muglAlB7Y2+NlyKKIkVaI/YqOWkF2poVDqIIawcSyrMEq2dxO6ZSJ/+esKAjN9PYcy/Z9YhRpDPy0d5wJq+rWWX2vwCzRSQmswg3R+llrOcmqVee8JPqZRd7Ja72yiqqxsqqvoCYHOJzS8ku0vH1kSiG/3KBfwdyS6Xvo0nWOeySrgCgv3McAhZCdjScW/Snapry0DBbKGx8APzQCGKOAyCXCbzatzEquYywGkjhymbL5SRM+XeeZL1HtV3s0Jqqh401tGbDrOJPdzceMm7gVRhGrKWOtOzGtmr73kwpoKDMwPnbOcRkFfN057r0loWjPvYeFDy4faJS2K+6KIGpG4JYcCiSiL/o3/ZX8IL8FE11EUzU7q66YusESlcN4tzv8zAkVw/PsFhEFp+6XWPY3aNGOZkbnJRPZEYRXx6OfGTk2FMrLtHy8+OP5FiPHMmBpK17nne3XyM+5//WQHH2thDWXUx4nD30H8DdUoOUDEaoeYK4MhpZ67rK3p//aSJof+x+9iWsQ+VxzrasvP//fw0xmVJb+d8S1v0Y/3t4TAT9Tdgp5bSv58Jnz/bnXcUnTFUs4lfTOHSikqfl58iPucDGi/EsUS5nmuIkU9ykwXhvWQQ6UckJcxdalQWhXNuXw4oPmR75EovSpzFEdo3cEj36uyn8oP+KBc4HqS9kVQnTKCwzcj1J6qB+fiCCuXvDMJktfLwvzFY5QNWKuyQhmLXZkxhfupMLrl/wtWI9H209z4KD5UoOkSbbeuK2tjMZBdK5ujZ0I7tYz9Xt31FflsNXpheIUHfkDcUBNhVOZ5mwEE3qJQCezl/HNMVJWlx4C4udG4ta7iK+1Wz8hDT6Zaznyfxd+BRHUKcsmueyfpROOe0o+rpdcFBJWV2MPV4DmUIajAZ8W+Osot6sJ1crqUAepAga3U7qcE9YeYUvK80eLa93ltPqDwgICqXnd2dtbHpYSuEDOxZqDKxW/kw7IY6IW2GcCr1D4IHVXNO8wZNZ69FkXr/vvo5qBT89057+zb3Z81pPFHJI9V/DsqPXmLP7JqIo2jrFnhSy55c5PP9rVY+eYp2R+dZnVT4oEeTVFQuJGSGwrFON5TBmV5LtXvgR9EXQbhK88Ae8WEEKnavzCul4SWGPgStt5/Nx1uAd+C2/q36gixBNMyGFXvJIMkU3PMtiqwxWymeIyvfNLNIx07KdlxWSQqVn/mG+la0m+FbUfe9bxbVXPJc3BzaltUMhO11+xYsCLsVKqqISvYmsnFx0536G4kxIvkqziMVVD5Rylc7BUsjXohMx7Aquqj4zBm3AnSJeN77D68Z3+L7wSUSlAxx+R9pAVwDaAhvpdP52DhsvJ1ZRUsgEqvmWVM54Vt4pURuL2Lp5LWLIZpvSCLMJdr6A+EMjKWRv/WCMaRXeYlPkp3laHoDvwWdRanNR3T6E9tfePLtoN2eipFA0XWXlYPQRcPCCV87C61c57TSOkfpvSRG9AEiw+GBJugybxkh+SAC+neHQO6ArJKNUuj9Fkb/ZDnlNM5umQZ8yOe0rNqu+w4USUixeKJMv1hgepjdZMIgldG8ikdsnbmUyfUNQhcJEWwA7JkOO9B4oBAseV7/ly0ORHNr0M3zpjnjsIwAsUUfpva8La/fcX330MNCbzNWMr8NSCxi25Dz5pQbirM/oXsVfbon+fyY1eEJuKXpLEc72EhHU1MuNM3P68XSXurZtytUr5aF7NWUSqxzKeadSOPE/pTTJK5PaHo/4o6itkwk6QYCkS7BzMvh/bQs7vh/K2z2D2UroXP9d+lvJ70spl9GriQfbgpJt1x0SGkxIWJg1NKz8GNK3Xa7i3Ho1CRc7JR0y96CtQQXXzNuJ2i6aitDQvDhY2hE2jgFgsuETLjR+D7IjMeQmcvGOlHEzMr2IscsvMf33a0RlFCMI8MWweixTr6J99h/EbHyTTVcSaw4NNRttimQA7+KKRBTpDyJbLBabWvSbI5F8fTiSLVY18sOgoyzW9vuuW9WMng5ZwfRLXErCxtd4c3tolb5IfGYeK85E8c6263BtnRQq9w+hpnd63cX4R3LsW+lFiGLNiT7+ozAZ4Lch+KYeITPc/75hyv/L8CKfyJTqocYWi/hvzRb7fw1Lz9zhdFQ2glB9YvLeCdc6LlL7kV6gs2Vy/beFdeuLH6g6VKmLq/w/YeXl/77v9G+i3N6j3IP1r2JHUDKHw9IfZZFsyCnWP85e+T+Ax0TQ34RCLuO78e0Y28GXdK++nCvxRYuGy5bWjJdfxGvXGBol7aaeTOq4zXfaz49tU3hZcYwbYhMuW1qjNpdCTjQnPKeyRDaVJIsXa1SL6VJwHF3gRgbKbzAk53c+UOzEI2Y7XFwMYbv5Zt8VJqy8QlxOCUl5ZdzJLuFSXB7bg1LYF5oKZhMlcYEkWTtBMiwo9ryIwqpKUuTHMUVxhqnyk5y4JXUS/IR0lIIZR8qQReyhrRDPGMcopsuPMSpzOefNbflo9mxaDJlhuwcd9BXkh4NglYaKpWy3DGb5pUw+TOoKgIiASabhU+E3tvGxtMNLJ6DhE+jVjjipJF8ao0cTeP0KNB0CN3fATy2kay5H9FFm/96VAbsGABXp442GUjj6IZz/0aYgqO9hz6opEiFSPqvb0s3MyJx1NBHSGC2/TInexNnobGRY6HhjHhtWfI8oilyKzeW1zdfZfCVROr7ZwghZIEPlwexXfU7v40MZuL8rS1XL8SIf4dz3sH4wpAZDyjW4ufO+703H+m780r2URco1bFFJA5PYtCwcD89ij2oBwZpZTMxfxytZX1XZ73BYBpuuVO2k10QE6WKrzlCaRiwCpURcGJuPkEiBGWdgzm2YHQTjVoHfQKjV1rbP3QbD6GNYiqV+L8SIvTbVmKejGnIlv6qljQMZLb+CWRSYJ7cSJXcqyKv8sqqNwM+K5TxrspJNwxdh8WnNJEUArrHSshK9iUE/n6vRGL0ykeLjrOZA6wt011/mQ40U2uZKMUss32H8tTsa/y/Qr+gLe16mWHCil24p7XVreLfBPkQE6pWE0cLHEWeNgqCESko6UYSsCHaa+vP05FdZNaUTMpmcw8aqpFpp6F6yKhEER8IzOHizojF9qmNdujRwr7JPRoEWs0Vky9UkjoRlIMfMWtVPTI57H+HgG4grepB89CcMN3ZC1EEEQ8UMVql/hST7C+VGFinXkCb3pbNuJSP13yJYjLyn3IPr3TBcKbY9q19O36Ew4Tqlnu0lcse7JWscXuOW2JCJhvm8b5zJAtM05KIJEs6DWyPo+gqM/FkiCIN/wzdT8okSAQYtsJWjffYBALrKbpMjuvC2cTYKwYJ44PVqIWuFWiOOTRYSLL4LwNdHovCJ3UnWmomIefESyRYjhTQ+r1rKL6anGGi6QM+gN1DfkUKDhMBV3Ny/hJDT23ARyliiXI5oVQxGphfhH/3XMrP1+u4sw5ZUVbisv5hAdGYxh8LSbWSdRinnTFQWaQVajGYLM79dwQ8rVmAszICcB4cA1gT/6Gyyi3WU6k0cDc/4RzvNx+L8cWz2NQklV23L/Lwcqxgo13WVCKAJnSRyKDqzmODEuzbDdJB8oWzlt2bAu5NVTMvPj7PzWjKp+WUP7GAfC8+g45cnH3r2Pl8r1Wn2WZGo6/cCQN/rLShMgTwr8XDobamevRfFmXDpFyzWiQGDxSCRJLdPSuszbkBhxfV8P7YZH4i/I24cTcmZH+l04Ek67evD9Zs3Oad+jwmKS7Zt80r03Ewp4HRUNu91VaM5+SHagG8qzm29BzKZwJBWPpy/nSM93zvWc5u0GEQ5WbgRZGgIwL7jp5iyPpAfT8YwYqn0PoYm59Mj9EM22i/D/sw83MR8Yix1aXD3EqGHVrFg7U7pflvMUCTVOyWLu8CvXWxFeUKoII83XUniiYVna/aRuPATfFsH48VlrL2QwKVLAczbH0bhQ6SFHqiMoKMsloPOz3O7/iTcx3zDqtpf8bR8CeaP0xmh3sg603Cam+8wJvI9irbPYNGus4xdfolaW/qxXfU13fMPwpE5EhH8APyrodSZhTre3nGjyrL29VxZGRD3SAeFuSX/ZQOehPO2n6uUi6mbvP+/JlTvX0VibilagxmzRcSLAq5pZtNg/1PVFKPtvzzJlPv4BdqQGgwrn/hL4ab/LpjMFj4/EHF/FYsowoYR+K//lKdXPbqQpxK9ic1XEimyeZtVJ4LK+9vlqOMq9SszCrU2NWnO380MWnZXUnA+CLoi+K4unPik2ioHpaRScrKvWoddT8r/+2X7L0KJ3mQjgFL+QqKWypi7L5w3toU+ymLZMGvLdd7a8c8c+zEeHRR/vsljPCxqu1SEpSwzPUWCWJuXFceYL1snLez9LvKLi5mYLc1sh1qaMHn2fIitB061SSt9giWHI1nBQA6q5zFKfwRltIxASwsaN2jA6JQTEHsVrP3gjwUXbgkfcmFPGHMIJ0vuysbL3vSX3SAz2YL59DYcrywlxtKU+YrGlKHGriyd1aZRTHpmMq5lSZw/spXnFWdZZn6KyfIzTJFLae2LRTt6h39CbzXS+ZRw3NyVt42zifF1gTrPY67flQ+PZzLb5SKN63hz9sQBehgDuWHxo7PsDosL+wMQnKditPA1HzzVg8bhS2mXIg3685ya41G/BwBakxZnlZSxymCxdqhaja3oQJ9eAL3eltQYu6cSWL8WAOboI7YZCmNeLKRZB3bFGdCoH1iMDFM60MbXmYi0Iuq5aTg2/C5YbXHmKPbwiuIIhwt60lCZyQD5TSgI4PbmbCZHDgHgTnYxw9rUpiAzgTcVfwAgE0QQzWAdTyV2/piGtX0k752gNSRE7SVDrqBX08FgX5UQIM4fjsxh8F0pdKudLIHxiktoNn+Ojz4Wn0r0bB9ZONqCbOwKboNXCxpe/oQpck/2mPuiQw3AN321fHNPxIA28SKVh1wFbcdDTgDkhmNs1FciBcrh5FPx294dmg2Dhr1xFx0wW0QWxdXnI+UOWl6eQ11hCF6OKsiW1FXeBTcZLRO5ZGmDa+v+pNzyxif6BKquLwOQfbeQjxVbaebrzZ2mL/HURWlQdaPJ63To/iry7q+SMr8prnmSSe21RCmEb9LqK+ya2ZMuDSvuXWmlgakh7TrqaOk9eooAVMoyxsqlDtFNS2MOmnvxuvYgaOFnu3m0adUadwcVO4NT8LWbxvuWDfRwKyLO2ZvblRQOlGSh0t8lSqzPe34eOGuUrHlRxsKNo+inDuFdcQ5vi5tpd/I9xpqextz/PcLTS7h2O4WG++fwurwzvmM+ZUKnuqgVVXn2/TfSWO5fEa63RLmSbrIYtpkGctLShV+UG6kf9KVtfSvdb3SQxTJefpGJsfulfUzjGdvel+LkG8zJHU0eLuSJLpwQejFR7s9E+XkSLD7cShpESfxUVp5O4w11PCsL2zMuvwwXOyXhaYU827Ueno5N+NXfDYBdtebwTHtP6Pl6RYHrdoXTC/BwdQGVC2LLsdD7XWgzgdVbdzAzp2IAvNT0FCFiM741Pscnt7dTunEiO2p/xNQh3VGcX4hL5DEER+m7XqX+hSZiCk1k6SBCwZapuOaHcVrsxg5jHy7rPAllNH1k4QyWSyTzfnMv+taB9jfmA5AqetJSloL+5JfEdZzL28u2IwKN3ptMQy9HHgZ5pQbySg1EpBXa0pDXcZVmN4MT822/i3UmXt4YTNeGbnzje5m9Kis5u3ghFrka2cepoFDVfBKzCQQBZJJUvkRv4qWN12jo4YBMgLicUka0rcWKyZ2hJBsOvgmjFoNznYe6hj9D9F3pO80zSLPm+tLqZFm5ImhgC282XE5g0QkpqUC7uhUmyJfj8uja0I1CrZFvj0bTqrYLGYVa9CYLpgPv8KOlOc+8NIdeTTyrF6IwjR/3XsROpyM5IZYWzVtIYap27lXqnoCYbA7eSOeVvo0p1GpBDiqLCY1bQ8i7hK71GKjdFXJvSwrGZZ3h5jbwaQXJV0CmhJijELgKAIuPF9jbSYqgtBDJw6r/x5IiKPY0dJ4KgE/iQabLj0ExcKFiUmNd/nQQ4CfFcg6buvKGYj8TzgSwze01XO07ozf8xrvenkxw7wB6KyEYdwaaDAKgayN3Nl5J4kZKAa1vHcMBuG3xJcjSAhA4n+/OHECbEQXU4VhEpu3cXYQYupdaEzfcuEK+d3dWpnZmiWoFi1UrKRTt+WFHYz5yOAIhm9COWoFjSaJt/yBFZ54UQ1BhxIDSZl5/K60I7xb3hM8mWMMnLi5mhGwyK1RLmW+cSmhKdzIKdaw6F8d3T7Wt+mzzkzD5f8dv8u0UanwZ8+bPoJTeozo9mnBteyhTNoYTWaikkGFMlJ+nuywK59shfMAe+lha4ihLpYsMahmt6rqMG3DpF8iMAEOJdB87TQW5gqtRSfy4aQ9vTJlE/9Z1+Ss4Ep5R5X+1Qsa4DnX44lAkOSV6vBzV3EgpoEM91xozzD0IlUO5k/JK8XJS2/4v1BrJLzXYwgRtKMmRlI+N+v6lc/0pSvNg70vQ5WVoNYZbpzdRX7TjprI9vU1XGRn3JaT3r9r2/xtgsYjE5ZTQ1Mfpbx1HZzQzYukFXuvnx1MdfXlXsQcAr+JISmPO4NByiG3bYp3J9s7fFxF7IStCmoR48cDfKtuDcDoyi/RCLS/2bPin25rMFn45c4fODdwIvnqOpsELaLJgB9uC0ykzmJjRp7G0YVEaJF1iAJf4Xl8Xs6Un8hrsCP4qPj8Qwb6QNNwdrO1ZDaFheoMWLCJopPbB3UGFWiEjo1Bn807L/btG9btehMQL8EE8OHjUvE2UdULx6gro836V7crHBBq1gZ+fac97lbI1J+eV4e1U3ULgfxHl6ly5TCA8TYpmsFc9/LC+MHALPym3851xMisD4rgUnczHozvS2tf1b5fNZLYQllYIovTtapT/2XDBx7g/HhNBjxC1rBJJT0c12z96kxbzmpIierFAuYnSWt1weHI+eDanLHAD61Nqc9p5HLPqeECdDwBob/X4MaDkussQJhetg0I4Yp7G3GbNIcWaHvy5HbzzRyyfaH/kiPpTyML2JHfEpvGsKgBThgx5hlSJtxKSaCePRymYCbE04aDnq8xs1w+AQ4fiWSRfw0/KlUyQS5mqyvxG8Nbt9iyTLSZD8KaOi4qIfAVvG2fTq7mvdCJBQO7djJ9ebAZIHZodgd78lDYMB3cfPu7lxErfrpy/ncOys7GEi42x9/ajrOUESDnIeXNbynouZZj13mlNWnzspUGBTXrabhIkXqwIATjxsa2TX46iXVOggdQxNGmc4T1/aYbz2lpJbm5F97pricCBqc6hsE8ayInj1yKPPUvMjXBekJ+iAEdSRU/qCrk0i/+dUd6dMHm14cKdHLp+c4rtym9oIyskrO8aGpbc4PtAHd8opXCZXxwyiE25xKEOkyFoNWMa1QcgfMt4mLIP7NykWRxdAeyaaus0m+v1Qp5ymZ8VyynS2fOd6TkuWVqjwoSdoGer6jsUSyqMp3sCPZXwgWInc4yzuGJphTxmK9hVfRd1MoHSSh2DPG1Fp+h08mkWBS/C/xl/PO1qGLg9LymZPKwKlzOWjnzEDvwyj7JRdQO3qylStjyftiiywmkog+XGsczo68fZsPa8EH8a4s+xMsEbh8gdzFQegSwYkFVhvqxvNdH2O1rZiu7FN7memMv0DdeoJ2QxTnaJZ1eZiF04FrNFJCjhLvZhv1fs/9sg1BYRXviDst2zGaurmBV7Rb2Iz0a14oNdtZg1tBM7j7swq4MT7w9tzsu9G7FoeTjIYEHiFH5pt5+ViTrMFhG5/9eIgasQgGLXFjhbM74NbOGD/vmxtNtaD4AC4UXmKbfwnmI3lqt7yVHVZal8EJ1ksXSSxaLTNkdjnA4nvubymG5cs+/DdzvOEHQxAZAyFfkJaYyTX2aFaQzHfGYSnlZI9+KWtBSS2ar6ltOWTpSh4bKlDdmiKxPl0uzuZXNrRvWbSXRSAXf2htmuuaDNVCwJt7gq64Rf0VVGFW7FuP0QW1U+yAWRYLMfm1deJqtI6qD5eTnSt5kXm68mUag1ctJuBM/0lNQEATHZ1HO3x7XBcDxSr1EsSooR0buldDLX+uQ3HsO7aXdpKMtkQt1inOvPYHCunjWRo3jNKxz3ZH8GJEYR5bGStucXoREt4Ch9E8OEQELEJmS0ncX1GyGMypdmbleqpnFdL3VAGtTyYlbmOwRq3pDeQXMnVpUN5BPzfPrKw1lrGkkTIY0Xri3HMXAXp9RS6NKJ3bexn/JNRRapW/ulwWXrcfDE27b7ZawUxjdq2UUuzR2Ir6udzQQ+NzGcl2WbCRGGkoMrCWJtspKiaZT5LTcsjekgk8JKZGY9cWGXsPfrQW2Xez7CkhzJU6puF3hmEyANFkWxIlTFzV7J2ehsRFFEuHMSbh+H0M7Q70MeBYwmZZX/9Rd/glIjdHge9r0C2gKG9N1AXI4XLWo70cjTwZbFL+ye8LdODdxo5G6Hx+HppPoPJaPuMBYpVvG04jyTOUPqwSvgZi/N1DYfBgM/IymniLor2nEGE2ig9FBDYs2/02jXQORYYNpRTPV6opAJnA84yb4EN9RKGcX6MgQ7ASWgcfcDrCHALUYAI6QC+Q2A2ydAaQ9XfiVbLmeHsyNvADKlPeXaB4NZXzG73HUG3NgK4buh7dPSssu/UujUhAm5r3JE9QllChdKPdsTll6CI1r6ysN5WX6UNxX7wQRPZm3Avn0TvisMAQd7RvR8DQKs3mgR+2xEUPu60rv8zupDXFCfZ7U4jmXC84zuVIfxJrOkslLD9NL1RMrl7M7pj72g40rjjcjTrlEs2nFxlD/DneJRurXi7OJrHDD3ItjSjE+V25gWPRME6VnZHa4gcI2inLwmT+McPZdmQgoRYmPbutT8Mkr1JnZdS+ZJ5xTq12uALiWEEsEdT10eK1RScocvlBv5fBNEWBqRJDbjqyNRHHu7j/T+5idSd+9YFFrpm0uuP5a2yop3v00daULnijV8rW+3znSwms9/4HaeGWXr6CGrCAWuS5ZEMF9cLGVeVdhJ5GnMUSnZhJ0bnTOj2KPWkXxoJ7S8CrKHF7PfKYjAofHPjPL8ntO3CnlvSDMaeUjkzO3MEhLkpUxac5U1L3SmfT1XvJ3UDySEpqwLpEBr4PCbfar4Gy09G0vPxh7M6i+9r3t+foMWunBWtl1GqUng1+c7gb4Ey7LOyPSF8Io/+NYcvg3YQsXrutlXXWExSyGSDfuAIBCbVYxHWSxuicek9zw+AEudTjTLvMkec1/ONPqUH3PS2Vc6FdmV5TBhPQ80sHuEEEWRF38L4mJsLttf6UF9D3vic0ro09TrT/fdH5qGwWTB25iKtqSIWi26UWYwk5qeSpZrAZPk/hyRD2S4yZ9VW3bywkd98XbWPLxxt1XVTEqQRNjLH/1wKLtYx4xNkj/W5O4N/pSsCUy4y7KzsQhYSNBIShfD5om4x5XggoCo7Yng1UzqT1oxXn6Boisq3NQCuNSHpoMqDqgtgLtxXNE1pEtDN5TyB383529LEwY2o/waiCDd7hcgIxLmJoFMjiAI1HbRkFagtfUvinQm9CYz7+68QWahjn2vP/HgG3UvEq0TuqnXpLakBojRR7DdzdQgaD7cti7XmnVSrtAxvlNd1Aq5LSNm8t0y2wTj7G0hKGQCvzzb8a+V778E5RYg7w1uxqITMWy4lMjsAU0ASQn5xaFbfPNU2wpirzISL+FybDYT5OBMGXOPw3XNLE4cf5fWLy/422VLyC21qZ1DkvPp5VfDWOMx/ivwmAh6hChXBDX2dECjlCMT4HfzUELk7dk9eZzU+HZ4DnmbZ7iwPoh51owl5Whdxxk7pRyt0Yy+9TNwRSIyEn0GYd+mLVnnl/NN6TheVHdnf4GFfNlMliiX40wpxyzdqe9g4lldAACHzD1RY2Sd/cvcLLTHnSKGyoMJsLSnSy1n2znPm9uBEibIL5Ij88Jr+MfYt5uEcmc0PSL98PVw5qeJXZm0/DI+zho2TO923+s3O9bmliinh4s7HZ/oCVT1JnB3UOHYeigzD7/DOUt7VnvWs63TmrQ4q6Vy2cw95Up4ahWMlKTrBK4C79bQ9WWIXAJAfr/3IXGHtJ/GGZxrw8gfpY6+rsIAtF/pCTorkxmRFWRbJrR7BkW7Z3gp5BgGk5kuDdy5k5TCUuWv9JOH8b7mICGO9gimcOrJs+kpj+RT40tMbjEc5zqTeK13GQcCujCqhTOnr1nlqSN+hKDVFTclPRTWDpSIn4JkcG8shdy8dAxc6yMX5HBqHmJeHHvd3qLM7M30eq7M2X0TuWjmnLkdfg56XI2ZOJoLOWvuwCFzT6YrjrNO9RNmQcF6rT3YVWXwdYJASaXOcmUiKDRbkmpG342mt2/v+z5PZ41UPdwW6zFCuY7na6UyJWUBXPwJOkyBthNh8zgATpi7sKiWE1+rnuR58RyyTWMwmMYzVHabXNzwFArBmsWnl24px1tVeElEOvVgcH4A5/b/BrTmDfkBJikC8IHSaLkAACAASURBVBVyMee1Y9GxWxy7lcU+1WJoLHWA9C1GgsYd/AaieTuYQ5cCGa49TCjNOTukPxkFWt4y98e9tDFmSzxNfSSVSFMfJ955diTsksLx+pqu4G9yQP/7auyT/W0diykTxle5F/2be9t+d+kznHHnmzFOdonvOuTgE7nbRggCaAK+hABJ2VOH9Yx84wbtVV/TUJbFs+bPKBLt2aRaiAk5v5mG093dnsTcUor1oK/VmfYZaxGsw9jBrXw4FQmXza3oJY8kUayFj7OGjvUrnrevqx3DBg9E5jyOXoLA+zuD6Xh7GZON++ksK+KSuTUBlg5QpEejlDGtVyPGdqyDt5OG0HmDmbI+kLxSqQOnNZiZtkEKt5k74EnyjXfYbpYBFxAr9WEHtfRm4rk+YIHnJw/iAyc1pXoTreefYL7rQvTZZ1iuXIp4/DmQKbgy5CBEvwpA+Hh/4gxedOpSj9qOW+BKIGctHbleXHFNPf082JBZjFGUoxTMHLV0x5yj40Xm4mdKJ1GshQIzAiLPKM6R5/cUOal3GJq9jr2Lopnw5WFJJbJ7KshVkBeLqeM0BI0zcplQLbX2hBWX2TOrJ3nW8I6hpQdprwhil1qqL456TKNRzhlMopy3+ZDxzeyxV8l5JWIyJ/et53d5IRc/H0N2sZ4nFp5l7YtdGBz5iTRzG1kRhpScV0YrIZHf3DcT5fcSqT4DmHfoNl8djuJ9YxD2IJEJD0EEvbEtBK3BzPppXe+7je6eSCC9IEj+Ov5f25Z1OzKUbq714XBbOno8S6hVXSjDQlMhlTRVY7R6PT08jQy48QbIQyA9hOKsFTgpKsiiukWhUO6NnBVObNOXSF7zHA3kFdpEh5JEmuzqL5VFZo+4ZyZt8r7lG6+zfF60gVjZR6TkedDbcJbzGjMIMjRu0sC6Wvr4ZsMg+jAErQHgc093Ltnb0Wf8FjrW7YNx3xgoScQY/BtkJEkDZwdP6DwdznwB39a2Hap05CZi9yroql/JtU/H4apUsuFIFHUVhfS9OowPlbtIlvmyWDeGxaqVNAqfwXdWsr+KWXTUIWg1Dq6tpa7FzCy7hnQ3SQPBzcYBfDS2BS/0aMCJW5nsC0kjylKflrJkFinXEGlpwLtewbikSQqd7PrDGN61JdASR2DqQAMG9zVMre9K/kV7PG6uZr/rNL7J7Mpnyq3UFu7STRZNhFiXj/QrMTo60NSQRozMz5YgISVfy/fHo0kMPMh01fcAaID5xucZ6JZD45IQ6ncehvr6Gr5UbgSkusetyAzHBjL6Yg/eFbYxWZHPYuME3lbso6hJ1bqyXEkHsGB0K+zVCrYHSS/Vovy+LKIvtTRmynRawjRSnZDsPZD6PY2QEwPPbJTIoCPvSr5O+YnkOrfn/F03JukC4Es3eDUA6lQfvEWmF6FSyGjiXaEKvJK/BZk6l/E9Rb4fPxioCDOLziyyKTd/PBnD7awS/Lwc+HRkSwa28Kl2fICL1gyVRrOlSv/m/O0czt/OYVZ/P/Ijz/CycQfI4cLNNew0jyYoJpn1Pntoq5e+mfwTC3F7aVeN5wApk9+CQ5Ece7sPLWtX9Nk4vUAiyCZugOQr1A3cgMaaHSlJ3oC77h3pmL6fZNGH70zPM7WOM+dLDYRYetElYi/U7wndXqHMYMJoEnGxV9ZcgEeA8LRC2/0KuJ3NxsuJ6IwWor8a9qcKgWVn7yAz6TilnQTAjezX+VYRxfNx/qQV90MuiMS3m0PC9SjeVexl+roRLJk5ukoIeUGZAVf7qoPgwjIjpyIzmZBxA0GmAGOZpDL0qerp9yhQni0VICG3hCbeD1ZFRVqzF74p329bpkr0Z1j5rbocVGV7iyjwquIInKrIFMuoJZATDbpCSLsOubfpKCpZ57cEr9b9GdraBydN9WdeZjCir/cuqtx+GHIkUkUmVA/l1aWHgNEo3TPr5FDbuq6cjsxCazTTyNOBhNxS0vK1HA3PrLb/g2/AQfTnfsKmq4s+BGY9t1z60cTHCbVCuhEGk4WipFtEmtvSWxZBfmwwHpWIoLRCazZgweo151jxDhyLyCQms5g5Q5pzJExSC/7PEkFZxdgp5czq58eu4BTb+wPww4lojkVk0r2RO9OeaFRt3/TDX6PGjVOm9oyWX2GgXBoX9EldBSyotv3PJ2OIySpm9Qtdqq2rCZGVMoxejcv7nyOCskqz8LTzRC77v69kekwEPUKUT7LUs5pubpnRnRKdida+LqidKjpHaoWcXTN7Vttfo5Rz9v1+OGmUxGaX8NK59/ET0unbsTW4NWRj570cDIjj4Copi4q82WB+qzWW5QHxWJBx+LluXFg3jmxcmWOUZgiXj+zE7G0h5ODGFrPUCXqukkQ3C3d2mPqTiQd9Xv4Or0ZS52dWfz/ORGfTuUkdPJ3tAYHhbWrzILhZWWdFJQKicgfG3UGFi52SE5ZuIBhYGf0+tTw/obl7c7QmLY5KR2SCrCI0rBwqB2j3LITtgKmHJAloORHUYhgk7kAhKKqaRT+/U+owJUv3qm/+Hij/nhv1hUFf2DaVWGuB9wY3Q29qwtTfHflQ3MHr2QdpmH2a8dY2RC8q2W3ux/tWwq+euz31xlt9DcqJIK/m0oxbiHR8ceLvCMc+hPwE8GohGQKPWAQ+rSvKOvInBMCam8rmZWRGzlTjXLDyWc5qGUVGC9OfaMgRwxjaOR9HDhTISyClqqm0zm8AJbWfgIhlAOTp8qqlAv0zdGvkzrNd6yGXCWwNTOaYdw+SHD/h00H1JbWWoRjUzpz1mcZztSRiR+fdnlnmTSzKf4u32YdFFLjl9yqeT32AuGkMQnYk6XjY1DYACd6DSSzYwuuFP9FZ2Yx+cknp8qwiAJZ1YC7wjkaDTqzYRz/8e3CSlGAqOwdGDxoIDKR8SFwux199TlJuNKv0zrdq2QaGfgv+39IudiVbVXrkWY4YvduizA4HoGPjqu+6XaUsGFN7NWT/jTTyfMZh90x32F4qzV57NpPCU7JvVdlXceUXGsokD64dKmkAniO68KniA3JxwVGtoMw6izmyXW0WWRvQvbN60qm+G9eT8pmx4TN89QmUqjxx0iiryH8vfDigSpa6JrXcWBE6gK6qa+x2nkqUY3dW92nB61tDWDKpA8MqfccymYCXk5rQ5ALulhr48lBF2XeGF5BgHo2KU6ipSMcN0LmBG84aBe3qutrCIRzUCpzUCo7eLsZs6co69YvMMmwgyGkw3wdbwDo2a9WmPW2tjWvnIZMpaVSP+Xt0YDDRqrYzTX0cmdXfjwmd6tJv2WIMKJnSszEbryQBAnGiL4IAelHOZ6aXyej1BR8Mb8OeP47jfXMGE+QXiT6yDEvyVVrJFDBlL2wczZGFz7O34Xw2Tu9KRqHEkAxs4c3Z6Gwyi3T8EZLG3VIDagwMl18j1NKEFpp87Ax5jMj7HWTwmXE6SWZn3n5+JADarLbMyjnEs6I/6RGu5N6+hht1CQy8yOCkPVgEBTLRBJEHuRKfx6yLXnylOEut0ihqhX1AUps36CK4837wdORYMAsy5DlRUuhUuQLrPjhs7cSu8Y9mcOibNBr+NrQYSVzAZvaFZtB60BQ6ZW0ltCLCC33bp+HSZmg6GJ54BywmCNko+WWEbuFj+T6yZDM4YunBPMVmpitOoPXqgDInHMWRivojHl/sRROXnQYydOpn7N/9O3tzfPnC8iuNkUx/a23pTxN5FrtNfTmpHsT1Um92eG0gr8zMIV17atepz5s583lfvpORhWdAgE2q78lMW8c6Dwsa0R58u6C2ThDc601BU2soiNUMusz6DZiV9iAI6DVOUALG0hxwayjVyyBNJBSlQcZNaca5fi9qdR4De49ShANqlVThzys3e7faK610n8sfqR40kRcz2zcOkAi+MmMlbwZ9EWyTlEYC8BGAHD4xvkyq6MWY9lLIXytruzjDMIfRjQVeTFvAJtVCXIsriAXvVv2qXO6cIRUTR9qRX9I1uDOFmVK/4j3zm1gsZj5U7WWr2BGRdSx2c2Wj9ihvPfMcOap6zN0bRmp+GbHZJbwql9rFVHzIsThxwtyFnblOtPV9hYOjnuCDYA2LBEkd1EseKVmFBMYQplwpvXvmHvxinsCv5nHs9ParUs7KA/z6HvY08pQ+/K/GtmbeAal+Gd21CWsvJPC0bDF9xGB2HNLx0cjXiRaLGXvXTItaMsSuryBYDb775X2M0lzKJEWAdOCDbxIxZAen4sp4+8mmtvqv3GMpceFIWxmMZgtUIrFBUm038rAnNPgSA9zv0l9Wwt1sJ06qVvFF3otc27yd0G7TeG9MD85EZZNRpGN8R1/sVXJaCMkIiESk5hOfXUJjIZ0Bfk6sj5XamJLSEtRH3iLR4kOiWIu5yh2oMeJuLqJt9iluWRoQaGnJS8nHJT8rp1rUhJDYNOYqtuFwdCe8LCkKMeltqlX2SD2GO2JDrppbkSO6EKDvwJ1SXz5s1JWNabVZN3MA7eu5cCOlgIXiB+xRxEPkAej2CvMP3CIirZBj7zziELVK2B6UjEYpo6GHA2vPx1Pu33wzpYDujauG/IiiaFNiFeuMxOeWMknmD9Zmv0PsCjpYmz3f7HPctDTmhcHdSE7tgiznEPMLPuHiOSV1WldMbiXmldHhHiLox5MxXAi8ykR1DnSfBYErCb/mzyUnNTP7Nv7L4YHl0IbsQCjLQ/OEVZ1XlEZiXoV/48JjMayY3AmVogZVzp3TYO+GMfoqnQQDkxT+nDF3xFkopaMqjTfLZhAj1iNDdGeVagn9ZGHo7XxYUjSAIfJgrlhaMbmdEy4FURVJLSpBIxjpG/sDoyNdCEqoz8Lx7cgt0VcoZ4H4PKnfqfY8hyFnOI08HSiUGbjXKUzv6A35abC6H9TvDpP3Mr6TL4esCvJ+zbxIyC0lohIp8dChQcHrkWVVSmYSugVCtzBPv4AQsRnv96vNG/WTOVDWgTHaNCLFdviKudSO3AFDP7KFaJd7zGnNksdSj8YebHqpGx/uCbOZpldWZz10+bKjITdGsq34F2G2iJgtYs3vwT3YEZSMl5OaJ1vWTEqHJOeh9JvHkQQjTbxqEZdTYs2SnE9wYj4qjCSkplOuRAcpVHPvtQRG51xji3kQ8Zo2PGsKYJFSmlCxF7Xoo46jbjkMk9lCdGYxbXxdWHo2tsYy3A+x2SXIBGhey5nAuFyg+Z/u80hRkCyF29d9OOKqMvK0eQzaM4gxDZ9nQe+P/lRJ97+Ox0TQI8SwNrU4eCOddwZJoTz/CgNaHl7QoZ4rU158lcxCPc91k5Qzbw5syoAW3nx+4BZp+WWsmtKZ87dzsJCIl5OaNg28OPXcPuxNZrCaf/Vr7sXr/f0Y0bY20zYEkVtioIFHhdS4l58Hc+NerdJxAsnM+M7X1lkBmcCpd/va0kTeD6/0acye66n09Kto4CsPwJ01SlsjK7dP4FZ+CIuuLWLd0HVoTVrsFHYoZcoa08AzZikM/76a8qXAqvpxUDlU3a9+D3jpuJQRJeYopVEn2WQeyoxu3ihrtwbVPXJroG1dF2SCgIeDilXmybw6dSYJGbm8fSiNvrIw4sQ6GFDaCK/7ou1EGxGkbT4Ue78BELpZ8jvQOD94X8BJo6jyuzxbVpHegr1KzqcjWqKQywDJRLXk0ufVjqF1b0RJ3c5gbVPzdfnV7mvlgX1NsFcpWDihHX+EprI1MJkr8XdRNhsAHayqMI0LfJTEQJmMgdZ9Gnk6sCs4n+XywXym3IrMvQFtJ80HlQPCjDOsOHGd1Y2bVjmPt4sDz2o/YoXqFxsJNNc4gzcU+6krSLOJGlGHpt87kCylW7ZlAroPlHIZPRt7cCU+D3cHFY29Kr27ggA9Z4NJj/zMFzgIMNj4KwMbtqFpxkd0H/US9Wo45icjWrDxchK1XTSc+2AAZouJ9JJ06nR5SZKZPzkfGvaWpPuR+0HtLKV8v76BFIsXv5mHMV+5mbsNRzAhZjBvjBrMzr1hjO1Yh2tJd4nPKWVE29o2j5amPk4IgkCXhu68OqA5PxwHL7X0blTuxMjukZs/160+3x/3YohhEW+1b8qWwc0AiPpyWI2dDw8HNXdLDczbH1HFT8OWacc6K6g3VSgyBEHg6idPVpO6+7hoiM0uwd1BxYhXv+KXDc5syWlODgU4WXkNrUmLozVDIIKAY7N+dG1yg5SQNIa3qcWbT0rvh7eThplj+uFip2RcR188HdX8dEryYvloWAsWHosGoF0DLxAERvTvR+egVfyhmk+H4HkAFDo3I0HRjnZPvMfYSz/z651Q/D7JYeGEdsiw8J3vJQqbNWLIQQVZxTqKS0pY6fgb3qYC3jbO5oeZr1MvOwBSriK2Ho/pqoJVldRhdi8d4u6xb3APW4vbH2NpAIRqgCQQ5Sq+EV9mnrgSdr1AT+C2Wo5KMIPfk3A3ngYRv7KnwlaEDaahTFOeoujgxwS2mItLnabVBkzlcKQMAbh8ai+vqoIQj7zPqsMXmVW6kg+A46fvYC9kAxV1pt7OFT5OAUWlkzawTkpk3UK36zV+Nq1gsCWYcVbPLbucG1CrneSn0bAPR12f4/UrUj32cqdGDPVsgrzX61zYHspTfE4LIYXl9c7gnn2FZaZx/GR6hiOv9+aTfeF8ZfcV1wruojNbaFSqZoh9J14rO4wBJf7m9rSXJ1CLPPSCOypRhNZPobaWtTw7pA1OPpK6wWKCJz+H0B+hOMGWNl5vrSMM7Z6GnvNsnhZoXCSVaV4cbBwNg79AJhN4d1CzKh4voiiyLnwdo7q9RO3SfJwdu0JqPIecJjH7pb6wUTLWz9dXMpvvPF2auOg0FcwGTH/MIqTMG6dWr7CsjgsudtKotp67PT9MbEfvJp7UcbXj1s4EWkf9P/bOOzqqcnv/nzN90nsPhBB6Cb33LiBKb1JUig1RROViFxGvCooXQQERBUEEQUB6Dy30QIAEkpAAIQnpvUw7vz/OzGQmhQTE+7vfu+6zFotkzsyZk1Ped7/Pfvazv5Ic2Z/dKyk+wsdVed0BtGoldfz9iL4nZb6NJhGQ4TLkI34IMzLqz9UIiNQx3oaNPaj3UiQdne6TnZzAqIJDjFJEsNPYiVn6VwFzEkuUVM2CIBDv0ZPNGVGMVkglqZ/oJ9LKpZChJZKXyo16k9jevytLD8XZq1UqoI6HA/W8HK3xRatgd2JS862KxCb+HVEpnuabVZFWQ+eMgjK+HB3O60d0DDB2YKexMzqTCR1axhk/5mX5NrqnXcJl41C+K/gAHxc1EzvWrdL4OT69gNxiHXJH7BMh6THsEF/FOe8O5MEomyn9F3PzBi79SmZMHXbkP8lExSH2Jc+iZ79h7FXPk7b/+A/qKP2Yok6DZPBv9g2nYu5QcuQC3kXJzDfM57SpKV/yPa8rfwfAIMp4Vf8KfUPUkLoXFjeCrrP5w3MGKqWcwS38IS+Zgh3z+CZxpxSh30VagF5aB85+CEYduUof3PTppHRZwJOHJSLOVatkQFNfbl5I5p+J9ejVyJsO9Tys25JzBHIaPI3b5dUcjTzHU9fmMspUSlbBMTzVJog/AI2GVFkitfNyCr4uGjqo70j3t1eDSu+piKIyA3uibrMg6DIODbrx8v7ybWNXRrJ4dDgj20rJnF/O3OarA3HM7u7H0HYNiU0rQBShi+wqaaI7ncv+RWN1Nk66TFrJ4nlLuZlDyl7McVDhNmUJ/FFKaPwBQs9O4rz8W8CdekIqusP/ZJ9/D1KPryX8+W9pHuzB7fhojqrfkA6k40yMV3+nxfn5RBkOszzvdVo3bUSXsJpL1+7nl6JNOozL2SWI4zeh3TFT2iCWgq4Yjn+JIvAr6riHUKQzcjDmPq9tusTi0a3Qm0zlyTCTCX4ZCcBLwEvmIWiN6QnWGfszt2dD9hyQDK37NvZh081e9FRdYbfreH4q6swKndSJ8Jren6ENChh0fzRCnY7Qaz6sG85v7tNJSrnPW8pNzFZs5XzeC3xzOI6vD8ZxZn5ffF00XL2Xx9W0DNs/j+0vt6frb1WUho1aBasGg7FMMiT/PJRuL5Qb6ncN82LtqSRe3VhuEnwvu5D67kr7uNuoJyI+h+iUfKmcqawQ8fYp1hoGstQwHH8hm30ei5EV3ed95c/M0s8i6OwaOHMQdfCbqAUDYwb25OC+fMYUHSNz00v8UWc+EzvWJa9UIucL9fkU6ApwVjnTo6E3cwY05N0/rqIzmIg7t48flNuYqX+dWxlFNPXRSMmB4MoKW4s/1a6SyWgNeRwesJc+XSon82uDGT+f50xiNlc/GvjA94miyLytUmKyvrcjge4O/PxceUVGfHoBzvf3INYv5csT7zPZ8UMK47cx4cskUpFihp+Ui+kZcwXEXKtS4WRCJj/9sYvRaj2XTA14YdwkijevRaPLIanBVIpjD9J08zMYJm1n9sFiht35jLqhbvSVhXPU1Iq1q5cyNtwTbftnHnj8t7OKCXJ3YKbHJfrGf0pZ2lHUfo0f6Zw9Era9CHcjpU7IIQ9XmpicL607/rixn1dbv46vDWH634j/EUGPET7OGra82OWx7a+iNFmrktM+xIPdr3ajsMyASiGzLnDHt5eWrv2bmj9jJoKc1AreGiQ9fN8905Y3t1yxBgcAa6a2t2vLbQvbBWZtjP4a+TkTu2BQJZPcs/P7EptWYN1fQ18nbpVK2QIXtQuiKFJqKC0ngoxVEEEKtf3ixQxLEO6kdCKnNKfSdmQyaDIUxyZDebGa414+sQ3nkrKtctnI+X0pLDWgcFRRv67IKFMSzQLG8d3KyPLzWw0MJgMKWfljVWwoxkHrBV1mPfBztrAlggLdtMSmFeCkVlBYZqBHA28zCVSOQn3lzhKlxlIKbbpO5ZblVjqvdiUND4ClrbRJpHJmooJXg4ejdI3ig0agaxqGqv1UKXAEUDnw0pPdK+3/ieZ+bDzry5jS95nb2YULSVkcSNUQbarHi4qdxJkCeV35O/pmT1uJoErqgCrw8/MdUMgEygwmq6TYDq0mwKGPWGfoR5zBkbiIRLydZ3O2Q98q9zejR31m9JCCbo1Szjsn3mdHwg7OTTyHZpZU/lFmLEMURTRms2x2zgZ9EYs8FrA7zYW3Xp2Nh08YR0Xp+Rpjfm5/erYDF+/kEGJD0tqqpp7pVJc7WcU09it/Dn+b2blSiRNIQf+3E9rw2qYo+jQuJy2qy0B5OqkoLDNYW02D5F2TU6ynfYg7V8wdRCreL1WZEvqbiaDmga7U9XJm9psfMyS9kPSCUmZKFmT2RJAZFvNGndE+8JzSJcT68yt9wpjaNQSVQoZKLqORrzML/rxOB3O9f7CHA1+Pa8M/Nk3ja+W3KDDyZeYT7Pn2JMdefha/E98wXn4YEwIeu3L4SOGE78mD+ALrXLrhF5PNvLJEnCjhS/1oPJr3I9jTCTyHQpOhCMBnIyv8wVp3nIZ9zsJLpYx3v0lyiZIeeukPPeI8lCP36/Oeedg6aGyNp8qAn7IE/z7vwo09EPG53e6+NTyNm3cgg++uo/Pdp3lC9xm7P5hovRfOJmaTtPOfDA/REanegJO5S2OZqERdmMqLrCBF9KBMVDIofzOfu9svaMqMZVWOowD4NkMcsBD1xid5Wn6K7wxDeeHDNWAolciTkhxQu+IYnwWnpRKFJ80Kl/5NfXFWKwj0COBcmhPPGjoSV5pBp0ZBDFEraOTrTLCHA8fjMinVm3BSK7idU8arXu/RzzsGn6D6fHDayNAm/jS7voRUopFp3KDjTDSlUqbaloi0YvxGQGBvWiSXCqTFUl5ZHhHJEdZSMp3GuZwEsoVnfZhz3frr7H72i9s7BXf45tI3HPZszsbRG3mxWMfWi/eYbjFsNSO7RDo+mSCDJ7+226aYeZQOgowOVagMxrQrp5ub9RgOMebOmHU7l5NzD8DHTzVj/KpIRrcNZp253bu7gwqDaO64qHICzwaQexuWd2KR9aAgSt2ORXkTAPhydDjfHUsgPr3QWtY1uHUob+5+gc8M43F30hJfqoIcuOdbl5ntPXmjm7QI6NL2Mp+c3cqi7ouoChX9bVoEudLCbEI+vUf5eTz3Tj9WHb/F8qMJbI+6x64rqZTojfxBubqhZZAr856awtz1YfQp3Ml8NjJBfog/L/vTxddIsVGOzNwRVby5H6E4i/6/OqGtIxFE+SeWIIbeQGg8FNaPxLm4vGQzR+7JVTEUnW9r+jomYkqMQGYsw6v0Dt+ovpXedPVl6Z8NPPXlpS/TEl5lmgo4Dxec+xCZ2ZyvxraikccqTFv7I8u7yyv6V0kQAxlaL4wZd+awoEECvieXojGewogA8fVBV4hzwk4AskRnPIUCxBWdEWwSNwMKPmBqj0Yk5qmAZD4d3oJx7YO5m1PM5guSIq+TDYHsqlWSlFXE2KwQdqig916zj4wMbhz6F56p2+F+tFTaHtBaWhCb57CLd3KYvfECnWXX+UX1qfS5nvMgPxk6vWSvbo7dDUXp0HYqF4/v4ic+JDz1FmLJJhb2XkH9Bk34fG8s9+/EMX/bFfo09sFJo2DLoVMMKznJpCPr2HJtFvmNx+JKIb1kURw2tUZERkyZF038Q1mV2pifeJLmPq7MAXDygTE/cWb163RM30S70y8zUf4cw7RX6JB4HhKXgxyWrZ7DpTZjGZi7GRSQZPLl1zNlDPUcSPOidUxSHISLB7l4PozMF7YQmanGz0VDWx+BxKR4MqIP03HEq/xxNZu4hJtEXLjKr+pPgFIK1o7BBcgRnXA/VN7wYUj6W+z39ebXkIlEx2aQGJNFk/fHUcfDkYi3elNQkI/D/jepSosyccTTrP1dz+X70hi/ZEw47UM86P55Om1Lm5CV5Mrotv6MbR/MqO9Osys6lV3RsP7JLaSa3Pjs5/s82WI/26+kEeynJeR+GrMVW1la1oZ1kVJWpt+SY6ya3I5xKyORqdJxNIv7fprcEvHcsiqOCsoA+rwLjj5wehlk3kS58C8aKgAAIABJREFUcxbPyEPxFvLoenwpg2Ud2W3qRAAScRfw81sUadyh9zs43jmMPv4o5CSSoO/DF4YpPNs1BIe7kQhGHcdMLXlxYGu+2HeDtZ33cXb3WpZpvuOI/G0UokTuD7v7BQDuQY1YIPjSzF1Bs7jNdLpxjn0psygUymOVW3m3CPcOB6Qxd3jrQL7bfoRZV94HOTQ23GH48pNc63kOxcnF6Cbt5KShMb0aelsT17+du4Mh8xZatUS8++2diSi8gL7dTFRVKIl0abEURq7FY9hCa6MIkMidQ+bupvdyS5iy5iyTO9et0kg8NTGG4bLjbDN1JyGjiISMcnVZic7I1JXH+UG9ilH4ozCU8vy1yaCAUfIIupUtZYjsjDWxasiIQ+EaAJfWEZXRmnYyKaH26StTcQ2oC/PiwFCKmGtkwpWORMjmcGjNp9Q1BTBQeR5uww8qqZEQyeZ/LYZVndjOSQK3utzOKqKupwM9crfhLJSgWz8Knt0uzbuPAfqsJD7ZfZMBndvQ1baRQe5dqTTytpmcXDtYqigZUW7ZsfPCLS7uWcuYZ2bQJKRy84E7OVIs7KCW4fY3ls7+p+B/RND/QQiCYCUtQr2dODinB6Fe9gur94Y2rWSa1y7EgyNze9m9plHKH6ube1X78nHR2ElQf5nWiQ9PHCUiHVRyFaXGUkTEByuCqkFumfTAOqucSS9+uPbRFgxu4S9l4sxQymVW1Y9MJvBct3qIoshXY8PpV41E04JiQzHOyvLFeom+pJKRc02wZI17N/KmTR13YtMKeGNAQz7aed1qRGkLW8LHglJDqR1BlK/Lr3Re7UoaHoAWgW482zWEvGK9lXCsDoNb+HE49j4LxrZH5dHvge+1oHUddw6/0Yu5my/Tq2NjBnWVE3b+LnP6D6bBO/UAkdlvf4pOW35ea1IEAVY5Z7X3t7MfvH6dzT/FQYo0yYZVaK39IBy6I7VVz9flo1FI9/eALQMo1BVyYZK5+9DUnVCYzoLAPrxVakBrVtVV9IwM9nCwlpRWBReNks9GtrR7zZbQrYjBLfwZ1MyvklqoKliyHbbGp0Na+rM+8g4NfZ25crtqIqgqOJhL6NrWKTezDPNxkjw7bIigihjVNojvjiUwqHnVZRJgP+4B9G7sQ28bogukko8YsS4DdZ+z9aUu7FkuqVrO3hdQm9rznGKv9EYRafZrPBRkcrpc3ymZFwPFCjemvbXc+hzWBJVCRqTPOFaZ1RlqphEm3ONaWggCIl/qR3PS1JxLYgPOv90PLyczEaNxhbuRHAh7hyUHbuChS6VY5cHrqf34WmjOn6p3OKGeTfp3P+Iy5F1w8uXQ1r28lf898mwRpc2lna9/no6yGAbKz/G5fAYN2vYh9dRG9psygfKOKZV8dirApWF3DCN/ZOqv8ZwwNuMFWwLebFDaPcyL6d3rkZpXSrh5Ua9Rylk/rSMejipe2XCRy8l5BLq5sWxCG5zMKra6ng78eUVvvXY7L6dwI6OErl1788yQJtRplIGDSs7YK+PRoKeBgw5kcuuzVSX5az6mNyPetL706ZlPySgpz25bxorPz31OJ/9O9AiqXSmMRYGUr5OSFm4OKs69I41ptuqTrFLJf80kmuzKWwC7RcAD4dtCMq8OH1+79yONm9c/GkRMWr4dEWQd99XOMOswRG2AxAhu5EKj2xu5L7pxrsNSUg7cZt4TjRnVNojTCVnEpxfiaZ73pnYNQURkZJsgPJ3UFOsMLNl/k74deoCNz8nSi0sBKhFBn41owa7o1FrHFu6OKt4a1Jizidmcv52D3li5jFlnMNEq2I3vp/Wk72IYJD/HB8p1vHdbTr21a0kWvdiokhYEwgZJLThR/iynhGwygDdLbhBz8iyv//kayBQwYTMX9q9nWsqTzB/Rif5NfaXjVcrRFRfw1IL1dJVdY77DH9zp8D5pl3bTpfgIW43dWGkYSoCQyRrVl9LBDfonxsgVyHOTOGRszayMZ/B2UfN0a3NzjZfPQkYskaszGBzmRX1fZ5Ya27E/ti1vKUReUuwgV3SEyxLBes7UkPf1z3JTDGKH6l2S8aF3eANU0Ru4ZAojHXc+jyiPd4a3DkQmEwi08WeyTVq5apWIItwkmBf1r7FU+S0bjH0ZLT9Ko6hyvzDD3vkoLKX5u+awMuQrnOJ3cktz2P5iHPtM+v/SegjrDwM+kcpyfjXfvyonup6Yjl4mx9RiDLLo35h4djjoJrKlaxdk6bNZbhjGpR2xmALbsU33grUEbFT6vyD9XzynkRRUfxjLs/mTOtVl/rZodEbRzosKlSN5PT+m6bqBfK9cwkfKtSgM9kmFVxTb4cp2UMBdp5aMy5xO2rEEItz701+QvD1vp6bxnHwv6esm81rOXEQErrvNIbQ0g1Dg8sLNbCwbxy+qhbypLt+/S8Z5LptCmaibzzj5EeSYkHuHcUW5iWRlKRcufcuTRcWggNayOBblTKDk8DkOHzli7XY6z3s5t9NzWR+0FXnubUJbdMV732mumucVb2c1Qe5aXupVn+VHpe6jr/ZtUCluWBOn5XhcMgaTyNrIuwB88nQL5mx4lqay2zx7fyHHdG+TRRiBZbcwrlvEKqXAp/KeZJr30eLibN4ojAZtZSVEqbEUepjH2xaj4duOkHiMT5Tm7oOpsEx9nh8DvGmTsoHWYgwUAUXJsEVSOVpm1mcV+1hrHMj1lHwax51EKwrcUjfh2051Wbz/Bh//eR3oQOqkiThtnYhzfjxbjd15Wn4Cg8IBB9/m+LhdYW7hRDaIZ2guS6Jh7D9YHTraery3kk8T7tVSUsRk30J55wyzrrxg3T5ZfgAdRzBFS6VPhnVj+K5sLrlDBzK8c1O4vp2xB16kt9KZUlHJcVNLqZvpvn+g2/sRST2/oGHHIZJlRWYcXFiL6vQyPID8et1wcdBATiLi8SXMzxkK9AJg9fFbxKcX8v72a0zuVFciL7wbS8dpMuH16yC+UuURXxZItNnwv6jMQFp+KTm/zeKEYSuRGmluVqpdAKk0L1DIYr5iA9MVu61/Y/6N43jc3gPxBxgn80au0lPk1hRXfzMZLwig1FLXw0Q+jhwyhtNbFkWokEa0KYS3jC/xumwTfkI2V031mKA4DCe/hlYT7YmdW0fh56egx5sYMuuwSPstHiWxXDKF0bw0DQ5/gjjsG4Tk8xDaCwSBWxmF+LpocFQrOBRznxVHE5jWPbTqWFAUpYRU9i2Uq/vyhujAGzEv0PydebgWxElJj4MfSv5VwA+BC3guazHClV+hQX/W5LahRbAb2u3T+EB2gbTN+4h9Zj/ztl6lf1Nfq9H2vTwpmeKkEqtOIv+X4X9E0L8BGcUZqOQqXNWVs5IGk4GE3AQaeTx6/WRVBnTPd6tsDvb/EyuvrKSOSx0GhQyS5PcqKYjJKc2xLgw1Cg1K+cMRQRYVkJPSCYPJUDkQf0wQBIHhratuW2u7uCrWF0sG0GYUGYqq+sgD4axR8vuLXWji74xGIadvE1+aBrgwqVPdSmqgkTtGcjPnpt1rckFOqaGUw3ek4M1Z6UxeWV5lIshQOyJIpZDxwZPNan4j0DLIjf2v96z5jRXg7azmJxvZ69uDbCWkAjIXP0ptDK9rowiqFVwD+XmaNyOWn+JWZhGB7rVn7SyldXllefg4SIREtlm9YIW5Va8n4OlUjRKjAna+0s3Ok+hRURsSCCTj54p4d0hTWgS60qW+F4ar3uxOrB0RlJIrXRdbM2vAzr+rqv2E+ThVKk99FNiW9rSp486qye2Y/vN5IuIyyTD2ZZj8NCZkHPUch4PxCE6dZ9C8bk/m/RZFxMVozmheIavtLIIdaij/rIB+TXyJvpdHiKcDPi4enE2UPq9SyFlmGG59n4ejku6/duf1tq8zosEImLKT/kCntm2tbepjUvO5LfpxpPVXtL38IU75SYi/jEZA5B9ACSqG6xfRmussUv7ACWMzGg6cQXROCaGtAvg6xIP8Uj1TbhswytYCMKbhGKIyomokghAEFC1GsKy+DpMoGSbqjDqCXcoJYJlM4J0hlY1Vw4Ola756itQtsmcjbysJBOXKQoAJHepYPSWGtQpALhPo3dgHg1kRJggGnJTSIkQjNxNBFUvDzKg4rtmSQCA1HxBFkXXX17Hu+jqip0Q/+ByYUaArqHab7fhj+8zrTDrU8to953aQyWDk6prfV+ljgl0SyN1Ryb2KiYFWE6DVBApvZzPou3BSRE8u9GqKg5OzVZXUpq4bv19Mts4vSrnMqn4ESf337tDK17w6jOtQh3Ed6jz03+PvpoXbOTzdKoAwHye+3F8+t1nUj6Fejvi5aPiwYAr/VP/AAuVaAIKETGspsQUT5IeJl4HljvjFzZ3Xcwug4wvQcACtw/oTaaqsGNU4OBParAPF2q4onv6KULmS0P4zWLb1IIvPltC+nhcnE9PIlHnjOvQjlG0mIus4k/ErT3E6UUpOhdmWE6gcILANF98TEQSINXf7CQ92Z8KzP/D1kWj+dfweFyc7orh3lucPhZJvNlUbopNItv5pIq/5l/FCYm/rbhv5OvNkuL91vrCND+p7l98XtqT2EVNrWpd9jxE5LrJSJggHMD3xBT3+UDJPsZFAByMtNRnI824zI+l1u1VCt7Kl/PRse6b8eJY2Qjxf++9DFn9AKiuzxe/PkyW6sihkDUtG9oPub0Dkt3BpHbILUvfQlxQ74MYOcmMdMQkCxQ6BpBhcMJUW0FgmERjxPZeRHxuCZ1YxRlFkQDNf5m+Tnt+6XvbPWZu67hSj4XX9y5zWzgddDqfDP0VMuUJwnbrsvJDAS0gt5+n9DmmbJbLxeo4Cr4aT6TegEbOXnSBDdGNByVoOObzDd8IY1KXS3fOboScj5RFsUi8gX3TAIMpIEAN4R/88z8gPktF4EoVXFaw2DmFc+2B+PXcXTWADlESjAEo8m3MxXaST7Dp/qN+HCHhKDtmiE1uMPfn1rhufDu+OvOPLUrmYTIafq8aq1PU2d7N7a1BjpncPpaDUYCWB3h3ShJ2XU3DSKDhsVpycmteHL/ff4ERcJn0a+9C2vj8zEuawXvUpW9UfApLZdIFJi0amQ6OO5SUkInV5zkXOuFRdBWCnzFQ5QGBryLuD4emV3PbqQX0vR2TrR/J8yscg6rlEI5ZoXmJdaXnXzrsmb7a3XsUrl59mhnwXdbatxSnvCtFiCF9P7o6rVknXMC+Ox2Uyp39Dgus14MSTu5ix5jjFaDhW/02mdAujg4MHQe4OHLtZxESHLxnldJnJ+SupW3iaIpVAgcxI/PFFcHEbFKZJapUKGKMwE1j5kmo3XJbAJvUC9Ps/RX8hFGV2HPeFAFwUJawoG8YmYy+cNQpCdDfxE3JoGDELImZR4tkMlcwkefyZ4bJtovVnAVikWMks+Ra2G7uy7mR//BBIwxPj2VXI97xJKl7caj2Prj46VLo85np70lv/Na9m1WWXsSPXIkUCDs+mnXmcS/ENB9JQaiX1n6nZSLgbyfT83ZSJSq73XYP/oVfxOyR1tUz06klKRg6tlHdwHPZPEASSC5JRypT4Ovpax48dxq6MlJ/AQ4hnk8N4YrKDmGGUyikVGBikjsbj+GLEM99jGrAQedx+kMnR3zmLEhCPL2GusTlBJbGITZ7iH9E9eNvlLL2vbUK4thWAIsdgluT2YI3xCUa2rcOXo8PZePYu52/nEOieyqDmfsSm5XPsRgbPdqlLXqkR76s/SN2jLedXKGaVagnpW25BYrnBuihTMK50PmcS6uP75DaGHugNvz+Pi7EHWZQwSH6BDNEVv6JY9u/4nuGpZ9FnuWO4fZ+UQhFHlQnUIC9Og4yb4N2wymfhvwX/I4L+DeizuQ/OSmdOTThVads3l77hx6s/suPpHdRz/feQNwW6An68+iMzw2c+WtD6CPjXJcm0eFCI1AryXoEky84qybIuDB0UDlWWhumNenYl7mJY/WHIBJldNtZCBLmqXRERKTOWWTPI/y7YLhiK9EVsi9tm/T06M5rkgmT61a2dOsaCtnXLFRVNze14bYO8W7m38NR6ViKBADw0HiTkJZBWJMnWg12CyS3LtTfTNh/rfzqOzO1lXRzaqoBqowiqLdwcVDQNcJGIILfaE0GW+zCvLK/KbY9KSFpKJ/5dcHNQMX9wY7KL9EztEkKxzoBGKWdse2khZyEPakMEvdInjDd+u0wbm/u34mdrW5L4KPCqQLYFmYm9nZdT8Hdtw7rQ7xjarT19AsNo8VMLOPoK0VOicXNUcR8Pzo6/gr9/+XVLK0rDXeNe4zg5vHUgXx28yTtDmrJod3kguGhEC3o18uHYzXREUVIw5pblsiBygUQEmeGsUeKsUVrL9yZ1qsuwp5vzpbYNa47F8IPbT3QuPkyhzJktQfOJvelPLP6YVK6MmziRmY3tlYIuGiVbX+zCm8f+ICa7Du91fo+JuybWTASZYem00+InadyqLXkC0oLF4v1hizoe5T5d9bwc2Ti9E/fys4nK+4OWQZORCTIUchnDwgM4km+0egMpZApkgqzaY7+Tf+eBx6Mz6ayqnofBgz5jO+bbKlF1xkckgoBrWdeYdWgWm5/cjKfWk9jsWEbvHM32p7YT6hZa7ee0KjkquQyd0YS7g4q4oqoJ/ga+zsSK0jOtlMuY2LGuddvYdsEYTSKj2z5Y8VkdSg2lj2XelZsfvVbBbkztWo/cYj19m/hyPinb6pUlCAJDWvrzw4lSloSspEv8Yp6Wn0SBEQNyok318O04ikuJ6XiUrOGaxqY8Uq6Et25J/m1IRJq6GtXWimfaVnrt5eF9mTTIwPxt0ZShYluv/UxvE2o9ro0zu/LTqSQ+2HENH+fK94GFnG/s58yKiW3o2sALF42S5vWCMB5PI8GpDUUhLcmnvDvUxumdGL8qkgN3BQ5QXpv65sBG1gy2LQ690bOSEquhuaQ4wFVDp/qe3M8v5eVeYUREe/LZeU8c87qQLN7mFf1syIMR9QNJzz7MernkdZjtGEqGczOSk7x5aVcWyaIPyaIPNwwDmWT4mmcUh9hrbM9BUxvGDxnAsd2/stXYlYXdzAlOn8Yw7F9SicbFn6HxEAxXNqOI3YGbUMT9BuPwnfAdWQlZjF99BiUGFnaVMabPk2ztYz+fTu9ejz+un2Pj/fcYmbeFUFfp/Hs5qWnk60yAmzfFwyNQlmTT2S/c6o1yLf8iM64Fo5WZWNJ6ILEtTQxffoqY1Hza1nGnRZArm2Z0YuxKERGBT5Q/sojFZIiudC37Bh1Kbji1p68hgtaT/kmsPoDn112iQDSxu84bLB3Wmn9dPUSzABfmDmzEvdwS7iqVZIlQ1uddhIYTmLjwFD7k8LFyLfdEL6JM9dlr6oDevBQb0y7IcqMAEtFnIYL8XcpjE3dHlZ1X5bTuoUzrHsrWi8mcjM+ijocDAW5aloxpZTVC3jC9E2tP+vLcn3oO+nyDoiCFe9pGTM5+lvayWPrLfrHuT9doMKQer3RvQRWq0sGLocUYFE2GYp2FJm6WlCGpURyr9zrHY1wYI7xHoJCJDiVXxRCWd2wDt/yZWHAI8qBA5sIxdT9eMSudf3q2AwaTSGJ+HAm5CQR7+lGMhrqeDnz7bLnFwDOd6pJXoue5bq25kNSCxZeKUYm7cDMpcFa6kObtDzfMjv++zeHpFejd6vH1rguMK92MX/ENlClSp9TVPu/gU5LA+8Jq4gtVdMqWzO1nl82kZ5/BLD0YB4DT1M0UKuW8+9tmPsycgwIT2izpvWJge67fleaEZjJJqZni3Z2tvrPwSJpOh9ISXhR28qJCKv/UiXLkeyRS0p9M/C/NBSBW1oB9TtK5js69IKmQjiy3Gt9PUg+jfYv2cG0VCoUaZl9G5uQH+mK+/+F7NqV48XOLfryw53W+Vy1BAAYnT6EEDR8OaMrUetJ684mtkhesZY5fNqE1JbqWGEz+kHcXk8MY2JlAr0beHL2RgQEFww0Lme9/gYFp3yP/czZ65yBkMhmn8705oRnFW8aV5LvGE+HenR5jf0aRfpw59xw5oN6DlyDNq45Fd3lP+QuJoj/Rya48/e1J5MlneE5+i6u5EyByBXX2fUw/oyscTudDwyt8oN2MJW151zmc8ZnPcVg1B5/EPwCBFGUwAfo77Or4C3cuKiGvlOOpCvbqZrFQ+QOj5BHW+2aZ/yI+SnuJyakLJSbEBFlJrtQhDxcnR/D2xKRyAM/KY+x/G/5HBP2bUKAvYN31dbioXHgqrNxx/sJ9qYQkozjj30YELb24lE03NhHmFsbg0MEP/XmTaGJh5EJGNBhBM6+alSJGU2WZd2apxGhnlmRK5VNQbWnYT9d/YunFpShkCoaGDiWzpDzrZ/EICnQKtO4vyLlq5c7fBdsFQ3ZpNssvL7f+/vFpqV78yuQrj02pJIoiT21/Cl+Hcum3gGA1SXXXuFsJom/7fsumG5vIKM6oRLA9ChGUU5qDu8a95jeacS7tHM/te46tw7bSwL1mg8mKsDUot83CV6cOeFRYrk2AW+0XM5bznaerTAS1/Lklh0YfsiqF/tNhm/2vCMu5rg2BM7CZHwM/qizptS1DrEmJdr/oPjHZMfQK7lXj91WEW4VyLluF13Nd6zGph+T/VHGMmd2vIV3CvLhUuo3nty1j1/Bd+Dv5039LfwaGDOTLnl8+8HvreDqQuGgwgiBw+W4uy47Ec/n9AdbWzBY1YVyOFEhS2dcWgHHtgzGZROaaO0Q9160ea08lMT57Gv0bv82qqZ1wj7oHNyVj3UnTXqN5YNXEoSAIlBkl7zWQynAtQfzcY3MJcwvjhfAXqvzs34EQLyl77axR4Oeqwc9VwyeRK9h0ZRMhriHW6/312FZM3K21KoEEQUAtV1erAozPfXA3E51RZ+cfV1uS9kFEkG057t2Cu9afy4xlOFOzn54tCnQF/HnrT06nnCajJINzaecYVG8Qu25JLaEP3z38QCIIYO9r3dl68R4+zmoKU6RjEyq0ynLRKHmjv3SfV4RCLqvSp6K2yC3LxU9RfVlnbVFmLuexqCctKiTbBhQAbwxoiEYpY0qXEJYf+YBjwW68tikKT0cVWUU6PC6pyCsKxaHJTrvPiaJoLSd8FAiCgKtDOWHbJMCJW7m37K7PoOZ+fLjzml05fFX7ecKmHN3SwGPE8lN4O6tRygX0RpFZfcLoXN8ThUzAYCofNOb0b1it6ttWCWRB70Y+/DqjE65apZ25d36pnhfODIPD0oJ172vd+XDHNbZevIdK3piipiNI1Tak7tC3kOuM8PEBbtwvJ0FvphfwsTiZXaZOnDY1BQROHBVIMwxn2bMevHJqMO8Y32Fkw5EoZUrJtNVs3KpoOgzjvveQRX6L7xNvgyAQYva81KMgsElHu/NlwfzBTWjS8CYfnNJzLvWclQgC2PVqNwRBoNW6lgQ7B7N7RHl5TD0vR5aZ2lPPwxG5TEAuk7PgqWZE38tjvFm9Js0XAuuN/ekZKNAv4yfe101Fh5J1z3ege4Ny1WoH4NL7AzGYROQyAaVcxspJbelYzxNXByXrnu/IrEPrOZoMeRonNM7uLHiqGU0DXBi5QroHw4Nc0SfnoVbI2DijUyXFd3iwG5vO30WrlFvnkgdhRJsg5DKBRjZegrak4OTOIYxqNxWFehoAyQlZJK6KJLh+S4q7tIczUpmg0aH6Z6TSOOzkDU2G2r+mdYPJ2yH5PJ3krSEmkrNiE+u8p5LLaBbgKqkVjy/mbcdP+D2nPs+3L7+nZTIBlUxg1M5RgBRDz+7bgBFtAu2+qn9TX2sZ5P28UpaXdqaTsBuNKKLxaU6maILBY6USpvpSWxMl8OaoXkAvKZ6e/w0KjMwf1o62dfsDL7DjRCLJ+16ls3MGl0rDmG7jkxrgpsXDUUXrzv1pvXklX2rXsqmsE6+qdnLO+UUW6jSAyLxWelq06czENRfgXgHOjVwJcgpic+uPiDq+kwB3Bw6eu06uSctWWV9WjAhF2DaT7LpP8Fpcc0Dy5LrZ/ycaHphCosmXxR7vo82JICrgNFHXpDhALsilzpgASg3Pv/Q2U0URhUxGlBhG17Jv8HcQKDG7UdX1rL7xz9CWAeafpK6E44HwegG4OyrpvEiqMihVezIzqSeztKXc16ko8RtLXEYJsfoC0INzfVip2gHcJlJfxBPN/fniXj5PlS1gascALqcbuJF0l02qj5ki38+OjEJ6yi8zTC11syRtHeyFu6YgctUB1NenskSxHLVBzxL9KOYot7AoqydqrxAWlsxiqnELv7pNZ2VqfRoKychjHUnLl+bvc0nZ3DJ1Zk9ZBxoJdylEi5uslDm9+xP7SzCNZXc5EzyN2XHhpOFBM+E2oY7bgPsYVY6VfFD/G/E/Iuhvhu2C9fNzkjGoLRFkCdYsXjf/DkRnSsxvTdnhQl0hz+17jvc6vUcL7xbW19OL0/nt5m8cunOIo2OP1vh9dl1VkAJzi4oipyzHWj6lVWirLA27XyS1e8wuyUZv0tNncx/rNkvXMAv58/+DCLJdFFSl0AGJCHRR1dwxrDYo0EuB2P3i+9bXPLWeVoLMQ1PuHRPgGICrypWE3AQM4l9TBKUUpjDw94HMbjObaS2m1eoz+5L2AXA27ewjEUG2sFUB1VbZUFtY1D21aelpgaU0LL9MmnAqEiUJuQn/Z4igB8Hyd9W2lPBB+6j4c1WYtn8aSflJnJ141kpi1BYymcCCp5vT2lymZGu4XeSwmz9vhTA0dKjd4h0kU/3ejXz4cY9kMHivsNxIdl/SvhqJIChfrLzevyHTu4dWCtwvpV+q2tDeBuM71LEuSgA8HFX8a0Jr5myKYkpXKTPV2K98HPGuQnVgC0s3RgC1Qk1eaZ71b9rHvloTQXqjHqX8r5km+rtqWTSihZ2BuaWsynYskskEdCYdKnl5xlur0NqVJOSV5aGQKXBUOnI7//aDj92kt5tfs0qz8NLW3NHT8lxXJI1uZN9g3K6w+sFaAAAgAElEQVSqO3pV2eigBnxx7gu2xW+zEl8V57+qumFVRKi3E3MHSuSh5VyKiKy5uoZewb2si2VLR76qcD7tPAduH2Beh3m1Ispsu07mleXh5/jXiaC3BjXGaBLpW0W5qi0cVAreHCiVD384rBk6g4mou7k8360e41ZGci+3hEHNAjj54MaYj4x3hjShqb8Lt8r28uL2L/j5iZ9p7dMakDzXvhrTiuaBtZ/v63k5MqZdECm5pZQZjMwd35rwYDdUZmJg+ytduXw3jwV/XqeelyOv2lzHIVuH0DmgM+92eveB39Gpiu6DA5r6MbNHKN9H3AKksWXZhDZ8eySezqGeODYbjCUf7lqhfG7LC51p4OvM2O9PczqtGSsnteWfe2NJyCgi1NuRXKPkY7PwzELSi9N5tc2rlb5f3nsetBoPHtL96eusQaWQYVTF8c/oVfxadwMOSnsPHEEQyDKXf14zqzAsUMjLFeMVx/h+TX05EZ/JsPAA62vtQjxoF1IeL/nZkHfRYS/QbcrH7FkgqQiq6gKskMuwPS0Dmtk/Azqz35Il3p1kJlundatHiyBXCkoNXE7OY3ALf9rUqUy+hAdLJH99nwd37LXFU63siRK9Sc/q6NWMazQOd427Xblu5/qexC4YhEImsOlmnPV12/HyX33+xfqY9ZxJPQNUY9pfFbRu0KAfnYADr/dARFJtnU3MpqmFjOz9Dq+nDWRbdCaYPcmqgyAIvN7/wSU6wR5acnDhqhBMsJcnXlovYrJjoMP0B+73sijd5eE2auypXUIYc2Uec+/kAAItbba5m+f2Po19eFNwYGbJSwAcLm0DUTCkhT+3s4v4LCofoqRkf6+mKi4YIa04DafQDnQLlawQnHzv8Om2aPydNISHt6PT7s9JjytDkBdgoXQbdnkKk9dv5AqNeN/Pj2Gr9cBp6/FUjOUVcpl1cT+zRyitgt3o2cibtgsOUqI3YlDcxSR61dg52IKmAS6YzER0gKuGn5/vwLLD8Yzu/xk9vjgC0enIBKxjyddpnjiYw5jUwlSe6ViX7VH3eHtQO2vDmZPxmWhv59Hz+EJ6yq9gFKU5J4FgCkxq6nmqeTr1DTbN6EuW/g6e6/thcq5H3a7vMuDYeLzdnJgRHsClOx70PtcBSqQ4ziu4NSfjy20kbpm73xqRk+fahHu5JTh4O9Mp1JNuuvkMk59i3rj3GHkijT8upVAga8o+IQE1B2p9fv6v439E0N+Min4Ff/V9fxWiKFoDZ1sioSpEZUQRkx3DF+elQMcCyyKptovxLBtvF1EUrb8382zGtaxr1uPRKrSoZKpqy36KDcWcvHfS7jULyRTkJE0gf/d5tCgbbIMT2zKBmKyYSp8BqcTkcRFBlpIvW3hqyokgW8WOt4M3rmrXv9Q1zAJL5n3pxaU81/w5qUtOLVGxLO1RYHu/Pc7SMICXe4dxLSWfng1rT9xYFEEW5YCFlLTAYiL7fx2WDOBfKel6GCIoKT8JkMpHw9wfXpY7qVNdu98Xjw4n2EPL8xFS2+ehoUNJykuybi8zllUq58ksybQGAbaeX7WBXCZUIoFySnOYvGfyQ+3Hgt6NfLj4Xn/r4ryBjxMv9qqP2iGLIlMKUL1apMRQgqNSWkSoZWrKTGW1LpOyfWazSrMey0J/fDW+MRUJsjJjmZUYASopgrr92g1vrTeHxxy2I+2qgs6os/PxScpLqh0RZD5PFRWtSy8urTSeOSgcKDYUPxJBbRnPLX+fZQ6zEEK1JezLjGUICNbEREZJBl9d+IrfbvzG3pF7a/z8n7f+5Pe43xnRYES1noURyRGUGEoYGDLQbt57lNK7qlDPy5GVk9tVel0URa5nXaepZ1PrcyCKIgaTAaVcUuh8OExSJ3/wZFO+2HeDOYP8Obm70q4eCibRRLG+uFKXQy8nNdN7hDJ9v+Tfs+XmFisRBFhNoov0RSy7tIwXW734wPlfIZfx+ajwarc3C3ClWYArY9oF2SmD9CY9dwrucOfGHTsiKCI5ghVRK/j5iZ8fSODKZAKz+zXg+4hbdDGrrryc1NV6AvZr4sPBGKnsJczHCVetkhk9Qpnz22Va1XFjapcQ3tt+jSdbBpBZEmX93Jm0M1UfgMoRfMu9p2QygboeDmS4/klifio3cm7YnVcLLOWYFYkgqJx4tKBVsBt/vPzgNtIKuQxfFzW5mt/5Lf0acxwjWDSiBSGekoroYWEZ1yqWj1uUbukFpaw5kWhtAvLluS/x0HrwXPPnAGji58KsPmGMqqLUtrbYl7SP5VHLySvLY16HeZW2WxRDtuOMLbnezLMZXQO6WomgR/FntO06bGcCLJPj6+EKZFLX04GGFboTV4wbakoM9WjozbwnGnM43xcXrRteWi+79Ud1mDugIUU6o50iSyYT+Hx0OH0WH+OpVgEEuTuw85VuxKblW8cgd0cVHep5EHkrmyfDA6y+d13DvAjOduDqPWlcbBnkyrTecOFg5e8e30Hq9telvicymUDfJr5sPHuHBgEiqeb3GEQjikYDsTwJHzwdyFs2lXtVdQ624B+Dm1h/7t/Ul70JR5lzch7vGd+jZ1C5n2dNyR6ZTGDDtI7U93HC10XD1+Oko5EJUkfh94Y2ZXLnEDacuUOpsvx+Ty1KJcw9rJJ3aNcwLwh7i/U59Tl9MQpF0yEEK/LQ+tbni303mFa/HiWpidTzcsRZ0xKm7kKmdWekVz1G2ijHnmjhT4neyKROdWkX4oHeaKLZB/vQGUx0CpWuDcCETt4EeRn5/M8SvAJPc+6+wAtDOhHo1huVoxtvDnTjjf6NmLHuAvezpHm8SF/0t/nO/ifhv1/z9P8Bu27tIjpDUt1kFFcmJmwHN0uwV9X7/g6kFqVaB/yaiCCLEqciagq8K8K2lCtfl2/9vaO/JP29mnkVqL40zDKxpxWlceC2vSmhJXMR7Cx5G/zd5/GJrU8wYke5t0dEcgSbb262/h6bLXUr2TV8l93nqjuXj4KqiCDLYg+wdi1TyVS4qFxwVbtSpC/6y4og2+CgJl8OCywTVFXH/LCwXWQ9NrNoM5r4u3Bkbi88HGtnEmw0Ga0LRFt1my1SC1Mrfe6vQGfUMWXPFCKSIyptW3x+MadSKnuQ/RUU64v5JeYX68LSUsL5KHgUj6DkwuRKrxlMBrtFeG5pbo3dAke2DaKOj/2YYltOZDs+WbLJqUWp1oyyQvbX8yXWkjALHjKusA1EZDKBtwc15ofEF3hq+1MP+JREntsqgsoMZaQUppRvf0DnQNsA+rvL31k7RD1OWBSz94vvU2ootT5LZcYyO0WQt4M3yQXS/WC5/hbCxOI3VxW8td7oTXo7oqk61WZFWMiNikF2XG4cbX3bMqDuAOtrAU6SysCiAHgYiBXqBC33s+W+rG1y4+k/nmbUzlGVjremed6CW3mSKsTSDbEqvHzoZeYekzwsbBe31SmaI1Mj+efZf9bq+x+EXYm7GLdrHAfvlK+kvr74NW3Wt6kULwxo5seBOT3JM6ZU3E2lc10Tvrn4DZ03dq7yOdGb9FZ19fHk41Uqtzbf2Mz6mPX8cv2XStseBQq5zK7Up7p7/x/H/8HVrKtcz75e4z4dVAoOzunBd5PsPZHSitI4ce+E3Wurp7TnxieD2P1qd6uP2Ig2QSR8OhgfZw2TOodwZn5fXuodyt2CuwQ6BfJss2eJyYohqySLRWcWVempZ4sXeta3zsOWZ74iLM9EQm5CpfnEdt6tTcJIFEU79VBjPxdUnicoMuaQW5rL+A51rKWJ0RnRD6USsCSDqns+fJw1HJ7bi4a+zpQYStgQu4GVV1Za7zeZTOCNAY0eWMpTE6LSJUIuvyyfhZELKymljCYj/zj+D7trbRvrOamc7P7mx63GtpRv16mia6pt3FjdvWALB5WCF3rWR28qQyvX4qn1pFBfWGPM8UqfBhUalEgI9Xbi7Dt9WTxaImlbBLkyup29j9o341vzRHM/5g4oVyu1ruPG0JZS6WfvRt78Mq1jtTGwIEjzefcGkpfZvEGNmd23AWM6lTfcqHj/ZJbaj+mFusJaKUffGdKE/u2kezI+N94u9rH9uTp0CfOydpm1wMJLN/J1Ri4T2DmrG32al8/dqUUPjoPvOjRll6kTTYO9mTtuoLW09WRCFp5uhZy9b453g9uDV+XEoItGydJxra3KPqVcRuQ/+rLgqWbWLs++Lmri5V+yImEG854I5XLxel469BLTuofalejKZAL5JXqQSXGJ3qT/Wz0t/1PwPyLoMSNfl8+84/OYsHsCAOkllRcptoH4wwZ7fxUx2eWKlZrICUtmvqIfiyX4qO2EWHGwqUgEWUiz6krDLANoWlEaF+9ftNtmITN8HX1RCIq/9TwW64vJLs3mXuE9dEYdoijy8qGX7QLnGzk3cFW7VsqepxX/dSLEuq8qJhTLQlEtV1tNO70dvBEEodrypL9CBF3Nulqrz1iCsps5N1l7dW2Vre5ri8epCCrQFVSr3qoN8nX55R5B5sC24mSdUlR5IfJXcCn9EhfTLzLn6By71+/m32XttbXMPDDzsX7f6ujVfHb2M+4USKRfRklGrYKFqmBHBD2AULINZioGrAAzDszg+X3PW38ftXMUfTf3rXEsSsxLtP6cr8vnfNp56+9VeY7ZEkFGk/EvS4Tjcu2JIIPJ8FDdESvCdmFqISxEUWRDzAbrgh7MWVSlmQiSqykzltkR+Za/sdRQyhfnvrCepxJDCcO3l3c7+z3ud1ZHr/5Lz29VsJAUaUVpzDo8i26/dqNIX0ReWZ6dCqOFVwtismMwmAx2aq6c0hySC5PtfEJsEeIaInkEma+rVqF9aCKoQFdgvS8LdYWkFaXRLbAbn3Qrb7ttUaQ+SmlYxYWxhQiy/F8bIqfEUEJyYTKJeYk1lh9WBVEUaySCbOeL9OJ0u+OubnE/ff901sest7tmjwLLYvZy+mXra2uurgHgWmZlVQiUJ2VsoTfpeXLbk/wa+2ulbaWGUrbc3GL3d/5w9Qe77694TEX6IroGdiWnLKdK4toy71cVBz4O2M7Jts+mUiZl9m3P14MQ5uNsV0YL0rV78eCLlcZ8tUJubWBhga1axtdFw4en32P/7f34OfrR0rslepOed06+w4bYDay9tvaBxzKybRCOaml/tuN2oa7QmujLKM5AIVNgFI3cyL5h93nb8a02CbhNNzYxeOtg6zV+pU/5WGIbL59KOcWE3ROYsmcKl9Iv1bjfMmNZuSKoCh/Birh4/yJ6k54ifRG7E+2lbEsuLOGTyE+q+WT1MJqMHLl7BICdt3by641feTvibabsmcKxu1K3rOjMaP689SeX0i/hoHCopIDVyDV26u/H7c+oMZfjW3yybGEb61riEJDmv4jkiGrnZYt5vadGIvBqowqqDj7OGuQyodr52sdZw4pn2lLXU2qAMKSFPw19nWke6Mp3z7Tl63GtcdYoreO4wWRg1uFZ1RI3rg5KXu/fEG/X8hi34vHbnhetQotBNNQqOerlpORGgWScnVKYYrde+qtrJ4svVYiXI95uJXhrvVEIihqTwM91q8dTrQIY31FSCzfwleb9mNR8RL8VvHb0tRqTfRXh4ahiUucQOpiNxz8fFW59lr38y+cLk2iqNHfNG9wYf/fya/O41K7/yfhfadhjwOro1dZBwlYp8W3Ut1zPqpyRWXN1jdXHxvKAX864zIrLK/72Y41Kj0ImyOjg14Eb2TfKv1OUFq5ahdZaWmTJECTlJ9kd27FkaQIpNhTzbdS3NZYIXc4oD0Z+uvaT9cGr71ofL60XsTlSwKZRaFDKlCTkJth9nyUYOJkilYXNbTeX7kHdeeqP8my4Rq7BQ+vBqZRTdpnkxwnboOLzc5/blS7YoqNfx0rHsC9x3yMvom2RW5rLhtgNlV63BK+N3BtZiSBL+YOt/NMWFa9rTTiTeoYmHk1Iyk9iy80tVS7UKyIhT/IJOJt2lrNpZ4lMjSTENYTs0mzqudR7KGWEbVB48t7JR1YF6Y16NsRuoEhfxNhGY/HUVvBOEKVg0lXtWqkkwALbye1SxiVWXF5BQm6C3XvOpZ1j2aVlUmD1GJSlFhJUb9LbXbeb2eUL2xVRKx7LdwF26rtw73AuZ1zm87OfU8/twab2oigSnxtPoFOgtYQyMiXSuj3iXoTVF6wibAm+/Un77dQNZYYyzqVJ3T2WXFiCQlBYg6tFZxbhofWgOtiSfv0296PEUEIbnzZcTL/IxtiNVjWVhaQ/n3beeiwG0cDSi0v/Ulekipl1kDopPqwHkgW2gdHi84vxc/QjoziDzTc3o5FreK6FVFqQU5pTrgiSq8nX5dt1Nfz+yvc0cG9AfE48+2/vZ1/SPkY2HMmt3FtWLzJbfHb2MwKdzWUvuiIO3jlIvzr9cFQ9WsbakuW9knHFSpy+duQ1Sgwl9A4ub5Pd3Ks5v8T8wuLzi+1KLpdeXEpaURoD6g6wI8AscFe7E58TT0RyBFqFlpbeLYlMjazVuGchGIyikWVRy1DIFNb5OswtzG7893eSsoq/3fwNv3sPV0JnSbjYfu+Kyyus4118TnyNx2t7P0SmRtptM5gMLI9a/kB5u96oJ68sjyCnIG7m3GTpxaWV5jBbtW1FddiB2wcqLyRs1jlfXfiKxp6VM+61heX5PJZ8TLrXbPa98spKOw9DC3bE77CW7NkiKT+JhWcWVlJwXs+8ztHko+xJ3EM7P/vytB+v/cjlTCmOsRAucTlxKAQF01tM5+S9kyy7tIwQ1xBAUl8cvHPQOi+fTjn9t8R3FjU1SNfEMgZaiIffbv5W7VhbEyz35aIzix6qRFcURf689ScgxcNdArrgrHS2lvUfvnO4xhjNMg5HJEdYy1V2JuwkpzSHSU0nkZSfRAe/DpxKOcWaq2to4lle/rIncY/159VXV9dY0ro1Tmpn/fXFr+no39GOZF8fs56oDIkgOp0iebJEZUQxec9kXgp/CQTp+Tp4+yBtfdvi7VDeoe5O/h30Jj1ahZbE3MQar/+xu8dwVDrirfXmp2s/WZ8no8nIj1d/BMBJ6WTtpghSPFhiKMHf0b/KeT+rJIv04nQclY7We9GiYrt4+CLTW0y3W6O4qF0o0BXYkaGCIDC20Vhu599mZ8JOotKjHuu9rBdMtGuViWdgIisu28+TtkraH6J/sJL4J++d5HLGZYbVH2ZdS5UZytCZdDgrnUkuTKajf0drDLzm6hq7a/OwiEyJJLkgmZENR9ZYJtS8OayMLi+FTDSHZ8eTy2u5jt49yufnPsdFXX256N7E8nLen6//bOd9ajvGt/Fpw8mUk6y4vKLGeCKzOJP7xfdRypRcybhiR/ptiN1gXWM9DAZ1y+VKch6/JZSvfaMyovB38kcpU3Li3oka/QUbN4FfbpT/TQ4+cRhMInpBmm8/O/vZI3uMvjlW5HJheWy+Onq19ef3Tr7HjoQdPFHvCbtmTU4u6XjIG7D+ifWPHKP9X4JQGznZ34j/r1/+uNDxl452wYZGrkEQBGsW3E3tZiWKZILMrrZeLsjxc/R76HKrv3S8/h3pEtCFry58Zfe6g8IBvUlvx3z7OfqRXpxeiXn3dfAlqzSr1t4v7mp3DCaDdXER6BTIn8P/5INTH7AjYQdeWi92j9jN8qjlVWaMOvl3IiY7hjJDGZuGbiLULZTXjrzG7fzbjG88njGNxvDG0TfYf3v/Q56Nh4ODwgFBEKwTpVahxWgy8kGXD1h1ZRX3Cu+xZZjU0nTMzjHE5cThpnF7LCSQLeo41yGlKAWVTEWxoZhven/Dq0deZdWAVeSW5vJmxJtMbjqZN9u/CcBbx95iT9Iegp2DuVtwlzrO/4+98wyMolr/8DO7m00vtEAIRSB0KSKKgCKKXEXsXdS/9ar3eq967Q1EbAjYEBuioIgKiIJI753QE0IgPaT3ttlk+/w/zO7sbhoJBBPhPF+S3Z2dOTM7c2bO7/ze9+3mNcPSWB6+8GGyDdlNOs5dg7tSaiolQBdAQXUBOkmHn86vwbjm+gjWB6PX6M84/86F7S7ELtu9Zvw8CfQJxGwz1wqn82TCBROQJMlr9i5YH4zBYqCtX1sqLBXNkhvJkxB9CFXWqlrtCvQJxGq3nlZoSkOE+oZSbi7ntRGvsSJ5RZ05Geprp8Fi8ArFuCj8IvKMeae0Cus1esJ8w+qcRddJytyFa/99tb7YZXujjnOYbxh6rZ4yUxkOHHx45Ye8tectr/wxGklDp4BO5BhzCPMN46mhTzFz/8xmOa7X97ieKlsVSaVJFFQVnJEjCNzhoDWdfS7nj4vXR7zOPf3uYUnCEt7e+zagiPCXR17OD/E/qL+Rv84fq8PqdSxD9CHKvcxajVajrWWT1mv0Z3RsJCQ6B3UmuzJb+S0ddmyyjf5t+/PLDb+okwz5xnxuWXGL2mcE+SgCbaW1Eq2kZeaVM3lu63Pq9eev86d7SHfGdRvH50c+B+DSTpcypssYZh04deJvF5FBkeQb872ut2CfYP64Vbln3fbHbaSVp/H5uM9VAaupaCQNEYERtPFtw+jI0Xwd+7X6WZegLnU6TeoiQKeIrlW2KiKDIsmpzKGNXxsMFkOjzjW9Rs+MK2cweefkOkVA8D7uoPR3Phofr2uo5jr1Wv1p9fU1ae/f3us+6qPxwV/nX++MrUbSMG3UNN7Y9YbXd6wOKzqNrt4+w7MCp06jI8gnyMvt6XLbWB1Wxncfz4wxM7hp+U21JkaiwqIoN5ej1WibJTS6PkJ9Q7E5bF79gE6j49aoW1mbvtbrebMp6DX6Oq/5xn7X4rAwdeRUbu9zO1/GfMkXR74gzDesUYVRtJKW9v7tG3TDTb5sMsuSltWabNVIGvq26UtWZVaj9l1Cwl/n7/UM76/zR6/V13ILBPsEY7Aaap0/eo0em2yr9Zw8otMILu54sVcl2frw0/rxzuXvYLKZmLxrste9UytpcciOWqGNOo0OH41Pg79Rl6AuPD74cabsnkKobygGi4F+bfthd9hJKFXcVK5+c3z38VwQcgFbs7bSK7QXR4uOeuUXe3z94+zJ3VPfps4KnQI78cTgJ3g3+l31mGslLXbZO3ebVtKi0+gw282082vHtNHT6B3Wm1tW3HJGhS6ak4jACPKMeY0KUdVIGoZ3HM7xkuN1nscdAzpSbi7ngzEf8Py25xv9rNk9pDsPDXyIaXumISMT6huKLMvN7nx5cMCDFJuKVVH4dPDR+KDT6JolPMtPqxgNDFYDwT7B2GV7g+fFXX3uYvLIyWe83VZEvQqmEIKagZqdv6sSmOtir1nGtWYnoJE0f2l2cgkJSZJO2e6G2ub5sNTYbXqu29UGWZaRkdXXUHfImUbSqMvW50ByfX42qW8/XNsHar32XL45cO2/Q3Z4bd8Th+zwOk6ex8712emcc56/Q1Pb62oXNP38cVHXOXo61HcNeH5+qm3UdSxq/h7NfU7W167TPZ6nwvN8acq+1NWepqyjof2E2n1rY9fp2efU1x7XPp/qHGkqp+rjTmd9QK3zr679ceF5/dXct5p9gufxcnE27l2ex9u1jbr6Nc/fqua+19zHxu7zqajreNbX55/Jcairva73G7vemsfP829T2tHQNXo6119z9U11HYtTrbvms4LrPKvvO43ZRl3naX39iOd2zxb1/Qanc6+ua92ne5+uef029bmjrv4IvK/5+vavqft+qm15Lge17+sN3a+a0jd4PtvVXE9d7Wns9edqQ333c8/+wnU+1/Vc+Vc8YzfUfk8a+s1q9tHN8bzoWveZrqe+/qIuGjqPT/d5oubxbK59q0lz9D/QfPePmueH6/+GxrjnWJJoIQQJBAKBQCAQCAQCgUAgEJwn1CsEiWTRAoFAIBAIBAKBQCAQCATnCUIIEggEAoFAIBAIBAKBQCA4TxBCkEAgEAgEAoFAIBAIBALBeYIQggTnFQVVBVjtZ1atRyBozWQUt44KGQKBQCAQCAQCgaB1IoQgwXmDzWFj3NJxvLbztZZuikBwVtieWMiYmVtYc7ThEu0CgUAgEAgEAoHg/EUIQYLzBrtsB2BTxqYWbolAcHZIKqgEYGdyUQu3RCAQCAQCgUAgELRWhBAkOG9wyI6WboJAcFbROAtEVphsLdsQgUAgEAgEAoFA0GoRQpDgvEEIQYJznaJKMwAlRnMLt0QgEAgEAoFAIBC0VoQQJDhvcIWGCQTnKkUGCwBphcYWbolAIBAIBAKBQCBorQghSHDeYHcIIUhwblPodATllJsoq7K0cGsEAoFAIBAIBAJBa0QIQYLzBuEIEpzrFFWa0ToTBcVlV7RwawQCgUAgEAgEAkFrRAhBgvMGkSNIcK5TZDAztk8HAI5ml7dwawQCgUAgEAgEAkFrRAhBgvMGlxBksTnIKK5q4dYIBM2PwWSja9sAOof6kZhvaOnmCAQCgUAgEAgEglaIEIIE5w2eoWGbT+S3YEsEgrODRZeKQ1NGZBt/ssuqW7o5AoFAIBAIBAKBoBUihCDBeYPD4Q4Ny6sQ5bUF5xZ2h4y+2xesKnmBiFB/csuFECQQCAQCgUAgEAhqI4QgwXmDpyMovUiU1xacW5isNgAsciURYX7klZtwOOQWbpVAIBAIBAKBQCBobQghSHDe4JksOqWwsgVbIhA0P8VV7uTQnUP9sdpliozC+SYQCAQCgUAgEAi8EUKQ4LzBJtvU/0urLC3YEoGg+SmqLlP/jwj1AyC3zNRSzREIBAKBQCAQCAStFCEECc4bPB1B5dVWZFmEzQjOHUqqFUeQVtLROcwfQOQJEggEAoFAIBAIBLUQQpDgvMEzR5DVLlNttTewtEDw96LEpDiC9Bp/VQjKEY4ggUAgEAgEAoFAUAMhBAnOGzyrhgGUVVlbqCUCQfNTZqoAwFfrR5sAH3x1GuEIEggEAoFAIBAIBLUQQpDgvMHlCJIk5XV5tRCCBOcOZSYlNMxP648kSXQO8yenXDiCBAKBQCAQCAQCgRl70/YAACAASURBVDdCCBKcN5htSrJoCUUJEkKQ4FyiwqI4gvx0SlhYRKgfuWXCESQQCAQCgUAgEAi8EUKQ4LzBbHdWDROOIME5iEsI8tHoAIgI9SdXOIIEAoFAIBAIBAJBDYQQJDhvsKiOIIVykSNIcA5htFYC4HCGQHZvF0BehQmDSZznAoFAIBAIBAKBwI0QggTnDa7QMBdFRnMLtUQgaH4sdgsADpTzfHCXUGQZjmaVt2SzBAKBQCAQCAQCQStDCEGC8wY1R5AEep2GGWsTyK8QoTOCcwOLQzm/XUnRh3YNA2B9fH6LtUkgEAgEAoFAIBC0PoQQJDhvUHMEIfHahH4AHMsRbgnBuYHNroSA2WXlb1iAnkGRoSzYnU50anFLNk0gEAgEAoFAIBC0Ik4pBEmSZJck6YgkSXGSJK2UJCnM47OBkiRtliQpUZKkJEmSJkuSUpxbkqSHJEmaU8f6+kmStEeSJPOsWbO8Plu7di19+/YlKiqK6dOnq++XlJQwfvx4evfuzfjx4yktLT2TfRacp1hszvLxwMTBnQHIKK5qwRYJBM2H1eUIctjV9759cDgAe4QQJBAIBAKBQCAQCJw0xhFULcvyUFmWLwRKgKcAJEnyB/4Apsuy3AcYAowC/n2K9ZUATwNeKpDdbuepp55izZo1xMfH8/PPPxMfHw/A9OnTGTduHElJSYwbN85LJBIIGovV6QiSgfZBevx9tGSWivLagnMDm1MIssnu5NDhIX70bB9IfE5FSzVLIBAIBAKBQCAQtDKaGhq2B4h0/j8J2CXL8noAWZargP8ArzS0AlmWC2RZ3g94lbLZt28fUVFR9OzZE71ezz333MOKFSsAWLFiBQ8++CAADz74IMuXL29iswUCdw4VCZAkiW5tA8goEY4gwbmBzZkbyCUIuegfEcLxPCEECQQCgUAgEAgEAoVGC0GSJGmBcSguIICBwEHPZWRZTgGCJEkKaWpDsrOz6dq1q/q6S5cuZGdnA5Cfn09ERAQAERERFBQUNHX1AoEaGuaia9sAERomOGewOazOv95CUO+OQWSWVGOucf4LBAKBQCAQCASC85PGCEH+kiQdAYqBtsAG5/sSSpRNXdT3fr3Icu2vONMNCf5iiirNVJisp17wb4bF7j1A7hUeSFqREavd0UItEgiaD1duIKvD+9rtFOIHQKHB/Je3SSAQCAQCgUAgELQ+Gp0jCOgO6HHmCAKOAcM9F5QkqSdQKcuyoakN6dKlC5mZmerrrKwsOndWEvp27NiR3NxcAHJzcwkPD2/q6gVNYPg7Gxk7c2tLN6PZsdq9HREDO4disTtIyq9soRYJBM2HXXbmCKrhCAoP8QWgQAhBAoFAIBAIBAKBgCaEhsmyXI6S5PkFSZJ8gEXA5ZIkXQNq8ujZwIzTacgll1xCUlISaWlpWCwWfvnlF2666SYAbrrpJr7//nsAvv/+e26++ebT2YSgCZQYLXW6tP7O1HQEDYhQIhhFCXnBuYBLCLLLdhyy2+XWIUhxBBVUCCFIIBAIBAKBQCAQNDFZtCzLh4EY4B5ZlquBm4E3JElKAI4C+4FaJeM9kSSpkyRJWcBz77zzDl26dKGiogKdTsecOXO49tpr6d+/P3fddRcDBw4E4JVXXmHDhg307t2bDRs28MorDeajFpwBFpt7AHnsHKs05KoahjPisEf7QHx1GhLzm2xgEwhaHS4hCLxdQS5H0Pr4PBEGKRAIBAKBQCAQCNCdagFZloNqvL7R4/+jwNh6vrcAWFDH+3lAF9dLz8+uv/56rr/++lrrateuHZs2bTpVUwXNQLHR7Rq44bOdJL07AR9tU4vLtU6szhwqklMJ0mok2gf5Umy0tGSzBIJmwSHbVZHT5rCh1+oBaBeo/P3tUDaDIkN5eHSPlmqiQCAQCAQCgUAgaAWcGyN8QbNRZFBEEV+dcmqUV587SaNr5ggCaBPoQ1nVubOPgvMXB+7z2zNhtM5DyM0rN/2lbRIIBAKBQCAQCAStDyEECbwoqlQcQfde2g3gnBJJXOEynrXo2gToKRGOIME5gEOuWwgCmDg4AkC43wQCgUAgEAgEAoEQgs43ZFnmuSVH2BifX+fnhU4hKCpciQgsqzp3Bo4WpyNI9ohIbBOgp/Qc2kfB+Yvs4QiqWTns80nDGN69DamFlexKLvLKBSYQCM4NUgorsYk8YAIncdnl/G/xEXFOCAQCgaBOhBB0npFaZOS3Q9n8e9GhOj8vqiUEWRuVYPbV32LZklCgvh705jqmrIjzWqalq5DZHLVDw9oG6ikVLgnBOYCMHQ0+QG1HEEBEmD+HMsq4b140f8Tk/NXNEwgEZ5HiSjPjPtzGPXP3tnRTBK2E++ZF8/vhbLJKq1u6KQKBQCBohQgh6G+AyWpvNmfOtoRCADqH+dX5eUGFmUC9ls6h/gDMWHeCAVPWNpgryGCy8vO+TB6ev9/9ntnGD3tOeqzXRK/XVvPboazm2I3Toi4hqE2AngqTTVRTEvztkbGjRUkMXdMRBBDk664NkFlS9Ze162xid7SsuCwQtBYS8ysBOHCylIIKkQtM4M7x6HJ6CwQCgUDgiRCC/gY8+N0+hk7b0CzrOpJZBoBGkur8PL/CRKdQP8ICFWdBYn4lVrvMtsTCetfpOduUXmSs04acUmjEIcNzS2JqOYNkWaa4gQeVh+fvY/XR3Pp3qpGo5eM9aOPcz3MpF5KgfmRZPmdt8rJkRycppeLrEoL+d01vPrv3ItoH+VJgaP0DxRN5FTgaEHpWHMmm12uryS0Xs90CQUphpfp/iQh3Pu8xmt33gHwhDAoEAoGgDoQQ1IzYHTJLD2Q2u7skOq0EoMFBUWNxJUbOKa+uM1QrzykEBXu4BwDWxeXVu05PISi7rBqjubbzxjMPT82EtZ9sTOLidzZSUGHieG4Ff8bmUO4UZgoNZrYkFNYbytYU7HLdjiCAaX/GszOp6Iy3IWjd/LDnJFGvr2m2cMDiSjNVltqiS8tgR6dRhKC6QsPCQ/y4cUhnOob4kl+hCK/70krYndz6zvuUwkqu+2QHM9Yl1LvMO6uOA7A3tfivapZA0GrxFILExIYgrcio/i+qRQoEAoGgLoQQ1Iz8GZvDi7/G8vW2lLOy/grTmT/cuYQgk9VR58NifrmJjiF+SB6OoduGRbLuWB67kou4ec7OWgPHrFJ3mEmJ0eLVTpfY5Cn+ZHsIR7Is8+mmJADeWhnPhE938J+fDvPdrjQAEvIMAGjqNjA1CVsd5eM7BCsD55UxOdz/bfSZb+QcYumBTPanl7R0M5qVn/dlAJBebDzFkrUpMJjYkVRIebWVgydLWHYwi4vf2chzi2Oau5lNxu6QQbLjo6nfEeSiY4ifOjC46+s9TJoXjdlW+9poSXLLlPZ9VU9fWmGyUmhQxKxDJ8v+snb9XTFZ7SKM7hwnpdCI67bdUCi34PzAM/y3wCBCwwQCgUBQGyEENSNmZyWeQxlnZ2DSHGXOS6ssqtsns9Q7T4jDIVNgMNMpxDt/0P+u6YPNIXPfvGhisspZsDvd6/PMErewU1plodLDkuwSm0oqPYSgMvfynm6iNXG5aDUSXdv6czy3AlDCQwBC/X2avK81ceUIcshux1ZvZ1JsgTeyLDP1j2NMXh7X4km+mxNfndLl5ZQ1fYb0Hx9v54Fv9zHpm73c/uUe3lp5DIBdyUUtfoxMVhuS5EDfgCPIRccQX1IKK+n56ir1vY3xBfUu3xJ4hq65HFd7U4uZ8OkOTFY7sZnl6uet4fi3dvpNXsszvxxu6Wb8bfj1YBYXvLKqUZMvZpsdQzNM0pwpKQWVDOvWBhBCkMD9fBfq7yNCwwQCgUBQJ0IIakZc4UwZjUjE6nDIDSaArrbYa4WCnWmZc1mWKTFaGNsvHIDdKd4hFUVGMzaHTESoIgRNuWEAs+4cQte2Aep7APvTS7xml1OLKukdHoQkKWKVpxCU7xzQlRjdM1KejiCXfVmv0+CQoVvbAAZHhrE+Pp9tiYVsd4ZrmW2OMx7s2ZyhYZ4hYu2CfL2WmfqHMrh/9pfDLNyTfkbb+7uQWVKFyeo8Ng4Zs81ObrkJo8XOiTwDhzJKW7iF3qw+muvlQmsKeqcQVFMEdZFfYeI/Px3yOocBrHa3g+5YjiJOVphsjOnTAYPZ1qhr/mxitCh9g16jXKcNC0F+mG0OPLsXl+BaarS0ijACzxnsHKdwPG1lPMdzK4jPrSAmSxHb35jYn9QiI3fP3Uu1pXW5mloLLlHtz9gzz7PWEuxIKuT134/+pduc5hR5n/75MG//Gd9guPcD3+5j0NT1f1XT6mTZwSyyy6oZ1i0McD+LCFofBQbTXyJcZ5ZUE+yno0/HICEECQQCgaBOhBDUjLgqM2SUVJ0yn89vh7MZOm2DmrzZE4dDpv+UtbzwawwWm/sBtMTY9Ic7k9WuzqhXW+2YbQ4Gdg6hf0QI09ec4LYvdrFwr1Ldq8CZNyTc6Qh65PIe3HFxF8DtyLn30m6UVlnZ4xSRZFkmLrucIV3DCPX3UYQgk3sQne4UeoqNFi5oF0Cwr46s0irKq61cNWsrSw5kAnDXcGU7PdoH0qWNUrHswe/2sT2xkI4hvlRZ7FRUn1kuFotHaJinK8iTBbvT2ZtazPIjOUxeceyMtvd3wOGQuWLGFv75wwEA/r3oIH3fWOuVb2LB7pP1fV3laFb5XzILXWWx8e9Fh7j3m9MrkVzlFAvqE27eW32cP2Nz2RifD4DF5sDhkInNKq9z+Xsv6QrA4VO4AJMLKok+S7ls7A5ZFYL8tAEAWO31/xYDIkLU/58Y05OOIb7kOsWfkdM3cdn7m85KO5uCqy8CePyHg2SWVBHirzgZs0urOZxRRs8Ogdx/WXfCAnzYl1bCypiclmpuq+Z4rhJeq22O+NoW4IFv97EoOoOis1T5yGp3sCelWJ3csNgcVDuF8a0JhXy7M03tD+pi32nk8LPZHc2WSzCzpIrnlyrhqUO6hqHVSOeEI+ipnw5x/ac7WroZzUp8TgWXvruJpQfOfvXUzNIqurUNIDzET80Jd66QW17NpG/2nrU+QSAQCM4XhBDUjBQ5Z7EtNgd5p5iB2e98eHx/9fFan7lCp347lO01YK0vwW1DVZCu+WgbA6asA9yhZW0D9Dx1VS/8fbQcyihj8vI4yqut7s8D9bXWM+vOIdw0pDOvT+xPmwAf3lp5jC0JBSw9mEVRpYXBXUJpG6CnxGjB4OGm2JdWqm67baCeyDb+ZJdVszu5iLQiI3/G5hKg1zJxUGcALmgXyLj+Hb22/fJ1/byOy+kgyzKFBvf3PV1BL17b12vZeTtSAYgM8z/t7f1dcDkvdjidV+uOKQOeE87B4w2DI1gZk1NvrhaHQ3GZ3ThnJ0PeWt+kssWphZVNnrlOL1KuB89wxKbg2t+T9eQIcrlhdFoJu0Nm0NR1vLEiTnXM1OSaAR1pE+DD9sRCNp/IZ8yMLbWqWMmyzDUfbePuuXWLV7Issyo210v0bSxr4/Lo9dpqTuQpQpS/ThGCLPb63YNj+nRQ/3/1+v50DvMnr9xEQYUJk1Vpg8sh1hjGfbiVB7/b1+S210deuYlF0SdV91ZqkZE3/zhGkK8iRqcWGjmSWcbQLmH4+Wg5PHk8PTsEsuzQ2R9c/R2JdzrYaob8/l1w5b3ZkVTIlhPNH8L48Pz93PvNXrUyZXKBUinTV6fhit7t6RTix0/O3GIN0RTx5bYvd/OPj7efVnsLDWavUDTP0uC9OgQR4qdTCi78jcUgu0PpE+Nz6+53/64kOydYtiSc3VDcKouNA+mlDIgIoVOIH/kVf40L6a/ihz0n2Z1SzE/Rp74uBQKBQFA/QghqRjwfyOpKRjtvRypLnQ4YV5hXdFqJV1I/gMR8g/q/54NvzWpbALuTi+g7eS2bT3jPWEanFrMzqcgrB0+p0Yqkq8CiyeWGwZ058uZ47r+sG6AIU642uSppeXJhZCiz772IIF8dU24cQFJBJQ/P389Lv8YCMCgylLAAHyVHkNMR1LN9IN/tSmN7YqFTCPIlMsyfrNJqDns4obq3C+SibmEM6hzCVd21XNqjLUueGKl+3t/pYDiaXYbdIXPTnJ18ubVpCbmTCyox2dwClacj6Kmroph280D1tWuGtyUfpNcdy2uWnFAucsur1RAbT7LL3Oee5wz1rpQigv10zLpzCBd1C2PhnpPqg6TDIbMjqZCyKgsXv7OBYW9vUL/32u9x9bZh3bE8Na/OsZxyrv5wG5e9v6lJSWxPJ8mzi6d/PqwmGN6fXupVXteF6/NSo4XdKUWYbQ5+is5g+poTda7TR6thbN9wtiQU8NGGRDJKqnh52VG+3ZmmHi9X1T9QBNEqi42PNySq+Uf+iMnhqZ8O8cOe9Cbv06z1SlWt+FxFcPXXKeKlxVH/uePno+WtmwYy/bZBAESE+pFbXs3WhEJ1GU9H2KlIKTSyLdH9XaPZVuexrYu6BifT/jyG2ebwEsaKKs3qOnclF1FUaWaoMwxGkiRG9mxHUkHj23w+4aqq9ndMFl1lseHvowXgf4tjeHjB/kadW99sT+WjDYmN2kaM8150NLuc+bvSuH624kJZ9q9RLHx0BPdc2pWdyUW17tPgfUyb4k6IzSonrcjYJMG1wmTl/TXHueTdjdz6xW71fVf+PUmCnh0CKa2ykl5cxdt/xjd63c2N0Ww77fBdwMsp3ZRj1NIYTNYGJ+ZMFncI9tnkz6PpVElp3HFxF9VRXTPc+e9MkDPPZVGlmR/2pDd7pV6BQCA4XxBCUDNSaDDTr1MwAJO+iealX2NY45xldDhk3ll1nBedwklGSRV9OyrLrjvmXZo9Md89oDl40p2fxTPPDiiDqJd/i8XukL3yP5QaLdw9d69XFSy7Q6nOFRg1nQ/iHgXAV6fljYkD0Os07E0tVnOgtAloODHzrRd1YXCXUPX1Q6MuYGjXMNoG6ikxWqk0K+t5+PIeALy/5gSZJVVEhvmpjqB9HoPjMb3b4+ejZeXALVzx26VQepKBnRXxZ1i3MHp1UBI6v7zsKC8viyU2q5wP1noPzAsqTKyNqz8Hxt60EsD9sGB3eD9ceopfFU4hq9Jsa1Sy0GqLnRVHsmsNam3208trlFxQyRMLDzZbXozyKisj39/MnV/tqfWZp1B4h8fnO5KKiAoPws9Hy93Du5JdVs2hjFIsNgevL4/jgW/3Me3PeEo9HD0je7ZTc7fUxRMLDzJ/Vzo2u4PtiYoDqdpqP6W4E5ddzsu/xvLPHw7w2eZk9X2LzaFWu/ojJofnl8SQWVJVbzn0P5yhQ7cM7YzF5vASL1y4HEPFRgvrj7nFVYPJ+yH6it7tmTRCEVFvGBxBaZWVuGxl9np7YiFv/xmvhuS4Kt8BfLDmBEOnbeDTTUm8ukz5fV2Dnrqq+G1JKGDqH8fUgcOB9BL1gd5qd5DsFD+KjMrvGOgTCIDZ3vCg9MFRF3DPpUr7O4X4k1Jo5KVlsern0amNqxbneX672jh02npGvHfq8LLPtyRz+QdbMJptrI3LVRPEuwTQWy+KVJdNLTSq58k+ZyW7oV3D1M8jQv0oMVpqDRqrLGc2IP2rkWW5SSFGp6LCZGV3inI9lFZZavVHJqudp346pIbwNhfHcyv4aEPiGbsQBk9dT5XFjh4rGmf/vTYujxlrT9S77r2pxby7+jizNyWdcoBosTlUB+vc7am8tdItnvRor1xLdw3viizDiiPZ6ndc+ag8c68UVTZOuHf9HuB9fwfYdDxfDdV2cSijlKs/3MrI9zbx9TbFrZpcUKnuv+t62f7iVfjqtOr3WjLX15M/HuTyD7Y0yuXocMh8sTXZy6UZn+MOxV0Zk8Nzi4/UOlatiUKDmQqTlUFT1/N+PZMG4D5fzrZwsSDpHQJ7fE7fzj50dDoB/67hYatic/mxxjXhEoN/2HOSKSuOsWjvqcPXBQKBQFAbIQQ1I4UGs5dAsuRAFv9adAiA7/ekq+87HDIZJVWMimpHeLAvcdnl/HvRQTXvTlK+gTCnGOOyEHdvF8DO5GKvh9/18flqiIxnme+aVb1ACcPZeDwfSfJ+APHz0TKsWxh704opMVqQpMZV6PJzztJ+cvdQpt40EEmS6N4ukIS8CtU9cd+l3ZhywwCO51ZgtNjp2ymEyDB/DCYbRzLLGNGjLeMHdOTpcb1h/WTY8aGy8k8HE1hwmGX/Gsl3D12ihoiAUs2lLibNi+bJHw/VK9xEpxYToHfnyPAMDQNlML/g4UvUqlIucj2qSy2KPskFr6xScy65mLkugWd+OcLmEwX8GZuDLMvIskzU62vU5NNNYdNxRYDIbaYH+aUHFRdaXaF1nu/FeMzCBjoMqgB3dX8lufjtX+5hxHsb1RLsyw9ncbd2C21RBvAje7Wj0GA+ZdLenDKlDLuLTzYm1Vt1p8Bg4obPdrL4QCYb4vNVsQDghz3p9H1jLfE5FTz982GWHcriihlbmDQvutb6ip2z9fde2o33nE6YL7Yms8zjfKowWVWRpcRoIbWokgERIbw2oS8g8++xvdRlFz46gvduVdZzdb9wLr2gLVHhQbzvXDdAXoVybD2FiMUHMtXB0cbj+TgcMked+YeKjWY2xudjttnZklBARnEVD8/fz4Ld6aQVVfLdzjTu+GoP3zuv77VxbgE5t1wRhAJ8Th0aVpMgX/fgsU/HIMKDfXlnVbwaUmQwWflofUKdM/OeYaDZpYrrzGqXGzX7/N3ONLLLqvlsczJP/niIiU4nRk6ZiWv6d2TmHYOZfMMA7r20KyarksDclbQ+UK/1ynXkHux4XzP3fhPN5R9saeyhaHFeWXaUnq+t5rXfj9YKMTwdDqaXMsCRxJTO+zF75L5xsT2xkFWxubyzqnaI8plw37xoZm9KOiNXpclqx+aQ6SVlc9TvMd7RfQfA80tj+GJrihp+nV1WzedbktV7Y1y2W0RwncP1UdiAiyfQ6TroHObPwM4havjs/5Yc4aK312O22Zm7PVVdvjGOoAKDiUnfuCdoNsTnU22xs/poLiarnUe/P+BVqdFktfPfnw6TWmjEVENUcfXdLqdwuyBlMuMeZ96y061kdiC9hGM5dedEawhZltXwddexqisHYk1+P5zNjLUJPL8kRn0vrcjdZ774ayy/Hc5m8f7WGQZkttm55N2NjHSK3z83EEboKp5RWGnmt0NZtZ4lmot8i+KGs8mWWn1jYya3WhNP/XSIN5Z7O41rXmsNXceC5uHgyRLeW31cfZYSCATnBkIIaiZKjRaKjRaiwoO4z+kUcJGQZ/CaaYzNLqfKYufayuW8ELCajccLWH00T03YG5dTzrBubWgXqMdsc9CljT9PjY3ieG4FO51uh4MnS3hi4UGCfHU8e01vMkuqyS2vxu6QWXogkzF9OnC1szoYoFbfqovLerYjLruCtCIjwf52pu6Zwm9JvzW4v0+M6al+18Vz4/swYVCEWo1Io5G4YXAErhylfToGEdnGnXfnySt78c3/DScw+U/YPRsG3ubewO7ZXNy9LWFOp87lUe0bbI/LGZFRXHv2X5Zl9qaWEB7idv3UTBYtSRJj+4bTu6MifgxxCnppRW531scbkgCYtyPN6yE7IV8ZbDz6/QH+89NhVh3NJd3Zju/31D1TtTe1mJd/ja3lqNgYn686xBobXtMQe1KK+XZnmvp68vI41bmxJ6WYDfH5qs3axTApkVi/x7laOgTWasKD3blFXA4gjQTXSvv4wOcbXtAtBuCCdooIcaoKWm+tPMbulGKevFIRVlbG5HDfvOg6Z/j3pNROsOzK6eQavC6Krn2MB01d7yVsuVx2Ey7sRIBeR5sAH+KyK3h+aYy6Xc8Z9GKjhZPFVUSFB/G4aT5pwY/zknO7LtefC0mS+PGxEax7dgw3Dumsvu9yW2WWVNOzQ6Aq7row2xxc/sFmDjhnun/el8ljPxzguSUxPDx/P2NmugWMlEKjmsPE5d5YfTSXiFA/NBKkFyuuoxC94mJoihB0w5DOattsdplfnxxFoK+OTzYqg4l3/jzO7M3JtZyLAMUeLohF0ScZNX1zo7frEpMX7FbOT4esDHwzS6sY2DkEnVbDo5f34P3bBnP/Zd0BRXR7Y2J/Vj19BTqt+/YVEar0K3nlJj7akKgm5nadAy7nWGvFZLVTXGlmsTN0+KfoDG75fFeTHTXlVVY+2pCoOg7Sioys8J3CIyUfo8fKgCnr+GJrshq+4nK61RTAzxSXS+VMXAhZpVX0l06yyfdFfLEySed9bqUWKtfBXV/tYea6BLUCZY6HeH/gFC4SV06zED+lD9z1ytXuD+1W2PkJ7P2Ky6PacSijlE82JrIqNheT1cHVs7axYHe62h80JATFZpWRXVbt5Q4cHdWOlTE5vLA0hn8vOsTHG92hbL/sz2TO5iR+3HuS7LJqFj02goNvXMMNgyPUZVyTP8WVZvx9tATolX2YfvtgHrisO6lFxiafPyfyKrjjqz1MnL0Tg8nKV9tS6uxfXciyzLur4tmXVsK0lcd47J05bPfIf1OXU/Z4bgWpHqGni/cr5/zBjFLyyk0k5hu87rsu8prZ0WK22VlyIPOM+4aUAuW8MzonQIL9dPUu67oe4rIreG5JDG/9cXbC91yH3GJ3C0F55Sa+2pbC4Knr//ZVxGq674oMzRdG39LIsnxa4ZAXTVvPpxuTzkKLFL7cmsrc7alMXdlyIaeticMZpXWGC59rfLk1hWFvb1CfPwXnHkIIag5sFpIzlbCTAW0l3r26DW9M7K9+PGeLEs7Ss4MySNt8PJ9eUjaXJn7IXeXfcplVmSF05b8pyc9mTFgREWHKDbxfp2Buvqgz4cG+zN2eSrXFzhvLj9EuUM+K/4xWk7/GZJaTVlRJTrmJGwZH8Nr1/ejuHJxvryMMxsUVvZXv/xGTg1/77axIWcGyxF8b3OVx/TuSPn0inTzKygf66vh80jCm3TyQh0dfAEB4sC/3dykgmCp6UffIawAAIABJREFUdwz2SMAsM6JiHZzcA0sfgvCBcNNseHwr6PyhwHuG+usHLmbG7YO93puzOYlxH271mnV0hY+cLDby4foEHA6Z/AozRZVm2ga5B+I1HUEuopwumCv7htMpxI8vtqaoD7KupKUfbUjkvdWK62nu9hR2JXuLFa8uO8pVs7Y2dPi4Z+5eFh/I9ArNeuaXwzz2wwEOOStQpRUZVfeIwWRt8KH+ZLGRq2dt5ce9J5m1LoGM4iqsdgf3frPXy1m0cO9JYrLKSC4wMGneXuJzKtTKcAA7X76Ki7XK+XrdsRfg3U6QEc3r1/fHRyupIXvPjO3BU7oVANzQxcTm8blM/HM4baioUwjyFM42nSggKjyIl6/ry0XOPC+xWeWkFHqHp+SUVTPHIxTMxeNjenoNXBdFZxAZ5s8NgyOYeuMA9f0nfzyoVs1zDbL6OMMx2wf5qssl5Buosti8jlNBhYmcsmrl+tkzB8lqhOJkEq47zh/jaodN6XUatBqJIF8dqe9dj16n4bPNyeSWV5NVVkXXNgH07+R2sEy4sJOyj3W4vnZ6iLauSk+phUZ11tPVzrTCSt7Tz2dCwAlOlioDp+465XyyWGoMpHKOwE93Q65z1r0sA+ZdA+k76dMxmAOvK4PM924bRLd2Adw1vCtbEwsx2+xsdDrUcspMzNmc5BWa5jk7+LWHO8L1eX1UW+yqo8GVoBqUUBlZhl7hQV7L3+IME+sU4sdjV/TkAmfYjotOocrvuSYuj9mbktQqSi7ONN/WtzvTVOdWQ2QUV53WIOv2L3dz8Tsbvd7LrzCztYF+uy5mrU9g9qYkVbTzDLeZ7TOHDpQxY20CUa+vodBgVvOGNVUI2p1cxKpGlKOvr2jCmqO5p3TQnCyu4mKNUxzxVYT5AaFWeknZPKVdTkqBAYPJqp5HJ539Tm55Nb06BNIh2NfL2WK1O/gjJsdLYHeFgs79v+GsfvoKIsP8WffsGDY/fyVseQ82vglrX2Z8RwNWu8wnzoHWoMhQdbvzH74ErUbyEkU9+e1QFjfN2cVrvx0lySlIb/jfGP5v5AUUGy2scj5gL9iVrn7n1d+OMmt9ItsSC+nZIZDRUe0JC9Dz0V1D2ffaONoG6tnhDK8tMVoIaZOCyeY81pvf5a6SrzGYbOxOKeaeuXsa7Q7an+4WznYlFzF9zQle/z2OjzYk1unyi8kqp2DXQmYt/J3K6O9Z5vsW25Z9DijO4kXRGbXEuOeXxPDg/H1Y7Q7icypIKjAwsHMIsgz//fkQ//h4O1sSChnevY36nSv7dCCvGRxynmw6XsBLv8by8q+xp164ATxzOoJy3ZY5wzAX7Erj5V9j1f6nZjGFgxlnFu5WVGnmcB3rcD0qmOyKizJQr+X5pTGqW/ukx4RZZklVnetobXhet0WVZvQeEwGpdQiHf1fm70qn3+S1lBprh/LWR255NaVVVi8xuSbfbHfnKG0qsiyrYf9bEwpETibg1i92c/WHW1u6GWedXclFlBgtDY4hBX9vhBB0pliq4KN+mLd/QgTFjP59BHwxkscuaccPj1wKKI6HYVIif/ZcDshsOlHAK7pfQOePIaQ3c3xms9/3Sa61byM2q5x3fL7joSP3cLVxDQCjerXHV6fl1mGR7Ewu4r8/HyIhr4JZt/WjV4cgBkSEoNNIxGSVqXlJLuwcSlR4MAsfGQHA9qRC2ge5HTF2hx2MxWAzc3H3NjxxpeLwqZaU2b+AwnpuKPnxYGv4Af7/Rl7Am1eEwPKnYP88phU+y66Q1wn11TCwg56HLovk9zvaErD6PzD/OtDq4cE/wDcYOl8EY1+B4iT47XHIUESyQF8dd1zchX9e0UPdzqz1iaQUGvnf4iPqe64HnGcXH+GzzckkF1aqiW+D/dyne33l4yOcQpUsyzx2RQ9is8rVwYznPdllgV9+WBEAHxntblc3SxIhuB9MnvnlML95VDTyvLnvTC5ClmUS8w3qgADgwsgQbA6Z9GIjsVllXPruJqb9GU95tZX5uxRHkmcukW93ppFaZOSN5XHM2ZLMmJlbvB5wh3iELK6KzeW+edG01VnY/fJYpl7fm9s12xmtOUqkvpqnhymCmUZ2PnilbOKfY3qS8PYEFj8xkhX/15Nn9ozkQk06FllLSMF+eu54Hq2tiks1Cepsrt0hc90n2/lqW0qtKl8Xdg5BkiR+fXIUG58bA3iHN765Io5R0zeTUVLF69f358Tb19E+yJf3bh2Ej1ajhm24eHxMT+ZMGsZDo3vwyOgeXDuwI7nlJp5adIiH5u/nQHoJL1/XTxUu23lcC9d9soPrP92hDpoHdg5hf3opF3OCG3Nnuzfy4+34bn0b/bIH4cvL4dtr4dBCaqIpSmAqX1NmMDLy/c3EZVfQpY0/Nw1V3EK/PH4Z029zi5p3abfwQES2+toVTjOmTwdeG9+d3oEmtiQUqAJDZmkVcmECUmkaVxlW8rl9GpKkCJuh2z8AwJxz0N2gpA3w7XhIXAu/P6mIrD/dA1n74cfbYcEN6NK3MmfSMC4Lq4C8OEb0aIvF5qDvG2vV0JOvtqUwa30is9Yl8O3ONHq/voaZ65Rk1df0D2eAlE53ye0aik4tqXe23eXeGBQZ6vX+c0uOEBHqxzgPNyMo+YBWPX05jzv7qZp0cjqCXGGxYQE+XiLVgfTSesNK6+LgyVL1fMgsURLv3jhn5ym/N2bmFjU/UqXZ5hUCWR82u4NjdYQwdQ71Y2E9jsL6cA2WqszKcS8scP8e12n3s0j/LqD0G59tTlJFW1deNIvNwWPf7+dIZhlFleY6k9puSShg0rxonvrpEKVGC+lFRl77/WidYlt+HULn0axy/rXoEK/+Vn8OtBVHslkTl8cAKR2HXxuY9AsA3zjeZJH+PV70WUJxTqpXgnOXGzSn3ETnMH/6dQrmt0PZ/Bmr9NG/Hszi6Z8Pc+dXeziUUcpX21KcQpCd7u38GdA5BApO0PfQNHrGzYa9X0Kw4sAZrD1JIEofNiAihJ/+OYLVV2azvfu3RNhz6d42gEP1DKZdbYzLLie5sJI2AT5EtfXhih7ezkKzzcHoqHZe7+1IKqJne7coqtdpCA/x4/Ko9mxPKsRktZNlTKeq3Ve8F/0eOBywfQaDMn5Aj5X75kWzN7WE3U5n5bpjeRzJLGPejlSSaggYAEcyytQB9gzntQ0we1MSF765jgteWUVZlft33rT3IJ/qv2CJ4znu1G4D4MrqTfhoJfX5x9OlK8tKWHxmSTXTVsZz/ewdlFZZuXZgJ9oH6b2EqFG93MeiR/vAMwqVLq+2EpNZxgtLY9T2u2bzXbnjTpcEj+PYx+koHjptA9d+sp2pK+NZfCCTudtTsdgcJBVUMtLDRZ1ZUnVa1SJdfLg+gUnfRKvPArIsY7E5cDifMcw2M34+2lqVWD0F2rGztnolH29NeD4ruQo5gFKh91rnZAp458z6u+NyXjz540H6Tl7LzHUnKK+y8sC30V7h4J78dkh5fgj2rd+N9u5qd47SxlJcaeaFpTEcy6mg0GBmdFQ7DCYbE2fvYO72phVsaSyyLLM2Lq9Vu3hdIZ1W+9//nIvPqVAjKurCNWFzJoVaBK2b+nsNQaOolPWk2rrSN/s3HvavRLJbwG6BnZ9w6ZjXGdGjLYfSCpjl8xUBMXnM8M/lQH5XxvscxDryVXRR/8Dvu6vww8on+i9oZy3nMp8kcMCzlrloLr6ah4L3wYYFRLV7GFmGjccLeHdsMFf9Phxss/EbcjdDOgewIT4fhyyj00j0Cg+ErIN0jlmMLyMxy3r6dQrBNU9uri4lYGYv6HcD3LOI+0d0VxJR+ig3FJO5AoqSoH1v984WHIcvR4JfKAx/BEY/A/5tIHounNwJA2+F+BVw4R2w61PI2gdHfgQgxJIPGXvQL36Aqb3Hg368e72j/guBHqFfPa9U/sYuhhOr4TVlAKfRSLw+cQCdw/y9Qu3SPBKdphdWgqVKzVOTXVpNpjNHS6CvWwiyFyZAt9rhZrcPi+TLrSlcO7ATFuesR0xmGWH+eq8ZbK1WQpZlMkuqeGjUBbwxsT96nYYbe8CAJQ9S2n8SH0iPsfhAJiuO5LDiSA63XhSJJEleosirvx3l98PZJOQZ8NNpsdgd2B0yEwd1Ji67gsR8A78ezKLaamf+rnQW7E5HluGtlfEM6RLK1w8Mp1OoH2vi8gjQa6nyyM/z22Hlt/TXynw13o/5e4vokbSAqTsfxA8LMX6Pw/6XoG0PPtR/pXzpjxiCXa6REf+CA99B/jH1+Af56hhSrYhzJn1bDl/0NiOjn1K3eVVwBu9uTsZkddAmwAe//MN8vSYbq224usxYzREeqVgOVR+gLUqkV9cRyiAgrYQRPdqi02jUEMg1z1xBT6dL68Ab16jreOnavhxMziT42M+UyYH07XQZHPkZgjsxZcJosFSytG0hL+5QwhReuq4v/xrbC4pT4OACdNJ1Xr97enEVU1Yo+/mPAZ0Ymf8zb/gsgjSPhcpOQtR46HQh7PxYeS9zL/S6CkKdrqpVz8P+eUzSwWL7VcTIUQBMHBTByF7tuOSCNkSFKwPAb31mEiVl011TAKWwnHkYUBx8vcOD+OHe3vBhPx6w2xmVNpsukoFArZXUskikz29hjYeMP0pzlBjA1ycQrSxjTVoHyZsgahxsmwEhkco1u2EyfHGZ8qXwAVAQD+k7oCQV/nMAZg8F4JLnaz9wugQqzxxkropoHwwpoF3aayTThWtMMwC4/9toLo9qz4+PjfBaT3RqMTN+34O/1sGzXZJ4J8dO3wEXsfZYHvkVZt64pjOBJccgYojyhaoSyNjDwH4TldeyDKYype9xEuSr49IL2nIwoxS9VkNJpcUrcfl/fz4MwLh+4bQJ1FNpttUKiVT3s8rK7V8qA6NP7h7q9ZD0v8VHuHZgJ/amFjP1poF1fh8UceetP46x9GAW6/83RnWi1UV9eVSuGdCRpQeUPCKfbU7mkdE96BDsW+eyLlwOMpd7w6/YO7dGH002XaQisuQOHM+tQOO0ObrcZon5BjYeL+DAyVLKqqw8cWVPXp3gdrdWWWy84VEZ8CKPioE6jcR/ro4ixM/tvHxpWSztg/WYrA4Gdg5xukQUcasuIQKUgcAzvyji/kN+GUgRg6HrZTDkXiJjfganMzPnxH5iDcG0DdRjNNtILzby5dYUYjLLuH1YF8ICfNiRVMR/fjpMiJ+PKjzF51Zwm8fAN7j/67y0aykL+z8Oyx6D6hLlHg5w2auwYQr65f/ksJ+OMaaPWf2Mch4OyPgR8mNgw5vcPHQKH29MJLOkiq5tA7z2x1UC3Wg0kBOXRJ/wIUg/3EyA1odrB04lLrtCdRdNurQ7cdkVXrmVerT3Xh+lJ5mdMJaltjF8930qJ4qACEgrT4M890BvtE8SW6yKQ7Ko0ozJaueJhW6BOD6ngo/uHuq16tisMsb0aU9akbGWQ9PFougMHhx1AYt3HmdE7GRwphi7VKMIR5dpjjO2ZxvVtVfqIRyVVyt52CQJr6TY3dsFMLJXe1bFZNFTyuGaMVfy+JW96NYukKFdw9h4PB+DydbgdWuxOcivMNU6/gDXfLRNFRKMZhtf3n+x6iBzyMp7NScXGssJj7x1Nw+NJLXQyLJDWRRXWnho1AUUGEws3JNOn45BVFnsPDz6AvY4Q1fNNgdpRUb6dqq/f2iI6NQSqq128g0mjmVX8P6a45QYLTictyNTVREUruaN669icJdQbh/WhYve3uAl0LrE3rIqixqK31qoqHa7gCZ8uoPptw/i+kERFFaa6dLGnz//ezmbjhfw8cZEfj+czS1DI0nIN9CzQ6BX4vRTbsdkxWSxEx7id+qFzzIhzhydrnvr9sQiSoxWdiQVsSOpiAERIXx+3zB6tA+kyqLk23RNyHQIUe4PWaVVdGnjvg48J0VkWUaS3PkyG2LB7nR+PZjFZmf14n9dGcWu5GIS8yt5b/UJHh7dAx8PZ5bLYdo5zL/O9TWGAydLefLHgzw8+gLevLH+e2xL4unkb2mS8g1MX3OCj+4ayhdbk9FqJF66rp/6uSzL7EouZlSvdiyKPsn8XelseO5K9VnBVSUzffrEOtfvmghMLTRittmbdF01F3aHEi7Z2D66vMpKoK/WK32AoH7EUTpDgnx1HGtzDR2kch6Xl4LGRxFEdn6E3+Hv+EX/Nm/rvqOnRhlY3SWvZYbPNwD4XHQv/t2GcbjtBHV9k30WEeYog4seQOOw8iw/ovn9cdj1CaNOfqkuN9H/GNhMsPpF+PURfq74PyoLTvL1tlR6dQjCtyof5l2Nbv/XJPg9xJWaGPp3codTmOKWKv+c+BMMeXS1ZfCQz+/gozycmyQJDi6ArANKSMlPd7sHkKZyZSD84x2wbSaseVERgJY+BMd+h9UvKCKQ2tiPlL8/3a08ZMcuhpxDoNHB8wkwbrL3Qe00xP2/xQA275nmupJZB+i1jOnTgZ7J87G/35VBhSsBxWUyZcUxQjDio3HPvDnStsPmdxRHF4DFCHYbUeHBpE+fyIWRoarTaldyMUucllrXLGVeuYkSowWD2Ub3dgFo7CZeiTzKwITPkBxW2uZs4/l/9PFq44k8A5tP5Ku5X1x5WfallVBebeXHx0bwzysUx8N1F3ZCI0FinoGDJ0vVWUTPSa+YrHJu+GwnFSYrZkMJi8J/5DJNPG2oUCtaASwbtJuIn8fxWtqD3KvbwqPaNbwTtEz5cPsMOKyIdUgaSFgNFdmKaDBhOgy4CbIPQepW5TeO/0MR/kIi8Xs1lZET7ofbv4VbvoLOw7hKf1xJLrwhkSV/rGS57xSm+Szgww2J9OsUzFf3D2OBfgaDc5bAjJ7w3bVIlfkM796Wfekl3Pz5LsbM3EJKoZFHL++hikDKj+aAda/DH//lniFtmFnyLFN8FvKR/isu3vEoLH8SFt4C73SAGT24c/89LLglnEf7VPOos4Idvz8Ju2fT06QIiV/cN4x1z45REz8DPNMjSxGBXFx4B1zymPL/JY/CNVPhpjlwzVvKe8kbwWFXrsX989SvXRKkOAFevLYvo9oZkSoLVBEIUwXjtIfR+/lz3KEkd53RfrX63b6dghU3nM2EHitXamKY6TOXn/TvMlL2DnsCeMXZXl1oV/QaPRZJgh0fwZ//U67F4Y/AkHvdX7h/GUxaAmNehHt+Vn7zT90upTZx3/HeLReqr690hp9GUshwSQkvkHBwrWY/12r20W75JACiyEKLW4zcmVxEXHY5JUYLG+LzyS6r5t2VsSwz3Me2zl8wLuZZNgZOZvbtyrXii4UHjj6C/PUYfl80gaoP+8P3N8Ivk6AsU9mft8Lggx6QvsvrGCx5ciTH3rqWx8f0JLfCxK8HlbYE4XYk7E8vIb/CxIVvrvMqr30sp5wnFx7EYnN4hRM9u/gIc7Yk0yHYl1B/H1YcyebJHw+yYHe6mtR9y4kC9bsunll8hGSnE3HSN9EUGOp3M5zI8xZE9FoNt14UyRW9O1BttfPZ5mS+3JrCtEaUA3cN6vIrTFjtDsIrna6Oh1bDg0qfOEqjCDkphUY1sfLxnApGvr9J7edcFezm7VCU0L2pxaw4ks2nG5MoKStlzr3eYbqgVPC56bNdtZLSf74lhX8vOsSVM7cydNoGfnHmhMkoqaK82uoVtlRebVXDJXXY6Cs5hSCNBiZ84LXeTtVJbEko5Op+4US18yWryF1Nsn2QXk0sDqghE0+MiqQNtd1XRwqPKCKQ3QyPbXKLkH3c92Y9Ntbc4LwXWU2KOxYgaT13Dg5DkmDpgUwcDpk7v9rN9DUnqLbYSS2spG/HYL7zmckC+6t82Ha5IiCn7+Dzq33Y/MKV6jbG9Q+nd42wyO7tvMMgOa78jnfqtvPvrJewuGbOi1Ng1yfqYo8Hu8Wu5IJKNSzNRWKBgUnf7OW91UoYttWuiBKD2ktMCK0/4fHMdQncPmcbA7f9k8u1x8jTd1c/M1z2PHrJxrThJkL8dOg0kpdTzDWAevrq3mpYMEAP/2qGdw3mTu02Nvq+xCvdjhPkdAFHhQepv6VnHrctJwqYv8ut1L/++1GumLFFFUFdDpHkAoOXm2RNXB7Hcsq9wibrchuZbXbeXRVf69qVZZlNx/OZsiKOFUeyifUIGe0Q5MusOweT+t71HJw8nqk3DeTVCf2RgeeWxKDTSIzs1Y7dr1zNj48qAnnN0LKs0io+Wp+ght+YbXZWxeZ6OV7mbE5i+DsbSXVOgv16IIvHfjhASqGR0iqrmqfRtPV9+OVewlN+5bErehIW4EOAXqvur+c66xP+moON8fl8tD6h1vuncvEUe1TKrbbaeXFpLAl5Sphm7/AgLowMZZyzmMVzS2L4cEMCEz7dwTUfbWuSQ+iaD7dx6SkqXdrsDr7elnJGCfAbQ3ZpNX4+7qFZWbWFHse/5MN2f/Cvsb2Iz61gwa405m5PYcCUdSxx9qc6jURFtY3o1GIu/2CLl9PNsxJxY6sbgvt6LTFaGBQZyugeIdyk2a26I3fXyOH4xMKDjJq+2SsXWlMpcObRclUJrDTbVAdOcaWZhXvS1Rx3fyWHM0rVfqQ1VSKdtT6BTScKeH5pDF9vT/VKZwGKceD+b6NZsDudvaklpBYZ1d/Hc7m69snhcBcAKDCY6T95rVoJ+6/k3VXHGfjmulOGJBYazLy7Kp4h09Z7OVoFDSMcQc3Avf98CXbqsW59D80l/0R77buKe2bNi0jAPTqwdR+D7uR27y+2UR6gLnr6F6zmKrJ2L+aC43ORCuJhwM3KTP2x38EnEPpOIDLuK+b67GePYwChWfnKjHh1KcQtQw987Ps1620X0TtyNHx0oyK0OJQO9Hv9B3DgA37poQgE5vWvg0+AMoBd9hjIMnf6R7OMCPwcMtW+QXDoBzgwH6zOB4S+E0HrozhEhj8CG6ZA9gHoNgrunK8IBsv/BQZnRzFpKYRGKs6Dre8rYsulj8O+ubD3C+h4IQR3ohYajTLIPjgfStNh7lgY/xb0HAvbZnDt/h/5p3Ys39hvIMRPR4XJhp+Plgl9gplwcilaycYbuh9ZZb+ML7am4I+JPf7P8OYxfwhSHqrtO2aCzQ5h3WDo/fB+Fxhwi7IfTvx8tAzpGuY1c/n6xP58uyONvanFakLo7u0CYPm/4ZgzwbZPAJSmE156mMm6hSTLnfnZPo6j2eV848yj0kUqYMv1WhxD7+PxHw7SIdiXi7u3YWjXMO6+pCs92gfSrW0Aq+PyMJhs3DYsUp1F9KSo0kTRpjnE+k2FIvhFv5IsuT0rQteixc4QKYWo9F+8vvOSz2LwTPdwche07wP3LYWVzyrn3oCblc96XAlHl8IPN3tveOKH7qRJg+5Q/lqr6LjqOdL97iP29m34rZkJVXCjdi8J2ijuCjPRzXqVx0qcN6HYJVzS40bW1khGrM4qORzKOXF8BeyZo7xXlgFFSRwPvIT+xv34pG2BQXdBfpzictH4gMPK2LXXMBagYhgUJijOF+Bmwy+M87Hg7/szfTsF09d6glvbvcSGS7+DPTPdjbh1Llx4m3LeX/EChDiTtQ57QFHl9n0Dx/9Urvd9c5XPnomFzy5mZEgx8wwwwroPPv2X4sp5JhYO/6AIGkD4rdMJ6fkPWP88Ew4t5Mlul5Gblc6zRbFwKBQkLeiDuNmxh8FSClpZZpbP12rzqqMmUtrrFqp3vQKALqgjersVc0QkHNuuOPV6joURT4DOFzoOAv8wiHK6q65+Q9mPgPbw/+y9d3hUVR/9+znTMum9F0gjhJCE3nuVKh0BQbABIqKCiljAhl0BxQZIlSq9ifQOCYQaCOmF9N4zk8zM/WNPZhICqO/rvfe5v/uu55kHMmfOnJkz++yz99prrW9lPlg6CbL2yCImt7mD7sk3uJZeQvcgFywSD/Gtxc9YGjT00nzDLL8Mns791nyuPMIh5xanprkxb+NFbhv8qZOUDP+usaWqnRQPFuCWfxEAeV0V8hVhLO2/jbQbp7AoTeai2oL36+4Tq6rm3VyjAuXwW3DvoLnt/P4svHBCTN5tPUFpiVopx9fJCoMBDt3KYYPnHnoV7ySsZg2VWHI5pQgLY0j1mnMpvD6wBdYWCt7YcZM72WXczS7j9kMqJg0Oc6eTvzOvGJVFAK+sP8uyoe7MPVpBTa2+kTXo4M1sU7XDggoNa8+n8mx3f1aeTCS3rIZgNxte7heMSiFrpGgEiP9EkA/lNbXIZRJ7jMq+B/NFHoaCSi0y9Kw+k4C/izWtpBQqLb2wbt4d9HpqlA58wSpu6gOJqxT3gkBXa5LyK8kurWHDA1Y0O30p1cmXePqXXAxI2Mi03FU/B3nz2NFiOKcfyA3IKath7uZrjZ6rJ5v6hLiabFKzegfy0+kkluyLZf+NLHa/1J0WHjb0//o0QW6ijw6UslAaas0LA2p7ajrPJTbmAu10N4mUJYEOBoS683ridCpSNBzlS/q3dGOe7QlUJUncjnyaPTeyuZZewqwW5byR9yZvqy8TXLOBWhS09LDFZMqsyIEnV4JnBDy9SxC8ri3AzgfK7oOtJ44XPoW4rcJWCULNeuE7vFL30CeoFTtjMgn3cSA6tZjo1GIGh7mjN8DzzfPoViqII587v4BHBBSloDj2Hoppe9k7pzvFVVrUSjnB7jZcSSumubMVqYVGhVFlgSDBnQPNfaAR8yz38AMgVeVDUiz0WQTaCrpc/B43xpKHI2vPp3I5WSgM9s7pzoGbWawyknwXkgp5pW8AOWU1OOsLmZi2Eo+8c5yUPiHDIthkG2yIfkXb6aK8yzL5Mzz9/CJGfbsNPymPZW3Hw6Wv8dw5Co64M1M9nMLK6Ry7k8uhW9mmTKYn/PS81rUFa86n8uvJWCK2TMa1w5s4y4x2wT/fB025ILcGLMHHWGQiOb+CIDcbolKKmLFO/AY9g10JcrNhh9H6mVpQib+LNb2/PMXiEa0aEVEBrtbklNawJSqdtMI847nQAAAgAElEQVQqPO3VZJfWcOxuLpsupTGuvQ+tjXbVI7G5rDqbQoVGR0sPW348lcTpN/vw6aE4kyqy/npRyWVodXocrJRIkkRDwYWvkxULh7Tk/b2xPNfDH1u1Elu1EidrFTKpsTLOYDAw7seL5JTV0NrbnkFhHmy8mMbHB+/y2Zhw/JysSMyv4Ks/G1v3vz4aj0ou49Mx4XxzNJ56jaEmS1St5cCr4ByI1KwbHvZqk804qUFod1J+Be0b5DKBID/+7qq6pk7H5eQiega7NFKc1NTqeN5YCGV6d3+crIXqKD63nEHfnmHri10aFR1piAftplqdnuHfncODQnonfQm+L9HqyvfY0YMybNh8WRCYGUUiM6f+WI/CsTu5FFVpTe2yVqdvpHBpiHOJBXx6OI64nHIWDmnJkdgchoV74mzzeJXmP4HBYOB+cRWTOvkxuZMfGy6mseVSEi+qf4NaYPBPXE0rZv3FNJTUMUR2lb3XO9LSw56BrdxZeTLRlDt16l4eI43FKw7fFmNyBXUk51c0UpZGpRRRXlNL/1B3KjV17LiSwdSuzanQ1DUq1vFyvyCkmPWsUH3PGV0402rf5sTdXNMiEcAtY1+//UoG7w1v9R8pSOoJiaySagwGA60XH6GZsxWn3+jLj6eSWH0uhZyyGt4Y3PIv3unvw2AwoKnTmwpYPIhKTZ3JPvn1+MhG7fJBhZVOb0Am8bdVV/8EGUVVZJZU09nfyfT+mgZVaOuRbbRH6/UGNhnnL9+dSDCpzaJSCmnlZWdq9yCyKZ/q1LjQUVlNLXV6A6297bidWYbeAJ/9EcegMA+ToqghDAYDJ+/lifHiv6gc2mqsGJmYV0GosVrsw5RtK08mmvrmI7E5LBoayv/w1/gfEfRvQGEBfd6iXdomBlhU8a1MBn3fge1TzS9p8xRUF1BYp+b5vHF8Or4dDbsxpYUV/n1nQHhPOPsV+HUVVbTOfQOhw2HIF+jlSgZc38og+VVIANpPh9ARQqGTEUXXyz/RVXkb7hhzS574DEJHkPrrDJoXN/aA18hk8NRmKM+BfS+Dvo5KGzEAclVaU61Qgz5bkECdZ0HbqcIS0xCtnhSDNTfjN2k5FAYvhb0vib/9e4HSuCo7eRuobMDRH+IOCgVC6IhHn9Mer4rHxR+EamXLJPDrAqlnsQbm2J7h1VdXUK3VsvTnDfTyhkEFh7CSKvmodgrvKX/jM+UqNtQNRIcca0MVOsksldXX+wtOfgopZ8GgF0RO26eFncaIqV2amVYmQGQVeDqoyS3XcDermEApk5aVBjMJBDD4EzHRX/sEzynEsW4RTHJeADa1BQyS3eJjtxMoD9wA1yDW99GCrT3k3ELu3hr/mruQWkOkrwN7r4tVnS4Bzox2ycSyOA4rajig68Lzw3pw6/AqAqJ/aHTqfKQCBmWtpE5RwjzFbvS1api2D+7uQ9NyNIe2/UzzDoNpO3AKpJyGLZMFsefYHKbtafw7hI0S7aMe9r7w5PeCXHgQ7WcIQiR6FRHRb0OVeUK4gE2QCqQaQ8iVVqL9ppyBm9sY1NKGnVI1dwzNcaaUEfKLTDn/GqSGi9cM/QoyogTBo7QUCqXQkYRETIRtU8R7Dv8WMAjliHsrkeOTa5xYrGjLThtrVDIDI4D22isgh4qaa3DvNlz6AcvK+4ys3Cneu+vLon36djYTXvUkUD0kCYIHCOVc4lHw6SSyrpSW4BxID9sCpjdrTrv0eeL1ZZnwUeMBr9wrUshd+70PsXtYmPcmqIAi48OrHXhG0OvqOgBK/Ydgn3IYjUFJzIg/6dq+LZaSRGb6DqiJQ2HjgUV5PrU2DTIhBiwRfRSIMPYHByiSJD53dTE07wEV+XDkbbi+iak+8Uwd8zOGe/sYq/qWKqfWSMX3WGX1A6G5DVZcer0JkU/Bd+3x3T6YXRaQFjSVV/JHciNXS39ZDO8rNjJOu4QessZ2JQBqSpl8/gmwdgNLJyqfeB+uf0OevMFgop4EGr8OXELgl95w/AOhMHTwE6oXB1+6WGcTYlfLW7Z/0KtQKN+elx9iuW4st+6XmqrbgVjxDPGwRSkX56SoUsu19BK87NUUlZbSUXaPMfKzyOzfoUfyJgbL1IyRnyOx4wd4Ra9k4InznFS4Mr1uPp8eEv3n8z38WX0uBW2dnkmd/PgzNofLyYXYqZWsu5CKr5Mlh2/ncDurjHMJBbjbW+DnZGUOWb9/FWw9sLX3pp2fgyk35cHS72AMQL6eRU5ZDaPaelNQruFn5bcESFn03/U1J1QpaFwjsQaQyagetRr1jnF86B/LhGQ/VNTyi9NmEkuSmFP7CnUNhgQWUh2blZ9guSGDRDXUGWRkSsZ2dX4565/uxczEKI7oO7L/5Z7cL67iwM1sU9bZoVd68vr268TllCNJ8OOU9qQWVvLz6SReHRAsCCAjybX8eAJTOvtRUCGC/SX0/OR3HHIRxIwR6iEf034IcHghAy7/yJvWJ+jVrBtWmmSQwQ/KZYT2WIHVpkUALGMNXRV9uGfwZWG6Oc/rtOf32Id0x9D9Nbo2LJAZYCSqrV1EewaYdVYsmMSsEwrY+9Eiy849DHq/BRe+g0MLWOA7iWElw4k7tJJ9qn2M1n5I5d4FfK4o4MmEu2hV9tD5JVR5N8RCR+JROLII8u4S6WsMua/Io711PgWyKyzyq6bwyZdoH+wCmydAwp/mzxkyjFptDcqU44TobgKuSAo1NO8JPedD7i2kCys46b6M95Xz2XnfjjvZZVgq5YR72z+gQjEgWxGJ2q0rxywOY5snVvvnKvbwi9sHFFVqeblfMAsaBLBPkJ8kWhbBvHeXI0kS3fsMJimvEllDK3lFLm+whszYQyy8Op1shRd9dJd4SXmN0C2CFHtWoeaZll0gFTyvfMFwOehkFshL02HfXPE+N7YS2WYqzeS+XE0vZlCYR6N8kvf33uaXaWbrcb1Cp6BCw7oLqbTxdUCtFCRJZ39nFu2+xd5rWZRr6pjUyZctURmmEOXDt7M5+npv7NRK0o2KIU2tjsX7hG04IbeC36/eZ1Ard8a082HWJmG1W/9sJ+7llDHggSyeekzt0ow2vg6EeZkz0dRKOc2drVlxIpHuQS50DnAmq7TGlN+z8VIaA0LdTeq8hY/J1AI4NK8HQbJcnL3OM8coWqlxDYYJu+Cn7rBxNEzYiIedHQdvZXNw4cFG+zckhQDWnk/hg/13OPtm34fa7R7EpkvpJpXlhA4+eNipeX1QiMlWBHAhqYCewa4cvJltIg0O3sx+KBGk0xuYvlaQfaGedrw7LJRXt10nv1zD58pVOMfehNh1yICtbR0Zeq2zqaopCCKhIRF0Mi6P+NxyXuwVgCQJa389QdVwnyYKPCPqLcK7r2Vy/G4uZTV1QpU2o9Mjz4nBYCCrtKZBkZTHo7S6lkqtDh9HK4Kta+hZ+QdpsgZkWEkawa7WRKUU8YbNH7xYt5lXtC+j9pmAi40FeoPIwwNh5Vl5MpHO/k5svJjCh87HeapiAxfvrICAp01v+dQvF9Eb4NSCPmy8lMaacyl42FtyIakA58oETjl8jca3B/YXvjFZT3vJb9HdRc/6i2mcuJfHj1PaE+Zlh1IuUaszcCGpkF0x93l9+w0OzO3Bibg85vQNeih58CDqoxwKKrQsMV53aYVV6PQGzhoLaey/kc0r/YPR62HxvtvEZpVx8JWef+scPwhtnZ6ZG69w8l4+X4+PZEw770YEw+n4/EbVwR4sRFGlNVuWDAYDg5edIcTdlpVT2v2t45dUaSmuqqVKW8fd7PJGxVsexNwt17ieUcLHo1qbKqnezW6qcE3Mq8DLwZIvjtzjdHw+nZoLxX399bH/Zjb2Vko87MztMiqlCAulKHKyd053bNVKCiq0KOyv4h9owWsDplOhqWPe1uvEpBfTsblTk+NeTCrk2XVXeLqLHx+PCm+0TVOn41JyET2DXJD9jXbQEC42FqQXVRGbVYa3oyUfH7jD+cRC/nytVyO7WFYDNbKv41/3Wf+DwP+IoH8J9RK7YxnGErehI4SC4OxX4u+gARD5FM7ATmSPvhBcgmC0Ma+l33sQPBBcW4KlA7LRP/HCvfY8b3WGzqoUMXm0Nt5AA/oKJUSKUXXUeRZ0egEAvykrKTn8AQ6D34bD4wHQzDgIXsbsDtcWcOlHKsIGw+UPcXEMIqksFV48KVQ83o/o0Oy9mz4XOlxUJvJubyaBgCq3UJZcWMLrHV7HY9o+iD8MXV76q9MKXV8SA/KfewuFVOhICOiNw8H5kHwI63PL+KYyBowLZLku3VhzfxhWaJiv/J2R8ovck7cAHeh8O0GRmITqJARxcPJTuLXdfLxNY8Qkc+ImcG3BiEgvlMnHkF3fyOq6oViVtaCVuoh+RNPp8AKetsiE/QjV1szTwq7n3tqk+KDLHGSXVnJAuZBDt0cRXpHFMFUUpiW7tWbrASDItTuiGtenHV8m0NuBNsHN8L23jm8r3gajK+5d5W+U3u3FKOV1bhHIVO0iohYPF0GfhxYQHLOWeQpI0nviN+cAMtcgCOiNBTB6UQ/z8QL6wNsZIHsEe29hK1bHdVqorYLWYx/9W8lkMOwr0FbAjS3iuX7vwYmPxP+HfQMYhOVp8FKwcYUzX8KJj/HNfY0dKjUbdAMZLruErywfqoFE4yrHyU+EciXkCXAOFgRp2GhkjmZbAhZGS4W7cVIVPs5MBAFLXMW1MmLox7B9GgA2u8wDIgCiVwlSsNWT4PvoAZ4JQUYiSJLD9ANmwsWvKxYx61nStxPERAsy5t4fQo0TPFBY7FJOg52x3Ly1M7x4kuqVvbHUlVHrEICyJFlcx3ae4hiAfOwqstaMRltbS9cO5uuyznhchYUtyiolGmsX6PiCUNR5NsgBkT+iy3dv4MW3cRXHvbVD2Mq2TEIqTISQYViNXwvXNxN64FXx2gEfiH6nz9vi9x+/Di7/BOkXaZa4kb1s5GP5FJPVbr3qc1pYloJTpLAq1VYLFdIfC+HKGqjM43jYEF67/k3jz9dmClz/TVSPCugj1JDNugsSCIRCbFlrcPTHpziFI5IcCs3EySuKXSTbdeRUtoLwBsHpg5ed4ZsJkcZVbwPRqUUcvZPL0539eCP/W6zvC/+8LnY+8oK7/GycVwyW7cKguAQG8DTkM1l+nMX3xWpa92AXVp9LYYDsKvOqD+DU/iV+Pifk+wGu1pyYFc7+Xz9mflxvtCjJKKpmWLgn6UVVDHHKgtWTBQH44kn6hLiZiKCU/EoS8yrIKqnmx1OCTDmbUGCqShmfW468IouBcjE5fVm+mwBZDuX+s03f1zFsIFzpRZvcP2kuteFZlzgC07YRKIeX3VNYdl9kWgVKWWwLi8IlMYPTim50qr2CpaSlGQ1k4ZvG8rMKtjvNJDwzi/B2U/GwV5uIoFZednT2dyIupxw/JyssJS2hznKWPdUWgKcDa9gVc58Egw/H7uZS1MAGMlZ+Fv/co+K6cg5q2l7bTIbLP/JSzWpYY84pGiqPgk1GC7N3BwwYmJh5yryf2gFqSvAqjoJLUdRcWQm+RlXqgA8efk+zMg54e70h7lk5t0XfUD9ZGLAEji0hLGMLe1WXiawQpNQMi5P0KPxdjLKqEPeUhosf9QUL9s+DsauFQnjNIMYVpzBOBdwF/7tmOzitRong91ErIWy0uBWkX6Jq22ix3asdPLFOfC53MQi3Lk3gc/9tVIe/x6FbOXT0d0Imk2jja7ZltZfisarOxiptlyl/SWPrR++yGxRZ32Ty6O7g6YOfkxVzt8RgWZ6KvywXq25zTROmRqvzU3ZCVQEUp7I+poihpVt4X7GB5jZ1KKvMq9YAUl0NitQGv49CjXz8OqGE1pSL+2lZFopzX3JaCYlXg8nvcsI4sQwUlupL6fx6zmwRW7T7Fm5GxcPVtGLKqmvxc7JidFsxweoe6GJSpk1q587W6AwMBrBTKyis0PDm1mh+mt7NRCgdbbDS/vvV+1Ro6pjQwZcewS4mFW+XACe6Bj5c1QJCHRDh49Dk+fdGtGLG2mjOJRbQOcCZNKM6sF9LN07E5bHjasbfCskO9bQTtuNVT9In8ypq3xZogRqPcNGfR0yECytg83jecBjIBKZS22D472GnJimvgi1R6Xx3PIHfXuhiUvs9veYy49r5MLe/meT78VQScTllOFtbkF5UyazegVxNMxd72H5FqLNeG9iCC0kFqJUyJCQO387h7Z23KH+gAliVto5anYG+X53CQiGjsFLLgkEtqNDU8YQsiuU+uVg4vkHUov58vOUoveNvUqxU41grzk0rm0qsVXIqtTq6BjhzMbmQrJJqtDo9dmphh6tXkA1s5U6Aqw0JeRU0l7KxpZpbBmHJTy2sMhFB2jo9cpmEXCbx22WhyqpHvUruUnKRSUVUq9PzwoYrTO/WnD4hwq529E4uL268yi9T2zMorKn6fXt0Bs2crehsJMISjGSTv4sV7JvLoITDDGooaloeyatu3fmNl5joEAcFMEx+CblLf2qMOZv1xNv1jBKuZ5Tg52TFa4rfmVa5BySwyjgFmMc9aqXIltwSlW4iITOKqriTVcZMhyjUlXmoE4xsedBATln0oU/sOyxqXcpNfQynixz55KAV309uS63OgIuNirvZZabconpFcJcAZzr5NyUPHkRGUTX+Ltao5DLWN1CoBi4S1nlrlZz0oiom/HyJnNJqcsvM2V//Sc7XnmuZnDT2B/N33GDblQy2z+wKwOqzyabf3dZCwRfjIlh1NtlU2Rdg1dlkOjV3oluQCxeTC0nMqyAxr4Lv9Ia/RXjM3XLNRHCBaJ/2lkrSCiuRkPAzLlzp9QbicgTpszPmPp72amZvikGr0xPgak1yfiW2FgrKNXUk5FXQq4UrZxPy8XawZMNznXhr5032Xs/CQiHjalox7e9vIEblAnRFkkSmaH2u6LmEAoaEe1JUqcXSawen8uG7oW+ZbLLjf7rI1+MjGfsAaVWv6t9x5T7vDW/Fkn2xlNXU8dmYcHbFZLJ4Xyxj2no3yab7K1ipxPzkdmYp269kEGXMz7pxv4RugaLdGwwGrmeU4GKjoqBCyzljZdNhEZ6PfN//QeB/RNC/BI3ugUpakiSybzq9ANk3wda8UvS3g5lkMmjWrdFTqxa+ALzQ9LVWTmJiVV0Ct38Xg8b6t3EJwGHqeu6Xm6vm1CgayFm928PY1VQmiewBF2t3YoviwDXk735SM9T2MPSLJk8fST3C4dTDqBVqPuz+IbjMNW3T6DSoZKpHSymtnGDqbsi+Di2HCXLq4HwxmVc7GOX8kYCEu1MAsQYVM9Y6scR6PO8nPkWILp4quZKYCnPpTG3QQKGC6fAs3NwuJOidXoQtT4nJ78qOENAXeeuxDLv7FsirGSKPhu8/YKgko5fSAlupmhKbQBx6vCjsQzYNKh31eE0MZgd+KDIdStMZWrUH5FBjH4C6NFlY7e4dhOBBQnlyZ4+JBAKwiv6eVwCKhc2pHjX+A9DoJOzTj6JBwRTNC0zp0xqVhZF4G7GcSocWnDy6j7KuCwl0fchEqiEeRQLVo4FC6m8heJCZCOr+qmhHIcNEewZz3g4IYu/ExyDJsaaG2QrRBusMMhSScaLUrIewOIHIuWneA6ycRdB53WNC+yImiLDrAYuF9e3IZPMxJ2wwkUHY+0HIEJGRdPlHsPEA7w5N3u5q7lXaurVFJjW4ggP7CTKozyIzCQSC6CpIgBMfUwdcdPGlZ48j5u1tpwlirWGbdwogZvQpzp4/y5tPDRJEUcQEQYD1egNaj8PGxhabOYfMk0gjqlxaQMUNrJwCsSi7iVZfK+x7/ym82gmFk627aL923mICqrCADjOE8qAs0xzsXo+wUeKRHy+uIWiUt9RKlgYawH+a6CvURlJm+DfiXESv5tWq2KafZ9QP4mG0Cdbqa5EC+6FIPinUGU/+AKsHQLFxQmgwk0CJw3fgd2IuH8p/5QnNK5w5n0qgTEGq3pWZ8gN8ur2YMbZ32Gixmq6nV1JnsGKOTxLW184KC09JOvICMRhMDJqOd+lVLK+soWFv5SeZV71buNvSQspgteprSIBpnZvzE62JSS9hejsHOLWUEYW/cs9Sz/fVgwAY2MKBT6y34XDduAiQFQMH5zP7xja6qdwZr32fco0Iva3H5VWFWKsUDGrljrudms2XkpkhP20iixcoRQ6cTZvRjc9lx+dR/v4spyzmQzmCWMu7y8SyX+missLH2xev0mvIEvPJsW3NM/lCEbhvhIyIiHai3f4+A5wC4PZOJhT9DIcBSaJ1u2fNx4ndw9t3F5Amf46QkCGwPBIs7GBOFNzcyuzY2TyjsiBMswYbCxUx6SWEedlxJ6uEuRaHQGEDzx55eP/kGQEvnhZFCZJPCfVp/SJIsx4iyytsNFJVEfqvWiAz1FE8YReOof2g9L6wTMfupirlFBiMbabHq02P8yBU1uDXOPycHq8J+9iu54mUJZueflf61fR/fe+3kYWOoE5fx+ILi5kRNoOgevXM/ShY1VeQsfXtV5KBf28K0k6TL5cT2v0tcRyDHhQNZoZ+XaiKGA85J437GVulXCF+n6JkFJKBWb0DuZFRykfd5LAsgmAHP+yYSjMpj/edjkFDd+LsC1iUZ8OmsUxOWQgbneG5o3TycOLUgr7ILv8Ix8G9/SMUvcHmUP+ozBhSC6tYrNwoyLCw0eK+CPDKNVg3XPQj/d8XeX09XhOEfsgDCyTbnoa7+wmqS0C3vBmvyUfyROQKfJxs2HQpne9PJCJJ5gy9esuDJInJ9YBQN5HrVJbJk228WXYsnqGWdwhfP5WPrUfyTsV4xrTzYWDeWgJTfic26QxnjBX/yo2T/nHy0xRduoCduhfdgpxRK+XsnN14fPZI1GlE31maCSorU9B93xA3AlysuZpWTK8vTppUgR+Nas31785xPaOEjKIq2jdzZPlTbZixNtpEFoxv78OAVu50DXQWC0B6neh3ATupigJkaOoXGnq9Ie6B8X/QNu4AR1U3mV87i6uGEPbO6c7PZ5I4dCuHY3dFPxadWoTCeL9OK6zi66PxTO7sx+d/xGFtoWDt+dRGX69+v5GRXpRU15pKTeeXa7iQVEjXAGdqdQYO3myaL3L4dg6Hb+cwrr1PI8uNsOQbWO6yG4tbaVB+H2n6Ad4LyeL4fUtedXdlfVYu7TQayLyKziDaXRcjEbT2fOpD7fSJeRUEuNpwLi5T9IFAu5qfKMLOmBvlisFgoOMnx+gR5MLKKe3YZszh8bJXM6CVu8kSWF2r43ZmKW39HLmXU86pe/mcupfPj1Pasf9mFl7Gapbztl5n0bBQJnTwMVlmanV6vtx5hkrUjOgQTKiTAXVpMtboiLCrgQQxXqgzyFhaN4X3nI4jlWfhmneeuEgX1PeE7W+w/AqcGo3GxochsrHcsO3Ny30D+WDPNTSosCm+w0uqfejCJ3Lnzm2cSsyKXIPBAAYd7yg2ERs/mAJLMeb/5NBdZOj5xe6CGN+EjhR9rldb+tRWQ+w7hJ2dQxgwTqkmOLktR2IFYTqrdyCfHY5rQmDmlNWg1xt4dn00IyK8mpAINbU6lh66S3RqEX2DHekQ4NaoKEw9xnfwZd2FVG48UGThVmbpIy2G5TW1LNp9m4VDWprUWSfv5fHVkXu0b+aIhUJGh+aOnE8sNJEMdTo9v5wx9+cDWrkzJNyT21mlxKSXmGyly44lACJsuaGV7mJyIdmlNQwIdXtkCHtDlZNpv6QCVAoZz667gqVSztX3RLse/t05amr1eDtYci29hOfWCzWbSi7j41GtmbxKFHHxcbTk6J0cJnb05W52GS/3C0atlPPG4BBySqro4G3JT+fvs0i5BQww2uIIdWonXih9FgNQhg3nEgUR1Cgf7fpm3FLO8rqiijApjed2LGBUW2/kMomaWh2vb7/OoVvmojVPfn++Uf6hg9GWtvt6Ji/1DSKoQRZefdVDmUwio6iKhbtu8tYTLXl3z22WTWxjCqz+43YOJdVaOvk7EZVSxLV0MxGUX6Ehr1zD+8NbkVxQwaZL6czZHEOIR+9Gx3ocUgsqUcilRkHr/3/A/4igfwkVtY8ov2fr8fAcnL+A3qBHQvrnPlNLh8YT7QbvN2SXeXDVhLjC/B1cLF3Q6rXo9Drkf0USAG+eeZPonGhOTjj5yNeUaQWTrVY0rspQUlNCz209md9+PtNbT2+0zWAwcL/iPr62vkIp5WIkNJSWwvZ2fTNM3CgsTQ1gjQiOvZBUwN74boyWn+eEqx+l2lLmtJnDyusrKes937xDxATz/58/KoihqF8g+aR4uLYko/c32KUdwT56OZJBj61UzaU2n9L5ydlNrTYgVon7Lxbb5lxi27U88o4tZ6xjMl6TvweFpbAfZMYIEkuuEAqHtU8IRdGU30WuUsx6QQJ5dxAZLAMWo7Z0RK3Xo0s5w5DVCSQbvNjfv0EwtSRh3etlBnab/V/5dDfd2UQLxxZ08vwbypiGCOgj/g0aKL7X4yyAriHwRpKwN37XjoP6bnSf/jHxkj+dyo7C7hdh3K+Qf1eQBl5CTUA3o12tflLk36vpe9t5wasPKZcqSULxM+5XKEgUkw+FSlijrq4T22SN6dpzmeeYfWw2CzstZEroFPMGlbUIXn4QKithh9w6iTWGYr6//AE/23rRzbub+XMrmg4OurcOpHvrQPFHm0nmz9vvXfOLHrJfmWdrSN2BXdBAVBkH0eq0TV7zjyCTiWsBxHXmGdmoSlej6/FhcG0Bzx0TE7iKHG7pm3NV34LpCqO9pVn3pvsM/lQoi35vkCMV0Bee/rDx5wI+uvgRuxN3s+eJjwhsMx3UdrDgHqRdhMIEYSHUaaHLbIJkcrBdhmLHDA5YLMJVEn3RIV0nhsqjaC7lMKH2NEjQRYolwrYM19N/CCXKCyeEEmn/PGjWg6Cnl0P8EWHViZzEB/l96JXxA33lN3jbJYYfslvgWnqL32Zn6QcAACAASURBVG2+olZngVJpgfvlpRzzH8GtUjUj7+wwfZX58m3MmdyHqyp7Zl9+kv0ZWTiAIE/PL4Po1ciAtrJyvu1YytxoMcgd396H/NJybiRmMFR2myX5e9HYD+E9izWoJB211p4obF3Q5SVwz3s0YQ1VcwCtnkSad0PkfhUmwqBPIPMqnvtfwVMGZJtXvpWjViBbnYODlYqADn2hfsX1xVPiXwc/Yd8FOPMlyuMfsb3j6/gXnYEdx1ED65Sfwb01IoOqIhe+bWXKkbOSNPzQB+7KmrPiRCJz+wbSTxaDakcGDF/d1I7cEF5tGmW6kRkj8ugaKFGxdkY28zRIEo71qjcHEc5Oz9epbDMedg1t8tZH047S3as7Vsq/OSAME2Rb/t53cNXlglMgFCVxSNeJrZaT2NB7OgAJxQnsS9pHfHE8O0aY2wJVheLzR0yEIcaFFEsHJu0YQE5VLjd7LXjkWKDap72ZCGqI547CtqlQlEyEbSXnQ7bD1q0I+2waN9VC7UYlHDT04Ko+iNnhBlzdWglVbO+3wNoV/nwXvmsHSFiGjxNKQZeQJvfdh8HRWsk+XTcmqi/TMrILDF8u1IZKK0FU9V0Ee+dAu2caVw59EJ6RppDsKF1L5ir2QEIE+HSkvWU2V6s96RboTIdmjtwvqTaV0+7TwpWT9/JxVOrgm1CoLsItoC83OgUhS/gTSaNjSt1uljEAP/sgOsXuRCkVs3ftQmSyacxuUYZd8kGuuo3jqyKRzfZj7xlYSXU8OHy+V3SPopoiunp1NT9pMIig+9zbMP0gLAsX97AXT5leEuxuY5pEm76unZoAF7HKn1ZUSc9gV3wcrdg9pzutFx+hhZTBly2roe4uMBTSokBlK4prdHkJsg8AUGNjPKdqO5FrFzYaPvWmuSyXZcof6KldTqCbDYHGogz1qpqUgspGCj2ArdEZJqUPgEzCFEpdj0md/NgWbQ4av5BUiFQQz2y3DGzL77BH7kq1d1dy7ydzx9AMa/cg4nLKGSK7zPhbH3JNeo5KgxoJyChyJkiWhb48nUqXYKxTz4r2XJrBZTvRF8ZGPEm7wjxIPo1bXTbpuNPGRxRkeBgJBJCYX0GXmloM1zabnvvQ7RRvl44hLqccvd7A3huZlFbXcvBWNkvKNSZL0+pnOnLFqHxq4+uAbeYZPHZ+ScGMvY1Cw2f/FtPomNW1Ot7bc5vT9/L4sWMuFQnnSAqbR7T6JW7q/Tl3PZxJ8sNYSLVYOtnx9HEP9hv03Bi8hyl7S9Cg4v2XPha5nUffQ31vL0ROYovrPPyuLKVzyT4sKu7zg8X3MGMCUsxKJlmt5et2xxgU9Q7F2OI65DNyMt6kV8keBn/1J++MbEukjwMj9Sd4QXmIE4VZPFf3BiDhThFrVV/ipM2Gtp+JxZ16KC3FNZxzCxRqlEnHaSclsGi3OEdt/Rx5ukuzRtVFQaiMLicXGMmyPEZGehKXU0G4jz3X0ov55OBdrDJOsUO1lg+qZUSktgcmA437vRGRXqb3XjikJXeO/IqXVMBTv0BzZytOLujTpK88EZfH/htZdGzuyLSuzQF4Y8cNCiq05JZp8HOyYlQbb84nijZTVKklLrtMBCR72nE3u4z+HpWw92Umt30d56sHGK+8SFs+MNmpvzwSR06puGYUMokpqwUxM6mTL5+OEfbmP27nEOxuw6ZLaQwL9zRNHWb2CgAJVp1J5rVtIlQeoK5WQ3RyPnK5kmRjmPvEjr58c1QQvt8PdqCtjzUufmJBbaPX7zhoc+iTPIvWiwWR2N5XXA8+jlZsc9+E/tYBLsgWmM5NOykeNHDG4iZVqBmrWcLmKGjpYSuiKYy3QMP+eUg6La8Yu72+uuuM+cGBQDcb7uWUE5slxlW7XurGE8vOEpdTThtfB3oGOnDrzB6SDY542odQWKnlqV8ucWKBsOBGpxYxbU0Urb3teLpLM1PF0Hlbr5NSUMnXR+MpqNAQ7m1vspMOae1BQYWGqJQi5hiHi3HZgnRq6WnbiFCetekqU7s045luzfkr9PnqFABJS4dy/G4uXQKdG1VB/T8V/yOC/iXUEx3wz8ozPgwGg4HIDZFMbTWVNzu++Y/3v5h1kUjXyEaD2FJN4wDUhxFBlcZQaBdLMXio0dVgLXu4X7ohDqccBngscVSuFReplaLxwDrXKBXfnbi7CRG0M2EnH1z8gN+G/kaE6wNVarrMFo/HoJWnHet1HRktP0+6f1eknLP08O7Byusrm5yPRoiYIB63d4mKWmNW4WvtDK27w7APRWWo2D10GTLt4SRQPeq3qayZ2NkfOi9r+hqf9ub/+3YWSpJWo4QdaOQKMYC7slZYB5z8za+VyZAH9sHKS84UHwdTMG1D/DckUE5lDp9Hf45SpiRmasxf79AQVk4w84zIg/o7sHYBaxdq5ycRWWeFg6MVgnqaCOHjxeS/gaKuCd5IEvlTj4H+AQUN0NTmZulI4YwD2DoG8CDVUq+mSypJ4m/Dwgae2U/Kmbcg5RB51Xl/vc9/iFJj/2OvskclV6HV/5dEUEO0mfyf7efbEfoshAOvEjDxCzTWHTleVkp//SUIHkRmRSa5lbm0czda3BQqUDwwGVRZme1zDXAxWwRN/6GWM0ctwgOxsIUWg4BBTT9LyBBkz+zHdY1ZrTBULiobTlCYVTY/q74FLaByhxHLRUh42BgRXutntBy1GAxvpoDKGulwEu8mP8sO+1XMLP6KmWpgLahkSmGT9OkE577B/9YOGl0NY1YjnfwEy13TueDkAPZ2nArpzfQnfhALBxe/F6qVib/B7lkMS/uCz1hAJq4sDc9G8fszSOoakbdeDsprv1Dj2hoKbqMMHwNPLEUBPLL4rr2PUNQUJQuyxT1MqOxs3ISttSABXonB2d6H029U4WJjgaXqIf1Jv/eh90IR/n9cVNHrdGux2NZ/sbD2nP5cnLvwCaKyZHm2UPMN/QqWRzCkYB19hnzLxMSf8bpchWTpJBRoYaObHu9xeJSF+TFkUlWtOfuh/r6dXpbO66dep79ff5b1fUif/TDIFRAxHteQISIDr8VgKo8uZfGFCJp5BZgIzPrrUlevWJt9AbKuCZJj8FIRBt0AOcb7Y6mmFAd1U2sRQFWd+A4xeTE8d+Q51gxeIzZYuwhS/tRS2P+KCL8GiHhK2GePvi9+89pqOo1eSBe/TubgW7lCkDQgSPb4P+DiSkECgTls/i/QM9iVbdEO/N52Pe8OF5bddAcvVHIVHiAy+SInNyHedXodMXkxdPQQqkI6vgCVBRR2WkBOWg26G7ORR/8Kxz9kJ/Cq7CV62QUzxrIEbNUcj3HmHcVvDLX1pbd1d5S6H6mrLhID3uSTQkkIJuvyW8ptDL22AqWmiHS9K9PlR+jaeyRhl95CriiFov2mz/aCYj98skRUygwdjk5TTp2mjHGHhO3+1uRoof7JuCzUT/eM1SCXGTMzsq7Bma8g8Th0eoEW7mFExSZgY21DRqU4DzKZxFCLG/RKXcHiumfoZxkM1X7YXPiewy7nCK24BA9ZfwCg/XSkk5egugDNA+fVZJ8GHKQKJPTYWChopixhk/ITfGwkXpa9Q0p+JUWVWoaFexLgas13JxL58sg9AqVMNKios/Xl1KwQvv36Yzbr+tPc25MNz3bC0VqFr5Ml94uqmJG9hNST3dmj+gnbpGpqVI68rSyGvC2gAo1Bwb22q9HaeBFx4GdUhhq2qj7GVRJjs89qn8LXSssID09yFRpuKcLh7j4A9C27giYTWUAf6NkPloUzV74bPTJ6bT/Pc7azca5OpWf3XhR69GD6tmS6y27xlWoVN6/2ZFT0M6ws302aRQDO3kEMy/mD494jiE4pYv3F1EZKlKw/vsGjQMXkjv1p5WVHbcxvLFKcJbKygs6q01AK8774jL367gxQx/GsYTefayfwtss5pudPwtvViS/GRXDl6mUuXvkTZcoXOAIx0el0UECELIUIWQpHdB3Yo+uOo8tWMvU1FFo5oPCKQMMlkWFn6SDC6SvzhXLwiU+ZZOnI5cCXafvndbb2+4mwdaOFqvnaJiRgXvFSlLIU3pbP51MrJ4o8emJRsoMWRadZvFvGm/18mK/YgU6S009+nTjZdCwks/o8x70PHvWFQxqivoJjVRGGlZ35ybCMXppviZSSCT23lbbFcUzwakbeoJU4pR9h84V4ul9fQ+iZ87SUlvCU/AQpH77JaO2nrH++u4k0+VZ5jntWtdy1sGVj6WUOd2yNS+lNViS5s1E3kFGy80RmZTDRuZY+XTox5P57oBJZVwf1nUktdGfwsjNsfqELWy6n06uFK5G+DpyJF6qbhtlo9eReQUUNnb1EhUKVQmYkICpMRSPWTfCnfP/bBEZdhMp8vAsSeFZ7CbTwbWQWK3PDiMspZ+XJJLzs1bTzc+Cj7ko0V35jadVIdl7N5KU+QdzOLGX2bzGmYPkbGSWEeNihVsqY0y8IO7WStr4OzNokxtszewUw9NIU9MfDuBrxgelzj4z0MhJBBoafNi5iWNiRNPo95IdFzEW/5q8QcX8z0+R/4ritSihWu8yGG5uRAbvDzouc2Qawl6qwp4ojLt/SoWAx7+2NBQzYGvOWq/S1WNt6QbnILf3efhMTq9vwx+0KqrTifrb/5R609LBj+VNtkMskhoc6YYj6BUklFjd+cvgAu35jWLT7FnHZ5Xjaq1m48ybVtTqiU4tNakfAVERDqAh1DG1jYyKCmrtYM7CVO6vPpnAxqRCVQmayzbX0sONcA5VVYl4Fi/fFMqqtN3U6Pb+eT+GZbs1xtbHg1/OpBLha0zfErVElup/PJPHFH/cYHuHJ95P/XtbT/5fxPyLoX0KF1tyAHzdo+zsoqhErDhvvbPzHRFB2RTYvHn2Rwc0H81Xvr0zPF2uKG72upq6p77xCW4FCpsBOJSZW1XXVWCv/mgiqR1ZlllDvIJQ+lkpLLORiYJlTmWN6z4ZoSKBBYyXUtTwRNpxYktiUCPobcLBS8f1HizHo3ybz8ke4WbmZSK7HEkH1aD1GPB5Ex+cfqrr6ryGTQdc5jZ8b9LGYUMkfzkofmPufBeQ1xOdRn9PPr5950A0cTBY3Vzcrt0ft9njUl1/+B1DautAkJu/BgezD8LiVZCMaTvjq9HUoZE27Pr1BT59jMxjYbCDf9PmmyfaGMBgM7ErYhQED41qMe/zBjYTgPyln+09Rpi1DLsmxVlqjkqkeSvT+v4J208C/F9bOgQiznRMYKZHhu4ZTZ6jj1jOPDkE1YD5ntbpakkuTCXEKQS4JUqKouuhRuzaFb0d4+apQlzk2J+fcBgw2Hnhe+pCdup6MlQuFRF6bl3Eb+ZG57antYM7lxoooY26Mo5WSTFzZHLKCBVaHhKqsMAH6vmu2EI360TyBnncDkEQejEwmKp/Vw7+XWT066xzcvyIy1/gJ2Y7pvK3czJ+6Dii3/2yqBtkQ6ucPQUWeIFGM0Ol1HE8/zoBmAxpbGkFMCuuDmCXJeCxg5lmoKTF9x8cGxcpkIFOLPC4jEYRToHjfnq8Lu0rbp4VyCIRS8uh7wjJr5wkDP4I/3sLyu3AapfN0nv3oPKu/QEF1ARvvbOTlti+jlD1+Na+eRAGxOKJWqE3330vZl/75wS1sIHIiANYjvyAg+yKtvOxMm5vcd9zDxKPtA1llDyCjPOORY4rqWvM9NSonqvHGevIy8ZgxAH+kUOtZ2IuCFN5iIcL1ccpf1xDxCOgrrHiBfR+v8myAwWEexH00pFFI7LDdwwBM131iaTI6g44QJ7MVfc3tNXx37TvWDl5LB48OYhI85HOcgdHOQO0IOGweGy1T/QB3EQ/gipMbyqo8uA1dAq+xX1/OaHtXOpYaq9yNXy+uofBxkHubcbG7RW5f51lsLB3MvOSZRJyZKZSF9Qo9IxTHl4j/nFoKe2bxoYsTu2zNBEvduqEo7LxMCibs/aBUqGQMvd/mzpUfCTnxkRh8p19gVsg45qt/p8ipMzFjN6I3GEBbxeTMT1DLyvlN9SlcQTyAv6yD4xRAnV5MzB42zjO8dImbe5cTmbmFc/3ToE7LqPhFKOSxUAXr5a8w5+5MUvWh9G3hzOsDW/DdiUTUaDhu8Yb47WwGo15xhLeVMFVxFJ8xO0BZC3f/xKe6iO2hWcjyoqAsCiTQP3MQfLpyePsKBtikMu5SAF8rfyLi5HTT5zrQ4hOGx79j+nuhcivUwmcKY98xbR9sGgtZMejtPCE/E51eJ/qR1mMYX58Xp4f39CvE7ObyPrD3Y5F1NyLlaXhqC/As381gdoMMokM/pFn7jrB+BEvz5zC84h1WnjQvovhJeUTGfsaPQOW9lZC+mYgbHxKpqBJWRyOWq37gef0hwkkFCfZa3IZy6CsLxavGQPt7x2ifuJmZKrNK6UXFQe7gj51agWddJiV9v2J+aDDvn7gImhyK/Htgby3UjfZGWw2SBIM+avR7nswQpGZUaTxhLYeKxUsjlElHqHKJYObE1wFo22cU+YlLeU5/mPKKU/Q8eBskuDdwE1cP/Up7WTwt5DmAjA3WzzB86iePX+y0ckIauwq3DU+yo0sagbeWYZlmQNJW0Ip4WkXPhqTjRAAYu7491ktR14lxf4zFTA5d+xawQ4aeCCmZ3XgDZUhA6C1BOH2khIGqW/QyXIUj8DnAVT+RDSjJwaBjhvwIH9ZNIz63gg/232H/jSy+PhrPuhkdOWu0eZ6JL2DosjOEOkNeWTXeFNJbdY6wksOQtJHeGSd5UlbH+B/1+Lva4mKjwj3jMO5Z+0TuWkDfRpmiIxLeZURgf+6N/Y7BK6NpXX6WZu5hhJ35DAoT+cG/hOGZA/noqy+4a/DDHSUKW29qS7J4pnQLa3J6Mzyik0l1MrjuJJFSPs8rDtEmxwNfWRIlBQX8llmEtUri+8kdaO5iDRjoLMWZfwdNGfLDb5j+/MF2LWqFMQzegOh/jrwtVJzFqcJ26NqSzG4f4JW2D613ZxIs29BamYXtlqfY0TUduZUDG25XY6SxKXcJwtqznchlbDkc67gDHBiexxm7EUz7Vdx3WtfegKQ6nozsK9rNyi5I+XfRKSxJ09ozpGwbhsAXAAOpBZV8dOAOeWUanuroy9boDCqqqlk1sRWfnsg0KaAslXL83FbwQ3IWMj5Cj5IAF2t8HS35+XQyk1aZ79O+thJOOeeY2asnSrmM4iqtycZ5Mi6PzZfTiUot4kJSIX1D3EzKqvML+1GtNccJ1Fd3riee/k/H/4igfwn1iheAvOq8/4oIyqrI+o/3LagWTOidwsbe2uKaxkTQo6xhNkobLBXCQ/uwQcTjkFqaaiKCem7rSSePTqbVyaxK8Z1KtY0vrAc/14w/ZqA36Nk4dKNpsvff2FyUchnI1dwvv4+3jTf2FkJCWaIp+Ys9/5/HjD9moJApWDVoVeMNjyCB/g2Ua8vZdHcTm+5uajQhTygRywVqufpRu/5jfHv1W/Ym7uXUxFMUVBdgqbD8S6JRo9PQYVMH3u/6PuNbjP+Pj92QcCzXluOodmzymvq2eDTtaJNtDxKYSSVJLLm4BIABfgMee71LRmlzwz7i30apphQ7lR2SJGEht/i/9Vj/CDJ5E5VDPeoMgszQ6DQmwvhBNDzvn0V9xvb47Rwff9w0WS+sebj8/5FoYGnzGPclAIaBr6COLUCT8R0WFem4jfigKQH5YMU4I7yNZa0VlrbQ/z0yyjOwkFs0JlDlSpgbA7raxnaa1mPFwDLqM0g7jEZpyda4rYwNHovSLRTcjFO+0OHQ9SWGn1/OcPll8O4Ck7bAF0aN0aRtwj7aMHPJiOPpx5l/ej6rB62ms+cD2TaPgkxmDkh+CK7lXWPa4WnsHrmbIEejPdDBTxAN7mFCxVdPOsnkZhIIxIp2mynmIgddZglSbMtTgpgozRSD1ocR8H8TX0R9weHUw3T06EgP7x6PfW29ChYEKaRWqE1tquG2/xRbXujSKDC0/r6TVppGckkyAQ4Bf+t97lfcJ9w1/KHbGpJZTRDQW2QHVuQJy2vDe8kjwvBzKnNwt3Jvqmr2jIBxa/7W522Iv6oUNHqfUH41vP/czBeW3kde36EjIXoNyFWNCgLUQ6ktg7FrYOdz1FTmg6Waqr6LoLJcqN0aWl3GrRXZOnmx0P993lFZQ8V5oYzzbgfd5gkFXfAgQQhd+VXYt3NF1sph68ZEaUH+HTzy44VFyzlItGudBqxd+fjOWra72bGszRL6h06E38ZhfU9U0nTKv8wAmxRhxdsRjRr4TD+NhbINjb9clznC3liZD7aecGhB4+1yJTU6MXar/7chJLdQIp9bCZsL8L64GO6sRlGcIsgxSwfkO19lU91S4g2+tLqWBgnuHA/oiFVdORhFreFFwnaS59IZh8r7IuOqARr2nlnqYLyad0ctSQyZIopo5MQeY0zZEmIGxKOI/gWCBjB8/MuQ2w+ST7FHNZSQvSMIUZotc3pLB2RTd8GVX6mlCPIbjCe7z6M26QxXW75Blx4DYM0gsRiltodb23mRdNCBIfRJ9EknkWvLMLi1ouOTcwThPOs8yrXD2KD6jGEVSxkQGkQvy2Sm3THnhllrC+HXweJubusJ5dmkd17CyUvRDOASKuq47zUYH0U5pIsqvT+qlouy7w2K9p7VteaqoQV9ZNc54P8u7057EmpKmGjtgsFgIEUvFpWLu87Gzxh6/kr/YFbfWs2gZoPws2tc4rt+fCEhiUXD+COirbqHwclPsGr/FM2N1r8WHvYw7D1c95oXHI/r2tIqbACdg/tSqalD8rYHScIr7SibE35hbtu5PBbNe4G9H+HXl4i/nz0JLsHw6xBhPW4/g8PVodxML6CXF3SJ/5Ii60DSdc6E1cQwMvY1EuRjWKTYjFwy0Dy0BxRdFgsarr2EAnf3TEECAYxZJRR1BfdENmDbKWStncqzafsY5K+iKO0WL918FTsscXR2M1Wes1UrSC+q5GvljzxRHM0kVTM6yOJ5wcOVzyyd6LptPAG1dSxXgWddCcEl6VTb+VKdWIKlnbeoHmkwCGucbyexcPPne3BnDyFWS/jcVcnE8vVQ74x0DcUtZQ9RanMl3vsGF9wXxHP9myfpWHWWntIx9qjHUXfaD0X4eKQ9s9lbPxQyvo+DoZSv4voz38KPrMq53Fi3gzi7BNTaYtG+W40CTZk5e02mRJ1wkDL7EKq6vYlH1Kfid7B0FIVf7u6HY4uhx+t4Rz4BbZ/AAmgNoG8Ndt5EXHsfgMXNu5uIoLJhX+JRmC6IoA7PQn4cxO4mYtgw2knxqCUt0vql4sVOgdB9nlh0A2TebSmz7UOb20vRXVlKnMXPDNu1lCSDN1+PjyTcx56t0Rl8ofyFAUfjSJQmsIIOrHmh9//F3nnHR1Hmf/w9W7LpFRJK6E1ABBEP64m9V86GXfQ8vTvPdp76O8udDXs7Oyp2bAgISG+hd0ggAZIQ0nvP9t35/TE7s7PZTUggmgSety9fZGdnZ56ZeeYpn+dbOC2hnjG/KPPHV/9Yz+vpqfSNj8BkkHj2quP5av1BkmMtpO0vZ2jKs6z78SCnTZnHg6cOoG7jlxzXp4oVZeE8PsuIwdXIs3128lz+eLLyS7kwxcHKqgTeWLKPc49LJgwXD5p+5FfbH6hjENF1+3G4/3hE3hXdASEEdQB2t53/bf+f9rm0qZThCcNb+UXrFDUq/u0mycSuil3ctOAmZl46k9E9WjT011DdT5pbH7RFCLK6rESZo7Q4Pm0RgvSWFgfqDnBm6pnaNv3qZEGDEmyv3hFoAaQvV4W1gm3lwW5IFbaKQ5bjUBQ1FjGx90TCjeGEGcKCBKmuwJayLYfeqZ1MmT+FKHNUsLiEYhkzS80G0YySRiWGhzrh7gg+zVCCp9rdds7+/myGJQxj1hWhzw+wuXQzUxdNBeCdbe+0KAStLFjJwNiBDIwb2OKx9MJIS0JQubVl1y21ntrddvbV7OPrTH8A5OKm4laFILfPeqOjxceMygwqbZVM6jeJeme9JnKajeaOdQ37jSm3lmsCcnOanP7JuGqhcaDugCYQdUT9lIxmJbPECS+0+7dXjutLk8PNtROU8l/iizcTZOXUghhGZCI2iyKGfpLxCTa3DZfXxS2jbgnc75wnleyRbrvi2hMW6f884qIWy6e2wfkN+W0Xgg6Bai24tngtQxOG4vF6MEgGpAuf1/bZWraVsT3HBlveSZJfBFIZcbFiAZU4WFndbarwx/E5DBpcyrveFiFH339ZXVYSwxOpsvnFhzpHnfZeHQ7Ns8ao7YjT6+TKOVeSfls6To+TDSUb+GNqcJwzi9GCw+PQ+s9DXQOAy+sKtIQKFT+tBfZU7eH6edfzzKnPcFa/s9hYspFLB1/a5t8firZaKqpjjxYtd2N7w9+Uul396skkNu7zf3ffRsWdNDwWNn+C5FSy6lVExsK4O4OPJUkwdbGS6SzMtzARnQw3+Nt4NQMrl7zK30115DUUMMQylJdO+CsxWR9i8/ifQenUX+mVcmLIYs/KVvq7AwaP8g7f8A2seEER6b7w/a8bdz329OtQ5RN+5v5dEcB0Itbe6r1kjDqXyYMuURJoDD4bWZa1++xwt3C/DUYlRt6nFykC2Kl/044b//fV5L9xDqMcPt8RWw1DGpWYQ/Qeq8R+c1lh/2KSh12gZAmdcZlS7qveV9q67KWU19TxYnoMD908Ociq5Me/KFnZTCdcD2c/7v8iZRSkjOJKWaZ+yBJuSfsHVCuLmrWOWhIjEuHMh6ldrogTWv1IGY35kUxOUc/zj53KNZZlBFhwSOc+iXHydPC6kGTZb3WYfBymm76n7/Rz2BF+D17bWAwHlDThX0mXcYU0n6JRVzIyYzaYwpWA9y4b/WNSmHKBl6ySBqavyeWlySeAtRTenajEawJyh93O4FOvhl0/8Bo3886Gas4bmcybmeV8d9YpShl8Vs1l1jItVme1o4Zoi4m8aZdS0ljCrEUQKwAAIABJREFUBT+9xfzc+fx85c8B91J1e7e6rUr4gIezlCy2kkGJKzmkWbKPsVNwN1XTUFlMethYzP0n0jsuOL39QysVK6K/jvsrtY5anl3/LI+c/Ah9o5tlVjQYlEzHs+9VYgepLrr3rtF2udj3PwBVN5AY04vEsCjembWc23bexJO6hBLV8X2gGuS+4+HsN8HRqCQAMBhgxCVK2IaBZ0LWPCWmGtDnsifxfpNBasFcUg3wqfllhhqKWXXCDP6xwslU06+cfOpFFGakMblBKdcESWkzynx1oNJoZPDUlfDjnTxWqcSPui02mZdc4aQPOI2l+csYGj+UgVe87b/26z5XMg+vmsb1wFrPaIYkhdGrzwAlnMOsu6nPWMR09yU8ZP6RVKkSPjyNk61ZzPacRk1CFm9UryJiXzU3rvD3nyq2hOOorS6nt1RNb1c+F2S8AxKkG1H6ygtfZHFCT9bvn8PjoIQ0OO5S2DOb2DPvxXLi5dxcNZsLz/kHtwybrLRvZzygJF0JFW7BYFRc4n+aCvY66gs2QH/leTdExCoW3n3GKe3A2Btg+XPE/284s1TxKnGwYmWa/oPijuxDOv0Bxg06Cwq/wrjhfxglWGb5J98NeIarTrwEj1dmrJTNNcY1YIV7eY9zR9/B8IFXwnsXgc+odphjBWsGA6/fA14Xt5z5CLecIiF7XGT3yOOaWhtbeiWTvu4taCwnrmAjU4ApZrjd+U+eTl7FoOpN9Bn+ALHlGzmpcTvfjHiBt7ZWU5Br4o6wNdxr+IV7Tb8w23wJl7kWU33wDyQPaV+Ws+6GEII6gC/3fElGlT8Sf15dXshBXVspbFTikVhMFpblLwOUld02CUG+yazepQKCXcPaYhHU3AqiOeuK1rGr0h+MN6cuJ6D8KlaXVXMNay7AVDuUiZxX9momrqAM4tUylzUFBlJsLw6Pg3JrOX2j+yJJEnGWuCBB6vfE7rbz+tbXuXvM3fSM7AkE3uu2Buk+FLIsk17ZstvNjN0zeGvbWyG/U2M31TpqW3SlAmUivvTgUq4dfm2b42Ltr9kf8G8oKm2VPLLqEa0e1zhqeGPrGzx40oMB+7m8Lv6+/O+EG8PZfPPmFo/X3CIoFGXNUhvLssyTa5/klD6naHUxszqTyXMDYwuVNJYwKmlUi+dWf9tW0cLldfH+jve5fsT1pES1HBvpxvlKMOldt+5SLIIsSm+pTh5/L66eczUDYge0PZ4KgUJ1hbWiRSEoVBD+jEp/W6uftHckubW59InuExTcvjlGg8QtvuCT7hDuWm1BFQfUNiDkNRnNwbGa7ll9yGNvLVNWUfUZI48UdeLh8mUynPjNRC4ceCHPn6EMZDMqM7h94e3cefydQe9ri/TSWbs0E4FmZs3km6xvmHPlnKA2RhVB9PHw1DajLf1GSZM/i5EqHOmtUHLrcjkxOfSk/nBoLgbLsswbW9/gq8yvgmLhub1u7T3OrMqkJZpbBFXZqugV1f4EFQA7K5TJ78bSjczNmcu28m2clHLSYR+vOXqx3e62B7grWl1W7Tmqz6J5mxyKxPsWKYFrU46Hyn2QrEtlf+0M5NUPQeWu1o9liQ6In9MSdq+LlWVKP5NnhO19R1GxO3CcVNrCeeocdVoboS60EBHvz7J68lTY+IGSBTU8TsmiZjT7r+dPnwYcq8JawZ9+UdySLx43hcixU8Boxi27tXc0lEWQRngs3LkQspcoApNu+5ZhD9I/4z7mj3mTSyffoSRV+GmqEhtGTXSgJtmIiFdiXXndyjEBJtxJMvDG+aFP3S8x0u9yGsIFVJIkSr117Kr2W7ZX2ipJDFcsFdU2M0Ao1LcNasD4PicqmQcjEpUyaxaZIbI4pZ6Ep9+pGAvWY4juqWQ6HX8rN4+4iFsX3Mz2im1snfIdYcmjlev0XavZaGBMahxv3eBrJ+L6wsOZihWetZrB/Xwu94Mn4VyQCVQzuk8cH986Iag9y631Z6nSjxfyG/K1e9AcdXyh9Rt6q9Dm2fcADAZMZ9xPAtCWWUqFtYK1xWtZmr+UosYivr/8++CdBp4eOjFHKHSLIlecNZGPtl7KI+Yf2DziEezj76a6bgag6/st0XDHfGRZZl7uPM6w15AQ29svzgL0HI7h/m1wYBUFX93HcHzB4tP/xbo4L9GOcljvW3Q8frKSfCN/o+I6O/dqwENxTE+lHxp6HlTuozjyOLaFK21r4x/u4sHldxNljmLDlGYuw5Meg9jeOA+s472KKTxxxTh69VGsqrh2BhtGFjHUI8GwVxQr3grFpWuG+yJ6JQ8Az1oy+58Iht5KzLaN72uHjjjlTvYkX40h3s1dv14HLl99/1ceyDLVjhoe/k7J3HqZxcJJ4+6Esx5VrInH3sCXe75kZ8VOdlfu5pbRt/rL3FrMzWHnw2P5MOMy6ov819rgbFCuSQ37cOrfIf1H7Xq8wy/BeunLPLPjLf5x5gP0S3sTkOCpKn/mz/OfhR9uo16OJFaycm3TTAwrmzBmzWdWZC4eSw+Mbgc4Gxh+8FvYMFhxtfdZwZXt/5UxVl97G9MHFiuupBJQGW6B3r7rUt1yz/43jLwM+aepzCh7BXzTgHPz/WPVm3Me4uZwwAYYoC4shThnGVe5FsDxfyJ5cPvDXHQ32pzJXNAy+gFGmCGMvPq8Q/4mry6P17a8FnLyoA7a7W67NiAKNYm0u+3sqdoTMKlSB1oujytg3+YWQaGsfZpcTUSZo/yuYc0GEU6PM2CCec/Se3h3x7va573VewEoaijStnllr9aJGSRDkACjxvhocDYETPAKGwq1jq01S41DIcsy64rWISNrMQjiLHEdZp0xN2cu32R+c+gddSzLX8a3Wd/y5jZ/Y5Rf78+00ZbBb1vQ15nmq8YQKMSo5sWgCFFl1jJizDHIyK3eq6fXPs2zG54NckVsjr6OphWlhdyu5+zvzw6q859mfKpNPlXUgVNrA96HVz7MnYv8K8Et1Sf9dlmWyazOZE7OHB5Pe1x7f7Jrs4N+p7o9tkStXbl/ba1zG4o38HH6x0zbNK3FfZq/83XOOi22V5gh7MizhrURu9tOdm22Jli3Fb0w13xyqEdv1aFO8NV2om903w61WFMpbSrlyjlX8sLG9lkIqZac0D632uZtc5vbJpNF+b8Fqu3VWn3tSCFIvedFjUWUW8txeBzMzZmrfZ9ZrYgWi/IU9xGv7GVm1kwqbZXMzJqpLQqEYn/Nfuqd9byw8QUeS3uMe5fey/Mbn+dA3QEO1h8M2v/y2ZdzzVy/G5lX9mpCr17kCcXuyt28usUfRy+UEKefmKk8tfYprvvluqDtLVHWVMbiPCVbXvNnW2mr1MS67eXb+Trza62N009y1xavbbFONW/bj0Qc3VejrJJ7vB7t76zqrNZ+EkSdo06J3RIC/btebi0PqAvq81KzhTbfv0UiE5EH/ZGN9dk49ckXAGJSqPYJZUcyjlDZVhZosby5dHPQopv+mgrqC7Tno+/j9W2Fxvn/VTK9nXizEoPJF2uquLGYJ9KeCFjAuGvxXZpLHfj6pbBIMJoDrIDm5sxtXRANj1Umxs3czy+8/HpeGPMrp1/sy5DZYyjcs8ofc6oZLpMZh7nltuhwaJ6YQS+CqG1mm9rK/qcocbHakOXOeMNXcN8GJRPojd9o1pbbfQLp/sR+bbNWtMQogocqAvm4/fSBnDQggSkT+4dcOFPbawkpoG8L1fapqO97R1jOQ/D7+1jaY1oblVmdGRTXU88/V/2Tx9Meb/H75gxIimLUtU9RePZbnHztvzhzRC/tupv37Tm1OTyx5gmeWPNE6INJEgyeRMGkt5jb90HkvhOQGksVEShFlzBg0uOK5cq4GyFxEHKc8jxLTv2L8v34W2HoeZhu9VvRL3cqbUdIK1NJgpNuJ+xPH/H1vZMY3Tc+QJS84Pi+XDG2j+Ju/aB/nJwuD8KbpIjPu8wmmPwxXDxNyRo54U4lGP342zhpUDI76zLIc/n7g1p7LUhSwALBvkunwYXPK+eZ9BiYI1hdqCwWefEGxLHV8+uBX1lVsCr4i8nTqb/kJe1j0AKqORzuWgbXTKf0oXSui3bx6u5PWJS3iI+8vnd1/C1+EQioGzIJLnuD6ltXUj7mz3gqs3CkvQIGE8aUURivfFcRUf++jVyDxEWZ75PVyy/slw05i929R5F9Xxo8tAeShmnfFfTwu1nbr3xXaUcn3gPJI5Fu/UVxw08epbjAgpL5MqY3jtiBPO+awuuuP9Fw+hNkXb2IFREXsHPImTgvfbX1GFlHCUII6gD0Ztsjk0a2SQh6PO1xZuyewarCwBew0dmobfPIHq0Bbi74gBIz4/p51/PUuqe0bepgp9xWHiAytTVGUJQ5SosLY3Pb2Fy6mWfWPUOjs5Eb59/I9b9cj8frCTLZntRvEtm12bi97oBBTqWtkgN1BwAY23NsUCeirmbUOmrJqMog3hKvXZtqzZJblxskbLWVD3Z+wP0r7tfOD4oQ1KZg0YfA6XHyf2v+jxc3vdiu4+2u2g34V6xr7bVMme9f7e+oSVtunX8Sc6D+QND3+lhUMjKNzkbcXjfFjcW4vW7NyqW1iYU6WQgKUtoM/Sp7WqFfCAolelVYWx7QpFek89yG57QOTj9JCWXBVmGtYPHBxQHb7l9xf8C9UdEP4Oud9QHuXy1NIiJMEYeM6aW+e83fwZZQV+VbE5j05dlbs5d6h981LMz4+wlB6qS/eZkOhb6Ol1nL+C7rOzaXbg5qH9SBlyzL2v1T24Vh8cNodDV2uPWT6i6p1psKa0WrA3EVtZ0D/wpuW2g+4G3LudqC2ndEmaNYfHAxK/JDpBg/DNR3p7ChkPQKv8VhnaMOr+zVROGSphIK6gtYU7SG5zc+z4U/XsjzG5/nX6v/FfK4ZU1lXDP3Gs7/4Xy+zfqW+bnzWVPkdy/YUbEjYP9KWyXl1nIt+5wsy9y//H4tvkxrQtCvB37lhvk3BGxTJ+xVtioGxg4k3Bge1E44PU5+zv6ZzOpM8uvz2VO1h7sW3xVSMAKln538y2QeXvUw6RXpmiissr92vzaBe3XLq0zbNI15OYobjlrfrx56NTa3LagdA+W9qLQHWgkc7oTQ5XGxodjnfll/QLMq0b/jLWF1Wblz0Z28u+NdLp51MXcuujNkG6QXJQoaCnhty2vaZ3XckF6Zrk3w22oNvLZ4LXctvovXtwYH+VfvR0e8V/Ny5wV81tdPlXXFSkCYN7a+wSU/X8L/rVFWrQ82KOcfEjcktBBksoSM2/Tm1jf5JfcXrV3yyt4gcS6rOosd5TvIrcsNWhR5Zcsrbbw6P1EWE09MPo34yBCWMzpcXhff7/2eC3+8kOt+uS5ooeZIaL7ooo5DrC6r9kw7YhwXQFQPf2w2H/px9A3zb2jVOu9Q9I6L4Kd7TyMlNrSlaU5dDonhifSM6BkwXlBFRIfHETQPUO9FR1jHfpf1HWfMPCNA2N9StoW5OXMxSYrl1pbS0CEMau21LMxbyLzcea2KRc25ZFx/Us+6XbHYwt8fNk8EobqG767c3erxTvvj+Vxx9zNIl72hWP5c9QHctVSJBTblByV+kQ5VYCxR283kkXDzT6ys879jC3IXaH/vrd6Ly+vioZUPMT19epuvE1CsxW6di3zNdJY9ci5WWRlz5tTl+IXPiffAZW8oQpXPsk2dM6iobYna1xolI/uaCgJEF6fHye7K3YxOGo1X9oaMfdnobOTR1Y/yt+V/w+VVknF8uPNDbG4b72T/wEN7P9f2DflMLdFwwrX8mDOXvTV7+Wm/ksqwTHbBrXPgEn/7/tGujzjjuzPJHHQqA4eMIHnSX3hoyPGcN2wUG658Bf68AuvgP3LT0r/wXsEiXhp5KkVmEx/191vb5/U9gRvCG7n615vwyF646Qcla+lV71M42u/CvDKhh8+y0mehGJUEt85WLBdHX6X8e/t8uG893nvW8rHnMt72XIPj9KmMGJRAz6lPc7P3IM9te6P153mUIP2WmWzaQKeevCOQZZlJ30/SGq+rhl7F7OzZLQY/VVEnL0bJGOB2o26/eNDFWlp2lTBDWMAqgn4CpH7n9DgDVqjUcri8roAU2s3Pqx7v4kEXc88J93DVnKswGUxaJ2iSTFpwVzX+gNrpR5giePKUJ3lizROEGcLwyB4tPa7ZYEaWZbx4uWXkLXy+5/OAe9O8vNePuJ7v9n6nfU4KT6LKXoXZYA7OetMG9PdIjdvxwIoHWJa/7JDP6FB4Za92D0wGkxbc+lDor9litODxerR7295jtYb+uKGO6fA4SIlMISUqhV0VuzAbzHhlr/bsph4/lU8yPmm1POr9NUiGVjP06O+VnlDP1SN7WnSzMUgGrR5bjBbcXndAXWvrsUySKcj9Tv+OmA1mXF4X/WL6BcXnOKX3KdqgZGj8UHLrclu9dn0dbEud05ejpf0D6p7v3Zxy3BQen/g40zZN4+vMr4+4frcFfR1rzzuqvyf6Z6redz0WowVZloPiHt095m4+Tv84qF08Upo/L/Xzoc5zqPetLefTn/dIcXvdhBnDuHb4tXyx54sOOW7z56DvF/Sok123142M7E+X7iNUOUK9q9HmaM1FoHmf1Xz/MENYQNkkJMKMoSeyoe65+sycHicn9zqZemc9+2r2Bbzbzdt89fwttX/6MpokEx7ZE9Df6eu+fpvaFru8Lj6+4GNe3/I6e2v2Bp0j1HsRqm1rC+r5BsUNChA1D9W2N79OlVBjDP070vza1XJ7vB7CjGGM7TmW9SXr21Rn9f1A8/3b2/62hsPj4MKBF2rWbioTUiawpWwL45PHs618W5B7rtrPe/Fyw4gb+CbrmzaXRR0vqM+h+TOPMcdgdVvxyB4kJMwGJUbckLghmrv+b9UXNH/uhztOC0XzMatWP2QPHq+H/rH9OVh/8Dfv50K9Y7/VOZ0eJxN6TaDR2RjwvuvvRWvzgI6o36C0nc0t3R49+VHe2f4OLo8rZPsS0NYZTBgwIPv+A/D/Iwf+Kwd+1qO/Hv09MEgGTJLpiPt9/bNt3l84PU6OSzyOrOqsoLLp2/4juecOj4Nz+p3DqsJVSEgttttB74Kvr3J5XfSN7kuvqF5sKd0SUH712l6f9Dof7/o4ZP+h78/0Yy/99amEas9bKh+03A6rxwl171sb+zen+Xvg8rroH9Mfj+yhqLHokH2WHrtL6Tskg1sro9qfrLxuJUkRSS3+thvR4ssiYgQdIR7Zw43H3UiEKYKBsQPpF9OPxPDEkI2aHpNkYlDcIC07k0qUKQqL0cI1w69hUOwg7B47Vwy5gp0VO4MsjcwGM1OOm8KCAwsCVgHP6HMGZdayoGMfn3Q8NfYaIs2RQd+pXDzwYgbFDeLBkx6k1lGLxWihb3Rfcuty6RulxNhRzbbjLfEkhicyIWUCCeEJ3Dv2Xm01alj8MIoai7T4BUPihnBSykmYjeagScHopNHsq9mHLMtcN+I6RiSOoMnZRKQ5ktP6nMaOih2a5Ul7sRgtDIsfFhDw8+4xdwdlXjhcEi2JhBnDKLW27O4QilFJo8iqysKL0nie2fdMJqRM4JusbzrMNQygT1QfXF5XyFVio2Rk8rDJJIQn8MXuL7B5bJgkE2afmfgtI28h0hwZMk6LikkyMSxhWJtWjSNNkfSN7sv+2v0MjhtMhbVCC+zanOSIZCLNkVpMANXapLCxkEGxgyi1lmoWQEPjh1LUWNRiTKu+UX05p/85rC1ei8vrIsGSEBDbSs+IhBHk1+dj89iIt8Qzedhkvs36FqvbypgeY9hTtYdz+5/LVNdUYsJiqLPXsaG09TTTBgyM7jG61XhNzRmVOIp9NftCTrJVYsNiSQxPJK8+DwMGrhx6JQDXjbhOEU9+J509NTqVRldju9wtJSQm9p5Irb2WrJoskiOSaXI10eRuItwYzojEERgwsKtyl9ZemCQTwxOHs6dqDz3Ce3DFkCswSIYOD4wdb4nn0kGX8sO+H3B6nViMFkySiSb3oYMP94vpR6OzMSgmW2sYMHB8j+PJqMxgdI/RZFRmdNizOz7peM7qdxZTRk5hfu78Vt/ltpIUnsSopFGsKVqDjMyw+GF4ZS+FjYVISNg9ds7vfz5V9iot+P/whOHk1uZqIkNL9XpQ7CBKmkroE92HJlcTVwy5grk5c4m3xLO3Zm/Q/imRKQyMHcjm0s148ZISmUK4MZxYS2yr71u0OZo+0X20vmF+7vyA+HWTUifh9rpZUxxs8REbFkucJY6ChgIMGBiZNFKx2G3hmZ3a+1RcXpeWDGBsj7E0uBqU2HnWUsb1HEdSRBIr8lcwLGFYwHVGmaIYnzye1856jZ/2/6T1F3pSo1M5p/85rC9eT72z/oj6j6HxQzkp5SR+3PcjBsnA0PihbWrb1d+WNZUxOH4wEcYINpZuDHlPUqNTsbltVNmr6B3Vm5iwGBqcDQEWXCf2PJHkqGSOyzsu6PctMSx+GLm+VPR6TJKJK4ZcwerC1UHWU+3FJJm48bgb+eeEf5LfkE9aURoJlgSuH3E983LncfGgi/lizxc4PA7iwuK4Ztg1zNw7U+ub1HFQpDkyqJwtYcDA8IThZNX4LRTU8ebQ+KEcrD/IrspdWIwWbWIXZgjj5pE3Y/fY+X7v9632I0dKckQyYcYwDJKhXZaQbWFMjzFav6JfkBnXcxypManMz53/u/Rz4cZwBsQOQEYmpzanzc/ucDin3znY3DbWl6wP2D4ycSQ5tTlB/Z06vuiIfsMkmRiXPI4tZVuINkeTGp1KuCkch8fBRQMvIiUyJSAeanOSI5KRkTUrGy2jmSQFfFZpvl39PCpxVEDfrzIqaRSFDYVaUoWOQD+uaL792uHXsql0Ezl1OYxIGEGVrQqHx0GDq4EBMQOoc9YdUZgJddx2/sDzDznHGdNjDFaXlXpnfcB4fmKviUSHRYd0z480RXJW6lkMjB3IvNx5IetHr8heOD1Oqh3VmCQTvaN7U9BQQI/wHkSYIzg55WS2l28P6VWgZ2zPsVhdVk5MPpGf9v8U9OzCDGEc3+P4gIRAPSN6ctHAi/hx34/YPP7xfLm1nKTwJMYmj2VO9hwsRgsDYweSVZNFSmQKTo8z5BhrYq+JRJmjWF6wvNWyNqeoxobFZKB/QgKyLGPz2OgT1YfChsIWxa+jCWERJBAIBAKBQCAQCAQCgUBwdNGiRZCIESQQCAQCgUAgEAgEAoFAcIzQ2TZPR004bkmS/izL8kedXQ6BH/FMuibiuXQ9xDPpmojn0vUQz6RrIp5L10M8k66JeC5dE/FcBJ2BcA0TCAQCgUAgEAgEAoFAIDi6EK5hAoFAIBAIBAKBQCAQCATHOkIIEggEAkGXwuV18dyG57TsIz9uLWTeruJOLpVAIBAIBAKBQHB00NkxggQCgUAgCCCtMI3v9n5Hla2KN85+g0d+2AnAZSf06eSSCQQCgUAgEAgE3R9hESQQCASCLoXsCx+3v7yOk59f2smlEQgEAoFAIBAIji6ERZBAIBAIuhQG3xpFYY2V2gZHJ5dGIBAIBAKBQCA4uhAWQQKBQCDoUkiSkuDA5fF2ckkEAoFAIBAIuj9WlxWnx9nZxRB0IYQQJBAIBIIuheTLdOmV5U4uiUAgEAgEAkH3Z+I3E7nul+s6uxiCLoQQggQCgUDQpVAtgpCEECQQCAQCgUDQEeTU5XR2EQRdCCEECQQCgaBLoVoEgcz7N41ncI8oADxeIQwJBAKBQCAQCARHihCCBAKBQNCl0CyCkDm+bxw3/qE/ADaXp/MKJRAIBAKBQCAQHCUIIUggEAgEXZaeMRYiwowAWJ3uTi6NQCAQCAQCgUDQ/RFCkEAgEAi6FF5ZyRZmNkqEm41EqkKQQ1gECQQCgUAgEAgER4oQggQCgUDQpfB4FcEnzKS4iGlCkFMIQQKBQCAQCAQCwZEihCCBQCAQdCk8cqAQFBFmAsDmEq5hAoFAIBAIBALBkSKEIEGXYOamfL5Yn9fZxRAIBF0ATQgyKl2UsAgSCAQCgUAgEAg6DlNnF0AgsDrdPDYrHYBrT+qnBYYVCATHJk63YvljVi2CzEIIEggEAoFAIBAIOgphESTodJZllmt/r9hb3sqeAoHgWKDW5gCUYNHgtwiyCSFIIBAIBAKBQCA4YoQQJOh0yurt2t/7yho6sSQCgaAr0OhUhCCfZxhRFsV4tUmkjxcIBAKBQCBoF7Isd3YRBF0QIQQJOh11lT/aYqKq0dnJpREIBJ2N6homKQZBxIQrQlC9TQhBAoFAIBAIBO3BK3s7uwiCLogQggSdjs3lwWyUSIm1UNXk6OziCASCTsbpUcRhVQiKMBsxGyXq7a5OLJVAIBAIBAJB90MIQYJQCCFI0OnYXB7CzUZ6RFuoFBZBAsExj9OjCD4+HQhJkoiLMFNnE0KQQCAQCAQCQXtQs7EKBHqEECTodGxOD5FhqhAkLIIEgmMdl88iCMnv0x4rhCCBQCAQCASCdiOEIEEohBAk6HRsLg8RZiNJ0WEiRpBAIMDp8cUIwi8ExUWYqRdCkEAgEAgEAkG7EEKQIBRCCBJ0Olan3zWszubC6RZ+rALBsYzLExgsGhCuYQKBQCAQCASHgccrhCBBMEIIEnQ6dpfiGpYUHQYgAkYLBEfAyr3lvLggs7OLcUS4QgxYYsOFRZBAIBAIBAJBexEWQYJQHFIIkiTJI0nSDkmSMiRJ+kWSpHjdd6MlSVouSdI+SZL2S5L0pCQpa7iSJN0uSdL/QhzvOEmS1kuS5Hj11Ve17QUFBZx99tmMHDmS0aNH89Zbb2nfVVdXc/755zNs2DDOP/98ampqjvS6BV2IRmcTTks6qQmRABRU2zq5RAJB9+X2zzbz4epcZFk+9M5dFM01TAp0DRMWQQKBQCAQCATtQ2QNE4SiLRZBNlmWx8myfDxQDfwVQJKkCGAuME2W5eHAWOA04L5DHK8auB94Vb/RZDLx2muvkZmZyYYNG3gjavPQAAAgAElEQVT33XfZs2cPANOmTePcc89l//79nHvuuUybNq091yjo4lSxkYOmd0mIViyB8iqbOrlEAkH3x+7qvp2+2ycE0TxGkN3drQUugUAgEAgEgt8b4RomCEV7XcPWA319f08B1sqyvBhAlmUr8DfgsdYOIMtyuSzLm4GApd3evXszfvx4AGJiYhg5ciRFRUUAzJkzh9tuuw2A2267jdmzZ7ez2IKujMNrBSAx2oDJIJFXJYQggeBI6c7WM6prmFdnyhwXYcbjlWl0uFv6mUAgEAgEAoGgGcI1TBCKNgtBkiQZgXNRrIAARgNb9fvIspwDREuSFHskhcrLy2P79u1MnDgRgLKyMnr37g0oglF5efmRHF7QxXB5fZnCJC/9EyOFECQQHCZWp18kqbV13wx8bp8QpB+49IhRYohVNIgYYgKBQCAQCARtRbiGCULRFiEoQpKkHUAVkAgs8W2X0NvtB3LYtvuNjY1MnjyZN998k9jYI9KTBN0EVQjyyB4G94wiq7Shk0skEHRPCmv88bXqrN3XIsjtVQQtj+wXtnrFRgBQWmfvlDIJBAKBQCAQdEfcsrCmFgTT5hhBwAAgDF+MIGA3MEG/oyRJg4FGWZYPaybvcrmYPHkyN910E9dcc422PSUlhZKSEgBKSkpITk4+nMMLuihur7LC7/F6OHlgIrkVTZTVH9uTPbvLI2KhCNpNiU4k6d6uYcqARRWEAHrHhQPKNdpdwsRZIBAIBAKBoC14vcIiSBBMm13DZFmuQwny/IgkSWbga+AMSZLOAy149NvAy4dTEFmWmTp1KiNHjuShhx4K+O6KK67g888/B+Dzzz/nyiuvPJxTCLogbo8Xry9clMvr4rQhPQBYm13ZmcXqVKqbnBz35EI+X5fX2UURdDOqm/xuU91ZCPL4Biz6FaxePiHo8/V5HPfkQtblHLtthEAgEAgEAkFbETGCBKFoV7BoWZa3AzuBG2RZtgFXAv+WJGkvkA5sBoJSxuuRJKmXJEmFwEPPPfccqamp1NfXs3btWr788kuWL1/OuHHjGDduHAsWLADgscceY8mSJQwbNowlS5bw2GOtxqMWdCNsLg8YVDcQD6P6xJKaEMFna/OOWYuYhRmlAMzeUdzJJRF0N6oa/XGBurMQ5A5hERRuNhIfaWZXYR0ALy3c2yllEwgEgu5IndXF5+uO3bGVQHAsI4QgQShMh9pBluXoZp8v1/2dDkxq4XczgBkhtpcCqepHdfsZZ5zRYueUlJTEsmXLDlVUQTfE6vQgScqE1eP1YDRI/PXsoTw+K530ojpOSI3v5BL+/izPKgMgymLs5JIIuhvVTU4MktKwdmshyDdg0QtBAL1iw6n1xT4qrLb+7uUSCASC7srfvt1G2v5KThmcxIheMZ1dHIFA8DuiDxZdZ3MRF2HuxNIcHtfPu54eET1499x3O7soRw3tTR8vEHQoDXYXSH6LIIA/Du8JwPb82k4rV2dS7suKlFcpJrqC9lFjdZIYZSEuwtythSCPN7QQdGJ/vzBc1eQUsYIEAoGgjaTtV9xpm5wiaKxAcKyhtwjaV9bAp2sOMPCx+Tjd3Sd20J6qPawuXN2tk6F0NYQQJOhU6mxuJIM/RhBAn7hwkmMsbM+v6cyidRqqxUNRrU1MdAXtoqrRSVJUGElRYd06zbqnBYugf5w7nPhIMxeOTgGguNYW9FuBQCAQBKKf7NV340UCgUBweKgLbADb82t4bbHiXt8dk/P87dttnV2EowYhBAk6lVAWQZIkMa5fPLuK6jqzaJ1GjdVJQqRisllYI6yCBG2nuslJYlQYfeIjQook6YV1ZJcfVlLH3xW3b8DS3Ke9V1w4O566gDtOHwRAcW33G8AIBALB701+dZP2d3e2FhUIBIeHWycErc2uQpIkIDDbbHdhS96xaSjwWyCEIEGnUm/3WwTp1eohydEUVFvxeI+toIZuj5cGu1vz3y+v775WHd2dnIpGlmWWdXYx2kV1k5PE6DD6xkdQHKJzv/frrTwzd08nlKx9eGW/EBQqdlzf+AhAWAQJBAJBWzigczWvtwvXMIHgWMPh9r/3mw5Ua/OrkrruN46yuTxM+zWrs4txVCCEIEGnUm8LtggCGJAYicsjH3MTPXWANiJFEYJKu6HJ5tHCJW+lMfXzLXi7kRhZ1eQkMTKM3nERVDQ4cLiVd2p9ThWLdpdSWGMjp6Ix4Dd2l4cVe8s7o7gtom8LmlxNQd+nxCqp5LvjSpag/bg93SeGgUDQFUkvPYhkrgaEa5hAcCxid/vfe5vLrWRtBl5YkElVY3dbdPbwwaqczi7EUYEQggSdSoPdrWUN08cDGZAUBcDBqmPLNarWqqT/Hu6zCCoTFkGdhsMXU6Gom4iRbo+XOpvL5xqmCCWlPqHkxo83cM+XWwFFPCnQZdx6fFY6d3y2mdxmAlFnoheCihqLgr4PMxmIizBT1STej6Od6Wm5DP2/X6lpcnZ2UQSCbstnBVOJHvoyFpNBCEECwTGI3iII/IsrZfUOpq858PsX6AiQjHbNMlxwZAghqAOwuzw0OYSpbXv5bnM+Ly3MAoNy7/RC0MAekQDkVQVbAxzN1PoGaH3iI4ixmLplELejjU0HqtmcV93ZxTgktTYX5vgNOIwHtA7yiZ/TQ2aEOPPlFdTZXBRUW/l5uyK0dKW4Efo0p/kN+SH36REdRmW3W8UStJdZ25T6+d7K7E4uiUDQ/YmLMFNv7zptvUAg+H0IEIKkQEt3s7F7yQFnj4qmqskRMnSAoH10ryffBZFlmRP+s5i3l+3v7KJ0Oz5O8ynQPosgvRVASkw48ZFm1udWdUbROg01JWJCZBjJsRbKGzpPCLK7PMe0S0a8L2D3wz/s5NoP1jN3Z3Enl6h1apqchPeezdcFjzB+QAKpCRGsza4it9Jv6TOoR5T2d3phHZe8neb/vbXrWFy4vR4i6AVAQUNByH2Soi1UNjhxebzsL+v6AbAFh0e0xQTA6n2VnVwSgaD7Exth7lKiv0Ag+H1wuPXvvTK2f/+m8QDUdaHxX1tIivVgd3mxOkVm5SNFCEFHiCRJJEaGUS3M1tuNmhlLkoItggwGiWtOTGXx7tJj6t6qk/H4CDO94sIpqbNT0+T8XWMleb0yCzNKOe7Jhdz39bGbolHS/d0jOoxHvt/JjoLaTivPodBbx4SbjTxw3nBAsWhSueP0gUwenwrAzsJaGnRBQ6sau8Z75vZ4cbhdRJljSLAkkF8f2iKoZ7SFykYH1324nvPfWM3u4mMzy+DRjuqaua+84bAnsN9vKeDh73d2ZLE00vZX8O4KYa2kR5ZlbGKA3iWJDTdRbxMW7ALBsYbT43/vbz99AI9eNIKLx/RmUI8oqrrZPCs+SrmWrjJu7c4IIagDSIgK69DV9MySelbtq+iw43VV1NSFGIItggDOG5WMyyOzp7j+9y5ap1HrswiKjzQzqEcU2eWNnDptGadNW/67leHXjFL+8pUST2bxnu6VNauj8Hhlam0uJo9P5bM7TmbJg2eRGBXGoz/u7LKxSsoaAt+TPnFKnKANPqu6V68dy41/6M9r141lYFIkG30CUY9oC9A1LIIaHW6ufm8dMl7CTWZ6RfWiwha6LewRHUZuZRPb8xVxbn3OsWU9eCzg8cqU1tsZ3z8eWfbX5fby6I+7+GlbIav3VXS4Kfktn2zilUV7Kai2dmmh+PfC4fZw1btrOe/1VSHdUgWdS1yEmVpb57f1AkFVo+OYGt93NmryEICHLxjGfZOGApAY1T2MGfR9t8WiLHyKOJFHjhCCOoDEKDM11o4ztb34rTRu+3RThx2vq6LEv/EgScpgUW8RBNAvQYkTVFBz7ASMrrW5kCSICTczqnccDXY3dpdyf35rX9j3VmazJa86KJVkc/ewv32zjf/+0rkpyGuanBRUW/F65d8kq1edzYUsw/F9Yzl7RDIJUWG8cu0J5FVZueXTja2udmcU1XX4anhBtfWQbnplTYEWMX18cYKWZ5UTbTFxzYl9NT/wE1LjWe0Tm5+8bCRmo0R1U+e7C2w+UE16UR3gJdJsxmK04PSEHqCoAlZqQgR94sK7RRwnQftYn1OFxytz5bi+JMdY+GrDwSM63q2fbvrNxO0zX17BVe+ubbWd/nxdHt9uCm3h1pWxuzxtbtO25NWws7COolobK9uZjdDrlZmx9kC3vEddGX2d7BUXQUmtiD0o6Hxu+WQTl7yddkyHIPg9cXr8Yzx9HMaEbuLV4pb9c0STSbkWYRF05AghqANIiAz7TawE9OptV+ZgVRMLM0pwuD2U19uxuw5dblmWKamzc9vpqdo2jzfwd73jwjEZJPaVNeDpRim8j4Q6q5PYcDNGg8SoPrEB32WVNvDNxvwgoeZwaLC7Ahp+p9vLywv38qcP1nOgMjBAt/6z2+Nl3q4SPl3buRkGJr+/jjNfXsFfv9nG4CcWdPjxVeuYxKgwbduZw3ry9g0nklFUz8LdJXi9spblTaWo1sZl76zhufkdJ5SVN9g58+UVvLJo7yH28wtBVpeVXj6LILvLy/gBCRgMfme3E1LjtL8HJEX5VoSUlZVGh5vpabmd8s41OX0dveQlMiyMMGNYy0JQjCIE3TtpCCcPSiSjSKwsHm088N12AEb3ieWGk/uRtr+SwhprgLvjoWguzDRv346U5plLWjOxf3rubh6fld6h5z9SZPnQYvoDM3cw8qmFmnjcGvrrX57VPiFoQUYJz/yyh8dnpR8zff7vgUNnmdUvIYKqJieNIsGJoJPZU6L02fvKuk7G0qMZp8c/x9J7YCR1E4sgvbGAxaz0D8IK98gRQlAHkBgVRnU73CoaHe6QWcY8XhmXThkv7oRVmw25VTz2065WVzXXZldy5btrWZFVzrRfs7jxow385att/O2b7Vzy9hpeW6xMWNfnVPHsvD2aMOR0eyn3ZcGqbnLidHtJiTNqx3V73WD3T2ZNRgPxkWY+W5t3yElwd0UdhG86UM2tn26iotGhBSkekRJDVJj//vxj5nae+Dmd91bktOsc9XYX+356Fta/p2277sMNjH92ifac1TTjoDSsI1Ji+PzOPwBw/hureX+lcs69uqC8Vqe/DttdHtZlV/5uEfxzfZO5XzNKg777+7fbufitNB6Yub3V8izeXcrs7cGpyQGtU0yIDAvYft7IZMKMBrJKG/h07QHG/XcJM3Si2Eaf60pbs93ZXZ6Aex+K3T6BY8khLBkqbfW6vysJNxsJNytN/B8GJgTse0JqvPb34J5RvhUhZYXlf8uzeW5+JvN2hQ6OXVRr44RnFrVrMt5WKhsUMUqSvESYzZiNZlze0JZK549K4aHzh3PtSf0YkBhJSZ0toP0UdF+aHG7+7+d0KhudTB6fyoSBiZwyJAmAM15awXUfrm9zps7m1rr7O3jS0VywKKgObcH6e616t7cN/vfsjEOK6RsPKO3aM3N3H/I6VHG8d1w4pe3MeqlvU4Y8sYAV7bQoEoRGnyWsb4IyvmipngoEvxeDfckrxGT+98GlixGktwhKjFbCm3T1DFx6ISgizMsFo1J4b2U2hTVW1uwXySQOFyEEdQAJkWHUWl1B1gEtcfzTizjrlZX8ml7CL7pMRDdP38jopxZpn4tqFMsPWZZbfEE7euLz1JwMZm4uYMvBmhb3eX3JPnYW1HLHjM18sCqHYt9EdsmeMiobHazYq6wazlh3gE/WHOCSt9MoqbPx3sps/vDCMqan5XLSc0sB6B1v0o7rWf82vDIMavK0bZU+s79P1x6guNbGHZ9t6nLxk7JK6w/bFej9VTkMfmIBX204yOp9FezIryXeJz5EhBlZ+c+zmXXfaYB/1WRvafsyJH347U8MT38VFj0OP04Ft4NM30qM4oYDhTr3u+ziSv4W/itn9TMxpq9iOaKmbtZ32Jkl9Twzdzc5FY3M2lbElOkbeWlh+wS7tP0VQUF+yxvsfL0xtAuILMu8uCAzaLsqNro9Xn7ZWUxmST2zdxS3Glz2z19u5YHvdoT8bpuv/g9LiQ7YbjIaGNwzin2lDVpa64W7FTFqZ0EtD/kC0ibHhLd4Xj1//3Y7p7y4rNX3WH1GJqPfomfmpnxu+WQjDboBfo3NXy/KrcoE6sHzhnNi/3guHtM74JgnpMZx6uAkPrj5JGLDzSRG+VOxq/eysCa05dmyzDLq7W6e9z0Hu8vDv37cRW5F+ybYe4rr+TW9JGBbRaMDo0FiTGosJoORMEMYDk9oH/Ae0RbuP3cYYSYDqQmReGUOKaoJugffbsrn642Ke9CJ/RXRcmxqPDqjNp9r8aFR27ZHLxrB2NQ4luwp7TAL3i83HKS03s49Zw1m0QN/BKCghfemRFc3f6v03T9tLWTQ4wsCAser1FldWuBtPep9bsmS1+3xUm930ys2nNzKJjKK61mbHTzoLqmzcftnmzShbWhyNBUNh47f8OX6PKan5QJKG6rGNgM63QX5aEEfHFpdfMvvxkJQdnkjE19YKsSsbo666JkhEj38Ljh0QpDeAyM5xoLLI1NYY+vSlph6IcjldTH1jEF4Zbj+ww3c/MlGkT32MBFCUAeguo+M+6/fwmJPcX1I8UZ9ySobHdz79Tb+/u127bv1uVU4dRPCwhoreZVNnPCfxVz+vzUBx3l81i4GPjafPzy/tM1ikCzLhxwAD0hSFPo5O0JbSjQ53BwMYe0wZWJ/7e/s8kbK6+1aWr/ciia+WH+QDN+E9rn5/ol8vySz9renvgg8Dkj/Qdv2nytGA2CQ4OO0XFbsreDuz7cc0pQ9q7SeWz7ZyKdrWnZhsrs8LQoFVqebR3/ceUjRqcHu4qI30/jXT7ta3a8lvlinCB6LfGJCcZ2dusiveWnTSwD0jLFoqyYqWaWh61ZLz3Zk+Xz/h4wfIW+NNthesqeMkjobU6Zv1HY505DO5WXvwQd/5JPbTiIqzEhPXzwWffayWduKmLEuj0d+2MnBaqVO/LStMOj8Hq/MupxKXlqYxenTluP1yizaXUpGUR23fLKJS99eQ53NxaRXVrD1YA33f7ud//s5I+QgL7/ayoerc4O2q8+x+eC2LYNd/QRIlmVW7C3nrWX7GdU7lt65s2Dbl6DrQEf0imHF3grNrFkdZOtXr0OZ2c7eXkROM7FEtfJZkF7SotirCkHFtXZkWaa6ycljs9JJ21/JpgPVfLE+D5fHS63df2yrW7nue84aws/3nc6QnoGCVrjZyLd/PoWL5DWw4xtG9Y5lT4kiaKr3I7s8tLCjioh7S+txur1sPFDNr1uyePujj0LuHwqvV+aB77YHvTeVDU56RIfhlT0YJWOrrmF6UhMU9xwxMWiZfWUNXX7FT8WrK+cphZ/BtP5EmeD4vn6XxrL6tgWJVOvrBaNSuO7kftTb3by2JLRgXdXoYPHuYCvD5thdHvaWNvDk7AxAMa0/VB08WOXf/uDMHSEF7bbQ5HDzly+3hjyPKqBvC7GQM+nVFZw+bTkbc6tC1oOWXNpK6+14vDIXjE4B4Kp313LT9I1klzdgdbq1BbBP1xxg5d4KvtxwkJhwE33iIkIKUs35cVsRn61V2rA9JfVcPrYPUyb25/i+sRyobOKsV1ZQVm+nsMZ62MHCj3X0wmPPWGXY/+2mfDzelhcZO5tn5u7mwRYWavaXNVBW7xD1oZujZi0tb2NbrmfrwRphMdhO9FnDZPzv/Xkjlbb96vfWMeSJBdR1YMzbjkQvBDk8Dkb6wmeoCxzlbVh4EAQjhKAOwGLy38as0gYW7y7lkrfTmLm5IGjfUC4j6YV1IcWcjOI60ovqaLC7ySiq10zhG+wuvt2kHLvG6uKvX28LWAl3e7yaWFPeYNdWRNdmV3His0tYsqeMvaUN/Ly9MGgQoE4C1Uw8oMQquu/rrazPqWL004toaqznPMNWeuPvhG93zuRUw27t81+/2Uba/kouPr4X5x6XzKxthTg9wQOOmAj/NrfRAn0nwNq3oUAJln3baQN5+8YTsbu8fLY2DwCnx8trS/bycQhBQOWnrYWk7a/kK9/AOKeikb9+vS3Anemm6RsZ+5/Fgfe8qI4Jzy1h5qYCvt9SyG2fbmpRIa9qdPDEz8pEYO7OYpbsKaOqDQNfgHm7ipn4wlIsPtcdvw+/hypDGl9lfqXtGxdhJsaiWE4ZDRL1dnfAJKiiwcH0tFxOfHYJP24txO7ysDa7km35ymRgvHMrm73DqZJjlB/kriRaVurHO8uzOe3FpYyQ8sHXMQyXfPW2Lp/k2l1MmdifolqbIiRaXSRGhRFtMWluWTanR7MeqWhwBA3+X16UxZSPN/L+yhwlgOi+cu75ciuXveMXN7cdrCGvyspLv2ZpLpGhJhEtZYZSs62p4sWL14wBoKDaL1x9uuaAFmxWXw9yKhoprbPjcHtYm13FHZ9t5nLPUv4+qBjm3Adz/wbPJin1Epg4SHFRGdIzigtGpWiD7INVVvrEhXPOcclBmQw8XpkHvtvB5bpr/sfM7bq/d7CyBdExvVARghodbkrq7GzVTfJeXriXp+bsZsbaPOqd/tWQkFY0dYWw8UMo3AIrXgRHI/w0FWbfy1mDInG6vWzKq6amugID3pDZPPaVNfCTzxLK7vJy66cbue3TTbxnfpM3Xf/hQF4eWaX1rVqt1dlcfLYuj31ljdTb/W6yhTVWvttSQI9oCx7Zg9FgxGK0tOgapifVF1i+JSsmPQXV1i6b+e234ufthVzwxup2x2xR8f6GE8bXF+/l7i+2BGxTJwgAQzPeUFyGi7Zw8ykDtO3lDYe2CFqXU8m/fkqnR7SFIT2juWniAIanRAfVk+35NTw9J4NTX1zOn7/c2qp1r9crc9yTC7nwzdXatsQoC1EWE0lRYQHWlXqyy/3vxLKscj5cnXtYlkGbDlSzcHcpD3+/k+fm7QmwjIqLUBZWVPFYRW27Aa7/aENIl9rqFoJuqvfqj8N6BmzPLGngxo83Mu6/S4BAV/aEyDB6xlgoq3ccMiZTrdVJUa2N3IomXB6ZgT2ieOHqMVw1ri+gtKvzdpVw6dtruOGjDSKwbDtpcrgDLLMsYV5uOWUAK/dW8MSsdAY9viCkpVhnM2NdHj+34Lrd4Osz1MWYo51lmWUsaGY9ezSgtn8VbRw365n8/jru+GxzRxfpqMbl1lkE6WIE9UuM5PShSdqYO6fy0NbdOwtqjzh5Q3vRjwWdXiWeav/ESG1bV2zHugNCCOoARvSK0f5es79Ss4r4cv1Bbv10E68t3ktmST3LMsvYHCKuxuX/WxM0QD9vZAozNxUETPrWZlfy31/28LDP/eQW36B48Z4ynpqToe33UVouZ72ykn1lDVzxzlrOeGkFXq9MVqnSaT4zdzf3f7udB7/byaDHFwRM2lRXrP1ljVrq193F9SxIL+XGjzcA8Kr5A6aHvcZSyyP8+4wYbj8xnuGZ/+PbsOfpizKZ3ZynlHusuYiXmv5NZENeyECTTqt/Yu/uMQyu/QzMkbD6FW37+P7+eCbXTVCCS7+7IofnF2SGdMkqb7CzNFO5n4U1NrxembeW7md+eolmeePyeLV7qw++rMal+Hx9nrZNDRw8e3sRp09brollLy3MCnDtu/uLLZz03NI2uch8sCqHsnpHwCqxQYLwyP36mwOAJElaBqizRyiD8R0F/npxz5dbNCurR37Yqa3YXvPeOjz1pfTxFLHQczInOT5kq2EMrHubxc5b2GS5j62We3jf/BaLLI9xk3EZRoPEcYYC5MgkCIuGrTPoHReBw+3l3RXZ/LS1kIRIM8f1itGsXiRJoqDaSpgvI1VGUZ02aZRlmXk7Awcw//wh2HpKjSXh9nqRfO4fodx89DEkZv75FEakKO+eOnHb7xOCzh6RDARaBP133h7+7VvB1wtEmSUNnPLiMh79cRcldTaisfKS+WOOS7+PVRHhcPLdyo77FdFwysl9SfvLcH669zT6xEdo1kgHq5oYkBRFUlRYUCYDVSBUreSqGh3M2REYgyejMNg8uqLBQWm9nUm+555fbWXLwWrNRUaN2bRkTxlNTv+1hhSCljwFvz4K08+FVdPgxb7aV6dUzSYm3MT0RZv5sOgaHjZ9T361NWjy//HqXJxuL+/ceCIAG3KV53GGURGB5y5axEVvpgVMkvXIssyfv9jCs/P8Lh/qs/+Pzw3kYJUVt9eNUTJiNpjbZBHUOz4cg6TEjtKL6rIsM+G5pby8MAuAhRmlnPnyCv7zy+6gYzjdXs57fZVmEbJ0T1nAQGdLXrX2+WBVE9d9uJ6lv1EGqo5mpm/hIK/q8Cym/jtvDyf8Z7Fm1dmRrNpfGRRfTHWjGirpLAz3LeTak1J5/bqxQNtcw56eozznUX1ikXwNS//EyKC25a7Pt/D5+oOaRW5uZRP7yho00aGmycmMtQdwe7whVx1Vj7XUxMiAtkXF5fHy2bq8oMDSL8zPbLfApk6CN+VVM33NAV7QWRapZWsumOc2E2NUF1/9uSubHNhdHp6ek8GjP+5kelouFQ0OTQgamhxoVbi/rIGdvuPkVTYFZO1LiAqjj8XOs6ZP+dOrc1q14FX7EXV80CtWsVZNifW7iDndXq2dza5o5N0V2Vz6dlqHB/7u7nywKoeBj83X2sA5O4oY/fQi7vnSL7Q6PA6euWI0feLC+W6L0i5syavWxoddDYfbw7RfswLaHnXx4FhJPT718y3c9/W2oO3LMstaXRDt6qiCf6VvAfG6D9YHhApoS9vYVS3auiIunTuY1xsoqF90vD98QH6zccKC9BJNZFmxt5wPV+Xwpw/W8e/ZGW2O1dcR6C2C1HHhuH7++WFRGxYCBcEIIagDODGmjsxHxzGkZxSLdpeyIksZ0OwpqWf1vgreWZ7NxW+lMfXzLTzWQsYQNVZGj+gw3rphHP936UjcXplvN+UTTwNDpUL+/OVWPl17QEt/e/+5w7Tf6y2N1EHgBytztEnWhgNV2opdUa0tIOjvIp0pfHWTgx4mGwjJjbUAACAASURBVAaPjTHPLMLl8ZKnG2yZcXO2YSd5UipRkoOzXGk8c4q/Gl1k3EyPaMVVboKUxZ377qVHxQb+bFFWDaN9li194sJZ/vBZOIq2ar/19D4B4vvD+Fsgeyk0KmKOfvB8/cl+FzSA2TuK+N9yRTwpq7dT0+Tkxo82cKCyCYvJgNPtpazBrgXNVTML6S2eVvliGnm8Mpklyn3RCzTqpP6B73ZQVGvTVqHcLQxut7YSX2n1vgr++cNO+iX4VexYGrk4PIPF0c/wSNS7AIR7vbDvV20fdaX3/FEpRIUZWZvtH+jrV8VeME3ntIrvtc8PfjAbgORBY/jzHwfzlO1G7btkqZYkqYGLjMqqynNhM9g2bj4XRu5FSj0ZxvwJds9isLkaC05mLlmLw+0lPjKMkb39Gc2KaqwUVFu5YHQKkgS3f7aZ6z9UVm4PVDYFqfSqC8JphgyeM32ChFdz32hyeLRJlToZlGVZmwTkVjZx+tAkdj59AacMTuI136Tw8Vnp1NtdzNlRxJ96FtLLpQhWBb7Veacua4rHKwe4VSzMUN69OTuKqbE6GWdQAmNfkdqHv/VKhotfhrE3QlU2ZPwE0/rTb8YE4htziY0w02B3868fd2Eu28kZkXkkRVuoagwMvKefPFY1Orj2w/UAfHzrBHJfuIReseEhJzVrspW6eYkvxk9uRRML0kuYMDAxwGVwR2Et9Q6/AOlwN5usVh+APXODjg9A0lDMy59mk+U+Hq14HIC/muZic7mD3EVyK5s4Y2AUl0fuxoByTz+6yF+OpvzttMayzHI2+sS8eycNAWB5ZjmyrATKn2TYTlrEw9gbigk3hSuuYd5DC0Fmo4FRfWL5YFUOp7ywDFBEeTVeynu+YOer9iltSqgsJcW1NrLLG3nkB0Vov+uLLfx7dgbXfbCe8gY7d8zYzL9nZ7A2u5IXFmSy6UA1d32xpU2WKZ2J1ytrk6jiZu/inB1FbUrxPXtHEQ12Nx+ndeykQ5ZlcssbaXJ6qNdZAalCzTvmd5Aje0DKGNjyKVJNHteMTyUqzNgm1zC1jVZdjEERGJqLSPqsSgC3fbKJC95YzcO+uvDdlgKe+WUPry3ZF2DxM6SnUvcn+IKx90uI0NocPetyqjhYZeXfl47krjMGAXDSgARmbi5ot5hR2ixrpNtnafvLzmJ2+ybGWw7WkLbfv/CSVRJooadeQ4M2iJepanQyb1cJn68/yPdbCnlufiYnP7+U7fk1SJIitp42JIk+ceEM7hEVMIaY9msW5Q0O/pG6j3uMv5AQaeaMA29yi2kp1xtXkhlKZCjegbs4XZsMrvS9m6oAlOzLCgiBMUR2FdbxyqK97C6uZ13O0RcgVJbldrcpNqeHykYH7y5XYvkdqGzi8Vnp/GOm6lrlr992jx2jQeKpy0eT4IvR8szc3Vz0ZlqAmNeZ6PvOFVnlfLAqR4sjBTohqCS0m/zRxMZm7m87Cmq12IBTP9+ixerTI8tyl471Aoo4ri6MVTQ6WJBewqa8am7/bLPmAn/Sc0t5d0V2q8dpngygK/D/7J1neFXV2rXvtWt6I50ESOgllNBrQKQLooAooIANBA+KHEFUiooUwQYICNKU3nvvEAgt1JCQkN5I78lOdvt+zF0p6jlv+X68Z1xXruy92l51rjnHM57xXE7M/1vVk/+3oX1O1TAQqdNm2I5/0gsrmbQ5mheWnKNGZ2DWvvssPv4Qrem9cyfjf8/o+1lEUEQjq1L1P4qgfw//IYL+q9CUwsquOB6ZwvDaxdxILaJGb2BCj1DLItP7N+bLQU0Z16UeAEob01cz9t3O4hPlXq4FfM/LwRrq1XIiyFMoMdY5/swp9XRqYe0MrXmrHT41GQyUCZXOo9xyy+DW3NnfYyOrHbXmKgcjo1niuJ66TqLhPDylG2G13bmYkEdeWbWl8b2heIc9qrlU6wzE55RZVBYAnRxScJKqce4/lwzHJtTPOgDXfgXAoHLlk7pJbHu/E0NcH7JD9Q0ahSv4NmOw7DIvyKKZGyyiGt8Nb0WojwvVWTZEkFug+BDaE4wGyBHqDUmScDJVz2od7EGHEC96NxGKj5l77rHkRDzxOWV0nH+atvNOkpgnOtaf9msMiEbtsWnQsOtmBvczS4i36cR+tucej3LLSCmosPNoMqOgvNrOS+jVFZc5+SCHymr7hnRG/yY4qeR/GjXffzuLnTczuJuUTSMpHT8KOa7+jJXMp4E2Hr0ktilDgjvb4OhnkBaFm4kIclQp6Bhai6P3s9kQmcwPJ+NxUglyrZvsHqMUZ5ik2I8CHXL0UCwifu1atWRG/yZ06NKTJpr19K5ezJ4267ka9jXrdf1Y0eksUps3cX+wCXV1ITQeCO3fBYOOLhfGsFS5nEvqj3CgGk8nJb2a+ODtosLDSUmpRodjZTajDIcY0FQ0ytdSCmnwxVFLFMusaDH7aDR3yGeLaj5jFKcZJLvK71eE0iI5v8IyIDQP1s7E5dLqqxMMX3mZh4/L6KZOwt0orp+nyZ8rKb+Cj7beIiGnlHnVC2D9ANp6VJCcV0F5tc6SJgew18arp7Gfq0U9BqJT0V4ej1GyaRplMqjVAMqyYdfbUGN6Hs7Ow81BnPsrN2+wXZrJ5EcTaGRMoUZv4G5GCUfuZZOUV26XBidUYxWW8yKTSTTwdeGRaZ9+OPGQjZdTKKqoYdbeu7RwKqJfM3/kMokNl5NJL6zi3W4h1KllJRNrdAaMMuvAWKO3GUhUFMC20aBygte3imkRM+CzdBi1E8YfE/dWdT5hshTLavWlLDKKqqio1lki+kW5mfxS8C5sHk7kkHKuTWtP32vvgCSez2ayNMv6ZrWe0Whk7oEYVp1PZM6BGBr7uRI/bwAj2wUD8O2RWI7HCAPfnxx+w1OTjkZbiaOuBpXs73kEARZj84KKGkoqtczca1WemcnklHzRRlY9o5Nmvt8qn1AZXkspZFNUmuV4Rv92leMxOQwLD0KSYFNU2lPbMh/3/5Qp8L+C5IIKKkz7/qS/20fbbjPuL+T1RRU1ltTLiwn5f+nP9jzsic5g+3XruUrOr+BcfJ6FjLAlqbJLqmjqrqWpLB2p82R4ZaVIZVzXD/Ra/Nwc/tTzaH1kMl/uu0dGUSUTI+oTYkOa+rs5UFSptXTUn1WMwbxPh+9mU1KltbT/v55PZJ1NlcBXw4NIWTjI4q1Xx8uJrGJhuFmjM1jUpsdjHuOkktOriS9fDGpK9Kw+zOjfBHi+ufTz8LjEngAzk1hmv8HPBjQh1NuZCTYpbkVPpLrdNakPc0o0jJCfI0H9FnXvLXum58rmq2n4uTqgVsjZ9E5HLkzvRYva7hyPsarhjsU8Jtwhi6n5c5mp3EotRxkBWaIgRLgsnkFLL3EmzkY9V5IBqyOQr33BMskc3PB3MkJuHP4O1ufw8N1sm+Ws5E/K3yDRqnV6FhyJ5aNttxi28vIz/duOxzxm5nOCdP/bOHLvMV0XnrFUWP0r5JZpaPX1CV5Ycg61UrTDK84+Yuu1NF5pU5u5g5uBZD2X5iBB/xb+3Jrdl9oejpbBdPbfMNs/dDeLrgvPUK37ewPdq0kFTw3QHuWWs+N6Omficp5pi2Bb2t7cvl6waXvKTX2vMo3ub6UDPw+30oqeqVT/d/Bk1d//DqQVVDJydRThUjwNpAw+3naLob9E8v7vN+3Ov+3n0b9FETLzCPU/P/JvkWRGo5HvjsVxNi6Xw3ezWXMh6W9VCzQjv7ya36+k/OVvmwngIE9HanQGDpgU0nll1USnFXEnvZjCihoWH3/4p+rPJ4Mb/7+Rkl/BqDVXn+mX+f8bNTZEim3VMBAE/L25fQlwd7B4foKwvQDxnll6OoGMoiq7IPiZ2L+fbv5HVKpdJel/FbapYWbVe7eG3pZpz0vL/g/+HP8hgv6rcHCD1qPh0Sk+iBvLRuVCtqkX8G5HK0s5qWcD3u0eymcDmvBGh2CWvdGGzrIYtijn4Yho4JpLyUyR70SWfgUuL0NCMJ0SBsKNImVirEJUFNs/uSt9AmtgWTgrVEtZ/5I7CrmMZWcSOPswl6T8Cqb0bkgDKQMlOhSIh/9txTGGG09yquVpbs3qQ/NAdzqFenE9pYj2355iz7VHfMBuAJrJxMC8PPI3ZkR1pLmUwgzFVhY2jAOZEp+w3gS98B6yvDiI2QuALPwtnLMu0+D2d/zEYvIUflS+cwGGrUUl6VinWsLwjIWkTA0RD+/1tVQnHLOcJ725YarVQPzPN6VJVRVzfEoXdk7sjFwmsaPlLVZ2t38x9P1RpKLUMhYxWn6KjW80pG8zf0AMftILK2ka4IbepLIypzKtHdsOEBFbc9T0FdU1liuX0thXDLTzK2rsiCOAaTtucz+rBA8npUWtE+jhQPNANwsRlFlcZfGiuZ9ZwqaoVJJMubfLdHM4oZ7BNMVOAqRCjGo3GLyUlKZvih+QK0Qq0tWVsK4f73cSbH14HQ8+6dOIurokfj4YxdLTCRRW1DChRz1mKLZSbVTiLZWyyfknEh3eZJRCqCPatmyFXCYxZ3BzXFxcSTTWRqrTgY7DPmLs19uZ1D8chiyF98/DiI3Qdiz4h8HgpagqsugnF9LyZlIq7o4qXmjix40v+3Biag9UaDmk/pwuj75nSeM4Zg5ogqOpQxr3uAyVXGbxl3i7awhz2uk4JJtmOZej5GIfQ72dqdEbLB11c6fUPGi5kVqEizafDxI/EITMqa/wOzyOupJQtJ19mEeolI1DTRFU5DK38lse5ZQw5rervL46yvRrRjbv2sX2Y2cIcHegXwt/u+taWF5DR8UjJF+rgkBv0IO3VX1Hl39A+FuQcBJPpXgxDZRZzbZffDSPqYpdjPzlDJM2RzN9l30q3MeKXXSR3efyC49Qpl+GohSW5o7DOesyv19JYemZR8w5EEN0WhEfGLZyyDAZ98eXCfRwID6nHJkEEX4a5lQuYI5iI94mMkySVSNDnPdqm8p7XPwe8uPFdW0yECZegh7TRdvVqC+4+MA4q6H4Wt0Aca/JEsgoquSF78/R76cLJKRm8J3+O1x0glQLKLuP762lUFkAbx+HRv1pLrOmUpmVEYl55Wy4nMLCo3FkFlfxZue6qDT5BF36DA/Ec3UlsQBVSTIehiLoNBmNJOF4ZweqygJqdNWwcxwUJIJBD4ln4JeOUGkfve5pSgcEaPX1CdILqxjUMgA3ylEZxT1lThUsKBfE9/braZbBsjU90chrJsWWGUtPJ6AzGPmmvZYRjdWE+jgzb2gLmvi7sfR0Ak1mHbVLEwWhomk59wRzDzydhvZnWHkukWPP8HD5K5RqtEQsPsveW/Yd0PuZJbwjP8xg9S1OxebywwlhlGw7aHlWx6xMo0WnN1hKh49oG0RhRQ0zdt/ljyspT/3O85BVXMXH227xyY47zNh9jw2Ryey9lUGvJefsPB7Myhij0UhWsYbRdUyRxsA2oi0asAjKc2DfB3xcO5aLCfkWr7wn8dXBB2yKSkNrqMbXw/7Y/ExG+WaD0kcmRZKTSs6Xg5paltvZt4Yu3OanU/HsNwVVDEYxUAfhpda8LNJu28FeTmj1Rh6Xavh01x06LzhD7+/PseVqGn2a+eGglCNJEl5JB2iYIxSffyZnNxqNZBRV8o+ttyz+DTmlGguhDqLzq9MbUMgkOtTz4j3tVjbW3kdljd6ifCusrEThehezD1xmcZUwvM4po6/sBkpJjzLtArtuWq+pn5va4n8Y4GmktKYUmUxCIZfxXndroGtx+zLa++j5LtxKtn+ZPQWlVqiAOsseoKbGopQG4OZGACR9jaUNAHhdeQGvn+rAio4E73gRJTZeUb4uNPF3tSOC/kpNdSWxgA+33OLXC0nsv53FzdQixm+4TmJeOW+sjrIc74HbWWy9lmZRpppxP7OEBUdjLWThjuvpzySS/hVcTsxn+q47FlKjskZnpyKOTitCqzfaBeD+DDdTiqjRicpu5ntk3+0smvi7snBYGF0aeINkPY92QQKwpGIDz6zylpRXzobIZMv+Ttl6i8ziKjvVwPNgNBoZuTqKrgvP2KXgv7z8EtN33+XtDTf4+VTCU+vZplZfMl3vwooarqUUYjQa7dJRYv4L6WGvrLjMW+uusfNGOt+f+NcqnppRUqWl3meHqf/5EbrYWAf8HeSWauxIrydxI7WQfrJr7FHPZa1yCftMZMmVpAK7NPnc0mr0BiN/XEmxU4v/O947cY/LWHEukfEbrjN5SzTfHollw+UUBi+PJKu4isS88j8leb7Ye4/Z+2O484xUd1uUabQgaQn2MZiOtYjRHevgolaw43qGvdL9SCwjVl22nCtbtdPfIS//O5GUV069zw4/Ny3RrF5MzH1+22Q0Gi3ej/+duJ1ebE+4PwHdnyiCAFwdlNSr5WxXKMQ2zXj52Ud2Sk2A3y4lP9e70xYarZ5Z++6z1sar819FRY21XdDqRd/bz82Bq5/3ZmS7YGIyS//jIfdv4D9E0H8Hen4G9UVkK0J+l07SPXyW1aen7Db9grRgysV0yL7OAt339HLLZqvqW7rIH7C67jmuO07hsPoLtDIHcA+Gh0fgpzAmOJykpWSVw/aXXQeMNHCpgcPWgXSvlJ/4pEUVu6MzmfD7TUK9nRkXpuaUejrrlYuIVE9hsnwfETIxIFXe34GnrBJ2v0vf6pOW7Ticn8cnyl2W740dS2gTswCAfQ5z+EBxkNoJW6D5UHDyEukyPk3Boy4M+h6C24sVLy9Fpq3Eb/Sv+Pv6gl8zyt48xn71YDE/+ncozSLp5Ezm+1nzUi1sr4sfqFzFgG/nOFhUl+DlwbQ/8hKs7QfHZ6LaMZq3fR/ySmAREyKsndKZyq18q1xHl2sfEuiuRiGTSMyrIKOokmlup1nkuoPb6cV0eriIV9xieaGJL97OKgKPjMNr16u8JT/Jj7KfeEkexcK2oqGWZd7A7/gEXpBFM732Pfo0qYXOIEotDgwLYOGrYdSVHtMn5jO25Axlbs6HVOck8P6idUz44yZGo5Ghv0Ty5b773EorppmUQrhMyF1fU5znoVM40sx0aDuWWt4i37UGxD3lLAa3HaQHpCwcRJC7mhbGBHYznS2q+QC0lR4yMeVjwmQpHKr9MQCd9EKJ00kWi8HBE9RWfwdnU3qemcCS2dZkDmwtrq8ZLV7FFq1kifhpM8WgPOsWvlXJbGybiJckXhxOt39jQkR9rn7Rmy3vdhTHojfwVmt3NkaUM046xPiU6UhKJ240nsYe1RC6yB+wZbAzJz+JoHmgNeXsZqqI1qUVChNmDyclL8lNhE7SWbj0A4qEY/yq/BEVWtyooLMiXszv+hFBmgQCK+PsSt5/KN/HXvUctqu+prmnjgEt/BkuP887ckGEHL6bQZgxHoI7WNap0lVBUHvxbLYYBn2+gbARoNPw0tmBjJcfZajiMtRuCz2m41Z4j48Ue1jjIpRytulVjaU0PlbsYYtqPoGXZ8OGQbCqO141WaxR/Wjn9TVhYxRvykVUnTPfUM/LCRVaWntqUR+YSEjeGcYrjrPGeQXOcgPuskLcZGKAWH1tFehMv5twAkJ6QP1e4rt/mCAabVGvG0y4yG2pGct0QzGq3WkjPSImq5Sc0mrScwtwWteDdrJ4Ett+KUzdY/YK8+nWo8Wz79eCECkLtbh76fvjBUoqtVxLzLEQ3n4U0iftJ/i1B4rbvzNNISoEutxaxe81n1AlSXwhL6VKJsPBaESVegU9BvQxe2FZOKx5Af54BfLi4LsQODkHTsyCkgz6Nffn8JRudoc1KFTJZdfPeLdqLW+uvUpmcRUyCUo1OmKySpmx+55FtWbbobR2so286xLJIsVq+shuMCbmXRZXzOTUpDY4quQEmEgFjdbA1mv2yqDbpvTTv6o8aEZSXjnXUwpZdCyOiZtuPqUszCyu+tNy3GsuJJFaUMlvF+0rJd5OLWSWcjPLpMU0kwTRuPxMgp1PzpODqT+upBA29wQNvjjKxE3RSBK81l4ouHbezGDW/himbr/zlJeALXR6A4uOxfHar1csAxiAuQcfMHX7naeWn7Q5muT8CvLLa6jS6mlqFOl8BIj0T+p2Ff/v7WTIw8/42Ps6ay4m2SmU7mWUcCnBShQ4hyzlx/jX7X7HnHpkNsD/5847uDsqOflJBO+GKdjnMJdlql9of2Ecv6sWEX/lIFklGjrU8+J9k9K3gZTBJtUCekZPgbQoy7bNKb/JWfk0vf89XpSaFKpG5vhHCWXeT2Gw+x08j00iSFb4p1HMT3fdpduisxy8k8Wx+485ci+bw/ey8XZRs3ZsO1oHe5BaUMni4w8FgRnuh/zSYoIfrseHIkvKeGT+NhyDtiB3EV5ZRiO8ufYqpx7k0MJE3tbWZyCTYHi48A47/2kvi4r5kdNUIrZFWPYrLMid2S8140XfMobfm8jO0KM0qImzzPcsEeRnVbfPcJaqeVEWTZSpWllWcRWGNCvRulP1NX3d05mq2MU8+RrLdFlxKmN8EhnbuS4j2gYxd3BzgjydLD6GoT7OT3kfPYk31kRZKjOacSe9mN7fn+dKUoGFpDVvZ98T5sSvr47i1/NJFFbUkJxfwfTddxm1JooncdTGQ8OMjKLKZ6ZajV13jR03MrhhIn+2X09nxKrLFhLHHHR6VmERWyw4EsuJmMfPTHMF+G1sO9QKOQ19Xfiwdz3L9CfThj/t15hRHeugkEnPVCH9ej6JuQcf8NPpBBYdi8P8uPX98cJfppVW2Kgrbb0Cbafbphimm3zpniy2MLS1UIu/vjqKXy8kUVNVwT+cTuAg1fzb6YG2BQM+3XWXZWce/VsKGluVZV5ZNduvp6PR6jn1IOdPt5dbpqHD/NNM23Gb3FIN49Zfe6qq6PWUIku/va4sl0Csx2pOYTZva3e0aJdtEfko/2+bTJdptBRW1Dxz+RBvZ2KzS3llRSS9vz9vUYk8C2YLimvJzyYH0gsrqazRUVqlw6nuau7Lp1rmvds9lK4NanE5KZ/Y7FJqezji7aJm/+0srqcUsdPkaVVmo7T9ryiCbqQU2vUP/w6Omaw0nqf4MRNEaYXPf343RaUyePklC6ltNBqf6Yn5ryCnVMPQXyJ5e8ON5y6j/RNFkBnt63lyP7PEUjksKa+czqG1LPNHtg+22BJMjKiPWiGzsxcBuJtR/NS9fO6htR9k7tvYkjbTdtyxq9i54tyjp6rClVVb2wVbH0w/Nwe6NvSmrFr3XyKG/69C8deL/Ad/CScveHMvHJ0BgeEianlyFhtU30E+8GsLGPwz7BgL5Y9RP9hnWbV7zu8AaJ38MI47Cvc2iwg+EPxwPVP8OmAoUSLr8QmNzi/iSq1vcP7Z1OHq+TlUFcHVlUyQTnPE+BV3DaHM9ruM1439gNXE9VOl8I05pOzHS9rjcGgqxOyhPTt5QfZP6ko5DKq07hfAerc1KIp1IIHSaGp4/cKgp/ARQeUMk65YQ0olNg3je2fEwNiEWvVa8fLMTbBvElxfAxj50NeLHJuIn4WhliTwbgDxVrUQALk2L7nqEmZXfyU+DyjhzM1Y/CsfMkRxFYygzLwKJz4j2KM/q01mei+m/gjAKm04vZR76cVe2HWP2WqJF/VCVt9ZZjWxbZ32BzJpPHVSdlEn9wTrVCegACj+noyArvROHUuwpxMDaj2mf61FSAmiwxkmJcHKdhxWQ0jCJr7cd99OSjlcHYXOKEMvU6I2VvPItSONTfOqdOKlpjPq0Y7ZgVKvg4V1IPkCxB0SpcxNUd2msjQ6yR6wTTUPTO3lsPHTYOt1SDqHUemEpK1E5hFsdxrNPk2uDkr+EkpHGLIMzi2E0kxel5+ldtJ+WGZqbJVOdHYNEFH7Bn3g4hKoLsPNwZUOIV44yvTsCdqGYskoImy32/db2nX5kHYpl2DDAbqcfBnCYtk5sTNn4nLJLKpiwdE43lp3DW8XNQ18nXnNcJRXH/9hv3/NX6FJzF7iHcZSanSkHEdw8YeuH2O8vJxlymU8NAYT2vtt6p/7UJxjtxB8SpMZoDlGU3UjligFYbOJgdTVJuOsroLgjlAgSFKNXoOLWyBMtZI01O0G9XujTjzNHKVpn9p8Au3GQ5vREP073S9+TxtpALfyrWqikfJzT5/janEuXaikvpTFVMUuEo21iTcE4SZVinObeZOvPecR4nARKoE0YMB3lKXdo03MH/zYfihHMqNJ0iioUCqoliTIuQdqNyhIgHZv//W1DmhJyKcXOKHXI+3bTkRSDG/dSmK9chHtHDJx1Rbwo/J9/tF/CpzIFimhMiW88KVY3z8MBQY2KL9jnHY61ai4kVpIs8vTuOdwgfuGELylEvweWDuzbypO8VJgGZ65V0GCHR61OZB1HgAH78ZIebHg5UlNgxdxNJPktoj8SfxPPg9jD9E80J2IRj4W8qVT3HxctIW0JZYvTARBWJAHd9KLuRWfwmnVNGYmvcvRe3VZeFS0q65qBb215zAC8+pE4/o4ChQwknMgqaAgEdmiOtB/Ef7uXS278mSE3JyimlEkOr7mFE4QA4bKGp0lpUirN9D/54t2XlZLTyew+q12lu9dF55BkiB5wSDic8oI8Xbm0N0sOod6U8tFxVWTcbd5G0ajkVFrrpKcFM8ck+/uuODHTE+rx5IT8RZCGEQqlVwmseZCEj+ObM2uaPsBsZeTiuaBbsgw4EMxBbihQ8GHm6/xk8vvbM/ypcmgD4lo5ItcklArZTx8XMZKkzeTHD31pMd06tCZzVefnUoHomNe32RKHKSJF0EGJy8x01aVF9yJf2SuIFZj5ExcU15sXIvCLe9Q69EFPq6ZCdTmnW4h7CiwGSQaDCCTEVbbHblM4nx8Hgq5xJ2MEua/EibSBw/+QGviaS2Lt6z2sWI3kTVhyGUSnw9sSqfaKl7YO8oyf8fxKVxr2J0lzd4lLKgBCplE9LENTFEcxJ1yZureI/ZdDxw3jQZHT/CsB7pqKM/hTecoYopaAFgiVgFDowAAIABJREFUpb+MCudhTinXkgvtFDqpBRWW89mjkQ+9m/pRUF7D9N13+fVCEiq0tNJZ1YdDFVdIKxDBmeIa8YJ4L8KXNl5tmfDHTa6nFPGIVH5yKKBY5omPoYghfvksfjiOr0auwkEpp2WQ1YhTZ7RXLrzdLYS3C76HW0a4s0VMrN0WbHz/HLp+QPbF1SxUrmFvYSw/nvDj8LkLnFZfZIfUH7mugmHyi6yunmHtjfacCa7+cPQz5jR9DANbgLYKFA6cirWSOj0a+rApKlWooUyFCn48GU+1zsCM/uKNqnC/iSRpcddFkF9ejVIu4e/uYDH0rtLqKanUWlLM9t/O4r0eoShkEhP+uGlRIGSXWKuvxj0uo0yjtbw/c0o1fGAikx983Q8nlYL88mq6LToLwLI32jCghT8KuYyc/AImsYuN9OUfW6PZOaGLIMaMQpnm7aK2EEHm9uTrgw94samvUPaYcCkhn19N/ZpBLQOo4+WEi1rBg+xSJkSE8kmfRqgVQh0qSRKjOwax0XQrPVlI4OXWtXm5dW0uJuSx40Y6ozrWsbRL5nMEoj16EpM3R3Pu0154OauYsfsub3SoQ9u6npb5+TbE9bdHYnF3UvJaO/v+iFndkV5YSffvzjIxor7FANbVQUGZRsegloHsv5OF0Si8sEbKzvCWYQNd/fJ4/cooBrcKpH09LyprdMw/Est73UPtjgFM1XQLK6nvI9qXZ6VBfr73HleTC1k3tj31vO3Xv5pUgJezioZ+rnbTnyQi7mQU46JWMG3nHX5+vTX55TXsic4g0MORBa+G4e0iFBVmwv5sXB4zdHc59zCPVkFZTO3TCBDviEN3shgtSyLX6IGvVMxPql/4WfcqkYYwckqrWdq+kMjoO2y95El+zdPDOTPh/mJTP3LLNEiSxLdDW9DClEZtRkxWCaPWXKWkSkuojzOdQ2txxXR+3usewrS+jZl/JJa9V2L5WbmOW/en8lLLQDRaPc5qBd8di8PDScl73UMtAZWopELe71Hf7ncMBiPdvztLp1AvJvdqgNxREDsTIkJpEehOiLczHUJqcTwmh6xiDX2a+tG/hT/fn3xIemEVh+9mM75riCWVsaWUyJIDlUQ+yrd7V/4daPUGhq8ShHTKwkH/0rogyPRnwaxkOhWby/n4PCIa+XArrYgyjY4eJj8bM/n58HEZXRt4M/q3q1xOLGDHhM50CPEiPqeMzOIqejT0QW4bqH0CBeXV6I1GfF0dWHU+0TK9olrHnluZtK3jSTOb4GpFtZX8fB4R1K2hD0vPPGLT1VTGd61HVomGEe2CLfdDfR8Xwut6kpRfQR0vJ7rUr8WGyyk08nNlVMc65JZpGLI8El9XNde+eNGy3ZisEuQm1Wp8TjnH7j9m4qabnP1nT5Ryid3RGdToDfRt7o/BYOS7Y0KhZ3ttyjRWsuxJ78hOoaKfcC25kFbBHmy5mkZqYQUzBzTlP/hz/IcI+u/EgEXWz2pXOCTUGeTcF5V6QKhocu6L/0onOL8IevwTZbOh4OwNjQfBzQ3gVAspP57epIlprV6H84sIqLBG3Wg9CjyCoe04pBUdOaCexUF9JyIeWSNWx/TtCW0dgXNxHDqjjJZDV8LJ9yFmDwBGuZp1qiUAnNa34Vf3j9g+3Bcp9gCBV1eBBLGGOjSVpcHgpSJlyBa2umK32kLF0uQlOxLIDn3nQfxxuLqKirpPdghspIqhPSHrlvAeMRNE/ReJ34/+A45+al12y0hO6o6BCsGRvHsaTs2Fa6s5y2o2Kvqw13M8ZgX674r51nVj9jDE9NEwbB2ywkRoMwZi9iEdn8k4x4b4ljxR5arJIIJi9nLdNwNVaU9Ysw7JqRZ8cIWkMolTG77hfYVQmMxR/I5PdDE14Yvp2yKAj7fdYpjjLSLLW2DotxhV8im6DvzAsmkzEQQicqdUuQj1xZXlYmLTwVC3G8VGJ6qPz2G98jvrfrUYLoibYWsh6xbS9bXCcDq4o93u1/N2JiarFJn0/BeMHcLfgvC3iN01j6b3F4MeaNhXKE20lVCYCK/9LohBo0FEyIM7oFC78WDAI6TTh6HjREGSBneA1MvCiBpElL/PN3ByFpxbgNPgpbzUMpCKmGNclt3hkqEFReWVRAQ/5tXknwEwdp2KFClIPXrPtqQmOqPBTaqCJu+Akxfapq9Q58Eu6pAH50wVNzzroX7/AvnLezPIJd6ObFzapQrPq79TiSNOoT3h9jxxTbRVYF/sR/gGvb6F+Ng77N2+jkHq27QIG2H5Dbp9Ald+YaT8BspKHctUy7jXcBIv5tzFWC5DMhog7DXwayZIJYywtg8HvX/BqSwFgHKnYCqlIJz6zoMNgwgpvGi/Dy2G49rmTXiwhb63p7DHzwcXgwEHg1EQQWlXIeOaaGdaDPtbl9rdSQkoofNkAhKH81XlPEEma6Gibm/eHjkfhUIOPf4JNRVQtwu4mVR9ga0B6Cx/wMX6e/guIQDj1Zu0LjvHQ1ULdJoaSo3OMHqlMN6u2xliD+F5UbQ/I6tn0bJVLUj9AQDH1m9iSDwNxdHUjFiHo9od+i8UpcSz78AW0/mu2w3SLgv/mHdPsXF0M47Pe1mkM6ZApWMgTarS6Su7TocBb1HLRcXU7cVUxR6nviybL5SbeWd/a8s5uD3OBfnGFeLLY6D5q9D5Q9HmRMyAinzYPwnu7yKgXk9x7ZDIKqmiWqe3DMDM1QO1eiPNZh/nxNQeSIho+OTN0aJk9vyByGQSd9KLqdEZCPF2Zs7gZkSnFbP0dAIPH5fR2N/VMmgxGuFmaiHDVl7hlTa1LeWVw2q7WwYkSfkVaLR6kvIquJJUQAfJGlVrobASPItMldSGhQexOzqDQyYfltGd6pBXquHV8NqM7VyPl3+JpIUhDqfd60hyEERcbK2+nG4+n6LTPxJauJuZwLAdvkw1NsZFraCWi8pO3bfC+Tf66c9TXdiVbhET+OC8fdfjxpcv0mXhGWKzy1CZ0pG8Sh5AcBvrQnKlULa5BkC/+cjW9Wdlwc+8dqA597jFVM0+kGCZcjm3DaG8cecqO4LE4NlYlIa0cRDU6YJXj38yOERUWFp1PhE3BwVD2wSCVgOxB8G3uQg6tB7DlhQXRhWv4ozqE84UDYCKhrygsjFnDe3JN8YkSD3BknO/4T5qB53r18Iz+TYoYJBvAV361cZxUwTIVfDxPdE3AFjahjZVyezMLqWoosZSSW/gUvGc+8tK+L3uFdq8MYdh62OET5VWz/JRbXDzeoTWEMILTYVi1J1yjqk/I+BEIcjV4OhBz8o4tprUCmbvu8b+rnQJtkZ3zamc9z1fpFvBTn4qngKA8/63oWF3MaiXnqFCu7lBqJINOqjXHfIeiuPrPBkuiOeZ+i8gOXpwWtaVMcaDvKU4ybBzXfhDtQyAbZpORBsbkWd0580mEoWOIQR5qJF6fibWjzssyObkC0IBGNKD2vVE2+DlrKJZoBs6g5HM4irLoP9nE1lxP7OE9vW8cAwUisMVPabi56bG3114HVXWiMjxiFVX2B2dQZVWbxn8tpt36qnD/fZwrF2BhNSCSstg2lbxdyImhwB3BzsD339svcWn/RrzQUR90ja8y1TlGcLr+zM2visH72ZZFE6Pcstp4u9qMUG/mJBPqUbLushk1kUmc3t2H6p1BrKKq1i5/jc+kCezVnqZlOx8+rjn0KRNd67vX04jRz/RBtVUiv5lsyHUVFgj7dX6ZysPlHIZRZVahv4Sya3ZfbmfWcLlxHwel2qo7eFoUTx92q8xi4+LQVpFjZ5hKy/zdtd67LqZQXRqEYuGt6ShrwsXEvItpPSglgEcvpvNwTtZT6kaq3V6qnV6VpoGsqvOJwpfI4QX5p6b6fQs3MHhUV0YuPkxeoMRZ61o0zoVH+ak+i7bNgxgScCrDAwLYFNUGluvpZMwbwCVWj2ZRVXsv51JRbWOjVdSOffPnnxz6AGn455WM5lTTddFJvP1yy3s5o00pZcnzR9IqUbLvcwSujf0ecqjKDa7zKIUtZp1C9VlswA3C9FjTges0Rss95Ctwu38qQMcNH5BPVkOBW0+ZNX1VCYqDrJZtYB8oxsfaqcw5N48hiiBhDUMqf6Gl1p2o2NoLWbtswlagR2Buikqla9fbkF6kSDFjsc8ZsIfVvI2Ka+Ct7uGUK3TE51WzBcBN+DICr70qE+jgFxeLrpMg/hMXpn/GSm6Wuz/sJulGENYbQ+Lsu3h4zJSCyrQaA2WysrmVLWopEKGh1vvw2l966OSixT3TqFetJIeMVJ2Fu/AyfRtHc7QNrWZvuuORVVSXFlDXekxB9Sz2KfvwscPPsRoNFoqQ/4ZqnV6ckurn0oD/SscvptN3VpOlrTFimodxZU1yGQS03bcYeaAJoT6uNiljI1dd41lb7Sx+LedmRZBqI+LxTrh60MP8HJWcdmUWnXkXjYdQrwYv/46mcVVfD+iFcPaikrJuWUaLiXk82p4kGX7nRecoUZv4M7svmy/no6jUk6VVs+6S8l8fzKeDvW82DGxs2X5oqpqy6j/KSIo8SxIMtrU7U6rYA8WH39o8WZtZCI/60uZvHBjJYYm89iFMPT/oGcDzj7MY+dNQSJviEwx7a/9c343NxaPejtpGjiDTVGZ7DEpqm6mFmHi8UnKKyc2u5TnXcbyGus2n/SO9HV1IMDdgZisEvQGI5/vFZ5vzyKCriQWEOTpSLBN6fn/y/gPEfQ/hSaDrETQP6Jhy0gR1Rr0vRgwm9FuvP16QW3hU5F2w/qBQg3Q9xvwsqY/MXIzSDJBAgH4NoHh69AcnsngKhMJ9MqvTDtXw+7sWmxr04lGNtI+hq+DG+vAwQ0p7DX+OedLJAd3qhr2Y1K7Okj1fKFWfbi6CoChNV9z6J1mNGzQ6M+PWZKEMurP4OQFr66GM/PQKkrBxOo6Khztc1ZfnCtUDK4B4rxdXSVIIKUjtBwBd7dBZjRgFIN5Zx+oMHXIgtrBWwdgdQ94fI+xipP0UJj8J1wD8Sx7Qtba52uoqUQWZjNY7vA+xB9jdvJKqIYT+rb0ld8UhMaARSDJcbu/C6ITILQXjNgAjh7U9TGyVv0W96tCWKpazjiFKDnewiOSurVf5v4YCWlLOrU7jKduxw4ou3Sy2xXb/H2NXoMLLuL6P9gvjqvpEJAkPACNWy0cdo4iWR5CyIxI0REHQSg27ANI4pz0+tzuN+a/Eka7up6E1/Gwm15SXYKjwtHyQn4Svv2m8endcoYN7EKnTkOg7DEsbSPSipq8ZDVR3jwcPEOgXlekW5vE4M2WJPUKsX6WJOg6RajoriwX1zowHOfjM9moggKjK0YkHDLV4OAO448h+TYFMxHkFQof3QFHL8oz43A98A4y0zOlGroU/JtCUTLc2iRItCHLkDm64R3WB67/Bl7WEur9rr+LTpIxw/Ah37taKyhU6p6TuqF0QObfjJX6IaQ3mMBym/Q71C7g35I2ucmEKBPwk4rxeyQISGnoSnAPEiSYTLxoMegBSZBApnvZpTIdRu+2I/KOtFpBZ6d0PA1F4Gx6pk3PTYVMhpODByqFDI1eAcdNyr0e08HmeP4WGrxIUUAPumULdU5Nz9k4d34f1CYVmYsvDP3Ffh3PevDeWbixFt9bm1iiBFLAgMShOv9k1OD+wtvB1xXoK9YJbCMqBGbfZto7Y8g0RoEpfdxR7Yq2ySCIira+9JUO4s+1L4zcBNvHwNAVwgNp8wiI/Bm0VRZPK6N3YxKbfkTYxUmsVv0IjnW45jEUMOKRew0AdyooLS8HlHwxsCnySBPJ3PxV4Qfl31Kk0r13xnqsebEQtZJ38l7CVdGGubpxGI2QXlhFqUbLjuvpZJVo7CKrn+66aym3bcadjGLa1PHk+L0MJAn2TuqCh5OKVkEerL2YxNsbrjPrpWZM3GTtqE/eLDqVe23SWO6ZpNbNAtzIzU7nUewtTue6Ey7Fs0P9jVjINQCfKmuqsUZrwEEp49tXWpBRVGmp5nYpIZ+88mp8XR1oEeDCouAohhf+CklyqowqHKUamhacoEnLBdTcPEuythGKmlKWqpYzqHo+lXp3UgsqLYoGZ6ropxf3kTo9kgHpkUhswmjKTJ+q2IX3th/50LMry6P0rIuUqCs9RlmWBoFPKNnGHrR8lEZuQlrRkRZV1xlq3E80DTjpNIgZmp+Fx52NT/fWY5N4vTgNWXEa3N3GT4DMfQ57ShqzxP8kTuvmQXGqIBlf+VXcy14hvJDyAH5fRajsMaFV6+GHzWC+F+t2g2HrYFdPQNRlkkWtYGzj6YSlifvPrfAeblGzxPIthllJIICA1rRMOEdGUQEHF4zid+Vj7raYyfFsJ/qGBfHBo4kosm/AWS1rNTdIxoE98u44u3sw+fRkJraayOSAXrzSxJEvM/9JLa0pDSmgFfg1o030Dr7NEfdFjc5g6e0JHwgnpMJEPlIIT8CU+qPpkr8LmWQKc8tVsLYv/q1Hs//jgYwx8+Vlj8GpFpz+RgRpvOuL58/DpprnE6TzmA++gBXium1TzUMp6Xm/ZirRxkbMHNAEI1/j1CMUZ0niQOIBOlQ8xt/ZH7pPE8GGPBOpknyeVq6HUVCP5oHeFgPwCwn5jPFyQpIky0Do0qN8Lj3Kx9U0BugQ4mW3T04qBeH6+zR1yLcQEO9HhFqeVRDpMGYPoitJBXbzHuWWo5BL+Lo68NvFJHxc1RgMRj7efptnYVNUKsuO3+WO+iJIEKFOINS7L7fSii1Gv7+cfcSXpgG8r6ua2OxSZtsM6Ft/LRSqv/ofYLNqGwBt9An0LbsJZWB07MUI5Vk4twa65giyOmYvRP6E1s0PagklSnWpvdrPDHMBg6JKrUnldNOinHqpZQC/jA4n8lE+k3rWZ+PlFMtAL62wkrkHBYmZlF/BiFVXeLGpr10Rhsk9G6CSy9h7K5OLNqmbIEzCX1t1xc5T5szDPNQKGR3qedFJfws2f0mz0F6832MBGy6n4OeUIhbs/CENryxnFqsJS+5gaQf1BiPfHH7AetOg1BazD8RYDKJd1IpnevSYC68cu5/NsfuP+fKlZpZ5qy4k8uPJeLR6I62C3O32u28zP84+zCXY0xG1Qka1zoC7o5KfXm/Nd8cesuFyCh1DvVh3KYWbqUX4uqrJLatmj3IW8cYgpt+ZQKdQLxJzK3gxbiP1ZDng4IFz+zEsvJLEVn0vzqs/wVsqFUpwGxxQz0IbNBdl09d4s9MgPt52i5JHVwnXXOGuIZRZUybxzYlUTsXmEOzlxOLjD1n6Rhtm7n4i0IlQEA0LD0KbdgM2CfWjChhjmt9clsoe7WTGamfQ90drv33RsThqezjyUqsAVl9IoueScxiNcGd2XwxG+2qtKSVWcrJcW46X3AtqKmgW4MY3Lrtpqb0DF89C9QTo8xVtFKnsKJOj0eoprtIySS6qoPZ2ToFiLO+sJ1GmEfdzA1/R9s49EMPWa+kEmsg6c+W8sw9z+WDTTS5/1hsvZ/s+cFZxFZO3iGCij8kjZ+/tTLbfSOfFpn6cihWm54uHtyK3rJruDb2JzS4jv7zaLt30flYpoT4udvecuc1QyCTOxOUyZ3Azi5/W3luZFiJo5u57nI7LpWWQu+VYzAT/pqupVNbo+eG1Vnyy4w7fnxSKVgcTkWMwGKnRGyiuqgbTK8gy3ipIhNIs+ENYQijnlrDtvU70WnKOr0zPdUM/0bfdrJqPW2YRfVrcpnfzABROKXSo15EJPUJZH5nC7psZFlIQ4JMdt/luWEsUchn3qn9Fq87A3V0QxFmmY8wurrJ8jskqZcDP9gHPtIJKXB0UeDqrLB5BKpnDM4uINA1w425GiZ3H45Nq7DNxOby94QZN/F059nGPp7bxfxH/IYL+p+DiC50mC5KmVn34xw0Rzv07KgxJgtrh8EW2/fIdJwpCpPEA6wDSjBbDcAjtJXwzAFq9zmuuBVzYessukgWIgVTnSZav3361AIVMZi9BdPUHtRslDoH4O3tQJ6TB39v3v4MGvaFBb7Sb2lsmOSmc7BzhAWvnUq6EiOnW6Y6e1kHZXJPEdexBKMkUZAEIxca4w8w9+ICudz+nT9FlAKQJF9i17juKCnJ5+4MZyMuzoIFVvmiBXAGvb+bcxq+QpUfxq+otIkbOQh3aRcwfvhb6zYdHJ6HlSLGPgFwmcWJab5Ty3lRuuI5TtjARrnv5c7j8uaU0eoNOL2GhwW1gSzpodCZSKKid+HsCDs0HsXjPuzgFt2ayyvmp+TR8Ufw9AXdHJeO7hjw1vdu2bkQERbC89/KntwXUcnXEbYAz7z38ghvt+6F29YdPHwnFiSSJc99vPhz/XJAvRcngZ0qL/Cv0nSfSe+7tFH8qV6gpo5ZkknHVAB0/EAoaEGRplclg07OeOK76HWCqTeUXlbNQrmg1wmup/Tvi3gEIjYCoX+DudhHRDumBMfEMoxJepGOvwXbqNFuV1pNo4OvKitHhdiUsLagdTuOMVSCD+4pmtNA9AJlCPL+OnvbLyuTw4hxR5r33bEGOBIaDTyMqtZXw3lmc7mxjYL/XLPeaBf0XQfJ5Kpw0eLnWwaHoIdUeTSAzRZybrlP+9NQ/D14d34B951mpG8wHPaf99QqmY8YrBIpSOa9rxo+JtSnFiSH+zQlwf1JWZcL4I1BZQAcPf/YkWKNUDgoHzJmjzywh33QwzC4U586zrlARnl8Ekoz8hiO47PsGQ7qFU0evYt+9qwyuPoT82m8E9mzGQ/VY1KaN15PlcEw1g5xm4+nsr4Qzp6D3HOj+yfOPM6g9GJbhVJ3HOMUJNrlP5FGBhsXH4zgek0N7KY5wSUbvpi9zIymHQCmf+5kSEgaWKH9lj74bVwzNGb/+Gq+5P2BK0SJC6v4Dj4QyqNsVTxdf1oxpzYTNd+xIILCaWo+VHydCGUuvDq2ZeRm26XryVitXRhROQr7HyAfSeta7bjMZjgGNB+BzYx3LfA8S1vsNZCdno+k9DwdJx4SIUAsRdPBuFlq9AV8XFfITMxmZt1qQk2MPsj1eTVbyAz5PHI20dwLqiixCRmzE6FEX1vVlf/3z1Bq5jNhsobYAiBmpgf32py/ZYQxfasfjI5XwkWIPZMAUrvOYd6ireEwXp5OE1a7DAa86PN1SmeDTGNyDmV29E5mmiJNeb9J9wPvwqFqQp1VF8ECkDi6oScW9cQSD/DsJAriygEW1I5nJenwep4m2S6aAN7bbtZn+ITaqgNd+h8ilkHkDuk0VwQobVEZMx+X8d7yYdA6DJHG04VcMSJgjFC1hr8HQlfb7H9gah5g9xDlYg0E9YkfxoW8zaPgTXDR5PdzZSjAQLIce8nscihRtXGp2NOz7nB/dg0GbBaN3ifThDu9DQSJONzfQMO8Ef1wJEZXFFNYo6rlPe1H59RicDOUYJTkGzxDqV/9BssMYCGgtnqXIn+DsPB7n2dx/W0ZCry+gMl9UIGwy8HlXxwrfpvDFYw6v/Zo22duIc+rISY1QDLer52VJJarQVvDFpS9wVjoTNSoK6nQSJvYbrKkBHe7OZp26NR49/yA0dRMDZXnM2gd304uZM6T5M6sBPhOVhcj/GMxRYEdVBO7KCrr4baJDPS+upRRyYmoPAj0c+XTnHY6ajNtDpGya1fHlcKrcMnjr39yf+Jxy1o9rT06phs/23MOBahYq13BU35HjBtHHyS7R0FMWi1rSovMIRZF8kb5132JnitYysLT1KNs+oTNTt9/G4d4mPlHks8d9HDml1bhoC+hXvM2yXF+59dpISWetx7d5OKRcFH3Qu9vRagoBodzUFFrJYFusGhPO+sgUriYXciWxAKVN/8TfzYHWwR6WlK1zn/YEYH1kikUdZItTT1QS8nZVWVQhz4KZTBnftR7rI1O4EJ9HIz8XZPkPYe8EsVBFHmH1yuhquEm3mkvcc+5EWL9v0TXoh+KPwQxyS2JbaQvcqKAU52eSQP5uDhYSqJmUwifyQ6T2+JJ2Yc157/cbuDgoCPJ0sqh8Zu+PIbesGg8nKzFgTlmx3W+AX8e0xkEOJx7kcOJBDhGNfHg1vDbhdTwJ9nKivrcLr6yIZNQaa2GJ8V1DWHzsAa1libQmkenaCXyx9z4SBj5Q3yHZNZyQCVtxcPUnelZ9MYAu6kbg6SmQHgXhYyF6o2V7yjNz4cxcaPcOP3UZiTH9BySdSQ206gfeb/4FI8qbc9qkEJqy9RZymUSQp6PlmGuTh39FLLi3wfHuumder1RVA7yNhWxwXkvTwiWYh5LdstbTt4ELSX7/tKROOVNFq6+P46JW8s1QaxGO2DybVCZtBV7lBbC8HRLQEigPHYCLs6tQBV77lTeAVdIPZOUV0OTUeHopRCVWV00WSerRpEYtgj4TntrXMb9d5U5GiUV9a65AmFWiIdDdgawSDfU+O0yQpyMarYHrKYVU1ejJLK5ici9RuMYcdFHIJIuizax2M6ut7mWUEGMyip7UswGd69ei7TcnuWbjExaXXcqQVoHP9Pp7Nbw2O29mkF9eg8EIjko5lxPzqazRMfq3q9wyeQ5eSSqkga+rXRr58jOPaF/Pk4FhAXyyw+odVVxZQ0mVliHLL1FRrafSSYP5TjYYDUJwsK4/6GxUgroaHFUqloxoxbu/X+elsAAalkbRWRaDvyT63K7HPyI2tD7/OK/lXr17tA72oEZvYJrJt6pDiBfXkgvZE53JwBAFXYy30Oh0yBVQx8sBqOJ+plBOJeSWcz+rBEl6drpdj8VnLWlmFSZFkKPC6akUVxCBsDNxuWCjrMsq1tDA1xqkPWjyKot7XEZFtc5CjIbX8Xxqe/9X8B8i6H8S/efbf/9XiZQnl++3QAyYnySBzHDygnFHLPM7htbi+hfPIDmegDmV4Sl8Eou7TM555XMGcP8m8qvyuZFzw474eUoR9Hfx9glIOA4+TUSH0xYO7nw8qC33XN6HqxOFCbWLDy9PXoROb0SukgPNnrlZANSuGHue+JkbAAAgAElEQVRM560N13m5eSDqRm3s57v6iTSyJ+BuijAw4QRZBSXoqiups1qUCiYwXFRF8362uqpKa5Ma9oyG7kkMeW/uU9GLfwfmAcL5jPN/utzBJBHZLdYU4+fsZ69uA5Ea0O5tQQblxopKVX9HjSJJ8Mpq8dLXa6HTJKjII/fgV5QqvGiQfxqaDbEu7+wt/v4OlA6CZLFFHatcFp8mEDEdKWI62wxGZDKJ0hqrvPfJKitPYmBYwLNnBHeEq6soMTpxp90iWkQNhpCIp0kgM7pZTRNpZTW47bmjJwajgRtjnmMC2GkidJpIxa5+OCudUcvVaJy9YNpD8VsK9bPX+wtIrV6n0Lk+EU5/oQR8Eo6eMO4QsoQ8bj8SqpvA55FAIO4h031UobW+wB0VjhazzeeWkLdtC5u/IkzEvRvjPfxHhpjUF+7A0I+XQmR9ODmboB39QII0gw9nWy4mLGYx4bIYQuMWQBzgGihIwz9Dw34iFfO+MNdfE1HFwof+lpLaPyhX4iWVUuLTmde8ZuFWmcrZPkfYdPIaw7jIMPlFqiRH/tC+wMCiq7hKVYx6/B3YCCq7uNdhZp8d7D18hFKcGPPyQFzUcpaefsTw8NqMOD8JL6kS6do1FirgiK49HSvOIDepOn7UL6CBMV6Ygwe0EvdXzF4Gl26FvVvFj+x/CQ4q6dXsZY618sE9/Qxl5eU0cshEc8kbqvOh7TgLmTvOF+gWCkvrC0KkYV9oOgRJJoPQntRN2AL7K2nVagytpEe0kiXC2VNCuffEAHSecj0ARkmO9NY+2DiY+cq1GCQ5E4ObgqGUaIXx+USQJMHLvyC7shwqC3n/rY+F4qahSX2o11qIIIAS/2ZCHdlzJux+B+X93fiAaJPHHxUqGJns6d/oPVuUrm/2slA3xh0W5P8TKGs3HpcmL0HyBWT+YQwI7QmHM4Qasc2Yp9/nrceI1KrTX9tPz30A6/qKFK+Rf8CW16B2WzaELGFg+g+QeRp8vcW9DlCSLlSpDfuYlKCAT1M0Pq34OW8F14+eIsjbmUQHKM+4CoHdIe0KTgah4JSUTrQO9sCIjOMDI+nXqi4pqedRR8kJ0OvJTrsEtUSbpc2+jXL3u+IZf1YA5XlQOtL7nXmsj3yXAS38MS45B0DdWlZpfpFGDDIqtBWU1pTipnITatMpt6A0GzKuw6k59JBuwx9hAKxQQbfq+uy8+f/YO+/wKKr+b9+zPZVAIPTei0gREEQEFAFFFHvvvetjQUUf9Yev2MEuYocHQVFAEJUqhN4CoYWWkEp6z2brvH+c3dndZNMwEIRzXxcX2d0pZ2bOnPI53+JLR+3l3uEdmecx4lGLs1BmXy0yJRosWtwpt97C9Xj6vG1f8EMHN9boAqIKjdBoCJ/dMoDvXr6OgbpD9FSOUWDtzlJe0c7xx97jdG8ewagewkVvxf4shh16h6v0G7hKv4Hzyj/jSn0snZTjtFJycOktGG6eC99N4PkjtzPc1ZO7jz8HBIr7HaJDuXd4Oyb8OguAq296g5blh/lx4RYogfc7zOQp9Xv2lYQyr/EDvHZhGMo34yht0YdkWwE9k9YJi9Oxb8CQB7AfXAQHRCDu4tyDom/e/h2MfkmzUhvXpyWXtLSxeMabHD3yFP7Z4WMiA/sQ7wp7f49VscWo4+GRXXh/+UHG9GoeEKDbhIPo5L/o0UyIf0M7RfPGFV0YPUMIIpf0bM6mo7l8eVULBnZqyg8bj+F0qzRucoS/183kIkeZsDg+sIQrMsdwhWe4kxHak3MAQ/shYAjh6vB4bCX5vGf6nB+do3jJeTf3j+jC7cM6cME0sXC49rlRTJk5n9bpfzJWt5Ue7hRIegZGLGLd7dGYWvTk9T+OsM2TnayZx2Ln2w1JAdd/85B26BUFi1GHxagnwmJg7N7JUJLFXUPf5ZuNyaJ5OreV9t63iw5lTK/m/Lg1hXG9W9C/XRS3DW3PuFZl4Amx9dh5Yczblsq1+rU0U4qwDr5bLMqCb5zXqLuwQM/cI977Ma8JV+mEP0SWWYBtX8G2r6g44xi09w16KNPY4RemrUN0KFGhJloV7KCv7iiPGhbCzFLofxvsWQCD7hPCcO4hOLQChjxA+14TYc8v8PNdnKMkslPtih4Xzxh/gmMQ0WUILXFQjpE15qc5qrZir6s9qfHXAWJhemd6KniMmkvtJZDkseIwhUPvSYSPesmzIB0uPBiAn02v0WymWKCZo47jxrufxrXgfkxFSYQc+o3VbSfRtXk4bRqHsiw+g9UJWZpYl1tqp1mEGbNRD5624tqBbfhwlUjc4hXC4lML+Xi1+O6GQW15548E5m1LYUBLEzO7bKR8y3f84BzDF64rAu5tbqmdn7YJy97e4aWw4X90D2vDhizx3Do2DdPiB2UWF2KKXo09dwR4Mr2e2zaK+dt82dIu7hnDkt0ZxKUUaCIQwJoDWdx2fvuAJANWh4tLe7XAUprGIzF7OCd/OZ/rbqRX3hbS5nzPsdwrAYiI8I1rXX+9BLlpYuzlLwTlHITmvRnetSnbpowhbPUrKHM+Ya4J3OjQIQSoYk/cWIfbwSA/i8sxvZrz1CXdNBdn04oXCbX9TWirc7ABjcID53kbj+aSXWxjUv/WLN2dwROXdK0kLmcV29h+LE+zCAoJZjgADOsczadrDjOhbytuGdKOG2ZuIr3AGiAE+btffrvBJ2Tvf30cIaYq5sJnOFII+jeh01FjorcOF1T/e13wd3UJwpz9c0gvSefZQc9Wu52X5ceW88O+H7C5bOzL3Rfwm0FnCIwRVFvaDRH/qiAq1MSFY68Hx0axeoLwhTfW8n0f0a0ZL0/oxbV+frl1oVV0I6CRiIOzez7cs7xyxiY/AlzDnNULEEC1q2x1ocBWu8wJimdoUWDzCEHBMIbAhA/qXojmvSpZD8U8OYoYe5mY9PiLN/8QlymMtOY9aJd5QLhxevBmUCu1+zoLf3GuTvS6Cu5qSUhIM25u1hlCpwghqI5UZ5HkT6mzlFBjKGa9WQgnngHkCaMoNOk6mCY1bxmUQR18e7aKqp2YXOLwZZqwGCw4PVkuqhSC/Ol3i7DE7Dw6uPjV/XIx6e48mvH7LmG/qw3vdzqXNhf/QdmGtwntcJ6YbJ57k8+ysCqMFmEVeOXHMKMfHX+/hY+HPsGag2Lw01YnVp3Dfhyr7TJq+WV48rZRrIYQgVWLJfaq43Zevfo84cqZFCvqe2EyN6S9yc1mjzmNyw79Hueq1sWoOQfQKQVwxccQ0wtmjWa35T7YCrbwtqwpbs1Y3SYROP2eFaK8AI9sEcLEkVXCPXH/b9BtLMqhv+jhCVre0tPFWGw5YAwLFCi99LlGuJ1M+sInnrQeKFx59i3EtG8hi7yPoAixXYtzxJLfps9wJ61H6TwKpcflKB0uEG3GOddD/Hx0j2wm7s9bwA0u1c32zO2sS13HkwOfrFyOTheJf0FQdRXa2RjParSiiFhPexYIq7IbZgfdX+PC/7AnZw8vL5rED+N/IDyI+A9Q7CyhZctzfVnOAC5/Fy57J/giUFi0cH/qOBLnny/hRodp+GNweKVIqDDsMeg2VsSnaj+MO3sMAGZTnvATbKogHg17LPCzToflltmUzBzPoLKDdNdHc4QwSvf+DLFf+bYb+QJ0vpi+baLY8fIYbbJ5xcYXoF1r4ptPIO/433gD7JVFd6ZR7hE47x4w1G0BwmLU89BIETw29vlRHMos0QLnQmAflFSYRN9mfcWHJp3Evw4XwAVPwMrXxIR0+JOw4B4+7Z3AL/ZG3HDoTnKUO7n5uhsos9m5qXyeJgRZZ40mtDAlsEDhzdE9shne6iA+x36AGTAD7P1OuN+3HcIdBjFB3e3uSN+iA4zU7WSNuz/Pju3OJ3/u4k3d9/DmLTDiGZ7I/pNzDOu1U2yzPBR4zvOfFFbid/6O+r8bGZ6/l3GurazTnUe+U9zPc0OyUL4Zz2XZvoDlLRO+R7/uLW4BSgyNueqy8SgxN9AbeNyaw4Rld/Dh8Ed5u3gvG4qK2NZ4FOZLXhX1rnF7HO2HaUJQflY8fHaBcCnOSRATwfJCOPdmDJs/42rdLrYctPJZyRN0NRcwn+fJ338RdH9JvPOlOVCcAToD3UcI96T7O+Vxf+RG2lx9ARMHdqTLS8u0so9o9ilxi+MYMfAhvhzZn5HK7xhnfc6PF76Nu/vlDGtchLp5PsoikbThq9ChzCk7n40s4NESiO9xuRAjDixB1Zt4UH2Jw9ZQRrQ5XzgYG8zQ93oGxf2PAaEmdE6Vmw2raGmx0aLbx7Re9wIvD52ANaI9Jls+b2c9oM18bOfegXnX9/BuV/HcRzxL66ibKbO7SMmzkppvpUeLCA5nlTAj4gcyy1RWuvpxt3sbXcY96nPPdpTDW3+Bs5wXomfSJtrEVeX74bUNol8aPQUiW3LvhR3ZkpjHs2M60tl9DFb/l45xc7R79Z89V/Ifr3dT70m0uzB4W0NkS19svpDGQqjpNFIsxE3vo9VvIlqw9aLviGjUhB5RbtT3enKbczkfOidxd6PtfFk4mN6tWtE6+2+e97oQgwjSv/MHYQk6crJv0c2/L+hwIQDXRR+la34qPRWfutRu5zusNx8ll0gaKWX0Vw7TX3cYjq5khLkzKWoMrzl6aN67pUdWQMYBCGkCzx0NbC8H3asJQc0UIep87pzA0uYPcUv7ITgf38Hc165jUtY6nvv2L16OXIr79nd4aE5gZsqMQivhZoMWw6ixGdpHVm6XYw/7XBc/WX2YeZ5MZc/q5tB066+gwPNhv3GtJZGfczvyhesKruzXikVx6SyNz2BYrxLS1zxH5P5lvGrqxaVMoWUjCyO6NmXu1hSyCopIUxZijvmb/xvYmH2pA7ls+CDNXcybUWtEt2Ys2Z1RKdX6ygNZxKcWsrRCdrdLejWH7y7g2aJE0MMo3V7M7jJIhfN1XXGqOgzGfXhT7rhTt0K5TYTGOLLat7Dw+QXQbTzcNJfwslSxOBvTGyJbomszWIwbFvk8SgpthTQN9y3KTh7fg87Nwvnu7sFsOJJDs41HQQcxJispgF0tRcGtuYZnF9tAV87l/UN4//pxKIrCuW2i2JKYy6bEPPanF1FsczJrXSLmKDEuDzOGYXdZIeuAWFj3zKmGdWnK4TeE5ZdXKPMP5q6qKkezSxjfpwXL9hzXrAPBE6OtZQR5pXZiIsy1ijd1piCFoNMMVVXJLc+laUgtrR0akGlbpgHUWgh6ek3VrhYGneHELIJqg04PEz88oV31OoV7hle5Jl17Lni8Vi46VqeVSFMkRfaiGi1R6pPaCkFVbe90OzlccJgeTXrUZ7EEptAAsaY+mBk/k09Dy1h6+y+06zSq0u/FDl9K29oKMZXQ6aD9UM0UlxG1e09OlFJHKeHGcCwGyymtO1VhMeoZ27s5f+7NpG2T2glB/gKcRW/BrhcCULDVn0roPW53VdG0C7yQCsYQjry0DHDTrXkEMY0j4XJPvIXeV9WqnBrGEBg/DVZNxbhxBmP8BOYXHffw/9psEQHSM+K0bEp/NL2LB1PH8PsD/ej1nbBIXOo6n1cH3iJ2HPEMuJzwzXj0+/18qpa/Ai4Hyqr/8630dhopYsX1nAj7RcwEc9t+jBz1Kuqa11FGvohVUSm15og+JTxGuLx53d6u+FBM6O1lUJKJ09KYfq8vx2xOYdqtFzKmU//gwvXol4SI4G9BE+Oxruw8WghFGbuEGFqQLCxovAOrqz4JvpxxxQwYNw1XSJT2zhXYCrjzjzsBeKjfQ5j1tbduq2hRWeT0S+fbrDs8lyjcWmvB+9vf53DBYXbn7GZYq2Ha98eKfIP0EntJsF1rtgRuMxDDPX4ZMjtfLOpxp5Hi89g3AjYv8rZNHUfADVMgYam45xWJakf4c3vhq7GU2cQKd2loNOR73FlieolJnoeglqXj3iQvdgocEfWw5IbvaZS6E7qNq/6aaqBN41DaNBb3flXyKlyqixCDr43ILMsMvqOiCJe8S14Vn3fOpm/2EtoaNtJYl8zjhl9pG34pHd1bKf7rLegg4igWlaQTettCIQSnexIHnOdxFX56P3w4AJxWX9wxAEsUJG+EqPaUPLgdZ1Iy/DaWr3Uz2DHhDwZGJnNHs6mE5ScCKix/hXM8xTw89gdaKrk4l71IrLsPlz84DVK2iMQLAM26oXtsG7nTzuFDhCv2RqUXazs+zjPWmZCVhq7nRL7ZmsVFul10WuexcotqT/ikLwiP8bn7r0peRXJxMt82H8Dm9CQAcq7+hNbhvvh3/u1nvk4nXM1dDiEIe0lcC0BaWC8Gl27hd8NzdFWES0zjjKXw2dJKjyNab2Lxox/QZ8EodEuPcnV0V0g7jwOdEtEVpVLY5QpGF2awmebEb5jOGL99z9/6BOybCqXZAZYrFzk3MsK0kb54QgMMf1osEj28GcVlp/seCwlxaVxzXnvfTiMno+yeh8FZCrcugLQdjFr9Biy5CgqOcQ/fiIWkI4ELCubLp0FMF5GsAmDT55zfJ5LGNGPEO6sZqCTwcttj9L72Loyzfgc93K1fBvFAwXoRrzMnQWTDdZaD3owp7nvuAbCHivc4bo4QyB/eSJfjq1nVeSV8dZNItBGEpFaX06LPRViG3F13L4KotsKSsMdloj01hjLI35W85wQm7F5KT90xBtgOc1/IbEiOQGf1uS9x5SfQ90axKBLdpWrL6/Bm0GoAN2X/zM1G0ba6UdD1vAL9/sWgQDMKoUVf1HuW8+20R7jL9TMtLU662neRZt7LxwiLstLVU8FaLjLPVrzm5r3hoQ2gM7B1wyr2Rgxn2l/J3OZxUzQb9LToOxrL3pVstTwCdvj2cydwJyBc3drrMskoGEBpaSkt1Ry+7bGZrhm/4VrhYhrvkO0px50xh8hPyySOCwCFb9YncYEunjv0fzE0d7vox3QGdHFz6GrfxJOGHSxwjWB8nwGs2J3Ec7o5vKsmcF25qCJd7PtpQS43hGdzh9lOgbuIqA/vwhx1AQ7AuOMTXjO3At4jQYnm/wxfE7e6J5H0ZczxWfRWYlgTXw4IdfC89o3RZe4m9psXcJQrhBovY/nQfaQl/six1IfpmC8y0THgduz7V2G2ijrmjSd1s745FreRcp0Od7ex0Osm0ZYPvEskednwoXApPbgMds0V7Z+iF++UR3h8a8tbxHbvC3YxBygsTKFpSFPevrYv87em0DHcDSlbuahRGJ3CttFKEUGhFacVjHqKdv3IzrC/GVv6OrePHco7fyYQ1uFjntqYQ3znnWArYnjEcYY3i0Mdcws2p5vLPlzHsj3HMUSmEtIawo2hHC/JgU+HCO+BcW9q1cW7mNs80oJOEZZeS3anE2Yy0Kd1I4rLnQzq0IRVB7LYnJhHVyWVJLUFB44X8e5fCfx9MJufBsSTn5tN64lT6N36zHcZk0LQaYTD5WDJ0SW8suEV5l4+lz5N+9S802mAZsb9D9Arem31/2zG6rTS2NJYCEG1sAiqLwrK6yYE5dvyAz5/EvcJs+JnsfiqxXRsdGLCWWZpJjGhMdUq8WklacSmxjKq3ShiQmNO6DwAmz2xm46ZTN7hZgD+LkonLATVA/7vhMPtwKgzBt3O7rLjdDsJM4Zh0puwOWt2KzwVfHTTALYdy6uUyrcq/C2CQgwh2r2vjZtkrfC4ud42tD1fxSbSqVntylUtvSeJf6umQux0CI0mp+MV3HnBK9DC0y6W5kJ5AWQnMKrzGL44mEvPDs3hklfZt3M908eP5bu939GnaR8GNh8oxJd7/oJfHxSB4u9dDp8Ph1V+q7b9bvUlDJj0hZhkluVC+2GYo9qJmDbAQ3/cyfbM7cTfEU8lvFYdplBo0hEDsPDp8UxaNpSnN3xDfNcg+3ip6EbVbayYtA31rJT3v5WkwiTatR9auwyFplAwhZJb5osv4nUXAsgqy6JtRNtgewbFvy5VPBbgS0uPqF/ZZdm0iaje8tO/TS6xlzDh1wlVnu+EMZhEHL0g7M3ZywfbhbWlPSRKiJtNn6j+eDfNpXT1Y5Czm5Iuo6D1GOHW1eKcoJtXtL7zb+tLjSYYcFsdLqZmnlgtyv/mhb7BfFZZVlWbB9L/VlhwD41JxqnqGKGPh/8NB6BE71NlS1r3h86jhChbfFzEhvNaUUW2gpvnwbH1wkLstl+FNcXhFUJ8je5MuMXIgB6dIWY5uo8Hcd5iIbyFg5g0X/ScEJl6XE5eeBe6dBqA263SZ2EkVkxc3npg5UyqOh2Rd/yP4u+vJ8J2nKH6fQxNflD85om/ZGx+jJ1Jy+l08HlhFTN+Wq1uS3ZZNq3DW1NoK2RzxmYRbw0w6ozkdx4B474VQlD8T0IMSt4kVvr7XMM202XsXHAXE/Sij/wpIowvohrxV0o6uiEPCgGjLE9sv/lz+uYchPyjwtq1vAD2/ILF016r8TOhnUeQmjBduP142/L0nRDn8Ynqcw0krRexNI9tIO+n27VrcTXrLpxnYsQi09Mt4ekxFdyVI1sJa5Xd86DjSFG/07YHZAUl/5iIG3bJa0IIdpSJNueCx4Ur9oaPYMOH9NnxMivDY5huHc9d+j/omJwJs74FIGHwG6xMVXioQybKhhnwXjeReTcyjMtbnUuLsdNEHM9zrhd1LTxGCIDfXg7v+KVS9/bjHS4UCRNcdo9oNJcOV35SrdV4jbyQIuKdBQkhofS9gUbxPzFAOUxOn3toWnJQTPwBrv0G+lzNimMrOLxnFg+e+2DN57rhB5QPfHF/lFb9hfutwSL6xHXvwaTPUYwWul7zKpPnt+TeO59Gzd9PwYqbtf1KdDqRdXj0lODnaS7OMejK7gwCBnRrG+DuM2rSfRQ1dWJc+xYhahnX6f8m1n0OTxl+1jIjlvz6KRZXMRssLkgCTOEYnKW8ZZwJOj0jmxahyz0EJhjn2kpet+vJS1jPY4aF5KoRZA14gpgJ/4WMXaTu+ZE25z2AfuMXfGeaRlN3C2aHzeBcRxzv4umj7vwd3beXscnyGOQCuTDDBLjhHN1RNoLI7pp7CL6fSHeguwFuYwWHIow4drpZanaRZOhE3NifeHJBAuPaubg383mRudcIkztlYtyynHEd28Gu6cQDPLwZmnVnQZOjfLJkExNisnimayZFVgd5Rb/TRB9CumrDNfgBaCPaSiyR0O1SsbiQtQ+WPQ8LPdaMg+/3WZ8Bs/cHWtAW/HQbdL2C6y96nuudu+At32JcW6Co6bmYh92Pa6dY0Cg6upIoVxHrBm2kPP4LvuZh7GZhhWWfcy0mv1hnituJ5Zzreb/5n8zIDWOdIowFItwOUso8llubPhXZa3tM8ImIbjfGgkSWhr7G2n3jeHT1EFqRw9i2Lpphpku0kSfD/qJr2U4u0e8kXY3m0p/fooRQJuo2MGifEOd/mZ1Pr+e+OuOtg6QQdBpx5593sjtbRPDfenzrSRGCnG4nhoom83443A5K7aVEWaKq3AbQYncApBSl0Ltp72q2rhm97uwUgqxOK0mFSfSMFvGNyp3ltAhtwTGOnVKrDv/Bfq41lzc2v8GLQ16sZJnmbRArCkdbjotYMKnFqSckBCUWJjJx4UQmD57MLT1vqXK7t7e8zaqUVSQVJfH84OfrfB4vXsuC1JLUgO8LbYV8Ff8VXRp30b7LtmaTWJh4wgJXVZTYSzDrzRgrBn/2w9/yqqC8gGahQYJS4xOuQo2hWPQWimx1S416sjAZdAzrXHvrxooxgrwZ7GrlGlYHXrysJ4+O6hKQTeIfM3qKx0pGT1Mg4KrDosW/6M6YgbG9PW57w5+i1/CncLgcPDhbpN3WBBtFgUmfC/cic4SYCLrscNm7UJwOjfwkTFOoLz5MBbZnCkukgvKCGtt1IGCAXduUvIBw0fCLxXW08ChXLrySx/s/zn1976vdMQgUAfxjlmWWZtZJCPKvSwB55XlVbAmvrH+F3xN/Z8stWwIsU6or2+qU1QG/FduLK24ewPyE+Xyz5xsWTFxAaC0tkSpy6+8+VxH/OGbVEtqEUlX0rWWocNnbVW56/1/3E27yPX+X2xUgoJVVYcXgT0pxCvf+eS8zL51J+8j2NW7vpdDmC7ybWVqFRVBFek4U70FhMjl3xrJ2+eO0zN/DhU36UNzpAkgVQbdKWnnc9UxhInlHhUyaW0ND2dU0hnvBZ13lbXO6+VkZNukoXFU2fyZi8Ax7XExCLJFwvQja65UXdTqFMixcO7BqcdHY+lyMLyTgStrA3t9m0Df3DzGB9lg23np+ezj/XnDdWaU44O0j/Mdk2Vbh8jBl/RTWpKzhmfOeASAmNIZ8733WG6HfzeKfH+fmlPKya5QmBL3eVLg/ZY17gxbnP+rb0GkTFlWxH4AhRLRVka3AViysi3IOkbnWz5qtYobc/reKjJZZ+4RI502m0m0syXcuhBX3A2JsUisL+YueF/+87dWY14W4EB4jrBInfCDigAVrz8JjxH2PmwPnP0STuLm87hTP0920B7qcAxDVnu7jH6G7d/8mHWDJUxxSnExvFMrGFt2Y1X6YqA/+tB0srGyW/kfcg3ZDhVBlKw4QowGfFWA1HMg7QLuIdpXakJTiFO7/636+GPMF7SKDLW8hYgp5aHrVm6LNnn+HsGbqczUAz/z9DC7VRd9mfQOsH4PSqI0Qs5LWQZ9rUUZPEe/INcIN0T+Y/PBebRn+qsfytuUF5CePwZi9Q8w5el4OF79TdfzECvRtU6EfM5iJHPUksw1jWbXsZ742vctM4/skqc35M3QCfUo30tol/ET3mkwsadOT525ZTf6iyQzb9Q2qokMXNpD0qP4cP7SD8fqtcGQrGCCr87W4rvg/nDoX6PRsoJwH2rbmg54Xk38slOsy3oVfJtEcyB//HhwQ4Q3UdkPZ03gMPfJWkTryPTo6kzi09S92W6NpouwDwsjtfim4w2GHWLRZ6zoHk+LkvjalhLlVNuU66FBylA4brmXIxffQYr+IqxfbY8QgNQsAACAASURBVAq9s5eyJmsDZa27AkJcdXYbj8EjmF7Zvy2704t5YsJ1hIWaCAMK5sTSOaoL6Tm7cQfr1o0WkfBj/DT40tMODrxT+1kNEs25wJojxJhNnwb+ENIYLniSyGGPgduJdc+7gIuiXlfA/lhM8XMwAVfr1+ENf5+asg4tP3ZoNPz2BPz2BP2Ab0xwge42ioCw5M3YQv366XmetkRvEu/Qhhmw/zd6Aj0LE3AZJvKwYTFkw9PmEMyrujDCFu8Nz0QrJZdY8xNEKb4xw07TQK4q+4XkhEdp32NAkJt15lBDwBlJfZNYmMhHOz8SEdsr4BWBAI4UHKn0+z8lNi2W/j/0r/bYb2x6gwvnXVhpBT67LDugEfAfhPqbx8/YMYON6RupKyfVNewksSZlDQN+GECuNbfmjavg5fUvc/2S67VJitVpJcosOrlTadXhL+x8Gf8ly48t59dDv1bazltvK1oEeUkrqZyaduqmqVz686XVnj8hTwRsW5m8svrt8sV2s/fP5qXYl6rdtjq8pvL+dRfgy91f8s3eb/ho50fad5/EfcLEhRNr555UBaqq8ujKR1l6dKn2eejcodW6SwIBdSu3XPydVZZFSlGKdpy9OXs1awQtWHQFEXFt6lqWHl3K13u+/kfXkVaSxi+HfuHaxdfWexuVXZbNmpQ12meLwaIJdv+kzMHQ6xQa/4Mg6w6XI2gbXmUg/xpILk4O/oOi+FKOX/6ucHE1mEQ2uIoWOTWQVJRUq+38LeDybflklWXx1pa36myVdSj/ECD6HYCD+Qe199yfiuKCv9iSUpwS9PvaUKNFkB+/J/4OwNGC4BmVvIsUWWVZuNwuLvnpEl6MDRQTqhOCCsoL+L9N/0dqSapmjXgiOFXfYkldxF7vPa7OasnhcrAxYyPLjy3XvssrzyOvPE8T4KrbP9eai91lZ+HhhaSXpvPzwZ9rLJf/PUssFG4NLcNacrzseFW7BGIwwSOb4dHttOjYm/8zZ/Fwixi4byUl3XzCaHE1cQQB7v7zbmbsmBEoHrbqD4/tgMFCxFRVlT8S/6B41Atw9Sxhcdd9nBCBqiBp2uW8e925Vf4Ook8tbtGLvo/+CJNTRCDgimJFNRYi3vei0O4T0rLLsnl6zdNae+qNydg8tHm1giiIAN7r3H25Wv8R/Nc3LjjWfhDP/P2MFhIAg1m4Fj5/DJ47IkQgEO1Vj8vh/IfJHBEkrhewM2snM3bMEIkkOnvECb9rTizzxT/JseZU3D04ihJwjBRzKPO6DBFlvOpTUV6/3wvKC/hi1xdsPb5VfNF6gIhPM+JZeHSbyBx5/ffoblsgrLmu/17bf0PaBh4u2Ma2K9/nyEQh4Fflzngg7wCx0a1gcrIQp7qPFyJcRRGoFhTZi7jut+uYvG5ypd9+PfQrqSWp/HyomvdOb4DbF4lsfN44etd/JyziPHgFJu9YpUZu/J9IUnPtV0IEqiUFeoNmgVnaYXitRaDquH5ody6/8kZUYxjl4a1p9sRqRj39AxN1n3Cz/UXib9zCja1bMFvNJ6U0DfelU+lh+5bPh62Bu5fBFR/yqP1xDod7svQ27UbMDR/xwJoHuezXy3CrbnbniHna9sztXHXvS6wfeDuHjUZo0Zf8Hj4X3Xx7AZ0emMumazbTcdRdMOY1ZnX7gsmO+0g1C3E1p0l7mPgRvJAGo6bwmOtJprcT4mmpToFnEqD31ZCfSMv1U1DyxJhr+LWP03jko7zSLJppJl+/fHyEzzq0cZiJ96/vp2W8s7vslDrLaBLiCZSvujmUf4hZ8bMqCzytB4qszZZGfJaxlufWiqzN6aXple55QeeRwhoHoElneDJeZPV9PknEcdPpUfUmijzvTnFkcxEbz8Nk4/+0v1N7Xibav4c2iHdw8APQbhic/zBOfQgPGoSLcpjOhF1vgmcOw5QsiO4Ka9+G1VPhq0tE7EM/HjYsJimkF2tc5xKhWDGW5zK3/WvMdY7ip+ZP4r7iQ46pvpinvwxdQJ9nllF006IzXgQCKQSdFI4UHOGieRex6PAihv84nDUpa1ibuhar08p//v4PM3fPJD4n0OS+4mB4e+b2Si+nqqq8uuFVLv/lcsYtGFdn16FfDv0CVJ8ZasGhBQDEZ/vKl1KUwuifRvPetve4aN5FLD6yOGBQvjVzK8dLj5Neks6s+Fncv/z+SsetKRC0QTnBYNEnSLG9mPkJ82s9uSm2F/PIykfYm7tX+27Gjhk43A42ZWyq8/l3Zu3kzc1vsvKYED7isuJwuV3YXDZt1f5kWgR9vutzXt3wqvbZX9jxDow+3Pkhvx3xNahOt9MXu6OCRZC3Llac0KqqyryEeWSUZgQViVxuF6qqcqjgkPa5Igl5CTy95mmyyrICjrH4yOJKIly5s5yMkoyKh6jE8VIx0ag48cspz9F+bx3eWguODYFCbV05UnCEv1P/ZvK6ybjcLn49LES2Nalrqt3PK/4A5Hn8+Cf8OkEblPzvwP+4cemN/Jn0J4AWI8hfRHS4HDyy8hEmr5vMB9s/4L1t753wddyx7A7+u+G/JOQn8MXuL+q0r1t1896295i0aBL3/XVfpfbtvr/uC6jzFoNFc4Wrb4ugqqhOcJq9bzZPr3kap9vJpMWTeHn9y/V23qOFvnpYVTt41x938dzfz9XpuP737as9X+Fw1SyopRX73rHU4lTe3fYus/fPZlXyqmr2qoxXKHSqTlRV5ZrF13Dtb9dqz31l8kru/fNehvxvSIBA5O1bKlquVhk3Jghf7v6SZ9Y8E/Cd/7tUFQfzDwb93jsZzSrLYl/uvqBlqU4kiU2P1f6uKTNjVVR8XypaBP2V9JfWn1RVtuoseo4UVhZ2s63ZAUJQRSsrL2WOMkbOH8lLsS9plj01WUhB4MLB3py9RJgiaBXeKqhFUEJeAkuOLql8EFMoNO0SMCYpc5RRjE+oLbbULqlCxSQWRHfWJv+7c3bz7NpneX3zVOh7Xe2zVtbAzN0zuXDehSQVHWNT/r7gAnM1eK87szRT2zcuOy5A0PNeV0xoDIW2wmrPoSgKfz45gi+evCFAONmfu58/k/5kzv45gfsbLZWzhwIYTGRGd9A++te9u/64i1nxs0gqTApaBq8VIwQXglRVJb2k8qTUn0dXPcrUzVOrFHfnJszl47iPeXL1k5Wt0XU6EUet15XC6uW+VdCqn/bz46sfZ13aOu7aPZ3ndlTuT7ce38qEXyeQUpzCdb9dx0MrHsLmDuzDCsoL2Juzt9K+1RGXFQdUtkYEn0Xdjwd+DBinVqLTSJGND0gvSefTuE+18VtBeYH23u7J2VO7QlkiTyhJTb4tn1ZhQjwsdQZvV+qKyaDjmiFdUe75k9CHVhMR3QqTQceyp0fx5X//Q0xbnyXR6pTVRIeZ2DZlDE9cIizyWzayMGnUEBy3/CrE3pvnoxpDNJH6QN4Bre0XY2YXD+atYVKblqj9bwtotzJLMwmzGLmwb1ftO7NRhwMDxz2JPLS6bQ6Hi55l82uTeOoyn7Bsc9lErKcrPwl05TWYyekystL1p+qrtt71LoREW4QIVWQv4urFVzNjx4zg/d5DG1Afj+PTXZ+yLHEZOdYcdmbtrLRZQbcxImlG/9vgjt+EgFShbcyx5miLGEW2Ihh4Bzy8Ca7+klw/F96UnuOEZV7z3kIovextIdCNe5N9I2eyQxXulaGdR+NQnbjDooWgOepFYQ3ktd68YTZMySbvvu04VSFzHBnzNXc6nmdg+WcoT+3l3LF3kzJ8Ghfd+gK6gXew5ZIFTLK9hu3edVw99hKMJjNRPeqe3OXfiHQNqwfmHpgb0JGsTF5JXnkeU9YLf9fHVglf9MEtBpNYIBqUWbtnMbjlYG2f7LJs/EktSeWDHR/QLMTnCpJfnq8JNQBvbX2LTo06UVsO5B0AxIAxWKwR/4HmD/t+YH/efgC2HRdpq7/bJ0xlX4p9id7RwhUsxBDCzwd/ZsHBBYzr6Asg+f3e7zlSeIQjBUe4tP2lNYoaep2etJI0ftj3Q62v55+wJmUNW45vYdvxbZzTLHisBH/is+NZm7qWhLwE7ugtso95V9YWHFpQ4ypbekk6OdYc+jTtg07R8fbWQPP8+Qfnayv2jS1iZSQ2LbbKgfc/wa26+STuEwCahzUn3BiuuXZB4GToxdgXyS/PR1GUAOFxV/augGflXbnfkrEl4Huv4ALwWdxndG/SXfusqirzD86nWUgzbVJzpPBIpTowZ/8c0krStHvcIqyFdtyPdn5E5yjRObjcLhYdWURSURK397q9WnNy7/5bjm/hq/ivNBck70ALoHNU54CJyp1/3MlNPW6q0j0lx5rD9sztXNzu4kqTWH9h9YXYF1iW6MuqMit+VpVBcL3vLMCSo0vYl7dPE+Om75jO3yliUvlTwk8AWtawQnuhdh8rDpjnJcyjRWgL9HW0XlFVNWACvD93f53e1/SSdM2//HDBYabvmK49I1VVK01E/V3DViWvIqO0ZoHvn1DuLOfrPV8zos2ISm65qqryzrZ3AHhh3QscKzrGsaJjxITG0MRyonnVfPi/f+fNOY8nBzyJTvGt0xTbi9mWKdrhHtE9grbfB/IOUGIv4bwWYjXTrboDVnXXpKxh8rrJ9Ivpp13T4YLDmPXmAFcC76AXhDuTVwCdnzC/2tV5l9vF4YLDdGjUAbPerAkeiYWJfLrLZzb+SdwnRJoitfsJIhjz8NZicrI+fX3QmHGxabHVujV7catuPtzpSw7w0LkPcbjgMKuTVwd91/wntb8n/h5U0PEO8ONz4ilzBhdTNmdsrvI9nrN/Do3NjbmwzYUsObqEjo06Bjzf2lBx0SKvPE97/1xuF+9tFxPSZ857ptKxvdZDu3N28/3e74O6+/m3NV7mJ8zH6rTSJlys3K9MXhnUMssrZP6R9IfmDrbl+JYa2wd/q8KE/ARahrWkR5MezDswL6Bd9r++5KJkIkyVhR1/685P4z4NWNxYlbKqSiHQ/77OPTA36H0AtAWf9Wnr/9E4JbM0k5TiFAY0H4BO0Wl98RULfemoJ3aeWOvEC97++nDBYVTEGM6/fwGfNWDz0Oa4VBdf7/m65sDreYHC+PyD87W/xy8Yz409bqzxfVyXuk77+6s9XxFljkJVVc36+9O4T4OOv9anrad3dG/25u5lydElAW2S95oXHl7IDd1vqNL90FsnP477mP4x/Sv9vuSIEBWL7EVM3z696iyoQQi2gJhRmqHVi2/3fktWWRaX/eJzjXp/2/sBMch+2PcDGaUZPNLvEcKMtYtV57/o+J81/6FNRButD/X+ZnVauXHJjTw3qOZFg9+O/Mb+vP3szNrJha0v1Mb8/Zr1Y1f2Lr7b+12d26naklGSQadGnQgzhrE9c3v9j/2DDMm9cxmAd7e9y67sXZXqRou2sC0fthmA47GUp67Qfpu+fbo2JtyZuZP3t7+v/faerpDcI4u1z/MPzq80P2vVzsloVx77PAuOh/IPVbpufyOBz3d9TmNzYw6VHcJ07lg69L1MWB3v+6GyaI2wCvNa4lbE2z5668tX8b7skZ/t+kzEJqyAfwKENza9QXppOlHmqICQBRszNop2uusQSFsFldd7tfFvhCmCQwV+12yAzEHXQeYGABYdXoRbdaOqKqklqYQbw7X5kLuxSkKbjmDLJaxZL8hYx/d7vxfjWB0w6R2R6bH7cFAL4KCwcvsm5j7sZcXcZdiCsfEBioAfDoj2p2U7+DNFLHybo1Um3dqE+UW7YJ8v49w1Xa85YVfufwtKMJ+/U0iDnry+GDJnSJWDw/4x/ckuy64UiyQYRp0Rh9vBA30fYOHhhXVaAa0tekVfrQuWgoKiKNWvGKGgohJiCOG1Ya9pZoNedIou6P46RYdBMWD3rIwMbD6Q/PJ8zHozPZr00Kwk/k3UdD9rg0FnCJj0vHPRO7y5+c0axaX6JtwYTrmznOZhzRnfcTyz4mdV2kZBIdwUHnS1N8wYFlS46tGkB8dLj9eYmaxZSDMttkFVmPVmPrn4E97Z+g6JhYlaXfLS2NwYRVHIL8/XBsVV8cLgF/h6z9eV3jOz3ozNZeOpgU+xLHEZB/IOBAQu/if4vxsKipjwqtXHxvIO2GuyXjPoDCy6chGrU1bz7rZ3g27zwuAXmL5j+glfS1Xvdm3p2aQn3477lqsWXVVJ2Kl47Pg74imyFzHmpzFVtq8NRUxoDF2jurI+fX3NG9eSEEMIdpe93l1kTToTl3a4lC3Ht1SaxHvb8mD7qKh1dsmr2Jad6HvTs0lPLmh9AbPiZ3FPn3tYn76+ygl6dUzsPJGpF0ylyF7EzUtvrtIFT0ERQdareccijBEB2QQB/jv0v7y28bVK1x2Mu3rfxQ09buDmpTefcNv+T96/ATED2J+3v9rn4T2+XtFj1Bm1BZx3L3qXqZum1tiGe+uTRV/7zIX+dW1029H8d9h/uXHJjZXah9rUJZ2iQ6fotGdh0YsgyTUuRClCFP+3uad7iTBFUGwvRqfoCDOEEWmO5M7ed/LmljcZEDOA+Jx4xnYYy4ROE3hg+QM19o3+6BQdZr1Zu/fe/rG2hBhCcLgcAf1cVe2OP1MvmMr7298/4XelNueYPHgyX+7+slbWgtVRXd28teetrExeWW8LGXpFLybLQa6tru2tTtHRvXF3koqStP06NurIM+c9w2OrHvtHfX1teGrgU6w4tqKSh8TJ5IpOV1BoL2Rt6tpa72PQGRjUfBCbMjZpcx/v/WpiaULP6J6sTxNjAZPOhKIoNb4j3uzAwdArenSKTut/q6rLI9uOZOvxrdq5auqDzm12Lm8Mf4NrFl+DzWVjfMfxFNmKqh3HWPQWejftrVnpPdb/Mc0NsaoxfzAuanMR0SHRmmeKPyadiScGPMH0HdO1azYohqBj42YhzXh20LOV5p0ni1XXraoyNue/jCrNxaQQVA8Ee5kjjBGUOko1pV9Fxeq0oqBgMViCrjqa9WZfTAyXA6urcoMeYgjROoK6To506AgzhlUazPpjUAyY9eZKpprhxnCsTishhhBUVdVeULPejFt141JdWJ1WQg2hONwOLcORUWfUyuk9ts1lq6SwqqpabbnqGx06TdCo7aDIew+8g0W9oifUEFqrchsUA0a9Ues8/O+Ff30wKAZCjaFVPv/6wqw3o0MXcA7vszPqjBh0BtyqG5vLFjAZNCiGoPW3qnuhoBBuDMepOoMOULz1Sa/o0ev0lDpKKw3G/ettwDvidlQ6ZoQxAkVRKHOUVSuw6BU9YcawSvfZe65SRynhpnCcbicOtwOL3oKiKJTYS3ATfHCkV/SEGEKqdBHx3l+n20m4MRwVtdL9DUbFyYz/s/O/NyadScsOU7Feh+hDtKDUNpfthLNwGXXGWt2Lqgg1hGLQGYI+O4NiIMQQUsla4Z+Ut654xdBgdcf7XnjbQaPOWKf2oyZCDaGasBysbbfoLVqdCYZJZ0Kv6APqs7ecXio+M4veglt1VxJU/etcbfoNL+HGcEodpdo9iTBGUOYsw6W6gtZjo86IglLp2N564g1W7XK76uQ+YNKZMOlNAavZTrezyj6zqn7PS8X2LcwQFmBRF6w+VyyP9920u+wn7Pbr7R+g8rMM0YegogY9tre/q6lfCdGH4MaNDh1uRPvvPWdN5fZv37zCRG3eDf96EW4M1yZAFe9nuDG8xnFPxXektkJQxbFKVVQcA5wIBsWASW8KGBdZDBbKneVYDBYUFKxOa40LBP54x5s6Racdw78d9Q/6XlPfGKy83ncjRB+ijQ1q+z76jwn9j+l/Dyri7Z+rqnO1Gb/V5p0ONgaoDd53QlVVypxlhBhCAvoNb5tZ5iyr8hxGnRGTzlRnt6gwQxg2lw2T3iSyhXrOqaAQYYoQ7bnLXqlNr+46vPfZO16rzRjqn+Itb3Xt8skgwhih1Znavsve9rvMIfqycGM4JY4SIQp5xlbe9ri6dthLTX1qiCEEl9ulPcNg/bR//fW22TXVY+/4uNxZjt1tJ8IYUeO77B1ze689whShtfO1aTO9hBvDg/b14Lu/VqdVaydC9CHiPBXqoPd+B5srnAy8fdIZgBSCJBKJRCKRSCQSiUQikUjOEqoUgs4ImUsikUgkEolEIpFIJBKJRFIzUgiSSCQSiUQikUgkEolEIjlLkEKQRCKRSCQSiUQikUgkEslZghSCJBKJpB4pLC8kq/j0ynIlkUgkEolEIpFIJF6kECSRSCT1RKmjlOHzhnPhl/8hOVeKQRKJRCKRSCQSieT0QwpBEolEUk+U2EXqeEPkbo5kB08jL5FIJBKJRCKRSCQNiRSCJBKJ5CRwvKi8oYsgkUgkEolEIpFIJJWQQpBEchIotDrYk1aI2602dFEkDURynnQNk0gkEolEIpFIJKcfUgiSSE4CL/yymwkfxfLSwj0NXRRJAyFjBEkkEolEIpFIJJLTESkESST1TF6pneX7MgGYuyWZPWmFDVwiyalCxWcBlpIvhSCJRCKRSCQSiURy+iGFIImkntlxLB+HS+WrO85Dr1P4PT6joYskOUWU2u2ev1SyimwNWhaJRCKRSCQSiUQiCYYUgiSSeqbY5gCgc7NwBndowsr9WQ1cIsmpotzuBEBRFHJKbDJGlEQikUgkEolEIjntkEKQRFLPlJQLMSDcYqBny0jSC6wNXCLJqcLmFs9erwOnW6XA6mjgEkkkEolEIpFIJBJJIFIIkkjqmRKbC4Bws4FQk55SuxNVlZYhZwN2p3j2OkUBILtYuodJJBKJRCKRSCSS0wspBEkk9UyJzYFBp2A26Ag163GrYHO6G7pYklOA0y2EIL2nZZVCkEQikUgkEolEIjndkEKQRFLPlJQ7CbcYUBSFMJMBgDK7q4FLJTkV2J3CNUyzCCopb8jiSCQSiUQikUgkEkklpBAkkdQzxTanJgCFmPQAlNqcDVkkySnCrsUIEkLQsVyZQl4ikUgkEolEIpGcXkghSCKpZ0rKnURYhBDkFYSsDmkRdDbgjRGkoDC0UzQ/bDxGmV2KgBKJRCKRSCQSieT0QQpBEkk9U2p3Em4WAlCotAg6q3C4vOnj4Zbz25FbaicpR1oFSSQSiUQikUgkktMHKQRJJPVMSbmTsApCkFXGCDorcLh9zzkqxAQIYVAikUgkEolEIpFIThekECSR1DNZrENnzgLQBKFSKQSdFdhdvucc7nEPLCmXQpBEIpFIJBKJRCI5fZBCkERSz5SEzyNPiQV8waJlnJizA6fLGyMIzT2wWLoFSiQSiUQikUgkktMIKQRJJPWMihudTkz+Zfr4swuHJ2sYClrAcGkRJJFIJBKJRCKRSE4npBAkkdQjbtWNoqgoHiFIpo8/u3AEsQgqsTkasEQSiUQikUgkEolEEogUgiSSesTmFJN+N3bAFyw6Nd/aYGWSnDqcXosgFEJNehRFWgRJJBKJRCKRSCSS0wspBEkk9Ui5U0z6VUUIQka9eMW+3ZDE538fabBySU4NXosgFFAUhXCzQcYIkkgkEolEIpFIJKcVUgiSSOoRq8NrEVTZHejDlYdOdXEkpxhv+njF8znCbJAWQZI6k15gZfWBrIYuhkQikUgkEonkDEUKQRJJPVLuEJN+fyFo+g39GN+nBWV2F1YZNPqMxisEeQm3GCiRFkGSOnL9Fxu569utOF3uhi6KRCKRSCQSieQMpEYhSFEUl6IocYqi7FEU5TdFUaL8fuutKMoqRVEOKopySFGUlxVFUTy/3akoysdBjtdDUZSNiqLY3n333Urnc7lc9O/fnwkTJmjf5eXlMWbMGLp27cqYMWPIz88/0euVSE4qXosgl2rXvruqf2su6tYMgNxSW4OUS3JqcHkm7l6LoHCzgeJyJ8m5ZQ1XKMm/Dm9Msaxi2V5IJBKJRCKRSOqf2lgEWVVV7aeqah8gD3gEQFGUEGAxME1V1W7AucAw4OEajpcHPA5UVoGAGTNm0LNnz4Dvpk2bxsUXX8yhQ4e4+OKLmTZtWi2KLZGcesqdlYUggOhwMwB5pfZK+0jOHJyqsAhSPZ/DzAZiD+cw4p3V7E0vbLiCSf5VhBhFkPmMQhlkXiKRSCQSiURS/9TVNWwj0Nrz983AelVV/wJQVbUMeBSYXN0BVFXNUlV1K1QOopKamsrSpUu59957A75ftGgRd9xxBwB33HEHCxcurGOxJZJTQ3kQiyCAJmEmAHKlEHRG4/QGi/ZIQa2jQrTf1iRkN0CJJP9Gwi0GANILyhu4JBKJRCKRSCSSM5FaC0GKouiBixFWQAC9ge3+26iqegQIVxQl8kQK8+STT/L222+j0wUWKzMzk5YtWwLQsmVLsrJkEE3J6Yk3a5izokWQRwjKKzl7hKAyu5OCsrPnesE/fbzg1Ym9WffcKHq2jGTdISkESWpHhCYESYsgiUQikUgkEkn9UxshKERRlDggF2gCLPd8r+DzgKhIVd9XyZIlS4iJiWHgwIF13VVyBlBic1JcXjnT1r8NmyYEBV5Lk3CPEHQWWQRN+DCWfq8vr3nDMwiH2xMjyBMkyGLU07ZJKBd2bcr2Y/mU2WXgaEkt8PSgGYXSIuhMY1FcGoXWf39fJ5FIJBKJ5N9NrWMEAe0BE54YQcBe4Dz/DRVF6QSUqKpaXNeCrF+/nsWLF9OhQwduvPFGVq1axa233gpA8+bNycjIACAjI4OYmJi6Hl5ymjNo6gqGvbmqoYvxj/HGCHK4A4O8RpjFCv8bv+8/a8SAozmlDV2EU47LHTwr3PAuTXG4VDYn5p3iEkn+jRSVizbiSHZJA5dEUp8cyS7hiR/jeO7nXQ1dFIlEIpFIJGc5tXYNU1W1EBHk+RlFUYzAHGC4oiiXgBY8+kPg7RMpyJtvvklqaipJSUn8+OOPjB49mtmzZwMwceJEvvvuOwC+++47rrzyyhM5heQ0xeFyY3W4KD4FabZVVSX7JGbisXssghzuQMsfxWsiAqw9mHPSzn+64L/ibbUHivs1DAAAIABJREFUF0fORLzBoisyuGMTTHodG4/knuISSf6NlNjE+7M7tRBVrbOBreQ0pcjTLibnSZc/iUQikUgkDUudgkWrqroT2AXcqKqqFbgSmKIoSgIQD2wFKqWM90dRlBaKoqQCT0+dOpU2bdpQVFRU7XknT57M8uXL6dq1K8uXL2fy5GrjUUv+ZRzI8BmQnexJT+zhHAa9sYKn58WdlOP7soY5K1mHfHvXIEC4wZ3p+GfIyik5e1Jg+4JFB2Ix6unZKpLdqQWnuESSfxsOl5tyh5vWUSEUWh0cyy1r6CJJ6olcT4w4pYbtJBKJRCKRSE42hpo2UFU1vMLnK/z+jgdGVrHft8C3Qb4/DrTxfgy278iRIxk50nfY6OhoVq5cWVNRJbUgq7icmAjLKT2n3emmuNyhpVCvyC6/yXGh1UFUqOmkleVIlnC1+GVnGu/f0K/ej29zOf3+thGqC9U+n9smCoCSMyAWUk1kFvlim2SX2GjbJLSarc8cXFVYBAH0bd2IX3em4Xar6HRyKigJTrHHLWxEt6bM3ZLCtmP5dGga1sClktQHZ5MoLpFIJBKJ5PSmrunjJf9iFsWlMfiNlexMzj+l531qXhwDp67A7Q5u7ZOa7zOTzyw6uQPlbL+BeLmj/l2WvMGiQQhB/oR54gSdDRZBRVbfNeacRFe80w1nFTGCAM5p04gSm5PE3LMvdpKk9niD5g9s34Sm4SaZbe4MQgpBEolEIpFIThekEHQKiUsp4MDx6t3gTiZbPIFqd6UICxyny828rck4Xe6Tet6l8SLQd3YVg+CMQn8h6ORmyckp9sXuORmpme3VCEEmgw6TQXdKYiE1NEV+MYJySs6eTGnVWQR1iBZWHRkFMhOUpGq8FkGRFgMjujbj74PZFJ0FVoRnA962sNgmn6dEIpFIJJKGRQpBp5CrPlnPuOnrGuz8IUY9AFaHEH5+2HSM5xfEM3dryik5f0pe8FgXGQXltIgU7monUwh6/bd9zNvmu9aTkZrZ5vQN8CsKQSCyh5WUO/ly7VE6TF6K4ySLcA1Fsc2J3uP+lJgTmPnoTA5+63JX/TybhBkByC2VVgGSqin1CMVhZgO3DW1PcbmTD5YfbOBSSeoDr0VQ7hkqjmcVlbMnrbDmDSUSiUQikTQ4UghqAPZnNIxVkHdi7l1d9gohpSfRQsVf6EiuQghKL7TSt00jALJOohvR1+sTAWjbJESc92RYBPnFCCp3Vhaawi0GSmxOPlx1CIDDWf88PfThrBJ+3Zn6j49TnxRZHTQNN3FBl2i+XJeopcGOTy2k4wu/n7HZs6pKHw/QJEzEyMovPTMngZL6oczjshpi0tO/XWMGdWhMfKqcXJ8JHPf0uWV2F1OX7Gvg0tQ/o9/7mwkfxTZ0MSQSiUQikdQCKQSdIsrsPoFgW1LeKTtvbolNG3wWlHkEII8AYvNMOMyGk1cN/K2AUoKkzHW7VTKLyunULByLUUdBWc2T5NT8Msa8/zf70ou47/ttpNVR0DHqxfWmnwQXHX8hyO6qfC3hHougpp7A2fH/cPU0Ja+MS97/m6fm7TqtLG2Kyh1EWow8P64H4AvSvfFoDgDL92U2WNlOJi61aougRiFGFAViD+cGiEFut8rcLcknJWbV2UKJzdmg8VcW70pn89H6ETetdheKMZdQk7DgbNM4NCCOmuTfSXJuGduT87mkZ3MA1hw882I/eePfuaqIByiRSCQSieT0QQpBp4jjhf5ZlE6dRcAri/Zyz3dbAcj3iCzpnrKUe1zEvMLIySDbz8Jn2Z6MSrEujheV43CptG4cQpNQE3mllWMn5JXaeXp+nDbI/HZ9EoeySnhw9naW78vk3T8TaixHxUl203BzQGyi+iLAIsgVxCLIbKDY5sTicdP7J2b0GYVWLnx7tfa5qPz0iT1UZHUSYTFoGeq8ll46RViluU8j0ao+qS5GkF6n0CjEyIr9mYz5YK32fXxaIS/8En/GimOngvEz1nLe1BUNdv7H5+7khpmb6uVYycVJhHd5h6RiYTHSpnEImcXl2J1nphtpbSkos59WYnddWRKfjqrC1Kv6cOOgthRaT784QYVWBxe9s1qLI1gX/K1/82uxoCORnC243Cqxh3L+1e2XRCI5M5FC0CniuF/sm1O5cp2SX8b+jCLK7E7NIsgrStmcLs///3yCsf5wDh0mLyUxJzAjkjfw6X0XduTA8WKW7s4I+N3rJtezRQRRoaagFkFfrD3CLzvSmPJrPDklNs0CyKAXooLXte29vxL4dM3hoOXz7tOuSSif3DyA1lGWOlsS1Qa7y+X3d9UWQVme+nAgo/iEzvNVbCJD31wV8N0/dTkqd7iYufZIvcQtKip3EBlipGm4CUXxCUGKRwj6t64YpxVY6TB5KZuqsP6ozjUMhEsIiDYgMaeUVxfvJcmTRexk1MezBa+1YUPE3KrvwX2eVdStYqewnmvTOBRV5aQI1/8WVuzLpN/ry1l3KKehi3LCJBwvplUjCy0aWYgON5FXaq8yk2ZDsSulgGO5Zby5bH+d903y6/vP1BhIEsmJsGR3Ord+tZm5W05NPE6JRCKpLVIIOgUsiktjwfY0QGSO8lrJ/LozlZ/8ghfP3nSs3uMGZBfbcKuwL71IW6Xz/u8VgKz2QEuSx+bu5J0/D9TpPF4BZsORwIG61wLopsHtiDAbKsVH2pcuPvdoGUmTMBN5QYQggye20cK4dK75bIMmNh3NFv/HHs7hiR938tGqw7z9RwKHMiuLK2ke14p3ru1Lz5aRtGwUUmOw6BMR7Owu3ypvUIsgi4G8Uju5HtHmYFZxnSeSqqoyLchAPdi9qwtfrj3K//v9AD9vr3u8ofxSO7M3HdMy0BVZhWuYQa8jOszMhysPEZ9aqIl2rpOwMlZqczJ1yT4Ky07eSrs3ttG8KgKsuz2uYVVZBvlbdTw8Zwffbkjiq1gRu+pkxKzypzbZAQ9nlbAzOf+kliMY+aX2E3aN87cyTGsAF6r8eq5vpQ7RbjhVcS1tGouYZifqHuZ0uQNck/+N/D9Pe7czue6WKqcLhzJL6No8AhDxwlxu9bTLBue1VM0psVNY5mB1Qlat9/WvnzIgviS72MaLv8ZzKLOYKz+OZXVCFrkN6L7bkHgXRH/ZcXrFcpRIJBIpBJ0CnvgxjgWeDuCc1o3IKbGhqipPzdvFsz/v1rabsnAPs2ITNWuRf4qqqpqYEZ9WqE1YisudOF1uzdXKa6Xg5bdd6Xyy+kiVx3154R6u+WxDwHeJHlEmMbuUMrvP4sXbATYKMdKzZaQm/IBYvd+bXkSH6FDCzQaiQo2a1ZI/ZoNe+/tYbhlHK1gdldldLIpL1z5vTqwcg8lrkdUqKkT7P73AWqUIszu1gPOmrmDhzrQq7kJlVFUNsGiyOSsPesLNBq0sPVtGUlDmqHN69ZwSOw6Xr9w3DW4HVG8RpKoq01cc5KHZ2+k+ZRl/7DleaZtsT12pbfDwRXFp/B4vLLx+3p7KlIV7OO+NFWxLyqOo3ElkiAEAr+fhbV9v1twhik+CG9vMtUeZFZvIvG3J9X5sL16LE6PHGq0i3hhBNVkGgc8azrt6fjKFoIxCK31f+4tX/j975x0eRaG18d/29IQUSAIBQq9KlV6lWRC7XhQVe+96sVdEQYpgQRGRIiLSpQcIBEiAkFASQnqvm55NdrP9+2N2ZneTgKCi936X93l8ZCezs7OzU855z3veszVZWpZVXs97W5Pd1FkTFhzitq9jW9rEFUX/j6J4aMWJP/Re13tKTmXDRda8MtDqnPfrvyKx15uF69BiF7YrTlQsqjEwZ+f5yz5PXl5/hl7v7vmvbUswW23kVwpec6V1/52qKKvNTlZ5Pd3a+AAQ7KMGuOx7/5WGSBiW64y88MspZq6Ip6yuUTr+F0O9y3Oj6qoh/v88Zm08y9rj+Ty79hRnCmuZuSKeB//gPf6/HeK1kVr6xxTgV3EVV3EVVwpXiaArDFfpd5i/B+0DvSjXGTnnkryICbxD+CIl138WtQazRBhsSiyiWm/Cz0Mp/U0M1lyJoEtJFlYfyyMhr1pqVahrNEu+Q98fyaHXu3u47pP9AOgciZGvh4pe4X6cL6mTCJOub+1i97lSBnRoBSAogloIIJsSE029Mib0bO32uqVtiMe4lbcQgIcHeKA3WamoN7EqLpc959yJkdMOj4SWSKUL4VB6OQn5TkVUS+PjW3mppX/fP1QgcDK0lxccZJe7Txp7akxn4OLBd26lnkX7MtiVXIrRYuPrg5lsPV0kTfMCJ8lxKW1bdrudF9ad5umfEgEkhVON3szKuDzqDGZ8PYRx6WV1wnGwWu0S0XclJmedcvxm9cYrZ7osqlYu5KtVa3B81wsogm4f0LbZMrElrOgC5uV2u50Fe9PI+xMkR1xWJXqTlVVxeZJi6oHlJ1gZl/entvtXQCRPj2UL15rNZr8sPxxX/7W8ij/+XSxWm9QueznQ1jmv87+CzDNYHPdli5B8+3sK19Hx7Cq+jcnm2bWJl7W9bWcEkjyr/M9PKPwnkFepx+K4J+VW6DlXXPtfRzQUVRswWmx0aS0QQUGOCYKV9UaOZ1e6EYh2u530FlStfwcMjlig1mCWJlq+9MtpRs+LvmhrYkW90e05/f+tNaygSv9f2878T+FIphALudoiJBcJcW+mVseaY3n/yH79E3DG2pb/uHbQq7iKq/jfxlUi6Aqj0iVgbdfKkxBfDRX1RuJdJoeJk6P8HAF/UtFfM15ebEFTyGUkFdXSykvFU2O7AFBjMEtJucGFCDK4tGf8XqvGHoeqRKwWitVOERarjbpGCx4qOWqlnDB/DxpMVvQmK7kuFcZbrg0HIMBLTa3B3Kw1qSWVkIgHh3Xg+wcHuy1rKUmoMZhRKWR4OybxiMqg9ScLeHfrOZ5YneBGgonkmLj+pSClpA5wbqMlIuj+oR3o1saHGUM7ML6HQGBllV9e8ioqorY/N5L9r4wh0FFdvphBZ06FexJ4trCWF9ad5vr5h9jnMCkW1TquBt8gBMFNj2nTNpXiGgMRgZ7cMaAdO84WY7HZCXKQbtc7vqevh1L6jCOZFW6eEk1http4dOVJEvKENqXqBhNldY2cK27ZXNtqs0vT+Jr6VF0uimsMFzRLFRMcWQuCoPxKPXWNwt9tF5getuDufmR/ciMKefMNXIhEKKltZPGBTO77/vgF9zm/Us+URTFkauu5e2kc05e5GxeLxxEE3zBwElAtqRL+CCHyR5Fe5jw3K+uNTFoUw4jPDrjdly4GVyWCK8F+OahqMHHDF4e5/evYy/7uWt1fTAQ5WsMaLMJ57Osg70UvqeTL+I6uyfuh9ArSy3RYrDb2pZT9Iy2AfwQiIdGltQ9x2ZXctPgIY+dFS0WGhLyqv813T9do/kOEQGGNcM1FtPICIMhxz86v0nPPd8d4fNVJad118QVMWhjTrM3674BrUUjtmCYa62iHdb1OXfHbmWIGfbyPOBfftMo/QNTVNZqvSIHgz+JsYQ2j5kaz9vj/DnHxZ2G32yXrAVdTdB+NcC97Zf0Z3t6STNe3djazC/j/CDF+stn/u43UqxpM3PLlkX+8eHQVV3EVfx2uEkF/MSxWm9uDr8ylGqJSyGnj50Gj2UZ0mnN0bGppHUaLVSI8NiYWMu2roxRU6d0Io8uFmNCLrQV3DoygZ5jgUbA7uVRKBPVmK1abHbvd7pbwF1a3LAcXH+bnHUbHeQ5SZ+E9/RjoUPcA/Hwin+9isiVliFjZrjWYpSp+rzA/RnQJBpxj7F/99Qz7zzsnKNUYmj84xUT8XkdblCtaCkJr9CYCvNSSWXH3UOE4HEjVtvg+vSO59LoMIqiq3gQyJwHQEhEU6u/BnhdH8+G03rTx9UCtlFNQ9fuyexF2u524rErUSjk9w/zoHOKDt1qBWiFvceIaCIHsxbw1FkSlY7fbKXYoUsqbJFWj5kYzYcEht2Un85znpd1up6TWQJi/JyO6BCHmSWKy89V9A3hoeEdK6xrdvCNENVFLKKo2sO98Gfc7yI/Rc6MZ8sl+blp8hKTC5mRQeplOSmJ+O1PMgr1pNJqtzNp49rKT80dXnmTaV0ebEWLg9I1aH19IbKZ7oiYkbhf3CAKQy2UtJpO1BrMbqSFCVAtczCMmPreK1FId8/emcSK3itisSjdPoFP5NRIxl1+ld6veu7Y2ibjcir7JYrus89hgshKTXo7RYuXNzUnS8pWxuWRq6ynXGYk6f2lT1MR2llFdg4nNqvxDLVA7zhaToa3nXHGdRES39FtsOVVEWhN5v+vxu5Cq63LQ6Ggp1ZuF46lUyPHRKCWViMliu2RT7DFzD0r//mh7CpMWxvDh9hQeXXWS276OxWSxYbXZeXzVSd7eknThDf1NqNWbm3030fPt7kHtpGV1jRYOppVTrjNyxzdxDPp4H6mlVzahNJis9H1/L/MuYUplU4j3VrEAId4bxWfosewq6Zo87bhX/3ammI6zdri1PuZVNrD19KW3K18u9C7Fn6bXc+oFEvYjDgPveId61s9D+Ye8YMZ/foj+H0XRcdaO/yjF184koeBV8A/4j10MaaU63th09j/qWIkwmK14RS5CFSC0gt1ybTi3XBtOvdHCgqh0KQ4zW+0cSi+/2Kb+X8D1N/pPawe9HOw4W8zZwlqWHrqwdcRVXMVV/HfhKhH0F+OL/Rlc+8FeFuwVgkXXtoV+EQHc1r8t/p4qYtLL6eDwximuaZQeDiIZcqaghn8tO8ZdS+OYs/N8i8na70FM6F+c0BV/TxX3DWkvtSbN25NGRKAnnUK8SSuto+c7u5m4MIZqFzJBJA8ytTqpHanRbJUSJLGlSaxUdwjylkgngHe2ngNA4XjouxJBIkG28uHrhDYbXRmPnbqNl9ulolbIWe9ioi0SZKO6BkvLfn5sKB9N603PMD+37+yhklPVglFldYOZAMfnA0QGeeOjUZLoUhXPq9QTnaolU1tPjYPMM19G9be41kBrP6X0uiUiCITJWTKZDLlcRvtALzK1glfLpVRZDqaXs+1MMfcMipBUJTKZjFbeKrfvrTdZeOTHePafL+OWL4+y5IBg5v3e1F5uxxEEJdOx7CqJMHElQEQZc9NgM8dFxdRgslJc00jbAE/aB3pJy4N9hPYHD5WC3uF+2Oy4Vf+0LRAtIkRSzmC2Umswo3NJynNbOE5iK1+/iAAAlh7K5lh2JeviC9x8cS4FomJmzq7zUpBa12jmmZ8SHaovMFltTHeQVNGpWsbPP0hSUS2indWFFEFNMbxzkNvrkhZIK9drUlSrHM4od2snEUmiGJegukpvIjG/mmUx2aSU1DHOocwqqNK7yfXF1j1XyfrlKiw+253KqLnRzUi3g2laOs7a4Vbpt9vtXD//IA/8cIL3tp6TFB8gqCHGdg+hjZ+mWbvmhdDgaAWc0LMNRTUG8i+DkBIhkqgqhYyc8gaOZFTQ5709fLEvA4DVcbn8fCKfF3853cwfraDKgJ+HEpVC5vb9LdbLI8dEGMXWMLPzvX4eSjdfLddjdiHUGsyYrDY6h3gztnuItNyV/O729i7+9d0x9qaUsebYlfPWulRc++Fepi87xq8nC6RnTtT5MnqF+fHYqE58/8Agdjw/kiBvNb+dKXabtDd1yREOpmnJ1OquiKLtbKFwj9mVfOHWbbvdzo6zJc08dcTzItRfeD4GeqmRy3BTOPZ+bw8rY3MlI/0oh1Jzb4rzOrj1q6O8sO40VpudxPxqMsp07D9fJpExBVV6Zm08y64/2F7uOjjC1YcOLuxvYneoYOuNFjRKOa39PP4QOeF6zxHJVr3JwlfRmZfVKnoh2O32P0RQJTrUlF5qBbkVDZdkuv934K6lsfx8ouCi56OIEzlVl6yw/CugM5hReJTiEbYJgMGRgdx8TRgAi/dnkFJSh6fDmLywWv+PtEtZbfYWi0pXAlUNJslX8FLPwaIaA98eyvqPaiWTO2LO/1K7uav4ExDjtp+uKiP/3+EqEfQnYbLYeP7nU9L0r+MOn4vFBzJJzK8m2RHoLbqnHy9N7Eagt1pqCQrz9yDM34PCagOTHIoL10RaTO6+jcnmgeUXN9mrrDfScdYOt/HsYkI/qVcoZ96bRESgFwFeTjJk8b39CfJWk15Wj8lqI1NbLyXBAO9vO0ej2cqEBTGMn38Im82pGFIpZGRo67Hb7eRVNhDso8ZHoyTEV9Ns30RCSmx9qzOYKa1rRKWQEaRLhW3Pw9q7UNfl87z5R97rkkVMegU3fHGYZTHZ1OjNTO7dhtWPDJG2OSQykBnDOjb7rO5tfNHWGZupAqr1Jjd/HrlcRq9wP7cH2sncKmb+GM+DP5yQfD/EKm1JraFZcpyp1UkB6u7kUnYmlRLg+ftEkCvaB3pxIFXLyrg8vtifIS3X6hr58kCGW3ue2WrjWFYlaoWct27q6badiFZe5FY4A6oTOVXsT9XyyEpny0HX1j7MHBGJt1rYx5v6hpHw9gS81Qq2ny2Wvp9WZ5QS2AtJ/F2JBG1dI2V1jYQ5RiOLEH0wACIc53Wj2cZdA9vxxJhO1OhNF1Q2uAZLe5sQAiuO5jTz0IjNqiTIW833Dw6iV5gfcrlzqlz5ZVbg5A7iclNiEU//cAjbkcVsOHKOHUklnG0hcHx7SzLZ5Q0cSi/H30sIbm1220WVKa0c1+Hk3qFuy1saIe9qQP7y+jP8Ep/PjOUn+GCbc8KgqN5rcAn2K3QmHv4xntk7hYlLfcL9CPBSkV+ld1P8iCTzd4ezpWW/pwjKKHOfdicmnr+edG/rXOw4pzNciIucigbJU2xdfAHeagVPOnyutDojo7qGcE27ANIdyWByUS1vb0m6YECsN1nwVCkkEvCPGHLWNZrxViuIaOVFSW0jKSXC77zkQAZmq413tp7jjU2CYqapUkgwAfYl1N/DjQjakFDIqLnRfBWdycKo9EtuKWq0Cse+wewkPP1cSGwQjsnvQZyg9sqk7vRyIcybKstO/AnV6R9FpraeR1fGuynTxHtBfG41r204y6xNSeRUNHC2sJbbB7RFJpMxoVcbeof7c9+Q9uxNKSPKQZIs/ld/zFY7D62IZ8KCGFYczf3L9znRURhxfUY3xemCGp5Zm8joedFu10dxjYFgH400lUupkBPso2nWyrjmWJ50nou+SK73SHHgQ7XexO1fxzJxYQyPrDzJ/csFUnp3cinr4gv4eIf7VMlGs5X1Jwsk5a9IZjSarXwVnSmp6kRVZaC3mqa4IBHk+Jp1jRa8NUqCvNWX3RrW9NoWSe7lh3OYtyeNX07++bHbMRkVDPlk/0VbkluCOI0zPreKsZ8fZNnhnD+9L38WNptdutcn5F68xbNcZ+Tub+N46ZfTbstzKhqkAspfjRqD+z2mY5AXw7sES7GvyWLjgWEd6BHqy5pj+Tzm0hr5d2HunlSmfnmEzMv0aPwjqGow0c0xMbCp4vpCeGdLMnN2pUrWEf8JkCHERrarTND/HLQ6I1nlDby1+fIKq1fxn4+rRNCfhFop51RBNfvPa7HZ7KSU1HHHgHb4apTM3nGeRfsyUCvl3NzejCp2IdQW0T3Ul/ayMu5vWEm4n4qEvCrpoT7rhh60dcjHAab0DmVkl2DSy3TNEgmjxSolgGcdD4vVx3IBod3sYFo5aoVcmt4Egg+PiH4RAXiqnX8DZ4Lx/PVdaTBZ3fr+YzLKpQRxSGQQukYLWp2R5KI6bmpVAJ+0JcTkLlv3owGlTXjwuSmCahtp7euBfMuTkLgSSs4AMqjN5768tzCYLZwvqWP2zvOklekI8BT2O/6tCWx9ZoQkLRZx7+AIADq39iFDW+8WWLz66xmO51S5kWAgTHADIbCXyZAk/3WNZik5rndU4YfNOcCgj/dJ762oNzJhQQwf/Caonp5ckwCAxaUlqKWpYU3RUlLRaLby68lCPt+bzmOrTmIwWTmSUUHXt3axMi6Xvu38pYRCRLdQX07kVjF49j5q9Cap5QCENroj/x7HmkcFIk1MMMb1aE2Qj4be4f4czqjAZhfWLdRWcmDBA+SsfclN0eaKUheD3FP5NVhsdtoHetHa10kEBfs6zzXX7xke4EmPUF8sNvsFVVCu8umYDPcWrMT8GiYtjCEuq5I7v4klpbiO/efLmNQ7lGAfDf8a0p5Gs40PtwtESf0lTnL64UgOd34T69ba+apyPfJ97zAwdW6L7zFarFKbYmG1we1au5gqaNuzI1n9yHVM6ROKEgt3KQ6iwSS1kJgsNtLLdKw4miOpPwZ2aMXh9HI2JgjX2MbEQskXqaCFNs7SOoObv1YvRSGb5P8mPGEeJase5kPlCiJkZcjLUymtbeTTXanSui0Fq5X1Rh5dGc+XBzKYuDCGPecExYLBYboOsD/VvZ2r0WyTvo+II01a6u4eHMEgl5bSfhH+dGntQ05FA2arjQd/OMGaY/nkuahr9CYLHWftYFVcLvVGK94aJZ1CvAGnKXK5znjJI+lrDWb8PFWEBXiwI6mET3YKx8Jis/PCulNu64pKNxHZ5fV0DvEh3N/TjQgSfdDm7Unji/0ZnLhE43mTSARZmhNB3doIraAXIoJq9CbpOSGSim0DPKV9dj3OLcFut5NfqWf2jpQrao57ME3LvvNaN+8q1+sOBDJ7ZWwuIKi9XPH4mM5olHK+PSSQl8M6Bbk9N0X1Dghkvkh81BstF2x5FlFQpW/RGPlinj12u50jGRWSug7cSdmiGgNtAzzc3tPGz0MiFdsGePLc+C5kaOvJdJy/IknWVJkDLbeJFtcYpOtWq2t0U678GJvL6xvOsjGhkGfXnqLLW7sAgXiatyeNVXFClddgsqJRyhnWRKkIgs/c2uP5fBfj3hbS6HJte2sUBPmoL6p6sNvtzUjysiaKZ7GIJa4l/mbfHspq1pJ7qcjU1mOx2S/5OhQhKmmOZgqxUELe30+cNkWtwelVlXABry+bzc6vJwuklskDaVq3v4/7/CAZTtIEAAAgAElEQVS3fnX0iuxfdaP7NdbRocD+4aHBhDuKRSG+GimO25+qbbYNELzvElv4fmI7+u9BLJD+dqa42d9Exd2FWur/KoiWC10dRvGX0nZtt9slAvipNQmsOJqD3W7HZrNz19JYydfx74boIfofJFK6ir8Jopq/BXvLq/gvx1Ui6C/A6HZKktLT+XR3KvVGC9dFtmJqv3ApyP12xkCUCd/D/g9h4yN0b+PLHOX33Fz7M+Pkp6UqX4CXiuGdg1kx02l+/MG03kzuE4rN3lxS+sFvKYz8LJrqBhMljgTSz+HHM2XRYY5kVrg9bAF8Nc5EVSaT4dWEUBCNSAd3FBKGpQedQV9aqU7yeOnfXqi+p5fpSC2t4wHLJjDV06dqj8vW7GxRv8NZzWNQmkwr6hgkS+Xx1QlsOlVEJ+9G0KZA95vg2unQfpj0zi4yd0IpwFv4XiG+Gq51VP6dH2Pn41v7kPjORORV2XhjYN95rRRsip4fPhp30kskgiICPQn395QIEovVTobDGFN3gVHqYiV3b0oZWhd1TESgM9i/FEXQmO4hUoAgqnBGfHpAIqUOZ1TwZXQGu88JiotGs42hnQKbbae7o9pU2WBiyYFMt0Sod7gf7Vp50cbRtme1CQGGOEGuV7if1E7TK8yP0fKzPKiMIjL9B8q1zt9BbLco1xlJLamjXSsh8Xrl1zPSdkSDURDaH0SIn+1FI5Mrf+QaeQ4h1FAV/yu0QJi5qq8ScqvwUMnZ8fxI1JjxQjjei/dncDKvmhsXH0ZvsjKpt5As3pD2No8rfpPeX1ZnvCR59YfbUzjpuGYHyNLpICtluuIAAH0rdtJXlt3sPWcLayUFEYCfp/P7X4wIigj0YlTXENr4efBDx/3MU33H7YrDvLk5ifxKPU//lMikhTF88FsK3zj68W/oE0pdo8VNwXHn0jhO5VdTWG3AQyV8tuhr5apekmGjR94aOlmyeUa5lWn2aB5QRvGTx1xezZ5JxdY3CcK5/usbzvJiEwIkOq2cfee1fL43HXASLvG5VZisNrq38SW1RMfOpBJGzT3AkYwKiYjJqWxgqUPmfjijQjp3ALq18aVnuFOx0ivMny4hPg6iUC+pC1yn5Z10VMEX7ctAb7LgrVHg66Gita9GUoINnr2PSQtjJLWDiEazlbm7U3npl9PSeVFrMOPvqSLUz5OmED1CRKgVMpIKa+k4aweHM8qpqDfRubU34QGexOdWS2RQUxLqUqvvJgdxbjA7Ex2RRA8P8KR3W39WxuUxZVGM22cYTFb6fRglef2IyXPbVp7cMziCh0dE8u2MgRf97FqDmbe2JLHscA63fxN7xYxcRSLD9T4lkpYTerbm6KzxgEBgtPbV0CHInTD30SgZ1jkIi80uKEu91YS5qBHF1qJtZ4rp/d4elh0WEqnpy44x8rPoi6r1Rs2NZticA27LCqr0EoFZ1WAirVTHxAWHmONQ2+05V8b9y48zf6/TP6jCQWYUVus5kVNFr3D3NuY2fgI5p1LIOPz6OK6LDHTbd5EAaqkt6kROZbNlRzMrpGeR2Wp387QRCxrHcirZ4VDvmSw2qWAgxhZ6kxUvtUIy+Hcl1xrNNt7cnMQnO1PdzjvXuMRbrZSmfxZU6Rk9N9rNvP9UfjWDPt7HK7+eIau8XrqmxVa6CT1CaCfTSm3DYtJRWW/CYrXx+d60ZsMkLhVicedUgXDveGzVSSYvjOFVx/PrQjA0uY6L/wIfsD8LMQ5rH+hFgcPzremQhI2Jhby24SwzHGryC7XXucYvfxVqDO5EkOu1uWT6AHw9hOu3VZPinCv0Jguj50Vz+9exzRTAJ/OqGTbnwO961YhxzZIDTrX1ueJaGs1Wyh2k7ZU2b66oN1FvtNCnrT9KueyiLfHlOiPz9qQS+cZO6X5YXNvIB7+lkF+lp6jGQHxuNc/+fHmTI/8q1DnI+qbxVFWDqRmR/78Oo8XKzBUn/jBxfaXQEhF/KRCfS6Ln61X8/8FVIujPwtzIB5l3McO+ne9ispkaVMzYgHKmXhMurTK2WwiUOow48+Po7llLD7ngxzCpei0eGAmngqP9ovA017glSW38PGjtaLdq+gDZ7ZjadevXR0nOLmSz+l1Ca0+5+QmJppQi5HIZb97Yg81PDweamyEnF9Uik0H/9gIRdDynisEdW6FRyqlsMEnVjD5t/fGjAWPUbB6Q7yZCLyhjrpOdl3yC2snK6SQvRSMzw9IRtF3Whw2aDxkrP00HLzOrK/8lfOiIF+C2b2DcG9J+7NO8TrBLYtq1tW/Lx//kCvigFcqDswlsyOLz0pkc1TxPIHUUVevdvEk8yxIgbTdUZUvfASDERyOZR4MQ+DWYLPh6KGkwWtzaFyxWG+9vO8eDPzhb9Y45Kow/PDSIsT2ESqparr4kImhc99ZEvTyGewZFkFPRQHqZTkp8g33UjO4WwrYzxW7B5wMttMS1dyRKCqz8eCSTXcml/Ou69qx7fCiL7unvXNFYz2dlj3GzPE6S//dp648CK0tUi5nudYKeMqdXyKYNa6V/V9abMFlsDJ69D63OKLXiiBClzyKUCjnoqyD6ExQWISl5WfkrvVK/otOWaSzTLOS6+Jdgz5tu77PZ7CQX1Uo99cW1jYT6KOn921TSPR4kLvB9vNUKN7UaCL5P6EoJztnGm6qfkeFUASQX10JjLRiby8ANJiuRb+yQXt+oOMEmzfsc0ryMRmZmd78v0eHDo8qdzd5719I4t8q7r4fzenIzjLbZhP+awmZjdN12ACJkgr/P6HnR7HMxStY7qvSuRuzPje/C7Nv6IJPBp7tSKaw2SPec3o6EUyQeVHI7a1Wf4Hd+XbOPb28vodAWQp/s5SR4PMUy1XxCEN635XSxW8BQUlLE56qlhMiFYygSl7FZlSjlMh4e2RGT1cZzP5+ioMrA0awKaXLMt4ey+HRXKueK6ziWVenmU9Up2Ju2AZ7se3kMPz82FE+1QjqX1h53nouuvjjiJCMPpZwGoxUvh7Kxc4gPWeX10jWbX6Vn1GfRbp4xL/1ymq8PZrH5VJHU4ljnUARZXH6jyGBvt2O1YuZgru/RmuLaRh5eGe+2f5HBPlL749tbkqVtuqKl5B2E83PubmdybbIK73NtDRO943qG+THEQRikluoocVHsiQbuP58ooKBKT3Z5Ax4qOUHearw1St6d2osgHw3T+gnnyUPDOzbbl5k/xktKgzMFNRcdVf/m5iR2J5cSn1t12V5IIhF0xoWsrHUMBZgxrKObimlIp6BmClCAib0E4tdstSOXy/B0PMs8VHJyK/U0mq2sOyH8Pp/tTqXXu3skcrSl1qWmwbHr6493pKCSyxnRJYicigbm7UkjQ1vPtzHZlNU1Sj4+ri2QkrH8yULMVhvPju/qtn2RHA/20SCXy6QijrFJwl7TQqJ6LLu5KuVUQY1ba2l2eT0FVXqe//mURNomuiiwimsMkrolzVH4EIggJdP6teXtm3qy6pHrUCvkPDOus9tnLYvJ5kROFcezKx3XonCsfDRKgrw1VOvNfBeTTX6VXjK3fu3XM9z2dSyVDSY2JRZx21dHGT//EJnaeqkA9VnEMY5oXkSpFa4hsUhWWK0nr0qP2Wqn4jLbznIrGnj5l9PSOXoyt5rdyaVEpZSRVqZjQ0LhRROjpkRyxhXyoGoKu91+wSlqogKzS2sfbHZ4Z2sy4z4/yHtbkxk19wBJhbV830ILm8liw2Cyuu3/lWg9cm0NG9ihlRALuLxOen8yvcP9WXhPP8nn0WCy8vmeNIkUdFXXRTdRDIkEoquKtSWIaq5yF1L2psVH+GTneanId6XNtkWz+x6hflzTzp/dySUXLExdP/8gX0UL5FZSUS0DO7Ti9SndAUFVKE6MbaoI/zuwKbFQsi+oa3S/JgZ8FMXwOfv/9n36T8bZwlqi08qZ/v3xS2rl/iux9XQR725NbvG+1uOd3Ty0Iv6ytylOjaw1mJmx/Pjf6jl2FVcWV4mgPwuVB/Z21zFDE0Ps8ASWNLxKm5/GM+T8J/igJ9zfQ+iqLU2GsH4AhK8YRJBMh637zYTpkvlUtYw3VWvxTvwO1s/Ay1LHor65xPXfC8Z6yXfHleCx2ZzS0bxKPYakbfSXZ/Jg+Xyum70PX4SHqVv4bLNB7hEe794oET1eGuGB0jvcD6VcRlWDiTA/D3w0StoGeOKpggWTgwn2EcbeV5fm8L3qcybsnchZj8eYoF3B+6pVqI1VED4Az6KjHAv5hOcCTzBIJigH6DLB7ZC9oNzEllsdFSLPVhDuICoiR8N7NTD8OQCmKpymrK4eF1TnQqOjUp26A7DDqTWw/SUAAmQNJHo8iXnFVM4XOtn42VUvw8/3wOL+oD1Pp2BvWvtq6NLaR0r6xKDkroERDOzQinqjxU2CfCKnih8d7QogBPtnCmqQy2BEl2BkjoDYS+VFo/XSK21dWvtQUW9iwd50VFhQYqGVl5qb+oZSUGXgQKqWayMCWPvoECmBkFCZxWjzUWbf1oeUoFn8pP6EoZ0CeffmXgztFEQXh+IIgOSNtG7MZbHmG4lY6B3ux3TFfqYqjnFf4Ye8pNpImV0geb5UL2GMXKiYluuMbDldBNh5S7mGOVm3cz78I15RrkeGTQpOXFVnbH8JDn0G21+iq6yQGYoozBEjkNlt9JM5qnSZ+7FYbSzZn0G5zshL60+zN6UMs9VOsIPIHOCpdbQPgr8+nyFhzRPDUE8rrJomvRbPP5kMjp5Nh0/bwy/3E52qZV9KmdT2tiu5RPK56BHqy+L2MQDU2T1JtUXw1LEAYq09mKaIZaf6Df49MZKZIzo6D79LIOmtcQZoboqgqHdgSX9ocKkO2Wyw/33QCwTB3R3qmxCzdu5RRPOF6ktCPe30CHVeA13b+HLfkA5c0y6A4zlVdFBV8+8J7fH1UNIzzA+1Qi4RQQenNjJM4fATGvUqxnbDeNH0NHV2gXBeEfoWr5kfB2CiIoH17X6VPsfVODwgezt3KmI4eks9gzu2koLS2KwK+rcPYHBHgaAQiYSCKr2URElm1hnl6IwWRnZxmhd3ChHOzy6tfRjmWw66Uvq09WNy7zb8cNSZzIjJrM1mlwxSS+oaKdc14uM47h2CvCioMrglxJUNJimRqDWY2ZtSJt1PcisbyC6vJ7moFj8PlRsJbzBZOfv+JOl1rzA/qWVGPC4iOR8R6MlDwzuilMtIKa5Dq2skp0nbY25ly2TJkv0ZfH0wi62ni4REzezwJ3NpDROPX7+IAIZ2crbtuFZhRXIMBFXL6mN5dG3t24xEWXB3P5I/mMw7N/fik9v6uv3tVL77hEEx2Ju/N43hc/ZLSU1uRQNrj+fz5JoE7loax0MrLuxhN39vGj8cycFosfL2liR+PpEvGb5HpZRx73dxxGVVShVw0dT/sVGRtPbV8Oqkbi1u99Z+bd1eWxwKmsm9Q7Ha7KSV6tyIGVdlR1YLZttPrE5gyqIY6bWYbJ/IqWLPuTJenNiV3uH+6E1WN6J29NxoNiU2n+RVUW8kv1LP0cwKIoO9aduYCVZnAiVWVsXnu79ny5VW8f7imjy6ttSJWHs8n/jcaqa3K6e/LIPzJXV8cyiLbWeK2eUoGrkSh7mVDdJ5lVJci81mp85Uja7NG6RUJvPoqE50DvEhffYNPDKyk9tnzY9K5+5v47jnu2MMlydzSvME/1Ls50HDSh4+dScybMTnVtFJVkyfyr3Y7XZ+dSh5fB1KVNEHaM+5UnYfOsKiwE0EFh8EwKs4jk93pUrXV1Z5g6TSbWkYxMXwbUwWm04VScq+DG291Motos4g/C5aXSPHXQoMNptdam8F4flgttp5bu2pZobgl2uw/3uITtPS/6MoVh9rbs5a6UIEARx0TKFdGZdHQZWBqV8ewahN55jPa4ySn5Xe9962ZHq+u5ujLiqFpj5VfwXqjM7778anhl9wvTZ+HtKzdPe5Er6MzmTSokPY7XY3pdLmU0XoXFq8XZ+5usbmkwZFiEM/RELxTIGQkO90MVO/0kSQqGbq1saHh0ZEklupd7tXrzuRz+SFMfxwJKcZwTKhZxtu6COYbJfUNEoEmEZ5ZVI3i9XG6YKaFgmEl9c7lXO1LUzybbhMYmDH2ZK/xZ/pn8JJF++uWZvOXmTNP49dSSWsisuVzrVZG5NYFZfHthZaIo0W2x+a1Od6fzucUcG3MRdX4/3T+Gh7CtfPP/hP78Z/Ba4SQX8BVD0m4W2tIzxxvrCg/XDkJ7/nwKQytjw7AnSloK+Aa+6Be3+W3ie/eyWW0bO4VRHLzYpjoPSAvKPw5WBuzXiTsPM/QsZeSRFUrjOyaF86H29PIb2slhvNUSwbWEAfVRGvqtYDEC6r5G7FQZI8HuUH1VweqFsKO18XFElpO+DHm+CHKWATbtojOguV+fQyHeEBnvigJ8KRDL1xYw929Y4mYuVg7lLGEJt4ljtO/IsRinMo/MJosGu43/QGURHPw4gXYfJs4YsVneQV/SIWqb/GoPSH6evhtSwY9QorLJPpL88koNAhvX8uEZQuqiWZDCZ9TJ1/D54JSkCsNEpkRspW+OJa2P0GRL0HmVHC8vpSyI+DDiOlTUXqEjiw8xcAds5wjh4GIG0nchnse2UMT4zpLE2wGN45iKfGdub1Kd3x0SipN1rc1DgbEgoFs+YbezKmWwh2O+w/X0aHQC80MrukAvFSekleH5eCuwa1o22AJ7vPlbJEtYQEzZN0tGQzpltraZ1/DY5geJfg5m9efRuKDQ9xXzc7moYihsrPs/aBPlKF3A0JPwIgt1uQfTMCvhtH96Mv8ZHqR2rs3pg8hQS93B7AXPM9AMwPjQLsaHVGEvOq6SvL4THlTnyt1XhWnec55Rb23CqHzU/B+gc4PrWK5InnwWKCNIeK5uw6ojSvo5FZUN6yEKavJzHsHr6z3ATVOcSdy2B+VDrPrk3k5OkzPKnYRqdAjeQt1E/haMvqcwcAE7xzm3wxOx6pm6E8FYK6gkLDx90y+PFf3bm2XQARSUuE1bIP8viPcTy6Kp6hc/aTqdVJSRLAyDYmlCWJHGz3FNcYv2dW62+QyeSkK4Vqfi95Hk8dHsZ7bRP58p4+gLOCr1bK8ZQ5zxVrylYwVAvHIe5LgcCc3x0+7w5JGyB1Oxz9Qli5w0iC9dnsf2UM304L5dzQA2xRv8NnqmVMU8Ryh/IwnlUpzPVZywh5EkMzFsCHwWwuv4knFds4pHiG4D3Psn1yPS8MUNHGX0ON3oy33ER4wjwI6AB3roDRr6J6eBdbbCO52fQJjJnFoBET2GAdTXbvZ6HTWCIroonp8jPeGHhjUxJmq2B83bnmiPA9i44RGexNdnkDtXozSUU1DO8cTFsfOyrcJ1tV691VMaIiYWTOIiZqBHIq2EcN9VrI3A9fD4H53ZEZddw/tIP0vs4h3pJZ7ZHMCvIq9dzevy12u6AqERVBQT5qqvUmKUn79clhBPuo+e1MCRX1Ro5kVAjj0kcLie2B81rGzz9EoyKL87IPeWJse76cLhDTrbzVkkoDIMhbLSWxIsSpM20DPAn0VvPU2M5odY1cN3s/p/JrpJZNECZIthRgi8m43S60O5pszaeGiW1/17TzZ1DHVpLqskZvIjazgu1ni9mQUMiILkFEBDrJrBEt3C8Uchk+GiUKuYyOwc09ylwJE3FqYnSaluLaRpYdzqbBaOHFJsaztY5EutFsdWtRSS6qZcmBTD7cnsL3h3NYcyyfNzYluam7jmVX8cK6U04iyNEu8vjoThx743o6eBgEFafO3RfDW6NkzSNDWP+E0FIs3u9EQ9ppXx11IzJdkeVoH8ytaOCr6EwytTr2ppS5GSKLUviVsbkEequZOTxSaqcFpBbupgoe5/vrGT0vmoS8aoYH1sHSkbDtWTixDLTn6RkmnBsvTRSIrqaG4CIOZ1SQqa13mxJYazBLJDkgTZDsJCvmk4oX2Kx5j+OpeW6TMpvu62OrTmKx2bkuMpCKehOHMsrRmlOwy/UsT17u9r5Ab7XUxjOhZ2uXv9h5W/kTrWT1fKRcwdS6dfjr8ziheYb6smyhaHT+LSozT+KB8FssuFsoiG1Uv8+Xqi84llnGWtML3KrfgCxLUBVE1CWy9FCWNCigXGeUquqX4rHiihAXTy/fJu3hIgkhFtke/jGee747JhGsjU2UP+K5tTeljA+3n5OWfxeTxaCP910wsV0QlX7Zk9zOFQkEzUfbU/glPt9NeSq2PHVxkOiCGbEPo7o6rQXmq5YSainiQYXQri+XCWpBgN/OOPdFnOD6+Z40BnwUdVn7eCHUNV66QlBsP9x6WkhaG802MrT1kt/VKxO7kVqq46fj+ZTUGth/vkya5ghw3/fH6erwvErIq3bzHXT1yDNZbJxy+A25ehBe7vl0uUgr0+HvqSLEV8OEnq1RK+REO/yavj+czVtbkkkr00nqphv7OgdIdGvjI7XVpWt1UiucKzn5V2L3uVJu/eoor204y46zJSyMSsemTaM8fpPbeq7HVdeCB6PVZuflX05fsB3abrfzzNpEJiwQiPdvDmZxZ5NpnH8XGowWjmRUsCmx8ILPi8uFzWYnOlVLp2BvHh4RSaa2/rKmv5ksNlbH5bp1I1wMT/2UyLtbzzFpYQznimuleCE200k43rU0Vppm3RR2u73F39EVTVsom7Zr/qdh+ZEcssob/tCkyP81XCWC/gpccw/0uBmCusCtS+HhXRDUhdYxb9E6azMkCSQNHUdCjxvhicPwVBwolKjGvILNw9Hy8ZyjSqWvgMgxwr/zYgmR6+ggK6Xx0CJ+2HeK74/ksGvHZj5TLWPiuX+zXfEaXhjZJJ+Ip8zEh6qVAIxXnOYO029w4lvY+gxkOsyOjXUCaXJoHpN9cxgSKahHpgSVcUrzBD+X3ghz2nPzoal0TF0GwIv1Cznm8RweGHmvzRJ4ZC99jcs5YutL2JRXYeIH0O46Yfs9bibPoxcA5zo+BHIFeAfD9e+y1no9ALIT34J/e/Bq7ncD4DfyMYLrUlg4uI4buvmizjsEP9wA6x8QVji9Bo4uEv7d927h/0Fd4J7VMPp1rKNeR4c3r9XM5qagEnpEP4JWpYEnYkCuEvyadr6Gn4cKlULOjGEduK5jII+OiuTfU3oQ5KMRiKBGi5sB7G9nixndLZjHRnfiZUcAL6vK4kfzazA3EuupNYCLIqgmXyADjI7Ex2YVlCAZ+wSCwIEALzU39g3Fn3qmKOLxl+m5z7jObQrX5B6BAtmy+UnY8xbELoHj30KNo2J44GNpXXn8MufBLE+HX2bA+/5QnAjXvwd97wKZHJQeyJM3ADDH/hA1TyXzhvkRZpkf5WvrNAqHfURwVSJ3KmJIL9ORVqbjrhBHu86LyfBmMWj86BY1E86shZSteG1/Ep/DH8H5bWA1waCHpXOjbsBTyEK6Q7dJVI76iAM2IelOi9kICIqEOarvmaVax/auO3jGcy8ybESa0kDjD7d8CQoNg03HaCfTslD1FY8ptrNB/QH89jwo1PBsPHSdSPe8nxm7eSCP+sQyVh+FGSEJyPB4gBj1i3SRFbL1dLFbUjrQEAdAeqvRgIzre4Zy6t1JPHTrze4n6LZnGRU7U0puAKb7J2NPdXoT2bY+DbtmQXa0sGDMv0HjJ5CWUe9BusNP6+ZF0HUiVOcSFvUsk2PuxOvsjyix8Yb5EbLV3bjTugM2Psbdlu38pJ5D6+Rl0OcOtJ5dmKVytHylbqfDnocJ+mUq14XKATubPWcjq0iFsbOgz+2g8pRGwObb28C4N7j52nakfHgjne6aDaNeAaB94W/MUESxP1VLTHo5qw6lMNDqqGol/crDVYuortez/UwBa5Sf8NLRwWg+i+ArzZfS929pylC6VocGE/6nlrJM9jGxQ48jS98DXw+FNbc7Vzy1WvLwUmDlrk4mUktqMFqsUivD89c7W21EJVaQtwarzS5VuTsEedG/fSt2JJUw6ON9xGZV4KlScEPfUFQKGd8fERRHmtAt1NlzKG7I5+Zrwvnktr5818RPR6mQ066VQJw8MjISAJPVhp+HUlJ3dAzydjPS7BTiTeys8cy6oQcGs9Wt4vvyL6c5kFomVaT3nS/jy+hMQv2F81Rv1kvE0cJ7+rHg7msJ8/dEo1Tw02OC8XuN3sz074/z7NpTlOuMPDuuK9ufG8Vz47sAMLpbC8SxC0Rz96fHdubZcV0Y0N693bNcZ3QYDzunER5KL28W4Lf21VBQpWfenjRuXnxYSlq3u0yx/DE2l3HdQ1h6/wAA7h7kJOe1OqOkvBQHA8hkMuTaczCvi6DiXNBDIFBdMLJrsOSt8/GtfXhsVCQ39Q3DaTOMGzEmQlSXfRuTzbw9aW7TFTWY0GDi9Q1niE7Vkl6mY1CHVniqFegaLbSTaVkyTsHYbiGM88mnFXXSMRQhk8HCfenS6z5WRwvLmZ9h56vw9VBuyZtD/FsTGNddIBf8mpCMrnh7S5K0zwB9Zdl8JZvLm8qfhL87pkg+r3QmbF2Lt0jKKxCKHK4QPYgeGt6RNn4aZq6Id6pDbM0TkM4O0mFav7a8e7PwfG9LBb3keZS0HoNS5kxOQ2S1bPb+lE7yUswyFcE/TeC45hl+ur87E3uE8LFqOQPlGdysOI5XThQqmTvhMllxkuvlCZgsFsKpAOxS8lxS28ibmwWC+rczxS0mm3WNZm77+ijRqVo3n79+Tc7vQR2Ec0dsQ0p2kC9j5kUzb0+qNEVNxOBIZ7zi7SCVrDa7ZC5/JKNlP5DF+zN46qfL83URJyuaLDb+vTFJmla2KbGQz3YLn9dRal+1s9BrBavVnzHu/AfsGV/CQLlAlkxQnOIn1Wx2e7/PFLmg3DvmUD0F+2gkIuTL6EyqGkw8tuqkG+lY12jmzGVOF6sz/b6Rswix2HMwrVwiNE/kVElJ+X1DOxDorWZXcinD5hzgkZUn3QhNsd2zXGfkoR9OsCAqXdqGaxJYVN9H4ToAACAASURBVGNwU+J4qRW0DfC8JIVZRpnO7fq7HMTnVtMvIkDw5FQrGdIpkJj0cmw2O/P3phMZ7M3EXm0wWW0o5TI+u+Ma6b3XtAvAQ6UgyFvNt4eypfO01mC+ZJLgYrDb7W5TMAuqhN9tQ0Ihz6xN5Iv9GZi/u56QHTPxQQ/YCaOSWr2wHyW1BrfWQvG+X1xjYNOpIjYltuznJSrwxH34bHcqJ/OqL+hjdSWxMCqd+5cf5+X1Z9w83v4MfjtbzIncKh4c3pFOId40mm1uk3Z/D3N2needrefYeIHj54qmxaXDGRVSAU4kuGv1ZuJzq1l8ILPF9/2aUEjf9/fy5uakC7a9VjWYuLVfOHtfGs2orsHsTCpl+ZF/foJiU1iaqAOPX+ZwgP9FXDjyuIpLh09ruPcn92XX3AvRH8OWJ4XXAR0g1CHDD3Pe6FGokD+fKCTMvqHw0E5BPXDLEtj4CMQvQxO/jEMaoB6GeB3iceu/6V3wk1vfV8Edv7EhzsDI4nhay2qwRY7lYLk3YUPvoaemHHa8IrTWtLsOCuMFZRAg9/Dnl1fSQOVJ0ql3nQGZsRYsBrjucRj5MsVf3kC4KYdFljvIlbUXvkaAN0U1BsmTBIUSZuWDypvVv50l/8Q2urQZycyVfVk2aRlDw4YyaNBQ9Kmt8DJXQ1sX75qm6Hc/HF7IbUlPcRvAape/hfWDktPQKhKGPAH974fIUdDrVvDwg/FvoQDSqjUMSv6Ijw0fs05uZk67Nmz19KXT6Ffh4ByIXwbB3WDI47QpimL9Hd3A3xPqiiFjL+GyDjQYLVLFPgAd02UHuLuHQAp0LtzEac3bBMgawMHpWMtTITAAr5oCTCXJcMSpAKPnLZAVDX5hUJEOvaYJ5FW3G+DgJ4yPeIwquRAsxll7MZZjsPdtFt32AGOjbyNgURnYHAGaXOkerMuVkORo6fFrB9Gz4dp7oTwNtj4LdY4HSmhfGDRTaMkToa9i76blFOuHEeit5mcHWQfgO+oJyNvMCyXbGLVnNNfKsnhA8x0EtIcAYVIbfW4XlEZKT2g3CHIPC8s3O879wY9Cm95gMeKndFZn+7b156StG2dtkTxUPo+eqp70l2fiJROCDK8zP3A9MFr+b7oazkD7waD2ggEP0DV+GZvV+wiR1XGbwmXyyYgXhSxs/NtgaoDsaG7O+Rhk8JjpZb5SfYFaZqW9vJwZiijWJPeQqqsAvetiIKgL0yaMI7ryDPde115o2bjmRrJqvmarvh8vT+gMCSvw2/0Gbyl/4h3Lw9zc1ZP3Cj7hVS/ncbUCnF0HGXvBpw2MelUgxba/JCilTq8RSMxBM6GuBPa9Bw5STjb1C27+VVBnfTi+J6rdr0I5MO5t8AwA/wjoPoWzW38i9NTTuKG+jBvbJpIq09DNmiEck37T3Vb5+r4BKF3GP0jqsYih4BsGuhLuU+xnqXUqiw9kEloUxYNqC9Uj3qFVWRw9MjdxhyIIxY7ljFCKlXE7k2Qn8EVPcHCIpAzx9VCicxAgBVUGemucSUX46S/g9Bfu+6/2hT1vEpCwkr6yGVwnT+XJM2vwk40jMyOSgKw9rPb4jY5+Y2njp8FDl8dTpd/A3n50Vo0A4ExhDRqlnBAfDSNb1XCCemrxYVOiMLVRo1QQEehFYZWBuwa1Y7PDgkIMjqZfGwAagUDY/PRwtJWVcHQxI9oOJGFKHkHlGzjS+iHStPW0beVU1USGuPsK+WiUhAd4Eu6oei8/kkO4vwc39A0TAuVTRZK6R/R9uaadNweLwWK3YLKZ0Cg0hPl7cvsAJ3HSymHE3lSZMyQyELlcxssTu3Fr/7ZC8p57BPLiwG4VnjPj30EcddeltQ87nx9Fj1Bf5HIZS/bLScyvYXLvNrw8sTs3Lj7M7B3npRad3Eo9hclHuEdxHI8B97IyXlDppJTUMWpuNCG+GhocU+RC/T0kFUekrIS7DIfoMOBTpvQJI/WjKdjtgn+Ol1qB3mQlIa8ahWceRnsN4GgdzNgD2GHsG8I1s/ERqM6B0a+5nzMWE+F+at66qRek7eKMzwt8YriNonY3sUTzNfGGBn42Dsez42AyGzwoqNKz/mQBPzs8hPJc2nxWqj/D08ODabWvMfPHeBRyGZM7qSHhRx4ZfgdvnHgR4oCxRaywzCJfHcKByVFM7B3K147hCq281G4tJyM880HtIzyjzHqwWZCdWk3IgAfBV1BwiD4qwdTSMaIdJwt0tPJSobbUk5Ct5Y5vhPOjnyyTLZp3wQxDlBBv6879Q29gunE9mphYinvMJLAygWllR5mWdAMA380YiI9GKSXCc33WEaXvQpRtEO1aefL+1N7uREXmPhhUBP7O9rvOIT6czKumta8GlWNfB8qFpNtz4iyq1yRQogij5zO/YFl+AyH6Eg55TeS8ogdP6pbgL9MzYoNArt7vIlZ9T7WSMnsAQddMQVl0AqZ8BmvvYrl6Ppm2cLrIi0mztSOjvB3lSn8+sDzI2uP5kj9X5xBv9r8y1u10WHMsj1P5NTy66qSDGBTQK9yP+4a058k1idJrEFQxrol1jd7MV9FZElEkIszfQ2qTN1tt1OhNbr/zrwmFaHVGpl4bzt1L49j23Eg6uhid2+12t1ZNo8XKi+tO8+KEbm4+hUCz6XYrY3N5ZGQk728T7reB3mrJA/JpxVZ6l2wGhQbkSrqb1wjP4+m/wKpbGKE4h9mm4SPVCnYbB1NS24hGKadLa2+p5UM0+Y5KKSPqXBl3DBTuN9OXHSO5qI6M2TdIv7uIraeL0DVauHNgO4wWG/6eKmr0JuoaL50Iigj0oktrHzK19Tw3vgtrj+dzLLuS9oFeqBQyAjxVtPHzaEZG9VIW0d2WzTbbcKwo+CU+H53RgrbOyMncKu7+Ns5t/f3ny0hxMb8f1cGTLjWxJNWPvej+pZXqmOxoGc2cfYOb39HvQatrJFNbz50Dnffu/u1b8eWBDLIrGjCYrTwyMpIavZmolDJ6t/V3M+MN8dWA3U54gCeVDUaeD05kTO8O3HEomMLYX+g+YAz4C9tefSyP3uF+DGjvjEGOZlawIaGQeXde0+J+/3qykNc3nmVYpyBen9KdkloDvholKqVcOq81FqGgc0zzLJV2PzrItZw0daeqfgxj5h7E5JJ4VzWYCPRWSzGV68AKEe9sSXabIuvamlitN6FSyFEr5c2GuzjXr6WqwcSoriHsSynj0VUn2f7cSLq18XUbVnIhpBTXse1MMf+e0h2ZTOamYBWLZCdzq6jRm5nQyzmt0m63k1RUi0oh54nVCXx93wDJZ7QpsrT1yGRw/9AOHHd4A2aXN0hxwMVQozdJ97Z3t57D31PFtCZt0CBML+wV5t/MpFtUlvlolBzJrGDmihNu03xF1DVa8JMbkdXkczRTuAesPZ7PttPFPDi8A69N7uG+X8YqVB42urXpL6n4PtqewtjuIVKR4FIRm1VBfE419w9tT1CTKax/FDNXnCDa0SLr6mkXnaplSu9Qvj+SzdHMSlY+LBSltbrGFo/L/yKuEkFXCqNegesehbO/Ckl4x1FS8N0MrqqYjiOE/0CYpJV9EIDcgW+SV2NmTNY8YmSPAVBh98PvX8tRe7fimogBzGnbwNmdTzEhaw7yzuMY/+CLgkN8Yx2yHUKln2vuhuHPQslZgUg4ugjWTYfxb9OrYjdrLePQj/+YR2W/wYAZ0kNmXuD7hBfsYLn1Bp6IFB40254dgdFic/eg8BBujIEBfnxvG4zaKExVicqNYmjYUObccS0sCYLKaoEsuxBUHnDnctg9C0OncazRZ/PQuM9QlacKSfCKG+HWr6GDo/98wAPNNtH7lpdYUVTHzOovOO0hVEOTK5PpNHYWjHwJfn0Idr0m/Cdi2LMCEQfM1ISywvQ+uVmN/KSexwi5YGDJrl+g+hl8jn0FMii3+5Ny40bG9OuJ9fTXkLoaL0MNeplcaFPqNhnivhIUMgAVDqVEylbh/4eFlsJhWQcYpoZadRuerHuRLW03ERm7hFvbxkGjg8jpNU1Qn/WcCmaDo/WoEXxC4dtRUFcE09fB0lGw7XnIiRF+k9u+FY5VQPvmx9orkEn3v8akJovVSjn+XhoY8gQRm5/gBvkJJikclfPrHneu2O8+gQhqPwRmbAGjDnvUe6Qnraa7CeEYACjdb/ht/DRYUPK0+QW2q99ihMIpta+4ZTXB22YA8E3Aarz0xdDZQSyNnYWpPIvy7Cy+sNzBx6oVwvL3XALF1j3hgS1CG8bOVzlt60SUbSCHJu1gWCsdJbvmM9FwnvccaqB2snJ6yvJoV3MSRr1EG39Pfn58qHN7Mhmdx9zHy+LroU9RV5rDjNPfss06nEe7dUdWYMMWdi3ohKqL7dp74dRaMFQJKiylWiB7J7wvkLHtBsMkh4rLLwymLobYxVCdB71v480GQb2iumYYxHwqKPmuvddJwAHXT53OiYieDA6oQ7ZrFty9CpZP4Pq0D7heAzaZEvmIF5r95De6JEduUKrh5fOQ8CMR21+kq6yIMwUynlQdoV7uS6vxL4D8FewLejJXJ6jOktvdS58pjwsJ7sqbGSc/xeDIwYTWLqHMHkBqh4eprixnf20ojWYbvTxroWlxLHyAcA0nb4T+M2Dz41CRxspeiWgatVAEtyjisK6bQG+ZI0E6PJ+HA7y4xzifIqMFYg8zhiWMlL9BXFY/BgaZkSVv5MGER2in6s8j5tcwmK30CPWF2kLeuqEHSqWCEB8Nmx1CLqPVKBiKz+8h/FYhPeg/5HEo3yco8ABRVzEmaDBZtHUbC94rzI9x3UOkgERUFIhkz2KH2aar0k+sFIqVWbnCWZHTm/VoFM0DpZbUIzKZM5CVyWRCcKavkkh/CWH9oNctzn0Od/eeAqjTm+ke6svLY8LpduRlaqwToNsEUtIzmJn6HCqVlfziFFbyNOPkp8m3tybL3laq4g/7dD9bnh5BUlEtQd5q1ls+JERWS2PQa2APl/zE4t4YT3WDmRsXH+ZkXjVekd9w367NRN2xFxJXCcrN1r0FRdvgR2HL0xD9iaAO7DVNILYy98HO1yBiCNz1I2x/CX9LBZ+plv0fe+cdHlW1f/3PmZYy6T0hIQ0SQhJC71V6R6qACogoCqIoomABBFGuKMWCioUuRRTpvXcIoUMSSAKBkN7rTGbm/WNPCwlN+d33/d33rueZJ5mZc86cOefMPnuvvdb6Qoa4RrsB3VTHIA2u20TzbOI0dl/NwIs8OsgvoKISB5mWIaPeoM6qa6CBl0NyuZuSyFVDIMPuLIHzh/GKOWU5jmd/AaC2LIsBcS/h6PmB+a06Xg6cTs6lb4wfXw2JRvn9TJGFN+BbsYCmBJIOwdmfIcBYJbQonQGyo8xT/kiy1J2PpCb00l9gjOwvtimbc9PgR7Lel+dc46EEFof+xKTcT1mqWQm/HhFtSmhn/J6dDbHLidn9AcHSPWqFRtMt0ofb107TRnaJRL0/Qys3M1QFoeUr8S++RIPLSzjXpzN9D+cIfZNOK7Ld+i0W+1aSQ0f5Bf5Cja+iCLfKVPylTNrLL4HKAZeQ5vzZYy9RwbWQ3J1QNhsDcSvZ7TOJg7crqYhoQ+jVb+jtmopkUrC+dhyWtMZPymWZfDCjB35v6SONWM+6dSsZYBCWn3DZHcIR98Cllb1Jw4ORLWqz+tTtGq15m402I53eQFxqHg38nflqaEORe6iS81KbYGJv55krt229mMbm86mAgU/6R6HTG5i15Spjlp3BSOkDcjwcbNg/pQPDfzzJrZxSGn6yx1wOPSbAhQup+VxJK+TCnXyKKipZe+Y2rUMtqrxxK87y06hm6PQGkrOLKanQseNyOjezitk9uQNZRRUYDAa8nARZ2aaOu7lsfXphOR9uukRheSWLnmtIx3AvKnV6mkjxTFWupyTsWdTDfxVE6eZJoo8T0oHsAWIyKi01iQaxHxAm3SHBEGAmtUwDcSdbhXnwb61+MamkcozkrjXeXCuI6K/2JJBbouG7kY15ffU55Orb2NfQ1XgQvh7eiD/j7vJ6xzpkFlXwe+wdWoW4m4PUfZxsuGblrJPQ8438K0IU9+itO8mr2rf58bCwj+eUVHDNSo0qScJ2axpc94vxY/OFNCa5HCMydR5LtRlAKwwGA7G38ogJcKlCeMVbWWBu5ZY+0aDXlLfW3EpJFuIhVKOmnLEwbwezKquZMbexf0M/1DIt/P4SXP2LJY4xbFYG8HrxJjgFr9qNJfzQz+Qe9cAw6TxuTg58ZCxSkPK5sb03GLh3ZAXjk3/mSmlX1L1nY6dS4Otka75PHL8pFGwnknJ4b+NFarvZ4+9mT5RdLt1TFzC78gXzfjtI5ThI5STpfWgqi2f+9sNVSCAQltvmc/eZK+FevVeIplKPSiGjTKNj0/m71TKvrAsNbLt4j0+2XmVoU3/+NTjG/Hq5VhTMkCSJyevOk5BRzHcjG/PVljNISPT5+iidwj35dUzzR56TQUuOU6bVUd/Pid9O3eZ8aj52SjllWp05E2/w9yeqHkvgpyPJfGqsEgkwf3c8yx7weTklGlztVchlkvl6Scoupm3dhyt0QaixrNu0N9ee50xKLlO6hXM+NZ+O4V7kFFcwaMkJekb5MLy5+KH9a1ADpm4Uqu3RrYMo0+hYdzbV3Be5H4s2n2D01ZepLWXQQDWSsvovMap1ECN/OsW+a5lViKCKSh0EfMrOgkq+4FIVQmvF8RRm9Y+qfgyKK1h7JpXmwW7m/EgT5u24zoU7BVTq9bzTLfyRx+RxYP09TYHrIOyOx2/mmHMjF+xJoH2YJ4OWHOeroTFVJtj+f8V/iaD/KchkQnXR4pVHL/sgRA+B1JMQ2pmgiD4EAZzxIf/A12QVa/lVPpi59SzD90B3NYEvvA9p3cFTSMWf3/48WWVZ7Hb0g6I0oQxQqUUnGkSn4epfcHM/MkmOf98PaNW0Psir/rD1LoF8mzKAn15sSodwMVv7MCb3pTbBlGl0eNUq4FAOVcmift+ITnTd+6mH+1C7JbxykKXnFrP07jnc048zsK7RPjLl0RJOO5WcMRM+hG/+xEMlB3RklRobC4WNIJK+bwcFqZaVjCQQYT1xTNjBz6r5NM68YTZRaptPQJmwBU5+C84BtMh4j0rk7I9uSKYuj2+vC+mSXe025FXkQZ91oLQTM9opR8V3qiwXPZPE3YBBWIQUtnBFyPodI7tzof8wMAyFH9rD3bPiWgrvBV1mgYMnGp0Gua0zcmsSccR6YfnziYbowUIhZOMsOtwOlnDeRyFhTk8UMsncWaD+AHL2LWRJoVBu6KKGIjcGegOC0Oi7SJxPSQJbJw7XacXE3L1sUdUjyDoDygqSJLH+1VYkZhbxY9IvdAz3RLZpPPkGNW2je0PdBIjfjv3Wt8QKptBxtQfKUX8wdOZuXusSyu0sFbah7fCqiWht9jIENOeVRZcACb/g+jj4OVO3IBF2TWeP6l0qkREhE9dAqZ0P9jUQJzVB334qBXEr2WDzCRgLZugcPM1EkK7tW+AaIghdq5l1PMPh3RvVN9hklCBDNCVg48Ar7a1mmyZfFq+rq3Yk5DKJ5o2F1YYJJ8Vft1BhAQSklq890H75QEiS+bc51OkKZ4vS6Ck/A22nglzMVkpNxsDBufwV8B69R78Pchno9WTjwiTFn4ReXoIkF50ZXcFNZMW3WK4cyGfavvSVjIG8E06DW4hof8J6gI2DUEcB+ETBzmm43TRaXVwCcciv2oHkyJe8Cvzi4sgCNw9WFsmILCnhJ8N8emvmsqbgXRCOQzrL42hlSOBEZRit7VNhQTs691kAvjHgEYG/qy33yqC0shRuHQdtCeTeFI/iDMi4LH5/krEhiN/B9JxpjLFxY6ePRfVnq5Tz65jm7L+ewUvLzppn60xEkAcF2Eoavtgl2i+1Ss7L7UI4k5LL8Zs5eDio0BksM3wl2hJcba3Ue0ZYz+72ivZh+6V0YvxdRLti+h3kpzJzXU/a2dvRWeYsJiZiV8D6F6DxKBHO71FX3CuMv9GYzD+JtfkURaYCbq9lgrQV5LG0ll1mp28T2t3ahVLSsd+2K8/k7GGEvB6zFMs4rG/AWK2FUDcYREYPwITGNnheFTPDttmX4dxSoVR89nt83UJwV4v7iF9FImlAekm6sIOVZov2q9FIsVG1BwxaKjLudrwLB+cKItyEW0dhfh2hhBizQyg7N44V7/VdLKyjQL2KS7TQxXGQRsxSLhPXtgmbjTZOuQ0f5H6IpDKSyybHzwVLFUX2fARAevBAvHPPIP01niV1RqCM7EdcoSCCXOyUKGN/gewELjQdyepDU5nbbi4KlRoi+8OljcIyCvBdKxaqysgzOFAvcxsbbCyVDHvLrcK4S+CXyh6UuEdBzHT44xUoyQKlWhA3No5Cpbn7AzarPiQ7wx8yVlB7XVdWq+AdzXjzpt5TrMV17XbAgFvmVSZGt2JuLmDvLgoxtHsbNo6DO6fpCQTVe4GANZORyvM5arr9RwwHuYJnW0VY9rHj+9DuHVz2JZFxOYmjeS7s95xGnwltRE6aRxh4RxLnNZBGmX9wO3BQ1YmysO4sVCj4V0kvvhzVkYUrNggVFPCMPI6SBqP59NlonO2U/Hg4yTzYBDFoTMwspnmwm7AH5eYx1D6JOp5tzJ/xcd/65o9yV6s4HJ9OrM141ik6MqL5qioh4w71PsbbthafNl9hrmQX6ulgDmI1WbiWj2nGwr2JLDueYs5w+eFQEj8cSjJva++1TApKtYxfFcuJpByeayZIfRMR0GLuXvQGSJrbi7T8cnpE+dI90oeGAS6MXHqK9WfvoKaMLkV/oZaepzLrEhMVmygx2GI38Bvx/dxCYPRW82d6NOwFgM7jBsR+QD/5ceZXDsNNrTKrm0Dk5oxpE8TxGzkcu5HN8B9PMqt/pHk7Oy/f40paIfMGNUAmk6pY5k0E0i5jppMks1Ip3Dwg+nu9vxTq+RoQ4etkLtTxcttg1py6zaGELBr4O0NFEZ+lv0K+qpJU52b8SxqNV/YJQqR73FDUpQtxdNHFsqu8ufl7XE2zrjjrQGquqLilksuY2S+SVqHu1M8Tg/1updv4Ytd4GgW48vKKs9T3dWL7m+3M61sTFQnpRYR6OlBQpuXYjWyaB7uZr4macNeoJvd3VZnVYCY7387L6bhQRMzBl8hrN4vxyu10rfUSAIueayTI7dN/QIOh+Cfu4XW5JeB8mkFkeLnpshk9bxFe9dowVbEWF4pIuBVDWKA/JB1g8K1ZIIPSlDW8vtCDYoMdQwYOYVgzQR5Y9+EV6CnIzWKk4gQt8w9TR34eN4UGDLDIdRpXihz4rKMaL58IWNWdxPPHgGY0CXQlwNWOTefTOGfMYDL9fjSVehIyioiq5cyba+PYfbVqzhtUrQa6+pS4x5+zKlhwNa2QQUuO4+1kwx+vtzHbygrPb2JrxUckqmrxvGY6B+ItirtyrQ6FTEIhl5FfquFOXhlRtZyZuOacOQPvs+3XzOH573YPZ8/VDFJzS82ZWSDyj/QG+PVYMitOVO1/HE3MplKnN9+L0wvKcbJToNMbuJNXZq7K6+Vog1olJymravGIB+FmVjEeDjb0aeBrLkyz6uRtLqQWcOluAZsntjG3dQev3aOXdJSVqg004TXONIli68V7fNg7oooNDATRa21N97r0I7UVGRQZ7BirWU2k3omWwbN5rlkA+62q9Gkq9eSXapFkxnUNBnMGEcBvZ1IZ1z7EbJvffz2DjbF3qefjyJd7EmgW5MqG8a2rbM9E1CZllVBRqWPz+TQGNfa3jDkegeTsEv46f5c3O9dl15V0sh6Q89Ulwpu91zLMinSARfsSiTOqC3+PvfNfIoj/EkH/b0Mmgz4Lqr7W7GVu+w6m3zfHqlbSsoafxXJ1MduY6zFun8ipUVW1LjDge0EyxC5DajiC9i2a1bjJT/pF0T3Sp4pU8mGwVcp5p1s4a6/HVX8zsJV4PCaKNKLRKKt8fLmxGQoVjNyI8toKSP6Lu8VW1V3sXOHNC2L2syxPqK98Y0SnOqgthoXRNC4UjelB//F07D0CpXcUKBUi5LfbbAIOe5OQUYSzvZJpRyznylbtTUVFriCBQAxyw3tU3bcmo4x/R4u//b+FcyuQRRnJLkmCyAGQfhF6zRfkjmnVVU3oEdSDLzp8YdmeT5R4gJDXV1aICmxPQAIB1eW1SlvcX92K4fB8pFNLkDcYUvV9SbJ8ByNuGOXEWZ2mCgLzAWge7CZmy1oEkppbSgfNxxiAZKUclN6CGKjdUqhNPC0zB5IkcXlWd+Ozfz34AyQJfGOYPNCVuduvWWbzmr1MakY2KbGHsKec9a7jOJ0po2efUXS2rVnuez8cnd0YpnmXZ+VHeV4hmCC93CLr1tk4VrewPAqSJK6V+6G0s1xLj0L/b4Q6wNkfyZQ19qRwrgXe0YzLWM44FWi8G6JqNcHyfvt3odUE+lvvq0zGYVkLBrILvdye/Oc24/Jbb+T5KeAcwOiCjYy23Qimn7FbiCCWrK5rM7wjxffYOU3kbPX4DLZNQZuXSovi+UxwP8tY1V4Mdu5c1aYAkNbrM2opQnH5uRX7bKyOe0RfSNjFasU8PgzZQGeNUYm34z2hKAEcatcGOZSd/gHs/IXF4v1bcHSBUEaAsKGGdBT/75kBxxbiK+Xidu15RhXWZXmHr4SaKKA5ge6ina3nrYZDX+BTfxAu9kr22MzDtSyFqLSfAHsOT+2Eu4MNbxstXj7OtmjKLZ1g6xLyD8IXg2PoFe1La3UaLIiE9lOgbjf0v/Zko5vERltPLo26JBZuMga2vAnnlosHCNtySAfIT8U36QC5TuE4UAKrBoOmCA0K1FIFg04NBQnO6MPYFjiVDnevMKf4F2QY6CyP4xf+xe/Bs9ieYL3PBkaVrUSHDDl6uLZVFC0A+LYlvHoIVW4yf0XswzVlLb1NeqvSbLD3gCmJIJOx5eYWfNW+NPVpHsxVLgAAIABJREFUCmP3CBJ9/2wLEVSnCxTcEWHxPedZlKJ2LqJYQ6PnhXIxYSdlf0zgO8NiPnf+iB7F58myC+O13OeYp/6N0MJEiBwIroFIR++79756WBDzdbtBraZiH32i8Wn8IqSdh5UD6HlnEZRupY3KjX6qeziWd4Udv0JoZ15LWk+RtohxDcZR17WuUMSeWwGLG5o/4uvKAfxS2YM4W0HW3Ix8g1D9Lci/RUnjV1Gh5VhKMbNjA3muvFIofP0aCwWtnZuwzgI4+VHo1w6ntCM4ahNhieV+O16xBYNKjU5n4BW2CTVp6zdg9wcYkouFPdqlNqTEwzfNRLvT6UO4tJ6IFDHRYQjuQP6d6yidfXB45sPqF6UkgUJFA38XKvUGzqTkMbBRLfH6mxdAEoow9aDFfHRgLFMHtKi2iYXDGpKUXULHCD8Se/YlaHsoV3xmM7loK0pnd0gqIMgjhEq9gbAPd3BwSkeCPESovE5voEekD6eTc3lTsZFXs7dBfH2oZ1FLcOIb8KrP2ldaoo7fiMv+El5VbAO5rIp1RZJ0ZFbcpmXhbmA4gLmAhzVc7FVM6lyXZcdTSMoooKvsLEf00ZQjln2mnhf7r2fy9pzPeEl+kJNMZpsxQDqnRINWpzfni11PL0Kj0xPsqmJYs1ogU7D9zXasP5tK14SZqPdth/0fojDo6CSHbbZ96W37cKWKt38dMmr35rU72/lT15bcEns8HFQUlVdSUKaluKISDwcbInwd2WRUVHVbYKmiN3OLCPef3DUMPxc7s+XFGib7lpNUgJkKWjlA/PWsB898UG2d+xHsoUatklOi0RHgag+nl+JTkYyPDOoVpdL17U+5umMfXIOfgubzfuIIuslj2aVvjrtaRW6phtNWuSB6g8ghis8owt1BhZtaJVQUa0W+SaAsk5UHLnIpLAgQKpabWcXmvkJqbilqlZxSrY74jCJ6Rvvy3YEb/HA4qZoK5fiNbI7cyOatLnXJLdGQXliOjUKi8x8tGV5vONNbTCfYeG84n5rPW66XUCQfwDPlEO/L9fDXKiieIZTMRWliIqv3l5ByDJb1EmpZ10DR3vT4DM2iJrynWEtE0hfm0dyh03+SpR2O466fCUfFcsVgXqlcwzKV6CtOSeliJoKsbY2j879hqLS3yrlobLhCvN6fRfciiQ5ww71tG6FEB35QLaBN+SIWuh3As+wm4Qo1sberT6JdvCMIDAsJZGCsfAceUgHzKodXyfgKyTnELOUuvtAI7fWeqxmMWyFU6Ck5pSzel0h2cQUSejokfYUeGdGyFN5Q/MmcyheIzyiino8T9T7aSe8Gvnw7ojEjfzrFlbRCkub2qpJZd6+gHE9HG8a2DWZIE3/ibuex91omLebuMy9zI7OYQwlZLLQKJwcY1jSAdWdTScsvx9lOyabzd5mx+QoDG9diU9xd9AZY7fIDbFqHNOA7QjwduJlVTHx6EYHu9mZFrMFgYPnxFLZfSueFVoH0jfEjp1iDu1rF9F4RtA5x47vV67loCDFnMc3dfo0yI9H8jWw+nRPjxET1jknMG7uPT5/thkIuw9FGwcvybfS2u8Sw4nc45D6f/TkunNGGUGiwZ5x8K2ddurM1y5uZyhW0TFkCX64nJnA2G0tdKdPoWLA3gWXHU5jQ0jIBaVjckCbthQp/7rPRzNl2lfc3XmLVyy3YEpvEWxsuo0NuJpjPpOQx+tfTvNAykM4RYrxkyoJKzi7huwM3WbQvEXuVglah7pRUVBJg1f7WhFdWnCUxs5i+MX5mm29N6BLhZVbeTexUh28OiPHcHSO5a11d9n4cu5FNPR/Hp2Zd+38Z/yWC/g04n3keJ5UTIS4hj174MVDf1wm1Sl5Npns/KnRWIXhOfjUvpLKHnl+Ialv1ete8DOBsr3ywneQhMFXRqqlazpPib2/DM4ySm+JYpRSmVH1PJhcPpS80HF7lLanbbG5s+ZI5Rb3o1+gF8DVWMWrzliCM6g9gbT2DufOm01ssHTYKmycnrlT20HJ81deajRMd/MhnzS9VGrOBdqbsrEoEWUPtLoKznxbUHkg9P4dus82qkIfhTrGQ8RdWPH5pWl9nW/Q15dd7RVR/7QkxvHlts4QWAIUNNp3fY9zJpng72dDY3ZUd99LpqKquvngQFHIZsYZwYivDBBHk4I3OqmT83yIunwa8I8XjnyK4HWRc4p5TDL7jdle19slkNRJWJU1eZe2JCvr1fx7XOs0gZpgY7Pb/ltg1HxOtvYTKlEP2qOvIpXbV7LXXT1BUVELu3EPCwtn2SxGTdnAK3NqFJEk4+9Vlv74R3eVnKXcOxda7riBFW7yGbFkv5iZYhX5bV/XTaUCuouTGHtCpIKC5GAA3HmUhgmpbkdet36AsO4VbHh34MG0BlN6hfEkrbA0G6Did0MBWXPediW2syFBRHZhD3KuHkX5IAeCAzTsM1XyMm6oSivLoEO7JH3F3ScvIxN0txfwxpfm3wK1m6fRE+Z+0ll1BffIqfZx8YfsCYQ3dPhUCN1FUkgVu983Aqz1g2CooyRaEd8ZlYU09t8K8iNsLK0Se0BJBpsx2nEmv/DW0kouB4F3XFvRqGIjc8zk4+hWF6iCcSlJ4Rn6eTlljiFO5kW9wIN3gSkvZNbyS00U+VuopIwkkQd+FgpD6TtgvY4BUhVV3pPPHwgIrE+3B9KPTAQShZeMgFC8hHUU1zNsnhWXS1llU3QzvZdmOSUUIIsMuog97WznR5tBwPikUBMaZxvM4u6eMT7y+ZHlnHQS2EfvoUps0uR/Hz1/h2Wh35L4x8OZFcKoltmUNv4bwbpIoynBhDXbyO4TZyJGu/wrhvTAM+oWi38SAMT4vXhBBte+bDOn/HV+uM4YZD18HWdcJbfuW5dQZ/3r4FWCIPUrLEKPSz6NOtWsDwG7kSsb9sIM5zlvwTt0Ojn4YitOpK7sLtbui8AwXluWen4viFLs/oExXDtgJ5YZfI6Eubf2m+IzyfJFtF9QOadRmHqelbGQVzhxqqvxpRWiHeTsy+7m2968GQIsQd1qECGJwXPsQhjT1R53ri/qnZ+DkfDj/E0HDLBNNL684y7CmAeayxl0ivJm7/RrRkjHQ9I9XwDtK5Mft/kBkJgJ1FbZCpWvCvtmofRuwWzWNY/oovjK9vmm8+P5dZuDpaIOSSlaoPsfpmbdxSTsE1/S43jpJW4UL7ppcFqm+AyDD4MJ2XQv8fUbS/MYGxiuED7WzQxZ78ywTa6bKVwC9FoucvW7Xp8POHYBEgGc93umzAE7sBKWate6ehLnVY09aC6Twbjy492aB99CF6L9uysLKb9koH4O7WvRJU6+fYatqOhma2bgEx5iJIBA5NSbLpwotm9Z8T137YqZeb4C3kxo3tQ3x9/L5SLGSm/l+pNCFVoqLHL7/wy9tEAVTgts/OCbBYEA6tojZtrGk6FTYqF+EI19x1aEVb+QMFAT/VxHUdw0C12BaRtZlX3wj+tpe4F6bWkg2DnyxK56bWSWMbB5A9tk/6OUkZ7uiKwkZegaoTsPKbyDzOlQUYpDbIOkqaCBL4kSiLSAG6FsupDGmdTDO9kpu55YS5uNIUXklC/cmci05lQM3i7BBWMlMKpSzKbmM+ElYR38+moymUk8tFzu8XTXkAb9d/43pTafibKfAw0FFdrGG7m7pcBew6jewb5b4G9BC2MhBxEWM2SGuX1vLBLAsqA0RyQcoM6h4VTuZb5RfY7h1gg9uhLG5fD87aUVZYCe4aVEyFmckI1pcURK8YYALw5r6M2C7UEMm+/WlwM6frITTdJXH8rPbZPTpMosdWWknzmHyYdbZzMb/mpBLvqaAxTdsyJfqo3LyJDqmGWvPpJJwKxXlnZN4OzagU+lOJit+x1sS5E+IdI/0G66csRlLWYWGtxQbiZTdQlU6H8OZQgxnLqGmDTsH2XDh6HY+OdeDTpynk+I8voZMJmkn0FkexyD5ET6tHMmNzGK8jbkv2y7e49sRlgyiNGMxAlulzKzYG9cumFfaizwZkzLVGvHpRaw7I9TiE+SbiDWEcVJfn34N/Vh3NpWr9woZv8qi1ErKKkFvAA/by/zmfJXm5w+h7PUFIZ5q/jqfRveFh+lax4GejUIYGKRhf4baTLAmZBbRwN+Z3BINUap0VN81pZtXBN1strJcOYwZRcLFYcoSbC27TGd5HGsrO+LY7X16H38O2dKOqJqMhj4LkBs0fKhcDZVwJXINypvnGAQMUoqKzXcMHtgNWMTpH6wqwpXm0Cd5Nqm0Y8Uv8fyYIgriFJ34FcS/lJVk0uTGYs698QFu2lRyOoTy5Z4Ecu/eoOmW7qxUejFGO7VKSPPB+CxiU/I4Pa0j+esn0lDWDO+I1hxJzDYHWp+7nceENedwsVcS91HXqi4SI3R6AwVlWpxzLzBXsZ+9FwOrvN+4tksVNZn5ngOMaFGb/DINq07eJsmYC3Urp5Rr9wrNasQ/zt3BTimncaArI42/5UPvdjRP7P2n4r9E0L8BL+wQPlvzrOw/hEIuY/aAKHydH64QSClIMf+vN+iRSTUMskGoZu5XeTwlWJdAftD77da2Y267uXQP6v7QZfXWN8snRLFWyE/TS9IfsaQVogYRXH8gY29m0yrEquKKvZu5jLlCXnOHxlnlTEFF9aC8J4atk8UuY0R+xZNV8HiqeMDg3WAwcKf4DgGOQup+t0gorwo1j08EPUkI49OAl6MtswdE0THMk1s5pey4nE6j2o9PBFkgCeUCEvoTltnxvPK8B6/yvwGNR0HSIXyH/lIt3+lBeL7XM5R37WgJn+44TYRPB7ZhgecnnE/OZN3LzYh0s5C66SXp+Kh9HrBFK0gSbk4OXPukRxVpsik0v0JXgUohY73tENro4nEY9rNFHenkJwa16ZfF/30WCEuadxRc3wp6IfsulSShMgkxKqmca8HL+4U9zPoYqD2wG76cegDLhXIkv80kfI4uEpYlwFZVlSiTfmgv/mkwDJuL21hnOxdp/kzQFNH72aXcVu7gFdUuxhQ7oFapKJFJlJ5fBbaecGwxhPcUA9biDNCUMkVpDIc/cNXyIU1Gi7yu5EMUtBwHGbtqPI44eIqHd32hgCkvEB38glSL8m7CGbgbizqtIS8ers2RFpfxOfsvBgwcAYHe4DMabh1nX/BH/LbnJD3CnXgp5V0ay0QHsMhgxyl9PUL6vCeUSCVZkHFF2I58G4gsrKPGYXariRT5hMH5+eK5sXodPOR3ZO8mzlOIlertIZMZJtSJaMhn+0bwhfJHcK+DzDsCOIektINQq8yHpi/hBwxuZKXkdA28f3MWyGRiwHZhDTQcjtR0rFAutXmTjHKLeiI+N54+IUaSa9QWYfms1QQcvFjIXWGVCA+vriA1IqqWM+c+6mou5/4gKNWuLH17BJT1EgH1jV9E2jcL0uJEqH+7KdBpukUlPGQ5pXFfgy4TnUwOrxysusEWxkkKq3PzKHg52lLLxY67+WVVsqj+DlzsVWDfBIavhd+eg/J8GjoWMr5DKPV8HHlnwwWW7zhEXSmLJhEdqO1uj6eilEaS0SKhKRZW++VGMjionTgOucmC3PNvIjJZjohrMEwGdWR3+QrjBIKti7heL/1Op5afccExhVbaq3DwZfF+wkokYJUCjuksRLy3lM8YxS44uYuuVj3uzwyLiFY0YmHlIAxWEyCBUjp+Ug5lBhtcU4zkUMxzwkL+q/GaeGkHn+5+HsqucvHNtY9/EB28kHWbTfSWSUQXzoAdM8hT9MPmaDF1ZSmEx04kZ/Qx5lJGOSpWKD8nPKw5TWO7ArBU+SUdMoXKfIGyJacjv+R8aj79ZcfEdwQ6yc6TLU/kMEaicuTvaHMSUe6cBiv6weBfBSF9YZ1ok4PbiTbL3kMo+PbOYCCAEvJvnIfKcrxHLqDNeR2V7rNRnFkKeSlQfwADGtUiWXoX1ab+TEx5g32Nv0FNGagcmOH4FyrVArgDDrVK8JaX8l7RcpD8BampLUVq8BxcXMsq1WekG1z5xvZVjsias3BvIgv3JrLzrXbcyimlSaArLUPcmf7nRd5PfY0fbDPQIeNj7WhSctpiX5hEyqrZPK+OYE1JU36Q5lFLlc3cwuEUBNljbsFmu0NIRzb1fQvZ/rn43T0nLJ0m5eeLm0UV2MiBoLQ3E+HiwrDYa0xQ9PwcDn3O63F1OKyPIckuio7F25itu4WTvJQ/NC2J8WkIUd+J4P2rfzEiYz6rfr7F88W/4l35Gq/rd9MkSY1K0jFdO5ZpL84jyEZBXNI98LVlWBZs/ulUlawrRm3h8vyeRBUbS77LFBQa7Jkk/51JcqACuNsUnddIxl+dhQf5hITMI+bGHrylfC7Wn0LdxJ/ojlD7tJffINhI2OYZHGguuwbbJtMNuGL7C2yDACBUf4QIlSBmtuhackLVGpW2kv7y44RKadzKicDXuebqbr0XHcKZYjaG7ufkjSzW6zrSs3570FWCXIEBAx4U4CIV8XUnBc8d9+f9Py4BBjwp4F2lqP6c9Not1EqJ5+V7+G3NBUykGgj1WH0phVL/1RxS2pGmUBC4diRjc+UMVGZy1+DOiDsH+DR5BCjXoHcfiatdf1aPimb4L+d47seTKBVljJN/DYVGazowXL+FhXQiD0dAwos8PlKsJB132r+1jKM5e/im02tMzM6CMz9BxhXGZF0375fyZvV+QGntTkQG+XLVEMgEzSS+nTEVkg/juHYEU5XrIR3Sas2n/zPt8F2/g3WI/kxRk1HYn1iC25U/AWg7/DyByq9xWyqslr7ybHbL3mNgxUxycCZUuosGBXcqPFm3eimjCzYToz7BH6H92HUlg3Wnb9FBdokLF3J4Tn6BQZWHyY23x71eW0jcA/E7oNtsUoslFuxJYHPcLc7YzMNVKubHA3Nxoj91a/vzUd9IGrpqeHHuT8gwMHrUOJo55DBDsZwvK4fg62zLjL6RrDopssIi/Zy4mVXM2GVn+P211vi52PH2ejE5sM6YD+pgo8Db6T8/UPq/RND/UjyOrzGpwOJNL9YW46T6Zx2xhyE+Nx5fB99qn2EiYDT6mj2cd4rvoNFrmHd63gOJIIOxFHBJ5eN5bGtCiUasm1v+ZKUE5TKJdnWfzFoF4GrrSrmunFJtKfbKh8scnwRFmiKmH5n+1Lb3tPDZ6c/47fpv7BuyDy97L7MF70mIIIC3u4Y9tIzy08YLLcXALsDNvkow4BPDwYvEvETOpp8lxDmEpIKkp0MEPibOZ57nhR0v8Hvf3wl/gILkieFVD14//kSrSJJkIYFAkC6dxPU6b1hzCkq1VQaEh+8cZsK+CXzX+Tva+be7f3M1osr2rWCykC557xWU8lerzjpLkiB0JJlFzRFmbG9avQ6bB0JeIiUuAVB0DYLaW9b1r1pG3hrWKsCCxiPxaTFBEEypJ6HH58KupK+EzKtCfaHTQo/PsYsciuNvg0Ej2jbFn+N4Qw6E9kRjSMVFoaKkPJuSG7vhotHKduWP6jvQYjzc3A96nSCB2kyC1pNAU0K+3AA7aiCC7odcIRSEUMV+iWcYeIYxJVpPp3pe+AT3g2YDLGoz10AYuwuPxCxOGwoYEtUA6pRQeeJ7Cnt8TevVxZRjQ0pT4+/KwatqRkiXGeLayLgCfg0pvmeVg2OF5IKnW6I2wteJebP/BUndwSUIKUNcJ852j1Y6PhJRgwSx0HqisB4bK4SmFVsUFgl5lrLyBLevsvqARtWrw9QEU/7EY8HOBYYYA/VTjgoiyCtCnHdrZVPkAMpKE+DqSsqtFTImuARA908f/3ON2DyxDXmlmieuLPNAhPeEN87Bdy1R/dyR94PaQcgIVJ1taXrsU7z0WZTXdYYjx/hFtQ6VVkt8302EJa0k8/omvHU6GLOzZnu6a5AgKJMOQOtJzFs0BzBaD6YkwOEv4NIGwnaN5LuH7GIb+RW2qp+lT/P6PL9LT6iUxkeue1iuGEIjeRKNy47jWZrCm4oULulDSDF440A5LzqeZaBms2VD9u5ChWbjAHGrhOLMO5pyjzDzIjXNnD8UjV4QpOz+2QC8rtgMOXBaH05zTTw+P0ZxxXrsc+UKjaVAMnGhg/wi31f2pV1ELfokfk/b8Bz2Fl5hYNb3pNvVJatES2d5HD+o6yLYANip0PFu/BL+emEDISuHwIG5FFQUcEeTT+T5VdX3z6s+x/OcaK09iUvxDWgyGvfACD4JBIiCZmNEGHaDYQAEN+wIOe/AkS95ZnsHrtgauODSBdWxvdBwJJlZV2iR8weNFSXcta1LrbdOiYD5I1+JzMy0OMiOx0fKY07F51y3iWK2rC/H9FF8tv06d/PLGNdIzTCPFAI7FBJ8SlhN5OiZpPiD42e60zn2dQbrcxjMLuZYHbsXnL7nLRtBiKlM0vGkg/gbi8Bg5yYqu927AK7BTEndgp/aj7drsofXBK96MGQZB2KF3db9mYnc2jqFdvLL3DF4cEwfSXcnW5Gz1mgkqdu+oP2ZOZAqJqXnM1Vsxxi52a//MHPVssahwkXQJBCuz+5ZTZEfPmIe5Ue/xja6P0T0Yfb6c0y4/BxBMqMF7O5ZPjQSPQDDk94DGXypHcw7Qz+Cole4cOUyoTtGEKyztPHT7T7Cu+gKuQZH3KVCptj8hbr1WDi6gAhZKlkGJ9Z5v8P823XpVteb09dEqPEc29XsSK/HTbWSb5ULOaqPptnHFTiio4f8NDMMK7C3qYBbcvyVCp5VnkC9/jdxT3phE+6ZJ9hnMwtnqRSOw8LmP/LlkUy+t/kafyzZRiHnPsNwcR1zlILe+8z+XX7IbYQn+SzTziPS5hY98AMUFIV1g4QDNKgsM4nNAPhAuQYDEl1zVrPcOY366y9yVllKcbmcF/zcmWJroFuhcY5r4FKUf77KFo9vsdeXUFmSixMl2EpaGLgUPFyZvU38lie+eFHkjZ75GSn0GXHeC+7AjqnQ/1v0mfFUNBqD3dklhLUV9ruJneribFdfZMuFPlPlHM/KmQIbMO6IkQiK7If3iSXmZWIOvUQjuWgj52uH0LdbV4IPTGCl6nP22HTmTa0oqnDbNhz9rXyQgaM2iz6qc8zAhufle/hEuZx8jZoShS21pBxY2xvqdMFwYx8SBpJvXGFg+mhKsaWX7CyuUjHpBldeUWzjFcU2tC69UdrOgIXtWaEy3ruOHobUk4xRQOMmLZAkCaVcMttOG/g783rHOkxYc44/4+4ypk2Q+TsJa6mBLa83N9v4/pPxXyLoKUOn16Ez6FDJRUftcTIe/qdg3fksrCj8HyOCKnQVDN4ymOY+zfm5+89V3jN9/wcdB9Ns78MGzSaLjWmgN3DzQJp6N2V6i8cnREyEVIm2hApdRY2VeP4pTIQVgJutuPnnVeQ9VSJo2ZVlnLh34tEL/htRqa/kt+siMPdu8V3cbd1JKxHX3pMSQZM6133q+/c0cfjOYdzt3Il0F4Ph9a+2Iq0sgamHplLHtQ4avYZP237K8G3DRVj4vwm7b+0G4FjasadHBD0BbuTdIMQl5MGqQ6CWix21XOyYdWIWiXmJrOq1irhMYe24lH3psYmg+2FSCpqutQeWkH1AaDmAXi+2URo1EKJdRQD6Y8C6jc2vyBc2rhavWIoEmIiPgOZVcrSU4V3gpZ1g4wQXfhOWLu8oaDsZzV/9cVM6cLc8m5LWEyH1CnjVF1lZDt6CrLkbCxfXQ9fZIhPHGu5C6p5/p5o5429BIZeZLTo1WQ7b1fVk11vtCfN2AN5C0fpN3GQyNkwseCBpZ4ZcKWxVQJG2qMZFqtl578Pd4rv42Psglz1+h00mk8y2sU4ueka3DmJCp5otVk8EpR10/qjayyYlah2XOlVz6v7d6PCeCGqu17fGt00K3tLKhyt5nwTuDjZPP2fBPVQolra+LapxXtuMlSEQ2/0fQ2U5EUBuw1fwjmzEBocsZpeeYaM8iLDaLWvebq0m4mHM6fuRLjgYiSCtTIbymQ9F1tSPHYSSwC0YSnPAvY74XWYn8ln5QE6kFBJYpzl9OrTk6I5tHCWatyd8yVgT2ViaS0V+GpnfD+An1ZeWz9cAchty7INxLUqgstMHqEykQMORQuHoGkzeP1EFy2QiR6zpS1BRSP4vg3EpSuT3uvNoHpEsCBJTAQ2VA2iK+cNmpnn1NbpnGD/kOfh6My5r+zEYQIKCVlMZvb2SgfIjuEQHwA3RJ3j3sMhruyppCBmwBPbOZLyzgssqH+LafIVilTEj7qXdoopth6n8fkQi5dJMng0owa7zjKr7b+NoITZN6Pwx2Lkh7RYZRDH5e8ErktT2k+m1ZSDv2JQxuryYi17dqSWTi0kA00RA108wrB3Os+UzGRFUQP+M71it+oy3NeM5khDNj8pf6HYiFk5AGxDKpUnn0F/+E++tb/LsKUFIfeE0jXcLPzPvUm7Hz7kZN9dy2BUqmFkAK58V5P3rJ0VhB4XRigzsOj4ZgLebmuuTPhZe7xjK/uuZBDRvT2pQewqTttBnk4pKFMZ2WSCg6wQ4IyqVxurr0kSWyBmPATQbNQ/KC2jp+eC+w/2Eo9KvAcqhS83PG9R2p9e5z6jj5cjmoe5i4iJ2GSfs2vNVZlPWuHyHsiyboGbGX6qjNzEtvdmVuYAuF6cgN070Vvo0Yll+ACq5DEdbBd1HzqJliDtpeSWcu3iBadpxjAyOhts36RXtS7CHPXEXW9C8/DSNrz/L1WuBNJQn0Vt+mk8My1Da6qrsd07r6bj5hSJtGCUmaDKvwi89mJp1Go1MiUFSIOkr6XThXTrZWMYlOQZH3KUiOPU9kmcEG2p/zDMZvzK19AcuySYy3uEokRqhLC7EHtCQ2/o1GLJG3K9dAvlj2XwGZn8vjr/nAK7dK+KFgr2gtEcTMRjXyyu5ZRo7jNmK293z0GAoUnEm/sZrGwlWV3bmR11vDjUYWuW7GQCp+6eiGq3pfBkMQk3mHYVMkrAD6GWJlJjS3eqcK+3IrTsPmGBlAAAgAElEQVSYE9dvk2jw5y2FmHzSDVsFp8V4q1hlD6O2ikm+jWORpZ0jXe7Le2UvclQfxbhmPTmZdov28Z9SX/sLJQYbltk8z4Tyn0EGc7Qjeb/2Vdy3juGCdz0U+YIEdJFKcKGEU/p6tJBdhxt7kYCllb0Yl7+dONuTnNGHoURHst4b7csHUB/5gHRDHobk3YR9K8hQfYvXkK78yVp9Ljfqt+Oja8eJydsLyc0h5SiOihhkmlIG5/5Ik0wPLrgq+eWoinBjxVQXijh6JpYWTntx/22aqITsbilH/5+I/xJBTxkzjs/gr5t/cfHFi0iSRHZZtvk9k5f434WMUguLnV6SjoPSARdbl4es8fdwI19Ir0+nV5/RNZE3pr/3I6tMVPF6kGIILAO8Ik0RWp2WxLxEEvMSeb/5+w8deFrDmoj64cIPTGw08bHXfVxYd55NlX7yyvOo5fB4s7yPA61OW+X5k1xTO5J30Mq31VO5BgwGAxq9Bhu5TZXBcEZJBpn2meYcoyfJCPrfgAn7RGCyyebZPNiN7r/PIK0kjWblzXBSORHqYhyIPyULn8Fg4Ncrv9IjqAd+Dg/I+rJa9t+NxLxEBm4eyBuN3uCVBg+vkqjT6/g94XdAEDim6+SftIvFGkHyPqiNeRyYyOZSyQDNxz32etYkxRMTf6bBaLfZ5pcySjLQ6DQ4O4jA8lL3YGhbQxhvYOsarQLWsL7+7m8nVl9bjZ/aj061Oz3ZPj8A4T6OlifGz4n2rxq6HpsRi96gp5lPzSSb6Tzev79J+RZlq1anRWllT80szaTHxh6MjRrLW00seTpPApVCVBJ6EO4U3aFSX0mQc9Ajt1VQUcDHxz5meovpeKu9zft8PkuEgTf2asyfN/58uFX7fxIKlcjtMuJcxjm81d7me5Tpd/B38s2SC5IZv2c8v/b49ZHt1FOBdySM3QUzjdeZjRNE9BPf8ayYhabnv9jl5MDcde2o4yKIvqS2Ewh7zPZGkluOQ2FFIe527oL8mZpise0YDOJhfO64P5GLyQnUs61q3Xe0sepu27thY+/GiTZLsb82A/f8C5b3xu3H3TuSjfHrmXlqDnvq9xbWWUkyE7G5hU9BJWfvBvZuuLxxmJS0e8zyCwJVJ2j0IlQUigGyTzSsewGSDwFQ3HQif3QcCSob0W5tHAsyBQz6GZ/gXuRs38NSXR+m2Fffv2lHppEY9RKTpyRweXk0AFk+Ufj2WQBqL6jdAmoL8mj2gEpORC1hi+II7Q0aHsM4LFR4IR3Fvt89BzHDSckTttmdQa04cKYhXeoMrL5eeA+00zJJ++IQhfVD+NavFz3PjOEr1fdUGmQoJKtIAnt3ERpv64wszKJg36prgTx6IHSaDMv7gr4St5YjKLlgIYbK9VqKNcU4PPebCJp3rqrqv79v9ySY2qMeU3sIZUyAlyt4vUj+JjEwbhJoZXdX2VPaYwGL91zjUq2BlN/ai6e/nCYOXsgcH+soPxAjmtfGRiEj2EMN/m5CSdv9UyJKNfQ5n4a86QRIv8Cg2lWD4bv3GwH9RpC1oC1/5fjTPMSTch183Kc+db0t9xVljzlMjN1LhzBPXu8USoiHmn4xfkJF2Ws3v635heEJk2koiftFBTbcVgZyrDyIbIMz5ahI9TtIHQct79brw4YWI/kk8winPLpgf/lPpOD22AxdKeIYdn0gLEkd34f6/em2+ATFJSUcb3oILm+EkRsY4hIAeZ1h1SDWaOaCBr6r7Mf3lX1xsP0BdJnCgSBJwoIK7HYeaiaCpt9pSaZtMMNHT0Xh7IvapTb9LjcFBDGc6eiJm6k6b+uJ4BOF/uIGZhvG8uspS+i1dZ+voKJA9O/vV0P7RD/2eSzp+TUTLom8qKjhn9ElSEGJUgXG4V2RpkjYOUGQt9kJ7ElQcGj7TUI91TjbK2k6cDLfrfGgV60KphwopWfXgRA+ng8WLmGN7hk+fOlLOPENqvh9bMnx5jtdP95Q/Emki55vbd5gYdplflMJ9emnlc9zVh/OG4o/aSYTatojoe/QrnYtGLmM1sujwd+XS8mpMGwVsog+0PNz5i6PhrJbfPjMR0j7ZpotwT8Y6pCldKTJnTi4A9OB4xVzmLCimBHyI8xULCOjEnoF1GKGVmKBy0Ps4P8h+C8R9JTx100h488tz0WtVPPuIUv1mmNpx3C3dSfCvebw2xt5NyjWFtPQq2GN7z8pMkosRNCYXSJnJsAxgGU9luFlX3MZz7+D6znCi1qT4uhhiqBSbSnZpRairFBTs2rJNMArrCg0K01AqAhiPGOqLV8TirXFqJVqSrQlLL20lEZejf62AqEmzDk5h8NWM/AmIuhJrWiPQrmuqmS/UFOIs03NVa4O3D5Afff6dPm9C282fpNF5xbRrlY7vuvyMFH742H5leV8Gfslx4cfJ7Uo1fx6RmmGOSjatH9/F2fTzxLpEYmd4tHVsm7k3eBG/g16BNecq/E0YD1QtUalQZAZsRmx1HWpi53CDjuFHfnlT4cISipIYkHsAg7cPsDKXjUHgFdUChn+/438KBMZcureqUcSQZeyLTlpmaWZZkXgP8lTMl1jj0s66vQ6ZJKsCjFisp0+qRLC+tovKP9nVsCT904ybrcgoVr5CdvKozLWHgbr6y+jNMOcw2QwGPj89OfA08utexyM3jkagIsvXqSssowDqQfoFdzLfB5Mqk0QKlNbhfBYxOfFm1/Pq8gjuyybcNdw5DK52Ta27/a+v00EPQo9/+gJwISGE8guy+bDltWJOa1ey9abW8mvyGd/6n581D5MazENgC/OfmFWTIa7haPVa8kqzTITRf8UeeV5yCRZjfeB1MJUFsctZlbrWdWUqXqDnlE7R2GvsOfUSBGMabr+S7WlxGXGsfraaj5v9zkK2aO7imuvryWtJI1tSdsY1+DxyVQT0kvS0eq0BDgFPNmKQ1fAqR/hxU1CYZYVL6xPIZ2g2Vh27hDVOW/mi7yNJ2lr3u7uzw9GJ1+hxkgEQdXsFkmqMvB6vWMdQjwdiAkQEy6DGvuz8dydGksjD+3eCbq0g+x4+Kkr9FsMPlEYDAZmnhLKjWs516plqOVYZU79HVKxVFvK1qStDA4bjExlT1CQ1Yy3XCFIoiBjiPezPwj7VHB7HGwcMOtLogeLohlyFbgGYn31aXQ1T+z9cvkXJjeZbH5+t/guvk1fqrac2kZBRKCeHhtn08CjAat7r662TI0wVU01kuRZaWKi0cbWjt4DX6DbA6reqlRKDk/thEouY+kRA+O1b7HRaQHXylw5Xvc93nu+DxTcFWokU1izky98kI5OZkPA3Xy6+DqDQg6jt4v35QoyIvvhl5/AG40nMe3INDJLM3FwCalGAoFlUhTEPepJFI41YesbbXFVq6pNsti3fIn3Wgii/aUdKzmWeYRL2b3Nfen88vxqk4X3iu8x6cAk5rady97be3k+4nkcVY5VlpHLJIY2rf7bdbFXMap1kHhyHwlkDfc3j+B3JZ0uEd6Ma1+9sI6now0bX2tFpJ8ztko5Q5tV/ayhz43h1kE9bsENcQxqgo0kEXc2lZm/Gysno8fR4QjHE1bzbqv3WVwg7n3JLV8mqNsc1EqrQODun1axwf42uS+ZRSX8mW9D3y6zULgYP9s1ELrOgrUjAPi1sjuFqPGzU1JUXL3/H+huz1vXXidYlk6qIogFgxqgCLQU4Qmo24BkY6XzzNJM6rnVs6wc0hFZSEdmABO6VmDif6zvm1llWf94otfLyaLerO2hBrUjRVYqVuvPQ6ECnyh6O2rYf7OQD3qLsa29jZLXx4jf9YqOldgp5SBJtHluKk20OqGcbf8uqrZTmDp9O+PaBaOo1ROnIDcWKuU0nm3gA+1L3NDX4sshMbyzAcoCe/Kj72Zs4v+i3ZDq1ekMk6+Akx8SVY97XvRA3I4vhrJcaDWRmBPfVLHpAWxWfYQWBTaSlkRq8y+pMXCOeEf36oUh/gPxn/8N/y8hqSCJ7LJsruVeM7/22t7XgAd3vp/dLCpDmdRE/xTppel42XmRWZZpfi21KJWDqQcZGj70IWs+GUzfsaZ9NjUaVRoPhKWi+8buOCotN5PL2Zdp7Vd9ltusKtIWcafIQjLEZcQ9NhFUoi2htmNt875akxVPA+vi11V57mb0hT9tIuheyb0qz3PLc2scAJzPPM+kA5PwU4uZ2UXnFgH35VP8A/x6RUizr+Zc5XbRbfPrmaWZZjLPUeX4t1UatwtvM2bXGPqF9uPTtp9WUwJYQ2/QM+3oNBLzEmnn367qDf0JsOzyMm7k32BO2zk175PV9yzWFONwXxiw3qDHVy1u6s42zk/NGpaYL0qXppc+OOjcpP5LKkhi8bnFjIkag6PKkazSLOwUdtX29UFYH7+e9JJ0JjWe9Nj7d7vw9qMXMuJshiUz4E7RHfP1nFma+aBVHolHqQ6tcTD1IO8eepc+oX2Y0cpiOTBbYox/tXot5zPPm9UrZ9PPEuQchIedR5XtpRalopApqNRXViPhijRFxGXG0d6/ag7MgxCXYamA1MKnBZsSNz2RtVir1zJm5xhG1BtBr5BeVfan6+9dWd9nPddyr9HC19IZ/3epVK1nu1MKU1h9bTXr4tfhZe9lPsbW569YW4ytwhaDwUBCXgKOSkeKtEUcuXOEmSdmmtVn1gUR/idgXaDg2/PfAvBe8/dQyqq2Rb8n/M7cU3PNgyPrip17b1lKMpuUMmklaf+YCFp2WUzovHfkPdxt3Tk47GC1Zeafnc/+1P10rt25GkluIjGtyU9rRdDkA5PJKc9hTNQYsxX2YTCp+/6uHb7r7yKQ+InJyfr9xcMEz3C0g8X9yfosmazbpkIGj4MwXwVYEUGPA5lMqlJhdf6QBvxrcIMHryBXCKXPB5ZJLuv+SXJhMp2oqtzLKbMQQYUVhY8c/F3KukSYW5jZEr84bjGrr63G296bDgEdHrouTr7iURM8qlq5Xe2V5JVqq01YWeNqjiXc3npi737E5woC+FbRrYfv30Ng6i/qDDqGNg3gZv5NsisM1HGtbgM1ZYGMbhOESvEMzi1G01omo52JwHOuQdmttEMOxNR2s7xmNXDMqCzBR+1LsHOw+E558Q+sHmxdyCS7LBtvtTdavbZaW/O4iKpV8wQhWPrqxZViIja5IJkYzxi2JW3j/SPvs6HvhiokxNakrVzPvc7AzUJRVVZZxttNnsy+dj9KtaX/h73zDo+iWv/4Z7amVzpEpIYm2NGrVxRFufYK14oF+7X8FBW9VizYwS6iAiKCIEqR3kMJnQBJIAkphIT0tkm278zvj9maRgKBeOV8noeHzezs7Nmp53zP931fgnXB3rbUvW4a4rzuMY2+p9VIdB8+NmDZHed1I8yoo3tsCA7KuHeVulxWZG9+v/e2vkdGZQZLb11a7/nuITbMyKz0KUzdPxXtpe9yY5SfCBV/Ldw1l2Rbe0pmFdA1Kth7Hy23BPb//29EX1Z3e4rrzurMk7JSr0DK+GvjSXCnCGuqT9TOL9S2xOwTEEssJciKzE+pP3FF3BVc1f2qhj5ejx2FO5iXPo93L3kXo07PmueHsSWzjD7uqlv+k6AN9bNiQg1Me+DCessBQgy+66Hu8dVqJLInXttgH2SW6yp+vP98hvfryJntQhncLRK9diiMfNsrxPtPdl30562c1/E8Ph72McN+9d3Tcu0VvDR4GFd3upg7znmUXzamcL12K5Z/TaZj6Ta47EUOLPmSjNTd7A29lPTIf7DdtIYgdiO1YlqPvzJt4E3+++I/e5tVmRUw++1PQ/lw/D/rGfidKEW1RWqZ2jqcqBiQVZXlfUjLisy6I6qNsMpWVW8G2+sIsgd2DtcfWQ+o4k6UMQoJiX0l+2gI/4Ge58Fu1BrZV9rw+nWxu+yUW8u9Fa3A18loDRoSe/xDw1qTulXPGkuk6hlw1+1ouRRXQ6u3GM8AaX/pfnJNuQTrgokLj6PIXER+TT4SEn2j+x63I2jL0S3e/xceWsiwX4c1esxWH17NwfKDuBQXu4p2NbjOsXDJLj7Z9QkLMxcGhLp5MDvMfLDdl4vFc40qioLF4Qsf8MzcRhujWy1ZdHq5er16BloN4RGCEvISmLp/KtOSp2F2mBk+bzgPrniQhYcWsjFvY5Pf45SdvL31babunxow0DgWHkeQ/4wmqIP/qfumcrDcV70iqTjJ6y7Irc7lsEnt5HvciyllKSzOXHzMweSsA7OYsncKiqL4HEHNONemJU/D6rKyJGuJd9ba4XLgkFWhwjMo/mL3Fzy44kES8hLIr8nngRUP8Miq+m6nvOo8ekT2IEQXUk8Iem3zazy55kmSipOO2S7whdgCnN/pfEL0IS1yKO0o2MHekr28tPEltW11xO5Rf47ijS1vBAgTdY9Za1Nlq2Jn4U4yqzK9y5ZmL/UOBv2v14Y6m0XmIsqt5VzURQ2jW5Sp9pI953K2O0TmRJxToF7Hn+3+jFkHAp0HnvPTH8/16I/nHPe023/CwiNAGDQGrxDkcaccL1mVWXyy6xPvsS6zljXoWPScky8kvBBw3IGASSrP/vPcyyxOi/fca+7569lX/se6ufgPLvz3nT8Ol4On1jzFjJQZTW5LVmTuXHIndy+9G1mR6z2fW5Kjyf+ecrxhzpIkoW3ADdQUOwp3eF/XPVcOmw7z+pbXvX83NtmUU5VDSmkKKWUp3LX0LiYkTkBWZEotpWRUqM+vvSW+kLRqe3WLqqrmmnKZnjw9wP2T8OIV7HltRKOOIIDRf/pCE5s6Fh4noCd/m4fC2sJ6z5TZB2eTV53HxryNAaEynu0X1hbilJ3cvPBmbll0i/d+3xBGnZYHLumBXqdFq5GwuWwsy152XAJnsbmYjiEdiY+OJ1Qf2mD/JKUshZmpMwP6ank1eby++XWG/Tqs0euhNfAIFp6+1cJDakTDutx1AevVzdPmmfxZnLmYTfmbvMuLzcWMWjyKFTkrWJ6z3Ptc35K/xXvvBvW6umLuFby6+VUsTguLMhc1eP+yu+wU1BTUW95cJEkVlwZ2icQk+/bjkeoj3vvbvlLVoZrQRE49u8vO0mzV6bW3eG/gm5IEfa+he5+zOCMmhA9uH+jt99e9NoP0Wq4f3AVJkhqskhsS5BNQmzs55n8NPbrqUW5ffDuLMhfxYsKLzerHlVpKGbdhHMuyl7H56GYAerUP496LunsFGv/784mE4AOklKYwfuN4775paiLKU2DgvO7R6LUaVuas5LG1T3DYdJh1ueu8z39Q+24b8zfyZ9afAdtYnrOcrcW7mLDvSwBecY5lqO0rIs+7Q60eG9GZiGv+y7OO/9B3+L1Uu/RoDGq/qK6B4e+K1BY5Jfxo0y9vLUbOH4nFaUFWZG/HK1gXjFN2NvjAiTBE1LNauxSXd+AYpg/zJps+Ecqt5Tww8AGve+PaHteyu3g3pZbSE0ocXWWrQlZkooOivb95eNxw1h5ZS5QxKsCmXGmr9IoGngTK4EvaDHB2+7OpcdSQa8pt0LlQYa1AQUEjaTBqjciKzPC44aw8vLLRsCh/TDYTTsXJw2c9zNT9anI7nUbXasmznbKz3iB03337OP/n89FqtM0KbWouFdYKLup8EfcMuIf3tr1HqaW0QQdMjb2m0bxL/sfhePHcxI1aI4qicEbEGUQHRbOneA9aSUt0UDSD2w1mTe6aZh2jupgdZqwuKxKSdyDlCbmqS62jls6hncmvyUev0XtDSlqC/7Ubrg+v5z6yuWzejqDnPPS0xf9h/+y5z/LQWQ/xyMpH2FG4gwjjiZ9j/seysWPnf50B3v1Q96Hd1LE/1j5oDJPd5BWp/LfvkB3e7/fc86psVVzb41qWZC9BJ+mwy3YMGgNOxUmUMcq7L0N0IU0eR896MUEx3tdaSXvMc63cWs6Q9kPYW7KXSGMkWkmLoihe95bnvuDZZpA2CK1G6z32dfefyWbism6XkVaRVu9a9GyjsfO2LiabCb1Wz6i+oxh3wTiu/u1qb4hxc7A4Ld6OfUxQDBXWCi7ucrFXVPWgk3TecMaGnkWtiec6DtGpolavyF7kmHJQUJAVGYPG4L3n+z8TPO2yuWzYnDamjJjC0+ueDrgGo4xRzbo2moP/OdDQOXxJl0uoddSSVJLU4PPZ/xrwbx+o58GovqN4YNADdArtxB2L7+Cw6XC90IqW4L+vPDR0LOveFzznPASeL57lVbaqepMFQdqgZhU88HyXTtK1+L7n/wxt7N7jv05z72NRxqh6Am1L2md1Wr0DxtbqlzUHi9NCiC6E3lG92VW8K6Cv4ukPeWjsGq577EH9Df6DG71G7z0Pq+3VOGRHs68jz7nS0PFqqv/hT1Pnlv857t8mz7XmWVZ3sB1tjPYOLv2vy0hjpLeP7X8dHAu7y06No+aYz6SGKLeWM2bAGMZdMI7HVj/GtoJt9fqd/n0pz+8N0gZhdVnRaXQYNIbj6tM0t33gOw88x9T/vgy+PrQHz7PW/zkMgf0k/+3WXc/hcniLA3hSNjS0fz33qLrjiuPBv216jd47NgvWBROqD6XGXtPoueh5DmgkDRpJ0+TYwf9Z4n99NQf/cWBz77sNCcEfD/uYcRvGNasfZ3PZcMpODFoDTtnZYF/F/3jBiT1rPfevUH1oo0V7ymvsyEC7sMD7bd3fGqwLrpfPzuPQ9qCVtN5nWkxQDFaHC4tDJjokcL8oiqrpmSwOHIoFSaNuY8udW07oWf0XolHFTYSGtQJXxF3hnQEJ1gXTJayLdxbnup5q7O1XSV8Rog/B6rQ26hKJNEYSZghrkXW5KbQaLXfE30FscCyVtkqeOPsJkkuT+TPzz2N/uAk8nQ7PxRZuCOfeAffSNbyrN1eJP4PaDSKlLKV++cmYeLKrsrk87nLsLrvXJVQXSZIY1G4QyaXJKIpC/9j+nNXuLCKMEc1KjhukCyJIF8StfW6lc1hn9Bo9+0taNzdGpDGSjiEdiTBGYNQakSSJ8UPHe/MntRaSJDEqfhR9o/vSMaQj89LnNboP4mPiyajIoG9MXzIqMugd1ZusqqwTSkroQa/V0zOyp3cm6dKulxKsD2ZVjuq9vaDTBXQK7eQdDB0PfaP7klWVhSRJDIwd2OjMtCRJ3NjrRjIrM0kuTT7u7ws3hBNpjGx0Bq5zWGc6hnSkZ1RPFmQs8Hay9Vo9vaJ6cajiENf2UCtiPHTWQwEOtBMlPiaezMrMRl1Bnn2UUpZCn6g+ZFRmoCgKncM6Y7KbMGqN6kDqGLPakcZIQvQhLZ6FGxA7gLSKtIBy6gA9IntQ46ih3FqOS3YhSRL/jv83g9sPJqMig/6x/RkYO5D5GfNRFIVOoZ3oGdWTxKOJTV7bscGxaCUtxeZiNJKGAbEDmnXsDVoDDw56kNkHZwc4tnQaHf1i+nm3IUmS95gCdI/oTkFtQYMz3Tf0uoGC2gJ2Fu4MWK7VaDkz4sxmuz8kSeKWPrd4w3CeOfcZdhftbtZnPfSM6kledR52l52ooCgeGvQQIfoQfkv/jayqLDqHdianKoczIs6g0lZ50pO5azVa9Bo9VqeVDiEduKXPLUxPmY7D5aBPdJ96Lr++0X05Un0koHN3zZnXcGHnC/nxmh/5I+MP+kT3IaMiw3v99Y/tT0ZFRpOOuebgCcWoa+dvF9yOR4c8ikbSMD15ekBeKA+SJBEfE09aeRoDYgeQWpbqPX8NWgNjzxrrzS/zxfAvmHVgVpOuiWOh1+q5pfctrMhZQbAuGLtsr9duUAWp+Jh4JCQcssPrBPHQM6onRbVFAYO3Qe0GkVqWilajpUdEj2Y7iCVJqvfbW0J0UDRBuqAm7z3dI7pTaas8ptvSG4JXcxStRkt8dDwHyw/SP7Y/KaUpLWpXXHgctc7aBvfvyWRo56FEB0WzPHt5wPLY4Fh6RvWk0lrJ0ZqjjTpVIo2RdA7rTFp5Gj0ie3DYdBhZkYk0RmKymegb0zegf2LQGtBr9M12vui1etoFt2v0eA3pMIQaew1Rxih6RfUitSyVYnOx+nypLaB7ePdjnlvxMfH1+ix6rR4JyXv9hOhDCNWHUmWrQqfR1XMHDmw3UHUMyy5ig2ORCCzi0hwijZGY7KYWn9eSJHFrXzWc6vEhj9M1tH54WZAuiEhjJEW1RcSFx1HtqKbSWslFXS4iRBfC2ty1LfrOlqDVaOkb3ZcDZb70Dn2j+9a7L0uSxM29bya7KhsFhX0l+1AUheigaJyyM2DCqX9sfzIrMwnSBWFxWnC4HIQbVEHC/xqKj4mnsLYQk91EdFC0KhDU2b9ajZYwfViruavjwuMw2U1U2aroH9uf9sHtvaLhhiMbmvzs4PaD6R3Vmz8O/XHM80Cv1dM7qrd3v7aEIF0QceFx9e7VjSFJEleecSXZVdlIkkS0MZprzryGMktZs/seV3a/EqvTyub8zY2uE24IJz4mnt1Fu+sJzC1Bp9HRI7JHk7+v2ubAZHHSNSpQlPLsm+yqbAxaA2aHmfYh7QnRhXBV96tYlr2MozVHiY+Jx2Q3EaQNIrsqmx6RPSioLcDqbDxk1YPZ7iS33MzQ7nHUOGqadA/+XRCOIIFAIBAIBAKBQCAQCASCvxeNOoJEjiCBQCAQCAQCgUAgEAgEgtOEtg4NO/nlSk4RkiQ9oijKd23dDoEPcUz+mojj8tdDHJO/JuK4/PUQx+SviTgufz3EMflrIo7LXxNxXARtgQgNEwgEAoFAIBAIBAKBQCD4eyFCwwQCgUAgEAgEAoFAIBAITnfaOjRMIBAITktsLhtfJX1FlO1aesbGcHl8h7ZukkAgEAgEAoFAIDgNEEKQQCAQtAG/pf/GtORp2EqzsZeMZO/rVxMZom/rZgkEAoFAIBAIBIK/OSI0TCAQCNoAs90GgCQ5Adh0qLQtmyMQCAQCgUAgEAhOE4QQJBAIBG1AVmltwN9FJmsbtUQgEAgEAoFAIBCcTgghSCAQCNoAo04b8HdRtRCCBAKBQCAQCOmWFTAAACAASURBVAQCwclHCEECgUDQBjhdivd1l8ggSky2NmyNQCAQCAQCgUAgOF0QQpBAIBCcQmZuPcye3ApcsioEDe/fno6RQRRXCyFIIBAIBAKBQCAQnHxE1TCBQCA4RVjsLl5bkAzAHcNVISg6xIASHkRmSU1bNk0gEAgEAoFAIBCcJghHkEAgEJwiUguqvK+PVlgA0GqgQ4RROIIEAoFAIBAIBALBKUEIQQKBQHCK2JfnE4IqLWrZeI0k0T7MSJXFgc3paqumCQQCgUAgEAgEgtMEIQQJBALBKeJgQbX3tdmuCkFajURMmAGAilpHm7RLIBAIBAKBQCAQnD4IIUggEAhOEUXVVqJD9ABYHDIAGg3EhqpCUFmtCA8TCAQCgUAgEAgEJxchBAkEAsEpoqTaRvfYUADMNjUMTCtJxIQaASivtbdZ2wQCgUAgEAgEAsHpgRCCBAKB4BRRXG3jzNgQACwOXz6gGLcjSAhBAoFAIBAIBAKB4GQjhCCBQCA4BbhkhbIaG92iQ9BIvuUKCu3cOYJKa4QQJBAIBAKBQCAQCE4uQggSCASCU0B5rR1ZUUvFhxp0Ae9FBOnRaiTKRY4ggUAgEAgEAoFAcJIRQpBAIBCcAoqrrQC0DzMSYtQGvKfRSESHGERomEAgEAgEAoFAIDjpCCFIIBAITgEl1arbp64jSFEUADpHBnGk3NImbRMIBAKBQCAQCASnD0IIEggEglOARwhqHxZEsEELSAHvD+wSQfLRKq8wJBAIBAKBQCAQCAQnAyEECQQCwSmgpEYVgtqFG+rlCAIY2DWSSrODvArhChIIBAKBQCAQCAQnDyEECQQCwSmg2GQjzKgjxKBz5whSnT+K+/9BXSIAOFBgaqsmCgQCgUAgEAgEgtMAIQQJBALBKaCkxkaHcCOA2xEUGALWMSIIQCSMFggEAoFAIBAIBCcVIQT9TThcVkt+pQgpEQhOFatSi7jn+2245Obl9CmpttHOLQSFGLQgyQHvRwTrAai2Olu3oQKBQCAQCAQCgUDgR/1EFYL/ORRFYdhH6wk1aEmZMLKtmyMQnBY8/NNOAMpqbHRwu3maoqTaxgB3+Fd0qIG6jqBQgxaNBCaro9XbKhAIBAKBQCAQCAQejukIkiTJJUlSkiRJyZIkLZYkKcrvvYGSJK2VJCldkqQMSZJekyRJcr93vyRJXzawvX6SJCVKkmT7+OOPA96rrKzk9ttvp1+/fvTv35/ExEQAysvLGTFiBH369GHEiBFUVFSc6O/+W7E3rwqAWrurjVsiEJwe+LuAPEmgm8LpkikyWWkfpjqChvaIQZIChSBJkggP0mOy1BeC9udVYXWI61sgEAgEAoFAIBCcOM0JDbMoinK2oiiDgHLgSQBJkoKBRcD7iqL0BYYA/wCeOMb2yoGngY/rvvHMM88wcuRIDh48yN69e+nfvz8A77//PldeeSUZGRlceeWVvP/++839facFmzJKAGjnHmQKBIKTy7LkAu9rT1n4ptieU47Z7mJojxgALuoZC8j11gsP0gWEhm3PLuf8d1Zxw5ebeGtx6ok3XCAQCAQCgUAgEJz2tDRHUCLQ1f36LmCzoigrARRFMQP/AcY3tQFFUYoVRdkBBEx7m0wmEhISeOihhwAwGAxERanmo4ULFzJmzBgAxowZw4IFC1rY7L83R6usAKheLIFAcLKZmpBFkF69fZbWHDu586rUIoL0GobFtwcg1Kjj+iGdADW000NEkD4gNGzO9lzv9pfsO9pq7RcIBAKBQCAQCASnL80WgiRJ0gJXorqAAAYCu/zXURQlEwiTJCmipQ3Jysqiffv2PPDAA5xzzjmMHTuW2tpaAIqKiujcuTMAnTt3pri4uKWbP2k4XTLfrM9kQ3pJm7Wh0C0EVYvcIgLBKaHIZOPK/h2B5jmCjpRb6NEujBCDLy1b7w6hgK98PKiOIJPFiaIoVJrt3gTSACark6MiIXybYbY7m3WsBQKBQCAQCASCvzrNEYKCJUlKAsqAGGCVe7lE3WynPppXRscPp9PJ7t27efzxx9mzZw+hoaH/EyFgWo3E1I1ZbTpbX+AWgqwOGbuzfrhJY4yeksjMxJyT06jjwGJ3BbgjBIK/KpUWO12jggkxaCltRo6gSrOdKD9RB0BW5ID/Qa0cZrI6eGtxKmdPWEVehZkzYkKY8eCFABwpN7firxC0hDu+TeSCd1e3dTMEAoFAIBAIBIITptk5goDugAF3jiAgBTjff0VJknoCNYqiVLe0Id26daNbt24MHToUgNtvv53du3cD0LFjRwoK1JwcBQUFdOjQoaWbP2lIkkT/zuEcLGzxT241ikxW7+tqq4MtmaXU2pouQe1wyWzLLue1hSknu3nNwmx30v/15XyyMr2tmyIQNInV4cLqkIkM1tM+3Ngsl0iF2U50aDOEoCA9FWY707fkAGqOoHZhBs6ICQEgryLQETRv5xGySmpa1H4hth4fKUdNQGCicIFAIBAIBAKB4H+RZoeGKYpShZrkeZwkSXpgFnCpJElXgTd59OfAh8fTkE6dOhEXF0daWhoAa9asYcCAAQDceOONzJgxA4AZM2Zw0003Hc9XnDT6d4ogrbAap6v5bpzWwupwUV5rp2d7NczkQEE1d03dxqsLkhv9TEGVhSs/2XCqmtgsqtyVkn7YlN3GLWkaWVb4aMVB8iqEM+N0pdKsnqtRIXqiQwxUmI+dI6jS7CAqxBCwzKW4Av4HNTSsyOQTlkxWJ7FhRrpEqeXp/YUgu1Pmhd/2ces3W5rd9pJqGz1eXsqvO3Kb/RlBIM1xgAkEAoFAIBAIBH9lWpQsWlGUPcBe4N+KoliAm4BXJUlKA/YDO4B6JeP9kSSpkyRJecBz77zzDt26dcNkUmdav/jiC+6++24GDx5MUlISr7zyCgDjx49n1apV9OnTh1WrVjF+fJP5qE85/TtHYHPK5JTVnpLv+21XHiMnJwA+N1CfDmEAHCxU92VGceMOpZ8SD5P7Fwsx8VRKsvzFS2RnFNfw1bpMnvxlT1s3RdBGVFpU4Sc6xECYUXdM952iKFRaHESH6Osth/qhYXWJDTVg1GnpGGEMECCLq9Vr3yNMNQfP/WLa5pxmf0YQiL8DUyAQCAQCgUAg+F9Ed6wVFEUJq/P3DX6v9wOXN/K56cD0BpYXAt08f/q/d/bZZ7Nz585624qNjWXNmjXHamqb0dstwuSUmundIfykf9+4eXsBqLE5vRWFerYPA4q8IWr+SWnrEtnAYPNkYHW4MFkddAgPanpFRaHWVEYHKrhQcxCUa/+yJdA8iX1rRGLu0xavIyhYT6hR22Ro2Jgft5OQUYKiQHgQzEydyZ397kSn0fkcQbJP/OzuDgEDiAjSuR1BqpOoW3RIgCPoeAQJT1SYf4n6tiK3zEx+pYWLe8W2dVNahL9jSyAQCASCvzrj5u3FZHEw5d7zkP6i/WuBQHDqaWn5eEEDdIsOBiC/rBK2TwXHqZkxLjJZKXOHKfSIVUPDPHksgvTaeusrikJyfhUW+6lx3Tw4fQcXvtsMAW/vHM6ZNYTtQU/ypeELKEg67u90uuSTGrphc6jujabSrFgdLmSRR+SkMG7eXkZ82rZhjZVmB49oFxN3dCmhRh01TTiCNqSXeM+VdOtyPtzxIXPT5gI+J5B/aFh8J5+Q/O8LzwBA6+60xUUHk1fpcwQdjyBhtqttNVkaFjK3ZZWxIqWwxds9Hq78dD13Tt16Sr6rNSkUjiCBQCAQ/I+wvWA7fxa9x8rUAtantV2FY4FA8NdDCEGtQEyogWC9lk7ps2DpONjyRb11ylpRnDDo1MNWZLJSVqs6gnp4cwSpQlBCekm9kva/bM/l+i82sbhOhTObs5WEoYX/ge9HeP/cklnKa7qZWLb+0PTn9s8DYLnrAgAsWYnH3YTfduVx+Ufrj0vsOlRczZJ9BU2uU+seSLsaUYKcLpl+ry3n3aUHAHhubhJnjl/S4ra0OYdWw/JXmla8AGQZKnJa9avLa+2NJjT+bVceGcUtS47c2sglabyin03c2qcINei84sqxCNGrLr3cajU/T0PJoj3uQoBxV8fznyt6M+qCOEB1BBVUWr25yAqrfIJEcxNAe0IvqxsQr6wOF6O/28qjM3edknxnDpfa5lMlTJ8I/gmiC6ssTawpEAgEAsFfh2fWPYM+PBU01oC0EGsOFHnzcwoEgtMTIQS1ApIk0S06mJ4la9UFqQsD3j9cVst576xmakJWq3xfkFsIKjbZvALTWV0jiaqTg2TMj9tZnuyb3c8sVnMYZZUE5jKqqG2FB4G5HPbMhLztXkfUpZpkHtItI3j5c5C3C1lW6g+azeWQnUBqj/t5zPF/HFVicGZuYHlyIT8l5lBee+xEvP4crbRQY3NScByDtRlbDvP8vKQmB9VmmzpodboaXifVLcR5kl7/vju/xe1obeZsz+XM8UsafeA7XDKrUosCf/dvD8HWryDzGI6uNW/BZ0OgKq9V2lpQZeHct1fx7Yamr5VTWrnp6B7Y+aP3z65Zc72vh5gTqbUFChl2p9zgORQTEglAiVkVaBtKFu3v5DPoNIy7Jp5u0Wq4WLfoYJyyQpE7FM0/NKy510lTosv6tGLv6715Vc3aXmvgddiUHjpl39lSqv1CQZfsK2iTwgACgYd1acU8OnOnqAAoEAiOiVGrpmeQNHavg7mgysJDM3by/Ny9bdk0gUDQxgghqJX4Z0gufaz7MUshULQfbL5kzduyywF4d+mBeiFDLRnQrjlQxCt/7MegUweLRSYrpTV2woN0BOm1tA8z1vvMYz/vIqNIbUtYkC9v0Pndo/nm7nOB5g8iG2LvkUpMVgcc9HO9lB2i2urgDu0GzIoRWdLBmreYM2sqCybcgdPpApcTfhwJH/YA2cHR4HgAVrguIDx7OaY5j/D6wmTOfXsVKUebPyitdQ90jyd8o9rqwOqQMfsNls12Z4BjyuMIkhvpgG93H+tQQ2BoXqu5ro6Dr9dnApBWWI3V4aonBixMOsrDP+1kxpYc1QEky+ByD3y3TaHYZK0f/lSSBqteh82T1b+zN7ZKW4+UqwLeytSmw5PKak9RnhZLJXx3Ofz5f5C/C4CuJZuoVdRr7fb0cUS4KsgprSW/0sK0zdn0fXUZi/YerbepIL0qHpRYVCGoIUcQwJKnL2Xt88Pqfd4jCOW5Z/SK/XITHTNMTHZB5losVt91Uffe47+9xMzSprfXihRWWSFnM3x5Huz+6ZR8Z0J6CXZn88Ucj4h6RXx7csrM7DpccbKaJhAckwem7WBFShG2FpzDJ4OSahsPTd/BuoPFAcuPtGIxih055aLKoUBwAug1ap5BSWv15gf09LUyS9rWYS0QCNoWIQS1Ev+2zaNKCeG/tjEAlH19DfzxGAB7cn2DhtHfJVK46SdI+YO8CjO9Xll6zHAkDw//tJNftuV6c+AUmWyU1dpp5xaAXr1+AGd1jeS87tEBn8spUztlVr+KXDGhBjpEqJ8rNLXAPVOwF34ZDfZaMoqquemrzby/7CBkrfetU3IQ7dRh3KTdwir5PA53HgnZG7gr8wXu0q2lPCMRDiyCXF8IWJGmPQBvO+8ls+c9jNJtYKB0GIDMkuZXY/M4jlqcSNdq8g6Sy2p8wtiA11dwwxeb+G1XHqtTi7wikbMRAc/jpLA4XAHiT1sm59Vq1BwzaYUmLnl/LRdNrOPycZi5VLOftMQ/4fNzIHk+OGohpB3KoTXc9N5c3l6c6ltfluH3h2HzZ75l2QlNtuFAgYkzxy8hrbCatPWzSf7q7gbX8zgvdJqmkxmWVtcRL1MXwYInjh3K1lJSF/he7/gBtk+lnTWHl8KvIHHQdQCcq0nn8o/Xc8n7a1mxK4MIakkvqg4QWoK6zOab5I8BnyOooRxBAAO7RLqTvwfiyUXmSRhd6Ve2/pj27j8ehZm3cMahmd5FFWa7KnDNvkvdhjsJdniQjqNVLbh+LJVg83UmFyblszCpcSfcj5uyGTdvL8Fu91OhyaK6rgAWPQXbvuPt+dv5bHVG89vQAvblVXLfj9v5YPnBZn/GZFGv36E91cTWp1OeoOmbs8kpPTUVMevicMnMTMwJeHYJVD7Xf4G04HH1ftxGfLIyjTUHi1mZWuRdtjKlkH9+uK6eONRSympsHC6r5Y5vE3lp/v4TbSqgTsg0N5RXIPi7oJPUvr6ksXj7WIfdVY6zS2sZO6N+kR6BQHB6IISg1qAknb4VG1gdcSu7lL4AxFalwN7ZWEwVVGfv5pwwVQwy5ibQafVTMO9+vlydDsCmQ8eefVcUBZ0m8HAdLquluKaCqti32Feyj2F927P4qUu5051ktm/HMB7SLqHd9g8BqPBz/sSGGejTUU1Me6Cg8VLzAK7KfCYt2kpucRUsGw/py2HZiximj+R27QYeTnsEkn+D/jeCpIE9PxNSlgLAHrk3K7s8AcNfI1Ppom4vaS7smhbwHYVKLBoJZDQkxV4PwBmS2rnUH0MU8MdYncfj2kUUV7RglkN2wftx3FP0AQCltTZ+3ZHLFvdxSS+qYdy8vYz9aae3VHhjyaCPVqqDdFlRH7AeWkMIUhSFyavTA4TF5uBJDJxaYKKs1h4oGjjtXJb4ID8bJjKx5lWoyIbfx6rH8ZZvURSFRcb/UnI02/eZQ6tUQXDYeLj7Nxh0G+z9Bd7vDhmrG2yDR+xcllxA/PrHGFTyJ86Nk+C3BwPEG08FLm0Tx7y3lEd5RXngwvljIWkWlq1TOVRkUrfpqrPPnXZY/AxkrjvWLuONhcmsSyuGA39CVHfo+y/IWAXLx5MeNIQN7VN5pHY/Lo2eczU+weL/Kt7lJ8P7VJgdAeFE+kif/brGoZ6bjTmCGqNLVDCSBEfcJeRNVicRbpdfUwmrsVVDyh8A9MhbBCiM0OzEnr5GDXlLWwJV+VRZHATrtXSNCqa4BYmonZ/0p/bjwfz87UQcyQt5Zk4Sz8xpOOG7oihM+DOV33blodeqx7igygpFyb6Vlr3Aa/tHcHTdlGa3wZ+RkxP4KTGn0fc9ok5yfvOdhp5rprdboGuqUtzfiVqbkzcXp7ZZUu/vN2bz2sIU5u3yhZ7uzq3A0YqheV+vP8TiBhx8JwNFUVi+PRnzthnHL1rPvJWtxie5UZuIMeVXdVLFn5J0KG6+yHkieARj/9v1xgz1uZl1guLhBx9O4I9J/zmhbdTlus83MeD1Fa26TYHgZPN/vybx2Mxdx/15DaojCK3P3X24zOfaW32gSBQ4EQhOU4QQ1BqkLwfgtodfZeKD1we8tfnX9/my+hn+cD7JxZoUfjZM9L4XdkTNKRQbagjcnrP+IONIuQV7nc6vPWcLRyrzcWhKOVju6/jdfl43Ml//Byvv785r+lmck/M9uJxUmO1okAnWOLjgzBgigvScERPSdOhV+kq0kwfw0K5bMHx7IeRuUZfv+ZnulmQ+1k+hh1V1i9gH3A79rocsdaCdqD2fxJDhpJvD4LJx3KhMYr7rUjpkzFYdJINu837N3DQHnSODCdJrSLVGAdBDKkSHk+82ZpF0pLLxNvpxY9GXvKSfw9W7H4O17/pmS502OLLd1/lWFF9n2e1G+KdlHfdpV2DL3cNL8/dz1/fb6m3/nSVqEujGHEEFlRbOcJcA9x9MVx9HufmVKYUs2ON2VpRns27HXiavzmhR3qG0wmrKau3EYGJfcjLP6ebylm6a+vt/fxS+PJ8OVb7ZVqX7JeqLvv+CPiOYHDeZEGw8UzNJzedkq4b1E7EHd+T+zMuw9RgOw18FXTBYK2HhEw3OUGskOFdKR3b5ZvZ1a95U3Ud+VeKK6wpBTjusfQcWPY1j71xu1mxitfFFBq0YFRB+SXhHAIJXvMDsz19G/uxsmDwo4FqqydwCu6bDzJuhKKXRfXbkaAGrE3fyws8bVadb/xug63lQWwwaPZ9GvuhdtypqEOdpVEE3ghrOk/dxtiaT4PKD3jLzdbG51DY1lCOoKQw6DZ0iglRL94HFRNVm84bxFy6QDnrPr1cX7Gd5ch2HYXYCyE4YPJrY2gze033PVMOndFl0p2+dH6/BVlNBZLCe9uFGSqqb6XiRZXROM6GOMu4pfB/9b/c1ufp+P/HF5BZHi6qscDQJzvwnPLEN5aoJADykXUpxY+1oxAVhsbs4WFjN6wsbP76e8M6699Om8AhBcTEhGHSagDC6vzMeAbvFDstWYvUBdTLA7B68/LYrj1u/3sL8Xa2Tkwzgw+VpPDV7D1+uzTjpOXf2ZeYS/edDhCx7OlD8bC62ashcQyfJbzIgaz3Ja3+h6K3euNa8B19dAF8PhcojrdLmKrODZfsbdi17Jhksdpf6TKk47A3bbS+XwJLnofhAIxvOB1Od7drNcGAxuBx8qPmSZ3W/E0rrJWc/1MaFBtoUpw2qi469nuAvxx978ll+ItU8FTV/aIjRzs6cCg4V13C4TvjmiQq3J4v5u/ICcp36s3jv0ePKByoQCHwIIag1yE6Adn0hojOX9OkAN30N16phIFflf+tdbbbhXQC+cN5MntKOV01vkRN0F+fm/qA6Gpa+CDNuhIlxgTl3gMxStQMT3zEcI3bubZfBTF7nPIsqulgcZlXocDnhwJ9oPzxTTeLrIWsdz+U9S1bQPaTGjufWM1V30IDOESzdX8jMrWoYlpq82S/fS/oyAA4rHegk+92MB4/med14ZEUdsNsVLY/t6ADXfQpD7uRHbmLhgElExnby5gvQSBKTnHegld3OpG4XeDdXVOMkv9JC+3AjOwtlrIqeF/W/st84FtORFG7+arPaSdw0OSAMJa2wmmmbs9WB/eq36GdRRZ0eNXsg4UPI36l2fmbdAT+MUEOa5t4HGz9RO8u7psPGT73bm6CfwRl7PgrY91pcxFIFKESgfrfZ7mRnTjnXTErwuoRc7kS+g7pGAPDRijTvNjwuhOZSa3PyyMxdPPtrEjgsKF9fxPClw7hZswmrqZiJSw+wOrVOp67icL1Z5o9WHCQ6RM+sqCkskR/nad0CxuhWqeLXvjlQeZjtHUYx0PoD/7B+TvXo3+G+RXCDmvtnhyueyc7bGGLfAx/1hsXPohTsZVzNnaw/VKnmSonpCc8fhFunQk0R5O2o93v6la3md+ObPJd4Uf0fe+BP70uP06JbzT749V54pz0kfAS7Z6D/42EmG74GIMqUpubu2fwZFCarx7iHmlfnNf3PaCpzoLpADT+0VICtmsJ9qlvJgV4NlXI2nBsr6NdRbA56hsdCE0B2uIUgNZ8WFz1OtsOXlL2mw7kMlrIx4OAqzW50kiouDC5fTqV7kNRTCnQbWJwW5Pxd3kGnrMhQnh147A5vUYW6Oq6mbtHBVJYehV/v4YeaJ7jNtoDJhq+otjrJLTNTvn0un8zycwhUHlGFtOAYuH4yZUHduUtXxxE18FaoOkKPsg1EBuu5jD28WfYC1LhDO+xmtRKio4EOV3V9J4URdb/WDVf7eEUaN365ud76cnUhlByAXldAh35Un/8Ekxy30Us6SlJG/cHs4c1zsbzdBeuR+kkujzbUKawjGnmckTZHw0LQ83P38vBPbqu8wwp7ZlFTo4qOkcF6OoQbTxtHkMktMLbVZLFn1trjtPQk4c8pa70cNB4+XplOYc4B9Vz3O2eSjlSyM6e8iU82nx7zr2OoRp2AOLx7pSqwuZxwpM49U1FgwZMB90YA+545APzmuowE11mYuv4TchOp2Pg9HZUStBs/8K289IXja2RVfsB957m5STw+a3eDeX9MFjsf6qbwr6NfQvoK+GwwwwqmocXFZVsfgR3fw/TrwF4LVr8JJ1mGSQPgq6GBG0yaBb/eA19f7F10kUadaGpNF9hpR1EqfHY2fNJXfR4I/jdQFDiynTu06xkqNSKoNms7qnM4Olwmv9LCVZ9uqDcB3BKH7KnC6nDx/Ly9PPZzfTeU1eHiqdl7+Pd3beNWFQj+Lggh6ERxOdRBW4/LfMvOuRvOvsv75ybXQLLPHA0XjKX0uh/4xDmKa20T2eAaDMDw/ClqCfXtUyB7A7hsMHcMJHwMskxpVTUlbnfJwxd3YpvxSd6ueQOAYVr1Blm7/1dV6Nj5oypy1GXW7QxwqDOQUnWBmgvmywt4NehXzpXS2ZRRgiLLVP14K8y4HnZ8T1mNjV07NrNfO4Cb7W9zueNzftCOZpjtU45cPpnfawczyPYDVwXP4XzbN6xNL2dtnszu8yYywTqa7rGhxMWEsCu3gnUHi6m2OclT2vva1K5vQBNvPbcr7cOMJOdXESSpA5Bgyc7jusUAlCR8D6vfoGT+OO9n7vh2C28tTsXx54uw6VNCFDOjba9xV+yvKJIW+/4F8NNNkLNJ/cD+eWpVt7Vvq38vfgYlYwUOxZfcObwqHR1Oekt5XKPZwbO6+ewKepw3dTPYF/QIacb7mKL5gIOJS0grqia7pAZs1ZRU2+iiFPJ64TPcrNkU4H5IyCipP9tsLodvLoVDvpw9xdVWpm/KYvv6P70DaqVgH5JTnZGfbPiaCdl3MT9hD2N/cleNsdfC7pnw2WB4KwpWv+ndXk6ZmXs659Pfuifwu6deof5/yTMsbP8otQRzlHYUVTug5zAI6wCoSZlnuK7hZ82NoLgg+Tc2OQewyHEhAImZZep2gqOg7zWgNcK+X6lL14rt3teJrgGca/2WntafyQ87y3ds8AlBb1S+FhDy8I5DzSnkULRcapvMrtgboDxLTVj97SXqNXPW7awO/hcuRWKs/XlcGgOsmQAfnAlfX4z+SCKpcnfeCnoBCver4YkOK+z/TRVR3Q6j9lX7ABhrnY4jsgf9vysj2XgO3PgFXDaOCluJt122zhdglBxcpdnFs7r5HJTjWOM6h0vNa6mqVQev12jqx99bf7oJV7U6G+6yVMHnZ6vt8STqnvYvVag7tDog/1JcdAhR5aqDy+xOWN2ZckILt7Hpj2/52vA5q4wvwqRBagjc91dBcSqMnAiGDJAxlgAAIABJREFUEGb2/JB1riHcbJtA1pmj1Y1e9wnO8K4MLZ1PD0MlDx95iXOUVOT989X3d3wPK1/FuvS/uH4bC99cAjNvAXM5irvS17fO68lT2gEwwJ3bq/zgJsjZhGPTFzhn38P8darDTquR6BlUjQH1Gj+j3O0y7HM1Llnh05Xp7FL6opUUzl95iy9xuZvKdZ8TrFiQZo9Wz4Gk2aq7z2El3z1YDdZr4efb4M1I+OIcqC1lZmIO69OKqXA7tRpK4L4jp5z5u/NYlVrEoT0J8MsoWPgEF+98FoCIYB3tw42NO5X8+H13nlqtrxFn2P8CppNUWjizpKZZCfQ9Inu+WwgqdjuT8iqaFoLmbM+tlwPqaIUZsy3w9/i34WXdLDrPuBhWvopr6zd8n5DJD5uyufmrzdz+baLqXtzmDleUXS0K7ZJdMvNnfkmExSdsFm6dyz/eW4lt3Yfww1WQ6x7QOO3q66Sf1YkKl0N9rmeuxbBcffZNcNzDfY6XWWeLh5KDXKjso0RRJyBo3x+Gv6ZO4pQ3s1KpLKv/KnJUgWbSQKgpgbRlZLtziTSUhyzCksco3QZGVM2D2er9ZHTNTB7RLiHKnA0X/wfMZfBeF/h0oBpSvPETX5EBW5X6vdkb1ftvifuYlanhtnZFy2Ua9X7cmnmiTptqa7ILastg/USwmVTXZcJH6nPlf5mSNPjifF9uub8ry1+GH0bwkf47vjN8Uu9Z2FwUWZ28Cg32CbxZJbUB+UQ3pJfU+9yxkGWFbzdkBqSdOFFkWeHHTdlUWx0BlUzr4rkfHT4JkwICwemEEIJOFEkD9y2ECx8JXG4I9b68x/Ffii6bCNd9Quz5ajiUiVDGOMYzzPYpCdG3wrP7YdwheD4dXsxWB+Nr3yZ77njCPz2Tyi3T+FL/GbfkTiRK8lk447TqYNJc4k7mu2kSHN0N5z8EQFbkRayUVefNl9KdzIt7Fe6Yrq5bmk63lCnMMb6HpaqEXZtXEFmqPlgdy15l4+599OEISbYuuNCS42rH27U3cVjpRGqBCUUBM0EcqpAxoebOeHD6Tm79Wh3YdY0OpntsCC5Z4YHp6oznlf06UK2oSW9p14e0W1YwwvYhP4w5n0/uGEJ8pwhcssJ816VUKqH87LyS6zRbCcaKnKIm7g3P+N37QPSEl1hq1bLt6ZpebFP6kVWtJ9HVH8P2r6DkAL/2fBf+WwQXPQHx14IxAnpfBUMfo+T+zbziVPeXWTES4SzlUNB9rDa+yBTDJB7Wqu6s+3UrATBKTvprchmd9ixnSVlwYCFM7EZl1g7e0U2jU/V+Jhu+5m3dj8RLuWhxkb7pd676YDkrUgpBUdieXY58YLFaYe7nW73ulJd/20e7FY9zReIY/k+nDsS3JgTmNAhWLCw0voqETHLmYconXQyL/HIpbJqkDlIOLqVvzU6ez1cHsalydwCviwuAq96i0u67DYyYlMBevzC88lo7dvS867ib/CvU5NDL5Qu97+9wz5RbHS4Scu0w6FZVCKopUTugGath3v0MLFH34Xz5cu5yvEI5EchoyDT0U0PDXA5wWAkv30coFkKwYjPG8IhjHJV3LeV713X8yzaR823fkKd04Jvwp+G1Unh6D+hDQdJCl3OZpB3Ds9Ffslo+j91nPOit9EXVEbqbdrJN7sfPlYPYJ/dASfoF85bvYP5Dqoj6/Qgoy/T+tjXG4Sy5cCYWJ3yTkMNyw9U8MucANQ6fO0COu5gKJYyvDZ/TVSrlDcf9rAu7jlilnGFz+nGtdhP3dalfFt3qqEXO3qBuwy0IseoNmBAdmIR79miYcYMqaOz4nlHVM/jEqToLL7B9zZwh09BICrfve4S78t4CoEiKhdoSNQSuppApUc+xQnc5hVVW8qXOPCm9QpLSmw19XoaX8yAkhnFlN9FXzubDsqd8v23Pz6pQ5g71DNrzA9rkeSiKDJlr1Qpf89RQsGnOkdxuU8XpK7R70OKix8KbYfp1aFa/ji5tMeuNz3GZZi9BkpO1PMpX+s8BGFCzFcI7Q8dBrEwpZPqWHLbL/djgGkyM9QjsnqEKftumwLwHGORMYavcH42tEmaNggWPqe6+dzvSbeMLXKxJ4QxjrW+wU5HDnikPM3/RQl6etlxNkk3DA9udOb6QmzMX3aYK80BMxRau6/w2Wmtxsx1BX65Tj3ti1qmrwNZSLnl/LQ9Or+/g82A6jpDWY2G2O7nykw08N3cv1JbWz+XlxiUrxDgK+UD3HeayPFyyQrn72OWUNR3G8PLve+my6b9eEVV2yVRNGor9gz6q2OHGcw50pYRHdT4XrnblK9y/5nz6r7jLLcgraj6zZS9i3TYN+eN4zJPORZk7Ri2eUFvm+3KHRXXV+FG6fQ63Zf4XgNWuc/jGeQNDNQf5UD+FgiT1uUL6clj+iuqCnDZSXXZkOyT9oiZ1n3kLAOMdY73P25n5at49Iw5edjxMSber4aavKO/gdtqUNiPhenURfD4EVr2mOkcAagrh494w+99EK6pAXlJT/5zvb1dF6XXBIwKWv6SfQ3b4eXD1O75JMnu16uJcMwHWvOVbedc0dfLpl9Gq4NVxEErP4Txmf5aN8mDG6FZxh3Y9llYUgtqq2lqRycrZE1YGPGNblcx1PrHAVq1WZv2opzqpcsFDcPc8aBcPq948Od9/ArhkhU9XpZNdWsvIyQlscVeutDnrVzrl0GpVLJx5i3p9HKdAArCrMImzfzqH5EJfuOmh4hrWHmzDMDq7WS2AsednLF2G8p7jTiIlM86Dy3zrmMsbTCPREA6XKny6CBRNJtw0kJz3r+PfF8SxMqWwxWLr/vwq3l92UHWutxKJWWVM+DOVtxaneidTz4wNqbfeMQtkCP6yvLskladn/81F3P8hhBB0omi0EHcBtI+v99b8QV9xtU21aneODAJAkiRuO7ebd53DSid+ifkPRJ0BYe3VXCchMXDnHAiOocfBKRglJ49UfML12m1oU38P+A6bpA7qayO6wJC71FANfQhc9QbcMYOd507kGfvjlN84g0nW68iNuxEG3gKvlakhQKN+woCdJ8o/ID7hP8iKxHW2d5FdDi5dcxsRkpk0JY5xV/dlzMXd6RSh/o60QrVz2Kt9KI3RNSrYW+nIw5s3DuSNqImsDLsJIuMoDulFhtKNyGA9kiTx1PDeRATp+KnDeM6zfcuf8sUES3Ym6b+hY8UukuReBCk25J9uxrzoBW7RbGSkZjtBlRkw5E4e0b4NSJTU2PjGqeZrSpJ78lLKGUzZks+qM56l5Prp8PIRuGc+n+nHMi9TxyLXP/jQMYqHHOPq/Q6PO2mf3IPPnTfziP3/+JdtIrWKkbG6pYRnLQWgy/rn+admP84gtbLQvbrVfKj/jkn6r5lu+JBvzM/jmDMG53tx6KaNQLP4ae93KLmJ2PL2cVn2JK7XqjPDo7XruFyTxMWHPiFPacceaQAAnzlvpatUxo/6jyj/4yViLIcpD+oGQ+5Ujz2ooYVz7uRreYL3O55zPM5Z1u/paZtFwd3r4eG1rEgtYkmd/A873aWxZVmh3D3TY3G4yO58Hbfa3uTqe17gict7MbRHjLcE6X//SOa+H7eT2+8hnE4HhV/9C765GGbdBil/UKLvwg22d3je/giK320nSekNTqtqW1/3Dh9VPMseoyqqvuh8nJWuc1lSoV4vB5TuVBFGTKiBIxVW9dqL6QlP7YRx6dBpELk1GmJ6nI1Bp2FVh/vrHcutcn8AFrr+gVSQhClRTVpe1OUqNTzJPdi62TaBNzRPIQerM2aZJTU89vMuVqYWYZfUTrxRa0QKjeUq20e87bibJx3PsE3pT0W34aySzwcgq8dCrg6rP6tlibsQz1BENruFApsqZnrdav1vCPzQkue5KO9HddWwbtQSjCV2UMAqPw6ayaX2L5HvWwxaAxUdhvJB4bk8OnMXt3y9GbPDRceIICQJKs0OTEoQiqKwQL6UX12XEyFX4tCF8qz9CXTFyapTKXMtSo/L2C7H86rjARJHLIKIrrD6DSRrFQfkOIqIppBYVnEhT+sWkBl0r7dNWmQ2uAZjlBx8o5/MYEWd9R+h3cVY7RIusW+GPiNAkihzn2929LwV8Ra5Umc1z8jmz2DZi5DyOwu0V/OI/f9Ij/ynOhgIiYX2/QDombeA2YZ3uVNSxVPHPYuZH3Y355jWssD4OpMMX2OrKmaq/hMia7PpP34+qXNeVcOBUBNxR4fo6RisoFPcs5zdL+W7qEgSomr5Y9kTDDEc5a3KV5C3TiG7tJayGhtWh4sX5u0NyFfgqXyXkNH2QlBJ6kb+eGc0ubk5AcvzKy2sbaS6k6IoLUoa7sHqcPH9xqxGnVCeqoyJ+9Lgo164Vr/Jnd9tZWFSPm8sVO8jD0zbTq3NzgzDB4zWrefGql8oN9UQodQw2/AOwaXJga4Opw02fKSKPNum8JzuN+7VrVZFVKeNgiOH6K/JJUqugMXPegWSKrODGEzMMajhMgfkOK6zvYtN0aOTZP6hTeUx7WIGSr79FrTsWTTmEo5U2pFSF6gCTsZKX1v+eFR11fx6r+pYsJrQb3qDK+O6sKzX9awePIkPnHfykWMUt2k3cWaNu0O85QvY+pVvOyHtVMeM33PiB+e/mOMa7v17n9ILm6KnRgkiQR7MxnMnUd1uMMOnu4WoRoSg+PF/8Orv7sHb+vegMhcSv1TvgXWIo4AOVBC570dfjhmnHWttFVewkzIlnGlG1bFZqu/MQi7jd+VypnWbAJIEYxazbfQeZDSgyNB7BFz3KfLD69VtLXlO/f/wZlBk8vTdKbt1DsvlC9kkq/e3j/TfEbbgQfjpJnI9DoATcPU0mVz/JLIvr4pKs4N9rRCGY7Y7+e8f+73PaLI3wsybqV31nvr3iv9Cns+Jazr3cSrsWuh3rXqcGwmNbisOFpr4fE0G4+fv42BhNW8uUvO8TfnwJaZOeDBw5aN7wBCuhn0veDzABd1SPt0+FZfi5IHZs73Lrvp0Aw9Ob34lrZ055fXFqhNh/liYey/Yq8nvfA0/uK4lT2mHbt69amhfZS58cS582EsV04+B3SOUOQLv9f06qS7CK/p1oNadX68leMQYj2jXGnjO54yiao5Wqg7QhoTbxnIwnjQWPAnJv9dffrq4C08AV53Y8qkbs1l0igo0CI6NEIJOIta4f5KuxAHQ0S2gAHwyagjtw43ev+vOdC1MyueDVZmkdFQHglvl/lgVPYc1cfW+w+YOQTOfcSEMGa3awq95D4IiYeDNtOvYFQtBbNJeiEvReEvNo9WprqMBN5HU4WYukvcQ7iilgBhSlB5847qRdlIV+ZouXHbr4zx5RW/eumkQ3957HqA+tAH6d45o9Pd3iw6mRzufUHT/P84kLiYEup7DI6WjeW7uXu79Qe2oRASr1tUuUcFse+UqPv33ObjQsl3uR7ESxUjtDg5pe/G4XXW3aA5vImT3d0wyfMO3hskYZAv0uIwyhw6jToNLVtgon8VY+/OMsY8HYOKygzz8005GTk5AURT251UxaXU6H61Iw4aBr103kygPZITtQ661vcflNl+I3R2217nR/i6fOkexUr6ASsL503UR12q20b1ATRYeUZWGjITjvj8Za3+eac5rGKLJ4kZtIiYlmL6afK7XbqU4uCd29Ow2XoD1qok40FE1eyzG7//JGM1SlhtHcrf9ZSIkM9MNasW3x+3PMj74daYMXc1PTnX29QrtXobVLifRNYCJvX7BeePXVN+7Sm2wX3jgru5jsV70DGlKNzp3VEO+nllr5eE1Co+6K1F4ElyDKgDV2pxUWhzICvR0H8P8Kgu7lb7ERoTy4sh+XNQzlqNVFuxO2Zug+IAcx+PWJ4k256j5gqLPhDGLebHjVPYrPQGICtGTOuEaRg7sxBprvJpo2pTnHYwbJBd2RcuGWrX63bYs1YFz3eDOAAzuFsmRCrN3IDgv3cX+Cj1ZJTVUW510iAiiXahBHXDe9gN0OQd6XQnAdlkVDLa4BxidrFnMcl7JsoEfQ/dLoSqPydoxJCm9qbI4vGFE/h0kjc6dL8YYSe/2Ydx22TmcecNLXqfUwK6RPGJ/lhfDJpKv94Uc+mMZ+R5yLzU8z6UL8rXTg9YAd8yAJ7bC6+UQp87wF571GOdav2VynOoaCgvxCa2/jtiGrutgHC6F0ujBmJ4/wpQen6sDMNTqXCUm2/+z997hVVTr2/9ndt/Z6b2HQBJIIPTQe69SVESxIWAXReyiYsWuFBVEQRREBFF6770FCJDQAiG997b774+1KwEP53vO9z2/973Oc11c7MyemT2zZs0q97rv+0GnluOlVrDi2A3azt5O/JtilXGeaTybNKPI7vkxf1l6canLB8JnSetHzegfmWB4h+XmweRX6yGmh6grCg0jDXMAAXp8qR/nuJ415j7UxQ5hsWkEjxlfZqlpKDpJzz1yp9RtlnKF+BA/FHCmtAXoGR/MBqPTRwzAFD+MmXUPU40na5QjIbg1TFwJTxygfMCnjv0eNQp54genVbxZOohvTXdRa9XQTZbBfTdmM1h+iinyzWRoHiPp4nzYPguKM/DOP8hy2WzGqsUkwHL3Ek71+AajjURnyDvJ0xkP0V06j2zrKwz9fAf9P9/L/sslrD6Vy7vrBaOi0WjmWom4l01pBXc28TTUi3+lVwTbynAH5p36WuEj83eD0cps/FaPZ5xpK94rhkPaarBaMbl6rtzi+NUnc3ln7Sk+Vy6ktyzNCbwcmgefJzikTEVVDTz72WJKjvwKBWk8++tpPtiUwd4TqU6fKYCKG9RXFPD7iWz6yM7yofJHAMwnfuLItTKe/+0My47cYP/lEvZfKkS+5WXiZGKwOFHajnXVQ8xXzqe7LJ15fAofhjuzFG57A/Z8IHzxtrzCc4q/nL+7IIWIn1zq0bU9sKAzVBdQ2WBkqmIzUbISnjS8wHDDJ1ywxnLA1j7kWgN5UrGB75RfU2PV8qbxMd43TmKa4UWGGj7lo5TDgl165BsBRG14XkiPQbAwvu8Hn8dzxVxNsULBD54SYX6CzfONeSyvGKex09yBj6Rp2N8hhn8KWn9q7/6V035DndcdP5TPTfe6PSMDSrZYUvjD3BsDSsrrDGSW1FGJF+VWT8w2IKi60egYjFtNBs6rp9A6dbZgUqSvF+MFgBM/is82vzWAr2tfZp96Bh0vzBET7rJMmN8RzWfRDJGf4hfzYHJNfhjHLeZRw6scavMB3/q8SInR2TY9vOISe81taUy6Fx5cAylTOGeK4lfTAHapB4q21xYzMzs6kiSsMfdloWkU1VYtHpmb4NpeJny2hq27d8FHEcJHzfDPS0Pq/kNAUJbNkLeo6l83X99zsYQVx7J5d4PNGD/7CAAZhzdiqK+GtFUc9r2L8frZVNy3gUELL5Dy4U4IThLJA5YMdfNb/E/HlSJxLceui/5eq1KAycB0w2KmK/5yk5CTlyrGr5O3CK/JYwupKi/5H/ncNNiSB1TUi/9d64bpDnypTmaVc8/CI4z/7vBtTdX/qbBa3e41nVjMyFlgGis27P8M/pgmQDBDDVzaAo3VwmfwNs9TYxSyrxiD01dPJZc5knLYF3Svl/6D+pC5W8jyEAbxx64LJqTRbL0lm8hssdJ9zi5+OmTLOnvhL8c473aRU1FPBCWcza10WA/cqv90ZQT9r0s9K7OFVHfNZOc2q1UsUs3veNvkFf8N2JiWT4s3Njt8/v4b//8LxX/6Av5fDjvoIkmguWlCqHDJt+q6kmC2WPl4y0UKqhpZyGA6SLFctYbjI9XRsnlzfgj41Wmy7BOFXmmCwp3UWy3QvB88426cFuErJvh2Gp4rAGWP0+1mM2HDOO6W76dHt14sat6JOZu0bKzoxn2DejKtk5Pt5GVLV30urwq5TKJNhA8bbanBXxycgJdGwbsbxGQoyFNNiLeGPS/1o1mAB5KNvdQpxo+1qXmsPe2kz3trnAa8WpXc8bcFGWvMfXhasZ7FjQOoVgVzRduWfbVRVFo8eEm5WtyDOoX2SWOo/30f8cGetom7xE5Lpyb3W1ZnYMaqM6gVt56kX7E6GVs7zB1pQM0Ja6sm+31vHkVP2XlipSKM/WfzyyWJHaUBrAxPYqelE5nWcDrKrvChcRIXrdGkaaaJctJ9zNHiCrwkBc+a40g2/0IP0qlTB3FX9SssePw+LvxwjFVtfuSus08x1zSeCzRn/aQenMmppIxiZhknk2sNJFhj5qg+imSjmXfWX2DFsRtcDwhCyk+lUvKlr+dQeocEs2DYq6T2NpBeUM2kH45x/Lq7+alK4cSEP9ycwYebM/jqPmE23ixQx7XSOnIrGtyeVbS/B1arYMvU2eqwAJY601M/j98fTqB5kmDGVNY7BzZRfh54qBTEBunYmaHG8F4+qp2z4Og3vGh4Es/Yzuy5VkMlXgAOU8Mv7m3Hs/3jOHqtjL2XSiivM1BvMPPymjS3ewnQqfD3VFFeJ3yDauLHMHXpMfL0o2lU+oHRTLEmFmxjh22WziTX6mHCz1gbKljw5WXASk2jyemB5BoywZJQypTIZBJvjEgUptm2iA3QYUXG76UxeAU1PRygQaHCbJOPWoJbQfI9IovehbVCgmI2CMZTsGAwMfh92PE22gGvUH7iKN+dFtfgpVFyv+FNmksFjAgJpN72HAoqG/l8+yVHKufxHSJYezqP41nltA73xtdDRbbNT8eeAa8YP37xf5ZP27aDbXtICx7LpUE9OZ5ZzFSLE9AtqdFD16fg+gGKIodhOeOsOxnWGJaahtI82JuX8sfRon8PPswQUtGt5i5MVmzjbvkBznj04OHyyXT1r4WqXBYmDEcODvAEYHBSCPOPtecZxXqWmwZy2hLPSwOmw7kz+HkoWXojiEFT19MzWngT7fEYwVy9kpYhOu4tW0RQZBy/pJbxYPcEPj0ykS3mLmxQzyKpMRWAcfKbjKu/7cZrto+tTRcolQWysSSB2dsvkBDSCbiCpcUAqj3b893uS7yq/I05yh/4sHESCrmNmWkwkV/ZwCeb0+nPCdr0Hcs3+66z+WwOE4rmCsnwoHcFEG+L4ppGvI2laH7sLzLT2aMoHYZ/fOsKZI9jCwWDbPB70PN59+8qc6CmEA59jUWSMdc4jscVu2HtVDi7kqougv3YRcrAtPATFBY9JI2Fvq+ATM4fqbnMVKzmHvl+7pHvx7j2BsrEEUJCBILx0vVxMvJkLKh7D7YBQa04XS7YNWP2DIE9wOwquPAnrH4UD2CEJZqZqmzHZcpNdQRQRRneKBD1d4zsMLq0ZRRZfdnSdh73pU0luGAPwbYmO0wqBxNweC6YGoSPlS2sIa25O/teatHyVfsCWmd87fhuo7mbg3HJj4MxdP+eyfKtbDB3cwC5SrnES8YnGaXK4KI5kjW8RLRUwlTDTLf+xEer5MDVcsEGzj0hZL720AUL5oVvNBRfJFMTB6XLkcmgd0Iguy8V0y8hiLm74HdzfwLVat54/iUwNfLM5nJGjzzM6UuVLCp4hJ+6DKZXj140+sVjvLC9iXP3C0anLLiszsC1EjGZu24NI+xaGh4VZbT/5ChfdShmXKwJg3cMasnM/Yo9QmLTUA73LBXys+o89MHtWJ0wl0kTA5HmiL6wEk/yvVrQ4uyvwmfP4pyELZHG4mEwc1Ddj/P6E8xsE8aV4lq2nC/kclENCSFeeGuVPFbzCr937sb+bZfQqsSD/Mw0Faog44mOyNN+ZWZuH46dLyYgW7SnNXjwsekB9lva8qtKMF06yy5jPboRjHXCR81QCxNXcKehQU+ti+SxqsGIVil36wP/pbBa2XUhn/gwP6L9tZBzTAD5xRkEX1oNdCazpJZGo7nJuPCO4/J2+m97kRcVnVh53Zap0SaDbC1lUXdsGSpTI8tqU0i1tiBDmURxjfBoK9LEEgLCQiDtN0iZekc/+efpXN7fmMHxNwaikN95Wa1NzeVSUQ3PDYjHU337KcflInc2ilYpg6s7nBt+GgnPnBCyxfJMzF2eoC4kBe8hH8KSIcxd9B1LqjqR9fHIO7uwvFTY8TYmtbOTNlusnM52yvaqGowEeDYdM7vGH7YsrhkF1Ty1IvXOf/92UZ0H+iqsCUOx1BSzIMMDMPObuT8PPfwErY+9LLKZ2uPQXKc1QIcHYYwLq/D6ftj/OaHG6+Qr1MilGsIpJZ9APDXOZxHl74FMguulfwOqWq0OxjQJw3nB+CLbMpy+QqnZFWxMK0ACPhyXLG6lwUhBVSOzN6QzOtpAwOpHxM4p00Cp4VZhzU3lkOZ5Zhkns7xaLHrWG8xYrVbHHAKgst7JaKtuMOHjoWxyrn9bXNvn/Hx1F8bY/ij3vO/sd8quQpC752ljRT4ySYbKNxQQgGGN3kT/lsH/8OcKqxrxUMvd5kX/trBaxaT0Xzn+l7GQMAy6PfUPd99gY/58v/8as+9q7Qba3fxM52wRSXB2zez3P7++f0PozXr6r+rP611fZ3SL0f/4gP/L479A0P9i2F/iwYkhTb6zTxx8PZRujKBDV0spsK0WWZGRak0gLtiTq8W1pPj4wvjv3c5juCKoivWmWzfg4b7uja2vDuqMdSw6u4hnOjyDWq4m2EuDASUrzQN5b8RwlHIZ3+y5Slp5JP3axLgdbweCcsobiAnwcDKMgOkD422/qSU1uwKZDexyZQUB3J8STV5FA9/udfqxeGvdq6KXSyc11zSeTEs4f1l6Eu6jIv6VA1RllfPUws0MkJ9mY8zrHKgKYoOkwWyx0iLI828pru2ifNmYVoDStiJyM23R/vutQr3ITPyBj7c46fItgnSse7YXbd7ZRrY1hEGGz4mVCijYHo5VrqRzM3/HvtetYYwxfEBsoI6JSSG8fOhxrH6xZJc3IJOgRm/iwJVSyizt6CFP56KqDQ3eLUgM9+HEm4MwW6y0PS7DgJLP7mlLmwgfh0nqcvNgPNUKam2rWPEGMyvSCgCJPI9WRNaZTnHrAAAgAElEQVSVcNDUCkvgEfaVHAFexU+num3HcitT2L9OiwY8LtiT3ReLnUCQ7VlF23Tbh642pQWX4sPJuhCa2/6ubHB22vbybhPug8liJaOgmg2mB9nY2IpC/Hm+WQI5mU5JQ2ZJHd4aBRqlnMQwb8d15FbcWtbSPMiTAJ3aITP69Vg2x25UAcF8NqY1veIDWbTvGrmngoiUSjhgSWb/nkyGtQ4j2j8Gk+USkX5acisa2JlRhK+Hkv4tg/nTBlxKNqmgwey8Jx8bo00hk0iJ9ecfRYOpwdEhOtLHS5LI4JVzAgJauB8Q3RWmbMPnpvN4axUcsbTmCK150t/DYX57pbjWDZz6YkI7ksK9+WBTBpX1RgI8VWSXi/q84IGO/Hwki47RfvSOD8LXNqAqrtHz2TYB8rZOdAJiJTV6iOwEL10i7XwBnEl1u6Z3TY8wvVUc5F91gE0A6VZnW7Iz9DGqyz3IVYeRYQ6hutGMn05OZkktvh5KhrcJpUusP2dliayN+4gPz4fSgIYpVgEOzr6rNS+tPsvBq6X0jBNAUGGNnmxrCKMTW/D4nplgW4Sc3DOWo9fKOFcU63adWslAldWD+wxvs1X9mtt3Z3U9+YpJBJaJlb4b1jBUXMHUvA/eyVPZcWYvHQ3l3K3fTlvpGlfrBTivN1r4+efFTCv9kTaqLPQNJUxW/4FmK2CxlUWzXoLO3+ZuUKh5+KOlvOG3mz71LnVZ7QPHv4ekMRDTnSZhNooJQ6ENfDj4tfA/K7sqAJqglsKYt0qYE39tvI9vzWMob/Mi7/psgn0fE5C5iyx791AEVq8wpH0fQ1UupDyGQrIwXn6A05Y4qqw6+p1bCedWimvr/wZsfRV2f0A/l8uy1pUSoM9Ggcq5ccfbbr5XLaUcPjVO4Hdzf17oEcCEU/dzSPcKGrNos6utWrQYqPeIoFf5HL5N7MaYs5/zg/QRW0ydaD/6adpuHodWMoiJzvX9QiYy4SdI/Zmavu+T+pVIjLDRpx9Jr7/Eu/MWoqm8ylLzMN4xPsKR0VWodrxGu/3TMCLnfeND9GgRgCTB68MT+et0Hg91H01MgI7UbRp+2XehyaLC+I4RrDiajXnqu8hvHBCS64I08A6HZj3d9i08sAVKQSZBx2g/1j3Tk3qDibm7RDtXWqvnwVU3mJASxaZzBWw6V+CQkOeGD+GD47X8dNjdK84eUf5ah0S3vNbANakOuUyiwLcTnSp/g7nNeUY+gXEZv0MGKDzDnQevnAgqT+Gbl7kbTv/CIX1zZq1LR6dph53f11f/FfcGe/Jhzd1gMZLabxn7dqxnp6Ujfv7eVNQZ+P1kDl5qBT3iAlh8QJhUD/lqP1kfj8TfQ0VJjZ60vCqHd1aUv5MxdKVey0P7kqlqEO+Aa9sFgsF5bNJFOv7WgYHyVPrpT0DHh0Q7uXO2kEXF9haTlLMrxSTFw70dNlushFDOVvVrmHcPgQeXQMkl5s+dxxDvG3R55ichz/8Xw7rjHfofmseb0jPMeaAv/HovDJgFqT8zpjKbedJnHDxfz7ns10iZMhdCktyOv1FWx7d7Mnl/bBtqGvQE6NQgcwFeagph2+t41OUwXZFDfa0Gdh+FrAMcMLehh+wC2n2zwDeGU9UtARMP/HDMcfjvWVocTnBpv98xEDR7fTpVDUZKaw2E+tx6En9zNBrNwgsMwAqvj0gU7IkLa6HVKAEGFKSB2pMLRfkEeBspqxb9T53eDCd+pNDqx2LTCN5SrhDywctbwTOEOYUp/DB7O3880YVkTSCP1v/MRZka03VfFBfWCGa8Utv0oipuiAn82ZVQV0JccCDXdWIs0/697TzdL865a73BCQSlrxdedlHuLNUjdyKLqikSCTUaqwRT0DsSWg4TZt5Xd0JAnLPPLxbjzT809/BSmg4wc3+XKFYez+GntAYmytvSib2g9qE0YgCB1/50/k7aahg9T7CFSi7Cumeh8gbl4XGAAaMkcVgznWWmwWxS3u04TK2QE+GroV36Z5D4BESKBTxyjoNvjLCscPFW4/IWfIyRQD/sTMYHFjvrmB0Ikm9/jZXKI3xnHk3pik8IsH3feHQxM8+EMTKynr5RKnSdJ4ovzq7imavCGuARj8MsrxmMhIVQSxl6owmNUiFkwEoNVQ1GFJhoJhWSUVhNt+YB/K/F1Z0iEYpfM8yrHmJY7Wx2aOZBdA9k2YdFdmIXIMhqsVD4zUgsCg3NXxNMvXsWiv//EVCoN5npNmcX3Zr789vjt+j7b47qAjFW6PvqbcE1cQ+7wCcS1kwR47eAePAKFYuQdxBWq5WUD3cyvXUjD1/bK8DI+CFNx6o3hZ1U9/ORLMZ3jCDG3zkfbDCa8VA553qL9ol+I7us3jG/+E9ERWMFNcYa3jj4BsOajUT5TwDf/zfGf4Gg/8VIaebHzMEJPNy9WZPvFLaOPchT7QYErTmVi0ImOVbpNzzbi6LqRladzLnlefRmwQyoM95aRuClUfLemNa8ve4CCq/zPHHgNXpH9OZA3gHCPMO4v9X9jgHZS0MSHBV+7sQO7L5YTFywp9v5XIGE2EAdnWL8aBfpQ0eX7ANDW4cytHXobctFJpPo1zLYDQjS3rQyplHKmdIrlh8PXkePit2agZjrjfjrRKfcIdqPEvyY4fU5Pf0DqSgodFB6W4V6ufneJIR4cm+nKObtuoLBbOGpvi14cvkpTBazgylhD6Vcwmi2khTmzaonutsMA52ItU6twFOtwF+norzOQOfYII5dl4MZMJsdMqqlk1OYvFSYsE7u2YyHuzdjZu2DHL1WRk2jkZ5xgRy4UsrBq6UUSh14g5Xsro8jIdLLdh0ylHKQKzVgNBPhK55R+yhnObcM9XIMmF1NXWfm9mOKop53jI8Ac9zK1XUVaMXUrhy7Vsa83VcxW6y8P6Y1b6274PjenkWidbiQ/+XZABj7ql6zAB1ymcQHm26d1tQVjKusM/JQtxiMZgt9E4Jsz9AXgDHf2JkZoiNvE3Ez3OHOZAu2fS6t1XP8ejltI314Y0QiRdWNdG8eQJCXmgCdiqvFYmV8s0tdCPPREuajpV/LIEYffh9fjczhWTTph6MsnSxYAbGBOgfgZLXi7nUliXpmdFkVt4Mnd7ULdwNH7aGQKTBZnPTmBlODAwCyWF1oxZLkxgKxWq00mhvRKm4xoEXQu+0RbqsjOpWctNxKovw8uGRbZZUkiam9m9Mi2BNfrZJfjtwgLbeKmAAdiWHezBnf1u28XhoFJTV6Wod7cyG/mp+P3HB852oaW2Uza4/wFWW64phgekTYystO9wexun+i23xS2nfA57IO0jOI9teSUVBNpQ2IzCqr5+WhLXmmvxiMJ0f6sry6PQ2IVdrCavFMgjwFgO0qsSisarSld3cfDDUL8GDltG68tPosu6+1Z4D8DFe0bYlvSOOAJZmL1mj66b9g1UvjOfH1ROj6JMdMCZxNy2ewZH8OMsfzABjbIYJp2x/hLlk881Tf0GJ9Co/L7yOzri8vV79NNmLVT532C2oJsECJ1Rt/qRb5StugN/VnTLoQtqo3QD3QvL8wW29zj5BuLOoNqx+FCcsEkyg4SbDEyq/B6skC6MGKVemB1FAu5GSF54RvUpkTSD1liWexWQw+86r0MPZ1aHM3DUvuQttQQJXVg376L1nz9ChaHHtLmHOfWc7d2nsIlKqZbXyEjZZurGl3ic6xAYKR6hMpgCAg3yuZj8v6MCpWYkjeArYrXiRH5jKhtoFAGcmvsPKimS01zSlBtGMHqgI4a5rCnFYF6CtzMZdcwdsi6syRmGkYKw1olGa0IXH0yflS3E/rFFLWfc+7kSe5u3gBjSp/elR/xJ6IvvjEDaKs1NkXrjh6gzAfDT+VJTEosT/6jCL0qEj360R7wLM+l2/Nd1GMHx00ChY9JCZArm2QKWEkf+4RoMKEzpFcyK/GU60gLtgTg9lCoV9HImJtwM8tvAIBGoziHXedz9/c5x28Wkqpy7tll0nW6k38dDjLbd9n+8c5AJVFD3bmSnENc3deobzeQI3eSLS/B/3vnwmLRLr5l5W/O46V1+Zzv+FNJsr3MEZ+WHiRKTWCqZY4mq83K4EGfjueg9ncBxkWDCg5WChnsvUdvBVGTh71Js8sJpKdPNXcKKtny/lCxrYPR62Qu2XyqTeY8FCLe3XtK3LKG+jfMog9l0q4XFTrJvUoqta7jYMA6i1ycnWtGWcW/YW+4xTUIQnCfDrLBgRlHxGeMR0fgZA2EDcQAlpgNlt4/Z3X+Ua1Gz+pFjLXwuEOWA/NZZayFBqAixuhs4v0438Y5ss7UEhW5rAAfl0gNh6aL/yegFmK5RyxJJFiOC58zx7d6Hb85nOFrDqZg1wu0Sn1dUYHFqJ6bCMoNHBmhZBBAifinkd1eQOvKX8Dm9p2tbkfhy1teFX5G/SeiX6D87x3tQvHZLEwf18Ok164hDb1e7RHvoBNL4n7PrYI+r8p2o7oHu6VFVFfwxuvUn3lEKFJHUS5R3UR3oQgsupFdwefCMcx9jGAQibx+8kcXh8QIRI4/DEFer8EPZ4T7RyQGhsNEdDB5ztO51TRuXILlO1iuelefjSP4DWvbcgubUO6uhOp21NsThVjn7sXHWeafAhvKn8VrLFlth+XZIIpKVOAwqVP3voaXNrs+NOFn0BNo4nv9zvHpeV1tjpZXy48ewDeqQRjPeycTaMunKwydyZIdaPRfcGt/JrI0psyTfxudZ5IbvFmgWDhnVkhnu1ThyGgBQUn1hGCxPvHnVc2um04K4/nsPpULntpyYlej0GrkXy4ZCdfqRBA0oBZor/4eYwA8ytsKyH3r+LG/rlALnqZeA8fUexguKYEsD07s4lpml0MrPgdfvhdgHQpUwXzwytc9EtHFrjd56fKxagwkWqJp6fsPNssKWRbgxkhO8bFLdlUtBhL97M/0l0O3eXp0CgSlcgkK5pds/gGoAw4C+bk0cjVOsFwtUW88RLT5Bu5R3GQllI2xiXLoMtjgv00ZQfa4lz+VL1LsiyLKT8UUTRhCmPaR3BHYagDJFDdAdhgqIcrOzC2vZ8ljQN4ovRhdqlfBiu8Z36EGdbTGC8fwd+eKdpsJOPUPpJM1wRrtboAagrYonpNZE0uagYhrW/7c1vPFwJw9Fr5bfdxi+Pfw8EvxRihz00ep4XnofQyxPQUSWns4cJe/WrTKaZ3UiOXK6DfG03eexCs//sWHaW01kDJyb/AXr0X94cpO9z7PUO9W7lmldXRvXkAR66Vsf9yCUNaO/u96gaTAwhyZQr1+WwPPz/WhT4J/zow/z8J10Xewqo6ovy9/iPX8X8q/gsE/S+GQi7jORtL5uaY1DWaDzZlEBPgQUaB6CzT86vZer6Q+1KiWHEsm5HJYSRH+pCMD80j6hjzV29+HfEryUHJjvPYK+ztGEEAD3aNEUCQp5BspRaLFXyjzUCubaQvu2b2dYAYICbCU3rFNjmXWiFzDNCaBeiIDRQMmX82Upr58fLQlny2TeiNpVtQFd8alcSPB0Vnlhzpy/7LJXjbgAy5TGLni33x0SpZdjiL0loD99oQ90h/LWPah7PuTD6P9Yzl0R7NiA7w4KHuMVitTm1x+yhf3hyZCBLMGJTA9/uvEeqj4bNtl/CydeStw8WEYHLPZiw9lOW4zmAvNQqZxNyJHSivM7BwXyZ7LxXzQFfha9O/ZbADyLJrp700CqobjNQaTLSL9OV0diW1ehNXrZGM07/LeWssd3u7T2J/e7wb721Mp02kuI5QH40DhApzWZU74ZLt6Jg1kWNGISm6uflyZVr1jAukZ1wgGpWcPvFBtInwYUNaAcevlzOwVTC7LhajkEkOH6irJbV4qhUOWniQl5oZg+L5fPtlAFY/2Z33N6aTlisGvNnl9Zy6UcHGtHxq9CbCfDVuq21hPhq3wf6fT/egqLrxlhkiXIEg++fiGj0X8qsY2Ta8yWqQv05Faa0eg8lCekG1Y3uwtzi2T3wQvoFhXLdNGqcPjOe7vVe5Z+HhJuVU1WBE50pplwnww7WzCPRUs+HZXrQMFSW+dHIK1Q1GZtkWQ1UyVRMgyGKzi3Ywgm4Ri88tZv7p+RyceBAftagDa5/uwfWSOjJLamkf5cvkns3YmVHk0Pu3ifAhLbfKwVJyDTst+UpRLWtP52G4TfacYFuKdPs5M2xlGOajocQldbqdSbb5+d7sTC9yAkE2SaodjANQeF5gm86PlNBkpgRbiQ3UIZPBtgtF7LtU7FgB6hjtBDs7x/g52AUA5/PEdXhrlYR4qymsdgGCqhsJ89E0kXhIkkSAp5pBSSE8c2k6UaYSXk00Epl+kTlGMXjLsoZxsczMs8bn+TysHQEV9VTUGx1goB0Mtj+rgYkhfL79MustPZjHN8iw8IZyJdSsBAl2dlnK8MASIrc8Qg06JurfoApPPlL8QB+5bRCWe9y9A27WEzo+zKJ9mbQK86bvPUuFHGKJzSem4yPCm2nTSzZpjnhvvpYeZJhlK4l2090WA6CmiEJ5KGtDpvNXpgVjibgPu/kmQQms6buNn9dtpc6qoQJv8qsaaTH6a5Fo4OcxjC9YQ6VVx15LO2IDPfmyoidz+idTWmsgWKnkRf3b5FiDKGwU716ClM8Q261EydxTEb9sfByjYRgHLOWU4XxvLuRXUyEfyGf3D0NhsfDRxrNcOLqNjtIVarWD8Wp5P5+kxdMi4C3O5lSiVcrx16nQ6ryYmd2dzQpPauXBlONNfmUDPlolZTYwxQ4yvL3uAt4aBQse6MCaU7nM+us8dy/PJKPVYHLLqllYJJIKxATcOvGBv875Hn16TzvHZzsT8kZZnQOov13U6kW5S5JzsHurPs8VPLeb9mcW1yJJThunP57qTqcYfwcQlBTuTVK4N1vOFXI2txIvjYLmgTp0YQl8EvoFq7J0dJJdJi4unlezn6LRO5Yjxa05Zkmkx4NvExRjm5ToAqiLGciFYmF8fbmohpeMTwLgrVFwo6yeG7QEPUADsYE6rpfWERuocyxIvD5C9DuupuknsypuyTgFmNQ1hgNXSh2TH9doFebF+bxqOsX4cepGBXqjmYvK1sRyklOWeEI8WxKp8hBG8aeWgdYfMmzIR6oNDfCNhqm7qMi7wqcKMcn8wTScEdEWwne8hdsTuLYX2j/gBA3KrwtGSUOF2JZ7Cq5sg1Yj4dJWIe/U+ArAodcMuLwNKm+gKE2nwOov5Iv2sIFABVZ/+svP0l9u6xjyUgXI4MJeskv7Uo8f5CP1AagAFvURFcAmHc22hnDcfzQ/GhJJkt1guUos+Jy2tmC9pQcRA6Zxb7sO1Kze6jjv432aU1qrZ/O5Qq7VqfhsnwerVMCJxXDqJ9Gm2Mtt2MfQ5Qn4+S6xOBHYkqk08JBqFeqNRrBjV6eWYqyvRllyHk7/IkCDZ46yMrWYVaeLCfFW400tX0QdQ5d/BD5OFyATCGChvimbZnmbVL4Lbs1j53/CGtOdRZdHAxKlgZ0JuyL87NKDhiKXO+vUMvNQJKyiDbbHiR/g5FLB0Ht4nZO50Oj0EbK2fwBzvvAZmyTfyS4pHHWDARN+1OBBeZ0Bk9nC8T/m08N+0Lu+juM1wBT5JH42D8Voa80LymrwDvN1Tqj3fmK7nsXi/4RhgtW0fjqk/YY5aTzyqztg3yfQawYhl5bzq3kAVTgXYZsHOT+X4Id15JdIksRBi+29Ce8AiWOg/yzhleYS1hYDMO/7AhlgCG0D+WJhLLj2osjYuOlFSF3Gw64HXdworhFEAhoXEGiqYSafjorBf/t0PlAudWx/0LKTtebezFD+Acfg/YPn6a4U9gqD5bY5BwpeMUzjbvkBZz8IzPhqCbMeGEJwfip/mntRlvIiU1PH86byV6xIbDJ3YWThcVhvYx//OJhJ4HC5fVXxGzP39GRMS51gXv2jWH4PFJ2HHtMFeHI7qVTqLw7Z3XpjCnNOK9BrHyDClE2J1ZclmV4MUsYSce0Y/o3VUJ0Py8eTVJ2H2Sohl6ywciLW0su0kPSESWVk//gwATMOo9PeWnJoz8TbMsQ5ei+qbqTrR7tY+GAnhrVxWWS3WiHd5oe3+30BenZ/FvJTqVH4UvvzowQ3XqMo4UHCuXXMaPwW62GbkX9wkgD9bopfjtygtFbPXbLDPK7YRF1QB3T3LxXZdn+dIDJRK3VCpr2oD8UjlxKcMh6z0cCYimWEhnSlxkNHQVUjxRVVtJeucsbaguKaRrQqOT5aZZNMrA42+erJ4BcDg2bf5g7+/WEnWABY5BU0nUn9vxX/BYL+QzGlVywPdY/hg40ZpNo0yV9sv4S3VsELgxJ4YVCCm1zqSL4AOdZlrnMDghpNYoB5O0YQ4JBo/V20CPL8h/uAGLzaJ+5/lzHsTs7zdL8WDiDoH8WEzpHsv1zipt+2s5X8dEKGcK20jlkjExnWOoyx7SN4c0QiwS7Ail2Pr1XJmdY7loGJIQR4qvlyQnsA3h/bht9PCCmFzraCGeKtIevjkRy/Xs7SQ1nYFH10buaH3mgh1EdDqI+Gz+8VEwTXSeikrtH8dTqPEcnC5NhLo6DGxlry0SpJCvPmeFY5sYE6TpcKwDD4Jg+ndlG+/PFUD7dt+17uR2W9kZ+PZLltbxPhTfsoX5YfzeZ24atVolHKeH14omObKzjz4yOdqW40se5MngCC5BLNA3WoFDLK6wyE30QJn5AS5QCCOkX78eu0bqw/k8/ui0XcKKvj7u8OO/YNvQnkkiSJjdN7Uac3I5MEywsEs8MedoZWkAvLI8BTPO8Fu69S3WiiTURTw/JIPy16k4WEWVvctofYziOTSbSL9OF6aR2tQr14cXACkX5a3vzzHCq5jBcHJ2AyW9meLrLkpLhI/poHqcg1gsHinnUlOdLJIrADLnYgSC65r/43mBqw2AwG3RhBN8X6zPUAlDWWOYCgjtF+bmDJO6Nb885o5wpTYpg3v5/McRiAr5zWrcl5u9jka3ZW1s0R7KWhuFrfZAIXF+zJgSulpOdXkxTuzfXSOnQqYT7tyjazM4K2Xih0XFOu7y+sugazek9DJpMYlBRCVYORUG8NszekE+GrRSGTaBflLMfOzfxZtN8JBNnTyfpolYT6aNwmzoVVjYR4a6hxYcd9eo+T6eSjVdKAhsvWKGTtUkg8HQtIrHq8G/d9f9QBdnmqFQ45gB3UxCpefPuzcpqrS5yzNCNZluX4nROWltw/qKtgzkXs5v11F7mQI8r5XdPD/Kn7ivdrRjFYdorWScm8ci6MFao5rNN34i6rlTlbRFa1rI9H0vjUSTTzbNKR1GWQuoza4I54PrAMsy4UeW0+8z45xw90Zd3ACuL06cInIqIT3V7bBNfrCPRUoVHKaBvpy6XCGocuP6u0zs0PzWHmqPWj5q4fqFo4nGWKe5naux0NBjNLD2Ux7OsDNBjNvHtX6ya+aYdMrRjf6WUWHS3mXaWYUI7Uf0Rf2RlWm/sScr3CIde0R25Fg3MBQiZjXEoLvj+czCGSGWwDrW7UXmFAmCjvuGBPJElizrhkvtuXya4bbcWqK0LGATh+45n+cXSJDWD/5RIe7BaDRinnwW4xLDl4nWuldXzk+y7ZlnpCrPV8PDiBgYm39m7w9RDtzc3tV4wNuLxRVk+PFlBRZ6CgqpGk8KbtUZ1B3IvsDrwZVAoZg5NC2GTz3tt/pQSrFZZP6UpimNdtPUsGJ4Ww9UIhBVU4WJd3j7+PS5svklkaxo7LdZzTfMQzgwfBiqtYkHFZHs+6E6WsOXWGAa2C6RUfiNlipV/LIPZeEmBelL+WNU/24L2N6RRXN3IiqwJJgh0z+lBnMLP6pOgzByWGOJJi/DS5C2tTc/nrTD43yuqorDcyul04tY1G9lwq4aNxySzYfYUecQHEBHiwM6Npqu4AnZprH40gq6yOAV/so8FoJo3WDAeWmYbyWK2BSD8P4aN2/g8HQ42kMVgvbqLBLEddU4x8fmcCbBkZL1qiWGwayYrSAF4xl1Mt9+ftxvtZqfqAjul/QdEFeGitYNuterBpIUsy4ZF0cxye5/bnLONkDCj5RfUxRHWDHOFLNUz/Mce101FbG1lsHsVUaTPS/s9h6IcCiKoppOf1nfjLlXSSXabaqiWt5zd0zvmJsoIs7HyHAfrPaHm1kXK8OWhJpnD4DzSc/JWcHFGHrzd48NhPJ9yuqUWQJ2rb+GT/5RJSLfEYrXKUkm0hIrYvXLd5oWx/C86tEZIXgMJzTDVUgAS5gb2JTOwCCcM4sfQlUrbbyj22D1zfj3V+Z+6vK+aU8QnaFFznc81BvIrqwd4FZh8Gn2iRiODUT5AwHC47+2ndnrd4CUCCdX6POgCWA7EziM6+wVZzCl2UceRXOtNPG1DyvXk068w92TiglKDWfWHJMDDrhTx2yVDhZ2KoF/IyW3ytm8EheTWQRmdFBu+qhc/aBUsMIw1zMJVc4eKVFbS4uoQSbQxW/xYE5+8GwOIbg6zyBm8pVzBedZx6s0SK7DLmJWrwDIZ+rwtg0dXkWhckQLbLWyHtNxqDkmmVejdH4hoIS1sFaaswouBz0wQA5k5sT8doPwfj2B4V9Ub8dSpK8OM940O82vlR1DIZ9H0ZglvB0e/gxiEa40ZgtcixN5J6ixH8YgVbyNQIFzcIJimQk/wsjWf/JF6WJ5JV2Be6lDpIHEVR7HiWr1nNTksnroV35yl9CavUtgynwz4mZutrzJD9wVFLIt1kGbylXE6F1ZMXjM9gNUqkax5jtbkP6yy9OG5J5IjcIVBkXuMsWDJLVD1zJ4ZEtYSWv0FDBfsa43nur0KGer2Ior6YzeYu1KhDuc8kxkYMfo+EHW+zoWo8pgVhKF7K+HsPnLoyrNlHMGqDUO35QDyr6/th7LcC8N3/GZz6GaZsFxnaAFqN4rJHR+A6XzaMcpxqUGIwRUWt6VG/Gr7pKkAzW5yxxnNQ1pnnC35FAq5Zo/jWNIZ50gLKF/ZHN8emujQAACAASURBVHimsAK46VoLqwQI4dpX2oH21Sdz3IGgoguCcdZrBhz8Cna+IxhmpZfxwglfhF9aBqFtBWCYMkUw0Ay1zFmymgP1Ubz4wF0M2n8P7PtU+ATKZAKgPrYISi7yQH4Z65nEPJUABNeZOzDGPxbuWwFLhoikCAAyUU8Prf+BUWGxSKse5Dl5Llz5g0GSLwuLZpOY/RN/qc/wqfE+JnxjRGE1cW7OPVx2YY+DIB1gNgkZKUDXJ4WUzRbldQY6vr+DhQ92ZFibsNs/738mDPXw15MY2gowTFs2lRif6H/Puf9/HP8Fgv5DIUkSaoUcrUpOvcHEgt1X2HWxmPu7RN/S0FmnFIPleqM788eOXDYY/887sieE/Gso6a1WRG8Xw9uEkRByhck9m7KU7Cu2gZ4qpvZu7tgefNPA3TXeHJl0y+120CzkpmMttuVY+0D+g7HJbt/fymiyeZAnp94a7Pjb1SjRS6MgPsST41nldIz2czBTgv7mmp3HKvHSKN1WsD8al8zwNqFkl9ez/Gg2cye2Ry6TeP20+7EKuYyL7w//h+fu3zKYT7deotFoQSGX0SrUi7TcKgdTyh6uMhyZTMJTreCBrtFkltSyM8Pdv+fmMgVn+lLXcAVA+7cMZnt6kdvKrVohR6uUk2ebuHZp5s/NcXPd3PJ8bxqNZjdDQbuEy872mdA5ilFtw1DIZKgUMhY80NEBJHWK8ePUrEEEeKqZsWcnudlgspiamN3dLuyMvTm95/D6gdcFEGQDFcyW2zOCJO78HbFHkJeaeoOZoupG7u0USfcWTbXzzQJ17J7ZV2Txu0WE+Wg4lFnqxhhSyWXEB3tx4EopI+Yd4IVB8Ry8WkrX5gGOZ28P10nzpK7RvDa8FT1WNf0dH62SN0YmMn3lafIqG/hgbBs3zXgnF8kpwA4bMOetURLqrWXzuUK+3H6JxDBvzuVVcV/nKO5LieZ6aT1vjGjlVl99tU7fGgFUibK1M5HScgXI7KVRYMfOa/UmhiSF4BMewdY8HKwuV4bYNMNMunvkkdmgow4NzSMjWWz/PrITdb4S5BQQ4aslszKCcYpvyTTXs9rcj0d1zThkyaJZ4wrY1YA6zH1C/NXRanZYvmHzC/3IOPgXC4+Wgscw2p0x8M3u3Rx5YyDB3lcpqpaxUp/EW6OEIb3FRVJTWmvg8T7NCffRcPx6OUXVekJ9NE28vfIqnQDsDUsIo/RzWXhvJ4a1CWP3xSIByNmq6jvrL3BzHMmqpkdWB3yo5QGv03xb3YsL1mZcMDdDJZeJ3/XWuLG4wJ3tlxjmzdHXB9Jtzi52pBfhZcOr7fXUznIblBRCoJeasd84J3WltrT0BbZ2ITrAg87N/Hmqn7uHwdYX+vDaH2msPJ6NRimnX8sgB1h/qwjQqXh+YDyj27mvqYb5aFHJZWSV1mG2WOn4wQ6sVrg+ZwSSJFHTaMRLo2Tl8Ww2nc9BGwlWFyHKzWFnRyaEePLFve0YnBjCR5szKKoWfXyoj8YNBFIpZCSEOBdwBiYGO85hZxDEBXux5NEUHlh8lGuldRxsbMYknG3uq3+kOVhvFwtrHBLjiSlRDiDoke7NCPHW8M0DHfnhwDVOZFWglMlQyGX4aGWOxBdBXs73q09CEL3iAtl8vpCcigYqG4zE+HswfWA8eZWCTWRnz0b7e5DpYhIf4atl5pAEUpr5I5NJjvagwWBhn74lk9VfsKcxlDE25pe1+3MYVT6cCrmXjlE+qMOSKN3xJd/syyJMLfGEfhkS8IxhOpssNlC82spTzAAbZrzUNIxQ3QbCyq8h/TbJXUoE6EfOQx2aRJUygJyDK2mTlAzn14hJfmQKFKcLiVTSWI5u+Zn9F9thRIF1Rjqniiys+Okbsq3BVOFJ/pCFcHoFH2ffx8PtfVAfWyjkUjawaCww1tZszTWNQ6Nuz1rP91lbm0eAvAGtpQYTCjfZbX7YINZGtMKntIAAnYrCqkYH09weWpXcIR+et/sqoKCdfjFHXuyCj6WSHGUsBWVVdAmVYN0zwjMqqitM3kJxrZFf5r9NP/1udsS8z6QOLYn00/JJwxjWqM9iDWuH9MgGGlY/ifaCYOV8rlyEwSrHIlNR65XAkrIkdHIzU6QN0HM6NaogMjd+iV/7mUTH9ICrNsZMTC8sQa2Yd9mfrVlhgLjPH9MMXDIIo3p1TiVmi9XBju4dL6T2RfhzJGQgpiIL419IE5PZPR8Khsuu9xxlUdr9TUbuCaNo1xW8okUf95VpLKP5FYDWshvMU85n6IHTKC2NIMEa1V28mz+KicZQvENiqAjvx8jyZwmMSSIk9yCBMuGjV6cOwVuhgnVPiwyC1bkQ0VmAat2fFZlUPQKgvoxc746AxIbyKB63XdvHpvsdiTI6N/N3sA01ShmNNolpQVUD/rYF0CXm4Tzp14aT5wqIC/YkIXE0JI5m74Vspvxyhg8T8sAG9unNepGJ1KyHL1sLKRnA1N0EBrdn1KkYlgWuJPLB79g/fyrleDHmnc1IkkRBTiXzzeI8ZXUGjlkTKY27B7+IeORdn+T7badIMZ/mScMLrFB9RGvZDT4xTaQOcf2dGr+jCjFmLSCAP8y92GduxxD5KUbJj/KzaTBbLF04ZknkyUBPiBLjVOlyCRaKudrvO1JTj/NWVhvMRjmHZNG09Tcxte1E4UMHKOoK4JMYGPml8L6pyBKsPa2v8OXTBcK1PUhYeU96gg9kc2DDdFEGoW2wnv0NqUQsxJC6DGoLMadMY1PYczTmNPUd/WBsMtvXtIP61Q4Q6HqfL7m6ZwUb/R9iY0kI7UdOou+OkRy1JLLe0p1HLVvpWHVBJAWxmEX74ddMgDqZu+lbdIVXVLswGJSYsxcj9wnHK/13PIkiTFUvGIrn1ggZbMFZAU53e4YN6hEMS30KZfl1kYX1ivCUy7KE0ExWhLndJH6TDWdcQISjTd2mqSarrp4rZQYG9XlZSDa/7Sq8sOygMJAApGoOOP7+urAtvesM1Hkmo8aPYGyKBJtdQlvpGvKVE5DZGIw1oV3xKzzG64UvoFeIvukJxQaSLdcYLj/B1Zwe5FWa6ShdprUsi6vWCMKvpkMzZxZaLm0WSRjiBoLVQs6upbyj2M+OwyaGJY2Gc78L/6i2E+DaPv4s8OdUhYYP+nmDXzPO51VxpbiGcS09BDgcZmP35p4UrKrB74syS19HY1kGeIC/7s4IEv+3x3+BoP9waJRyGo0WB6ui800TH3uo5WJgUmt0R03t8pQ6U93fTkp3zOjDF6f3cqjpwtv/OG41if9nI8RbjU4l/FOmbp/KU+2eomtY1yb7yWUS22f0vcUZnCu2t/Jm+Wfjrnbh5FbUM80FUAInTXNan+a3OuyOwnVS6qVROgbrSrnzmYXcAgS8XTRzAYLsg2o/nYqTswYRoFMhSU2BoDuNVjaJ04hkgcC3DvcmLbcKpaJp/Xp5aMsmhtvRtwAYQrzv7N5cvTOeGxDP9vQiNxkc4PDV+vzedsTfApB03TYiOZSWIV5NmHH2SZXrZlcQQqWQMalrtMOM2L6/K23UaDGikrsY47qEXXoJQlI0pc0UBkaLNPau0rC/YwTZJ46uMrR/FPYBYkW9sclKoms0/xsWYHKkj5t3FghZ3TP9W6BSyFi4L5Ovdwofmoe6CRNoV3DEnhUIxDt1M4DoGh1dWEmTurqvvvjrVLQI0pFZUse9nSJZfSoXEF5XdvB13u6rDp+zbi388dEqmTPeHagF8HOR+NgnRIGeKkK9NTQL8GDzOcFe8lQr3MxQh7QOJRsF5Lk/e3sUEsCf9QGoFTKe6NuCUW3dQQU7QDa8TSg/HrpOZmk9gZ5qyuv0Ll5mNoB5U7rjOIvFyvqz+RQY/Lja4MUxn+Fss1xknFbDp1sFk3L2+gsOoCA12ykPtft72SPYS01rm+/Nhfwq6gwmLhbW0DchyLGva3rXrLI6JFUpYb6izDrfAmwd0CqYnnGBnLhezpmcSgfAU4Unmzr+wLrdVx37DkoKZvO5Ql4e2tLB1ntu5WmqGoxNAGJnnXW+F3YWoKtn3c1yrL0XiwnUqfjtRA5apZyg2/QHKoWMezpHsvZ0HnqThXQ+5JPjKbza5dVb7i9JEjMGJzTZLpdJtLBlqDx6rcwh3Xpr3XkHK/OTu5P5aHMGqASAeHOa47dHJfHeRvHM/XTCULlrbAAapZyxHSLYdK7AAX4G39R+Zrw3zO1vXw8V3VsEcOBKaROGrytIa/f4ivb3ILu8nlBvDT880plR8w+y/Gg2CSGebs/btV+1g3auNhLl9cYm+4l9JCJ9tezKKMJsseLroUSlkDVJHmH3/bOH0WxhfEcnU83eH9QbTORVNpCY2BHOFTj8lJZl+TL78CCggi6xEjMGleOROIWfdh8iWQljrLuZUzfaCQLdIjZYerChpgdrB1bT8ZCQw5k6P866Y+nMM43nl+b3Eh3gwbM/HuPAlfZs792Hy606M+qeUC6X1LHnYjF3tQ/nfF410y72dpx3d76CKctOAs5tAR1GsV/XFfOvp8lp9zxxmVsFCBTdnYbg9jx92JOlqs8AWGIazt3VeodMosysBdvE2uCS2ryqwciNsnpiAjxQyQV712iy8GiPZo4yBfc2uk9CEPsvl5Bv9sEnLIrh72wTUvUPh6O4/zchs0sYRoMJRi84SFFNX+bTFw7ls/BQPpum9+KktSXPGZ7ljdFPEAY8WfkQMUYV79kYgQMNn/PyxGE0D9Tx5fyDyEwWTsZP4bsu/dlwLJs3al9l/Dkl7495ygkETd6EDCj8I408W/sYoFM5/O4AR9/UNdafLecLGZwUwrP947jv+6PMWHVGJA15piftopIE2yq8PSQMR+/TjCd+OkJzfThFZImysVhQAjmSPzmWIKJkJZwiibvkR8ACezt/S9mxlaxlADEBHizOGwX5QH4Z11t+y9LJXRgx9wDpBdW0lTIZ1LUPozvHEXX4DRSnlwESjFkAVXlCtitJpMU/RduzH3DRoyMAO2pieFwO80xjWWp2LtS5tmHNAz0dMvdzuVVuGecqG4w8vULIpuxmxJ/uvIEZOWdzKx1AkMFsEH5gSg2kPCb826J7QERHtJJEiSqGH+IWMDu4FQ8bXwege42eEG+Ng3EJUGYD3fWjFiC3tcM/KifyUcM4escH4tV3Jdtv5PPbDoPj+ZXVuXs/zjQ+DYB/1wew+Ot5e5NTHtrcRW2gs40l3kr14ESWU5q73tIDZXQkeIVQPv533v7tAAtU86GxCtPaJ1F4+DuznN0UOdYQVpYn8GbycLRXbHLSnbMdy25mjR/yvUJuuVfRm+m/n3c7vkszf2aNSiTUR0N9RA8OZbWmy+gpKLtM4ezpPF4whjIhKhJzUS6PbKgiUZrDNWsYIDHZ8Aq9I2QskH8Ja8XCDb4xUCl8GB8Ch+TNvOYx8Aqmd94pzmvAfFkOv6Y4QGMAEkdTr/LjuU3HSfZ/mw3PJoNfLBmLHmZediwnLS15ULGTSGsf3vzzPG/+eR4vjQKrVSx0gU3C32cc1pJLSNlHBDgCwlso+wg71IMZ3CiApQuPXeX6t8fZdkH4sq7Uv8HjcdW06zmC7NM7OHP+PK8of4c6OBX+AJ9mteCnx2awdNUyfDM3kN/2JTKObmGBaj7D5YK1GLckiUbPFihja3m+sIRAiwUuArHOOtNwaCHaCqeCpB3QTgHnaxv4c8F+xpXbMrjZgL1xQJylGZzNgp4vcPeu9gRJlYwN+gypOk9k2ZbkkLlLHBfbD/YKf059TR54BJCkcipQ/l+O/wJB/+HwULlLRnrE3dr53j4BuR0jyGK1oDfr0ShuzSiJD/ESA7V/IxD070jXePi1gUhAcUMRp4pO8cbBN9h1765/6hxyG/gV6fevu8yrFDJeGNR00O+nU91RWtB6Yz1Gi9Eh43ENV+mMl0aBySImN+V1BsdK7t+xmG6OmNu46tsH5DdPOv6ZkCSJ9PeGOsyI7WaF9gGAa9iNfV3jVlLDO703VzCzTYQ3W1/o7ZZpwDV63ILtAmKCb49vJ3X6231czdpvDnv2C9dwBWUMZsNtgaCbfbuUcqUD0G0wNTiYQH/nEWQPuwT0TsIOBAG39Am6k2gf5QRntEo5DUYzLYI8CfBU89rwVjzQJZq9l4u5XlrnyG7k+f+xd97hUVTrH//O9ppNTyAJAUIJvUrvUkSUql57715/9oK96xWvinrVq167IqgURUFBBCnSe0tIAUJCerKbbC/z+2P2nJ3Znd1sAlwvej7P4yPZOjtz5pTved/vG0ynDC8R3JJgTBb0Y7ulyQrZg3OTUVxjx7k9MqgQpFRwGNY5Ge+uE4w9y+qdmHdRX8wakB3xfkKPzAQ8Nq0HVMHopf1PT4GCE9rblF6ZNAXNpFNJhMz8TDOKy4XFbqzr0CfLgntlBAMS4t0n24J2CTpUWF0YnJuEeocHW0tDPiIDOyTSNGEA2FXWSCtIHq5son5L4opKi3eGxLr95VY0u33Qq5X4+5c7Jb4yqSYt9foSFqZC27igbzsqBG0trYfXH8A/VhxGtd0KU94/8XnxYfTLfgkJOjXev3owVuw7iTq7B+sKazAgJxE3jOqEG0Z1gtPjx+aSOlz38TZA4UbXzJBIs3nuufD6A+iRmYCZA7Ko71SyUQOr0xuRDksXOFzIU2tct3Q8O7M35gwMmYGmGDVQcKFq6ot3ldMFYrcMU8xIvSEdk4Wqi24fKt0F+PxQQVQhKBY92pmxIZgqSRCn5j70reCDodbKC0HXj+oEl8+Pl1cW4M4JXfDEsgNU1AdCqcI6tQLmsPtKKZPyPWtAFrYfbZBECgHSe7IkGH3z1PSemL/6CC4anCMR2nu1tyDVJBju17urodTYgGBSUoqRiOeh704M9jGkfYlJMWmof120ipViDyYgJFoQtGphDCquscPtC2BwxyT8sO8kaps9sLt92CCKbNtaWo/L3t+Mj68TKjvV+/UY1vQPyeelmbURfhSED6q74e05/wH2fIWDuVfgvg1Ce6ppdqNDigEFwVTU27/YiaLqZnS7ZwxeXlmA1YeqUG/3RKQ+loginf4+vgvq7B4k6NRU/KwIJKPL37cL0QCdRuPA0Xr8uuF3XOh+DkbOBStM+HBjqeQz89IErw2Hxw+LXg2r0wub04uSGjsG5ibB6fHhaJ0DTW4fko0aWs01nMuHdMBvhTWotLqQn2mmi8K1BTUwaJUYEawm9NHaIio2ixF8nTh8HxiBmVYt1AlurC9pRI8xtwNdZyDQcAwvJF6IUV1SUR083wEosLHMg0CAp9dg8a5yJIjGqQAfgIJTIMWkQVOwGMHYbmmSjYmaJjeGdEzGa3/rj9Fdy3Hx4Gx6bcim1Gebj6FfTqIQbTHmAQDAkXIr1h7zYO2xo5EnhPPhQs9zsHB2VCoz8bDhe1jTBkFjGoqXvYlANQDYJG+ZGowkJHf1Xj4PeTZg/D/XYUa/azH/iulCFEp6D+G/INO39EQeNw+DAv0BlGObtxMuVbyALT7pRog40vzNywdg7rf7sPVoPR5evE/yuipRlGVJTTPWHK6molFhVTOgEeYYLr9o/Dr3SSC1G9BlEk1PSjRoJGXZAaC01i4IQaK2XRasXptsCM01RuSlYsmucrz2t/5INWmR3bknsEow5e6Uaoy4NwhGnQo9uuUCQSHosWk9UOU8BoOmE5QKJRUvST8yuWcGmlw+/F5SRwUjS+/JWAk/1uQqsa/4OO5SLY4qAtm7TMe1B0bDDyWW587FxUnthPsvmDL4L990FNqyMV/zNvisQfimqj2CF58yIDcRfbOFOVJKajqu8D6K3/LGowNAK/uK+8NDooqpVpjwQwXw5FUvI22RkGZ2wJOBpPQOSD//UVz83lZ0sKiRZduFB22LAJuQevutfxSG6E4gp2yzUK1r5ruCINR1MqoahHvpqF0HJAub1UtzH8GKo8Kc5jXfRRiyN+SNRe4rwvojNXhxZSE+3jQQL86+BrPnqIXomP5XAH4PHnl5I4o7TcOt5ySiZ04q2lt02FBUi27pZhTzWdhkPAcPfVwKoAs0yEW+ogxDBg7Eu02zUZvSLGS+ZI/B0wcyMNtpxO98yMrgJ/9gZHG1WKax4qDWgOVDr0DHTQcwjtuJwNqXBE2s42joj4YikmrU7XG3/RoM5gpxj+1b9MZv2KQYiBFXPQ18IpR7d/HqUMr+xtdREBzieBsH6CyCkbbYo+yLYBW9kXfBdfgbAMANJ18Eai6IWgTizwITgv5gxNEPJPVEjmheQGKfErvXHlUIAkLRBSS9IVaYeizmXdQXtrCOpK2Qyay4ApOY968ejNLaZtnnCEM7J+OqYbn4+4RIQeK/zcxlM3HSfhL7rtkX8Zw5LDWsf4dEDOiQiHsnd0NxTTOKa+wSAaMlwqNkwol2TuNFHB0zoksq5l/aP8InIxpinxdC+EImHjiOkxUSSIpJtHPAcRyeuKCnbDoaITW4yCLh1vESHhEUDadPmq6pVqih4BTQq/SS1LBYEUHRPisWEiHIIG1PNo8NYxeOxVsT3sLIrJHhb6WIfU5yUww4XNkk2fHvkGKIqGJIdvbD78NwwdgX8EGlCLUFjuOw76nJ0KqkojjhosHZsDq9GB5mCD6uezqem9kbjy0VduvapdegzyfnY+WclcgyRVYPUSg4SeqoeHEsrhJl1qok5UK7pJvgPi5cc/FEmhjI098ZRXTrlCqISt0zzchONghCUEch8pMIQQefmYITDU5Mfu03+r7XVxdCo1SA44DDJ210oXO83iFJEwCEaKOVBypx78LdeHhqPuweP564oCf0GiXmLt6HDikGmLQqDOucjJ3HGjFnUDauHNYBeWkmrDpYhX45iZj3UwHmrz6CDzaUglNZYeoKbCwPHc+knhmY1DMD+8utOHjSJqnQotcoMT4/HW9dPgBzd03BWwUdAAg7vqkmjWzhBJIOG57+BwB3ndsV89fupn8rFByNPBM/FogyhLm1u/DpgWO4utfVss+rlAosvWMEVAoOF/4g/xnx0CMzAYt3luP3kjrZ583aoC+cIvqYe8uYPIzvno4e7RIi7ilxBFQ8KaizBmRhcq/MCDFWHAlSEjzvY7ulY0J+BgBh8UyEQxJ51C3DjP3ae/HIduDCXsJ4lhpM/1KKjuXq4bnolGrEuO6RFV7s7pDILfZQE0P6jYwELaps7ggxV6sS7gGysCULrHk/FVCPwX45ibC7fVQsJQUhyhsj+815F/XFtR9J/XN+uW8sXltViO1HG9A0ZwZOpk/BvcEICwA0+ohsGoi/p84uPHekupk+TqIYC0VRLLeOy6PXhXjVVVpdQLccoeIZBOFIoSvD/VfMRpbFgomvhtIzCD3aJcAf4HG0zoGcZD2s5UI0UHmjE1cNz0VRdTNKg2l94rFA/P5DJ210jD5pdeGoqMrbjZ8KQnHpi+ej2e3DO6LqrmL+/VsJFWJ/2HsSawtqEOCBGf3bA+3yoUAoDipFdBw2lw+HKm0oqAqJKh9vKqFpoHavHWaNmYqOgDAehUeoXjeyI3RqJRVOw9s8iaIqqGzC8r0VuHdSN9r2gdAGB+GmMR0ws9M0oQ/2ARuzbsTROjtGh4mGSgUHg0aJJpePenGJBV4Smfn93pN4dNq5eGPNETxyfqg6EvGwK+azkFIfap+b3R1lznKIvDQTvrxpKLo8uiLiuav+s5X+e8I/pW1m3wkrNHmRBS6gUAp+ciIsejXq7B6J6FNaa4dJq8K9i/bQx4qrbTCkbMFPx72Y2WUmAODF2X1w/chOdJ4gjsDukm6i5vfhKDhOsnHYrdMJzPruDjw78lnM7DITxvAo7WG5eDfYJklUvFLBISNBh0/4adjiOyEIQQCQ2h24bAFgK8cJXyKuXHgMR/eHxvZVJU5cfPU8wOvE3gWP4++HeuI4L/SJFe5U1FbmodRejUSDGo2O0Fyvd/tQX0aii0vr7OiQYsCJBidSTVpZiw8CzwPnfGpDT+4FNGja42S9BqgHNicNwK5APTrktsdnu9Nwv2YxOLUOA5pfR2PAgIHJSizutQEYfANgTAHyp8HnD9DKuFpxlJhdOjfderQeN4zqhFFdUoUNmyDT+7XHd3sq6EbYSysOY1rf8dAOFMZOT0AQzh3thwA9e4ADMDA3Ccv3nsQPEL5XLHh7oMb/ee/Ep72GoOi7A+jRTojOJ5V3d5c1IiGlHT5rnIirVKuxJOUGrKo0Qe//Hhw2A1mD8bB2Fr7hHkS2swh7A51QH+iHcRCEIH7gtZi2eyryOibi+/p+mO7ajAS+Ga+qbsaITmOAG38BnI3o94kHXfwlmDRqOP5e/xJUxT+jidejYtZidO8f9F1tOArUFQmpdnsWAFPnAUNvhk2pBMq+gcPQ+U8vAgE0AI3xRyFeyEYTgQCREOSTCkHiRWl4tFA0yHtaE2Ug5uLBObIVxU6FaAvdST0zcPOYPNnnCFqVEs/O7B1z0f/f4qT9ZNTnzJKIIDUSdGosuX0k8jMT8OG15+D/zu3aYvUZMSqlAjeP6Yx3rxwo+7x40RrLhyZeZvTPwtDO8hE44YhTgV6a3Qd/G5zTKk+olvjuzpFYfe+YmJ95/ahOmBaWpiMm1UiEoNadG/E9FytlS04IAgCDygCHz0FTw2qcNWjyROafAyGPILmUpGiIJ/+JYeJEYX0hfAEf3tv7XszP0KqUVNhQKUkER+zoomSjBvufnoJbgumTz87ohQfPixxE5X6LWaeW9dkCBKPud68aJBuBKE4zWX1CMI/cWL4x4nUtIY5KIZF7XYOLcJ1aSa+z+Jo+eWEvHH1pGr2vk2QWXQBw3+Tu+ObW4cjPTMDT03vhzcsG4NoRHXHRoGykmjTo1T4BBo0K3TLMNCUTANYfqcW47mnonmnGoUobrSYECBFb4rY9qWcGrhjaARuLaqlgNLhjEi4b0gEbHhpPzcUX3DQMBc+dhxdn90Gv9hbo1Eq8d/Vg3Do2D/mZCGHiNQAAIABJREFUZlqJCopg6L/MteqdZcG2RydSbyUxF/QVfHQqHKGoGJVS/rreNi4PeTmVeHDnZJxoOiF57p5J3bD2/uhCJeHWsXmSCBpCvfE/mLd9Xsz3dkk3I/UUs5vzg5Pc3wprMLprKn28c6oRX940FBcQX6FgdJOc6KsUVWYMh1QhjFes5jguYkEMSFM1S2qaYdAoJRFFSgVHo3yI71v3zMiUWxIBIF5wqJQKjM9Pl+2L/zGnLx6Y0h1HX5oW9TeSfkWjUmDPk5OFSp5hv0mvVuJA0Ci+c5oRwzpLUxVzkvTUGF6l4CQLWY1KgZ/vGYMXZ/eBWauiO/lizDoV+uckotLmQp+nfsY1H26VVDysbXbjhR8PReyk1za56XcdqLDieL0D90/uRn8DMbe/YVQnqYeaRUfFLRKJAwAHqyph7PQvLD3xT3RJN+HR80PnglTT7NEugUbXZgerM24qFna2e7e3IFGvplExckLQ4ttGYO9Tk5Fm0kLBAZVWJzXKF1Nn9+BIdTOaXD6MCqZHi+cnHl8A14zoiFSTFot3leOzzceQZFBL+jAC6QNIn3rjJ9uxtVQkDIii/8hmZ4poU0wumnhQR6mAbAxr9zVNbgQCPKa8/hveXFOEEw1OFIuuaYdkA7IS9eCC47BBy1NBor1Fh64ZJhRVN+OjjUfR3qKjka9XDO2AjQ9PwNe3Do+Yc6YYNTgWFNUCPPDa6iP4fPNxLN8TmheKi2Ecq7PTwg1ispP06CcjnKqUCiTFiMSXO/cef0DiEUREq2tWXIPrVl4neW2iQY31R2ox4NlV9LF/ryum1VQJRxqLoExfgsc3Pk5T4HVqZVSx98Hz8mV/JyAIeAoFh89uGIJV94zBgsOCx5QtaPCenqDFkE7JePWSfih8birGdkujAnm7xND5b2fRYf2RGrigxRWeuWi4cStw++9YUWHAhcsVmLWoGnXeUJvqnGbExqJaIQJRrccXhqupCAQA2/h8lNqFc33pOdIxRrxxlJ9phlmrwsPf7kVRdRO+2laG7CS9JAKyb7YF3942HA9Pzcfqe8fg7onCpshBviPS00ICOhGuJ+Snw2RJxtv+GdjR/X40BgzIzzTjuF0JTH4OSA6tv15ccZgK4rXNblzz4VZU2VxCKp8itCbkOGG8HJ8fKorw7pUDJWn0qSYNqpvcKK4OrTPr7R6oLNvxUcUlqLSHin+IIf2cmHq7B8frHXSORnw7S2rtSDNr8ZrmFox0zYcyPR9+KOHlpRvlLzadDwD4zD8JdxcKx+jgtVjb/VFUO/yYNTALndulYobraYx3/xPbbQlCtHT2YDR3GAe3j8cBvhMqnCoc6XMPygJpmO15Gs/tUOLGTwQhrMibiur0UcCsd4H7jwBDBaeuaoswbz0y6PmI3/VnhAlB/wUu/v5izF0/V/a5iT0y8OLsPnj7CvnFPMHpFzoIu8eOUmsplhxZAkC6EI1VQl6O1iwuzzTxilj/y9Q6I0uhihEvnBJ00klLbooRd52bh6d+fwpFDUXhb43KI+f3iOqYL24bf8S1vntiV1zQtx0uHdIB10/Qos8nfXCk4Uhc7714UDYuHhQ9zSfdrEOX9FMzKycTzdZGBElSwwLxC0EkhcykMcHusdOqYQBw0883yX4GiSBojWgr3n0Nj5hqTRQgqcZ2Yd/2SDFqcPnQ3BbeIUzqyILwquEdJRXpCK2JbgqnU6qRLiaA0G7cqSKe0JMozWV/H4k9TwoF0cl1ljt2MuGLFi2nUyup50qPdgm4sF97qJQKJBo02PLIRElVwPC01H/M6Yv8TDM2FtXB7gkJlh2SDfjX5QOp71aSQYP8zATYPX48vkyIkCKTZXHKLMdxsgt2pYLDA1NCot0//5Yv+d1ngofOy8foAULY+/ry9RHP84qWv/vhqfl4YVYfjO6ainSzFo9N64GhURYccjS6T80DgExyfQEe3TPMuC+YGvji7D4YkZdK26pR27bo29PhwwdI061ONDhlBQIiHhBRdKq4Ok2QVJMWVw/PpalXLdEn2yKbOiyGRATxvBCRIJfylpNkgC/Aw6xVIc2kjaiEmGhQY2CHJDx+QU/4Ajz+I0qnGtghEd0yzLhsSAfse3qK7G9P0KkxTLTJcdIq7W/L6p14T1S9kHDbFztpNA1Jn8pI0CErKNAcrmxCnywL7piYKZnjaFQKZJh1+HjTUUx6dR14nofPH8ChKiGSZ3eNYO5305jOVGAkHl89gxFBgGB6b9AosfOY0I57tU+Q+MLJ/Va9RokEnRoqpUKoPNXsQVkweubxC0JFNCoanbAGoyBIBOPkXhm4bmRH+po5A7OpQAUAPOdGk7cJbr8bzR5pJPeBp6fgx7tGo3OqkNpGoqwAgFOEohfIpog4AlUcOU98C8WFKoBQpVdCtc0lWaAWVDahqKZZKFBwfj7mXdwXK+8ejWF5wnn1BDxQKjh8cv0QfH3bCBrBAAheKiRdWKcWzp+4kuhj03oiJ1kfIXYUVQu/ZXewEMGhkzZJpcsqmxsj81IlPpEPT83HhocmYNnfR0GOWF6Yw2Q36nhwnB8KTljukSjmndU7sb1qu+SV4VGtVw/PRXWTGyqFAndO6ELPQblVlNL8+UD8duI3yDG9X3sM65yMZKMGi24Zjpfn9MWkniGx5fqRnXBN0MdqdNc0dM0w42DdweBRC21cp1Zi0S3DJb5hj5zfA29fMVBSPbVdop5GiG4M9EG9Ngsz39mM277YiX3lVtQ0ufGlqN+Y1DMD9mBRDQA4VBkphhIm98qQ/J0rSh1PMWnx0NR8nLS68PavxQDnQUPyM6hwhQoqLL19JAblJuPWsXnokm7G3RO70Y0ct6ggx4EKob0Oyk3CczN74xXPHDxfNQRqJYeJPTJQZ/fAF5Y6u2KfdPN5XWENbvhkG345tg7m7s9AqRf6rZwkQ0SU0oAOSTBqQ36Lo7sKolRJrVQE17cXUqXKmoTxemrvTDrfCfd8Izyz/CD8AZ5GbeWlmWhhgSSDGma9GuVIk/QfBJVSgR8Cw3ClZj6+9o9FI8y41PMYZnmexnXBaM6e7RKQbNSgGQY0Q/iMOe9sQkFlE5aKogfr7V4UcR0x2jMfR/hsrD9Si9WHqmF3+zDx1XUY8kLQisQUEsgaXcI8z5KcI/vb/mwwIei/wOH6w1heslz2OYWCw2VDOsSsWgIAbp8waFo9Vlz+w+V4YtMT8Af8kgVirBLyQKQ/wf+UENRKEetMUGotxapjq1p+YRTIAAaE0u/EiCcucua5RY1FWHxkMR5e/3Cbj0GMuG38MUJQN7x1uSBwrjy6EgCw5viauN477+J+mHdxv5ZfeAoQIejG0a2LbnP73bQcfKzUsHBxk0QEGdVGNHubJd5AB+oiqzCJaY14It2Jku5+tyZd8OnpvTCgQyIuHpyDHY9Pijrgt5a2RiICwC/3jsXP94yhfxOhK5pXVLyIjXiJUGLQqOjEmIh/csfuCwp64Wa+8aBUcBLTz/N6Z9Idun7ZFiQZNfKpkRZhkULC5hP0arrjVtvsQec0oyS1Mx7GdQ9NhHJS5NP0WqK1vmSpemGRKyeit6adfHbDUGx55FzcOLozFt4yPO73Wd2RO5mtgVQOA4QImjvP7Yrtj02kC0KSYtmvg3DvxOMHJoYs5C8b0roStofrD0vOX7jvTqz5BhGC5KI/FQoOz8zoLdkRP1VIRFCspkMiDQbmJsmKmaS6IekPykQpNz3bRR5rn7Dj16mV6J1lwb+vCvnJTeyRjnevHIREgxrf7S4P/wgJ4hS+jAQdclMMtCp0O4sOYxeOxRU/XiF5D1mUnbS6MHX+eox5+VdsOy4s6sSRY+cGd/CvHJqLB8/rjpFdUjGjf3t0TjPi9nF5SDZq4PEHcNPoTkgyaiTpwClRohRDz2tR1+xGWYMDFr0aN4zqhPeC56C8wYlGp9DvTe/XHq9e0g8PTsnHkxeG/D16tU+gHk4AYM57HSMXjMSlyy/F8AXS+9AYTLkV99+0gAQXGpdIQRSxiGXQKPHkhT1xw6hOeOuygTjyfGTlU7FYlJ9pht3jx5rDIW+XgqomHKqwYUinZNw8Jg99sxNh1qkRCJaOI5EtY7ulIStRT9O+ACGdjQhsJLWrzlmHPp/0wY8lP2JU11Ssf3BCRBVO4mvz84EqWJ1eTJ2/HncukFbwyEs30sXy/03oglvHxo6AJ+fltnF5WHv/OMlzg8OipIQ2FgA4Hia10Ebdfrfs/BRARHGJJy7oiS2PnIs194/FfZO748NrBQHYz0nnI18e/lL28964bAC+ujnUDi45J4e2LwB4dFoPyfgHhPrIWOsZvUaJIV3UqGgOlWtvH7bp1ejwYHdZSOifkJ+OPtkWmorcLzg3qrK54PMHcLiySZJ+Lq42mZ9pxroHxmHdA+Ow8u7REYVHOgfnRptL6pCWUod6TwUWlbxDnw9/PQC8eekAjOqSSqs2AsCu441INWmRlajH4Nxk+li6WYesJD14XipSu31+VMn4ne0vt0FlFASgGcOEay0WNj+9fgim9W1H+3oyhpEKs0t3VWDGvzai3u7BSVtIuCTz0M5pJmx+5FwUv3A+Ft4ib8JfH4yUTDK7wPM8NCoF9XRKNmro/ZqTZJAUbOHBU5F48vhxIIU0Ngd6ooAPjYPEszKc2z7fQe0CNEoFGhwe6lEmhvhcAYjwxbIGhaA001+jahgTgs4SSJqP2++mA2Wztxkev4cuSlsSUyRGcfjfEoKc3rZHCYg5WHcQz/z+TFy+K+HMXDYT9669V/LY/J3zsahgUVzvr3OGfCKiXQtiwqtTR9565D0KTgGe5yWf1xb+6IggMWSBeDrTw04VrUqJoy9Na3HiFY7H74FJIwwQ4spg4URLDTOpTbB77ZLoHDlPGzHh924sxJOO8HSr1kTedUk3Y8ntI2V3lVuLWCA4FSFIoZAuAnVqJX78v9F4/+rB9LG23PstiSaxhCASURa+Q91WSKoZqYZI0o+A0GSXLHjJYlKt5CSRUuERE/GgVHBYdsdILL9zVJsjNMVt/rMbhmDJ7SNivBp07JLr61rbZ8n1LbHuTwBocMv7VsSLUsHRinVEsEs1aemxDOucggU3DUOfbGEC3Jrqf4TSF8+XrYIXDavbiou/vxhPbHqCPub1CfefSatCboohojqfGJKGE4+od6LpBA7VHYr72ORICrbzWN9HFiziakKEHu0ScOcEIdUiIj2c8+Hr+r/h28JvJQ9/fetw7HtqcsQ4PKZrGhScsCB+58pBOK93JtJMWlRYXUgxajB7oHw/LY4OyUjQ0agRILRjXtQojfQVp4QdrmxChdUFTiH0L+I+7JoRHbH63rEYnpeC28d1gUalwNXDO2LNfeOQYtLijcsG4Pu/j8Kj04RoHnE6cEt9d6pZgzq7B2X1TtqOiYhZ3uikvihJBg1mD8ymKYZf3jQUC28eBo7j4PML1+3T64eg0Vst+1vFqJQKDAmer5V3jcGa+8YCooggEkkkTg3Ta5S4bmQnPH5BTygUnMTDjSC+/6f0EqKG5v9yhBqtz/upACW1dkkUCRC6J8PvzewkAwqfCwlOE4KCHPGwKrEKC+2FBQvpa8jGQbpZi8cv6Ilbx+bh5Yv6ot7uxryfDsuej44pRkFYVTjQGCiUfY0YkpaZbNCgY6pRIl4Q8YDQPlFP08LEQlA0CwOxH88HVw+GSqmAWaemYxsZbzhF2+eTdKOl02t4ZfvL2FcT8tPkeZ4KQOEVksOZsGgCpnw7hf4dHh1cKypsMig3Ce9eKQhQH113Dr66eRi9L6tsbuwua4THF8B5oijIRL2aVnE2aFTITTEiN8UouzFDBMAKqwsppmBKfXAeJuedBghzGYteLekHfth3Ev1zEsFxHCwGNRWY08xaKjYVi1LEq23uiIq94ZBNAHEBjDHd0vCvywfSa0Ei0jqnGpGVqMfqQ1XYU9aIgc+uwq+FoTTvcAsDpYJDulkHs1aFiT2kUVMAoE7cjHs2z8aSIiGDZUSesPHT5PLRviTRoA7OdYTf4fa7qZG8fISbgF6jlBW6SXrd0E7JGNElBfV2D6qbXNCoFBKhv1Tka7R8r/R+sLqF+U+GmQlBjNPA6fBmAeQXIDa3DW6/G4laQVxoKSIofGJ9KguyllhUsAi7q3e3/MIgpysi6PbVt+Prwq9bTNOSg0y+XD4Xbll1C97a9RY+2PcBnt38LH2NN+DFg789iMKGyAFbvLts98hfiwU3DcO6B8bJLlpqHEJYuFqpxueHPse4ReMivDNag1g8+MOFoGAnz+F/RwhqK+6Am06qWmMWTQySxRFBSdok+ljM7/S17vp9ceNQYYIdRkuTqzOFOMWoNaJWPPRsnyDxhziV1LNoyHkEEdw+oY/PaENEkByOoMEuWcQNyEnCufnpGN45he72EyHotb/1xy1jOqNXeyF66LFpPfDzPWPa7JfWLycRvbMsLY4l0RC3r9Fd0zCgQ6QRtJgmrzCxJCHnYsTnuq0VEFv6HdFSwzaVb8KMpTPi6jc7pRqh4ICuGfKTxuF5KfDxwapzbWj74rHC7rXTBWg0iLfG9spQ2kfvYETNR9edg3UPjEduSvT+hogu8Zz/qYun4pLll7TwC2JD2vlYUURaOHMGZSMjQYsrRYbhJKVg6R0j6EIsJ0m6GOSUQnt8Y9cbksd1aiXMOjV+e2A8lt8ZSsHRa4Q0zosGZlOx4eGp+bh2REd8fetwvHpJf9njG9ghke5qk/NHDKvHdpdPVQxPZQKAEV0jI8c4jpNEHEV+d5LEm0Uc1ZFkiD8iKCeYQmrRq2HUKLHzeAMVghLCUoZG5KXSiLFnZvTGpJ4Zsh4w0UT5/1w7GCvvHo0kowad00zo3yHUHkkfkioyiw6vrtsS4siYOyd0xV0TQ0b14oqYgDCeA/JzJI1Kgaen98KCm4YhJ9mAoy9No7+TjAkk5QoQrkWKUYM3LxuAG0Z1wsNT83HJ4Bx0TTfj+z3y4ktuigHDO6dAn/MpllQ90mKfQ7LIiCfdgptDor94DNKoFKhrdlMhyKgx0t9ZZgv1t+J7m5hnPzatByb2jFzYJ+hUUCo4cMpTG8Mn9kiDUleFzw99jst/vJw+7vK7aLRSS5sR4WnuZEwkogZJdwQEEYRsipE0UDJGVtlcWFtQA6WCE4zOgyQa1PjipqE48HRIbAKA4sZi9PmkDwrqQ6XM2yfqQ2lPRuG4VEoFPr9haEzbjwS9dAPK4wtI/Fe7BD2r0s1adA7+u6TGDo8vgCeW7ceqg0IZ6GtHdIwQRci4kZ+ZgKm9M3Hf5OimxyEBUxchtn+1I/Q7o42nOx6fhHevHAidWoFzRPdex057AQA/lAgVGW4Z2xngfMhpX07vaa1aKfheKYS25/A5aLRQxxQj7pKpekgiOgfKFJpw+wK4Y3weFt4yHLnJBkEIsrmRbtZiSq9M7H5iEgCpr9HHm45K7oNmtzD2/VWEIFY17AxzuhZecgsQm1cQgpJ0Sahz1bXYcYYLP6cqDhQ2FKLZ04yBGdKOjud5vLL9FYzKGoX+6fITp3Di3YG2eWxI0ET3TSATKKvbinRD9IllLKxuKzZVbMKmik0RzxU3FmNF6QoUNxbj2+nSXUarRyQERekw9Rpl1Ek4Ea80Cg1NoSpvLke2ObpXTiz+pyKCgoN2a1MjTicljSVQcAp0tHQ8pc/x+D0wGUz039EQtwdAEPiAUESQTqnD4MzBMKgM2Fq5Ve4j6OBEPMLiZWSXVNnH27rAj8VH+z9Cij4F0/OmAxAW0eCAEe1D0SDivudMCDVAaNFxKn2uOnEzKu2DkGmU+qPE8ggiEUGny6x+XH4aspP0NDRdr1HiP8GQ/PGvrJV8V/tEPeaKDGXFVdFOBbEw7/F7qL9VS4jbF8/zLUYAkt3/Y7ZjEc+J24wn4IFWGZ/QJpnQeZuRqEuEx++BN+CNEFwbXSEhSFzN7oWtL+CY7RiO246ja5J8+W3C+X3aIdWkjUhxEEP639YKugSbx4ZaRy2e2fwMdlTtwJ6r90gWoGLkxK0rh3bA8M7JMX3V3rliIL7cepyKquJr6fQ5YVCHdpQDfADDvmx91JkciQYN1j0wDu0s0f2+8tJM2PLIRMljX908HIcqbZJqg+kJOqy9fxx+LagWKmnZi7A5RhBWeoIuwoh40S3DJW3o3B4ZOFdmtzs7SU/TOoR0MCPKG5xUiJk9MAuLd5ajS6Z8u3jrsoG46N1NqG32oJ1Fh7cuH4hyzybs3tR24RMIpZ2bgya8sUgxaVDT5IY3wNMdfY7jcPnQDnh/fSnaWRphDi7+fQEfrG4rUvTSXfrumWZJRKYYUgFM7hjzM0Pi0tzz83BDMCufbKgpFBzO75OJH/dVStKdY/HczN7ITtLT6JA7xudRj6rcFCNeXVUYIQTRiKAofmjEwyYcEk2oVISu7/C8FOx4fFLEa/PbmVEQrCC36p4x+GHfSby+OhitpFNj9sAsPHfwOHgADa6GiPFHDPHQEpuP/21wDr7fWwGO47D1kXNh1Kpg1Kpw5QdbUG4TNhjFEUEnmkMbjC6/C3qVcL5IdIqc4TwgtA2e508pIggA5l3SDWNEgfZuvxtapVbiKxXvXMXhdcCgNtBr3iXdjEMnbThaF3q/nCCaZFBDo1Tg5wNVOFLdhMG5SUg0aKBRKuDh7VCo7NCqlAg/FcTmY/Xx1eieLIgrQmSoQaiwZvACwZ8xqqv8PIwgtojITTHgmRm9aXoWAHQKijIpJi1STRqYdSqU1DbjpwOV+PT30Jh50aBs+AM8Ptt8DDeM6oSCyib06NUBXxUCahWPd64MRcLI8d7Vg7Fg63FkJ+nROdWI9UdqkWrSQq9RoNwZmvNEK2pCRLZ9T00BB9DKdn5OeP3Oqp1weB1oZzHgjtlF+PTgxxhiegqADhyE61PuEdqUw+vAkjtG4GCFDRqVAvdM6ob5vwjeolN6ZWDu1B70Wg/IiTT+B4DcZOG8JRk1sDq9qGh0UoE+0aBBgk5Fq9jlZ5pxuLIJNpcPHAc88PUebKqugiZZBZ36ryGRsIigM4zNEzIgO5XooGgRQY3uRrQzCvn+rU0NO9Wd+TnfzcE1K6+JeNzhc8Dpc+JwvXworBzhx251W2mEDGHzyc0YuWAktlVKS7/KcSomoLWu6NFEZHCSM90VRwS1ZTFKhCDxBF+88Gxtuka81a3+G5BjDzeQDMfj97SYztFWZiybgQuXXnhKn8HzPNx+N00Ni2WmG57uolEIkxESERRAAApOAbPGHHWAJRFHpyt6j5x/ufbb7GnGgsMLWr0IeXXHq3h0w6P071tW34JbVt0ieY24HZ+pSETSh7RV7Fr9QH/o2i2NSA8FQvdSuLgHhHLvY5l4toZ0sw4bHppAPX/EkOo90Yyp5fAH/K2+p8TnsN5VL/ualUdXorhRWlpa/L5o90a4UAMIlfPCj1E8PpE2U+2obtHXR/y95HhuXX2rrHAhTg0Tt1GSxlnjrIl4TzizB2bjpTl9Yx8TSS1s45h74083YsayGdhRtQMAsLt6N7449IXsa+XS3YSoktjm+lP7tMNnNwylf4vHsBe2vCCJ7qhz1knOV0sbDQ6vI6KtiMlNMUatGhiNTIsO42WiiDqmGnHdyE54anovXD+2bZtBsQTMxbePwNe3DsfP94yh1XNUCg7dM8xon6ij7315Tl8cfGYKmr3yJrQdU414cIpgyq5RKTAoNwmugNBe25LeSiD9kdj4ORqpJi3sHj88voAkmurhqT2QbtbipNVFha2Xtr6EcYvGRb3Wco+L57+x4EUeQeJo7vmXDsA3tw6PuyjAlcNyMa57OvLSTFh1zxjcL4qCmNQzAyvuGi2poCc+btL/8DyPbZXbZMdBj99DKyc1uIT7TMW1vFgUV+DrkGKg0Svkd6mUClq1L1p/Swi1zdDx/eOivjj4zHkABHGTiLlvXDYA/75a8FokIrjH70GVo4q+Vzwnu2pYLhSc1C8unAAPQHFqY7jVI52fk3MpngfFO4cmv4Wc087BCE1SvS0aHMfB4w/g95I6ODx+PDVd8L7KtOhgzHsFz+yVj3Qkx2hUSTcViE9hgIt/ni4uGrP4thESXyogdC97fAFwHIduGWbsLmvEtzulmQLpCVoamdwl3YTPbxxKfbdamnMDQkWvJy/sBYWCo5FHvdon4Nz8DHCKUD/f0jVRKxVQKRV447IB+OjawWhwN6CdsR18vA+VDuG+KWsSBKzzB2hx/+RuGN01DYkGDZQq4XidPifyMxMk5uDkPL1x2QBkJWnwzOYncMx2DBzHYcntI/DvqwbRqn6AIKoBoWjTLaX1ktT9Md3SsLW0Pvg7heiiKpsLb/5yBD8dqBLM6/m/hggEMCHojCPu2KIt9uSodlTj3rX3YtiXw/DOnnfg8ruonwKBiCWdLEIoYUtCQfhuZFt3J8MJHzDJArisqSyuTggILeLIBGj60umY8PUEyWu2nNwCAHEJQS0NpuGId4ZLraVRXxfLt0e8QGmLxwZZdDR5muhCnQyQvxz7BUO/HCoJR20J8cTsTKYBxgOZEJJUkGhM+HoC5nw/J+LxgvoC7KzaeUaOrTX4eB8CfABmtTCxi7XADk9PpB5BpGoYH4ACghDU7G2WFYrJdTtd148sjMMn7d8Xf4/hC4bjhS0vYPPJzXF/XrwLFvHx/3L8l1Pa8Y4GmaS0JAS9sfMNzF0/N+IedfNCH0Am+mLIQt7utUf0aV/dPAz/urwfvir4PO7+rq08fkFP/PbA+Kil6uWYu34uBn4eGZ5e1lQW4Z1CEAvz4kUDIcAH8MC6BzBr2SzJ4+JzL3cu1hxfg5ELRtK+koyJAT5AJ4oEcZsh/z7363Mxbck02WOW+17SJsiYEW6SWmWvkv03iYCSawttgbQfcfnm1nCoXurDc83Ka/DS1pdk5xSnaoBNEN8fy4qX4ajtKP07vE2QcSoa9627DzOXzWyVIOn2u1s1Z5JDfFw/Rvx6AAAgAElEQVSV9ko8sO4BzFw685Q+c2CHJJzTMRkGjQrPzuiFjAQtemVZ8NgFPfD2FaGdd5VSAYNGJSseE8hChZi1xtpoCofneawtWxsxbqSatCh+4Xxcck7LFW/E6SRio2OlgsOF/YQ0GZVCOLalRUsBSO8TMXJtIN62KB6PxOOmWqmgFRfD2VezD8uKlkX9zK4ZZllBb9WxVZLjEt+bALCkaAmu/+l6rD6+OuK9j218DJO+mQSv30vnmPGMgcSXqFOqEVqVkgo17WWi4Opd9fD6vXh4/cOyFWTvGN8FiQZp1bJoJBs16NFeECzInMXtd0s2WcVzsgEdklDy4jRkWmJvNHBhQlBrN7nDN2rJuRQLh7Hm0OLvI31RslEDs1aFrCQ9ko0aSXW2QJQ+l1RG/fX+cVTU7dkuAQpV8D6UeZ/csQLA/ZO7Y0y3NORlyi+rmz3NEfeDOCIoQa9GtaMas5bNwr/3/BtA6P4k6W4X9G2H/eU2rC2okXhDpRi11DBfGxTUyXWNV4wl5AWFoPaJOvTLsYBTthwRFM70fu0xqLMevoAP3ZMEMZa0OSJIWr3V+PuErlAqOAzMTUSSKRj9LhN1vfj2kXhmRi9oVUrsqdmDZcXL8PTvTwMQ2uyUXpl4flZvmLUqmLQqWmFRHAmWJRK6xZUPewQ9GE9aXfjlULVQdZTzgefji0L8M8CEoDOM+CaMNSEI56P9H2HVsVWwe+14e/fbcPlcSDNI1eJjtmPw8T5kmbKgUqha7RHU0i7em7vejLrrKCa8cxMP5Eca4ysXTjp9MuEnna0/4MeqY6tQ1lRGO+V4Bl6xsNMSPM9j9MLR9O+SxkgPBqfPiX01+3Dfuvvoe8KxeqwwqITJ1KlEBInbTJ1LEJ5WHRfipvfV7ot8YxhltjJ8dfir0x4RxPM8lhYtbZPIRXwrqh3VeG3Ha1EHFKvbKivEXfT9RbLRZ3LvlzMvFf/+U9ltJZ9D8u1jRQTVu+ppODYgTQ3z8T44vA4oFAoaOi/XZsQm8acD0keEX8NHNjxC/92afkosuPI8L1noif2TxJEQ3x75FhvKN8R/0HFCfLnC05POX3w+XtvxGn3s/X3vY3nJ8ohKjuFChBhx+6l2VEuey04ywJxcgnnb5+H1na+joL4A87bNw6KCRa3qh+JBo1Kgg0y5VTE8z+Paldfi++LvAQArjgph2uHjw80/34ynfn9KdrEmbh8nmyO9Lcg5CF+wituwXD/xY+mPaPI2UTNZu9dOI+XKm6WVmSQRQX4XvW9bWlyKf2f4bw6PMhWbps76bha9zmTTJZqpamsh92+AD0St2NMWws8ZcGrRsGLCz1000QwIjVPRIPe73PHKUWWvwpAvhuD6n66P6/XRINFRLp8Lk76ZJESxWYtPmxA9uGMytjwyERa9GtlJBphMjRHtnox9APDUpqew8HDIXJhE25BoKDIuev3eFo9xRekK3LnmTolZMYGkD/kCPln/LUKGaMEfXvFqYo8McMomVCc+ilnLZtH7L9o9IdcG6l31cc0XyLxPySnj9ne8/MfL8djGx1o1npc3l+PetffiofUP4YF1D2BH1Q56b5KxnPRNcumqK0qFvrTCXiEbxRKNoZ2SsfHhCfjh/wQ/KuIDRwy6xTS4GnCg7gB+KPlBMi4T+uckYvcTk2UrJslB7uMErSB0ePweSaRjWzYvOKUbybqQEBHtM3wBH2YsnYGVpSslj4eLhmQeQSvG6ZJjzqHF55z0RRzH4atbhuG2sXnon5NIDYcBSLx/xHxx4zDsfWqyJK37pTkhY365jcvjtuOSYyYkGTX49Poh0Gnk/eBmLJuBUV+Nkjwm9ghSKxXYXb0bRY1FeGv3W3D6nDi3Rwb+Pr4LHjxPiBycNSBkVk/MywHhfr9vcneM7ZaGSUFvJ3KOyP+tbivu+fWeFjc3iEdQO4seM/pl4aaxQpqiQWVo1bqGXONuyd0AhOYM5F4n5xEAbh/XBZ3ShL5Qrr/okm7C1cM7AgiNb+Gv06mV2PDQBOx6YhJNbRzWOQXn9xEqsZIUUUBaTZcIgNd8uBUltXb0z0lEvxwjkvSx51l/JpgQdIYRd1jiCUFLhE8WnT5nhOcNGbAyDBkwqAynNTWM53m8t/c9vLT1JdnnxZNE8e7ggdoDONIQEn/iTQ8jx+7wOSQDe6m1FPeuvRfXrryWdgCxdh/JwqTeHX9EUPjCTi6EvdHVSEUgQN7rxua2ob1JGHDakp5CBBCr20o7ORKBRCaF8eyw3bHmDjy/5XlJR9vWlIRKeyV+O/EbAGBr5VY8vvFxvLrj1VZ/DhG3NpRvwIf7P8SnBz+VPL+jaofE3FTc/sXXp6XImNtW34ZLll8S8TpxG21ttJgY8rnULDrGDnedsw7tTKEyzeKqYYDQNyg5JRWCwieUPM/T7ztdvjriioPi7xEjt/CPhvjaNHmbUO0M/S2Ongu/HmKPgtMF/W2iSWmprRRlTWX4cP+HAKQCcfh9Hm2nGxAWCdkmIfRYLkKGnIcqRxXu/vVufHrwUzy7+Vm6a/XfpNJeiR1VO/DIhkck7SZ8QUiugZz5sMProJ48FfaKiOejLejFk7PwSaMv4BP8oxCaBDZ5mqjPgrgUMBAZESRua7EWyeLvDd+FDV/EVjRXUH8MQDgXLp+LLpTWla3DfWvvO2UhViwYn0r/E055U+R1IONjLMFp/s752Fi+MeZnh18/8TUPF01biggixBIlAGF8++TAJ/jp6E8I8AEcrj/c5gp2gGjREDY3Ch/zTwduvxvTlkyLSC0VC+vfHvkWz215jv5NTFqJ+SmZN/h4X4t9Prl/jzcdj/qa+Tvn4/zF50cIoIQhoqiSrLD0q8Edk6A0HIVCbUNRYxEV9qMKQTLR0retvg1DvxzaoqhF7q8sU1Zc6ZhiWiPWkk2+jeUbsfLoStz1610RqWHk/7HmcGVNZfQ+jmfjhOM4ZCXqaXXKqX0yMWdgNq4dk4xZy2ZJ5sz1rnp6bU9HX0F+c36yICaQiCDitdnaTcs7xucBChfS9CH/GyKYvLPnHby/9336eKm1FCXWEsxdP1fyGeHpq+R3kjlQhiEDJ5tPospeJZkXyr1f3C+RognialM7HpsYtWiBRa+O8J/SaULrj3DRpN5VT8fLaNkBZK4bvt4jfY54gyxRL2yCEP8asfh4zHYMaqUC90/pTiMHE0URLt0ypam+OckGfHL9EBplRL6fHM/ykuVYfXy15PrI0c6iw3Mze+PiwdlQKDgkmoS1TntT+1aJhmRMoBFBwfua/D98w1e8BowFud5yazCLQS2pKJhm1uLtKwbhsiEdJBUUxa/pHnYes5MNyElRI8UQu4DLnwkmBJ1hxIu71uy0R0y03A1I18sLQemGdBjVxhbFhwiz6BipYeKFmtyERLwYIv9u8jTh0h8upRMdjULTYipTgA9gUcEi2gEG+ICkYye72dWOatopRxv4A3yAdlTxTEw/P/g55q6fG1EBTG5hVO+ul5wHuZ1+q9vaZiGo0dWI8uZy6FV6NHub6aBBBkjy/5Ym0kCogyV+EkDbI4Ju/PlG3PHLHah11tJredR6tNWfEx6eKp6Y+gI+XLvyWlz303X0MbEY8evxX+m/xekJcpCIqYN1B+lj/oAf7+55l/4da8EPAB/s+wC3r749qkcAAGrmGOt61Dpr0d4Y2okiQhCJJnL5XeDARRWCPAEPFTblBLAfSn7Ae3vfi/lbwiHtUtw+wyfe8e7aA5FRAuK/xZOo8D5ELFKeLsiCUfzbxG0nwAck7afYGiYEBfsxuUW/x+9BjllItZBbRJJ7zuVzSSapLbXXM4FYfB+3cBz9t9wONyAfAWn32ZGmT0OCJiFCoAEgqWZY0VyBO3+5EyeaTkhFmLAFxp6aPXTBQI6l2duMvMQ8qDhVRMnpcINxcZuJtViUpKd5myUTTvHYQdLRuiSGdgoLGwox+7vZtO0eqj+En4/9TNOS24rH76H3fzxRnWJiid9ygioRvmwem2wfVmWvwgf7PsCtq2+N+b3hYxhpB7urd0dsEJHxiYiQ0TjedBx7avZEnRfM2zYPr2x/RdJfxypF3hLR5gGxxJO2sr92PwBgY8VGyXmX27whIl3XDDM+vX4I9ScR3zPifua9ve/hnl/vkXwuuR7RxIJtldvw8YGPAQC7qnfJvsaoVdFqZ+Fm52qlAhePiEytihZREMsDSk5MFkPGh2xzdlwRQeLFtFz/FY3wuZ3VbaXXgvT75Fhjje3Hbcfp9WlLKqZZp8Y/L+mHDSd/QlFjEd7e/TZd2Na76ukcq8nTdMrRa0WNRVBxKrogd/vdqHHWoLNFKCzQ2oigB6bkY3gXI/VJJMfpC/jw9u638cauN7D62GqsPLoy6kZwRESQUyoEZRoz0eRtwsRvJuK6n66TVDkDpOdcrjqxuGT7jprf8NBvD6HSXhnzXNY4ahDgA5K1jbitbyrfhLELx9K2Fy0KktogBH/LwbqDEtH9mDU0Do/qmornZ/XGqnuECq/i+UK0dk2igrpnmLH1kXOx6eEJsq8Ljwgi7dXuC4rNAZ/s+eA4DlcOy6Xm/TaPDXqVHonaxLhEwy8OfYGxC8fSsSnLnAWj2kjn/OT+PlB3QDK2kflbS8I/mZ/Gu/kQDRKNmRxmJJ6TpIfHH39xij8Dfx03pDPId8XfRc2R/b3i99Drir6LujMTTnh6S6W9EkMyh0geI4MFEYKKG4ux5MiSqJ8ZfoM1uBuivl4sjny8/+OIKgalttDk+uejP6POWRfR6fdL74ftVdvpd1Q6KlHeVI5+6f2owV5RY1FEdMiXh76k/15eHErfIMe0vnw9FhxeAI/fg68Lv8YFnS9AhiEDLr+LDqYH6g7gs4OfAYAkPYfAg8c/tv0DQOSiQm6SuKJkhVQIcjdi8ZHFknLoxBgNEESYlkqCiyEDwMj2I7H6+Go6yBQ2FGLJkSV0x2hPzZ6Y11icqiGe/G2q2NTqqBIePF2wvb37bTrRO2o7GvMYwvHz/ojF846qHfQz5IS9rwu/pt5XCwsXQsEpEOAD+KbwG/RK6RX1ewgLCxbSYz9cfxjfFX9Hn/u+5PsI8Y/Ag8f8nfMBAP/e+29kGKTVYsh1yTRmom9qXywvWY5U0c6YmBpnjaRyFmkP4vaoVCjpztyKoysk95D4eh1vOi455zx4PLnpSQCATqmTrcwiBzknTp+Ttt/w9r67enfc13d7VWi37rvi7yTH/EPJD3QRXtAgXfhtrdzaqjYUD0SA2Vu7FwsPL4RGqcFXBV/R5z898CmOBY0KB6YPREF9geQYyP1i89jwTeE3Ek82h9eBLHMWcBJYd2JdRDoC8aApbCiUiK51zrrT/ju9AS/21OxBZ0tnJOuSsbd2L1w+Fx0f1pevDx23aHdt1bFVdAwQ3yu/HP8logJVSWMJDGoDTBoT9tbsjfgNJEoQAB767SHsrtkNm8cmqSi05vganGg6gS2VW6BWqNHsaYaKUyFZl4xtlduw5MgS2Nw2WDQWjMwaiRWlK9A1MVShSyyYrDm+RrKR8tXhr6gwF464rW2t3Iq1ZWvp37+W/Srxe/IFhNRq8l3fFH4juwBcVLAopj9cS1TaK9EvrR/21OzBExufQJWjCs2eZiTpkqhAFI1YqV6vbH8FDa4G5CaEyqoTPyE/78fL215Gt6RukvcQwQIAvi38NuLa2zw2VDuqIyba5Jp9cuCTiOPYcGID/AE/Xtr6Ehw+Bx4e8jBNkxbfD2vL1lIR6ekRT9Pxs8ZZg80nN9P7qMnbhDxLHoqtxVh8ZHFMkSEWcmnCgOCJJhYzTwe/nwzN9d7f9z7S9Glw+Bx4edvLEa/9+MDHSCGpNRyw4qjwzyMNR2hVybf3vI3h7YYjwAfw5q43AQD/2f8f+r6d1YJnntz96eN9eOb3Z+jfS4uWRt2cevIyL+wev2w/Vdy8Ax0TOkoWqFsrt0aMi4DQ//dM6QmVQoW9NXslz32470P0TAmZV4u9ezhwdBzJMedgy8ktLfaZYrH9h9If4k4nE/dbYtoZ26HWWYslR5ZQkfJg3UHJcYjb8cqjK3Gg7gAUnAJNnqaIuWC8rDuxDgCwvy50T+6u3k37Z4fPgTd3vRm1r4uH3yt+R0dLR7oBtaF8A+pd9RibPRa7a3Zjffn6Vm9cVjRXSKop2tw2vL8vFGlyz9p7AIQqh/p5v+QciecNALC4aDEsWgsV3MPXSW/veVuy/iHzt75pfbG7Zrfs+dcm7oWf53Hfb4IP3o+lP2JO1znol9Yv4vc0uhsxf+d8jMsZJ+lLydoGEMYGwqCMQSi1lsq2UzLncfgc+Kbwm4io4EWFi9AjOVTp05AMrCkP3cv90/pjb+1e/HzsZ9lNqeH9A8jt6MTv1StCD8osK8m6ptJeiSVHltAqyHuq92DxkcX4+MDHSNYlY0bejMg3i9hfux8JmgSYNKaIOZMcpH//eP/HAIBkbTLS9Gl07VLjqEGXxC4oaizCe3vfo22bjHM1zhrZ72hwN0CtUFPhr8pRhQWHF0CnbLlwht1rx96aveiX3o+OS3fN9KCiwYllxUvRt0cpDlYIAt7hZhtONJ+QXTf+WeHOhGlnK/hDv/x0MfSLoTHD2ZJ1yZjWeRoVJuJlet50jM8Zjy8Pf4ltldtwS99bsOrYKpRYS+jCOFGbiF8v+RV3/3o3HVRioVKo4Av4oFaoJbsqbYEcgxydLJ1wXsfz8M6ed+L+PHJssT6bA9eikaKSU57WMuUqTgUfH5+vw9whc/Hh/g9l00daQq/SY9EFi3Dnmjtx1HY05vmNFwWngAKKuI//TJGsS8bgjMH4+djPbXr/fYPuwwf7PzhtRqinykdTPkJBQ0HU1EnC48Mex+s7XkfXpK74+LyPwXEcChsKMec7wRD75r43Y3bX2Zi2eFrUNns67lUx4vvsdBFPW23NfdRW5M7V3CFz8dLWl2i/kaRNwu39b8fzW55v1WffN+g+fF349RmJJjjd6FV6WLSWUzI7HpczDhaNBcuKoxuyRiPatR6ZNRIWjQU/lv5IH3ts6GPIMmfhttW3RbxeySnBg5e0rba0tWt7XYvVx1bLRtC8MOoFWS+O+wffj1e2vxLze1rDrC6zUOOsOSP+WOGc7j4jnMEZg5GgScCasjVn7DvuH3w/PjnwSatThcI53fOBWHRM6IhEbSJ210ijFDQKDU0PbGkOMz5nPDhwZ/TctoZLu1+KvbV7JVG20XjwnAeRm5CLO365o9XfY9aY8eA5D+LxjY/H9fp45oLxkJ+cj0EZg+LywxRjUptwe//bZYW+tiL+TZNzJ6PGWRM1mqs1zOk6B/cMugcTFk2g7fD5Uc/jhS0vtLnK5hU9rsDCgoWnPJfQKrUSwSNVn4prel6Df+74Z8z3qRVqPD3iadm++1SJNcbolDrc3PdmvLHrjajvP5W5znW9rsOWyi1x3W8tcbrmXIMzBqNHSo9Wr2HNajPW/m0tHvrtIYn5+iNDH8Fbu96KyBSId246tN1QnGw+eUbnYud1PA/zxs47Y5//BxBVqWZC0GmgpZBDi9YCg9qAakd13O76HMchw5ABjuPA8zyqHFXIMGTA7XfD7rXDpDGh3lmPBG0CjGojvH5vi7siHMch3ZCOakc1/X+s4zZrzPDz/qihega1ASqFSpILm6hLhNPnhF6lh06pQ5Wjin6HSqGCSWOKSKtKN6Sjwd0Ai9YCq9sKr98r+ewkXRLsXju8AS/SDelweB1w+BzwB/xIN6SjxllDv0OtVMOisaDWWQutSgjti5YCp1PpoFFqYHPbkKhLhJJTIsAH0OASjsUb8NIJtcPrgFqpRqI2ERw41LvqIzosBadAuiEdTp+zTYKFSWOCWWOGN+BFg6sBKboUGknDcRzS9GlxeRuolWokaBJQ56yDWWMGD77N1Yw0Sg2MaiPdHU4zpKHOWddqgSpJlwStUosqRxXS9GmSawaE2pqSUyKAADX+BULn1eFztOizFX68hAxjhlCaPuBt8VzoVDpoldqo11Cj1CBFnwKe51HtqI56Lshxu/1uaJVayS5og6sBbr+b3uNiXygxaqUaFq0FtY7Ie1uv0kOlULW6sk6aIQ31rnpJX2TUGKFX6sFxXNxRi4QEbQJ8AR89fhIyHn6eDWoDDGoDOLT+O+KB9G/N3mY4vU4E+AC9Vo2uRhqtlKBNgEFlkL12qfpUWD3WCO8n0h/HurfTDemoddZCqVAiUSuYEYaf59NFij4FDa4GBPgADGoDFJxCcr6TdEnQqXRweB1w+93QqXQR/a64n5AjVZ8asz0k6hLh8rloIYNaZy14nqd9p7g9BPgAHF5HxGeSe4TjONQ6ayPOu0VrgcfvkVw7cVuLhkFtgFqhhtVtpe3C5XNFXDvSPrx+L3jwqHPWwaQxQaPUQKvUwuVzQalQyt5/rSXdkI4AAnD6nPD6vdCpdHGnfmhVWuoDaFQb0eRpQoImgZrryrXjAAJw+Vyy54qM03Jjo1Ih+JY1uhph1piFEHkO9ByIr5nX74U34KXn1aA2QKvURvS/GqWGzlksWgv8vF/SXhWcAsn6ZNQ765GiT0Gds+6UxtLwc2H1WGnkpS/gO2MbCkm6JGiUGkmKbLohnY7BGqVGcm9EO17x+QaEvl6tVEvGP/F8Tq4NWbQWcBwHFaeKO2JGjnRDOny8j7a5aP2FuF0AQhSlx++BVqWlxx0u3IiPm8xl450n61V6aJSaVl/LVH0qGt2NsGgtsHlsMGvMUCvUEtPhaOdVo9TArDHTfsKsMbdqXi8HmcOqFCrJ+SXFYU7HWJluSIdSoYTNY4PdY4dKoUKaIQ3NnuY2V+bLMGaA53nad/sDfpg0Jig5pdB3+l2wuYUoUZvHFtG3J+mSoOSUUCmE9knm0xatBXqVHt6Al84J5dqcQW0Q5kYy44YYsiZQKVQx52uphlTZ9QeB4zihX+UDQnsRrW3CSTOkocHVAF/AB7NGqF7nC/giPjMc0vY8fs8ppz7JtWPxeil8nI5Fij4FKoWqRVsFQDjfZo0Z9c56mDVmmDQmeANe2p8pFUqk6dNg99olba+l/sygNsAX8MHj9yDNkAae5+Pu1ziOQ4o+JeY4zvM8vAGeVnBMNaS2GK17lsGEIAaDwWAwGAwGg8FgMBiMvwhRhSBmFs1gMBgMBoPBYDAYDAaD8ReBCUEMBoPBYDAYDAaDwWAwGH8RmBDEYDAYDAaDwWAwGAwGg/EXgQlBDAaD8ReA53m4vP+d6jkMBoPB+O8iLnHOYDAYDEZLMCGIwWAw/gLM/+UI8h9fCYfnzJZwZzAYDMZ/l1JrKQZ9PgjLS5b/0YfCYDAYjLMEJgQxGAzGX4AV+yoBAAWVbSsXy2AwGIz/TQoaCgAAa46v+YOPhMFgMBhnC0wIYjAYjL8AeelGAMChk0wIYjAYjD8jXPQqwQwGg8FgSGBCEIPBYPwFSDfrAAB7yhr/4CNhMBgMxmmF/6MPgMFgMBhnG0wIYjAYjL8Abl8AALBwexm2ltb/wUfDYDAYjNMNx7GIIAaDwWDEBxOCGAwG4y+A2+uHRil0+YVVLD2MwWAwGAwGg8H4q8KEIAaDwfgL4PYFkGRUAwArI89gMBh/IniWG8ZgMBiMVsKEIAaDwfgL4Pb5YdEzIYjBYDD+bPC8IAQVVDbRfzMYDAaDEQsmBDEYDMZZCM/z6PjwD3h9dWFcr3f7AjBqVVApODiZEMRgMBh/Oo5U2WH3sP6dwWAwGC3DhCAGg8E4C7G5fACA11cfiev1bm8AOpUSOrUSTk8AO47Vw8kWDAwGg3HWI04Na3R4/sAjYTAYDMbZAhOCGAwG4yyk2uYCACjiLBLj9vmhVSugUyuxpbQOc975HW/9Gp+IxGAwGIyzg0aH948+BAaDwWCcBTAhiMFgMM5CqmxuAIBWpYx47qnvDmDprnLJYy5vAFqVAnqNAgcqbPQxBoPBYPx5sDqZEMRgMBiMlmFCEIPBYJyFbD25HSrzHmjVQjd+osGBbUfrAQDf7jiBtQXVkte7fX5oVUroRMKRURMpIjEYDAbj7MLjC6X5NrDUMAaDwWDEgeqPPgAGg8FgtJ6PSh+APhvQnBgCABjz8q8I8EDhc1PR5PbBEeb/4/aRiKCQ+MNMRRkMBuPsJxQFxLHUMAaDwWDEBYsIYjAYjLMYj19I7woEvUKJUWh4ZTC3L0A9gggOj++/c5AMBoPBOGOI+3tmFs1gMBiMeGBCEIPBYJzFWJ1eBAKhijHVTYJ3UHhFMLfXB5WSlwhBdjeLCGIwGIyzHV8g5PfGIoIYDAaDEQ9MCGIwGIyzGJ4HmlyhyJ4TDU4AiEgN8yctx7f1V4BH6LUsIojBYDDOfrw+IgRxaGRm0QwGg8GIAyYEMRgMxlmOuErMiQYHAGmqgM8fgCrxdwCAxxd6LYsIYjAYjLMfb0CcGsaEIAaDwWC0DBOCGAwG4yynLCj+AOKIoFC0j9sXACDsGHv8oQUDiwhiMBiMsx/Srys4Dk4v69cZDAaD0TJMCGIwGIyzGAUH/HSgkv5dVi+IQuLUMLcvAHCCj5ArGBFk1qlY1TAGg8H4E+D1C+KPRqWISAtmMBgMBkMOJgQxGAzGWUzfHAu+31NB/yYRQU6JEOQHxwkRQWTB0M6ig8PNdo4ZDAbjbMdDhCClIqJQAIPBYDAYcjAhiMFgMM5iBnWwoEHkCUHSxHwBHp6ggajLG6oo4w4uGDISdHB42YKBwWAwzna8wdQwFhHEYDAYjHhhQhCDwWCcxeSl6yV/ixcBxDBabCadaVEDANLMWjiYWTSDwWCc9dDUMKWSCUEMBoPBiAvVH30ADAaDwWg7ndL0UZ9zevz4fPMxzPupAOYewmNPT++F49UaFFU3w+MPwOMLQKNiewIMBoNxtuIJCEKQVqX4f/bOOzyqquvivzslHRKSUENvglTpIqIIKCoqWCg2XhUFxS74gp9dRBQEwQaoCIJ0pNdQQk9ogZCQkJ4fWAYAACAASURBVN57zySZeu/3x5mSIQGCgqDvrOfJkzu3nrlzyzlrr702la4iAC644IILLtQCV+z9S5JkkSTpjCRJkZIkbZEkya/Ksk6SJO2TJClWkqQ4SZI+kCRJsi77jyRJ39Wwvw6SJB2TJMkwe/Zsp2Vz586lU6dOdO7cmbFjx6LX6wEoLCxk6NChtGvXjqFDh1JUVPRXv7cLLrjgwj8WJosj1atFoFu15R5a8WivMJqZteuC07I6HiqGdW6Ml5vGvo4LLrjgggv/XJjtqWFqKkwWFEW5wS1ywQUXXHDhZkdtwsCViqJ0VxSlM1AITAKQJMkT2AzMVBSlPdAN6A+8coX9FQKvA04sUEZGBvPnz+fkyZNERkZisVhYtWoVADNnzmTw4MHExcUxePBgZs6ceTXf0QUXXHDhX4XKKt4+WjVMu78Dq1/qZ58X5CdUQj+EJFTb1qKIbf29BYGUrzNez6a64IILLrhwnWGSxXNdq1ahKNZKkS644IILLrhwGVxtPsAxIMg6/SRwRFGU3QCKolQArwJTL7cDRVFyFUU5AZguXmY2m6msrMRsNlNRUUGTJk0A2LRpE+PGjQNg3LhxbNy48Sqb7YILLrjw74G+igeEWTYz4a429G0dYJ8XVM8LgHWn0qttayOCGvt6AJBVUnk9m+qCCy644MJ1hk0RpFFJAC6fIBdccMEFF66IWhNBkiSpgcEIFRBAJ+BU1XUURUkAfCRJqnu1DQkKCmLy5Mk0b96cxo0b4+vry7333gtATk4OjRs3BqBx48bk5uZe7e5dqAHlBjOfbT2PzlVC2gUX/lGoqggyy9Xv3wZ13C+5rY0IamJVDWUV669x61xwwQUXXPg7YVMEadSiW9/js2DydQZXipgLLrjggguXRG2IIE9Jks4ABYA/EGydLwGXesNc9ZunqKiITZs2kZSURGZmJuXl5Sxfvvxqd+PCVeBYQgG/HE7icFz+dT3OnOBYWk7ddvkOSVEK/D4KEkOua1tccOHfAJ3Rkc5lUhziyvs7NwJg0C0NGNuneY3bWqwDhgZ1BVmU6VIEueCCCy78o2G2PtetgiAAek3fwy+Hk25Qi1xwwQUXXLjZUWuPIKAF4IbVIwiIAnpVXVGSpNaATlGUsqttyJ49e2jVqhX169dHq9Xy6KOPcvToUQAaNmxIVlYWAFlZWTRo0OBqd+9CDcgqFUqAlILy63qcBVafkqySmpUHFlmhctM7ELcL/ngJTC6Fwg2H2QiVxTe6FTcN1p5MIyL95jkfOr3BPm2yOIig2U9047/DOjC4YwM+H9G5xm1lRXhHuGvUBPq4k32J+9IFF1xwwYV/BmxEkFrlHHDbfDbzRjTHBRdccMGFfwBqnRqmKEoJwuR5siRJWuB3YIAkSUPAbh49H/jqzzSkefPmhIaGUlFRgaIo7N27l44dRb3jhx9+mKVLlwKwdOlSHnnkkT9ziJsaiqKQVljxtx4z26oESC64vsdt4ie8SOJydTUu3xCeQXZiBBZJA7ocyDpzXdvjQi1w6Gv4sT/ILsPJHeeymLIugo82R93optihMzjIG7PiSA3zdtfw8t1t8NCqUakkJg1qw6zHuzJ3dLca12/i50GmiwhywYW/F/oSF9HuwjWFLUVYJTkTQVJNK7vgggsuuOACV2kWrShKOHAWGKMoSiXwCPC+JEkXgHPACaBayfiqkCSpkSRJ6cDb06dPp2nTppSWltK3b18ef/xxevToQZcuXZBlmZdeegmAqVOnEhwcTLt27QgODmbq1Mv6Uf8jMX9vPHd+tZ/U60zKVIVNoXO9FUFB9YQXSVxOzUKx2OwSmkiFHNAOEDMyXUTQDUduFJRmQHHyjW7JDcfxGCGtr+dVvUz7jYLO6FAE1eQRZMOU+zrwRK9mjLytqX2eTREE0KCOB7mlLiLIBRf+ViwcCF+1gv8h/5YtZzM5Gn9909D/l2FTBEkXKYKQXFSQCy644IILNUNzpRUURfG56PNDVabPAXdfYrslwJIa5mcDtlGJ0xvrk08+4ZNPPqm2r4CAAPbu3Xulpt44xAWLl21FEXR94k/tYtFBkT5VWGGkeYDXtWzdJZFtJ4KuI/kkW+hlPEUozdh+Loun+7XAQ6t2WiUocxfukomzclvu8YmBzPDr1x4XaoeSDPE/8wz4t76xbblRUBRYMYqP4nZzVvoYgzngytv8TSg11I4IqglmXR5Ys2sDfdw4exOlvLngwr8eFjMUJYvp9JPQrPcNbc7fhddWivd68swHb3BL/p2wyDKoQL6YXPwfIhtdcMEFF1y4Olxt+XgXLkZlEaz9Dyx/DP4YD5F/ULb+dVpO3cb5zNIrb2+sQLbIlFtLfZb/jRW8bIqgzJJKDObalRo1mC2cTCqofcrQzmm8lfseD6jCOJ1azK6obOflRSmMyxDkX5zBD5p0d6WG/d2wmCF+LyQegBlNkdc+h6koTSzLOntj23YjkXYc4nYDMEh9hnLDzVOON1/nIG9Nsukya1aHXBBrnw7wcaOw3IgsX3qwIMsKe87nuKrPuODCtUBOpGM6cf+Na8f1gGwB0/+W+fzWiEyWHLnxhsw2RZCH1nl+UcXVvR9ccMEFF1z434GLCPqr8KwHT693fN74CnXOLeUWKZUN4emX3Ox0ahEb5kyCGY0xnF5hn1+mFy/txDzddS3rnluqJ7WwghYBXigKpBXWrvP28ebzFC5+AuN3fZm89iwTl50SC3R5sOO/YKyiLqoohOOL2ODjzYXWothcNR+kjFP2yRRzPYwNu0HeBTDU7CfkwnXAyV9g+aPw28NgLEMV9Qfayjyx7H+ZCIpYDW4+JKlacLvqPBXGv4+kvRLyqhBBV6sIsuQ5iKBAH3csskJJ5aUHCyuOpzL+t5P8cTrj6hv6L0WF0cy0P85R4hpk/c8ir8xw5ZUuhqJA6I+Oz4XXnkAwR2/n62++vO7VQKtBUeC3R+C7PtVUKFUDXIXlxou3/Efj1RXhfLzl/I1uBhbFVj7eWXWVVlTB6yvD2RmZdaOa5oILLrjgwk0KFxF0LdC8H7xr7dCZBaEyQn0EH3ftJTd57ffT9C/ZCoCcGmqfX6o3Y5EV7vn6ABOWnbziofUmCybLVRr66ktIW/9/aGQDbwxuB9TeJyg0IZ971adwK4wl/HQYO20Kn21vQdgCSKiSwnd2FaDwYf0AsrSVtPeuxCs1xGl/SsZp+3SK0pBSv06A4lIFXWucWgInF4vp8gI49r1Qdcmy+N2skJv3t08bVZ7id7heSpCsiJtbtp57Hhp15SA96SYlIOt1MLcLrH3uRreM/HLH/VorIqjEQUpb0sOgOBVSjtJUymeSeiMl2QmX3NRG3mZfzksofg8sfVioy/4HsOZEGiuPp/JDSPyNbsq/H0XJcPwnWDYSko/c6NYA8MfpdHp/vodz6SW13iYhT4cl7QRErGKn3xjxrC269kSQZvVY3imeweTVp6688rVE0gFIPgQlqZAd4bSoQOcgf+KtRSMmrz3LexvO/a1N/DfDRgTZlJuBPu7Wz6Jy2MTlp13EtQsuuOCCC05wEUHXCl7+0KwvAAaVJw+pj+Glrdmkb/HhJOSSDBpKwptDlRfDANU5gt2m0Df0VYwrn8aHCo7EF1zxsB0+2Mmohceurq0HvqJnys+86HuSu28RZiG1qRz208FEzFUimA+pxXEV2QKJB8VM24DToBNkg/WcAKyTX+f55MkoJRnM2hXDitAULAn7OS23ZWzjnejwIreOqBTHkgcdPgrXCf9dF8GdX+27rse4abDlDdj6lpheOw52vSfUWHG7oTDRvlpuh2fs08c0vUTqY8Tqa9+elKOw8E4I/eHa7/taQFEgNxrq38IB0y1oJQudjGfEICfqD06lFP097UgMgcX3g8mZhCkodyj4rkgEKQp808X+0VKUIj7/ej9Ddw9hinYNdQ5+CsVpNRI51TwnasKqp8RA8DoMbG9mVJpunnTBfxvicspE6es142D7ZEjYB0seAPPlFSWKolBc8edUJ4fj8hm18BiWy6RKAuyNzgUgMb92ytWkzFzi5o+gYvlTGNEyJXsIxR5N0WXF8vF1qkbYVfprJGWBznB1z7m4YMf0woEQ/JFdUZqnc6inYrJFyvy6U+msCEv9S210wQGLNV3fRgiFvTeYI1PvcVonv/xPqNhccMEFF1z418JFBF1LPLMBw8ML+NV3Ek2lfPwLHWoXcqJg33SQZT7dep7uKtFJq/DvhGf2CZa7fUE7VQYt8kPwjNvKg+ow/LwurSgC7Kkq4alXafZqjda9avyFej/1pJNH3hUVQQazhc+3RzNcFSY+48ZAldiP4ewfYLBGRpMPw4aJsGAAlKbDwHft+3BHHCN6/wq+3x9P3NbZaHIjWWUZxO1tAwHIUfxg6Kdig90fVBsAX0usPplW65S4S2FvdI4YrFwLVBQKVUXCNfKNSNgHZoPYrw2FiSJqC5B+AvZPh7pBMHYV3DudRE1b+6rzy4eKiQ0Trr3vQ5q4johYc233WxMsZojaIJRQK58U3j9XQthC0BdjCmjPMVM7TIqaxy077YtDI2Mvs/FVQlEg6ZDw17AhKwK2TxHeY6lHRRU323cBCqsQQSbDFVQJBfEoVSqFWdoNrbZKQMp2+KYzbJjAqZQiWk7dZjeTN1nEoLjSaBHHLy+AMyvEtWXfqXXgnf/Xzkt+WSU6XakYVOpyr2rbxDwdz/wS9rdEvTVq8eq0nZt/C2btiuHr3RdudDMAGDr3IK+vDK8eEEg/cdntloel0v3TYJLzr74a5purw0lPiqUoJ+Wy65Vb372eVQof6E0WMoprfk7qL+xjmPoEdYy57PR6iDK8yFI1xsdUwIHI5JoP8vNQ+L4v5MXCkXlgqLnqphOMju/cU6kdwZScX862COe0oTK9iZ7T9/DYj0drfz8l7INWAx2fj3wjCKHUUMqz4+yzI65CRXWzo6q3mtF8lcrsawhFUag0iWewrSqkWiURpC7h9P2pfDxcBNgqbiKfOxdccMEFF248XETQtYSbN29Ft2d+1q0YFTWPnX0RTi0Vyza9CgdnwfKR1EVHd1U8BkVLdrP7AQiXHQPwCo9GjFQfxs/TSgSZjcKD5yJE1caM+mIc+hqShHrHQ6lEKk7lYa/zJBdUkJxfToHOIHx+Loq67ovOpa2UzmTNaoItPVhgfpBuUgIBlJC54X3MgR0hqBfEbIWzK6EoiYLe70C7IfZ9hASNJ10JRJu0j480v/GR5jfS6vXlD8udDGxfH4CiciPc8QZ0HQ3Rmyne+fnVf8frCUWB07/Zf48Xlp7k9ZXhKIpCdon+ipHky+5313tCVbFsBGx8RSh4zH8ygpcbI1Iptk92TrObfxtorVXpdk2D7HNw/5dwy/3Q/zVi9b72VU9Z2pI/cLr4kH0NJfzxe2DPx2I66yxUSY28LtjyujB0X3wvXNgGyx6FysuQp7G7Yed/ASj17UAlHkSr2nKnypHu0NZ0gaPx+fzn1+N//je3IXozLB0u0l+qtvn4IrCpfXKjIeUYfNUajn2PpsKR6mU+/I34va2DwEJ9ITGFMY59xe+hqs7H0uMZeDsa2gpC6FXja46FkevwWTWSQEoISxKKxHxrNL+g3ADrnoNZrWHjyw6vE1kGG9GU9ydJBH0pxGwnddYAfGY3g98fd6TgWcyw7R04Mv+yu5i4/BSH4vIJT7v+ai1bRWbz1abl3uQ4FJfPgdjq75q/GzavvPoUg74YWt4J/9kGkhr2fgIrRl+yuuSmcOFlZSuG4ITSy5P2GpWKox6vE7iw22XXq7AWd/DKOwOFiciyQq/pe7hjZs0KU++MQ1QqbrzYcDVrAyYCsC5JvN89dKnoL1aWVRRC+nHIi4Hve0Pwh+LvSihOs082kbMvs6IDzy85waQVpynVOwifsERH8CCz5BJBgNQw8Ry1mCB6i0ilbTsE3ox0Xm/xffTf/TAazHRsXJeI9GInzyC9yfLXn6E3CFXP2fX0dLwSiipMmCziGpKrkP5seRP//VPphfAwupFt/F+AoiiXJINdqD3+zqI5//O4gsLWhX8/XETQNcbe6Fwq8OCY3EnM2PK6ULXY0m8SQ/hW+x0TNNuIUloQ12IMZ2+fz6PGjxlk+Jrv2izidKPH6aeKprsmWRAEq5+C2e0g27mDZYusebs5l2N3gr7UQSKVZEDIl+jb3M800wskN7oXPPy4TZ1ISkE5d88O4e5ZITCvqzB9tO3CZOGDTVFMdV9HBR68a3qJPZaeqCWF5W5f0FqVTVSH10TFryp45HAzFh92pIok3TKOUPlWGpdGMFodwm7VAL7w/5yggLq0CvQGHEaSMX2/IFpuRumZTbU78WdXwczmwsMl/Pcrrl61AlK1imlFKRCzreYN82Nh82vw0yCn2dO3RvH0zKUsOfgnFRERqwWBFtQT/JrDmd+Fp0/K0Vrv4mxaMXNs0XxbFP38pmoKI8uzW1BUGgDKRvwGHR+yL0suNnNU6Upar6kAXKh3FwD79+10NhRWFNBXiexe2AnzutdOxXFknvjf8zmo01iQk1cDY4UjdWvNOCjLcSwrSIDzm8XgxLZupNXMvcCaKmGqEETbJXB2y3cUKj7w9B/k+PUEIM7rNvtyWZHwzQ8nLKmQkAt5l/fOqQ3OrRX/U62/tUkvVAAAKisZnHMeQmaAoQQl+EM+ZZ59c3NhAvzQF9Y9Dxsn8eSGETyx5QnItBKAURswNuhYpf0y1G0Co5ZieXoj25R+jrb0fI5W+vNscPsQd4sglmymuO6FMYK0ssGm/sm/UH1eFby1+gzPLr6CCmvxfbBqLD2sSkka3AophwUBeeInOPEzBH9wSU8pRVGIzRFpOpVGx/1coDNclY9LbWE7xj91AHsplBvMFP3JtKpriXMZ4jebpNmIggT3fwUtB4i/tDCI3Qkrx9aokrENzs0XV7aMXA9zOorqiDXBoKOhugpBHL8Hfhos/l+ESqOFRhQwIGQ0zL+N82dD7YPsmqrr1c0O5bjcgdAciSSrUulkqR8AzcmpPngssHp2NenhmHd6GcRVb4sdiSFwZjkAZkVFQ3PGZasB2nCrIYJvtN8Rc8bxrjmR4iCCsmoigjLPCGJ9wwRYMQpWPy3mt7kH/JpVW11jqWSm9mcea15BfG4ZSfnl3Kc6zt2qMyRFHGL0/81hzcm0atvd7Miv4n1Upr9x/jtJ+TqQxG9tJ4IUxU6WBiWJd8zNVPDgLyM70vFuv0nw9e5Y7pi5z+me0ZssToThtcS6U+l8suX6pJbeKCTk6ej00S7Wnbp0sR0XrhFOLYHp9aHUqgjNiXIRQ/+DcBFB1xgN63oA8JbpFQ7We1zMDPlCRDWHzUR2q8tdaqEsiJObUiJ7kNRgCAoqUmhMtLodaxhKqeLJQxUbRHnZuN2AIjx38uOhPB9K0hlxeASPqw/gprnEz2iqhK87CD8Qi1mQAhYD0V2msNIymNR7foAWd9DGFEt6kXhx1TFkQ3meGJSW5xOZUcLzS04QVB7FEI6jGfAG5Wo/zimtyNU0oaMqlQXm4eQ0ugfumwHjtsA9H5DVeDDpSgM+3eqopuHvrSZKboGPosNLMrDB1I/UYj2tA72p66FBo5IosBJB68/ksM4ykOaWFNjziXhA2ZAbA7PbOytJItYIYkLrAZtege/7QdpxFEWpsYOWkVvAE+oQpmpWoE8Kc174y1BY9WTNUnxbFa2SNPimK+PUu+gsJfLY2ZfY4/4ut52cIjpgRcl8MP9nlh1Lrr6PhP1i0D6vmyBBwhaJed4NYPxeCsafpLP+Z2TUjjSuWmDcr8fpemgChnUTHcSjvkQQSu3vh25Pwvi9/BDry1j9VF41vsboA/5O+8gsruRjv+l43v02ALEVdaj0aEB5/BG+2+eQ93NkniDeyrIFcbHjXeEPc+YKJFzmGaFI6zMBHpwDHR4QZJellh0lXa64pndOE8qe8xsdJtj6Evi2B6x5Bj4LJPvUNorO7wWzHvzbiHVGL4duYy+bXuJRksApuT3lze4i06oqKKjfB4DF5mFEK82pX3LO3qnO+pMRwHWn0knfMUdE00GkVSYfEQM6Uzk8sZTE8efJ9OqIkhoqBodBvUBRMEkO/zGTj1DTEbsTziwnwygUMcrKsWKfaWGYbn3Yvr5ZsQ4G3LxRtx2Ev5c7i1vPgVHL4KFv+KnBezRT5eFbYPX3sBJBrYqsXmSNujiOt/wxoXREggadnEtjW7EhPIODNalMQr4U94G+RKgJrBhsmIX+6S2g0kDEGoznq5CyJWniWfD7E04kqe35Bc7lkqf9cY6Hvjt8zaO0tkG/4R+iCIrMKKHl1G2cSC50mq8oCmtPptkjsOUGC8VXm1p3aI6zP0xNMBuvSi1WVG4CFB5VH8Zw62PQ8FaxYOAU8f/WEVCWJQIAhUlCLWNNrSytNDv9B4Rn3a7/E9Phy50PJssidfTLlmyqfN4xf/ljkHFSVMPMjRZpu9smg2yh3GhmnGa3fdVWe16khSQUOIaLU4T0JfjqEjgpt6dMb7ZfqymK8OdrLuWQenE1zQLrs3bED9D5cRj2JfgGwdF54l1+MckFInhz9FsADstdaCblOnnzXAqj3A4zQn2UoMPviWDR1x3QxR0lyM8TgMziGojug7PE/9idyAkh9tmdf0jjTFoxltErCG/4OIdGnYOPigmu/xyPqw8y/uwoHlUdJOxcNHO1PzJZs4aW255knfunRJ0JE32bMyvF9fIPMJ4vqHJ+y/RX0d5aFkmYvPYsw745eMX1kvIr8JEEwWgpsw7qzq4CXTZIavwSt9BFSvzXKIIuZJcR/cNY8f5YdLe4bm4C/GINfFY1R39iwTG6frz7UptcFp9siuD4jxNEn6nsIoVfylF673yIXaERmMsvr4L9JxGAcdaAzs7I2ikabyTOpZf8swtGRP4h/h+eI4K5P/aHY9/d2Da58LfDRQRdQ5gsMhnFlYwf0IrAhk343e8lCGjnUEB0GI4u0GHautpyNzq92e430KiuB2GJhWyOKWeDZQADTEchdAG4+0Lz20WKz3c9YVYbODSHAH0ys7ULUfSlKIfmCKVKVT+YEz+LAaW5UhAOifuhXivSpMYANPb1gKDbCNCn4C2Lh+8I9WH75saQWTzy/RGOJhQwWh2CWeOF58BXMVpkQCLp9hlMMb3ETPNYiipNoHEXHgEDJxPcdU618+PnrSZSbmX/fMjUgewSA/W83JAkiXrebuyPyWX9qXTCU4vZJYvBN4fnwC/3iemsCJE6pcsRKoJz6wQRkXJUkAsTj8CQTwQpsfwx9qz/mS4f7ybXptrIi0Ve+jA53w9jlnYREzVb8dr+uugA73xPDMR1VoVJldSDNSfS2Hk2BcKXOb5QcQqfaJey1f19bjVHESW3oIfuAKQcRfmhP58VvsORuCpqFRBS+mUjRCSrKBn2fgo7pkDEKmjaCySJ0MRCdHiR6NZekAJVUZQsUsZWP+PcmcyNIVApYog6HPfIlSLty/5D6qDX8zDyR2jaizNpxYTKt7JVvp3zWSK9MDSxgDUn08gu1dPI15MAbzfquGtIKagg0a8/w9WhPB/1nEg9SDsOez4S+z7zu0hhKk4hW/HHfHIpZvMlOh2KIkrUg0hFU6lEyodRBxmnOZlc6PBZuFRU4vA3wo8q7Ecos6Z5hC8TKXQXDfByNr1P9h/TUDwD4IklMOBtuOUBqN8eynOFEfbFkC20lHJIVBoTm1PGuYwSJAl8bx3COON/+dz8FKfldrQpO8HA5HlAFSn4VQxcFEXh23W7qBv6lUinGLMCKgqEGe7K0WKldkOZtiWBBSV9kDJPQWkGUT59ye7xFrtkh1LA3PdlaH23+NBmsH2+EQU2vAwBbTF2edzxFRXnQWSgjzthUjf07R5kx7kswsztAXArFAP3V8u+4QFVKLdUnoHA9jDxsFBoVBQItUTkeqHUuGWYUC5V8ZOyyApumNjq9p6zH1TMNqFwilwPJ34BoLjNIwRbepKgNOH51fHQ6i7Mp35DlXKEnACramnHVEzbp0HcbpQtb9h3dyHbQdpWVbSYTUbqUcpvx5Jr9bvUCqmhdEleQkMKaVp8eb+amwV5IQv5SLOU4+HO1RhDEwuZsi6CGdujAaEIKtOba5/yZtCJVK3fxfV1IbuMFftOVSfRD30N3/cRBMJ3vYXq8iKkFlRw0kpUFVYYaUAxdaUKKus71Hi0uhNePSXuZ99mgihf/4J4x/5wO+x+nyf063hOvYPA2JWO7Q7PhbIsKhr1QY7cAFWqVbJrmkgdlWsgwNoOEUrCH/qJtN0TP8GaZ3mq4nde1mwhLnAItLsX7/I0/nD7iEYUCFJNlyvaVFEIGaeQUAhX2jntuo5ffWSPerSUckix+RkpChyYJe4VlQYC2sLjv0C/iXDLgyIda8EdwvDfBmOF8O2yooQ6xGg70lgqJCr5ovdPDQg0iwFXkC4S3c6PoSyLe/KW0a2ZL2qVVF0RZDYIPyAr5poe5fBjp9g9NBidUeHddWdZlNOBkSmPMjckDSSJX7Wj+cNLXCOztQv5T+j9eEkGWktZSFZ/sWdLF4kiERsniij1rNaQforcMj3JZw/cNIP9qrAFroDaqz5O/gqfN3ZW1F4C606lE5N9eW8oRVHYGZlFkEqcH7kkVQRW9n0GTfvAk2uQFAtb3N/HM+f0Zff1T8G2c1kEStbzlxkOKTe+muCnO46iV8R9WJVMt6kbr0o9WpYDczsz+fQQ+uSsgqUPiYCujXCXZfj1flqYEnlVWo1mVsvqfUUr0goruPXDXaw+cY2M2TPDHWOa6wCtWuI+1Qk+Sh9/05PBD313mK92XqhRBfqPgK0vmHQIDs22Tl9CMevCvxYuIugvwmiWGbXgGD8fSiS9qBKLrNC+UR3qeGjRmRRrBFMRKTC+TTnd5UNmmUZx7oVkTivtKTeY7dHYhr4edj+O9NZjcMcEcbvIa34fNOzkFDXn5C/2yTDtZZsH1QAAIABJREFURKS9nwjvmuAPhZHrT4Ph4Gxo1g+53TAx6IrbTXGj/myLyETlmcLR3O0iFQkYrDrNIu3XvKtdg7nVIJTuT+N2YgEJbmPZ6/YOT6gPUNp0ELjXsR+3650Ps9ZyNyBRWO7cCcrXGZEkuLNdoH2en5eK00o75pkfZTQz0eFFvs6Ar9UUO8DbjZjsMt5Ze5aTKUWkK/UpUax+NsYyMmbcJipNlWWBb3Oo1xL+eAkW3SXIro7DQeMGA96EZzaAoZT25+ehQiazyFrdJWwBqqQD9FTFsdg8jK9Mo9EWxcHcThD6vRiI25B+0j757voI4td+ICIzDTtXuw5eM77KE8aP0Cta5KgNSCbRsZdyY5xXtKUBdR0DUxLEoMYG629h82ZJaXCPqOy1478Qu0uQQAsGCgVM9OYqhstr4Ye+LJRmVGuXHW0dBIGH1jmV0GyRGbMolHfXRZBVoqdxXQ8kSaJFoBdJ+eWEewsD0MYVMbBzKvxa5Ryd3wzhy0jyuY2ZpjFoipN46bN5rDmZxqQVgtxBtoAuj7Jdn4nOb8/nHMRF67tA7U7pyZU8vuAYE5efEt9nen1HelRVxO2Gpr3Bw08MlB79CUozYEYT2PUesn8buPs9zP7t6KZKpKMqjaNdPoPGXWHIR6BSCzIDBIl4MYpTcZdMJCpNuJBdRlRmCW3q+1C/rgcH5G5YULPYcj+Rnr24M28Ve9ymkJtfKFIwv2zpUB0oivD8qVKRDYCCBCJC1pO79TN2uE3Dghrlvi+g/TBMfq3tq+X4dafE7IZaJbHS4vjtFp1TONf6RVYrA+zzTG6eMNhKzN3zvn1+RXmOqHLW72VM7t72+RbZORUywMeNfJ2RHZFZvPz7aQ5mKOQrdfEqiUefn8Kj0n5+cJtPD0sESmtrSmTXUc7fq/Nj4vpVLE4d0sziSu5QRdJZlYxy4EthAJ+wD/Z+JkzK3eoIIgGI7PAmL5reASSOJhRQ0WksGkMxGklmtf8EGPAWJB1AmyI6KkpBohjwGCsoj9kDiM5Y1YpR/9H9TLjHRLQZjnvZcR4Ue+qM3mThVEphtXWqQZZh8X0MTv+eMI9XmZb7rpOabd6eOJaFXt5o+G+HQcddcV/wnGYX486/IK5J2QJHv6W0QJAARRVGFEWxByWc0kAvh6rndelDPLHgML1DnsGy9nnn9WK2iv/7pov0wbXjqhnQD5y1n8cXCNVZcbmRtirh9bMjuy6PfF9loBfYFiQJQ9PbMcYfFIogECmKR7/lHdUKPtIuo2/kJ0JpmRcLYQug00huTx5PieyOErZAbFOcJojszo/Bm+dY6/4Yww3TGW34gOT6g4QSx4opppfY0fhliNnKCxZBah5t+CQM/4b9rd7Bl3LGa7ZTrjcL9VDwh7B+PAkndyMrEmflNvZ9dWvqy7IX+iD5t+IpzV4KzgnFwHcLfxAG/on70fu1BXWVghGt7gSLQfgGRW8WSsJz62DurYI0saJCccMvSDzj4uMcStr4XB2hidUrkQaasjhqEYorn2jxvVpK2fi7yfT3ziLrYkVQ8mGRXjviR9Z6j2WRZTghKUYqvYMAiM3Rccx6HL1JJrO4kvRiPSHNXoW7RMqxGplyxR0vyYCHJK61NqVh4h3nbVU4miph0yt8OecrWm54WATAlo2sWQ11g1DVh6qaIqg8XxDjNpSkw4UdIrBlrhRK4GuAiPQS9kTnEqQRhINsNoj3UGkG9H4BWt+NoduzANwSt4j43NpVuruZ0dS9gvpSCcGB4nvVRCxfEQad8PC8gm9YbbE2dwI+7WYCUFxZPZB1VSnkR76BkjS8JavizK+F8Au0KfEKHOrsJzXW1P/fHhEq7Yv6TZnWQNWK438h9VJfYk09f0UosII/vG7ErKLATO1PNDMlQfJBEZy93Mr6P+GVeo1RTQV6DVBSaSIy4zob69v6p/mxjmyH9FO1V+i78K+Aiwj6i3DTqCgoNzB9WzSDZocA0LSeJ97uGhJyy7l3T30M9dpTFnQnsgLx5gZ8bxlBk3peuGlUfB0cy4ztgiywSbE9tWo8m3axkyCjIvtS5mNV0tTviPzSIWaaxnCXQahu3K0dKVrfLdQRG1+mqKQY/FvDoGm8YHibl41vkNBxIg+E92VXVA7eLX9k9unp0EREW+e6/chAVQRfmUYz0TKFjy3P8bVJRPDaqLLQShb0nccCsO31Aax/uT+ebmrmjRG+QHuic2g5dRup1jL0BTqh9OnUxGE+XNdLwoKauebHURo7/IT8PN0AqOfl5nRuWwd686BxBhs6CalikDGRZZZ7YcJBmBQmlAmKRXSMB7ztXLGkRX8YOIUWchqn3SfQetMIiNnu8IkBjHe9zw+Wh4kdtAi6jYGe/4Eez4rOv39rMUDdOAmSDvGzdhb/Ue8CD18YubDadRAs9ySoQSB75J6oTjhMf58oXYKsq9L5jtoI9TvCowvBO1AMau77Am57WvwBMVkiAni23r1im7AFwodhXjehhhk4BdzripTDc+tgvzDUbiMnA7C05UyK24yg5PZ3KX5sDSWjNwoCxAoF5+jFjioS3LwyA418RXpjywBvkgvKCTF35g3jK0T5DRIDOtkkiKx+k4RKLT+WzPoD2SH3oUTxYoQczLvrItgWkcULS06Q9e29MLstdUKtXkAdH3K47XrWg1sfpm7Er4xQHWZfTC4Wm3LEao66LDSFoiOL4Y8JogPU4UHxG9w7Hbo8AV1GYfEM4Lh8C++Xj0Z/x2T2D1zNBbkp2yx9OEAVnw1wEEHbJ0N+nDiHR+ZD5HqUTZMASJQbE5er41xGCV2CfPF209g3T1Ia85nvp2yqN462qkwGn3lNkB/GMiGrDflSKAy2T4blViWOQQfl+ZiXPETXkOdpeOprDshdGW74nHR1U1CpWdXjd1rrl/Oa3/eMyH6BLRGZaNUqTGjQS+LZkKY0IKO4EpXWcU2ZZTME9YCPisV/KypU1nPc6i6MFkfH1FZe2IYAH3dOpRTx1U5H6k68EkS90hjKL4TY52mwkNt9kuN3e2qdUFhpPKDjwyL6rPUS5KxVmRifp+N+lfAHkgri4eh8MZjLiyas4zSOulmVPlpvkswiTfGjh8SgNLHBULZ6DOcr02iSta1hyMfw3A4AzshtUClmyuf3gx9v55GIV3iqzhma+HpQWG5CURS+3xvDHUUbABiW5yDOQUTRRy+0Eo/A/22I5LEfj9k7zU6oGpWsyc/K5ucCzN0Tywcbrelx5fkicpp2g1VDKUdRIfORaRwa2SiM2lNDYff73LlvJO9rltGIAvQmGVvQuri2RFDMdsd00kEiGEM7VQbq+N0ijfn4TyKdKicS3Hwc62aeEdeJNZKqN5rpKonzKMsK9TP3Mkwlzts3Z1WcTSuultayNLslbsYiqHQQeGb/drxofJtHDJ+SJjXGsvY5oeZBgrunUYIPUXILZNtg6fRv4v+QT8CvOcvrPE+k0powpSPvuU2FAAd5s9PSh5eTHATsHfp5JLjdAr5B7PUdyVa5H+M1OwhYL65v/NtAwl7aRP/IcaUDZXjZtw3wcad1fR+kvhMAuD/rBypykxmTNdO+zm+5bSiuMBKXU0bLqduI9OgFjbuB2l28n1Y/LdRQFykbY+UgNPUFMVSY6ghEDJlzgDGLQgk+n8OM7dGCBLWYCJDzSfXpylqzeH/usPSmjSqL6VFDWGZ6G6XAeq70JSKVIGqD+C07jWSJ+1MYcKNUb3Ly5jqfKQYw57NK6T9zH6mFFTSt5wkDJxMydDu/N3ibhDsd99JC84PsqidSl5l0HN6Kgoe/g7wYvlaq3HMJ+yD+CmmIFyGloJy3Vp+p5gVYYTTzy+Gkv5QuVfV54UQERW+FObfCj7c7BlUbX4GVY6DYqsw4v7HWx3FS6J3fJNSvVkI/OqsUDwyoZRF8krWecHwhqN2g/TBQa1A/PI8F5uE0yTvCo3O2Oyko/ywi0ot5YcmJ618t7dw6WDFGPEesg37fIkFwnpA6iz5Z8Z8ggiLXCw/Pn4fWOlWvtnh1RTjLLwoIpF2c/lkVmyaJ4guxu4Xq7/wmSloOsy9W3jgL934ugn8HZ9tT2+2BUhv0JdUUHbZnen7Znyw8cmaFIJgi1zun/s9qc+3fbRYzpvIispV64vOykSI4W1KDX5CpUtg4zGz254jAq8SKsFSiEtOqB/cAg+na3wPPLznB8G8P18rn7U/BVCnI4vodxTjKYhQWEsay6unTLvyr4SKCrgF6NK/n9NnPU6TVZJfqic2r5AXtl/Q4M5zFR5I4kVxIkJ8n/t5u1V6gNtLE11NLHQ8tjxo/YZzxvyQpjVmXao3o936BGFqywPIwKUojlpjvZYX5Hp4xTqVg+GJ0zQez09Kb3vkfYnphL4bmd7I/Np8dcl8+LX+MTAKdjolnPZQGYuC1Q+7DD5ZH2BNbzNITOXxreZTb9d/yvuk5pplewL3DvfZ29mwhvvMj3YNo4uvBqRTRGT2SIKIEBTojAd5uTBjoiFRKkuP7DmjraEc9b63TfxteHNgavyZt+TCqAUl1RZrY5gYTRGfYzUuokx79CVrfjeXOKXYvIEVRhFTT6mXiJ5VTt/AcrBoLSQeI9+zGGO08bu/QDJBYU9aFH+pNZnn9t1Eemi9k+DZlxZnlsHQ4Q9Th+Eh6jGPXku3Zltv139JfP58zchsyFX/0uDO2T3NmaydgxEEa3KM6jWp2ayHtPbVUeC91HO78G9z+CjzyPdRpJM5duXhh50n+ItWt3X1isG1D34miqlpiiBgIFCU5pQR9HRNA96hRvJw6mElhvrwZ6l31aHbPFxsuTptpXIUISi+qJCpbxyZ5ABEePR0rDZ8j0oGsuOB1GwbcyGv9KA9oTtJbEgOQezlG46KL1Bg2IsaKxO5TyPdqzYfa3/DAgLnIGrmK201eThofbDyH977/E+lzAM37izSkfi+DJGEesZD/+C9jlPEjVpR0JuRCHicyjYy0zGSO7zTichyd3nydgUMFPoLIAojfK85h8Aew7nkkq8T8gtKUyIwSckoNdA7ypUFdx/lvXd+bEr2FNd5PcsTSida6cOFLZEPIDEcnvzABFAXjH69gXjgITZlQORQqPrxsepMM6rPggBgAp5aBjIpouRlZBJBdorenZbxhmEiR4kOs0pRPtpxH5Z5HoKeInJttlcWq+AYBVEoq0HqL1LCqRNDFiiBvQcBWjW7vs3SnUXk09YLfBOBU4CM8aJxBkl4M5ksqTdBuKDz+qxi4eQeAT33haWIoha9awbc9CTgxl7vUZ9lp6e04YFBPeGA232a059dCa6ps/1fJKTWgkhzP04e/P8KrxU/yg+UR0gsrWRGWSkGdW/js1m18bBKpMd4l8ZitROtb8lJ6uKVh0BWy/nQGB/dsRY1MktyQjoazTmmzp1KKOJlSxO7zOcTllNmVEk6DwgOzYFZb+CxApHCuflqoNbqO5sWWu3nbKKo/OSk1q+LIPEFmbn+n5uUXIz8evmpTo8T/T0vPE/ZB8IeYJTdWWQYR4TdYXPMZggDz0ucwXrODu4s3UF5eShdJdHKrqqooShGkjW0Aq8sVqZvxe8WAs9uT8H6eSNWytVdSwZpnBRl64ifhczPxkFDGjl4unq/RmyHjFBnFlXz+yTtsdv+AQapwSisqGZPwX57VBFOk+JCLMFXOLtFzMrmQWOv9vKHCkWZtQ+xjewmWe3FWacsHhqcx6iuh93h4/TTUvwWARKUJUt4FQf4etJpQWw2OTRbHea7roRX31MApbHZ/CN96AYDEYMMs5rf4Dvya26+XAp2RVZZ7APDOsio1x20Wxv/Adksfp3aW2oi2bmOI6jWDW6VkTFveJlAq5XuzSJ/dL3dn7cl09sYIA/71EbnwYgi8EwPP7aSi/SNO+6TfKxQMmsXbppdxC7RWIS1KqjaQWLxyNeVHFhH/0zj4ohlqZMx1m/F/5hd4gPm8bHqT382O98kr+TPEtblvuqgaGL5MkPFaTzv5UVpptldSA6EI9tA6dy+b+XuBWsvdd9zBU698RNfbHcrSCLkNv9d5Dhp1Bi9/8G0KnUZCs76EyR2YaHyT3IlRQkVo9UGqLQ7G5bMhPMPuPQKAolD225Oc376AJ6wqtD+DzOJK7veKZpjquL3/oS/JEwU+LNb37MoxUFmMscBROAOvQEGO1lJVUWojmUx6cV9tmmT1joSstDjC3F/F1ruSrf0IOgwHT3HvaNQq9tIXrWThHlW43bB805kMe/CutojMKMFkkTmWUMDemNzq/lZVkK8zEJ/7F0mnw3NF6v/JxYK40eVRt0iQ7WH6ZkIt82eIgCLr71GaLgJC1xjvb4xk81mH2uiSRFDyYTHwDv0RVjwhTNhLM0ip04MxxvcZbfhA/P59XhT3xP4ZcHoZZrc6LDKLvmSCR2eYli7UdFEbRTBq06uQGU7zw+8yQb1FpNL/mffIxpcdk/7jnZfteq/aPk+lFFWvgngZrDkpfMUACJnB/dv60ly6qOjIkXl24tOOfdMdXo9VKuMeTcjnp4PVyZq/AkVReG/DOfRLRorKuxXO6mH9xQVnrgFsY6qr8h67GlgDrmf973XM6/+a6F/vek/YcNQEXa6zZ6sL/3i4iKBrgBYBzqy8r5cWb3eHAiMq34wJDSeSCzmWUMAdbQOQLhq0AXRtKoigMr2JOh4aEpQgDsjd6NHcj2/iG6GMXAg9xnE8yaEG+Nj8H94zj+eQ3JX0cjXH+//IRNNbmNGQmFfuZJhZU1lgWZGRhnwMwHrLQKbcd4vje3hqmTLqHpZbhrLSMhhfT2217QHqeTuUPLaUgoJyA4E+7k7LzLKZOu4a1CqJwR0bOB0Hqiu+G/l6MLp3c8r0ZkaXvkov/Y9UKO4XnbRR8OwmPt+dTJePd5OUX8798w7xn19PYAwUldsS5Mak+PXDcts4aDuE37RPoG3UER8PQdj8fDiJr3Ze4P2NkWw7lyWM9To9CqN+czpUgtyYdK9O7IzMIosAMgnkceNH3GX4BoDOQb5889w9DDd8TqjSmR76BYwyfCAGRUkHRSembhCn/B8kJvvSclab70BqYQXp7q3hydXwXhbc9gy0GIDFM4B3M+4k2783jF0NLx3A+OB8UuQGfGd+hFIE8ROVWUpmsZ5zGeJY6UUVfLE9upr554lk54iyXREU6I1FVuwEQbgkzqep/1sYVB7oG/dCr2jZZ+nO8cpmBPq40XbENPRejVngNpc6VPCOsoRzckvmm0fY91+ibcjiw0lEZZaQkKfjnp/imVT0FP6SjhiP53AviGaXpRcoFty2vEaE+3jcLBVckJvytnEiStPe/BASz1urz9jbfygun3eHiWs3LqeM0ylF3BLkT6egevZqUnqThV7T9/DM4pOk3TUH6jTGtPujGn+DUnw4aX0RdwnypWWVe7xNfR9KK02UGyw8bZrGTK8qA/36HartK+98CMRsRVMqBtIbLf152DgdkHi0RxC/h6XyxY5ooq1KMFsn/ZfDSfa275J7c5thETqrqkDllkc7PzHYs5s/X4SKPuPhjTMgSU5E0MXr19Rp+9nyIHFyECpk1poHknPXl0QrLUgtqGBOcCzdPtnNr0eSQOtBiXsTnv45jDGLjmFp/6BjJwXxdI3/gYZSMfvk7qQNXSTUdi/ugz4vUlhuJFjuyeS6X7O+zjPsi8nF39udlgHi+q06fj2eXMh7G87x+bZoUvUexCkiDWW3pSdLBx5knHoGHhj4ruwNZqWNIfPMbh5Qh6JXtLxjehk1Mvzxoui0luUQet7RUTwcn2830yytNInB2exbBOlTbn1mHvpapIr2eBb9A/NJLtSzTe6HWVFhtlVzTDvOJ5pfUSGL41hNwJW8C5RV1CItIGEfVOQLiX+VylYR6cW0mra9mtHzFWGssKuvdgU8jQE3Trr1EZ5cwR+A1pt9zYTCa2DeCgLntWSL+/t0kFKFx0X8HmHKv/dTUdXwmy4iLXR2O5G6ufxRUdVu+FyRkjvhIM+apjHPPJLsoGGQa+0sTk0VPjf+rVHejia36VDM3a3EadIBFgRHME4tBrWfaJZQGelQGS0x3weId2VWSSWPLzjGvXOFea5RU5cV5nuIbXg/DHof7pxMThXz3hD5Njrqf4EHvgKfBhRZn6uJSmNU5gpxDkCo2ayoaqqqVknM2B5NfOc3+G/F09zXqRG9W9YjQQnCHNQHb3c1mcWVfLb1vEihlW7lgtyU4vq9YPTvgsx46QDfNvyM8PojiPlsGCvG9wXggS6N7cdx6/YoekWLb9peYuRmzDKP5i7DHDL8enMssQC1ta9gNMvCV83LH+o05Nhts2ilX05v/Q8suOMQDPuCxBaPU4AvvgENMWp8aCJnkVpYQWmFnr5SNKCwUv0Bn2sX0z5rE5grMaCl2K8z7u6enNcHAhJfmUeTEjCA0/VH0k5OEt6Ex62pTH4thAIXR6WskkoTlRc9Rwa2q+/02RY8ssM7wD6Zo/ih05tIKShn0u+nORqfT/cZIWQ/vpnRxg/ZKfch2+wDfSdA8iHOnqi9j4WNdKtKdFOYSMP0XXzttoA+uWvtsxPydIJsqdoZUZRLDqDd8qP4Uf6MBW7fYNCJ98X2P5Y6rxS/B/Z8jKo0g6OWW9F3eEzcM+DktSQOpTAnOFa8A8xG2ktpqJAprTDCtnfgWBUSbN3z5MUcofOZz/GVyrGdfYuHryjE8KCzejHJ7RaKFW/6qqIpKDdQUmnijVVneOqXUNacSONCdhnlBjMfb466pEoqNqeM4d8eZm5wrF01WGNVOSsGzQ5hyJwrm11fEgadINr7ToBB04QabXZbOmesIVFuxLl8Bb1PU6ESuwozekCQR2rRn7Rc2PHn28il/X9eXxmOj7voZ6YVXeI8hVhVgBepmo6Z2hIq30qY0lGYkqu1wptPsUBaKOd97+ZHy8OscB/NfNUzIjDq31pU2wyZIQjbDRNpkrSeadqVHNFOumy11BphrBAp+MCbxld4M3MQDxo+Z4PlDhS1G6QfF+8HK3JK9Tz241Gmrr8EiVAD3l0XwQhb6m+EuBe9JQNbPEfApBPg01A8e04uFu2J3yvux4R90MIajKzy2z/5UxifWz3vrhV0BjO3q6LoqbIShicXOwVnqqohrxXc1GJ4Xus07avF4bmkeXdmxNne5PtYg7MNOsKopYJ0i1gt5h3/CXY7LAeYf5swla4NqWjrB+2YWi0V3IWbBy4i6BrgmX4tca9Suauuh4byKg8GWxWb+FwdpXozd7QNrLYPgM5WRVCbBj7U8XCQLg90aUyJQaawzUjQuNkHiuCI5oOonJNRZZCfkKe7ooGh3qyH9vfxdsuNHJa78NwdLXmgi4go+XlpGd61iX1djbrmy8W/ShsS83QcjM0jX2ckwMc51cskmwiZcjdnPhxKfR8HoWNLCbN1JN97oAPDOjWibyt/bmkoPIly9Rry8bV7KF0MmxHerF0xxGSXcSA2j40pbnxgGc8Y4weMqphCt9MPcmHIEjaV3UJzfy/quGuq7efVFeG8vPw0SBL6dsPtZNLrxld5xPgZX+28YCdWAMxoGNOvDWqVRKtAb7o386Nu866MMbxHIXU5rnRkyx0bYMIhGLsKXg/nsVWZDPvmULUof16ZgZxSvd1o8Eh8AQO+3C8GxCoVPPIdPLeNzWczWJOooV/mW+hbD4Um3Tle4MFdxm9YqHnKvr+SShNphRXk6wyEpxbx3oZIFh5MJKO4koe6NeHglEEEWn+jezo4iLluTUUUsV0DRypHw7ruXDA1IGf8Kdrt68XktRHElLrR3bCI503vEpenEx0e36bk3DWTAKmMxW5f0UgqYqZ5LHPMo+ir/45fO/zE9wcS+HTreeYGx3LWGgkKUzqgV8Q1b1TUzDKPwlS3Bb7p+6kriRfI9+ZH+EMeSHxeOV/tvMCG8AwURbF3RId1akSQnyfR2aVEZJTQs3k92jf0IaO4knKD2UkOfz67DEuzfmhlPWZFxWjVbOKbPWZfHuDthkVWkCRI1O/n5T0vM7C9GNgE+XlSqjdTYTSjoGJVhUPtYh63A9M7CUL10P81AKTdH+AmOZ4H003PkK40wE2jYsbILvRr7c/CA4kcjhfRYVun8uKBlQMKKvd8Wvu1RqPSOJE8ACpJ3KcVnUeAj/hdjbJjnYvNopvW87RPa6zpZDIqVlvuBmCn3JtuzfxQqySSCsrt0baZO2IwWWQWH0nicHw+oYmFjPr5JDkdn+M381B29fnVvt+Dlq4sL+nKGo2DKEovqgAkNhcG8c66CM5nlVLPS2v3DLOhub+DhDPLCgU6A+V4cpdhDq+Y3iA6u4wD5S0531SYbHsqel5Pe4txmmBC5O6cVtrzjfSMGJClHoO5nZhw4n4a1fVAq5bofO4LXjMtEecu+ZCQvOuyRdpbwyqqkwmH4OFveXX1OeJydRhwI1JpBeErRIRw/XjGaYJ5QBUmov1FSRDUC8msZ9Rni8nJzRWpDaufhvObKNWbmBsci7GyHMIWOvx2PP1F2qcVU9efAyA89RKVYRSF/LxczBdHJW37u+d9VrqLc3NQuU2QJgBaD7b6jOJ903NOmz2tDqbNkSmiapYuByLXgcYTer0gjOKrYsjHolIjgJc/oVI35pqf4Fjr16D1ILh7mkjdQFzX//n1BH0+38tjv8UJJereT/ks6l7aqkTkvLkqj8Y7XwBgoeZJvrM4COS0QueOZFGFiffM41ngPxXumgKDPyCnxJlwU1UJuCQXiPdmkmIlYVoPgsd+gR4O4+WqqpZTKUUsOpjIkDkHqTRZ6Ni4Lu4aEeBp6u+Ft7uG0MRCfjmcREx2GUH1vBlmnMmRAcug43Biskv56WQx+5We1PH2wkOrpn/bQM5/eh/P3dHSfpymDRuwxXI7AIflzoBEitKIPq38OZtWTL5VIXpxZDgxrxwFFaq6DTmeYVWRWtWeDep6gHsdntUEs3vFHLb+OI3V7p8xQuXstxG1lacdAAAgAElEQVT2TDzdTUvQ+XUgsI7jnVyCDwd7fc/Z7h/xprHK4LHdvfDGWWjQAUVR7EqVUr2pWmWiloEOJerIXj5kGasbFSdLTcV5dwukTG/mg01RbDuXxefboymuMDld8zmlBugxjgrc0W95F+USZst7zufYfRdBqNu0mLlt50gIt6a2VFHdfaJdivHYIkIT8hn59XZK5g8Qhtx/vASH5mBYNortH97LznNZ5JbpCd66GmXX+7D6GR4qWWHfT9sMkYbaPGunfV6oqgfJckM49SsaLCy13MeuDp8JtY5XoCCnD852+o7z98bxypLD8OPt7Hb/Lwu1czGmnRbFP/ZNFyuq3cFUwZqdY3mvdQ7pXrdisVaPVFCEN5CXc0VQTw8t4XJb7lWfpCQrifPpRWgxk1ZYybvrI7h/3kEWH05iydHkS5rrZ1jJjJi0XIafn0x3Kd6ZYLsItmv2Tysas84IQ9ugntD/DaGIAeqY8olUWiErcMoaoGLza8ITzHAFDyR9iSAcilOQm99OpuJPxMnDl9/mCiitoqD0Qo+EbE11VeykWlG5sfqGyUeE4X2/SdUWbc5yEKd2U3KfBjB2FUqjrrydcx8PdmtKRo+32VbcnENxebyeNpCydo/A2NUoKg3kxRBT727uM8zEoGhRYrbalTU/H0q0q5EvidRjIJt5yfIuG+UBgESU0oq3TJNIfyVJKKuPzhceloVJ9vvuWA1eZDWhWlGCKn2ZCE1n9H5tyHnAWhX2+KL/Z++8o6Sqtm7/O5U7Vuecm9TQ0OQmI0GiKCoicBUREFERUBFFUVEUFbOioigqKIggKklAMkiS1GRoMp3pHCvX+2PXOVXV3ej1fX5jvHHfXWMwgKpTJ++915prrrmEDMK3dwmtzRvnIKGL0AttBAT82yVVTqfQjKv/2SfdcPz2Mgu173HZEUmNsQnseY+ai+5uw/8bjCCtWqxd/7YI/d8xUwWUXeaUX1ecqHjc72149ICYM/wjhCatrBm0YYZgYV7ZAz8+JBJJ8O+VY66dJvydA58KfdH/2v+T9l8g6B8wo6+Wt+7JUP7vr9dwX2YiYzITGNgqUvn84g3hiHZLrQ8EOdGFb6LQfJkvxnZk0diOtIkz0jrWyNzh6UqGXKbgFnssKJ6Mmx3nitz6FMBjy46w1oOaCtC7mXeWrtYm9pmaGE+M0YCvToPRpdkT5KMVrelVJgLSnmXTlU2NXr98fgA/HMph7OKDXC6uITzAm71jdVgJ9dcTYNB6fRfkCvx0LjAtPdbIwvs74KvTKEAQwMBWkZRUWxqd4P1coM7mU4WkhPth0KpY/PsVllr7coMgCivNVLuyXRV1VhJDfRVGUH2TmVNTlh2lQ84TrB+4izWOblTjy8ZTBWw8mU+Ax2/nDk/nzCuDlGtq4gJQJAn0GhVr8/zJ/KqI80E9xOLssoOXvTP8nV7bQua8rQ3O50C97fZkuxfZP66UYnc4mbRUBH3d671bNte9uvOTvV4tvHs2CSMh1FdhjN3bKZ6OicFM799UeafaxBl5uHcK3VJD6ZwcSnmdlRXnnIDE2qw8hn/8OybENV8urlHAy6g2AzjjiKeT6jwnHUn87hDi2oWEcMTZVHEczxVWcTqvEoE9SDxqncYBRwsyzIu44IzjRrIIAk86kgA47UwEYL/H/bhRZabII/hJjfBn48kCLDYHGfFBNHW9P4M/2M2Gk/nK787kV1JqFOdVgR8HamMYkC2czL0hwxmWIQDQ5DA/Xjs4h9/zfueLsR05+Hw/IgL1VJttynguNzmonnQAph5lwMLjdHrviNBB6v8yaAyEVZzgtCORedbR3G1+iWJEYBwb5INBq+b7SV15sHsSwb5ar/dKtrvaC/aLzJwb2iYcSWUmzCcMg9rQAAjSSGIftVY3Fd1sdwOo9UvDJvVK5d2RYv7yN2honyCAwC/tg7nLPIetjvZEBuhdXQ1LqLPa6ZgYjNnm4FxBlWAGuezw1TIyj97Ki7YHefGIP9sixzHKMpsCQvls1yU+3CoyahV1VipNNtKiA71KZOV37+72ccpn93VJUP6t16godrXmveqMwoaGTS6Nq6KMR1mVMJtPJFH2d9jRlNlWIVq82NIfpz5QdOxxWNE6LfT1u0IPv1w6FaxgvHo9KVIefjmu7PWdn8Ho5fDIHhi/WQAGrkBryxk3bf0F64Oo6oqFVoHLMbpPswX7qTU4kfjIJsp3ftXPIvKTpkLP4Mxa+GEsxUsn8Nu238jf/D78OhOOryAnuIvo8HdtnyhNczqVkgJVIyxSANvKCYR93JTq9zoKsd2Si5B7BNOFXYAEnR6ixAUuF9faoPfTOO/4mJ1t3+V6WS3f2vvzSOIG/njgIittvbhPs5WknF+8D9LzKVEOOuM8zMiGF8tgTgV0m9LoOV2xhcLYn+EWt/OXW1bHzvM3iDEayMqpYHfcJCoiu2BGy5OWySSbvqWP2c1i2BE2GjtuZq1MlQfhHJe61sFsD/HbwkrvRIETd7AhZ+T3ONLZ2uwF0amv9QjBZnKZJxBUX9y1W2qo4pwH6DVeumEAzaMCcKJSkkCPLzvKaxvOcORaudc67avTeDGCfXRq3tE/wgOWZ/jQdqfyeUackZIaC0evCrD8ammtElBb7Q4uFVcT4qejbXyQ8o5cdZX5RBsNSJ1EGUeH4l/IrBCMh/d1n4jrbHYHQ8zzOJVfTZ1dwl+v9koqgVhTo40+/OzowckJl7iR/hDmvi9TYbLx9e+XqbXYFdBaAEHe88qtLYXvs2R8Z4p8PmfKtilUW7yD9Gd95/CWdSRSSDJVJpvCTjzj6mZ53qOcq6jKBD5BLLYNIlN1FumNBPisl+hi5rKzBZVMXHKIl9a4Sxcq6qx0Vp0hrPIU/PKoAG0vbKFSH0W66QsKnUHoNj1NzNYpHDc8hLEqW7BQjq+ArS+jv7SZIeqDnNz2HbOW7yfzj+lI+z6CM2vo79xHiW8qB0ina+4SnEeW0N58iPdtd3GP+UVG1T7FSIvQuquVfNnqaCfWfZUKOk8SJ7htrqIjJF9/L9N2KLnAdUc4/VRHMB730DjzDYPRyyCqDQuDjZhUKqKf+h2Hq8S/vgac8jx1GrKcqYRKVTxw/D4sP05mn34KaheXyOF0sw8kGplrzNVKR8Yuln20qtzNAt2HDcXEXSa/qwbMmLe+ATvnC22yxsxU2fC72lIR8EtqiO8sxuk9X8PzhewOGs4W38EkhPiyQjVU3MvrB0RH1vdaCV2hI0tFh0JztQjos38TAfBvL8HqiZB7mO+zJbIdcejLXDpYdWXuElgP+2znRdq9stkNaNksQpS5qpCsrCOc2PWTsu1o9VYmqjewRv8C8zWfI7mK9hoN6HfNF4yXfi94ldaa2z7IqcI6hrqYgyWeCdDmg8kftZkLlhC6poTSLDIAm8PJ/V8eZI2pHT+lvMKn+U3Zru4OwIayeM45E3jKOhnJXIkj5wjvbD7Hq+vP8MavZ91gjMMh2EnX9ou/vxwA+xZg1/qz09qywannVphFIsBhExqWH7bFkX+c9bpZPGBe7sUYke+b0+lk7OKD/HRUaP54adFVF0F1AdsTp9HP/Ba/WtvT/Y1tdF1aQUX7R4WgsdzafPVD4LTjiGxNVWCqYIoVnPA6vxpL46w2r+MdWy6eudMpShDfT4cCdwxF2RUoOoXx8EcYpVres93D8Zh7wVKN/7cD+VX3LK2lSw0ZQcUXRFl4/XK2v2FaTUNGUJXJ6s3Ws1vh+39B9hYA5vycxfgv97q+s4n7cnVvw5277tUpZxIAuVUOzjtj+WhrtuiwHNNWlIZVe5TofT1U6ETJlufdgRTE8/3h0HVxP4rOwJFvRAKp43hR/lhV0OA3/1Obu+40s1afEOuAxU2SwOkUHWmL/ll22H+iNR4J/9f+tnmWTUmSRNfUULqmhvLBlmw2nXK3cG0eGaAABt+M74zV5iDc6OS+LbOYuOkYu0a5abRrHxe0R1nj5EpJDWnRgV6LQsfEYCb3TuW51SdYedhbUM3phPe3eNc+j+6c4FUiVmcTzvHDvVJ4oFsS4AZmAl3XJAvTfnniSwYmDWxw7S8Na8mUvk34cGs23x1wL6KeABEIIMjzHskmi0XPvSOd1HB/MpPdlHGjr5YJPZLplBRMbrmJTacKqTRZCfJt6LRSZcbmcNIiKgCdWsXZgiqSQn2JDDRwtqCKvi0i+Omo0GhJCPHDp173LNnCXGylLWcKAV/e2O26/gc6MuGbQ9RY7IzunMDyg9e4s50I0nUejDAZCHI6xT347bR4/gPe28X9XRKV7Q5cLiUzRVxr1Z+g/jvOFdE1VWxXWGmiqMpEsK+Wslorv18owWZ3UmuxM2NAM1LD/dl4qoCUcD8u3ahpdH8fjm7HbS4H452RGZwtqGRAy0gGtory2k6SJGYNTgPgpV9OUlZjuWn2z+FEoUD7GbRU9nuT4oNzeLJ0Ang4lYWVJmQN4+uldRy6WkZ6rJF/ZSYQ4teRscs6YnY5TiebTOJHU0fez4IM6SIXnAIceNnDye88byu9moXjq1Pjr9fQJNxfAbzign2U9+RaaS2f7byETq0iOsjAmfxKriW2IBzQIhZWBypamhazekRfIs8LsKl1rJFtruGmVUtEBBi4rXUMb206h93hVJ5DnjqWZiEBXCp2LzqXS00kaQxINhNL7f2V7l+SJN4NWRwe4MXbWjJzYAse+OqgF0D43cRMrpTUsPpILv56DZum90KrreOWlWBQG9Cr9Zjs3s9Eo9JgcViUsQ38qVi0TqNiSOtonvwhi4k9kpnStyltX9lMea2VI05BGdaoVUQG6pVa/oGtojh0tYw3N56l0mTjxdta8so6b62cOpuTH40PcCSnEFzPVHZq5MC1d7NwJegDCHbNPe+MzODHI2I+G9AyipJqC5/tuqTMcWqVpAShVS7HKDYsiN9ihvHdhVOY1Q6+sA6kBnGPK+1aHIk9UZ9wt7CfV/ak1/lu08+AC1DtE8tXxR14XP4iIRMQJT31SwBOOFM42O4NupyYgyMoifUlUQxT78dxMJdDtOSTq7GMNgQRhrhv11WxvG0ezgcJe0jJ/YVlui2oz7kz94uLmjIqtA/NeFuUpvkEYbGL915mX5isdqSyy+jDkqH8GurTqyl0BhFZc0kIyrvMANTGdMXXJ0hZM0qqzfxw6DozV8nZ5jJAosyq4ut917huv5V7NK41qPU90PcFUYogBykeLAOn08n2c0W0jQ8mxE9HncWugHpFjQiT5rmYe/NHZPDkD8dYUZ3B2KsRaLBhc7kil53RbGn/CVmH9hATYoQrbhaf/D6Am/li9NFypbgGp9OJJEkUVpkI9dORGu7PwSulOJ2CKVtSY1bYDGq1lm0+A+mnczPNFu26pJQTTO3bhOIaC8sOeAeEMUE+TOnblKPXy+mUHMLbm0UWekKPZIZlxBDsq+XXkwVUm21YbA4FlAEIqbde1beCGicFuJ/d7RkxtHExMw+6SgKzrpfT483tpEUHsOVMkaKnFRPkw57sYpxOJ4evlpIS5odWa0Xd+0lW7TvJCLMIUrfa29FPfRQ7agz3LOLK2e0czxHvpZ9e48XsBQFYxQQJtteKw/ksPdSHxwJUxAblM2ftaaH5g5gXK2qtDYKhjonBXJo3BJVKYv4pwd65UH6BthHuRhGPDb+F2T+H0S0+mLVZeVhdQak8zM4VVirzZWGlmZJqM2/bRlLgDOFV7Vcia33qZ8gQjDe/Pa/zhKYAfU4CHNgPmQ9TUWvhHrVHKdmPE+DiNs5E3Et1hS/9zG+zP/5jEvIEWJYnRRLjdPtsAHVOHeMrPuZ8eQKBUi37un7GwXPXmFb6GsbAQD61388n1peQ1jxOHqEstd1KCUb89RqKzMGs7rKSjZft2K46yJFLhHo9LcbThhmiucA931BlsqHDyv32n7BFpPPE9btYpX+FyCsewtIthkCT/uLPN4Kx6JQcyrzuuElXNT+9hpW23jyiXoufo4repq0gwe2qvRxxNmWcehMFdYKZ0rx4M+R1FQEhiM58H7blLqCVLo4mN0SCMU4qxpC3DxypAtzysL5vbAKc3Kneg2GPC8ja/hrcOhe6T8V1sqBSUbTicSIui2t0DF/Im/lteeL6NAx5BwQbyJPdpDXwTfDj5FBLrK9OMEs79BeMkYSugkH04wT39osHClHcujIhjOvR+faSM4ZqfOktrYf9C2HjM4Jt9VweqN3h0eu/Cs3D4mqL8N93vw07RUdBZdQmi4TFbO13isczUrOTvuqj7HRksKXGo4S89LIIrCtzxRyr9YFJOyH/KPiGct6WCPv30TU1lPUn8jlfWM2gdCiqNPHLsTyFbR8X7EOLaPf1ACzZd5ULRdX48gAPa0JYahOA0O+OVjhUWir+WM5Hf7g1wI5cK6dzcojQNdzxuhcbFeBi9DDMVQ3nr7zyOkiJE2xRl6+RuH4MWlUZrbgKV8dDUnf+OHORj5cu54GmVrqpTjLxciHPZU/gzmbDKK/1SBa72KaX9c256AwCD4Cxz942PKvpzUjNTsgYDVnLAXjpsI6jF/qxTr9dPL/hHyu/qTLZsNmdPPztYd65J0OZr6grE+DInvdFaRuIxJ0MmGx8VrD39f5uVozLDjuaEqVrRdcWWXB2HWmqa3yqe5/r5npdVNc/IeQgmg8RrKVG7LfThWQXVfHoLU0a/V7bSGnYHR//ztWSWi68NljEUBe2iAYuZ9dxcuQehh6ZiAELJ3N2kn7yTdgvgH8eWCcAR50fGGMVEOeQWazrBZUmnvzhGCdzK/HRqZkY20GU4m2bC0BxSHuy/HvyTXkbFj06BN38BKTcQ9BqOJ6250IxM1cdp+jCMaaofxSC9X1ni3t+aLEApro8wv/YrHWw5WUIiufLPUkAvO54D07+iGPMj0zaWMV86UNCSo6IzrRPnRXP86/MNR/9/2b//13x/5LdTD9nYHqk1//bubLtIIKg/i0jiQtxlcQ4GqGOgjKBPbEii06vbVGynprAY+ysfZq728fSPMq9GCSG+tK9SajXPoa0jqJVTCADW0WyYEw75XM5WNSoVUogL1+LZ7kbNOw2JZsIEg3MHNiCcS4wCbyp4eAhausyWUhaXtSijAaeHdwCtco7G/XCbS0ZlB6tlDF5lodVmaz8cizXq1yuWWSAAubc3jaW+SPasHJyV8Z3T/bYxh9JkrxKopaM78wdbWMoq7V47e96aR1p0YFKaRDAHW1j2Di9J2/e3abB/ZC1EKb0aUJSmLd+lGdr6Xd/O88vxwQwVV/czhOkOu0KlKvNNjLnbWV3djFNIvzRaVQs3HmRB7/+A41KYmy3JKJd4MJQDw0KT2sa4c/tGTGoXPd4WEYMTw9s0ahmlaeF+uupNNm4WtI4uIRkw6l3X0Nm76EcGbKW806x0Dw7uAXNIv0pqjRRXG1RSpCOXS8nJcyPezslcGvLSCIC3Y5BaZ2DI6Yo7KgVQAIEy6lzktsx3HX+BhEucDU+xA2uRAYavMqKQAg9p8cYOZNfxRmneB+W2N1iebUYCA/0VfbXOtbd9U5m1SSE+tIuXi6fE+Mut163qeJqM33e3sE34U/zpf5+cpLdjkKrmEAAJcgCAbr56NQE1ZtHWkYHemXqo4wGbE4xT+g1egwaA2abd9CtcbHOZLaf57lD4xljg1bNxXlDeKyPcEq6uYDHX6f1ZMUk4chEBBiUAE3O9u/OLiYjPshL80u2Woud0mqL1zOpMtlYfzyfSUsOoamnFQbeZabD28Yo1zxrSBq3NHePvygP8W4AlSGXMudxAn20VDgMfGAdroBAstVF1usehxDZnGF9mDGW56h0iu1P1/jzzm/nG3QZArhcLBgKQ1pHsX6qAOoP+vaGmZe4MW4vK+x9xPmYK5ljHkMdBrpZPqaZ6RtWdf2ZfrXz+MXeHSbt5KnQhRx3pOBXm4spqiPvWkfwlX2gYMA9fQniu+A48JlyHtUmG+Qe5upr7dB/0gFeCYHlo5BwMtw8VznHfGM7ttjbccMZyN4mT+FwOCmtsaBWSZTVWpm5qqF+w6ncStYfz+e4M5VJlidYmfCiEOIPTsQUkIhTpcHhcDJzVRbNZv/K1OVH2XHuBuO/PkS3NwSLsdSjPOKch0C7bAUuEDnKaKB1rJHdLsDWVi8ftcuZwUeW22gW6Xbc6rNVZFCndayRKrON5FkbKK+1cL20liijgeWTuih6PEv2XeXuT/ex7OBVAg0amkX5Nxiv729xt1z20WmU9UOnVvHrtJ6scyVlOiQGc+zFAYT565U1d3LvVNrGBxFtFO+PXIZqsTsUnYdg38b9A9nm3tFK+feCMe14Z2QGLaIDlN+3iglkXLckcsvrFEaawynms9ggH2osdsprrRy6WkabBD1dlnXh06xPsWeMYb8jjcctU5hgnUFuh5lU3/crKq2elHA/jrvaE/vpNUIfx8P89RoSQnyRJPe6tTu7mEIXU0oGheOCfaky26g227wSIpIkKetMXIAAM7PLvRNTPZuGs/PpPoQHCJZlSbX7HdKpVZzMrVSIBafzKjiRWwFIfGu/lSMj9gtNtq0vi5KgnEPEn/yEaZrVTK5wsezOrKV9yVqGq/eyzu8uCIxTdHnmXRf3vBpf/ujyMZeMXXjBOo5ude8yyjKbC4mjlFb2j1mnYpc0dHEe40PbcLbZ2vCLqT0HAgeiGTqffENTXohbzOlen3Cb+TVKXKzP4y8NQKuWOO9MIMci3me5GUSF2c6BoCGQ1FMEc592JfWHW3hQvZE4ZwETcoZyzNmEOqfr3R/2gegs2v/lBu+P2W5WSn4dNA4EhfjpyCWctmbvrqc91CdYrnuVBzWbGHXpeTKlM/Q9+Sws6uPueHZ2nbJ9c1UOEk4+83kIq1PNw5ceFyLHNcWCbbP0Tkwl11hhepgVurk8rvkJU0ASzMqlPHmo0OY69bPofvZqOPmH1hB8aa2yf9XPkzm4a5MAgQC6T2twLdVmoaMZG+wjxnLTATB2DYxbD2N/Ed3S/KOEOL3NLDrKJnQV3fxcwf8ev1tZZu/HWYcL5N74jPjbbhbd3jzYC2nSVaZrVlG9Z6FgKh1ZKr4YPJ+Z1od42epuFmFxuVKF9/7KTOtDVDl9uFu9m0+vDxeabdf/ECBSpfD9aDtG/O0XypcFqfxcGEF+lRgHrWON9G4Wzmc7L1JRZ+XpVcd5bcMZnnFp8MSH+BIRYODu9nEYfbTEBvlwwcWQ/PrhPvwcNI5yxDxVRiAFcYMIPvEl96q3K+ebv2UBfNRRCMGDaLIyarkQDQZmFA1S9Es9TemYl3KL8pnWXMYs6wQqnb6ilPH0Gtqt7MrXurfoc/V99Je30Et9gj366fBBBpZr7kYiVed2gMbABU1zr+NEBRooJZCZtocZqvuSI+1ehUf2UjdpH0vPODnpTKE0upeXYDS4fI0T+Ry8XMqCbe5uwWx7Fb4f4waBQLB0a0tEI5MruwVTy+mEcxtApaHCX3SPrPON4UypA0Z9x/WkEex3pBEnFRNwpb7GlOsl8Gz8UJztxTZbfSSHj7ZeuGkJm5j7nV5A0KUbNdgdIgEDCIYzgNaP9B960El1ntaqK5jXPSNAoPS7cQQl4/xxgmBPvtcSru4T1xvWnDPVYs2y2BxcLXZ1fK6xQPrdQm/qyBJuOI10znuSCecz2VXkQ/M52/mDVqIzYr2SzxqzjdtVe5ly9j4B+iR0ESBuaKoYi3nHIGuFV6fVv7Rjy+D0Gu/Pts4V5WabniOMCsCJ87yoWFEtu5svSscJECiuk+iCtufdvz7OwUXwSrBgDcr2D3cT/H/V/gsE/UNWP4CTrUVUoJcWTbPIgAbb1M/o1zeDVk2yC1SpMtkUkMIQs4JqRx5mu5mMeDFRt0sIYs1jPVg8rhM/P9Zd2cecYa1YP7UnkiR56f54sgZudi1fjhPdov6qztvoq2XO7W6HNqmeiLYnIwgEOJD14gClrOuvTGZSFVSYWXnoOldLauj+xjamfe9eAFQSdE0JVSjWXZJDSAz1o1lkAOmxgUzt24QFY9qREi6cssXj3Pou8SG+dE0Jxe5wKl2EZFszpTtatYq72sXSPy2SLimhtIgK9HJ8ZWuXEMzZuYOYMbC5171uzKZ9f4zVR3L4cNsFL4ZIrIdui8yY+PWEu7TJ6KP1KqlJCPEl0KClbXwQPz7Sjen9vTtzyXYznae/MlkvaO9F7/vy2f0d8NGq0Ues5xSvc6HMveD6ezzXiT2S6dEknKIqMzeqzF7CoZ5lE573oKTG4hWw6TzOfcZAb2chIkAAA3HB7ncuPEDfAFQc1SmetOgArpXWcvyGjY72r1htHKd8r1FJBPvqSAkX483zPD3BFPn9SXNl487Xa8e78pBgL8zJTubN6qG0jDEysmMckuQuDY0J8gYqwK2XtWhsR3bP7EOwn45QV1AqY3XyeRjUBnRqXaOMIPAuDfszRpBsapWkAILvjmxL1osDSIsOVFhrkYFusM1TIP+OjBglcPY0m8PJqbwKYoN96dciQgFSH1smtEJWPdKtQcfFQA9ttPkjMvj92b4YXKCo5zwxubcAkX11agINGvySP2Lajilev5fBVJnhWB7qZiJcdQgAamfi46yy9+YgrZlqFRygYIQjPXfd6QYaBjLLY1KvVFrFGAnz1/HLsVw+3n2NWhvsd6Txge0uDvb7gVMuoNHikLCg5aw1EgviXNLnbObH3EDGWmfxfLN1/NHnOz6034UTlXCw/ULZ49MHVUk2GdJFNNi4M3smLOpLczxq82+cpUIfQz6hvBnwLDuSn6Br4dNMtD5NJ/NCDlviqTRZsTmcN9WmCzRoFFYVwA5VJjsNfUCSWLr/KukvbeK9Ldl8tfcKPxzKIT0mkDVZeby1STBiTFYHW04X8rCrPLVFVAAnciq8dFp+v1DMdJe4e0yQgVaxRncnpHq2J1toZSV7JBKeGtCcJzzmtLGLhROf7gHUbjlTxOGrZTg6Ja0AACAASURBVLRLEHpWclnoDpfTfL20jpggH+KDfbleWovD4VTKSD3nID+9WpnvWscZSYsO9DqObPNHZHDwuX7KuqTTqNCpVVRbbKKMCejZVNzzanPDMbft2jZaf9OaCnMF93dNYsn4zqhVEpnJoWjVKvQaNRbX+3dH2xivtVW25DB/Zc48cLmU8lorCZHi2L9d+Y2Rg29lb88lrHV0AyRihz2PsYkAyFLD/RXWqL9ew90d4rz27atXE+SrU5i90UYDx3MqWLBdzPFHrwkgKDbIB6dTsLTqA7SyhegFcJ9d1nh3pkBXSaxnB6ruTUK9/r/3YomSFAHIsRupHbpABNRLh8MXbpaDYtmbGVq1kixHCm8574d7voLb3qO/eT5ZziZKKW6ezZ+PY+ez1D6Abqlh7He05LfkmTB+E2tjprHN0Y6hzo9oY1rEu7aRnMytJKfCyra0lyFeCIcXOowc0HejjEDl8CqVRLi/nhtVZqU0qNgV5D/63WHuXXyMyntXiy6gxefxrbzELO1ycpxh7HS0wYaGnuYPWNPkFQpSR4ruor4hHLxc6pU8MtlMbkaQs3EgaHhbwV4OCQrmX5ZZHKcptrA0blMdIEYq5Sd7d+LrTrNC7wKVnQ6YGwZf9Bdisb6hfBz+Is1M3/BI8OcscQ7hMetUdmm6i4D3rVT4/X24uA3DR62JkMrJVJ0lRirlSuq/QO9PlzMjOONIgJUPiO5nDhthmx5FK9mZF/YGPHUOiy6In/SiicOSqOeg5R0NrqXGbMdPryE2yIeiKjNmuwNSeoNKLdg1Y1bAjHOCCfD4IdH44wE32MSYlSwOf4ZaDKxxdON162jxuawJV3we5+qHxf3MP8G3unlM16wm+cCLoiNmVR6M/p6qjPH8YO/DV/bB7mfx0HZ4eBehzbrwg70Pd1hedYN51w7Al/0haznVyYMovG0ppWr3vDx33WmmrzimlKVGBxmY2q8JNRY7W88UcsDVKEbubignk968uzX7Z/VT/JYuKSF0Tg4hNdw7GXsgZSoFAa15VbOYHzIvMzOthME574t3pvMkPum4ka5lL1MU0xf+tZIdQ7ZzvCaY54ekNXgGqw7niKTsnQvhgXWsCJrAZnsHVtt78p29H5xaDT/cT5EunrGWZxhgmc+J2FHK7226AGLX3U+cdINAqik98gtV4e2ptHn7qGumdGfl5K6M7ZrIqUof7lp4gI9P6zlvd/vWRQFpQpdv51ukuzpfWvNPccuxp9igm0Vo9VkoPC1KtVyAgdXPmwEPwOQ9AjQ8t1Gwjo6vgKYD+KHdEtqbFtIhKYQz+ZVUmazsTnuJMZbnueiIJv33afD5Le7ytFqXn5z9m/jz86OwoKPoHuxi7JXXCoH9vHpi6wUVJvZkFzPevpIL+vtpfuo9sNRQ4ZFouVhYLYCW7E2CUXbLM1776FDwPaTfjfOuRTxYNxVbTbnC2uKrQXB9P9bWoyivtZIWLeYr2QcorbaIMTRUgCfr7Zk46kEFq8ydhAbiivsEWLLzLXE+ThivcTd7oIVHh+So1qLz70+T4KP2onzuL6y0rFR0rfvhfri8W9zLD9sJECi+C0hqPtR+RAvpOpKlWjCQXFakjYWJW4SO1Z734NTPmG12vtl7BZPFKjqnerIn5W6U5zeJsrp1T8I7zf9ac+w/wP4LBP1DJrNoVPr8Bt8dffFWZYKOCrHyywVv/QWT7a87ynw1rhMjPBw1ucU3CDCnk4sh4aNVY/TVoteovYCYQA9wx0vtvhEgyC1ULYLCQNdubsYIupnF1gt06wNBkiQ1EIb9M4txZVw/3JbN06uOM2bRASpNNkFrBR7v24Ts14aQmRLKy3e04q72sXRKdjNHJEniyQE3B2dCfHUK+2r+RkEF/urBTuyb1Vehab57b1u+eKCj8pv3D7/PnL1zGuxLDl6HZcSwe2YfTr48kIvz3O1ynxnUQpmAn/whi8hAPVuf6q0EO3IQFGDQUFxtYe/FYj7yyGp4iomDmzUGArzwBEA8g/a/LaDnMk/GmRxYp0UHMrBVFGEBOlQGQRUvN5cr23lqMGnUKkL9ddRa7FTUWWnhsb9gj7IJWTAdoLTGomT+QQA78jjrmBjMnGEtucc1JuRstuc7Jz+zoy/cStZLAzg8uz/juifTIkrc9x8O5RAWGsbaqb3onxapHEOlkmiXEMyeZ/rQzgOo8Byn8nH8DRpaRAUoLZ5lW3bQHazbHA5GdU5g/ogMLr42RBHjrj8+PO9t88gA5ZnKbAIZCJKBH71ar2gElZvKmbV7FhXmikYZQX/WPr4xM7jmEU+LcAV5zSMDkCSJ0Z3juT0jhtGdExqAuXIGsdJkI8hHy5fjOnGXq4wS4KfHutPWJUB9M9NpVN7AoIsJuPC+DkrZjFatIuslN6Mr0Md9HvIYktldhUHtuNH3XUZbnudJaQbV7R9Gmyjaet/eNoa8AMHu+9ouyl+/3X+Nqd8f9TonRYzXtc9ezcK5eKOGtzadY9HuS9jQ8J5tBLtqkxpcjyfjwrPO/0KlxPVy9/PJczFnHj+eyA2nkRW6uezST6d15W4AfrO3Z7TleWyDhcisxeXLrDJ1Yn+E29EG+HTHRd50zWU96rFEZasPEMUH+yhZyJWHrmNzOPloWzZz153mlubh/PhIN9rEGb2C8olLDnHSJaI/rV9TbA4nv50uVPYzY6WbYu+r03iN//p2yZXo8JzTgn21TOvflGUPZXpt68nYm7Eyi1qLnR6u6wnz1+Gv1yj7A1FKER/iy/XSOr7ee4XJ3x7m810XvZgogQYtwzJiWD+1Bx+McoOH9c1fr1HGhGx+ejXVJpvyntzuYrV5CrLL9uUJUS5zqUIELr2ahXNx3hAv/byJPQSYeJ9HSbGnpYT7KYDynguCYRXoJ+bMIEMQkiTRxWMN9DQZGJDP79FbmpD92mCldFfWQHr/3rYMy4hh9aPdCA/QK+WRMiNIHqOFlSaFtVvfZPA6v6ahfwQ0KPUO9dPR0YP1ObRNNLUWOz/84RZzfW71CVou9Jh3/aO4FtyFdqaFvBv3oQjojn5LnCOPj2x3kl9pxhnXCTqOV8qMZQbixpMF5JTVkhEfxLKHuhCg11BYaeKyM4rHL2UCEkW1dioR+oNZOeVY7A7iXNfup9dQbbaRXVTtlQABsaYUVZmU7mUlNWacTif7L4mSv/wKM9z1OTxfyJU4AXrstrdG9r+KMTL1ZBO6vOFmcYz8bJ9XZySz3ayUhN1sfh+UHsWEHsksGtuR2PaDqRu7CU1SV/SSlSJnEDOsk7nXMY/3bXfxdspi6DoFQpuKFt3hLbANW8CSigwsaDllCqO81sJmRyces02DiVs4YexDrVPP5Q7PUdpiDItsQ1jadx+dTB+zwfcO/rhSigk9Iy0vUtj9FRjwGgBaaxW/21uxOC+RHFsgq1p9TIVTjP0vroY3ei01Zhv+esEIcjrhrY3n/rpluVqL455v+CnpBbKNXSl3BdY2NHxmH8ad5pfhgTX80n01i2xDkC7vgBOrUH3Wg1CpCrNTQ7kuCqdKy9V2M5l6JEoAlZJN/HGZyRgL0Rlo1CoMWhWV+DHKfzGZmpUw/TjOXs/wi70b7c+MJnOVmiEf7OZGldlrTcgrN6FVS4T56WkbH0ywr5anVmZhsjoUpiygiNdr1Cp8dGq6uJI2D7rY7wkhYg2Ux2iOPZgF0a9xRRVL56znefTy45QTwKWhKzAPeIP5e0rJrzBx+GoZWy7WMH2jAOVln8nT8spN3PvZPhx6IyT35JmCfkyyPoUZHZ/Y3ODdcsO97HJkcN4Rx3zVeOZbR3KXeQ4P2F9E67SwSzed44ZJREmlfKe5izqLXUk69WkeTkSggU5JIYT6uefF5QevebFOL/m4ALztr/KDbi4RlJG6ZQIRN/bSUnWVmVceEiyvV0Kg4jrv6h5mQuhSmLgVHtoOD/4KD6xl79Uqzhl7QfE5AUBEtYGRSykyqajVBjG+ezLltVY+2JJNWa0FByresLlAxLyjsLAHfNJV6BmBaNjw3QjBavGLEJpDf3wBFTmU1VqIpBTzjnew7f6Aax8NwbHkLlYseJ4/vp7JA9YVaCQH7a8uhnkxWH+ZSpKUz3bdEzy0vb0oJ43OgK6PiTLR+tbvJS6X1LGzIpIp5kdZrhnOheHrQG+E8BbkNxW+Qtt47ySHwuxN7cPqVh/xvu3u+ntmtb0nhXEDBVPwyh5Rxr5yHIN+bEFb1SXmWv9Ff/N8jkbezUkX65Qoj+oJtQ7H572xZa3y3nFNsaLRNGNlFrPe+tD93fmNsHa6AJ66TYXRy7EM+5guqjNs1Lu0CO/9liuJ9/CrvROLjFPZe6GYq11fxRzVAVY+QM2H3SjfMIfqRUNhUV/4/T2oyIGTq0HjWss3PgsHP4NDX5JliaXgRsNu2/9p9l+NoH/IAn20qP3O4pvwNWsvRjIsdZjynUatUgL3pZfmcrLkGJnRmUS5EOm/YgSBKLN6+54MTFY7647nExFoQJ4G62x1dHUtAKM6u4VVPcvVDB6lRp7Hq2ukpV/92EwuPfl3gaBFYzty+GpZA/ZJ/dKwv2vRQQYkyS2ynFteR0qYH4/cksrBy6WE+umUwLJVjJF3R97ciW/MAn00dE4OoV1CkJLt7JYaqiy2jdmXJ4UzP6fbnJtuE1+vPAngznaxPHJLqqLFMqZzIgatmmn9mzL5lhSlfOOOtjF8u/8aYxYdwLN6K8CgYUqfJkp2tjF2iWzdUsO4WiIoqbab6Af8lSWG+qFRSdgcTtKiAtl3qUQRTg3z11PcyG/qO8SeZT9NIj2BIPd72iLa7XB8uUeIEOs0Kiw2B7FBPrx7bwbVZhsqlcS47smYrHbWZOUxsadgiMQ2EnAF1ysraRnjPsa0fk3x02sEUHvGre8E3uwi8B43smOVV25iQMtIFmy/wI8eGl3XS+toFRNIVKCBCT2SFVBCpZKULJ7MKvK0dglBtIkzel1HuIvtdE8HQWGXx6NB49YIWn1hNesurSPSN1LJCHuCvJ5spptljP/KZPBDZjW+flfDskjZnh3cgjGLBLVfBmc8gaXwRhhE4BY3b8wSQ/zYf6mUppH+SmmhrA0jmycjKDncj9P5lUQEGDhfWE2lyc5Ov4Hsc2Sx+dFe+EcGMNJmp11iKK1iAhn8QSV3Gzdw+Fo5T97aDJPVzic7LrInu5geLmaHHODL5ayTe6ey+oig+HtqysjjUtaQgoai7wApYX7klZu4XlaLRiXRJMKf7MIq5m04QxmB3G2Zw0T1BiKkclZHTGbK+Ak8NFfc15yY1iQxg1Wa25RzK/QQOG4RFcDZgiqWHxTBc1p0oNf5zBjQjFaxRn7Pdo/eRWM7suzAVa6X1ZH07HpAlNHKor0DWkYhSRKD0qM4ntOwa1OYv45bmkegU6uYvuIYOrWKVY90bdAC1zORAWLNcTgF20zuDhYb7IO/K8CWNdLkZIBs6bGBzBnWkutldey9WIKfTnTmAgH8J4X5cjK3kjB/PbUWG0mhfsQF+2CxOxRNqy/2XKbOaueZQS2IC/ZRQOFWMQ1ZQH9lzaMCvHTyBqVHsXRSc8qdp4Bk743/vBoXgOeGpDFjYHNl/V4wph2rDuew45xwTlPD/RQ23maXFqGkFaLaQXoBltZv2iBbnxYRfDCqLX46jRewKkkSvsnvMP/YOr4c9CkZ8UF8NFqUk4/rlqQwweTANcGVaMirMClrXXqsd+Aoz52NJZ7AXWoKsGJSF1Em5tEUo1+LCNYfz+dKSS2dk0I4fK1MOf6DlqeZE3OQxEdWs3TjecryL3NeHwVRl+DyLtY6e7BL1QmLzUFpjUVhWIIAFGKMBna7xkBHFwM00mjg6PVyVnywu8G5tokLUnwQeZ7202nYnV3MsevltE8I4kRuBeNdIJ7RV6fo1gXoBfuuos6qAGp55XU0jwrAqtLxRdB0dJcDWW/PbHBcaDjfKffXgxF0Mz9NrZJ44TYh+jt/hEvZpkgknlbbe2JHzWFLPIeJp78zgopet2O89RXOH97O9/nhtDGFUVh5jJRwP3JK67DYHfjrNVSZbFSHtuaDkNnsLrzO+0ld8NNreO3YQb6NjuAGwXy47QIfuhJZVfhyKHIkQ9tEQ8kFOPwVC+3DsDmc9HhzOyAxlwW0VV3kmjOSggoTS/ZdodZiJ8po4L4uiVS5gCAZUP5iz2VUKonnPJgrF4qq+O10EZN7pyBJEquP5JAc1psnzmppUnqkgabVUWdTHIZgLhLPensfHtJsULSGNto78aJ1HKHBCVwvKKR6ny+QR3yID/7NXsFXq6XOtTtPP2FSzxQ+3HaBoNBIzl0uoVJtpCh9KtM2u/XACipNDHp/l9f7nnW9nMhAg1JaOa5bMu9tOU9UoIE5t7dicOvoRtnoj96SyuTeqYof3DxK+BgVdVYCDaL8c98VK9diP2dJxytczs1n6O5EFjmDCax1z9FnCqqUxg4GrYpAHw1rpnTniRXHuHijhtGd42kWGcDLa09TWGVSymJlq8KXS6N2kVL0Gz/uTifUT01JjYUDl0s5ph0husmVwTz1GJ7UrCSEat7jPs6r21JrsZEY4sfGab0UwWSAED/32p5bXseW04XoNSqhCaxux+DbF+A8uwHtuU0cNDwGNfB9+mesPJzHKwE/0cp5gTPmMHYE3MaCkm6k+ZshrqfXeY95dj0GUjnbeRSUXoKhb4NaQ0mNhVA/PV1TQ2kdZ+RUXqVS4v+boyPre/3CUNUB2DFPCM0DpN0OZ0RJU+X0bH49XcrIfXcg/fo07HyTGOvTfKt/jbAskUAxOn2xVmiYZtsKWlitSWGeoTOzK65xu2ofYeeWs0G3Gl/J5ct1nAD9XxLsnYiW7Ai6m5WmTvQz5rGmJJZP/eI4dFwkaDc5OrGpuhM9D+v44tE/UOn9yM8T+2kbH6T4CCASsLUWGzvO3WCLpRXleAs8LxnfmXFfHWRlzDNMKdgF39zm9f1RRxOW2ftRh4E7Fwpf5fLrQ5Ba3SmAsdYjsUS24fTCB0j/6WHe2nCUpB73co/xrBABBxz956I7doX52uUUOYMocQaSJguFj/4emgsG3o2U4SyzbeNp7Q/UaYPxaTqA9bmpvHXuHOTAoi9cPiiTyEoyEVJwgmmaszhvuObQ7a/D1leUc7fG90CbdxA2PUedOpAxNU9wONIdU/+n2n8ZQf+QqVUSKq1wjA/kH2jw/Sf/as+bd7emwiIogzVWd5by32EEyTbEpf0S6eHc1dnqiAg0cPn1Idye4c4W3Ez3xbNkpDHHzEcnnE45u1dnF9v8uy1Ab20ZybODWzT43Gq3NrL1v296jVoJRmXr0yKCPs0jWDW5a6NZ04vlF//yuDJ7QZIktGqVol0kH/N/w2RQRM5oD23j1vTRa9TYXNTf9Bgjj/VJpWfTMDZN76VsF2jQMmNgc2a57rNO3fBZ+7qe4yO9U3nvXuF4/Fmg/WemVkmKKKHMZOqYKDK2A1pGIUc1nmVH9buyeep8RHp1jfNgBMU2zDwlu0oT0qIDiAv29cpOGbRqzs4dxCO3iBrum2l1eVpMkA+f39+BjdN7Mtg1nuR75QkE1TfPcSrr1YzsGM+Enim0jAlk1k/eXSsGp0fx5bhOSmAqW7uEYDZO7+lVdibboPRo1kzp4cWUMfpoOfXyQB7vK/R7PBlBeo0es81MsF7s63rVdYX9c7PSMJvz/w6QVRhBN2FzxAb50CbOyLlXB3ldm/xMPJ+N6iZMoMTQhqCpbC8Oa8myiZmkhvsrAvNR9QAFudRDktxgnaxRVFBp4lxBJXqNiiYuEE6vUZMea0SSJIJ8tZxzAR5NI/yZ1r8pBq2K7eeKKKw0sSYrj6IqM0YfrTIvNIsM4PQr3gL6d3own2Th+zB/nVcpp2xdUkMpq7VwrqCK5DCh9/LHFdG2HOCaM5IXbQ8yW/8MW9U9sBncLImL1XrszxXwflUfhUkmi+HPHprGgjHtlcAWINRPr4ydB7snMaVvU/o0j1DGqVol0T8tgmBfnaIzAULHRTaZ2dI23q11J9u3EzL5+bHu+OjUyj232B3cvuB3TFY7wzJiFC2c+sC1DBq3iRX71alVBBq0rHu8B8devFWZI5LC/Jjev6nyuwCDlnHdk3nhtpb8Oq0nqx7p5gUGys85JcyP9VN7MrV/U6/ypTvaxlDuCoB6Nwvn1lYh5Na4u+D9XRvRId7r/3qNmrePP8Vze2Z5jUdwd2b6M4aeSiV5JXFuaxPD1w92ZmRHwWhJCPEjyFXKWlRlFoG5TYAOfloxbzZWtinbHW1j6e8BwojzArW+iIOFDVtqN1baLr9jFpsDH62a/bP6sWJSV69tZPC6scQTiLnh2wmZfH5/BzJTQumXFukFYMUF+ypzYus4ozLOY4wGtjvasbq5O2ADF0jV6k4czQbzvHmsojf10ppT7sYMkpVqwyZWPpLJwvs6EKDXKIBvVKCBrOvl1Fnt/PhINxbe59YXa+PBQovxYATJplZJZL82RGm04MlUkZnhnjqHD379BydyKnh78zm+PZTPYvtgCnGPc8+ESpuXNzPi04ZdgI4WHVXm9ZuV/jZqST1wBMRw90PPM6BlJEYfLfEhPuy9WELGy5tZf7KIjy6EsnhvDtNXHEOjkri7fZxSstjS5QsUVNSh00iY0WGy2ZWOftFBBvx0DX0oeX6xdJjAIu0YisK6eX0fHxnGPoeYK4Z+uJtPdlzk671XeOPXs7SZs4kbVWYCfbS0iQti77N9aRNn5IhHV0GAEQv38ebGs5TWWMgpq+XJH7K48xNx70prLF6guWwlNRYq66xcdMZQpBVj7FzcCCZbn2BUv86cKaiiGvcatezANSSVhTp74/78E7c2Y93jPeicHILJ6qDNnM2MWNjw+ZXUay2/71KJl687rX9Tds/sw7YZvQny1TGwVRR9mjfU5ZMkyct3kEtaq802wvz1/Hwsj9IaC08NTIO2o7F3mkQtBoqrzV4dvM56sD1NVgeSJNEmLshLA1SeCy7fqGm0I9qCLCdFbaeQV2VXKhYsNgeZHgzFb+230t78Gc5H93MibhSVdVaqrRVkG54kt+6817vvmdBzOmHz6UIyU0IJ9tPy1d6rfFjahYo7vuFxV4l3hV8Sx9WtOOxszhTdXM5PPM9gyxu8WdIDByrK6t1zOb4xoaf2to9h4m+CcYN4X2SfPTXcn4s3qimrtSrnV6hLhPS7AJhjHYv5saOYBggx8ZxWDzNnUy7PrLlA1m3roOcMqC1msfUZVDh4r8lXrEj7iAHm+XzRdTNtTZ/RyfQxL8Y5MIfvZbr1EebYxgLgK5l5QjubZ22TWR//FJerNfKD5wv/h8kPbMPFlH+xozqejFc2c/iK95g4cKmU5q8f4r5vTijlh23j3T5CgEFDaY2F2T+d5NHvjrDhRIHSRRbgyVub0atZOElhfpwsAf610r3z6SdZ2ON3Rlheog5vv2zfpRKISsc0ejXD9iSy4log4y1Po8HG0+YF3LO1pwICAai2vMA87Zdcc0YwwvIS+x1ugNeZ1JMl+65QVmOhtNrCF/YhbLB3ZlWT10GShHh8PavEj729v6O76QP6mt/m1Yh34JmrQhPKwxY4R0CLoQD8bLiDFnFhXuvvf6r9Fwj6B21idxGUl5hKGnwXG+TDvZ0S0KvF5O5ZQvN3gKABLSOZe0crZg5yAy0ymPNXgr+yeZaMeP5btl5Nw3lpWEueH5r2t8/vz+z/NgD1tPpOrRx0dUwKacBAKqkrYfgvw3ntwGten0/eMpnM79wZtxWTunJotpta2RgN9p+y1Y92Y2q/pko2571727LwvvYNAAi5e0qAQcvTA1uwdEImzSIDFAFv2RGW70d0I4ygaf1EwBQRqGdQq2h0ahVP19PW+Tu2dHwm47sn81CvZH56tBuzhoh3cHLvFFJcjBdPYDFA7w3KhHqUDXiybTxLw1pEBbL60W684iGe6nAt0Kk3AWnqv/eP923ypyUdAANaRXk9ZzkYjA++ORDhyaqJCDRw5Y2hdE0NxeijZWyXpAaBflr0zd+jv/uO+endLacVjSCNAYPagNluVsZWTnWOUoLpBQS5hOi1Ku1Nu8r8lWUmhzC5d6qXwLqn/f5sX355rDt6jdoNoEo2qiVRwnAzHTUZNFoyvjP3ZTZeAgPiHsigmtFXyxt3tebrBzt7bWPQiSAozF+vaEpFBBhQqyRyy+rILa8jNtiHozeOMGPnDC92VLTRR2EZRBoN6DVqYow+5FfUkTlvK1OXH+XXkwUNGBa+Oo2iBQN4iVrLwGaXlFBeuSOdIF8tc4a1VEDR6EADtRY7+y6W0CExWNG1qW9xwb5UmWws2ecuOZzwzSHavLoTs83JI71TFeCrbXwQE3um0CTCnxeHudv+hvnrFDDXcx6VNWDsDmej5boy21SchziGzCDxtB5Nw5Rx/f697ZjUK4UYF1D3UK8UPhrdjvu7JjU4PrjHcI+mYXx+fwd+fEQEhklhfg3KhjxF++uzDuubDPRmFwmgLdCgpUfTMMZ3T+bQ7P48eavbEWwRFcDs32dz55o7vRI1f8eGt43x6gwJkFctsrKNrbVwc5bMn9lrd7bmj+f7K+uIDMYkhflSUCsyuHICRAZgPRMcf2aNCcPK1rSROdhTy8lXpybKaGB3/hZm7Z6lfC4nk252D0A8+wEenSs9A+HEUF/lvk7uncqC0e2Z2q8pG5/o5WK5iflNBiCqzDaIaUvBkK+oxF9JuKw7nq+MIV3oDrThm9hXtJFB6VEce2mAoq0X7tF8oH1CkFfji9Zy4khbjE0tSt389O5gYVY9PRXPtUwGrtdkeZfITf72sMJCrm+eDSeqTDYO1QM8AObsm6PoL/2t+T2qNaqnzhCemMan93VgzzN9aBVtpNbFlnls2RHWZuUpmwf56rz0sga0EiBifoUJjavbzvID13nnN8EaC/XTNcpWvlZay4Wial79Q+K1qttoFWdUH8Xz3AAAIABJREFUWGcA/dMimeOau0pqLKyf2oNTLw/km/GdlYYFg9PFuxIT5EPrWCPnC6u8kpXymn6lpEYRqpettMaCzeHknXsyuK+LO+NfUGFyBZISC6y3A7DZmoGfTq2Ar55WVtsQAPFkBEmSRHqsUdHA8jyvP0tadUoKZsYAb18tPsQXX93fK+LwBG7Hdk1Ep1Yxe2hLMlxAvszMvVFlVoCRMH9dAy1I2eSgOMCgVcbEK+tO02bO5gbbrj6aq5RWt/EoP/JkWvZPi2BEh3ikiDQCfXRUmqyUOc5gk6qV0lnZGuu8+Om/2ivNc5YfvEa12cZGR2fus8zil9YfC70b4HJxDeMWH/T6rWdzAxAd4WTzTIRAQyCoqMqsNCYAMNnsENaUPtIXfG0fyKITdlq8eZTOpo/pn9Vb6RSYZ/GDfi9guf1TrjgimWiZwe7KSC4GdKKQEOpsKsoJ4AbBSJJrHKvMHHUIX36LqhtXg7vxva0Xjy0/Rp+3d/DK2tPkV9SRV3eBq37PodKIOdZic3DoqpuFnBFnVADcA5dLFSDUM5nWPDKAkmqzV9m3rGkJbjBOBsNI7gnTsmDMSgiKp8yixk5D4OS51Sew2BwcvFzKidwKXvj5JKUEMtv6ILVO1zzf+WF49jqbui/nVz9f7MAz1klcc0byrV3EZ87AWA7kmnnxl1M8tuwIJTVmzOh41DqdF44GMnX5UYVRDN6J3Xd35FKsiSQtvQM/lySAT5AA++74hNOZ8xlneZojUksYPB/r4Hd5uXywVyLtP9n+Wxr2D1pKpBYuCQDiZqZVuYRLTR5A0L9RGiabRq1SnGm1SsLhdP6pI/nSsJYNFqu/YgSpVJJSYwzeAfD/xP6njCBAmbym9hUCeq1ibh5QV1lE8dzePO8MzO+5v3v930enVlhQQINOU/+ktU8I9hLIDfPXMyi9YYcvmblTn/4rl8TIGcg728XicDoZ7sFCkO3h3qk83DtV+f/51wY32Ka+3ai9QVFtEa3CGgqTBvvplMDSkwosSRKh/jqu1Xq/TwatOHeZrRDiUePtGTwE1Qs85XsUEWDgpTUneahnCjN/PE7vZo3rBZwqPsWo9aNYNmQZrcNb89SAfw/ssjlsDFg1gBkdZzCx5y0UVpq4pxFnT7Y/Gwd9Pbpf9W4Wzs7zN5SA4Z82GZj1bB8vj+m86jxlnFVZ3TX0ZrsZlaRCp9b9vYyxhxm06kaZfp5WH5TTR2xgdf5eRpemEeHbeCD67YRMqkxWVNpqjt04SvtGuns1Zp5lsLLptOLaoo0GpcRVJUlEBRrILa8jt6yO2CAfHtv6GDXWGmZnzibIIJzieI9yPLkEKcpo4Ey++z4WV5sbDYaXTshUSqk8AyW5VKbSZGNMZgKjOsWjUkmM6pyAxe7gl2MiyKqz2mmfGMywNjH8KzOBnvO3e+0/PsSXtVl5SjmTbDWugK19YjB9WkQw4L1dbsYDwumWy8GC/XSkuQBITy2X+p3bgus53J4ArBzU+es1vHBbS9rGG7n7030N7kfrOCOt44wkhPgy++eTTOzh/ew9s9ZjMhNICfPj1fVnSAzxbcCgq2+e59dYeYSn9W0RQVSgwYtF5KvTKPNYmL+eaKOB9onBqFSSwuattlQrjJq/Yxq1ihkDmnt1h5StxlpDmE/Da/szcORmplWrvADJO9rGcjK3kpkDW/D1ZdFJRp6LVSqJS/OG8G/miVg8rhM9Vzb+XUKILw/1TCY13J9nVwsGZJi/Hq1awmp34uMKVJ/e+TQA83rMQ5IkZc76O6CX3AAARAfI54em8eSAZgQatIQH6BX2TrCfTmFUyAF/jdnG8ZxyzrpE/NslBCvlD3JpW0iAnRrc/pDnO9nUxSC6v0sikiR5+QSKPlyTtxm9AU48cEJZj+/vkthAAL9FVCAv3NaSuetOK8Hkh1uz8dOplfGbW17n1V3R054a0Jwle6+w/dy/p1Vxs65hf2VqlUSAQdtgPfa0ED+tV8fO/mmRvLr+DPnlJuwuEObgFXfwGWjQEh/iS7ZHYB0b5EOlyUr/d3e6ttHw+l2t0WvUvPvbeS4X15Aea1SSYSCYR5Ik0btZOG/fk0F2UZWXfl+zyAAqTTa+3nuFB7snK2LtAJeLa726sHpaZkqIFzuroNKkBJJLTD3YKyVx4WosrWP9byqEXt8aS5zWZxW0iTOy+pFuVJv/D3vnHRhFmb/xZ7Znk01vEEogIYbeBRGlSFEseJ4FC4p3Kiqe9TzBdra786eenr2LKIKiiBQB6b33HlJJ78lmN9t35/fH7Ds7szvbUgiE9/MPZHd29t2Zd97yvN/v8zow5LX1ovfWPnlVyAtFJrsJFqcF8RppHzClXIZJfZPRt6sas67shbtH9+S9EwEubVsll6HWaOMjgt64eSAeXniQP4YIbgBw89A0VOgt+OvYXtwmIQoZ/4xJQcTNTEEavDDq96nJWbwwpNMooDfb0SSzQRHtO5YgIgQ3Zk7Bn4d1Q6RaAa1KDpPNiT4pUVzKGYAdroEYiETUN3tE03K9RZQabbG7UG2wQKtSYOPpKmw87fEby6k0IDVGg/fW5+LlG/qhynYK6rgmAJfzBtz7iuoxNjMR+TVGWNzPcZMsFoAN76zjPIKqEQc4uP4d4ERJAGjIvAXjbTFQKWTQVBv5qJzjZb7p1ozMhuOOXnjM9jcYekxErEbcP3+zsxA/7D0HJmU1lKiHRpcHgCtjfk0zHh6XgUaTDY9NzHSnXnLM31mECCW32UZqtAaVTRb0SYnCgXMNYATCaWqMBkk6zvCeLGBlJkdhS041DBY7fj0N3DHyGmgAyQ0ghnSPxZGSRmS9uMZnEW2hczIWOiejV6wCm6dxkdWrrcXYlJyIzdUJOGXhxP98Ng32WX/gqRXnsOqLPQC4zQOIYEnu64qj5SJv3JsGd8VNg7ti/DtbcPBcA9ITtMhO1eH34xWwOpxQqyKBoXfjzKFSbHEdxRVOFt8caUbPhBtgZTYhMroMdmcmlPLQvWwvRqgQ1IaQAYVURBBB5XY1b7B6GqjWRtwEGlzNGpOODw5/gDP1LmTHZ/scH8rAjBwTamqYEOFnvM2iW8Lbtw7G9txaPDU5K2gEVLODa3TD9SaSyRjMuy5bJFYEw+6y8yJfW0AGQQqvlC+5e9WNXFWZjMFtI8TpCK1h3o552FuxF3/8+Q90jQq845kUQpGRYRh8ee8IfmctoUcQL7zJTJi79178d/xbuCxeLOBcOyAV17oHIX8aliYawAjZVroNALCldAsGJg0MuayN1kbUmGvwxt43sOvOafj0nuEBjw/0nAojHP42MROf3TNcJC62JSKzaPf28eS6m+wmPjpIGNVgc9qglqshZ+QtFoLC5c1bBuLbwoUos3DXOjPGk84hhAix03+7AwX6AhyZeQRyWcuunVzOTQhTojV8+8CCRVpsBB8R1LdLNHIs3PNltBt5IaibYLJHzCpTYzQ+q6NJOjUsDgs+PPwhHhn8CKJUYmFIp1FAo5Sha0wEL5gSjxySEqdRyqFRykX+WP27RrvTqnyFaH+eSoSMpCjEaZV4dHwG/8wA3ORuXFYSduTVQSmXYWiPWMgY7nhPeZX4+5QsxGg9A22AizL59y0DRe2gcELzV7cHyqs39ZdMGQKAu0f1wO0jugcUbGLSVmNH/WmsfOz9kMTTYFuxVxgrkBiRCKVcCaVchj3PS+wmJWDHcxN97HqMdiNSkCJ5fDBIRJV3PTfapXcf8U4ZawlXZiZi9ROc38UHZ7jVXBKFA3D17njNcVSZqjCpp9hY9GjNUeyv3I8HBj4AQGy47o1MxuCF6/uhyWLH3F+PY3D3WMhkDGK1Ki5dxysd2Oq0cm2UW0QP57eS/oJMPpRymWQfEK9VoaHZBqeL5Y3BS+pNuOkjz4LPgK7cNtyFtc0orjchKyUK4wZ1xY9npSOp/3JlL9w4qCv/LAojMVK8BAGzw8wv0Pirm/de0RMOpwv3jO7JC1JPTc5Cg8mGnXl1OFLSyO9I6A0DYO51fXkhKDFKjVqjFRMuS8IBieNb6gFH8PZ7ERKrVSFCJccVvRMQqZYjLS4CKoUMudUG3gxbiEzG8G0pwC1clTWYUSQwcB/bJ5GPIO0er0VhbTOyU3UobxRH1hBuHe67WEMWBF9deQqp0Ro88sMh/r2//3wUd43yXTRIjFKjW5wWD1zVG93itJiz6BAeWXgQDhfL+6vlsd0Axg5H7FI0O0IbW0gtGBEh8d3bB0Mpl+GavslQyGU+0Y4A0CXa//X35o5Vd6CoqQjH7zvu95iX/pSMG5bdgMy8NzA9U7wDG1nEqzVaoXcLJAPSojEgLRonyprw+vT+uH2kZ3yplMvw+DUeUT09IVJk2kz4vz8PxHNLj8PqjpJO0qkxqW8KNpyuEkWICfu6aI0SVU1WKHQuKOA73yBR8GlxEXjjZs+9WPm3sbj5o52ob7bBaHWAUTSCUerRaOqOaoOFv5cA51343FLPtbr8Xxslr1lutRFHShqxeF8xMpIiYUr4EGccAPB3jEiP573rYrVKqBUyWNy/01/KOxF4SL0nEYxDusViX1E9Ktw7h209W4OUaDV6xkeCWMEzcgu6RnXBqsYrMCMpUZRGqFHKsPrxq/DnT3fB7L5cvZN0ePf2gXh6CbdBw9VZiaKoHkKF3gKtSg6GYbDwgVH4+UAJMpOjsHhficjTLyFShfQELWoMVn5xNyMpCnYni2v+uxXVBitSojU4U9mExfuKfb7nlmFp/MYCxGPRm5ImJ5wuFnIZg1IjF9G6QjYYQiO9n6u6YlW579w6IykSaXFa3oetSNCOZiZHoVtcBFRyGWxOF2IilLwYVWe08XWRlOtgcQOXxgZAGXsKX+b/htuHruf9fDsrNDWsDSGDHGG0jzdECGppapgUgcQco92Ir45/hQfWPcC/JpwghiIEkY4tnF3DTHYT3tjzhkjwaq1ZNMB5Ar18Y7+Q0uCMNmPA7xX6pngze1yGKExdCmFH1RaDeSEkrUXtJyLI6WzdYM8fzTaubvx45scWfd67Pk3ul8Kni3hPEgBAEZmPc4YCfHzk44Dn9ScCtQYSMRYI4T0ONTIuOkLZ5iKQ3qrHz2d/BsuyIrNolVwFq9PKRxWQFDDAU/8BruwquQoKmSKkXcPaghmX9+A7WqfLCYVchi/vHYGlj46RPJ7snlRtqpZ8PxScsEHn3lZY5m4jXCw3eCyoNaLWaENabAR/DYR1QLjqT9oXb3NigEuPWpq7FN+d+g7fnPjG5/1IlQJHXp6C1U9cxRuDe2/jSyBeR9x5Bd4TD4ziJzcTLkvy8dsSEqdVIj5SBYZh8I9rs33Stl66oR+++wuXQtcnRYf9L0wS7cgEAI9N7MOn3kwf0hUf3TUUX983khd4Pr5rGF683ncLYQC4b0w6b+bsDcMwfkWgV27shzkTMrDw9EIcrDoYcgRdtMa/EGR1WjFl6RS8svuVkM4FuP39vAbw3m1DTn0OZq+fDbPDDL1VjxpT4OiM7f+YgFWPi41ISdtKIB5BLYkICkSTzS0EebXFd62+C09tecrn+HtW34P3D73PCwih9GXRGiXm3z8SX7t30CQDaaGfFOARv0hZwvmtchmD7/96OdY8cVXA4+IiVahvtmFvQR1sDm6wb/VK0+0aq8GCv1yOrc+Ox4rHrsTSR8ZALvcYznujUfoKsr2TIjGiZxzSYiN4ERQAchty+ZRSf8+pUi7D7HEZIi+hEenxeHZqNt65jfMhqfBKX3ru2mxM7Z+C0b0TRCvpT7ij24TRvoRRqaNaLfQLN1N4dLz4O0h67+KHRuOr+0ZCKZehX5doHCvV8ylPACfW3Oj2qyQiz/PTsvHu7YOh0yhEEUIqQd/+39sG461bB6F3UpRo4SgYw3vG8d8nFIEIi/YWi77nwat64X93cOnjchlnfq+UM3wkNrknAKCMOYhS1wZ8fuxz0Tm5SBnfay01pr68VzwOvDgJtwzjrotUitf8+0dixsjuAYVYb4qaioIek9fAmXRvKN7Av7Ysdxn0Vk6cSIzioj0azdzYIVarwr9uHoge8VpM7Z8a0CfTn1/gHSN78Mbk5Dveu2MwXr2pP0amx/OCgrAt53c2lkkvGKfFRuDlG/rhc68Fu4ykKFw3MBU1BiuK602IzHgHkemfYvG+EhTVmUQLpT3dadBSu1beeXkP/PjQaPTtEo1jpY18FM8bv3t257M77YiPVOHF6/tiSPdY3HV5D0Qo5fhpfwkGv7pOFF322T3DeA9PwpIDpdhXWM8/KyPSuUigQ8WeedKNg7qK0nO/njUQ//rTAL78zYLd5aI1SvROisLHdw3joxhdrEsUvSYVXbb4wdEAwKeAZiZHYd60vrhlWDdMGyie9yREqXkPzj7JOtH1q3a3+zUGC/63IdfnewBOWH5sQiayUqK4XS5jfCPruF1GK3GqvAl6t0j26IRM0TEfbRKf/8eHRmPV38Zi4zPjEaEUjzFeuqEf3rltMK4bkAqFIHo2Rqvi/092M1t5tBz/WcPtrCq0d5CpqxCh0CJF27IFoYsJKgS1IURgsblsfgUWMgFpsAgigsJIDRNCBjCBxBwiOAlNGoUi1PwT84MOaolQFc5K0085P+GnnJ/wzXHPRKktIoLCIZgQRAbMoWBz2nxS24TXvdpUjXqL765ALeXftwzE7HG9ebNZAvEiaa+0I417C8Xy5vIgR4ohk5pAdZFhGGgFufazx/UGWK4Jaou6wYSyDY+AUO6/sO4Ee04nuVNsdF6TgX0V+zBwwUCUGcvCKp+Ql3e+jNd2v4achhyf7eOtTqukpwmZzK4tWovFZxZDJVNBxsjOW0SQEDIhnNwvxe+Ks0rGDfxLjaWS7xNYlhW1n0Jhy+ww48v7RuDhcRl8ahjLsuiZoOU9ALrGRvBtmXDCT/xvhKHF3mbUAJf6R0RkoThI/GYi3NE+GqUc3eK0WDL7Crxx8wDJ3yJMwxB6RozJTMRvc67EU5Oy8N4dQ0Sr6gBEokyGxO5zQhKi1KLJXUKQ6KJItQI3DOoq8gq6flAXfme+luJiXXj3wLso1HNmzLOu7IVnp3oGyqFGnPpbdQU8/er6c+v9HhMK3tE7L+58EbvKdyGnPgc3LrsRE3+eGPDz3eO1PhNZf75DLfEICgRp1/wtMPm7zuRZEJYz0D2ZcFkyHz020j2hGd1bLDCSspDnxOq0hiVEX9UniTep90e8VoUzlQbc5d4hZmgPX/8q8mwR01udYAIqFM8DsemZ8fjlkTGQCXbfAoAz9WdgdKdERKmDRwUT7z5itNwjXsu3VZnJUXzq6dAesfh85ghR5CDxStrw9Dh+q3DCgwMfRGZcZqsjgoTp9t5eXt4RygDnPXKiTM/7MwGckPLeHQPBsiw/wSc70nn3j8KJepJOjdvdf8e5d4nSBfEBA7j7KtwohUAEcHLub2aNwDezRuCF6/vxqYUAJwatf2oc5t8/El/eOwID0mLwwrS+nMcIw9VX4cLhh3cOxYd3DsX3D/p6EUotGDEM49e0/ZeHr8Dscb0x4bJkvPnnQZ5I1iDtIRFygMDjJ+8F3LyGPLy862W8tPMlANyuf4eKG3C4uBEKGYNIlRyDu8di2z8mBH32iOcc4OuJOICvRw6cadoLnUaJ+8akQy5jsOHpcVj6iNhQniwUMjLpdothGPxlbC/JPjlZp0G1wcqlSMnImM2F3kmR+MuV6Xhten/MnzUSl6Xo0C0uArcME1sp6NzpiaN7J+CylCjsKajndwMVQrI9ZlzeA7/NuRJjMjkzYb3ZDr3ZDuEtu3ZAF9HGEVPdflrLDpdhcw632DXWnQZNfI4Arp4KvW1UKjsu7xWP8ZclYUJ2Ep/+BoBf7BqTmciLciaHSSQcC/uheddlIz5ShdG94zH76t68wESQyxjMHJ0uei0+UoWJ2SkoevN6Xhz3vtfC8gOc8On5PLexzbqnxmHTM+Ml/QUB4OGFhzDtg+0orieet+L2p1xvwb1XePz3RvdO4NPwTV47AGYkReLW4d34Z4mkwgsjgh76/iCu/d82/G3xYdFnSXsjU1chIyYjZO/dixkqBLUhJBUJEDfSQsig73xFBEmVgwyW7+l7D5ysE8drpcNKPzr8EX488yNfvnC8gkinKbwm4UQE6a16VDVXhXy8FMQjxZ9JdSgRIYQxi8fgzyv/LHpNOGC+ZcUtGPfTuBaUUpqUaA3mXddX5FsAcCbHXz6kw1HDby0+967yXRi4YKCkl5XextUX4UQ7FMi9DTapOfXatfzWtfOu64v/zuDSwVojBBFhI9wBcJPVVwjaWLyRN3cFxCvYJBLHHx/cORTfzBohEjqa7c349OinAICj1UdFxy/LXYZjNcdCKisxgDXZTfxzqJarPR5BEivtZDJL/DpsLtt5TQ0TEoroRlKsgglmC04uwNU/XY3KZu6aeKe6ju6dgNQYDQa5DTEHpsWIDI9HpsfzPhrCNiAtNgKPX9MHX88ayb8mFFDIKl2/NLVk1NLj1/RB0ZvX+wgVl/eK92vyGRdg1Vspl+GJSX0Qq1XhMq/Uqyn9UvH742MBBBeCLhRKDaWYf3I+ntn6jOT7bREZE2675Q2ZNAmj6QCP75/JYRJFuYaDt7gUTgROqDhcDr5f8tcW+3udjEnCjRgGOF+hvc9f47NhA3m+LA4L5Iw8rHOGivdOmEO7iz16GGW95BiAjFG873UosCzL/55CfSHvVxPIs5Dw5KQ+yPvXdXyknEoh46MBr+idgK/u749512WJvHgYhsEvD1/Bm6hnJkf59HdzhswBA6YNUsM8UYwkFZSMQ6R8qAd2i0WzzYmyRjOm9EvBuqeuBsuyGPr9UPxn33/w0NW98cDYXpgxkkvPIiJcYpQKBf+5DkN7SnsyJus0uGFQF8y/f6Tk+/7KTbh+YBdcnZWEye5d8VKi1ZiYnYKJ2dIr/OmJkZhwWTKuviwWC04uwKyx3bH2iatEvnhksWByvxQo5DJkpvgKf+GO50ekx/M7zBEMNgOu+ukqPu3dGxfrwtgfx/J/S41lCN4CNHnOq0zc+Pq5qdmQyxisOVEJh3vDAOH3bCze6FeUIn5Z47KSsOKxK7Hv+Wuw7wUuFbe/e5Ie2WUtnt76OI7XeOYZ3eK0GN5TLBoTwZAIQeFkIJDJvdBwnZGbeW+pe69Ix4TsZMRFqrDjuYmY1FdcB4Sb7wQy8ZYaM2sF0d9JOjWWPjIGh16aDEAsZDw5KQtX9E7A4n3F+HxrAe4Y0R1XZCT4CKNJOjWyBBFLzfZmaFUKfHv/5chOjcaYTM9YRkqjMNqMPl48hNnjMnDopclgGAbzpvXF3RKbc4xIj8P0IV0BsFAl/YEGe5HPMXIZw0fYxUQoRebaDAMsme0R+YTeoIBH4L1NIsWTOwE3PnW6nFj26Bh8crfHM3JidjK0KjkvogNAZXMlEmPFddx7TEQWv2IiFKJ7IuVv9ey13JxEpq5GZpxv1GVnhApBbYiwwfU3ICXHCKNHyAp/uB48pMEONLCSKke9pR5yRo77+t8HAKg11/ocw7IsPj/2Of619198+cLp4EgjLoyiCWeyP+3XaZj0y6TgB3qxLHcZhnw3BDanjR/gCb9XKEYFm5zWmeuwp4IzJrM6rfxKNqGtQ/pD5entc/DewfdE9eVozVFcsegKnKw7GfTzJJ1F6lgiHIYb3USuxZfHv8Sm4k0hf44MSlpjJE4mG/48OPzhff/tTjue3PwkZq6Zyb8mrPPBIoK0KoXPIHPGqhk4UMU5OQgFGJZl8fKul3H36rvDKnODtUGUGqZWqOFwOXxEzVh1LIx2o6iONFmbIGfkrZ4otIRQRNcIBTeoFApxUvxR9AcATlgAvHZBFEyqx2UlYefciZjSP1VkLNojQeuJCBIYajMMg6cnZ4kGEcN6xOHuUT1wbf9UfPeXy7Ht2Ql4ZOPDWHh6IYDW+3H420lNyN82/Q3rK8U7qOg0CnSL00Ill6FnspMXxVqLwWYISyAPByKg+BM+hIsjwZg2MFW0Osh/RyuFIIJ320BWgoXtYribKHhPyEi9bUthRHjvhOcVXnN/Qha5dsJyhtrH6TRKH+8cgJuUuFgXrE4r4jRxYZ0zVGZe0RMzR/fEmdevxZ551/CedABw++WJiMp8C//e+2/fsrn7i3D7DYC7tqQ9LzGU4M7Lu2P7PybwuzEFgmEYH8GMfM4BE25YMQFW3RofQXlEerxoEuNd/+QyeZu07wzDYMvfx+OXh8fgugGpGNI9lo92dEmMUYVpLP26RnPGze7nZ/GZxYhSK/DiDf34dGnhjqdv738boxaNklwklMsYfHTXMJ80Vn8I699n9wzDR3dxu5D1dU+qpw/x3VBDiu9PfY93DryDZbnLoJDL4ILnOv/40Gi8P2MIL5AFisRtDcVNxdBb9dhaslXyfe/xmXDBt8HSgAf+eAAVxgqf9wDPeF8h4+5DjwQtVj42FlL8nPMzntz8JFYVrJJ8/6o+SUjWqfH4NX2glMuQHK3BvpoN0Fv1iFIr0DsxEspIbtxM2neb0waWZWFxWPDlsS/5ekzSxOQKTqANJ1NCuCMtgZE3+xV1eiVG4uYhXdErMRLHXpki2unxjpFiPymNIO1Iyv+VpE9P7Z+C3XMnYnjPOD4KR/gMZyZHoZc7RfzqrCT886YsmB1mn80nEqPUGCpoR7zr2LNTLsPr7ghjYQtBniGDzcD/7gDBs35RymV4f8ZQMPJmqBM345ntj0oe9/vjY/HJ3cOQnhiJtSe58cffp2Rh49Pcgjj5Xd6RsaQJye4SjWenXoY7vDxOGZmZ/x3d47WYNrALv7Pf6N4JOPTSZPw250r++Mm/TMYG4xP4ZtYI5LxxLTY8Pc4nrZdsMBEboZKsK4SJ2clcRKLMBJnCiIwYKgRRwiSUwRZ5qIUDdzKxC+RZ4w3LsvwkL5BAIzW4brA2IEYdg8SIRDBgUGP2TQ0rMZTw/yfnD6dhJtdu9eRcAAAgAElEQVRC2IhJdfZLcpbgpzM/+bxOBhLhimPvHHgHTtaJMmMZ3yE7XA7+PMLVv2Ad9sMbHsaD6x6UPO7nsz9j/on5Pq+39WpnIISTlXnb58FoN+JApZR9pDRSEzKyshTuhEr4u5/Y/ETInyODlJamRwKe6yC8Hs32ZuTU54T0OQJZIRNGewjL1ZLIPWEOf72lHia7CbXm2pDTEo9UH8HD6x/m24Y6cx3MTjOf5qWRc4PfBksDP7ADgHhNPBwuh2iywIKFXCZvE6+uUCECX6AVSwKpQ0Tg8QcRwEkbG8j8nqxYqhQyfHbPMPzq5U8UyqD9X38aiM9mDkesVoUeCVocrfFEdoUyiTxddxpzNs6RFA7IamIgP4wtJVuwKOc7/u/PZw5HXKQKMRFKrH7iKnxaeC8m/8KtQLpYV0hiMOHm327GU5s9vjFX/3Q1rvk5sLlyS6k1+S44COtiOELQJ3cPxys39fO5f/XWtknPFd5Xi8PCT66F7WK9ObzvIn1hQWMB3tjzBv8dLRVGVuav9NkBk7QrsepYUXtV0ezZrtyfhyFpi4VRvP7S2QIh7LMNNgNf73khqI399IZ0j8XrNw+ARsltXS9MW/jreG5CtbZwrc/nyFgglDagQF8gEliE7XexoRgMw0iavIfKI26/n9R47tr8mvtr0M9IRajKGFmbCP3piZGIi1QhLlKF3+ZcicHudA6ptFJv4Rzw9KVSkIggnUbBC+qBjg+VBEEbOrZPEt9PPHh1byx6cBTuG5Me0nnIM07usVDA7hanFQlKwmeFUGzwNcwNF3I9jtVKRwx7Xy8SyQ0AK/JXYG/lXn7Bj7SrJCWTfFbBeMYL3eO1WP/U1aIJNuCJzvW30BAfqcK+FyZheM84FOgLUKAvwLzt8/DijhcBcEbBShVXp2vNtbA5bRi+cDg+OPwBvj/1PT44/AFf10l0S7yOq7/enmqBuG5AFyx+cDTOvH4t/xojb5Y0Fue+i8H/ZgzF5r+P9/Gc69c1Ggdf5Bah+3aJxolXpvDvSS2ak+iUJJ3aR+AFAKU7nVIpl2GwWzR96KreeHjjQxi1aBS/axoAMAo9/n3sfuQ0eMau3m2wQi7DIHe0lTB6i7RnTbYmMAyDj+8ahg1PtzxLgVFy9cbfXLZPig7TBnbhn7v0BC0eGZ+J3u724MeHRuPju4b5iHHEKDtJp8acCZn4v1sHib9XzvVbwnb51ZsG4NgrU/iUeynfwYnZKVAr5KK0OgIR82IilJKeV9dkJ+PYK1PwzayR0CjlePZ6LmWvu67tNuK5kKFCUBvSbG/mt3H0N9gig74yY5mPx4+DdYQcNWNz2fiom1A8goQ0WBoQr4mHQqZAnCZO0iPoVJ1nm2LhymWogwyinAsn1VK/7fU9r+ONvW+IhCep84RLmbFMtNpPOnXRa0Emp2fqOQOxw9WeHFK70w6ny4nXdr+GpblLfT7TGqPbcCGDe7vLzq/+BPN7EuI9mLA4LLA4LWDAoNHaGNaAsqUCGKmfUh1sqPBCkOB+Pr3lady68tbQ0ibd8xbhZIkgnEyFGwHgTY2pBg+ufxATlkyQ/C4p5m6fi53lO5HXyBk+1lvqYXVYoVZwA3K1XM2/nqr1mPyRSZe3UHG+I4JIZx5sssWyLH//hOJZjanGpy0l7ebawrWY9PMkUQRRoPt97YAuGNYjThR91trVW++yFTQW+EQ0/XPXP7GtdJsoNJ7AMAwW/nUUn+bljXA1953bBuOLmcMxVWBiLxz0uFgXFp5aiBmrZuBQla9hqjcu1oV8fb7IRNThcrSbmC214CD8fXqLdDq1P7449gXGLB4jOkegjRpCgQhTwgUD0g8A4jYilDaLZVn+nGRAP3f7XPyU8xM/uWqpMPL8jufx8IaHRa+RZyhFmwKzw8w/K8I6KRwTCEUbMuAXTjxaIgQJ28kmWxMvWMSrubFRe0fSkvQdwPO7pcYe3hFBZocZ7x9630ekL2gswPTfpuPLY1/CZDeBZVm+3egW1Q2lhtJWG/D36xqNQy9NxoCeobfNUosn7eUBd2VmAp6aFof0jP0+i3PC9PUriedJgLR+EhEk3IGwzBCef57eqsf/7fs/0bNDoi9SozWIEvgK6TRKjMlI5O8dodZcCxfrQmVzpahPINePtIOkfZGaEHuLFTqlDgWNBWH9FinI2Cy3IVf0G78/9T3ePfguqpvF40xhu+d9/0n5iVhExqjez0SfFB2GeEW0kZTKYGOfc03nMP236XhpB+c7RPrwRydkwMEY+O/dXrqd/x2kLSVtzJDusUiN1qBfGicshBOpJ5cxuCIjAXKZ5/n5YlZfUSRwOCREqfH+jCH4YuZwmJ2e6y+VGpYWF3iXtz3zPOlytw3vjg1Pj8OVmQn8vOKpKb1482Z55FmUNZ/DK7te4T8vdR2iJSKdSLtFjr9+UBdelGkJMmVofSkRWf5xbbaoLUiIUuP6QV18jp/Sjxu/DPUTPcnIueeuye5ph+UyRnKTCGHwBKmjeyv24veC30XHkc1miG726k39Re/HRChF5++Txj0babrQoggvdqgQ1IY025vRLYpToKU6DRfrgtlhRpw6DmaHmRc5vKMONhdvxncnv/P5POGH0z9gwpIJ/N+hCEEu1sV3gg2WBn6imBSRJDmgFa56Czvp03Wcg/7+yv2Y+stUv4NhErpKvE0A345H2MGtyF/B/184OQuWJuKPMkOZaDBPJtKhRgQJBwz7Kvbx/682V/tdpQHaXwgSDljIRKKkqYTvsIMZ7QIe43CfVSX3gCE9Jh1O1hnSJJk0xN51MNQJNqmf1aZqzN0+F+eazonef27bc5izcU7Ac5DJj3AAv6t8FwDgbMNZ/59zH29ycANEKXFGFBkQZtSSt/dEraWW9wQSegOFE6FTZ67jtmR2RwIRc+8GS4Noi0siSHtPas63R5BUtJYUJodn2/tCfSH//E38eSJu+u0m0bFWF9fhrzu3DlWmKmwp2SI6TyCW5S7D+CXj+b/DFYK8J0Hek+rpy6dj6tKpomOEKSRSjO2T6NdAW+iXdP3gBJ+dDL0N68ng0rvem+wmfHrkUxhtRiw+sxg3LrtRdG6HyyGaTLRHehgRgoT1XZjiEE5EEAAsOr0IAHC63rOrCzlfSybmLtbF90nC30+eVQYMchs8O5cIFyma7c34+MjHIuHEYDPgSM0Rvl6T9tV7YN8S4U04IRGlf7qfs5TIFDhZJ3+thddIODYRfjcpn7BfbokQJLx2BpuBbzdJm9TeUbNklVynUfB1XEoI4lOK3e308rzl+Or4Vz6RvuTaLctbhlGLRuGnnJ/46zwgcQDsLntI/W4w4iNVqAhjkwapybmMkYUVRX2g8kBIaeAMw8Cg2oSPjryHHWU7fN7f+Mw4rH78Kn4iKBxb+NsGXCQEhbmRwjcnvsHC0wuxLG+Z6PV9L1yDDc/4RkFUNVdh1KJRWJKzBABX1ycsmYB/7vonJv8yGa/veZ0/lozhyPiKRAhJ+W16RwRlxWehQF8QdiS7VHkBru8QLsq+tf8tzD8xn486GpU6iiubICKILAqSOkreI+Mk8vukRA0hS3KW4PtT33PnDLJwRZ4RMjYmi9T5jfl8G1RjrsGaojUAgGRtMr8hCSlvQpQae56/Bkql27urBSmbwj6kpV5uhOlD0tA9Xiu678Ln/FzTOYxcOBLdUqsxa0w6HnebwHuTEKVGso4bp8lkDDKTo0RRz7XWMn7XTZmKK7Mwqpe0x3qrnveMIulNwoinUBfdQuWRazxm6naXHafrTkt6Vs27ri8+nzkc0wZ2Acuy2FW+K2BAwy3D0nDkn+Px5zXj8cPpH0TvdY+P8KSGWYP/DuH8kNSjB9Y9gLnb54qsPEi7RPzkvKMDvU3RSXuUFkWFIEqYmBwmpEamggEjmVpDHuiseC7fmjQGwhBfi8OCxzc/jrcPvO1XZHlz35t+vQC8IYN7B+sQ+RPFqTkhKFGbKLlSu7dyL/9/4Qr9oxsfhcPlwDsH3kF5cznv1+ENGVwIhRHvCS/ZLhoQiy3ChzscIYhlWV6YKDWWwmg38oNPMkESXrdAEw/hQGbBqQX8/6tN1T5qs7/PhbtDSigIz08653x9PgBO1AtlQEXO4b1qRwYM6dHpAIKnhxU3FWPsj2Ox6PQinzq4tVQ6t90bYSf7e8HvIi8Hs8OM1YWrsa10W8CVfm+xQTgII8Kl5OfcAyMn60SzvVlsEu1+VvdV7uN3IwtmFu0NGejc3fdupEenizr/Dec8URiBori800XrLfWwOC18JJBKzg0ISNtDIPXee6VVJpOFXSc3ntvo448VKoEGJ58e+RSz1s6C3Wnn60Hf+L4w2o2oMdfwdbnB2iCanHpfL2HEXrBJ5nsH3xOJUuEOmrwjFIVtiFDoEZaXRJXlNuYivzFf0iB8Sc4SPLftOVEbeaL2BPZWeNphqVXz4iZPGkKhvpB/hr2FoAWnFuCTo5/g25Pf4t97/42ipiIsPbtUdJ63D7zN/12kL/L5rtZC7lu9pR4sy6LOXIdbVtzCv//h4Q/xj63/CLt+nqz1DJp5H4oAO3f6o9ne7DGLFkxC9lftR5fILsiKyxIJQcL++btT3+Gzo59hwUlPX/HUlqdw75p7+b+XnF2ClfkrfQbJ4exeScht9JRDmLZBJj9ky1sijB6tOYoEDTfZELaloomTlEdQC6KVhFG3RruRL0N7pYZJceyVKdg1dyLfhrhYl4/gQX4nuddkschbsCURYeRc3578lm83Jvbgdo+TEkdaAvkOsjgRCKlU5XAigkoMJbj/j/sxZ0PghRYCSTv/7OhnPmXLSIoSGesLxynC+gAATvdkTKXwnOP3wt/Dirgl18m7X0rWiaOBCNvKuAnstye/BeBZKPotj9t0QygokQklGV/xEUES4yFvoTQ7PhtNtiZRX+9vAh2IKlMVdCrOe4aIK8LvX1u4FnJGjv+O/6+ojIBHrCD/kme80doIlmVF0cX+6hjLsiJxbEX+Cnx1/Cu/5fUeZ5HrQvpmjVyDcmM5f91LDCU4Un0EANcuChcAyWebbc1wupxosjWh0dIYkrjmvbBQZizDE5ueQF5DXtDP+oO0zzJGhj3le/hyLM9bDovTgsU53+OVm/rzYk8orC/27GpJ5kHPXZsNnc5XnCPt09ztczFn4xycqjuFaI0SJ1+dyu9AKDxOOKZxuByYt31eSKmm3rByT307WXsSt6+6HXM2zvERRLvHa/ko5a2lWzF7/Wx8fPhjv+dlGAZHaw/A7DDjzX1vAgA2PD0Oix4YhRVzxqJnEidLhNIvCuc75c3loufxy2Nf8v8n6cI9JdJ3n516GZ6c1If/zhd2vIB1ResQrYrmn8HODtNa5bqVdOiXtxW3rbwNZocZpYZS3Jx5MzYWb4TT5UR8hNjkzuFyoMxYhnv73YvvTn2HpIgkaJVaVJuq+UFramQqP7BLjkhGhNJ3pdg7akKr0CJJmyRZthpTDT8QS4tKg0KmQKmhFLdm3YoXR7+Il3a+hFX5q3xC4M41ncN1va7DmkJOwR+aPBQjUkbgy+NfomtkV9SYa2B32RGljEJCRILP95YZynx26ohURiIxwqMym+wm1JhrMKnHJGwq2cTnY5odZl5AitfEh/wwulgXP4iLVEbCxbrQJ64PjDYjqkxVSIxIhNluRrWZO3eEIgLJ2mTJcxHTVO9Be1JEEhqsDeif0F8UNUUg5WVZFuXN5YhSRiFG3XZbvVudVr5+xKhjEKuOhcFmQIOlAX/q8ycsz1uObjo/bvxuSP3RyDVIifSYG1scFlSZqnD/gPsx/8R8pEam8oKDFE3WJslVl7SoNDRZm3zqvxQVxgqMTB2JneWc14VCpuBVeJvTxg/GUrQpfPSLN6WGUjhZJ+SMHN103UT1IFoVzU9AvPF+NpqsTfyglTwr1aZq9I3vi1JDKUwOk2Rd9wepxz9M+wHfnPgGm4o38RNNoZdDoOvs/axr5BowDIO0qDQsm74MG89txJNbngQA3JV9Fxad4aIkHhn8CD49+ilUMpVoe+S+8X1R1FTkt95743Q5+QFlz2hfc95gkPKr5WqRUCV8j4jnFc0V/G9IjUyFy+Xin9UukV140cv7mgghz0Sg8qRoU/D4sMex4OQClBhKQr4WgLhOAuDrHOBpz7zLW9xUDBYstAotX9966HqI8vvJbyKfY1nWx2siWZvMG2oThO1ZgiYBeqseDtbh07aR80coIvi+RilT8u1bjDpGNMAjfVNbIuznuuu6w+wwSy52CK9dIMhvEvZBUv1dqJD+GfD0DeQ+PDToIRyrOcZvHgAAceo4RKujRb9NeN0D1VNvwn22jDYjL0oK28bK5kq4WBf+NvRvePfgu/w1KDOWYVqvaVhVsAo6lY5/RoT1WafUIT4iXtSuJ0YkIlIZGVbZhH2UTqmDTCaD3qrHi6NexBt732hV3XKxLtSZ65AQkQAZE3wds9Zci2Z7MxSMAjHqGH5nQoCbjLpYFxSMAmm6NFQ1V8HitEAlU6FLlCelQVinAO6Zj9PEodZci9V/Wo3HNj2GalN1WH2DP4Tf5d1GeCO8zgBw/L7j+PTop/jkyCdBPwuI61Ao9e9c0zlkxGQgX5+PblHdIJf5em0Q6s31Pn0p/70WB2oMVugiZGh2eRYKwxnrVRgrYHPZfMYwwcpD2usGS4PPRJNcAzJ2VcqU6BrVFWXGMjhcDsgYmY9niMFmEIkPP0z7AQ+sewAauYZvG0g7EMo9IVSbqpEdn41acy0aLA1IiEjwud/J2mRsuHUDhn0/DJGqSP6ZJteG1GvyN8DdizJjGTJjM5HXmOe3TMJ+X+oaeeP9jJBj6y31UMqU6BvfF3sr9sLBOjCx+0RsKuE2FNEpdTDYDaJrW24s5/sltVzNC4ShtEVkLAhwYz+GYaC36gOO9YNBxsXX974evxf8ju667pAxMv43S41tglFtqkZmbCZO1J5ArDqWrysVxgoMTxmO3RW7+WPJvInUI2G/I4S8T+otIG4jwu1jas21UMvVcLJOuFgXLzBJjUMI9ZZ6GGwGvu75Q2/V8wKld7m8x/OBEPaxiRGJUMqUqGiuQEZMBoqaijyfZwGLwwmNQs47bJ+ra4bLBaQnavlnQNgm9o3viyU3Lgn4/RcZfhsfKgS1AS/tfAlWpxUMGNyZfSdO158WrVILUcqUmDNkDhadXsQP4AGu0hXoC2B1WqFT6hCtjvYb3aGWq5EWlYZyYzl6xfQShX1LkR2fjUJ9Id+gyhgZZvadif6JnJix6PQin60aVTIV5gyZg+9OfYc6Sx2mpk/F+G7j8d7B91BtroackSMjNsNv6g0DBv0T+uNk3UloFBr00PUQGaARUiNTcWufW/H5sc9FokusOhbRquiwjfdUMhV6x/bmV/Em9ZgEGSPDunPr+GNiVDG4p989mH9ifsBUkht634B6Sz03UGY5tbjOUgcFo8BDgx7CxuKNGJ4yHNvLtsNoM0Kn0onKG62KhtlhbtXW6FJEKaOQrE0WRVRlxWVhbNpYfHvy26AeMHJGjuz4bElT2UhlJOYMmeOT5uCPQYmDcLbhLBwuBwYmDUS8Jh4auQa/F/qPmvLm5sybUWeuQ7WpGnmNeaIVzQRNAhQyRUAzSQYMBiQOwInaE3w9VsvV6KHrIVo5l0L43AHcdSwxlPATVgYMbsu6DXmNeThUHdx3xZtYdSyeHfksDlUdwtLcpYhURiI5IhmFTYXIiMlApaky4HVWypTIiM1AfmM+suKy+Hs2Nm0sbsq4CQ2WBvzv0P9gdVpxT997cLj6MPIb8/HY0Mfw6ZFPYbAbMCRpCGLVsUiMSES1uTrs1UmdUgcH2zLvGAWjwGXxl0nWtTh1HGLUMXzEoVahxZwhc/D5sc/5QXqXyC6wOq2iwbZSpkRWXBbO1J9Bn7g+OFN/BjGqGMRHxAeNXFLJVHhi2BNI0iZhVcGqsK8FKWdGbAbkjBzHao+JnrcukV1gcVhEAqmCUaBPXB+crj/Nm3x7pxnGqmOhU+lE0QhKGZeznhqZCoPN4DeCMUGTALVcjfLmcsgZObLisnz6hFh1LAYmDsSOsh1QyVVIi0pDgb4A3aK6odnejAZrA5IikqCWq2Fz2kR9U1vSL74fchtz+TYxOz4beqseGoUGeqseWoU25DQbpUyJXjG9fPog7/4uHFQyFTJjM3Gq3pOOkapNxWNDH8Oeij1YVbAKMaoYxGniRJGyDBh+ckXaICIoVDZXok9sH7hYF/8+OfbO7DuxpnCNZFRuMIT3jqBgFJieOR09o3vio8Mf8RNAGSPDff3uw67yXT79sFahRTddN9F17K7rDpPd1GKPPu9zjk0bi2m9puHt/W+3OmUjWhUdVhTV+G7joZar8cc5cfSyjJGhf0J/vt9gwCA7Phs5DTk+fWh2fDbyGvLQO7Y3ChoL4GAdSIxIxN9H/B3bSrdhdeHqVv0m7+/Kb8wPadygVWgxNm0sesf2Ru+Y3shtyMU3J74JOSooPTod5cZy0WKBP1QyFWYPno2FpxaGdA+9+1KCywXkVDWhT7IOkSoNsuOzkduQy0VQh1hucq/O1J8JeZvxrLgs/t4BXJ3UyDWoaK5AbkMufw2EY1dy7oGJA3Gy7qTk2KpLZBf+9aeHP41tpdtE4x+tQgs5I/eJjArGtenXwua08aIJwPWZN2bciB/P/IhhKcNwS59b8M2Jb0Q+ZgDQP6E/Ttef5ss1IGEATtefhpN1omd0T9zQ+wZ8ceyLgHUsUhmJrpFdoVVq0WhtFE3epSDPSGZcpqj+juk6BkkRSVievxw6pQ4PDnoQnx79FH3j+2Jg0kCszF+JZnuzqL0m5Y3TxCFeEw+b04ZiQ3FI/oZZcVmQM3Kcrj8NBgz6xPVBfmN+q1Lio5RReGTwI/joyEei+pwVl4W8xrywfRdljAz39L0Heyv2itpjBgxuzboV+Y35OFV3Cukx6fy9VcqU6Kbr5neMI2fk6JfQD8drxV6E3XXd0WRtEqUPhspVaVchShmFNUVroFPqoFPp+Eh3f2TEZKCwqTDoNcmIyUCJocSn7ZEaz/tDxsgwqcckHK89zi9oxKpjMav/LHxy5JOA7Vqz1Yn6Zhu6x4tFrYyYDBQbijGu2zhMSZ/i59MXJVQIolAoFAqFQqFQKBQKhUK5RPArBFGPIAqFQqFQKBQKhUKhUCiUS4TQE+jbh9ASZi8CGIZ5iGXZLzq6HBQP9J5cmND7cuFB78mFCb0vFx70nlyY0Pty4UHvyYUJvS8XJvS+UDoCmhpGoVAoFAqFQqFQKBQKhdK5oKlhFAqFQqFQKBQKhUKhUCiXOlQIonRq6sx1eHXbJ9h02v+uUxQKhUKhUCgUCoVCoVwqUCGI0qmZt30efin8FA/8uLyji0KhUCgUCoVCoVAoFEqHQ4UgSqemydbE/YdxdWxBKBQKhUKhUCgUCoVCuQCgQhClU8Pw/ljUl5xCoVAoFAqFQqFQKBQqBFE6NQzjMUp3uqgYRKFQKBQKhUKhUCiUSxsqBFEuGZrM9o4uAoVCoVAoFAqFQqFQKB0KFYIonRo+NYxhoadCEIVCoVAoFAqFQqFQLnGoEETp1LACb6AmCxWCKBQKhUKhUCgUCoVyaUOFIErnhvV4BNGIIAqFEg4fH/kYJ+tOdnQxKBQKhUKhUCiUNoUKQZROjdAfmgpBFAolVFiWxWdHP8OMVTM6uigUCoVCoVAoFEqbQoUgSqfGxXJKEAPqEUShUELHxbo6uggUCoVCoVAoFEq7QIUgSqfGExHEolJv6ciiUCiUiwgqBFEoFAqFQqFQOitUCKJ0algiBDEuHCvVd2hZKBTKxYODdXR0ESgUCoVCoVAolHaBCkGUTg1JDUuKVuJoaSNYlg3yCQqFQqERQRQKhUKhUCiUzgsVgiidGpd7LpedqkOjyY5ymh5GoVBCwMk6O7oIFAqFQqFQKBRKu0CFIEqnhngEpcQoAQA1BmsHloZCoVwsuFw0IohCoVAoFAqF0jmhQhClU0NSw+K1CgBAQ7OtI4tDoVAuEoQRQeWN5g4sCYVCoVAoFAqF0rZQIYjSqSERQbGRnBBUT4UgCoUSAkKPoF35dR1YEgqFQqG0N7vKd+GH0z90dDEoFArlvKHo6AJQKO0J8YaO1sgBUCGIQqGEhjAiyOagaWIUCoXSmZm9fjYA4O6+d3dwSSgUCuX8QCOCKJ0cBgAQoWKglDOoN1EhiEKhBEcYEVShp6lhFAqFcingctHdZSkUyqUBFYIonRp+t3jGhTitinoEUSiUkBBGBJVRjyAKhUK5JFiwu6iji0ChUCjnBSoEUTo1rFsJYhgW8ZEq1FEhiEKhhIAwIoiaRVMoFMqlwdkqY0cXgUKhUM4LVAiidGpY/l8X4iNpRBCFQgkNh9MTEXS2ykh9gigUCuUSwGh1dHQRKBQK5bxAhSBKp4akhrlYF+IiVdQjiEKhhITVaef/X99sw5oTFR1YGgqFQqGcDwwWe/CDKBQKpRMQVAhiGMbJMMwRhmFOMAyzkmGYWMF7/RmG2cQwzFmGYXIZhnmJYRjG/d4shmE+kjjf3QzDHGMY5tiYMWNw9OhR/r21a9fisssuQ2ZmJt58803+9fr6ekyePBl9+vTB5MmT0dDQ0NrfTblEYFnOLNrhciAhUkV3DaNQKCFhE0QERarkOFLS2IGloVAoFMr5wGihEUEUCuXSIJSIIDPLskNYlh0AoB7AHABgGCYCwAoAb7IsmwVgMIAxAB4Ncr5CAONYlh300ksv4aGHHgIAOJ1OzJkzB2vWrMGpU6ewePFinDp1CgDw5ptv4pprrkFubi6uueYakUhE6RhY9uLYVcHlLqeL5cyi9WY7HE6a4kGhUAJjtXsmAzERShjo5IBCoVA6PTQ1jEKhXCqEmxq2G0Ca+/93AdjJsuw6AGBZ1gTgMQBzA52AZdldLMs2AMDo0aNRWloKANi3bx8yMzPRu3dvqFQqzKBG+gYAACAASURBVJgxA8uXLwcALF++HPfddx8A4L777sNvv/0WZrEpbckjCw9iwjtbOroYIUHkKifrRHykCiwLNJpp2C+FQgmMzemZDERHKNFE2w0KhULp9DTR1DAKhXKJELIQxDCMHMA14KKAAKA/gIPCY1iWzQcQxTBMdCjn/Prrr3HdddcBAMrKytC9e3f+vW7duqGsrAwAUFVVhS5dugAAunTpgurq6lCLTWkH1pyoRFGd6aLIoxZ6BMVHqgCAGkZTKJSgWBweIUinUdCIIAqFQrkEMFjoGJFCoVwaKEI4JoJhmCMA0sEJP+vdrzPwBFx4EzRviGGYCdnZ2dixYwf3AYlUI7fdEOUCZXd+Hab0T+3oYgSEVCuny8kLQdQniEKhBEMUEaRRorLJ0oGloVAoFMr5oNlqA8uydA5CoVA6PSF7BAHoCUAFt0cQgJMARggPZBimNwAjy7KGQCdkGGYQgK+WL1+OhIQEAFwEUElJCX9MaWkpunbtCgBISUlBRQW3Y0tFRQWSk5NDKDalvegeHwEAOFHe1MElCY53ahjgKwTVGa04WxWwylIolEsMoVk0jQiiUCiUSwMXXDDZnMEPpFAolIuckFPDWJbVA3gcwN8ZhlEC+AHAWIZhJgG8efQHAN4KdB6GYXoA+BXAzKysLP71kSNHIjc3F4WFhbDZbPjxxx9x0003AQBuuukmLFiwAACwYMECTJ8+PYyfSGlr7A5OXqm+CFbIXRKpYd5byF//wQ5MeW/b+S4ahUK5gLGLUsOUF0UqLIVCoVBaCcNSw2gKhXJJEJZZNMuyhwEcBTCDZVkzgOkAXmQYJgfAcQD7AfhsGe/FywASAHwyZMgQjBjBBRUpFAp89NFHmDp1Kvr27Yvbb78d/fv3BwDMnTsX69evR58+fbB+/XrMnRvQj5rSzjTbuA7yokiVIKlhrBNxWhUYBqhqsooOIb/D6bo4dkKjUCjtj1UQERQdoUCTxXHR7JZIoVAolJbipBGgFArlkiCoRxDLslFef98o+P9xAOP9fO5bAN9KvP4AgAfIn8L3pk2bhmnTpvmcKyEhARs3bgxWVMp5gGVZPmS2Un/hC0EulgUYTghSKWTIStbhSEmj5LENJhsSo9TnuYQUCuVCxO4URwQ5XSzMdie0qlCs9SgUCoVyMcIwLN05jEKhXBKEu3085RLH6nDxkTPVBmuQozseF+sCwJlFA8Dw9DgcPteAfYX1El5B1ESaEhp7Cupw6iLwyKK0HG+PIABoMtNVYgqFQuncuFDReOEvdFIoFEproUIQJSxINFBilAr1zTZYHRe2oR7rDjojgtCInnEwWB24/fPdmP39AdGxdc2BhS2bw4XC2ub2KagXK46Wo9Z4foS2knoTzNQYMSS+312EP05WYsYXezDtg+2i91wuFg10R7pOg/euYQCoTxCFQqF0dhgXiutNHV0KCoVCaXeoEEQJi2a3gV6vxEgAQHXThR0V5GKd7n85IWhgWgz/XlGduKMPFhH08vITmPDOFuhN7TsZbGi24fHFh3H3l3vb9XsALtXvhg934KvtBe3+XZ2Bl5afxOzvD0q+9+P+Egx9fT1y6Q50nQJhRFDXWA0AYHdBHfUJolAolE5MnFZOhSAKhXJJQIWg88SJMj1eX3Xqop9EkIigHvGcEHS+olZaCgtOAHKwYgELALrFRQAAIpRyANw28oHYnlsLANCb21cIIil3OedBULA6XNCb7Th3ngY9erMdr6482e7XsCM4XNwAAHjypyO4f/4+LDtcelHsrEeRRugRNKxHHLJTdXh5+Ul8sDGvA0tFoVAolPaka5waxfXnJ/qbQqFQOhIqBJ0n1pyowNc7CtF0ke9EQHYM6xGvBQAfn51wsdiduPZ/27Arv7bVZZPCxYpTwxRyT5WP13LbyauV3Gt1QX6LzP3R9jYRrDZ4xIMlB0ra9bvIzhjnw+9pxdFyDH51HebvLMLmM9Xt/n1tjSvIrnIO9/sny5uwOacGT/10FLMXSkcPUdqO46V6DH1tnei5aQscLk9EEMMweOe2wdz3lYnN5i92cZ9CoVAudYTteJcYFQ4UNeCWT3ZeFJuiUCgUSkuhQlA7sCu/1sdLhqQdtXdaUXtjsnKTo+7xXDRNMPEkGLlVRpypNOCfy0+2umxSkIggp2BS9/rNAwB4opssdu7fYL9F4VaCGtv5HtYIRJnPt+a363cZ3al+NedDCDpSxv/f5nC1+/e1NQZrYBG3rNGMwd1iMKlvCv9ayQUUXq4327G3oK6ji9HmfLOzEA0me5uLi8KIIAAYkBaDyf1SRCkDedUG9Jq3GptzLj5h81KFCncUCsUbh2ChJ1GnhNXhwqHiRizaV9yBpaJQKJT2hQpB7cBdX+7FhHe2iF4jKVSN5vY1k2VZFt/uLGy3lBTviKDW7rRV5S6njGFaVzA/sO5IIBIRBAAzR/fEhMuSYLQ64HSxsNi59yoazSiu8z9xl7mL2N73kIgytwxLQ20772RmtLSvEMSyLC+KatwpeABQb7q4TJWv/d82PLPkSMBjyhvN6JUYiU/vGca/diFtNf6Xb/fjji/28MJnZyFCxdUrUxiG53sL6mB3BhYjbS7f8/WM16K43sSLCYfOcdFBvx0u8zmWcmHSa95qPL74cEcXg0KhXEAI+4NYraffjhCMWygUCqWzQYWgNka4i5Zwe2kyoQ81msR71dJodYQURVGht+CVlafwoB9D29by3e4iAEBilBoapQz1QXbaCkZpAye8MAz3m022tk2d4yOCWPGkLkqjhNHqgFkwKd6cU4Or396MxYIVoHfXn8WivdzfcrcS1N7+NjUGKyKUcqQnREJvtrdr9IzByv2W+mYrnEFSn7xxuVh8t7soYErO7oI6THhnC06W62GyOTEgLRpqheyi213rTKUBG05zUR+PjM/gXyfP+4kyPUobzOgaGwGlPLRmdcOpqvNqLH3wHOdhZAwS2XS+MVjsrYqcUrmvt7corTfZMWfRIR/vrxNletzxxR68tfZMwPM6nBJCUIIWFrsL5XoLvtpewLdXwUQlyoUB6VdXHC3v4JJQKJQLCYvd0y/Gaj3ij0pBp0kUCqXzQlu4Nka4i1Z+jZH/P9mavDEEEUFvsmPQK+t4AQIA/vTxTvx3XU7Qz1rdokGB4LvbimqDBTvzuNSS1BgNEiLVLY4IajTZ0GSxo7TBDIAr99JDZej38h84V9d2Jn1+hSC1HEarQ1J42ppTw///g425eH7ZcQCeqKXjpXr8e/VpSeFkS041L5a1lBqjFUk6NRKj1ACCb2sfDu+uP4t/Lj/B/91sJbuqBTfL9mZrbg1eXn4S760/6/eY3CquHp4o08Nkc0CrUiA+UtVqb6nzxV+/3Y/3N+SKXhubmYhXbuwHgLt+edVG3PLpLgBAvxQN4LDxEXOVTRawLIs1xyvwwUbxeR747gAmv7fN5zvrm224+q3NOFri8aLZnlvTZgJO8wUmBN322W5c9dbmgMfc/dUezFl0SPI9IswSUZnw7a4i/H6sAgt2nxO9Tq4jEcb8YZcQgrq77+t768/ijd9P4/XfTwMALHYXDhTVU0HoAidYeiel7TFaHXjqpyOo0Js7uigUil8sDs/YPEYgBJnbeHEyHN5ccwavrTwFgPOmXLS3mKa2UiiUNoUKQW1MlSAlq0GQ/sJ7BIUgBH20ORcGqwO/uT1VXC4WBbXN2FdUH/SzZJJnaAdT6io9JxR8MXM4NEo5EqJULfYIGvLaeox8YwNK3JO38kYz1p2sBODZnUsKlmWDmvYS1p6ohNPlmxoGAFFqBYwWB+95JMRfhAvJIf9xfwm+2FaA42V6n2Nmzd+Pl1vpd1RrtCIhSoXEKM7MutYgvsatSe3ZerYGvx+v5P82Wj31MVzD6E3uCJkotf/0JzI5z60ywmRzQquSI06rEj0boVLeaMYzS44ip9IAcxhpQOHSaLKhpN4El4vFxjPVeG+DR+jqxlQjFgZEaZQAuNS6nw+WgGVZrH3yKtxwZh7w413448mr8ezUy2BzuFDXbMMjPxzCu+vP8kJBoDq8+ngFiutN+GpHIQCuPs78eh+e/LFt0lkutIigM5VcVJS/a8KyLHbm1eH3YxWS75M2qKRBPNEk0X4KmTjtlETYketgsTsx6d2t2JknbnccLt/r1DOB23XwhPvZJ2Lwzrxa3PrZbtzz1V7JMl5IdLbUwHAINRLxaEmjKLo3XCx25yUvCm4+U43cKgOWHizFssNl+GxLcL87q8OJ7bk1QY+7mNidXydaLFlzvAL3z99HJ/Re7C2ow5GSxuAHthNWgRAUHeERgtpjLB0qn23Nxzc7uXHA878ex/PLjuNYqe+4EwD+OFkpWny+FKDPEIXSeqgQ1MZUCSKCtuTUoLjOBJPNwftX6AUTYH+N2L4ibqU6IZITAhrNdjhdLHIqDUFFkPac5BGRKyVaA4BLDyttMLW4MbY6XPz1sjpcfNn3FfoXvJ5fdgLD31gf9DtZlsXDCw8CDHecb0SQEma7k//O1GgNrpftwf+UH4nuoRCD125hlQFWOFuzs1ijyY54rQoJ7oigGz/awe9csSWnGtkvreUnouFSa7Ci1mjlTcuNgkFOTZgRQQfcERUOP3Xyq+0F+HI7N4g5W21Es9WBSKUcV8lPorEFUU4fb87D0kOlmPq/bXh6yRGUNpgkI7psDhccrZiE3fLJLlz11mYfsSqTKcU21VO47NcpiGe5AavBaseBogYMTItBdpQFOLsWKNqOCLkL2ak6ABBFuOW4RY9Ag8vTFVxKaddY7jkjUYa78sM3erY5XPjPmtOiaK9wvHTOJ81+Vl6DCZQkPTWn0iC672Qi7/JqK8i1J9Fw5+pMyKs24pUVYgFXKiIoLTYCMsYjXnm+i/vevYX1Pu1ESzhbZWiXQe7xUj2yX1qLrWc712Q7VEJZuCipN2H6xztx+2e7Je9BSb1JlPYtRfZLa3HH57txrLQRe9wG7TvzavGXb/dflEb5obL6eAWGvrYOX+8oxP3f7sfk97Yhx53+anMGr88fb8rDzK/38ddMirNuceli4c4v9+D9jbl8XXrkh0PYnFPDexOGwq68WvwoYVr88eY8jPzXhk4xIb7jiz24+eOdHfb9FpEQ5JkatfcusaHgdLF8dLVNYmzjcrGY/f1BTHt/+/kuWodhc7jQa95qfBqCwEyhUPxDhaA2plIQEbTpTDWufnuzKH2KeAStPVGBXvNW+0SfOF0szronGSR9hkziTDYnzgXx0ggn7WPBriK8uvIkng5igkuocpc1OZoTKCZkJyO/phl7Awg3wTBaHdBpuIgSMtE9WS4tclgdTizeV4wGE5dS9sW2fGw4VSV5LNnZh5HYNQwAotzfSUySu8Rq8LHqA9ws3wWloRQsy4omlSzLikQTAMiv8Z/CFsh0OhiNJjtitEokuYUgAFi4h0tvWXmUi4o4Whr+yhnLsrzYk+deORKmStR4CWDVBovf+sSyLErd17jJ7DnG5nDxK7pvuNNmACCvygCTzYlRlh2YV/scBuq3hF3+BMH12JJTg7H/txl//faAz3F9X16LmV/vC/v8hAK3ufXx0kZ8qPwAK1Qv4Jj6AWxQ/wMyhoXCVI2Rux6GHE7UGW04XqrHiPR44NRygHUBDgtQdRJZKZwQJBQNyGqe0HDcexBPUpaa3NGDpI1oiYCz4XQVPt9agOFvbMAd8s04pb4f9oYS4NgSwKIHCrcDp1aEfd72oMniwIcbczHmPxtFE20ijAGQjASrN9oQqeJSPY8KVkvJs+2dhkiEGiICk8gN76mUw+U74FYpZOgaGxHwdxTVtm6nuN35dZjy3jb8tL+kVefZlVeLjzfnierXJvfOalsuwl3O3v7jDNLn/h5yRKgU9SGkMh8q5p6/o6V60Q5xhJs+2oFpH2wPGvFzqLgRd36xBzO+2INHfziIu7/ai01nqn0iz84HpQ0mPP3TkTb34AO452fl0XKwLIt1JyvRYLJjuWCHyP3u8YF3tIKUeEH6p5xK/95pN364A8/8fLRVEVsdgXf7HY5gfNdXezH31+M+r7/9Rw5qDFZUXGJbnLMsyz+nbYUwIkit8ESRNnVgRBDhrT/OoKyRW3iU2nmYLJZYJUTmknoTv1lNIN5ccwaT3t0a8Nm7kDjrFpi/2l7QwSVpGw6eq+80v4VycUGFoFbCsixmf3+ANxg+W2mAWiFDlxgNf4ywESYeQb8c5AZKl/9royjN4NbPdvEpDUQ0Eu4cJZwUSdEsGGxIDfp259fhp/3FcLpY/HPFSczfWYRfD5Vh4jtbUN7oP8Jl6cFSvLCM85ZJZOsBfSluG94NKrks8LbN+lLg2xuAek8DJxwAGix2DO0RBwDozxRCA6vf1CyyQw8AHDhXj3+vPoMHvvMVAgB4VhT9RATp3OlMRARLjFKjieX8P0biOO79Zp8ouspodYiuLQAUBBKCAgh2Sw+WYle+eDJwvFSPvy0+DIfTBb3ZjtgIFRJ1Ks9nDpXirbVn+IFyuAuA+4vq8cfJKn41Or+aG5Q3Wx0gG7b9Y+kxfL/H46dy+b824q4v90ieT2+28yKScMXs7z8fxcyv9/mIeeV6C+qbbRijXwkAGGGVPq+Qc3XNeHXlSV6QU7tNG7sxNYhRcN+522vlmGVZOF2sz+uE7/ecww0fbvc7iBROMgsPrMWN8j0YJCtENMPdz83OwXDc/AV09cfxvvIjnCgsh83pwuBuscDJZUBkMvfhX+5HtyggUiXnJ0KAZ/DSIBjMCQeaVgfnOQQAi/eV4LvdRaIINZKKVGOw4p/LT8DSUIED+ZX4+YC0aCCMPnhV8S20jBVjll8N/Pog8PMsYOGfgSUzsfanT3wmtvN3FuJUeRO25FQHNHN+efkJjHhjQ8CBeSgr1gaLHR9uykO53iJ6Psj1AODjM8KyLGqbbbh+UBcwDLA7vxZ3f7UHS/aX8O2Z9yDYExHE/UvSdb3LKJUaBnCG0UL6d40W/V1Q27rwfJIuu72VgsFrq07h7T9y8MPeYkz/eCe+2l7AX5PWBBCwLIvPt+aHvIDQVny8mVv5DcVnD+Dq0xfb8vlnprTB5OMjJYUwPWXNiUqf54I8u/4EHeHxpM9YLUjHXX1cOsUxGOz/s/fe4VGVXdv3b2p6b5CEkhCS0HuRIiIdlCZFlCKIKDbsimBDFCwggoIgAlKlSu+9QyAdSEjvPZn0mUzZ7x97ZmcGgmJ53u97n/tex5EDktkzs2fPta9rrfM6z3MJAofj8v4W23HGhgj2ROX8K9IbvdEkgtVGPQgCK8+k8Nq2KI7fLpAYV9bylXQzI9LaGH/1uRTCPzp6H5hj2fz4owYElmLX0o3y/5Uoq6lDY8Uy/TsAQ53BhN5oYsu1DJtx8HcZwg2F9Xz7d+JmRlmDYMW/Gb9H5TB25eUHyoX/TlgzgowYWTi6LfDvSsO2XMug+xcnmbsn9i89b/W5VCkfbUhW/0f5Zt+vz9D/m7N/+h47b2SRXFj1jz0u/yejsFLLyrPi5oZlzFsUCv+3w2QS2BGR9a8B0k+tusLCQ3f+VzNG/xv//4z/AkH/MGQyGZEZZdxMLeRGeik7b2YxrZ091FkZRZuBHLkMKRGwyL4AvjJ3r7mSUkJUppiodWrqLrXYtjYLbggIupBUxJRfrlFnMNkwOC4n318MT/r5Ku/vjrNhLoHIgjh1D6BjMgksPHib/t+e5e2dMQC0l6WgWtYa1vTH3liNv7s92VYA0t2CSo7G54kFdepZ+K4NpF+A6K3SMdaASkWtgVAvO2YqDnHIbh4J9tM5LbyANvWKdExhpRadwWgjXYrO/OOENj7Hcp3EIuBejyCVecfHktS7O6ioRlxQBstvciGp2IaenlV6P0iWVmz9HevI1dTi5iB6x2Q0wAjK1dRSXqvn7Z0xPPOzrZfICxtvcCAml9Tiaqp0BtwcVDiqlayf3o0R7RqTV65l5dkUzpslHQ/j51NTZ+BycjFGk8AzP18VpXLmsOzOVmkNuJr9bgAJULCwKGIa0KMvOnzHxtzXwlzRG01SN56Tt8WxFObnwtuDQgHwNeYRUhmBXm5HPyECQ8Y1pi3fz+IjDXdv+nifCFRaJGiVWgNuVHHRbg4HTC/jiJbWsnRKqnQsPpJAlc5gw06q1hmIzCzj0/23MJkEcjW1fLQ3nvicCj4zGzCCWGB9tDeey8nF0q7bXOUWpie/Lh1TILgDUKb0Qdl+PHWe4TyhuIYqdjMTFGdoY18EGZeh6wzoMh1KU5EV3iG0kQunEwoZrzjLl8qfydOI48K6IMi32s1NKay2kdp9vO+WjQG9pZBfcTqJU1cjUPzQiSvr3+fdXbESkHEzo4ylJ+4ya+MNW0BOWT/nCG5NIeU0GMXXlsfvYu2FNLG4y76BUVfNZwduM3z5BZ5bHyGZYQP8HpXNtHXXeW1bFIIgsPFKBsVVOmLvKTIFQeDrownczq2g2xenGqRwWxfNlVoRlAyRZZOSVwoXlkJNqQ0QnleuhVoNxO4EQaCsRuyqF9bIFX83B2Kyy7mUXMJ7u2OJNM8RxVUNM4IMJoF1F9PIMXsL3c8IajjBa+HjDECQtxOzHg3m4ydaS4/JZP+8QLUUHv+0mLJICK6klBCTpWHhoTvEmpPnPyoc/iyGL7/IoiMJ7InMkYrRPZHZjFl5CUEQHiox1uqNGIwmmn9w6D4T9T+Loof0Mvtk3y2+PJzAlZQSBEGgz1dn+NTqvn8QoBKXXU77QDdA3CX/xezVBbbj9coDpJoP6gz6av8QBrby+9tgzPHbBby8JZKfzt1/HxlNgs08Yh16o4m7ZlnJw4ypxPxK1l5I5ZUtkQ2CAqvOpvDMqrPwuTec+5qkQhHgKazUNdgEQG8UCPRwoKxGT22dEaNJYNGRBHQGk3RvGowm4rLLpXvwYRguls/0dyK1qIoz/5dZcZoaPelWecGfMYL2RGbfB3wXVenYdj2Teb/H23jXvbwlkuYfHPrHErFLycUMXHqOXX9TeqfVG3lq1WU6LDjOosN3bB67nVtB8w8ONTj+H+RbpjMYuZlhyzg/fiufT8w+jPduqP2TsGYEmUwmJvdsRt+W3sRkacjV1P7hRunDxheH7lBYqWP3zZw//a4edE0a8hl9UIMVyxz3Zyb5BRVaCcSNyynHZBL+0KLh/6uY/3s8Xx9NJDJTI3l0OqoVf/Ks/5k4HJ/He7tjWXnm35WmZT3EZoV1ZJRU/8f70f03/ln8Fwj6p1FXwx7hDXzjVjPupyuYBIEP74xmg2medIiFtdLc24kic+KTX6GliayI5xulEpmSR3llJZuvZuCoVnDwtT70DPairLoOQRAkIMnbWU10loZVZ1Ns2CqH4/K4kFRMTLZGAoJUChn7/qBFbu/Fp+/7m8XzpqbOwOvbojh6K5+1F9OsChuBBaoN4n+rC+HaarbqXmVa2vsYorYhnPiEdcs/5aXNkdzMLIMTn0ivXZEmghArTiWxziqxNulrmZL2LvNVW6S/+cgqMJ37hsySGmb+eoPuX5zi1a1RktGnu6NKku8ADSLoCfkVokmsrOGuYb1beNv87u0oxxcRcHhcHkmgrJAdN+qTIUuyaw3g5Wq0lFXXsf5SGl0WnqTX4tMSu+Z0QoFkfl1TZ+CTffH0Wnya/t+eve9coT4ptNBy3R1FcKZ/mC8tfJzuO77oD3ZMLbHidDLPrL3G/L1x2CltF8vkwir0pRmMjJ3NJ/Jf6ChLxo460rNzKM7PJObkVj5R/trg626+miEVqwHuDlRoDSQXVvLSD3t5T/kbLWQ5/B4lXrvPR7flyQ7+AIxXnMOEnBNdVqPBGeX6wawpmc6uc5FcSCqSumTdSC9l5q8RUlFgSXKqdHpGKEQAzUdWwZeqtRy2+5AfVyzmp3MpXLhbRH6FFmdqWKBcz927dxi78hIbLqcTna2RQNbeTR0YWbgKU7G4gJdU17HpagbPrL1GfE45Dmh5UXkIgA/0Mxmn+5gJdR8j2Lkw9oWPQC5H9fJ5SuWejKrawdeqn2l69g1AgCbdoOfL4omXJBHs7UyF1sCXyl94RnmG0MJjJBVU8tz6COl6Wif7CflmfyArRmFBpRYlBtrKUiWfLkeVgoXK9aiMtYySX6KPPI4bt+5yOqGAp1ZdZvmpJI7fLpA8mkbIr2JvrL9nFnt8Kv0/x7EVfeTxHLsWg7BpNKwdQNXW6VhDI5biW6s38ub2GM7dLeJATK6NPPJe/5UcTS0rz6YwfPkFiqt0fHU04b571bpwLKrUEWZM4qTdezx/Zwac+oxD379sU/jmaGph1wzYMxNj8hlpbDTzdKSpp6MNS8NOKad1Y9f7GEHWO/ELDt5m9Xnz6wvWx+iJyGi40H9rUCjfTezA1hd68OHwVgR61jOEAtwdSC2qRqs38uzaq9zMKMNoEv5SgWaZh+8F67V6I7M33yS5sGHqfkpRFVFmVpbeaJLkqdZNBgrNr2m5bvuicxj146WHZhTojSabzQhL18e3dsQQlanhq6OJhM0/yo9nkjEYTQ1+bq3eSM9Fp1hqNtBd+gddBxuKokod8Tnlf8pcsLACy2v1DRZPD/LTyyytIbyRC+1kqXyq3EBl8hWbx6zPwxLn7hbx+jZxjbLesVcpZFKh0sLXiVA/Z9KKq//Wrq8FxPn2uG3nR0EQ2Hkji56LTtF78Wn6fHXaZkPIWuqRVlLdoLRu7p5YdkRkUaUzMGTZeRYeusOhuDxpk8o60our6SRPFn85+yWTcr6gvSyF7LKaB3aD7NDEDKTX1NmMH8uavuJ0Mk/+cJFbZkloygO+20KreyK54O9LWN7aEcP09RE2Era/Eg8a238U5bV6G6+2P2KaVGr1vLVDZNdaF3n55Vpp3J6/Wz/XWTYPquuMfHMsgU1X0tEbTfx4JtmmgcmfhQXs2HXzwbJUg9H0wK601oy71edTpY0VgKPmfMiSF1mH9T2jqanjufXX6b34NGHzj/LUtndiSgAAIABJREFUqivsj8nlaHw+OoORWZtuSsBGQ4C2IAgM+/7CfZ5vfxbWjCCDIL6+WiGnvFZPr8Wn6bX49D9ia9TWGampM+LtbEed0WQDGH+8L54+X522mYct46NHkCcX3+9PkLeYBzbECLIwdu9tdZ+rebjv3rJudA/y5E5eBesvpzNh9ZUHWi/8T8eDvEctaomYLI20mflXvS0fFOfvFjFi+YWHls9aNpH/iL34V8LS02LhwdsP3dBBqzfS75uzvL7t32kk8kex5VoGXxy6/ecH/j8YZxMLpXvgPzH+CwT901A7olO68qTiCmtUS/hB/SMAYbIs3lX+ZnNoO197JpauhrIMCspr+c35Oz7SzOeWehrCsg48dfdd9vn8RNvGzng6qjGYBCp1BoqrdMhl0DPYiwtJxXx1NIHtEVlcTilGbzRJ7JdLycVSkjCnSRquGce5nVvB/pjcB3q9tPR15vq8AQR7O/HjmWQSNr5B3cq+HIrJ4uUtYrvmz80U2VB5Dh3lKTDsG2jUDs4sxN+QTXf9dZT7XkJ2aRmLVWtxREujk69DXjTHm77JFsMAHLIuUBt/ANOZL0g/tRaAcFkmh9Vzaaq5Tm7ndyhpOgSAaFMwDplnWbHzCCfviAvRCTPtXCaD5l5ONrKszFLb3ZAdN7KISC/lm6Cb+MotsjvbidXX1Z5vxrUHBFrKspnZ0QGFTKCy59vI5HK+cf6NyOR6IGjOb6IMYkynAOlvBZVaPtgTa8MueUu/lt/VHxORXsZHm05AUSIXTvwutbC2TpStFzrLAnfbnCRbgCAADyvw6fFwUXoUn1PB1HXX7/f6iPgFEo8gCAIHzECgdcLoQQWz3a+yKG0csWtfposxlrHGo+y1+5hE++eItZ+F8FNfQiMXMF15jOnKY2CsHzuamjobRlfbAFcqavV8sv8Wc0oW8LJyP58oN0o7n2GOlTS9+hEeSh2D5JEUuHfCENiD6XXvUSo4YyczMFu5nym/XJcK0nE/XeHknUIyzcXqnTwx4a/WGXnSLpoq+0boBQWjFSJLZVDNUZypQZOdQH6FllnKg0xVnqDT7j58qRTH2uHYPGJzNAxSxrClcAzPyw5Qe2oxYLubtvV6JsEK8Zr+aBjJb8b+3BDCyRAawQdZ4N8RAJnSjrqQYfjKRHBJnmtmW/mEg0dzkCmgOIlGbqLUoQIRLGhffdEGBALRt6WwXExqrqSU4GKnpJUyl3eU25Fj4vSdQj5SbWa/+iOux8Si1RsJqbjMY4oY7spDaCovYrN6Ed12dSd78yvcG87U8JVqDQbXpjypW0hn7U+sTrDnpbo3+N4wls+MM5BjYnPNbGTpF0k3+eGWcYy2sjSb13l7RwyLjyTgQQWbHZYQQBGXkot5TB7FJ8pf6Z34JTq9XvL3aSgJvVtQaVPMWYM0uowIVqq/ByBEEO8Xv9oU/CjlA/dThNmXkpJ8F1JOAXB15zdSIdDMy5FmXo42Phx9QrzpHuRJjaaAwpJ6MKRSayDA3YGO5uK0IYbJyjMpyO7lCGXfhITDuDuqGdMpkMZuoleQr0u9d1V4Ixdu51WQXFjFpeQSnlp1mRYfHmbjPS3sHxQlVTpOmbvxpRfbFu1RmRqOxOcztwGvEIDRP1xizMrLpBZVkVVaIxWHls/nbKeUCqisslqMJoEP98QRk6Vhe0QW2WU1kozKOlKKqpj5awSl1XUS+29Eu8biOZrvHQ/zfGUB7a6klPDI4tPSvGkdmaU1aGr0/Ho5Xfqb5X1NJoGziYX3FQFCXgxBMlEGklpcxRMrLvLEigcbo+qNJolVkldeKwFW1pGjqeXN7dE2xapWb6SwUkeoUw173L7jOeVxXst6C0rEz5Vmte4UVenQGYy8sjWSaeuusz8ml81XM6SNk7GdA7g6d4Akw2vm5USonwsmk5G6TeMx7Zpp8/mHLjvPmvMP3l12qEjBE/Hesqwn5TV6nlhxUfKPydHUElh+k4Loo4AoGXpixUXpNb4+mkjwh4f5aG89kFStM7Dtehbv7Y4lMd+WcWzJG4wmQQIk1Eo5j8jr17ze1SfZrv6cTgnfMbt2Dds8f+ZN5U7CvevXsE7me620uk5ihExVHCPwwEQq029KnZEsHlYx2eWk38Os0xtNjLIyEz4Ym8fqcyl/y8zX8p3/kSl1Yn6lzdiwRHmNnpB5R1h/Kf0vvWdZTZ2NX+QfAUEWplRqUZXN/FRQocXevKlj2ZxqbiVVLanS8eOZFD7ad4sVp5Ikaah1xGWXP9AjzAKYWtbchuK1bVE8vuRcg0Dqvczpw7F5UtFuKW7vBSsAyqrrv8Ot1zM5m1hkc+1f3xbFS5tv3teV8V7T9vxyLUFzD3Mnr4IN5vnldELBQxXWdVZ5joVBfvOe4rDPV6e5W1D5lwChrNIaYrM1EoBjaSJRWKlDEAQi0kvZeCWD7LJaziYWsj0iU5Tem8f1pO5NCfRw5Mw7j+HlpG6QcWiZ3+oMJpvPmlH6cOxUC7tuXJdA9EZBsntIegAgm5hfeR9b7d+KhPwK+nx1hk1XM4jPKWfunjhSiqpYcjwRJ7Vo6bDg4G2upopr+sMyRP8spq67zq3ciodm9BolgFb2h8c9bLg7inn+mcQiTjwkAGcZC0fi7wdX/80QBIF5v8dLG4v/2+K59RGMWXn5zw/8XxoP7vv833jouOs9iOE539MK212UV5T72WfszSTFaXIEb7qYmjDMuI+qfVqaVPQgQEiXjnU3ljBIUQIlwImP6VjbCA+8uRSTQL87X3LacSTjunTjoFkT/evldDJLa5g/PIx2BfvIoBuXk0vo2NSdYFUJr+Z/CMCALV1JKdHiYq9k3XPd7jv3I3P6olTI0RlMdJIlE566HoDOsiQihHDsVXImdWuCnVLOCG02nARaDoTyLMi3LUgqnYNwqUpjs/pLmmQno+s4nW/u9kQwNuZZ5SlUuyYzxzzi9mgfZa5yK/6yEi51XkqfkTOgVkPBtR3MPmrPOZf5TC34ip18TGNKaSXPwCM3FzeHZhIzyhKbr2YytZ0jweVXEGRyPPf9xFh5D8bk/MSKpoGAHFNlLphMUBAH5TngGYyfkzPTFMf5TPUr3JwGgEvLvlCVziPxu1kq0/KpbBqZgi8KTHR1LGBq+XEuysKZqDhDtuDN0bt9AVfcqWStegld5eLudhtZGofs5sGPMFCuxolVVGNrMltQoeP83SICPBzwFMoZoohgx9lygmXVNNdo4XwqPPIanlZA0LrnujFr7VmOJ2sAGefvFpG+eIT4oK4SDr0FwNrHo8guqyXUz5mAogu8qtzLxiYfsKjoTRy1tSAD35qLRAkt6SQTpRnfG8YwTH6dUHmOtLZ9ovwV4UZbZD1mgSBQdHM/i5Sb6d6xPb7N23Ih5jBo7eioU9Benka+4MGjijhaGHIocWiO255noSCOV12MtKrNJLrRODwd1SQJgXTWreFEyB6ez97FdVMYx0zdGfdT/WRsAZMupxRjMJqorNUTLqRQ0ag/RakxdJCJvlOPKG4Tr5gJ1+Co3T6eUxyTXuMZ5RlOeDzN6YRCVAo57zhFgg50ghJ55mUQBBtz3wtJxbzkXQZVMHby63RUBmE0CVxKLkYms13wGz32AtytZ7KhdgHXAFEf5NEMihMZYNyKizIFL5mYWIcbk20SXJVCxoWrV5kX9Rj64V9z9FYAQ9o2YmbqIsKVUdwyNaeg0oMpdieQIxB17Rxj0xV8bdxLkeDGuJr3eUZxiueVR/CRlTNVeYKVhpHk4yW9x2jFJZxlWoQJG4j7oT5hOGrqzlFTdyiHjzw/5uPqL7noM4m3s3pzzf5VesgTiDcGS8fvjszGlWq+V6+mjxDFJGUgCdfr2KD+RjygBH7cPZZvopXsnt2rQV+h9ZfS2R2Zze7ZvejSzIOzifXdqwZGz8FFJiZ3pXYBaLW1dJYlsVG9mDBtNhMVXkQmiTKsY8auDNBdZXO2eL818XSk6T3ePc28nHimqx+fRvYiYcMjlE/eiYu9ikqtHhd7JbteeoTWnxyTGEJ1RhN1BpPErFTKrHZeU87AptHi/+dmg64K9r4EI5ai8mohHdY+0J1TCYX3dRVbdymNqY80A7hvHFkiubCS17ZFS2xHg0mgvFYvAcHaP5FcWUCex5eco1NTsfDuEeQpmfm7OajI0dTi7qhCU6PnamqJBOpuuprBpqsZvDskjFf6hwAik9FBpWDj5XRO3ilk6YlEZvQOAqBjE3cOxeWJxXoYNHJzsPG9umhmZu2PyWX5pE7S3w/H5UkbDNaAckpRFaF+Lmy8ks6nB27z0+TODG3bmKSCSj7/fgUb7Jdyxk7PPmMv4k52YLRcRqnRBZ1h8H1sR7BlweSVa8nR1BIqy6JA8MBk506lTs+I5SJA8ntUDm8PCqVSZ2BityY0poSZ154BYE+TuQzOWoawZxayZ7ZL/k99mjvSrXgvF+74cyg2jxf7BfPz+VSWWLGbZvYJxsvZjkZu9rQvPUar2Av4uLbmM+U+nDNOAvCL26vMGNiBtOIqEvIr+fJwAgaDniFtA2jh61L/gYx6nrwwii52npwwdiFJCARGsOV6BrdyK+gsu4u3uxut5Om8Wf09HAG6FHH0AQXCpqsZvDc0DKNJoO9X9TLf/HKxqFLIZRhNAnE55ZRU6Xh/dyzpJTUcndOX/AotY8xAUI7cn7naKXyo3MrQ8u3i1mINPKKEOVW/s045lE3GQYyP+450RVs0NT2IztLQVZbAAtWvkA9Rx9dQox2Bg0pNW8MtPlDvYE7dbK5cOI5nc/gipQUfP9maY7fyySvX8kr/FmSX1bIvOpdFRxJIL6lh0dh2DX7OeyO1qEoyWAYoqnywefiQZecB6tdXc1i6oO2LyWVGnyCbx/RGEwqZDLn8/ntcU6O3AX/ulYbtuJHFoFZ+eDipJYDcJNgyA63lf1q9CbkMOjf1kNbKHCvA05IrGowmfo/Kpl+oL55Oal7afJMcTS2/v9yLmCwNv0VksXpKF5p5OUnXpVpnQBCE++Yqo0mQis48TS0t/VxsHr+XoZNWUs0XZolYE08x/ylrgDVmLZX+7fqD2UgR6bbATEl1HXUGkwQu3WudkJBfwYwNNxjXJZBvx3d44OuCrTTMsnG4YFRbG7ZFYaWOwd+dp3NTd/a83PsPX88Snx+8za3cCtZM7QJAqJ8LF5OLKazUklxYxStbI6Vj90TlkFpUzY4b2ZLk2MVeKebaBp00d98b1mOkpLqOAHcHiqt00jyolIu5opOdgi7NPO97fkpRFQHuDpLsuR4QrGDi6isUVuqY3a8FaSXV+Ls7SEDysLaNWPls5weuaX8nLKDU0fh8dt7IJi6nXPJgtTALLTFTcYhz+g5iR1q7v1bO5mhqORKXR89gLxvmY8lDNBSA+k3df9K8wDqsu5s2ZPrdUFg3HbmUXEy7QDcbq4d/K6wBQZNJaHB+A3Fjb9DSc6yd1o0uzTxsHjOZBAoqtdIG2r3x3Ym79GnpTbfm94/P/8loaPPrPy3+CwT9C5EaOJq4rH0EOtThodBBTQlVL8fguKoLh9VzUZrlSZjBVFXaKb7kKpX2fihePM37367isqkNPz3TkW6R78GVH+gGRNjJyTrkQ5C8gEMchoqlRISewDHjDMcru6BTqnj69FlQwhC7WJ7PnEOAhwNTlKclmcOSyneoavE4ywo7Mf6neor7BMUZnne8hPKuCWo1TGikQKiKkR4fqoggwhBOiK8zSp2GCW3d4MAVcPEHjyDoMAmyb3BR3pk+6T8A8Jrd52yomkxneTKn7Afz/NVBgJGxnXowKWYezysOM1AhLqqPyaPpp4jlG/0EWjcfJr6pgzuOPaeTd/Q4J/2mMzx7GTvUC+guT5Su3x6nrbjb2w7bDZfT8bu+jdnKA8iAgQro6ZCNoPbD6OQN2lKMBfFwfB5cXYXl4nQIHUcr5QnxRSJ/Bbem0Kw3NGpPUdZdHi+P5nFFNKWtp+JxZzMykwmS4Gg9AYBwQxbv8hKfqDZKIBAggkvmUJjqeFQeyxFTDwbKbzJTeRgZApc3neNQrjuTFKf5QV1FT/kdPlBuY4mPA7/elrO0sBjqqvFsZsXyuL2fNdlTqLNTUI4TV0xt0NYNocei08wNjOdp82FxZ35jXIt2DO0ZzMDdIwHoUvT8fWP3c9mL7Hm2OWmKZnQ2evDd+Xi+z3wKeeP2pAgBhBUcxHj6S4Rz32LU1dDSWElLJRB/BuJhOOIPRZBl8mGa/n1O2r3HSMUVDuvVIvAGTKvdjE5QUtRkMI2t2E6uY5cQ830036pWc03XCo3ehQVPhvPzwXNkCX6olXLuFlRx4NptupUdwEPQ4BTag1VJbjihZZnhKSYrT9JTLiabQ8+PAhmM0C+m1qTkqN1c3nU8yPCMSQD08kqkrslQFtzx54vqdez4fTdOFcmMV5Rwx9SUO0IzurmUQhU0Dm5NY7VIx3401Oe+a4d/J3hiGdi7wYmPwaUxkjbQpxXcOUBnoLN5uOZ59aBJyTWGya/hiI4q7HlaeZ7+MnMiePhNBO1aBoW1JjRNZKMtVK2jQnBE5tIYU0UerWSZ3MpLJdz+EuuMQ6nAiZ+MIzlm6sYB9TycZVoWqDaw09iPVKEx6UIjprvdBKdwZIFdgEPS6T8S7EWyecdZFtyPkclh6CqUFKAly+RDF/ldfjEOl463R8d29QJaycVE3YUahpVspMLOk02us3ildDH5t84Dj7P1xFX6uuYDvvSU36aPUzbx1e4cjJXxnvI39Ju+Y17wx2yPr6JPiDeXkwtxMYiAhUHlgufc2zw1dym77T4jTJbNbYeutK69wQAucMfUlM8NkxmgjuS5G6OZbC9HeXAi4/My6a3OQ4GJpYZxtNDXEbL6EfE+rbxC0Hdn8Xd3oqmnIy72SpQKOd5OanLNxVV2WS29Fp+iuKqORq72hKmzMAtgEDaNrt/3+7EHNO0peqAdfBOm7WfBqDb4uzmgUMgQBLErpHUIAkyZ9xUrXTbg8soZUrTOhFgV+msvpNp02bNEcZVOlDvaKe/r6gcio+GFjTfY+4ptURKVqWFKjwA6qvOIS9NSg73EOmzm5YSmRsMhs2nx6wNaSj4919NKaRtQxLR1Yte9b8a1l9gBF5OKmRqQz0j5ZVr4dsXFXsnNTA3P9bbd5R/YypeTZlaTTCbuUi87eZeJ3ZpIINC9kWoGgiweRqVmhsDhiNssVa2iROaBnVDJKMVlRhkvgxkbj8ydTeemVgnn6YVQXUysrwiIqxQy8sprKSwq4rjd+9w0tcTQ8glaJf3EJuMgvjc8RR0qCcBp5uXIcLP8lF6vU+08kXdSalmZt5KkNVM56TCfVx2OM7toL05GDRGxaqA7szo7seFcHTrqQXsLgL9+Wlf81jyHw40ymgBTlJCmDiWo7i4JZ7cQHdbMzH4UUGJk9LlhpJ1vSovX1pEmNOJOXgUF0UeZDvjLSplmXrNMui/wSdrJCHkNP6qXwz0b9MKiQIqCdgKwYlInXjMXtFMfacbGKxnE5ZSjNwpU6vT8oFpOkdyX4rIgPlOu56knR5Ho3I1J29JY8NsZfNKOc9L4OPtjcinVlNNZnsIhl3G8UjRWPBfvjmwuncQZYwdKn/iFpziD6exiZtQeZYbyKBTCQlUEJ4qeJTZdwzKnnRTp3cC9KZ1yfyPOYT/73KfwaOkuAmQlXLSbAzFADPQ19uSc14f4x6wm2Hki7wwOY92ldPZFi4zXpIeQiJ2/W8S+6Fx2R9p631j7L1qHNXP3dm4FoX7OKBXiGLd4AzZyrU8E6gwmziYWMmvTTZ7t0ZQvxojAlHWRoampsynirUGhrNIa3tsVS4cm7mx7oQfFViwHa0Dd2ocQoLGbgw0A/owVYya9pJouskSGRn7Nkepw9oc8z/rp3VEpxJnsaHw+q8+LmylLT9zl+6c7Sd6DBpOAVm/Cwcp/5dSdApv7t6BC96dAkDX7M6u0lgCKKCz3Bl0Vh65E4ewfTr9QHxsQ+WH8yzyoYJ5qK+kmP4qqHqfOYGLQ0nNM791cOkYhl5FgnrsOxub+ORBkxQiySMNGdvDHUaW4rylJZKYGg9k0vXMzD1QKOXUGE0+vuYJMJmPT891xNLNXYrPLya/QkmdmyEqMoAodpxLqmR8OKoXEdL+ZUSaNzUZVt2G7uAnR3WMp0zPWwq33oc1o6bn5FVrUSvEciit17LyRxbKT9d5rjmoFU81z+r3AJohAULCPE43MknSLxG9/TC726HChhkNxjpy7W2TzvCPx+aSX1EiytQfFb9czydHU8vbgsD88DpCYgNU6A64Otrn+bSvPQy/Kma/awny2kFY5maC/CATN3nyT2OxyXKyYsiCy7i6nFNPI1Z5gMzDWUFgkafdK4q1jb1QOb2yPJuaTwbg5qDCZBJIKqwhrZHvfWJrE9A7x4lJySYNSZkuYTALFVTp8Xe1tPN+eXXsNtUJO7KeDsVf9fd+ktOJqDEaTzb1t3RlaU6uX1raYLA2jfrzE4df70trflYySaspq9ESkl94HBP14JpklJ+5y6YPHCbDqvHort1zalNl6PZOIeQP/9rn/nfgr0tn/rfFfIOhfiCocebLuC97u3ZTXHguGqgKcvZojtB2LMm4H8abmJAkBDHVK4pPKUXyt+hkfykkc8DNhnoEcMPUCoEWLEPBeCIffRQjsivLqSoJkVhTBS9/jo8kAGYxRXLI5h77G67QQMmiWcIghXEbj043sgiKCZfm45qyls6M/aWoVLtSgQ01LeQ7oge2TAXhdrkLXOJys6laU2gUyo+wojX19EHq+CmseA41Z2tBpspjd+7WGGUfooNWz+0w/LkTf4WyOnHXKobRV5fChRgQfnu7WhE9HtiE8KocrpjZcHFpF4IlZbFB/TYqpMeuMQ1ltBey42KvwdFLzRVZ7hsuguzyRw8buJJqa8KZqNzOF3fRJvc4olRsv69+g0iy5schYNIIT7rJqnOuKoOVYBKNItTchg6srQa6ENmMhbgdud3eBDGJMwXRwrYER34qGukovMgesxG73YFxltXje3ghOPiAICAYtsroqKtSNOFkbwnjleR5VxOIn07DN0J/txv68a7eb3vJ6UA1gkuI0xYIbbyl30VqeQa7gSY/i1YytrxvYZBjIFOVJdrtYgQ4XvyNIHQR4I8MERz8A4ISpCyMU1xmpuEJa9FGm63czKvOgeP7GOpYLX0EOVKS/ajtYpx0EnzASCiqZ9vNlSuRe0HIQQUAQ0KlpXypvb8CrSSsSsh3ZtNOHhYgsMUv6udduFCP7dkWOkUOlAWy8kkl3nzo2FQajwQVD0948lXGeZg5G0MnBoznK0lQWGqbSxyPYhuHk6+HGUr93+KrwJaLtXyRS1prOCa5MtbtKH90yRnRtx+nYNHqfnYRvnbgrpG7SlcDBgxl4ZDAAB+se4ZFgLwLyTzLGNYF9leFUOYWTUVJDhPswehfsJ8LuHCUKH5yqM6HFbJIL/KFyHRNiRXBshPnD3TI1w79KLYKd6j9ObgDoOl381zsU5FaLb/vxkHjI5tCK7m/geXgKq8zyJ4Aiwc3mmAHySPpd/AF5TRHJTSciSz9PC3kePLmDtM2v87TyNOMV5zAKMqIaP00fO28uJheTJjSmre4Xdqk/Y7DiJoMVolStVHDGs6YKur5336k/17s5p+4UsONGNm4OKsICvCUfh0umNoxWXGKm4hBt3HS0r7qES+OW+BZkYXBtirIiUypIc9q9xd2aIRSVrGQYl7ltH86S7HcAWC9bwDrVNzjqdaCGVYYnma08AAZokvgcUcLbfGNaxz61eB//ZniMjmPnEQ5ECyHSuf7QeCErwuLYk6Bla7YPnr5NmJDzMYsctxBmTIKYbfgAPmY84i3lLkIy99p83k6yZCI1objYK6UW8O6O9UAQiMCLAzryK2BkYLoEBJkCuqDo9754/5WmQvxu8YG0c7C8E1P7vg2tJ0t+AWfv5DJPtYMThk7oUBFb1oKt6p9x1RVzafdynk3sw89Tu9InxBsHtYITtwtwoYanFOcxdZpCaKAf8/fGU1ChY/Iv11DIZbw5sCVg2/Fr09UM3jL8Qv6WzcDT/PBMJ17dGkUHWTLzE1/HTluMWtWThfrJFFSLO23NvRyJydIQmVGGp5Oa3i28JCDI00lt4wtxJbXEzL4UmFC9mdBDu1iuhmjZdKZ1cufnq5nUVs/nm5I8XrN/k+9mjeLYrXwJCBIEOHmngKvnjtD+0iHseEUCS/zd7KnUGqjUGSQWlEV6FpOl4YtDt5lk3I+3qoIRNR9Qh5IB8kj0KPjI7ClXe3ktN4WZtPF3xb40Ac6L7DRT02DcHcMZ75lKm5xdDEs5AkAXeRJC8jIMchWvyPbTw9dIXLFArtGdn41PMP/3WA6pL6D3aYtq8OcMrtDy0f7ufKUrYK5pG6bCK7xsvx1Ho4i6tE9ZQ6iyKV6rnuEXdTsm182lhSyHyYqT+O5cBoMX0tzJG/RlMPxb8GsLMjlBgd0wrOrDG4V7iL4QyNCUxfyu9uegsQf+slL8KYUVnVEJ3hzRP01feRwooUJwwFUmvrd8kT/jgfHm6XSH8xQmPNaZsF0e/KxawqPE4ZFzlgHhw3mygz9vb7uOHXpmPRrMxisZRGdp8HdzoJf8Fk+Ywa/kyBJClJfhyAm6BHRlZOArDMtYzgBVFHmCJzt33eY75TpUcj2yoEfBXBcO7d6GHnt/QIMzK11dodUs5N1fEA3p979OnVtz1FkX8YxcwfqqiwTISvjeOIYebr74lMfhKNQwqWy1uE7fE08orsI5MZ8Y7tYB2clIxuUm8jmTcVApH8rE98czyVxLK8WOOj4b2wVNrZ64nHJis+uZxcVVOt7cHs37Q8NtXnP4clGC+OuM7vQL9SHJzFhwd1Dz45lkHgvz4UBMniSL3HItk/eGhuPmoLKRT2lq9BJbI7e81oYRZClGYrI0DF12gRcerWdi3swow1FRn5ehAAAgAElEQVStINDDgaTCKsIb1xdoAR4ONuupdbwk38fryj3Y1+lppYxjRtkgoLvENrD22LJIgaz9Tiq1ehsgaM5v0TZMhXs9zKC+iG/q6YiDSiHJbHqHeEHqWbaoF1Ge5oqw3I4R1UWM0i2g36I5ZtmUwOPyKK6aWlODdScogSHyG0SaQihCLC5HKy4xTnEeFBBVuoDzqWKTBYt0Zd7wVnxx+I7ETNTqTSw6fIe5w1tRWKnFy8kOxT2sBq2+vqC3bi4yoJUvv83qSZC3Ez2+PCX9feDSc6SX1PD+0HBmP9aCjJJqqUFBZIaGPi29KarUSdcpOkuD0jUKB2dRVhuVVcaFpHrZ/rC2jdgTJXpWNZPlk5x4m1BZFq0Pfygd807FYryMhbBzGrSpB0UKyrU82tKbC3ey+fWK2AkYQIGRfvIY/A1lHKOzdP2sQxAEUouqmdDVE18XO2Qy266mp3yXE1ARRU62PwvkE0kVGpsZiWJEpJfiqFb8Yfcui3T17cFhLD2eSJ+WPnQPsmV+VOkMfLgnTroXUoqq7wNM9Mb6xS9MXs8c06VdRfB6nKnrrjO6YwBPdQnkz8ICtt5rpL3teiaRmRqaeTly7t3+No8lF1aSUlTNkDaNJPbcvR6E1mFZV/PKRQB33aU0Fh66w95XekvSdBAZWIIAA8L9uJxSQnlNnSSPtrCtLicXs+xUEm393Vh3KY3ojwfd10GzzmjiYlIxA1v7ce5uES18nAj0sGVKW+JgbC43M8p4NNSHAHcHQs3Az8gVF6nUGbg+bwC+LuJ3esvKu6q0WifNOStOixnSnshsgn3CJInnvbJeqPcISyqotAGCblix/P6O2f0Pp5Oo0hn5YFj4Qz/HwuKSy2UNysb/0+K/QNC/EE+0b8xP51IY0jEI7JzFH0A28FPQangn/nHSFM3xH9+NHT9fo706n8m9QwjrPsTmdTyd1ODUEWaeENOhPm/Cty3ZZuiPh28AQ0s3A5DxyBc0uyKaUW8z9CdckUsnWSLH7D6QmEAF7efyxCFfQCB9moDj9sm0kUOiyyPkamr4Xd+H954ZJraQBmQmPfZFcTQZuYIm7cbDgTkMj90IhzbaftjWY2x+dbFX8dSwwdwyBMKlNH6wm0mwtxMFGWVM7NqExU+1B+C3WT3xclIT4FRL2XFnXKnmLf1sarHH+R6GT7C3Ezcy6njb+QO+9DxCYL+lzNmayQBTJKNqxAKsryKLz9hAyJCXqU6+yCPp8Ry3G8ys8mns8NlA98oT0OJxjIniTq/BxQ/yC6HLczBiCfR9G2HTaBLKlcxx/paz7wywOYfwsNa00f3CO8rtPN/VE4ehC8DeFVnEL3DoLZy9GrMwbTKBsiKJsbTb2JdoIYRj8kfpbYohwhRKM1khaUIjHlXE8ahCXAx1Q5cwYK8Hd+xn2LxnswmLuVwQC7mfin/4qAS+70Dg6dd5QzmWE8YuUJEDY1YT7Duc3ZlFPHr4MbQH5/K6IotcvAh8+Tis6Cy9putNka01TLeIbyd2pk1QTwBCHX0IDy1hWq9mNufgbKfEuZOYdLsWF7LFOIC2sjRSFMHMk60jyhTCqA9+lRYnu9sFXLt8g2tWlgPqvnMIzBxHoHYftBsPrUeRHnWKDbEDGWKnxMOxPnGVyWQEt+nOxtxBhMmz6CBPhiwxIZuoOMszqWuYa7oNdbBGNQUHryZMCezKi01keDvbSd3spj7SjNlbOrGrphN9W3qjNhf3d9p/QE+HXuRHnCVUmQ+tPoBuzxOQdYczcR3or4hhhWE0+oCe+OacYLLyFFQCEzbxl6JRW9vfw5+AsOGUt5nCjG0JZAiNuNFjOOUtE7FL2g2xO0Cr4VuP72iZsJJ4UxDz7HbwrmoH9oXFENSPjI7v88bdQXR1yGV96BAOmnrypPwKKYI/iw2TMLr483Kv5lxMLmbFpE58duA2xztvJDj/EzwzRXmcEhPFAQPw7vKczel9MaYtg1v78WhLHxzVSsZ1acLxW/nSYr3EMIH+imjRxL0GUfJRkAfNeqOcfhj91mdR3T3IYWN3evebg9eFXFYbnmS+agu9eEd6n5Xq73GU6dC6BWNfnsps5QFKBWfm6F9lk3ox69Vf45er4SU53Baa87FhOsf92wDQLdiHV9Nfowp7MCpQ9JjF+B4wHjgQk8tr28oZWvMpg8J9WNPsrAhWD1oAO6bRNuMiaIDJu0lVh+HyS2+WqFax3DCWukIVg4I7Ad1wd1TxmmIPXeRJxAjB3DE143vVj3xumIyroQgQgTrTjGMoFCoIGQj6WojbKYLK+18VgaF9r0Djjvj4tcHZTkk//VVeUBzkBcVBAHYb+xAoE5N+7/SDQB/mbLxIn1aBrJ7anS55W9luL861gncgyUGi4bjF58toEiQjXSn5Mxl5teRLkdWoATVPmZNrgaWqVShUdtT69efJjDM8qbjKPmMvlhjG81TtVRJk/iTkN6VdgJvNzp+dUk6uphYntYIBhguYKvtRZzQxwukuLxt3SccFxS7jnVubeELVBIfsLEKBhR5Hae0/hUizr0aILBstag7F5rJB/TWushpGmi5z1dQKe/TMHDCEkmo96y9nSImjxRtlu7l74bMO57lhDOWW0ByAgJBOnE0swrPNAF65O4PeCQt5KbaK/i1cmOhrZnu4NWFy5kcMUjTGr/j+9tIyBFSvXIFrq+gasZaucnF8v6A8jBtV2MkMmHqtAsTWxBO7NuFC4kDm6rexQv0DjkJ94ig36jiuFNlHfeRxbFcvoIc8AT1gygb59snQRZQd07wP+LaSnqt8cil+64YzIuljADrJkyUT5vf1L7BAuYFAWTEr1OIcvtEwiM8NU3BEy171RwTJC/hVNQF7lYKTmsb06DEFugaj23WIafr3ual8hUHVB3mu6DCscWSni5EO+hgo2sGbzicxpBZRGtKL+cotVKm8KdIpCCm/TBmuePR4Bq79xLdMBzMW8KZ6P24mDc3lBaR69aNtr+HYRd4gvJELPYI8mY9Y2EmFh0wGIQNgTgxyk0DM593pUryPKuwp7ruQTeeasCcbOtfJGdwxiH5Ji/isZhw9vLR0cymhb8pkmrsrOaudIF2zMbr9cCkeNyD+uVn8lBHAqnMpGE2CWNjra0XwqcXjoKovNrLLapnfPIEZRV8hb3kdPFrw+YF40irTeGVLJL1DvCmo0HIhqZgLSfWeStYRkVZKv1AfqVtRjqaW7Tey+OZY4n2SlQ6fHeeLMW3pZ8UkzSuvpVZby/OKQ7S0u8n5miWSzMK6S1pmaY0NI2jjlQz6hHjj5axmX3SuDSujiYcjcvNa7EwN7yh3cNDYE7XMwHuq7VxXdGJxzSj22H3KIOMFBOEpSfpikbh1bOJOdJaGLdcybCSVFVo9vlbFvYu9Eq1OiwzQo2xwJz0+t5wxnQL4bmJHXtsWxaFYcf56JlzBkNrfoQRSCKS9ohIlsEz1I7lXAymsaEsfeTzr1N+yyvAk0WFv4OGopmdzZ4Kuf06Hgj3kCx5sNQzAQaZjlGcmZrssHKLWU20/2uY8g80NNs4mFhLk7USghwObrmYwrVdzei0+zSv9W/B0sI7sA4vo9NwS7F280FTUsx4MpnpwQCaT0TNYlFo7qhWSD12uRkuonzO/RWTyUr9gmwYmpxIKiMspJ6xRPaMkKqsMh4DtfHh9O7CYzVdtvZv6tPSWgKB96o9wj6rmcZU/gkKN7MVzcOITvO4eqX9C1GboNJlKrZ7qOiNjXBNZY/8aM6LfAToyuLUfXe8uZZa58cXbiu2MrlvA7dwKAj0dJAmRpkZPTZ2RJp6OqBRyvJzsJHCju+wOARUikzDAlMtq9XcAXO+7ni79x9Du02O8tysWBUa2zuxOt2C/+2RD1tKpkiody08ns/x0MumLR1BTZ8BgEvhk3y1C/VykrrNNZAUMM1xnf2YfPvGN44luYXQ75AfA+A4+JJbUEZ5XDwS53NpMVvAjXEgqxtNJ/VBA0IPkbJb7u6HOvwOXinLRtEXDHwoIqjYbT2eX1tLS14Uos6VFcmGVDRD0zTGxhvByVuNqr6K8Vs+iIwmsOZ9K2qLhTP7lGpfMXaAt3dzSS2oaZA6dTyri0bJdaI4eZLLre5y9B8yyxEd74ymr0eN27VtyKCf0403k1colYGz3zRxmPybK3ouyElmg3M63hgkob6yFwlOYRv7A9TTxnNZeTCOlqIoR7cXGMKkNAEGWeSq5sIrHwnylv1uuY/8wH84kFlGh1f8ledu3x8Ua761BoaiVcjZdSedUQiELR7d9IAjW9+sztA1wZfWUrjYG9/+p8V8g6F+ItgFuDdItcQuAZ3eypqQGe7Vc2u28HPImkwd2kQ5b+Wxn6TGbcPblvRZ7+f1WBfO9y6F0M8iVNBv4EoR15MXdaRwr8mRAgIJfCiYCYBJkXHToT8+eU/A+d5b3hoZBqybw0kXQ1xIa2I0hcw+LpsNtuoFfO3Dxg4vLwLUxdJoiJnBjVoOjN9w5AHYuMPATSD0Hwf0avAZjOwdw7FY+n49uI7UeHde1fjK2LKTgQtLTFzkWEU/MbXH73vUeIKiFjzM3MsqQhQ3Hbvxc2gON3Yp5uvQjPg5JxSG4J0Wnf2Sm8gicrE/aLlc1AmQ4P/0L2BWBZzCmhJXidXFpBO1awQAx6cY3HNmbt6nNLGWnl+2uAyDpjb81TGTmiKFgoVqazYLlTt6YHL2YUPMxP4wLJybiPDcyxIWqSb/pjD7qQ4wQjICcIfIIeqhFDbIQ9Bh2XadSu/cEA3Vf8/LANnQ79xzlONE1PAjH9i3h10/FY+UKZIFd4XY2byj3MEFxTjyHoH60cnVFZzCx2TCIN1UiODbdOJ8TXi047TGex8t2ip817QJf3/XjjtAMx8B6HwW5XMavM7o3+F1aoktzDx5p4cMHKbPAADvoyXeTutksoB2b1i9mDioFnzzZGkKawIBPRNDq8Y/AwR3/liP4PCiTbs09JIq9JZ7vE8Rh9+VM3BbFsMZVrBruCVdX8lrKXinZizM1Z6VxJMP96uVXvmZqfngjF4a0aUQzL0cySsSOPxY5Swt/HxThs2n3yGyb95w3vBVHG/3ErIRcjqfqeL1FCPMzmlCCG8+PfQLn1iMbvCaVdZWo5CrslQ/e/QJAoYJJ23AxCdwUBGaavSTcPL2hx4vij8nI5yYZBRVdWfj1Gdrq08QxDTB+Ay4FUIkjd+3E763PrGXk6Y28/usNakxGJjqq6RXiLc09lu5smH4DXQXtPjtBDXZcnjgYzAn9N+Pa42ynZJjZ7NdBreDTkSLwYp3QFOHOEN1XRD8tQM5NCB8OyMBbZKUo+7/P17cc+ck4klR3d/zdS1loHEEzT0cmaHfyQvWL9JLf4iXlQQyOfti/cJz0JY/RXMgmzrkPb098CdOGJfiZNODizxGvyXyYEEwdKkn6sHpKV34+78kPZ5LpfU97VItBsyDI8HJxhMfer3+w07OQcVFkL4YMJBioGr8an11P851aLPCJBHp3YGX+s7irRIDmMWKIMoVgJ9OzULWe7xX1nQWNghEVKpH1ZecsMsFMJhEIcmkMdTVw4Vtk4zfQxtPEqyW2bKSnFBcpFZzZYezPS8oDtJDlcMruXVYnjeDDTTN4xnReat0gu7CEpqWZDJH78Ht0/b1i8eYorNCSVVqDPusmrUpOSI9vc/wG3/1buWt3ErXMiLHfchyCH4XfX6S4pJgnqq8wUH0TpwwdvdUy2ul+IdDdD08HJU1kBbhQy+CsXfysG8RnvvGMK/6R9Ozf2cs3PK86SoHBnd3dfqPRtYWMvSUCpeHmXdn9pt48UXYEsm/g7RSAAiMn7UQW2qe3p+KqEpOt95Xb8VLqkBm1EL0N6qrJdX0JY04GuiwTYwp/pIPCm27yRGp8uxBUkkVJ63fB7Dn9ZHt/ziYWUeXZhu895/NKyZf8pF4GWYg/YSOoffInEr9+jI6kICDngLEHawwjaNeuM4vcfgdHT/AOEbv7RYhm8r8ZHuNp5VnxTXq8hLzDROm6fjWuPdAe06rvaVwQS629Hw5akTU1oe5jvnLcRKg8F0wGeiDO852DmtLZMYBf70SILCX/zuB9jyyiaU9KR29h/+5NbDQM5PPm8dRlRxFlCmG7sT9njB3xl5Ww105cs342DkePku1vDGPCMj3L+xr54rIvM/oEsahvkNTR8sCrfVh89A5H0rvyrPIUVAPVIAljtk5gDlCb5UCcfiyt5RlEdPqery6UMM9uBzdcB/DCwI8geivoKtAKKg4IvRkvPwtyWO/xOk+/+CkOagWxnw7GZEKSG3k4qu7bxUehRKmAs/KedCCVJJrS8fFXKT5xmOI6yKAv/Vp2ZF/zYWzfE0eKgwedx3SAb8+SrjFgIYfoBBUttPGADFQOOJ/7jCZtVmI0CRRWaims0OH62yiCqqPFhhY9ZgGib09heRVPsR65USdKOt2b8urtN/lIkc7kW3P5MK4dg1r72Zx27xAv2vi70S7Ajde2/R/2zjs8inJ9/5/Zmr7pCekQUoAQkkDovYRQpEsRRcSOCghWFFAQsaGCimIFFBQUUHrvvdcQSCAhhZDe67bfH5Pd7CabAuI553t+574uLrIz78zOzrzzlvu9n/s5j1qrI/5ukTFMwtRU9pqJabGrnYKckirOJOcbwxYlAkQmfctTmpoEImVpK+m7uIiuLV3NDJ9BNNUHCLfKwqYqh36hoykor2vOPC7al9Bm9iRcOcXolIWES5KYJN1NLvak6V1ZH/QR5y5kk6TzoEf5AfJOrGaOsJENQg/aF93gRwYZiaC3Noq+Ly1cbbmVU0pcRrExfFWj1WFbmsLvyve4gzu/CoMpzlNRXtWc/p8epEqj5aMW55EWedDGS1Qzudgq0OnhYekBhuz5FgQJu0IW8MzFQD4Z2o7EDQt4Q/4b7JhCb11LBiiloAd3oYDoAGee6uoHRz6DzA1c0LWgmZDPTHk1GV0E5W0mYH31V0Ivf0QHVTKVUmvWanvTwzYDP6kfAjq6lh0g1N2bLm1aMTJBy2t/XCJaiOehk/OoOK2niyaRkjUZlOnVdCi9y4pmIoGku7kfAh+qc79XTunIw98cR0kV0baFDOjUm3mbrpJZWEHaHZF09nBQGo3Ee4fUEIHnU/KQVtvJvTusDfM2iXV5zcRgcrXWhFVdYJ5sFYs0j+AoiHWrHAWa4ctRuIVASCzc2M5PmoFMcr2B9K8XYO983rN/H7CiR9LnSNCxQvERWXpHHFLBSlbAQUlHPi8fwo+Kj/lTMZdHvqjEp1VHvpvUARBDm1oLyQy5vByCP8RTJRJBAjoWuO0FtTNnHfqRkJ6NnVDBUOkJOkpvQOZluruVocg4x6fyZWxe2ZWtHT7gdm4ZmUUVBLrZ8dXEKLNQv0MJNSTm0cQcJn5/kmd7tWBjNQEWISTyomyj0ULiGf1WXIuKYC8ste6DWqNm+I1TrLZ9DAfJLcrkTmwqb8fo1B1svimSSOlNUHgk55RazHDobq80hkcC7InLJDm3lKd6tDAr9+n7r/FCxVmeZwaZRRUk55QSUDs8Lv82Iyo3s55OPLXqDAuGt0FZHUJtSqJmFVVw++wOvPDA1U6JylpOQbmav6oTApRUaowkkCkWbIkjwteRFsIdXpb9wTldEEV+/TiWmIPi/GyGS+FAwS7yDiWi6PQEdmVpkHwUQoegVaoorlDziHQvM2QbADi5/nPeTK8JMTdkBiw5v5EfCp4CGRRii/PJnSCUo1kxDCreBsTfvf96NtHVKi9LhtsVJYX0lZzjj5NyHu3sbwxfu1NQjpfKikldA9h/PZu4O0Um88WGYaogOns7ny6BLvx5QVQ6/Xz8Nm8ObmVWXqPVsS8+i/SCctILyimr0phd68Eb2aItgKc9V+8UcvBGNhM7+qOyaTox9X8R/yOC/gUwxHC721uxZHwE/VuZDzgGV0/KLEFh74qaMoo9OkO37aDyBakMArpTqpJDdg7+Pn5QreYPqlzF8NZ+9JTLOPO2SaylpziZFICzb/evUeG4Vodf9Jtj/sWCALHvi/8MCDZXMJkizFvF0Tf6ApCSW0ZuSRUd/OvKUAE6tmpOx1bN+eENcaWitslboLvYsPQIqpmItfVRsTWvDPfukyiv0rFQM5F9ukjWTI4El0B2rf2CTSmdAGjmaA224u8ySHw1EjmM/s78QiQSogLM08ibYtaAYL49fMvYeIsnjxQJlvDxrC134Mv9iQyIaM7QDi3Z9sE+0gvKaefnxJSF0wicvQ2AnboOTKh6i/EjRjI8uiUIAiprOYnlPkRHRtF/98foEbihML8P5ZpybDzaQJw4qfQScsG7g0jYIQ44V2gHEiC5S7oqioQcdyo1Wj7jUdZ7j+OrHgOgxyy638zh/N5EMzlmU+BgJWfN053p/+lBErNK6N42iL7tzDtEVzslvs7WpOaVM7GTH+M7+ok7esw0K6eQSXisS4DZNoN5pEwqoY2XAwCtwqIgKAiK7ogru0B82CymnGlBQZXaLHCgW6ArP07uQLeWrkgkAv1CPfjxaBIeDlZG88ng2pOSarjYKZnYszU7EoqBSlp62AMCn2nGMD3KAqlbja6/diXAIYDNIzc3cOdqIJEIJCwchMySuZ5EikIiGh07WMnYXNlFJII6TwUbZ2yV4sqUlVysf4ZJhafKilvZpWbZ5Gp9KVg78taoTnx3+JZZVquHO/jWe621pdoF2EPEEIiYUKes0CycZdqaVdiJnfxp4WZLG69+XMp9k0PLT3BI1w6h81Seje0AMiUfV46iq+Qqbj1nE+HnJKrFLq6Bh1fQ2SUSzUf7oVKDQzURpLKW80Kflly9U8jsWh266Uq1q12t+9DqIchPhi413lp2YYM4eeppOqV8R6UAs11dmPF1R3yrfSEuNBtLRMY6IiWJqJVOyCvz0bm3hopkwDxUwOw+z7ouhhDuXQCnloNrMPOLNtBCSOdo+CK6tfIlIbcK292v8Lr6GdTIeI7N7FW+CsCzsq1waytI4G7kdDz7vgD730Nx/heWK8TvjFcEsVPoxp9lbUnSN6Nz1XEWfXIEfyGL1+XQr/JjtinepL3uCiRcQVFd1aQt+4KjLzy5iw2HbrJ/x3pWysVMeVJBT5zVFNRJSljqwWFliuGh05cNRr+ZAH06y+WfElVxhu+1g4grUvKp+hmGPTQGWVkmZ49s54eynhzRtaW36hYOa8bRCyV7FTWT1nfkqzhKBE4jP6blrscRSqtl5nfEwf57VLcVP8DjAjUxqLknAAjqPBSq03wPj/CisFzN6CgfvtQO4c3MLD6Wf0uaxBsf/0BOez3C2u1JbKqay9fjw+gU6Ma0heJiwXCfZtDzk5rn5xIIryTy1/GLvLG3ktMeY5k3uhMOXjUhiWaPe+hiOPQJ1p2fg59HktRuJudPBjGofD435/eH4rscP7yTpFPbgUTOlaXDpE2QeRXajRPrSy24Rwziz8N2pKQXUdBpINOTarKsZeFElt6JP7Q9OasLIjI8khdbuhDkbk+FlRufpzlQpc3D28kaV7uad7ytj4o3B7Vi2peDmCjbS1XQYBSO3nD6O4iYCHGbKNIpqFRr6Jixmus0Rx/6EGcOnWBkxVweCvES1TQvnGTjpg28fCUAXzuB9kIanlWpOLR7yBgyZGrUveWl7uy8s5KRf33NxuEb6/zW4zZ9eL50Lb/ZTCCy1mq8j5O1cXW7pFKDvwkxMrHqTQa65ROSf4BOQryoMop+GtZOZKBmOvOYSkZuIb/+sJiP5dX3L+MCN7NL+OXEbR7r7M9IySGcKlLFbI6X/4CMizhViuTNJ/JvKNDbseNGNNeFHqTo3enfyoNPYxxxcHACW1c+2B5PTkmVMWwyzNuBK+lFyNGgB2YJa9krRBEiSWW2Txp/ZXvS68Y+UuTPs0B2kJGKU9hpasiik/JoBuas5Kq6lHUne3EXF6zlUr58JJInV57h9q0bTHJKYb52KVCCXqPjhCSEVMlxNuu6EiSk8X3zA3hd3QNOM3nXaRekJbFYN4HH2ihwv7aSd4TncHF0ALKJ1/sxSHcadr7AYzJ4TCaalcfp/Yn0i2LP8Sxela3DptNkgiqOMTQngkW/7sHpUjI9YseRXG7Dz9L5eAr5+JBDR+K4fvE3ttotRVGYRLRwkz43lvGMLIZW3kMBcLNX4idk8rH8W/FHD/oIbB+Ci2f5aEc86PvQRRtHe8kNoiSJRjX7aOlhsi4+C3tFT5tc776MuPkU1nIJA93y+DxPVEsqe0xj7aW7jJPuJ6ZwHTFyeF32Gzallej/sOMDWQfGyQ7AHeAOfOTxJO8lduJL+UZCdQmgg7t6JzxzxDpjbaXEMKnVJuyEmDpVmOgAZz4b1w75hikMrTrJCbl4H3N3fcSTcZ9yznYuMSEenDh3jrXaPhy4nk1zV1vKqjRklhRhGI087p/LOLvnOUwUXTYcQrBSQXk+zWWQoRf74elVU1m8YGHNwlnU4xyuCOTdzUV07edOyPr+UJLJ4MIlJAnDcShKIMOlM81yT+AuFKAOGUdF0lHUES9zfq+ecVVz2Kx4m9dkv9E8eRlc/xgC++K47Vm2KbeIc4hlnZlv043VkrbEuuUQUngM+r7NVfnDzL19FYB+TllYH1gEBxbxLRj92kZLD+N39gleqnqJu7gQf7eYr6rKsP19LEMkUWzVdebYtdu4UUA2jkz8/iQDJadxubATGMij0t3Mla1CIWjRSKy4ovEWsxRXY5h+v6hO1MPjJT+AFNLdY9mSFMl47QF2/7kK6NRoqM/Oq3d59uezdbarKMFLpaJZyVVu6H3QIDN6Q3Vu4WL0QQoS0pil/hakcFP6GJ8wiQ93ePD1o9WL+zqtSP4fWMSbAoTIEzmkDedWXDlFsgAA0rNy4MxhaD2cc6fP8qtioVjvMvJxtOlgFppnSZkEUJZygXZ3NtFPXkRXyVUekp6gIG8PE4tehOru4DP5MtgH8y/qmeHa05YAACAASURBVFvxEZRmw18Q7/4QDwvuvC//gSq9FAl67sYd4ZY6AhdbBYFudmJGUK0GttfYCrwkE+ciN/0eJjDld0ZKj5DbZrLRmN7QPmYXV1JSqcFOKQO9Hs2GZ9lduRYUkFDkzdebv+HlUT3Fe1FQjpejNW29RfX1lfRCOjV3Rq3VG70HtTo91zKKGPrFERaODOPA9Wza+zuZ+QOeSsqjS6CLUVSRll/Oi2vOMTS8GbFh4pxp5rqLRtUZiBmVTcMzH//xFN6O1nw3qQPHEnP5aMd1HjHMaf6L8T8i6F+M4RHejRcygax68KiQS8G/q9k+l+oJUJi3A3Q4xMt/xKFNl9ZdkasFF5NB4z+Byd2aM7lb80bLLRkfwYItcXVi3PuEuLM/PttMPrhgeBgz+gUR5GHPnrhM9EhwDhsAwWIYVHq76eSliJlMTFOvGyZwpZqmpYQ0xUv9gnipX5D5RokEeswCIEQlmnAa8PKAYF75/SKeDlZIJQLT+rbk4I1sLqYVUubVleEda87185Md2X7lLj5O1mYGo6YoqCzApus0MSW5b0c4+Q10rpncutopKcSOl9Uv8FGvcFh/iVvZpcRlltG+c03IV9dAV7oG1k94NYY2Xg4kZpXgZm+53jzS0Z8Pd8Q3aKxXGydn98PGxH8g0M2OPTN70cKwqhI6BLbOgu4zCOnzFrP8Unljw2UzU0KJRKBvaA2pOmNAEFVaLaOifHCzV/L1gZt4qRpW7oyM9OZwQg7tfFRsfrF7k4zjkouSm/w7AeTSuhPA2mimsuZiZku+CP6Jl2JEgsWzmuyY2Mk8fK9LCxfS8soZ2MajznlMMb6jCTHXxOsc1s6LgnI1C0eEWcxOYooFw9sYvXasFVLjs5CYTPKcPPxAJtabbL/BvJXcmYQO1cq0IZ+ISkN7T5yA12JD2H7lrpl3g7VCyk9P1FWueZgYtbrWbs+U9tBnNrVxK2wak290ob3vJS7abaBM5Y1d/tPsTlfwaa8+cCgB7pxHHhoLnZ5Fl7YLriUDoiLIIuw9xf8jHhGJoIMfEgKs1vaja8/HwdUWVVEFHbeIz3LD05FofltCWpUd27TRPCrdQyVy3IRCnFr1FdWZw75AGPwJyxa9jFPlHTrb3GF61QqmKqRs7byaESc/M379Db0vNl6tORy5iXYtvHHzCoAfYiA7XiSBqmGrlHFc14ahVe/z/XMx+P0ktlu3mg0lRJkrDviKxQHSEW0bukvFQf9ubXsGSsXB8A5tNBW5pSgUSmQdRW+sb1L6G1PdHo9YxMDTT2Gt0xAgAZ1UidDpefIvb0fX5ytatwuD5vsg6RDcOSe2Z7ZuUJpNtt6Bn3WDiHfoSq/CTcTp/Vko/xHcQlH5t+ODUc74Odsgk0qMmZqi/Jx44XBP3CngkvNA0PhyeHsOkAbIiQzyw85WwZC2zdh6OcPMW8UIOzfR2J0LlDmF1ksCAWIbPHGd+Pc7hQTo9fQrPMOoKB+xjjv5UxQ4jNnHvLFH9HIjoJv4rwEsHNGWt/+8Qu9gd7PtnVs4M3doGwYvFT8nm/Q1nZo7s+daFjYKKb0tGNmHeavIUvgxRrOQP8ZMFq+v1VBo3guGfcnGQ9f4eecRRkqPcNWxD3NdatrVwOqwGhy8uOMdC1euI1Xa8IrNEuJTM/nay3LfHuatYsKe7yzuA1C4BhCc9zM9/MS+6MPRbXl9vRgu7etsg5UhY1WVBkEQaOej4mJaIedlERzN1PKstJBIZQaKnq+KZu0jl6Na/xTxVk9Q9rMNH8vLqNTL0Ti3xPb6Nj465weaCuL1rVkg+4li1wjsvULg0loAzg7fy9n1YuiMp5BPqCSVGbINXNEF4O0zBYfl1eph/248LQnGPbWEzPxQfJyiiLAvYpRsFWOlB7CmEqmgF0ldQJ9mxXiN2I80uzSHTjKgmkf+XjMIv95TuHwrhU53TjNT/gcx0jM8UfUq8/iZqKwRtBL0bNO9WWP+3awdwoH36QJ0UcCnfCNuvwPclcPZlaDXUhY6hikPLUUiEeh2rRfvPtzdaGh7RdecQdLTXNP5Gs3+ATpK4on0cWSx/Bs6SeLhjJi1821Zb3pIL+N9Mxf9um0UuY+ipZBHxtCfaXZzHTfzqgjJ3EnI8VGMUUKhXiTuHlaewPryu3AkhSj7GF5QvileaveFeHWYQmi+eD1ZxZW8FtuBx6s9Dx+WHmCm7U7SKqyJlsTjnnPKeI15nd+Em9mAwJwpY9j/+3V62qUj9WzN8TbzePvCEyywWs14dmIjVJKl8MW9KpVxsgNs10bT1bUcVf4Vxhb+QDfln7hQRBlWLFWPYI22H8ccZpNQoUJDjZF4ndZep4U/ngCtmpaeI2lb7akVduk9XpU50CZuEwDv8g0ucQUMl1cRIqTyjeYhFklW4Sqk8oY0huuG860YipWmjAEcED+HVCtuL/zCbPmvALz5xMPm6mlBwNE/HDjCqkQr7lS9Si/JRSbLdtFLegm9tRNxvb7hwu9Pc0oXytzRXyAXBDRXMoBz3ND7sl0XzQjpMdCBeuOL5AY/jGfyFtR6KcWtJ+B87Reiyo4SpTgKhYgRAj1ewcPEN04ir+5vIyZyuMCV/Ql5dHSpILbod6IlNzhh9ZJoGo8D/LwUt8wTfKU4woWKQEbfeJ93lAlMU7+IDokYalYJmVKN0fftJ81ARr35C48v2Mgy+RLCusSiOrWYchsvPlLNYfSQwVT9PIaoytPkB4/jxE0pKTo3PpJ/y9WqADKKXajS6EjOLeV6RhEPtXE2CxM9ceYsoKe5cJdcvT1vyn6lh/QyXuSSU9AMd+UdEnVeOAolbNZ2IVnvybYDeu5UKFgo+wEZWjR6CVKfKIT8JF4pW8VztwLQ66MQ1GVw8CM4+jkAF3SBjJIeYZT0CKTCWXkUHWTeBCeVw7U9cOhj2qhr+iXp3nl0d11IUMpuJJKOHNBFcC4ln8eku8jRq9iu62Qs+458pfjOmsCxMkPMVgxs0HZHgZqh0pPMzRUXnna5TiIoaydtsjazSA7ndC15umoW78l/ZLj0GD9qYhnVdxg30jMpij8C13Owq8rifdVcXn24P/Lve6LVC+wPmIlN9nlG6Y8RPmEJMwcE03fxQdLvpNFGyKGb5DK3M6JoU3yUyrOrUSbvo0Iv57bfCFqkbiTy4jwKIz5G1aIDGQXlRPg54WqnpJnKihO38lh/JoXMEjV9Qtx5Y1Aoyw4kGlV2BuViwrULrEYCiOPOhEwx7O6h4t/wkqdRetuLz4r6sOVSBotGtaVL1TEir24gXejMWX0wIHDiVi4X0wpo6WqNf94RTutCSS+AJV8uRgCcbLrhaFPPgut/Ef5HBP2HwyC5NjVJM8DFVmyQw7xV4OHDNW0hUNwoEfSfguER3haJsSAPe359prPZNmdbhZEw6h7kykt9W5rJNU3VDKahS4YJXGnVvRNB94ox7X0YGt7MKHmcGRNCiKcDL6w5Z1Q5GBDu40i4j6Ol0xhRUFmAl50XGMKU+r9jtt80M4AhTGrQEtHY0hAj/yAQUD1JMFNGmeD53oEMbut5T4ojS8aCLd1NiCRbV3jjNihsERBJjZ7BbvWSUSAqmN4bIZIM9dWt2hgV5UNsmKcxw0dbVI0c8c/AsBru36azUTngYqckfkFsnfv+3ogwFgwPqzeF59+Baapv30ayeNZWeBlg+ox8nGvqxI9PRFOp1tYQYwpbM0Pux7oE1HvO2rAxquf07Mn5jKA74+jq1bXBY5xsFJRjRZF1db3wDMPFpSMF6TcJ81KJK9a/T4bWI8ArEm16TdiVRUWQKbwi4MWzILei+MKfOFn3MZKWpkRVVKAXvHIN6woZ/co1fHM+hW8O3qKdcJONQSZhtzIl5/yeYM+1LJ5q68+b/vHINj7NiFMTAbjt0oNf73pzUNcOF2s5/bvXDBB5fDNozUk8u2rV5Q29L9bO3ky1+oDrhVI+HzQOfFSiZHzFYNZqevO65hmSpWL69KfVs+imvcy8GD/O7HDAKqvEzOPrjUGhRiKowLU9vHwVMi7BvvlI+r8LLfvhHPMuPQwHODQT1TFho6DNSLBzR717Pv0uDKFIb8NjQf58eKEZRRUa3pn+PHInPxAEi4Rmj2A3dEj4SjtCNC3OrlnZ++bR9sb+YvHYdvRv7U63eshwQ32sHbLaGARB4IfJ0WbbYlp7sHRCOG9dqOcgC2jn68jml7oD0DHAmVPJecbtrb0cGNzWk55B5mTP2A6+ZBVXMqN/EL7Oln0Qjr7eF7WuNyir61+L3oYLx9vdlUS9Dx9rxuNQIjMjVoNMstkZ+i2JRKB9gDPnUgvxdWq8ndfqtEhNzfOBEA87Dt3INrb946L9GB7hzZX0QrP+oLRS7LO/frQ9eaVVfHPwJlsuZfC9oi3WAzoyw696bNB2DPrKUoQt0ziuCWGnMoZjpV68Lz1Oz/JrLJcsEtUK5yBZ74F81BrsHRSQmwiRjxLRrj2C01J0JQ8TuzqTr+RLCZKkEyZJhsNzay789lEmU52coxgkLi8zPG01jjLRGK9Eb8U6TW8chRLS9a68NOcH1vy2koNXU2gu3MW/50TGRbgT/Nl1NMjY1rozZ9W+jE6aRydJPK/J13LaqnqBZ/8Jtpt2ca2GQcx7sCTc7F5+qh7DzMfHgntr0cA+fgs2YUOwqa7zR98ZDYjZzEI97flkmx0jb7fhvD6INkISsYHW9E1ZQjfJFXwyduAniSe++eOEJonZTg1hkj9qYpmSvYOo7IUk4Etg5FDoMIxAvZ4/v3yNEbmi2kcllLFe15vRHIDz4jm6sJ8UnRsrtLE8ETUFJKLhtQHP9gzERi7lnc1x/K7tTZnfeDokfk408RQGDEIVPQ7sm2FlFwbsR48eFzslfZ6YbzzHZ+MieHlAMB4OQylf5Ie1roTSUb/AoZe5mFbADPUL7Ho0BtXBmXDpN7yFXLL0joyrnEOSXlQJvOKzmh1xOcywXoTIfoC2ogBOfQdHl4i+cHk3RQIbaHt9G6k6Nwrco2mbuo0XZCIRtlQzkjmIZAb2Xkwu3sVk2S40pdZItJUsVl5nKNXh2wgw5ifYORuCY+EhkTj44pYHLxUtBkc/PFu0Jb1EVEJ624l9luH+rT6ZAkRyVhfMGNlRbIUKhNHf46p0Yrj6ZQDmVY+DTRX32W2fIf6uFVeyNYypOITnpa9J8ehHz9tPcnJQP4gcTqGNLxeWP4O7ox2t+r8LgmA0Egao6vceyptbYMhici5m8GP8ReytkoktEjMU/qntKpJNAKmwj450FS6zT/kKStQUCbb8oFhsVp8NJNB5XUsix7yGylZBIXZMVL9FcuwgcHDAOnwc86rV8LO857EyfhsTfHqi4SQTqt5mj/JVNivnINVrKDj3Fd/9dZL5shXwZxUV49Zh1Wog5N5kXtIjvKpUYiNUotFLkAk6rlpF4SJR4l4m3u+WEnFR5AmZ6LUYf30f2XoVPWQiCbFHG0n/p/eCuoKST6OYV/Yl+VuLsLu1HUWeSPcdjNnG1E0ZLJV/iYNQSrHehgj9DcKkl1BWaMDOA4rS8QUuycII14jnfi1HJHI6yi8zpPJ9ehyayCS5uG+7NppsvSOeQh6dJPHE63wpljkTPf5t8Iok9eiv2B37kFXaGGwHzuG9rdc4q9/BPNkqbrv04IOK0WAzhLdLFxEhSeQThzfJzbHmjC6EQdLT/KWci14i4076H3jrzqFdryRL74wmsD9yn3Z857WAlUn29CjQctKuPyPKv4G8W3hIrHhV9htPS7eikFXTqCtEQlMJHNaGMVn9OodGD0C9PoveqQdhVT+KBi/j/ar3+KpYS8GKQBYqXPnrug+/y3/kW81Qlp4bhUanY2u14siWcqZIt9NNlUPnsgMABFesZLH1TwxOOIRuWSum6a+KyrEqGKX8ixO61ry78TEmKGfwhEx8pgk6b45KouCMjnA68bJzFr1LviRPb4cWKW6C2A7MUjUuaPhvwP+IoP9wPNzBl+8OJzEozLPOvih/R04mORhVFK2aORB/t9h8Qv1fCCu5tE4aylBPB4tlDTGkxerGU8w+CNRO22iQO9YmgkxxcnY/owpCrauZwBVUFtR3iBFzh7Ym1NPeqMwwYGCbuvXlfmEgeDS6umSkAf4uD454MqJW1q7av/FBwUbRtGZQrW1YIfP3rkGsN51rhWdZSgMqCAL1+Bz+xyCmtQe74jLxM5mk2illRkLiQaCZyoqM4kIu5O/j2d37uPz45QbLG0h1Z1sZSdXCr1kxwUzs5CeGmjl0hJlxxvKm5E+9iiBTVIfZ2vd6kcEmm+sQdkp7PJTgoYKpfUNYdjCZ8/ogaj/UCF9H9lzLQiqTIg0fIyp84reA3AbvHq/y/dxdaPR6htSOX5cpjSosA0zvu72VjNefngSYvLf+XdkYMIf34v2RCFD56Ga2X0yB03BU1xZVVD/YsZcKtc7M5DLQzY5lE6OYuvqcSHjZe4gqqWALcRWmkMpFVQcgH7cC/6wjXE4vJMLXkSe6BXA7rwy5u3uDp7BTypjQ0ZdfT6Wabf/m0fbEmvSXVnIpIyPrNw/tG+rOw+19mpTauDEIgkCvUAejp9G9Ys3TnZi/JY5Vx2/jaC1O6pdNbF+nXEwbT2IaaeMb8jXoE+rOghFhzPnzCkUVGrPFE9Pxg8G/TyIIvDowlOER3k1SfpaoS1ApzUn15q7icWoTvy8ruZQOAWKb52qnJMrPkZf6ispZL0drvBytmTu0Nc/1CmTCnjf44RrM6FiTZEHS4XE6blCSpbPj+wnRrP/lLPPSo5kizeGkrhVvyH9FJZTxuvoZVrh6gkIKT4shx1KoDg0fyQ39VmKrPuD3qT1olboO692vQfg4GLAAyvOo+KYPR/Tt6K8/weO5oiJvZOW74nuLHhBo7mqLylrOS1IZpb592Hn5GgA/BYQi8XCnV2gxe+OzCPKwI8DFluX6EOK0/rSW3CZf0YxHJj2P9ORXEPcXyzTD8OowjBGxMWClgie2Q9EdciXOfLZmE79oBzDTEKo/7hfIvCJmpKsFhUxCpJ8TT/YOZcqKEj4d247VJ51QtfFiY9JZMRnA+ing2ZbQxz6DhMFU6KDot2fZo41kvuYxYtr6IlzfylqX6bxtIEsFAd9hs3l0x3CWumzANnwYAz3CIe5XCOwHy0Rieor6VRL1Pky3qiEUPxvXDl8nG6QSgcndmjO+ox+zN1xmRv9gJn49no2l0Xzx0JOoqtsmp2rzWsPCpykEQTC2YaUT/yD3xgGah0ZAyx2UJBXR71QKvk42MGo5jFrOyUvX+PF0FkkJJbT3d0Kj1bE7XvRf+VY3ECmi4k8rANteAQQ4K2ZNpd9cUTl58hvyBvxM65BQ2PkG88/KOagLZ9Pcx2G/reit2W06xzd+RXlOMr3HvEjijStUHpxac+FP7xWN40OHiEkHqvHSy3MguY+4sCCVE7s+FsDYtznayPF2tCa9oJzJXQPo3tIVtcsJBJUKrFS4F9YNizIlgh4bOYydVzvyym8X2KjtRjfJVQ4VD0WQFfHz9WXMaD8NlURG4Myd4v2uHpeYKrFtQ/tBa9F2wrAokG0fClmiyf06XR8u61qgQMNF/8kcu5XHpiFabuxfw8VKD9w7jeUl1VE4/wtblIMJydhEsdwFxvyIk5uX8bv2v9JbDIuXSKD7DLPf9PboTvx6uhkdm4teMum48a12CNNlG0EA5Y6pzJFJSNR74UQJbmsnktJvCSqlHhVgI1SSZ+WHLLAXaTJfAgbPwlop46/de1my7xbd5ddRaMtoKaSTL3XmeckGQqnpZ+5GTBf/kFtRMvRbbNc9jMOZz437FytfYPcpLV7ubjyZ9arZtTtJK4jWX2Zkj9H09Shj/bqV7HMay/ej/eCHgVCaxRVdAGGSZC5YPVujDAQGSU8b//6W0XxcNZwwT1c2BouqU1Wv52m/3x81Uj6sbrttuz/H+9cD2VwQTEZpKa8ODGHKztdQoObwrFjyy6p4Y501ozMC+cFrE447Z+ON6MsZok/jJ81A2vqK9/npZ6axbdlRbueWUq7oxTCWI1neC9uqYl6QwSVdc1yklaRqVHSWXCNR78VrVc9wRd8cLVK8VFYIPV6ANaLfqcO2qex0deaK0o692RcZXVJK3+p1ppnyP9ii60zixWQ+kW3hMOEsVlSrIU2i5Y4op+OuL2CvLorW5VVk65oTLhGzB+7RRREjOcMRpXn9CZKkE0Q6SGCyciukQJHehjtSH8J0NSqrcWW/AZP5b8f/iKD/cAR72Fs2ogaGhnsxNNzL+Pm9EWGMi/at1yn9fhCXG0ewUzAyiYxyTTkdV3dkUY9FDG0x9IF9x4OAVCKwaFTbOmFmhglcuabc4irlPw1fZ9G/wbOB1Jqmq6HlmppWv7Cy0FJxMxjCJExx+LU+DabyvFcMj/QiIauY53s3EDbx/wFK1CUWt6cWpbIlaQvPhj+LRLg3VYEB307qwIlbuWbeN/+XsWR8JKeT8x5oW1Qbg8Ka8dPJulmh6kPvEHdeiQnGw0vNWVHZj1wqqVdRodXVkD+NKoIagaudkqKKukSinVLGtH5BdAusa474WJcArmUUM8mgkvLrJP5D7Lh9nKxJzi0zmms3BFN5s1ImqUvcCgK3fYZRHJ+At8oaZcueVOSlwGlxAmKqAhrWzsvs0MFtm7Ftekcc7e6fKF06IZL3tsTRr5U7jjaKJoeZLhoVzoDWHkxZcca4LcqvYaVlbVjJpXz8sNFKma8vfo2tzJZJbSbd03kMqK+daApkUokxtNJAXP4TkEoEHuvsT1J2KR0CRJ+Fbi1dOJqYS4BrzftgVAQJIqkQ5t00xaQlIshgiFxfXyiVCGyYWjeMzt3ByqxdVGvVyKU1dX7OuJ4sP3STnsFuqKzlJJU2Y45GJIsuyDqRX1qJXmFnlgrdErRICfW0x9rzUSi+Dd2mVxObHnzZYRdfHkphiKQjbzePJ0Xix/mEIOytZBRXiETF8sfaG5UTHiYhyUHVxNqyR6PIL1Ujl0qMKsFyrHhRPY1gZzse8+8Efh35eMVavr1uzWctokUSCIy2ACqtjl+0NWOEpMIkmquaGz0g60PfUA/jOHJUlA95pVXE7BlBkJ2ScQHl0Pdt0Qg/JBalXk/3yiWokQICe3xeYPG1AYzyMVfYtvd34pdnuwOimk0JfG+nJCVhDfOHL0OXFU/ifpGANc0MW5uUtZJL+XScmIRjyaSuLD/oYaYutlPKeHdYG7MMbJZgG9gF28Au4geZkm5BbnSrpaTrFN6K4MBAIs+k8mhnf17/4xIX08RxVgsvK25Xl9O2HQtSF+j5KhxeLN7fVtXm0d1fpp2suj0ctZwfT1V7XVorYfDHxu/qMnaW8e9g9xDOBDSDvc+KGwzZA2sR9ggCNO9BfRAEgcVj2zF7w2We6dmizuJYnTBpMPYPEb6OWMmlxvfvqK4tR3VtIQ+s/b5jZdxNYgL6E+4WbrHfXvFENMdv5ZotbHRv6crzvQN5olsAN0uTcL6QRcu4TH7Iql4KuZXHyEhvwntEsPSWF3uuZbLUvzm06wa9XqPybBqDfu+CtaDkcitzG4bmtc2XTeBkq2BqrfFo+KMfoMsK56uDSbykXYVcgEXqR9DopXyh/AqvPS8iE3RU6uVcGbKR9q1DwM6d1qb3yq8tt/QV5Er9KawS+7NpPVvyc8lIRrexw6ZZK8hP5lH/LsZjPNt0Z1boX2jitrJE+jkfqceyrKIbFBbzTM8WJGSZ9wex7YP59ZQVuzYassYNYZivCpxbwOStXN+4kCduxTBMeow5cjFTdPfKzzminMEi9QSiBj3OwCAHEg9rUJ9Jw809kbyKVjhbOeNgJWdqv1b0CnGjdTMHCsvVTOoSwCobKzK2iQRHpK8j657twtZLd3C3V+LhYEWIlytr74SQ3+9jHNeJJN+Ozr8w9tANylGyx7umTw1wseVUUh4VDipWOT7P5AIxIc9bsldYXRJJ/0APjl+7zfvyH/hKM5zuXXtSnJBNS3c7ccEheCDvtT9K0qktfCD7litWkcAN4/lP6UJYqJ7IeuW77FPWZKA1qsyAOz6D8Erbjt7aGVd1GZfavc+TRwNEZTB6vm62ja/vhnJJH0g7yS1+V7xLrt6eydq32TbRE04uJ6OwgsLcu7SRiG/9HPVkvLo8TlhMMNeSbrP7p3d4kb8g96boJ/hfjP8RQf9FsFXKmuy2DlChqUAmkSGTWK4GtwpuMW7LOKaETeHl9i9zt1TMWvPFuS8eGBH07aVvkUlkTAmb0njhRjChVviAXq9Hjx57uT3F6mKLg9N/GoIgsHFq1ya7zperawZ5TVEEmWLbtB4cu5lT78T2fqGUSXlrSOvGC/6Xo6TK8gRve/J2ll1Yhq3MluWXlrN7zG5s5Pf2DFq62/3HKfkySzNRKVWNZ0izAGuFlJ6NDNz/LmYPDqVNQBHvnBM/F1QU4GhVPwkglQi82DeIX+PP1FvGFGaKIF0TFEEN4MjrfdDXI6ibOSDY4naVtZyvJkbVe87WXg4k55ZhJWuc3I7yc2RavyBKK83VH6YwhAQZ1IQDWnvwxobLuNsrUcgkzBkqtgGWlCiLL73BqbunuDTpUr3nbwjNXW3rhFk1Fab+ZwkLB9XryRW7PpZRQaN4JvyZBs+37II4sL1fIqhU/ffCkLXVykuLBvMPGHMfqmnXlz8m+jVUaEtQyqqVrCaKoHuBpbayS6ALX0+Mok9ow0qvxlBYVYirdc0zf6idlzFj4oz+QSRkljAu2hcHKzkz110grTQfH3s9xVXF2Cssh81/82gUhxNyqtWhMvMkGYC3qyOQylZdZ95/dC5Xz6ZBQhxKmQSD1th08SXSRDWXVn6ZP5NP82Lki3iqxHe1g78TbvZKnunRgoXbrmFtUKUKAkq/9qiv3yBfd4WCChuzNk0mlTA8wosBrT04ln6MZ/c8y4c9PmRwC1MNYuNwtlVwZk4M+1MU3HUJI8dIawAAIABJREFUxdO25p0WBIGqasd2BysZJ5PyKK7QiEk4GsGSc0sAeHfSJbHO7BdJEmkT63KUnxPLH+tQZ/vjXQOadHxT4GSr4Lle4sTOELosEWB4eyeWiv71aJuFQ5jog1bHb05mvtj40ZhwpE14P8rrOg/dFzq3cGHfK70t7jO0faaZeFu42vL1xCh6VWcwa6aq+xyl1iIpUVRVVGefAb1D3M18O0Gsj6/HhgJiMpzXY50pLFebkR+fVZN884e3wcFKRj+T9793iBsaZBRX3v+9ifRz5HxKAX1CPSF0JhJNAmv2pZJnF8SwwRNo7mrLhZxYHDY/TRdpHEpBjXOLKLCrSzQZFMymbW+gux3DY0yyyDrUTe4zY2AYPS5mk6J5l2atukCcGKbc0sKCRkxrD349lWK2zbiA7RaM0/jlZL+/lx+0g/GW5JGga0a+vBnhFd/yXGx7BnYXCbDcktMgKeN46SfM2L+XVYNWAaJXqQHP9BTreZhXzbwn3NcRO6XMzE6jV4gbB25k4dkyCp7aCzot/lmOlGOFrUJa490J+LvY8OeFdKQSgZNeY5g86WnISeDiThsoKcLL0Zo5ozoyfYNYz+a1cuetIa0wbQK8nW35Xt2WaPUXtFfthLIb6B390HebxITNATzWxR+ZnxtFB7/ijD6ENkEtOX3iAJu0XalAwWuxU/FykyIo7BC0akKRwdHqjLsI0HcOl1aLA8M/F77IvuMdmb4phVFdWiFtFQathuBYqaH7vJ1sU31I68qLPP/kUwQ3bwESgdAWARzsMZEjVuF0svekfkOK/w78jwj6D8N3l76jp09PQpzvX6a+K3kXnZp1apT0iF4dTYx/DIt7L7a4P7tcTPV4PkvsHQ0KlTuldxizaQx/DPvjvq/RgC/OfwHwQIig2jBM5ByUDv82Igi4J2LGVBGUW143ZWRDaO3lQGsvyyFy/w5odVo0eg1K6f/9ZnT1tdVUaWvSjer1euOEN6dc7PQ/PiOuBiYXJdPa5f82cabT6+j/R396+vTkq35f/bsvxyJkUgleLjXsSnJRMhFWEY0eVx+hVxum4WB/VxFkKcTv72JsB1+2Xb5LhUa8zkNph8gtz2Vk0Mg6ZQVBYOaAYL44/wW7ktOICagbujUkvBkDWg8yZupwsVNyanY/KjXib3+yWn14I/8GnraeOChq2ppTd0Vz12J1sdn2fwXE0C9vFFJJvSSQWqsmvSSdL85/0SgR1BgKKwsb7EdMiSCdXnfPKsFgD3HyUCcd8X3gQOoBXtr3ErvH7Dab7FuCnVKGRJlF999GML/rfEYGjUQhFevtPRNBFlRRgiAwqIEMqU1FQUWBGRFkikm1PMYCXG05czufEtf36fprQb3ho7FhNZllLGFkpDdvbrhMoJsY/tXWR4WHg5JRUT58fUDMbGQ6+fZ1tmHPzF7klVbx5G7R++u5ds8ZF92cbBWcfqs/VRodl9MLmWaSlKJvqDsHE1P56OJ09mRE8X3M9+xN2cvAgIEIgsCS8aKP24oruwC4knvlnokgEN+JaftfwsfOh+2jt5vte3NQKCGe9my7nMG6M6KJ8r2EZhdUFuBk5USAiw3J9WQ9qg8ZJRkIgtBofbUErU7L2utrGRk0EmtZ49frW618kUoEiqoKERDQo29aKHA1xjaQidMUZZp7uw+mfY7peMMSLmVf4mbBTUYGjWTrtO5myqDa752vszVzhramU3Nnhn5xBNAiSET1i2Es83cwd2hrovyceOX3i2bbvRytjcovA1zslLw6MIRwH8vt6Y7kHXx06iN2jt5ppgI0xdpnuhjJc4Dne7fkJ8Vn9AxwMvpw6ps7szDzey6efJ8EnQ/vO1pe3PKu9mB6umcLlh+8SX6Z2kwNWx98nW1YMj6C5JxgHuviz7Y40V8w0GRxb8PUrpRUaPC0kMDENJLB3cGKeQ+1JtDNjlm/K8kurqRvkAvzh/fEy4TEe7iDL/tvid5BNwtu1jmnKUznBZbC8we3bVaTvdpHJGJb6ESvujBvlZkKLMDFFr0eUvLKKPd8lyXJI5keNZ3yzQcA0aZjfEc/vBytWX7oJtEBznWIYFPFn7OtDMqgpPNzCGGTSeikF6PkhTY4RDxCX6CwTM2Lh2tUu1+52oKyuj7IFCgQE/Dsi8/icEIO3YJc+WBUW9ILyhEEgZ6doplv5W0WQWOnlHHqrX5czpDwU+I6PmrRwviOCYKAk38+L5xcwZ4Oj+Kh+AesL/6D8D8i6AHjcNphzmedZ1rUtHs+tqiqiKXnl7Li6gqOTjh6X9+fVpzGrIOz6O3Tmy/6fVFvOQPhsOv2rnrLGBQphk4xt6KGmLief93iMf80cspz6h0EmiK1OJWNCWIKWweFA+mkN3kCWB+0Oi15FXm42fxzSgdTIiirLOuBnXfd9XXo9XrGhY6rs2/LrS2Eu4bj5/Dg0iRml2Xz0J8PEegYyOrBqx/Yef9pXM29yuPbH2fTiE2iUTfiIOyDUx+YlSvXlBtVP7UJu3tVcpniWu41QpxD7jvE7EEhr0IcBBxKO/RvvY7GUFhVEz7Z1PfF4BdmSuxZwj17BP2L0SvYjU8ebmcMmXhhr2g4a4kIArEef3tJNHe9HGB5QqyoZUxeO1RRq9MyetNowlzC+HXor3WOzynL+ZcTQVCz6mzA6bunyS3PJba56LHR1AlOY3Xir8S/ePvo2/w5/E8CHQMpU5ex8upKprSdYiS8TYmgMnUZdop7U/o92tmfNt4qs9S49WF70nY+O/sZW0dtRS6pO1H66Yrob2Ig7xpDQkECAPtT9zMyaKQxCUFMIxkKocaPD5pOtt4PTN/5xmAIL9FKxDZ53fV1pBSl8Er0K/Uecz7rPC5WLmb9oZVcypm3+xuVH9EBzpycLYZQGIig2hN1o8KzugnNq8jD3cZcUaGQScwM+kGceH00zp8Rf4mh+d9e/pZvLn6DlcyK3r69Kakq4csLX2In/3sK0qxysb1MK0mrs+/ZasVMiKe9kQjyrmfybAm3i27jZOXE1mk9KK3SNFo+vSSdA6kHmBA6gZj1IkndmOebJexN2cuiU4vILMvk5fYvN1resEin04v9trOVM7kVuX9bAWoJZeoaIqgpNgXFVTW+liXqknrVbAATt4lJBEa0HEEbr4YXOwVBMJL6F+YOoESbxaAN4r4HQQRZyaVie/G7qH5pDC/0qd9y4L0T71FYWcjd0rv4Olgm3Gr3WRJJze8zQBAEnujRgm5HxSQIi+tR0SplUmMIZTOVFdN/u9DkxCumyUme6t6c748kEeRhxzePtqdSozW255ZCxJ1sFSTmJ5JYmEhsQCxPVGddbqayIru4Ek+VVZ1wvdgwT9a6hjFlZ+PX5mijQBAafh6GOm+ol4bw7La1woH9q0N8kZRRoc/l+8vfMz1qOtnVWR8NyYp6BrvVqwr3NjGNt7cRn5+hXbeUBMXBuoaq2Di1K/ZWdfu6HkFu9DAJBTVNMCGXShgV5cPZzLN42XrRzE4kvdztrZix4TUA3qjIw8W6JqLmbtldZIKsSfPN/+v49842/ouQWpzKntt7mLp3Kt9d/o6MEnPviut51xtdVU4vFh3rLckzKzQVaHSNd6gZpeL33ixsmCE2hHk1BEOnoNPpUOvUnMo4Zbbf1Nj4fmBKejTlXEfSj9BnXR+O3TnWYLnjd44zeMNgvrssprI1TEz+jncDwOfnPqfv730blM/+XZiuGj1IImjBiQW8d/K9ut+nLuPNw28yecfkJp9r883N7EvZ12CZA2kHKFWXcin7UpPq7T+FpvgsmWLNtTVUais5nHbYuM3S8zatS7UHT/f73G7k32DslrF8ef7L+zreALVWfc+/uzYySzMbL9QItDot847N40rOlXrLFFQUNDr5bghFlTXPpqn33TBJNR1oW8KDVAT9ExAEgTHtfXCzV5pdX32m5n+HoDTAoBK9kmv5mRr2/7sxZecUXj30qnFwa5j0Arx15K16jzMQoGA+cTNgb8peABLyRcLk57ifWXZxGRsSNhjLmLYNMetjeOPwG/d07YIgNIkEAnjn2DtklGYYxw61YSA9r+ddb9J7VpvA8XCw4tRb/ZjWN6ieI2pg2nc96OQMpiTTvdTj2j4jC04sYGXcSrPz1cak7ZMYsrGuL6OrnRIn27rqgH2zerH5xe6NXsu99Aum7a/h2Rq2rb62mtXXVhvHN/ebxKApbbxpGJGrvazBcaMpAZpclAyIdgXu9o0TSN9f/p4PTn3AyqsrjdvqGxMeSjvEqqurLO4z1I2mEhqGDHh6vV4kgqzFcJl/or03fT9Mx74gqvgNynsDTPvwptb5/Mr8e7omRxuFcc4AD4YIAjGD65aXutchOe8VAiIpYLjG/Ip8fo3/tcH3tz54WVDiNIThEd4kLBx0Xz6Hbw1pxcW5MThYyYkN8zQjiRys5IyK9DbxStOx/e5iRm4ayasHXzUbLxv6AZW1nEptJdfzzBfgs8vE/lZP4/fj+oJBFhMPGDDirxGM3TLW+NnZVsHih9vxZA9zUs2QRVhqdcdsu2HRqClZq30ca+5pcTUB1NCY1ZRkj2xi31gber2eyTsmM3rTaIv7Td8Dw2d3G/d/ua/svwP/I4IeEEZvGs3LB2pWIPan7jf+HZcbx5jNY4yrc/XBkCqyNvR6PdGro5l9eLbF/aZIK667umMJtSu9JRgamUpdJYvPLGZN/Bqz/X+XqDCcH8SV5MZgCD84m3m2wXLP7DaX/jsoRSLo73o3bLq5CYDE/MS/dZ6GYBggOFs5k1n29yfjgFnHUntwlVQkuuvfywRu9pHZTN8/3eK+4qpi1Do1SYVJxm2GwePJjJN8d+m7Jn/P30VyYTLdf+tuVIY1hFJ1KTq9zjhZMp3MWXovTSdMppNHgDlH5xgniveCG/miYd6qOMuD3Kbi9cOv0/237n9rMNsUorgxJBUmsSFhg1m7aAqdXkePtT2YdaDGVLNcU35PBLPp4KGp74vh2TVEDFdoKtiZXLPU9q9SBH136Tse2vjQPQ9075TUDMrulll+dndKa8rcz0AaxAWPhtBYO3LszrG/3Q7fCwwKF9O+ZtPNTfWSgKbqPkuhuYYBt+F3Gs5jen5TAqm4qpitt7be7+U3GSnFKRa3G4jSpeeXMvfYXItlTGF4703bDnd7K4urtLVhpmC4B0XQtdxrXM252mAZ0zpjSv42hgAXWxDqEmC122wD8ivubSIN4sp523pCW0xhaJ8qNBV19lVoKnhu93NcyLpgVtbS8aUa8V4YnpGpUrspyCzNJLUotcntpUFF8OO1Txnwx4B6n63pePBex0iGd23d9XXGbfX1oS/sfYGPz3xscYHJcJ6mtteGcLeY1p4UVhbipHRCIkjQ6B/M4tXpu6dpu7ItqcWpZu2CKSmk1+uZdXAWk7abe5KZkj9NXdipjxBuCPdCBK25tobjd4436bxh3qq/HRJtaG8Nfdf84/N5/+T7XM1tuL2wBEEQ6BjgzMROvlRqKzl+5zhTdk5h7+29xK6PtViv6ws1bsp3NeQL+um4CE7M7sfU3oHI7OO4XFgzXzQdb0aaJD5YcHwBYzaPMeuX7oW4U8gkZiFaq6+tNo5x9Ho9yUXJxjGoAaPb+9TxlHKs/l2SWkTQT5OjWTYxqkmZYVU2cl6LDWHnjJ7Gut1YHX+hTyCLRrUVvV/vY/xi6NvqW6QwHUMZyt9PeOr/RfyPCHpAMGX4fe19zYigS9mXADie0XADakrimFZ0wyBve/L2OsfUhqERqW8SWFxVTFJhEj/H/WzcZmlgAjWD3eyybIsKkNqqp3uF6UDEdMW2PhgaivoGcSAqDGrDoAhqTAFgCWqd2ngvDc8kseCfIYKqtFXGehTgEPC3iDaNTsPa+LXkVeSZNXC1Bwq3Cm7d03lNr6lSW2m2r7CykJg/Yhjw+wBO361Jc2mov0/teoql55fes/eRATnlOXxx/os631sfDMTh6msNh6aVVJXQeU1nlpxbYuwsTCdWlogg084kpzynjuH6rIOzah/SKAxx3pXaSlKLGp5wN4Tdt8X49PshowwwJROm7ZvGX4l/3fM5ruWJ6ZPrm/gbfu+BtAOA2Gb1WdeHmQdm1ilb3zMvrCzEWmaNj51Pkyc2hmfX0GR16fmlZt/5TyuCDqQe4KsLX7H0/FKSi5K5XXS78YNMEJdbk/beUF/LNeVm76tpO3C/qkZLfZRp39cQoX+r4BbP7n6WNw6/wfKLy++57WkqTNv5kxlierjabWntlVUDTCfVlibYhnOnFIntg+E9MSW+LdWrv6N6awqSC5PNyCgQ2yXTd6IphJRhUtgQoVepreT03dN1BuOm73mJuoQ9t/dwPe86ZeqyBlWhY7eMZfzW8Q0O7k3Dwe5VEeRoX/d51Pd+3SqsqZP3MsmKy43jka2P1HkGtUO9b+TfIHp1tFFZZsCZzDMcvXOUOUfnADX1So/e+LdBZVNbyVP7OxvDkI1DGLxxsBnZ31Ao1JePRHHizX5sSFwP1Ixna8P0Oi7lWC5THwzvj2mY2rnMc3XKmbbDpu+cAYbjmzp2spJL2f9Kbz4fH0FBZQEqpQqJILnv0LDaKsJf4sSsT/tS9pmRP6blTMl1099nWs8bqvOm50ovvXciyNAvtHVt22CdL64qZtGpRXUWWv8uUotTeXjzw1zPu87u27spqChg9+3dVGgqjPfDMNe4XSy+t/F58fWeryGse64LzVueosMvHXh+z/OcvnuaGQdmkF6SzpnMxpNI3C66zYHUA/f13ZbwUt8ggltexUZmQ1tXMfOfab84NNyLuUNb83zvQOMc7GJ2jfdSToX4vKq0VfdEjlRqK/ng1Ae8clAMkTXtJxobnwuCgL+LDTKbmussqSrB19mmxmfIAmq/U1N7tyTE096oYmss5PfVgaFM6OjH1L1TiV4dzdF0y/YpacVpFuuHaZTM5ezLZJZmmi06WiKCPGwbD238b8D/PIIeAExXMQAG+A9g1dVV7EjagVQiNXb66cXpxkmaJfx1s2ayteXWFmO2HtMOceutrSik9ZuXGeSlmWWZ7EreVSduffGZxXUmtn8m/mkWG2mAYSJZUFlgsSPam7L3nqWopjCsfhnO1VjnbSh/IetCvffREkljuI9nM882eO9qQ6fX8eX5L3G3cWd86HhjR34o7RBOVvcnT6zve3Yk7eDonaP09xN9B/wd/DmXdc5Yh+4Vl7IvseLqCjbf2kwXr5pUl5tvbSbUOdT42dQDprG6BZitGPwW/5vRRwfEelqiLqFEXUJuRS5R7lGcyzrH3tt7zSaeK6+upK1b3XS3er2e367/hrXMmhEtR9TZv+baGs5knqGosoiOzTo2cgdgz+09gEjqbL65ud7sVxezxI71xys/8v/YO+/AKMr0j39mW3onISGU0EEUEBEUFUHs5fTEu7Oe91PPO0/vLHfeeXZP9MDeK9iwYDkEpEnvvYVACOm992y2787vj9mdnU02IaEY0PfzTza7M7MzszPvvO/3fZ7vE6pXlsmozWBF4QpyG3P5Ie+HdutsKttEtaUat8eN2WlmQvIEVXgC5WHU2b0ejB2VOwgzhGF1Wfnk4Cec0+ecbq0PgQ/bb7O/ZVTCKBbkLuDStEvb+VN0hlbIW1uylrUla7tdCc3X7jncjqDnQvsdS/OXUm2pptXZyrqSdSwvXI5eUq77zWWbWVawjH9N+Fc7n4SshixiQmLoHdGbnIYc9XtsLhs2t43YkPZVxHztX4ujpcPfSJsaCMq9MTJhZLvlPLKHqtaqYw4hbit+fZX1FeOT21fP6QhttOaa4jW0OFp4N/1dchpymHnBTEx6U8AxLcxdqObJd4fN5f7O14LcBUSaIgOiKPZU7yG1KDXYqmpbs65kHetK1jHv8DwenXjkKNfuohW7v8v+jj6Rfdp18pcULAn67Gp73bcVRHyDz4zaDFYWrVQFuD3Ve9RrNlgq5DeHvznmTqXVZWVV0Sou7Hsh0SHReGSPKjS8uOtFXtz1Io9NfEx9lu+qbD+wCdYn0OITyDprvxblLmJd6Tr+PObPDIsbRr21npXFKxnda7S6zLbybWoFqZiQGAbHDObW025tty1tv+KzzM9IiUgJun/aTvr+mv3dalvvuryF99vYzfxY+GNQoU+b/v7Ovnc4J+WcgP1pdbZSZi5jcOxgtX0CeD/9fQ43HObl3S8zrf809f16q3/SamflTvX6enPPmwGDft/MfKNdGQT7+jradBDfM0kr+oLSnnX1fNhcNlXgXlbgn1hclLeoy15Wf1r1J+4Zcw9D4wLTBX3397T+09hYuvGI15oPWZYpaSlhSOyQgP7bS7teIsIYQbgxnGZHM9vKtzGut7+K4ve533NmUmDqkW/yoaCpoFvXSG6rIvyN7z0eg2Qgvym/28/vJnsTs3bM4vKBlzO572TALziuKV4TEJG5rmQdqY1KO5lR6784vz38rZqepu33by7b3C6dzIe237yxdGPAddkVfJ5YI+NHsjBvIYvzFwct8KEdXC/NX9qheXNbmu3NHKo/xNiksRh1RnIacugV1kttpxblLiKrPosbfrghYL0r0q5Qhfc91XtYWbRSFSlWFa866sIvvnapbdTYorxFR4xGfnj9w7hlN0+d+9RxKTzjlt1UODK4deSt3D36biZ9NYlVxasCItL69YPtVbk4PMpkwpL8Jeq++yIp7W47SwqWdLkwS2FTofr6+5zvA6LCpnwzhWfPe5YIY8feSPFJudR5cok0xGF2NbAwb2Gn/csWRwuv7H6FawZdE3APuz1utY080vgYlHtsU9kmAN5Jf6edAbsvug5g1gWzAq5R33oANy+9mXBDeICX766qXaRG+fsuVZYqUiKOvbjBqYB0tCHix4ke/fLjxdjPxqo35sX9L+au0Xdx4+Ibj2pbOkl3UvlRjEsaR6m59Lj61fxUjEkcQ3pNOk+f+zSzds7q8EF6smHQGXjynCe7FMp/sjEyfiTJEcmsLVnLA+Me4LPMzzqN4DrRjEkcQ4W5oksRZ6AMWkbEj1AjCbrKE+c8wUu7Xjrma+zawdeS05jTrrMv6JhxSeMYFDuI77KPvYphMGJDYo+Lv86J5p4x9/B55ufH3Z/leBJlikIn6Y7Zw+pISEg8eNaDvLL7lRP6PQCT+05WRfCTjZHxIwnRh7CvZt+RFxYAEBcSx4X9LmRB7oKe3hWViSkT2Ve9r8vRsD3Fb4b9hin9pqjG9d3hsYmP8dz25wB48KwHeXX3q8d7947I/ePu55vD33TJOuHnxITkCcw4bwbTF03v8edHiD6EflH9Tljk/cnIl1d+yRmJZ3D191d3Oxq4J/n90L/zWU7wqtNdJSYkhiGxQ45o+eEjzBDGjcNv5OODnVutdJUhsUPwyJ6AaFAfM86bwbVDrj0u33MS0KEqL4Sg40BuQy6hhlBiQ2IJ0Ydg1BspbSkNUCv7RvalorWi09xlk85E36i+lJvLsbkD07WSwpIwO81dKkHZN7IvlZbKoOHY0aZoIo2RhOhDsLltNNmbOt3mgOgBuD1uKi2VymwdEna3HafHeVwG+HEhccjIXRpoSUj0i+pHSUtJp+ZocSFxmPQmok3RaqnfOlvdUe1vYlgiDreDJkcTRp2RpPCkDr2cjoWUiBSMOiPFLcXEhsSSGJZIUXOROgtwNAyMGUhpSylOj5PYkFgkpKCz4MkRyTTaGttdcx0RHxqPy+MKml7iO44ycxlp0Wk0OZrUcOMwQxhRxqhORZn40Hg8sifo9aBDR5/IPkGrnHSE7/o90jrJEcnUW5WqAaH6UNU7KT40nlZnK9GmaKwuK2GGMOxue8CxG3VG0qLTaHY0E6JXjHurLFVHZaaeFp2G3W0/po5omD6M6JBoNdy3X1Q/ylrK8NA9gTk5IpkmWxNRpiiaHc1dvj60pEamUm2p7vBc9A7vTbOjWRXQEkITsLltAWkmIfoQksKTOvSn6RPRB5PepKZOgCKmmnSmDtu2AdEDKGsp69ALQi/pA6LdOvPGOR5CUZghjEhjJGaHOeC36yp6SU9adBqN9kY10iHaFE2YISxgW4lhiVhd1mMSLXzXhdXtFz3D9GHEhMYc0VsqNTIVnaRDluUOn1HHg2hTNL3Dewe0ob3D/RE5nZ3f+NB43B530FB1vaQnNTJVTR3VoSMtJo1WZ2u782xz2TDpTTg9zuNWYKBvZF/KzGXq88+kM5EYnkittZbe4b3beQWlRKQQog/B5XFRY63pkpDQP6o/ZeayDvsqRp2RvlF91egobbscYYwg0hhJlaWK5IhkLE4LofpQbG5bh+cg2hRNtCmaWmttp22MdtvdJdoUjUFnwOl2YtKbOvXV6RXWi/jQeGqtte36DHpJT6+wXu32obNnU5ghjGiT/57uG6n08dq2x237bamRqdRaa3G6nQyMGag+SyUk+kf3p6S5hH7R/ShpLulW2x5ljMKoN1JvqyclIoUGW0OX2naTzkRSeBJGvZGS5pJ2badBZ2BgtGIsW9xS3C3RyqQzMSB6AFWWKvSSnoSwBMrN5UiShMVpQUIiJTKFMnMZkcZIQg2hHaYx9Y/qT2lLabefdzp0DIwZSIujpcsTR23pF9WPaku1euw6dOpxWV1WksKTaHG0tHsuJYQm4HA72okwcSFK5PmRIu8jjBFEGCKOer9TI1OJMEbQaGvsdBu9wnphdVm75fOmQ0dyRLIaEdUrrBdN9qaAPoHvnkiLScPqshJpjKSguQAdOpLCk9T7yiAZSI5I7lYfsC1GnZFeYb2otdaSFJ6ktFXhXdumb/ykje46VsIN4fSN6gsoES8dtW8djT9SI1OpsdR0e6wQHxqP0+1Ur7m4kDjCjeHoJX2HnnNaXE4DpyUNosxc1qXroV9UP6paq9rtZ3JEMmH6MLXPfSTiQuJICEugoKkg6DMqLiQOo84Y9Dr2jaOjQ6KxOC00O5pJi07D4Xa0+0197VlXohpPEYQQJBD0aLHSAAAgAElEQVQIBAKBQCAQCAQCgUDwC6FDIUiYRQsEAoFAIBAIBAKBQCAQ/EIQQpBAIBAIBAKBQCAQCAQCwS8EIQQJBAKBQCAQCAQCgUAgEPxCEEJQD9PDHk0CgUAgEAgEAoFAIBAIfkEIIagHufr7X3H67Kl8uCEfm7PjamICgUAgEAgEAoFAIBAIBMcDIQT1IEXNBehMdTy39BDjZ6zq6d0RCAQCgUAgEAgEAoFA8DNHCEEnCWa7q6d3QSAQCAQCgUAgEAgEAsHPHCEEnUQIvyCBQCAQCAQCgUAgEAgEJxIhBJ1ENFmdPb0LAoFAIBAIBAKBQCAQCH7GCCGoh3B72ptD17TYe2BPBAKBQCAQCAQCgUAgEPxSEEJQD9HqalVf//f6MwAhBAkEAoFAIBAIBAKBQCA4sQghqIcwO8zq6wkD4wGoMQshSCAQCAQCgUAgEAgEAsGJQwhBPYTZ6ReCEqNCAKhuFkKQQCAQCAQCgUAgEAgEghOHEIJ6iFanPzUsKsSAUS9Rb3H04B4JBAKBQCAQCAQCgUAg+LkjhKAeQpsaJkkSceEmGlqFECQQCAQCgUAgEAgEAoHgxCGEoB5CmxoGEB9hol4IQQKBQCAQCASCYyCvMY+i5qKe3g2BQCAQnMQYenoHfqm02AOFoLhwE3WtDjweGZ1O6qG9EggEAoFAIBCcyly38DoAMm7P6OE9EQgEAsHJiogI6iGsrsDon7gII7uLGpjw/Ooe2iOBQCAQCAQCgUAgEAgEP3eEENRD2FzOgP/jwk0A1JrtyLLcE7skEAgEAoFAIBAIBAKB4GeOEIJ6CIfLFfB/ZIg/S6/R4my7uEAgEAgEAoFAIBAIBALBMSOEoB7C4fYLQbIsBxhFF9dbemKXBAKBQCAQCAQCgUAgEPzMEUJQD6EVgjyyhxEp0er/QggSCAQCgUAgEAgEAoFAcCIQQlAPYXcFCkH/NymNRfedBwghSCAQCAQCgUAgEAgEAsGJQQhBPYQ2Isglu9DpJEb3jSXMqKfR4uhkTYFAIBAIBAKBQCAQCASCo0MIQT2E0+1WX7s9/teRoQbMdlewVQQCgUAgEAgEAoFAIBAIjgkhBPUQTk1EkFv2C0FRoQaabUIIEggEAoFAIBAIBAKBQHD8EUJQD+HQRAEFCEEhBsxCCBIIBAKBQCAQCAQCgUBwAhBCUA8REBHk0UYEGWmxOXtilwQCgUAgEAgEAoFAIBD8zDmiECRJkluSpH2SJB2QJOkHSZJiNZ+NkiRpjSRJ2ZIk5UiS9IQkSZL3sz9IkvRWkO3dIknSfkmS9k+aNIn09HQASkpKmDp1KiNHjmTUqFG8/vrr6jr19fVccsklDB06lEsuuYSGhobjcew9irODiKDIkJ+fR9DB8iY+2lTQ07shEAgEAoFA8IvB7nIfeSGBQCAQ/CLpSkSQVZblsbIsnw7UA/cCSJIUBiwCZsqyPAwYA0wC/nKE7RUAF8qyPPqJJ57g7rvvBsBgMPDyyy9z6NAhtm3bxttvv01mZiYAM2fOZNq0aeTk5DBt2jRmzpx5NMd6UuHSmEW7PH7hJzLUQMspmhrW2oGA9cX2Yp5dkonbI//EeyQQHDuzN+Zz+0c7eno3BAKBQCDoFqdqf1IgEAgEJ57upoZtBVK9r28GNsuyvAJAlmULcB/wSGcbkGV5iyzLDQDnnHMOpaWlAKSkpDBu3DgAoqKiGDlyJGVlZQAsXLiQ22+/HYDbb7+dBQsWdHO3Tz6cGvHHI3vU11GhP41HUK3ZTk5Vy3Hb3p7iBsY8s4LcanO7zwprW5FlaLKKlDdBz/HJ5gK+2lHcrXXya8zMWHKI9dk1NLQ6TtCe9Rwej8wj/9vPA/P24nR7jryCQCAQCE5qZNk/6SaEIIFAIBB0RJeFIEmS9MA0lCgggFHAbu0ysiznAZGSJEV3ZZtz5szhiiuuaPd+YWEhe/fuZeLEiQBUVVWRkpICKIJRdXV1V3f7pEXrC+SS/Q/qqBADZocLzwmOnrni9Y1c8uqGbq3z7ro8nlp4gPya9mLPoYpmXB6Zrfl17T4rqrMA0Gj5+Q2kBacOT/+Qyb/nZ3R5+d1FDVz95ib1/+zjKJyeLBTVW5i3s4QF+8oprrf09O4IBIKjwCVEXIEGh+Z6aBYTcAKBQCDogK4IQWGSJO0D6oB4YKX3fQnoSK04ooohSdLUOXPmMGvWrID3zWYz06dP57XXXiM6ukt60imJS+sR1MYsWpZhU27tCf3+mha797u7JjjJssys5Vl8urWIi15eT3WLTf2stMHCmkOKOJde0hiwns3pprzJCkCDRXRIBKcOX+8sxuJwc8vE/gAc7mEhyOORefHHrGOO5CtrtDLH69mljeATAwaB4NSjzmxnyGPLmLu1sKd3RXCSYHf5haBXVmbz0Nf7KG0QQr9AIBAIAumyRxAwADDh9QgCDgLjtQtKkjQIMMuy3OlIRZKk0cDshQsXkpCQoL7vdDqZPn06t9xyC9dff736fu/evamoqACgoqKCpKSkLuz2T09JvaXLFb/cmnQwrVl0RIgBgN8foyfJwn1lfLG96IjLdSVKx+2R+fs36QHvFdf5OxVTX1rH6ixFCNqnEYIW7C3jqjc24otS7mpEkCzLFNW1dmlZwZHZmFPD1JfWYXO2N438bncpf/liN2WN1oD3C2tbWXGw8qfaxRNGq93FwfKmozLMbLa6GN47ihnXnU50qKHHI4IOljfz9to8Hl9w4Ji28+X2Ip5dnEmd2U5Otf+YROqmQHDqUWtWnqsfbhQFGQQKVoc/ynx9dg3z95axeH9FD+6RQCAQCE5GupwaJstyE/A34B+SJBmBL4DzJUm6GFTz6DeAFzrbjiRJ/YH5wG3Dhg3Tbp8777yTkSNH8tBDDwWs86tf/YpPP/0UgE8//ZRrr722q7v9kyHLMhe8sJbr39kCKJUatFEzbdEaRGuFIKXmmneZYwj3vn/ePh77/gAWR+f54XVd8D3Znl/H/L2KX9P7t50FQEWT/9icbn9UUV6NmWavGPbA1/vIq/ELOg0WJ26PzDvrclW/lVqznTqzPeD7Fu+vYMpL6ygRqSoBlDZYyCht6vZ6zy7OpKC2Nah/0xfbi1iaUcmLy7MC3r/mzU3cPXf3SZVyYHO6u50y+c66XK56YxOL0/2d4K5uo9nmJDrMgCRJ9IkNo6rZf53+eLCSXYX13dqXY2VznhIl2Csy5Ji2k1WhiD8NFmfANSGEIIHg1MPhjf7wRfk63R4eX5BBZnlzT+6W4ASzryqddzftVn9/LTaXv9+XlhBOiEHXrp8lEAgEAkG3zKJlWd4LpAM3yrJsBa4FHpck6TCQAewE2pWMb8OTQALwztixYxk/Xgkq2rx5M3PnzmXNmjWMHTuWsWPHsnTpUgAeeeQRVq5cydChQ1m5ciWPPNKpH3WPUNmsCCM51WZsTjd//XIvE55b3eGg0+3RRARpUsOuG5vKhIHxAFS1HPuD+7Qnf+TeL/ao/+dWm9ma5/fxqe1C52DZASUy5KM/jOfcwUoEV0WTNeiysgwHOhArGi0O1mZV88Lyw8zyCg/jZ6zirBmrApbblFOLLBNUuPglM/WldVzz1qYjL9iGMKMegEqveKe9JisalfdWH6oOiJpp8VaAG/LYMjXdb0dBPVmVwQcXdpebHQUnThhxuT1MmrmGSTPXBI1s6gjf8f132SH1veYuRu0125xEhRoBSIg0Ue8VLy0OF3+au5sb3tva5f04VnKqWnhjdQ4AJkN3Pf4DyapUhKAmq4PM8mZGJEcBIjVMIDgVafVO9li97eLi/eV8vq2Yt9fl9uRuCU4wty2/lbdz7mSz10bAbHfx8LfplDdasTr8E3zL7p9MYlQItWYHi9LLVcFQIBAIBALDkRaQZTmyzf/XaF5nAFM6WO8T4JMg798F3OX71/f++eefH1DpQEtCQgKrV68+0q72KL7BFcDKzCpWZFYBitCSFB3abnltFJD2dZhJz31Th/D7gh2UN1pJjQ3r8Dv/t7uUl1YcZvO/LkKnkwI+S40NU9N9lh3wR0Nc/Mr6gOXqzEeOCNqWX8dFI5K4aERvACJDDJR7B9hWh3/fY8ONNFqc7C1pZNKQXgHb0OskGiwOQr2ihKfNb/2XL3bz/K/PIDbcxE5vpEWJyGkPwBd5ZXO61fPYFXzLljRY+Pf8/WzLr2f1Qxdid3mobLYxtl8s+0oaWbivnKvOSOHNNYEDiI82F/D6jWfy2/cV4aNw5lUA7C1uQK+TGN03lgfm7WPZgUpWPXQhQ5IiOd602FyqEHOgrInxafFdW88raNVqrvMGi5PYcFOH6xwoa6KozkKz1cWwXsCeuSSHDWF3g9KBXum9t39KVmRWYXG41fvoaGiyOEFCbRdK6q0crmrhT5MHk1XZQrOoLiMQqNicbl768TA3TezP4MTj36YdL7RRv7IsM29HCQDxnbRxgp8Hks5Ng8VBRZOVK1/fSIPFycDECM4dHKUuE2bSkxAZwqGKZr7fW8bEgfF8/adze3CvBQKBQHCycGxTywKVbK8QFB1q4PNtfm+ejsQMrfijTRMD6OMVf45k7vfv7zOoaLJRHWSGx2x38ftzB3DLxP7EddIhPFK4sMPloaC2VY0aAEiOCVWjS3yDyotHJrHo3vMZ2CuC9JLGAIEIIDbMyLe7Snl5xWEAIkOM3D9vr/r50oxKnlp0kOoWG/m1SjqZSA0Ljva6cLk9zNtRjNne8SDep7mV1Fv5akcJBbWt/LC/nEKvD9P0cakA/PO7/fztq728tz4vYP2SekvQKJxfv7OFX721GYvDpUaNHa90qVa7i1bNMWmjeLojEAa7Nzbm1LQzNddy9ZubuPfLPTRaHJzt2A6L7uOumudV0dQX+aS9J040hbWtJEaFMGlwwlGZrlc12zhrxko1Eg9g3eFqZBkmDU4gxKA7qtSwrMrmLhvOCwSnEv9ZnMnsTQV8s6ukp3elU1rt/rb51jnb2e5tn45WMO4uHo+stvvNNudxeW67NdsUdE6jxcn76/PV50K4UY/VFdiWJ0aa1MnKYM9EgUAgEPwyEULQcSK32kxiVAi3T0pTI1pAGXwHQysEeeTAHO8+sUoE0YNfp7OnuIH12TW84hVQtIR6U0Taln2WZRmz3UVUqIGoUCMtncz017U6eG1VNqsPKVEOr6w4TNojS9T0oaK6VlwemWG9/YPe1Ngw8muVtC2fEHT35MH0TwhXo0vu/dKfjhYXbmR03xiqW+xqZyWrspmF+8oD9uVAWRNrvabTBp1ESb2VhfvKePHHQP+aY2VjTg3fnuSd+84o0hh17ypq4JH5GdzwruJN5fHIzN1aGCAM+dL/iustRHrNyNdmVVPoFdzO7B+nLusz/daSXtrEwfKOvYm01/juooajOKL2jH5mBWP/s0L9XytSdHRPabG73FQ0Walpbu/T9eTCg1z79uYjbqPZ5mKoTSk3P7JxAxc51zH88WUc9naoW9v4b2VXtfDwt+ndSl3rKkX1FtISwokLN9HUjQGe2e7iz3N3s6OgHpdH5svtxepnC/aVY9LrOLN/LDFhRiViqAMOlDXx1MID3PHJTiqalKpjX+0o5vLXNrJ4f3mH6x0t+0oaya8RqaGC7uNye45LO7Q9X0mh7uy+6EleXnGYe7/cQ5Wmjduc60/7ru+C/9/x4KUVh7nhva3sLW7g9o92cMELa3Eeo7fc7I353PDeVrac4OqpPwearM6A4hotNhdWh/+alWWZhAi/r1x06BETAQQCgUDwC0EIQceJskYr/eLCGN03Fu0EeUezY54OPIIAwk0Gbjy7HwAzl2Zx+0c7eGNNrhqF4yPMpA/6HVanG7dHJirUSFSoAYfbg83pDpp6V9Fk47VVOdz56S4A3lqrpAXVtTpYd7iaL7wDx6G9/aHx5w/pRXaVmeI6C3leH5+0XuEAjPEKPmu8gsKc28fz44OTeffWs3ji6tPUbRTUtq8KllfTyr/+pwy8zxmUQEmDhfvn7ePttXntlj0Wbpuzg4e/239ct/lToPem/2mFP59XU1ZlC063h5WHqnhi4UFeX5WtLlPjFYI2ZNeoAtGuogYKvJ3HtF4RnNk/NuC7hvWO5If7zuf1G8fi9vjTDXxoxQ7f9RcbbiSjrKndcnO3FXXbdNrtkQNMyJutftGlKzPO93+1j3P/u4aKZtsxeeoMMO+D/ufSEt6Pq/Xbsbs87PIOMs1tBNbZG/P5dncpH20+9uo9c7cWctqTy1Uj0KK6VvrHRxAbbuxWRNDqQ1UsP1jJo/Mz1Pdiwozq66kjEokKNRITZuzUO2n2xnw+3VrEmqxq/j0/g2cXZ/Jv7zYrmjo2xT9arnt7Mxe9vP7ICwoEGhotDp5cdJDp7245KmN9H7IsU9qgtK1tKyp2tfplR1Q0WTtMg+8O76/PZ8n+Cr7coTyjF957HrOmn8E1Y/owdXhil9K+jwcfbswH4DfvbWVvsRJpubML0Tz7Sho7/I18/oCFdSIqOBjaycMmq5PCOgtXnpFMqFFHi90VYBbtkT30ivJHhfsq0/4ceGLBgZ9FdVOBQCDoKYQQdJwoa7TSJzaM01OjA97vqCMTkBomt4/YmTl9NHedP5D0Un8Ky+qsQG+SEIPf+0WLLwIoMsSgzv602Fwcqmhf/rpt+LWvk1DeaOUPH+/kky2FGHRSgEfCZaOSAfh+bxmHKprpFWkiKUqJYhqZ4j/+f18xgmlDY0mSGwg16rnz/IHcef5AwD941Osk1j88hS9GbOET4yz6UMsfJqWREhMaMKPZlSiLorrWdmJZZxzrrOVPjcErBOVoTLS1g/CaFrsqkli8qXk2p5sWm4sRyVE4vMc7rn8spQ1WdhU20CsyhMgQA5/dMYEnNULdvy4fwRl9Y7hsVDIhBh3f7i4FID5C6VCWawZH+73iz6TBCe0GTZ9vK+KJBQf4amegkNRkdXL/vL3qbPbsjfks8FamC4ZPpIgKMRwxNezFH7NY7u0cyjKc5r0mk6ICq211NBjzCW46PMS35kHfs7HEDmeA5O9whpv0tNhcAdvwiVWdHUdXeWLhQSwON5VNNmxON1XNdgYkhBMbbqLZplTf21FQz/w9pZ1ux9cW+LySjHpJPR8AV4/uA0B0mJEmq9P7Xe3voYI6C+cOSiDUqFPNSX0U11vYll933O6n4zFIFvwyGT9jlRr1VmPuvkBZUm/h480F1LTYsXtF2NIGK7nVZv7yxW4+2JDH2P+sDIjA6A4NrQ7O/e8aZiw5xNqsasbPWNlpWm9n+CaC8r2VOUemRPO7s/vz5k1nkhwT2qWKoMdKVbNNFexdHplzdQe5Xf8j67NrjrjuU4sO8vjCA0E/CzEqXVNtAQOBH62dQK1Zee6nJUQQFWqk2erE5vSL+h7ZExAR1HqU19vJhsXhYu62Iu6eu7und0UgEAhOWYQQdIzYnG5eX5VDUZ2F1LgwktsYQ28vqFMHNoW1reoA2iO7kWRFdGkbEeQjJTZM7YwC7CsO9DXxDY7bpoa1+AbN3tQwUCoEXfnGxnbf0Vao8qUO/f6jHep7N07oF2BO3D8hnItHJjF7Yz67ihoYkewfWCbH+I8/IcIE706CV0ZAvjK7/8TVp3F2mj8VKf3xKQxY/RfOK3yLKfp0fm9YydO/GqUaT/s4+7lVVAcZoGq58MV1nD9rTafLtGiiHoINeEEZiHa3TDnAsoyKDqupHSt2l1u9FrTiXZVGCKpospHnHRTk1ZjJqzHztVeAueO8gepy53mNvLfl1zHQG8kVFWpk8jC/wbdP8Ak16pk4KKHd/vjMwgH2FDUQYtAxum8sLTZXQGSJzxQ8q0KpNuZweWi0OLj3iz0s3FfOd16BacaSQzzw9b4Oj99X0WpkSnSnEShWh7tdBNnovjGAErH0jcYkszFIZI3Z7lI9b1KoQ+9xQsJgnDFpDJCqkVB+g2tG98HlkbG7PJTUW3hnXS7ZVYrQmlNtDrjOuotWAK1stqkDut7RIUSHGpBluP2jHfzxs1089E06u4uU66Gs0aq+9tG2bZhz+9k8e90o9f8Lhiq/eVy4kfpWB48vOMDE51fz9c7igPUKa1sZlBjB0KSogEgtgC+3F3PjB9s4b+aagOpswcgobaLJ4uSVldkBVeY259ZysLyJqmYbA/+9tNNtCLpPdbMtwFT454gsy7g07XawstpHYuayLJ75IZM/egeXQ5MiKWu08srKwyzNqOT5pUqacrCI1q7gS9Ods6mAR+bvp9bsoPgool5kWQ5oY4x6KSDyMSEihAaL46ieY91BW4FUj5uvTM/xjPFTSryp48syKnh3XfCI3upmGzlVLQH7WFDbyl++2K22wdpIUIEfp8f/22dWNOPyyKQlRBAdaqDF5sKm8QhyyS4uOa232tbX/0TeUSeSJquTOz7Z2dO7IRAIBKc8Qgg6Rox6HW+uUco6940NQ5IkXr9xLAA3nt2P0gar2mmc8tI6LnhhLaDM0kiSQX0djJSYQFFJO8OnDKiVh31tmxDwFpsLfUQWBZZtqrCTXeWPInnw4mHK/gxPVN+L8i7niwjyebI8euWIgJQuAPLW8re+ubTYXRTUtjIyxe8f5IsMisbMGZXfQZ23AtUXv4E8RaSJ9opTESY9kbUZkLlAXX+0Tgkzjw03qeVwfce0KL1jLxLfIMd1hI6vb/YUOk5p+c/iTAY9urTDyITNubXtzLAdLg/3fLGH372/rdPv1+J0e3huSWaXoph8kR1JUSFkV5lpaHXgcHkCorwqm2wc8gou2/Lrmfbyep5adJAz+8dyw1l9eezKkZgMOiYOVIQdi8NNWkKEun7/eP9r7QzieYP9QlCr3cVDX+/j1jnb1fc25daSGhtG3zjF5FwbLeT7PXzvDXt8GWP/s5JNmqiStqkW2ugv32vf9ZjWK7xT74t9QUygJwxUKozFhZuYMDCet24+EwhumqkVGwfovBF4cQNJHTSKEMnJoQGvknHpYU73ikstNhd//GwXLyw/TH5tK2P6xSLLdCstpcXm5C9f7FYHhAW12ogvq+pREhNmZFCi8httyq1Vz8kP6UpVwKve2Mj0d7cGXLeFbQas5w3pxZAk//0aG2aEhkJSY0yUNVpVMetgebO6TKPFQZPVycBeEQxvY5A9qo9fBK5usfP++vwOTV5tTjfT39vCR5sLeGN1Dr99fyv5NWaaLE5umb2dq97Y1C4FsTvRQXuKG34yX5RTjQnPr+bW2duPvOApTFEbQeVoTNV9Bss+M/lzByfgcHnatdEdTSIcCa3XWVWz0v4cjWhstrsCUtDDTYHpPvERJtwe+agM4LvDlrxaNdV0ss6fbm1tqCCnqoV7vtjDrOVZ7cQuj0em1mzH4nCrUaSyLPPckkyWZlSqbVp1y/FPO/054HT7f1dfn2ZI70glIsjmxOYMTA3rFx/O3Dsncsd5A2loPTk9r7rDwn1lbMtXnjOx4cYjLP3zodZs5/p3NrP6UBUfbMjr1LtRIBAIuoIQgo4RvU5SZ1p8JamvHZtK3vNXctcFgwDFj8XXofHNdHnwEOr1CXLZm9tuFgiMrpk4MD6gwlddq/91c5vOXovNRXj/T5iT8zRR3tQw3wNjbL9Y7pkymMKZV3FmP39kjt3laTfo6h0dwh8mDVRT0AAl12budYze+Gf1LW1EUJhJjwEXi02PMXzX08qbkh7cdpj7a2itI9rbcUyKDoWyXeq6hzz9OF0qAI8nwMfER0eDPJvTzXVdMP9VzoP/XJc3Bo/e+XhzIRA8YqS0wcIts7fzr/8Fegz5OtxtIzA6Y1t+HR9uLODpRQcD3l9xsJL/7Q5M+fH9xhcOS1SPY9byLHYU1pPoTXmqaLIG9c8ZmRKNTifxx8mDyPrP5QxO8gs+ab38r7UzyvGRJrA2gNPGr8elclpKNJePSsbu8jDfm/rUK9LvO3DRiCRSvdXuPtiQz5xNik9OvVekzKk2Bw3zr2iyqn4QPrSDlxFPLKeiyUqzzYleJ5EaG06LzRU0Dcnl9vDqqmwkCdY/PEV9/7JRydx6Tn9e+s0YABIjlfNVE0wI8r738m/GcEUf7/URPwgpQbmXQ6t2E7XhGVU4bbE5A4TYK09X0iYPdKODtquwgaUZlUx+cS21ZrvqTQLKgNN3PqLDjFw0ojc7Hp0WsP767Bo2ZNeo12t9q4OGVgfzdhSrwg4oJqG+tLcd941gz529YPED8PoYLm1dTIvNpRpha8+NT8hOS4jg9+cOABSRO3vGFUGN6NuawPvIrTbjcHnUqoAAF728nikvrVX/31sSaPLb6nBjd7mPaBzt9shc/84Wbpvz8xY7jgafkLinuONKeT8H5rVJPw32vOgsxViWZQ5XtnD5qGQevmw4Z6TGMHV4EuA/dwMSlAjKskYbG3Nq1HbuSHg8Mt/sLAma1tpdwcrmdHPvl3sJG/Aucf2/B0BnaAmYUErwts0nMj1MlmU259ZxrjdidKLOHw1oai4mT3PPrsgM9HFpsjrVyMKsyha25NYy/PHlrDqkeAv60uVWH6o+Zk+mnyPaiCAAnQQjk6OJUiOC/O2y1oYgLtyI2e465VPutFFksUH6iqc6Vc02NXpQy6xlWewpbmT+njKeX5rFVW9s6oG9EwgEPyeEEHQcmDl9NFePTmHyUH+EjV4nMbBXBCaDjpyqloA0CFBmaSI9XnEo58eg29VGBKXGhpFe2qRWO/LNUIYZ9UGFIB++1DCfAPLGjWeqA/5EjWeKw+1hS16dOigfmRLNtn9Pa2+0W52pvozGv6yWi3V76K+rwTL813D5LLj+A/+Hb4wlzuT2f3+pIgRZRt3Ip+7LiJYsULgh6CzPoYpmVhysZFlGBVmVfkEns6I5IOKpMzbl1qjimDa9KRjaAbkP37ltW5WmuzOvu4vqVYPutmV+7567m79/m842b9Uap9ujdujH9FNMnQvrWtlTrOzDhLR4Qgw6iustQTv+2nRFnU4KiPYZqBGCtIL57z4AACAASURBVETIrfD2ObDsnyRFhbL0/gsY703pM+gkRvWJZsM/p/Lh78cz5/bxPHbVSFUImr+njGcXZ2JzutUw9NIGK/d+4a8kd/PE/oxIjqKyyRYgBO0qrFeP28fSjEqarS5iwoyKQAXcOns7E55b1eacNrCjoJ7bz01jgDfSKTbciFGvY8Z1Z9AvXhnEJXnPx6L09l4+vhS2cwYncNswN+hNEN0H+k2Es/6gLhcjKdeG2e7CpTF+H5AQTlSoIei10xHayLQJz63i/nn7Aj7zXVsxGgHVF4mj10kU1LYGpHIW1rXyuw+28sj8DArrLJydFsct+lW8oX8V8tZCXR5JP/ye+C8uhd2fADC8UUkb9aUfaoWgQo2p+Oi+sex87GKeumYUJoMuIGoPlCi/ddnVQSN5fKJUcRt/Fe1AOLM8UBR/dWU2Tyw4wEUvr+/0HvPt78Hy4KL6L5mi+vZpTC/9ePiUqZyYW93CVzuKO11ma14d763PCxCnX/zxMG+uzmHMMyt4d10eG3NqGPHE8qBRg6CY6te1Opg4KJ57pw7hh7+ezyiN5999U4ew/uGpJEWFUNFo5e7PdvPs4swuzcqvy67mn//bz6PzFU+c4ZoqnE3W7gkda7Kq2ZBdgyG8CFfEdiRDA66+TzM7Y7a6jC+190RFyLXaXRwsb6as0cqkIYoQNEGXhRyh9IGirCWUeZ+v0aEGtaS9jxrNIDe7qoXtBfWqh52WymYbs5Znsbuo4Yip4b8kLI5AkSA1Lowwk57oUCMtNid2TWqYtjBJ3Am+Ln4qtNG8ZvupLWq1pbrZxsTnV3PXp7vafeabaCzUPENPZFXDxfvLAwRdwS+Xo7XMEJz8CCHoONA7XOKtm8cR00a80OskhiZFcrjKTHalf2a+pN6CLLsweWfw3LU5Qbfri1wA/wxfekkjNqdbfSCckRpDs83JVzuK+cY7I6odMPlEj8zyZnQSpMT6RQGjXokO6OMVnG7xpg78YVIaC+89D0mSAnfIaYUvfqv+e5YuhxcN7zGkZasSKZS7Cgo28IjhK4o9ieiu/wDO+TOccQM83QRTHgV7M5HVezDg4lHmwMH5cNp1hN3wHn0n/wFXVCos+AvDKn4AAhudtYdruHvubu75Yg+Xv+b3O2ob2dGRN4THo8xgXnF6MgMSwtmSp6QnHapoZllGRbvlg83e+kS3tgPg7nbmH/w6Xd1P7Sy11sfjNW/lr2ve3MRv3tsKwLDeUYQYdBTVtRITplR7ev76MxiSFNnhYKmtb5XJoCPOe61qU8MAHr9qJFOHJyJteg3MlXDoB3Ar++RLP3B5ZKaNSCLcZOCS03ozbWRvJEkiMSqEUKO/SdlZWE+DpsPpm+0FCDXoSYkJpaLJFhBBcsN7WwOEEIBnF2cyd1sR9a0O4r1Rd9sL6qlusfsFh4MLSF37ACBz04T+AOx4dBrr/zG13fnwCazf7Cpt5+m0s7CB1NgwRdRqKIC4NNDpwRgG17wOtylpjH2aFFHLbHPh0njmRIcZSY0No6yLQtD3e0vViDCDTgpI9xiUGEFVsw2zWen0+VIqAd66eRxXnpHM9HGp7baZU2UOENfuPG8A/zLMY4p7K8y9Dt4cB1Uak9bYAcTX7SYWfxulHagV1FrQSdAvXhH6EqNCVKPa924dxy0T+3PVGSkA/G3aUErqrUHTOA97haCiTqLm2qbrzdlUwALv9THmmRUsPxC8Qkyld5Bo0Ek43R48HhmHy8OPBytPOVP4402wggVvrc09LpUT12fX8NKPh495O53x92/S+ff8DHKrA4sd1Gju/w835pMcHcqc288OWOblldk0WZ3MWp6lRln6xMaVmVUBIo7vOZISE6a+p30GX+hNpU6JDaOiyaZOVjy+4ACvrDjMxpxAg2RZlnG6PWRVNrPIew37nhtf/+kcDj5zGdBxRNC/vtvP8gPtn0vuNp1xnVE5hg2lG9T3fGJ/fWv7qILjwUUvr+PqN5VohLPT4vnmtmGM1RcijbkJGYnHDJ/TlLsdo17inEEJ7SL6tM/s9JJGDlU00y8+jDduOpPp4/oGLFtQ28r0d7dwwQtrWX6ggtFP/9guivRkxOWt1noiqLUE3tO+SGFfRJBFYxatLUZyeqqS0rzu8JHNvLuCw+Xpkfa1usVOSkwo90wZTJPVcdIVGCiusxzVeZFlmX96o833lTRitrsCzL19fXvthEdGWRPf7S5lyf72bcWx4PbI3PflXq5uE3UULJJa8PPnT3N3M/LJ5T29G4ITgBCCjhVZhtfHwltnw8L7wBPY+A/vHUV2ZQs1mvSRC15Yi95jw+R9eLlrDsGm16A+H3Z9BE1KpIJBr+OO8wYy5/bxJGg6pHuKG1Q/hNP6RNNkdfLv+Rn883/7OVzZQmaFv3PrGzxWt9jpGxeOUe//ya8dm8rjV41s5wGUGBUSvOR21UFoLoWLnwbgY9OL/MawAdNXv4X1L8Dn0+HTa0jTVfGo6y5CQ0yB65/7F9AZuC4mm8kRpYyt+FZ5v+94JEnivsvOwHDTl2A3M2zrPxkqKefh0zsmMGv6Ge12x1eS3Dd4/Nu0oYDiabL6UBUPf5seIArVtSpeJ6P6xHD16BS25NXxwLy9XPH6Ru75Yg+HKpq570t/1EqpRgjyeGTeX5+nDmbbVt7obkRQpKaEa35Nq9qR8T3gJwyMZ1t+PWf+ZwVZGhExPsLEgIRwCmotNFqcjO4bQ0yYkb9NG6qG2r9x05l8/Iez1e/oHROqXJern4Uvb4RPf8WgCOWcpXnNon3cdcEgPp7eF7a9AzH9wFoPpUq0SUSIP0UwJrzNbwtIksRvzuqn/r8hu4Z6i5NJg9ubTd9yTn+SY8I4WN7M1vy6oMu0W2dif+IiAsVWs11JE/N8dyd9SxYxSioiuWoDVGaQFB3aTpwFCMXJu7eMA2BtVg03frCVhlbFWHV7QZ3qKUR9AcQPClx5wCSISqFv1mxAptkWGBEUHeoVgjpIO/SxJquKW2ZvUwRBtweDTuKq0SkBywzqFcHoos+4Yfk4YmkJOJaBvSJ455azgqZQPjI/A4+srN87OoSLE5uIliwsj5oeuOC0pyAqBX79HpIErxjfBWRGJEcFdPaK6lrpExsWmCLq5awB8Tz36zN48TejWXTfedx1wSBGJEfx6ZbCgOUW7itjvXfwESzl0qTX0TtaaeMMOok/Tfafd+09/O769sazbo/Mj94qcUa9jmGPL+PpHw7y1KKD/Gnubt4Psk5nuNweLn11PbO9ZbHb8v76PG78YOsRt1NSb+G1Vdk9OkjJKG1ijyZ68bOthWq7Ccdeoe32j3bw1trcE3qMvqjWb3b502WL6yyc/dwqPvKm8WZVNHPu4IR2wrYWXwSo7J1g+ONnu7jqjU0025zcOns7+72+Xtp7SpIktVrj+AFKROSA+HAOlDdR0WQjJszI3uJG3liTy21zdmi/jhlLDjH0sWVc/tpGVcz0ER1qJNykx6TXtYsIBeV3+W5PKQv2thdUgy3fFt/E0Y8HqxjxxLKANJPNubUdXttdxedvBNBfLmdCy2p0sgvOuIGqAdcQiZU/F/yNgZFuhiRFUtRmYOxrX9ISwlmRWcWKzCoG9YrkV2P6qKn2p6dGc8XpyWq6qt3l4c+f76HZ5uL7vZ1XSzwZuH/ePkY84R84zVqeRdojS0gvaWTW8qxj2naN2R8Rkv7kpTx+ldKHiwo10GxzUtfqj57SpgyO6RvD0KRIPtpUcMzm8ekljQx7fBl//XLvMW2nLVaHu50HIwSmg1W32EmKCiEu3IjTLdMaZPmeosXmZPKLa/n7N+ndXve73aWsO1yDXicRYtBx+lM/qpOAELyf+fWuEv7xbTr3avquxwPf5IpPvLY63CxKL+fs51Z16teppaTewpQX17J4fzkL9pYFtS4Q+Pnnd+m8183+ytGieIl1/b5ZkVmF3eUJ6D8Ifh4IIehYcTvgrNvBEAJ75yqeGy3+WevBSZFUNtsobhOeb5LshPiEIEmCVU/BG2fC4gdh7fPqck9ecxrTSt7k+vS71fdu/nA7767Lo3d0CL2jQwOq+Kw6VMVejRdE9Obn+Sj6QwYnRjDjutMD98Gg464LBqkpM0ekMkP5O+p6SByp7HvyGDBFwbrnAxb97W9vab9+SBSknc+g8qV8dLmmlHfqeP/rPmPh94rvQZq3XPd5gxO4ZkyfdpvziSY1zTZ0klLhBZTKL3d+uotvd5cGpAH4oj9SYkK5eGRv3B45oIP+t6/2slgzq1JS7x/MZ1Y0899lWTy5UInesLs8qqEoBD6gK5qs3PnJzqAhu2a7i9xqMy12/2ctdhcVTTaqW2xqxMP9XlGr7WxxamwYaQkRFNW10mR1qr5UF4/srS5zep9opo5IUv1gkn1eTBtfguxlULCeJx2vMj1yfzuTUQD2fQkuG9z4pZIalbUECDQkjQs3wpzL4IcHAlZ94urTmHvnBM4bksCG7FoaWh0kRoWw5ZGL1GUOz7icwYmRXDQiiZEp0fzj0mH8/dLh7fcDRfha+48pZM+4gud+fYaa8uBj1vIs/vNDJlluJTLmTsNSYr6/Gd47H4C8xjzeT3/fv8KOD+G53gwMUa6dl1YcZlt+PR9vLmBnYT21Zodioi7LihAUNzDg+zCEwOSHiajYzgOG/1HaYAmICIoJM5Iad2Qh6LOtRWzO9afAuTxyQHn7q0ancHb/aP7s+ASAyfoMIrW/la0Zdn3Mab2Ve9cX3adl5vTRbH/0YgxlygDVesatygemSPi/ZXDBQ/D3LBgwCeniZ7hIv4+rdNs5Oy0ei8Otip2Fta0dphD6CDcZGN03Fr1O4ozUmIDUuCaLk/vn7QsQNLWY9Do+/M1AZvAuCTRx1oA4HrliBLedM6D99xjbi1EvLM9SKxNZnW5kWTm/P3g7qx9uLOi087Ilr5btmnTEymYb2VVmZiw5xMJ97dMH/7ssi2359UcUf+/7cg+vrcoJGpFzLCzZX8HKzKouLXvNW5v4RCPKPbnwYICn1fGa3T3aEug+3l2Xx4Gy4ClWOp+vlSa9yDfZsTGnBovDRXmTjUG9IogJN/LCDaODbsfnTVVndgT4ziw/UMmm3Fo1Mq9tWvLaf0xh7T+mqBGyd08epIqZd08OFIq1FRPb+gf5hE7fMUmSRGy4MehzotXhxu2RA1KgfVQ3B/5mZw2Ia7dMnPe58P3eMmxODzs15+6W2duZseSQKt4V1Laq90ow0ksaA8RYregXrbMT8cFEWP4vSBgKyaOJuOkjHo19gXDJzqXO1QxOjMTlkSmpt2C2u9hX0ki591ncN87f9/D51gzzps1VNtlJ6xURNGIqLEg7cLKxJCPQ8NrXRr29Npd31+Udk5F3Xau/fY0JN6pVXeMiTNicHorr/BFTWiFIkiQevWokOdVmnlmUydKMiqP2C/p4s3J9byuoO8KS3WPMf1a0S/vell/HoEeXsr9U6XNVN9tIjAolNky5zhtOolS3DG87tii9HFmWqWyyBXj1AeTXKAU/miz+wbjbI/PSisOcNSCOf18xQk3TzqzwtwHaaybEoEMnEXBvH0u10ra0FW0ufHEtf/tKEf3WHa4Otko7Zi7LorDOwuurcnjg63089E3HlWEFymTHzGVZHT4Lg7E1r44RTyzrVrqnzenmqjc2ct7MNXyyuaDTNqDR4ggojhCsb7v6UJUwLj+FEULQsWIIgSmPwJ82wtl/VMSgOZeokUE+kWVfcWOAf4FRcmL0CUFXvQI3zYNBUyFxBBxeAg5vI9xYAlveJKl+FyH4b3Sr083oGAcjWwJNktNLGgMGXNLmV7jIsZbVD17A5GGJBOO0Nh4/9o7K7lZmQEgMxPaHeGWArD/3XvjdXBh2BVz7jrror8b2C76NifcoUUUbXlL+7326Iv5o8Q6++0vKw8ag1xFuMgQYAAPqTGF1i534iBDV88hnZgzK7KeyjE1N10mJCeO0PoHHDIqh8e/GK/stSYERQYcq2nfIr317M3d8shOrwx0Q5fDqymxWZ1Uz3ztr+fC36fzqrU387v2t3PP5bi5+ZT0l9Vb+dtEQ5t19DqD4JEx7eT1zNhUwvHcU52hKtj9yxQj1dZhJT1qvCIrqLdS3OlSjRJ/o4zs+UEL2AfoWL1CuSQ1j7Lt52TUTclcr0Wirn1WED4CMb6H/JEgZDWkXKOlhThsRJn/nO61lD5Rsg90fB2zXZNBxwdBEJg9N5HBVC8X1FuLCTfSJDePGs/thMujUyJJLTuvNsvsv4L6LhtInNjB9zXdMz157uuq1BdAn5yueNHymLvP5tmLmbitS743r9Zow5qpM/m/xTby17y0sTosiniz9h3JOCr4D/F4Jyw5UsjSjglCjThHVzNXgbG0fEQQw/g4YeysPGObTmrkyoFKdLzWsxeZid1E9l766nicWHAhY3eORA8Tacf1jeeSKEWrFvWkjknj75nFcEOsP37/UmI5u/1fKbyXLsOlVWPwA17mWseqhC7l0lGJSPfN6f+TcgIRwsJth/YsQP5hfXzwF/pEDD2QokU1aJtyNnDyaN+K+ZnyyIjhVt9ixOd3kVps7F4KcNvjuTvCmuPaNC6e6xa52Lgrq2nvUfGmcwRzji/xqZAyHZ1zOhSXvcYljFfcaFvJO7R+QVj3Ng5cMa7eeLyXNN5vt8cjM7sCw12x3MSI5iiarkwOdeAfd/OF2fveBv9qfNq3v6UUH1YHvO+tymfi8f4ByuANhy4fPT6yth9uxcu+Xe/jjZ+39I3zsKqznh/TyDmf7tGk6t8ze3uXqUvP3lHZYNv1YPEcsDpeSurUneJSHb5CXVdmMy60I8H/+XJn9jgs3qfs0KFGZCPjt+H68edOZPHrlCP4wKU3dji8qptZs5/0N/ogY3+/k8f7OvoigWTtm8cLOF+gXHx5w/Z+eGqOKOoPa3BdztxZ1eJwXjejd7r3YcGPQCB/f71FUb1Gv9epmG2a7q10lLd/zQcL7DKjLw9SQo6aFA0H9d5q9x33Nm5v461d7g4qlJfUWrn17M8/84C9ooC3pPlHyewZy0eMgSUSFGnngDzez3TOC+92fcZZZMYPPq2nlr1/u4bq3N7Mtv57+8eE8eMkwTvf6MN00oT9UHmDEiluIwMr5QxIY2EGEl8Pd/Qg0R5CCGD8FbX3L1mcr7XppkNTzrlJvCT7RMK6/IgruLfWLA1qzaICpw5PoFx/G17tK+MsXe3h/ffejw+wut5rqbbG7j+t5dbg8tLQRljd4z9lzSxRD8poWO0nRIapoe6Kr43WH/ZqKoXk1Zs7572oufdWftunxyFz08npu/GAbY/6zgunvbgGUCYmqZjt3nDdQ9VsEpS/q8ShpphZN5NOw3lGkxISpkTugeAr+54dMHvpm3xEno46EVgjaX9oYkLbdkf1CW3wCWI43ldOX1nq0Ewc2p5tNObVHXvAURCvGBBtvdMRba3OwOT3M21nMRS+v6/R3l2UZu8vNl9uLKam3Utfq4OkfMnl6UWaH60x+YS0Tn1+t/h+sD3Dnp7uEcfkpjBCCjheSBFe9BFe/Co3FsP9r8LjVktqtDjeTBvfi/85LA0CHG4P39LtkNwy/An6/AC6fqVRremcilO2GIr/QMz4q0OTy79ZXmbL7r5yr83fSVmRWtfMQAKA2O/D/plIo2ansi07iCm+1o4cvG85fm1+GLW/5l93ylhJJUZkByacrx3rpDBhzE4y8BgZPhZvnwZm3wIX/gtt/6Pg8Db0EwuKhpQL6ToB7Niv+K1rC4pBDohlkrOXhy/yRIgPadArza1spqbdQ3mTzhgn7hbYHLh7KmL4x/HiwEqvDzYTnVnOP16w4JTY0IM1Fa4V0x/kDyX/+Si49rXdAVENH0QxrsqrZml8b0BGp95ZndXtkDpQ18e3uUvaXNrG9oJ6NmofYoMRIdfZzzqYCdUByZn8lssKn7YzpGxvwnWkJEThcHm9EkH/2euWDk3n22lHqYPm1G8fy7Z/PJWL76/6VB05WRB4fi/6qRKNtfAk+nAoHF0BNlvK7Akz8EzQWwdoZ6nYB+tQpnRd0RkWYkGWw+q9Preg4MkU5xv9efwbZM64Ieh57RwUKQZIEec9f2S5dKnr1P7nDsBytf9TpqdH00WvuDV+E2aqnsDmVh5bTYYYvf6dUsAMiCn4M+N1zqs2sz67hzH5xRDRkwdoZygfxbSKCfDt39au06GMZUTE/4KOoEAMp3k7cx5sLya4yqzPDPgq80Vw+5p9Xwp/3/prBngLv5pUd86VGbnWfxhVshqX/VH6rTa/CzjmAhLT2vwyJsBHtHfTZnG51AJgYGaJEgjWXwmXPgU4HkUkQHt/+mPQGpKtfQ99azTkFbwKKMeXCfWW0OtxcO8QAFR2EupfvgQPfwddKxFGqt827+cPttNpdASXsBySEE4OZSfpMpun38rjnXaSS7Yq/GHCHYTkJzkrY/BpxDfvbzfzbnG4+3lzAaU/+SHWLjRqzPXh758UXSegThH2sO1zd4SyY777/4wUDabA4Ka638N76PF5YfjggJSZYtIYWXyRLTYsdh8vD5a9tYG1W12ZSO6KzYwWlMtsN723lr1/tDRCntZMQ2rYsp9rMI//bz5hnVnQaJu5ye3jom3SmvrSOW2dvZ312DTmaWe62JvVVzTaWBvFdC4bvfHckJvVt2ce/jV9hc7rJr23lv8v81alcHlktnz0o0f98uGZMH+6ePJinfzWKvU/4RXCjXmLezhI1OgPQmPIHCkGfH/qcuZlzg+7TzOuVqKMx/WL5+yXDOGtAHJee1pt31+V5B2ztBzrnBkl/jQ03BY148YmHsgzZVWblGfb8au74eGc7H622A33eHAdvT6CXJp3cN6OrHYD5Ck743qsMYsbsE882ae4frXfeBbp0MIbDX7bDqOvU91Pjwtl17ru09hrDgI0PY8RFXo1ZjYLcklvLG7qXOWv3Iyz+6wUU/PdKrh2dAv+7E13hBtb9NoSZ1w7n9MTgkT91QSoqdYbL7WHY48uYtfzE+lkFo60Bvm+irTsFBdpS3+r/DbQizJn9Ywkx6AD/QN3tsCj+jhqGeEVTUCI+z35uFW+vzVXf+3xbUUCUZFsOljdjtrs4Z1A8Dk0xixOF7x4pqG1Vi2ckRYXQx/uszanuXJT/KcnQCEElQX5jn9Gzz2bAJxSuPlRNqFHHtJFJARWDB1HGqz8epMHiwJS4nOj+yiTW6L4x6rPWx6WvbuCjzQXM31PGLR9u41jQXp9ti6N0OFmsQZbldlV0PbJibXH6Uz/y8Ledp8453R5mLc8KiEb5z+JMbp2zPSDCqqbFHtDHOFVpaPU/Bx7+bj+vrwruHaulssmmZi58sa2Y/JpWPtzQXtjdklvLyysOM3tjAcMfX84nWwoZ1SeavOevZEJaPAfLm7A53UH7AM1tKsO2PdfaCYSsymbSHlnSruCL4ORGCEHHmwFKSgoL/gwrn1SFoBAcXOJYxVPj7EwZnohecqGTlA5nQEdu8FRFSHHZYcUTii+Ply+m+2cUI7Ew3KwIOXfrFwMQ7h2ojza2T2egzJs/3FAIpbvhgykw52Lle1B8ZdKfvJR7h7dgzJgHKx5Tlpdl5fXSfygGs8neiIOEwfDr98AUTo2lhoIm76z81EcVsaEjdHp/BNCZQdLHACQJKXYAtwyVuffcJPhgKuzxRYHIzDJ8wB9jdrL8QAUXvLCWDdk1JEWHMDRGZvbobLJGz+MBw3xuOzeNrMoWvt7pN1HupbcQv+998Lh5+prTuP7MVN6/9Sz/55EmdDqJvnHhlDZY1U5WZnmzOtgGZZContpGW7vUMFCqZ90/TwmlHdsvlrQEfxh8uEnPJaf1Jj7CRK9IExtzahmcGMELN4xWZ3g3P3IR6/4xJaB6HBCwHa2fxdDeUdx2bpr6f2SIgbPjrFCXA2feBvftVq6tCx8GJJxjbmKNq16RVH6/EFwO+PZ2ZeVBFyp/h10GA86Dkh1EaHyNolq8v7fHqXhb7ZwNswYoIigwItlfFecCbzU91Xy8vgA2v66kQNqUTpBOF5jaFBEsZU3D/27yR5wt/uMYwmQrH7suI9uTqoixMf0gZ4W6jOOV4VC8RRFrz/kL0v+z997RUZXt1/9nenojpBcgtFBDKNJ7r1IEBVFQwQI2LA+ij+UBEUUBERQFRFSKIr333nsJNYQkpPc6mZlMef+455yZSQLi8/X7rvV7f+61WCSZMyeTU+5zX/vee195t8Eume/XVNxXyfl6mtdWwdKe4npTu1VXzkhQaymoO4TutvMuSj2lUiFbvCT7TtXVUmc1kBozbBRkW0T2AftxEq9p8m5iRsUrla9RoKwFplLwjYL9n4CxWNx/leWwcijTy+cyRH2G3pEKdr/RlTWT2otjKgXRh7Z86PEEIKI1tH+Z4Fu/8oX6e5KyCjhyO49wP3fi9z8F33eFNU85xhIJhXYVRO5NsJjl1czzKYV8vf8OyfnlaDDTQZlAr8bBRCsctqaglG3wYz8odnSwsobEgdYbxfmf5KwTCXllRubaw4lvZJbKq18fDm4ik9nOCscGQV40DvHm5F3HxORUUj4TVpzlm/2JOEOa0Ej7HGAPwD6WmMecnY5MjzkjmuPnoSEh/cFE0LE7eXKgbU6pkTs5pdzMKuUDJ3VYudHMiuP3qpE7q0+nci65oMYOHc4qgqrvM1Ra6D3vsPz9wIWOQP0WTmSyNIn+YJCw966zhyhnPGQl0Xl8O5aYx7M/nqGP0yp3QZmJCpOFt9ddZsz3J3ls9n5eWXWBF1aerWYxsNlsLD6YyNIjSZgtVvn1/DITh27lkFao59U1F/lsxw2sVhsfGBfwomor7ZU3WXww0SUvL6/UKBcsUQ+wOPt7apk5rCmjWkfQMsKv2mq2s81Oo1LgoVGK595D0KNxEMlzBhHm586rvRqw/uWODG8VTpnRzOX7RTI55YwwXzd83TVibKysgIurCNdVscbkvgAAIABJREFU1GgNcz7ev5xMkUM6zyQXkFNipHMDB6lksojxx4bN5XPX8nCMoVnFRgrKTTT7yNGhtGpQftWA+2vpxXJHQ2clgvM1GKtIgdA4CGpMVUwZEI9f9ykozBW08colKbdMVl2ZrVbiyo7ClbVgtaDY8Q7MbyrGEKC2IQW3XwbR5KfYavsFca38FUhERU35G80/2s2n2x+8Iv7fwNkiWLWIlvA/IYIKKxzFscnqOBY6tUpk3Ckc14Fl5WChCK50vMf5WX7kTh65pY5xFUQAurNKsiqk3DGpSUBWcXUS8b/Bg4huaYzIKzPKxECQtxtNQn0I8tY9slW23Gim4fs7XYKVSwyVLDuaxPT1/314/s2sEqb9dglDpYV7eeXyM8j5HEvzAGfFkIQfjtzlpxPJtIjww02jktWNExpb2K97h0mn+nB68xJ0gYeweQo1aKf6gUTbxzytyrWUG9g8hOR8/f/IMufcmUxSZEm4mlb8p/vOLTViNFvlzK96tT3JKKrgdJJQq607n8bxxDwW7q+Z8Dh5N5/vDt3lP1vFvWmotHDJPndyHl8fX3yc7l8e+r+eXWOotPDxlgTm7Lz5tyjiqi6EzN93m9Q/sZW3/2y/TLZJ8xZprtPso93M3iEWTcYuO803BxLl+yS1QE//piFyd+sracW0+3Qf8TP3/imJcyzR9XVnEvhz+zzpl1MPVsb+FVSYLKQV6jl6J/d/LXj/H/xDBP39qBXj+PrkImr/PowIRS6fqH9iyL1ZsHYs7SM9UGBFhShypImcjLpdof0rQg10fZMoagEKkuRMgjbK2yiwYfSKoIUyCbAxrUE2rb2L2KJ6p/rnSrYXBV+3hGU9odw+sKeKIDqNSinCaC//5niP1SqIIwmVegcR5ISe63oydNPQRz1CMOALEVTb6pkHb1OrniCeDswUioNDnwOwrb+eMepDPMUuvij9F9PUvzO4RSgvR2eg/CaO3rc/xu32Fjj0GcPq2dCoFC6KjE91K1Hu+zckHWJCp7rMGxNHcKWjCJUydyL93amotJBfbiKnxMCZ5AJGOQUhBzkpWG5llbhM5qUVnuuZJVht8OOENmya0olFY+NRKMT35z/oI0/GRrWOZESrcDZO6cToNpHyZwj1dadOoCch5NFIkSpyedLOUdfLwdD71RDa7IIMe5Bj6wkQWF98HdMTPi5ieWRjXg+uzZF2T0O97jDltLBCedSCIKcA8cCGkHuL6ADH6pNbsVMR/U087P1QfH1f5NEoFApGtY4gKsBDXrWTsf8Tsf3hz4UNrQY4B1PLsDiOcWu3TH7SfM7MOleFugy4aG1AX9NcYWmLEN2DpMezsdko6PiauOYCG4K5gnCFeKA5W5B62E6DxSjIr6c3gPbBlqio1v3RKSp5tq4434EUw7UNBHlpAZu8alZmNFNmNMt5LBdTC/HWqQmghP0e78v7iygVK2T97TYvcm9S4BZNIT7sajQTGvSDSfuh2Sihxmv5JIz5FXIS8L27hW/UC4j4qQ1hhWcd6oO82yLDy9tVWfVA9J2F7bGXGa0+TMCttSTnlxMbpEVRYF9lurUDfuwvSEMJBU4rUJfXyOQ3wOFbuSTnlbPYYylrtJ/STptMHYkICnINqbfpxORZ2fvfgohMOS4rAkfGRxDq60Z6YYVclN7JLpXJi471a9EyUpAdraIcpEctLy0dYmpxNrlAVgBJ92dqgWuAbbb9/KQXVlDbW0eLcF/cNSqXkOKPhzThyXZRxEX6cSG1eoFXabHy8ZYEnl5+Wv7ZjquZsmzamdiaue06n2y9zpHbuVitNnJKDKTm65mx8Sqjlpyk3owd1SY/SU6rcXlVVBEpVSaN0sSyaZgPC59qxbzRggyU1B1Nw3xdts+sUsw5T26L7MTE10/Gya3PAzy1cie5gnITp+7l88f5NBcFxL4bOSw+mMjwb4+z6nQKbWbtY8nhJObuvsWnO26w5PBducjLKjEwYcVZen51mK2XM/j+SBJH7uRSYRNk91rtTNIvH2D7lUx5AptbZiSruAJvN7VLcVsV4zvU4csnWrpkjDln6/giSDtfdw2Kdc/Az8MeuK8HoUNMLRQKOJ6YXy17yZcyQt3NnH2/N9tebgs/DYLNr9C3YpdsDVt8MJGjd3K5l+eqGKxqmbueWULDYAfpVWm1b5t1TYypdjTzdJyHrJIKFh1wJT7fXnfFRebvbCnYfCmdwd8ck4s05+YIQlFm4xnVbtoqb0Ht6hZOGfb5wrO6wyTllMpEkGT7BiDtHJxdCqVOOUXZCeK5D3w4sKFLcwWA/Crd0I7eyXXJA6yKB2VhmS3ChrT0aM320j+DodLC9iuZ1QrBTHswuZ+HhtNJ+S7jjFIh8l3+J9awwgrHuao6f2xfrxYKJ0WQVZ8n1NwXHJZqiTT11KpcxhG9yfxILaIv3i8i3M9dHnMziw1kFFXwn63XH9k2VBOcr3vnz5Fiz9i02hwKqyBvHUqs9IoN4sjtvBo/93eH7rLWqZvqtfRiTBarfF0bzRZafLyHWdtvsPbs/Wrvf1SsOJbMhovp/HoqhfuFeuKj/dCqlC7kqhRoXRMRNHuHKKDr23Mufd01JP+rKTPyxfzAR6FnSOJHjr9rXDwDmoXIEQe1nfIF69X2pKt98a3VzL3/dTD8lbRieXH54K1cnNfqskoMvPUnih6JoHiuU12uftyXoS3DyCk1umRrjlt2mnl7b2OotMjP8ptZJdzNLZNJixJDJTabjR5fHpLzkiQ1qs1mk8etU0kOO+T/DVy6X8RPJ5JZcvjuA7uZ/hXUZBE+lvjXbXDZpQaK9CbKjGZ+qKIOMlOMyuMuEzrW4Ul7d13J5lxiMKM3WVwWzapiUItQ9t/MdlnccR5bD9obguiciMlL94uYuvrCfxVO/8Gma3T+/CDjl5/hmSrNGP7B34d/iKC/CZ+c/ITmK5uL5fw3rsFLYuKvuH+KWe6rGa06TIl3DJRm8uyNySIjSCkm0UZLDZOU5k+I/4tShSrBzQ/yE5nRrwGvRacQp0zEhgJ9i2eppShliPIkL9x9jfWaD3G+3SxTz4p93dkLuber/55Eh/eTygpIdvJ5Ft+HtLOu29dABP1lBDYQQbXKh1x+jQZBSTqc+UF8X5IGZ5bS7MocAOoZb9BOeYvX1Jv4ZkR9HrvyIbj5CmtdpMjd0XzdjJYBVs4mi4KtYYCaLhr7qte9I7DnAzi7nJabetNJKYKwVUoFnFnKsEuTUGDlRmYJmy6lY7HaeLp9lPzxQt0q8UYMhsfu5HEnp6xaXgTA/DFxcjZEs3BfkmYPpGfjYBeb1fQBjZk3Js6lPThp5+DaejDpcds4kd266RypvwaW9SLkyL/kzap1jUo97aIiI/OSsEMFN6322Ups4sGTGCk6aOEXKST+U8+5+uUCG4KhCJ2piCWjGzM+ugBlUbIgjyRU2h8M6eflH335REuOvOvUvl2Sp2dcBLWdLLjvGNydW89/aF0Cv44S3yQfE8qhYqeC6OwyuqsuMz7rM1mFVCemoSMjp/UEaDRQqHoAU4/3oO9MUKlFDhfQxVsQSI1DfOjZOAiA+vpL4O4Pz26DOp2qHTNnKMLFcZsRZ0CFhQO6t+CPiURvepzTuik0UqQS7i26mvRfcIS29gDMC6lFxEX5cbj9eaKt9slns1F4ZJ/n+uhSRt6cJuyh947gVb89/x7chKdGjYFxvwtr16jlQg0EwlLqHGhtrRSB8xb7KJB3W9xvClfF1QOhVKHo/xk3NE1ol7WW1Hw93dQ3XLexGCHpkCCKz60Q59MvSowN534kwt+dfw9uQp8mwWSVGAhL30VfqyCiwwtPESURQRO2wzt3Ie5pULuhmLgDBn4J9XtDZDsoSGJYAx0JbzTiq8BtvNBMIU+mX1Ftov6lL+SCK8zPXZ60tqnjKPCDzVk87nYJo9nKOfs4IE1EKypds736zDuModLCzexS6tTyQK1S0jzcV96+vfI63Yo3AyJ/605OmUvoMMDv5+67hDOD62TOzcnqdtAeuJmSX86cXTdpN3s/XecedHlvVXuVsyy7KnFTtUW3hHmj4/DSqWllzw9JK6xgVOsIF8IOXIkAQ6WFjnMO0H/BEUoMlfJx8nXXEGSfOMZH+bPrdaH+3J2QxZX7osB5uUeMy34Tc8q4mFrE+xuvkVdmlDsmNQz2Yt35NNk+ISmonAvJq/eLCFXkU+YuwuAHe4jV4f5NQ+hUvxZ5ZUaySgwiEB/g1HewfhLoC0S+nhN5jNlIX/Mh/qNewZg2kfz8XDtGxIfzTisbl90mM1a1n89ZKDLR7jmUVQ+EvgDyHOSKn4eWqAAPEnPLqhEPq7WfEv5dA7RLu6I+9Y08TgbbcinSV5JZXMHc3bcYv/wMPb48xCy7QkWy9L3QuS4vdHbc53FRDmuPTARU6uHQZ/LPewY6iMr7BRVsvJhG83BfOtUXJHFemZEeXx6St5HUC5svpfP6WhHqKtkI9SaLTKReSy/hOf/L/EezUrwx8CFEUC2x+NC/fAvtsn9DqtXjlE7KnIt2+12zkfB+FsT0goSN8svPNVNz7ZN+7JvWleQ5gxjcIpT8MhNZxQYm/XyOtWdSGb/8DI8vdtjop6+/wku/OJ5FDyKCqq7CW6y2v5RfMmPDVaasvuAS6JuYUyoXYOMei6LcZHGxeTQK8SEqwKOaAuuvoNCpfbx8/q0WODyXZyzr8XJzjPeWfrPBLxqSHQq+13o1YNHYVoxu65rl+OHmBNmi7owpqy/IYeogxqGGwV7yIs+kn8/R66vD/GhvuvDfwvl8lNsLx0qLlYwig6wyvpZejA9ldNo/HL7rRHyED2VGs4uCRcLnu24yfcNV+XtpEcDfU4PeZGbeXtc58Z8FZ6fkl9eo/pAyDD/beZNSg5noAE9C/dy46zQmZ9rH14Tce6g8a1bBDJOaophNsHoM2tJUzlqrN9IY0DwUhc1KczsRlFtmZFCLUGY+3oz907q52EJnbb8hE5FWq61axlhNKNKbuJdXzsvdYvjPMDF3fLpK84bTSfl8ufuWnHkF4lxN++0S1zNK5IWJyAAPvN008rVyoAZ79BNLTtJxzgHyyoz0X3CUXl8dllUlJQYz+2/kuDzvbtufFc6Kq10Jj2ZFPp9SWKN66K+qepwta865pDXBbLFWez6fuVfgQlLWZK/8byyPRfpK7jopppw78N1Rf4ZH9FI+HtpUJg+D7M9OX3cNIT5upBdVyI0Kqh6T9wY0RqVQuHSFla4n50y6XCdyednRJLZdyWRhFQX2o+DSfccz7ExyQbVuzf/g78E/RNDfhD9uC99upbVSFNQhzaGf6KTV3Xoas9YH7aS9MGIZ7mVpWBQQ4OmJVqnFYKlhYPYNd3wdO0QU8jnXYd2zTMt+jzfUG7AG1Mc3thcAn2qWi231eZicij6TXyQ06Av6PJdJIgBBTWVFEADfdYTsqyK0GuDgp3D+J1EYD/wS4sZVW8X/X0PjQSJLyD3AEUK9420ouAvxrkoixcHZIsemz3+g/cuiI1KjQQD09hIrfV2UV9itH4OH0f4QOr4ATnwD26cB0FHKWUo6BDvexj/3LO1Udxi//Ayzd9ykcYg39VLWccRrBk82VtNvXx+2at+nm/IyHYu2cjW9iFZR/i6BymqlgpYRrqvuiqoF+c0dIlvF6jQBubYelvWCP56D5X3losH7tsijUVzfxObYg3Tzy5XzdwAoz4Mf+4rzmLARfhkOp5YI4qNqDhMQ6C4ku3kVTqsOam31DBlpop95mf75PzMzeyoKqxmaDq+2T25uEwWSBLMR7h4QZM6caBF2XJgsLISxQ4TizV5MrZ7Ung72kOxB5r2QuFeEWP80CI58Ic4xCIVc4l7H77CTSdPGPS6vclCvGzy1BhRiiHMhW4Mag9qNT5VLuDJRTKQWPtWKOcObEZh3RmQoPYyklOATBl4hkH6BOoosfBRi4qPKOEewoojduul84L0FgM4l2/lIvZL0ogrysu7TLsId75u/Q2AjGLoIHnsJKvV4bHkR7uyGz+uAqQyPNk/zTMcIXto/mRPpJ2r+HC/sh1cvwDtJMGYV5CfCzFoi1yv9Qo0k4EOhUHArsC+hlgz8TOm0NZ5ydBp7/bIgXDdMgnPLRZfExL2i4Gs0EDIvoTAU8XznusRF+jHAtJuJJd+R5RYDAfVoUnKMJyKKsHmHievMMxCGfgPT74sxs90k8Rki2on/E/fjeWo+HPmCpxJeop4igwBKeFfzO93z13D07Fn8dAp83DSMbRfFD+Nb83icY+wM3fUCLY+/Qpwug432yZr+/mUiFDncyyt3IXL0Jgtn7hVwNa1Ivg7j7OoijUrBWu0s6p75CLZNY1SeGJO+3COI5QqThU+2JvD+xms0DfNhShUyREKevSDVm8xy3tCt7LJq0nsJ+2+4TpqdJ75X0opcLBlJD8hJ8LfniAU4qQdf79VAJnS6Ky+yRjOL7IJiPt1+nU+2JnAvr5zMYgM3s0pp8fEe9t0Q5J2fh1aeQIb46mTybf/NHObvu02wj45nOtRhaMswZtq7VJ6z20icA5cbh3jTKzaYjKIKUmoo4CTorqzEU2EkNXYyhLRgiPI43ZUXeSlvNi2styjSV5JaUIHW7xKbr6wQz7irv8NXjWBBMzhgz/qyVMLCeEalzuQZ9V5mdA/EU6dm3ug4pjQURN9szXJ6mY888LPIWWgStrwKi1oLW6wdtb105JQYSLMXfetf7sjhtzrTVGkfu7KviudqUBMIaU4tSw4mi7XaKqyU+9ClQW283dS82qsBk7s5guubRzgRQdaaLRrxWoc8/2p6MYX6St7s04BVL7RnSMswmRCSsPJEMgO+PiqTQIFVbJlTVl2kSG/iWnoxE62bHC/4Ve/uJ0OpEupf4DnFZpRYARuT3Q44trn4i7C8jvpRPKf6z4GGfR2vL4yDteOon7AIKg0EeunILjHww5Ek9l7P5rdzDiWHZMlae/Y+uxKyZEWdMxHkTPQ45y3tScjipV/Pu9jn/gzSfSHtx2azMfibY7KK6/VeDenWsDaL7Pk7aqWCkfHhhPi6yQrER8XmS+l8eyiRSouVIr2TNUwigu6fhoOz8D42myV9HUSApW5XoXBNOSFfv24aFYNbhMm28wkd6/B0+yg2XEhzyYACEVK+/UomP51IJu4/e/hsxw0Ky00EeOoI9NIxd1QLmob5yG3Gxy077VIoPgr0JjMn7ua5EEFSNkmGvTCVml9cSS+mq/Iq7vkJkHuDdlaher6WUcLI707INj/nIlYieKSuYyazla/23K4WlF21I58zrmeU0G3uIReiX1IhZZUY0KqUsrUtMsCDcD93F/VLn/lHuHS/iOvK9/CIWl5t/1+MasFjUpOQxL3CJjn6F9r+5wwZA1e6brx2HMyJouXtBYAY2xePjWd8+2gUCoWL8vRV1QYyDy3DbLHy4q/naffp/j8N15YWTVrX8eeZx6K4+X5HPvLeigfiuhvTJpJyk4VFBxP57pCjwL+TXcaGi+lMWX2B29mluIds5YcbMwFHV1+TxcpjdV3nmFKntaqqRYDE7FJ+P+eq1rqSVsT09VcY+LVYYArzdWP7lUwXcqbmv6uAkd+dcGkWAJCar6fxv3ex69qDyaT8MiM/n0yWryWJmGpfL6Ca/bkq1p69T8+vDruQpM/9dJbpG67Kz7/CchMqj0Qig8T3saE+8uLIvbzyh1q3JUhKP2d15IL9TmSnRvx+WUUK8iKKl05NuL87f5xPI2bGDvovOOpCKIFoBNIrNshlgUq6Z57r5FioSMnXY7ZYScgoZv+NHHRqJcuOJrnkCj4IWcUGBn59lA82XZUXuiX1bmaxgcJyEzEzdsgLaf/gf45/iKC/Gbl6pwl9hymi1TqgHTQHN59a0OIJeHIVVkCjcUen1mE0P+DhM3iBsIE0Hiy6a90/LQptO5RR7VCGtcBo0+CjcAwSxtjB8teV1kqxug6QsEFMQIObQ4/3RXBzxiWh1ChOc1g8+n0K8c8K207KcaH8aDcJHv8WVFUUKP9b0HnBG1fg7dsiS+idJHhmC4zfCEMWwssn2TjwPBa1J5z+ThT8de25NkqlUE0oNbRR3iJSkc0w1QkU2ER3thZjqv26KeotvK5aD6tGg08EAMtaJdGniVDzjA64A9veIMqczJzk0WhMxdRRZrNC+wWzNctZqFnE4+adjLVsRoOZBWPiuDVrAIryKgWeNDkxG+HKOlj/vFiBtmcjYDbBrhkQFi+ybrKvur6/7yzwr0vLe0tZaXqLiAR7a/TCZFjczrHdugmCgDGVOoKfq0BlD07Orai5CJURHg+etWHjS47cnXo9hM3q1QvwYQFHJvxB8bh1UJwuVuUl/PGcIKR+GiSUJPvs8uaYnuIaA/F6cRrxUf6smdye4293cLz/qL273Jlljv1O3AFtnheEBMCxeaIYcXMl3ZzhQgS5+8MzW1C6+eKzZjDsmoGXVsWTQakoilJIjm7LmcxHlKGGtYKMi2wda7deNegruorZ0dp8AbAxR7OMierdvPD5Cs7qXmbi3TfBUAztX4L48RDZVtznPhHi7whuDp3fhKgOFFQUcDrzNC/ue7Hmz+BZS1hSPWsJAtXbvqq4420wllQjTh8FtnrdAeitvEC9vINQv5dQJvrXgad+E/lK9g5sKDUiJL5uN/Fzu6qwniqXOZpl1FYUkxncAzq+iirjPNHZe1HY9y/erxQEpDMi2ooxb/cMEUQd2BB3Yy5btB/wvHqHvNnPpZPZrpoGlRWoVUr6Ng2RyVYVFlS5guB9P+AgWy9ncDa5gGX61zmme4OU/PJqSoE5O29itYn8BYCOdovd862dJq7nlhOcsJzxrWqx6nQqepOZrZczWHE8GYD3BsTSrq5rkd0o2JsxbSLJKjFwOimfJh86is1zyQVycGhVVM1xySiqkAv0Dzcn0P6z/czZeROL1eay+uwMyT7qvGIX4e8uB+Yv0nxDB9V1tHf3svToPVYcT2ZZFauMFK7s566RJ2fB3m4oFAq6OQXDx0X64aVTs/CpVoxvH00vu9IOYOfrXeS8iFZRfkT6e1BpsclEUVU0UKTxXPG3lOJJdJv+ENmOWpWZ/KSdS/PCvQy5NR0dJm5klpCqWsYHF+eJewpAKo6vbRCZZN/EC1WpHb45Tl3XnBWUAGGtsDrblu0dQFnzFKx6Anb+SxC10rN470dQKqwBgV46Tt8rYOH+O3hqVbSO9idaskEN+9ZBnsf0BN9IfE2CSJBW1aOd8t8APhnWlJ2vdxFKLG83tr/Wme+GBOG5/DF5m0q7TVOhs5ND/nUhvDVeSbvZ9mpn5o8RlsAAT62c1/bNU61Y/qywz/qrDKwc5El+uUnuVtOtYW1528Yh3rzRuwH7bmTz/qZr6EqTiTTexhI7jCshjR6coyahyzQYsYxAitnSu5hD0StpZrkO/T8HqdNZaAvH9rUbwuifYZojl4ub2+DwHLh7gPhof8pNFrkYkYolcG2lDY4gcGcVxF2n7Z1Xrif/cl62o+hNZjZdTK/RJpFeVEFaoSh0nMkKEEG4hkpxvTzVTnTJHBHvIKZ/mtiOF7rUI9jHjZw/KVqdUW408/raS3yx6xbTfr9MRonjb5CJQMkGDlhvbHF8bbOK7El9Plz9w2W/UofRTvUDGdAsFKvNQW5Jx2G/k4KjSF/J90eSKNCbCPAU48ATbSLZ+EonPh3eTN7uqz23KNZXsvlSOp9sTeB0Un6NFiWT2UpmcQVf7LrF2KWnmbvbcc6lwHTJYiQpPQ/dyiVUaT/PSg2RadvQqpScvVfA+ZRC2ebnTPjdyS4jq9jArgRxn6YVVsjkgzMeRiRIiqM/7JlqBeUm6s3YwZozqWSVlNEypkK22UT4uxPq614t2P3k3XyX/CZnRDhb6K+tF4ugjURzjdBGbV03vrkNTGVoTi7k+8fDWT3pMZeXgxRFdFAmUE+RwVuaP4g6+g5t3v9dvr4lQqwmWK02Vp1Owc9DQ5tACyxuh9tXdVAdmcOb3vuZ0LEOUU7jVKnBTH6ZkWJ9pWx3LNSbuJFVitr/ODuTxfO6WbhjfuZ8TzjDubj399DwTr9GlJss7LmezZNtI2kV5UdcpB8p+XrWnr2PSqXg7b4NeaFLPQr1lfSdf+Shyh5JEVbVlvn5rpsYzdZqCy/OGP7tCT7cnMD68+nczi7l5xPJeOnUNAn1JbVA/9DfK11Xa884CC1pQeXDzQlYrDYKyk14RC+jJHA221/rTGyot5zn1+PLQ3Scc8Bln5LKK9TXjec61WVIyzDe6N0AQLat928awopjydU+j1xzXt9M+4OjeUJ1CH+ttVoeaU0q4+hanrJ6KSW/XJ53vNIjhvUvd2B4q3DSCvX8dCKZQQuPUVFpYcVEcf1uuJguH6eCclONyqwzyQVczyzh11OpXEgtYmR8BO/aIwIyiyu4lFaExWp7pDDtf/Bo+IcI+pugVohJdmZ5FUa57ywxqYkb6/hZ3S5YPAJQhrbATeVWszUMoM1EQWgoFKJbVxUoYoeCSoNFKR7IhlG/wuuXMQ6YK29jsphcV+wa9IWXj0G3d8UqkbVSrC7s/494/cUjQkEwdKH4OrARtHtAAVoFf3trVp23g3jyrCVUHjE9xfEIbsLwdvVRxXQXrwc3BTenlvAadwiPp036LxzVvcko1REhPW80ANpOcv3cvT+hyObJm5r1Yh+TDkCr8XjfXMfcfkE8F1PChNQPRHE+agW0ehpDM3E+ldi4qGnFUNVJutz+jPc1q5mk2k7vJsGo7uyCLxs47HZ39orv086JlesNLzj+vrRzQsWzYgCUZQnFTJvnRF4PwMjlQvHU7kXRae35fUKBse9juL4ZNk8FYyk8uRo87cVXy6dErkzHV2s8vAazeDi5kJc1wSMAxv4G5TlClRb/LDy9XhTwtWLIMxYy5fA03k1eL4LAL/wsOkylnXchLmk7CUJaCIIjpJkgIp/dJjJ+vu9MB84DAAAgAElEQVQGJj1c/JXwq3bbU9d3oPsM8XeaK+D2LkFI+UXB4HmCHPSJAKvZtZCoAc4rIABEPQYvHYXWE+HUYri8VgRYewQy5M6PPL/n+YcfEwlhrSDvFh7rRccshn8Pg+fzVaWwtQWVJDBX/b28+U7dewB4SYVosJPV8slVMC0BpqeKe7T3x6BUuigGq+WJVYVCARO3O5R7YfFyXtJfQUT9FmTaAvhI8wtaY75QLNlRER7Hv5t0Il+pBJUWPsiGqPbi92g84O5BMJuoa3AKYI1sK65nu1KPxoMe/gFUamHl0+eB2QCDF6B4ai1eCgNT1FugVgMsQeLYhVszYVlvFyXapC51+Zen49qL4xY2m5CgS7BYLOy1Fz2bpwgb4PXMEvpFq2jtLyaK3RsFcWZGL6Y3qV4QDgopwGYTRYZUHMwZ0ZxO9WvRrk4A7esF0DtW3Ithfm7EBHmiN1lcQlj7NAnmTk4ZNht8OrwZAZ5al06JVUNY04sqiA31cZmwLTl8l++P3OXgzRxaRPi6ZCQBaC2igHEOZJfIsl4RNjwU4vkTlbFdfl1SNMwd5Xpf+XtosVlt1FFkyja3lc+1I3nOILa92pmZw1yfU5L9LMTHDTeNSlhvgbjaShoqxKS4SF8pq5ak0NNeyvN8o/kGPTo2dNqCZ1hj6PwmxQ1HUWHTcjd6DO7GXKapa8gYe+InMQ72+giKU4WipCgVdL7wXrq4Rk8vAZN9tTNDKGCMCpjYqCdbe72Foc0Ex/5OLRaW29s7xUr96SXCuqlUi4wui7BxkLiPDrZL8tskG6NMNAU3FePDwC+hy1vgG4GnwX79XcqgbR1/FoyJk9+vxozPzXVE+NifEfeO0FSbwwBOUml0FLGm4/MAsHkEivy9iTsgdihkXqKZdzm9Y4PRqZUMiwtD45Td4KZRsW1qR86Efkm3/cNoqRCr8VGKbHpVHqZVsJjTRNfy4I3eDRnSMoztVzLpYrdRL6/TlHHuFVwqc9gbHoi6XQBodmwKdbL3COvuYy8KVSXUbC/ztmelRXeGJ9cACsi6Qpf6gSgUji5nzlamm1mlLoHDUgcnZ8L3nT8ucz6lkPSiCiauqGJ9t+Pk3Xze+O0S45ZVD0zuNOcAnT8/6EIiSUTQ7WxRFG2d2pmPhwolZiOnxgmSwjDYR0dOqbFaro2h0kKjD3ay7UqGy8+dSYutlzNoq3KQl6bko7C0l1go8QkHzyAs9x0ZZRabRcx9wlqJbphO87TescF8NKQJPRrVJj7KH41KwQKnAiunxMjt7FJZ+Sd/ToueP/Kf4UiaUNBp1UrGPeYgfkuNZr49nMjray+x4ngyY344xaztN1zmiBsvptF97kE6fHaATZeEWlOy8YMjL0iyGMVH+cv2cT9lNiatFzQbgfLuAYY0D6oWUOt8zm9klrD1cgaGSisj4sPJKTVyPzmRj9QreVJ1AClN8Ivdt/jtbCo3s0q4nV3qohiVznFqvp4Td/MYukjM62bvuMF9xVpuqj7im6fr8WTbSBoGe8uKS2c4k5YTO0Ux3slu5ZKlmHJCWKTt80OFb7iYA9rhfNX0010T4dJ5d8RcvjSb0C1jWaP91GV8fF+9Sn7n5Sp5Wodv51Jn+nYyiip4e91lDt7K5fG4cLQJ60SzETsmNbHycY9A4o1nmKteQij5pBdV0HrWPsb/eFo+V3qjpVoLdOexp0+TkGrHBlxz7pqF+8rKIRUWhkUb2fhKJ57pII6ZAisX3+/J1J4NGNk6gkAvHcUVlXKr+pogEcJeOjUzNjrUOAkZ4v6qqRtaudHMZztuyITkt4cS6Tv/CBnFBrRqJVEB7uhNFvIeIcD+VFI+pYZK8sqMcubS4du57L2eRUqB+AxWm4WmYb40CPImu8RYY5aYodLCq6svova+Qqe4u3w4pAnfPNWKYLu65+y9AsL93BnUIhRTDWRLhblCdPld/wJeuZeYq/mBuZHHXazy4Nr17jvvH2FeU2LMiRjNVgyVFrrNPcTSo/cI9xMLS62jA2gd7Y/VhpybtHhsPB1jAmke4cuOq5l0+OwAWy5nED9zr4ttU8K9KiqkcD83mbDOLDbIrz9qtWmx2lwy2v5BdfxDBP1N8HOzh+ZVJYJ8w6FJ9eBJq0KFUqVFp9LVbA2rijqdwStYWD+62sOgY4SFSzlqOWVBbXBr1Af862CyOW5ms9VsJ07EBL0o/mnSSu0row36QLfpcHe/aHfvFSxvB/Da9aXMajMUop0UGg/BAwmt/020fwmiOrgUqjKclD8lNndo+4L4JrItDPkaJh+GtxNRdH6D1yPWsrfVIpGR4x0syAqbDb/vmvNh+kso3X3h6T+g2QgYthi3Ud+R/NhMLNGdyen/A/MrR6JvNpaiiJ684bELLzWCoAFh7TLpYd1EEdK9rJdoAe5RCyYdFPlP19bDhhch64o4JzHC8sezWwWZ07AfdHpdKCe0nuJvGPGDkNT//owIA+83WxTYj38HDQcIy82434W6qgZI5yvf8AitHsNbO5QuDfoIyb8dens+UEpJirD0lGWJDlO/PyP+tsmHYPQvokh58YggOCREthVkpz5PKD+2TXMEnjYeDN3/JYggCc4hxSo19PlEhKtL57YKpIK3xmvTzRcGzgWPQNHlL3HvA/fzQIS1cv3ebqsLGvIhl0JHA/CEWkyWt1nac9LWjNIWTiRT8J9bLSXCDiBH/why2IB64twDdJz66PlATmgc6sNJq/2z1elCkl8Ih+4fAmBb0jY2FSXwbZNuorCVrgW1VnQnO7ccfnuakBLRheWQpSU+sT3FNiO+F4o++0rnQ1Gvh+hIVK+HyGtq0Bebp71zYoM+qGrZpciNB4tg+S/qChIq7Rzvt1Uy2fqH/RqagaYwkaPtz+GJY2ITq0qX7WKBihLGq/aiwsL32WNQL2otLItp5wn6LhaubwEU4r7qIQI8m+Tt4WnVXtLObeN8Sh6v9WrAk+2iUCgUuGtVrJ3cgXH2iX5+uUnO6HHG5yNb0KdJMG/2bsjYdlFc+HcfXukew8rn2vFK9xiyS40uhW16YQUR/u74VwmJ/2LXLQr1lQxvFc4Spy6IA7zuwmcRgoQGFgyNYt3zjmv2+6j9KJQqMrybE6+8g4+bmjMzxNgTTi5P5C5ickfH6q23m5rG5Wc5pHuL+Ps/iR/abFB0n2bhvnLegIT6QZ74UUpP/xzYNIWmhouc0E1lzP5OtNkxUHSdAoa3imBAsxB2vN4FHSaWa7+isfI+v1l6UL9uHbEz3wh8xy5HP+0e9SZ8jy3+WV5Ubydc6Vo0E91ZjIMtn3T8bMRSQa7qvMQ9n3JCKHtM5ZB+jvL4F/m173bOmRKZcWwGRb6OcHXbqSWigHbGjExB2MYOEYRT5iX4dSTPJk0jQlHlHk07K0ijwIag1mFp8xw2d3/wjUBTWYKXPWtuctcY6tRy2OemBV2ATS+LZ4WhGFYOgUVtYO+/XezfBqmhg0ctB7kSbc83S7+At5uG7a914d1+1Tt7NUv/HU2eIGw/9/6NEPLZoX2PZzJnMS7vazZP6cS80YKcGtMmkkaKVJ5UHcTqHsBNvZjoZ+kfISjVO0TOZqNBPxjyNV9fXMj3dlVJjUSQQgEf5IhnYOOBIuss8zL+5lyXLnjOuJtT5mIvkmxOuWVG6tUWx/Z2dhkjvzvBzw+xL31q77ZjtbmGFjt/7Ry0nWHPKsssqkCpgNhQb1lxVy/Q8fyVQq+DfdywWG2sOZvKnJ03ZeXfnewyjGZrtdVu58JdjZnhaoeF0bTtTUg/JzIdIx8TC41O14fVZhVjdNtJQjnslOPnrlUxsVNd1Col7loV/+rveo1M+10QObW9dQxv5RgHVG5pmG1Gll91tTgtGd+amzP70zs22KUzl4RFBxIpNVTyy6kU3vztMhl2ortIXyl3fZQwZ+dN5u29zf0CPVq1knA/dza+0okPBsWyJOY2bwQHQv0+UFHA281ci//RS07K1lsQqotPd9zA111Dr8bBgI1vNAuZqN7NHM0yRiiFxejMvQL+tf4q/Rccpe/8Iy4ZWpL9p9RoZuzS07JNt9RgxqQR58vP28yckS3QqpUEe1cngk7eddjwp/Wrw8zHm8nXRGjFHdj1niB0SjOrzy2aj5K/NPWZKSyUHoFw76hQLf7QQyy83dqOMlfc04NVpzkXOIxF5mE8oT7CdPVawnzd5E52NpvIDFpzWpC5M7ddZ8PFdJ5qF8l7/WJEXeDnyMbk8hr4qiEdTr3ME+ojPKPeI5MHV9KKZdWUyWIlt6w6IbP9tc78OKGNTPw/DO4aFQ2CvQEbCzSLab+9H+Ql0tDerGCu5gcUX9SFlJP4umvYNEUoE4/deXDAcnKeOIe7E7JZfVrce5UWq0x4bLmcUY2EXXkyWbaStYryc7FnF5SbiLaP2VWbR5QYKpn2+yUSMoplUjO9qII2s/bRZtY+8stNjH0siiBvHX+cT+dUimtHQ8lKt/mS4/NIc4H5e2+zKyEL94jV7M75Rn5daoaQU2qkebgvzcNrVskbzAbYNV1EUgz4AoDY3F08ESsanfwwXswh7hfoGaI8warGJxhQuQ9K0hhz4Wm6Ky+6jLPdGzlUwVLX3AuphfRvGsIgr9uwfhIdojxJydeTVWLgoF1lKC2gOSM5v5xwP3dZ+RzorSPYV+wzs8ggq6Tyyxx23Kxig8s86XZ2qZwn9NKv52n0wc4aj0NVlBoqafj+zkfuQvj/Ch7eo/kfPDL8dH7kVeSRVf5o6fFmmxmVQoWb2u3B1jBnBNQTNikQk9yu78p2CremA6Gpo1h2LnorpbDMcX+AsZQhe5+jyFjE1WeviolWj/fEA0elESv6TgX+wfsiuPSD9h880t9ktBhxU7v9+YZ/J+p2fXC7+hZj4OofpDR+nqLg9rSMjnC81nqCy6YrJ1XZR60YQbScWAg5N8RD19t1olJnwGvAa/QD+sYvR6FQ4HF9M/x+AO6fEpYEEKvR+z4WNi2tt/gfYPgP4vc0HgSXVomfvXFNZExJCG4qyJwasDjhR5YEAAFR/OIdT5yUr9Kgt/j3J6gwiwdaeeWDMzpcMHi+sAB5Bbv8WHq/UqGEFqNFS+CKQkG0jP5ZXF9VJzXOaDRQrNZvqaJcChQyV+LGCcXJojbQfbrrNs1HuUyQHoQHkpQqDYxcJiTzFQXQbjKkrgbEA6ZaplNVRLYVKqUqFsDx7aOhoi44zYVDnl9DnUBPvL10UCdOtF1/SFcyCdJ5AtCbH7HTTEQbYdtz7mL4F+DtpiGyeTe4fgxajGHYJkFmX332qryqawmLE8SoM5oME7ljd3bjq1Rz2NKCD70/4XCYfaKg84bWzz7ah1Ao4Pm9DiJLoUDRd6YIPX3sRRGC7h0qlEO7psO5H2HzFBEyL6Hbu2AUE9Lg818yT9NGfmmh5wqCjCm8o3qZkCOrmKnZzmtxSkhA2BgXOQgVrqwV6sixawXxcXoJPldXMEsDXF7BFsUbdG/UudqfEGcvWMe0jaRtnQC+eaoVr65xWDgCPLUsfaaNy3sku9X9Aj0Wq42U/HJmbrvOW30bkV9uItzPnWc61OH1tRdlBYKELg1q4+c0yf6u4Xm4DqwaBSotj1tMQilY/zu4ug71hRXQbhJWZRhhpz5mjedXBB3YzAudpzI4eTWc3kbf+Gh+JJw31X+g3LKDERoxAWx952s4V1dYUG9sgRHLhA3ZL0qcs9RTPJ38NePddmA2N4JLt3gHZDcQwGDVSTLMtegabKT7EHG8e3imgAWKbR4sNQ9iT5iT0hOo5WsvrDu+BhdWMsf/B16RXvywwPEM8wkTz8msK6JhgnQdtXpajOknFwkCwmLCs0k/2vr6gP0R60y4VpakoS1JE2Pf4c+FukLrZOHqOFVc83b140TVbmaax4sJsdUqFgRieoHWg0JDIV1/68r0dtMZZ2+80EmZwG5rW3o2DkKlVDCoeShDWoTSP/UAnEVkCh381OUYmGKHQalQs+ibj4SMAy7PbkKaifsj4yLEDqa+nxKurYagWJHFVZYjSKbko0J5UK87jfd8wHGvf6EyG7D5RaO6d4iWnVJAJ6xlHesFsFtnH39rd/jrBHP36cKybM//WXZ1GbjBi/DgcUrtVEyHtBCLBbd2MCF2Pm/eD6ZRsLdsq2xfL4ANF9PtxaOAlLWUW2okyFtHdrFBVmrdyHLYMT8Z2pSPnMKQk3LLUSoEEZRSoOdiaiE9Gwe5rJjvSRDFgodWJQc/pxcZCPZxQ61SwpEv4cZWtJ3f5NeIHVjqdheLPd7BRPiLZiDvb7wGwN7rWex8vStJeeJ+ltQkmcUVjF16mnt55dQL9CQpr5znVTupdDr0JgViruMVLO6JG1uwJjnss2arXTEVOxh2vCOu+yd+qvFwT+hYh1nbHc0BLtjbdQd66fhsRHNMFivbr2SiUItj5+/mSm5rVEo0KogO8Kgx9+yrvbf5qkpAM4hOavNGxzGweTbh/u6M+PYEl+4Xcel+EbPDjrNGdxRldhixoS1pEOzB10lwVG0Vi1IqHSGp24Du8v7OJBe42Iyk/KLoWh50jfFhuPIYbZS3Mfb6lJLDi+hvOcsGa/V5ZKG+EqPZgk6tkhUhNcP+TLRauJp7lQpzBUE+kdW2yig2yM7tCnMF3lpvtkztxLmUQnQn3hMxAafsmZhhcdXeL8HQ5ll0Ol8RF5F0UPyT5pXb3nTZVtf9bb78NZVYRSqDVSfJavoea84IS/O6c2l8tCWBFvYsy53Xsoip7cknQ5uh3faqGDv7fio+S2mWiAbIuS660AE9g/V8bn/calVKEnPKaBziTdMwX/TWLI5VmXY1DfMV3Sotlax+uhE+/rUZ/I1QVvlSxiLNQoo9omlvOEpBRh189T+xQvMFPVSXxSG+tIr6XabjgYERqmNgtMLl1RDdgQh/D2p5akl8gEUakG1M0rnUqUVnN2cSYerqiwxuESZ/r3Ia597s3ZBnfnTEBnRpEEhsqA86tZI3f7vEk22jGPtYFCG+bny8JYENF9LRqpTy9QcO1VGFz+8cLk9lUIv5rDiejMojF2djcINg8Zxb55SPlFFUQWSAh0tAtzMCPBwlfVyUXzWrsYSK0nS48rvIVH3sRWHp3zWdYXu7M3jEVyTbSah7eeWs1C6CZNf3P6vaQ1KuY/H9pW6O8VtaDLLaIC5YDT+LjtIT+3SloG1L9t3IceksarXaXNTKt7JKqRvoybjHonh51QX78VUR6KVlV0IWGpXYNq2wAr3JzGc7bvLLqRQ+H9mcMW2jMFRa6Dv/CL0aB7F8QluZ1KkwWVya9ICw1y09msS4x6LxddeQkq/HZLHy2c4bcizI/x/wDxH0N+NRiSCrzYpKqUKn0lFh+YvdIxSK6pkaTnC2j8j+cZ9QIJQiYw3e4Eb9H/rrzFYzv1z/hUH1BhHkEfTA7SrMFfjqHpzT8iiw2Wx8evpThsUMo3nt/2GHMp0XPLeTaOAhcZYPRtPHxT+r9U/Dg2XCIKaX6FR1dJ5YpQNHmGj8M9DlbWEVaz7KMcntOwtMZcKm5Fd98vAgLLm8RP56T0gMD5421AyJHHlkIgiqkWEAZZXi4apSqESe0L+ShexU64VVqeRU+gk6hHV4MKmi0kDcU8Jy4R4AFQVYojuC2g0ViGMf2AA+Knrk4kNfqXcp5h5qqYrpIavrnGGymtCpqq/qucDdH95JFOdUUaXlfYep5Nu8uXBwI79ZurOsjlPOzF/I7XEmfyT11SPhvySBJLQdOQ3iWnIrsA7YFbyVlsqHvoe2kwR5uXIICquZen0ms6dD1z8n1B6EquNcyzHin4SBYjWLwfOhVgPY/Z7jtdqxongEeGYz7Pk3/bIc2TAxppuggCWaeTIBUDuheoinDMl+qFAIknjfJ+wpCqevYSettam0rEGl4O+p5e7sgbIl6rF6jmtAym6RkXVVFMrDFkNUe8L8xIRq25VMDt7KlVdxI/w9iA31YdurXZiw4gwn7Dkmu9/oKrcfbhLqw7PtQuHAXpEZVZrhyM25vFbYo84tFyRm13cJL0iCU9C0/DRcOs0HE8aC0QPyoM2F90iU+P1LoAURkh7cRISFS9hgV9O1eU5Yn37sJ3M+6vxbTscxTgS5b57CuOQT9FeeJWZHJsRlgtaD+a3zsZ1Vcm7YYXomGeSMo2oIrA8BMSgqUgH7c0lZ5R7s+X7N7+0wFU4uhr3/FqrF6I7o8xztkPMrHCpJo18UWlO5KLJbja9xDHS+14arjuLuU4uBvXqJTLTi+7IKUlIMb7yzkXGD1mLxqM33zGeZeQAqW1+otLA4cD1s+1nke4HosGiuEN31wuOxxA7h+7Ofgb3uK/eLhCqiKDTuwh569Euxql+vG1z8VbwW3FyQcVlXQecj1LFuvnDvKKo7u8EnHEXrCbD/E6HsnHQQdr+PMsfJ6qn+k3GxJjQdLu7RoNjqr9Wu3hmpGhoNEEQQovmDQtGHrg0DuZVdio+bmtre4iKVutKF+bo5FEGlRppH+LF5anMSMop5fe0lWWXz4eAmDGgWQvmOf3PNWocdVtF1dPqAxszecZNDhw/w07kcZrpHyu26ATk0uFdsMLuuZZJTYiAqfSvx6mwwtIUDIiSXdc/SGSDvN/m9reomAuMA6Nk4iAM3c+gz/7Dc7UlS/M3afoN7eeVEBXiw4Mk4hi46xlT1JpZ5NgTEeGCq153cPp9wuySJTl61oW43zE7NB602uy3CzVfYxA/PEf+HxcPq0YIYbjYCCu6hLnCoEtw1KioqLSiwEuilxc2qp59fBttREKW7QS48cL4X4KWVC14fytGjw1yl3NCqlVz9uC95ZSZ0aqFIGtIyrFpnoDZ5m2ioTBfXYuPB6Id+7XjR3Q8aDUBxbQNqOmNGTYiPG1n2MHEQGSpSsG+Apxbvna8yX7seAF2j3ihSL9H3zjouxR+k5+nWFOBKPJ9LLqRT/UDuF1bQMtKPa/fzeV61g1I8WGPp5bJtxdXfeTZFXKM/t99MCPlk4ZoXJ29rroCSDOqtHUI930jRyVaC2q1ah16X8GtpYavZSBEp8OsIcX4VSrEI5xNOca+5qENiaR5cj8PvxLB16WF6GS4yuI6Fn05YOXI7l0N2suxKWjHuGPhEvZK28SPQZvuIxcn2r4isU+n5LS265dyAbW8SmesYE0wWK6fvFTCxUx0+GtKU05kGjtkjJa37/oMy/mnRpdjdH04upmP+XWwTtsrvfz82hy73roHxGhYUBBquwI/96aHK4VboUBp5lMOxebgdX8B1N/s1rVDJpBSI3J3sYoNM3lVF1Qyo4opKWcUUXctDtqaVG82UGCpZsPcOPu6O67Z9/gbORawnd8jPhNYOwE2jwk2jYs7I5rz522V+PH6PH4/fQ6VUyIqe7VcyCfF1o0GQF4m5ZbIzU+t/mhILdIoJZMXxZBRqMd57asTiYIS/Bzq1kmQnu9z9Aj0R/u7Vw6m/7QhtnyNox7s0VcwkwVaHVpF+KBQKNr7Skd3HzhBQehNJO2S4tR1sFsc8tN1kMRdY/zyqc8vxbiTGpntpVR8sAt2UV9iQLM79D+Nbk2m8ivlaCnVj+sqKIIB2bg7FT+3D7zEnpgc7NTa+zOkKCIVhUl4Z9YO8ySk1MHXVRa5nFjHwsXz6NWvL5Q/74mtf2OrSoLas4K7trSO31EhWsYEtl8VnvJEpHohJduvYwVs5vLDSMd+7l1cuj99lRjMfbU4gKsCD+ftuY6i0Mq1PQ7m5QFWL3P/r+Mca9jdBsm+Umkr/ZEsBq8361xRBfwEuiiCnbBTnLJh7xfc4nn6cR8GqG6uYd34ea26uqfaaxanb1d9hDSsxlfDbrd+YvHfy/3hfNSGzLPPPc1aq4lE6SEnQeYnB9e5+kV0T09Px2sCvwD9ahF87T6Q9AoRypgYy4pE/oqZm5v9hkM5XhbnCMVn8L1BiEg8wlTMR4u4HKjWrb6zmxX0vcuD+gQe8246u7woL0PgNMGwx/T1NDNww0HWbv0AmvHnoTYZsGiL/Xf/NtfmXSJc6natbKN18sLWbzKTKt9hnbV3z+x4BLoqgR/xMq26s4lRm9XyLvwSVGhr2I73MobApNNYc7OvynrpdhRWwzfNEdhzt0jL9fxVtX4BeH0K/z0QOy3M7xTWjUIjA+zrVFTs1IqgJWSoVlY3toftNhonMFWfyrn5veOkop5p+yC1rBG3cMmSyh8IUODwXVj8JBUmobm0TIeqbphBUnMBvA+BO9OcMt+4Dg1OOwsHZouPb2rFw/wwR/uKeljqNSMG0je2dArVqJasntadz/UCia3mILBKrFfbPZIf3bMbs6wCV5YIkm3wI3r4j8s+wCRKo6XChGvOqjSI8XthKJOrm3I+QZ2fH7CrPe02nwnP2kOtGA4TKVMIIR+cszv0IC5yKGM8gkQ311m2Rcfb4d0Kt0+Vt/Cx5xCjtsrkDs2DDZNzPLETRaCC9WjVkzsiHZ3/R+2OynCb8jzyO+YTCsEWC3Hl+L2jcXe4t506KxuHfwbh1Ymz3i6y5YUIdoSYoCu9GgKKMYRWrmHHmXdLOLBbXj71phMvnU6mx9Z3FKWssL6h3Cqva4nZCsSGRQEMXwWsX4f1seHwxtH2eg/lX2Ju6T96NRMRX+9sb28fP4vuCBPKvC93fE00hsq6JZ86r58E3Qij1xv0OT6wUuUfOnQaX9oDUE2AoEvaudi/ag54F/pQcdkZIM1CqXOYNfFz80KB/GU5NDwJTdnKz/reMihZj4/BW4TzVNpJ2TmR7qyh/0gorKCw3kVtqpLaXjvoeegY2D0WhEEVguJ87z9Uvo/aSJryi3sK32oX4UMa/1GsYr9pHjCqHiVef5rBuGoV6E8cT8wn20TFnhOP6ntqjPpUWG71nb+b14rmMK/8ZvrJbrIJrXszyS9lDd5Wwzn44WFhwU/L1MtlbYbJgsdo4ejuXMW0iOfJuD1pE+FGbIrwVFXhGOIgzfYdXGL9nIql+ihUAACAASURBVC/te0lcA4H1sQ5dKL9usTkd645TRcG39yOh7LizB/6YKBZulveFX0fyZoDIUds4pSMx2kKu6l5gXMlyODiboWfG0UGZQBs3sU1Fac0Ln4GeYn6jw8QVt0nMVrsS7PumdeX8B73RqVV2G4gOynLhlxF4Jm6lnjJHfn9dRRbltezjwM1t6JdUCSdvMQb0eVxwe4UBytOceLMNtewWmafaRTnGZUBbnils+PIHbUhgC7EQ6nd5Ke+q11b7WxYfTCQ1X09aoZ620f6MUh1hhmYNn2mWE63IIlaRgkYh7gH9uR/l97Va04pjutd5UJpJhblCKIDyE4Wix2YRSq0xv8Irp8Q96QSzzUGQyfOZBv1EF1W1m1hAGLMKenwA067j23IQnsGi02B0LU+mThBK3Pgzb6NV2njp1wscvOWoCb4PWM1o9WHqHn5d3PM+YSKGoqZ5V1AsNBuJR0WmbO+V0NXePMB5Udx4fB4sbCUaTKx/HjIugLEYxe/PEKHIITLAndHRdluZVyTdTPOxohS5lKN/odGLvzjuf5tVREEMWSgULRkX5Zy32t469t/ModEHu6p9ZKPZQmENGTiSOsh57LiTU8bnO2/y27n7rLLb5jSY0e5+l8C808ReX4Cfh1ae2wxoFuqyX9F+XdSCpUYzd3LKCPF1I8y3evfetvYcJIVaZAR5a8V5VykVslJrcAux/wupheSXmxz5cxJyEmD7WyhsFhbV3sSapmdpd/YN0BfQKsqf6cUzmZz5oby54cz3Iu5BIuCVKkHyDfwScq7jrRfntJ7BrpL0si9+dJjK3QGrsaBkyMnRRChyCfJx4/k9LzD0/EyYW59AjaO+amCzuyLG/i4WI1JPMaBiKy+rHQTgLydT6L/gCNuvZHImuYAu8fc4WvIVG+9slEkggPlO+XkjYz3prrzIibv5su0utUDP3uvZ8nypavC9czONXdeyWH8hjfn7xBxHpxY1nrSvQv1frBH/P45/FEF/E6ScH2lS9mewWC0oFUrcVG5yIf13wbnolUgPm81Gz3UOUmLoJiHXu/ps9bAuaXsJO/8Pe+cdHkW1/vHPbEvvIRBKCCVUG0XBghWwi70r9l6wXvWn3qteFbFz7WLh2rCLgopIsdB7L6EEAmmkJ7vZPr8/zs7s7GaTbEIQ8J7P8/Cw2Z2ZnZ05c857vuct20V8pc3ceGXWmN/ImMukrdQEkmAqtNGDoBk8fg+jvx7Nqbmn8sIJL7T78XWOf0AkuO08CHJHiJCmXieHeDf4/D4cXofe6UeDX/Wjqirm8FVvAmFZrSRcYEi0Rc4l1BL17oBHUITzKqgtAKLwlEvIgKsDJYk7D6Jk9XPNb98C84tEqXXtWWi1+Ic498K6Qg7r0MJktBm0+P+WWFa6jEFZgyLeR+NzZfdG5701fvF4IPh8q6rK1K1TGd19NDazDYsp+q7f2KdVOauCoQbNMeAc8e+vxGITnihNEcnr4Lx3xKTbFAgz++xS3F2HMiqhnrO75PDMBSXCyG5ChOyRGc9GNYcR3i2i8uLqL4QnhcbmsNj0wkUMQxXG/w93iyTxY14Tia43/yxEtOqd8PEF9L5xLtkpsfxhyHlgNikhOUdQVT66ZpAIq/xtqRB46oLxiLd07MCp/irO6xzw+kwIxvJz1M3BBPtmK1z7M7hqhCC1+F1AFSvCI5+A3cvokTNcXIc7lok8aiYz3LFU5LTod4bIPeL3wqYfg+F5t/wZurKteXCByPvU5zTxu+PSRFJma4JY5T4tyud/wDlU2/Nh/YeAeFbioxXFB10Z8qfRM7LcGbzm7oyekNiZZskbCfesI9VkpeGL65ndNY8/Sn5lYudRTDhnst5+woVcyxGXMvzwS0Q1sqWByfJFHwpPnZ4nRVyECLcxtGM26uOOuUt4GexcAChCZE/vCQPOFfend6g3AyA8YEG0x4QsMRED8Vyd9H/C40B7FgLOAMZxJFoieiYbqHRW8taqt7h/6P1Bu8MSIwoELJkEc58hpr6EvumT+PDaJzi2dyZWs4ljemfy7PQ1TP4jn3MPzWD6mmKu/XAJdrePEfU/wQtPYr3wAzokJlNW5xKVe34Yh+IIeoCtiLkZs6LCzB94M7YPBOZchyjbWav2ZNqdI4i3mfVEp307JfH2uV1YvWgWVEF+whDyHCvFxPWiyeKavdRfPHvnvgEoKF/fwPuO9ym48GdyMxM4MjeN7eV2rhjWnVdn5VPT4GHT/O/50v8IhZ3eESewezlfnxMDv4A3Liic1XvqdbHe7rGTZEvCZwhdDBEIY5JEiOOP98PM4MSQCT3FBBu4M+ZHLvzHI3RJi+eRQ+tJXOfk+D2fgkk8x69ZJ3KXRRy/tmoLlK4XlTvPell4Gq78lM4MxIaHi81zAbjY8hsPekXRkRuO60HvrDC7x1EpvJOKlsPWWcy2wV3u2xlm2ohV8WE+cRwN/c8gbvIY7CXLAMPz2HskJGSRbC/jTdurMK2Qn+5+k1ibmWRPJWvz7+F+5QI2qjnc3mkDlAOHXy6EDpNJ9DcZveHPlxm97ldONS/lTe/ZvOMTwsP8rRWc/+Y8blOncM7OerLiluBUE4j12fnE9gxdlXLOULIpxEqDP3TByaL4eTrhS0bc8h/cqsLIl4JePw3eBiHEZfSGUU+JvrP/2U2ONcYFY/21xSbEfNUP1oDbZu6xEfen0yFw1M2YFr/NqLQSplcIcSERBwNj9jDCMVv096oKezaw7ZjbKK3exNHxTeQIHXg+/p8f5kLz73yVfiObyhz4MTG8RwZ4XdRs/y34WxWFuIEXiAqCqgqJWUKQ/ug8fk96nIYz3oG1ayCjN7Y7lvLfcjvK7NmiPWl2RN8zhAfqcffCyED12bXfiP8/OAMeLtQrcYHw/uloyFkXXiEURPWw3VUN2Mwmnjr3EAblpPHIt2uYu6lMzxvkcPvokhLLL4cFQnVTc2DJJKoPv5jbVrzAcyOeo1tyN8aNzAtJtD5M2cANnbezsATe951GUqyFlDgru8PKwMfbhBi8zrmMX3aDye0QVYUtMbxy6SAe+WYNd5+SR0W9m88WF+oeQi9fcjiPCy0Z36EXY14jUkj0qF1Mj9pA+Jp9D5z5YqPqww2K0mj8A/TccrGlyzGbUhlq2sT9HTLZ3DmP74dNgc6DMJfbedR7Hc8p73KMaS2ZiRcF9/d7sD2fw/D45ykzZZE0f4IY2/NGizynfj+rXruU0RV/YMODGyuTFwjRSQvhOjzXx8oNYjFmZ+1O1leu57RcYb+ceWg209cUc4V5Jt1sL3L3ykMBC/06JTF/azmzDRUONS4flsOni3aGlK4P9zrUCg5oQlB71z060JFCUDuhTda0SXFL+FQfZsUcfbLoVmA0CDWPoDpPZE8lv+pvNPlUVZXvtnyn/13pFAprpN9mNALb43doBmIkUWFvqQ2sss4omLFvhaDErGCyXhAJqBNDQ+qeXvQ0X27+kpVXrYzqt5Y3lHPOd+eQl5rH5NMnN94gYDuoqsqMghmclHOSHtY0fdt0HvrjIRZdvihkkmQUDO0ee6uFoLmFczEr5tDQsH3I2vK15CbntkmwitYjyOhBd/VPwgOkKbE0GmIsJjITbdx+Uu8mt1lQtICbZt7E/UPvZ+zAxvlzWusRFMkrYmnpUh6b9xizd85mTuEcnjjmCc7POz/C3o0xejlWuaqiz1N0oKFVUgNh/K/9WhgncYaQrqu/pyatG3w/l193zuKZEc82e8gzDs3my/lDSK+bDy8PDP2w2zCRwyGxozBoq7aLCizWeLHqu+htIRyd/KjII6P6RQhRQha8NhTTa4P5ydaJP6y5jPPcjg8zfqWOWYUzOL3H6bDyM5jxCEpDaMlsuh4Ju5bgB+bFxzFv8TOc1/8y8ZmiwLlvCQ+RbkeF7mcyCaNt2C2wODD57HOqmGx0P5oqZxWJtkSsmYa2nJkXzOV1+vjA/8+J3Gr1ZSHFByJy8X9FnpouQ2HlpyJEJVLoVTPUGlb8G7wN0QtBYRifsxCPoGi9CVNEDrq466dhK5gBJb/iTs4OmdhFXChSFBHCtmWmSLavlZhvghBvGsMx9TBwjZhEuO5n8DSIpKBa0YCsfuJfc8SnwwP54HGKROzZRzQOuwvQKs/JAJpN0RSvLHuFb7d8y+CswZzWwxC6npAhRKm6Ylj2Aayfyokj7gVzlvCG27ORh5afwsOxLvghgX8MfocvV6xnjGkbw3YEJo0/PUhO8jt0rd/MxxXPgz8gAMZnQo8RmNd9y67EQ+mankifncEqg6eYVrDW15MOMT7AR6zi5mbzD/D0DZzqcXAq4DdZ6XDTNxBrEc+5JuTdvkiE+GmLQSc9gumLq+g5eTA8VMinNw5HVYWXX0b+FxRXu8j89WOyTJX0XvUApNwLX1+PlrbXY/AWMS4k1rnrhBBkaCMhHkEgqn7OmwhbftVDsVF9oiKqpwHT1NvosmMqpF1GptNQ8r10DX5zLBm+OmrMoi3VNVSKirObfxL9XH0ZrPmC44A1MRZilOCE670+i/ENu5XR/TJEWObgsaJNegKJa0vXhpzmRNvrAKgo3LV7Or8t/xezu5yOvWxFyHZYbKKSqqrCl2Nh889kjfGBxQpTrueQhiVMGjKULkcPQ/l0HGQNhPPeDO6vKCIHTr8zSV8v7N5HrJ/xju9sjuiWysrCamrr7dwcMw1LhQVzSme44ivKJp5MV0X0E/6AAebofyZUikm4etarKNPu5grfd7B1OHQZyowTC7kw4KTQUF8GhYtF/jLNe68ZjP2Qyyg4NZMmohHH3QOL32aQfx3TEULQvM7/IaUyEBZ77Dgh8gOvzb2XlWUrmX1xE97cCRnQ53Quy/+Nq20F2PvmEJ+Zg+2Fm8DnpjYpDtKEYNkw8p9wzLjQ/ROz4Nb5mN4bTcJXgcT+A84FRRFV0C75KHT7pI7Cq9S4mDFgjFjQWPw2FC6iQ1IwZ9WICXN4b+xQTIrCIV1SGPPaPC4w/U4Fycz1H8HRPTNYsK2CFYXVdEqJJdascEk/C1O6poQIOgDjbN+SsOQjERp88qPw+jB++fYq1iSamLR2Ek8c8wTjRvZh8vwC3evoWeu79KwoYZQVytRU8ipTGeBzsJ7QnIB2j53rjuvBw3+I8afBWQXz/wPH30+X1DgmXyfG6SuG53DHpyv0BMuHZCdCQAhqOOslEjN6CS+fzy4Viy95p4ow0DcDHnSjn4Z8UcG24ZTHYfA1je9ph75gS0LZ9hu32izcwVQOTcyB2h16ns+UOCtf+E7g/yyfsKz7HD7YYLCfjrwBlkziOtss/DEpUFMjFnu0MdBkYnfXszi8cgbHmdYw2z9Y33VVYTUdkmLwB7zrbCYrl3x/AfU+J6NNaZhyhvHixYdzz6g+ZM0RXn3qzkVkJp7M8X06sPH3yHPch0/vx6aSOqauKuKiod1IjbeGVKcDqLS7cHv9ISFhW8rqcXlFBbe/OzI0rJ3QQ8OaEFzC8ak+kSPIErNPQ8M0UajGUG7WSKT8MEtLl/L4/OBqkWYURwp7MxqBkX6Hw+PgsXmPRZ07SROC2uLh0hJNXYN9TlY/vZqUxpebRVnPGnd057SgaAF17jqWly2P+Llm+C0sXsgDvz/Af5YLIeriHy7moT9Egs/winbG+2Wc3G+u2kyls5Li+mKGfjyUTZWbiMSds+/ktlm36e0imjwwPxf83Oh4RfVF/LD1hyb2CJyrz8Vl0y/jnrn3NLsdRPb+iXYyF0nsjMoDpgkURWHpo6O49tgeTW6j3Zet1Vsjfm6coEaTzynSZFO7R4uKRVnhqVumtnic8H1BeARpz3yjCcaBTpehYtX66qkw5g24fUmoCATQ8wSqif53ZSTGcMu4f4qJco/jRYhUUsBN/MIPRLny+zaJ8J7hgZTGI/8lVn7PflVMwF7sCz89KFaGsweJ8KNRTwKQ6i7hbPNCrklfx03Ds+h32Dc8+PuDlH9xlah0l5AZPJmOhwgD8PqZcMiF1F04iYgccRlcO73JiT0ZvYRAc97bIqQOIS4e//nxPDbvsZYvisksJhynPdtyOKclRqzox6XC0be1WgSCoMAPMHPHzFbvrxHiERQmBKmq2irPXa0PCu93mnx+Ow8S4uDFQZH/0w2fsq58XaNNw4VY7ZhNej1a45qsHNki1liReN7ceM1Q8xpuizBsrFQZ6by1RSWjMK9jtsDZr4jCChabECL+fAWeyYY3j0bRrrnHzuXVb/Gj7WFetb1BvLMEht8O9j084nyJSbYXiNdEoHvWi+f0/Elw7c90ve37YJVMwJ2cy7Vdd/HlVXnw9gj4z2DW5v6Heyxfg8EGMnU/hkoqWVi5NtSbKzYldMLe7yw4LDD5LVyE1WzCZjFB1Q6uLnuef7gmkkUlm7pdjLm+WITTGPBY47CaRNiEsX/W2qhxMSBcOMRiE2JtXJpob2e+JMJeB54nwkO6DRdJpf0+cv07Q3ZtOOVp3vSeTWUgXLTW2xD0elzwGqz5QpSwB6b6juWp+IfgOpEo5pSdrzDavEx4b8x4BJ7tAi8fAk93FHmsBl0lwpwMqGe+TP31M/itVCRGLzzkHBxHRUgbkJglhIKTHhH3Y84z8M4JQmS2JdK1chHKZ5cK784L3m28P8CAc3GYRH4WuxoDqLw7JouLhnRloFJAjOKlbOREvQjDv613sTDmWEa7nmNPIK+Qw1Cko+Hwi0U/mthR5Ix8byR5C/8R/Hza3cIb1VA59LnFz/HJhk8inl6IEOR18e+F/2Zx8eKI2zZJcjZk9GYYQnSbfWliUAQ67TldBAKRPqLCWdFsuK1p8JXE+2qwlm8gdccMbMveFfkuc4ZTNyAYytnQ/8zIB0jvAXcuFV5zAFrBkwjUueuoi4kPfa5MZiHMmG2wfirH7/mMI5QtALi9fq56bzFXTFrE8zM2UmN38KLtLT60TaCrsodTB4rfunh7JWmpe9jw53OYX+7Pf08PehWNDiQMPqxhicg3ePZEMUZd+onw+geU8i2wR4QYmU0KWVTRXSmhp6mEJX0fwJHWl4esn3FLxXiurX8HMz7O7Bkce+teGwy/PU+1MxAWqiiiPysKFTxHD+hkeN2RznXB/Dd2r0Mk488bJaohX/Ud33ftx5ZTHhbepUfeIMJCAzhTu0ROeWEyi8Isq6dwPx9HvA/JcVZUTKz251IW4+aL/GDuM858EQ69iJH+Pxnt+w1Su8N5b4Xsb8s7iWo1gbPMC/VKjgB2t4+c9PhgFEvlVuoD40DdZ6ICb6zVTO+sRGw1QqA+0rSJo3qk0TNTHOfdq4fy5S1H88Cpwvu7e0Y8SbFWrju2BzsqHIyYMIe7p6xkZ2VwHM7NiOeLpbvo8+hPTF8TnCO98NUcnvzPu2wtiaKq8kGO9AhqBzx+jx6/G41HkNaxaqFh7e0RFClHkNFYNlLjqgkJT/p0w6c8uzh0FVz3KoogBDXnEeTxe/h99+98t+U7NlVu4ouzI1e/MqIJQRal/ZtmtKLLX0mVs4r02PSottPw+DxYw/JUaJMBbaVVExc2VAYrgITfP2OScqOgd8H3F5CdkM01A6/B5XPx5eYvm60cp7X55sKvtOM/8NsDQKiXzY2/3MjOup2cnHMyCdaEkPbr8wvBVEveurR0KS0x5OPG+XiiDQ2L1MZr3bVR3aO2ok2o1OZyCQSIZtIV6VnXnmF9kEXF5XOxuXJzi0nZjdek0lmpn0NbPAH2KyZTyOSODhFKVtMGwdhsFbl3tLCZPqOFEZfSJXS74+4Vq5naOWT0EjH5+TOhxwg49OKgcTbsZhh8Nf6Fb+GYNYF7nK+TuHI8J3fPARNU5/9EZt8zRFn0358HV52Y3Pl94hwufI+a2p2wjLYxYEzIn1q/PH3bdMaPGN/Gg+4bjALN04ueZlDWIPqmR5F8OAzjsxWSLNrn4otNX/DvRf/mp/N/omtS10i7Rzyn8H6n2dBxQw4cv+rXx+Fwj0TjWGA871bl6mkHtPG+TR5BBi82u8ceMewcWhCbU7tBn9NF1aAN3zf+vNswUgr/AAVe9Z7HhaNOpMvxY8FVy+AVH4ECFX0vJ6P7gNBnVcv11uMESMuF4bdhq96JbcFrHDn3ahHWCVjqioWI0nukqBg360kY/RSvLHuFNeVrmHPxnMbnpGEyCVF69RRR0e/2JSJsb41YIFrh7802NZvEYU/St+dzwnsxoYMIi4tJxqP6iLXEYvFbQvorra82XreIE/l+Z0CfbeI8jFVXLTEw+CpRfbFkDSnlq/Dknoi1YC4ACQNPZ+zQsbw1ZSioUGs2g8kiJp/b5ooqmIPHUl9ZxIMvrOK07E6QM0SIJ/8ZLPKfGakJVERK6SbyV3UeBN/fAddMh2UfohxxOZUNwTwfVT4X5J0MuyLcbxCh+J0HCVEqIQvOegX2bBSFKAAu/zI0/5URi434+9fCny+TMH8i15t/pMOkK7js6NfYE8hpktb3OF3cnvjofcB9bH5oOglYMRE6Vta564gfMAa8bj2RvtMgjDu0+xbwVHX5XHy8QUy+r+h/RaPTM9rXVa4qPt/0OZ9v+rz1Hst9TuOQRW/z4mlZ9PjtRnGd7lgshMEAXr+XgtoC/Kqfald10/ZP71Giom7pWti1lLqeJ3BM2U/8+5jrqC0JilTO5hbiYlNE+9+9rNk8fsdNOQ6/6m/8e2OTxYLForc4FhhmM3Gy/w12eoQ4l0YtPTa9x/Xm4PX7M+Zu/L8lscw0lh/8x7At5iku3i5qYqQueI6hXW5ldYmbR88cwKz1RXT3boceNwbH59zjUPudASVzRf60dafA9TP5bvBKui7+t/49dV1PQO3dky7Tb8WPCZu/nnVxNxFb1MChPYR/nz02Eeb8m5rO2RBjxWky4XfXY3rnRPG7RtwH5hhsOcP45sbBdF/0TzJyD6Xqq/HQWdyXELuw0yH4VT//F1jMX3P/ZggretJsGo9RT8CO+UxsGMVmfzdgqr5PrCVWz7m1xDoQWNR4/xMewlS6XuQtOu25kHYFcPLArvwy9SjO987h1IHDKD3iDi579UfuM3+Bx3ws6wP2bt3KjyBVeOPUeOpJWfC6WEyrKUQJiGRDTZvw5qZz7qAudM9IYHjPdBRFYWj3NE4d2IkOgeT7mugHMHtjGYene/k27U36jryWm1dm6uF2y3ZUEWMxoSjQcfcM3oqZDHGXNn2t/iZIj6B2wPhQRSMEaSs0WmhYeyRZNhIpNKypmPzwVc5wEchIi0JQWOfyj9//oU/8N1RuiCqRZ7Uz4BHUmgTNUWI0mFpVKauVNHgb+Gj9R3j9Xrx+b7OGcriL/LRt0zh08qGNjH3jdpES9mq/R/s/UrhZ+He5vC4SrYkh+2n3s9he3KQwAaE5pLTJTaRcEVqbqHXXNnkddtaJVceiepH93yhk1Hvqcfvc/Lj9x4j7NndeRvZGCNLa5L6ipbbo9DoxK2bMijmqSZdR8NSef63tGxNOjl88nst/vFy/7k1R76knIzYDBYVqV7V+DtHmK2otm6s2N3kfw1FVlQd+e4BfCn5pt+9vk2BsMoOiUFxfTLnq0T1pQkjsIHIkGEXcodfCZZ+KpJcJYdVlrHGYRtxD+YXfIKrCKkLoASo6DYBLPxWeHqOegLNeEse1BnMiGPv8ve3vjMLIgUb4GNZS/pmmMD5bpfbg5NPtczNjh0iSvbN2Z6P9IqE9b+FjYrSh4+H9v5Hw36cL8eGhYfsY7Xq1JUeQ0ePK7rGzpWoLd8++u5Et1NQClo4xQf/5k8TE9MHtcO1PInlu58GU97+STf3vJOOYq8Qk/pz/CPECyLjwZVFBKxJJHeHuVUKUHXaLCCnas0GIDQ9uF6LC0OtEAYijb4dHiiH7cNZVrKO8oZw7Z9/JyrKV+uH+3P0n/5z/z+DxbfF6EnG+HCsqPwUqjV3kfpz7PLfSITlWeBMfdaPI33TNNLjsU6pd1STbkkmyJVFYFywvrT0LkULDVFXlw7UfUlgb2L4pG0urtPj5VVBXjPUEQ961lC54VAd+1Y/FZKHOakO9c7nIP3PMHaI/M5lIyOhCZmIMh3QJ5CDL6CWEnvjM0O/qeqT4/6bfRP84+CqRPDz3OLhgElhjG9k+IV7o4bazoohk9Cc/KvKTDb1WtAmN8IIO4cSn67lTHrMKz5xBS+7nVPNSVmWeTWx6l0a7zLzneDISRXsyFmTR+9y8wPfHpOAYF6xM2KBd/w79KLGX8OfuP5s9NaMNs7tudzNbtsDA81H8Hi7440yUqu3CQypssr67frfuCV0ZHnpsxGQSY9eY1+H2Rew66loAJq19P6RfbrGPyOwdUg300w2fctjkw0LacbPzh76nA2DvejwWxc+3I3ZzVdx83rC+wiTbi1zf8AEPW0WxGzU+E3ePkzHZEnjW9h4PWD4NPdaWmXyW+yNLHh1JTkY8r4+KJxYXZIdW+awLhNeqPU4Q4/9/x9B12fOQ0IE64njPezqWrL4kDL6I2gGXUXD2K2COIVZtwNsluFhZf8F7cOln1BgeR+fNvwkP38LFMPlseH80VGxl8I73ydj8OfzyKI60YC3k8AXCkPHDGgcmU4hN1awQ1HEgPJDPS96LmeYPPi/GcWfu/Sdyxo1NeOdn9oabf4crv4Ejr2/0scmkMOosIa4kLHyRniU/857tRS62/MYVRc9QUSjye9YZ+qcqs0l4EU67B94SYmGJmkZfZRdX7nyM2O+u52jrFpT8X2DmP1HePp7e35xGSrXwfLOYTbx1ZfCaH14zi0ENC4j/4SZsbuNYq5LU8U+G9bYy2JSPIyZLD/n+OyOFoHZAe6jSY9Op99S3KHhoA/O+qhq2pyE4GGmrhE2tcke7+m0z2SK6xhs7oPBBOdxN3ziZ8Pl9TFw+sVHImNbZRDsRbA3GjkxLYrwvmLRmEhOWTOCn7T/xxso3OP/78xu7Z0c4JxADIMCGig0h74cYQ86qJvNEaCXTFZRGokH45MLlc+krfOw/ugAAIABJREFUPZrREl5ZDsS9UFVVv7//mv8vnl70tL6dZtRHGuw1YaXOXRdi/EdC82IytslaVy2vLn+VV5e/2tRuITQVvhGt2BpJBGipUtYPW3/g0MmHttlDRmsDTYWgNXgbiLPEEW+Jb7VHkHbPI00sl5eKMMOWwjbr3HWkxqSSGpNKRUNFUDT0tH4C2BJLS5ZywfcX8Pmmz1veGBFi8nPBz9z3230ttq9o2ZsQ0tFfj+akL9pe/S8SuYccjenedXDbAtR4YbBXHn1bo7ArVVV5YckLrN4jEgcY+5bhnw7fq3Nor2u7L6h11RJnCVZj2Vm3k882ftbqSoh2j13vD8sagkknjX1HtOFh2nbGEChoJp9PGM1d7/Axo8XQsH2E1t831ydtqtwUcSw3hinbPXaeWPAEswtn621X6wtbFPV6niRy8Yx5Aw67CK78Skzmux8jclfdNIfMS17njSuGsLp8mXi2FUWEat40N0Q4bZbUbnDl1yIHxwkPiu/oMzr0GTSZKG8o18fguYVzueqnq/SPb/31Vr7J/yZ0seGiD0S4Sdl6CCTXLck4Si+1rq1oh1NiL6FjfEeSbcnkVwXzmTTnEVTqKOXFZS9y5+wmhC+NDv3AZIWanXD6BOExdNnnIuSU4PjSLakbHr8XZ1JWo0MoisKMcSO46fhewTdPfAge3Aqj/y0qO549UXj+3L2qsQhuwChEVDmrQkTtiFV6s/qLgh1amFPPE4OfhVXiivz7++qVEgEUrxNO+SeH3xE5VCavYxJOn3gGtHsPhjQRcalwwyy4a0VQ/AEaDrtY5KqLT2fUV6MYNycsh04Yxsm7sZLnHscexs0ZF/241WWwSLzsc4n8LT1PbLTJtupgbigtPGzWjllN2rHGbTXq3HXEB5KKt1YsnrBkAioqpQ4hyBv7kIhzg0FXwSWfkHDdd5Dek4z5T/GU+hpnmBczxJTPNN8wAOyHX4vy4FZsY7+Fy6eQSANnxQYrjPnOeweGXIt1xYeklK+Ar67j8C3/4raOWdR0Cs13Vx34TQ1JWcLzxVEuwsZunM1Iy2Se8l5FaoINzFa+6D+UMWtfYPvVX8Fti7Bf/a1+HLvXAf3OoDo+DZOWayq1i8h7dalBpPrPYPh9gsg1NuxW7GOCeUjDbc9I44dxHGvxftgSSIq1gCHHl7F95WYm4LI0bgv6GGS2iGIEkSpsAmZjheTvbuUQZRt3uW9ncfbRlGkLwoaw/epLPoKj7xB54Zw1kDsC+6gJmBQV66YfYN23Qiz79GKY9wqUrIaSNfDBmfDtrVC2kdO6ehh//qHE4uKK2GDF7C57/iQZO3E4McXuwpX8PUldp3Jm2i7ierUgHP9NkEJQO6B10B3iOqCitjgh1AZmY7Lo9hQ+dtXt0l/rHgFNrHJHu/rdI6VHZI8gw2Swpc7FOHitLl/Nu2ve5ckFT+rv+fw+vdrTvvDYMXZkTeVj2Rsmr5vMlqotuuBV46phdflqdtfvZnV50MA1nkf4BD3BKmJdt1RvCXnfKARVOisbeWNo10sbOGvcNY0mIeGCRoO3QZ/4aMa80ZDRJuP1nnpeWvYSQz8eisfv4ev8r0Mm6ppgFKnda8ZQrbs25NgaRsNC80wxtslaTy3rKhrnyWgK7feHE+0kaVlp41ialjyCXln2CgDba7dH9R3haPe2KcFJF4Ks8VE9F8brpx07fELl9Xv1ynzG5zISde46Em2JdEvqxs7ancHQsHZIGv3+2vdZWhIM99sWiP1euWdlU7uEYOzrIuVTaQttFYKMbTkaUbDMURb95D02RUxwAiE0lUpjI6zEXsLk9ZO59ddbgca/Y28ErvC+pCmizQXXntS56+gYH3T9fnLBkzyz6BkWFi1s1XEcXgeJ1kRdVNLCk7UcQdB0/xKONlkubygPEaR0z013889xpL5SI3zM0I4ZMZ/OPmJ56XI97Liptj5/93wu/OHCkMITGrvqg8+t3WPXr5HWzrTr16IQlNpN5OEa1DiUxkiNq4brf7me++YGvFtSc/Tkp1GTnC1CQI2hVGGsr1gf8buNGPssAIaMhfvz4R874P9K2X7qh/pHmU0IQaWOUjoldCLJlkSRPejRqV03Y5vTvEA1zyGjyBkRi01UZTr/XRgWyMfT9zQ9ubw2vvRMEaXJm2qrGYkxIu9ROMfcKfKBDRnL3OIF3LJsfLOirbHvqXRWtiwEhWO2CBHrpt9a3lbjvLeFZ9DtS+CC90TOsybw+X267Wu8FiHef12HQkJGyLPSkNUXLnw/4hgQyZY2TuSNz8/7a99n1s5ZfJv/baN9IqIo4t5e8ZUoNx9GcX2x7gEJ4ppP3zadcXPH8cXm5tM7GD0pa121ZMULkbCttoJmmxgFeONrp9fJD1t/QDVZoP9ZwjPnxEdCjvGd9XTu8NzN+Jy3SRjzYvCD7CNQU7qyKT4oDlb1OUW0T79X5LJa+zXvunfxR3ws0yqCOXtqXDW6XVrjqhHeTPdtEuJNag6mQE615FghhPyx6w8AChQfZPULacP1nnp8fh91HjvZgeqU+v3vdRLcsw5G3C9EuzFvwH0b4PTxOMxBr//rZlwXcl0iPZNGIfGNVW+0mCfy9wdO4qd7gl404f1YpMXFqPPoJXUU7e94ETGS7+/C9Ngsro/dTb5N2Di1ucHFqyq/E059WoTi9jgBrvyaXsPODj2mJRYy+4qQ2/PeFiJztyNF6PAbw+CVQzjBt5DvYv5JH99W4cWW2Ilx6QtYHHsHUxOeJcEirlt5wVwstTtRug2L7vcc5EghqB3Qcq10iBfZ7FsqIa+t1pgUE7GBlYf2dOveVb+LLonChbWlZNEtul4HyE3JjZgIe2tNUFBpyeuiqL4IVVX5efvPbKzcCIQKHF9u/lLvXLXOsT3RroHFZGFL1ZYWtm4dxfXFvLD0BW7+9WY9lrvUUaqLJLN3isoL/174b46bEoyDDg/X0gaAzVWbQ96vdFbqk51qV3WjiUS4R1BlQ2WjcI5GoWERPIIiDSAVDRV8uO5DAJaULGn0uRba5fQ5G90zrX3VumtDVim0QckYlqQZtEbjv9ZVG7VIusexhwu+vyDiZ9F4BGkV1wZmhOYQaMkjSMO4itYcWuigNmhqv7faWU15Qzmzds4K2d7hdRBriSXeGh+VwGB8prWJefhvMF7jFkPD3PUk2ZLITclle832YGjYXoq1te5aXl72MtfOuFZ/T/Nm9Puj8+YwhkUY+6K9QesnPD5P1G2vxlXDed8Hqz0tLG5ehGjwNnDKl6dEl3zZgPZ8RQrVWlsh3KA1ozvcUNsbL0jj96mqyvaa7czaEdpOV+1ZxaivRrWY+L29qXXXhghBGsbJUjiRQrwcHgcJ1gRdCOqdJqqjubwuvV+OWggKPNsun0u/7n7Vr/fTLdkIxr4yvE8N78c128Hjj7697i1jfw5WN2xqkre+Uogiq/asavRZUX1RyNijhSHP3jGb62dcr48pUYX5RRFGrtkVTRVbaCtry9eG9MmRxGjNBtCI2C4Ts4TniDWWQ3KCHjZxNjHZm7d7Hi8tfYnyhnJ8fh+l9qAQZESz0SJ5BBn7ypZ4I97M7NTMiJ9p/ePQjqL6Ubit0hJLSpZQUFPA4/Me587ZdzJv97xG18iI1t47xnekylXVZFL3SHyy4ROmbZsmRKzOR0R/kgPPFRPFDn1EAu1mkt4bn+WIHkEGjAKP9rqRMEjLHh3G0DDNxm+pTwkhJlGErEVIAj9m6himb5tOrFnMTSoaKvTnsSUbR+sf/ao/RKBvq/ewdm2M19XYB7++8nUe+fMR/tj9R3Cnwy6CB7aJBMkPbueNeLEwktxzaGiBBEVBufkP1h4TTD5e5igTYYzZR4DfA71H4g2EClY0CM+oovoijptynJ6vUu+jEjJ1j7NLjhRJz9MSQnOfadfReK/sHjt17jpUVDoliITQIUJgSlc45TG4/HMheMel8ebKN3l+yfMhx56/e77+OtL4EZ7D9dF5jzYr3KQl2LBYg+cR3hdHqvwYlTCrkTcKTvo/GPMG13nuxxwvrs0FeReQFZ8VYnPoi7FHXg9jvxe5zKxxIhH9IReKysz/KBC5roZeB4dfKsJLr54qinYMvhoscWTPuot+yk6USz4SQu8JD5JevpRYXPTx5XN/fKBaqvasHfb3zw8EUghqF4weQdDyw6DnCDKZ9c622ZjNVlJYV0iPFFGlKDxHSDjRxvHmJOWIzirM0Fy1Z5UuOrXkQl9kL+K3Xb/xwO8P8MyiZxrto8VIawZitANbUX0R1/x8TUg8fiRqXDWkx6bTM6Un+dX5zW7bWpaVCU+SMkeZPnhtqNygD2BzCuegqipf538dsl9456qtgCwuWRwSKlTprKR3am/9dbiRUe+ux+v36h4VFc6KRsZElbOKGleN3oG7fC7S4wIeQQFj1hhWqLGoJJgQrqlJXk6SSHwXPtgYQ8OMg/m4ueMori/mz6JgXLzmpRUSGuauDRExvH5vk8+KVoktEtF4Xmyo3MCO2h2Nyqq3NBnRVlybM2aNfL35ayYsmcCjfz6Kqqr6hL3aVc1ds+9i3JxxIUKl0+skzhJHgiWh2bw8Gys38nPBzyHPniZIhHs1VTmr9JVW44pyJOo8dSRZk+iR0oOyhjL9PhbWFbYqZGji8omMmzNOn5isKgtOELX3CmoKgJa9lDR21e9CQcFqsvLyspebrLjSGvRQPdUb9Urm9G3TQ+7/zwU/U2Iv4dv8byMK2poXVLS5r0CMG9pqfCQjbG25EILMihlVVRu122jbZySMq/L1nnrGzRnHuLnj+Gh9sMSv1n//uuPXVh3b4/fw1IKn9FXTliixl/DT9p9QVTU44UhoLAQZQ2aMzNo5izO/PZPLp18eYjw7vA7iLHF64uK81DxA9JNam2/OU8dIjatGtwfW7FnD0pKlHP/58UzfNl3/ruYWOoz9sLH/K7GX6H18JNrbK8jhcTB+8fiQSo/h3rRNPSPasxzeR6iqyu763fr1tXvsenv+qeAnFpcs1kPH2prvKRxNoNmbaqTlDeVc9eNVejvdXrOdy6ZfxqPzgoUU1lesJy0mNN9KQW1BiJ3TkiCTFBsaTqGqKuMXj+eDdR/wzKJnqHBW4FW9IUJQ18SuJFmT9PHW+Kw/t/g5JiyZoH+v1+9tVjAssZfw5qo3uXvO3fr33zf3PiYunwgEx+fBHQdjUkxNVhWNRI2rhutmXMfZ353Nt1uCHixaSGAkKp2VJNuSyYrPotpZrbc3k2JisSEhcTj17nrGLx7Pw3883O6Lika0EGsI9bbSPIJW7VnFjALhYWMUzfR7ZfAktplE39OiEGQYHzdVieu/N/27hsfn0ecBFpMFs2KmxF6iP8uakNEU+kKks1II9IF+uTUFcXx+n24PaL/T2O8aX2sLymvKwxJIJ2SIClbx6ZTUiO8e2DmJ2369jecWPxfcLj6dFZUbMCtCINJTI4x5XYgAxz9AUWAx7d017zJ+8XghLBqINLe66+Q81j5xKilx4lnW+nBtUcDoLVbnrtP7uewEUXG0ubmY0+vkjVVv6FEGGsa2ZbxG2ndHOuaS4sYLu0aM/W+7C0EgBNZBV/Dk2LMY0L2O3ORc/nXMvziiwxEh/WSTi7E5w+DC90RlZmtcyEeqqvLJhk/YkN1f5IUb+U/wNoiqhv3OEhsNuRZOehRyjmG3uStrLSKnWXVSR7j8i2ZDVv9OKH/VClIT7Ncvby+O+uQoGrwN3Hjojby75l16pPQIyVkQjtfvZXPVZh4Z9ggWk4UnFzxJn7Q+WEztUylrfcV6rh5wNf9d/186xnckIy6DovqiiEZVZlym7r7p8XsiGs+HdTiMUTmjeHHZi/RP7x9SJnxL1RbO6HkGU7dMJTMuU/eKcvvcIeFNaTFpKIqCghIyqTArZr3CS35VPuf2PpfDOhzGY/MeIy8tTy+R2hxaXH6MOYZeqb2a3G53/W7SYtI4qtNRfJX/FX3T+kZV8jwa9jj26Ma71WTF4/dgVsz4VB9HZx/NguIF9Evvpw9cGqkxqXQOuIOCuHf90/uzoXIDvVN765OSTZWbuKzfZXyy4RM6xHUgwZbA9prt/Ovof7G8bDnTt00nNzmXrTVbyU3OZUftDrITskMm+UlWYTR6VS89UnqwvmK93mY7xHWgQ3wHyhxlEY2QZFsyde46LCZLxMnGBXkX8HX+143a8abKTfhUHzaTjZSYlJAJTpI1CbPJTHpsOqfknMK7a96lf3p/iu3FelvtnNCZEkdJiOt4U8/KrrpdTa5wJNmS6JbULeJnGlXOKvY49jD3krkhXlsZsRkRJ5oaWjhA+L1sisK6Qnx+Hw6vQ28jQMjrTgmddEF0Z+1OeqX2IsYcw9ryteSm5DZ7Hmkxadg9doZ3Hs7SkqW6J09zxsWAjAFNfra5cjPn5Z3HsV2ObZTHINGaSE5yTou/WVVVPZREa9eVzkrdY6lvWl/MJjMFNQU4vA4sJgt90iJX9TJSYi/BarJS5ijTvQqa+y3RYGxH0fbLxfXFurEyMmckv+78FYtiwat6yU3OJd4aH7K9MZdIeJ/aFH7Vr/cfkdrztuptusHdL70fZY6yEGMtKy6LzPBkrVFi/H29U3vrfbvVZCUvTUzoC+sKqXPXEWeJ0xciosHhcegGcjT3TmvLvVJ6YTPb2FC5gWsPuZYP1n4Qsl2SNYluyY2f+fCxUPvO7TXbGdJxiC5oPXnMkzw+/3GyE7IpsZegopJgTaB7cvdGxwxnW/U2ju1yLIuKFxFniaPGVdPI67e5+15qL9XHSeM4UOeua1ZI6Jfeb6/EjnBqXDXsrt+NzWTTPaTCx4hYcyw9U3s22ld7lsPHZa0vuLL/lXy84WM6J3RusjhBU8duLRsrN+pjSLTPWzhVzipdoBqQMYANFRsa9Tlbq7cysvtIXfCzmCykx6STEpui21bpsen6yn+T32V34/OrZCbF6M99ojWRBm+DPs5PPGki84vmM2XTFEZ0GcHW6q04vA46J3ZmS9UWjux0JPOKgrkwkm3Jer/W3DWoddXqXkv90/vj8Xv0571/en+qXdUU24uZc/Ecrp9xPRXOCn0xsCXsHjs7anfo10Zb7DLaoeFodlu3pG4sLV1KrDkWm9lGdkI2W6u3RnzGIbRf0fqoamc1mXGZ7Wb3gXgevH4v3ZO7h3i/aba3Ni73T+/P7vrdZCdk0zGhI4uKF9ErtVdIu+qT1ofNVZvJScoh0ZYY8j3asxiOSTHhV/2t7ncjYbTbe6T0oHNiZ5aWLMWkmHT7obm2o40BGjccegOT1kwiKz6LzLjoxh6f36eLW2kxaWQnZof89i6JXUiJEdWktlZvxeVzkWxLbrKa47qiWvx+ld4dY9leu7XRb9hUuYlTc0/lx+0/hhxbY0vVlpC+O8mWRMf4jvp1Ms5hmkLrf7QxyfgcdIjrQJItiW012/TrFclm0HB6nREXA4zXoMReoo/92vhh3O/QzEPZUr2FJGtSszZBvbs+RPwzjkXGcUCzCbond9fTW7SWbdXbOCnnJCYcP4F/zf9XyKJ5NH1mOC6vS/cSH5AxAFQ/lG4QnpfhFV2BLWX1uChDMTtRUOif0R+At0a+RVpsWqPtD0Ka7PSkENQO3Dv3XiwmC/cOuZeXlr4UVTUdq8nKuMHjMCtmXlr2UruGhlkUC3cOupMvNn8RMnAMyBhAjauGWHMsJQ6RbDC8Q4kxx5CXmofVbMXlc5EZm8lpPU6joqGCV5e/GlJ1CMCEiRsPu5E5hXMauQhrA9OQjkPYVLlJX73pkdyDHXU76J3am63VW0MmwrcfcTvJtmSeX/p8q6qp9U3ry5bqLc2XmwVGdBnBOb3O4ZXlr0TtdRAtPVN6srt+Nx6fhz7pfdhYuZF4Szx3Db6Licsn6kZxdkI2xfZiuid3b3TNLIqFOwbdwWcbPwtxgdWu89zCufogmWBJ4P+G/x/barbx/pr38eMnJymHs3qdxVur3sKv+slOyCbGHEOiNZG1FWuxmWwoioLL58KkmLjl8FuYWTAzxEOqd2pvPXGqSTGxrmIdF/W5iMK6QuYXzadTfCfcfjdWk1U3rq8ZeA2vLn+1UTs2YaJ/Rn/WV6xHRaVnSk/qPfWcnns6X+V/hd1j59ze53Js52N5funzlDnKsJls3HDYDXyz+RtKHCWYFTP900WnnF+d32y76JvWF5vZxjUDr+Hr/K9ZVrqM3ORc/Zq1xJCOQ7jukOt4feXr7KjZQceExs9IOFaTldzk3Ki9zBQULu93OUtLl1JsL6bOXUf/jP5srNiI2WQmOyG70crb6O6jsZltjVajjMRZ4kQlF3cdAzMGclSno5i8bjJ+ghOgzVWbdWNTQeG4rsexpHhJs32WgsLYgWPpl96PpxY8hd1rZ2DGQDZXbcan+qJOypsZl4nVZA1JFNs9uTtljrIQkapfej82V27Wz7slju18LJ0TO7O4ZDEVDRWtc5Fvgr5pfRut5LeEJlxdPeBqXl/5OuUN5SRYE5r0ashNzqXYXtyq77CZbPRI6RGxPafYUrii/xW8t/Y9/Zh90/pS664l3hK/16FzvVN7U1hXiMvnIt4Sz62H38q7a94NEV/zUvPYWr016nun0SWxC9XO6qjGzhhzDFaTVb/PFsXC3UPu5vst3xNjiWF9xXryUvOafeb7pPWh2lVNg7chZOJybu9zqXXV4lN9XNjnQp5e+LTeB+Wl5TUS8pvjkr6XsKN2BwuLF9IhrgOn9zidKRun0Cu1F/lV+Y3G0nB6pfSiyF7USMDtmdKTs3qexcwdMymxl1DlqmJgxkA2VW5q8ZhtIScph2J7sb4AYFbMXD3gahYUL8BqsjZejTfQN60v+VX5jdqDZv9MXj+ZMkcZZsVM79Te5Ffn0yOlB9trttMvvV/EnDttIcGSwKk9TmXa1ml7ZWv1SetDQU2BfoycpByK6ov0627CxHWHXsfy0uUM7jiYRcWL9OsTa46lS1KXNuUnTLQmcuvhtzJxxUT9+Xt0+KNsrd7KB2s/4KK+F7GzdicLihcA4pkYN2Qck9dNBkTy5jJHGXmpeeyo3dHiNeic0JkaV43+PGYnZOP1e/WFnOyEbP5v2P/xw7YfdG+XaNGOdfWAq/l046ckWhNbHDuP73I8mfGZfJP/DQBHdTqKnik9mbJpSrP7dYjrgMfvodpVjQkTibbE6POYtIKROSOxmq38tP0nMmIziLXE6vZlgiUBs8lMrbtWjP39L6dPWh9eXPqifi45STl4/V7d9mjKAyI9Np14Szy76neRl5pHYV0hbp+bPul9RGL2dphSJdmSOLLjkRzV6ShsZhsvLXsJu8fOqbmnsqJsRYvhsX3T+rK1eisqKncMuoNv879t0ZMonBhzDDlJOSHtokNcB70da5gwif60mfZT0+Ch0u6mR2ZCo3YMwfnSlE1TQmwT43f0y+hHvbueUkcpbp+bS/tdyvaa7dg9dtaVr2txvNP6N+OYlGRLIiM2Qxcr4y3x3DvkXl5e/nKLYfeabQ6QEpNCjDmmUV8ZafyINcfy0FEPkR6bzmcbP9P7i+bQCoVUOitxeBwhY0yv1F44PA5uOPQGXln+Sus9ggxoduaRnY5kSckSJq+bTIw5hq5JXRvlTI2W9Nh0nF5n0GvV5xWhxBEWSxwuL2V1LkbnDQqZlz5z3DONxMGDFCkESSQSiUQikUgkEolEIpH8j9CkECRzBEkkEolEIpFIJBKJRCKR/I/QPklp2k77BeruZxRFuUlV1Xf293lIgsh7cmAi78uBh7wnBybyvhx4yHtyYCLvy4GHvCcHJvK+HJjI+yLZH8jQMIlEIpFIJBKJRCKRSCSSvxcyNEwikUgkEolEIpFIJBKJ5H8dKQRJ2gWnx8cH87bj80snL4lEIpFIJBKJRCL5O+NX/Xy64VOcXuf+PhVJG5BCkKRdmLtpD0/8sJ7VuyKXSpZIJBKJRCKRSCQSyd+DXwp+4dnFz/LGyjf296lI2oAUgiTtQm2DBwC7y7efz0QikUgkEolEIpFIJPsSu8cOQLVLOgIcjEghSNIu1ASEoHqXt037Oz0+ch+azru/b2vP05JIJBKJRCKRSCQSSTujKCIPsSrrPx2USCFI0i7UOoUQ5HC3TQjS9n/l183tdk4SiUQikUgkEolEIml/lEBBqv1chVzSRqQQJGkXgqFhbfQIcvvF/m4ZWiaRSCQSiUQikUgkBzImRUgJ0iPo4EQKQZJ2odYpBKC2CjkOT9sEJIlEIpFIJBKJRCKR/LVooWF+1b+fz0TSFqQQJGkX9tYjSCaZlkgkEolEIpFIJJKDAz00THoEHZRIIUjSLtTsZdWwBoMnkd8vOxOJRCKRSCQSiUQiOdCROYIOTqQQJGkXtGTPbfUIMiaZLre72uWcJBKJRCKRSCQSiUTS/siqYQc3UgiStAu1DVqOoLYJQQ2eoEeQDBOTSCQSiUQikUgkkgMXLTSspMa5n89E0hakECRpF4Ll49uYLNqwn8srhaCDjRqHh/8uKDhoXEOXFFRy8VsLcHpkW5NIJBKJRCKRSFqLVjVscUHFQTMHkASRQpBkr/H4/LqQU9/m0LDghNztlZnnDzbu+3IVj09dx7qi2v19KlEx9v3FLC6opLDSsb9PRSKRSCQSiSRq3vl9K+sPEntL8vdG8wgCFbdPzt8ONqQQJNlrtIphEJrrpzU0GPZzSSHooEMTVBSlhQ0PAFRV1YXHBukRJJFIJBKJ5CDB6/PzzI8bOee1P/f3qUgkBlScHjl/O9iQQpBkr6l1ChFHUdqe3yckNEx2JAcdWm6og8Gbq7zerb+ud7ZNuJRIJBKJRCL5q6kL2C1eWWFXcgDgVzW7X8UlF1cPOqQQJNlrNI+g7ORYqh3uFraOjMwRdHBzMHnY7KkLVqWra2Moo0QikUgkEsm+ZHd1A//4ajU3/nep/l6dXMCSHED41KDdLz2CDj4s+/sEJAc/WqLoXlmJ/JFfjts8zs6GAAAgAElEQVTrx2ZpncbYECIEyY7kYMMeEFQOhuTL5fVBIUh6BEkkEolEIjnQqLS7OXb8bP3vxdsrOapHum5zSyQHArpHkKLilAv5Bx3SI0iy12il43tnJQKwxzDRjhaHR3oEHaysKqzWxbsG94Et4jncXn5cU6z/3dbk5hKJRCKRSCT7irowwefitxewsaQ2JC+nRLK/MYaGHQyLwZJQpBAk2WtqAoOSJgSV1TpbfYwGt5e0eCsgcwQdbIx5fZ7++kAPDXtq2gamLCnU/5ZCkEQikUgkkgMFVVX5bPFOiqob29Jby+zSI0hyQKGFhinI0LCDERkaJtlrtEGpd4eAEFTXeo8gu8tHWryNKocHl9dPjcNDSkAYkhw8NLSxatxfxY4Ku/7aalZkrL1EIpFIJJIDhuU7q3n4mzXkpMc3+mxzaR1d0uL0v1VVRTkYyrVK/raEewTdPWUFeVmJ3HFy3n49L0l0SI8gyV5T2+DBYlLIzUwA2iYEVTd4yEqOAWDyggIOf/IXtu6pb8/TlOwDwpODH+geQekJNv11UqyVepdcWZNIJBKJRHJgsKvKAUBFhDQL+WV1IaFhdveBbXNJ/v54/ME26HB7mbqyiBd+2bwfz0jSGqQQJNlrap0eUuKsZCTYUBTY04bQsBqHm07JsQBs2yO8NraUSSHoQGd7ubhXb181BDjwcwTVGAyoxBiLTBYtkUgkEonkgGF3tR3wE2cLBm3857JBjOyfxbY9dmoNdktbK/VKJO2F0xOwqxWVdUW1+/dkJK1GCkGSvaao2klqvBWL2UR6vI1ye/QDk6qqfLRwB0U1TjISYzApxs/2wclKWmRXlYOh//6VgnJ7i9uu3lUDQK8OidjMJjaX1h3Qyb731LnokhrHtDuPE0KQzBEkkUgkEonkAOGdHZeT0Ov5kFD7tHgbnVJiKa11hiSRrnZIr2bJ/qXBo7VTlcXbKwFIsJn33wlJWoUUgiR7Ra3Tw5/55ZzQJwuAtAQbVa0QgraX23nsu7Vi33grMZZg53EgCwp/Z6auLKK83hWSVDkSdU4PE37eyBHdUukZCAucvqaYR75Z+1ecZqv5eW0xG0vqOKFvBw7pkkJirCWqHEHri2r5aEHBPj8/iUQikUgk/xv4/Crv/7kdR1huRR8uTLaqkLCvpFgLHZNiqXJ4KK8P2tgycbRkf6N7BBH0CMpOjWt6B8kBRYtCkKIoPkVRViqKslZRlB8URUk1fDZQUZTZiqJsVhQlX1GUx5RA1jJFUa5RFOW1CMe7QlGU1YqirD7mmGNYtWpVyOc+n49BgwZx1lln6e9VVlYyatQo8vLyGDVqFFVVVXvzm/+nKax0sGJn+12/+VsqcPv8nHFoJwDS421U2t3MWFdCfmldo+2dHh/3fr6SwkoH64tqQ/IJpcTbiLEGm6Qskbl/sATcsnz+5sO81u6uxe72MW5kHiaTgtsntp+3pXyfn2NbuOXj5QDYzKKNJcdaQ0LFmuLxqWt5bOo6ft+8Z5+en0QiOfApqXHKsGWJRLLX/J6/hyenreepaRta3DY9wabn0VyzqxqrWdhpsuCFZH/j8gbboOZlLxfyDx6i8QhqUFX1CFVVDwEqgdsBFEWJA74Hxquq2gc4HDgGuK2F420HTlBV9bDHHnuMm266KeTDV199lf79+4e8N378eE455RTy8/M55ZRTGD9+fDS/TRKBk16Yy3lvzG+345UG8gFpiaLTEqxUOdzc/NEyRr38O2pYfNcf+eV8s2I31364hDMm/sFDX6/WP0uNs+qTdCAkDlry12HWhaDmt1tXJMLCBnZOCXk/KfbALkbYr1MSABkJQrRsieQ4Ub1u6sqifXpeEonkwGf4s7MY+dJv+/s0JBLJQY7HK4ysRdsqmt1u+l3H0S09nqxAHs2CCgeDctIAuWAq2f8Ek0UH53sHer5QSZDWhoYtALoEXl8OzFNV9RcAVVUdwB3AQ80dQFXV+aqqVgEMHz6cXbt26Z/t2rWL6dOnc8MNN4TsM3XqVMaOHQvA2LFj+e6771p52hINr188qJGqEbQWp8fHzkoHJkXEL4NYtagwuK2uLKwGhAvs63O2UFLTAKDnnymocOjbpsZbQzyCovHWkLQ/JiU6j6D1xbV0SIqhQ1JMyPuJB6AQpKoqNouJC4d05eKh3QBITxRCkN+v8s+pa1m2ozLivtoKh30f5BNyuL16wu2DnTGvz+OKSQv392lIJH8JxTUNuhgukUj2HV6/t9Gi4t+B5XuWYLKVsa0ZGyAlzqovtnVMitXfH9JdCEHRegQ53F7cXjk5l7Q/Hl9ACDLkeHUd4BWEJUGiFoIURTEDpyC8gAAGAsuM26iquhVIVBQlOZpjvvfee5x++un63+PGjWPChAmYTKGnVVpaSnZ2NgDZ2dmUlZVFe9qSJthcuveu7WdO/IP3/txOeoJN9yJJi7dRYfCy2FAswsOWFlTy/IxNPDZ1HRAUpIykxdtCcgTVyCR4+wVLwOW41tm84ZBfWq971xiJs/71SeIq6l2sb6ZagcPtw+31k5eViCnQVjMSbHj9KgUVdiYv2ME1HyyJuK/mNeTYBwPbea/P56QX5v4tjNxVhdXM21JBSY2TkprWVw6USA4mxrw2jzMn/okvwlj2v4jfLxKF+uX1kLQjHr+HQR8N4qVlL+3vU2l3PtnxCAm9xO9qKremMemuFhoGMDindULQgMdncOWkRW09VYmkSdw+rQ0G5wsNUgg6aIhGCIpTFGUlUAGkAzMD7ysY/cBCadESUBTlpPfee4/nnnsOgGnTppGVlcWQIUOiOCVJNHy/SiT91TAarPlljfP3tJatgTLv6Qk2/T3ja4Dt5fWNvrspYq0mYizSI2h/oxny367Y3azhsLu6ga5p8Y3eNyY4bE/cXn+Tgslbv23lkncWNDkJ0cScNEP7zEgUrzWvtXAB653ft3LlpEVBIaidPYIcbi+bAnm0qv5GoufwZ2cx/NlZ+/s0JJJ9ipbfbvWu6v18JgcGv+fv4eK3F/DED+v296lI/kZ4fGJsnLJxyn4+k32L5hUUbuMkxAQ9rNPjbRzRLZXslFgG56QSbzNHlSx6Y4lYJFtcUMm1Hyzmjk+Xt+OZS/7X8YaFhmUmikXWh75ezYSfN+6/E5NERdQ5goDugI1AjiBgHTDUuKGiKD2BelVVm1UZFEU5DJg0depUMjIyAJg3bx7ff/89ubm5XHrppcyePZsrr7wSgI4dO1JcXAxAcXExWVlZUf/A/1XK613c9dkKbvrvUv09YzhYQbkj0m5R02CY7BtFHi1ETGNbQCxqarBKwkFB7OW83GctPeKcxJmDx6pyuLl7SuhvkOx73IbkQIsLIodLNbh9VNrddE0LVgZ45Ix+ANQZBLyPFu7g8ncXUu2IvpJcJLw+P30e/Ymnp0dOqljl8FDn9FJSG+qJUuPwMHdTGb+sLwWEF5BGRoJYXVuxU0zkUgK5gDSe+XEjf24ppypw7o52FrjWGTyYiqob2vXYzVFa6wwxNtcV1cjEfhJJFDgjrHLO2dh6D+U6p+dvV+1nRyDMe/KCHfv5TCR/J/yqsEc8Ph+elhIXHsRs2yMWTV1hXthGIchkUvju9mNZ8PApZCTGkBxrDSkl3xSzA31Ut/Q45mzaw7TVxe145pL/dYKhYaLtaqGMU5YU8sbcrfvrtCRREnVomKqqNcBdwP2KoliBT4DjFEUZCXry6InAhOaOoyhKDvANcFWfPn3095999ll27dpFQUEBU6ZM4eSTT+bjjz8G4JxzzmHy5MkATJ48mTFjxrTiJ/5vUlwtJsRaaBZAsSFcY2+9bbbuCYaWGV1TjR5BHZJi9FWOphI/5ykiR9R5O5/B/MoATnX/qn+2aHslU1cW8cv60r9F6MzBgsvTsrG1OyBcdDGUiLzp+F5cPixHv9cur4/HvlvL/K0VrN61d7k0NI+ZSX9uj/i5JkxqwiOIPFRDn57JNR8s4alp64HI3muaR1CyQQj6YF7we7Smt764lnd+39pubdFowBX/RaFUxTUNDHtmFv+ZvUX/+8yJf3LfF6ta2LN5vBEMdBkyI/m7oKoqC7dVRKyI+NWyXa1u6/d8vop7pqxsr9M7INDGBLNJkeO1pN3w+r2B/1Xmbvp7Vu60mBQ9V2D4glOXtKbLcCfFWqIKDSsN2Bexlr8+bF/y90fzCFICQtDI/tJZ42CiVcmiVVVdAawCLlVVtQEYAzyqKMomYA2wBGhUMj6Mx4EM4I0jjjiCoUOHtrA5PPTQQ8ycOZO8vDxmzpzJQw81m49aAhQFkjIbV/qN3hJ7uxppLJ9bbwiZ6WwQBgZ1S6WisgLv6q+ps4vzWf7YKM4fLPKNjzmiMz2UkuBBfW66+yKvJu5ph+TWkuhwRuEdogtBYUZKUqxFb1uFlUEvl9LavRM6jNW9fH5Vd3XWcLhFG9xWXk9BuZ2KehdzNpXh8YVOSIxCUGZioBTrbiFSafmQPD4/T/ywPmS/+ECc/jM/buT7Ve1TPcxowBXX7FuPoDqnhwvfnM9xz80B4KWZm9lSVsecjcKwnra6WL+GbTt+433L6lp/zzcU18r8QpIDjg/nF3DpOwu5fnKod2rvrESKapysamV42ObSOr0P/buwq0p4BPn8Ks4oFhO+W7Gbn9dKzwRJ83hVbWxRWyxgcbCSkxHPmt01rNlV02gcvvn4nk3uZ7S3mkOzn9vbq1kigaAQ1CsrnhWPjSLOduAVjJE0TYtCkKqqiWF/n62q6keB12tUVT1RVdW+qqr2VlX1CTWwFKSq6oeqqt4R4Xg3qKqapqrqEStXrmTp0sZhPyeeeCLTpk3T/87IyGDWrFnk5+cza9Ys0tPTW/9L/yI2lTSfe+evWiUvDhiZ/v9n7zwDoyi/Lv6b2ZoeSCEhIfTQexdQqiiCBRUbqNgrdkX0j4pdEcRGExSlIwgWpPcWegktAdJ7z242W2feD7M1CU1RkTfnS7LTd3bKc88991zZU3PsCrCaRQb+JUWQLMtuoglg/NBW7v8bhnk8YzrGhfKz+g3Uyx8iIkcJQEP8NLw1rA0LHunB5JEdmdjHq5RMpaNziIE7u8RyU/ton31mFP+1UrZaXDyqKoJ+2JVabZmMYhMqHNQP8e0YFqzXYLVLmG0O0oo86hyXn8afRVGFZ/07pu/khs+3+ZhDuwY4J3MN9Ju0mVGz99SYvQ8L1Hn9r/XpeOa6J7JKfAM0NXbahnrul2mbL48qyJtAzS69NPLjbIGRb7edvWhj1o0n89mXVuLz/Bn6xXa2JHnKWtYcU0jZ7cmFl9xVsCYiqNeHG/n5YGYNS58bN07d9q/4C/24O41G437/yyWMtbh6IMsyP+5KJau0ksnrkmpcpndTpbT9Uko7JUkmp6zyok1er3RUWOw4JJlMr+fm+YJTm0Ni7MKDPL/4EE/Mq/UqqcX54VIEIVxdRIb7ewFNwgPYllzI8K+2U+rlF7j1lf6YVUmYbDWPf4P0mot6jhQalPda7futFn8HXESQSpSoE6BFr/GlFpLz/ronbS3+Plxq+/hanAebTuYz5POtrDiYVeP849nlNB2/ig0n8pR6E1MN/iuFyWD96+2kvUtNXP/nlJnRqkQahwdQ/ieJoKnrk+n2/gZO5xkJ1qtJ/egmRvVs6J6v9zLc7VTfn6aikvEz55wgUKdGJQqE+Gu4plk4KlEgoPwsBNWH+5ZB0/6E2/P49M4O9IuP8Nlvei0R9Ldjf1oJBQZLtRr1CSuPVfPBSDh2mu36F6m//lmf6a7yqpTCCrdnBFRXBF0qkeKtCHJ5+pR4DWpcA8QFCemAoizZfdb3/tJrRAK96u01KpEdrw3g2DtDuL9XQ3fwkua81gRnK8yl2oksKR/lXu9krsHH3+fPwugcwNUN0PooguwOiXd/O35OlVC52caAz7bw3u8nLvo4avIxsdolTuYauLFtFDGhfqw8lI3NITFqdgJ3zth1Sd9FOXd2wHeg/u22mkv5aoJ3l8B/2j/lO2fJYcFfJCxr8d9Ecp6hGqmaWmTifyuPcdeMXRjMdibe0oZ+LSK4xkn+ALSJUbwQLkXFVmC0YHPIV4VHkCzLtHlrDS8tOURakYkgvfJ8PZ9vSVpRxWVTVdaiOvLLzVdVwO8hTGSfccB/HVaH57s0Dg9w/+/dSl6nN/Dw2od5c8ebNW4j2E9DkdHKoj3p500yuxRB3o08ass3a3G5YHd6BEmy8rdq45XBU7ZeVffu1YZaIugywqWS2XmmuhIB4GOne/ovh7MhcRl80hgSZngWsFvhq67w00OAEgz9Wfl4tnNgqlEJfL5eyWbmllUSGawj1E/zpxRBBrONKeuTKDRa2JdWQnRIldplu28Q1TbAE6Tqik/xuno+ZO33XScvEWK7QPNBENoQStNBln28ZwBSLtHc2mS1k3C26JLW+X8Lhx0p+zC3T9vJzV9tx2J3EIiJjsJpNCiDsCX7MtyLl1XaaJn6A9EUIBxb5rOp+iF6AB77cR9pRRUE6dTE1wv0CZTMNgeDp2zl0zUX303A9RKZ/UBXd7bB+xquqazJWKXLV90qRuYAWrVIgE5NsF5DeaUNSZLdpOOyJ6+hjZBKJ1Hx0+klHuPt4F8RBNhw4tINYms6PkGA5uF6umTNB4tSbpmQUszs7Sm8+XOiz/IFBgt55WYformovAIuQi5/IL2URl5qPVd5ZlqRiaYRgfRtHs7hjFI3QezttXQxMJjtBLacQEAzX4u4Swl2vTsZ7j7zz967LvLTehWbkV5uXC2BxKGMUgZP2cqcHSnIsuz2G3Ope11Kl7oBWr4f050Fj/Z0B27NIwPRa8RLIoJc73Sjxf6fb7Xuum9WHMqmrNLG9a2jgHN7ApptDvallrg/B+lqSwguN7p/sIEeH1w9XRsdsoe8KLqKgkmb5Hk3xoV5lMlnvGwXKuzKezi5JLnGbcSE+pFVWsm45Uf54zxlloU1JDiqJvxqUYs/C5t0fiIIfBO3tbiyUEsEXUZoVMrpLDLWfMGfdbZSP51vhAxnW+49s9zz/9i+R/knaTUAN36+jd4fbfxTx1JosNCtUR0GtIxkf5oy8MopMxMdoifkTxJB3pLV9GIT9ZxBPwDr34EP6kP+CXfGNMikkAd2WeQW1U7uc6yEWQPA5iS3KgqhJBVinD5RoXFgKYdTf/h4DbWLCWHzqUsLvN9ckchdM3dfdT4MlwM2h6RcE7mJYDXBwrsRZ15LH/EoOWVmdJX5rNaNY4VuAhu0LxFFkY/sP7fMzCDBq6Sz0jOwH9Aykgd6NSSjuJKfD2bRun4wwXoNa4/nkej04pm3O43T+Ua+3qR0Eyg1WS9I2rnuqWvjI9j4Uj8AH1VbZQ2ScUGAO7vEuj97l4FVRYifBkkGo9VOelEFOrVIq3pBTNF87V7madUKHrQupHe0QKMDH0LCzPMe84VgMNsJ1Km5SdzF/YZZsH0y4PEqqurV1PujjfT4YAObTuajU4sMFXfTb0kr2OMhk2sKzl2lKN0aKSW1Q8S9vFX4MlqU89ckIoAWUUGUmGw+3l+XgnKzDUGQEDXKb7xz3AAevKaRzzPjQkjK8+z7n+yiBh4CqMJy9ZQe/F2wOSRGz07grpm7/+1DuSxIdWbgD6aX8uPuNFpNWM3ZAiNJVeTs3l0Ff3mmN5/c0Z4OsaFEBeurdSv0Rn652ccLx1V6KjufN/9leJelBOnUboK5vNLGoYzSau/fl5ceZtzyowDc0CYKg8Ve27Hwb8DVFOT7KIK8xtYZxSZ2n2fckFli8klgXWkw2zzkTIDecx95K4IuhPh6HueOcymCzDYHBoudOv6+XVGrJspqUYs/C5d3l4u01dVABP3VBkW1+PtQSwT9VUgOWDcBTvxGhdHAo6rfMBpr7pDkCmZP5hpwFCpBsFySCg7lBpm/drvP8pdKYiTnGdzdewwWG0F6DU1VBURWKvvKLTcTFeJHsJ8Gk9VBx4lrWbL3wi/KMwVG0ooqqHAOWutTSEMhl+hgJxFUWaIEsZIdTvzG98NDOHVzBmQp9f/7tV18N5i513nA65S/sU4iqNUwCI6BZQ8TLSkD5zb1g7m5Q32OZJaRXnTxqqCjzi5VZwv+XGB7McgqreS9347X2DHp78TqxBw+WX3xahpQyBbjiQ0s3H6C9m+v5f5pG2B6b/iyM5xWfoc7VFsA6J0zl3qU8JntDuLEAm5R7fS5Fo2FGbQQMymNukaZkO85FkEQuM9ZKlhutjO4dT1aRAUBMMfZicvb2yertJKXlhzmrpm7z2kuXFxhZeqGZPw0KjQq0R2Q+SiCbA5EZynXV5ovGKtaTlSwno9vb8+B/w1meIf6TL6ro/teqwr3Nk028sotNA+24Vd6ingxi98d3QHo7FQG3RaRxS2mZfDHK+c95+dCSYWV5xcd5Fh2GW01uTRQK6Vusrnc/X0BBASf9VxkRVqxiXujc/hS86Uy47TSac9id9DhnbVMq9Kus9BoAYeNUZXzuFY8zAztFELy93KHaiuxQgHX7x5NT5tCQu9N9ZTTVVzsQLGylJ6rb3J/fGt4a6JD9AT7Kf4FF+uLdqbAiFYtohYFcsrN7Ekpxu6QyCs3s2Rvhg/JlVtmPq9v2KWW3bjIt4v+zv+PsToxl23JhexJqaG0+T8Iu/P6FEWBmVvPAvDZuqRqfn+hfh5FYZBew8iuDRBFgXrB+vOa4b++/ChPzDvA0cwytiYV+JCcf7ZE+0qBdwnYje2i3GS7wWzn1q93cOPnW32W35bsUUs3jVRUVSUV/+1zcCXhalHpecPbS8dbEXTbNzu5+zzjhkV7Mnj1pyN/qQnC34lyi+e42zfUc0vH+gCcKbh4P5XmkUHu/89F7LjKnePCAnymrzmWy9akv9aFrdBouSpKXGvx12B3EkCO8yiCaomgKxe1RNBfhajCtn8+xqO/0jh1MW9oFvBq0VvV/H9MVjsmq4PYOn44JBm5SJF6CpINFo+CFU/TUMircRc1qR3AN9OYXmRi8JStTFqrlIEZzHaC9GpeTbqbhfYXnaoAM1HBOnfQW2qysSVZeRH8sCuV66dsqXEgMfCzLVz36Wa3p8lO/Vi26F5UFEEFp+DjRhSKIlaAvbPQzhmMbu1rsPkD0IeQ1fhOAGyoAQHSdoIxH35/EQIioX4nZUd1GsHD60DUoPvtWRY83I0fHupOL6fC6HjOuVuQy7LsE3DqnOVDyXl/HxE0fvlRvt2ewoH0S+sY81fxxLwDfFMl2L8Qbpy4iMDFI6hc/TaVNgdthFRlhkG5fnIjr+VW1U4Wat7jBtOvLHVcx5eOEZyQGjAs4ATFFVa2Oa8VW6GybkX8Lco2tk1SCFEnmkcGMqJTDBFBOm5sF82rQ1qiFgXMNmWZPIOZBloDszSfcejIIU45M+9bk2ouqfztiOInUelc31+rQi0KVUrDHNzYNpoWYjbDVLt5UfMTfXXJiNN6Urf0KF/e04mm/mZ4Nxz2zq62D1c3sQKjBYexgN9Mo2HODQDE3/Cksl9BGVD1LV5e43GezC1n7MKD2C5ADB7KLGXFoWz80jez0DaWPtlzADBXlLuPoad4nLFF78KqVyD/hM/6ZwsqGGldRilBJAdfA0UKQbVsfxblZjtTN/ga22YXFnO9uI8OZ2fyg/Zj9/QPNLPZrnuOwPwDtNgzngZCHm33v4ke5XumFl1kZjIjgRDDaffHMb0bIwiC+zmzP62Eg+klPqsUGCw8t+igzyAyu7SS2Dp+RIfqmb0thZEzdvH9zlQ+X5/Eq8uOsN5ZjidJMj0/3EDfTzbVeDibTuXT/u21PqTWheAigq7mLOnlChJdflOCcHUEniUVHiNVl/Ixo9hESmGFT+mStyLIG1EherfZe4HBUi3wdBFNw7/azv1z9rD+hOc9f7kNozeezPtHr2HvfY3oHEuwXjlHZ5wJmKolYlq1Z8jZLFJRMxR6G9ObimHXN2Cr7Rz4Z2C4Cp9frq5hgiBT7GwakVlicl83CxNqTma6CJArNQA1eBFBdrmSqXd3IsRPw1kvIki6QNm36x4Cz3OsKlz+QN6l4QBv/JzI/XP2XPJxe6Pre+vp9+nmv7SNWvw3UGl1nNN7zOEc/7tIWz9nl13vLr1ll6AOr8U/i1oi6C/CYLZxoDKS8jMJtMn5GYAuciKmX191t1MFRQ3UVMhilH4n96nWoyrLYKujnTIzaTUcmsf7mjnu5UtKPIFTaWXNN98na07x5PwDmG0OtzR9T0qR87jsBOk8rGxaoQGrXaJReABaqRIR5QXjkqkfSi8lKc+ovDRPb4Dsg9W/q8VON8Gj/ugmH4HDiwDo3zCWl1p2B2MeWA3QbJCyUKvhXHfzg7xue5jvmkyG6PZwZiOkbgebCe6YDVqvTEVIDAx+B9J3co0mmbBAHY2cfgznk8xOWZ9M0/Gr3EG4yzx4V1XpsN0KZze7P248mXfRHcmKjBafwMfm+HdVBBfjL2G2ORj1bQIdRIU4ukO1hTZCCp9qnOVE+hBoOoAtUWMA6KU6zhkpml8in2D/m4No2fs22tgSCaaC0bP38MrSw5TlpQKgjusO/d9QFCm5R9z7FASByXd1ZO8bg4gJ9SPEX0PHBqHuMqHcMjPvh/7CYNV+Qg5McwcHP+5K9Qks8g1mJMljEPnerW3hj3EI391IsFd5o90hYbVLxNcLYs3AXPf6n5S/BgUnlXLEtW9C2k4cQP6md6udpyYRyjV2Jt/IgOIlykRLOYQ1o3mXQT7LRhbs9Hywe+7Np+Yd4JfD2e4g6FxwEaodBOU30TiUezAnVbm3DCUFzNRMpnvlNtgzE74b6vYPAvDHTIuynazRDCRJ01Ipr7QYST2ewDOqn+kR6pVRLM2g3bz2fK39wvcgYrsBINdtAl0fQjQV8q3uc/pVrOY2laJMvFhzPyn/VI3TXYHzyBm7uO2bnT7zPlt7ipWHsvnjqKdkJrvMTEyoH1HBenfwvPlUAa5bbvqWMxgtdpqMX1qPjDgAACAASURBVOVepybSbbtTdVCVfDofrP/yvfx3Y29qMY1fX3VZundsdZ5fWf77PZW+2pjM2mO5lJttPDJ339/SPdIVULq8OcICtBQZrWSXVdIxLtS9XIh/zURQu5gQskorScoz0O399Ty36JDPfJeBsgt7vTxyLqciKKeskoe+38f+r0bDz09ctu2eDwazHXXQUV4eGkHPJmEE2wpoIaS7y9GrQqvyDDlj6yiBqc9zJnEZrHmdI1NvV55rWbVdxS4F3qVTFJ2BRfdVSyT812Cyer7TgfRSxny3x0dZdiqv5oYJrvv6UsqT/0kYLF4qa6vy7IkJ9cNs97yDXCTYueCnVfHW8NYAFJ9DWefyB2pY17/G+X8WrrFwrQnw/w/cMHUrHSeuq3Geq2uYSxHUKMyfz+/qyE9P9HIvc6USsrWoJYL+MoL0GtSRLalvSaGuJYPHrc9zUmpA4bHN9Pl4k1ulUmio5EfthzxR8inva+YgILNa6n7O7ermDaMeSka7pMJWrbzCbHOwMTGDhuRQXmlzZyFVooAsyxgsFUTiMZVNSjoOQNNwf+5Z35NE3cO8q51LWUkhq+ZPJfnQNgDSi4wwbwTM7Af4Blr24gyW6ia6P/fd+TBsn4zr9t5s8QTh3Dod2t4B/d8kLFDHmxM+Ycx9o6HlcMUf6dhy0PhDnOdB4Ubb20HUQPIaAAJ1aiKCdKScx8D2O2fZUW6ZQh64Mrvrjuf5dnH7+TH44RbI3I8syzz0/T6GTt12zu26kFVaSZf31ru7IJVUWJ2khUzooRnKoOsywSHJ51aVyDKgXAsXk/3bllzI9tOFdBGTkGSBYKGS33Vv0FB0ei6NS4fRP5Nga8xqruFl2+MMtH6G2j+UsEAdQptbEGU7g0XF5Hvp/kxOJimBf2BEQ+hwj7KdjD3nPQeh/hpKnAMyv/IUehuU37Zp6Q7SCg00CvMnMbuc5xcpBGSZyUb39zfw0eqT5BsshAVole50CdMgfRfhetmdbTa5lEIaAY4swdTgWirlKsbQO7+EAz8wtU4oA+sFUbTqRZ/ZcXX90agEzhRU0NLiIbVoOhB0QZwT5Z726KXOF92FSh38snYRTRGNRF8FoF9FBpVWByEF+wkWTIzVv0fF7QuhspgDnw6ls5BENEW0FNIRkUgLaMcxmgBgWfwg92e8xcuapXxc/hqy0Sn5LjiJSrJRLvtj7vu6Z2djVsP/ChHGHoR+4wFoQRoAvUXFpLq4wkr+eUpeXDCmH6pxelUFhTeJmlPVXFeSqFt8mLggkVvK5hGCEY1KICGlyF12sz+tpFqAmVIDOex6VoqCUG3eueBa52pVBLmMx/dcgkqqJkiSTKHR4v5tTX+zp9KsbSl8uz2F5fszWX8ij+lb/vxz1mJ3MGd7SrVnq0s54Gqw0DI6iKzSSkpNNjo18BBB5zI2HtSqHgBPz1dIi3XHfe/rmkwyvUuoqsGYDw5lutl27iysG877KrfMjAoH1xlWweGF7m38nSivtOEXO5/FWa9CeQ7+X7VljW4cDdOW8ZZ6LqoqXQRdpH8bIYVwjQ0dVu6fs4dj2WW8tOQw9mLl/drMsBemdoBZ/f/273A1odj7Wln+KJz8TbkWLgKn8w2sP16zKv3fRLnZ1+h406kCPvhdIbeaRgT4+Bd6w6WEuVIDUG9FUIVNeY+1rh8MeJ5PNmcpu3Ced9mY3o1pUNfvnGa8rvNQtTTMhT+r6vQmgIqM1c2oa3H1wCHJPl2Aq82XlWvWpQgSBIFbO8XQJCKQra8oz/ArlZCtRS0RdFkQ26gZAFsc7Tkd1p/l0nXEiQU0FzLdLaCls1upLxRTHNDMvV6C1JI3bWOwyJ6A6T7r6/wY+iSaktO8qP6JIEx8+NsRWk9Y7fNC25JUwL32FWzWvUTQ/KHok3/jTtVm/ORKLHYJXdOJzCp/1b38kPVDCMREvEoha/wFC6PFNTxgnsfQ5An8qlPaU5akeAV1kuTTTjkoW1EK7HS0JlMOd083tRrmWUelg2vGQmCEovYJjgYgQKdWzLRbDVeWO/Gr4g2kUr77D8d+4In1T5Beng76YGjYC06thuT1IMs0Dg8gsUqr7EV70t0d2lyD9IwSE/kGC1a7xAuD4gE4lu0sKUtaA8cU1RapW93n02CxVxu8V4UrE/374QzY+D4Pv/c1RzLLiBcy6XRyEuz84rzrV0VSnoGvN52u8SV82zc76PVhDV0/JAk+acwH6m9pKmT5ZJOLjBaeX3SwWsvx9cfz6Cke51H1KvbLzTkrKV1dxlqf5k7LBHe3m6R8I/Ni32a9bhCiNp/Dmkc4VXwKYrogh8TyZPQp+jZXfvNAaz4mWYd/UB0IieW+2FhGHJms+A2V1izTDvXXUmqyUpn4O69Ks5EENSc7/Y9oCukvHGTswOY8fm0T1p/Ip9xscw9o5+5MJb/cogROXueqvSbT/ftVWh0g2KhXugHK0vHvOgq93mkMrfIihE6vY0tQMACliT/5BEpqlUijsADO5pXRREqhUNdAmdH8ehAEyiMUn6vioJYAlOGUZJemu7fh8suo6llgsTtYeShL+a0ddgbteYjNuhc95XlARvi1RAvFpOUVUa/sMDZZxc7Khnx2SglEO9sPs1z3Ntt1Y+kqKkRceUhLVhpaYr/mOXRn1xErZZEphxMlFPPtLMU/qDxPCaxeCp+GbsBryr05eCKo1O57j8AIiGjpPpZhqgQWayeyaNsxun+wgUMZpZC6A7ZPqfa7ZpaYEAtOsNnRodq8qkSQ90CgsLySTkIyurQtUJKKfd0EvnO8zospjzKqcj7j1At5pk8MNoeMJnM3CwOmoMXGL4d8206fzK2ucLlYTyIXvM1qM0sqq61fk+Q+32A+Z8nulQZZlt3ll+WVf40ccPnERTqJjL+TOHNISov1wxmlbpJmfkI6c3emnnMdWZb5amMygydv4X8rfLvubT5VwMTfjlczmC2oEsS0igp2/9/Uq/RCFGsOxhqFBxAdoifZqShSi4LPNVVTpj4i0EkEWarMkxwwqTnS98o79f7Ze6plYZPzDJ4uZYcWwqR4KEkjr9xCOyHFs2Du4RqP93KizKwcR6m1yJ24AXhPnMEY9RrO6EdjSfWYilvtEi2EdH7XvUHjWfFs1L8KyNz0xXaWHcjEkKWUtbrKcJWVLr8K7GqFSxGkw4qc40xo7JjK8hnvUGCwnNeYe9jcj3l247NXXCc7g6U6yeBKgrWLCXGr2qvCpYS5UgNQo9XzvayS8ru1jw0BwUMEmR0XVyJZ1197TmVOoUGZ3qCOX43z/yxRluF13r/adPo8S9biv4y0ogoW7PGMc10WD95wEUHeHf5ciAvzJ1CnvmIJ2VrUEkGXBSFtBgMw3T6cqBA9aUGdAVip/R85KSfBWkHzfe9QIIdweLAnO5MiRzPPMZgWlu/5I2Ys11kmk1O3Jx8V9yNB25OhqgSO6h9hePonWOwSX2zwtJDUrRvHy5qlAPjl7afnvhf4VDOTIZWrlA4+YvWbboA+mTqlR50bCMGkj2KEylcNo0tZ7/7/4Oxn+HKjZ59h+bsokEO41/YGfSxfwPOJ0HIYle1HAiAKIryRqwSa50JEC09wHneNe/LKMyvZkbWDjenOLmkN+0DhKZh/O+yZRae4UE7klNPu7TWcyCnH5pAYt/wo985Suq8FOb0JMksqyXCW5HWMC6VZZCDpxSYKt86mfMkTSGHxSney1O3ke5Fcj/6wD5PFRlGZgbtn7qrWtcj1km1qToStn7Bc9zbhlDFQdJbQnd7oQ1RcCO/+dpxP15xix2klKNmTUsyT8/Zjt9sJy95MG9NebDavLm1FJg4e3A2VJdyr3sQG3SuUeWWAnlt0iBWHstl00tf872hWGU/WVdQ8L9ie4jbrRDqbp/OL1Ju9ckumbzmDQ5JJzjPSIiqIqGA96iAlgFqTugYEAaFhb5oVbeKH1vuIEA3Uo4gCIQxBFEEQOKIRSdY6f9OcmoOPOv4aQkzp+P10L9eqjlJapx0thj1HiSqc5+ruZmi7aBo5M1YGs9390rDYJQqMFoapdsFnLdzbG2LfRFpRBUVGC8eyy/CP+5Y3Sr+Cuk2gzW0IFidB8PA6GHsIApWsPXpnht9WAdm+ZQctooIoSj2CH1b2xD0CD/4OzQYCEPz4ajJunEudfk8BkK91EkUFCikjSTJNpDQ+03zjLuu02iV2ni5k+uazPLfoEPs2LoMMJSjSCTZaihlkUg+aDsTe+lYAnv5mBRFlRzkhx1FoUTFnn68CRiXIjNcsRFLrGdyrC1nlVmZo7me1Qyn1Wu8/lGy5LtHFu5FlmYyUJOyyyAu3XatkFa9/F3o/V/0HansHAIelJhhkP3qIJ4nNVQLQ9GKlsxzr34bT68ksMdH1vXUs3ZdBn483IZSmkSJHerblzGKGVimlcRmOy7LM7cUz+Vn3FrcmPgNTOyDungZAWKUSyN6j3sRd2Yqf0UO2BfRy7GWY7hAHM6ooggoqqLQ6fIIXu3Rpfj/ema7vd6YyeZ2n1O2n/Zl0enedj3GwnJvIOx++z8gZuy5q+/82ys12PlbPZIS49bymxhcDV1e1es5GAaaLIcNkGfbPreabdyGUVdqQZeguHaLFvgk8pVrB6+r5vPVL4jnXKTfbmbQ2ieR8Iz/uTvOZ5yrZrNrV0zvZIQoQH+VRAHp3rzwfGniVXdglmeTMAljzBlQUuolELTZiVCUEU0Gg00Ohqm9CcY5iVi1m7ILis24FlyuAl2WZwVO2cuNUpwnznplQkQ/T+9J+4/185V0Cmv73d3UrNXuRNOco47Ie9niqlZis9BKPuz/HkM/t4RkEYqKrcBJrwWnSpEif9TfuSuDtX45d3gO/CrF94iCiFw2mnXCWfuIhxX/SiRE5kxny/nJu+3rnOdfXRK5EHXTiiuu0ajDXrDbRqASa1wuiqMJazZdLlmUKnfd52TmsFf5tGK2eZ7HVoRxjq+hgEDzPVLNVUQqllKXw2KrRcGRJjeNMf62aLUkFzNxaXTFZYDRTx19D8Dk8zgr/pJrHlRxViwLf7Ui9YEl8LXwxYWUi10/Z8m8fxgVx3aebfZIqRTUQji6PIIdU83ggxE/DkcxSJv56/IIemrX451FLBF0G6Bt15zr9UvbIrQjx01AS0po7LROwoqbJ5idh/TsEV6Qw1vYMsdHR7vUk9+kXmGIcRJocxbAO9amwOlhU3o4gQXkhj1RvQY2dFQezsDskzuzfSL9SRdmy1H4tB3pPIzVYCQTjrccwVHhe5AXNRvKT41oArg3IQEjfBdpAeC2F8qbDCBY8yzYVsuic+q1i2gx0yprPuj2JjFMv4AHVGoLKT3NEasL0UV2ZPLIDhDaAu+djila8jjSiBpzkwDnhPS+up/tftagoelyZERp08yy3YyovDmrOu7e0wWC2883mM5zI8aiDHJLsNifLKyhAvX8O/cWDNKjjR8O6/hw+dpzwjS8SbC9mR8BA9gdeh3xmE+azrkBOZrtuLP4fhhM2JZZ9Z/OZvd0rswruDGwXi8dcb7BqHwNUzsFvWfpFlYftTyvhm03JBDrNrJfsOcvRzDJGztjFH4m5lK37lO+0nzJX+zE7Jg6kLD8dh93GDVO3snT5Tz7bMhd7WHpXlruyCltfYrLSynoMe7MhZMqRXN+lJcV4Mt65ZWbSiiqw2CVaRAU5AzzZeVacA44YpaubsGY8n+um00jIo1gVTo3Iq3nAHuqv5W7Z4+0iRrdFUGmo0+kW2lkOoRfsBDq9NAxmG+UmK3erNhJBKQXlZm6uWK74TwGotAw2/kKP0t/Z+NEdvPL9BlT+zqBv8ERQa+H22RDdAaLaQ93GEOX043L6UX0QFkby4bk+x/j8oHhirUogZqrbBhr18Vyvai0NetyK0GIoRLRka/x4cuU6pB/ZzKZT+RQYLbysXsrtqu08uKU3HF7MD7tSuffbBJbsy6C/eJBu2x6G72/y2af/sA9g9HJC6ivqtcZCLh3EM2QGtHEvc2LIIsZI/6OJeR6HrvkKW72OiJ0fYECrKKKC9ew6U8RvDuVeqtuiDzultvQWj2E0WzHmp1Ig1KVVTJ2afy8Xej1Fdt0eTLbfSTvLt2QRwY2icq3bHZKHQJt3O9N/mEeh0cobKxIJwkSAXEGmHObZVqVC1oT4afDDzFvquTyq+o0vNiQjyzJFRgsPib/57F6U7TxnfYq8FqOg9/MARGX8jg4rRbISmN+h283ZKuWh2aWVTHznFab/vJZKqwNZlt2ql1O5hovy/Nlyypc8XZ3oKXFdti+VDsJpUlyDXFlGmN6br7VfcCyr5D9hgJifn89d6s1M1k73KEn+JIxOBUtksKJoqbiYjjx5ifDrWPh1LBUWO78fybnwOijPriBM/Kj9iNultbyqWcLj6t8ZIFb3r3PB+/eI0lQoqj9TMaweT0auoh71DnzKKm1uJQ9ApN5BnxPv8qBqNVCFCMrcpyhU809C0lqfgCzWmW1vFxMCgPXoCtj1FfKpPyg2WakrVrBP9wQ7NE9zRP8oiwuGM0H9A6WVNvamFrtN07fs9JA35lPr+UwzjVghn/xy5ZjTi034Y+Yd22TITfT4v1jKqF+cgFnW8pj1BQrEcFKP+nYh/TtQVulFBGUfgMbXAZBEQza2eAsAIWsfZ9fPwlSaj8nq4Ho/346XD0SlskM3lp90E6lnTmG91IU8OZR9kvJMzDm4huU7E//ytXs1QzIW0UfaSxsxjV91bzJD+zkABV1fci9zs2onx3Nq9tPxRtJl8BG7nPBWznw4oh33dFeSMKIguO+7qqqgcrPd7V92pSoRKryIIJuTtOsSV4dxNzR3T7fsmOz+f1fBIaXczzXGyj6oqHQdNndZ+gerTpJapVy60GAlPFDn7uR0R5dYn/kFhvMTZd5EuTdc+1n1XF8A1h678soKr2T8sCuNpL+xmc2fgd0hkeTVfbom1FQGKMm+ZtFVEeqvYV9aCXN2pFxSE49a/DOoJYIuExqEKwPAUH8t4UFa9sotedn2BGHlJ2HPDPYFDyItqAvhgTputHzI9ZaPfdZPyjMSpFPzaN/GAPwhdae0+R3u+c+G7KCowsr+tBIcmz3rZhPG6dC+TIubzFL7tTStPMqRXR6JdvF17/Gy7QlOSA24o2IBHPgBWt0MoorI+B4+x/C55mssgg7GrGZ64NMAvK+ZzRPq33hHM5dgSza5Yj1uaBvFiM6el4nJrgwGNWLNGYdq6KVs2902Hk+dsisz4iIfACjPRFeSzOhejRjVM451x3Mp2TaLP7TjaC5kcqbASIXFTqyQz0N7b6bT0Xf5TvspMf42okP1tBVT3Zt6P7khj5++BllU027NXTQUcokVCokVPOaDfcWjBFTxg8gzmBGRuM6+g7yIa0iV6vGU6he6iUmsVSmD38x9v573a5eZbNw+bQfXbBrJxNR7+FHzAZOThvD5N1O5RkzkQ/Usgg98zV4png9t99BPdZiQb9pRufETTFYH3cSTFMrBjLM9AoDoVN+YbQ63uW5JhRWMBSDLyLKMUJFPpDUddaNepHw4lBevVwbXof4a+reIYPWxXAZ8pmQlWkcH0zCsBkPBhh4fp97yQdqKqRz174Esy8w/Md+zXN2mzgx1FYPu7IO0qDzINaKHJAqLUlrM03ywos45u8VtqiqnJ9BnUUs+0nzLZM035JcZqW85C80GK/5RLyrBzyeaWdyp3spT6l88+2rpLFNsdwc8vlUhJgFunU7+8M8psisv3j1+Op7N2wQWz6C3WWQgHfS52GQVhDWt+UcMjICnE4hs3pX9UnPI2MuY7/ZSarIR43UNZe1a4s6cZJVWMsYZWFZF3aYK4RnqJIIGigcIECyENO/tXia+xw0c03VEQsTa/CY0T26BoZ8ASgB6NKuM36Re9LFMJaztQGK73EgdwUhF2kE0xmwq/aLP6zEAgDaAynuWs0XqgEYlcljTgXaiQoYWV1jBK7usy1euO6tdcn/nHNGLGHQSQXX8tdyl2swY9Rre0Cxg2plBLFy/m1OpHgLThd1SK1ZKfQi98wvFLP6+ZQD0Eo8RIyjXUyf7ESLwdOiLoYDs04f4UDObQYdfoNWE1czenuJW7/2RmMtHq06QMGkEs6ZMIDGrjIPpJdXKMbedLqS5VwmQd0lbm5KNrNRNIOyk8zpP96iA6guFHLgEQ+p/A7llZt6a4blHy0v/Wrtgo8VBUKtxFNkUBdcFPYIqimC7EpRSnMrCPek8veAASXmG856715cfYe7OVH7XenytiuQgMuVwHlStOed6Lp+MgXECa8WxrP12PI5tU2D31zTKXKkchldG89fD2TgkmSf7NSVeyGCS/SPqn1nMq+rFAEQH69n40nWsfb6v0uVy0b3w462w4E7Y5+k+GOVUSD2vXUE/8SCh6cox2grPYrVLjA454pN0ESQ7D6lXk5dfyJ3Td/HsAoXcqsjxkCS6Na9yu2obszSTySlTShFXHc2lm3iKm1W7YHpvsFciD1dUQONtDzPIOom1UjcO2BrhyDx4UR5f1WCtgOyafb9c2JZcwIqDWT4tsMk9Co2vheeOEP/6DuIGPso0+3AC8/fTZPvLOL7qiT9muktHILK14r/mV4e2JRsIETyE0mGpKduHb2WMVSltv690Gqt041l/LLPqYVwSZFkm/Tw+F/9ZZO5HnNSk2uQkdTzdd3SmlXkOZn0E7cSztBTSsZvPH3xeacGp0eK5X+/pHkePxmE0FbJYo3qO5pLyjsqsomLyJnsvR2mYxe44JyHyZ1HhXRrmHPeKosBtneu7p1dm7q2+Ynm2co/O7KeodJPX8eGIdtzbIw7AXQbsQoHRQt0gO4X2Eyx8tCcf3NbOZ35VRZDdIbnLf7YkFdDt/fXuNvNycQryxAhI3c6qxFzaxYQQXy+IznGhfLkxmePZFyYaa+GLSy1lv2xYPBpWPuMzaeWhbK6fspXHf9x/ztWS84zV1F9ujyDZjiRXJ5FcDX8Adp8pqjb/UiFJcjUVYC3+PGqJoMuEWzvF0LNJXR7q3ZhwZ/3/eqmze/5XhZ1oXi+IAJ2aE3JDkuQGDGpVj1E949A71SE9moQRpNfw5k2tuL1rQ0Lvm01j8zy2OtrxjHU296g2YD3+O/GG3SwKvB/z4I+YaR/Gq8uOsHhfBjukttQVjNx2+HH3foOcnijLHX0xBjSE8BbQ7zUAxOaDKG92K8VBSslNOzGV6er7KFWHMa9ICUyHqPa5t+UvVVCgrlftu5tsLolozWaa1TDgf/Bamo8Jrysj4lYE6YPhoTXwxA7lc5IysG4VHYzZJhFzYg6txHReUi9lT0oxpSYrz6hW4CcZWRc+CgDd9kkE6TW0dQa0d1omYK7bkkJCONZrCgISg8QDbNf5lsoMU1Uv+cgvt3CteIQYCphd0Ycv7bfRQFRejl9VDiZHrkvs7rfhj9fOWSKWnG+gm3CKjuJZIqQC+qoSUQsSE9Q/Ml/7IbeqdpDp15JxtkdZrh/hXk97ZAEgM1h/kp1SG3529MEui+gLFA8A70xpk/SfYFIzOPErtk2fMEx2Sk+b9EMQBCKD9NzQJooZo7oQV6WLRJv6wTw7oDntYxX1iICTPIhqB8/sgyeV81Iu+3E4fBgni0/y0Z6PPBtoPhhMhbD7G89v9qNiPD5ozyPEi1l8bh9BSc/XoPtjzuPqD8GxsPkDt89TUNIyRGeGobd4jC80X6GWrdDuTrhjDgSEQ0flNzb71+dh9R/uQ3DU8BICIDCCgYmTKbOUeabJspJRlyTlf1MxHVVppMpRBAWcv8NGp7hQDknNiBMLqEM5hlLFxHmm/SZ2S62wZR/lnr13cL24FxGJjuJp9odcD+3vZlvQjRxSt1c2FKoM3sSgSEyyjnvUSkv0wKa9ePn6eN68qRUqUSDQeW4CvDoBAsTU8XNnPJ+8tT+9m4Vjju2jzEz8iWZSCuaguPN+FxeaRgSy9oVrWfJ4L7LlcCKEMjTYKTcakQ25zNXdQwlBNBU85usxgnIPVAR4iCDZWAAJM9DmHuDZOE95jkqQOb55MR8sqN55YoF9IODAITsHpY36IGsCGCQeIEYowK4Jwk+qYK/+KZoJmfQWj7JF9wLTK18GoImgqEyS84y+JpanE+hh3EDj4q0M+3I7t32zk43O9ucupBQaFUm+Ey4SWJJkQisVz6sux94jPWGlogpxoomQc8Vmm134fmcqbYWz7s83lcwHQ94Fy1jLTLYavZFcCqsD9p20E85euPzut+ch0alklB0ccwYK10/ZyohvdtYYmMuyzMI9GazftZ84sYAdjjYMsExisOVTfnP0UkqLKkurrQcQeGA6H6tncq/8B8FCJf6Z28nJUa5XnTGDMMrQFiilSYv3pvPmikRiQv14bmBzFmnfpY9KIau12HisVzTige9pIuQQP6eVUvbqsIDBqWg6tkIJyI4sRYuDVkIaA3Nm8Zp2KbGFynurLFvxvBkk7CVbrlvteIOzNgMQmr4O9s8lxJSGQfbDihbBqchsJabz5YotPPDWFLLXfUE7r98TICNuBC3N37HAMdA97YjUhKZiDqUlhVwyFtwFM6875zkGGD17D88vPkSx0et52mwwXPMs1GkIuiAahweyUfAkm4LsRTyk+gO1ZIahn8Lo5RAej1iU7LPtDv1v49bOcXxwT2++sw9hnxRPrFBIz82jwGLk3d+O0/j13y/5a81PSOfaTzdxOOPc3+s/h0ML4NsB1SYvsvfjfuOzdI6ryzcP9kXfoDPDdYdYrRuHaees825y3Ync887/p1Fh9X0ORQbpuFY8QiMhj/htYwGqGUZ7kzall+EZPfHX43R7f73bB/ByoNLm+V42r0SLt8+KuSZfsrJ0pTmHC2c307FBKM/0V/xHq3oFFRgrOK59njFrxtC1UTBategjzE8vNnE638Do2QkYzDbGfL+Xlv9TElcuf00XEfTTghkIkpXcFW9yIqfcrS768t7OmKwO3PKBzwAAIABJREFUNif5vltrcWFczmvqkpC+Cw7+6FNC7LqPDmcqv3tNPogvLT3MwM98S9okr5IwdzLfC68OaeFO9O5O+euKoM/XJ9F6wpqrtrnHP41aIugy4Y4usSx6rBfNIgMJC3Aa1SIwmfsol/3YKbWlQV0/tGrR3TmjQ2wI793ajok3tyUqWM8tHZVMwCN9m/DJHYr56tiBLXja9hyV0d35UDObvvueJVFuwplmD6K75gkq8EjXV0vdqApXXfAsxzAMjyXAM3vcpV/41yV41Fzq3vG5e/k5xp4cTC8lSw7DoVK2ndHmSff8Eo2ntM2FSrvy8LhoRZCoAr9Qn0muh4erSwKglI5FtYXY7rB7Gvz0EP3SvmCW5jOaiYppbGfVGXaeKWSAeQN3qzczT76B6ar7WO93I+z6mmcjDvNg8AGSpRg69x3K1/cp5NyXKcr3eE69rNrhDRQPoio6BWZPdiO3zMwt+oMYZD++K25LWJ8H+Tj0bZY2fJsjUmM+t99OvhwKCdPhyOIav7bBYude9QYssoZJtjvpYf6KGfabaCjmIyBzr3Yqz+ve4Ywcw/hhrbnV/iGpQV3QGjOZrJlGoK2Isvp9GdKhEYlyI+oWJChKml8e4hP1DN5Rf8etWZ8qO1syGu3WDxivWYhZWxeilOtJJQpMH92FHk3CsHllIt4a3hpBEIgI0nF9m+pkH+HNoV5rXo7+nmssXxIdFU2eqYoU+MaPITxeCZhsZvj1eTizAbo86F6ktOEN1LlhvLtEC40e+jwP2QeJKNoDyKgNym/7ru0+REFmqMo56InxEKsMmwyvZ6J/aguSf4R7sptIvFgUJsEfr8A7ofBJYzrb9lNEMHbH+QPl2Dr+PD7yZgBaiJkY8s4iCjJlddqRILWikZhHnCODV9WLiRcyCRYqmVfQlINdP2Ja8PO8F/YcvJzsKT0TBDQNlft3peMaohq15JkBzXmkr5Lpvd054HKZzLoQ41W60r2REmgGhMdyVooiKnEWfljIbP3YRZ+O+HpBdIqrQ1KlQozUE4qRSjMRkDliCEGq04R71Zv4SD2TCEr4RjMVgAq9hwiyr3sD/ngVvh1IWM4WhexzdiYbrtpFK1EhhzK6vcHb9ge5y/I/ToQNZtB1G+ixwBk4avQITftzkyqBCKEcOo92b3+N9jXmaz/Egtb9/FMLEpu1LzAgdzavl09koLgfPRb6liklaN5qraNZnuDVIcnklJrdJQageFTtTyuhyfhVREtK0J8q1cO4+h1sWYexysqA5gftx0Qnzbvoc/tv4HS+gS5iMmlSJEcihnOf9At8Fk/itFEs2ZuByWqv0fxx0JQtdHq3OmFX5uXX0UzIunBWLt/jB0NxCiezfFVANfmRVDgHn11FhUTRDX2fZ+68kdbNmrDa0Q2N4KBy6WOKsXIVNDzyOXepNzOw4AcAOopnCCpTVDY9pMPs1z/J82fGYJ7ajVm/bqFXkzB+e7YPekM6dQUjtqAGcNNk1ILE6+mPKkTW1z3A2d5Z6ZIoKGqWjAT48TZY/ghDpY08olbIiVakopUtlMv+ZJ09johEvOUIGx2dWBlwJzQdAE36Y0FLs3JlED6VT+DXsTS2nOSk3AAtynMsrZWS1Hmh5D2W6N7lXc33vKxZSpEcjDzoHRj5I6klZszoeGFQPN+PUZ4hp2VlLGEv8i1xviCsFZDq9A3M2o/Z5uDO6TvZnlwzoZR7RlEsCAgw6idQe55PKlHAVq8TZlnjbi7xsmYptuCGnm6hrrFIvbbQ4iao15aHB3dFJQpEh+h5x/4AI60TyBUiaGY9weQvJzN7ewqyzHnLF7zhkGRO5paT6LzvD17hKr6Lxp5ZsOJJn0kPWl/hCWkc4+yPkUsYN7SJon/LSIhuj9aphjXnn9/Y90BaoftcXQnwVs4A1NOa3Q0T1CVnaKnKIbPEl1B2qVxEQSG18w3m6iUtdit71y5k0qojFywh3uVUMfxx9PKRZCabJ4Fnr/Rckw6vQNqsrsGj7PeXFLJWUEGDnpCi+IXVDVB8GqsSQYVWzzPAZT4d6KV4X3U0hy83nmZbciF/JOayLbkQAQmD2eZOztXL2wpfdKJdgfKMCyk9Th3KuS5eGXvFhPoRFqD95xV3hxbAskevSEP5Cov9nO9Hb0/Dkn+qvHzXN3Da2YTGboUKpzp49TjlMx5FbaHRgtnmICHrBH4Np4NoobVXsgx8TaMdXp3uahqDNwwL4Mhb1zOiU8w5zd0vBYv3KQm6Kz0R919BLRH0N8Cl8PHXqvjCfBPtLbOxoiE6RHmoux6u7WKVcrKR3Rqwe/xAhneoX21bLwyOZ8/EEQQ+uopl4hDSpQgetrxI85hIn3KPOQ92RaX150Hrq4yxvuKeHqBVcU/3Bsy6v6t7/9UQ1wvu+I4Vg7dTKWnYcDIPGREpuiM06U95x0fci5brqx/jpZSGme1mnt/0vNIdzAuuh0dNbDJ9ngdjLiQuo/6JOQxW7eeI1Bi551NEUsyR4yfpL+wjR4jkLct97E8rIanBSEDG/9fHCDWlEj5sAi8PaeEu+9iRoXiPBAuV0KAnKXdvYZjlPSbYHiBUqOC5k6PgowZs//1HsFagKzxGX1UimSFd6N86hmcGNOO151+g002PAAKLHf3pafkKObI1/Pw4rHpVUZp4f8fyAoaKe1jo6M9XjtswaCP41j5UmanS4l+viTtbGRmkxxzelgeL7qdMV58RKsXvYfSoR/j8ro5sl9oTVXYYfriZsPTVjFRv4QH1OiqEQNCF+Ow3v+HNnhIpLzzUuxGd40LZ/+YgxvRu7J7uKp1xewR5IdkeiRF/mkYGkFtRw6AopgucXgfv1wNDNtz3EwyfCiN/pOzeVbz1yMjq6zjLuWJWjuSo7hGi8rZwPGwwCxjqWWbUMoWMckGtUxRlgZGIz3k8Q2q8fs4FAaUEYu+3yufAKGSVluIGQxjYKvK8qwKEN+kEQAshg/wsJUvfqmUrt3EzQK5ch3tVG7DLIrul1ny7LYU8+35O+b/DlpITPtvTPLCSg/ccZHenj4l0lpq48FS/pux/c1C16bF1PMqlOs6BYKifhpOyogI6IccREteOMkuZW7l3Mbh/iFKa1r2OiZvSJwGQLsYQHKVcJ3erNzNf+wE6wc4hqQnBYR4iyJpzWFF5RTs7iYU1hX6vMTfoUXqIJ5mkmQFAg34PQffHSJBb8fINLUnIV4zi3dLiFkqJG4C6YS8yn0nnNdujLHb04x3baN4Lnci1limM9v+GYr9GNBLzGFL4Pf3kvczWfsZJ/Ri3wspVXgaKaghg0ppTdH1vHXZJJraOv1syX1RhYcdpJfBtJOSyy9GauY4htJbPwLGf2SJ5OqT1OPGB4hlzMbBbIT3h4pa9DJBlmX0phfQUj3NC34GC+Lvc89rm/8ZHy7bTesIahn6xrdq6rox6odFCVmml26y4rNIziGsgFLhJmxphrUAqTsUmq5BiuoG9EqHoJN2FE/ihBCRVO+yBp0tbV/EURllPfIeejOgcyzejOhPbri+TbHfid3YNFUd+qbauTfTcHwvs/QkUzISUKCqfVqLnnaMvSaKr4xCPXdeEOqYU+KIjAJq75rp9boQiZ8AsO5Sy19E/w63T4LnDcN2rINnBWboRf3oOIzS7ldIooEAO5ndHD+KFLBZp30XnMGGJ6kKr+6co27l/BYkBPbhGTHSfC4C2cjK7pdaeczz0FUrkIDqLp0nRt4IWyjMxUw7H0PVpaH0zaU7T1ru6NaBfC+W5ledUH8llvl32XDieWcwDs3eRX1quqMNOrYYjS93fR9nJPrJKK9mbWsKo2QnYHJLbm+/x4F08qFpNM1kJyMVzlJ62jQ2ho2UmAy2TPBMHTVCSQeAh89rdCfcsgCc8vkYuQ3IJkb23bKZYDiSuzHN8LqXHhbpcTVmXxA2fb3OTA/mXucTnXPhbSxcsRlgzXmmq4YXDUlNOBHm8F5vVc5a8tr2dsua3cVaKQi6pXprrcw5FB3suQ9b+csFHEbTgbhquuo+bVHsolgNBVDPaf1c1RdDp4jSCWo0jun4SRRUWur+/gS7vrffdcOJPdNv5BDfuHsX45Ueq7VeWZfamFiPLMjHORMHW5L9WWusNs92rNCxzLxz/BWYPwZ571D3dUr96N05AUSa2vhkadIeCEzCzH/qCI/hrVRQYLPx8MBOrXaLy1AaGqX727Mc5PnIRQaN7NuRYdjkrnd04M0sqeV09nwTdMxxLL8RgsaPDypiM8VCslBaelBrgh4VX/H71sRJoUNdfaSzxT8FYoBChR5dAzvlLWf8NtH17DT3er6H7L74ERonpEpOXfwayDGteh3nOSgOjc+zebJDiNbX+bcCXRMwoNjHr6Jeo/VMZ2cfMwkd74q/1KNK97zlJPr8iCJSW8vVC9OQbzJetM6GpVhF0WVBLBP0NUDnlnC7jSIBxN7bkEaf/j8sU13v++eCnVYEgMC3waa6zTiG0XsNqgeqAlvWYeX9XNksd2SR1ck8XBIEPR7RncOsaVB6ehaDtCOpFKSTP6sRcooL1aEb/BPcsJKBONAvsivy4R2dFlbE9azvt5rYjryLPHWBqVBcmgnZl72JD+gY+3uvrkeR6eNSo6Gh5E9y/Eu5eAM8eYLjlPW62vo/QRnmovSLO4wbVXrJCOiE7L+mwZl7qkcc2U6f73WhUopsIqrA6KNA4Sa3eY4mL70Ci3ISNUifKZQ9h1mfvM1imD+B764uE23Jo1edWZt7flWBnlzJXpytQBqzPCOOxtb8X9sxAXnI/xTOGk5aSzIBJm5FP/oFOsLHUoQQabeuHUEAdxoV9Do9vpUm4x6ckLFBLzyZhpEoRDCp7U9l+69sgqB6iKLBX78yo6kKwisrxLqvzMGP8vwCt8nKeYrudb+03UthzXI2/RbPIIJY/1ZuwKiqT86G4Qhm8NI0IJMNQQ6v4UK8ypPqdlBcNQOubCYnvXbNXTXC00qYd3AbpCXkisqiCPi+S03kU7xXu9pFP+6CGEsOqqKmbgSxqYK9TJj90Eow9gPBGLkMffQe9RlVt+WoIrIeMwDuaubRKU3xYenRszxmxMddZJnNcakgLdQ53qzbyi9ifbh3akZBSjEFWMnTHi4/7bk+lplOLJnw4on218yQIQo2/U/N6nmsm1Hlth/hrSJIVBdEZuT4N6vrTZ1Efhv087MLfyYm2rVoBcIu8gVaV+5mrvRu/Jj3R3PA+3PcTh+TmxItZVAbEoH9yM08NbORe1yoI0O0hxaNp1DIYoFy/d439mOPXe7om4h/GS9fH8+LgeK5t7lF1me3OwLj5EM+yTQcQExbMYkd/xtsf5TvHjZzStcWMjjbtulD3pT3s0/l6noHiK7Pc0YdgwUQQJsICtAjZB6Awmd+P5rizcTF1/Li3RxwP92lMkdGKQ5JpKmTRUXWWFLke8x0D+dB2D9ultqzWDoaH1nCH4wPsghZ2fF5tvwAV5SUc2+qlOFxyP8y5/uKJo7+Iogort9t+JUQwccOwu/Bv5Ht+ujgVN1UNuL0HaSsPZvHdpy8x++c1sOxRgjM8ZZgNhHwqLHaOLRzP6W1LkWWZnw9mUlxhVbKFGQmIsp2HbS+T209RKq7SjGOJ7l3Wal9jkLifAqeHTWJWmVsiX+QmgpI4IDUnyE8hBIL1Gvo0C2ea42ZSpXrK4NVLtYnFiJ+thEm2O0m7exPv2B9wzxpo+ZRDUlM+tY1ksb0foJB8vRqFKL5mAP7hShlseDO4eyE86zE/pvXNipJHEJTSp7ieSofM/xXBTZOh+CyCLMPNX/Fxm5X0sXzBSTkOf8FCd6d64eF77ib+/9g77+iqqvVrP/v09B5SCSEJEHrvvRdRujQpIjbUqyiKih0bWPAighQVUQFBBASCSJHeSwidACGEFBLS26n7+2OdmkbRe8fvu/fOMRySs8vZZ++113rXXPOdby1HX5Xi24Fw6TbndY+63P/DlnieMvyDde6jUHgFcdizBwA3gnvCsCWcj3ucz03D7aXCU2+XoFUpCPZy9A8ZtjS0Iidj7vICKMwAWUa7uCNfpg4lYH6s8BpZ+TCse4yLq4RyD89aGI58w6nFTyJZV3vf3HCWAV/sJeXkTl41zOdt9ff0UAkvCamaULJ+LS/K0aJHw1vGibwrT0Xd1OF9SPunhLqqzRTxt1O/V8uJ9B7cPAJDZGe6KRLRINpJfqmBlJwS6r62xcXg/UZuKW+sP8O2s+Kzw9cECZxiVStUVd0o+VYxCUl3Z2J+NziQnEPDN3/n+HVXQqWg1Mgjyw5XMvS9Z1z9E8wG6D4TXr7GYvU4smVv8vCirpMfh729BccjDV9CshyOITcVi0V4CD638iS7L2VT7ERa1fJWkphWOX3u52M3qD8r4Z6r/uQU63ls+TGuZBdXqT68EwLynPxKLiWgyhSTfnfJCJHt6EBiJZVBcoF459TeiZW8fWwLXfpM0Q83UlynPGkD12+7PpOpm95izA9L+f1spt2s/e8sRV9mdFyXseAGnF0HNw5h3vupY5/YHlUf/NhOGPGtI95KPwmLuxPoruS7Aym8sDqR3w6cwm3lMOprHcSSwaretymNX+hTj0ZhDqXH+YxCnlBtJljKx+fP1ygsKaeH4hQqHM/tdcuTrDD1Zqy8Genqn/bPowIqE0Gfbbv4t1b8++V4mkPZdcNpUSX3HpWP/wbIssgCqAouBQv+HYqgokzXf+/6EICS5o+J2DtZkKR5pQZ7F3z9dim2y29Z2xcfpZ6mfkbqS6l0V5zkZn4Z6fll9P5st4uiziWrowJqeWkxmmVy/yL5Zctsr+7+/g/3hv8RQf8C2PwmHm4TSZe4QCQJHu0UjVYlJpeeWpWQUt7DBBxEsCKjYO7IpvZjf5jSjg3TxOp9p9hA3nigYU2nqBGNw8V15xQbxOCg9QS1GyE+Or4PeJ4tDxxldFexar4+eT0Ax7KO2RVBKunOHkG21X6l5DrRtnsEVafoqNsdGgxC8o9m2riRbH2+izCbbvowDylFSdSght0dvyXCDwbMgX4fCELCCk+tyt7RlfrUE2XF4/raybs0OZjemh+IKV/BclMfALS5ThO3Jk5BLKBSKlwkk5uvK9hc53UsLSchXfgN/4w9bF/2Bt63E+l/5T1uygGclesAMKBJCADXNA0gOJ6YIEcAF+Kt463BDWlZ25dsfHlQtRDF0EX27fVbdqOdYSHZk/bxWtgyXtS+xamoR0ku84SOIm9+sXkQs02P4OfjKum8E2wkhN0jyAmto8QEIzrQg7QiV/NOi2yB1lOg83SYsBEeWV9zBTlnjFmN/FY+jQ3fssbUlR/NvSg3WqD3W7ylM7L64mqOZ1VvYGdDde2n2FiFAaYtjcG/LrR5TKSrKe6CALJBkjC0FBOYpnpRPS4wpDaX3h/AdTmEHZYWBMm5aCQzu83N6BATQE6x/m8NJlvWdlQDUylFd+7rpiHPWmmrHJ19QpVddg+rmd6CJO1WtoNsfJldOJBOMQHgEwFxfVhgHEySpQ5F7V6kQagPHk5dmUGSIFQoLIjtDW7iGnVqJQ07DhSr/5HtQJLw0ql5rlecveofOFJN8QyCqE7QaBhoPZEkicmd6tj362qVpT/UPAxUWo56CdLxhEV4JVxv8BhjfX9iu1mQwmFSDr0bBPNlyYvwZWuKykUQIWEh3EsFRZn4u6uZbvmO8UeHsEM7A6VspmXf8SiUGr42D2ay8RWmTJkGtdtzw60++wJGQOJKSNlf6Rbu/PYtGu18lOyb1wRhcclKoqRW9iADRID2w3DIT4ULm0XFK6D/vD089cOd274d2RchZT+pWbm8olpFkW8DaDCQyEBPOpTPZ3aDDRhkJV+pvyAcR5u4kl3Mu7+d43hqHovUn7NC/QFrt+9llvpHnj47BpJ+ps3Zt+z711bc4rOEJBpdXEDsjsdYdfQGL6xOpOV7fzBu6WFI2Y9JVnDcUo/Oyxx9xU5zc9ylcpZqPqX78WeQN03nxS9/os9ne1iZsAvVb8/wkmo1DRXXOS3VdyFFfdzUmFEy0zQVt+JUmN8Kvh0oFC35QulwSx2Kb1QT9GjorP+CIfp3uSKHM8TwHiGDZ/EmT5JBIE+qNqH7MFgoAusPghnJouIgQIOBLLixlQWyVUlmS2VyhkorlJZNHxZV9RoPA78oouvEoEfDaYuTgW/zcaKfcUJK+AOkWkQbzpcdfX+GT3MSLO3YFfk0ACfqPs0S00CSa48ErSeZrWbwp6UFC3Yl8/PRGyzZe41wPzcUTn4iOfhgliUURekYreavluUPwWcNMOalEqPI4KIcSZ5vY5fV9PqGs1i8w6FuDzSlmQw3/kYT6RoSFlYeEfd3+y+LHc9DIYi46szoY5xM2Jeb+/GTpZfrDhGthVeQE5lvg0al4PWB8Wx8RsQ3cqvJBEkFTLSaheeVGu1pnr8lOpRP3x1IYcWh6zy+4jijFx+kxGponmX10tt3OaeSqe03+6/x6upDyFtfc500gUhzNt3lxMVshAub2XFOkEpZe5fDTce7u/7UTfZezmHhn3euMFodktIKWPXjEkxqL95L8uZCoYoPigbxbPjPgIS3m5rt07vyYp96hPk4yDRvnZqgiFh8DVlczCwk6WYBGxPTmbU+iUInhULDMA+7MtlotvDptotkF+n5YMt59CZRVejXk2nUmbmZ9SdvVrw8O8oMZpbuvco3+66x/XwWvT7dzcRvjlS7f5UwlNL0dtVFOOQHPoc6XahjTOb6zZu8ueEM+aUGVh9NtRODWrXShQjKLTEQ/eoWfj2ZRmH6RVIstShV+dBDcYqMClXpDuf+ilvkCvJKjWRbJ+5/p3rDUOpQqRpyk+GsUO6YbzlKddsXRWx4ZL3wSYxoJWIr3yiXzb01DtLH7/xPAKSrHHG5fqtYFHy0Ux2S3x+Av4eGTrEONe+hK7fJkUW8GJ++jj6X32OmaiU35QA6lM/nYf0bjHjwQQKGf4qscoNLjiIYtf3duZlfxoJdyWQUlFFUbmTJ3mvsuFB1NbGLmUVV+tC5wFhur5J2I7eUF9ck8vzqU4IJOLMWbDFqXkrN5/k3406KF+c2eb9tKi2vlNmbztWcIpuRCFtfpezUGvtH8mcNIVG0jeE/pnBGroN8OxmLoYzcEgPNI4Vtx/XcUvRGcW4vdwWsGsOqgvH8rp3Jd5q5TPrmEJtOp5N8qxicUsP05uoVlyHW/uivVoC03V1bDPc//DXcpbvv/3Av6BQbyI4Xu1E30IMhzcMpLDfafYEA+jcKcQna7hZfjG7O2uNpLkqiznGuZbz93F1VOWaLGeVdTm69dGp6NQhmx4VbTO3qCFp1aiVbX+jmsm+ATpSLzinL4VqBYOPvxizaJIsXtxIRZGWRq1V9OKF/4xDHH0O/FqtiN08QFT+YRWG5LN17TayEhT1R6VhJkuxs8qXmr9CyqR9YlUyDm4XxW2I6veKDWXnkBp+YH8ZfUcJghSCacnvOxd+tchnuJRNbM+W7o1zIFNUaigxmvirvyzN8B0BvxXFaWVeFV5l6YBu8bE76NhLKOWj2dRcTkha1/TiRmk9QRJzw07H97BbhLN5zlU8P5LM2Gca160Oor478UiM5TaawUzmAsnVCcRLgqbnjPXVGTalhHwxtwrQeMXjp1OSUufpGGMwGdF61oPdblY67IxQKJECl82RG6ZMum2zmiRWrPVWF6oigfH3lFU7JzQ9aToSWE+6esKoA7YOf8mZGa97NENcsKcU78ETXuigu1AXrfOOkMZIJdjVA9UTbvUKpkHi+dxzXnFaYNSoFfyi70s2cyC8eoxlzH30NWi/wCoWiDA6YG2JERdtoh9ltalAPBme15mLH/oDr4G+QcCFfK2HYkhrvd6mplACs5egnb3HZ9tbgRrzcrwFHUnLpGhfIlM7ReFnVeecD+tA+LYQ6iixWaWYT1XEUbU64k1wgSK3ftTO5XOggciPLztHRT8VzhqXEfi0mZp2avUVzVQLYmtEzx2kQGMvUsgss2HWFJ7rVpaF1BdXHTc06r3F0N+2DzS9ydshWEs5k8WLfekiSRGS+WLHUZ56n0BCKnY69cQRCmnIj9Qo+LYfa1YWcWCFW5hZ1FuqNnm9A15e4kFlk71vuCr8+ATnJFLb+Eo1kJq/dC3hpPAhVyWQrAklIsRBi7stjqgQmqX7nfdN4PthynsV7RHrjpmOXOaIUKTjdjAfAaUjROz22WOkmDSWHGfjSX7fSXXGLfZYmHL+eB5q9nJGj7T5ORyz1aSRdZ6rxRVSYme2xhpEFm+HYARargxlX9BrdDr1LmJRLYxVYZImO/VxTSW2KzkOWhrzs+QGfqBfB9f1Yrh/kslcb6gOX9QF4W1W3aXIQaQiyZXqfejzSPopH2kchf2wBm4gguhsMXVipTR5IP4DR259pDR6gNKI1OtmCQqpi7UzrCU8dsPvedaknxuRzspiklUoSad2ep16F8/t4eTHc8DZayUSe7MlZ3RRuy14E+flwJS+XQGu//VjfFrxS+AIftRUqPZsXyJrjaaw5Lgg2Z0J4x4vduFWo59b3fvjlHGfCkgMcTCkgRSdSaPWHlqEGPjCO5cGWQxggHaD08l70V/bRQHGD8sAmuIc0gdOrAFim+QQlZmYap7LN0pqOinMcMDdkn6UJBdobQFql8dyGWKcx7YvRzV1UPncD5zgkqGlftq9rwUuqNey0tHBJY3Aeq3ZfcpCbh646FDlFehOtfYuYVTaX1ITBNJzyNtnn91N68wzN067zgWoBHEKkNk87Ym8Pls8bc6wkCPOETXSICaj5gpPWwPqnaOs3lkQpln7J70O6n0h58w61p0LajFPvB7e3f8po1Z9s1ndg2YE0dl0W/jIv9q3P5tMZTOsRS5CXlmd7VSbXakXG4pVRRuatW5y8JSZvDUO9KSxzTKiigzX8eb6I9PwyNpxKZ/7OZDYnZeChUZFfamTUooP2lNCv91xlSIvwKq9SqtMRAAAgAElEQVTzsz8usmTvNRqEOK7j8D2knFksMhtXfY3ZeZycuEn4MD44Hzd3f7i2F8Xuj2jOJb4/6EFcLS++2H7Jzg9oVRKFTpPF1UeFinnBrit0tqRwTQ7BN9iXZmlXSamGlLhdrLe3tbtZxLlVVI7RLLv491UFc2kW6ECFAqNXCOQVgF80phIHaV6RCJLriqIfv135jbTiNJ4KdVIMeYUyreifbJPeoq/iOG3S15KijOSmynEO/aWtUJSJ5BWCSiluUojzO6kvJFBXyIfGMXTyzaNr/laKJR2TDS+TQQAZcgAvBXvSpo4/JLWHqw7T4Hq1vJBlmPv7RQ5dvc2gJqGUGUW1NVmWXchis0Wm37w9TA04zesNc2CQVQVlLIOCm+zNUlFv5+PUum1V/Tx/hvR8d0CmMCednSvep+fVX6HhQ0IN9X+MCMopqTn91Lli5v16BM1af4Y/L2bTr3GIeB5VYfccuLAJ55ZoRIXGqvDKlP1YeE7HAo2ZpLl9OV/0MkNb1iYprYDbxXr0JtGvKiXsXlQ2REuZbEwUY179EA+uWNdaa/LptPX/C3Yl0yk2kCEtwl38qu4WQy3beE33NVuLjwMONTk3jwsPrUd+tS9A2nA0JZczNwuY3Cma1NuleLup7POs/3b8jwj6FyEmSARAkkSlxvZsr7iqDrkjHmoezkPNqx50bfCr8F1Gi/GuiSCAuSObcTmriHZ1qw54TBYTSkmJr1Z0ACvOrbCbBldFHDjjaOZR+0S94jXZOo+aZIVVQpLESqt1tbV/41D6N65saF0VwkNCwMfRiXw6shnvPdSIzUkZwA2KZHcSol+n4MpnrNKN5Lcuo6s+j68b80Y3p/884bWRklPCz2dVmMzDCJNuM0q5myhu8aZxImsUA/lhUmv8PTRkWYNCGxFkC5p7xzvS+Ea2juDMzQJmD23s8p31raTCKmtg061eEKE+bszhItvPZZFdJIKfT8ZEUGq+jTch3C2qKv9og5tGSWyw+G6bEswGg8WAjnsL9CvCSyeCTZ1awcJxrVy2FegLMFlMNRKO1Q1CLtXCrJCR4MF//qXrBWjTriusd/3s1YHx0P1ZmPMZAGP7daWWt002Uz3Rdj94vne9Sp+pvQJ49PbLdAq8w8SlJtRqDEUZJFlESqvzpG7FlLZcyiq2qxydCVzjo9vAvZrABO5IutkVQdXATaO0m1TaSCAQKbeZBFCiroX8WjqSxoMZgUay2kfB0rfBVE7cjbX2/X9Vv+EgA6xoduEz+7/LJR26QKEusq+MOQUt3jo1N0pkdvkOo0fKPGb+sBOvgsuYz3yP6sF5NJZF6tWa33dxptiLZRqElD/xJ0j8iUjgwom1eLfvD60fhRvW6h3l1rZ6bTeWzi/av89ske19BeWForJiaa4wgGw8DBRKko7uoUm6mPBHn50PgF+sSAlTKiTqh3hxNr2Q2TxChJTDUOU+vjQNYcveQ4xUnuOUJZYYYzpYh5GZ6lX27zco3DBIjuccIBXxjWaO/e8P1Utpq7jIm8aJpMq14MZhdlsc1Q8nGGbSurYv5tQyzChZ4/84fqXQIchAVMof7NM+T7msZpD+fbQY+f6JLrSs09rl+Ti/Metu1+adNw+zPfEaIVsm0a5ITBpqRTdCkiRSPhrEQ1/uIzGtgN7xwTznNO5Kbr5Qlgs9Xod2T4Cucpp2uamcIoue8hHLaPdjGyY3msz01tMr7QeAj2NcDvVxI8LPjd7xdSC3Cy9pSti7cTjHxx9Ho3SMzy1q+5GNn/1HPWd4hsvahnQK8+HQ1Vx7gBzspePbyW3txzUK8+a5nrFsPZvJpaxiGod7M3dEU/v2mCBPwnzcUFGAOu8YQ01zGKByfK/nkS8wyxLn5dqEXc/j7dO+wGA+V6fSgBuk1J9KRlYGNu1OkCTa42LN51yOmUjclevMMY7iK/NDqORE3FhZrSLI2dz+oebhFBoKOZp5lDYhlQtb3AkqpYKs7p+gODCYHdIMChIWUeBZl66KllgsIexPzuHtjWdJvlXM091j+KqC6qaf4ggfGn/EX8rGcmMe7FQRtEekLLroKnIuieIBYS0htCmK0mzaStk8sfcSHWKqUIY5I0N4zfTL+4l+tp9eehvWTIRxa5Gv7mGR+meO578AVFZvf/VnMoVlJmYOaOC6oeQ26AuhvIDuKcKgf7tJqC6vZpegVEg0CfepfkJohWe4OG9ZWiJnc6LooTjJw7evUXbb0a7DfDXIMnT8aKf9s6vZJUT6i+mksy+YqoZFBlsqnuizZB5XbuKUJRYYVHlnY7kwr/WNtH90LqOQwkv7Mfo5MdHRXcR/NoSKdh8vXWcXLcgu0hMf6s1Bq6hLo3KNM78/mCK+riSPIPMFctQDUEXGE3dzL4lFBYCIHZ1Tyc9bSXg3tZL8u1BvTFh2BM+so/zsvwjF1J0uv8lgsvDDoeuMbx+FUp8DOnBTu2OI6weRA6D1ZCy73oIioTC2mTvbYJJNqCU1r+0TKZxPxU9wbBy/Dr+vOrJP+zwAB8wNeVH/FCGq91HJMiZJEmrdS1tdCniE+YqYrad3Oh/r3wMgRQ5hl3I08cGjyTJ7cvSm43cHWIloYnvDttch+xIE1aNVlJh4azHgmXGY/bdgivIC581RyHOeRmr/tPA2Kssnpc2bKDHzeslHcBTo8x5o3Lm6/j3qnl2A0xMG4Oauxew+lskp7WZ8y0rgKlzWNSFuxLewYgjk3Tk1zGKRMZgtd5f2fze4fkAop22G907ILCinn+KIiDGd2vvptHzeXrGV0sI8Wkc140Rq3l21qapgi0kqKtkAMOnBVO5S5dSG78z9eHToQC4mLCS/3JOz1gWLpsbTjFbuYvStDA64TyC3xECZwQIKMBgcC40/mXoyVrWTxlIKG2+G4eeuxtdDBVYiqNIcLiNRkDMxvajVQrTNhDOZJJzJpKDMyDRrtbt7wWNmoXDS3EoEYskqLOenw6k8f2kaUvZ5uLZXpHM7YeQiocQe0jycrnN30SzS155N89+O/6WG/YfB110Nd3Bwrwn+HppqSaASYwktVrTgmzPf2Cd+zpWjalLzHM08yqO/P8qiRJHe5LyCaLKY7OTDPVd9qgIF+gKaLG/CxiuVzUSdEeXv4fK3RqXA113DsBbCX6VttD8d4iOZZZqCR1CdaoNdcKzSAlzLKSHIS8sSxcN0nLYMgHI0rDb3wEOronNcIA3DvGkV5UdMkAcz+tUHxARixZS2/HNMc/u5GoR4s/qJDpWMvp0VZbMGxdOnYS0ahXkT5KVl5rokNidl4Ouu5p1T4+mztk+N96EibM/AZKlZdlnRfPiejJqrgY1YeLxLXVHtxAkz9szg3YPv1nh8dURiVYqgu8XCUwvpvKpztdv7NAphuDyH5/0XuG5w94ehi6HvbJ7sLlZp/12wEYURvu532LMGtJ4MwEFLI8CVdAn21rmoEZ0VQXqt63t1r7gXU2tn2EiaqEB3JGtVOh93NfVCvIWyqBrVAn1nQ8MhAEh6h/JG4WSA2NPaFm1mvCDUKSdT8/nmkgiko0xpvK9ahqooDTZPR2Xth18wLGaicps4aORyCKxHmVso6bI/DXJ+h00vkPTlWEjezm1vp8lh6iGKch2+JXYfjMIM+CgSds6GlWNg3WOw4RmwmCnYv5RyWU2J2p+ogmMU4okmsI79HB8Pb0pMkAdvPtCQhabB+FFEou5x9mmfZ656MX9oX+Yx1RbyZQ+ylYKQXmAeSl/jpyyM/Zqxhlcc19d0NP5SMWWyhkKlv90L5131cr6zEkS/mx1ETjla2tSLZO/LPdj1UndCA3x41fAoVxo+a99nhOEtzsrRJCnq4xHlSgQDtKjtS7tof17p3wCLDInpxZzLhbVmYdJcJmuYN9lRTttGHDl7uQEwdg0MXyZMn6sggUAQQfn6fEqMIghecW5FlftVhX2v9OTtBxvBpE0cNIm+pyLB2SrKj0uzB7BsorhHGy0dWf7CcPt2j2pWSlVKBdP71uftweK9bBbhW2ls0qkVLDcLj61Rqt1MUIkKcNmy+K27LM0pQ8em04729Y5xAsP0b/P8ATXPHnBnn7kR4wyv8pFxNJ318zhlqUvcleUYUNl97rASg9WpGyVJ4vOHm/HzE4JAeWbHMzz6+6OVU17uEuN6tcbS800AfIqvUDvzD6apNlBiMPHMTyco1pt4pX8Dnu9djwvv9ae1dXIaKWXxtWYeHnIxs4M/55oyGvbMJUP2d/gpAQa1DwRYJybpJ+D4d/ZtDxhEGsyN3NLqqyOln8Ac3ITvTH3tH1mGfg1pxzB/0oCXs2bQX3mU1hmr4Ox64c+U5fBQmbP1Iot2X8FcMbXkxxHC0PyAIHc/MI5hk8VBSsUFe97VBNcrToxjLc9+RJ+sZXyrmUvP/LXU2eqoyhhBZTNpcDWHfVf1Le+ovrWrSgAw6TGc+Y2S2zchZb/d+yS/1MgTyk28pl7JF5oKY6QsYyrJo2ROPPK8JoLUto7hx6/n0UxxhRsEOO1e4b7ofMC3No/XK8VDZab9mbdoW7gN25uvVblOcTIKymmgyeYnkyC+MgLaoanbHpVkod65L+0kfLHB8VvPpRfiSxED/dMpMZgxmCwijevLtmTdvMaKgynium5fgdyrXMgsYooqAUXJLcwrx3D1mynoSwshL4X1B87w/qYkFv95kQjLNZSyjFalE65Xfd4BvzqYO79g/+6K70ml+EbjAfX6C2V8rYZcrz+ZMoUn8pBFGB/ZSAYBZEkeBKjFIo5erYWcy47jb52n/dF/MF75Bx8b3reTvgXe9biZX86ZMj88vX3Z+7JDeWS3tGg6ChQq2PsJWMyElV5gvlpU9V1oeoP5+jd4Q/0jP2k+QFGWC7tmw565cHQJmt+mcVrrKEJDzkU2nU4n6/Qu+0cXLJHk+YtYODzxn7ys/hlfyUFILDQ+gN4CBMQJMqoGxXipwcSg+fvo+NHO+ys5biyHne/DL4+h/+YB9IeXwbcDYGHnKr83Pa+UrzXzWKz53GX7H+ey+KH8ObZqZzKtrReTPQ4y8ehQh8dRSY6oRJlf9TvoDLVKgQYj0ftnwpKeYlFIXyRSWxNegY9qQ3Em1+OncsgSz7Wun3Gk4yI+NozkXNAAJpjfYHSb2jw5tC9JXRYC8L56GY1yttBVm8ztEoOwZwBKc8WiVvnQb7nd9QNkpZYWymQU2gxMUS+62DboD853tDFZFoVz0o7Coa+o5amid3wwc0c0RatS3FeKWEGpEYNstVnJSRTXvfk8X+y4hClfpKoaM85Um5738VZh9ZF4I99eBOO/Hf8jgv7D4KVTg+To6Jwn51fyrzBtxzSKDPeQZuCE3HIh611zaU2Vq/Y1qXlsFaZSi0QH56zqcCaQ/g4ywWZi/MO5mks721ZCKsJNo+Tgqz1ZMqE1g5qE0izCh1mDavZeclZiJd8q5mZ+GePaRxEREgTPHOcf4avQo3GRhHvr1Ox4sTtNI3ztn3WJC8Jdc3dCvX+OacHQFuFM6RyNJEkoFBJfjRN+KBcyi1zMQ+8FduPuOzyLioqgmnKD7xZTu0RTr5Yn3eo7lFrOk4zNVzfXePy9KILuFl8lflXj8Tq1kjEPDqJnt56VNzZ7GDqKia7Wvjopfo/RbGTBqQV3VMDcD+paFYkBnpq7SresEg0GkfF0st3TqiY4t5W/Sube7/2wKSgqEryAqGY3RhhVX7RE2D/e9uBR8XxGLYeuLwNQGCAqtfykcaSRdYwN5MoHA2nslJartVaHvGwRapBWystEK6zEeH4qZbKjT+iqTMIoaUXK3DNHeaPuajrp/8liP6H4aZKzmW9M/Wl3aybJtUcid34RzAZMR5fbz3H5lrXfPrdB/H/PXLhxCNkjGBJ/wjgnjs75G9hiacd+pVCQHNB2clFgNQ73YceL3Xm0czSJciyvm6ZQKAuy8JZfS0ySmtaKS+ySW/Fx4Gy+NfUjMWoyl8yhfH5aRb7KyW9s6CIe0r/LKMOb5PiLfmeduTNlvvVYYHqQT4wj7elRNnSrH0SkvzvRgR70qB9MdpGeTbf8KJG1LDI9wBlZKDsDPLRVEu/uGhWrn+jA2La1USok1h5L4/j1PM7qBJlyLaw/bX5qzsJEEdj2axRCfKg3U7pEu54oMLaS31tFlJvKKTOV2d99W1rzxisb7ee/G9iOq6pda1QKWjupOAI8tXSMFRPfDtUsyNjQISaAT0Y247WB8ZW2SZLEPOUkpob9wkLTYLsX0WOGF5lkeJknjS+47N8qyo9ihTcn5HpcyiqmFB3jja+z39KEReYHSZODec/4CHJoC77QTCUbP6v/ocn+fdVhaIsIe1rpyVtCrfbD+R/uOw7RdHyS6PIfGG2Yxe+6ATSWrnH+Rg4FpXrmdSzjqbIlaAquoVMraR7pSyMphb1a8XuXN19FSUgbJstv8br5cUYbZjHO8BrHLXFMNzzJL61XsLPHetI7vCO+TOVGQsiTnLdEMjh9Hjl7l9Flzi66znVMWLGY4Zv+8M+WcOMwmQFteds0iem11zBQ/wEbLJ2wTEpAaRKT2ExVGP1KNgqVUPpJ2Dar0m+0VWej4KaY2KULhQhn1rJd0YkViiEYnQT9retUTlmvCpK7P2VoCSm7zOiylaTJgswPKHGop4Kv/lzpOCVmOwkTLWUwQfUHE1V/EFPm8KQhaQ2atePxmN8QvhtISFESEdItGhbu5VW16HtDpVy7aorSXFjSA9XcOngYc5GQRVUjK9l15koq8dJ10pyIINu75IKQpvjmn2G51yI6FmyhY/E2mkeJ8U+nqkyOfRK4GR9KGKp/h5Lo/mhie2GQVbRMWwE7xEJTTonDU/BaTgnfaebwacELeFFKfpkBLiZAzkVyl4/nsw0HyTyZAPNbwtI+BHtqqCOJeFeZlUTd1LUkLn0avmjGqJ1d+E0zi6KkBAIUeagkNRqF6xjtvABXURFUZUw2djU0E2r16DGf4fb6daTmY+gaF8g3k1oju7nj4yXGKINXmCCsbNj9Mb7Xf2e2+luCyOPN4Pm0Ll+IOiiGEoOZK9kllBstRPo7FpRsabcWj0AK2z0Op1fDu/6wuDuDlYfoqnQyp9aK9z47xkpwe4uxN/LGRjwkR7xYeGk/i1b+QmPFNbaZW3HeUpuZxqm0SH+ZPe1FQY+15q6MN7xqP2ZzSX06fLiTa+q6oC8gM/VS5XtjxZmbhZzPKCS3xEDCqVTIvQrGcswWme9+/J6inyaLlOzPGsEXzeDS7/Zj5fJCSpcOhD1zIGkN2tS9aBOsCjpDERxb5vJdoxYdZOFPDk8eQ9ZFsFg4mpLLz38ex936u3v81pk3TPMJNN6EpDWiytvxlXBlJ/lb3ycr/To1IadIz+uqH2hya4NIido5G+Y1gU8bwPFvxU4KFacDBjLa8Aa6VmMJa/MQZpTsOH+L2yUGIv3dGd22Nk16jcUU0Z6fvD1pHl2b5ooTVkWQeOdLjy4FjSe66A482zceKboLfZUnaevpSN3XWqskG86ug0VdRJrftd1C6VynC+gLUW5+nqVtsxgZ70a4r1tl02hjuegXakDLdxMIRCyu+N86ZPeHi5ByUBtFv/nnn3/w6ZZT4j3Nvoil6Jb9+HUnHL5mx1PycEa50cyIhQd4f/M55LTjoj8ouc1/Ov6XGvYfhlreWpAcLKfzoDJkg1j1Ts5PpkVwDR4e1cB5sKqSCLqHCaez18LfOYkEB3FQXepNuK8bN/PL7Oa6VcFZgbPhmerVIDaolQo2PduZjYnpdq8Nu1FjYCzeviVAGh7av0mWCjzYLIwHm4W5fNamjj+Nwrw5m15IsJeO+6mDUmMFNydUVG78HUTQw21q83Cb2i6f3UsKVXXk1V8hgmwwmo3VVsYb0Sqiys+rhvg96y6v43b5bSyyhWdbPHuHY2DO0TkUGYp4r9N7d9zXJt+2yFUYTt4DQoLERKFpRM0VDl3e4fskcxWSAotsqUQw3i1sJKtzSVsXxPSEHrN4OCGShorrXLZEMM/bKZWi+VjYMwdlbHfq3ZxOfEAAk5wOV1ZIgyi2mtBm4o9e4c7gckHQXNHUJ8ZwkT8tzfjSNISJym2MUu1GLetZefQGJ67nsfZ4GqDgZ1NXGil2s08fy0KzkDL3vjSUkV4RfBh1FP2hJSiZhxklZ9MLWX7wOgsNa1EoPHCziIll2vh9zJv/GZ8i1JbLTAMoL/IgwC2LzQGT6F/N/Vo5tT2z1nvQNFsQmN/1b4OU+BOapNX8ourPtL69eGKFD+sebEXSssNkFJRTP9QNuwhfkkiUhXoiv2kMX/zuxeemEQx5bhDtUvOQJIl+SgWDvxQlwT8Y2oRmTu2oR4NgFBKsO5XFUv0yLE6Eb3TtVK4XXifK25VIssHHXU3jMG/WWc1qu9WLxtBvD2E+teCXPiw/u5ynmj3FtB6x9yU9BygzizEuo8S1F914ZSNpRWmMbTCWUmMpoZ53l4pcHcFp8z0C0cZ6NqjFuXf73XFBQJKkGvsdd42SP67q+YMxmPu8SSu3TBI3FlGxO/1ybAseaBpGmcFM/JtC9TKjX33m/n4RMKMLW40hpxfHDfWRnviTXV/shcJCnu0ZR8tbUXxzART3uKb4xYkvuJB7gU+6fXLnnStAkiRkFByyNCSkMJd+Gj3HGMsGdUeancqGvMtwbj30eY8+ilJUCkE8HLY0wC8sBmORntRSNT/S3X7O4QZB/HjrA3n1h9NAHCfeyMbfTcXiRQc5Y+jI9+qPaLR9Fg2lWVyUI9GbzILcz77gMIBXatnhMxzIp3WjBqy7ZOSF1YmUD2vCZtWnDPJPIze0K9EnP2ZAcD6SxQhZwsuv3GgmQsrmH8pfsGz8GXqPF0og3yhQu4N1vN2qb8zU7nV5tFMddGolmQXl9vLmd4PFQa8RWXSK48UBrDd14Kxuist2Oe0A/gwn1+pqpsbEHu0L7DI3JUmuy4dqx8S3bfFOwOrpl3nG5Tz/LJkB1rWoy5ZwHjdOZ6NmFh7fD8H07Ck022YJIqwizv4KOZeYdm0fGsnMeTkCrJGM0WxEragwBtcfCBc20ZoUMmR/wk03cNcIDzCdRgHIPKHcRB0pk2hFJo1zz7PUPICTchzPxQSAUsWb2hl8ZPgQ+di3SIH1KfBypFsrsNBcIciTCcpt7P7xHP2Lj+DmHkx86RlO6p4Em/i8NIc18jSiFFl8YRrGIUs8KzXv0zbXYXjdUHEdz7yvWBakRKf2Qq1Uuyyimp2UqBXH7h/O/8C05tMcz6qC9w6SBFafQkkSfYnpmN5u5WDwCYXUQ/C2DwyYC+c2Ijccgv7CNvIbTeCp3iMp+f0SzSJ92HtZeEA2ixR99oZpnTh1I9/+ffNPzufbrAQ+qdOK3ilWRUhsb+SbJyiKH41384e4WebGnOW/kFnQm3oxj/DOw53RLe4EOReZaXyMPNmT+er5eP/5OpusbWWbpTVrbYpD4MuUSD7Wv89FORITKt4yTmR8C3+WNuvMP1adYm2aHzOAlGUTKXhiM/XDBXF4NbuYS1nF9G8cYvfmAij640NIEGSnMaARk247VTXzDIHCNDi4QKSGuvlycONiOmYd5wtpPHGmSywwPcQQjzM89vQr5K39B34JM5Giu4vFBZOerOvnGKd0VDTTLGpHqhTK++VP0VmymtprvMCs57pbPFHFiZgvJDAjow8tzuxhkgp8L6yCC6tENVuPIFHZy1oNGGMZJO8gJj+J8crtrFYMZFToLaQKhJSl4z/YHTyBi1lmFFIyQZ5alAqJIC8tX+wQih1ngk81bjW/bH4YStKpbT6Kb04rTD5m1ECZzhMe2SEq/ALEP0h48nYeUJZyFmtKoCyjx1osxFQGayYJJZBXmDA4/yQOTv4g/gttjr/Hh+QWGyjRm/jlRBqj29RG8/2Dohrc21XH67cKy6kjZaKTjKRYahFbeJg3Vv+AOaoLjaQUAPT+9Wl3+wKmIy/DMWFOL3uE0FkxmfpSKsvMg/BzV5NXauRiVhHzdyZjNFtY82QHUm6XcOx6Hseu5/GM5iw++z+1F9/5T8b/iKD/MHjp1Bx7ozs9fhaBjW1S5pzzfL8r7s7HVVypGFFvBDtTd1Y85K7g4i9yrx5BVcBGSFTndZPwfJf7KmN6JzQO9yGjoNxOBIX7OTpZmxG0La/3X4kQbx1n0wsZ2CSUxPuoVG17HjU9C6PFWIko+jvUXH8V1V1DkfH+Vp+dUWoqxUdZMyFyV5BEGyg0iNWLu30fbakpd0MEjW4byYXMIh7rEo3e7PjtlQLHO12qJLHjxW4E3qHCoXNbuN932EYE3bciyJq6VikNyAalGrrNQLt/OwcKReqcj5uatZfWopAUDIsbBs+dxMM7gvcCM12qqVSFtwY35FRqPu9tPsc6QzvGqIRKYLZmOp/3VfHiWolSdLximkpE/Vb8eqGYNescq6U+bmqSs0sYx3Q+GdkM1iTat605nkb/dkPpJe1hqfoTnjE+x2d/XKQWeXjojpIQNIX0jHQUWNi/LZXtlq54G0voGW5mVPMHeGvjWYYXz2BwTPUkRYeYAFY/0YHWs0Xp2HBfN5JiRzD9RByBWi0dYgI4/bZIL3rzgYY89eMJskuKwSFg5J9jWrDnUjaKOlF8bjWWVCgkF5XL94+2Ra1UVDLa9XFTE+FnKzms4OCrPUm+VczSvdc4YZ7JA79+RtLEJKrDk91ieOpHoZTw1KrQhDfjdnH11PcXJ76gTUgbOoZ1rHYfZ+hNYhxJL0l3+TyrJItSYylDNgwhpyynxmt0Rk3tesmE1uQ6GYzerSq0JnhqVdwq0hMT5MG0nnGUG2Ng49ZK+0Vaxynnyn1TOkfTs0Ewg77+CbXPaepFlPNh+28ACPbWYi2KhZd1iFMo7l1cblMJ3w/WPd2RYym5LN+SjUFWopHMonpoHqIcffYFWPcY7QCVMo482ZOHDW+wNcLHobYB5oxoystrT9v/dk5/avneH8QGe1qr4qh417FIyMsAACAASURBVPQIGzWz2KJ9jQRzGy6kd6FZ9kZHGsfkBPAIZt+WfCL93agf4vBUe3VdEhBKv169iXBT8/Th53ihQT0myb/is/99KMsnq9DMJ+pFtFechyyQf/lTUKP5QhlwovZkAtQGEs625Q0fnd17sk6gB79e/pXlZ5ezfkgFs7oqkB3ei88PufpUOnODBouZfRFfkdHlfZ5bdZoxyp2ESrcZq9oFiD5uiWkg0VIGo5S/Y17/DMo2j2LKOssZS10mGF7ltG6qy/nXqh4gKLwRU1Je4mfpPU5/MYLW+sPQ4Rk4+CUAXfSfs6L2Fupk/gGZp6kD/GzqRjbeNj6pakVQszFw8xi3PWL4fscZxup+pqxwKajFAt0k5e92RZIN2y0i7bSztY/fpG9BPXN/HlVthYQZ+KpVECEW2R5XbrIfN0P9M1ib7afGEdTRFjPcIt6pcq8oVGotUbmXSJMD+dr0AN2b1CEv6xf8CkUgdrrWMGIzN1Nbkc1NKRovrSdqhdolBnaO1SvG2V+f/ppO4Q5fE6PF6OI7VhEW2UK5uRwfrYhb9J7BUGZVQSTMAEBq8Qi6IQsJsRINn45qRlG5kYJSI8NaRdiV5c0ifWlmrShVoC/gu7PfYZbNrAuLoXeXN0SaWGQ7JIUKb2t/4FtiIMHSDtKKOJkG4XtTOKf7GDfD7yTX6k9SRglHLA3orBRkzHzTEM759WDz2I4sP5DCz8fSOJKSC0Szcmp7buSVMvMXeH5AH+I8NHSrF8T6i3pmAO0V5zm550tQXgHfKMYc60ZWoZ4z7/Qjq1D0rYvHNKLFuqfsZuK622dJMLdhvbkztfx9eHf6c0Khd+gr+CQWucUE5OQrpMv+fF4+ABgIQL6qIQ1ue/LC1dHsdT+Kbu8nSEMXYdn2Jru1YkFmi7ktByyNmO6xFV99ASs1s9ltaYZR5YF6pugz9hy5Qc5v7/CP9HUcT0lkhuaE6wPc8pL4/6BPoeUk2P2xUCCV3mY+YJRUfFz6II3dTtGIY5TixjpTR8ardvD9dX/e3nkRrUpBsJfOvvA9f0wLRi8WfoSRVgI5vTidEI8QkWpYAv6mTJaZX6e3og1ZQKl/tKsXUpOR7Fm/BIXs8GbSyTKFwNn2Uzh36zxPnN0qbvPI5eAZDK+lwwfWheuMUwwK2sXx4hAW/unHql3H8cw9x7AbgkCb/fNunh3cER+dCtZMJNfiwbceU4g8/C59FSKmed44jR817zNUsY+VGQF8rfkcgLNxT9Ey93kGSEc4aG6Ij8ZMw5KL/KD5EBDvflxIXXqkLmJf0mMcTBG9X2G5yaWamyHjnCiY4uYU8PyH4n9E0P9RHMs8xuTfJ7PhoQ3U9a175wOc4DwRs02MS0yO3Nr79eAoM5ZV+W+dUodWqa1REVRR1WELsp2vseK/7xc2RUF1ShJvndpRqedvRnyoo0JGvVqOQLCNVbp9+VYVZcz/Zswc0IDmkb6MbhPJh3+BCKpJEVTVpOZfRQTdS3Wt6q75ftu8M8pMZfaA6n7RKMybZNPdV8i7X3jp1Hw6SqQ43XCSxZaby3FTOVaP115ai9FiZEyDMdWey2Z8XxNcqobdp6pPKSkxYbpvIsimrIgM0PLbld8YVHdQlVWeDr3ai+hXt9iPeWe7IM2HxQ2zm85XVKVVhZggT2KCPJm/8zKvlU5hh6Ul7kozJ0r8Oe/XilJEsCWjoP24N1Fdz2PN10I50Djcm7Z1Avhm/zWiAz0Y3jKcrvUCafv+Dvv5371chyPGMbysWkWibiqlshZvSdyb7VIHfjFZZ+HnxfMd//xHxAR5Uq+wnLc2isDa163mfi7QU0vHmAAOXLlNuJ8bafni/BVNYDtZ/aCiA7UkOc3FbKrEFKeqdRXRtV5QtduiAz1IzS3Fz11NqI8boT5udI4NpOn3NV42AAOahPLLUx0YvvCg3QvE5udTFZYmLWVp0tJqiZsSYwnjNo9jdufZxPvH29txhhO5VGosJaMkA1mW77md19Su+zSsVe22+0WBtST4sJYRSJKEm0bJew814szNQooNJjZb/YGcV4Vt0KmVxId6u/zdKEz0fXOGN+Wb/Sm0ivLj6Gnx3t9NRceKuJ9jbGhZ249wXzc+2BJEe/0C6krprNVa/eNajBPv8eLuALRSXOaMpQ4gERvkicVpLaZxmGt/nnLbtf0kO43X5+Uo3oz4hkeLFtK64Bynj/8KidYUOzd/qN2B3FIj+5KTeaBpKMFerqnnXloVDzQNw2gt9/z59kucUZazRA2kHiJq5cNEKeBQ4FDa5/yKVJ5PcaNxeJ79UeyfXIt9clNkILRCRao3DwjfpA3JG1iStISNQzZWXeEOiHBaoLKpKJ3pFWNcL9yTNhPz62A2WxkYg6RFI+sxoeIxwwu06TEU35KdcOokUtLPcGoFKuCSpRuFVCbiTXV78liLaB6/lsthSwPa6Q8j+9TmR48JXHNzp0jyIiCoPi/me/BTq7pkeDbktT+y8GvUGzK/c1xbVYsMCgU88DkBgPu5eYx3CyHXxmmmn+Rt9SnSpFDCvSSkQkHqzpg8mmJZh9o6OS7Wm7ikFOq6jeYOxGocJrsz1avYaO5A84GPU5TwNhpMWJDYbmnF+dLa/Ci1Z532bb7Pa0zQ8DnMXr0HnUZFKToah/tg9OoHJy6QEd6PdbVeolN6Cn2UJ7giBRCo8UBCculLnMmuqtS8zv1ImamsRiLIdrxdERRcOY2UkCYOtYkVXjp1jUVtUgtT7dkGJWYDxPSocj9fdzVNI3w4nSYUHp/9YUvf6sLkukHMHtachQv70Fl5lteU0/mpvDXvdoqnUZgPc0Y0I6OgnL2Xc9CpFcKzMyaAUa0d5tudYwP59eRNRklv8LP2PVpcdBR7OMw/6SXN5ei1XG4VlVNPlUmf3W8gSQX8EvsR+9OMDCpZx8vGJyjCHXLg/OLDfN9nMG6HvgJAOvk9TWQ3fje3ASS8tCq61Q9iS1IGmxIzyMGH3cZGxJ/cgWd6XwKyHUqg7819OWRpyA+FfYhX3iRBLfzBiOgi2izQKSaA1+UGKCSZfdp/YJYlFuqmsr8wkAzZn+0tDyGd/UWYLR/9Bm45qZcAi8ab2kG1+fT8Fb5Rg1I28pFpDGlyEEuviHRovclCLR9HX9TeKeW4tr87aUVpDFg3gKebP23/vMzad8QqU8jCjdKKxT807mxosoCEaytRIuwa3CU1IPNVilC/TXjuJO75N6CuVd2l8YBH1gsfo4NfMvnGHCYDXx+fyG7tKjyOOmLIc6cOsSY0kkfC0tGe24A/UMd8g+EqUZDHKCs5J0eRaIlhlGo3oxDV67Lx5dvb8fhYQomSsnjbNIFkYzin/V7Bo0y8+6+oVhFXaCFOdQx1mokERHXpvBIDt6yEYbx0Hf9rG7FEd/2v8M/5b/iN/18i4VoCAIczD99hz8pwUdhY/13i5PpeU7BcE5xTNpwHI51KJ/Kca1ACOBNH4LrS8Xenhtmu7a8EmveLcF83God7849ecUQ5KROcvUX+1Yir5cWzveKQuT/1ke151PQ8qyJW/o7UsKpwL6lh1V1zsfGvE3B/B5m05skODG/990/6aoJzMFnxN7xz8B0+OPzBX/6Ovys1DO7/PnerF8QnI5txsTSB1/a9Vq1ZvCRJRAc6zKRtuN/+wmiWkVGgjB9Ina7jKCgzcjbdVdqsUEi0jfbnw2FNeKlvPTY92wV/D/Hdbev4I0kSwV46Bjulel7PLeNr82AmGGeiwmIngX5RDeJocSAPNgtjYBNRDdBDo6Su9TfV8tbZzev93O9MeC9/tC27XuqOu0aFv1Vl4GICiyDPd73UnYfbVq0w8rkD4VQd6gaJaw5xSsW9FyKwZW0/PhrWhNcHiQmObcGj4rOsqW9Kyk4itTCVxOxErhRcYd7xeS77O6eGXcq7hN6sdxmn7rbd/Cu8wGrCbWvJ675OJNMjHerw8YimLBjbklDr5MC5jfz8RAe2vdDV/vdX45sArh5Awd46Zg5ogFIh2e/TnQoLQOVnUFN1yruBrRRxLt4ckx1Vtkr963JUYYKpO0V6ByD7RNIozBuVUkF9p3Lmkf5u9nRFb53Khfh5pX8DnukRi0alIM6q6O3Uri2x7QcTJBXSy0oCmWWJwvYzsMhCRVRqMNMxJrBScYBfnu6In4eGYG8dfu5q4WlWSxh+s/Jh+35l0f0pksX7MCO7H0P077LT3JxTlli772yYT9X+hrP2z+J64fUa+9AIpzSy6EAPkix1RDqHFcaWE6HLSy7HbGkvyKittR7j+aeeYWqPeHw7TKRJ+VI29toOWkEaHrS4einONY7igLkhCr/a9uf1mnEKpywxfOk/k1mbklmW1xypbnee7FaX4wWe1N/fjQ3mThywNGbmgHie6FbHfr47tbPW3QaSq3RKvy8QpdgjJi5Dmn7e/nGruEh75UmAdx5sRHmj0exvu4DnjM9w1akk9R5zE6YbnyKy/VCShyVwoP8W+hnmcF6OAiROyPUYqP+AuaaH+fVkOrfxQa8RC3+hPjp8BrzBa6apLNFM4I9zWczRPMMw/dvIPoG4q9zRKF1jZxdFUBVEkHN/c6c+xRaz2xVBfrWh1WQIbuTYyeve4xGbv5ef1q/G+YQkSax5sgObnu1srypmQ21/d4K9tWy1tKWXfi71e07gl6c6Mr6dIx3Y1mbiQ70rpWYD9Gkkrv2IHM/XqnHckMIo7/U+AKWSRHvNAUx759Hw2vd8r/oQqTyf1z3eJsHcmlSf1kwxzhAkkBVHU/I4aXFNJXaTTHj0fJHRbSJJeqcf3esHY5Fh7Yk0anlrSbTEEKW4ZSeBUlQqdqlj6dXfYfy/9o3JlPpHUyRJEOYoBlM3yJNRQxyVNScZX+Hj/B7sszThihxOWq8vwc/qb+dEAuUqA8mWfbjV5T0WjGvJCbO45jNyNH1bxrHI/CAmVDSw9nVGk2tfu2JKW4Y0DxPVi60Ffw7cPGDfvq35x7xgeIpya79QWkVBhY+HN2H6gPr2v3UVxsFinaeDBLIhpoeo5jVuLSdqifvzhGE5HpKe85ZIbjQRFgk/aT4gMD+Jy+s/olB2xygrGa7caz9NujIMA2r+tDSzf3bGUoeR+jf47cxt+hrm0Fb/FRfl2phR8k2zVQyzTOesdxcGKo8QVyyI3vaKc9j0kFvOZHB83WeMUe4gQfsqStnMxeK/Vvjk/xf8TxH0fxS2wOte1BA2VEWsOE+E/w4iqKJkVaVQ1ahwqDhgOQeFtuPcVe5/i0rCFgT91UDzfiBJEpuerVj8UhgFfzKymX0C+u+A8zOyyJZqVwgr4k4eQXqznklbJ1V73L8bzs/Zds2X8y6z/+Z+JjWeBFTd5u8lRQoqm2PfD9w1KiTFfVStcMK9pne5EEGmUtyMbrip3O7599cE52d/v4SgrX3e74RZo1IwolUEc46KwCa/vPpKcSumtGX3pWwXZWBOWQ5B7tWrV6pDUbnosx5pX4esQnGvD1y5jbtGSanBNQV1TFuH0shW6nlce8dnn45sxuyHGtPj0z/JLTEwpm0kDzVvT8IPBxhg2c3M4IWsSvUGSnmgaSheOjVbkjKJq+Xl8jwDPDTklpRjVN6kzFTbRQVWEWqlwt4v2TzMqioLHR3owen8qtuu930SQbZKb92dzOHvZXySJInRTve0uglwTcbEY7eMBWBJX2FKapJdVWnORNDF3IuVji8zleGuvnN1vn8lEXS98DoRnhEoFY5JsFopYTTLxAZXrehbP60T6fllLu3GZupsg7uu5hTqu/WTA7hVesvlb2cvlJqQXZpNbnku9f3rV9p28NWelBnM9PxsO10CO/K9l8z8i8v5I3UHO0fuJKjlI5B+giZ+JjY/KsZl5wmll07NnBHNeHblCTrUDWD5QZGG9US3ujzZTagD/9E7jn6f7wGEmkbycJAdHcrnk40PP0R2JrLQ0c/2ig92qeLVIMTLTiYBbJ/eDY1KwZI9V/lszwimq9aK3yM3IaRJD4btewdPyjiZqgJiedT4ssvvrqgIqohCQyGemqqfu7MiKC7Yi1FpbzK+jScUC/LHgAW6vwpB9Sm/dRVFSEO6RnfjkXPfMmtIb+pblWJ1g7xA583hTIkhkzbz8br9bEoX72Iv/VwCKOSIHM8C8xDe8nWzp8dfkcMZYngPzkOdAHemdKnLiJYRaFUKxrWrzY+HU/l8+yVCfS14uRtcyJ87xYcdGtcDRwEj9JIELyWDp7V/efpQlVWeJnasw8SOdYA2PGY5x4nTdQBBIl3r+hlLa4uqsQ81D+dipmtfMqJVBGut37nnUjYg0lZnbz5P6yh/tGo1JwIf5ML5IqCMJuG1+P7lh5iy7TDuanfKTeUu74+LR5C5MhHk3D/eyf/P1ufYFEF6sx4GzxP3YNU48Kg5/bkitqZsJdIr0p5qH+IRYk9xrw5alZLG4T78P/bOOzqO6uzDz2hXu+rVsq3iJuPeDS70YiCYGkoIJYCpAVK+QIA4OISaQEggoQZCCJhuMGCwMeCCjXvv3ZZkq1m9a/vufH9cze7MFmklCxvMfc7R0e7slDvtlt99S25aPBsPBYLzJlhMfpfzAjWXyQN7GERaEJMkszeW8vvzQt99EBMU007pz96KZrIn/YmzZl3MeQd7cZJnKt/02cT2uI38pehTAFqVBLjyXRrWpFFwuCliX/zN1cW05v2ak837WFbQgOe0+7n0nLPanMKEVbeiwFmDs3ji8pH8/m8bDdtf0icHcPEf3eRvYlwsZ/VIoDa1D9sn321YPzcrgxtc06lS0+g/fAL5VS2cMSiLN1cdZE9FM3luu38UONNzHqfF7OAh182s8o1kx8SfkGQ107t3DtOqHmCHbwBfXDCUrGQrvz1nEK0uD2f9fSkXjTZO4Jw+KIvTB4l3Itw4KS0rlZm+CQxXhHWPjdB232yKwa0Gnr+4jHxoKvR/b3G10DOhZ8h2YuUUNo38E2+UZPOC5UWaM8dwde0MxjWm84hpHvneIn668UYAXvJeyjClmHNMW0R588+m35CpLB90NgWVY5ny1nhOUMqo6zGBg1XiSt1wykDeXHXQf7gNDZvZP3A2n8ZeyYgmISjVmnrQl2qWWH/P194JLPj6RD6xGuMsrYk7lTA2dMcdUgg6DtE3Kn7XMF3j0dUBrcE1TNep9ak+Yk2xeFUvXp/X0BmNdMxwriRJsUnd6hrWnUJQYWMhVpOV3KTcLu+jcwGFjxz9oMjhcUQ1WIGOYwTtqdtDWYsI0vrX0/5KYWMh/93+3+/MIqijWcBw1ih3LryTKnsVlw+6nFRratjBZXv7fW7Tc0zsPZGTcwIpertrIBd8nTprieLyubCaos8Ip+9MFjUWceEnFzJj0gyuGXpNp44LQmDbUbODywddbliuH2h39R3WZkKPVHDTrmd7QldeegLX62YeQWQ07JIQ1JaOtl9mgj9B1zd7qhiZm8KrN5wUcbtJ+ZkU/PVCw8DUYo7BYo6hrs2a4+qT+jCubzrvn/sPzp67jJcvv5gPnhMdmSG9k/2ducvHGeul9EQL1p5f8U7pMmK33sy9J94b1bn0y0zk/OG9IgZYjjTgDzdbGw3XTOxLaYOdu84a6F+mn7SosdeQYE6Iuu6KJAS1uIwWgQ6PgyZXk6GjqrVvWlwNDb1r2O66gFWBvrzRlO9Igra3R0lzCRd/ejG3j7qd344PBLZcfO9ZOD3eiO9Br5Q4/4x7JIKvWzB6i6COBOp6hzFDS7SWnpfMuYRWd2tYlz4tqcNVJ8PX9aX8IWMYTXXCH7rZ1UzWiCtE+uKJdxi2++jOkylriwc0pHcyC+45k7lby/1C0OT8TP+5xJoU8rMSKaxpFZlGlZEALPKO43BbRquKRoc/5ft7t00S2VuBpfedRXqiJcRiTkvBPTwnhTs9l5NvrqXCk8TOEb/n0cx09quhfQWrOQanx0ey1ezPkBiJ9oRPvUVQblocduLwJaZA2612eV0i4PDoq9Gejgzg7XuuMOwnJkbhlIGZzN5YQkFVOutK+nLdpL68t7aYAjWXAgJ1Uk5avKHMf7hgKIdqW5lx0TD/tQL4y+Wj2Hionj0VzbRkz+D0WSrXDAm0U1rfxOPzsKh4Eef3O7/dCS5nv5MDIhBAONeoIPKzkvib72RAZH666byJht+H9E7m2/vPYtn+GuJjTZhjlLbg/wGundiX204PhHQYnp3CnopmiHFSbn6fmJjx2L02Esy5+FSfoc7ryDWswRmY4OioT6L9nmIR4p2/T6cocO177W4bjvu/FXGFHj75YUAIQcHB9COhvQM3ntyPmhYnF4zM9rvmJVvNISIQwNUT+nDp2ByDqBrMI5cGrJu2ljTw+ooivuIGkuOEBY0buN91N65hl/PywIkMLNzHlzsO+100QYhSEwdksHRvNQt2VbKAU5gy9Kcsdlex5MRTDccblp3CugfPpUeSRQTsv/xqlmyu4YHCsSQpduA5gJDEMLVanMoUY4KXPhnxLPeNBuDmIT159YaTcLi9vLe2mNvf2sAjo2YwzfIN+RuvxKdz4slKtvrfqQn9M3i7Yiw9kiz0Sonjj1OHtZXBzLLpE3l49UPU2B+lR3yo8Beujs9KUbBjZTfZmKgM8ejQMIQISexpEII6isuZlWxlru9kkt12Hr7qdn5XEMfj83ZxDk+QrxzmN713YW+s4jXPRZwds4VzTFt403M+024U72UfhOVygZpLgZrL5bm5rK8S45JbTxtgEIL2N+yFeNgbpzLZ8QJXnzOJ8v1b+Ef1HQxQKrjTPJc7zYGA7ivV0Vzv/AO3ZHUuLMsPFeka9j2nK4PrcK5h+oYmWteLlWUr2VK1JbBdBNcwVVX9mRzCBvMjjEWQLkaQ1jglWhK7JVh0d7jwBHPZnMu44ONI+Xe+e97Z9Q4H6g90ahv9Ne/M4Fob7EUa9OkH+r0SenFx/sUhy7uDytZKvD5vh+9AOOFTW1bUWMTi4sUsK10Wsl2k2UWvz8t/t/+XOxYaBw/d9Vzpn32ITmDSvxcdDc6C0XcmNYuG+UXzDetEW89c8fkV/HnVn0NE1jpHHQlmMRjWd1SjRVVVfxkidTqiRZtR7Uhgu2fJPcxYMcP/vbipuEvHu2CEcM/KTo0zDLJ+PqEvuWkiTWokIgko//z5GE7ql86YPDGTe+0pg1ny5G0My07ht+ecwB1n5HPJaGHafddZA+kd5CqSkWAhxiJmp/fVR06rG0ysKYb/3HiSPyhoMPp3PJyQqrmkhcPpdXLTlzexvmK9f1lOWjzPXj3WYJmlf77P/vBsrp9/fdTlj1TPBbuG/mHZH5jy0RSeXv+0f1lxs7j/Xp/X8M50ZBHUntupvo5pcDZEfS/21u1lcfHijldEiGUAq8tXG5b3zUxgUK/QwVVn0M4t+F06UH+ArdVbDXVZR4J9cL0Q7USNJuK39z5r7rb6e9XoahSBPv9cAyONIsaE/hn8NEg81WfeChZunvnZWGbeMlHE/UnqCbd9w7/S/0TvNiGtoslBUVucrP46S4P+PRLbdZsUcZcUfue4nac813LLqf0Ncb3ev30y835zGjdM7ucXZ/MjWHjp0VtpfLTvIz7e97H/e2aihSvG5fLubZNobbNYtJgDViidcc9/+soxDO6VzLqDdZw5OIt7zh3Mx3edQoLFOAgOrgOvn9yXp64cbRCBNJ6/dhynDMxEc9nQW8ho2T/f3/M+9397P18UftFu+ZxdcI8fnpNCqxIQrfSuWhr9MhO5YXI/rjoxLyTGVoLFRGKQUKd9t2Qsx5WwjFl7Z9HqbiUxNlEEi+6Ea1i1vTrwexiLIT3BMYKcXic7anZ0qk3Q0L+vWh3dO7E3Le6WqCaztAQtg3ol8/L1J/rfi2X3n83KP54Tcbv2RKBgfnlG6MC9wZrEmIvu4DfnCvfRq8bnYY6JobTeTmaihQ/umMyuxy7gzZsnEq871uI9VWQlW+kfJgtpVrLVLxRfMWEAA698lGrSKFIDljdawP9w1rV6euliiWmWfnGxJr8r3SPbM1GvesMgAg3plex3+wIY3PY5XH/i4/0fsax0mT/ZSDDh2i+H18Z1k/qSFC/ueaR2Vb882Oq4o37q+cN7c9GoHDzjbsKaPYxpp/TnrrMGcuGobHJPGM09h8/lQdt1NCnJfOo7nYGOt3nEc5NhH/r6Y6jB5dd4z6qbxPOZ38vM4FEWlPRFuDMCMbCmuYTFpU9V+Mo7geHTnicu1uSPs3e8Iy2CjiIPLn+QHgk9opqd1TpV7c3sRELfWdcamK64ht25SKQF1WbigoPUpVvTqXfW48PnF4LcXndYa4XgQbTWgDU6G7nhyxsASDQnUu4rD9m2s2jl/C6D8XaVjZUbGddzXNRuWiDO52/r/0ayJZlV167qeIM2DMKd2w4dZJhtdDYK9zxv+xZB+g59QmyCP1jhoaZDUZWrzlFHeUs5I3uMbHedc2efyy0jb+lYCNI/7233PM2aRoOzgcLGQh5eJWavzDFmw2AlknAVScjoDtcwCBVdohGY9O9sq7uVzPjMdtYO0ORqMpxPnaMubDkaHA30Sow+VkCTs4m0uIBY0OBsICcph7KWMsMxosXj8/gtBI70OmvPQEcm64uKFxm+a77yneWfPx/Lny9xYTbF0C8zkbdumUhWstUQbLezXD4uj8vHhbcgvPf88Gbyes4Z2pNlG0Wdf6ix4/fyw70fkhCb4Bd1IxFsfWeOCXQhlj9wdruWCnvq9rCpahPrKtYxofeEiOsFd0wPNEQvgEdq24Lb0W9KRIZLfed4Q6WIG+BRPYYBlt5yZU9daPR9ffy99n7TRKf5V8xnW/U2Lsq/KOJ2V829CoBtN27r0IVTOzdfF2PCtUek63n558Ii8Ow+gSCxb+58k9tH3x52fei6EKTR5GqKGKxfszZqcDaQGCuEmPZcQ8Ohd6ELFm9SE2INMWXIO5FnrmvG5fFx3WtrWFtYy5K9YoDeOyWOUTNHMW3EosE3mAAAIABJREFUNH5/0u/9m/hUH16fl1hTYN99MhK4aFQ2X2w/zKrp55ATJJgM6Z1MRqKFkbmpfLBOCJUXtcUFaw+t7lNVlcdWiyDaVw4WMTkUReHZn4s4JUv2VEGMDXdM6MRcNKQmxPLWLRP5Zk8Vl4/LxWyKISvZyvoZ5+JwezlRl5EQ4CcjevH1zsp2k3UM7pXMe7dPZtRM8V3fZtc6aoGA+KlZJkcieNIlGsbkpUJM4Bo4vU4SYiJb/A3pnYzVLGJPbSttJDGpim3V2xidNdq/zs8n9OHtNYdA8fj3aXcLl9IWd4sxa5javihXbQsIQR1Nmmh94SRLEjFKDBsrN/LilhfJS8rjyyu/bHfbYDQRDsTzFaPE0DOhJx6fJyor5ZtO6c/C3ZWcN8zYz+gbRmjpKj1T4pj769Moqm1lRtscdpPPwc2nDjAc7ycjezN3azmXjs0xBE+e86tTsbk8vPDNAb7ZU8WYvLSoXOgDInLgWdUSGKQHTY44PA7izAHxJyZG4ekrR1PT6mRyfsA19x9Xj+GyF1fgdPtYuq/asI8Pf3my4fuQNsHf5gwVLTsqf7h+ks1t46+Xj2LVLB92R+RxaHCsWD0dWQTFW0y8dP14/3dTjMIfLhBi3aNzd7J8v3jHX7puPLM3lnLqCT1CJqgSdYKz1t/STnf61KFsOFjPot2VKDFtcU99djZ7/sLmXbD0ylsoGPoZ+X37sOrZfZznfJpzTxzO0BPySR+Qy4Aey2m0H/tMyEcDaRHUjeyo2cGomaMMVjQaTq+Trw5+xdrDkYM/373obqZ8NAUIdMC6IgQZsoa1NSRah1RBiUoICtdJ0wasHp+IoaANRvUWQZHEl0gxgkpbAia1iZZEXF7XEQd51gaSHVlafLzvY79I0B7RBMKMhuWly5n21TTe3/N+xyvr0GIrdPZZ6IxFkM1t47QPTuPJdU8GXMMi3Eu9iX+COcHfAXhxy4shcSDCMe2raVz7xbX4VB8+1ccn+z8JaYy0md2FhxZ26FIRLoaANjuhv78Zccb4F5EEJq2zCcbZuW6zCAo6rj6jXyS6GuPr1PdP5cEVD/q/6983/fPUWSserSOuUe+oJz0unYy4jC4JQfqBt76j2xW0Dmt7QlC4Oqarx42LNfldVEBkyToSEag7yvSzk/LIyRDPbnlrecjgbnnpcnbXBtycHl/zOH9c/kf/9w/3fhh2BjFcbDeNPhkJIZ1ePTtqdgDhz6nB0RBIbNDFGHbtbRssLvWMD41dsLNGuBJ4fJ6wdU6MEhPW4rW9Dm+4325fcDvTl0+PSjhfVrqMrw6GpnzXo9XH30VyBO26RRJt9OLp85ufb7fNDXYN62x9Gry94Tdn4Dftve9snaYXJ6IJfj6kdzKj8lLpnRrnF4FG56Xi8Ipr8ObONw3rP7n2Sca/Mz7kPj1/7TiWP3B2iAgExkDeV4zP49mrx3DraR27K2h1e0duO785ZxC9hr3MrJJAO9nZCbTMJCs/O6mPPz01CAsYzf0NvCwq/QyPz8OL141n2yPnd7hPfZve6m71C85a26J976hf0xWLekVRmDoqIA50tI8kq5m9T0z1Bzl29Pp7iBXjyNxUDj51EddOEBmvVFWl1dNKgjkhJL5mOAskPfq21+6NTgjS+mmrDwurwUZXY3ubhUX//jW7mkm2JPtF12islEfmprLlz+eHWK92RIurhTM+OCOsVXc4RuWlcqku6UL96feErDO2TVBoshvr8yG9kxnXN53HfzqS84f34qZT+kTV/zfFKCRYTAzNDQgTqQkKVnMMf754uOGehquXrp7Qh7vPOgGrObB9blo8d591As1OD/d9uNWfWAHAHOvitI/G89E+4SalCUF6q0YNre6O5Iqr1RUqqr+foLWjWr+s0lYZtn3R1+Fp1jRMSqD8XRm7avxuymD+ff145v3mNKaOyub1aRO45bQBIQHH9SLX0LaMzRePFvf+zjMH8t+bhGu+YhLnox+feJQmBo47CyVzIOmJsdTED+D+K07jsrHCUjQ13vyjsQiSQlA3olVUS0qWhPy2s2Ynbp+bitaKiNsvL1tOla0KVVX9nZmOZrXDYXANC7IIykrIimrGPdxgTmtU7B67EILiRGPpU31+q5BIVhYhMYLaZmqqWgMvZqI5ERU1ontZtGiVU0eN0yOrH+GT/Z902CHXX4sjEYVKmksAo6vGgfoDPL/p+XY78dGIK+HQV9IdiWJfH/waEMKL373K68LtdYc8C8EWQfqZoMLGgI+wT/Vx4tsn8p9t/zFsX9RYBIjz2lGzg4dXPczVc682rFPZGhhg6EUCr+oNuVbhYgSFe2+ChSC3zx32utfaA0KQvsPUXRZBwebc0Qx89etEmwEt3LO6v34/IAThJmfgGnVaCHIECUHOetKsaWTGZXZJCIqUpQmgorWCD/d+6L9Xke6bhnYu2jNQY6/h5/N+zsHGg/51wj0fVfauvWffFTtrd3LOR+cwY8UMg2gTDYqi0OSuJyMuA5/q89c9Gncvvpur54l3Ltwg//E1jxvcpkDUp69ue9X/vbODrF21u4DQ+szj83D6rNN5ZNUj4jhHkOEvUnw4fVvg8XmIjw3tMGsuF02uJr8QpMXWSDAnkGoR1ijBVintvb/h2nvNikFfx0Xi19/8mvu/vb9d6xntfYvU0Xd5XV0WsbVzi3SOhQ2Fhu/bqrdF3FeDswGzzuUmmoGC/j1vr17R11/afvUWDJ2lM1nweuuyr332q1Mj9vE+2PsBECqim2KUEFcGDf1Ax2KO4YrxeVHF49Kuweaqzf5l4Sx9UhNisfmM5ekuF+/ChkL+ec1Qzpiwl8fWPMYn+z8h1hTTrjWQhv5+Vtur/cKt1jZr1l4dvUMduU5F4sT+AeuwaGN7BWeJC9dGWSziHlTbq/GpPhJiE4iNiTW63HbQ/9XXn9HGCIo3xxvSzDs8jqiE40ZnI0+seYIWV4vh/Wt2N5MUm0RSrLhORzpJVmuvZWv11rC/7W/YT72znqfWPdWlfTf2Ozlk2WkniFg5I3LCT9jkpsXznxtP4v1Dj3LGB2eEXSeYTQ+dx7PXBtyNHL5m9j4xlUvG5LCtJlAvdqZeGtAm/tS2urjrzIH8+/rxvH7TSf4xy2vbRIKD1IRYnrtmLK9PC7W01Y7XUSIFu8fubz+1/06PE6vJit1jD285pOsTn5pzquEZ62wIAz2pCbFMHZXtz7a8u3Z3yDgimKwkK0vuO4u/XzXasDwuNgbFJMqpnwjVu1gOzErinKG9iNHVranxsVIIknQeTYAJp+hvqtoEiM5MRykhax21/pczXGfJ7XWHdCb0GGKmaBZBbR25rPisqCrt8paAi5b2QmsvfbOrGY/P47cI8qm+TlkEJcUmYfPYeGnLS4bKX8tycaRxgrRjuXyudme3tE7pl0Xtm8jqr3V7s5IdoYkKPtXHh3s/5MxZZ3L34rt5bftrIQM1PV11WemMRZDmKtEjvochRtBDqx7izFlnGq6j/hrEm+NJsaQwpa+wZNOfR2FDIS6fixc2vxD2mGUtZRQ0FPg/6zs4+s603rzbq3pD7mk4IajeUc/PBv/MsF64DHzhng+9RZBWPuh8sGin18niQ4vbFa6g407UzpqdBkvCaC0mws0Ga4PQ4IY9GiHIUEfpxDIQ1zsjLoOM+IyQ36JBuyap1lQOtx7G7XXzytZXqHfUc9+39/H4mscpbSmlydXE+LfH896eyIEug4WgL4u+ZFftLt7Y+YZ/nWAxIt4cf8SWSN2NZqHyecHnftEmWmxuG3aPnZN6iRmxfQ0B8Tm4Q6ev3xweR9j3CeDfW/9tEBc7KwRp56PvgEGgzvi84HMg/PPdngDv9Xn9sXu0d8nhdRjaYX072upupcZew8jM8K6pDY4GfxvdO1G44cSb4/0C0MDUgYb12+vwtjfJEMmtJZzoo2+Pg9EGaJHqp1u+voVTPzg17G/t0epuZXnpcv/nZaXLOP2D0w11s8PrICcxMPuuj/8UTL2j3iCitbhbwp7rztqd/nhH+nMK1/baPXYeX/14WJe9rsQqu2iUiPERq7Nu8ak+Zu2ZFXEAp8Xx0uKGdGSFo8Wiao+nrxzNH6cODfvbQysfMvRZwgk32vO+szaQcjr4vYtEZ2IERcLpdXLZZ5fxRdWTjGpL6teZdkFfJ1XZqogzx5FiSfE/65Fcw9rrG4Rja/VW/zOuRy8gRSsmCSEoUOfo+xHBy7RnIDE2UaSP76JFULRZw+LMcVhjAkKV2+c2WNFF4u1dbzNr7yxm75tteJ8qWytJsaQELIKOQLwHuHfpvfxi/i/Cir2lzWLw3plJcf0YIlw9MKR3Miunn8O0U/q3u5/lZctpdjdHJQbGxZpo9YT2qeocddz45Y2G5e/sesc/KdceI7JTiIsVWT0vGZPD1FHZTBnWK+x44bKxuWHjEWrvXaT3T7t3++r3+ftFre5W7B47HtVD/5T+QPhJDX39PCl7ksFV/EgsgoK5dcGtvLD5BTZWbvRPWgejKAoDeiSGxJSa/9vTGdNPjE/17ah+XPXGzRN48opRhu3S4i002KQQJOkkWqMUriOgn5kJ90LpK+WS5pIQIUg/CHt41cOc/eHZIR3mosYivD5v2I58i7uFxNhEkixJUQ0kw70wmj+yNvM4KF2o34YYQRGEF/1gd0DqAFrcLbyy9RVe3xFI16cFm9X2UdBQwG0LbmtX9Ap7LJ3oEWl2zuFx+H2x1xxe0+7+9MePtjMVDq1Bq7ZV8/iax6lz1PmflV11uyJupx+0diauQkiMoAioqup32yhtLjVYBGnBGPVBUuudYtD/v5/8j1RrKoqi8MyZz2COMRsaqC3VoS6S+vKXNpf6rYMgMFAEqLBV+MsQ3BELHvAEC59OrxObx0Z2ojFlZjgxLNxgVt9grqtYF9i+k7NeL25+kd8t/Z3fHFsjuFPR3vuoqirXfHENf9/wd/+ycJ2u/27/L3MOzDGYT5c0GTsL2vsKonOi71hpHTC318218671D8ojlbPGXsOjqx9l5s6ZeH1eGp2NfougWkdtp91UtPvQP6U/Tq+TTw98yktbXuLZjc/6rcx21u70u90+te6piOJpo0MM2Jqdzf6ygnFQECz65Kfmf++EoOBBTnvvfvD11tqTSdmTiI2J5bVtr/mDYeutOBweh6GuP9x62PBOanUWhNalnRHsbW6b/z4Gi3DBMYDCCSvtWYO8sfMNrpp7FTN3zoyY0ED/zlTbqml1tzKl3xT/smEZgWxCDq/DP3OoF4K090X/HgXvO5iDjQexxFjIig/NRhdJCAp3rvp7Emn9GnsN6w6vM9RTqqqytXorHp+n0zFzZqyY4R+wtrpbeWbDMzQ4G5hbMNewnl7caU8IanQ2kh4XMO1XUcNau14z7xruWHgHHp/HMJgON7BedGgRH+77kKUlS0My4nRFCHrumrHsfPQnhmXrKtbxxNoneHLdk2G3uWCkeEY8XvEOlrcG3ietL6N/PyMFpW90NrLg4AJUVeXqCX345ZkDQ9Y53HKYOQfm8MCyB/z7DDfg0p5Vfbsd7lqHa3v09WSTq4kHlz9IaXMpNfYaFhxcELbswWgWjGsPr/U/n1qbHg36NrjaVo05xkxGXGCSQbNILWgoMNRDwfG6OhrA/2L+L7h78d0hQrO+XxCt4J2eaEGJDTxz+rpTQyu/1jYnmEMtgrR+qdYfDkbfB+2KRZBmxRONRaJ272odtYZ6qbipmCRLwCKos0JQta2a276+jU/2fwIE+orzC+eHrKvVQc2u5qjbHP27H6keyE2LN1iABKNv7/SW7u2hF4u1z8FWkjN3zuRv6//G7Qsix1PT6JkSx7aHf8I3vz/TIHBofZ9oMi9q9Wa4+hPC1x92j90/JjgjT1hEhZuQtrltTM6ezFdXfkWcOc4gYh6pOBiujNO+msZ9397XqcQe+VlJfosg/fXS14dWswmLOQan18mjqx+lsKGQ1IQfj0WQDBbdDaw9vBav6mVfnZh13Ve/j1XlxqC+m6s20z+lPwebDrKkZAlDWo0BP/Uzh0tLlvor3UpbJTNWzGBb9Tbun3A/5hgzcwtFR2zmzpmM7SmC/hU3FfOXtX9hav+phqCvWlmKGotIjE0k0ZxIWXNZSPmC0Q8ol5Uuo9JWSVmrseN6bt9zeW7TcyJGUFsAxA2VG8IKYfpKaEDqALbXhKaC1cz1V5evJsWawr+3/Jst1Vt4btNzTB0wtd3y6qlsrSQrPotqezXv7HqHM/ucGXYdFZWeCT3ZVr2NlWUrIwZV03duV5Wv6lIHEwKdsnCNytKSpX43hLkFc3F6nVw1WAQM3V4duFaLixf7Z2E6QnPFANhWsy2sOwSIgVeNvYaBqQMpaCzwdxD0ncR5hfP8nctDjYfITco1BHw1xZjIS8pjR80O/7Olz+ixrHQZ5hizQXxYV7GOkuYS8pLyKG8tZ3HxYqxmMWuldSQ1E2o9K8pWGAYU+kFSSVMJS4qFa6Z+HQgv5KwqX0WyxZhZZ2fNTswxZlItqYaOSWFjYcT3xuPzsKVqC/lp+X4XNG2mcc6BOYZ1gxvIBmdDxP2GGxTurNlpcHMrbynnuU3P+b8/fcbTpFpTWVG+wrDdoLRB/lmoWketIZbZvMJ59Evpx86aneyo3cGMFTNCBlZ6QXR56XLWVggrpfS4dFRU0uPS/dYWty+4nVtG3kIYI6ywaJ3m/in92Vq9ldn7ZgMirozW+fum+BuDa8mFn1zIy1NexhQT6CBV26r9Ll5V9ipWla9iY+VGQLwP2nVeU2EUf/NT89ldt5tVZauiLnNHNLma2FW7i6LGIk7PPZ285PDBnyOxqXKT4fu8wnlh07/a3XaeWv8UF/S/gJNzhBm81p70SuhFjBLDvvp9XDrnUl4+92WDddn8ovkGQWJJyRLq7IFnbuGhhYyyiZmy/Q3GGcz1FeujHtwVNRahojKqxyi212w31LfBbU3wcUDUj5GunyZMvLj5RYZkBNrV5WXL/SKFXmzSgoRnxWdx4YALmV80n8Hpg9ldt9sfZF57ZzUx2RRjom9yX+ocdfxi2C+YtXeWf3976vZEfH+31Wyjb0rfsHXP9prtYbfT3gV9cPvfLvktE3pN4MYRN4YkGtBcHlvdrdy64FYm9Z7ELaNuAYwBk2fvn82Q9CGoqP74bKqq4kP3WfXhQ3zWZy1z+Vz+gc28wnmG4+vLs61mGyvKVoRNhlDSXOLPXqTx1q63OC33NP93/cB29r7Zho779prtIc/AokOBgO99kvvQ7Gr2D9yLGos67OdEg/Z8banaEnF/l0xqZmK+hVXlqwzv7YKDC0iPSzec17qKdWED82v9nXtOvIehGeGtgTZUbPB/fm/PewxIHRB2oqywQbRVu+t2MyZrDFurt7KyfGXIZMjhFmNfLd4cT3FTsf88Fx1axNzCuVTaKqloraC4uZgHHQ/SL6Vf2PJpLC1Z6v+sDSj1fYOO0GfAc/lc9Ezoid1j51DTIVaVr+Jwy2GSLck0u5p5b897fnE22OrB6XVGPKb+nZy9bzZ9U/r6v+vdiDdUbIjO3VmFs8dXsb6ti7OsdFno9W7rG2tiYWJsIpYYi6GcmhVyTlJOh4Hyw401gn8HcV+1d3Jsz7GsKFvB8rLlHVoFaSLGxsqNhn5vlb2KkT1GkmhJ9P/emdhSL295ma3VW9lavdUgkr+z+x3yU/MNbfDWKuE14FN9jH9nPA9NfqjDtlQv4rRXP7eHvl1acHBBSL/f5XWxoWIDQzKGUNRYxNCMoQYPh/UV63H73CHi6fIy0S+sddR2ub+h1TG19o73obXv5S3lhuvg9rpZUrKEhYcWhmxT3lLOF4VfoKBwwYALeG37a/xq8a947JTHDHVXvaOegWkDyU0ScXX0gubBxoPdUv+Gm1R8f8/7nJ53OgB/vyEOn6q2e6xqWzUTek8wjOW2Vm8NqcfWV6xn9r7ZbK7czFDLL/BYS2lynEVKXAeZdn7gKN9FgMFOcEwP3l1MendSVPFD7j/pfp7Z+Eyns2V0FyMyRzCyx0hDJ7Y9zu17LouLF4dVnU9IO4HZl8xm7NtjuSj/Iq4cdCW3fH1LVPt9YMIDIfEnAP406U88sfaJqPbREef1O48qW1VEv+OOyvJjZPrE6VH7YZ/f73yeOesZw7J7ltwTkonp/H7ns+BQ+7OIl+RfQkFjgUG46g5ePfdVvjr4FZ8e+BSAG4bfEDGFZjD9U/ozofcEfzC+Hzp3jbmLBHMCz2w03jOzYuaO0Xfw8taXj2j/Cgr/Pf+/FDcX8+jqR7u8n0dPeTSqAO7tkRGXwTl9z/GLSdEwY9IM/rL2L0d03O8jn176Ka/veD1k8N4RE3pPYEvVlm7NvGhWzNx70r3fSX177dBr+WjvR52KLzfzgpmMyhqFzW3jk/2f8OzGZ7lwwIUUNRaxu2435hgzf5z4Rx5f8zjje47nmbOeweFxkJuUy+i3Rnd8gDYuyr+I4qbisJMf7fHqua8ya+8sVpav7NAqYVjGMEqbSzvM1PJd8Ntxv+X5zc9zx+g7OozjcEn+JcwtnEtibCIDUgawo3ZHt5XjwgEXUtJc0unr/EMjzZomJl2ivHYPTHiAZzc+22F8w0m9J1HaUtphJq6jxYjMEeyu241P9fH21Lf5aN9HBkvVW0feysf7P+7yxNz3gbenvs2Gyg2GiRwAq8nKtBHTeHXbq36xGmB01uh243CFIyk2iVXXruL6+dezvWY7f5z4R55e/7QhO1lXePzUxzk5+2TOnX1ul7afOmCqwcXx5hE3G9y39ZyVdxaVtkp213UuVt6RckH/C1hZtvKY1KvfB4ZnDufdC99l3NvjIq5z4/AbuX/C/QBc8uklHGw6+J2Vp2d8TzLiM8K6AnfE7aNu593d73Y61uesqV8yvGfnJvG+p0SUC6UQ1A1sqdqCioqCwoDUAf7ZTz2WGAvDModxsOlgRF/zFEsKVpOVanu1f1+FjYUkxiaSbk33m6tbTBZ6xvc0BL4CGJIulGmXz0W6NR2TYjIEde2T3IcEcwJ76/fSEVaTlWEZwyhqKjKUt39Kf8payshJyiEjLoMaew2pllTMMWb21O1p1586PzUft89NqjWV3bW76ZPch5LmEvom98XpdZKVkMXu2t1+Vx8FhX4p/bpUsQxMG4jP56OoKbJJfVJsEiekndBhuUHEznH73EcUgBLENShqLCLWFEuvhF5UtlbSO7G3IW5ApHtXZavqdFyOHnE98KreDmd+EmMTGZQ2iL31e3F4HOSn5VPYUIjFJNwagp+1E9JOCLGkaXY1G2awUi2pDEgdEHJ9483xZMZl+vc5OH0wDo8jJHaC9qz5VB/9U/ujqiqlLaVh/f4TzAmkx6X7O7Ha8+tRhUuEV/XSM6EnNfYa4sxxqKpKSXNJxIFublIuSbFJ7KvfR7w5noy4jJBrEG6bw62H/UJvjBJD3+S+Ic+vguK/vtr/9kx8060ByyZTjCnsDHBOYg4ur4uE2ATDdeyV0AsVlZzEHDyqh121u+if0p9DTYfwql4y4jLIS8pjV+0u/yA6LymPKltV2FgR+nuXFZ+F3WOnxd1CXlIeWQlZeHweqm3VeHyekIDSHRFvjmdI+hAONBygxd1C/5T+FDcXY1JMZCdm+8+rX0o/HB4HCkpYi5ScxBxSransqdvjv67ae6e/zj3ie+DxeTApJnKTctldt7tbhY8YJYbsxGysJivFTcVdCoKfn5qPy+uiydXUboyEASkDKG8tN9QPibGJDE4fjN1jp9XdSpOryV9/9Uzoid1t93dwe8T1EO9KW0Df4ZnDKWspM1hyam2SqqpU2Co6HTMr3ZpOn+Q+Ya9zXlIe1fZqf/lzEnNocDaQak2lydXUrvukSTExPHM4pc2l1Dvr6ZvclwpbRUg9kZuUS72jHpvH5n/WNKskt9fNrrpdDEwdiMvn4lDTITLjMv3PRV5SHmlxAWuW8pZyWt2tJFuSO4wJMyhtEG6f299uljWXkZec1267pt07ELPbDc4GMuIyIg7ST0g7wf+5uLnYcO5av6LGXkOMEkOMEoOiKMQQ4bMSQwwxxJpi/dkXi5uKUVHpk9yHg00HSbWkYjFZcHgcDEwbSKWtkl4JvTpsSwenD8arejEpJlxeV9hrkBybjNVs9ddzibGJpFhSIl5nrZ4YmDrQf51zk3K7dUCiHSPaSbzcpFzqHHXG9MqmOHrE94jYjlhMFgakDOiwf5aTmENaXBq7a3f767M4UxxZCVlU2irpnRDoT2jvcmlLaUSrlqTYJNLj0kmxpFDvqDe4toGob4ubiok3x0dlpaKhvdMurytivzgSJsXEsMxhVLRUgCL6P63uVr+Fi4LCsMxh1NnrQtoAq8lKblIuiqJQ1FjU7j1LsaRgMVkitqkNzoZODxxTranExsSG3ad+jBBnjmNI+hA8Pg87a3eGtE3ZidnU2GvIis+i1lFLUmwSceY4Klsr/XVYNPEjeyb09Nd9ZS1lDMsYRklzSVQxgoLHNNmJ2TS7mokzx9EnWWRAK2ws7HS/OLhvGGeKY2jGUPbV7wt7vQemCTdJr89LaXNpVG1pcJ+ws5gUEyMyR1Bpq4x4nfsk96G0uZScpBzKW8pRUQ1tqUa/lH44PU4URSEhNgG31x22jeoM/VL6Ud5S3mGfpb1xaZ/kPpS1lNEvuZ+/7bWarP5xU9/kvmTGZ1LRWkFSbFKIta6CwpCMIf52osZeE1IHdQcWk4WcxBx/m9PZfWv1Rb2jvsO2tG9yX0pbSqltcVDV7OTiIRNJsnYu0933FCkESSQSiUQikUgkEolEIpH8SIgoBMlg0RKJRCKRSCQSiUQikUgkPxKkECSRSCQSiUQikUgkEolE8iNBCkESiUQikUgkEolEIpFIJD8SpBAkkUgkEolEIpFIJBKJRPIjQQpBEolEIpFIJEeJP3+2gxmfHt9pziWS7uCuRXdx2ZzLjnUxJBKJ5Lhyx1QSAAAgAElEQVTEfKwLIJFIJBKJRPJjYeOhemKUiEk8JBJJGyvKVhzrIkgkEslxixSCJBKJRCKRSI4SDTY3VrM0yJZIJBKJRHLskD0RiUQikUgkkqNEXauLFqfnWBdDIpFIJBLJjxhpESSRSCQSiURyFHC4vdjdXmKkZ5hEIpFIJJJjiLQIkkgkEolEIjkK1NtcANjcXnw+9RiXRiKRSCQSyY8VKQRJJBKJRCKRHAXqWoUQpKpgd3uPcWkkEolEIpH8WJFCkEQikUgkEslRoMHm9n9ulXGCJBKJRCKRHCOkECSRSCQSiURyFNAsggAZMFoikUgkEskxQwpBEolEIpFIJEeBBltACGp1StcwiUQikUgkxwYpBEkkEolEIpEcBepada5hLmkRJJFEQ3Gt7VgXQSKRSI47pBAkkUgkEolEchSoN1gESSFIIomGq15ZdayLIJFIJMcdUgiSSCQSiUQiOQrU21woivgsYwRJJNFR1ew81kWQSCSS4w4pBEkkEolEIpEcBeptbnolxwEyRpBE0hlUVT3WRZBIJJLjCikESSQSiUQikRwF6ltd5KXHA9I1TCLpDNXSKkgikUi6FSkESSQSiUQikRwF6m0ucjUhSAaLlkiiprJJCkESiUTSnUghSCKRSCQSieQoUN/qIjPRSnysSVoESSRRo9Jgd3W8mkQikUiiRgpBEolEIpFIJN8xTo+XVpeXjMRYEq1mWmSMIIkkSlQa7e5jXQiJRCI5rpBCkEQikUgkEsl3TF2rsGhIT7SQZJUWQRJJ9PgMQtDrK4q4d9aWY1geiUQi+eEjhSCJRCKRSCSS75jyBjsAOWnxJFjMUgiSSKJFUWmwCSFIVVUen7eLTzaXHeNCSSQSyQ8bKQRJJBKJRCKRfMeU1gshKC8tniSrWQaLlkjaQZ8u3mqGpjaLoL2Vzf7lNvkOSSQSSZeRQpDk+4HbAR4ZCFAikUgkxyeaEJSbHk+i1USrjBEkkUTEqwbej5R4k98i6FCtzb+8pln2GyUSiaSrSCFI8v3gwxvgH4Oget+xLolEIpFIJN1OWYOdjEQLCRYziVbpGiaRtIdRCIrxxwiyuwLLa1plSnmJRCLpKlIIkhx7Gkpg/wJwNMC8e0BnDiyRSCQSyfFAab2d3LR4ABItZlqkECSRRMTrC7IIaksfr3eprGmWQpBEIpF0lQ6FIEVRvIqibFEUZYeiKHMVRUnT/TZCUZRvFEXZpyjKfkVRHlIURWn7bZqiKC+G2d/1iqJsUxRl2ymnnMLWrVv9vzU0NHDVVVcxdOhQhg0bxurVqwGoq6vjvPPOY9CgQZx33nnU19d3x7lLvi/s/1r8P+lWOLQC6gqPbXkkEolEIulmqpoc9E6NAyDRaqaq2UlNixzISiTh8KgBwSdZ5xqmtwiqbZWuYRKJRNJVorEIsquqOlZV1ZFAHfArAEVR4oHPgadUVR0MjAFOAe7uYH9FwJmqqo5+6KGHuOOOO/w//N///R8XXHABe/bsYevWrQwbNgyAp556iilTprB//36mTJnCU0891dnzlHyfqSsCcxyMuirwXSKRSCSS44jqZic9kqwAJFlNAJz0xKJjWSSJ5HuL3iIoyWqi2SGEIX1srVoppEokEkmX6axr2Gogt+3zdcBKVVUXAKiqagN+DUxvbweqqq5SVbUeYPLkyZSWlgLQ1NTEsmXLuPXWWwGwWCykpQnjo88++4ybbroJgJtuuok5c+Z0stiSY0b1PnisB1Rsj7xO/UFI6wsZ+W3fpRAk+R7j9YCt7liXQiKR/IDweH3U2VxkJQshSO8AXdXkODaFkki+x+hjBCVYFb8rpc3twWKOIdlqpqZFWgRJJBJJV4laCFIUxQRMQVgBAYwANurXUVW1AEhSFCUlmn2+/vrrTJ06FYDCwkKysrK4+eabGTduHLfddhutra0AVFZWkp2dDUB2djZVVVXRFltyLClZDy9NAJ8bdn0ecbWmigJa4nMhqZewDKo/ePTKKJF0lq+mw9MDRKa77xOFS2H5M8e6FBKJJAx1NheqCllJFgC/mwvAigM13XYcl8fHT19aybJ91d22T4nkWODxBVzDEixCCFJVFZvTS6LFRI9kq3StlEi6CbfXx77K5mNdDMlRJhohKF5RlC1ALZABLGxbrmCc1NLTYbRfRVHOfv311/nb3/4GgMfjYdOmTdx1111s3ryZxMRE6QLWHbhsHa/TWRY8BG9c1LFVxFd/CHz22MOusreiGeoP8UmRmRe+OQDp/aUQdCzwOOGD62HrLPG9tgAW/AmK1x7bch1rvB5orjQu2/Gx+F+95+iXpz3euwYWPwaNZR2u2mhz03/6F3y8coe0bpJIjgLVbUFtNdew304ZxPSpQ4k1KaId7Aru0HZ19+EmtpQ08MDsbV0uq0TyfcBoERSD16did3uxubwkWMxkJlqkECSRdBNPzNvF+f9cRnlD+PGa5Pgk6hhBQD/AQluMIGAncJJ+RUVR8oEWVVXb7dUoijIa+O9nn31GZmYmAHl5eeTl5TFp0iQArrrqKjZt2gRAr169OHz4MACHDx+mZ8+e0Z3djwWXDSp2hC7fvwj+mg1L/9a9x1v1vAjqvOBP4PNFXs9WG/gcIe7P8m37SVFs1Fuymb2pFHoOh4JvoHxL95ZZEpndc+GJnrBnHnzaFrNr9Yuw6gVY+Vzk7VprKSsv45kFe/H6jsNMbxvfRH0yF54ZTOPe5YHlyb3F/4+mQXPFMSlaWNL7i/+7Putw1ZJ6IRCPXnyDsG5ytnyHBZNIJJoLS48217CsZCt3njmQPukJlNZ3oePdWAp/6Q1LnjQs3lHeCECCxXRkBZZIjjFOT8BqLi5WDFeaHR5sLg8JFhOZSRZqpWuYRNItrCoQY7ZGu7uDNSXHE1G7hqmq2gj8FrhPUZRY4F3gNEVRzgV/8Ojngafb24+iKH2BT4AbBg8e7F/eu3dv+vTpw969ewFYvHgxw4cPB+DSSy9l5syZAMycOZPLLrss2mL/cHnlNNjwv/bXsdVB4bew9El45dRQMaiibUZw3avdU6bSjbD+9cD3Le/Cu1eKz4dWw845gdTv9nph2TPlYRg8VQhBXrdYrmP3bhE7KH/QcErqbFSf+gi+GDPVS//dPWWWdMzXM4zf7fVQf0h8rt4dfhu3Hf6eT/MrP+GFbw6wrbThuy3jsWD3PFpNKfhUhc3f6sQVS6L4X18Ec//v2JQtHElZ4n/putDfts8WAmsbTQ43PWhkkK8tQ99nvwq8uxKJpNvR0lxntVkEaeRlJPiF2aip2C7afoBvnwJXq/+n7aVCCHK4veG2lEh+MDh0QlCCRQGg2eFuswgy0SPJKrOGSSTdhK+tD+j0tDPBLznu6FSwaFVVNwNbgWtUVbUDlwF/UhRlL7AdWA+EpIwP4s9AJvDy2LFjOemkgFHRCy+8wPXXX8/o0aPZsmULDz74IADTp09n4cKFDBo0iIULFzJ9ervxqL+/1BaIWTwNj1P8BWNvEB29efe0v7//ngtvXQplbaGagq03WtpcWmx14Y/TGbxuePcq+OJe8f2a98GSBEXL4cBieOMC+OgmKF4tfi9ZL/7njIPMgVC1Ex7vAX8bACv+CUBNixNblRiIJvYeiE+FCc/vYIFtCM69i9jdNrMp+Q6x1UHDIeOyouXQUCw+1xWFdT9g6wcADI0pQcHH1pLjUAiq2k1l+okcUHPIbtYFO2/Vxd7Y9xU4v0Of6kOrYeYl4e9BMFo5qveF/vbxrfD25f6vtqoi7jMLN8DNSWfCrjlQvbfLxSytt/HRhpIub+/H54PN78rMgZLjDs3cXgsWrZGXHk9JXSeEoEOrxETRZ7oErVp9DRTWCFGovNFBq9MTvLVE8oPB4Q4IQfF+IUizCDKTmWSl3ubC45UDV4nkSNHmAlscst34MdGhEKSqalLQ90tUVX277fN2VVXPUlV1iKqqJ6iq+qiqikdJVdU3VVX9dZj93aaqarqqqmO3bNnChg0b/L+NHTuWDRs2sG3bNubMmUN6ejoAmZmZLF68mP3797N48WIyMjKO7Ky/C7bOgk/vEjE65v5faCBZnxdeGA8vTQose+U0ePWM0H01Bg2otrwPs281Llv0CNQViM8lbXFcChYbZ/WbD7d9UKGhbZ+b3oLPf9OZMxPs/RLsddgG/xTG/gJOmAIX/kMEgv78NyLIM0BJmzXC/q8hNgH6ngwT74C4NEjrJ0ShNa+AqvLt3mryEIG/e/YZ4j/UCt9I8pQavJURrFG6Sl1heBe6HzOVbddj4i/hnIfEPStaJp7B1D6ACjWhwoKncpf/8wClguX7a1CjtSg5uBK+nC4Ez++K4rXinesqjiZoKqUucSAbfYPp27oDPG0zjy3VMPlXcMV/xfem8iMvbyT2LxD3oySMlU8wmhBUe8B47voYQHVFYKvj5KXXco15KYu845heKwL2H3ztOjZsjOI4wYf1eDntb0u4f/Y2DjceoW/5oRVigPv8WBGfSSI5Tth1uIl+mQkkWs2G5X3SE6i3uWlyRGmOf3Bl4HN8W19IJwQ16oJQV8psZJIfMEYhKOAa1uoUFkFZSRZUVQRil0gkR4ZmEdQcbVskOS7obPp4STgqd4nYKlvfE1l7Nr4JC4LcbXZ+Kv67WoQZd9NhMcCu3gOLH4cv7gus26ATglRVbLtjdsCaSFWF21jeBIhLBS2zgq3WGMC2uQJMIkOJPyX7578RYlCZIeFbx5RtxKWaGLXtSvjpS2C2Upc8SPzWVAbjbxQxStr26923EN+AM3EQy4qaRHx3r4W7VsLpv4eWCji8lUN1NvrGVKNaU+iXl+M/1HzvJJxqLOk732RNYW2YwnTA/oWhQY5VFV44UbjQOX7AlkZH6r7jcQnB8p+j4K2fBoSx038PZ9wnhLudn4DHwd7kyeK3qtCgyM7qgMXGb+K+pH7vCuatD2OJomf/IvjyD/DpL2Htv2H+fe2v31X2fQ3/Ox/WvNz1feyeC0CJqR+LfOOJ97WIrFzOFnC3CjeslLZntqnj4MwGZt9idLGs3AkvnwJVYYRP7b09tDL0t2AcTaCYwOs0Wnnp64Q3L4JnhpDorOZT76n8wX0Hhao4j/7uAtTPf9u5cwH2HW7m8pjlZFHvd0vpEpW7YP79ge8yaLzkOGJ7WSMjc1NDlo/pI5Y9+vmukN/CclAXr+zUtvdVJwQ12F1kJop2v9V5FN3D6g+Jia2GbrAMlEgAuycwGRDXZhHU4vRgd3tJsAqLIICaZikESSRHihbqs1lakv6okEJQd7D9QzEAu3sN3LsHxl4vXGe0AKxL/gqf3B5Yv3i1cCnRWP4PWP9aIMOXrlPHuz8LxGkpausA2mqFmDHiChh8gVg25ELx/+AK4YI2/36xn74ni+Waq4U2g7h9duTz+XI6rNHF6Fn9Mqz8F4fU3ngJBKCc/JrOza3fqZB7ohCCXDZMjYd4vTCNn760kl+8vpZvShWwJkP/08T65ZvJLF/KDaaFKGl9SY6LZfHvz+TBC4dSRwpf+SaQVDCfa/6zunNpcHfOES5s/zvfaKlR8A2obebDG96Ifn/fJ9a/LoKDrnut89s6W4Qr4RNZQrBsLIbCJfi2z4bELEjuJdYbcLo/yPc/C3NxY4aq0AGKr/4QC73jqR14OZeri/nE+ggTl1wbsJoJpumwcB1c+0rA4m3X59DajtDXXCmsxyIFJG8sg7cug5YqMUve5nKoua2x6/OOrkp4nC3wxe8h9yQ2xY5juW80LUqiCJKuWfQl9QoIQfosXds+wrnqVXyRgmc3HRZZx764V7h4OFvg/WuF62Th0tD169pi+BxcEX5/Pm9AHHQ2Q16bq23N/sA65ZsBeEu5FI+jBQadz6v5L3CP+1fUkirucRsWpfMdAMeBpfzT8m9WWn/L9pIuCLcgzvPfJxtEKzVSfCqJ5LvEZWvfFbNoeaCOiZJGm5vSejsjc0KFoFMG9uCCEb3ZcCjK7H2VOqvWk24V1rj1B0U9sOcLPnfexohUYQnUcjQ79JvfhsNbYd1/jt4xJcc1eosgzZCu2eGm1ekhIdZEeoIQPOulRZBEcsQELIKkEPRjQgpBR4qqigHngNOh5zBIyYYTbxaWP+9cKWLlrH0VssfAPW0D6ortgcG1orsFf82G3fOMrmEHFgaEoaK24JC1B8T/zBPghHPF536n4kvORT24HJY+JTpjzYfFcS3JwvrI40R1tLnjVO0SAk+wZZDHKaw1vpoeOL+v/wjAQbW3fzWfT8VFLFc7H4LR1whXsdyThHVEW5ygbbZM9rSlxd1b2ea2kpwtzrmpnAkVbZ3pk0UiuoFZSVw7sS8Aa33DSFUb6atUceP/1gXijzibxfU8tCr8/dAGzDGxxkC+W96F+HTIHmsUwXxeKFgCK58X8Vg6YsU/Yfmz323Kbc3iKzgN+J4vwOMILxhoFC0XFibBrHsVSteHLI4p30jdsOsDCwYEXBXX+IZR4MuGlf8S7km68sU1l1Ci9sR85av+Z7CXvSBg+abh84mgpvu/Fu/E1KeFiHLJc8Jy5bWzI6c7n3MnfPUHYaEUjg2vi2ux7j/ivix+XDy/BxaL30vXG/dtb4BPftmxe+D+BeCxw3mPUWVXcBHLWkaJmfjWatyDL2ZPwok6i6By/3Xhk9uwLniA2R+/H37fJWsCn9+YCm//NLC9Pn6Ytr+6g23nskE8n9ozWr1PiGh/zYFFD4sYXh67eAch4M5XvQ914Z/Z4+vDw/aree/sZXDNu2xguP8wY/JSecAthOox7Ic5vyIiZZtg5qUGoTihaAEAFsVLXXEnxZvGUiGGzbvXb7042yueQU9lqCXaUcfn67z1pOSHS+kG0Q635z4982Jh1dgS/QTF4SYhLPXNSBBZ/f6Sbdg+M8kSXVwGZ7MQ6qf8GWZUQFwKpPUVWR4fTaPxw7vopdRzlSLqwKMqBGl8nzIpSn7Q6LOGWWOFRdDCXZVUNTuJt5hIjhPq0DF5ziWS4wxtAjNcW7SlpIEvtolwIyMf/pqnv/oe9M8k3YIUgo4UjwP6TBJiiEafCXD+X8Sg7+NbwdEAY66D1FwxCK45IAKz5owXf3pmXS8GWXkT4XJdti9rqhiMq6pOCBoIg86DvAlsNo3i04YBuAqWB9zBAHqPFgJV1W5oKEZRffhURQygv/4jLHjIeHx92vamcoNlQTxiltHh9lJYI6yd1qnDcFzysrD2yT0RAO+2jwCjcFRY3ZbVxBQrrsH2Dxli38ynSdfC2Ov86yXHxfLOrZPY5BNuZ59a/owVF68uK0Qt3wxP5sGXD6C+eVF4N6m6AiH2nPUHMaBvLEXdvwjPrrm0nHApjLkGKrcHzmvvfDEYX/iQCLwdlNUshEWPwOJHRcrt+kPtr9tZtrwP2z6ETTNFoPDVLxl/1wTCMDF7/My8GP59SuC71yP2tfgxGHCmsFj7v23wcANfp1/HvzxXsKL3tMD6vccAUBrbnwaS8bRZgPne+VlgneYKYn12bAl5pCZY4bqPuDN/AQd8ORQveMFYnjUvi+v6zROQkAkT72DtFat5tu4U+MUnYlCz+LHQ82itEQIdBCygfF4hhKz4l7AAMrUFXW2pFOKj6hWWX85GOO1eQBUulRoLZsC2D1AX/Cny9QMxUEvMgr6TqWvLSLLOPUD81u8U/pH2Jy743wFWHmwW62muYRvf1O1jTuh+vW7Y/I6Iw6RRul7E2YLQAMm2WnEu/U8XotkbF4i/so3w0gT4e76of1Y+5xf56iy98SVkBQI/b30PVJUbXNNRifFnLqrSxQ6ZOiqbD71n84rnErFgyzsB60Q9Pp/ILlb0LXz9oKgrPr6doSUfUKEKS8Okpv2h24XD1Sru4z9HCKvHg8th8l3wp2rud99BqdoD3+HtHe/nu2bjG/DaOXBg0bEuieS7Yvts0bY6GgPupAdXiHdAl40rhGV/j2ypt+F/hmemvlW847muQuEa6rYJS+I2kuNio5uF1dqc9AEQGy8+9wvU96k+4Zp5bsPHpNN0dINFa66cbRaIEsmR4tTFibPGKigKLNot4kpeNDqbBIvon9hcx7cQ5PV4uOH1tSzZU3WsiyI5jml1CVficDGCfvrSSn713ia+2lFBi9PDy0sLjnbxJN8RUgg6UmLj4fJ/w9hrjctP+TWcOT0Qq6PnMPE/cxDU7heD+ayhAVep27+BaV+Iz6oXfvYmZAUCKDP5TjHgrD0gBr0mqwi+HJ8Oty1ixpoYvvWOxeqsEwM5gEueh1FXQa/hwvWkTUBa4hsb2K+jyVhuXYppVr8EukHze94pAFQ3O/ndrIBg9Ni8Xbg8PsgeDTGxmLYJa4hDak8Akq1mv3AECEuK+oOUK71Z2+vnIZd0cn4G+9Q8fKpCptLM+Jj9HKhq4fD2gFWKovqEdYKehX8W5c8cCH3a4tusfRXl3Ssp9GTxd/ulPFs2DB8Kts1tAoEmqgF4XfCPwZFdkYLdnra8F369aNj6ATw3RsRr+t8FYsAx507hQvh12zXXLMBAiF4NOiEonHtYuOC61XvEoARg6MWQko0vtS8vLS3gl4cv5l+eq3C2uQY1O9xc/8YGHur/DjPSn2FETgqvei4GIMbr8Ls6qrtEKnV7XtsAJCaGjOQE5vsmktuyA1UvpmlZ5FqrxT1RFH7+nzU8v3g/3vxzcOZMxFsZJjZG0TJAFRZt1bvF+S/7uxBCFj0Mb14YsFLa9qGwNtI+g3jus8fA3q/g6xmw9lUc20XcH7VoeWSLLrddxJgaejHEmPxC0FzPyfiSc2HKQ/5lr3xbAKl5Io5PSxXM+x0ApWoPRqt72yx62sSdPV8I0ePAIjGbrxdrQcT6qtolztFWJ4RaLQvg5LvE7xqvnRNa7jdEwOe/Li5lc0uacNMo34K6cw6bzWOwWXqQaDFR0+pCVVUKqls5f3gvpk8dym2nCZHrY+/pgf2VbQg5RPnO5aKMZz0o3CyXPwPbP8ShJHBfwuP4UOhhjzLb18rnxH0EKF4l4pxlDaPRpaASwyrvCCz75go3V4Bv/iKEo/bY+kFg/e5Cs8aMJli35HvFe2uLKappR8jR+PhWkZnvldOF2yYIgfWVU+GfI431qs8XEKDXvSpibu0IslhUVSG+v3Olf7Kiwebi4pjVjJ13YSCm37ZZ/k2S48y4vL6OU75r/Yn0foFlY64zrPIn980keJu42vTt0Y31oNV1dQXRZTmUSDrA4db3uXwM6JEIwBXjcpnQP4Mkq2YRdBRjYR0lvtpxWFg6bf0A0xOZ7N2/n5vfDLXqlki6g5I6G412IQC1Z2F35zvSQvp4QwpB3cjbqw8ya30xn21psxAYdnHgR00I6nGCmNFvPgxZg0WQ5fE3Qa9RIs7OidPghk+F9VDmoMD2434h/r94krAqGH8jmEQj6PWpFFS38IVvErVxwrWKkVfCiTeBokDP4WCvx75zPgBf+4T7iMucLKxjPvml6LC2VMGqF0TcIUuSMDc/tJLPUq6nv+Nd5vuEuPLNnip2lDUxcYCwAnhvbTGz1hcLUez8xwGoVNNoQiScmzKsJwVVLWwuruf1FUWobRnGPvadSVxqz5DraDbFYI2N5VTn8wDkK4cZaiql7MAWPLHJjHH8B6+qCIsfDVUNDJzj04XbHPitNK5wPcq2pnieX9/Ket8QLBteFZYIix4RMRY06yuvC2oipNHWZjwvexkGniPczSKJRh2x5mWxv89/I8QSrewghMDxN4lYEJr401ojXH+yhcUO8+8LCFM+n3AH3KiLfaRlkKrTDYwHnQfAgl2V/P3rwDlqwsbi3VWsPFDL23tiqHBayE2LZz6ncr1LuAbyZC58OR3vqpfY4etPr0En+vfROyWOld5RmBSVmh1tljyHVsGeeYHj5wXWB+HX//4BM7bKA0brLo9LWOVYkmHkVWKmvrZAPJsglikxIsMUiEGbxs5PIDYRegyBfqcJkWH1i/DlA8R5GvnQcyYxqicgUAGs/U/AKungChEMetglqKpKdbOTlDgz5fTg0E3rIfdEXG2paneUNaLmnAilG/2DoD0n3MbH3jMYpB6i7uN7RParmv3iPrdUQlJvmHQn3LYILnpGd29+IgSlb54Q1jZvXSZiEgHknwX3HYCHG+CXATFUHXguJPQwXNNmNYGdvv4AuGffwf+zd9bhUZ1r1//NTNxdCAkBEhLcghT3FqtR71sXoE7bU6NCnbpT2kIdSkuhaHF3dwsx4u4yvr8/7j2zZ0hoe87p23P6fqzr4iIzs2fP1mc/z3rWWreuKpvljZ15ZnxHWof6caKghrRX1lNvsjIoOYIpQ9vjYdAz/55+dOjSh27GL1DQNbNeKorCzB/kfrOkTEDx8IVTksE0JfxLbKFJ1HjHEWc5h2JulHvr/MB2VxQdaf5eRAcyyoTQ+9XeV8jej3rJud/6phBHKx8Tq+F3V0uGFEDublEv/jIZ5o6+8G/+QZwuruVwXrWoAx1W2uo899yli/hrYG6Eg99peXt/EJblj9Ju5XVc/5l6n+//CuaOgc1vuKvdXO1dDpLF01/OfWUWNFXCy+FC5L6TKu22zeT+Y65tHLiHxxcdgapzRJ6Yy0ueX2HzixLlbKcr5DOVaPzDFheHIigkUXsvoR/lV3zvfLnQNhSjXyyp+ty/RhG09wvZl4qzolxW7JJl10KRgQuioaL5s3TzTClscBH/38JVEWRTbCSGCxHUMSYQCg44K/D9pcq3vwBnS+qY8v0BNs55Wp5rwESDtGVW27/Y57yIi/gN3PC5FlvQ0gRC61Dfv3JzLuIvxEUi6E+CxWbnuaUneHLRMR5ecBiLzQ4xXeHGBTD6JfCPQFEUTllitRnB6C6iXrn8Q/DwEtJm4gdCMgB4Bwjhc+3XkgMQ3UXe73wVDH/G+dvZ5Q2YrHZsGNgWfIW86dpxTpSZft+j35Jtj+Yn2zCuNs1gb1u1k3V0geSqnFoug+CRL8AAqUZSf+saHi2fAOicq7Lb1FEAACAASURBVHthmWTQTBvVwfneooMFUj68/1TO3LSbSeYZjOkUzbiuMfRrF06t0cpVs3by8oqTmCqk87vDnExkoHeLxzPAx4NiQmlSvJjh8Q2rPZ+gT9liSn0SqSGAo0p7lOM/uwRsu9i0EgdDYIyQWaZasoijHj8O5cqgbqWtHx6mKo1I8gkRy9gdq+R17gWyghzqochUIeZq8iBzQ8vL/hbstuY5CttUUsAnGC59Vap46QyaVaFGVSb0uRu8g+RvR5juzg9g8+vuVbgc9jHHNt+6FGNgAoqiNJslL6mVgY0jzwmEpAn29cRmV9ht78Qhu0qs7fkUQ10+z1tup1Ww9mC4d0g7Rl86nlrFF9uh+UIqzrvW7XcctjMHSmtN5CrRBNKoKXSMNTCrn1iruk7SCNRVT4jqZ+pOuGYutB/Z7LCavULkjw6XCkma0K/ZMl/axmLReWklmI21QgLt+EAGfoWHAR3E96Wq0UKdyUqPhFBAI8yq1fLMVY0WqiLT5J5Rw98PBw3jmL0tBp1C2HGVmPs4zRnAzU0L5D6P7S7n0pHJNOZlLfD9yHn5Ql7+WvsQ2x3bneu5yfwMr4bMgMfdbYLeWHjHei3lShCelUL27bF3pH1kABGBXhzJr6FC3Y+kyADn9wa0j+DatNbU4k9jWMdmVcryq5qI0ck+9PjgFKfNkQAooYkcKVNoG+lPTWASyeTRdGotnF1L/Y9389M+lci0WYWwASH9Wsr4ikhyWta22rtTENQTgNI512jL7JsjJFnmBvj1MVEefHkpvKteJ43/Yli1Cy57fxtXfrJDKus57H5H5st5PLPq317/3xqnlruT1v+bqMiUc7vsASl+8EcrJioKngfm0l9/CnudaqXY+DLk7YHNr7nbRc8Lwq/qeR+MacGquvEVmbxxVAMNjHVZx3m5WK4EyN4vYM9s0k6/RZiuHtu4d0T9O1JVw52WyRkHEXQiPZPDh39jxrU8XZ4RfmFub58N0uxhJrywhKeSosv/Y7lD/yrsdgqObZXnzmdDwFjDLCZpn//6eMtk0M93wvJHJMNv3fOS3fZWO9j0ipBB+QfkOtv8utx3xcfU4ht1zdd1EReGuUGUbhfKU/wbwOxCBNkVu3Mw2rt+I3wxAr+zy9Hp/u8RQTVNFi7X7+TyMi14/TbDGsbo93GmuPY3vnkRF/HPw2KzU1AtKs4gH48WbcqNZhvd40P+6k27iL8AF4mgPwnnKtwzNfIq1dcpY2GghBbvy6niqX0urKqq7lh7ophFByQo1m5XOF7gUoL58o+E+AG46Se48Uchhlw6gqeK5MGg18E6z+EQ1k6sZA5Ed5LcHOCs0hrQcVDpQF6Iy0B50V0SwhzWjvePGvjR51r4RxY7aiKwqQFirqTNoKQIOkRrA8nDedWsOSHkRrVHFPlKFLcNSGTWzb1JaxPqdmx+8bkSgGNKWyICzrPIqAj09kBBT60uEE+dJvtNt8cBsMQ2EF1FBqz6h3Qsf1QVU7ctl9lWnU5INuCsTeu0x4X4ssqm7rdDTRGiqqgSLhHFhqs9zhUOdU14O0gZL9a8ZQ9pJEZFJiy+V6w7h+a1vI7sbWpQaIkEJz9fJefLbhXl1pPnIO1Okf53vVYGomfXaXlBcWkwWbWMzb9BwshdK7w54AhErsiEgBhqYgaS+txq5m7PpsQlHwagtE5ep5fUubxnIsjXEwAbBm42P4MpWYiKhqD2HFQ6EOZy7nw8Ddw8oAMr7AOIKVwHbycLcdPrVu2HYrq6VdM6XlhDjqJWK3NUxzr6k/x9zZcw4X1N2ZW5AZLHQHRneT1qBgBfW8fINnW7lekN18lnvW+T/9sNk3/3bqFu0g+8aLmF00o86V6daTq2lOmLDmE9OA/MdXL8P+wp+Uxh7cA7kJwKIcx6qA+/KgcR1GQhSB24HdF3AnSiDgMyTcFkqOXYz8eTlnugVU/n63qTlVdCXuHcHYchMIbMUV9gTFGJ3KA4uH0l1Tev5qf9eUKyqqgN785Oexfm7MgFvQFCEwHICh3IFns3OrdvwypFBoYWzyBOKwkE+ngQ6O3ptj1JLvcvQIRaiven0nix3e2a5fws6+wJJhm2Uav40oAvTci5rwjuSq3RSte4YIyhHUjUFUslOkBXX8L0RQfh7HpRVXx5KRQdFZLQVCtkZ1eVLPQNA59g57VpR8/kcvksqikLBk2DjmqGEYpkqJ1e2XIeid0mxFNLOUcOpK+VYPELwAeTXBfn44cb3I7L3wplZ/44mdISLEZpZ9c9z6tLD9H/tX+BBP9nsOUNKD5KY0gHIQS2vPH737FZ4I1E58thBtXCrNeufetJFwWPWqVO6SIERv9dfeX+d8BRlfP8yomOSRm/cLUQg4uFxUHQd7wcji10sxX+1JjBtye+lWdTZKpUUTyxhLZlmwCFHktH0mPJiAsrTQsPyrNcp3N7O7+qkV7G2QxW5gCgi+pIe30hjUZjS2v591F6Ct5OJm7RROdbWYG9eb9mqLZMzjYh9c9X0h1fJOrVA98IEaYSacq+uayf/xbMGaE9zwFmDxJVxOJ7/3f25f8qMtZLO77mmX/vvv8PwuRSPt5mt/HYmBQeHplMtyB5NusyN+Dv5UHD/xFrmKIo/Jz+M/k1VVxv2Ey+vhVM2cHR7s+ToC/jc6/3qDt0geIZF3ER/yIySkU48MENPegeH0Jtk5YRVFZnIqe8gapGM0OSIy60iov4G+MiEfQnIbPMXbp+2fvbKK5x74QtPpjPCSVReyNAbFH3fneAxxYeYeaq03y6JZMJH23nwDnJWakzWnhlxUmZ8QiOg5TLmv12jqrw6JMYRr7JBx46pKmKHJjwLqW+7Vhuu0T7nj5O7CZTd4kFovwMJI3m/Q0ZPLnkFMerPdh+tty5fEKYH61DfXnx8s58eXsfQv28aBPux8tXdKZDdACvrzqN2Wp3ytsd/u32LsqDK3q04qO64Wy6IR0j3rSLdB+MOg+NOtBu9JNBdXHMcE7Z43mxcjR+Xga+sV1Kcfx4sckdXySzhjqDECU6HRml9Ww2yL5a8HDOJPVMCKGMEG4wP8vecSspvnIhE0vu4VBuFSabXUi3U8slG8IxUDyyAF6PF0ufX7hYzzx94Lpvob5YgqP3fyWd16M/ynIrpkm5961vi2rBZhG7wfZ3wcMb+t8vFie9Xqv8FtbOvYM/aJqEis67RvbR4C2Dh9C2ENQa6gph7ighlRwzzCCKoa1vw4+3yPfCkzitziJ9t/uck/hxYMXRIiobzJwucp9pCvb1pJ3qyW/Eh/zWYnU06uWcRfi7q7l8vQysCr6eUz495Fz0uUdyqhzkR2A05fXa4PtQbjXpSjx2RceZ9XNlBnPXxxJw3mWSHIuQNmKbBLJS7tF+LKYLq0auY6b1RlKMX/O5/1QW2oYxxneBkD8gM+e3LoVWPcgOHcBXtrGAji+sY/FtyMd28Htsu2dz0J7EEps6o16TR4ahLTfP2U2uSu72TBAiqFItUVvTaGZA+wj8vAxsKNALQVVfAgYvsup9yFOa2x0BDtiTSXxqJUfzRZm2+ngxc3blM+rzU9jtClO/P8BXVT1ku7teC4mDmL7Xmyd+PipWJRU1Lg/pX48VcWz8Unj4CO9FvUpwWBTz7+mPopJDZWG9sKMnyMeTXJWcfu/67nx1ex+iAn3cti/MX8gdZ4bYmqflugX6rb2SFH0+Nardc71NQu6vOSPHumtcMEpkKp46GwEZy1E8/fHXmbjVsAbmuagEPhusKdfi+4sdFqB1HwBK6rTrI8uuhc0/ldeXe0yPwIjnJAj8ik/EgnJ+oDrAL1NgxcNCCJxcCqufdv88cxPMv1buERV5lY28vuqUc2a5v15TedTpRYFnM6jH69jC5r/5346Ty+CTvk47nxv2fyXqp98gxgBpF1Uk7ZtBaW2jG7H7p6PgAKROoHPx8yy0DhGFSOZGIUkctsDzUZGh2fmA8frdYi+qL2Zf8iPMtY6VdTjI++ytEBjLmYHvkWL8GhNePLXOxS424T3t70GPyv9eAXDlLCG5RzwrJHKFC9mRsYFSj1jWmruIjcyl6twbp77irf1vkVGVAanjxQ668DZ67HyAaw1bCNbJPWrPayELpCxdLFhxvZp9VFRjpJIgFj02kTev6UZAfFe8seBdl/vbx7gllJ913vctovgYfD4czA38YB3Oy5abUTx8WN9qKmY82Zc42X35j9Ng/Yvyt9s1psj+Fx8FwGasIzZdCHX7pTNh2gnwUCfOvIOksENLltKLaBkO9WLhIUhf85/dln8R5vOsYcG+nkwb3QEPi6pqrsjA39vwf0YRtDV3Ly/uepFZh17hEv1JNnsOgZguHI0Yxw6bTIIlnvwUFAV7U404D34LNss/Vd3wIv7/xIlC6ft3bhVEqJ8X1Y3axEa/19Yz7O3NKIrWR4RmcxEX8TfGRSLoT4KDUXXAbLOz4mghp4pqURQFRVFYf6qEQD9f1tjSKG0nqhjXmf7ZWzKd2S35VdIh/HbXOeZsz+bbXZr1yWy1U+EyoC6vlxyT2GAfKhsu0JmP682M1nNYbtck5GV1Jrmbo7VS0rZ4jSia8NF21pwoxstDLhMdsP3JEdw2IBEvDz16vY4t/xjOLZck8viYFM5VNLIjo1wjglQyR6/XMf/ufqx+ZDBdWgVTWGNkb44QXUkXIIIcKqRfk1+CuzdSNuEbxprfIFuJ5Yoeceh18GRmF/cvJfQHL6nIdO3sndyX0ZfDPn2Yx1h6qvaeTq1kULfb3okb52exqKodx+r8uWrWTqb/clwymkBsX44wz61viYLhxC+aQgWgVQ9R9QTGSlBw6Um48lN49JSECK98VCwJB7+DVU/KwDRzI6TdAZe9Bv7hsh4HEeRaTQogKtWpJpMDGgV6PXYFlKnb4fKPtc/6TRZC7841QijV5Mqgz2qElLFO1ZiHXkdxjZH4MHe/713f7KOwxsiA9uHO94J8PJh/T39emCjXx73bAykO6cWmpCcBKXl8PkLjOnCX8jw8Vw7j35br67blVEw5htFic6s0cCi3inwlkvm2ESTlLKBi/mTJwLjsdQCyyuqxKMDd65lgmcmIny1u/vhcezhGvDHhxeECuf/snn5YbfZmA9SCKpG99koIYUlDZw7Zk5jpOQfv2hx+sg3jEcsDmEe+BMEJvFfQiR0ZFZwpqUOng+6thQh64uej5Fc1Ut1kISrImwHtI9h8pgwl7U75kcBYiutMDE3VFGgTTa9wZOiX9DTOJkNpDcCbq+Ue335WOmgWm8LRghqKqo3MreyK8uQ5GC0DJ4dcd/UJzUroSgTdN+8gE+ecYPrmOnZklBMbLGSFKSgRgLwgyWUK8PZgeKrYuUZ2jGZ4anOyyvGQ32rvznSLuk/Fx1Dqy/CxyfGN18k2z7ZdTjfjF+Qosq/J0QF4xmrtSEX3yRgVT57znCdVzG7UgnEdZIQluI3kVkV3FTskUFJrdLY3jWhE1YIzCutOlqAMfgxGvSD5aqGJznwWJbg1p+zxQugd+0kIYpsJfrpV7JXlLqHwaoU16grdjuNnW7LYqFZlSdblOz+z2OyM85tPh4YvyO10r6gyFt+rqdj+DnCQV46AdQfK0qXtqskVtdZv4cyvTmXN9R6bGa3f77QZ/uloqoKKDNI9klHQM916F3aDtwT0zx0F73RwtwrZbWI1UgP8f+z1PZ9YL2e44YioiYDjphh+tg3BQ7HA6qdkgJSxATpOZEdmJSZV5fZzjg91KddIWxrkou7reo0QQ1O2SVt8+UfQbrh8lr1VLE0/3YaStZkfjJfwtZNL1NqiYG8JfV+csRj63wejXoRbpMLg/YalzuWUn++UamYO2KzwhfxWXWTvZgPf0jojoX6eRAX5cF1avNNSG1qfwe9CUeT4gdwnH6fBR70vrErK3gbWJpS71/O09R7m2sZz4raTpHuIVfwH35t43XIjxUqodt/v/1L2oUa7r/DwERJNtdV6YKOz/hwfWK9iVtMoHvy1jMa7tsKkufDwEXWC463f35//X2C3wdGF7qSdqV76GMZayVLreLlMpjjy5v5maHIJi7YrLtejo+3O30crzwbq/9WqYaWn5b79T6GmQEh4VWV6plSszU2Nueh1CnsMMilTajTwP9bpfOh7HzGN6ShzRqF/I4FXZzxKYfVvBLPv/AjeTpLJzIu4CBdUNpid1cHOVTSg10FigI0wP0+357prV9qVCAL+dyeCLuIvw0Ui6E9CS9VJ1p0sYewH2/hu9znOlNRRXm9m8tD2TLY8St+T1/HxxrPM29PyjN3DCw7z2ZZMZ1nM6kazkxx58IeD9H5lvZNEKq83ExHoTai/l7NMLcgs9/RfjmGySievoNroVHiASgSdh4pw90Df0joTozrKoPG3Zh+GdIjEy0PPjoxyp780UFUEAQxIiiA1JojOKhGz5FABEQGyzS3BoBe6eWBaL2jdm4RwjSTp3jqYrnHBbLF3Y6blBtJjLxc71VWznceqqtFCIz5cWT0NXUJ/LFbZ9rgQjQAJ9vWUamcq1pwoFvLlhWqI6gzb3hXrlavFxNU2AND3HrjfJRQ3dYIMHq5wIWny9sD+udrr7udVmGs/UirMjZrB/pxKxry3hdXH1YH/6JfgH5kw9Em47hsA3lufTrc39nI6eKBzFU34CKGX0B/63CVBy2o1mbz4icxYLtaGzLIGDuZWO8mNSb1a0ycx1JmfdG1aa+34+HkSE+zDjX0T0Okgs85A/+LHOa20wdtD7yzd6opOrYIorDFSXKc9SBSvAMZ9mc7MVaf5YW8ufRPD0Ou0TKLFtsEYdArhOcuh/33YEwaSUVrHiHe2MPKdLdgN3hy3iX1vR6aWAeP6sHJUpSupNZI0fVWz6hpHVbtlWmIYoOMT6xXOz/bZpTpfToc7YdoxVqqh6JtOl9Iq2JdQP81Wsvp4MTVNFkJ8PenfLoz8qibywwfSFBAPIQkU1xiJCfYht/3NrLP14pjSjkNevagiyLmO/ecqsdkVdmVVMDg5Ap0OVh0ros5kpbzeTJGqJFQUxWlP25ZeTmZZPRml9W5EkAPz9uRS2WCmlXp9N8Wkscrel6PBMngM8PHg0dEpHH5+NEE+ns2+D2Lvc2CDTVRcO9YvoeYLLfT+qF0qjNnRU4u0JQeeHYW3h4GwRC0DaklZK761jeG0PZ5zI2eJktEl/N6u6HhwVTn7q/wovmk9RMhnpbUmNwXhvJCpPGXXAmPHfbgdi01VHbbRrv+Cm7cyzvw6j1geENXHeajav1A622fXazPlLhUTHcf8iKq8StRpihN/jJysFItkul+aeiB+1Kr7/bejMktTBGRvE5LMoqoCf7pFW06tFFdZb+T73ee0SYrsbRLmm7EBul0vYfnAUP1RsfKlr4Etb8KJJRfeBlO9KLH+IBQ1aPyFg9Lum/GkwT9eCC2HwqbgoAyCFUUssAe+lgGv3pNT1tbMs47SVtjzFhZWtOWU0oY1tjQ5f28nCRHR4ybOVWjPbyse7O/1urSlrohMleeM6zMgrC1EdBBiac4IyN5CfvglzLeOIF+JbLZfniqRtjF3I4pfOAx6BNoPxxLSnkR9CU2KF3OtYzHU5Ytdu75UyJk5I8Vqe8kDdPsBrp61E0VRWHakkCazjdJak7vCLyJFqvg1uhQLsBglg82BPZ+hfHkZpYseR5mZIOq5YlVxU33uwkUTaguw6r15cps2+M6qNDknrxYfKuAz20T6mz6hIXEUXPedqLSyN7tn+Q1X85YyN1LvFcmPtmGYr5rL1qhbeHttOsuPFLK9MkgIOL8w6HmL3LsXK5IJji+GxXe7Z3ateQa+uwq+mSBkSeJg6W/k7hIL3oWqZf6Xotao9VFtiov9q7bISSROsq+ltsni1pf7w5jVT+7b/5R1Lm+PkPBrngZTPdHpQloH0YhJ8WRLXWuunb2TlUcLCfb1pL7DVdQrPujUtnoQh8kqU9suq1nIY9cqh1mb5f9t7/6FO/XnQvmb2hr/29Hr5XUMnCkxGAXVTaQEmvF4sw1jquZTZ7S2ON4L9/fmqnYKPXVnpb6QOj4tqzMx+t0tvLzi5MXz9TfERSLoT0J+VSM94kOYeXVXVj40iABvD/Zky0P3aH4NP++XmbCJ3bUZxrfXpvPsEslyGdA+3E2NAfDBhrPOAcqKo0W0f+ZX9udUsuaEDFIcobXl9SYi/L0J9/ei3mTl2SXHyCyr57116czbk8v6kzLLXVjd5FTEwHlE0B2rYehTFNnk88dGa0HQE7vJNg/p0Lxj64CPp4G0NqGsP1VCqbpehyLIFSkxgYAMvJKjWlYDAbx/fQ8WTR3gzGcJ9vUkOkisSJ1aBTGqYzSgY7btcpYlPisztSEJ7MqsYG+2e2enf7twZxinIwcFINzfi/wqrVPpJIl0OgmPrsqW2ee6Qucg1mgyOUODtZ0PFiXQqBfBRz2+8f2kggpo4aQx3STnyRGA7IDBA4Y/DcFx7MqsIL2knrfWnGb2lkxe+/UU+EfA8GfYY0rkx325/LgvjzqjlW+PNpARfy2PmqdIKXMHet0KT+WKfeGJbH482TwnotZo5eiMMbx5TTdemNiZ2GAfJg9p5zYIdxAGPp4GPA1aU7H6eDERAd7oWtCGjuoYhbeHnheWHXe+V1xrpKTWxKID+Zisdib2aEV0kAxausYFM2jIGG0Fw57ijTWnGfWuKBdyKxudyhyAvdkaEVTucv3mVcp5dJCQW9I1OXSDycq83ee4tHM0l6v3n6WtZp3MUlUtWWX1blV7ThfXkRDm57afFQ1mFAWC/byID5NB6oj3tjG24hF2d3mBigYzsUE+VAx9lXssYoFyJa8AjBY7xwpqKKk1MSgpguEpUXy2VVOXOKxj5yoaqW60EOrnycmiWka+s4UrP9nRjAj6x6Upzr8diqDQ8Cimmh/heH0Avur5M+h1hPi1TLyej2LCyfVIZGD2B4TUnOYB84OsHrqE281PNls2XL2nwgL92OYnVbtmnQngQ8NtXGZ+g0xflSC6ay0MfASASgJZfbqaa2bvkmBmROmYXd5AgotarbjTHSwwa2XtTxXV8uGGs3R5YQ2f58U538+tU1DUx9mr1pupu2EJ+6/ZwzzrSPKVCEJ3z5TO9rxJougBIUgyNoC5kRBTPk97zKP3qTfY5z2Fmz02OEmv+TYtmHyn0hWm7OBM7BVYs7a6d7r/W7HzY8mSuuQBGdwvvV+UinXFYgPqfpNYTfP3QUUmAe+149CyWdQvf0ryyb6ZIP9MNdDmEuh5M6ttfRhmOExJRSX8dBtselWy2lqq7mWqk4yX766EkpMy6DLWSkbMBTqN5YdX0qh4c8CuPYeOR10uf0xSSfX8fUKWvJXkHtoflUpmlZlCIhhk+oDFfRdgHv8hpyptxIX48qDlQW3ZEdOhVU+Ka4xus505rhM7aXcJwa9vTnwDYoENaSOZczf+yGfxb1JpCKfKIxKbosPm6c8d3u/wWrvvabQ0okNHQX0BlUbtOWVPEFLznBLNm9bryU+6WT54Oxk+7g1Fh8E7mIZBT6Og50xJHaeK6njoh0M8tfgopXUmotTn467CXWwt3U+pRywxpmxtOxffAzMTNCJl1RPocncRdXwOOnO9BLG75vnk7sZktXHPt/s5WehiG64tJM8awk8HtOpoZ4pr3Z6lDpTVmcQ66x8l12GF+px65LhWCRU47NufjwMfxqv7NUzsrRFtbm1d4kAh7i7aw4S0W3y3/O0I9q8rcSrinMcooR+kjhMb7az+sODmv35b/w24EkH27e/B9vflRV2RTKClTuB/mr6nbdY8Oj6/WizwmZukSufvDUhdVaIVmRde7n8TjqIeABnrCS2QdixEV89RpS21Fj37cqrILGsgzN+LGwd3ZqlN2oomxYvu+izK64xCGK+dLu3hac3C68hAo/yMFFnY+Mq/v81/4TNv6eEC+ry6HqPl/0YG1H8UpafkOnFBrUr45FYXExQqVXi7lMr1U9VgdiN1PLES4W3h3Yop/OL9AqA4s4QOnKvibGk9c7dnO21mF/H3wUUi6E9CQXUTbcL9uKFvAp1bBdPbJSD512NFzNmezfVp8cSF+DJ9XEdGnmfN+PimXnx1Rx+mDG3vfC85OtCpNHJYRJYe1uwM+VVN5JQ3CBEU6EUv1f70/e5cPt2ciZ+3dFzPlNRhsyuU15vcMnkKqpvYdLoUu11hhyWZlxuuoFgNa3WUhgcYnhrF9ieH84hLlbCWcM/gduRWNvLhhrMY9Dp8PZt3nMP8vZzZQcFhOdy08iYs9uYKh3aRAUSHNXD3mrupN8vgYss/hrP9yeF0ax3CAyOSOPz8aCICvNiSXsaBc1V8szOHG7/Yzb3fyYyxw2JyU78Enh3fiRcmdnIj20L8PMmraqRvYhi39G/jJN0AIYLUbBpZyY/QdihTMgfQ6+V1zmBsJ3rcJLO7DugN8NQ5mHZSck1Gvwx3rZOKVip2ZVbw6eZMao3a/juOf02ThZmrTvO5ShBsOFXC9Z/v5slFx5xEW0W9ifVJT7PYPoSqxvPIKb1eCC2/ME4U1tAhOoBtTwznlv5t6BoXzF2D2hLk44lBr6NLXDC7nh7J0+M6EuiiFnGQNeBesrSguqmZRNSBpKhALu/eisN51ZitdvblVHLwnBAbjpKUCWF+DGgvoXM94kN4dGxnfox6mFe8HwOfIL7dec5tnbsyK5x9uuIarWNYVn8BG+R5WHOimFqjlbsHt6NLXDDHZozh41v68XXIA8y03OAkEKZ8f5AuL7hnKSRGCNmz/lEJQV1/UkjYYF9PZ+6UxaaQo8Ryw8/ykI0J9nELVt+qklIPj0zmnWuFFFlxRO7j5OgAnh3vTgweya9hb3Yl21Tr2M392jg/qzdZnUSRA7cNSGR8t1jnbwPEqOcuvaTeSYL+s/jOJoqKnbZOrLD3p3P3flS6KJvAvXIgQOGQNxlueodKgnj1KrFuOrKJ8Aujsvtkqrve/wWg0wAAIABJREFUzv+YtaqHjmv+qx3ZFFQ3cWUPjeBx7A/grFgxX1VRvlnQhYLAbtBhLPmV2iDUjp4s/54sPmthuvUuVjrC4R2ISxNbTslx+P5q2PQqtyormOyxkrENSwhAtqde8SXV+BUvWUU1ExHgTWZZPUp0Zz4+F4+HpU7sUp8NlcHHhpdlMGa3y4y1K2wWsS4VHGz5YBceFkLlwNcygHEEO9cW/WuVygoOyOx/RSZkbxFieqBL+7TrY3gnBRSb5MnFdpPf+eEGvGwNvOM1m8CDsyWfDLSw5JiuWGx2ltoG0EpXSeyBt8HaBH0ny7rWz5Cy3w4VZVUOvN5aK7H+6SUyIPn1cVj+kAQKn4+io4Sk/8wOe2fMSHsU4ufJCr+r4JkiUYhEdJDtPbkUGstFkaPCPnAah3OrubFvAh1SOvPCHr1q0ZZJAcc6AUgcwo/7cll7soSuccFkvz6OAG8P9+IPE96FGy4Q/g/Q71545Cg8kQkJ/ahutBAf6sfXdw+imDBqQzqxvb4V+sj2NFobifKTZ7/ZprXZHu2F7DynRGPCi+3JT8jEgQM9boaHDnGmQntWVKg28PUnSyitNTrbnHvX3cv9G+6n2C+FZNMJsRApipYPdfBbyfkBTN7hfGcdxa+2vlB0lJq84+TaIzF6hcKKR8g+uIG9JzNZtGCO83eV2iJK0PoHQT4ezN2e3SIRVFpnkjy9gQ9D1iY572HtRDXrF+bMADpmbe0sDT4sResbua2zdV/53yV8+1/BjGUn2JP171cX/EOoOtecHG2okCp4R/+NrLEV07S/z+2S9iV9Ndgtoi52IKqzXEfj1aqkuTv/HuS1imqTpmCzFR2B9S9IQYmaAgiKhWu+5JBnT57yWIDdbuNoXo0Qzge/dVeftQRX8jh7y//SHvwOys5oVWDXzxDCDgikiQP2FLdF24T50TbCn9Uh17PIPpT3rZOI1NXQc+dUIYz3qhXGsreJOqiuRLIL+6mK2qzNYq1sKX/s96AoQi7m7ZPCD+cuUFn3t3B0IcwZJefuD+J0sTgpnKqn85G7W2zEfxW2vwdfjfvrfu/PxKz+kn1qbnAjeA7lVpOh/4STfmspMhjwQEi3ykYzDWaNgJvt8xoh33RGp1qyo6imtknaEteMXNeM24v4e+AiEfQnwGZXKKo2OgeGAG1dLFiNZhs9E0J4+UoZGN0zpB1vXqN18rY9MZwwfy+8PQw8NTaVa3uLPUevg8zSevxdLDjf7dYebrd/tZdhb2/mXEUjEQHeDEiK4L5hQiQdy5fMEYD9OZXUGS0oCoT4evLNnX2ZPKQddUYrd3y9j2925fDT/jzmbs92SuRdt9/H00DrUD+nXetCGJ4aRVob6SD6exlaVIzodDrNguKTzbHyY9S4POxd8cnhT9hTvIdNeZvctsOxnhA/L8L9vTlWUMOkT3c6y9o7sOnxYWx7YjgRAd4E+3lyx8C26vdkINBksZFf2UjrMF/iQn2pabJoipCAKJi6XcKGJ2/lh0xPVvX6jM11oiiZ/N0BZ+5OcY3RjShx2VkJ+B7yOAx8SDrEKtJL6rjxi928sfo0a44XU1Fv4pdD+c6qSeX12iDhXEUDd32z323VAd4eVDVYnIHk9RcIS9yfU8mmM2V0jQshPsyPl6/swvIHBzH0AuouV9LAVR10vhW4pXwgB2KCfSirM/H80uNcO3sX9893H/y2CfPjkVHJJEUFcHN/sXydjLuOn0wyYG86b/bHkdsCUFTTxCsrTrIvp5KKejPtI7Xr1PVvgFqjBaPFxrIjhbQO9XVWrwv08STQx5MTcdcx23a5nCbflu1SbdTBSVJUAO0j/TlbWo+Xh560NqG0DvFr8Tuxwb5uRJDJaifA24OHRyYzrmssOp0o/ACSowKdAyAAL4OeZYcLue6zXTy3VK7nq3rFqdst58aVDAa5Fhz2Ncfz3ZEBdaqotkVl3oXgaGuCfT2Z2zSMW81PcqvlKYJ9NQUUwJxb08h8bRwPj0p2+35KXBjZqsKqd5tQEsP92Hi6lE2nS/nHwiP0evcQV2ZdyWklodlvny2tJybIh7FdtYwl1/Py4PAk/LwMTkugFQ8+afsJ3PgD+VWN6HUw/265hs5VNrL+ZAnju8ZiiZUgavpNkSpQV34Kna8WJR/Aro+51WMdANMtdzLe/BoAFQRxSUprVjw0hLm3pTEoKZyD56rYeracrfZuWBSDWKuKDsvgY9vbsPElGey+mwozguH7SVByQjIaDnwtA5mWsPJROLlEyKKZCRLsvPVt+KAb/HADlvzfUEE0VsLHfZyl7mtLc6Vy4WdD4aNeEqAc1wsCIuHqL5p9XYlIRolIlWD68nRyveQZYvVwv58sigFbeApVDWbW2XtTqoTQ6dz3khs0WA1S3veFhDove0CUJz/d1nx7s7do+WvfTIQ9n7t/vuUNUOy8b5cqgIOTI4gJ8qGs3uzMgOOS+51WNieC4+HujZyNHEOdyUpam1AeH5NCncnqzN7r306eT2ttYoFWYrry5CIhRWKCfNDpdLSL9HdXwJyHt9ecYewH2zhX0UC9yconmzLIcukIVzdaCPHzJCrQmxmW29gYNxWLTcHiJWqbMB/ZBpNNI7INbYUIik+SQNjCWrNkEc2oofThPIzjPgT/cM4Ua7lIJbXy/QazjcIaY7Pw94qEsURSRfWJtXINqrAcXwJL7gPfUNYO/YXnrHey094ZjNX45mwgQ4ljev31ANQeXsp274d5rvZFuYaX3o+tIpMiRSOCnhrbEaNFnn/rpg1h+riOvKX2b77YliUK2kvuxzr6NfZGTqL86oWauspbFMJbqsKdtvXECH+mjxNyvMA1/yQgUpS5mRuw2xV+PpDvtL3/UdSbrHy9M4frP98F318j+5S5Car/hVDt38OZ1XL/ftwHNr6qvb/1LRm0/3Kvk5C7IKzm5u8pCujUrnvypULEpq+R+y6oNVxyn9hmb/9V1MY6HfS5G64U67yz+ul/I0pPaftsbsRu1DKlbI7+5OJ7RJ3Ydih4eLPMnIafzkQrKiio0O5bxUEYXoj4Kj4mxT/8I90C3f80/F74vt0u5ErCJZI9WZVNvbdWlSkgaYDLwgqxiVvIqskirm1HHjNPZqFtKGVKEG3Kz8t92z9XiEI1hJ3U8XD9PKmmq/fQ2t4/isZKuV4/GyIKeZAJkAuh8DDs/cJdkVVXIgq2/H2UrH3bLeP0t1Cp9oMzylpQmtaXSiXSj9L+GnLTZhV7+bkdckxaqkpacBCWPyLkb/7+5p//p9CgEt82E7weT12FTGiGUsuSDVuxKPJcMel0GJC2vLLeTFmdiQAaCaOW5xPqGJ2gTdJ10GvjlbMldbQK9uGZcakAnCy6qAr6O+EiEfQnoKTWiNWuEOcyMJzYPdZtmSu6t3IqVMA9dMuVQAJ469ruXN69FYdyq6k1Wpk+vhOPju7AqI5RRAR4009V6zgHRHaFcLWC0xOXpXLP4LacKaljgzqAPpZf47SRBft6MrRDpJvNa+PpUmcHc39OFQa9jvAAb16Y2Il3r9NyP/4IeqgVllJjgy64jFUNofT2koeBa4fYFYoasqlwYYnvhcip+DBf4kJ83QavDmx4dChpbUI5XlBLYY2RrnHBzmyVovOC90769GLgNxU8vfgYU+cdxNtD7ywd/s7aM9Q0Wuj/+gaeWKQFrTaZbXyxNauZx7bWaHF2XL/ZmeN8v6LBzDc7c5j24xEO5rqrPQDmbMt2e/3mNd0Y0iGCvTmVfK2uJ6e8ge92n6Pz86v59ZimRrhTzcpxnJffgysR5OtCQD49Vhp4B8Fx/jXriqggH+wKbDqjETgRAd50jw/BoNcRFyrnZf2jQ0mNkeskzN+bWqOVh35wLwfeNsKf7RlSua5dpD87MyuYsz2baT8eprzeRJKLvdBVhQfQ55X19H99A7uzKhjVMboZMemwUQX7etIxNtDtsxGqYq+lPJ3Hx3QgMcKfIN+WCZaoIG+8PQxsf3I4g9Vym0lRAej1Ony9DLSPDKC41oivp4G4EF/0Ltdwv3ZhboOflOhA2kcG8Makrmx8bBhtI/wprTPh7aFnwb39+fgmyfJ5aGQyYzpFc0UPISqTIgPw8ZT2JvACmUAtYduTI9j19AjC/b2woycjsB9vXd+bnyZLiLyj7RnVKbrFe8/V7hkb7MvE7q3YnlHOHV/vY+EB6dTnVLh3oIJ8PKgzWiiqaSIiUNrFid1bMXVYe0J8tXYyJtjHaS1NjQkkNSaQ0joz6HTkVDQSG+zrVA3tzqqgtM5E//bh5EUNY6r5YZZGTRVlX2QHiO8Dj2egpGizeztsnZlnG0Wlbxv+x/w073tN5qs7+tK5VTAjO0bz0Mhk0MGLy09QQwA77C5h9SnjIDhB8ndc88CyNkuw9Da1QlmjOlNmbtDyOoqPy0BkzCsw+DEJpgfY9AqoqpFt3zzvfqAVBZqqYds7UrWwPF1IpJcjsc1yVMBzGdxGC8FAt+uECHPBZycMTNukqiH9wnnYbyZTzQ+TXP8Z73f4FiV1PACnlAS2ZtVS0WDGige/qBYFUsdDYIxYzPpNhQEPSn7J1xOg6AjnOt/n/K0thvNydwBW/QNmthElUVM15O7mUMAQaoNTODpjDHNuSyPY15NqV5tQT5dso0GP0uQbw57EydC6N4sPyXXWt20YnVoFkRju52xD+rUVReiDlge5JeQbShq0NtqRVzc8JYq9OZX0eGltM4JdURS+2pHNqaJaFuzL49tdOby15gzXzN7lnGWtbjIT4udFVJA36+xprKltg96ngJ/yJVMqxFuuUbfnnqpu6HTlE3SKDeLDDWcZ8uYmXl5xkkve2s6Nc/ZgtNicGVYgkwmuiHIhnwH8u46nVvElZNENMFvO1Wl7PJ55O1HK0+Gqzymxyf10XLVBetka2W3vyCL7EI7ZE2ld8CuBOrU9+mUyHPoej8ZSSlQiKK1NKNemteauQW25uV8CydGB3DOkHSM7RgOSkzjync0owPrgSVyXN4nXdmiDOmW4KANP2RPo5dJ+3zOkHWltQtl0upShb22ipNaI0WKjMWk8ZG0mc9nr/GPhIXZ/+YQQLcWaFdmBk4W1zSwljoFLe10hZKzTLIsLb2/2/X8LxlqxJ4FYy7e+KaHEigL5eyVvSrH/djWv07/CK5ESaAxCkJxYIiq7hjK47A0Y+4Z89uPNYpdKuwN8gjH+z3KyA3q4ry9Gba9+j3z6K1GRqREG+QdEtbDoLiFJPulL7yaNcLAPeBAmqNawiA7S7gAZanXJHn5l2FyuA93ie+D1BFGwpK8Vi+qJXzTSoOQ4RHeRqqaF7v2OfxpWswz8HaHrRxfCq7ESxn8+6sskmP/AV0LKdb5KFOhAgY/DEaCjTY/hxAT5kBjux9KHurM891umrJvivE8qCeJTrnNbtTFELWZy+HuM2aLayfVqDx0nSJXb5DGiHHMlaWoKoNK9j+mGTwfCqifc36vMcrcZ2e1C/pSegs+HymRIocsEoBqPYI/uQvSJLzny9ngKFz8Nte6TWg6cLKzl3XXpzjHO6fxK58SrE2rIPI3lf42iK3MDNKj7/NOt8Fpsc3XTikfkvH55meS6/V5BCXOjTIT8VpXGPwOueW+KDf26Z7jb92tW+d/PjLw70amXg0mnw6DItlQ0mCmvN7HQ60UO+kyh1uDu8EjR53NIfR5llNXTPiqAuwa1Q6+DsloXd0XBQWlf/0ZKxP/fcJEI+jfRaLYyQ1WixLkMjnu3CePWS9q4vXaF66C0JeWMa5ZNj/gQHhqZzJzb+rD/2VF8cVta8+UDtQHT9X3i3T6rM1l5ZaVI+x0z7K4Dtv05VU7p5f5zVUQGeGPQ67hjYFuu7tWafwaOwfhNfZvP+DvgmPnTe8iA0GhtnmHzR+GwB31zZ1/uHtSWZ8d3ZN/0USy9f9AFvxMe4O3MSvLx1HN1z9bO4zH6va3M26Oprp5efNRtYG6y2nlwRDL92oax/lQpTy0WAmjxwQLnQODTLZm8+usplhySh0ROeQMdn1tNtxlruf3LfSiKwpb0MkZ3isbbQ09lg5nD+aKKqmwwO7OQHFh8UJsVu7pXHNelxTezZmWWNbD0UAENZhvfqRXmimqaqDVaGdc1huvT3K+JC8Hbo+UcjMlD25Mzc7xTMRIf2rIaBiBaHZCU1Jq4fUAi393Vl+/uEhXaLf3buOUNORCmKoyWHSmklYsdyGF39PHUMyhJmy3Lr2qitM5En0TtvurW2p3sMlntVDdaMFrsTiWA23aqv6PX6egRL79z//D27Hp6BK9e1YXhKZFc2jnaubzjOnD8Zkv37biuMU6FT+tQP65R1X2uNsleKimXlhjqRgIBjOmslUxf88gQvrpD1CzX90kgMtDbqeRSEJvLBDW/KyrQh89vTXNmAHkY9HRpJYqXoH9CERTm70VssK9zUBwV5MNVPVs7CZhv7uzL3ukjL/h9f5eAeINexw2/0Q64fqfrjLXsyKggUm33PrqxJ09elupU74G0iZ1UgjkqSOx3ZfUmFEVhT3YFPRNC8Pf2INzfy2m969E6hLBAX1bZ+/HwwhPOgeHZkjpeX5fJwCOXke4v7WmAOuCND/Vj4Jhr+WyyS3YVYlftGBvkbCvfsl5HXdoD8PBRuPEHuHu9LKjTw+Rt8NgZGPKEDDiqcqgMSoXSE2IXmXupWLMy1sOSqeATIvaf4c9KJo0Do19igXUYfcx7tBlmRYFNr8EbbWDDS9qyXa+DflPYY0sl265et+PfgXFvQ+pEbbkeN8H0Yug3ldzx85i5IdeZk0VEBzKrFVbZ+6Gg5/2jHuTpZBZwo70niw7mU1Qjx2mOdTz7A4Y7q/xx1acwdqZkEaGIYmfgw+xJvI/J5ml0Mc7htoaHmOdzI0rypTxmnsJsq7pdxmpRNLzRBhrL2WfvQJswf4J8PPH2MBDi50lNo0tnWW8QhRfwVMkIOla9y/V72rHoQD5fbc9hUq/WzkkAB1nsZdA7CWwTXmwr9uSLbVpH3VGY4aqesr/VjRanrfNcRQOP/XSEMyV1Trl8TZOFBXvzAGm3M9XroqpBFEGOtnTtyRIM3tqAJ9RH2hpXaxgAXSZBcGsGqeRxbmUjc7dnY7MrHMqtZvvZcnZkljsX/3xrllu7MjTFXeWZGh/FPnuq23ub7UIObDX0Y59XmjOD54ii5fI0tr2UR0d34Ji9Ha10LYcLHyOJBff25+s7++Jp0PPchE68epVmpQ5xUfJVNVooqTVpgdxqk2e12clJvI62xu+ZNrEvV7hYQgESwv2oaDBzrqKRtSeKmfL9ASZulWWSD7/BR54fMbRwjpCg51XDW3q4gHEfbnPaSB1wEEED9ecRR8Y/aQa7IlOsj/OulUHjgIe0z+aMgHc7YS88wlprD5TQRFFt1Ba1XKHNodw49J38v+sjWHgbfKgSPPF9pHKiQ9nY9VpRHwOfbMpg+NubySgVslBRFIhIAa+A/5wNygUFpeVkz58misWFt4tibfcs0BnEwvhJX6jJo9pgIFCdULNFJEOv20TpdO9mp6rs6VukDekTUIlNJTSW2AZQF9FTlEMAZ9dIBtbC2+Hr8dIGl56CmK5CBJWdlsyglhRYF0LWZrFh5e4WxcyckUL65+4R9Ytig92fNP/enJHw2WAhpSJShATqNxV638H+QCFs99s70LVDezb/YxirHxlCbIg8F002E8NcJnHrgt3tY5NK7uD4IPlN753vkWuP5IW1LpX62g2Tirh1Ltbl9zpp15Qr7DbJ9XKprknKeFHVnl4hdrSD6rWZt1vIn1kuRP8XIySDz9IEmRsxhabwfKFMKI1gH1FHZqMsvN2dlDrxC8wawC+fTmf7xpWEF27gdY8veHTvYBZ//CR5lY2aCvDMasll8/CBs2ubb/+fhdJTUtnthxulCAtoluaNL7sv66mqaEtUsjW7BeuzA3YbrHtOJkJOLr3wcr+Hpio5D65tiKUJGrRnBaVqCctHjkOXawg4s4gfE08zOiEOL50Nf72cg0a9DkNTBZ5Yqag3UVjdREd9Xos/e7fXWk5n52G3K2SWNtA1TMHQVMEm78fwKFP3vyJTql2e+EUyVy/ivxIXiaB/Ez4eBnIqGpjUq3WzsOeXrujCU6qSIvU8xQHA5seHsfGxoS2u12G90emgQ7R7qLJrNa6uccH0bRvGkGTt4ZAUFchXt/dx+876U8JkB6sDK1frSpPFhll92FY2mJ0D5H8FYzpFs/qRwRxu+oJV2S1nW8z+n958eGNPjHbppBhtLRNBOlpW+7iiXg0H7hgbyLMTOnH34HZEBnpfMMPGAYfSo1tcCMF+nnSMDWJMJxk8/bBX6zzmVDRydc84Zwl1EMXHZ7f0JjHcj1WO6l7AjowKnvj5iDNotLDayO6sCq6ctcNpd9qVVcHHGzPIr2piSIdIwvy9qKg3u830do1zJzRcfboOhUSYS+jv5KHtqGmysF/15TpypXarOQj3DUtyU6P9Hgx6nZPAOB9mqx2doZ6Pc65keebyFpeJcskWSooKYHByJB1jgxjXNZYZl3du8TvhLufLYaEEbVCWEOaHn5dc90M6RNIuwp+BSeHcNiDRuWyon1cze5gDfduGN3vPoQiyKwrTRicz6+ZePD4mhdhgX2KDffnqjr7OIGSAsV1ksNxZJVgAVjw4iLXThvDl7Wl8dUcfZt3c2+1YX969FdNGdWC6Sw6Qw27WyUU19+nNvRjVMYrRHTXiKSUm0KlUc+DqXu6Dpd9CWmJz8uuPwnH/nK8y8PE0NLOgnI97h7RjqmpRjQvx5bkJnXhgeJLbMjqdFnLtms3lSoCDnCOdTq6jyECNwI0J8iYy0JvyOhOZZfXO4G2A2BAfao1WvDz0pMQEul1bOaqdZ/R7W/lsSxaFRHBFxX3stacwL2QyIHk0U4e1d1ObOeBadfGE0paNre+DUJXwD4yGBw/CtBOSuRMYA6rl56i9LTeW3Y7F4Ct2kZJjovb5fpJ0lia8K5kper38ffuvMGgaDHiI1fY+osrI2iwqormjRWGg94Ah/4BLXxN1wKQvKOk/nSmWaQw3v4v57i2QdhdKn7uZ8etZrRIhgKcvjJ3JZcvlnjqutKWg073Uj59FrdF95m52/WCW2S7hZOKtrDpezMxVpwny8SAiNoH3Qp5yL7EO6n4Pkb/T7qCk1sgaex/qEWLmpfor6JN9D4vsQ5hp1SooFrUaDV6BKAExLKvvSBuXSpHBvp5O0qKszoTRYuPJ+hvobfyUBce0QfwLy05gttmZOkwjNpKi5NnbXlXlZb42jtMvX0Z8mC9zt0vndGiHSCar+XyJEf7snT6SYF9PVh8v5mBuFY/8eJhFB/P5xiW/LL24jtzKRm5X26B9OZVM/f4ABdVNznbaQUDrvbUqdC1Zw1xx6yVtuLRztPNac0yurD9VQl5lE1f20I53k8XGrw8NZu20IW5WXoAQPy+Wh9/BQXsSh+3tmGx+hKhYmRDYVN+GW+fupbrRgo+nHgU9l5te5l3LNcS068JDI5MZOlzLs1tkG8xX1kt5w3IDX1vHcCRgMP3bhTvz/s7H+QT35O/28/oqUbY4qk3e8fU+hr+9GQU9g5Ijm62jr0v7VdlgYfOZMjKVOM7cdYZ67ygmGPZwgE5ChOTtEcVHxgbY+REr167hEv0JSmtdFL6NlXgd/xEPrFxjEOIoz+74XUVK2y9/RBQbIJXwjv7U4v4BMot/vv1n2ztyn+btltejXqTu1vWUdbxVXtcVoles/FwSiymiqwwA300VS6UrTHVaxacTS2Sbdmmkgj1xCMaoHry55gxNQ58DoCH1WufnDrXYM78cZ8p3B+j4/Go2nK2ClLFwavlvEx7Gmj8WntxULdv2z1YJqs4lfFZH2qZ/Ka9PLoFPB4hqpN8UyZOqPocS2ZEqvZ5gRa4Xu2KX9jFxIHj5U22UPlOn5A7gHUQHj0KUCrmfn7XcybttPuGLPr8K4bZvjigvvIPEjvVBN7AaRcmZOFjUWR/3FjLaFa4V6lZMg/1fyv4WHhbC75sJYk9aq1bAS18tA3udQfKZjvwobXbmJni3k1T1cmQX5WyDNgPkYegdABPfp8wu7Ub39vGE+Hnh42nAx9OAyeU6c+1f1Qe7W7NzlBjmlKWioEOHnWNKW7eYAUd1Tuf5/a1zt/l1bb8cuHE+9J+q5RptehWTqYnq4y5ETHA8BKpt1Pzr4dUYyFjPCVsce61aP+BZ653o8vZgznAhJk+vRCk9yXTDtyz2nsEbpte40WMTHjo70z3nU/vZWG567gM+WLYLe8YG6HwVloRBWNPXX3g//l0UHRV1rWKDPndh93Npq44tdFc1NZS5f3f5Q3BmtcRzNJnl+ik9BW+2k+OyT7LXlq1cxsqj5+UK/gYUReGzLZnkVzbA1xPFip21Sdqrn++CT/rBW+0lHL7kJBz5AXxC2FvpxwcNo5qtr7VB2osGvR4dCp38ajhaUOMcNzbDpa8Ray8humgDBdVN3Kf8wBNHLoVf/0EbihhY8JVcWx/10r5zAfXXRfzn8a+liF6EE3q9jpUPDW5R5QAwZWh7twBoVyRGtDxoBU2507lVEB7nrdtVibDsgYEtKhN6qqqD+4a1Z9Zm7aHuWK9Op2Pf9FHszCzn4QWH3b4bfd7g75+BTqcjNSaIRWsWsejsIsa2bV7KOSrIh8u7t2LBSpmt+XcUQV/e3odVx4ucSoI/CocFqlWI9lD98MaeXDN7JyY178BosVHTZKF9VAA392vDG6tPY7TYiQzwJsTPi4dGJvPoT1p2x2MLDztzGwDOlNTy3vrm0uAPNpxlcHIE1/ZuzYK9uRzOq3KrjjIiNYr1p0qafQ9wKiQcio3x3WJ5fEwKK44UUVTTxOhO0aw5UcLHG8+y4mgRrYJ96PgbNr2WkPnaOMw2M9XGakJ83Ekpo9WO3ksedgvTFzKx/cRm33dVNLU0mG4JrsRd37ZhbHp8GCAE0F2IMgIkAAAgAElEQVSD2jKpV2tnSPLUoe25xIV0fXZ8R15ZeYq2Ef4snjqQnIoGrlArUc29LY0QP88WiUFHGLbdruDtYWBc19hmy7hi5qSuPD0u1Y3o6RInpFCH6OZEL8j9cH6Ozg194jlTXMe9Q7TB6tiusW7ZOBcitLq1DmHZAwNpMtta/NwVD4yQTldLaiiAGlMNgV6B6HXN265L2oWz7mSJkyD+Z/DMOPfw67sGie3k401alRZvDz33D0/CZLHx4Ubt/Yjz2p7wAG8OPz+GQG8P9Hqd81qODvLBYlMoqzOxNV1mvgY6iKBgX44X1JIcFYCXh94tzyq7rMFZWc6BJny4zfsOrkvqD6UFLdoBHXC02f5eklf2wfqzbkqGIo9WXPLaRhLDz3B1r9Y8NDQNOk7kxcO9OKMk8GTjLbzrNVtbYdshcMMPMhAAMkrrOV1cy4RuAyFxIGarnR32rlQogYTPvw6C4kSSP/olKjreguLl70aezXNmyOmoCEwhVqdjX7ZYSBfsyyVkmRcTu8cyfXwn7HaFRvU6sqNnT9LDdFKatxXzzxo4m/g8z1/WmS2zd5JeUs9DI5I4VlBz4cD267+XDm9oIsW17lYUk9WOyWVwMtT0LiHUgyWNpU9dQk5FI2fe2cLtcRrhGuLnRXWTmYLqJgbO3EiXuCCOF9QCwW7rrjdZ6Rgb5CR/ACLU8z+kg1wfBr0Og97A2C6xfL41i4QwP765s6/beqICfRiYFM6yI4UsO6J1YA+eE+t0SnSgk3i/qmccy48Usi+nklXHi9F5VlKjqwI68d1d/VhzopjXD32Ng666oCJIRetQPz67JY3HFx4hq7yBrnHBZJXVs2BfHgHeHjx+aQoeBj0/q1ZLBzl6pvJMs3u5c6/BXP2rpqQc1SuZj7dY+d44CKvNRlFNE7HBvmSXN3BUac9RW3veVcnnuE4DYBsYFU8es0wBl4mZCQnuNtyWcGzGGMrqTIx4ZwtH8rUcwJomK8fya9h2Vu5bL4PeLZPQAUdBAYD0Us0GtzvPSFDMZK469zILLIMI9txM0sklKKdXoLPbAIXPAbxgSaEZ6CSz5XNHk1aRwTyvVLrps3nTdxqzqvowK3Ix42pWwPwbhKA9uURK2296TbK1uqn2m6Zqya/K2SbX95rpokSITBV7T1wvGYgljRbbWVBr0OuZtk3HyVNpbAr+f+ydd3hUZdvtf1PTe6+kEUpI6L33qCCCiKAiYgMVK4odUUGwd3lVbNhARUBUEJDepPcWAoEQ0nudTDt/PLP37JlMCojfec93XNflJZnZs2fPLs9z3+tZ97p/w80gFme2WVLJ89YTh20x5fQa6DnN/uOXT4e6Muq9o9FXXIQ3xFj+aP19HLQm8fHQURw9kstHmzJZH5bMpbpFGL4zs+tpA+9vOCN3llV2UN14qoChnW4RyesvM0SZld6FsnfxDaKs54UycBFbyvjlQaHeuXsDRHYSaphudwqiRgmrVSS81YUw+BmseUdwp54FxolMuetBIjK+F15NNUXCeD0gDobOoaS6ntPfD8LfMxLqMxzax/95/k8e2fQIX6V/RZewLhCWQpvKLM6pgiixelOFJ19szwJgSloH9KVZQtnSegTE9YN1s6HzbawojSO/oo5pvWcIA/3jK2HgLNC4CZXQwt6iK2DnW0USDxiKz+O28x3X56S+ShBN/R4TCq2FvYUyprpQvLfsLofNrTE9WfD7CXZkFrP8/j5UG+tAg91H0wbnxdK1jw6grMbIqkOXeP3sBJ7QCcKyGg/+PFXML143Mqb6Jz4wjSW3tAar1SryhEBbLlKSKRYpyhVqj/VzBLk5cp64Zud3iMYKd62DlwKEegqEquiJTMjcAN/fzMZPniSxcD3+0tDTf6aY1/54xl6+BVwgggyrmCu/MI3kF3MfXtR+ybE/v6VL0TGhiC04SWX0QB46250v9a83OL0phoMsczsItqqzty8kwMUSHtZmijIrV/fz34VUDjZ9O4agtizffJCJ2k2QMFiQL2+1g+cKBPlXmtXw89/fzF7TaE62GcRtmTMbvG1QudG65gCfnMjnujY+oHUDTdPl/FnFNcxffZLs/X8wt9w2vx5dJro+XlSY6Z/8FU7+KojB8Z/x476L/HjCl2/4EHhV3kxvrAI3N2r8Y6H2NCNCK/gms5jymjrMGg0ajZ0qsE7biiqsAzUb3qBL3UHOZJ3nAY1N0XTsZ3HKTOqG3R3LL/Iv/jvxryLoKqAxEujvQFrFvr13nMv3Vz7Ql81PDHJJAoEInA88P5yZI9qw/Sl7q2xlkhPi4yavIqpU9nKx8L+hCLoclBlEYm9oxlTP2sSqRe/EIF4a06HR89AY6k0iwVV2xnLXaegZH0RGQRUPfLtfLgEJ83VHr1XLZUpSm970DuF46TUEe7vhplU7kEAA2zKKcAWTxcqL16fgrtMQ6KWXSwokTOwew4NDklj9cH+H0hiwE0HSKfH30KHTqPn1wX7se24413cUE+0ba09z0kY2NGfy7Qoz/pxB/6X9G7zeEmJHSkx1GpVMSDb/GXG/p0T64uOuIz7Yi/hgLzRqFc+Pak/7SF8mdIth/WMDHEgggLv7J3D8pZG0j/TFz1Mn+8SAIE6cyzIlSJ21glpIIrppm1fDtARB3m68N6lzo997aPYIVs5ovLQxLdqfngkNFU7O8HbT8tQ1bemR0PCaFdYU0m9JPz4/+rnLz07pE8e0gQk8MDi+2e9pKX6c3lvubjYoWXgw+Tm1s/d00WnQz0MnKwzahfvSOtSbLq0CCPFxo95s4dfDl2gV5CmXAkmlhdLYpuSyjudWyB2hFoxLRa9Ro9KWoY3+iDOWLwEcuvg5Q7pnRneMZFRaBGeLqqkzmimrqef+b/cx9zchwc4qruGtdadBq4ebv2GfVaiffrP04qJ7GxjzoQimJ6+QSSAQnl4zvjvApE928e76DCrqjBjR8qPZphytyBHGr30fZsynB+k2dz1mixWr1cqxS+V8sPGM/LwX28iWH/bag/28ijo+tXmOSSSOZMy75XQhWUUuDDCBEe3DSY32469nhrL20QE8OjwZPw8dFbUm9l8oZfe5Eo7mlNvHanc/TFE92HW2mJyyWtqG+/Drg/1IsBGc16VG0Nt2D5+3hnPImsSh7DKyy+rYcEoQzZ0Uz7Gfh446o4XzNrWjIIEcIU0BkU7z1/iu0UztG9dAlSaVWExqpHzR1bhxKr+S6AAPArzEOOymVdMuwpducQFsth23V/x7rC0WQbZOo2ZUWiTBfnbSRyKCGlMESZDm6mBvvUw+39M/gegAT964qSMTu8c4dBwcv2o8434Z57CP2/u04pPJXUm1kWp+vr5MuP9lZl0rVJfrTxTg56Fj3aMD5M9E+NlUiKHtsGjcyCEEJQmUGuXHK+MUHTUbgY+7jrggL9yc1KjFVQbZ2w6Egs/VHBUT6MGkHrHoNWr2KAiNIznlrFYPZGL9cywzD0Bt89RSWUzg5CcYUnGMrKJqXv1mpTBNB3qqT1Jp9eA/pcIw/EiVr1CHSOUctaWizAWr8B6S/Dt+vAN2LRRqiv/0F0mWuV6Ud/35olCIWM2UDZoHYz/GfOtPVBtM7Mgs4hLBDEGofrItIdTgzq7A6+0HWpYtElmrVahsMtZR4hnP0GLHxHGvNZlz1ghGfLhPJnlO51dRhSdGs5V3/8xwOLcAcUGepEb5iXEvcYjomHh4qeiA5Ao2bxfjujmYXm8rPIrMJnFs1cWw/kXI2iaURSBK3na8JxQ9X40S22ass3/m53vE+dz8Gt9tOshLXwul+A/mQVwgQhAPjx6Dhw8JEgg4cLGcwzkVlGtUhNjUJRarfSDfnSeS3WPFNhP0yM4EVp4iSZtPlUeUPM4A5CbZVYdYLaJcb+ZpGPMhjyw9yPzVJznf7RlRxluSKZQaG+faPW72fAorHpB30SgJ5KEgR2N6QFh7GPsJ+MdAVFe4cy10uR1u/AzGLYKBT3IyYDAfbznLkRzRKbSm3vWY4DxWJIf50CM+kGtTI/jQfANpdZ/Sz/AOvRICqawz8WjxDaTVfcIJayvKaow8/uNh0VjELxo0elkRdHjDEvtOt70tyLBPh4rytbwjENpOqLAe3A9TFApwrZ6Nls6c8OhKevFXtFbnUHLtxzB9m/CpCkqE698XHex8RUz6V0UAVtS0rlvMS6bJ1ODOHksbuuT9IEijV1tB/hEu6uLYZOnME8Z75a/71HQtGRZHNfRS0yA+OB/NSWssapWV2pyGPmFXBVUF4pyFpbDxVBGvmG7hG2u6uI5Jw8U253cIbyCLUZTPAZf8u3LJTyhipmtXuSSBLIOe4T3LzbRTX0BTdEqQSt/eJJ6bzI0NfXXKsqE8h8wC4bM2pGQp1Vp/8iKHU3t8tbhmXaeKJjcKfOjzMEVxozhp84ItRHGvhrRFaxs2q7vdAUB3n2Jyy+vwNpaiwQzpr8ibG0KSQa0mP6Q3o9U7Cdv6DGqVFVOkvQrFx1gEx1dgVal5zWgj0ssvCiXiO6mw/d2Wn39T/b/+Qv8w/iWC/ksxMiWclQ/0ZUIj3i4dY/zlEpPGEOClR6NWyckLNOyOFGVb/YsN9KRbnBgcJOPpK4WxhcZnUrewWnPDtrNKNBcwXwmMtjZYzmbSMTYPid+O5PLwEmEgKClc+iQGoVGrZGmup17L/YOTmNAtWiY/7ukfz4DkEGYOT260PC3Ex40EW5IaYEuE3XVq9j03jEOzR6BWq5g5og3tInzlayd583jZyqMklYOkSAnw0hPgpae1rYywdag3n03p5lA6dTnYmSuMBpXBF4gSpievEUntgYIDzPhzRoPP6jRqUR44e0SjnkPOkAyRv7vHhZmsDWq1ymGlXwmpbEzCF3d0Z1RahEwwuUKgl55nrm3L505llH8XK8+spLCmsPkNG4Gfp67RkovLRUZpBj2/69mgTPNsufBG2ZazzeXnNGoV/dOKuXPzEE4Un2jyO4pqi0j9KpW/cv9qcrvucYG8eVNHPrilM+/bTK6d/YsKagvo/HVnjhUdc7ULPPQa1j02kMFtQkmxKSH2XyhzUA8EOJW19bY9twDvbzjDD3uyUatgXJdo0juEo9KI1dZikzgnBRWNjzcjU8KZOTyZ50e1l0toMwureOKnw/x+JM+lvLtaYThsQM8NpnlYO90KXsGU1prt3inYPUx2ni3m7fWnKasRBMLbpvEYp66Hid/BUGEcLbXWXnc8n3f/zOC697Zhsdr92RasPsnNH+9ku80oWersJOXc2SWC9EmyjRkrDl7izbUKU0kFpDItf089yWE+qFQqfD10lNXUM+6jHUz4eCej3t/Gu39myJ+5e/FeJn6yi02nCtD6/UV0kFWeb9I7hPPhrV0afM+8307w8q/H0ahVDio7iQB3NhqX0DHaTzaeD3Aad/099bwwOqWBaXqfpGBWPtCX6QMTcIXGSOxWQV4ySRMf7IVeq6Z7XKBsbCrdT8p5sNZkn+MC3WylYZam5zWphEqvVcsLFzd0tpeFLbgxjbv7JzT4Lgkmiwk3rYYRKeHcaCspjfT3INTXnSl94uT9B3jqaK0417JKVqNDHd+fQi9HH5Lr0iKaVM0poVTxpUX7ERvoyZmCKlYdviTPjzqNGrPFzIUKRz8flUrF/HGpPDo8WbShtyG/oo68SgNZ3l2woGaVpbfD5x5VP8Wm7h9zWN+J8NoM3lhzlHYZHwPwkMcCjqrb8qzxTiyomdQjljP1iqRIarUN4OYnuuy8HCLKss5tEeWaYz6wG7pPXYMSZ7s+Q6cPzvB0ZgqzNteT8sIfsuoup7yOnnUfyF0JT5aqYNY5oR4pzhDmsx/3Fz5AZgPrPa8l2xrGXz0/kPdf5ma//kv22AnelEhfesYHclBRYq48v4khXhy+WE6PeetZGT5DqDuyFeN1XblQyShaY+t2vIO2Ohc+6glvJsP8aHg9Aba9JXx21BoIsxGCf9q8UqwWUVL07XjOLxxH4fInhQKpzXWAlTYH5vGC7muqrW6U4GMvC9a5yyRQcZWBsR/tYOqXu1Fpaoj1F4sGZksTKtiITqhMtfTkKNEJ7YlXxMYZ3t3hqWyI6SnIHpWKeo8QHltqV8IPfH0Ty2vShBIIRImf5KsSlCS83WzIswZgnHFQlOQmDBYduUAoh/o9Jnx/Ym1xTMebMd22ktpJyyG2pyBHUsdD2k0w+BnOltuJy7XH86mqF+fD2RahMdV8z/hA2ob7UIEXF62h8mKlBTUV2BcYlu2/yJTPd4trFhAPRRkU5WXT/tB8TCqnGClnr2heYKiAENuzH5ToQHQVVxmY+tVeri19lEn1z/JY/XRyo9Jl1ZDVauW9v8rJSn1ILhPOqvfj2WvbcWufJKy21POkf8PFxj0VAfi6a9FGCd+iVX63Ms90G9fXv0y7us95yTiZhfo7+Nj/UcxoOGHrQFqQub/Bvq4KqgvBK5SLZbX8diSXCrxZGfEweAWxpt0rmFELw/nfH6c+qB3fhTyE1TucmQXpnCyxx8/1Kj3/iX+PUYa5lAWJuS9fH8sSQ2+MVg3jSj4V5/zsRlFu+PUN4j785SHhaQXwTgd4uz2BO1/hQ907DNEc5D+1w/j4fDge9SWig2BsL6HamraVGnfhOflJaWe6zV3PkZxybuoazfuTOtt/393r0cSI+7XG0x88g4g0ibElQmXrNuZrJ+GkfCy78+NctIbQvnQD54lAO+ELeZtWlmwsh3+gILgXH5lvoNDqBxUXRVlk2QUx1kidzJrD/Gj4/uaWXq1/cQX4lwj6L4VarXJQNvwdSEmQV9I8VmQ61rz7e+rw1GtIDvMhNlBMntX1f499rTG5DtaVMFvMVNbbWhY2owj6J4ige/rH8/DQ1g2INmUSkWFj3SXV0N39E/hpem+HIPiBwUnMSm/L86Pa8dCQJB4f2YbFd/bgwaGt+eXBfrw7sROrZvRj97NDeXeimNiSFF4OEjGXGuVHkK3NvRKS8bdEHElhw/UdI/lyancmOhmDJ4f5sPz+Pqx5ZABDXXTKulwoExgQapaUKDt5tvmia+PJtuG+DsbBjWHjhY0cLjyMSqXi5u6xjbZxv1wMbhvKB7d0afL3q1Qq7h2Q6LIs4UpRXFvMc9ufY9VZ1/5J/9M4XSpKEzdc2ODwekmdWE0OcGu8xGNT9iZAEH5NYXeuWJ1deqr5trTuOg2j0iJlFaXUlWlwmxDahvvQKiobk8XEdye/a3ZfvRKCePOmjkzqEcujivI7KWmWut5F+XuQ+cq1fH6HMIXenVVCpL8Heq3aRtLYuhjalAtNkaceeg0PDm2Nl5tWHhdmrzzGuuP5dGvV8FyW1xi5UOI4HhZV1ZNpa4fb79UNDHx9EyAMiQ0mC62CPLk2VQRw0mcN6CkLTBOdcvSeDt2sNp8ucFABSEqabWeK+OtcCbnldbQNtyf6kuIju1TsOybAQ+4wl1FQhV6j5sicERyeYzfLjnZhDu/noZP9hCL93IkO8JAN8mvqTbLRstotn/PqxTy7/Vl62VRAqVF+BHjqHDr9adQq1hwTPkYf3tLFQSUijQvPrhCqjRUP9GX9YwO5b1AiS+7txZJ7e+Nn6+IX1Iw/nBIdY/wbHSNSo/xceqXFB3nKpcXSPdDFxbVXzoPKcVQqt22sNEzCPf0TmNQjhkk9Ylk0pRtPjGzT6OKPROwqodz/lD5xbHp8kLxw4KbVyKWUEkEmkXQOiuCbvyXx3q9ZMC5V9hVszn/PGdK9fG1qBP1aB1NQaUCrVvFkup1gWnhoIdctv47siobGpKPS7CWzA5NDyC2vI7ukRvZkfNd0Ix3qFrHQZjzu0XoQg66bSL5HEtHG8wyvWsX1GrGw8UtpDAUTfuGxx57lh2m9aRPmzVZzB+oT06mJG0b5gJeEoapfDIx+R/hwYRWKBasZWg+HlHFC6TF9mz3hB05NPsD71cNRq4TP4DJFkwepS2s+gVQgruHSPdk8tfoiljSFYkXR0SvPU4xpmYEDOTPlEAMNb/HK2DTWPzaAYe0EORJkW8x4YXQK0QGeHFaU4Emeaff0TyAp1JvyWiMFlQae+fkIRHcXptHzY0RnrXc7iVX689sbnP/68C5QUwz1VRhVOnbH3AlBrbFO34bp3i3CZ0dRtiV1SGxVtJmQwx9DeBqM+wS0HnQtF14ybhgBlUMjDgmXymykh9qASmUh0lucO2VpWINnNt6uaFN3u8PBduGlX49TbHKDu9YKMgZhJv7zAceOT/MPecBT52GSbR7b/SkEtRZdFt38+L2V6Jz1iWkUZW6RZLeZSt6YJaIj10MHYeCTMOwFmLHbgTSZ8d0B2s1e41LZnlMmxogOUb7sPV9CjVH8dudOuY3FwGq1itUP28mULoqSzVFpEXx3T0/571P5lcKCIK4fnF6N99JxaFUWPoueC4jOfdnXfAn3bKDe1n2swsve8AZER9z5q08w6I1NtuNUs9OSws+WAZTV2uekvIo63lp3mmlf74P0BRT2fYFdlnaE+rrJY+qGmQMZPM5eDtm+7nPeMN7Emznt6RDlxxNTbuLV2IXEjHsJHzct8yb0pBZ32o97ivueeZcNjw/i6IsjubZ/L6qtbtRdPCzUe5kbXJuvK2GsFf5NmxbYO/flH4dldwt/LiWqCrB4hdDv1Y2sspUJV9h+6/QfM9hltqky/WMZWvoMz6wvJvP2fey0pDDPdCvfmoaSUvcZnWsXsuBEMEetCbwSvABGvc02bW+K8eOQZy/6mEWHX7NPlJ2k3fQK7P9KjD+K4+qS/SV91cfItETwjXkYhywK+5EoWzOhiDRejFjISMMCvLzs8390gCfpqQqfIzcftBoxplcbqyG4DYGlh7lNs46P9EK5U+9lX2iTSEnvsHiZhD+q7yiUb/ft4FKXxwlUVaKuyOF4cDoAOdYg2L8YPlA0OmqJab2xVpDxZ2weUOUX7dc2axuc+PXyPcr+RQP8SwRdJazNWsvcXXP/bx9G41CZUOsqeWX3K44vq1Q8dU1b7uwbz629YrmmQzgpibmNrsi3BM7kgStU1FfIk11jZtES/gkiyMddx6PDkxuYKA9MDmFo21DmjbUbFofZyoHcdRo6N+KNkN4hgsdGtHFQwPi66xjTKYrUaD9CfdzpnRBEsLeeJ6+xd3KRcp2pfV2X4NzRJ46dTw+R/S2UHk+D2oQ24g8V0GQ5mNFsZE/enkbfV0Ii65RoyfVtKR7a+BC3/n7rVdvf/23k1whvhqr6qma2/J+BxtZZRRlEA+RWC+WKn5tfg8+0BEaLUVb0SaSSZIJ7ORjSNhS9Vs2T17RlzSMD5JIbV75FrnBj12jmj0t1MNC8vXccPeMDmdzLMYgd0jaMDlFCnSApXB4ZlszAtn6271Tx2X3uzD95HcW1za9WSWq9fedLiQ305IdpvRsQsx1fWss174rOIYPahPDt3SIw33m2hOySGtkIvrS6nuveE+qs+eNSSbcZk59VlI2W19aTX1HH0j0XOKd4/fvd2ZQpOmp1UihZbuwSTbC3nkeGJcuvVdj8yA5cKEOtEoHhukcHotOIMSPC3x0fd50D4R0d6GhaDo5lxgtv68pd/eLJKq5h6Z4LfLkjC4sUn6kEIVFUW8T0gYlsnTWYuGAvVCqVgxpvaFuR3MYFeZLewd49D+wm+VLMlxjiRVKoN0+mt6VXQhAeeg1629jrrAi6Uug0at64qaOszpOIkEFtQmXyRFKLuvIIU46TNUY7KdTS0jA/Tx3zx6Xh466ja6tAHnAqbVPiZMnJBq8piSCVStXAk/Cpa9pybWq4XK65dFovPryli6OKU+dOiL8PE3vEymRhUypLV7ijj+jmeVuvVgTbrs3T17S1dV+0khTiJZf6FNY2VFLGBHry1DVtWXpvL+KDvThTUEVpjVH2RrKg5u5hHXnNdDNpdZ/i4yfu/0K/VNyoZ0T+ZwDMrJ+OXqNhQOsQ4oK96BEfSICXnjrc2N/3I9qfvJNJi/4SCc2jR6HDOHg6R3T/C0uFhEHUhXXhSE4FdLwZwlOpUni1jfz0BMsP5JAY4u3Q4XLagAS5Wx2IkumJ3WOoNZpZsiebF3fWY1GMw1+bhpEZNpKLnqJBRV55Ldn1npy3hhPp70FSqA8vjBZNF/okBXPvgER6xAc6fMfN3WJ4ZVwqZ+Zdw4TuMYxUdKOsN1uoDbUpAgwVorNWrevucO+bbuBB1dPy361rv2RCxjB4cC9fZ3qQ9OxqakPFAtcuSzu4+09Ivoas4Z+x1tyVl423Yb57gyh/tbVIB9CqRDJ3yYkI+mnfRUZ/IMZBlVrEhdIcpZzDGpAqvhEwbYsouU0Y5HCvXyip4Y21p5nzyzHOFVVjtlhZuNnRDLtLrD8FlQYqzFpIHAxaD5GABiWKMq+nzvMDw+lneJfPzenkltfS/7WN3Lhwh9hBYDxoHBe+juaUsy2jSCa3lT5ZAHnldfy49yI+blp6xgdxNKcCK4JgcFb4NRUjK2NAJSH9+Ig2cvmthDMFlRS0EfGWu22RaG1NMu9Fv8GE+tlsoQt7jfEMynuIH00D2GQQZO2ao7lc++5WFm7O5OPNZ6msMzkQtAClNfXUmyw8suSA7P9VZTCBhz8ZCbdjRU2ItxsdovzIWnAdCSHexLeK5ynj3YwzzKEGdz4wj6UCL1Kj/Aj00vPknbfQqVUwR14cybgu0Zybf60DOe/tpmVWejtOE4t78XG2vXsHfD0Wdn/c8ERlrIOf7hREwvcTYfm9Qr22fDocX0ndN5OEes2pZLK+ooBNTl3iS2vsY+vrJqFWKR80j+waMXZKnYczrVE8a7oLrYcv1XgQ5KWnU4w/m85WQrc72X+xAj8PHXlJ4tmoDmhPcuEC8kP6QLLCX/XSAVEqZkM1ntzg/S1fdvkJnU8Ix6xxABSF9ILgJF5YeZRbF+1i/QUzp6yxDg05Qn3dGijMpFysxlgDnW/Ds+wUc3VfEKUqpiT5Jqr97eXT0rwV7FlklOEAACAASURBVOXGYtMINpo7si7IFsOHpRA5+jmWxT7HTNMMViEI2uXmhsovudNjXTlsmAuFp0UZmLLbWZHCY3WOH7ydInzJAJbcAktvFaWnRhc5idUKy+6Bk781fM8Vzu9w7fH0/wH+NYu+Spi5WdR/PtXjKbTq/77TGuBtoTGdj9KHaOFtXUn9Ssg7j0w50sgnmkZLiALJHwgal71KZUn/BBHUGPw99Xx2R3csFitnC6vJLKzC1+PqXM9QX3f2Pjfc4bUHhiTRLS6Qa5wSHwkqlYoIPw8eGtqaxBBveSXw7+Dd/e/y1fGvWDpqKe2D2je5bVV9FTgtQl9NIuh/GwpqhLFgtbG6mS3/HkrrSvHWe6NTt0xBZbQ4BpaXqsTKVksJF2c8u/VZVmet5vDthymuE6SJr/7yTMlBlNmcnmsPeKSApCUdAxtDuJ87S6f1dvleeko4R3MqmNwrDoDUaD/uHhDFXtuC07cnhcz/dOlpenu43of8PQryaXCbENRqFQtuTGPNsTwHYkbCrJFtaRfhg5dew7nCaodf+MIvx6gymJiVLoL3HZninGYpysbuWbxP7ggojRfD24ex7ng+13eMlE2NpbIIf08d88elymT3yZfT+XTLWd5cd5pzRdV899cFbuoag7tOQ0ygJ11bBbDrbAmxgQ3VP65KgZTqvTbhPrIC68ll9nlDr1FjVomZR4UKjVrlUI6r7IA5sUcMa4/nkxbdUAnrrBR0VTppsTFPUkdFk8WERqX526rIjY8PwmyxcraoioIKA4PbhnLggjCKlny+XB2PpAgyWUzUW+q5J/Uebki6QU5sm1MEXQ5cESjNLbAkhnjz6k3JvLzzZbrXPUV0QKBL5ZcEd4lo87w8IkivVcslbDd0jsJDr+XWnq1Qq1XcNvwiKy8+TYJBvO+shJAgNdxQlj4lhnqzakY//Dx0RAV48M76DCrwksumc8MHU3z+DYKo5CfzAJZZBtAmzMuh+YZUBj/xE9Hl63huBdUGk13NqnPHpA7l9VafcnufOD754wxf7TzP1lmDiQn05JXfT5Bb/wRDYtRgq96Y2COW8loj284U8dr4NG7qGs3b60XJZMdoPxZN6c6ao/YS0q92nqeq3WKecf+RoBPfsMh8LT+a2xBSJ44zp6yOML9adIFbqCICCCAm0JNtTw52eC6URNCMIUkO92TrMB+2PDGYXWeLmbXsMJvcBjJg4s/UhPcgaPcbqHcI35tBhjdpq8qmj/oYt2vXcckaxB/njPyp60ymNRJQ4eOmxWKxssjmNZYRcxO/Gs+x1DyYg1FdUd2yhIMHcnjEKI5nbH6NUKKNfIVFJ7X4V5xip1nEHYcu2q9nZmEVj/9oN5idP7418w6Br61DlcnSMIJ1KF2P6Cj+Q5DJSuzJKuGMTeE9IDnYgWCfPy6VYG837lm8lzMFVUJV06oPZP5JXnAvRsz5g8FtQzmYXYabTzRUGOTf7qxoWn7gIrX1FnonBjHqfUFoadUqTBYr647nOfieTfl8NxkFVQR56eUOoiq1+I31FsexoaUNVSS1nlplb2wwZ3R7jGYr834/wam8KiatKiDRPJ9Vni9y1BjF6eJ6ott2o5JLHLtUwWfbznGJYJ4wTeexSjUVdUamfyPKro7n2r3Z5lyfwr7zpTLJUFpjZP+FUlYcvMSKg2Iu0mlUlNca+c9moVgM9XW0nVCrVdz7yItM/mw3lNUSG+hJdnkBS4tuZUT+p5wsOcmC3QvYe9te3DRuLsdytVrFBV08nSvX0gqbennNU8J0udud9g2/HS/+nzRMdOTr8xDovYXq5ofbkWZz887/YK4sRH/0R7juDcwV+RRaHOPkshojVqsVN62ag6YkXu28gRR1BNi+XzIqlxDp70F5rZH7BiVitliZv/okg9/YRFGlgS6tAjAlpDBk7xuMSOyFOfcCo8pm8kK/dgxDx6mM06RUZKD9YbK8v7eM47ipWwwPDE5ifNdonl1xhN457zM8MpVR50r4aqe9u2XnWH8OXBDP2b0DEripazSlBseFLmmuqDJWUdVpKrrzezixfwv31M/k5/SxYLVvLxNBPnoK8Weq8UnGByqUsyoVnUffxxNvbcZyQNwHi83Dub1HBIkHFgCwydyRQReESpOjP8OW12HH+1QGd8Inb5fwo6q4BK7iwIt7IGEg1JVj1XnCkZ9QndsKnSZBWAeI7Ax7P6fUAAFHfoAjP8D9u8AnQigbg2zqqboKUfYXlCjKQL+wxaFPnodDS1he8BevVx5nxdhVhHr+/bzrvxn/fYzF/+PIrc4lxse1rw/Anrw9pIWk4ab5ez48l4tv703j5t//Z76rJZOWpCaAxgNWKVBurnTsn4DaZlL8TyPUx53RHSOb3c5Nq2FcF9ct3S8Xp0qFD0hpXWmz21YZGypbnIkguSPFZcLZf+ifQr25nme3Pct9ne4jwc+1H8jVgkQEuTpvVwsmi4kBSwcwNmksL/V9qclta20rJc7+CjlVthKeFpRxusLqLOE5VGeuI6cyR/7334V0T1wpQdUcpg9M5KZuMQ4m8cpzIBFrzsSZKygJ4lQFebHw1q48/uOhBklCuJ87KpWKcD938ipqHbyDfjl0ieQwb6YNSESlUskBvUT8OP979dE8WgV5Mn9cKiNTwhnXOYrfjuRitlhRq1Vsf2qIg8kwCEVjoC1J/mFvNiaLlemD7JJyyWerZ7xd2ZUU6i0nUM6QkmUfdy3uOo3cbEDCQ0Nbs/ZYHhlV4r5wdU2VbcbbRfjy8pgUl6rLDlG+TBuQwMdbRELharwx24igAC89ZouZzl93ZmqHqTzW9TGXx99SSEogZcmUweZALnm3uYL07EnjpZ+bH7G+sfLfV3OBo6K+oXl2S4imnzN+ZnXWaoI9g5nVfVaT23aPDySjoOqyiSAlEkK8uW+Q/T45Wik8dqRxs7lFBukaqDSVvHnsHj4c9h6xvo7KP4ncqTJredJ4L/dof+NHkzBbV5ZUgusyt+1nihihUNCcyK3k4y1n2Xy6UPZV2ntelJfmlNay2dKZrGp3NN77Of7UY7hpNdQZzQR56RnbOQqVSiWXK7YO83HwCJSQUallSulNmIydGN63N4u2nZOVV7nltVwq1eMe9jszNv0uL9A5k3bKv101/IgN8iTS351XVp9g3clS5mRaya/YwpLb76AX75Bv9SdHHYl/ZDtG3Pww5mOf8ctqoVS+y/gEAFP7xvHF9izazl4jl+DuL1TxiVmU5a07ns/54hqOXbLHd4cvltMhyo+COjWf1KdTYBwMCJLgaE6F3LlusZPJdXK4Hg6Bv5s/7hp3lyrbxp6htCh/UqP8SA7zYdn+i/IYtvl0IQGeelQqSA714VR+JSHebiSG2rs2hni78WbNHZTUd2PLhtaAiZU2YmPe2A48u/wof9hUPgCFlQZCfNzIKavl0aWCyEpQKJJMtnHpfHENp/IqeWTpQT66tQun8oXauri6Xi7ZROVaEdTcWPHbQ/1kcmvNI/0dfD7v6BuPxSKIoGeWi3vnBK1IqRbdKw2YZIJ197kSqhRdNfeeL23wjHSJ9efBIa0J9nYjLdrPTgRV17PvvGNMmVVcQ8cX7a3lQ7wb3pcJId78MqMv2aW1fLH9HDln9mK2Gll0ZJFcmVBuKG8yGa9wj4Iq2GJO5VHj/ewInovbns/tRNDRZfaNV9yHRa1D3es+oUbZ9Ar1Wh8mVz9CUmwk8/LvQ3Nwsdh25QN4AOetg/D31FFWY5T/X11vxk2rxmCysHBnHuwU98QTI9vw+h8ixn7n5k4cySmnT2IQd321l/QO4WTki3tRms8HJocQ7ufOWWsk286J61BYaWDG9wcZkPwgW2oLGaveytv6hRyLnsiEM8Opxp2fbaWxHWP8+fXB/jzwnReL/7rE4r8c27Tf3ruVTATd3rsVWo3aIUfbn7+fw4WHAVHev/TUUjaM38gNu0R5mp+njks19thDuhc99VrcdWrqjBaHTsHSNb2zbzyLtgnC1IqafVG3yUTQEWs8g4pWgclgN2U31QkSCOArWzdiGwn8uSmdX829WOr/IbqdHwhTc2Bp0mscPHyQBVWLGii5HKKIhX3AKwSq8mF2qSCEPugGdTYiWqmMP7Me1jxJua8PlUEBqCuK4X85EfRvadhVhqsadwmnSk5x5x938s6+RroO/JNQtyzobKpDV0vREsWIkghqjOiREssrSTDNFjN51XnNb/j/MVpCxLSECLpShdA/SZYokVGawZqsNYxZMYbvT37/j36XVBqmLAW52pCSvlWZzfsQScok59Kwolohv23JcTYVhFYYKrhYdbHF+2oO/7SSSqtRO5BAYD9uq9UqE0GuEmtnqFSiK15SqLeDoq93YhAbHh/YQMUiBdQRfh78fiSPpXuz6aIo4/r5/r5ySaeUOJ4tbHg+3HVq7huUyJdTexDsLTwX1GoVu54eytZZIsmK8vdwadQuJQjL9l0kLsjTwR9LSpJ7JgTJ88BvD/Xj5MvpLn+/FPw9Y+s6plKpZNP85ff34dFhrflkcjfGdA6U328Kvu46JveOsydFCqhUKqYNTHTxKTsstmP20mtkYuHb4982+ZkrRZ2tJMhDYVI/bUCCQ9mURDBK46OHVigk9GqxzdUkglyV8F7O/lsy778wuj0/Te/doMTsakC5It0UJLWa1u8g5yvP8u2JhtdXUgTd3juOrOCB3Fw/m2xfUQo1trNj5yFlknv8pZHoNCoOZJdhtljl7oESoXsyr1IuCXx06SFGv78Nk82vIkf1C54xizlQKEqu3XUapvSJk73QpOdaY3sGeiUE8cRIu0fS4YvlHM2r5q6x6UzqKcowimxd/47nVnA0L7/J8wLQPsKXjtF+fDG1e6OdbLUaNUPbhrHuRL7c5XTpkXKGhPRm1w0vkjHvWlY80Jfw4EA0A5/AqHW81hJJK5FAAOtO2I/t3q/3Me/3E6w4eInWod74umv5aV82KbPX0OOVPymoNDCxewxPprflp+l9APjzhHhW158okMtDAerM4vnx0nnhq/el0mi/xyV1UGOxh5+njlUP9uPNCR15Mt1ein+uqJqtGYWE+7rLRL6nXkNMgPCMy8iv5PmVR1lxTsMWS0eUioT4YC+Gtg0DwGCyyPfiybwKjGYLR2zqpms6hHO2qOG4fbG0lqd+PsyJ3AoG2zx2ovw9eG9SZ5LDpO69TSuCGlPKpkT6yQuKbcN9ZfJaglqtYlCbEIfXDOgxIO5/qZPmmYIqCioNPJneloHJIWw5XchzK47SIcpXLrV+bXwag23XqX2Efawuraln19mmS6p9PbScKz/XgNQL8najU4w//ZKCiQkQZbbKa+tqfFPiZNBwNpg7MdM4nWL8OB0zAfKPULH5Q1768FPMvzzCWfcOHG3zIF+bhjG29nnWX9RQ4B5P+ahFPB/3HX9Z2/HteT8eqb+fX829yO8kGqEUusXws360XNZ9s81XNK+8FjcXXU5HpoTRKyEQrd8eKrQ7eH5Ue4a2CyNrwXVEB3jKDV0AhrULZXLvVvI8fDSngtah3g6dPAE26AfzsO/bzKy4GYvOm6l940lzmidv62knxAM8dfSIC+S569pxTQd7Cd/ai0vp9V0vhwY9U9ZMafAbig328iwfN63D9VKSSJIq2tvTwNxdc+W4EuCJ9DZ0ivHnVtt4NuunwyyKmsuM+gc5aYkVvmI73oNTa4THV0hbfjf3YJ1Z0UTCUEGOTxpzdQPZb02iWm8vuTVpPFiU6ccS82D293oX7tsJ92yAobMxjZjPi8bJzDZO4VTUOGFiX2Ubp+aFwfoX7CQQiPJYEN3hlt0FwNmANLCqMOvCGpyf/234lwi6SpBMVy9UXmh0GylJzCzLbHSbfwotTbCcJ9aq+qpmuwE1tw9XUJaGKQclk8Ukr4ZIgeyVSOjf3vc2w38azv78/S3uYvb/G1pyT7gKzJ0VXy1Jml2hwnBln7tcKH/nK3+90sSWfx//E4ogiUR1VUZxqeqSw6Qt/XZnWb30/DWlCJKIwqbuk4r6CnnyvxokjnTeGisRuRycKT3TItWbK0VQSz4H8MO03qx7dEADY3Q3rYa/nhnKK2NFma3krwIQoVitvzY1gs+mdGPrrMEOpRySz01ueR1Jod4oOZQusQE8md62gcl5iI9bgy6IzpCIioJKg4NvCMDLYzowuVcrTtWsJm1xGtXGaty0GtxdBLsA3eIC2TprsEP79e/v6SmrelQqFbFBnnRPFMekbibc8GxCXQMiuG0KUvLj6aaVyUlvvXdTH7liSGRIoqJN9dPXtnMo/ZXmQYlolIggjVqDVq29qqVhl6OWuFK4aTV0i7t8H7CmIJGD0vhUXd/0GNIpxp+v7uzBxJ4iEfXW2a+v5HElkZHxwV6smtGPYG89s0encOiFETw6PNlhf5InGYgV7vYRvhy4UMrLvx4nbc5azhZW8bltVRtE63oJx3Mr2H5GJL5qvRgDSxrx2pGeIX/b92nUKh4YnNQgYR+VFklCsJds3J0Q7EVZjZEtmY3HlRL8PHWsnNGPwW2aXr2+vlMklQrVx/KD5yj0zuG5w2822Hbj44M49MIIVjzQlz9nDnQYuyRI50DCYBvhcH3HSDpE+bH/QpnshQaCfLtvUCJp0X7EBHrw54l8iqsM5JTV0jPBfn9Jc4GXzgsfvY9DvCA9Wy2JNdOiHRPmvedLiQn05JFhyeg1atpF+KK1/f/wxXKH8kMlEkO85O6FIPwbAb7eeZ42z61mweqTaNUq7h3QUHXcPS6AjPxKDin2PalHDFtmDeb6jpGoVCpevqEDvp7iHnYeG6Rn+e/Mi19O7SH/+8fpDcue71A0SUgO8+b+QYkMSA4hws+dl8d04Nnr2vHXM0MdOrdKnYYBMgur2ZFZ7HCOAKb0FgSFSlPFxuyNXL/ieqatn4Yr3NQthlnXiPlEGWc2F2NqAltxp3EWiQmJqFWw22MAeIXiu/EZZhc+jqa+gsfLxzM5YwDPm+7kkDWJuxfv5aElBxi1IYj15wzyHLvC0o8ZxocYuKsrhYPf4IWwDwnwDyAlUngbSQ0Ohr21hRpDw3JFf089i6Z0xyNyGa/vf4mi2iLyq+1kaZS/B2nRfswfl8qiKd0pqSuk0HBGnv8TQ7y5Z0ACL16fIn9mYJtQVhaEcbKgljnXt+eF0SkOJa4gFqAyX7mWcV2ieOvmTvwwvTd390/AXadh2X29eX5Ue97e/xbVxupmu9oqnyuVSuUQ2ynnFUk5uSznBZaeWsqOSzvk99y0GlY80Jd5thgIYG5mAr9aenPSaqua2TAXqgv4sbwdu9J/437jI2yw2PzLPIXiaZXaH6+4hegCt7KxRIwP6YYFdK9+mzMVGkDFanMPLCHtIKorH5nHMOFgR74wX8Ni80hGZo7noL+98QXmejj4LXgGwwO76V33PjVWN4xtRkOybdErfiCH3NtgtXgSGth4Q5X/LfiXCLpKcNOKCb0pIkhKLty1DSfTfxotNa91Zt5nbp7J3WvvdlDwNAflINLYSqO0P41K46AImvDrBPot6QfYB5wrUQStO78OEGz3q3tevezPS1hxZkWjLbb/X0FJXQnLM5Y3eL0lBI6r+8Y5+Lqce+Nyv/9qoMTgGJzXm+sZ98u4Fl3X2dtnuzx3ShwpPCKTjRIR9E8qgpo63yOXjWTyanstebVJTOCNXbNaVyZ7NkgESVMET2V9pTyuXQ3yS7rfSutKeWbrM7KXUXPYk7enwXUa+8tYJv460eX2RrNRVgxK50alUsmJaUuJIJ1G3ajSxV2noX9rsYKl9L3xtSmFpg1I4M6+8QxtF9aAwNFp1PjaOlO9MLo9q2b0u+xuTa7QIcoPvS2AvLWnY0lNm3AfXhqTwqt7hHxbKh9sCs7H3TrMh8kKzzmwX9PmFEHK97878V2DbnXS+5Lh9568PQ4J07wbUpl7Qwc6RvvJx+6jb2jifDUwpXccP07vzaAmkm5pDJDuL0+d/Vy5adz+KxRBziWQy04vY+vFrZTWlbItZxuzNs9qum3334RzfNDcGKJSqRiYHIK3hzhuyQwfkFUwQQpVlodew97nhpPeIRw/Dx1nyk7LXQ4BWTUnkYw9E4LYdbZE7sI35M3N7M6yzx8l1eJ+axfh67LDpbPyUsKYTpE8PiKZh4e2dnh9+5ND2PLEYJLDvBnbOQoPvfC0mjFEGINPH5hIYogXHm5XjzTsmxjk4G+m1jUc6+pMdZgsJqL8PfDz0NEpxp/EEG/ahvsQE+jB2zd3dNi+bbgPU3q3Yvn9fXhhdArpKeFM7t2KEe0brqb7KhpeDGsXxvbMYnafE+c4LdqfD27pzMJbu8jzjrfOG183X4d7/HKIoA6RggiK9HOXyfPYQE/6JgVzet41MuneMdqPv86VOPi7KZWe3m6iBFYqB702NYJQHzfWHs/HYhVlUG3CfegY7c8dfeKYM9puLTCgdQjV9WYsVpgxOInnrmvHvBtSHZp6TO7Vij5Jrv3DrkbZNcBz1wmlSUqkL+9P6ix3sgXRZezlMSl0ivGnS2wAPROCWHxnD3Y+PZTOsQG46zQN1LR9k4L5+q4epET6suV0IWaLlU8md3PYJjbIi0VTuuCdPJeHNz4MIJciuYIUFyqvbXOLhtLc2Dbclwg/D47UBFA47QjX8CFzjLez0DSa/dbWlDp59x2+WE52SS3F1fXc6GS9UIcbi6r7ca5STaSCAFXOeRLB2UNRTu3noXNY1Bn8w2CG/TRM/lulUvHLjH7yAsroFaOZ9Lu9c6C0r0h/u+dXb1sZmI+bluSYikYXtzVqFW9N6NSADO7aKpC7+tkb0jQnRnCOMUsN9jFCeS8+OiyZR4a1Jt8g9teccktC545dOEcktYnX8Fb4q8y61J+JnwrBwRLzYDZ2eZ/zIz4H4HejGEOCAoqZbZzKOMMcTlpjKcXuSfnp1nMkPPM7vx3O5bU1p9hvK4Xb//xwxnSKZHzBHXSv+1De3qJ1Z6s5hY0lAeQSRGfDx5zq9w7cuAjGfgwTvqKkrgKdyutvewz+v4B/iaCrBCnYbaocSXrvf9ofCFqepCkf5DpTHTsvCUOv/Jp8h8AyuyKbWVtmuZyIla81FoyWGcpQq9QEugc6DCwZpRlyAioRRFfiEaQMyJaeWsr4X8Zf9j4Ant/+PPetv++KPvtPIKcqh1t+u8VhhaE5PL31aWbvmM2FCkFSSvLixgZtZXDuighyDkqulNBRfv+VqLb25u0l9atUMkozmtxOmdSrUJFTlUNGaQYv7WzaX8ditbD8zHJm75jd6PFllWdxy++38Na+t4DLUwQZzUYWH1t82QmhNEk7y8SlFbQzZWfk16RkVHmN6kx1drVCE4ogKRCvrK9kVeYqlwlhfk2+fD9cDfJLOm8bszey6uwq5v81v0Wfm7lpJrN3zOZgwUHAfi4uVbsmkub9NY/hPw2nxlgjH7fZapbvd6kT2t9FTKAnr49PY+GtdrlzjS14jAv2cvDIcUbbCF/GdY6if+sQOkT58eYEkXyZLVe+Kuyu07DtycF8f08vYoMaqock1Sogd07Lrcrl+e3Pt9iw1BlSSUdLn3Gr1cr83fO5ffXtDd47+XI6P9/XlzOlZ7jzjzt5fc/r8nt+njpu69UKlUolE0GeWvtvNFvMV6X0GUSpRfdm1DGNlYaBiAGupiJIWTYjoSXjijQGS4TQnJ1zuP/P+xmwdAD3rb+P1VmryauxxzQzN4mFIQkv73zZ5XW6UrRUVSjFUsqE5elr2qLSFWGwFjVKlo9fNZ671t7l8NqKB/ryx6Oiu83DQ1szc3gyqVF+MhErQSqFvKVnLL8/1I9pAxOI9HOXiUlwPaeaLCZ0GjUzhrSWfbgk6LVqYoM8WfvoQN6aYCdXJvWI5dz8a5nQPYY/Zw5i0dSr51eo1ajZ9MQgPpncFQCVjQhSzifdv+3OjA0zGnzWx13H1llDGNs5mqwF17H03l6A8A56cUwHOscGEBfsxX8md8XfU8/tveO4u188X9/VQ060lerJYe3CqDdZuO/b/eg1alIifRnSzp/XT9zK7+eEqaWsCFLMYdKz1ZI5x89TR1yQJ1EBHtxmK2/ycKFyTHVRkvrsde3Y/tQQfNy1suG5v6ee+GAvwv3cG5gfS2W6c65P4RYb0d451t+BPLilZyx3909wOfZLY4JzaZgUA/9ddftd/eJZeK+anbmbGd0xkjGd7KWSadH+TO4dx4oH+l5W58X+rUPkkr5QHzd6xAc6lD2G+7rTOa7l+5OeoVpTrZyES9c+syyTJ7c82eA8SAq3YG89sYGeXCip4dNt5zhjDORLczqvmibhyni4pt6Mr7sWrVrFY05qQYCPt5zlRG4FEf52IqhdhC9LbPc9wEtjUnjtxjT5b51GfVnzjDQ/6LVCgS11cYxUfKdEZo7oqOf2PyZx99q75VjnciDNQWfLzza5XZmhjFfGpjIrvQ2nS0+zNsvu86TMxzz0Gu4bbF9Qaqzb6pPpbXlkWGtUKmgd6k2/NhEMrnuDdscm815WDFYFFWFFzTZ1NwYuqaZD3SJOWMQ92icpiLkT+3DGTYyFSaHevD+pMxO62Qm8ub8dd/jeQC89w9qFYbJAIQE8oH2RAYZ3uEX1Gg+XT+JpW2MLA3pm/nScghordJzIi+svUVRThqfmn1EU/7fhXyLoKsBitcgBjJQIuoIUUF2pQWtTcNVRQYmWBljKgFLZ4v2tfW/R7ZtulNnqKt/Y+warz61mR86OBvtQEkGNJQ/lhnL89H64a91dbmOymORA9kpWTp39bySD5MtBc+f0/wZ+Ov0TR4qOsOTUkhZ/5mKlKJOQSnik8+kqaC2qLXJYJW6JR9DlEEFWq5W/cv/CYrU4fO5K1CQrM1cCsDd/b5PbSUTQ/Z3ux4q1RUoHcJzU9uTtcbmN9EzvLxCGd1Ii3ZLnbcmpJby+93V+OPUDIILAltxz5fWuS8OUcl/p/peJIMWKmrIsy1RBHQAAIABJREFUs6lAWnpvZeZKntn2DMvPNFRGZVVkyf++KqVhTsRjS+8tL51Y6ZWSh+akz6vPCbPrvOo8h4Rdug9bqghqCW7qFiN3lwLR0eeGTpGM6dS0SfySe3rxxk325DBEUfICorPZqRLHca2ivqJZBUeor7u8wuiM3Gp7NyNpvHh97+usOLOC7Tnbm9xvY5CuqaROs1gtDuPzrqeHsv6xAfLfTZFw7joNeq2agloxzx4vOd5gm9yqXL469pX4TsU9ed3y63h227NX9BtaCuXzKz0/0v2lJKX0Gv1VVwQpiSZo2QKKRJhUGCoaNUhXPktrz691KBX/4fQPHCg4cMUEm/Nqa0vHEGkMV45lk3vH4Z30BqNXXku/Jf3khQ9XUF6nTjH+hPqIpMvLTcuDQ1uz6sF+7HluGF9M7Q5Aj7hABiWLZFdlO+77ByWx4+mhzBzeBrA0OB4QatHOX3dmX/6+Zn+T87lQ/l1hvLrqWXedhmHtxEp7j9bie6T7R0qyW/K890wI4uTL6dzcPdbl+2q1iudGtad/6xChoFIZKai2309KMnX26Pb4uOvIqsiisLaQXbnCONZT54mv3tdhLrgcRRDAvLGpzEpvyx194nhiZBuX5VvS+VAi1MedKH8PjswZKXuX3dA5kql94wC759OrN6Zyc7cYhzJZvVbN6of7881dPeXxVqXCZXmdBIkIaqx9vHIRrqi26LKJIZVKxayts3hk0yPyaw8NSWJCt2iHxgKXi1E2fyKptfsDg5NkL51QX7dG8yJX86x0ncsMZfK4Ir02e/tsfj/3O8eKjzl8RipzHpkSTlywF2cKqjiRW0HrUB8SQhxLqN20ao6/NFL+e1Z6Wz66M4RC42lWPtBXJnaVRPD4ro4NgJQNFfw99Q1KPF2NY67mZeW4+eakBBaMS5VVV1H+Hqi0Ffi0e4pq9SlmDk/mmk7ivf0F+5m8enKz44rBbJBzNgB3jfh8c0RQuaGcW3rGcmvvEG785Ua25mx12KcSyji5sbn7vkGJPDIsmaNzRvLz/X0axB8940WZeca8a2gb7iN7TVXhSai/GFv1WjVjOkXx7kRROuamVTO6Y6SDKje3vE50VlaZGNixAIvVQkqkuJ7hvu50GTSGC9ZQdlUGU4IveRV1cinjqfxKZtq6Fn6xPQuVphY39b9E0L9oIaqMVXJSplxRdYa0iqV8MK8GVpxZQfdvussO+40do4SmTIKV5IDyoZaCgnMVkgu8+L3ZlQ3NsZWTc2MTdXl9OX5ujkSQMhAtqi2SB5ytOVvJKs9q9JhdwZVE+3JXYJXGZ1drJbk5WK3WJkt/pM47LVEE/X72dwYsGSAHD9L9J5F9zkn25uzNDP5hMJuyN8mvuSSCnMqJlp1e1uLzsyZrDXevvZsVZ1Y4kBNXQgRJk21zwWBpXSm+el9CPcSEcbLkZIv2r3yWpfveGdI5tVqt1Jpq5eenJQmNdBxSwthvST+mr5ve7OeU98eru1+V67Kl5Bhg16VdDsdRUV8hJz/S50M8QlqkCJIgJYTKay0lW94676vqESShpZJ46V6WSnOV56IpXKq+ZE/YjTXy9btaiiAJnx7+VG4SEOXvwTsTOzdQBzhDrVY5rBp3iPLjP7d1Ybat5ODGX25k/Cq70rHeXE/f7/uyYPeCKz7O3Co7ESSdA2kcvtLSP5kIsvm/TF0zletXXC+/H+7nzi8XPpWDWqUCpbFnWxr/XJmn/nnhT/lzUmJeWldKTlUOq86uapIguFzUm+tZdnqZS/Na52TVWRF0tYmgME/HRNZgaX7/0nNTUV/RaLImXQ/lc19vrndIQq+0PNh5EaglY4jFauF8xfkG3+s8B31y+JMGn5PQkkYSbloNg9uEcvLldL65uyd39RelFc5d7TrF+KPS2DonOSW22y6J8uPN2ZuxWC1NxiAGs4FDhYdcvqecK6+mqu3ES+l0SxT7k2IL5fPXErjrNC1awGgf6YtH1Ld8eXGqfC30WjX/ua0LH0/uKqt1lNfGXeOOTq1roAi6XCKob1Iw3eMCZW8mV15qAV56Xr0xlbv6xdM7IUg+Pmc8MbItt9vKX18dn8YdfeIY3zWGV8enNfBTaxfhi5ebljBfd/Y+N4wNMwc1WWoiKYEaM4s2WoyYLWaMZiODfxjM7B2zW/T7JbiK/R8b0YbXxnd0sXXLkRzmwx+PDGDmCLsS6NlR7XhtfBrdWgW4HFt2XNrBgKUDZMJPgrI0TCpJku5/KUdQxuYgyqmyFlxH6zAfBrUJoaLOxI7MYmIDPemXJMqzXx8vVDsGk8Vh7o0K8GDm9ju57ffb6Bjjz5J7e/PK2FTZfPvhoa3pFOPv8H0qlYoVD/RlSAcNBrcDDTwCXcUPyvIqCUriOMC3lokKItHPQ4fGQ8SdX5/4igeHtqYOR8XN5uzNDfapxIN/Pkj/pf3lMcNiI6xbQgSB3WID7POX87xVWGsndpuLm7zctPi46wjzdee9SZ2ZM7o939/Ti4W3dSUm0BOdRk18sBfHLonr/cO03ozpajMPt+UdklpNMmvv4jQeT+gWw5xJBvbXv8W7+98lLsiLIC896R3CSe8QTocoX36+vw/tIwRBdINCFbcjs5hLtuYAKnUtbUL/9xtFw79E0FWBFOiGeIRQWFPY6IrsuXLxULsaEP4O/rzwJyaridf2vNbsMULTKgDlZOuKbZYIGWkAO1FyosE2LSGCygxlggjSuMvJXlGNfXAvqClwGHDuWHMHAN8c/4Ypq6c02d5ZSsqd0VK/EQnK1fH/KT+bxccX029Jv0YDVek3HCk60uy+5v01j1JDqTwJS79HSnadFUE7c0UZoNI7x1lxAI7m3iCIupYaoEtk5dmys46KoCY8rMwWs8vjkFaFpfbljaHUUEqgeyAB7mLCOF4sVATNGS8qyTYlEWm1WuX7T0qcTVaTfJ6jvKOoNlY3G7BLx5FbnUuNsYZaUy1/5TVvzC49e2armW9OfMO0ddMoN5Q7rNw/tfUpjBajrMIwW83y5C+NPxHeEQ5jgfPxOidlkhJJ+WxJCVm0T/RVUTo6kw0tIWRqjDXyvSR1bVSei6bGu0tVl+xlBiY7EZRZntmirnotxXsH3uOzo59dURK3NmutrEhL7xCBp17rMMdICXlGmSiRvBy14Nxdc1l0ZJH8t7KUTgq2JVJdMmC+XEhqhmqTeCb2F+znfMV5OXnMq87ji2NfMHXNVPlvCWdKzzTcIfaxzPkaldSVsOPSDgLcApiWNo3K+krMFrODcq0lz1hLsfj4YubsnCN38FM+G87lK86KoKttFu3cXrkl+5eem3JDeaNzjjQOKpOWp7c+zcTf7P5bSpXl50c/d/Dhacn3S2gJ2ah8ZpXHpEw22wW2Y8elHQ7Pm3JMuJxYQFKhJYf5cGTOCG7s4th5LMBLT6sQa4PjAfu1N5gNvL3vbbp+09Vl7GK1WrlzjUhGXXWedUWCXAnOlZ9zIPA89BoOFooSkypjFcW1xQ7npiVj4Prz6+n8dedmF+tu7BKF1kcsfkjzBogxTWlcLymYwe6r5av3paq+Sj6eyyWCWoqbu8fy/Kj2fDG1O4dmj2h2+7bhvsy5PsXB66cxBHu7NTD4d0ZjDVKUsbDBbCCzXMRbv579tdnvVUL5jFwpeQuwO3d3g7G5TbiPw3nwddcxoVsMKpXK5QK5VE3g3IzGlR+Q8zihvEecMTA5BC+9Bou6DDefczx7XTt2PzuUkQq/J7B18lPX4ONhP9f15nq83bTc0jOWAcnC9Hy4C58rEARwrse7vPTXU7bFfStan8PUGGtcxi2uyDDlvKQkVMDmWahz/N3KhRpAvg8agxTT59fkY7KY5Gvu6tprVHYSU3rfVdztTARJeZuv3veylNTXd4zkjr7x9E4McvA/VHalbBPuIyuOiuvE/ztG+zFndHvmjxMm1OF+7iy/vw9eeg0qXQlbSz8iu1oc9w+nfgCVld8f7s9T17Qlyt+DXx/sT5fYAO7uH09atB+PjUhm2oAEurUKwGyx8vN+cW/5ehmJ8r26zRH+W/EvEXQVICUPif6JmK1m+YZVIrcq1y5nViiC8qrzmLVlFm/ve/uKv1+agA8XHm406VEGWE0FW0py4I+sPxq8f67iHFarVSa19uTtaRDYNEcEGS1GMssyCfcKJ9Y3lmPFxzBajA6ThTMRJJ3TV/e8yv6C/U0a+JYaSq8KEaQMjK+0Ff2Wi1v44MAHLU4ApfbmOy/tZHvOdtacW+PwvnQPZVVkNbuyLa3wSWiOCJImKqmMLiUohb35exsoaJTndtEIkUTuyXddOuUMad/ZldkOwWBT9+RHhz5i/KrxDjXRJXUlnC49DUBOdTNEUF0p/m7+BLqLQV36PeWG8iavi7QyGukV6XCsnx39jGE/DqPcUC4nzgU1BfL5i/OLw4prMlJCdmW27OVzofKCQ+midF3qTHW8s++dBqs3ribxP7L+kJ+fZ3s+S6mhlKNFR6kx1hDpJVa2jhWJ5+w/h/4j/67/w955B0hR3v//Pdv3bq83ynHcAUcRkKJoFI0VrLHEFjVGg341v0STWBK7xhoNGlTEjhGxYaMISgfp5YC74ziucr2X7X1n5/fHzDM7szt7dWnyvP6B252dnZl95pnneT/vz+fjC/rw3M7n8M+f/4nzvjoPG+s3ivsM70tIe5O2GzKQyTZlD9oRFAgGIkK6Wp2tvYbykXtzuGk4mh3N8Af9skFX+Aq3VMhrdjSLK02BYEAUDe0+e79diNGQrl5K21FfcPldePjnhzFnzRy5E0tSlIC41Q53RYryPWHxWLCkfAne3P+mKCy1OluRpE/CcNNw8biJECB1f1ZbqntdjQT4a00Gr06/U9bHk3ZNJqIcOHAch4LWUKjn9mbl8BTSl0t/Z47jcP3y67G1aSvykvKQrE8GBw52n118XgF8uE44NdYaLClb0m+hjgjgpC+S3jPhyaKNWokjSBU7R5Cf9cPDeiKEoL7sn0y6bD5b1GcceV16H66tWyueM8CLhE6/EwsKF2DevnkReXiUCHLBiH6/L0IQyQk3ImGErC8k98QHsz7AdWOuQ4e7A22uNgS5IJodzTIhs6/hweEkGLSKjg4/+D6x092Jgx0HxXZE+sc6ex0+OfQJACjm9ijuLEZxJ59Ad1frroj3pecpnRRzHIePSz7GpvpNvR57g60B1yy7Bi/tfkl8rcZag8KOQgw38eLWhV9fKFvU6XB1wM/6e3Qgf3b4MwByB1Z5dznmH5gvEwukCy89uXKlvw2pCpegSwAHTmwfpM+OtRBEMGjVSBJCRjbWb8SB9gP4/PDnsr4p1rj8LrGf8gf9sr4oXAiS9vX96bOkfbj0//6gX3Y/94TT78Tda+/G9Suu7/P3trnaZEIDACwq5cN3pQuuAN++85LyZK/tatmF53Y+Jz4/lCIRCAatGrNOy4JxxMfYaH0Ozc56ZCYYkGjQYmRanBi+NmdmLuJHv4Y/brpC/Kz0OXHZxCEo/tdsMSRQCdKn7G/fj7su9cCY/QVeK3itz0KQtMqW0vs3/YoXSEg1QulCjVFj7HEBVjovO9x1WBSpNYyyE1m6UEG2rTBXiNsTETbcxUnGCWNTxsbEST0iJQ5AEKbsb7Cmfqk49yOCEMMwuGtmHpLjQuLRtJwUbHj4Qlw8cweWVS/F1xV8ugWH34FKcyWyEg0Rbr3fTs/GivvPQ6JBi8evnID5t/EhZ6+trYCK4eBiHUjUJeJUgDlWIS9ROK5fHisuXHIhujxd+P2E3+Ozw59hUtokWYUQgL+xKswVmD1yNtbWrcVZQ/hSjnW2OrFzm545HRpVz+ECSuxp3YMZQ2Zgb+teTEybKObLkHLEekS8YU9PPz1q5TIyYErQJcDus2Nk4khwHCcOstIMaRgaPxQlXSWYNXIW1tWtizhf6TlNSJ0QUbnF5XehpKsE8y+eDwB4YOMDmJw+GR7WIw7ychNzUWerkw0epmdOF3OxGDVGTE6fDCU63Z2otdVGrGaNShqFdGN6lKsYSZurTZy4jU8dP6BOYU8rvzLa0zWXUtheCF/Qh6y4LPEanpl1pijqFHcUY0rGFOxu3Y3RSaORZlTO9QHwIp30+qUaUjEmeYx4TCatCaelhZJQlnSWwBVwQcWoEOSC+Pf5/8are16FQWNATkLIslraVSoOyHbfthvXLr8WQS6I3MTcHs+N5Vjsb9sPDhyMGiPYIIu8pDyUm8sxNmUskvXJip/b376fr2BiGi4OWLs93aiyVGF00mi0OFswKX2S4mc5cDjQdgDXjrkWcybNwVVLr5K9L7224TQ5mtDuaseskbOwqWGT2N7I9RuTPAad7k7xoZmbmItaWy3uOO0OLC5djGmZ08Ry5OGQ45+eOR2lXaUYZhomTozJ/US2idfGY2JaqJRotaVaJjZnm7LhYT3QqXTo9nRj/U3r8eslv0ZOQg7aXG04d9i52NWyC0m6JJh0JnHAd+3oa8U8S4QEbQImpPGVRfa37UeAC1n+4zRxmJQ+CZ6AR5y0EO6aeBc+OfQJZgyZoRiu0xdIvzAiYQQa7A3ITcxFg70BIxJGRExypdh9dhzuPozrx1yPpVVLMS1zGtqcbeKgKbxtsRwruh0zjBnwsl7Z5Oo3o36DH478gPyUfKToB186lByf0rH057PS54PVaxXFQ3KcDfYGcVDdU7sm2Hw2cUI2JWMK9Go9qixVyIzLhE6tQ72tHmNTxor3X6IuEeNTxwMI3QO9PbN8rA+FHYUYlTQKR6xHMC5lXMRxNzmaxMmf9P2pGVNRa6vF2JTIJJ4V5gpYvBYwYDBjCJ/HJRAMiM+HaZnTcNPYm/DEticwJWMKOt2d6HB1YMaQGSjuKBbbOIGcY7TnZzRIX5ikT8K4lHFiGwb4tpWXlIcWZwsa7A3Yfdtu8Tl55093otJSiQmpE3rafZ8g5333pLuxsGSh+PrIxJER4WLhFHcUw8N6oFFpMNw0XFGoTDOkYXTyaHEMo0T4OAFAr32B9D4kSPufaJDn8nVjrsPK6pWYnsUnYu9yd6HaWo01N6xBt6cbt666FeNTx8PP+lFtrUaCNkEMi07WJyu2q4FS0FYgG2+Qcc+hrkNw+p0waoyiaJGTkIMh8XJ3QrOjGd2ebqgZNYxaY8SztNZaK4a7Tk6fLIZpkPsLgDimBHiBpN3VjpzEHPE3aHe1i8IU2bbB3gCbz4b/m/x/eGM/H7qapE8ShadxKePg8DvQ6mzF1MypEZN5INSGAOCMrDOgZtTieZP7AuAnpqQSYLYpG8NMyjnSqixV4oRyTPIYLL12KZZW8kUbpmZMhU6tE59NerUeUzIGF9YUDavXCpZjZcUXdCodpmZO7eFTA4f09TOHz8T2pu2yPpz0dwDfL7a72sXnG7nmfYHcIwBkz7cOdwdqrDWYlDYJRq1RJi6RMSR5ze63i+P0vn53rbUWYJTFjvBx6KGuQ5iRNQObGzdH3V+KPgX5KflR3ze7fKi08fdFZlym4thUKRSzP898Dpzo1M02ZYPlWLQ4W2BQG2TjOUJeUh4yjBmy18rN5RidNBrFHcXIis8Sx7fS961eK7QqLaZlTkOluVJ0dJP5l/S+j3Z+OQk5SNYno7izGFfkXSHmSJSSok8R903u28L2QlycczFW166GUWOEj+XnJtkJoQTNzY5mNDmacPO4m/FdxXdifzxQnN4Aips7oDbyYl+8Nh5OvxMaRtPrvskcBgDOGXoOdrbs7HWeRODAYWc1P67OzzShxlmMh894GHdNumtQ53MCEfVhTIWgGHDfuvugZtR49KxH8cqeV6K6crITsnHbeL7CELHFa1VazJk8B6trVvd7tZigVWvxjzP/gfeL34+atR3gH6qNjsZeq7+MTh6NK/KuwPtF7+PKUVfCHXBjU/0m5Cblig+As4aehT+d/ic8s+MZRZtmXlIe2l3tUV0CQ01D8dLMlxDkgnh82+OiEyDVkAqdWodWZyvUKjUmpk2EO+BGg70BnoAHRq0RD0x9AO8Vv9djScmrRl2FUUl8QsDpWdPx1LanBrQKOMw0DC6/K8Ly3VcSdYnQa/S9Jq8laFQajEgYgRprDRJ0CWDAyCapKkaFe0+/F1sat4ihRdHQqrW4eMTF2Nu6F5lxmeKkT6PSID8lP8JBwDAMxiSPQZWlCkaNES/OfBHl3eX4qOSjiHDH68Zch+vz+RWhJWVLxCS9vTE6eTQuzrkYnx3+DBzH4ZEzH8H8A/N7tCmrVWoMjR8a0c6mZU7DlIwpWFS6qMdVsWGmYXjy7Cdh0Bjw+NbH0e5qR35KPmpttb0mW5ySMQVnDz0bHx78UPwOrVqLVEOquEo6O3c2GuwNONx1GBlxGfjT6X/Cq3tf7TU047S003B+9vn4sPhDBLkghsQPgSvgkrXroaah6HJ3RewrPyUf9bZ6TMuchrykPNFJNjVzKh4840HM2zdPXHm+bcJtqLPViXm+UgwpSNQl4ven/R6LDi3CtEw+mentE27H24Vvi6utKkaF8anjUdZdhvyUfFSYK8RrYNQYMcw0DNWWauQl5eHGsTdi3r55g06wnpeUh6tHXY13it7BDfk3oMnR1KekpYn6RDx4xoN4dc+rYv82JXMKhsYPxZraNRHtQ6fWISchRxzkj08dj2prNTiOw0NnPIQvyr7o0X7eX9KMaVAz6h6LCUQj3ZgOX9AX0d+lGdOgYlSyviUvKQ/NjuY+u00y4jLgY32y++/KvCuhVqnFcCe1So3RSaNlIgCZiPZlRT4rLgt3TroT8wrmwR/0I9WQCo1KI7sWuUm5aHW2wst6YVAbMDVzKk5LOw0fl3wc9d4emzIWR6xHZG0uUZ8Ik9aEW8ffinRjOp7b+ZzYHqZnTcfUjKn436H/RezTqDFCp9b1O1yCYRiMThotth2Ad/4Mix8mW63NSczB8+c+L7pJvqn4Biur+xfW0RNatRaPzngUHx7k+xI1o+6Ti5VhGExInYCy7jIEuSCyE7Jh99kRp42DhtHApDPJnhNpxjRoVBp4Ah6YtCbcMPYG/HjkR1RZqqBiVEjUJSLdmI4mZ1NELjnF41ZpMSp5FKot1YrPpGiMTx2PS0deincK35EJMNkJ2Xhh5gtgORZPbn2SdyKo1FAzarAcizsm3AG1So1PSz8ddAUmKWqVGmNTxqK8uxz+oF+cHDMMg/zkfFRaKqFT6ZAZlxnVzTA7dzY0jCbqs3R08mg0O5sjrmuqIRUBLiDrH9QqNRK0CRHjluGm4Wh3tYtuAbVKjTmT5mBC6gS8uvdVcByHdlc78pLy4PQ7+YS94MCAifo806g0+MvUv2Bp1VLRNZqkT8Lvxv0Oiw8vlo2HjRojMuMyex3r5qfko9Zai4tyLsLtE25Hg70BL+x8QezXyLPpcPfho5a/MU4bBx/rg06tg16tFxdxY1lIIJzshGzcOv5WxWfpuNRxqLHWiL8DEZn7W80xMy6Tj1yQzBXUKrU4xiN9lFTEDX8tzZgmy6nXF84bfh5GJY/C/rb96HB3iP2FdFxBuGXcLWh1tWJn805xUTgjLgOtzlbkJeX1WikWAAKsBndOugXfV30ftS9KNaQi1ZAqFsbp6zidoFfrMSR+iNieRyaORKOjEWyQFRevWI6FhtEohscxDIN7Jt+DXc27oqZ7GJsyFtXWavH3OS3tNHhYD3437neYWzC3x34sThuHNEOa2OcYNUY8dtZjeK/4PWhVWth9dhg0BujVevxx4h+xqHQRDGqDOLdQq9T467S/Yl3dOswaOQs/1fyk6OabkDYBl+RcEtEfDxSOA4aYsuBjfTB7zBifOh6VlspeC2GoVWrkJOSg3l6PP0/5M36q+Ukm5PZGm80DBgwyE/XQqrT4x4x/YFzquN4/eHJAhSAKhUKhUCgUCoVCoVAolFOEqEIQzRFEoVAoFAqFQqFQKBQKhXKK0P+ENLFlYMkkTkAYhrmX47gPet+Scqygv8mJCf1dTjzob3JiQn+XEw/6m5yY0N/lxIP+Jicm9Hc5MaG/C+V4QEPDKBQKhUKhUCgUCoVCoVB+WdDQMAqFQqFQKBQKhUKhUCiUUx0qBMWAQDCA5VXLY5ItnUI5FdhR3YnqDsfxPgwKhUKhUCgUCoVCOeU43jmCfhEsLl2M/+77L4JcUCypTaFQlAkGOdz24W6oVQyqX77yeB8OhUKhUCgUCoVCoZxSUEdQDOhydwEALF7LUf+udrsHDm/gqH8PhXI0aOh2YdQTPwIA2CBNEUahUCgUCoVCoVAoxxoqBMUAhjl2xc/OemkDLn9jyzH7Pgollhxssh7vQ6BQKBQKhUKhUCiUUxoqBMWAY115rdHsPqbfR6HECj8byqOVZNQexyOhUCgUCoVCoVAolFMTKgRRKJRjhsXlBwBcOC4DNo8fAZYmWKdQKBQKhUKhUCiUYwkVgmLAsQwNo1BOZqxuXgg6Pz8DHAd0u3zH+YgoFAqFQqFQKBQK5dSCCkEx4FiFhtHkupSTGbePRXWHA/E6NYYmGQAAXQ4qBFEoFAqFQqFQKBTKsYQKQScRvkAojMYbYI/jkVAo/eeeT/dieWEzkoxapMXrAAAddu9xPioKhUKhUCgUCoVCObWgQlAMOFahYVLxh+RaoVBiBcdxqGizy177dl8jbn5/Z0z2v72qCwDgD3IYnmIEADSYXTHZ98mEx89Sdx+FQqFQKBQKhUI5blAh6CTCK3EE0ZAaSqzZW2vG7HlbsKemW3ztkW+KsKemO6bhjx12L4YlGWHUqlHd7ozZfk8Wxj+9Gg8uKZS91m7zHKejoVAoFAqFQqFQKKcaVAg6ifD4Q46gbicVgiixpabTAQDYXtUZ8Z4vBtW9DNpQd6NSMRiVEY+qDseg93sy4fIFAAAriprF1/bVdeOslzdgZXFztI9RKBQKhUKhUCgUSsygQtBJQLUwWZY6guweGhpGiS2tVj5fj9QRRPD4By8EaVR8d5OR1gmO4zAm04Tq9l+ATDcIAAAgAElEQVSeEGT1WvH54c8VXVTNlkjnz7ZKPmSuqMFy1I+NQqFQKBQKhUKhUKgQdIKzqawdl7z+M1YVt8ArmYw7fSdWsuj5GyrpRPYk55Om26FLX4sDDWZZYnIA8PoH1948fhYObwBnndYCT+ZrWFG9Arlp8WiyuCO+62Tn2R3P4pU9r2B/WxF2VnfJ3muxuiO2J69p1LQ7plAoFAqFQqFQKEcfOvOIAWSS7D0KE9p2O+8gWFfaKksWTUJMTgTYIIfX11Xg2gXbI96r63Ii97FVONRsPQ5HRukPAbihz9gIjz+Ig03y32uwjiBSHWxYBp+MuspShaxEvoT8oWYrfjrYMqj9n0iYPWYAwBd7q3Hrh7uwv94svtdsiRSCSltsAIA2K80TRKFQKBQKhUKhUI4+VAiKASWCyFFQGxlSM1gMWjUA4EinUyY0Ob0njiPI4YkuSv0g5EJZUdhz/hOO4zB3TZkYBkc5voQniPYEBtfeOh28EBSvV4uvZSXqAQA3vLsD/+/z/bD+QirhEYdTTQdfEY2IYIA8NIxUDmsy8+JQCxWCKBQKhUKhUCgUyjGACkExgOQ+8QwyfEYJtxACVtPhlO3/RHIE2XrIV2QWJvcp8boe99Fq82DBpmr836KCmB4bpf9kJuhR2+mE3RtqY4Nt21Y33w4MWg0AXvjLTOAdQaSS+i8lcXR9Ny8AFTXyoZKM5L1WidhjdvkQDHIwu/jE7620chiFoojbx+LRb4tpdT0KhUKhUCiUGEGFoBig0xw9IcglCEF2b0DmCGqxenDdgu1RHTT7683YfaRL8b1YQyb5SpiF6mZqhom6DRByFR2Na0jpHVZSFSzRqIXd6xd/O2DwoWFE0CT3CgBkCo4gwi8lcbSKnKIgcBHnDwB0Sa5pl8MHuyeAIAeoGOX8QaciVe0OxUTblFOXZYVNWFLQgPkbq473oVAoFAqFQqH8IqBCUAxRyhG05lAr7ltcoDixKWqwYF+dOeJ1KW6JMOKWJIj+oagZhQ0WvLG+UvFzv31nB275YFdfD33A1HQ6xTxGSnQIIUFSd4kSxDnE9CIYxRISrkQBrJ6QQJFo0MDmDoghS8DABDo/G8TO6i5YXX4xublOkhA5LV4HleTnrmy3yz7fYffio61H+iUKHG6xYfGuun4fayzRiCfF/+vwBhBgg/AFgjC7fOL7XQ4vugU30KgMEzz+4CkvhB5stOLS//6MhdtqjvehUE4gugUBVSokUygUCoVCoVAGDh1VxYCAsOIfLgQFgxzuW7wPaw61KQoh1y7Yjhve3dHjvqXiz8PfFAEAjFq1+F26AVQaarK4ceWbW2WJa+u6nFG3/35/I1YWR+b4YYMcLnptM+Z8EgrncodVMyNiglK5+2aLG4t31gIALMKE+FjpQD8ebMGZL64XE/k6vIFfXPWq/tDlDIl5CQYt7B4/dknKyPckUEQTal5adRi3frgL72yuQrfbDMPwL+ANhlw/GrUKaaaQK2hrZSeCEvfM498fxIurDqO4sW+JxvfVmXHFm1vx9LIS+Nmj/1sGgxycCvd1MOxyOLwB3PrhLpz+3Bp0O30Yk2kCwIukZIKbkxonbnsqQ/qJlcW/nOThlMFD3XIUCoVCoVAosYUKQTGAhH6ET5YrJA6HdtvA3CcuhTLxqZJ8OzpNpHLChs9Ew/imoAGlLTYs2lELgE9yfcHczfh6b4Pi9u9ursbHCiv0SpPWcJcNyX+ilFD63Fc24unlh7C+tA1tQkJdlUQJCga5oxYisrm8HQCwrbITAHDN29vw9kZld9WpQLdLKgRpYPMEsKu6C/E6PrmzJ0wka7V68Nqacuyp6ca1C7bjqre2RoiAjYIIWNZqx87OpdAmFmPZkW8AAJwQN5UhEYLKWu3YUtkh/u32823G0kPooRSpqNoaw8TLdV1O3PjuDlG0BHiHwpPLSjDx2TUR9334/efwBLC31gyPP4hupw9jsxIA8KFhRAAlQpDdE4DHz+JvXx1AbWd0cRbg84TNeGk9vi5Qvm9PSoTbv7YHYfpYsLK4+ajlo/l8d12PwjslkiohbJS6OCkUCqX//GvFIfz7x8PH+zAoFMoJBhWCYkBAcB+0WD3IfWwVSpqsKGmy4rU15eI2PYVPAcDuI12KuXbIZFhKSrxW/L9WwRHU22CZlO0mE/VOBz8ZXaVQwpvjODRb3OI2UpTcEE1h5bGJWGQPE4Kk1+OeTwvw9LISABBDhTiOw6gnfsTLR+nBRSo0Hag3g+M41He5TqpkxV/srkexkIw4FkiFoESjFja3HyXNVpwzOh1ApMi5vLAJb2+qwqury1DcaMWhZhsmPLMaZa02cRuHl2/PRzodYIN8O2WD8naQZuJFzV+PzYCKAfbXh87JpOcTS0fLQbVgU5Xo6AqEOYD21nZjeWFTxGe+2lMvy33UFz7eVoOCOjOWSyrfTX9hHb7cUw8AsIUdH8uRY+Eb8z5J+Xir24/c9HioVQy6nCFH0AhRCPJjw+F2LC9sxty15eiJT3fWocPuxcKt0cOoOI7D9/sb4VWo+sYGuRPOaUGcjpbjWEHO7WNx/xcH8PuFu2O+b2+AxZNLS3Dz+ztjvu9fMuS5Iq3Ad7Ky60gXrl2w/ZR2oFIolGPLJztq8f6WI8f7MCgUygkGFYJiQCAoH9CtLG7B1fO3Yf3hdvG1DrsXHMfhiaUHccHcTbJB4KFmK275YJeiWq/kCEqJCzmCPt1Zh+d/KIXTG8DTy0pQ2+mUhXwpQSb1DWa+uhERX5RWqW2eAJw+VlFcUqpcdqjZhvkbKtFh9+LeTwvgZ3l3RLh7KHzyTAjf/sMeJrmDoaSJDzeqaHPA4w8iEOQUxa5wLC5fj8mxjzYfbT2CwgYLnlh6ENe8vT1m+7U45Y6gLqcPLh+L04YlAgC8YUIQyenUIFTIIjz6bbHocnF6+c80mt0QNCEEOHk7IO629HgdctPjUdYSEpJMel7wVHJmOL0BzF1Tjts+5PNgdYeJOw99XYS/fVUoCzWraLPjse8P4qGvC6NeByVInqvw7yCEt4eQI4i/x/eH5QFLN+mQFq8THEF+aFN2wK0uBcALpuT+zUwIuaW6HF4s3FYjc8gV1PKheynxWox+4kf89csDEQniN5a146Gvi/DftRURx/3a2nKc8++NvYrUxxKvJCl5b87Go4VT6Ncq2hwxX0ElSde7+tDXUEK4/C6A8f8iHEH//LYYRQ2WXp/TFAqFEmuO5/iVQjkaHOw4iMu/uR6f7zl1ozoGAxWCYgAxI5Cgpvd+ro7YpqjBim1Vnfhidz3qulziZBkA3trAN15SUcjq8ouhLUpCUKJRK/t7Q1kbHvv+IBbvqsMPRc2i2yUaJEyLDERJQuq6sEm9dBuXj40Qfhze0LGZ9BoYtCq8sLIUr6+rwBVvbsXa0jbx/fAcSW6f8mooKUUfzRHw0dYjuP6d6AJIi9UtOjWi4fAGRCHD7WfF7+xtktHQ7cLU59fh/i/297jd0eTFVYdx3YLYCUAEszt07omGUPuaMIQPYwqvGmZ18221PWyFvqjRitcEJwsR8zgO6LDx1zgQ7giK58UOk0GDCUMSUdYaCqckSZXDvwMAKoVQkTidRrbN2Xmpsu18EqcQuZd6E/wq2uzYVN6OVqsHB+rN4qS90ewGG+Qi3DVRhSCG/26bJ1L8SjPp0SkkizYMWYH3Kx4DwAtBxP2QLgmbe2pZCV5YWYrChpBjirRhclwripojEsSTtq3UJ6w91MpfD7tP5pLaX29G7mOrFN1C/XVT9Rfp76WUV+xY4JL0a72toL6xvgKr+pHPiLQdWhOtbyzaUYsdVZ3wZT+OuLy3fhGOIKVnOoWnw+7Fyz8ejnB4UiinKvvrzTEtInGwjzkXKZSThXJzOZpcVXjqh52yxV9K3+hVCGIYhmUYppBhmBKGYX5gGCZZ8t5EhmE2MgxTwTBMJcMwTzNC2SeGYe5iGOZthf3dzjBMMcMwxeeeey6KiorE9+bNm4eJEydi0qRJuPXWW+Hx8JOX7u5uzJo1C/n5+Zg1axbM5p4rbR1rREcQE70Bfry9Bncs3CP+LZ08/lzB50UhQsul837Gr/69AQDv3iF5Wgjhf9d1ubCjis914/AG0CURNJzeQMRElYgyVrcfHMeJzg2Oi0z8K1217LTLJ4HS0LAkoxaj0k2hbcNElfBJnVvhwaaHD3aPH2yQi7pq8eKqwzhQb4nIR0O4+f2dePz7gz1OWMlkIt2kg9vHisfW2cskY0URHxq0VcgrdKzpKQHydQu247kfDg143w3mUFhcokEj/n/8UN4RFD4QUfp9THoNrj59KH482Ao/G4TDG0C+kBi52yn/PMkRRELDNCoVxmYloL7bJX6XS/i3TcERVNHGC0YjUowAQq6df14+HslxISFL6jAJCm1bpeo5I/nseVvwx//txfn/2Yjr39khOoF8bBBtNk/EZDRSCOq5P0iN0yHdpEOnwxdxbnaPXxSCAmzo82TyKHUlkfxbjebozgKSc4sDHwb558/34dt9jbLf87/rKjDthXU4IoRGLt7JV10Lb+e7j3Rh2gvrsKmsHUcLqfPMfJzCw5wKTsdovLG+En/phzBM2uPRyn32S+PZFYdw20d8iJ5a3wGzy39MEsHHCrePxV+/PCBzTpJ7z6MQrnky02J14w8f75GNP/rLE0sP4oMtR7DrSHfvG1Mov3DabB789p0deOy74pjts15hwZdCOZlhg/yzlGECsty8lL7RF0eQm+O4qRzHTQLQDeAvAMAwjBHACgCvcBw3FsAUAOcC+HMv+6sBcAHHcac//fTTuPfeewEATU1NeOutt1BQUICSkhKwLIuvvvoKAPDKK6/gkksuQWVlJS655BK88sorAznXo0Z4KEhPkElqmyR5NHFbkApbZKIZYINw+VhkCjl9AGDjwxcgXh+aqBOIm6jd7hVLdQPAo98V495PC+Dxs+KEleTr8bMcHN6AzOkTXvlMJgQ55QM8abhXmkmH0ZkmKJEar4PDE5BNfqTfeY1qB0Yxzdir/zNuVG+B3eOXhY6Rz92zaK/4WrRksg3d/PFWdTgUleF2u0d0W+WkxsEtuS42T0AxlwpBKgDEqrpTabOtzyEwSqtC5BwLGyz43/baAR1DQW03vtobKrmeIHEE5aTGQa1iIiYtSo4trZrBZROHoNvpQ1mLHQ5PACPT+Nw3Tq/yOZI8QN4AiwwhFIrs2yVc4/DEzw5vAB8KTg3imiG/TWaCHuMFFxMgn2wRYaUXHUiEhCl2OLzIFc6jvtslu3elx0vorT8YmmzkQ8OcXrRYwoWgAOq7+IGaVCwlLsANZe2icGl2+iSl6kMoiQxBjsPa0jb8eLAVj3xThM921Yn9zvrDvHPvs131qGizi/sMz2FSIIS47QoLP4sl0v5H6pocKHaPv9+JmcOdj0ohsAOFOoJ6J8AGe1wBH0xY3QsrSzHuqZ8G/Pn+sra0FSuKmkWXJBBqT+Euy1jy5Z56RQH9aPLWhkpsqegQF0wA3kW7uqS1T5+vaLOLi2Ja9TEqH9oPvthdj+/3Nx7vw6CcAuw+0oV9dWZxHHygIXb5IGP5PKNQTgTElBMqf5+fN5QQ/Q0N2wlguPD/2wBs5zhuLQBwHOcCcD+Ax3raAcdxOziOMwPAr371KzQ2hh6sgUAAbrcbgUAALpcLw4YNAwAsX74cd955JwDgzjvvxLJly/p52EcXMsE8Z3Qq7jkvL+L9d2+fLv7/jJwUAEBr2CCNYYBmq0cmXox58ifsqzPLKiuNyjAh2ahDNNrtHnECDfBCQ0WbHXcv2ospz61FMMjJRAyz0y+zql/11laxkhYANEkmquGOGekDJSvRgDEZykLQkEQD2u1enPnienywhQ+bIwP9IejCW7q3sVH/CBIZF85XHUS3U56Hp8vpAxvkZDmXlCoqSV1AN723E/8TqqIRAmwQZ720AbcKeWVGpsXz5yWZWETLAwOEXCcAUNMxuKo/wSCHndVduPKtrXhjfUWfHs5KLqpOh3fQVkjegRLah17DdwvpJj3UKgYGjUqctFS02fHfteWKQtDlk4aKFbGqOuxw+1nkpPLXGJxyV0O+yxcIIkkQO8hvT5wZ4StYWys6xNAwIvSEXF56XDd1uLit1BFE2pya6d8kw+LyY4LgjOp0eNERllPHGiZaskSIieIIykmN40PD7L6I8CuHN5QjSDoZJoLZF7vr8ezyQwgKrjmSw0mKNLyKiFkcx2+fYNBAo2Lw4qrDEYndP95eg9nztuA7YbIT7qoTBaajOEeTC0GDdwT9/qPduGDu5n59xumV32dEeIiFE8UjOoIGvasecXoDWLCpqkdh+0RlzqICjH96ddR+bTB5ghZuq4E3EDxmjixyD8VJXLzktMLFrrouZ0xCQLocXjz+/UHM+WRv7xvHiPouFzYIz2epgHzlm1vxp8/29WmxY/a8LeJnw12bjWYXLn9jCxrNx8/N8MTSg3jo66LeN6RQBsktH+zCDe/uEMcWg+2upP1drBYxKSc3O6o6ce6/N+BA/YkVYTMQpI6gBZuqfhG5BI8lfRaCGIZRA7gEvAsIACYC2CfdhuO4agAmhmEiZycKLFy4EFdccQUAYPjw4XjkkUeQk5ODoUOHIikpCbNnzwYAtLW1YejQoQCAoUOHor396IUmDARSJejsUSl46urT8M/Lx8nev2LyUCQIE7npI3khKHy17ld5afAFghECEQDRKUE4Q9hHOHqNCm02uSOo0eyG2eXH9ip+FX97dacsTKvL6ZUJQdUdTvx+4W5REGmxumHQ8s2ECCZNFjdqO52yHEFDEg0YnRmveFy56XHCd/nw8o9laOh2id+Zxthk205jKtFm88pKhi870CSWDyYcURCCwkNktklKkQOREzxSqUmagyY8/E1Kp90rJjeuHmSFsfe2VIuC1PyNVZg9b0uvn/Eo5FWq7XLBIXN0hc5xb213nyaCHj8r5rMBgHxBzHn1hskAAINWLU5Q/vFtMd7aWIVSSVLnBIMGmx+5EM9dMxEj0+LAMMDBRv79YckGfnWXk4czEnSCEOSVCEHECULaSIvVIwtDJCFD+ZkmMUSw0+GFSa+BUafGLTNG4JopwyKuBxHSegsNC7/fACAvnW/bNncgImeRVAhqsXpETe2JK8fi8olD+OuQFHL1qVUM0kw6uP0sartCExuDVoVmi1sM3ZQeu3Ry1WB2webxI8iFjkuK08uK18sttI1gkJ+UZiUaRLFOyl3n5or/J3O25jAnFhFmooVlxgLpOVvc0e/FgtpumWAdjSIhH0J/JtguXwCapL1gNPwqrNnlw47qTuQ/+ZNYpQ6ILgzZPX7srVUObTlWwsyXe+oxd035gF2Cx5MtgitESfgGYlM57Fjl6WkRnucGbWT/J22TbJDDBXM34/4vDgz6O8m59RQyGmvuXrRX7BeluQZJX9bTAosS4fdrUYMVZa0hxxCFcirw5Z4GAKFQ+oEiXWBRqvZLOfX461cH0Gz14HDLyR9KxXL88yI9QQU/y6FGYX5IiU5fhCAjwzCFALoApAJYJ7zOILrDvddei2GYixYuXIhXX30VAGA2m7F8+XLU1NSgubkZTqcTn332WR8O7/hDEhuSxnjemPSIbeL0/EBwWg6fYik83OW8fP4zSmEXCQZ5KFg0IWhaTjKq2h04LJmkE3cAsVpvq+yEwxMQVyhrOp0obIhUhBcJbppmixunSdwQADDzlY248LXNsgdKRoIeo6M4gsJf/2pvvTjIT5cIQa7h5yJH1QFzR4tscv3iqsO4/SN5KWelQW64CpyZYJD97Qhz3QwRQu46JOJbT0pyp8OLqSP43y/cTQH0L+/HxsNyMbO3QfvCbTUokpSLP2dUGnQaFVYVN8MqcU6Q0LiC2m7c9N5OvLs5MnF5OLxAFhoojMk0ofrlK3HJhCwARAji30+V5N8hYY4aFYPc9HjoNCoYtGoMTzbiYBN/rCa9Bqnxuqgdwq/HZiA5Tot7zs8T9yc6grwBMYxL2rGT3DhDk43ipMfs9CElnv88wzD4jSAEScMviIDRmyNoSKIh4jUiuFjd/oh7980NlagS4pJfW1MORuhVR6YZMTk7CQCQHiYupcdHik0JBq0sWbb02KX3WlaiQRTDlISgB5cUYuKza8AGOfH6BDkO3U4fUuN0orAr5fe/ykF+pkm2v9YwtxKZ1BIRe+6asl4Ts/cXqYOrJ0fQje/t7Fd59/6sEHW7HDAO+w5xOR8B4AXsA/V8e/7pYCgxdDQx4fHvD+Km93YqVmM7muFAUkjC94Lao7fa9/j3xVhd0vdE2f0lWq6m97dUy55xA8Ecg7DDdzZX4YEvexZuiHPUqtCWZfe3cK5bJEJHMMhhdUlLvx2fZF/HKpeSx8+KDk0AYmir9HnYm3gXfo7Sa2N2+rC7hh8XFTfENtGtN8D2qYrSyZSXinLyQ8bn38UoFNEr62tObJdou92D3MdW4eLXNmPxrrreP0AZEKRN+E5C13A4ZO6dlcTPlXsrmESR0+ccQQBGAtBByBEE4BCAM6UbMgwzCoCD47geJUaGYU4H8NHy5cuRlpYGAFi/fj3y8vKQkZEBrVaL3/72t9ixYwcAICsrCy0t/ICzpaUFmZmZfT7BY0GAI5Mt/sY6PTsZZS9cLtvmoz/MwJyZeRgnrMYT588/Lx+Ha6cOw+WTeOfAFoUVryRhgkwmt0adGn+7JF98f9LwROg0KkzJ5kWKHdWRYpKY78TuhcMbQI7ghnno66KIxIzpJp248t1s8SA3PR6JBg3+u64C70sqokknp/F6DfLS46E0xx6VEZpc5meaZMme0yEM7M66D8zZ9wEAXJ01sLr9svwnZCJ33dRhGJZkUFzh7wib7KXEy0PowldCyMP2rY1VivvYWd0lq17SYfdiRIoRiQaNrKR5u92Dy9/YEiFW9UT4sfXEkQ4HXlhZKk46xg9JwAd/OAOzTsvCjyWtsoEsSUq6V5gA9iW8xuULgGHkA1215NobtCrxepN2AwDZQqJmjVrejYzJNInfbzJokBavj9g/mSSkm/QofGY2Ts9OjggNc/tYTBbatNSBZXX7YdCqkBKnFQVFs8uPlLjQNdWLTqNIR5D03Dx+Fusl1e348+Hfv2xilvhaTmoctGoGVrcfjWZ3RJ6hV37ic4AUNlqQJAi3LMeKwordE8Bd5+Zi0ZyzAISSZEtJMmpR2hya4ErbuNTObXX7xRV2JSGIrJqXNttkQpDF5UdKvBb/ufF02e8IALlp8Vj30AV4ZHbIzRj+MG2zEiGIv0cWbKrG498fxP+21+C7fTEasAaC0KgYMEz0ZNEDCevprVKcFKePPz9Gw7e5bgfvpALkgm24o4NQJ0yEq9sjV6WOlSOIhCeWNh+dCjFskMOXexrwp88GV0FxR3Unch9bJetPCUriCQDsOtKNK97cOqgwqr6GHW4sa4saSvGf1eX4oai5x/ZI2gLJ4SdtJ94AC2+ARe5jq/D6Gr7/0Ehy43y6sxZ/+my/LOdOXyDPub6KF2yQG9S1JCLp+3ecgWumDENdN9/upffKkc5IBy0b5PDE0oOo7nBEuCylxzPz1Y34VEhgL10MiQXz1lXilvd39rpdfx1Nx4u3NlTihnd3RAhrLl9AcWxJOTq0Wj3414pDA7qvyAKO9Bk92NAwaa7EE90RRITkI51OPL2s5DgfzS8XMldzH6PFqaMJqUacnsiP+9uoENQv+hwaxnGcFcBfATzCMIwWwOcAzmMY5lJATB79FoD/9LQfhmFyAHwP4I6xY8eKr+fk5GDXrl1wuVzgOA4bNmzAhAkTAADXXHMNFi1aBABYtGgRrr322n6c4tGHVA0jQhAQaQWfnJ2EZ35zGkzCJJGsqv86PwNv/m4a8tLiYdCqsKxQPuhTG2vxRfvN+OHhHMy/dZr4+oOzxiJNEBPuv2gMVv/tfPz+VyN7PdYOhxd2TyBiIihl4rAktFg9CLB8qNqwJKPoaPj3T2XidnZJWWyTXg2DVo2nrzoNf7lotGx/0mpiY4ckoNniFoWgu6YKE9lLnoYxbQQAwNfdDKvbjySjFr+dNly2r4dmjUO8XqM4oQpf9Q8fCJMB/Z8vHI13bp+u6Iwg+1hZ3IxbP9yFL/fy1lxvgIXNE0C6SY+sRIMsYfDS/U0oa7VjR3UX9tVFhoTkPb4Kj34rr/rQbvPg/Px0ZCqEIUnx+Fm8sLJU9tozvzkNCQYtRqfH8yXIJYNUIqJUCg6VzEQ9fIEgKtuia7MuHwuNOvpII06nEXMY+SUDTJKoWRumivzjspCYQBxBYHp/2CRG5AhicdrQRDAMcESSk8ni8iHZqEOcTi22I4vLh2SJEETuP2KJZoOcmHuHYUKhVm+sr8Q9nxZgR3WnGM7j9Qdx6YRMPHHlBHF/YzJNSDJqYfP4YetqxldJC1B9bYP4PhHrjnQ4oRe+O8gFRaGm2+nDv66ZiAvGZgAA0kzK4WfEwZeVqI8Qgn49NgMXj89Et9Mnhs8p3cdE4Nxa1SGKX24/i26XDylxOozJTMC8W6bIPkPEvPys0L1a3+2STXKJMBQ+aV+0oxYv/Xi4XyKHnw0qOh28ARZGrRqJBi2sEtcGG+TESbSSGy8aRPTrTyUju5ecH//ZbqdPrDgn/W6pI0ia3H6oEAZYqVC94lg5gsh90Wz14JuCBvxVwbkSngy8P3RJCgfsHkTycOJYPNgUKVj1Jt41WdwDzvXTFyGo0+HFnE8KcN/igoj3pNeup+p2zYKrjvTRUtHe42fF/FOLBKFDKxHVq4U+r79J00nItp/t27V56OtCjH96db++QwrJ2zN+SAIyEvQwO/lzlIo2939xAGsOyZN4Hm6x4Yvd9fj7V4URuX+8gSA+3laDm9/fKbvPKtrsMU12W9vp7FN/EotwxKNNdYcD/11XgX115giX0xVvbsUfPt6jKLhSYs+SvQ34ZEct3v/5SL8/S54lxIkPxEAI8oNN8OgAACAASURBVA9eCOI4DvctLsCnO2sHdzC9EKDlv/tFu82D538olS1a9wVyld2/gOTh3gB/zyQYAaNWrZhihRKdfiWL5jjuAIAiAL/jOM4N4FoATzEMUw7gIIC9ACJKxofxDIA0AO9MnToVZ57Jm4rOPvts3HjjjZg+fTomT56MYDAoVhR77LHHsG7dOuTn52PdunV47LEe81Efc0iiKqkQBAAvXz8Zi+8+S/aaXqOGTqMSw0tIEliVioFew0/giPMnNV6H313Ir6TtauHzyczdOxc/VP/Af6/wdEiO02FUhgkjUuPwuxkjejzWrZWdaLK4xcmKEnnp8ahqd2DhthqwQQ5Dkw3ipF+KNInvGSNTAQBzzsvDZUJeFAC4WrUTo/2hiinDkgxosXrg8rPQqhlMTvYBGgOgMwEm/nOcvQVWFy8EvXbTFJkzIz1BJwtVktJp9yFepxbzzoTnmCAPwAvHZeLKyUMjxLo4nRpdDh/mb6gUczWQctZkdTMjQRCCJGEf++vNYujdDe/ujBjUchywpCAkGhQ2WFDUaEVWogHvSBKJKw1w15W2YVO5fCXPKBx3UpwOHCdfebW4fFi8qw5FQpUJj48XkmbN24J2mwccx0VMnlw+VlEUE79PpxYH4x4/C51ahUvGZ+KejMO4VLUvwhE0cVgSshL59mLQqhGvV6MvFfUS9BowTGiy5PIFkBKnxZBEAxok19Ti8iM5TguDlheCbnpvB4oarUg2hsLWiCPo9o92Y1+dGa+uLsN8wfm1tbITY5/6CdsqO8Xf6q9fHsBN7+3EgXozvAEWeo0aqc4qXK3aCYBDmkmPRKMWVrcf53Qvx1me7VDv/wTrH/o1bj87B0c6nVi4rUb23YFgALlCQvJwwSZNdISFrssEodqZTqPCiJQ4WRt3eAMw6dV8tTGHT5x8pimEmBHR4lCTTWxTDi8rhM/x33t6djJuPCMbySoXJiSH7hNyvPz1Z2UTIDJA7QpbHbcIDiVptYb1pW2yXGTh5D/5Ex79rhhOb0A2gPEGgtBrVUiO08om2Oe9uhEXv74ZAD/I7isGDclv1veJnMPH39txWi0S9BqUt9lFQVFaBlyaK0k68SJVHctbI4WgY+UIcvtZMBreXfaPb4uxoqhZJrw1W9wY+9RP+Lqg79dSSrtECL/lg10DPk4iyChNdLqcPf9m18zfhhkvbYjqHFKCaNY95Z8KHRu/DcmvJ6WsNeTca4oS1uv0BsTFkm6nD3VdTlluQI8/GNEupdWySJ+r1fSvpofD07+B/XJh8amv1SvDIf1BukmPRIMWDuGeDg9L/LmiAw8uKcTKYv77iOitUjERYozHz+L5laXYUyNfWAlyQEnT4MICpZhdPtl9vL/ejAWbqiK2OxmEIOliibSP5tse329Z+hAG90tnS0UHTv/XmqOaNJmEua862D83HxB6lkyQCEEuXwBOb2DAwrc8zHxgz6B1pW1Yc6gNzyw/NKDP9xV5EZqeF0opfBL7j7fXRER29AYZ00TLxXcy4Q3wbUatCmBIkoEKQf2k1xEGx3GmsL9/w3HcYuH/BzmOu5DjuHEcx43hOO45TuipOI77hOO4+xX2dw/HcSkcx00tLCxEQUFote25555DWVkZSkpKsHjxYuj1fCeQlpaGDRs2oLKyEhs2bEBqaurgzjrGECGIdctvxNvOzsH5+RkR2yfoNaIVOkkyeb3tbD5Px5NXTsDKB87DxocvQLoQQsIIPr5PSz/FE9ue4L9PWPGL14VyCBFXhE4yeNQrDCSvmToMt5+dg0nDI/N6E5GIuH8yTHrFkttdHS04O82F6pevxBhJ6fghwuc1COBt3XyYPp2Ny1R7AADDko3wBoJoMrt5IcbZCcRn8DYNUyaCYMBaW9BidSMzUQ9VywFcHOQnGia9BnE6DfQalaLlttPhRXqCHoXPzEK6SQePT1kIihfyNRklQtB/b56CdJMejWYXvpXEZROxaGURH5p4Xn46MhP1aLd5sbWyA5P/tQZrDrXhqslDcec5vCOr2SId7MuPwc8Gcd2C7QD4h9yZuan4zw2n89dTWB1+4MsDuFWYXJEB6JWTQ+KaUXB8EOFDWh77rY1VeHpZibia7PKx2FHNJ9Xtdvnw+PcH8f/Cwjmc3gB6KESHeJ1afFh4/UFkpxqx8K4ZOK/gr/hI9zp0qkiR52+XjBXO0YDHr5iAm88cHrFNOCoVgyRBbPEFgvCzHOL1GoxIjUNjt0TsEtxicTo1nL6AGIaWIslfpJcIW29tqFQMXSpusoiOEeI+6Hb64GOD0GlUMC2ahbd181GuvxM4tBSJBi3abR7E+4QkxT4nxmQmYGZYTjBy7wW5IIw6NRbNOQsL75JF0UpCwyRVAoWw0REpRhh1aji8AbywshQby9rg9AZ4d5VJh26nT6xGlByvRThk0NdocYuTyTarB4EgJ14jrVqF126aggOmB/GT5w7ZsR94ehY+Fo6X5GbiOE7MPeINBGXiDZnMf7GbzxfUZvPgnk8LFF0oQMip982+Rkx8do0sQa7XH4ReIwheEiGgxepBXZcLVrdfFPTIcfUEcWf1LzSMv3+NOg0uPS0L6w+3iX2Hxe3HwUYrFmyqwmqJw0E6wSKT//Bqd8CxcwQdsm6GKf9lqI214mvdEmcJEbSe+P7ggPYfXuxgS0VHhHOxN6ra7aITSGmCGqpSGfqNv/nTOWLbdPpYdDq8WFva93Kx5N60uPzwBtge8+9Ixb3w7aQhnNEqWZHBaLpJjyaLGxfM3YxnV4QmUR4/GyEwhIetAnx72n2kC29vrIz4jp8OtkQ8Ywa64j/QiXGn3QujVo14vQaJRn4s8v6WI/hkRy1mjkkTt6tqc2DpgSbc/8UBePyseNx6tQq1nfJr2FNITXEMw8MsLj8CQU50eP32nR2Yu6Y8QrCVhowPxkl3NJGK1FKXsFRstPdTJPwl8p81ZbB5Apj07Bp8LCzexBry3LW5+3+9Sb8zbkhoTG12+THx2TX4bHffc/Ld/tEuvLu5Gre8vxP/+DZU7S5a7rXeWHOID6E3atWDrlTbE1IHIFkop0SHXK/+FMPluFCf11vhhO1Vnf0OTz7WeARHkErFIitRH5HHk9Iz/S0fT1HAGORXfrkDnwHvnAPU9FwByuENYBJzBCvSFyBFFxpUPHr5eKx76AIMSTJg0vAkJMfpxIkOo1CzmTiCiLABhFYiyEq4ioFYYpqEId14RjbOGJmKl66fjPm3Tkc4Q5ONsr9T43WyONJ/aT7Bi5qFeNr+ApY474HaJp9kk0S445nQQ+t93Ru4NKkJQ5P4fVd3OPgQFmcHEC9MpNVa+PSp0LjasL/ewift/eQq3FLzJDJgQXYi/1CQVrGS0unwIt2kR5xOg5Q4XYTSTSzzCXr+GhklJX2vmzocaSYd1hxqE1fPgNCq/4ayNpyVm4rslDhkJRrQbvfgq70N4sDqovGZuPEM3o0lnUCEW7Sl+ZtI0mJSiYwM3n4oasZOIdzC7PJBxQAThoQEO9ERJApBygNAgJ8skcmFzR1AUaNVrPhF2pbLx0Ifrid0VgGHlgIgoWGCEBRgYdDInVT3jYyciN12dg6KnpmNvPR45KbHY0xW9FBEKUlGLSwuv3jd4nVq5KTGobjJguWFTWJYVEqcDnE6DaTjEVlomOQYvQE2VNJdgtvHiuFi4mk7vIIYoQLD8gNoPRMAvrkLyQY1SpttSGEEp4e1AXB2ivljCHoNf72JQ/CCsRkRicvjiHgrCZmbIiSW/vOFY2DQqlHaYsPCbTWY80kBWqwexOs1SIvXwccG0WB2QaNixGqESjSZ3XAJbZ5MSqXXCAAYn3AuwdC9khKvw5gMXpSqFURGt59FkIMoTIe71EakGrG7phsfbjki3pvFjaFwn3WlbXj022LYPf6IyYhUUOHdWCpkJOgVV+FJ+x4t5B3z9jIpI4JVVy9CkNvHiveDQ8gRpGbUuHRCFiwuv1hileOA37y9DXPXlOOtDaGJ+bubq7BVqFLo8PJtV2nS5T1Gq29NHj63gkofurbSwRGZ9AeCnCgq9gdpaCwA/OHjPVi4raZfK9bSnGpK4U8hV0PoN56RmypbXNFrVHh2xSGUhIWWrTnUqhjCQFy3FpcP455ajQe+ip7sWVYNMEz4KpeE2kYLLSLXW7rYInW4KDmCNKrQkIy4liwuP97ZXI3X11XIVsv31nbj/32+H69IwrUBuaDTH5dPTw6+nuh0eEVhO0FIUj53TTnS4nW499ehMHFpgm+HNyBOkrUaBrVdTgxNMogLHkr3dZxOjXSTbtAVO6WQpOHhlRDbrPLfRdp/HM2qiQNh5isb8cCXB2SuWWkorHRMcKKXDv/PpnXIfWw5FmyqOmphbNIImldWl0XfcBAMJnyR9DtK4eN9DcO1e/hKwa+uLsPumm4UN1rB6DqQlOAYcBsgBTHcflbW1mINGbP8alTqMVs4OZkhfXx/hCBp/9qbI+j2j3ZHXdQ7USCOIJWaT99xsuR0O1GgQtBg8VhxAXi3CwsGaC8FPr8ZsES33HsDQfxTswSnO7YDn98IWOqBZX8BGvZEbEvKRqqYyJ+KdABS1Zys+JMS2RkJeoxI4SfhJHeItJS1UoUkqUsJ4CePJI50ClOFuzRr8XvNBpypquA32Pxv4JOrgS9uAdrLoAr68fcJNnyb9KZsP+9lr8GwZP77DjXboFergPYyIDmU20ifMhzZGn5Qn5VkAFj+objX8Gd86OdDAvnkxQqhYQ6vOFGdoKqDzycfSNjdPugy1qDZXSXsJyQWqFQMWiROHjJ4l5YwJ0mvR6TEwc9yWFXMu4Tuv2gMrpkyLCLZcfj/AWBTWahaGEmETAbRP4Sp7r5AEGYh980ISWgROW4i+tV2OWEQwmnCcfsCUDGhXCctVje6HF4UNVgw85WNWLK3Hi5fIDI07Js7gW/uArqP8KFh3gDKW+1oNLv5bf2ha3XDEOUklEmS4yFZ/UX8ypOn1Hgd2mweVAgTrTGZCchM0MPjD+JvXxXi0521stAwKdEcQQ5vQFE4dPlYNJrdSJRU5Wu3efnwJI0KUMlFllxNN5w+FmlECAIHzB2NoXoPAA73q5diw92jxMlcxDmHccOkJCwbvUz8e2RaPEqfvww3nJENg1YdMYlL0GvEEM2yFjuS47SiU1CJTodX5gIZzTThjIZPQnE4Tkn59W75yuiwZAO0agY1wko9GTxmCILW/30qz5vywMX5mDgsUXDPCE4G4TMuXwD/92kBlhQ04L2fq6NW6anrcmJlcQt0GhXSTXpFF88KIYxlmCBWO70BtNs9ivHxvIuJP5aewow67F5MeGa1mJDWJbRthmHEHE/VHT2XI11zqA13LOT7byIAhTszVpe04F8/hFwzA7X59wWStw6SBYRlB5rw8o+HwXGc7DeY9sI6fN3HcLtHvy3GzFc2RjiCCNEq0nj8bET+NKmYZHb5UNJkleWREX9/aX4xt1mWR+fju2bIXI+E+xbvwzPLD+HBJYWySRm5p4oEkZL04UpIr1GXwwuryy8KNxVtdkzJTkKCXiM6v9w+Fi2SSnskpxYp4hCOJxDpCNKqGZS12vDxthoxJK3d5sHumi5wHFDRFhJBSHheq9UDly+A19eWY8GmKlm760tFLEJ/3SLLC5vQbHGjy+lDcgJ/DaR96Ud3nokLxmag9PnLcNG4DLE/APh7g4gwWrUKNZ1O5KXHY8Ft08EwkY6g/9xwOlbcPxPxek3MhBhOSKAPAC5/ADaJELbqoLxam/S9gToqYsWPB1uwsrgZyw40geM4NFnc+KGoGQ3dbvEZGB4aRuhv2CCB4zisKGrud/JjpVD0aNTZ6rC4/iHos1Zh7ppy3Lt430AOtVfYYKg/OVruLv4ZyMqSNPcVcs9Kx+GnC4tEuj6GiRYpVNczjX4dwewXRaGlP3Ach8p2h1j1WCnsOVaQ+yvdpI9pPrBfKuSZFuxHU5bexz31p/3NT3e8IDmCGIZFgkE74EWNUxUqBA0WfSJcQ/k8QMGxlwH3bORf/+FvUe/M+y8ag5R0IdSndivw1e1A4WfA13+I2Ja4CnoSguL1kaFhZPJ/laEYL9bcjCtUuzFxOP8wmS4pPy91xRCm5yRDJxlsp8br8Nw1kzBhaCLu0MvdTn6NCSj8nD+PitXAO2cDG5/H31seg8HTAeScAzxaC1zyLDTV6zGBO4KxQkJara0esDUCueeJ+2MShyFbxQ+AhyboAMl5j/BUAGwAeq1atG4Hg5z4/zabFyPiWODbOXjL8gDOsK6XHavd54U+fRMe2Hw3f+5hQoLUWZUSp4NOo4LLHwAb5NDl8IqOqt9OH47z83kX041nZOORy8aBYRjRFh9NCOI4DkWNFpyVm4rif83GpRP46ncZwn4/2lYjWyFusrhhdvKixzCJSytcCCprtWNYklEWIkhw+VixLbRY3bC4/HD6WLy2thzNVg/e2lAFk7MB97jel38wIEz0Cv6HOJ0azVYPLntjC8pa7fz320MTKJWzjRcXfNEny2xQ/rAJFn8FBCIn59NzUnCgwSLml5g4LBFn5obaa323CxaXH0lxWlHYFPdJxpsl3yG+PbSCUdJkUxQO7R4/Wm0e3DUzD3uevEQM2fQFgjCq/IBQiQBTbgMAjAEvFKTADk4bEuYy27ZiBNOOR7TfYFTl/6KeczivT+9CXvMy2WvEKUQcfdKcIfF6DcYLzrA9td1ilTRSifBdSb4pIvZWS8o6f657GaOLXgsJQO2HQ1+84gHRAQbwyaNHpMahVggNI+JOtJj9kb4q/D3wMWwurzh4I4Ns4ljTqVV4/+cj+Lm8XXEfN7zLV+9RqxhkJPCrOn42KJtIzFvPi89EwG6zeXHWSxvwxNJQiJPDG0AwyMHjD4p95E8HW/HcD/LcBlsqOrCzuguFQj4tUqrX5Q85goanhByM0SCTL5L3iYhm4UJQeCncvibzjQYbjD7JUhKCPtpWgw+2HMHumu4IgeDbPlZ9W1LQgCaLO6r12hZFeHjkmyIxfxrH8VWqGAb448xcpMTxLsCr52/DfZLJX7co3knu3VdzgR3z8ceZufjLRaNx7ug0aFRM1ITNSw80YaMgvnMcJ65+rhMqBSrlynv022K8/ONhWe6hLocPF7y2CWe+yD9TylsdGDckAaMy4sXcLP9acQjXvL1d/E2IWDZlRJJs/3E6NRL0Gnj8bITYqVGrcPkbW/G8JMxu3eE2sf8ql+QmIs89hzeA055Zg/kbqzB3TTleX1chbhPt9yBIxQ6HlxdDbnh3h7j6H43DLTb87atCPPpdMeq8W1AX/zgK2wvFhP8ARPdvnE6D0RmyDAN4Y30lHhfCEj1+FoUNFqHqKAODJtLxe9OZ2RiTmQCjVt1rKEM4Dm8ASw9Etm+XjxXzFLl9rCzHzqury/Dl3pCjWTqx6O/3x5oHln+GB75Zh78vKZQlPS9sMIuLS1IHk9wRNLAJUnWHE3/98oB43/T5WL88gCnPre3TtmYP/8xXG5oARHfaLdpRi3sW7QXHcShssOCCuZtkYXG9cSySEVc4NyNhwpPwcMrPup6QCkGbHrkQmx65ECvuPw9TspN6dbYStlbxi3NKxSQGEjrabPXA5WNx4Vh+zHo0y3OT+yvdpD+m+WvabMoLSseL+i6XYr8VDnG790eklY6He7rGe8PyvB1t/GxwQO3TxwqfYfxINGhgoyGw/YIKQYOFYWDI5B0twaThQPYZwOwXgOoNQPXG0HbNhcDKBwGvA49cNg6TkyQdaatQUYr1AV/8Dij7UXxLTEB9SD5hhN+Np67iqxpJBQ2SN4YM/3/n+x6JvnacqzqEe88fhRX3z8SF4zJlu1p891nY+PAFWHz3WVjz918jwaDFhocvEN9PMmpxzug0/DR1F27EeuwNhqq9Nc56DzCmAmfdC9z6Ff/ijvmAxwJc9y4wZzVgTAFm3A2oNNCWrxATJJ+DQn773PNDB5M1ETnBRujhQ67OCrBe4Op5CFw+l3/f1iTkCOKvy0fbjuDX/9kEj5+F1e3HpbbvgZLvAACpPl6seO/nary4shQ2D3/NWY4FbM0wMPLO4uO7Zoj5lEgOGrePRZfDiyAHZAiTT4NWjXdun45rpgyTVWojtnir2y/mQZFOJswuPw412zBlRBISDSE3R3ZKHG6Yns1fT0ni0TsW7saqgy1IjdOJE1JAGhoWCvMZnmJUnBS6/aHQMKk1P615My5UFeJmx6eY3zkHeYGw/BPEsVO1PhTGJBAuBGHXO8BzycDLw4Cu6ohjACLdMWzAA8w/k78vJJyfnw5fIIh56yswPNmIlHgdLh6fhbIXLsek4YlYXtgMHxvEmSNTI4QgnUbFC1LfzkHi51coHoeUdrsXHMffM5kJBgxJ4kP+vAEWGazgcrr+feBKvhDimGAtblJvxjhVI5ghp4v70VStQzbDiytM+U9Rz1nE0sC7rVqKeRehAkTsOysvlA/tV6PSkJ9lEtsoEYKW/WUmCp+ZhTNyU3CzehNOZ6rFRJNdTh+uUu3Cz7q/YwgjPNQtdcDehcCqh/i/jalA/Q7+mBwhd1deWrwYGkYeztGq3I1sWolZtu+R5a6SuUIq2+yiEPTJH2dApWLwlYL7hA1yogja5fCJ4miXw6foMiET+NUlfDv8uqARvkAQJU1WTHqWnxRLLfA+Noj/ba+V3SN/+HgPbv1wF1YJyWuJkOrw8sehYlRIMmqRaND0WLVl8d1nY2RanPibEWdFuAU/PLzX7Wdx/xf7MfX5vk2Uwrnk9c24ev42xfd6GtB+v78xQgjy92c5EUBFFKHAFmUlbqXgvDnv1U34bHe9UJEOmDoiGanxOsUqXoqOIABY+xSe/c1E/OOy8WAYBsmCkBQNct19bDDCZRfK1RViSUEDPthyBFZJfo9mQUQH+ETbnQ4vxmYlYHSGCdUdDtg8fiwvakKH3Svm/7O4fIjTqZGTGi/bf+b/Z+89o6O4su7vX1VHtXKWQIAIQuRkcrAJtrHBOcdxnnFO45zDOGePcwSPA87GxgZjMJicc0aAQDlLLanVud8Pt2K3BNiPn/9az7w+a7FEd1dXV1ffunXPPvvsnejAoRgeRDOCjAyFwuxEBuUl0+wNYrNIOG0yOyv0864u4A8nfH0kRoJZ2yrA4t01rD/YwAvz9xzmXbpge1NbgIawMIMoaiwi07OPyyw/k4BHY+eCcK80xrcby7T/qyKnfXISIRRglHWPnqjIbTiyf8AfFt/RabP87uTw4dnbue3zzVp7pxoNhmq3xx/CE3W9FhlAdKPWSzRLobi2le3lsQyM/40IhsK4unxEQq/nAcHmU6O2xU9OkoMkp9UAomJq/fyjGkEdtdBFR5Xby6Jd1VpSOmdLBW5v8A8JkUf/Hmo8/P12FuysZtX+eq6csZaDdR42HDr6hPWPiqL/nijxrwAgYKnsEKzfX9PCqwv3kn/Pj6aW0fLGNiyymNe6Z8RrrNT0BMdRmR5UNnn5cFmx+Px27gOt/qMXnS6ubeX015bx7hLhfjapTyZ2i6y5If5vhMcfxKLoRXoD7buL/tnR6PEz6smFPPvz7iNv/CfFRyuLY9yE1QiHI5z/zkpu+3zzEQ0m1PPze9hnRtAoGtgOhMLafagxyrnVGA9+t43u9/541J95NHHljLX0f/jno9q22RvQ1lg+pXMkIgVJdFrxB8P/z4w5/hviLyDoTwgVrNFAmwFni7/VBvHMhY/Bug/gpzvE48ZDMPBcGHG1vo2nDvbMhVkXxnyGVLrWXMF/ZTCXj+pM8dPTtTYw0NlBKsiQGxQLrkGJzRRkJzCoHZr6hIJMemQmMKEgk0LFuSgtXl/EaQKWW78EQJ76BL7pr7Fw6gLyR54Cdx+Aac9B4clwwuP6jvMMjmnOZOgyGvYuoEdGAhZC/N0yB3IHQ6ZuN07uYKyE2O28nIk/TRLPpfXAmlmgnTengRH049ZKqtw+zSWri3c3ZPSmRU7CFRTPPT13F+8tO8ChekNV/8W+pCy43XQeuqXHc84xApBJirPhUqqP6sLemAQnOm28euFQhnTRz6dFlkh0Wnl14V4K7p/LIUXcVo1hj/+CPxhmsOE9RCIQaOPqCd0BswONCgqluGxkJwrBbqccwrbjKwiHTdThvNQ4rbppjKV7azVB1u2KwOlEeSMvh55khv1ZbrEKFohpygy0gbsMbC6o3kE6ZnFOp00Gt+I0E5dGlcUAyOyYrf232lPNvkYBDAWj2D8hgKZDMGO6CXwY3SOd43pnkuiwcrbyW4jPtJCd6CQUjpDgsDKhIMMEgN5xYm/OH9EFmo9eOFZdVKlMsKwkBxVNXsIRyPEVi43SeoAjEVK7M7JsJs/Z3hHP54+DS76BghNh369caxFOfjQdIhIQwEe0i6AWn18s2DdLnyfUQWeXytQbnBPHrFNd/PvCoQzukoLNImsgj8oIi7NbSHHZiZPDPGt7l+8dD5pYf2fZVtBNNlQm6w8IEKh2j2jLvH0nnP+JeG39DG2z/AwBBFU0tWnnKlrrSI3EVnG++vs2mRbwJ7y0hL1Km1//Tsmkx9vbFVGubfFpAFd1s1drgatt8bXbzpCjsA1+3KoDknuqmvm3Iqi77mB9u1oI7WmPfKe0m6ltPc0+8VdlYXZOPby+VeeUOKb2z6G62Ut9q1873laD7hDE9vD7AiHmbKk4Kivz6NhR7qa4zqNd09GhMoLOGRbrIllSL0ANYzuo2mYUiUR4Y3ERC3dWHVaUd+Oh9l9rL9GMdvX6cl2JpmuTnx5PistuSsrVUHVOpGggCKBGX7CnuOyHpbCrSbHXL/bT2cCubPYG2VXpZtAjP8cABca5+5NVOjvk+83lnGtZzBBXLT2zEqho8jJrzSENvNirtG+1KALvOVGso8xEBxYZPltzyDR+wZy0D8pLJlO5DoZ3S2NU93R+2VGlLfzV4zucjsZJLy/l2cPooEQLCattM5b23CEMobbubiltYirjYAAAIABJREFUMoFXndY9w6O2mTxqm2Fyk0xrx93QGJ2SnVw4siusfpsZkQfpVi8MFRwZC7CnLWd2kbivxCn6gJVN3g5Bx+hQxbyjEx7jddcWCMUATMZWcVNrWFRrzcTnFzP91fYB2T87jqTvkuS0kZ7goKbFx6aSRnaUu6lr9WtFkz+qD6Myy46UXN3/7TaumLGWNxfvM52zo3Fdi9ZP80Q9fnj2Ni56d5UADBE6YCrbqa7Ff1RtRKd+eyoNaY8dcbv/aWhs4IjUoY7d1JeX8KLC3vt6fSmXvr+aoupmVu2vY1BestAzCwXg47OheBkZCXbT9XrBOyv5aWtsa2tRdQv+UJg+OYntMnfCkY5beKPjufm72VzaxIwVxRzXO5NBeSlkJztM18afHa2+EC5HQBuz7QEc1W4vT83d+YcZPJFIhM/XHtLmUJXxe7hW4ehYV1xvMmr5vfHQ7O0mN2E1nv95Nz3u+0n77Y7EAlMZQUfTMvvF2hKmvrTE1N4azSSa9PxiRj4pmK/GsdvqD3LJe6uZvUnklP9ZdZBI5M8FVpfuFQXVowH/bp21ibsUEXSVERSRAlpB/i9h/KOPv4CgPyHUhE9jALjShBNWrVJVC3ihRBHG3PqlSKLdZZDSFfqcAo4kGHS+eaeKxlDEJxZcMhDe8oX+eksVlCqaQpGISMBL12ngQN/cRBLxkBgUlYbBCW5c826DPfOFns/Cx2PYGMaIZlsQiYhjHn09x4w7EceIS5kyZkSsRkn/M8TfuFRI72l+re+pULUVuWg+twy10FWuEUwi4z5yh0QdiQSdh4tzBdBUolDHwzR6/GxVkpXVSkUlvXkX5Ayi2ZZOckivsmTSyIi9z4gHIUWbYPuX5EnV/GS/F+pFxUNlWSQ6rcQpjKBqxSq+IzaEMYz6FaWNnpjKe26ykxP6ZetPrHkXnsiha/0KsqmnseogdquM0yYzfVAuAPUeH1aLTE6SkztsXyN9cw3s/hG7Vdbc3PJSXcLRS6ohDZEcZkRVu1WR6Mmy+Xf3SBKPZ/fTn3hCaVsceQ0Ao8s/Mm3vtFqEUDLwanYnju/amRr1e+/V2Q1TvpzCGbPFeAgfXG7aR6jgRDh3JgQ8sPLf+r5twmVr66NTuf2E3qb3qFXlEfmpOG0W8m31vGd7jjTcXD+xlzj3NXrSc5nlZybJokVsbM90okO9wcYpTJCcpDjNJaure70AwtTxmDccOWiogtkToNcUAWR6ajnOYqjsKNd9DCOodq8AgCt0Bw8TIyikjxW1NeyCmpcZ/csZnNpTZ2WNUb5LdLLmbC7W/t8lNU7RE4gwyrqXtohhLKx4Vf9/1zFgc0LfUyBvBOzWKzz56cLCfsxTv2pOc9GVfe2zm4TG0PDwlpgE7d+LikiOs5HsspHisrfbWlHe2KbdwMMRvV2yptnHW78JMPGWKQXa9jnJ4vV9Na3aNVDb4tO0EcKRiMZiMmqiHY4+XdLQhj8Y1sSiVSAoLzWuw/eAAOIyEuwEQhEB9obCJDishMIR00IqesF0OGbDwp1V3PtN+9XChlY/015dqj3Ov+fHGHFENaEf2T2doidOZrgBGCxvasPdFiDdkJyXNbbR5g+xpbSJZ+ft5qqZ6zjtNfM1G704O294ntYOp4a7LcBnaw7x664qmr0BPP4gRVFtdRZZ4tdd1QzOS2ZA52RSXbZ2W7tURtBJ8kr9yVOVsfv6SI21KN7fceWyRtmPJyDGw7nD8xjSJYUJBRk0e4M88v123N4gvxqYDCCAFnXs7KhwK/fECD+t38dztncYtuACzS3zyZ92aQDTXoUtVebZA2k/xTjf9M1NMukjGX8bo46OYCiK7c4bkceZQztT1tjG1Yo+V4OWBB8+yX5j8T5K6j3tsgCM9ye3VxdwthrmlvaSf+N409rrwmGcFWKdc7K8Fnz6757WjruhMUZ2TxPAUZ3Q7xvSME+8ICmOrMpc6lIcLP/2wWqem/f7qvfRLUHRjCAVULtlSgHZSQ4W7KzSQEx3W4BERf+oLdB+gvG/qfmlxpFcqJLibAzonMzKfXWc8fpypr26lAaPn+lx28iw+/+wo1yTBgQdPvFWmVGbSxvZZjAL6KjNyxi1UTpu0adz5sqDrNhXpyWxRp2aH7dW0O+hnxn95EJmriju8DOK3cVErGY9sf8N5kBQKwJJHd5zjK3Be6qbWbq3lts+38zm0iZ9vdJUAkULYMZ0MhIcWFsqeOub+aw5UM+q/fVc/8mGmP2q47pbescFDGPL+OHCKMKvFklzk+N+lyvTvpoWrvhwzVEL+NZ4SyD/Afa1LQLab8V84qedvP3bfpbsbV+f8kixpbSJu7/eyoPfbVOOUaz72nNYjo6Seg/TXlnKOW+t5IQXD28M9EfivWX7TY+PBKIGQyojKMzyolq+jAKXvlxXwlblWrzr6y3srmpmsWL2YWy1ve/brTw+ZwelDTr71Qjyu9sCLCuq5ZZZ5vyhvSLO/zSOBuQva2yjRHETDqhAEPo83ewN4vEHeX/Zgd/VNtfgbWDegXl/4Kj/78ZfQNCfEDGMIICM3lC7l9UVqwmVrQN/Cxz/iNAd+e0Z8Te9F/ScBPccEm1UatjihYh09U7CraKSL1mdBJe9qG8jW8UNAkQV/4u/wReX0SXNxSdnZvJ+yod8PXiteD25K9TshA0fwVdXEixeyvcb3yT8znHw/tRYFsXcu5Fm30ASBrS7rUF8BxWQ6ShSusLdB+HaZbEl8OFXQmZfmHM7Nw+W9O2j3z/y7/rj61eCIwGS8wAJGg7itMlYA83sXDUPa0RMGKsP1DFJ3ojTUwE5A/HY0kgJC5DIZbdwmmUFp1pXmD9LtnKyvIZ+8kGY/yCEwybNJOGWFdSq5VlJTqjZA2+M7dAZLlqYUV1A9ciI59lzBvHDTeM15xpx4OJ3d82+mtXOG7l4+VT8wTA3TMjjpkk9sSZtZq/rOkrcJXROjWOqJGzlqRQ3MLXSmpvsxBcKscxxC3MdQlTbWIl+xDqDpy2CzTJC3s2qcF/CiOM4KekkDsm6G0UEICEHRl0HQy+lf+ksnOg3I4fNIkCNhGyWICbieln5ThVbYrWxnupKqHSt6alQQqYADXtOgZ1z2j2X0aEmVP1z46F4Ob23vczxlo1c4ForwIAPp8MPN2vbP2qbyau210h0WJl55Ui+vX4sx7iqmGu/mwes/9EZQcpv3jMrXqsi5DWuESCJVUl0cwebD6ZNYQ9k9TM/33UMRMzJCyCS1teGw8sDlf0JgCmYZ7CV3623hKq2550rlfZSg/j8iQqQaHSLA7DV6iBYVrAMfzBMd6mShFATjwQv4xb/9eLFyi0gWWDa83DyM/oOCk+G8o3gFlWxAZ11bRMVtMiMcjKRJbASRG46SBiZkfIuqhvEIvPKcd2xyBL+YJirXUugodgk6A1CL02ShAuZcRHWJdWFAz9LV61ghrKwz88w6DIZmEm9FY2knRXNmjtabbNfu/aMQuvq92iv4hQKRyht8OBRROZVIEhlJ0WL6KvhUMStjaFee8YKfHRlzzhXRIMXV81cx2drStpNLmvaSfyjxTvVpFeSJKwW2aQVUdHopbEtQHKcjTtO7M0IRYOrptnHwcNobURbvI/sns7yeyabnmv2Brn3m61cOWMd13y0jltnbYqpmqrHeuV4MT4yEtp3iFPP3cmWVfqTQy7SzQUaigHBCNpb1cLUl5bw+qKiGF0cdd9qxbR7Rjzf3TCOAZ2TafYGOKRcR1VuL28s3scd1s+51vI9TW0Bk+bNjEsHs9p5E+fVvwWA3FbHJPtOpg/KpWuaiyfOHECKy6axtLYFX6XN9Qu1bebE8/jUSl6xvYYNIdJ/98l9Yr47CDD0vml9ue343pwxpDPTB+Uypkc6v+6qpqaqTAPP2gPRokVlf9lRRfd7f4ppYTJWkVu8Qa3oEUGApqv311H4wDze/s3c8lvX6mdwlxQG5yVr4yfSVILka+az4CRckg92/QifnAtNpUdkBGnnWflNhzT/RhcpVo/GqRVnfL/buShaQNR43tr8QW1uOHtYHleO604wHNF0xZq9QQ3wimYEafv/X3DkavEFTSyQxrbDJ4VJTiunDe5k+m7hpnKe8z3Oy5ZX/wRGUMdA0A9751PZIsb69nK3ifkZ7c7Z/mcc3bHVK/PoNsNYXn9Q3I8r3V4e/n57u+/rKKrdR2YrdRTbypq4/YtNMS1YobARCAqz8VBDjF6kMVRQfmtZE6FwRBeYN7Kl3fNZbr+Ra7ecy3lvC3C8PeKeDgTFx76oxNxtlUdk0/iDYdMa49iCTGg8xDs1l+BoOHoQdt62ShbtruGWWRuPisFT6xdaegc8Ys14OKbL3V9v1UCO3xMq0KCuF1RGUPgowNy3l+zTiqrtsfB/b0SDFH0MDsFwZCBIPWaPL8jF763mzq+2aPe0SCTCnV9t4dTXlhEKRzTNya8VTcBUl007v5+uPsT7y8ymIcbvZ2SXGdcrR6tb9Xui7ihAwxZfUGuLVhlBYYyMoACLdtXw+Jwd3Pjp0bue3b74du5cciffbv1988j/5fgLCPoTon0gqIDVTXu5ev7VvLftffHckIsF+2fjxyIRK5gqnpckkC2iRePGdXDuDKHB8t11hBVGED0nETQCK11GwYrXYPkrQqQZhPCyu4Jx7h+xb/2M3rsVAeCeE/X3+ZuZmZzI/ZnpzEmIh5JVIjn95WHY+pX4t/ot2PQJHzmeY1SuLJ4rVVyCjgQEAcSlKMBNVFjtooXMXSra5EAADsaQJLGNdh4VVojVIYCzklXkefdyj/wfxiy5lCcdM4mzWVi9v56HrB8RjkuHQefhsaeTEm7g3wv34vGHOCmzjgaLktjKVsF+CAeZmKyAYLvmwPwHsMoSdgI4vXXCLcsf0qq3mQkOmH0DVG+H3co5b2uEr66EQ7oVshotviCNHj+JTiu/3jGR84Z3MSeMDcWCiTTmRt3GG0iihZtWjKf3mgfokiFYX3sa9tAnw04XlOMtXQtFC1kwfA0n9MtmbM8MuofEDTRbasRK0GShfrl1PudbF/OT8376yodYFhrAZ8cu4Dr/LVRJ5gVD6J974JZNkJQLhdOQIyH6S8Xa6w6rLFozMnrrjDB1aAZaobHYtD98TQRlM8NMu1Z6Tob6fYIpo4bXLZhrc++GtyaI18JhbSE1xrMYZkyDLZ8DcPtQSYAbB5eZ9wMkSm1sHfgFNinC0K6p3Oz4kb5yCSdb1mgVORX8UwVNM2kktXU/dD9W31GPieLv2e/DsMtgzA3icWZUEnfeR0SsIukOG8WijY6AFjtc+i1MuIPQqH/oz9fouhxT++dw46ReyOq4aNK/1+C8FC4c2ZXHz+gv2IXfXieq74bW0RHL/s4bx5TR0yqA5L3hzswOj4fCaZBeAH9fJBhfcYY2xcJp4u+eeRAR56tfrnlRojKCRJIWYeaVI1l8VT5SOEhFziTiJR+2KlGlvOukQnKSnPSVDnJT67/hm39ojDurLPHjzeO5Y2oh43tl8O1GoVsjWRtJ7HsP5d5dfOh6jYeKL8OBuNnnGVq0jCwLlZWxTBHI7JWVQG2LT0tq1VYC0BeVLVFtBF3SBJtjT1ULQcQ4k9H1wkBnBFoI4cLL1P7ZOLK/49uib2OsfvWkUf+caABng6G9Sk1C3d6AabHc3kJTrdZlGhiKwSjwNaiMPVUfRzURyE5y4A+F2V/TQnKcjRsnF3D9pF7a8e0/jCh2tD5FvqKLZATwjJW8g3UeFu2uZluZG1mCzQ+dyJlDO5vEQEFUmDvSvnDgZ6DFUCG12OAc5d6hON2lumzUtfrZXdXMcz/vZpcCNI3IT8VulSmubSUcjmifq2o5JTqtBEIRqpp92Ajyy8a9/Hvhbm60zuYe2ywq3W10dXi42LKALBoY7Kggm3ousujaf/ZPzuD18waw5K5JTCzMYnJhFvO2VeLxB5HDYtztqt/Fh1eMYHxOiDPkZYzZfB+nW1YwRCpi52MnMSI/zWQxr4YkSYzpmc4txxcgSRI2i8wtxxeQL1WQ/tZAcmpXmrb/4HIBKk9JKWfNkLl0l/Q2B7WF5KVfzFpwRlZaszegJcUNngCPfL+d898RINxTc3dxvyLIHolEaGj1M7ZnOrNvHI9LvRaVuffLkKIvuPpNwRDd92sMcyw6NJC1eicbbcOIIJnOsxpxiraSxx+ioVW0A9302cbDMk7UlCWanWtsJzS2hjntMtdM6EFuslO7Zt3eANmKRuDz83drQLKRTfJ7WBJHEx5/kAEP/8wZr+vMvMa22M+4c6reWp/otHFc70wALrYs4Anr+0gKA3VsZOMfbpdQxVc7AoJaA63ct+KfxHWZwXG9M6lp9mnOfCBEo4/EXGvwxH63Vl+QOVvMbqpqW5P6XYyGCn8kio7AjllXXN+hGPW/ftzBNxvKWHvA7IhoBIKu+WgdZ76xgucN+jNVUeBTtIh3fkY8tFTD0hfEE7KNkaUfGrYQ489UVFSioTW2ABIdb/22j28MOl3RUd3s5cJ3xbV//vAuPHHmAOECu/83UoK1ZLfuPmoGnHp/WLq3lreX7D/C1voYUxnP7TFn1fmiptnH5R/Gui13FI0eP8P/tYAFiui5RVm/7qsWxYryJu9h25K8gRAbDnbcMv1Hwli48AZCMUWhI+lCqUUfleUD8OV6UTg0Fps2lzZqa979CvM9Nd5OWyDEsr3mYgWIa89naDs2grk979OLlkejW/V742jApVZfUGNs+jtgBKnswQU7q466ha28Rcw3t38Ry7b7b42/gKA/IdTKvwkIKphKdVhcOMUHfxOsnIQsyOor2EA9JkJ8VLtKUifIKIDeJ8LUp6B8IxGlzSTYdTSBEw36Oz0nQzgAvzwkErfOCrNg7buweZZ5v4rrEQDDr6I2VehGNIy7SSSyIT+sfA2+vkr8Axh6CUOkPczqOls89+m54vmjAYIOF52Gir8VCr0wMbv97c58B6Y8JAAyNQpOhP2LuWjTJVxgXQzAZNs2Prc/xu3yZ3STqkVym9QJnyOdTKlJc1DpFTmIM09hb0gynCGquuP8BpbQ+g+JCzXzou0Nbts8nXibuAmVNXrISnRgD3uhXJkcmkqguQr+c6YQp/7V8Nso0eITbRGq2J8WVdvh+d6w4T/iceE0sOhJ3TO2dwGQN37EoKDuhnT3OCWhtdiFGPnHZ5Gy6hnevaAfOclOpsXpCPYQqUhbAKegg0z9EMnTp6EpuFKzSBh6NkSJ2IZcKWBT2mGU32uIXEQiSpUhHBbtT5mFSEmdAQiPvk4AmOr3M0ZiJ0LDLjV/hgqSFJwoPv+nu3Qu+E93ivG2+i0B8Lw8ENa9zw2TenF1j3pGV/zHtC9r+dpYMXVjbPtKtGb6WhjhFYvqTKkJSXEjUsWwVSBojKwcvxEIyhkI95XDwHPgtFchUQEws/uJFrd/LIWbN0JCFpF44SgXqtsr2FGRiHDWUyN/vGgfnfIgIfV6AKjTk7ReWQnccXxPJJVV1HhIsIr8rciyxFNnDeSYbmkw+0bY/KlgqDUeosUuPtvSeIBp2+/kvdPE9XX6xFG8dP5goQV0w5pYhhOIuSA1H+bcKtyZGkv4+rqxplbGrEQno6SdLHXcxmnyCpKcNvJCYkFZXXAhoYhETs1KZEksALOTHJxlUdqYWqs1XaMUl43+nQQwe0K/bErq22jxBZk2UozVL3d/ydiwAJ/TlPGb5NTZGS67pP1+XdNc2K0yuyvFgn5g52TqPX7KGtqQCdMrVb/NeQNCCFF1LFKjd5a4traWNSIp7SgqyKkuOtWF6fO2t9jhvJI3LhyCPW0VD694OIYtpLKUjntuMU1tAXzBkGlRZpUllhlo7R5fkOVFtQx6ZD4fLNercqquzeaSRg0gUhNYI8AV3fKhLnrUe5Oqg6UyM4rrPNoxqyyvmmafpv1ijEaPn3A4ElOZHNpVMEFUcA/Mi1rh+hZhxooDdEqJI9lloyBbd49ShZrbc+5SY7y8FUuUqD+pQk+NBnGeEhw25TjEX7UV7fpJvUiPt7Nyfx1v/raPtkCIsfI2CveIAok6nrLCtWxyXMMi6830k3TAdV9ZNbd5XuEJ2wescd6A4+PTAJClCF5JYlZighiBh/R7yLnDu9DiC3LZB2uQg+K62V2/m0mFWcxMm8HL9jew1YmE8G9dqrQxNvuG8Vw9vrvpa04vekQUYQzRr1MSx0h7kSMhMlt0BmC83UIXasiTanjc9xwp22ZyiqGlTgVBVu6rNSVwXhMQFNRa0epbfTE6UD9sFgtktzdIMBzRwB0VbJSaSsCVzo2Xnk9Esgh2IUDNbjLKFmDD/Du+cO5ghil21KkO4MBSaKlko2s0u6XuDJP3arcm9ZjjbBaavQH8wTB1rX7mbavkh83lvGBIsndWuNsVyXW3Bflhc7nGblITZhDtJ6pGTZzNgixLFGQnagCIuy1I7+xEemUlcLDOQ5UCMhvZJH82ELRwpwDxjQYSjW2xgNe1x+kt+OlyC/ZDS5j199HcYP2Oi60LuS8imMAyEdKaO9aLOlw0HUYjqNHj55sN4rqxOGq5bKxg7P20tcIEVm8pOzxzo6Gd73bLrI3c+OlGU4sSmA1S2tO9/D2hsjuaPAGembfLxJpq84c4562VXPDOKqFXFzXPdlGKE6sUIGjetgrqW/0GZklY02hcc6CeBTuqOFjXGuNCGe0e2DXNBd9dD3sV4dyhF+N06yCKytZ32GJTuAal+JimzcsRTpDXaa+fUCgMKNpjaVW7vTzy/XZeXrCX9QcbcHV/lbiMFVw8SmFhlglXx5RI02G1yYzhNgB2RsMSENfM+oNmEE0dYxoQ1A4jyMRIOcqWM4ANhxqobfExc+VB02fUKW2J/mC4XcatGi8v2KuNFxAMvKV7a/hibYmpjepIYQSbjMWTPg/O08aLGkdiBKmfu79WjClZEu66z87bZVpLfLr6EC67hesn6vNFqstOfaufS96PLWTXNPvwh/RzX96BLtT/DhB05H22+kI0Kw6xfkVWIRg2AkEB03rkcM6vxjgaVth/W/wFBP0J0S4jqPdJkNZLf9xTET5WW0kGnHX4nfY/AywOIh7RshMEgkMMgE7Biebtx94oWEJLX4CWSr26n9INuo0RDIQLP4fpL0A/RccnqRNc+p34d18FXLscTnkJJvwTxtwIgLT5M/PnqLT8PxqOBKG90loD1jjBkGovBp8vjsMYA88xASaBiIW0YDWDQtu53vo9shRBzhJOahWhJFySj2zqsRIkqbmIgEGz6Natr7EoOV3YpGf2hWsWQcDDVHkNp1jEpNiDMtr8IcobvcK1q3StAPEkpTXq66uEJk1yV/FaWwM/3Die1y8SrmjN3iDbytz07xT1HX+8Q2g8LRXOH6Tm68ALcLLF3EalRoJXocr3nmp+oXonlKzl2vTNBKwi0ZrVfS69WsRN+8Vj9Lav3xzHcbH8DPUkkeKy8+RZAzl/uJm9FQwbFjtJuXjjsnnQ9glbnVfTRaqis3sD+NyQ2QfZKn6P8KALBMNNskBZFJLefQJhizlR1tqmMnrBcXcLkXS3UqGq3UNMHFxBt/R4Hii/EUvNTjFurl8Nkx6Aii2sKPqBV1IVxlffU6HHRJ4OXKC/f/u3sPQFXJE2vg5NwE6QTMQNV20N65buwipLjJZ3ELAlxoIl9g6o1v3PgNxBQlgaNJZNaPMseLGPAGa3fA5xaTTJMiVDdD2wYMRwrrd8Llh+e+YLYKdqm/5aYwm8MxGe7ia0hEIB0eq5b6F4vbkCPLUkZESJA9cVgWzlshNGcebQPJBl8a+9kCTRDgjC9W/PPOLsFgYaWsQyEx0Ml0XSNVQuEuwKBcAKdx7OlkhPClvXEm+3IkkSCU4bQ2Sh+0FTKZnKMM+PD4ICBo7snsZJ8hr6SgdJkRWwsUVvC0mXmoAICQ4L4+WtjJO3kv7VOfxsvxsQwvYZ8bqQZu/sRCIR0Sp2u+N7zlpxJhZFDr0tEGLBzqoYUciu6S5sFomtZW5QgAeLpLrzibHrC4Z5/cIhnGkRYKKlXLc6H9IlhUdP6689LszWQZoFO6o0+vqL5w1m88Mn0i3dxfIi/bps9YdYViSqcj9t1Vt1F+ysYs2Bek5/fTnvLBWJgJqUdUrW54zo9iD1+lKv5YmFgiVw5tBO2jbRTKfaFl9Mu6E3EGLIY79wx5ebNSbS8X2z+OTqUdoiOtugG2VctKqV3XBEZ211MzhoqYYE0WLKxjjLvpp6oirbrjRx/e/9BRY+TnGNWJif2E+As4eUVrRUl50pfbOwE8C+9VMqGlv51P4k+ZtfhFkXky6J911hnUe85CNFauVcy2LtY/pIJeR7DQYN/maCsgN3xMUbKck8kZHG/HgX7FukbTKmZzqnDu7E2uIGAkGxIN3bKK4PS7OZ2XBqqt7uaZElU1vyijvGklb0DSx60iSWkuS0MTZe0PqTvXpFPyXORsGscSxz3EKniLh2MiQ9oVArwK3+kKarADoQZLfINHj8GphRb3DuA7huYk88/hDBUJjHftihnV9Ad4osWQW5Q5jcr5NWIABgw0fEfX0pD1mF1pzKEBjWLZUEp40kWvjbb8fCzFMgpSsrk6axPtSLUfIu0okCAOwWLbGsb/VrbAFVm29raRMnv7KUZ+bu0jSU1ETJ7Q0wY0Ux/1klksAGj19rrals8moJp5Ex1qw4gLYFQqTE2bhpsljTqcBrlVtPjv72wZoY0fJqt5ez3liuCdEbw+0NsHp/Xczzahi1N9TfqcnACOovFVPsvMg0Dw1beQN8dDqjO1nJtojfXHOLBK6oefao9HpijlUFgtpJ/o99dhEPfS9YRzaLxPhemcTZLDS1BchNdvLTzcIVNlo0Pjoa22EELVDAsGjQotAAgp8+pBNHE+2Bg9lJDj5cXsyVM9Yy+LH5vLl4H48qrWWNHj+DFUfHssY2hv9rARe/Z06Y1Stz/cF6iqpbuPbjDTw0e5sJ1MjvAAAgAElEQVRe6FKKCheO7Mre6mau/mgdxz23WJvr1YhOfIUzq0GywViUAjpLdeRQR5rcxntL92tmKdvLhbBzqstOUpyYf0ZJu3jXrstKvDP0AFY5VsS6yRPgp60VzFhRzKerFWDPWc7XB1/XN1KAoAzJTV2rj8omL5FIxHRum70BjXGjPk5wWBnTM4PiulZNjw7gbx+s5uw3V2oAW5MnoIntW5R1yumvL4/57aLZfUerARPt3Km+z2hIcTgtow2HGhjWNYWR+QJMS3Ta+PtH67nr6y0s3BnbygrwyeqDfKzMOWoYwZ8dFc3tMnLUqGnxsa2siSKDU2erL0jv++fyw+Zyjemq3nsLc5IoqffwxuJ9vL5Ib+ldsqeGE/tlm1yjUw/D1Kxu9nXICDId31EIwR9tqPeGw4F7rb6gKAaEwkQiIs8KKICVL+TTCjw7KppN42TLYVoIz3trpSY8HdDAr/9529//lfgLCPoTIkYsGggRwTtO6JVEuo6Fk4UFNd2Phfgs6DP98Du1x0OPidqNJhgOmhP03EGCgaBG39OEkOawy2DS/XDqKzDhDrhIEZjuORkKT4rV7UnKFSCV1Q45A4SOz5SHIKMwFqRxJoOzA+Dm90S8SEpIzI49nsNF52FwXxnzxwvG0/2R62K3UYCgA+nH4Y3YeMD2MQOlA1jCfoJKG0+ECAsPLeRmNSlJyhXMl6Q8shffqe2qR3AfHn+IssY2OqXEiaRbtsLQi4XmUvFSOOlpuOATkZh/dSUDM2D6oFzsFpndlWIi6tcp2XyM1dGMmVw49WXChstxf8EVYLFrvz+//guWvsAKp5PK/LHm95eth/ePx1GzBVvBJEjshLV8Lc+0PkAKzUzefh8AY7z/5gnnP6lNFGBkosOKzSJjM7p+EQUEATVZ47T/P2qdybmH/gVpPWHgObo1c9gPdhd0GQn7F5neT49JMfs06ecUnKB8DwVA8hoq0dcp1faQXwAkaljskNVHAVQj/CPOx3spyUQkGcbfDn+bzbFnK5o4tnhY8w4se5EF9sn8EBoDQJ6kCOYpCZjNItMt3UU/+SDu1P5mNtrviIgypkOp3QTgt36GAMj+uYszCwczbcMT+nkIRy1g5t8v2FAzTxWMKIC4NFob9jO/9aBgAT6eIV43Mv8aDkBrLbgyzO2WW7+CpM5H/11GXyvc0GzxWoJrZGw48WuMKbuicULtXnBlkJCSwZLwIApDe8iwixt5OByhi1RD0BIHIT9dw6VIhJnZ/Hd4cxwEffSWynnL/jJzHfcyfJcCjqr6Z4hF5zu2F+n0Wjc+tj/FJ/ansBxaTm+5DAsh0hPspCnsEptForuiJbS1rInBtkPEeysZKolk3O0NsGRPrMBkgsNK55Q4UXlWgCBVIyg5zka+VMFbrbcyPWwY2x+YwfhzDYBqj0wd8Ph5e6UmZj+xMIvkOBvdMxJMbV9GGrax6vzPLzdz7cdi8a22J2hAUIoRCDJok/mCmoBkICy2PaZbGjsfO4mTB+Rq2yUrDJq0eDuSBGuL62MWe+pnfrOxTGtfePjU/ozrlaFtY3SYLOuganjhSMEkLczRGUFBGilpLumQEeTEx/Hyelq6HGd+QZKEEcH+RbD0eW7s7yM5zsbpQzsxVV6LY7twt8xNdgqb+aQFXFP/Atu/1K87ds2hZ9U8IMLpluVUOQUb52yVvQZMt6wiLmBwErPFY+k7ncDY22jMEEUFT0KWGP+GGKlo5rQFxG/SGlA0koyFopxBQhNs3r2g0NqNLXa5klIlr98HxcsEs/CDk+HXJzjGLgCk3oHdxCsabeMdZvA87MrUgC4wV9CNVttqVb8gO4HNpY3sUZKNula/qcKdn+4iGI6wrdzN1xtKQQqS4IqAt0m05KqhzuUpCiBtjRNFA+ACyyLOsfzGv22vcoplFV1/u41wwMex8lasYWXcnPk2TlcCK4LiXj3NorR9BMXrRiaIxx/SkhDVAe+XHSJ5fm/ZAc1aXQUxGj0B7Z4sHvu1dq9//1rEb3tqsMqSBiolOW24vUGtBSkpzqa1pLYoOkGVbvN4X1dsdp5bU1zPhkONbGrHZe+6j9dz/jurYrSL1DBWs1XmUZNXvz5PVwBpdv2InQB5Ug1J1Qrz49BqLGEfK0K6ht3q1NPoFCjh2Kd/abfVqcrt7dApUD1n/lCYmmafxtCqafYJYE5jUQp9qmMUAfSMBIcGFB/O2U98t44ZVR+tNCfSRqD9b4Vhtj+qF8fUVuI1B+pNbbbtuTOOyE+jtsXHr7t0V835Coixan99DMtDBVyi91nl9mnMljZ/SHNyUtmlx/XOwNiZ8ubifSZ9n/Z0vkyFpxxzUWqUvJMljluZG7yKD35cyulK++AlClBltUhaQtxLLsPIcZAaikmKs9HsDRBWdPGe/3k3gx+bz9qDxvFreFdbA3x9tWBoA+k0cd+32xj91EKenruLgvvnaq5tz/+8m6s/WqfNM81eYendPd3FtjI3457+lfuUNtM9Cuijnv/3DQwWoxlGtCBxNBC0v+bo3LtUTRk1VMChxRfUjAHmbq0g/54fqWvx0eYPaQBmJBJhd2UzhTlJfHjFCCYVZtLi07XF2mMSHaht5f5vt/HAd9tMzxvBpps/28gl76/uEEgqb/Ry99dbuOGTjdp1t6W0CX8ozEu/7NHWC+r4KsxOaNdNtL7VT25KHH1z9WvncC27ghF0ZCAoms1WVN1sYp1WNnn5cPmBo2olVEH4w7WG9X9YiMKr0djmJ6DkF/6wX2MEvbpwL1vLmkh0WnHaZHZVxJ4TNdYU1/PFOlFgCShtnZL8/x/Xsb+AoD8hVCDIONAfWP4Aj61SbCpT8oQzD4jE9Y49wlXrSDHmesJKUhmMBM3sARAMhFu3wR1FItHL6iPaVo67S7ShTXlQPNdBRKPjppBlvQrR+RjxN8rRKxKJ8I9f/sFvJb8d+bsYI0FpNYnWBzqasNjwpA8i3/spqxKOh3vLWNLlWv11hZVx1RlTaex7EadaVvGt42EAAjkDgFigA69brGBGXGV6urt/Lx5/kLLGNi5s+Y/QY+oxEXodr2xwLAy9VIByp7wE+xfDspfFV3Na2b5lLcm0cExXw2/t94jFs5HRJcvQ/0zWX76P8b6X6e79mIPH3AcP1uigWc1O2L+Yf+Rmcf4BA0vLkawJTgOQlCecuJR4c7hYGNdPeIwK0slJjuPCkWKR3lElPvr8RLpP1P4/2bKJ1GA1nPqyaQz7FSc2ek4RbnRVO7TXwgUnxDhomR5nDwDZJgCt1jqhmzTgbLh+FWT3F+e7Zrfenmh16uLq6T2FdpQSnvtKBWAIjB02GB5uhNt3QPfjIDGX/yRcQUlEnNMuklh8xNt1vZmCzDgKpVLaUju+bo4U6vkL95gonihZLcaI1UGN11wBjnEWM8bmz8R47nc6j7q38s/sTPbZlGM9tBIOLhfjL6NQ6KV46iA+A66cJ9rV7AnQWg3JsRbih41eU2Dg2SLBC4cpUBbdnZKdMO9exlsEENRNqiSpbKnQP8ooIDXexu5wHjIRBlsPwuZZWMI+cqQGGnPHi3037KebVEV82C3G9MaPkZc8HXMIxplpQnI1J1rWI4ViFwcFUhndWrdxm+9t4vCS4rKTqzBlDtV7yJNEpe2JAYIB9OaifcxaG2vZ6rRZ6JwaR32rX1u8G4GgY+UtFEYOCI0wgGPvjNmHyzCOjCLDe6qaWXOgnt7ZCRpoEr0A8/hDGg27JUrHQ100qpo6jZ4AsmR2cFMTkhVFtQx4+GftnhQMBwVjcPHTxH3/d7I2vqK5CqqMIKtFJhKB2ZvKYxISI0NIpazHR7lgGauKh+rNC/IHpvflzqmFnNBXzPlGAdOp35zAtG+mkWsAtNQYlJfMZHkjjnAbGcNOjnmdXido/x0W2cHmByYzZOXNvG1/iTs8LzKhVzrZSU5sFpkBVsGcuddmZrfGRzzkUk+21Eht7wtoi9hJlNpozhjKrnAXrrbOFRtOe16wae8vRzr3Q9Kn3kUkX4DjkaRcAdbU7YOXB0HNbv18KOMooDL46veBM0XcK0ZcLbZZ9QZUiaRI1fsYZj2AtPpt/UCXvww7vxctaEuepatHJBX95IMscNxJFg3c0PaOvr09ESmjgEzJXAHt3ykJl93CZiXZb/YGtCTmGttcejWuIBKBi0d1xRcMs6ZYJLZvXDxM0xtRtVDie7zIHWumaaYFAJHhV8FopTijzjnDr9Ret0khnre9zYmRFbxmexXL1s+ZWXEaj9s+JGBPgXtLodtYTuqfw/zwMdzov0l7r6S4icVFuZnuUBKegJIF/dZOZV2tvu+ocNPiE8BOKByhwRMwafatO1iPM/GAdu0kOa00ewN8qCSnXdNc2thXGUFq29Zbl4h7TnTrS7HCxGqvfWLFPnEvUFlFZY1tvPTLHq01xm2YB1S9s2avvh9NA8pTx3f2h1jmuEXf+T6hrzQzpOpQyrTlHINDCtJVqm7X6Wf6q8s47bXl7SZs6jksqmphxBMLeG/pAe2Yxf7VYxXvvXSMYI4HQmFtnpm58qDWXtheuH0dA0HRDJrRPZKZIq/ntWMq4dWhxB8QRaJC6RC7nZezb9kXnPf2Sl79VYwbXzDULnPh2XMGxQirq+CROpedYWAcqUmmGk0KsFDb4mP1fuXacFiJqGwCSfzt1M4cF47AmvumaIxkgCfPHMj7lykyDz5Dm25aD6Exeo7QCXrE9hF2KYSDAD1knd0qK/nC/ppWjYXZXyrGtMpwlwu2m1c4Ko1/ZhGvLRLnycyUNYBg6z4QjsdKpEturaCi6v6oTB6VobJ0Ty2LdlXT7A2Q5LQJ3SMltpQ2EolENHfiFcrvW2lgzhmln6KFxN1tAY7tncm356Xzlu0lmps6ZtYZw9gOClCrjIkWb1DTIFTHzO7KZv714w4u/UCAa1VuH01tAfrkJBLvsNKvU5IJkGoPvFhkABhNx9HO9Wds4zJqIG4vb6Je0cDbVuZm0e5qVh8Q39dhs5jAyni7hS5prna1vILhCGkuuyamDIdn41Y3e/EFwpoGV0dMQnVuAsHIPP7FJdr8AHDHl5t59Icd7K1uwRsIaYBhkycQo9ujMr/qoxwE1x9s4Ikf9Zyi1dAu2NQW0FzD/CG/6dztqWwW7Din7aiF8jV9LynEwp1VhxUr/2+Jv4CgPyFC7bgEzdmvOyHFAC5Hy4LpMZFAJ8VdKJoRpEZKF0jI/F3He9TR/0zxt8sooVl01ruml/1hPyvKV3DTrze18+bDhKKhQkavw2/XQajVv7R4OzgSiKTkA1BnzRJiooibcc6oc/U35Q4m6GintWfcrXCCAthNuB3O063Se3g20+rx4A+GGV+uCJQO+xv0O104o106W2+zOeYycZ4OLIFwiGxrKwsdd7LReS07ar5kS41iBd2s3Gj7nhZzKD0zEyiNZBFB1he8Ll1HSp0y632Nog1r+otCu6beIMBXcDxMvEd7OGabAMHSRl7AC+cO5sXzBnPZ2Hw2PXSCSXzXGNHgRNfxF9I4+i6WT/4Sd8TF/OTzYqjKGhCkMHR4c4z2WsCZaG6bJIoJY3MKoGT5y/D6CKHhNOEOjd1Fcp6un2NzwZ37hI6WGqN1ZlijL6qiKUmiVeuy7+Gfu3j84uOZNmEkYSz0ksWiNH7/XPj+ZnCXMzyxgTjJjy89yg3sd4Q2H9jU8xvRtbGiwnRNn26gYPc6QYBj42+H4VdSqtyM2yQZxurOaGT0Fq2FDcUKIygd0rqLdrV+p4ttskXL0uKSxVz040WxLKT2ostoAVjW7mFIlxSW3DmJhTceA5s+BaA8ksZ4y3ZSvzkfandDn+lkJjhojhMtIS+0PQjf/oMLUoQmRaS7YHWcGFzCYofS8inbYPFTom1vwh2iPXPYZWL7zD7adXk+orLPSU/DXQd0IBkYJu9l2ILzmdLyA5db5pMVJ5FvABuywmIhll8vWAu7KtuvCsXZLJqgskUy28cnx9noKkUt6CY/QOQifWFM1Dl1GRb3pQ1tbCppZEgXRctiyxd0ks0L19/2VGvsjGiWgRoqU6GxzU9ynM0EyDS0+tlR7ub2LwS9WZ0/guGgGNuLn4Kd32Nf+gxPKxpkSR24oBnD6CJWpiS9rqhk3Ahq7Y0SXh3WLZUbJvVCVqq7tqrNzLA9QxL6dgkOq5a0XDamG9/dMI6sRAcT5K14rcmEcgbGHpg6tgHm3QOPp+Mq+lF76sHIOxAUc1JhQF9APhc4D469C4AUb5netthlFNsl5X6UWcj3CmswkpovdOcKT2r/BMVnivm3aCE0HoQtX+gtU0py7Av5BFAbDgqXvuFXQtfR+j5WvQnPF9K7biF/t/zAN9b7YY0CBPU7Q7DjvrxM21yOhKiKCBA+V6rnZdvrdA3s164dHAlICVlkKG1V6nIjM9FBz8wEiqpbWLGvloGPzGfx7moGSfs4o+p1PrQ/R36SxM1TCrT3XDEun2kDczXXubUKOCTbFcaS2poKhLL11kgGnQfjboHxt7V/3pSwEKYNO5Uj7gaHAJxP6JdNBJk54TGscoq2ItwVULmVuKikXa18N3r8RCIR9keNvzZ/SEvWjGyOFq8wckgxuBhaE3YgdXqLz3cLE4JEpxVfMMy/fy3irKGdmViYaWAEid+2pN5DisvGSQNyyU93afohaw7Uk3/Pj/y0tRILITbuKxPtP59fCkuEGYaKt1Q2ifnm2w2lvLJwr2ZpbWIEKQmr268nSGNVLbstXwjnU2Mov0th34EcvHgp3LSehC6iEFYglbYrGq2CVTUtPryBEK8u3KsBXmoivlOZP1XbbpUloILnapzYL5uHT+3HA9P7YbXIJDqsHKht5abPNsZowny4/ADfbCiluK79ufliywJusXxteu7UwC+8b3+BU4qfEk8oLOQTFS2cxG0fA7BJ+c2HPPoL015dSnS47FbN9U6NVn+IQCjMIeW37W1oQ3PazHOfCsA3egIaUH6w3qOv+JU5wKijZoysJKfWgumwylw0qitTFNCcJqVg0esEsc484w2xJi+YSjAi80LgHADtOn9jcRE9sxKQ7DUk9r2HfW4x7w2S9xMw5hzNFRoQFA2wmcKozbbmPe2/nrR+JrahGqobpE25Rl9asIcrZqxla6lgZRzTLVVjQXXPSKCiyauBRuVqS2prgM4pApywd2BCACL5T46z0XfZrZxkWUucYe6vafaxeHc1TW2BmDavaACm2RekzR+ixR8kL9UM1smyxN6qFq0Yoq4d1LZEI6AC4rp5eu4uqg33b/WasltkE8AazaIZ3SPN1Cpu/LkqmryaY9eTP+3kig/X8vICsR6OBp4TnTY6G0DH+6f1ZUKBzt41znev2F7j4rVn87ztLezEMtIaPaL9Si1elTe2cY/1U11DExjcJYXS+jZtjlWdHFWgCvTW3JpmH9NeXUq/h37G7Q0w+LH5vPSLzmQNhyMG0wzz/HT2myt4d+mBdkGZpraAZo7hC/mwWmSeO2eQOOYmL8lxNlx2C63+EG5vgMfn7DCxMKOBbx2cCnHVzHU0+9ph6/2XxV9A0J8Q6kCKTnb/jAgobIdQONQ+EPQnREVLBSM/GUlRQ5H5hf5niuRrwh0w5voYYWc1+Zd+T3sXCOYCQLfxf/SQAT0BkVNE8rkzbrh5g25jReX+wllw0Rdam4QpTngU8vXWJ/qdDrdshskPkOPZwx7nZTydMlu8Nul+PQGJS4nVWuk2FsrWwdPdmOsTi3KZMI9uepmLf7pYbONWKmIpXeDyn+BanVZvbLHQKPCK1kJw4LkEzjRUiS/+QjCY1CQpf4LQeep1vABGHm6E09/Qt0/I4uxj8shIcCBJkpb0QuzvFzPOrHZSTrqfjN5jGOJ7h0PD79VeUpNlf1i5saX3hIn3md4eCAVi9hlzragVfk+daE3MNgAxSQYNo8vnCJ0pYwy/CpskFuiN3vap7Wp0TXfxz2lDaEzoyWBpH+PlrdgWPwYbZsIbYzjnwEPi+2QNOux+Dhdaq6jFKoArgE7D2t3WCLpFsgfoL5z5FtxbAsMUxpkaJz0FJz4umGAgQJ+cgUJPKNhmAg458V/wt+9h6pMA7Kjbwdbarbj9HVNktegyUvwtEdWwrlIlcXOug5CPxot+5D9BAxA36HwYdR2SJJGcK1pmLEo18SSbaPfL7DUc4tJIODBPf99ZbwutMEey0DjrPEz/3M7DBOBldZLQVia+46hrhT7MTRvgql8IWZxMdeiMhLtts7jG+6HW8pSAh/iQGxKycdTtZJnjZtxeoVuhDnk1sYuzWzQq/TSraEcMVm4BdznJcTZ6SuXsDyttVcMFczCo6r6Bpufw+BkDeO2ioeSluphxxQgePrUfwXCEpraA0FryNsE313D57utNp/v1RfsOWy0HvdLa6AmQ4rLjMiQlDZ4AN8/aSKXby7he6UzoLcZBsHo7lK4Rc/i9pUijruU4eQt5Ug1pNn0xqjpORcchg/V7eaNXEwGndB1sFALohQa722gyQZrLDoufhjm3izbFNe8x0bKZT3otNm33863HsuTOSTx6+gCGdEkhKc5GgVxGY2IBQUOLgjZv5AwQoucjrjHt559+wQ7tXfa1EFFf+x5pgUpeCZ7Fcb4XKTjnEZh8P3Qbh6vlEEPkInwRK7ZOAxl6qgCUXak5lPT9OwePfQlJdSjrKOKzRNvqzu/F410/akmfmhz7w36hJQeQqTg8ZfTWCxBbPoeWSo7bfAf32T7jkK2Hvv8z34bRCgtt6lPa02/lPMJ43yussI9jrEUBukZfL9iVp78OCVmaRpCqJZUWb6cgSwBBS/aIBHDV/nqutelJ1PW5u8hOcjJUAS0TlesjO0lcM5tKGknFMH8sfYGIVezfdH/tNUV8v4RMYSJw9UIBwJ3yEkUnf8LB07+BqxZwW+JzjPW9hrv/xdpb7VaZtfcfz6On9WfUAHG+wkXz4a3xFNb8bDr9apW6oTVAbYs/xsJ9V6Vbc8oxxocrDrC5tInkOBu/3HYs0wbmINlEK8sht9BHURO9e6yf8minVULzLIoRVNLQpoFk/TolaUDQNxtEm8GOCjcv2d7gxaJpHPuvH4jsnGNucQZNP8ivHKcq0u32BrQ1jsoaqmnWr8c4/CwKDYZgG+ssUXp2tXtAkrn93OPpViD063J6iG0KpDITyBQdRdUtvLl4Hy/+socPlx/gvLdXat9LBZDUNkatXURWXXuUtgpJ4opx3bWkOWio/C/aVaPpNwE8+sMObv9iM7Wt7TMOnrB9wG22r03JqrVV0c9pVdp8yzfRJyeRsbK4FuLrtwMRNhxsoKi6pV3nKTXsltg0yN0W4GCdh65pLrITddZETbNwVlyxr5ZgKEyj4TyqIPjBulbUsp06B6S104JzrOLupoJLRiYDW78SLZUnPA6XGATjJQku+pxrcr/kw5AApzMlMV5e+mUPgVAYW7zQ8JtTNJsnT8higFxM4JgrDF+unESHaA0zJsSqc2Z2kgMrQaZaDXpIzeVCC7PPKQQy+pMhNXGyvJoPbM9q3/Wur7dQVN1MfRTIUd7kJdFpZVBeCtsencrgvGQW7Kxi7NOCtZaRYNeYQPWtPuKV0+2wWvjsmtHa7wGw8VAD3kAItzdIrq0ZZ73QcEsrEcWiSCTCjZ9u4PIP1zL40fkMU9pD1TACQeceI9aV28qbiEQQOqCGaPUFqXR7cXsFc2V3ZTOOnG+4ZulEIJYd9s2GUt76bR9Pz9UF2VUgyB8KM3uTfn+viGLXnDZY11RLddm4ThF0NraYSxKs7EBTTAXNEp1WbT4CoQ145TjdhEDT5UuwcrplBYktBzjHsoRLLb/w+Bn6+tNpkzWTiwSHlQSHlYC3hWutc/jM/oSmpZeXGsea4noGPzqfSCSizYuBUIQ5W8pp84dIjRfzaEWTV2vhm7dNXL/G7+MNhrT1Q0fzU3FdbAugAIJ0RhDAcEXDCUQhL85upc0f5Ik5O3l/2QF+3q634UWLnqti0WprWEcg7n9T/AUE/QnRrmvYnxTq4ioQjk2m/6cRUSbwhYcW0hZs4+u95qoLskWACtHuZkr422nVOKpQk+NuYw6/XQdRr9A71UmtKeMY/um/lq+yophJsgUmPwCFJ0NiztGfv9R8U+vWBV5RIdQYKh1Fn+niu9njmRMaxazgRKp76cLAfHoBfKewVxI7CQCqvWo3hqq70lIYKJyKr287ulKqFkNSJ6HRo4YkwWBFLFmy/C4tpo4YI4U5iSy+czJXjNMFwzWNIONYmHg3DL1EexgIB2JYRjFtjqoA9oirY6vIaQY3HYX9ZQpJwqX00zf4GmJfbyfc6YMZLu/hY/tTWtsB3kZS3GIR1WvAyKPaT3uhtYZFwuJ3gRhGkLqN8VyHswfAWe8Jx7z4DJOAeET5fhGVDXPW24JRkzdC6H+pEa9Xf3ClQY/jwCIWLL6QWJQ0+2OdoWIivZfQBCvfKLL7j88WmibOFFIKxjEvPELf9qx3tM/olNuZtogBZNyiaJSl98SkOTD4Quh3phDVn/JgTKushCTGrKINwvAr9THsSIAuI7Fk9OI4WTDtGrLE7zXGL7QS8qRqzrUoLaujrlWeqyVPqiHRaeXdS4czIj+VJGUxF2ezkBxnIxU3WbJIkkOhAHx5OSnhOnpK5WyL5Iv2FUXvzZT4NonE79LR3ThlUCcIh5hY/h6D4nVg8tiWn+BpoZWT7DODPsfL67kV3VnOqI+ghkapVqqhLocOBDV6/Fol8t6T+2q0+sCO2aKld8LtYHVA31NxSAGWOW5h0uJzoaUGPjqdyfImk/6KOF81lNQ1IxOmv1RMeVObJgLOe1Ng9vWw9SvOHpLD2xcN5O5xse49afaAYCOte1+I628SlfqB5V+YtrPIEl3T9fkr2WmlQCqlztXddI2Y5qbMQn2OA8gZxA/hMVQqbBl+uAV+FOyz1eE+nHP8sZwxVFlwp3ZHajjAEHkfOyL5JCbEYxl6MesLzlAAACAASURBVJz8HJbxt/DvS0bQbfKVelt0ByElK/srXiqYjDU76TOzP0OkIr01zN8KP98vtsvorbxREowZVWD+pGdotOfwWvB0vhz+mdDoAjH/n/g4XPaDGMf5giEzetxkuvXsw2ybaJsLOlLF+bhuuQBh4rNIljzYCWj3kvR4Oz2zRCVebZNJooUp8npaB12OO+JikqI1dOvx4jjVljCbRSY93kF1sy/W1l2Zc9ottIAoKOUNFwDc8CvpNeoUug2dAl1GcN0lF3LWsM4mzRcQ7KXLxuZrl3xQuc/0PjRLcws0RoPH326S8JvSvpKTZG6BUCvqvqBofe2XG6t9mOi0cpK8hmutc0hcKITpVRbetjLhTFZS79Gco/rlJnGwziPcapQEu6dUxmkW4d52smUNEmHCNbtpMiSkKsijJj91rX6a2gIU13o0EfvqZh+tviCrDujMxH2RTtwYuBmuX023G2ZTZrVQL8tw9vsC/P/bbDGHK9E5O4N6Ww4Fcql2fFVuL7fM2shxz+naZ/O2VfLKQnF+ft4uxOqjQ21j1BzNop39osIIxLy2qIgTXloCmKvxSXHmOW90jzRyDILlM/qsYZKs6GIahZQBKrfw2dWjGGITzKh4fy39pWImB37jtNfUYlv7GiXjC2IZ9VVuH0XVLXRJc8XMxZNf+I2L3l3NV+tLaWoL0CPKFbbREwBJdw0DM4vy+ok9Wf/A8bxzqZhbVPZmnFO5fsIhmHsX2BNjTWEAJIn3/z6FKycNxBuxkSU1ceOkXgTDERo9ASZmCEAqsu9XLkoRwFhwkIEdr7SGFdd52FTSSGF2Iu/9bTjXHdeL0wZ34s6pfTjP8huP2w0dAMfeBbdugQs+QU7KIZNGHrL9h8mWTWSi3+O+31xBXauPkflpGgDhxEcfipXzYDW1yQ3snMzJA3KpbPJSVN3C3uoW8mR9jKtsKbc3SEOrnzPfWME//rOeprYAA3yC/bo33JnURlEQ2nCoUdPjU0MVhC5t8PDxKgHy9slJ5LKx+YCu65VjKBCBAD2FGLZof1q1vw57qm5VH80IUgEF43gxtovd+vkmzf2urLFNA1M7JTvpY9DtefacwZw9LI9Eh5WHTtELomcNNZu6PDBdz0fE/BXBGeemn8GcJj3BQW6KPvepBeAfLtK1Ar0RG+dYlihMrAgO/GQkOHC3CXdGh9VC94x4rc0e4DnbO2TSoOkqgWANqszFbWVN3PjpRh74bhspceIz7/hys7btq8r80iszgS2ljfR9cB4HavX528hYNDqsRTOOQayH1PxCXeMmGUA6lRHk8Yf4WdGQM8470RptGiNIMhsR/DfHf/83/H8Q7bqGGSLSwQ3oaEJNsDtsDfsT4o8e39EAQf/8/9g77/Aqyrz9f+bU9E5CCBB67whSBRFWRBCXIiggAip2FF11LWtZ26uuvbv23gsICiiCAgpI7zV0kpCE9Jz+++OZmTMzZ05JQPf37ut9XV6Gc2bmPDPz1Pu5v/f3x5t5b/t7+g8vfEEsdtNbNOh3FanjZQPF+ed0bExdl0ncMrpHhLNkr4ZYkdtdKA9aDQ1+lhkllC2vtwgZm7uN6zxzuN17Jc7WGtXTroVBuW9KruklsmTTW5uh8/H4PGonp0OH88UiWs7ypoPFCtethevXhn4XASEkjQZfH3yDHu/0UJ+loiYKqQsj/hksu98TQi6FtJW8XnDZN7pdbxVaoiMhI/R7IMEmJuMhoWFh4MzvQ4KkeZ5KJj1gXadRzNv/VUzXMYMyKJW5yng5OR6/LV6kZtdAbdeaZ+3DD90miox5RsgZ7zwKsdT+PN4a/y+e3PVBUEUDEG/+fCA4SMakCJIkyO4Mv70Bj7YU4S/OVJj4BkgSz143kSOpvUXomgbXDmtLvKSpCwGfMBZPyhbKoYRMmLtDKJ4sFrjkIxF6ozwDo2dSu/Mgpyv0vNT8mXjFQqTu/Of4p2cKOZTC8c184vwn99jfkZ/VKGqni53BzlIByXF2hts28MmsXnQL7MCJmziZCDrLskmV0XslCQ79SvIHF9DcUswGfxsRviKTXro6fzg4QRT/XgPL/ofeXw6lm7SXf9peJ3/F33WHNJWKVGPTWdaFXG2bRwc5fblRpi5JIgzlZI2b4koXmYkOnSfR+kMnqajzcvt5HeiSl6ouyr1+n1gYKsajGmIjoXI/fDBZeJu9fxFn5omJbWaigxnWhfzsnEOPws+ZYf2Wb5x30N61hcaOGn0o6mezkFY+zbmLhnPl+gtRFltPT+7BjIEtSD4ghw416RlUxSVmizCpcDh5iHMCK0mVaqhLa6OrEyF9U15voTi5ZQ9cvgQ3dvq5nqNi/Ie6w7b7m+tTLWe0gKrjdJf2ssHfWviYWKxw5pVh+xgt1HDv1ObBD/vOBsDiquBp+3M0kglFd/khKJfT0hszDzbtI+6h75UUz1zNB0mXcUm/fLHoulbOHmmxilBci0Ukf7h+Hed2a857l/fD2noI2/3NCDTvryf7k0RmmEacZLC80L2wZ54agrd0p1hsjbH+ghMPif1mkNz+LBoVrYSCFZxV8gk/zR3AuF7y4uPEHnomivsZ6giG2gFI8m81ZH7SLieZJy7qETLeGeFxJkFSYzJK13Ol9ZuQ70/WeNSFxI3D26qfKya0imeNFk3T47nlL0Jx1Eo6Hgy1AvB5aVa1hZttmvBPV6Wq2nh9xX7u+XorR8pqaSorKZQF2IZDJzlR5SYFER6uYIpVtAWLq5yKNe+rnyuhoEp4RWm1m7MeXUrt8Z3cU3k/+Yl+XvxxL395cjk1nmCfcyjQiMTkNMjuQKOMdEY2y+Oc5nkiu2r/a0PCtyVJIqVZF9pJR9RQrw9WH+SrDUd1XmBaY+ZwqaG1iqDGKXGq8kU3l6wugcX3gCc01PVElYt1B8t0nmT9WuuJ5Pcv78fP1wYXwgMKRPhiB+kgrJf79sbdYOjfwVtHet0h4v3VLPMJBe03zjt5xvE8NnW8C845vr6uP59dLZJuzBzYgu9u1D+rO77YzPGKOkZ3zWVYx2xGdm7M7efpx/Cfdp/A7fXTWm5Toyy/MDNZUdGI59DEIpQHWtX1xX2bk5nkFEqgE7vJsVRicRRRnn0b8/bOg8Nr+dVfxYazbw7r8WmxSCTF2ykOpJFnryQz0c4QaT2tylaoir1A2X7Y9iWkNsOryZgbqDtJM2spxZUu/AG4Z0wnhnfK4ZIzm/PMxT1pn26huVSIW8t/DbxB7V+sbc/BIflUQ/t8qZCh7RvRqlEi249VUFItMg7ePbojKQ74Nv46bBV/w3tctC8lPKlpejzvX3EmjVPjqKjzMvyJZTR37WF46VvqM8ze9R4pVFNe61HDo5btKsbnD9Cu+jdwprKIM0l0nwCvSw3/HNcrqLDpcPe3/Lz7BLd/pnixWfj2xrNol5OM3Srxm2yQnRJnV1XBIDwGFbPkOR9uYOlOfZIJrSJIq/hKibfj9gqSeKPBfF1pT0dP1pGXFs/86wexYM5gGmm8yuIckBzvZ/N953KWhqQ8q10WN49oxx2jOvDFNQO4fHArxvXMY0LvpiQ6rdjTfqUg4Q6O1gYjO9Li7bTUEJVKORtVC8L/5PSlPOMdR0fLQTIpZ5Z1ATvjLqOps5aTtR5cXj/xtgAvV13PA3a9OvbbYcdVP0aArzYe4bHvxEaqYsK9/mCZar6shUIgV7m9vLRsL7UeH0t3FOFotJDE1o/pQgG13kR7TIigkzWhRJCWpEuJt6lEUDBRQPD62jA0t9cfTB8fhdz+b8KfRNBpgFnWsFPB8erj7CwVDUqd0Ae84XfcGohTLa8pMWHAogOLeGS1wQw2pYn5YjdGNMtIoOCR8+ksZ+OKd1h5/pJeYT1vFEQiOEyR2VrsqinS/IxWkY8HkX1Nk6EpvqVGCXLm1SLcpdVQ1Q/BiJenncHgtlm6OF8Q9cCUeEtvAbcV6MOHtMhqG1u5NYg0oX93u9jRr/GKiaMua5gWmsWUmSLIVHXUYpB4fkYkZAiCw+oMq2xKlHfQo4WGKchqb1CjDbge7jwON25meu0W7ll5T0zXMWL6wukcl2Xr3+z7huekclZ0PV8lDxQo71L7HCIupCxyCnP5Oe8o3cHjax/n9S2vC1+s8x6Tb6xd2EuoRJArBiIIggq4WlllddNmlZTrkpdK3k0/wHD9c0qNtwvFzNl3ihA/gHR5ETbyEbh5V1gSFILPRV1QTH4fZi8PeX6AjpjNyWvFPN8AquyZ8OksctFIqBu1x5HXFW/AQhdLAR2kQ/D+RfBgDi+572CqdTHxDiupcVaaSKW4laxvMukmle6jypnDuCvu0pdVW+c3fqQv2/7l6p9fO+9mmm2JWLRo8LPzRh62/xsHHnpaxA7ZNKsgrLRE0J4Hz6N1oySW7iym9wNLhAohI0G3y+zzB5DwM/L4S/DZ5XhKRdpYb3pzvRebXa+M4MhaVZX47CAPT0/qxvi4NdxtE+38Btcr3G0Xfw+ybuFx36PwjMHv6vv7oaoQq99Na+ko99ve4JzqBdzjfxHps5miTs5aAuNln4kzr9T7zf38pDCYf7y9MON+byKD1osFdM8+Z+naRUi/IUlCcZLUSCiexIckdxkJN24WKh2gY+uWTOitMU2X+8Q4ycN6f5sQNVSs8EmB4K79sDuFeXuH0eRKJeTLJq4uJWuYWXjo2BdgxkKwWGjbOJUVtw8Tk+vELGhk0pYdCSopDPCPMZ1Jmv0d9vEv64+T7+9W+0fcOTCR/Q+PovOJ7+i962mcuImvPsJNtk+Yal3MPks+5HZH6n4xnDwIb46C7/5Os1V3YSUAi+6C53rzbMWN2PHSPbBT91MBORz1dM9PILhz6xlwPdy8g8qMrgyzrtcdI0lCEbTuQBnJThvXnd2G/Q+PIiXOxqbD5VgkmNxHvPu+LYPj0quXniFCl/w+Bm+6leFWOWvlsQ3w2gj6/DCJ1tJRFjhktep7FxFXV0gCYkH6/q8Hcfv8tJQ9yTrlivnItNdW0+ng+zxmF+9klZy5q6cluEBrtnQO51rWcI/tLY6X6bMBxlNHf9cK5to+oUftL4x2inIdOVlLkhRcCPXq3oNvDQSGN4ry15rTgdbSUQ6WVPDk4l2qYsqIczvn0CQ1TlUrGfH5+iPc89UWiipdInxFWTRpY0M/vlT4/hX8bHqNcS+sVLOX3TayA/1a6bOrWiwStjI5/XXnccHLOuSQyvaj4KqfIFsmi+TsdT/69WFyvVJkBazGx6h9bqKa2UySJNo3Tubzawbw70vPYKhlA8WHdnN+11zO65pLSpydl6b11qWsB+i960kWOm5jYILY3HvB8Qz/8DwNBJBke+YZtgUis191Cf0s24CAGroMwHNn8HThpTidQlH644bX4JPpXJ6bw7RdkcNSE502ikmlqb2Svkfe5k3HY7xmf5RWtYJw8YMwDW83Eq82o7HVyfky2TK5TzMGKBkg3TVQW0b7hRdxlW2+Og4CuvlqXOvBHA5ksVcOlc6Xikh02miXnczibYXsK66WM1FK9Eyr5bmsON5MS+HnnYJUVVQpQ9o1IjnOrlPrTbIuxaP8bFURKUtu5Wbbx1TUekKycuVVb4NmfSixi3K8+PVyNh8pJzPRwZjuTXTHPrxwuxoWlmYXz8Jhs9AqK0n1s0mOs+kyN2pJB6Mqzuv36lQnLTRq1oIT1bS7ayGDH13KiSq3bixXyKzDcibiLnmppCU4yEwKznvf2v0QZ75/JoDqrQdibnX9OW258qzW9JQT0DwxqQePT+xOnM2KNUEYNO8vDxo1W7w1OG1WJPzcYP2cRseXwYFVsOxRcKaQlNeJlX7h7dboxFqutYkN0Nb2En7YUcRPu0/QOnCIJq59nGkJhrwBZBavVo2kAf7xlSEbMsI3yVNbQ1dpX8h3IJQ/CinjD4AzaxkWR4kuNEyb5XJ3YaiavaLWg1+u38r80WGzqO8yNd5BgsNKrduH3RL0WQyWwaP726/J+Ke9v/9m/EkEnQaYZQ3TIlx2rmpPdTC1rAYjPh3BhHnCCC64s3v6FUH1UsiYQEsETV0wVexmxIg6bx3TF05nW8m26AefJjT4fv/ygAgJsTmjHyvjgyv6cf/YzrjTNDvGI+4TMv9Lw6tNeuen886sM0MyWbh97oaH4tUTsRCERhIwUtk8PhMiqL4k5I2b4JbgAsRI+Dit4t3EGhpmz+1MdUB+n+NfE7vy9njQvq8GYF3RupDPPD2nhHymkAja5xDpmSg7ikp/sLtMn7KaM68UHlFmi0flN+V3VOGJkQgyejHFpZofZ8SZs0Xmwn7XChWQ4hklSeaEjgYhi0mLJdSLS4ESVml1YLHZ+fXhKSSd8zdhXq3grFtBkrA64tlFc3pJu2klHdZd5m77e5z59dlctLg//SzbqJX9prw2h2rgnXTefXRpoc9yqKvzhZuhaAfslDNN7V8uynf1SqE2u+htsWgxYJz1Zy6wriRO8nAkkMmF1p9Jpka3i2ezWlTSx+cPUO2t5LOyyXx/5AsAcikhXzrOSMsaWmx/BTZ/glsOd/SmNg35ze1+sSguv2yZUJjM+BYkK8n7vmHsygncUf0/bAvk86tfvxs92vIL3f1yf53eQhje95wqzLszBDnxjuNhLrUtJmnxLcFd+4lvifee2VqQMwNvEmbCMvxL7oUFt0DVcVj/rsgmB9BtEpb8/jG3ES0kSRJtee52uOZX3r+iHxmJDkpqS9hRugPSg+Gm915zaf197mS4fW6RyWfuDrFYGvscTH6P7/x91AWNW5JE1sJpX4RewGqr17hiRJzdSrO8PIgzhDbJCsSx1pVY3xgp7u/zK8ja+AIbnFeyIm4Oc2xf0NFyiGWOs2RC7UK4cqkgbFsOgV3fiXq98lnxW4FaOksFOq+WwIzv8MqhYb+HYll5356ADyQJV+PedJH2Y8fLKMsv9JJ2MbRRDS6vn8/XH+Gsdo2wWS1IkqRmqGuWkUBmkpNf7ziHxycESYLGaX7uWXkPNVs/I7lsm6ok4cBKOLqOff0eYqDrGX5odr3I9nZwJdITHVnuvJFGBMcZhSDISXHSIjOBPtIO7rW/zbnWtfzo685tyQ+xzS9n0Wp3PoUOMca87HiSGbbv8BbvotrlVYmgW20f8ZLjKTpJQpnTzF5BG+kwAyxb6GYJ9vtpTdqYes9EgpTTBafkYdPqZTz9/W7WHzzJ7CGt+OnWs+nfKpOxcoaslllJZKfE4Y8gFn9r1QEOlFSTnexUSZYACP+wBxqrxAyHfuHlZt/TmBJVAalAyZzWt0UavrICALqle1hx+zBBKv38pAhtH/kIXClCfVMkWb00UM6SpoZnit/7xd+JukCQbHFUySpszQ6/R/H08nlh+3z4dBa9sgK0TJV41f4vrrd9wehu+g0LrWojhWpmSl/T0XKI4dJa3s0PqtS+c9xGZ9m82yNJbI2bBY+14kPHAwy3rCNJUXLKSilnwMUjdjnr3/FNwYQiUVBW7eZEIJUcSzmtDn7CTr/o69Nd4ny/su7ofKFuXPV0m0Cn0u9x4qZb0zThW1m6X4T7/qsDjmKhnDlCaKgvgMVmY5zrPia678GPhW6WvbSu3sDY+I3cb3uDTlIBLrd4zyNya3EpGytr34D3J9O9VGx2KMkKtHW4veWQGgZKkRgH4i3C5FdrwuzETVLFHsjtQXWceE/L167ni/VHaN84mbPbZ/PS1KD6dfuxCo6crKV/Ixe/BqbAarERMbhtlhqGlBxnU0ObIDQM6f6xQTN8d9F2WmcFyR9tggojuapNprD9WAU+f4AjZbXBzV5PHQk+2Wg7fQW/FonQW+N6Ms3MqyYQgCX3clfp7fS2CJWP3+/j59vOZslfJXioCRxYyQzrd8y1f0rSpxfDW6PhxE5cY58jYLOyOdCSikA8TZZcTYZMNDezBomvHt6Nup9sUfceh/MvhKPr6N8qsnq2ss7LecX/Zp7zLlpLR0K+r6rzqP2eNvuYNjRspcZE22iObbdK/LCjiIBMvLq8tWIzA9TMaU3T40lw2KhyeVWFV2m1m6ve+Y1xL6zQ/VZhhSu4CSn51BDY/3b8SQSdBphlDYsFgz4YRL/3+0U8RiEvfH6fTtFyKn5ESjmVxWjENPIRoCyE/AE/G4s3hpA64YgxEMa164rW8dCvDzXotxuCeiuCFFgs4EyOeD9G9G+dyaX9W1AX0CxsT2HC7/GHCQ07DTBO4GOZ0NfJ3i0qQRGBZHP73SE7+TFlrtLCmaz6yCzYt4DBHw1ma0lwB0KZ6JS7yk1PD4HFSl12D06mdhRS+gYuBBsK5V2G9T8xQKl7ynm1XhNjTUdkRZzyzmJWBPW+TISudJkA2gxZscIeJ/yDmvWJfqwM5T3G1Cd1HAtjnhFEA3JdzNcYv89YKFQaMtZKnelt2UUrn7xj9tdX+M0iDBLjqg5h89UwxLqJKklMUL1+L3SbDFM/13vRGMqq4p0LRahV8S5hst1yiMjYdtFb+ixXBjwuKwdeT7yCRMnF2Zb1tMxK4u+295gg+xxpFSsWuyBBFx4QxMJXCfezzDmXh1I+Fyqp8x4Lhrel5GHEpe6/c7H7ThKbdRPeXM4kQYSuextO7GZh0jhmuv9GZUCvSlSy7HHhS4LgmvSOIMpu3glThb9cE6mUpcljgidNfFNv/J7WPIQM9EiIULqM1iK8Kn8gzNkkjJIlKXbVHPDUpB7cd4Eme1VyY114xYR5E5g4b2LQdyw+g4y89hGvGQken0c8P4PKrU//s9UddY8kCRVsvPnCygzVnmqKa8zVGjFB6xVWeVSQlDJ0oZvAcjRKpSY9hS9g1wnCiPdlWXEiG1uPty7Xnetp2kvt+091Y8kMyvtW2lpS6zNJlFzsjruUFxzP8LnzXp6vnksK1XT1bWdo26DXmGKa2jUvFfx+cpLsmp33AP/+egqf7/6cz357Dl9KM5b7NYq9Mc/Q4i/XMP28gdw9oR/cEiRgsqQKptnEYtaJm3ZOQQpJksQnVw1Qv3vT+xfmeq5m3nWDaDlAKFrseT3Z8tclbPa3UK+XU76Rzvd8x/FyES7SVBLvvbWsKGvlP8AS562873iIgYkFwTJaG2Bi2mEUNcQJhSIwxrKSjs5SmmUk8MGV/ZggG+gObJNJTop+vuKwWmgrHSZfCvrzlNV4yEh0ImnTx+/7UYTsnjFTfLT8Mc4tfo1f4q7nSbtIYDH/ehEyv3xXMWlU0nX+BXjWiMW5rbyAvJJVcHSdyH424n6RqESbTGHU48HMe0oyif2CaC8I5LDf2kI9tJn8PLWZzfr/dj+lK56Ch3Lhoymw5VNY/hgZFduxSz66WAro31rThhAqWCXscITlN/XzvJ1vMqgwaH/Q3nKYasS7KckfgT+tBSSIa02zLg6qPBSbAMApP79yq5WuLWPbjOqdn8HhQCNy6vYRX32Yf/tGcdAfDCUKpDQRCsUWg3T9prfDaOICtQy1bBChom+eD8/0gKJtQU8+INkSukmtoIh0SkmhLqEJ022LmXvkJs7bchOX2hazwHkHl9YKFenUDppx3OeC3d8xctddfOq4l4yAmIcMbpvF/WM78/iEbrSTDlMrq58leZ6SYvXwzaZj3P7pelKopo10mE7SAaSAD5r0oDZBkJd5sodNO9lvrFfzYH/rD4hwoNmtZYJjwS3g9+uUQ0nOIHmY7LSxp0ivPhmeFFTa1L1yFmmfTMAihxtO65/Ppf3zyU2N0xmjgz772durDvDUkl2cqHIFzak/mgL/0wIIENc4uJlunO+nmmX5PLYRfn6SFpXraC7fv//YBpqmJ9DmmJy5eu0b3JQiyKUtDgcBvxdmfscZa+5iwtcT8GGlMKAndPIkQb4MsGxh4smXCcRnUNjxMgIdxvDmjL7kdRoI1cW0cZaz/+FR2DTKpfxM/Tw0p06o+iYlhFpU7C6qUjM/KtkTASpdbnz+AB+vPcRHaw8xoLVQnRZoQlgBmqUnsLuoCkn25PIEfPg/vER3TPOMBOIdVp1R+LKdxXy79TjrDp7UkX97ijXkn+TVKcT+m/F/4y5/Z0TLGhbOgycWYiKcIuhUdt+0BtSRygew8sjKsASE8XPj4vT38jRqKE5lonrd99cx47sZ0Q804HSpeMKGhp2ma2sRExHkk4kgecHu8rnwB/xcsegKVh5dGXL9U1YEabDqmDDf3FUaTD2pPJsqT2gMcThkXvIKadPeCfv97xHqoF7bFwz5VBBLf6C0uTqvuWQ/ElRFUCweQSDCSy5fAhNeg3YmppW/A0JCwyLBYoHe06HDqOBnOV2EQqXNcGiuD//bYOtGnOShb+l84e3SfRKv2i7BiGo0RJDVJsx3TYjCkPao7OQuuUdkkmo1NLTMs5fDZQsouHg593r0vkd333IrFYEEpti+p6d/K7Nt36gkkd+EhLZbLbw2pI5sv1jopNcdEhP/tiNUEsLrTAw579krR9Kx/2i9L0vnv4r/p7egz1UvcfWYgexOEt5T87Nnc036K5QHEng1rTfvOrx6rxtJgtRg2NXZVz8jfIAAmoprLCpYRJU72Da1hK2yY0yzM2HUozBjgQgnVO5B66MVpd+4sGeeagJqhhO1suFlfLr4L6/3KZHAISGxMhoPmo5HJv7dkhSRCDTDRfMuYtgnw6IfGA7Ge1r1nPj/6Kd4NP4mvvQNoCyuOfv8jVlb1yT0fIO/DH2vxCfZuNC6Qvexy+cKmU+cTmjnPwBxHUfyk6+L7pgEXwVvOx7hM+d9DKkJZuRSfCaGtM2A98bD/RkkPNORkZbVFMRNwV8oDGb9pfuQzpxNQNK0sWZ9sVgkrhoi+0fZHCLz2RVLWeLryUXWZQy1bGBN3LUkvtRbhDYCmQl2+lm286VvAMvb3EqL5s1JTbATP3SuIDnPmEnb7GSmuu/gevd1eK3xDJYN74+crKV1dhKNJX0YStvKoP9YR49md75r0AA45k2quFR+cA4XBJB0gGcdzzHq12Bih8FtG7H2ruEM8lc6EgAAIABJREFUbtuI7GR9GGmjZCeLnbeyzDmXVKp40f4knaX9jCh9jzYWsQsfICAIhbTmMPrJkJ8fZV3NXed3pH1j4c+yal8Jl9sW4DixBW/roeIgqxPe+St8djlYbNBD7qOtNqHwBNFXKEhsJEJAq47jye4O9kSs3SaoXyvEGoYU94eWPyiuM/FN6H4J/PIiKWtEmdtJh0i1h87nu8vZ9KbZFrPP35gfLP2RNP1aad9bmOu+igIEIZPQogeW69bAnA0c6DqHIdZN8NJgkVxgqyDyv0mfiisgyPGDSdH9yRT0b53JZRcGx77lvm6UkqL2p/42w4RCEf2cztu0D774TOY03kzvXEfQ863jBbrwZV+T8JlTn57cgw+v7MfOnneww68JuZXfT5f9rwmD/LIDwb6oy3i4SWwWn2HZxaBi4ZNls1q4tF8+4/3fki5V4csRIenK0x8Z+ImzKubzkv1JNsVdwRLnrdwlhyuT15tAShP8AYl8qRBL3EE+K5vMztKdpmq5Fv4g+UbxDro1DaqcU7zF/Dp4A59e3pOUeLsu22CrlABNPgv6SLokCQp+4u0uG8nPTKBn83TuH9tFZzr/jv0h3kt/hedGxPNox32qGu6jNYdIooYtx25k0ryLYI8gZVtIegP0ulXPwodTUPymTImgnQtAsuCfu4t18YJc9e/6TiiF9snJMrZ8RnLtEXaOfICL8xqzuudEtf3sK99Hj2ZprM2WQy9lG4x0r/C2ykhdQa+WzTl83oPkTHoaafK7DG2fjaRs7h0U2RTbyuTbExd1518T9aGZikfXWf5QIkirxjlcpiF5JC8DHvmeB78RqrCH/hpMqnPF4KCaN11+x0lxwfHOXbgFyg8z2zqPeY476HzsCxLsVjXrKohMdgoOlgZ/d8exCrQZ//6vEEGRdfp/IiZEyxrWUEIkEAjoTGWNRJCjITtCBBcwymI0XLl3lO5g9pLZTGo/ibv63RXyvXEhZCSCan3m6UDh1Ay0G4pTIaaWHRad6pGqI+Qlhe6yh4NCmDQUygTP7XP/boog43uMpcwKEeGXh2u3381J10l+OfYLW0u28tOkYBiMWWjY6c6wpywYaj3h61wIopiVu7wu7A6TwbeeMO5qQ5DQieh/YgLlXWnbmsfvwW6JXs5oWcNWHlnJ7CWzWXrRUrLis0yP+b1hXPjVGxYL3LAebPEhi+Etjh5UeOJJ8ZZBllBBbLZ0pEvdv1mf8yC+pFzijqykTt7dikY66Ba+KU2FAkqyismZ1RncsdYiV0ySnOW1vOkbyU/+rkFDWYuVNf72nGNdDz9owgn3LCGrthAUqb6y+15ZyDm75V337hfDodUiFC+5MR5nMuAyXZz3a5VJv1aGTJDdJsHa12HUo2QlOZkxsCXTto/jrT1duLhdf6oPljHg2LNY0u+DNY8ytdM0/flWm/CPSssXnl4zvxX+FKl57Cvfx83LbmZE/gieGPoEdd46Bn0YNNF3z1oCm81VVxC7aq4+8Pq92MY+Dyahc7HAZ/AkCEFKrjB2rzqCy+YQmSvrgYOVBxtULi2qpn5LoPwwyfMuF2F69kToOZUdWzbw4sk+fDy5PxNfWgWYPNP0FnDjFniqiwiLssdjadyZ5GMbRduS4fa51bb6e2z8hJBMCRlM89xBgqeOMy3becMhvNF6WMSuc6OjS4HZcGAV/0iaxxQ68Rd+EXURkKqLeDH+Bf0tpzXDcuZspJUaM3czr7WmZwDwuW8ww63redPxKFXObHBVw4qnYeIbWEp3ky2dZLW/I/dd0FnNukZciiA5gbz4AOUkMc8/gDs7uBi99VV+8C3nQCCHfxXdSSNLQfA3HUkkuYNh0F5tl6bx4QtHSJrhx7SxjC6czxOyOsfhKoWyAijcCgUryBp+ryinwbC+cZIF2R6JjXFXAtDPsp30/VVclZTI3WQSCPgFKZajJ+tUOFO5fEBz2PAOHTMbU158mFm2hdB5HJ6mPaBsA95GbaGwRBAU7UbqzdvPvkP0VVrfM4sFOoyGYxuxj32SLbm9sAbOgZxkqpY/T5fq/fSRduCxlLNXW5az74Q+14m+q+25sHsR1n0ie5pD8onQpCaaBCTHN5NRW0cH6SA9LHt5OXE2zRN9ULQKBt4IvS8jNa0Fny9fQKL0CyDXW5sDbA7yR1wFm58W4V9PBlWLb7mGUeyzAkuF8rlGr3qIBItGbVlIBo96J9Er+1fw7daRg7rQMCmAtfOFdFr7Grwoj1HjXxNETeVxQRp3GYfbUwbLDBlcZYztIebA+1Mu5Ozv03i7/3HO6pQPbYcLReGX1wTJ5zxBFHk7XQApudRdv5ljH86hw/63YVGyIA0DAaSFf4PkJnibnQF7D+Ft+xfIrITt83jI/hoA7oAVq91Jb+9ucV5KE2YPS6TgaGfOrV7Ds8kinP2nIz/RPiNU6ZlZHfTp4uAqpJxOzLtuEFf/MJ3rvj/MZ/t3k+MvIjluPCDCPUur3VyScxA0HFLdgOtg3woG1XzPssFZsL0aOo5Ww93aSocZbN0CtcD3c7no6Dq69LqRUev6UlTp4krbIj7wHQQN5/uQ/VVma8pa9+PD4PPxercefL2llBT7cP3N1J6EtW9Ai0FYkxvRt30+X+5Zj+dkAbw3ESoOi3axYz7EpXI4uzXshJKu43Rzoy+vHQiBAeD5u9jg2b2IhFpBShUlCxXwnrRcmml/u3E3kdXu88uhaBsfX/43Fq3Zwtidt+H2BUhlLH0tO7jX/paqLmoTKCCVKmqIw4OVlllJukxhR8pqQRZ0ShY3hRVivnpGfjotNKHyI7s05tWf9pOWYFd9miySX00K6JYg7u2x/N0u3nVgxX1kdvs0pC6o1UCTbXLncc3cWPLRs1m6yRn/ffi/QXf9zoiWNayhSpRXNr2iLsqN6eNPZfdNOVeZxIZTFyi7tntP7jX9PpoiKJJqweUV5zY0LK0hOB07lj8e+rFex5+qikc7Ef6jFEFmvlVGKO9WJTl8HrW+OCwO3S6+kjVM8fGB2BRBbp+bDUUbot8AwbqomFjHAn/Az63Lb2XN8TWm30cixLQ74bGWTds+6usRZLyWtmyxqoOiZQ17b4eQt289EWr690dBJalPpa06Ek19hZpmZ/KYdxLVzhyRaQZxWBUJHJ++Em/fqwHwWUU/Hm1hq2uPk98Vfju9ZJVPXq+whvCAmn1ob6AJJDeB4fcB8C/vRB71TMLVXaMWenc8L5ZfQ3OpkJuHt+XFS+QJbrW8091tkgiRu2GdCFGSJDwpjWO6BxWJmSK7oCZDnx84TibNMuLJS4+nxha835LaEvaU7dFfY9oXMOYp8XdmazUbnELOHq4U3kxG1Z4rNRdGPhTW8D5i1rAGotZbKzIu5naPfrAJlDE9ojeahtRsKPFdn3BkI5La9Ce590ShmADIHwBWOwNaZzK0XaMQCX8I0prBnI0iJT0gyc8qkB4MXXH73H+IIkh77RvOaUt6WjpL/T053/Wg7nhp10L48lpYeCtttz/P6rM2kXpyuzDbv12s5CSfWxAVskpLOvNqsDm4bJBY3HrPmKVL+GBEm0Hj2Z3Sn9qBt5F0y2aRaGDr5/DSIHh7LLUBB8t83WicGmd6vtUikZXkYGj7RqSNeYC1Uhcetr/GxbalNKrbT3HOIO6NE+nqaTWUo6PeYoVdqBs99njTa9ZHIRqX25HiQAodLeJ5+G3x8OFU+PAS+OV5+OQyWP0q7eL1GwYtER4fivk1QLrsKaIoEAMApXtDiaC524VXmqtcZKKcdwNfV1zEt47b8WGHvzwQJBQli1AT2ROFP6MWkqQngRRMekf4COb1Fum7rXbofy2H2kyhj2UXnzjv51/O53WneFoMCoapOhJEnw1UZsnkzzGN+srrhpeH0P3L4dxtewd/QGLqrBsZefk/4dKvYfi9kNEymDpcMtnQSGkijjWoA/82cQj5bUTIWU19Nw4NWcVWWZqzOUMQZ9o+JySaYMB1kNU+GJ7W4XzxbFNy4dwHIa83HrPEHQa0zEpkwz9GMPiCmYIEAkHcTXxTkBDxGSCHJyvzj7jM5rS8/B2k7I6w8hkRprXiKZGl9KateJxCVePBDy79WHFjwsNYZ30rl3k0IEL2Wg2bQTvLETKp1t3vV9cO1HkFJZzcKc5LylETOnTNS6E8sJddyOuZbV+TKHvy5abG8+zFvZiUvouAPdhfuntOgbYjRPjit7eJ8K7aMk5UuUijkieaa1TxR4VvZKfadVzXbD8ZVJCeEDrH6m7Vm/DXynVp2K4HeMrxAraFmgytgQDMvxFqTqhhu1ZJlLlWkmCPCE9l6N9FuHjvyyiW533VXpP5vSQFVb7p+TT2iLE6iTAbqxaryLwJ8PMTJG//kPHVH2HdOZ/4Pd8w2baM8c7VKgm0Lu1cbPjYGHclu+MuZap1iarYmjGwBXlp8VS6NG1FCvb3TWQvpe5NUzm7fSPi7aLNDsysJsNzjM5SATaN95g7MQdK9rBG6sI5rseQvHUMORJMpmBU+ewqDNaxjYfL1RXp1P5NeGxieFXcfxP+JIJOA6JlDavPbo0Wz214jiNVYvCt89bxyqZX1O9OKTTMp59cmakTILpqx+VvOBFk6nHyO+NUnlmSXew07Dm5J8qRejQkhEcLLWnX0HoU628oqPFEJ1MUIkJZCCmKIAC71a4jP5XQsHjNTnIspMf/rP4fpi2cxqGKQ6bfa+unUo76EEGV7koW7l/IzO9mmn4f6d2d8e4ZTPx6YtjvtVDquvZ6ZlnDGqoIqjcRFMYjSFl0/ifUegrU+vQ7kJ5dmqTwju8vPNPtS9W36LXpfbhsgJiIJOWKybjXKu6/PoogX+NugvzoNU3sLo96LOK5ibJhaF5aAty8HQbdCEBlekde8I3FceEztK97U3fOcudNTDv+EM4tb4gPHAkiQ9u4V0Ky7amhh6fQ53llaXxmkpO+LTKwxgfb4bivx/HXr/8a23UM5I2xf4mmdKyvai4WnOr4o/TFkfpkYx/YEJwWckUxwO8qwmUuH9yKN2b0JSsxBs+69BZB1VRbkT3LOzC4IHH5XKaKoOfWP8dZHxrCyxoAlQjSPMu5I9qx4vZh/Gtid5LyggvhIx1miT+2fQXFsifSlk+hcItYDMWliFAjgPOfUBeoCpx22WeCyKTd3FE9aDv3W+JH3CFUgGcKApnjm6HyGA/ZruEIjbBbw0+v19w5nDdn9CUuLo78y/6NU/IwzvITJ5Pa0Ojqb7j39jvg4g9h9FM06XshA+/8FubuwDPqcfUaWpKwPvV5cp/mHA6I0M3vfT0JjLhfmIKDWIzv/AYW3ELvnU/QVCpmqeMm7rW9yeRykcXqQW9oOK3HuJ/XWQ6juXqluI+UJsFQtgW3yOc4WOzvzUONn4TUPH096j4Jbj8osp6eAso7T6E8IBbwboNCNOSZyeGsyd3HgjMVjq6HHd+A3wf7l4E8Hgy0bmV9oA3xablIjgRoNUSnsPjs6v4kx+uTO6hoNUR42s1aDNf8CrMW06dlFiO6CPImlrmXDs5koWya8S0jOuXQqP3zrCsWKey1m0U6RZDfEwz7bjUULv5IJMowINYxOC3BEWq2b4+Dye/BbftVdZ1unuJMEioqBRVHBFFtsejJ35GPsD5rDOWBBH5ynMWTc2cK8v6aX4JZSQHajACC3jZeOeFA92ZpdG2aShI1vGh/EmvJbpFlrst42P616Cte1vRTw++D2lLGeL5Fwk9uahwjuzQm+fAy3PkD1MPqfHXqb6pY9w5xvgq+d95C18IvBdGmID4D9i/nluI7ecHxNDmO4Fjqk6ww4n6qHfow7roLngv+o9NY2PSJ8MFa+wY83k6EFp7zD+HrpkFNO025sjuJenbOvWpYdI2nJvLGRJNe5Lr3M6GthQSZHDOdE459HsY8LX7jt7egYIXYSMpsy1DHNvpK25nnH0C3uldZmj9Hd+p022JaNxL3m5XkJDlOH5wkWTyqt9LAwDrY9hVfXTuQ1y/rQ4fGydw6uBHPF1/Gv45eyjfOO7D6q7EqPppnTIemfWg39Sne/NtU6Hc1nY59wUVWofZralA6bjtWQdvsJGwWiRNVLrUp56VYSJBO/+bG/4/4kwg6DYiqCIoymYtl1++XY7+wvXS7+u/T4RGkTGKViXh9MkGZfR8SGhZhclKfBfvpQkMn1YFAQC1vyC54FJzqglarkPijQsNiIoIMiiC3z61m8nJYHLpn7fV78fl9xNmCO6SxLOg2nxCT03K3uQG0ttwqEVSPiVS4ECkF0QiWveV6pVy49q9cx4wIqq9HkJmKL9bwQ7PQMLfPTd/3+uoy/p2KCuFUYVQrnk5M6ZdP2+wkJvYJipzb5SRz7wWdhYFnZlvoOpHqhHRdWcJBV/8UQiAuFaZ8HMxoFgYWi8S/Lz2DT6/W+xh9dvUAvrp2IJIkccnA0PCUtD1fULtXeAqQ0UpkaDMrm1yeUxknZg8RKci7NEkRabctwf68tE5o2mNRuhgVhkZFULR33ZCsYdFQ7wWXAbEQltr609D6fKrlBIS596VfhYTeWSwSbbKTVAPcqOg4Gu4qwtVptPpROI+glze9TJmr7JT7Eq8vNKxWwfjeTfnoumC4RF6P4eJe3ZXCo6vjGKgpER4cSjbFKZ8K9VzzoMeMcUOs3uNsah7ctFWE0AE3zfkby/42NOIp2oVzal57lvm6YZEC+LI0Co/250FS0PyXlFwd4aIdL+pT5i55qeQ0E6qavYEmWPteIYixK36AC18QagmLjeQT67jCOp+WlkIusy3iDM9afAGJXYFmzHTfwj6/UB1WNxuCR6vsbjNCmOSD+L8SFpk/ANr+RfSNF3/Eq/2WcIPneqrTxLsJqUcmGSa3lmyl61td2Vm6M+Q7MySnpPOmbySugI2PfIN134XMT1sNFf9v3l+oE397Q6ik7s+AT2eCPZGScR/yuW8Qt3mu0KX21qJ3fgZ+IqjkJAma9RVqnmZ9dWUxHh+TknDIrZDfn1cvPYNaf3CupJ0jGOdjgCBGL/0K2o80vexpG4Ol0PIAgpi+5heReRJUQkMZuzw+D2R34Lfu99PD9QovZ9+F0y6HwGd31JNXac05Fsigg6xa8239AuSog8xEB2OtKznPKiu/czoJEiouDT6+VITqKZC90S4re4YHba9hkwIibLJ0L9UtguHMLq8LmvYWmexu2AB5Z8DqV3gyax6Zkjy/GnaXmr2RIbep5/azbMclBd9r7e0HYOAcXFfpjfhrs9uLkL1pXwiy2ecSGb/m3wjVRdBjio5MU+fAjbvAzbvg6lVC8my1gcWiI4Iizm2b9UUK+Hn80GT13Zn2L7ndRUKRftfAsQ0i22fzAdBqCGcGNpPhL2FXXDcqSERKzMI7Zyu1eYJMaysdpnHtHs62rCc93q6G1Cm4/8J23DCsDRBg0q654j2textJkrC4yrnm2B264wO+OhIUv9Iek+HyJaS27iNCc4ffR0laN66yzgMCdG4Smv22Q24KuWlifaKIyT3HNwkT7xLziJj/JvxJBJ0GRPMIMgsN0y6EG7LAj7RorPHUsOLIirDfGz2CzMJNIHqIULTQsEj39b9JEaQYIYMIk6vP5PZUPYL+I6FhZtJRA7QhiwDrCtdxw9IbAHBYHSEkTUMUQdrzzaAlE5XJQ33qVTRjaeUeFxUs4u8//T3isRCeOFKuoy1bfbOGKc/LLMzsVELDSmpLqPXWcu/Ke9XPwj1Dty80+9vpxu8ZZpKTEsfiuUNok60P2Sp3lYuwRqsNxv+bGrlvjXavWjVIQ9rm8E455Kbqd6eyk+NUQ9J7xnQWGcu6XsQnebfTp+4F/FnthPQ7CqI9R4/fwxO/PUFZXZnp9wDDOuRQ8Mj5ZCY5aZIWz/DOKSHHRCNTIZTMMI4r0ca/+mQNixWnTREUhQhKsAk1QkNJ/Fj6YiPqvHV0fasr722XMxk1amduXA4smTuEG4eb+OGEg82pu5doHkGn+pzr1R8k54BmsUa/a8VOPAQXZK3PFgbzBOdrShkjEUGBQCByiH9qU7huLdywnoyUJDV1fSxw2Cy84xO7+IlNw3jryNDZA2jKox0DYpmfNEkX5ctu0VEQE31mCeP0Jj1g7g4YcT+W8kNMty1muS9Iavd0vcKA9k34wd+Lo4Mf4TdrG/rZ9vOZ7M0CMLdpmKxXCRkw5RO46mdoP5LMDL3/RixeU6uPCePsFza8EPUeAZqmJfCMbxyfDZzHr9kX6r4L2YzsNlH4YuX3DzVLd1VAk57Y2gxnruca9gQie4upGz0x9lfGOjciX9SHU1GUa+eeDUk0c7oV6CFzYUkShM6of8H5/xIqHUIjFnJT4wlgUVN/m0KScLY9m8YWQXa4JAmOiMxucetf50G7ULNVSRKX7H6baT/dwjMDpoReJ6ezCNUGLrEt5YGKO+RU8xLV+UHyWH1fTXqIDJSDboSKIyRteku0o7tLoNMFMH2+CHM0bNhUWIPER43spVpjWNPVeesEWdZ6mPAbHPuCIF2a9BIhhhe+oFOiKc+3xlMjZ9nrpLueQgRVe6ojb8TLXmhaRNyQ6DlVlCu9hQgxbDkEi3wvZVlCee2wWbClNyV+5jwYdjcAc/fO5A3HY5yTeoSUODsXWILhdJ1qV9I7P4MsNOr1ZY+C3w+fXyl8yHoE358PiLcKIidkTLZYOdT6ElpZjjPMsl5kkSRAf8tWukl7ucH6OXOL72ay7Sdusn2CA3GvnqKt4EiC9Jb8t+NPIug0IGpomMlkUTtB0v4dK8kQqTN/4JcHuGrJVRSUF6iflbvKOV4tDMCMsnZlsFF8exQoE/YQ2aeMaIqgSJOTaBPE17e8zn2r7ot4TH3R0MWl8hzyU/Kp9FSqIVCxQPuMGuITod0d+b0UQdoJpYRUL0WQcq5WHWO32EOkyN6AlzirRhFUDyLISNgYJ/BaD476LDy0i1jl2ZrJ7W9edjPz982PqvwL99vKszoVjyCjUuZ0EUHK39pJXziCrPe7vZn741zT704XtKGGfxQGfThINS8OBAJq/Q8QiEgGnY7Qn6hocw6Mf5WxM25j/h3jsVy1gtqzo5OS0RYiPx76kTe2vMETvz0Rc1G6NAv1jFCUQZFgJH6M/ct/RBEUgyK12lNN17e68sXuL0K+Uz2CwtRTJdGDElIcjkRYc3wNyw8vN/0OYlcE7Svfp9bVkjoRHvHa5tdiOlc7T4gF2vcVLWtYrBkK1xWuY9Tno0LqipnRflgk5wpfo/7XgT1BKE9GPyl203tfFnK4kaCPRAS9vOller3bK/L7SGokVHoNwA/+njzquYi4M6ZGPC4kxEeGdpEd0zxBJsguHNQr9DuLBVoE1TN5k5+E3O64Oo7n6RlDeXFKb+ZdN4hBI/6Ka9azABRokiosPrA4+u8TTKvtk9Ntx0L62eTQvt+Kfgt7jBapCXZ2PziaS/4ygH+M0ROepu8yTVaLDriep/I7MqtFW4qVEL+stsQ7wntHKfD5fWo/Fa7d7yjdQde3urKuUPjHGMfwjhkic9apbCSGUwTFOlZp2/kphRjL54adp9jjoM/l4v+a8il9a1aSGHfc3sjz54wJT1ItZ56rsFiFB1DRdjUUEWB1fByby/ewoXgDr+77CkAX9OSxWGDuNrjnJJx1K6mFvwrT6/bnUZMYTLAQ0sY6jlF9/sjuFFSzJTWCM2YKwmbOJirbCH+oSk2iEqXPi5hsR5Kg5xQY+TBcuVSEGBqgPN9wY1txbbH6vTapSsiaMz4d5u6g6opV/OLvqCujKSRJlGvORkE+tRgESJCQSa/egjwrqZbrktUmnkeboJIzp2Y3bayFPGUPenjVbXyf/vGHWBsnh912myzMrw/8LPyPBt7AV+0GsSAxgeJmI/HZnCTEi/dj1v+dbDWGff7G3GF7ny6N45lmXcwHjgf52nk3c+2f0qxiHeOq3mOO7Qt8cmiwp6xAbKCY+E3+t+G//w7/ACgLQ9Vjw9CwzDpebaM3UzZEQ6SOeVeZSKutXeie99l5jPh0hK480STRp6oICrcjoT02nB/Jk789yae7wju9NwRmzywW4k15P02TxS5QpF10I7TPwO1z8+z6Z+n6VteYCT/t7oj2eZ/OrFva+plgT6iXWXQkxYH2b7/fr1ME+f2xl9+oOlDqjjKR005Y6hNKoU1nrXhxaeuIceKilCMcURJu0ra2cC293unFgYoD6mdmC/VIKj9jG21IaJjym9rnabZQM3uGSn374dAPMf1WQ2FUK/7RcPlc+AI+Eu1ixzwWcg5+//I6bBZyUuLA5qDWYW4Yq8Af8Ad938LUqYaEUprV+1j6wlMNDftPeQQpGyevbQklVKLVU1/AR4AACbLBaLhxfeZ3M7n2+2vDliEWwupQxSHGfjmW5zeIiXQ4DzAzrDyykjFfjmHh/oUh35XVlfH9ge9DPjcqgiIt4CvdlVHHOo/fw6NrHuVQ5SG2l2wP+Q6itK9uk8T/FVPscx8U/jLOJOFVc94jwqPGAGUxpNQF5Z2aLSQ+3PEhEBvx2RBkpyTwScKkIBGBIAm7vdWNktoS9bOwRJB2PIhlY+Ccu4XJbDvzsCByuwk1w/jXaN25D8xejnPS65zdPpt4h5WuctrtbSXbYr3FEPRuLsio8b3FvCqWjJFKQgrjpmUkKCFcxvoZqQ/w25y8ZqlmteRi0zm3iw8bd1HJq0jQjq/h+t+VR4X64YeDP5iWJT1OqKVORRGkvWZDFEGnI7QVzDfCYvldpc0r2esGtskMew4AcanUZgoitiIpS/jWHBJ+SdVXrKLu78UEJr6lP2fGt9ROn6/+s8ZTI4gNSYKzggQSPafqxjHTOVefy6HPFSJUzwzp+SSfdw90HENty6DfkNLHG/t67btfVLBIrTPhoCZMCTOmh1MEmRLHKbkk5XWiRZMc07JFREKGIIPajWRsz6bcNrIDVw1prf9+6mdwgSCRmXcDNxy4ljqCJGtd1TF4JUh2PZ2RTtcuQEdnAAAgAElEQVSWzfEvvhsCfug4hrvWPMxt2Vk0mvURPqudhDjRJ5nV1eSkBB72XkIby1FaH/iQm22fcNDanBJrNusTB2E995/k+gsJAB5Z+OCJT4MeF8d+3/+L8ScRdBqgLBbUXQDDgGM2CdQ2LG3DjbXjj9SZKwoerbdKpSc4OKnkgi82IijcRC4aEaRTPfnMv4s2wPxehIeCWAZF5f00TRITlvpMBo27p4rhd7SwJAVaJYh2Mnw6w8S0zyXRlhhTp28MDdOixlsTskg2hobVJ/uPkQgyDpzKs0hzplHnq4t5sah9BydqxCCprafGwV5Z9GrLo20b4dru+qL1ePweFhYEF1uqWXQgttAwo1Km1lurhp3EOsHSegQp5VYm1gBFNUWAed2MJQTodOD3DA2LBUqdSnGIMKhI/YOpR9AfAOV9h6svZXVlar8ZrvwN2eE1qwOxEEHG/iRaaNj2ku18s+8b9d+nSxFUX3NdbdswIppZtFJ/FUVQfdSc2vcaCylfWFMICB9BgDJX7BsVO8uE18qm4k0h3839cS43/nhjyHinvZdwZtEK5iydw7ivx0Usw5gvxrC1RGTRMY5rKjkQaby44Dm4eafIFKXAag9/vAylDhgVQZHG1vpsAtUHy289m59vO1v32Rtb3iBAgI3FwexVZl4vvx77lR2lO9TPY9oYiEuFgXMiZkej5WDVYDwczOoNxDaPbZ6ZQMEj53N2e2HSHEtomLJxUeerq3fYYUhSjAjzHG2dL8lsKUix3uZJJYxQFHlgTmC6fC7VT1H7mQKn1aluRJxSaJjXfCO2IYqg+ozHK4+sZPgnw9V5s+qRaKiXx6uPM3n+ZJVwN/6W8v+m6Qn8eMtQboohhFXpLytSm0DlUfjxEbA6SGzcjjingxpDfx1o3o/qnKAvl27uY9OY6bc6W9evmhKRjgQ4//GgOb8ZMlvDpHepJPg+lOcUaf1087Kbmb3Y3A9wV9kupi+crhLGZvXaH/BTWluqfh9OiGBEWqK+jAoq3ZXcv+p+3WaqDtO+gDHPYLVIXD20tdjEMkLJsAokeMp4xX+u+u+6tiNEaO8ZImT13wfEfODk8U3C5D+3h+5SPr8vYhh2VpKTxf7e/OZvS/aKe0mTqske9wiZt2+m581fI8mEuLaWu7uO1ymX/pvxJxF0GmDMthOL6bK2Ic5ePJuL518c8rkC7QJagdKxrytcF9Y4z2zSUuutDQkziUYERfIMMV473MLYOKCF6/yMiDQZry/MBrNYFnCqIkgmguoz0TZOmhUoMs1oCKcIOp1hYtr3GE0RpCxSlPdpVrerPdWhoWF+r14RVA+Cz0hMhOzk+oNEEMSukNEubJXdkkh1VgkJ1J5nFqJ1Q88b6JSpj88GKKwuVP828wiK9EyM5rR1vjp11zCWuhAIBHD5XDitTnwBn1qnte1LyYhn9v61k9vfE7F4r5xOaCfq/oBfvfdUp9hdirQAPVWPoIZCzUIXpp4rdRnCL6rqE96qwIwIKnXFHhqm9AnRQsMumn8Rt/90uzqWnC6PIG07iUUJFYnwj2YWrXyuLOiiKca0/aVuA8UTA2FlMNNX2rREdC+pSBkClf6guEY/Vuk2N/yRQ8MOVR5iz8k9EYlkRY0JofUpJkWQzQHJjcN/HwbhiKBI/envpQhy2Cw4beakjKnRr+bzyxddzuNrg9nETjVTaX1wqNI8o2dD+pdYNgG041V9STljHYrUB2jH6pK6EkGKxRgiEk7BpeDa76/lja0i86PS/rTvLMGWoIbRGzdQ64OIWcNigFkyjljw+G+PU1hTyL7yfbpyGOvlxzs/ZmvJVj7b/Znuc6NHEECLrERsEbLwKVDnNRZJeLtUHhPeNXKolrFelrvKdfPLkLnPrMUw4Q1wJKgbZXDq82/t74RbCynPS7um8vg8zP1xrm7N99iax1hXtE61ZzAjdsrqytS5TI2nRlf3I63BlPHHeM13t7/LJ7s+4aOdH5mfaLWbmr2HYOwL0GMKxcMe5wX/KPXjui5/hZEPwWjZxF5GsdUKeb3wGebKvoBPVd+GI4JA4h2vnFHNkUxc++EiHNFiFYb/mW2Et5SM/9Rm5H8CfxJBpwGqIsivN3RVYKqa0DTE4tpitpRsEZ+bNOKs+KyQz5RrTv92OhPmTWDBvgWqzFSBMmnRdiQnak/oMlFBeMZe6azCEQPa+7RJNvwBv25xpCMuvObqIbP71U78tYuaU4XZIiKWDl25/4aEhmnvW/u3cXIdDtqdZ21ZT2cnZQwNCzdBCgQCwUHdVycMNDXn2iw2OmR0EESQwT/FH/DXO2uYUk+N4UvG0DDluSiL91jDXXSKIBMiyDhAmimCtGVT6nK3Rt3U3QktlIUVBCc7uqxhERa5xkVKrbc2SHzFMPH3BoSPktKXKOEj2vIr/ZhZe1d2k2JBlbuKrm911WUiixXRvFdON7SkbrmrXK07/xsUQeEmcMpCJNmRHLb8Sl2uTz9S6a4k3ak3eDXubJtBqU/KszUSu+H6YOXdaNvIqSiCwvnyhcOpEEHKc1WIIKV+VLor6fNuH344+IPuXO2YolMLx6DOVNSMCvGjXCsSyaNA2dGNVM8VxZGCcKFhyjXMCO1j1cdMr21UG2sX0WC+KDxdCCGC5PE5UtjR70UEmUFRdmvnQMYFvdlY93t4CW4q3qQu7BUEAgGOVh01Pf5UiKCIoWEa0rO+76I+oWHHa4IqFWOdjAZl0yTVmWp6L78e+1X9W+kbdUSQPUGdK9WH1DPOqU41NEy30dGA8U15burGRYz3Eks9CAfleZa7ymHwzeJDjdmvce5eVFuka0Mhc59mfaGLUDSeTiKoyl1Fo/hGut8MZ62hjebYXrqdxQcWc+fPd6qfGQl/sz5B24cYQ8MizZfDrQGVPvKUN8B6ToELXyBj0OV4LNEVuydyOsDgW3T9S42nRhBB8pzbrEyJTkFKfe0fQPXY1+C61XrFF8CsxbgnvKH+808i6E/UC0YTWePOg9lulllFr3JXmXaW4Ygg7bG3/XQbc5bOAYINQRkotY24pLYkRNauLjINEyClgwjXUWgbXONEsSOn3cGMJTTM7DloB/vTqUQwVQTF0JEp998kSfgM1GcCcsqKIM2OqLasH+/8OOYyxPobIBYusRB/5a5y1het1y02zso7i6HNhlLrrQ3NLBPw4rAGzWbrfHVRB3rVk8cgPzXWHaV9KcRIrPHMVe4q7BY7doudE3UndNcEMXHRTq7MFEHasintMd4Wj1Uy393NTcwFwmQNi7DINar3ar21pMnpimNZ1CptW5l8KASQmeLOLDRMW+ejDZBKuEmsmV20iCUt9+mE9r5K60pDQsMimkX/gR5BWkQjgpS63Dixcdh3pZAs9VmwVXmqyEnM0X0WSz+mTia9YSaVYSbVyiIz1sx60VBfgkUZe8yIjWjKNaVvU4kg+bjtJdup89Xx9Lqn9eEnmsWm9vnEEhqmvG+l/1DeaSyqS+X9RRpnjUSQcbPHaOhsNl8whn8oMPY/xrG1vqGia46v0YUr1XnrOOfjc0w9kJQ6UB9F0B+ljIRgndFuGuk2WHweUyKmIZnaPt75sS68zIgpC6Yw9suxus8qPZW6dpRkT2Jg3kCgYSF0amhYwBvWjqDSVUmyXWR9rC8RZGyrkfoApb6mOdNCfufJSd15Z5ZI+17nrWPLiS2675W23DhB3/8GAgHOfO9M3bHKtbWbsPG2eFU9XR8iyDhuV3uq1fbVEEVQQ60IlHd3tFrUTdUjyLAGUMqrnU/9Vvgbq4+vDvn9WKH0PcW1xVR1+SvMWChUJTKM411xTXFkRZAGRTVF6lrsVLMBV3mqyE4QIZFqP+QxXyMVVQcJKMX/VTtXNBL+x6qPhfT9ChGUHZ8dEhoWqb9QbRgMfbpyjpakigUP/fqQaQZeq0Xi1end1X+H64OLh94CTXro+mFlfFLaTKS66seCves4U884EjKobNpT/ecfqfL+T+NPIug0QCWCZLfxmBRBJoPQocpDpo3SjAjy+r0681kFLp9L7eyUwVjLBp+oPRHWIyhEEeTVT+DNfktBXlIeED6bkXFAi7SY0U6KT6ciyOw9xDLYaMNFkuxJ9VMEaZ6R9jkqu7jRoCpH/F7dtV7c+GJMi4RYoO3wInkEaX//671fM/1bkYY3J0EsDr0BL4k2sfDRKk08fg8+v09Hjnj8HnaX7Y5YLmWQCfEIUghKxSNIXpjUVxFU6akk2ZFMVnyWWue0baDOV6e7D2XxrC2PdiBUzo2zxWGRzLvW3MRcJCTzrGFhFrk+v09VRaihYd46MpwZ6t/RoLy7RgkGIshdTkZchk7BZPb8tJPhaCqQPWVC+RSLIsGIaAu/Om8d1/9wPb8VxpY1JhqMRFBIaFgEsrK+WcN2le3ixqU3ho+rjxHa0Eizxb7SZ+Ym5kZVBNWnL6t0V6ptXYFxEWQGpT5pdxezE7L5adJPQHhTUiVkSNtG6uMtZkS4TYpwUFRwZobq0bLbGUPDlPanVQUax2UF9VYEyecq476WsI5m1Kycqx1zlftV+iNtmAyEhowYw7fMwsCOVZkrgrTKC2M5oH5EUCAQYOZ3M5myYIr62abiTRTVFnHvyntDjg+XdMBsAaC8hz9SEaS8Gy3ZqgsTC3h1YXUK6qtWOFF7gn/+8k8mzpvIBV9eENKnaJUQ2u+Ud9okUSyqsuKzuPUMYZTbIEWQpj8N12+Vu8tpkdoCqP+7MM5vI4VdHq8+jt1ip3Va65A6+deeTRncVoyj//zln1z8zcUcrjysfl9SV4JNspERl6G7j4KKgpD2rBJBxtCwBiiCzNqdQu6dsiKoHoti5VhFBRguNEz5Xts3zPpulunvx4oab406l9lzcg/kD4BUoeRfcmAJn+z6RHd8QUWBbh4dybuzqKaIJolNsEm2epmVm6HKHSSCVMVsGLNobftTSLI9J/dw1ZKrAP34FG+Lp9pTzaHKQxTVFKltSulLmqc0F4ogT2xjjHETR4HZu4uGQCDABzs+YP6++abrrtx0jVm0pq7oomdkUlzbJpXnoxBB0fo/uzV8yPTmE5sBsEpWPH5Pg0j1/42IIYjvT0SDMji6vC42FW/iYOVB3fcunyvEVM9sEbzy6Epd+IwCZXdaiz0n95hW+EUFi9RB+GDlQTYVb1J36AE2ndikdszVnmo2FW9SB5BaT62unEqjq/HUsLF4Y4gEUdtBKWqZjcUb1YmL9jkYs0soHZPX72VD0QbdwlmbOWTV0VU0T45gvlYPmIW3bCnZEtXzZ+9JEXubaEskPS6dgoqCsCaJRmgnamuOr1H/XnxgMa3SWqkqlnBQBsMKd0XIzuznuz+ne6PuZqfVC26fm2HNhnFZl8v4YMcHlNWVmd5fuEVjx8yOFNYUcqL2hBqnq33fR6qO4Pa5Q8iRRQcWhZ3g+wN+tRM+Vn1MVx5lsFbKqbwf5VluKdkS08LhaNVRkh3JpDhS1HeqrXsHKw6qAy8IgmNT8SZ1VwZgc/FmleBS2nS8NR5rGBPOnIQcHFYHR6qOsKl4E0cqg/Vj98ndJDmSQs7RtnPlnrWKoAMVB6LWR2XgVEjlLSe24LQ6OVR5SDw3J6r0v6i2KOR62j7k1+O/RmyTawpFPa9wV8TcThQo71bpS41YfXw1Px76kfVF63nhnPorjhQECPD57s9ZXLBY/Uxryqr0uVtLtoZVvRyuCk7+d5Xtwml1mh6n4P5V97OzbCctUlowrPmwBpddSxr8VvhbyO/uLN1JvC2eFEcKNZ4a0+eoKAlKaktifkflrnJ18goixfG2km2sK1ynpnU2gzJOeP1e1hWu41j1MRLtiapCsKA82J9qx5T1RevJTczVqR72ntwbtc8MB6WfANG2o913QUUBIO7bOEYpbbLKXWV6HaXfV4igPSf3kOZMY23hWkAslJXU0SDGZYV81CoztM8mHPaX7wfEeL2peJO6QeT2u1lbuDZivVTKebT6qNqX3rfqPmZ2mamS3DvLdurKoCWz9p7cq84fqr1iPmH0jbFZbGw+sZmOxR11n1d5qkIMUJU5C8CKoyvUuUy1uzrqc9DWk+WHl5PmTGPRgUWAGE+M5yvlLneXi3mQfL81Xn2b0S4I9pXv0313sPIgC/YtYGqnqaox+OmCMt5r68CG4g3q9ztKdphuBu4o3WHqKxkOisk4iLr01Z6vaJ0WzPKj7ReXHlyqbiZsKBJl6ZjZkaPVR/EFfOqYtK1km7o5GCu0xM6G4g2m9ba0rpRuWd3YfGIz20u20yq1VczXX3Jgie7fxbXFYevUkgNL6JLVhaz4LDYXbw573Lf7vwWEomp4vjCW3XtyLxlxGTisDt3c5ecjP4ecf7z6OJuKN+mIs3h7vOoRtOvkLvV5R4NZXVh2eBnxtnhdmzTWYTPsPbmX97a/p/77vlX3MbrVaLpkdYlaDqXe7irdxabiTeqi3jivLCgvEP+X514BAjrS3+1z13v+UOGqoGd2T1YcXcGyw8t0ffZNP96kO/b/tXfvwXGV5x3Hv8+u7mvdsSRjW0iy1zcI2BKYS2jGTdKGUOo07XSGJG2gzTjQqQHnMi1MEiiXzgQyDG3TQhIMARIgpWFCKEm5NBlSCjgQAcZgYyzLd9kWtWzLtizZK73945xd70q7smRJexbv7zOz492z56xf7bPPOe95z/u+p7ywnF9u+SWXnnlpYtn7Pe8nGjbBy6V9/fu45MxL2HloJwtqFrD54Ga6DneNu2wp5TzWmziWbjm4Je1+M15HfPODNxPLks8hXt71Mq/seiXlHGPx9MW8uvtVnup4itXrVnNBwwWsal2VmIz/rIqz+N3e3yXmEwJvP5JuKgM40QgzvJ4QP+aM5bcUl3z+8ostvxiRu8l1zB2HdiQ+N/l7iR+LkvdJb3R7x9H4uUem87NQiXc+Gm/sSeelnS9RVlBGc2UzL+54keVPLeeHn/phYlqQ05WN9TbWUyTQ/3yyLH106ZS2HF599tU89O5DU/b5k+FbF32L29fcPqmfWVtSm9Wu2KMpChWx5vNruPa/r01pHDhdrFy8kmvOu4Y7X7uTH2/48bi2/UrbV7in/R4+v+DzLG1YyqoXV6Vd70vnfIkH3nmApoom+gf7Mw4XOFU3X3wzt71627i2aa1rpa6sjme3PjspZTCMl658idvX3M5zW58b8f6Kj6zg5x0/p/voiRPeBTULRu2Wn8lX277K99/+/rh6hn3zwm9yx2/vSFl24YwLKQ2X8uLOF8ddhtPVVOzPsmlO5RyWzljK4+89Pqmfe92S6/jum95tX7/W9jXubr/7lD6nrb6NB/7wAS567KIJd7PPZbdcfAu3vnpr0MUIzMxpMykKFyVOHOT0ErIQXz//69z1+l2cXXs2j17+6IRy+tzp5570xHLl4pU8sv6RtD31TuaLi77II+sfGdO69yy7h7c/eDsxsfN4nDf9PBrLG/nPzvHPk3dZ02XcdOFNLPv3ZafUqxagqaKJ2FAs5WJFvljxkRU8uenJk/YYW/GRFdy/7v5xffbVZ1/NC9teSNsTb7yuW3IdP1r/o1PqPTfaZ65etzrt+Wh1cTV3XHoH1//6+gnNtReEMyNnEnOxlAtFw9249Ebu/t3dE57b55IzL8EwXu56mQsbLuS7n/juuBrWc1jGrlBqCJoEr3S9wrTCafQe6010xS4tKGVW+SzCFmbT/k1pE6+2tJawhYkNxSgIFSR+5BXFFZxRegZFoSIG3SDTCqex9oO1RKujxIa8ZIhfzaqP1DMQG6AoXERsKEZPfw8FoQKaK5tTeh1VFlcSKYzQdbiLkIWYWzWXTQc24ZzDzIhWRek40DGiW3C0Okrnwc6Mw1bmVM2hP9ZPU2UT7XvbR3T/nFU+i4MDB9N2W41WR9lycEvarqqVxZUsrFlIe3f7pM6/0VLVQtfhLhoiDew5smfMXW/rI/XMq55Hd193xru0ZdJY0UhPfw+Hjx2mpKCEhkgDO3p3UFJQctKT+LCFmVM1J9ELpamyiYHYAOFQOKU78kSELMSSuiWUFZZx6Ngh1n6wNuOQguJwMTPLZ7K9dzuNFY1s793O+fXn03WkixmRGYQsxBt732BgcCDR22bX4V2YGUvqlnDomDccq+doT+KKeybpfsfx8s6tmpvSM6essIzWulbe+uCtcQ29iVZHKQ4XpwxxKS8qp7K4MvH9lhaUUldWl3LFrSHSQH+sf8RBvLa0lkW1i+jp7+G9fe/RUtVC54FOWqpa2HxgM0vqltDd1524ylFSUEJrXSvr/m/dqHfWGf5dhC1Ma30ruw7vyjhh53DF4WJa61vZ2LMxpZI0v2Y+YQuzcf9GWipbMg7Zm10+O2X41GjmVM1hW++2U5rwcV71vLT7oriWqha2926f0B2kAOrK6ogNxQiHwgy5oUSvqZqSGubXzE/8jkczs3wmvQO9o8YuLmxhmiqbUnqmnKrR9p0AzZXNVBRXsLZ7bdr345/ReaBzzJXCkIVorW9l95HdHBw4yOLpi2nf2z6miyDDyzuveh71kXo27d80okE4UhihpqQm5UrgzGkzOXT8UGKS81MVKYxQW1rL9t7tJ18ZmFs1l22Hto04BqXbBw0Xz+31+9an7CfmVs1la+9WYkMxakpqUo79ccP3QScz/PudUzWHHYd2nHRIR7pj/zlnnMOGng2ELczs8tlpf6/VJdU0RBrY1ruN/lg/0epoynGxrLCMmdNmEimMcHDgYMaGoLlVczl8/DBF4SKKw8Up+57yonIqiiuIFEQSdZWTied08v6tpaqFHYd2ZIzhWOpBheFCZpfPpvNA6oTJk5nTw4UtTEtV6v64IFTAotpFbD6wObEfju+DyovKU+aFGY+miib6Yn0UhYvS/uYaIg0cjR0d8dm1pbVEq6O0722nqaKJhkgDHfs7Mk4OPpq6sjqaK5tp39uecb8Wr6vsObJn3Cfj4VCYC+ovoOtIFyXhklFzt7SglLb6Nvpifd5ciBl+ewWhAhorGkf8LqLVUUrCJSN6H5xVcRYDgwNMK5xGOBTm/f3vJz57XvU8Nh/YzILaBdSU1PDuvnfHdZMGOJF30wqnsX9gf6LXDXh12OODx8c0pC5kIeZVz6N/sJ/uvm6qi6vp6e8Z076+IFRAU0VToudgut8xePueuVVz6TjQkfgOisPFNFY0ErIQHfs7xt1gEf99JNex4orCRZxVcRYhCzEQG6AuUkf73nYGhwYT52LD98ORwgiRwgjdfd2JOuy+o/vS9r46lXLu6duT0it8dvlsBt0gxeHilH1mfaSeY4PH2N+/n2h1lL5YH/2xfvYd3Zf4fjsPdKbUCaPVUfYc2ZOom8wqn0VzZTPberexvXc7MyIzOBo7OmpD1HhiNxaZjndx6Y794DUQHzl+JGU/O71seqLeVhAqoK2+ja29W0cMZY7rPz5I37FBaiJFad+PW1i7EOccHQc6aKtvS5nb9ENODUEiIiIiIiIiInkiY0OQJosWEREREREREckTQU8WnXn67g8ZM/uyc+4HQZdDTlBMcpPiknsUk9ykuOQexSQ3KS65RzHJTYpLblJcJAjqETR5vhx0AWQExSQ3KS65RzHJTYpL7lFMcpPiknsUk9ykuOQmxUWyTg1BIiIiIiIiIiJ5Qg1BIiIiIiIiIiJ5Qg1Bk0fjOnOPYpKbFJfco5jkJsUl9ygmuUlxyT2KSW5SXHKT4iJZF/Tt40VEREREREREJEvUI0hEREREREREJE+oIWiCzOwyM9toZh1mdmPQ5cknZvagmXWb2TtJy/7BzHaZ2Vv+4/Kk927y47TRzD4VTKlPb2ZWYmavmdlaM3vXzG71l9eY2Qtmtsn/tzppG8UlC8wsbGZvmtkz/mvlSsDMrMrMfmpm75nZBjO7WLkSLDObn5QTb5lZr5mtUr4Ey8xuMLN3/OPKKn+ZciXLMtS70sbBzJrM7GhSznwvaZs2M1vnx+hfzMyC+HtOBxli8h3/uPK2mf3MzKqS3kubG4rJ5MoQl9v9mLxlZs+b2Zn+cuWKBEINQRNgZmHg34BPA4uAz5nZomBLlVceAi5Ls/we59xi//FLAD8uVwJn+9vc68dPJtcA8HHn3HnAYuAyM7sIuBH4lXMuCvzKf624ZNcNwIZhy5Qrwfpn4Fnn3ALgPLz4KFcC5JzbGM8JoA3oA37mv618CYCZnQOsAJbi5ckVZhZFuRKEhxhZ70obB9/mpJy5Nmn5fXi3y476j3R1ORmbhxj5/b0AnOOcOxd4H7gJTpobisnkeoiR3+F3nHPn+seXZ4Cbk95TrkjWqSFoYpYCHc65TufcMeAnwGcCLlPecM79D9AzxtU/A/zEOTfgnNsCdODFTyaR8xz2Xxb6D4f3/T/sL38Y+BP/ueKSBWY2C/gjYPUYVldMssDMKoCPAQ8AOOeOOecOoFzJJZ/Aq5xvG2UdxWXqLQTWOOf6nHMx4DfAZ1GuZF2GelemOKRlZjOACufcq86bqPSRk20jmaWLiXPueT9XANYAs/znaXNDMZl8GeLSm/Qyglc/zkhxkammhqCJmQnsSHq9018mwVrpd718MKmruGKVJeYNQXoL6AZecM79Fqh3zu0G8P+t81dXXLLjn4C/A4aGLVeuBKcF+AD4oXlD9labWQTlSi65Eng86bXyJRjvAB8zs1ozKwMuB2ajXMkVmeIA0Ozv335jZr/nL5uJF5M4xWdq/TXwX/7zTLmhmGSJmf2jme0AvkBqjyDlimSdGoImJt04Td2GLVj3AXPwhiXtBu72lytWWeKcG/S7vc7Cu9J0ziirKy5TzMyuALqdc+3D3lKuBKsAaAXuc84tAY6QOqRiOMUli8ysCFgO/Ie/SPkSEOfcBuBOvOEuzwJrgdgomygmuWE30Ojv374KPOb3hFR8ssTMvoGXK4/GF6VZzY2yXCaZc+4bzrnZeDFZ6S9Wrkgg1BA0MTvxrkrFzQK6AiqLAM65vX5DxBBwPye6gxa0j5MAAARiSURBVCtWWeYPc3kRbzzzXr+La7yra7e/muIy9T4KLDezrXjDVz9uZj9WrgRuJ7DT7zEH8FO8hiHlSm74NPCGc24v6NgSNOfcA865Vufcx/CGW2xCuZIr0sbBH360z3/eDmwG5uHFZ1bS9orPFDCzq4ArgC/4w4ogc24oJtn3GPBnoFyR4KghaGJeB6Jm1uxfPbwSeDrgMuW1eGXE91m8LuXgxeVKMys2s2a8Cddey3b5TndmNj1+dwozKwU+CbyH9/1f5a92FfBz/7niMsWcczc552Y555rw9lG/ds79hXIlWM65PcAOM5vvL/oEsB7lSq74HEnDwpQvwTKzOv/fRuBP8WKjXMkNaePg1wfC/vMWvDh0+sPHDpnZRf4dkL7IidjJJDCzy4C/B5Y75/qS3kqbG4pJdviT3Mctx6sfK1ckMAVBF+DDzDkXM7OVwHNAGHjQOfduwMXKG2b2OLAMOMPMdgK3AMvMbDFe18mtwDUAzrl3zewJvBOtGPC3zrnBIMp9mpsBPOwf0ELAE865Z8zsVeAJM/sSsB34c1BcAnaXciVw1wGP+hcSOoG/ws8b5Upw/Hlo/gA/J3zKl2A9aWa1wHG873i/mX0b5UpWZah3pY0D3mT4t5lZDBgErnXOxSfP/Ru8uyqV4s1fE5/DRsYpQ0xuAoqBF7z2A9Y45649SW4oJpMoQ1wu9y/+DAHbgPjdwZQrEgg70VtQREREREREREROZxoaJiIiIiIiIiKSJ9QQJCIiIiIiIiKSJ9QQJCIiIiIiIiKSJ9QQJCIiIiIiIiKSJ9QQJCIiIiIiIiKSJ9QQJCIiInnHzK43sw1m9mjQZRERERHJJt0+XkRERPKOmb0HfNo5tyVpWYFzLhZgsURERESmnHoEiYiISF4xs+8BLcDTZnbQzH5gZs8Dj5hZk5m9ZGZv+I9L/G2WmdlvzOwJM3vfzL5tZl8ws9fMbJ2ZzfHXm25mT5rZ6/7jowH+qSIiIiIjqEeQiIiI5B0z2wqcD6wE/hi41Dl31MzKgCHnXL+ZRYHHnXPnm9ky4ClgIdADdAKrnXO3mNkNQLNzbpWZPQbc65z7XzNrBJ5zzi3M/l8oIiIikl5B0AUQERERCdjTzrmj/vNC4F/NbDEwCMxLWu9159xuADPbDDzvL18H/L7//JPAIjOLb1NhZuXOuUNT+QeIiIiIjJUagkRERCTfHUl6/hVgL3Ae3hD6/qT3BpKeDyW9HuJEnSoEXJzUsCQiIiKSUzRHkIiIiMgJlcBu59wQ8JdAeJzbP4833AwAv2eRiIiISM5QQ5CIiIjICfcCV5nZGrxhYUdOsv5w1wPnm9nbZrYeuHayCygiIiIyEZosWkREREREREQkT6hHkIiIiIiIiIhInlBDkIiIiIiIiIhInlBDkIiIiIiIiIhInlBDkIiIiIiIiIhInlBDkIiIiIiIiIhInlBDkIiIiIiIiIhInlBDkIiIiIiIiIhInlBDkIiIiIiIiIhInvh/gKvNHTjUBdcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.figure(figsize=[20,20])\n", "plt.suptitle(\"Flourescence and Deconvolved Traces for Different ROIs\", y=0.92);\n", @@ -505,11 +326,18 @@ " if i == 0:\n", " plt.legend(bbox_to_anchor=(0.93, 2))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -523,7 +351,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.7" + "version": "3.8.15" } }, "nbformat": 4, diff --git a/jupyter/run_suite2p_colab_2021.ipynb b/jupyter/run_suite2p_colab_2021.ipynb deleted file mode 100644 index f2e5e3756..000000000 --- a/jupyter/run_suite2p_colab_2021.ipynb +++ /dev/null @@ -1,1478 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "view-in-github" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "kMOvTOuH9Uyv", - "outputId": "038ef0d1-eaa0-4d49-d7fc-4add35bd290a", - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", - "Collecting opencv-python-headless<4.3\n", - " Downloading opencv_python_headless-4.2.0.34-cp37-cp37m-manylinux1_x86_64.whl (21.6 MB)\n", - "\u001b[K |████████████████████████████████| 21.6 MB 18.6 MB/s \n", - "\u001b[?25hRequirement already satisfied: numpy>=1.14.5 in /usr/local/lib/python3.7/dist-packages (from opencv-python-headless<4.3) (1.21.6)\n", - "Installing collected packages: opencv-python-headless\n", - "Successfully installed opencv-python-headless-4.2.0.34\n", - "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", - "Collecting suite2p\n", - " Downloading suite2p-0.11.0-py3-none-any.whl (643 kB)\n", - "\u001b[K |████████████████████████████████| 643 kB 5.4 MB/s \n", - "\u001b[?25hCollecting sbxreader\n", - " Downloading sbxreader-0.2.0-py3-none-any.whl (19 kB)\n", - "Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from suite2p) (4.11.4)\n", - "Requirement already satisfied: natsort in /usr/local/lib/python3.7/dist-packages (from suite2p) (5.5.0)\n", - "Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from suite2p) (3.2.2)\n", - "Collecting rastermap>0.1.0\n", - " Downloading rastermap-0.1.3-py3-none-any.whl (80 kB)\n", - "\u001b[K |████████████████████████████████| 80 kB 9.7 MB/s \n", - "\u001b[?25hCollecting cellpose\n", - " Downloading cellpose-2.0.5-py3-none-any.whl (168 kB)\n", - "\u001b[K |████████████████████████████████| 168 kB 47.6 MB/s \n", - "\u001b[?25hRequirement already satisfied: tifffile in /usr/local/lib/python3.7/dist-packages (from suite2p) (2021.11.2)\n", - "Collecting paramiko\n", - " Downloading paramiko-2.11.0-py2.py3-none-any.whl (212 kB)\n", - "\u001b[K |████████████████████████████████| 212 kB 49.1 MB/s \n", - "\u001b[?25hRequirement already satisfied: numba>=0.43.1 in /usr/local/lib/python3.7/dist-packages (from suite2p) (0.51.2)\n", - "Requirement already satisfied: h5py in /usr/local/lib/python3.7/dist-packages (from suite2p) (3.1.0)\n", - "Requirement already satisfied: torch>=1.7.1 in /usr/local/lib/python3.7/dist-packages (from suite2p) (1.11.0+cu113)\n", - "Requirement already satisfied: scipy>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from suite2p) (1.4.1)\n", - "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from suite2p) (1.0.2)\n", - "Requirement already satisfied: numpy>=1.16 in /usr/local/lib/python3.7/dist-packages (from suite2p) (1.21.6)\n", - "Collecting scanimage-tiff-reader>=1.4.1\n", - " Downloading scanimage-tiff-reader-1.4.1.tar.gz (989 kB)\n", - "\u001b[K |████████████████████████████████| 989 kB 42.2 MB/s \n", - "\u001b[?25hRequirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in /usr/local/lib/python3.7/dist-packages (from numba>=0.43.1->suite2p) (0.34.0)\n", - "Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from numba>=0.43.1->suite2p) (57.4.0)\n", - "Collecting pyqtgraph\n", - " Downloading pyqtgraph-0.12.4-py3-none-any.whl (995 kB)\n", - "\u001b[K |████████████████████████████████| 995 kB 57.2 MB/s \n", - "\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.7.1->suite2p) (4.1.1)\n", - "Collecting imagecodecs\n", - " Downloading imagecodecs-2021.11.20-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.0 MB)\n", - "\u001b[K |████████████████████████████████| 31.0 MB 1.3 MB/s \n", - "\u001b[?25hCollecting fastremap\n", - " Downloading fastremap-1.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB)\n", - "\u001b[K |████████████████████████████████| 4.2 MB 39.7 MB/s \n", - "\u001b[?25hCollecting numba>=0.43.1\n", - " Downloading numba-0.55.2-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.3 MB)\n", - "\u001b[K |████████████████████████████████| 3.3 MB 31.9 MB/s \n", - "\u001b[?25hRequirement already satisfied: opencv-python-headless in /usr/local/lib/python3.7/dist-packages (from cellpose->suite2p) (4.2.0.34)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from cellpose->suite2p) (4.64.0)\n", - " Downloading numba-0.55.1-1-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.3 MB)\n", - "\u001b[K |████████████████████████████████| 3.3 MB 37.9 MB/s \n", - "\u001b[?25h Downloading numba-0.55.0-1-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.3 MB)\n", - "\u001b[K |████████████████████████████████| 3.3 MB 31.4 MB/s \n", - "\u001b[?25h Downloading numba-0.54.1-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.3 MB)\n", - "\u001b[K |████████████████████████████████| 3.3 MB 41.4 MB/s \n", - "\u001b[?25hCollecting numpy>=1.16\n", - " Downloading numpy-1.20.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.3 MB)\n", - "\u001b[K |████████████████████████████████| 15.3 MB 12.9 MB/s \n", - "\u001b[?25hCollecting numba>=0.43.1\n", - " Downloading numba-0.54.0-2-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.4 MB)\n", - "\u001b[K |████████████████████████████████| 3.4 MB 40.0 MB/s \n", - "\u001b[?25h Downloading numba-0.53.1-cp37-cp37m-manylinux2014_x86_64.whl (3.4 MB)\n", - "\u001b[K |████████████████████████████████| 3.4 MB 48.3 MB/s \n", - "\u001b[?25h Downloading numba-0.53.0-cp37-cp37m-manylinux2014_x86_64.whl (3.4 MB)\n", - "\u001b[K |████████████████████████████████| 3.4 MB 38.9 MB/s \n", - "\u001b[?25hINFO: pip is looking at multiple versions of cellpose to determine which version is compatible with other requirements. This could take a while.\n", - "Collecting cellpose\n", - " Downloading cellpose-2.0.4-py3-none-any.whl (168 kB)\n", - "\u001b[K |████████████████████████████████| 168 kB 47.7 MB/s \n", - "\u001b[?25hRequirement already satisfied: cached-property in /usr/local/lib/python3.7/dist-packages (from h5py->suite2p) (1.5.2)\n", - "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->suite2p) (3.8.0)\n", - "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->suite2p) (2.8.2)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->suite2p) (0.11.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->suite2p) (1.4.3)\n", - "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->suite2p) (3.0.9)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplotlib->suite2p) (1.15.0)\n", - "Collecting bcrypt>=3.1.3\n", - " Downloading bcrypt-3.2.2-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (62 kB)\n", - "\u001b[K |████████████████████████████████| 62 kB 1.1 MB/s \n", - "\u001b[?25hCollecting cryptography>=2.5\n", - " Downloading cryptography-37.0.2-cp36-abi3-manylinux_2_24_x86_64.whl (4.0 MB)\n", - "\u001b[K |████████████████████████████████| 4.0 MB 39.6 MB/s \n", - "\u001b[?25hCollecting pynacl>=1.0.1\n", - " Downloading PyNaCl-1.5.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (856 kB)\n", - "\u001b[K |████████████████████████████████| 856 kB 51.3 MB/s \n", - "\u001b[?25hRequirement already satisfied: cffi>=1.1 in /usr/local/lib/python3.7/dist-packages (from bcrypt>=3.1.3->paramiko->suite2p) (1.15.0)\n", - "Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.1->bcrypt>=3.1.3->paramiko->suite2p) (2.21)\n", - "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->suite2p) (1.1.0)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->suite2p) (3.1.0)\n", - "Building wheels for collected packages: scanimage-tiff-reader\n", - " Building wheel for scanimage-tiff-reader (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for scanimage-tiff-reader: filename=scanimage_tiff_reader-1.4.1-cp37-cp37m-manylinux1_x86_64.whl size=1010327 sha256=7eef96145a818911a93076f4d3af24b82e820b47baaefffa52a8d417223df835\n", - " Stored in directory: /root/.cache/pip/wheels/be/9a/0b/7fe4a277c98b92046cac959c9e22514f4a773708f48a740206\n", - "Successfully built scanimage-tiff-reader\n", - "Installing collected packages: pyqtgraph, pynacl, fastremap, cryptography, bcrypt, scanimage-tiff-reader, sbxreader, rastermap, paramiko, cellpose, suite2p\n", - "Successfully installed bcrypt-3.2.2 cellpose-2.0.4 cryptography-37.0.2 fastremap-1.13.2 paramiko-2.11.0 pynacl-1.5.0 pyqtgraph-0.12.4 rastermap-0.1.3 sbxreader-0.2.0 scanimage-tiff-reader-1.4.1 suite2p-0.11.0\n" - ] - } - ], - "source": [ - "!pip install \"opencv-python-headless<4.3\"\n", - "!pip install suite2p" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "6cdRg0He9SRN", - "outputId": "fbde2b30-9631-4611-b8bf-3040754da2a5" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/stringlab/anaconda3/envs/suite2p/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Warning: cellpose did not import\n", - "No module named 'cellpose'\n", - "cannot use anatomical mode, but otherwise suite2p will run normally\n" - ] - } - ], - "source": [ - "import os, requests\n", - "from pathlib import Path\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "import suite2p" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "bH96eK729SRO", - "outputId": "be5a210d-b63f-4545-be46-42a64abc6300" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_560/1874460755.py:15: MatplotlibDeprecationWarning: You are modifying the state of a globally registered colormap. This has been deprecated since 3.3 and in 3.6, you will not be able to modify a registered colormap in-place. To remove this warning, you can make a copy of the colormap first. cmap = mpl.cm.get_cmap(\"jet\").copy()\n", - " jet.set_bad(color='k')\n" - ] - } - ], - "source": [ - "# Figure Style settings for notebook.\n", - "import matplotlib as mpl\n", - "mpl.rcParams.update({\n", - " 'axes.spines.left': True,\n", - " 'axes.spines.bottom': True,\n", - " 'axes.spines.top': False,\n", - " 'axes.spines.right': False,\n", - " 'legend.frameon': False,\n", - " 'figure.subplot.wspace': .01,\n", - " 'figure.subplot.hspace': .01,\n", - " 'figure.figsize': (18, 13),\n", - " 'ytick.major.left': True,\n", - "})\n", - "jet = mpl.cm.get_cmap('jet')\n", - "jet.set_bad(color='k')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "xFY4fVIL9SRO" - }, - "source": [ - "# Running suite2p on example data\n", - "\n", - "This notebook will guide you through the various stages and outputs of suite2p by running it on a real-life dataset. This is data collected from a wild-type mouse injected with GCaMP6s in primary visual cortex. The recording was collected at 13Hz (there were 3 planes in the recording, 1 is included here).\n", - "\n", - "The next code cell downloads the data. You can also upload your own data to this folder on the left in the \"Files\" menu, or you can connect to your google drive (see instructions [here](https://colab.research.google.com/notebooks/io.ipynb)), which will make it easier to download the output files to your local computer.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0e-6J2maCaXZ", - "outputId": "1396e57b-05a6-44e0-b07b-d7eb40140bc8" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "imaging data of shape: (4500, 325, 556)\n" - ] - } - ], - "source": [ - "fname = \"gt1.tif\"\n", - "url = \"https://www.suite2p.org/test_data/gt1.tif\"\n", - "\n", - "if not os.path.isfile(fname):\n", - " try:\n", - " r = requests.get(url)\n", - " except requests.ConnectionError:\n", - " print(\"!!! Failed to download data !!!\")\n", - " else:\n", - " if r.status_code != requests.codes.ok:\n", - " print(\"!!! Failed to download data !!!\")\n", - " else:\n", - " with open(fname, \"wb\") as fid:\n", - " fid.write(r.content)\n", - "\n", - "from tifffile import imread\n", - "data = imread(fname)\n", - "print('imaging data of shape: ', data.shape)\n", - "n_time, Ly, Lx = data.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Uab5XBO_9SRP" - }, - "source": [ - "## Set pipeline parameters\n", - "\n", - "You can find an explanation of each op parameters [here](https://suite2p.readthedocs.io/en/latest/settings.html)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "MT6NMQFT9SRP", - "outputId": "a12af30e-f8e5-4ee2-97c1-f4d9f0d625aa" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'suite2p_version': '0.10.4.dev1+g53eae96', 'look_one_level_down': False, 'fast_disk': [], 'delete_bin': False, 'mesoscan': False, 'bruker': False, 'bruker_bidirectional': False, 'h5py': [], 'h5py_key': 'data', 'nwb_file': '', 'nwb_driver': '', 'nwb_series': '', 'save_path0': [], 'save_folder': [], 'subfolders': [], 'move_bin': False, 'nplanes': 1, 'nchannels': 1, 'functional_chan': 1, 'tau': 1.25, 'fs': 13, 'force_sktiff': False, 'frames_include': -1, 'multiplane_parallel': False, 'ignore_flyback': [], 'preclassify': 0.0, 'save_mat': False, 'save_NWB': False, 'combined': True, 'aspect': 1.0, 'do_bidiphase': False, 'bidiphase': 0, 'bidi_corrected': False, 'do_registration': 1, 'two_step_registration': False, 'keep_movie_raw': False, 'nimg_init': 300, 'batch_size': 200, 'maxregshift': 0.1, 'align_by_chan': 1, 'reg_tif': False, 'reg_tif_chan2': False, 'subpixel': 10, 'smooth_sigma_time': 0, 'smooth_sigma': 1.15, 'th_badframes': 1.0, 'norm_frames': True, 'force_refImg': False, 'pad_fft': False, 'nonrigid': True, 'block_size': [128, 128], 'snr_thresh': 1.2, 'maxregshiftNR': 5, '1Preg': False, 'spatial_hp': 42, 'spatial_hp_reg': 42, 'spatial_hp_detect': 25, 'pre_smooth': 0, 'spatial_taper': 40, 'roidetect': True, 'spikedetect': True, 'anatomical_only': 0, 'cellprob_threshold': 0.0, 'flow_threshold': 1.5, 'sparse_mode': True, 'diameter': 0, 'spatial_scale': 0, 'connected': True, 'nbinned': 5000, 'max_iterations': 20, 'threshold_scaling': 2.0, 'max_overlap': 0.75, 'high_pass': 100, 'denoise': False, 'soma_crop': True, 'neuropil_extract': True, 'inner_neuropil_radius': 2, 'min_neuropil_pixels': 350, 'lam_percentile': 50.0, 'allow_overlap': False, 'use_builtin_classifier': False, 'classifier_path': 0, 'chan2_thres': 0.65, 'baseline': 'maximin', 'win_baseline': 60.0, 'sig_baseline': 10.0, 'prctile_baseline': 8.0, 'neucoeff': 0.7}\n" - ] - } - ], - "source": [ - "ops = suite2p.default_ops()\n", - "ops['batch_size'] = 200 # we will decrease the batch_size in case low RAM on computer\n", - "ops['threshold_scaling'] = 2.0 # we are increasing the threshold for finding ROIs to limit the number of non-cell ROIs found (sometimes useful in gcamp injections)\n", - "ops['fs'] = 13 # sampling rate of recording, determines binning for cell detection\n", - "ops['tau'] = 1.25 # timescale of gcamp to use for deconvolution\n", - "print(ops)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dQtZ2kQ69SRQ" - }, - "source": [ - "## Set Data Path\n", - "`ops` and `db` are functionally equivalent internally in suite2p, with the exception that parameters provided in `db` will overwrite parameters specified in `ops`.\n", - "\n", - "**Tip**: Since it's common to change datasets and keep the same parameters for each dataset, some might find it useful to specify data-related arguments in `db` and pipeline parameters in `ops`. " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "k1xgH7xO9SRQ", - "outputId": "d18ef3fa-bd02-4341-cd7b-e75ee4a0d03b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'data_path': ['/home/stringlab/Desktop/suite2p/jupyter']}\n" - ] - } - ], - "source": [ - "db = {\n", - " 'data_path': [os.getcwd()],\n", - "}\n", - "print(db)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "upbh98g-9SRQ" - }, - "source": [ - "## Run Suite2p on Data\n", - "\n", - "The `suite2p.run_s2p` function runs the pipeline and returns a list of output dictionaries containing the pipeline parameters used and extra data calculated along the way, one for each plane." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5ogeYr309SRR", - "outputId": "c8a4476a-e107-45df-ac30-fa5811673791" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'data_path': ['/home/stringlab/Desktop/suite2p/jupyter']}\n", - "FOUND BINARIES AND OPS IN ['/home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/ops.npy']\n", - ">>>>>>>>>>>>>>>>>>>>> PLANE 0 <<<<<<<<<<<<<<<<<<<<<<\n", - "NOTE: not running registration, plane already registered\n", - "binary path: /home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/data.bin\n", - "NOTE: Applying builtin classifier at /home/stringlab/Desktop/suite2p/suite2p/classifiers/classifier.npy\n", - "----------- ROI DETECTION\n", - "Binning movie in chunks of length 16\n", - "Binned movie of size [281,319,552] created in 2.34 sec.\n", - "NOTE: estimated spatial scale ~6 pixels, time epochs 1.00, threshold 10.00 \n", - "0 ROIs, score=133.27\n", - "1000 ROIs, score=19.68\n", - "2000 ROIs, score=10.31\n", - "Detected 2116 ROIs, 20.50 sec\n", - "After removing overlaps, 2044 ROIs remain\n", - "----------- Total 25.49 sec.\n", - "----------- EXTRACTION\n", - "Masks created, 1.82 sec.\n", - "Extracted fluorescence from 2044 ROIs in 4500 frames, 10.13 sec.\n", - "----------- Total 12.13 sec.\n", - "----------- CLASSIFICATION\n", - "['skew', 'npix_norm', 'compact']\n", - "----------- SPIKE DECONVOLUTION\n", - "----------- Total 0.63 sec.\n", - "Plane 0 processed in 38.59 sec (can open in GUI).\n", - "total = 38.73 sec.\n", - "TOTAL RUNTIME 38.73 sec\n" - ] - } - ], - "source": [ - "output_ops = suite2p.run_s2p(ops=ops, db=db)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PDHISUwi9SRR" - }, - "source": [ - "### Outputs from the Suite2p Pipeline" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "t-6aRAFC9SRS" - }, - "source": [ - "#### Ops dictionaries" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IKIg1yHA9SRS" - }, - "source": [ - "The ops dictionary contains all the keys that went into the analysis, plus new keys that contain additional metrics/outputs calculated during the pipeline run." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "RanSQ4OY9SRS", - "outputId": "d6b7989e-705a-4a3b-cfc0-a718b4a10605" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'reg_file', 'badframes', 'frames_per_folder', 'spatscale_pix', 'data_path', 'nframes', 'corrXY1', 'Lx', 'ihop', 'yrange', 'timing', 'Vcorr', 'xrange', 'meanImg', 'Vmap', 'xoff', 'meanImgE', 'Lxc', 'yoff1', 'Lyc', 'filelist', 'xoff1', 'save_path', 'Vmax', 'Ly', 'regPC', 'max_proj', 'rmin', 'regDX', 'Vsplit', 'refImg', 'yoff', 'input_format', 'first_tiffs', 'frames_per_file', 'ops_path', 'corrXY', 'date_proc', 'rmax', 'tPC'}\n" - ] - } - ], - "source": [ - "print(set(output_ops.keys()).difference(ops.keys()))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "FPsOULww9SRT" - }, - "source": [ - "#### Results Files" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "tyvMMwMc9SRT", - "outputId": "805df983-34c1-4622-a472-a4551b89319d" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[PosixPath('/home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/iscell.npy'),\n", - " PosixPath('/home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/Fneu.npy'),\n", - " PosixPath('/home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/F.npy'),\n", - " PosixPath('/home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/data.bin'),\n", - " PosixPath('/home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/ops.npy'),\n", - " PosixPath('/home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/stat.npy'),\n", - " PosixPath('/home/stringlab/Desktop/suite2p/jupyter/suite2p/plane0/spks.npy')]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(Path(output_ops['save_path']).iterdir())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kM-A76s29SRT" - }, - "source": [ - "The output parameters can also be found in the \"ops.npy\" file. This is especially useful when running the pipeline from the terminal or the graphical interface. It contains the same data that is output from the python `run_s2p()` function." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "J1FBq87w9SRT", - "outputId": "26cf2f3d-7f1d-4fea-9eae-44c76721042d" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "output_ops_file = np.load(Path(output_ops['save_path']).joinpath('ops.npy'), allow_pickle=True).item()\n", - "output_ops_file.keys() == output_ops.keys()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OG-gzu4k9SRT" - }, - "source": [ - "The other files will be used for the visualizations in the section below." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "zxux9jgFYsDK" - }, - "source": [ - "## Running individual Suite2P modules \n", - "While `suite2p.run_s2p` runs the entire pipeline, you may instead want to run individual modules (e.g., registration, cell detection, extraction, etc.). In this section, we'll go over the steps to run the following individual modules.\n", - "\n", - "1. Registration\n", - "2. ROI detection\n", - "3. Signal Extraction\n", - "4. Classification of ROIs\n", - "5. Spike Deconvolution\n", - "\n", - "To run `registration`, `detection`, and `extraction` separately, we must first talk about a special class in `suite2p` called a `BinaryRWFile`. You can think of `BinaryRWFile` as a class for reading/writing image data that acts like a numpy array. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "SABzwikPYsDK" - }, - "source": [ - "### Running Registration \n", - "\n", - "To run registration alone (called by the `register.registration_wrapper` function in the registration module), we'll first instantiate the necessary parameters." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "00s-KhXFYsDK" - }, - "outputs": [], - "source": [ - "# Read in raw tif corresponding to our example tif\n", - "f_raw = suite2p.io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=fname)\n", - "# Create a binary file we will write our registered image to\n", - "f_reg = suite2p.io.BinaryRWFile(Ly=Ly, Lx=Lx, filename='registered_data.bin')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0idbURhWYsDM" - }, - "source": [ - "We'll run the registration module only on our example image which only contains data from a single channel. You can add in data for the second channel (e.g., `f_reg_chan2` and `f_raw_chan2`) using similar code to what we have above. Refer to the docs to see what the outputs refer to." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "id": "cZa_Lr-4YsDM", - "outputId": "6c21fd26-c726-4234-9789-91d9972995ec" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reference frame, 8.05 sec.\n", - "Registered 200/4501 in 2.55s\n", - "Registered 400/4501 in 5.23s\n", - "Registered 600/4501 in 7.89s\n", - "Registered 800/4501 in 10.58s\n", - "Registered 1000/4501 in 13.21s\n", - "Registered 1200/4501 in 15.93s\n", - "Registered 1400/4501 in 18.56s\n", - "Registered 1600/4501 in 21.22s\n", - "Registered 1800/4501 in 23.89s\n", - "Registered 2000/4501 in 26.68s\n", - "Registered 2200/4501 in 29.24s\n", - "Registered 2400/4501 in 31.78s\n", - "Registered 2600/4501 in 34.32s\n", - "Registered 2800/4501 in 36.90s\n", - "Registered 3000/4501 in 39.42s\n", - "Registered 3200/4501 in 42.01s\n", - "Registered 3400/4501 in 44.52s\n", - "Registered 3600/4501 in 47.13s\n", - "Registered 3800/4501 in 49.76s\n", - "Registered 4000/4501 in 52.36s\n", - "Registered 4200/4501 in 54.99s\n", - "Registered 4400/4501 in 57.63s\n", - "Registered 4501/4501 in 58.97s\n" - ] - } - ], - "source": [ - "refImg, rmin, rmax, meanImg, rigid_offsets, \\\n", - "nonrigid_offsets, zest, meanImg_chan2, badframes, \\\n", - "yrange, xrange = suite2p.registration_wrapper(f_reg, f_raw=f_raw, f_reg_chan2=None, \n", - " f_raw_chan2=None, refImg=None, \n", - " align_by_chan2=False, ops=ops)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OExMXfvfYsDN" - }, - "source": [ - "### Running ROI Detection\n", - "\n", - "To run ROI detection alone (called by the `detection_wrapper` function in the detection module), we'll first instantiate the necessary parameters. You only need a `BinaryRWFile` corresponding to a registered/unregistered recording. Here, we'll pass the `f_reg` we obtained after running the registration module above." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "id": "k56CHDKYYsDN" - }, - "outputs": [], - "source": [ - "# Use default classification file provided by suite2p \n", - "classfile = suite2p.classification.builtin_classfile" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "id": "zVOPEcIWYsDN", - "outputId": "a7c90270-4239-4922-b90f-884f0c3984cd" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Binning movie in chunks of length 16\n", - "Binned movie of size [281,325,556] created in 2.36 sec.\n", - "NOTE: estimated spatial scale ~6 pixels, time epochs 1.00, threshold 10.00 \n", - "0 ROIs, score=127.19\n", - "1000 ROIs, score=27.56\n", - "2000 ROIs, score=21.74\n", - "3000 ROIs, score=17.57\n", - "4000 ROIs, score=13.39\n", - "Detected 5000 ROIs, 30.68 sec\n", - "After removing overlaps, 4600 ROIs remain\n" - ] - } - ], - "source": [ - "ops, stat = suite2p.detection_wrapper(f_reg=f_reg, ops=ops, classfile=classfile)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "No20is38YsDN" - }, - "source": [ - "### Running Fluorescence Extraction\n", - "To run extraction alone (called by the `extraction_wrapper` function in the extraction module), we can just make use of any `stat` dictionary (from previous runs of suite2p or a custom user-made one). In this case, we'll use the one output by the cell above. If you'd like to extract signal, you can pass a `binaryRWFile` corresponding to the recording for the second channel to the `f_reg_chan2` parameter." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "id": "cQ-19MUiYsDO", - "outputId": "54549cf0-25a5-407b-9beb-72ebd49b33f3" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Masks created, 3.25 sec.\n", - "Extracted fluorescence from 4600 ROIs in 4501 frames, 10.13 sec.\n" - ] - } - ], - "source": [ - "stat_after_extraction, F, Fneu, F_chan2, Fneu_chan2 = suite2p.extraction_wrapper(stat, f_reg,\n", - " f_reg_chan2 = None,ops=ops)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "sFauoeukYsDO" - }, - "source": [ - "### Running Cell classification\n", - "To run cell classification(called by the `classify` function in the classification module), we just need a `stat` dictionary and `classfile`. \n", - "\n", - "**Important**: The `stat` dictionary used in the classification module should not be the same as the one used in extraction. The `stat` used for classification requires a few more keys which are added after the extraction step. \n", - "\n", - "We'll use `stat_after_extraction` from the output of the extraction cell above and the same `classfile` used above." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "id": "RzWadEUoYsDP", - "outputId": "021ae691-bb82-4d3c-f42b-47353b9ec750" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['skew', 'npix_norm', 'compact']\n" - ] - } - ], - "source": [ - "iscell = suite2p.classify(stat=stat_after_extraction, classfile=classfile)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "aDphsfGrYsDP" - }, - "source": [ - "### Running Spike Deconvolution\n", - "\n", - "To run spike deconvolution (called by the `oasis` function in the extraction module), we need to first run the preprocess step. To do so, we'll need `dF` which consist of the fluorescence traces for our cells after neuropil correction." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "id": "ZmCu3OgZYsDQ" - }, - "outputs": [], - "source": [ - "# Correct our fluorescence traces \n", - "dF = F.copy() - ops['neucoeff']*Fneu" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "J3ryUQgWYsDQ" - }, - "outputs": [], - "source": [ - "# Apply preprocessing step for deconvolution\n", - "dF = suite2p.extraction.preprocess(\n", - " F=dF,\n", - " baseline=ops['baseline'],\n", - " win_baseline=ops['win_baseline'],\n", - " sig_baseline=ops['sig_baseline'],\n", - " fs=ops['fs'],\n", - " prctile_baseline=ops['prctile_baseline']\n", - " )\n", - "# Identify spikes\n", - "spks = suite2p.extraction.oasis(F=dF, batch_size=ops['batch_size'], tau=ops['tau'], fs=ops['fs'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OA1RBMpT9SRU" - }, - "source": [ - "\n", - "## Visualizations" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "98XwDWFi9SRU" - }, - "source": [ - "### Registration\n", - "\n", - "Registration computes a reference image from a subset of frames and registers all frames to the reference. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 210 - }, - "id": "S4dULbWk9SRU", - "outputId": "b4420fad-7795-44c2-adb3-fbb69a2ef933" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBUAAADBCAYAAACQYYgtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9ebikV1Uv/Fs1z3XmuYfTc9NJk6RJCFFCEkUCF2QQRC7KIA5wRb33g4uiV43IpB9cRVFBZRBQEAQjkCAkgUCSTtLpTJ1Od3pId58+81ynhlPTqbPvH/tdu1ft81ad053udIZ3PU89VfUOe1h7zXvtvUkpBQ888MADDzzwwAMPPPDAAw888MCDswXfxW6ABx544IEHHnjggQceeOCBBx548OwEL6jggQceeOCBBx544IEHHnjggQcenBN4QQUPPPDAAw888MADDzzwwAMPPPDgnMALKnjggQceeOCBBx544IEHHnjggQfnBF5QwQMPPPDAAw888MADDzzwwAMPPDgn8IIKHnjggQceeOCBBx544IEHHnjgwTmBF1RYIxBRNxH9hIhyRPTJi92e5zIQ0U8R0TEiyhPR6y52e5oBET1ORNddpLrXOzjyX4z6PfDAAw88eG4DEf0BEf3TxW6HDUR0HRGNNLmfJ6JNT2ebPFgbnI3dRESniOhnL3CTzhsQ0euJaNihv8tlX4noJiL6ykVs2xeJ6MMXq/6LDc9UmUBEdxLRrzW494yUv43geRVUcIRT0SGsCYfBEmt8/TcAzABIKaXedwGbecHgWSRQPgTg00qphFLq5qdamNPvijPuc0R0GxHtOA/thFJql1LqzlXq30hEiogCT6UuW7kqpU47OKo9lXI9WDs8kwM5zzbj67kORPQZIvqjZ0u5HpwbOHxXIaIO6/rDjtzfeHFadn5AKfVRpZSrwSuhmWF8McDRjScudjueb+Cmh4joHUR0N/9fi930LIZPAHivQ38PN+rr+bILzxc4Y6SI6C+t6691rn/xIjXtvMFaZMJqwcqnG9Yqf58p8LwKKjjwGqVUAsBlAC4H8ME1vrcBwCGllDrbCp8pQuNZBBsAPH4uLzbB9V84494PYBTA586xbRcEPBo5v/AUA4gNYa2BHNuIutjwLAooGnCUuyKi/7Cuv9C5fucFqPMmIqo6dJMhor1E9JJzKUsp9W6l1J89xfasoKPzUa4H5x1OAngL/yGiSwHELl5zzsCzRbc8EwO1HnhwDnDO9uvZwAXi6ycB/KJV9tsBHL0AdZ0VkIZnvM/6bJG3Fwqe8QN0oUApNQHg+9DBBQAAEV3tGJEZInpUpCx9EZqxPuAYmz9LRD4i+n0iepKIZono60TU5jzPEch3EdFpAD90rv8qER0monki+j4RbRB1KyJ6N+m0/wwR/S0Rkbj/6867OSI6RERXONf7iOibRDRNRCeJ6HfW0n/RxneSTtWad+q/kogOOG34tHh+MxH90OnrDBH9CxG1iPtXODMzOSL6BhH9m3RiiOjVRPSIMNR3N2jXkwA2AfiOg+uw08dvk84yOE5Evy6ev4mI/p2IvkJEWQDvaNZvpVQRwNdRP+4NcUhEUSL6Zwc/h4noAySimCSi8kR0FRHtJ6IsEU0S0f91HvuJ851x+vQSx1m4h4j+kohmAdzUDMdE9GUA6wVePkBWpHsNePo6EX3JGaPHiehFzXD1HIBzDSBedKDnuWISMA3gJUTULq5daCPn3xy66QRwN4BvSVnMQJ4T5MEZ+DKAt4n/bwfwJfmAo8s+QUSnHf3wGSKKOvdaiei7jg6ad34PiHfvJKI/c3RGjoh+QFZmhHj2OiIaIaLfI6IJAF+gJvaK887biGjIufdHll4zKdtEFHF07ayjyx8gvTT0IwBeCuDTjn76tPP8DtKZgXNEdISIflHU+UUi+nsiupWICgCuX4Mu/qKDn0MArmw2II5u3CLq+jsi+p7TvnuIqIeI/sop7wkiuly8y7hie+v14p6fiD7p6OiTRPReSw+niehzRDRORKNE9GFPVtSDRV9NbSwHLiNtly6Qti0jq5T9QWfc5onoC/z8GvjsHUR0whn3k0T0Vuf6FiL6sVP/DBH9m0u9YSLKA/ADeJS0Ldssg3CFXeg8v5qf8FtEdAzAMedaQ9ua9PKLh5z+/BuAhnhzYALAYwBe4bzfBuAaAN+2+urqKzn33klnfJUTRPSb4h7LpvcR0ZTDI+9s1BjScu8jRHQPgEUAm6i5TGknou+QtsEfcHjvbnFfyoRXOTSSc/j0/UQUB/A9AH3OmORJy6Tz7e+9nLTMWSAtK1fYF+JZKX+fkX5bHSilnjcfAKcA/KzzewCaeT7l/O8HMAvgVdDBlpc7/zud+18E8GFR1u8CuM8pJwzgswC+6tzbCEBBGxVxAFEArwVwHMBOAAEA/wfAXlGeAvBdAC3QzuM0gBude2+Cnl2/0iG+LdDRUB+ABwH8MYAQtDN+AsArGvTf9EG08TPQgubnAJQA3Aygy8HHFICXOc9vcXAShja2fwLgr5x7IQBDDk6CAN4AoCLqutwp68XQAvftzliEVxsn5/9PAPyd087LHNzc4Ny7CUAVwOscfERX6Xcc2gB81PnfFIcAPg7gxwBanbE+AGCkAU3dC+BXnN8JAFdbuA6I994BYAnAbzv0EG2G4wZ4qSt3DXgqQdO3H8DHANx3sXny6eB15/9fALhF/L8awF4AGQCPArhO3Bt0cJkDcDuAvwXwlQY4f4dDLzno2cq3QvN4CUANQB5Axnk2DJ0aeRrAJDTvRZ171wEYAfB70Ir9yw5t/j707MEsdDCsTbTzV6D5bhbAH9p9XgPvvxPAMIB5AO+Gli8HHJx8Wry7GVpRzkIvAfsXAC3i/hUAHnZw8A0A/4Z6WflqAI845e4FsHuNY8g4+QyA33Ku+aFl4R8DuFM8+ymnL1lofn6puHcrgE+K/18D8PkGdd7EY+383+XgqsPB4d875RUA/Kwz1nc6fXscwM+74Xw1PABYB+Bb0Dw7C+DTTejILvfXoXXLHLTx1yfuKWdsjzn1/i0Autj8+Vz6MN8BOOKMmd+h2w0O/jc6z/2lMz5tAJIAvgPgY869dgC/AJ3dkHT46GZRx53QcmAbtK64E8DHm/DNEoA/h5Y5UTS3V17g0NdPQ+vAT0DrVNZrhicA/KbT7pjTzz3QS0K5jb8m2hGH5sl3Quu4y6HlxwsEHS8A+CloWRfD6rr4Lgd/6wAchNDFLnhQALaIumac9kag5dlJ6ECQH8CHAfxIvPsmAH1Ou94Mze+9zr13Azjk4LIVWkdInfAfDn7j0LbUPgC/ebHp9OnmB+vaOwDc7fYM1mZj7XPGow3AYQDvXqX+gw6NtAG4B2d0X0M+c8YrC2C7878XwC7n91ehdazPoZ+fXgvdufT1JjSwJZxra/ETbnP6FUUT2xpn7PL/BW2XvxGarz/coN3vgA6i/3fowDoA/A+Hlj8M4IvOtdV8pf8GbTMQgJdBBwOusGTTh5w2vcq539qgTXdC20u7HHyk0VymfM35xKDl2jDq6U7KhHE4dgI07ck2jljtOG/+HrQtkXPGI+iMzxKE7LTqvgkraeYZ57eZ9l5sAfR0fhyE5J0BVQDugGMcQxvzX7ae/z6Atzu/v4h6Q+4wgJ8R/3uhGTYgBn6TuP89AO8S/33QzLRBEPtPi/tfB/D7oh2/69KfFwM4bV37IIAvNOi/6YNoY7+4PwvgzeL/NwH8zwZlvQ7Aw87va6ENfRL37xZ1/T2AP7PeP8KE32CcWAivgzaqk+L+x3BGwN0E4CerjPsXoRkvA2AZ2pjYvRYcwgrSAPg1NA4q/ATAnwLosMpjXNtBhdOrtNvg2K7LLneNeLpd3HsBgOLF4sUL/cFTCyDeC21Yh6AN7SxcDAE0N0LeAaHMnGvNnIrrcG6OwLXOvf/rvH82QYVnrGISOBmBnim537n2Kmh5+GuoDyr8MrTBGADwPujATMS51+O04QbooM8JCD6x6rxJjHUYwP8Ph0+x0glKQhsOf+Dg4QZo3bLdBefNjD8/dGDrL6FpyhitcKcjWe4N0EbVFU5ZfwMhD9EkWO19zq+sgTYcPwbgRmjDP+DgfyO0gV0AsFm89xIAJxuUeRmAefH/TgD/R/z/HwD+qwnfVJj+nWvN7JU/hiNXnHsx5303R+hX0SAwiJVBhTcDuMt65rMA/kTQ8ZfEvbXo4hvFvd/A2QUV/lHc+20Ah8X/S+EE7RqU9QiA1zq/fwgRJHDGnnVCN4AyxOQG9LKYH11sOn2a+SEPbW/xZxGNgwprsbF+Wfz/CwCfWaX+d4v/rwLwZINnDZ9By94MdNAhaj33JQD/AGBgDf03dOfSV8lLG7HSLlyLn3CDuN/Qtoa2DcZQb5fvxepBhSj0pEca2v74KdQHFZr6Si7l3gzHf4GWTUWrz1NwJuBc3r0TwIfE/4YyBVqPVuHoX+feh9E4qHAaOkiassq7DiuDCufN34MOZN4n7hG0nXM2QYVnnN/Gn+fj8ofXKaWS0ISzAzpqBOjBfpOT5pEhogy0Q9HboJwNAP5DPHsY2qnrFs8MW89/Sjw/B01M/eKZCfF7EXq2G9AO45MN2tBntfkPrDasBpPid9HlfwIASKc4fs1JE8oC+ArO4K4PwKhyqM4Bu+/vs9q5znlvNegDMKeUyolrQ6jH2zBWh08opVqgmbIIYLtoWzMc9lnlN6vrXdAzSU84qVevXqVNdWWtguPVYC14sukrQs/tNPubiSgHjecpaMUDaAf0VqXUrUqpZaXUbQD2A3gVEa2HnrH/Y6VURSl1N6zUPwuWAVxCRFGl1LhSynUtJRERtBH8v5RSPE4fBfBLVll/opQqK71M590A/lApNaKUKkMrlzc6Y/ZGAN9VSv3EufdHzvtnA3+mlCoppX4A7fB8VSk1pZQahZ4RvBwAlFLHlVK3Oe2ahg5gvMwp42poxfrXSqmqUupb0LNKDL8B4LNKqfuVUjWl1D9DG91Xr7WRSqm9ANqIaDu0Qv6SyzNfUUrNKqWWlFKfhHawtzv3JgC8B8A/Q2c0vM3iExt+0ZEDw9Azm68X9/5TKXWPUmoZ2iBNQM8YV5RSP4R24N+yosTmeLgKmn//t1Kq4IzJWvfjeCt01sVDDh18EHq5yEbxzMeVUhml1GkAP4JY+uXBeYUvQ8/yvQMrabQTzky80DP/5VwHEcWI6LOklyBkoQN3LVSfNt/IPnCDaaVUSfxvZq/U6Til1CK0odqoj98H8DUiGiOivyCiYINnNwB4saVb3wod5GOw7YSz0cVDDXvvDmuydQCzHOQR0Y5LUG/vNLIJNkAHV8fFu5+FDtY+n+B1SqkW/kAHwRrBWmwsV9qnM8tZ8uQsVXApY8ipoymfKaUK0E7ru6HH7xY6s6H3B6Dt9X2kl47+6moIOEdYi5+wVtvazS5flWcc2+MW6CBpu1LqHpc2NvSViOiVRHQf6eUJGeigjrRjZ5VSS+L/arLM7m8jmdIJbYus1V7/BadtQ6SXtjTbO+l8+nu2vFWrtNMNnrF+2/MxqAAAUEr9GDp6/Qnn0jB09K1FfOJKqY83KGIYwCut5yOOQW6qsZ7/Tev5qGMwrwbD0OlEbtdPWmUmlVKvWkOZZwsfhe7PpUqpFLRjxuuAxgH0O44TwzqrnR+x2hlTSn11DfWOQTsUSXFtPXSEjUFhjeAY1r8LzfBRrI7DceiZYrd+2WUfU0q9BdqA+HMA/056jVaj9tnXm+HY7XkJa8HT8w3OJYDIwZlFUY6rwF/FCLGhqVPhwFNxBApo7Ag0gmesYnKBLwN4L4DrodOL64D0esjDpNcoZqBnWaQh8x3omYwja3DYv+7IgS6l1A1KqQcb9K0PwLATYGCwA3kMzfCwDsCQZWitFfogDEWlVB6aDtYSrPbgPIJSagg6C+5V0EtZJMxA89QuoWfSSu/dAejsmu0AXuzI/mud6w3X2q7WHOt/M3ulTsc5erEdLuAEDv9UKfUC6AyiV+PMXhJudf7YqjOhlHpPg3auRRdL/bt+VSycA5Be+/yP0PKm3XGKD6Le3mlkEwxDBws7RB9SSqldF6KtzxFYs41lg1LqlQ5NJZRS/9KgjPXQ9hGwCp8ppb6vlHo5tC3wBDQdQCk1oZT6daVUH/Ts9t+Rszb/KYCbPbcWP8HmmUa2tZtdvlae+RI0rtyOv2zoKxFRGHqm/BMAuh3euRXnLseAlf1tJFOmobM112qvP6CUei20vX4zdHa4XZ+s93z5e3VyzBmfNdP8WcLT7rc9b4MKDvwVgJcT0Quhmec1RPQK0hvxREhvKjLQ4N3PAPiIo4BARJ1E9NomdX0GwAeJaJfzfJqI3rTGdv4TgPcT0R7SsMWpdx+AHOkNmaJOuy8hoqYbGJ0jJKFT2haIqB/A/xb37oV2dt5LRAEHD1eJ+/8I4N1E9GKn/XEi+m+WA+wKSqlh6JStjzljshs6I+Ccz/pVemZ6DHr2cDUcfh163Fqdfr+3UblE9MtE1Ok4GRnn8jK0sFuGXiPaDJrhGNBOn2sZFwJPzxVQZxdAHIcOzsid25spJlcjBCsV02pOhds7qzkCUjHF0MAROA9wsQKKEr4MPdt1qxXwARG9FHom6Reh12a2QC9TkG36CHRQppeI3DIJ1gpyjMYArKP6HakbBfKa4WEYwHpyzxpaLWA6Bh2wAAA4Qcz2Bm3w4MLDu6DTkwvyoqMT/hHAXxJRFwAQUT8RvcJ5JAktHzKkNwD7E5xfaGav/Du07XMNEYWgM6JcnQAiup6ILiWdQZGFTgHmoJqtn74LYBsR/QoRBZ3PlUS0s0Ebz0YXD0AvYbgQwBMB04DeeA46U4Hh6wB+1xm/Fuh0cACAUmocwA8AfJKIUqQ3eNtMRC+DB41gzTbWWcBvEdGAw0t/CL3PD9CEz5zg+WsdGVqGtsWWnXtvEr7APDR9nG1moA1uduHZ+gnNbOt7oZ3s33F47w2ot8ubwY+hlzz+jcu9Zr5SCDpLcBrAEhG9Enp55fmChjJF6RO5vgW96XmM9ATP29wKIaIQEb2ViNJKqSq0LJNyrJ2I0uKV8+nv3QJgFxG9wdH5v4P67K3zCU+73/a8Diooncr7JehU52HozTX+AJohhqEHoBGOPgWdFv0D0inW90GvCWxU139Az15/jfRs30EAr1xjO78BbRT/K/Sa3ZuhN2yrQc8UXAY9QzIDHYBINyjqqcCfQq/bXYBmCjMTo5SqQK+lfhe0M/3L0Mxfdu7vh95M7NPQAvk4VjmlwYK3QC9bGIOepfwTpdTtT6Uz0GulPwCdLtUMhx+CXu90EnpDpn+H0y8XuBHA46R3AP4UgF9SShUdJ+gjAO4hPUvZKPW7IY4d+BiA/+OU8X6X9y8Enp4rsKYAotKzjfuhFVOIdErca9wKbGaEQCumAcdIX4tT4QarOQKvJqKfdur4EC6cPL9gion0ruxfXK0BSqmT0Esu/rBB+5ag5XaAiP4YQIpvEtG10Bs7vQ16L4O/cfrxVOF+6Jn/DzjGzXXQtPI1l2eb4WEfdHDm4871CBH9lPNeHR25wFcBvJOILiM9S/RR6P0nTp2H/nlwlqCUetLRd27we9C67z7HBrgdZ5bh/RX0WuYZaFviv85z0xraK0ov2fptaLodh+b1KbjruR5o2ZOFDtL9GDrgx3W8kfSO5H+t9BKjn4Ne4jUGnTHDe8asgDXYM38KnZVzEtpx/7JLMU8ZlFKHAHwSWrZNQu+3IFPA/9Gp/wD0BrW3QssfPmb4bdDO1SFoe+ff0XgZrQdnZ2OtFf4VeoxOQC8d5h3tm/GZD8D/B02rc9D6hrNqrgRwv2PbfRt6j4ATT6WBbnbh2foJzWxrYZe/w+nPm7HSpmxUrlJK3aGUmnO519BXcnj+d6ADRfPQy8GaLR89K1iDTHkvtLzgza6/isa09CsATjl4fjf0MgoopZ5w3jvhjEsfzqO/p5Sagd4I9uPQWYVbUS9fzic8/X6bWmXTEe/jfc7lA21wv/Nit+MC9Os90OlXF70t3qfpOJ3Cyh2o/x7AN53fL4Y2iOegFeMtANY79zZD7ymQg97M9R8AfM65txFnNuXqdcpYcITynTizC3HIKXMOwIxzLQLt9J3AGaP8d5x712Hl5kBs5Bxx2vIkgI+K+2+H3mzoXE9/kJsljaD+BIyvwNkYDnrn5QehnY1HoNMi5UZaL3Ku56F30/4WgD8S928E8ICDo3HnmaRz7w4Av96gzStwIu6ZjRqhlzV83sHpOHSw8BT0Bmop5/cviXf/HNrgXHEKAqzTHxrhUFzbJWjgEIDXN3p+FTyshw4W8wkbf92Ejuxy3+3Qxhy0UTAg7inUbxq2og/ex/vID/TymCUAgxe7Lc+GD7SzMHSx2/Fc+eAp2lhooge9z/Pr4+j6f77Y7Xi2fHAe/DZyCvLAg6cEpNP7jkAbxG+FnmXdpHQ64LMWiKgXOj3tXuiI4i3Qx+391UVtmAdPG5A+3/kJpdT5Tkl+TgIR3Q+9O/cXVnkuBH3qwW6lUxCfU0BEXwJwXCn1oYvdFg88aAZE9BroAB9Bz9K/GPqINc9AtID0nhPXQwcmu6HXkN+nlPqfF7Vhz1I43zYWEZ2C3knfy9J8noGz5CEEfdrXldBZRL+mlLr5ojbsGQoXwm+7YMsfiOhGIjpCRMeJ6PcvVD0ePGNgO7SDkIGeyXzjsz2g4EAIevfmHPRRUv8J4O8uaos8uKDgrNHbTHo97I3QqX6eUmoARPQyIupxlj+8HcBurCF9W+kTE3Y+RwMKAWiZePJit+V8g6fbn5PwWuh04jFox+6XvIBCQyDotOJ56OUPh6GP5XxOwtPA756N5cH5giR0pmQBeh+NT0LTkwfucN79tguSqUB6E5+j0Bt9jECnfL5F6bVqHnjgwXMIHMf7U9Bp6P+kGp+Y8qwAZ9bu76A3vBsB8LHVZt2fz0BEvwHgz6A3ODsB4INKqVsubqsuLhDRDPSSkdcra2PJZzN4ut0DD54/4PG7Bx54cDZwoc6ovwo67fMEABDR16Aj4Z4g8sCD5xA4RsffQhgdRPTtZ7PRoZT6DvQRhB6sAZRS/wC974QHDiilOlZ/6lkJnm73wIPnD3j87oEHHqwZLtTyh37Un+c9Avezuz3wwINnNxijQ+ndZNno8MADD5574Ol2Dzx4/oDH7x544MGa4UJlKqwKTsrsbwCAz+fbk0gkUKvVQEQgceS5Usr8JyL4fL4zu0w6163dK+tA3pPlyzLlu/yc0y7X+7Jcec3+TVR/1LOsczWQ/VvrO9zWtdYr8aCUwvLy8opnuTzGPV+3n5XP83P8jP2c3+8348i4lvhcXl5GtVpFtVrF8vKyedfn88Hn8yEQCKwoV44VvxOLxZBIJLC0tITFxUVUq9W68ef6isUilpaWEIlE4Pf76/AonwsGg/D7/aZ9XJekyVAohHK5jHA4jL6+PuTzeeRyOdMmQNMVlyFxtrS0hHK5jEAgAL/fb+5JcKM/AKZdS0tLK/jBjU7d6ONsgN/hvvv9fsXXnf58VOIOAJaXl8++Ig888OBZB276nWWgz6fnMlhGsQyRMlyCmxyTepk/UlfYOmk1/e72XDP9butmqS8sPKx4x7Zf7PLWAm7vNtP750u/N3oXODOuPp/P6CMuZ3l52Txfq9XWpN+5PPlbjnMkEkE4HEatVkOlUnGlL6BevwcCgRVt59+BQADBYNCUx3VxXwAY/e73+9Hd3Y1SqYTFxUXTP65f6nfug5t+l23h3zbtcf9t/S6fl/11g3OlL6Hf38XXHV79Ldl+Bx4EsOesKvLAAw+edaCUaihQLlRQYRTAOvF/wLkmG2VSZgOBgGLhZTt9S0tLALTT5Pf7EQwGzTV26ACgVqutcOilUmOlYYMtvGu1Wp0ClB+pOFjJNAooSGgWTHC7Zitr2ziwf7vV0czokEq3kXFkv2cbHfzNTrjsv3ye6+N3WZk2wmmtVsPS0hKWlpbMPTY4fT4fQqEQIpGIeZeB7zPNsOG4vLyMQCCAUCgEv9/varCGQiHTNg548EfW4ff7EQgEDE1J45Db7PP50Nvbi8HBQSSTSUxNTeHUqVOGPu2gGP/m/gaDQYTD+shdpkWbxtcynrJst7FuBo2MU4kze/xkG22+EQbtfqe8PfF4vO5dNpZ8Ph8ikQh6enowMTGBSqVijDM27nis+DsajaJQKJgybN6RBrUMEHFgiNvu9/sNnXAQivsrjdmzDc7YfLUW/Ls5RPKe2zVZl2wP94+B2yL7EwgE6mg0EAigp6cHiUQC4+PjyOfzCIfDCAQCWFpaQmdnJ3K5HLLZrBkzplcAhv8AHdzbsmULtm7diqGhITz++ONYXFysM7Qln3HbA4EA2tra0Nvbi3A4jJGREWQyGeO0sEMBAKVSCbVaDX6/H+l0Gn6/H6VSCYVCAUopBINBw+exWAyAlg2xWAyBQACpVArbt2/HqVOncPjwYfj9flQqFSMTqtUq2traUK1WMTc3h/5+PVmXzWaRSqXw8pe/HJdddhl++MMfYv/+/RgbGzMORDgcxvbt25HJZDA9PY1KpYJiscjGeh2vsmNTLpdNEHTXrl0IBAKYmJhAsVhENps1tC7H2dZFbg66xO9q9Oem21h+BQKBd0keDwaDvyX1ps/nQ61WI8Bdv7NsZZpjucvylfmtmX7nAAGX16jP8j+XI4MYjAt5z+1dN/yuFZ+NcNzsvt2PZjpd/rb53S7TLUjAuLDluMSR1FuS5pgf3XQ+22BcJgcUWEdLunLT77JPkmZqtZq5xnXLAIV0zkOhkHlO6g27T6zf5aQIl8dt9vv96OnpQU9PD+LxOBYWFjA+Pm50iY2XZvqd+8I2kdT3sqxm+p3hYul3ft7h1xcFg0H1hS98AcFgcEW9hUIBU1NT2LhxY931fD6PsbEx9Pf3IxAI4I477sDIyIiR8ZdeeimOHDmCvXv3orW1FVdddZWZMCoWiyiVSgiFQgZXiUQCbW1tOHToEB588EEsLS3h53/+57F9+3bE4/EV7VJKYXp6GiMjI5ienkYul8PCwgKKxSIAIBwOI5VKoa2tDe3t7Uin02hpaUEqlVrRz1KphNnZWWQyGYyMjOD+++/HsWPHMDg4iD179ulIKh8AACAASURBVGD9+vUIh8MYHBw0eiAej+PUqVM4ceIEJiYmEIlEsHHjRlQqFRARkskk2trajP+TTCYRi8WwvLyMSCSCSqWCyclJAFof5XI5PProoxgeHobf70dnZ2fd8wMDA+jt7UV3dzcA4K677gIR4QUveAGSySTK5TKOHTuGqakpxGIxRKNRTE5OYn5+Hh0dHdi5cyfa2trQ09Nj5LYb5HI5fPvb38YPfvADlMvlOnobHBzEy1/+clx77bVGv7I8Z5iamsLevXvx0EMP4ZprrsFLXvIStLW1IZ/PY2FhAUtLSwgGg6hUKsjlcsjlcrj99ttx4sQJJJNJbN68GR0dHbj66qvR29uL8fFxLCwsQCllcJDL5fDAAw/UBQb37duHkZER/MzP/Aze/OY3I5FImDaVy2XMzc1BKYVoNGrk2NDQkNFZQ0NDmJmZQVdXF3bt2oVwOIx8Po9sNouNGzeipaUFIyMjWFpawvr16zEzM4Pe3l5TT7VaRalUQj6fRzweRygUwvDwME6dOoWhoSHkcjkEg0ETZGQ5xXKFfeTW1la0trYiEokgFAohGAyira0NpVIJuVwO5XIZxWIR0WgUqVQKANDT04Ouri5X/gWASqWC97///a73GC5UUOEBAFuJaBA6mPBLAP57sxdYqEtlz9cBjSg2OFi5sAIAzkSHZXmSSN0Erm1A8Pv2TLh8nstlwW8bw7ah18x4cPsv63BT/o2cRvuZRvVKQ8HGl12mLEcqZTYU2AiWyqVWq9WNi10OPydnM2wn2zY4+F12+mKxmGk/B5jYwODxW1xcRKlUAqCZje9VKhX4fD7DlCwcIpEIAE1nbOQGAgFUq1VjwMix537b+OJ+JRIJKKWwuLi4wnCyx5tnRTj4IY0xiSdpDEnlzs/aRtVajQybfuzfbk6sHBf7GvdVvuM4GS8CAL/fr0KhkDEOme/ZaKvVapiYmEA6nUa5XMb8/Lwrr3EdhUIBqVQKhUIB5XIZkUgEfX19GBoaqgsQ2jiX7Q8Gg+jv7zcKemlpqSl/As1nhprhVeJO8rnkg0bvu/G8W7CLf3d0dCCdTmNqagqFQsGUxbTNZTIf8f9arYaZmRnMzc2Zexw4Yx7M5/PGYU8mk3WyeGFhAeVy2fDO6dOnMTo6ikQigde97nUYHR3FAw88gIWFBVfcsnMdjUaRz+cxMzODYrFolOP69evR3d2N0dFRDA8PG95Ip9PYs2cPRkZGcOrUKaTTaUNn5XIZyWQS8Xjc0Amgjdrp6WkTxBoYGECpVML8/Dyq1SpaWlrQ0dGBkZERFItFbN68Ge95z3sQiUTwjW98AwcPHsR//ud/4jvf+Q6y2azROTJYOTY2hmw2i3K5XCezpEwlIkQiEVSrVSNjqtUqjhw5glgshmKxuCIQJmWPzR+Sdho5wW70xnJMBplsR03SopxRlvVJsOWe7dAHg0EzS8x12/rdLahgG7RufMJ9ZJnZTL/bHxl4c+vX+dbv9rNPRb/b8qSRfpfOucwaWU2/S73G5fA1DuItLS0ZmuUyZNBftoOdyGg0uiIgweUD2rFdXFw0jgoHO5eXl00WgdTvkr9s/S4nA+S4SP0udS/jip3TYrG4IvNFfnObOKDA+l0GEFj/cVaEDCpIPEhcnCs00u88NvZ1bisD04QbbQFaF73xjW80slVCNpvFI488gquuugpEhPn5eUxOTuK+++7Drl27cNVVVyEUCqGlpQVPPvkkSqUS4vE4NmzYgF27dqGzsxORSATr169HKpVCOp1GOBxGLpcztLG8vIzu7m6Mj4/jxIkTeM1rXoNNmzbh0ksvxeDgIFpbW+Hz+Ywu8fv9KBQKePLJJzE0NITh4WFMTk5iYmLC6KZoNIqOjg709vaio6MD7e3t6OzsREdHBzo6OhCLxeD3+7G0tISZmRksLi4in8/j8ccfh9/vRywWw2WXXYbt27ejp6fHOPTpdBqdnZ0IhULYt28fbr/9dnR1daFcLsPn82HTpk3YunUrBgcHkUgkEA6HkUgk6oJrHBh48sknMT4+jkKhgFwuh2QyiePHj2NoaMjwSCwWw8DAAHbv3o2rrroKmzdvxtjYGJLJJObm5vDqV78a0WgU09PTGBwcxN69e7Ft2zak02lkMhnkcjnEYjEkk0l0d3cjHA4jEolgx44dSKfTWFpaQqlUwtLSEoaGhrBv3z7s27evLqDANESkgxivf/3rEY1GUS6XjY5kObCwsIBEIoG9e/fitttuQzgcxlve8hb09fVhfHwcN998M3p6enDDDTdgbGwMxWIRr371qzE0NASfz4cbb7wRlUoFN9xwA7Zu3Yp7770X+/btQ0tLi6GDcDiM3bt3IxaLIZPJYG5uztgrl1xyCa655hrs3LkTgA6S7N27F8FgEJFIxNCCz+fDxMQEqtUqDh8+jHK5jB07dmDPnj3o7e1FuVzG6OgolFLYvXs3wuEwJiYm0NPTg/7+fhw6dAgDAwPo7OxEoVDA2NgYhoeHDa7D4TC2bt2KY8eOYWBgANls1sgL9k9qtZoJtLFs4+BXOp1GJBJBMplEIpHA1NQURkZGMDc3h0AggEAggJaWFuN/bN68GTt37jSBOgmlUgk33XRTUxlzQYIKSqklInovgO9D7wj/eaXU442eZ6UihZfbzLZUxG5RahaK0iGTClgaCVIISQOCjTwZvebZcynsZTluDo9bH+V3o9+2AdhMCVg4X+G8uikLnjmTKfy2ccMCUjquskzpHEtFK53vaDRap5BtB1O2lQ0ATomUgSCp5NmhYKMA0MaLG854ppGVOdMEt1E+x7hjBuOx5vZJhcnBLAAmShgKhcwyi6WlJRSLRRw7dswIWR4DWQ73kY0LdqIk7XEbJW0x3uznbJA4b0Qv8ln7txut2bzD+LMdUjkL5FY/BwIYj4wjiY9arWaEJ+OrUXl+vx+tra1QShkDjsedy2ZZIWe57PFnJ1lmN0nelnyyFn5fLbBjG/e2E2TzrT1b6+YwSPqMRCLo7+9Hd3c3FhcX6wJc/L7kL8Y/3+OZertflUoFJ0+eNGm85XIZ+XweqVTKzB5J+VAul81s0pve9Cb09vaiVCqho6MD1WoV2Wy2rnyWCUSEbDaLZDKJ5eVlRKNREBEGBgawbds2TE1Nob+/H1NTU2bMy+UynnjiCWSzWeMYhMNhVCoVADBGTzgcxtzcnJERPOuglEK1WjWZKmyMcVCjVCrhZS97Ga6++moEg0EcOXIE+/btQ7VaNYEqmQVDpGc5c7mcmfliOSMDamwostzlD+vFXC5Xlw0SCoXMzEQulzM0Lumq0betF6Qs5m8pz6Wu5PtMJ4FAwASUSqVSHS/LMZVyjOWDrVe4bNbdzfS7DHbIPklHkvtmp6ZLm4L7InWdbSfYZbhBM7npdt1Nlj0V/S7xGQqFjPMu70kc2/rdfkbO6MssAQ54xeNxE2SQ/eHygXr9yO2R+p37yjwTDodNIE7Sol2urd/ZyWU5Ju0+Hj+268LhsMkA4n4ySF4EzmQSxGIxEyAplUool8sYGRlBrVZzpXeuk/Fj63e77yy7pLMu9bttn0nd0kjHnK1+t+mL73FfZMawbfM203ESUqkUrrjiCkxNTWFpaQljY2MYGxvD/Py8kW2xWAwbNmww2SqnTp3CsWPH0Nraih07dhjnKBgMYnx8HH6/Hxs3bjR2Wy6Xw8jICI4cOYJAIGBm32OxGDo6OpDL5XD69GksLCygvb0doVAIuVwOExMTRv9XKhWUy2UUCgVD84FAwCy34bEpFAqYn59HW1sbUqlUXbCrUCjA7/djYGAARIT29nYEg0ETcFBKoaenB5FIxNiNXN7ExAQOHDiASy+9FG1tbXjhC18IIkK5XMbU1BR8Ph/S6bSxeZiGSqUSYrEYYrEYRkdHsXPnTrzmNa/B17/+dTz88MNYt24dYrEYpqamTBYDz5L39vaaAMiWLVuwtLSEkydPQimFG2+8EdVqFYcOHUKxWMTk5KRpx7p163Ds2DHEYjGUSiX09/djbm4OR44cwbe//W2TQSGBSAfPi8Ui7r77bmOfZDIZKKUn4uLxuMF/a2srjh49iv379+MXfuEXsLCwgEwmg8XFRRQKBTz88MPI5XJIp9MIBoPo6urCFVdcgauvvhqPP/44Tp48iUKhgImJCfh8PmQyGRPI6OjowLZt2zA8PIxsNouXvOQleNvb3oaxsTEcPHgQ9957LwKBAEqlEmZmZnDq1ClkMhmD+3g8jsXFRYyMjGBmZgZjY2Po6OjAjh070NbWZsans7MTbW1tALSN1dXVhUAggGw2i97eXiilUCwWMT8/j7m5OUxMTMDv96O3txehUMhMhra0tACAmZzgjEwARqZzFg3bCBykZRk2OjqKO++8E7FYDBs3bkQ8HsfS0pL5HhoaQjAYxPbt21fYf2uBC7anglLqVgC3ns07bGQxk8jU+kbOuFTOMhDAAtEWfOwwSKeCBYdUolLAumVA2I6y/d9WCKv1Yy394/bYddjOSaPy/H4/2tra0NbWhvn5eczPz9c5UGw82MtE3JQat4WfZ2UsFSpfY8J0C+hwRJsNSWYe6fAEg0Gj2NnIBlA3k8XGCqftcDYDK8RQKFSX5cL44/GWYyxnD7kO29Dl6CsRoaenB6FQCIuLiyYtK5/PG6OOjTdZL6/bBGAi5owbO7uG8cDtkLQln7X7wdebGcP2mMrf8ts25OU9TreSxpukTdvw8fv9iMfjBo9yqYvsy+LiookKswHJ9Fqr1YyTWalUMDw8bJxRDnSwkJTLpbh8dlRl0GF2drZuvBj3bjhyA7ufzZwECbZ8kXiSQTD5jKxLLjsgIpNlEQwGTcocGzJyWZDtpMk+yOAK44eBZ5TZOWeHemZmBvl83vAv86OUgffccw/a29vNc7FYzKQecj0ypZKXR7BjkkwmUSqVMD09jXK5jOHhYRSLRTPT7ff7kc1mkUgk0NfXZ9p8+vRp0z8Z5IhEIti9ezeuvPJKFItFfOtb38L09LTBEwemrr/+elx22WX4/Oc/j4ceegjr1q3D7OwsvvnNb6JYLNbR5ubNmzEzM4OZmRkAMAGEVCplAi48TtFoFC0tLdiyZQuOHj2KyclJkw7K7WV+4jXojF+WH1yHDO41coIb6Rn5n8fODlJIuc2/4/G4MQoBmDa61S0D/W763eZ/Bjt4xs82kofS6ea62Bm2y7bLsO0JiZtG+HTTu41w6/Zf9s/mdbf+N2qDz+czmThscNtlS33s1h7ZF/t5GbCQeoezBOyJnOXlZYTDYfM870cg9TuAFfqd+UjqXpbjzONSv3PZAOraIpc7SL7hPslAhAwmBAIBo2+ICP39/SaFeX5+vs7h5MADcIa+ua3Mw+yIMg5lZoMcX5v+uEyp/yXe+DmbLpvxvc3/dj0yiMj3OHhs06z8NNNxzJPZbBaPPfaYWTKXz+fNzPDMzAwOHTpkdEsmk0E8HjfL0zZs2ICRkRFUKhVEo1EEg0EcP34cg4ODWF5eRjqdRiKRwMzMDPbv3498Po/BwUG0tLQgGAwil8thcnISIyMjeOihh0wqONNPJpNBoVDAwsICstksFhYWMD8/b3QcBzzYWWMccOC6Vqthbm4Os7OzZkKkVCqhs7PTZBeUy2XkcjkUCgX09fUZWpiamjKynzMlisUiFhYWMDo6iiNHjiASiWB5eRmFQsGM25YtWwxNcLCrWq0iGAwinU5jcHAQ27Ztw/Hjx022Z61WQ6FQwJEjR4y/k8vlEI/HMTMzY5b01Go1bNmyBdlsFidOnDC2UTweRzqdNoHsXC6HxcVFnD59Gi984QsxMTGBiYkJtLa21ukjSXP9/f3YuHEjTpw4gVwuh66uLvT39yMej6NUKuHgwYOYnJzEzp07EQwG8XM/93Mmg3T//v3YvXs32tvb8apXvQqZTAaZTAYA0NraioGBAczPz6NSqeDIkSPI5/NIp9MYHh5GJBLB9u3bUSqVEIlEEI/H0dnZiQMHDmB6ehrLy8u47rrrkE6nsX37dkQiEZw4cQJ33XWX6efs7CxisZhZbjEzM4OpqSmMjY2ZLJoNGzaYZSPsz8TjcQQCAZMtyjKoWCwilUpBKYWhoSFUKhWTNTs1NYWJiQnE43GzVIb3h6tUKmYsC4UCqtUqIpEIUqmUkWmcDVwoFBCPx5HP5xEMBnHgwAEcPnwYL3rRi5BKpUwmN8usYrGI6elpdHV1oaPj7A+xumgbNUpgJHBQQTpxMkUeOGMESGXuJtykApGCvFGkGECdsGBBwQ6PLdBtQdrIcZOOmKxXfq+GG4ZGzoVbmbbDzEqpWCwik8mYWTO7fO43Cxwb127PczncPl43KYUu408qeGmkcn2cUsVLAtgB5Vk54Ey0XC4VkIYw32dn104dlHXLvnAwJRwOo7W1Ffl83jg/9iwdBwK4r6FQqG7jKVmv26wDz1Zyf9yMWenYybHgcu2xl+/btCphtVkM/u021tJo5DrYeJP1y2ft9DcZuOMgEBv+DNzXUCiEVCqFmZkZ026O3HI6KRuBoVAIhUIBsVgMl1xyCQ4ePGhmwZl+eC07K2fuA88k8ey8dFxkm9zwacNqfG0bcxIvfE2OPY+55GkOJEh+l+VLA8TOspLPcx/tPkmeBWCUkmxXb28vurq6UCwWcfToUQA6O2LPnj3w+/344Q9/aAILgUAAxWIRhw8fNql5AEy0netjA9YO5Mm1k2xgsIwIh8PYuHEjXvnKVyIcDmNoaAiHDh0y8ntqasrQFq81TKVSyGaziMfj2Lx5M9avX48HHnjA8DYr5HA4jJ07d+KSSy7Bli1bsGnTJtx77734zGc+YzIQ2JFhI0oGE1hZM40xr/Dv7du3Y+vWrWhra8PY2JhJoZX6TgYYJP/Le3x/tQwaObbyPSl3OBAk922Qz0lnKBwOo1QqIZvNmhk9m99ZfvHH1u9SVrk5t7bOlfLH5hk3/S77JYEzFGSQhHF4PvW7G4/a+FmrLeAmk7mtHEzlZTI2SP3Mz9s4dbM3pAxi2eO2z02j9srJokb6XabLsx0m9TtQbyfwEgdJo7ZjbOt45rlwOGzWZrNzZOtfWTfrFjbkZeCA+yBtLJ/PZ5ZkyIkWWT63V77H96W9It+RdCR5opk+Ohv9LoNxDLLddmCD22zzuwSlFA4cOID+/n74fDqbaWJiwtiFLI+j0SiKxSKGh4cNzvv6+gzPjo6Oor29HfF4HCdPnkS1WkV7eztqtRrm5+cRDAbh8/kwOjqK2dlZ7Nq1C4lEwrTt+PHjOH36NObm5lAul40TXSqVTAYaZzosLCxgenoaMzMzWFpaMrqLAxFcLq9LZzuF99DJ5/PGxmadIGma8X3o0CFEIhEzC84OYigUwrp169DS0oKJiQk89thjuOqqq9Df34/Tp0+b/Y6UUka/TUxMIJPJGP3l8/mQy+Vwzz33IBAI4NJLL8Xo6Ggd7c7NzZkAdiKRwNzcnMkYmZ+fh9/vRyaTwfe+9z0Ui0W0traio6MDRITJyUkzkcb0MjIygpMnT5o0+61bt+K+++4zTj/bZZdffrnR9T09PQgGg2hvb0cikUAmk0E6nTZ8EY/Hcdlll5mMiFOnThmbo1AowOfzmSUoRGRs8Y0b9d4F11xzDTo6OrCwsIATJ06Y7CJ29sfHx01mzMzMDHK5HMLhMMbHxzE2NoZqtWrwW61WzXIGKUu2bduG/v5+RCIRsxwiEomYbAjm51wuZzaM5QnV5eVlLCwsGJoHYGymaDRq9mwpFArI5/OYnZ01dFWtVpHP51GpVMy+UMvLy2ZShWVvKBQyOrpSqaCnpweveMUr0NfXZ/bq4OWegLaVM5kMKpUK8vl83Z4Sa4FnRFABQJ3TCNRHQmX6szQcVnOO3AxnGaRgpLPSk+vwWHnIgIIt6FnYN1KqEuz7ZxNYsOuT6fd2f21lYSsCFqJuCsbGp0xTtbMNZKqgNIC5DdVqdcWMCDsQMrrLzM3lBYNBJBKJunXFdrYAz5YwsNPBjM4My+u8mGl5BlcqUHa4WEH6/X4ze8gz2VKBymd5QzVOx5Iz3Dwe3H7uN4C6GUe34IA0/mxakQEF27BwMy7crtlGyloM4mbPupXNIB1jOV5sUPAaXTbuJb8BMDNCqVTKKDpJj5dddhna29tx4MABE43P5/PGQZSGNtOOTL/l9nGQIhKJGGeJ+cV23pqB7fRwfxmYxqWMkc/JQAdf4z7wDB0HB5l2WTZKOcB1yiwN+74cG3b2WLHx7B3L3lwuZ3Beq9XQ2dmJV7ziFWYzxc9+9rOoVqu4+uqrMTg4iFgsZoyMDRs2IB6P44knnjCReuaFaDSKUqm0wmjlYBJvWpTL5eqcJw7WsZJ+85vfjGuuuQZEhPvvvx/33HOPUYy249HS0oLBwUEcOnQIk5OT+NGPfoQDBw7g2LFjxjFm5UxEOHLkCGq1Gm677TY88sgjqFQqJoLPswRy6RTLq0QigVwuZ7LgWCZKvJbLZZw8eRJ79+4Fn5DARgCPFX8TndkLQylVR5PlctnQjc2DkjbltwR+nseYcSvBDkxxW2SQWgZvJbDMth0jSYs2v7jpd8lbsr9Srsuy5HIn5jvJe5IHZXnyWiP9fjYy1A5SuI0L/2YZx4FpN/0udYVse6VSMfzUrA0sa6SjLsfP1u+2DiyVSnX7LXB7pZ4DVtootn7nDCOJA5lVyPW5XWN+yefzKzL2JG6Yb5g+YrEY2traTLq6Pb4yAMIb783MzKzIMOByuf2MQ+4z6zU3unCz03g83PS5TZ/NdL5bfY2uNWtTI3vSznKzn5FQKBTMzGh3d7dxyGdmZhCLxdDV1QUAWFxcxNzcXN2eHeVy2YxxJpMBESGfzyMQCCCRSCAYDCKTyWB8fByRSAQjIyM4fPgwOjs7sXXrVuOocTB8amqqblw5w4yzXMvlspmNnpiYMPvjcECbZ6I5BZ2XOBCR2VeBl9rxsj7W34AOuPMMuVIKs7OzePGLXwy/349HHnnEBBN4kz7W9aVSCQsLC+js7ASR3oviwQcfRDgcxunTp1cEZtlRZR5nPJdKJbM/RLlcxpEjR+D3+42T3t7ejpGREeM0Mx0/+uijaGtrM7waDAZx7NgxpFIpdHV1IZFIIJ/P48EHHzT7k01NTWH9+vW49tprcfr0aSQSCWzZsgUbNmww+jUQCKC3t9fMwrMNODg4iN7eXjPTn06nccMNN6BUKmH//v0my9rn85mld5xJFIvF0N/fj0QigVgsZpadtLa2miWPcu8uziTZuHEjHn30Udx9991YXFzE5OSkyS4olUpYXl5GX18ftm7ding8jo6ODvj9fuOIp9Nps2xSyh+Wc6yrmU84s0VuUM7jxSfK8KlxnGXD9Cgzt7jvHJhlGmT+9fvPLBNjWmxvbzfBMS6H7aloNGrs8Ewmg6GhIaxbtw79/f1r9lWfEUEFIjKdkWu3gPqUebeItLxvd9oWuDICzLNYzCS2IgJQt7beduBYuHL7Gwl321iW1+3vZgqC62Yi4v5IZWSvkZT4Y5Br/KQClvelIJR9tp1ffl4qVCbkUqlk1iNL/DJxc/0yiAOcceqj0eiK+uXMnxxv6WBw1K6vrw/d3d2oVqtmvZPsK+ObjQy5aVOpVMLIyEidIGDjUtbFtMpOHeNOZiHIoAg7uW6zidJ4s2cI7cCDNCrkLI7bWNn9lf/tb/uaDKDIQJysv5Ggkbxq01ilUjHp0syHNs3JAF8gEEBHR4cxOriNwWAQW7duxUtf+lIUCgXccccdRgHk83lcccUVaGlpwezsLB577DHjeHE6oxwv2U8e482bN2NkZATz8/N1Qc1mvA6slF0S/H4/IpGISU2W7/F4SucZgKEHpZRx3hgP0tCVjqAMNshx4/FwMzSlTOX9Afh+MpnE+vXrsXHjRtx9990mvfDKK6806/3j8bhZOrC8vGxSW3mmgseS+9nZ2WmMuVgsZnYjljP5i4uLRsZwwEMGiJPJJAKBAB5//HFs2rQJ+/btw969e1GpVLBx40YcPnzYbEI0PT2NYDCIbDaLsbExLCwsmJkznsXhfSdkgIfX215++eUIhUK4/PLL0d3djaGhIWQyGZMNEwgE0N3dbU6XAGACuHL5TrlcNjNoTzzxhHmXd3W2x49xx7wjadD+tn/LMZbjzNdkPdKw4Xpsfpd1LC8vG2PQDn7YsoadQjujQDrtUp7b5UhdZQcmJO9yW5j3OA1U9kPOuEv9buv41fS71LW2ndDIWVtNx7PTw/1hp8Xe94HBdoht/W7LZ3t5iN13G79SBrOODAaDKBaLZp253CtgeXnZ/GdnjdvP4yH1u7ThbLkpA8z8HDudvGleraY39eXsHjdHmo+S5PdLpRJOnz5tdIXEpdSjUu6ynpJZVdx+GWxlZ8WWsaz3JY1yO21aY5D6xk2/22PmRnvNviUd2MGPZrrdbp+t3yXMzMyAiDA1NYVsNmsC96zzh4eHUS6XEY1Gkclk4Pfr0wrkKQ1+vx9TU1OYmZlBT0+Psel4CdzMzAwOHjyIHTt2YNeuXeju7jYp4zwmvCldNBqty0DmseJshVKphKmpqbrTHxg3rBt4bToHOPj0KV6WwTPULS0tyGazph6eRMlms5iYmMCll16Kzs5OKKWwdetW7NmzB11dXbjtttvw3e9+12zOCADj4+MmADY3N4dgMIiRkREcPXoUV1xxBZLJJFKplAlo5HI5TE1NIZFIGCebN2ScmJioy5DhgC/jqLu7G/39/chkMuju7kYul8O2bdtw6aWXmn0gcrkc8vk82tvb0dHRgZMnT5psNbazWlpacN1116FUKplx52XBvL/A5OSk4XFerppIJDA7O4vx8XH09fXh2muvNYGcdDqNW265BdFo1LSb5VGlUsEVV1yBwcFBsz/B+Pg4WlpaMDw8bPby4IlGbuvCwoLJcuXlL7zfUm9vr1lS0NLSYrKmFxYWzEQXjznTWzqdNrSUyWTMxtYAPwOaegAAIABJREFUzOlNvPyXAyrAmSXcbPNwcKFQKJgAmN/vNxNjLJd4TzcO0sZiMSilJ8Q4iJdOp9Hf349gMIiHH37YBGI5w0ZOPrHPNjk5idnZWfPp6+tDMplsKhOAZ0hQAThzJJgUaNLIsJU2C0RbOPO7UglJYSrXj/Ag2UssGOxAABOxPBHANtq5jVIgy7a6OeZnY3QwschnpVNulyfrkk6PHVCw70klJYM48l02HuTRa0opszGO3LRNOjN2vW644t88TsCZ2U05o81jyEYXQ6VSQSaTMdFnbh9HYSXO5Kwu18dOgAwesKPDRjHPKHJqpAw8AGfSN1mJSkeWn2MaZWBh4ZZWKsu3jaG1OLtuhofbGNj0LJ+xZ93tOqTBY9ORHGPezE62X57wwilwPMvAR0wxDpXSkf5bbrkFhw4dwuHDh83SBq6jr68PXV1d2L17N2ZnZzE0NAQiMqljEoc848QGaLFYNOsOefaYZ72ljHLDJ4+bm2HG/MK/OUOAZ58l3qTjxfXIyDbTo9yTgh0o2/CUPMV8ZPM407TcLwSA2UANOLMpIBFhbGwMX/va1wz9lstlHDhwwGR58GyT3+83Rzlx+XNzc1hYWDA0VSqV6k42qFarWFhYQGtrq1HwUn6Ew2GTFcBrJr/zne/giSeeQGdnJ+bn580aQh5vNgBHR0cxNjZm+sbrZonIOEmVSsUEVvg4rv379yMUCmHHjh0oFAoYHx+vCyBUKhUzm8Ayo729HZVKBdPT03WyUI6JXIPNTmEikajb+NDWTzZ92Txm87OkP9tZkXrE3n9Ezu7bwSdefsRZJM10l5Tj3PdmOk/OpMv+8LMsH+VsPut35nGWo266V9oIfI2fY1ndTL/buG6mb93sgmayk41yqeNkO92CBVIu28EX+Vvqd74u7SQ52SCDA3L5Cm+UxzQqAzR23bJeAHXlszNrjzGPp+QTW8dx6q+cHWSdIvlK4lXqdKYROePHwWUeJ87E4UCfLA84s0yI9wFgPNo8xvUB9frdLbPR7qfbNTmmdiDFTR9JurF5QL4reUD2U9Zh2x5u+p2BN6wOBPTu8pVKBePj44jH40ZGKqUQi8WQTqeNcwXAOFPhcNic5HT48GFMTU2ZGf89e/YglUphaGgIi4uLJujNspT1NWezscMdDAaxc+dOlMtlPPnkk5iZmTG8xlmN0i5jWpQTDmyvSNzwWn3W8az7mAakDi+VSjh+/Dhuv/125PN5HDx4EP39/di3bx/uuOMOIwMYj5lMpq78arWKQqGAnp4eM2PPTi1v0NfW1lbXHkCfwMGbH/PyklAohE2bNqG7uxuPPfaY2Teiu7sbu3btQiQSwZYtW8yEweTkpJGzbCuzrmQ8+nx6M0kO6oZCIUxPT5vx5QACb87IY55MJjE2NmYygzgjk+s5duwYotEo+vv7cfLkSXR0dKBYLGJiYgKhUAjZbBaTk5MYGxvD9PQ0Tp8+jWAwiKmpKZw4cQJTU1OIRqPo7u5GT0+PCXr19vaiUChg3bp1OH78OMrlMoLBoMmsXLdunQnQcFCI5SLbsbwXh1xWwpOk7HcwTXAWAvu93H8+tU7aVPapT7zcl2WOlK2Ma24P76fAwTTGNx9TWi6Xje/C+1cBZ07YGRsbQyAQMPs47Nixw5XXJTwjggosmO0ggHSqGKGSaJmhpQCQBr00Ntgh5llKdhK4bP62jXFuG4C6mWt75t1N0a/lmm1QyGtueOI6+R2plO3ouK1wZP1SyUhDwDZ6bOXPuJfZBnKGmZU7zyBy+i8LBpmhINvlFu22gwdKnclWkCk98n1uy/z8PHK5nFHinIrIThc7JBy1lP1gJ5KBBYStTJl+2ACRMxayTfLYF45ySwNFGh2y73aAQe7TYNNpI2hES/Kem4HqZiywQSrpza1+tzrltVAoZI4FsoMxgUAAra2tICLMzs6CSB+LODs7a/atYPwqpZDNZnHXXXchEAigvb3dCL9yuYwf//jH2LJlizlGRy6HkPQtHSi5C3WtVjPOsFxaI+WO3Ufp0Mv/UmZwSmVLSwv6+/vx5JNP1s1A2zwocWxfk0tqGI/JZLKOVqQMZDnI6/nYIWRcsCHN/WQ6LZfLGBoaMjMLfX196O/vx2OPPYaFhQUEg0H09PSYzbIqlYpJM+V1onK2nh2RaDSKa6+9Ful0Go899hiOHj1aZ5zzemZWtGwwMV+woTg6OopIJGL6wGsuZbaDVJo+n8/MlvB6WXaQ+OguXvsLnMkQKJfL+MY3voHFxUUsLS0hlUphaWnJ1MX4YkOWM/DsU2qYlmRAkekyHo8jmUyaIKjUaTY98P+18Dnzq6QJeV/WIXWJLfdkOfbsuc0T/I48gYfb7BaocNPvrOfkezLoKvU712Ovt7d1u+wnOwcsh21elfrd1qlujpnEqRwjKRNs+SrflX2VeqfZjLCNbxuHbu2RZcoMD5bzMsOOn2F+aGtrM+vHpdPUbImfpEMZLGHHCziz7EoGnCUtcnszmUzd5rPspMtsRg5Q5/N5w3P8zR/gzFIfO+glJxPcxlTysOy/5Fm+Z4+BDI7LIIjU++eq3xvZfPK+G7/KceHnbFkheXK1dvAu/pxJwnjM5/NmDwU+OaFQKBgZzMcg8sbXmUwGU1NTiMfjSCQSSKfT6O7uxs6dO5HNZrF9+3YcOnQIuVwOs7OzRv/XajXjfLM83rZtG5aWljA5OWmCQXzyCDuDHFhmWpQ8wjPgPMEosx/YPjl58iRmZmYQCoUwODhoTkeq1fRy39bWVqTTaRDppXpzc3MYGhrCv/7rv2J8fBzLy8vYvHkz0um0oe+5uTkkk0lD48wfoVDIzNovLi6a9e+dnZ1oaWkxs+WcDdjR0YHx8XFMTEwgHA6jo6PDnJjApwTMzs6a05xqtRquv/56lMtlPPTQQyYVn5dLVKtVDA0Nmc2UOcDAS4M56zCbzZrlCZypx0sTRkZGkM/nzekaTJfJZBJKKTz22GNoaWkxGywnk0mzwWM0GkUul0NPTw/m5+dx6623mk07o9Eo/H4/+vv7sWnTJpRKJaTTaUxMTJhJAV5iwxs5x2Ix9Pb2Ih6Pg4jMZAdvSD06OmqWVSaTSbPBJ2dh8Ekm0WjU2IyZTMYEszijgLMkWYZJGcRL2GS2F+s1tnfYHuEAWywWQ0tLi5kA4Y0+BwYGEI/HMT4+jtnZWcML69evRyKRwPT0dJ1fzDzKtMoTotlsFsPDw67HTNrwjAgqADAb43FKmlzPaUdJpeEun2GFwYKR0+5tQ9Z+Rypvt9mJ1tZWMyMjz1UH6lNxuY1SmEsHrZHBIdsj0x0bGR1AfXq5VAJugQnbSeF2s9Bk5cEpqvYSFDm7Ljcp4VkBxjmXxwJE1s8KnuuwlZIMEPCmK/l8foVBK4nejuZLo4sjjcwsTFcygCINWRZ+dlSen+VAgNx1WhrIbBjxePPz8jkAJqjAzMoGCONaKnVAGzSxWMzMgsrxtwNRNr00c/ibfTdyjmW9dnludTcyiJaXl9HW1mYMADtFlrOJOOgzOTlpZpOkMcyOMeNbpq4DOrC0f/9+00bbkOR6mR45SswpbhwlD4VCaGtrw9LSklkHJ412OSY2SHnCBgI7WYBOa+SZEYlPxpPEue2MLC8v1wVZuC+8pprrZh4Fzsw88zIhptu2tjYsL+vUSluOFItFsyyBcTU2NmaOXVRK4fLLL8f73vc+KKVw4sQJfO5znzOprTKQw04cj9G6devwhje8AdVqFQMDA+aIMe4fjym/ywETNtQrlYpx/ltaWrC4uGjOhGYHIxgMGseC8Umkj6vks6ATiQROnTplDEBJj5KWA4GAOQ6VaY6ND5YvvGkSb35EREgkEsbI5t21pcNqL1vho8ds+nGDZgEF2V833mW5LB1wed2WmT7fmfXtbHhI2ndri1I6FbZYLJoUXpnOL5+zJxIY7DYoVb+ZHr/nFqxmp9fW74CWA7xDfD6fdz3elMfd3mNC6ne3sbBxIfWXbd80cvolTiQfSDlt44vbxTzPeGHDVNIal8vy0NbvMkDBbc/lcnW4kf3iYI4EqWNrtZqZ5eSlM1L3uel32Td5j7PLmCe5DFmntAnlXg9SLxORmRmOx+N1wS05VnJCg3nWDqLJDCqWz5IWZJCFy5T63daz50u/y7GQekTSD9OJ5EFbx/G423anG9+n02ls2rQJU1NTGBkZMbOoLNd5ORofR8jlsmPMqfWlUgkvetGL0N7ejunpaWQyGYTDYUxPT9eNcygUwszMDI4ePYpCoYCBgQEopYzTxxv3hcNhTE5O4tZbb0U2m0W5XEYqlUIsFkOhUMCGDRuwvLyM6elpM37JZBKtra1mtpfXsHPwifmNcdLe3o6XvvSlCAaDuPvuu409zEet8+Qap8OXy2WMjo4aOp6cnMS6detMkFsGeDjYwicHtLS0mGMhg8EgTp8+ja1bt2Jubg6HDx82AYXlZb1OPplMYnp6GnfddRfWr1+PaDSKgwcPGhs4kUgglUohl8vhtttuM0F8lvWpVAqpVAqdnZ3GRudgPQfx2dkfHByE3+83RzG2tLQYud/R0YFUKmWCHnykvNyDaH5+HsViEVdeeaXZWHDv3r0mtZ/xw3s+pdNpxGIxdHd3GzuD/Uqm56NHj6JSqeD666+H369PYOCACB+ByY46n+bBp0PIfYw2btyI2dlZtLW1oVAo1J0atbS0ZIJNPKna2tqKa665BgsLC7jnnntMeRwoUOrMxuXss7DMkbqLaV1mV8oJ0lQqBb/fb/YwSSaTZoNHzkzx+fSJK7xPGXBmE1Hp77G/wsd2c7CoGTwjggpKKQwMDCCXy5m1Q1JY2MagbSBJZSs3D+J7UtFIJS2dULmpjnS0fT6fEXhuSlwaFm7LKGzl38wA5HJsw6hZgMAW+mwAcN9kf6UikTPr3E/bMWYDV/aRy2OCZwIFzjhq/A4TPWc5uClqxj0DO3BcBh/rw4EfGXThvtszKcwMzGiMT6YNFurcBo6OsvPD35w+x9FX6fzL7Awul9Pa2MFgJ5ZpA4A5+oXphFNMuX8MjC95zJbdX7dZQQluxib/l8aBfF7yCF+znVm38uV9GZiRvxl4kyAOKMjylpeXTVrf4OBg3dF8jFOm5/Xr12NwcBCPPvqoyURg+mpvbzdODI9ROBzG7t27zRFJbBSwE8d95mPP5KwzG9JS9ki+YFxKY5h5QAYTlpeXzaZO8/PzJjBnBzNtXNoOA7AylZ1BbtQm35EzLuxAsNPNm5pySrHEN3BGrsg1m9ls1sy45PN5dHV1oVqt4uabb8bc3JzZZNPOEuI1gLye8bbbbsOWLVvw0EMPmcg7GzFsYLK8YdnD4yYdHwB16fh+vx87d+5ErVbD448/bvrEOOFjuKLRqFmTzTuKcxqsDC5Ig7u1tRWxWAzFYhHRaNQYDrwDMzsK/DwHKxYWFurkgjTO2fnlcWCQOsXmJ7dgkw1ufMpyx6ZnfpbrZPqQmVUcKJL6yXbWbeCNwiYnJ+t4Teob6cxw/bYzLdss+2TzEPMHg2wvt5lx76bfZUCOwXYIuZxG+t2Nb6VOdXPs3MbVDqbagQy3MmQAVeKOf3MZMrDD99lJYJ6V6bVSD/OJDXK5Dz8nZQjvx8C/E4mE4SleY82zcNw2N1uB9bu09XgM7fGVy3jYUGf7hAMmUr9Lp4iPKmZ6lIEgDjyzfOH2yGxCxgvP3nIb2XGQNO02ccNwrvqdfzfT75JPpG0ny7FpjL/XInOAM/tnMN5ZnkciEUxMTJgg18LCgtnJnzfgS6fTWLdunVm/X6vVzNGHSil0dXWZST4iQiqVMnTW19dnnEyeaWaZdeLECXNcoOxXJpMxDhdn3PHpDktLeh8Rnr0ul8uIRCJmbFkHsL4LhULYvHkz2tvb8eCDD5oZX6Z/pmuZGckOMQfRiXQguqWlxUyMzc/Pm6w/pn+fz2dOYWJcptNptLW1YW5uDqFQCAMDAwiFQhgaGjJ18rGQc3NzuP/++9Hf349169Zh/f9j7s1iI7vOc9FvV3GsYg2sYrE4d7Mn9iS3WrZmxZDjxEpsBDcJYCOJkQTIBc5jXhLgnucLBDjPeUnuyUNwnSBG4hiJDSPSka3Bkqyx55Fkd3OeimOxBk417PtQ+n5+tbTZ0onPufAGCJJVe6+9hn/9w/cPa2QEu7u7yGazqNfrdlTi2NiYASrLy8vmvfc8z0Dy/f19O7K+Xq8jnU7jxRdftP3y9ttvY2lpCeVyGTMzM1YIkbWEqO9XKhVsbm6aI4cABk/uiEQiVpOAegLXl+kgjH7p7u7G3NwcpqamsLKygpmZGUxNTcHzPKRSKVy6dMnqu3R0dFjNgEKhgDt37pieGo/H0dfXh87OTqRSKRwcHGB1dRVjY2PwfR/Ly8s2Zzxem4AHTxahrsQ6DIzYoAPBBRVoU5BO1U5S3p5MJnHu3DncvXvXdFAW5CTNlEoltLe3N9XE0HfosbcEWLl3CPzt7u421TU7ct8/9tv/n656vW5n1DLMVTtO5ktGRiNVBakKYAoNerM4WTROXeHLHBU+rznKvt+oJs/NrkrpUcaXfq9GPa8g44QKpWus6D16uYoM54iovCtw+IwaFnoPFQk+S+LW59Vo59zxc6LzwKG3QI/opLFOoncv7RcLuwCHBjuVFA0NpDLhCjn2T/OU+azSgipW7CNpzw075VhUidF5icVi2NnZscgDV+kgHdILXyqVmkKxleZU4SWCSwOctK/zwLXVdX6csH8c7bqfB10632ocaFt6b5AhpFW3VQFimzQWu7u7sb6+bvNNY/Tg4ACbm5tIp9NW14KVoqvVKn7t134N1WoVb775pnkf0+k0stksFhcXjcZ5RNLS0pIVVaK3SWlTPaxqCOmcchwKxDHPV0NzWbmaNSAoMNTry/aIFLtzrLTozjuFGb3ovu/bEWd6LCTfU6vVDLghfZGPUHnRPctnCaIBwOTkJP7u7/4OOzs7ePPNN238VKYqlYophDTWh4eHUa1W8dprr9n601PIkD8aGtw34XDYPFs8zosF43gEFI/pqlQqePDgwWcMUBpE/J/A0wsvvIAvf/nL2NzcxCeffILp6WkbLy8qmKVSCQMDAwY4kXdQQWJ0TTQatePH1FAinbNvfIcbHaF7PGhPu0anfn4UD+A8Mn1E6dUNBacR6fIlgmEuGBBkbNTrdTx69KgpNDxIfis4qwaP0vxR8l3nU/cn22XdH51j3q+FsNyoH+2H8jGVza6M1d+8uF9cEOwow1ANfXfsOm+uccjLjQJR+c49re/lPZRXfDfb8v3Dei2cG4aAuzqR8kj9TsFzehFd4J/8mzRCfUN5ns4pgTv2k/1XQIBtabSK5igrQML7VM+h0Voul5vS1JQ3kl9ST2AaXhCtqJylLNN6Kr+sfOfcfBH5HtSW0rlL3wQI3H4EtVEul/Ho0SMsLS01AUThcNg85HNzc5iZmQEAO2aYa9LT04NMJoPbt28b/+jv70dLSwumpqbMWI3H42htbUUmk8HAwABu3ryJZDJpKWyhUAhLS0uo1+t4/fXXcfXqVezv72NhYQE7OzsWns80vs7OTiuS6HmeyS2ewkDZGovF0NnZafUBaIxtb2/jhz/8IXK5HGKxGC5cuGC8hEWqI5GIhdSHQo0IvEuXLiGVSmFvbw/nzp3D8ePHrQ9cD027Yz8ePnxofHtnZ8eOQ4xEImhra8PIyIjV9WF9sWq1ip6eHgP1WBtocXERBwcHSKfTAA4ja0dHR+1YQgB22gL1Io3QISjHI0JZvJhtcm8UCgU75YC8hs4DvS8UahyPyaLZ9XrjZKa+vj4r1NnW1obW1lZLV83lcnbaBfUCnpIwNjaGcDiMUqmEXC6HgYEB4+8bGxv4xje+gatXr2JmZsZ0tGQyid7eXuzs7KCnpwcdHR0WhXH9+nXMzs4iFAohGo1av1mM2/cbQPzDhw8t0obRJhsbGxapQp5KII5pONxbBEGBQxCyra0N+Xwe169fRygUsjUPhxt1G2ZnZ+H7Prq6uuy0By3MyIK7jPZif9va2pBOp21P0Gahjvy461cCVABgIacussrfKmRpxHLC1cDj/SqkgEPDkJNKBV9RdBbzYm4UBQwZsWtsucaQvl8FiX6mxogybtcoUAXBFUbavgoMVaSClBQ1IqjcBBmAAJry/Pksx8q54w8Vair/fAc9QBTEFJpUBIhOksCp6NPAYX80pYX3uvOtwAY90AQi+G69n30nPdGw0JBRFrnh8+qFdjc3UW71TCvQoqCKW21VvYKq/Og68X/OoSvsdWy6Zu5cBd2vtMbPXI/J45RqNVD1+8eBExpp4nmeHUvk+75Vie7r6zOlgHuMoKPv+1YRGoDtWdLiwsICotGo7XkKogcPHgAAnn32WTuLuqenx7wBVHoBWM4l+6penlAohO7ubmOyLtDG+dG0Kj6ve48Gz1FHVjKKxjU2dZ4VeKDyzj3K9aESzT5qihP3qhpq9GTv7u4a+EWhx8raanh5nod/+qd/+kxI6NDQEJaXl83gJo+iUscUk66uLly+fBmZTAY3btzA/Pw8PM+zqAP1CpFeOY96/Cf3DO9hmgcFI8edzWaRTqdRrVaxvr6OSqWCU6dOWY7vW2+9ZcaCawDX643w3fn5efh+o9DYiy++aFXI6XXjfaz+zP6RV5TLZZtrejS0YCXXO+hyFXrd6wqWBj1HQ06Lg5IWdD05Vr5LDc6jDGndH3q58v1xss/zPJPFKt+DeAv7pxEVekoI6VhlF3kFDX3uETeCgM/o+h8FKrhy2OW9QcCLrt1R+oOupwtkum3xf8oeF7jQ6ygwkpc6JzTdqKOjw+af4KBb50bzgIFDZw71NR61R1pTHYzvUUBC10GBeeVLyoM5LoJUrKIOHKYwkG+osauAiP5mlBsNTspg1ZE439xXCoy4uhdpzZWxXDc1/N211r+/qHx36VaBb93HQfL9KOD6qKter2Nubg6+7+O9996zkGsCgfTw01Cbn5/HgwcPcPLkSRSLRQwNDdkcFItFZLNZ844WCgWEw2GkUik88cQTmJ6exocffoi+vj709fVhYGAAPT09GBoawsrKCvr7+3Hx4kU8evQIhUIBMzMzKJVKSCaTlsLAaIn29nar6u/7voFMPNWIOitrhTESNpPJGEjGmk7FYtGOVkyn0xbyT2NS17ulpXHawv7+Ptrb25FIJJBIJOxIReozNIrJDyuVCtra2ixlQm0hyhBeCwsLTTwqHA6jq6vLIkcYIh8ON07ZmJ+fRzgcxokTJxAKhZDL5XDlyhW0tLRgfn7egI3d3V1MT0+jWCxiYGDA0k9KpRLOnDmDnZ0d/PSnP7XTCmq1Gnp6etDd3Y3d3V3kcjmEw4cFzxnlUy6Xsb6+jsHBQVy8eNFSE+v1RhQr0yVqtZoZ3slkEh0dHdjc3MQvfvEL+L6Pvr4+pNNphMNhjI2NIZFIGJhBQKRWa9Sr8P2GoyuRSODkyZMYHBzEuXPnsLu7a7U6jh07BgBYXV1FMplEsVjE0tKSpRZUKhUDp+kg397eNsfg2tqapT0Xi0Wsra2ZzOe+JNjkAgrcfwqyKj8Jh8NWfJG6huc1UkympqYsIoQAA2m0Xj8sCs36JS0tLVaXgjYSeW1XV9fn8oBfGVBBQ9+UCbugATcF0Fw4CDhEmdXjzx9VPur1RvEeIpAUCKzSSWWEx5SoAOLz6glQJSRIyLuM3TXQjvpb2wi6dJ6OUjp4UXhSUAQpHKrgqBJEwj5qfMxrpLBy1xRornpPwUtGqeCECjGt5K1rrB4bvpPGOttX4IP3ubmRRIqJeDM8Se/jGBWd55zoWFV4AjAvK+8j3dAQUqXFpSMqdES2ea96zlw6cNcxSAEIMgT0/s9rU3+TRjgmN/z0qHfp/wyTrdfr5skFGnmHx48fRyQSsWOmGKLFgkSqpNHrSuO4Vqvh+vXrTZ5uz2sg5/fu3cOf/umf4umnn0atVsNf/dVfYXJysmmNuAaqDJHvaGQM01zUwOA9PE6VQkyBQnq2VWlTr5caTQRa+KyGXdLr0NPTYzlvbNMNn2fUgkYTcR8p8MfPWcTQBTt83zeFqaWlpek4JM4T3wk0ckM1DYBj5dGOpBMqVwRIQqGQFR6am5szvqzzw/nmPua6sCBSqVSyokdUyFpaWizEsa2tDblcztq+cuWKnQzh+w0PWGdnp+VZhkIhU0xYiXt/fx+/+Zu/ieeffx4TExO4c+fOZwxGGln6fo5Rgbkgnhu0b/h9kJGhIey6V4OMYfce9pFgr841I0S00jf3nGvQ6frzYqRAkHx3jW3OixqmbJNKNu/nvnAVrd3dXTsaS6OEyA+4DyiTCCArbQXJ7aD1CAJUj+J5LrgQdI87P9pmEE/Xz3Vt3T4rgKRGpSvf9X7yM6ZLKr/SNCvySToNKOPpNVMAh/1jGDflPmUv+RTXiPoW+a3Lw3QfUfaTD6h8Z8g06Ud1R45X6UllHuuouDxUQX7XCcB23EvBGhpH/yvku36nzwZdn2cYsC2V71xH/d5tq1qt4i//8i9x8eJF9Pf3w/M8i97isYvc1wzTZx2cs2fP2jvX1tYwOTlpR38yLS4cPjxJiAWYX331VXz729/GmTNnzNM9MDCAjY0NZLNZjI6O4rXXXsN7772HaDSKV155xd5Nbzlw6BAoFotmbHPM5NuRSMTAAnrkgUYUpOd5Vo+JpyQRkCAfcw1D1nGo1WpW7JeFzmmP7OzsGC1T9hKkX1lZQVdXFyqVikUbhEIhq8/BaEKCDdQnU6mUOd64Z/v6+poK/hUKBaulNDExYfRPmXxwcIC5uTnMzs7i4cOHGBsbQywWM32Exr/v+3aKRC6XM+cCT2JIJBLIZDI29zwCvFKpIJvNwvd94+XkJ9RvqGexHtPdu3dRq9Xw9a9/3Yzrer1u421tbbUUC01/5XodHBzgk08+QX9/vwFNAwMDWFxctNMZKpWKRTnwHQQlCDCPRrN2AAAgAElEQVRRZ41Go4jH4ygUCnYENdNyKYuYkkLAlnoZbRoCWOqgJN/hvQQ8uZ4qD1g0Uu0k0gX5JE8FuX//PoaGhqwwJvUm8rfR0dHPLdb4KwEqUEEJYpYqMLjpaRC6yowCBK5ApoEGHHpk1OA4c+YM+vv7MT4+jlwuZ+1q+HoQs+Z3R0Ug6O/HKR4q0IKuxymZqnCol0T75z7nGoMaVkljT5UOEr967NVo13VUY5t9USCDCp7mupFZ0GNXq9XMS0vFXD1sQHNRQ22Lz6jAV4+E9oth2eyXFiHhParIBglSMi4KRBp+9JppP3m5Cj0VZla7pxKnYZF6fxCtqDIaZOAfpcTyniBFw1Vm3T1AulDQ6ote6inV/U2hHYlELDSyra0NY2Nj8LxGTtri4mIT2KRGS61Ws//JNJUnKEqtXjYX1FRDlXRPGmf/OWblA5FIBGfOnDHD9pNPPjEvFPDZ89BdfuXytHC4UXSHnhrukXq9jng8bsVj3dMx3PVyFXXmrYbDYaytrWFpaQnhcBj9/f0AYJWBCeRQYQJgXkruY+AQOOR7mEff1tZmiiBpmWGTvu9bCB+P9uL548ViscnrzHmhYsSopM7OTqsszbBEhkrSYKGwBxphlZlMBsPDw5b3yirW4+PjiMViSCQSVgwMgOXUPvvss7h586Z5TOjd+clPfoLJyUkLuQyFQgbkAIepVzRQ1OggEK6eSvc6ChjQNVZjxjVK+Rl/B/Fo0gg9R/oOKnY8+k29MkHvcvmEa5C4YyFwwT5Qvmt0GPuhMof/U54rraijYnR0FP39/Xj48KEBcHyXG4ngAh3kbcpzdQ0eByYc1W+9goACbc+V77wnCMzQNsgDVbYrgO/OIeW78lV9ToHjo8ANAhDkmewDw5PpwfP9Q2+wOmnU+aDOJJXvCsJxranEa9/p/WRdlpaWFoue5HuB5rTYoIhG9pfjpBOF6Y5K27r/XPleq9WajARNPwp671HXUfI96Dv30n7p/UH6LftB8Edl9VFXa2srvvnNb+LmzZsYHR21/cXC2dvb22hra0Nvby+q1SqGh4fxa7/2a9jY2MDi4qLJOEawxeNxC9smbyoUCrh69SqAxikkpVIJ165dQ3d3N6LRKP7sz/7MvNavvfYatre3Ua/XMTIyYgAyIw5I70zTo3EWj8cBwAxLeptp+PG7fD5vcpe6RqlUsggFN8qGhh/z6Jmq197ejt7eXkQiEXR3d6O1tdU8+pSXjJYhv6Jtsri4iP/4j//A8ePHkclkrFAfi1NOTk42Rep1dXXh5MmTmJ2dxdzcnOkMlO9MJ1EQkT9ce0Y7DAwMoF6vY3V1FTdu3EA2mzXj8+zZs7hy5Qr29vZw8eJF1OuNQpFra2uWLvzo0SMMDAw06VozMzOYnJy08QNoSjuJx+Omr3A9K5UKcrkcvvrVr8LzPKTTaTx8+NAcUdxn6+vrRoulUskMcu43OpgAWNrHwMAAtre3MTMzg3g8bnuejhQ6ucjn6EianZ3FuXPn0NfXh6GhISwsLGBubg75fN7s1Hg8bpGyal9xr5Lm1QFKfYbFJAFYfYpKpdJ06lU+nzfeHYlEjDa6urpsL9MJk0wmcfnyZQwODjZFXHGsoVAIPT09n8kMcK9fCVABaDbEVUlR41WFAZmcCiQic9zcLnPlQnISyVA07FOZBjemKsNB3nr2Xz8PUkzYJ81jdcevc8C/HzdfOi/u/UFeCp1bMicNL+UmJCFxHlzFRI0oAgmqfNEbpOesK7BA41k9XRwTCVjTABQIYZ4TETMSf2dnZxMQwXfx+CIFB9QDzb674cKa1sENzvkl6EEggn1iCC77xOdcQ5LzpMiiqyQqIukarket+eMUiqB7jqI7fqcgjdK2Rgdwf3DOXe9lUJ+04JYaDzTG7t69i9bWVqysrJjSFovFLBxf88NosLEI2NramiHblUoFZ8+exb1794w3/OhHP8K7776Lrq4uO+3ABcdIc6Rjpii4tMp11GeoTJN2+Jl6p3kpg9Y9yhC07e1tixyg14K0TH7n+z4GBgbg+75VrFb6d6MpSD88zjGfz+P999+3sScSCfMEuPQYi8UwPDyMyclJ82Ko0qlnLG9tbSGdTpuHmCAOPZkaCQQAv/jFL5pSM4j8U/nWOic8ylEjHzyvEZ69sLCA+fl5a5trwL06NjaGp59+GpFIBKVSCffv328ygMhnAGBkZARf+9rX8ODBA3zyySe4efOm8S7uz5///OdN9E7jgf9zjXluOMNRlXceZQy4n6tRqTwjSF64f+v+DbqH31ORUx7T0tJiJ98QCHE9q2qUu3JL6d7dP3xWwTo1Ytx9RG+1a3hxf2lxW5enM/qNfVL5Tj7C/uicErB050xlXpB8d0EKPh+0Nq7OwN8ur1f9xG2T3yufUrCUMot7kH1U+c49oP+7Ri/3EwEA5TmhUMgUdw335xi5p0lD7Ifv+3ZsHL2I3Iv00nL9VBZ2dHRYSLbKd+W3nBMdgwJ4uh+Bw2N/qcMQBNW6H3ye73BpTWXC58l3XdsgXdKliccZ9vp+pQ/9HURbvJ9rT/2MuqK2FSQH2calS5fseD2CvdQD6b0dGBgAANy7d888uQRqGcr+6NEjdHR04Pz58xY5R56zuLiIrq4unD9/Hu3t7VhZWcH09LTVuQFgQBYA9PT04Jvf/CZ2dnaQy+WwtbWFoaEh6zML6e7t7ZlDg2Ojo4mRCdlsFs8//zySySTef/993Lt3D/V6I4ycpzJQf+UceJ5nkc88WYrRAzT0Ojs7kc1mrT+bm5u2B1gEcHd31+aWJwvRa840OqYzPPPMMxgcHERvby/Gx8dtjw8NDVnxPUZrUO+n0cwaCQTT0+k07t69i2q1ipWVFTNqw+Ew5ufnMTw8bOmkvb29iEajBtSnUimrJbCxsWGRHOPj47h+/TouXbqEM2fOoFKpYGZmBrlcDl/+8pdx6tQp0+HoMDhz5gyuX7+O1dVVbG5uAmjoArlczgCatrY2c3qQ57GeBHlTJpMxXsJTKtLpNO7fv48PP/zQoiR4/CbBCJ5GQicFQcL29nY8ePDAThGhPcLIkpWVFSwsLGB9fd0iU9rb25FOpxGLxRCPx5vS80lPelqe7jXSNvVT8iqmpVSrVUvL4GkeZ8+ebYqmABoFSuPxOC5cuGAFOOmMYVTQ9vY2crkcjh8/jmw2+1jAE/gVBRU0lF4FlcvY+Jx+rsJRmTk9yFQcSHhsiwVllMmzffZNwz6B5rxEBRtcAuAiqJFylMGlikHQWIPmi//rs9oXV+gpSKMKRygUMsSLwh44DBPUPuu6sJge55aKvuvxIDrPdWJfqOAwdI3vp8LCcVKIaa4mQQaecauCkXNNBUC9g2qYqwdGAQDXIHGNaioXzE1inxTZ5fv4Q3ScCgznmX/T2A7yWroKoo5VL1fpCBL8SjtBl6twBBnD/F6VKTeiIsjA0D1JcMJFwnO53Gfo/u7du+jv77f10zBW0huP4VMFc2lpCYlEwsLtK5UKVlZWrB+kxba2ts/k6QJoAtd0nKR9FtviWtZqNdy6dcvoXQEUnQOdYxq8CpaycE6tVjMEncoylVXm7/M36ZSGGeeYfHJoaMjCEguFAt5++21Eo1HzuPh+o1gR55ShekTBmTNJXsGQSgpPgjycH95LXp7NZq2IEumKl+4N0g3zCjkWgol9fX0olUoolUro6+vDzMyM5SpSKHKOuY4sqrW5uYnV1VX4fqOoFgEq1jjgPIdCIVy+fBnnz5/H6OgoJiYmrD4Ekf9qtXHkKEGYRCIRGMHS0dFhub56MgQrSbM+R7lcNqVDaV+ByKPkk7vvgmSLyyvYJtvR96qBBRwaQcViscl7q9dRBo/yKtIW15M8je9RPqC0AzTLDTXy6/W6RTeEQqEmQ8b3fVNWNdTeNeBJt+pkYP+C7nfXQOW7a2AeNR+8gnQGl4e7BjDnMIhGKF9UhhFw0SNBucf4fJC84XnsGm1D2cf1Ir0oyAI0F0tm5AjXkOvDd5OnsT/UC3Z3d81jrLqUAtsuQBA01ypflacAhzoA54R9rFarts/ZBvUSpVfSi6awkY5UL6Iu9Tj5rvPI9h93HSXfH3e5jglXt3Tlu4JWLp9xr7Nnz2J8fByffPIJvva1r6Grq8vqGmQyGUSjUSwtLeHg4MCMlnq9ETk3Pz9vXvNMJoPOzk4kk0nEYjFLodjc3MQLL7yAQqGAVCqFEydO4IMPPjA+8L3vfQ9PPfUUQqGQRfExSoae/vv376OlpQVDQ0PY29szWUI9sl4/PMFHQ+81LaKrqwtDQ0O4ceMGCoWC2RSMOC0UCnbKFNeecpcnDtTrdQs1L5VKSKVSls7AQsTJZBKJRAIbGxsGptP4JFDN4xlZ6DgSiWB0dBTd3d0oFot4+PAhqtUqzp07h3C4cfIUa8sBjWPcI5EILl++jDfeeANbW1sGLBBIAGBRFalUyk7DYJ790tISJiYmsLi4iJs3b6K7u9sKYd+4ccPGWywWUS6XEY1GMTQ0hHq9UYdjZWUF169fx7lz53D69GnEYjHbp6w3kc/nsbq6anoaIyiZys60TADo7+9HuVw2AITRjel02nS9g4MDi0rM5/N4/vnnsbm5aTUIqJMx0pJ1CUqlEo4dO2a1Cfr6+lCrNU7oGBwchOd5Rje7u7tYWloyuUleEo1Gkc1m0d3dbad8MLpRbRDSNaNHyHfIE33fNwCI+5KymtEqdDqxWGW9XrdjOVlLiukp1J/oIIpGo+jv78fu7q5Fkz7u+pUBFag8uEKQzFoNWjI9FeSu4qFeOj6nYSXq/eYiUDGnIUDPGu+hgaqKrxqkfI8KVvW2EJ1Ugc/+qCKlwlI/D/Ju6N9BXmXtl9tPjknnr1QqGQKnhjLbJbMjOnZwcGDFPdSgZhSAGun0kmioE8fLKqR6UUFUQU4Pq1ZXbW9vb8pv0+epvFPRV/qigeYq4TSOyLgIdHDtXeXINeY4b5xX/V9RRzWslSZUOaRR5Spu2obSWZDiGwRKBf2v97m0pTSo31E5UiVc2z4KPONeJNPmPRphpIorI0tYcIdHz6rXi+vAvE3m89VqNQwNDVkII3BYOFMVwGq1imw2a/l5uVzO1oC55O58HTt2DKVSyY4p0vQA5qwlEgmEQiEz9NVw43xxnDq3mp4V5AVTY6pYLJqAUSPBXZetrS3zyLMicb1et4rD3C/9/f2IRqOYnJy0PaIAEMMoBwYG7HxnzqkWtiqXy+ZlODg4MOOb0VCqsKoxzt8EDJlSxFz55eVl23NUBmmUk29wXjkHPKq0VCrhpz/9KXy/kWddKpXMu8RINa7966+/bscxUSHgOqdSKSv65Xmefc/6KlwL5g0vLCygUCg00SpBjYGBAfM86KkwXHuuv3o+VSYFyQbXYFHgQA1T8h7yKtKg8syDgwMsLy+bgscoD5dm2e+j6FXllPKEowB68kfts0YpUBYHOR1UvtdqNVPYKN8VbA6S70Czk0LXhD/cY/Qikj8HyTKVA+yvyne9gj5T+aA8UvvifqYADhVJGj0KeuseJLhPvlcqlUyO63g5Vr6bYf3uPubc0JvGz3Re+QxlrYYVs9CpO59cf11HXR+upwt0UL9RJxEjDNkXF1DX+k4KRKijhmNWUEJBqS8i38nTHiffg0CDIJ3vKJpydYOg/9knBT9ch4HKZ22DdEODpVwum+FMLy8NPUa+xWIxLC4uor+/H/Pz8/bM8PAwMpkMarUaFhcXEY1GkUgkrEAzDaP29nYr8Ly9vY0bN24YIHH69GnkcjlMTU1ZGH1/f78ZskyPIeDheY2ogng8ju7ubuP1lUoFGxsbGB8fxzvvvIPR0VFks1mcOHHCjjkkgFAoFFCpVDA6OmrFiqenpy2qlbZFrVYzg55ARHt7u9UXIiihxXs1mjgSiVhBvZGREaRSKatj9O6772JgYAC3b9/G8vIy6vXD1MJ8Po979+7hww8/tLoTS0tLePToEYaHh7G0tIS9vT3k83mTUd3d3UazJ0+exMDAAB4+fGh9q1QaR0FeuXIFJ0+eNJCN74tGo6jVGkW0CaY899xzmJycxPvvv4+DgwOMjo7i8uXLti9qtcOC71tbW1ZHghEvnHOmgRI0JG86ffo0JiYmMD09baDQ8PAwNjY2UC6XMTs7a6kY/L6vrw+tra1YXV1tqlvFqFFGkXI9UqmUpchkMhkkk0njI1yvbDaLM2fOoFAoYGtrC11dXbh48SIGBwcRCjUiURlhp7YUbRvKFu5B6pnU2agvUj8hyJVMJpFMJtHa2tp0JCsvAh87OzsWTUHb6uDgAMlkEt3d3Thz5gxef/11rK6uPpbHAL8kqOB53gyAIoAagKrv+1/xPC8F4J8BHAcwA+A7vu9v/c+0G6RgK2NVo04ZIJ9RhUQ9zioQebFtoLlQkSo3/J+Eyk2kHkBtT/OeVOCTmWrxIn6v/1PpUEQ9SMlgv1SQ0ThSIUBhq8ANgM/MD+fe9fKpYFRDmO1wvRQMUhQfODwaUr2Y7D8RODdXhyHSrtJK1JeeCyoEakzxGRqX7IMWhyLTAw5D3FiVncqlesF1LPyMz6iyrBEaGu2h4ZI8bYDj4RoqXSnoovfpvKow13kKAgiCriC6Uno4CkwgeHIUXbpgmKu4uCCiGgUMY9MIDp3bwcFB1Go1y3fnczpmrmc0GkW5XMbCwoLRCM/k7evrw9bWlnnhAKC7uxvh8OERY7yoKOm81+t13Lp1y7wbDOtsaWnBwsICVlZWzLDWfrrGFPeFfs5QOB2Tgo1cV1VM+RlDj6mcKw3yTGeGOmqOvNYqOX78OC5duoTvfe97mJiYMGGnvFeLPxLtp1FPI5BADPcd/89ms2htbcX6+rqlE6TTaayvr9u+VHCiVquhra3NwAkNc2ZoIsFD3qe8nQrK+vq6GckKELICN2sitLW1mTfnxz/+cdNadXR0oL+/H5cvX0YymcT169fNu0F0n+eE03vB74J4Q6FQwOTkpNGKGp8U+HqpzNDPgkAE3W9Kg7xHgQvX662gAn9TOVGwz+3DUfKKn7ntcqy8aOxRQVSZ7e4//f8o+e4a4HxfkLxnuK2OzQVsGBau66DgNeX7UXOi8v1x/Fllu7v/OU6V7S6wonJF5aHSIPeFyhhtE0DTWrO/brqI0pdrvGpNG+XlfF51KDX82W/Kd/Xy815GQiioESTfyXcIKKgeQoCV/edndIwowMT5UDlMvVD1A+qAKotVd2JftN3/GfnO30q/R11BfCFIvjNSixc9mkzt5FqoXuj2AwDK5bIZeK+99hqKxSLi8Th8v+FR7e7uBtDQuT788ENEIhGcPXsWm5ubWF9ft7D/fD5v88ACfvV6I+J4d3fX3rOwsIBwOGzgMh1PBKLj8bg5rXy/4c1miD7T+EZGRizijLJwfX0dzzzzDObn501nGxwcxPr6OiYnJ/E//sf/wNe//nWcOXPGaK1eb9Q52traQjQatdOEaFSzDofqzAcHBwZmb29vIxqN4oknnsDg4CAmJiawtraGtbU1rK6uWiFF7in2+eDgwIAW6pZzc3OYnp42mtvd3bWTC1ggMp/P48KFC1YHaGVlxaIImF5MIIK0nc1mDcRnSiSdDCdOnLAIE5U7W1tbFinC8fO5wcFB7O/vo7OzE4ODg1hbW7M0Fj0Wu1AoYGpqCrVaDYODg+jp6UEymbTTG1jscXZ2FvV6HaOjo3jrrbewubmJcrmM7u5u9Pb2Yn5+3tY4m80ikUiYftjb24uWlhYDmFRvXF1dRTjcqG9F4LWvrw/nz5/Hzs4Obt++bUAMa64MDg6iq6vL5nd4eLiJF2i9B9/37UQqypByuWxzz8gEAgoqf6gnsOA5iz8mk0kcO3YMnncY1UpHDQEfnlhFnsj6dayxkcvlMDc3B6BRc+IonZ/X/4pIha/5vr8u//9XAG/4vv/fPM/7r5/+/399XiNkdOoVV2HpKgauoUzGRuGjBjovJXIAn2H66qFgQQygORSRbarwVoFKBJIVXIeGhvDCCy/g+vXr+Pjjj41B67hd8EBBEr7LVTCClBENq3c9Rdo23+t+76LufAcFtSoVNKQ5bhWoOk/aHoW0jovfaUoI+0+Gq15NXT96Nfi3K9zoUQUaiFwQiML76YlU5cPzPDt2SIvGsV31gnR1dZkhykIsHDMFjs6/FoRknxiSpRE17lwFAU1KG7zcje8qJHrpe4Iu7i+G43GeOV6GQnMM7nvdvlF5V2WS99VqNYtAoSeDCntbWxvef/99nDp1CouLi00nI3COiGrzfw1VJX8AGnl4BHq0jw8ePDCa0jb1cg0gKsfHjh3DwsICyuUynnvuOTuOSC/1pnHO1JjTva39CzJE+Nnu7q6F9tNQpgeEJxWQVjkf3d3deOmll1AoFDA3N4dTp06ht7cXH3zwASYnJ/Hxxx9bhAHHRzpg7QoqSNyX+/v7tnZ9fX3wfd/y9Mhr2XemRTAvMxQKYWNjw9aJ+4kFlRgpooobqxbTkNP+ZTIZFItFK3RF3sVK2Dyui/TCqBeCEZoTTrqkEUA+v7W1hXv37mF/fx8XLlzAo0ePzGtABS8UahyreebMGXR3d+O1114zAIIe0Vgsho6ODmxtbTUVfaXBpPtX9yzXhd4xRua4tMQ5dfm/yy+CeAN5PyP3qJjoUa0uYKiyUfmAymrdt9ofV6a4fItAo7ap7+aY+Q41fPRv0gXXSHkq973qCwq8UCZFo1EcO3YMzz33HG7cuIGPP/7YvOvu2LVdjs817nRtVL4rYKJzpuvqtuUao0FjYps0gjXyQE/dYN+oW6lc1/bUUFJAhntSI7TYH7ZJXsfn1YAFmo/q1XfTwGd0Gi8Fu0ivetQe30dPHcOkSZ8MY6cx6cp3zjF5m6ZA8uL6sF8EGoLku6v/uXStNOUCZzovLu25OmPQpVG+DMsnbTCqjaA6HS1Kd27/EokEnnzySfzt3/6t8dbh4WEMDw+jra0NnZ2d2N7eRiwWQygUwvr6ulXSp7EXDocxPT2NkZERhEKNVLvu7m57H1PuuI7k3+TdzK3f3NzE66+/bmkQXV1dtvfoCGBKH0PQW1tbsbm5icXFRbS3t+Py5ct4+eWXTW85e/YsqtUqlpeXzQAmMBAOh+3d+/v7FhlIMIXyplQqWeos6Z/Ae7lcxtzcHOLxuEW50UFRKpWQyWTQ19dnEQDJZNKir1jgke9l7Tjfb9Q7GhkZwenTp9Hf32+nIF24cMH0tlKphO3tbSwtLSGTyTTxBs4fo0YI4jFdg970kZERbG5uolKpIJPJmKxaWFjA0NAQMpkMNjc3rRZBd3e3gRKhUCOllHuK/GZ/fx/z8/Oo1+t44oknjM8eHBwgGo3aXm5vb8fx48dx7949TE9PIxwOY3h4GOvr63jqqacwOjqKd955BwsLC6a/rK2tIZfLIZFIoFqt4pVXXsHly5dxcHCAH/7wh6bDzc7OYmdnx449rdcbBTRZ7JLREnt7e3jyyScxOTmJzc1Nq4MVDoctPVJrs7DfBHIUsK5WD1N6CSiwsDzrRgCwiLJ8Pm9zSt7Gdnzfx61bt7C3t4fLly+jq6sL8/PzWFtbsxQjjsPzPKOPlpYWbG1t4cUXX8StW7fMSXbU9b8j/eH/APDyp3//vwDexhcEFVxFgAJPFVIKCDXW1Nu3t7fXhIyzbVXeldG6EQPAYW6l9k2FtlsTwVX0gcPigX/8x3+MP/iDP8CdO3fw53/+53j06NFnUGhVAtw50DZVyXK9QRQCQeH8nAt3PvSioPL9w2PaNAyH7wiKKHCjEvg+TTEBDk/dUOWKfxMh45qwPRdUUSCCfSLjAw6VTjIy3z88SooGFdM3VDlSo4F95UYG0GQEU9Cq4OWaM5xfIxO4Lkp37J+ul5tjqt4o91Ll+ajvtK0ghUKfDTJagtomAs3vOBc0ksgwP+9dLOTjeV4TYMMIlEgkggsXLtjn9+7dM2T8ypUrAGDv9f3D4l9c00gkYuGD3EPsN425/v5+C32n540/FPC1Wg3JZBJnz55FpVLB/fv3La+OtEo6y+VyyGQyOHfuHADYmcS6t/i3euhUieR7CSqwQrEqfjqn3B9U9gDg1KlT2N/fN0WEYI9GfZRKJdy+fdvSfIjyU9jNzs7iX//1X5vqPPBvLY5JBZxj0X3k+/5n9g3XlwpVvd6oK0DwgYoZQTcCIqrIDg8Pm7cBaABE6XTaAIZKpYKFhQXbvyyUpSlt9IaHQiHz2rDPPT09SKfT5sUigEbAIZ/P49GjR5iZmYHnNdJbFhcXbU2VP7W2tuL8+fM4ceIENjc30dPTY96Nt99+G6urq3Y+tNIU6YQKJwEDpQHyGXpV9XM3akoNLhd4dWWKKiK8+Dz5K8fJfeca9HodZeirfNdIHVe+s23Kd46ZfVYgQg1mHZMa45oSo3LbnRd3vlwe4vs+/uiP/gjf+c53cOfOHfzFX/wFHjx48BmgxW3LBQ9Uvru6iMpynSdXP9Af/U6BFF0DRjIRBFMZrVGIXHsFFtzoAuVnrk6i71QQXj3damQreE6exp9QKNTUBmVqJBJpimJwIxxdhwfHSV1Sf5M/sM/US2jAKLCpMp17RfuvTg2Cfjo3Khf0CtpHOo8urX6efHdBKv0uSMbrHq1Wq8b3qENxvwe9i9fCwgI2NjZsvlZWVnDx4kWsr69jZ2fHwOpnnnnGPKXnz583j/LCwgKuXr2KXC6Hvr4+hEIhS3OgzsD6ApQR6XTacv5paM/OztoRgjQ+Y7GYpTOcPHkSmUymCewh4MBaIlevXkU2m8Wzzz4LABgdHcUf/uEfIp1OY2NjA5FIxFJyNzc3LeogHG4UumNkYCwWMzmYz+dRLBbR0dGBRCJhOgdB+aWlJavjsL29jVqtZtX+4/G4gR/UneiprtfrdioRQ/rHxsbQ19dnRi6jJgYHBzEwMGB0sbe3Z3n/jLKjo4I6c6lUsnSRQqFgnnWCAHTMzc7OWvrKwftDMdwAACAASURBVMGBHSPJUyxKpRLa2trM68/irP39/Th//jxaWlqwsbFhp2XwxJ6nn34amUwGy8vLKBQKmJ+fRzqdtrpIrBlz/Phx4x+sNXHhwgW0tLTg5MmTSCaTKBaLVsODdDQ1NYVKpYKHDx9ibm7O2mYtJc9rnD7GZxKJBOr1Ora3t7G2tmaRlFeuXDHjf2dnB9vb21akkVE0TGPhSSS0uYBDB+zJkydN5gENICGZTJpezHkjeNHa2oq+vj5Lz6jX63Y0KPtPZw3BcepHQHPUFAuL1ut19PT0YGBgAMlkEn/913/9GZ6h1y8LKvgAXvc8zwfw//i+/98BZH3fX/70+xUA2S/amCr/ZMLMnVFkW8EEMjsyWiqlQLNXUAWuRkMEgQKu59AVzBRYTDXQHFhVmEqlEn7wgx8AgCFrmkOnQkUZvwsyBM2R9kuFO/uh4+FG03OltT0+q32gckFmSyJXJcgN2dY+8FKFkx5NFY7sb71ebwoZVK+F1mfQNWLBqVgsZqg3i6t4nmebjOPgfOqc8nP2Tf8HGoxT+0gao9eXxT7pNQcOoyaobKkyo/3gmNLpNOr1OnK5XJOyxvVRheAoJeCLrKtLx/q3q/jzogKvURrafq1Ws1x+zokaVUEX15f7JqhfoVDj+BqGto+OjmJqasra5/voEXCValbsVmWcfIL0zEJPPKta1//g4ADxeByhUAiXLl3Cl770JeTzefT29uK1115rok+uMwU26YHhmiy+dHBwgNXV1c9ER5AOwuGwVfylIKBHWPmRRgxxfdn2yZMnceLECZTLZUxPT9saUjCwyJHv+5ienrZ2fvzjHzcBLhwD21dgw/O8pqgjKjz1et1CPDnOSCRioZf07hIA4J5hdAXBD4a3FgoFU6Io/HgChtJgpVKxwl9BIfMKOHLOW1oapxnQg8Ajm8rlsikNvu/j+eefx61btxCLxdDf329VtzkfDAM9ceKE9Xt2dtbOtQeAt99+G48ePUJbWxteeeUV9Pb2mgL86quvfgZ00nVmeKR+rj80elRmaTtB8sPdi0HyUo0KPqegunq+de8S4AgyLpX3q3wnjXCfEmxgG9y37FtQf5VHKgCne5p7LGhu1AAjz6bM0jB49r9WaxSs/Pd//3dTllUmcW7YF/aT37ngh7YfxK85Xo5JfxMg4DuVh+t7dO05nwQW3ChCvk9pSsfu9oGfqfzidxyLKwfJNzU9S8dO7ymr2YfDYZPvAMyYUh1D21ZAimCEu0foBVReqqHBBBtp7JFXcx5Uvuv8a9RnKpWC7zdO5uF7XPpUvS+ILnXdXLDmcfLdvVydlw44OkTIWxmqrm3q3tXL7TPQ8H6/+OKLmJmZwfz8PN544w0sLS3hu9/9Lvr6+rC6uoqZmRmUy2WcPn3aKvkfO3bMvKaRSAT9/f3wPA/5fB6pVMoAJBqRm5ubFlXGegrM+e/p6TFHhJ7Yo8X7BgcHcfz4cSSTSczMzODOnTtWtR9oGG25XA5vvPEGRkZGkMlkzON86dIlCznf2trC0tISNjc30dvba8bw5uamefwZvUYwvaWlBd3d3XZks+/7loqZy+Xs+EQAZgheuHABY2NjJrsZGVGtVg1Iobea+7Knpwf9/f1W5PD27duYmpqC7/tIpVIIh8PY2Niw/cbjtlX+0w6j3kTghCACT+xgdOSpU6eMr7DodiwWw8zMjIEHnOednR0cP34c1WoVX//613Hp0iWEQiHcvXvX0h0WFhYwMjJinn7uO0Z+qMNgc3PTHIkaofSzn/3MUhF2dnYQi8Xwla98BalUCjMzM3jnnXfg+z7effdd7O/vo6OjAyMjI9jb20OhULCjISlzGdmUz+ctqpNHWvIkK0akcK1Ju1xT8jnOPfkowSbf95FMJlGtVpHP59HV1WV7gHUPVOawNgMBWEYwtLW14aWXXkI0GsUnn3yCvb09S3kYGBgwRw+jamhrb2xsIJlMYmxszIpNu9HI7vXLggov+b6/6HleL4Cfep43rl/6vu9/Cjh85vI8778A+C/AoQdbFQNVGCmUFaFW76gKOD1ySN6lfTLGTo+Ohr2xHRXMLsNmDrEqqRqmqsLl2rVruH37NmKxmOX+UHnmcxR4HKeGPLvGoTsmV7DwUg8lw2b4Lt7HjagF4fgdCxkBh5EbqoAGCTV9t3oK1MjUcepnqlTTUKfxpPShXlz2g5tBFZq9vT3L0+IGcT0W9KqSbmiMcmxkHsCh4kbFtKenx3KnOK/so3qNqYC4Xg3fb3hEjx07ZkUmGbKm8+rOlauU6BWkkATdp5cb9aHtuMo655VrE6R0uO3wf5c+aMRz/uLxuKVREPl977334PsND9HZs2ebCtaoYaKMmPNNYEk9e8yNo5H74MEDUx4IorEwDYv0ULi1tLRgYGDAjnHiD/vCCA3fb1QIVlCOBSIZds+wRDJ80h89Aaw+Tb7APcv96q6pGi65XA4tLS2mnKiSu7S0ZPuX9KlFftTrzN9q2Gl6gQoez/MMNOju7m4Kk2WBNuDwaFeevMAUFCpG3H98vlar2VFihULB5pIpZOQPrpeQwpqKGpVnPQKT8x0KhcwTROV6YWEBHR0d6Ovrs73JXFDma3Jd0uk0SqWSpT/4fgM4Jl0R+MrlcjaOlpYW3Lp1C1euXDHjgzxWAXIqTW4qm/IEV07xM1fx18vl3RpppjxUjSW3Pfcz7gelOc/zrpB2OGduOwxjdsECXVuVI6yj44LgOjf8zT1I+a56QxAPZb/D4bB5NXm5dQg4/o8//hi3bt2yU0U4TtK8ylz2k3vHNXJ1Ht3P+Z32k/KdodPkzcqbXFCEz7vynWNy+xQkB1x649q4a8HPdf60BoKGVfM9rsznM/SUagoKQ87J30jH5CmarkHFm3PBZxTQoPwIh8NIp9NWgJWpjkFGu0ZFug6JVCqFoaEh4wX0WrvyXenbldk65+q0cq+j9N0g3dddQ/aDujPn16UD9106j9zvBKkGBgYQiUTQ29uLtbU1tLS04N69eygWizh79qwVw7537x6OHTuGCxcu4Nq1a5bG53ke+vv7kU6nDdDh8Ybt7e3Y3t62NONCoYBsNovBwUHcuXMHuVwODx48QG9vL0ZHRz8jC33ft6OkR0ZG8Hu/93sWNXFwcICpqSmjtUKhgM3NTeRyOfzjP/4jzp49i2effRb//M//jL29PWQyGXz1q1/F/v4+rly5YtEBbW1tSCQSuHHjBvb29nD8+HFbw0KhYLonjcpKpYJisWh1ISgrQ6HDk52eeeYZPPnkk8hkMpienkalUrEijyMjI5iYmMC1a9cQj8fNSVcsFvHuu++ivb3dHA8sUkgPOcF1nrJC24Qpfr29vaYfK79JJBLGvwGY931paQkAsLGxgYmJCdTrdRw7dgypVMr2XDQatXSHgYEBK8y6sbFhR4IXCgXs7e1hfn4eU1NTuHTpEgAYsE+DuKOjA/l8Htls1gp5VioVzM3N2QlV+Xwe8/PzaG9vx9DQEMbGxnD8+HGkUimMjY1heXkZPT09mJ+fx+LiYlNaJOcpm82iVmvU8qL8mZ6eRkdHB37rt34Lv/u7v2s64NzcHGZnZw2Y6erqMh2JUTAssE39kRGC1EPL5bIdOVooFJDP55t4VKVSsfpgdLxwHg8ODpBOp+1kr3Q6jeHhYdTrjXRe6mCUC0wtomyibrq8vIzd3V1cvnwZGxsb+OCDD8zRetT1S4EKvu8vfvp71fO8fwPwDICc53n9vu8ve57XDyCwXKTfiGr47wDQ1tbmu0wOgKFtykw1v555/dwAfP7T9puiHlwlTBUDZYxsg+/g5RpfZB68tN/02Lr3a1grwRANuee9GqbMfrrAhvuZOzaCMHwfc3UJpHBzq3BzcxL5nXrDtIKzK6AURef4dK1ohFCx4zypR1HDfxRIUuSfc8QxMARMhTKR99bWVsvVU+OMigL7RlpSOqLxu7Ozg0QiYZ7rWq1mHnT2hf1Vw4/fKaCh9ELP3MbGhoUK6hqqQqfrG6Rwuuvh3ht0HaU0AIcGBpVACkHSinq2XCVTf3Pcn7Z3hZ+TNvX8as4j6bS3t9dy3+7du2fGJg1CPc3B87wmpYj9Vc8g54OFlChIgUOALZPJ4Lvf/S6uXLmCd955B1tbW1hdXcXPf/5zdHZ2NuVChkKNglAbGxvWPsG0crlsdQeo+FIIxGIxHDt2DLOzs6hWqxgdHcXi4qIZtQzVZNHHjY0NKyCl79GIB+4ngiUKBqix6Pt+0/nJLIxIo540e+7cOaysrFh9EPX0sR/aLvfF4uKiRQyw0GKlUkEikcCJEycwOTmJcrmMTCaDdDqNqakpCzFklXnd76urqwY4ETzU8Hv+zRx57nUFQsl3SCs0tNrb25HJZDA/P290T35Mw/PmzZuIxWKWr8g9z7ZYPXxnZwelUslSTuLxOMrlMi5duoRIJIKpqSnMzMzgpz/9qSlrDDt0Pfh8v+4l9o17MhwO21jdPP7H7fmg/a7/uwYDARU1whXI13e5Mrher38FOJTvqsRQQXXfRVClXq+b90Tb1tBrPqfyXcegNOD7vska7YPOmYItGnKq3/NH+R+BaPXwc42UZ6qx78p37Tf/dsEfXSeNygKaiwfyc40yUZrVsep3dAYQaFf54fJQ9RbqWKh7qHxX3c0N7yV9sa8uAEV+qGAAx8uwcobyakQjU5xoACl4qXOs8p0Ke7VaxerqalNKnuoz7INGWrj7R2VwPp/HxsZGE6CgdHuUfNf2XKDgKMeCXspX3HtVT1LdT2mIgLyrawYBR5/SxFc6Ojp88kGeILS6uoqnn34aoVAj1Wx1dRWhUAhnz561UPaXX34Zt27dQrVaNaO0r6/PPKdqHLLoI9OhfN/HysoKtre37QSF69evo1wuWyoEeSQBQ0Yt7Ozs4MqVKzh//nwTOO/7jbSaUCiEq1evwvM8SxU8fvy4GZpzc3N4++23MTw8jDNnzhjNxmIx7O3tYXh4GNvb2+jp6cH+/j42NjYsrJzRlMViEZFIxOQ8a3yw/k93dzey2azJII6RXu+trS3cvXsX5XIZHR0dKJVKWFpaapL39Gjn83ncunUL29vbOHnyJM6cOdO0rw8ODuyYRkbbTU5OIpFIoL+/HxsbGxgdHbWUhFQqhYGBAcTjcTx8+NAA+rGxMTvR6N69exbFcOLECWxsbAA4PPKxq6sL+XweKysrePXVVzE9PW2GdL1eN1DhxIkT6O/vx+zsLBYWFuxo6eXlZczMzGBwcBAnTpzA4OAgOjs7sbm5aekoe3t7+OijjzA7O4vf+I3fwFNPPYV4PI6dnR3cv38f4+PjqNVqyGazWF5eRiKRwODgoOkNe3t7GBgYQC6XM2el2p/q2JicnMT9+/eNTxWLRaytraG/v98iOgiK8jQG0h3TjcjHePyq66ii84RRI8lkEqVSCVtbW1bolA4TAjU8yeru3bsmlxKJBIrFooGqTM+o1xtpNEx74D4dHx9vSuMKuv7ToILneVEAId/3i5/+/Q0A/zeAHwP4UwD/7dPfP/qC7RkjA5qrMyuzpcCmB8cVfo9TmDzv0HNPr4K2r8JBGSc91Gp0sxgM36EKB4UzFV4+SwHKv/luVRbr9fpnQp45Rg1VU2RclRkyTnoAyHj5mWusqtAhQqlzx3Vwo0mClE9dA76fHpFKpWL5+GTeWviM/dvf329SVjj3atjwO66NKj7AYdES0omunUYVkDnQI0glUPPgCUoQzFIPreYxc+653pwHBRiUrqrVKtbW1gz1o4dWc9Dp7Q0yGFShdsGlIKUk6HKfc59RZqmpLgoKcOxBbSmQ8une/goAhMNhX6NzeLHyOvfpw4cPjc7JyLg+w8PD8DwPk5OTRi/5fN7og0oBveXaVxrKFKLqbZqensYPf/hD7O3tYXt7245s2tnZMc8XjXgadLre9KwT5fY8D4ODgwAaBjK9LsvLyxZayxDFxcVFo414PI6enh7s7OyY14I8AoDtJ1Y/JjrPd3LfUoBxLTmfGqJOvqdKCPcePcNKb7q+FEYE+Pg/hSZD8Si8uV+3t7eRTCYt/JoGpubwAjAFTI1O8hf2j9EHPP6KYcm81430Yd9ZyFHBZ72KxaIph/v7+1a4iHyBfSoUCnjzzTdtbZgzGo1G8a1vfQt37tzBvXv3LIyTbZCnkp4IlKqhp/y3q6vLDCECoGq0Be3hoM+OMg74GfktAVeen63FMI8yht151v8VZFQZ5faJBqNr1HDe3PZVprW2tpqirWAD+akrewGYx1zlu/J3NyrCle+UySrr1YmhER8ADCxR/ke5r/KdY+L+I62Qx7F9GvhudJGrG9HbyOcUKAiS7yrP3XUl+KNyix5LpWkCC/q3KseUuWq4U0fS9+ga7+/v2wkkrOrPuaV8r9UaeeCUAVr7R6MG6f0OKjqszgBXL+UVtAeoH1C++77fNE9Kj5wXXi44pjwpaB2C9vLjZL7LA0hnOj72T1OA1Jj5vPcQrKWMPX/+vEXkATCgfX9/H5OTk3jrrbewsLBgRXlJE/l83oBmyn2ua0dHB06cOIGRkRH87Gc/Q6FQQCwWMxAnl8tZjjtT82q1Gs6ePYuTJ09iZmbGwuKvXr2KDz74wEL76a1n6tnw8LClKcTjcdy+fRvhcBhjY2Pm6Wc9gkwmYwBBKBTCc889h5mZGUvPZeHpF198Eel0Grdv38aDBw8sKiadTqO9vd1op7+/H4ODg/A8D+vr67hx4way2Sz6+vosj54RkLVazej99OnTpl8wTSQajSKZTGJoaAj5fN7ANtahUCcfdQcWd2xpacFHH32EmzdvYmxsDC+//DLq9brpMUNDQ7Z+fX19SCaTePDgAZLJJPr6+rCzs4NMJoOhoSGsra1hfn7ejnek4dvT02MGNWswzMzM4I033kAul8OtW7fQ399vY15eXraaROPj43juuecwMDBgRS55UgedjiMjI+js7MRTTz2FaDSKubk50zfW19dNf6FR3tPTg56eHouQI8hC5xZpanZ2Fqurq5iYmEC1WsWtW7dw7do1PPHEE2htbcXW1hbm5+ctRYfznUgkEIvFLB1ifX3doj2Ahh3D+mJcJ40OVl5Au4HAZUtLi+msQMMO++ijj2zP9fX1ob+/3/S1nZ0dbG5umlzq6enBxsaGpbx8/PHHKBaLFr35uOuXiVTIAvi3T5lZC4B/8n3/Nc/zPgHwL57n/Z8AZgF854s0RualSocCCclkEm1tbXaMHL2SykwZ4sOJUaNbhW02m7UQJPVkHGUg0+tNIageUTW89VkCAFrBGPjsiRMcuxISP3MFGj204XDYct8UFFDl1EW2qXgrok8QR+eabfK9qhSxLV4ctxs+CRxWV2Z7NKZU8aBQpRCmMqbpH1R0VMBRQeB7wuGwRSroGjGMnOFjbJNrRoOEShzb0/FRuFChBg6rrnI+eS/nmWPT9ebYOD4FQFQJZP8ZysRLlQdX6VNwyKUJfdZdQzUkgxRIfTfXQb1ruv6uQeT22704D5w3egFUGeVYNVWIwo4h6pFIxIArd9+zYJELWGpKlRor9GLcvXsXe3t7SKVS+JM/+RMkk0m89957+PDDD1GtVi3UmDRIOqDyogAYaZOVnNfW1iw/uKenB6VSycIsNWqHEQQ81pBzrEo9BdTAwABeeeUVvP/++3jw4IHRD6M13CPBaAwAsHoUnZ2dlvvL/cwaCNy77Af3oq4LPZ2+7yORSKCnp8fCXhkNQkONwAyjUFThZFucW/YtmUwaYLC3t2fGhOd5OH36dFPkkYaWdnR0oLu720Dgra0tM6L29vasZgMrQZMOGMnAUxkqlYqdj60h24ycYV2UlZUVo8VyuYy/+Zu/QSgUagqZ5I+CNQRVlD8or+LcKG8hHbtGsgKAj7uCDH8CTqTDarVqOZl6j0YlPM6I0YtALcepnxNgoheLclP7yIgJ5YtuHzzPQ29vr4HK5FWu8adzRh7MPUYDUz37rozkPlJQW9t3AVUFq4FDj7zOJb3u4XDY9qyrA9Aw1rlhP/gOLUJKetW+K8BKw9qdT6VRBZI0ykTlO/URVTjVaFaaduU72+X6atqCC0YAh6kKHAO9eEoLlBMK0igYw3upJ5AnEQCg7NdoRKWZIPnuzhcNYF4KpATJd5XnLl27gKcrY1V/dT9XUM7dq3qP3sf9yfHo+D5Pvvu+j5s3b5pToLe31wyn5eVlfOc730FLSwveeOMNAMCXv/xlM7h433PPPYdHjx5hfHzcUuoIyvBkjmq1iqeffhoPHz60dMVisYhCoWD8nTonefrVq1fx3nvvYWFhAb29vfj1X/91dHR0YHx83NISM5mMOaP29vZw+vRpRCIRjI2NmYz0PA8zMzNW+4dAWDqdxle+8hX4fuMEoJaWFvPy7u3tYWZmBgDw7LPPYmRkBMPDw/j7v/97lEolAwnIu06cOIGhoSE7GpOe7WPHjuH48eOYnJzEhx9+aNEM6+vr6O/vN13E8zxL/VheXrYxkJ5Ih57XqCMSj8exuLhouhidC6dPn7YC857n4e2330a1WsXLL79sdsv+/j7S6TRyuRzm5+fN0bG4uIhIJIJEImFgeCKRQCgUsvpFjAJmyszs7Kzp5iySfe7cOezu7uL1119HLBZDZ2cnEokESqUSYrEYnnjiCXR3d2NxcRHb29toa2vD0NCQ8cuOjg586Utfgud5GBgYwPb2NkKhEK5fv450Oo2TJ0/i3r17CIUax0vT6K/Valbvg3Jxe3sb3d3d6Orqwurqqjm4x8fHbY/09vZiY2MDp0+fxgsvvIBbt24BOIySJL9iqks0GjUghUd9ElwvFosWLcHilV1dXTY2RjsvLS0ZMBEKhSxlTCPmWOuLYEZPTw+AxlGR1OlyuRzy+bzpRN3d3ba3XMdz0PWfBhV8358CcCng8w0AX/9PtgmgmaHxs76+PjvqhQLCZb5k0ipgNK2BBubExETTO8lQKay1bQohejtbW1sN8aeS7CpnLsCg7+fYNBKBHnoaz3yW3j/NWybBqHdNjUz1POh8knkoUs/xqXBXT5DOgypjKohU2QAOFVqiecDhiQFUCLVwGvuiQlojIzTXW+dW+1Ov15siDRhiRA8jx8lNqOvBPhx1cW5UMVWFkF4njo+0yf5qQRdtj+3o2hFgoRJLgR5k+CvoFAQg6Brxve5a6hzqM0HKiQv6KQ2SUZJm9Lmgy/M8XLx4ERMTE2bI6Ri55nye8w00FO90Om3ADo1LGsm63wkcdXV1NdUz0fmmdyMWi2FrawsdHR0WOss9Xi6X0dPTg0QiYZE0NFrVuBoeHsbTTz+NQqGA27dvGzq9sbGBXC6HcrlsHkmi3vV6HZubm5aOQO/J7u6upURQqaOSzoth121tbXjw4IHdo0KE+XWqFJNOOQeMlKDyxmMmOT7lDbw/lUoZ7a+urlqIJdDglQSAtE6G67FloSCuK4sxcg3D4UZBrGPHjpmyr5EY5HH04Hd1daFcLltEUSqVwu/8zu8glUrh3XffxZUrVyxthp4Z0gy9PRrZxBM0WFCQfXKNTVYhJ+CkwAjDUDVVRfk0lV7uAQUWXX6sx82qAaZyRvmE7jeuu+vpd/mF7nfKDZeX6h7Xy+Unbh/UgGQ75HfZbNaijVwAjb+Vh7oGMr+vVquW/qM/nFM1mIHPyneCUPSC6zG6Oi9uO+yLK9/5PQ19ygXdU7yXPIy8VdtTI5/91vk+KiVR+YUav7xXPdOcI86l6l+ufFda1BOBCGKoPOcYdY5UvvOZILrlM5TvDGcnTRKIZUSjggOufFfZpfKG86Lry76RF7iAmCvf3VQTpRPSPPcAn+d7NELGBW/cffk4+a7v13u+iHzXPrnv0ogivY6S7x0dHeZFHh0dtci7fD6Per2OL33pS2htbcXHH3+MXC6H3t5eO2WAfR0fH0c4HEYmk7EihQSPQqEQVldXsbi4iI8//tjWischrq2tYXBw0Ly8dAIeO3YMnufh3/7t37C2toaXXnoJ3/3udxEOh/Hzn//cag/s7OygXC4jkUggkUgAgOXA89jjnZ0d9Pb2olAoYGpqCh0dHebVfeONN9DV1WVpfcViEfl8HtPT07h27RoikQi+//3v49vf/rYZd5VKxcCDjo4OdHV1obu7G7VaDUNDQwaKR6NRHD9+HK2trUin0xbd2dLSgtHRUTNOmTfPPcPCl6FQCJubmygWi0in0xadwSLD1AVoqFarVXzyySdYXV2F53l4/vnnTUdgygGPTFxaWkKl0ijMyOO0ecrE7u4uHj16hMXFRSsOGYlEmiITGX7PlMNz587h93//93HhwgVMTk5iYmICOzs7GBgYsLQL6kusF7G1tWXgKoFfBU9rtcaxyMvLy+js7LSaHSsrKzh58qQd68xChiws3d7ejvn5eYtKWFxctOiT1tZW04eYunrq1CkUi0UkEgmMjo4im81amjPnmVE5nZ2dyOVyBqhT5hAg5ulQ09PTqNfrePLJJ62GAtDQo0qlkp2sEQ6HjU67urpMDySowEiSjo4Oi+IgkEUQlvqR6iEEkD7v+t9xpOR/6qJyrKGuyvxYyVyVMwCfEbpcDDWu1fjlpQxWPYt8juABlUlOqHomVJArSk1FSZUC4FCouWGKAJoUaRUqKsyotCuTd71Z+q6gd6viqvPntkf0knPuKqP8m8+rh54KtSqNbtifGvYU6vQ0MpTSNaq5PtqWKkNuqgQAq+VAtJLnFDNSRddR2+Rc8Dt6WFRZ0fFwPnRc/E7DzjkGKlGuouN+zisomkTpx1Vulb5d5VcvVdxcJcalC1WS9HlX6Qh63t176+vrTfudQoZKmu5fBSw6Ojrw0ksvGbj2L//yL+YlY9s0Skibmv6geyyVSuHcuXPI5/Mol8sWvre9vY1wOIxyuYx/+Id/wMjISNPJDczT5fjZNo9bIq3wqEKuO5HufD5voISmMnEOGLaoCi7XkAJT12ptbQ3vvvuu3cuCSCwM49oyIQAAIABJREFUpmtGD6Pv+6aUFItF7Ozs4Pz588jlclhYWLB7+E6mCbDg0P7+PkqlkoGHPJub9OTWcNFwbSpfariwDb6Xa1cul5HL5ZqAHFVIfN+3HEFGIXC81WoVjx49wqNHjyy8kbTM+SZNx+NxA0PUCADQtHddWg6FGifOEDCl4sZ8byprLj8mD4tGo4jFYpifn28yEkkvNGp0L/Me13h4nFEfxL+P2qt6n6aLuc+oAaX/B7VJ+e7mY/KZ2dlZm2ttV3/cd+nYXINJ+6D1dFRW88hX4DA1gEUj2V8XAFZA/qi5cwEhjsv3/c/oDC5oTH6q/6uxz8/VmcA54O/HAUxB8p19cx01vJ+/FSCgHqQ8gv1zjWTVC2q1mu0L9eqzHR6Vx/2r/JxGgsp3ziflO8+456kA6oxQ3YNzqkAT21Q9xAUclGbZDulLdRSV48rHVYa6MlrXV9/7efTuynelC1dfeNz+5H36O+j6IvL9G9/4BiYmJuyISILc0WgUP/rRj3BwcIC1tTWLyqFsIRBA+cmQfvaRNWsIlBOUovx5+PChHWfIk5TS6TRefPFFM4y/+tWvYmdnBy+//DIikQhaW1vx9NNPY3V1FbVao65Sa2srFhYWkM/n0dfXZ0dPk2a2trYMWGCEgRq3e3t7OHv2LGKxmHl3JycnMTs7i1AohFdffRW1Wg2nTp2yU5Di8bgZfQBMd1hZWTGgk8bu3t4e1tbWjEcdHByYU4D7IZFIWDTeb//2b6NWq2FqagqlUgnxeNzml7XHGAEQi8WwtraGUqmExcVF9Pf3W3RmZ2cnTp8+Dd9vRCdRrhL0KJfLmJubs7kbGxtDW1sbkskkVlZWLCIzFotheHgYp0+fRqlUwuzsLA4ODrC1tYVkMonBwUE7rrJYLMLzGk6barWKbDaLJ554Ai+88AI8z8Orr76Kqakpix5gxDoLPdbrjRpHmUwG7e3tVlS3WCxic3MT6+vrFtlC3YvpJJqWWSwWsbi4iJWVFezu7iKTySCTyWBgYACdnZ0oFovo6uqyGh5MveFx0Yy0iUQitmeZ6kKaicViph/RTmGdqng8jqGhIWSzWaMp5UHd3d3wfR/b29sGtmgxR6YyRiIRO+6SNTqYYkvHze7uLuLxOCqVRuHqZDJpqT1uZJt7/cqACioMg5gmvXKqnCmgABx6nJRB1mo1C7/V44eUCWo4oYIQAIxxqWJDb5a2o8qC274apDSi+LwKHX2OY6eHnQLdVZB0HvSdaojoe1XRUUNLFVm2qV5SNT5V6VEFSosqUchzzTQcXPuqiomGN6oSoJ5qDfllH/nDZ13QgsZDpVJBqVRqGrP2JxQK2TEtBDVUWdNNrJ+5ygbnzA3JdgW8C0boOnL9uBY65iCQTNsN8l7oPe71OAXi8+51lYmj7nfBKz33l4KaxiJDv1SR5diJbIfDYZw4cQJ9fX2YmJho2kMcM9t29xZplow3kUiYAU5QgHtew9ooBIAGrzl37hz29/ftOMOlpSX84Ac/sHONOzs7LcWBAplHz2kkhucdnp7Q2tqKnp4ebG1tWR7n0tKSjY9zpvvV9/2mfcujy3hvV1cX+vv7LSIql8vZsU7r6+sW+vfRRx8ZOs621KghoEcPoXrxqtVGMS2CHtVq1VByBf5YHJNFNimgaIhz3cmTDw4OMD8/3xTqR68W9xCVOY6Xv8vlMq5evQoAlh6lhgxpkt5xz/OQSqXsKFAaMvF43IyMWq1mIALpi0XAfN+3XH7yXAXJGMWgBlJLSwvW1taajAngEPxtb283xQiApbUo+HnU/g0ywrkeyk94r8qMID4TtPc/j7fod/xewSTSWFB9IpfvuXKP689nOadufzQCUXkE8Fn5fnBwYEeyUbFzjTZ33PTMu/LdNSpdo47GuMosle+8xwUU1NDm/5QzQXJV+0uZo23q+1xjm9FU3OOkaQL/2h/Otc4x+wk0pwi6Xnrez3QDnXPqQPybIJcrW+jVc+WAOgYYuaVHj7s0zh/yIrbDi3PNSFWV7/q8CxaxrSC9gZfKPL20fyrfg4COo/SCLyLnj5LhypuC7td9t729bXQ/Pj6ObDaLWCyGVCoFz/Nw584d2ys0clgTqLu7Gx0dHZidnUVXV5fJh4ODAywsLODNN99Ea2srzp49a4a2rsvw8DBaWhoF7jTtraWlBclkEteuXUMo1Kh2f+/ePSwtLeHy5csYHx83uTg8PGztMfXr4ODAQsFpcNNzfurUKfh+o1gkwUoeE8naOu3t7Th37hyOHz+O9fV1lEolvPfee7hx4wai0ahFKiaTSVsryneCIYyinJiYwMzMjKWCR6NRc4SwxlO9Xsfq6irq9bqFy7OWAdvZ3t5GNps1Q/HYsWNYX1/H2toapqencevWLczPzyObzeKrX/0qOjs7Ua1W7XSG7u5ui95kZEMkEkG9Xkcmk0FbWxuGh4cRjUZRKpWwtraGVCplnvq7d+9alFIymUS93ogUY4rJ8PCwOS5I86SP1dVVPHjwANFo1GQlU2fC4UYa689+9jNMTU3hueeeszB/2oOUJwSleBQ4j3Lknt7a2kKhUEAul8PMzIwVXdUTpnZ3d7G1tWV8p6urywq/FotFbGxsWLoCi4x6nmeFKglQ1et10yWq1Sq2t7dx//59tLa2IpvNoqenB6lUCrFYzBxt1P8YrcnUUPJVrg2dHSxS6nke1tbWmiJWPc+zsVEWkm8dHBxgfHwcZ86cOTJyidevDKigSowKFBXqCjwoQ+VFj7QqjfQqKkLttucKOv4mkKGCu16vNxVbBA7rLriCAIAV11CEXwU5n9FaCOolpJBW4evm0rqKAy9VnNUjoug854Rj1lQDCjcV0LomKmQogDXiQr3FvAgQaJil7/tmZDDfXIEKKl/sg+Y1c811zJqHSYWHz9F7wbGwPzp3LIKnbaiircquzifXiEyQxg7n0QXD2F+lRV5KG2oM65rppevhthN0n77XVTj0b/f5oCuI9oLu0Uu9TurJymQyGBwcxN27d21faoTI7u4ufvKTn+DSpUvY2trC8vKyCXL1JHC/UaHg59yDRIQfPnxoRi4Fmxo8alyyyvjBwQF6e3tRLpctf5OCkyix0gsLPfp+IxeZ/aSRo8U5eSrCgwcPsLu7a6g271OFUwETpT8asVy/ixcvore315SH73//+/A8z3IXc7mchXRyv1AA8cQLjbLQSDAq5zSa29vbLSdTQ6Sp1LHwImmAdU8AWIEsVeZ5uVENfKZWOyxWyL7s7e2ht7cXra2tFoqppwbx3oGBASwsLFjdB+6FWCxmlcQJJH3rW9+y2gsfffQRHj582DTXNDDcPcu1YZgjwYnh4WG0trYaYJJOp9Hd3Y1IJIL5+XkLFWZ+t+83vOiZTAaLi4tN4JILwnPd3b2u4KwaWxpdx8s1fIKuxwEK7vq5xpIrSz7vHXxWaxNQLlABDOJjasyxLc4no3i4d9iGFuHkMyqTdV41akhpVCMqa7WaRdGxLV0D12OvACHv+zz5rv3QCBydY/ZLHSdBOkuQEak6AvtG/Qo4BA9U4dS5Yt0byne2SfmuY9N0LeAw2pDjc+s0UAcgb1ba01QMnSvOD/esAk7cKyrf1TFEIEHBTJc2OI86f6ovBu1bN4rBXXt377hrpvfzb/cd7h75IvL9qOsonSGVSuHmzZtYXFy0Ogme1yjOy7ngXlbdhvI9FAphfX0dFy9exJ07d6yo76lTp7C+vo719XVLEaQ3mWmQqVTKit3V63U79vCtt94ynW5rawuLi4sol8s4ffo0tre30dLSYkDixMQECoWC3U8P7u3btzE8PIydnR08evTIIgru37+PWCxm6QI8pYDGLwtLjoyMYGRkBEtLS5Zice3aNavJE4//f8y9WWyk13k2+NRCsoqsYhWrilXFtUk22StbLVmWrNhOLCuyhVhj2Rd2EDtBZowB/ptMbnIzP5CLAQIY+IFcGAkmmORPMJj8QVYrNmLFsmHLiiTLklpsdUvd7L2578Uq1sKtyCKr5qL0vHzqdLGlJDOAP4AgWcv3nfOec97lebdOk5FM2+CeZmtBtuHc2NjA9va2dV4gkLGysgKPpw6o371717zz7777rkXvsP4KZT6jD8mr1tbWEIlErIh4NBpFMplEf38/dnZ2UCqV0NHRgXQ63RDJzVaM7733HhYWFvD1r38dqVQK1WoVi4uLmJqaMpCe63/9+nUkk0kzas+cOWN6297enqVlkmY8q0tLS7hz5w5SqRQAIBQKIRQKmc7BtWOXiEgkgunpaezs7FgR7MPDehonIynK5TKi0SjC4TCy2ayNmykus7OzFpVCBySjYYCjGjzZbBbRaLSB59FpRUB2aKjeQWRlZQVra2tWjJF04f5goXC1Y1mokgWyKbMKhYLVX+jo6LD224zi4TmjvNnb22vo0JXP51EsFi2tQx0Y6+vrlirzsHRx4JcIVFAj2mXAyrDJePm+ejuJpDH0lJ+hENJcVxU8vK8ao2oIqjBVJsxqzVpgTj2r+ptGAQWqGrU0atjSSJ9BDx0VH0X4mykZzYAW/nYVDjWcXMO1WcgtacH78XManUBvqyocLrLe1tZmgp7PpiBgSCrH1t7e3mA8cYz0FHDtNDrAXS8FmDQHUwU1L4bBVqtVM370M/o314Drq2GfbM2j41CFX9egmXLOfa9AGGnIz6j3S/eUnh33Ok7h+DhXM8WlmQLlft4FAF1vls53d3cXY2NjuHXrFlpbW631InPzieC+++67dt7pASb/4NyoKGh0EhWHX/mVX8Hv/u7vYmpqCn/1V3+FpaUleDweDA0NIRQKYWpqyjzWVD4J5gUCAaRSKWsVBMBCeqkoU7A9+eSTWFhYMA8aK0XrvMmTgsGgCbNoNIr5+XlsbGxYhWTuJ9KNAAn3HZUD8odqtWpnjYLl0qVL9vl8Pm9j4H3U26mhlBSSGs3BSA/yPW1LqWefQGoul4PH4zFlhEAfvYdUCnd2dsw7r+eDfbQ1LFprpYTDYXg89fzBwcFBdHZ2YmVlxfguAQ/SZ35+3t6rVqvY2tqy/t3MZ6VgHhoawqc+9SlcunQJq6urWFhYsDWmcqtrw7krz6Rcikaj1rJqfX0dzz33nBUISyaT+OEPf4iXX37ZeAcBK5/PZ1ESbppIM97Cfc+oEYZ9ahFANaTcc3vcuW5miLjGjCtfOVYXkHcdCWpMAkdgUktLiwFOBOo5PwUoXfmuhvZx8r2ZHACOZIGmaLlyhc9Q+c79BcDOCeW7W7iZMpMeM95PAQoXoHLpyrXkOCjr+L+eaXVc6H2U9qq7kKYq3wmQaIi/7gulk9KSoCPHQ4+yKx8o37k++r9bs4F/U68i79V0K92L2tqagLEL+gMwg1eBF50T5bsbOUY6uCCFa9C76+auKffOw+S7fkfvyUt1iH/v9XHkOy93/bxeL4aHh/H000/j+vXrZuzl83mT0Sy0R6B7d3fXPLoXLlzACy+8gOXlZbz55ps4f/68pUSMjY0hGo1iaWkJMzMziMViDd59ypdUKoVgMIjZ2VlUq/Xiep2dnQaSKwBWq9Xw1FNPYW9vD1euXLGaDMVi0e7LtK2NjQ1Eo1GMjY2hr68PW1tb1rkiHA7j1VdfxdWrV/GpT30K4+PjBnq0traip6cHzzzzDC5fvoybN28imUyiUChgfX3dIjUUkKfuy4u8f21tDcViEd3d3Uin0xgdHUU+n0d3dzfu379v+7qvrw8+nw8zMzPmXKEXOp1Om8OiUChY2+Pr16/j2rVr6O/vxyOPPILBwUH09PSgu7sbnZ2dVteCRnBPT49FdtHwfPbZZ5HP5/HUU09ZR6bBwUG88MILlsvPM5dMJi1yIxQKIZlMYn19HcViEZlMBl1dXdjY2IDP57MIzkQigWAwaKkcvb29VlQ6FAoZb3jsscewv7+PXC6H+/fvIxKJIJ/Pm87GqMfHH3/cAC/KSzXcJyYmMDExYfoNcFQ0v6Ojw+ptlctli1BgRIQCkLlczjqKUY9hba2BgQHrRtXS0oJIJGKOEJXj5NM+n88cPK2trdjY2DAAy+PxmKx05YjyTX1tf3/fakiQNzN1w+OpRzVcvHgRf/AHf4Dvf//7D+UdvxSgggsmkNk2C6lTjyMvHiIKQS3CpQKPioUa+3y/paXF8niWlpaQy+VMICm6owyUxivHrEUQOXYiRPwcx8VFVa8JvaF8nWPUwmBKD47H9Y7w3sCDHjOX7hynbjY1SigQdexqEPIzBHG4lqQN6a3joPEPwA6FRpjw+aok8eL3mMPGfsEqcFVZ3N3dxfb2NlKpVIMB5yoUOmct1KaHWOmpNKWSosoDK8LqWnIuLqila8j7K+ii6+UqcLouCgS5gJCeFZ2Hro0qNO4c9ZkfR0lRxUgBPl5Mc9A0Ir/fj62tLesLXS6XsbCwYEo9aXTy5Enr3dvsPHKsZNoKkhH0IrL/+OOP4/XXX28ALtj2iMVv3DVgUcfV1dUGuing2dXVhd///d/H888/j/X1dfzxH/8xLl26hP39fSQSCeNl7e3tWFxcNBCrWq2at+HUqVNWnXpiYgJvvfWWnXuu+8HBAeLxuHnAmc7BsDyfz4dr164hGo3i4ODAFDsq4idPnsTi4qLN3fXIsQ0VvUP8LgUl911LSwv6+/st/0+VcZ6hg4MD6zJBDzx5wcHBAbq7u1EoFB4ofqu8XxV1NZx8vnoNjN3dXcutXFtbs5zWWCyGSCRi4YRqWPLct7e3W6rcN77xDczMzODtt9/G/v4+XnrpJaytreHGjRuYm5uzNrOamtDMkwvAvGVMEeHcmQpC4KytrQ2XLl3Cz372M4uAYLrJ4eGhtVdT2ecaJNyDfr8fyWQSHk+95SUVe+Uz6iVWeXMckKC8wOUZ7jg0ekzXkN/nHgLQoDi5ID7QWNRQi0hxHGoUq+xTXuf3+5FOpxGPx7GystJQuJU8SmV0M+BEx8U10FoC/N/j8TSE7BKYoIfQ5VcaDQc0Gr4cD+Um58n7uvJdZRBwlC6oPEPlq45F5ZPS0Ov1WtoX15Zj0KgDXS+V73QWaDSGu/b6vWq1ammIjGxw5TvnWS6XsbW1ZR5LBR1UT1TAlDqJFsfmfuW5UweRrjefr/Jd95/Kd5e2zeQ7184F4fRyozpdAE9poyCHC3R+lHzX1z7qUvnuph3xfUZmTU1NmUxji8Td3V10dHQYz6fDJ5fLWc2hK1eu4Mknn0Q4HG4ADAOBAOLxOJLJpL1GYLpWq6Gnpwff+ta30NPTg+vXr+OHP/yhAdLBYBCnT5+2KvmUD/Rw0wiMxWLW0nJ5eRmHh4d49NFH4fV6LU1iZGTEdIlisWgh9zMzM+ju7sb4+Ljpmd3d3dje3saPfvQjM0Z9Ph+eeOIJFAoFTE9Pm0fd7/djfn4e+/v76O7utoiYg4MD02d5pvx+v9UcuHz5sqVher31LgbZbBaLi4soFouWrkTQPBaL2f0PDw9RKBQQjUbx1FNP2X4+efIkIpEIDg4OEA6HEY1Grf5PrVazoof7+/vIZrM4f/48hoeHLZquUChYB6tUKmWRC6VSCevr69jY2MArr7yC+fl5fOlLX0IqlTLgg8VYo9EoOjs7TTZ++9vfNu856drR0WEtxVdXV805MzQ0hEKhgA8++ACBQAD9/f3o7++Hx+OxKMX+/n5LeVhfX8fy8rJ1Fpubm8MHH3xgegEA02HS6bQVjSTg2tXVhZ6eHku1Jlij9g0jKqvVqqVR0AGUSqUQCoUwOztrNZrIs2KxGILBoIGzuVzOUiO2t7eRy+WsQ0MoFMLBwYGlqSk/02521EH4Q/COegfT8UZGRvDlL3/ZWmw+7PqlABWARgHJMF/+rQqNFjZT5RhAQ46uCi5l6K4xpUyaB7ezs9Pal6nA4H3187xU4VDFkgJODXKg0aAnckVQQUEEKt4UrFo8iB4nVY74PQ0TVSUAwAMKhs5Lw/5UMeF3aJip91yNeo1QIN1dUECFmN/vN9SzUqlYcRoV/q7yo/NScIVzo5JAT24gEGjoIsHP0nhSQIAeTdKchqu2sGo2L5e2GmpNZVK9SFwnpTUPvQIVVJLUc9IMHFKDQJUI91KjwD0TzRQV97suqHLcpd93vXOMNtDncH8mEgl84hOfwOLiov3oPVpaWiwXjAKbfwNHSqF6n1QJpbL/+uuv49q1ayZIqIDeuHEDt27dMs8EmTCVxMHBQWtRmkwmkc/nHzibDKekwhqPx3Hu3Dlcv37dChVxvzNsMxwOW0cLoM4TEomEebNV6adAoKBiyyP+T7SbHt3d3V1rUcn9w1ZGFODt7e2mwGcyGQubK5VKlv6gPJjzVS88qxOTR5CP0fCmsZLJZEx4MUqrWq3i/PnzeO+994y+vDfD/1hESYFMrgvDF0mX69evY3t720Ck4eFhXL9+3T6jPJXnub29HalUCmfPnkU2m0V/fz+Gh4dx+/ZtzM/PY2Fhwfbi888/j0QigQ8++ACvv/668SqeC96Tr/McMwTy2rVrphC+9tpr+OY3v4loNIof/OAHFvYZi8XMw6GtZ3m+XICJxiJpo14SFvdyCyWq7FCZdNxZdv8nYKjdflT2NruXtuflHuLcNG2APE3Ps1vwl5frRFA5z/GSn4bDYSvUq3JTv1er1RpopcChFo5VUJQKHHAUgQjUzzKjFGg8uUYydQXmxh4cHKBUKjUAcyrf1YHBs8J7kgdyf+i+cUF+ACYbVZ4rz3RTGhQwcp0Rqh/xs4xGYJQJ6UV+oIAE+bDKcdXxKPdJR0Z4sR6Lq+eQHipnGC3j9Xqt6rl2sABg3SYoW7hGboSEyncFXHR9dS/qfqaHUPUz12nAv5udTRdQ0NdUtus9j5Pt7liB/7h8B+p1akKhEH71V3/V2tWNjo6at7u9vR1LS0sN6QE0Eg8ODjA9PY1z584ZD2MXHq/XawUGt7e37UwzRYDgF8/F6Ogouru7USqV4PF4EAwGTSaSp5ZKJVy6dAl+f70zUCQSQTabhdfrNediNBpFNBpFpVJBKpXC6OgonnnmGfj9fvT19eEnP/kJKpUKfv3Xfx3FYhFjY2MYGBjA3bt3rb4CIyYGBweRTqfxyU9+EvF4HLlcDt/5znesaB7TIYC67BsZGcHc3Bw2NzdtHMyRv3nzJrq7u62OE89BW1sbBgcHLXqRKZnvvfcebt26ZXL/xIkT2NjYML1ieHjY6NfS0oLe3l5LKVpdXcXh4SG6urqwu7uLxcVFO69+f737xJe+9CUkEgksLCzgnXfeweFhPVw/kUiYHCLP7+rqwszMDAqFApLJJAYGBiw9g3UfEokEhoaGMD09jXQ6jccffxwzMzOYn59Hd3e36fPUw+bn580Ab2lpwdjYGHZ2dtDf34+///u/x+rqqhnc5HETExNIJBIWKUCjemNjwyILt7a2UK1WkU6nMTIygnA4jP7+fvT19VkUHUHvarVez2J7exuxWAzFYhEzMzN48803cerUKQwNDcHr9VrLc3aO8HjqxSjT6TQymYzRG4Ctt4JCvD/BLwI43N+MogiHw3ZmWbOCjiem7DCSlfNlqo3f70cikcDAwMCxfMO9fmlABeBBJklmRXSSyBhRY/UA8zsuEq+CjkyTAlANLG4EtvVQRqweHRUEAEygaPg1lQL1GvE5LurMe2gBOM6NjFGFhHqq9HWdH8OoSDseeteg1BBDVxjpBuI9VMniXDgfRfddpZLz19x4XTe2ymS9AwqJZkKN9+chVMVEFTwCCDQ8aBQpqECjR/cO14BRLQDMqKJCwnGQRvps0pRh95w/96XrsePF7x0eHhrARAHB8bm/XSDBNTr0avaeemJ4Heel+yiQQd93FRM3B0uNGPVW8/m7u7uGBlP5UEVga2vLnk1gj7/VKOD6V6tVa/vHQp2lUsna7nDduVeorGqILFMt+vv7kc/ncfv2bfT395uA9HjqkRHt7e3o7+9HZ2cnvvOd72BiYgKHh4d46623DAnu7OxEqVQyo5IChuAVo2/effddzM7OorW11YAUgnA7OzsW4cM8OqZh0aNdrR4V/iFtue7cqzMzM1ZzIJFIoFwuY2hoCEtLSw1FksjHeI94PI6hoXprq6tXr6JSqViRKFW+FfwZHByE3++3Nouf+tSncPnyZRPGv/jFLwxYaWtrQ3d3N9bX11Eulxs6t7APtc/nwyOPPIJcLmfeEhbUUv7q8XgwNTVllcNZAZrtnWjsMVqsVCrh6tWrOHfunIUpEnjhXnriiScQiUSQSqWsuwQLvLKaN1A/+0x34bwA2D6kUkNlLZvNIpFIYHx8HOVyGcvLyxbZwLUjb2ILTjVw1LDM5/PG46gsNTP21fBQmrnnWI0SyiL+r2tO/tuMX6jBSflOD+Lh4aG1uFIeoTy7mcHkyjB9BulxeHiITCZjEQpqNCvQTRCGNGZKgws8a5Sgzk9BeeoLCr6541IZxv2iz+J3NILDle/kda4+wzPeTL6rQ4Hz0WKZ7j01Ssg1VrkPVP6R39CLzLQzfk91KNUhuI8p33VdNKWKPJp6R7MCj80icThGnh8AFhWhMp+f03UBjiIWyH+AI2CMtFZ+S1rx7B0eHhqgy4K3SoNmkQWursr39H/3b54L1ymje/Vh+oJ+5jhdQoFA9/1IJIJ0Oo2VlRVLFwgEAhgfH8djjz2G9fV1/NM//RNu3bplMlELFTItolqtIpvNWoci6gbk2Z2dnQaeE2zIZrP48z//c+seUCqVLKJgbm7O1nJpaQkffPABUqkUent7MTIyguHhYUxNTZnToKenBwsLC+jq6rLoAsppprOxfg8Bg4GBAQtPJ3/zer0G4m9vb9scyEcZubm9vY14PI5wOIzNzU28//77eO2116z6/tbWFk6cOGFtiPf29syYzGQy6OzstMKQ9DJHo1FrlZhMJrGwsICf//zntna5XM7SRfx+vxVgzOVyZqwWCgXrrsK0wq2tLYuSiMfj2Nvbw6uvvoqLFy+BuSKuAAAgAElEQVRifn7ewPQbN27gxIkT8Pl8lobR3t6OTCYDADh//rx1QSKYm0gkzIa6f/8+uru78fjjj+PEiRO4ffs2gHpaYCQSgdfrxczMjO0jOkgY4dHf34+xsTG0t7fjxRdftHoYZ86cgc/na5gHi0t6PB5bvyeeeAIDAwMIBAKWfpPP5y1ClGAVxz47O4tMJoO5uTm88MIL+O3f/m28/PLLeOeddxAIBHDy5EmjIQ19tj1fXl62FFYa+pRBBHdKpZLZwX6/H9lsFnNzc7Z/mIpLPYcdcbgHe3t7UasdNRxggUsC7j09PRYFRN0yl8vhzp07+OxnP/sAn3CvXypQgcJOFXrgqK4AhS0NOBr8WnxEhS6/q4JGvSQ0yvg+D6EqCyqoGBIPHAkSehlZWEsVC/VWAUcKC1H7Zoi9GnnK1EkTGiE6btfQVGGkwITSDWgsxEhmqWOgMKQHhko7FSWlDdF2zo1Vd+llBGDeWTWACcgwNJgKOYW6KmQ0+LhHdH04VhYocato6xpwjEo7rrkqUz09PYb+avE7jdrgHlP68zX+qJJFuuv+4OUqhl7vUWihKlwuOPRxwIRmyojrsXIV5GaXCx40e57ShsyrGejA+bFXcy6XQ7lcxp07d8xr19vba6FuBFo0Hco1XigYSN9EIoF4PI6enh68+eabDefNnbOuKxUUerbJrLPZLFZXV1GpVDA9PW15i9Vq1ar4njlzBi0tLYhGo/jJT36CWCxmnlHNs+MYmVPNc8TQ+vX1daysrDTUCanVatjY2LBxtrS0mLKxubnZEOZL4cL9qwAUw0kJZFWrVeRyOQNyarUa7t27Z+eFSjg9KR0dHejo6GhIdyAtdc/TKwgAmUwGsVgM1Wq9INebb75pkWFcS+W7pVLJEHOGt3I85DVsucRQPc5P91uxWDT6B4NBPProo0gmk/jFL35hbSj5/FKphF/84hc4ODiqcq1pA+zGwJaob7zxhgEabW1tOHnyJKampiw6w+UVXB8FIff29nD58mWEQiGUy2WMjIygv78fExMTWF1dtfmQD3DP87eGefM5zIPX993z7soPF2B0QUPXoFcwoZncci8FE/QMAI1tfZUPkj4aoq4At8t7CaYpwMHn0rBzea/OX411PY+MGlDdgM9SY7dYLFrtDsp49Z4r3ZTmNOxzuVxTmaG05dhd+a56AJ/lfkZlPvmA3+9/QL6Tx/KsqTe6UqlYlXF6wfhZGvc6V8ri9vZ24xWufFcdi/dyAe5qtWpth8nTdP/oWqshruCUrlcqlcLa2tqx8p1zUECHvxVwIj0VkNA5qY6luhl5P8Fh7hfdK7qHubbu2XLPJO+voMhxwIJ7fRz5rp+lIaWfI4AXDAZx4cIF5PN5ZLNZo0c4HLY20N3d3eaZnpmZwezsLM6cOYPR0VFrT8iODel02hxwra2t1uqRXmpGnbS1tWFubg5LS0uWa08+xciXbDZrYDjTEROJBB599FEsLy9jbW0Nvb29CAQCSKfTGBgYsMKIQL0Y39/+7d9ifHwcV69exezsLMrlMk6ePGlpl9TVKVs2NzfNS7y6uoq//uu/xokTJ0w2UVfm3mhvb0dPTw9qtXo9olKphHA4bABMrVYzoIPtEQlKtLe3I5fLmU5VKBRw7949nDp1Cl/60pdw+fJlTExMYGVlBaOjo+jq6rKfgYEBhMNh9Pb24v3338fbb7+Nt99+G1/5ylesqOLAwACuXbtm60gnwMzMDDKZDD7/+c9jcnISW1tbBnycOnUKXV1dZjNtbGxYGkEwGDRHHGn1zDPPYHZ2FteuXbOUhJaWFvT09FiUY1tbGwqFgrUtbWtrszSNra0tJJNJtLa24sKFC9jc3MTIyAhmZmaQSqXg8Xisjgf3ciqVsvvn83lsb29jaGgI58+fR19fn7WHjMfj8HrrxRojkYgZ5kzHSqfT1plie3sb3d3d+NznPoenn34aTz75JO7du2c8h/ql6whgpKLqJ1xLoF5As1QqYWFhAXNzcxaxStCys7PT+Asj6Ag2eb1e2zs7Oztmz8XjcfT29hqYwFoaxWIR29vbBgQ97PqlAhWAxiI36sWkt5ieXDJOCm9FjrUgo3YNAI7CmSm8tFI7hVozRYvGSrP7MTTGFYhqvKjnDjhC5VVQuV5szlGVLKCxEjUVAzW0+XeziA0qL7y/C0KoMkOjT+sluIKcSKzmDFEZ0+q+aoCTzkQySU+mPvh89Wr6rgB1UydIf023YK97DVPU9WrmieDaqqIF1I0gDeslwKLrSJrSeFLlmmCYho6r8cVxNVM81EvuzkHXTQEgXUu+dtzrHKsa16rs/meuZkqPezEaJBgM4vz58xgaGsKlS5dw584dA6ief/55jI6OYnV1FZlM5gEFSdsE6rodHh7iK1/5CmKxGN555x0r0sS9zzVUMK+lpd7KcWNjw0L2iOKys0SlUm95FQ6HceXKFQMSuru7zTg9PKwXAGQLIaYT8IxSeVQPEudLjxv7NWtONeml+4jCIRAINHi+gaOzqd46/W6tVrOcRdJ1dXXV2ivqvmAuJvcbe2Rvbm4aX1ZD3w3x5hnY2dnBzs6O8Qwai4ys0D16cFDvR31wcIBYLIZMJoPNzU2jMY32Gzdu2LyVNygIwzWnAZNKpWy9KEMoF9Q40BBb9/z82Z/9mUXB0CDzeOp91MknGHHF7xDkWl9fN35PQ0559fT0tOXUuhEEmiPv8/ksh/Pu3bsWsk3gQde62TlsBmweZ3jofXhpKqLureMuNbB5NkijYrFoniUasIwKVCCLz20m3/l8BfVp8KhR3Uy+U9Zpahr3Ic9IM/nOi+ebstkNm3e9/txfyp9JI02r5L7guvKzbtcLfY4rE3T9FGTgnBW4V5CWa6S1nqgfEWTkeis4ouCFRqAxBNzn81k4r+4rle8KuijAQPnO+ysY5a6rRklpBwmuEaOgVDfj3nMBtmYRpuTZXC/lsbqHyIuUPprCSUDkYev2UfJdaaBzd+W7yyf/v7jcM8/8+nQ6jba2NqTTaYTDYdy+fRsTExNYX1/H5OQkbt26hbGxMXi99fD1y5cvW5pZLBaD1+vF7du3rcr/yMiIgQqkezQaNUNycnLSIhJ8Ph82NjYaCoFubGwYzU+ePIlUKoXDw0MDjpeXl81xMDc3h5aWeucKFpWkLZLJZNDW1ob79+8jm81iZ2fHajAxgoBtEQm6sVMUgYNarZ4m+cYbbxiAl8/nkcvlrANUMBi0VAu2NNzf30cmk0E8Hrd21fyhUc6Uyo2NDWxubqKrqwupVAqtra24ePEiotEoPB4Prl+/brIilUohEolgbGwMw8PDKBQK5knX1AQa85VKxTpWMAKMZzEajeK1115DuVxGOp3G1772NYRCIUsvp5xkhwYWbmTRRToxJycnsbCwYHKfOgPBBUZ77O/vG6DS1dWF7u5u0+lzuZzxtJmZGeTzefj9fqytrWF8fByhUMgMeq+33pays7MT2WzW2kT6/X709vZa6+29vT2Ew2HrGMaUATo1ub7JZBLBYBA3btxALpfDxYsX8dRTT9l+6ejosJR9Rk56vV5bs0QigcXFRdRq9Qj9w8ND68hVrda7im1tbeHmzZvm3GGtjWg0agUkCdiQ11Wr1YaaHK6DnEAcgXsCL9Vq1UCkh12/VKACBQnRcw0dBY5yQqikqrBRBZahU/wOCUkwgYJBFSFluBR2VPZdQ5qXevHo9VNBp4atItwKLKgRx79pDKgiQLq4QoafVyRb6aX3VA8FL1VC+DmPp7H9mCoinIt6FMlsNHSUioNGmSiCrh4TKikaiq70o7LGtVRgQNfP9eTzM+6l8+NvpQHnQgOInjUFfZT2FDa6BjpXHYt+Xz0jvLerpCvQRVroOqrSwDVylUe9ONdma95sPx136bOPU1L0Hq7hwnns7u7i1q1bltsVDAYt725qagr7+/tYWFhAd3e3hbVrqpBrdAEwhYKAANFz8hKGfQGwehvMP2PNA97z4KBeOZ+Vh99//310dnYaLbe3t+1zjLro7+/H6uqqRd0QzEilUojFYrh//74BozQiFNRhsULdL1xH9boRWGHhQIbUejz1UH0F6dQ7rAYqhS/PF8eqijbHx/3MAoWsccBx8fMUfkzTYAsmphcwDFL3nfJOvr+5uYnBwcGGUEkCK1pQjf8DMGOe9KEBynWoVqt45ZVXDJggDThvzXF2AT/+zbZnXq8X/f39AIAPPvjACkXqmeAaer1e8/7k83krikWjiXTxeOqhlLlcztLBGPrIcXq99cJ5kUgE58+fRzwex+7uLu7du2cKB3AUluyed47vOPnh8jb3TOvcdD/pvJtd3Lukh3r4yT9pMGj6oH6PyqRr0BIkcyMydG4ucKqOC46begPnpzoG76Pj5jO4D+lp5F5V4IHP5Nq4PFz5GfeFzqGZAakyyV1jlQf8n+NSQ1dBKt5LjWgdm9YlYri0pmSqfGkmj1VeK8CjgLDSV8EFjlXvp6CQXlyPZlGg5FGUB1rHqhkowDPv6oykjatv6P7i85qtO7/XrDaX7m13z/Kex8l31XH1Un6r82h2/Wfku99f7xbk9dZb/7G9IsP0Z2dnsb29jQsXLiCZTGJlZcVAw0AgAK+3XutieHgYn//85zE6OmoRCGy199nPftYMThqaBGlpJyQSCTNm6bXNZDLmJDtx4oSl2zH9MBqNIhgMWmRcb28vvF6vdQdgmgUA9PX1WYeoeDyOaDTa4BiIRqPw+XyYmpoy+iwsLGBvbw/T09O27ltbWwZCALDaCVpPjvNhKiDlg0bCpVIpGyej63p7e5FIJKxoMfPo0+m0FfWLxWLY29tDJpPBzs4OlpaWsLKygqtXryKRSCCdTuMLX/gCkskkUqmUgRV7e3tYW1vD5uYm1tbWsLOzY/XRGE1Sq9UswpF6yNTUFIC6025wcNBSBpkC19bWZl2KAoGA8XWeHYIQfM7AwAAODg7Q29tr55r6xfz8PNbX13HlyhX4/X6Mj49jamoKkUgEHo8HsVgMAGzcOzs7ePXVVw3gZm2Hzc1NrK6uGmBFnT8cDiMQCKC7uxtA3THDfTA/P4+ZmRkDrlpaWvDKK6+YXRSPxw2Mqlar1oUjnU4jEAjgxIkTqFQqpgcPDg6a7D84OMDKygpmZmasmDltFaZlxmIxi8Lgd4A6/9d0tHK5jPv37yMcDiMYDFr9EZ65Wq2GpaUlA7I+6vqlABVU8VKPAhEVIiYa1sxUh46ODlMiVeHmfVVhILMmo9ZcME17oPLpPgt4UElRz4bH47FWJBq27gotXlRGNHSVQkWFBQWFPpv/c94cj2uQqvDWubs04ecUMNDnucqRKh2uUHVzLDlOzpPGDTetKgDu/XQtgcbOF/zccSCNzk3BJzXAlUbus4nKKdpN5UvXnMZLs+dqVImrsFMBpQBQuivw4SrJpIcLTvAeXGf1pun+OQ5Q0PHp5RpIutYPMyKOu2hAMYSPOWIcHz2/9+7dw40bN4xGDOny+/2GIkciEQv75/gODw8xMTGB999/39BZejlJT7YfYj4twQsaNvxspVIxZYf7oVQqWZ4kq+ZyPpFIxBDzlZUVozvD9Pb39w3c1HQdPu/w8NBCAlm1mYAEc3BJD37H4/Fga2urIUSZYcidnZ1WKZh7RMEuPUs0/N3oGL5Pj05HR4d5Q9QjrntWPfxtbW2GtLOv8/b2tkWqMCpEgcdqtWq9xL1er6V80LNBQ1tBTIKa3At6VhWI4xx5Znm2uTdJU46Dz1VAlODFyspKQ7RHtVo1RURlBlH+W7duoVQqNUSM0TgD6iGPFy9exI0bN3Dz5k17lnozCWK1trZiZGTECjUpHfhcGsmMxtAz7XqK3csFFD7qepiR4tKZc6Fs5N8cF+fLNCSC0+SbXA9NY1NAgTTis3gP7lHyfzWwXWNb6cfvsgWY9v2m0txsvrqv+Wx1Nui4+Uw1gFW+K7ig/N81dJWP62dVvruAhIIPHDvQ6FDg/TTqgmug82om33m5e0oBBNXdOFYFS5rpLfoef3MN+TeNbJXvtVrNgAIq+eR1qkPo53mpfHejTbgO3FvkN6qD6Dj1TLtrzM+ovqLy3P2fY2sGdqiu4773ceW7C04dd7GAHPn9/Pw8Ojo6MDY2hsnJSWuTTAdgMplEZ2cnnn76aZw5cwbJZBLxeNz4/ODgoLVvJk0WFhZMnhLgJq3X19etLhG9uazm7/P5TI6rPufz+ZBOpy2k3uv14l/+5V+QSqUwPj4On8+HVCqFwcFBzMzMoFQqmeFJZwi7H21tbaG1tRV9fX3I5/MIBoMIhUKIRqNYXV21wsvVaj3qb2lpCUC9TlEsFoPP50M0Gm0o3MhURubZb21tmeNEayttbW1ZzSbWHADq0QNMzSIITd2ItSey2Sx8Pp+Fvm9vb2N8fNyK/m5tbWFtbc0AkOXlZdy/f99qAZw+fRpDQ0O2RplMxnSFWq2GoaEh+Hw+cy4MDQ1ZemN3dze83nrURLFYRCAQQE9PjwE6bNtMvkvdhoUoe3p6EAqFsL6+jp2dHayurprB7/P58LOf/QzVahXPP/88ent7rdBhe3u76YJMV2ABytbWVuuW5fP5rBZUIBBAR0eH1eDq7OzE2NgYMpkM3n77bWsPzWislpYWDA4OIpfLIZvN2vzS6bTpXKFQCD09PTh16hT29/et0CcAzM3Noa+vDxcvXsTh4SFmZ2cBwDpVECRgPYzBwUEkk0kDCbge7IrFlFimsJVKJSwuLqK/v99qQ5CnTE9PW5tvdhNRR3+z65cCVFDDSBm7otDquVBBwpwRVRwokFSAqYGnoIC+T4VShbCGWDcz6FT48/ta+0HDBilkiL4xHFAFtiofHDPDfRiOyzA9Xi5a7d6r2f1d2uhvVVxcYaeKYzNDlMCPK5w0v7etrQ2bm5sWrqsgDpV1MhgdowpgHYsqGs0816SRRpzw86QFf6jAV6tVY6Y0XKiocs00OkF/u8CPXvwuacJ1UGDNHR8BGVcBaaZg8nVVYpRWzQwJVeb0883W/GHXx1U6fD4fIpGIhRQyFy+fzwM4CoNVrzsr15ORE1Bg2zwqCgQYNAeaFac5J4Y/ArCWSLy/hk6Twd67d8+EsqLmwFH/deYNZzIZ2y80VFTpZigfx0KUurOz0wo4MWyUr7W3t2N0dBSLi4vIZrMPRGjomWZLprm5OdtDBK3cSCLlC65REwgE8MQTT6C1tRXvvfee9QPf2NjA7OysCd2uri6jI5Uk1+vP/cXvhMNhdHd3Y21tzYoS8dlU0gksaTQB93elUjGggmtBoIZrrsY4DWp6NxiCSiWVMoSKi4I23K8tLS0WFsk9yj2mKVzkHXpOeQ7pQfH5fOjt7cXOzg729vZMIWYKzo0bN0yx6ezsRCQSwfz8fIMBc3h4iMXFRfzrv/4rWlpakMlkDMxx9wRpp4ajy7f1zHLPqoHzUWf+41zK+/R/BcM1Qo5ro4YhgQfKBp2D5uvre/zNtVE+xbPJc6/yX+en+oHKdxfIB2DtaqlMK891AQU6ThgtpAZPMz1F5+cCAq7hy0vX311T/Zx76fc4BpXvuod4BggSNJPvamg3A1P0Up7E7zQDuXQc6iTi3PjD6EMaYOrs4R7gflAwwpWxun9cR5PKcN7L1RFcOc311UgNV/dy+YgCJs3kuwIzHJ8CQa7sd19rdn0UD9D18/l8yOfzFhnAYsGVSsXSFvb39xGJRKzobjAYxNjYGB599FHk83nk83mcOHECnZ2dWFxcbCjIfHh4iA8++KAhik7BR4+nXg9rY2MDpVIJXm89+i+bzRpY0dLSYkY4oxxYCDoYDGJ0dBTZbBZLS0vwer04ceIERkZGsLm5iUKhYB1kWJiREQj0ou/u7mJ1dRVer9faMu/s7OCxxx7D0NAQ8vk83n77baysrFj0dWtrq9VToszb3983oINOC0ZC8HxRJlGGeL1eS3GoVquWa7+5uYlSqWQdNqhrMxpzc3PTdB6/349z585Z5wqe/93dXWuRODg4CJ/PhxdffBGFQgGrq6vo6elBqVRCIpHA8PAw9vb20NbWhtnZWUubCIVCxr85D3ZXSyQSBtRQ12G3Br/fj0gkglgsZvJwZ2enIYWOgMLS0hIuXLiAoaEh7O3t4eLFi7h37x4ymQz6+vrg8dTTYSqVislX8olyuWwRs2zfyU4QLNbMui4sgjg9PW0RGBxPMpk03klHUzwetxSK2dlZk9GMDiDgwqiNXC6HcDhsER07OzsIhULY2dnBqVOnAMAKKQaDQQwMDODkyZNIJpMWncD0oFqtZi2ttZNKpVIx0ApAQ0HU7e1thMNhVKtVi/B4mMwAfklABaCR4ZIpkmHwfRqbrI7PS+siqKJCpkvjTdFcF5nnM1xjmJ8H8IDgcaMMgLpQ7ezsbDAotSAHBSw9ju4zNLSf46TXhmOg4ODm1u+7BiA/r3mI/KGRwTw0FQxq7PL+WgiTBgLXic8iU1PPjaswkIEyZIdCknPm+pPeruGsm1rpoikYHIcCB6ogqlGmNFOkXw1tFeT8nGvk8+JnOW+ul+bbKl10nq7i0mxPujTRcevcFIBRWqlCwv/dNXJp0+xcfFyFxL0ODupFu1ZXV+Hz+azCsPZyZ+4sz3lHRwdqtRo2Nzct7J7V8js7Ow3lv3PnjglRnh0N4eVcZmdnkU6nUSgUjH8MDQ2hWCxifX3dqo+Tjru7u4jH42YIuueMfIZgVK1Wa6hiz7Wg0crCOYx6YFs0j8djdPH5fBbJcO3aNdRqR6lGuu85JwIeWkGfYAoVBdeQ47hovDF/kN4XoO7lYJ0HdoRoaan3R06n09jf38f9+/cbzhSVK/JJPl+7d2g4HkFTAhLks2o40cimwcbCneqFVECaiixTZ6hgsiVTtVo1TwQNDoYEagEs8hXKH9LbLRLa0dGBZDKJ5eVlm6+eZ8oGeqIIGGsdGIY6ArCOJxr1QXpxXy4vLzecRZVNzKNUgEBlrBsirXSmgsqIl2aKRDP5+XEulYt6PvgM5vDz0hQVzoG0pawh/TgO8mn18rqXykx1aigNSSMdG5Us1S/cM+YCxvytPFf3NnCUo6/yopmRqfd05bvKAI7D7/fbWebljo1nn/Pn/yrL+Rq9jW5UBy/uPfIgla0KZip9dW+Qb+gaqe5FuaCGdLPuP/y+jk1BQN1PKt+V3q4M1XuTJvxR4F/HTv7njk3H5L6uMpb3VB7H77lj43cURDhOvuv9XXnG95qNV69m721ubiKXy5khFAgEMDExYYX0SqUSSqUSdnZ2MDw8bMaRz+fD7du3LcWAbSnZ6pjGKWv/EBRiNAINpmAwaK2KqWeSDwKwSDKf76gFYTqdxvz8PPb29rCxsQGfz4fh4WH81m/9FgqFgqXzTU5Ooq2tDcViEeFwGB5PPXppa2urATzxeDyWwkA5QqOY0QX9/f2IRCI4efIkVldXrWUxCzfyfPFss/PA9PQ01tbWsLy8bOkMBPsHBwfx3HPPGS8pl8tYW1sz5xhTQYaGhrC+vo779++bd7u/v9/0DBYsbG1txZ07d9Da2mp0AI54QX9/P06fPo2VlRVbj0qlgkKhgEgkYl0zAoGA1T2gfhCJRFAoFCyXf21tDaVSyTpw8OfixYuW+tLS0mJppUyFId+lU4Y1DlhrgVEklL8srphMJhv4D+9H50itVmvo3MR6Db29vbh3754VoGTrbZ/Ph/HxcYvqIL3JKwkQcQ7hcBiHh/VCxIzWKJfLWFhYwJ07d5BMJnH37l0AsLXe3Nw0W83r9VrnEb6eSqUQjUZtndQmY8FFdjKjXrG3t2fFP4vFoskOtldlKi1wFLX9sOsjQQWPx/N/A/ifAGRqtdr4h6/FAPwjgCEAswB+s1ar5T11LvQnAL4EYAfA/1Kr1a581DNqtaOQOiqeKpgV/WM4CwsIUqEgAYkSBYPBBsPXRXVJOEXRVRCp8uIqVBQiBBWoeBFxpNFMAagMXVFs9746FgoCGiccF+mlNRxUAKmRoYoSn+sanHyuChbX88L78ADyf3qGGBLK0HT9vhsNQsOKIWacpyoRbpgqGauOCUADDckAyBRYVFPBJRWSeh+P5yhCgmujdGsmeI8DKPT+6hXh3PjTbE30Hu5rLsjQTOlQBUrHS1oqCOUyBnfsSiN37s0UkIdd7mcrlYp5AKrVeoEeVZRo8JA+FMj8n4r84uIiWltbEYlEMD4+jt/8zd/ET37yE3z3u9+1fUBvBunD/andGCj8WWGZ+42RRDSumIdWrR6lXVEJ57ln0STgqEMMCz3SOwYchaO3tbUZSOrxNKYKADBDl+H6/B7vQ1Sb4Yz0uBy3lvS4E+ik8KSyyvHs7e3hrbfesrHS0Nnc3LTzvbu7ayGRPDf0OrH4oircACxHr1QqWfE08slKpWKheSw2pO0xXUOdBZbUMOI5pyJ/cHBgqTK1Wr3C92OPPYa1tTWcPn0aV69ebQCJvF4vTp8+jS9/+cvIZDJ47733cOfOHZTLZSvyxLXweDzmPeAZXF1dNZqSl3NPDw8Po7e3F3fv3kU2m8XW1tYDgAH3LM84aa/ygLxBgWv1JpO3trW1NZx5BSVUDvBvBYl5bsgb+TyX93zc86/ynXybz2EdCMp3nhN+Vvkxo/WoPPJ1r/cosk0jeVyQVX8DRwafgtmaZtFMvvOsch4KvJK26mzQ/clLZZvqOrwX+Uyz8Ppmhrwaw65eoFFTzQxYflefBRzl/zM9KRKJ2JlVOqozR/dSZ2fnAzLUBVbI690ohGZzoXwnn+I6cN2Ok2mkAces4+a+dMGFh+0fvs6QYz27Koddp4iOp5l8b/ZZdao9TL5zDZuldCkttEWwpvm5KTruuJrR9zhaM5y+q6sL09PTWFhYwJUrV5DJZPDZz34W+XweV65cwblz5xAIBDAwMID+/n4rRlit1iPl5ufnMTk5iV/7tV/DiRMnrHCv0mR3d9ciHGu1ejvl3d1d82SpV8sAACAASURBVIZr5GA8HrfQfk0L8Hq96O7uxvLyMi5fvozNzU08/vjj6O7uRn9/P0ZHR60YIWXjzs4O+vr6zDPOyByeAxrM4XAY6XTadIFsNotKpYKNjQ14vfXipZOTk8jn8ygWi5Ze2N7ejlgsZnoSW20ylaJQKBh4UygULLIumUyad50h7qwNVqvVLD1zaWnJWiYy1XRjYwMvv/wy0uk0fu/3fg8DAwPW/Yy6CvUZ6kT7+/u4cOGCvR6JRMwRwnVgJ6xAIIDV1VWsrKzYfqrValZQkd0WAoEAXnnlFfzbv/0byuUyJicncerUKSQSCezs7FgLRp49RoP7fPU6bkNDQwiHw9jd3TXdJBqNWjcPAFbvifKbc2MaLjuKVCoVhMNhfPGLX8S5c+esMxYBCLYGHxoaslRNjXIkmMIzx9bOAKx9JB0a3d3d2N7exsbGBrLZLFZWVqwmCIGaeDyOCxcuoFwu45133rEUSOq2TClWBxf5ZSAQsEgV6tB03Le1tVlKKx08jJKo1WrWkv0f//EfrW7HcdfHiVT4fwD8nwD+h7z2XwH8rFar/TePx/NfP/z/fwfwGwDGPvz5FID/68PfD73IiFU4AWhQSkkobiAS2vVuATBjjpuf3jUV+Ax7U6UJOGKc/Kwyfxo6bh0FbhiPx2MAiN7PjZJQIcV7qUBWRdxVNl3DlvOgZ9UFGdSD446LihOFCO+pnkwdGw8DFS16HRRNJW35PAVfdG25ThxvM8VG56uf4zg5FhoP3BO6HorY83t6H9KfRpYWyFNF2BX4pA2Zt6skEIFkqDY9na5CqIqWKoFqiOl+cRV5F5ji3FyFk89sRgu9lH40SrjPVIFRJdE16tzxHHdx/9PzRACR3jV6J8jY4/E4FhcXEYvF8Mgjj8Dr9eLmzZsIh8O4ceMGJiYm4PV6LURNhSnpz/POVARW3mU7SGXE3JMEBGgA0Yhke6ipqSnjIaFQyNaexhEZN0OHGRnEvMeenh4TfkSHuZfD4fAD6UBch2AwiLNnzyKXy2F+ft5eV8+0nhvuZ7a60vok5EulUgm3b99u8LhqXjR5hfKbWCxmiozP58PS0lKDQcTzw/PI8fF8ayFI1qSJx+Mol8vWBUZbLtEDQ37SbM/z8ng8ZhT6fPXe4SwqpeGfCmReuHABFy9exKVLl6xCNdeS41a+QR5AIEvlgoKakUjEZBcVZ7aH4hxIG+XlPOP0PnEPEbxQ44tKDdPrXCUcOAIjFKBRXsO9r8B4M7oq33Yv14BSmvE7VLQVFKB8p1xTY4/35X6kx4801PWkwqTy3QWSXUONY1Qj1dVJGIXEMbs045q5YICeWwWm1AOvKZL8vKb3KAjN5yuAorLfle/u3F3ng46Z/Ev5A3BUd8qtH+HKd36ea6n01v3o6lbkFbqH9L40YprJd6U958/nqu6k+4hz1+hQpYHHc9QVSsfKvynfKU80gox7x10foLED1nGgg/sspYnuKQWbXPmu3+HFCDgFvbh3NTpGgQVdr4cBC/z86uqqeTY518HBQTOWWYiWwOrt27cxPT1t8o3G+O7uLoaGhhCJRPDII49YOsQ777yDdDqNbDaLTCaD7e1tq5LPwrn0MFerdQcAjTXygrW1NUQiEfMWk+9ms1lzXJ48eRKFQsFS8dra2pDJZCxKgtGVe3t71i6S68raB93d3Uin05idnTUP8dTUFPL5PHp7e7G9vW3ju3XrFubn5/GZz3wGLS0tRh8a5fPz81haWoLP50Mul7OzQC/zyMgIBgcHG9LBw+EwkslkQ0HLnZ0dS0dYWFjA22+/jWQyifb2dhSLRRwcHODu3btoaWnBvXv3UK1WrZBiX18fFhYWrHYDQZrx8XGr66Mtqbe3txGNRm3c1Wo9uk6jnQkuz8zMYGtrC/fu3cP169ctFWxlZQXt7e0WGUIwjM9jscVoNIrNzU3Mz8+jvb3dnDs8ox0dHTh37pw5rhn1yjUeHx+3iEwW8N7e3sbOzg5ef/113Lx5E5/+9KexurpqbaNZO2NoaAgrKytYWloy0GFvb8/SbG/evInNzU2j187OjrVSB+pg3+zsrEV4qf7EOgiRSAQ9PT3o6elBtVrFvXv3THfmfudeVmC8q6sLbW1tWFtbAwCL7qQd5/HUo2rK5bLJ1nK5bM6n9fV1q0Fx+/btByI03esjQYVarfaGx+MZcl7+CoCnP/z7rwG8hjqo8BUA/6NW52LveDyeqMfj6anVaisPewaZPRVZMjR6MCgw4vF4fdD+xh7KDJtmXhW9SCQeBYeiyFTuaCiocqQCic/gc/ieGn2MnPD7/UilUg3hxxS4ZNgq/Cg0eQ9VkJXxq0GgKRQquCiQSTsaumqsut4LKnXqJVADVw1eFVbq8WCoKumiQAgND0XuVPCSxs28AS5AovPk665wJZOqVqsNCqsrsPV1rg3Hpgq03p+GEenKdSID0LXiOlEx0XvSuFFDgN/T9dI9oobDx1Ec9HOqoJJmSmf3Ug+vGiGukqSGiiodClA97OJ5oUHvKj4ENDiH3d1dAwm8Xi8+8YlPYGNjA319ffjnf/5nFAoF/OVf/iWCwSAKhYKNRavEKz1ouKdSKeRyOQMY+FyOUQ1e3lfTFcLhsHnfA4EAOjs78cQTT+DNN980AUOlVfcBIwbK5TKy2awBF+3t7RgcHMTc3Bx2d3etrROB0vb2dqtDQEHEgktE2HV/8PVEIoHnnnsOlUoFP/3pT63DBOmi0UrkbeR7XAfmW1JIh0IhPPfcc0ilUnjxxRcN5GWeHiMrON9a7SicUOskaBQKhWhPT4912tC6CBTIQKPnjEKUe5XjZ/4hQbFqtYqFhQWsra018CaGiLe0tGBiYgLlchkrKyuYmpqyteHclefwNZ7lZryNBrOGkeo5VF5cLpcb6ga4fIUhjvRccG48N7zS6bSFEJfLZWuV6hrE7OTBvcIzrf+7xq7yluNAQ9eI5ZnSfaUG5OHhobWRc3n34eGhAXGU70A9XFXlO0EBfo+pQjQS1JAk7RVcc3m/K99bW1sRj8ctuoQ8kfKZY1G68VLDXg07NWwpSzQyx5XvCuK7vN2VcdQHXMBbeXezNdWL8l33K8dHr5/Kd3XuKJ35LN2Drj7STL7rXqJc4H5QsEbBAuULLmik0T0cA8+Dghh8X4tO6jpWq0e1alydhmukP7y/ynedv+qmzcAvzk3nyPf0LCpN+Fvv4UarcCzkzzqfZrqfez/3qlQqeOutt/DJT34S8/PzZrB8+tOfNhC0s7MTv/M7vwMA6OnpaegYkM1mMTg4iCeeeALFYhGzs7Oo1WoWUVar1b3tW1tb1l2hXC7jzp07WFpawujoKKLRqOXvRyIR4zksCsmaQ9Vq1YosLy8vmxE+MDCA3t5ePPvss5idncXGxgbC4bDxgPX1dcuxZ9QC89ABWNvpWq1mXSGY5hYKhfDYY4+ZcTY0NGTdH+LxOCYmJlAqlfD4448jmUyiVCrhzp07KJVKAGD58OTrpOHo6KjxJu5xgvI8o6zNQH0FqEeVkG8NDw9jeHjYClpub2+jp6cH+XwejzzyCPx+v9Wy8PnqrbJZAyAQCCAcDqNYLJo+ks/nLTSf+obf78fIyIgZuNRvWDsoFAqhvb0dAwMDVsC7p6cH3d3dZuxSL6tWq4hGowZi7O/vIxaLYWNjA4VCAblczngtAZWuri4MDAxgc3MT7777rtEwHA5jdnYWxWIRk5OT8Pl86OvrQyQSwcrKCn76058imUxibm6uAdDt7e01hwK7YvT29lpaLiMli8WiOUR2dnYwPz+PVCrVAPwycpadRxhl0t/fb84qv9+PTCZj8pK1JMi3tCYGr4ODekosgQx2OGNqJXVfdv4gOEYnDNODV1ZWMDIygnfffbfp2ef1H62pkBKgYBVA6sO/+wAsyOcWP3ztoaCCCh96FhThJZN2w2nVO8WUAzJqhuzx4ufUc6RGvCojFBr01vD5RMj4OY5DlRMq/CqYKHxZpE3nQ+CD/U3VyNX58kApKs/cZleRcoWASwOifWfPnkVHRwcmJycNWaZirnPkpYaHKn5Kd9fLrqi3rjHnwM9w3JwP10pzRRWB0zlxTAoqqOKsAlJBKr6nuauuksExMyyIBoTes5mAJa24j11jvpnwb6YY8LuqnLjP0ff1zJDuLS0tlleuwqjZuJvtHSodanDqWurlAlnN7gvAjINqtWo58jS++Bzdiwxl8/v9WF1dxd/93d9ZVVrmqQGwFk9UhtRQYk0Qnp3Pfe5z+MY3voFyuYw//dM/xezsLLq7u9Hd3Y3p6WkrdMN2U/TQsTKy1+vF7OysAWksokNlikWV6BXnHmM6B9eOERLVahXFYtEKFNET5gJKarSz1SL3hp5x9bIODg7i2WefRXt7O9555x0bi+Yi82yxurSuKdOJ9NyXy2VMTEygu7sbgUDA2iMx746h7DSYiIazpgK9FAR3uf+3t7dx+fLlBqPf3ZMAjK9yn7OgFPs/Mz1DvcgsoKWeOtegmJ2dxfLysoW7u8/Vc6H30PPQzNDLZrMN4AlQP6dUpmq1mvVKpyHLfcB7tre3m9JMbwt5rPKsoaEhfOUrX0GhUMBf/MVfPMATeaaVZ+jl5tPr5Ro6zUBOvXRfAkdgHcfNcWl3J43YIC8jqACgIS2GY+JvTXlU+a7ngc9mznMzAwpojNzy+/0PRAvpvZk6xWdTvh8c1FuP6R6hTAHQILdcxwPBRD5T032aAVgqn9mOlQAlP6f7VOerhi/XguAP6U4+wKgcjl9BI9KKe0sjt8j3FBzRz7lroDRTOnFPueCWnkVeGkWgwJKCZ1xDle/NZJmeW9JSgQq9P9ND9XV+Xl9z5bs7f+DBbhekO3+zjhejcl2auONvtn9cmX2cfvMwvcHj8Zi3d319HY8++qh1RKDs8nq9SCQStpeWlpZM7zs8PLRWuazk/9prryGRSFh9IAX7aZhR1re1tSGRSFgx8GAwiPX1dQuL7+zstBB0Gpw7OzvWhaFYLGJsbAxdXV1Wh4F1j9ra2jAyMoJTp07hpZdestB1OhPu3LmDtbU1fPWrX0UqlUI+n7c6D5SRvb29GBwcxOHhIZaXlzE4OAiPx4P3338fgUAAZ86cMT3+vffeM7mkkdn0WhNcO3v2LP7wD/8Q7e3t+N73vmeyMxAIWMFMFuNjhEAikbAoiJMnT6KjowMdHR3o6+uzmlSDg4NIpVJ49913zWvPdWAtB9YvYLRGLpfDW2+9hVgshrNnz1qKS6lUwvz8PHK5HHK5nLVeZEoL6yqUSiVEIhGcPXsWra2t2NjYQCwWQzKZNCczgYydnR0MDAw0dCOYn5+3dt7stBUOh21vFgoFjI+PY2BgAHNzc6hUKtYFgREpyouZ2hCLxZDNZq2zCHUkyuqf/exnxuvZEWx9fR2ZTAa1Ws1qfEQiEczNzSGXyyGRSBi/b21txcWLF9HR0YGpqSlLG/J6vVaosVqtIpFIYGxsDNVqFel02hwg6szlGaFurJ3VaBfTiUL9gYAf90QsFsPu7i4ymQwymQzS6TQqlYqBcQ+7/tOFGmu1Ws3j8fz7KrUB8Hg8/wXAfwGOFJgP7/eAIqPCi4TTvyl0eci5GYAjzwiFknpdCRLoReFPQejz+SxsSTcvmRg9TVRStXqzpgtQgVFvCMeoBTw0VJjvqZGt9FAlQIUz6ahotksz9r0dGhpqKA5G4eUi+s7amaKnXhWgMZ+Vnn8FAlS505oYqmzoc6iwMCyan1EFhPOkcqiKu86fSoKCJhTUrpdRlQM1gEl3Kvw0hjhuV8nR5ytY0Wxsx9Gac9MzovfT51Bh4TxpLJ4+fRrRaBQ///nPsbKycqynQe/vPuth3znu+81e8/l8FsrGVAIa/aR3R0cHBgcHcf/+fVNg6SEPBoMWasbQ4FQqZfl2/KwyWq2oDNTP+Te/+U184hOfQD6fx9mzZzE7O4utrS0rcNfT02Nnn/ua59Pr9WJ8fBzpdNqqCu/s7CCbzVo1ZirXBDwqlQpisZh1fGBkFYWkFkTjxbaXvPb39412VBTcs+8aF4eHh7h//z5effVVBAIBa/m1trbWAKjxLPM8qvJLRSMcDlv+q9/vx61bt3D79m1rIXZ4eGif7e3txQsvvAC/3487d+7g+vXrAGDFlUhT9Uzq+aDHhHxEeZPP58O5c+cwODiI06dP40c/+hFu3LgBAIb0q1GgYCfPv2tYaAoUgSdtseQa0q6XUr3h/NFIF+BBII5KI4GXWq0ezcEwYa+33k6T71HJYooO9wsVBRqeGxsbpjjo2CgDue+OO9PqnXXP73HGBi/Zf5cBGG/n57WAqd6DctkFTyn/tE4KvW0qHxVkUH6p9I5EIhZ1yOrpVFZZk4R7jLJBQQem3VDmagoJ14TrommSOzs7DSkMpJG7f1zjkjxEz7jKJl0HKqdAPUqQSvvKykpDyKpGm7lGvMp8NzUSQEPBOzd1SNcQQIN8p67QDBSnh07Te1SOqQzkfFVe89nN5LvOV+mkn6eccEEo8kL9joIH/N+9L++tn+PfOh+XDs3kuwucNJPvwWDQAKQbN24gl8sdezZVN3HHp/P791yiz1z2+erF6hi6z8J/5Cf8YU48Q64592QyiUqlgh//+MfIZrPY2NiwwsE3btxAX1+fRR0QDKjVahgYGLAzyEJ+X/va19DV1YWFhQVMTEwgEAjg7NmzVhBQO7Cx2GJ7e7vx26tXr9qara2tmUwJhUIYHh62yEUWA6Z++sYbb+D06dPo6+vD5uamFeW9e/euRTvRSKtUKujs7LTw8pGRESvEWCgUzOCjR548MJVK4cknnwQAfOYzn0E8Hre1Gx0dBQBzxKyvr6Ojo8MiMaljcd9Fo1FEIhELd+dZee+995BMJnFwcGARG5FIxHhvd3e3Fa09deoUrl27hoWFBQwPD2NsbAypVMocEYFAAIODg8hms/jhD3+Inp4ejI+PIxaLYWFhwcCSZDJpLRkTiYQVLmRUaCAQsKKNoVDIUhVIy7W1NSuS6PF4bKzb29vWjeT69es2L4IfxWIRU1NTODw8RH9/f0NUVKVSQTAYRFdXl4G6HR0d9v76+roZ8T5fvfMJ14zRpYyCjMfjePLJJzE+Pm7j2t/ftwhVdly4e/cu7t27B7/fjzNnzmB5eRlbW1t4/PHHbZ+xQGmxWLT1Pzw8tOhcpoyyVSZQ199Y76OtrQ1dXV1mN1Ne8UwAsOLW5Km3b9/+/62l5Jrnw7QGj8fTAyDz4etLAAbkc/0fvvbAVavV/juA/w4AbW1tNQocMlBl4hS2XGh69z+8jx0mDb1TECAajSKRSFjupUYXKNMGYN4p3pdIlgoOElgFpSrmyvx5UQHR8RNpZISDts9S4cl7asE5Kl98X8MpSTdezYAFVmxnRXcFXBi2TFS5mTBXuut9dQwcG+dKYIXvqReIyggVNP7WPaDfbSb8WLyptbW1oYgb73Wc8e+GRapywbWjAkja8zPqjXCVPPfZrjLhCnfX46jzp7JFo4ivq+GkwIoqD+Vy2arsqqdLafAwA4E0/89camR4PJ4HqvdTee3o6ECpVDKByGJBRFRbWlqsyBKL57lKHQGKWq1mef7BYBClUskMh83NTXz/+9/H9vY2JiYmsLKyYqkYzHOcn583nsP18HrrhRAjkQi+8IUvIBQKIRaLoVQq4YMPPrCwPo/HY7Ud/H6/AQOMANB2pcrj+Df50MHBgRnXh4eHOH36NL7+9a/j3XffxU9/+lPLfQaOUh10H3Ifb25u4sUXX7S0DUZBtLa2mpAmgELPOPP9tre3zau9tbWFhYUFtLW1oaenB0ND9fZYMzMzDUDE4WG90N/4+Dja2trw8ssvWw6qsycaDDl60IPBIILBINrb27G5udmgdNNj+fTTT1ulY0ZF8CyrEUHF6eDgwBQOPl9lC89GS0sL+vr6rPaCerd5Xzedjs8hn9Cz4/JK1wPK1lXKV6m00PvBezOXt1KpWLFRvT//npubw3e/+11kMhmLzCDf0qgQlx+pLNU58GpmELnvc50qlcongSP57spanlnubUYbascJ5YMcF8fPlo1dXV2IxWIoFApmtOhc9DfbPXK/sJiZXpSDQL2gF5U1Kr4ckxqOXBsa0oyaoWwmv1M5S4CEnjE3jUZBDZXv7nrztytDV1dXrYCrKxdc+a7z0PvyUj2HQJkLeGjUBr2rNNg5B+5/HQv3DOW7gi66r9rb2/HhfjJeonRy5TufpfJdZSY/q2fIle96xvX7ruw+Tn7y4jhUvuv8NeVJdUeOx5Xv+ty9vb2G/PH/iHx3gRh9Ty+XZzi0/mQgEKidO3cOmUwGiUTCwttrtaP0QL+/Xg+lt7cX09PTDQVrKQf29/eRzWZRKpWwtbWFiYkJAMC3vvUt/MZv/AYuXbqEhYUFrK+vW4FXOhhoQPb19ZmXe3d3F3fu3MGVK1dMv63VaigWi3Z2x8fHzTu+ubmJ8+fPm8xjDYPt7W3s7u4ilUoZAHD16lVUKhX09PRYCsPo6Ch6enqwvLxsqXvZbBZtbW3I5XK4deuWrV0ikcDGxgaKxaIVFLx//77JaEb+EYyl3B4dHbUi0IuLi+jq6kJLSwuGPszvp7x755138OUvfxkdHR3o7OwEcNR6++DgALlcDtFo1PZbKpVCMBhEPp/H3NycyeN4PI58Po+pqSl0dXVZqsTy8jImJydRKBSsjkRvby/C4TCWlpasPgYjq5PJJD75yU9aq/COjg6b28FBvevU1772NUs5+Zu/+RvcunXLjPaNjQ1rQ0n+SD6+vr6O1dVV05/IpyKRCLxerznU5ufnsbW1hXQ6bdEuBAOCwSA6OzsRDocN2GltbTUQg+0f2SGKfC0UCsHr9WJpaQlzc3M4d+6cRUFQ5wiFQvjiF7+IZDKJH//4x7h+/To8Hg9CoRCmp6dx5swZbG5uIhwO46mnnrK9Q9t1enoaw8PDAOq6JDucdHR0YHd3F8Vi0fiix3NUE8brPWqtfuPGjYZoBKay7u7uWsFRRtxTt2pra8PFixcxPj6Ob3/72w/ldf9RUOEHAP5nAP/tw9//Iq//bx6P5x9QL9BYrH1EPQXgwaI5NJ5pqLoKGauCkwF7vV7zIBCppwHP75ZKJVMiybhc4xE4CqukMUJknmNhmD6VDQANAovPpgLC97kxKTyoyKh3hbSggkUGTxRfAQVuUo5VBZ0KQd7Tfd3v92NjYwP5fP6BqAR6V48T7vxNBZr3ZOV2BVVU6aZRSKVDlW/1UqkxwM/oWiqtXOABQEMl7WaXKg0HBwcN4IZ6pVSpU2VcDRd33Y7zaKig5//NhL4qXEpnV3lsBiKocaprtre3h3v37uHevXsoFosN4JtLz2Z/u+vI6+MqHfxstVr9JAD4fL4alaBQKGSKdqVSMSFPARMKhayaMM8QWzqxMA/zHNnv3ePxWMgXhQvzyKhE7+/v45VXXsHbb79t82OONvcdX+PfTH9hYaDXX38dnZ2dyGazKBaLDfxLQxXpQeT5Z9g6eQEVBQAWVcBwy56eHvT19WFlZQWrq6vm9S8Wiw2gjCrXagRTqJJnnDx50rwu4XAYY2Nj8Pl8WFhYsFZaHk89D/bs2bNoa2vDpUuXTFGjcUjg4dlnn0WpVMIPfvADTE1NoVqth+ix0vMf/dEfIZlMYmZmxrrE+Hz1Vpn0wugeUSOHqSM0UOh1J8986aWXEI/Hsby8jI2NDaM1C1Gqwk4FRwFpBYcVDE2lUgiFQlhfXzd6aFQF96ZGH6hc0bPAuShwouepVjuqUUFgA6h7FDo6OpDNZo0nV6v1olyhUAirq6sNBoQb3s3cZqYZcL7NPLzHnXsaUPq/+133rKunWu9J2cyUgGZ8gvRhyDBpTDkMoMEwJwjv8dSLjwKNXRUU7OFF+c6zR1qRxjTANd3LNUL5GvcjFT9NVWD9F3VQuOeTtOQzdW10TAQdFGRRMO44+b65uWlRUaQFeZTOz5U1Cv5oOgPzwrn/XdrScUL5rjVbVL7rXuH93ZbWCtrpazTEXPmue1PBM40y5OtuRIACWyrf3XOhOqm+ru+7e5/r4sp3fqfZGVS9VNdY5btelUoFCwsLJvfUieGOkb/1ngqm6Pfc88/XHvY/UAfMe3t7jTczl5/ANKOk8vk8nnzySUxOTiKTyVg4+cTEBKrVKgYHBy0Ca3h42IzIiYkJS22gI4A6t9frNTCWnQxYvLFYLFq75lgshhs3biAYDOLMmTNmOLE1IIENgoQXL15ErVbD0tISSqUSRkZGEI/H0draikuXLlnkL8/H7u6udWhgrYNqtYrXX3/dohy8Xi+CwSCuXLmCUCiEU6dO4cknnzSQ5fCwXpeAHR+0ftfGxgYqlYrVH1hcXDQvPflRPB7HyMiItR2m4cn9zjNNIIapByyEfePGDbS2thooTfnh8dQLWp48eRKhUAhzc3MNofpdXV3o7e21OhCMzpiZmUEqlcJXv/pVM1Y9Hg9GRkZQKBQMGCP40dbWhpmZGeRyOfs8ALP1WlpaDFBeXFzE4uIibt++jXw+j3A4bCk2XMtyuYxUKoXR0VEbbzabxRtvvGEdINjVK5PJWJQBbUrWq+J+TiQSxttYUJxAv99fr32ggAKj5Gi012o1DA0NoVwu48SJExgZGUG5XEaxWMTAwAAGBgawvr5u5/7w8BD37t3DxYsX4fF4LDKENSQ0UpE8m7oL7dX19XWsrKzYWMivWJiSIBV1Yeocw8PDeOaZZ9Dd3Y0/+ZM/eeDM6/VxWkr+PepFGRMej2cRwP+BOpjwTx6P538FMAfgNz/8+Muot5O8j3pLyW991P15afiFa3hR0efrGrbJRXWNX1axpOLBZ/A7JCiZpgq9crlsRgEFCRkWDwJ/9N5EBrX2AkNziPxoaKAqi0AjKq3Gsnr6KYhVQFBx1PtzbHydXlEyd9JClTQAxsR9Pl+DYuTz+ZBMJuHz+bC2ttYwZl7M1yI9B/7SkQAAIABJREFUuC4ADE3UNAs12F3hpLRwFSlXaPLz9AZrmDs/30zRJaNRZYzCXAEtzT12hS7Xh/fks/Q93ZuuEqKvHQc4KJ1dY1/BDp2be9Gj746j2eUqH66SoXvso5SO4y7Sh6FfZGo8hwcHBygWi7hz5w46OjoQCoWwubmJUqlkSDLDHDWNqaOjwzyW3F/Mc+NnWbyItRy4b4jqco+6jJkKHY3ciYkJ9PT0GH35PH6XVZ1rtXooP9tFUsiQllqUknNPpVLo7+9HX18flpeXTUBnMhncv3+/QVhxrqQpX9P18Hg8CIfD2NraQldXl7XaYpuivr4+lEolM1T7+/vx3HPPoVarYWVlBX6/39JNarWaATk//vGPTYHgmWFfaFbnZthftVo1/nNwcNCQKsbxUzBqyoPH4zHlgKGI9MQeHBxgdXXVjCQqS1qLYX9/H3Nzc8ZH+UzlLTxH3JMcUyAQMLBUPRTV6lGhNq1L4Z5DBalUiVfZ4fF4LBwzk8lgf38fS0tL1pqT91GeRRnoRnlwvVmV3D2frjGhvMPlg8eBD+483fu7spj3ViNR+SRpxLPjgs0ck6Y1MmKAsskFY11wQxUzGjW6JqQhgSm9R7VatSgvAmNAo+OCodDqTednmtFC96F6+vk+58L9xddUVirvJ5Cp8p30UT2HocgM1wWOCkd2dXWZJ5CfV5BMC1Xz+TyzAExvUgOENFTwW/eJztfde6585/lT/sw15d+6D3kG3MhPjRZghIQr33Xvq5xz+ayOmc/VMetrLkDA91xdQO/h0uO4s0cZpoCBex+gsVA2070UgFG+pLT8uFetVjMvOHkUebHH4zFDmIUM19fXG3RPAnPLy8tIp9M4ODjAuXPnMDQ0hJ6eHqujVCqVrN4B1537nhFua2trWF5expUrV1AsFs2wpy5+8uRJO9fanrajowMLCwt4+eWXMTQ0BL/fj2g0ilOnTqGlpQXf+973sLGxYaDi8PCweeBZu4S1gliImWAeo99OnDiBWq2GhYUFk7terxeTk5NYXl5GPp9HPB43eyMej2N1dRX5fB7Xrl3D9PQ0Hn/8cZw/fx5zc3Mol8sYHBxENBq1mkwDAwP49Kc/jZGREfzDP/wDvN56a8pgMIinnnrKihLTC850k52dHSSTSatNRL7CCK+uri7cvHkTk5OTiEajKBaLKBQKSCaT1obT6/VaFOXOzg5SqRQ6OjqwtLRkkd+qf6nzJZvN4qWXXkJbWxtef/11403pdBoLCwuWCsKzW6vVMDk5iVdffRXr6+sGfm5ubmJ3dxfJZNL4YV9fn+2F/f19c26wQCT1zsPDQxSLRcRiMat9UKlUEI/HrR029a9Kpd7evFqtR7WEQiEMDAyYk4zF+wncsIMIHSZAnQePjf2/1L1ZbJzpdTb41EIWa19JFleRlEgtbvUiW2q32m61raQdI3b/BpIAExgZIDPIn4sZzM1czVwNMHfBTCYXCeYqcZDARhKjE8N22o673XbH3VJ6sUQtpERR3JciWTtrYRVZVd9clJ/DU6+/otTOf9HzAgJLVd/yrmd5zjaNhYUFHBwcSN4shvdxrrxeL9577z0BJkqlkiTHBNrGCK/X2yEHAG06zjNDMKy/vx/RaBRzc3NCC8m3mHutUqkgn89jbGwMg4ODtqCp2Z6m+sMfdvnpus21FoD/6YlvtX+PCEv8PxOl6YG0Wi1hsmx0mSGzpsuyncJjxxAcDocIB2SctKKRMWplWyuSOl8ANzndfRiCQQFaJyEkg7CzqmuBTwsHZH4UFrX3gmZKWkjid2SY2guC76dwoJ+lhTzLspBMJnHt2jW43W7cuHEDjx8/7gjLIEE3wz9IKIjQUUDT2YZNAET3TVsH2Uc9xm4Iu55jDdBwv+g1tLNeaEbKg68BKC1MmEL0SUK3+bsWOPTvnA9z/bSwo9erm8DGa7XyYAdAPEnooDJN4e1JIMaTGvtP5qsJIeeXe0YLTF6vFwMDA+jt7RXhotlsSgjC3t6eCOlerxf9/f3Y2NjoSCbKmMilpSWxCFAIIshH5JlVGuhBwbWo1+sIBAJIJpNSQpFnm2tCS4d2BSZ94f7XlmzgWMBnxv719XVR6rViwTU2QUg9vxrg4PjpjcB4vPX1dezt7aG/v1/619PTIxmVaQHK5/NSponrvbu7i52dHSwsLHSEKBwcHCCTyYiCFY1G4XA4JJsxBU3OGRWTWq0mzJGKCOm/VirpOQZA1oXeXLTMkg9wPdg0OK2Fbx07zZA3t9stwE65XMatW7d+re431wPodKPWv/f09CCZTErODfI2CrSNRkO+59zSWqXPFhXpdDotgpmdUkPh3dwT/F2PnYKEps/6dzu+9CTaphVRNtMrhfOiQXv2R4d4kfZwvtgnujtrJVuDNSa4SY8lzhutV+S95Ek6jE8/g++l63atVhM5hDmRdO4ITU/Jv/hXv0PvO55Rk79z/sz+8HmaP5igjVYUNb8wQZdYLIYXXngBbrcb9+7dw+bmptAzbcTRQAbPoa7+xHW1s7bzXPJZ2sPKPJN2/N3kfxyn9hTV+0/vKZO/6nOgr+cY9TvsgDbzr7k2pkJvyiSav5v8m03vGzsab/bD7lya33FNzd80r9Agijlvds0c68HBAX7xi18gnU5jd3cXxWIRo6OjyGaz6Ovrk7LMLle7/DCBdperXVHgwoULGBoaEgPd9PQ09vf3hfazikCr1faK47h47icnJ5FIJDA3N4darYb9/X2srKygUCgIoMGKDG63G5lMRhS4ZrMpIW8jIyO4evUq7t+/LzxuZ2cHH330ERKJBOLxeMdeZZlGKqdHR0eirKZSKZFNzpw5g4sXL8KyLPzN3/wNKpUKTp06hf39fRQKBRSLxQ4+R7d+ekrSaLK3t4dz587J/K2urkregVwuh1wuB5/PB7/fL5UCDg8P8corr+Cll14C0AZi/uEf/gHJZBKHh4e4d++elF30er1SsjOdTiMUCmFiYgKRSETkpXg8jnA4jFarJbkQWq0Wstks0um07GH2sVarSU4gJrv2er1oNttJRplTgyBpX1+feAuUSiXxSGWo1MbGBnp6emRuGepOeZWyHUNkWNpye3tb8hxwTxAEAtpyBdD2EteyFA1FpEmNRkO85Hp7exEKhTA6OipyU71ex/DwMB4+fIhWq52Im/uSSRHdbrfIeaurq+JhRn7PMwW0+QkrhzgcbQ898pBisSietBqkIW3Q4D11Whq9yacIIvFcE1yZm5uTMqw615Jd+08navxv0UxFiROpGSmv0Yyx1Tp2gSFzB9ABOmiEXscFMgkjrU1erxdut1vCASioNhrtzM3aAk+CxoNPAYe/68QX/J715nVMMTcmgA4AhcIFiZwGPLjgRHS56fVcmiAH36NjFtm0AK6ZCd/BA9Vqtd07fT5fR7lKziXnmPNqrpnZL3oymNfovUDLpGVZHfWitTKvn9FsNjvGyOtJnLUliO/Q5XXMuWHTlg5zPxLAIiMyBRCT2WvhTF9vt8/Ne+wsIpwfLYxpAcYOdDCbfj6VPLPPWtDS73oaocNsdD/MZrMdZ9LtdktCIWZS13uYcXksJaljyqnsARBAkW6hrVYL0WhUnlkoFLC2tibJ06jwUOHnHLhcLkleROuGw+HoKG3J7McaOKSgTWtBPp+Xyi88Zx6PR7wNtPLJPVutVpHL5SSJo1a89R7T9I3PobLK31yudrZnhm7xPp7pUCiEer0usY0ej0fKWAWDQcl4HAqFsLGx0ZFVmaCozvnBGs1AWyFZWFiQWM5WqyUulzoOmAIhGRnHYfIBCgmce71X6aHAddJNe05Ryejp6RElUytL1WoVjx8/hmVZ2N3dxeDgoCj4Llc7PwcFJFPw13kluC7RaBQjIyOwLEs8hvQ55dlpNpsitJhjoLdHMBiU6iIEXbQiTXquFWvzXJp0jIIE9yD5oh048KTGcXTjSXa8gE3TKq4Fc6hwn/E38koNCmirPM8yvU7oKaTzI7EcZzgc7thrWvFqNBrC13huNDjOuQ4EAh35SAB0gFq6KhGBB46JoA75O/md5u/mfgbatJi0kbKQVlqBzhAfkx/oEAgAImTq0B7N37mWen74HWm17hvnRwNV/E2vI8fLuTLHqM8YFSvN87kG2huCc2Am4zYNDFQMzHnrxt/1uTKVfVMu0Xv9k/B3UwYy+bvZ7MAO83c9Zt1PO9pgJys8DaDARk/CpaUlpNNpAJAYeOA4rM3tdkuIQKFQwMjICF5//XWJiz88PMT29jYymYwojk5nu+IDk+DRczEQCGBlZQW9vb04d+4cJicnMTs7i3K5jGq1itnZWeTzeXz+859HLBZDq9VCOp0W2k4FenBwUDwHCoUC7t69i/39fSSTScnk//LLLyOfz2NxcVFCNCnf1+t1nDp1CgcHB0gkEhgaGsLh4SEePXqEYrGIS5cuwe/346OPPsLGxgZqtRouXryICxcu4J133hHvB70XaEl/9tlnOxI9UzHnmd3Z2YHH40EsFkNPTw92d3elogK9MgKBgHgKcv7y+Tyi0SgKhYIkB2Rc/sDAQIceQ/d8v98Py7LEw3R0dBSlUknyNXFvMFHjzs4OFhcXUa/X8aUvfQmW1fZoodcUQyT29/fFk/Lll1/G3NycKMvr6+tYXFzE6Oio0AsaOUKhEK5duyY6QKvVknXUHmobGxsSXheLxcR7lPtqenoab731FqrVKkKhEGKxGCyrDeQzv4fWTZLJJM6fP4+lpSWUSiXJJwG0K5EBwOrqqtAwhuGzMtjBwQECgQBCoRA+/PBDyRHSaDTg8XiEN/X29iKfz2Nzc1P6QOCHdJRgDkso+3w+qXZCWlwqlQRc2t7exsbGBsrlMpxOp4ThMWkp5fGjoyMsLS3h7//+7/HSSy/ZVoTS7VMBKgDHro4mYef3Gt03kWftBUB3EQoUbGQ82i3a5XIJodPMm/dSANFeAkAnqttqteRe9osLrhEd9kkLzxr4oFBEiyYZqFY+6fkAQDKDcyy6kRBpRmu6uvGder7ZtCWDz06lUvjud7+LYDCIbDYrzJqlUjhmuh9TeOHzOG9MksO5JqChBRN9L/9vjk9/1vdql1ZTgND3aEGL7wE6Ex2ZDF4LE7yHLnkPHjwQxcMUosxmZ9Ww85SwY/paIDD3kTlOCjX6NzuAw5yXpxVgzO+fttEaQIEtGAxid3cXyWQSf/Inf4LFxUX87Gc/6/AGotLbaDQkoY4uh8PayNxLdBcjWl2pVOTMM0uw3+/vEMwpVFuWhampKYyNjeHOnTuoVqsiiJChM3t1f3+/ZPddWFhAo9FAKBRCX18fyuUyMpmMuAVmMhm43e2SmHqd6SHBvtJFWSc64xoSMND73gS8qEiQVjLsgQkXXS6XMDee8dHRUczOzgogQ4X78ePHiMViaDQa2N7eFrBEx/+TcbNSAmNaycwIxLCs1vj4OEKhEH7xi18IAMs9zOsdDoeMUysLemwcn2W1szEPDg5ifX1dXGCZV8Pc+0xMRCBGZzsG0OEFkM1m8cEHHwg9IZ3Wihb3KRNaEUDimh0dHUn5Kq4XrQM6l4aO5deNIFSr1ZJYWgprFBB4HdDp6eNwODqSyXY7jwCEdmshzKQDT3vO7WiHHZ8BjsFrrqtJl7X7NPcD0Jlwmf3iWHme2TTQpfk779fX6s+tVkvu08A0hTS9p0wvGL2nuK91ziETNGOYFtDJ301PPM3vOBd8N+/RhgJTWeX1nCfLspDJZPDuu+/K/qXQTiCXIBz3v36+ljcoo2gPTs4nZRCed/NsdgOiTP5u1+z2qF4PLQdpxVnTUC1rsQ0PDyMSiWBhYaED7NO82e68ngTo6eu6nScNEp4kx5iARLd38f/mdU+Srz5pI/0fHBxEMpmEy3Vc654AK/uby+UQDAZFeXI4HJifn5fyhuVyWazi6XQalUpF5AUa7wgqaBf3jz/+GPfv3xfaur29LYBAX18fAoGAhDz4fD709/cDaO/1paUluY7eeuFwGOl0WvZeNBpFKBQSZVjLy4zbp1UcaNOekZERxONxVKtVVCoVrK+v42c/+xlcLhf+8A//ELFYDOl0GslkUtacY8xkMkgkEqKs3r17Fz6fD/F4HLu7u8hkMhgcHJQ8TAz7oZfkwMCAzNPR0RHeffddpNNpDAwM4OHDh3juuedQKpVw8+ZN7O3tSWnJ4eFhjI6OSoUFGuD29/fh8/mws7OD2dlZJJNJ8XwcGhpCX18fHj58iHg8jmKxKPkvOP7Dw0PEYjEx6JbLZcRiMfFQWFxcFOs+ADGmUJZh9SvSA3oUMiRibGwMBwcHuHPnjoQ5MIlhsVgUAwmrVDFZ4Ze+9CV4vV4Ui0Wsra1JqBtlM643DRoEcJiwkd6SDHdh8n2Px4NkMol8Po9UKiUeMkzkPTk5ibGxMWxvbyObzYpXCY3d5Pu5XE5KnltWO8kowX/KYJZlSd4M7QnIqhoLCwsSqgego0wrAAEUaPAplUriFfGDH/wAKysrwqO6tU8FqKAFNl0BgQeDRAA4ZhRmEiCHwyHCICdTK93auwE4jt/yer3I5XLiYh2LxWQzUfCkAq1RIc0wmfWU7r7AcUIkCr7axZNMh32jMkGhjtYVfXDYeLi40N2UUY6dljvTSqcTRQKdQIKJ+rOZmbJ5yJmEjkKXFr40IzS9E3SohEb9Dw8PO9zC2UfNQLWFjs80GT7frfNGaCFNe3Do2rR2lhVT+NEADasK2AEA5tqYf/lZM3b9PlMgtANU7AAGuz1h3md3jZ0g8psACeY7TYGI54JxuD097XrLExMTUv/48PAQAwMDUgYnkUhIWczZ2VkBAfx+v6Dn8XgcqVRKrOl076IiyWQ6LLnGeDkK9HST++3f/m2Mj4/j8PAQDx48QKPRwMTEBDY2NrC5uSmEdXt7Gy+//DJWVlawuLiIarUqSfaKxSI8Ho+Um8pkMshms3L2mX2Xyj7PaLPZlAz/gUBA9ir3r7YEcy8SfSfwQiGO9EOXcdThK1QoHI52LoSvfvWrcLlc+PGPf4ytrS0pNcU4VybLsqzjsCeGk5COhkIhidM8PDwUQIVlvLa3t7G0tCTnn95NOi+CBhV4Pqj80rJLMIDjYb1zAB1KP88/+YB2rzeVFDvQjgIFvckYm6jBQD5LhyyQTuVyuQ7hnetgnpdGoyHzZp4fKnfcA7QU2Z1D3S8NOtmN0a4PGuSxe/5JzU6Z4vsojJn8ne7C9GLRBgHyEn5HOYHP5ZmxUzbpTZPP58WLKRKJiJWU2cVNV1H9LGaDpxxigtEa+DQVQM3f+Zl0jWMDjsERy7KEv9sZT0wlkrxSK8X8R/DC9E7UcosGnYHjPBx63QKBgCSYJVCg+6WBBS3YUrnk+/S509UjzPnke8nftSxjzq8GRbmn7Hgd5ZNWq2Xr2aefp/cV14H8XQMOJuih55Hz2o1v2wFu+tl6zkx50eT/du1p+bv+/ycFEvTzTHnF7XZjfHxc8gAsLi7i448/xvj4OK5evSou3pFIBB6PR8IH6YYei8Vw9+5d5PN5DA8Py9mh0ry5udkxznq9jnA4jKmpKfzsZz/DjRs3YFkWvvnNb+LGjRsYHBzE5OSkJOnr6enBhQsXUC6XsbOzA6C9j+PxON544w0MDQ3hC1/4gijS5Es6kaAuSRsIBFAoFBAMBgG03dD7+vqkugXBFIfDgWKxKJUkbt++Db/fj3v37mFoaEiqWrVax/nBWq12GGc2m8X777+PUqkkFmi/348zZ87gnXfeQalUwuTkpPBFfb5GR0dRqVSQzWaFrhQKBTx+/FhkH6/Xi9/7vd/D3bt3MfGr/BVMmBiJRITPU77QOYoODg5w5coVxONxkV22traQz+cxNzeHRCIBn8+HSCSCqakpMZi4XO2EzcvLy6jVaggGg+jv74fD4RB5QSv14XAYY2NjOHXqFNbW1lAulwV87evrQ7PZxKVLl/Dyyy8jm83i4cOHkl+CtInhNzQQhUIhjIyMIBqNwrLaJZt//OMfi5cB9zirYwAQYIgefgxfJHBNedPr9coeoudBX18f0um0eMgyFGR7exupVErKjbLyBukdjXDNZlO8YnZ3dwUE0EaAer0upcNrtZp4tJTLZQGpuAaFQkGqfOmwT84nZWKWntQ8pVv7VIAKwDFR00ouk2TxgFCR1oyMjKtcLou7LoVVCiAUSLSAQuGBSI1+LyeN2T2piPJ7zQCoqGikniVgGD9MJmUqkJZlyfvp/khGqYVlAGLlYuy5dtkzkWag0xLBQ6mZHQ+E1+uVeeFYdbZkhn4Ui0VBBfWa0bIFHCemdLvdgo7m83m5lv/owkjhTVuQCVxogEnPGfvI+eZ3mrHp/cR7TUWB33OeCAro+TfXje/SoEsqlRJByQz7OAkIMAUau7Ogx9bN60DvRX2NKYCa35nNTtDpBijYKSR2Aku3RsVZK5FOpxP37t3Dn/3Zn6FQKKBer4u7ciwWQy6Xk7I2ADA/Py+0ob+/X87g4eGhxH2xnBoAUbzNUILp6WmMjo6i0WjXYmYpph/84AeIRqOikNDa73a3kzbREs9kOwQq6EnBBFRMThqNRmUv0crBeDgNgjKBGve2rljBfa/pENCmmUNDQ1hdXRXrCsGUF198EU6nE0tLS1hfXxe6wbPndrcTKaVSKUxMTOD06dNoNpuSfDGRSGBsrF0luFAoYG9vT5Btvv/555/HH//xHyObzeI73/mOMC0AHQo43Vh5xqjIcSx6z3C8WlnQguz4+DhSqZR4o+iKQVTa+TyPx4OJiQkcHR0hGAxibm5OrC3AMVisgWj2gd4XfKZWuO0UEjuwgOe0m2DfTYE3FT7OFcELU5nWZ1UrYLqvvK6bYkMea8dTnqZ1e/ZJ/F2DPWxcRwJjlUpFBHdNZ3XYjQmW0NMH6Ey6yLNBYIZAG/OoaN7i8/k6FPdms4lQKASXyyVKBvcd51nzZCoHBBfYF3O/a/6ujQbdaDbPH8+iCVrp2Fgdb65BEwrjtBZqWYXjolDP66mgM+Y9m82K3EP6RE8lHW7FuTH5u2m80PxdK/cm6GDH3/Xc8v/cWzpfiN4nmr/zHVpG1PzdzoCj//Jzt3Onr9HNbp31Obbj36Ycwf5+EnCg2/XmGT7pmXYgIvkV+afL5cKFCxck0aHH45E8QRpoo8X77bffxhtvvIGXXnoJ8Xhc3OqTySR6enqQSqXg9XoFRGcyxJ2dHTid7WSEDodDykKur6/jT//0T9FqtUMfw+EwRkZGsLOz0+F1++KLL4qC63Q6USwWcfnyZcTjcdy7d0/OJIF1ejpSFpibmxOvi1QqBafTKfoBgW3GxFcqFbz44osIh8NYXFxEKpVCvV4Xg6YGYE+fPi0VByYmJuD3+1EqldBqtcMkWdnr1VdfxfDwMEKhkHhqPn78WHjd9evXEQgE8MMf/hD5fF68L+v1OkqlEoaGhhCJRAQoOXv2LAKBAKanp5FKpbC1tQWfzyc5KA4ODnD27Fk8fvwYd+/eFXrq8Xjg8/nw1ltv4eHDh4hEInjuuecE0KXhxufzoVgsYmNjA16vF+Pj4+jpOS512Gq1w1aZONbpdCKfz4veEgwGUa1WhXYNDw+jUqngRz/6EXK5nFS42t/fl1AGgigMwRwYGMDY2BiazSbeeOMNLCws4IMPPpBEiwxR5bpoHSibzWJ1dRUApDqFTvRbLpeFB7G/4XAYmUwGCwsLGBwcRE9Pj5QT3dnZkcpZDLeg/JTP51Eul8VLgeMmfWCfNO8iX2KoQ6lUkpA/8lR6kdBoQf7I+eZZojcu5cuT2qcGVACO0WxNKIms6cQlBBJY25YoumZSJhJPAkbLPQkJGSxdUUgAAAiaxAkm0s5FI1jB+u68jnHPTCjjcDg6rFzAMcLP+CaN5FPx0ZZ3josKmBZUzY2lmaQGFuwUU9PST0WIsU4UurTbNYUYnbtCP2dgYADJZBLJZBKPHj0SdyDOJZ/DsVGA0KCE2S8tNJAZ6lAXPT47Rqfn0mzcc2zcezreX8cps0+cL6673dzrZqd0m0CHea2doGGO8SQFoJuSovtxUj+73WPX7J7V7ZnhcBg9PT2YmZkRy8T29raULmSIBEsNlUolzM/PS4IdABK/XywWxZqWTqcxNDQkqHEymZT4fcYcMgZwfX1dShF6PB7k83mcPXsWs7Oz2N3dxcbGhtRbZtlIWlcIeKyvr+Pb3/42jo6O0N/fL3Freo9QKKLbWTAYxNjYGG7fvt0hGA4PDyOdTsuZ428ulwuXLl3C4uKilBiKx+PIZDIyD6urq0IT6d1AayWrXWjXcvaPlQ3q9TqWlpbwrW99Cy6XS9xF8/m8hCsQrAWOXdl7enowNDQkyZRGRkZw//59+Hw+UbB5rol0awWQAAiVtaOjIwFVwuGwuBRSSSJan0qlbLOXk5aYlj+ul04eZfaD68X7Gd5Cy5KmSXq/8wyTOdvRAFMhMJUtO0XDBBPJJ2ihNs9jt3OrFUWgE/jQNFHzk/9s66asaIVWK5AapNKGAgpx5PvaQs4+a2s1gXkK5JQfqAC0Wi2RE+jGr8N4NDBF5Z57mWdRJ83S/L3ZbHYo5wA6wiB16UnOB+dfGxL0emie1o2/cz7s9oGWF7i25O/adVt7SPI9nEvKH3z24OAgxsfHYVkWFhcXsbu7K7/x+cCxgKsBPrN+PMfJ+zUfpSzGebcDEkyFXM8BP+swFS1bmvxdrwP3ivZIMkGrbvv8aVq386H7qNfM7lrzvJ/E302ebSdfnNQ+idFAx24zZI4Ag8/nw8DAALLZbId3wtzcHHZ2dqSc79jYGEKhEBqNhljAGWYciUQQiUTw4MGDjkoKtGx/7nOfE2Xt/Pnz8Pv9SCQSyOfzsr9SqZSUUGQeofX1dXzuc5+TGH6v14u1tTWxIjMB4NTUFPb39/Hxxx8DOK70QqXZsiwsLy+jUqlgenoagUAA9XodPp9Pcrs0Gg309/cLz2OiQVrPZ2YcxSfqAAAgAElEQVRmOryiqRw6nU6cOnVK+Jg28oXDYSkbWalUkMvl8Mtf/hKXL1/G1NQUnnnmGTgcDgwNDSGVSsHv90tIxaNHjwQAisViQrfGx8fF5T4cDuPRo0doNpvI5XJIpVIiqxA8LZVK8Pv96O3txbVr1zA9PY1oNIp4PC5AD0E+5qqpVqu4c+eOJC88f/68hEValiVVHJhvaHd3V/Jo0CuTZ/Xx48cSVkE5s7e3FzMzMxgeHsb6+jpWVlakFCVlumw2i3v37mFvb09COJg7i7RA6y5aX+Ke514mPaFcQ4M3w1xDoRAePXqEg4MDZLNZhEIhOJ1OpNNprKysiH6l+SLzQ7RaLQFZCPjq8HECtlwXzmGtVhNZmrIPwy8rlYrov+RPXq9XAORgMCjhvixBflL71IAK2t2Mk8XFYwkPrdgDEAGTnwOBgDAFWnZ4D5mUtggCsCXcBCUoDDA2if00LVpaqeXC8hkECLTVhAo6y1qxPxplJ3OnIKaVYi0k8J8W0jgGbkwtULKPFGAokGnFmpuNaK1mtAQYtDKtGS4FCu3eRBckjktbdnS/OD7tXmMqMVxrE2zg8+28KYDubrmaOeo9YFpH9Jya+0UDA1ogMJUKs3Vj6N0EJXO+ntS6gSj6Hd2eb3ddt2aOWX+vn6M/09X+8uXLiEQiGBoawre+9S3k83lJUsb96ff7MfGr0INHjx6JGzgVA+B4v/X29ooLOUMOmKyGFSMsq52pORKJ4ODgAPfu3UOr1fZQ+uUvfymKLPd/IBDA+fPnJYEh49+ojGgwEWgLF1SILl++jOvXr+MHP/iBxAyynKPe2263WwQxnkeeLQCYnZ0VkMBUFMionM523WWi/K1WC++9954kWwQgcZU63p5K0eHhITY3N0XRtyxL3C6j0ajksCA9pCXmgw8+QCqVAgCpGc762qFQCLu7ux3x7PyrlRAmvCwUChgfH5fkSZcuXcLU1BSKxSK+//3vixWJoQ8ci6nwc11crnbiodnZ2Q7aqd3tdcI8h8Mh68j5oCLEvWPuZ+570wVf0zs7JcDsr2ltNM+dBj3071o57UZn7N6n14O81PS0OKl9EkWFfMayLDECkJeTv+sQQeBYIef4GH7AfrLMGYVtHbqmcwzofnEOnc7jXA1mwk49l/zM95K/s39aMeX5pIKuc6LwjLEPpsxAK6hJszXP5Xu4F7i3TAWdc8g5p7zBpvl7uVzu4KemDGGCGdzjdP0mLeBa6nnTXgh8Ni2wHKcOJeVf9tmOv5Pu6z3Xjc+aZ0KfHTv+rvtgghbmPtJ9Nt9tfme+x5QVzO/5/pOauUefdK2+zpwj87za8fCT5Ciz9fT0SPWFU6dOodlsYmlpCcViUVz9vV4v8vm8KKO04DIj/quvvioJm/P5PE6fPo3x8XFJxri1tYVCoSAlDnW5ZgKF9GAIh8NYXV1Fo9FAMpnE0tKSAAkE+Hh2e3t7kUgkxFtyfn4eTqdTFGOv14v9/X1sbm5Kor69vT2sra2JpzTDAXm23W43RkZGJBcPw/QYXkBgksrxxMQE+vr6UCwW4XC0QyYYpk1vSwCSuI85n5gkcHl5WejP+vq6VIR44403RDFnGKjP55N5DofDkgCzUqlgdXUVzzzzjKw1PUyy2ayAH8yHwAoQLHXY19eHSCSCwcFBBINBDAwMYGFhoQPQdLvdmJqaQrVaxfb2toBGKysryGazWF9fx8zMjNBZ7S1AXYOyUiwWQywWw87OjijhPCPRaBTBYLCDfjJkhsYm0hUCPwQ7Go2GVPAgHSO9czgcEurJ91mWJSEzgUBAvLYILJCWDg8PS3JxAgYMvyNtYuWOVquFcDgMp9Mpxl5tgAY6dWHSFv6fZ0LTVc6hDgsjiMX5ZpWUoaEhkY93d3f//5OoUccm0gJOoV4n+qCird3utSCkiTEJB3Mj0F2ZSjIFY+1+yQmli75Z65tCmNvtltgqbgRmoycjJprmcLST0jBxWTQalQ2rF4ibiuAH54EbRFvlOFY74cdkMtqVUgumHAuFFj6HIRZaiNCWEFNB0ACFw+HA2toaVldXJZmY9jIB0HEoAftYUX7mXLLP2otEC8sch7bGsuln83stqDkcx6E1dvtSH1YNiGgLjAks8DsNyNgxdjuG/iQlQV/Hz92eZY6/2/NOEhKe9r5uwpNdKxaLuHnzJgAgmUzi7t274soOdO63ixcv4sqVK5idnUU6nUa5XMajR4/g9XqRSqUEZaUHgsPRtmYsLS2J1xAzyF+9ehX7+/uSVNHtdovVn5Vf+I9M4dlnn8XXv/51ZLNZLC0tiYDO+EZa+8kUyThcLhfS6TQePHggWebpzkZLDZHhVquduVcLsvzc29srsXpAm67t7u52CMg6Ft5UUHRSRoIWtHzwvOm4b7qB87parYbd3V1RhAAIIl+v17G/v49Hjx6JdwEVClobtPs494O2QrKfW1tbErZCpv/ss8+iVqvhmWeewe3bt8WtkQANhX07ZZgKGd/h9/vh9XoFlGJM/cHBgSD42o2dHhKmUqLPtF4rbcUgHaXAZnfeteJCIYIliO3OjZ2iYSo3+syb9LVbaAb3QDdFpht4YL73JBrCfcD63nw3BTKfzycWMgJXOnRR03jguPQnBTvuZ11+ViugPB+avwPH9eQ1aA1A+DfPHGUR8mHGnZK/M3ks6QkthZRjgOOQBe5JngsNdGjDwtMoysBxAkSO2VTq9Tw4HA4JOeF86t8t6zivg/Ya0LxzbW0Na2trwt8p2JtzrcEJzYPIN0njyd8BiJKnq9nw3QyZ1ACiqbybSrodf9dzx35q+UiDLHrONT2xWwvznJjgDK/pBgR0U/afxN/tmt15POl8Pqk9ibfr36vVKubm5mBZFhYWFgQw/6d/+ifcuHEDZ86cwe///u8jGAyiVquJFdzpdGJlZUXA3Xw+L89dXV1Fb28vXn31VfEqoEX64OAAe3t7CIVCaDabchapJA8NDYkVu1gsdngzNxoNJBIJnD9/Hru7uxIit7CwIEr8wMAAZmZm8NJLL8Hlaucbevz4MaLRKL7xjW/g4cOH+Jd/+RdsbW0JQEBleX9/Hy6XS/IXkF8yR1SlUhHe7vV6JfEe5Wa/399hqHvw4AEikYgYJwjIMiQzlUphaGhIwqo/+9nPSnWqra0tNJtNRKNRuN1ulMtlzM3NAWiHcVN2oI5iWRb+/d//Haurq5iYmMDVq1cxNDQk/Se4k0qlpPyn1oc8Ho94bcZiMQSDQbnf5XLhlVdegd/vx5UrV6R0OHWmx48fY35+Hv39/RgaGhIQgWuugQkq/vF4HD6fD7du3YLT6UQoFBJvZsuysLa2Jl4ODKebnp6WClXMwcX8CdlsFoVCAS6XC5FIpCPsBEDH8zc2NqR/8Xgcfr9fPB0ikQgCgQCq1arkBCE/pNctPTV1zjp6CvT09CAYDMockH9pvqUT6jJpufbeZ6NXDXUl4DjnFMPVPB4PotGohIf6fD7J6UCA5aT2qQIVtLsPiT1DHHQGa06YVjKBYyaiFXXLsiT2hjXruekpIFOop8sLAIkrAY7dTrnAtJ7GYjHs7u6i2WxnoM9ms7/mPkSrJ5kV3bi0ZYTCk2VZgsbRAmMKr2waxddCiFb0TaGa/2hh4HU6kaEGbLQ3grZ+WJbVsVEt6zgkolqtirs3hXjTK0ELuBok0Yydgo4W2jXDp2ChLZ4uVzsRixYA9HN5HeeNQhEPk5477jP2UQsv5nN0MwV5O0BDg1p2wpB+jn4WP+vn2X2vhUruX7N1AzO6tW6/nyTYdPvdsiyUy2XMz8/j8ePHSCQS2N3d7RDuuDbNZlMSJS4vL0sFBca6UenleElsmbymt7cXr7zyChKJBO7evYuZmRm0Wi3Zp4z/p6JDxsg92Gg0kEqlMDs7i+XlZRSLRezt7cn68920ZLMETzweFwL/05/+VJQpMg6tVCQSCbhcLsm0a5ZlpSWf+5MCiN/vl2oALpdLSjJxzrXXFJ/FfwQMtPBMAVy7dzPfAGluf3+/1FBmhmu+n3kq+GyXy4X+/n4Ui0UBCnTlF76TfaBQo9//ox/9CJ/73Odw//59rK2tSXZ67hXSVn3e9f7W49NMF4CErdFKRdpP3qIVPj7LDqjT7+T3TqdTLERHR0cSf2+eA/1XJ4MzaQff3c27wbxOn1edd8BUaLoBFd2eqedBK8BPamZ4CvkjPXo0z9aWfM0futEzgjFMJkXrIO+jtyDPNgBxTdUgjsfjEZnA6/WKWyxBLJbApTWPrrfcg7y3Wq128HftpaHzCWgB0qTlGnCyMwTwN/Zdn2EAHfxdW6jYTzNcUId3mDyGrrykcbTiMks/DQqmcYfj15/1WdegvOarfDefy+u14aIbP9IGADv+rt+h5QM2Pfd2vNY8/3b8XY/fDlAwn/lJ+LveL+Z5eBIP/03ak/i73TXb29v46KOPUC6XJYn52toabt26hXq9jt3dXVSrVcm0n0wmpXReLpcTmT0ej2Nzc1NkpVKphImJCaysrOCll17CgwcPJF6e+358fBx+vx9ut1sSQI6PjyOdTuPw8FD+jo+PSxWBc+fO4ZlnnkE2m0Umk8GDBw/w3e9+F4FAAK+//rpUf5ifn0ckEkGpVJKwhYWFBTx48EDc81kNoFQq4e7du5iamsLk5CRWVlZQLBbl7HHv0bJPHrSzs4NkMgm/3y+VMcj/9/b2pNQ0EwH6fD48++yz4nkQi8WQSCTgdDqRy+UwPj6ORCKBYrEoFSDoORgOh2UsPCu5XA4vv/wy4vE43n77bXznO9/BwsICrl27hmq1KnktqHf19PRge3sb5XJZvBn1Psxms1heXpaqEvl8XkAUAsqRSASjo6NIJBIolUrI5/MYGxtDLBYToGB7e1vkOQLBmUxG9v7ly5fx7LPP4v3334fX68XY2BgajYYARaurqwJu0LDCagyFQkG8WxkK22w2MTAwIPICQ2Lq9bpUxiD4w2oXm5ub6O/vl/AWJvOkfFev11EsFiU5eaFQkFwiHBdlKHrRMH/Na6+9Bo/Hg+9973uSCJR6WrlcFjCIIZi60g75kslDtIGc72IYL5MnM4cR1+nzn/+88JZu7VMFKmgCqxVguqSQiQLHJZ200GdaG/h/otvFYhFAWziJRqNiHdSID59FtIfCDZN7aNdb/uMmp6ANHCsDVI57e3vFRYhKNwUcjdR7PB5RGJixk3kj+FyTGVEYoMUU+HXlVrsi8p0alNDxN/xOCxgEViigmQIm+0/BnITKBBD0X73m+hmmIE9BiEIZNz/3B4UT03pBgUTPh15jnVyK1/DgUcEBjkue6f6cxOx5vxakzD6wf6bwflLrptSbioLuhzm3pgD1SdpJ1pWnASV045pVKhWJQyfizqy5BAcajQbu3bsncfQAhNlSQaHL2tramij2tF7m83lMTEwgGAzivffeE3c0y7Lw9a9/HV/72tdw48YNfPvb3xYXdxJ5MpRHjx51KOFU8h0Oh3jNkHjX63VBsRlywXhFWvVIkzRyzD3Mf9qbh54TdC08e/YsGo2GCGHMIWEK8RqUpIKgFREqW6Rx+gzyep1/hol+9vb2hGEx5lyHg/D9ZHyhUEiqTHA8BGT4bO2Cz/O+vr4uNBo4rkut95wptGtvIr0n2Uf2j3GpJhihx2zuYVNRsDt7bMy+rCsV6WYqEHaKiDkG8xx3Axb1vSZI0Y2O2L2v22/mee+2JrrfpKl6T9LqQosNfwOOEy2Sh2qrv+YJPCfMV+R2uxEOh2FZ7ZwglBk0z6ZXlFbMaNVh6UANLNJtl/tC/0aBjO9ktQCeR81rOVYqPrrmvF5bk78zbEBXhuK8az7D92jebXra6X2hz4ydks1nccyav2vliPdp7wiTv5v90EAC30H+rvvCf3qMJqhl0jiOW4MXJj+kDEGZRss+5hmwO6t6rsw1ATr5u57zbs3uWrvzZPeb2R+7M9yNPz9Nn+zu1/fpz+l0Gg8fPsT6+rokPqYhLpFI4PTp03C73eI14HQ6sbOzg62tLVF8S6WSeCzQEl2v1yXB4NzcnOQluHz5MgDgnXfeQSqVgsfjkQz9lUoFDx8+RKFQgMfjQSgUQj6fl7j5+fl57O/vo1QqoVwuSyjD8PAwZmZm4HA4pHQlDZMjIyN47bXX0Gq18P777+Phw4dYXV0Vb2oCBJOTk7h69SpeeuklPHr0CD//+c+RTqdx8eJFmVtm4CdPPTg4QDwex5UrV3D79m3hRQ7HcUJI6hGUf0ZGRoSOMPHk7u5uR8ltn88n/CiTyaBQKGB0dPTXQrgYKlooFPD222/j6OgIf/AHfyBJEPP5PHp6ehAOhyUfRTqdlhACegAygWupVBI+S0POmTNncHR0hO9+97u4fv26hJ+Gw2Hxkjp16lQH3R0cHJQSkMzfRLCh1WpJ7jZW2/D5fMjn8wgEAtjZ2cHNmzfhdrvx2muviUfI0dGRhF1o70Dqgz6fD8PDw9jb20OtVpNS4axSQUDIsizMzMwgkUiILEUgiOvk9XoluSgA8Zhn4spwOCxJgZm/gHphIpHA0NAQCoUCEomEJMsOhUKSd4oJULWsRrqnDVKkGzpsgiABk5xT93Q4HLJf+vv78fzzz2N6evrX9GyzfSpABQrROq4DgEwU3QzpBgxAFG262PJgaCsGGQpLeGihuVQqdZRcA9rCCOvg8n7mPQAgG4KMja6WdMch6ECgQRN4urpoCwLRJTIGfm61WoJomVYZDbZohkl3IIIhjJuklYr91IyBjNl0VdQMi5uPHiB2jJFKDd2KGVME/Ho2dH6nBUvOp+4vhRPtys132YEAmunZMUmOlWOh4KCFWF5nMtKTmGm3ZgIGJihh9kn3w45Z2ykHZp/M8Wvh6Gn6/Js2OwXH/E03uvXRMkvENxgMIhqN4stf/jKWl5dx69YttFot8U6gcNJqtSSWbWhoCLu7u7hy5Qr8fj/eeustiRMmM56dnUWhUECj0cDm5iYODw/x4osvYmJiAuVyWdwZOWemVRVoK7NOp7NjX1MJplLDuE4A2N3dlZhDhmdoV+NQKCS0RdcFJi3UAIOmN81muwyRz+fD8vKy7CdaczR4SAspFRu65OnxsVwUYxZ1mUZ6MBFBdzjaiZY4fs6Pzp8SCoUksVKj0cDGxoaMJRQKSclF0jWtVHAeOQZap3R4mqY/pKUul0tcDbViwPkkczaVEv3ZjP/mcwhQ0ZOFz9LrrwEcreCxTzqunmO2AzxNgKSbkqfPmt6jbBwrabsGi7s1E1S3e+dvomDw2aTVFHbIW8jfaW3kvqCyroU9DZLp+ctkMmId4pxRKeGzuHakMxwreSwtUly7RqMheT3I31nKVANoHo9H9oPX6+2wCumkzwRB2O9SqSTv1t53HJ8df2doKHk779X0wo6/myC4Fgo1+GYq7FxHjpdGEvaF42Kfeb8WaDVooUEc9oFgoQ530JZ3rrG5n/R+1GPlPzveZ/7f/F7LPmzd+Kc513oOTf6un28+y06W0vTJrul1Mb970jn/pNfa9fFJvzmd7aRzi4uLHS73k5OTmJ6exosvvihVBA4PD7Gzs4OxsTEUi0Vxow8EAqLAUpm2LAt/93d/h5mZGancYFkW5ufnJe6biY7D4TAGBwdx5coVqbREZbmvrw/r6+sSluFyuXDr1i2hRadOncLY2BiCwSAqlQp2dnbgcDhEgSuVSjh37pxUmSqXy1hfX8fY2JiUhx4aGgLQVh7fffddLCwsYHt7W7LpEyBkyelarSZVEK5fv44zZ87gP/7jP5BKpbCwsIDV1VUkk0kEg0HRIwgqHB4eIhKJIBwOI5/PS5gWn0/ZaXh4WOaG+Q2ovHI/VSoV/Nu//Rvu3buHbDaLK1euYHx8HEDb64BJsVutdknGra0t8fbkcwqFAtbW1nD69Gn09vaKVX9xcRFutxsvvPCCeH89fPhQgNZMJiNeVdzbDIshUEPjytjYGJxOJwYGBiS0PJfLSRiH5gWtVtsLnckKydOZNBNAR8J8KtoENFgyVF+XTqeldGar1UIymcTMzAwACEhFT03KIKFQCADEez2Xy6FUKqFQKAhvopcJ6QYNqDdu3BAZkaDD0dGReKqSJlK+oqzK8FzKL5TlyKv4j89m6Dt5MeXX0dFRnDlz5oleCsCnBFQAIOiIZgZkzBwgiTXdogGIsMBFoMs8hRJuMOBYwKQbnz5MOkSB7kh2TFAL/ZqoawGODF8vgNvtluyzZMQcpxb8GRpBVJGeGuyfZlxaKeU7qbDzGipsZFQ6yzbHT+VOAxx6vjjPWgEwLaq06rIklmauvJ+N4ASTwXEuOa88uHoO7Z6lLUBaeNEu0XqdtOskG/cK10ELBJwrU9jXY9GCoN1YTQXGFIT411xfs9mBHd2YvQnWmEqP2Ue7dzxt66bwnPRcMmg2uswRGV1cXJScB2YSNb23LKttiSRSzXKI2sro9XpRLpexubkplsjh4WF87Wtfw8DAAP75n/8ZP/rRj9BoNBCJROB0OiVxDvcA+8YSs4yP00o1GxMfHR4eSiw9Y5jpBs+x632uzwD/AsfePNqDgOWGgPYZYNkkXQ0BQIciopVdKgYEAoHjGvWWZcHn8yEcDkvYAu8jes/MzTr5LEMlyNTI0HK5HOr1uiRtYi4JCjz04OA4yfy5vzW9jkajIvjohJa0fgOd580E4TSQwcaqFNo7gvPhdDpFmDUVfAI2fJ6mNxrAMJUrPoNnXgPbzWZT+KDp8q/pn0mLTFrA/pDePc2ZtgM1TZqhmx390bTVVAZpKdMANnkzPf04VvIr7k279xC85nUcKz1j6AJK+k65gGuqeR7Hyr98P+mInguCiI1GQwAFjpv8XY8ROC6ZTOCCHj8ULn0+XwfgZSr3QCd/51nh3iIowfFzvci/tLCs5xBAh4cE10TPhcPhkKR3zGDPvup9rWUh0hGuD3BcCYLnRnt58L2mMm2GWJoKtz5vGiwxebydJyMVO3N/m+fUDvzTZ8Xkp+azzDNxEv/t1oeTmh0I0U02+M/y9yfJHWzPPfccLl68iPn5eTkLtHgycTcV3Xg8joODA2xvb6NWqyEQCAA4nmPy/8nJSdTrdezs7GB9fR1erxcDAwMIh8O4c+cOtre34XA4kM1mEYlEJIP94uIilpeXkcvlJGSBiiQrUVDBZegUaXCpVMLe3h6y2SzOnDkjsn1fXx++973viRxAvQUAotEokskkotEoFhYW8PDhQ9y8eRN37txBLBbDa6+9hpGRETFyWJYl7u4DAwNwuVy4c+cOlpaWkEqlkMlkxNrvdrsRi8Xk+omJCQl3nJ6exv7+voRoxmIxAMdKYjAYxMjICCqViuRfoFeI0+mUUpIbGxu4desWbt++jVdffVUMIzSa0suToMLc3BwODw9x9epVNJtN8cqMRqMIBAI4deoUdnd3sbW1hRdeeEFc6bUnaalUwvnz52VPENAtFosYHR2VBJiVSgXr6+uoVqsYHByE3++XeH+Gli4uLoqBdX9/X8pKXrt2DZlMBvv7+0LXmKjR4XBI6Mre3l7HvOVyOVHMqZDTw4ElI0OhEEKhECKRCBKJBNxuN+7evSsGXiZoDIVCYhzv6emRMDqns13ekeEWBNPpuUvvGoYInz17Ful0WvKKUIagUZ4hGZpGanpL4Ia8grRaG6EIqkxMTGBkZETyQjzp7AOfIlCBg+Rm00Ii3Xy9Xq+4GNoReu3KSMSTh4ZNu8Zpt0j+tazjCgYU2AF0lInTBJ+HgLH82urAvAx0t+H1BD80Q+VnCjm6fJappGsGyn5ot0j2gZZaDVoEAgERzCkk8bn8rIEE9kk/l0IE55wCA+MreR2JBHCc0bnZbApCalpotKDOcelNrJk5D06r1ZIYbN6jFWkNHGlwSY9PA0X8XjNP3UfdFy3EaCFQ702t1HQDFHTTa63Hr/v6NEKDKTyYQEe3Zics2SlF3Z5lZ0Wy6wtji6lQk6n39vbiwYMHYiWkC7H2SgLaSp/P5xMLxPr6OkZHRzE4OIiNjQ3Zm/xXKpVkj9ZqNfzjP/4j/H4/Hj16JEmefud3fgcjIyP48MMP8f3vf1/GyX3rcDiEKTPrcaFQkLmhd8TIyAhWVlbkvDNXgkkfNIhEIs7vdbnUVqsltZ+ZkIdlIoHjkCMqOcBxkh8Kael0WhLHhcNhnDlzRpJp6Xh/7jsKe1TaGKrA7NNkXsCxqzXpIN3xxsbG4Ha7sbOzI7GUTK5EJYznEzhOKKvPQKvV9hYbGBjAmTNnpO62ZVmSGFMzTvPcaprFPrLZAbV6f5tKAJU24NhTQyffo4Kj59E8GxokYsgar282myLYsh9MGKzPf7czxWan2HejPXp8pjJFmmh6y+ln6M92z2Ijf280Gh2WKK4Jq4WQv9sB+mw6FwMBdz1OzqW2VBG4cblcAihw/kmPeL8GdKjMU47QZ508m0AYcLwvSLP4TI6B+0eH1Jlrqvcw97b22ON4tcyh+Xur1RIAxwRxTHCKIVocrz4L2jNMu0lrkJFnhPydLssmf9dAgTk2u3GTllIeM3kz36nBO+01pHk4r9N7RM+BHX+z85DQvJDXmet2Ehhgx88/CX+3O/PdeHm3783nmrKk/t4OhDDnyq75fD6cPn0ayWRSSjHznmKxiDfffBNTU1O4cuWKuP9rww/f73K5sLm5iZs3b2JrawuXL1/uoLfkM7TOUxZkBaiDgwM8ePBAgPyJiQkMDQ1heXkZAISGAO2zxGTN586dg8/nk/j2QCCA0dFRWJaFM2fOSOUHhuX19vZibGxMZJRQKCQ8FACmpqZEMQ0Gg1JZAIAkhmRsvM/nw8OHDyVp4MjICACIks5qClNTU7h8+TLy+bx4NOzs7EjZauYroIs+rfNjY2Po7e3FwMCAeB6VSiUJMSmVShgcHMRXv/pVJJNJ0ReYVJNK+vDwMLLZLObn5zE8PIx4PC6yAgFiJtYHjkPOtfxGWWFychLXr19Hvd3R8HwAACAASURBVF7Hz3/+c6Fl9Pwsl8sYHh5GNBpFvV7HysoKlpeX0Wq10N/fL4n8I5GI5JCgLKRlRiZK5FiYuyqVSiEWi4kMQWM2ARzgOCkj9yY9yRnyQn2LdIPJGnt6erCwsCAeFgBkvYPBoHjjuN1uJJPJDs8tnlV6SbRa7RCS3d1dHBwcdIyNdJUyCg0unINsNotGo4GxsbGOpJykN36/X840z9XMzAzi8biAGaVSqcMY2K19akAFuhOSEXPD65AALYzp+yioMuFELpeT2DxaSMhQtXucRte1uyGZVDQaxcTEBAYGBnDr1i2k0+kO5ZNNC8YcA8EGLZgSISXD57OoRHBTOxzHmcM1wzKtZbofJMbaRdi05OvYVV0HVtdF5WbT6JW2BJrv0VYYuvAQgdRNK9y6VrUW9jRD0YyO79Lf9ff3S/Z/bakww0m45nruTEHHnCdeo4V7vVZ67vXe1J4QdtYMPRdsTyMYnCR8mc1O4TevPQkUsHu/3X36u5MEKbtGgYC5CCi8M5+BnSeSBqWI2L/wwgu4efOmxO/dv39frGRcc1ZZMddrZ2dHkGYAwrBjsZisIxkqiS8TsdKzgkyFij6V3PX1dTnfWgCmdaVQKCCfzwOAIMd6X1LYp1DvdDoRj8fx3HPPodVqYWtrS4ATr9cr1RrYBy0QMyO+Fp6azXaJLwJtZJwUpFqtliRF1OemXq+L95TOB+NwOCQ7MdcCgJQfcjqd4m6n8y5oUJNjp8KnAVRWzdHVATg3VKxMYIAApaa/GrzkmKjk6vOqraamJxL3J3BskdXP17RGnwl9RrRywhAJ0lwNjGhl1zxr+pl2v5nvNL83PSDsAEnSZvOMa4VNj++k8689f7Tir0Eajl/zfFoW6dXhdrslUSCBM1r/SfO5vtxH5C16z9ErhML6xsaGhE2ZHhoa5CKYQJ6kreAEKOitw3NNGkK+wGu1l4Adf9eyCsek94fmdU6nU4BHCp98nh1/p6cQaY0eK9DJ3/kezr/e4yaPcjgctvydZ4z3aF5vehoAbbfnvr4+8UTjOHWYBM+3yd/1ODRIqfup97C5xuZZMfd7N/5uvkPfz2Z3zuzkgW68Vl+nvzPfYV5nNrt+2T33N+HvrJg2MjKCXC4nFQ64j8iT6V7O0Jq9vT2Mj48jGo1icHAQoVAIjx8/xurqKgYGBpBMJlGtVoUP9/f3S7JilmPu6+uTso+tVgv5fB6FQgEvvPACrl+/Dq/Xi+9///v48MMP4ff7BcynFxCrA1UqFYRCIQwNDaFcLkv5P1qDJyYmYFkW7t69i6OjI/j9fng8HhQKBaysrEieoUAggMuXLwvvZO6ndDqNvr4+AUVpCWZ8vWVZyGQykvz51KlTsuf8fj9mZmYwPT2NcrmMu3fviuJ37tw5+P1+bG5uYn9/X8pnXrx4ES6XC/Pz88KD/X4/Go12MsNisYjBwUEkEgl4vV5MTExgYmICoVAIqVQKTqdTSsPT2Fqv13Hx4kWMj48jHA6Lx2Sz2RQPAIIyAwMDsCxLPAHC4bDQpddeew0TExO4ffs21tbWcHBwgFgshmeeeUbWYnx8HKVSCYlEAuvr68IParWaeJi63W5MTk4KWETvgVwuh2KxKIbI8fFx5PN5CUGjHFqpVJBOp1GtVjEwMACfz4dAIIB0Oo1QKIRGoyEhLJQ/mLSSlS5Y0rKnpwexWEzyWrBax+DgIHw+H7a2tuD3+0WBZwJvyroaxKDXnd/vRyAQkL1I4IU5aCinkufwjPPdTqcTExMT0v9cLid8iOc7m83i6OgI586dQyQSkTCRUChkSx/t2qcGVADQkVCCggJjIN1ut1h1KLBr9JxoeiAQwP7+PuLxuJRF0YIccAxg8Lv+/n5xTaYw73a3k21sbm6KC5TprkfBVRNbLiYJJgVHPb56vY5EIiFJxxj2QKFFM06Ole/joprX6TKPeryaKTLRjY5r5TwQAGm1Wh3JxbSCp5kq51E/RwM12stCf29ZligY9HIgqqbXhOOksK2FBAASN0bXTLqlsZ6sPgBawLNjmhpEsFPcTeTPvI/91e/Tc2IKMicJ4CazNz93Ewb4uZsQYVqo9Bjt7jGVn5Pus+tPNyEFaM8nUWfm4eBep6Ks9xaVOCYHC4fD2NrawgcffIBCoSAoNcveWJYlaHyhUEA2m5U5SCQSaDaPkwTmcjm4XC5kMhn81V/9lbje0XWNZ5YWS4YT8Mw6nW13agroGkjQYIbH45EM9aQlXq8Xg4ODkqCJZyAUCnUkVqKl4PXXX0ehUMCPf/xjrK+vY3h4GH/0R3+EZDKJmzdv4l//9V9Rq9WE4ddqtY7s9tq90OFwSPkmKhW0+pARUREaGRlBvV6X2HWuFWkhmSbd+jg36XRazrjDcWxhPTw8FJqoreAEKKhM6/21vr4ugoE+a1o51pZtTS80WGACCNrTSitvZuP3gUAAfr8fxWKxQxnjGhMkMOmL9uYg72JiJnOs3Zqp2Nv9dtL95vUnKRyartu9x+zPSeedv5v8nZ4emr9rXs554hq53e28IOVyGfF4HLFYTNadNMnOQyEajYp3g8nfc7mc5DTRe0gr2ZqXcW40EE6jhVbSo9GoeADxPJCPcWw6LIG/6X2tvVh4XjRYpq8n32bfzPUjDaDliudOe43odSSdIwjBZ+jQQt7D+/kOnZmc/J00wNxTpPkmqErvQ83fCZpwvJrfatph8lfN3/X/+Vl7WXRToPU86/3Rjb93a93Orf7crQ/deLXdO0+SBU763ZQdu/XnpPPucrlw8eJFrK2tIZ/PY2lpSXj9hQsXxPIPQHgiAT6G5fl8Ppw7dw7JZBLf/OY3cf36dRwdHYlSRf7I5OvVahW9vb34rd/6LRweHuLDDz/EysoKstkswuEw1tfX8eabb8Lj8eDmzZuo1WqiVHOvaU8purvTMjw1NQWHw4E7d+4IgNfb24vNzU18+ctflnwBw8PD4gkRi8XE04D8MBQKodVqYW9vT5IFDg4O4ktf+pKEBrz55puwLAuhUAhjY2OSB4ClGA8ODnDr1i3s7u4ilUphd3dXPDsPDw+xsbGBYrGIYrEohhaXy4WhoSGRm6nI9vb2or+/X+Qk0hl6OnCsVKBrtRry+byUUHz55ZcxPT2NWCyGcrksHpSUDSjHAe2yoAyhYh4It9uN+/fvIxgM4u7du/jhD3+I1dVVfOELX8Dp06dFHqNSXK1W5X0MxYhGoxKSSX2F5UhdLpdUGunt7cWzzz6L559/Hh999JF4ajoc7XLOrKqVSqVkTzN/QqvVwu7urlTXaLVaUhEil8uJBZ98qqenBzs7Ox05cJiPit5yjx8/RrVaRV9fHyqVCoLBIFqtliT9ZY4r6oxc362tLZHz6P2iQ1kBdOT0AyDgFftCzxHgmD8dHR0hlUrJnBEcobHtJPlItyeCCg6H428AfA3AnmVZz/zqu/8DwJ8ASP/qsv/dsqw3f/Xb/wbgfwTQBPC/WJb1b0/sBY7j92n502hms9mUSeGC0aWYG4mWTp00bHp6GkdHR5JBnMgYGRKFZrqdlMtlcWmKx+Ny0LQAqmM/KSDys/ZY4AIyZpTKLn+jkAEcK/V9fX0dXg783lTu2H+OnRZSziEPE4UMCi2tVkvABzJHnYdBrwG9GrQywPfTwmIq1XwX51WDAVTYtQDCcZjKOhuVHy3I8LnVarXDGmNap0yhw/Qw0c/TlhA2LZxogYG/aeHL4Ti2NLJppmu+Wx9MLaDpddH3awHXfIfddSeBEk8LQph7TjfzvSaQYHe9bjyfVBJDoRCKxSIsyxJwr6+vT1z2qHDQ0r27uwuHwyGxaoFAQNBixhiSofNck0FwT9GCToGUVg0KyVSs+d5QKCRWkVwuJ7/19PRgYGBAShVtbm7CstruZFQ4KCS3Wi08ePBAGODp06cltlJbt0ulkrjKcX9ubGzge9/7HqrVqiSwHBgYkNKVX/nKV/DWW28hFotJskgAMr+VSkXKO1IBqVQq+N3f/V1cvXpVFKC//Mu/RDqdFuYYCAQEBKxUKhgdHZX1pzBGUCEWi2FmZgb7+/tYWFiQM8HzYbpTc004RqezXYaxt7dXsklrkDSTycg+5/20inFfkZbxeXYWSJ6/UCgkFi3z7PN52vuIzydYo62tQGdpN/0sem+Rzmh6p+8xz5zd2ezG1E3AwTzb5hnkPJpgo6Z12utD8x4TTHgamuJwODr4O71nyN9ZDYHWF5YNJb93OBxi8XQ42rW/T58+jaOjI2xtbUnMMc+yyd8pgDLHRzweh8PhkASsfJcWgvWZ5O96HbjvWV5RV17SHiaka729vVKuTPN3ngvOI/cw87NQGHU6neKVSQH7k/B3ellQXgoEArKn9d6i5U43zb9NPsI51/xd/18DB3pvE2jQeZ5IC+jea/JDPpdrrHmjyUe1bEI+bCrges/r5/E37VasgQT9rKfl7+yLHo9uJn/X19nxdzuA4qTzqIEm0k/KX2zaY1TLUE+jTLC53W5cuHBBgBqWkkylUpL9PxQKIRgMYnx8HDdv3kSpVEIkEsHw8DDS6TTu3Lkj1vwrV67gG9/4BgDg448/xl//9V+L9ZQVHra3t+FyuXD9+nUcHh7i5s2beOedd1AoFHD58mXcuXMH77//vrioBwIBoc0ej0fACe69cDgsc+nz+VAsFrG9vY3t7W1cunRJ9i6TPlJRr9Vq2NrawoULFzAzM4NyuSwKGsMTqAxSQa/Varh27RpGRkYwOzuLZrNdzvDFF1+UEpU//elPUSgUEIlERGmm7FCpVKRs4tbWFqrVKiKRCD7zmc/gzJkz2NjYwOuvvw6fzyfhnywZePbs2Q4+7nS2S1EWCgXkcjns7OwgGAyKpZx8nxXsLKvtfcAKFjs7OyiVSlKhwev1olqtimV+cnIS6XRaPKbz+Txu3LiBmzdvIp1Oo16vS+nfnZ0d1Go17OzsIJ1OCw2NRqNSgrTVakllD63Ic28QzDo4OEA0GoXb3S5bmk6nkclkpKqDx+MR6zwrYDAkhRU9SqUSpqamJLdELBYTz1an0ym5JChzLS4uSq4MGhu4x6amplCv1yWRdSKREHm1Uqkgl8t18BfOebPZlESQvb29YoDSdJ8yJ41xR0dHiEQiIpNWq1WEw2EBiyiHtVot8d4Bjr1oo9GohNIwpOfE8/8UNOJvAfwlgL8zvv9/LMv6v/QXDofjAoD/DsBnAAwDeNvhcMxYlvXrJQA67xOGTQarBT5ew4PLJEkUIghA0P2Q1g8eOsbgAp2J9ZiBlRZvy7IQCAQEIDAFXiKYuuoDiTJLgdCSwEOjKzgQlOBYgOPMynSh1uXZdEwmmZcWnCl4sS+cD830ddyhVvL5f+3KTCbKTNq0LJnMhfNhxrwSldMCDN+t3SnJvHWMEp+jhVrThZHXmIq2Lv+mQRg+m/do5q5/10qIndChmbippHMvaYHAFD5Mhmwq5N0sAvp3fZ2dgqCv76aUdLvvSYKHFgqBzvgt/qavP+md/I5urcBx9RQCCMFgUIgrGZPb7cbFixeRSqXQ09OD0dFR1Go13Lp1C2NjY+jv78fW1haOjo5QLBaxt7cnZ5v0YnJyEleuXEG9XsfNmzelHjKt8rTOAZDawj6fD3t7e4jH41LG8ebNm4IcR6NRTE9P44UXXsDBwQF+8pOfSAIdCh1En1lFgILLvXv3xOLCMCKeX229ppLy9ttvi4JOV8O33nqro0KLPqvcl7TuZTKZjlAmt9uNBw8e4Ctf+QpOnTqFd999V5LNMea71WoJcwTa1gYKVExMtLy8LPPHXDY63wIFC+1KbwrYHGuxWJT3M5O2OSYd1mQCANybpAMaHOQzmFGcrpr63JNGmZ5R5D0ULvhMWqcJ4Oqzx7GTLppKPMPgTEXc7lyymQBIt+tMmsG9oZUg/Sw7cFCDBgTJNV3WiptJZ83+UFChtduOv2u+q0MaqTxzTzEulrHYVAi4/nw3lWfSAKDtaaIzonMeeB/fR7pNsJxuvNwb2mLOZ9OSxLHwd1rb6dmiPR0499qbh4o4vYa413VST3oxaJpr8n2uifb2Y6w2rXLaa5Nj4HNIi8izCQzSoKG9A/SeZ5+7hUhovmkCUyavJH/XpXdNUIPzrI0fJn8/CVTQ59KOh9op63q8us96jOZZ0GffbHb83e59JsBhPuOkZ2sFQvfVDjzhP1Mufxr+zus3NzcRi8XwxS9+ET/96U9F8WEsfTweRy6Xw/j4OAYGBuD3+zE7O4tisSgVB6anp3H16lUAbW+EN998E7VaDX19feKBdHR0hJGREbHgMiP+hQsXkMlkEIlEUCgURN4PBAI4OjpCNBrF3NycuIAT7NzY2MAzzzyDQCCAYDCIc+fOCRBPgM/j8Yj7OPWBUqmETCaDe/fuiSX/4OAA+XweIyMjYt1mPibmZMpms/iLv/gL4UmJREKMqCwj2Nvbi8HBQYTDYdEXCHwQgGOsPksDnj17FlevXsX8/DyuXbuGxcVF4XeUXehyPzQ0hGazXVKyWq1ieXkZ6XQa2WwWU1NTGBkZkcSG2WxWgOBGo50PJ5vNyroSiKFRcn9/X/I78Tw3Gg0BBoD2Oede4XfMm0CAgjSQ3qn05uJ4mL/j8PAQiURCFGE2j8eDcrmMnZ0dqQRCb+9KpYJsNotyuSwgA422Tme75Onw8DD6+/slOaRlWWLUoeGKtJwhIwxH6+npkbA5Kvf7+/sYGRkRWspQPnrWsoSl0+mUvBcMW+PZ5D26+hX5J/d0s9mU80JvblaaYJUK8kPK2iMjIxIOG4lEMDQ0BK/XeyINY3siqGBZ1r87HI6JJz6p3f4LgH+wLKsOYMXhcDwGcAXAzSe8QxgnGZHOXK5dVElQ6H7LDKycLLrsAZBDye+0Z0Gz2ZTSNblcTgSMcDjcIYTwOVqhJ3HiM1kSSytJtPbzfo6RwhLdrxkPQ9dZxopyU5NIaEZMBYTj0C6fFMS0JwCZgXaX5FxrayD7y35p5mYXd8y/mmlR+NThBnQTp4WFyqjJzNnMkAf2lwdJl1DRz9CKA9fMFEJMxqgFn25WBFNJ1/OpvzeZMtdDz5kel3a3NIUd08LBv3bKg77XTuDS93YTAtj0+dDXai8Y3UfLsjoQUX4+qRE91kIgCaRlWaKw8xwynt7pdOJrX/sams0m7t+/j1KphL6+PszNzWFiYkIsyK1WO4RiaGgIwWAQs7OzqNfriEaj+OIXvyiC1dtvvy1nhLTG6XQiHA5LMkaCgnSD45nRZZWIfG9tbUm+Ba5HIBBANBrF+vq67A+66BHwZCgTAVO9X8hItTcR3Qbv3buHO3fu/BqwxfNL106CM8wUTO+DarWKtbU1/Pmf/zmGhoZw//59tFptN24m2eJ4Tp8+jc3NTWGeTmc77GNvb0+U7eXlZfH6YugaYxb1uec51YoO3bAdDgc+//nPo1Qq4fbt279mSXc6nYL8Uyknk6ULIzOM8zzoe/W+1XGH+oxQWeBa8ztadPQ5olKmPRq4HnTXp0CqAQRTUdH0yY4mms3st26mkmnSJHNOzefo95o07iSrrAa8TZDEHBMFFjMxM92SSespyDIeVtNMCph2/J37mFVMyOfIp+34I3mcx+MRBUjHaes11uUj9RwQRKQVj7/39fVJ+AXHYuYf4nqZ/F2DDgy90uV4NT/SIBsBRArd2tOC/dRyA9eAz9Rrp4EGTaM0vSZ/IH01eROv12dG7x3SYS17mUCcnlPuN7v9yrnQ+85OINb8WJ8XzqeWKfQZ1fNsB0BwD9qBC08CBTQv18/VfezW7H57Ep2we4ZWPvW13fpu9wyu56VLlxCPx7G2tiZhj61WO2/P2bNnxSX+M5/5DH75y19ifHwczz//vOQFIDCwsbGBzc1N1Go17O3tiZJTqVQwNjaGL3/5y9jd3UWhUEAgEMArr7yCUqkkeR20zM98SWNjY1I5olAoYHR0FOfPnxee7Ha7cerUKcRiMQFDeW7GxsZQrVaRSqVgWe2wXnpIf/zxx/jbv/1bTExM4LOf/SyGh4dRr9dFIWflBVYLACBe0ltbW3C73SLXPHz4EJlMRsIcent7pRrC0dER+vv7kUqlUCgUJJRkYmJC9vwXvvAFlMtlFAoFuFwujIyMCB+nbM7PpH3BYFCqUfh8Pjgc7XLSs7OzCIVCmJqakpx19LYgTSWICgCPHj0CcOx+DwDJZBKlUgmnTp3C48eP4fV6hb9yfzudx2Fl0WgUIyMjkq+A+gUBYt5bKBRgWZbkRdDhYwSLKWekUimx9EejUYyPj6O3t1c84JmrqqenB9VqFbVaDZcuXcLw8LB4mdTrdfGC29jYkHDVvr4+qRpRrVbFUKLls3A4LAr9wcEBVlZWsLe3h3w+j7W1NSnFOTAwAIfDIbScOhSrcViWhVwuJ6ACPQAJsuqwcOqtDodDwnf4HG3Y0rpZuVxGJpOR3EOaNndr/5mcCv+zw+H47wF8DOB/tSwrD2AEwH+oazZ/9d2JTRNKzagpbFKY0wIaERwmZdQxfI1GQ4iLFuRarZZkACWjJhrPZFBkmNzYVDYoJJPps0ycThilJ5woJQ+XGUKgmR8AKdVE12g767aOUdRIv7ZQUsDSzEAzNtMypuedz+K92n2ZY+ec6f5rIVozXM6HFlLIoLu5/erP2hNCCzdcM9NSpudJzxv/auGBSqvJJHU/tfKv7zPXkHtJ72ctWGvrmR6zvt5k1KZiYPe9vtcUaOyEADuhwu43s6/8az5bAx+cF7O/3d6tFRACiBQo6bYMtPdgOp1GPp+Xai6Li4s4PDzE4uIiKpUKDg4ORPCIxWJS5YDnmQxlaWkJP/nJT+D1ejE/Pw8AQtgp3JN4WpaFyclJLCwsiPsj61UzaQ9BgK2tLYkb5Z4iw3M4HOJdwaZpiQZiKGxzHnt7ezExMYF4PI4PP/xQLIUULHg9gclWqyUx/wwVoICv6YZ2I3c6ndjY2MCjR4+EdtTrdVQqFYkrdblc2NnZkX6TBjBvA60nlUpFPFDI0MjESaMptGj6xfPFcpVcGzOpH/cZvR7YgsGggC+ku3wvaQfPKj0fTIVG71MKLlwHDdJqumqCI/o30kUdCqbPg+kRpJVA/WzzvJr03Dz35vXmGbRTCLp9x+fS647xtvr5mgZoRdJspjWX4240GiK00fpfqVTkczqd7srfmewUOM7nQ08Z/p/7hsAW6QH7Sb6t95Pb7RZBmnIIr+O6Uhgn4G/yYj1GgpwAhL+b66VBN5O/a4BLnx27PWB6B3C+OX+8nqEnGsjgfZrWa0GY3gIafOCz7EpT6n7ovWsq/lwPPk8bYfR+YdOKvAYBTJ5p8mTzGg2g6zm0k9FMYMOOv3fb+3o+zPYkkOAk/t5NRjCb/s1uTrUcpfemKY9165/5PKBNywcHB9FqtbC/v49AIIBYLIZ79+7B4XBIaPLCwgJmZmbgdrvx1ltvYWFhAfF4XHhuJpPB6uoqzpw5I+AVrf8bGxs4ffq0ZKUnrT116hRCoRDS6bTEgpM3FgoFSWrocLSTHp49e1Y8JOPxOAYHBwXstywLKysr2NrawtbWFprNppQFpOGK/JfGToZ+LC4uYmJiQirIAe29xkoQdKE/ODgQy34ymRTL/8cffyxzR52nXq+jXq/D6/VKeWYa2RhWOjo6ilgsJsrvxsYG7t69i2KxCJfLhbNnz8LlaiecZl4FhpBWKhW43W5MT0/D4XAIILu3t4dms4l0Oo1wOIxarSa5aOgRTnrS09MjvJxzxQoJMzMzaLVa2NzclHBKLTfos+bxeDA4OCgGTspJiUQC8XhcFH6GOlC/o7GJIR75fB6jo6Po7e3F7Oys5DcIBoMCEhFAaTabkmgXaMuHy8vL4tUwMzMjMmq9Xu9I5s2whGq1KkYiGjoYxpFIJOR3zpVltb22s9ms7PdWq4VMJoMzZ86IQU17b1IW3N/fF1mOchf3ZbFYRLVaRSKREEOSplkMWSXfXFlZQTAYxMTEBHp6esRbOBqNivfvf6vwB7v2/wL4PwFYv/r7fwP4Hz7JAxwOx38F8F+BznrEGk3n/3V8MQkdBTCiN3yG3phMUMINSQamBVQeBBOB1y62ZHq6fyQk2v2NQhWVCTIfHniv1ytumxRIOAaHw/Fric+0WyXHphUQTdDJoKnUmEKSdlPXlk2CCVpRJ0PWzMbOeqBRRfZTC960/OpcFnp9uQ5UerTwY7rca6TPBFRMAUqDETpmlE0LShyPaYEzBXK9/7i22upqKt0ci503gxZi7AQUOyuL2U5SInjP0wgCTwIC+E9byulR0A0I6aa86EZr+97enpwbKrDc55oxMAvxe++9h/+PuXeLbew8z0afRVLiSTyTokjqrBnNaA7OeBJ76qS24xzhIGi60xZFUPSy2BcbBYpe9W6jQP+L3uxetFfZ2DdJ0aIbSdAmdZzU8SHxYcZjj8a2RjOag84URVIURVGiSImHtS+Y59XLzxw7/19gwwsYSEMtrvWt9X3fe3je533fra0tVCoVifwFAgH88R//MbLZLG7fvo3Dw0O0220sLi6KI8HI3M9+9rMeqnMqlUKhUEAwGJT33mp1OyIUCgVZm6RfW1a3uCPn17IsSbNgJJV5mpFIBGNjY6jX67h//37P3PO5bNtGIBAQx8br9fbkk3c6HYmEkDZIR8zcd1zrun6Bw3FaFV6ng2i5pNF/ylaubY45n8/D5/PB5/MhFouJoUElTkqpXieaeaFzePmObdsWcJjyhfn0rGGhU9doQJmtlGio8XPNVjONfZ1jzvVqRmb1QWeUALJ2Rih/zGgpZQMAqWHBd6DlqNYv7OBh7iW9n8x7mMa+dmr1OeZ39fe0g2pehwcjiXpcn+bE/Pa67wOnOpOyWTs2Wr/rsXOtkhVk6lN9aJ2idTUNJ9ZN4BrnXumn6/mPa1fLcO4TjofGJaOaHo9HCkXz7xo8Z+Fm7lHtaOqx6LVmzrUG2PRz0o7g57RNC3jmnAAAIABJREFUtH7XfzPPp67mWLSNxGc33zeNWZ3mqOnypn7nWuc8633NPabXqqlPuPf0egDwsf2n9Tv3pwb99Hs1172+3+MCMLyuvqa+rn62frbSp+n3x+0tPZZP0++PAwJMeWHaY0wVNJ/pcePQz2tZ1vv6eslksge4ajabuHr1KizLkihus9lENptFpVJBo9EQJxLoOnQa5CCDjntZO9s+nw+rq6sSWS+Xy1ILgLR7nT41MDAg6QOsNUTHnkEIsgDogO/t7UlHgOnpaZw9exb37t2TCHe1WgXQBa7PnTsn6QBLS0uSA092ksPhwMjICKLRqARJKDMYZGFNA+C0Ztvw8DD29/clDYN15ILBICYnJwFAUkOZFsbuDgRlVldXe8B+3V2AwAV1VSKRgG3bWFxcxODgIM6ePSvsr1QqBY/Hg9XVVRQKBQDA9vY2qtUqQqEQzp49Kw6prr8QjUYxOjoqgQjqgJOTE7F/gC6b6oknnpDOA9PT09L1iu+E6RpkLuzt7SEQCEjtCdpt1WpVCuM7HA5p9+jxeFCpVLCwsIBoNIpCoYBAIIChoSEpGjoyMoLz589jaGhI2oEeHh7C5XLh/v37aLVa2N/fR7VaRTabFXtoeHgYmUwGwWBQCk2T4cA9QCCoWq1KXQoCFwQ4CE4wbYF7m8WFyTrg2uP5TAVhwI52EgPl8Xgc8Xhc1t/OTrdEIvUJW5G2222srq5iYGAA4XC4r8zRx/8SqGDbdoG/W5b1fwP4z9/+dwvAmDp19Lef9bvG9wF8HwA8Ho9t27ZU0GQkSoMFv/0OgFOkmsYBBZmOTFAQkcZoRqO4uVnLgJ+RkqkpzvxMKwUubB1dNalwPp8PgUBAFoGm1WinhdWvWaCS+ZdAr6GlgROtNPS52snl+fpd0iihYc9F2k/JaUfbVC79EG/ek+fy2ppJwUOPlc9AgUrWhjaK+X+t7PX3bdvuWSt8Rt5HMxPMw1SS2vCisaPP5U9teGklz3tqw107NyagwXvpaJHp2HNOiYY/rjCkfoZ+xko/Y8SM5nLMPM+k45LCazoY/cZgXO993u/rX/86YrEYfvzjH2N3dxeJRAKlUknaulFQsoMAnWh2PVhfXxdE2ev14kc/+hHq9booRM0qYj4blRWj7Y1GAzs7OxgcHBRaIiMepH2R9qyBL+0Es+oxnWcyHaggea9UKtXTrsjv96NYLMLlcmFvb6+ne0soFJLK06zGyyq8ACRfk7KH4KnL5RIGFeUWKZaW1aU3zs7OYnFxUWQs3zf/aQeL4A4/I4WOrYZYlV23raRzbEbm4vG4AEi8Pt8p5yoQCGBmZgZ3796Va7MQrSlvNJBCw4gywOPxSM6rZhlxH+qILdc3WQ4acNIRbb5Pl8uFixcvYmdnB5ubmwJWU/doRpqWTyYDQf+f6UA8yJpjwSUzrYBrUO9Jfs/hOO1UovdgP/DBlEP63fIzPpt2mLQ81IfpJHc6nS8AXf3ebreFUcJ8VA3+6u/3CzJwvjX4DECYAnqu6HgyTYBpP0yxYm4q9Xunc9rSWbPtNBBEQEKDDAwSaJnAPa9zY5nqwOie7q7EQ8tfM+ddvxe9dnSknftX6xMCICbwrtdAv/kz2RY815TvZnqnBu+1fido0U+/m+uQ49ZrVL8fDazoZ+AeMe2VxwFr+j1qeaCfmWPXz95v7zwOwNT7RwNZpg2gZdHvqt/1s5nXeJyNo8/V//R1NDtVz6MGXvX99TknJydf8Hg8NgBxgDc2NoT1xiK8Wj4xuOBwOBCPxxEOh+H1esUpdjgcSCQScLvdWFpaks5pdPr9fj/S6bSwIJaXlzE5OSktKPP5PAqFAjKZjLSxLhQKPWmAZN7FYjFUq1WhrjPKblkWZmdn8eSTT4rDdnh4iEwmg4mJCeRyOfziF7+AZVm4dOkS0uk0tra2sLCwgJWVFWE4cI3qCDdp+KTqs15PIpGQbm3hcBihUAhOZ7dLVSKREDYFHc98Po8zZ86I7cF5abe7KR/RaFTWaq1W6+kOQLuIjjb3KddGu91N9QgEAhIMYfoVgzrFYhEHBwc4PDzEvXv3JCXgD//wD8UZj0QiqNVqwmCpVCq4d+8ewuGwgCVMyyS4VCqVsLS0JCyOZrOJVCqFfD4Pr9crYzk6OkK1WhW/jgxUFurf3NxEMBjExYsXEQgExPGno724uIiTkxOMj4+LL8c6BF6vF+l0Gk6nE8vLy6Kbmdrg9/txcHCA7e1t3L59G5VKBZOTk5iZmcHW1hZs25Y6YOFwGPl8HolEAn/2Z3+GnZ0dvP322ygWiz3pLB6PR1JPqa+0z8lgkQkGs+32yMgInE6nFBENh8NiS9GfJWOH15qamhKgg/NgWRYKhYLY3RMTEx+TLebxvwQqWJaVsm17+7f//d8A3Pnt7z8F8C+WZf1f6BZqPAvg5u9yTToC/aI+/VByvkwKHS5oFvFg5XgaAv2i1fxJBJGOv74Pf+fn2uCmsU3kRxueRI54fVJuiPTonB+degCc5juaAAbBAb2xaZxpMEU73bwGjSwAAlro98r78fum4c1rU8hwLMBpETMdhdJURhoKmsmgEXtuYDpKJgigFTPHb1m9ERJtcGlDQhtEppHCcZpGrTZaTaDCNM4JRmlWST+Dw1x75jk0cPQ89AN09GePAw36/f5p5/CeJuigDQ++D03TN8dkGh76mrZtfwEAvF6vXa/Xkcvl5Jo0Ovm+2d1DRwstq0ubpAPJubMsC/l8Hm63G6lUCg6HQ9Z4vV7HV77yFbhcLly/fl3aVRHd1tF0Gse6NZzurw1A0G2i/jQWmZbAPs/VahVLS0twuVxSSdnhcGBoaEjkFJkNlC+ktRFcrVarCAQCkjIwODiITCaDnZ2dHvnHvUUDiU6U7tnN93rv3j0cHh6KjCQgQkMll8vBtm1BqHXVes5DIBDAlStXUCgU8NprrwlSb9u2nMtuEhwbO3Vo59ThOM0NpOKkMUOjRe9x/iTdU0dAWVXftm2pY8FCTZxbvW/4Ha5lyjue6/P5EI1GxSjgd5588kkEAgEEAgGUy2WEw2EUCgU5RzvzGhCgPDMPDVxyPmz7tH6DeZiOv9672gHnz9/F+ek3Ju5bfod0f50WYjpc/L/WlxwzAS8tY01nj/MNQBwPj8eDZDKJg4MDaZPGThEsCqaBHf1O+JOgInAKwFN3a5lF+a6DCdQtTG0i4KMZLJQhpNTyPrynBmUBSC6s1rFapzJXnOkmpi7j+jf1O98D945pR2mQgvOkDw3+cyz8P0EZzj+vr1MX+A5N/c5n0vpdj8kErkwGBN+htgH0utc/9drldfX65zvQc8t33I85YOoIE3DRz6DXu/7cBIJMHau/9zj93u98fX99337f0dfW/zfnQMsX2s8mCNLvWfvZIrQJCUbv7OxIO9NGo4FEIoFOpyNO/tTUFL797W/j4cOHeOWVV/DTn/4UTz/9NBKJBN577z04nU6pkG9ZlgDx3C+k/qfTaQBANpuF0+nsqXc2NDSEUqkkbD+uy3A4LG3gt7e30Wg0pPNCMpmEw9EtupdIJHB4eIj5+XlkMhkkEgnkcjmMjo6i0+kgHA4jHA5jZ2cHDodDijsnEgmEQiE4HA6h+yeTSXzpS1/CwcEBFhYWpE0guxk4HA5ks1kBK91uN4LBIGZnZ6Xw43vvvYfV1VU0Gg2RJwyAer1e6Rjh9/ulfTELER4dHWF3dxebm5tIp9OoVCo4ODjA5OSk2AKDg4OoVCryfjVYenh4KKkTtIlGR0fh8XiwsrKCiYkJAckqlYqAvNlsVmT3r371K3i9Xjz//PMYHh5Gp9NNRSiVSsIgcDqdGBkZgc/nQygUkuLd1JGVSgX7+/tC3z88PMTe3p60yzx//jymp6dx8eJFAEAoFML6+rrYKfQ/xsfH8dWvflXahrIrGesa0O4ks4NdAvmu2Xa71WqhWCyiVCphaGgIU1NTiEQiIncBSPeSjY0NrK+vI5vNCiBN4JWyh8ARC/nrNFTaV7SbAoEAQqEQIpGI1MjQtlatVpOij4VCQd5Bu92WZ+G+cLlckk7Kwo4Mwn/S8bu0lPxXAF8GELcsKwvg/wTwZcuyrqCb/rAG4H//rbBZtCzr/wVwF0ALwP9hf0rnBy2ADg8Pe6Jc2kAjhZ6RBu3EHh4e9kTKtJNNYUcFyRfCyeD5FP6aVsuxaeRKR2q0EtKOqVae3Hg8p1AoSFVObmxGb4gSa3CCY9KRKtJFWTiO4yeqRSWmmRx0lnQuNg10XeldPzedpXa7LXk9jAryPel76PubhiwFnnYSOad0RrgxTAVPI4DrgUaZVpQagNHGAt8nlZ8uDEanUY9FO/TaCNEGgjZ0TPDhcQrW/L82gLVxqMEgzXDgNXRXAB4aLDGNHR7aKdPnmef0G2s/8In3NQ0PE1TQz8HD6XTivffew/7+vjiTpMfxvfA5g8GgoK+tVgvvvPOOzJ3OmdOO1Re+8AW4XC6899572NrawuzsLJxOJ3K5HPL5PK5du4abN29KCyNtjFWrVVEeLIhEgzIcDuPs2bMYHBzE1taWIPDsOMFWTFRI0WhUehGzFzQVMys2R6NRDAwMYGxsDM1mt0+w2+1GLpcTGQBA6rMwf5GOOOfm5OQEpVJJHKhkMomxsTGEw2HMz88LA6rT6eZ3MzXj1q1b6HQ6SKfTGBgYQCwWQ71elyJUxWIRQFcRs13muXPnJJITj8exv78Pl8sl/ZyZ0sAoMg+yJiivqcyo2KvVKt58800x6GzbluJKGrCkTCSQQoedYwIg78kExCj3bbsbPZ2cnEQ+n5f6EbqYESMHdMAY5QG6NE/LsqTlMPUSqa1cv9phNvc7f3c6nYhGo5IjawLr2hE3gVI+D4EYDZpyL2uH1mRO6L2p0wO0nNB7WoOKlJsmSNEPPKHxwqg/r0mZqttYmfr94OCgp9BaPwdQpyLp59RMG/25fibKMNK+9dj4PJRj1MW8Jlug8X0Wi0XR7wQjuBf0/PD5eD0951zDJtDKsdDpp/6hjCCtm++YoCAZBRoA0oBkq9WSiDEZUnzHnBuOlzJEAzGaoWkyTFnDhOMzHVMNvvE8Ooka6NY6h+tS62SOV69h6hXNMOE/fW/t7GvbhYEurnt+px+QwIPX00EePXbTnjD1q26Rq6/Z73fT0TefyzyYUsT70C7U8kWvFYL9fP7HASF6Pnl0Oh2srq4il8vJvBB0TSaTEnFm28hAIIBGo4H19XXcu3cP+/v7OHfunDjDlPHMz/f5fFheXgYA6Q4zOjoq0WzuN3ZK4jMywj0+Pi4pFHp81AHtdlsClaFQSNoiptNpAV/eeustjIyMYHV1FcFgEKVSCbu7u3jttdewvb0ttvXIyIiADpVKBdVqFa1WC6lUCnNzc3C5XNjc3JScddr/m5ubqFaryOVyODg4QDqdxtjYGDqdjtDqt7a2kMvlpMDf5OSkrIVIJCIy2uv1ynnf/e53EYvFsLi4iNu3b6NQKEgQYHJyEufPn4ff78f8/DyKxaIU6GM7TIKuS0tLuHDhAiKRCObm5gBAHFDaOn6/X/Qo09DY9WJwcBDf/va3e2ro0Ll1Op0C0MZiMXi9Xim4ScbXgwcPkMlkUCqV8Pbbb+P27dsIh8OYmppCMpnE8PAwxsbGxLZgCsHw8LC0lGQLyHA4jGvXrsHpdCKdTsPh6LaIZEFL2ip+v1/2TyAQwMjIiBSjZLcQdvdgd6yxsTGxK1mTot1u47/+67+Qy+Xk/QwODmJ4eFhkMAtJssgzWantdhvJZFJYb8BpEPzg4EDSKZrNptiglUoF09PTsCxL6kOwdSWvyVpiGohiG8tUKoWrV69KV7VPOn6X7g/f6/Px//MJ5/8PAP/j065rfEcoztoZ1vRyLmStZCnIuCFo3AEQ6p82JvhPI/IAepSgNia1YiWgQHoxIze2bfcUT9JFHankvV4vBgcHEY/HhdLEBaIVABW02+3G2NgYBgYGsLm52RMFJ+qnDWugt9ozn5/X08+rEXMixlS4+p3r8wEIXSwUCknrFjPnlAYKwR0dRaUDyr9rRoeOCulcUq3suWkYNdFGmHaQTSOYBgufSxd/MyNV+h3oKBzP14aQfmZ+l/PzOESfP7USp8Oi72caHuZe0YcZpTDBFr4zbfT3Aw60Y6INDxqFeszcY3y3OvrHMWpnyhyzrnCs3zkjWiy6Q1YOjWymB2lniGOhAcjPk8kkpqamUCgU8O///u+Ix+NYXV0F0K1IzDZTNLR04ULuK6fTiXA4jLGxMdy8eVPW65e+9CV88MEH2NraEtCQe77T6eDq1at44YUX0Gq18A//8A/odDrifDKlwuns9kDe2dnBU089hampKZycnODg4ABra2si53K5nIzF7XaLQuD74R4n0MD8Q1L/iTY3Gg1pbwgA5XJZokaWZWFxcVHWsa5oDXRpkSx62+l0cP36daysrEhlftu2cfbsWSSTSSwtLUmrQA26cbyMMJBGSnlMJwzoOpbj4+OS78gIBAApMsl1nkwmhYZIZT0yMoL19XWJKGv5wgJb3LfFYlHQeM0mODg4ENBZA9T37t2T85iry/k/Pj5GKpUSo1GDkrwf37HpnBDIMB2bfvsZQM/1NKOLsp7f5d+1U6AdS+o+GvwaeOwny/R1NAion6WfzKJu1LJEOyw6Kq4j6LZto1qtinyl06OjNXp8Wr9rcFlfk3aGfgayBtlejiwBfT3qWDpk1HEELoLBoOxh6lY+n7ZdBgYGpJUYO6pwXjqdjtCaeT7fqV5T1O/aVtLzzLkg3dUE6zWQwTXMVme7u7tiY2hHlfdvNpsCENAZ4+86pYlRN8qYVqv1sXotHKcOoOi1wHWqgXbTydb6XTvK/b6vwQttX2iA1tTvGsgzgfN+tor5GW2wfkEDDSCYe8cEEPRe0n//XfS7ZVk9TCGea8oifdBGexyA0m/MPKrVKra2tgSEzeVyYmsODw+Lk0Uq/MnJCU5OTnDjxg04nU5pN0igbnR0VLoXUE7RRid4QN3HFMbBwUHMz8+jUCgIsHd0dISxsTG0221MTU0hkUhgaWlJ9ievOTAwgFKphFKphGg0iuHhYbjdbsRiMUQiEVy5cgXVahUffvghjo6OsLm5Ccvq0s/ZnjAYDCKTyeBP//RPEYlE8NZbb6FSqcCyLMn/f/3119FoNFAqlYRREQwGkcvlhE2Zy+VQLpexv7+PWCyGWq0mqSG0C46Pj3Hjxg0kk0lxyMvlsjiJLHhLJmEkEsFzzz2HoaEhFAqFnrpSZIWVSiWsrq7ic5/7nIyJ9tj29jay2Sx2dnZw/vx5nDlzBl/+8pdRKpXgdruxt7eHu3fvihylvm+1WpicnMT+/j52d3dx7tw5VCoVKdRINodOmSCYSac7n8/Dtrs1FprNJra2tlAqlYTm73a7kUgkMDo6imKxiE6ng5GREWECzs/PSyeJarUqHatu3ryJVqubjp5KpYR5almWBHyZws6ihzs7OwLKjo2N4dq1azg4OMDo6CiSySQmJyeFObO3tycM9aOjI9y8eROxWAzBYLAHiGctDu4LAhntdhuPHj3C/v6+rBXqQH5GgG5ychIrKyuwfxuYs20b4XAYpVIJ8XhcgulHR0eyrzqdDpLJJOr1ujBL9/f3pdbDBx98gHw+/98HFf7/OjTVj4aOdnborOuokY5O6wgClYyOWpD+b4IJNCqoYIlss5onx8RJ1BRdh8MhNFn2x9UGEnOnBgcHMTExAbfbjYcPH2J/f1+MWz4vFy3HQpRvb2+vpy86AEHPNGOCypxCnoYCi740m82eiK5Wdtpp1v+n09dqddvpMSLJiIu+Dg8dOQFOqZ8aGGo2mz05g7yPqWD57vk7v99oNHqegxEZvjtdDKefwuN6ASBVubWBo5kf5k9T8fYzBLTi63dPfR2er8GefkaB6dibY3mcQQH0Mhn0+jCNE9u2pTOK/pz35/PoeaJTz+vq96H/b74L5qnR2Xa73bhw4YLswevXr0tKgU7b0QajBje43wqFAq5fv44rV64IlZ/FgRwOhxTEoVNmWd06CHt7e/D7/Zibm8Ph4SG2trZwfHyMVqslufN7e3t49913sbKyIh0ntONFJ3lystuxYX5+HqVSScCRk5MThMNhfP3rX8dvfvMbKaRTKpXg8/lEmXNvMFWCxXVY9I9r3e/3S69hvU8437w355pgSSgUQq1WQ6lUkjVHow7o7lkWi7QsC/F4XNYvFTGrLrtcLly5cgXj4+M4OTlBtVrFxsaGsAhcLpfk0NdqNSwvL8ue1dRiOuaaqRIIBDA1NYV8Pi8pGzpCats2Njc34fP5ZH8ODQ0hm82KrONBAIYylmuYIBXBMjpBnHse3M9MnbEsSwCVRCLxsTQMrnMNbGiATTtrtm3L3Oq9w/Wp95T5Pb2nTMDS/NyUF9oZ0fKPrC1SVLl2+D1TLppj6SfDdDqHjhpr0IXOJ/Wy1nG6qxFZSxpEZ90C7Rxquck9o1Nn6Mw7HA4x3Eg15nvWxcu4X7jeeK7L5UIikcDAwIBEFakHCTpoYKHT6dYnIVjHnGYe/L/JoNRzwLWmW2+TJcU9zftrkEgftJVarRZ2d3fFkNSpK5wnbRNoR1PbanRaaasRGNEgll6vep0CkHWnU7u0fuf7I4D8uPXHsXJd8D4aeNM6STv6pnPNPaI/M/W71kmmnaDP4f/76Wg95n52Bo//Gf2ur9XPltHn6HFrndZvr2tgop9+5+F2uzExMSE2GddDpVLB5uYmHA6HUKopu5vNJorFojjl7NjAOkLtdhvnz59HMplEPp8Xpi+LMpKavr+/j62tLQGm5+fnZY1eunQJDodDWkgySp5KpZBIJJDP5/Hqq6/C4/FgcnISR0dH2Nvbw9TUFLxeL86cOQPLsnDr1i3cunULsVhMUuJGRkakAGS1WkW1WsXw8DA8Hg/Gxsbw9ttvo1ariT388ssvY2BgQBgQh4eHKBQK0r2p3W4jGAziySefxLVr1zA2NoYHDx7gJz/5iaQdhEIhpNNpAVMASH0B6vVQKIRQKIStrS389Kc/xcjICIaHh7G2tibvlV0pyGpMp9M9hTEDgQASiQQikQieeOIJ1Go13L9/H+vr60gkEvKTur/d7tat2tvbg2VZkvrtdrtx9uxZjIyM4ObNm/B6vYhGo4hEItja2sKHH36I/f19rK+v49KlSzh79qzUrtL0ezr1uVwOzWYTzzzzDDqdjnQJLJVKApS63W5hh7tcLoTDYdi23VPAmgGGaDQq9kAmk8HKygrS6bTsiVKphIcPH8Ln8yEej0sNLKbe7u/vIxwOS8qGLo7odDpx584d6SSWyWQE8GCwmsWpKQtpD5Jhw/e6srKCk5MTjI6OIhKJSBFtMl6bzabUB+E6Z8oFmRyLi4vynXQ6Ddu2hU1bKpXw6NEjuFwuVKtVvPLKK5ifn0elUukrm3h8ZkAFGnA0MKm8OBk0PKgsaVhQSOsICo1GXUyOCCSNFhoLNOJ1rh+jENVqFcFgUOh4AGQcvE69Xpc8H/ZrbTQaCIfD0tLF6XSiXC4DgPzkOLnIAUi0zrZtrK+vi6PB+wIQpwuApC1QmNKApSGmFbOmreq/a0VIQ0mj9BwbFzINNCL42tDTIAHPZcsaRr35DHq+tDGt6cfaEedYtHGsjWgqdb0+tNLTa4Nzpx0UOjn6e7wH15M2OvoZSvp8E8wwr2k69Jx3fa42+nXUkwfXvqno9VrR9+G4zPtrh7Tf2EyjhPc1ox6mA6TfiWkMdTodoZTxOk6nU6ro8l6JRALXrl1DvV7H9evXpdqznneeS+OgWCzijTfekPGMj4/je9/7Hv7lX/4Fd+7cQSgUwvb2NsLhMBqNRk8EgtWH6QSwujLTLLjnKHhZXZdsCgD4xS9+gV/+8pdYX1+XdUsH9PDwEB988IFEV1hIiOg70zra7bYocDIsuNa0cfW1r30NH374Id5//31xaPmPe4IOG50uVqfnumFElM+sI5u23W2pxWtqgIKy7+HDh9LGUwOeIyMjiEQiki9KsNfpdOLChQvweDyIRqO4ceOG0MSTySSKxSLW19el9zVZA6TimVF3jot1KwhQa9DV4XBgbm4O6+vr2Nvb64lYaqaJZVk9FHCz2CyBa50CUC6XJcVtbW2tx8imE8nP9O/a6e0HfuqDMjOZTIoOKpfLPQWEP2kfmvtPA/IaMNQsDv09XTfG3Ns0OvU9zPvRUeR75v2p33kOgSaOQ78vHnrPa8BRU+4ZTdIVsHkNl6tb3+Hw8FCiO3rMTH/S+p3X5p4PBoPC0iJYyZ987wSVzEg60I3cMiXEdGLJcGBNgWazKWlApn7nPmWqBdcJ/849rtNa9HrmPbnG6JRxfZONofW7w+GQMTKiTPYGr6vlhNZDOl3G1O8cgz702LjPyYLQOtLUeRrI4X1M5pR2ovX/zXWs114/vcffTWaEGaj5n9Xvpm4297f+XcuSxwUMzOfR39Xn6PH3u9en6XfbtpHP53Hjxg2MjIxgZGQE4XAYQ0NDWFxchNPplHzuVCqFQCCAfD4v80A9zkDB0dERYrEYQqEQbNvG0tKSrLtUKoXLly9jbGxMOkMNDw/L3kkkEpicnMStW7dw7do1TE9Py/pxOLqFn1lscGtrC3Nzc2Knbm9vo1Ao4HOf+xyGhoZQLBYl4u5ydVtGUi+2Wi34fD643W5JF4hGoxgcHMQ777yDsbEx6brg9/thWd3c9Q8++AAAcOnSJQQCAWSzWVy/fh3xeByXL18W5kEkEhHgIh6P486dO3IPy7KEJUWGBlPJKTPYxpAFlg8PD3Hjxg08fPhQajJcunQJPp8PqVRKbIxIJIL5+XnUajX80R/9EaLRKEqlEkZHR+FydTtUsPZENpvF2tqaBHCmp6exuLgoOnVrawtOpxMLCws4f/489vf3pXhms9mU9EkWPQyHw5idncXs7Kzo3VqtJgFDskTn5uaQSCRQr9exvb2N7e1LkZd/AAAgAElEQVRtpFIpnDt3DrZtSwDE7/djZWUF+XweyWQS7XZbWKOdTgeBQADDw8Oy9lgHpNlsYnd3VwDc/f197OzsSL2NSCQi9o/L5UI6nRYQm20iCZSVy2Wsr68jEAjg3LlzUqR5cnIS8XgclUpF2m3SpuVcDg0NiW14584drK6uYmJiAkNDQ+LfHR0dCcshEolInQSmd3IdMbA9PDyMRCKB7e1teDweFItFYeM3Gg3ZHz6fD5ubm8K6/6TjMwMqaEUInAp9Git0UgHIRmGfaioyncOoz6VS4edUmtqR5qLVTm08HgdwKoi5Kfm9crks+cGctEKhIL1kM5mMRKnYe5SONinXdM5JyaTyZkVTgiOMtHE8/NnpdAS9o1AjwgVAnpXvU0c8gI/nCPJ98B46fUG/a8004KZkPjeNuGAwiPHxcQDA2toaAEikj869vjYdRo5L0+m14jeVKI0IzVCgUaoNvH4Klc9Bg4OGEfPBtXNmGoj6OhynaRxoJ74fmq8P/R1TeZvj5mfaOTIjDPr4JNBA37+f82+Oq99YHnedxzlLOvIHdA35X//613A6T6v3U1G3292WhjSaDw4OhEbPeSHQEIlEZD+TUbS1tYUf/OAHyOfzcDgcWFlZkTXTanVrOkxNTeHixYuiCLhGk8kkrl69infffVdSABwOB86ePYtEIoHr16+jXq9jaGgILpcL8XhcEHLdtYCO6NHREe7c6da11cAc5cQ3v/lNXLx4ERsbG3j99ddFYfC9ayPd6XRib28P4+PjWFhYEINBr3vOhy7Yw/XM+TWdWsom7gsztUqzU0jFZL9kFkakYcUikVTeNO5ZrZn5sXT0WVfg5OQE2WxW9jVZG1yD1Bf8GQ6HhVLLOdJsJK5j5s0zb5YRbzpvBEy182JZp0XBNDjKQ6e6kSpIWUh2g8PRpZVrWUGdo/WcTr/SByNbkUhE3rFubar7YfPQDoO5P5mKwmh9P4BQOxYa+NPOkL6m1iM8n4dm5emxcU1qJgKBBV1Pg++Aa5v31uxD7Vyzm4cG1VgbgGuZxq8GOLgWbNvG7u4uDg8PhbLaaDRQLBYlcJBOp0Uv0yCmcUoQnntJs/uAbhoPqeE6vYtrV78f6ncGO2ikA6cFLTU7RusBPac8CCLyO6YTyn1hOsXUrxxLKBTC6OgoAGB9fR0Ox2kxMA3C8/2Swqz3jV5L2rbScorrhmtB63c9Zg2y8N7U46Z+5/NRvzOazvua65n30fpQr2NTv/dz+vVhytzH6Xd+zwRn+oGI/N3U73oM/ewCE+z47+p3y+qy/86ePSt6hDncoVAIjx49klZ58Xgc6XQa7733HkZGRqReltfrxcbGhsyzrvfDdRQMBrG+vo5kMin7mozaRCIhzpLD4cB3vvMdAKfpTdFoFDs7O6Ibfv3rX+P+/ftYWlpCOp1GPp/Hr371K5TLZRQKBfzJn/wJfD6f1P2hHLp06RLq9bpU719bW8P29jbq9bp0J1haWsKjR4/g9Xrx9NNPo9PpoFgsCqUcgNgLrAOVTqfxxBNPIBwO48GDB3A4HFhbW8Pm5qa0p2RrQw2Wat1Ff8Tn80kaAJ+fOoNOLNtzh0IhNBoNiaCvr68jlUrhy1/+Mr70pS/Bsiy89tprcDgcmJqawuuvvy5MUL5Xp9OJW7du4dlnnxU9MDU1JfppZ2dH2nMeHBxIUWUWqBwfH8fMzAwymQzi8TiSySTW19fFUc/n8wiFQgLghEIhjI2NSSHusbExzMzMYGZmBolEAvfv30elUsHS0hKKxSIKhQLGx8eRyWSkuxZ9DxbEPjk5QT6fF6YD/QQCO6lUSvQU6+pwLlhIkqB0sVgUFtnJyQmmp6clWE3mztmzZzEzMyNFvbkGBgcHkU6ne5ijpVJJinjH4/Eev9C0exwOh9T9Wl5eFkbE3t4ednd3MTk5KQHpfD6PRqMhe5VreHZ2FolEAk899RRGR0fxN3/zNx/b8/r4zIAKNDbpWFNxMO+Xjj6ROCpsKibma/HQiDTQS+Fut9uoVquCGNIY4XeodICuo8tWK1S2NEgZodQCXqdSaAXGNnw0uOjwaNoxcOrEU6Gy4mmz2USpVOpxvDlWImjaUNDGqWlkAOgppkbDS49BHwRbKLz39vYkSkYAhAvYdE6YF+Z0OgVx00CFjpLp5+93aMWojVbOn46o8PlpcGhnhE6SNjZ0ZFEb9/yd19f31mvKjPppcIyKWqdV6Ai9qaD7Gez9FLz+TEds+hkPXCv6c/NcbbTw2fU1zfHp75rz0e93cyzspct505FpUiFzuRwKhYJEMQkesF4Cae40XoLBoDgRDodDCudks1mJUPL+dM5oWFC5FItFOBxdypzb7RYDiFGD6elpfO9738M777yDzc1NFAoFqdx7fHyMcrkskYHDw0McHx8LDa7dbvcYuvzbyckJotEoXnzxRTz55JPY2NjAa6+9hvv37wtdb3BwUKL2jUYDDx48QKlUQrPZFAdFs2o4J4FAALZtC1BDo18b/lruABDF6HR2q2ezkjaND3aW4P6mQqXjYdvdtBMt13WkZHt7GxMTE7h//77QxXX+su6VTqYTr08Z5/f7MT4+Luwvcz3y3nQImTvLvazp5HSwKQ9oeAWDQYkmaDo5HVSmd9CJ1GlsLMCZTqfR6XTwm9/8psdRoVyhTuD3zD3H/7daLSngxBxU4LRIIRkX2rE0r0MHnUwT7gVTfvRzNkyZQfmn5Yb5XR7aSeZ4ud+0fqdRw8/ptPP981palnH8ms3GQmE8hw6lBte5j9j/m845Wz4PDg4KlVl/j8+sASGOj3tK13bSqYm8L9cRI2pHR0f48MMPpSuMPpj/Sp2kwWTuXVPO6vai/fS7Bsa5R5jCoWsm0bbS+ovvnGuIe4ayjuMxAQLuS1O/m+vc1LE6oNFPv1NuaDaClrFad/djHfIcU/fpeef5ev74PPy73gMalNHPye+Yz/84B57r3Xw//x39Tnmj54d/1z/1dT5Nv5vjoSyKRqPSweitt97C+vo6Hj16BKDbiSidTuPOnTuoVCrSzu/evXtSnK/ZbEr6AKP87KQWDAaxu7uLl156CU8//bSkxYRCIUSjUbRa3dpeZB6urq7C7/cjFothf38ftVoNqVQKe3t7iEajuHz5svgclmUJKEl7nXquVCoJy5EdBgiws1YRo9s+n09sgy9+8Yu4cOECAOCNN97A/Pw8vvCFL/QAm1euXEE8Hsfw8LB0TEgkEqhWqzg5OcHe3p7UKgG6wNyVK1fgdruxtraGvb09ATh19J++SyQSwfnz5/Hd734XHo8HMzMz+Ld/+zesrq7i4OAAt27dgtfrlQKBBFRp85Ol8etf/xoLCwvY2NhAJBIR/T04OChFAjc2NuD1epFIJHr2KdMLqT93dnYElA8EAohGo1Joul6vIxKJIJfLwbIsaV3ZbDaRTCaRTqdx//59NBoNpFIpjI+PS3R+cXER0WhU6lwMDAxgfHxcovvNZhMrKyvweDwYGhrCzs4OotEoYrEYjo+PsbKyglQqhbGxMdi2jeXlZSQSCanF4fV6kUwmsbCwIF06dMqb2+1GoVCQdFGXq1tPJBwOCwOWcpVpImQzFAoF+P1+RCIRjIyMiO/LPTUzMyMtml0ul7BFEokExsfHsbGxISD56uoq8vk8KpUKZmZm4PP5sLa2hoGBAezs7KBWqwljz+VyIZfL4fj4GNVqFel0Gj6fD5ZlIRaLIZFIiA3xuOMzASpowUYlpo0f7YARfSbaTkND52HyPG30aGXCVmHcyIeHhxItIFhAMICt1eiAdDodyX32+XzSp5pjZyRBV3CmYGK0i5PEz2mU0DDRoAqfWwMPVHB8bx6PR4xZGgw8R6P9WgEQhOD71gpFRy/pQDAfZ2hoSCjjNKpICdVGHh09FkzjPYlaa5q2fi69JvS4OVbTqDWNSwo3HQXW19ZGkY5uaUNYGxz6/tr4Nw0Nfpc1OQgg6efpZzyYxoIZ1TANM63cSW/TzpgJUOh3q6+rgSbzWR8XEeF4+j0T0B9YeJyhlEgkenJn+R0686QT0/GxbVvy4AYGBrCysiKU23A4LPn9jN5y37F3M4v90fDUTottd3PzySzY39+Xa9y5cwf37t2TNjsOhwP5fB6PHj1CLBYTFgPz61jAh2AJC0+yEGAwGBSjw+k8bU1HtPtnP/sZyuUybty4Aa/Xi+npaVy6dAnHx8dIJBJYWFhAPp/Hzs6OPK9GpDXI5HQ6JVdcvxMN3PF96L3CNc35YQVvOoSa8plOpzE9PY1yuSw5fnRgpqenEQgEcPfuXWEtECw4OjqSfs2pVArZbFbk1tDQkLQUHRgYkHnh/g4Gg2L0eb1ehMNhubeObNq2LbVxWEei0+lIqgKfh60ldXFZnkOHisbd0NAQVlZWRJ8waq1TtnRkvV6vSxVpOmKmU6EBHe4pjl+zTlqtlrA3dDtFGvDUO5rRofWqlie8NnAK2pg6gDqIuoeGod7jj3MqzEPLA9J0TeeLP+mYUhfy2TkmXkunt9Bwtm1bcnOpd8gk4v21nGN9BOpm27Ylakadx6PdbvekPwGnaZXcV5RPWkdrBoxOs2QUlrVITBnM96YLrHKe9Xox9TvXK0EOvYY4Jq7DZrMpRnUwGITP55NoMBk5BNVMY5L0WFO/86dm+fFZNLign9FkAPI59LNq8J5z3U+Hc93r9Fg+O69rgmS0L7QuN3U+3wXltgme6aCDHoveA4/Tpf10qMm4+qRD20LapuBzmwCD/qnfBQ/zMwIy5nj7ARF8Z+VyGXfv3hU7PZ/PS946bbRcLofV1VUpdMdaRXRmWeOJ7SdrtRoqlQoqlQoSiQS+853v4O/+7u+EpXvr1i0899xzsKzT1niMzF64cEEi0NRjt27dwptvvomZmRk8/fTTaLfbAnwz2DA1NSXOMgErpiWnUikZI53+QqGAWq2GWCwm3SVon/A9hsNhAR+5htmBIJFIAOh2qmABYqbkkc3Evenz+ZBOpxGNRtFut5HL5US+smAs67Ktrq5ibm4OL7zwAsbHxzE4OIgnnngCS0tLSKVSsCwL8/PzePDggQRnOOaVlRWsrq72pJ3QkT8+PhYm6eHhoXSZY7FoFvsbGBhANBpFIpHAzs6OPLttd/P4Q6GQdCBgUAPospwPDg4ESGcNI9oIbrcbu7u7GBoakroNBDYY5acui0ajOHPmjBThZOHCqakpHB8fY2trC/V6HR6PBz/72c8wMzODr371q2i1WqjX66InxsfHpW0j9Qf9KL/fj3Q6LTYB6+OxUCXtHbbmdLlcePnll3Ht2jW88sorIr+HhoZwcnKC3d1dCYSenHTbWF64cEH05/3792U9VSoVHB8fS7pQtVqF1+uFZXVTZMia4HticP7o6AjxeBwejwelUkmY9W63W9gnnU4H8Xj8Y0xN8/hMgApAr9MMnBYVolHh8/nE8KGyoOGrIzbAKdVSI7MUdPwO6SpElEi74vWpQKmgeB0akUCvEmEEj6g/n4nVVmlcdDodQa1osDLHqdPpyARqSkuhUOgBCx7nQPDQCl0rRR1Z4UYzlSaVE38nmthqdQvWsZAL3zOjANo4pKPCg9fku2BRMsuyhPXB5+Bc8tr6c15b18DQBoUZAdFzqQ16fp/XN5Wp6RzrNcTn0IwQnqcrW38ScKDft/6pQSRek5/rsehraoNRr8d+Rr6+fz+DxvyMYzH3on4ufb5p2Oln0IfT6cTMzIygweVyWQA10zji/Qn+6X3B+RgfHxckn0qG++XRo0dIJBLw+/3S435iYgIulwsbGxtCwwe6+5W0NeC0vgfz+Bgt39zcxL/+679icHBQhHilUsHQ0BCSyaSMe2hoCPv7+z2AGJUPAOkXTWc3n89jd3cX169fFyQ/lUpJIUnm47XbbamKzDXNjgvmuiNbguuTB5kipOtzfjWARdCm0+kISMY1TmCQxZ8IjhDttiwLV65cwYsvvoh//ud/xi9+8Qu4XC6MjIwIKMuIBe8di8WEVcDitJqNxj2kHUwi+yZdmwqc1fpZZJZ7Ru+lVqslhb74Ox1zUm8Z/WY6h9Y/fNcaIOPYCVAx6qX3BVt+UR7qPajT9vS+NKPMlGcEqTg/1AkmQMq5574i2KRlgwaX+Fymg8SxatD9cQAi1w0Nan09DTRTl1Pm0VDXOoFyRkeWtX7gvmHNBDrXTP+hburnaHY6HXGo+RnnWecoUx4zEkoHU0f2Oeemfme7NDpV5XIZ8/Pz4rjTOWeknXKOe8oEBbRtw+dqNk/bt+m/c874OSO7vJ+p3zU4wfHq96YjrADECdzf3+/Z1yZYybnk8+nAEcdvsk7N/aHXPtc555fpR5RZWpdo/aT3opYd1O/6XWn9rt+raRtwXKYcNoEgLSdM519/VzOX+K7Ne+t5Ne0L/c60LcOfer8/Tr9/Eshi3sO2uzV4lpeXsbOzI2u9Xq8jk8nA4/Hgqaeewv3794W+z5TF+/fvCxgfi8Vg212AkPVLtKPKKHMmk8H58+fx1ltvSYR7dna2p2Ux1wdlNVlJDx8+lE5LPp9Pgg0LCwsoFovwer0CNO/t7SGVSmFkZAQApENcLpeT3HuXy4VsNouPPvoInU4H3/3udxEMBnF0dIRCoYB79+6hUChgd3dXUjFHRkYEpObc0eHnfqlUKqjValJQkI673+9HoVDA66+/3pMOysLIg4ODCIfD6HQ6CIfDGB0dxfDwMAqFAn7+858jk8ngww8/hNPpRCqVksBINpuV8REYPzw8lNSJwcFBzMzM4Ny5c/jpT3+KO3fuwOns1vs5OTnB4eEhDg8PUalUYNs24vG4FIFsNBrSRpGFm8fHx2VNj4yMSD0BgiNkXNy/fx+JREJq4ZXLZSwtLeHMmTMYHR0VhgCDAkyx5XsjuFUsFmXdPffccygWi9IxgkDURx99hHw+L0X4O51ucfG9vT0JtLpcLmxvb4vTT/+v1eq2Td3c3ITL5UIymUQ8HhdGTKfTkS4aZDnW63W8+uqr0ulkdnYWmUwGuVwOAISt3ul0WTPpdBrxeBwfffQRnE4ndnZ24HA4MDw8DNu2RS9RR7HdKdPUvvKVr/QU+aXOYyDpqaeeQqlUwtbWFpaXl4U5Qhn2ScdnAlQwFTuFo3YgtfCkcGs2m1LgJRKJyEsC0KNceA8qp0ajIQUECQYQFevnEHPD68goNxfpUmbkm8/DjaiNQUYnCI4QlXI6uy3suDFNo4mK3aTqaeDDRMoB9BgxGojgGPkdM6ql6blkQuhaCvxJo42GBPNSGQnkZtc0Xb4Hy7KEaaHfuV4P+nlodAGQlBJ98Hy+LxoBmhasQQlTKdPAMZkN2hEx1yg/d7lcggqa0RAqCG3cmxRUzc7p54ybhwkGmM6DPs80pkzjkEc/I8UUJOb19f7Vz/k44UMQLhAICKIMQIr26JY6pEAeHx+Lo0maHO+bzWaF0cCcOG38RyIRRKNRLC0todVqSd4+DXktIwggcB5CoZBQfBkFDofDYtRYVreYzjPPPIOrV69ia2sLQLfIE/PV0+k0SqWS3C8SiaDZbGJkZAQzMzN4++23haHhcDgkIkHFu7GxgXA4LIYM1zHRb1K2W62WvK9Op1uXgIYdHQPOC4u76vVB2cL10el0pFYEO9vodcO8TnavoPFG4+H999+XGhM+nw+NRgPHx8f43Oc+h4cPH6JaraJUKvWkkLEPNY0DApvct5ZlSUcQsqY4zoODA0mDi8VicLvdwmDgGqaSdbvdePbZZ3FycoL3339f5AMZFfwOjRsCopT1jNh7PB6RwRwv50JXbg4Gg/JMlIehUAgHBwcCaDPVj3uk337XoCCZMNRDdGb1Py3LOW/sUkK2g97v2jk1HRqOy5SNOi1Bj1PLB+oCDZDynWtnRQOKbL9Mo5j5rXwupoJoIIZAD7susZc3mQr9HCjem/YCgUXuRzO1ks9PR4eAiF5jer1yrTIvnNRXjofRR83A1Lpfy2gCiRoooN7SLBKzKDPXjF4/Wue0Wq2+9Vh4b+b/AhA7SK8zXRSb+5XzqYt8araBtrM4Xg0oUZbr7/Lg9bWu5P8JBPJ6Wj/r9Ettx/RL2dDPzzVDVphe3xqM03rbZGGa++Zxx+P0uXlP/bsJlPQDLYCPrwMNPPJaeu3pQwMa/ewIfv/o6AjpdBo7OzsCbi0vL2N3dxfxeFzmk45mrVbDvXv38B//8R9otVp4/vnnce3aNcnTb7fbePfddyX9EACSyST29vawsbGBr371qxgbG8Prr7+OxcVFPPvsswBOW82HQiF5Bq7vYrGI4eFhzMzMIBwOS/768vKytC+mLKcTSOr67u6u2LBM+WEhv2g0iieffBKpVAovvvgiSqUSbt68KfJ5fX0dtVoNq6urKJVKGBkZEUCewDdTAYaGhlCr1YTy73a7EQwGUa1Wsb+/LwGLzc1NAN0gBVkWlEssyBcOhxEIBKTOAtM8aVPxiEajyGQycs27d+9iZGSkR4Ylk0lp/chWn5VKBV6vF5lMRtiitm0jFosJUE/n9/DwUGTk8PAwms0m3nnnHVy6dEmAwGg0ipOTEwHyi8WiADik5udyOWxubmJmZgYApOuC09ktEr25uYmVlRUZA321hYUFBAIBsefY4aJarUq7xQsXLki3C7I2aAOUSiXMz88jkUhIYPju3buSnjM+Po7Z2Vn4/X7cvXsX7XZbivjrAs9kXdZqNWG4zs7OSmp6s9mU9Bl2+IpEIgJgra+vo16vI5VKodPpCGuV9jPXKQtHjo6OIpPJCEOi3W5L3UDqWTYnmJ6eRjKZRKlUEsCPuvDT5NdnAlQwhRh/UsnScDOFORUWJ1sjwVy02jnSOYFsxQJ0BQ3zl3gvKgQdnWAxRgoBKk0uEA0muFzdQkYUmrwehT2pRQAk2sPDzPvjtTVtVAt1rWyJ3PM90vHY3d0VYU6DTqPW+pp6TvSYNTVQKxjej44LlTuFo/4u0zw4TxSiFPb6/ejn6qdcbdvuoWkyssz76XejjTUWK9HXotN4cHDQ02aO/+r1ukQ/tIFpGgCmscpzTEXMyLdpsGtjUa+HfocJPGhgSc8lD2209zNQzLWgr6v3ln6+fmPX68q8B793584deVdEQJeXl3vyBhmR0MVwCPpxnZMSTiOXVd9jsZjkskUiEUQiERwdHWF/f19aRNEJocGsZQydAu6hTqeDdDqNubk5+Hw+/PCHPxRDcnR0FH/1V3+FaDSK+fl5fP/730ej0RC6v8PhEKVA0IQKc2FhQe7JPEa+K1ZFtm1bem2/8MILGBgYwO3bt4UmGg6Hhd4/+dvCO0TJSaVkCoOeK75/zjnlFs9xOrvdOOj0Usnxb16vV1pv2rYt6QFE+Ov1On70ox9JkSIAsscI5JK1oNe9pqIPDg5Kz2o6T1S4lNmURazMTSDE4/Egk8lI1IWym7nys7Oz0i6UYIEGR+PxuKz9sbExHB0d4eDgAMViUda4CQQC6KmroB17Fq/kWMmG0OkwvK5OOeB88J3wp8vlkogW6wAAkNoVpo4w/6/T8LjXOE+UURqk1euEB+mf/fSGuff1+uN8mPrdvD9TCZg2YwLsAHrWMY9AIIDBwUGh5dLAojPA90OwgzqEDqlea5oZwXHRgfB4PKhWqx9La+Ecc3x8f/p9ameVBpt2rvXe5GdmbQmPxyORO83i4rsx56VfxJ/30Ppd6wDNEKF+Z8RMywud5sHPqDNNdo3WJSbYrset9bvuHKHXsWVZPYwFrd/5dzpWbOFp2pIEtFkT5nFr1tSPHIeptzV4o3WkZgaYz2oe+j76OqZ+1vqe+9y0l/TfNXDST4frcem1ZwIJ+tAyodVqYXt7WyjrDocDCwsL2N7exlNPPSUBQF2Um4UV3W43Ll26JHZzvV7H1tYWtre30el0hH7v9/txcHCAgYEBfOMb38DXvvY1AF2q/A9+8AOMjo5ienpaKPLtdrdgKruyUS+wThgBShb+o503NDSEdDqNF154Ael0Gh999NHH6oKRkg4AExMTUiep2ey2cWf0mwGFYDCIu3fvYnNzUwBhl8slKRzcR+vr6wJ2OBwOXL58GTMzM3j11VcFUGDePveflvWUFawJRxu33W6jVqshm80KO6per0ubW4LyuVwO1WoVHo8H586dQywWE1uGxSeZblGv14W9MD8/L7YEwQsCSOyOQ9+A9XOOj4/x5ptvolQqwel0Ym5uTj6nnifY8/DhQ8RiMQSDQXzrW99CNBqFbXeLKHq9Xly8eBHPPfcc3njjDfzwhz+UgC1l+k9+8hNcvXoVTz31FM6fPy/rkN09tM0YiURwfHyMWq0Gt9stjEayHVjHIJvNIhwOI5FISNr31taW1HFiGh2DM7QvycTUwSS3242ZmRkBHdjik+uoXq8jm83i/PnzEiBnrRC2h2Taw8TEBHZ3dzE8PIyTkxMBLTY2NiRQZ1kWdnZ2kEwm4XA4UCgUMDIygq2tLQGPCH6zHsonHZ8pUIGTTqcUOG2rxL/zHKKIuqCXjrKY6QtaWR8eHiIajWJoaEjaxNEhpkNJSicrjGojSxsD3NikHFFoc6Fy4nSaADccDUNe27IsQfH0u9BKDujtyKANPQo7AgZU+KxR0el0RIhxAevCamYaAQ1jzhEVDseuFTfnivOgnXnN0KARpx12GvGMcD4uSsdoEI0Monu1Wq0nP9hUxHzfpuNkIviMatG44pzpdai/T6NTR/S0sWEadKbCJq2a36PDYbJPzPdgGg36b7/L76axwZ/9UjrMQz+XBtX4N23U9AM2AIgirtfriMfjyGQyshd11Ff/1Aa96VhpoOfs2bPSUmppaQmHh4fY3d3tySGr1WriHHc6HQGSHA6HGB3a4IpGoxgdHcVf/MVfIJ1OY35+vqeKeb1ex8rKCnK5HF577TXk83nUarWeHvccu2ZdNZvdftqxWAyHh4fI5XJyz0AggImJCWxubkoXmKGhISwtLYnBRUOItLCfHyUAACAASURBVGWv14tAIAC/34/j42PE43F885vfRKfTwY0bN/Dqq6/2zAnvZTpO3LOaaaTXfCaTQbFYlD2iU8goj1mhmOdQVrdaLUHvmW/KcXD9BYNBqXZMCiONP1bN1owyVhFnZIpFFykLWZSJ7A3b7va3/tWvfiVz3253+3RnMhlsbW0J4k9GCYs3aeCS74PXNp0OOjPMOXW73fD5fMKGIRtHR3T5bKYD0M+RIRtC10Sg7jIjlZx3GgnAqWxmpJ173oxkawdeywA6UlpOabneT/5wvglgEHSjXKABw3llpJDPxfWoo9x8Fh7ValUiTOyRznkjO4dOBvW7vjf3gQaRa7XaxwAZ6nOmL+n3zWc2gw3ValX0s07j4Xc5Nq27eD0CP3xWvV8pF6nPaYhqvW7qd97TjLBrXannTzv3vJYGGcxx8fuca0bQTJ3A9079zpQLfp/6na0G9boy2S+UsVrncu2wOJ9myPC7XIfavuA+6gcCcB3305E8R49L6/VP0u/mYQII+nPz/+beM3/yvqb9Y15Lr2UzoPBp4wW64GkgEECpVMLe3h6KxSKCwSDi8bh0XIlGo3C5XFLx/9KlS7h06RKOjo6kQ1ggEBDwjmNxubqF5Dg3v/zlL/Gtb30LFy5cwPT0NGKxGMbHx5HL5bCwsACgW79ne3sbo6OjuHr1KkqlkjD6WBMtGo2Kw//w4UPRfR6PB7Ozs1LniakKdJgZkKDOptM+ODiIW7duSdtD6i220OQ8HBwcwO/3S00T/szlctjY2ECpVMLAwACGh4elLgNTMKanpxEOh3Hz5k3cvn1bHOuTkxMpMBwKhXqAeKZh1Wo1qdNEeUaw1OFwYHJyEu12G+Pj43Ktvb097O/vo9FoIJ/P4+TkBPF4HKFQCF6vF+12G/fu3YNlWbh06RLefffdnlprZFC43W48fPhQWkay7ejh4SFeeeUVZLNZAMDc3FyPnE6n08JEoGyemJiQ38nU3N3dxfvvv4+XXnoJy8vL2Nvbw+TkJDKZDE5OTnDt2jW558WLFwF0gy6xWAx7e3sSPGF6Gt9VKpUSfcCOCvz55JNPwrZtaQt5/fp1VCoV3LlzB4VCAXNzc7L2NXubz8eCwFpu0v84OjqC3+8XP1X7o8PDwz36yO/3I5/P44MPPuip00d2rU6LYEotg+rJZBIXLlxANpvF5uamMHMI7GQyGVy7du1jutc8PhOgAtBL66Py1JEFjb4Bp8pCKwYKbO0MaoSd33G5XFKVU9MEKWy5WBj5YVEmRt95DjcgDQMihZw0TaUm4s5FpVkDvLZG/QmsUKizaAyjthwzhb3OSdS/M3oH9IIR3DS8H41J/t90DjkmFmjk+zaRd4fDIYufTsHR0ZHcm/RBbTDryCSvZdJNyezg+9JGnWVZYtjRsAJOow9agfO5tCHF7zFypjc3z9GpGxyDVrRamWvEX19fA0X8uzYodTSBn+m/6Tnpd5ggxqcZ+ub/9Xri2Li+9bN+2nh4bfM7+uC1w+Gw5HXRmKaD32w2pSJ5vV6X2gekKDNnOhgMIpVKAehS4IjGHh8fCyPp4cOHKBaLQgdkSgP3PQtwEZGlEG+32ygWiyiXy8hms2g0Gvjxj3/c4wju7Ozgr//6r3tAFq5Np7NbLJEdCur1ukQl/H4/Go0GstmssAFo3IZCIeTzeSn0yLXIThg0imnckPpfr9dx/vx5OBzd2g93795FIpHA5z//edy4cUOcTw2cud1ukS8Oh0OYA1RGjLyQyrq3tyfFW5kiYlmWFD46ODiQQlZkkjH9oVqtCqhLg4frgVELylGuIbZOIlWQjiFp45wzUjnZgo+yCIBUf9brmUVkKQcJDvC+1WoVTz/9NObm5vDo0SMcHR1J/iXlBOU554MgA50o5vZrJoBt21KYTxsQnA/uA804477S+63T6aYAUH4Cva0yKRO0DEskEkKRZZ0Hv98vxibZCwRXtXOrZYwG6jk+vpd+oLDJYiMjQMtn6n7TkdNGjNYDdF55ba3ft7a2eth5nCcyxHQeKZlIlO/AaXtjygSyo6hTG42G5H9rRhUNXm2LmCwGbefwGbR+p43DNUEdokFs/k7gBYDsT+pZ3keDwFzbpt7R+p1gN/+u7QHOs7bH6KjzvixWze+b6QucI74L7kENZuiiqQ6Howe44XcJ8lHna51m2i62bfcwQTgerjXNdjQPU3+arAutB3kvvmsTDDRBnX6fa32q97upa/vpdf1sWlfzM21jEZzTOl9/x7yuPse8lj43kUjg5s2b2N3dxdLSElZWVnD16lVcunRJHBvWuWEBxHa7jWAwKDnnlmWJvmeU1+12i9NGplsoFMI//uM/YnZ2FuVyGe12t5V0MpmEz+eTyve7u7vieHJNZjIZ2LaNfD6PyclJaacYDAYF7IjH49je3sYHH3wgbDDmxgeDQcRisZ6UK9r9ZC4QWGcdhGaziTNnzqDRaGBqagqbm5uSzw9AGHiHh4eS6sDq/ABw8eJFWJaF3/zmNwgGgwiFQrh27Rr29vZwfHwssoa0fNpAnCOm95XLZZw/fx5TU1OoVCqiR1hnjnM8NzcHv9+ParWKBw8e4MaNGygWi/B4PHjyySeFMdButwW8oYyivstkMtKxj/olmUxKqvDly5cRjUZRLBYRDofx85//XBhFs7OzOD4+xuLiIs6ePSvd+Hw+n3TgIAOE7213dxdvvfWWsEAdDod0UahUKrh69SqcTid+//d/XzoEkQlKm4apleye4XQ6BeBxubqtwwuFAvb39yUdgV1AAAg7PZlMIhqNAoAw5hqNBsbGxhAIBBAKheB0OsU+oX+Ry+UwNDQkdmE0GsXR0RGCwaDUGKF8jEQiCIfDKJfL0rZ6amoKpVIJ+XwerVYLZ86cwdzcHNbW1sTvjUaj2NjYwMHBAQKBgIDQ7HDidDoRiUTwe7/3eyI7M5nMx2SNeXxmQAXtCGsE2nRoqAQowCnUqJyJhtHQ4ALXUXQqPUaFgFMUniiSZVlCBaIxCkCiGow0MS2Bjgkj2lR8BAE4ZqLwutgfFyKNWh78fHBwEFNTU9je3ka5XO7Jj9Y5haZyorGtgQcaS1oZaqND59hpoIFjZ74po1eagquNW36fLWh0SzZej+PX88e8R6C3pgLPofFGOhVp7OzzS0dT59X3izTog8/JudGGhz5HOzp8X4+LCuijn0NujqWf8abP0XOrnQrznv0cfDO6rw8TZDHXRD/wwfypx6f/pp9FX4NKOJlMSmVc5rpXq1XZq+12GwcHB4hGo2Ls2rYtgBKNz9HRUUxNTcHn8+G9997Dyy+/jGAwiHK5DNvuFo6igc29z9QCRioYdaCjPjg4KEYDoy1///d/j3A4jFKpJA4tmQfasWDUggZUqVQSZ2RmZgZ/8Ad/AIfDgffeew83btwQ5c/WcX6/H8lkUto8dTodobiVSqWedaJTiZrNJhYWFrC8vIxWqyVgQDAYxO3btzE1NSVKBDiNopLZwH1qgnDAaSpaIpHA2bNnsbu7Kx10GMXV60tHMwFIYcmdnR1JUYhGo1LkSAMBfCZWhx4eHobb7UYmk8Ha2pqkDfB+jP4yYs+55drldbkOKbc0jZVyKJvNCpX6+PgYd+/eRaPRkN7RmvGmAWWdskbnmTJS08b1O9L7mPqAf2N6CUE27ZhyXuiw8idwSuvn8/F6GrAmXZ4ymzqC1w2Hw5IDqvUuo/10cLVM4H7kHJiHBlY5PhNk5Zrje+R9NKirWwXqVCjNWNTAP8fJFs4MDDgcDkmT0ZT3QCAg96IuoZOv67VwnjWFm++Z16Rs1A58P8BlYKDb6qxYLApbS7P7TMdU20FavxPE577hOY/T7+aeZWRW63fOqwbftOxnYEUzMDVooB1YDdhoNoMGFjXYpHu/+/1+Keyn50yzNXiNfumCXEMaHNLjMwEJ/a7NZzZBcq3fP8nWMB11Hdgw9Xs/fdrv0DK63730GjCfj/NEkE/f3xxnv7Hod6HvvbW1hVwuh+HhYezt7cHpdCIWi2FnZ0cYsn6/Xxi+BMbX1tYwPDwsaUUffPABMpkMwuEw8vk8YrEY6vU6JiYm5DkuXboE27YlSEjnjsVG2ULPsixpF8g0g89//vMIhUJ49OgR7t+/j0AggK2tLVhWlw4eiUSELcGK+nyfHo9HajVRhpL1RSCeOlWzdVOpFJ555hmMjo7irbfekjXtcDik9hDPJaDOWj7z8/MChFarVTx69Ajnzp1DtVrtaVPY6XRTIdhRgZR66i6Px4Px8XE8//zzCAQCWF5exsrKCiKRiIAhdLLpJ3k8Hly+fBmBQADb29sIBoOIRCJiXwwMDEhb61AohOHhYSnESFnkdDolDTORSGBtbQ1zc3OYmJhANBpFtVpFJBLBiy++iNdeew0vvfQSbt++jZmZGaRSKcRiMQwODorNoO0VM8AwOjqKRCKBhw8fioxmLS3WM6K9SdkZDAZF/gNALBYTZivbZ1cqFdnnlUpF/AYCA2RPl0olJBIJSdnI5/PweDwol8vY399HIBBAJBIRvU82Kpkj1FO6CDNrVjAdg/ZLpVKB0+nExMSE1OzweDwIBALY398H0A3Czs3Nwel04q233sLu7i6mp6cRjUYRj8flvTx69EjSRW3blppNU1NT2NnZ6StbzeMzAypo+h4n2aTY0VjgAtWCTufg0xHlhOvPiQQxokCBys3K65sUFV1ky+12S2SVE3t0dIRmsylFHLlIeGhQQ9NS9LNznFToNKgajYZEXQgMWJaF0dFRbG9vi7DQQp7CX6dDaCON52tgQ0eL9Gf9nAseFOKdTrd6PdFJDfoQaNHvW4MJfNd6vizL6mEwaKXOQi26sBnfsZ5LopC8Ng1R/l8rUq4pHW3Q65DKgQgw0Ftjguf2Q/g5JyYIoI0JbeSYDrtp2JjAgJ57bfBwnHq8+hr9jAxtQJh/0/NK46zfeeZ+7DdWOu2FQgHb29s4d+4cWq2WtGFyuVyCenNuCQgwymqCIWw9ZNtdejv3YzqdxjPPPAPL6kY/Xn75ZRQKBaEJAxCwTBuzR0dHmJyclHY9m5ubguQeHBwIk4oOscfjwdzcHHZ2dqQ4HIE4/v7888/ji1/8IkKhEILBINbX14Xux7GcnJyI4mAEmekQ6+vrPUwhn88nsoiyQheBe/DggUQ9tPLieuC+ZaHaVquFeDwOl6vbP3p3d1fmgCylQCCAVquFYrEoaR7xeByjo6PIZrPiWDKa22w2sba2hqGhIXzjG9/Aiy++CJfLhb/9279FOBwW0HdnZ0cYI8yDPD4+RrFYRKFQkEKblFtsP+VwnBYQonwEugZcPp8XdgjlESM8nE/KplgshkqlAo/HI8BDq9XCjRs3xKHle9dpAabTyL3QarUkJUODEJoBQJmk2yib+1CD7XoPETDlO9FdMnRKFh3JdruNtbU12Udcm2TCkGlAI0Y7plp/aWdIj0d3kTBloJbv+jOOVet3nSbEtUrATr8/ggq8Fw0xAnucFzIP9Vjp/PKaOqWPkdROpyOADo04Mqt0m1On87Q1LB17rh/uG1M2MqrIPUsaKnWMZVk9dFz9fc4rr6WdEK41vY74O/9m6j3aOwQm9Zp2Op2SOsZiXjrCreWCZmXoVAafz4fBwUFxOrj+dGcPDfqxi49OcyIgzHcHoIc1yOcwbR/zOU0nnsAwx841bO5lnssxmjrYBIzM+/TTtXq8/UANffQ7R9tmpmOvr6PtAdMp0OtDp+k4HI4e8MXc61wjHL/++/j4OOLxOM6fP9/jxB0fH0uthYsXL8Lh6DJbUqkUjo6OZH1sb28jlUqh2WxKa0naXXT6qJsnJyfl85OTE2SzWTx48ADAaQvYRCIBp9Mp+e60312ubmV+giDb29vY39/H4uIiSqUSnnnmGSn4R+CSepy2JlMdw+EwBgYGkE6nBQRbXFzEwsIC1tfXxfFbXl5GLpeTiPqdO3fg9Xrx53/+53jttdeECUdwgfftdDoolUq4ceOGdGjR3S3osGoWI9BNQ6STSXslFouhVqvh4cOH0lWPUfNnn31W0hDK5bLoRTq309PTUmuA7T0JBiQSCUxNTUmK6MDAACYnJ+F2u/Ho0SMBWeh4ezwe3LlzBz6fTwo+er1eDAwM4PLly3jjjTekPsO5c+ekLsXg4CBGRkZwdHQkjIL19XW0Wi2EQiGEw2GJ3pMpXS6Xsb29jTNnzuDMmTPY3t7Gf/7nf4psKxQKACBB4t3dXQlWUtaRhVWv17G8vIzBwUH5rNFooFKpoFgswu/3w7a7DBimazgc3TSGaDQKn88nhSgp61gf5OjoSNgf4XBYWJ/pdFoYErVaDblcDn6/X4r6E8QuFototVrCXGAtquPjY+RyOWnDzdpgnU4HZ8+excsvvyzpqKw/NDU1hYGBAfzTP/0Trl27hgsXLmB0dPRjssk8PhOgghaIZnsrOhFAV5iRym8KWG1s6IPXoDFEo9XtdmN4eBitVktaNhLU0Eg/wQcqfEYCnE6nGILM1QwGgxJdouLU6L42rLTRBpzWAqCwo/NN52lra6tHARENMw1PDcKYBgX/rp3hfvNgOsqMDGhHnPniJycnUkRHs02CwaBEHRl90ACANlxYmZuIrXZ69DPTQNE0Wo7VTIMx81W18amNZf6NY2Kkie+eEXSer4EYDQCY741/76d0zXdtRiX6GSA8tGFkRhDMtc/PNUhiAhQcJ+dZrxFthJjGj363GhDT49TvQ9/PtrtRo83NTbnW22+/LYWSTk5OUCqVevYQnWcNVPG+d+/exdLSkuwVRkEGBgZEObz44ovweDxYWVmRaBerydNx595mFeaJiQlcu3ZNevuurq5KasbIyAji8bjkyvPdra2tyRyZReYqlQpeeuklrK+vY3x8HG+++Sa2t7dlPmhEUI7RCGi329jd3RU6qHYydWtZvluCoPxXrVaRzWZ7QDItHwDIc1H56Wr5mjK6v7+PmzdvSus9p9MJn8+Hv/zLv0Q6nUY2m8XNmzelzzMryjMCmkgk8OKLL6JcLkslYwBCNacMqVQqmJycxOXLl/H++++LbNSAL3AamSfLhMClptVynejoNo1drs2BgQEZ49DQEMrlspwD9BbWJT1Wr/t+e8+MWnLN8t1rJgHfr5ZhtVpNoj4s1KRp/vydTpemu/O6lN3aiWJ0UMtAvQZJFdbABa9NY7qfvNM6+3ERW80g4XPoehCmfueYuD8pW/hTy2TbtkW/e71eJBIJtFqtnjQIMg10kVzNNtJpinRk+Dn1O/c0gSU9Hs4HQSwddaJO59/b7baAF/l8vmdf/3/MvWmMXOd5Lvicruru2qt6qa7qfW+STVEkRVEStdhyLMR7HOdH4CSe5DoBLhLc+yPAIJibQfI/vwa4gIEBAg+SuZGB2MnEkJ04dCjKpilRlkRKTaq5dJO9VvVaXVtXVddeZ36Unrff+lSUdQcYwAcgml196pxveb93ed7Ntm3xoukzr2Wb5un6e6bjQK+//qm/r+V7o3Fc4JnKMteP++r3+yVVgx10NP1Sj3O5XJiYmJDiYZrvaFomTydwYI6VYyR9aN1A04RO69L7wfdRT+Da0wur6VE7YTRdm7Rs0rhJ7+a/drKXv2vD35Tv7YA6U37r/W6naxA84Vx0hKv+qceueVs7+a7fr8dDb/3rr78uUWmVSrON++3bt1Gr1eD1enHp0iW4XC709/eLN50t++7evSspdjpVkHSWz+dx//59BINBXLhwQTr5XL58GTdu3EC9XsfIyAgGBwexvLwsRfbYbSCXyyGVSmFychJerxebm5vweDw4PDzE5uYmLl68iLm5OXR2Nts6s5MM9U8aZPQ2s/5aqVTC2NiY0DtTOtLpNB4+fAgA+N73vodGoyF1DCqVCt577z1Z10KhIIA5w+VZMB5Ai57EoseU6wSJCZ5o56Rt2/D5fJibm0MymcT29jZSqRReeeUVzM/P45133hFgg20hfT4fXnzxRYlQSCQSGB0dleKQ5XIZsVgMuVwOU1NT+MpXvoJSqYQ33nhDxn10dIStrS1JTenq6sLc3BxmZmawv7/fYjswvWFmZkbOIdt2ky+wLlA2m0Uul8PIyIi0/KXRu76+jkajgf7+fuzv7+P69etYWlrCl770JWnvGAwGsbq6KumpPp8PoVBIHCE8K06nU1LddNFonlU6gVKplETasjYXbQed/sFzOD4+LvW0mJJI0IWFnFnjjy09V1ZWkEqlBGTnvhKQi8fjWF9fx/PPPy81bD788EMMDAxIG81UKoX+/n7Rc1ikkeDViRMnRC4Hg0HMz89L2sy9e/cey/N4/UpQwbKsUQD/A0AEgA3gb23b/u+WZfUC+D6ACQDrAH7Xtu201eQu/x3AlwEcAfhPtm2//ytHgo+HVpFxMT+QQpaHETgu/gcct5RiGgEPE4U7QQNGFuzt7UkhxVQqBa/XKx473kcjn0JPhzfa9nH3AbZMofI5OTkJv9+P+/fvi8LOMZrGPhUXzoXKHBEmHi56i7j5vJ+hrpyzVtKoTLdTPDkGzoUKAj8zv0fB1tHRId4Hemn5TO6Nx+OR0PJ4PC7z4vppjz/nT8WLBcv4Pt02Tuc8aqFH5km60OGwXAvuD8fKuen9oDDVaS+kHY3Ma5qjAsrL9HBo5YCf6bE9TiEwFRHSgAZvTDrS+87PtfJmGvh6zDwn7YwCc9z6e+2UJCr87d5HI4CKLAUrhWSj0RABTnqlgehwOMRbwfAz1lzg/Px+v1Qrvnr1Kmq1Gn74wx8il8shk8kgnU6LgaSRaK4TU4QODg6wuroqYcHaMKGBzUJMLC5FzwqBSz6HXu69vT3s7e0hGAyK0gFAFG56JYvFoii7brdbogFYm4HnQwtb0j5pgXvPdAd+rveHoBHzR9nKkgXVaABxXFTEOzqaxZyeffZZAS96enowMDCAu3fvYnNzU5THXC4na/vmm2/i6tWrIqhTqRROnTqF+fl5rK2t4Z133pG1SKfTAhbosOXe3l6pWuzz+ZDNZmFZlqx3o9EQrxTPjNPpRD6fh8PhQDqdRjQaRW9vL+7evSvrcXBwIFFmPAM7OzvCt0hfwWBQnqW7LJgGveYZtm238DRtAPL/mheRN3Hf4/F4y5nW0Q7tzp0GPsnbtZdSeyE5Byqu2mtLr7mmA4bnazmlU/L0GjyOb2hZwrOl5Tsvzde5J7p9o44w0BGFbKdKAyKTyUjKHOWblu8AJF9WgwL8O+uGUJmbmZmB1+vFo0ePJNKDsp+8hPNsNJrFYHUKC9eNoBujZXgWyY9t224Joea+cE35HFMf0kYq5TtrSXD+nCu/p/UFyvdSqdSSBsNIDcp3ANJLXesu+gxwzJwH9TTSH5/P52q5RvlLw4m/m7UPdBqEqfNp3UUbyzp3nO/jmpnyXa+pBnRMWjfpv93f9efmXHkW2snOdpENWqczP9fnjzRJEIvvJ60xgo1j4Pc03yCQxvXSepMeZ7FYbCmI6vF40NnZCa/XixdeeAF7e3t44403UKlUcOnSJUQiEaGjXC6HUCiEgYEBJBIJrK+vI5FI4ODgAP39/ZJXzuJ76XRa0huXl5fxs5/9DD/5yU9w4sQJnD17Fi6XC0NDQ9jd3cXe3h4GBgZg27bw/2AwKC0HmX7x4osvwuPxIJPJoLe3F3/8x3+MYDCIf/qnf8KjR4/g9XqlbgI94dRhyuUyFhYWWtIjmQd/48YNZDIZKVDodDpx7tw5iUpkMUB2jMhkMnj06JGsYX9/v6wN0AznZ8QU0AS7I5EIisUiFhcXcfv2bTQaDQwODiIajUptuIODA4nu8Pv9eOGFF9Df349r165he3tbQuaffvppDA0NYXZ2Fn6/H9PT07h+/Tq6urqQTqelqCR5IqMky+UyotGoFOgk763X67h9+zZKpRKi0SguXbokEV71el3Gs7m5KYavy+XCU089JbyPsj0cDmNlZQX5fF4Aglqthu3tbQEuGHXpcrlw+vRp+P1+RCIRVCoV6Q7EIpRutxuTk5MYHx/HtWvX4Pf7Ua8362lxH1nvgmml3d3dSKVSUvCecy+Xy1LrhtEEjMJgFMPQ0BC++c1vYnd3V+p+MAImk8lgcHAQyWQSvb296O3thdfrlSiaQqEgoK7mSXTGbG1tYX19XWgsmUxKgWimxbBVJHVuoBkhxOKM+XwekUgEQ0ND8Hg8ePjwITY2NjA3N4dfdX2aSIUagP/Vtu33LcvyA7hlWdYVAP8JwFXbtv/Gsqz/BuC/AfjfAHwJwOxH/54F8H9+9PMTLxMJ1Z5mCr+enh5h8FQs+HftbWUIpxbyVMC1ocX8KeYVE1DQAgxAC5J2eHgoioAWzjoP0bIs7O7uIpPJSMErHnwyagpGMiMyeh4wPtM0aHlR0eVh47P1PyoIWhnlfaaBqT15vAgsaCCCz2J1aSqk3d3diEajUuxmb2+vpeaENpy1d4ghzvTiULngmMyCa8yDr9Vqgs6Zgpufcc3p8aVgZai6vo/7p5U+ghymwq8VAVOJ0/PUXtJPUrLbgQ3tLir+5nv076bnzYxK0UAOv6cVBZ4vKrgaYNDKg1bOtNKmf2+nTPH/VF7q9boAAkxHoMHPi0aFx+MRBYTdB6hUkX5tu9kbmSF2rJiczWaxsrKCwcFB8TJYliVCgzmSACS8slwu47XXXgPQNKa9Xq/wlWq1Km2GuNacG++JxWItKPvMzAzi8XgLn2CNFJ4rAh39/f3ixddh99wfrfjqMwwcRxcwLJLGgfaMc735XLb5CoVC2N/fl1QMKjTBYFC6KFiWhdnZWXzzm9/E0NAQDg8P8Xd/93cYHBzEwcEBYrGYgGw6pD6XyyEWi+Ev/uIvMDw8jL29PeTzebz44osIhUJoNJohnmtra6KUxWIxUYR5pdNpRCIRiSgh3+A6/dmf/Rm+8IUvIJ1O4y//8i+xtbUlYBS9XGw1yPXl81lgifthWcctaG3bxsjICO7evStGDPk1/AIbowAAIABJREFUzwnpXoeHm4YW0FqEz+QN2lu5s7MjxZe4fyZ4SGMsm822ANNadmqeqgFE27alGBTlqmVZ0mLT4/GI4qo9yJof86dO49NRae3WgDyTvJcgrpY3+kxo+Uh5rKNH6DXT4DEBOK4P56lBd15cN51Wx/XT76hUKnA4HBKmzHt19I82wizrOMxfn1sCZTraQstYDZSYBq0JTGh60ettrj91Id7HuWkjk88jAMF99Pl8OHXqFCKRiHisGPFi8hVTFrDnPdeB/JfOBR1lqAvemSmk7c4No0ZY6LJQKIhXXIMBml/yd4KNpENtmPOsaCcV15+X/o7+qc+0KTPb6Sr6eZrX68uU79qpxL+bAAQ/13RGkJbAPY0hytdKpSJF0jlWnnXqTVpH1LoQr0AgIOHqLJ6Xz+dhWRbGxsYQjUYxOjoq4ekPHjxAd3c3+vr6pA4D6wTU63WRKYODg0Izq6ur0kJwf38f3/3udwEAvb29OHXqFM6fP49qtYq1tTXp9kSdjEWNb9y4gfX1dezt7YkHuaenR0DjTCaDer2Od999F729vdje3m5pN840R8oFr9crMtu2baHjgYEB5HI5SQGhXsmzAAADAwOIx+NSkJQOBnqvfT4f+vr6EAqFJOSf54bGJWnD7/dLUUKmaY6NjUlkIG0S2j0ffvih1NmpVqt45pln8IUvfAHRaBS2beMnP/mJ1Aeg3CRf7uzsFL2gXC7jypUrcDgcePjwIYrFIiYnJ1EsFhEOh7G4uCi0YVkWYrEYXn75Zezv7+O9995riSLU4DYLc4ZCIZw/fx5zc3PiFF5YWMBnPvMZaVVdrVYRDAYFSO7q6sLg4CA++9nPIpFIwLZtcVp4vV5Eo1FpLZrNZvHzn/+8JQ2Ve0Vbsa+vT2iAXRF4fhiJCUBojLqgbllr2zY2Nzdx+fJl6ZLCs8YaJEzvefLJJ7Gzs4O33noLS0tLwpu1w5NyLZ/P4/Tp05iYmJC9tW0bn/nMZ2BZltA1I8f7+vqkrsTs7CyWlpZw584dhMNhqfFz+fJlTEw0O4HMzs5KBOcnXb8SVLBtewfAzkf/z1mWdR/AMICvA3j5o9v+bwA/RxNU+DqA/2E3ueAvLcsKWZY1+NFzPuk9wpy0F4QCmIQGHIfOswo8FUudT8xQIA1W6L7KFCaWZUkxFjJ12z6OQGBlaEYb0CDgM/g7BbQ+CFqoaY8AFTdTQGmBQcCA3n4awfQSmkqeFjpUwvTa8l6i8wBEWdeGqg571QqC3gcAokxRUPH9uqhYMpmUKvpcV66X9ojzcFAZpJLFvxF80ci83j8aAXo9NNjjdDpFwSsUCuLtNw00vqNdNAfHrpU+7hFpTgtyoLVKtN4LrWS08yw87mzwmZqmOU4CHBw/94BrrUEjbXzqd3OONOxJL8xd1XnEGpTRSpfOc+XatUtLAiAebI5Pe5ZoiHZ1dcm5HRwcxIULF7C1tYVwOIx33nkHwLFy7PF4MDU1hXK5jJs3b4qXnCg2hfW5c+cknNzpdIoAYKgmzzrPN/M1afxTwHGMXDe9rp2dnQgEAi0Gxerqqvw9k8mgv78fAKQbQiKRgM/nw8zMDAYHB/Huu+8in88Lsk4aNUEMExDUQMv4+Lggz4uLi+LN1aAs94gRQdwvv98vSiE9J8FgEABw+/ZtiQbZ2dlBqVTC22+/jd3dXfEmDQ0NYXt7W3gpz/TR0RFisRjC4TAKhQLeeustnDp1CgsLCzg4OJAQQKfTKQLbPH9MYWG+aL1el/xGt9uNSCQiLcJisZiEN3K/SOPaWKOCps+Jw+EQgINFN6vVaouHWyv2vLTRrs+8fg+9/lohBCCpO/T4Ma+WtESFjueOxh/PvPbskxZ0xJkJ4AOtXlA+g2G/+/v7UpeCPMb0yGog45OUDtMLrI0xMypO822eNcoqAmZ8J2Ukz6iej8/nE/CPvFrLd/IwAJKzq8daq9XEo8bn0pun950yiEq3lk/8v46KaDSO+5dTMdT1E3SkpTaiKd/1PmidhPur5Tu/z4gb/tSySAMjml/yfFF+coz0vulICsp5Te8EInmeuf+kRcpqvZ4cC9e0nXznP1ZJByB54JoXcizUwfR6cq0BfAy009Eq+oyYwJgpj/Uz9fM+Scbzaiffeem0DB3ZSrrU79MgJ8ej79FnlRFlpJ1cLidgsKYT0qKen9Y7eFFuh8NhKQg7MzODQqEggH0wGESj0cD+/j4GBwcxOjqKU6dOSZj97du3sby8LEb52bNnBYzq6OjA2bNnpc0wjWwA+OpXv4qpqSnkcjlsbm5KBwp6xhuNBu7du4eOjg4Je+/oaHZbSiQSODw8lALS9GLfvHmzJQ2MvCeXy2F7e1vWVeuvTHugg6DRaOBrX/saHA4HLly4AIfDITWjGIZO24ByrqenB6dPnxZPOnn+/v4+AGBkZETslocPH6JUKiEWi0lHlpGREXHGspUg0zi8Xi/29/dxcHCAjY0N7Ozs4ODgQKICmMZNOrp8+TKeeeYZDAwMYG9vD+l0WpwC1BFzuZw4X8LhMLa2tlAoFGBZzRQGpl709/cLCFgqlSQFgPsRDAYlQrBWq2F0dBQnT57E9PQ05ufnhQeOjIygWq1K+jo9+LZtSw2CZDKJXC4nxaQJnN26dQv1eh3j4+OoVCrSQeP69evo7OyUNArKXkYK8t3s6hQIBGTf+D22pmc0HCNdGW1PfrC4uCjvZ3tHfi+fz8Pv9+POnTvSMnR7exvhcFiM/GQyKQUp4/G42FpM/dzd3W1xTrBYdjAYxOzsrMhWghU8XwRDWJ+BXaympqbwJ3/yJ9ja2vpEHvY/VVPBsqwJAOcBvAMgooCCXTTTI4Am4BBTX4t/9NknggoUAjrnTaPdWjkzGR0AqUJMZI9KABE0/h04VhYCgYB0i2AoK3BctI1CmYXZGHJCxqbznLj4FIA0jNoZzxw7GQiNNIbL6DwjKrkAWu7XhiCF/+M8Y9prpJXXdkqhVjSotGqBpOcDHFcVr9frUjGXnmeXyyXjZ6oEn8vvmEJRKx6NxnGBMCoSzLPT6QZaodJKhFnXgvPk8zgfrglpkGPRawFAjDGt5LQzGqhkaa+KXjMTfNDv0EqEaZybY9LKgaaDds/USqmpgOh32rYtIBHBNa4NQ7oI3mnwiilKOgqEzzaNmEajIUV7SA+ajnj2dQeBWq2GnZ0dLC0tIRqNCh2cO3cOJ0+eRCqVEtQ4EolgeXkZqVQK3d3d2N7eRn9/vzDNZ555BtPT0/jggw+wuLiItbU1aUeVSCQEVSavyeVy8Hg8OH36NFwuF27fvo2BgQHs7+8jmUzKnrC4IAChdQAYHR0Vw5vKqtPplJZIBFeoDCeTSYn0ISqdTqfR19cn7Z00wKfpWEcudXR0SDsqKszkDZp+LMtCNpsVtJ10ncvlEAgEJCXA4/HIWC3Lwve//31kMhlsbm7ixIkTmJ6expUrV8QYJrjAeTcaTU+w3+8X7xE7diwsLKDRaOZAcg5erxfPPPOMFHG8c+cOurq6pN+zx+ORlknlchnT09PIZDL4+7//e6lbsbGxIXyMigUVUYatmwAqzw+95yz+qaNqOB9t5JGO6T3V7TH1GeTecA/5LhqWfDbBWJ4RngVTgTf5guZFNE6556Y84jpwfponFItFMQo0D9P8hnSkjVmT/wCtPNocJ+UA56CjQDhmphTRYCFIRWeClu9cb4KBBGmYckcDigYw5TujmnTkCdeNoBJpk/PR4I024gC0tOUk4OFyuVoqjusUBF3pW68j7+W51vKd+6bvbwc6mwam3hOusUkfeq8rlQru37+P0dFRZLNZie7SRZh5zlnXgvTEPSd/YUg9ZQqNc4YHs9I6aZj3UkZw/ASVWGuE8+X4Nb/T0aymHsiLURfkb2Yagpah7UBDU57rZ5v6qr5P82HzMg16Ld9NvqL1Af1cTQecN6NDyYMIuvEdmv5Jj3wfaYTP1fTWaDSLA6+srCASicDv9yMQCIjOxrbOlmVJdyV2KbDtZsTriRMnpPPOxMSEGM/xeBy3b9/GuXPnJBKFIMVXv/pVPHz4EFNTUxgbGxPv+2c/+1mEw2Gsra2hXC7jnXfewZtvvomXX35ZOiZ4vV4kk0n09PSgXm8WZZ2amkIqlRKPt2VZEjJPuibtu1wubGxsSHTF3NwcotEoTpw4gWvXrklNl9HRUQwMDMDpdGJjYwP7+/uIRCKiN7AbBuU++XMgEJC151gYvRAIBIRGacDSk97d3S1pwPv7+3I+yT8ZHcjIxFAoJB0bfvSjH+HrX/+6FIY+e/YsRkZGpKgia2Ps7u4iEAggkUigUqmgv79fCjf29PRgfX0dBwcHSKVSGB0dBdDUjU6fPo25uTm43W7s7e3J+eS9jEgl3z979iyCwSDW1tYQCoWkhTRtvkajIQDOyZMnJRpB8ynqaADw1FNP4c6dO3jw4AEGBwextrYmkRosxpnL5TA/P494PI7p6WnRa5xOJw4ODgAc24o62pYdMcjnq9Vm+8bOzk7s7u5K1wxdeJgRWowwWV5eRjKZlPNK2+bw8BCJRALBYBATExNyrlgsVPNgppncunULLpcL0WgUDocDzz33nOwdnTD7+/uwLAtPPPEE3G63dNUjID8xMYGtrS381V/9Fb71rW99jE/p61ODCpZl+QD8PwD+3LbtQ8NosS3L+tUwbOvz/jOA/wwcG6ZaQFNB/uj5IpjI+IgKAk3EnN+nAcuLv1MQaGRVCzld3ITKpA6xZE4l0Sei6TSitaGpwQSOn0yCzwaOhQ4FJkO96EXkPS6XCz6fD8ViUUJ4tEdGAyAageb3NQChc+T05/yeabRS8dHz+Wj/ZF2pQDDnSBtOVOhpkFKR0PMjWs514edkfrowyszMjHieb9++LYxFe261UmBZloSRGfTXso5aCSLTBo5DNrURob9POjKFsf67qUzwMj0YpnHPe8x110qN/pyXVvA5Nj0W/tNzMZWVWq0m1XZJN8yLo+Bi3preT46Ze99OUdLABtdde/oZosl9435Uq1W8//77suadnZ0Ih8OidDJfcXt7Www80nq1WpXIpcHBQTz55JMAmpEVv/3bv40f/vCHWF9fh8PhkJZ6RG1Jy7/1W7+F6elpvP322xgZGcHBwQG+973vYW9vT9aM7yWY2dnZ2eKt18ZYPB4XhJ6VhG3bxsWLFxEKhXDlypWW9on6fGvFWCvoOhWFKRgsqsQ11pEopH3uBT2O5MXs5MBaCgRnEokE3G43FhYWZN4TH1XiDofDck7fe+89DAwMiDdGe4rZosiyLDEMqVSRbsfHx+Hz+TA2NoZSqYTDw0Opv8GaOFQoWOyuVCrhBz/4AcLhsOQO8ixzz+lZYMVlGhM01ijseUa1QcYCtXyu5rEEGUKhkCD6mj/wogzhM6l88FnkRTqiQQPCBBM4Pi1T9Bz4fHowWLOEY6ICSrnFyDyuF/m/5kUa6NVnUc/xI1q9SX6k+ZJ+v+ZZpFutJHM/Nd+ggkX5bRp1Wr5TXjOcn3tO3kX5zvoABNU4V4Yscx9JeyYwrO/hXLSnnWeMhdV4UQZx/6hLkKeaUTq/Sr63C9XXgA3npQGJTyvfS6WSVBAnQMKIHRpFtVpNDFT9PM3fgePK/AQjuHbz8/NSkX5hYQGHh4dCn9xrXU+G66sjjzQwpqMVdW0Iva6kW20gaz3UBB/0ZRr3Wu6bYLq+2slj/UzSu/kePpfj55roPW43Nn3V63Wp+K8jaLUuovmddjxQFmudi+fIsqybDocDh4eHeO655+B0OsXzzAgv1g0gvWezWRQKBWxsbKBYLOK73/2udE5itFu5XJbc8omJiZb8dRbQ6+npwdDQEHZ2drC8vIz79+9jZGQE0WgUExMTODw8RCaTkZoJDodDUi0Y5fj5z38em5ubYnzu7Oxgb29PHH48x9vb29jb20NPT4943RnlWCwW0dPTA6fTibfeegvb29vitKzX6zInp9OJhYUFpFIpnDx5EsPDw9IZgC2hdTFU6kjcp0qlglgsJvoBo6MoR+lYJS8i7fMdjEagfjM9PY1AIIDu7m4kEgnE43HcvHkTS0tL6Ovrw+TkJLa2tqQV9PT0NA4PDzE+Po56/bgTU7lcRjKZRCAQgMvlQqFQQKlUwsTEBMbGxiRa0+12SweQ8fFxlMtlLC4uwuv1IhaLIRqNotFoYH19HR6PBw8ePJA9oT7CudNxMTk5iampKUSjUWxsbIheMDs7C8tqeuSPjo5weHiIQqGAaDQKn88ntTpYxDOdTiObzSIYDKJarYrhrqPaWDhRpxJY1nEHJN0BiDUlgsEgxsbGJM2eYF65XMbQ0JDwOQIpjA4YHx8XsOfg4ACHh4dwuVwtkfisM2bbzRQK8jWmu/zu7/6udOu6e/euRJUMDAxIIVRG7OfzeZTLZczOzuL8+fPo7e3F6uqqtHvV9eraXZ8KVLAsqxNNQOF7tm3/y0cf71kfpTVYljUIYP+jz7cAjKqvj3z0Wctl2/bfAvhbAHC5XLb2kBG1Mg0VLRA+eoYIJAoFKowUkqaA1wazLh5EZZEtRqiM0Ehg4TIz15wdC3QKAImJSnqtVhPkjL1uea/ZqovGAZUDp9MpFWoPDg6wu7srijiFHg0AzosMn2tiotTaQ6EFkQ7/10LMFLi8l9+nMaOFLw0qggkjIyOo1+t49OgRgGNFk2vMMeg2UjSY6AkBmsV8uGfae6OVSy0otUdHgwM0WomOazoyQ8nbeThM74AW3ia4Y35fe434fdPw59qae6S/0+5ckEYJNGmgDjiOCDKVIa4h02uoQGuvnQk26eeaCpjpRf9oj2/yd+4XzwC/zxxuswUcx0nDnAj0tWvX0N/fL95GjouClUKAjLhSqeC1117D4eEharUavvWtbyEYDMLr9eJv/uZvcHR0JApER0eH9NTu6OjAq6++iueeew6NRgNDQ0OSCsCq5BRWVHI9Hg/C4TBcLhd2dnZEYJA26JUHIMj3zMwMvv3tb6Ner+P9998XT7vD4ZDihKaHjMCoCZzRq0Lhq8+G5je8dGQSDQp2AvB4POJJpTJPTywFJ9DMaZ2dncVLL70kNMi0C4IGTE3j2acBzT3nuNLpNH70ox/hhRdekIJHh4eHUu+CVzAYRDQaxfb2toQ30lgh39D8qVAo4PDwUCKfuE7kQ9pYZf49jVh9fnR0jQa6qXTQu93T04NsNisAHfmaNgiVYi48mrxVG7CUM4yEoXxjGKxeF/JIHdat+bZONyCNad5PXqCjLfTnWm5o/spx1Wq1p4GmfNdRFzqKzuRj2iCkIq15sJbvlI96bBocJv+nDGdrV+4djSsTmONl27akSFERJM1zzNw3gumsBs+5cV84H8o2HaUXDoel60w6nZY9oJNER9J8knznWraT75peTbCB79N7oCNbuFYOh0POAyPSyGeHhoZQrValtZveQ9IfaZHP4nkh+FOv17G6uorR0VFZH45Vnz0tR/lTrwfv0fTGyAfOjWMjr9FAQDs5p+Uv36tlnV5/04g3QQdN9yaooL+r5anmAVw7nbbK7+uxmE4LLScY6cN7dYSt1pe1s0SfTS3fVVj90y6Xy7506RIuX76MO3fuYGJioiV9xOfzifHdaDQkrS+VSmF9fV3aqzJaYHNzU/RvFt2rVqvSNYIh48yL39nZQSQSwTPPPIOnn34aXq8XPT09yOVyWF5eRigUwvr6OpLJJKanp1tob3l5GX19fWLsbm5uSsoGa9ak02n84he/gG3b+OIXv4hQKCTnfGpqqgW4LxQK8m4arb/xG7+BYDCIBw8eSF2A3t5eKSjJNshcs76+Pqyvr7eAZjwzHR0dojd0dHRIZK5lNYsZNxoN+TtpjdGc5DfZbFY83B6PB0NDQ0gmkwiFQlhdXUWpVMLy8rKkHpRKJUxNTcGyLGxtbUknCrZ539vbE/nHFp2hUEi6KrjdboyNjaFer+PBgwc4efIkLKuZWsv6U6zr5HK5BOigc4CRI+xIU6lU0NvbK21Eo9EofvKTnwhvGR4eFr2MNRCYchEIBEQHsO1mZCbbKpLWE4kEuru7xUGxu7srRSRZzJM8sF6vS3oIQQlGMjBaLhwOiz7J+2q1mhTZZBHvyclJnDhxAvPz85icnMTbb78tQBPbkz569AiHh4cC9DCl17IszM/P4+bNmxgZGcH09LQUGGWtP5/Ph3q9jpWVFYmcoMPa6/Vifn4eDocDe3t7Qlu1Wu1jBXLbXZ+m+4MF4P8CcN+27f9D/elHAP4IwN989PM19fl/tSzrH9Es0Ji1f0U9BeDYyKdyphF1/p3MzPRy0+ikcDGNbKA1n46KA5ky/07mSoLShiqVCo6LihY9tvRc6YUnus+wWX6mGToBCD5bew60EUtUUYepaaGoBaMWtqYH2lTm1D63CCZe/L82Ajk23q8LYFLRo+JDRZbVVFklX0d0aE8IDymLclJJ1obbvXv3xMPI8XDuWqDqNdBhwhSSOuyUtKIVE37fVAa04cXQJdNzZX5Hr7f5f61wcD20IG8HIDxu7wisUQFst7c0CnQaDH/y7BEwI1PUYzXf3+4y6fGjiJOnP9pLW58hrYBaliUVg3X9EE3T7DBSr9eRzWal+i7z7HRUEIuEsQAiQ+l/8IMfiFLCFkM8fzQICTrSMFhYWMDKygo8Hg/eeustKQQ3PT0Np9OJlZUVKe5EY6xYLCIYDIrQYcHDw8NDCVEj8lur1ZBIJHDjxg1Uq1Xs7OwICEHln4LU5FfcG20UEhTSf6fBbRom3A8AgoITZODaM480k8lI+CmLMFWrVczMzODg4EBSOOixcTgcKBQKKBQKAgq5XK6WQlK8+Hcac+l0Gv/2b/8Gn88nPJ7t7hjJwqJabrdbUkN06LkWiC6XS5B8Gh70FPPMkDd0dnZKTijXX68nvbPk/b29vcInWQCUhr7JU/lMU57xJw0fDXTQa29ZlqSQ8Lz39vYKPdILt7+/L0Yc5+v1egX40AaF9rDzHvJ5el/IH+id0fPQIKyOItRz5lg8Hk/LnLXxo+euaVPLd51CoeUZx6GjOUznhJYDGgznpdMdALRU9uYctHeYERA6xYfPM4EqGoKan3MsppdfgxAmME064T18hrkevLThaq6r1odMI5rP0PJRg1McB2UzQR8NBgHHugPlu9vtRjAYbDlvPJvJZFIKsBIMbRcpoNMZqEvwIn1yXpp++RwN6rUDBDR9cM80nZvyWesMpnzU79XyzryP89Sft9M9yKs0LWm6bacD87t0NDBFkfvH3HGeL+pxlDUa6NIgn8nDgGb0wXe+8x0sLy/jz//8z+H1eiWt17Is8TSzdTH1QRbWO3HiBHK5HHZ3d9Hf3y+1h+jYY2eSfD6PoaEh1Go1LC8vS2oUdexsNitG9dDQELLZrBiNlOsAhMffuXMHk5OTUoxwc3MT/f39sO1my77NzU3s7+9Le3eGrDNUnsY49YydnR1xPPC9BAsqlQqeeuop4bHsbsWoadu2Jbde62M68kafBe4zO3S43W5ZY9ZBcTgcGBoakrQwtqhmCDwAidasVquSGhIIBCS8v7+/X3T/oaEhFItF7O3tCVDIThr379/Hv/7rv2JmZga/93u/h1AohIcPH8LhcGBiYgLnzp3DrVu38PDhQwwPD2NxcRGlUgl+v7+lJo3T6RT9IpPJ4ODgACsrKzLPvb09uN1uATru3r0r/JrpNslkUs4x61N5vV45y319fXjuueewtbWFW7duYWBgAH6/X2o1cA903QfqTgQLeD4TiQQ2NjbQ3d2NgYEBjI6OSvot0xToUOJ3u7u7Ua1WkUgkhD8wsmpkZEQ6egDNIqh+vx/VahXb29u4c+cOhoaGpB0rI8CKxSLGx8cRiURERrGlKvVP6vrsFGGmNLOV9b1793B4eIjz58/j+vXryOfz+KTr00QqvADgfwHwoWVZCx999r+jCSb8wLKsPwGwAeB3P/rbT9BsJ/kIzZaS3/4U7wDQ6rEks2fEAIWAVphpPDB33xQaWvDRQNF/A1qVGiJmpgdDG1r8vhYwNCop2HQkAu/XoWbAx3PRyMA5Vv39hw8ftrQ6I+GZCodWSrWyoY1GfqaVDD5PI/C8n4yQXrd2CqCehzYCqTQ0Gg188MEHAI6L85Gx06AgMWtvivbQMNqDyq72ynIt2s2Xz6ORYq4B90d7vLin2gDTRrlWKEyvhL7aeQ1MAIA/zedpRcL82U4BMkEJnQ5j7jUZrAa49PspUHQBLe3FoJJpejBND4amIfPiWaHntVwu4+TJkygWi1hZWZH7GKZMZYhCpqOjA9FoFO+++66c7YGBATz55JOo1WqIx+NYWFgQA5Z0SUAinU5jfX0d6+vr6O7uxpkzZ+D3+4VOqHhp+qFnzuPxYGtrS+qsAJBCOVS8NLpLxJ7FoMj8uQ98T7VaRTKZxHe+8x3JTezr65McZnq6+VztxdV0BBynMpCnkk74GVNYNAjBZxBYsazjSC++r9FoSNgfc9STySQcjmbFZwocRiTt7u4KGt/d3S0FLt1ut7QN1QAhABG0BItJL1R8CMZwjRnaynNMpYieMKZe0Cik0UxPA4EC8l8d4cT91EaIlglcH/JHh8MhoaD7+/sCqOizrs8D5YDeA3Mv9Tnm/TS4yCPpieF68ZnkzbquBL+jAWlTZhC00CHjNDAI2gDH6QKkOa6FlgmcBw09Gi36fJO2tCFLuUrlqx2tc8ymTDcNNsp5dgzSiitljQZGNOjGc0BggYaL3k9dT4Vj1M/kedTfI03s7OxIhxYtezk/7o1tfzxc/9PId37WLkqN8p3n2qRBrptppHJMrBvy4YcfAoBUF+dZpOHGNdOAjJYtutioBpu14aovDXBQAddROHyuSQ+ctynfzfPGPTNlvF5T7oHWD/hevSfm/03abDdmTQP6d+6FLnhpOuC0o0OnQhJMJOANQPLui8ViC8/XUY40KLXB8Th+xusP//APxRO9u7v0SZqLAAAgAElEQVSLw8NDTE5OIh6PI5lMIpVKweFoFo1bXV3F0tISvF4vzp07J+He5Gks7EgHHovuAhDjiGNmVAMAvP3226hWq1hdXRXgvlwuS7g86YoAd7ValdaVm5ubqFQqGBwcFCeDbR9X2KeXm7yM3QNYJDidTksBPurPDocDN2/elAgMFnLk2S8UChKeT51I1+XRZ4m8gGAcDenOzmbxenZBCQQCcDiaKSmHh4dYWlrC9vY2zpw5A5fLJeeG3X6cTqeMianHR0dHyOVyWFxcRDAYFJDi7bfflkLOkUgEc3NzqNfrGB0dRSqVQiAQgG036wCwpoDP58PW1hb29/elleHe3p7oBQQfKVdYmymXy2FgYAB9fX24ceMGBgcHZexMNwQg0QakzVKphAcPHuDDDz/E+fPnEYlERLcg/VB+sigyzz6NbwIa2WwW0WgU4XBYztfQ0BAqlYrQ3O7uruhEPp8P09PT0s5Rg8D5fF7GQT7KSJNsNivtLoPBIN58800p6tnf3y+Aq8PhwMrKCn7+859jeXkZZ8+elRpY6XQaxWIR7733nkRjMmWHsiifz+P69et4//338eKLL+LEiRPSwS8ej0s9JY4zkUjgtddeE+fF465P0/3hTQCPc01+vs39NoD/8queqy8KOc20yNBYmIz3AccdFOhhoqDSdRA0sm8avdo7rkNOeZER68rj5r1Ed4kaUsC0866SIWjGr3OdtLKqCY8XmYt+B5+r3wF8vOiVFqiPE27m7zpCAjgGKXTYlb5Hz0t7X3ioycD5PTKDSCQiTIdKr8fjEYZKI0oLUY2aEzTgGtAwYZVc4DiPWnu39PhNxUwbzmQUNLw1rdJryD3T66AVPv1P76u53npOWik338v3mAAQlQFGd/B53D+9J3xfO1CDNKm9GVxneoD4bBoTRMFJa2bkiKl0sX0UBa423qns8wwR/KCxaFnNNpAMIaTArVSavYDj8Tgsy5K2hrpqO41zn88noZKVSgVerxcPHjwQWtEKK3kAPURf/epX8fzzz+PGjRv4h3/4B1F83G63eFIY2cB5MdyUa87QTz6XdUHIA/v7+xEIBJDP5yUVhECj2+3GqVOnkEqlsLm52RKtw4vrTp5DnsC5MYRZf0fvHQ1NCmxNV5ZlSXcMy7IEEPD5fNjc3EQ6nYZlNSO7WHW6s7PZCePixYuo1+v44IMPkEgkROkguk4wl/y7s7MTfr9f+kGnUinYti1KD9MgSIsMc/Z4PHC73eKtIXBAOqFXTp8LKtxUfHSBRvMM6XXWgDdzJ6nAkX71/mheq+UOzy95h94Tng3SC5U/7hHTUsi3LMtCPB4XGmONEg2acP8YbaHD7Flfgv3Q6Yni2Ch3tTeaY3sc0EpwgDyQZ9Lj8QgQpfkkZSvlO9dBA+ncU8p/E+zRdG96gbWs1vLdXF9dC4j72c5zzmrpvHS0Ho1Y8kuuP/fYTAPS8t0EjrV8bzcnk8ba0ZxJexwDdSrShd4TbUDzojKs95Pyw+l0iqKfz+dlvZiXzPUwAR3TONdrreWxXiPSANdIR7pqvqcNYALnrKrPe/Wa6FQXDcRoOa7Pkam36fnoZ7eT77xMYEr/XaeMmGPVY9TyXdOQw9GsAWbSR6PRjP7i/ylrtAzQtKR1Er0GvNxuN1555RX09vaiWq0iFAohGAzi/PnzuHLlChKJhOjNOzs72NjYQDQala5HlmVheHgYR0dH2N7eRiqVks5I7PRAfuJ2u9Hf349MJoNEIgGHw4FAICBr7PP5UKlUsLu7K7U6crmcPM/j8WBwcBAbGxsYGhrCzMyM7HssFpOOQbq208mTJ6V7AZ0coVAIDx48QKFQQCwWQy6XQ73eTOGjI8O2bezu7uLg4EDk28rKinTKqNfrEvKfz+dF3vl8Pni93o+lB2rgk3tA2UZdgqlb9FjHYjFxpPT29gqfZ3pFo9GQSD7K3mKxiMPDQ3zwwQdSY4A1L95++2309/fj0qVL8Hg8WFxcFKPz0qVLKJVKAiQdHR2hp6dH6liwACVrKBFgtiwLb775JgBgcnISsVhMZIXX68XIyIiE7/t8Pol6YlQZAEmV6Orqwv379/Hee+/Bsiy8+OKLEgk7OjoqeuOPf/xj7O7uolqtIhwOw7abRTFjsZjovf39/dLSkzUbWOeJcoL1uKLRKEqlEhYXFyXlnc4Mns3h4WHYdrMzA3Ud7u3ExITQJWuFEfTS9SrC4bDUlqKMZ/ptb28vAoEAcrkcenp60NnZKd1OwuEwMpmMgFG3bt0SIJ/0tLOzg7GxMQDNtBK3243f//3fx+XLlz/G5/T1P9X94f+vSwsP06ClwqGFC5VQCn8eBnpntYHX0dEhiBzQqrhoIanbHprCQStLVNaZF0Z0lN5UGtJm4SoSJpkviZ+FOvT39Rz0mPkcnaJheqT05/R+miHSpuHL7+n38L0EYKhw8neuixaQVBD0d1mdlsLK6XRKcZQvfelL2N3dxdWrV2VPGbrDw2dZFjwejyg9nD9DAPW8dDSKXi89bi1kNfiiw3r5k4VyAoGAVIbV0SYmSKB/avozDQrTmAda84z1uTD3Q89ZX/p3rViZSqf2Dmka4H1U6B0Oh5w9ejOOjo4klFSH6dJQBlpbSrY7Z7xnbGxMDFGCiffv35d7OVYNFpKm6Z1uNBpSwZle2K2tLfGM07vJAnX1el0QfKZNUAEjQ9YC2babRYA+//nP49atW1hbW0Mul8P4+LiM++joCKurqwJAkH6oALEIINtUlctlpNNp+dz0pnk8HszNzQE4LuSo17BSqUhVau4F6Yd8iGeHhjaVRO41PVkaIDTBBD5TK+j0jOgQWJ5XKjA07CuVinR/8Pl8+MxnPoMvf/nLWFlZwe3bt2Hbxz2Z+T0CpwRleIa2t7cFUHE4mrUl2G0EaNZxCIVC6O/vx9LSkuwDab6jo0P2inTPDiaMLimXyzh9+jTC4TCefPJJPHjwAP/+7//eYuxzbXhOybe1F6tUKgm/1WuuDUGeDZ4Vs+aB+V0N+Okzrj+ngqsBSp4j8l3uL8+VBv/I//i+Wq0mCggjDGh80ijW/N403trxMfIlza/Yl13Ld9IVzzvQKvf0vGmcmHUeaMDzdwIDNN5J3xwzZRTpj/TCwmdcR54dnjUdtWiGJFP3IJ1QYdOAhJanAD5mbGvDjWP+/yLf9VqYwIKWjRrE4nM5PvJU/SyGdZM2aMSEQiFcvHgRqVQKt2/fFoDG6/W2pD9altUSrcbP6VnWa6VTcrQuqHmYnq9p/NOQ43mgfGePexPYMPVArqteZ61T8Dy1A9U0rek94Hc4Rn0m9Vj0/3nW2+mqpk6kv6d5yifdp8Pp9d/1OPQamfK90WhGv0QiESQSCTGmrl27JueJ5zWTyWBmZgZ+v19SDdLptHSJoBzmPk1OTuL+/fsCltq2jVQqJakPADA3NydF6ba3t9Hd3S2GPcdWKpVQLBZx9uxZTE1NYWFhAY8ePcKFCxeQzWaxvr6OQqGAtbU1jIyMSJcmyh96hDs7OzE5OSltTdfX15HJZLCxsYFKpYJcLic1Gfx+P6anp9Hd3Y39/X2srq5KqkWpVJIieD09PZJ26nQ60dfXh6GhIezt7WF7e1vkOgFGyls6gUjnmo4YNcSxAE3wh1GfjCZhrSPq4+VyWXjxZz/7WeRyOeTzeSSTSfT19eGZZ57BhQsX8LWvfQ3pdBq3b99GoVDA2NgYXnjhBdy7dw9bW1vY29tDd3c3zp49i1qthtXVVSmEOTMzg56eHtE7y+Uy9vb2pBMMZRfBDoJUjDKisUwHRjAYRLFYxPnz53H//n2cOHECk5OTeOqpp/DlL38Z165dw+7uLkKhkDiDqM91dDSjeLLZLA4PD0XPLRaLmJqaElCOBSlZKNS2j1M2JyYmpPZUPp/H4OCggBEskOh0OtHb24tCoSCRp4x+IE85OjpCIpHA8PAwwuEwNjc3hU/U63WMjY1Jei0dIB0dHcJfA4EAenp6MD09jVqtmZ5J3YtOwzNnzsDpdErkEEEWAjWDg4Po6+tDJBLBlStXWiKkHnf9WoAKACR8SSsWvLhp2gjkPWSsVNIoPLSngptNxkeGrI1Ls5o3FR2tvGgAgjncupsClWOgNT+fY2J3CSoNDMPSrc14UQHUDF17Z3QYpfYSmUJAM3vzWRQuptAxhYQJKvB7ACQSwbabHkTzeTz0VJ41UbLwiQ6FJ1jAtkM8fA6HA7FYrMVI5vpwL/r6+toqbSaSr9dDI/tUzrmm7DJBw1UXLjSVfk2Peq0fp2SYwlwrFvqZJvDD9+sxcJ21Z04rLNoI1CAQn2UCQaFQqEXp4HPpZTIVCdLf48KP+W5Ne2NjY1JYUXuE+TwWpOH9mr4ZTmfbx/mVQNNAWV9fFyPS5/PB7/cjEolgYWEBTqdT6ijoDghk8hT6zCukAcGuApZl4erVq1KxWocuFotFURxYk4AAABWol156Ca+//joajQZ6enqwt7fX0ue4Vqshm83i1q1b6OzsbGk9p+l6e3tbwrg1fZs8R1eZNyOM9KWBQ3qBuIaW1epJ4Dg0ABMIBCS8j0aUyVu3trbw4Ycf4vbt20KHNCpocFBJ8Pl86OhoRjRRJtDACYVComBS8DYaDaloTf5KI9C27Zawcw020QvD+5544gnxSMzOzuKnP/2pfJ/rZAJ1Oj1Enw19nrTnkJ/Tw8U5soAlATS/34+DgwMxrhhhoXkMz7c2/HWnHM5b8waeebfbLeBNPp8XpZz3aLDC4/HI/wn4ap6k5Y/Jz3hRvmt61fSn+Skvjp33k960bCZ9abrWjgZelD2an+g91QUxKesZ8Ub5xv1pd9YImnNNCSx2dHS0nFXuvQYp9Hy1XNf8ud368Jm89JqbxquWQxyz5t/ayNXrwpoltm3LfHTKC6NJLMsSOuKVyWTEECBv4Hlh9ILD0ey2Q6+15glavrMrlylfTZlnXpyXBiG4l/RoUw8zu3KYl94Dzd9Mnvo4MEcDNHpf9PdM+a7p1DxjnJeW73o8ZpTU4y6t9+jxa2eI6azj97gmJvizvLwsreoYTcdigPSO6vOWTqfF6AKA2dlZacvX398vhvfi4iJ6e3vlXWNjY8hkMlK9vlZrdjxixCINe63LMVy+o6OZQtnf34+JiQlsb29jbW0NxWJRnACkdYJObM8cj8dx7tw5cQbSkDw4OBBdtF6vY2RkRPLf9/f3EQgExJAlaJLL5ZDL5dDZ2Ynh4WGRuZRxLCbIWjRaH+I+83wR/KUhTEOd849EIgiFQhIVYVmWtP28c+cObt68iUajIR59l8uFg4MDlEolzMzMYHh4GA6HA9evX8f29jYASB2ERCIhUYFzc3MYHh6G1+uVdIlQKIRXXnkF3d3dePXVV6VGRLlcFhBmcnISp0+fxtTUlDh9SGfU26jv08lAnklHYD6fR2dnp3S9mpubwx/8wR+gWm12qFpaWsKjR4+kHSaLPpKP1et1qdNEmQpAaoJopwudM1qvoK0XDocF6GCNLI43n89LWjujWVnku6+vD/F4XKJswuGwyGt2Q0kkElKroaOjA9vb2wgEApiYmJCuEHSesNZUR0cH/H6/OLU6OjoE9Dpz5gy6urpQKBSwvLyMCxcuSMHMzs5ODA0NYWVlRRx2n3T9WoAKBAG08kihQoOBxqZWELWyTcHI71A5o9LJv1N51sKIm6qFAceiC9oAxxWh+VwthIksUhHVyiiVev5N56xrhmwaY9qTSTBCKx6WZUmYIVu2dXQ0W+xYliUVPflsLRi5FgyBpRFlCkTTAwAcC2cqFQxF5iHhOGzblv/TkACagMKVK1davEbaE6TnrfdAC1Aab2TCpjHF9eIeaCOc89LGsKZHerW7u7sl384U4twDvV/tFD8+sx2oo/dce4pMQW2CF9wDrbCY+0MkXz+LNMD3aOVEK8iacZgeHDJJTZ9cX50eoelOX0dHR7h9+zYODg5EEXC5XKjXm4UXWUn5/v37ci75HDJG7s/IyAiGh4dRLBaxsLAgqRvMYwOa3rTnn38eltWsftxoNKSqrS7GBQDLy8sCdgDNkNtf/OIXQu/7+/v46U9/CqfTiYGBAQwODkqYJlvx0KimEOzoaFb6Zd4xeQDPhs65rNfr2N3d/RhgyfXUuclc50gkgnPnzqFareK9996TSvT66urqkgJNLpdLakFsbGzI/tBo1cWZeKZJJ2bxMiqKNCwBSFglz6Lb7cba2ho2NzelZg0jtPh80o4uDlkoFEQJK5fL6Onpwfnz51Gv13Hjxg0Bg46OjrC2tiYKigZetWee54F8hjVauNb/8R//gZdffhn379/HO++8I0UYeQa0sW0a6xy/Ptd+vx9DQ0OIRCK4deuWFOPiWtEIpee7p6dHitWl02k5uzrFgvvKc6OBE4acM09UG0k0mhkmGQgEpBAX5VGjcVwvgFF7BBq4Rtq4YLErDTKYoC4/IyilowH5XI5Ph7VrvkX9gGeAMoeymJ457bE2gWVds4P8m6HC5lnhmTRlg4401JETGnQnnXDMOopC80INzGrniNZLTPnOdDGHw4FwOAygmcP7OPlOGc+ICQIwel/0mpl7Rr7RaDQkakMXldX6E/eK/CqXy0kdJe4BoyrIO+gRJ1jEveXcCSZo5Z3vBlq71Wh5Y8rZdk4k0jyj3rR818a0Cd6bn5vrZUYraLmt90R/x7yP3zcBBn2Rb2n6MR0R7dJAOD6tQ+rvc1/M9BK+nzKqne7CKxAI4JlnnsHPfvYzHB0dYXd3F1tbW5ibm0O1WsXIyAjC4TBisZjwGobYZ7NZDAwMoLu7G7lcDkNDQ5iYmMDR0RGuXr2KVColxjejAQFI6DodCJS7BLyz2SyeeOKJlgi9er2O9fV1xONxiRSgvBgfH4ff74dtNyPlqEczdZKFgnd3d2WtXS4X9vb2EIlEJLxft2MeHBwUoI4GeCqVErnV3d2Nr3zlK/B4PPjxj3+MWCyGYDCIp556Co1GQ9aLvFBHZvt8PvGGz8/PI5VKYXFxUeZaLBbR3d2NYDAovxPIyGQysCwL09PTODg4wAcffCD1MDwej0R72Hazuw3ndHBwgM7OTrz77ru4d+9eS3vnRCKBbDaLvb09dHV1YWBgQIBuph719PSgVquhUChgYmICExMTiEQiiMViIg+TySQajYakelK3oxNG0y1rUOmUrFwuh4ODA7zxxhv44he/iO3tbfHEZ7NZidogqE47hmC/ThUk3W9vb6Ojo1nfoFarYX9/X5xSupOG1+vF5OSkRByQ/7EFKWtuVKtVrKysiFOWMti2mxERS0tLuHjxohS5z2azsg6MEJ6cnBTAjBGGk5OTyGazWFpaQrVaRSwWw9raGmy72VrU5/Phc5/7HK5fvy5nh3p1qVTC2bNnUSgUJE3k4sWL8Hq9eO211/BJ168FqEDlWl9UvLQQ18qCDsmkcaCFBpkV/8+8Es2EqYhRMdBKI0ECHgSOUytQFKy8T3vzeOipwGqli0IlmUwCODYONbMnIfO52vgmYzSFCBWSYDCIr3/96wCAH/7wh9jf328RhKbS4nQ6JaeOyiz/zvWj4q/RdgCiODFElHPUypMWnqbhrYEGnaut38/wcuDYy8e1YescFp3TngjgGK3nQdUCne8imqsFIwGpWu24XZgGIjgW02DnpQW5KfTb3avnp9+hFT7usalgtPMeaAWBZ0srFDqUVCvEpDEKLwAtId40LB8HZlA5M8dkgmW7u7uYmprC0tJSSz0FKr/JZFIKRAHHIZn1er2loA6FDZUSy7Kk4BS9jRcvXkRvby+Ghobw3e9+V9pE0QtJXkJvld/vR7FYbEmP0EYAlQjLsnDhwgUEg0GsrKzg9ddfR6FQQFdXl7TpYVRBqVTCrVu3JLKCBZa0oaiBHZ4JnY7DsEfLsoT3dHV14dKlSxgaGsLU1BRKpRLeeuutFqXRtm0B3RimWavVMD09jZ2dHYlO0MBBNBrFo0ePUK1W0dPTA6DZ/WFwcBBra2uwLEv6KTPknyAplQuucbFYRDQaRSgUgm03w1tNDx/fzT2h0kA54Pf7W8BDrpku5sd3k070GWANBQIhVMiZKmFZFg4ODvDmm2+iUqlI1XC32w2/34/9/X1ZT4LbfC8L6DJclLQSCoUQCARQqVTEC6fPciaTEU8YeRhrRJB+daqb5uFaDmkwg3PhOmiFiIaIx+PBmTNncP/+fRweHgqQ3Gg0MDg4KEWpKL/II0wjiDJXp0SZaQdcs3bRBNqrbXqSzfQVvksDRjTs6Rmi91E7Hcjvuc5ahnGddbSABlP5bDo0SEt8hlaStUeNc2eklZbvnKeO7iLd06huJ4/4HMr3b3zjG3A4HPjnf/7nlgg+Dep8WvnOOZL/aPmqQQm9LpyvBhc0qEBeYNaS0PPi+2KxmHxGvYt7xnBjtpTj83mPlu+PAwQ0qKN5LQFODU6YUTOmfDfluJ6HBtj5PK038Bn6LJugA/ejnczU7+D9OkqIYJlOUdL6g9YpGB0GoCVli+tvgjR6LTk2vS7mmhCILpfL6Ovrw+7urryPIePkMePj49I5yOPxYHx8XApHut1upNNpPHr0CIlEAolEAktLS/ijP/ojKaTXaDTr2YTDYQn7poOCtX14BpjP32g0xAvLInb5fB5jY2MYHByEy+XC8PCw0G4gEMD+/r6ABh6PR9L1urq68Itf/AK1Wg3JZFJqBSSTSenMUygUMDMzg76+PmxsbKCrqwuTk5NYX1/H+Pg4+vr6xEHGug/FYhHPPfccnn32WVhWMzXye9/7nvB2tnGs1+uixwwNDeHZZ59FuVxGPB6XKAGmI3Z1deHUqVPY2tpCpVJBNBpFo9GQrgK9vb04c+aM8CBGy3V1dbUUV6zX6zLO0dFRBAIBqankcDiwsLAAt9stICQjml999VXxpBMQ6uzsRF9fn7QAXV5elhoMtm1jaGgIlmWJ3nH69Gk4HI6W1Cuv14t8Po+1tTUBdWy7GT29tbWFN954A6VSCUtLSyiVSggGgwJANBoNSadkVBYdzWz/WCwW4XQ6pVYR141RJwTMnU4nRkZG0Gg0JM07mUxid3cXPT090hrb5XJhY2MDyWRSzme5XJZIC+qw2nk3ODiIO3fuoFAoSM2GRCKBlZUV9PX1ob+/X4Ar6hK9vb1IJBJ4+umn4Xa78eGHH2JxcRGJRAKzs7P43Oc+J/WnqAcyMvxHP/oRTp06heHhYTx8+BAjIyMYGRnBr7p+LUAF4FhQkXmSKWmDWodLAccCwvSkkxFoxkZUqrPzuDUhhaZGdumBogeFyrEWjvwOvetkqlQo+V2G/milhUqDVpB00SsSkOkh00oDjWO+n61IeE+lUsHKysrHlHAeQI5HG0sMgzE96BQcVBwpMCmYuBdUPjR6bobJEHyhEDQ9Wlpgas+cVka0gKtUKtje3pY5k4a4b1T0KXhNRF6/QysbWiGgwsFL/41rpNfEpEuugw4/12ugx8NLK4McJ9ef95npKKZnjoijzoFtp6TqsWhwgfRJ+tdRQjRouA6mN72dQmLuM89go9FoCU3m+szPz4vBy/lxffl+FvWMRCJSo4DFDcm4HY5mxeXR0VGprKy9ZTzzbOvj9/tFwOi1p1GiPfTJZBLr6+sYHR3F+Pg4QqGQhHgHAgGMjIxgcnIS169fl/GxD3U2mxXQk8/WSiL3mGvLCCAdMk3vbDweBwCsrq7i4cOHLUCFqUSTHj0eDzY2NmQ+vByOZi2NeDwuBkOxWITf70cymZTCROTR9CTq86Jrw3BO+XxeQDoq+QyH5jtIS6R1h8MhnSWYw0hvBcNOqQRrr70OueQ58vv98Pv9WF5elvPR1dUlOd4cx8HBgUR5UXHiGSJ9kvYZjsj8XV3sCoC0MGPhRo6TBanIf3l26GEhjybNMw+WsoTyiHKI92r5RIOXMlCvT7lcxvvvvy8grn4OPW88DxyPaZg1Gg3pqMHv60Kn5qX5nW3bomxqGtcphnwOFTyukeblBLNLpZIYEKx+Tg+OPk86fF6DFuQp2hDT4BHXgbyPUUJ8t54vQX+uJwERU/7oaDo+m3tmyncCXORJlUoFDx8+hGVZkjpmyne+h2tL+jPBPH3mSN+8h3Pl/Yxo1KCOvp9yguMh/+A92hnBv5FutG7An5w714HnWRvtZo0XLXu1fNeGsNaluFea3jRdaBDAlO98J/dLy2NTR9A/Na3wbJgRovybBqt4cf11YTq9p7xIU/yufp/mG9TbuCemfDf1NP0Mc734/3w+LzLuueeeE9qhZzYajcLj8cDj8cDpdMq9kUhEzozP5xO9fWZmBk6nE4uLi/jlL3+JlZUVTE9PY25uDvfu3YPL5UI0GpWuA93d3QgEAgCAqakpdHQ005DcbrcUf6ScLhQKCAaDODg4wP7+vgAG2WwWg4ODKBaLeOmll7CwsCBFmTs7OyXaIh6PSwrG/Pw8yuWypIm5XC6sra3B5XIhkUjIuvT09GB/fx+pVAqzs7OYm5vDysoKXn31VbhcLgEAWAja4XBIi0NGUqXTaan1lUqlkMlkxDBlXQHtoGIIPoF7h6PZBcvr9WJzc1PC9Rluf/LkSQBN5ye98RxLb2+vRD6Wy2Vpy0lwj4UULctCOp2WLhY7OzvyXaaQsoDktWvXEAqFsLm5ic3NTYm+YIeP+fl5aVnJIqtOZ7OGC+dOHUTTVCgUQqFQwOLiovBDFnS2LEt0inq9WfixUCggEolI7Q3K7WQyiXv37uHEiRMYGhrC8PCw1GVhxBzPRnd3t+hKtVoNY2Nj6OjoQCwWw+uvvy48rbOzExMTE7AsS/aNkQisPxKLxfCDH/wATz75pAAZvMgX19bWMDAwgIODA1iWhWg0Cq/XK3Uf1tbWcHBwgLm5OYyPj+Pu3buIx+P45S9/ib6+PoTDYeTzeYnCcDgcIkuBZuTZ6uoqvva1r32MF5jXrw2oAHxcaajVmm0EWY1bKxi8NLLN713SN00AACAASURBVNMzRaNKC4ZarSZtj0ykWEcAmEpAqVRCOp0WRVSnOZBBUzhTQGgwgMxZo//60soI56EVHq046NaO5voBzQNz7do1AMf5VlrpMIUBwRAdLqcFN9Ba1JCXuRdU9LhP2strjrGdcsO/aa+w/jvXQhuDHJMWwtxLPUbT88PQci20zSgArhNDvnkP32UKelOJ4DqY6RWmUsK/6+9xLqYCpz1s7daB66ifS1rh/vNz7dGjEm2Ok2eC/x4HCvH9mi71nuq14tlmCgENu+3tbWG0H3zwQcvaUelhSDoLpbJasi7Qx3EwFCybzWJ3dxe3bt2SUD/yCQokbdgwsoDPZ4i6mU7DljwakeaZZ0htZ2ezY8Tly5eRy+WkVRXzH3VuIIUgcx+ffPJJxGIx5PN5Cb/k/lHpZ9ug27dvC123M+q4B4wCoNc8EAgIiMk9rNVq0sWBBhQLRmrDuVAoSLQF72NKgm3bEuLHyACGy9t2s7JypVIRY1kbIDpKgwo324ISfdcVwKkAsPaDPic8Gzs7O9ja2mo511TKeYYo6Ht6elCv1yVVhjVvtAEOND0LLHCkoyR4bvP5PJaWlmRemvfp86b5s9frRbValdaPpD1GQ2ieyPNMg7/ROE4VY2g/15JGPHkEAT0aZfpiHib5t+ZD3BdtuOqL8lhHIXCsjGrTUQZavvP75vPMz5hjzIgjtgalPCZ4pWWZ5pPtQOZSqYRMJiO1WHQ6puaX2rDl3nF+XAu+V68reTLlmp4T10pHH7Xjo9yPXC6Hq1evAoAAk+3kO/9p+a6dKCYwrOdl0hrHwXXRst8EQc1oAr0Gep6mfDeBMY6J95K3E1jhOLSuos8mv/dJjgw9JwIE7XQrvdcaJOCa8u+m/mDKdw226rnQM6wdD1wHTVvcO332TPlOZ4SOsNV7pgEW8n2dusuzbcp3/ZNzbSffCbjNz8+js7MTu7u7iMfj+OlPf4ovf/nLEgHQ398v/Mu2m84BpjKS34yNjeHcuXN4/fXXpQL9v/zLvyCbzWJ/f19kutfrlVB227bFM+x2u3F0dCQtAwOBAJaXl3H58mX09vbipZdeavH6As1UimQyic7OTmxsbLTUlKF3vdFoRveEQiGprM96PMzHp0E7OjoqufVbW1sClh8dHeH555/H0NCQnE/qOE6nU1KItre30dnZiYcPH0pXtEKh0FIYmOfq/v370lmJHSo4Xsp5Fj7u7e2FZTXr6wwMDLTQEIGfVCqFkZERGQ/1NrZNprNEF7hmtCZ5Vblclvs7OpppULlcTiLifD4fMpmMgMF+vx8TExPStnN9fV2iKljTgnvdaDQkTdbn86Gnp0dqODEahzpGsVjE/Pw80uk0crkc4vE4ent7hT/SbmSxQgACenV1dQmYQOcDZTzQTOdmFAvHVygUEI/HBYTp6enBa6+9hhs3bmBgYEDaNzJ6dWRkBIlEQqLCs9mspImyZTFTJDKZDJLJJMbGxtDZ2YmdnR0BmakjUcd0Op3Y2trClStXMDIygqeeegoXLlzA/Pw8YrEYyuUyNjc3hfeFQiH4/X6Ew2GpkdVoNPDss88iGAx+jC+a168FqKAFGyvNM5yHTJ+bztBdbWhrbxuZmz6ktVpNkDMiZsBx72igtVp0uxBIHiR6Esj4dS5no9EQ5Y8VyYvFooTYaKHJufGfVnh4afRdC12NzGthqpUQvT76epzBwecwFIZKNy/t5TAFC3CsDBLZo3HAtdEGGe9n+FKlUpGwIxN04fy1V4q58hRqGjjo7OxET08PisWiVPrneylMtQLFteP4NKCkI2RMg72dgmECL9rwN/eR79fKqQkM8B1ESh0OhzAcjsvcY35Pe0z0eLUxo5UhrpEeB+lUP8d8rwaM9BhMWtPGh2U1e/FOTEzgr//6r3F0dIRMJoN//Md/xKNHj+S8kxZII+w0QLCDOW+vv/46bNvGxMQEarWaRDfwHu45PdtUWElPml7pGeNZIPg0MDAgoAENMSLRFBoejwdra2solUp4+PAhXC4XZmZmMDIyIq19GEVRrVaFRwCQnGXS/KlTpzAwMICdnR2cPXsWly9flvoDDLnneSRfexzIpfdC720oFMI3v/lNXLx4ETdv3sT3v/99KZBKbw33n95xbdxWKhUkk0mph0EADoAohk6nE5FIBPl8HuFwWNIY3nzzTTidToyNjUlxLK67BnyJxDNVwOl04ty5c3j06BFisRiGh4fxp3/6p0ilUtjY2MDVq1fF88DzpesssJML+aPmR5QV6+vronBp/sqWZJpe6MExFXBt7JjGpD5jOkoAQEvv7e7ubjz99NNYWlpCIpFoOaOaD/Be5siSRm3bFnnJ4mgaXCWQzQJ89H5ybiaf0eukeSo/J58ywVnyOHruvF6vAE3kMaZ8J/8lb+Z4uU56nLVaTfKftZJN3sG5Aa1pF5SnlC+sL0GQhsAk/8/or46OZs0i3QGK4zSjKk0jUIOvOlJQj4d8Wesapi5A8PDTynfey4JvAKS4Kum1nZHItdQpalqmkZ+aUQsARF8i0MPna+eFNnip92n5zj3gOeru7kZ/f3+LUWXSmgbCuK76jJny3QRYTPmun/Or5Ls+F+0AMRMs4to+Tr7rvdNz0uCDGRHKd+hWmSYN8iIAoefXbj7mZcpzfbGGwezsLE6ePIkHDx4gGo2KxzaTySASieDkyZNIJpNIJpPSVSAWi8nYKW8LhQI8Hg+SySQ2NjZw/vx5FItFvPPOO5Kr39vbi0ePHsGyLImgCgQCWF9fF9m1vb2NUqmE/v5+PPHEE0gkEtjb20Nvby+CwSBOnz6NYDCI3t5eFItFvP322/D7/fj2t7+Nz33uc1heXsbDhw9F7jOliwWseTkczZonjLZg+kMymRTHR6VSwfr6OqampuBwNIuQZzIZMXK5j9VqFevr6xKhQHrQ9oTefxr6DocDL7/8Ms6ePYv9/X1cv34dqVRKIjo0EMM0IOb9M6X47t270jmDRSW5DzS+WSD5xRdfRD6fx97eHm7evIl6vS4GMCMKGMUYDodx4sQJ3Lt3D++9956kEvj9fjzxxBNSwywajeLcuXPIZrN49OgRVldXBXwDmgZ/KpWC3++XIpbUo1g4m3u1s7MjdaUCgYDws2w2K3oXAQSHwyF1rQjGd3V1IRAIYHh4WMCQRCKBra0teDweqWdBXse21tSX6GSam5tDJBLB9PQ0nnvuOYkeZdoDabevr08iILq7u+H1esVRzmhV0ni5XMbAwACCwaA4C0gDbJnbaDRw8eJF6ZpB0G1ubk72fXNzUxwkdKa53W6MjIyInmfys3bXrw2ooIEFMktWPzWNajI87b0FWvMy9eT5LOC4BgCVDxqdFGy6wqr+PnBcx0G/QxcxY39bv98veVyWZbWExnAMGhjh8ykMyAS1waaZVjtvhFZMzM/MtTYFphY0BHUcDkdLcSsqfqaHRwskKtdU2nTYp1Y4OH8ALWCPnieFm2aaVH6oiJNJUaHkPfT4EdWl8qwBA9IYi6fw3fqfBiE0cGR6GijYtXDVChr31lTE2+2BqUjwOdrbQuWCaHC7i+ukAQwyZH5HGxg6vJmAHL0sJmBFOuU4SMcmbel10PTPAlxbW1tYW1vD9PQ0ent7cenSJSnqx3xLy2qmBwWDQSmERA89QT2GiZFher1e6eCgaYgKPL3cOq1B8yDSDBXdarXZYoheCJ/Ph8HBQdy8eRNOpxOzs7OyXi6XC6lUCpZlYWVlBT09PVhZWRHGrT0H+XxeKlkzEoHn/969ewJC3Lp1q6VIngZG23neTEBB74f2RFJonzlzBhsbGxIpQWFC4VUqlVoiFHRKDddY89xGo4GJiQk0Gg3x/jL81babHhLm8C0uLrbQBPfc5XJJrqIGWo+OjkQJpcdmc3MTIyMjWFxcRDabBdA0OkOhkNCK3+/HyZMn4XK5EI/HEYvFhC+b56xUKmFvb68FAPR4PKIcut1u2U8TKOS5pKxgJWrNY3gPvVKkS31WyLOYF0uvCztWsJAmZZjD4ZDCZdlsVqI5isWi5JtqOiAQFAwGEQwG5UwQSCYwZ8oRzQdMfkc6MAFk0h3lNyPtCGZQdujv8l7yfPIo8mPyLz6bNQNM+a7TTLhGpvGrAVRdiJApR+T9lO9er1c6FpAmTaOCuoxpaHK8HJvmk5qWgONIMm3ofpJ81zxMf6YBZrfbLbqQbkNmynf9fa6H5pX8XctDvaZavhOoMY14DfZwHNw/7nelUpHK9VxbKuGMTuJaaWeLlmtaRrZzCGhniTkPrQNofedx8l0DDvpvjwMKTPnOe0z5bgI+5Lua75AHk+501BZlP9dHz8+U76as0JGjeu0eB2C5XC5ks1nE43HMzs4iFArhzJkzcLvdyGaz4qVOpVI4PDxEPp/Hzs6OREd1d3dLGDa7hPT19cHhaBaY/cY3voF6vY6hoSH09/djYWEB8XgcGxsbkgYwODiIV155RToTsC4AHU9TU1OYm5uDw9FsERmJRDA2NiZ1cO7fv4+joyP85m/+Jn7nd34H0WgUfr8f77//vjgnPB6P5OVTHlWrVXi9XqkFMjg4iI2NDSQSCTl7/y9zbxoj2Xmeiz2nqnqtrr16X6Z7eraeGY40JIcUTWqlLNkWDEEQJMcwkh8xcgN4CQIE/uFrGAhwca0/sYPoT2zHgW0ZN7Ai2CYjUTa1kDJtijPkkLNx1p7et+qq6tq6unqrrpMfxeftpz72DOV7kUAHGMxMd9U53/mW933e5920ztr+/j6y2WyLntCuA8RWlGP8PwkodYwSu9M7/dxzz+HYsWPo7e3FK6+8glKphFQqhTNnzliBynw+b3NMom1/fx99fX2WVu37Pnp7e81Jx644TCfPZDIIBoO4dOmS1Q8g2ceoi2g0amkQQLNWUX9/P9LpNDzPw8rKCubn55FKpVAsFs3B7Ps++vr6rK5GKBTCwsIChoeHraAiiQ0W1GQkeS6XMzlFu47plN3d3YZPIpEIgsFmx7FwOIx79+5Z9IDvN6Mq2SGmu7sb0WjUCBq+Hwlz6ratrS0cO3bMUu+r1So2NzfR2dmJRCJhrUTZteTixYtYWVlp0ZG0HUdGRjAwMGBFL3t6epDP5xGLxbC0tIR6vY6RkRFLybh37x7GxsZwcHCApaUlpFIpeJ5nhSWpDyuVCkZHR7G1tYWenh50d3fjxo0bmJ+ftwhJdkrJZrO4ffu2FQh+3PVzQSpQcPJv9oMlWNKoAxWIBOCqrHhR8TGElPdXAx6AsfbKYmvoo2sUqZeKn6US5MYlmCQA5GHl+DTnGEALaAZaFaEKe9fIozJx0yNcJtxVaPyZsunqRWN4kioYGp0a9qpGhLZT8X3fiu65IZAMJSoWiyiVSgaMdW3VgKeCJWNN9q2zsxOlUgm1Wq2lPRV7AJPcoFF4VNoChTQFuCp1d650vl0P/1GsveuR0DXg71TB6/5SDx0/T6aXe1pDGTVXmHOlHjiXkOJc8DxQEVEp7u/vGytJBcZ9cRTodEGXC1KOAr8HBwfIZrP4kz/5Exw/fhynT5+2WgZUigRNANDb24tf+qVfwr1793D16lVjpHlO9vf3cefOHfT29tp76PpRlrCNkp6bQCBgUQAstkdCSo2Mvb09/OZv/iYuXryI1dVVLC4uolAoYHZ21vr6bmxs2Jzn83l873vfa/HMcb9QaTLfksY093Emk7GiSPTcATCi7yjDwvUY8We6NwgyG40GisUiMpkM/vIv/xKvvPKKgRPmMpMU1f3phpHT08FUDkZiFAoF+3xvby/W19extLSE9vZ23L1719aEXnXKFkaHNBrNUNNqtYr29nZUq1UEAgHEYjHcunULW1tbaDSa+YUvvfSShbiqkUMvPJ+VTqdRqVRw8eJF+L6PBw8etOxhPbNcB+odAhit00ADS+UW54H7U8+DS2Dxs9oxhDKAZ39ubs7WRfUIOyVEo1GTdfv7zVZnkUjEjGoNR9fIHJISo6OjKBaLCAQCGB8fN28ex8ZUQdfYUHKWF9/BNbhorPI+1WrVDJ2j5Kl6sV39rnqHc6T92TUKi2eM582Vt5xXNW7VCOP3GVHBMOi2tjYL8SV4VvnnenldA07nQmWUytqj9LsS+u739Hzz56rfVTZvb29/iAj5KP2uMoC6QEkXrjeNtlKphFKpZJEnakipflfDntFNLPDG1r0sRsfvKPjmWVHynGMkrqBuc412V0fx54rHiPF0/ym5oN9XQ94lDfgsGo4cP5/J96Dxz2fqWBWLauSNq9/d9VLjk3qMeo33oAx5FBl4FKmi767zwZotrJtEA4XFi2OxmBXwpQHIaEB6dGmssX7BysoKwuEwLl26ZIR8JBKxjgY0PkOhkHVB29nZsZz8bDaL/f190ymNRgN9fX2IRCLI5XKoVCo4f/68pWw0Gg0kk0mMjo5aZ4O7d+9if38flUrFvODLy8sIBAJWo4ERkSzwt7KyYnVqGo3DXPu9vT2cPHnS0qWj0Sii0aiRKYy4ZARXo9GwzzYaDYsaIG4IhUIWSk+bpFQqIRgM4vXXX0e5XDZdcO/ePQQCzTaEtLUo20qlkr2b7zdD8GdnZ3H+/Hkkk0nLs/f9pnMgmUzi9u3b+Md//EfMzMygUCggk8mgWq0iHA5b+kGj0bDI7b29Pdy5cwehUAhPPfUUJiYm8NJLL+Gtt97Ct7/9beRyOSQSCfzCL/yCpYnkcjmcPn0aKysr5tHnPgKaBWjX19dx/PhxixYNBoPmwWcEaqPR9OKzJbk6jjKZDE6cOAHgkKBhpEa9XrcoNUZIjY2NWRcldi5JpVIWLXDs2DEsLS1haWkJN2/etDoiZ8+exc2bN3Hjxg0MDAzg9OnTRlaPjIzY2ofDYeTzeczNzWF3dxfHjx9vIZe2trZQLBaRSCSQy+WMLDt79ix838f777+Pd999F1/5yldMLp46dcoKQa6trZl8bm9vx/DwMLLZLN5++20MDQ0hmUxaCg7rUlQqFXzU9XNBKgCt6QfAYc47DyMNDVUmVOpaSIv3csOneakwVrCiIXZU4ARhfCaLtJCNIuh0FRu9Ywzpd41KCmmXDFGBzXGoIA8EDntnA62suwsuXODBywXPevm+b4a7AjgFGwr6VPGpEuc8hkIhC/9hf3mCGgpuhmCqt4MCs16vWxVUVc40DFmIb3Nz08KESEbxkOrccD/x32Qiqcw18kWBAS8FJQQhukYEnBo543rtXICn96Ay4Zh1HCQWdN8oYFRQQ1DMd3EJh4ODAzOyAZiXUkGtendcr4vOqQI5l0hx9zQvMqCpVAodHR1YXFzE3Nyc1Tfo6uoy4cx3f/HFF3HmzBl85jOfwZ/92Z/hxz/+sRlGnOu9vT1T4KFQyFIlCBTJfJ8/fx6Li4sGbACgv7+/hXVXAoXGYiAQwOTkJNrb2602A/c4Fb7uEyocl4zh3FE+kL0ngOCcdnd3mye70WjYOimo5Gd1Xx9F4ug6MBJqY2MD3/zmNy2EW88Px8Mcf5VHepboVaCCZ3geySrKRhaB0ggStopkjnx3d7cpf4Zk0nPCiy0X+Yz5+XkEAgHLXw0EAjaffGeuEQHu9evXMTMzY/fg/uCYNR+b+oNFQBlhQTDX1dWFCxcuWC7p7OysATieZ84VCUHupe7ubjPoXU+la8RxDWmIZzIZjIyMWJ0KbTemzyTZoHqNgJM9yOlNXl9fN5K3p6fH5kF1Br/POddxcs7cdBA9E9QtauRxjegtp34nANeiycAhVlBvLS8SphqFBcBSGzQqhMYOzxMjngjKeb4ZVcI9Rf2ukS7uflE5rUYp1/Mo/c7nuRGBKjP4OfeM6+9co1c/w3Qt1e9KulDectxKkrgRXzynnuchFotZhxUSV77vt8wRLxomnEcllTzPMyKIZBFbeFOesO4MDTd3TimfNKpUayjxrOu8cp+rblbdxp+73+Va8TOq3911CQQCLdFN6rzguLhvuCY6HtXvis14aTtYjbajZ/1x5/NRZMlR+t3V/e5eZJ2jyclJAMD169extrYG3/ctimB0dBSVSgX5fB4DAwN46qmncPnyZUxOTprhHgwGsbq6ikqlgkQigb6+PpNlwWDQ6tkwKpiE7ac+9SkjCmhAnT59GktLS9ja2kKpVML9+/fR1tZsTQnAog6Gh4dRLpfh+76F+t+6dQs3btywaC/O48DAAMrlMlZXV80DHovFrBU59yqdHDSwOzo6EI/H8bGPfcxC6Rnyz1oxfEclcIlxeP5IunB/EFd5XrNA+3e+8x1zWJDM8TzP8u9puDYaDQwPDyMQCFiE7/z8vBWUrtVqGBgYwOXLl9HW1oavfvWrGB9vtvlcWFjA4OAgDg4OcOvWLezs7JgDYHd3F+Pj47h48SI2Njbw7rvvWitrzuHk5CTa2tpw/vx5hMNhvPbaa7h8+TJOnDiBoaEh3Lt3D4VCAb/6q7/akvrOwpC0IYaHh40UefDgAcrlsuHD/v5+w3SMWK5WqwiFmjW9tra2kEqlbB8xCm1sbAzDw8NoNJo1smZnZ5HJZOxcUt7RtmFNiEajGSnNFuebm5tIpVKIx+P2u4mJCSwuLmJtbc0IIRZ93NrawubmJgYGBiyNpq+vz7oyUDavr69bC9Dx8XEEg0FsbW1Z9Ec6ncbJkyeRyWSsvoLv+9aFor+/32xZkn4jIyPwfR+f+MQnsL6+bilCJ06cwGc+8xmkUqkP6RX3+rkhFYAPe9Lp+aAnWXtKk4Hm4WXFT+23zXvSKFbjnIp+c3PTFJiSABS6jDZgQTUXuNMYdRlbDRNUI9AF58rU6+81xFMVFIGcKiDgw+2O3Gc8ytjjv1VJ8Y/OBTczQ3s1t4mKdH9/3yqpExRyjgjC+bxwOGxCgO9LIcp3dHMF+f5cXwJmClglilRxuoa3SzKw3Q2BBb3kCih07nhxzajsPa+Zs93T02PF8LSwl+tVUAXPtVRl7ZIVzLXjmFzvDNdNFawSKfwMQbIaCUoWcS11DhUY6v1cIKZr5e4x/TfZYZ5DFusbGBhArVZDsVhsMY5Y3GZra8uILwJ7vo+SKCQhqaBpnPNzfX19WF5eNtBF7ynnkvU+9GzXajX89V//teUYnjhxApFIBNPT09jc3EShUGgB1twXWkxN95Gm5Oia8lpfX0dnZ6cRnsCHC5VqKzidfz379ChSIdMQIAnA/aWyjPPY29uLnZ0dyzFUwoxemY6ODiv2FAg0Qwy5V4PBZu2Jp59+Gr29vfjud79rdRu4ThwXozAoC5SMoSFbKpVsDvr6+qxveSwWs73UaDQsdFS70dy4cQP1et2KGakxoWeaP+M8MFWAHibOdzAYxLlz5/D7v//7WF5eRi6Xwx/90R+ZwUCZoPuRxY92dnaQz+dNfjGEk/IrEolgYGDASBjuSxITvt8MLR0fH8f6+rrl93M/k3Dlnucfzi8NaoZlklxj/3UA5ikjCUL5NDY2hr29ZttNlUmu/nEvNyKP5A/ljDoHuMbcc5QVrCXAMVH+qf7kfgZgADcYDNqe4BozGoPEhUYlUafwO3wnYhASb+qBV+LQlYeuftc9pLqJ60vZ7erAx82vS1Lo54/S8aoL+X81hkgq8CIop7HK+aLRRLnEMxMMBq3gmcpnjcpy50gJCyXDVL9TRyuZw/nSOeZ7sYK+6ne+m2tEu3PMf/MMMleaho1GG1AW6z1o6JN84DN4hnmuKX91vfTdlITQeVBZxfXl2eB88vN8pup37jkXv/6sJNVRV3t7uxEKPGNXrlxBrVbD8ePHUSqVMDExYe9AGUdv+P379zE5OYlr166hWq1ifHzcWvuGw2ELPeeznnjiCdRqNXz/+9+38HR6zfP5PA4OminJp06dwvXr13HixAmcP38egUDAQvJjsRjm5uasLs3+/j6OHTtmUYNtbW1YX1/HxsaGrX+1WrVwdkYqaFvhjY0Nw7j1eh1DQ0Po7++3yJulpSWcOHECfX19ePvtt7G8vIxYLIauri5Uq1VLLygWiy3zS51BHMWzw4tzTtIhEokgFAoZ2U2H3dNPP43+/n689957GBoaAgAjbubn5/Hmm28inU5jeHgY58+ft7ViHQHWN7lw4QICgQBeffVVc1b09PQgEolYoUtNsSAxUigUrOXo2tqa1Trq6+vD4OCgFcYfGRnB9vY2yuUy4vG4RVh4nmedNmjc//M//7N1wFpfX7eijOl02myXQCBgqQixWMz2AfVyb28vUqkUXnjhBUxNTQEAfvCDH+DatWvWovTMmTOWAskikc888wzW1tbw4MEDKzreaDQjYpiuEgqF8OlPfxrvvvuuyQF21goEAkbm9/T0oL29HceOHcPq6qqRCFy7trY2JJNJnD9/Hul0Gpubm8hkMpiamkKhUMDExATi8TiWl5fxxhtv4NlnnzVitlqtolKpGBFMR1p3dzfS6bThHBbFnJ2dRTgcbmnl/rjr54ZUUO+beku5ASlECG4ajYaBKCpeAicFvhr6TqDB8BIy4gQ1ei/NF+S/jxKsFNCNRsPycAjWlf3nO1EJKVhQL70aB/wZPekEUy4rD3xYCehneD1KUbjsu6tEVLG7rLUatfy553kWyq7Fmsik0ivV09ODWq1mHmWul3radR74fzU26IHu6OiwNjX8uXoSFBRzzPydgheukYIwgiWXFOIcqDEeCjXb12lNAAIBvpeCCb4fx6uA1wWHCspdY55AVA0rvg8BlBIpNFYZDcBzoQCX+1KJK1VeOl7dX3odRWJxzhlGFolEjNnOZrMGnsja7+/v49q1a7h161YLq7u5uWlnmOPWEP6zZ8/izp07dhYJsOil3dvbQzKZRDabNSOT60IwyHfb2dmxYo0PHz7EsWPH8Hu/93uIRCK4cuUK/viP/9jWmeCQgJrz0NnZ2eKp4pzrHtKIIOCwuju/p5EnOq/6naMIQ3ZfYGge78FIgaNkUHt7O9bW1kxmATCDgd5CTdGZm5vDsWPHzKgnONve3saxTOeHmwAAIABJREFUY8dw7Ngx3Lx5EwsLCxbhQIKQhIIaWTQS9H153sm0BwIBK0rEFmL0lB4cHBiQIrmhstQ1aGiE8zm+75s84tni30pUVyoVTExM4B/+4R8+FP3ANeV+4h5gfQ4aZOqx5boTfDKiivfmOObn5wHAcuQJsCinCCqZitfb24uenh4sLS3B8w4LmSYSCTtv6XQaADA/P2/vR/KL88XIHAIg1zBVmcBLUyg04pBh9Ay/5bxqxAK/q6QgcJhWoR5YPov6HWhtk3iU11WNLf6O55By6eDgAOl0GvF4HLVaDfl83ohDlRvqZeb507PFs8rfcV2VLOF+PEquPk6/q3H5KP2uDgI9Z6on+Bn+rUasyuZGo1nbgLqdgJNpZDQm+G6UY6FQyMgeNaI5Rrato7ymfide4N7mWis2cPU7I52O0u8aseHqd1c/82+eKUagufrdlSu650mSq37XPafr4s6JyiD3jPFeSrKQOGEkKHCY4qJkku5Vd68pftJ30e+6+9/3fczPz+P111+3FnbM3799+zYKhQI++clPWhV51lj413/9V+sysL29jWw2i7W1NYTDYbS3tyObzaJUKmFzcxOxWAyjo6OW6nD16lWcO3cOQNMoZnpHW1tbS8u/nZ0da0lIpyP3UL3ezGN/+PAh9vb28Ou//us4ffo09vb28NJLL2F6etrWm2MvFApIJpNGbEciEezv7yMej9sYKI8jkYh1arp8+TL29/et5gNz7nnO6PXu6emxAry1Ws3OA88GZVc8HrefdXd3m1ze2tqyemPcW+wuwELE1WrV6kJEIhEkk0lUKhW0tbUhGo0iHA7jiSeeQKlUwi/+4i8in89jYWEB8x+00ma+fzwex82bNzE7O4uDgwMrujkwMIBMJmO2EQCLkPB9H0tLSygUCtja2kIymcTU1BTOnDmDr3zlK/jxj3+M/f19K+TIWkqMQKA9EY1GLU1ibW2tZb+SBOru7jYDngWytb0niVSmj1De+H7TmXTjxg10dHQgkUjg5MmTGB0dxfr6Omq1GiKRCCqViqWMHz9+3FJj8vm8pfZSZkUiEYsMIRkZCoUsFZ+dG8bHx63zVz6fh+/7OHv2rBFX2WwWPT09ePLJJ9Hf348f/ehHqNVqaGtrdk8bHh62wrfr6+vo6+vD9PQ0gsGg1V5KJBJob2/H5uYmHjx4gIWFBXOUxWIxFAoFbG5uIhwO48qVK/hZrp8bUkGNNAUQ9H4zVFoVgoInergpTBVkqzKhYceweobjKBnBf9PLSE8o7x8MHhZHYaE4AC0edhX6ajCoIFbBDBwagiQONMJBlZKCKVeRPQq4PGrOXQPEfS5BJT0YbnQC/03g1N3djf7+fjQaDcvH5XwomGRoWiAQQFdXl+Xr0PPJw62GPedGWXg+l9VKKcRp3HGONXyVc6ckgztH7hrpHLlzqPPN4kPu2PWeGu7J/aweNterxTUA8CHgoWDe87yWtnruu/Gz9XodiUQCiUQCjUajJb9WvTn8js6ZzofuOwW0Lth15417wPcPo5G4t9m7+MSJE1hYWLCzrft9YmICy8vLFgJLclE/s7e3Z+1yCNy7u7vh+74Z+6FQCJlMpsX7A8ByALkOJAQCgWY+3fb2NlZXV/H2229jYmICS0tL5s2mkUwPg5KR9Abzs5pHr0Yq58sNZQeaYdxatZ1Ax92nuvYE9XwGx0DCVetNhEIhAxU0GHh+o9GokVB8r3Q6jeeee86iNRYWFqxDgqYd/M3f/A3GxsbQ39+PZDKJW7du4cGDBwbweK5pZHKfUOYMDQ3B8zyr4nzmzBmMjo7C8zzMzc0hFApheHgYFy5cwMrKCl5++eUWz58y7DoPOl86z2oU8vdKzpF0uXbtGn7rt34Lg4OD8P2mp3dsbAydnZ1YXFxEuVxu8fjm83l0dnZienradAvnkuefRqb2z9ZCeiRsSOQQjLjRJtRtNARHR0et8jdlL6MV6JUvFAr2HI3I0/NeKBTs3BHo6j519Qrn0SUdaPAxV5VRKzyPKn95pt3f6V7keWUBz2q1akST3le95gxLpixSXMEzSP1OD47bUUjJI/7MJV+5n1W/qwHrpj24+p33/ij9fhShqP/X+eKa0NBnVAh/z3Oi6Rvd3d3o7e2F7/vmqVc9Sk8k95XneWZcqX5nLj2AFhlPhwPfl2tFooJ1StQBxDXXuf8v0e+uPFUZTgOP+0T3uxrYHIc6llS/a5qM7h03mkcNdle/cy/oenJPRyIRK7CmhcJd/a77ySUCdY/p/91/6+V5zVTXT37yk3j77bdRKBSwvr6OtbU1rK6u4tatW4hEIhaxwG4ENBLZfWxmZgapVApDQ0OoVCom01jLhB0IHj58iB/+8Id45ZVX8PWvf92Mz/7+foRCISvcF4/Hsba2hhMnTqBarVoRZeri9vZ29Pb2YnFxEZ2dnVhZWcHg4KAZ857XjK5lYb1SqWRF+CifGUoONCOk2DIyEAiYN5idJZaWlqxIIjsQnD9/Hu3t7cjn8wBgNRFIinNtVc5wT9GJR6xLQimfz1sXhu7ubmSzWZw6dcoKaBJvUe+zqF93dzc+9alP4atf/Sq6urpw8+ZNFAoFFAoFbG9vm8G6urqK1dVV9PT0IBwO48KFC3jrrbfwk5/8BNlsFul0GhcvXsTQ0JB13iApNzQ0ZHWYGFHAmgMTExOWvsxaG0wbYWct1lVjigHXUS/qS6Zc67nmOWK0Xb1ety4HHR0d+MEPfoCBgQEMDQ2ZLuW55Vyk02kbx507d7C/v2+dMs6cOWOGO2vItbe3Y3p62s6JRqIzeoAy89VXX0VfX5+lVQSDQeTzeUQiEXR1daG3txczMzP4whe+gBMnTqCrqwtXrlwxJ1omk0FPTw9Onjxp54LpLWy5GY/HLXUTANLptHXViEajtkdXVlaMrPqo6yNJBc/zRgF8C0A/AB/An/u+/795nvc/A/jvAOQ++Oi/933/+x985/cB/CaAAwD/g+/7r37Uc9TY4v+pSAjkKTQZYux69WjsU4g/is0GYGGxNDi4WdTjATy67zsVAfORadSwhoAqJjXw+HMadxQA+h6qxPgsjkvBjLLbVKr8Pj+j86kGy1GK9CgFSVadXga+C3+mQIjVe7XwmuuBU7LFBSP8Q8HJ91PQpl4SvhejA+r1urVV0XfWOWcagQJmDVHkHnMBA++nAJHvSFCmhjj3FPcV35cthWhoEKAqGaaeTiUijiIJgNYUH66ZS7wokQGgRRArQFOiSI39o8imowDtUWSCC9y4DmSIgcNK5GRh5+fnW/obc31qtRpu3rzZomQJPJnCRKKGfacppLlWmpLE91Bvlhs5w5DnXC6Hzs5ORCIR1Go1fPOb3wQAA218DvtDU07RuOU8umSCevA00kFJSVU+lHPcW3reHwX2eE/uK93z3BecN467UqnYPentYU/uXC6HwcFBbG9vY3FxEfV6s61foVCw9WKxpOHhYaRSKdy5cweFQgFDQ0Mmpzk2AC2hnMFg0Cpok20/OGgWcpyamsLv/u7vorOzE6urq/jGN75hkU+Dg4PY2NhoOf/MU+QcalqW7mfOrZ51/tG54t+aujE9PY2hoSFMTk7ik5/8pBWrYrQB5fPu7q6FburZVVlF0O8aCxxbJBLB5OQkfL/pFWxra7N6EcAhuU2Qxr21traGYrHYEn7OdBAALXnuGkmn0RGNRgObm5vY3Ny0/aqEo3vWeVFOq57TDhncK4FAwNbHNdI1aoFzwvdVucc1JyDXsWm0As8iowNUrlKesjhnKNTs0858a91fun46Z9wz3HdKfrhnVaMr+c4890pA6N5U2erK4aP0u0twcyzU5TT4gcOaU9QhACylgdFhjUbD0gZd7ObqDMUJlL98P64J9xmJNpI5wWDQUk/ZjlTnzSWfOO8fpd85H7ofVMdTZnP9lQzSCC3FbdxPjB6gXiFxQl2u41BM4WI2zq3qdyUaOD7VD8QV1Wq1Rb8zZJ/PYdSotmHlueR5p77kzxVD66Xj3t3dxcDAAE6dOoXl5WV0d3djamoKp06dsoJ88Xjc6tEAMGOVcjyVSmF5ednSEkdGRszpQC98V1cXgsEgxsfHEY1GLZKBmLy7uxvhcNjkGlsXa+qL53lWy2l+ft702htvvIEf/ehHtkcPDpp1g6LRqDkYafQmk0nk83msrKxgZGTEjE5GJySTSbS3t5sh/OSTT2JwcNDSJ0hGXLx4EcFgEG+99ZYZwuxmpHuFTk7PO4w4VQKe68fPML0rl8theHgY1WoVN2/exKlTp1Cv19Hf32+1HTh/ly5dQkdHB86ePYtoNIqOjg5cv37duiDx2t9vFnVfW1szWUBCt9FodlcoFouIx+OIxWIIh8PWpSgajWJsbMz2LzHEJz7xCfi+jy9+8Yu4ceOGRawy6oKysLe3F9vb21hfXzdi58SJE0b8ATBCic8lNuMe4t7n/Lz99ts4deoUzpw5g729PaysrODatWtIp9Po7+9HNpu1SJrXXnsNU1NTuHDhAjzPw+XLl7GxsYEzZ85gaGgIm5ubFoXb19dnBTBJpFDvBAIBS+tlR4xMJmNELFM0VldXUSgUrJYS5QDJg52dHUxMTGBhYcHONyM96vU67t+/j5WVFWxvb+P27dt2Lvv7+9Hb22tRQfw315D6YWxszBwYj7t+lkiFOoD/yff99zzPiwB41/O8H37wu//V9/3/xREuZwH8VwDOARgC8CPP8075vn907zugRflofjQPBsM71QjlpUYbL96L4IrCQz9HQ4GEgP6e92fuiiptViMn+AdaIxFcoEwgRSWi4c4UEm7kgb4r50eVnY7xKK+wzqv+/VFAQy8FswTPGn5KJa1VhDnf9AQT7KnSdMkdzXOlgakh0Aq21WNCzzHDsPl93z/sza4Ajr/T6AVe9NJyzVTha4ik+x4EjLpHHjfHmpvL37Owjnrjj4oCUQDrAkwaHOrtVm+JAical7VazQo4KYGhBgLXW8GKzpmurYJUnQc1ynhRqL/44ovo7u5GqVTC1tYW3nnnHTP6SCzRANOimmy/RNDD99rf30csFkOpVGoBjFS6W1tbdm55/jQiif+nAcj/MxyOikq7Q3Dd+W9GQen6A4eg2p1nBdbc0y4o5l5TokcNk8eRTa6Rwt9rRwnKI00f4zsRqESjUXiehwsXLmBvbw/FYtE83AsLCy0paAQ+9JxPTExgdHQUiUQCL730EhYWFlr2syvLuDYERwzTJwE7OzuLN954A6dPn8bMzAzS6TTC4TDu3r2Lu3fvYnt724hHev1dYq2/vx8bGxt2TxbVDAQC5uFTOaUAX0Og9Yyx6GKpVMLw8DAWFxdtXTiv1ClcI94LgMky3TecB46FtX1isRhqtRr6+/sxOzsLoBlho2tGgoz3pbeMYw4Gm505CDzpYSEBwKKUPO/0fiWTSQQCASvyqK2Hdf/p/5WIUbJH9bubZqN6VY0mngWeOdXd3H+dnZ2m3+m94hpSjxCIqpxiri3PA9dA783vcp74GTX8VPYrYa5Es6vfeamcVUPSnd9H6Xc1mB5HAHOeeU7VWNaoK+5bfoaGjnpNOQ4t3qkyRSMelEA5itCjzCZpTBzBPcN54ZiUhNM14juHQqEj9bvrPDhqzh+l31V+8Y9GRvE5qt85p/p73pdzoTKae4R7n/fgHOnZ4NwR3zCqRvVgMNjaUtU97zr/3BMHBwcWuecWRVe9o5E077zzDrq7u3Hy5EncvHnTvM+zs7P48pe/jP39fSwtLVlIPCMAWKuI4/E8D9lsFuFwGDMzM6aHAViaa71ex8c+9jHs7e1henoa4+PjLcZiLBazyJmhoaGWSLArV67g9OnTVuUegBEVpVLJHAPc7yMjIxZ+PzQ0hEKhgEajYY6PcDiMYrFoYe8nTpywGhAaiUnHEvPzKU9pHOua08HBKELKPO2URWce9w5lI3EDjcJUKoWRkRE8fPgQmUwGmUzGIpDL5TLOnDljkZAMf+c5WFlZQaFQsMguGsGM9AgGg5ibm0MulzPv/MHBAaLRKAKBZqtiRh8HAgFr/93W1oaRkRF0dHQgn89jfX0du7u7iMViGBgYsL2cy+WwuLhotZv29/etvTjvA8AKNj58+BCe51maJIsecgwAzDlCHDAyMmJzQJKeEaUkO9nxYWFhwZxcxJUXL160OhMrKyvY2Nho0d1sXbm/3+xCEovFcHBwYDYlu1KwqCNrfsXjcat9wBbQwWAQ8/Pz2Nvbw1tvvYXFxUUjrxgNwnNWr9dx9+5dXL9+HcPDw+boYcTyL//yL1vUJNB0kvX29uLVV181HLS1tYVCoYCZmZkP6Xv3+khSwff9NQBrH/x70/O8uwCGH/OVLwP4W9/3dwHMeZ73EMAzAN56zDOONFBoBFIgUshSWNK4Bw4ZflXgLoggGAcOPQmbm5vGIvIZBBNkKCmE6cEhGKICUQ81gazmF/IguQrMNbwITvnOaqDpHKlyUy+MO4/uc1QxuoDDHQvHw1wgKm4COL4fQ0YV2Llr4QpK9+K7Usm7c8M55xwyBIff2dnZsaI4XA8SUiSp1KDn+iio4H5SRa1CWsetRrcCI3dOj3pPAla+owIqXVMX/LsEC9NuOF4FIbpOuh/UW8M/vDfHx7BrBTTt7e0tBg/HSCGk+bQaIq6fda+2tmabqKmpKWOimaPMTgCMXtC9SCXKAp/cHwRw9Aao0UaCcmtrC/F4HJFIxNobqnFCg5b3ZVoAwTS9NmRv+/v7USwWrU4B51MBvBrzJLb0UvCaTCatQKV6qXXfETTyu3oPrqGCev5cgadrTCnB4XoPuXaUuTdv3rRIhnK5bJ4SLWDI92W+/tbWFubn5zE3N9fiOXZJBRoe3LvMVaWhzOr85XIZ3/rWt+x7BKSsEj48PGyejd3dXUvvIchhe8hQKISJiQlsb28jHo+jXC5bxWvKAj6XnlueH3p1NaqExQt/+MMfIhwOo1wuG0DnXlA5TwOOIKFcLtv6sjMGgJbWhfRAMuKgUqkgEAhgaGgITzzxBN58802LymB0CdeQBgL3Bed6Z2fHUtBU7gKH0SMcd29vL+LxOHy/ma/KaBaVcfysu8d5T74/da3KIcpnnjGSGWpMqTx3o+B4P64V9TuBN/WFu79pNDH9RnWmGnr0DLv6Xff9UTpM5Zib267zy7G43ztKv/MZrp7XcT8Kb/C801hxSUnua5574iWNXOOe4lpohKe+h6vfVf8QH6jzheeca16v182w43nivSh7XMzI6AIlqfhM1e/ce3pxvC5BxN+5eEl1h4bAu9/TuVeC041Y8P3D4uSKq7j2mi6i86xOAJ4f/pv6UYk4jkExhe5zPYM6Bt1j+nxenBOG1HNNZ2dnEQqFkE6nTd/fu3cP8Xgck5OTGBgYwPDwsOn2aDSKtbU15HI57OzsWEtDz/NQLpextLSEUChkOvgnP/kJxsbGcO7cOTPaWNSR7ReJVebm5lAoFLCzs2OF2GkrUDbXajXMzc1hZWUFQLP+w9jYmEXGdnd3t9gNOjbWXXnvvfcwMDBgP2fnMurg3d1dxONxHBwcWIt0EsE7OzstUZBcI9/3LRWcRAujh7hnGGXFf3uehyeffNIIjL6+PgBNcmZtbQ0AbC2YNrK+vm5Fjev1uhW+9H3fijITazECJBwOm3GseC0QCBhxzRD8QCCA2dlZ+L5vKXC5XA5/93d/Z618Jycn0dvbi66uLkxMTCCbzZq3n5EEy8vL6O/vN49+LBbDuXPnrFYAaz7QecDzQ9IhkUhgbW0N+Xwe0WjUsFI0GkV7ezt6enosDb+trc26OXz605+21pT8vO/76OnpQSKRsD0wODhoTohUKoVYLGZp2rVaDSdOnMA777xjGKBWq1mUQDqdtjHX63UUi0W0tTW7lC0uLiIajVpXqpGREWxsbFgK+vXr1zE2NoZ6vY6lpSVLt4jH47h06ZK1/Jyfn8dzzz0Hz2vWC/nWt76FtbU1S1ur1Wr44he/CAD40z/9U6yvr+Nx17+ppoLneeMALgK4AuB5AL/jed5/A+AqmtEMRTQJh8vytWU8noTgvQ00uYqWwp2AQj1pZBP5eQAfUnIUkgQVCmJVmbuKgoJXWXsyu5o3DBwCGjLE3GgU3CqYXWNBwTznwfUAuMBE500vl1RwgcZRAOSo33O+CYIo2HTeABggVbaQ41dQcJQRq6DDDRF1DXmXEFJPCOdavUH0ThCM63eYs6ngRo0yBZJcG1Wm+js1pJT40u+4QMoFcJwLvp9683hfBd/8PO/j7gvf9y3kk94crsf+/r4pNq6tjicYDLb0jqbngKBEz5oCfJ4LsvB6ufMHNM/mgwcPkM/nUa/XW0LtG42Ghbtz7hiWrRFNWgyQz2HIp74/21O2tTX7p5P9ZRqDVjpXZp/joQeb+5znPJPJWCoNn0+PmZ73UChkzH25XLZ7sx0UDVLucz2PernkgRqm/L2e06MMO55dAg7dQ0oocA+RSGH0BfMC9RwpqGcRpXA4jL29PWxvb+PNN99ske18ZwIjgjm+E/cSxwkcEiEc19jYGJaXl7Gzs4NSqWS1MQjsWSBWCxfynvSus7ir5x1G7oRCISSTyZYuIyq71ODQ+iccI9BM5WGB4fHxcQsr5RmkV5D1BHhvPp9hosvLyxZ1pfKUMoKAoqenB5/97GfxzDPPmDeJ668kmJ5PRiFw/xBsa9sudvIhcGQqkFv3xdUzrpHGvcx7qEGqukQNPsomRsPps9woAZ4bjS7j/Y/SpZwbJRZoyHHvMW9eoxr29/c/pN/VaNXzpvpLn6MyTmXio0gD9zpKBrjzrH+OWgf9t6vfdX65Xl1dXRZ5xDGo84W6VNfOxVWUF/yZGrRcD01t4fxSLhJUKz4g2cbfcxyU/a6+fRT5/yj9ROzn6vej5tFdd91nuuZHGfMkbPQ9XCKBa6UykudU/+zt7bUYrhyTEkkcV6PRaKnqzjPE73MNOA6dRxcP6RlOp9Mol8t45513jODJ5XIolUotNa+y2awZXzMzM6hUKpiamkJPT48Vh8vlctjd3cWxY8dsbliXhmHavu9byiuNUxKDxD/U3UyfGB4exvj4OOr1Om7fvo1UKoW+vj7zHOfzeUxPT2N1ddVSHdLpNHp6ekxWU8+wGGSj0exAMD4+jlwuh0gkYi0WGflFOQLAQvBpkOu6UXdSP7D9H+UUcNiJTesRed5hnSXtVBMOh1EqlSxFhDic9Rz29vawuLiIJ598EsePH8fJkyetgHClUrFaO6yDwdB+rZ8CwFpQa2QnDXriR0amEgPs7u4iEolYlMLAwIB15WD9lcnJSUxPT6O9vd32DNCMTKhUKnZvYpZkMolEIoFcLod4PI7Ozk5LwdBCsJFIBNFo1FIOtra2kEgkkE6nrV4Da35wTvnOxA6UQRrtUiwW4fs+Tp06ZUWNY7EY+vr6sLCwgEajgZGREWSzWRSLRSOEtra2zKFGB8C5c+eQzWYxNzeH+fl5zMzMYG1tDe+//z4++9nPGgl0//59SwkpFApG/sfjcTzxxBNWi2x4eNiKDnM/sWBjrVZDuVxGsVjE6Ogo+vv7kcvlcHBwgCeeeAJ/+Id/iN/5nd9x1Uqr7Hzsb+XyPK8HwN8B+B993694nve/A/gPaNZZ+A8A/hjAf/tvuN+/A/DvgFYWWRUzwRAFIT+rIcQaFktFQIFLRUUh0/LiH3zeZdc/GFsLc66gkc/c3d01o4DgiF4xZZCVVVbwr3nsfKb+W5WCGvr8jn5eAbNLKDwOdBz1M9eg1xBQJVuoGDT9QXNm1bjROXQJBd6b76tzzbVWcKaeU86peoAVUFChuGMAYLlVR609jSUX9HF/UrHy2Qo8dD30/7y3EiMukNF9osBRyRKNptExcf5o8PA7NLK0kBXPj0tw6B51SQx33bgXNZXABT8AWkCmvieN2sXFRWPydQ8BQCqVsvemR4ERB7pHSAjQUCQBQFKBrT35LvRoU3EzJYLzqyGHagjzu6xsnsvl7N34ex0PFXpvb6/VG6ByJxjY3983j/TCwgLC4bDlaCqAU3DprpVGXPAz6mXT9SIQYbtAAkeeMwVgKssoExUkA4fhtiS+qPAZ5qlRDz09PdZ/nEauFmUjWIpEIhaRwH1Mjym9QYuLi2Z0UnGyTWOxWLQwX+4nromC8WAwiOnp6Q95fRgdQeNbizwS+HH+OCd8hhIiBFYsaKeyUeUjDViuGytJM7+YETYEKiy0xOiM/f19a+/INlHVatXOiZLr3Os6ds9rpm4QlNFDwT3DMFdWnGYEhnp7dU92dHQQDF/lmXBlDT9/VJ626gDOm+ZBk9ijrOMzlSDjPlH97hLFHJsrC9li+GfR7260G+dZ9bd76Xzp//nOR12ubuff+m99D/czqrd1zWiAHKXfaWDyPjxLnHNdN5Uz+h5qzKtuU/2u68LvaUEwdczwPtSBik/03ajfFTNwnKrf3XGrnOX4VL+rDnfXUf+tzhOdB+4ZvR6l33X8igOAQ8cDv8OaJEwb4Zy4+5C4qFwuWyi4EkY0JJXw1XfXueIzSHp6nnc1FApZoe6lpSU7h7VaDefPnzf5yRafyWQStVoNm5ubWF1dRblcRn9/Pzo7O9HW1oaTJ09idXUVlUoFmUzGDCQA9tzR0VHEYjGrZ+D7vhVlZl2F3d1dRKNRq/BPQnVmZgaLi4s4e/asyf1arYbZ2Vncu3fP9tfu7i5KpRL6+vqsUwLQTIdOJBLY2NhoIWBZcJLG2vr6Ora3t63IablctpQOesfprNja2jI509nZiXA4jM7OTtPLrBmhpAKJQd17jGAgLlhcXARwGH3mec00YtawYH2L9vZmK8NCoWBdTuicK5VKlldPvcxUEaDZiSgUatafYR0UFsxlCiWAlk5Uc3NzhjuSyaSRXdFo1NpIFotFrKyswPM8JBIJ63LR0dFhBdpZV41nnLWHNjY2DKdyL7KuQalUQjgcxuDgIAZ7wYKOAAAgAElEQVQHB7GysoJarWaRGNTFyWTSyDE6DKiP4/G4pekGAgErfnlwcGDOJD5/dXUVxWIRg4ODSKVSKBQKWF5eRqlUQk9Pj90zn89jc3MTgUAzemNzc9PqLVy5csXWi3XJ6AjMZrMIBoO2TplMBgsLC5ZOUiqVrLYCz9nu7i5ee+017OzsYHR0FFNTU7bG2WwWAwMDGBwcxBNPPIFTp07hD/7gD/C462ciFTzPa0OTUPhPvu///QeCZV1+/38A+N4H/10BMCpfH/ngZy2X7/t/DuDPP9jEvjLLjxNgwGE9BPXCAq09vPldAhI18DQdQYW1KmN+hsYPw5y4OeTdARwW4VMDiqBHvX98noap6Vj5bCpeV4G5SlIJBX5OQYoafC5g4Xvod3ReVIkSqHE+dUwKJNxxq+Gv76ksOi+CBlbJdz1JrgeKY1Dgyfu7obyqGNVrRKXo7ht9ps6v7x8WYdQcUSWgdB/re+q86B7j/mMIngu8OXb14FEJuYaNejVdL4MCeM6ZjpE/V7BUr9ctH5V/COJ5b3cfcf54b5c84TsAsPQaepbJctPYHhsbQyqVwq1btwDAQtHomVCSEYB1KuHYent7jTykwN3e3sbGxobNz8DAAJLJJO7du2fv19bWZl4QenFIJDKvUNeKe4UhkfQY+76PTCZj86rdKCgvdE8SMOg+1D2swF+Nce79aDRquakamk6ZyZxRrj/vx2fRU83wRJWdPGv8t+5J3mt+fh5jY2P42te+hsuXL+PNN980L4oacgcHB9YnemVlxd6TKSyhULPFEskJygzm9arX7vTp05iamsLOzg5effVV0wnBYNC8KQTcpVKpZb8zHHhgYAA9PT3I5/PIZrPY29uzaJZqtWrzwedqxJoaa2xry2ewfzm/S9KCII2gW8kVgirP8zA6Oorp6WmT4dRHq6urLfP4ve99D6+99hra29stAofngvuZz6Q3h/uREQkkurnf+V5ak4JryFQBV27S+P5gTz39wZr6rtf6KP3O+2u9FI2y0u/x4rlTg56fY10NyjG9NCWSn3XT5IDWgosEkyrHHqXf1ah2L86Zq9/1LOr7PYpQ0PkEDiMG+POjiIWP0u96b5cU17nkz46KAOX7u2ut+p3Po/7l83Q8Ov8u7tDC1JxLLXzmPltxhitLFR/QUOJY+W5KQBzlBKM8Pkq/K9F1VNQMn00HhZ4rpnHo3Kt+5/i5nlqElmdW35E1fxh1y/XTSAniL/2ejtOdL8qv3d3dpzs6Ovz19XXcvHkTgUCzPk2j0bCitVyHRCKBjo4OTExMIBgM4s6dO7h//z4qlYpFiLG4MlOzqM/j8bi9RzKZRCQSsdaGjDLgu9Trdatwn8vlLEw8nU6jUCiYI5K6kR0dWHyYF4nbgYGBlg4J+/v71tqPRAWL8LEdY6PRLG7L/PR0Oo329nb09/dbx4tGo2GRHCSDWXeAcoyGeb3erI+je5GGNckwErbt7e2IxWJGypIAGBoawu7uruEjYi5GbbKV4MbGBgqFAoLBZmi+RmYQR7C2ELFFV1eX2UtXr16F7/sYHBw0R8HBQbPrQCAQsKg+7jFGfg4ODiIQCCAcDltdAMqFSqVixSM5t0xxKRQK9r603zY3N9FoNNDd3Y3t7W1zJJXLZdy4ccMKQsfjcaTTacNfxKZtbc3OHsQFHBPnslarYXR0FKlUCtVqFdVqFSdOnDDc7HlNJwTTb9i5IZfL4fbt20gkEtje3sba2hpGR0ftDLCOxdramtWDODhopnAODg5a68n5+XnUajVzMpCMv3fvntXFIKFBkohzxi4P3Lurq6tob2/H8PAwFhYWbI64X6empvBR18/S/cED8H8CuOv7/p/Izwf9Zr0FAPgKgPc/+Pf/A+D/8jzvT9As1HgSwNuPe4Ya4SqsXRDBn3GhlGEHWsMuKYh5qVeTG44HiN9l1APzsoHWcGQeTLJq/f39yOfzBrZdwOMatQoWFHSoAtUQW74z76WKUOdNn6dpAC6I0MgHNwTPNYjVO8BDxcPBZxPUqvGqxj8NFVW++jk1ShQEkbzguPkc1yDmdxhGTA8yAAvlJYnE56h3lnPikgTqUdF55HeVFHLfTS8FQqwboGHGfAb36lFeKiWE9J11Xl3AQyUZCoVa2gnyDwGHroMasNxrrE5MBU/Sgwa/Rv8ctcbqjf3g31f5e/6OyoD32N7eRldXl7W8W1pawszMjN2bHgFeNGD0/ZnnHwo12+QNDg5aAT8FmQQSo6OjGBsbw/z8vHnzE4mEdZKgYtF3WV9fbzEAPM8zT0VPTw82NjYM6DYaDWSz2Q8BZq4Pv0+ArffVtdW51e+w6nI8HjfQxRB/7uuhoSELUyRTT5aaz6NRxYrZDBXl/mSLIRY15JkkWOXc+L6PO3fuGPFDsEyDmsU0CRr5HjQiabASSFIu0StBTzJ/F4/H0dfXh8HBQVy7dg3lchmf+MQnLEogl8u1KHZN+QkEAmZQMuQSgBEaWvSLxA1Bh9bvIGHAOUin02g0GlhdXTX9QP3hriH3BfdYPB43cHrnzh07czS4NXKC8+b7fgv5Qk8da6GQCNOzwpQPRieQTKLsIDhRfUxSgzJYDVnuVf5O9+tRhJhrsPFnR+l3NZ4p01Vv8meU9TQ8VcZyHVmcTMd8FIGWTqdRLBYBtKbwuQa+yjte/1b97p5t91K5dZR+5/zxM65BzT+8l+p3GpgAWjorUB6pXgQOjTWVTdwf+g6KR3QtafxzDNQrnFs35YDEFyN3uPZdXV22xu5eU+JGz85RGEr3nxrvnteaisV30jXi3JC043nT7mLqDHHXVOfPJShcfeGSHErIKNFBeUC5rHuGOoHYSLEzCRV+PhgMGkZWnMF7K07SdwoEmt7VYDBo+eosLks5x6jCxcVF87T29fWhWq0iEolYJMDm5ibGxsZQKBQAwEjevr4+DA8PW42ABw8eIBwOm8F87949rK6u4tixYzh58qQZzZR19HI3Gg2cP38eL774Im7evInOzk5rX6iXS3aykF9nZyeKxaKRqXSKDA8P4+TJkzh9+jTy+bwR/epQYRS1kpNtbW3o7u5GMBjEiRMnkMlkbP7i8ThSqRS6urqwtrYG3/fNY0/SW88UdTe95d3d3RgfH8fQ0BAA4M6dO7aOqVQK6+vr6Ovrs33geR6SyaTZRSQ7iJcp6wFYu0emtzBSlK2gI5EIOjo6MDQ0ZB09WPOg0WjWy+rp6bEizJOTk/j85z9vaQiXLl3C8vKyESuBQMDSYRnRWqlUMDs7i3Q6jcnJSfsMCR92Gerq6rKCkplMBnfu3EFXVxfC4bDVkNCoEOqk8fFx7O/v49y5c/jud7+Lq1ev4uHDh7h06ZIRFn19ffB9v6UoMqOBSDIUCgVLI/E8z2pHlUolpFIpw/CMLmArzsXFRQQCAaRSKZPZs7OzFjV5//599Pf3o1KpWP0/7ofV1VXs7+9jaGgIfX19RnIx0iYQCKC/vx+pVArRaBTFYhHb29uoVqtYXFzE66+/jrGxMTx8+NBSXR51/SyRCs8D+K8B3PI87/oHP/v3AH7d87yPo5n+MA/gvwcA3/dve573fwO4g2bniN/2H9P54YPvfAg8u8JKc6SAD/cRpxJV1tdNFaDiVLZdSQP1lBKou0qE9+vo6LBQaB5MsmwUFgoiNfeZ76zvq8CeypDeERck8Pv6PZ1H/Tmf8yjDV8GbPkfBIVvA8GeuZ9+9t3oUlGWnsiRo4Frp+unzVZEx1Mv3/ZbQbX2eG6ZMYMy94ho+fBbBJJlXAKaE1DDmWDUklGvLS8MXCSDpHe/q6kIkEjE2UcGxGv4ExAo0aNhqji/HpB4DVVL0uKgHlHtM9xAjcBTgsMOChlmqIeAWx9I/Cv4VvB4cHDz9wb99svy1Ws1SGxgCRsY4k8kYQFLPqZ4BnkWOiYqfpEClUsHa2pqBUgAWeun7zYJDuVwO9+7dMwVycHBgQplsOQkWtolSg4rgme+fz+dbCusRLHBv0Djj2SaoYugj9w33IN//qEgdzjMBIz27pVLJDGmGITYaDcvpI7DiXmSuo+d5lsuXTCatpobvH0b/MCdRAasaAqx83Gg0DCBWKhUDEwSI/f39BiTVYGXaAIEvCzPRk6TnvbOzEw8fPmwJMwyFQlhZWbHc23g8bm0mGdLOPcnaAgzZJzlJo4CREWpYcV9TPh4/fhzLy8sm3xgRsb+/j76+PgsR5Xxx39AAZhEnArmtrS1bd4LraDSKjY0NVKtV+L7fUvCVukrrckQiEfM40ZCOxWLIZDIGYKmrqLsoZwiQKeP07HN8Kg/5OTU0XF2l+k4NTM4lZTBllRuy7aYxuE4DEpSqX9RzTAOMc6HRLEoIcPxMIeHaP0q/cw6U9FbZ6s7Pf65+Vx3Pn/P/qt/dz6o+Vf3KMZMMY7qQ6nfOm95T153rovqcuk/1Gb/jOi2oh7i21IVqBFNHAod6tl6vt0RVUPdxXdznE6Tr2SPAV4zHcdGBwnursa8kv96fEXLMh6Z+UQeLzgGfzc/R8OD9tE6QYjyNYtW5497V8ap+1/1GrzMAmwfF0xrxQVKH99G9p9hI9229XrcixpFIBI1G0wtfrVYxMDBgRQJZ3Z5ed8q6VCplnndW7uf6UTY/88wzWF9fR6FQwNbWForFIsrlMjzPM69vLpfDxMQE1tbWUK/XrVgj8QLz1lmtn2HenteMBKNR1dHRYRX5KVODwaAZqZQjxIXcA4yuXFxcxOzsLP7+7//eWmsODQ1ZhADJc7a+pD5ldwOm7FGXF4tFk/f8HVNWOD8dHR1IJBIAmoTXwsICQqEQvvCFL+DJJ5/EwUGzEwVD47l/lYQmaUHsPTw8jGKxaHqGhRsbjYY5UzyvWVeJBjOJpWw2i3q9jmg0imQyiWQyaQVZWW+o0WgWAm40GlhYWEAwGEQul8OpU6ds7Rl9SQ97LpeD7/tWNyGdTqOvrw/xeByFQgHt7e34+Mc/junpaWxtbaGnp8e6QyUSCbzwwgsWFVmtVq3gezAYtJTKhYUFRKNRnD9/HgMDA7hy5QqefPJJPPvss3j55ZctTaS/vx++7xvWZ6Tj+++/j3K5bBGPY2NjOHXqlO3zmZkZ1Ot1XLhwwVJ0iE1Z/Pn+/fsYHh42PM7WnyS36DBLp9NWz4Npl8TXJDmIo+i8oCyrVquIxWIoFotGODH9iJFEzzzzzIcIN/f6Wbo//CuAD1f8Ab7/mO/8RwD/8aPurRfBhSpLXvQkKRBxvdtqUAGHLebIgqsyoOLj5/VvHmwFfTxgVAYUurwHQQgLd9C4IcOlRrgy+hy3KmT1OPD3nB99V86RC15cA5+bRo09flfDRoHWgpEET8AhaFXGmuNQckENeDWA3DHRMHDDXfk+DB3b3t427xINMwUZnFsaZXzX7u7ullBW9cy4Ranq9bqtlxvWSDJDlbTuMzX4jwLNfH/OK4Ux87k4ds4bjTuuBQUUQwDdHrGcMzUy1bPCok0kB0hUaMQNAKuOz31Nb4bWndA11D1MQKVGtXqs3H3Hn9MwrdfrxrqHQiGcPHkS29vbLc89KqxX94tL/uzt7VnF6Hq9bi33CCa5h5955hlUq1UsLy+bFzybzQJASwcAEgTcK3ruuX/p6SUQcM8l5Qbbc2kIMQ147nfuH/0M96SCTJUZHOfs7CyWlpbg+75VSGY+KNlwnhOuARn5RqNhPair1So8r1kNuKenB4VCAZlMxuaOOXwsTqQgml4S7kGeIxK9BLLLy8tWjPDMmTN4+PAhSqUSNjY2WkgbnsutrS1sbm7aeS+Xy3a/t99+26IruH70iLHnN88j51zJZ+oLGpzsEECjKxgMWloDwSPXeGVlxZh+KnD+joQJCSU9AyQgKCMZHl0oFOB5nvW4bjQaBrx1b/DMMuWBLc4GBgbw7LPPor29Hd///vftvfkdEjWe5xkQPMpo4dlz11fTD13D3t33KjM0FJufB2ARK3zGUfqd8kENV4JqjlfbqGmtF+pkVvJmGgN1kJLCql/U4P/P0e+unlY9qXPG57p4RnWtjk8vnTf3uWrU6/9Vv/v+YTFU15HDe1K3adi9Gvr8Do12erdVPuo9mSeuUUDAYVqIS54GAgEL/aVxSP2uhrM6QjgPPNvufHCdFL/wc3Q+Kfmnclj1D9eezyIpyuKHGjFBWaJrRBxA/e6ulxI2QGvdKs4zU+5YX4W4ijKYRmt7ezuSyeSH9IeeId2rKl+4x1yiQnEP5/XatWuWg67t+Nrb23Hx4kUsLCzYGDY3N62QYU9Pj+2VRCJh2GJpaQnvv/8+Pv7xj6NYLKKzsxNLS0tYX1/H+vo6FhYW7L1CoWY3iPHxcXz+85/Hw4cPUalU0N/fj2g0aulvjCyhZ3hjY8PqGZ06dQrBYLOa/8rKirWGZMvE3t5e7O3tWf2HRqOZrsbaCZ7nWe49Uy66urowNjZmIfqaBx8Khcy7rOuSzWYNq/l+M7VwZWUFW1tbiMViLamMqVTKyHjP86zSf0dHB3K5HLLZLLa3t/Hee+9ZdBqxJdeUYfDBYBDFYhGFQgG9vb0WvVAoFGw9Ozs7USqVsLS0hN7eXiSTSUSjUQwMDNjZ3N3dxdTUFC5duoR33nkHt27dMkM/EonA930kEgk0Gg2sra1ZOsbzzz+PYrGIbDaLqakpZDIZrK+vG85Mp9MWus+oS879w4cPAQB9fX02v6VSCZFIBAMDA9jb20MikbCOTuMfFOvMZrPo7OzEsWPHUKlUbF+3t7db8cmZmRmLuFhcXMSZM2fw9NNP49VXX8Xc3JwVSSSh9dRTT1lnhnK5jH/6p39CJpPBiy++iF/5lV9BJBIxQo/2i3Y8O378OA4Omimfd+7cwcTEBF588UUMDw/jtddew9LSEg4ODpBOp3Hz5k1sb2/jb//2b7G9vY3nn38e8Xjc0mGTyaQVKVeikFGnQJPMS6fTlm4BNNONv/SlL+Gv/uqvrN6Di+fd69/U/eH/q4tCWoWbgjD+zYkgAHbbIT2K9XeFHoEZDT0qBYI1ThqVHQXv3t4eKpUKUqmUTS4/T9AMwNqBKBmhglqNCQUS6hVQoOASLa7gd8HXo+bYnW8XxCiQVzDPsGECKSVv9NLwQQ0VpmFNoEH2k+NVIoJMJ9uu5HI5E1L0IvLZGhXA/cN70mvlevHc/eWCS86phse6IJjrwj+6LlRsehFQE+zSMHGZfl1Telc4NobqafVx3luNTfUo6j7S8avHhnNPsEOwHgwGTbhqvjHfnXPNfcL5Vc+Mvpd7qfFAsojGUzgcRiaTQW9vLwKBgLHhnGsCNTK0BMb8eX9/PwYHB7G0tIRsNttStZxe+5GREfz2b/82Ll++jL/4i79AMBg0gMv1Z3SD5psTAGlrLlYwdothErwwDUOVuJtHuLy8bGtDzz7flc9Wgk73oivfeB+CSgBWIJFhfQcHBxbZwDMVDAaNuFpfX0dbWxvi8bj12ua55/iVeKT8JMNPxp9eeu4hzq0a1GfPnsUzzzyD0dFR/OAHPzBDXM8V51bDEru6uiyqjDU5otEoKpWKRUpQPoRCISPJ6I0LBAItXkXqA9fI1H0Qj8cBwDqCcM8TvNBTdnBwgGQyaRES9Izs7Oygu7sbpVLJUqF4j7GxsZYCnQcHBzY+DTen3uG+7uzstLZVhUIBU1NTmJmZMRlAAJnL5ey7rgeV5zkUChlJR/mm86F7wPVSPur6KP2ukWScPxpgKof5e47dvZRkU48v34PGF9OaNGKLRka5XG4pEMvvU7+r3H2cfj9Kx/JyI/VcElb//W/V7+5z3TEcpd9ZzZxnQvWCGuEkkZQYohygIUsjV3Wxi3ei0ShSqRRqtZrVU1HcoASW6jcFs0oOkzjguLm/Xf3OeylxoaSCkgWKV1TnUHboWlHnck+4+p2EA+eRc0+9oEQdU7/4OY6Z86tjp0xgeDrnWHEc5169i7qmujb6Pfd8uySXuw/1/319ffjiF7+Iu3fv4tatW2asAs3uQUCzfWEgEMBrr72GjY0NfOxjH7OChPV6swVeINBMbaMcINYmUU4vLQ3qpaUlay/83HPPYXJyEtvb2ygWi8jn86Z3otEolpaW8Prrr+NrX/saAFgB5Y6ODkxOTmJiYgI9PT346U9/ir29PWxsbBiBzUjGRqNh9Slo2EejUfT09Nic53I5KzQ5ODiI06dPmwwCYCl6m5ub1gaZrQk3NzdbcA3PAKMASHbSccToNWIPtj5sa2tDb28vgsEgHj58iHv37mF8fNyMbhLMTK2r1WooFApWvDcWi6Feb+bol0olxONxdHV1IZVK4dlnn8Xo6Cg8zzOMw7oBXV1d+MxnPoORkRFrl10oFLC3t4disWhFGev1OpLJJDY3N1EsFi2agfvxwoULJrOLxSJmZmbQ1dWFfD6PlZUV9Pb2GgkxNDSE4eFhaxd6cHBgkS5MUfC8w85bxAy0ORhNU6lU0NPTY+kaxN0bGxsWTXD//n2sr6/j2WeftXahLCIMNB0bwWAQqVQKAwMDuHr1KtLpNC5evIhyuYyVlRXcuHHD7FbW1Ojt7bUCzX19fZaaW61WcevWLasHFolEcHBw2A2FWOPFF19kjRP09vaabiMmGxoagu83UzQYmcAoqXq9jt7eXmSzWSukuba2Ztj86tWrdoYfdf1ckAoAWhbE9c6pp1yNRR4sKh1XAVEQ0SggsIlGo2g0GigWiwZaeBD5XCpA3gdoAi6GaKmiJvAEDoGRGnD8vCoi/Rk/5wpsF1DwZy7gcH+nz9Vn6bu5hqeSM7wX78F1IRhyjWGdJ9cLyrAbzedVha4AletNwUnDVpU2x6reBwUjrJpL1pvj5T24v/h+OjaNtOBn1EjXtdSwT/XCqTdO2XwFY/RwccwK6tUDwfA4jolh+yRReCkwAg7JMAJ0nhndgzTkeS8lU9LptL07QRvZYAXVSqLoGFxCwQXVXGvOLbssUICNjo7izJkz+LVf+zVsbGzgG9/4hrHKy8vLZhxrKDwVdSKRwOTkpLWjIpvPsEdWd65UKvje976HpaUleJ5n/aFVcXPeCSYI4FjoR8+apmfo2XfJGLa8cs+ZGnJaiFOBqu4nnUfuX66nAmzg0JCgouGasO2jhnDmcjl7t3q9jo2NDYtu4HkJhUKmgPnMjo4O9PX1YXFx0XqDa0tGfeednR0kEglMTU3hwYMHBlxisRju3buH6elpDA4OmiLj/uC8kFzWd2UPc+atqpHE88c1omGjhff0vAaDzbaqJJpIqPJ3NOhZeyMYDFqqDj00nudZ14RQ6LD4mUZr0Jhg/YuNjQ3z7DK1g++sxjHfWUH2wsKCrWU2m7W9pOut+8QlRrWVosoVer+UoOQ7KLHsetrdi/U0jtLvXE9G8vh+a6FdniXKcTXKqN8pm7k3Dw6aKUD8Oc9irVZrIVXUWKO3VPEEx8h50T3E+7q6nX9r9JYro1UWupfe6ygyQXXzUd9XIoFyXKMFeA9+hgSWRlDwPjoON52QclMjF7jPODfAYfQHyVfV7ww71jRJfk7fmViBJLK2Pf4o/U79xLEfRQDxs7y0Q4Qa9cRJKgtc/c6fc8xKGlCec0xaT4IOGI3M47vruhP78JxwLpWE4JlQQtDdQzyH+pmj9ojrmHicfg8Gg/j6179u+vju3bt2XnO5HK5cuYKdnR0MDQ3hhRdeQLVaxSuvvGJk8ebmJgYHB1EqlSy9OJFIYHR0FKurq+jv7zdj6tSpU3j66adRKpXw8ssvI5lM2vkvlUq4cuWKtaakbKFTIZlM4tlnn7Xo0FgsZl0oSIQwemFrawuhULNLA3HT7u6uESVtbc32vizkx2hnkkR0EDGagbqFhAe904yM1HSUg4MDS7vgGWFUZDAYRE9PT4uuymazGBwc/FB6GAs8Dg0NYWVlxSI2uJbqCAuHwxgeHjZDt9FoWDRgKpXC8PCwYbBYLIZgsJn6wVSORCKBkydP4t69e/ZOqVQKp0+fxuXLl5FIJCw0f2hoCGtra7bW1WoVg4ODKJfLuHr1Kg4ODvClL33JagsQuzUaDaysrJjzhST+yZMnMTg4aEQSCaharWZdoVKpFPr7+002nT592lJkC4UCBgcHEY/HLd0gk8mgr68PDx8+xObmpo2V77q4uIi+vj77/7lz57C9vY1yuYzp6WkMDw9jcHAQU1NTlr5x/fp1rK2tIZ/PGwnl+74ROMTcLBjaaDTwyiuv4Pnnn8fq6qqljezt7eHYsWPo7e21iFum0UajUXNkrqysIBQK4cqVK5ibmzPnCABLH+rq6rI23YyeIJaIxWKYnZ2F53n/5ekP/39cZMspvNTzSnBLQoGHTwUvDw89iPy8kg4UAOFw2J6rghWALR4ZZHq3wuGwVQZXYMNnukBJDXc+Q5WOjlujIlyBrWN0wYMr2I8iIDiH7tj4b51/KnpVfApolLWnklCgCTRDZTTPjAKQQpUK1yUIVAEzbNn3D4sMxWIxAGgBGhybGucE4ASvfAf+ngYlAY4aOlTcOtc6b+rh0femMqdQ5s913Xg/jbJQr7OuIYWArhMNCJfkctfdXWctLkhA4npAdC65NhpSy/vQM+8+Vz2Xurf1vR9FfnEfUYhSef3Gb/wGxj8oihONRhGPx43FVUOC+Y4cI5no27dvA2ieKe2bTIOPYfvf+c53LLSPRBT7UQcCAdy5c8fkib4D54mKnCkAHAf3rTsnBJju3nJbNGkhHJUJujfddWfO48bGhuUoUvEzJUCjK06ePImxsTGUSiXMzs5aZWruM615QW8fx0xyZXh4GPl83oAHwbN6UkjqMFKC672zs4OlpSWUy2XcvHnT5AYAfPzjH0d3dzfee+89A1ncKyST+f4ERpoyoUQcjRAlxTo7O3Hy5ElkMhnziJGAIGhkTQe2I+O+A2BRQ5/73OcwPDyM+fl5K76kxklbWxsGBwfN68EUBpUbJJq4Z5REYDQE55ZzR8Wu5CIJjXA4jF9Vn7UAACAASURBVJWVFYyOjmJ+fr5Fp/K+3Eeck729vZawSxpgjFpS2cdWXUw9UfmhssC91BBSvcf/a2oQCRs1eAGYV41kCv+QMDo4aKaJcSxqnFMfMEJGMQWrlROsqmxWIs81xPUZKst5KY5R8krloHuu3d+5hr073zz/7s+O0u/aFUflOd9TjWp3/jzPM/3OueZ5f5R+55qpwa91qHiuCXCJGzSShWljxIGq3zWqlIYe9bsWQub7u1hK308xnepHnlNGKinRwHdU54vq96OM+Mfpd67DUfpdiRD+X72i1O8aoeDuIVe/cy5Uruh4Xf2u1+P0O42v9fV1lMvllki/QqGAY8eO4dOf/jQqlQpOnz6NmZkZW1fKv5GREbz77rtm7MRiMSOql5eXsbq6is997nMmoxl5x3G9/fbbKBQKGBsbw/7+PuLxOE6dOoXjx48jkUjgzp07ZnxRHjCSjI6ptrY287iz8O729ra1hq7X65aysrGxYR2EpqenrXiiW7NienoayWTSiADua8p0ptixPgL10tDQUEuBRu5xFlWmPOvu7kYikcAzzzyDra0tbGxsYH193Qoc+76PoaGhltB7RpIwTcbzPLzwwgv46U9/iqtXr6JYLJqxHI1GkUgkUK/XkU6nzVEBwArXc5wvvfQSBgYGcOnSJWxsbKC7uxtf/vKXEQgEcPv2bZTLZasFsb+/j4WFBYyOjpoXPxaLYXx83DoydXd32/Nu376Nf/mXf8Hw8DBOnTpljrBQKGS1DdiOkniPsmR+fr6laCg7XdCrf/bsWfT392N5eRlbW1solUrI5/NmaAPAyZMnrcPX+vo6tra2TF5RDuXzeczOzhqhyGi3xcVFtLe3G3ERCASsXgblHlNcaMeeOHECy8vLODhoppdFIhEUi0VLA6VM6e7uhud5OHbsmEVczM/Po1KpIBKJ4Ny5cy1EHx0PyWQSTz31FDKZDK5fv46trS2cO3cOgUCzW8nOzg7m5uZw7do1w5OPun4uSAWgVdG5gowHT/NVlZmlUGbulrJvvC9wGBLMyuxUAAR0/A6BF0EKc4S1ajhwSAS4DLarnDT0jp9TQ0yVm87HUUQBf3eUYuSlSoj/598cr4IQvjcvKhn9LtCaz+mCqd7eXgwODiKTyVivV82jptLj3/peVCg0Kur1uoUTsaKsFscjOGKRPxZpUwLhKCOX+4iGD0kohrHq2mkUhSpyAljtC6335X1oXHAN1GugBiWVvK41AdFRZIZeCpT4eTeXmGPgmI4C2wBaQl8VZCig5zu4QEcv3SPuvnU/xzlmuDs9XN/+9rfxhS98ATdv3sS9e/csl2tzc9PyVTkuFhhiOF4+n0cul7O8PRpN6oFta2tDtVq14kulUsk8aP39/Ugmk1hdXTXGmyCDhhsAy+tVg43giUqC88a5575yQSVz//l9DavWudS5pfxjNXQWlaIsogxjaJ17NgikOjs7MTk5aZ4Lfle7K3C9FJCfO3cOTzzxBN555x3cvHkTW1tbVrtCDWbKZu5Rzg+LGe7t7VmXg2g0iosXL7aEODLFwfM8yyHU0GLuH93jwCF5TAXY2dlpbZyq1SreeecddHd3Y2BgAFtbWxgdHUWhULBaEpxbTa/RFBYSVIFAAPfv30ehULD5o5dzf/+wgwUjFaLRKKrVqukfpm4oocCWj9xbSlwrkUKZ6fu+Rd8xFPr+/fvw/cMe2m67Y64Tvdjt7e1WR4JnyiX5eam8epzho3uXRBTli+5lni1GC7nkm6vfeVFnaXvB/f19Kyam31XDiiCYc8uIHRqpGqHE8at+d8lZXRP1Krt/XKON9z7qcvW7EmlHEYtAa7FjN5LB1e96P11X1TWq3+PxOAYGBpDNZrG+vm5t81S/U2/o8/k8piwRj7HGC2tc6P6kcU6iUSPtNDpBx6/68ij97sovjTLQPapYU/U7sSDPPueZl+6bo/Q7n03nzVGE0FF7QPcciRjFFkr26s/1XYDDQuf67opDKZfd4pUuMaL/f9S4a7UaXn75ZQQCzfSFarVqRPf29jbm5ubwxhtv4M0330ShUDA9zbVeW1vDyMgIzpw5Y1FiLCp39+5dqxE1PT2NbDaLpaUl6zaRy+WsLXNPT48V/KvVashkMjhz5oy17GP6ZL1et1o91DdsW8lQbxrlDBff3t7G8PAwOjs7rcgudSjrMZFs48/ZLYLzrtGonudZ9APlnzrUWCiaeq2jo8MKSPJsAU1cMjo6auedrQiVPPE8D5ubmy22FvXVzs4OPv/5z+Ps2bPo6enBe++9hzfffBOjo6MYGhqyuj3RaPT/Ze7NfiM973PB5ysWWWTtRRaLxa3JJtmb1Wp1W6ttCbIFB04AOwcxPD4HgwzmYpBzG2D+gZmLAYJcTZBMMgMj5+JMEicIAgQzsDGwLC+ypFiy1C21pF7ZbLK5s0jWXqwii1XfXJSeH596VeyWzyzwBzS6WPUt7/e+v/e3PL8N6+vriEaj9l5c7/HxcVy/fh2NRgObm5v4+c9/jpmZGVy5cgVra2tYXV21fTQyMoJGo4G33noLn3zyCa5cuYJSqYShoSGkUimTqwRwGBHBKIqrV6/i1VdfxczMDO7du4eVlRW0Wp0ilExxGBkZsU5W9Xrd6rVVKhUsLy/jjTfewNjYmKUx7Ozs4LXXXkM+n8e9e/cs7ZG8LRKJYHNz02pV0XlKx3OlUrF0lGeffdZag9JRoVFZlMGMoGF6ydHREe7fv4/h4WGMj4/j4OAAExMTBmqlUimMjIwY72w2m1hZWUEgEMDs7Kyl4QwPD2N5eRlDQ0NYXV1FJBLBN77xDczOzuLDDz9EsVi06MBCoWDASy6Xs1ol/f39yGazyGazmJ+f77nn9fidARUoLNR4U4WWIfXAiVeZHiQ1ktWIU2HPg0yWCg6jHlTxIGrIcElWGKXAIsKniLY+m4qMIv+uMa3veZrR2AtM0M/uO7vX6Bye9lz+RmGvCowb6aBgjiLj7Xanui8FFyMe9Lkci3owdIz8nutB4RiJRBAIBKxase/7huZSWeFYqHCqMqgKj/bsVSOP91UljfdUjw7HrO+tCgPDoomAqqLF99P/dY75WeeCTF8NVwXadH3VoOLzde41xNE1Etzvddw6R6rAKk08DtQ6TfEIBoMYGRmxPLBQKGS5hI8ePcLf/M3fdCmPZHys1E/PJxVb3/et0j3BgUwmg3A4jPX1dZTLZfOE0NtNo/bcuXMWlfDo0SNsb2/j+PgY09PTiEaj9ixNbWKoKteIXjsKDG1fqR4u3kv3ISMdFExQZZm8SdeEBqzOcaFQ+BxIpd48BUUfPHiA9fV1NJtNKypGJVyvV3BNjYWNjQ1LMaIByv3A0Dugu+UneYfyXKXfUCiEr3zlK1hbW8ONGzcMhOB+p5JMIcx9dXx8bDUWCKxxHZiu1m63rR1pMBjs6rYAwNpfciz0li0uLppHkCGrnJvr16/j3r17VgiJVcYJprZaLatFofUCNOqLv7G2Besf6HpxrxEEcmt/tNttTE9Po1gsolgsYnh4GLlczuiTY9b6HlwbPlNTbmKxmIVzUtHQ6AWCbL34B2nbPUhHapCTnhhFwEg08huuo8p35TF8pj6Xe0j5gxqPrnyn4cD7accV7iXyVk0P4P5zwRPluRyfCwTo+a5M5/8u7+xlfJ4GTLh6BefcrQGhv/FwHQ6cX+avM+JBDdle4InqXwTZuPdVB2BkSblctucxOorynbxD50JlLumLxidTC/g9r9Gx8bMCKZqOSJpR+U59k+c+Sb5zfvheNDJJRwpMuDKZ4+X4FVhot9td4JrKd9ULegEmKt/VYaDjcXXaXmCCfufS38zMDGZmZtBqtbC+vm5FsFm3YGtrCzdu3DCPKwA8fPjQPP1sdcz9z+vz+bzRSTAYxKNHj5DNZnHnzh309XVaMN69e9ei7oaHh634XqFQwOrqKt555x2jwZmZGezv71vKAtMRhoaGLOwb6MjVbDZreec0qgmG9Pf3o1wuo1wuW6Qj14OprMlk0mQY9UqNDqCTotFomJMjmUyazKMxTxlHgFXTsthekoX9CF4fHR2ZB5sRZq1WC4lEwtaR4HOj0cB7772HmZkZxGIxvPjii11tlpvNpgGwlImpVArBYKdA5tjYmKWRzs3NoVwuG3iQSCTQaDTw5ptvmlx67733zJCempqy+0UiEfh+J9qAqatc18nJSVy8eBEjIyOYn59HOp1GKBSy61utFnK5nLWpbDabiEajuHv3rqW4Xbp0Cfv7+0in03jw4AEajQZWV1etnej777+PM2fOWI0N1rt4+PCh8QbWe6N8jcViGBoaQqVSsfafu7u7aLfblqLEd2JBbN/3LYUjlUrB8zpFPuPxOJrNpqX0Ur9lYfG+vj6LamUbS/IbRs9ms1m0Wi2cOXMGjx49QjQaxfPPP2+6MXWGjY0NhMNhbG1tWURHs9nE/v4+pqencXx8jO3tbYyMjHTx1NOO3xlQQZVpFcBUVFnAhkINOAlL52egW3lhXhfDt9VYpSGgHllFpH3ftyrfwEmagwo8Ch/1cLveIDJg7VsMdOcb6hzo/+73p30+TTlxwQFXAeJcqBLBf8zfV1DCNYABWDgSKw9T0KuxpcaDu1aqXKq32vc7nq2trS27jsxYw6Gp7ClwoZ490gfHQgVaC6RxjFQqyJg4Hr2XKif0YnjeSaqBzo0qd6oguAYB34PrpoULVWlRRZG/qSKghid727LgC5mzzr8ai2p0KE3rmquhyb9VoXfpi3PQyyBotVoWss5rE4kEcrmcGRh8JxoWkUjEjL9IJNLVe5r8gbVZ2u22MWnWlSBvoHeXXhkqvZyPsbEx5PN5LC8vm+AcHBy0XE3SuNKWGjRsLUaQjiHC9HZzrkkLGrnQa/9yvV2+wJDPXrU21FjQNSLdaXGmTCZj+XihUMj6JlNxYQQE1+no6AjLy8vI5XK2T0kPVFC5xwj2kcYJOJJOh4aGzADf39/Hv/zLv8DzPIyOjmJwcBA7OzuWB096YOVm7tNYLGahptVq1Xqgt1oty5FnO8t4PG6ofavVKWbF9AzuPQJPn376qc1bMBjE6OgoWq2W5TQS8KCRyvnle9GgYp0HGqgcE5UlrpHneZicnITv+1haWrL9pXxYw7DJM33fx927dxGPx/Gnf/qnuHr1Kv7+7/8eP/nJT7o6UZA+KY8GBjq9s5977jncuXPHvMeUhb7faSdMGqRCSaBIDzVWdf+7+14NKZ5LhwGjarQILGmX9MO5ohHJfGdVcpUX8rOGfDPSpVexWYKF+jzlDe77qXzX9+ezFYjQ658k093P7lzrs1Vv0u8UhOb5lIO6Z/U3vR44SSmt1WrY2toy3sdzKdPUUNe54e9cI63tQMXVNa61XhJ1LL2/RnOp/kdgl947vQdphmtDXsm9xPvoerlRr/pePHi+C4Yp3+a1rnyn7CVduvKdc9zr3ev1unUAaDQaqFarXYC10pvqW0NDQ10Rd19EvvcCn057BudtZGQE1WoV6XS6q7Xd/v4+bt68abV7xsfHbb8R5B8eHrboQ0aiZrNZbG1tYWFhAQ8ePMDOzg6i0ajVTEgkEtjZ2THj9vDwELVaDZcvX8bx8TGmpqZMDtHLvrm5iYODA8RiMSsuur29bToheQHpkvzi2rVrlj5AORQKhay4cV9fn8kFXk+nCHkUv+e5/BwOhy1aodVqWSok6wqxLgTHcnh4aF0rWBjQ8zxL2R4aGsLNmzcNQCYN8B1Z8ywcDmNqagrlchk/+9nPrEgjDU62Q6cMJ0+k/GJthUAgYB0SJicn7T1WV1fx1ltvGagPdKII19bWLPUtGo1iZ2fH6jXF43FMT09bMVeNQM1kMnjppZewuLho0QSZTAYjIyNWV4JAw8OHDxGNRjE3N4eNjQ1sbm7C8zyzLYLBIJ599lnUajVUq1XMzc2Z44Mdf5jmQD1ueHgYh4eHWFlZMXlfKpWQyWQM+AeAubk51Ot11Go1K0ZZrVZRq9Usourg4ADxeNyAFBZzHh8fx/r6Ot566y18//vfxwsvvIC1tTX89Kc/xcOHD9FqtazLB6NnGOUwMjKCK1euYH9/H5ubm+jv70c6ncbo6KjR7Llz55BOp+F5HnK5HFZWVqyQZCQSwd7eHrLZrKWI3L1710DAxx2/E6CCCyaoEk2i1Krc/I3Mmv9IsAxpopJCtJCGkqLPAMy4I0oVjUa7quHrGBW0UBRcmS8BBP4GdBdi7KWQ9fq7l2LWa+6+yLVqMAKwXKzDw0MLmdUNz3lzBZ3eW4UV56qXYa1j4f3UCGe3Aa6Rzpcydl0vnkuDjeFFqtioYsjcLeav0yikYekCLMBJGzaNAlCkX9NrNJxQvct8X36vdKNjJDNRJYLgDp9FxZlMQUEVChNdJ6ZjMMSU+4neUVWU2+12l5daDwVGFEg47XAV2V6/6zvy2SsrK0aL6kVht5WtrS2bu3g8jmDwpBUTAZS9vT3rE82qtRoOrd5Sfs7n811dBCYnJ81gbDabSCQSSKVSpuQwCoGCh3NGZZZCiPNGIUulSZUNd056fda51KgHro0CTAQsxsfH0Wg0rNApwRbNW2Z6AT2GVEp4b3pSCORSGSWd0UviAmdcT/V40eiiB4peF/X81+t1LC4umhcokUhY1W1dr0AggC996UuoVqtYWloyA4L5/oyAobJNJazZbFoxLVXsNI3FBbII+GQyGczOzmJqago/+tGPUC6Xsb6+jkAggJ2dHZsjFpmjosi1bLVaXXUChoeHsbu7i3K5bCGw09PT+OpXv4rR0VH88z//s4FaPMiT3UJ2VDDj8Ti+9rWvoVqt4vvf/z4++OADq3pOY5CKLY2Jg4MDfPLJJ12GOkFiegkDgYDxVh2LAqynGcCk216GL41Cggoq35XWlfcSEFOjkVEDpE31HJOHMIJG5Tuf7xrRCkpotIIr39Xo0nd1963uD/6t5z7u+KLynQaDynfuWconri+v18grNbRdsILzrga0vqfqAzpPnDsCnrpGyvf1nVyPPqN+mG+u86k6FQE6BWtJV65zRMFWjUQButtaUr6rQ0HXUo19BQF6OUsCgYClTpH2CGRxfhkBq/K9lz7F5/Bd2TFBx6Hyne9KsMOln17y/XGgQS/5rr/39fVhfHwcKysrXfn6jKTa29szvXN1dRW+3/HSBgIBi35jO7xPP/3UANZAoBOxeubMGTx8+NBaQLOWje/7SKfTqFQquHnzJqampvDqq6/izJkzaLfbFvLPegUjIyM4Pu7UoYnFYuZwUNB6amrKAGnStkbsDA0NdXV92t/ft0KSBEq4RgTpqfsSlGAhScpj4ETPrFariEQitj7tdhvPP/88hoeH8emnn+Lo6AivvPIKEokE8vk87ty5g83NTcTjcUxMTMDzPIvWJM0wUk/1BvLM0dFR+H7Hm06dhiC47/tde4z1z2ZmZhAIBFCtVrG8vIxUKmUFGAOBgMl5gjga8Z3JZJBKpVCv1xGPx5FOp3Hp0iW8++67lrbKDh+UCR9++CFefPFFPPXUUwiHw1hbW8P+/j5+9atfoVarIZvNIhAIWPHNvr5Oy9DV1VXs7u4imUxicHAQExMTODw8xOzsLKanp1GpVKwWSCgUsvov9XrdACy20mQL2HQ6DQAGTKVSKcRiMbz77rvY29vD5cuX0Wg0kMlkcPv2bavX9fDhQ+zu7mJqagqZTMbovd1uI5lMmhxmBDidIRcuXMDOzo4VuB0fH8enn36KQqGAarWK4eFhlMtlPHjwANFoFLFYzCIo6vU6VlZWcOnSJdTrdRSLRdy/fx+Dg4PmSGu32wZuAMCHH36ITCZjaTQTExNdUVK9jt8JUAHo7pJABuUaL8rANXdPw2n1GkVXVQlqtVoWLqth4to3lt5Pz/MMdaJXE+iENTGMSo0UEj43Kt/JZebKmBW1fJLCoQJfv9M5cudLz1FliIo/K5lyDnmtCmM1ZPiOQHefan2uCjM1ojXtQYEjrilwAhqo4s8xKPCheaL6bno+x810BDVkOR4Vtu1228K3SCtUEOjF0/vrHPN9qMC5QBmAzyl19GjSo+EavqqIUyDwvV0vERUpvsvu7q4JSxoFquipF1CVCVeRUKGja+uuOY9eCqd78L1ZXRk4oSWXhmkM9PX1YXh4GLVazYCAo6MjCznMZrPY3t62Ghy3b982A8zzPGtTqh59KruMTqrVavjwww8t5Jshe9qSqq+vzxRAVbi5ZqQfeuXn5+et7Q/3GfO4tTq/RgNwHlSJVCXWNVCUzynwxegO7oVsNot0Oo3r168bfbCwEGnIXVPf93HhwgVUKhWsrq5+rugen0uQbnR01PIXqWAx7J5KPvc7lfeBgQGLBCiVSqhUKtZmk4Ztq9WyYn6s1ExjqL+/H5ubmzZf5FtU+Lieuif5N/m69u6Ox+NdNRgYdshWVbr/A4GARaYQNGIaRDabRbvdtqiOoaEhPPXUU7h586btZSpe6jU7f/48VlZWEAwGzUsVDAYNMNNitDQO9/f38Zd/+Zd46aWX8M4775hCyiJSBNy5zryO+chUpAjQEkRSucDxah0Dd8+7/ID0of+7oJryCxpABO6YqqCyhmusck1lG+U7vc1sJ8o5Zz41aYTvqQq/jkk/c88riO7OhSuH1GOu8+Uev41873WoM4NrNjQ01FWEkvfppYPweWpQ65qqrCOduyA5f1cZrzTEPa9yi2NQh4ybXuLqAwo+q3zX91H5TtqiPFCZp3ok7+OmzSi/0ygYXSPtsNJsNrtSw1S+8xw+GziJjOB7qwMLQFfBv3a7U9SaBQMZhdhLvqsuw7G6NOZG4/TS6ZQ+3O/0CAY7HaTooWU+u669riHT0mZnZ7GwsGCAbSQSQbvdtjx6RngMDg6aXlOpVPD+++/jK1/5Cs6ePYtWq4VUKmVyKJ1O4+LFi+bN3t7eRqlUQrlcxtjYGAKBAHZ3d023o3xhBCR1AxblI42QB1CucY3o7Z2fn7fabYy6U8AKwOdqhXBemCqhsr3ZbFpRSM4/DUjKgP7+fszOzuL27dvY2dnB5uamgakaIcH1oFymjC6Xy1ZXh78FAgHTWSqVChKJhIEhIyMjFjVTLBatMwIjCvgumUwGsVgMBwcHKBaLBlqMj4/bPSgvOSfaVpvRgQRoLly4YNGEwWAQuVzOakM9ePDA5mJvbw+vv/661UMoFApmGL/wwgvY3NxEpVLB4eEhNjY27H7UQYrFohX5ZGorgSnWGeC+ffToES5evIjj42PrYEI6o8xmUeDj42MsLCyg3W7jzJkzCAQCyGazODw8tM5Fm5ubyOfzADo1Sn75y1+ir68PpVIJt2/ftuKha2trqFQq5hAaGxvDwcEBtra2kEqlLIWGIHMqlcLbb79taZis5UUbqd1uY319He12J9I3lUpZBMlzzz2Hr3/96/iHf/iHnvve9v9jf/3/6VDGquisKtR8cf2O52k4JjcuQ4e4iXWDErFX5VN7YlOpUIGiYeGay8vfeS9GSPB5qgSpUe7+62XI9QIiXIOr12e9Bz+T8amnnIxFhYkL5Lj349xTse41Vt6LijwNad6bKLrOt66fnsu5VqVUhTTnrJcSyLVWRYtKtdKSphuQdtQTRmPeXSedNzJhBb1cr4cKJL63VjPnc5RWqWiwyI5LD66A57M5LqKPZIRqmOrhzoGCG/pM9/kuzfJ4nPLreZ7NL5Vd0omGuur+Ix1oe0PO08HBAZaXl7G2tmb7j3NBEICCWT1KpLe1tTU0myedJvb29iyMkUom8xM5Rs4nwyTVk8F/bGvoeR6q1aqlTnCOeZ6+L8GTVqvVVSyRCrzyLD1UwT08PDQjlmNmleDt7W3s7+/bfOzt7dk8eN6Jp1EVUM/zujpqqELO53Juo9EopqenrTBWOBy2+VGvJJU4GhE0yKPRKHZ3d624FFMoqFAxmmRvb8+ij4CTLg88l+tG41l5hhqfpCEW7wwEAtb+KhaLmTLCFme6zzjfrdZJ7QTScjAYxNNPP41oNIpoNGrKBtusMeIgmUxar/JWq4XXX38d165dw8cff2yGBZ+j7fQI4JB/cN+/8cYb+MUvfmG8d3h42KI0XK8wU0Q4F+wAkU6nLbyXha+4D1Uuunv+tO9I47rvlJa4l5Qn81w1AnXfcH9wHThG3aPKu6g8AycFm3mt0j73DPkGD92Dj5PvroxXsEPnptccqQGv99bPva4DTjq7qHzXzjVcYxc84Nh1nQB06VSnyRuNMOT4ua6Ueyrbge5aSvync91rrrheKm/4mfuZ9yTP1HMpUxUs0IhIpgKp3qf0AJzUWSFvVvriPcjTlG60ACijSXg/gpl8DxdwUl1M6U0Bfk0Lo3zn/XW96ADTOe+lS+vcu7pgLzDhtP0/Ojpq+jc9+yw0ODExge3tbXPM0ZN6dHSEBw8e2JgIzpdKJXz00UcoFotdKZC1Wg1TU1OYmpoyALGvr9Nmkd0aYrEY1tfXrX4DCzGS3xLopkebwEEymUSpVMLW1patFUHIaDTaZQf09fWZNzmTyZihSv7OVpQEKcLhsOll1I0rlYrtXe4fAhEEQRllyzSCeDyOeDyOWq2GXC6H1dVVi4akzNI0IdLgwcGBpRwEg0EsLS11ORMIFNCeKZfLuHPnDkZGRvDyyy+j3W7b/K2srFgrReBEj2y1Oi0eaYdVq1UUCgXUajWbP64D14n6z8rKiskq7g+2IR0ZGUEoFEKlUsGvfvUre1apVEIqlcLCwgJqtZp1NFpaWkI+n8fh4SHGx8fx6quv4itf+QpCoRDu3LljRv/u7q4B6dvb28hms1YnKZfLWW2GSCSCixcv4vz588jlcvaOwWAQy8vLWFlZQTQaxYULFwwwoRNsdnYWR0dHOHv2LPL5fJd8KBQKBu6wWHG1WsXq6qqBQltbW+YouHr1qtVl2NvbMxshEAjghRdeMKCnWCxahMjFixfRbneiUT755BN4XqcVjRKVSgAAIABJREFUN6M92CGi1erUYeBz6/U6BgYG8Ad/8AfIZDI99U89fidABQCGRjK3koyORiErftIooMBi+BjzhMgcaaRR+KmngB48AgW6kZWRqodBQzM50QyjUmbNvGmGjmp+Gg8XUNCQYzU2eLhIM8/rZbjpta73Rr+LxWJWFbwXss37qKGkhpwKZX2uGqW8lvPG8Wq6BNde55Dz7aL0rKjK9dRzaThwLPpOGsrIeaTSowfHR0VF0Vw9RwERorqqVLpKAa+h8gDAUFFVqhg5w5oCvFYNVteoIX3rwTw5NUhcRauX4uIq/Kow83eX5nrd/0lHIBCwQjTq9aVyqqH2wAn4pdEBamCk02l861vfwvLyMt555x2jHQo45gzqeHkfVi6OxWK4ePEiFhYW8MYbb1iBOiqFFID0ZKunioav0psaOp988klXu6a+vj5rF6i52AMDAxgbG7NwVubrcV+5a6X3U3r2fd9owPM6Lduef/55vPXWWyiVSj1bAun8c44Ypst50Gf39fVZ5wyNENMQ+1arUyeBgBj5OhUkVdrb7TZ2dnYsZDKfz1thVeaSHh8fI5lMIp1OY2try0CI2dlZbGxsYGdnx4A4992AE4VHQ4Op7I2MjGBzc9NCdVutk3xFGibqVSKYRF5BQ5QH+czZs2fR39+PW7dudSlIfPfnnnsODx48QC6Xw/T0NNrtNn7xi1+gVCqZN0yN7eHhYczPzyOfz2NlZcVowwU1KTdLpVLXb7pXuRdJSzQkGfZJvqmGmnvwea5x4Z5LBdbNdwdgSjnvpaAC+cDQ0FCXMtPf32+5t0xHUqOYHTUUdOCYGJ3E9SeoRVqhUk0+rzKNFdoJgpIP6PuSHni4OoAacTpm3d+P46WufOe4+Tf1Ib6Dpg+5ugef1Uu+u7oEx6jyXcEflx9xDrRVNXmpGsOUYUxzoOzj4cp3jax7nHxX2lYjmXuW+9CNeFTwkUCSGt0qO139RiM8qBvyGQyBV2eU3k8BFdV9lPf6vm8GsNKVAkdKI6qD6DtQP1K+oHvYpb3fRr5TJjcaDaysrAA4SU1LJpM4e/astX+mPIhEIgZ4P/XUU1aQsN1uY2JiAr/3e7+Hjz76CL/+9a/tfO7DP/qjP7JOAQMDA9aqsK+vz9K42u02EomEgdac11wuh8XFRVy8eNHaSx8fH2Nvbw+rq6tYXFzEyMgI5ubmzONdqVSMPzKygcDR7OysGfLsbhKPx3F0dIRUKmXh77Vazeoh1Wo184DTMKQTip77dDpt9Sm2trYQCoUQi8UQjUaRzWaxtraGfD5vbZoJgNMOAU6AMY6r2WxayL8W4yXIxhTCUqmEfD5vwD4LOwOwFJLd3V20Wi1cunTJwvaLxSImJyeRy+WspXSr1cLe3h6mpqYwPz+PR48eWVppLBbD/v4+VlZWTD9mS2x2kgCA2dlZA5VzuRyOj48xMTHRBUxz3S9fvoy9vT389Kc/RaFQwOXLl002EigaGxuz2kEbGxtdoD1rYbArVDweR7lcxsHBAYaHh9FoNLC+vo7Z2VmUy2UrkHj16lWcPXsWS0tLWFtbs5Q9RhZRxwsEOmkj1G8ePXpkwHiz2cQ777yDaDSK8fFxiyAEYLWEOKZ2u21FMVutTrorO2fcvn3b9AkCOARDSL/RaBRAx87a2trCwcEBNjc3EQgErIvE/v6+FWt83PE7BSrQuCczV6bJyeL3FCTcDGrcuUiKKtskbNYU4AZhaDKvVaHEe1DJIfqkQlSNw0AgYIyFTEKNQleZUDRcgQAN09bz9B6qqPB//sbK7FrckNeXSiVT8HqBCq73gmvhAh56Df/mPPDdFSBQ45sRAYrY8VmcM1X6KOiJKKvyoXPJ8an3Xd9Rn6cAhM6lq+hy/ngPpTtdC/UgMEyMRdxoQPM8vgfpp1arGUPje3Jsygh1rVSZdhUqMh2dG1expdBRhYTP0zVWpdGdZ6VN93Dpk59jsZh5WdV77NIyxx+NRlEoFIweuL9o4JXLZSv8CMCE+cHBQVfEku/71vqURgILPe3t7VlXBF0DVtPl31RCtRMM6VtTIVQpJN0pL+J3bFnLeacnXulJlU0Aln/ZbDYthO38+fMIhUJYXV21ueL4r1+/boCICy5xXtTYIy9Wo5ppBhwnPVAAuvbsrVu3jGbIY2lg0EhsNBomYKm4azoCgYeBgQFLFWEeIYt5qrFP+qEhrXtFDQSlQ8oRKkFU/g4ODnDr1i3k83nkcjlTyuhloveFtMf1JNjJdWLxS6ZztNttC+GkgkClO5VK4cqVK4hGo3j77bfNsGfKAtOFGBrLIm2URwwf5f4g3RAo0HUicEfAiLyL81Gv17Gzs2PrpPxDDUHdz7rXe/EClQW6N5Sv8N5cL8p3fSddQ3qvXZlNQJHKKr2PNMZUppNnkteqfG+326ZIu/KdhiGNC+XHKmOUD1IHcJ0EavDy3F5z6Mo4yhYq+Ho9C/c9Sb7rPlCe4OoqfCcF/uno4VyoEQ+gC4zkvGlov8p81ftc8Ilz5OodKt819U/lO/mYgkocq8p3rXWjTgcXUFc+RvnONoHUR9ThosZarVYz/qE8lXKM16p+5Mp3jiMQOHGaKSCkfI6feZ5GHLl70JXvHP+TwIRe8h1AF4jMUG3uQd8/6eJEHTUcDiOXy1lOOluWsmXy6uqqpYcFAgErblcsFjEzM4NXXnkF77//PpaWljAzM4NPP/3U6gixRgMAu0d/fz/W19eRy+Us3fGZZ55BIpGwyAXy2I2NDXieh4sXL1pEBfkC67CNjIyY4wLopJ6OjIxgcnIS9Xoda2trZg+w8xD1SEZRkB8zUiIYDKJarWJgYAALCwu4cuUKVlZWjBcBHR54+/ZtLC4u4tatW9ja2uqKqmM3Da4TizrSQUIAkuul0Rf0sEciEVy7ds3qNhwdHXXVaDo+Psbm5iYWFxfh+751XYhEIjZPdEIMDAzYOgeDna4YGxsbePTokUXOsUA+aafZbGJqagqtVqcw9c7OjrXpDIfDGBkZwfj4OCYmJrCysmI1O5hSMjExgZdfftkM7V//+tdIJpMoFArY2tpCs9lENpvF2bNnsbOzY1F6pVIJjUYDi4uLuHPnDqanp/HlL3/Z9szR0RH29vZwfHyMaDRq9STy+Tx+9rOf4Wtf+5pFQmQyGWxsbKBWq2F8fBzBYKceGJ08lN9MHSIdsObD3NwcPK8TWcDUkIGBAWuzmUwmkUwmcfHiRQNujo+PUSqVMDMzY/ra8vKyycS5uTmb8+npadPTCNRobcJGo4Ef//jHBpA87vidARVIzBqiPDAwYCHEwEkeGxUUz+sUITnN46whPYqak1A5ObyXhoNSwAAww4uTzlBKZeQAjIExz0o9R70AAFf5UGavXn41Ft3DFf6u4OwV1u4qGxpOx3uqYFKlXOdXn6fvyPPU86lGsb5zNBq19eP3nGOitQw7A2Dj5kZUAErn7vDw0Ji8KheugHSVQDXkXE+A0hKfxTAt/Z3KOBmP7/vG2F3Phs7l8fGxFQXS+XY9gZxHKsicIxpQFMREpQneECHlPdQLp54jl7ZIM1R+XADLpUceSpPueURVqbjHYjGUSiWEQiEsLCzg3r17FjZPEMz1CnLONjc38aMf/ciMK84Lw9YCgUBX9WMWpanX6wZWzczM4M0337Q9oYq+60HSPQV050ZSQaei3263uwwzVRoJUPT39xvjrlQqqNfrFh7ay1AjPWsRvWAwiAsXLlgeKkMACXowtE/p2QUqdP3Ii3R/kNZ4H4aGkka4NsyjPDw8NHCE4IaCD1TcSJ88jyGAGi68t7dnvJ98nakit2/ftvo3HH82m7UQUDUANWUqlUpZf3IWhOJ7VKtVrK2tmeeGe3h/f9+MIDWyFDhqtTodHkqlEm7evIlGo2Eh+Qqwep6Hlc96S4fDYRQKBWxsbHTld3LsbF92cHCATCaDZrOJQqFgShzlJQ0lVuz3PM/eizTI1mBcL65HNBo1w0jTxPieLq8n/3B/73XwPTQ0nsWo3DoGpGtXvivYSV7p3p/eYNeg1XlotVoGtnMspCuV7y7tU76TljVKRQ+Xb7t7Sq/h3iHfce/jylqXP5Mnnibf+e9x8l3/1+co3+slB7mXNZXUjTKlfFfeyDnnnFJW8nryL+XlrhNAATyd016yRuW78m2NeKBMB7pTB1ydgXT628h3fk+wSqMI+TvfVdeHf4dCoa7CerFYrMuxxvlQg0zlu+67XnR0mnznuveibf2t175n4WV21xkZGbFODq1Wy1qEDw8PG/1cunTJfuf4aYCzXg4A6xhy6dIlpNNprKys4NatWwgEAhgdHbUQdXrgp6ensby8jHK5jJGREZw9exYffvgharUaMpkMXn75ZQOuKeNGR0cxNTWFyclJ3LlzBxMTE4jH46YzkKfH43F4nmcgSCKRMO9vNpvF2NiY1WxgSuDOzo6BzAAMmNJUGQXvCGYnk0mMjY1he3sbhUIB+/v7BiDwvixcyegydnEgeEDwimAOdYeRkRGrqUCjkxGY/f39mJiYQDgcxpkzZxCPxxEIBHD79m0zbDnPw8PDZsCOjIzg8PAQsVgMqVQK09PT+Oijj2zPra2tWVvJ3d1diyShJ50dNe7du4d0Om0gUzqdtvRHgo/cEyz4SACB9YLOnTuHarWKcrmMQqFgvD6XywEA0uk03nvvPSvETfttcXER//Zv/4ajoyOsr6+jVqvhpZdeMtni+53IIdbxYkTe+vo6fvrTn2J4eNgAtVarZc4ptvNkmmcmk0E0GsXVq1fx1ltvoVKpYGxsDN/97ncxPj6ObDaL2dlZ5PN53Lp1Czs7O9alIhqN4syZM6ZbEIBLJpNmB9Fm3t7exs9//nMcHx/jtddew9WrV23uGD3L6ES27WSKzdNPP4133323yx7rdfxOgAqe53UJab4YDzf83A3zVAZNpkcvBo1TChD+zY2jAp85tMfHx4acAidGIgATZszl1XcgU2cqBjcP0G0YKmqs37nggasw8DydC/7fSwHhO+r57r1c4ee+k6tcKHrtjodzoIqUnq/gjyoZ6hFQQ56Ah4IGBAxcI859f1as5Xyq8aNKiqsQqrLnKmH8TJBL312VFVXY+TfDrF1hrnUlXCVO83593zcjS6NedGw8GP5NhUe9HHo/VXb0XfX9VZnTa1w6fBLA4CojrpJWKpXgeR1kmpEF2opQCz35vm+eVt2bNHQCgZPc+0gkYvucyvb777+P6elpyzH75je/iQ8++KAr5YPAABk/QyMpQOhpB2ApT6Qf0qV68HoBiFTmePT1dXpxu541d4/xXWhUttudiIuf/exnFi7I+6pB4e7zJymMBPU4/77vm6Hq0gk/BwIBLCws4Jvf/CZCoRD+4i/+wuaf1zDEWcED4CTkVxVqelPo8WOKEEEpeuJHR0etaBUNRhqInHu+C/djLBYzjwfnXw1tygkWW+O7a062Agu6rr7v2xoQhNCwe46NCvTx8TF++ctfGgjk+z4ymUyXIOf1d+/e/Vz0B71b7FO+t7dntMZ842q1al62fD5vbcKoBFGp4P5xQTV3z/f6vtfB+3FvKsChsl6LKar8cMPTgZPoH8pzzqvKd64X15YhnqFQCJFIBMvLy7Z3+L6UN9q2mrTJ0H0tuqbrzkM9ibrf/0vkuzu3ymtJ4/qbC1b3ku9cOwUXXP7PNdLr1NnhGvQEtLQmgUYWqsef99e/qaMxrJnPV/1A6VHz2l19hnOrjgRdG50DfQeOR9OnODdPku/q6NKxaGFm0gzHwfXjbzSuNUKV49LxcHyqv/LQqC2V7zrf5Fn695Pke6/DBaB4qOFGfUlTAtiZgAYP9cZIJGIF5fju7XYbDx8+tJz6dDqN4eFhHB0dYWJiAslkEjdv3sSbb75pNJTJZPDNb34TzWYT1WoVs7OzFqm3sbGB+/fv4/Dw0Gr3nDt3zpwx4XAY+/v7WF9fx+XLl/Hcc89hfHzcIgIJDmuEJHnt6OioFV8uFAome4eGhjAxMYF6vY58Pm9gB9+PhjFprK+vz4xPOjCuX7+O1dVV4y2FQgH5fB4HBweWRnFwcGA6v6vv0qNNAGBgYMAAAHq96QBhrQu2lk4kErZu8Xgcc3NzmJqawsrKCg4ODgz4ZUoGwdvBwUHTuejVJ+9kN4VHjx7h4ODAQuwzmYx1DCG//sM//EMUi0XzoLMOFKMFM5kMJicnsba2Zk4i1oLo6+uz+kXkC6lUyiInXn75ZQAw45wdoxj1ury83FWja21tDZcuXcKXvvQleJ5negy7kvh+B2AkSE2d8fr16ygUCggGO8UeX3zxRQwNDWF3d9ciPjUdmnRw4cIFDAwM4P79+yZ7PM+zzifpdNpAxf7+fiwuLnal54XDYRSLRdTrdYyPjyOdTlu7SLbfbrVaZrOy9h6jq7mvR0dH0Wg08Cd/8if4x3/8x578gMfvBKhABZJhNap8kFiZS6LXnKYcu0Y/DQQqD2zbQsFAYVatVhEKhayqJwt8KFihQo7MRQUVQ/apeJLB8xmq5CszVy+FCv1eir+rIPQ6T9/PFRhqILtgjCoXqgzwfiqQ3PP1Pq6Xk2usaDzfm/lFDNMDTgQ30Xjei8o46YSCmwqGK4R5P1XA1ZjvNT80PNw1Om0dTqNDnqdgAb1oel96uhleS4OESoeCVBqeyet5PyphqkhouDHpSj2NqvwqHbrz2Ou93Xd2jVKdX/cezHnU9Iu+vk4LJ6Cj+Nfrdezt7Rn9aCcHjlu9gQQbKARoiBF1p9Hh+50ClrFYDH/2Z39mFfrfeust89Dqe5w5cwbZbNa6Gdy4ccMQ/ZmZGezv73d5RRnK5ubi8n7uPHNsmk98miLHNebaKn0znM6dd3fvu3yBa+LyBd6Xe87N7dXnKBj48OFDvPXWW6akqOFDJZP8sN1uWzcDKgOkYXb94H5lmOy1a9fw7rvvWmQHPcg65lwuZ3PEcWoxrmaziUePHgGARYowbYK8i0o+jdPp6WlriaZz0Msw0zoENLr4XlQKKNOohB0fH5viyq4NpGEabTyHxghDiIeGhjA8PIxisdgVhkvFhyGe9JSqYbuzs2MKv+4hNwpL+SMBMRfQPY1mgW75znUKBAJdfb31ml7yid8zekRlMTuOMB/bNexrtRqSySRmZmYAAJubm6hWq10GI9ef+5j8ggqi7m01TMnXXW+5+38v2avH4/ire95pclj/kb8oL+Bvp0XEkbZcwF0dI8pLuMfUQOb1lG+UQ8r/eK2mv6lsVqCIa6Bj4fvoP1e+u84cjlsBP5dP6vx+UfmuYIZGPbjyne9C45NGJ2lYgRuOX4Ec6k/knTROVc9U+c55VjDzv4T+esn2046NjQ08fPgQiUTCUhkYrTc+Pm71cLje5LPkzQpU9ff348yZMwBg7fG2t7dx79493Lx5E88++6wZ4cfHx0ilUigWi3j//ffx7LPP4tq1awA6ERG3bt1Co9Gw+yaTSSQSCQwPDyOfz2NychK+72N7exsHBweoVCp4+umnUa1WUalUrEPPwMAA1tfXzVhjzRfVN7heR0dHVsBxe3vb3ou/a4g5wW7OMe0UAF21i7StNaP1WF9BOyxxbw0ODlrYPI1S5uTv7u7C9zs1mFiMmnonUxfi8TgikQgODg6wu7uLYDCIra0tDA4OmrOFQOClS5ewtbVl8qvRaBjwsbu7i1QqZY6eer2O0dFRXLlyxaLvxsfHcXzc6QhCB63qHwSMG40G7t+/b/Ue6IyifDk8PLRUmhs3bmB3dxfj4+OWtkFeQLCEkUDaZUQjRckr2Fmkr68P2WwWq6urlrLcarVw+fJl7O/vo1AoIJVKwfd9fPzxx7h79y4KhQJeeuklJJNJ7OzsIBKJYHNz02RNpVKxzhmsHRUMBrG/v49qtYoHDx5gbGzMQBfW2Ojr67PCiiya6fu+ddpIJpNGS2ypXCgUMDo6asAbASzuB659MBi09acj5knHE0EFz/MGAfwKQOiz8//F9/3/wfO8swD+CcAIgOsA/hvf9488zwsB+N8BPAtgH8C/931/5XHP4ItTsSABkVGzyjDPJZOlV0JDB5W5UrhxM1JR0jA8Cg9FCYETg4QCgkJSQzFVICkTUWVGDWtV5NTI4xhdBUrW4HOCTxm/zqPew72Xa3jq9xTGqnDoc/Ud9Hs+F0DXXKnCw/flb0R52daEY6A3T72JVIqJ5vFZigQqE+e8U5GmMOU4qYwqSKGefL4jr9O5pMBXRaWXZ0jXnjRKjxgVLaUdClKdcyoqjMwgo1Olj+MinaoyQYap7x4Ohy0nkJ5OVUBPM3x70UMvo9Q1Xk+jQ7baI9JcqVQAdIy7jY0NjI+PdxkLfKd0Om3Cvtc+IvDANAiGJHKvs9I00fhms4loNIpqtYrFxUUDEHlv0g9zAPv6OnmGbOXUaDRMeRofH0er1bLiODyoRGiNDdInwUeeR0+8AqjuPnc94nq4f5MP6kEBpsCU/tNnKj92PfP6flRuqFjk83n85je/QTgcRigUwuTkJGKxGG7dugXPO+mKwZQX0jQFPMfHqAQKe4LCN27c6DLq6vV6V2Eqd8+Sr5M/K01y3yg4zGu0bzOVI+5VjWji4RpcelB2qAyZn583b8/k5KT1bOf8sC2qgmLxeNy8gHwWATim+Ozt7dlzzp49i9HRUWufxergQCeajxWlaYwwfUZBKyoXyq84f67c6mWAnSbfeY7ucQViKKc5Hp1Xle8ElBmWrkYqrwe6K/GXy2UcHh52AdFKJ+7e4edeXmT1WpN3cy70utOOJ8l3l7cqP3W/47y4NPk4+e4akb2e4Y5VeYD+rdEJDBHnQXnNzxpRx9Qk/q61IjjnOh6tacA10MgAfqcGut7Dle/qMHGBiF5GNteYwPjj5Lurc1IX4h5jqDWfrXoU39+V7wpQcFyU7+STyiPIsyg7ySvZSpl7ut1udxUPVrpRXc2lFT0uXLiAUCiE3d1dhEIhq/rP/UaepXVxBgcHrUsOjWGCo6lUytIK2OpveXkZy8vLFl5OI4sG7vLyMqanpzE3N2fth3d3dy3dol6vm1e8r68P6XTawNRsNotoNIrt7W3rGOH7vvHZVqtlhuXExIRFzfDz6uqqpf0wAoBygwYodZDDw0NUq1WTnUwJo3FPHYYtcMlz+/v7MTw8bAakpnLRS0+ZmkqlLATe930z9hkFyH3B1vKkuUQiYTKTaSjsvNDf34+xsTGEQiEMDQ3hk08+wfDwsDmJ9vb2TLbv7u5a+86NjQ0sLCxYDatWq4W5uTlsb2+jv78fuVwOkUgE8Xjc6PvOnTvY2NjAzMwMQqGQ1Zm4evUqACAej6NSqWBtbc1qNTDixfd9PPPMM0b7TAlgYdBisYh0Om3pJ1rniykqdHhMTExgbm4OjUYDd+7cMWOfEQTNZhNra2uIxWKIx+MAYIBPrVbD3t4e7t69i2w2i2KxaN8RPKnX610trAcHB5HNZg00oM7abDbxne98By+//DKWlpbw3nvvIZfLIRDopFUQdCDP4F5kJ5IrV67g/PnzmJiYMLAgmUxaVzCmpAHAxMQExsbGbG015fC044tEKhwCeM33/arnef0A3vY87/8C8N8D+J993/8nz/P+NwD/HYD/9bP/C77vL3ie9x8A/DmAf/+4B6ghR6aixrsN9jOBlclkDP3khnBDjUlQZIj0iBDZ43P13olEwtrI0GPIa6lAuJ5dfa4qqQz5UoFGBZl/c5zAibBSBUXBDr7L40AFvY87v/zfVXY5Lo7dFYi8pytIOL5e9+Z6umAK55ICTHOcgRPFi4gkPzO0kPPqFr4j0ESwQttP6dxROebfVCJVMLsGk4ZQ9/KO6zrpnFGxUmVcARDgJNdX51nBCyojbrQI94k7/y7NqMLM8brpI/pspS9ezzG6oVm9xt2L9pTO9PxsNoulpSWrm8C1ZfE6Kk5sm8MK/el0Gqurqxba1m63kclkMDc3ZwyZIVzDw8Oo1+u2r5k32Ww2rTjR22+/jVu3buH111/vCpV/+umncePGDfh+p5IwP9Nzrp7L+fl5EwLRaNTCEEmfoVDIqgbTK6vrSjok3T9uHpU/uMq+u091HyuIqs/VtVEepjzV5QvcSwry0TPP51AQA52iVVqIkrRILzHpra+vz0IuZ2ZmzOgYGBhAsVjE6urq51rZsgWSpntQ+eNzNCqJHmVV7Pn3uXPnsL6+DgAmhwAYYEGvghoj7jzq/CoQrrKC/IoRVoFAADs7O13RLvQUkZaAjqG1v79vPIT3ZI4jIy84DtIj54UGBd+b4wqHw9bT+v79++bBID9VY1xBN95DDWkFPnWduI5at8DlJ5Tv9AaRjysv0jXWuWckC1tDE5BUoCiRSKBer+PevXuoVqufM7p4b+VVLrBKeiEPVkBa9y7nQkPpCdK4wOAXle8uUNNLlut3/Kxh9b3O03OfBCboueQDLphJQ5QpfzyXz9cIkGaz2RW9wuJkLnCu8lsjaPhs1/DlvCrN6hxzzTXaVPUV8jvuVb0Hf3ucfNd/eh0P8iw16ngPgs295KzSiObfk5+pp9nVG3zfN09jq9WyNDmmjBEIIn1zDzMfXAHRJx2RSMQKBgMnuhT3PDs4XL582ToM8LdGo2Eh9SzSx3pnDFt/+umncenSJTPkPa8DVg8NDWF8fByXL19Gs9nEw4cPLY+fRX9ZP6BcLlsKY39/v7X5S6fTZqjmcjmcOXMGxWLRdIZQKIS5uTmbJ0Y6PPXUUza/uVzOgGjSRaFQMH5OUEHTKbkuqquxAwTnkOAUDVEFemigDw4OWicj7i3KPqaZcD0JIrNNJ0P3Fbzwfd/ADfJk6uQbGxvWgYktFI+OjiyyYmdnB6OjowCA1dVVAxQCgQDOnDmDpaUlS6EgeFOv1zE1NYXp6WksLi6i3W53OcKq1SpGR0dx5swZ0yNqtRpmZma6eEM+nzf+Mj4+js3NTWSzWTx8+BD1et3AID4/EAh0GfQn0PQpAAAgAElEQVSBQCfiPZVKYWJiAvPz87Y3j46OsLW1ZesSDodNnnMOSCulUgmbm5uWjks7sFwuI5vNYn9/33RD5V2lUgkjIyOo1+tYX183oCqRSCCdTqNUKuH27duWxsOUBdaa8P1OCjU7RS0sLGB+fh6vvvoqGo0Gtre37b6kvXw+j2KxaDU3CPg1Gg1MTU09Vjfl8URQwe/chfBE/2f/fACvAfivP/v+PwP4H9EBFf7dZ58B4F8A/C+e53n+Y0ZDhkNmrYyTTJu/ad9vVfx4HYUFQQEyVt6HIYqq1FMB4IZRj4p6YugR4aZSxU7zPtUL6I6Dz+O9XeBBnwV0V+blOU86ep3jRijoszge9erweS7AoELXVaL5mb+pQqYGCr9nSI7bQoqMU4vGcD04N+opoDFKJYVromOlMUBB5YYYunPC7/U9XENN14W/6xzodwpk8RwFJziHvI4C0AWn3EO9MVSm6bHjXNJg437REF2dI9KaopFkKu122+ZYn8W5dpU6nRP3aDabWFxctHEQASX6T4M8FothamoKzWYTw8PDqFQq2NvbM3ogSHhwcIB79+5ZviDniwpqMBjsAqb4GwC8/fbbWFpaMqCKguHWrVtm5HmeZ4g8I2BYRBaAFYTM5/MoFApdymw4HMY3vvEN1Ot1vPPOO4aEk9/weQDMc6HzRvpQxV0V/150oTSo68VjcHDQvEZKpwzDpSLk0rben3RDhZPPojeEIANpsVAo2LlMYaE3amBgwHp7c+3y+TzGxsZw7do1lEolCzllGoH2GSdYRL6ghoPyPFWs1DjmZ7YiGx0dxdDQEB49etRlDCiw2GvOgZPweXoL2u225ZGyZgHXWRVdtoUi+H18fGzFpriHDw4OuvYrvUUDAwPY3t42mdZud+o/xGIxbG5uWgileo7VQG+1Whb94PudNBGG9JLn8b3VWCFdkr+4NMdDDVqlJ+43pWkqlzy4L10vrwsIBAKBrmKYjFDStSFv4B5z5TsNX84tDwU01JDl+HRPkBeTbysApPyHNPjbyHd3z7tzrAafq2+4PEFlFc9ReeDqCUrfuh8U5HaNc83T1jExek/lOz2LmiZAHhEMBg04I2DhphgokEcZx8MFT3W9AXxOHvJQXUXn0nVEKH/lnLp6kn4HoCutSyMx9BxXFyQ4RI+q8l/qWG4KDveorrt7kNdw/ujMUBCBeoULKvS6X6lUMiCZ8o5pxzrHmUwGmUzGahIQvCUdUMcmD6SBnEwmMTs7i/X1dWxsbODcuXMYGRmB53kWiVkul6394uHhoXVLoiFZLpeRy+Xg+35XgeOdnZ2ulEymX/b39+POnTvG20mn0WgUc3NzCAQCWFpaQiwWs7o15KUsaFwuly3FgKl8qi8TJKL+S8NOHaFMjaOMCgaDBqwzNYNRDKyho/oU9x/3K38jmDAyMmJrHQ6HrXYRwexgMGhFk5vNJsrlMgKBAC5cuICDgwN8+umn8H3fUhzGxsaQSCSwuLiITz75xLpu0RHD4plDQ0OYnp7G5OQkrl+/jlarZS0ky+WypQIAwPT0NAKBACYmJrC7u2tGsOd5KBaLpiNQ7gKd+gv9/f32fABGC6FQCHt7e9aZiQ7pZDKJ/v5+1Go1uyfrYxAQZPQruwhy7RQEW1hYwCuvvIJMJoNcLmdjIw8g/2g0GjZ+1gt5+PAhrl+/boDg/v6+6SZLS0sGXnEfUt8iCMNomStXrnQBaEB37TUCKfw/EokYWMKI0o2NDVy5cuVz+909vlBNBc/z+tBJcVgA8NcAlgAUfd+nprAOYPKzz5MA1gDA9/1jz/NK6KRI7D3uGSzcQUZLRqzIMwDrTaqFlaiMcVHJZBWJ5kGPGXACRAAnnikydqI0ms7gChj1hmhYJA1XPY+KoaK1qgCrEvDZ3Nk5rjeAgvuUter6v9dnVQD1e9fIVOBAx6XnUZnjeNUQV8HPv6kkcH00T1sVXW5ahsCpl2NoaMjCjdSrwecpiMBn8DOVEjW0uUauQOc9+V4qUF2Psc6benF7gQ68P+mKYIl6RgYGBkx4KX3wHqqM9wLlNPWB88bxaOi2Ah68npXPfd9HpVIx7wcZqxbSIh2y97gqhKcZpRyPem65P9TzcnR0hO3tbRwfH2Nra8v2GQ2NyclJpFIpbG9vm1dE+QHzBRuNhnkpqeyzmNTGxoYZZxT6Gm6uSiTRZ84hGT3BDvIAChXmb66vrxuzJo9TDxs969wDXA8NVzwNPDjNCFFDmnTP7zTaioLPBbgUGNXnUAEhYECPO5VRDWunEkIPtbbOpDKka6p0fnBwgI2NDSQSCcvnJJhMcIDrxL3IeSdooXRHeqlUKraOPI/n5nI5eJ6Hvb09C6MkaMZ7uKAj54R7i+9GAU3649rqvD948AD9/f2WfhAOhxGNRi1iZWpqyowyKg4cL2ktmUzi8uXL+MlPfvK5cHEAlqbD+SX/9LzuvPKDgwNTnghe8DeO15VRCkIDJ8pKLxA0EolYZAr5A+WQghb0cmnhMpXRbqcV0i/vSXmtBhdpXselXSL0HK4t5QF5v9Kmu5+U3/N89SLzHN1jlJF6Len1/6l87yV/eoEKPNSw6XWNgvk6TjU6Kd+1E4Qr31UXcOU754xrTPlOrx9pnrqcgiGa/qipAkpXKj+5lmq0q3xXQ5zXcIxKG/qb0o0aiSo/eB3lM41BlTOuw0vlO8Et7iFdK1e+q57mgj3lctnkDkFXlbucA6X5x4Fd7jE0NGR8h8VXARiAznuXy2XcvXsXlUqlS5709XVqJMzMzKBSqVgLSHpuGXZ/584di4S4dOmSgRi7u7vY3t7G0NCQRSZcuXIF9XrdjDryooGBAYyNjSEcDltXBkZDsFYN2x0Gg538cnqPi8UiisUiFhcXzQijMa7F9+r1uoXe02vP3H7WKGCRU+4hggmhUMgcIkBHJ+B7hcNhpNNpJBIJmwdGQbIYba1W6wIymMoXDofNEKYzIZvNYm5uDqVSCcvLy+ZpJ0gdiURsX1arVYyPjyORSJg+WiqVjC7ZxaPZbGJ3dxeRSATPP/+8geN7e3vI5/N44YUX8PTTT2N3d9c6fMTjcVSrVSSTSeuMwBSV+/fvw/d9TExMYGdnB/v7+1YPY3V1Ff39/VaMkCkBk5OTBiCsra2hUqng8uXL5rQrFovmKGq1OmmXLOBMHZOGdyQSMbBUUynYanN4eNhkD+dkbGwMv//7v2+gGQskM6KW8pjzzDaT7XYnWmFiYqLLCZrL5XDr1i34vo9cLmeOksHBQZw9e9bado6NjQGAFUMNBoOYnp7G4OCg8YChoSFUKhWjNYJvrD/l+77pzKxb8qTjC4EKvu+3AFz1PC8J4F8BXPzCHOaUw/O8/wjgPwIniAkNEjJfTmK73TajxjXIudlU2ed91CvghnKp0FbFms/TKuf0HGnoLRm9i5i7//ibGn2u8sLnqhfNDbOlsHJR9x7z2vXZPU/HRSXTFZAuiPC453Mz6NypEO4FSHBOOMfuerveCs4N70FlZWBgwJRtCixXoXCVCgWi1KOpxgLpge+rAEMv8IfX6hyoMqH3cRUONUR63RtAV9FRBSZchUbX3d0f7faJZ1yvcZUpvbeuNY1C0qYaWhpar8CSq6DqOygqzzQYpraw1oJGXNAYpVDjPdbW1gwtJtLMNaRiS/CJygQP0kClUjFveCQSQTKZNESbNEjkmXuUSrEWRQJOFCcCnAMDA1a9mvTo0pwqkjSQ6FVgiKR76L7k3+RhqkBSmPAzBZm7NgRC6eXl/HC/aStHvT8jxwKBgM0Z15rvwjDoWq1mHgUq0IeHh6jVagYUMLeRCtaNGzcwPDyMRqNheX9UnDgWrVWRTqet8jZBDBrUm5ubNnaXBytQAsC8Z734Gq/pFbXAexDQ0jUhbagc4PqxnzU9e4ODg9jb2zOFO5VKWXQGPXgEJlhRXOuJUGHSsSvApHzC930z7rhGaqyorFSDSvkDwQ/9zvO8DwB0RfVxnWgA8n/m65LvKP+i4cjflOdyjPyNAJcrh1zDmbnDNGzp0ZOxmyHnyr7HyXfl6cqHuQ9d+c5Dr1Me7x6/jXzn3Ohveg/3PU7TL5TOdd/o+uj9OC7yLTVceR15KZ+lwAVz27l/AZg+RxCxlx7F8bnAr/JIHTfHcZp8Vx7pXk/wV+V7L0BB5ftpqQOU7/o++jz9XwEIlbMq3/Uero4DwNr4slgf18B9Xz166Rr67p/N4weqs9FrzzG0Wi0zxuPxuMlwRv3RDiiVSiazNZ1kcHDQosmazSYuXryIQqGAarVq5xSLRSSTSSuQSAP20aNHSKfTeO2117C4uIgf/OAHBh7QiCoUChgZGUFfX595eSmbGHI/MDCAQqFgrRIrlYq1ZUwkEuZIYGTlxsYGJicnDTwYHBw0wPrg4ADVatVagKuThcACI0hYX4i8g4fnechkMojFYrh9+zYikYiFv7P6P5/FiA22ey4UCvC8TnRYq9WymhXsBrG9vW1OEBrMsVjM9lS73bZoiw8//BDtdhuJRMKcT8fHnba/rFvAvc3C2Cx8vbW1hbm5OaytraFWq2Fubg6rq6vY399HrVbDxMSEgQeBQCdCYWhoCPl83tInCoUCGo0GstksEokEarUaotEo7t+/j9nZWdRqNRSLRZw9exZ7e3tYX1/H1NQUotGo1atgIWHgpHMaI11nZ2dRqVQssiMej5vMJGBEMHx0dBSJRMIAbsq//v5+XL582fgDAQnaMRpFSICVqbOMPGRXo/fffx+XL1/usmNIq+zyMTAwYKAQ1yYcDmNsbAylUgnHx8e29kxJIZDB5xWLRXzyySfGv3vpPO7xW3V/8H2/6HneLwB8BUDS87yg34lWmAKw8dlpGwCmAax7nhcEkECnYKN7rx8A+AEARCIRny+oBRoBGJCgSnLXC3zGFCm4uOnUuAS60wh4H0W41aBVIRsIBMz7RTSL6Kt6bFVoumHFriHId+HGdxm2m/fvvnOvv58kDNQbooJUz1HB4t5vZGQEyWTSwo14qGDW9wVOwvX0+RpFogJRBbIi9fq+ZLZ6PzJfMgD1JlDBVsBIx6HPUCVUjQl+1ys1RNdW502VbjUedZ2oYOs6Kb3xeWQ2+gz11pNWdE71uTrPfC/dAy6j4G9EMgkk6Dr0ohOXXk6jR15PAIHGeX9/P6anpzE/P4/r16+jWCyaN4VGEIUp88pYsZ+eEd6Xa05PARVcGs6MllHAiTRBQ5hrTYGgYCaVYIabukobj0Qi0dVeiuPjHOh9uRasvlutVlEqlbpSTnTudZ51b7vrSHphPijXjFFYrgLM+7zwwgtIp9O4fv06crlcF2inxU61TWosFjO6UaPp29/+Nr7+9a9jaWkJP/zhDy36hAa/C44whJVjq9frJhzpWSDNkH9yH9BjoHycQloLuynwoetAT5HuI+UN7h7XvaX8S0FRev+1To/SsraKyufz9q6kLfay1uKqmtvJIleUUQyLJYAEwDz8quQrn6Khr3yO0Uecz9OMHp0H5ZfNZvM5oCPfKTsV9OIaKh/mnCm/Vl5FnqSGKQ1J5WOU73wvjlfTJjgHLExFQI0AE4FA3sPVEfSddS75bkpveo56jlVH0flT+nLn2t3n7vsQ5FQadtfIvR8LfBUKBcuv5vv0eh7QW75znXW9XL2jF4Cu/Fbvx1oZvLfqSFS8KcOUBz9OvhNA0HVx5bsrz0+T76c5lPieuoY8PxQK2dw0m02bRz6f0Rkq34GTwsQKJiiApvtGZb++K+eWe4+0rPOnckwdeC4dqM7ymaPnucHBQX9gYADPPPMM7t27h93dXQMM2NqWzxoaGuoq8MsUmHA4bOkIyWTSPOPZbBaNRgP7+/uWs59MJuH7PpaWlpBOp817vrW1hf39jtmRzWZxfHyM6elpXL58GR988AEWFxfxta99Dd/97neRSqXwr//6r9jY2DCDMJ1Ow/M85HI5KxROQ5O565VKxYoWfvzxx1hYWLC19P1OCsC5c+dML63X61avgc6CUChkxh5piY4y8lwtUk5+xXUqlUrY2dnpkl+cW4bAk4+Fw2GEw2F85zvfQTQaxdLSEl5//XWjiUKhYJ2AVDcKBAK4fPkyksmkRWEUi0Xs7+9jdnYWQ0NDluNPmc1uHxMTE0ilUjY+yutAoJMyEY1GMTExgVAohIsXL+L8+fOWDntwcIB4PI50Oo23334bq6urmJqasohUprysr69jYmLCZAdTNUKhEKanpy1igRF4V69ete4S5NEEKwkwEYTg2hGsYhcmdolgKinbcxII8H0fiUQC2WzW5PeDBw8MEKF+s7u7i5WVFRweHmJ8fNx0HHY6qVQqCIfDaLfb1kqVAAHbjsZiMSQSCevqQJ5wdHSEqakpq60RiUQsDZVFG5eXl5FIJCwVCIB1EGGxzGaziWQyaWkqTzq+SPeHUQBNvwMoDAH4PXSKL/4CwPfQ6QDx3wL4Pz675P/87O9ff/b7z/3HWRhykImqsKXyS2+YVthVD4wqLMo8NRVBDSgq2DyH9/vsnbvuXavVTOGgQOSzWBCMioii8ry/GpZUbikgNPweOBFyLiKk7+saL3oOx9/LmHUNU1ewu0ADP3MdfN/vahF02nNV0dCcZp1nLQRGxsV5VWNbvVlUxI+OjroUFqUZ9cy4wpQ05iqpHNNpStdpyoX7zrwX38U1RNy1OE0p4frT66aKYr1e7xLMfJ6uIRVKjoF0yRB1Po/GNedXx5tIJNButy00211n/b8XHbrGLz0ZwEm9CC14Fo/H8cd//Md47bXXsLW1hRs3buBv//ZvDZnV0GemYKyvr8P3fQtj53vQkCP4x7ljtILrgaRHjOADvcMKSDabTauWTAUolUohn88jmUyad4VGXTQaNa8MjV+NCuK9ldd4nmdCrFwum5dA97JLz6pwKh3rOrRaJ/mWfC55EAGMWq1mdDs4OIipqSkkk0lcu3YNb775pqHgvJafGRJYKBTQbDat9SZD/Y6OjrCwsIBnnnkGL7/8MprNJv76r//a1kQNE02hUWCI9yPd6/4iPXPfU5nhOBm2ytDpcDhsLZSUP5P+Oc8KZrl0revG+abw5RqoMUm5wtBKrjcVSQrqeDyOZrNpHkTl1axzoBEaTJECYOCT7/uWSkOZSDBD55rnqvHOuSff4d5XunXn4bTDNUJULijfIsjGYmukfx0baYPrwd/UkcD7kS8ywkI9yno/18OjYKPKd8o55ucqwMB54D/SNBVL7j3yX5UbOhZdC5fGeu31XvJd38uVC3qdC+7ze8pQhkdrnSN9T11DzofyNL4Ho4m4RppyqfKKMpqyUAERrW2lc8vreoH8Or7TwAB3/kknvZwJrvOjl06nz9HDlSH6/uQR+lzKGDdNQOfrM+P9c8Y/76N7hAA597ZLX4wSoF5AHqZrpuPuBXD14gOe5yGVSuHs2bPo6+uz9r40LmdnZwHAZAYNIMrIM2fOGL8jPbMVIa+JRCIGYG9vbxvfHx0dtXpB9Caz1eyjR4/w0UcfoVAo4MUXX8Szzz6LmZkZMyDfeOMNBINBfPvb30Yg0Gl/mU6nLfw7EokgEolgaGjIvN3Ly8v46le/ing8jv39ffT19WFsbMxkOFMeScfkcQSJ2a6PDhb+TzuHegzrWnGvMpqi0Wjg0aNHVhOBOsjg4KAZhfSIU96nUikMDg7i6tWrqFQq+PWvf210Q898IBDAyMgIMpkMjo+PMTY2ZjZYIBCwtajValheXrb18TzPgId6vW7dKdrttqUX1mo1pNNpAJ0izuo04p4/ODjAzs4OBgcHLYWDzl169ulhHxkZsciQVquFUqmEVCpl+yiXy1l4P410plYUCgX4vm9pE2wzur+/j3q9jmw2awCTypihoSGMjo5aOmUoFMLU1JQZ+qwfMjo6ilKphJmZGayurlrx8PX1dfzmN7/B3NycRRmyDSb5JgsnM7qF9zxz5gzm5+dx+/Zt45NPP/00Ll68iO3tbSwvL1sXJAJZTLcIhUJWkJTvTLpizadisWif+/r6EI/Hcf78eSwsLPy/lv4wDuA/e526CgEA/+z7/o88z7sN4J88z/ufAHwI4D99dv5/AvB3nuc9AJAH8B++wDO6wn8UZeVvWvCIB4UBBYwKJh6KuPF814DktcDnlS0Np6OSwF72NHAINvA8FRQqiPiZY6DC5hoDKjBVKPUyKnTM7qHn69ypUu4qi/xfjWJlkJqD6j5XBZ0qPhRSqogD3flfzCvT0B8qeroWOlYaGFS8iYaq8CZ6S/RQ15Jz7hrNLnDgvqsLvuj7q6LsehD4HvyfYY8UpqQN3ke7P/BdOFb1ECsNU5HQMXHuSKt8vnpLFVQgjZDxUDFWOnKN3F5GL+/PNWm1Ws8BQCwW87W6LN9/cnLSPKPvvPNOV+9kggfACa8IBAKWOqE1CRjaSY+t0hHnlUCZerQYjq/7hAquRilQeJPxMl2DwomCUJ9LQERD9XVedQws7KTzp3ToGhPuvtPzaHxqWpnyJPZ3Vpqt1WpYWlrC+fPnLUVJ+Y/um0ajgbW1NXieZ5WSOXauxd/93d8hGOwUePrxj39s60SwRQvocU64NzQShHw3GAwiGo1amzLdMyozAoGOV1BrUgwPD3d539Vg0HejQkfQmPzJ90/a2XEO6b1QPt7Lqx+Px/Hcc88hm80in8/j448/tt7SjGrx/U6BKCraWqdC6/yosRCNRlEul80z73mezScjIJSfK8+gl15TIsLhMI6Pjw3MU+DdnS+XLrVSvB5qoPQCvhTsVDoGTgolKuiva8W9qvKd57k8V9+d338R+a48WgFwV+ao7CT9qxHv6hcuyOPOqf7vHqfJb11vF6Bwx8jr2KaNRl6v55/Gb3T/aUQL5Rcj7whqqnxXucHnUg/UuhTUiVwwhHPJCAc3EoW0q3NMXubqkr3knyv3Vb7rOlK30OcMDQ3Ze2vUpAJf6lBRR8+T5DvXVuddAUfg8/K93e4utsy0NPJWykVNcyQfUkCpl3x3aTQQCGBsbMw8qzQKo9GoedY5Do1MpYca6NRh8X2/q/UhveI0wBqNhtWAYoFGpiAAnbQy3m9jYwO7u7s4ODhAJpPB1tYWfvzjH6PZbCKXyyGbzeLFF1/EtWvXsLy8bCHy5NelUslSJCqVihmdrVYLU1NT2N3dRb1et7QC3+9EzrEDVTQaNZlC3qs0rfKLa6g1RDSqmdelUimLEmAoO+UTwcHp6WlzULRanZS5L33pS13yinPM/9PptOX6B4OdDhc03gl+AECxWITv+/jggw8QjUZx/vx5jI6OYn5+HtFoFKVSCevr63j48CFSqRQODg7Q399vLZAPDw+xs7ODcrmMiYkJS8Hwfd+iSwFgbGwM9+/fx/r6Or73ve8hGAyaUc3UipmZGTzzzDOWanl0dGQpj3wvOo04/5OTk1YQulgsWntPpnF85zvfQX9/PzY3N5HP563149LSEtrtNvb391EqlfCtb30LY2NjSKfT+Pjjj1EoFCw6dGxsDMViEWfOnLG0n1wuZykHFy5cMMcCHQh89wsXLpguMjIyglQqhZ2dHZw9exapVMqcLefPn0ckEsH8/Dy2trYMVACA8fFxm0MCG+SL6XQaGxsbBtQEAgFzkrHdaSaTwfz8fJeN/rjji3R/+BjAtR7fPwTwQo/vGwD+qyc+2TkUlVbmr3ma6rVlSzkqiJ7nYWxszO5DwlGDnsrWZ+PsKoyiDJMCTL3s8n5dBqyG4Cp6rQi8GmT6T4UeGQyF+mkIsI7jtMP97Un30usU+FAlkpVkqSzwfJcJatiz+748+M7KSDnf0WjUPKdqyLnP0mgV3pPz5oJKNOoUUOKhaL4aGjqPTzKgXWDBNVBUmeP9FXByn6Xfq5JMpJu0xXurckKaZOizAjUajquh8ATOOF/qjdOIEiouqvz0Aus4f9wX7hw1m532SgQUCAr8+Z//uVXALZVKViGXczY8PGxK/7e+9S28+uqrKJVK+OEPf2hRC9zXiozrPlZAjJ5ZzdHnPdy/eT0VrkAg0JWaojUf2CZK6ZZzQcatfEnpgoq2Fq3SOexFi26oL+mGa8ZCVA8ePLBruMbb29tde4n0d/fuXevaoPnnrlGkACkLLLE2AM/d2NjAX/3VX5lnKR6PG9/m3FPJVj7NuVX+wr8ZasnxKp9gtAjXcH5+Hnfv3oXneea1yGQy1nJKDWrSi9Z10GJjvYwN4KRLAQ/OqXolyYMY5XLz5k0DY9hxQ1uesp0Yw39JD4FAwACISCSCvb09A1n43oeHh6bAaYoAAEu3yOfzAGBRQxw3lV5GOug+VzpzwQXSAHug68E9SWWfxjyfpQo1c3H5LIIlDP8EYPKBc6KGGsfG9VNAjfte97hrpGpOPqMXuJa6vjoHrnznQWOA96Bx2UuvcOWO+/tpn10jX/9XnuHKd71HvV630GeVDe5aKz9SZ4ELOHCu1GCkh7NWq5kn2uVbpA1XPvI85X9ch3b7pOig0qOCANwTClQ8bs5dueXKZ/3ucfJdQWler7RDeQp0d1riO/MeKt+p3HueZ4CxtoLkvHAuufc9z7Oibcpz+T3P1/fW9AsXeDlNvvMIBDpF8hhmTcNM6adSqZg3NhgMYnt7G/F4HN/73vdMNnz00UcmLy5evIiVlRWUSiVL+/I8D7du3cLOzg6+/vWvY35+HpFIBIeHh+a1PXfuHJLJpAGwNDzX1tZQLBbx6NEjvPTSS3j22WfRarUwPj5utMN0IEY8HB0dWcg5eTQApNNpTExM4Pz58wgEAlhfX8fm5qZFDcTjcQwODmJnZwexWAzxeByHh4dd7TQ5NwpcEiD2vJMaRixyHA6Hkc1mEY/HLU+eNRRWV1dRr9cxMzNj4ECz2cSNGzdQLBZt7pk2R9qp1+vI5/OYn5832Z/NZjE8PIx0Om2AM+scce2CwSCy2ayldAwPD8PzPLz99tvY3NxEIpEwcJYRHyyOTeCpXq9jYYAV+4MAACAASURBVGHB0lkIdDE6ZGNjA8PDw5ibm0NfXycK/e7duxgbG8Ply5dx8eJFhEIh7OzsYHFxEdFoFHt7e9ja2kImk8HY2FhXrYlIJILd3V2LgCEQSpuMxjXXjKBEuVy2KEHqkXRmUTYTKNze3jZgyQUBWBCSEaNbW1tIJpNIp9PY29vDwsICHjx4gKmpKbzyyiuIRqNYW1vDgwcP8OUvfxnBYKezE6NdVlZWcP/+fYTDYashwW4S29vbJkc9z8POzo7ZCe1226JAyAsODg6QSCRw9uxZA1K/yPFb1VT4//IgYyUz5mYlqqWhpVQ+gZNQeHoCqWSQAVI5BboZrTJPlxkTUXYFMq/lQUWFz9WoAm5i1xhwBREFnxt+53oMTgMRTvtNBab7vSq8vRTkXt9xrnsJY1X89b78nQqrm0tJgchr6XWs1+tdRjCFIJVHblYyYq45x8c5peCiQqHvxmu4TkoPSh+ucXnanOtv6pXSgzSl3gAamjQ89Rw1XjlfrseRc6NKq+YS9/X1WQ6ceq+0JoALCFGQ8DuOi1Xk+Uzei4JP5xdAV1FAPWio0aAfGhrC+fPn/+/2vjY2rutM7zmc4ZAiZ/gxMxx+U6QkShZlxqpit3IsGNnEu3EWCwMGEsCLYncDBAjQboEtXKBNUKBA/3X7o9sULbr9SFAESLfeNFnUcOvsZmUBieNatilSJmVR4lAUORySQ82QQ1IWSfHj9Mfc5/Dl8SVtyeRwpjkPQHDm3jv3vvd8vd/vQWNjI1KpFNbW1oyXgkI4d29YXV1FNBrF17/+dVy6dAn5fB5XrlwxHgGpIFMZlAoThV4aA+WODlJoZh/x+QwLBXanTtFrrJQyaxBz9zhOKysLW55SIZJGHzl+qFRKDyevl+Grsu/lmJN9xj+ttVEW2DdcH2XetT22V1dXMTo6umu9A3bXG+H1bNO6ujpj8aaHXSpl7PN4PI5AIGA8FBSaqWDLcWKvJ/TESCWG6wCfIz1z3E+aeYRAIdQ+FosZIUb2tVxn2KY0GEneIttfKg5yzZVGD+YIM8d4ZGTEVHim8MyiUVprLC4umr3IKaRIXsUIIhoYlNrx4jU1NSGfzyOVSpl5TkGKAip5LMeoVJo4huR8tqNl/P5TqOI4see81toYpqWRhfUM+Ay2vZwP0hghFWLJ323lh3/k51SibMOphJ9Syr6XBnDJ32U7yTaRvIhzUY6hw+LvHCeSXj/+bkP2gd99gZ01VMo60ugtxw1zwfk7GlSpmEkebPN3jhdGNTBCR7YpnwnsbBdKSGMSHTZsB9kecg2VbfJZ+bvkb3Jc0iCn9U6EHZ1XMqqABlSepwHQdixIGUWm8zKli1FzhM3fpUzEdvV7x73kHL9xuBd/lwgGgyZ0u729Hbdv38bs7CwePHhgxsSDBw+wsbGBmZkZ1NXV4cSJE8Y4z3D0lZUVzM7Ooq2tDc3NzaYfGG5OxXZsbAxtbW0IBAK4du0abty4gfPnz6Ompgbt7e2GH9XX1+P99983/dTW1oa2tjasra0hmUyipaXF1BCLxWI4efIkKisrjVJLTzjHD/P/m5ubkUgkTF/E43HcunXLpHFSlqNRgHwH2NkRS8qtXGPkmhWJRExaQy6Xw/r6OlpaWlBRUYGVlRVTc4DrO/UnpZRRbjOZDG7fvm1SM+h8okzDEP2amhrEYjETuZBKpUx9i5MnT5r2/9rXvmZC+DOZDBYXF1FbW4vR0VFMTU1hamrK9EtXVxeOHz+O9fV1dHd3Y3h4GGtraxgdHcXi4iKefPJJvP/++1heXkY0GkVHRwdqamrw7LPPoqamBiMjIxgdHTUGskwmg3PnzqGjo8MU1aeMR5krGAyiv78fsVjMFHakIp5Op6GUMvU78vk8jh07hqWlJYyMjJidMlg/obq6Gl1dXXj48CEaGxvxzDPPoKKisNvY5cuXsbi4iFOnTuH48eNmx43l5WU0Nzfj5s2bCAaDOH/+PMLhMObm5kykKCMITp8+jfX1dYyMjGBqagrV1dU4deoU6urqjCzZ0tJiijG3tLRgenoaAwMDyGQyiEajeOqpp0wk0vj4OKanp1FZWYnu7m4z5pUqpKJIHYe7LzFd+Mknn0RPT8+e89t3zj/S1YcEyTyk55ihxPRokRGxmAtzh7gNF7dtk+GL29vbu7yGMhoA2AmX5uCzveO2ACmFLClISiGC1/l5zHl/6dXle0kBTz5bPne/BZxt6afw78VE91JS5Dnb+2Lfz74P6bY92vK+9C6Q+dFDJpU8KVxIoUY+g89hn/J38rnydzbdVBple0vBQ767Xxva7SEhvTg8z7ElvRn01PE9pXBN5chOr6Gwwnbk/RjODOzkqEmmwt9WVVUhHo8bhk5rNQATimUrj0whsceHjPKRsIVZiaWlJTMPIpEI+vr68Mwzz+Cdd97B9PS08WTxuZWVlbu2l/rRj36EWCxm9j/m/TiPGdYp0xlkv21ubu7a65tCK9cgeozkO1Cxke9OBa+xsRFtbW2Ympoy/SKFBf6GSiDHtlRc5Logt1/keGQ7yxA0adBjX1CJ4XG51smxaIdkEzIijN9tb7KfUsSto6isExRYOA4zmYxZv0lnfX096uvrcefOHTPnmRpB4UgWZ6PgwFx7aUSUnx8+fGhyFtl2+XzehLNSsJPrA5UAvjOfy/dlH8l2lPNaKlzscxpxxsbGkEgkjPeL99/eLkTfsRo502d4ja3MADv5r9zWS2tttp/kPu2xWAxaF7aG7e/vR29vL5LJJNLpQl1lRgpI5ZPhrix0Jp9pKxr8z9/LmhYSVCAo1FOBYv9x/WGo57Fjx0zEBiMpyN+ZT8t5JbfApCFCtr1U0mzjgFSK5Fot+1iuy/aaLtdyPkcaHsjfyQtlJIVtsPss2MuY4Hed3T9+5/YyTPCc3e9yvZL8nXxFzhGbv9MgKFMUpBFY8j5pGOLvbBqA3fzdfk/2B+euXMvl+vV5+LvdhqSNbcdn+/F323nB41x/mQ5GTzjXRFnPanV11RSBJX+nHBAOh3fNFfaD7CM+zzbE+fF5u41kG/rNeQnm/NM4wMr+3MZwYWEBvb29eO655zA/P487d+6gr68PCwsLpv8DgQCuXLmCpqYmY0QYHR1FLpczaQCpVAo///nPoZTC5OQkent7ceHCBaOAkc+wTaamppDJZNDW1mbWFgCmBhFTNqLRKICCYy2Xy2F2dhbZbBbNzc1IpVImlH1sbMxEB+bzeVOFn3JWTU2NSdfgmOYWgOwr9j/XsdraWuNVr6urQzgcNjtNMFWARk4ASCQSZmww0pDpIizYF4/HcffuXfNMbl0JwPDv9fV1dHR0YGlpCZOTk2ZrxaamJrNrAeuAtLe3G56RSqUwNjaGpaUlpNNpRCIRJBIJs3tCJBJBd3e3oR0oGFmOHTuG6elpjI+P7zp38eJFaK0Ri8VQWVmJZDJpDOUNDQ1obm7G4uIirl69itbWVmxubmJyctIYVMbGxjA3N4ennnrKGCgymQyCwaBJDWBqDA0RlCNo2OKuGaFQCNlsFg0NDWhsbER9fT3Onj2L0dFRfPTRR5iYmDBRGKynQP6VTqdRXV2N7u5uk+Zz9uxZZLNZ/PrXv0Yul8NLL72Euro6ZLNZXLp0CW+88QYqKgr1LfL5PCYmJnD9+nVEIhFEo1HMzc2hs7MTx48fN33a2NiIO3fu7DJYrK6uIhaL4cyZM5iZmTHjj44A6qAPHz40zl3OTZlO/VlQMkYFYGcxpafp448/xr179wDshH5LYVl+Z2gPJyqVBilgykXeXkTlAisZAIBPfJcMjPe2rf98lhRseC8pwJEJSe8MhRHJqO3F3G/Bl8+2hQjpmZGKii0cSdjM1Y/R+AklUsCT72i3CRdNKfRJZU16awHsYoqyz2xvDJ8jPfOkR3qibSFDtpdkvtIDsZ93SLaVvJ60yv6UY8oe1xJc4ADsend+l4IrabX7XwoRfCY9nVSgqWDbwhfb3aZZnvcb+zYkPVR66XVdW1vDhx9+iMnJSaPssI84H2lRp/FpaGgIr776qjEmSoNcVVUVuru7MTMzY5QIu3/4ngwFl9Ev29vbpjChbfQJBAJmyyJGO8TjcVy8eBGVlZU4c+YM3nzzTayuru4KS7XXE+nxp1Wd9FExkn1nr1MSsr1pjKXX0FZQ5Xz3M1LIZ/I8PRD2XJJjeXu7kF/I/bJ5f0bayDag4ivnOpmsbUCTwiqrZcfjcVPRuba2FktLS4ZnyHba2NhAfX29MWhQgJKpE9zHfGJiwswnGdYt1zl6GmVKnmx/aVSQfcV3YGpDOp02jFvWCwoEAlhcXDQRFUz9AWAiFmxFmHmWjMZYWVkxha20LkQ8cAz39PSgpqYGFy9exNraGt5++23cuXPHeIJJ79bW1q4IEntcyHEk+aCfcV3ONZkfzNzRbDZrxoBtkOHclzIBt4S1+Tt5gBxne/F36ZmRa6h8f3nPvRQmjjel1C5FWd6Lz5EGZF5nK+Ly+s/C3+V8lMYOPwVRtq1tLNjruXsZL2TbcI7yN7LtKKiSx7NfaUiT8g7bXUZk8Zxcm6WybnvJOcYkTXy2LcNII6FfDSL7ff0+22Ncpobw2H78nW0kz0m5Q0Y+yeKMcs2lYYa/l+OcvI8GeTkO5bvIcfxp/N3PCG3z/70wPT2NZDKJ+vp6sz0g6YxGo6itrUV9fT06OztNhFlVVRVWV1fx3nvv4eTJk4jH43jiiSewsbGBgYEBtLW1mb4kj5uenkYoFMJXv/pVfPOb38TW1hZqa2tRUVFhCvhxq8d3330X+Xwe4XAYAwMDOHv2LOLxOCoqKkyaQWtrK+bm5pDL5ZBIJHDt2jWEQiFTAI8h8krtOAO441NlZaWJvKCSur29berW5HI5ZLNZY/yiAYFOFWl4owH59OnTpsBeOp3G+Pi42ZaTkWJnz54122KGw2HjYAoGg2hqasLCwgIWFxcxNzeH+fn5XWOGW08yQrW9vd2sv2yPhoYGYwjhmFxaWjIGARb5bW9vR09PD2ZmZsy2lBUVFaYo882bN6G1NiH8/f39GBgYwMbGBiKRCDY3N3Hjxg184QtfMBGuPT09ePfdd/H000+jsbERra2tmJ+fx/379zExMYHx8XGTTrCwsIArV65gaWkJJ06cwJe+9CVEo1FjXGlubjZOj2w2i1QqZZwKKysrqK+vx/37903BTtZXOHPmjFnHotGocXz19vair68PTU1NpjhkdXU12traMDQ0hEQiga6uLkxMTGB+ft4UxuUzurq6cO3atV2FN7u6utDY2GjkARa/vH79OoLBIDo7OxEIFFIPn3jiCXNfGpWYpvTgwQMMDg4inU7j9OnTUGrHKROJRBAIBEwBy2PHjuGFF14wW5s/CkrGqCCFTIY0yoJswI63WW7/xD2NOeh5DT2OXFjpfaV3SgobUnDgMZtZ2Uq6FA6kYMIoC7lwS4+TVNp4Txn+68e0/JTmvYQNv8/8LgVl+7yfwOgH6dGTTF/SK9tGCoTSsCIFf/lOXDzJcMjwaKmm4GK3l90/No1+/Wr3Mf/v1zaSVr/7SOYsz9m02uNACkD8ncxjojBM5qO1NikU0tjCcG62MbdsssNaydwYZkhvr+zjvdrID3uNF7/jtvEsFAohHA7j1q1bePDgATo6OnD37l0AMGF+ZI737983edvpdNooW6QvGAwiHo+jpqbGLPR2n3GsUJhkCJitwEvlQFp2GRnT2tqKl156CalUCqdPn8bExIQRFOUWiFR0+O70PEkBnAwKgEnjAHanG/gJ8XKc8fjGxgbC4TASiQS2trYwOTlp5o8UWjmH7PvZY1emw+w1BmR7UUFlHzN9g8ZTnudWY6SDRi4Wj2TYO39LBkjDxdbWlqkLIPtVjmWGZ25v71Typ0GNxiOmIfAecpzQ+Mn2JQ0ygspeU8lP+C4yyk62MftY7moRCASwvLyMcDiM5uZm3Lt3DysrK7vCYUlDKBRCJpPBwsKCMXjYUS9y/n3wwQfo6+tDb28vxsbGsL6+jhMnTmByctIYITgu/Awne/EFPwXVPs9iaRyf0ostjVt8NsN3KaTLaBGugeQPbGce91MipWHAz6ttK4h+6zbnqFTo+D58hr2u72WYsJ9tK3qPwt/5mYYZOcb8ePJe95Tvvh9/l+f4x3aXhjVZ0I33pKJiO2/24+/yOfbzZbtRnpDX2e/1afxdzmF5zM9wbtMmr5PrrKRPHqNiBew4s7hGSv4vDTOyjdnntuEEgOH5crtUqcTb7bOXTGm3i98xe37tBfKj7e1tE9bNKvsnTpxAX18f8vm82QaPfL+xsREvv/wyZmdncf78ebS0tJg2HhoaMrtKvP3229jY2MC3vvUtExE1PT2N9fV1Y1xeXl7GqVOnoJQy9QC4+0M0GjU7KfT29uL5559Ha2srFhYWsLm5abY2rK2tRU9PD5LJJHK5HDY3C8VymT/PSIhIJIJYLLbLaBWNRrG0tIRIJGJ4C3eKUkoZ3sc0Oc4RVuRnzQHmvUciEdTU1BijDFBY55eWlhAKhdDe3m5q62QyGcRiMZw+fRqpVArf//73kUwmkc/nze5PjCBsampCIpEwaRtNTU2IRCKmeDNTFxsaGgzvuXXrFtLpNObm5rC4uIh4PI7Ozk5jBEqn06ipqcGVK1fQ39+Pzs5O3L17FxcuXDD93d/fj1AohMHBQROlHgwG0dPTY2okcCvxZDKJ5uZmNDU1mfSB2tpajIyMYGBgABMTE5icnDRt1d7eDq0LIf4NDQ1ob2839TQ4l4LBIBoaGpDL5ZDJZIyRJ51OIxaLIRwO49lnn4VSColEwuyOsba2hpqaGlPzoqqqyhS1pHFlYWHB1N1oampCf38/8vk8ZmZm8Morr5hoyrW1Ndy+fRs//OEP0dPTY66vqqrCuXPncPXqVfOs6upqzMzMGBmaRvovfvGLSCQSeP3119HQ0IBgMGjajmO1ra0NW1tbZg5Go1EkEgkopdDb27srFfVRUBJGBQp39FwyN5lMWlruNjc3jeJUW1trFlMKeryfzRzIbCj02wUh/Zi5NDTY56ShQS7UUrCwlRLpaZbRDZIBSYZhK6c2HbYSIM9Jxko6ZOilH/wYiy1c2YxSMlIKEzYDlsoyGZst7EiapXeZ/cv/UgGxlUAJvq9tSLEFrb3aUnqS5L396JbChaTfBoVLSb/0zNntaR8PBAK7KvxKgY7CG+9N4YNbgMr2IBgazmfawobdNn5taY8Tif3GGffOJVO4d++e8WiPj4+jtrbWbBFEyzn7g+lNFRUVRvmkJ6eurg4nT55EdXU1Ojs78eabbwLY2ZKOyhKFNyk420Y8YGcbWqnE8NyLL76Izs5OAMDw8DAA4Fe/+hU+/vjjXTngtuLJcG0qzNvb28abUFlZibq6OszNze1SUD6t/e21hHVJuK7yneQ9+J3vZRswZH/JeWErGWwn+QxgJzce2B1iSwUTgAnxldFaXE+lIikjl2TINOmQqRSE9EjzOs4LO5qAAr5cx2Tba60NrZxHVPKlQVzWRdne3tnOUc532YYAdilUkj+xpgIFLhpoCLat3BWiuroaLS0tpkiX1tp4PKamppDNZjE2NoZ8Pm/6ndtsclzYIfqSl/gpWH6Q44f8nRER3BpL3oeGtI2NDVP5Whpf94swpKAojUqyD/yMwnK9ts/ZY4aKG9cAeU85v/0MdqRBep1ldMXn5e+yjW3+bhszZH/6vacff5d0yHljP1vKNX5edL435TQ7cpH38OPv0hgnn2lHmdjtZL+vvIYKvOxD2a5+fSHXXskrJE22YcBeb2WqFtcTvjuNY5R1eX+GJZPnATDOGNZgkf1PcE5Ievd6t/34i598ZYPnt7a28JOf/GTfwm7ZbBajo6PGMxwKhbC8vIx0Oo2trS2Mj4+bfHAayhjC/dZbbxklPZ/P42c/+xlefvllw29XVlYwMjJi0qm4Nl+4cMEo4CzOWFtbi/n5eYyOjmJ+fh7xeBwvvPACbt26hbm5OTQ0NEAphZWVFYRCIaRSKczMzCAcDmNwcBCjo6N4+PAhurq6sLm5aYpCDgwMIBqNmgKKfnOVbb28vIyFhQXMz89jdnYWCwsLyGQyJrJue3sbDQ0NxnBQXV2Nubk59Pf3AwBmZ2dx//59JJNJk+7CwoPcQpAGC8qJiUQC8/PzGBwcNAZvjkHWQspms8hms6irqzM7HoRCIdy4cQOzs7NIpVKIx+NoaWkxbf/RRx8hl8thYWHB7LKUSqUwNDSE1dVVTE1NIRAIYHh4GLlcDpFIBOFwGMlkEsPDw2hpacHw8DAWFhaQzWaxvr6O1tZWvPPOO3jvvfcQi8XQ2dmJ6elpzM/PI51Om4KUy8vLmJ6eRm9vr0kT4NaJ586dQ2VlJXK5HH784x+bWggdHR1YXV3F4OAgKioqzP0CgQBaW1uRz+dx+fJlHD9+3ETQZLNZE+nCnS7y+Txu3rxpUo64TWU4HDYOchp1aLTgGH7w4AFmZmZM7YpUKoWf/vSnWFtbQ7eXJvHaa69henraRKf88pe/NLU94vE42tvbTfpNPp83URRKKYyNjSESiRjDN+URbnGptTZpEtwWMxgMYmRkxHfuMjJ4P6hPWyyKgcrKSs2tyGpqaj6hzEmBmduQSC8kIRdP/l4qAcBOKLefoCTvYwsFPC6t6MDuUGZbILUZjjwvvclS2ZOMDtgtjEp69xJCCD+mZx+TgpWfkCPb47OA7WILzfIeNCrY78JFj4I6z0uhQOudKAY7pJz3kMIe21j+Xr6/7VXaS2DzawP7uy3cyHaQbWwLebaQRmUF+OROGsCOl1UKLTJ1hu9FYVgqc9JjbgvWfoYWv3e129KvLfZqn+3tbeV9XgFw6xM/Km3EAWSPmohHRDnSDJQn3Y7m3chqrV8EgFAopLlNJrd5tdcUrsU0oDBKQcLm79LYII9JBd6Pv/OZdjQHf7sff5ffbf4uDZS204CQqWz8vxd/9/su6Zf/+Xm/77IdH5e/yzax78n3s9+FoMHQj7+zD/l7mcrkZyyQstRefW0blPz4ux8/82sTP/5ut4UtN0p+L58t04Dk/YEd/i4NBPY4t/k7723vQCPfz5Yr9+p/uz32Ght78HyllDp6hcLBweFQobXes7BPSRgVnJJRNDiaiwNH8ydhlAyl1Ada66cP8VkHDkdz8VCOdDua932O4+/FQbnRXG70Ao7mvZDVWr+olLoH4OMiPO8g4fq0OHA0FwdFm+9+J0oi/QHALSeQHT4czcWBo9nBwcHBwPH3IqDcaC43egFH86dBa91Ubm1UbvQCjuZiwdH86Pj06ioODg4ODg4ODg4ODg4ODg4OPnBGBQcHh2LjPx81AY8BR3PxUI50O5odHBwcHBwcfmNRKkaFchRuHM3FgaO5OCgazVrrsmsfR3PxUI50O5r3Rdm1DRzNxUC50Qs4mkvxeZ8X5UYv4GguFhzNj4iSKNTo4ODg4ODg4ODg4ODg4OBQfiiVSAUHB4ffACilXlRK3VJKJZVS3z1qegil1A+VUvNKqRFxLKqU+oVSasz73+gdV0qpf+e9w4dKqQtHRHOnUuqKUuojpdQNpdSflDrdSqlqpdR7SqnrHs3/0jveo5S66tH2mlIq5B2v8r4nvfPdxaZZ0B5QSg0qpd4oB5qVUneVUsNKqSGl1AfesZIdGw4ODg4ODg7liyM3Kjgl48DodQpGcWl3Csaj0xAA8B8AfB1AH4DfV0r1HcS9DwD/DYC9Rc53AVzWWvcCuOx9Bwr093p/3wHwH4tEo41NAP9Ea90H4CKAP/bas5TpXgfwFa31UwDOA3hRKXURwJ8C+DOt9SkAiwC+7V3/bQCL3vE/8647KvwJgJvieznQ/Fta6/OiGnTRxobj7QdKs+PvxaPb8fbHo8PN94Ojuazme7nOdY8WN98PElrrI/sDEAAwDuAEgBCA6wD6jpImQdvzAC4AGBHH/jWA73qfvwvgT73PvwvgTQAKBeH+6hHQ2wrggvc5AuA2CopbKdOsAIS9z5UArnq0/CWAV7zjfw7gH3if/yGAP/c+vwLgtSMcH68C+O8A3vC+lzTNAO4CiFvHijo2ADwL4K/F9+8B+N5R9aEPfd3WfL8FoNX73IrC1ngA8J8A/L7fdUdM//8C8NvlQjeAGgDXAPw9FPZVDtrjBMBfA3jW+xz0rlNHQGsHCkr4VwC84c2NUqfZb84XZWzA8faDptnx9+LR7Xj7o9Pg5vvB0lxW871c57r3fDffD5K+o+pI74WdknF4tDsF4/BodQrG49HwDQD/VXz/AwD//qjGnA999nzPi8+K370+vyTOXQbwdAnQPgWgrtTpRkEAHQJwHwUvfhxAUpzvZD8AGAHQIc6N2+O4SDT/TwBfBPBlrx3LgeYJb00dAPAd71hRxgYcbz9s+h1/Pxw6HW9/PBrcfD9c+stmvpfLXPee7eb7Af8ddfpDO4CU+D7tHStVNGutZ73PcwCavc8l9R5eWM7fQcFaWNI0e6FHQwDmAfwCBQE8r7Xe9KHL0OydXwIQKy7FAIB/C+CfAtj2vsdQ+jRrAH+jlBpQSn3HO1bSY6OUoAsrsj5qOvyglAoD+CmAf6y1XpbnSpFurfWW1vo8Cgz97wJ44ohJ2hdKqd8DMK+1HjhqWh4Rl7TWF1BIbfhjpdTz8uQhj41yW0PKZi10/P1Q4Xj746EkxtsjoKTnjUS5zPcynOuAm+8HjuBh3vz/Z2ittVKqpIR14JMKhlLKnCtFmrXWWwDOK6UaAPwVykjBUEp9+ajpeQRc0lqnlVIJAL9QSo3Kk0UaG2kUPLpEh3esVJFRSrVqrWeVUq0oMEughN5DKVWJwnz/sdb6Z97hkqcbALTWeaXUFRS8AQ1KqaDHrCVdpHlaKRUEUA8gV2RSnwPwklLqdwFUoxAN8v0Spxla67T3f14p9VcoGHDKYmwcJUqRTxKOvx8eHG//zUQpt085zfdymuuAm++HycgxdAAAAutJREFUhaOOVCg3QSbjCWIoRYFsPwXDO19yNBNa6zyAXQqGD12G5hJQMO4C+B8ohE0ZBcO7ptRo3qVgoLDgGwXDo60YY+N9AL1eIZwQCnlprx/AfQ8LrwP4I+/zH6EQgsjjf+gVwbkIYElYiYsGVZAwfgDgptb634hTJUu3UqrJEzqglDqGQkjnTRTm/jf2oJnv8g0Ab3ke9qJBa/09rXWH1robhTH7ltb676OEaVZK1SqlIvwM4HdQSMso1tgoKf7yGVDyfNLx90OH4+2Pj5Iab58BJT9vynW+l8lcB9x8PxQctVHBKRkHBKdgFAdOwXh8eB7df4RCbtpNAH+ptb7xee97EFBK/QWA/wvgjFJqWin1bQD/CsBvK6XGALzgfQeA/wPgDoAkgP+CQgGfo8BzKNSl+IoqVAIe8rzppUx3K4ArSqkPUVj/f6G1fgPAPwPwqlIqiUJI4Q+8638AIOYdfxU7uxWUAkqZ5mYAbyulrgN4D8D/1lr/HMUbG463HyAcfz98ON7+ueDm+wGi3OZ7uc11wM33Q4MucpEJ+w+F6pS3Uci/+edHTY+g6y8AzALYQCEP5dsoCI6XAYwB+FsAUe9ahcJWeeMAhnE0xc8uoZBr8yEKRdCGvLYtZZq/AGDQo3kEwL/wjp9AQRBOAvgJgCrveLX3PemdP3HEY+TL2KkYW7I0e7Rd9/5ucJ6V8thwf+7P/ZX3n+PtB0qz4+/Fpd3x9kenxc33g6O5rOZ7Oc91jx433w/oT3kPdnBwcHBwcHBwcHBwcHBwcHgkHHX6g4ODg4ODg4ODg4ODg4ODQ5nCGRUcHBwcHBwcHBwcHBwcHBweC86o4ODg4ODg4ODg4ODg4ODg8FhwRgUHBwcHBwcHBwcHBwcHB4fHgjMqODg4ODg4ODg4ODg4ODg4PBacUcHBwcHBwcHBwcHBwcHBweGx4IwKDg4ODg4ODg4ODg4ODg4OjwVnVHBwcHBwcHBwcHBwcHBwcHgs/D+1RaMcQSpHuwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light", - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.subplot(1, 4, 1)\n", - "\n", - "plt.imshow(output_ops['refImg'], cmap='gray', )\n", - "plt.title(\"Reference Image for Registration\");\n", - "\n", - "# maximum of recording over time\n", - "plt.subplot(1, 4, 2)\n", - "plt.imshow(output_ops['max_proj'], cmap='gray')\n", - "plt.title(\"Registered Image, Max Projection\");\n", - "\n", - "plt.subplot(1, 4, 3)\n", - "plt.imshow(output_ops['meanImg'], cmap='gray')\n", - "plt.title(\"Mean registered image\")\n", - "\n", - "plt.subplot(1, 4, 4)\n", - "plt.imshow(output_ops['meanImgE'], cmap='gray')\n", - "plt.title(\"High-pass filtered Mean registered image\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "3RO29zSnbVsG" - }, - "source": [ - "The rigid offsets of the frame from the reference are saved in `output_ops['yoff']` and `output_ops['xoff']`. The nonrigid offsets are saved in `output_ops['yoff1']` and `output_ops['xoff1']`, and each column is the offsets for a block (128 x 128 pixels by default)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 497 - }, - "id": "iYLlovO8bU9K", - "outputId": "de7b89d9-e242-4ec1-b4fe-bfcd310be8cb" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAHgCAYAAAACBq79AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeZgcV3nu39PVXT3dPZtm0S5ZkuVdtrwIecUGYxvbYBZDAsYQMFwMhIRAfJOwJWzJvbk3CVxCwAQ7hGAgQIAAhuCAWbzgBcu2vMmLZMmWZGuZ0Uiame6Zrl7O/aPqVJ2qrl5mpnu6e/r9PY8e9XTX8tVytu+85/uElBKEEEIIIYQQQgghjSDSbAMIIYQQQgghhBCycKHjgRBCCCGEEEIIIQ2DjgdCCCGEEEIIIYQ0DDoeCCGEEEIIIYQQ0jDoeCCEEEIIIYQQQkjDoOOBEEIIIYQQQgghDSPabANmwuWXXy5vu+22ZptBCCGEEEIIIYQQP6LcD01TPAghVgkhfi2E2CaEeEII8SfV9hkdHZ0P0wghhBBCCCGEEFInmql4yAO4QUr5kBCiB8CDQohfSCm3NdEmQgghhBBCCCGE1JGmKR6klPuklA85nycAPAlgRbPsIYQQQgghhBBCSP1pieCSQog1AM4AcH9zLSGEELLQedu/3I/P/vzpZptB5pmP/udj+OC3H262GYQQQkhH0nTHgxCiG8D3AXxQSjke8vv1QogtQogtIyMj828gIYSQBcVd20fxj7/a0WwzyDzzrft344dbX2y2GYQQQkhH0lTHgxAiBtvp8E0p5Q/CtpFSfkVKuUlKuWl4eHh+DSSEEEIIIYQQQsicaGZWCwHgXwA8KaX8bLPsIIQQ0jlIKZttAiGEEEJIx9FMxcP5AN4G4GIhxFbn35VNtIcQQsgCJ5svNtsEQgghhJCOo2npNKWUdwMQzTo/IYSQziNjFZptAiGEEEJIx9H04JKEEELIfJHO5pttAmkCXGJDCCGENBc6HgghhHQMVDx0JlxiQwghhDQXOh4IIYR0DBmLiodOhEoXQgghpLnQ8UAIIaRjoOKhM+FzJ4QQQpoLHQ+EEEI6Bs58dyZpTenCeA+EEELI/EPHAyGEkI6BM9+dSTrrPfdcgY4HQgghZL6h44EQQkjHkGaMh45Ej+2RKzDQJCGEEDLf0PFACCGkY8g4M99CNNkQMq/4FQ90PBBCCCHzDR0PhBBCOgaleIhF2Px1ErriwaLjgRBCCJl32PMihBDSMagYDwUGGOwo0hZjPBBCCCHNhI4HQgghHYPKalEoShSKHIB2Chktm0kuT8UDIYQQMt9UdTwIIY4VQsSdzy8TQnxACNHfeNMIIYSQ+pKxuNa/E+FzJ4QQQppLLYqH7wMoCCHWA/gKgFUAvtVQqwghhJAGkM4yu0EnwhgPhBBCSHOJ1rBNUUqZF0K8HsAXpJRfEEI83GjDOp2MlcfB8SzWDKXc754/lMZgdxzd8Voe29xIZ/MYnczimMFU1W3Hp3P43c4xSACnLO/F8v4Edo2msaQ3jqQ5d1v3jGXw1P4JvGTNIvQnzbLb7T86jcdeOAoB4CVrB9CXiFU99jMHJvDC4Smcs24Qj+w9gonpPAZSJs46ZtGMbDyctjCdL2BZX8L97uHdhzE6aSEVN3Dm6kXYe3gK6xd3lz1GoShx77OHMJUrYFlfFzas6JuRDQuZHQcnsGs0M6N9zGgEZ68dwJbnDiMZN7B+cbf7nlZiuCeOtYMpPPBc+LZdsQjOO3YIuUIR9z57CMv7EzhhaU9Ve8LKiaJYlLhv5yGkrQIW98SxZiiF8akcVg0kfcd4ev8Ejh1O4ZkDkzh5ea/vt/1HpxEzBAa746HnPzqVwwO7xnD8kh6sHkyGbgMAk9k87t95CGuGUjh2uPR93fbiOE5a1gMhROg1PblvHHsPTwEAUqaBc9YNIhLxp5B4/lAa2w9MYvO6AfR22eW0UJTYfnACJy7tDZ6yBCtfxD3PjmKoO+4rJ3vGMuhLxtDbFSu5pxtX9WNkIotfPXXQ3b7cWv+jmRwmrTxWaM8odDvnnkoAG1b0Ip3NY/dYBuesG8TjL4wjXyzi3HWDEE1OoaGeqb6yJCKAzWsH0NNVvZ6cbw5NZvHQ7iMAMKP6PIwpq4D7dh7CMwcm3e/aLcbD4y8cxehkFucdOwQhgHuePQQrX8TqgaRb9+wcmcSu0TTOXjeIvYczOG5xD545MIGTllUvT/Vkx8EJrBpIIh41GnqeyWweY5MWEqYBKSWy+SL6kjEcHJ/G6oEUdhz015Gjk1k8rL1Tm9cNoCcexe92jWF8Oo+BVAxnHTNQ8ZyFosQ9z45iOuc5ro5f0g0BgacPTITuo+oexXOjaWw/OAkjApy7bggJM/w+6f2e3WMZHBjPAgD6EjFsXlvZzmaw/cAE9hy2677H9h5FUQLnrBtoet1HbHz94zUD6EvG8MBzYziSyZXd56xjFuHFI1PYd3QaiZiBc48dLNvveW40jeGeOJ7aP47pnN3uqXZf1ecbVvS6feSte45gZCKLVNzAuesGkXHq6bDVjzFD4Lxjh2BGy8+V6/0OoHXLCanN8ZATQlwD4O0ArnK+a72eygLjq3fvwlfu3IlHPnGZW3G/4cZ78Jazj8GfXnp8w89/81278K/37MLWv7qs6rZf/PUO/PMdOwEA5x07iG+862xc9YW78f6Xr8f7XnbsnG354He24sHnD+Ot56zGX7/u1LLb/fn3H8Wdz4wAAN51wVr85atPrnrsN954D8an8/j9TSvx3S173e9/99FXYHFvV802fuan2/DswUn86I8uAACMpS1cfeM9UPHrrtm8Gt9/aC+2/tWlZZ0xv90xij/46u8AAKYRweOfemXFiraTuPbm+92O10zQn+sbz1qJ7z24t8oe9oDs9WesxPcfKr/t1657CZ4/lMEnfvwEkqaBbZ++vOpxv/irHfjnO+1ycsH6IXzjf5zt/vbwnsN4y833u+d/41kr8btdY/jNn73c3WZkIosrPn8n3nL2anzjvt347w9e6Gv4/+hbD2FZfwJfuOaM0PN/4ZfbcfPdu7BhRS9+8scvLWvnzXftxP+7fTtWDyRx55+/3Pfb0/sncOU/3oVvX38Ozlk3iBt/8yxu/M2zAIBz1w3iW+8+G1d/6R5M5TxZ+/ffd25Jh/49tzyIp/ZP4D0XrsNHrjwJAPCLbfvxvm8+hHs//Aos7atc9m595EXc8B+PAACe+esr3HJyzU334YoNS/GxV51cck+3fuIyfOrWJ5DXejblFA//97+fwgPPjeHnH7qooh3/9KvtuOmuXQCAlx43hO0HJrF/fBpv2rQK39myBwDwo/ef7xt4NIOv3LkT//jL7SXf//HF63HDZSc0waLK/M1/PYkfPPSC+3et9XkY3/rdbnzmJ9t837WT0iWbL+DVX7gbAPDZ39+ImBHBH/+7PffT2xXFo598JQDgnV97AM8dyuBNm1bhuw/uwbVOPfGrGy7CuhAHYiOYzOZx5efvxqdfewrevHl1Q89142924D+27MXGVf2YzhVsh9/aQfzg4b1400tW4Rv37cYP338+TnfK3qdv3YYfP/Kiu/97LlyHN561Em/6yn3ud/d+5GLf5EGQu7aP4B3/+oDvuxOX9iBmRPDYC0dD91F1j3KwXn/LFtcJ9vFXnYT/8dJ1oft94NsP4+HdR3D1mSvwo60v+uLR/PKGi0Kdws3kmpvux+hk1lf3/eSPL+AESovwkR88il8/bfeP33HeGlx3/hr83pfvrbjP689YgZ8+us9ViH39nZuxc2QSn7x1G3riUTz2qVe62772i7/Flacuxb//zn7237n+HJy9bhCAV5+/9Lgh3PKus3E4beH1X/qt2z/+4fvPxx1Pj+Bztz9T1pbPv/l0vPb0FaG/SSnxhhvv8S2nA4Df/M+X+SZvSWtQi+PhOgDvBfA3UspdQoi1AG5prFlkZCKL8ek8rEIR8aiBQlFidNLCyMTMB1+zOv/kNI5kcsgViogZlQe/Y5MWhrrjWL84hbG0halcAZPZfN1sPTRpH+dwurxnFgDG0ll3duBw2qp63GJRYnzalt/uOGh3BK7auBy3PvIiDmdyM3I8jExkfdd7OGNBSuDVpy3DTx7dh2cOTMDKFzE+lS/reBhzbFb7pLN5mNHyCo9OYixt4ffOWom3n7empu3Hp3J4y833u88VsGcEh7pNfO26zWX3++WTB/G525/BrtFJLOvrwk1/sMn3+4tHpnD9LQ/icMbCIed5ZawC8oUiolXKyaG0XU7WDafcZ+3+Nul/9jsOTpaUn8MZC0VpKw4AewbvBHiOh5HJLKJG+dkldc7xqXzZbfTtVLnTUTap/8cmLQymTBy/pAeHMxamc0VM5Qp4x3lrcMbqfvzJt7diLKTcjjrXq9+HkYkspAQOpbNVHQ/6fhnLKyd6OVT3VJXpo5kcxtIW+hIx/Omlx+MTP34CVpkgg8HyXI5DactWqAymcDhjYcS5ZztGvPduLFO9Lmo0Y+kserui+Na7z3G/u/bm+0vew1ZhLG3huMXd+NybTse7/u2Bmurz8sfKwogI/Oj95+OFI1N4zy0PtlVwyXTW60yPpS23PVbvdaEoYUSEW6a2H5yA9NUTFtYNz4+tR6dysArFeemnjExkMTKZxcGJLLK5AkYmsth+cAK5gnSvXbdjLG3hxKU9+Pvf24h3/OsDGEt7dbi6l2Npq6LjQZWXr7ztLCzvT+Aff7kdj+w9gmgkgktOWowPXuKfFPrFtgP4/C+3Y3wq5zoextIWrtiwFD/fdgCHK9QN6lzPjaZRKEp84BXHYbjbxF/+6Am7PMzTM60FKSVGnbpv+0FP+dGq9UsnMpa2cNYxi7DvyJSv//Kp15wSqvD9wLcfxu6xDKxC0e2XHM5Y7jOdyObdusfKF3F0Koen93vPXn+3vT6F/f+RqRyk1PrbaQtj6Sx64lH8+/XnQGd8Ooe33FS5rcrmi8hYdr/jjWetxP27xvCZn2zDxHTlvg5pDrU4Hi6VUn5A/eE4H6YbaBOBl/orky0gHjXcGUR9nWojUZ7DjFVAX6LygCqTK6AvEcXS3i7sOzrt7juVq4+t6njpKteesQo4ZjCF8al81W1t+7wOneq0nbCkG7di5vd5yiogox0v43QWT1jSg59gn9sBqmSX+k3tk7byWJSi48HKF5ErSBwzmKx59mTaeRbquarPvYlYxWPsGcu42/YnzZJtF/fYyxgyVgFT2rPM5AroreJ4yFh59CdjWNrbhUfHjwR+878vo5MWMrkCpJSu4knFJlDXpMcq8Gzye/zDzpGvMturtpvOF33nV9cAwD1P2sqjLxHD0r4uvHBkyv193XDKvXdhZWk659UvirRV+l01G9Xn/qQtg1YdEMAr36pMT+UKyFgFbFzVj/6kPQgoN/Ottq1qR7aA/mQMi3vjeGTvlDsrqQ94Mtnqx2k0GatQ8u73JqIV35dmkskWMNhtl7/+hFlTfV72WFYBSdPAhhV97sxdO8V40MvPlFVAzrDfMb2t6o5HS+o89f989RkAL3OI3hY27FxWAVLayxyLUiJjFSpee8bKY7jHXprVl4gik/PqS7eOqFIeVB11+up+LO7pwopFCdz77CFEjSKW9ydK2ovnDqVdW91jZAtYuSiBpGn4nEph16dfy3GLu7G8v6vkeK1AVnPk6W3ufL57pDIZq4DjliSQsQq+vsJJy3pD+0SDKdNVmap+idrXO2YePV0x9znrz15/t1UbGBzHeHWYfdyermiJLdl89X6B+m3tkN3vUE6wdqrnO4ladNxvD/nuHXW2gwRQlUImUFDnq8FRFUUtDUcmm0cqHkUyHkU6W3D3qdSozoSpGgckmWwBKdNAMm7UdJ/0zuzBCduXNqwNLGdC2ir4BhjqHqjjqeNX6tio39Q+rToomG/UfZhJvJB4NIKI8O47YH9OVTlG0omfYm9buvZW/Z7JFtxOqPq7GhnLfj9TIe9nJvDsD05MQ0r41hKr++C+S4HOfSab99kURL3vVpX17erdVQP5MDvTmgMiGTeQNA1krLz7e9KMuvc6eK1SSq0+0wcGM3E85Es+B+tIVf+oe5rO5pGx8kjGDHfWuNxa/3Q2j2y+WN1Jkyu416o7G/T3rhU633bd6H/3U2Z0TgP6RpLJ5V17a63Pyx5Lu3azynNvRYLOuYyVR0TAdUpnrAKsQtFdQqTePfX/fA5S3TKcbfx7ldHqQzXQqHTtygEFAKl41Kkv/e10pfoTgOtsVu+TKkPpbCG0fQrWgcWixJRWZ1R0FDv3UF1LKm6452iFOkVHvw5/3cc+TKtgv/9RpJy2Wk1cJMvEGEma0ZJ+cTrQxwj2zX3PXp+Iy4W30V65s/sOyZD4daYRQTQiKr7zwWvx6nk6HlqRsr1wJ67DWwCsFUL8WPupB8BYow3rdFSD6M4gzMARUM/z1+I8SDsNuleh1c9WKaV3L6ocL23l3Qa91tlKhRrg6RXsTMhY9rIYK1+EGY2UVKzq+JWOq+7bUHdtnaBOQT3/VLz2YGVCCKTMKCa0+z2dK5ZtZBXK2TCdK4Y2gomY4dqkd65rGcBlnM5pMuT9DDqq3PfFyrvBx9T74L1L3jGKRYlMrlCxw6/OWa0x9s1UWAV0xbx7lg4O7lWZc5yO7rNyHID28fw2ZfNFN4CU33njr/Mq2qjdb6++8TtFgvc0YxXsAUJcdzyE3wt3AFVFyWI7Xe1r1Z1E+udW6Hynrbz7PBS2s6j5toWRyRaQHPIGd3OxU7/2as+9FdHLT8bKIxqJIGVG3SDT6Wze7WgD3rtXS5tTd1tVv2Ee3it1XWHlLuza05bmzDIN32SBW0dUuVeqrlHtQDJuoCjtmdVQR7XznTqucharOqNcu6Hqc/1adGduvSZ16oV+HfrzYB+mdbDffwPJeBTjUzm3Tk2VCVaf0to01SfNWAVfP9xTKZaWRb0sueOXrJoUCLTNjhMwrAwJIWpWB6lriUXbr57vJCpN/90DYB+AIQD/oH0/AeDRRhpFtAIa6EzPV4OTCVQolbfNY0lPlzugmszWz1Z9kFJpVlk6UsuUM/s6GrI+PUhYoz/cPTspo7rWKasAMxopmUlRVJaL5dEVi6CnS82qt9asRrNQ7+BMM6Qk44bP8QCUb2TdfbRzhDWCRkQgEbMHbDNVPKStPJb1dSFl2h1O/zIKv9PJd1wnhliwLOp/T+dt2XFFxYNzL6o1xr6ORdbO8uKzRztWxipgMGUiadrLwdSaymQ8iqTTOQ++88GBlPu95a/zKtqo3W+vbvQ7aUsceY7iIWVGEXNiYZSTYnqO34K7Njt8uwIWpcyKSppWUBXYapuA4iEenddB6UzQO6G11ufl0K9dPfd26pAGZfoxo+iojLzZdDNa3eE4H8znBMmMl2Q5TkfAdmYdmJj22mmn3a9W92SsPJKm4Ubr18tUmKNatTfBfly1CRJVn/uOZUZd+1tN8VDuOtiHaR3s999WPOw/OuWbJAhD7wv1JmKIO/1avV+frtDX18uS55DMu311wF/u1MRMGKl4tLLiwS1X7etg7iTKTuVIKZ+XUv5GSnkugOcAxKSUdwB4EkDlHGNkzpQoHmbgCKjL+WfgPHArNKdRVEHp6mFrcMaiHNl8EYWidGdfZ9opUQz1mFXPFX4sr2IFvA7YQMqEnk2qWoyHlGO//TdnCwDvHZyJ4gFA6GCwquJBO0f5RtBwB7GujTU56BzFQzxasowi6HQKO26wLPo7ANXrh9kqHsLs8ZYz5J3OjG23Kvsp00DUiLidlTA7AL8DIWz5RVkb9aUWFRQP9j2Nub+nrYDioUyQQc/xW9mWjDuLVP69aoUYD+lsvuTdb3nFg5Kz11ifl0O/dvXcywUVbUWCjrq040hRAwa7Lqq+xGo+mM8JklquKx2oo73lO1Fkst56dU8VVU1V6R8c6WWqouIh0C9QEyTlHH9h9y8ZNzzFQ4uV27LX0WJ2dipWvuiqcpKmsyTaecfCHGaA/31OmoazPMmveKgUfy1M8VCUdl9dvS/9yZi7jCJt5cv28ZRCqRxeufI7mK18+yyp6ySqxngQQrwbwPcA/LPz1UoAP2ykUUQv0P4ZxlZUPKSdddMJp1FUkd3r0egoO/oSsYodeFdqZRpIOEs+qqHuaa8z2ItHI658dSaDhWJRltwvz5sc9Q2AK15D1lsvrx+r09FniWaCWqLQ2xXeUay0T6VtE86ALZ0tuMeu9X1LxQ1vwBDSKQ4qMsJiGVT6LVeQZQdV+jYyOJ0W2E5dVzmnga54SMa8gbeKc+AbNAYdJs4x+xKxUMdKTc5Oq1BiYzrgpFXLQNRzPDqVg5UvOoqHKjEeAgOFcqTdWSTvufUlbEeHEEBPvDXiKOjr2xXJFo3xoJbXqU5orfV5OfRrr/bcWxH1Pvd2RZ2ZQXv5VcL0FEXBtsy3/zw6vuZzgqSmuDrONoWixHSu6N6zZMxwZm/ziEaEW2ar1T1qaZVCr68rKh4CjsxqEyTq/gXbrq5YBEK0npJA76cBQDRiy+Nbzc5ORcViSDjtoRroA96yoSD6+5yKR53Bv+34dMtLmXbSbtvt71R97rbXWT0WlF2PpR0nYKJMHy9pRiu+S8FrYYyH1qaW4JLvB3A+gHEAkFJuB7C4kUYRvRPdHMWDN4CuVfHgDajU4KMejY6+ZEHJtEK3U8FlHClZrYMXdWxAVa7hA65K6EH+guvNdUdCteOWKB5aYKa0FXC92TN0PKjth7TlLtWcF37pbHiDnDKjruLBiwlS2/umYjwAgdn+gNNJEaZqcP8uo4YoV0fo21QaeKWtgrb2MnyZhO6ASGkDb1X2VedcdVbC7Bjuic9e8ZDNlwSCLXGKZO0Bp7qnSq6fNI2Kkns1SLHvRY2KB+25ufWJGly0QDnOWPmSgZE9MGi+bUHU8jrXeVVjfV6OtHbt7bjUQm8DvbXQujIuX9KWhe0/L7bO4wTJTBQPqk7xBSx1Bju+AX2jFQ+W15aF1Y3uebKlzzNpRu317rHKs7/NILhmX82Qt5qdnUow9pIdpLaArlgERiQ8BXcq8G6nTEfxoLe9IcrAaESgP+llulD1uS/WkrInrpYc2U7A8ss+qigetOMBXGrR6tTieMhKKd0cKUKIKID2mS5oU4KR2d0GfZ4qcncAXcV54M5OaQMqL3Xk3G11G+DuuCvTCsPfoEcxlSu4qe3KH7u0sTQiAl0xLzhkTTaGSO7VTIppRHyzItVSAukDJSoebNxZohkutVDb9yViMJ1gQ9WWa+je/3KODiVRT2cLNUt0vXJiuDaEKR6CjpGKiocyzoawcldwoqmr66vUIOsdi7KKB22tpv7OjkwGFA9m6cDbDfrY7XcmpgN1XiUymnPEqxu9jk6+UCxbL6XinuIhLMZDpXuuo5ROSdOvVBnu9uqTSgHk5pO0k/FHJ9Uiaowg6nl6zqva6vNyZLRrb8egY3oARDVg8CnjsoWStixs/3mxdZ4mSPR14hXtCZkIALxsFJOO41QFI66qeLD8gyOf4iF0aV9A8ZD12rKwulE/DxB0PKiAlpXXuzcDb82+N4mjgo2T5uPGyXIG+la+iKOZXMXJHJ+DLR5127KMVXCfc3Dppb2f4StLwbrJDsxdQETYKmPdETLrGA/u5FT71vOdRC2OhzuEEB8FkBBCXArgPwDc2lizOpuwTA6qYFv5YsMLkxqkANWdB+7sVNwbULmKhzo0OsEGuPxaQq1Bd+wIphssPbbq0NkBbnwpsmag1gjOXKtjJ03Djcjr2lkxq0Xer7powdnIZqA7lWaC/jy9QHWVjxGJeM+r3FILNWCzFQ9OcKQqz2o6V4SUTgMekhJNvS/K8aXwKR6CyoEyzoYwZ6EqC/1JWyJZrg5R0dTVdQXLsK4mUCn8UnFv4F2ieAgZeOuzebozMRNQeVUibeV9kbaVTYpMzhugqXvqLQMxXEdU2H0IBvMrhy9CfZjiIV57hp1GUtBS+OkkTTtq+WwH9I1CT8kKoOb6vBxqyQ3gSXDbKb+7Kj9D3XFtZlDLcOBTPHSV3X8+bW30BImK6VSzPcqZpSkeihI4nLZ89X1VxUPWn/LPp3gIcWp7ExkhiocKTsl04Hma0YjrLJ2rAqgRBINpJ7VYAqT56ANzXQFYaTJHf58TMcNty9KWrnjwly97v6iTMtz/zut9JTUp4Dn8qsd4qLzU2nOsAFqMhzZaUtdJ1OJ4+DCAEQCPAXgPgP8C8PFGGtXpqEEKULo2EKg8a14P9A5e9fRSXoPuziw6s56V1pvXSlByWD56sl/xUJPt2swr4M2GzDRvfDnFgxqM+WI81KB4CHZWOh19lmgm6B1KXbZdfT8vPkG542aydqDC4e5ag5J5UkdX8RCIDh3+vmjlvkQ5EF5Owzr96ne1NrPcwEtFU3dnNMqcU81aAOr+ek5HIYCuqDezWC11aGlshtpmMpWSRY+Yrf+uBmjKjhE38GW0ohSzXNaNku0C67UV/s53+QBy84XuINFJhTjAWoFgtPVa6/Mw9GxHgCbBbaOgY0oS3dMVc9dCKzWN+j3YlgX3nzdba1RKzvk8NV5TcBmWqqdSWl/FrXdrWBpQonjwLbsoF6QvWuIAUbPCGasQunxU3T9XQeCLPdSCiodAPy04+CTNJaytGpnM1qR4SMTsPqlqyzKa0jMdKF/2fo7TKRB4Uu8r6RlmkqaBsbRlT8zUUIZCr895/0piPLRREOFOoqrjQUpZlFLeJKX8PQDXA7hfVopMRuaM38ngzTAGv2sUvsFOjaqBpFmqeAgeay62lJN+B7fT7ajWiZiybLnXQMoejOmDlJnYPaWdZ0qriD1pZI2KB8s/UGpFGXQzcN+xMkGQyqF3KL0Z+OqqCT0+QejvZtQNVNifjCFmiOodVneQXlnxYNuoxwSpoHjI+vf3Ppe+N+p3T/EQXoUH14pPlXEaTOnrNE2/4iEZ89LNhQ2804FzlGSjqGHQYg8mbSXLVEjnJ+PMAuv31FU8xLUYDyEDUP9xKjgKAxHqFUPuYKH2DDuNpFw6WvWeBZ9xs1GdyKRbfmurz8OwCl62I8CegY6I9pLgqhSwSrqunJSmEXEjwk8FylRw//nCLcO5AooNVNLUek1Bx1m1OMQAACAASURBVIOqp3RHqe6gnqpF8VAmDlDZ2dq4UbLkI+VI1wtFGbp8NFgP+9I8z3BiZD5Qz32w284KFhx8kuYyZZW2Vfq7H4Z6n73/nX5PoYj+hJeNAvD3TVynUyDeix4PK5PzUhyn4tESpWSQapOBahmpilfBGA+tTS1ZLX4jhOgVQgwAeBDATUKIzzXetM4lNEe9PqveYPmaf+lA5YZYb0iDAeaAuUsu3UFKmRnYMDu8pQrVOxH6oMkvuZyJ4qFQ8tmWjc1Q8aB7geOtGfitGaStPOLRCKJGLQItj3DFQ3XHQ7Vtk3HDF6iwWsRlQJvF1VOiBcp5KuS8mTLOheDflZQR+vn7E3bHMF+mQVb7qg5kpRgPYQFURyazJdGwS+wOzOYFI2NXc7h5Swf8ct6gI0c5JwBH8TDhKR4qSe5rdTz4ZpGUlD8acVUl6r4024GoO0h0WjU1nxcI0K94mI1yxFPCedceMyJt1SF1A886ZWnSSQ+qlvGlswW3DAw55da3fxMUD1La6qmGnadmxYO//+QqHjRHqX+JZQ2KB93ZMFPFgz5B4jqgQxRqgQmXYJrn1iuz9sBPpS62+1XMatEqqPdFb6tGJjy1Txjqffb+9/o9bpYLV+FUqngIxnvR42Flsnmf4iGYDStIJXUQoBSj/joeAPIttoyQ2NTSk++TUo4DuBrA16WUZwN4RWPN6mxCc9TPo+Kh3NrxStvqcmu9sFebQaiGO0ipEsTPJ2Wv0KD7jm3lfbmxfZLLGcV4yJd8VhH1Af/MeS1ZLezroOJBkckWKjaQ5QhXPFRXTaTMytumzKj7jqtZ91okuoCjeHAl0v5yrjfECp9Tq0Q5EF5OQ3Nqlygewgdeat/erigSsVIHnO4k0JdZqfc2V5Al+b9L4kRYBQgBDCjnRrbg5hnXbS2Hu3TA9Mt5g0tXMlbeVwa9Z2ZUXmrhc/KWL4PB9dr2Z09xpe5Lsx2I5dLRqnvT7KUgQVzFQ8ARN5sBtBf7x7t204i0XYwHPU5NUfrrtowTb0YtxyjZfx6f73xNkNR6TcGBUXCSIV+U7ruRrGFpQDCrhR6MuNzssT6RkckWYESEHVSvQvkLqsJKFA8tV2b9qaJVLKNWU2Z0Kup9ScW9JVr5oqyseDD9ZSUVj7pKyVTc8AV89CkeTNUnKqN4cNSSev3uts3lylAFdRCgFKNeGXFjPHCpRUtSi+MhKoRYBuD3AfykwfYQ+AckTVE8VJFt+7bVGvSwweFcbXUHKSlvkFLJjoS29rXawD1tFXyDhrorHgIVt25nkGCe8cQMbVjIpK182VzTlZi14iFEqeI/rj+4WDIerSpX9wZTnoMu6CwIzjAApbP4OuWUSWHvjerc9jmOB6vMGnfdQZKKly6T0FUJ+jUltHc8Ebg/JXEisnkkYwZ64t6Sk6kKDpYSG7WYH/rsX/BepTWHVTD6fKWo134nbwXFg2NHQnu/9KU0rZLVolxw1lR89gP6RqIvmwNQc30efqzSa49F20zx4MZ0KA1qqNLMeSk2S+vJeVU8zKDvUK/zVN6usuIB8AY7qSpKglyhCCtf9LXnkYhAImbANLzgj0GSpjeRkbbsus9Wq1RQPGTzEAIYdPo9QcVD65VZf6poewKo+XUfsQlTPACV+0MJ098v9jvZom7dAwQUD/Gorc4KKBHdGA9ZWy0ZNsFTbilsNedzOpv3lUshBGKGaKt6vpOoxfHwKQD/DWCHlPIBIcQ6ANvrcXIhxOVCiKeFEDuEEB+uxzEXAqqjbueV9tYGCifdbsMVD04jKUR1x4HeoMejEaiUwMrWuTY87iClq3IgtDDZc7WZRiX3KlE8zFBtoGzS84DbEfXVTErU/b1ajIrZZtZYyNiKh5k7HsKzWtSueCh3zqDUtpYOlj6g74oa9rviPF/ldAoqZILlL23l3XIVfJfSWv0Q9t64igdnqUVZxYMvbkFpB1fZUJTAWMZyto0iHvXygQcDoQVTIaadsqFnb0n7ylC1OiegeNBSDat7MD6dc5dj2Hb4n5kb4yEk1oVuS02Kh7jhdsr0WT89q0UzwyKVC87qOcBaq55xO8macgSoXp+HHivk2mOGaKvgkiqmQ1hQw1TcXublLscwvbZG/T+viodsXquHGq940K9TBPoeqi4pFqU34xsyGaA7CispCYIBKhX6LHIYQcWDvpwSCC9/alLEU2j4HSUtV2adgZ+eAlcffJLm4jrrtWcEVFaA6rEd9L/VZ1X3AP6+iXI6WY6jTtXnQ+7yTVstGTbBU1bxUEWdpy+rVLTbkrpOoqzjQQjxf9RHKeVpUso/BAAp5U4p5RvmemIhhAHgiwCuAHAygGuEECfP9bgLATVIGUyZnqc8m3e9341e36caycGUWV3xoA2odC++snWuDU/aKiBhRl3va7lrV5G/DS0dYnXFQx7JmHdsNXhImDOLr6A6WPbzcmaEHYcJ4FWm9v2sHKNCV1+02qxGs9DVADNBV48kQjqc1fcLP2fC12k1anpf9AF9JCKQjGmzBUGnU9wrQ8HlGKpcDaZMXyrEjJXHQNIpc5UUD4nKSy3U+RIxtYbTO79ykCgb1LrMhOlPG+uP8eAEMNQz5ThLINT2Siqurqt6bBZPaZCIaYoHrY48NGk7RTzHgyaPNg3EIk6Mh7DAblnPlloUDykzCsOZ+dTrqoTzblSSiM4H5QZMyTkM6BtJuUHiXBQPemDaduuQqvXz+vPT2yxXuuyUWQC+emI+HV8Zy6uj5kPxMJgyYRoRdMejvmvW/5/KFdw6IhFSHwTVI+XPqeTqwSVL/lnkICr9MhAeyyes/GWsvKOkKnWcJlpg+VYQV5Wjqwxj3uCTNJe0VXBVOX5FYi0xHkLa0FjUrXsAf7nX+1tTVkFb5uEs33QUD0mtv+0et6zjoYriwcqXtG92Pd8+DuZOopLi4UohhADwkQadezNsFcVOKaUF4NsAXtugc7UVXqCouE/xMNTtz53buPPn3fNXVTwEgnepwj/UXTkLRa2oYE5eI11G8ZAtXdpQS2BMv+LB8/DOVPEgBLAo6Q0U1bFte+zj2/ezvP2Af/DZarMazUJPhzcT9KjM+ix01f00uWil3wF7kF2LQiaYWSCprY8MczoBpeUvbeXdcjUUSOOZzhbQ0xX1pZf0n98f46HcGne/4sHv/FLnUufWgzX6/y+dTfSl+3Qiw3szfoWSOq/SQEmXz/tiPGh15MikP1iVuqcxQ8CMRhCJCEQj4VJMb4YmXvG5lqToc94zTznlvXfNdCIG6xZFqyselCO41vo89FjZ0sFiW8Z40BRCgL+tcjO4aG2ZXk/ki3Lerjej1VGNnCBJa3WRGqAH60a9D5Kx8m5sBSBQR2kZjyqmz82Wc+AZJd8Ff9ezWgTr+VDFQ9aWoocN+vTZ5FYh+I6qYKhA62XN6URUPDMg2D5Xfm/t7SsoHtz+R96fzUl7t/X6PBU3XMWD3k66xy23vLXKcjs9ppoi1mb1fCdRqRd+G4DDALqFEOPa9wKAlFL2zvHcKwDs0f7eC+DsOR6zpTgwPo2//OHjM95vz+EpAHYwlgefP4zrv74Fu0bTOGN1P57aP4Gv3fMcfvXUwRkdsy8Rw5s3r8bNd+30yZ4rnX+oO46HdtvnL8fzhzIAvFlOv+NhAvuPTuND39lacRbTiAh84BXHYUlvFz596xO+TvrWPUcw2B13O6Hf3bIHDz5/uOQYj79w1KtYHVu+ef9u3PPsobLn3TmSxqpFyRIHQdI0MJ0rVrxunWcOTDixIqJ44Dn7fvlmNpzjD/fEsePgZOhxJ6YD65pNAwfGszXbsJB55sAEzlk3OOP9fOvuA+9nxf3ipZ09/3H1htKLNg8AN9+1E7/bNVayjyonKa3x/83TI7j+61t8wRLtbbzBw2MvHHXfgelcEcM9cTy1f8ItX3/87w/DNCLYuucIhrrjSJkGfvbYfuwaSfvO/9wh++/+hD+d5t/+7CnsHJl0t1NlX+X71s+vGnF17p88+mLgfoV0kp3fbviPR9wy/PDuw1g7lHKv9xv3Po/ehP1ZXd/1tzwIEXr3gUNpyz1v0oxi39FpXP/1LXhq3zhOW9kPYAK3PvKi/34797Qr6p/5/q/H9mHHwUnf8XeMTMKICPQlYnhkz5GyZVDdU10Orda+un87v33wO1vRFZ1ZVpbZYkQE3n3hOnzr/t0Yn8ppzzQoEbdt++rdu3D7tgPu92uHUvjwFSdCCO8JFIsSn7r1Cew7Ol0XG68+cwUu37AMhaLE3/7sSbz+jJX48h3PYjpXwDMHJpA0vZSstdbnYewft+3Vrz1mRPC7XWMtWbcu6+vCJ646BZGIwA8e2ovbHt+PA+PZUom01lbtGkljb3QKG5b3uWVRlVH1//u+8RCikXIlamb0dMXwmded4trwk0dfxI+32uXtcCaHk5b14qn9E25g6cdfOIov/npH1X7HTNg9ZtenQ91xjE/l0BUz3Ew8wWu/4buPYPdYBioTCBBQZWkO01xB4t1f3xJa94xP53zbu/vHoxWj56fiURyZyuH6r2/B1j1HsH5xt/s9AHzx1zvw/Qf3+vZR9XkyzJnr7PfebzxYt2c6V3YcmMR56wd9Tmjl5PnAtx92P88XCdPAdeevxc137Wyag0aVkyf3jeMrd+6E8qW/4ayVeGzvUTxzYMLdti8Rw1+/fgPiTvv0nw/vxc8e2183W554cVybmKstxkPMiMCMRkL7Q6qd2zWSxvVf34LdYxmcdcwiPLV/wud0+vPvPYq9hzNufZ40o7jj6YNuZh7AXxYrBfQGgP/10yfdeG86u8cyOGW5f0hqGgK5FnLO6Xzhl9tx+YalOG5JT7NNaQqVHA8fl1L+mRDiR1LKpikRhBDXA7geAFavXt0sM2ZFrlB0G8iZ8ooTF+M1py/H6KSF3WMZrFyUwOtOX4FEzMDuscyMjjuZzWPv4SkcmMjizmdGcOLS6i/7JSctxqtOW4bRyWzFcwkBXLFhqdswXrVxOW5/8iBefdoy3L1jFPc8ewh3PDOCNYNJdJUJEPjU/gmcsLQHpyzvww+3voi1Qym3oRpImbhyw1JEIgJXn7EC2/aNh9rTm4jh5ScuBgDEoxG86rRlePbgZEXbVy5K4BUnLcbKRQm86tRl7uD2vGOHcPuTB2q+x10xA689fTlWDyTxnw+/gN1jGZy8rBfnrbePd/baQVyxYSled8YKHHKeZxhnru7HKSv6AAAvO2ExHtp9ZNbvz0JiRX8Cl560ZMb7nbSsF5eevARnrOrHUHcc+45MobsGxcPLT1iM8ak8zDKdpQ0r+nDm6n4kTAOrBpL2mlvHsfbPd+5ErlDE0t4u3z5CAFeeutQdfL/6tOW+d+z0Vf3YuKofAPCyE4aRzuZx8vJeX/nbsKIX152/Bl0xA2895xhMTOew3xkIDqRMXHnqUoxOWrhv56GS9yYiBF516jJ0O7FScvkipnMFfPmOZzHcE3dlkoBd9gdSJi47ZSlGJvzlf+PKPlx3/hqknYCQrzxlCbqdTsGrNy7Hz5/Yj5efOOxuf/qqRTh9Vb8vxe5wTxyXb1iKpGngylOXYudIGhPTebxkzSK8/dw1OJyxsKfKe7957QCOHe7Gy08YxtY9djlZ3p/Aq05bhkUpE9sPTGDjqn5sXGnf05ceN4S7t49i05pF7jFee/pyd18d04jg9WeswIblvTg6lStbBtU9VXXV729aiRWLEljS24WrNi7HeesHEY1EsHFVPw6O12fAXgtP7Z9A2irgzmdGsGoggZQZxSUnLUZ/0t9h60/EcOnJS7BHa0/G0hZ+vu0APvCK43wqgZHJLP7t3uexrK/LXa4zW54/lMFUroDLNyzDvc8ewk137cJNd+0CAKwbTjn16Qp3+1rr83JcsH4Iy/sT7t+Xb1iK/35if8vVrUencvj5tgP4w5evx5LeLvzbPc/h2ZE0jh3uxkXHD2P94h5sXjsAKSWOdzqsl5y0xHWcXXbKEixKmrj6jBW4+syVTj2xGuPTObx4ZKouNmasAnaPZXDN5lXYtGYAAPDN+3bjkb1HsHogiROW9OCyU5biru2jrkLgtsf342eP76+p3zETLj9lKa44dSl2jaZhRiMY7o7jmMEULj1pCbrjUbzl7NWYyOYxMpFFImbgddo7lTINXLFhKV44MuXWCeceO4gNK3or1j12G+0f4Lzu9OUVHQ+q7tk9lsHinjguP2UpAGB5fxdeetxQSR0LePW5ERF46zmr3b4NAJy9dgCnreyr2zOtBysWJXDJSUuwrL8Lrz5tGc491u77bFzZhwPzWPcB9vK5naNpHM7kcOczI1i/uHveHTRpK489Y1N4y9mr8OOtL+L2Jw/iuMXdeO5QGtP5Iu58ZgRD3XEMdZtu//zt563BBqf/92/3PI8dByexclGiyplqo6criotOsNtlMxrBVRuX47nRNDavHai431vPPgYvPX4IgL/fs9J53jucOnn1QBJvOHMlhrvjuGD9EPoSMZy+qh+jk1lffX7VxmX45ZMHsShl4vz19nHPXL0IG1f1YzBlustFgxy/pBub1wxgfDqHyZBJzDVDKV8ZAVo3iPB0roB/+MUzyBclPnRpZzoeRDlJqxDiISnlmUKIW6SUb6v7iYU4F8AnpZSvdP7+CABIKf93uX02bdokt2xpvVmKVue3O0Zx7c334+RlvXjhyBQe+cRlDT9nrlDEcR/7GU5e1ott+8bxsz95KU5aFi6SOfEvf4a3n7sGJy/vxZ98eyt+dcNFWDfc3XAbCakHn751G767ZQ8e/9Qrccpf3YZrNq/Gx1/dmuFqnto/jsv/31248dozcfa6QZz5mV/gU685BW8/b02zTSN14pS/ug3HDKawbd84vnP9OTh7BmqhW+57Hn/5w8fxwMcucdOfAcDOkUlc/A934PNvPt3nFJgN1958H7K5Ir73vvNwz45RvOXm+93ffvvhi7Givz6d7Xbjhw+/gA9+Zyt+/T9fhrVDKVzy2Ttw/JJufOnas5ptmsuDz4/hDTfei6+/czMuPN4eyLz2n+7GopSJr123GQAwOpnFpr++HZ957Sl427lr8Klbn8D3HtyLxz75ymaaTjqE3YcyuPDvfu32PR/95GXoDUkz20i2PDeGN375Xtzyrs340dYXce+zh/DbD1+MN3/lXoxP5bFt3zg+duVJePeF69z++Xffc67rCLjsc3fg2OFu3PjW1in77cYln70DJyzpwRevPbPZpvgYn87htE/+HNdfuA4fvfKkZpvTSMp6+ypN/5lCiLcAOE8IcXXwRynlD+Zo1AMAjhNCrAXwAoA3A3jLHI9JQlABW0YmszVJzeuBkml5a60rRM911sh768tnHkiQkGaRclImFosSmVzpWsNWQqV8swpFL+J/C9tLZk7CjJbEuKgVFfDLXrvrOR4ygbgLcyFpRjGWtmdrYwFVUbm4Kp1AMHJ7Jju7oLqNxAvy5s+os3JRqXxbT7VXSxpjQuqB3t8F/IFl5ws9Y5MKpqy+f9ZZBqmWFXiB0/1xkMoFWiS10aoxHtTyj07OWlepNXgvgGsB9AO4KvCbBDAnx4OUMi+E+CPYqToNAF+VUj4xl2OScFSjf2gyi7VDqXk8r4FDNXSAk3E7+FIwfzsh7UDSjEJK4HDGgpTlc1G3AqbjeMgVpBYcsXXtJTMnFTdcuXildGnl9gVKUyGGBWmctX2mFxA0OCXSye+iureqXKa1XPetQkobUCkyWX9E+a5YxJcuOK0FtiOk0ag67NBkFmY0gqgxv/EldBsyzoSaHmNK9YkrZTfJaDHCyOwwjfDg0c1Gxdfq5Kx1Zd9sKeXdAO4WQmyRUv5LI04upfwvAP/ViGMTD9UpKMr5VRMkzSgOZ5yATJXyBQcUD53c+STth3q3R9wORet2smOu46HozrBwULCwSJpRqCXnM+28hs1o23+HR/SflX3xqFvX6+nOVMaRTiWY5cCORN9abaGahQ0qHvR+hRDCadO9TA4cRJH5oitqQAinv9uktjipqX5sJ4KXIULVzcFUqelAmWK7PDdaNW2ysomKh8rcIoT4AIALnb/vAPBlKWWucWaReqJ3CuZTTaAGZEL4o8kHSThp+zJWHvFoBEaLRGompBZUJ0MFUGxlx1nMsMtWrlB0Z1g4KFhYhKUKrHlfLcWpjuoU18NxnYx5ige9Y1iPZRztTFKb+bTyReQKsiky8UqEvR8ZK18iC09qqpZ0tvR3QhpFJCKQjNlpG5vVFuspgNPZApb32zEmkiGZaVylU9arE618ke3yHIkZEeTy9cukUy/U8o9OVjzUMr3wJQBnOf9/CcCZAG5spFGkvvjT/82v4gGwO5qRCs6ElBlFOpt3c0ET0k6ogZ5yPFRS9zQbtabeymuKBw4KFhS+9GQzHLh6g9+A4iFbX8VDxiqgWJQ+x0On1/36zKe77LDF7omaTVbvh3KQBGeWU5qqJdOCS0bIwkaVm2a1xcqJqhQPycCyCqA0DbWuENK/J7MjFm3RGA9K8WBR8VCJl0gpN2p//0oI8UijDCL1R6kICkU5rx0ZVelXO2fSNDA6mUUm29qB+QgJQ73f7aB48Md4qN8sNmkd1CAvPov1ze5643KKhzq828q+qVzB53jo9Lpfn/lU97/VBuz6bDIALS6T/73wKR6sPFbHk/NrKOloUqaBETSvLY5EhF0GsnlnKZLqC5dOAqr++ZRTptT/bJfnRsvGeHBUGJksFQ+VKAghjlV/CCHWAejcO9aGCCHcTt18dmQ8L2/lc6biTowHBtQhbYh6v0cn20DxoMV4aNXBDZkbQQnvjPbVgqLpuLNwdXi3laMubeVhaTEeOr2jrc98tqriAVCKFeVUUIOkgOLB1BQPWSoeyPzi1YHNe++STpwTPTuNT/FgqqXIdv88rTnq9N/J7GjVGA/uUoscFQ+V+DMAvxZC7IQdhPoYANc11CpSd1JmFBPT85ueS3U2qp0zaRqYsgrIMKAOaUPU+z06afn+bkWMiEBE+GM8tOLghsyeVEDCO6N9A6kQFelsHtGIcBUzc7JPKR6sgptaDGBHW818ZrRAy604YE+ZhmvfVDnFQ9zA4bRdH6at1ksLShY2Xh3YvPcuFbdVP5lcQesLa4oHrd1NmVG3PWbspfpgOx5aL8aDcoZ0suKh6pstpfylEOI4ACc4Xz0tpcw21ixSb9SAfj49wLWus1PrQRn9mrQjblaLCX+arFZF5bdWMyudHtRvoRE2u1YrwVSIioxlL4MTYu6Bf/Uc974YDy1ebhqNO/OZLWiznq13T5KmpnjIllc87D08BSnttL2trAIjC49a1baNtmEs7U+xXS7QezIeonhgmZkTUUPAyree4oExHmpbagEpZVZK+SiAq+l0aE9Up65lFQ+5Aiamcx0/60XaDxWx3Y3x0OIdBtOJ9pyxCkjEDGaRWWC49e4s3sNgKkRFOlu/wL96jntfjAcqb+yZTyvvzXq2YF2SinuKh3IOErW+PZsv2rGlWtCBQhYutcYXa6gNpqFNRvgVD0ZEIK6lDrbLvT9uSqc7YueK2aJLLZRN0zm7buxEZqqbfE1DrCANx43xMI8dmUSN6+xUBXto0ur4db6k/VDv78hkeygeok7QJXsw2XoDGzI33Nm1Wb6HemBAhVI81AM9x70vxgOdzs7MZ/soHsrJwu016wXGkSFNoSUUD/FoScBp1b8NqsdspVNlFRGZGS0b40FL8RlsZzuFmToeODXWpqhO43zKqlPuOasoHpwK9lDaouKBtB2qTI2lLQhhy9VbGdUgZ5qY55w0Dreun2VdmtTW8CvquU7fVTxkA4oHvovOWm8tq0ULDj5ScS+rRTlZuApAqQZTVLOQ+cSrA5ureDjkxDlR5Vj1FcIcdUHFQzNtXwi0eowHoDR7VKdQtYcshDhV+/OsBtpCGkjYGrP5O2dtigd7W1a2pL1QqbMAIBmrzzr4RuLGeMjm6ehbgMw1g5E+o62oZ6pjPYClHlyyFQfZ841SCrgD9hYcfCQd5wgATdHgtzNlGsgVJI5O5UJ/J6SRtITiwZfBIqB4CHHUpYNxU9g2z4lYVLgZJFqJfNGzKZ2l4qEcXxJC/E4I8YcAehptEGkMYVF15++c1WM8hH0mpF1Q73g7zOyZUXsmoJ7yedI6pOb4Lupr+BWZXP1iPKh3riTGAwenSMWjboYnoDXbw5SpKR6yZRQPgeVnrR73hiwsvDg3zc1qEfycMsMVDynT8LJatPAyq3ZCxXiQsrVUDznfUgsqHkKRUr4UwLUAVgF4UAjxLSHEpQ23jNSVueR2n/M5q3SegmmFCGk3gh2LViZmCOTydlYLKowWHsk5vosNVzzEvawWvhgPHJw6ioc80lYeZjSCWB3Sl9YbtYwC8DrOycASTvUsR9sk0w9ZWHhxblpL8ZDUYjwEt/WyWhQQMwTMaOuV/XYiZkQgJVougKOuwqDioQJSyu0APg7gLwBcBOAfhRBPCSGubqRxpH7MJbf7nM9ZZXATTCtESLvhdizaoIPtxnio42CStA5zzWBk558vjfFQr8FjPBpBRFDxEIYd46GAKavQsk5MtYzCcpyX8WgE0YCDpETx0KLXQhYmtapt58MG+7NthxvjIdAnTsUNTFkFSCkxxdhLdUE5bVstzgNjPABV324hxGkArgPwKgC/AHCVlPIhIcRyAPcC+EFjTST1YC653ed+TioeyMLGlVC2gePMjfFQx8EkaR1c9c0s38WkGcXEdB5HMzn3u3S2UDensBACiZiB/UenfQEwW3WgPZ8k4wYms3kcyeRadvCh7JqyCjgQeIYK9e69cHjK+bs1r4UsTGqNLzYfNtifvTSaiZgRqnjIFyVGJrM4nLFYF9aBmGHH2rIKRVhTRXTHoy2ROlx3PKQ7NKtFLa3BFwDcDOCjUsop9aWU8kUhxMcbZhmpK32JGACgp2v+OgD9yZjv3OXo7fJ+n0/7CKkXvW75qvyutwKmiTDmvwAAIABJREFUEYGVd7JatIGjhMwMVZ9Wq3cr7b9/fBobP/1z3/f1fLf7EjH8x4N7S77rdHq7YpjM5vHjR17EiUtbM6SWGsz906+344dbX8Qxg8mSbdQ7+M37dwNgu07mF1WXNLNO6dXe+W7NCdGXiJXYpfoPm//mlwCAE5a0ZtlvJ9RSlc/fvh1f/e0uXHj8ML7+zs11OfbXfrsLP3j4Bfz4jy6Y8b66AiOTpeIhFCnlRRV+u6W+5pBG8fozVmDVQBKD3fF5O+exw924+Q824cLjhytut7SvC1+45gxMZvM4f/3QPFlHSP348BUn4oL1Q3jpca3//iZMA0cyFtJZKh4WIot7u/C1616CzWsHZrX/uy9ci1UDCegxuYyIwJWnLquThcDn3nQ63vSV+wAAy/u68InXnIJz1g3W7fjtylvPOQYDKROFosQZq/ubbU4oSvHw6N6jAIC//72NJducvqof//cNp2Eym8eS3i4MzWO/g5AL1g/hK287C6eu6GuaDVecugzT+SKW9MTRpcVA+fLbzsLiHn95eM3G5YCU7qD09BYt++2EWtby+It2PfXswcm6HfvpAxN4ct/4rPa18vpSCyoeyAImFY/ioioOgEZwyclLatruqo3LG2wJIY3j+CU9OL5NZilScQN7DueRzRdbVs5N5sbLTlg8632X9SVw3flr62hNKWevG8Syvi7sOzoNMxrBK09Z2tDztQvDPXG8/bw1zTajIkomPjKZxeqBJF6yptTBFTUi+P2XrJpv0wgBYDtKL2tyndIdj+Jt5xxT8v3pq0qdCn2JGN527pp5sKpzUMu7Rp04M1O5+qkL0tmCG+dmpkFA/UstOlPxwLCphBDSQSTNqBdtnkstSJNQA9hWzNxAyqOclaMTWQaNJIS0JKpuUn2deqoLvKw+Mz9mrlBEImYgGhEdq3hgi08IIR1EyjQwPs1c4aS5qBkpOh7aC+WsHJ9mOl5CSGui6ibV15nOFeuWWjPtxGaYTVaKXEHCjEbs1MmM8eBHCHErgLJPSUr5moZYRAghpGHo0bapeCDNQq3BjTFffVuhOyupeCCEtCJhdVPGytclSPJcFA9WoYiYEUHM6FzFQyV39d87/18NYCmAbzh/XwPgQCONIoQQ0hiSWqArKh5Is1AzUqbR/BRnpHZ0ZyUdD4SQViSsb5OxCnVyPNhKhdkoFnL5IkxDIGEaHRvjoWyvU0p5BwAIIf5BSrlJ++lWIcSWhltGCCGk7vjyi3PgQJoEYzy0J3qHnllxCCGtSErr2yRiBqZyBaSz9VEYuI6HWcZ4iEUjSJpRZOpkT7tRS4ufEkKsU38IIdYCSDXOJEIIIY1Cb5DpeCDNQg1a6XhoL/Q6I8mlWoSQFkSfYBl20pfOJiZDGMrhkJmN4qEgETOcGA9UPJTlQwB+I4TYCUAAOAbAexpqFSGEkIbgj/HAGUvSHNSglY6H9iJmRGBGI7DyRSoeCCEtSUJbUjrcE8fusUz9FA/Z2SseVIyHVDyKgxPTdbGn3ajaakgpbxNCHAfgROerp6SU2caaRQghpBFQ8UBaAU/xwBgP7UbKNGDli4wRQwhpSYyIcJdYDHfXT/Fg5YuwCsVZHy9XsGM8JE1jVoqJhUClrBYXSyl/JYS4OvDTsUIISCl/0GDbCCGE1Bmu0SatgFI8yPpkOCPzSNKM4nAmx6w4hJCWJRV3HA/OUovZKBSCTGnOhtkoKHJK8WBG62JPO1Kp13kRgF8BuCrkNwmAjgdCCGkzfFHpOXAgTUI5vXLO7BFpH1QdQsUDIaRVsesny4vxUAeFge4smJXiIe/EeIgbdYs50W5UymrxCef/6+bPHEIIIY1EDRaiEQGT6+tJk1DLfCw6HtoOVYdQ8UAIaVVUG+MFl5y7wkA/xmxjPPSaMaTMKDJWAVJKCNFZyw2ruquFEH8a8vVRAA9KKbfW3yRCCCGNwputNDquwSOtgwpsSsVD+0HFAyGk1VFtjIrxUI8sEmlNNTEbBUW+6MR4iBsoFCWy+SK6Yp3lwK1lumsTgPcCWOH8ew+AywHcJIT48wbaRgghpM54s5UcNJDmoWajcgUGeWg33DqEwWkJIS2KamP6kzFEI6Iuiof0HBUPaqmFWmrYicstanE8rARwppTyBinlDQDOArAYwIUA3tFA2wghhNQZ1RgzowVpJlQ8tC/K4ZCk85IQ0qKktEmWpGn41AqzJTNHxYMKLqn6X/VK8dlO1OJ4WAxAT5+ZA7BESjkV+L5mhBB/J4R4SgjxqBDiP4UQ/bM5DiGEkJkRMyIwoxEqHkhTUXnWrTwdD+2GcjhQ8UAIaVVU8OyUGUUqHq2r4qG3a3ZZKSyV1SJOxUMlvgngfiHEJ4QQnwDwWwDfEkKkAGyb5Xl/AWCDlPI0AM8A+Mgsj0MIIWSGpEyDigfSVLpidvcjX+RSi3aDigdCSKujFA/JuN3fqUeMB+UoGO6J+1Jr1kquUIQZFZ7ioQNTalZtNaSUnxFC/AzA+c5X75VSbnE+Xzubk0opf679eR+AN87mOIQQQmZO0owyMBxpKtGI7XjgUov2I6E69B0WFI0Q0j7oy0qTZhRP75/AzXftdH+PxwxcuWEpfvrYPlj5Io4d7sby/gTu2j6CC44bwr6j03huNI2rNi7H7dsOQAhgctp2FAz3xHHfzjE8tvcoxqdzeHLfeKgNawZTWDOUxG+eHgEATEznnaUWdh36/Qf34qHnD2NFfwJXnLoMT+0fx93bR33HOHvtIE5d2Vf3+9MsyvY8hRC9UspxIcQAgJ3OP/XbgJRyrE42vBPAdyrYcT2A6wFg9erVdTolIYR0Licv78Vxi7ubbQbpYBb32pHG33n+2iZbQmbKiUt7sHogiZ4uOi8JIa3JCUt7sG44ha6ogfWLu/GfD7+Av/7pk75t7tt5CD99dB8AIB6N4IL1Q/jlUwfx8hOGcef2URSKElueP+xu88pTlgAANq7sx307x/DpnzyB5w5lMDIRHnkgGhG4+MTF+Pm2A+53qweSWLkogXg0gm/ev9v9/vFPvRJ/+7OnXCeF4uOvOmlBOR6ElOEyRyHET6SUrxZC7AKgbyQASCnluooHFuJ2AEtDfvqYlPJHzjYfg50142pZzhCNTZs2yS1btlTbjBBCCCGEEEJIh1MsSt+yhr2Hp3DF5+/CxlX9eGTPEbz1nNX4xn273b/V/wBKPj+5bxxPf+ZyvPVf7sfohIXnDqVxzebVuOGy433n/Npvn8M//OIZbFzVDwHglndthhAC3c4StelcAblCEd97cC8+des23P/RV+APv/kQYobATX+wyT2OGY0gHm07dVnZXO1l3dWO00EAuEhKubvcdhX2v6SiRUK8A8CrAbyiFqcDIYQQQgghhBBSK5GIQE9XzP17uMde4jfqKBWW9yd8f49qCobg55RpQAiBJT1d2DWSRjZfxKKk6Ts+ACxKme4+xy7uLvm9K2agK2ZgwNkunc0jnc07ajL/tguJisElHYfAT+t9UiHE5QD+HMBrpJSZeh+fEEIIIYQQQgjRUYEnRyayEAIYdAb/asmEvnQi+DmpBa0cnbTs48VLFQnquxHHWVEOdbyMVUDGKiz4jGO1ZLV4SAjxkjqf958A9AD4hRBiqxDiy3U+PiGEEEIIIYQQ4tIVi0AIO72lSrcJ2H/r/4d9TmlpOtVvYcG6EzHvmJWCebsZLrJ5ZKw8Egs841gtbpWzAVwrhHgeQBpejIfTZntSKeX62e5LCCGEEEIIIYTMFCEEUmYUk9k8kqbhKiBqwVU8aPtUUjyU+907nv1bxiognS1UVEcsBGq5069suBWEEEIIIYQQQkiDSZoGJrN5pOJRd/BfC67iQXMmhCka9O8qKR6U2mJ8OoepXGHBpzqvenVSyufnwxBCCCGEEEIIIaSRpOJRYCJrKx60uAqDKROH0pbvc3fcXlZh5YvhiocQx4VP8VAxxoP926EK8SIWErXEeCCEEEIIIYQQQtqeRMwe4CdNwxdXYbgnXvLZXo6hYjuUKh7C4jLoyzcqxW1wA11OZp1zLWzFAx0PhBBCCCGEEEI6AuU4SJpRn5MgzPFgL8dQ2SzCYjyELbUwKv7ubqdlv9DtWqgsbLcKIYQQQgghhBDioBwHqbjhDv4BYLg7XvI5aRqIGcLePqB8UL8H0Z0NlWJImEYE0YjAaIcoHhb21RFCCCGEEEIIIQ664iEZC19qMaQUDyGpM5NxPcZD6XA6Ho0gIoCiDP9dIYRA0jRcx8NMMmy0I1xqQQghhBBCCCGkI3AVD6aBqBFBPGoPiYcclYNpRNDbZW+TMA1XteA5LDTFQ8jyCJWys9zvOql41F1qUW3bdoeOB0IIIYQQQgghHYFaKqGUC2ppxFCP6Xxv+JdjmMoJoWI82PtHIwKmET6cVk6EaiqGpGl4MR6oeCCEEEIIIYQQQtof1+Fg+hUMw91dzvdRfwDKeCCrheaAEEKEn0NzXFS0xYyiKNXnha14WNhuFUIIIYQQQgghxMFzOCgHhP2/nkJTX45hFSK+7V01Q6WMFYFzVNsu+HkhQscDIYQQQgghhJCOIKhGUI4E1/EQ1xQP8Shi+aJve5WNopKjIBVwapTdTg9UWcGRsRBY2FdHCCGEEEIIIYQ46MsoANs5IATQn4ghImyVg0/xYPgVDyobRUXFg3OORBUVg3JeRATcIJcLFToeCCGEEEIIIYR0BCWKB9NAMmYgErGzUSTNqBbHIYpYwa94sD9HqyoeTCMCs4ozIeVzfoTHi1go0PFACCGEEEIIIaQjUA6ERMzLapHQ4jckTcNVLCRNA7mio3iIeUNnPQ5EGEnTqKp2UOcDgHhsYcd3AOh4IIQQQgghhBDSIWxeO4h3XbAWZ6zuBwC8+SWrsHntAADgQ5ccjzVDKawZTOG9Fx2Li09cjIKU2HfkWKxclHCP8UcXr8dAKl72HG/evAqnreqvastrNi7HgfFpbDpmYI5X1foIKWWzbaiZTZs2yS1btjTbDEIIIYQQQgghhPgpu15kYUewIIQQQgghhBBCSFOh44EQQgghhBBCCCENg44HQgghhBBCCCGENIy2ivEghBgB8Hyz7ZgFQwBGm20EIXWG7zVZqPDdJgsVvttkocJ3myxU2u3dHpVSXh72Q1s5Hi6//HJ52223NdsMQgghhBBCCCGE+Gm94JJCiFVCiF8LIbYJIZ4QQvxJtX1GR9vJ2UMIIYQQQgghhJBoE8+dB3CDlPIhIUQPgAeFEL+QUm5rok2EEEIIIYQQQgipI01TPEgp90kpH3I+TwB4EsCKZtlDCCGEEEIIIYSQ+tMSWS2EEGsAnAHg/uZaQgghhBBCCCGE1I9iUeLam+/Db54+2GxTmkbTHQ9CiG4A3wfwQSnleMjv1wshtgghtoyMjMy/gYQQQgghhBBCyCyZyhXw2x2HsHXPkWab0jSa6ngQQsRgOx2+KaX8Qdg2UsqvSCk3SSk3DQ8Pz6+BhBBCCCGEEELIHLDyRd//nUgzs1oIAP8C4Ekp5WebZQchhBBCCCGEENIorAIdD81UPJwP4G0ALhZCbHX+XdlEewghhBBCCCGEkLriKh4Knet4aFo6TSnl3QBEs85PCCGEEEIIIYQ0mmy+YP+f61zHQ9ODSxJCCCGEEEIIIQuVLBUPdDwQQgghhBBCCCGNgsEl6XgghBBCCCGEEEIahnI4ZOl4IIQQQgghhBBCSL1xs1pwqQUhhBBCCCGEEELqjbfUotBkS5oHHQ+EEEIIIYQQQkiD4FILOh4IIYQQQgghhJCG4S61oOOBEEIIIYQQQggh9Sabo+OBjgdCCCGEEEIIIaRBZBlcko4HQgghhBBCCCGkUXjBJel4IIQQQgghhBBCSJ2h46EGx4MQ4nwhRMr5/FYhxGeFEMc03jRCCCGEEEIIIaS9YVaL2hQPNwLICCE2ArgBwLMAvt5QqwghhBBCCCGEkAWAVSjY/9PxUJG8lFICeC2Af5JSfhFAT2PNIoQQQgghhBBC2h93qUWhCHto3XnU4niYEEJ8BMBbAfxUCBEBEGusWYQQQgghhBBCSPujKx06NbNFLY6HNwHIAniXlHI/gJUA/q6hVhFCCCGEEEIIIQsAPbZDpy63iNawzYeklH+h/pBS7hZCnNJAmwghhBBCCCGEkAWBRcdDTYqHS0O+u6LehhBCCCGEEEIIIQuNrLa8olMzW5RVPAgh3gfgDwGsE0I8qv3UA+CeRhtGCCGEEEIIIYS0O1Q8VF5q8S0APwPwvwF8WPt+Qko51lCrCCGEEEIIIYSQBQCDS1ZYaiGlPCqlfE5KeQ2AVQAullI+DyAihFg7bxYSQgghhBBCCCFtChUPNcR4EEJ8AsBfAPiI85UJ4BuNNIoQQgghhBBCCFkIWIzxUFNwydcDeA2ANABIKV+EHeeBEEIIIYQQQgghFcjmC0iaBgAqHiphSSklAAkAQohUY00ihBBCCCGEEEIWBla+iO64HV4xmy802ZrmUIvj4btCiH8G0C+EeDeA2wHcVI+TCyG+KoQ4KIR4vB7HI4QQQgghhBBCWgkrX0R3V9T93IlUdTxIKf8ewPcAfB/ACQD+Skr5hTqd/2sALq/TsQghhBBCCCGEkJbCyhfR0xWzP3doVotK6TQBuEsrfiWl/IUQ4gQAJwghYlLK3FxPLqW8UwixZq7HIaTZpLN55ApF9CfNqttOZvMoFCT6krF5sGx+mJjO4an9E+7fRkTg1BV9+P/snXeYHMWZ/7/VMzuzK+0qCySQCMLkDMIYm2D7bIJ9DodxvjsHfJzvbP9sn885YhtzBxhjg80BxsbYJGMsMFFgkkACFJCEtMpaSZu0OU3sWL8/uqunuqe7p2d3ZifV53n2mZ3p6u7qUFVvvfWGvYNJAMAJi2YBMO/TtoMTOGZhKwCgpSmCiayK+TNjiEbCGGAJBJWhfyLbUO/peFrFroEECICTD5uNFssvVSAQCKaLwYSM2S1NGErKWDy7GYSQgvv0jmVw2JyWaahd9TCUlNHWHEU8KvpphqIZ2NIzDoNSz+3N0QhOOmwWtvaMT5sSIKXoOMayeNjZl8Chs0YK7rN07gwsmt1c7qpNGwUVDwBWAbiAEDIXwFMA1gP4KIBPlrNiAkEt8dPHt2HPQBIPfv6tBcv+4OGtGEjI+NPnzp2Gmk0P3394Kx7e1Ov47VPnHYk/vHIAAPDMVy/EsYe24dont+NPr3bi/DctwGBCxrnL5uHB9d346QdPwYfOXlKJqgsEBckoOt5+/Qv4yQdPwRUN8p7+918245lt/QCAqy5chu+858QK10ggEDQSlFK8+xcv4sNnL8GdL+/D3Z89F+cfuyBwn/1DKbz9hhfwl8+fh+VHzZummlae9/7qJXzqrUfhP9/+pkpXpWr4w5r9uOaJ7YFleDl1ulgydwYIAW5+bg9ufm5PwfLfe++J+NwFy6ahZtNDGMUDoZSmCSFXAriVUnodIWRTuStmn5yQqwBcBQBHHHHEdJ1WICiKgQkZAwk5XNmEjIFEtsw1ml5G0iqOWTgTV7//FFBQ/Muda9ExlLK3j6ZNA6nRlPk5klIwkMhi31AKGVXHYDLcvRMIKkFS1pBR9bprt0GMphSctHgWBhJZjKSUSldHIBA0GIpuYCxtWlMaFBhMFu5/hyxZIqw8Vg9QSk25cqJxrjkMI2kFUYngrs+8OW9b71gG33joDVtO/eXHzsD8mfGy14kQ4Mwj5uBfzzsSw8lw4+pRC2aUuVbTSyjFAyHkPJgWDldav02bLQ+l9HYAtwPA8uXLve1lBIIKo+hG6EAxiha+bK2gaDrmt8bt1YioRJDIatx283pZ3mJ2v1iZersfgvqCmWE20nuq6AYOmRVHWtEa6roFAkF1wPqdYuQEVqaR+izNoKC0cWMG+KFoBuJRydNKpnM4DSD3br3tTQuwoLX8igfGiYtnTdu5qo0wzqpfBvBtACsope2EkGUAni9vtQSC2kIuQpkgF6GkqBVYB8+IRSUksrkwMIquW585oUDRDbtMvd0PQX3RiMKsohmIRSTEolJDXbdAIKgOcoqH8HKC3IhK4gYcn8KgaAZiUe9pLvudvVt+5QSlx/dOE0L+aP17JqX0/ZTS/wUASmkHpfT/leLkhJD7ALwCM2Blt+XOIRDUHLJm2Kv5BcuqeuiytYJsTVIYpuIhZ/Egq5bFg2oqIDKqDlWnSMqatX9j5jMW1Abs/ay3dhuEbAltsagk2qdAIJh2ZJfFQ5j+15Y1GqjPYvelkcanMMiaHkLxYL5bsQYJGl0NBLlanE0IOQzAZwkhdwNwhJKllBYOxVkASunHp3oMgaAaKMZ9ohi3jFrBrVmORSRbqQBwlg7WZ8raJlwtBLVAI64osTYdi0jChFcgEEw7rL/NLVCEcLXQG28SnhufGkfZEoYwFg/s3RKKh+kjSPHwfwCeBbAMwAY4FQ/U+l0gEMDs8BXdAKW0YLonRTNsc8B6QdGdHXy8ScJAIjcIyq6JW1rRHZ9iYiOoZhpR8SBrBuLRCOLRSENdt0AgqA6YXGDLCcXEeGggmaIRx6cwKLrhm16UuQanFR1NEQJJKpymVVAaglQ8j1JKTwTwO0rpMkrp0dyfUDoIBBzuFf3AspZ1BPXJLVyL5MV4cGmPCw2MjbQ6Iag9GlOY1RGPihgPAoGgMrj7nbDylde+9Yw7hpbAhMUp8iIqEbA1Qj/lhKA8BCke/mJ9HjcdFREIapliBjs2OKh6fSkeHK4Wro680MStkYQEQe3RkAHLdD7GQ+Nct0AgqA7c/U44i4fw1hH1gtuiVGAia/6uFoQQWykhAktOL0GuFhIh5DsAjiOE/Jd7I6X0xvJVSyCoLYpSPHCT8Hrp8EzNck7Z4L6uQukIxYApqGbc6WDrHUqpM6uFWEkTCATTTJ7FQxELO40kUzSilUcYgmI8ALCV6iK+w/QSdLc/BkCHqZxo8/gTCAQWcoEVfc+ydTRIuDXLcR9XC7+JW6NM6AS1STHtux7QDAqDmoJZPCJcLQQCwfTjzkwRJlNFLqtF4/RZIquFN7LLBdgN21YvC4C1gq/FA6V0J4D/JYS8QSl9chrrJBDUHGE1zrpBoRs0VNlagVKaZ73B/mfxevj74xUlv17uhaA+abSo4ex6YyLGg0AgqBDC4iEcwuLBm6AYDwCEq0WFCHO31xBCbiSErLf+fk4ImV32mgkENYJhUGiWMqGQxpkfGOolzzQb6HnNMq9Jjkcj9rUqmoG25nx9Z6OsJAtqk0ZztWDXG49KiIsYDwKBoALkLVAUE1yygWSKRhufwqLoBuJNARYPTaZ7sHC1mF7C3O3fAUgA+Ij1NwHg9+WslEBQS/ADXCGNM7+9XrTT9upoJN/iwfYRt7J4KLqBVi/FQ53cC0F90mgBy1ifJiweBAJBpZiMxUM9urIWopisao2EsHioToKCSzKOoZR+iPt+NSFkU7kqJBDUGrLDiiG445f1nJVDvWinebNshq14iEZAiDkgskGxNS4UD4LaotHMd3llogguKRAIKoG7vw0jM7G+ql7kqzAIVwtvwgSX5D8F00OYu50hhJzPvhBC3gYgU74qCQS1RTFWDI6ydSLMe7laME1yPCohFjFNtdm1eyoe6uReCOqTRjPflTllYiwSccSmEQgEgulgMrGgGq2vBoTiwY9CmePYtqAAlILSE8bi4fMA7rbiOhAAIwA+VdZaCQQ1BB+rodBgJxehpKgVWBRpb4sHCQTmtbJr94rxIKv1Ee9CUJ80mvku69PilqsFYF57SywStJtAIBCUDCZb2N+LcLVoJJmC9df1EjesVMiq7kjz7oZfIBNMHwUVD5TSzQBOJ4TMsr5PlL1WAkENMWmLhzqZxPD+4Aw+xgMh5rUKiwdBrdJoK0rurBbsN6F4EAgE08XkLB50z33rGaZsMSig6QaiIlgigPAWD8LVYnoJfbcthcMNZayLQFCTiOCS+cEl41FzghJvMqPiK3pO8dDW3JR3jEbyxxTUHo1m8ZDLahGxV4P4+DQCgUBQbtxyQVFZLRqkrwZcMmgDKVyCMAwKVaeB1gxxboFMMH0Ue7eXl6UWAkEN44zbECyc1+MAwfuDM7yyWrDr9Uyn2UBCgqD2sAOW1UmbLYQ7qwUg2qhAIJheJpPVotECAQP1uaA1Vbwscd0Ii4fKECbGA89AWWohENQwfEfv9kkMLFsn/nheWS3ifIwHAmRVztXCS/Ggm+k2CSHTUGOBoDj4VbRGeE95Kybb4kEItAKBYBqZlOKhgYNLuv9vZLyCnrsRiofKUPBuE0Ka2f+U0kut3xaUs1ICQS1RTKaKehwggrJaxKysFo7gkh4xHigFNBE1X1Cl1GM2miAcMR4iwuJBIBBMP24LUuFq4Y1zQatxrjsIrwUxNzlXCxG7aDoJo+ZZRwh5C/tCCPkQgDXlq5JAUFsUk6nCkQGjTgYIFj2axXUAvF0t2LV7WTwAYsAUVC/12G6DcKTTFK4WAoGgAuRltQiRqcLOatFA/ZUsFA95yJzVnh92VosmYfEwnYRxtfgEgN8RQl4AcBiA+QDeWc5KCQS1RDGdfj0OEIFZLaISCCGO4JKt8fzgkoA1sYmXubICwSSoR0ulIHhXC1vx0ACWHgKBoHrIy2ohLB48abTxKQxhLB5iIrhkRQiTTnMLIeQaAH8EkABwIaW0u+w1EwhqhElntagTQd47qwXLjxzJS6fpFVySP45AUG3UY1DYIFgQTTMrjWnJJNqnQCCYTtx9jqpTGAaFJPnH2Gm0DERA441PYeAzM/nBtokYD9NLQcUDIeROAMcAOA3AcQAeI4TcTCn9dbkrJxDUAkXFeChCSVEreGmWY67gknKBrBb8cQSCaqPRVpRsoS0SEa4WAoGgInj1OYpuoFnyn0zaWS0aKGB1o41PYSjG4iEoAKWg9IS521sAvINSuo9SuhLAuQDOKm+1BILaoZhOvx4HCE9Xi0iuQzeDS+r29c6M+SgeCqQiFQhBQzMRAAAgAElEQVQqRT222yC8gkvWi2uYQCCoDbwWcooK4N0gq//FxBlrFJg8KdJpVh8F7zal9CZKKeW+j1NKryxvtQSC2kGxAs+ZK/vBk2c2KDArgHqgkMVDPCqZFg+ugHVsIYJ91sv9ENQfsmY01HvqbqtA/aT/FQgEtQHf77LPMIs7YcvWC4rOXbNYwAFQXHBJEeNhehF3WyCYIqyDa41HQ2S1CF+2VvDq4POyWuiGI1J+PCKh1UqryT4bYUInqE0UzWio91TWdEQkgohEbDPUeumvBAJBbSBz/W7Y/lfW9IbqqwEz24d9zWpjXHMhZI8FMTfC4qEyVPRuE0IuJYTsJITsIYR8q5J1EQgmix00MYQygWnjZ8QidSPIeyke4lyHHotIoBRIKznTt1hUwqxmM7sF+6yX+yGoP2TNQJsl2DXCe6poRm41SGS1EAgEFUDh+t0w/a+mGzBouLL1hKJz45PopwHwwSWF4qHaqNjdJoREAPwawGUATgLwcULISZWqj0AwWZiZ24x4NFRwyXjUjBRfLwMEm6TwkaZjETP4Uzwq2TmSk7Ka+y2ab/HQKEKCoPZQdANtTEFWJ+02CEU38lKNifYpEAimE0XT7X63LcQCRS6AdWMtZihabnxqFCuPQoQJLslnXxNMH75ZLQghjwKgftsppe+f4rnfDGAPpbTDOt/9AD4AYNsUjysQTCts4h2PSqEsHmz3gzoZIBTNyOvcmbIhFpXA1BHJrGb+Zl0/y27BPuvlfgjqD1Owa5z3VNGMnFDWJBQPAoFg+lF0A3NnxACEkxPcKbsbQUkMmNc9u6WxlC2FCGPxEBcWDxUhKJ3mDdbn5QAWAfiT9f3jAPpLcO7DAXRx37thZsyoG0ZSCm5btbes51jYGseV5x+N9t4JPPpGr2+52S1NeO+pi/HAui7o1FefFJoZTVH824VHI5HVsHbfCI6aPxOPbfE/f7Vw7CFtOGFRG5KyhvGMitc7R6d8zDV7h233gR19CVz75Hbfsmv3jSAWjSAWkdDeOx5YtlZ4bd9wXsfNm2kTS/XwascIYhEJhBDEohJmMosHS0h4YH0X1h0Ymcaah4eA4IqzD8dR82fitlUdmMiqvmUlQvDhs5fg79v7kVEMXH7W4fjz+i5fIahJkvDRc5ZixcYepBTNse28ZfPx9uMPAQDc89oBdI6k7W0LZsbxuQu8236TJOFfzjsSh85qBgB0jaRx39pO37bfHI3gyguOxqzmJuwfSuGB9V047fDZuOzUxVjZ3ufbTo6cNxOnLZmNR9/oxYXHLsTb3rQAD67vwp7BZF7ZYxa04rhFbXhy60GfO+ePRAg+snwpjl4wEwAwlJTxhzX7AwXLeDSCD5+9BA9u6Mb8mTF86q1HYWPnKJ5q7yv6/GlFs9/TP6/vwvoqfU/fe+pidI6kceYRc/Hwxp7A9zSI1ztH8ywent0+gJG0UrK6fvCMw3Hi4lmBZZ7b0Y/X9lXnvS4Hi2c149NvO9rx2yOberDt4ARiEQmffutRkAjB71fvg1yBSVVLUwT/dsEyu+/2YsXGblx47ELMb43nbdtwYBSEAGcdMddzX9b3GJTirccswEXHLXRsz6o6/rKhG5948xHoGErhLxu6QT3Wx+LRCK48/2jImo671xyAatTOZOyERW34pzOXOH67+5X96BnLVKZCFWQkqeCYha0AcnLCnS934NDZzZ7lM5Y7Jyt724sdWNAWm4aaVpb+iSwOn9sCAHhy60F0jZpyApsfbO2ZsOVzAoJ/OvNwHL+ozXGMzuE07lvXCYOTEd532mE45fDZ0HQDt63qAKUUHzjjcNy/rhOaQXHm0rm49JRFdvk/vrIf3QXeUwKCD511OF7aPYT+RBYAMHdGDO89dTG29ozjslMXO8q75R6vOc8lJy/C3oGkQ+7YcTABIGSMBxFcclrxHT0opS8CACHk55TS5dymRwkh68teMwtCyFUArgKAI444YrpOWxImMiruWr2/bMfXDQrNoLjs1MW446UOPLKp11O7Z1AKVad4o2scT7X3TTlnLaWmJvn0pbPR3juB61fuxCUnH4qV7f1VnQ9XMygIgLcffwh6xzJIyCp6RjNoKkGn8+aj5+GYha24b21nwWd+wbELsLCtGX99vbus78d08tZj5ju+HzIrjhMXz8JJi2dBNyjamqPYP5zCGUvnAADOPXo+Dp0Vh25QXHLyIuzsS2DVrkGs2jVYieoXRNYMZFUdV5y9BNev3ImmCIHkkx9c1gzsG0zZE9ztByfwVHufw/qDQWFq5vcOJvHk1j5LMWNuU3UDq3YN4e3HH4KMouO7K7YiIhFEJWK3/UtPWYQ7X96HFRt77LbHjjl3ZgxXnm9OYh56vRu/eWGvZ/tk7fnExW249JTFeGB9F259YS8WtsVx2amL8ZPHtqF3LL+daAa1np/Z9tftG8Fbj5mPbz70Bggx68mXNSjFxSdNrp+QNQMGpfj2ZScCAJ5u78fNz+3xvKf8Ne3qS9jP4f2nH4bfvLAXz2wr/vxRScI7Tzikqt9TWTOwfyiFp7f149KTF+HJrX2B72kh3nXioQCAaETCqYfPxubuMWzuHitZXUdTCq674vTAcj97Ygc6BpMl6aOrHdam33/G4Zg3MzdZ+t6KrUgpGgwKHD6nBdGIhF89t8fRV0wHrE2devhs/IP1brgZT6v46gOb8YN/PAmfPf/ovO3/+9QOSAS4/6rzPPe/f10X/u/FvSAEWL1nKE/x8PLuIXzv4a04fckc/HVjN36/en9eW2b1PPaQVoykFNzyvH8/UW1oBkU8KjkUD+NpFT94pB1RK9hrI0EIcP6bFmAkpeA9py7GG93jeHJrsOK4LR7FxSctwuauMTwWsBhXb7xl2Xx0j2awfv8o1u8ftfuT9562GLe/1IFHN/faGcYmsip+9k+nOvZ/cIM57rP2JGsGDo5l8auPn4ntBxO4fuVOAEB77wSe3NoHiQCHzWmxFQ/jGRXfD/GesnHqqfY+RCUCQgBVp9jcNYZntvVjD6d4SCsavrtiq31MXu757UsdeHiT+Xz3DqTw/M4BAHDIHUfOn2FbzHhx7CFtOGbhTCxbOLOYWy2YIkEWD4yZhJBlnEvE0QBK8ZR6ACzlvi+xfnNAKb0dwO0AsHz58qkv1U8jRy2YiZ0/vaxsx39kUw++fP8mZFUdWVXH8Ye2YeVXL8wr99yOfnz2rvUYz6iIR6Up16m9dxzv/dXLyKqGrWGeyGg4YVEbnvpK/vmrhV89uxs3PrMLKVlDVtORVQ189JyluPby00p2jh+9/+TQZa+9/NTChWqUGbEonvzyBfb3LT+6xLH9Jx88BQDwxXea3z/+5upWKp5zzd8ha2Y7A4A7P3UOLnQJxYzTfrQS45ncSjP7f9133oXZM5ocZZOyhlN+uBJjabPMg58/D6dbypkv3bcR7T3jAHKpDL/7nhPx2fOPxqObe/Gl+zbadTr2kFY8818XATBXBU/4/lN2Xc3fTBcfr7bfMZjEO3/+IrJWNGy2n6ob9r4fPeeIvPf1zpf34SePbcNERrPLqTqFQYGvX3wcvvCON9llf/PCHlz31E5MZDScvmQ2Hvni+Z73zo/Tr37aEa2b1XHtd/4BczwEiwPDKVx0/QuO55C17tUZS+fg4S+8rajzM/71vKMmtd90cNkvX8JERgOlsN+n337qnLzJ22R49EvFPa9CvOOGF+z3LYisquODZxyOGz96RknPX408sK4T33xoi6PdAuZ7+9FzluK+tV3IqjqihikGvfzNd+CQWd4rv+VgZ18Cl9y0KvC5Za1+KuuTejWr6oGKsKyqo605iguPXYid/Ym87Rk1d/ysamBBaxzrv/cuR5mukTQuuO55Wy4CgI3ff3eglUa18POnd+LXz+9x/Mbu5dUfOBmfPPfISlSr4nzugmUAgI8sX1qgZI5PnFvdMkU5+PxFx9j/r9jYja8+sBlZ1Vw0YfL52/7nubw+BjDb3oxYBNt+fCkA4NKbVtnl+PbMxpaPnrMUz2wbsH+XrbI/ev/J+Oe3+L+nb732WXtcvvbyU9HW3ITP/2kDxtIqNINC0w1ELUUzG/O/+94T8Zm3Hc3NeQxkVQPHHdqKmfEoUrIG3aD42ruPw5f+4djQ92vpvBl49mtvD11eUBrC9MRfBfACIaQDAAFwJIB/L8G51wE41lJk9AD4GIBPlOC4DQOf5szLz57BAv0lZLUkvkz2eXXDNnVOyGpVWzsAObOqhKzm7lkDrKQJpk4sYq4UhAlYFItGkJBzE172v9c+7P3zKsPOCeQHSopxqxLutu8VDDCwf3ClS8z/1D3bNt+eAGd/4G5X/HW2NBUfyCkWlRxBs+zzFLgm/jkU6idrnVhUsq/Xfp+qtH+LRcLFuKnn5+XG3Q4BwDBMa8VWLmK9pXeY9vuSy27irVQA8vsOr+1BigcWfNkvBhJ/fD4OiXc9w/XX1UQsIsGgcEy+7Guo0rYsqE6Y3O9uK36xyPLkCCsNOtvGSMgqohIxA6RzCokw6SvZdl7eiXvIEfa77xrnHXMeKwByLCIFyliC6qOg4oFS+hQh5FgAJ1g/7aCUylM9MaVUI4R8EcBKABEAv6OUtk/1uI0EP/mQQ0wsElmtJMoB1qHJqm5rORNZDYe05ft0VhP25CerWfdMFx2VIBTMRDHM4BqPSkhkc7Ea2P9e+zRFTCE86VGGn2y7zxvU9iWJoClCHBP1oHc9dyzdcS7+02vfONee2P6sP8gLNmp9T2Y1OwhWMZhKGE7IUYOF8Zirbuw6ZC5IZL0Rj0jot2IwBL1z1YD5bvtPYBlB41q9YY+rHgq21rgVsV41oFt6u0opHuQAiwd3H5K/3UCQt4BsWWa52zu/PzuPX58W41ZLZSt9dbRGXBT4ft1e9dW8+1SBIAh+XOfbiluJz5BdC3GxiGS3db4tJrOarTBwyhiFgzmy87PxiSkZAU6OUA0wI0b3OJ93TVag8r6J6h7vBE6Cslq8k1L6HCHkctemYwghoJT+daonp5Q+AeCJqR6nUXFrNH2FcE7oL4niwcPiIZnVsMQKblOt8PdBM2hDraYJpgZbgbMVAAGrT7GohAnOxD+Z1RDx8XtkgTYTXMYPhrky4RTk7VULbjXMq+27V5SD+oe4a8LD9tOtGA6K7r0v357suvhYIvDCxWRW7tyrNIquQyKwhfNCdbPrV8dWTrGoZF9vkhPsqhF+NS2Ien5ebrwsHlibnBm3xnre4mGa70vMtQrphbsPcaNoBqSAaturmL6rsrp9HL93wy2fsIDGtQD/Dsy01nHCTugEAh7+XVI0Ay2xiP17WIsHr/acsBQPrA+nlIIQEtoyJxaVMJxU7P/z5AjdOc7z15I357EUIF4LN4LqJWjp5yIAzwF4n8c2CmDKigfB1HB0LLphR/LNK2ebOWuY1TJ15QBv7sQ6poSsVX0u3JxJl9lJGVTk7xWEg0182aDY3FTA4kHmLB7k4Mk2Xz7e5Bz43aaO7vRPimZA1o08K4J4U8RhEq3ohuPYzrLOCQUvZKQVM2aAl9Drbk9MGADyhQ/WzibbT7iFJdN01P84/PkYsvX8/O5DrcO/R/b7VKWCWGhXizp+Xm68XBn4ds/6ICNCzSCz06x4CJNWtZCrhawZCKq26dYV8Z8c6TkrLL93w+2CWq1twAteacLIvQNCVhGEx+2WMCcas3/3aluy7lQ88JabvGVDQtYwd0YT4lEJlJoBUZsixH5nC/XXpmsEG58innKEXSfXu8/LKopmYM6MGOLRiON4guonKKvFD63Pz0xfdQTFEOcElcAVTU5gKMUqiVuTWspjlxOvFSWhIRWEgQnCuYm1/wDnNUmeM8PfvYAf4OPccXkBId/XMdjaqRiLB3dMCF7oTcr+KwlesSFsIdklfPBlJ9Pm4q4V8kLHYS4s7ntQC/3UZOHfu2r3bY83SUintMAyzOImqK3VE3w0eQbf7tkKpEFJRd5h24VhCooHRdMDI97zq5helhXuvsbrPkQjEiSSWxiJ1dBkhO/XGdXelgXVie2WoDvbSiwqeQaIdSvzvcYT9j9vqaBoBpo4eaNQf23GhnD2a/w5ZI93315w4WQVWcu3jhJtpDYo6OxKCPkvj5/HAWyglG4qfZUEYXErAHx9uHm/rVK6WnATjVIdu5x4BqKq00mIoLSwwTrMAOdp/hvkmuHTPvlAY+5B3RlALT/4o5fyw6/OkpWi00vICDJhdP+m6P6uKFPtg/KuRw9WPDAXFvc+9exeFeYZVQt84FQ/Gk2Y9FKM8/eATcYpJRW5J15Ba93YVlM+7hiKbiBiBAeXZJMJVacwDAqJU1TwytFAmce6V7Vq8VBMIF2BwAu+vfJtJRaR7ExUPPmuFhHf9szisLD9ZsbD99duGcctKwQp3dxW3rGoc38hz9cGYZ7ScgCfB3C49ffvAC4FcAch5BtlrJugAEEB5nji0akJ/W5Y7l0+xkOpjl1OakkwF1QXzIJACRHoq9j3zO1X6f7fKzq71wDsPqbTVzJ4wu23ujERpHhwDfKqTn0DofldY1jcSgR3ICwv4h4CTaH7UMsUq/CqJGFiPDSc4sEnG425LZLrgyr0DrOgtUHPrbDFg1FwfxYwDsif8MicO1jQfaj0vZoswe9A7VyHoPL4Zb0LivEQd03i/dpzLBqxLYlyyolwQVDdsoDXAob7/zy5hykVI879a0nJ2MiEeUpLAJxFKf0apfRrAM4GcAiACwF8uox1ExSAN32UAzT7bg3jVCGE2CtWfITrah/gvUzAqr3OgurANHPWQ2W1mKziwR2A0lYsqkZ+kCVb6ajbkeAdx+QiUrNjFAqIyUeMZySy/mkZva7JL5vCVPsg9wp5mJVMdx1Y1o16Nd2vJcVqLCoFZkcAADmkIFsveLpauEyS2ZhbqUloodgcXn0IQ7MCYzJLBi9sM24ft45clP3g+xCLRrj2XjvvT5zr1xlh0xQKBDx+C5O8JQOPO0uMUyZwKx4kh3wChFeQFVI8sMxY/LFtNxFXxhr3/qKN1AZhntIhAPj0mSqAQymlGdfvgmnGqdH0H2DL0TCZ1tRh8VDlA7zXtQsNqSAMMcsvMczgWrSrRVTyLONp8eAagMNaPLgDR3nVz8vHMkyMB56kT1DDqa5KFOM64le/WlwBLYZaUjz4+fDz2P69VT6ulApPVwtO+WK2AR2yXjn3Ab/VUoZXH2Jv81jJdMMmE3GPe8HvV6gts1R/tdbeC7nbCARhcVhF8jEefJSH7rbCZ9Vyl+ctDVgfFVZB5raqiLsWAoIsHmzFHOdqJRQPtUeYhOb3AHiNEPKI9f19AO4lhMwEsK1sNRMUxG1uHW/yXslzp+grBfFoxBzYuQ6p2qOPB0XmFwiC4LNaEJILXuhZlmuHM2IRpJX8GAzOYzsjNjPcgZT4MvxqhtfqvzvHtjtwVH6duQwaumHXO5eWMX9f/jd3ebdVQTw6tT7IvUoTZOHlPg+rm6wZUHVat23e6xlVqzI4TFYL9ztf73i5F7AVPzOrhan8NGjlBOy4ZUngR5CrhcMCSzPQ7CGvsL7Mz9XCHVzSr0+z++sajfHgndWidq5DUHlygUotZaXVj8abJM827A7WyssQimbYFpmKZh7LbaEVNu2rQ7nRJOX1715KNzuNuCuoNsv2w9dZUP0UfEqU0p8AuArAmPX3eUrpjymlKUrpJ8tdQYE/7hVRPyGTRXnm95kq/MBu/1alQi6jllYEBdUFsyBg7SwoLzzfDlvjUXv/QuX9LB6YqSRfJu5u+14WD44BPFj54fbnZPX2s2Bw/+Yu767PVOPMeGbpCCngsLqlAqw36gGvdyDoPa0khVbOgcbzbffy75e5FT++D6pWiweZU1668ZpM5+3vWsXMs3jQcscPimsV4+STWmrvhd4BgSAsXvEQgHy3RUZ+cEkWzJaa1hARyXEMdxsNqyBzKB6s2DXuerj/z4vxwFkzCYuH2sP3KRFCZlmf8wB0APij9ddh/SaoMKzBZhS94CqIu+FO+dxMCKr14JJ16u8tKC12TJMiJryEmKvt/G9B5f0m67yCz51WKqsa0AzquW8xWSBilgUTO19rszlZ94vZ4P6tUHm+nU1K8eC24AhhQm0rHlx1q9dVkTyrlyqesLtdgbxoNBPzQDN7K/p7pSfThZ5bkMWDuz/y3N9yI2H9ha/iQfPO5uOuZz25WrhN0gWCIJiMkJKdsXLcsgEjT/EQkUApoBk0z60hFs0pIdxtvuC47MpwxbJq2fXQ/ZVu7DOj6naqZZHVovYIcrW4F8A/AtgAgI8ERKzvy8pYL0EIohEJEYkE+mEz4tEIsmrpVkpMIUh3dGDVPsCHDZAnELjhXS3CmvjzqwJBbg7+iodc1Gj3oM4izPut4rsnCEEWUe7yim6grYAFA7s+hrt8UIyHyQgHvL8pYF7PrOZgT0F2njDXUg/4WcxUI/FoBLpBoekGoj7vQ6OlEYy7osQDzlXEWFRCOq3BiADNFXI/KeQiE+hq4TGZ9to/Fikc46FQ/AaHkqaGJiO8JRuj0RRwgtLA3EHd4x5vycBbxLllG14JxhZcmILAYZXksnIqGOOhKf8csagETXHGimDnBnJKN+buwcs9pc7aJyg/vpIbpfQfiflWXkQp7ZzGOgmKIBaRAiPP2+VcK6VTPq81EeM7iWof4L0mjKKjEoSBDdZhIsrzg2mYdudXxna1UHXPQT2o7ZsWGs7I6IGKyYhkR5OWVd7iIVxWi7zyQYqHACWMb/3cFg9FWJ7MjBe+lnog6J5XG7zQ6qt4aDBXCzZR4KO6e2W1MCgKKt3KhdvyyA3rc/xMud3lvMrw/aa7XO74eqBSoWZdLew+P/9e1dJ1CCoPIQSxaL6MwFsy8LGqZDXf1QJgigczeH3UKs8vqhSd1cKlRGDnSnsoHrzefYfcI1wtapLAp0QppQAen6a6CCaB2bEUXsmzO50SulrIVoeU+626TQELrdoKBH6wwTqtaKFNCU2T4cLtLs6VdxyHm5x5Dep82/fat5iYCG6Lh9Z4ka4WBcpPVTjgV2lYHQv1N2x7PCqhKUJC9ZO1TE0pHjx82d002kovmyjI/Gq3O8YDmwRU0tVikhYPYWI8uP22/VwtCrmX5uSTGlU8uO6VO9WyQBCGeISfHzjdPt1ty535yi1/uOWZPIsHzYBE4KtIdh/Xz0WiUEYX95yH3ybckWqDMD3y64SQc8peE8GkiEWlwABwDHdU2KniGVyyygd4z8j8DRIxXTA12HuSlLWCbYhva/Fo4RgPdrRp13EdKTMt4TPqUjzk2r47i0QkbwAv1D8omgHdoNANirbmJvt6+WviiUrEDlrrLu9W6E05qwW3ShPmevjzsOfgd6/qBa/MJtWKn/DLk4uSXp/Py4u4RxBVgL3DEpfFpjL3pFAaVD74o9829/8M1vfEoxHPCTi/XyGZh/VncgXv1WSIe8S2qLXMHILqId6UPz/wcmOilDoCUJrlnBkkYlHJIavw2wHmqlG4rdnup5zszf/vfvejLqVb3DXn4c8p5PnaIIy93rkAPkkIOQAgBSvGA6X0tLLWTBCKWCSkxQNn/l2S81qNv/aDS1Z3nQXVAXtPEtkQFg9erhaTsEbiJ2csqrR7e5CFARvADYN6BqD0Ks/2aQsRXJKt0GZVI7+8q65RiYAQgE4yFSB/L5qsQJ/FPgdh8VA95EzpAyaxDRbjAfC2VGK/s0k/paRi9yQelTCSKvzMCgaXDNge41ZW81Zlre+F2jJLv1som0+14aWQq7UAmYLqwWt+EPOIJaPq1FGG/5/FU4lHJYdrhPtdDevWVKzFg9e4xlt6iuCStUcYxcMlZa+FYNK4tX9+lFzxEDF9sigXdrTaB0dmrqgbuUrXklAiqBxssE7KGma3NBUomxtYvQZZ3/J+igfdgKzmm1fHIpJvwES364RXGa/ytuIhZEDGWMRSPHDlmyIEksssmBBiZwaZquJhZhy2z2kQcd4sNOBe1QtecT6qFa8gem5YrING6qPdigfbx5nLakEjlVM8MBcGP4KDS3IxZzyeO3+thYJLhumX+JR7tYKn4qHGAmQKqgfeKtItZ/BxRPxiSAFcPBW34oFttwO+hnMBi3sstPBuk4rOxbjxaL+Oa+JkrKiUL3cIqpOCigdK6YHpqIhgcsSiEsbS3gHdHOW4wDKlOm/S0jryv1U7sYiEjMHHpaj+OgsqD3tPklkNC1vjocryqwKhlII+E0e/CO6xaASjKcV3X1WnMAxqTxQClR+WoC5bgz4LFsnauJ/vpCkwaI7yQQHfZJc5Z1i8/EnD5gtnzyHpY41RL9SUxUOYGA+NavHgEQuhyVI2KJoBg5KKvcOhs1p4Rc0vxuLBT/HAXC0KtGXW19TapJ0tjjgmXzUWp0JQPcSiEiYy3ooH9zsGONuTO513vElCRMrJM+42Kodsa14LLfz/hZRusYhzzlPqRVVB+RFPqsaJR/motf7+Vcz3qZSuFuy89jlqYICvJeFcUD2w9ySRVQub+HMafb/Akc7y3nEgWJu1g6R5xE0olEVC0XMBYAspP2TNsFdBWuOmVYff8fk6uMvHm7z7ofgUBATmxymr5oQmzEqm2/Kk0LXUOl6KqWqFf7f9aLSsFoCVvYXPaGC958ytiQ/0VgncFhlunBHpva0VvLbxv5luJRHPcjlXi8L9UkbRAgNQVit574BQPAgmCT/uxV2Lj17ZI/ixm1csMPmDX8BkfRDbN2y/xKcbt3/j/nf3IXlyUdQ7q4VoI7WDeFI1TiwqIaUUTrdU6qwWce68fF2qHS9zdYGgEOw9SSmFzQk9XS3CWDy4B9iIM7iTV+YKv7afEwoMx0piUB2YaTIAzIhFQAgK9i3sd2bxkFL8XSCm0gfxqzSaQc1YEQXTdnGrM5HcvapX0/2896OK+7aYRxA9N42W1QLwtnjITRgi0C0Lpkq6WgS6x7hiE/hu87J40FkgTX411SljsLWD+84AACAASURBVP0KteWwclE14r7HYVeSBQI3/Ljntr70jCXjCl4N5LJamApBzorQZbVWbIwHvu0GWjwEyT0uZYigNhBPqsbxM1fyK1cqodurkdfCAM/XO0zqH4EA8B8kg8rGm6RQq/x+igd+xcFrAA6qk3vfMHXgy8Y5ISMolRtrTyy4ZNB5prIy4XA7CTkh5fs8Ptp1LfRTk8Ft8VbNChY/U3qehlQ8eGS18DRNrpirRST4mQWkzAztahHJT9Xnt59vX1PDAefy3gFdZLUQTA6v+YFX3+uZtpLPqmVlrODlGUkiiErE4V5VjOIhjKuFl9LNvd9ULCkFlUE8qRrHyyfLsxyX074UeJlT10LaKkcKnxqor6A6KCYdpJ1CM2RwSXeaK4ZDeeAhfAa1fT54X24lMcAVy4oCz5s78xYDvvtZ7WlWCMVD3O6Dim93bn/TQvXiz8NfS5j9ahV3KrFqvk4vP2M3im7lhW+ggGFuVwbe0snRB1UobVy8qVCMh3y/ca/vbksGfnu8yT+rhVsR4deXVMO9miz574AuZBXBpHCkmnTNAbxcn2Ie7YZf+HAvYMa5dzWsq0VOruDrltuPDzyr6EbeXMN9Te7rElQ/4knVOKEtHkrsalEPFg+1UF9BdeAYkEOutDv9D/0FRz9LAD7QmJ/JoV+dPC0eQig/0lwE7FjUO/aE4zzWMVmMh6DzTMniwaWEMX8LFsa9nsNkz18LBK0MVRuhgktqufgGjUIsGskTvKvL4kGyA0d6EWTVoLiuK29f1q4jETRFSN4xdIM6MlIBha2rWJ1riVhUcr4DIsaDYJKEtngIyGrBFiS84inwbkFFp9MMYfGgaHpe7Di3DB9GxhJUF6I3q3H4xhYqZV9AAMrizlubiodiTOYFAkYxgqxjwusTOJLHXj3wUuaxbBMFFA/udh1zxYcoVAd2TRNctHivIFB5+1llZsTyg1L5lZ3MRIA3vWaB18K6WvDXMtnz1wJB70e1weoWFFyyEX3b3Wb2suqjeKiQkF3ouQUpFxzp+7yCS3LtmgXTdE/A8+pTQMnp/r8W8HK1qLVrEFQHQYoHr5grcY+FOVk1oFjpq93xFHjrnKKzWvi4Q4WJ8cDg48GINlI7iCdV44Q1IS61HxR/HLY6UQtCIqt3U6RyKckEtUcxgqwjqGGIdhdkjRSL+qeFC7LeyQkXuqcZpdd5ABQdLZo3vSxUfkrBJVmMB9WwzfNDKx6ikZqeiISF79uA6u6P+eCnfpjKtsZaxYpHJTtKPOCcdFaD0tzLTJtHVg37/eMVDeY+uh0rxuu5u9t1POLO7mBuZ8fny7opxkKt2ohbfT5DVhtPAScoDXGPyb2XtZmXjGDLEJbFg9cYH+Pe1bAWD15zEX7s4vu/ggsuXJ1qIauewEQ8qRontKtFqRUPXCNvjUdLeuxywurYGo/WnEAiqBzFuOjwGv0wq/xBbZOtKBTS/PttKya4JAAkeVeLEIqCYlKHek2gwuKweAiZZjHO1a0RXKz4vo3/Xo14mfu6qWTayErBryACzjz21fAOF3puim7Y7587fge7Fvc18tsB12qqh8UDOz5fn7x6VsG9mizm/fFWPgkExRBk8VAouKQjq5bu42rBWeeYZQorir2sQPmxy6//87ymSDg5RVBdVORJEUI+TAhpJ4QYhJDllahDvRB2FSSM2XQx8Odqa27Kq0u1EotIkAgwIxYVHZUgNEFuDX5lHdr4gABnQcoJFrzJa1DngyzlKR64VY0wE3W2LWm5WjhWN0IqTQopFqbiajGZ4JJedZvs+WuBXIYRsz+u5v7NK6Wbm0accPHB2oBqzGpRQPGgGfb757ZqUDTDzvTjZfHgXnV13wu2nR2fr09ePYvor6uNeDTi+w4IBMXgZfnDWzIwcmNqvkyRUTQ7fbV7jI9FI06LhxD9EpOFvBQPbc1Nee5afrIN28+28BNtpGao1JPaCuByAKsqdP66Iazvsm3+XaIIz/x5WSq9WhDo45bZNZ8uUCAohCOScoE2lIv4nEs/FWQGaEdl9sgUE4uafs5eq79B5sSsjjKX1aI5oN6sPLN4cNTdo17uujtiQvi0q7glJEiTyFLgZcFROKtFTkjiM1zUa7DCuC28Ra3v1Tvh4i1Y/DCj+TdWH+1e5ZetNHZAcX1QueAj3XthKh6inmUU3bD7Cc/gkq52nWf9oTPFQ87iwe8+VMO9mixelh6N1g4EpcFrfsDahrNt5bsv2u6XTCZokvL6Ir4ty5ZisRBe2bLY8dqa8y0e/GQbdgxCiJDna4xo4SKlh1K6HUDdCoDTCescIhJBNFRwydJbPLTGo5OeUEw3zOzavQoqEARRzGojv0IZJrZKUNsMG1zSnXLQkYPbtngIyKwRcQoZYX0nY1HJ7nsK9TFul4di4FdpvCJwB+3TKH6ghJhxa2rC1aKIrBaNRF5gQR+Lh0q9x3bQWh+FkaJxrhauZ8v6MMOg3q4WegHFg4erRdynT6vlYLJB74BAUAx87AQmn3tZm3m5WkQkgqhEbCvIWERCxOXWwLsFsQCUYevktXDSGo+ifyLrqJf73Wd9n0Rgz3mEPF9bVETxICgdrKEbPumtGF65wKeC2+KhVgZ304Q84jAlFwgKUUxgN351PYziIahMPCph9Z4hZNX8QZ2vk1uJy7b98JF26FbfEEb58eimXvN7JFxwyXg038fS3+IhMuk2xyYYv/z7bsRCmlbaqzLctUQi1a8cnQrxqJSzQKvi/i1qubz9fvU+/G1zr2eZntEMTj5s1jTXrLLEohLSio533fgiAKBzOI1lC2fa2/hylaofAFz5h3WeFjUJWbNdIX7wSDuuW7nT3tY/nsXCWXEYBsXKrX3Y1DXm2HcsnQtsyz5X7R6070VWNSc4vMWDb4yHKrhXkyUWlbBvKGVfd0LWau4aBNWB12IDG6/veKkDD73eDQAYz6iObXbZqIS/MZkgGkHUFbg4HpWwbv8I3nXji0jIWqj5hdciAG+tt+FAxn73R9OK74ILn1k3Ho3UzBxEUEbFAyHk7wAWeWz6LqX0kSKOcxWAqwDgiCOOKFHt6odLTlmE3QNJnLC4LbDcu09ehNG0ioVt8ZKc95yj5uFDZy1BW3MUHzzzcFx43MKSHLfcfOzNS3HWkXMxp6Wp5kwwBZWjuSmCL7zjGPSMZnBRgXd9VnMUX3v3cbjslEWYMyOGf79wGU5c7D+BOvaQVnz+omNwwbEL8rZ95m1H45lt/SAE+MAZhzm2XXzSodjZl8Dxi/Lb/lELZuKf33IERlOmQHHIrDgOCWj7Zy6diw+fvQRpRcfhc1swZ0YTPnnukZgZi+J9px/mu9+HzlqCoxeYE6PPnb8ML+4exIfOWuJZ9sPLl+CUwyc3kZzVEsW/X7gM3aMZAMBFLVEcd2hwn3f2kXNx1YXLcOYRczGrpQldI2mcsXTOpM5fK3zj0uNx6pI5OGnxLLzrxEMqXZ1Avvqu47CjL+G7/fhD23DpKV4iRP3ynlMXo2s0A8OSqo8/tA0fXb4UAHDCojZ8/M1LYRjASRVSyCw/ci6uOHsJMoruuf2ERW343AXLsGh23O57GMcf2obzj10ASoHVe4Y89z98bgtmt5iKi8++7Wg8u33Asf0ty+bj0289Cq3xKA6b04KWmLfFw2lLZuMjy5cgGpFwzMLWYi+zonxk+VLo3KzqhEVt+MdT/ftggcCPS09ZhD2DSZzEyR+SRPDlfzgWewaSjrKLZjdjQWvM8duX3nkstvaMoylCcMGxCxBvkvCFdxyDI+bNAAD881uOxCxL0XjCojb842mF39OmiIRvX3YC3nlCbny65ORFSCs6zjlqnunaab3+Jyxqw/td8sfFJy/Crv6kQ+752sXH4bhDa6udNzKEFlgpL+vJCXkBwH9TSteHKb98+XK6fn2oogKBQCAQCAQCgUAgEAimD1/zUrHkKxAIBAKBQCAQCAQCgaBsVETxQAj5J0JIN4DzADxOCFlZiXoIBAKBQCAQCAQCgUAgKC+VymqxAsCKSpxbIBAIBAKBQCAQCAQCwfRR0RgPxUIIGQRwoNL1mAQLAHhHUxIIahfxXgvqFfFuC+oV8W4L6hXxbgvqlVp7t4copZd6bagpxcOll15Kn3rqqUpXQyAQCAQCgUAgEAgEAoGT+gguOTRUS8oegUAgEAgEAoFAIBAIBDWleBAIBAKBQCAQCAQCgUBQWwjFg0AgEAgEAoFAIBAIBIKyIRQPgrKQldO45Lbz8eRrD1a6KgKBoIQovUl0f/slaGPZSldFIBAIBALBvR8Dtv610rVobBL9wNXzgK61la5JVVNRxQMh5HeEkAFCyNZK1kNQevpGetDbPI4NnaIBCgT1RGpdH0CBTPtwpasiEAgEAoFgz9+Bng2VrkVjs+9FgOrA2tsrXZOqptIWD3cB8Ey3IahtFNVcDZV1sSoqENQTJBYBAFDVqHBNBAKBQCBocCgFDBUw9ErXpLFRM+ZnNF7ZelQ5FVU8UEpXARipZB0E5SGrmA0wq8sVrolAICglUpM5bAjFg0AgEAgEFYZaY7GhVbYejQ5TPDTNqGw9qpxKWzwI6pSs1QCzWqLCNREIAHUgjYnnOitdjari4E9+g/GVq4vejzQxiwexusLTf9PdGP3zykpXQyAQCAQVRhvJYvje7Rh7ogOU0vKeTFdx96w2bFNHy3seQTAas3hormw9qpyqVzwQQq4ihKwnhKwfHBysdHUEIUlnhsxPRXSEgsqT2TKEiacPiMkyx9g9N6P3y58rej/CLB4UYfHAM3bf7zF6z32VroZAIBAIKkx2zygybwwhuaqn/NaBhoab5s3BE9ne8p5HEIzlYo6mlsrWo8qpesUDpfR2SulySunyhQsXVro6gpDIahoAoBhqhWsiEADUoI7PRsfQpyAIRQkA4WrhhmoaqC4UWwKBQNDw8LJGueUOQ4UGQKdiTK4owuIhFEUpHgghcwkhp5WrMoL6wVY8UOFzJqgC2MCvC8UDABjJzOR3tm6hsB5xYaiguujvBAKBoNGhnKxByyx36LoCSgg0oXioLMziQYpUth5VTkHFAyHkBULILELIPACvA7iDEHJjKU5OCLkPwCsAjieEdBNCrizFcQXlRdd13HPnn6HKim+ZLFM8IJwgTinFrl27oIsVQwCAnlCgdIn4GKVCTyagDe0uuwAwXagZBdtXbcrf0LsJmChsbqmPJwuWybyxG8lX38j73VAUaP1bYCjV2VbTGzZAHxsrah9qUGS2DUNPqRh6chcO3PcqRnaMYHBLePc+qqugmtPCi2oGsrtMd7PutW9g8/2PAQCUniS0MRF4d+fqLciMp0KVTa1ZAyMVrmwjI3eMwchqyOwYKbuF1/Du3TjwyitlPYfAG21cRvLVXiRf6YXal2sX2V2j094377rrb+ha+eq0nrPayY6OQtn/ErS+LQ6Lh013PYCuNet899NGso7nKXeMw0gHWw5r1oRXrZD8vG3HCvT3bS5YTu1LQRuZeqa77gPteOnFu6Z8nJJjWTwoshjbgwhj8TCbUjoB4HIAd1NKzwXwrlKcnFL6cUrpYkppE6V0CaX0zlIcV1BenrjrQezu2oa/3PYn3zJyyozxoIZMp7l9+3bce++9WLt2bUnqWOsM/GYTBn7tMbEUTIr0KyuRWf1z0ABlWS3x2J0P4YHnHkbn5r3ODbdfBPzilIL762OFFQ/7P/J+dH36o3m/d/3xN8i8cjMm1j8Xur7TBTUMHPjkP+PAv/xrUftltg5h+O5tGP7jNmRf7AfdqCB9Vzvke3aEP4iuQcs6LUkmnuvE0O+2Qu4YwxO33IFnH74bADBw80b0Xe8vfDYCoz1DuO+Zh/DQHfcXLJvduROdn70S/TfcMA01q10MWcfgHVsw9mgHhu9qh7xvvKznW/nHP+Khhx8u6zkE3iRe6MLYw3sx9shejDy4C4CpjBj63VaMPLBzWuui/883kfzyZ6b1nNVO50N/gbzpj8i8ejPUidwi0tPbXscLAbGA+q5bh/6bXgcA6CkVg7e/YT9fPzRrwpvJVEC+MQx8afV3cPsjnyxYtP+m19F33dTHvVtXfBVf33v9lI9Tanr2m4s+m9YEP69GJ4ziIUoIWQzgIwAeK3N9BDVAX98AAGAs4b/6JFtZLVSEM/0aGDCPmclMwQS8jtBHTY0p1YTpXCkwsmmAGjAy9aGJHkuZE4qJIY/grbTwqoc+UVjx4IcxNmweY7j6AllRzbSwknfvLmo/pdMUDJX9EwCAqETsbZnRkCs0hga4Vpz0CVMQVAczyGhZUJpGlgmhdWJ9M1lGD5rv0US2sGVXdtt2AIA+NFzWOtU6VNUBCugT1vhR5jgssqZBJVUfKqwuMZIqovOb0Xr+4VAPJkFVHUbKXBnPbhPtpOKoOVlDS6dz/0ci0BCu71e6zb6RjSN+aFbaei3E2F9q1KEdGIhGkdbShQuXiDTNIBWRkAkxdkwnesqqjyJi2wURZsS4GsBKAHsopesIIcsAFCfVCeqKpGp2gtkAPyZVszpC4lvEQcoyoZ0xQ+S/5TEywme8JFgTUqrWx4DQFIkCAJTs5FY4jIkpmKzHrMBJytRNJksNneSAH+TWNPT6QMH9DU03c6m7BL9IaxMAINM9Ap2a92vkDTF8AkBqzLznLSECcWW3bgUAREWA6WBYEF2WcWYqQWRDoFMKQwo5yAtKipHRILXGEF82GzBM9y1bXphGnaYI2OxNhOTui57NKSGoREI/HqYQjy4IzpKgWq4W+nQ+eIvB/asAAFrz7Gk7pyaZ7/noaHUtfkR0U/kikep0Q60WwigeDlJKT6OU/icAUEo7AJQkxoOguskmM54rqmlrEpc1/BuXYmlgVSlcR8gUD7FYrNhqhoYa1BEQT1XVqo0poUUUZI2Rgr59gnAw33tjmjXR6fRQWY4bkUzFg6o4FQ8yATQAY8NDge+2PpFCMtYMLcRqpZ7MIDs8Ck2WYSg6SMwSgmSn4kFPZ2FkK2dRYsgyaKb4VReqG1B6TAsQnWoYtHKhT1ANClGR2OlcPZw4cDD/GBnzXlCrT0wn0jAMA6QlCkopxnd0gRpJEAKMte8z40EYTqVidjwJXVGROOgfV0LJhlNEjo+mqrZvA4DERAYjQyMAgOaYU/FANQ1G1vluZTab/sN6ojwrXNmAmCdKKgNdrW4FsKYo0DXNjmFjKDqoJoPqFIZcvvdAo4BByqt4yGRGoWvFKViN9PStvhZCU3VM+MQxMRQdlAbLSKqqwjDyFUhyIoOJ0b1IamZ/kT0wDiOtgapZUEptq5dykx2eCFVOzsiQ0/VhcRgGw9DQMe8wJJpaoGVy/ZlBSJ6CQNM0vLhuD3Z19EM1FMiG+f7279iPbKoP1Hr+frE7FGsRwAhpYez3ThWDrutQVRX9vaZ7tNpUeNFQ02XoxtTdQTRrYj883jPlY0EpXdygqKV4IFL1jr3VQBjFw80hfxPUGd/92U248ZZf5v0uW8K1ovh3IJpiCnJSJJzAdtDyjXr9hfxgdqVi9KHd6Pn+Gvv7Nddcg/vvL+xfXAm2bv4K1L99C0a6ugXeWkGeMIUj94SmnGzc9SjOffAdWL3VPxbKZDkwYk6G+weck9TlRx2BqxYdggseewd+duc3fPfXJpJ4/PIP4O7LPlzwXFrfEPa/+/3Y/S/fQ+8P1qAXZtueMJwT8l1nnYndF15a7KWUjJ2nn4F9l3/I/l5IoGeoB1OAZiD+pjl4vftXaH78m0jqI/jG0dfig8d/BemOXByN9lvuRc8l78TGq51DIHPhGSPjGDk4hFs/9xE8csOd6Ni4HVrnGij3fQtHpwZxZucBDD/1ItIvXw+5fYW9f8/LWzDws/X4y1d/jNu/8hkkBkfy6jnal8IdX1mFna/1BV7PYP8Ybr7pRjz+55dCXX8l+PmN/4vnd5h9cXLcqUwYuu027LviCvu7oenIbjNjbSidha1PiqXruY0YunYjOv++wXN7x9XPYsf/PVXy85aSX/7L5bjv+1+HbGWrmdi7E8nHv4z++55H7w/XlCSgmxeqZsAos6vFP913If7w1H+ELq8NDWHXuW9Bev36MtYqPHdc9wfc+Ivr8xSB+oSC3h+sQXJ18KrtLbfcgnXr8v3in1v/bah3fxd7PvUxpLRxdK/ahMTebiQf/39Qdj+FntVbS3odfqT2B/dHjNv/499w61XFxd6pZW5/06FYd/EFuOo930I2mVOEqZEo9s1oc5S97XdP4/nH/4QH/nAbdq35OpS/fQUAcHFPEt+b6EDm1Seh9CbR+6M1UAfzlWpM8aAGLAYyKKW45ppr8NhjU/Ocv/vuu3HNNdegf9iMJ5KRCy/q3DXzZayIrQ09NvuhwbwHo4lw754vfVuBa5cCw3sLlw1BEzX7X4kIF+kgfEcMQsh5hJCvAVhICPkv7u9HAESukAagLWb5ibpM6XSYnZsakDpOt/y9qBSuAY5aE8MDw5P3PS9EekO/WSeD2hYWu4v0BZ8ujtlj3tvUUP4ERFA8uuUepKWnL4bIq10vAABe7yu9ANyrmm2y18PnfV2LuYK81tjiu/8Oy8x95qzC50rv6QJND6HJaqPdUXOwT+r51lDGxBQFgSmiDeYUMUbI1XHmZjH3g2/CnA4zKFRPegMOtBwEJdQxSKbWm0G/lFeck3rDWsmjVMNor2nl0rllNRIDQ9AGt4NoMo7fO4xFIxqamufAGO+GMdFl75/Y3QeJRGCkzbrsfP61vHr277P6yK3B/tuDA+PQiI7xkeIye1QKXXa2SXnHDmgHc++RkcqY8TMA6MMeMU2myPjmbgBAYnu+JYuh6ZhJZkEfrd6gtKpivnv9HbuRmbDG3eQIQA2QPvNdzO4p/X0DAJ0AhkTsFdlSo8gJ9ESAnRP7Q++jDY+AqirUg/nPsxIMKeb7NTToDPTJrBlTr/nXk1KK8fFxjI/nBwnNZsz95mRkJPUBxFNxpPZ1AgCUnY8j2z897T/dXVgZSCmFkhmBrjZOVhqtyZwmLYomkUqa/YeuayAAFMtikaFYY5VODEzMP9HcXzPl7FcXnwJtpB/acAYwcvG/HPtrzNWicDtkCrDXX399EleV48CBAwCA/qwpo4ZN5TkWlacce0a1XC1GxqfYxsc6TffI8e6pHcciRoWrRRiCVNUxAK0AogDauL8JAFcE7CeoM5IjzsGCWO4TekBHo+osDkQ4M0zD0hDObI4WKFkCdIqeHtNEq9pjSgzs3lbpKtQH1mCrTzImwmTIKOZEsSWUYVlxMM1vho9Z4VpFaKX+vvNvWIq3pNpU8FyZreZknFrCTcwwryeiKlNeuSgVhkdQWrUvnBJE6UpAam1CZH4zJlrM/ioxvt3e3jcjp/yLNLeany5rL906v2RQRJrMPoxSAy2tbdBHOsxt1q2K6SnA0ECzuYmBNm7e25aIefwDW/LbvZI13+FYS3AfqVgrT0YVu1rwUJepvto/YAcJBQAjkVvh0xPhzLqLwhKCSTS/nWZHEyCEAEr1rmAN7Ouw/9ey5rOPWIsFmmVxqPaUR6GvSQRUkqCXKX3cxIQ5IRjQipiw6iyeT3VYC8Zh9rEHe1wuVJZspCf9V4qZObzbWoJqBualub5b60EzZkDrt/oqXYGRmJ7rz/YXDmQ5PtA/DTWpLti63HyShpI2+3clmQYhAFxiMeWeb99hRwAAernxK5vNglouU4ac/1yZxUOYoJWaVtr3ol9j5w7fR07VkpfFjhue6kKHao0tWmn6rxhMOYAUcS8aEV+JmFL6IqX0agBvsT6vp5ReTSm9kVJancvEgrJwsCOnVdRVFZGI1bkFmBNphjmYyiH8PymlYHEqm6YhKi/VDXR3mwLNokWLyn6+yWBYt22ku4h0fgJ/dDZoT5+rRVo2VzFmkNIbiMUsyUXWeMWDsz220Zm++x+0YrCEmVDJe/aZh7cy1cQ0pnhQyx41Pyxaf75gm93d5VEyH6UrgdjSNgwe6EPU8pGPjHRjnmoGy9o3o882YZesYH2S5pws6CnzvZIMCtblUWoAqQSoK84HGTTbtJEZBbWOR5OmIDYjaprgDh3Mr7tiBY6LxYPfJ9WKY2KEMLutClxjhNbf7wgCq6cspZIUBc0kYISMcxEWqpnPnMTyFTqZYXOlmYSNklwB+vaYps6zFh5qKx6YkovFHFF6y7PSrFvPTitTNqoxyyqo3wg/MbDbVIBF5nQSo2bcqqEBp/Uiy1hFAwJI+ykejIyGORkJuxeb36W0KaNFBnJWXsZI+axHeVLDhZUKPTtyitxST3yrFUrNtjFfSiFrxT5SbZcLV39iPecWGkNylql83ru7096824jAsBTPNJvfr9sxHkhhxUOpY/8MSOYCRzGBLbXk1Cb6qjVzHUn7x0MKVxFLHtRLoHgwdMSIeRzJaIx3fLKEWYo7jBCyDcAOACCEnE4I+U15q9VYaIqCu7/+RXRtM02jO9uH8eC166AHRKSW9+3DnosvgTqQb+Y2dPc2JFc7g66k1q5Fx/vePykf9z7OlG6so9OWEyVCce/KV/D1n97oqOs3fvxrjIwcjm8/oOPoXkA1gn2/xvflfBwzJcg6QCnFwK83If2Gs1NSu15D+qUbQDUD+1evBgD0dPTBkHX03bAe8gFzNS27exQHr1uHPR//ATa++2O4/+pfmMfVDQz+bivSmwfQd/260H6zqbVbsefdV2Ds0cfR87X/zttuKDoG73gDal9OOMxYMTbTY8H+n5ltwxj64zYkVvdg9K+mPnDLj1Zgx9VXY9u3X8Qj31+D0b7CQqc+IaPz+ldw55X/hTU3P471X/szdF3HLQ/fgF+tuM5RVhvOoO/n66GPh+usszt24MCnPu25Kj1d3HPsEvzio59DJjk9whgAjCVM8+bs0CieXX0tPvr7M2B4CcPpEeCm00x/Qx+0+z6BL9xxKl5bcwPwu8swK24p9nhFHTfY/fQPGt7U5S9gyNYAOSPutPjJ7hxBqn7zyAAAIABJREFU/y0bQXUDN33g0/jFFVdC6zWVdONqN/a8+J8Ym8jgM+/+FhKIO4Tmuy6+Als/eCqw9g77t/7+flx77Y/xz7eeg2za+R7KWRk///4N+O3/3OZbTx5FUfDb3/4W3e2vAr+7FMjkLAbU/gG89uY3Y9sJJ+C3H/gEfv/hT2Ll5g7H/r+6/0l86+d32t8NTUf7tx+GNpiBoh3EnssvwxGDZj+2YGAM83Udn35GR/OuNRjcZQr2Stpsj1Qbx9M/vBGDv98CSim0ZAp3nvxe/P2wc5AaHsTZXfsxQ0pjdMx8psbM+QCAvjlArH+/WQFNRvbgAO779lfR19uOnWu+BL1lFBcfN4LTZpyGbb95Au2/fAxv/HQFtv/2SbRe91V8QP8C9H3PBd6n8TGzH0uMl8a8/p5vfwfP3/LrkhwLMIPt8chEw9d/+D/YuHkfqKaZY5ph2KuAejIFRYrgG+d/Bttnzod8IN/s3I8/rngAP/zG19E3nBvD9n3yS+j68o/t7wdGt+HyTAd2d2/O218eMSdykiZh67dWYMVXv4/h7nAKrVKT6B7BzT+8AQdW55TRL3/h6yDf+h4uGm3Dsa1nIZtMYdOm/8bAuBnwbXBkA7av+SImDnQj8WIXRu4vXpE9cv8OpLd4C/jZuBloVi2TC9t40mx3A9Ac1lV/XfFDfOy2M6Fr+fLCyFgSv/3gJ7Gjcy/wq7OAG08G7v5gnkVY98G9+MY1X8afn/jtlOp4w91/w3V3Pey7vYmalgnjIxP46QPvwS1//QgAIDk2hK2vfRF7Ei/47ssmifvXb3T8bqRVNGc19M0lODiXoHn189jY+30Y2Zz1QbTLO2ZJMTxywzV449ng+CYZztzdUBR0fvZKZNrbkWlvx9YL34nbPvsf6GzPWXAlh8K337A8ecvPsfmZJ+3vm/d045tXX4uO3vIEdw7DPGoqiOdJGaQs5alitZMZTXFnYU0FoQSHGLMgt6i4+90fwsGeAfxH0368LzKCHbE27Nu1B58f34mevfvzzqWoGXzpbzqW7c2XL35x7b34+Q9+lTsVp/h5/b6fBF/Ew/8JbHsksMioZPUBBsWtt94ayn05cXBqY9MJuwl+c4uGE/62Az+59R7cdE9+vIpn/3QP9n/nfIwGuedZiyn/u+bHSCj5rpmqpuCK2y/GU2v/gvGBftz/w28i65Ih//SVb+Lxb/8EUJIYliR8+LBF6G2qvoxf1UQYxcNNAC4BMAwAlNLNAC4sZ6UajbG+Xgx27sezd94KAHj6znYMHEhATvlrzUbvuRdqZycSTz6Zty27bRhjjzqF7v5r/wfy7t2Q94QPosJCOwxxmS3G95va7Zk0johEseuVlZipTSAtm6bHBwfHMMMYxFx5Gc7soDixm0JWgxthkgtOlIqUYHVYp1C6Ehi51ylkZTfcCX14FwzVwJjVeezVm6D2JKENZTD+pLmyq3QmoI9koW58EM1dmzGw2wx4qY/KkHeNYuSBXdCGs0htCGc+mHx5PdSudoz/9WFMPPFEnnm6PpqFvHfcVnwAALOAl1PBGt30xgFk24cx/mgHUmv7oAwnMTe7ADPSb8csKmFpWsVgZ2Ff9+zOUUjDGhZKrchs68CipsVI9o/j+ZFVeGFklfN6VvdCG8zkKXb8SK15BenXXoPaXRo/usnQO2suDiMJHEyWXujxYyxhToz7uw7iv3ffg22SDtXLx3XPs8DYAWD1Td4H0mTs3fc0VsWAzR1PAp1rsJSY1gwOYwpO8XBcL8U5q/f71i1i+SAeQZxZZIbv3QG120zLtrglg8OiSSjDZvtsHRnFoaMa2iOnoG/mArw6/ySoAzkz+JZ5EbQ3nwQ8kVOuvfTSS5BlAyPGQnQfcAaOnZgYRyKSRG8mnLlkf38/uru78fATTwOdrwAjub5MG+jH/mVHY8sZp6OtRceMiIaNY85nPbLjNTQncpNGLZ3FbGoqBIbaV2JuWkbU0p/OyADACN6znuKtaw5gYr/5rqcUcxXKoCnMHJ4BeecYoFPomTTWLD4Fb8w/Dn2vr8GhIzqO7diNndSczD71ljm482IJm5YRSJw//OCGjejt2A2tfwMOG5Axr2cFTo20Y95MAqnTQLSXYHZiDvQNB0H7diA+kgD2PRR4n3p6zHZmqKWZDO6Ox/Di0BRXljjSltnxTCMGQgnGmrKYSbJY8fcXoA0Pg1j9I3O3kBMTGGqegy3zjsfW+csg7w5vXrv/pZdBZszE2nWv2r9lN/wdyZX32d//PjaOgZYFeO5gvsm4PGa211mR+ZiDBTgl8lYMHujIKzcd7FnVjmGSxFPPrMzVb+PraFF1tI304U04DeMDnThm/wQwtAcAMHfHBiwZUNAz9ALGn9yP9KbiniPVDKQ3DSK7PTjWkJoqTxYJFjxOJsCEkhsffzjxV7Q3a0gl8uu1q3MEbc0auhJDZh8RbwU6ngeyzpgHDz11B2aoc7Fu89Ri8PR378Ng9z7f7QSmJc342CgeyHbhtoS5+r9zyyoceVBByyv+Aa41ayGGKk5rHCOjoSWrIxuPYO3bTwYAzOzoQ9LYZZeJpfzrFAZKKfasewXP3H5LYDkllZvc60NDSK1Zg+wbb2Do1lsRGTiI1p7tGOjI1WV8sLSxJ1RFxraXnsfff5tTjq54+kW0UBmPPP9qwJ7lZQ7NDc7j1oJfJmHKnc0uK0iqKIhAwsnakQAAee5M9A0MIRMZxPymvRhoasKGnXuwdfZibN7q4YanZHHedoqlPflWB+PyLiSkEWx7yVSCJxO5ifPI7ffllXfQ/jCwLzhI8TjMxQtixNDf34+//e1vnuV4uXe0d2rjyRG9wIIEsHhPEnr/boztzm/D0uZXcVRsC7a8EhDLwrJ4SGaG8MZgfmD7scQwdsYP4pWOVRjYtxc9O9ox0uuUY/fMacG6uA4oKaxoa8WOeAzPtpbBJbCOCOV8TCl1q/hrxIazNiCS+Rh0a5CRLf+nIP9pyYpNEDZtlNRiaiVpNrwwqlod5zAXpCxlrQDNMlocAVRky59yzeum2adhmX23yBTZAuZQWia3ch4vQd5xllLMF1lBOmLO7KPQc62A5UDXDVDOSmMujcEwDGhshd8q5+UT7Fkfyx/cSKXMVReXVYeXCZ1iKR60dPBEmQXGY4yvNidGkhVpXKZANlXYioQdZ178MMyImqZzE90jSNAkxqlTw/v/2TvvODuu8vx/z8zcvn1XkiVZ1TK2cS8YgwFTDDF2QgsYAkkgCUlICCRxkl+oSegBAhgwNjYuBLAB9y4b9yrZkixZddVXK23f2++dO/38/pgzt2yTbNMS8vLhs/Itc2fOnHnPe573eZ83ojprR6jH4Y2FwaNf+E2K3YU0nWrt1ydu5QhFedc9PEUT8meqJYwAA20WvYXyCJsTIUDg++ExPXVs0UTZlE0t54Qhmeydvfd3XNEizSnlUlEdaTNrclJv9TFptVhbWrzeZ3w205RvE1Lg+VNaJKos0JHQQ6GRqclV1Tn6jXltDU1nBhWb2Kwz0Ut9Jd61MfsQ1s4G26SSgrgPPbnGAcyRcO5GOheG5dKTWBS+5gfYlSqOFsMXOlHdmJCSXiv0048tG+T+MzV2L2ql2NqDITOt3BZ+xy6Hz5Sn7SIj20nThi4MMkE4N9yaRio+N+3fVvX2RzisR2wvtf1aZKYSWusu2XT5jcyf7zo4TYKAUY2+VSlSjofjWIqnsfccOfAQDYEdzD4YlqJEazMIIdt51R5NPb8pow33V6RncDhLdYTP86RsBLWaYjxJVavsmqqblFpjiu2h35DFF8fS8EtOy99mk1Iilf9wq78axkO20GCqjFan33fbnh7/uMpP1EuNTnlv+LfU6iNyCpgUsZcYzgYBzEEz99SDWKm0+sqY0n7oMIN62cVUs6LvTClH8ss2SVuSEl38wwXvYf+ZDguygprduM9arfySNHhqR6in4lqNxJSsAyUORncPAHHPp1psgHrlX7JAbLPGSWR6pJ/xKxI9PSJrumWmGpfGpr/1vggRruVCdpDxjsIQAaVCI+4q6jqlWvgMlovT74tlmRgBzNTFMaW0ntY/FW6sy/nGPHQzh0n0Bd6sZQiB8psVEfolT/mCWUtpmm7FyPBL0/yImuVZibZZPyMIP+TZc8QoKikalxJdmz4WNeVfbM/GU+wqr0nfqSWucEz64+EzvcT51Xb6+Z9uRzI6B4UQrwakECImhPhnYMfhvvR/duTmKjTUc1sX92CODbSWCTOeLxR4eCH9rX3lWPJmw9FViuH3O2QrRdtRQeKufaHSrU/orFIOmCr7MuvvNAn+aVNr316MHQa88M0anhE6mXTgNRb1qC7WkwSlRn3dPNqo5EoEU4IvYRzZuUrFBolKDQLHnfL+dNEgVyWigzl6DPtlB7/QuijYG1ozQDpgzcGciSwCHnoTC0npYZ25OV6kJCqUtWpLL/hA0euPFHhxx8Lg0Z9BmfvXZuoeV3+N7TQdoQDEps29N9MiXgceZgkCSiNsSYQbNFd91iMCHhrm+03Agy6pJWcPKnT1xdosOi0ykFgy3AQPLFjY8l7aDa/B1uLYg9PBpGavFYksaWjYVmsAUKu+MBDIVL4riI7adL3FoembEjemYSqV/4mmbhdRMB4onyUJiA01NrzFjvD9xcON0XVy4dwNFLiTqPm0qedEehK7UsLVjRB4UHdFSNDVhmK0M/y7b5E6B/UZZ2gYXcTwVN92oxT+dkLsRAgNoQBE4YW+w6vpxJl7DjcCo18u8tA8hi/FzKjkSgatwJlvMzzQ6MQi1XpYq5TqwEM5nsYeGDvyDZX6nO3Nvrl0lFSrmAF4cAoziJbWfjM02mgT5TYB/oZ6fqVTwQ5quCqxoKvgX+rhMxzPNQJ96R75Rtsvhc/6TGV1zRuMX1W3oFxTNn086gJTa2xcbWcO4CGa/91hFplSqwK+ZYX3Xdde6iZBTtPXabZI8M+espZ7VuPcnVn0GMxiLvqF1u9O5tEAN5XA3/IAPd02mgQxmqOQhkIGfLsyox7AkVold3jRSADHDf26qzdYSoHj4KfDGDXu+1iVAijmRzn/y40DIo2T9t559deiezpXufKv2prXZks9c7MCD0g0NCYISKNjENBcoWwnDEoqPqzO8KzZqhuSmAFg1RUjoVgJ4/hKoTEPrczsAtQABC54Mwtyu2r7qAdhsBpEyZVZNCSaBTT3vMRYMAJYCt29jVOdAjJFrE5pzbHnUetqQkr0GbS4LAXo2r5TTwx7bsMXVptjGLfKDpUg0n5LRLd/W+1IPO5HgI8Ci4Eh4DT13/9nvyRzajWO7zwbw4tRPjTOMW13snT5P+IcKmFuatVwGP7cZdS27qVUq1B+q08t37o4zBaQ7eyG6997Ks4MLdaklDzxxBOUp7Sf09X0KFtVDmzehJSS4eFw8W6TrdlURy047kSYVUgotkTKhtrELuayfKXhSOfaykspKT92cJq2wqOPbuGb3/0iv3jii+HnfImz/1GCSiuqOtg2n3uXvRKnUqsrSmeQ+IHPtdZaDhbCa/NGDmKuaciY9MgU4wMjHHh2hPVDlzHhhAh7MIcQ5ue/9hbuvDWsdY8CaKk2TtJpDeKcssm6g5cyPLiz/trapafzjTf8MTgW5uYJrL0FZCApPXqQ8r5J1nz2Jvo3Ps+VyW/z0Pi/4U3uxB1+DmxJQtxDTOzDw6GUvI7c0MzlNbd95nM8fs1lfOVr57Fv7CmeHPw8ty/4LrvaTD7f/RDVbIGqXqOmW1iFKj/7q/ey5oYb8FTGsjZcovz4oZY5Z24cxx4oMnHPdm7/wCt57rpr2CK7uPH9aYb27OL+73+by776Kb7/H//O+v+6iWf+8w523r+RT3/rY2xdu4GbvvS9aRnF6+97il8888J6kge+x1V3/im5XAh6tavsV9U9fFeLn/zsLr7ZVBP5Ys3zfd79RNCycDeDA5HZtsmVXR1MTNHAuHvLDq5/Zj2Uh9mSiPPWdQGMm1zR1YGn5p4hXK65/m/U70WMHLj7bX/HWM/LuHzT5dS8Gg+vuZXPXnVx/diaAgSCKerLgZnF2f0LpBsQyBDs2H9CJ7e94XgG2kMh1ojxYBoJSndeO83nbIw1epQPD4fPvu5r1Gph4HPXXV/h3nu/Tq1pA/fp73yYm/7q7Zil6f7puk99h5u/+WMKTb7ru+nlWFaVrevX8cPvX876GZgsac1lw30hBfOpJxs1oDVHBceux6bBy+jY8yRJqzHnBnoWsHrZKzmgX8C/vulv2TD/ZVQj3+AH/OT4t2DrMR7cfSnfyv8CfIldqeBoBp7Q8dXGX5MSocodIgZTJuNRSUK2RwEKjzzO8bVBYoXQV3XkJfdsms+OoX7WlH7AU4XvsXXyq0xmVyOFZOBVBmOpKlf/2Wv5yBffgec43HDZN/je1z7Dnpuf4NBjz+MrQEVDcu2/Xcrgrl9OnmDD9rkB5CO1WiQsFvh1EUQA4Za5+rlD3PGGt3D9Re8hUONoV8sN4CGWJiiWpgGus5muwLPqHIC7lAYfl7uJyfD3nENlqusUS6vqsHH8hwzUnuXnXfeS33UT3sG5M8HlJ4eOWP/ncDZx5Y089t+XsTO3s6WlYv6AKn9SACQy4FljHZ7K0EXAg6E2Xm3ZRpxw1ZXf4IqvfZbhXTuwazWuv+SbPPfEU3z2Gx/jmc98F9/3Gdy6md3PPs3A0+Hz4+VrbPrEVRSa5oDbxNxrZi0eztZcehXbfnpHfT2fyqbYMrGFu/eFz2vRKnD+xoCl45Kx4gDmSI6HL/kxhhuu35suu5X7Pt7QILrqJ3/NeCn0Oab0+UJvNx997g6u7uyAUkP3KvB9UrVuAOJO04ZjbDusv5a7PvsZbvnnT9RfrhTLfPdTl/L9r3yL7GSrbkCXY9I1R1lTxEpxpzG+qnzrnX/G7qOWMPrAFDr73kdg532Y0T2fEtZZ4xM8cNzZ/HTxe7h7/yirOsL73pkPuOnYN7C3p4OSVakDR0dqY/v2cMWVn+AH93yde5+9iz3zF+F2ds76+YHv38D8XUN8753v5I7zzsW3LIZeM59cPsvW8QI/e+1FaF7A8W2C03tHWJIuYBYOz6R4fNcEj/Qfvk0nwO5nN7M0cwLdxqL6axFg680BOP46zVbaThF4Po2OJgOEFLhOgUXEiOGj05iXWhJitRHafJtqU8Z9/+U/Zvd/XoFTU20cZ8BZ6qwoEc4ls9xYK8uZRdO/EFkQcHsmxebxEPAzXZMrNl2Bq5iGQsX48SDO67cELBgPr8l1Zo6xAqdxL4pTWiiPDG/gh3d/ePZzaTYpMTwodB7D6Moz6i+bU3x8US9xXWc7vmI83PLIem57rFX3pGKVuaKrg5MPAM70uWKp8/Q8j3xukk2rCvjju2HtFdgHSoyvP1D/bLmYZzAWLvT+i2mnqXzP74IdFniQUk5KKT8gpVwgpZwvpfxjKeWRQaH/Z0dkpf0lTu15A2dm3szI/ZvJHXUv6bMrjD5wN4V7GrVx7mSB4k+/x+CHPsQG9wHKf+DTb0+pYZuFJfFUt4Mhjmfz2M5p701MTPDQQw9x8803t7zeruq/bQJu/tJnqJVL1JSDS/utteF2LXRGabXJ0tV3Uw5USnPTPEea2qXN1YbGm6hRXD1AZW1r5uKBR26jlPW4bHtYr+aZFvbzN+AOrql/RgaSj77hEr57+nuo5BqBQ5ums/b++wm6qjw4EC7+teefALuMGQ+vocOPkR0aY+/mNRy3bjP7Ju4CYGjb9Fo7gNGRQ9y0YIRv5cOa/SiADhTyKqdsrLeve4jjN2xn27PX11/7wdEf4MHO0/Bdj9wN/Uz+YAveuEnpvgEmrtvKEvco7ll3Gx17t3P206PUdtyKvfVmvJhDb/xKBD9nSD7N+fHbyO6+ddo52q7N8ORrWbulzA0Lclwjv8+pzx1iaGyEaxb/lDVH3cLgRCNQO9C/nVMf38yBO/+7LgxUXjNM8d79BKodmAwk+dv2kLtpF/33XctxG0qMPfAjJpbcxc3LHB7bdQ/bHnuIezuf5abFj2IcgsWFHkbWbOfOnke5afX3Gdy8mq2PPNtyrrvXPsDTq1vn5uFsy/Yb+W5+I5+9+08BWKrWgap1+Cx7bsseSloO8yXSh8/aLLn4yYBjNzd+s1KdTvu7YdNjXNbdxZfHWsGV9bf8nN2r76aSHyBrG/zZgwEn32VzeXcX2BGyHvAd9wlct1Yv4zip+jLKeo6unlO54vkrWDe6jk/1f5bbEzuoVKOgL/ITrc+bs+8R7G03401kWaxeG08LfnrOHv7hvI8DYCgQxzQSODvuxy9VCZoCvI/PW17/tzYcLjGnFJZzaDhcpD+Vu4F/nfgRuckGO6d4YA0nPb6L7fdNF2k7EM+xtbSXzQ83fN1abwl3PP84d/z4OgZGx9nV1srAElKQFi6Dg2HwumnPM/X3qmqTVMxOcsxzm2nLjTDcA1e+NcnAYsl9S97IlSe/nYcWX8Tm9pXcdOwbqVkhMLAneTTXH/8WHlh5HF9f+Sfc0n0O+clJHLMaMh40HaE0K4QMSARj+AIWBD7nmha/b1Z57LQYD5wSsPsYjcDJs2ynyUm7Q98w3gkL9hssf0Zy0sPrOOXR51n25F4y/f24SyTu+QF7eiqcu2aScW0Pz6y+jbuCR7m960mS64HVJYJqeH3ZWIlBrcBD1987bUxfiEUx8obtL61mPLLouZIyaIm/Y7ikNBtrQTdGu4argLhaYYJyLLy/lXgaaZdatEXmsqOTywEo989ennFGT4ZSqsCyzAIAxr+3ifwtu5Guj2XVOHrd02weuYZN5p0Y2x9AbpxdoNGvuhTv3sfkdS8MKJ3Ncj/4LrEbVvPuu97Num0N8cvhB0OB0R69Aa4/mVlLuRKyUvSIzaM2u3HHQyq21GXtP+byBbez7s5bWL/6PgrmaVz11NXc3vco/WmbyZ07eea2n/P49dcxsFYF6h70cQLDVz1W/71m4MGqHNn9kEHA48N7ePrBu3BHqhRXD5C7sTUmef+97+eTT3wSgJJd4sP3B7xzjc+eyZ1s+dyP2CFP4vytSwDoqy1leezlQAgmfNd/mlEnPJ6lt3FjRztr3e18u6eLyUKDkj+2f2edYbasvLzx49e/B+7+R0YPLGYy94r6y3decwvZeIFRu8gDD9/Tcr5JqRGXs7PLDNWRw5U2mmyE3A/mTBYlTFa//i3kn58ypx79T3jsq1gqGSSmpGSKBw5x/SkXcNA5mm8aF5PxE0x2SkYyvdy64iIeX3wGtmXhF19Y++jnH1zN5cl7+M7kj7hp8h5WZ97OVd3vm/XztUu/QFvB5G55Ltd0vJPxA/s5/+hNDOX7uTeVQSxuY9vyEzm7L8fCh0ucvCaLOUOpwFT77sO7ufTBuRNWkY0fOMRZfb/HEnFs/bVkNhxzPfebE7RuTqBHAuuVenJhapweYEiJV1xLTOoIAUZTK/remCRmb+as8kHMprW29rMb8W69CdecC3hQWjlqM1zKNxhDVW3h9C/UT8njP3u7ubEcahpcv+N6Ln/+cn6+8+cAzFMMlngQ52/vDnjvIwtnvLL6GNSa5mLQ6i/+5L4P8o3sM+RzMyfJWsx3MVzYv/wiat3d9ZdzUzSdNrcN8c2ebgqV8PwffORR7n/okZbPXDm5lcu7uzhgdDD2wHQtCCtiNNiCNXueYtPLiqxY8zG47xNMXLGOkQdCUN+TgsGJZu2HF9HVQvmeZkbX/1Y7LPAghPiaEKJDlVk8JISYEEL88a/j5H5XzFNU/LTRTjDu0aUeXdctt5YNqGAiqGQbG/RE6yZ2tlrBqMY8N0PdXkRRKkypwRfqPPRYnJTejlUpI3UDTQoSfuvUcaMsYlTzSeiAUjZUzblr+23nyB7SqBzAmZJx0tR5xr2wpjCifUb12ADS8fEU7bQw3kwZlnU0OmoHFGoyCJ5++WsAiLk2xQPjeF7oWHw3orXNzM/IjodlGpVo4YiAB7XoTAUeTFX/KJuo6FFAPhnraVy/qqePu+GKVtBK9CjmXlA4iF/LscG8EU0EGKV+ktYzanymb7Y3Ph8GscW2MEA+djj8wVXDkvFkOD6DVgPg2bsldMrCtRCqhWJUZxeYioI2biIdHz9rUSiFoEw6WyUbC4GeSfJ0LV3GUHKc8XgOmQrR4UkjnB9OIjzu8O7p4NiLtRFf1Wir/7aOpMWayuCPv8Ra1HQlPI6nN5VauNMzUDXFVLBmKcrfmttJZ7V1rkk1VwMhCYRgbGQHjprvS80wKLe08L4U7AJVRT2tmCWklE1Mh8a5BbZHkA83l36pgq/eS/shu8k2WimVg/PDzaB0PWRT+VDKb7ChNLXEpLzENGFNs6nmOZp//hz1834TRTzuG6RplDVMtYxMkhReg3bdNLQVU2XSVZeNm1+j8Q9/bfBG41Te+toRBuLLcTW9/qWxdDeeE4IkJiE19Zo3dmPGwuss5ErULBNPM/A0vf58awHgC5wY3H9omPdNLuKDhQrnn3IUxokmX3k3HPrDl6O6k7JvAfz9Rwx+ep5WF7lsuf6u8G9Er+8pS/qff4ZC3KSqNwXYU+nF8sVTycM6/vDfzi+pK00t8s+BNyfDLSobqOXGWjQeXCtLcKQbKpX5lHNQ4TV9ylmoueIMVRgIDpB0obvcmKPCnIPNoNbfmTQRXoxJp0ZM+dumfQiBUsX3mtaguO3gqNKDaP4YzYm3KS3ehvbsonAwBGQySmtjX/IQlUOjlHNZytlJDLdVd8Zr0lVpZqZVzSO7XmvffqxkEi9mNNpJ2rNnB91SGU3CCcOSzbl+oj1X2gmfQ4Go6xk5TlTCo+65ml3nDbwdgM35xka2MNbQe3BF07kLjZoQCJHBi3dTVcyawmSjFCKptdLTA0DOIagSPT9SSDqdTlIq3oop9ltGOsipbZ5Lw+C7lFVMNvXo5tAQFT30PxOim9H5f0txQcBkKnQS2VQHMdPHyb0w0c+vN7tyAAAgAElEQVRSthEbJcbD42svQCfBjkRGA68OlrhGHF82fIdfOrwfKVseefPIOpxliBPTEsSahJL1qNztN1lq0XTTIuaFWWf5Tb2jEg3BQGUbB+KKtSQCdKnRJpOoUIk2r0KtmWHo2uDZ+E7U7nn6eURrffStSqEB+Ova7DpQBC4uAk/R0iINhEhrJSplSruh75glHK6b3wQ8OLQmYMaUD/a8wzPFpGuie4Jqx1Js4dAZhGvD6GRrmbGvBsNxQ0BCQ2JMSbQUVewV6NTZYs1mqTalrvSwVWLHUKCCwKciwxjCIsZksZHQ9F6MwJKKJxiaQwzzf4kdSUTyFillCfh9YABYBfzLr/KkftfMN8MJHdPiaCWftpjasHiVFiAhsCNHLNGUeIkWm6IXMAvwEChHXJyh3ikSI3OmUKSizU1CE/QkFmJVygSaRizQMKZQ1p2od3z0YAtwYzHStpwxy9vy3aZa0bl8VwQ8uIcqLQKSlhLPSTl94TlEJQ1N9Ee/1hinCdWlIy4NJA0tCz+qC7Qs0AyC5FICLYas5QlGTQIvXJSlqtXUmVkMsJANgxo9qiVXYxMJewZ269jZqu0izY5P6TYOpxZMu/7IJmMFelRNuOZ7aDLAGQk3/EF7me5ECJTEtekL/e4NYRA21h6yUVapoPrYEYmnHPaIaAQhE+NhtkjzXGLq5KLAIlBiqM3nJ1VNccd4jXE9HNda0qXanqiLCe7NhIyKCHioJcPXJwdfOqW7pjJ9ZtN8BHAOJzzaZNn83Eruc5nnWqRq4Y+aTWu7PcPz56tsiCZnnv2bS0N0KxCjHCX21RhGYNnQyHZsxebotUOwqirCMSg2dUap1EphDWZd1kTWgUcva+IXQlZCUDbx1QY3AhLS6nnyVCrH0sKAQ9ousqlUIeU1BzPh+RmBjuWUcZqEnqwmamQ0//wpwExz3aYX+PXoKR7E8KWLFpv5GeyVYX1xFCzIpjrucj4ELh0VJEcYau/+HeRlG5NGH4Gm1+tls6lOPDt8Rmsi9DXS66gfr1QsUKs1xqYOnkjAB1c9y+syJzJJJ6eVnuFk26GiaWxuf56cqkyppFSgnpo5exp0hefT7YV/e8qwZ3QX+XiZil5r+N4pS0BEO34x1jz+c4FCL8SciEkUBHPWwrqKXeeU8y3Ag2WPHTGFPPI1/iy/Y5WryEiIToETQmmjOAfLDMvweegtS1apvao2xzhEdOLZ1uEXYoHrI90aMbVpab6PnlpTzCBGVelzJmxv2vMTa8YaAr8OJgIUNYfKaOgbEorWPZgYxRovUMll8V2XlN4q3uY17Wzcpue3fITAQ3bDBqSm4cYTDTRwKvAT/VbgoZfD4/YUBEOTB/H1cHMZC8KL1oSGpvyRbYXgQONWh8edV16BLmGL2QAbyoWGT3Rk07n3HsP2WBxEON/2rQuZCK5oDKT0WueSFHLWLC+EbqBLbY567B561GbYVfMtiYtpN2VrgwDKI+A7VIvl+m/U33Z87EIWS7XpDBBUOhcR63WZTIZ+qZLoImlD7dAL02U5UG2wU0UhjD2WmCOzfRypxagmGj7YUWCylF4dsAgwONAEWhqlw6+rFdujcIRzqttQJTMijlS/GYnBvhRxzZdqomlWRBtR04l0hWQLSxAZ1MvOIoaCEA5pmSAtE8S0KAlQpTmCEK4NroWvNsgz7XejZGA0S80mdpJmzK7xID0HT4Cr3E53IhznvFoLo+P2WEpvzohPP0iTmaVwbmSCOJZwyKm56TeVorre4UEpz6mAdhTtiRRVYTNPhnN+ItfKeIjiF8cN/YJOgD6V4SlDPxoHAme6X6+XWuBjBw7xFg0NnzwRMKFTqDQSVUcqmN1iC8LuNAy99Da4v+12JBFJ5FUuAm6SUv4GFeL+d5pnOvyi925qWpV8bQ3ldJqn9p9NxRpmqNxo8RJtYHcvAtsU7H/ybLRYaxZDegGj9iOUvSm9dFV0Xa5ZbC8M8/R4uLnLDVepKAE227YZ2LOX7/zLJ9i6o6llm16gLbOQR/bvwNcEhtSQvonRlEnzIoFEAmKKdugk4iQdKM1QX+vlLDyVTYiEKaHhrNc//CA3f+HrPPfza5jcHSKAT6x7mvutezhY2d1CtY3q1TNuxHhQqGkTeurnisTw6BYm+4bCDW9KxtEI8KN6QLVBtswiriHYsXyUSpvEdA6QMEE64QZZc2rsrjw6TSQyskppgmVjkrStNouuxe3nvEKpXze6XETm1srs6F4KTQFtUvfoFDUmkvMYtnewy1vDyNZ+9lSfwg4q7Ejfx6SRJ6N30v+a05js7Gaobz4Jp8KjI51szGfYUy7yYG8GQzTGyi87uOMm2cFnGVtxGQe6y5zrz2NFPoanSY5qC2jzAhbHAvLJSY6qLOX0wWUEEwfoP3MJbkIQjG1lIPdDLGrsSh5g/7p1PPj1SymuO1hf3Lomamx89TFoPlhmOB8qXQke7tkGwEJ/Fc+17+cxYzsD+hhdhRPIxSqIhRUKYwP1gGFieISU2EuC2YOfmaykhPAq6nyidWCqpsFMFoXB+dwLa4mUz+fZOrSVRx9dx/59O2k3odCxEl9K0pbGCSOdOM50RN9XNZizAQ/DB+KcPL6QXPcyipkEr9i7vP6eS7gZH8vtw7JrLBuTxJy4uo6A4wYle7dtRw90uuwuqma53oEGQmFFXB8ZSAZvfZw1Z53PtlOOJaiYuGqs9ECn026nw6+w+vRjqcYN5osytlDAg+vhN9V4zy83NuVRwJx0NWzHZGxiO/MKkt6ixGoC4CaOewtrjjoByzRxx3NUng4ZOWbNYUXZY6WVwReSdgUy9tldOJ6FpsWIzbDJi8RvHZWhDZpivEP7BvEKdj2j7mnglY/nQF8PD4nT6BUhgNNlV2gTNq5mYLsmV1zyCcx0B68SVQKnAwOfHmFSLhSxLJN2YSFjWoPxIMOMWwQ8PNd9IqNa6KNM/wT8YCGPZBxybeAJjYePfR2dbgfJ9leHY5LqZCzdoJJuWnkCGzb+EYYCdhZlJV2+pKrXkEKyz91Ezj04o9Cdc+jwLXWbrVrIkxsewm8ChY3DiBK6EyZ++fCbBbMUjq+U3pz6l+VCGMh5tTLbTkjSp+epxpO41hDVgSw7Lr8fc+M4E/c+z9hj6xl9di3FfQ2q7rab1+Cr+de8Adm+6mj2LpkPwOjWDfUgUQoNKSVDtUlu9Xaxbvt+xgk3q71loHo0jqZT8xshUHlogp2rHyE7FG7YpKPGXgGc0guwB19cazW/aDJ23DJ2Luxj/sSClqGqKsFgMyPYu6qDkXQPCcfG91sDd11InGXhOWVrg1TNEEg5ekKye3mOYjaPufweXGq8Y+wNLByyCUYdjpErWKotImNZPORvY1hUeG7eQzhKUNlxHAYPNOqba3ZjLSw//Cxe/2N4ls3O+zbWX58Y38bO/rBUw06mYWIr9zlPUVAMwpqZY+uOW1hcXMUpY6+j6lYxqj6j3Ysx42nOHTqaAhaJ2CAZt4u39Z+DQKuzqmzb5MSDC9E9FbJKwes3xViUe44TzQ5Gqo1NVq3Y2CTofqM706TnclW6Ey0mSXh7ee7RB/nh3f8PyzDpUGBHbrxV40HSJGQ5gwUC2mWKtIyzsriIbpUscBUAYQiJ3cQuxMwyKgIGfQtL6V81Lw2lXROUhUG363FiPHzedqYS1Bb0sL9jEW9zRvH0UJdhcl+YYDjYv47nHv7JrOfo1myGn9rKpDHEsa7PwqzEcpbwejfLEi38jUev+maDeq5sonsRzy89ltO8HCv8Mk65zOPG0VjSRa87XY3afpeJrh6G++aj20NMtanPyfL8MK8rbWPPjmemfbbZHNsh3mGTNXYR11M4kXh0XTD8Nwg8NP12BHzaTiN5KJs0jgSNsjNDbcQ9zSIZ6GRkAk0LUwzJmI2pG1iqvfG4EWMkniZQiUB9BhcdgY3RHPKa1l3NSEz/gjKvVmFVdSWaVCLKTsCJE6dT21BsOW67v4CJ3mU4yfZZjwVQUYBzu60Yk5vCMoX+7ffy2p1dvPxAgHsELaBdu0QQX0ZGryKFpNdvD2OgsYHWD0qflSMSPwjnbBxJouk5fXLtEI7r8qahs8kmlqI7pVBnoclGVBc/Fw/Ht3nzoUacI/DJEibYYsiWzi3eLI0fD2zZS37zE1x95VfY+fzGlveGbZ+7k8t4akvI+N02XGT1PbcxNvLiOhL9NtuR9MO7SwjRD9SAvxFCzIPDyGr/n70gO1jdxqfPvJj3DPyEi57cxQObz2XJ+EGGYgdZsucxZPARhCaoFLIMzoNPf9DgTx9fiFYZo3/+K3lT07F8N8B6+gZGl0pO4M/rry8sLyCbBsv0ee8dvwfAlg9u4fZLNyIWhhvqIAi48dKrMPtSfPH2H3GqeFXjHDvg0KOPsyS2HM0zcAObtIxTUlnV7OQIcCwBARmZpChM7HiCtFNlYHJ60Ju/dTcImPcXJ2M7oyBAlxpptVF4/hdbOJissnVHlaX7tvHnnzyDdcZ+9K4k8WqWU8aqxBeGSGuXCLCBNidcbP3q9FILbyLHicYYJ+qjYQlVD6SI42GyXdWG+b0hwj/oHaA95vDUigd57TyfRcX9tJMib4cL4zGDJqk9N7BJG+V4Lph2bdXCCF+/1mfbcuBv4Kp5Ht3xlTw3NskZ+/dPE5fMWlU+d97H+dCBG3mPeu0CbQddCYsd8T7aV3+LRAwOXbCKxQ/s4drzE9x5oo+Qki//3Zfob1/Guc+vY7y7l6u+8mkgHJfaqQH5EzVy6UYd8PgVz+PnLJ5a/gD9KYPuIMF7lhyC3zuWffZu2i70+dNJycpenx/lxzlU/ksOxQR/vfnzXPyFK/nDPbdy+je/Ry9w+zsP8uPlY1z2Xy6LS5LgHWcybO5H0yTl5fO55E++yD+e9B1Sw0/DAnhoQREossrWOP+5jwHwqXekOe35Cd6U7+GptmE2nr6D9z/jYRYLZLq6+e9L/oqfvHUAISWfnDbSM1tQ8xhZvxcWQUWt5hFE5h6ODwgYKkgoHoEIVrN9+9vfrv+7U7ax2Did5874C4S8gXftSlJr76MwQ2eACOWPTcGBhQyDhY7xD1Be0M+TrzmK7gmNM8eXI7oUHU9Am5dmvDyIbdf4+B1x1pwfzvtE4PPhpxez1m/n7bwdgWB0fJijF7686Vd8pG1j7yvx0MAeRla0A2dwzOD2EJRQP3L+8FvwuwYodZ2BQ8CF9PO4FpZ0BI6L01QutXKsSV3c0yEGSTeOV80zPLKd710RLsprPtp4PgcWdSPnnYpfGGbFP30Da+Nqjt+ygYnRLGdyFrclNuOLgKOCLsrSotftpVo5REY7EVfTcaWPKRrPVQRQRLW1WlNp2PDa7Yw+JXBOzRMDssZiaoc+xKe64BxtPxfFt3OjfRpnMUgm5nCXcyITqYWUOpL0trWT1raTcOaRjO/mKK1MoXQ8geNwXsdeyl0JamON7FPgB3gGlGWKDQtOZufIUk5x9vFZ6xJkrsShvi+T6/C5etW7uD9zDu2H3sSNVpoLF2zn8hV/QNVI8l9PXk4x086T6Q+yPLeZUf+DHMcP+L2NEtjHT1+p4+uCBfd8n0IGxJv/umUe+Q6MX7aJRf/xqiNugfvYT65lYmAf7/2Pr9Zfi81RrgAwec1WEsd00fOel835OTPaTAV+S3AOcKy3kN1GuAnLZnOsBKpOherRD/P7w7BVLMCySvh7qrSTJqcEeStOlnuGrkYXgn/42V1suPx+FgymCfTw+LGaYiJIyZazzgXgwiBg6JlHCFR2G5FC2j63ettIttvcO5zFDMJNpkU7nz7nY3x808283G9sWgf++0mSuSR3PfgVPvSNy6d1jCg9eIDyo4eY//dn1NerIzVvssCjp52NkPD+59+INz8fpuaAyVp4L6p/7fCvG/4NjoWPlD6Bo7eC4eULfSoXBMz7skHikW+Fl3m6zjev9hmYf5D73rWAl/X/GSuWbWTcLPPWNXsZe6XJifpKRLqNytrL+Mqb/4lj2jdzyek/ZnfPSZzD33LHHXewbdu2+u/U1IbK3j/MxKfez8oLJngs+Rkesaq8o2Jy2rvP5ZsPfJTRToNlhXkEyXace97Lofa/4Ec7b+OLvIYv3vaH3OlN8t7sxXjCp2yV0CuS55YmmZd4HX/rvYttHXs5lB4g1b2YmOZCrcF4MKtFzjvwj8RSz3KoRxIzNZYPL+K4XQ9xzqIvkaEhklhp8u1a0GAYXVE+xIid4cS0T1rrZvXgU/xi2QFeI86juxanlAZ5sFXiLEDOXWqBREdjXtCJYUn+8icCLoGM5SMzUSv1pnWhNMSbly4GJJ8eseu/EdmzN26gd9H5vFvbji8m6ec01tkPc5f2CZat9Hllpp/fr4YA59DIZk7kYt779F9Q1iWb5QfqbIBm23nlL+ga7eK400Z5Q4eNfm2Mz561kFe07yPt6dz/vS+z9Ls/5r61T/KOaxuaUR96zUeRQuNDyXUYUqd/osgu/d2Itl2sqqYZxSTZ2cP8tfDPH/8IZjLJ/3tmul6TuXGc/C27OepfzkLvSfJKfZhsh8ktP7uJf/3cK2cd29JEgU+euhpYzV3bLsWpmSTS6ToQLt0jK9f4VVja9SIpJjzlO+06SB7gVU309tAniDonGZLFIvSCK1x03yCtJ5C6j9s9H+2odsxiF6W9+0j2zeOK48+nGGvnPc6dwMwaD1Gby2gO+a5PXbdSn6WFN2GnjJMnzqBNhhcxeEs/xwcrAbj97vtbkjhPvO4Cest9wOxs1VJVtfq1qpAyGOrfxGm//zoeuukXzI+/iYsffITim4dg2ayHAKBWK+LFF2EoRq7wXIy4xjNDD/PnNFQAVgz4vPtxn2feE/rrRQhcNRYj41U2/rCflX1nM2n0UGMJMXMDXHsBfLLR0e6mZ/fAseBIjzP3TvK6SRvODt/zpI3tTUKyjy5ATGQhDIkImHne3fzFv+djJ6zhEB/jmw8/wJWnnl5/76qJvaTdd8OEzqul5C9/8DiPyQ/z9POvY8Gnbpt7UP6H2ayMByFEtAe6Eng1cJaU0gVM4O2/hnP7nbE8OaTQmUh3oecnWKg6Q7gyTsry6zW7tVqZ8c7QPekKtHTLrYGkb3lkTIGoyZZyBE2EDkaIpr7pfkCt5OA01axGD0x3pRuQrPTn0xmkqRmC4yfL2LhogYHt18jIRgahWi7g+yGVM6PU8J14nJTdWhda/x3Lw1fK31JRywx0ohRYJeaxIOhkkd+N4wtc20VXi3s1LpFuEwVboYsx5SAbGg9NpRbZPO3CIiYCZCyc9vEgVIcwozpAIxwj6bu4Blx3sEKm22F+FhK6jl4LAZSUGntRm7kFlqtqvVYpYN9WVNJce0hbDaa0Yyuq3y+LjBoPSZcMP1NKhjWbcRe0wiga0KGyih0m9LeHXnrrMceT7Qyzo/vPdEj+QRb7OLXgJCykoohFY14wBG+qmlw3UQXNx+vzKZ8cjuPydh9DgB8fw3bjWG6M3actxxcxJjrn18+75OYJRECfyuDcNXg5T4/dypOjV7Pl1FDoabKnm76xRqCzoBjnWxNN7dASSTQZXmNGAUeF3hp2Xf1Z1evOECzNZoHtU9UUjV6IlmxnwOwiYFPtSESwZrOiqICxFAARdFBrD8uAqpMz6J2o+a9PYTyk1C7Dj1WRmoevW7hxJfnYFOh2e51M1Map1SpUFpzayI5JyWRf+LtRWczk+AiWyk4aUgspn7aLc6CM0dTOs1wZI0DW2UvQiFXiatnoVBoSuB6VauNZCETjeY+CE1/XEabJ6EiDieXarX6hXc9TdSX+ZBa8Gn7FIjeWo2L4ddpkUsaIYxCXcbzAQYjQZ3Ts3c5yq5FxialuBhF9PqJmA1S18Fxd1Sa4ojVYBW2uiyagT6sSkyGjwcDHT4Qsg5q65sW+xlFa6A+K5RKO55DAJyYCPK+h8aArxsOrT72OLycv4ZJXfJpzTvxvfAsCO/QH2VQbE+nwGShb4SZ446kvYzLZya55vXz7bRpjPb2cEj03QavP765Ad1kxjWbSTlXzX76AMqPC2AhmqYjdxM4Sc3Tx8Yo2fsEmqB4+0HdUaaEWOwlBeF8S0oCDVcaH97K8Go5BVOo0kfToccJ72y5szIi95+YYXTXBvsKztMV7iWmJemZRDiowWc2biMbcvBHxSxXMbZvrCuQaAr9o4yqBBB2PuMoOjqV7kEJjNN3b2l7OlqSMNqzRErZZbTAelLnj4RrkDs28Vsxlfja8BinAjc2vl+5B2F0FwOtuhHAJW+LJ1vEP1CNhr2p896QD4b+Xjzd8jKHKqfJHLWLCH0DvWYmW7qPqO1h6mpoqsRDx8HqGhxtlCwCmmifO4DiaGj9LaRYN7B8Ij+1WMXzFShQ+FgYIga/A4J32ZP09gF3bnyRthhfQnQjXBqnW6Og5DEstVClfpUKgJxB1TxW+nk8nW0AHALfStAY3rS3jusfCQoqUlqArPp+EW+P1o2eFH1P+QkzRTJFCHobxIKm5JWKeT8lwsZVodaypsNRr6nbkFhsidY5qNd5czJF2DXYnQNNKuMLjBGGzv7oMM0hzXFAFAUnNwUMQjIYbwbIC4KrDM+vCy4pag5IOehL6bJivfJ5p+AzuCbubpCZbdY+k0IhiNk/45J0yAoGraSS18DrjRpyv/7lk48tWMdI3H8ebvgZGXWDswTK2F2ApASlLJucslyiNNJVtaBIzH865QGk5yRegT/HLtuZSi+gsXD9iBku8pm5uss54EMimeFnzfRK+IBASrz1cp4K4jjU2SuD5lGJtZFMddR2xmTQevLrGgzqfZobgHGV4jmrRWVEaKL7b+KxTKuAjOdFbQoct8WJlmKU1d2TlqJtG4KFJgaWSFa6K5ccXzMcqHF5Xy7LKCJHAM1SJr5UnKeO4U6aJ4QToEoTScfBFUGdpFEo2GgKtRSTfB7tYZyb7gSSmfJEvfNIVGz3RuEZHuJiZ8J4Ighadpdk1HiQ1pRPVUWtlq9c0H+Hr1HDZP1FhmdVPDI+E8+JLfn9bba5SiyjBeIuUMidlGHVIKatSytklov/PXrBVVLlEOd5N3K5gqADP1wziXqOm0DYrWOo58dXiLqeI5/iWH25SXdGSfZHqVmtNCKejavO9Jr2GIBa1yEkgkWhSp0+2U9U80n47tnAxHA8nsGijATxYZhnPsZACkirod5IZUg74Mym8ehKv6ITiZWphiUkNKSSl7BgFzWSe30WCGL7UMIsN1kRON3HVglw2rXpwGQti+J6DHwEpbiO4sCeyZNSGyDMEutQgCDMVkfafFtX4eh6uLjjLy9HVGbZ8m7A2k6i2lozE7Jlpxb4ZBoxRcj36a8fCcZFWK/BgeuEHbDWeQVMdWTnZUOu3i6qGX+2HuyqNTWGxrZ1yug0JLFlgsiJjEywIj+MIHzPqHKILwKakC/pcQZcCorwOh1RveB5xtUfrs018TyNwNbaeqICEdEPs0pui81EJxgnwydgmO5aGn8/p7axoYpGefcBm47xTWr4XKIGjlB9e/2inV28PJbUjBxwaJxZQ1RpjXHErRMGR5PDHizbuR6rUPpMJKRCEG0sZNDYdtcr0SrVALW5Tcw/JCEgz1HzSbBL2GFOt02tnwstj1krk54XtsXqCNgIE2d7els/m85OYSuQphoGPJLAdnIMldKOxHNi1AgEBKTl73WZS+anAcSmUGiBNTG8AAIECBX0dhGVT3dlQb/fdVr9gixqe5yPVxs7PFihP5Mnpjd20LjVi6GjCwA0cJOFYV918i5CYLxTwoIKIuN/wVa4i7PmqBacpwk1JG1X6FCgxT6uE7TAVCDE1MxQTjflVtmrYvocugjDY9CPNDtA9iWfAqrYhusnjGnEG2peEQaZq4zeZyuDKVjBh57yFVOJpXNnOWIfORHcvPep5s2XruPWWGxoZ5eQMi3q0sXoBwEMlm8UxTaqVZiRjdmHWSPg2sA4v3uooIT1JrI6f6ehotQN45m5Qm4aiUvQvpTW6nBCYMWUcx08iA4+sNcyhQ/0MmWF5RW8inPvl3CRJLxJCjQqnVc13U3mcuW072sg4thbVVEucoSzCiFhSPnE7fG8yFc6Rg52dCK+JsaYutzexkNE9u5FTWrJpkV7E0AsrdQGwm8TSMtU9LeBrJJo6PH5U/bWEJQmmCEjq40o3ZEnj3r91vaL665J2N3xWI0ZQtrsLw3cRsRQiniGbUeylIHx+bDWuyWRrbXgk2usXq3UHmlDPWc4K/VctcOlxw/N1hY+lQKdAiT53So0+uwEC7tz+OO1WeN87YqEfq4jWtVMIHU3oBJ6PHYlj14GB8DwK6el17FaTJk3zmpA1JC/LZ4hrMYQQ9CR6abMXI6TALg+rz7c+YQGHAR6QICVSJSpyfSF4rzX97liicd27J7bU/+1G3Umali0hXAY1F1OVUB6nmWwZD+vD50esLy1g51FtJCeHOdi/rv7dgW2N0t1mE5nwHiQUV9/qjnG8Hh4r4xvknBCw0Geg5s9ropVHAIpE0Hj0BOsXLSfQUxTaO6k60+n0flGV3Q6WqFguNeGGGlyaQS43+8bLOtAAMQ4m11MdD9ehBgPlNwc8tNT5q397CniQSLxyIy6QQir2lyQIGj5K+D6G+o6fUuwIDeyxcYJSBdNIhC2GlV7EVMaDZ7v1sQiQyCCoaxeFB5v9/CtTxOal3nhmAssOy6rRWWx3IzUf15i7TKJSqUQXi45WZ0nFVNeXQlcXzmH04ADVljuBo1CWWm2cmNRp86cwyqLrDCL9OVlPUlrKT7tN/ZyjtqMooKLm+sSUtoun+bgxiR5vDHCOKoGmh6A5ErMp5vRnGVddyLrf87VWP+JpPj6hmPOarYOcpYdlUsZhAJ3/iTYX8JATQvwCWCmEuHPq/39dJ/i7YJWYgCCgFOvmYM8ypKYjhUZAjLgHrsqQe7UaZgwIwqSXbqTQJLil8IH2HBenWEYDdEe0BkEK2YrVIs8AACAASURBVNREI8CtVdxQ4b4JYfXj4fuxIIZEUtEgIWMEeCRkJzYeyWoZJwhIy8YiZJs1TOVY4uqpc9JtYaZpBmVh6QXgBciaR7Qp1NGQAp57/D6kkGhOGxoCL9CpFMJjdwQpHC2gf+dTAEwUVIcJCYbUcZwKvmkTAL5n1UGNyX0HSaOyMoYkIQ2kDEJwJYgCTeWEfI98Mo0lYxxoOx6AcnEzmWq40Yn+L2ZYQAEClekJ1NMVBQ2uEQahwRRV9CqRWF8KKSWe05AAc7XGhic+Hr7aXZGkLEmHtRhqDsLxQErcWIxSIoWf7mGbvpS9C49izOxFxjyGN4b1dHpHnEBMUENjSKyipifxpIbVWcVIJqmRJJDgBxpH+xlwfITjs3b5GRAE5OI9mIkk5WQSzfYa2VQA4VAxfBZnHfq7V4Htk2trY8Uo6J4AKTnNstiYPJ1ABgQK6HFV4JkK4gQizYGOWL3jgExo0+jYs1ng+niFGoHjtywC4+Z4I3A7IqE9FSTUZq8oK5eGqJRmx18NNAIjg5QSv0k8bSqY4ft+qNMALRnNZvPiaj7pNkJdSHOwPM/JsE8WMc0ilfY0bTJJe5DAE1Do7mo5VtUqY6lsX1waYbauZmPvm6jT0gFqThUpIM3sNaBJ4VKKpcBxyDfV/sb15gBAna8QoYbJnkF8BJUErZljQgE313PrC789lqU0NES2CXgoUSUmDaSm4/l26CfUe0HTAj2SUNTvCNT0G89RpKnh2yYeAlPrIo7FcalDJBUItEBU6hmreaKK0FqBAaE1gUmOjeOHwlUaMqxtIPRJuh9Q0zVO8g6h2W0kAgdhKb/sSAIJk6l2Sol0+HtBgBZ4DGh9lOJpQCObbmdsfhepyIcDhXQGMxFuArtLkjP2hFufQ30z3Kio3HkGP+x7Hu4UADXwPbzyML5bI5drBrpmZzxEwrLS9vFdLxQwhfrfZotqjGWg15k4uhRkfBNNuggFwVUU0FtJ6fRZ4cYzJnyq8TR2dYicPUZ+YBf56kG8Wo55Wg9xkWBkVz+GkaREqZ7hqgvhWo1rza/biG9pOCJSKYfyuvXE9Gg9CkjZPramKeBBMpnqRPOb6nx9CKRPd2IhI7v7CRy/DqZLKfHLDlIGrcK7UtYZaIHj17sCyaD1+c+PNrowBO5wC/BQUWv2/uGlLHQOogc2MZtpwAMaFO00paMTOEYcCZy+J8DRBHZckHE7wkyomhqTHSm63Awm4cai3L0IIQN8P47nC4Qq5UilWtXw652hClVELEBKsBXinvPCzWBNerS7DX9UUsBspK3UKXReXmmU6YyWxki5GTSh05daioVbZzrUx18F7+VsDrOkQF2twZLTjRTFrm5k9L8om2k1HadpkzCpQ7fZRkyLY2LTkVoIwqMrSODVGZStu4pAHXs2Cwg3lfGqCRKGloQAmdbEJhvpOLr+7+ezO8JNUyDrSafm4/tWFU8W66cxX6tiuQlSuGTUZszTJc+cdAydE3keefq6kO3kw+jADspDE5SHJigdGiM/OkF2LAtuEJbJ6gFBAGN9XcxTrMF0EKMqVUexpjUiEp5dRBNbQ/lPKVp1VaqJVWB5YPsU9QTl8dZNrV9y8KWDc7BMtlgmEJLlfgjQHDp0iNnMHY5YKJLdqY3UVFlv8FsAPDQzHqL1OmIABkJSqzTA+gBZZ2UFTewX4XuIiKWl5nVKuLjjkzgTecxYklosCQqI1Kdcrq3KjnWpESCx7XIL4DUXk7SQbU2SyKb11bFqSBHqUs33w0XHjrX6uKlWjUAF0YaOVmc8RIB4oasbxzw8M6xqFpEihqOFLJFibRgDnQ6vFXiIAJaojbBPQCAkrudTsz2kdJBNagMyyhCqEu2q7aILBxlIHOlhxSR6QipNFxjXwrhkQdCFFAE1zUZIScoLpgEP9eSq5tcZD7Ep5Ri+9HFUbLK1fwdnanvwJcTmWHf/p9pcBZ8XAmcAPwa+8es5nd9Ny4oYf/fDr2Efczyblp9FxtCJSZ3djs/QMa/g7wtZEj1tTBay5E+4mNfv20t7vJfxxSHN/slHH2HznQ9R7IuT6ezlQiDmQuA0iOWBpgMBQhi8be1ZZGqS4jllnPnrKOmNDZYWi+MDPU4GmQwwvAq2kUFKj5jRji8qpMoTOKnF9MpG8OFWq1TV5kNTwWa5Zx63vPePOMqdXvdVHB0nY7Tjl5ww26L7GFLgErB7934Aqvnn0BYup4hOtdR4yEtajR2713MOf8TYZOi8UyTCljdOBadc4ab3vRd70uFLboB9sEx+V54OVXpgGT5tQQwhw6XBcCs4Cei2Q6e3Zvkr4KhOvmq9nA/EB5nsvAY9O0SipvG+t36Wtwyu4+Zj38AlB6+f8X5K2+Lh13+PhUOrOQs4rpaikoaBvhW89R3vY2OtVePBDCL6aIY1O8Z4+bw4sUDD11rR6aNHQ2+WcRcxsuIrHD2wjs+v7ue8RB/3dqZZ5ED7hd9gpys54eaPor/8FbzuZe/ifucBDKNK9bgKV8d+zlMrnyGY+A9O31rj7tQo+aJFVznG5/4g1P74+I6nEONF9OWj/GV2Oxoal8vX8fjqUR6XJS669DoAvvrDf+bqbw/xo7e+kzWnnMFx/f/Og6/7MmsP7KfwtM6f6/eyZfECHn7fRRRW/CFvfuYJvvqmk3l5IUdqwRrSXgy4gHZVY7vIT5BdciXZwGHnwCDLTj6Nn654Oz/5+n/y3CoBH5xxuBtz8AurEHQwPu9yKnaDCjxWHYMpG5C5TZWlWDPTxnfsvINr73iIjNnDBy94AyvOOW/aZ3Q0qoaNXfgW9DWKFq0m1oznuHz6C18lFVvIj37Yz8MXzdxVxlfBfqDZOPoucgv2kwyMugbEmzel+fQbA74+fDWvT36AhUE7MnAxDRfQmB90Mq6prGOlUu/mEIsAr6EiXn6E6vzGvMwqYbBEoE+HpyUgYJleYPUfvo3l1QqFWuO6DL1pWVGBzWTSxfBfQzDwLLdfeC4JFpP2baZa2iszJkboBR74xhUEJ61gUgT0Be1MamUSQciK8jVBPFfFo1F1YgQJQikiSIztgnmQjqtMnTSISQ1X+MRqNapPfI4vftji3PddzDK/l9drW+qB3/ygg4SoYsgUVaDPqGJMCdCkaOql7nlkAklSBBwtbGwfLr7wc/z9pp/y3PHHcm/Hefz7wA6C4yu8ytvA49Zp4dAEkNCW8/C7PsF5aw/yKmc9J+UWY7d77HbzvCEZRxM+2Y2rWJHdS3DGKepaAt53wecJzu3ipi99jPVt/8Ijx6f5+jE66ZTDx8yBlnONgnDPcjCaWGqlSol3XPNqvneFT98ln2feX4XVld/6wR/x5OsG+MTBTnLZkK6UkEZ9UzGTRS2OyxNZzr/hdC72L+Ci09/FX276KLe8/ucsX3Fs43x8GzSQUq/TwXS0pvAqAVSpqgDQNDT67F58ITnOr1FItOE+9CUGzoQ3KwHw2rZPsAQonNbG+IN7+GL7Newr/BN/E49A5WjD2QCLrx7ayyu7FtX/W4iAbXfeTuIVKxFSYAgJ8y5k7Tv7WDaR4UPJ9azXj2ph0on1t1A99Bw//OjxnPfoyzhx/quo3vcvJE6+GGm/mk3PXMPRj98PF/4H8/1T+f/svXewJdd93/k5p8NNL6d5k2eQBsAAIAIBEiRlMUgURZlciw5K1lpa0bJYK8lbtne1KwcFW5aoWpcDvSWtvFQWpbVkSCQlQiQoJhAEQIDIcTB53oSXbu7u2+Gcs3/06b5937wh6a2itijvqXoFzA19T58+4ff7/r6/7084kiu//ATufJ3FH7yVy//6cUyqad23SvDlK6z+r/fizuXPqL01drhGbjDhyARo0jjhwPqdfMfMFRrd5/jd7/0p/sZnPsqffM8PMvIW+L/eeC/vePFLXPf4Nn+693PMfPuPc9av8Tdnn2eQ1Pj0vtv5wNmTdFcfpm4rJPTrkhOixSO1L7JPzfPqd3j8ve5XWAnnuPGhX+V8/ctorXH6O9Thi3TBrQus/w/w0QfvZ/91HsicpbC90SXSirqqM7SO6r+au4FjXajtSXj00qN4UcaBzj761mgZGIHUNd554Hv5k9azu86/zzVeo+s8y+wv/D5ShaheirecgxdBzWV443GEgQf1M1yWbf637B58v5WXN7RkrsIpfP7557j78ntpxhd5vHaGE+5lWAUYcnjg0Sto+1dVX82jlCpNcLyrGWJaaDCQJG3mzFHWV/LzoOLDM+2OGQ8vDS7y/c/eg2cctJ9vtlVposeXP0xmXg+Jz3xWR4ke7/KH7JFDCqL6thfRWjrGuVt8fqv/Bb7l0nto+C3azYv0PvQKJosJPvXTPHPPe3jtkKHJIr99yz/lJx5+I71zgg8d+T5+0rEVsoTASQ3/5W++j6OXxow1Y53aVQox3THLYW8wP66gIuH9H0258fQ/55/8tR/nY3Pv5jtfvcz0yhiE+tX1D/Ob3/q3+YOHX6R3Kv/eAb3ASXOZS5cu8brXve6qcQVIexswC7/zvysuHX6Fr7z0u0RyEzceQA3cXc6Yv7xmyjO6cPZVJfUj6FeBh3yOSFqoCvBgVApm8h4WREq83ibe2KbTzIWctdI8du8/o9n/wsRn+x0bDDQOkUyJBm2EZaMIxFcFHgb9yVTT5hAC69tHQ3uuIlmSi3jmDKZesV9+bg5++EE4/KbypZG1ewXTSDNE25RBafYCELaaDK4h6D1oj/jIzzzG3/yp1xMNO2RSohxFTQuGWULDwGK4Q9yyBB7GwvcAwSim/+JneMfn/xWPvet9dMtpmN/cD/2nh/mp8w5IzQvH/4K7O4ukp27lpdYVllamCKZe4T/Oz3LXuXWWlM+MaXCRNlnU4cP/TvGRb3dQFYbZ73/wg7waRfzsz/4s73z1HJvXLYALe/qTY3/zC3Blf/69e89d4HbvBCf+aB8n7+yy++z/5m1fLfz3YWPMY8B/MsZ8fuffX1YH/1tow5GP28gLWjVsVDwViqYNNg67+SJftznni+IIrjum4F/e7JENTqLrTQa2/IufCHSlhKS2G4yULlOhwY8jnn/l2QnQASC10dl58kiIowwjGYGAoaXjzXTX6auEG9Qq96S52EwWRQwtNdaoBNc4dGdnyIRGmkm6N4zP7rQzKqO40giMMEShQ0vX6AWn8teQDC2ro0jvSKz67bbdqJrGR2MYBH36Qf5abclHj1JUJ2Y7bpc5aEoYatpBYNDCULOR14Jqlc3lkRhHKC6i2NyjOXxuyNCdpl+b4o9ufBsAJ/0xzXXi3pJ881hffbvtW97nFUsBHeyIekc23SFwGzz63BmCXpuaZaY045Sn3ni0/GxnGk4eOELq+Ty7dJTjTpOWO82bArg+Fcwal/usnsfBhSMAHI7340roPr/Nydp51mWXMPDJ6it4Zo5YZLjOOPqie4JYJMTZXjIZksghx850abrT3Fg5W7p79zMTwen9hzhx8Cj7tyBoTvPM4VvZo/v4QuENDU8eO8ZINPjEvW/n4vxeuvE+Yqno+Pnc22ujkPWCtyx9Hu3ljvLMcBtPwRte/dqsh5ps48uz9M+fJfQq0ftRh1I+/+sQlyw/m+5OG7+4+RIrYf7sL7388q6fcYwgELnIR9VcTio16zdPnKPhZMh0lnoKzcGkYa12RmuEQNf7KKEJnIS6jQwbp8lqG644DlpqasbDqHHf93RG7LPaASbRxIN8fRT6DWF3gIm6hCIuqZpDm1rg7ULPlzss786gT6+aPlR5uzrcmdNkWJsna80Q15xdqf+eNqQ6Xx+Ru40ZDIlFylxW493J3dwcLOAYkbOJkiSnqCLwp//uBB85zfJr1EWhCi/wizKw0kH3L9J2889c72wjBTx14EbuGKyyqudJhcYpGQ/DiQo+LTPJAkm0JrIVEXwEAR4Dv8Xl5jLPLuYU6P8icsfiWfcmRGUOuMl7GIkm19sSve6Mx2tezjIwsocWQ5aTbcK5FQJRlAY1CG1QHXj6/hvoBNNkiYMwEIX+VQyhorJDGk4ytLa21st8/8GDf16+fnZ0iZO+z0F5iV4nBx5846GFJs2udv6MMiRr+f4cW1rrf3b+nM8//2kSmXLq3KuTX7DG9/KVp3Fs5N4xAmf2DrzWe0qtE2XnhyPr5T3UheLBW3Kdk7c9DcOG5Pe/TfDhdwpOr8Ly+SFBnHL92T0kjldhPNi0s+1xpLWZBGzsGwMiBsPA5rXP2aooOHWueEPmp3KHcr8T4KRZGcGSa7nI63l5hnCwTdZuY+I+qnsOHWY45/LqLN32U2XFD9WJiU/3SC4MSq2i4Ms5eyrbqqSIReO+qtxTGP9bG6LuAGXTo0bTS5z0jpE254lFgsRDOQ7E+RpfTac4O7uFFpJWkrDKgGQbmjaaOhJp6TRu+fn+cFl2OdLLx3qj1sWXNeb7UyT9gHR78gwrxPM2hi/T22iRapeokjy2dWWLKM9uLM/7PXGexnEwXuWJK08QZymeGX/H0KBeXyb0uCbo1XVsydXaFFq2MLqHsTtuYKsxGAGXnHaulWHTHbLs6r1n7fJZ6rqOcRbYlkMW9BT3Jzfy5vQY89sB2u6XVfBaKT1OzdtF88mYPA1D4JJ4t1HHwzgF+3R8HacSA9xO+qjmXow7XQbsq6kcT81fopVOMa1rNKOUgYxYkbtHitf338SNlwwtv8WMm/FC/wRn6y8znD6JSQZsza6ghKYjUqYdw6jtguoyo1ISO35awPxoiszzCPzx3pdagc4FCyTVjIsv8nXSyBpln40w7Flvc2N3Dd1y2PCW6Z+frAzyotciaLQ4qU6z8WpeurupfRrGIxheOwoeqg1akcHP4MipBF82ePmLn8Ozzrtrkmt+9xvfjNUtG7MZq9tn0B8zBLRNtbjv9AZ+JXJvshiTBHxbcjt/Lb2FPXqWKaHQ7R7xxhapvb5SmrC5h8wbCzsD9KwuUHF+Dbp52opE5gzjrxKIGQ52pBanFU0Sy/aVSGb9JnXjlcKNAAoHTn9u4vtFeWRjovwMt/PfkeMAZtzdfZ0P2iOyVNPfjBgNuqRSo4TBMXDbWjvfu3aAKEV3TMFwLPTjwpjk3Jfze1Jju1daJPLk5W2m3Rmkm3/v6fk2T9Tfzqu1m5gVAV9oNthwXTCKOnUkuVbWTFszNYI7TkNW6cqrtpSsUgrpZJxVue04LSeBktpoPA7GT9m2aYtHX/r6UyS/WdpXAx7uEULsA35ACDEvhFio/v1ldfC/haYSUeZv7fZAQlv6qW9zY5FO/mdbNErYmSFeS2DUr4jXlAvBQWqNMBmnX3imfL/M5bafE8ImHhiDMvl1unVbF9esEehcDPKgtqBCmtHezg+iTKf4OIQ1i2juIuhXCEJtvXoJYe/a0fk5GxqYVw1iHSLIxZwK9LVmCmcrN5i27cbaMD4aTbfXYVgxAFRviMk023oSSa3pnPpfpTAWuXCZBQ4WZcg6TcLVFq6mrCVfjll6DSq+zZcVRT1mO6iFL7zVnzxII0tnH/hNauE6wfYGrjVy9umEs0fGwMNrN2i25nInJg0c9ng5XLsfh9nqIeI18XxLZTWakIj45Dbbbo/DG7A8iDDSxdStqrYDs6ZLXYWYNHf6ZWe8EX7Lldwxaki3TK/YnM+3gX5rCu04HGxbICZWLFsampPC6el99jfy+fC6anmgkaJpneRMJBwYnAejeckCITf1z+4+xl+lJdGAyDVlzeVwuFXOf4evvYkXzrLIdgceojQoDW0jd2dFOAgyLFWxkt6kKgbvxmvn8mtYR1buoMLvVvpTVeagbyMGca3Ou884uCpfP0ZnZfoQwHr3ZeqW5SAVxL3coSkcvF5/QJYGRCT49txPLa1ztzHYCTyEUcTw66BIAqjWDDgOkEzmmpbXlkj7m8NaQBYOSFFolbJPz4PKcIzIl1iWmxLSCKS7QvXRahvpSor9Qgh8+/8SBy0o952ibe1vcCsHcMjFvIr9oEmKqKTL7NMLE6KbGRAJt9w7C7G8VHrsiXLQ+GI8xXZwPR2xOE61AJSNdBaa5gMx3rNHckQsYgxQ96fLqh2FSrnTi3n6lpuvHuQdtqSSOY1a7VB4HwR9DmxZB3pmXAI1saJdIydmaCNbNesYdXfRPUk3Qkg1QdYnquQBv5TmqQK9eIeuiV07M72zSF2kGUlm69fj+DeWc07Z9/xqmozUvLrnCLELroZTBwR/fK/DJ+9xeOJGyUobhmILGc8ijC7HqtiDw43x3jM76BG15nCNZFbV0QK6FniYNZN7fb+R9yU0Hpn2MHGRq523I1dSwqkEbfOiTdRFdUe0Z/JxSwdrqF6SpxjaFr20DQLc5YrBWdFlCiviq8KfBLsMmnhzu5yjxpEs9TulXkLB3gmsGON8PI/TOD9Rx77eD6ngzSyZfA4YYWhmObNoNs73+JrVIKk7TaKtXilYV/bH7l2BukR/Ox+7tHLup70OkRHEZExbpuRUlp9PichYaiwRC4GorCuZtWg1VtiU+dndynaq4IybdhyMrW5Rphbt4lMlltVY1UktPtcb5k5Z1GoSiBF11eS4PsQt6gDtZBMjrfhzxcEZVdZUEu2SeqnGwEPq3pw7gHZvrZZPrlaaCFOHzK/nwo2m6ON4c5tKHRKtaSUCE3YxIr/lOT05ZwEGXou3nHFpWrHGfjLD0jtvZuWAFbis5WM2ZSTzwqDsvL43SxiJcW78dGL30coem2538VTKrN2XPCPL+xDIiTKOrTDE1xlT9ZRANhltVqL9owxjgdlNFdBbz6sVJElEDZ+wf+28/5A2110Zd8qXdVaOXE+Z4vd1nPffqGYqwMNupbL7VuOhAKcwMDfcYLpiH+psRKSGHNEr3KT2MWMauDJDDUJ67TblfRph00gn18j2Zr5/F8BDf3sbIQQOAonYdY0ULYgmlYp1RZNAW1ZzppNc4BU5UUIyVD54k+lYqkzp607+diX9tbC9dzZlAdosU4wGPZTMrICj5uDWeaQRV8WUCvtCK43WulxDg/6AzOrOqCo7055xNZsCse2dzf+tDZnj4umEOYY8X8v34oaRuMJFItAYZrfzPh65okugvNr6/T64grbO5/pOMXHjjhlAgeix1ssDltvz/JVrXw14+FXgL4Cbga/s+HvyG9+1/3aaGZkSeIA897rahlbdO6zm4lYW6ygcYfxJLKgeQ7A5jpjoyiKXWoFJMb3xQdkytapQPkJKe2Dmmx/Alh/RUB7bC0McC1QUNbTJNF0bTcqUxjMukVdYAFdn9BRgRPu1S2OBMQMjmTISipnU6iFoDQgCi776dgON7SXbdmNtmBpGQLfXJYzHxrHq9lG9Hu3FyeRnX+X3ZnIZpLybheNg988VOWBTt9CLea7h+tTkwe5dIyKO7XuhAl8YKp49BDeHkwZKaBHfgd/EHWww2t4sN6VlUl5oXA9AvwH9VcXm/CKkmgOhou6MDdJGxeNw5o4wU89BoZZsctZbR1wasuV1ue6S4ICtGiGto5C6mgPBBW4YnkVZal8ajufPfSObX+jUmA01vonZms3n3KCVG5Dd2Rvy+x5VgIdMc8HfM3G/eyuOiN8eUC80RgTcdeVFnHSNM40cDb6pnbMGLuyWu36NlmZdIlezVKT89LbGEaOvdtIy+RF5DUXsKB2WugyJ3h2hd4xE63zdOk5F3EyP1+3WWpE/nz9/sSMKp9Es6klUXLnjteQagWskca3G3isaV+UGqtEKOeGE10pnz1EwGkwCD9vDgKGnQYCXFTmodk1kVxtNO9NVomhEWBVrq7y9c7izqfwUNSSTVmx5bXDsuhp6AVpnuRq1zvegRKUILVBCY7ICQLCMqcrz0mryaNNi7DxLIUlckBUWgwZujc4w5c2O88DRzOj82cT+2CFqmRrLenbiu5FTGOYGZa+bSI/Mru3+sMWrG9+S32OsSv27oaV31q3A1ilnUjxUC4PvTdF0pkvGQ2ppKbVewAtTu5WunBzXFEVP9NHJ5H41GA5KUcqsMxZwK8QWtz3BaJADuwXg2xlcDTwUaRbr0VmiirbKK+Sij91gUqm8YGT4cVgCZA6CUZIDl45lTRg7eTzrcLpGooQmGR3g5Gr+3pduHN/ryX25QXMpfBidzeDqbMx4sPNwuDUulSYTn8TVzKiajcAZwqnc+d4JPLzi5albNRQDZwYVpBitiafy9XnjJUN/XpFs5/dqRh3Cc10yne/1bvsSqhej+uMzPHjsMu5yk9oNY4NTh+NnNKxUjZJebQJQEmjCK2sYYco0iZs2z2DkpOOhLQ1+NpnFaVygKca/vyICQq9SglbXmbXO63Qvd35O21Qlz66duvGIrmxdxUAoHLzE3abXscCDqAAPwy6+mUMJjW9th0JMOBWKMAtJnVz0uWBEzEVTzDSWWBcdBtSY/WrAg5QVm2hy/tcrLIrEOlOmsvaLPapv52l/psZIpLQLKRY1oqMu41G3fasADxWbbDC8WpFfpXYOGoHCpoUJiVbZ2HaCyf+PbAUPMYZ4q4yH5eRQzlKMQjIzduBvVQev+v3M8cnCY4W2KlruYe8Nx4iey0Um627xC4brA0NmgZTbxHgeamGoJ1YItNLPpN1DCUmDQlCyCuaKMsXLCMOMZXTtSdqMRG3CNu2ePEFkbZW2FMThEGGgH3bxcIj61xZ5jpwuN1YKrHjSpzEzM35EXw/B8RvVxNjhL9JqqkfewKaq5OBUrlcgjcaJK9XYFISZ1a0wmob2MUIRJBmb2+M92xQ2tvDKih4Aa1fydK2S8dDuWW0GiTTyq5pDw3AyxaMKjhUxgzDJn6NETohpbuol8Cb3UGPpHlooCxQU86Ny3Wtk8xXAg0o1o6CPEhmZ0GgrhioNVzn7JfBg1ITWUG+jjUryMVVOZR+woOcYeMhB6il7Hc+kKDdg3bLSm7nMNWI0BAGLG/nnVrYNYpd4VGd9A3yXkcnPjKu0y9z87HGMZERGuJ3vk2njrx7j4ZoaD8aY/wD8ByHErxhja903dgAAIABJREFUPvCX2Ke/Mu3Cy2d54Bd/nvu++we4/7vfAcDvfejHeEW9yLs3f4L7f+HvAFCPNKbWgsyAK1jVc5x3xlS0XqfNh57+EGdZY5q8RF9OC7Klunp9TEWR/tPvez+pinn35hr7OAaMDy4tBfOLN4DnWvGnfJPyjIMvPGK76IST04cwhumuZGM5L2G1HLfo7VHMXhF04nVkPXc60YaBpccrpfCojas6mEnkE+CFyz/P9Jk2m8fuhJU7wOSHcrF5NBKNpGEVfgWjokSmShFG0HHy3y3SO2rWoesPOsRxAH5ubKTtHvGps6iFVWB82PlKM3IEmnGZwGIT9lrTQMQRp8sb4iEfbL2fH7zuQbbncqO6RspbvDMM6+MoYbUZ5ZCGn0TIQ7z/k+/nbnGd/VHBm90ztCsbusk0odvgbf4rvLTvcaLt6wj74xJVs07GA4Ob+YHv/iVCT+AcNoy2GziXQ+4UIX/svcSMaXJALxISk4iMNbmNfut9SPEaDqe4v3E9badGe3SZle7r2Fw5ztv6Iw4458mscdhzRrz38UvEIiN0YMrUJxTETzdPcZLXuJODvOnCBu++VOPf3nUvP/0LS3RqMzgXAv70wBt56/Mh3TBhvwhQwPWDPjN/foYfTab4vHcRU9uiUxsba//opcfpeuOD9uhaxvee22almaDeo1jZ92YevOk+ljrXFnos2idOLdI44xO3/ozgdslP/PE05+747+gNL2MsSevrk5bMx/5aYsLdfgctcmchGO2eQ6owxAdu4g36GK85mwzsuioibd/34X/K8nqPBXcJ48zywHe9h9ne8/zYb/0w33fj6/jE6T9hgW9nQU+xLccRnzzyWRgWAt+4nJpLOer8CH/nC7/G4EaD0llZVssxksw7iDEJIJHaIbAGdiFEtbl1iXipCcQWeJAIy9IwuNTwiCoCYtkOsaMgCicM8Oqw7TRs1HRuVPtSInaxMiQNPnbr2/nS3rv5zu4vo+0mkmUjcCDRCZg86i/VjFUDt79VCOsZ0GIWUNRH+X1oMU4t6dTho2/8NpzsK+Xv1kyNf/R0zh4IsyH4oFCsmnkGZkRUSd1umRorzHCJ3PDTWhI7uWvmaogs3fjiwRVotHiveIwTSw/ykfgmao+8HiLD3Y1LdCOfK6cW+Senv4Di2owRfeROzgqI7Xocypif9F7GDzSvPHSZ2foBprIhdyzvZ1vXr5q3XRny4dpL/E/9AyxwpHx90Nnitv3/gN884vO2849wAxA8/mVCkXBweJCn1REIekATzxquuzIeLgz58tq/5UOH3820XCec/kne+kLAieUl7l/b4EzzEuv//ik+Kz/Ma/VzLPEOpBG4KiuNQ8dIMgvAZWIszvl//i/fzlS0l14NWqZOT4Rk2ufJQyscX1vn5F6BYwxzSjPj/x3++Xcvsnf7S8wcmuMD7qv0C7E7BMGTV9h6fg18m8ohmwxlwN7QJfFcNv0Q9uf36endTaMDosefv/Wvs/yLn+Kl3md5vc77+rceMTz25tOM1nJjVUddtl+4yAvLx/jM9xznv//EH5B1IpyZSQ2AU5tPsf6pX+HArT/GPv+WCeAhZnxuyh3aAYKYXzr3ErcBM6aJMUP2DttkFniYjbv83Kc+wTYJSQ1WRstcV9/giHe6vMZfd8/QqziYjoYVMUOPkKx7icb8LaWY41CMeMh7lr1Jk9Gzz5PoScs6dAf80s/+K5adOZL5u2hl5xlVvL6k3+E7X3oL4SzUU8ABP62ROjFuKlg79TxJ7pXTNB6BSJhOmpybSzjnbrPhLXP78Nqq+drzUQ2f+xa/gzU/AcZ75l49zxlnA4Bue4s9h8fpHjCGKdoXtgGX/lQeklhDkBhDO7E6J1l2NdtrUBG+3dqC6yf7lcXKOr9FEMaAFKgsnjiLSt8rHtCMcidc12Zy+ie5/Xbqu36A1Z/9aQ5u3MZ6A9JgA5VdR0sbHByWVO2q0kg+io1bXwekSOOT1Fv86r/9I8LpPZx+1z/gXbJIdco4dOHHmJ5fZzg/g4NNsVI5yBvXc1Cw3xqnl0adHu/zunS8/DzJ0wUcO6bjgEi/lvDct76J04HD/niDMyxxtn2CL/3RQ7zpb307z378V5mtv5l//LkvckXUmdEJDXy6URvPtBiGEX/4h3/IW97yFoLzG/zFJ/6C7/0f/x6zK4vUT50iaf1t/o+3NRgspxwXs8QXUhZK1otmFAyp2+DI12rh81skZ3rMvfd6+p8+hzNfp3XPnq/9xV2aweAU1eTsa6Ki1BLaqg46TktwatQSOBXRcq18YpWP7yDp4wkBHnz5+GFu7vc45mxQI0NrFxX+BbFQKJUgbSS/v3kWAMeeo4NuB2PZDuJrMB6SOKEUQtHa3kVR+U2CC4kKGMkAZ8e6eMB9N383MOytjkeqc2PbKMYW7iTwoHZJgQL43Od+my/e+Zvoz7ydvX6AkIqEjMxR9Bs58KB3Ag/WvDDaEFXYY731DdJ0wFeOrJK5DoU9te56/MvFeX7kuV/j0cAlODrHj35CceWmNyLFBj869ywP8XY89Qypk+LjIg0ElhG+cdv34Mye5PBzT7C0IeDS02z9+Qdx1E0oR/KvP/IA973pOMqWLlY77KjMnwMDC2aKdRTBoe/CCV7Byc7xZ//83/Bd//IfX+tRfdO1r2mHG2M+IIR4nRDix+3fHV/rO/9/y5tf88niDXpXNsrXfmnmEf5kvksjG0cDjsRNjIDDo1lWwhaH9Y48rW6fj578KIkaO1+morLup5NKtR1vSFNIhptnytcKh14LQTzVpNNy8CqnlBJ6IjJgpOXvGUMWjw9xmTkwp5lK63yp8yzbozw3VRjDsCgPpPQEFVmbHaIvQPPCJqvbmtbaCUSxEVYZF8mIlprD6LzyRmRpjKka4SLBRk1GcTcXNbJOTLfXoV/J6xttbqHa2zkQYSgrcfhZBiZH44uRLICSo+4YUNhoKHRW44+O38mjx/Kw+4occtDpMZhfKMsYVZtWPip5EZWt8fiVx0urIm7Aje4WW8m4f2qYkk23OCwH7CPlyfpZkkEPZSPUc06EXqjRXZoi0i7Dsz6qneKeHHBQbrMth5xxNnjJWeMV9yInnMskJqGW5dHrLTlgww+4ZzTFU/4ptpa+jU/f9Ra2Wld4un6WzFLIM6HpuBGLzHBLtp/74xs4opa5zipLb8k+bTnknNfh+88Z7k897r4wxaML97PdWsA5N+S0Xub1J2PetdkuS5wuoHjfULJan2K2NiJ1MvbpeY6ofI4XoMOqnmNZz5BIxbR3jii9zPZWn17L0HcihtNXl0Tb2RpnfFa3BDp2WOgozNRtbNZSoot+CSbsRnm86vnZ/8prAM0b2+Na6Bdt3rbewY7oOyOS6Wmen+4x7Ve5cvmW+4L7MS7ssbRvIUinmwxat/AIT/Ljr32YT6httDVcjo4OcVOQp9uYCuNBMC5Be3a6x+vP5E69NqbUavCMg+PfRhFil0YSWnXpItq8PrhEv56vp5othi11sX4ly4NZ9qlxVLYYwoKZNQxD0mQsMDbBeNgxdqbUmnFwdi3v6PKlfXdyQc3TExJtgbE0i3ih80UuRufRVoRWZ75NBxOse78/ZnUg0SJnEjiZBR4Yl83VEti/yEI8Zi3MmRqDpMep/jOMVKEFo3CNS9PUCxIT16kVFkYOx9Q+lnVBTZekBeMBaC/k+8TF1RWaMmUBB2XmcVvPs+ivcXB2g9epi3yrf4Z76zFD2SaSCTOqzvKoxUo0CWh23RGucDmSLrEUWQaFM2TLC7lNptwRvchtg5dQ7hpz/knYheY5R8T5tVMTrwUX1mjuvYcfWrqN39qXC16GTzxBKBWHhodYz25G2xKetnoz3c7VAEnWGVE7f44zai/PRTcy19/PQd3lzVfOsM/0uRw0SC8HfMH5Mp9wziJEPq/PLWflPlGsS6lTMsuaEEYwPFfDD225XeOByJ2p7oFV0ttD9vou/7DT5R9uD5hNHFa8EevuHdTqhr47qTvS+aPX2O6N2VZyejY3VsP+xFrfF9bIonE0sa4kyyMvf94S9rkDXvQGTKcaP07YttPoxhe7mCKiPuriXEy4uHQT+0Sfx266m+jsWlk28MzgeTji8+SlB7jlbMTLvU8CTOgyqSrjwaZMOEUEVShONJcwImcuTZkGjTTGKR2/hMu1hKa0kWphuK93KyuWiXYkXWAm9diT1Muy0JvDsywOPQ4PWmjndpZ7HnviFstZfoPnnC3O1NuEly8R65RZ3eS+9IZyfEdkXFA3s14bEa3sRVUivtGgz+EgD5o4UR6lH1mnV2rJ+umnSaVBI/CMxDES39RzxoWBaDlhJahzPDvIAXV1pq8SBsf1uH7mTqa8yfdvSg+U9kj7smUUVeyTwnRyR145VgBbtTq/MR3wrLlMzVvB7HEtRXy8wUWVkoi9rasZD4GtICRURvO6z4LJdaUytRN4sAyz3iVaqU1flbLsnMaQnHqKSz/1L/BTq0EV+tTUIgvtAUeCBq+sP8qBgcOtJwccDBeYVjWESJD1GaZ0nZvUMssyYORvIdyYY40BgWXEBHJA3+lwebFGzxnRdvIzom6BhytH7s77OT1O++x1BuyReTDHNU7OkLVlV7XwJ9JDoimfzRWHg2GeRtEWhpcf/kz+2+dPcaw/IBBbJM1VUtcwq1tEKkBqQz8NefHFFzlx4gRf/NPPc1n0eezBzwLQOr/J0taTHG0/zKvOcUKxjQrXJ9JteuvXrj61s7V/72WGX8opFMFTG0QvbH2Nb1y7GWFKVmEJN1QOx8Ay0JL+MJ9zxvChd4mcDWib0g3SdI6TnefYeOEBFpI6rpFEUw0uJyn3e+e427uINi4qfpaYHllVUDPI519x9g0HeXReGnHVWb2zpZW0L1Q8oaEglQ1MGMWz7c9OMHYAAtHksy9vTrxWVpkQGeIajIfsGsGe8/GDvNAwnJh7GMINpDSkIsOYJp9/8zRCX5vxYLQhrNjc4cYVUhWwPttCSVmmNXeExx9OT9E6O2LpXMhweI5vednDcw7xLf5Zet4UHX2IQ8N8HxMI0OMKFuemNY/dmgcZ/RD4nfexdP5BfHv9fiJ5mpsp0MGr0tXcKXxc7sgOsXcoCFotLu7fh5dCferqNKpv5vY1gQchxE8Cvwes2L/fE0L8xDe6Y38V2qxV7Q1tVL5K9znXOl3me66IfLPeLxa4J95f0lqL1h8GjNSIWlYFBsaTVhqF8MdGiraq71Enp6kbe9hBHolNpSERqqxtDjkdt1YBIgpGuDCGJBkfqFINcDxJM47I6m/jtZHdWI0gseUHnUyXi9m+OXE/RpsyItsKEqggsEXL0oSWynFRIyAc5cZKqkZ4ODjFGOmEGh7KRmCC4RaBU0E329uoMMRITQO/1LKoq6sj6EUvhyimTJ13JLdjhOHOWsR2fZaepdU2LY9KuR7J4OoojClzkq+uwQ3QMxURnl6MsIm2dVVHKEk6GpSlAWukLC+FhHcvohdqCEs5E6nGd8ZGT1sMCYmJRYrXaxOdfpiPLz5ETcmyokFPjVjbcxTicZSrIyfz+L49fR1vzm6G4Rbflt7BvdkN5XuecdgUPQ5aOm5QPOJMI4IMRwkaiWHGOg4zuoFxDKv+FAbDttPnoF7indmd3DSaNA6nTZ3vSu6eAAauXNoux8GIq537iTE3Bt+eLcNmk1ZgSh2Rav7f18V42MVxq7asUgbJsc9yt7KBAF0ZkDIe72oO81w6O/FZaVMM/KJEqTAEaZ+fYQ8/7SwhjChz1iG3rYrx0sIwOHjf+GIFPRAHR0wh3PywdLXDyFI5pf2dMEvoS4WnBV5W5Ijn/3WykFWvyczoarX2+9Oc5h/FGcrm5Xs4E+N3LcPGCHNV6a/8niSRrCGA2FmmJOVpeLH7CEMd5CJRAozJASVhNH/8+scQegw8uLySA5J2DmgrRFVtU+n4MK9T4+GNj/OV7lMlHzZDIxHUK8TA+9Nj9MNLTJsGb7T37yDR3tjBi21qTSLcEvDaM8rPgrt5nG8LzpbXO1wf7x/T2QJ072Gut/+qdLt7s+t5W3uBmWhy0NzWEkvhFi1dUUK/xvzth5Ml7JJ+vq83EUxHfXScouMRkSNoZA2UqZWlkItn1b7SZmdLBxEv7Bnrbu/p5MBcUZrUmBqi5rDppAydPJrsIHno7qSsxV5EzFrDCxRyrKXosAV1fJs+syhCFtRe7jje5Rcvtvnh3oA9wT5qQrEoQgatXfKy7DzsVUBpPZWDU6PB5TLtxjcug3OPQCWif3RQZ3TmUfZnY/CtpzNWvH24yvDKccVT9ysWu2CGFkzUGTrpg408ntl7kPjCRVLL3Hp6+9OsrZxlKHLjfBBfQDbdCcaDqIavHSd3GBDWaYC5uIMWBonEFQ7NTIEF6rIy0LD7XFjeDohOP0xw+otgtQ1UHHGm5xEG9+DW70UM/5y3/vGvoyolMOt4DMO8TOmqnuN2dWgHupgP9ALTZEKX2hCjcEhas+vKOp+q3MsEytfEIp+70ohchd/NqeCLgxZ688MYpbk/u6nUiNjZqumkZW8MBGaae7LcIehtdSc+4xg57n5FUwFgpBTveOiXuLAQsXXDITrG5MBD5Tej7hjIGvR2aJkAQ8uIkDrmO9u/gjA5sJ2m4QR1vXDqBlsnqZs5ez/jNFBEHjTS4bD87D0vfZm9my/T3XyeM2uf4nL4Mr21x1k59QzHP/0HtFJBJlIyOWTBzLBiZnBkPsaecXA8VaZvjcfQlNFxgFrmkKGp2XmcViosdLp9EBlLWYuVyLH9Lc63SadW6Hz+Ltkc/o7QBO18raTRiLq2YLgnGLmKFTNDz+vkkWw74oPBgJqtANYfDDDacGJ2nF6ytwB5Ks9ICUNv+78ePDDaYEYZenQN7v/Xcw3G6YwFsOlMzK/8HwWYKww8fZ3gmesqe4Bsce9rz7Dn8/+RnnwMmRnuj3JaTbuqTyZzMMoIM1EVQ2TWBrK/NRoGaJH3R/LVM08LjR0MkO1Iu7CWlNGas8MXJ36zaHO1HXtPCTwoy1Ao+l75jLmGhWYK0X2NE27jSEmCoq/28P1T/waBuUqMuxSX1IZBWElx660jLDtSi3EAxeBghEBmgloCzkjmAr3kwGDdgnS+9u19YAOmVxsyUgEWvHbtIM9oQ02GGKvPt1PDSzsNXByO6j186/oUbjKgM1fDS+D1P/y+3cflm7R9PXb4+4E3GGP+hTHmXwBvBP7+N7ZbfzVajlK5xFaVd+2x11iwVKLXmicYbeWvt5z8IF2VyyzXlsl20BijKCLO4gngoTppjRHUdtD+M2kYDfINN4mCclFmQpMKTSoUmUt50CYiK42E4vsACIdR2gOTOzmtzik81UAqq4xv2RDCQGYdWkclJTUXdjF+lMEKxjIdpCByY6roi2ccEpXQyCidgMSq1Ke2YoZbiF3pXMVfWZQ36vdIKuGr7tYVsiAAqaibWgnqNLKwzLEq8yhFXnt9JHRen9hGNG/OephsFlflwEPLUoG16zI4M2aVlLdXAA+mUNWe3N1HFUxG9WOKNLNG1kArSRYNyqebIbnF5PRYMTN+/j6aQARMJ0XNcjM+RNIR4LO2sEEzEaU4V1I7QuL7rA7Hh8gV2S3HvWbckjlzMTyJMaZkiADckh2gLyNcC3rNWiNC9hIEMFXQ4r0BvnGZV3WUNMz6DYaMiERSjukgqCRmkhsXLg6LFXbM1voWqlIXfJRcQ1MDMElGLcl/v99sMhWYcRTViHH6xDWvULmW/e+1PhtX6IDaHqbXAh5gsrJDFXiYySaZQMXH6qag1zKRFOogJnKrhYFYjv/d2VPUgjfl9zwjmRqulUiig0OaFZHG/NOZFnRESCsRCEuRFcX61Zo9N8whdig3CTPOS46zDGPHwd0h37kbVNQ0NasfM77muGqEJJb5wR75eyqGbP6a0IrMfs+lZTUeituuMB7kaIIFphmzQMp+ZGOwVnkuIgqRzt5SBRuRp294jJ+ZiyRSQ/s7RZReYqxzrDGM3HwMU+Hi2L3iWDiLp6Fdb09MLL9wVAFH59/r6ZmJdQewrGcRbqOMTi9kDZraJ23UkUZTr433/2vBZsFokq2gKuJhkeuTnL+M7oWEUtBQDcClCOcUhmt362rnqte5wjN7j5f/XgkmAY4WmtYb9rJRbPrWuQz9rMJEyp9/PbxAMWuK5ycsu8+1LMGDtZRn9fVoI1hs5HvbE+IWABxhmK9du4ReXBE07dcMDe2RZE6JjTdsikW1KkyReOxVxF+3GbDi5ACH52tGNsigNp4bj0tyrizD2p6dI7uyTnCxS6pjUpPwzKf+rCwi6kUhoumiw4qgZNUId/J1JRFIC9NPj3LtGq0VjpHUcUugrVCYr0YBs0okNcnGc0Ha/QCTYcz42R2ayen2IpnUiopGw5wNhFOyFfPPjcd9RuQVrbxCaDUZkVjl2iiYjEBrYUjMiFqYTzdpJJ5xGMj8ettOzNlVyKxYs7NTRa7SN5gE3hwkmxacAYh6QfkO5Ou56nzNmWZ5bqRpRsOmeDZMRJal+XtVIcjueGyi/tVro2/LgAttWDAqBx6EIR5FY20aM2ZRnF47iRAO07qeO9yVvmkpMUmQs1EBVEAj3ll+0GOpc4npsIuTKQI5YiRiLtRnS4YW5HoQsYSevDp1amlYqbqjayihaZQ7+XgN9IcBBoVjBMKYHBA2hT0y+YymBjmLw7FVydra0MJn0N6iQ5PIpsbMpLkQ9KKaYn26N6Hb0+v1UEV55n4Xkyie3DPed45lVhQbWf6+xrB1ZcxQ/HqbSRQ6Vpjk/z3woKkyHvJWDaykRQlaq6eCNmTOuHx2/oVpvDTgyhyoaUWchiyI/DkOK4HDzLJ0DSZPS7RN2KoNBbsxGga5GOnXwXgoHrVAgEom5n0BcBZn5W6OpNohTF18WxWMhyL9u9oH7bBbKzQslMhw0hGOMGRCoYpKVTa4qirpmyXwoAxhMN6b0mA4LrEpKBkJBbjhZLk4f6s3Bh4AfLt/NrNC78TGVHdoNcRTCxOGT8GImBEa6QzR9rlVgZJUabTj4xrJSIXgTeW2juvjJ9BanGTBf7O3a2o8VJpgsiKc4v9byZZvmnbxlRc4c1cTv7vB4OGLrD/xGsfUX2MlOcorc3/BH3ziYVaOLOJZQ3VGtHCFwzCNqJRbJ0sSbnk1ZD5yGNognao4HNo4OH4TKoZFKg1xmCNuly+fKw2QTIzVXUNXMWdadEVAiirL88HYcBFakGlNDZcZ02Shs8GmbhHU8w56iUVrhch5Ug642Qi9Q7xp+MhFWvfvQ0iBShXP7r+L6QXFG049b3UWZGn81fCI1RDPZCUkq60AYaYSXDwMms0rz+LrjLpslu+rMEZVxPwGYY+FSKFnHRwa+JbGKU1EYaIX+6kWJgdFTIKDpEWdpvZpqiGYfTjhIf6Ws00kLJ3Wc+h+8mWW7roNIQTx6R5I0NplZuUO1EDxk+d+kNFOxkclkBVsDfCtMzmVteg5EIfRuMIG8CbxGItf3CQTLRadBQ6kCciEy0LTCGIGOxTPdRIi5TRIw5RyuCBGPOaeYKa+n1/49FO0xYigsvKnTYOBiKhrl1CFNJ0mw3RAL92i4YxFT+cTFzz4kvcKM6bJ8e15/tmDL/HUzAzXpV22vUX8uTO03R6zqY/Umsw1pDLhIT83yOfVFNpoBv01WBlH/PtWzX9Zz5RASXDhTFkCSQuIk5Rm/erIO0A6GPLkO/8GF+uzXAoz3pAdIpq2hxKyPOR2CiPu1sZAWf7Zz37ig0xvpdz+lh+gdt1R1Kji0FrAIb2W0ChMlKwtHIN3P3cXM61F0sqJLYXD328nnAlu5+jgNnp1M0EWcpAkVfYEglAWZcMcOtMFnTNf/8Xrc8EZOgt5lEQYJ68lLinBhP1NwUkZshorjGiR7yOFQKrm0NvewKmXPzZxT9K6PwDDJMJIma9945BV8sarTkAtE8SuYVXPsia2bUS7AEicnM0hBLckPe5Ktlhz9iDsERX7NmVCj8jsdxwxVTquM0qPgQcj0SK1Za4ESimMoBSNLFq9AjzIUR+MQrirYMbGeKwCvMp+4uCQ6IgoG+J4Be1dWOAhxghDLOu8TW9xOnVYdC6DdhDRMt/7pRvp7DlAHc3IavIoUxXltNF/1cPXEk84JdBUx8M05kqNED8zeLJB1w9YPPQmG+NLi8e/a6uK7gKYUcwLzgVCEdNtTZOcvUSyPWBhRo6jOkUlEGu4dnodPvBrH+R/fuM7OPFffpt3/sy/49HBOo82b+adss+Wcbku6WKExFgAd5aYXzr3p/yNiz/KyBEYkYNCIy/FmIzc/bN9Mm2ETTGQVpCvYA1Iy/ZaloonzWHeNf1B3tx5jkSsYHDwbTWOo063BMZUhTH1AE/iNw5SnJOJVKwkPomzWq4zXwlGgKqUPSiMVJVVdE6SDkvuKYL99/KVFZeX3bvg+kd406ln+dh7PkB7o4PX+M9M6/eAhJrUfFG/zBs+Aw/MnuOFW6Y5fuZF9rVTvvDeH6Zx8lP8SvgEb33Op3f6Cxx9/esmyi0aR0LhMIjc4H3rI5+hffQ7UFrhSYkr3VL0NtsFeHCNLC23KBuQr3GFsOk0ykRIOihAo7hr6gqXxSp7LzzF9my+f4xkRqT6KOZLxf5iv1zNprjs27x1kbMop60jEScjMtfLy+6pGMeMn40SMNfOkCFo3+TMKy3AyUsqXm6lpK4gtcAD1wB5DYZT8go9MZ7nEskWhhU7w0ZWVLlgGzjIivkv8IzDAlN0CZhJe7hxUeo5pJZeJuX6ifUV9MfAQxxczX7stS1b1GhczyDSXEhwVFQBMjlLDAFZL+bCc7ltsWrmeU1cpurSZULiphGG3IY5vVexOpwEOzxmSGdd6r0MUUkDXVk7iZy6F8938HA5opZ51j276ziKQQgzVhOhqHZWpMVURmsYBOgmONrPU0jQFaB4Mpo+N5KkUy7dBfhVU/UHAAAgAElEQVTBzmW2eoLrHM3mg6/Qn74DJWx6rmWTzmU+/VaIqHDvt147hUlScB024z5ZlHJxeg93i2MwtUiDERuAh6JwbZQwZB9/ksvLR3ngoS+wQZe7llY5trnB0rvfyvLr70PHiuCJK9QOG17rP8f5G+/mB4YpqJz1sFt76E8+zhcef5Z/+Yv/bNf3i/svYmASw7lf/8+4epxIkdrzaFiwZo0BIVgUAQVUIuQUbhZycp/gkKMwox7Tszl7J5ECm2xI5k/j0UFjSNOIr/zZR9l7/Z3WmVYlQJDFKdrNgw5SjJ3/XftvHXGJQKcRVbevLMNpNEb4kyCpbUk0GUAtAn3aySbEILWgsh/sHgvXKfzEc9/Dowcf4JP1Be4f5LaDKgRs7TQJ4oCZhgVhTIuLe+/AqC8SDCpVVNIYoTSzq3fRcRRNe9b5scf9L2ncVFBPYGlTTAAPn/RncBKYjRu233kJVLkDCH3kLW+G4UP8Vvt+vn/2UbIisOhkHOmucnHenknA+m/8Jsvf+z2EuGjp4OEQpF1m5w4w622z7Qw5+Zbv4ZHf/VP+0d97765j883Yvh7Gw28AjwshflYI8XPAY8CHv7Hd+qvRRnHI5/c+jzPdoPdnp/G2u9wYHKeRjDjndDh+fgr9WJ/UAVcL4mxImA0YxJNpAEoLfuRTmr3d8QRPHF1ShCQeuJMYUiIUI8tGOHPyeSCnFCmh8zQLcpGyed1kytS5ezSZ4hHbA0Aa8JlhMfFpDgKWeopa7814oy/hx13m23mNdoFA2kPCNWFJL4LcIOh+/DSjV3IgJItStm87xtl7b8V+Od/GKoyHyCRsztUoHCBljY4ceMgjLQ987IcQlpbpWDVmnWh0hfEQaIMejchEQivNWMlaHNHLdJ1qqaoxOq4zTS1LcZBcic4znUpG1nGcS1ymvNMsO/kmtsdxOP3qM2irVN775Fl6nzyLcepcXPSJ98/xneH9uHLSWa5UQuX02gn2WkdtT7zMkdoZBmlSHgiRTOleOMxSIliNA+ruBluNLlu1kJb2Sdvn2dlMahhMWSckfAmAF9wL3N9OMTIgcHPNEUcZXCOZDlKa2keNLnJFfJxh1qPrJpwbvsKlaA2vH3A0mmE7OM+0qnFebvGMe5bL7jNsNS9zW3IeM7XJau00l2tbZEJRG/YRKiMVihPOZdpyyLSqcaX9DBeClxFRl4NqkTuzI0zpOjdHi4zSAbo7YtaqneuzL5bGqRbQG14dUSpa1tkiqy/hyBFeo8aluRnO7V2w06tWGsfyqxy0RSsPYzuFf/nSb/AHg1+n85GPADC7UYmoDfMPVas6iB1hhK4Iy9xsYRyMMTSmryOVkobxadno9mJ9leOvy7i7fT+d+pilMTMb8n2vPnSVCrUwIKMlZlWd+dRn6FiGjdE4rodvXG5J9nJo+Sslmi+NZGfwatm1NNdRiFPRdsg/o1m6fi87dJBs5DXvTCfplGEL10iqJcw0Oa23bjzuMjdwWC3T0L49tMfHz1KnGD/Bce8sycyQvRcvlFo2V1oZQkwhF2ZIbMRAYpkTBu7pehReuYNEOHmaBEKQFZGXHZGJhhqvS7VxDgCPJUyFfqx1VkbdpBH04k1CkfDE9sNlFNXVgAUSNAbjznK4eYZb45gb0hy4y9wao6UbqbkLJehQ1y4143K079PQPkunzzP0tujKz1OPXJbjOgejWa4bTNNWa5w985u85j9LXXuYjTUWtnPGwJVmysVWxcirOJt+pYrKsDMZ+Rsmkse8EzznnqM+K0nXtwgGff7xn4yBTG3PmCJ6dK4X8eDp2/j5f/87HP6/H+LkQ5/gI84UAsNh7xT3e2fQUnFbtp853eSu7CiOMExdiei52yg6JQU58jN08cyMxI+7uKMny2oWRXRQ2A1TWoGwfTrCeJJXuwf5A/129svpEnQQRuCJjAY1GoyfrwFcoVifmaQEe6ME6d9AAUa4yiDc/aDHgCtmCuHupxmPGWBz7hSpqlN//Y/wSfe7uSMb8OKdt3Fm3/VErTb1g/t4Ob6dRZP3+Ui6zemVFdTzD7A5tUBD3cd3Px6i97+Xy82QZ771/fzat7yJM5dctkLNxx/91ETKgJGiwngQ1GLDvU+s2/mv0VohhINn12kBPFRTs5q2gsqt2QEipXAa9xL7ku7cBnIU8/TBNbz6BYSOGEy/yIyEc9cpDp56jhnVRBhBJFMCEoxgQscJ4Ab3elZVDiYnZDlt30Z1k5EmczQ17SCc5Yl5qYVhtpux2LHMJAT1UYJrJPOhIZ3K2Jdohga6SZsg2J3RooXhc96LpZBkPq8ET+xzyv03LZyhstqAnABHpYHWIGQhnWJv0uf51ZtYDja4pGaYmzVXCfKFlVSLeJdymv2OBSaM4ivihpwZIAxRvw1C4FgQQQtB5w9P0OstUNduXk1HTDIHYs+HNMTIfI/7ys0Qeh2c2p04/m248gArQUL/xtvz8Rj2qRmXaVUn6j7N2uAFrstWmAsh0iFzuomjNDOZdbyMy0LWQAwkXmcLv5fhpfk9FVoQnhk74kEUoshKxoMWppyzRozHqal9jvsz3KTzstqL013Oze7l6PpL+M8bZmTO/LsjO4w0DktpE7KMhjss6fkAQaYICwBaGF78yssY49BfXuJSK2GjOa7WVJz3Gs3W819i+MCrBOmARgp/nH4MPvIbbPzQjwAwfHiN3p+e5vzf/wl+e1/Czx+vkVktFh3vDnJ94FHN75i7CHcroUqe+mkwJfAggPCXf2aizHVBoIoK0VSjuXlQY0mELEcOy5GDqz2k0Tx6s2CfSGHzDDXcfL90K9dyG3bcDZdee5n/h733jLPlKs89/2tV1c6h8+k+fXJUOMoRSZbI0RhjbKJhrrGN7bn2vQbbg8PFd2yucZg7No4DtjEGR8AJbGOCASGEhIQQOpLQkU7sE7r7dO6dd6W15sNaVbV3HwmYO/ZvbO6sL0favXftqtqr1nrf532e5737g3/An7734yjHtR22bBwVqXTPFPrrSy0SFpoA/H4XhEgl1GnXK6XoT+0dKuck8U/QGF4fkqKPciIrObLnBOQS5gLDn0nGtrXLWKhGXHv+JSiVR1pvskArzrWPpXKH9c1MVuMXr+Opw28AVaextpgdLI4RzkEujDp0ZJCyLUvdHD/29wovNOvA9Mpw+/JtK3sAmGybuDK290iL4fh+ZaREmRs4M3Yr963sIrRz0ROaRj07nhaw/qu/ysq7f5OeH6Kk6epzsT+HcAuMu9sI3TwnRqH7NBLHf8/jGzIetNa/LoS4G7jDvvR9Wuuv/que1bfImNi1Gx6B0DMPRd9bQug8oYgp9Pcy6UtGgwJfcHzcSPMP598DuEyOPnf4QMKh6IMYCKR8adpSBSJCaifVdCYjIKJlKZRnTxtTsYrKse4MI7huqHhtdDvz3ROElsovtMAXWbBe9gUbp+8BPG7+3Ke5/xfezXQwx5H7f46l6UPAbtCZOaQiGOpRmxQ2Y2vEF3QyYKWdK5qAakBq4eLgOxGP7J3l2QkjNAYciOMenh6lKxwei1vMSkO9DBN1Q6jTRRGgKwSbkU8sInKRZldc5Wr285e5dRLyUnLnYqFR3b49X8XnL/4F9dmbaOc1k0TMMAwI5XUM7WWUH+MAqh8hRIiyiKsc0JcPDinNxiSE4LGFxymRVD8NXbGtImLXJGyBiCEscP1Xv8Lo2BR7t/8HPrl8H5udL5iDOXVTARpAZi+MPsk/X9/h82cv8GWVZ+NEh87Ba1hxmimbAKC6sM777rwbgA/MvoXrH/gdCDvAn3CoAtfs3cXW8drPHDJ9jQ9cnV5XU5qNs0efHU1BY/4BGsDkrGkfeE6uIII+nHqI48k9qJf5ntAY2t3Ifs53HmNl+u2ox9+B25+lsP0cG6pEbAMehaaxeh62b7/knAD85YspG6BiQbMEYENItP3bN0PVSoCHZAq3paQjJapnqmVeXExdHpLNuWl10ocaVbpOxIXKQEAiTFDXI0AgCQekVEWd45XBzbyv8Nm0ymqqxUn6rvnQB34eBfzTVW+65Fzf7+5Bh4K3yyfS6rgCyCne5N/Fkm5w8mXHkJ9/EvBM26sUBDHH2MAkC3HQRXrJlmD8VYRWpjo4QDM3lyR4avNBmCpguksZSMfBdIpBKZASJWDKL1K6uMqR6V0ciXdxr3jc3mMXiKkdf4yOqMP4LqMdtclSTeYQwgEUnULI+1/yNW7aLLBn+aA9C892tdAcPv7roD+HhR2QbpwGQD1b5dyq+8jbSsfO+Q02m3OUKj/Ae25/Bz/62CtJgBeJlx7HQbJ+7zvYMZtjeuMQJ1odODKKq8ARiW5TE8sC0EaiDfsjWRfzw9r01wR34OHwuc4SlU6dX37u2+kU/5rrTip+5iN3A/DXtwn2HmlwXGt+4Yg1neMEdxUl+x4PyT+1wdS2w1wYtdRxLYcuczQsUe5VOT2ySBwOr0NKZUBzNa+IOz2aYRshs6Q7SiQfsQlWc/boCwUj61n70sPMOdeyf5skbESEdt9YXX+KmrPKgfI1fMU7TWSr0JGI6bgBOeUQeKBE0g5NcMf9P8dX9ou0mpYRjywFNlwlr8tU4j69580C8OMXfou1k3vS851RIyw4G5R13oDVCYtWbJGjJfdA7CQnpoiFMR10tEe++hq0fiJ7k3bIV1+D0vO83r+av8x/kZYriP0RHCGZ7CqqhYBYCOZmje9HTrYI/J1Echjo6PnrlERAjCQSkv7YJNDAs4Gz0A6R45tOAnk77yzgqIV57oStjAZeAqhqQ12WpNKGZAzReYnYEY9zW3SYkPewuG8/939NMb6nyQer/0Bdab79jtez7Z7XA3BvfISX3vQ4j+rDvE38Er/f/EkuVn1adh67W+pWDb9P3LkGOfklOrbjVlKMiJVpt+dqSexOE3aWoZYE8ArPh0JPEAvTC6A5/yglXJq6RWHPTl74z3sJ6w6f71bZDHOsbk4zMTIs2QiIL/l9JZLj4y0enztuOtUkcr0Bj4eY2LChtJmHK0vz/N6ul/Pj7c/y4PU/wMcJGe0rvv3ZU6x/uTf0Hb12Zryt/OEKL0CnafdbHfPmAz4/+bj53/baBlgQSVowQ8eKFdFkSo+koKYe2LFCNzOwdbTkV8bm+fAVr8DTJl68ig9z51/8BQCf/slbiM6ukessmuTX2cGTfUl08u8B+Gz+YYpxnUrcYWLXTTTdgJ39Co3Nq7jqzLsZfeQkAI8+68UwVqdrwdh4AMjqhQERDkIJdDJ/bUqRhHMz8SjP6R1C5hyCzRPsKVc4V+xwprabcLOFCwRFj5yO2N0t4tafxWWh4FxwimJuk8FmP4Fr5n5R5+iJgJUzF5gKfNoVC0TZW+UOlBe0gCfHdnGg16NX7KKFpt2xrcQTQNoC2ardZWV0jI4n6W2aWO+ZPB4i2/Vp7sRJrrj6qkvfoLTZ47SJpxPXiaGWlPbfVAagNLd+YRp/bIX+3AMA1PJ7+dArd/LQoQXGTwnicw/xwK7nU57IEznmGaupIh03aWmq6NrWyCvdiPykph7n0VbypwOFKmbmktFW/eHQSIAHQb/XQiNwkUQ6TuURni7zSbmTN+jMSHL32UXmdk8Pzd3kOADKCVMzyMR/ztOSnmAIbB36rC2KCsejFHrp27pRm/tXPpnGmstz59kzY7vIkbD2inRXL2QHU4JB8qNUwuzxwsFVULWhWzGAdj4DCtxkL7SFRGU7ag3WM54VHuJ+7zh+3rx3OaimwKa08pDLollaokdHdEFowosXCXsdlDSg2eMbX4BjD9K74wXpnM7lvrVEBt8M4wGt9cO2vebp/x90+OZHtT6J1IKWY+hzjegMWMR4Qt2Kp6GoBB3hI61xlnC3EestujvhkA9BuVmg2HcUucSpHtPPPjFONJ+BtnXT31gxm2MxvhRncmxLn17cTlkKxUEtgIJx61EhrReF47QICiZZ6eXseYsMeNBOPAQ8pO61Fj0eBB4e33kQTcJ4sBRqBTrvMVlspkF7ghwr3bUabsFTokgkFW6s0odfKD2kRfOlw1nr6OPGCj+23TFcla0YidQCAzwY8x27SNqk5Vo6TMhhjXROx4jWEsrS8XQ/Bn+TsGgq9jVl28NtNb0REFiX3fMbFyiIhJ6q6cs8bW02rfEoW/TG19aoeXuJVESr92T6ej0vEQNaOldLntrZtt+vwKsgo5Ci8jjlLKVMFoB1zwRFRaU4cvAWsM72MLwwvNwaZDla0ysLRPg0TYrtiDtJVVUS2WrfstPE6Q2bWLacYW1qpDpMhxDJDsKZoqAcelKmrRuV0LSWz/NMw19bIbBJT8n+G6b+EBml8JtZvofMEUOftpT0hEBbVoOrs98l8WxoWT8VtLq0PzOZgZFA0h8wNu0KH4FBuhPwMB7Qbqbzn2F9qPlu0HGWpCXnrdFpf+tYavIDCZ5AZoiKTQoawszTMMohEiJoUrmyYIjYCp4ZAwRzP6TCG2iLqIVGq4T2b15v+Fm1PVKhXROy79B2LRto9kMxV7HO7qASk8PYTRlNQjgD7JTY0vbN5i1clTrQpxraLb+Ll8gJrJ6/7K+hHGPWm95jpYdaPp7eDpXFELVxBscCu67GtDkjAR7McaU2wENeu+l6WBvwV/FwiFRIkzo5f5FOMeQF3YhzWcc6TmwXXN0PmBqgTV/b97lQjek4CwhZJmpnQd/WiqxApL+32BpDD+wX406Xtc0mrbjD4q6D6euBDbBjpcjjkbO/+UrB+BucOrlIJByuUAOeAVrQ2TiFrzVRkBnCTYWmLV1HBkggcC/VPneK2ZxJXtMWVC3Ki9TCAsFAMv+kd3AoGSr2zW9SUA65AVd2LQaYTOmLEHfHcaMuWiRaaKu/HfQosiygvj2fvPYQjkAqQ0ffbQ16HaFZ2GZ+vEi0mRs5dEkivDQ+hSs0JREwV5shtHKdQmjWhLLapG+ThDXX7D057WTdYHSmYQ+8ok1uFAbb10O+Jsl1JyMiTn1JJutzOLufBUDJdoDZ7ZQZue5l6WNytzBmtVeKEwB4kXluOznT6cjdUp0UKpFnCToWpE/kXNoWRxwlkM7M0H4QC0UuqJH3DSNTIxGiiNYmbpnwl+y12/UGs69vHU9nqupowcTmeub/kPrzJGCisPT0jolDtKbtmrjpYG+TKxI5CYrDN72QTBxmRtDJYrUoupSW3+/Y60yN+synO+urIMw66litfVgyngtTqm7biEM8sBGHbsFepzDnrSV7ynPIOEDGAeX9md9BXKiQiwHVQOkG5UAj3WxhKfo9iJbIx4W0Cu/FJo7zouy3ccNhwCESKr3OXhQZM1CVZV8i0f5jfg+JoORWKDhFLshVioFhwlSk4nw0ivaX6Xoh9dCjF7W4op/Dkzk2/XXKhSZaDacoWsCYfe421tc4YF1vyypjaTnaGZr3T43v4vO5xXR+FHuZIWV/dSX7Qd0RVkcMGLaadO+JFHoL6N5qZmv42blLGacAKJ22eh58JgdtEpKj9ro2HlAKEIiBGC0XBbSKPlWl6Dll8kEDFWhK5NNjTeoayvHMPUfRs74jG8qh6fQp+jpdU3OxS0yMVOasvj7sYJ9nhGFP27jYQaa+BVrHrLnlIUloEBkDeLU1Xkk+I2PDkEGh/TgFJM13PT3jISniIRxG/DzCxgVh2kLbXMnS6cHfw+YxcQ6/kbGghJYgBnIcrXCQ6R7gDtyUfjGTWfqe9XGy3x2jDGAxcO3SegQFObO3rg/EikizBru2OKLRSFejul263a7pzGOPFTouvQGmdEk+cyvhf4/jmwIeBsYv/qucxbfoWF08zS1PCbr9Rc71HibYPEvS6aAS76ZDnz4hHdFH2B1GOtP0neEEVwqXXAzaGQYOPJUl/bHQw8ADEHrG8Mrvm9mcjy59qFXfJuJapwlscaASJrRiet0YAQrrJaCczJ23X8hcjBNEM3LiIamFEhA354kbPtFqD7/RSIObhe27rRZuABVWCpH3uHm2lG1oKqHwBakj7uzibmKhcVWUJZbKGdLGRtrlYs4uoFFIoPpEKkQ72XqRSi2EJtpsWyDEvrbZQWjYLVuMMJwsF3Sf89LhyS/ex8d/+72caZxjoXESP2+DWLuQbe3XC6TtQdd6DVzhp3T7XDTKpmdQ4EIQ42rHuHyPXEGpchkbYZdYraXnPlNoIuIYtKagXIrK48I4VGOFC3QtjXEsLg6xHQCW62YDvcIPyI3thtkbLjlPgNc2zXzc6yt0RSHQ5LaaAFnqXq9pOqm4VAgHALStwEM71yFSId3InJPw26xtjtIuVRHCI6ccuk6UZiYxitb6FlOynk/noa8B0FlbSvXNcgvNeJD2mcyMk5/7Wy48fE96rN/7mZ9mc22VKMrmkhaCoLvC1MYI21YPM++ba3DVoJGrmZftdqLl1U8LPORTcplDx882kb4NMhwkCMEFdhI/Qx/PrUnF4Bjc+BUa4Vp3e2nQ8jANZmQKlogUeJA4WhDrEXQKgiWAhlkTpDe8VUgtUlDC05qCTYylMoG88i1TJQm+BjwwQp0BQmCkIUl1pO1lF1IoTaAsAyMX2ARAFYjtOQrtplUlJ9cFneiQgVzm5rG+ahNzNXxfEzBIqQhEGV8aYEswCDyo1JTSQXBiu6DYUOigTegmyQukBt4CtE3WXR3jheDhMqHMc3gomh06h81wA4SDL+YAuEaMMCVJWzTObYfDQcA2e39drbmsrzhXhvN7lgk9j047M2o1s3eYOp46hW95ZpOq6pSqURABTzXW2PBilrZn5xhbs9E4jslrjzwRd6iL5HI5Hth2OferCQqETHbOpgtqPc6jtU9/s8+av8C0demnN5oBcFoQeKTslmTK+3mNTvyFkBScCo7MITSU3RUKoUdL9Nm+tsGR0+epzA+32U3WHxlBfkAfrrmUeVbTZbQu44XtjNJuA8dYy5Tpou3cTczS8trFlYpuqcp5ucqMk/nL61IytxU3RwP0XjuO7zbVuLyI+bPrXkwPy6IKelyztE4pX6IjTCLSFyGOtpKmAcaDxEgvOrWdltGg0z1xq954cBgXdksr3j3OyCGz3ndC85ld5Rnyo9tY802w/FjxFoyw0dzHnDV47rsGqNgqtdAqM7LrJQCmlTMpjIeLowWuGEMO7AcRikI4QSEoElunACGyRHJs0xpYJ+ehFX3x9AnK1mFkKetECYBp748Y6HikBQRBG4VAas2F0hRawAG9weX2O1uOQ8UWkgYBjijIksQw7vOxj72Du7/4bgIrcw0tWC10zFhhjCTVa683jIO+lrbrkub4kqnKTuoa3dBIOAalFoGbVVodLVmL9nBV+W7yQYO8v0npqqzTvcyN4ahszVWuTy4uMgy9a3Jx1rHGsTGoFw4AD/5wwhMJRXfdgOz9lCraJSkha5kkiFhpULZvPFpfwbWdz3bINo9OHeTcwqdoyj65IKYXt1NgbCNcZ1R2UtnV4BjTBnhoNLqMeIapMtYb6PjGMDikt01z3jIC0FBXszxx4BY2K2MsfvLTbJ6d5wnRQOmYg708N5y+wFqjz6N6jTO6QbjQQQ+AmA8fvUiJmAPCZ3FpmSdW25zYyGKdlaOniIMsjpCINOmWA7GBtkl2v2/ZCCpGenUY8G/zoh5L5R51pehYc3OveZ6y9cERGsZV1RiOSgdNTL/VIK7uplJ2iYVGJCxeIKcsS0rp1Oj0mYd9VhD0e+20i4NEZN45OqLrDDP5AtXDxUnB2077IhcufCn9exITxCj89S6xULgJQPkMKWkCgiAk1TCfFiQSU3lt9+zN+Qxg0DioeB2p8kStwdjXhQH2OErhIIgdl8U9h2lVKumfWrVsHerauF5JmFkTdj02z3Yy+rYo51tWWGiLuDntooV5fjzrkKUFbIyNEK636HfaxCIzRG+UK4gBwKty8TjfSuP/KfDwrcX3+Fce5x+5n7f+bcCR+x5h9JPvQc0toyxJe2Zd8U+5r3K39zX6IkRHBUAgvV1sFoZdwR2btKgtwIOjrU+BMDTGrcAD1hhQhokr+KXn2A97+HGfIDI9m9FQjgfQQDSV/iZS1NAlCzwUoFXZDcDaRN0GaFmgr9x4yHk6RtP97C+w+bF7uPjfH6K/vmQSLaA8MZ0606d0Pa0QxRIHDt6QIpkJEqqJkcoEWbvXDe0+pzvpRuMoZ6gyrJTHZsEsAiIKaIebdKJNPHewGpa9v7O0bKUfIEQREXeoqQJFpw1Onx3xePpeScwXD+/ko8ce4cG1RXaxjUl1Db1cUoW11TNxKa7c7XZRYUxTeyAUEzaZ3b+xj6ZMkj7NWJhnWo0wc83/QrG4jYvdo4Di4qQLCC6rnsZRISIMqUU5SpGLloKaUigN+VGTRIyGeXt/jIGWowXVfJuROOamfgDlSdh7FyBg9kYADoXmnh+ZvZltYczhfg0x0gEE+cGWW9plt5pkJC7gxlUERcKcS9k7mf0OcQh4tAtmEvpeQCfaZKF7hkgFBHKJi70azZKhOHsRQ62+lND014fbYs3/9G9x7k2vJVpvsrmy/LT3OflsMpKf+tgv/iyffOcPA/Ded/4Xeqcf54P/2zvohYPAg6bTWuA7nvpFxoPb+GrFSE8cRrPjJZtrywaKWg8FF8lw0/60gvWNtRThn/BtddxW53+aXycaCDySI82Py0sZD0B9NGnXln2nEtBzTTI6X7iAdCS+TFqNOSnNMqGadkVMQXs47gyRN9yJRdhKXWVifCjRMJV0850zS12mLDjlaAN8bNrfKtGT+nnFct8k9nEC6iWXY2VHUgvaXnbtF8YLzFXM9W3rOZSUotwro2XCwrDtKrXGK6+kwYfUAplz03u6umbZFlvMJXNxAjyEuPlrODZlmETOIFCodQpYOFryxK7sN5gbadnXddoCFWAkMEHonnANNzJslh1qgrx2ubpgaLkyytOPu6wEPdAKr/QEQmtuLG3nYL/OI3sE5yZgb8k4FZQdw0J4eW+Cq8IioRTcv79Lo+3DGV8AACAASURBVByjnUrGNhN6SHZnKjJJQrgVPDLXv00ZYOBU0Obh7btplEg7HCmRdHmIyeOSd5scKJ3nJfkTvPu21/GPO2/l9vwZYtVhMipRVB4lywBTUYuV/nm2q1Fc7RCuPsBIaOa7G0PoQlNvILUgsMF3WBgACZXgjqlXMlrcjovDWH4F/AoIeON9X+Q1xx6l2mpQsUF4IXbots7jagfhC2qbBoQoauMpsrXPe822s/WiLj17a9z+hv13EzfR36sWTtSlEZtnKo+HJOToSJdP5o5ScVapiyqezuPJbM26KTLzfTzIgtfHL7s8/e+NsR307RoXhSs868l7cOvDvgzGCFnaZMpUkIUWxNLj5MHvJkalUsbEH+HrDQdJEPeR++5k5uBhAHZNmoT1xftfDsBCuIPNoEBxai8ruUxuV0mSYbs/bWU86NiDaAWpNEFiHGlZf0KZVsCOgmKgcPzsPLXQFOMJvKhkgAchh4CHqGXBoJK5Vxsjfbrim/FFt8CCWiBM9tSs56b9u7mvfr9p1yrNU7um0WWX4liBw3nzLF+jGnhe6RLGQzzQaWlVKn5u4+/4sZPv4yOffwcAKkyYXxG3TN+SfrjT6KaMh6Td88kNU32vBR49e68HZaNBPgEezOfmgyspii6F3gKl7iLVnVklX5ancVSWDN9z8DFGm3MIdxbp7QN7fwtBQC40cV/SSvnCWPY5L8iAh7wyydP6ggFIooR1oqI0TkuYcmrgPAFC5fP4+EWiqE9Z59kuO/zddc/m4fo2ECC6ES17zf24Q1u1qMaFpE431HFtSpnntun3UB7UVIF8dzhWMMmt+e595Xl0PkdFFxjTFUpujauOvJlHn/9TbPzTfXzhyePcl3+I5SMv4OVz57jr7KNsdH0eLD7C3YXHWP7dR2jfn4GIR48v8WPuCs/JfY2ltQYvft/9PPf995tzOrdE788vcPbvHkz3vmHGw+DsMa/7FqRHK5xqBSEFluOIE7c5OmGAh2bVyNtEdJyaMmteVRcQlpWivByamKfOLvJ7Ey/FK5vfOOpsoi3g5Yk8ETFChdZnQT9jm/KkZaYAer1WWpCTDLT11rEJqpKQVwtC1Tcm0/b63viRF/GSz/xgmj1qq0/QAporXWKyhFs8k9QiYdJIQSnIIy37240SAMT822tkuVNfdAiaH0SoHNofKHwJBwZbFQvTKWi+EnLPrddyz113pn/qlTNQxXez6tU7/8ICP0pncx9odw07LHlWPdfkKAXtpfuaqw3joen4fOI5L+EJxyNcWLXAg3nPxdISpea59J7Gy/+TeTwIIRyd9hfjh/4lv1wI8WLgNzFFoz/UWv/Kv+Tx/78eMzc9l6X8L3HdKTMxi61K6p0wq9uckV02bcVDRDXy9R9EyApnxj/B9jDrRZ7QjLQz/FA62lZKEURC48USITNE3pHm4UiSHhkKctpNKekAfafJD10Z8Z1feJBboxfzev8Ovho9Ccm+rxTNt/8oN8xMsfcK06vdH53lg28IaN/5Tr7tzH3pwioszK3FcKu81Ohn/RSMH6C3eAGVmAa62pj56oEKdRzRGauzc/81PKKPZccGfCkoKxNE7m3NMjeuWfCqlAKbgOGYAFsmZpoQ5gpIFCoKeLz5MMca91M8OAHaVJ8Gl92VhXlz/krwxh/7YT78u++jFGgWiybJuCye5c7wco66Z3nKmWcsWkHJDIwIidKKdRLoDupsC9qjL0LOLW/i9GP6BbMw1VURHCjERQLHwRayCOYepOpN82n1GCJ3hLbYw4WZe7l9X587qyfhNR/gLVOzrFycR28GnL7/p+3xNBtvuI8X7z1M9GM3MNmvccDZy4nmPPPrnwAhGL18mZ+5sEilst0gyAefD287ZkCI/iZ/HIX4i48hd9/MH82fZmRslvd+5Lv42LcJvnteggvXRLs5Eu3i0cY8vbjObGuZheu+wu25Va6gyxPNFYLSEr92rabZG2Gs3uM/XfGj7Pn05/jMU3+GosYZ5/289oYa+tnv4iOf/xHm/Yd4w7mXp/PG6HAV7S3AQ/+xh0FFROsNVnptoMzTjehpNvuZdVN9UErhL1nWRaDY7HZT0yMtoNVcRGmPngipJSj5IE3PHq+7aRkP6BTpTxL1UGTSI4Fk/sIcCs0+fwLxxEN8tHwU58C1Vscth4ASraH7v/4Q0V//DZcQITT8xH2/xHSzxrmbXp6+HKPBfZgvXXOCmv8kM5P/wPrIh1iJrDmarR/IMKOsF2KHy098grnbLgfyGTXZLv3j22d4zZPjfDJ3lBXZtD4K+4EV3FgQJ6wiZWjJayvLjG3fmwZfX9vbR538EK7wyO80eswMu9IIYVreRQN6gMF1akfe4bsefiuTawucPJTotF20iEBo/gSHNyeMBy3IVQqIjq2e2T7ug5UJgELk0M2BU3w+Dts4O/r3vH9xiSeHUguVVh6kFixNa976gw4eiu8+02INcFDkECShb8V22HGEQlkDuY31HHfNeNzT9NnWuIFCe43PlmJEkKe3+x38uHqCV553mLr5FfzMK97LVw59kEq1wm9e82L6YYHpcpm/OXWU3Yeux/2rN3PZmU8RCEFh28d501W7+eHPLBPseQkXKq2hlqsyjhhbe4LT4+U0kEz/hgRUapjYVzFYxsmr/Fv5UP6+lH0QxwF5XUINaIK/Z+VjXNymqbiXMRnW2LsecqL1GO0IS5Xvca5zjPq5VUZEhO9voOfOM13eS9A5h75csOKtcnD52/E3DTgU5rJ5IRAU3SohDVwcdr/uF3jgDzrAeaoouoU8RS34Dv9GHlj6e9b6F/BKr2L8ooZ2wEOXf4orGs/Bz13JhuwMAZOVeJH82R34NXCiLmsveyH3nF7iA+I/8dCxvyMXvwSPCgqNT5sPXfPfiJ0enXsfp7D7ZnQuYs3pMqGqjMSj3Brv4vPeU5x3VijpPDExF0dLOFowttThRZPP5s/y9zLezwLgl4pjbCAYVWU2rFxjs2TlQv0ecaFIHAdI6aX+FELbOF9opDDSB5MQmH1WXpIaD48g6hG/vAy3vptarsyP/P6fUqhWed7qm5mcMlT9Qz//KfzGJr+zbSei+0/010/jnb2b8p8/DMzi2jXvXPNxHl57FA4fMXNELfCs0QN8WimUpUT21ChCrwGSSIRIDbX2eTpT30vpzArr2zaISg2KVJFU0MIAk64cJ2bOnHOzCASIXIH12mfZt5mnJBfpP8N6PzTHtaBT+QrFhTvpFcm0JwOMB4XGb68TCyOTe+cn/jv0i+Tf+lNMvvTZfPzMIrN7tuM6BYQeljLpAcDX0w7PW4l5bFTzSOMkb8CY+ZkoO+J/v+1dfPhjvw1A2A/QomyBBwiFxpdNytrhMwsfojKxG5AMYoVBzlK9hZGQFF79A2weDXhx8GsA5Lb/cPre0X03svaZX+H6c7O0CwGP73G5/Mk/Yba8DQH4pSp9T7DuPkK1fyOv9+/gbOerfOzIz7Jyo8aLHW7o+7xpLpPIlSMPPxexuWSkL7E0Lh8iVkgnD8QZi00YQCeKAz67sUyAx2vri3T1dibVThqywVxlDxcKLYp6HdH1OenPsxqcpxs2cHJ1vP4Yvq1oj6sqzwoPseovMOmWTMFaQNP1GfcLuL1NklZwibR1n5piUtX5knecsmwxGU+R1y4bYpkisFvUUesNHAsmq+oIi/I8XRFwaumsucbE22IzAzZOLyxxWDYJRYzfA0EEriTWms65VaSQRCs9C4pb4MHu6YOwYBITJC074zigO11jtFMiX/9hEBLvwj8AUI8V7dt/lLnWf6U30ubbgll2q0k2OxfwrTZAux4EMb12F8pQkW0KOkfY7+GIOiBwnTw+PvnuArG3H4UmCiNy+afrFiYB45XU7TZSZrKDTJmaWsf87I7fRJ9/gf2EQGmBi0hBsxMy6eJgYyCZyVHXzl4ktoCkec8zAA84QIQWgnI/T8GrAm0mWaT8vaA/Y5otxgPtT00cp5CxSxT7AzffYTD1Va5vvLrs34MBLya/OMyoS0avmLxnGHgIcRA66xzo2DanBXI0re/NcneOsFBM/YcujtWoNNYNO2Vg6e6JIuBT0h7jlf/xtq7/Fsc3w3g4IYT4P4QQV2itH/yX+mJhIKzfBV4CXAG8Tghxxb/U8f8tjG0T21mayv5/YWo608q5ww79MvQQskIsItq5YalFEjCqxN3bLlhSYbVJJrmVSuPhpEivlLbKnVQqw8yVO+nj6xRWeHz3DKemDxKpgBJ5Yj0ceE8fuYs7X/jd7Nxhqm716g6K+Q2+evkBOsVa6h4P5nxMu69saqUJeMugxt21bDMLRZBq4VL6ltKE5T718dkUqU314DKyPaMV0nbyaLpZBwChJdJeb047xsDGUhTjWKB0TKh8CnE3M/cfeArOLp+1lSOYvO25BPnekExgStUokaegPSKhKAzqiNFDVfpkAxwEHpL7/9T8Ggvn5gjyRlOYVF8d7RIlLey0Qxz3afQ6rAcXackZpJxgYXSR7yr0mDp8GVPX3s7k9j1ccf3tXPnc53DooGl7NoJk/NCVSM8lX/aIVMyErkJUIFYxcdzniFxkTCly3sDiWpsx7evKE1TrM0xc9kIojrDrwPXUxrYx4VZZrzZwbTJW1UWK5OjrIlpup9o+z20jDa6mi5urcPVhxY3uPDUnYn6yzU1j+7n19h9geuflhMpHCY8DpYsUR6cpzV7GpIpYGm0jo6zSktMOMZqwnf0OWmvi9TPm92t12LRU9MKgP4kd4RZxe7TZouzDWAs2jp9HBHa+K83GRjMNLJWAzdV5pGqbSnJSNZNu1qXCBrB+w4AXCp3KiFyclNmQSJMQksULp02SEPpUuh36ccc8x4nJ1WBgi+DK57+Q3Usrl1QzBTDaDdm5uDokI4iFJlYuo9uOIQTsmt3NyOSkNVAyQKVEQDTgNxBDJT6BtG1Nk3OQVmpRHK9QIJcylcwak9A9HZSTrE0m6Ly4tIyOlNn8tebUtosoHRupU3Kd0vjCCEwlyNlyfYNjcqJAJdxHWSm0tJ4qCa1Xa+bUFIjAGHlpqFRGDCVdQMOCQlsrOwkgq6lQ8DdYGmlxbd9P6f/pfY6ybhlXyTLzE4KxSkhddsw6isYbWDMTzFYLIx5zNExeuZup26bpBAFKlxHBY4SigBO1uNlbxpUwFcdQnaFSn+Cul72NG+58C/X6LgoTU7jFMgeP3EYuV0COzHIoDDkSBBzQXdx8k+WpdVwrCQhsn3QwTJicbz16tlDjU8DYelwESuOicLWkRJ48btoKDBWn0j5zLIlTlqzs9MnHEYfj7ay660RhG61DPDI5UiNYwffNbxDHfTrNY6mvRiQ1sa7j2OAtzqcEDUDgyhyRiE2HgxteSLm1SjXO4xfyNByf/fE2SuTpBGvEKmK0tYYSM3hRC7cWs7e4L00uB5kEobtJrTlnLo0eslbn5Ow2VM6jtn8Ft9/G1Q6edglEh9VahxHPJ1QuMooIRciG7DCtRrk5mqVAnhlbiS3rPJP2v+txgSYuJfK42qGoM7Cv7xoW07ifBf3nXVPZclrr6X0XtiKeVhx10uEi8b8xc17bV7/e0Fpz8M7bIGeS9lJ9BCmdFHQAKNRHqe/aSyXvUh6dprD/NpzxfVTF+tC8USogUJlfTZhXTFJEDlCEc6Fpa6u0qZIKJak15xCyiJBVuvbHdmQZRxqKcyQEeoBpIbWp9MZCEzsuTqzYvppRqr/eEMC4GknZUOn9SaVkBsTxm5tGs60g3y0w01yjdOVlyHqdK669jPpIDSETXfwAMDyw7jraYXyjwFX9kEf7y8N/1yElr5S29PV7sWVWJowHTVO2KMfgx2tonbEbkhFUMqmF1ILLbno2lef8KGO5LmO5LqV6to/vuf4O+hXN9MY8G/UmM+tl3NhnrHmO+ZHzTF/8GrvmT9GoaiJt4r4+IQvjHUJP0C0Ivj1oU3Mz88yyZURs2nuvbFxlvD3U0Pnq5D5pTUuM4osK4zTwdYcpVccVAbmOIqc1NVU00jxRYL2/QD/uINwI5U/RFaaCncdjlAqzzgxB1DOxa04TiAi3HxOozOcmErEB5rTkUDyT4nCTqsakrqNFREN0Oagdwggim0R3nZBN0QYBF9tbZJ3dTFKz1GqxKqyUJvbAVwg/5ninT7BmYhS/FaRAoTGgTgoPg/PF3iwbQ8Y6pCBDtOMgZAEhcohoDjA+QjO7DrAsd+GEDQLlMKFrdPpLqUQmYTyoMJGcthmPy5b5Z2UfTs7cm7htwUpFvzWcb2QjpSTS6ycSZAsuJH5SKsRd6qUJs0CAcJFaEiHotoefU6GNZFHY5+DsqdPmvJLn5BkYD8nzqgTkwgKea+RgdbHGwfKx9PkW1nwiCuMU6HDwDACYXI1whjtRCDkUW6mBAm+4xRA6uc4EeBDKrKnJ6BEPme4q10QDg2z0OO6nXTgAAlfiN1dMTjOAaiaS7VIogKehq/87Ht8M8HANcBz4QyHEl4QQbxFC1L7Rh76JcTNwUmt9WmsdAH8JvOJf4Lj/ZoYQMLejTMtKFJand6R/Wxow1yvFLo4ySUCjsIp2tppLJkm3+beqzaSXOtMomk1dkcOlmvRBT7TGZO3IyvYBqOoCRe1R90zgsDw6jooT5/+BAFUrKpPZeQPUyuW0TVacs67MmPNwkOCKIeQuSbzj9VNorWhbWrqnHXwRYCx1SKudKtZEhT5SyvShVglo7CpDmRagrLFlT4Zpai90JrXwlAEepJSGUaEHA+fsGgcrzPPNZbuxA0IQlHoEbQOUlHUeN7ZIpv3C2kBOq9Cp+zMD1/N0wMPpi+ucOXkKlTO/lReahVTiIlViTqcAiS9WAA8hx6m0L+DIEnLh6NN6Mmyrm4CtPqCBleUxoqT3ebCOkFUQBa6L7YbTvFSL/Exj0hqWJsFlzi70/UQLrs9y2f4XmTdvvw52GoOyDTt3r56+CYCxnQcAFyELjMsQ+g2obKOTmgkO6EytYWHYy4L26OJFdN/SUdsdelZfnHhlDA5fDi/avZOGAl3rwMX7H4HUuE+zuZ5R9TSwunQeR5hzidLeWA45XBvsWyZOs28/kynsXT0APKRTQNC8aCjgQmkq/SQpvJQhBKAQuNPGFOwSOabWTK8lLw58Rmq8ASZkoexRnZyyib0AW7XQeuAeR9CYcilIs/aktHTLIqhM1YbO0/S8yAyf0s3aBhCbS8vEQWR1kJqNykAf7ZRymTGZkBlN3NGXbkuT+8walAv7JAa9SScXDXiOQBPh2jp+ob7NVCeBfgJY6eF5IJFWa+pSbc0hcp6pgwwBPypNzD0cjlT3AHCVH+CKXmoT5Qx8JpcEZRKUMMnl9MEp6kduJOeb+fXl3UcBKPU22as3iWzSRe3pu7YMn/gwuLYtijm1M047CCih8RKASGmcwMxNecl9tc+uPadICDxl9OOdqEl+gB4qiFLfnrx2mVZ1/PI4fWF+l0lV41QpqWz5VINnBpHM8RLwKQGs7FqZE2BNvBACT+SMIZeWCCkp9c9SjnKs5HrEQjFpJWq92EfIKhNrRqrVdxr4UlJQMykANbgOCzeiZqmsfqFO1wa2o3Gb0UqACAzLIoeDLxMTXgGORFtz2FgoA0QLs3ZP2XMp6zyT2la6/BjPrdIMNymrTO8L0BOausrjxtm8TPYPt7VJ4heTcBi03ZeSZFkm5rmOl9Kmv5HU4utKur/eqG1nVJrkTtt1UMfDJsPaiblYiHDibFMcbS7gaEGYJqSCatusvyo3QsfGNq7Mp9LQWAikkxkhlkd3AxlzTaoIb6B98dcbUsN4NJKtZ2Ir8GCMnNurq1ayolElUx0uH9z9tMfTAvr9DmHgD0g3zHpfaHkcbmqWwi5rvbWsG5BOJBc2Fgq0NV80x2zKPoEIKfu2c4VtIzzo95MxHjJKtrvj+uzcBkyJx3fvxy+bNy1OFJjsVtO/ffKGDJRsF6BnZXgtZ7gDy1V+QHkAeChZn52NZZOUa/ucCpVVsLO1Xaca+GTURYtIbKbP7E7dwFVtJlSFAIVLBpxIN8IPZpkvmb0yAT1LbpWeNbrt2Ng17vRYk5mpYGRr3RJBDpdRbebVhKoxFprYeUk2cNEc33U1sTVzPeuspOudFyftQ120ilE9C86udhglGmjzXURgPI6+tNoiatgOX34iG06e30sZD+menwDiKiInY8SApDoU5lmZdzwcVyDcaUTcJ7TyijV/ETfpEOvlQUfESlLRfWLZoxa5KXAJZAb1cccW8DStxtO3KR/0Puv1DSCTSIOyEdFdGvjdEAiMmXKE4ImTH8/eKsye60iXJF65uGHZiGkA/0zrl40LBVTdCXwrt6xJc+5x2oXPSl/7fsZM0u6QvZMSEoY8YoZlrEoaaVssJVEuKd6av5ftHE0ZD1qnklOAntZDErTQPrODhv1axUOkNN9zUSsrIEiNrAHyFXNTSqEi6vxPZi6ptW5prf9Aa30b8HbgvwKLQogPCCEO/L/47llg0Kb+gn3tW2b8zn2f55enf5FX/cRvc/fVu2jXMkp+ICKqcQ5HS6qhy5PTxiRvvn6c7Vu7WkjJx179vZwfMxOxMmAs42AWlVgohDIO6gnwIITk2GWXpwY/rt+lqDxjEqY9CsolaXQRVlyijqloBENmiIp8aZiGVSvmoGcfLkem4IdGW0d5kQZAUgv6MuSjr3kjy55H59M/R8MaFlVVwXZyMHqzRE9ODLqctAbMkHSJBE+n63RsW8wEsp0iukI7KdvCVcbQKic0Hi7hgE6wH7rpZhAPrALtbpAa1gHElZB+r4urHaZUnbXALJRhaDbk7o6sUvTx3MN8PPdVe21FNkWHPyx8ZiiRLFng5+HTy7zt5CRu31xD2DPVew2crxuan0DhWIzPEyMIoNac487yOfPOHTexddTreygqxehA1alY25m6/150LiJkFSFr1CftuY/tu+Q4zzRqeQM8aLsxh34DpRV9C4ZFhSb5K7/TvHnHjek5TltDsiMHXmbPaQJEASGKTMgIKtvAcRmJ7P0gewYS46HBlge9o4/ypekr+P7nv53OZpPIah5LW31Otg4B7eMn2Pi+iPYrIsJHTyGTAFrHbDxxLH2rEprNtWWkNXsLhUbFEVpKq9Mz2yzvvYvIakyVVml6M8h4MMGZYQYFDTOHpFLUOmbjdBA0ciFv/dw/0h8ASjTgjI4iCoVLkgYBtItJpJf9MZIarE9LuyPw8g5j27dbdpQ5B6klSmSbWcGP2Jh0qNhKTpqk2WS9vmPU+FcMyKqSThSt6j6CfM0k+jaBbK2t0my00nMbDerpdyWO2EYRZf/HyXSeHs4lxnXbD5m5KvIRKfo/wHiYqRdRIjKO0UpQrE+ZgE8Icgsz5m2XaFkNAKPwyPXPslMZgEIMoghotNVpuzhcs/1WAK4ubSfndE31ZsCN2px/0sZVpA70MwcnGBndQ8QGnr/KgwcuIuOAmHUm45hmyRrD1XfyDYftKGTeKxhXBe6diYc8LJJ+61JrXNsxAeHw/b/xal76nufZqzf3r9s3CeXG7DKuNq7brahJfkAHq0WIY4Oiki4wo0bRuRrXLtZxtCAXaiY3Dd3WVXkm102lSwoDqAg5AkiEM5F+t6c1sU12ij3z/ignkQXL/hIOH81/mbPOasq0qURn8fwMXJzU5l5oWUPIKuPrZh/dLK1Tih3yyszLeAvjQTgx5bZJVjQ9Ji3VeCM/w5SKWS+skcMlp136NsEp6BxhuY0Os+dmwjrst8NNqlEOoQVlnU916KLXZMexe1gPWozbtbys8uTs71P0Fdom6oM6dhn0kX4fVJwmuwlALwBHOtw+auaK8jwE+hmN4gaBvK8PS3ydUZtl3LG/UZJ0qWHg4UuFL/DmAz+BMwCkjK2fQSIIU+YMVC3greIOXUt5FjKPssy7UIKQWaWxPrUHgF7SzSYKyAffHPAgtGDUrw7IbBKWkx0WsNlcSnxgNKXiKKJQRz4NzdpI1TQ3fehWXvgn1w39beeaw1jzJ1Fn/4DfeP+VfPRX3kmxmwCugb38xPvCmtNZhlbywxRth4Mwl7Als9907sB+PnP4xiFNPPnMCG/r8EsW9J5Z4a0H/zl9/eSe7JjNkmDNMmzXimtDn98RRRTdDJwuWzDxaMPnfe/6D4baD6DitOKcdjsg8/fp22NUdZd6boNKaIxbvy1/Bi1D6mGOyDWtbM1w0G7IptrOY7PHzb4SZXMtiDR57aZMqKDbpZW7kO61sVDGgNP+1pPK+JBVYg83CvG0wxe8Y7w//zm6U5P0rC/LksgScGGlTwrFhwoP8pEnPsVf/cI7+JXf/FWem8vmd0EL/qM3x+sKX6H/+3/GwuI8L73J59PyKZI7kZjDmgNn99fBVMvTqalj8q4DAx1bOnlz3bVYI6TpCBNp0L11lFZsBk1E2KOocwQTM8RjE7xi9HV8d/Ex85v5Gikylk5WIGinYGWnkRUFPvzq5/HwVdaHZqBTU89KLQzDLxsxAf32eDpLzX7uIDVEAr42fx/XrF3Dd8x9hzFTNehDKk9o9ZPuN2roO7eOhA0aC01rbIRH3DmUhkrOxIlaJEVTl/3/5S/40N33sr2yh9fsfTu98QkWc0nxxkhAxIBHjNDDgK0ScP+znsVfvfp7WLUgUMkWA5PCVq9UTj+rBwDttlZD621ozbELA2aWOg6HmC+dQpHYml8OLuGT0yWklpR7PiL41gIevimPB+BlwPcBe4D/E/gz4NuAjwOH/hXPDyHEW4C3AOzatesbvPvf1rhz7x5+g8eIW4rfetXVPPdsjcluNoFqYYHKxllCXzF39WOs1lqcmHiE/7gSsDBwnMgR9GTi5C4o2IBQaLMBJai4ijV3hJcTRj1WSs0M1bcPVXX9KPumX8/h/A42T/wzcdhi/kaH7z/9fgoXYlqjR3mgJbkwsQbYNjA6IlccniYvuv16/uaPP8gN+vcorXuI4qx5jOzCIjyQseAFwdWcBMXdjgAAIABJREFUl2s86c7TFwEnDl3B5AOfot9oQSlPKXZYd6ArAso6z0q5z87GPs6XN6ntSNpYmRFbtFV5MTpI5Co2UQmbaDFir1WmlT1XObREn5zIAQ6hltxyusVXnnOIQrFKbNfbwYDNF6SuuwCVuiCWZaaXOlSE5qu9Yxx3xmk1FpkuXc5FmVXIl2S2cdV0kXl5qSFMDhdXS65bf4qlvMNMJaSgPZr9BaCOwLTpNL9vzBVjZznR2Mc27xTbHnsPoT7PVBjA9W+Cgy+85Piitp3fXlpht8iCppHx/Zz5apdNcYG2t0F99mvsDgR85+9CZxWmLr/kOM807th5Fb9679/ygLqfHas38zn5T5zwTvCFnV/lyPk8Z271DdPhtX8OO2+BfA205r/tuIGjx/+WbduMuV6pMsKRhTaV3v2M/9T74OCzAfgpMcXzlk7xSH6wPZ/9DzUIPBzlibE9LFQmubi8ad33I/KxA8M569DQCFpnTxAcUMgxQfjomVT7r4H2lx+BSRP0KmE2ZWmrkKGM6XZW0ULikvVfZ/ERdHgzeMYbIe1xjUQlgIA2UgKNMJ1kPNMq7d6bL2ekUaCvBYETw5YOKEqAEIKd/9fvIT5679aL4bdeVaPYbPGc1gDjQcQsyymWjs7x5aLgVUIwtmOHAe6EuQcSQexGPC84Qkv0Ye0rTO+RdPZeCxd6Vm8oSDo8jMyOceZwRHwqAsesQ54F4SKvjBbGkTxpadlrd1i2WmChNM95/DBz1+QY9UcZDZPqmPGcyNWneOraWfZeNDfOxcGPW+Bmc3jmyhvYt/ddXPeKN/Llv/xTc/mpnljzG6+5lqPvinlucIROf4Xq2HYEG6bSmVSGdci28x3yUzs5l28SS8PQuvKJP6LlHTNShxe8E/5xgGarNb2CTs/rjht/hHf11njuTf+Zj/3aG9LgdjBw8YTCt79dLEyngcpoAS+f5wuH/xYRFjgsNY9OvJeVwxd5ZfF2Kq/7I5j/ggHrvtG4/T/D+H7YcwcsHuUHN7t88djPm0qKHUmFRqG5uFun5/jgmAHW2hub6b4QhC1glGJcRApznd24kYIXAMqNU5ZTWee5PJ7lqZkFnsp3eN2Jy2j6G8wuPkYUzTC7/CT19hr93FXsuXiCs9v2sbzjpQSyjxBFVHiWameZNz5ewGWeI1/7Qza9x3n3KyT5UTikC9AOEdJhVbbsuZs9aDq3yqnuXnZKB6nLfLHxMGV3N17p+QituPDcU1yx8UH8HV/kULtI+7CLeJIh7xAwgEyjuMRVj72X+fGTvG3fT3F5tcgJ73cIP/l2NspN7vD3oLXmH3Pmuatuvx5//gk4O8YttbsoaI/T6w8ikaz3N7ls9Hpe5F0D/Q4LjQfZU86hF1bYuXyCL/dcKqrFjrwkas9RdArIYg1//QKjxSM8u7iXWTXGCWeRtdZZlrWmsHgGlSsgpsZtrxKN0BndP/Wi8fJgixWaSwN3DycFEv+HGQ9j++hf9mJYgyAxd3UO41Wu5rv8bSgUf577NLcsHELGEYlr/NLEU0i9lyDReWvoXv1SpqPPcm5sO1W7zksvT2jBH18IcmP3UK6M0lINth88yHUv+Hne9pn7edGyS3HuAdxv0hZdahg7ewt+wQBSGYUnYTyYgknLMt2E1qiX3UWh9O1Pe7wkWQNYdZ2hDheBV6IvTHFpY/RKemfOMjmxE2ihLcir03mYyGWG2aEEfXb0CqxZily0Rfb1pQPXcUT0hvx+Tt/1lyBga/ngwh74jVdIDo9pzqzuxHn5Cn4s2R9X+cArPPYvC566LKbX+zz5+Tx/fM3nmIlifn9xmQ1HsrD7J1BHng//+CkAciHsiic456ziOU/Qd28mRwetQtspyUljUcN4MHHUR67+VUZ701yhr2c0v85XVj/BwehKSqU8OZFjrB9z0oNqPE1YnEDIcfA+ie+6dOuSqfkWZ2pf5q6+afctgzhlDY3ERaRuUipFHDixwdpkmfOjxsesF3X4UuMCR6oz7HOn6PhrHGt+jR3eBKvdBfyxUTzZoZG48ww8OsomsrFQtEWXgqyzMH8etX0Px/QFnFigJIzEPfyclZGJiFPLx1m++QrOOYrt2koTBnxBBhNOqQXaj+kJU3jzooA7Xv69PPSRn+amh34ZgHsPw0vbHV69Vuby22Zo917AVz58N+7RP+XUrls5sNqhc8jnrvAKPpF7BFH4v9l777hNr7Le97vW3Z7+vL1NL8nMJFNIh4SSBIQEULqABUFRRI4gNo54cItluz24j/pRt25ARbcgRbbSey+SEFJJnSSTmWTaO29/n3qXtc4fa93led93koGIHjhe+cxnJs/z3H3da13X7/pdv6vBGde8UwfirZR7yziorC2r1QtneUtCvWee0dKZvEzlwO0m8tBJXqqg0PQ7RsDdgcE2mTpmxzVXMHefDfy1MHC+Np7MQm+B3Sv77ZiwpUVSZ0BDlLKjkvy92NjMBUQipl028c8t7THOX96Gd9sJlE1GCOGQxA2+dfQor28avzap5i0tqwREjpkTAarhFMnKbcihHQNHWxwZzk7H0ZISPqv0qekSp1mmWzH71FoNlFqIoIdLzi6KHcN38QtlitqpUHRSY9+j11mBoDwwF0zt2MbhuVUeUF9gfObsAOP3o52TxgOmBOJtWuuLtNb/j9b6tNb6n4BPPo5jHweK6Z3N9rMB01q/XWt9qdb60vHx8cdxuH9/OzC5hW31h/GW2nSquynHg9nYSgtaSw8QRiGrpTb3TnyL6aTPlB5Etxa8HN13ELlCvtI2m5Av6kNJQCXx8HTeJD1tLymSeYZWV5jWw2y++8tsu/cb0IDXJKeoNj/H3EVDDL3o7TgUsgkiwSsNRnKe67Br/xTHWv/KqYnVXOPBTiz4HjGKbWp8IAP9wIzNTnUtnbTQYk9oUF6fXvd8VNBh65Qh0yQZkm7qn7SXaydEnjnekMpRR1MmYrp9yFgTkeBZoUkda+a3nGL/dZ9neHgTihxFTU0jMqQeYNumcRBVlhe/zUMLN7Kr8WUWtv4NdzaOclG4noqZWon1WgPm+UkCPGZ0C792hBERUdUB81079IWkEqWMFsUzJ27nxVs+w8GxexlbuJPV8goXxhKe88fgbpDdb2ziil6fqW4OgtS27CMUPc4wiQgW+AVxO895/o/D9CHY/fRzo3dbk9VRnt3u4HttVs58m3h0kUtffCF3bjnN+648xpah0LAX9j4HqmPmHA+9lOHR3Vz9pF/L9lOtDrN19gFqnTM4B18AZTPRj4xt5xmdLsuNnOKZBkiiQFfr3nobcxWjj7Gw0sW1xejeYHyx3gT0jh9DVUANaeZ7Rwt1uJpuL69ZVkDY7SMtFTMkYXn5jMnU65TpY1+yKM/4pFkf13YPSXeWBv5paUciJNXSdpbU0bMut+m+qk960ga/0Rwfirljh6QocKQchS883j/iZT2n66O2FVxaEqUFWih2qEkOJtvYVbsV35cMP/HlZh8iBUryTNNFP31tph4tgbBqWSlCYzI7MmM8xN0+8/OnsvsaLLUYDUeRQubZFztf/Onzf5bu9lKmS+BqyUJ5PcJ//ZvezNTeQ3iWoZJmQTRwybZhtFRMqiZBImkMTWWK9TIN0FRMp3UUz7YQTqRhfkyeuZX5RsiEU4WrXo/rFt9dRb9uMtUuLo7r88PX/D5ubYJw6rys40DRoXTTUguRZ/18O4eenjnDbTuO8cTGbr66937aQ4tUXvHX+COTcODFj0I1LZhXMr+tT8H5z+KSy1/ANas+upCBzrIuWnF8ZK99Tvly/8UP/VN2rDhxcLTE1S6OKOMi6YrVgVrVxA0RtszMSzSuEjxTtrg2+Drny610ewuMuwvsf/CrDLfmkGi2zt7OSqXDvoe/TTmKcbztSHcSt3w5lfA08pFxqn2fiTO3ELkRX79AEiiX+tiQeagyP34KDk9OlnDDkF5rD532ZkL3chaZRLqTeLrC8972Cfa9aB/XyVncyhR7X/w0W5oweAuFTjg8Ixifv53I6xJIyfMnh7lw317a42Va1SXqiU9d+aiyOfbQyCbk0DKr4TIHkq2cp6aZ7x3n7uVvIOdP0WnPsVmN4sQxR1q3M3/6Ji6/6+tINHHscKI3xvLxG2kvH2V14V6Wj3+TkeVldKzZraYo43Mw2UZtNRWY7JDojm17l5YmkQEP6bqlyuWM6r7R+BkoXVp7I87VhCC45nW4SKJM0b6O421lRNcY0w22yCXuWb4epzAOD205bHwUkfsovUN9rhh7FleP6uwdFp5HYrODWsBVz/kp5h9eJDwOm/fOsOuSyyl7mv/bvQA8j1Jhnn7U09bgxVP5bSmUWpjbZ0oCOos2s68UF7/oCra/+uVn3V9Rd6EIC0RWN6PkzDE/sp04iql6Zo2SNjDK9CG0k5WPps/O1y4qkUzVbl0nUJ0dz3dRQg0EKDuvuZ6dV1+/7lxdGfCvF0gqqsn9Yz/E+dUeBxodppddPrFP8JEnKkqe5Avur/FXF/8zoS840OuzPY65qB/SeNqPMmIFxQH6ssdFsQnQ7pajRI7xP7SKMsZDWg6jsmvVtINlHhm6FyavwC1XOd19iFOz32RqVXMw2Uac9Ol7EVoq3NJlOP5OtJ+QeAmemuHtBz7FDZvup63MvO30FvHsmG5ELpKIqSBkz82fxGvnQbRWEaejMn6i2axGWeg9wqIeY64yibPkMpZUWZXtgfLYcpQHqcX3JnYhCtJSIAXdZcraw3VbGagZyoTV2IyjuaoVPtWpoPN6k0Cy3KcjOtQTH0HCngOX4AUV6q1HqLceYaEueGa7g9R1pCO54pkHGd0zRbDyEFPffi/ztftY8npm3glDcFxmxQol7XF5vNu0KBUJiQWyQjuupjwyn2F5bm7dua0+fDSbKjSafreVt8Ye8ERCrnvuswtKbKbvhVQGeGgVtLpSYo8p07SsqXQNV8rO0xt4OVpnHaFjoYg8SUl7HFdNpvs+T10+lel4pXyMVr9FkvoiBZSyojx6UmWlFh0fhp5wSV7ymV6Vn/vWDjJjLATaw9GSXjn30YuzQOD2KLaQTUm6aQcxAO12KAIsQkBPpeWg+b627zvAlokO73niHNEgLvJ9b+cCPBzUWv+M1vrra7/QWr/+cRz7m8B5QogdQggfeBnw4cexv//PmeM4bKsdh5WEfvkSGrb1UkrXKc8bZFIQ0LC11Qf6feSalG1RjVsiMyGWSMRIXVjUEUQqIlYRvnJQKTXRDvKRxT6EbVNikNawBXWiqYs5nyVi2wvZKdZu6hjHWT9MhkqGYVCt1bKAIUXwnXJAbMEQp3Atyi+hvRLaZs7W0oeUtDWGTpvJyqS9dnMNsVBmwivLDHgIHUWAy5hfKiTDTadhB4mIIwNYCBPMeHGCmFQkicPo1LYstzxQ+6vlQA3lgW37ccipvbv9JSaThKVyh6i/cW0cbETrtteYxATao1et0xpvUxYhgXKItWdAGyGoxOZ4aZA3WWrTsBF1rwrN6ScYAciNrDG97qPmzguJLXVQlC0LY9M5ZFY3MgsQeI45n5mRcS44/7k41nk66DQGqIJnM79iUOHuWkkGC4K06jnwkCLKKfCg45jeXXexUDdjZKnVQ9oI3XkM4EED0cIpdBmSIej2F7IqBY0m6ec7SIQmCRNEWj8oYH7udKYqXnQopPVGlSQTT3QpAA+WzqeFyNoaasC1/cXXtspMrejkriu10NB1bIlHUePBA6u7mrU9LZfLmRCttuyhYhZ4xD8B0mV4NJfvcZAoOXhDi4zRLCEujOaKcUgsuyCOWV5MqbsaEeWlM1mds2U8tH2PQPfy8iwkoTNI4y6aax2K1GnJnB5HoXSM0opqs26ej4C0L7oJzMOMGWDIMWYfsw2YaBi9gkGgVSOsRo+3Zl5uTIxlNFpRcJjS2EaJXAjOs0JRTeHQVJqD264BYN51DYDwOK0uApKCcGE+7hTKzQpoqSaGzXP7yW+TPk2tqrg4eMpFSB8Hh36tNzB3R25E2tDCSzSL4SlKyzsZftiUiDjdVUrD5w2c0/3TglXLmA/6a1pEhw8Ra5lpnyT2WfqJS32kZto+Fqa4Fauz4k9P07SikEIVgGsVm/aB0kEOmYpNVZ3ADSobZvklCffPmGNWCjj71pEK1YnTxOWIWMVEKsK1GbOaX6MS10HkZQCpuOL4yjxq4ejAZ1IbpY3uphnCoDGgW2BOusTm2YeRofEDMkc5yoPq0AmRaMtw0DZQNRTwdN2S9XpWO6A2mEbcc3LzHtuq287PgjEDYg6C6yWvw4XiKNLS4oWCCdf4KKkKvkLTqpkSl67TI7BaBo7rkrjpvKjZdP4k4IGsMrnT+Bol6x/Ejod3zsBDGsBbHyl9TwUD83evY+c5pXAqTR7NNJqyUozGycD9TtwSUvcYKX2bfjADuofvpGWvKfCQUsJNyYYonGNZ+8RKoTYroiwpogbqwV1XE6PWdzjawFI9r6o7w94f+bns89pCDSUER0oOzcihLGF3x9yfg/2QxLKLKtPb8Lz8GfdoE9jvTkXjVHXakjHKSvJS30wLM16L5zm+9RDjYyYg18ksC30DTCf4aK9NKAtrhKdI3IjR3jCxhId8jyVt/C3RW8o1H0KFFCE7bXIuIh8XQmvq3UUCqx0y3z+BdKcJTk4j3Gmakcey7NhuJtj95a2yU20IgETGdGt5JtvprFJSDitWj208LNOTEX1bAtQLrGOj9ADjAXJAQwLd0yu05CqN2EPY9dgrMP0WalBWmiGd+5pDE2N0bVy8UIeWY/xoN9Eox+WMXGZcNRAIuvEqwpaeANl7uCP0stG/srDIWpu9+65s2Ck0ca9rgYMCQ0eDljGV0c3ZbwWGdSC0Ikax2i8AD9ZH8Mouwo4XJ9UlUYlJXGwEPIRqoK1s10vwtUMofYYtEzxOxSXt73pRD5UBD/m2lcQ17HG7SDuBpNEcz8ep/TsqjHvXJgvB+AABXkHjQQ34XlLF+doLRJkeTsGvJB54pwH6OhfWT21sZitV62/343Ob775f7Fw0Hs4mefq4TBtO7v8BfAq4G3i/1vrO78Wx/qPsy3//fi6ZbfJ65z5+9UtfoaRM0NdQZTztUDlzCuPeu1wYmUntQD9Eeo11AzM1B5nV2saWBRBlVGJBbIEHV5sWm3908cuyLIgX9tFRO+tZDiC9UYJtlzOZJERt2/GiQNkVYuNILm1zNDQ8miGYqZPtlCoZ8FB0ejzhcXTSRbmWyt5bzUALoTXaTopCtjLgIUXQY6v46pScjLbZc2J85TJWa6Q6cxbxNMADiZn0ImnaGZaimNq4QCUujbGRQveCvGYy61ZgnYEd4xfiFBys4aDLZBzTqoS0u7NnfU6q4BQXLU5CStpjtVrhyl6ZWHSQUQyO7Rgg4LL707aNisXQLEJNz9wbrxLD5vWikpnVJtd91Ny2i8QzjntQmQPHh6n9Z9/Ho5mdsCPfjIvJTbupVMbYrR2aScLW2nrgYyOTJVsrt5a0YYEH5RSYB1mW3eHDP/Qc/uvP/zLvfN4V/FRjjKe4D7HQ7WfPS54D4yFpn6HzwV9i/sOvYf89cyBcqjuejBs08Cumt73Ugrbs4ySXIwo7nT19IgOmjGid4I9GhjJdkcjJRSg9qzcAxglPHRBHufa6BI5rFajPMo6SYkCrz+5tqiJ45mukrZ0vJfn2aZCcAoRF4KHuLyCCKvVqORvThqExOI4zjTYtkJ4NFNQKmtAGI+Y8NkenSOYfwv5g4NwzbRUrrqYdl4Be4R0UlHQ4kMEvWjldpNOsYPqFJ0l0gtKKSq1mHCMUOjFsIm0D8xR4iAuClgt1wdSooWYG5SIapqiMmcXfXQM8jExtysptBtylwryS9uYW1sFqSo8GkgPnmfan0dlUvL9DqzsV+mJj4CFWaRcQwU888FR+4c6XUn3wzmz+c5SDh4MfewhhSsEqe6cHHKiwHGZRrZcYUbPS0k52Lj8DpRWnncM0xwb1Ke6fyTVIgv7SQDYHFgCRva9p9wxP+YyOjyAQJjOVHt+OQ3fT1qwbRb31CAAyCSl35xBWLNUdsUy0xiak620IPAid8NCEObdqwacTQuBrjapIYm3W0uqw1WbwqrjRMKGnCa0YdAoy1NqPUDpxs/3MrDtBYsbLDVMLaOEgZBkpGghRAgQ+dUYW5tGh8QuW+qY0KYzyunrHMS0oVSrWZ69lUbb5imfKZtxaI3u/NpohNhJr/W4sqDUygVEfl3gN8FBzQt7ivycTynYSxZiMs/MHU/ftTN+MRtF1ulRsUsNx3SyriRY0xspIt44XNAlsqWfFDhblupTPUeMhR4bTeUzwl7f9ZVZvnn7dvM8GdkqBX+dslopRHnhY8cZ/Po+SynW7tIR9/gn6y/PI9r9w1eaX8DXf1PpLmTM3zY7cvD2q/aiER5Io3G1J1u0DBuedGb0yUAr6aDZk55ax5m627MrLKb3Zoezf9dijqvpMrRo/40A/ZMU9j65u4pTLuG6O/nWdFoEF/6c7OygFp3FwUCLMytnSNUVboKw4IHceuJaRmZ2kZTit2ATtrqzhuy26ngUerKi28hQzrRwIOG3FTQMVZowHr9dHyC57ymWUyIUywUzDtdWHcGw9/0L/NFIYQFo601TCgui3XWq8ft7GfkTl9PaO7BIHpYzB6/TaeHZt9bVL0OsRioSj/gxv/dRn2T9rfVlycck/e+mPcabUzXxiIeAnPnIjsUiohZAiu25B32ShARWtqBY0r5pjY3QsNjFfFyzZ+zbijqH9gCXRoRGbMZzoBEmCcs2D6FqtkQqSFLJfWTjFb7z7GjqdOb548EI+8OQr+YMbbx0A6T7gHslKZ1JfxUHgoBF+tdAFyzAehNJEQrHt8LXZece2fNNxKxkzMs1papXkzOk1pvvxAHDTliGekoTSo+raxItjk3XS4bXeUWo9WBIdvuTeRVQAsP3Y+B2xDRhKgU9zbCyLQ1Kmsi6w7RztZKU9UhnWQ9f6r0aeMx9HXj8aSCKliVMdF4GH9X5NmGlOFHSaXJdqxYzHvgrXbfP9bP82K9J3aVrrj2utz9da79Ja//5/5Ll8L2xsZhypNY5Vti0pl5lOiYnjC1xwOqSiFnBLTyQQWzhUuYzrujWeMXo5qrY7y8SNxBXGonwiklqwqVfl/HiaiZaDQGQ1lwqYnb2d1snbcJQglorPbb00e5lPXBRwj38TD146xsNXb+bY1VsYntrN5L4nsRw8iRtOXMLKkWna7VzjU5+ljcsrLngFz9/9fJ51/jOzzGIsNK52cSs1YidvQZdaKYG7ptqEVTOhJ4kisO9jN24ztFhjbuQmanOCzXWTfQxFnrGQCAI3YLkq7XcJnnbYMj6N9NPjSLA17HFiBSBFiKOh3O9RVyP0H7iAxsT4AIpatouhTtVu0wCrsYmgoIZfvfzlXPyS93KoWWc1ms+2S01owTPCAyRnAx5UxHnJNJVIUsZlSg1TabWJSh1Lf4fxlnXodMKpqZcx7++lfMlP8sBFIbs3tR6drSAduPrN8MqPFT5yODFzG3H0eWQpgWveDO767g/nZNuugot+gpc/782E2xKe+4w3AvAzO57HLzjjiEtedU67ERYxHlsTrLD3h7l3y0txV3M9F50xfjzu2rKH0uqDXHlmN7E3xy73DLO9bjaTiejRPTINJKLN+eWd7JRbSJqaoDLKqVKPoDFG5JqJfrJvFu7FwBuIKu978NYsmEyBhL9rNrIskXIUPT8HsbLYKRMwEgidUoo1Ww9tItm1ns2Q2gDVdh3woPnt0q/x3IWnDgAPblnwtJmXcMVihYsPvzL7XFp1awOcSBIn4d7WUb6wdJr73G00rn8LQeBkwbijZda6MrUceAAnSMdp2zryEmWfla8VtcUj9vuE6afGNJfOMJ48kvmiCUZw8+r2V7hu4uqc8aAFT9G3UVf3MLMK9WiwpVWZvJ+9uY/2+jy4Z/kGHm4/gGcz3RqN9gw9UiVtvOpzs7aasQUcP32R4KbzBNs2G+HISi3PdKEVQ5MjbFp1OHP6loHzGB7fmrU2LI6RDBAR6TXm371454/wk5uvZXhkFz9X38c7Dv4S/xY2HDToF8RCy12PmV4DVhdYLE9Zx0riyy10Sx57Ds9lNbdlFeFqSZBItJQ4OBy67voBMKznhbhRwJ54hqGwwtHWA5zuHmO1v8S9y7fx8c3f5KFdH+UDVwm+cl2NZLsg3Aot++hOVW6kqz7J8eBdTMy+h9su0Hhj21ierPOZiwRvv94GEsqjMWI6sHQs62VXMsn1oRHy8/ddzOTpm5g++TV2Hvkw9eW72frwZ6kH32Bsm+nO09x1GUfHr2X4iT8OFMRpC+ZoA4x85mLBF542CCg5leuInTrzp+5g6dQdTE5O86r9r+LpW59Ov1/j1PAynz/xD9y3fBMRFWpqlA89SXG6cooH529FPHwf9XicajjLTRf4/M3TIvbf/idsf+jjbFqGhj6PutjNjvYqi5uGcQ/cxNHWEW5Z/BqHl79FJ54HO8bLMkRmCg8aUcgiz1pNIa8UZHOD2rDUYmM21XdqUubq7552GDv5LXYc+Sg3z93DzUsP4lEibm7HC82664V97o4uyJx6gBgNfc3xLR9BTQsO1c08G7p5ROMIByEEe5/8bPZfk5cQXDK9wMh4m6bf/Q7EJTUv+vVL0DbgQgjee897zT8RJCk7z7MDVSXgVzbYU7o/M38+4X5B7F6RdWUBcIjZXd3Dk8dexlRtklOBeR+HFiGwXZoSmTIeZM4IsIBcoD2iMCRSO2jJPFoqJm+a9p/yUUDo1C697E1cu+Bw5bPfBMAX1TV8Jbwc6V3FM2cdLlpVbI4v4gU7GpyRL+aZi5o9u19IeOkvsbDTMCSklBycGsVrfJQVdZhe1DalYzaLvD/ZQiJDUvg3BZgStGWVaN6wtJ/nnvGpNIbxx3ZR80t0S5LZWPPQyv2cnD2GV7uP2zbfgd+9m35tUGn1AAAgAElEQVTyWRzhEeuEsXYdv3+IvT2fv51+Lyfap7hTf4at8SgH422oqI1wOoxOnM9Dl4RM13NmVc+VyOghvrJ8kruW78DVW9hx7LMMLd5Ls7VCKaqxI5lgKh6mfrrH1s4oI4/cnzGKk24uupgCRge603irfWqdCl7LZSwqM7GiwHYO2u1XOVlqMZUxFLRt5wvS6m7lyS3BYtu+K1GcJfkCLx9/CzUByuf41X+Sj4GJLfQt8DAahOzUplSiJmv0HMM+XF6NOdrrMptUkFohLLWsK0IcLegkI9m4O9E5ykfjOT7xtT/g2Ngwbm+Jb7anB4J9Ny4ZcVtN9j572kVkpTU2wYJN/llw/4yT+w8m0SAMCy0TiLaAXNTJNbPWWHSmO/B5X8Z4WnJB+Agrkwe54cLfYnRsElc79ALoOrPs0BXurJzmsDvYsc2zAEAKRlRqFYabQ9nyHaj1TGI3TWQCkepT0m5Wwqp1MuB7lbv9dfOtoyVxQRw1kck6Vy6Uxh9XWrHl8iuZ2G/0TIaGtnCgFVPRj87C+n6zxxSX/E/77u2CZ1zDJ//mnbhljwNXfpO7v7SbttpKVbns3B8z0jqBW/45yisPMjl2Hm973p8BcNe7f8lm7hPqbVg48RVmtl7JiWpoBBZVyFPjC7hFf9WK+hhTwOgt78VNEg7vfDVhmtEUAkcLvG1XcO3vmAnsc0MPArDvvKvx/BLPeOOH+PM3/D1vPPwbvNI5ClhV8rOkkMfKY/zuVb/L7KnjCP11NNCTCZV4mKAW0bJFXkWBMolitSyouWVAo5RP3J6D5ij9uEdNriIf/jLMDFP1jPMfFtkZWlAOyrTqMSWbFHK1w+ZtO7n14ZMQ9W1G3qjV9/QiUDOghdJI1WJxpUJn83FGZ2YGaJJ1XaYt0u0L2eXGDNPMsgwISjjP+1PqwG/+3JN478/9ClU9QbeQaXxCsp3N8RB3s/F9S5KQXckkyeopjm3ZzLMXx/nc6j8QD53E04dMYOim4qEJ+17/p2bDk7fx3Fv+l/n3Bm00B+zqN637aGn8JB/a/SFevbQPnvzGR9/+0cwrwfP+gp3Ab1z2kuzj66/+ne9oN8LzQAgaQ2sYGmO7ia57G9Ef/hqY8ti81EI49IIArw01Ag7bNneL9JgQjuk0EauB3dVVidVCFkQLeCRosMmp0k963Ld7BGnpsDgSYSlxbq/CJq05U+oOtJZeWDyNK0YQSiAdkWXvY4tYJw4ktsWBg8yCBF0AKlLgIdHw9Je/jqe//HW88zf+aMP7FBeOva5SVMOLXvoKXsQr+LNffQupYFG15DM8NM5FX/0DGkHuoEsECkEslGlP6EruiQ3D5ML/+g1Dd04S+zujCi7OskIIwCuVIOyYd0a4SHQmthbrEl5kGQZaM7zzISb33c1fPDLME+/ZZ++ZItAu7/2hV0JQ5/4P3WXvm+CF4X3g3ge//jsweeHAsZvSZ06LgSwqgBu43LN8Ax5jOEHF1MIL6AaSZuIjRYLjn49wYmDOMMaU4B3Xmfu2Z9d1AJTrVSCte1WMjA5z/yM3sIbXwNjoNiR3kojBTHPufKuBLDXAs57yluzfv/jC9298c78LG62PccbJM+Wi5RN19+Ind/OaV/0E73n7X4CASCS0RZ/Q32o7bkiE8HFxSJRDIkxQPj6xaQB4SByNSjRPiS/gvvh+uqVn8OXTfwNAma3Mbxd8qn8Pn3qqwy/Pncf+P3kP+4G/fPmFgOZbO45ww15TivC1QwkTEVx4Ypwx78Hs/gO4qkRzxAAlaRvcq6K9+NZVCS69lnL/jey79z0AjCyajPLmv/hH6ruMs+b4Jba97p+zfRaFvVLztGGAvONZDletDg7yZz7vd/nYTd9m6pb30QlgYuKX+fFLfhaArzuCT2w7yaZTMbcsfI7ZacHHL3oIkIwva579lf8BwCTw8UsF/+vpDokUKHWYnQ8dtke4henLF+nu2srfHbyKy8Y/zJ3f+hfat04zv/BZKo4HsmRo/14fqbVZq7T5s9Y390s+6QjcyHEvOsIbUZm/E0v35eIwcuYORhfv5caxg/SDOp3oIC9+0z8jfuxHASOW940LdyEfyLePpeaZL7w1+//FD3yKO+dOsOT2M1aQY7OR17/2ZQPH3jRRI2r/LtXpbQS3q7xo/FFMaJja2cRxY9MdQQgWegukQtjpvB37KXU6HhC13cgUmkZX0A+GQOQBhVsoiR2eUTwQLVBbWeVZn/o4d149YbdNGQ8yF7W2AaCnBKFK+Npde+iO6ay5pKud7DhpG8H1IPR6u/ypL+Dyp74g+/+rf+dfALjzdz/Bzgeewk7g0E9t4clPOo/X8iPAbwJQXbOfKy/Yyws/f5i/IeFzZ76OX6vRJ6IUwaXJLj4qP4PWg/csE8XU8Oo3/GP2eXn6Ql6z67/wY7Ud7Lr/KKOfDxkFTl8actvYMe7a/j/pSc0v3b+foVqJ7kLID5/YjdPfxeEtH+QPD/we912q+OAdw+yIq3wpvgXptmHTJTxn9ze4IZnkDnusSPpEHGWJCZb0BJtaJ9lx9GPsOPppTk1eRn/yp3l65HC8H1H/2v8kXc3v3vsC8H0Wlu+Bep4YEVpwz6l7ufwVH2D6V32+7B+gP/t5+kB9eB8QIHxbOpnR3kxIrgWUdQgiT8Y5QtJMWb5RmDErfT9nWizU4YjzNF5w9fOyz8Y27+aozRtdKTo0tfHVi11xvj75AfrH34SsXINcfSfCB/qGkVJKJI9Ee0mz615ikmfHV4+hdZMg6hPqOsrGAADl0DOMB3LfuKQdpEy7r9h7ZP9Drfd/E5MJwKnVSTBE+rbbwdcuYX8JqYc3ZGy1j5xBCU2gPfr2fjla8qzZm5n4kZ9g20uewYm/fjuzrTk6tvQi0JpArS/5lbZDVWiBs6FmjWZzOIMOfF1kOkgSoSxD1HzeTdoEXnGsRwNxRK3TobXmIjwcwkKpRCxy4c7sM5kyKBQ/+itvzj4fHtvCJV/exf7n/MwGd+b7187KeBBC/PKj/fn3PMnvZ3MrTaJOCz0TEvcTpDNNKCJWO8eou8a59aMOo6Obs23q9dE862hfnrT8QWoItRVnlN6AKIpCEXseke8iE01IjGPFkxwcVC2nBaa2dcve7N8V+1IHQZ5h1GcptcjPdQiByaT2RISjfErlkYxyV9SnUCKmG0iclFWgJE7XttZynCyzrQq96cIC3VZoQbk0BEErQ40dLamMj1Gz1GphyW1SC/qFVlBCabRcIqr5dGZL1EeGKYaovnbxtJOJXWULe22STWXjMOPk9e9eUKKnIip6kDngaYdu0uJsNRhaK3pJh5KsMt0fQWnFYriEapw2AZ/QxFkf+8K9t7Ve1CahuXn9jh/DSra94nhj+3e87ffChBCIUglZW6/Wu3eqTk11sluY98B2iSz1s+T4zNvWj8vBMkpKPC0z5f3U1rbX1MBDQxcihYMvfb6+7Sqw91s7OflWKIFMBCExwskXsLhfsh0f9BqhMevAunGW1ZIFxoMiyRB9acG4IpfgXBgPegPGQ3Ze9t2RWlCrNgywQ671kH6nBCRSIXFwgsIia3/oOEXGg1h3YunlCi2oDNtnJ9LrknkZBV7WhlKQIG3mY5UkIw4nKLMA2QxPmk2VxUdYX1+6Uy3Xkchc/8WeVVApAyZbKh0XoU3mbdkJKfcVIhO4y9uuFYWy/MBkX8uNPOOkhWJiMp03B+9Frb45byVc8CPSMZGK/n7XnQS+AxsfnmTFL3SCWTV3WYuYRrNqGHTCjOdEKHoTB63IqMSXrtUskZngp7mQ/MSdRBCn2hhxSL2/irDOUiXyWajDDX6M0JrLdjwt2y627J9WwVdbcBx82xsyLVEKLAvFFWUq1ZHsuXjayUAHAOH5OJX1DmV1+uydvYNkvZvjy3ze3giYGPJLdH1z3hNjOTgaBCUgQdrWmAQ5Bfr+6UFnsm8714AJIIpWHo2oiCX2evcBML79CEKa9yl2W6YcQ/hIp49INR6EYTysDTqDwCswHtZfvxwAHtZ//51YCka5SuDGxg8ROkaoEDftpGQDaSeOaQ7PDYz/0Bmcn0UpwE985p0W0tKlvbO0rCjbEghp2XKSc7gYnYLAworl2o+FmcMSu4+oVLanHm1I987O15Zv1bsY4KEwJ7gFevam3n5OO8uMLlidG8spT9xULyhnPKRlqSQRjtYsUiOSBaHYDa7z0cruHssmdpjsqRIxT7x0bS+M9eY1TGmG466iCfDsIAuUNO2jnQixhhmX+n1rz7O+xXS12tXWnBoy27RK4KoKTaXo2QHmOg5epYprS5A1Ib4SHPVssCzN+taNV8FrZ+WnwyLXhkoQdINZXFvScWakoDNTUnTt/KZ6y/m6D5kPoQqMB4ARXaPruUgNTo9MiwvAa5lrWfBsO+qCEILxjxVlS7FP10hXCCad0ABiUT8TqHJL+WTR9wUlP/c7AZojW4kD8wyGSxG1wMQRQUF8+1Sl0FFNxAVGMPga5nr7SAVBsYDFXavHcFQq0igG5pJqHBiNGfsdgJ8I0s7TaUWngR3kQIel1BJptg9KdbD3IhQxzchDCjINrLW2+sAJlICayn05oQRjSwu4w2YsT27ejK+drPufp/W6ltwA2oo89hwDggwPN6k2alnCxE3y8Zr6jgkqa9XaU52B+6xJMpYnQLnTXafX5WuXXpKKR0LkyHXRQSLNsdSab3wrYhn2zrG07PvEHq3Uom7/XAq8Fthk//w8cPH3/tS+/+3knXdS68WgejzwocsBEO4Ud265l8+Lh/jycB+0wo/ajIzn1PJmYyobvG6cBkJ2MhR5XakvgwFfWKFIXI9urW4yvwIudk6SCG0cy6G8Xm4ja9r3Sfr5C3s2jYfUSpUKUpNRvGQSENRHSexi2i/UM0UiYmToJ2nXbKCHwumaRSEp+Vk2QHj58QcYD4BXGaUku9mkILWDrFZpTkwY8TyrkyCRhF5+bKE0uMuIiR6dkz5SSor+ptCaig5I7EyaLZiOy46ZWUAi5KD32CfMhEJTc3HoxKv5pL7WdEIv6RBIlyeemWc5XMBVZVTJt7Ww0Kma7MjAvS/b9P+mSx/VMTqbla2o3JbNhx7jl/9+JoMAWV2bXwHXkTTiThZwyBSQkgKSRZqThwgDN8sYtZpHSaQREBXRoANUXHocLdFCEzfK3Ow8yKobczzejHLTMgmBUg+bHysF2pRZ6EL3EJE0jJCRTp1QuOSwyhDxxElIIQWnAIQondZ6gt837+GgcOTGz7S4EAkGnfbiEpWqVjtIxkfGiYUVQ/Lz/ZrMiyYWGo2bLWprLXUsHCTCWbNEpqUWwNDkiAkqRKpzILJ3eMEp0U8vUCVI65iuKIVr969szWcqRpqe6cDCXV4/ZwXVYSSiIDxrQchKjbVuek9GVoV8JSum1oUXP73vowWAqtIsOnqamen1uikAQdBAasGy2+eM184CrFiuCa7UWjfj397GquOsFjqB+IllmwhFLXANKCQEkdVK0KObjEgqEul7BmRScqB+fECXQ+XrjopD6stHEY4BhaohLFdgqaTYFUXM7MznmDgw71aq9ZCdn911+qyH7PrmiBqlSj0LKtcCuwDuiJmHW3Wzk74LsnL2dmMbdbrxZT72y9pb9/1kVbJQg9UyDDfy518qh4wvBWCBC6dkAo3JOObY9OBzHrNs6x1hxEJ98Pq/NuXxD6N9Pn6szXu+tZ1PHxlDCDMXxqUOggAhfKreMlhdAdNOc73TVi55pNnLjYGHwv88Tk0RWXhubmLHg4hBhziefQZpsJ8kVMo58OBoSegNvhuyVEImLi3Ro2dLnEreBt2agHJg3kvHtrIrJl02CjKK51KWnhWvsx8DRWr3ai1tj3d2UVsw70SCptoTdDyJ1jnw5DkB98tT3Ow8yJ1yhQjF6LwBHrQtnUhL17Qge56pUHQSdXGJWRB1PJ1nSDcslXkcwMP+S0wWv+V2cL2z3LeC+Q3zvnl+gqccpH1XG6JGoiOEl2Sg7gYnOvB/XnOSWAmerJZZsfjuQg28uEHTrpWu1nilgFJ9FC82gqzKdfETQT/VgrGBWjfpILwoKz8dkTnwILWiV1XUV0zi6OMX3EHiQKvqcabeopeST9p5Zh9AJhrimCQ29fr1xLzro0mFerJM/ePmnpXDHsgG4NCcOz2wjzTzjjZCoF0Zk+a0+qlejRDUZUgFn0h1Eakge2UQaChXBhOGjlvDkhSY8CMqNsGWCiAKDXPVLm6qFSMUfiV/p1ytiePRLLEllMvVtyu+ptuMIagP7eYK0WLFzYPdSx/0Ms2ODHyMVYaqp8CD0b4SKG89VdKI4GuCchMK75nfD20JmXkfb/jgW+ncbPRyuPeTvO3ku+nICEfpQtDvML64gDdigIftey4YKKnztGIDPJnE+od9J8FBMjE2QqVWyuZNp5C4SkGIWCSZf9fTYXafwZSiq8IEW2m11iUaPFy6egWhBS4OmmAd8JAmt9SaeCuomHUqDv9/ovGgtX6r1vqtmDaXF2utf0Vr/SvAJcDWs233n5ZbtLjAeffdB7h0F5dBVCjHLp8+/xQf26x470SZ4cV7aawcYWxie7ZdozGROV5Ch0h3K1iFXYXmeGS4i8f7DwxQdjSKldEJFsenwFLOL/SOc7rUwUFS3XJ+9tvW3BZa84OZ82ufNENdCS65tFB3LzfWKkhNCLP8d6zidGVlHq82RmJpY2O2NeSh/mYEgq7bYdEzDvKiu4Dsm4XbX+4wfchQqvdccVV+eCe/PqE0Xm2EpjYK0PYXyFqN0fGZTJxGC8N4CINwYFvhzxOO9wgX0rZIhQtRmqouZe1vRKErRfPAQVw5zbgcVJZN3IgpNUSp4LjGcZfZ3vGB/t4AQ7G5D1ondOIuDW+UbVGD+f7DVEONcKuZCFcYmMnUKQYwfhWmnwD7fniDp/DYtrV8ATt7MQcv/aHvavvvhZUvvpjyoYMbfleXDgmOCQyzQEiyWdR4ZMTjrqpVYtZQjyWJ1AZ4UAlTaohRZZylYv2dh4MGVElys3eEbwVHqc4pEku7U1KilakJ9KI2QqUshoJOSVw1bRJTdo3Q/OoHlVEV0YDbo+u0GFY1HlIRiQyo6RLtkp8xDrRnps9ikKDFxu+ZLjh0es1yVRy+WdsmBJOj00xcaN7tg1flLYhNralRm9bCoT48Clqx+/5/GthvUWthrT9fVLRuTE9lStSRVHgqd+SXpc/RVERWxwT9awCYam7DExs7uykIIDXc0nkWevoJG4JspcYoUufAQ2iDKa82TKAbWdA9kGltz+EIzdjq4QGfPfUZfnEyLxsqN6sFf1lRb1QBQbLtievPmTyLnIqRJWsAoscTJJyrNSpjrJT71FTA5s4QtdbDlLpzCE4TuDITFo0sIOoEZQs8CNyxsVz/o6AhUAQeXDSruk0rXqHXadNcOYrj7UE44wi6pMLh17a7lKdz92B2rMypIZi1Jaq+BWF29jUKkSmPn98RTEUJvm/KJVJAoqoDZNWjfnW+Vk38gqGdntxrdnpq5tGDaXfN45BaEHg5ULFRdq7ebHDPzjpHtg3TbOTdKCZ3X83WuRLzzRZSNNhcNoHlxb0+m8ohh6fh/U825/OFQ+YaLghD7tkC394q+MqFgpMzdd40McpfjTT41+F5bpyY5auTp9h28m6EHCEut3DFGMKZwXf6RpcGZTOOGrHm/akWSi0SucFY07l48uNV9UpBNKHAi6yGknOUnjxCqWb0cUTKeEhiPD/M3sMyPrE3OM8Fu7fithdwtGTW61BWAfX6xhoL22eeyHQC4xc/FTxvAJyaUkMbbpOCtXW3bBgPQuDFGvs6ZEyx2A4SHT+Glro22/phmV77X8h4axpiR/JF/05u9o5wm3sURcLkKROQCguuasfMcyottdAauWoQqs7CAwSEzAYNagVhXd9OwhfE+TvweBgPu/dsouu1CbY+eklJauUpo/klHIcgFiSR8d9G5QiL/dM4rh5kZxZt7XkKwcm4wdPkEv1hc8//6WqBv1qjaX2ukSRBVBpU6iO0q+OQJASzj+AWgsK7znwVpRO0KiF8D4a2QmWU2xZy37XnBsxNaSbO3ErQeYj7J+e4cbfki/sS7h46QthdpJ1onJPfAiB0oFOC6moPt72C653HaFyh2Y6oqzK9xYfYcewR6p8wzyPoPIjjnUeZMcrdFYaStMVikelrSoLiwjoeiQTXarBVHJO86iYthA30/fow394Bt+6wc2BtYuAWShkQjCQ8Mq1puApPdFjoz2ZBeVn7dEuw975/tLe8S7mUA7gOEG8NETYpONIO+IWPKfYch/bkNk5MD3GwZMCYFPg9/4SfiUumT1TGKu/glHXQA4EkWTKCztOdXJvArD2aam0UrduUlDnfZOUUWP0HDZz8y/dy8i1vgbDD4fe9hnFmDJNB6SzhGOMwIqp4deNjTG3dOgA8+Epl/kGxBCVUKrtPEsHIcBOvkMQSSWF+suMx1BEzsQGD5GobvzDUtYgGgIdy2F83xXraoSdauEjDnPCq6wDi0DJ41JqkRalqri/u/2ABD+ei8TAJFK86tJ/9pz2GbXrSlXx4e5PrbruXyPNxEsUbXzfP3ijifcdO8uZgnItu/3MA6sO5mu7Q8HiG5ieii19/Ma44CRwmEYoWy7zvyB/iVRogdmTbKaG49lMfBeBdr/29gXORWvCEp+YB/fN+9IvrzvclL7yel7wQonaPr37rS3bDx77OYuZh2/2fwa1dnbev6q5QP3oTE+NT/HTtGh6Qp/mib5qXzNYX2LSqqd99E151Gy995a/DK399YN9BxSdJhVlURKk+zO7aFLOnXHAMbdppNhmbnMoyGtqeduR3s4y3VuD5izzn8CnEW02ddZGBq3RMlWoBJS1MAC/+W97wYtYHQW7ILjXFTH+Ed5e+AsB9SzcSry5TG7oAgEbsow9/nfKOp7DkGqesKxfY7G0DTIunUrjCqD9Jos0E7th75xQ9ZiHgNV967IdxFvvZ1/0tP/tdb/29sS3/4y/O+t22mX3cFwqqQuJ5DhDiaoeubzPqskVFBwilqfXrxBZ40HGf54ZXco9znK/KewYAIBfH1imaSX5OrDC54hHWLFtB5u1fVXyMcmscmtB3NI42AkM+Dl0SQmn0G5TUONooH0sStOzjKMkfh/uYnljkJ89IXtZ/Au+p3kolik3vdvt8i2VIZ+PjDzqYa527AuhoMwyOlkxPbqa+aZTX/dW1A7+WGiLLTIqFZGhqml1/+4sbHFPYWlSB8NZOAKmDoRmfnjHgi5Qsyx57FleZL6fUZpe+sJTeqM1Tn/MOAJ4OvOOWP9/gCihk2uHQf3svQm48+XjlhmE8pFle+3epOcnTb38Pd2/AuncrL0b0/46Xvvs1/OWbfot8YhPc8VN3DPy2PDSU6VwI61T8yvs+suG5pOe8N55hrKX46lBrwMmEfx/GQ7MywUq5T/nBK+gDjeXPsuvIR/jmFVWEMDRzpMw6ICVSoYUZ16O7dnHmyK0kUtsyIrPP4tAreQ4td4nPtcpUWGVm5SGc4MdxgguZV2/nnSdnuajfN0DMeB6oL+zeyuv35MHcLx8J+TF5mqVoiOHf/y+8/a3PAmCmVeXCO/8Q7yILuKfHVR4zbxkEfGovfDX7Xvhq9gEqSdjzWDdnTfAjkPh+HqgWW52lVh6aYDaagAjK5fy3T33u67jq+p8H4Ev/+xBXHFnktUfm8g2fBv8wM8WPPiXPMI6ELp88AJ++2Mwtl81BT0r+2+wcc3ecz0LwM7zryrex5+Fb2fMwfPCHPcZWL6AfDNPjc0TCR4muZVklKDEYMNYCn9m0beQGJX7C6rUoEjjLO3WulnUPUuDbjOq7rvoI/QD+r/LrzI/s8JdJwg1fez7j1pkfVw3mq2cG9hfsmOGn//i32fOJb+J9dQ6k4A9rGwfEE5P7+fRPm3d1YfOViP/9QRDwxOg8JtUQ/+h8dd02aVvr4UqN0ysGGN1+yspD6LyzTyeQVJRHHK+s28fA9ad/izHQLRDCslAks1Zz6JPh+bwz+D95+bYmL1+1YpJpBjiQOKEJz9JK77AzR/3uU3QBXzZ53d73c/Pxq0hIxQgFr+49nQTFXe4j9sK++zlFSsmv/tm5JzDcSh1+e5m5Nz2Z8VBwMloBRrn7zJd4YOkMI7tLyN45Ag/Alt8/ygf/+1/zV8d/i8mXtfkrDX+9dJCmMgm1/f0QpzpCpTlJVPsEaIEMFa4y/dMAOqffxerX/p6nAzfu3Gz8o19/kPtf8vJMG6rveBzfAf944F/5vTMf4ynzl/HHLzTaZtfeGvOST/wmCXB0K1wIfOQKwceuhHf890+jtvdZXbyQW2vX0+7dAse/wCJwcD5nNsyWP8szbzTn863zZojv+yo1oLnlSRyvFRgPG9yWWuyw5HYoaUVZV1mKVhn2zDzp1Yb56xfBcc/BV5rS8GC5oRCCKydXaGy2STvR5SvdYWbkLPhGxP6fjp9CnUm49ouv45Yn7aBZq3GCBftIBG9483X87Zs+ClSzNuU/e98o/7rDXM+K7HJJtJMKAV/x7ibySxnwmSY5SGTmE2flBlogBLRWj1G/+xgdbxdbG2WOTZTsuyao1yZxnBDv8D0EYoV2klCtjFsNFs2OUxB6x+HkrdzkzmTRp6MlrnJZlBA6LsNP+U1cO1dImbdmhrRVt2JM1Xl+eDnvLH0OgJ7S+NqlLyIkgkajZtjP6bwZh6S+Qas8Aeo4iVB8/qG3Uwfapc3UIgdSHEdEJE4+X0393d/z4Ds+MfC8HC3oOhGuVfdwggrKClN52iEmIZaWkesNxhiVZpU3vPtfBrrL/CDYuaxCfw/cKIT4bSHEbwM3AO/6Xp7UD4o5joOYngYhCKIQXa4T+W2mEtOlue5uPFlXaqN5vbPXNpNXnHau0FnbKY0mKVAnk6IQZDyIkDlaUNqA1r7heZdzp0melUKXWzFmKi3OUqoPEWedNvqklhAAACAASURBVGxGQccIBLPyWPbbk8N5/+DwLPTKWrOQyUh6BNUhLrv4OnyVKttLhOtSmxiyNZwSZRkPiasJUnW+RCEDW9FpWzYW6+eVSiirAuVWrwn6NypvsIyKYucOlUQop5QhqE7aTjFrdxbTG7o9+/18/yRjS49w3vZDSG3PKaXinQMN8gfVajM7iXBIEFQahmoohEMU5PdkXDWo6IBKUiKUiVFctuM+FzUVWX2eqyUK0EIapWGhGJVxJtgVS53R/pcrMX7HONZdYVX/tYeytbqRMA69zo5iEHuHLoENZDzirM4/kYkttdDZCzPAJtBnec+KGg9rgoqi5kOpanYmEYyMb4wLCwRhmuETgurExq1PM7aVEoizvJdoQaNhAvSub0pYKkunssDH0Q46ZWmFg868X1CCL4KWovC3fJQAqVKuI3Teuk1ZQKYxNEIsyebHYvmKSpxcPGK0kFHdgMZcqjYzaqVztj6n1lKm14Qaytohrtvl2Z7tv6HVquMsV/JSCxmZeTZtCya0GARaZZzpOZy/c4tty5y2bDTXrArPplSqEfmmRnqp0qHJwwhbevHIyAqd/t78+RWeXcPWJ6dMh95yAwEMe2ZfwuY+XKtlVK4ajy4dg6UNVMaLJh0H6Tz6PKkK919YKnCpkgP93gac3OGxHNB33cF103EcHMchij0iV9gsX/7nYH+wHreqRpgsgBu3j5iA4WC/T8NTjIzvZGS1mjHw2kEZJ+4hkz5C+pnUhimDiXHXlEtUC6UWa0EvwNCjUxbTWfQTztVyJmb+XoQeNJSmOTwz8J1MErQWhPbcxlUD4a/3eWqey75yz4IigmblsTPxbrWUQ4d6cA0uWsq+GK8NZRnVvcd1VhqWzq/Lskc9cq3w7KNY+m44wyDKWVtOgWBBtEDDnKpxIt4+gKrqdM4LyrZtti1L03ntjHDGkU6fSnmaqm2VbjY2fw1c47/DnLLWYi+g0u9kWWFp19pq1UO64izY+QYfCkFzepJT3ToCmO9XWZH5O3agH+IPb6YxNGnurJC4fY1n54ihJEG4phWzBPALei1CU7LMMwXUE+O7TSYxh/LpkW4pQABLNckDVptlviFoeQ6LdZAP+5T6holSLLGthDmI+uB2nb3zd2/u5nNAwffWQm14X6ohLIoOSvVwY40QIziezdDXRwnSEiGtCEam1m0fOEVRUzvfWP+1pB2mCvNN7HiMNPP5LrRlmKkwZNpqs3oiGphvJ3QzG4ORH2TBedounKSU1bImadkGg9orKjqKTvJz1UJRqU+D1Eh3GpWep22trYRpeUm3T3L46xwRM9m2AjLByJ50TevjeqHjX+GViKQilhpPD64fkVZ49qQdLalZPafUt1IFEchyKiJZ8P0Tv4xfYB9oJ6SoYdkcnlw35KWWJJ6Dqw3joVqrZmlNicCza2AJD7Wm6k9K+QMHOsA5AA+2zeWrgEX751Va6z/4Xp/YD4K1Om1WNtUIS2Y09SouXafLhH3Zht2zLHJeJXswZb+LH67gWKE2hc7EF7XQxAUnr1gflESDzs9awZNHs0Gn/xwclbSmU0v8zjKlcpBpPKRU2qprHNCl1p3ZZg+PLmf/Ttj4/MZH8yBKqzZBbYyxvXtx7ISibJRRG7KTpDD3RSKQUlBKyRIqxk2D1rqZzIoUKaE1fqH2QpzDwq6qNsgt3COdhGg3yITZ8tZJ6bFixP4bUdr0gm/HITOLLXZs2Y9QacbKjAuv/B/a7fY/1Ia37ibSDrF2aE4ZqmHXFyyV82c2mtSoUcITgc3kKnTaQz57JjKj1gkLFSRCs9n2X5e1hJ5IhY4UMjBOS9uPkX0TMLeEoc8FuET23YtRCGWCgaXqGFpaOjsxZUsJ9XWUvQeJBUYimWTObTHe0WcZb8URsFY3pCjE1BwxaR6pBX5lY6pyWsoDBuAantmx4e9SMEBqkbfMzM4z/Y2mUqkgMRoHAHL+3oxhUpIVfOVR0h5iTRlJqRAoFsGBIuPh0Swom+OmZQPpfak2RwhdWCtmbUQmJdo+i9rUIHV1rfl+9ZwDtWXHOCoTusFi/9SGvxH60XVy/i1MBg10kDtNfatvkwIPEjP2UotElGn/lMfrJvu7RgwzLKwD5fIQSWDm68hv4Y8kNJcNuHH/5DJnRvO2h0UbsmVjk3Y5Wl4a1OyQtquAYx3eat0GEfYcfP34nS5VuP8OHgJJpZY78+4GxxgZzd8NKTc+h37kEaWMoPIISJfIH2HPmnrcRmk7U2nWP47pS8FwkrA5Tthcjdi76Rjb+zXa1s/tOXWk6uEkIYhg4K0XxOuC7HrgF1hUZym1sNtI+fjA7JQRVgx8EwmNBJrjm7LjgQEeBNCzLLUJ1aBSXq+nAXBxQQh6qHF2vY7U3JKfg5ZaZ8yGtSbs3WuOjmftqvc8YhkPFOZdAV6vh3Ae41211xb7TRzx/7L33nGSXOW99/ecytW5J4ednc2rXe2ucs4ooQAGJCzAAsmECziB0+trX+NrbF8b+zrigO3XL2AbE2wDtvHFgDBgyQgkQFh5tavNeXd2dlLHqjrvH3Wqq3rCziqArwXP5zOaVU93dXX1qXOe83t+v98jMWQ8nhIpk6s8TNHg8WgdlTCkluyJtY+D6Ts6T9GmtEoR6fVeGH1IEVLqP5eyaXW+s04xNmpTiuK5PSsh/G5F5ORwmqcQen0TmomaL5WRlpmeb/erFj1W34ohjtTjnPBwvcCc5bFPb7DObrQo9Y9RzniSGZHsgJP9QQhWUmkH00zHlC0EVhSDGEq08PXS0x+GXNk8BgrcwCave3fsGIYJ7b9yUg+7k3kwAoHT1OCoTMajQTuXzgXFapM5N/6ED61LvT5UO4NwZOaebA7uNUO9VipUew6bYgeccvK9uHpcekqRq85rOQ44GfPRThqg51AnNChGUacjVmiYFIt9nXFU0/4YyboZiTYNy0Ocqnd5pfRFxc49NuOVtMeDSospUYFQF2IS8F+o7mICBEQZP4dIhOTzZRAgjXQOFjLS+RnMugXmXIddDz1EM1iZPidSHZC4qceKlU9zHRll17eIkAib7vmubUSpdxgCRzORknkzDNJ9U8VbmEe1XI9WmPmuRdDx1wLI53MLGI5CSdqGj6HiMVCtlDMFK9EBQhxlYTgvPZBhsThdV4ui/l0F9gB/pX/26se+H8vE7iP7+ZuBz7GvEici3+47Qd2I6NMb3KQKsmt+4dHOdRJyRzTJ1Y4im7r7AxHtinZAzVkEWu/pKguVQUFVu9Z1yGUKd0uGYS1ffUimGT+yEIDnOB32RZL0nWzG2nl17HhnAt5gTCE0nVD6C03EAIZGR1LTNlXH80uYjoMiRjpberI2HbsjtYjQOl4kuWltstZoYBoOuCXIxbp3NW/0J0ae8R/PYGHPmxyYewZJ2t88ilqEnteZnJMOBmkVsQ2FkOl2gxONI/iBx4GVFitGNiFEFLfvEW1Q4GfQ3O+1qAwNUVcWdUyKvTFaf6gUZxGrwnjj6DZCCviEpkdLhAgR0CLefCXfh1Iw2o43P5YyCEREJKA3yuMpm+lyvOjYyqAmWxwo6w2naDIlYwq1EgqpYm1g0uKvHXMniFB8dW1Js2wktoJKs42SUG7PMKdZMS27jlCCWdnkYEE7TmfIBIsZIcXnkZFTzNtUtDOVz77+fgwVb5fFEuajXQaWUZO+lWsAODrQO+95dK6haS9x/yswrXTce5HFtJjoVA72FgKOW03cyEDOO2/fXnzz0fEWWEaaYOUcrZPWyYKeY4rFMqdyUE/yBX0YMxaNdPwyeofSKopaBJA1TS81912GddQT6I4crSbNYG7xJ303qpNOkQH9PvnZA0wnBUSRgkjNDDDdkO3YzwGB2eN1jw193doyfaxUHaOROwEqopk7Qa03R3lqB0ZQZ7rvFPKsKwE4RZooAoyWVyIiWFXzKAcRthkDflNRvKlwlYNUioLm7w6PxI8nI3sxNsJzjSBq0h8lWmOJQpArD3VYGF64kNUz0Le82780+jpt2ehZC9U1RONXs7UR3/MX1OP5e9Xql1Gp+/QFAaua8Xue02jSjgwurD7Fxcffwat5ggfP0kk+PRjtUzitKRBuF/NEqJBTdAMbrmN35oZwEcaDIJ0Ppf3CEtuGfu9T1HgqsRwQgv62STXxqercxzHwoDsM0qOKFJdoVXlxySMc0nrtnsX9GrJh+F4HHGxHLZphd75j601qoAGJfG8fSdeoNYeVltx12/WGtQkwlnOP18wdt8SlvTdRsOMOZB0mSJhn6+G9PKpWMxiE/Pum+HFDb3Dy+VIse9FfqUAhkzai1jpkJBnZ9APk/UJqk6tzh31zT7IujDdr8j+B8SBlCRFOYqp+iCJkW7dvzlUxbHNx1skSkpAVG8Y5WCuiFByolbCcgHPq8UBZWw8pF6sUNEglm3UkssN46A/DTjHvRBEsI11PHCExo3g9UxgMKAc3ihgMQjaZT7Kp1eSS5inWVPbSMuCJMTikdzOHq/H1PlLR34f22bA1eNFbc9hTDPjXrfHfS1bAkeGI3YNwtBqQ8O+jRtbgMuzMYUUVj29HmViZLgVBYwovcIg0IOCXe/GTuSlSXTLsJPY045svOwoiZcRd3sI4D2/pWz0wLSrlaidRbyUG6vrV0rDZt2oTMlDaABJ6ojw2ZmdcT+Rr+vUKJ9Bs46gXkVTjO4wHMQ94iIt+SSgR4HsOGBHSHOk8LjT5KBIR/7ahn8+88pV8tLkZK0jnAqkUET5CCWo6h5BGOuaywENLBLRFiKVM2lGzA6hIW3RYyFkgqNyMjxdkzMmrOe3L1khhAvIutWCaHs2qwQpj03MgH9o4i+ULSqIcHysU2KGgb3igk2RJRAdcd5SJU/zeyPlPtwr9DXAb8E26ySNC///yK/P3eKwcHOUn2yuZLOwCVKelVq9RZuKe+9j94Z/g9350Dw1bcWv2hZbfuXXbUnLVqvfxuLMKuJpIKI5tGeF45SwqvTXCvXnubp5LTrl8VtzXOUSk6oztn+DE6DA10XxOjIdsRMbyN0KyqS6FkoHXHEU6VgcFVFJgF+/lydmvsmfugzRaTUrPPktv3yp+TJ7gM9Vx5swBXv9Lb1n02CPDQ51K9d6BaXw3ngwm/Qp31i/lM+6B9DwgVqFpnXJOSdTxg/TVBXLawh0vwtv/OdW5ZjZEQoHfjKBjzL38wl7u2cyDT/wj7skccu1GIhTOqmnWbj7OM0/EibihDOzivcBO/T4tJmf6mSh/EHMmT37dcabOyuGUBmk7s4TkqNsBZZWjUH1+39lLIYo9Ze657xPMuTkqr0l7ka9plLlI5dgcPsND5lFWqys7m6uBaI45KwYeEsO4EItNjR62soZvyB0cNzXtP4y4PbqAZ5vPMOCO8bTYzy4r1R9vaNfoM3axR22KK1lRE0ukruitKKBlmkR6WxAZcdXLDgXVyOSXn/0L1u3axV++4xXcI2qc2zyOmOw2czXMTJtO06S7waZ+TpZWLUKyU3bNTMG63p5BDHae9j63M1QAI5gjV64y9cs/ydmXdxuOpowHheV108yVRucVEmnIznNtZfCHt0vu2NddMbRCgW1Odj3m2xboopCVpTZ3GA+nBx5s35kn0YgTxEKuzHtfL9nWjngjdJJeU0ku/dp7ePzKOIlZNbaKr//71wA4IRdeL2E6nYTLchYHSZI4r7aVHsfgZGRg+jcBOxY8xwlO75T/ooST5w+PHufd47+AqDcYHIWN+8FQiRxM0dDXSSqoi1YMPEQCazg2z+xEwnjIdDQZGd5MODnLfblfYzS/j12z67i4/DEK+c+xZUIgeqrU3voYXq67Wv1D172D8/ZcQsmssmP7N7ns91/O7l27yFdj8DevfP7pwGH21vqx3jzOxbq9XwKENJbpMnAmsWfqMXLtAqNOxI6BcUDhlyv8/TcOc9w0eGr2NQte098zRP/rJk573Gtf+WEmDzwClgF9Z8WSSstHfuWVfFBOsfXK1/KtBz/FJde+gTVnX8ctux9nZOKz7N7+KTYKj+YbPkP91ASFosHWv7+b/3GD5J8ugisnHXqP/B2lmsEjG0YIMkCiECGPFluMZrAHz7aWaVahMuN5CenUGcbXCkXWhZN8xenjY3cZ5Ovw+oMVKkdfR7EQf/cd4DIK+UxrNWsLFlcc8/liOE0ltzib4QfOuRbxLw/QlhEjw6dnJAEYrkMyZvfMTnKoLeO1W18qLzLoObGelhXfj3a1ojXkUKrZ8RBXEHYKA7DhiWfYd97pPR6Sbns1z2ckt47dPK2Bh/gLOEGe8eln+ebQRs4KQ/7iRouvXhBydzueq8s9PTSeOca0ZiR5sollGQTFe5BGFXnSZWBsK8XiAzRntMFfNMdnDn6AWjDDbd47GI/62W58a9lr9GKHafZA8C288F7sYyeo5fbxtbX7uTY/xAlnGnfWoDVPqqKWYDxUB3o5763v4+8+/QvsmzY5b/MpLjhe479Nn0K085RKJfKOyfr9T3JoroFUfViahz4QhEytHeS9aw9ztCz40UY6pstKsj+qcGfzUj4rT3HvyBC3H3yIyVV3cahyDe+YOUrD9di/87f5qbcanCjCyiDgJ95mcrgnHjz/fKXJV7aEVGbhLV/4BcygzqlcmcrMbr6xXvBnL5d86lJ4Yyg4eFWdvyoWQQgGZyeozhbY39/mFc24y8au8D76awU2mKsRzQYVqxeJ4OHgc7yqeRFtAr556u8ot1YzlYsZIH4hx/pWm294LrZS+P5CifRjF1jsqK/mVOEOrrv0HtY8+iQTX9vLHXOXUDIf5Auj68lbs/gtaFguuWLaGSNpGW80pzHsFSg3z2x5nPLhJ2mJgI3BCOcFq/jy4Y8TFnqhNwYnAISQ/I01zG9+5a/Infw8j90aGypJ1SbCIkDgJmC37OXba/Zzrt/o+DQ0VA9F3wUR4IY2Rv56QtGLNL4U358d/VTssRShKEQOM7IJKGbdce5ojvBnxVPk39a9BRUqHXuBiGgQMNs8wb8c+jfuWvEWQiK+6NxHsqxlJSH75zYyMlPjibHjVInzQN9zuOZlr+KxT30kPn1hcPeFJb747yG3t86jQZsHzWdRluCu+mVM1A/FbPF5OViIwCoUCbY/ghAFekdehpDb43POSC1sTCr9p+88+FKJ03W1uE3/XqWUWp35WaWU+j7ocAZR9PO83nVTCpemdPU5PfSMr2F81RVMFgR1Z37pPU18m9Jl1J2kz0xpvAZtPnf+TVi24hkrYDiqUlI+hsh0XZABp2b3dhxdnz/jYXHadjYCPZFVwjmqVohrW0QdxkOENCogHGZaxwmkBcYGtllP0RNFzKqbGV13QxetLhsDA/2dymbNnsHTSGfLalJSPiLK6Jq11CLSrXkMbJQIaNSPYYVtWn4vlLMdO7IMBwWt9PqdCT16dPx6IhVSC6Y7La9KhcMU7RClXx/bBlQ6VU8l2wyW9zJ4xUM45x1h8IYn8YotcMuERkBARM2OaalOYXnK6Us1/HKekVMnWH9kL32ZRPTsYAVVeZAVqwvs7n+IXKa3c4VpQq2tSYCHtjJiiqryEUql7dSCiKLy2GKexWBY4mihG6l2VZ2zi4dwEv2dmsPI9HhuN5oo0qq7ItJyDAfbdLn4P54i12phiojHxwcww7BLYw/gZFg+4RKb7Wxv+KQdZCLfyb5icHAUQ4nTCqPsTPXYb8W0+Ut+8K30jo53PS9ZNmWkYgPbTMw/y1TQIpnxBczbyFsBmGZ3hbZkZzxkssdKDr4M8GD66aYje1Z2LsdsXhCZSUUnDgOJ15hAaYlHX186nvbYizCtpNEBNpwlmFhJCFxyuJwKJZDOlWaGsioWmIJ+B8J0GAxDLvYO8tjqgHaCl3SkFqpTFfcCg5poEom4g4UQsUNJEsnVb2bMbV0/R0F47Bw6QW8Iz04Jqv1zXJXbTyscYai3ij8yhlPuJkMahsmWNRcytnINL7vxtXj5Aqu2bqNvVLNODJuxIEBhcsmFaVphax3yhKzzQiNUTU7U9xEGxwmRREhylQrjQcCFjSbH5UJ7StM0GS4eY7h4bJEjxpHL9zK68QZYcx0Uh6AwCG6RdTe9igtuuAfb9bnk2jcAMLRiDRdc9UqG1t/MZY0GVb+HwobLKF18O/KsWxgrjVNQEccqAk94tMw6ilmE8hY00ZV032OeY5/WM1KotLpnO6cfz8uF0BXGmvBoWYKTRYHTLAGDeEkb7g7jIeBE1MMBXyKiAk2RZ7C8sHoLYEjJRdOCy6My4gx8KAzb7gAcUSQJA4GRuMYT5wBB1NeRoNiVasfjoWmX9OQgSGrGpdBm4MTejofPUpEwupqOzVwwRUTUxXh8xsxTaUxzRFXpDwIiKRhxmygjvu6VSgUrJHbpB/rMIwipkEYVt36CmgZ6K/0pK6unfZC5YApFRDtqUVY5lNE9Br4bYTvDtIzjSGFgMcDx4iS7B6coVlZge37X+pLE/BbQ2Tj36gvQvGpMUyIii5EgZDYqU630kHdMatJHqAhTKAxNEay04/bgj49LjpcFvpMWx2zTpI6ipHx8ZeC05xgJQkYueRVrb7+La17/E/Sdfwey2cvRisABLmo2OqADwIq5QR5bJdk9KHCbpzDDJlgBhooI/IhICo5WBX7TY61qM5WLX3uw5xjjR3ciw4B+VaJflYi0iHgkqjI5twcPGweLlmrSowqUohxzYUTDnsUQ8edzbItNjXh8HDJNzEXGpF2sI4enqQycRU//CDdffwMipygoD0/WkKtPdthYgW1QKGRYRPqjNlH0K4OaYzClpqnnKkRCUVQePg6TrSME2scnkZtJETFl+PQc3o3bnOxIiIywlR68w+ax+da6Y1illAHSlA6OZWBYJsWZPShrK9IcBhnnAjGPtDuqmo3QlhE1M6KkfCLqlFePdD1PaJA6Aa0DEUIUUAumcbDwcTC8AJl05snKPHEJot6OjB3Aybtcc+U2HL0/E0JS9dbw9YsMTAzyuBieQJgCV5lL5i+BkJSqJYKgTRC2qfQNd1ipQglMfR5WJPDL3fnWSzWWneGFEOct8rNGCPG9IUZ5geEcfYJaPh6ICeNhIB8vKhs3X7X4i0Rq1DOjTXdckfoh2JoCZqg29Ywm0ci2vjRivDDxH1hON71UuNW+ZZ8za8bn0xPGLXRs00iBh075wwVU/NnMQQaspDIocf2lh1K2DZCSNTytgYpkTK00VEpvTvpyJ4wHQ3iERjwhWqpOu9Btumdk31YpmmE6Qc7X0y8WoytTWnGSeBTtFlHgd5RlHdp4lGxQG5i6GXXFOReAeisPhklESChibV6fKuKXu/s3fy+Fnfne8xmzsYpRxZLHiMwc0phL+0gCVeMYZiGmMCZO9YEyaEcLWxFFQYhSClPaTLUmODVPz2eJFvmeescfwhbTXQuWORthRKFmPMSMHKkEBauIrcG6SIKhqb5G0GZm3ga8WExNqxZzo4/PI/18ScvN5J7OtmQaGRnDQHZT5ucfK0jnh3xjcsnnJSEjhZMvdT2W4QjF/820wASYL4eXSjAfDsnn/cx5Zhf/he+yWLi5bmmAoUE90/GwUZ2FvKM1T/5fAw+lQnrdd9uLGO4K0fk87jJ684QGPxkqVAZsSHSkOeUQiu8C40HHFm18dVQnS4nHg5FJhryWoikCWiLsfM6o6+rHD7YyOmLP93BVfB+W2rH3yiEtlzjIEEN9z69So3QlLZyXTpjCQirBHm8J+cpziERDL+2QRGpRqKZza9s4s7aCL0qMxpVQvG6ARoxeyNn6u7Mo0LChYYPCI+ySTkXM67iGYxmY5uk2oioDpL1AKq8GFkPTwtJjSoQOwmzid2jG+nEN/k610u+2WjlNPpFsWM7EANNIwUEiRaRaMeNM33fp9BBfLKdU1C1jFQ2n0tkOJ8zGUqN707J06HvDkjTDmgbvYqmFqQx2SkmeNnN4CM0w29hqIyxHf/4yZpB+gUPGXkItFy3M7qdWjM+/MprmFqta39b/smnptSx6gd1Jnk84+dXMuen1OZGPc7BcpR/H9+I2pXRfw2gZ5qitJROtRoNWGF+H2bCPQi6Pa0m227EO2RKy8936TZ+pMJ2XvXy6WZOWQ1sXfTwkNHVOV0yBnMGSB+04F9zaajCk10Vfr9Ur6hsRSlHPped+dCAGqysZuZrfdhmfMzqv3TGs5XmhYrYdr69CRp0xdqS2u/PaGRlLpyebhxHmEBO5KaQGW00p2NSIz2lmCSDM1MySkYF1ncdExxMsBmvDRFIhBX6GuWhoX5pISobULNNGg2b7GBP6WA4WQdSmFTU6BTOh2z0KpWhlmJPC01JnzaxTQGKOnvj32E4KHgfCQEqJcCyK03vSDySimPGAQmU8O0QYYDVi8COUglrij6UWtr0VIj4HP9PeXszzfjGcdiePy15ZM8lfsmue7phhJPI0ITFsj2YulXW5nos0DCIVEibFxXnpSyAlPSN9COECJpVipbMhE9ABS40ICsXvccZDJv4Y+BrwZ8Cf63//LbBdCHHjd/Dc/uvH9CGYOUSoJ7DExGZYG1etO/t8AKxF5uZk6m7o3bGrnWstZeCG8Y1siRZmpu+smaFqC90xw+x0VXhup570js4v4qg7P5IKTD9Px/8vZcfoMjFBEiLjPit7qZp7gXgSdHNL05mt7MQr6jgJPV1N6fNMJyBDCSasBnUZIJXAkgXaGnjIMYPZv6rr2KaVmaCIaIWnGA4r+v+XBx76BqoYSU9gfX2LlqId5Dq0r6jznehvVDah7WA2BFtXXUAUCVQzobGl79kflcidAejzvRB2JhE1hYkhJoiEhddyaLbSjUlBTnKZu50gahPp+0IoQZBQ8DIrggyhpqupp1onaDN/49PGsBUOSTLQ7nSW8ZRFXvraGExx48g9HZf0gl8mZ8WLfC1vYmmTV6vVWiCDKJbShClxjPbDZIGPH7csM/McDTzoezPKbNBtx44ZD6e5z63MkC6xgk5VyQAAIABJREFUdL/65J41ghBv3kIY6U1Qcik7zEj9W5rdVG4zjLCC7s/t+/aCqi1kAILlpBae07VwGcn5WjE11Z7XJDspYiitRzUz17RuLqLJJJ3TcssBD1FAqBRTYQzzzv8sw1EVJb/7wINIPrSZ9CxPr6nbjMdRIKIUeMgqLTogaQqUufkcdisGbIxm/HtPFCfvBxnEdZ9fJV3pjhEB3WuAgcRXDjMDL1zzmnwXhhMRt5KRFCvxuG4rG/HdrB4XRyA/CP48m6yR89naTGQxJZpODDyEIjcPeFAwb2MupeySBBnzN88qZUm4Z9Ax4nSRbGYsQrwkgY88hNnoVGalrnzLxIQws/kslpe2B7OG9b22iPxpfnS12lUBSrUwMXC0wV5nbtQTqe3Fvi1TZpP/2LYRpcGYhNloNrSsRiw+H3TeSs9NB4dr7HKm2Gkc0d2MDHpVAduss8rQwKZm461ut0FX5avlfmQGABZqlpYG38pTz1LriY/vDmbyLl3EEUaV2baWgsx30P0uRK40TM2F4lTckvJEMV4/7UIZz/WRGuw3usDk0wMPxUo8HkzLJNDrWo2BuCOcEDzgxmwkxzbxNUAjmoM8q9IiUj7TscG0bKZUvOaGhJDXz8unz+8vOLSiMSCeLwf1ur6hrj2ARi5jTbvNUMYU+aur49y2l4At2p/BC3xkO8eKdpuNrRZ79FdmRhFH6nv0tTAJCYhUxGQrZS0fysXjbbJ+AGkMcrB6qgM8CCEYXFgr6YpGMy5urB5JgQdTF/DqGvCbLup73YiZZ9lrBGAYEaPsIxQKN19hOrEtiAzqnSJcAjxoQC8CS4SEen0xbO1bESVGz4kSH6SIz9GwUuAhAZil63YBD0qGoBQzRpNw7QWdx2V9jqY2+TaUpKbzeRUtkr9oUMLPFKOIuvN4aYcdQDRb36hp5MFRaTcZX/stJAbbQgqE7eDX0s/jeyVMRxKqoOM11ek+lngl2Sb9q8ZAeAhh4zt2pxuIIO18Z0SKSs/ijLCXWpwJa+EQ8Gal1BMAQohNwHuBnwU+CXz+O3d6/8VDSLji3Uw887f8+U2wslTnrcdqFM6ON8C24/Cz4VWsX33Fwtcmi41o8kF1JwX1LBOFQxjGLi5qCe5Vf8rG1k5OtSL+ef/9lOw+zIxJpTSSpECfynMEHt6iPsnhaCPtnkXObV74+3ZS9nsoFtIqapQ434pZ1j/zMY5V13LK2oStbISc4AM9b+JHXvV6bpwYpzq8dJtPI5OECFnvJDcXPfItPrk+x1Un0xn67NYIJ+wYHS02FLv6L2Vt8D4mZy5ks/oq9rW/23Vsx3Vo6JaJsh5QC3bxsvZN7I6OMR09tOznzudzbJxsUCPPk9EcKJv6ydU8FPRxlZtjezjHwys+y8iOZ+mZ7mOFGkFa36Qy+jO0G5NU+oapPuCxQes9V4Y2jxEjoIWwSd+Ks5Y9h5dyPHzpMCYBawyJ3y4zWq+wK/gP1px/Pv13vJlXPLSR7V/ciVBxhSvPJJY9x30njhDKE+TnKpx7ah+BFd8YTur/hNkOedS6n+qpPjznc4xZ99Lfv5L+T3ycwxsuYcIO+eyhizhRtED5POSv4QK9kjiRQZ/r8WCuTV84R9nup2Y+gxfYlEplKsLm6DVz9Oa3sfWhr2OEJmM7dhHUoDSynsNenLj09KRV18lwgC3sxngGpkYGOFY4SUO0cTLtLAN/jr7ZPgKvyRwwO2+v5x0/QnCaG13Y6YJZrIwt+bwkaTeDNk6+m/oXaqlTYCba6ITxYHLvE1fjDrowHd/7Y9N5eqc/gbV2U9cxnJyLiSQk4lSmOpHopEN1+qTa8dwuWNDtsC0s3nvsJAbjQOp8nSQSwlm4oWku0bEgqaZ6hdO3IP56+WO0jxU491tPEwjJfUNx0jQcVekNC6wPh7i/8LXTHuNFi7s/xfZ/+ifeOrGXq666h28+88tc9s7fAsDLsOGm3QaJLMTWGy0nU2UKk0sSpQZoxWqZcy59F6//1q/z7eNXcLTHYmb2KCO33MNq89znfcq1/Cbu2/9Kdhe2dj3e/+g3KOVLtM698HkfO4mNRw4x5a+gsb7JzVdfS7MVYJgmf9t8IxPtcYJViwNDJ2t3dfxjXrQQAl79p+DOM1DcdhevCxsM+P0cO/gs910KtVBytSiSNXCYyTf5+Te/kT/5zGf4oatv5tGdcWcRy3WgkQAXBmG2CKHbSwN4+eWlk6eL/J49PFjeRM/BI5wYUUwboLxpntWaZYDinM0FDz2MNdXmf/3sFh780u/yhc3b6DcOcUf5jUseu/fezTR2nMI4TSEiG8k9OpC/n3x4grPaP8FEVOMbxg4a0qJgPsT9fT7vAAzTZHV7gMP2NMd78lRE3BHLExMcd87l0xt+i29Ykg19pwfQolpIpVRgUs5ywIo3RA0lmLJ6ORVZjMtnWB8J3vLUF3m1rLIh2sO1tTpfGozn+lyuxKxZB2wsZbD9yvfR/6XfIpz+a9aUHmbPulgK6vg5djU3MiYO8BHj5fT6A0hrnD19H2Hu6CS3/fbbzugavZiRK+Y56SjOf+wDHBjcyh+MPs3hIwZOqYLn5xFBnP9lW7qa0ekLOFe++U9R6q1c8aY/5ORvXA2cYM5M18VfefPLafzFdrbdch1f39nkzr1/QLv+Vq56WYF3PPTXHLQMypekbIac38M3gkl+y/Y4KY/xltd+GHbfD/lUXmcZkpY5zBt2j7BxZoCJ9Tfz2iOf58LNd7Dl6U+x7bpLmPrYjQgUH7n9X3l0APb0SlbNtbizMsf7j7a53/ewolG+6fXwuv1H8SLFR1dM8/7bTcaPhRw/+UWmWseZsJ9keq7F0doOQhXwr4f/hiBq8eyqo3z94D9zuPYsjjXCv23YyaUT53XOUQmXPz1yDNlcvAK+Ys0H2bHnAZyM+fPg6Ah7H/0yO+sXUz46xY6BGierNWbG7C7D6UIungPq5TKnpnVLzJ41tBsB0OBQvcXBRsjYzBBhQc89ep085BZ4z9xuirefYP+MB5oxaGlmQVM4SDWG6a2mGjr88vEJApmCaIYGzsqrB3FrD7Nyzz8gleTZ8w9jR1sAOl3GeqbKtGYgMuZYPW3SKh3iab/Ar7pVxMzRBddE+JIVUwMEtUnQe6GgVMatr+FzBz+ILV1kJQINkGU7AJk9T/Co6GXLyVlOFSQRIblKjMQUiy4TxMBD7uKLuPvhI3z6kd/Erp3FWq+CVCEPn/gs08LhasCSNpe1N7DDOMxxMY0/OsqKsXV8278GEBhSUu0dZGJiRsvg9CUOI8ZWjS/6fb/U4kwYD+sT0AFAKfUksFEptes7d1ovkSgMwvX/k57qKF84T7K11eSWuVqnnSPA3T/8R1x8zesWvlZLKCxnhr2MckwN8uXeB5lx9iOB6/k8jmyx+fCTzAanOFjbgZXddGjqZYdiu0wVcX70y11sM/4PhaGBZZ/bqB9jeuIp8pmWWEnrOqUCRg/dj9duYnmXExSuIC+O8CM//ruw4kJWn9NHuf/MkqFpIwUZeq0cN/zt+/Azjr+r5SgXBWu5KFhLWeUwiivZFAWcs+tb4JiMrFzbdbxihl5vH91PgydxsNgYjrBMa3gAHMfBDyVn7X881sJFIcebFt/2/x0r5yEPXkfeOsHfX/hVGqJBo74BYcLZF97DuVe+G7wK50/sYywXLy6Gpor1qiIlczss4QD+vRLHax6HawUsQ/DH4Tp+3u6lsfPLjLzpXVi5Auddey9fHWjhaTQhJ05iizrHGMR3G9z6Tx9gkBZtLU1yGhnNelhnhAOsy32S1d5htvVu47V3Xo43tZdzvvJxZqwC26fz/NmWc/mQtZkvBBcxpzdnZmQw0lum5QaERNRoMieb1IRFqVxBOD7XDE7RZ+axQ8W97/9HTGlRaxyBkwc751DJ0L0Du8AvBBfh1BvU6xs68gQnawYnTT6w+eO0tYHmfDTxaOsIB60ZloqVGQ390NjGJZ+XHNVst3Dz3RX/hLqftPJM0plQOTjTr8bLPH9m/QFuG92O9LrBCyfndkCGZjvd9KWdSE4/V1mu1dVK1JaJBlNweaPFSp0MqY5Jpj6+vdBYL1qC8ZBcWrd4+rnpw6u/xt6R+yhN76Yy9WxaXUewKRzFxKDeu5xT/osUa67jynf9Lj/+k5/knMtfwQ998Jus3XwpAGamvLO/lBroedoEePOK1Pg0kceZGYmSYZlcfsVV/Pcf/yyi7fN4cTN1WWT1TW/nzpdd/LxP2XJctrfvITS6x8j49gfZ8M1/Yeu6hf4LzzWKjVNs2vcYhpfj+uvP4dZbYnDokb5tHMnPINzFwYU7b/s17rz1V1/w+y+I1dfA8DndjzkFKpf+GK/Z9oPIvORUn2TXClBOmWxprmHNMNY3wK/f+2Y2rx7hdTfG36+bS9cKs9PCeaGMKV86PZC2XJhRwPawn3JjDlczHuoYfHwmLVAIKVmzaxdGJHn9xWOMNSo8W/xtHsx9lFJ16YqekbfJnbu8sWQn9GXZ4O/h4uLjDEQ9qNg0gBDB+/JbiDTDQ0iJY1dY1SyDEei2yhLThL+8ZDM1r8G/niMRp3fpZC6Y5fzWOAAzsgFRjv84NseHrzyHf7h6MytPPYFZqnL7rn9DBP28dmYWCQgnnkd8u8i3RvcAYCuHiy8+F8sxeM3439NYKbA1M8KxHf5NFfjr6CyaYR7D2YShTO7+nx/l5j/5aXz/u68FL1V8AgesYI6mfJB1QZur6g3cUgUvX4JwIWBkRsEiR0rDsDyufcdfY/nlTovIMJMfX79pgNt++9dZ8bIbyBWq9Bz6OWyvwCsvO5/+uuTqeoPB4TSvM22XfLvGP9COO0UVBmHrnQveN7QNCkd+lh21n2XzDa/jF/+fz3PzbW/jZ376s6xfO4A7/Sqc6VdTH7LZ3WeghOBNQ8c42R6iHCp+YHaOhl3iUvUkd4vteOVr2dJscf/Zklk3JFIhO2cewTDbzJq7OViLpcXHG/uZbB2l5obsmX2cuqrxyLlP07bb5KwUjAxxuazeYDxYHAjbuv4CXnPju7oes2yHb89ezmw4yitf99cEhmAyNLGtbnC9Wo7fp+oGhBPDOMpmznN5tje+7rORx0n6WHfgUXK1pKVovE62hWTUGmTMbXN53zSGF6/3nko28wZIiemeg0nIq2fnaB5P5xwZxDKFYu8gJ/oD1uz5PIWT/0I9r1ggsWxuxDWvwqhG7CoG+IMNRDTDp7fkcRcx4sYSNOobaDTTa+bkixRLOU61jnGssQ9lKZTOB7OM0UK7xVC4k+lwppN7lUoxcynxeRKGQNg2V1x+B0dGHuf9532WQr4Pz/c5XN/DtO6oFgrFpjBdT728RyVfQprDSF0dNs0MO1KDNiKMsJ3vjZz/TICHJ4QQfyKEuFr//DHwpBDCAb57HNL/wjHgxZT5gQT8zejNlgqhb4qKro6iTSLNKG0BJ0VEdfpE5zWulfFDsLolAM8VeEiid2h5qUUSvpEFHjTtSC88VrtG2y4QGTY579TzOpddbjpchTZeNKuLt94qWWVcz2LKjDXq025hQZvBUjnVepeO7kC5mWtkLH+9hBC07YQKHIGKmDANStLEyflEmB3dYCI96dKvepWu36au4/ZFRWz5DJgvzAjspRLZ782f7W6bRnAMTzmgwOUUtoj/7hL/lrZNkJgOZVpY+cxSKrTIywlmwx5s14TiEG29HkgPQtUmKsWb1ZpShJp9I0IDZ3wFhhUiBBwWcXvM3a5PqdqD4cZjIsLsGIlIYREYBkGQGpiWM8BDS0jamJiaJppU89zMZjnt5KDH1LyFOjKMDjCwWAyvSaVG5eGl7+vEhNBu1skVuj0eOt/FvHsp1NzBUil9/hHtD6Fkd0JqeW5K/a53e7RAhqq4RMTO0RnPgsxnDjE6bck6lM8EeLAW3k/1Jbr2SARCCbzC8gn+YT8xcMw4Zev7vhUpcF5YlfnFCKnb9UgijhRSw0TbiimrKzamyXsitUl0u5C2AwSw9VzmO8/TOCgThh7fcgmg98p1m1/we+ilaIFRam9/DKrXay/cR+LFDN/38SNJLgLT6+44MmMsvnb6hXSMJVKLpD983KpO04cXcch/LlGXcWLsqhqOxnGDee1IlZBdv8thuka7L2pi3YE9iZQkoNMspxNWpvo+55l4ygIjrsqH0qCm9dsdjfcybCslFE1tzNsUbUJlMtBM76fq7CHMnn6s9hxzmc9tuPH959gux5zYNV8oh+GSi69NwWeMCpYdAy9WBhBt5uI5Skb/uel2b18eodfAU5lCvOk4+IUiQbhwnpPLMB6yYar42/NHF2fjtZtaFuNI8MrMtB2CSJCrpGCVsG1KrXhOa6qlCd2RF49Dq3iIscFuSWup6BGJFpFo09+O75fxVptipKgJn+PNeF0Lcn3MyQJNZVLZeDFbmvHa3bQSj4MCSho0CweZHzUv/iz1QoumGdAbhhh2ev1CTUafL0E7XZhOJheFjgGpa3Rfh5FqVZ+fpB3OYasCUTSHGySvDhEE2K0ZirN6zOkJWgmwW+l8ZPrxGE/KDRGi0xpcaHDAaRtpO98gvkauWyHoi//+7HDcFaZpdq8nIrKQUZv6SHzAegucts7vFvEOMfX+wDWCTotK27EJMtN+aApUqAGuTJ6RrHkhIUIDt/li/N0nwEO2daelFEIp8sU+vFwJMFD6GiWMn1Af0885+PMqmUkLToHoAA9ECz/TSzXOBHi4h7gX4Lv0zy79WBu49jt1Yi+lGMjFKFd/UU+oZwA8JLrlHm1AJ3QSYSlIes5IFEZGk2iZaRIdavfqxEjl+QIP5eqZm53YWS2znkQS4MHI9Ljv6Xt+xkiNjBZXluPJ3+xZXDPqmT6uZzGpaV5H8gsrKaV8mhiUGnUix2AuiCvGwjizCb/VAR5CUCHTdpuSdEjWC1/rt0Kd/Rp25rhuCRBLAA/bvw88LBLebHe7s6LyCISNjYkhQkzRRBDiJCmo4xBqj4damOoCPXuWdeHDlMzDzEU9WK4BTqEjnVVai6gKGSmA3kCHSlJYOYrUDb4fNncglOCRgTK5ngGkZtJkgQczMdFrZzwpMpuFemIw1Nns6Y2ClybqUh8r1RB2L1SRYZzW7dzPSDus07gnJzOF05gl5xe6/6YXzKSYmlTHo2ST0ZsypA45OqEL5yUUtpXqKDOtJlNt8PJzlZFZpP0uHwwDjMWBh8VAmbqxOCggtGGccybAg7XwfJOe9rVWjbDxn59QCBWnhgYhDSvTJlLrmL1KEU/F1y2RybmZzj4ysxGy9Wvy7gvXmZuJfnaJcVt6ETaqmtSBm+sG0daNx7T2xszU/Jf8p4adK+JFEj8Cy88jMyDfAefEoq/JAmQJ4yH5jRCpdOgFejzMaBZeXs11vFSaUTd4Nx94kGeUZj736ACxKiBE0kLRmAdeZoGHhiPplfGcNCfirkSzjjbHS+aKZTZ6frPNXDP9Dlp0Aw+gsAYGEEAtStlfpqvzFWFyxDmuW3nGFHhHz+NzboF8MTaVzHpbtTWQLV+E1rIvJPp6CpT18lWbZ33jFsoEamGuKBdhQSwVCeg+dPbiYGOzHs87tmuAYTEb2LQjAzKd16RtU2nE6/zcaYxCpfaFkN4xSt7Cc4yMFpHRpKyPvVWDCo7T5mgYjyGjdyVNq8RxUWXrZdd0zGEjvQG1QwchbVqFhfN/zYnn1pOlBnWzzUAQIjMAdSiSTexzuH4Jwy9hRCbAwzxF/aiW/QgkLTmLkkVqso6vDgPQVgpfTiJQGHp9PlxOTAkUbqaTmOPH49o34y4zcaev+G9Srx+5ht2ZA2Q7Pjc/V6Zcia/XjuF4fpozuse3jEJyrQPYuRioawUSJ4yBB28RSrKr2Vy+USevx52SCpEBNAJhEmngIcrMDUkeE4jYLFwqganZpokZp8wY+FoKXKVwS1VKxT4QKfAQyqQwpNdR38aa51ujbUXi1uE6l1HfBx7SUErVlVK/rZR6lf7530qpmlIqUmoRa9Hvx4K4ZNNd3CBLbLrq5+G8N6WV7tOErxejvsoolTBHIdAVfiWpnxxlZqKPI/vHMRwXcckwjcH1WHa6SQh6hvGigY7Hw3M1OPto4x18vn5lV6VrqegZG8SpjPD149dwX/MVALS9gEfEIfatnGbX6ojHtj6JXd+F0XiY6vjIMkfsjslA4PkP8L4jaYLY9+qXE41upvfGKzuPPVbfziOTX2f79OP8+8yTrBzLs710FQxLDm9cSAeulkv010uMHpL8v9ffSlBwmfjWhzk4u4t1m8+so8Sja7dwYPVWesQe/GgPo+U+bhm7ka23/SCVxrd4w0nBtXM1Dgw+Bc0HEaXMdy8NuPjtsPE2AM5Z77NBHWR1bgr73PO6FtTvxdh2072Mn3c7AG+7chXv3P8lmj/1jq7nbOzdxD43RMk+HnTfxD+27mSs/K+0VlhEK7dSvf16zMIsB2afpdGGa1qbOa+9itxoP1ZlmGNqjAP5ixjbFANY3qUNdq8Pkc4w+Q2S1xz+Aht7jnBnczcrpxT9rQKqfoh8f4WS2cPxKMe0lBSaRUJb4Pb2YVQHmAtuZEqdTdG22bUmosfOsXP0CK3wcOfcHS8Fln7yzgu44NQBnhh1GZh5KN5AA76bJvV53+aW2TnQ5rLT7e76Xmu0iNm3tBmfzOVZeRAGT/nI01Cuk8ThWE8bJ9e98Tb7YyAv0qaTSdVAERGubVMZ6EOGglzjJO1jJtvZwsnh7ntPWCbTUS+tKMfIVMpgKZJndTiA17/8vddIZEhKUMyYxB5ZcQvG5tuTP8WfWyh2rQ9Z0Z9W0k62TL4mRrmpdt+ix5fI2CV/HvAyP/7oZX/EuWfdzP7L6hy8tM54u0pfVMRvBEzMnqT2zT/khmsXUn2/21Ectikpg0HzCDfMTHFOMM61rbMp6bFklBxe3jqX1WE/QxoQy2f9LzKb37P8I2ydmWbj2ELpynMNc2CQhnuMVk/3ePzEHTfx6WuuXOJVzy2+cHORr5wtKA52V1JvuGgzrdIKXnHry1+U93mxwi1UOfvoAFeeqGLnCpiZ7+GG6cWBMK9c6IB5TiAYbLqUWvEc4npeh6nk5V6YWeerp3Zy2aHHeO2J+3H0RKHMIu+5LfVxiXR3i0hvDsa9fu44dCs3Hn3hfh3ZSDZnQoVESnCfPcOTahIv7GNPvZ98b5PzqylD5BvFBjkty1MC2gJuP+5zxbcfThkP2Zbki8TJ4YCZeqovbynJcL3Aq/d8mjd/+69omy72+o2Yw+exP1zPodZGdjUvRA7E10cIwasmqlSlS5DXLZ8vuovt9TEOrGlz+QU/BIBlCN78+D/x44/8LT3VRynMPgUjD744F+55Rjnv8fjZFl/bINizWvAleTtPEktscoUKjdKTDDXzrGolLBKDyaGFWvylYt8lv892cR0rtp696N+vu+Nc7N4GN74+NmXf767g8dZayDAF7KLHXY9/gYpd4+3B4iAdgDO2Cbf/PzjgsoAJCyBXO4hxByOX59pJ6Nu7gh1zQzxavomnctt4uraS3i1XUj/rDvatfh35Sg/Nk6u44VSbC4tPYIo+SrUdzJUkkWcwPunTW+/B4CTN0nFuCSY5OjjD9tFZps0aA2FIfigFXHab4xwPV7DbXtqLaX64fSuxBx6lPhh7CjnnGxxfM8jqge71tKcSF9zCguQbG1yclkN/VKKIycpwgJrdZIv/L+w+v8WhNenrhBL4U8exr1nBZ+bu4JGpc7A1i8x2c/j0Y0WHOmWDBg5P11ZgzBU6wIPTjPch/WMXkOvLsWNNRG28xXBbYrZ9BppFdkcl9oheBqKvUfX24fbNMlo9zG033IoVHmDL9q/iVxfmCFecfw597rcJ+yexDx+gv5XjypuupA1Y/s2Y3hW0hEkUxt93ljE6snKAvqiPhlGnpiBEdsbFhos34JR62fTytNPMNfU6d03P4paqVMoDGM42LF3cPG7W2D+3nSDwKIgBrrs4lrVKfw8iFzsUXH/hGnpaeYx6SLEJq8N+UKeXJb2UYsldpRDiE0qp1wohHmOREpRSausiL/t+LBJDw+fzO3c/EP+P3mQuF7koBMOkv3ecs6/9eeyjPrTAxKDHdFj/i1M0XxtSyI+wbdsXYRsET/5o5/VOpczKEx9nciSm0C7TnnpBvO43fuOMn/tG/++QOcV75TuJIofriftyv/XGDfz33Z/l1ouO8O2eJn+w5fe5Zq7GTT3ve07nsjPs5fdrD3c9Vr1wK9X7/q7rsZf//lv4/Me+zdNfPsmeymOcV/I42N/k4/13ctnWyxYct7e3j98U66EK28o7aDlFKocehUOPMv7qM9P2funyDfzu7Tfy+BffQK95gAM3P9pps/n6D/00x97zIf7g2H5uH7G4f9XHeG9wS/cBXp5e58GKzevEJ+C6c+HS95/R+7+U4/offk3n3z9/6ya49X8veM7db3wHd+t/P3V4mtf9/v0AfPQVl7D53fHidPO1sQ76yTf+GuPhAKYQGFddiLj8pxkCbs0cr8+EC887yr8NnYNo38KvPx7fOJeUHuaZXV/jpvv2smulRbHnPbzj5h/iij95gKhkIZttNh09iF0qY3ozTAY/TsOYoGp+mUsvPMKDDZ8HzmrywNYmr9FdtcwM+2Xt2Sv5uw/8Nzb+4mdpVCLeTmzWls8wHjzX5X2HJ/i9EDAgnKeffd//+MPTXk8jn+OS+z8e//tdr13yecmCvCO3FmOePMEul+EomFonmlQKDBN+/KdvYs+up8k9E9+r690qH+V61pe6kyfpWHw4GAKGeE1jZ+fxnHC5rr2Wb/XtP+3nADD0ZixSNp6fboBXvfn/W/BcE8Wt5x3lIT+teF9mT/AH6rc4MN0L/NqC10glEQhsr7Tgb9m4avQqruo9Bx74AABfPe4wVtjG7vYT2Pf9HLl8wNpzb1r283yn44Z33stPfngLv7HP44aZExwL4oxyqq27Aw3nqKqs45zlAAAgAElEQVQ817W3sGsgHqC+5XWMuLIlipW9Ee/7h/cyNU9j/HzCyeWYKT+NWbmo6/Ff+tXfe8HHTuJkf4G/2lTjL0vdyaprW/yvd7/5RXufFyu86hDhM0NY0QzOlhKmPEIiEhtrLQ6EeaUiktgUTSqY2f0A5ZFLwY2NJ+Wcpv2+wHaaY5HHLz70YYpjdZwoBotWj67kh69IZVwJ4JAwHs4Z38KGR4coXLfiBb33/Egc8gWKUEne9d7b+ON3v5ff5HxGGwcRfb/EuvHUP+tzJVBVF1uXy2aIKJp5fuVPf4dffnf8mFimTeWGvsc5fnAEoYoxeIHikt1Pccn7vg7Ax25eh9VXxLvo7Ryvn+BTJ3+dtjXNtZkWvpeftxf4c3JnfQSAq299I9z6RrJuJkII7tj5FQDebwxx9Q//H1oRwG897+v1QkNKSeDb/M6rI155wMa6/FI2vexHgJhx89NuvP58w387u2senrKY61nac2h+rL/lTrhlaZC2p7/MW381zZ+utx8BG7AyrSI9h765U/zNJ95D8a53LnmswUqFn2qt55LRxRmzP/aT8Zz9oQ/9I69c9ygzq1w+8shdbFu9jampKT62ZwV3V3pZc8GPdV5zeOMHWfPNY6x0f5tfefk3AHjr4X6KhseqI4/hteCedxuYocm/H5vkL8YDPlupAAGXzsHYWVd1jvWewk/xzNFZLl3Rc8a0ctdxOChOkehFB+0pzrn+YXLG+V3P83SnJqvH41QFbvrEB1h53XuRCL7qTrIv9x+cLz8J6+AjtXTc7m1u5G31p9l4+wU88NA57D3+Bs7Oa5DJK3Dbh97PnpUmh4buAeLN+8f8O9gWPEuygPRocLRaHeEz/T3ccPZ+XlGf4p9Zz6Qzx5wKcQttisMVLq5fyyyKZ3qO8orb4vU1+sJHOOL9CWW3uwAF0DMwyGvLd7NvxGXHdXlGg7WsXv8z/I1hUXFi4K9ufw4XDwg6uQvAm978wwD89597JzMqIqu6zhVKnHXX/YytTN/zsnqDy+oNpio99Bgeln8Jfv4pAALf4qs7P01z6Gp+4ed/pvOaP7vjYsqmwTuBSqnA9Z/8C8Tb3sq+ZwKua2/hAfnlZb/jl0qcbpb9Cf37NuD2RX6+H9/BkJqmU+mPZRrCSHS3stPCRlo2ZSfV5rrFDJW64DLX62C3dau5ZdpEvaBzFYmsIh1Oth5afhhXEJL7eEuzhdc/ynOJI4tQ+JaKkTXxNSjX+7EyldBCYWHCVs609iqIJpadJmXCOzMtbF6jlE3l0VY2A8PdMpq6bimkQVZs9zTt+TQFjDOUeXw/umOwmG7St44u3DBKAhoRREpRWr+43Gm2HY8B28tR7u/Wfja0hKLumeTKDsOjBaSKEDMaxa8dx3AcTDeh+UGUaIblQoqzXCTJTdrFJsaIxVy2/7beYGvZlLm8IqErhO+TSDikvzSbpiPlCJsYdvd5G/r8pN5cJM7QSa/rQjGVL9V0C11zXvs/7BTvlhlTvIQ6LZYwfMyGoxkhbWzsZVo5Cn29LC+9v/vG4jS/R0wv/hpi3anlnYGJm5s+Z2YuZrQ4Rvy9GS6wzGbmuxl73SaWTDcDbaX7zVvpNTd1VdzPGIVmq4KGG39ny7FBziQczaizzuA7f75haP2Un1u6leP/TVHsGQZhg7Dwi9WudsLOElUxr1LtSJXSfFobnRoGiG768PMNQ7fINJwQO+mUUZi3nidyrEQXrnMQuQil/YVE8jGFUkQ630ikO6EGPeyMQfOBgVGeLKVzwBRRRyKWWDoFy5hLrnRbNMJZ7ESDr6KuFpy2lcMoOvoc4oO2renOOM/G2T2LV/bnxw4/BgfD5zjffyfCDeLr67fzeBnmruWk61ShL143XWxM84WzopaNzHtIJ10LumSt82KwFI+LbM6wWBRKsSFzqxWvl4VCgWIxnu89rxvEG1gVP16LevA0bV4Ki2pU4GQ+ZhLWHZjOxWBuf5BK2dxGrpvKryuFjnXma4elDQvDxKQ51DKiecxZS88BpuHgFOtUZo+zV8sOdjoTqExb92Nh+r2a9Vo6jnWXJK8Qz6kJQK8kKdUwkRrkqx3DxnLGr0Y1oY7OEYTq5DU50WKw8BgAJ2REMZ+aYvtaGlkuLDKXO/F6ZKF9aJyYgbAzM05VoUCk4u9pMS8pYUgiBVFGpiNlPKYMc+F6l6tUyfk5hAw6ZkIJS1xa3ePPlxInMcLWRuXVcpm27h7VkqdnW72UYslRrZQ6LIQwgA8ppfbO//kunuP3ZBhEoMAod5oDYymFoSSm1r0alk0gU7DBzxi7ecUcYU8VU/eMNtR3PvmNMmY+CdCR02Yye/RNuKHVIj+8cuGLTxMnOfMEd2xNrN0rNwa6nGOTxSIbViYJs4g4oSJm9TokzlBbnNeTdAuHZpTvAjsA6jKeuEM94drOaQCNpIK9lNPa9+O0UfbTa59zFiZ6UgTUIxVrGPsWNyWdCXQyoQS53u7nNL14HM74DrZrIg1JLmwhonjB7ZuLtYiWBh4wBCqZYo0zS8C8zgZQxtTGTPs700rkBckznlsmKoRAaAOqMwEeVNBCWt33QZLcJOBAYqDkePHnKxTSayZ1t5apmW7zPplpERp5maSxAzws38IwSfwbysZxTl/FNbR3ShSkZokbLrsaAE8s3jA9bnMlMJ+jz0rrVMwWKOqWcGbh/y651B5vrtsXNEznmiQBsnU/+NwSzvlG4ryfe/GAh+xc/WJHYhjoF/5r9EgvFQsoaSOERb5U7gJl7CV0/rlqTwrc6WkhAdwM00QgMJBndG+dLtRU7A9iOBF2JDGVwi93+yelnW/0b20KKP0X+TvubA7+f/bOO06Susz/72+F7p7u6clhZ3OEXXJYcpAkAqKIZwbTz1NPzguGUxEDcp6eWdQznaKIgigKiICISDzCsrAsm9hl88zs7uTU07Gqvr8/qnq6e6Z7pif2zO73/XrNa2aqq6uerq76huf7PJ/HjXgAML2JZ9oRYQ5rdzdX+TG8+8GSklQqPT5yX7fGcBIGdEiW+YZ0QxwrmdNfBwLV6J4gMV5+vq3HCOSZBJf7RlmEyCLu5exbs8Dx4LPc61NmhwmWZz1PWYslcZnOdbegeG3JKUFkXWdhFOF4qBy971iy1C1xmUi47XgymSzseFjqbo/YdRyddJ/TlKFTI4N0VQgiAXKqMc2zMxfHiDWiZ4Ulp8vG+4c77Uchfei00y3teHBSuc+87o1RdS1AtdZNV0UVezxNrGbfgWwtWwZSmWtY39VKzNO6QLNA2AS9Pj5ddtv9fGnhRPeGLa+pJT3VrMt6VvSURtL7vspEAsNLL/fFTZaZG4kh6dJtaqsyKSgh031maivypGN6jgejzJ0z+cvcSMuWQMZJ4a9pxNJcm9MaDNkIXUeS3/Fg6COfV8PvJ1QeQmg20nPepCNZdV9uexfUNQJpUUlvHyMQwPLaaUsfJpx+GDPqXS2ltAFHCDF6vKliyqlvbKBG+tDK6+hJQZflsDKZYmFSZ+EJ5xD1Q8Oa0xjUy+jZ7Xb8ZVkDwcZli1hafhkVezdhSp2O0HC956njt+ISABJaOVHNqw/vKctvqXD1HE7ochumlREI1o2jZBZQ6QlAbWfs7J5wjdsZxI5pyVHYb2gYeU7dG+xaC4NUxqKcVrmYX13srZw0FhcWelyZRnWsn3ZtIYeckfl47cteC8C7+91VxtXL1xQ+2LFvcn8vObfwPoqCCCFoCPu58oSm/DsYEXpsSdQqXN6wS19DJOWj6YQTCNRVUm8NsjotjOSE6Q9CPJiJhCj3xCBlwKAm6g7Kg1WucylQESZRuYK4bSCbVnNJt1emyQ5QYed3bH3kAjcEPqa5HXhaURlg2erTGHQqSUUFSakTTo7/mRZe1IZWVnjAlU61EFYMMUwRe8XyJkxpsGCJ27lnlJu9VXDPYdfR1MRF57npTceuyHU0Cr9JVXyAtYe24avNOCraFriTgCWnHjXm5ziE+zx1OjplofwD+KjpXh+Bm+fdsCoTcrrgaDfv8oF4/mctkLQpt/1jhl6n6WUJ3axEdO8AYH/KDbusuubaot4/E7xu6eto91JnNLop0/6PrlDmXt4XdG2ft2YVAP5gCF2aaHauA67+6JOIlAkalx7DZFncWEMCg2ULiq+eNF4WBuppSklq5y0fe+dZQLnfQPpqEXodVVXlBLOc4E5ZgYiHiioqpdf32hqCAAFv0lI5r4GwWU6VDCHGm3M53LZzXN2N8II4NckyliXsnHEHgPTOkXZAOMnpcTxEPQ9LvxWmx7tHV3pROJcf2EC5I1nUmClbesbmdQyW6QQcd5+U1KhZ5N53b+xzbZxnjh4Vk4wdRffKGqTnxDQSMWRWVEV1+TzMxhAioNNT6Y5bBn191FRkFhwsy6C9Z2wnWLQ8THddA8clXMFeR06+tOxkCacWE7YdKnwLqKzNep6yHDxN9e7fOyp2EK6YRmffiSPL0PsqsqYqo0RRLagqo7HCz0mLRp/aHLfmDGKxcnTL/Q5Wr17NggULCIfDlA8rNV232L2vnPnL+VCvG6VS7juaWr2SV+fDnkZ30rkm5kZbWv2noKWdgwOnEazMShmsdZ/lpbXFV6Gp8CLValec6P4fXEoyGWD+UrffK3fKCTplQ9GKi6vns4Q9dFdVMdi7gx4c+lJbwHE4ZC3hUCyMnvW9zu/aR9Uad/xqmzHM8CHKvXP6vWvhCJ3eSq8KRXkCHYvaFStIes6Iuqyo4gqjkkNN7rPTH64h5Tkl6gd8iMEg24wULaE+5lVl+plj559AIKFz9Io84+hgHYTnE1r2BnRLEm66wLXD5yfYuBWjrIfainqSfvc7r0jkiWCYV41MWJAlCO3z1WOaNYRCq4a2bUlmxhLBYACjvA1put/5shXLQfhYtjyTfgawpjzAUd44Sa+qRq+rw79sGX2ik4QdRYqR1U8OV4rpCSLAJiHEw8DQ0pWU8l+nzSoFZ37045wJ4Ni85ZlOEtLHVSLJHvt4lp15OWx0BbHu2fod3ty8Fa0Fdl+eWaFa0LSAt625lePWvJnHF17KR+Obps3Wno6P8oPUdXz6S2dSPc8rQeN5wHeFK7mRj0EK3vlqnObXXcGCPIq0o/GNK5dy458/hoPgpiL2v+5HFw6FBt9www1IKfH5Rq44mz6D6/b9BKvV5JSzL+OSVQu4eNcdcE0ZYsGKEfvn45NXvIVPAlxxft7Xz3/PZ4HPcu0PTufaPdvh8qWFD7b8ArhxdimszzXW3XBJwdfe8/PvMHioi0Bt4cHGlTf/GnDLQ3UdiPBPbQ/yugX/D+IX84z2CE+uWkF5KjPgqvAbHHRAVpqc2uyKWZmecvzCY5axf8/J/M/jZ3HuqUfxnTdtZNtT27h8mysw9PE853/v2Ut579lLed9N32eB7ZaeTHPCaRfBafux3/lBbvefwscTDxR7WYYw6ipJRfsRozyD6XKaVh5n3ZknLuXMEz839H86TzJckRmEfeLOPw/9fclpx4xIKRE+kzv+8iUAmr6e0aW46mPXAFBMIlYk0k4o7EeLxwgUKBF4htnMa5w7eEG/FG7sI9uVKIRAfrGXK/IIiwHU7fglx+634L/yfUsjqbrxZQBW9q/izj1fY9Exx3Pptq0jyo6Wkm++5ptwwr/AzScwP/Ae7Eu+zMXnfm/o9QtuvA4p5VDb6Q+G+HnCnbh9Ies4x7/mathw9ZTYNK+2kq/e+Lmxd5wEH/7XW/nwtJ5hain3G1RUr8GKV1ERChAKlIHXLdiB/PeTpuu8PnkKFg4vx57nPWse5tmm17Lj4EEalyziWLGM6EsdQ0r3E+XE6z9O4mP/gq4Jln7lA1ixZQTOyI2MSTse0ilGmYiHqU21aBU2i4C/Ji+kq66erwP15RU8+ItP4lQu5Mb3b87Z/7O//F/21C3g+pP/ESNlc0nsBapOPoFDwMX9Jm+J7+ex+aMLjS654osM/uaTdPuPYxG91Pb1UrZyNfEXWwBorFyAHvax4Maz6bhtPb+NH2BZzWlUZFUTed2l25FFVBl76yWfJ0SUL5xwFhefVrzI4HQS1E7hXc99AP9Rf2VeU37HQ8PxJ9LS/BGeC8El1W+fPmOu/rH7k4W/MjOZFGbh+y1g6jz32cJjhaH9AkGufP3GEdvXrBk58TV9Ov/844uIx8/jF/+2hI/slpRf2MBS/XH+WL+BlBD8etG7OPGi6wHQ79vNP96/EYTNB795FYFQxt5vv+0kvnTVcVQEinfWlZf5ufHGG4f+v+qam3Nev3XFrQB8ik8DcMKCE+je0UpldTurH93N787VqDKP4g8r7+ZZXfLx2kpqXt1BW7fr8KpfeDqrP/wWAPaYDQSCuwh5UcOBUDk2YFHGQF05A84TBJ16Pv7pfyW6cQtt+w9SK0VOynNtxUriK7bx8FF1aJ0NvOk3txOKSLr+43z2WodYeNGHWCGhNvTq0HuuveoDXEsBXR4zAJ/YRhC4gEyfYtY3sXjRDQCI6t9wsHYnda3nsW/5yNLEn73uRrafdTkyEQE+777frOD883I15o79yt+H/vYZOq2+/TSm3LTFt77h9fCG1zOc763JLMDo5SGOesrVI4vd+lnu2b+bpmWlrVozkxTj/v4j7jfwBPBC1o9iJtDS5Z5cD7s9zFfkrwilUyoJlWcmVH7dT8oQ4NdI+Pxj5i5OBsdyB6v+rIGF3wsz1LNKsiWNAFX144t2AFgyrxZERktiLLLzkU3TzOt0ALdEnO44+JMJyquD4AsiANE4SlTCRBlKo1D6DaUkNK+2qEotAP4yk6iVKdxTWVeHAHxZqQIiLbJY6WOh6eXLpwf3hobh3XtGwP0dqi4uPN0WAmdYxEMaY0jjYfyTCC0UGjXaIRud4iMqGhryrxTm07EQWWH1Rs3EwvXTh60a7McXyp/O4PPifGWBbi6fmnkaqQusCWQ8lfvdlZLYQP+scjoMEc5EA+mrLhrxcvY18QVmV5rIkULIbyCMBJqRIOg3CGaljWlO/tQgcCux+DBIGW5EV7ruvG7orrq0Lka954vFHzAxfAY+3IFysHzYMzw84iHteCib+nQaRwo03ciU7vTCm4UcGUZdHh1kcedBJIIUBhe1voyMu2kMtpceIMZIc2w4ZiXhwR6SXiRYQ18XgRMykZjVtZlywvMqAljonLh4ZNtYzPfgoDFAOScvKV7jatrRU67TVovntu3ZfzedREC4/V2cmVXq17L0fkSR/fxUEwiYOCKEFOWYpkF4yYohPYf5NZnJZ3lNAI1KysoacpwOAJomqCwzp+R5LYQwTMriNnalO57oDkNjyLWvV4Luj2OamejQhQ2NQ85DzUtjCXqpkmXpNkCIoRRQiUaoLECwrgoHgYWGXp6lGVG5ANsy0DQQmokv6ZbUrl16Mk19bjvXZ4u8Y4jxUJelO7W4ZgGypg0hBIaV/9oKzRyzHchG0zQMbHJyVMaBkdbvMyYn/DuXKKac5q35fmbCOEWG9FzGEbmNaSCc8aSbWQNw04s40L1QaGcGxsCBUMY2U/dCeocNAIaHpxXD4sbpFwUzfAakyxM2TD6EeARKv2HO4SvTSTqZyXfNQjcstyyrxGWrpxZPhUFTmeekSOfxGWJIR8Tn/Q7XFCFWCDhCw0EMCfllk645PxHHgx4q90Qmx8bnFJ9zOL+p+JDa7GgLY5Tok9GwPe2Fhv5ufAWU+k2ZdjxM4JnTNJwJjHfCPve7ifbP0silbLG3+tWj7hoIFR/mq5g6fIaGpicQepKgzxhaVQQwnMJpYmkcIy0qmXY8GAhdZByiU4SfBAKH0LDnbyjVYpo1HiTgIHCEDt65RLq9zON40KSkajAjJntiTwt2n5uyZXtthGaPveqoyQA47nM+r7eD8nPWDr0WrsukLqW8fY5unJwWyvK68Y+ZpgvT7/ZxthhFvMFfTsAT+ItEu2fCrCFyNR5K43gASBqZvrOsaQkNtoUhJbWVmbi7UKXbh4WqxqcjNGVoJsGYjVOVcTysWOSOfdPDGkPPCB4uWJmJRdQNA0dCmefoK/MiGaQQQ+OT9ETcV1mBBCw0zKyUI3/NQlIR738NfJ5PtW7pKayOu21KXwHnwHioz3KMLqmeh6hxUxoq+gvobmnGuMfpGvaE1xl0z/EQ8E9eM2muMObQSghxjhDiYSHEDiHEbiHEHiHE7pkwTjESe9iKeVm4jD2262U3s2p0+72Jf6Ph5U0Xuco5EWoXuh2jlpU/Wq750aWF35vMB7wBQb7qEmORFmaKiWlooL1j+gIBCHie0aMunfrzLD7T/R1QcilzBdOX6XxEQKfp+DWAoLIm8x2mV6MaUz0Y3j0uTHd1USszCXkREWFPyyBUVdykPyU1kuhoeVZtKmz3ma4sKmAtF6O+DqNmdEdeueM6R8q1sR0PFY777IfC4xgcZw0I9ariHDHDSedYH31wN/7hK64eg5o7CeiT488zlkEfieL0ZXMIeQOrplWlz8cekzEGV4EC2hmK6ccwImjmIGWmToU3sV/Fbgaqjx31fZaTAr8PEATD7r1YVhFECxpTHnFgCR9BYiOEfNPq/Lq3Uun3RPemPOLBkSTRwfQhvIWW8mXu5ChVPVLnJ2X6htYkpQAhDMwmd+zUnXLbClHROOJ9wwn7qgnEE1hSsKSni9CZxw+9VtmYcTwsr3Ov/0mL8wsZF4umzaLIKdPtewZlgXGcN7E+Ouzep43lC2bErDTZ/YleUcL2a75XVcVvQEUTi1IWi1IWWjAjihiqcie+y0+qz3uIaccfpq47iVXvOgraKwWnrz3Pe9GrjOFFGS+0a6k9OqPDUxYMkRLmUDSC6Ykoa+hEvW3dXiUvLRDAdgRxYWJkOR7CDUuodPW40TQ/rYvd/qhu0YksDC6h2xJE7cm3GXVZ5bZN00SvOABALJTfiSt8IYQ5Pqe7nySamJitPk0HJDXVsyOdaiYo5kr9HPgYbnrFDGvUKgD42FZwbLj5eJYcnVsGsGHpUv74+9XovjVcl+V4qA5Uc9cb7mJpxVJet+4RXnPG26bNvKs/fjKxgdyVgkq9nOWdn2P+wTgf/OBvaGhooKurK0fwcTz8w3v+kdpp6Eiu+uRNpOI9rFy7Fnw+qFsJC04d+43j5Q3fg3P+DYJzo6SbAoQmCNV/mIf7+3n3Da/FCPu49C3XcdRlGUHC/3nXyTzz1Bbs55+l54wbCQOaT6fxX07GqA1wqmigvPrLLD3BLXtrBnSu7fmVVy5zZB5gGq01yRMVy/KGi54ehZsf+y4rzxwZKj8WDZ/6FE5s9LJNV777baxft4Urzhpb8M86tJlQ5Xx8weJn6dnho9oEIqAAjj+wkWCbzrEHdxMs0C70BI7m57veRKBu/IPfs7/8v0Ta9477fcb77uF9V8UJL5zFQob/vrmokr2BUDm3PvRl2qssRrtXFVPPY6EaLC3CBzVBZXmQexLHsZA67v7ABwu+59DqvUQGU1zyD+8D51KOrj+W96/cR+PKBTgLLIJrp1bA86HG99O6fyfv9eU6sAKm+3xXexEWNe9ag90bn7Sw5XDevu5ZWvwaZ//rRzFWu8JvTeeeSOT6b7D09eeN2H/g32/mwF0389/P/4Sq2ACR8CJWXXUBWvkvuWZ9NxfE/sIFZxfIH8/igrXv5Lyvf4VNS1cTNgJopsE9p5+AcGz+Ocvx8P5zlnHa0hpOXDQxx8NTn74wp5TqbKA1eCKBhY8SDZ448sWPrgdPrPYD7/wRxzx9O+ec9+4Ztc+/tImmr/8Iuz9C5VXj7x+nin/99Ot46OEtXHHZCWCn+HhPvyuGmlXasW5hmLd8Zi0Ni2dmpfvdj60CBLzX21CzjKbX/o7gwHbiR63i38sjHHX0Gh5d/ChJO0msP4I2sJNTdwsqZBm+RRk7P/SWy9jfdvrQ/7oXRdkUq2FrSEO0H8vOIHwNEH4/b3rsQfqCYYxTMmlJC486iWV/3MWuSAMDxx/Pqts+TNv2ZzF8Abj6fzll5x85f0l+7bTx8PFl87j6lv+gQkS5+CIwtSg/vqyC1WKkdgfA4p99DSc5Pr2F8y96I40LJ+Y4OG/ZG9n7yi85ee0Xxt75MKEYx0OflPLBabdEUZjKBeCk1eNzPXHzVhwFtoMdA2NYPfuja9xVtwvPvmJazfMHzRx9B3BL//V2t2I6tSxY4A78582b+MDn+OXFSM6Nn5Vrh60gTYfTAVzhm8bRV6sUs49AeQ2OIzHCrtf8+Lfmio+FAyaXXnISXHJSznbTE1kVwJpzM68JIajuzS0vmQ+fJYnbBuRxPGiazlG9LUN1r8eDUZunDNUwVq9ayOpVxT1vel8n9HUSGIfjIZvRynqOhik0jm9xRac0X/5IKEfa9PZ0Mb9x/LoqNUtPpGZpnsH1WNSuoIhLXFqqiqvYY4aDNMR6iR45EaCzhvaylRxIuNGCpt9Hryyjl2WYBe51gLXvy57kNaABS05yHZ5a2dRHPGihWrY4KYLDysY5XjUB6TkeNL+O1jj1aTsLIhEW79vDwgUNhBdmIhVWvffKvPsvPON4tjxyBue96GYKD9a7qvMVF58BW5/i+z2XclER8dJLT15DXzzOhVvWwTx3jOVLuG16MGtFV9fEhJ0OAAurZ5/Gii0FA5ZOeb4I2rqM6r+m6zPudEhT9cYLSnLebHRdd50OALpJbVkdtZFDOY4HyJTgnBGboiP1YcSKC6jiAjgJ0iObujIvQrAcYjUDVEk38tFsytzbdZXl1FVmHP7paGsdAxPJczJIleZVlTJNVrS74qtmVmSk39MQWjXQzkbTT7hxOeFGz2Ffs4wVp39i0p8ZoNo02MuioTLkZsKmo8rgqMH8zgX/svl5t4/Gaa95zYTtC1bWULc3laNPcrhTjDv1USHEN4QQZwkhTkn/TLtlilw0DYSeox4MEMwqHzRZEZapxOdzGxW9KN+WQjE78QX0EcJPM4EhJbpjD5W+ysF7zsUExYymA3OCnc3HrssAACAASURBVOZo1TVGI+bLBN/pBc7teCkpmq7aoIlgeFomM6EPpMgl5DeGJvR+v9v+iAk4GqeTdIpFmZn7DEvP8eBM83gkLV5plBXn9GxcWkEyuIx0GLkIZiZB6cgCyxn7Glc21IPpTbzDuY4F3Zw9Y7DpIJV0J6+BPNpDilGoaAIz6C5AzSHKshxpYpToG73cHe87QgxN8IWXpuGKkbpthV6V68Xeqa/w9pm55yaYcp9/Y5a0p5rfHb+IaUyHn20UMyI7w/u9NmubBEoXx3SkYvjdnzmA6XM7dX0iwm4KxSzBV2agTbEoWzGYOBh5BNIAKPNWwvyzp0LKdKpv5yNhZq6N7s8/mDN96VJfSiRxIghP1FA5HmaeioBBj5fCYJa5fX59svgqMzNBOGAQMDX0YRoEjjkzjoe0oGR64D4WgXKTynmLEIFKZLwXsqoTNYSLH1cFKyqRZhki3oc268ObphbdcxRXl1I/YS5SsQAi7aW2YtyUhctwgA5pjVrm2jBNd2FU03A8R3+OL0EzwLEwhmlBddaeysr2XSQHZ06EtNFwxwMFx1czjPBntDCOFMZ0PEgpL5wJQxRFcOV3Yf5JIza//t2fYPfzG0pgUGGqq5bzD3s0FpedVWpTFIoJc8YbljPVzvgL3vsZpDN6p3d13x5O3fcC8M4Rry369hd49WOC4z5/3dQaNgGu/vS32PPythk/b03NWWxdFcVImKwusFJw2Ueu5X7b5vJ/vnaGrTs80E0dS2NC1T0Uk+MjF6ygL+aVqwz6+ZcNv+cMfzXw1tIalsW1Zy7mxEUjNZuckDuATpYVUI2fIoQXWaGNwwE7b3klrSsvxOxupvKijG7JV998PKcsrmZtEaUrhaYhfQEEoDe4Yelm6CqEdvivWH702jfxy3v/ztsuObPUpswtzv049LeW1IS3fv4rY447hjN/+RJ+kfgLi08ZWydJvOEaFr/2XOJdA3BQkizPei51E6w4+rDopBPf+22e/X09J198zbjsGi+/ffOJdPe42laLKhfzj/KHHJ/YAVw/recthvBFF2J/6lOYi5W45BBCiErgi0Ba5eNx4CYp5SytF3YYc+Lb825efeWFrL5ydvmHdFMnvG0RgbUzq2qsUEwli46ZejHQU684d8x9jpIxlrTln9CH59dxyp03T7VZE2L5KUez/JQSVHDw1bE3WEHd6uMKRlv4g37e/KkPzbBhhxG6wNKV46EUnLok0+6IgI8r9j2HueKSElo0kpUNYVY2jBQAkZ4ujTPN5QzTaVqar3gHR8PSCp6quwTq4M3nnjy0vSro44PnFy8IK/2uk8Gc7+pW6b4VRb93LlNXWc4n3/PGUpsx91h4KjBN+mFFsvi4E8beKQ/v/86Hi9pv9dfdSby88yHAIifgyXtWxbBV/bJQmDPf95UJ2TUezjw9E68RCC3iwugfCU+x2O1E0auqqP1/7y+1GTNKMVf+FmAAeJv30w/8YjqNUsx9DG/woav8aoVi3AjdQIyzlvSRRDLmhp1XNx05qwQzjdAEtqZSLUqN5pWTFsbsSa0aFc/h4Ex3ilp6MjMOB0fjMq+0pyaon0w1AS/dzb+8OKFWheJIIR1UkbMe4Gk8iAJpkTNJoMJ1EqbM2ZFqcSRSTIu9Qkr5D1n/f0kI8dJ0GaQ4PNA8x8NUl9BSKI4IDIMpz/E4jIj2HQKgdvHS0hpyOKN7jgdNeR5KifBW9EURJVBnBaZrp5xux2laZHccArX1C8NohqB2fjmGb+L2iZCbqx46etmEj6FQHI7YnmhjbsSD2ybMhsoNoZoVcAgs3+wQlzwSKcbxEBNCnCulfApACHEOMLtUjhSzjurGGspr17Dy1AmUpFMojnDKzzsXrWz2lVObKqre8XZ8S5dO+P0Xvvc9PHLL/3LSpZOv863IjxACQ/hoSM1cyTfFSLRwEN/RZ1H9rktLbUpRiDJX98Ge5ggNozqEA0ORD8WgmxrHn7+QqnmTa1uDF5xDtKeL4PIlABx/wULKa0o/qVIoSs3lRw/yyi4/Zy7fO7RNhPzIfm1c0UnTRXndCsp7A9RWKu2nUlHMXfBPwK88rQcBdAPvm8xJhRBvBW4E1gCnSynXT+Z4itmH4TP58A+/UWozFIo5Sf1H3gG8o9RmTBtNN944qfevPvsEVp/9/akxRlGQkCwnaB9Zyv2zDU3XWHHvLaU2o3j8Xmk93/SGVYeXzaNvg4YYZ/WMc9+2atLnXnbdu+G6dw/9f/47jpr0MRWKw4GGYIKKxTeyIJzRpAsuqCfe31lCqzJohskZb95SajOOaIqparEROFEIUeH93z8F590MvBn4yRQcS6FQKBQKxVSjacOSdRWK0RG+tMbD9KZaCN0YV5qFQqGYfmxpA2Bomeml8PtHCEsqjlyKqWrhB/4BWAoYaQVxKeVNEz2plHKbd+yJHkKhUCgUCsV0InSk0hpRjAOR1ngwptnxYBhDehIKhWJ24EhXtFEXmedf+HxofpWKpHApJtXiXqAPeAFITK85IxFCfAj4EMDiI6jOqUKhUCgUJSVUgwhPfUlZxeGLU10NmkmianrvG3P+fMz5TdN6DoVCMT5ObnDL1J67IFM23LdoEU4sWiqTFLMMIeXoyp5CiM1SyuPGfWAh/gbMy/PSDVLKe719HgM+WazGw9q1a+X69UoOQqFQKBSK6ab1v57BbAzS8I9KJFhRHHev28Dau3q5f63kn9520bSdRzoOOM6sEKxTKBQZUnYKM6sKj7RtkFI9q0cWBVMairkLnhZCHC+l3DSeM0opLxnP/gqFQqFQKGYPmmmgqTx6xTjQDQ2hGaBZ03oeoWnDavYpFIrZgDms9K/SYlFkU4zj4VzgfUKIPbipFgKQUsoTptUyhUKhUCgUJUNoAjSlxaQonrSonKbuG4VCoVAMoxjHw+VTfVIhxNXA94F64H4hxEtSytdN9XkUCoVCoVBMDBHQET61WqUoHn/QVa+XfnXfKBQKhSKXYspp7pvqk0op7wbunurjKhQKhUKhmBpq3na0cjwoxkXtvCY+vLaHtx63sNSmKBQKhWKWoRLkFAqFQqFQjMBsCGJUqTJoiuIxBLxQa+BTpS4VCoVCMQzleFAoFAqFQqFQTBpdiJzfCoVCoVCkUY4HhUKhUCgUCsWkMTyHg6nEJRUKhUIxDOV4UCgUCoVCoVBMmuVBP/++pJHXVIdLbYpCoVAoZhnFVLVQKBQKhUKhUChGRReCzyxvKrUZCoVCoZiFqIgHhUKhUCgUCoVCoVAoFNOGcjwoFAqFQqFQKBQKhUKhmDaU40GhUCgUCoVCoVAoFArFtCGklKW2oWiEEB3AvlLbMQHqgM5SG6FQTDHqvlYcrqh7W3G4ou5txeGKurcVhytz7d7ulFJelu+FOeV4uOyyy+Rf/vKXUpuhUCgUCoVCoVAoFAqFIpeC9ZTnVKpFZ+dccvYoFAqFQqFQKBQKhUKhmFOOB4VCoVAoFAqFQqFQKBRzC+V4UCgUCoVCoVAoFAqFQjFtKMeDQqFQKBQKhWLSDPa385d7TmL/jkdKbYpCoVAoZhnK8aBQKBQKhUKhmDS9Ha9gVgzQfvC5UpuiUCgUilmGcjwoFAqFQqFQKCaNbacAkHayxJYoFAqFYrahHA8KhUKhUCgUiknjeA6HRCpSYksUCoVCMdtQjgeFQqFQKBQKxaRpaX3Z/d21ocSWKBQKhWK2oRwPCoVCoVAoFIpJk0z2A+CgUi0UCoVCkYtyPCgUCoVCoVAoJo1tJwCQ2CW2RKFQKBSzjTEdD0KIkBBC8/4+SgjxRiGEOf2mKRQKhUKhUCjmCn1xi0fvOofWwYZSm6JQKBSKWUYxEQ9PAAEhxALgr8C7gV9Op1EKhUKhUCgUirlFZxSqu7rpHagqtSkKhUKhmGUU43gQUsoo8Gbgh1LKtwLHTq9ZCoVCoVAoFIq5hOW4KRZSltgQhUKhUMw6inI8CCHOAq4B7ve26dNnkkKhUCgUCoVirmE5DgBSihJbolAoFIrZRjGOh38DrgfullJuEUIsBx6dXrMUCoVCoVAoFHMJ5XhQKBQKRSGMIvZplFK+Mf2PlHK3EOLJabRJoVAoFAqFQjHHsB0HA/D8DwqFQqFQDFFMxMP1RW5TKBQKhUKhUByh2GmPg6MiHhQKhUKRS8GIByHE5cAVwAIhxPeyXqoArOk2TKFQKBQKhUIxd7DTkQ5KXFKhUJSIrtvuo/1rn2fVk09iVIdLbY4ii9EiHg4A64E48ELWz5+A102/aQqFQqFQKBSKuYLjlbOQKuJBoVCUiK4f/wCsBLGXXim1KYphFIx4kFJuBDYKIW739lsspdw+Y5YpFAqFQqFQKOYMjop4UCgUpcYwAXASyRIbohhOMRoPlwEvAX8BEEKcJIT407RapZhynIRNfEdPqc1QKBQKhUJxmOIgaSpbgW6rqusKhaI0CN1dV5eJVIktUQynGMfDjcDpQC+AlPIlYNlUnFwIcYsQol0IsXkqjqcoTPSldjpv2Yw9qB5ChUKhUCgUU08oWc75897CcmtRqU1RKBRHKMJwHQ9OPFFiSxTDKcbxkJJS9g3bNlVBdL/EjahQTDMyabu/U6rGlUKhUCgUiqnHdHzub2mW2BKFQnGkMuR4iMZLbIliOMU4HrYIId4F6EKIVUKI7wNPT8XJpZRPAN1TcSzF6Ejb8xXZyvGgUCgUCoVi6hHSTbEwZDHDS4VCoZgGvFQLJzJYYkMUwymmZ/gX4FggAdwB9AP/Pp1GKaaexI7NRJ/4Gk5MhR0pFAqFQqGYeoRXzcKQ06PxEN/ZQ+sXn8aJj17VPbGnj4NfXYcTU9XfjxQOHezim1/4Fnfc9tdSm6IoMUMRD4PRgvtYvXHabn4Re0AJUM4kYzoepJRRKeUNUsrTgDOAr0kpZyx2RQjxISHEeiHE+o6Ojpk67WFHcs927O5dWN1KYFKhUCgUCsXUo3sOB32aIh76H2lGJmySLZFR9+u5awd2X4JUe+GJh+LwYtPLu4hoAxxsPlRqUxQlRpheVYtI4ec/dXDQ/VFtxIwyZs8ghLhdCFEhhAgBm4CtQoj/mH7TXKSUP5VSrpVSrq2vr5+p0x52SMv1+ktVWkahUCgUCsU0oHkOB92ZnogHzeceP61bVQiry10fE5qYFjsUs4+EJyQoHZVSfMSjue2PEyvsVJCWd5/YqvbvTFKMS/oYKWU/8CbgQdyKFu+eVqsUU05fyuGlUy6fspq2vX19/Oc3v8et9z8xJcdTKOYC8e3dOGMMeBXTw+7du4nHlVDU4U6qrZ3ohg2lNmNWYlkpHr3vXpxZPLHSPIeDgUZsaxdSjhzU71r3Cj2tnRM8gYXVthmZKtwOx/tj/E7s4674S9gplWpxpJCIu1XblONhZkh1REkdmryGghO3iO8sPhrbHkiS2JOpeZBsHsDqy00j7xcGTx59KtHW1oLHSTsvnVHaEsXUU4zjwRRCmLiOhz9JKVNMUVULIcQdwDPA0UKIFiHEB6biuIqRrAuE2X5UBQfbhxcomRg//M63sCPd7Hn+7+w5OMEBhEIxh0i2Ruj8xRb6HthTalOOOGKxGL/61a+48847S22KYprp+slPaP7gh/JOWI90fvfz/+XxFzbw+AP3ldqUgggv4sGQGl2/2kpiR+6EIhmNc9sDv+W2n986oeNH/nYrsWe+R+LVHQX3+duTm+j376S3qov1zz0/ofMo5h693a5WvWWrsvEzQdu3XqDtuy9O+jjRDe10/nzzmLotaQ5+7Xk6fvLy0P9dv9nGwKPNOfv8eUEtB05eya5EHCuRX9uua38LAD0thZ0TiqnHKGKfnwB7gY3AE0KIJbgCk5NGSvnOqTiOYmwsz1cUGZyaFcN40kLzuWWzBpVgpeIIwOp0Q/aciEpXmmls212RaB1l9UJxeGB1tONEItjd3Ri1taU2Z1bR3tkFQKrAQHo2oA1pPLi/rd5cW3e/+CoAA/bE8qqdAXehI9VWOI8/mlVCL5pQk9AjhXSqhZAq4mEu4SRskCBTDgRG31dKCVbu9+skbGQiN2ohZbopVoOGSaK3B6Nx3ohjWfE4PsCKqUjKmaRgxIMQ4t+8P1+QUi6QUl4h3SWI/cCFM2KdYspwPMdDPD41AxbL7x/6O5FUoYyKwx+733U46BX+MfZUTDXp0PJUSk0iDnes9OS6uXmMPY884p5WU1kwVGJLCpMWlTRwHQ9y2CRh9zbX8VDrq5zQ8bVQGACnr3D0ZjIrvSKRVG3GkYJlqZD5UjDp6DRPY0HaYzuMrM5Y5rxpbQbLGfHetElJIYj25E/jcBJuO2GrOcyMMlqqxfu939/P3ihd1Lc0x4h53/RANDb6jkWiJzKCTUlL3Q6KwxvbdvjSI7/lt62/J9W6tej3PfnIej75ha+z69X9kzp/280vEnnu4IjtB2/6Aa9e+MZJHXuq+MMf/sCDDz5Y8PXn7nmcO779ywkdO+0wVeH3hz9/qFzAz698J0kV/pqD1dVFKuXe/wdbB0psTWHSkQ4JYfOH2B/o2bc75/UtO54EoDM2+mf43Fdv4YYv3sS3vv+HnO3P1DRxy1uvpa2vcOBt/4FMe2vNsYiHmz77bT7x2a8Cbnu368or6b3nnhJbNTewvFx9gYp4GI0Lv/kYv3t+8o7dn8af4mbnKeQ4StZalsUV193M97/9o6Ft8e0biT75TWTcXdzp/dMuWr/0DAOPt4x4f2J3H8ldjxB9+rtDzoYvpwa5pyO3PYjrbju0flkNka78FRFTg27bkIzM3giyw5HRHA/bhBCvAquFEC9n/WwSQrw8yvsUs5CUp+zcEZ28EAxAkxUc+jupxJsUhzn90TjlRIisqGHgod8W/b6XNu+iXIvy8ouF85HHwknYpA4O0nv3zhGv9d7+P1gHX53wsaeSTZs28dxzzxV8fd++/eztn9hksrt7ahymitlPR3WY8nKH3n0q4iGbVHMztuEO2Q4emr0ru7rj2jioJemprmL/usdyXk9pbpm7Lm30qhfxeCemcGjryU2pWFcRJKSn+D+7cMpbtK976O/hIdizHcfXT9jnToTs3l6SO3dx8IbPldiquYG00k4m5aAuRMp22NM5yKf+MPlpnFaVIBRM0N9d/LwiFomytWIlm/dnntHk3u3YXTuwPWdibGsXMmYxuH5kOpUzkCSx6U7s9q1upIMjeRqLDYO5Y4QBfxkA3RWNtLePdGAAJLy02Xi/Sp+dSQpqPEgp3ymEmAc8BMyOJTXFhEnHJ8SnKBQtTsZDqCIeFIc72Tomdrim6PelvOctMYlqMnaPVxYukDtQz66u4dgOml6MVnDpsG0Le4K5t7ZqY44IYv39+H3uPfLqgQ6WlNie2YSdpesgxOxdxU+nWtjeoCM+TOgvqbvaUGWM3iYKb/LoOLnPvmEbYEKPXvgaGDLTVs7V8PvBvgE0L+rHaGgosTVzA8dx7xmhHA8FSVhTHw3y+IZXuGrhmUXt2++lSFlOVplbLx3KSaSQtoPdl0CYGlZHDLsvgV6ZSW+1sxwMTspBNx2SSFJO7ncuvOhIS9No7zqQ1xaZcrzfanwxk4ym8fCIlPIQ8JCUct/wnxm0UTEG9kCSxL4x9D6F+4AlnanphB2R8Vn1d3XT0pLfozjb2LG9lUce2Viy81u9CZItMx8mO95yRVN67qRNfHu3e5/unZqqKjNNNEsb5YW6BWPuH9/VixO3SHgrMPH4xBwPqbZB4jt6uDf5LFtFbrPb/GILG0+6FGAoRHE4MmUTWXeQ2ObRK884tsPGvzxD/yN/n5Cd2SST+W3pGOzCYmLtTyIrXDoeiXHrt2/DUs6Iw4LNj75Iyrt/tz7+LMIbj+4bxyrakUBnb6aPt6eoH58OMo4Hd8wRs22s3gS9965n4NEXkLob8WAKh62PvUQ8kj+ayUiHyzspBp9+mt/c9lcG+qOEPEdE0ix8DbLnIElr9jppRqP5lX2kWpp5bvlxdM1bVGpz5gZD37tKtShEImXTIAbw4z5H0nIKlr1tbm5mYGCA+I6evGXE47b7LG/cugOrtziBxoGBfs4Sgwgt40yIJyIAWB0RYps7sXv2QfJ5nkruZfuLuWmqyZ2bhv52YgmkLTmWKHq8K2c/LW2uYdMTyX1t6P2pBJt778WeY+lYc53RlsiahBBnA28QQpwshDgl+2emDFSMTdt3X6DjR6NPpk3pDuwsa2pCln3CHPr71Y3Pc/vtt0/JcaebX9/+M5588u6Snf/Qf6+j/Qcvzfh5u369jc6fbcYZRy7eVDHwWDOdv9jCwf96jo4fz80srd6sQf/f6kdX2ncSNp0/28TgC23skq5y+47YxBwubd95kdb7XqKjYpCHrNxc6T89eB+vrK6mtX4ZToFqNdENHfT+cSddv96GPUo1jufvf4q7n32IJ771LeJbi9ewyEdPASGnwZQBApwJrLj0dPQO/f3f//VD9vTv4q6f3DVhGxWzg93rX+Gux//Eg79wc9g3P7sF4Y1/2xIppemRxdaOjMPaTs7eEtbpqha2NwtcV+ln4LFmDn763bR85Fp8mjvsFAJ+99g93H9Hfv2CobgyJ8GfP//fvLrraf7np3cgU17lAkMWdD7G9czCSKc1N/O3m/ccYGDvfnaddhwPNK4qtTlzAs2Tn9OlmkgWYjCW5Ar/K7zO94r7//o2un61leT+kQtiP//5z/nRD39E5y2b6bt/94jXm4TrPOiPdNB738jX89HfM8Aa3zaWhcuHtu0Y2AbAgXs30n3HdmLrf0brg7/ilYpd3PJEbung5P5MyqmMxUkmLE7z72Slk6uBNV+6c5R64TAQ6yUfzZ1PseSx+2nteLYo2xVTw2iOhy8AnwcWAt8GvpX1883pN01RLM5gMZNJL2xxgiuOo2GlEgVXOWcbmjgyB7KJXW7DWwrHw+FAX3fGcSCd0e8hmfRKQ8UyqQWDk6gr/kLMrUMf0oaFLEvXibhn4THIAtVqsqNcZLLwhD/l2ddTXU3qUOEydcXQ25u/k0+Hv05E7C2eleoS8UK0o1NUoUdROvo73Xuld8B9vrq1BE1ONbrUiITDJLZPXBvlcCOa1cfKUYdupSUd8WB5fe2AYWJ1ZSY1EomZlQrR25/fKWt7q9aGkGybtxyAwcjBIYcGUNDxkO2vsueY8yrdvbS1d7J9Xxu6kKS02ft9zybE0Hc9t77zmWSwx30WazR3/JDwxgiJV/MvGERj7uKJ3Tuyv7W9+YQmkiR29Y05NgLo7OnDERI96zuyPb2WpIzjRLuRkTZeXH6ce2yZO7eQWSln9mCMeNzGwkKI3PGN8BLMaxIBEkTy2mKl3O3J1BgR44oppWBrJqW8S0p5OfB1KeWFw34umkEbFUUy+uqQV66miIahKER2o2Fh27M39FPBUD9cCseDFjJz/p+ye3AGiQxkOq7gGKG7aaVlmXJwvGdyMilOLcl2AGIyV5LHxBNpq52PEx05KJCOJLGrb0jgZbRSVQHDzbuOlZVNuoxhd3d33u1px0NqAnoX2WWANc39HOFgsNDuijmC5fUbuqZzcPMu+vQ4VUmdchmAYBkDjz5VYgtnD5H+TOqJGGW/UpNxPLjfrQSSr24Zet1BUiZ9Q//77Pwik+kS4D5N0lI7zz02Fo6W+fSFxx1Z45MJ6sqUipRXhrSjt5t9ve53LpXfoSjSjgdHpVoUZLAnM8mWjiSx23X8xXflLhgMf7ZEYKQkoOPNAwIiSTKeJNWaf4KfTX9/NH327JMBYDlJ7A43EqP5qKPd8+oVOe+3YtHM26IxEkkLCydnTgKQ9BwRlSmBQ/5FCulFQ9m2WsSYSQqKS6aRUv6nEOKNwPnepseklH+eXrMOL3b37ub6p67nonvLiQ7EOaH+bHyOSb+/nGBVGRd+4eoJH1s6kjs7N/Go6eM++xww8g9JptMPLKXbaDiOgzZHPPM//sav0Q2DD37sHTNyvt0bnufRX/yUhvB5HNJ6+SDnTeg49mCKtp9sYHPbkxw37zwaP3gSsS1dJHb2crAlAn6dedV+EvU+Oh/Zhj9Qwbeqdb7ovT8ZSeDDDXGTUvLHr36RFSecge9Ji972l6irPQ1N6ETsCEfddCnB8nDO+RMtHbzyncd4LLiXC5LHEZaCvkQ3z2hPcd13fji0X+ehAzR//f/oPS2FuVuwlIVs0Ztp1rr4gHMOeIPH5//11/SaHWwLpjjfOI7q157EM4+08NbPrEU3J3YvReNJfviVH1Jx9Il86JoLJ3SM4Qz2ZzrUemv0iXOsb5DviCc56el6yg2389MnGBF0n7GDeFMT4ODDl/Oa9BwRyXA5TsxNtej46csEVtcQOn0eh765no1du3ipYh+96Fw/eCxV9fkn6y9uXAfAgYULuHXrTv4lmcLwmXTfuR2jNkDFJfll/l64/2leeWUb13ziA2hS4AhJa1v+MPB0GGy0L0KoJpx3n0LE4plUElN3jzMQHX2VYuszm7jlz/fxwTddhR0S/P6P9xAP1PLVT354XOfO5uDOFu74wie5+tM3sezEoyZ8nOkkEe/jQ7+9iE+e9hmOP/atpTZnVA544nmR/giP/ulPAMT7OwnX1dLn7+LmPe18eZpteOkvd7P+jj5Of1c9J7zu9UPbf/3Z/0LTdd71n5+ZZgsybP/Sd3Huug3fihNYcc8vOP7b97G60eb317yJ9t72of1mU+DeTT/9HdK2+eJH3gl4jgcB0hO7NQTEX3VTQR3cNqJM+ujHXXGNxvJPEi1v8qjhEC8PA14bEMj0C4lYglAoNOK9msxMmuZauo4pDRA2fbEoCc9JP+Abc6h+2GJZFrfddhsXX3wxixcvHnVfTUU85PD9713LC3aE+fEL+Mr1/w5ApDczltn9SicfiTVziv9VrFaTmyKrCZa76RPZjofIQ5/GbPgUP7tjHb3bOnnzB97A8iWrsLARUqAJyU/9T7DywSgf+NDlo9oU8zRdRFYjdrDmRHa+5RLMYIgVjau4a6XBR+ZlWwAAIABJREFUIt2NzPANc4A8Gq7k0NuvoScuuWFgkIHyKFJInGFTn/RCR3XKotXMn2IupXstHDnzumvtB3ex4ZqrWfLt77L6pCNrLX/Mkb0Q4qvAvwFbvZ9/E0J8ZboNO5xYd2gdW7u2Eulvw5F9VGph5pUtZG90HlsPVE7q2M5Aku/XLWFzZRNy1NzpKW6Q8/g35lLUw+BgG5H+thk73+O/+jm9bQd5wdxNq9494cFQfHs3TnuCo+UpOG0J4jt6GHz+ELFNnVT1xKk6NEh8WzfyiUPUmtWU2zrLOjPe3M72zGp0V/M+9m58kZ33PkmFqGFB/fkE9BCdqU7qfA1s+POfRpw/8tR2WgIJevRBNjl76Y22UV+2CF9XrsbArpdfot43j8i2bvq93ORnzB206F1DK++JRIKm4BJ0p4JuPcqu1CFeuXMHXa0RBvsm7oF+ZU8bEa2XQ9umrszkQF8mHDg8hk5K675mwv4ku2I9VHnS7qE8wkzF0GY0Iz3P/XKZO8BO16n26Q6OJ86X2N1H3wN7sHsTOJEU3WaEhJakTItxsLvwRD0eyUTC9JXpRHsiSMshuqGd/r/tL/i+fXv2sru/FSnl0OpHb1+hVQ/3c/T25I+IGI3BrDLApuaep2WM0pwb1m+m3Ezy0vNbaGlpQVpJxMDknvkX7n8EaUd48vbZqy/R2bWdF0WSLc1PlNqUMdnd7E6mLQsiCfcejCR0TrKWAhAzp38C8X8PPUCibDEvP/JIzva2Xc9wcMfMRlz0Pf0MpKIkd22kJ5lioF3j+U1uZFMypzrD7Ih5sG2HaOsO+g/uGdpmehEMSU+8zi8kTrf7rKajFbIjHrCsvP2hg+M6WISkIauCRVDPjHPSYePDMbNS2+Qci3jwC/f6xRyLds+pMnAER3dFo1H27dtHa+vYpZg177lwZpNnroT8MbSBpX0n4Utkohl6+zLjgPUvHyKsdxMQKcq1KAcOZfrmVCrrGYr1MPjEXbQ3DxLR+ln38ouAG5VUJd170y9sdra+MKZNgwnP8ZC1LVFeT58xwOv6F3JM1Md8bXCoMo1/WFtXFm4gJSzKy2zswUG6OryFjmHfufDGG7YmMURZXls0xxvXOTMvev7yuvtZfCDFk/f9eMbPXWqKWVJ8PfBaKeUtUspbgMuAK6fXrMOLloHcig9+LYhfDw51tv2dExd8tLozE77RHA9y6KGcqgFLbp4mzC3Hg4M9o+F4wcqq3A32xDrGxE63A9E1dwUktqmzYHib5STpSbRxhcykOgx2ZwZq+ze7q1D1voVDx+xJdnDX4gfcY28dOUFM7hukRbgN/V65j+e6HgKg0Z+7EpGMeiUgHYFPklPNIO3xTnS5OYWaV8/9gNZNvRexY42iRzAWh9rc4xpi6sLnYlnijbZmjrInDPS519jCGcpj1Cbw3A1PSekflsOoe+kbhkiQ6OvLUZ1Ol4nq92Vd91jh65Ea9ixYyRTJ/WPnPdqO+xw5Tub9kd5o3n2ldy26OscvjGflKXeljxGwl/RKdCWTyaFyqPokHa+BcncikIzN3ooLyZR7/VPO7Nfdkd59o0lIzw9TspLKlEHQrhyqcDGd2IPud6rFAtN/sjEw0u2EY/HXg7ntb3YbMjvcDvDc1j0EhEVIJIl7z5vmDSsTwn1mDWycqPvMSy8iMtvxECeFM5ibvpaIp0CA30snC2mDlDvu95MSWW3aQP7nUAoNId2rNPemoO6D4AiNeNCdMPnHiLI7nEnreBQzvtRUqkUONVZmipfuo/simfHi3uZ+mrRMPx+LZe6z7BLgjhBolbVDxUJi8STSkVjYVGUtiKS0sSMZM8fN+o68hj6q2bSLPnThcEHqWGqdcE70EkCvk5kvRXv7Gehxx8Ry+JPuzXlS2BipAnY5brsjnZlPtSiLup/L31aaanOlpNhY5uxZ0+SW6I8gtj+7jh9+4J/p/nMzF24ow6cFqA8sxDJ0erQoIbMFQ+ukeXNHzvua9+7h9z+8pahzWN1xAqSoFxFSo0ws0g/llA1YhMQcNvDPbqh+9vmv8FieFfPZgi0tKFbw79Bm6C5OsbcQ0mcMDcgAZB7Hg+VI/tbVXzAaQkpJ7yttSCmxcdinddC97SBbtRYOiG56RIReMUib6CNKgi32Dprju+gyDrFVb2af1kGsL0rzc0/ywvd/Sttft9JQdzIDFSG2aM1s1ZvZ4uxmIKGxXr5CJOnnZ5/7Nr//3I954Mu/5OHv/oGtvV0cNHpBSqwyk95KPy/K7ZjhebmfJRanRevCTjrYjs2Txrah1zoOHeKOX97Nw396lDbRS9K7LF1ahArTokm0kcoTIZDY04cTHfs76/GEIIUorrxTMVhZ3v/sZ8iOjCxlG/UGw5JMAzvWAsxN//0e9rfszNkmLQdNZs6WGtYBCy91QYo4fT3dOJFUznv/qrWREJlnMjZKSU85bIaXjCd5cd1OHtBfZneocMRDS18nUrj7D51noEBYo3cR+vrGv7qQyiMiN5ZsRtxrj+LxJK3tbueuC0lqEjW7kwn3nhoc7J22EO7B3h5at28be8c0PXvdNgqIPvwE8X37uHr3hfQdGjvfthAtmzbxymO5ERPP338Lkb6prqbg6aHggK2hSw2hVzFo9dGIH5+Y3glEPDaAlqzGTu4iGc08A45lEwg2UhZsHNpmpVI88J9vJDaQvzTbVCC9KAFsi4f3tXOe1c4xlrdaKbOf0dK4HlKJFHff89TQJPC+h13HsyZgZ0sH+/btGxJ/TOI5IoTNbj/cf8HlbFl7FgBG1tcaJ0n733fxq5/8gNhW99pGPc2agOeg0EVqaIIjsiYsscH8Tk6BxPS0EphjqRbS+3y6rhHwBIX9s/QzbHt+E+v/9vSUHzexezeb1j3Ib1/5LYcGXLHj9uY9PNb8GM4oESzpbswRDr/+zWew53jJ5YM7tzPYO/GJaWN/ZnEwkXKf2chgpn/e0LObWhFFeItT2YsTg1lOvX1LlhAtK0PzLmcikcKxbBwhqZCZaAJfauwJfFrXR8u6px3vi2sV/TxtbkdIqKISiUAfNu5Japnvv6u3h/6hCI7c/dIOi5Sw8NnlJA+M7A+Tts2Db3oPqWECln/d38VTB0a57pF2aFk/+gdNRGD34yM2p7/Twa4O/vb696F1HnlOxWISx74KbBBCPIrb250PzFzS4xzm0O69xCL7qHu1kVq7gVVVazmm6ixuKXvU3cErY9v2yjKOvSCzYvzXH99Jsz/OcZteYs3xJ416jr6D3fyD/2VM4ZAYvIhAfX7P3pDjQU7NgEWCG/GQdbhILEllJUT6BzigpQg/1TJrY2NsbMxiroWU8ONz3L9vnHg41sbudSzQMv47O5lC8+dGjPy0pYObdh3gl8ct47L6kf695gMt+KKCXZGNxCuqecb3KnVOmE5tAF0K7OGz2wD4fEmSpjeJkfCatuMJbLZo1NZQHbBYV/kEUuzLvKcamhIreKksE9Y44FgMpjqo6g7S6XdX82PJdsr8jSTmLeFFWgj6fVxq22he+H/Lq/vZ5YuzIh5k0Geyy8hcu87ODtp37sDvmGzzRajRMx7zA1oPp1cu5OVnn+O1S187tF3aDh0/eRnfojAN/zz6M9Hf4TryLBGbMt0R2+u0Danl3DeRp1qJPH2QBTedPbStx+sIKwwTYVtENSgbRdjxB//7aZz4cm657UZuvP7XQ9tl0sbEIOEN4H1OrtNF8yYpCZGgv68zp1zm+l372e/bnLN/897twPH5jRh2if726KP8vbmLxWYvIes54Jq8b3NiFvggGslMAFIFVufSq1D9A+NXkLaSI50ZwvHn2TNDPNYOOkSjB+lJZPaNxBJUmxPLmd69/UkAEokI23u2s7pm9YSOMxpP3nErrz73f3z0F79DFLPk/9ANrmP0I0/T/YggxEI+xHKe2jbxVIt7/8d9hlZf4P7ffmAnwU98g6c/vIVLP/atCR93OMIbHAppoUkwpYbUY3QnujDCZdO+yvH8o99AswwSqXtJ+jKaHb0dPXQsWQS4Dl8hBOt//0WW/eZV/m6/h9ffeP+02POqfy8numdlW1s/ry3fx7HepKAiBp1esFWpIh5+8OALfK2ynMSDL/GOK0+lZzBKg3QdDzv27OflJ/9CVaCMY6wVWMIhJP0MigQPn3k+FUGLZk+XRstavbZFiu/u/h4PVD/F4jtrOP/6tw2tvAbIRJdVyRAtdOV4cVsPtHIia0fYaSCQ6CSxEMy1yaf7+UzNoUzGkBgsk/kFOEvNwz/5GVash7WXnD32zuNg9xWvxwD+63qDq6LnYtDIoRe38sXk17n5wpu5aHH+nHjhOSVsJF+z7kc8WM01b/j0lNo2k9z9319i9bmv4aL3TUyXaO0mi/1uQRgisThlfpNYNNOX9jtdCAHHWU1sMvYT7cmM0yL9mT593ZlnsLO7hVC0ibgPEs39Q8+oKQ0MaWAJi6OLSHFJeZHZRtZkP+lzHYx7xF56tEGa7Go64/vRgw4mw6p5+TPRUt39vUSMdN8+fCXCczxgU2YH6fzlFpquPz2nT92z6nJSIsHg4otz3nndpr0EheDl+dX5P8TPLobe/aPPCV66HR78FPzHLghlSrDffsMnCNfVM1hzLG81z+DRFfMLH+MwZcwRuZTyDuBM4I/AH4CzpJR3TrdhhwPnvf0t+Cwbabt5xWGzGk2MvOSRjtwVFE34QcC+rWOveu3d14LprQrF8yjbp0nnvIkpGrJIIfEN81tFPG/pvt07cYREGrNXEMnCHjlRz8ckIx3SpGwbn54J5Y1GR67UHPRWaPcWiFzZ33oAgJbB7TyfdCeVnZrrCCj0WZJ+H8LRWOpVN0j1RKgQ82g2X+bP0QNIIanuOYaatjNY8sKLvOGee7jq7ntoaD6WxraTSdrQp0WxhD10rgWvbKRv8cM82HQfuyseoikWxBI2qWTGbstbAXeEGAqAa4y4f/V09WAJB1tzsIRDQssMDF+03fSPwYO5K6vp1IFk89giQAmvPJstHA6NomswLrzldT9mbkWXgRQyaedEsAxG3JUCIQSa9+mNUW61yKBr4/CVHJl0E4IWRMupt8pHhBKmV8YsHPr6ejIRD4ZGLCv6KB2i3D9YeAU83S6s6XX37e7pw/Q67n7KC74vXZ52sDfre5H5B/rpNih9fcZDeuUqOwJkrEVAzRusC6lhZ4VHDEQnHglje9ESmh2nI9oxxt7jR0rJ/k0bScZipOJFpuB17YT+A9g97sqg5omQmo5vtHeNi65De9CARGf7mPuOC6/vkkIihStMGIx1sqH7EVJWfNpztfv7Dg6tn1tZqU2bH/nL0N/JuPud97Xscv/vyV8udiqwncy96W9zr3VcpFMYSs8hz1G0pyeJlUxRa0dpFa5DfefWTf+fvfcOsOsqz71/a5fTpheNNKMuWcWSsdxt3HFoNgQciiGEmpsAIQlJCOTLd/m4uTcJgUAucagJzRjTMS64gBsu6lbvXTOaXk7vu611/9j7NM2MJAtTzHfff3R0Zp/d11pveZ7nBaCsOdVkaZv0k8p6xB+3Jfz5xfMs/lv5Fta6C/CEx3PNfvUwbqZQtiSX9eeTsKz5EC3e9ERjKjVLVVIodKWhqRfL4/n1mLScGuJBs6o+lPZbSh3w7BLK+9XRztryCi/j+0oiQLBsGdsy6/YVb8MTEhSk879ca+jfpCmlKOVz5JPnj7Ay7Dq/JEgUFK3autJqGAilMU/6Y7ieulTINPpaihpKQVkemUDLSUfjPdaNdMgmziUlKqtJx+lzu615mFLDPr6BHSM/QZtx+q99mSnmKQbtNSWqAYVY8Zcc4WF6EWTWxp1qXFNVUPRSeqOPU9ageCaSVjpAgdpnePdzo/65FmvPr+LH5OJTYPnaGMvdztn38Ttq57SWKaXGlFI/BeYppV66I/nXbJquITSn+vo2G+3TeUiAM1VrX1dITuEY/mNJjZ99wjk8XINBFzMzww6hVm188RQeFMZpPZ6y+UBZf9CvllucI5XhN2BK1Np1ndH666BS8vwXf9PVMLVa4iGdnu68xgK0QHGW42Qm/Yk+jY7TVHPCQvGxM0ZhzTmNjpQfJLXIZjShkYnplMJFhFToVictuTjj7YMMd1pELAtldiFVC8dbBxr2pbsmhjzMKtumGLGZp0royq8wWKW6gK4SiAtRhfEbQfCXiceRQvnOATX1csORZEP+79xsY3CoXoDmg1sXsB0+OjD7hi/AKvFPSBkNiOdKe1Ll1AJbq9LBQqiqI6Sd4V2TAeXn9C3cko2HRATOsxKnJx4q9xji+WyVJ61FdIp17ScN/AXOcmYfj0IJdKXhuP4cYlsu4eD5ZJiuGl87B9/ik7W5SpsBCqukqo43y37hfMpK55xuVWut5Z1t9aqf7OrmqlTy/KGrXlCtEbJAPP3iJx7S46PkEv5+i+dCSVEKUqegnMYbaKTq6C9ilTQbHwPAOw+azJmskliQQuFpfuKhK+Wvh0q6fgL7l5h3z2aFfAZPC7oy1UF6j294svp5csgXTrQy/nsjf4nE1dks6tSe2bKk72p1yaALUVC0eLFQi+djoSDxVrbh1O4TmEiOtfQilaCY8Nf9mAxhB/oOFeG5poAyULkG17MQCEKYeEKSN/x7Om7GUa4kF3QRqtORxJxh/iqVZnsWCg2B/luRrjl3c/OFQFRTNCS4y7+lqA3llUFZFM8jmTybyboORpcM6gi7kpz0x8bWsa2z/rZ+ZGhoGM5LF8buWGVQ6tzWgVlMarVqei5ooynr6BC9Wp65qgMjSOqU6+594TTKZKTOx5FSkEj4+ys4KQQCAx1XnEOyXE37UH1uLpKwMrADHQcN8E6b7rS69SBdylK2/bEhkVW/0xe7DopVuBhB0rKikVazILGpNSbpPV3gaOcwzxbO4ANU/lauHdOqE8luc/x4oFtFSIzPTmf9XbQXWpL+IPDVX8WJ/C7aQ1/5Z/JrbuZCp5cBPc6UVDyjPz9tu4gnmdi1n+/d9xCXRjvIB9z04pBThXnOZqP5UxD2F9dcaubqbr3ivDiXYPscTAmFpnwnqBIQZXN+hjQVdE74TSUeCmWLr33yTsqax+vVTvre9FE6L7lmmjiRdwb+8K5du3ji0cfoKTVzvfUjThUOcuQT/5uVXi+J1BFGemK0j83h+g9dS+uhr2EM/IK75V+CUvzt//jTaftbXV7FDX1v5tv4iQzx7OehPwqv/VR1G+fZ5/hI/wmS2cthSU0z4emPfI+FehfLcbkvuovkwlaEBsK2UKEwRjaJbF2KG2p0woTjokyD1lSCpkIgeKjB8+Io+4pxVMylO55GoNGVOsK+Cxz2mYKVowrdLeAZTXz4R3t45lV9GJ5HORqlNePSGbNxbX8iP156OSuVP+nnMmlaO/3sba3ALKZlu4qZDBKFE9z/iliY7hRxY838WGymr9AY7Dplm8NuEauUYsEsz+yZe74BSqG8mrNxZOs+brl2ZmqGY9l885++yLz2Jt740Q9w6tgOfnH3Id76sdtobmvMQmtKoSmBrnxh0opVEw+WB0Gfa6tsgw5SFxjBIqmfITGkZTTQoC3X1fB9MVdGCYWQqqruXm/1AlppxyXxjTu5s62JUFpxQWJd9W9hpwThmj5B5gmfWtP2qlqLzIqT7kkHCOOWLTorKGc5O+BdC57h8GBNQFfMVJ3zZPV8beuFzwvS80CDXtnBpBY4YmdRq9dcCToIV2KatbMaPzXMujUXnNNxn7r7IO1zY2w/9RhXX301YS/MDX3vYfPkg5z8zD24X389Rmg6suDo8wd4+HP/yJW3vpsb3vO6GfZcs4n+UX7wD/+D1t7bmbNgijVL38qANk4hnaJ9Xi9f//DHGWkvcMUdN5H49i+49c8/QrnUxpN3HcTODWOOvYZUuMCS+CNMds5lmTeXfn2SDuv8A3antAnlpYBb+NA919F21KNv3VU0TaWZHDjJ/Z/5R971qTvZdPensJ7fzuu+8xQjf/tRopdcQue73nlOx/jyxz9L1vQTXUqAFKArWDh6lP4LYgil8FCoUgkxQ8vE87Wv//u/YQ4P88Zrb6Q4LsgtgJDxchjJc8+7v8X89nEWRq5hED/wf+y/9nHDHa0Uk5Jtl32MsvVd/vofruS29QX2Lb+Ri/QV6LEWXvm590871vE9z7Ph3uO87e9/n2iTT4N86tuH6JgX47JX++Nv/MBBvvvt76BZFzP8ipvoL89nS6yFC/I50CAcUC0qCVwTfZZK4K/erGMH+di+NINtC9n2qH9/vjLewr2xMCpod1nSHO7T/eCwTc3cjcHx/MAiHFAv3tD/VqSCE+Ey8UScfOBL1FMysAqcDr7K52cvtmhKoAl/zn6pWDqeQqHoUE2khB+kNKkwyN9g4sG14a5b4ea/hxWvavjTyqbVxPQo4wOjLLtoxYtyOGdkhK2rrsLVNa4duJJM1wATPSAwuPO/XP71LScYHjvMgt7pNLf6wt7/ukcx+tqzd8L4bTW7WOSaOb/PWPz8a71Fo0bhTk2mYM1SlOcS5HBo08oschZgef7YTdQl5U/Xaiq1LyZcWXNdRTygZRTsFG7YQ0ej4J1ZeBvwZX30xlikQqdwhEdEaigRAWUHSdbGARzyrGrJvKjKOIGorSckypMIQwPPqyEe8DCUH+QPPrmD0PqDaF4zH76hlZttm7wBoTpNMdeT3HvP32KbYRJX3MWz73gNE5dezm13/AWP3D3A2z96JQ9F3oGVuZz356cY/8K3MecvoP097+JLH/sYq3Y+w/Gb3kibnSI+djtvGzrOl+75K4qhEv/fHz7Mj26WLJ1cxOuLRziy8bNkbriFgS92kEhu5h8+91N2f+pPiXkZLvrnR9i++Vn+6tCHeG18AZ/4u8fOfm9fIvZC08EvJdTab9wWXbgaG5c95hApvcRm4ygpbQa4c0iw//7HyegW+8sFchVRPCmximdecFytFmzmc7NAqSV4vwLEg1CqQWk7F0CvMpM+TN4SDonMr69lZcV+/NhzpPUSZWEzqeZjPfHvAJRLjQGPdwb44u7duyk6ZQaMODkvQ0fLBUyaBQbMJN6cBWR1C9VeZMf3nmbesW/S7QyQ84bJyZkXuitaXtWQiFEnt8GWLzds031shKJm07bjYPW7VCrLcrOPiB4jbToktTzYWZYdO0nTcJrYZJJmumktGnQkagF361SOa4vr6UwXyC39BfE+P/taEjaH9VGkcFkwFGfl4e2sOPZjFgw/jd4a4Z3zphi8uswVzf/I4szXic5PExk/ijmxjaZ4CruwheScHp6afAuXTi1mf+EmP9gXkBytXbsm/alFiTpNtCD4tgslPKGqCYdK2zVHpvGU5VM7TqtuZUemWG3EWNcyf9ZntuPh+9nxyAPgOcQCUbJCbvbq5L5fbGTMyOKk/FV4z4afUIz3MTowneKkKTDQEarRuVEBDLu+o4QVcBeVqAXhxhmC5KaCH5A0242Jh2ygdqx5LpoS09BS9TD0kgeZg9tpjXpEmiWJpD8GFzldRNI+GsENkBjlgwnKhxsV83Ul0BCoQCjKcEuEgueln3HWCDpVBGPeR0FN9/Q9y62+BzMJRZ7NRNCk+xJ3MeuCVovGNE5noxlB9cNwJQYSPUA9pMbOjS7g2h6HN4+z+YFjjI2N8cADD9ApOukMz2NB88VgOeSSM4stbv/hz1CqwMGnf3HW4+x49Glca5zs+F5aTkXZGulnIlTiwNEdTA6MkZnYQ/RknPVP3svUqX62P3QfR5+foJixcbw5pMM2qDJWUTChZdhsHmVcS1P+JaJTr7wF6RxBeh7rZZZy1sQmgU07Ox99kHwizvHtWxA/fYJl20cZ2buF7COPMPHJT57T/uOjI0yateqPJ3zalS4FYTtFqOXtoARSKJzCiwvlHk1lGEVQ2LiRciGCGxIUNYeW5laysUWsjF1HLNZT3b6UhaGDSezyPHKtSyiziA/8MM/CUUU0XWZt+1WsDl1YHV/1tn/jEQpT8zi59zAAjuVxeNMYm+87Ud3m2UcfIRcN4Wo27aVucpRw2+YRCShLTvBvZa010F+0AsILtZ5CkZxuMSc9xmAhiyk12vQWLnOXc8SdQ1pGKGkOUih6ZCtLvZ4Z9yOlzqHsc5RsvxpoCkmaGG1OiH39R8imA4FgryKuaJIt18ZahXLlWbMlHhQCv+ptvoTaaSbjcRA0dApol03T0G6/VssMwch2+O5bpv2pN7qYRc1rOLH77G0Uz9Wc4WESkQQZc4pk+0qEuQrwqRZ9SbhjveS5nTO3M65fIxclDYyAnvpStFIhz4KmVfRqs5Vazm62Xqstp6eCbl+nI8g8i7GcPz9N1QlZlgNk1yrXR010qs6aP+Mqkgnfh5DSYVv8EXSlnWVF9q2SCKx/Voaq+YKaglD0lZjRV6HVFU0rptVROR3l4QVzhESi3AAxa1lI4aOylVDo0sA1XWL5JiKpMMOex3bXpinQjmou1+aRsaJNa/8knSNjbH7uQS4cdMhO7uLYtiMou4PBXXvJD7wVJ7WMqcFjpH58L/nnniOfTFJ0YNGEhRw+Qj7VhFdOsHXbPoZb0hxss0gc20MxNsSBJRuxyhvpm4KWHc8RyUXpTESJTx7jKvEIFxl+G+cjB54nq2svGkX+t8VeaOLh938lZ/E7autufgthN0zgM89aYbd1SSnI3Me1XHWRUZo8e6vNOjhQPjsz/115sgpzfrFeXyn8xEM9lLEQJD6soPWgjcv+k2dRfv0V2MDBY9XPJcIo3a/O53KNTooUCtedPlXats3Q0BA9QaV3j72PCcNHk4xpaTKav5+YrmNPnJtTU/LyVfgpQH6GSpCo3Ms6R2n7z7ejCZ24U2RESyKUYNmBTcw7MsB986/nr3q+x02LjlCeWE9M+nBo4Ti8L/IQr2rbzYfbv8pH1ABvXHY4OP8UtuaxMree6zY9RUf3CAtHniFqJfnLcoIlIZvXLE1yRftRXr/qES6vzZZNAAAgAElEQVS/JElqfh/bLw7z7St/wbdvGEMNvJ7YaITn4n/G0nIrFWX6xOhQ3bUEb1oFraNq16VsB4msJhwqm1qUKHNgxvuXq+svPVNHkHpTuDQHGW7nDEiDE9v9Y5WDzg/5ZJAYKU2vyGsQcIapjmeoQzzUUUHq8BBwDuNOC4Bn4rTpeGJsJLge34muX4CV8qkqlWDaQnEqXKPfVN5rfXIYzy0HvwmEt/IOstwY/Ff49cJYGJyTqPLvz8Szr1x1pUIZwkTNMM/ZddQP97xaySpQ4LglLnOXAtPv1+lWeQcFAoFXbc2XP0fdj7ETfvAjA5i4EIKI8O9xX2wtANYsQbFV8udCQ5wdVDhyyOfGowaZK2roksOHDrLvaZ/PrDtp3BN+4GVGYwwfTtI1P4qSGZTKATqYp92P8+xF6dV1/XADWkyT5Y8niUGs3RfcSowMMG/YX59G73xhgpN7Nm1s+L8E3GBNGbl6EZrRhwj0APKZs+u6nKvZto3UdFwzhJfL4bq1MVPSLAzlj5VsPWRYWZRyNsrzn03Iqwk4R0O1z8d2TUczxgf8axg+7Dv0o9OgvpBK+nObEpKY8s9nbSKJGcwd1VbEweM8neL467RQMPnpOKRDRrWz1TpvLs+7SxiSNQHlm5y1RAlV56h6fZYmS3Jz079h10Hhh2yfRpXN5ikECD0VCNW2qAi9h3dW91U5rppFtLeCyHypUS3SwbtQQYqYSidGaEaK7q/N6jjq9ZTOUrFEWI8S0WMMb3v6xTtcf03sWnnjVXHQCuJnxZhiZ3b3zD+uX5uNMEb5t5Oici6WSyTRhU6L0YLnnid62Kih8bIJfz0LnZZ4WL/q+ziBD2TXFQUq3S8u8hYSViY2Ndq4ADIB9QxlMJg/hJQO58ICq9CnZkymCX9dX9u/FT2yFoE+jRJd7395mkQG8FpPqGqXm1zWX5cjXoW6pnEytxcjaIWe6Q03nItZd0tG8hZaXqJZHmNDPgWiuSwoF/y1sJytFXgPPr8XHAcvmcAqFtADAfCWfBI3oDqmEmVsDYqa4NCW2hpRdPznEc24RKR/XoVsYyEjlfJ9QMP7zbd6fjHtrF6REOIe4C+UUhml1LAQYjHwTaXU753tt/9/t/0Hj3A00spCb8qPP2YZlLYusRwDTuPxebpkatshehZfPesxQqEolaU7lfMnggcfe575i3u4YvUSwG+tVwseXpwFTAaBQD3iIRvAtJSrwARbeDy990luunRmqPGP/vXfaO1bwGvf9XaklNy3ax9vvOQiTP2X4yaLYo520URJ2MRVDCeYbLIzBBzZQpnONr+6cOrUAI9+8XsUmzWkkqxzF/OksZvxmEVeHwflJ48mhD9hlE2F6BZssn8fUeiHQAB3+MghOubOI9raxt713+Kia/8ITTMY0GuV1gG3E+E1s6buXFQlUFIen//4v1K2Mqw2L+CAFuaIGMbVoEe2cvFAnicXruWV4ihhHMatC9HlKcqtzSAlmitpijTy2KO6L9ozqPkT25qDU2impGVBGbXHr3IviE3nvksFf+g+ycGywX5AL/TRk8+it/sT4bJ8Alr9dyodr5806xAPiOA9CRIPjsQz5bRFqmSUccwMTS5UBsuRbRtAQDnhMqWlyYsyycc3cvGt1zM2NMm2p7byhvf6+dD20BwiLfM5plvM9dqAbLV1E4CXs3FTZcKLfAc3n8pAK1jKoZibopRcguucpJSbrjLsa6QLhBLIOl/2cGmcfaEpPuBcXLtnQlR/U10kzxC8V0SzOE14dmoqgFgGVIuGxIPjUxfCyqAobKQSjLTUdU0JrttzcijTD46UVL7WQsFB8xrHmAg40Ur63+tKoYKAxwtEm2aifFXOybHKYPoaGGUxvfLr1LXwOp8CpFA+FSTr5phr+Hjrs3d8EHX/ekRVhKKwyOf9ecAeyqG3h9FbQkgpObxvH1PbDtI/OIrhStqsLnrCzUzgOxohM0RIEwxqcfrMdjR0yqd16BjdvJ/mBXOwg0qsphTlQp6DG37O0MgBhg6VEI5HJDaHtgVrafVcUIr2uZfSY0fYFqk53eaEyckDj9Edno/ePAczdYLu6BxObN1Bt96EzAwxX4tS6rqE7nILpVgEqI3hFyoFoBwPayBLMVq7JiuX55pDC+jKNRFr78PLOqhgfj70s2eYWHYZYc9AH9JQvQtZkBhDuS7oOvlnnqH5hhuQ+TzD3/8OAwMHKbeaLLrl1Uye6G84dlXzRcKpzjxkQasgVKaSdK1Y/sIuZhYb3elXZqUZIp6x8FpqmiEqZLJO5sljsscYqH4fjU6RHB3Ak+14zkk6izHG21oJiXm0Ns/loD5Mj2xjaOMhLrz6en74ic9y4RtuoHNOO6WpceaEMvTvLPGN1L1w9EK6zVYM0cEjf/V5JkonmJznLxxhPY4drM+d5Wx1XVeiLnmpfHTSeV376HZyxUlWXXDbef0eauJyruZQwqQHg5KbJ2o0c01oL72ODoY/3TWrCAJBlBB5yjSrSDWhI6TH3pFWVLc/GWiewe3lNMMRyBULOHnfF/KCCbRFRdGMcZ8OhsREx8JpaMnXaMGqMwNU+7fZsjk/MWVIQViZNKkwutKQmq91Il6EDk1ns507nmJibIhbX/9e/4vCFJsjYVrLvayaOobR43d/SY5O4RoaCZEjkj07xP5Q8iRl6XBp96pZtzl14ABHfvAklXY2prYXTe8FQGqCvTfeQcRRyD0Pod4+fU2qXyM9M4Sy82zb/U2uvOSPX8AdOH/b8ejdLL/mVewtHue6vuvQNZ3Jif08++jXEVmNl916C6tWnlurt8T4FLqwCZkxipkMLV3dL/h8IpGaT5AOhIGN05C+vTuWIQLfo56OXCgGyXN0DDQc4aKoJBGp6XqIlup3UoP0M89xb3+Cd/7hrUQi0wPmCuKhMaFQ+6wp6Ej5hbJpfo8X+FRBPOXpuu+kBsMimcrQ3NNGISgyhj2NvAEIwYGpn3P0ZXnWZhezr2zwv9Yfq8YvuoItD23iihsvZ2DXIRZ1XIQ0XTJBTNNShmyuTLHzbtLx6wjpJwnLo+xKLyd0w3vosLJcm81g2jlO9K2mPXeKQnMvPS0F8gVFcx46C7C9eIyP7lzA3g4XLzPM8fkXsmj0CGFtHGPhfPLZOEOGgSOgJ5vDttLcsfV6OprOvzX2b6Odyyy2AdgqhLhNCPGnwBPAnb/a0/rdsCODw+wo9uApgRmOYCqdjvL0XI+leziROg6rUoSlgafDwD0/PuMxInWiKKWSP9guf9pizl01x86167OlL1LiQShQEq3uFSoH1b8KLNoRHgfTs/d9H9m1nWM/83lLmwcG2f/Q/Ty4Z/+s25+zCYu5sh1DaRRkiG8q35nPJaeL9BTrAqJHvvADJppscqpMWBm02zpGvkA5FiOu5Zhb0hs6D5wy4gy0xXk8dAF7nP9R/f7Bz3yarff/iBO7f85TX76PJ+76ZwaieXbVObOjuR7unrwQnNrxK+2J80aRpFmi2BxiZ3iQzaFjJJtLZLUS3SmXsKuI9bn8gTaAUjCaXkdnvkQ+GkEvuxhlg5Bp87TrtwE9kPers7rU8IQkUnKJnHLwenWOaj5P8tTVFgLoj/vc9+e0ywHoz83lovAIt9uniLkGvYnlNOeHuG7Ur9K+aedXq5FkKVMLWCrVZoX/rvjg4Iow38xBUdmw6HYDPnMQFz/8b5/m4c9+mlQyxc9Du9lgHmb7Ez4M7effup9d/TsY6h/FdRwu734Ng3P8ha4tqGSquucVv2s/U1/eg7Q97LJVpdrYONz7pfsYMsdoah3hxOZt085NBFB9TQlfPVkqlKd4hL0ktaEGxEOtOuXWZfXPlHgIxtBpTlSqWlHwON19lpaLi/Rb2uInLxJB4sFQBlrAoZbSRohAL0RqPkJDKmTJRdWp+AtkUJEMBOwQ1fsjhaqJhZ5mVacguPwQhi8IeFpAUErWVXrPYwqqJEYGSgUEAk0JmtRZgJ2V+yn8ZxYO6DeubaGkYupr+8g962tT7Nq1ix/dfz8bTx1nQMtxwixykbmUAx0HiXf4VQ/DFeSjGo+H9nDQHKEr0sf2fbtq98LxkA+mGP6PzZQtv3JZ8OLsfPRBnv7mtzj+2Daswf2Uxw6RNFyyY/00D+QYmRNlqFPnVE+EE3qNz7s0uppb+/6Iq+f9ASfmmLQvvIYb572Vlze9mnCn4MAch9G5iv45YVb3XFOlB1RfuRcYnyZ/coz4N/ZzcnsNjZBOxblwoAVDtDI2r5NIz0Ke3Otfc0nmGWnJcLI9y/Ful+M9IQ73duGMj1PcupXhP/sQ2UceIXHXt9j6kx+x8+Qp+r77BJMf+38ppRsTNlIobFyU8vjeogl6JndWL2By+MWDSx+9+24AlK6zV78AIfwkVpdsQYSaWBjtZZt5vNpJAmC4K4UtT+IIgZN/gJQ+ys4lc9i59g4SHSabzCM8Zx6kOJBg/aOPcJ1zDc53+3noh99mqZHk+o5VGKkd5LYWuSLax1DnFPG2IdZFL+WClsuqicxwxKAo/KqaTan6IGsishIdzad7nQf0/jVPvI+3bPzlWgtqwX3xNEVUSAx0Jsv++FjQdpDXiSUANBGpog2iwbiroNAAhOcR2xkjFKjuv8JbzcqY3/cvP7gPO+j6FC5ZtMkY4XyZkYXlaqBg1nWsmckUEi0ojGhn0HL6bbMKXdbxbHpkKz2yDSk9f82Zgcrzq7Bn//0BDn338er/D+zfwcfbL+LH/AHrn36i+v348DA7w8M8HtpDtA7pMpt99OA+PnTgzF3CHv2PPRxZ8GrAX9PG+2KMtPp+WyJkcahPsGuxxm1HrmVwcN+039cjQzwzxJT0+OM9/87o2ItHBZnNxsaOE/vIp1n/jlv586f+nJ8c+wkAX3jqr0k+s5TE3pv4f5777+e8v1w8w2Oh3ewOD5M8dX7ig2aohqwtF/37aJ42deju28GrUFhrCL5S8L7pSsNQOp7yqnOSjsSuClFGEPochPJRB4/du43XHunm7rsfnfGcKkLb9QkFUecvaEowOSdJpDTgJx5QVZSr8iRSQLiCEtW1BhROMu6vu/mgO0coKKRIIbj8cD9fmvd9vjbvXoqjJ/mA/DdEIHYhhMGObYdI/OgQ3uZdNK27g/CqNyPzfvzSYllM6T/h26t2ciS9hdV7v8eVT29lZ8sa3tB1HVf3vZZTx/tpLmc4MschH7qAdUPPc8WGccJWir+5Cz71TcUji/Zy1WMDvGPDMBFrBUe7bfYtW0M/yzHyb2P39iPctrCPNy7oY+joETSnQKd8K82ZOTPey5eqnUs7zf8C/gR4EPhH4Eal1EO/6hP7XbDXveJ6Prb9+3zHupT/bL6Kr2tX4Pbvpul4bcIUyoeYSg1CUqPlyC7aBhQRDBxNkRIuypvdwa5fdwtWjc+uC6OqBm6VX7iK/NnMV9tvrL44QVubSiAlhSIzS8CSSyeRKo/tpchn00wFcNpcYXaxqHOxUslCaZKQJzClAARTuu8spVLTs4aZuu8qt3Le4CjNx/bx9PCDXDT4KJNT4zQf3YN1YhMDHS6xTA/DMtqwn3C0ltQQ0iCfTJDP+A7zyO5+xo1GR1tDpzsTJjl2pO672r2aK9t4R/l6bs5eTdfEVSw8uI2rC89yc/OnWfmmMV7Vto059rPEy61cvv5OuptCrDy2m/bMLfSkV7Pr3qV0PjjF7nuXoT2cYvPDF6Mc/wpD5SxjnYsZTM9jQ34SK6TTXGplz8NLKa/XOJn+Jn3xv+Sx1Gco/VznsaO38x/pt/JP/9XKv/x4E32ywNXx4zz8wMdYUIhXF3urXugrCPoqGg++RkFFaHFmRMvLkh2sSAfvzmkzUzxbC1y9oOuL69goARPDY1iFPCVTwxIu1zgrWFZuCVqp1e6pM+ovRvapLIc27MYz/cXLFRIroCYUmyLYM3SHEUGuXyCCQFwiyy7NAX0mWwe/qxzS7+OgqvdhNhNVdEjjRrlgYRfSqy3AlYpjyQEBZjAB6GhYvT4XNILhVwIVaMalaPhVXQ1R7XyBAlWnS6GCwD5U3lzbNnAMPCTKndl5r1QtKu9uKBCLc0/TcZicqtdVeOEV2wpfe6hjlKPON9AaUp5n/7UUimhAtVBSIvM2yvbwsv6clc/7z8/W/XuihOLezA8a9qJ7WrW93YiWZG5kCZNjNQ2b3GE/adCsdyBlhd4Cp/btoalHEup+Lwvsq7hpIkxBsxnTUqhwzTGMazkipTJv+tkmDKWTC6rDcaOAEoqE6Z9rZ7iXITFZ/Y0rPA6UnqlurwcIGvUC77N1wh9jg8dq69PkUD9KldEM/Idg6Hj26XO6g5J+kqwQDlM61U9h4yb//5s2U9i8man2GFIT3H91jJ64gwzm+ZvsNaxxF/jtdYXEwyHdDGsPfoOQ5Y/X8ckXTydoOFIHPY61ghbGVDrtqom8VkahOKRNMd/r4mZ7bXVb1/Cwg2da1vz7JN0BXN1/C7OiSKioM/SkDwGfG1lA7uQUc4Ngem50CbpWRg+3kRdlxkSCkdJJRNhPfLSqIhMijRIKU+m4okaPrFUGfeTYb5LtW99JxsTzEw9BS7lXJK4nGrRybQla+BacLJFAHLM+8VARjTTKDn9cvoWlci6D+UDbqFjCDoIew/MYTN/Dt1d8nUcvtatUi4oK/2zCkZWmENpLDfGQ98ew5ZV5tbOOa50VeNJGCoWctYPHi2e5XArpDKNklmzGD7pOjh2h2WkOzq+2No4cPUJWFCkICyItM+6v3obdFkZlx7SkdL1JbR7K832pxRc1VvjrA9XJhUvZffhZTjefAux/dswIrUEcve3QmQt4L4bt3eMnay4Y8N/dZDmJkpJt+QlUaAWu2UJ0rJeJib3ntL/caBJLuIxqSSYP95/9B6eZ8iSyDiEjA9qSftp42DHvX6mA3/W6JJ0T6GzpaBhoKFEvG61wgu4Y0WKCm/cfqBZlyvN8RIzmzOwzaNPmtUb/SCjFDR9+A+9a+LdoUuEh8exK9zB/Xqz4GZrSqPcmkwFCIRnQzkOev50U0FGA+QnIL9LoDqp8lfujNJ1BN4UzkIPCGCE9QkgPE3H8REZTWSJN/3NJz9KU8+evWwbu94+DYLy/HxGIa3o00RUwj2NaTXh71bB/zWZWYQgfyZOK6bRZPqIvnazRCpMDJzEDgWhlvnSSp+diZ/XdhBDvAr4JvBv4FvCoEGLdGX/0fw2ASDhMrGcuodhx9PEyqiQRQkN4Nac84mm4msTTFYYUID1ML4Snu9iaJB9yztjCzNNqbS3LroVdF0xMnvInq1zd718skSIPH/pX7/5X2iDVw9+sWSKu/ZsrvZhdNj30E/IBWqP0S7Y/Ggi0AISn0JXAFYKmINZKZ6YnHlJ1bQCl5qtsl4tFbK9Ad9aiqyfPvtAahOdgKIcPjh+iqbSaouZn+EOplO8ohmqBsW7GKGbTFIJ2eyofZko0Jh6E0NGU4OlND854HQu8LmKESTgRNBXhpNHLrtAq5kRc9JBicfMkvdE0k+kOBIoxS7CvpYzpWURkkYhrEXLyhAN+f1s+jhm8G5Yo05s8xeLsGHdsUggT9AsLhAsWenMfbTe9DLc5xtroGqQRpiclaC1qLMxOEnGLaK0tmAvXVBewKiS/TkW/FkxXUHECJSpc5ZmnHcNx6MhLQlLHPU0YL2fVkmeO4b9TMlD6zkylKeVzxE3/Wpd5c4nqLehoDckcrdV3iq3jaY5u3V5tW+sKiRYIFGV1C6c4nU+p8IXvhBL+u+8qVKk2jseTtbZKlfdfinOjONW0ChrHil3h2iuvBjkMUArlYGE1gvGlIQgF1Q0bD6EUBjqe3o5p+e+9pkDma+NL1p1/JTkkjcaEgal0lKC68J9uleurPC6j4vSdJg6aStUoALNVKc9kAl/k0tUdWrWJQPDyzPupTD1K+MkTM8hm6UrhJv13Reb986wkHgAWu22AR6G7scpgano10EyRY250MeV0zVHIH/ATDzkngfT8+UBJj/Hjhwl3umheJz2J44huX2ncER79Af3KMv15aMHQEE+uSdKiItVEwqjmz2kZrUiBMi4eU3qj7kE2OlDd3hWV5MkZb880kzn/XgxO1NaLscHjgETX/bGjNI1I3VhcsXys+lnovRTDJgOHn6ewxZ/fc088QfLIYcqByFms2Q8mwoFosomOjlbVv7GFhRJ+cF0JTjOZc9PkOBfLN82tfna0MlILE1UhTBmiQJmdzQVCQtIhu6uaIP62Ekf596WiYeLZR3CCF98VknCohXC2NgfGsgXmhP1KYk90KT2RRYzqwTjQNI7Lweoza1bJ6vNq9iK+s11tNRrsUPiJh5mEZs9mDf3tf4n2pI4mq4GdCJIkSdWBVB4XyTVVdENLIFKbtzPV7yKyhvbUAh/IVRYaAssrVWkVOA6y0rrP84hd5jDUpLO9Ra+iKGqIh5nPUwaJYo0XPg5+k1YM0Km2Z4H0ECRB+t1d3DN08Hix7PFHvguBCPbevT7yacqaJCSD8e/WEJrZsYmqEHoxZpIrzK7F4krFlGrDIkLcnl2vwHCyKOmPM8eYO/M2SiPZKjjeP10/TFLT/7DCMdqCW7Z1bLr+yottA4drx4iVFYlSgsGhjcwfXoKn+0m3i0ZX8vzBH57T/kpJP2tSFDYDx1446kuWPaRee/lFpcNWnZ9hKJ1tS0fRHP9YWt2Acr1a4kFHR4o62pcAGeiraK5L1M6hBVRkFfELHUltZl++HvHgWJVW4o1Ui9jFtxMyZJVSYZWD7VyJFD7Vyj8RraGLVjpAOiSyAbojyJS6QaLh1Yk+RoujdCgH6YFX9dUEqpwBDwxrCEOYGJpJrOi/02FLkA+KEjnhEe/0f9cW9ykhForSVBaCOc6p09bQVQ31fclJ/zoTPQrb8PlEjuYgguSsrEPOJsd3o1f+H6tpEf0u2Lm003wzcL1SahL4vhDifvwExKW/yhP7XbBHNzzEF67awOs3e/xkScBr80dsdZuQFDiG72QEhXk0PFxdUVbQsnwxXiKB0dk5bf9K+rzYqAqTEyUc5ZFK53jGPEC3bKF59yRzly4nOVVfMZp5pfbyNpNf2E3Xe9cS6j1z6zLH9fwJ6DSNh4oCdX3l1q37/Nh9P0Ce6ODVf/N7PPH0QXqWXk865DGwc4y04w+8qX374Jabznj8M9mp8SCR4CkMXaNguCwb6+XOT3wGo3N6R4TxwVOATytwDEWTDCNDi8FK0xsfYf4lMKq60D2J1OCLnS7XpUEzJLigWx7NToisWRM/XNN9M6OJXZw4NMmr+97LAe8o6jTeu9D8iXP8yfW4bymwe8/7QFxT/fsc1YpSkkSg0jtgriQt/cAy77TRbPoTa3EyRjMZiiYMRFtZWCpgqukJFgGEHAfQyBdMsjGIlaHJgrGFnUQifgChdSwmtqqLQwee5LL8WkbaYizp38oV4zWEh94aJbRsFc7AHqCSuRb1qorVaqufePBbUVYhcTMlHpSP3mlOWIR6dRzN5Wsf/nsu63wlHh5HXZfKWlPWPV5753O8IRhHmXiKciLDhJYm6hrECFOgjI5WQxxIxaHCANvDJ+ja0ERxbB/WAj/L7AmF5Ugw/ABCutP5qkoohBJo0u8PLR0Pt1B7plPZWmBd4R3LAPNQuQ8AT33hAcanJtjXVKKprZlPfPBPgvshpyEeKmAhpdwq4kE6HrqukQ96aFfEkXQEITwcwMMjhJ/Q8DBQQRCsS4mXrzl9suRWdUmU8PehggBQBaK1YUwcPIr5Am2t0/mapws/6RWa1WmJh0y2Fjxq5xEJiOB6DKtMYaeHdoPWAM+cyVQVdSNA+LxpgGzU5W+/8XmEGaZlLM3KRzdzcttxNPx5b3HcpmjEmepudHwd18UKEg9F3eEXracgWQsG3MECvzD3MpdmQituZJ29gKOjTyGbl1OUi3hlq+DotTewK5SAoPVgvzaJpiBLmTnA3MkJHripzK12hCEtwXfD67GwaVZl8iLCT8JbEGhIAY4qYooYeWVyLDwfRSOtbabb/NW9X0V+Z5xEWOGi6Fy+mr9879sB2FV8muNiih4WEl1+GXEvTmLYT6YIo5J4gG6nGWvl9VxfWMxk13F6ZCtFWeD31NUcTm/k6ce3EQrFeMXrPoMSYbaO3gVejhVt13Jh+FImbh4kVvA7x/j84VrNqqjXUc+CxEPx4DHSDzxA++23n/F5A9hWkQ/cdQN3LP4jbr31I9Xvv/XwsxzfuYmQXkug5fqKIAQ9so2SDKME7HG2gwDHa8esEwMuay7RZSu41Po9+rO7SM3pRBvYS1HzMD2BoytEuJmwa/OIuYOXeYt5+cI7uDf6PK5yEWEN1dHFUY4RVUVKRDnW5RFRpwgryYSoaU3EHI2U4QebUNc2Vyg05a+4L7SA8JWP/R1v4/V0JJoovnmSu/7lHiKu5E8+41MvNm45wPrHHsLDQZca3aoV4VoMa1lCySno7MIGlGHQJmNkhP/e60qjoC2g6OZoNtunJR4y1iQR5TvYRp2ujB4kHoxAyWKiPIxQEaCAkkFQo4MnXN45keCn8+bhGDV/o4K0nE3nRVbmaxqWpd9qKx9PYU3a0Oa3Ana9BE0deUQRX+coX+JcJOYmju1gz/vfybyP/g0Xv256i1fwWwa+71vb+OBNy7nuAj8Z+PM7H0I/HGHlsjczpiYxHi/xzSe/grDewhs0h5OhOINTGX70kx9y6oHHmNOzGK/Ffw+zUcn/3rWN/3n9LYzt2cvj/76dy9/YxdCBn+I9t4nl33qM//mzZ9FQPHHXv9A0MkLorTfy1d7DfOqGT7G6czWe4zLXzDI31sP+nus4bM2M1O2yQ0yF8uSPHqpqD33lHe+nJRpBzp+PqTRsAbGL76BnZyd/+Yt1HG3fwr+ufz+EmlBK0vv+i3l0+xeZUA7zJxVvenoZ7vyLuKDlYjoKT3H/By/E+OyDFKMul6z4UzquW4yhl3js/ims6E4uGLj7IowAACAASURBVLuc773iHtZEIqx7/Bqy+kUYXZcxdPsrySaKvO3pZ+DpAzzb3cMV7a/gsvAIaWsCQ7+K723cg/XZNfS8+jpu/OuvNVzbT0/8lJ/1/4yvvPIryLJH5YGng2LI5Kksz37/KImRe7DiGUJLLkUoyQc//TfVfTz72GPsuus7LH/la/E0H4VoC7eK/qwfMy0BctciCYiGtt9VhCoaRnBPa0lQIBijlSSij96WTGZ3kBCr8WZZnyu78FDYhRKGaZyGeAAWXAlGtJpY/K/PfR43pvjIn/41HsovImigi0aqRSHQnchlK+14a4WsL7/pLXgRnQ/88Ef0LR5m+8Ze5GuCc9EEi739FPRrMaxRzCYTiUe4YPPkxVczP51EFE/yyW957Lwhx1jbRRzrbuHGfZvY7G5ARELMmfwx2cg1XL7sdvbGd5PouJD+JbcRdj/L1lXXUDI1rj68hSfXXUmT6yJCYV7V+W62TD2CJdMIvQND1t75Q6Uh2iydcvrLaJHfrcTDuVAtbg+SDpX/Pw/Mrnb4f61q83v7uG1bG289uIObiqdYHsqSjuWCWp2DpXQ0CRYOZRyE1DAi1yENgQjvBwUToRL9B2ZW8HVLNo6QRINsmacUk/E0x/VxtpjHGB/2g+F4Xcu32RyW8rE0XsYi98zQjH+vt2LRdxaEbAwiDFmptNW+00St2iJPdPCyRIyJiQFUssB4uExZc/BCIaxhPzkSSv5yWf2RiaDFjyPRpC9wGVZLSOtFSpnktO1T8Vql2tYlMWmyIOXSU+rCjowz5LyNFR33kuiKcnLZXC4aHGfZyQdYc/wx9ofC7Jl7CNNxyYsaDLIkbK5rfg3GcBsd4bkYrXPRlKD7lKIlV+GUBZWbSUGx1E8mswNQGErnKucCtGyB0cS3Wbv7C6zb+yVePXyQNSOn2Dz6cnYfmcPEsXb2ja/AK1q4r3o5HYsupdeYzxz1HE7sABtvvIDPv/ndjF/TBAGcrN9wiSRLLDyZ4OSV17PlxlXkLriUwpLbeKb1ekbWzKf5fe8lsrKDxxZs5c7e75B65xsAiJVKKE3HvPkt9P7TJ5jzoXcTffnbiN3yD7UuBvX8iEomORBY1FQd4mGGaUdHQ0VjhMoaIanhaJLsxH5WtF3O6rarqotYs2dS1GwOj6ar73JmKkl2eJy0ViRs6zw/9SjPjf840GQIqpM5m2P6GCVhM2yk0FyPYpAMcoTXIJUsQtM7jkh8lXQRtKZVls3gRO19mkrXIV6Cf70APg41ZMD6xG6OaWOY5QypdOX3M1MtqjoZ1cSDxAsqBJl4kEzwKnvQUNT6WWvKr0aapRSG7rfuM5HVCj80Ih4kfqXBMyrn638fDiCN6cT0sQN1bXqD7SuJkGKxERacLdRRms6SMJjZ/OTVnMkMZs4J5p0zV24rU1Olcoz0qlDtbt2jSy8SUiF2HNhDxGthrmzjSmc5ITdDx+QE5lQGs1BLQrl4FHWXFtfEcBVZrUSkjnKVyeY5pcd5PjJAwiiyMXqSjnA3sn0uU3qGodwhDukjZIMWyIbt+Iljr0DCjXCiaT8blo+Tmeex0u1jldfH3KJNbznHVC5CjxvB00fpKpZZODnA4+5Stpkez0ebSaPTXBIN1Dc5Q0y2oX8DU1FoE80oJEODQRVfKSbzJ8l0dNGut7M3NMxotEwxoKJpgZaQ1EA2tZDRy4xHHVYnbmQiXGIi6mDoOstaLsYjz/zYKlrMdpqNKH2x5XidvSzruISo0cyC1hVouj/GJor95K061XwivG8iwvh7r4NAw8OJRck/dfa2pAD9J7axPWqzY7hx+6e27sHzXJa6nVzh+PSHyksbUSYF1c5adyGaN4dtzgL2J0fZYNWSiUXNIWEUGQ5n6ep+GUmjxPzOSyhh0xxQT5QRRg83M6aneTy0h/3qBHnKtHhxOi1BtxWit1xmjjZBR8kfv76WhMOE08UYc+i02wmVGpPUUihkUK3UAoHbF4p4mGxuwm0OI41F7HjyfuKhAsOxWpJn35bd2NJiqd1Dq4wwrCUYNQsoQ8PqnoNlGFWaUauqvfOaAoTO/mKW/twJHDvPy52VRPIuo6d+xkB6PYuceVzvrG7gaWTCLvJzf07emmRv8ll2JDYRDqg1GqEKsAuluSxtW8QfWy3cWIxW/Y0Kwmq2JKbEh9yfz736TZl1PINbkfuRHgnuoe1Vi6sBYz59bt1dTjz9YxaOwdCG2RnRI+kS64/F2XSi5htO7ImzKNLOcXOKsXCJqNPCoJigEMpjB5wW6UYYfPhJNHsSyv7JRqRB0iyz74RPlTn8+DPkI0s4tX4v/cc2sXwQNj7xDZKREsmIxYRlMdEUI/vAgxxPH+f7h78PQPb4CIsjTcxvWslUzAuKFdPPXbd86kmntZzJ+ClS43GK3ijx/CQSSasXAQVJLU952ctxoivpHY9jpEYpN0exYxG+sONLHNRc1unNvOl4E4nmbq7ruY250QUMnkyz5Zkf4qkWFlkreFnuAko7Jtn47PO0FxcxN34budBCFh9q4ZnMEEUup81LMWEm6TcT9IVBqSxKZSm0Fpgwshixdla1Xs6yWB+XjlzFmpOKwuNbpl3bxzd8nA0jGxgvjNfqNApKQcL06NYJJgeyFCZP4Mo4Zb1EPtS41m79+YN4KsWJ5zfiCVVtLV5J2in89rQrcnO48ZKLeW1hLY7hv1tmfZZO+onFo7kTPhpSqIZCgwjGnoODvbJcaYJFUcv6HdjkzJRaUZdQLWQLPm21Yb/43Thu/xIi8N+yepmWpF/w8UQN5a0ro4E6Uij6c0gmX1vXQkrH0TyeufImdlxwBdccUSg5SEtB4Gk19EWfNcnWzi0o28bQQhjCxCw1YYs46aYOWqckK8agM1ck2byEspjgFxfPZ7L7aiaaL2XpoCLSPJfuyHw6muayZ91fkG1bRsnpIBFJUNSniDrd2CRJGVl6w610hntZ1LS6ivKJqtqzLJJE2CFQZYzWs4u3vpTsvCRylVK/HpWbl7itW345N04ups0u8vGdT/CF+z5LqilQdUbioCOQ2MKlJGyQFkb0aoqhDB/JP8uqokAJxbaNm2fcf3EqgRSqKqCCEoweH6j+PTvmv8yZTM2xm20JFgHsXM3Cy2o4bhBUCKUaEA/V/rx1voApJFM5i3Ixz/K072wOnRqgJxoG4VcubF2iBxXSX5YJkh7xhSSl4wAKR3gozU8b6+7017YUQKwd16OkuUQ8nRUDD3LF0ecp9bYQG1vCn5xI8cC1R3lq7V6u2OuxZPAJrj18gqM93+HokglKZmMboZKwKbpZtCCuG9VSdLgRQqUUTVYQoAodRJhcNExiLEAOCL9SdLG3mER+lGRkG52pw3QlD7LWOcYfP/8wLRtO0bX4X0gfnoPxTIGV7/kYL/vCN3nP5z7Jm97wh3z8Fc/yqasO8M+dHyS/7BZe8a3t6F1+l4aRdAf/GbuR1EqXGzreza3tf0vfRX/GJ5sv5qtDb+HmHz/OvDdfhjA03D6TJ9u3cMUdb2Luxz8OgBYyueA//4nIykWEFvaw6D8/gd46v65N7PTEgxKBE0hN6HEmpL2GwNBDGItuxvQEttb4HlYWuagtcIVkBSnc4Lh22SIxMkaBMiFboz+/j6yTaKBapEfSTIoM7Y7/3kU6F/t8aqnhIhu0IDSzcZK3pE+Z0JRAKL8bRymT59hIDUmUzNUC8/pKfOUcT3d+daVoLRfZvXd/3b1q3EYLklNKWaAUStQy+pl0EBDKyv3zq4MVU0Kio9Mz/jBuuEKHUHj1VIs6SkkF0YFpBOJ1jSJuo0PTefae51Xf+0qQK4KIoZBvdIZK5dr/zwf5XNF46JicRHedYN45854qd9OtiPR53rT2eolwguZSG66m6JFtrPOW8N3um/nvy/4bW5cvYGedkrgnJAXNpskxaM/7CUvTqAVh46qREmcJF0OLkAn53tyAtYNi3au17KQvtBYWJcZ6n2a08wD3XStYV5R40W6ud1fz/NpTPNL+GCt2HeAz7stosmze3/R57A6Y8hZRVC6p3q+ztW2Iz2uX027VDjBTTKYdLuMJyaXuUkK2TdT1kSiy6JLs6ArOu64TTCU5FVAlpAbRgDc7pWUpqzJ5UUYKxR4zTmuoi6jezMLFnZRkloKbYX7nAla/4SjtooV+o4yhmWhtvuDpUO4ArlcH3w738JG/28Yr/v7r2KEgaWjGsEdqPNkz2cCgn6TPyMYgrUN3SMgYNzhr6Mg3zi2GFLjS4eXuSpLuMg54vSw/fj/u1HSh41EtVdPSaOpCCUXI9atUrgGEajXpLe2CKdXE0GiWT3Ix/8wa/mH1rXyur8R4/kmKKf8+n/C6WTIc569/8EV+76l7cfXGGr1E4UjXp0Mhquinc7XJkUEIEhelyDgHNvtCdUJBYdJvPV3IjDNXtnGjt4YF6UDbRSgiZcdPXCuFZvnXXZ94qCS6JlQvYtdDjJenWOstxPAguud+StoxDC/Kam8+Th3Ss9jqsfa2v8Ax2zmU2YKULq4KfCNl1Aavsom87iv8zfs38Y9v/VE10VDVdpgF8VBFqPHSoVp4eRtHqyXs197xB4Svf0WVXpfOnhvlqJz2/T2vOHsRZyjp3+tEsB5I18MWbUTCLWS0IkrAbtP3peIiR0IL2pti4DUHeg5BMNyZB1u4XHoiz2jZphAUj8oFjZ5gGBb6RylrDkVh0xnpIxcNs2xMw3QVi1p86tnwzkN0hbtIihy2cJmKrKbHmV4EGGzyWz63qh4Ghvez8/6f+9dL3veHlU63amFUTzHHDKFkTTBR6TrKNFg90IGuFP9yw6e5PLeMollbn7LdS3nlJg8lBO0tvth2X6KTQsYX70X4gfylyXVcdmoxUg/TLPwxNaGl6YwuQIVs8mGXtOmv06NaCkMzMLUQHQpK0TnMG3Kx843tdXubfN7/1rGtVT9pjtdM1ijjuB7DR5IoVVvnS7qDJVy8Or9dBUhMo+TiaopwUJisDhXNT1Bf+NrlXPrmV/PZD/2A5kA4uz6RpymFjsZ4cTdKeg1UCwXowXvpRsusuyxJfXSRF2V0Zcyi51EL9nPZLMpTjWO08puL3twQDwj9/7D33uGaXnW992etuz119zZ79vSezGQmIZ2EFkLoEooKggVRrEdF0GM7YEE9Aip4lBdeRYhoUFroSUhCep1kMkmm75nZs3t/ernbWueP+37anongOegrXu+6rn3tvZ9yl3Wv8ivf7/dnoGseIao5/yPyWetDXoOyHY99rYIokSVClnoGmOsfQgNBEL3fsA1CCZnlIofTR9FBtIZb0kYHESQ0kBIznk6m5yGDKCi91N+pOmA70dxIG6010vdaCPLF/lZ1piEn2m+Hk5tAxQfXLZvMEznwor22e/2FaUc/qO17oVr8/+3/sOkgIL1wHBCEy8cRQGB2EUqNRuBhoPCbCtq2jlZpL7mCJTyUEwkj1dtKxT/8xa9z0bVX0rNuiJXT0cbQgBALJHMTLfVbVffh9Hco5VtOkXoez14rxV1ygVd4Lcjn+MwSCyt5rhxZjzAEZn80mYoxjEmoTvmyRhZCiYiHFwjFC8obOHz8HLOH72GUHrpkiuUFhUwZmFoyWrVZSAUk3AAv0cqYrm3/8LE/Zmjjdm58/Zv5pzsegokCb/yJG0mt4T75Mbcr9Oooosh4aDiAi+R8bmHgRov4R//kUyihcQLB8ojB6JQi078Heexx9hRrrNul2b0asmExQAND+YAfeVhw77VQM+rQBoI8akyxTtkkMThiTLEqy4yVI9BnGDuTItnFhr7r8Vjm2IP3kqu/Gi3Bih2jql+k18mgyEWabrtfC4u3sDTcjepOsmVsDPfECayRdc3zHrj8WvRJE9ONnuGGvmjTNnr6CJem6Y65/pu7Nnb0wXy8cJtGyynrS0TUnrHMGMY1sQNc73QmpRM5pY2sd7veh25y5yKnWGqaiIcGjL/jWAgyMk2Psw1DzVETPgPD+zhmTDOiejDjTS5RCyAJb5LLlGOvOwx8FhbyaAGJmqLhxkRiR4qvfugvMNcdQAnNQDGk3CcpZi3AJe1L8k6AJiStbKrCR5mdy2I5UJGYqmrxJJeXlji73KpAUKnV8BerCKNT0LLRlND4lRaMLian8OBDT2G1UwLa+0Q3MhR+c54VyiV6GWQ1LnUlYz6GQOLhkdAWdeGjRIipDaq9PlpG2SNJhPyYdY8AkFwdJcVg/AzjDKFjYSCbJUEtJcCAiblzXMN1HdfntamsNwwH2TCS1wh0um1ik/J795naWhTk7F1eYr434oV/tyilbhoVDbpN2NQSAHCBsYJDLeGghG7Cw2dTEqqgwmdYUiMInUQLcONIohFKal4RGGpREELNgryAFk+mj5rMgYbpjRs63hpeWODk7l0EhkdXrp+96Wm+njXZl4caHp5IMGkeYuOqZLgareGTOjJ+6yqCr5fsCW44pNi97PGnY51dciHndFNuAOHAOtXLsDHEjMrzp3/5Ia4+cAmVbGQ0LTuted4IRAsjRtUJMGME1bxc5bAxEX8QHjdPsyPoYnjochZdhyPWaZyaz2XWPk6N/yzHjRm+mPG5uWigUilgFRX6TacYIN3f3To3AWDgpiS3dad49exZdo9uOb+P43Z89ThPLz/JnkmNoTbymd/7AG9+33tId3WR1TW6gjSmtMnXFpoUI4CSqOIFVbD7mY37zDBzSDcHdDo+RVlDEjkLeTOez6pKwrc4Ys+xQ7QMxGG/yBFG2O4lkUlQNVB9Bi+/v5s3P6h4cPccud4xsrqGZ0bHFIXlJtIDooyjQlPxamiIBXO/d6rFwvwE//QHf4IYigxuN1VEy2jPNDH48p/+PVi9lBIVdqiobyvlGURPGi1N9rmjPJFYIulrkr7NqkMHNUa2VcbJFk5TjoMwBgaeCdvzdfz+Ili91NuCQQ1KF44ED2zfw40dWQOjGWjW+DAasXoz2aGWGk6DfbIm+FgfzxHm3NZ6pi/cV+6ZAuWHHid742XYI/0X7LvGet6we/69W1CsNx0hVIhz8cuAViC7YXddsC0cBScLPRvwi3lOr9tJUFyi/NBDqPVb+fbHbmXBWWbznisonF2iVinzm65Cf+MOvn1XN2FyI8neOs9YsR2jifRn4o2q1ijuGpoIX5Hp2UpoWUBAKTcLXUNkleArn/40/WVBPwv4NQfHTTIxNEqiNgDJ6FhjPZfQVeljfJPJT905TmnzLM888BlmDq1im/t40Ip484/19XNx8VzHbQotONvdzY4yOHY/k0fO4B2eZ13ffnLVGUrxcx9VfTxjnqOUHkCUn6R75AB+LUfJMNAYvGL1Jl5SqvHpg19jq72b3SkHF5+cKBNme0jXr8Ho76XP2sqcyNGnMoyVN7Isn2aLHkALRVFn2Te1AytxhMJgL+hVlNAcdRYYWnclHgbTIiqXfMpYIBFrxmS6azx+xXWMFX2e+sVfozu9nrmtk2zf+0tsncxy8cwoT3UfZVuMMhuqOyxmynzz3qeorj6FlapSE6OkSFCKbapPfPYz7L/8ZZz62/dj1GKbIPDxRUh3ICNKRANZSYQw3X55i9qrZFQxp13jwSAqSatkraXfoFvaXUbT72iIYLe+WxQ1Botd5Nxc05a8UMsXSlE1qA7EQ9t8batKFhiClblZtNDNdaeBxGg03/f40C3/hBujxhQBlrKomlE/rV+aZ7K/H2pVzo7saH5XCU01l+GEMcs1apS8qCCFRMs+BpwUdUIyheizlu/hx4GC/jyo5DK2F1mdjp1lWq6QNJNo10cFcyg/TQOdudg7SiqbxK9XGEysY1IsMeqMIPQEyp8mVJotC33YocEZvcCWejRmBvrOL/H+g9z+/YsC/ytNCPFKIcQJIcS4EOK//395Lf8ezT11CulWsTbFBrs0GbTr5DM+AYIqFkHbI/CdBYTyUb0nATjbF0XKhBkZP4tnznHnswf51N98AoDJqcjxkbGdYiAot5UpUybwD2/AzEf0CUsbzws7fPDUOBP2c3xx8XDztU9//qt87UufJ/f5k+S/1iqDlG9A/rTqjJA2zis0XTq65lTgcPAb3+TszAIPWSe43XqawniFmqXoCRJ0l4q4ImgK7FnhhdMTS48c4sQ37uSJo6cZf+xuxhcOctc/P3ze56QbKV/n1CoVM1oMajGaY20WHYBQcftXHqIczgCQ9KC4rodSEgaTr0bqAFkp8ptfDvm5L0RfmRiIjOM3PqzpCeiIlkOU6TyVzOE5Bo9Y0bP08lMIEdK4vbOZGkeH8owPmYyf3cqLJ38YLaOos6dcKuEyA3kbCZTtJE56F/mMpLxhB87ufgZ+7t0AODt3Ns9rOQ5mZYSucj+DWYcDGyIBTGsoytpuKs+xrrzMFbwKcziFcAzsi6JN4Tde2Vlbe1fvLrb3bCdlpbC3RVHanrf+6Hndl7luPWG8+Yn25SS+T42O+LaIZqT+QhBwQ0vSiSyOPYLhevgiZK7P4SHrBA9axzEbVIulSGRpPlGiLCMjV6mAckwhyMTVUaS1NZoPZomnKgUOnXwQqQVuRTGieiga0XcdPzquL0NsZZDWNmslHsphSCBiUbX4OpZnl1jKtZBEXhCw8OdPMv+hgxdMxCs0S8dnmv9vDgdwtIleLD8/4qHZiW7zvKV8jGIqxfcZV+MQwkALTUpFFx/IAENLvC4LTBll+gV4SxVWD3+C1cOfpLbcyrZoEVFJnFQqCjzEzroR02dWltvh8FHz2+gUDTqDDBrZuc7AQxC0nKnnSVJ+lxYhToww4IkdwfekE9EYZw3UCW2ivgDbgwFu5pVNZ91cjRiFU70zSBs++KmD3PjEBD1qjWK7Umw9vYqlDZRlUI0rnCyL8zOSi3GyI12O64EXiji6RrcqMFxZIBnUWLFKvPWpXq5bDUgpxaU5RbW2yMm0y7kw5KKlXkYrUf8nqlW0NhmcqJH2a7z3zpO8+3bFiw8+iRkGHXzXC3WRI3sY0F3YmAyKfpQpqecr3Ht/S6htOV43pRYtH1hGwbhQaHQ8NjyhOGnOYaokXaoPS9e4y3yaZ7vLPGpMcNpa5WhXiWVRRSxUeNA6znD9NA/bJznsRAiGULlRhjtu2e62iACx4GTGpLhhC5/8+0+cf0Nt7S1fewvfyD/Fr982wsD8Ac4a8Lnf/32KlTqWCLhaRutg1S9jaMFIXAJwxM2QKZ3DRWPlon0un5HU1iBYGuMkL6NMwJKI3pdBlb5KFVcEPGdHc7xhg1fcBNLewbBYRSUNTGORn/jO06Q8uOx0hKjQxSLeUKMsrkCo1ji1MFBoitUyxEHcfwvi4dN/+WHC4jzaiIPESZNaHKv3Rch4l814MrofVVzAC+ss1ScxyzUGghSXOPvIqgQXix1cb0WOypDbCsYIDT35kzhujmObFH4YGfy2NPFNSG1wYfkEVRVS0W10rTjZsu5AVM55w0qRot0IZMpmX2sdQBz0chLp1ryPbY/2wIMOFMt/+xy5L55CoWJE5vnzQGvN4scfYvGD/42ZX/mN5+271VuPk/vK6e/eyd+nljs73doLlEL2xgmCeE6vls/Xbmq2f3kH3PV+ACanLE4MhVSWtzP10+/i3t/6R+arB8jRx+NnDnNCzzKZKrLQW8bqG6Kkt6KTKcazKxw3Z0jpCkNe9Iyt4mqTbgegtCSdHWBuXR/5pCClbKYtRW+QJGfWMM/kCTyL63rGcKwUM5n9HF0HodHTfKbp9DquGHglQ+uvZ+NCF8Y/f5Nv/6/PI8pw0BpnWZZIqyyyvnpekNpEcqY3SqxM9SiOjK9ySfoqJodSGGP7CFEEKmBjGM31h5xxjHUZpntNltYNNY9zpq/KdFazNJDF2LiLvb3Xccg4wzfspzBsSW7LRqb7DA6m5/mG/RSHzAmkfYziUJHh3ix+n8+5oTLFEZPCUIl5s8igayHDgGfMc5xJmdRjkcVEsUhRVnjIOsFD1gkOJSdZGLWpbd/F5b2v5Oqum9ixehOPPfpNXnBoPWPTBdL3bSU0ogReVyXav5659y4muxeY6y5RGRllaaTl0C+cO8s/f/6fWZlfQXjxvq4UnlCYKpqnjWmgRYRs6OptlUDVwo9K9bb1tUTHgU83CjzEtlyjtcKPNRi7oiNgUBI1ds6v8q2//ZPzx2rbSVaLRfD85y2t2b6f1Q3F7Fd/L7q2eIFdK1Rd8kMqZ05SjSv8BXgYYZw0UIrf/+RfEBoCt5bh2LAiiAMCIZrxgX5G57oROsP91jEeMU9iOP28dN1b2dC1k96YeedUPRQNpNAkXvEWyvWodGqQsLndfppcIsCvfB2//AUStVZSspiQLIwN42+9iJzlcafzDGeNZbLqHF75X/ADwWufexM3HX8H779FkapFvdyr/2uV03xexIMQ4j3P9x6A1vrP/29OLKICqn8N3AhMA08IIb6qtT76f3Pc/0wtsWcPQ793C9VnS2z8hz+hfq7C7351P+ao4uDBOqnxJb5689uanxfdC3xi23t5e7nIP5z7IF7fcpQpthy01hx7NFLNLcZQzLnFaCY0jH2JIHQDGmLczVIxXiTMZ2E8L+JhIa58seq3yt4F1RIJPFZzZXp1Cy5UaJQOVJ1UiwZ3OxSatLZ5df16Ppt4AJ8SaLiquoHH0lPIpQrVpM9QzUGGZaCPWiwCe4FkOKdPnkCrGspNcvTEePP1Yv78DKMVKKS0yJnThEYa6KYSq3ZWxflUC6k1C3EA50bvElxvig1vfg+LN67Ss2s9/b/6l5z95fcxGisW93/wjxm8/Bocw0AHdTJfv4mKVSPrRov4ZcdmOLpzCxXpYyWiRSMzfpKaXyQpRjqye41WjQMiASEy0HyzAN1iFaMQfd/ecDUnknUufdlfsV4YjLxkC/bQxWRvvBGxJjv/2E9/CWEYmKbVdPDszeuoPARv7N3Gj6TW8ZXdh3nPT/x68zvjeg/Gmo5/59538lN7fwqIxIh2P/csGOdz9rpfs4XgQZI2WwAAIABJREFU/jgr2o54iH9HQYfOLHd4gTEoEaRHuln3rpdR/MnPcFFtMwf6Xspj1jizcpWRWPjPKD3DSx7Lc+9Vu9u+rQjjDSi7Mouz9dcQYQn0qeYnfBnS7ycxygUGVR/TxmpkmDYgyDIgG1oYoYG7pkbb4mqeQISIUDc5h8uFFcJyhTimRdgGI75QcC8UmsnjEwC82ruUEdXLF+1H0TpoCnGuHRmiGbxxm5txPheN+UoMuxWxQ69j9Wo7jBAKgVARDNqRGHaiSU0Ipir05KOgi5uL4bNaNzOEmZ4BjBXVDCY1EEj1C5RyK6+05l8r8BA5TctrSiCGSjUjkxdChHz3FjkRC3sr3PSyH+fQc9+dud1wzvxm4KHVw29xr6FLJxEINp9bJu8v86eXneJK/U389Axf/n8EtlbsXcjzyIY7uNh6BWez0bqnVED/SoG0svENwVTdY0PJpypcbGXgyZBUaFI1AgqxWKJZOMidW2y6N25kZfwyNpozlK5+L6p4lOREni35LvZO1XhQ5TnHJvZ87c84NzLIz+98Cy+fn8KTB/nKvX8OUvLklW/jskN38bmnH8LUCrn+UpL73srX/Tp3twXN1q71q8UKnmUxGvbx9dyzbMxazb0C5RMgMVF4cSRbCY0OG/SoCLEVCI0WGkebKHkfXxk2qMkq+8/0MeBdAcko4HRfz36WFjQ328/ySedZdtSqzDNAMFnmkg0JVq24X9JvR8g5IHLYx8a2tz1xD4i9ZGmQnHr+WvZuGI3pvROafO9uPHsJSOAqOH4uClZm43KOtcDn4a6v8ZGJ3yaTvpTp2gSXTD1K+eFb+c30IO/90GfY/f5vc2KhxJc+/dfNc/RrmyI+XtyvpVirIxX6zC1l2JQd5JyxhKccPu9djEDz4qknSBef4uOPzXDnJTvoP9JHolomuO41dM/luflfvgBmAudjn0LfFlURiJzyaK21tEFd+uQWl+ISkf82qoWcrxA6kQP0Mm8vp+fvZSixga6e7dxtR2VTrzk8zxlTc1rOcIYH2T1b4Gh2kRffWeCzF89TGx5n0wNLdL/kd3infim18jnMlEEgQqSCSw7/L9CKW29IcFk5eg6WsKgZcP1HD1E6cT/Ol9/EYPWdzNKwI6I9+RW/9E4uf82NhP4yUx+Py9eKFiFK07lntwIPuhlMbbQgFz0PT4dxX2mEluetx6rsE8xF4qb+zIXHlNaaYLmGdP/jpCmlJ9sW/Xal5njtf75S42EAq2chG6Ef/SCaM64VjaFlaz1ahPh2mYuDDSQLFbqfuYOnXnQ9lSRcUipzWIQYrstdwydYmv8xdKjZVz2Np9fj5zVFMcZPpFZZMWsE8aZXMn22VtMcy2Z4yW23cucbfxjXgv54L7Ysm0AEoAU5y6PXs1h1fJ5e/yXSU+8kYw0xkUkhY20PSwimxSpVPD7r7eRj//gRZl/yqo5bNbXkRY/fC+tads9cokpd+CybipCQgqxRuudPyb1lHb3lvSzFGPm16+HVlTGeSy0zJVf5YKKby/xlugXodBdVI9rbGhSTKbFITyoyUsflMqeMRQyhCRNJKvEYfbi7l/sufinrnpzlRo6xLEvo0ORT5osw6gIrdRazPMrvOybzzDAjV7k2ESV8ijKmbyXT4Pk4xRr+ULzO1sv0qDR5s4KtTd7kXsWSLHKX3Sp7LJB0BSUiyyuuMqZVbLdEaAYhRFRiU7AmxADS1HHgob0yWawdZVZjxINu2iFKtKgWrtTwzjvgPR9ufrcs6hhygKVcp+AxdCZYiqUKqu53rmdtKAfR9ndFeIQq6utWDjGa36Y24mpOceDT8ElpG588MkjgiYD+osvo8iIr2SxLbg8kaNKEQ6ExgJ25PkyRoo6HFpqeVA9SSBJmkmwcN03lYCnjIoSN1g18bXQHoR1XVDEFyj8LQNJ1wInGoEUB6Kck68zE1apmjVXsmA4ehCaG6MG3+tGAF8+1jZdecV4//iC3fw3xkI1/Lgd+Hlgf//wccNn34dxXAuNa6zOxZsTngB/6Phz3P1ULliSJ7YPYQ/1kL9uAbSikALMkMe0sXlsmMBO6KAOGPIt6tsq2lSlS2iG0LEq5Fc6dPtH87OrMPMVqzImMBecMrVEx9NrRZlPLScdpdlMbz2uw5Mox11fXmrws6UeT5Uy12FE6sJhrCLeEa9DO0XkCobEwSWCT0g5KKFLaIVWoYWhBxazjiQDTC3HjBbeBRrgQLPKJ++6Ors2vMT8zSSKuEV6rn78RSyKO30o2T8mKqSsNWOcFghpCa6ql6N4HVBe+qrH9la/jhe/4GXZeeT39G4bIvj4SWAyFZOB1r2Fg0wjZsUG6Nm8gExiUrNZ1OLUyqcCkLOoUHU1/kEbGnGghgo4qH43WHaNDAsLIsBSSrMwR1iMDIt+3m81X7sCQFq52sQYj6OfaoAOAk0xi2zZSiqZ6sdEfRcZTVj9JmWTjjp0IKZo/piHPUwcXQjQ1BhrnupCCuBCiSbXQohWYaFIt4soOQoPRgL5fiHuuBQMjYxiOidYe86XjpHDoUalI/ySOXJR7ygye6+ReK0lTwDJVnkUIQcItnYfET9Q9+vIzDATJ+P86YSxXU5c+hhJYYSTkFLRVZZg9FyGGZKibBmFhtYBUbRoJbVGDtWO4Me+OTEWw0S6VQiKwtESpoIOW0tG3aNCgjRbioZDPo0NFvUF7iSvJqDhwZAWtc0sNwjGxkqmmGn7NK9Bd1XRXNaVGCdAwRqVoTe+6DUgt8RuBhPi+9AXKaS4utsT3Ghu4iPstv9ppcKh28c7zjvQ9tFhjQyYVm/fdGFN3/vWvrKVatBvzbm0VEZfxW65NoEObuQGPwZLJjnmwY3TEaGmZ5XRfk2ID4GkPywhJBJK6EXKu5nLqzBS+CEl5kXHaX48cxIjrKglNTSm7zJsvfR2LajvZ2iX0e5voXqmR9A3sIMAvm1jAik4gUwMM1w22mwegsgKDA7jZfuzcHCPawBwcIDEYZUHsoUuQiR4yiZGObNHatf72R54GIRgJu1ELpyj4Sx3vz6gu1rZmRjmuwhOIEC0lpjboKYNvL4GT42VH5hiejSrj1A2LM5UUpazJkjAYUQo34TChe7li+liTGhg1u/kg08pmbP26tpN3jrnuaoXJpc5rbrTZchRc2HdOk+vdRZCInz2S8VONwENMFRRV8qmAytJxJBIhLaxNG7FDn3rvHvoGUzjJBCN9nUiXHgKG4jHUnpTrrtXYMvcMW8OYZiF8HOsEHiaWrFBKdyFFwIHJSfbH/Petv/gzdA2vw1Yhjp1h51UXtQ7YxuFuiKgtLyxEArCxxsP3QrWolYvIWg4rE+lpdOkko/YGemUfWdWiKJ7KuBwYfzI6NYquapGXPZrDDH0e6t2KHyQx63lU/hwSSd0vNcvZyVAhU/0INI9v9QjiAJAVIx5I9ZG95LXYMsCgTedFtOZT35YNDO68lNBooD6MNtpmZ8CzmbXVag27G8JcdG6vwZPWulWGuK0Fq3XCpQjOL8wL0yhUxUf7ijDvotV37+vvR7OF09pj2wMP8fmrbu0C3wKKM9Hn63GmO55PZqioOz3UUsNUjHtAwEY1gFE5TPfSBMqsUJB1urq3s2AUkNVF5oJNVElQM5I8ntzLut4KR5L7mLNTyDByZM22fX6k6LMxmcQOXLK+Rd0IScZmgy0lEpN0dgxfhCRLJdAhplNjxTbIWAPkUw7aj47nW5Ka9JhXSQIk6yqr5+3hJpLtC2ea2kMAT5oRKiUQUcCpYNUZKayy6kTBzFCcn+wBkOVlRsNeZowcCzWX7jiQWEoa1ISHbhPLLhh15uxo7p41FjDE+bTdRy66nCCbYm5ogNl4LV0f1vAMmxoWXu9jrMoMtwdJ1qu+ZnlkoKkboxORbauDaXwZ6bfVwwKjKkKC9foOieIKY+p8epC1pn6LsBvomYa2kUBV/ChosGbzNJJmJLzcKbaAgUBIH6EjSm1jLmnR5jyKerQ/tC2KoVAoaVD1z09YtO9LxXIZ5brPS7XQbYEQLTSTIqYcqEjDJSrTrluoHKP1XNapPqpWFRVru+2fWsBQiq5qFe1H876BeGigIlOuQMoUvghx8XHsDACOYZOJb6UnZwAK4XQ+g8BwCOJS71XDx5HROSSt0pp2m3rnrIzspxmZw4rLrWrfQMksoZkkMNP4UiOw6NveCsj/V2jPi3jQWv8+gBDifuAyrSMBAiHEB4BvfB/OvR5oL6EwzX+xahlh2cOfr9J1UwTxEoZA6SirL12BSPfjVV3sdGQE9MS1q3u8DKdQ7NB5SspiPlHm9ju/xezsDAxHxs3tn/1rsnN15talkbETYtDKtmbDBL4M+NDpH6J7yAY7MmJ8EaC1pnjXJEJA18s3AVAuRo6CIOT9v/d7vONnfx47dsoOmoc5VNbc+LjmyiuvpFyIM3/x5t9ojb98EWLFgpdZnaAqXLpIwtJpegdGmI1LQUq3TsFYJRoKUbtQHjM/fY7klheyatXxV+bYpzZwTMxQrp6vtK9EiBNKct0r2JZB6rskLCQCr1rEkJIUNkIaCNvu+Mymm2/k9Id+l1y2D7nmvVRgsmBXaDCwQmpYXkjO9sDQ7HCHWDB60WoVITzkBXgGVTy+Zh+kKGsM6SwaGJU5DG8LmA6V5EZecN1OCo8+Q8EoPW8JsedrZl+0QNZTCTLAdXu/v9MslA24fxvstY07J4gWGiuMeeIXoLwIID24Lv7bxI/5wA1noWpGFQmKwyZS1Tq4fasxJz2jHBa7lhE6JOnm8dcMJVVcYHBlAsdV2AkD4RXxRYZG2ldohQxC6gmfySPH2XpgH/mvnWZ5OlqmRBg2K3iUCkUMoUjrRNO5bJ4nhig2DB5LR4ZMPb+IdASpOIsrwhBtqOZe3+5MRGXCIkPLkJoGhiS3lGf2Dx9tBgYIXIR2mnWqZVvgwdACM9tNKtuPLAkWnBp3+Ef58hveRyL0+LXlU5Tzs/zc525kJz+M0NA3ugn57HTreHEgM5Vb5OSjD7Lz6pbOw+JiK7jQ4CbLIHoWlWKBv/u7v+N1r3sdQ0ND6KYa/fnaDIXFHP/4yVvYduU+HvnOSUwjzzY/y4ltS3zgZz8Q9Ues8eCKNJmhdVxYSWPN8177iTZUyrnySQad9SzWY6G92GBYv2LyOw+0xmfWr7Ji9yAqrddc5SL2XITlKyq2x9lCierZiDqQrAnyCchWXeykhStCEtqkx+vHCorsfv/X+Xy1ig5cpowy2/b8OM6Tp6E8gZeO1sxTjsWBRJrk8hk23v/HhF6Z5PXXcmaxTFaHlO66B6NvEyI9DCxgb92PF7hYwqFd4GvtUvPMg/eRkpDxE+w/9whf2fz6DgWDt3i9POkUOhBJjcBDAz3nE6ING1NrMrkEf3CLy5M74JpTRRYzT3LP1puY9zMIL2CbnKM3X8Qeis4yp7q4ZHmcp1WrErfQshn8G/QzdKdbDrFeo8kTbNnPP//V/8uOvTtIuRYTjz3Bal8CV7nU5Sq/6L2dwp4As5hDJaJ1I9Qmhw5/iTRdzbWkYhWpJkAvnYDNL8UQJomdW6jdB8u9O9neHxmBaafTPOrWVbLCZ5osNZ0hJaJ9cKBYIb10jlTsHIhQ8cYj57hl10V4SZMb+t9MfXqZDavzUHgWke4juX8H5kC0LstEFzLZOpdoy/IbscbK0sIMjakjdFSt6df/+IMY+XO8/R1Jbvv6EHJ2FqewQM/eVfLPjuGODOPsuhJPhEBIRlfo7b4SENSKE5CI1qbpgce4oaZJuR5Vx6buBPRXQopWioohuWgqus9w5RTmyCVROTttUBMR5Fkme1Chx2x/iTAWClU6wI/nVEOY1GzTJBfyfMcNuxF4kK2g6xoHrxGQEEpHnHUh+Npv/xFuGPDKm6PSkRUnrroVY8nW7jbhap3aykk+c/Pb6NF1fmJqimF6uOUvP8sxJ8cHf/vXEKs+9ee+gLBShIXLMXujMeEvVsl9/iT9P3kx7qkcteOr9P/obv61tvL3t/GP9zzNude+gY/8yIGO90qlErfeeitveN0P8cXKY6ykBumhjFbt9x3dwcLSCh/93f9JEBb49T/549bb+XN8+syvclnxIkbvn8DbtgsltqOmKhza+noq2cfwRRKpNd2+hfPYo5xdrzjSfZax/HZuSz5JKDRFc5GwEuUUpSVQQvAjt9/Bt156FdfNnUSM2PhCUWsT4hrMl3njo1FiyPEU847LkYGAo/Jhdls99CeH6BneyzynqeVnEf2DTE5fxJx4gBc620EI0nInLxp+FeNWFFQcDyI7IGlnOzLeEFEyx3KLFPS+qBoVEbU1Wa9Ri+d8ENsjdptQn+2beFZnIDPHDKNqGyeZ42brufj4DmdlhPp9vH8rV+ROE0oDSwV4IiAT7/cAlnYI8bAwWdKSaleaodUllvsyzM12sdnIoerzNPzO99x7jD/eXeGxMMPPqCgZdNKY46xcoBAn4JZ6THpS12GEkhmrwpCXpqYW2aiu5ijTZIsu4dJx7K7zS8Mbhk1i+/UkiyVK3VmcWINKhz4GBghNWPZbQtJtLdOdwahHZb3/6L1vZdPoFoToiuhMZhBpqoho/YdY44EIgaVjyqvQnca2a4Iu+1SemKc+nudf9nyH8oklTNGyoUv5MgsffxKVujDigTXPv6SG4pcVBgKEQMXJxoYUXko5VKXLetXLrFXEKXcDFi9enODozb/K/mePooNFIGzakAEhDiBqHlIm8Aki6qoVBZ8dI8l873qe2TjC1SWHF4+8hFldItl7BaZbpRpWUDfuomZEwYSSqPHKsZ+mEhR4rn4fe7qvJmv1cTZsIayWRREVGlQNl7BvBLGuG2N6hrFUiaRRoZbsR0n4oY0/z7c+eTevfvfLz3vmP6jtexGXHIYOvJsXv/Yf0oQQPwv8LMDGjRu/y6f/czUdaNJXjpDY1eKt3hK8kXXhIlZ/H91GDwnXQ8WOyJ7lNL/UNc3mwgHG917F4KnTiHKa5Z4yp46fIpHI4MUO18LiLOud7YCLUcjDhgwSTShUVEYvlFQtheGt4vuRW+wok7Lpon1F7fASyFbgwXJLpGUaP6xTseDr33mwec1KuijgxIkTXHnllawuxw6/W0PoFk8MBCcn5qlLn54wglRmdZIFCmR1EmPpMImtQ4QNtXKvRDc2ReVQiRcvfYHodH21RL4/ybDqoVapsccaY8JYQoTn13muyYC0a/IL1mm+ENrnvZ9ViSZEFqKobRC6ZESC8ZWnKVS/Dryv4zuJ3i6Kr3kLA/svOe94+4duwJxpcferyRqZcpWFbGREdXspCs6L8cx12P7TtDPjkn4EZitZNUqxJKIRBGw+/SU2juaobf55GLqa7B6P7EA3R/tyjFx78XnX8N1a9qZXoMolju7bzWPHzvATPdf/m4/xr7WWg9fmfIvWe4Ioip1yUs1az2ub1ILeTZsBmN4xy+D0GA+uTJDKhGBDyXCxtKQw0M3SpRJbG9TXZER7C72sDFTZfeKfcNwcR7a1nOTttV5y5XOk6osUztzPzr4kp+2j9Kf3kIvhv7Z044y9wRMPHWLLvr2UH5qlko0pBYECMwQE9bqHkRRkVYKyUcdcQyVJYFEhzv4hqQnIeC5V2+L++X9BIjFGRglNhYqRJWGb06i9kCjjIBFSNbMJldUSuh4SxsafCD0MkriN4I/f2vylFqT7B+nr34AsLaIFLNsVwvpWjhgJ3Pwxnj34WQ4nJNtFRCMZHt3QkQ1paEgYCCYOP9UReFhZaek+NLNKfgVI49YrTE2tMDk5ydDQEI2wpHWBLefYwedYDHLMH3yUpOrGdeqcMOswC0oppJQQo2Z0Ik0q24XUF9YKaW9rKT1KBbzWfQGu8DnhP8LB5dtZ9eaxrSHObernrQuD+HNFvE37mU/W2Xo4EgS+cnoCkq29R4ceg5deQeLUCiqjWT58BHsuMpoz+TJX5EsMnTnK9ItehCtDbGXSvzzAbzyzif7JJ9FeGVTI1lSa7mKeem4CgEJtF5XcDP6P/TjJXh//oceQyW5kt8O6X3gHq6eOwweehdDHWj9G5iU/TDB/gL4fv4bpw0c49tATHYba2sBL6FfIWl3UvArdbpGVostes4t1bhezyRp9noPj2FRxI4NS6OaUbiBqfBGipMDUkr65jWyfH2fLUrSmjZjdLJdMqqkqo6k5/tu3v0S52+dZ84X4oeBtlSnUphc2rzHiHUt666P0+xkG6w571rVQF6rN6RwNBqhTIGf4zB05RzA3R9/QDpbEEmYQ4tgDzCeiNXS+uwXBl2aClJcmZRgsVOZZCKCYXEVJQa7+FLXZh5kJHuTS3/kM7vQCQze8iu6hyIFJ2QZz3i5y2uQylnBqB5lbquJsfzkPFwWvSk6Qrmv8/iEsfZY78k+T7+vmhY/dw26VZmnpId7Vv4s+OYy/9x145x7ASmq6XvsapJRYIxFiRca6FroRTmtzmBpzMb80F+cfacaWsp5PcqnIkydPotyXoPoHcVaWKDyVRupVhtVOZoXH1qKBY1QYS36Me6tvJe2CI+9hc+lKZlInKG/u5olLqnQFS2gzxcRV/ZSOrueRvlHefuzb7Fs4wzcu3cY3hzbxC0tHKMoFbKJ9X4QBtXf9ELNLZ/i7m17P0a//LU+tfJuF6gLrzbYJ+u77cT/4ifi5C+QFSuEaSSeiDYioGpGBRJudVIvmlNY6pl0InrSjfeC6mRyhCpitzUEmQkUIHTkmWmlEYwzPF3h6YICMExJgce7UOD3GdqazC2SB08+NsyUxTDD9OKDxV36jGXioPr2IN1XCny5RO7JC7dll9Jt2IqznBw8Xv/Vtvta7j7NPz/Bnb9nfQWs8ceIEs7OzPPvUYb6jLS5qoAfbxkAjYJoRkpxZY6Sc6Dj+8pnnqCevo89OMP+t4+SdaB709fQSJBfxRcCAa5ENE5xceYjybpNju2yUnCIZXkEirBGWlvn2ui384Z23Md+zj9mBAeqmRdaEd8w8xt7cNLXBSE+qbLhsCPvZoPpZSJ5jaGgr31k/RzJGxZXNEKhRsVIMO0OckTlSnmRk2Wdu6xQT4YvZaURl3x2Z4sDAy+lzRtBmCakFP/zsY6QqReTVbwbdifKQWtBXymNoG3BZV0+h/CKON43jXcKy4zHiHGNutJ/dz9xAcYOHoW1mwwQDcYWJJTHIrtoD3Nffy0CQZcIfxBeareVnmE5fwZgV2XOuaTE+NMx0oo9XnjlDWjv0+108kKozOD/FynqD7cF2Fr0qg3PP8K6v3sqVzz7D/Te8HnVmknCDwDzzFH8ze5aTPWNcP+nRfc1X8Lyt3Jq9HnPZ5KA10UFvqEuf+YRPWkW2a1haZdw8Ts/KLjZlHdzFe7hlv8veeZvXchkFo8YDVkQbCgxYMmp09WYpyhpdPWNACRW6mDoJIqS8mI8qdK3ZPHvWj2KcrhEA5myB1UwNTbYZeOiAeNHaWwwEwmzAIjsDD3VD0beaIffFiPL6rcS3WKzM8xZxc/MzlVIFz6s/b+BBr1knfCMF+GitmiLYZcNjU9BLzogQKdcEO5gIFvBKk0xtfoYdq0OAxZyZZ8Uoc9nm63DPfQ3DjPwuR5u4IgAkZtVFOjaBCAm1Jh0johIyxZPrBgnII7e8kZHkZgZ0GAlQOgqtFaa0eFRHqNZlSsyGVbY6o5BMc0nfiwGYqq7S0C7SAqQvwQg5no5szFHdw76uLQCcSg6SyQzgGEkS9vNXqPlBbN9L4OEW4HEhxJfj/98AfPr7cO4ZoF3me4wG0bOtaa0/CXwS4PLLL/+Pwbx9n5rZ49D7xh0dr01Ym5iwNvFDxbvJJnvpkntoSry5Kd6dL/Kw6uHX3/FSxn/3MJXKJBdltnFcTiGdDH06Q4kanrbw0mls5SPcApCJS+ppktrGCASu7ZOkBTVMKAuFQlV9glwdIUWcWRWEMqBfd5MtwNMDFVbmZjsGh9SCXBxwqNXKZEjgegskdTs0Fh68/ykAhoMuEK2MdSq0GO+bo15fhlg93fcW2L/1ldT8AhU7Fgq8kDMRUxGu8nfgusskpYGjjPMc2BPPPYcnAoxAsJ8St1WuJmVaVGXLeBmsGpTTLUSZIBLi61Ypeh79exZfcH75JoBrPvwHF3z9bT/+YX75ff+d/pi6WuwJGFle5fS6QQwtSQQSKwxQiSsR6gmkbPXqQNnAFVBri92YKmTj1N3UN23A2XQxquTxwp++Mrr/33j9Ba/huzWzt5f+d72L64Hrr7r8/+gY/1ozRJyT6UA8RL8VUeZeaLCT3Ugk/gWMTokgNRAJQh3ZuMzM9lXec/erqFmRI1KVHpnQ5vpXvg9duBVDdBp6O2r9lMujqP6QdU8+SmA4CB05ybY2UadvZdNKkelRzdaTdzEI9L1M4uoC40RQ5DG5yqLnIvUI8wsreDMxVScOColAoc0QMGOhTElK2WCAHSMDMKJKGgltUxHRmDbj0h7FhImtDRZqEwBk9Rie8HAaZTPbHOVgpQIiyvBEUKaoz+p1D9llo6ohCW2BriPpbQZhZLUO/dHxpNJ0j25keGQX8kQLon4VBSZI4NVWmJhZbaKTUJruwaHOErlxIENIg2qxU1OlmOsUnBRaQBgFHkLlg4RKJcpDNDLntjbOo0hMTEb9YXjg253nWC2uMtAz0Mz2SieJZdnfk7L/Wsdb6IAR3QMajrhlztQjJMulQciLbnuE+/ZZvPV3fxMu/TG01pw4cCnadbl8cpLFHW2UOLdO376LcQ5/A0iiJ84RrLpgQ9/KND31B8gsmVFFEMBWgnRRs/fZHEG9JeiZqJZj5yZqye1Xs/Gjf8Q2iIiI/FLH9V9x4ADnvvINqgcPkrl2D4M/91LgpQBs2/pCtt38Qk6+5wOt+1/TPwnTJEWCfH2ZrsHd/PKhb3L3zmGEewXlkes5K/LY2qQqXNLapixcRBO51DqOK0LsUBBuux5O34MRhjiXvA0E/NI3/5GH9l3Elop50ba4AAAgAElEQVTB6NIky7v+B5fdGa2dqRf/NnLnXp7WjXuODupoxd5wC+fEJFZbZZ1mPWJgsLKNv9r0cV6/ci0uirA0TWFoPb06Q7YccHogOlavSpOTFUwtsbHQMsCQilE1wHzNY8HcxGo6GrfHNgluevzTTO+3sIb62PQXv8Wm9vEiBHfEkOnfv+2vWM72orYM8YZ//ghPXPMzbMxO8KbuB/jK0C8y9GiKF51+klfNrcebOU3m1X/B+zcMgNIESzWs3q30vuFF9LxqS/P41vooe2f2xEgJKwF+DdEWUG04CPVKGSG6EUp0AIbCVBdnJ51myFcmd0H5EAC1pElPaLHtyC1ce22EyHnfJdH8esmzb2AhF/C08Vre/cAy/2P7u0n3fYcDm7/Bq4e3sX9qI7sP3QbAoa2C1xw6zW2v/XHeO5jmD8M6VgN5EAbs/8l30igqd5yPc6r4FKboImyXBFq3n4qMdXoQDRBER0v3DyAW5uMATLQnKNmZXGjce+P99rVk+tkzpIKQqcoCZKJgt2xQLULVpAu5ZyYZ37C1VSloeh4v3VKNn51eZDTtoOsFQOM+d5Lk9ggl6J6O+i/I1ZuaEkG+jjV4YbtBh4qV5RXGt6xHa5gr1BjrbX327NmIBz5+epwziTEuja3BDrRPvPaX4wBLLdm5gD589zESRoS6qLXlCJUlyJs5+jyLidrdfOYlf4TucfjlL/QysnoZ1YLPx7PxWEvv4/JTxxkOJxndcIBXfTsSBZw48Ivs33s1i1MrpMKWAO0G1c9F4QYecA7R86q3ERz+KHkcaLtuz1QkrS4W5Czbxo+zb+Jp7n3hbh6pbGaIKUxjkfX2IN1WFICrCw9bGexfPsum9dey6X/+Ig9+4M867tXQgi4zTSAcoMQN9nfYnniYNzofJlNa4hb7w9xjXs51t3yJhV/5B+4elYzJAssyybCuIhHskIPcdNcCw/vO8dGePcw629hUmeTtJw5zrqvO4t6tALziifu5YetV/EzvMB+7YSc9pQIf/otf4ieLIT0VzZeuFZy85DJ+4RNPEgqJpaI0y4HFjVQO/RXfyqbZd65OV22OLcWIhvanEw/yG1c8w8OZFFsLPWwJztdAAKhIj/Vli8POIRKEHF18CGcp4BOvm+NnV5KsP32CzMUHGGGUR8yTsb5B1Bp6EUUzehZau0jSaKF4+un7iFInnWNoaOMm5PgJtAArlHhKIkUcWLA0IlgTeIhifhHqyGjQzzrtupoMUKpRSUMzW57BNbwORKjv+VR1HdVhE7b/3U7BEHiGAfgx4kFStCNkwpCXYsJaRWjBUNDHwek7WFEu6b3FDtCEJwIK2RQykcWIdbESceDBMB2Mqo/O2EANLTQJM1r/HSOFZ0XBoL7UGECLciSM6AeYJ7IZfRHycSvBh6ADQW1aGWh5fGTsBOW2OWPLTPPv+shWBhKDKK3YtX6N4vkPePuuVS201h8EfgrIxT8/pbW+gFTpv7k9AewQQmwRQtjAjwJf/T4c9weiZfsHkGmLMbultOuGUQSuEGfFuzZdiyGfIKMdlBTUbElGJ+jSKaTZR9XUWIFC6UIUmRSaUIQ42sQMoiBE18BFhKaBpQ0MFUX//YUqX+EkX1XHUWUf3/fxREBWJxkUMTqj1qnQvjNcR75YwA9CAkoMh10E2u1YwGqG4szpQzjawvIig6Eh6GWH8MwWiRtM4mgTW5v45iK9l+0i47eGYTsfL8jVmbznGOWeNLY2GdBdbEhvY6U2j60MQhEweee9TB5Z5HOPT3LvffcDkeaFJQL6e7pIh50WTnY531H2EQSuDEgqE9uvY6wtafA9NKeNk1vqU3StRPGzYdVNVVQxgxgEJmPjMm51LRFuJwfOiiH7bt8WzL4EmAKZOR+58Z+pOTFVob0cZMPpC4VqakBke/swEE2IZHuLAhPx+Dca2fESOpBNnrOhJS+89NVUpM3aHkn7A1hBDbM31jsJ3SYY38Zkx0SF4bym2t3ayPZ0VRBGy7BNiSpKLjCku6mqKmefXeQMITqIN4bARzd4lFoTCh8Z+BhaYmrNUVFkXJUJhMJu44c2tCprpu58PdARpC/+3xeKj/zWe7l9apoH7/9qBGfUAsyIUwhQUivk8o+iCcnqJEq6GFo0DQ9dbZVcExoGNu5iePPOjmBCrz3PRaJOTteZzi3y8md2xJ9XiITdWakmLplZTzjMzUTR/GIxz62/9yu4a+rEGwjQ0Vhv0G/KxQKVL3y86TBEiIdOSsm5xekIVo2HMrz2t5laiIIDKq5qYSbTSBmp3jc+ls/nmZ+PYKVf+Mjv8MgXP8Uddz/ZUToTQLdXC6g3Mmk262dmsEMQdgLSkREshMBavx7R1U3PioawNWb7qhVSl1xM4K/Qq9IY+QKZIFpnepdOURyI/m5U6DFDSLkFgtmnGk+Gph5O8zUQTmcm80ItdXVUWcBaP3bB99upaiGKUq3K5+68j7/89mM4QpLEplydxsyO4bg1RksBbgxxN8ICThxuTqrotxSKdGZTsxwZQFW4kSq6ncEYiBw2c2g3wo4Cyi/wR+mqh2BYdNst6oRwsggrgU+DJxz9NmNkg2t0OpmqzXFVgcmPHnoBSVeRN6p0D26nIl2yOskeaw9CR1oqhZjrmxY2SW1RcTRKKkbDPlS9hlA+K+lobzu2IXoGg7nz9Usu1OpOFyLm7eYTGcrx3pbaMIZw0tilVYLZp5A9mxBOimChSrBUa6IvEtt6Oo5nb4gCnkZ/RLkQcQauHSjQYKX5dTeeA50caG9gHZxrObL2QD/dIwfoHrmUnOHSVYXp4ZHz7mWm0MdliyfxpMMT3ZFwWZhYYFdCseJfitvbskue2xxd0I5CNBcLdl+zpKZUa6gQouHsKAKj07kxG+MMiWGdn2HoXT/WpE+IGPGgjM7jt6pdROtBQwgV4J7gKJ/1jxPUY9tFqHhd0eiw1Wf+1DTl/m5WVZJ6aJA7M8PfnPmX5vsLM8tM332Qb195HU9s38vKF++gPLuMcgPcyQLBwhH8lRr+zAJhboJwtY6/UCHIn89nP/7Ys3x17wa2mysMijJ3PD7NZ+8Z5/aP/yOf+J3f5dTxE6BhbmWR11k1+s0oK98uqtlw6MJ40SvZIROTZ5vvL84k0OIEx40ZVmSr8kXJ8alJD6taZiUxQsLwkCrkqqORndRfaQmJA+xfOsVq7042vuMGMGwQBovDuzjw8o3owEIFrWfhxFGlTLXEllccID+wkbzfst26VJKKEXIqWyUUmqGF6Fy+6AI0M6orcjxHNoFhMi1XqOFha0GqXkYO7f7f7L15nFxXeef9PeeutVd1Ve+LWltrl23ZlvcNG7CD2ULAYRIcICQhISHwsmWSzBsgLNkzyTCEYRICxFkNJsQ2YGyMDd4XWbZl7bta6lar99rrLmf+OLequloymCEk4X3zfD76SOqqun3r3HvPec7v+T2/HzJlES7bzEolcAZXEkTzVF4cZ95MMlac4kRkNVwUCcyBAspwKVv6eR2uTBMPLRxlsvHoMYqFVQwsrOKCGU19v/jUfvrmQq7e9SRVZeIpyRUvPE348P284qB2ejt/3wusnvDJlhUKwWsfVYQnn0EquGeFLugY2WGkk0bEu9i+W5FeJsuxcrfN9TtDyqX9nMwUzrpflobw6uwbOMZcWt+7mUoVpCDWcMgeeYJSoNfamDp3zroQzacKra2mBBw58JhmPCxD/3P9g7rt2BTEk4PUw1qrJcOIuW2bnihU1EKr85PmM7hkAx0IKoaPCuGO1OP8Q3w3g9MJrt2fJRAKO7p+ofKpqlonSL5UqHtJrhhXbVtMVIBUkrqhWU25hj5et0oz3ygRBpP4lqDXDxBh5zb3pJwjkxwgltd5TxO2TeY3QWgTWu09g2UnmRTzSMMmH8uTs3txjBhKKYqiyh45zkwENiw0pglNqCoTIcA1JzgupzFMg6KoMidK2E6nblBvoafj/9gxiqLKvCiT6x1jyB3iCXGAw+foTPtxjhcFHoQQ6ejvLuAo8DfRn2PRz36oULpk+KvAPcAe4J+UUi/8sMf9jx7pctQLvHYtzprVrI1pVduFikE51kegTBjViKsz1E3CMRANfdc1ZEAqXNCbeSdJUVRR9TKCqUg8RtEwPGKhiRlVKk91x5lP2cSUjQi1OMzx3Qc5Yx3ntHUCf7bGzqd3o4QWvVuRWEdcOZhCYSuTgSCHExokfYdQhTy1az9KBGQbFjQtBqNYtH1M4TESFih5utepEOo+sVhdsWuFwKjE6fMydAUJQrtM79WbW5OzrcwOuvn8nYe564Fv4JuC4TDf2jxNVg9jhxJfBtx5R8gff34nv3HH8xyZipT+62WesK9g7aoRqOpx6PU0kpg4ebRjExZKhS9D3EB7Mizkl9q5vbTILLFs8FxJvXEYV9mMhj1U5Am6px7U5yWKxJz2IlHCQlQ7vbmDWhlphuR+4o3YwynsoVSLIvofNVJOQu8ClwIPSxgPTWuzVHc3con2wdKQitb3/KlFvWDGzFO4tYmWNasZLZa7s+czKrWg1CpPbxRNv4dYZYpcQj8re1eplte7qSTZkk+6Co1UyIl+xZmMoGCXCNx6q9+xwASGOU13kKJueHzy6aN8gErLn1r4jVZCqKRECQj9GmYEZT3iPMkDzmMEhMSW7JqcaNGoCg8rEJgqjiFSyEDrO3jR7sITAUUnyd/cfhcfnf4coVAYSiBN2ep1DWI23yjvIRAhKeXiizrGkmn8ZGyilYi4vqAwvIZYIdPhKlKTDa6zjjBtxAlOwuB0U4U2RJqdploiEjSbS1nMCH0d7vzkb3Fq/yHcxU5wUm8aqh3CXws7H+L4b/95tGHSFH0laAnYTuw9TjWssy7QG1ihYL3frj5ORPapOgkCK9XVel8T3Lrrrru47bbbCL2AXUWLe54/zqPfvfNs8cnQY75WIVAKI9T3mJQOYV1f08GECYU2Qy123nkkLr6QuaRFGLQ3AqZXwyrkqakzDIQ5fFElaelqbrw8z/HBQnTd9YU3/Qaxgj5vmerHWnk+9urtiJiea1I3vlr/fd3lfL9IXf8yhGXhbt58zteXUlNDobj7zruIfecocw99nUAqzAAC7xQ1x4Uw4PzDx8iW9YZyaO992NG9Y0eArZQmk8PdlJewxjwRIBUUpIuR24rMDhK7cAPOBg2GuHvvI3lqNzJeoCvdjb3uZv1BKwEC6ksWDatRpFjRy/6EbDsWAYgleg++MvBiV2FUdW/zeJcVAQ8ufc4gQ2GeHi/F7d5qbGUyFTuNpUwaUUtSb5jCnRsnXTzOQlKxtdrgwLA+/pGRc1erASxDcDF7qZkmC+lRrKy+P15x7AkOqQFqYS99q9dgFgZR88cIi6cw+88jeUW7Bzt5+QAyYWGPdop3uhtWgJ0gtnUDAOlXvQkA02yvESLaMBueaunldNCehUBm252vM7F5xnMm4zltr9t94hh35Lbz9eAyAAbr0OuF9JbOcMX4bszQ47HubUCI4ZxipR3wme+s4RnRrrztHjUoufCaXd8EYOOm4dZczLJ2RzMC+2xjhMDsTC9jEagpkViOw/IYHh2NnCraQLMwO0HqNugSIoGK0QaNKmaVk9k4x2NRMq8CRGQB2JiPxPuUojZ+nJgTMhmmKGMzWZ9haAnX9vTxGR41jjK7aoBHtl9GOL6HI59/iPqRRRov/AvVR/+M6pNPUdv5VSoP/RHe6UVO/+kOJn/vybO+0z9+45+RXQmusI7ycns/H/v2Pn7nm7t5ZOIAE5ZJI/DZFAyBANc5ypzVdBpa0mKyhMK+MuwhFPClL36u9bNifYpTXZM8ZO3lSVM/Q7kgzqKhgZDa/Al2cA1X7nqG8/fv5ljmECV7hpUzzwFw/fGnsAKPC6f2Uuq/kOHz+lCD5+F3b2TwgkGG1ut5ym+UW7+zUp3kjKUYjvXRu2kYMzZKIyq4nOePEgsdJqxFjtpzSAVT8SlqFmSLgqtO7uR4Q1e9J2IV/tF5mG/YOxk3ZrFCQbxWxFmzVrswLGNtCSVw1q5hXsWJK5sMJzmUGOQtd/wttbLJGZllys8ipaRQ3MdiPEdVmQxNj5PyTBK+ychT/0Ti6CMUdu/gVXt3YAY+V558gXixhIHgdJhiRsUpFBdIH3ucNz74eRLVCukFfX0VAnvl1RgK3n2nnl8O9p7HfKwLsz/SyIgXyE+XW+9vXcpTJr/09ZAP/sPzTBVy+EpwqqYBzEKl83kRdcls2md/Xx0zCCn16/V2oKw3r6fDReYaU3SpJOnwbJHU5mY+lMUWO2hh7jSeCM5iPKS6epFKUDUCFgaHSZ++jroIsEKJkUyepbUQovR6ogxE1GeqohYCFDgBlGQdEQr+XFb4dL2LZ09/iLuDD9IQPjGlS0cyVMypzhyYZWtYM2KBQTXShhEEzcYzCipFwyuSCG1WBj2cLD4KKA4MTlHwFWFkH6rPTTEupklnhhjP6PPtcfTaPd4FYSLfsh4GKIs6d9tPs9ec4Oq+13Nh/hUAHCo+zwPmXh629/FNaycLjWkO1vdploidRSlYYZ3gm/azCFPwJfsxvuw8jrfMH7Y7n+8EgSyLR8x9PGC9wFBiBY6dZpc7zlOnz9az+3GO79Vq8XfAzcDTdNSgNMsVWPXD/nKl1NeAr/2wx/lxind/4i8IwwArou2Ufu8B3jh7EfXqDKs//H6K4re5qaATifSNo/jf6CI/fgDW6YV6rXyKPf4rKdsNELBqcgplz2EgqRuKugzoqscoNTofZhdbAxgJuGtve4GcmShx6IDuwcp6FhhtQci+MItzYj/F6hHkUA+4cPxEJLTn11FStYCHJnXK9uJc4Y+x39e/o0sleWv9Wo7VdvPe8XfS9fwXeTL2ZpQwcfky8VwSP6jy9tp1PGkeYrehgRkVKIqHpjkjF+mpGFwtNjJ7zwdo2Am+csMkLwt+kbrwSaKY8RUY0N9QzDlQVT4XfehOGo2Aj7zwcQZPXc6BoTv5+b9/kDOZkWibqB05alFiavnwlg9IfmZ2SevIS4zemM2E0u0FyTDOB94esn7+nwlmXsMlmftx5ua57oEneOGKHPlUmuONaBKRPkHQORFVRIWRBx8mli/8m6lp/7CRyxWYmp07N+OBMFoeJLnBYeT+I+c8xlKxo/c2At5z5Dif65/hlKywIdzArCzRLB3OjF3Lp4yLqLmSb99T5NpgM3vmD7N112dYuMjnlg8ZXDvncZ5mN7YYEwBBXHLdVQvUwz4s6XHa7uWu+fW8yX6EdfZ32GlvxvQDsOBopcRpLITurgC/iBI+kEIaJuCjvBqGsjqkDkOhsDzFreE1hCi+W7wX4g5KgBnCpvMlV1S+wT8taCX7uuysuK6YLXJo1TbqMiDuS6Rroirt4xe7+0AFJHyXaWO+tXBZyiBrlLhwbgW5eB8TlQN0FQYwbbs1vn01FyEFE3YJafeTPhMimzaXS3rvm9dEeGUgo8cuphdor6SZDkYQslSzRCLAqNEbZhk3NJ29XG1qtyhiWBFgAP50Fas7zoGdWl3+fH+Ui/01eEGVe078FesTq9k7nGD6yCRc2dYKSeT7W+eohML3fY4dO4bneRx84sWdmKUSoBrIb7yHMpL+G3s5MxHHMky+cdmvYPoZfumPfhqWbHb7P/4xfX3GZ5n88O8Dth6baIAss0y3n+QFM+SYcQZDSZTy6bVdvnX1H+MaDwMWRrBA1/o3Y6x+Hfmfu5DYxm5QECyWgQZmdzfq934X6Z69GVse7oYNrNvxNMI6d5VraaIWElI6YzArZxFCL9pmKAjtEoNvfzOTv34nAE91reeh2Gn2rt/OJVFK0BRLlXZ7AyqVSdhkkSjB4deu5eb/+gmkIxCOQ/1onIUvts9FxDUAY69/Nfa6n6D757fgrMlT/q3vIiPm0JWP/Fd2n2dx+s4vk+zpVO62uwotVqpUt3GfvZ3fefSvGVy1msc36H5z5+gzLO76LBfYSf5+eCtrhiZY8czzPD/YhTWwMvqsoGTMMnT8n3E9uGnVJGq2h5/pcXjzBxuMLPbwSy8y3vt+9yYC/+U0PvAOVoUQPjTFbPpq3vD8Z6jc8Qh/f/ElvCzfS+bXPsLiPbsBQf/vvxLTsUi/THeSiphJ5qaViGUbcTOXZt1Tj9H05O376K/T9+F3c+iTH2464rXsfo0AGoZqqcsDnOevwFEWT1h6s9lT3Mqd+T1cPf4or9hRgiDAr1dYlXDIP1DlF39iiJc9oLjhWYkZu49f+BWfbfZtTB56LaE8Sbb8Ki674Ke4/7IegjNnWPyOdkz/wi/eR+3tFc7zXW6UJrGeArf9pn7WRNhZ5ZeigZN9L271OL5xb8dr8WwOo1jShYhkJ/sDoK+/FwOh1xERNVyYnRukpRoPQkkaEc37dfXtfNbcR79chJgLClzVoB69v7h3CrcvhX+6wqnqIqZIUJQ+KWVTMRR9IgHojV3FVDTMGiDpCYvMlo6RmTOoH5zHn9IWhvVD44Sl0xA0qOx4Bjh39Vp6cZRVZ7YcI5cqUhAVTBEgJaTm17MhqLI5vpKZU+MIa56J/ua4tAEdXaPT+eL6YJAjxhS1hTYI4NsBXsQuCSKWR9IzmDO0U0yqup/3Pvc0916Y5uZ9OSYLNyHDgNneq/jy1z5KvLHI+7oX6fm720gP9WE5BmP/8pdUFhps6k4gpeDWT1zOF957G7kDx1BYHEkJhr/0Wdyf+00A3vfB9/Ont/4Cty9exf2Bz/Upfb6OsljfSPA3r2lw0LL4s7sP0r3rCar5Ffza5W/hJncf9SXgkRkKsq/+FO5qDXYEZ2kLGDgbxvjyAYfQy1FeeCeV+W/ydhSfvfcPOW5keOPv/zQA3d4Z4uEcX7zqJv5kx8fZUliLZdhUNlxLvu8qqo/9T1YuHOerx29Hzuu801q5gfd8+bMgBLFXfgBp9pDwQ+5txDFv/SjlxpOkggSYMUSyh8bztwPw+++6kVrxJrx7prCGU7iXrKd89z6MoRHwPYLJCfr+8H9QvK9E9YXbOe/IDm772Ps4mVvDh1+fo14xSY17pMN5SusuIBSKsf2PM3Chz9G0xedvPM5dk6d4x5GA+9XluD99CQemdnBl6itkvX9gVpT4ivMEyyMdxgnNonaBAvy6hSeClsNYM6xEulVwqEkfx5rHkwE534VUF/4yG/hAKOatGt31BNJtJhD6OhpILD+kaFVJYxGU16IizbduUSIUin4/w6wsIVHMyeX6BUsYD0uEyC1ftOyflQpbeY/rS56auR9zVnFQ7GTHqjkWeuY5kK1x/WSMiltC+RIsB7PiMRVfYJOrQfLLN1zDK265ji0PPcff33cHMt9LuCSPPSMXNWAj9Dnm3QEWg4Dng5Wclk9hAmWjwdcn/wYvXQAGeN3V21l3/iY++N//if7gGNKyCKKxOS07W0m78jlMbBrR8+4YIWdEnQVZYfzBj7O3fxi2DjLQfzZr7cc5XpTxoJS6Ofp7pVJq1ZI/K5VSPzTo8P/XMC0L23ERUiKkxBpJkDEzuG43me4Y2UK7eiGEYBoXe3Jv62d7Y0nCRr1F38zPnSFwPaQSLNgaDezyXPBLHb/XVRYicr84XW0vWvfvO87U6QlSYYxGTT8UTTR0IMxFzAWFiGxxzkzqCqTvVUC2GQ9Ne61c4FD1iwRLEFKJpBguUPfjJOJZYvVF7KCG6evEcMEoo42XDG3DE4Y0ThY55U2jUAw1Unh+Bau2QGLxFKVEEiPQG/2QBgVf8s4tg8SUbimpJjykYeDGbJRZQwgLJcvI0McMvJZgl4VJLaqoGF7IJr9BPXt2QvT9oj/f1ao6p0QvniVQiTKe4+P4STxTK2wrw6An12ZUeEqwYHY2DfiGQyyvk5im3eV/9Mj1DWu/5w7GQ4S2ExKgrRqzPb1nUfyasfSn0qthADWVJzQS9Ph687MQ9SwOZuMYAQSmgy0tJJLE6aeRKqS/EaCkwFkCikkFU9FlVQmDkDRJ8zBKCcZVgTNmkgl01cGQAUSU0kXRbNvQlEIjLCMMH0eZNKImZ9/zMZF4RmdlToUNbExcLPwl7TRGADcYjxEzQy2kBpHqfDtiYcip/tdQlnVMP8R2Y6hlwk0IcAIFht8aU1sZOFaNYvkUcRxMw8KMqO7Nid4IQmRZIzJ2bhBRNxEyapWJntnm8Uwkym8vlMp2mJqcxKtH4kjLgDGpBKFRaVl/AVSijawSWvdCKIUSivohvaM8euIYydBhrnQUF4up8mEC1WCmqq2EKyfnos/r65nr10tPk/Fw8uRJvIhZ8OgT3+XFwsVG0YiaHEJGIgV1WwqscCODaze33IVaQxzN0d2FDCqq7Eol8JvPpKEYoRehYFoWiSmb6QzE6i5CuoRR1dIXdSzDQbpZ7MEs0rGQroXVk8Xq6dHWtS8BdGid14uADtC2BwMtVuqUkpwRbWaKDCShWyQ+1t7k1/sGGXfS7OnKY0etCiJqE5GxNjU0XNq6oiBbiGHmYsi4izAEVnfn5ktYmkkghEBIEyMbQxiC6hI/XYFCGJJ4ECKMznQkM7Su9e+pWJxn4sPUcwErX2i3pyQXphG1OWKLJ3i6e4yr9p1idHqC7vJ8y7YzpWJgHGEqq6t0OTOgppL0eDECQxCKs0WKW+MlBZZtkchnyHRnMLtiONLBHhjAVopyMk0m34e7roCM5ZCxLJZr62sat5BxS39/89yplrTNSDwVpJRI0yDTt6Jd6olox0agWwaEAi+qMNZrJUaDNlX3m8LleGovY4cOEZ8/Tbw4zXiym8uOzZFq1JjMCR7ZArHAxyoVqdg+AyNDbNu4mfHaFtYPX8+a3hH6Mi4Dq4cQrouRz5PJ9tBbGMXu6yPWo6+xbLLAwmWbBiOMKtVmyx6zGV093RjawJREpvusschl0sgmIyqS0pT2stpYcyOqwo7kNaviWEEBV/i4yTJ5lUIYtdYasHBAP++1g/Mcj9wNKs4ZasrCl5KqI0mFMQwl8cF1hKYAACAASURBVI2QmimYChNIFE9u2kRscZ7ik6dQVd2TH5amCSv635Wnzt7wAczOz2FgYQQuhbJew/rlIi8PZlBK4dTzDJoZZuoTlCo7Kc4vYfwYS1st9D3QFSYpBBEQGD2Khw7uw4/r+aAn0iNxsbBqek5M1yXbn5tn1ypFomxTrQnSXEza7wEzSa1fg98969dQWDOE7UYOJK5NujeJjOa6ZM4BS+H7FUIVx3c8DBUS3xCxc1NxstSYsWM0wnrLwn0wzLGfGLkwBAFd8yEGilRphjWVSZzS2RxyIU3cNXrBbjJgzSaLTkncsbWEoSRAMnzsKG96sBq9JyTuezijWqmllu4mX1pAGQbZ0iKpRp1YEGK8/HJkLIc5qIW6uzauReb0ZzKv+UmcMMQJAhKb1iKtDDKWY3DbKkbGhimMrUVYcd2KN3Rp65zT54+R37wCISRm3iW+dlT//OorcFZoYeL41nXIWB67RyuiWEHAyMxBUjWXHQOPIUUcpXziygYFjdo4l0Q5ey8B/V6IBZScAoVrryXme9QMF4Egrs69fqT8DIEpWi5gttTjKpe5ygjH6cjNGgm9Pue8OG5XdwfrxlSaeeCJALPiQFREDSM2qInE8gLK1BHCRPltple/oW3OewO9rhihYmGZgKxaAjyEEaAmlGixuHW01yLDDxDCJlQ+jbBCY/AYB7J63ARpFhIzWqNCKZxKjEAojlr62d12iWabrb18M25o0UjEO3bFM1IXcJt2pwCLQYXArmOKkIlQz2N+IkmQyFINTC68/EIyqQTZyO5a6zromJadBeFCIYtBez23TElVNAgIccsTzEWWqKMrznYx+XGO76vxIITYdo4/q4UQL0WY8j/j+0TXxboqcpb1WxTCKrLQOND6/0Sll8YSen6iVEa5soVWuqGJG0h8NddxHDs0EJ5+WLuW0Pi+s/8ws8VZBsIclahfs1nt6g9zVHydtAa1IiiYO6Er1n69iFoCPDR7PgeNLGV/ASU6J8IFc5FJYxq7Z4hYbQarUaTGFQAs2tHGLOqjPrbzAXY+uoN77eeQSrDZ3kLVa3/nzc48VpSAVHqepi/3OBy9h0mnSjy0yBSXNNZFQju+UaNhghl4rbGylIEvm1TWgEurNUS2swfrpUR+YAhD6MmxMLgNJ1R0NfR41ESy9ZQpaZIutL1/zUoFezESLmy2rsnv+0j+h4u+FauQUQ+hUoqZ23a3QAglmr3cinRPVweNf2l0APBxTUuvhRlEYGogjXYS4lqSVEmPW7MikjytBdVyDW0b5oSi3SKh4OhIBIS4Fl6oF4KpYAVOpLkxE1X1Q+G0ellfbZ7knc5zzDtzWMrEEGUwFLHAohT1TzY8DWSVl/UiqwhUOFM7QeA1WowDGYRQnSPMDHW0FS2NwK7yq4/qXkzh+TipLGebwoHR8MAIWpO4qSS2XaFS3geAZZwjGQkDFicPYSmDQcvBWrOF+WGddIWqOV5N4MFAqfmOj+946ilOd6/AW3cp43m74/0SgTJ8+sI2eDdnp7j9da/Fk5peKYAFs85n7vgUt//G/2a8fJp0HU7XtEbD6ZrWkfADi3hg0CiFzPzTvgi8gu7B1dEAa3DrG5/+F60PEhocmzt91tdtnltM2RFbJRqrsAhIHFMhkAyuf/EWq6RrEkSVXSeQCKtJa7WRIRSUTqxi2ExlwK3oZz+IlOkbymsha2bupQMM/zex1MkjECE906c66MpGIFEpC2uwnchcbug5aUQttvRawiBq7Vmi0bD0dg0VFJKd30Wmls2dywRgm1o1iXBZohmJ/ll2J6AysG57+z++BjEO9gyhfEHG18eKzZ5mxk1StGIcyfQzsjiN3XRiic43pWKcz9eYygoW41ANM9RFkvV1fX387wE8LA+jS39ne1iv25VEjHQ2jzOS/l4f+4Eit3pdu30qAh6kEq0efxkJmVVrFRpeG7h+/wPv43998SnWH1fUYs3NgGBNxPyaysCRZYWzweQgl6/RYMIVa9prk95YDWINnTvhNZqgY9g5dk1XKsur4y8DHrpXDGGoJvBwNrPQsiwMBJNulRlHWyZzFsgW0bpV0PFsmxi8rBY9w4ZiIMzhWfXWPfveQ5OEQUj94DynHT227/Iv5ZXEEcKianoklE0MG4waQghu8npBwfToII8UPL7MQ9z22tfzhTf+F/5uncPbrngH/+017+LTPQk+Mf0c/zD9PF+8/0m++vlr+Otb/pDP//KvgpylX1jckl6HHSbYak4gnRnyfopXJALyTjdnKicQyu9cGeXZm6yBMEfFm8NVFpbU9+ETD9xHIruKVOjSH1k0uspCRRo2RqTD8/yoYHCugJAxTLdHAwmAPaZFKb8XmAn6fmiekzQHCK3I+v2iNjjYG7UInXfmoJ7zgHyYYp9yyfohuTDEqESgdb3Iq4/sxa51sv2atr3OquySb97WvgqR2KtXYUWvbJw4RHKZtIY9pKvZXrqbbFHnr/nePlSjiN8ok7tJ2/m6GzXoIqSBvUo7lsUvvgARj4MQuOtHW8dsupo4S3Ra5JJ+fWmZyITVem9Tgyd+6aVYw0NgGNiD+p43uqMxj+WQKuBP/u479BYVRIUOVxnElUUx5nNpVX+5S6s1ZpWec+qxbpw1a7AaHhWlmQROxCZs6Y5GLXOmlyQw7BbwYJp6Hg2XAaHCNDv0gerxMpkwjhWapNO9qCWMB3sJyzEsp5Gt4pk+/7hyMXy95inLYY1xhqusQ/ymv4vzzVN0hcmmHiX1pM9sqnOeYIlmGtE9lVQueJ1gXK1ZGGrUkEs27z9ZaRddlVFgLj2NDAXC91kwj4GCI3JKa0MMRs5CUpL1HV28XTJvzQi975iU83zVfpKiqHLGfJ75vNb9GMt04QN+IksQdwnLAUb0+f5+XUQ2rFiH3XozpBLkCmnEEntRwzSpReP4xdfewsRaDVqtG/k3M5L8N4mXAh58GtgGPIdOn7YAu4CMEOKXlVLf/BGe3//nI7tugBfCe+i7eu05X890ZbEvmGd7ZZwTVg/qzCylSom++ADF+gKF6WlObrJaaGW3SlNsLODJWYaLm/HiPpPGghY68xeBJLWoShoKRVEugNAL9Qvl3TT8aYL6IVbn13K8+CzlbsXmvS6NRECCtu1l3QcsQV89To/dw05TAxIxbPbMP0RXbGPrOzy/8Ax7Vt7LwMqP0/sTVzH8O59EyRin3voO/QYVsnvhMRZjJjhw8ru3sdfTglfnNVYzXt7DXOkYY8B8HM6nSLddIfSHWhW+Oapk/BTxaogw2hIkMbWLJ4YtsuZ+/vRnYfhIQBaNAKdVjDJ1HGVSbsxzQSUke8m1P/A17FqxErlrJ4awKAyv4Y3P5kktdtOrpnB7R/GNPYBAmCbp7nbml5yZIT4zQfV0mlXHjlLpW8GKuakX/0X/QaMwONyiyAYzNaq7ZgjsZRV6pYhnUi+KdHYAD7d+FQ4/wPWNS3j8209xcP551lbzPJPU1/qWi4c5dPQ4j++f4ruLD7HBdFm87ji1uXXEwwofnj5KtjTEseZGGti1zeeFHodNVpyd5Q0MBBmOrXkDr7TXcK8zwfx0nietW5io1xiIBBWlMU8zp7GQuGYVKVzqgQmmBujqtSqG6sIzOoGBSn2e5yoPcrj4LIhuksqhKGoaeLjgLci1r6B28CnOCgWJ0KJsROBZQxHP9LAo2gDABn8QA4ldK4FVaT37MQ+EJajVH+bQxDoWZh4E3gK0gU2ptLiXXfM44k4SCsVgkCPjJ/Bq90Tv0b8no+Io2WZH2aHBk888Q2CZ9AdZTqCrBjYmdTTrCtth8dQLrOlOIt0U+80JQteljo/jG/TVk0yaRUq2ZF/9FL5QiHIZ69gRDqsM/Xuexcv3khGLjPshi3bIqWeOEDqKeGCSicSYtHeIomrVyasUXWGS/abeYa0pZ5h26sybNWwM6vjElIUK6tRuXKDiGcQZY2se+mMHqd2wig2Xv3iLlSEFKigxNK8I5ovEEhqkasgEj08dJJWCwDZZd+Q5/m47/NIRj5GZuwjlaeJjSXIHJ+j9q23Ujy4iLONFf8+/RvjLHrA5u6F75dE2toYXYPT3I22b7K3vpXEixYVYvDms0HXxNGt3rCGmLI55WnStFmUIyhvmyTDDdkf73VdMwfq+TqBBCEH/xz+Gv5hh4c77Sd3wKtyxIWJbu6ntm8OIEnNbVGlEDKMXLk/R3bcBnnqCTVs6iZQ93QPc0NiKqywOLTzKpuwEVhjCBoOL9j/BvuGLuHt1hqnaduadFEpIVG4lpcQ06yZmWIxEEePKwZKHOG+tZGHI4r7E2xjYsJXk899m/ewxxmLbXvL4uuu6SN8wgju2kmlZZHVfXLddGdB1yzqM/PcXCP1+kVu5GuOBBwgEyBYLydTtRkphnDrJUG8Xi/MznPGfZXvPAMXKcUwrZLzPpOwleGzwdazc8wQbZo8CUO/O8OELP8DEkeN0f3CE+NYV/HbyEJf0X0K328/JuSqv3NSJSvS8//1I+9zCxisWQ3LWGFjHOn6u7BJrD9xO9/ROdq7vvBmzQ33aHlgJcj0DLA8tGtvefm9s9HMq1bkhFs0NkAhbG/WUcqn6RTaYaR4SaxgqjbPBHOKB+F30zmqgckZWmDo8h39ojtmYlrjdXk2wx3A4LATzRoXBegLXtihFAo29IsP2+ihPuEc5aI4TiBA3LHAInxXuPKnAY7U9hxML+Gd7GA+DW5/5HBd5w/jhKUIW8E1J2o9T8Ru8zF/LvZVHiTkrudQYoOhNM1E5RH3uPobmA0qplcSPn8RK9nYADxKf7d4aVgW9nAh2kFIxypbOw04fPEjF6WI0yFINpsDU9oCz1RMMFVdSWjhMzbJYWbmEV/7UW6gUS/Su2kA67zJ5ZJGVGy7AW58k9+Y3n/M6L42C28VExSY069iJIuKVv0B8sJ1r9fT2887nvsK60n7uSV/H6u4hRFjEmhjnTfGQG6pziGr7em468jCLAzfSmJOYKYuSWWfedcneuAYZ0xOPr3vbsDCo4uFLFzMd5wO7vsx3Vmym1lPgiJ3h/M3bWfjKV5CJJEZGz8/rP/gWFv/ofxF/fjcb3/frfOuPvsDJwgBv630NwWtt7OGtOEM+2VtuIZgtMf2X3cS2raf7Pb+Of/IkZiFibFkSmdTnnbi4F0KFuzFP4/giie3/g2Beb06NhEX21atwN+QRdjeFX/tVktdei71ilPgFFyBMk/zPbkC4Jgezv0qmsJryff+Mte9BbtixEZWuYZZ78YMKDeMUt18p+YNGgw9Nz3JVtcbemQtoxLcwf+n1WH19jO3fz3F/GOX+CzO9Japxh7p1gOdnXkfVTPAKsYfTxaepD0lGygJPhLiRcGIif/bzVxNLHFGEoj/IUT32bfqyr8LyJlqvWcoE0SAbxFhx+H6mNuk5T4g6l3pjjARdPFK9C3AJ4zGutI4CUIxrwH57sJZFb7J1vLPFxtvAQyqb4/JiN8NhgUdKX2djZhMWJuXwWaoR8CAbNVBQTWbYNzjFrWXJz9hFTKW47sb38I/3f4gNkysJZQUr9RheOEzJCEniYixZj10hmZQentvWy5iP2kCUUJwRi3xd7KPsFAGTx70R3pFPgpNnUYUIIbn26otbnx3uzzP/DPiWqdvQgwRTKk534wxeHKxQkkzH6U8nObSo268DQ7YKBemI9VRTBtnki+sQ/TjGSwEeTgE/3xR+FEJsBD4KfBC4A/hP4OGHjCv+4G0v+trYldeRu+8ruPJ2fir8MB8Z6eLbB56nfOJx8o0CRhiC67YqyWkVZ7L6HGFS0ChvImceYDK2gO0rvPAkoBHq/jDHSWOWUalv+G4/SRCYvDD/MADl8UlKdHPltif4ipXn2pMrSKlhyqKOoywa1nlgHcYNDEaDIR43NStjsTLBVO0YOVfT2BpBjU+t/hovl4p3vlELswz8sUdj/AhXvf16AEzbYWXmNk7N3QJApVjlpD/FZn+YYr3KwelvkHVhDE2Z72tIDqfO46rFNLXqLG6si8OlSVapPp4pPsza669rD6BZY0fvN7lpyqCYU3wr4/PGUyCFpC9IM2HMY2Bwpn6Ca8qS7uE2fe6lxuCaMRxVQ6DIDg3zoRsfbL12YMcDTH7la4BACoNkbxsxT1QWqMct/ipzJb+lTnLlI19lbv21P/Dv//eOZCaBiBgPtYhCv9zKDxRYViux1O9XUa9+p1I7+dWQX802wKg2uPu7J5BqgTFbVxXjtsnHfuYaAJ7e+j5W3zxF1q7x+MvexYmdX+f1pRc46lkcayapCoxUyN0XSy46nuLK39PCXKuAE996htc/rJOKC3/3F/nmR9+P32hX8ZoAXUV4dJkNFq0URV8vVlnfQQSc5YkNEAYBexYeA8AVBknlUqSGCHx47acAqDqPAk7HeORVCo49R3mVbkNSDZd0psAEbevKK3xdMXnWfwgVD6lGPbJmpUox2UvKXaDn8b9mbkX7fJqVcEGGWGILCwvjhDGNpl/jbcKt17m3qgU7mw4Z/X4G325fl6Ewz+FgilhocoO3hb82vg1o5lBdeLpFy4nRe//nefKiq9g8cnXHmJghdHkm2yr9PJ2YwAodfGpU508wfGo39gktdlaYG2fvZatx6zDpNDgkdZLS1XCwU82eGd3rvmiUWV3vYlDm2c8EjjJJ79tHZd0o82a79cBUEiFDLshqIOW75hZenvprqmGc2E2jZ12/5SEkLEw8TUysJN2vqyTVRD/2hE/RPZ/1u2/nSxc+yZOrTH5pv2RrYZYjMzB295c5PnY+Vm8CqzfxfX/PDxuNZeJV48YcvWGGOg1mjDKxUglnhQaFs69/AzNf2I0BfOKTr0IYr2b86e+yMRjmaLAfgKLhYSuT/x30oEyDy0MDXwYgAkzjbBgx+4Y3UN5xmto+B3ukn/QN+ia0etqJk5U2aUSP5k997glmb/tbTt/xBHaiM7lKpxxGIyprY7SPn5hYRXJmNRw7gIwfZ0H4bKv2M7uwh9+5TIPYl2z5aYLjK6jt+DxPRZt2MwRp1jgvDaTh6Tf8AheuHeKraownHzvOxdeufsnjK22j9Z22/L8fZcuS1+IX9Jz7Qz9gdPXmNeNBtTlRUolIpBfq/gLVk4fI+kMM7rmzJaJb2Fzik2s/yLNqDXdPnUBO7Wsds+fq6zn/4jdAOy/mFtrWyu99+dhZ55G69toXPcdkvcRQsI1diWWido7D8MkHAAiMTg3yRHehBYJlC+fuWW7eUTnPZcjPcNpeDuS0RB5aYHVKxThSep6N2cvpqQyzrebjuIL55CnWTJhIJeiXi+x94Diry0XKyQRpZWBiMOtaEETrVaNKzMq2kNd4aLOV1RzyasxYkxjK4Ep/HV+qTzOYWuCC4DixSIOiVxYZD7Oszx+ktPsaGmov2N2a8Vcvs3NhFzfYF9PjrmCwso6BuMnXZr7E60e+SaG7ytN39xMbP803to5CeYJs91KtFp+tgb7nps3dpNQlLJp6DbKrLvNuQKV6kj0DM6SKPQgJVatKOP44uAkWslt407oPcNHNnde4P2pn4F3vOue1WB7peh8ff/nfAvDLh9ew/s/+n47X3VWjvPa+zzCbW48T1PmfwQAiXuLOpz5Dz0CKS8JZdi9ZKw0VErOKpOqvQiSeogSYBCS3t0HgJvBvhhIkBEiEbXDJ7AKXH/wC8f/256z4mZdT272bha98BWvFcOuzPRtHuflznySStuVTb/xNFutP8ivmb8Jl+r4tvPOd+vi5HIOffD8A+VtvBcCb1GuF0eVqxgdgJG3S1+t10+5PAJ2A9VJR2e5oXN11Y7jr9NjHNmt20eaPRGP+azey56Jrufmwwlt8CrcBf3Pzjdy55VFA0nsk4GeLGgh7Sm7hfeJifq8ro0GM2VmYnQWOMH99F3ePLXJdqc7zwQCrw9N8bc2XmRk1ePOZK7GLkoYICC0DR5lsuPyqs65vcyPfDHtuGmviu+Ryb0Pg09wuNsWju7wYXbOPMWtpUWRlNNgcDOOFdeqVGVzVTy3RlASEoqyyxR9hMOziaHUnvFhX8xLQzU7G2Tg/TKB86t48r/T1/uUBsaPFIlSNKgEL/OPVR/X5pd/Ebzz7V9B/Hqy5DPVolUSjD99Kcqv6Ex5e9bM8duwY2WUOEyvW93P00CInjE6b8KWxp1Yln3I44efYE/SyIh+jb+1m7r1X5/xXvezK1ntX9mbZpQSLETv2sN/LfSrPL/qTgIEZOYbkUummvMxZzFmAUP1oixX/HvFSeN1jS90mlFK7gfVKqcM/utP6z2hG/yWvoerblJTLPjlCauuF4OgJMR5RRYV08KO+qGToMF07Qd3VmyknKoGZvo8MT7X7uLwQQ0kc4ZHwLWQQEK916kLE1TwX1mq8sAIyU0d1ryya2lglgeXHW3ZHLacCP1L9j9o5AuXjGz65xhI6UT6P2dWFiGh1pmVymBGMyO7uSCOPQjEQdlGf2QEijpHUveZTWYHZ6CMViTLWp/cy3zjDKqUTmQX/JKtedU3rdzUi4T4rkMRDqFu61cJA0Ovriaci6gSqjhfGWwvMDxKpXFdk/xXQNdCZUI1suoxmfm6GFm5vu7c1Xllgdr2eSKWMeqvDTurhj0PYjtHaoNcPauDBpxPFVijd99zS14jo1dFi9mKj3tWXwQolKd/gsrVnVybjDZ8FzyVUsPGq6xAbXgZAn3GkpcQsFOSjNp6003l9YoU2RVpKgWV0UffqrfNMKp08ByIk7UpS8UILaHC8EDtQyOUYC6D8JS4IyiLWtHUN2gtLOdEGOJr0RTMUqHr7gKKWIpHt76BBln1dYWkEmhbYdByoL05jpZL4bmRbt5Qa3/KhczDCMYzIdtPxFHEcgjP7cGp6jOZMne71BClYYok3pDQVezDMdzhpWC27U5CJiPrpN/CDTg6sGSgCFTBm6I1e1a6RCVzwLOyoNcWP+tcfXX8BbkVbEe4RR0mGLm4okY5ukxFKO4KEQlGZP0pvpAOSUjGc0hkMv3NeMkKFXEIv7VodbYhFJ+3/xUIYbfZMql/TaFOJlZjRtcjN72vZDoq6pqlXXb1pathnK47/qKKxbEUvyRo9QYoMenySC6cYGdOOGGZXe1PX1FdottsYSt+bvghIBDYKCb7CjSyf3Rd9YtvHbVYJl0d6dWeyriKNjuV073isXRfpXqs/Exj62PVIiTwsz7F5oV09k4iWqGUjqpwtn1OzkY7PRSv0s71vcrmq+r9vxOK639qg7QAk0NoHKNXqpXa9kF0rRtsfjMMupQHLuNvZ+pHYvp1/zfCVZmQ5hWVaDbH2PbXc1cKIa8abVJDuOrcxWnPezco0oQqRyy1mozldKb8FPCRCh6MlLXa53WvQ6/QyXZvClHqW6g7TbDYm+fbRB7jD+hcyyYAkLmdkiXHZbssMG2XsyI1IKJha1MDNtsim0fZc1iiXn7QkYZgmlm4/AxebJ9jOPibDIvvspylnJOk+XXwJSjPMVfdQknXOD0cZMmtU/DLlQNJtV2mYJuNDCrlUx2fJorK05z1wZ0iGLg1D8ZlPfR4Z1/dyrbqfUmTFKQTUo3lNGQFzuXUtZ4ofJjzpMeRFrS5nGVpDbqsGNKtuHhVVjXtrCxiBR1mlqYdx7EKhZR8L0LB0RdlsthQFnfNxI2r5alLVQwXClPgxfYz0Fq1VY0XtFfaL2AwD5N08+Vj+RV9fHkbUXtFss/hRRdA7hjG9B7f51Zd0L6mwPScGoQ1SnNXiBtC7GLEeI22NGFUS0W1jG1IDNwLqjklKxegbOfv5q0W5sqssUJCbXcDxIJPOESifQqjz5eZdn6lJGgaYpp6Lg4j1GSifWlCkP8iyEOtMjlLKpRaUKTU6Wzih/eyzhAERS0ctsCpEGqq131jaNhl4JZb2AWYHdGGG3EpwUtpJx5/BCGokEnVWbb1Qn3+8c4687JUXkQhtFiKWg4xaJmqqvQ4lEiGuCFiMWtyGuzOMRetpYBRJp9vHHMknEFjMCf1cLoqmlpa+0EYIwrZJJtoFiUWxzH8VcMTZYMSPe7wU4OEFIcRfCCGuif58GtgthHBYatz6n/GjCSfFnJfhfrGN3toCXds2EnadASSTWY3MeckE1WjSUI0aoTEA6RUYfpl0pYFUgmytiCUW9KQCGPU42UBPqH1einpYJ1XzAIlt6Ac3ax4ipRSjboNquJd4tHlyQgMlTMqpKcJlvefKqyHNUVSUuIYqIJQefWF7oXLXjeGMtdF3e/UGDqs1uJGA5YQsIJRBlx9noTaONHpwnBpTGTgwIAjMARaF7ueujj/IqYpmW8zUp2iYU9jp9oO8JqF799bX1xALITB0wiKVaE30fSWDhFGhyv99n24gFBYNMsvEKW3bRo3qf4tMEjvZ3oTE4kkuuuYVpOsl7MgDu5T78VOvtayIbyMktUNznKjsJ0S1RDwBwmjjtlSPANXetAp1jt070NWXI+UJErUGw5tXnPX68+sTzJTyTNWSpLJZLrr59frnXNMSSxTAaDUk7wf05ztbmlIjOqk8f2METGR6afh13esLpGe1mGpvI0WQyeJkuzGLetoL58axPQ/LO/vcxZJ+RDuQZHwzsrRtZxWxLqeVUDWrCKaCroqitx5DKIHt+2S6BjqqAHvmtJ5FuTZH4Fj01fX93mh4pPtGWz7Utt8e/ybjwagH+O4KDD+DaNSIz5XxVAN/4hlEt05o+qPjpX0b6UT+2H6Sfj+LoQQrw16OlMfZ4o9E5xyBSKHAyej7f9uhwzj1zg2fDEIaXoMEDrlAPwfpakih5PPoen2uk5tA2iEn0iuJz+v5rW7CQNilkw4zSrpawqGC0sJhSvUz9IVZ8kGS1MIUgwd1xT4X6Cq6DBWGZTFRy+GHgq5V+l4yxUsD+oSUIFwMYZEc0t972JWY3gTxymlMe5xyHK4tV0CFxLaeR9CVJpQSI3ZuuvqPImrnaOUwazY9YZpU6FL3jrQEjJsAQfrlF+YgigAAIABJREFU7efq6ZJW7Y/F2wmvG+hjjogZjjT09Z37HoCN2R1H2AZW37kZHqtGRgGYjHRV4hfpRDC5rMIupUSFPtXSEfov1aCjLTTIMN87CtiMNGbpWr+NQqPMRStyyIyDTPWD4eD6+t5Ne/oZO10vUA8sMjH93a5cqwGK69b/6zAV/jVDhHrvGcgmQ6wJ0CqsSCAuXRMcttoV1sXAJsDgdVgsJk+CZZG7VbdaxS/9wZl83yvqjWnC2iIjm8/r+Hm8sESMdJnGA9IiGTrEQxsnee61ttU2pmyqfhnL7ryH7FCr2UsVtIAH2w8pejMUvVlW2y5xM8np2gxdvk2oQlaE3QgBwphnQeoN+FCQYnZuD6kDbXZiUDNIRPd6l0pxpnqchcYZ+sMcRgju/DGUUrxdDHB1qJ+hROgwX5dkZI1Xuzv4oixxUs1SGV7FqYR28JBTRwiDSXYmTAZlioKd5FRlP6bUYNoz7nnYg9H6aEe6A9YSrZZIL2HX/BMYMiTpmygBk9NHmXSq5PwY25/cy4K1SFzZGALctC6hmo5JpW89g2M/uGj28liMC37uzKXRdTp74zqw/RLqVgrVZbOxS8+7b9r9MEpIThkjTAcDOOvWkbxGF4bMCy4mbVURoUdCzGAqg/x8p1hpEGjmiVvX9puL0bpqrN0Ibo70Bs1wMNJp7NFR3K1beLEYy42xNnvuluZzhXQMzN449vAPrvv1g4R9oaYhBRIe3gLZxSLDnseg5zOr2nNTYmgAyxCs6dEgsjUy0notuxgw7HkMNwAJq506W6f1PVoY3ErTlbZqQTJ0yXedDaaM1vU9siLopj/M4s6fJl2FRDKLT40LIjH4niCFqyySxQZnMmBFxQBl6k3z/kW9hvQ2zm4PSKkYJ8sHkFFB9GKvzTZr6sSJJWvywFoNLB329mPYsHP2WwD4ospwoEGkelDBinSWLpzrheGI1nXhW0EI5g2TqnGURO0IcuwGRjetI4bNwGBnu4mbKpCq6/NSQF+vHj+RXzLOkUXtWGmeweIU2e4shUKBmrmAE+t0rMgnbAJltdo1FpTBmp4kjSbrNwgQhkHf8IC2JVWCRdG+/3ORzbe0XzpY9uMSL6XV4q3ArwDvif7/MPB+NOhw3Yt85j/jXzG8Ve9g8NNf5L/zR8Q/8VZiXYt8ftUcyg75/A0G719IESzoTZYX9GElf5LB83yOn6zjWZK31q/lRPAkWcfBUTYVGoRBnI0zZbrTlyK9GtWgQrIR4Az8GmsP3cHAqaM8d3kXz13zEf7iwbcy/TKDR8oe2Bqp++xF7+HlJRu1b1l/lhzFjl+OJzXNPFA+X5wcp//md7fe0vvbv93hRT585XV885k4lzX28ebqFvb7T9FlbWe+dgJhrcJK3EzCeJR3v9MgFPC6xZX8l3f/PE8//hBTjx5h73ySg4s78c21JFKdSOrbfvkvef3sFOlsgSc/tYlA+AgEEkHl4T/gov5uCuNzeJeOUzY6k6gfJG74x2+BAPmRZfZfQtDzf9g77zg5jjLvf6s6Tp7ZnIO0ysnKtiznIOeAscHGYAwcNjbwcgc2d4TDJt5xcNyRj+wD3hdwAOMABmOSA7ZlW0aybEuyclhJm8PEDu8f3buzq92VVrJWyf39fOYzu9PV3TU91V1VTz3P8ytxaLymlR2JM1GGZOkOGyGmT5/JjQ91MH/K+Rgzr0KX2w+5DkcLKSW244AicdM2O/vXk0/qqA6DUnHCTxI0sJCjoHiyS74L5Rh5FgmXJPmKMxNTwjsmjYxLvPxnj9Oxp5V4yptEGKZB+iM7WGCarPnwF7xzu3Bal8qVmR1sW9g0bH8jFeOm/1qOYnj1m7NoDmuf3IzhKPQr0B/uIbm1EtWqpvbaKwg1z2XDX39OvOtF+rFJ5cro3vYypYZFqGQS25N+YkYrjZG4BXCJb/0BlZmZzJen8gS/Gjx3Q2UNe9sytGnpQY8GjTzz169k4/y1VL1iULqph3jyGoaKgbT2bODuvmcI2yncqEb2uReJ0YOqzaW0YjJdug6kMYbMqQectst2PcbcjS9zz9nnUvXaHzllQzvrznqWs5ator70TAAm9cc5Sy5ga347aijMm39+N52JFnKnNPN2cQbChYfzOZS9eSqpolDhqe5UZBxCU7zOuqR3L1a+jxuzZ/GItoqdSifCdtH/9n22nvoRLo8uJVco8GzvE8x77Tk+8D6Fr10KH9k7i6mN72bZS98m1VlgQKauxknhup3ech4MrnwmbRNb1rA7s5mLQqeTtnqRc8LEnnmaKze9wLMrrqEzBsJ2MKJxSu9YS38uh7mnmLB3PEgpMRI3Y/T+hbifJKyqJU7h0d8yff3vsKfneWbzblTg92c0k7zmapblsmx7/DEWTB17Fe5wo+rqiOWAnmyS0/Q4M+06fh9/iSXl3mRVaAq1nz11mFdLfsfP6Fr3bWJvuxEK3uQlnO3j3t9/jMSUFm4950oeaFzB9X95Ysw6KBGNmk+dDGMo8syaMosP3J8h4+enDs2Zw/SX1iD2nagC93elgTLeP2kyN/1HBX3KcuzONqZUVtC9ZQepqjJQdZ50XVRdQzgu3X/ZjtC+gu287Mk0y83MyPzI8+awYY1veCiLGqz77IXoYyhOHE0KlsAWir/65yLEwEq8i6pWY4SvROn6GfMW94NnYyNbWMgD99+ORNL8y7sJfe5DoKpUfuQjiDFyNRwqtc1l9N57G83vvWfY52VVRQ8IZ99QHClZnGnAcW3EiBCKAXzPIstiw6vfJTR//rCtpuXwztxZPCF+PWjEtjLeiuIjO36ILkO4OKRkC/OydXS4NnPsBn5o9TArtAfH0OkuVLLcnsZfM/eSyewhtb4P0JF2LY2RCLM4FQONP1gv8WC+j9J+laQ7D1z41fZvsm7yXHrCKS58LcPS0jP5VfxRNpAiXCjBFoKzd2msa4Bz8nP47/ovM+8JBUoTPJZ7iY6tj2Mo08iE5hNSTO6Z8zmamxo5f833WFX6N7TdKyB8PkL7z+IVkS53b/oPXLWaamUSZarOdWI5e3O7eL7raU577imMfJ7LHqlm+YxTCck/sztr0rF+O2XpHFOe/xFaeHTvo4Nh8llXsfqBTdy65SJK564bsd2Mx5n2+O+YHYlyjmWxdNHJmFaO/NSZLPnUXTiOg+4bxavvvAMUhS0ffxeXVF7L9sI0Wn5tkT/p0mHHTAiNH2SmY6lAVues1qcAmPmND+NmP4iiFcdTkx58APaTnPuOZXfgjrHAMRaVH1wwtjvmYWLqp/+B3ovPpO0X61iugiq28JHtd+MCa90FVLIDx5Wc+4/XsVbT0Pz7atLDD+EULNbPn4/MFXhg+y46M9W85ZY5lDdezLLba9HbuznltmtZ/fh3AS+sNWKrgwkQhzI3V8PpzEN4Gmzs7XzQ26Aa9LudNDrlvCt7FrZjsdSZxqvZR7njeoUvmJ5hRhoW3T+/mdY5l4GE0pzKdXI5Kgo/Nf6KLRxe2f0S/cocKu0078qejETyrOaFeGquJC9ADjG6NU+fxXd/9Dtmn3IydX2trP3rc2zoWUWiPMz5hXm4BZen0zaV2+7lsUv/TCwUhVAIPrEX/KSXHYrge6fdx4/m/BPMvwtdUfnwx25DqvtcAyPOg3V/YVH7EqSicuONN9LT208qGSdv2Xz8C98k5nbS7Zh8MLeeG5+4C+WOSxBCcMeHP4OmDvdEEUKQU3RM1/NQ/+INJzNrSh1f+PBD2EA67fWv00+bxz8vncWXP/NFMn5eh0vf+i5OaqkhlytgmEdu4eJIccAe13XdjOu6X3Zd90r/9SXXddOu6zqu6/YdaP+A10/1eZcRLhTQQg5SSsKWTsFwqbEsbEVgKMVOvD8fQghBeU0zqoiSUxwkkj5NUh2tQHO9RrxXy7A3u5USESGpl5K3suj5HoRQ0PO9qI6NG6tk5qkXowHV2HT5Lqs6KpbmorvqoOvTAAXHwMx3DsaJ265FWOYhUrTcCimHDTITIY12RcXWQvTnepipLKQRgz2ZTSj6dIRQiJgpHClACMINXmzqwqXL6UyAgknG7gW1DvSRbrPJkgpv4uAIEAx6POD0U7ltI4l0F2WhApY4dJdozXXRnNE7tR47jC4Zkg3fIxaOEIrr6EqUDkVBN5PkrfFnWD+WKFB0a2/NbAEpi4nAgIGZ80A4jXQVFATaQK6wfdrRAEJKFDTC6CM7CsAwTaobmgjHipJF4WgURVWHDEJc+ilBBUKVI70mVF/+DmDOvBmoqINSfDvCmzHcMgynn9JTVpCcMhWVzkH313C2D0Na5HOduPmitTpJJ0KaCBnCZTc5J49EgiyGHzRUNxPyLezpgURJwlOpMDMdhApt2IqNGU0MUyYoKDYONhmjgC5NbLoBB1WUUV3fQsHwOkBtiMeD5f82G1PtmLkupu7dQU1HO1YUFpdWoyvg+mo5MS2GRNJWsAhX1XqxuPke9ubTXlx0rg2lkKUgIjjCpEN6HWh1dw/JGm8FQwBCbUdBDoZoCUuQ1bO0d72KikLI1bE619OWhL1JgaUKNCeBIkM8MbmPqu5XB1dAa5wUcWOo5d+Pw87kkfoU9mRbkUjydhb0Kl6e7KJbeT85GUjHwY3H0c0wiUQKs6yeg0FIiRASIQtEK7xV06opsyiEXKTrECrzRLEE4EbKEELgpDPojoUMH7lQi7AvbSaG3E7pdNo3tkoyTg4znCh+L1UOCy9zVQ3FsUjVFj2vjFyOsJVHLy2hJN1LPhoire1/MCQUOWbYWlVFA1k1hFC0IeVHj2MVMoSQvstzLEYyrFNaW4OqqpRObkRGIkhDQzd1pPRkK43KiCfJJyQSSU4WyAidnDTISWNw4A4ck0YH8Pon4QpU1Z9YiQE5QQdXDSGEgqNlaLnyzYP71NzwLlTXQboWoWnTEJov5XmYjQ4AWjIBuMj4cM+FcHnRA2NfOU3wXKZd1wV1dMPDQKI5q9BHKNdDKDJ8pd4WFhKBI2wMv124XV7iO9u1yNi9ZB0oJUfell5CTgT5LIOLHdPyZbiuy97cHqQ+F8tKAxqqa5Oz00QwUVHot/pYXZ0kJ6K4aoj2kjyWLKV012q2TyulN/0SiiuoSzfRY4ZIuzHCtoOV965JD1mm2bvQtHZAZfJrfyJj9xLp7kfIGI7o48or38fChZeiJmpJ6Lb3ewmJMIr3jlSll99DJlAqWnDcAmEMuvu3kLfaURxvpTnVscuTJRf9CFVQns5ih2Jo4cMTKlBSmsRWBTZJzNDoxwwlkqiqijRN0s2eV6tYsAhN1zBMA6Eo3kvTEFKiunlMxcZxFeKZPkQ8Oux4KQQZxUBRJAUh0PxwFEVRUCPD6yBUdTB8dzSkkCjy4OLlhXJkJM2jS1pwlDBRESdy0hwkoABdZhMAWTeGYQ5/dklVRfV/B5nxJMhdW6WswevbZGk57VotqiKw8sVxhzmGk58qNF/sVoAL5kAIm2oihEvW9mTvNakjkXSxl4IqMEzf+0ULIXEGQzwtxyKMwWtdKz1VCqA3vxYhY7iuhURiDwmDG/T+NIq/kaIJdBEhmoiz7Jp3A+DiIFU52KdV7XyB8l6X8pJyzJDf1w6RqS8IcCXU1S8GxZeL1bVBGePiBVVojXjJ3U3DQNM0SkuSSCkxdQ3FNyz0yRh6PI7iOoPPPzMURRlFGcYJF70+JtWVoyoS0xkIFyu2K1VXMQekx12Y3FCJoqqEI6FRjUTHO2PepUKIX/jvq4UQf9/3deSqGBBvmYrUHQh7DdCwvBug3pfHVIdIyXTZ3k9aWemtFBb8CV1aA6O6GtXRUFyJ2f4se3LFJCp5ux/bj0XS894EpGTaYtQhg5YtMW9ipQ+6hWsjQi0Krk4o246lFA0PmihAZKRu9wCJkEZGuDhSYW8hgyG9m3V3ZgtS9R6i8TKvE5OuS+PM6YP79sbAsBRAYDrxoc+bEZi2RLiu5/6IwFJcohnv5q8O5dAnKJaqF+/7uNpwB6NYPEk45lW4reBd27EkFo918hL2yG6eFGvoqPE8E4YaHpzB7Oz+OwLFlYMT/DFdHgDdFYTdQ+/8peOS83M7ROon7bdsNBQFkUWxJYorqds8D8WNo9GHniwBRUOItsF2Gcn2ENJ9Wb4hOQ2imjcZT3RtwFI6yTkDbatoWGqZNhcl7X0+aFjwXdjjfzJoXKtgKaDqyqBvWtg16Ip6x2hN9qMqJgPXThExauungG/gsrTiNRsI5dia7GRPAqIdq6nognxUxfCNMa7jd/zSe5505Q3KJ3s613q+l722b7QsZIj07yxeNP80JV27KGsuqtn0R7zyA4YH11bIGBahHRsoODk6cruY8dpO/t5UrGe/H5e/Pd6LbljE3BApJ0IYA10WVxQGDD9Wz24UWUtPrpe8nSVv52gV5bTWDrQ9P6dIwcYYImVrJg5Onsr1u0oh8hhJP19C02TskIsjoN8sekvJlO+Z4w8SldTo8ewTQanvwj4074hWKK4P5J3MyAHXEFzfM6l6RjEULtLvS/5qGhWdnkdZ7nVMZvd3/sOB6itLDCiYpZX0fkofm0g/1ML076GhHg+uPzl39TT1U5aTV8EWkDjn7MH9DyVX0cGgRL17QNnH8BCrah7821ZHOtQ6ru2NGZTRV+ALvsXMKWRRnSyh8PB7x/ZDzmzFQkVFuAJ7z6phZaTWQER2U7B1XH+i+rnQVFJOBM1VOE+W05HfgytTKJr37FMMEOTJ2V5byTt5bFfhPQ9+HoDSttUseuEhpNJMrKeXs5/+GT0F6MjtYnF+Ele3RQCN9zxQx56E5+G0Ud/NydksRPMoSjWqlfHCtZwd4NoUZG9xIiwE0SHGd3VIZv2BWHMpEyiGGBxxteW2s2D9DlxNgmpS1uMZYCT96Kq3ymrHXn+IxVC0pKdioqoHbl/ZOV54lLF06ZhlBr5yzg+908uGu5WX+QZOzW/z6j65o04UhBBkfFnf2JKiRGkh7t1P/c7+w4Blxtu3YKuD935dyh8H2C7WkEURwxp9rKX4/b7l5MlYvcWcI6qJkNCa3jSsfJvmtbeIbxxUlIGwRu/8rt9Sd2W2EXNDhF2d1vBr4DqDcrzd1u4hYabCkwSNFg1Kilo0RiQqGpDCO5c7xIBU0j1cWWcsysqmH7BMTsnRrXUT3TdpLmAY3vdTwiXIRBxhGEhj//LY4agXKqa6CjE/zDo8kH9qn7IDIasFVJLhiZXdPtrsL9Ti//jvl+ynTMARwjprCbo/CajNp7ilcxOX9vXz22yEZYuvIfbl+0kny0iu/w5qoZ/JdfejLEhhbg2xoWstqcoS4pfexOSPfYvyikbKX9nO8zMuYlXXGhJqlLb2vxIrvELzpofYXL6R7dPCXPaO9wPwfMW17JEZ0vmNNG6bxZqE52br2AX2ZNrIis1cKhaRFlnS2/5MrH0T6yr9hCuuhVj+XmhaPvoXAxpKwlx54ST0ezezp2cPhttJ1s7QZ1ksXv19HKkRv/A8/nXDr1iQzZGqaRrct7NMsmTlTtY1z6Jl02/Y0TK27MyZvUnmsZGO9g40RbC7BMp7oN+ENZzL3imXMXaE4P7Z9K7rSe/dxYxRtq0tPxOjS2PSuZ7FdtfeMkzXxqwQhGI6y6+eQnXDbNZ940FOve26Q6zB0WVHqJ3afJyXtVZcI4ZasGkqbGOd6a2A9/d60ouJrs1oVgsl7W2sjVfQKnI0F1QU+eqYx765VlJTER1z+1iIjq3UyTpkxyaS77udNX+qYnb1/t3epZQIpxWldwa1WYOsPpWCEETyawfLmOJV6novoC1iYeSeIG4kIAuFQhooRXUlWqqdXN8D7FGfID/dpmfvVjKFPah6cXBZXtNAPtNNfV8NTm8HkQpB7V8eoiMKJb1e533PqZKzdUnYNDilMJUGp4w/Nv2Q/nWn8NicVcy0TqM6248lW8jIPxBP3IhWmeCucyRmucpAmtUlz79EW90sMkxlTWMbp67tw7Bgd0uE8PV30v/fr2He+FUA/t72MtFoA1q6j5pJs9kLqFY/udzTrG+bTKZ9L1O3/oXttWdgZjs5OXUufSJDl72B6pJKXjk1Q3NJmr/WK+zauoWTsmGW0EIu38maBRbh3e309O4h66pU1O/GmpHho5suZENyDWb8Yn6nbOIW9xpalZ9Rv7WDnMyzUv6W3r6tzPC7ox57DXU9s+jt3sXM9kfJ0sfz0aco39OKvOB8dtr38XNbY74jqC1MIprdypJr31tsG1Ky5aSPEpmyzA/mOFBjUpmy4R7UUBuqr76glJbSVX0aL8c3Um0W44CNKm/gWPL2t+Pm86Suf9t4znBYmNRQT/uedn9EL9FtgeP28lhPgSpWM/WMs/e//wXXssq4nzfNmQ2/8VxtzbQ/ienq4oa1uwjl+3mL+vpy0SytfZXJEYCL91uu8sJaSkoOzmNErQgTX9FIcy7Hnx5dy6y3nMEnsjFOqk+yszt74AMcA9RKKPRBtD4B/X3k/FVANZdD5B+gbvsO1ORrGHol3VdcjNPXhzRNqu74FKH545cHPVTil16KjMZGGB4a5q3ge4u+SM7upqN+ZF/cueOv/l/XjHrcgVw0MtPP/csEt8aG59/YUfscf99aRu+UbRirs9RFK4nIPXSUtlDdkSPVl0TNKkyufBJz2Y388qdbiPRE6E+V0tirUZAK2+09bO36E6W9WaJdG+g0qklX9KFscdnY9wqFRIL+js1orsna+h5E3910KevpTvYitUsgAzWv7qFDT7K2Zz11oXYikTjo0BlPomumt7gReZGmPXPZHtlA2JpBvxJDURtw+CUV7v+Sqx4yyT7nU5gdW1jyq8/SE2ti7/RibgstFkXtPgNFn8IZ15/KE9/+P/TuXUhvPotasYM+u5ya5Tfj/Olhntn+FE2xTmR0AQY7SSw81BHNSFoWVrB1w3Ratz3JWW/+0AHLz735Bp7JF7jgnJEKCgNUlC/i2a5+lMLVhGe8ROmi4WVL40nm5zYzddNmfl5/JmFG94w8EShbUU/bE9uom1RBHhUVG6ekETog7Y5teKj75jfZvuY56PgMTq6YnPBr1y7gnue2M7UyyuN5G+Fq3gJHfnRHdd03ru/Z/GfSTo5fr5BsrhDcJwS6orCqbw/97gbE1hfRS6rYGNsASMyQ1/clGifzw3NXclJrCNU8hY3dFoW+Z+hyqzF2r6dEC7EuleGcv/0UnO3sSXTxVNVqNPcMCsIm3NNPWDiEZxa/q26qnPaWqTTN8e6Vi+ue4Y+tS0lVxPn7tp+wR5bx+BUOpgZfH+P6/OLkz7Jux1Oe7PEB+F6XwWvKX1lw9j+M2JaaOpe/PJNlzuTppGYvIDT7wPfWRWecwkMPZYiaxeSudSLCpl0W3crwhK+7DQVpg2Um9j3MCceYv4TruruEZ2b/keu6QS6Ho8ys//7x4N9KuIL3dXkrqu/p7qEzHKX25ceGlZdScvN75/Pit7dQapXSW50mNXsh1eueoGbdE+T0OIoxky3A1DWfobtkN9J0mbnlYfYucXjbXasHj7Xglm8D8NwXruLLyiTOSHp1URyXvJNnq1vLfFcDN0Hblj9S0Cxs6a182q6Fes7toI3t7ieE4NbzptHWvYY9D2/hN+2PARbJfBmlnV78eKrpVq5+wRsAM2QVpK1aoaZ9KxVd25C2S2/t4lHO4FFmlXBO72q+0rMH182wpxFmbwZLhUfVWcwJH7pW7kW3f3zMbW6ijkfyZ/MPYW/y/EjMs2LfVu91EvPO8VbPK/7rXYd8/qPNdkeyq3wli9q8MJibtR+zVjazDj95kK/m0Ge7nPzQXQB89OLPcJK1kU/F/oOH5NiGqZs/dMEh1UkIl+7tT1MWqqJmyRnULDnjwDsBenYd/fY7PJO0v2paZRVFfBQ9z7QXfklBFaxpcagPh6C74LvsguIKOpUmfnj6owC8aa9G/26HDb0v0FxXO+xcipom2zcbx1nJ8rt/iLloIRs2PUdJH/xiueTJmRIpBWrEYFan105usXZz8lkryUiJkY/S0Poaye7X+N8LBEJKkokaHlryEhcVk/1TuW0dlRueI3P6yfwx3oRheasX+aoShG4Sua0Yq512DTqcGpo6HyBZfyl78fwGtjTGqf3T15naCo6A6et+BkBswVVUuglexkEzw5xX30nBVfhttJxdK2Zz/y/XMFdr5IX0Zqpa0nxtVifveK4KW0tz3Uk7ONvRebTxeq5/17Jh12ZPnyD+7f+hM2zw1JQ6jELRIykTbsXZmKaus4eGHZ5RaBPrqdhh0fiDf+Opn2r8eLlk8Zow8+xmHor1cFZieIfeeMXHxtUeAHKGQf32P9DfMG3QdV0IQTZxMj3OdUQiPxosm/I9SKRpDkqqHSkSgyuc3gQuZDkUlF7SDuTFGt5zy3f3u//Sd76Tpe98J84QbyWj3+trrI52TK2cGx66F/UtH35d9fz5B/7pwIWAN18+7cCF9kFIQfysBpbQwJILzgXglIM+ytHlui/+MwBP/d+HYd0OOtQciisJ9/aSz6Vp2vp7tlV7Mn+nf/ZLg/ul3vrWI1I/va6OkrdfP+JzzQjz9IJSnivt48qukclFG7Y9ghghtVxkICSsW3bz1AzJvyT3MQtGC3x06Q/4UP9s+np3YPXvYl5c8OulrzBjq8udP/XWEStn70IaBbJOPyvbf8ee6EwqdnmOultFFNw+ZvQlaN75IF0R2Hbx28hsfZpuu4Le7b/ELjikY3EemxOiLfk40hVMytZy4VM5Chj0Ca8vd9SdbN+2E6W2AsIC1UwiNJMQOiuuuIWWqUtpu2UK4c4QhYTXj9nRb3LNP30a0XzqkO9VQeScO4j++9uJ9u+iK3Je8ZqGQ6jmQoRjU1ZXTrjxVc7SHuKUWpWwY/HzHSdx0q3X0RoTzPj6v0G4hMoPrWD3Aw8Smzp+qdgDoeoK57/9TODMcZUvb6jm4i99cr9laprqaf3kOsJX1KNMa0Qmh48Tw6kkn//WnbyhhxkpAAAgAElEQVScauDn9WeiH6ceoeOh6uxZVJ3tKaHo8Sqw80TLa2AD9DN2gsvY2WcRqaqEX3yGjF30RCmPGbzPlwp2HB0TjYybB/pHPY7i59yJr3+UUK6TRy9RcH3vCaFIROg0NjhwUvv9lGx4hD1v9gZHEd/wEDbi/GaxZMZvHdTQqdhdL2DEv4rKZ+jrfgJcaG20qWn9G7aERufvzMwU+JbpTS+tdA/9vRuYsnz4WHDuWcXFosZQGze1/JqHEx9gWXgN3y78mafLNBryYxukZky7nBnTLh9z+1CWJqpY2vsszJg5YluqNMEqq5ZLKhKY0yZhTjtw37RkZjNLZr572Gdh3eCe2Hwu2fbUsM/TikLUhvKagwsDPR7Zr8+j6/mpOUKIE98EcxwhEsPlyBxr7BCBUKn302lJb1I98FjS8z2DZUrbW3FNh6zubZVjxBSVKf6qs+M9oBQHhBjuMJQ2LXYnwfYt045royjjc8vVYzHMdAbD9QbP5d3FLLHJoS54Q9ysFF1ja5kn1dcXgrraWWMevyC8Tk0IAUKy3r+/E74BOJudmNUw05fVs6zhwXXhSQ2jFT8uWbTFYo/peTXE6KWUTpqU4sx3wMLZ3TfEndSxUSyv/Tgc/ji2AQnEg00OVbe7k3B69+D/0s5T1jskmZbhu39aLh21NpGaOoRM4Ct/obiSLtkEQNRxcKWB8MOHYuXDV/AczQutcKR3n0ZPPoUy/9YclGcUgnDMM7YNJMcq96+b1EyS/m2yvd4rn0h6xg11SI6HAZnb2vgqqPPdHMOgNAzXdgfIG17dI/3rkKHhxrjeEt8dUB/ZdTTMn4TuuyNu0KcRSXtl+/wwE7N7J4vyWfJqD5bIkw8PGKNmUFozMnFo8uqrAU8yFSA/xHW731fxKe0trvCUd9gUFDBKosR9uSvD9VwWM8rrG7Bmdc8NNbevh7ifybs9VFy9KEkeve4y5U/UBhyydStPRvNC52xz/M+3oeEQep8XXmG3d0A04f89Ug4t4PBTWueFBNnCIWWFMJEYGV/SMHp4YvcPN6b/HDScke7CQgrEfkadA4aHV1Ke+3QyPtz1XvXVhnQlguW30cxkb+Vx95CoAqm50NeKwAUsSnd4CewUR4LbByJCqq8TgLUNUFc3D1dt957jvsLU3xt3cvkO71pPyTayuDtMRlmHVBvI+2GTs+v6iWdydPVtBSAUKsdVVUxXo7H5JABihj4YvqoW0hiV/Yj6kQskeqT4DAnHis8Q1fQ9rGzvWaO7Ft1xz+gAkC41CMU0YvN8f8tCdlCyUqs7ticxaqn3vPK9zNGjw8eKsXL/e/hym/rEp1s4NgglIVpBWb036U4r++9TSuu937mf0Z8JqogQcnUiGFQ3j+7jJ/xQCzefpifMoNEBGDZTlH67a0t428N+2JXmh3i6DIxzC4Ri5Th6LYgwKg65+IC8NfTv0TEjNqofRiv9HArJ8rFVhvp9JT6p6KihELV+2ELnvolsD5VQErTRFyAH1JDqUoe+QAkQ8vNQmM7weZvuS4wumHXwxvbjjfH8Wn3AaiHE94UQXx14TXTFAsYmNXsZtivYqHpus6HaZnbXez+lJWFzdfGBkZruZZGOTx4e07xqkkAr9JHsWkeoALFogbw/rh/LJensFTcBEPFjvxzdRDod6Llu9mS8mO8tFYIN1WJQi9d2bYQYX0ZlraYGu30DJZkCYFDXtYu9SdibAj0yuqtZyo7y3BQ/EWAplFbNHvP4feE6euwyhAwjRQyr1Kvja3M8i+3MmSOtnIeDBQs819eEv+La1L0LzS4QmXzkst1PNOXpHP1WDXm1E81JI4CX+ouJHEv8ibLmCkTEhThU9XeQ6mmjy42QsUaX3ns9uKYAJBxkQu9nZgjK2l5EU9sIp1dj5tZg1jYVCySLbTFXa5E6aQlSrUKRXh4TxXZJhL2//7GjC03Rcdw9ICJMnn/q0FNRpnuTwbCyGjSN2Nln8Tc/kfv6GqgoeNetcaaXQ2B9r7dq9/YebyBbW1LPlsle+4+Y3n07fc45xG2HElnMq9LRvASAivBGloSeZ10NvDAFaqeOVHIJZdZ436OwCeF7AW2p887RU+fJke1t9lztsxq0d28GoOb0s1E1nd2U0t10AUv6QuBadCpt5J0cesdLJHE4NZuhEN5MbyqD5SbYkl9CSfXI31+vrQVVxQ370qYUDZFlRoy86tBZOSSvRsalYICiSKb0eD/6ds3z7Ig2vb5Y595QGWhhOmLDJ1Ou2oEabYXK4rMjGTtyyST3paysirSrYPnG6KS9m67YDpRCH4XYocVHt4c7vGNdcw3hC71V28jJJx2eCgfsl/gQlYhQzkQTEqXBG3xXzz5wzPLRQPEzs6eNnpHboqBExp491mS858Cfmz3Dw4Ba0QBl5hQ016W2cgHlePf+kvd/kojjUK175xUt/ix28tmDNmfF6keKBMaAcVhrZnVDB1kNNk52qZs2B9voQkrvfFIkiJXv4P3h1ygtwLKeaq6y/8wrlS8hDV+SUehMn1NO3uyk31YJOzoilMKWCqqromn+RCoUGzRkq/ltRPU6Rk1GZcT482z/WR4penVW+saDmPt7ALrTzbT5ngEduRChuJdQPLXQkw53Zi3FaJkCmoY5a2LGNIcLY/Ik0DScJu/7RPbpBxK13rg1YWXQ7AL19vjkj497yqZCxUzqmpvpt5P0xvbvuRKJxUj36+RTo5dTnR4ilkqJHaZyweiLc/1bPa/praUWe0qGt8/oEIcLJ+Hd1wOGPtMfI1SW+/lSfFkl4dpUTT+Zup2Po2gthEWWlPRuwFenQV9nAtuFcI9nUHPyWYSIEk2NbXh43vb6nfKW2aiRGPV+P9d7uAwPZdOgdPRrOLk8iq5IZtXsP9/GgUhFYqSyPdRkhhvvzSpPOvS0eeOXfD1eGY+c5n3+K+AYoeWMC8jM30xzNI5tFQjrBsvufxYrl+Xce1dQXSjnQr9s+ZzJWHfWoZrFAXPr4hBfPCvPRbv+lb9FHUIzerna6eX77d5Kqa6MPgmcMm8ZKyu28JV74kAaYUYIu8+z8G9P8anzrydt7WDHNRIX+JCfftQzPIzPTB2aM5v6734e67p3M2vjDqLNc2m56z+RmuqZSEfh+ou/wSP2Hbxv/iv0ROCJuvmjlgM47bYvUsh/DnHbIwhH4Xt7/h8db5UsXHoHF5x31YRlj50/fz5z584dPP43/vifuID22Rcn5HxHg0L0Wb7+PUH/ud084y7gxy8uYsHmzURiPQjHoX7FmwA4pf01dqtVhAtt/NtTX6czZbLxxVJq57Ye4AwHz5WXvZnnPvZRTvrItQe1333LBVn3IT6zo5NzUncjAP1jxVCL0848jYubfokt4V19LmUz5hHSIK9FgCcwunex4JIzee7p/wLH5HMNUX541hPcurtA3fThWUBaasq5oOdqWrMlND73ElLXeWG54DtnSK7bfBqh3ZfBe2DmgmW8/PDDNEZmwMd3c/FnZnBl71b65s4gtziBveRVbnM91+fGKSfxm7LHCA1ZQVt4z1dp27ILKyVJ3v8BPnD9Rmosm/fMHRkPPiP9EtHn70apX4TQDVIPPgB7LF793ot0OdUUfvIhnCfihJq2oiqQ+8O/0V7op+xdXrhGycfWUq5oFO59jap71uMsfYDP7/4xL97o8Mheg6/s3ouV+hzWLS/R2reYllgtZnT0yfq0Z57m/vu/wy1r70AO8Yr50Cd/y+bX1mKvepLfb/kMS++KEMqD8MdLkUKc5ze9wOPqq4ibP8R7aseOMx4PoVgZ16y4DS2cZ6jg2w0fvZ2+/j7+8PQq2Oyf2zx6iaFisTg1rfNpMdaQ+v19RDSb393Qw/3aam5sXXRIx5x9Uit1D7wGqpe4rHDduWhH0bjyRiI+JA+Am2+gYabCpMmzcUrvQz/lvP3sefQw/ZXBrsjIpJ51l6XAGdsAdvVH383ffv8j7s36Kkj68NXFt77nq5y/ezsllXX0nn09u3Zsxyir44kt23GFQu/vniFSXgOaCqqOygMACJkiqU3jFPfXPBr/GNLVsePbefcFq1icz9PQ1ERHJZRsaSaTmEVN/0ouzxo4LRYPbHyMv3dJpsULLCgs4ufzfoye17i8bAbm5V/E+n/no8feR8RaT6fejYMk5BafVWa4lPLWB6jd+Vd+d1If80NjxIbrUb55ieRbF8Nd8aLBZfaChcxfvRxP5+BrXHTr3ey8/1c80vzvuNEMs2zfwy1s0rJyJTJkoigK059bOSGKJocTvbGR6c+txFVVnLyDag6fkpgl3mJNue1w34MfJ3rShaMd5sTjqu8BYEqF/ttf4vQxVESGon56C4vGUBuKd91LzUOlGFYvyQ/9YdQy6Zd+gbvqHmq//H4qpiyGJ28c3Hb51St46frbPXGyGxdRfdGN5J5+j1fHiDdfqK9p4YVHtvKgnacPEFiUTl/E1C9/kclCoXdpGe3ZHNfeHmVZv8VlNz1PIddOx80fJ767nV1T4NdNm7g2khqldh7n/vvDtO/ezsLKOuxHX6HltR7g4PN/jclZH4cz/2XUTfPqk6y5c8XrVkIKx2P8+CefxU0NV1j7xHvfQjZvDUrOnsiMR07zrtFeR6JyAWMTiic9qUHdG+Tq4TDhVAkGJoY7/CGl7jMQjvYJbEXwl+oCHQmH8+nDcaOYvjUybI3tSlRW3Yjmj+4tLISiIF2Hdq2UVrUaRwpcKdB8CSJ7DJnEsTCbqtFTVeh2nvCSpcRLy4nGU6CPXqfaaTM4vedttCcEBVVgJsdOeqaoKmY45Lt7SkzXpQabsuUXoqrqhGYCH2rUkLgouEjj9WtrHytsrEtS1dfHqTvW8qicSVXvTiSC8t5Oyvq7McNe56TYcSq6dxNSLRzpYGuSUN5C3Z8cySEiwyGq+rPIyMF5U+SkoKDBHlGLLjU0JYIIFVfMkxXNOCGX/pAgVTAJlVWgF/pRXQfFstBzeRQjjA6k3SR7hQWKIFlQR9RFjSQJqRamYiH9QWKJZWGpAiMzCSm8e1eogqQsxVB00EwsGfXkGxWFcncdta5NfG4xF0Y8VYk2ZNBpmiZ105rRKhppblqMrQiSro2WGh62BSC725GujVbuufxVtbRQ2VSPqpdT0TiPuYvOQMZ0VLOEkFaCYufR7YLnoQBouolUFOKlISJOiIIbIRTtJ2sIdCOBBoRiJcTicepqphCKhce892Q4TOWk2YQUF0MprnYJIWhumUXDuVdxSTpNt/94MP1BQX+oAg1wFY3a2pFhHAdLylDpVWPoyvB6GmaI0tJy4qXHhkuzokk0EUZRJCX9vbjpLLW2TUFzQBs7Tnh/1Jvdg9KMQGB0OIKEYxGkK9BdFdGdoaw+gerk0RVAP/xeYoeDRMibLPbmRsaSK7qJYo5d71RJCacuG2JQUUca8UoqPU/BWDzO1BkzQTNRjDhqoo5UQwt6KFz0KPC9M6U+lYT5MtWlOxFKnFCuE7NkJgVNUJH3nhmbygS61YGQMSaZa4iedCX63EuIOb0siD5EN43UTLqE3ck+tlV0Ul89CaSCTIURQkXPp8iKPHmRwxmyUCLMFL1xFzPXydpGm8aGMbwytRCuEDhSkEwWPV2kbmIqNviqPqqmUX/5FVgyjZbKUjHt9OIhopHBscaxbnQYQOg6UsoRRgcALRX1y4RQXQehn9jZ/geRymBIcSTmy4MfAD0URo5RrksTRHPtuMJGKy0dtYxmAa5DVctcKmqHq38pRhhT6UEv9KOEIyQbiyGahu/xIFXdX8n2+mnh2ij10wEH1bWI1U1iUcbCVgTrTQWp6xixalyp42KjOhqW5hKP7j/dc6l//ytlzVQdbg8YKQclN0fjcMgvq9Ewiusg9pF2lVISNo+Pe/b1csCrKIQ4VQjxeyHEOiHERiHEJiHExgPtF3B0CDshQqPEVg4l0ufHeCuSqTmIui5Zp46Y7t3Ettz/wDLsWxgFCvg3YreM0EdxP2vQ8HDw7r1ao5f7IL5iSDLAAd3vfQJEpaJgOMVJ4f50nIuFXO81cL7Y63OdCoBdqRI6o9D6bJLlPV9DtSE7RM4RfxDk+jGIrgKWKijovnbxQeprjwc50CFGD84iHh2Qeko3YSs12Oo+k/NIBXNynnxVQq9EDUXQ872Y2Q60QgHNKmDnve3dVOGHIVLa7YwwPOilnqHMGrJCVupL5ynpIS5/viuhjHvXMad5+9n5HIrw7tuSxePLARytnE6FZZGyHQiNlHqUWc/1USsrWuTD/nnrpnurEUIIbD/fBH7M577fLV7uy3nlTer8/CbGQGLY/cjr7svs2V6YSMEd+VzTkyWEnRYyg4YH79q55Z7boiMPT0deFvINvO7oA52q8mMjDZLqP4+FL5+WjplUFbz70IiNNDIFHPsoSFJWkpLOdQhNK07Gj9Hs51VJv505oyw6qEaxLx+DeGrI4oEyzolmpBz2WUEEsH23b6nWMSu5ili9iZ7vJmy3cbLhrZ+VWd4zok+V9GuexHhjyWrvedrsTepDsoe+1MnUTUsx3Zfgrin3vNdSk70Qh0K2OA4pqEO+u5kkF7exJHRWOZS0jKZ9BQwxvobDxd92YIKSFcUJo9A06FBwLEHZzKLh4URDL/H7FD9/gBhjRT9g/1j+8CIdiY5p5M/6t1q8djbo+4yZFJ1IlS/Zmc2BXjRii4HnkX/YAalr4TqIssnk/GlBzcy5zCl4//QNNeD755KuRLruME/N/ZJqHJfL/rGGGvOv7ThUNk5UxvPNvw/8I/AcI6VHA44xLmcFyZKxb9yme++h79nHCDvfJi0lMzNxVtlXkT7pbGbEfstady2nf/y/93uOZTWfoHvD7Zw96U4iV63iZfP/8p1bLqS1J4v+270kHIdV/kTJOQT5o7KbrkNNxggtHhKLJgRc8hVoWDaivHpZGZ98YjF95e3jOn51o0Y2nWfX7C+hVTaNT07vMJK75EacvuNPW35/XJO8khdO2cvZv2/l4hdcTEvzvHEKXubOgdX8fFMDxq41iLRO2+JlRBNN2LXPY85YcdjrFJozh7JbbyVy8skHtd95fQvRc3spP7kUJ/YviH015ytm8Pk97dwdj3L6LC+EpKTsQTbKMNPSu1FrFtB8zqWs+fu11FxzO59a/T/8ZsP/ZVnDMmRouFGv6c038OLHfknF5UWVgKsu+Dr1r/6K0z54Frm0P6k3FBKXTCI0w5u4x95zF9sf+Ca1C5bTVriPwq4NVIfGuRKdauL29k7irjlq5xe/81P03/Mo9acXDXJmVGPZm1qYNN+7W05502TWPaoxuTxEyVt+RGHnzhHHqZ+eYtHFTWTlFZy26i80FCy08/4VXnsMZlw6ovxYxCNxHtLfgjbrNM4fZbt9+scQOz9Pl5lFVC5hEnDK9bfz9OeeoOn6fxz3efbHSbUNNLW2cXFbZtTtVak4v1EuZi9R3nFYznhoKJrktLdMpXryHNbvfBzx0X+n/2f/ydsz26iZt+SgjrU5P50ZYjurtBqCjA5Hj/JMJWpfntKqdqJnnA6xs6FiBjQdmxPOd170Wdb9eAMfuuLzIzee9pEDJ/s1hkx6xjs4P/cOCI0c9zQsOZkdT68l5L7MtKs+CNEKpn3lEWKpDJOdNB/sSLPE8kIf3tceZ1P1b6lobSNzzj+SikSBKO65d9L+91XEz/sAJVWVvHP7Z3mp8L/Mmee5/ZdMnc2sB76PLfroOfV8VNVi4fnFOyZyxg1UbHyIZ+sd3tvfj0g1HfDrDEgUAoTrGtnR/BESZw4PGWypezNtrzyDcv6JOxlXwyZixT8QToTo/8VXEfqxmVD1WMdoaWRbvo3wrLEXJ1Jf/Vc2/+4XzIh4Rq8v7unA1Ju8jYpG1aJu9KhN9LoPg6Lyk52t7FRV8JPHh2sa2NF8G6zxxrYhR4FIGYbhQEYh0thCblcVd+59jZL+Ys65t37yNu77xk9Y0fJXprR3IvejgDe8wl7d/mv3XvKF1yfvfCTRU971lcax6bF2JBADWdLHLCDE067rLj1C9dkvixYtcleuXHm0q3HcU9i7hYt+fQGtqsoXnNO55MZvHNT+Kx/ezNO/3siCCxo55Yp9ErHc4d1U38zdxGXupazuepYLvz0+6bSA45fMKx20/+glpPIM3fd+DzQdtbwSa+c2AMo++EnKb7mO9MqVbLn+7QDEr/k+Wm2E/KYe4uc1Ej/n2FD5uPi+i9nau5UfrPgBi6tGkWd1XbjTX9267Guw4B20f2IGpao/+X7fk1A5xGh2/63wwk88w9miY0AytW8PfGkKlM+AW/92ZM7pPxf4560TslK7/tnd/O77L6Fokpu/duZhP/7ux57hnl/00SLXs+KbN43YbtkOd3z6s7S7Yb716Y8c9vMfKgXb4ab33s6svldYfvu/sXTh2Ml396Xpnx8CYLN5HdzRfYDSAQGHCddlzv96XgSrb1h9gMKHTvd3biCx81fsLHkrNR/8H3Z9cgnVyqusnfJ5Zr5t/DK4uze8SsclV7C7RKWywyK8aBGNP/nx8EI7nofv+pO+j24e1UgCMOcuzwjywqUPopaM9OB4o9L5yz/T+i83E73gvdT/1+ExJgccgC80QMNSeNvdsPkJ+NFF3ucDfcFAn/6prmHeOve9+RPsKjubmj1/4sr7Ps2Wc2eT3m4z5Tf30v/Hz5PY+gBbc/No+MJfhp/v4dvhmf+Bj++G8RgfHAfns5VIJ8/2/FzqPv/Xw/ClJ56uJ1az693XQMupzHjwe0e7OhPJmCbm8QSs/FEI8R9CiFOEEAsGXoexcgFHGDVeQtx2MByHueUHn3BM+m5SjrUfbwZfFutgczwEHJ8YzXGQAtf1jQeF/GCoA4AwPHe80Ny5xc80gdT9eNTDEDt3uOjIeln862NjxO0LAQl/W9L7vjl3SA6SfcMIev3EmceKq3uk3JOMihxpXx9AnZj8ALXTvIH8gBTe4UYNe+1XGyMti6pIcigU3IlJUHuoaIoko3jXvCR1bLrmBwQMYwJzLQ3FrffW00w6/HdPKShUd3BZ5cuaW8jokPXVd7T6UfqN6iHqQWMYHYaivoFXQ0dFDuSteIPkeDgW0MPFsK6BcXzZKFKPI+5Xr+yApLOaiAEuSs0kQrUDuSFGuccHPEuVcXrwSDk4/rLd4ydsQfpjCd7AYUPjGe0vBRYBnwe+7L++NJGVCphYhB6loWCzPJMlVnvwkly1U72Os37myPhw1BBUzcWWFnk7S5/V93qrG3AcIA0VvT6GY1cM6iCrqWL7EIb3kBW6jlpdjdbYgFISQquKIEIqSsmxM6C4aspVAJSH9pOH4HR/VbvM60izvs62i4DwPsmbpl/svVcfIw7rQkDtQqg4glJri//Be983bOUwMZCDomG0Z9JhwIibqIU+YubYyay6nRBG9Nib3C88aSYZaVBdOXpSsbGoznYRzadZp049cOGAgMNIc76AOVqOiMOIOc9Lxms3nwPAjoQnT142c6TE8P5QFIXd1VFyVeUo5WWYc0bxKpIK1MyH2P4T3V7S5yfkHCWp5hsZc1oDSJXwwmNTQvaEpGTyYDgDcb/dnnH7gfcbmFX6edSMlsnoJQrCMNErPaNexOgYuV+qCRINnkFhnMhqbyHLjR4/oRaab3iQxhvX8HDAUItjiSDU4vDR96l6DNGD86FNGMmDH6zbBQdFG+UB4WeZ/dqd/0jh1S2gVvBPPz2h3YkCfLp/t5nex7aReeZbWDtfoOTd76bj+98HoPLTX6HkGm+g5xYKfuciPcO364IUE6oqcjC4rovlWGgHmiQXMoNJr+zHv4ry6Ce9z/d1S3ddsPPH1mDSLniJWicgqeeoOI6XhHIC1EsGsC0HKQVCHv52lN+yhfUXXEzpDe+g6p9HH3zlChZSCDT12PJ6cByHTC5PZBySbEOxChb5XAbDDI0rq3pAwOHCviOBC6gTHOJjZfpRjBBCShzbppBJY0QPXv0ll+5DKhqKEAhVHT3Jte0lutyf8dW5I4ENaJ/YO6HPyuMRJ5NFHuQzLOB1YFv+GMFvy4Xs8BCIgVCLfe7Re6/9OK2Jc6htf5Qr7v48rlWAQh4RisCWJ+GHF+KGShAf3TT8fI7jqdAczOKEXcDu2I5M1SHU40MlLrd9NxvPPZPImVfS8O1R8uCcOBx6qIUQIiGE+E8hxEr/9WUhxLG3rBNwUDgihu1GD8noAIxudAAvGZSioijg4oxQoQg4cTEme3kPtGYvTlWa5qD3gzSKk26haQhFQSjeJFEo8pgxOoCn2HBAowMMGh0AlJb9KEoIcWwZHcDr3I+U0QG8wcsED6QVVU6I0QFAmCbStVHCY4eKGJp6zBkdwJPpOlijA4CqqYSjscDoEHDEURhf5vPXixqKDBoJpKIcktEBwAhH0QwDqetjK2sp2gEnVRLQBsoGDCMwOhxhFHW498E4kz66fpj1QLi1UDXP6ACDHhQiM4rHg5QH3+4VDaW8+bgxOkDR0+GNHDY0nlnhD4Be4Br/1QP8cCIrFTDxWCJGWk5czLmmDAzAA8PDGwWjMY7QJOZMLwWM0DSMqd7fdv+JpeIxgopZBy4TcNwyYDiTkfABSgYEBAS8To4hQ3xAwMFQXGscxZv+OAqJmCikGRgexmNUnuy67lVD/r9TCLFqoioUcGQonDKxmdcTikIPHFMr2QETi1AlyStaUFIGWvI2YueeQ+Kqa2j97NdIXXnO0a7exCIlXH0XmPEDlw047pCJBBW33058xWiCngEBAYeVd/wacr1HuxZHnvc9CdufPdq1CAg4MO9+FDo3j/g4bGRp2vwwemqUxSYp4bKvQ9X41ZVONJRYhMS1t5K84o07lhiP4SEjhFjuuu7jAEKIU4HRxcwDjhsqz796Qo+vaV7TCgwPbywiCz19ZnNSUTay/r//9WhV58gy64qjXYOACUIIQem7bjza1QgIeGMw6YyjXYOjQ+Ws4VLMAQHHKvWLvdc+CF0yae2QBpcAAAqNSURBVPND7KwYY7FpwdsnuGLHPjWfev/RrsJRZTyGh5uB//XzOgigA3jnRFYq4PhH1QaaVhBqERAQEBAQEBAQEHAi4/p5jpxjMN9RwLHBAWeFruu+6LruPGAuMMd13fmu6774ek4qhLhaCPGSEMIRQix6PccKODYxB5KwBcklAwICAgICAgICAk5s/EVHVwsMDwGjc0CPByGEAVwFNAHqgOu867qffh3nXQO8Cfif13GMgGMYw/QMDyIwPAQEBAQEBAQEBASc0Li+CpIbqCEFjMF4Wsb9QDfwHJA7HCd1XfdlCOL/T2SkL50X/MYBAQEBAQEBAQEBJzZiwOCgBYaHgNEZT8uoc133ggmvScAJhaL7hofA4SEgICAgICAgICDgxEYfCLUIDA8BozOelvGkEGKO67qrD+bAQohHgdFEWz/uuu79B3Gc9wLvBWhoaDiYKgQcRSprYwCU1Ww+uhUJCAgICAgICAgICJhYBgwOmnZ06xFwzDIew8Ny4J1CiE14oRYCcF3Xnbu/nVzXPfcw1A/Xdb8DfAdg0aJF7uE4ZsDEoxlejodQ2DnKNQkICAgICAgICAgImEjkgMFBD5JLBozOeAwPF054LQJOOBTN9N6V4OETEBAQEBAQEBAQcCIzYHgQfrh1QMC+HNDw4LrulsN9UiHElcDXgHLgISHEKtd1Vxzu8wQcPWQo4b3roaNck4CAgICAgICAgICAiaSkLAVALBU7yjUJOFY5Ktk/XNf9JfDLo3HugCODYnoPHSVeeZRrEhAQEBAQEBAQEBAwkUxramAbMHty89GuSsAxSqA5EDAhSMVzt5JqkGAmICAgICAgICAg4ERmQE5TBGP/gDEIDA8BE4KiePFdihpI6gQEBAQEBAQEBAScyIiBHA+BqkXAGASGh4AJIV7axKwLpjH3jGuPdlUCAgICAgICAgICAiYQc+5cSm+6ifCihUe7KgHHKMJ1jx+FykWLFrkrV6482tUICAgICAgICAgICAgICAgYjhhrQ+DxEBAQEBAQEBAQEBAQEBAQMGEEhoeAgICAgICAgICAgICAgIAJIzA8BAQEBAQEBAQEBAQEBAQETBjHVY4HIcReYMvRrschUAa0He1KBAQcZoJ2HXCiErTtgBOVoG0HnKgEbTvgROV4a9ttruteMNqG48rwcLwihFjpuu6io12PgIDDSdCuA05UgrYdcKIStO2AE5WgbQecqJxIbTsItQgICAgICAgICAgICAgICJgwAsPD/2/v/kPuLOs4jr8/bS5Ty7kKKX/gj1Y6An8wbKXUUlEza/0hZVgNMyKoplKE9Y/0h6AQWmEa4Y9MzIopaoXpMCkbZEtXbjlDW6aT6aTpCvPX2rc/7uvR06L5POO5d55zeL/g8NzXdV8HrjO++3LzPdd1HUmSJEmS1BsLD7vG94Y9AakHxrXGlbGtcWVsa1wZ2xpXYxPbnvEgSZIkSZJ644oHSZIkSZLUGwsPPUpySpI/J3k4yfnDno80FUkOSHJXkgeS/CnJOa1/XpIVSR5qf/dp/Uny7Rbv9yc5erifQPr/ksxKsjrJz1r74CT3tPj9cZI5rf+1rf1wu3/QMOct7UiSuUmWJ3kwybok7zZnaxwkOa89i6xNckOS3c3bGkVJrk6yKcnagb4p5+kkS9v4h5IsHcZnmSoLDz1JMgv4DvABYAHw8SQLhjsraUq2Al+qqgXAIuDzLYbPB+6sqvnAna0NXazPb6/PAlfs+ilLk3YOsG6gfTFwaVW9DXgaOLv1nw083fovbeOkmepbwC+q6jDgCLoYN2drpCXZD1gGLKyqdwKzgDMwb2s0fR84Zbu+KeXpJPOAC4B3AccAF0wUK2YyCw/9OQZ4uKrWV9WLwI+AJUOekzRpVbWxqu5r1/+ke4Ddjy6Or23DrgU+0q6XAD+ozm+BuUnesounLb2qJPsDHwSubO0AxwPL25Dt43oi3pcDJ7Tx0oySZG/gvcBVAFX1YlU9gzlb42E28Loks4E9gI2YtzWCqurXwObtuqeap08GVlTV5qp6GljB/xYzZhwLD/3ZD3hsoL2h9Ukjpy1TPAq4B9i3qja2W08A+7ZrY16j4pvAV4Btrf1G4Jmq2trag7H7cly3+1vaeGmmORh4CrimbSO6MsmemLM14qrqceAbwKN0BYctwL2YtzU+ppqnRzJ/W3iQtENJ9gJuBM6tqn8M3qvuZ3H8aRyNjCSnAZuq6t5hz0WaZrOBo4Erquoo4FleWa4LmLM1mtoS8iV0xbW3AnsyAt/uSjtjnPO0hYf+PA4cMNDev/VJIyPJbnRFh+ur6qbW/eTEctz2d1PrN+Y1Co4FPpzkEbotcMfT7Yuf25bwwn/H7stx3e7vDfx9V05YmqQNwIaquqe1l9MVIszZGnUnAn+tqqeq6iXgJrpcbt7WuJhqnh7J/G3hoT+rgPntxN05dIfg3DrkOUmT1vZDXgWsq6pLBm7dCkycnrsUuGWg/1PtBN5FwJaBZWPSjFBVX62q/avqILq8/MuqOhO4Czi9Dds+rifi/fQ2fiy/idBoq6ongMeSvKN1nQA8gDlbo+9RYFGSPdqzyURsm7c1Lqaap28HTkqyT1sRdFLrm9Hi/8P+JDmVbi/xLODqqrpwyFOSJi3JccDdwBpe2Qv/NbpzHn4CHAj8DfhoVW1uDwOX0S1//BdwVlX9fpdPXJqkJIuBL1fVaUkOoVsBMQ9YDXyiql5IsjtwHd0ZJ5uBM6pq/bDmLO1IkiPpDk2dA6wHzqL7ksmcrZGW5OvAx+h+cWs18Bm6Pe3mbY2UJDcAi4E3AU/S/TrFzUwxTyf5NN1zOcCFVXXNrvwcO8PCgyRJkiRJ6o1bLSRJkiRJUm8sPEiSJEmSpN5YeJAkSZIkSb2x8CBJkiRJknpj4UGSJEmSJPXGwoMkSdopSZYlWZfk+mHPRZIkzVz+nKYkSdopSR4ETqyqDQN9s6tq6xCnJUmSZhhXPEiSpClL8l3gEOC2JFuSXJdkJXBdkoOS3J3kvvZ6T3vP4iS/SnJLkvVJLkpyZpLfJVmT5NA27s1Jbkyyqr2Obf3vS/KH9lqd5PVD+weQJEmT5ooHSZK0U5I8AiwEvgB8CDiuqp5LsgewraqeTzIfuKGqFiZZDNwMHA5sBtYDV1bVBUnOAQ6uqnOT/BC4vKp+k+RA4PaqOjzJT4GLqmplkr2A511dIUnSzDd72BOQJElj4daqeq5d7wZcluRI4N/A2wfGraqqjQBJ/gLc0frXAO9v1ycCC5JMvOcNrdCwEriknSlx0+AWD0mSNHNZeJAkSdPh2YHr84AngSPotnU+P3DvhYHrbQPtbbzyXPIaYFFVDb4P4KIkPwdOBVYmObmqHpym+UuSpJ54xoMkSZpuewMbq2ob8Elg1hTffwfwxYlGWzlBkkOrak1VXQysAg6bpvlKkqQeWXiQJEnT7XJgaZI/0hUHnn2V8dtbBixMcn+SB4DPtf5zk6xNcj/wEnDbtM1YkiT1xsMlJUmSJElSb1zxIEmSJEmSemPhQZIkSZIk9cbCgyRJkiRJ6o2FB0mSJEmS1BsLD5IkSZIkqTcWHiRJkiRJUm8sPEiSJEmSpN5YeJAkSZIkSb35D4mtlNa+GDlCAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light", - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(18,8))\n", - "\n", - "plt.subplot(4,1,1)\n", - "plt.plot(output_ops['yoff'][:1000])\n", - "plt.ylabel('rigid y-offsets')\n", - "\n", - "plt.subplot(4,1,2)\n", - "plt.plot(output_ops['xoff'][:1000])\n", - "plt.ylabel('rigid x-offsets')\n", - "\n", - "plt.subplot(4,1,3)\n", - "plt.plot(output_ops['yoff1'][:1000])\n", - "plt.ylabel('nonrigid y-offsets')\n", - "\n", - "plt.subplot(4,1,4)\n", - "plt.plot(output_ops['xoff1'][:1000])\n", - "plt.ylabel('nonrigid x-offsets')\n", - "plt.xlabel('frames')\n", - "\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 670, - "referenced_widgets": [ - "4bfbd46ab67f47a1b1444c9b7cd8ae7f", - "0c068199e7e44f5c8f1b641ca42974bf", - "804014183dc64cdf8f2f043ca16f50d9", - "6da4e0b2217c4aa18bec3d1c6f563d81", - "10144440b3a44ecda553473165abd44f", - "dd25a5cf52e84fefa4af8c24463106e3", - "176eeae0790249d5a4b9b209cb9d518c" - ] - }, - "id": "68k4jtcP89MC", - "outputId": "3470b52c-b59f-44a4-922c-b5b26dd91074" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4bfbd46ab67f47a1b1444c9b7cd8ae7f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(IntSlider(value=2250, description='t', max=4500), Output()), _dom_classes=('widget-inter…" - ] - }, - "metadata": { - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "#@title Run cell to look at registered frames\n", - "from ipywidgets import interact, interactive, fixed, interact_manual\n", - "import ipywidgets as widgets\n", - "from suite2p.io import BinaryFile\n", - "\n", - "widget = widgets.IntSlider(\n", - " value=7,\n", - " min=0,\n", - " max=10,\n", - " step=1,\n", - " description='Test:',\n", - " disabled=False,\n", - " continuous_update=False,\n", - " orientation='horizontal',\n", - " readout=True,\n", - " readout_format='d'\n", - ")\n", - "\n", - "\n", - "def plot_frame(t):\n", - " with BinaryFile(Ly=output_ops['Ly'],\n", - " Lx=output_ops['Lx'],\n", - " read_filename=output_ops['reg_file']) as f:\n", - " plt.imshow(f[t][0])\n", - "\n", - "interact(plot_frame, t=(0, output_ops['nframes'], 1));" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7JYnh7nBYxKW" - }, - "source": [ - "Here in the notebook is not the best/fastest way to play the movie, you can play it in the suite2p GUI in the \"View registered binary\" player." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a01HMnop9SRU" - }, - "source": [ - "### Detection\n", - "\n", - "ROIs are found by searching for sparse signals that are correlated spatially in the FOV. The ROIs are saved in `stat.npy` as a list of dictionaries which contain the pixels of the ROI and their weights (`stat['ypix']`, `stat['xpix']`, and `stat['lam']`). It also contains other spatial properties of the ROIs such as their aspect ratio and compactness, and properties of the signal such as the skewness of the fluorescence signal.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "JZ2eiCpG9SRU", - "outputId": "a03ff9ca-5c57-476a-8f3a-f48c15b971c5" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dict_keys(['ypix', 'xpix', 'lam', 'med', 'footprint', 'mrs', 'mrs0', 'compact', 'solidity', 'npix', 'npix_soma', 'soma_crop', 'overlap', 'radius', 'aspect_ratio', 'npix_norm_no_crop', 'npix_norm', 'skew', 'std', 'neuropil_mask'])\n" - ] - } - ], - "source": [ - "stats_file = Path(output_ops['save_path']).joinpath('stat.npy')\n", - "iscell = np.load(Path(output_ops['save_path']).joinpath('iscell.npy'), allow_pickle=True)[:, 0].astype(int)\n", - "stats = np.load(stats_file, allow_pickle=True)\n", - "print(stats[0].keys())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4iOjYZSpYeAr" - }, - "source": [ - "Some ROIs are defined as \"cells\" (somatic ROIs) or \"not cells\" (all other ROIs) depending on their properties, like skewness, compactness, etc. Below we will visualize the ROIs, but please open the files in the suite2p GUI for closer inspection." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "7BuFviJR9SRV", - "outputId": "fc248f26-a0a1-40a9-960a-4bfe60b97050" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAUICAYAAABK8Q2GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZSkWVYf9nuRERn7klGZWVVZe/Wm6qZ7RgJmaHvMoDnijAWMkX0wWjCbfYTBxsfHthbLHAGWEOYPyRYyWEjYCLGYRRZgPHBGMIBg2GZGM9M9vVV3VXd1VVZW7pEZGRlLRkbE5z8ifi9/cet9kVk903QNE/ecPJkZ8X1vue++e3/3vvvec1EUYUpTmtKUpjSlKU1pSlP6YqLEO92AKU1pSlOa0pSmNKUpTelPmqYgeEpTmtKUpjSlKU1pSl90NAXBU5rSlKY0pSlNaUpT+qKjKQie0pSmNKUpTWlKU5rSFx1NQfCUpjSlKU1pSlOa0pS+6GgKgqc0pSlNaUpTmtKUpvRFR1MQPKUpTekdI+fcRefcvnNu5p1uiyXn3JvOub/wTrdjSkNyzv2Yc+7vfqGUO6UpTenhpykIntKUpnQsjQBhewRY15xzP+mcK3yu5UZRdCeKokIURf1j6v8259zvf671fb5o1P8feKfb8SDknPsq51zknPtl8/m7Rp//27ehzu93zh2O5GbXOfeHzrln30pZURR9ZxRFf/9zbM99cvT5KHdKU5rSFyZNQfCUpjSlk9KHoigqAHg3gD8L4O+8w+05MTnnku90Gx4S2gTwrHPulHz2rQBeexvr/IWR3CwA+H0Av+Scc/ahh3E1YEpTmtKfbpqC4ClNaUoPRFEUrQH4NxiCYQCAc+4rRlG+Xefc8865r5Lvrjjnfs8513DOfdQ596POuZ8ZfXd5FIVMjv7/NufcG6Nnbznnvsk5dw3Aj2EI3vadc7ujZ9POuX/onLvjnFsfLWtnR999lXPurnPubzvn1gD8C+dcwjn3PzrnXnfObTvnftE5V5V2frNz7vbou+85KT+kD9/unFt2zu04577TOfflzrnPjnjyI/L8I8653x7Vs+Wc+1nnXEW+/3POuc+MePCvnHO/oFFn59zXOeeek8jqMycfPXQB/AqAvzIqawbAXwbws6ZPPzzqy55z7lPOuf9Avvt159w/kv9/3jn3E8dVHEXRIYB/CeAMgFOjaPo/HZXXBPDnnXPXnHP/dtS3l5xz/5HU85Mn5YNz7oJz7pecc5sjPv/IBDmy5f5159xN51zNOferzrkl+S4aje2NUb0/GgL0U5rSlL4waAqCpzSlKT0QOefOA/iLAG6O/j8H4NcA/ACAKoC/AeBfO+cWRq/83wA+AeAUgO8H8M0x5eYB/BMAfzGKoiKAfw/Ac1EUvQLgOwH80Sh1goDxhwA8jiEYfxTAOQDfK0WeGbXnEoDvAPDfAPhLAN4PYAnADoAfHdX9JIB/Omrb0qit5x+QNe8F8BiGoPIfA/geAH8BwFMAvtE59352FcD/MqrnGoALI77AOTcL4JcB/OSo7T8H4D8WHv1ZAD8B4L8ctfGfAfhV51z6Adr5UwC+ZfT3BwG8COCeeeaTGPK1iuH4/SvnXGb03X8O4Judcx9wzn0TgPcA+G+Pq3TUxm8DsBxF0dbo478G4B8AKAL4OID/D8BvAFjEcLx+1jn3RKCsWD6MgP2HAdwGcBlDufj5CXKk5X4Aw7H5RgBnR2X8vHns6wB8OYBnRs998Li+T2lKU3o4aQqCpzSlKZ2UfsU51wCwDGADwPeNPv/PAPx6FEW/HkXRIIqi3wTw7wB8jXPuIoaA4XujKOpGUfT7AH51Qh0DAF/inMtGUbQaRdFLoYdG0bfvAPDfRVFUi6KoAeAHMYpwSlnfF0XRQRRFbQwB0PdEUXQ3iqIDDIHnN7hhFPobAHw4iqLfG333d0fvPwj9/SiKOlEU/QaAJoCfi6JoI4qiFQAfwzCFBFEU3Yyi6DdH7doE8L9iCMwB4CsAJAH8kyiKDqMo+iUMHQjSdwD4Z1EUfTyKon4URf8SwMHovRNRFEV/CKA6ApffgiEots/8TBRF21EU9aIo+kcA0gCeGH23BuC7MIzq/jCAbxnxP46+cRR1XQbwpRBQD+D/jaLoD6IoGmAIugsAfmgkK7+NIZj9q4EyJ/HhPRg6GH8ziqLmaExOmk/+TQB+IoqiT4/k4O9gGDm+LM/8UBRFu1EU3QHwO5AVkSlNaUpfWDQFwVOa0pROSn9pFKH9KgB/BsD86PNLAP7T0fLw7gjwvA/DSNoSgFoURS0pZzlUeBRFTQyjqN8JYNU592vOuT8T05YFADkAn5I6PzL6nLQZRVFH/r8E4Jfl+VcA9AGcHrXTt2vUlu3J7LiP1uXvduD/AgA4506PUghWnHN7AH4GR7xcArASRVEk7yq/LgH4HwyvL4zeexD6aQDfDeDPYxh5HiPn3N9wzr3inKuP6ihLG4FhxHYGwKsnAJi/GEVRJYqixSiKPhBF0adi+raEYZRYnY/bGEZyLU3iwwUAt6Mo6h3TrhAtjeoEAERRtI+hHGgb1uTvFkbjOqUpTekLj6YgeEpTmtIDURRFv4vhcv0/HH20DOCnR0CHP/koin4IwCqGUcecFHFhQtn/Joqir8YQQF8H8OP8yjy6hSGwfErqLI82YCHmnWUMUy20nZlRpHZV2zVq7ym8PfSDo7Y9HUVRCcNIOvNKVwGcM3mmyq9lAP/A9CEXRdHPPWAbfhrAf4VhBF8dFIzyf/8Whkv9c6O0gbq0ERimMLwC4KxzLhSpPSnpGN0DcME5p3bpIoCVwHuT+LAM4KILb4a0MmHpHoYAG4BP0TkV04YpTWlKX+A0BcFTmtKU3gr9YwBf7Zx7F4aRzA855z7onJtxzmXccGPa+SiKbmOYGvH9zrlZNzwe60OhAkcR0q8fAY8DAPs4SklYB3B+lDOLUbTwxwH8b865xdH755xzk/IzfwzAP3DOXRo9v+Cc+/rRd/8PgK9zzr1vVMffw9unH4sY9q0+yqf+m/LdH2EYnf5u51xy1L73yPc/DuA7nXPvdUPKO+e+1jlXHPXpJ51zP3lcA6IouoVhCkZoA2ARQA/DkySSzrnvBVDil865rwTw7RimUnwrgP991I/PlT6OYWT1bznnUm64ufJDuD8nF5jMh09g6Ez80OjzjHPu3x+9NyZHAfo5AN/unHv3KIf5BwF8PIqiNz8P/ZvSlKb0kNEUBE9pSlN6YBrlsv4Uhrm+ywC+HsD/hCFwWsYQ2FG/fBOAZzFcVv4BAL+AIci1lADw32MYjathCNK+a/TdbwN4CcCac46bqv42hpvz/niUVvBRjPJWY+iHMcxH/o1RbvMfY7iZDaPc4/8aw01gqxhumrt7Mm48MP3PAP4chtHVXwPwS/wiiqIugP8EwH8BYBfDKPGHMeJXFEX/DsBfB/AjozbexHCzGekCgD84SSOiKPr9KIrshjhgePLHRzA8Nu02gA5GaQvOuRKG4/7dURStRFH0MQD/F4anb3xOpySM+v4hDDddbgH4PzDMN74eeDaWD6Mzpz+E4WbJOxiO418evRqSIy33oxjmg/9rDOXgEYznmU9pSlP6U0RuPPVsSlOa0pTeXnLO/QKA61EUfd+xD08JzrmPA/ixKIr+xTHPzQJ4HsAzo+PI/lSRc+6nANyMoujvvdNtmdKUpvSng6aR4ClNaUpvK7nhebmPuOE5vf8hhlHjX3mn2/WwknPu/c65M6N0iG/F8Ciujxz33uhEhWt/SgFwEsMo/613ui1TmtKU/vTQ9BalKU1pSm83ncFwyf8UhkvT3xVF0Wfe2SY91PQEgF8EkAfwBoBviKJo9Z1t0jtOawA+hWGawpSmNKUpfV7obUuHGEV8fhjDY3T+z9FO8SlNaUpTmtKUpjSlKU3pHae3BQSPbux5DcBXYxj5+SSAvxpF0cuf98qmNKUpTWlKU5rSlKY0pQektysd4j0YbmB4AxjeLY9hHmAQBCcSiSiTySCKIgwGA/T7fXCjsXMOiUQCiUQCzjk45/xz/AHgfycSR2nOfHdmZgYzMzPIZDIol8u4cOEC1tfXsbq6isFggLm5OSwuLmJtbQ3r6+uIogjqHCSTSaRSKURRhMPDQwwGAyQSCSSTSSSTSURRhH6/j36/7+u/fPkyKpUKGo0GNjY2UK/X0ev1fLlafiKRQCqVGutjIpHA7Oysr7fX6+Hg4AC9Xg+Hh0cpfywnkUig3++P9V03aycSifv6RT4qsW59xjmHcrmMhYUFdLtdtFotNBoNHB4ejtXJcQj1kWUPBgPfLn7PMf180KQN6lrfSepVeSMftBwt4yRlaRnH1TkzM+Pr1Z+T1Kf9i6tPy9Q+6bv2+dDnlFnbRv1M34uiCMlkEjMzMwCO5CWZTKLf7/v/rZzqb849lTXtu32f7+gzMzMzY32h3omiCPl83j/DecNnOp3OmAzzHR0P7avWo7zStnPO8bfycjAYIJlMjvUrlUqh2+1iZmYGxWIR1WoVc3NzSKVS2NnZwfb2NjqdDg4ODnB4eIgoijA7OzvWTs5d1aE6Hiedj+Qr+5hKpZDL5ZDJZDxvqH+jKML29vZ9cqxjozqQ/T44OPBlOOe8DtZxUPmYnZ31OntmZgYHBwfodrtj9aqszs7OolgsIplMYmdnB845VKtVtFottNtt9Pt9zM7OYjAY4ODg4D65m5mZ8W2xMkXezM7OIp/Po1wuI5lMYnd3F81mE91uF71ez7ef9iSZTKJcLmN+fh7lchmZTMb3vdFoYG1tDfV63fOB/UkkEjg8PPQ85WfpdNrLUyKRQCaTQbFYxNmzZ9HtdtHpdLC0tIT3ve99eP/7349UKoVer+fn5dbWFj75yU+i0+mg2+1ib28Pq6uruH79OjY2NgAAmczwVm3aqsFggHQ6jWQyiWw2i2w2i36/j06nA+cc+v0+ut3ufWOTzWaRSCRwcHCA/f39MbnQfnGOqgxb3Wznr8rKYDBAKpXCuXPnkMlk0Ov10O12fbsLhQJmZmbQarVQq9VQq9XQ7/eRzWaRTCZ9XzmX7LzWdqhMhGT2OPsR0i2TbElIf5/EzoZsXKh9obrj3n1QCvEn1H/+tvY8ThcPBoMgw94uEHwO4zcB3cXoKCKSc+47MLz6EsC4wlBB1x9OhJCiDhld5xwymQxKpRIODw/R6/XQaDRw584db8wODw9Rq9XQbDZxcHAw9i4pkUh4AGvBEEGgDkoymUSlUkGxWMTh4SGSyaQ33DpRbFnafj6j5avB0X6qQbDl0QmwxtcaIGuArZHStrAvvV7P18+xAeCfs8JsJ24cYHmrdBKAqXTSepXfoXdCysV+FnrPTuBQ2+x7oc8VeB5Hx/UjRFaubHmheRcHhNWp5fvWEdOyKb92zmcyGW/wCYq0PbZPamBLpRKKxaJ35uy8Pzw8xOzsLGZmZjwQA4ZyTYDB+RBSwvwslUohk8l4PUOwY8fKAjP93AIsvjc/P4/5+XmcO3cO58+fx5kzZ5BMJvHZz34Wr732GjY3Nz24iKII3W7X843gcH9/f2yuhwz4JGJbVL+oQ6/jnkwmkU6n0e120Ww279NnWiZ/NBjCZwnc+Z0FP845dLtdHB4eevBMUMVAhYIm6rG9vT0AQLfb9XaDYHp/fx/dbtfLInCkn237rE5PJBLIZrMoFotYWFjA1atXkc/nsba2hrW1NdRqNezt7aHdbnuZSiQSGAwGaDabmJmZQbfbxalTp5BIJNBsNlGr1bC7u+sBG+WUPG40Gl7W6Mjxd6/X8/obANrt9hjwm5ubQy6X831ifxOJBAqFAtLpNG7fvo3bt2/jzp072N7e9rw8ODgYG3fyXHkyMzODdDqNg4MDdDod76SRV4PBAK1Wy8uj6gw6z5z35BfniR0XfZflWRlPp9OoVCpIJpPodDro9Xre2XHOIZ1OjwWvksmk1zmqAybpVZK2y4Lfk4LTuP+Pe/64tuk7IWAe+kwxQlz5x4H149prx1LLpMxM4v1J9Nk7tjEuiqJ/DuCfA8NI8CRjrz9WkK0CtZTL5XDp0iU0Gg2vcKzXpt6oBYdsg508IcCpxpCR0r29vTHPXMvU8qyXys/085DRAOCjLKqI+ZsGKC7CYwVMy7cK/uDgYAy02OizbdtJvNGTeKdvNx03ifUZ+47+H/fspHfi6CTKNO5zVbQ28mDLtorMts+CWVU6ofet4QmBRBt5BI7Aja2fgNnOTf1uEl8VcCeTSRQKBczNzaFSqfgoEw0gwQDbQsPrnPPGUfmnbbOOH4Eh69YosPJJy7IOg9bF3wR1i4uLWFxcxPz8PEqlkgcujLxZ48C/CbJCRvgkhjyO9J0oinxkjcTIbCaT8QEIrS8kL2wf9Rv/TiQSfqxCPFL+U4f2+/37gBL5ob9Zd6vV8nrTOYdsNotcLoednR3PX/KOsmFXGxjFn5ubQ7VaxcLCgg+OUGZ6vZ6P2rN/bMPh4SHq9foYAG82m6jX62NznZHdcrmMw8NDtNvtsX7OzMxgbm7O18V3CTi73a53Bgju2Id+v49Go4F79+5hdXUVjUYD169fx+rqKur1+hgIVLniOJF3pVIJ+Xwe9XodrVbL28TZ2dmx+aVzyeoDjoWVV469Bb6sP26FCRiuGuRyOS8bCoR7vR5mZmbGxtcC3zgA+6C6Pc4GvVX7eNJ3QhgmZMN1Xlo5n9TGSXYq7vvQu3H4ZFK9J+XB2wWCVzB+1ed5nODaSTsAIaDIyWbBlx0Y/o6iyCtfRlUYFdFJp/VYwGrBqPXeQu/u7u76JR2NNFkAoWTLCymBEKlw2mdCgn0SsqCGzoLl16TJG1fm20lxgC6OJoFZBe0POmlP8uwknj2I4juu3riyrOEIlTup3xbsTmpbqE0hI8ZnjzMyNEw2EmPrUhA1OzuLdDrtI6GpVMpHevjDslg29YyN5DKilclk/CpSaF6ow8iVIO2jGm3raIdSnGjcGRUbDAZot9vY2dlBv99Hq9UaS4Ng38njEMD4fABgK0fJZBKZTMZHHLVPIQeA5RA8sb8hEAxgbKws6Xvkl6aqMTLPcbZOFTAEwUylIIBmn5iaQWIQJZVK+XGhXABAqVTyjtfs7OzYygXboxFbAtR+vz+WVqD2hP2jTBeLRVQqFWxtDe//0HKcc6hUKmi1Wr7vTEVg/wn2mLqXSqVwcHCAvb09rKys4KWXXsKNGzfQbDZx9+5d7O/vj0Vx1blV3qdSKSwuLuLMmTNIpVJoNpt+BVFlg6DTyqHKFOU3FOzRsec4cozUwQ45osBRKgfnOXnDuaQpKw+aMnQcTbKVb7UO1adWJ9lyQ9/Htec4jHYSsjYhrp3H2UfVoZPacNz3bxcI/iSAx5xzVzAEv38FwF+b9AInhebhWa+LgpzNZr3Hph4MhV+jQ+12G/fu3fMe4SQDa//XZZSQwg4tU7L8vb09336NxulEtwJ1XJTNLvmqMbEenb4fAsYhwbdt0UgXnQcFCMcZIdZ1HL1VbzfU7gcBnsq/SXx/q20K9SkE9kJ9iePrSfgU1/ZJQJGGK25JXOXAkk1XsHPStstGKS3o4edqvOw8YF7hJACs9RJgAfDGnXNRnWvgyGjSAKruIADN5XI+F3d5eRn1et2DGwJ0gjeCJuoBzh+lkIFS+aRRn5mZweHhIXZ3d+HccOl/f38fs7Oz6PV6uHfvHnZ3d/3S9OzsrF9eJtDW9KlQlOy4uRuSHcpBOp32OZOM/jFyy6gmx5ByxSgkAJ9KwfIImEJG3ZJG3wlYs9ksnHMekOqqme7v0Ig9VwZ01XEwGGB2dhaFQmFMJpmGAMDnQhcKBSwuLuLmzZvodDo+TSGZTKLb7aLRaGB7exsbGxvY2dlBp9NBKpVCNpv1fVGwyjxa5ueS78y/LhQKyOfzXgYIFNVZK5fLPh2C4JpymsvlkM/n0e12cf36dVy8eBGlUgkbGxu4c+cOXnvtNbzyyivY2try0XGVGZUl8phjkclkcPbsWZw5c8bXRzuvjiyBpnWoNDKu+sOm9akzyUg99Yy1syq7zG/O5/PI5/N+3ne7Xe+AMEIemrdxFNLzJwVtD0qWP6pbH8Q2xpVpvw/Nw5DNsW2x7096Pq5O+/4knp60728LCI6iqOec+24Mr9+cAfAT0fBa0ljiJAbgl4nUkCgIzefzPmGdRsqCUk7WRCLhE/cB+AnCpX0gnkEsU5e67ISz7yvgDQHtuIHmklYURd4L5XNqgLU8VQL6P8sj7w4ODvwGO/uOkvaNy5epVMorZE0Z0WVjW0YoKh/nPccpqZOC55NSHPC0DoNtz6SJZdsfNy4hCvV7Up/jygq9b/kcB8b1b42GqaG1IMc6qDrnrOzpphWOP+efzam0delnof7buaXvW54QYHW7XbTbbR89BYZOcqvVGptjClb5Nz9PpVIoFAo4c+YMLl26hEwmg+Xl5bF5oakUs7OzPr+UgIbzyLa70+mM5axqTix5RfCwu7uLVquF9fV1ZDIZv/Fpe3sb9Xrdb0RiWZ1OZ2z8tA1xsqFjGqcvON5RNEyBWFpawiOPPIJut4sbN25gfn4e2WwWBwcHqNfraDQaY2A1lUphdnZ2LKiRyWQ8KGk2mz6ljN+nUqmx8aG80X5kMhksLCxgaWkJCwsL2N3dxfPPP4+9vT1fZ7lc9rm+KtsK5rgcns1mUSgUUCqV/BgpgCsUCigUCkgkEiiVSjhz5gzm5ubwxhtvoNvtYmtry29oy2az2N3dRa1W8wB4dnYWZ8+e9Tq62WyOOXkcc51fdDBUJhi15sbpVCqFSqWCJ554AouLi7h06RJqtRru3r2LlZWVsfSCVquFTqeD9fV1tNttlMtlLC8vY21tDbu7ux6Ea7/ZFvLdAtFUKgUA2NzcRKPRQKfTGXPeWJaNAmtZdDBCkVwFuRr5DdlDddTVFjWbTb9HqFQq+fL7/b6XD7sKrH+H2mXntc4rqyvj5tRxNGk+hsDlpHJtZN221ZY1Cc+E6pzkwB5Xj9rluPpCQPhB8MTblhMcRdGvA/j1kz6vTNL8OwVRwDDnjRsryDyNKvB/KoLBYOB3pfZ6PaRSKZw/fx5RFGF9fd0v65C4ZBkCRHZQLXCiMOmGMQL5YrGIRCLhFboKBpXGwsICyuUyDg4OcPPmzftABuuzaQ8hr1PzGskPm5eo7/M3jVCxWEQ+n0c6nfYKgZuIqLDsKR5WYLW+kKAqT98umjQ5QkrrJOXocxpx0DJt3uWk/k+a2JPAbKi9k5SF/V77xc90DtmxDS3X66oAo28EBcAR8CTY5HwI9VtXcCwQD/HFtj0Updb3GeGhwbTLpKxX26F18Ye5/svLyz4FgZuxVBcw3YJ5xc45n0KhG5f4/fb29hhPAdy3DOucw/z8vM/vPDw8RKfT8e/t7+/j6tWreOKJJ7C0tOSDADdv3sTKyorXPwDuG087N0JGUZ/VZWfnnAfnKysrSCaTqNVq2Nra8tHdXq/nnQGNvlKflMtlnD9/HouLiyiVSh4c37p1C3fu3PGglO1W0MPyGPU8f/48Ll68iEqlgp2dHZ+SxrrS6TTOnTs3ppPZTwJd5QFTaFg/ZUXbwffsaQL7+/vY2dnxIFdzkwuFAqrVKhYXF32+LMtXBzKXy3mwmUql8Oyzz2J7ext37tzB3t6ely+2qVgs4sKFC3j66afxlV/5lbhy5QrS6TR2dnZw69YtfOYzn8Ef/dEfodls4vDw0P8eDAao1Wo+T1jtrkZBdcMoQaymuvD/KIqwubl5X7RXc4/VIbZ6k2OuQJenoxAnMFhDwKwYQu0n+6CpTwCwv7/v0190bMgPOhraTrXFIZ06CfDauaSfx/0fNzdPak8tCJ3U1pBtsGXp5+pchMBvCDSHALu2Re1pHK9C5ds2qtMTRw/FjXHOuTGPS6PAGm1V4dZlPAWJSmRUq9UCcBShSiSGO3br9br3nm3URZmvO2T5vSpiTR3g9/xNpbywsODbzd27rEfBajabRbVaxerqqt+4o/1XpWwH2W4GAY6iyHyO/bGCyGdYRj6fx6lTp5DNZr1ipvPBNqiSVMCry4UWHD6Ih3YcTZpc+rn+jqtv0oQ/7tlQNFydIpI6L5Yvob7YOuP6FHrOKhFbpgXoNC7AOPDibzUOlpwbRmx4XNfZs2d9DuLu7i7q9bpfftZ8SDWiCmRs5MXmkU4CuyeRL50zNndQywnxjlFknjTD+a/LxGwvl1F1TvJZBXCas2yXh/kM28wjCgH4sp1zfqXmS77kS/De974XjzzyCMrlMtrtNubm5lAoFHyZBC22n8cZU/2MgEFzYweDgddtuVzOBywYhdalbZsikEqlcOnSJSwsLMA5h3q9DgD+CCsAPippZYN16+kPrVYLq6uruHPnDl5//fWx1bx+v+9XBFKplI+66moIZT6KhitptVrNzxGrY50bRvHZd+ectysabSWf+/2+l4F8Po+FhQWftsIj2QjWeFoF21ipVLyjcOvWLezt7flTMLiK45zD3Nwcnn76aXzgAx/Au971Lp+WMj8/76P1Z86cwUc+8hHs7u76kzB4qobdJEenjikCOgbMc+aRahp4KRaLPrVAbbzqQTsXNVKraSo6Rpoqo/OIR7sp4CYxFUQdfLZBMYCVAz5j9Ys6yzaV6jh7chK7Z9vIz+JAosUtWk6cHbCyqe/a//mengZzXFqkzqNQPapvQ6vFakstoLVttfZNZSzOOQAeEhAMHAkoED4pgczRDQ1qQEJoX8vhxOTyVCqV8suganwtIzk4/E3SgVEwa70gLoem02kcHh76iII9Wg04ipoRVFAp2QFVsM167AYUO9ms0AEYM2DKs16vh/39fZ82Yk/PCAmy1mt5ZZ+J+/w4IBhHk0DhSd7TukP1TlJccRMyri0hhTEJmGuZ9v9QBNrSSZTucYqPziejlsAR6NAcPKYKnDp1CtVq1UfgOp0O2u32WJTZpszEtUHnFXmgwCfUxzild5wyZJm6zGp5p8u3PKtXI1WaxsC2qhPBjXmWuNmJZcet9DDSyMiqOgjlchnvfve78cwzzyCbzfrjtBhhpi5i25W3cf0NkQUkIePDqCxBE3fh65mwjOAlEsPjty5duuQjs/v7+3DO+VWFubk5v6IQckbjQSgAACAASURBVNKAoxU4plAcHByg1WphZ2fH63gNPnDDm908CBzpRnU+6vU6FhYWkM/n/ZzQc9O73e7Y6oItl6Cbz/B7phoARysaFlwwH5l5qysrK9jY2PBpJMqTRCKBs2fP4urVq7h8+bIH7pQB8oEnRqhu11MabISWOoByqKDeBj6Ux5wzLNNGDO2KAh1Ktc3kFZ0DOyfpENJm6SZV7YsCrTh5ZxsItG2QTOWfPxpAsM4+y5xkE/SZ43R66P2T2D47Tye1w7ZZnSHFHyG9bVeAtU9xPI8D0QDG5qjFHypjWo61lZPooQDBFsTqxLOd0slnO2ff19/87vDw0B+IrnWqpwHERyzjwB+/1wiBfsdNNsBR/pl9joqWk5h12KgD+aBCR8Bs26WelgpGSLAYSWBEp9vt+jxl3SnPPul7ynfrCMRRHFD5kyQLAELfA/G5TPr/JFJ+2XfseMW9r99pGkbIAQyVPalvuqTJdqrB4DirPAHw0RfKwKTccYJBlWeds5ZHOqeU1GnV9lj5jJN92/+QQ2rLsG1kuzg31FDrrnmd8wD8Ln8F8kxtUMBgdZMaltA+iGQyiWq1ikuXLmFubs5f0rOysoLNzU2f5qVHQhE8nIRU5ylgsUaJ3xHU8X/m1TInVB2HXC6H8+fP4/z589jd3R1bAbPLzQwg6EZDC4iYe5pMJv05uNRj5BVBOKPvynN10HSsOU50+rhhrdlsotVq+SV53XDH86YVzDHQARzZI12i55wBjiLm+Xzenzm9ubmJlZUVNBqNMdBIuaMzWqlUkM/ncXh4eN9pFnt7ez4dkMemsb86X5UPlB8FlATHGihi3+g8qC3je5oSxfmhn9kTmzjuBMFW/2l7GXHW+W2jjKoX1eGhzDEIpUDLzkcdU+rA0IkUoRViCwxDgFHfUTrpZ7afcc+EbFlId4ZAsdajjkGo3Li648pT4phYPcQ9Foz8W1x4EjzxUIDgEHCyQJjPqEG0RxJZQeKAqJGLC6eHJogymgac7eGE1JuYtA7+3+v1/LEw6rGGhIs7h7lJwZ4kof2kIlEwaz13vkujpB6tzX0GxicrdyYzl84qgTiwP2kyhyaFjWq/FToJ4CPFOTeh/08ygS2IVqMZJ19afogncW0KgY3QOITaPkkxsAwu0wJH4806KbsKxjgnCOz6/T62t7f9cn6n08H+/v5YBM9eGKN8UBkLrQaRmNuvbYjjp9UbWqetwwJyki57aj0A/HI6b3fkXGRkTg00P8tkMv5GNYIfOg8EUgoseDEIx0VPAGD5NBJRNNwct7W1hbW1NWxvb/tj07hBVp1mbhDWn0kOoaZzcBztGLGvlBdukmLqA8uhHioUCjh9+rS/1IgnMCQSw83CPC+Xm6s45vbIOS6F04mnzFKm+ffs7KwfL406KsBSQMo+zM3N+c1siUQCnU7Hp6YwtcE55286SyQSKJfLKBQKfgy73a7PuQWGKwDtdhv1et0DPepe54Z5rNVq1W8u3NnZwd7eHgaDgT8ZYmZmxn/HFZd2u439/X00m00Ui0Xfx16vh/X1dbzwwgv4xCc+4S/d4FjoaobO9W63i3w+73msOt7aNF3pYT/VLmmknPPQ6gI7Lznf2U6mbwwG48eYqc2zANmuKLE82vBQRNs6A9Yh1WdCtprvxH0f6qv9W597KzbSvnucXYuzFaGggeqLEG/o0IQwz0lAMjC+QZUrGYPBwOuwZrPpnVQ6ypaXk+ihAMEAxg4Qp7BSeHSJBggLj/5NJW2jHGpoFXjzb56EwPqtZ2o9Tk5ALnESCGiUoN1u4+DgYMxwMJJhAQH7xUHngf56nA0VjEaSbO6ZnYSpVArz8/MYDAZ+E4DmwSlRUZNfLE+vSGbbte7QWPB/61WGgLBG8R6UrDzYz+MmWggw2T5MKuM4eQwpn0nA18qjBWonoZADaRV5yEmxBk3LsKsWFjQRkDPXkqcWKNDSo7FCUSbgKBfZ9scaEUaYNE9ZnQGVaV3GZF181oIovsvlTc0x1XxQlqugifXMzAzPiG2322MboRKJhL/IYGNjY+wkHIIsndOqD2wki0uvdmXp9u3b+J3f+R1cunQJzh2dNuGcw/7+/th5yIPB8OxZ5vuHHFrVkaFVAPabfGR7Od6ZTAbVatWneVGXFYtFf5wYwcza2ppPGyuVSn4zc6PR8KcZ7O/v+/oYFbIRN6Zg0FGgPs1kMrhw4YI/55dyOz8/j5mZGZ82sre3548r4zFpjKxmMhl/+gblkuf08uQIBg0qlQoeffRRXLx4EfPz86hUKiiVSkgkEnjuuefw8Y9/fGxvCGXBXkXf7/ext7fnNyUzpe706dP4si/7Mjz55JPIZrPY3NzExz72Mbz00ktIp9O4c+cO/vAP/xDOOTz77LN+U9zy8jJeeOEF/PEf/zFeffXVMbklPymzOleA4QlOTzzxBPb29rC5uYnd3V2/9G+DMc4NU1nIK/KLDrPKuJ7Modd5U7bL5bLPHx8MBshkMj7KzXxtOgBRFI2lfKg9DukS+xl/dH5rQMMGbagb6EhYvKJ58KrrLBDWNlkKfX5Su6Y23IJTUihooO9bexTqgzpAaj84jso//Sykf60ucu7owhWu6PDIw3Q67U/6UTmzeGISEH4oQDA7STRPRUdjRG+ZHrgqXDtgwPhShObn8XsFkaVSyZ8LSS+aUVM9RohGk3UpWOYucOecV2o00JonxmetYFIBlMtl5HI5761TYe/u7vrJbIGVGkeN4tkNAFQQzjmUSiX0ej0fUVBFQAXCSLQVKuuo8DONlvGZuImmxImjzzyotxsCc/x8EuhUCnmq5G9c2yd9HvKgQ20JTX4FRTSqfFYdKbuMb4GlHYNJ/df2Kd+s0rTv6eqG9oeAT42I5kjqszovbf2Wf3yeBjvUfo34hAyQKnIrK/bUCO2nRq5IavAYoeaytQIxdZA1Z5BtzeVy3mng8h7bw41lKj/pdNoDD0Y2e70ennvuObzyyisolUooFAqYnZ1Ft9v1IMLuqbC81WVmfk4dYMfIzlvriBCws7/AEByWy2XvZOzv7/szm2/cuOGBMAHRzs7OfWfI8m/OEd0UxjrT6bR30tPpNK5evTp2qkan0/FySvtCvpOn/L7X6/lIdLVaHQONXHpnCgej148++iieffZZXL161Y9Bu91GMpnE/Pw8CoWC3wRHEGXnHe1ft9vF0tKSl9NqtYov/dIvxZd/+ZfjscceQ6VSQaPRwPz8vA9ydLtdLC8v46Mf/Sief/55XLhwATs7O7hz5w7W19exu7vrbRplVU83Ubuiss80C9oJprdQ/+t8z2azPueYjkUmk8H+/j729/fHbA/lh5fX6Kol5wqBULVaxdWrV3HmzBmsrKzgxo0b3n5rgIbjQV1hdQrlg2dqq7xH0dFV4+S72jiVfZ3n6pArwFdwqPomBIatTlM9ZT8/yWd2jmt9obpDujdkC+yzyqvQZ6pjtFyrj239MzMzmJ+f907P3t4eWq2W14OajgaM66FJzgXpoQDBwNEd7gqy9FQGKgOSTlAVSAtm+GzIu0gmk34ne7vdxvXr18c8Rh0ctoWKV8/yZZ0UeLvkxwnEyAeVreZKlUolLC0t4dy5c0ilUnjxxRexubnp6wh5NzzGDAC2trbGjpPRHwJxVa7sk10qGgwG3gCwnYw+W76SRzSc1kDaCWMF3X6u9KBA2L43CYDHedGhiT/peaU4sG3fjwNmIQBrN4BYhRFqe1zdk/g5iRcklQF+z3Zy85N1ggh8dJmM5ahy0qV+y0Odt6G5HddXq9BDRk6dBOqDubk5APA3sLF9BLlaF+uj06LRKl4+QKCjy+vKK0aOz549i0wmg0aj4YGfRsMIOshXNe6tVstv8o2iaGw5PplMolKpYGFhwbdbDTKBtOoi7bMaF/bZ5lDqGKu+ZMpBNpsd4x8v7yBfqJ+4iVJtAO0Ay2dEnt/Nz89jcXERlUrFAyEeHcf6eOIOHQW29+DgwKeLMGqez+fRbrfRaDTGxovyw1U98oIpJuVy2ZdbKpVw6dIlnDt3DtVq1a9Kzs7O+og4QbfyneNAWczn85ibm0O9Xsfi4qKfT48//jjK5bJfEQGGwZzHH38c586dw87ODra2tlCr1bC5uYlbt27hlVde8YBfeaPjazdkasScdm15edkDWcoCHTuVBeecT41S+0C50UAXdVqxWEQymUSj0fCAnDZtYWHBn408Pz+Pxx57DOVyecxG8uY8zRFVHWODAjqvQ0AxBOQmrZho8IllWb2j5Yb0laWT2J64Z62tCX0X0q8WrOv3Osft9zq+ag/VqdLPlTd8zzoHURT5vHrqCh6PR1LHS/tk2x5HDwUItksGCvYsszhpqZzUw4vzmpSskNNY6G5pG7JXUkWsu7N1kmv7nHN+yU+j2wDGFCzTJXgLULlcxtbW1piitMQJx/vXQ4ad9ej/qngt36mAVdHbJRAdE/LROgR2svC5ELAMTbi3SidRGNb7jnsnNDlDdWg5FnyF5EeVhUZcSHFg1wKUOEVllVmckj2pco17VmXORhZt2pHlS6hNJ21PyEmd9K6Omy7rW6Wrc5mkhi+kE6Io8scJ8ixXGvjt7e37osHaJp7HfebMGTz22GP+lq5bt27hzTff9Cs1GtkiWNK8Yf3hsxwXdchpRAiw9RzU0HzVttLIKyBXIGWXie2pC+S3PXaLv3VMVLdTP+rGLvJyYWEB165dw9WrV/0RlIz0NptN7Ozs+GuAG42GjzizziiKfN46I8McP9WdbAdvwSsWi94o88psRjHJp729PdTrdX/eMU/cuXfvHm7fvo1msznmgDC33jnnU1T0GMxarebTS+bm5vzqZaPR8OPBiCbbTCDItnY6nbGVScoJ9T3tFmXWzl3eVKhXjet46zhyNZHpG2yPAndrUwaDgV/5Yp+SySQuX76MK1eu+Jx7rprs7u76jZTODc/PTqVS2NraGgNCFrhauba6N05XKpjTuWgBsNqCUAQ4DkR+rhQHeEP/K4XsdKhs3ROl+tOuSNqyQnwOPR9nYzhH6LDo2Or57HpO9En7DjxEILhcLvtjbYDxPD8VJo0EKACmN2cjUjbHxIK+Wq3mvX4yLwT6bHhdFb+CWeeGS5scFA4ecKTsFQTrQfe8TpObVWz6gwU9PFZJBUOjFtpfNe4aFeZ35LFuaEkkEmN33asHF9e2UFTY1kMKTZDPp1LQOi1wCfEnrn77jHUetB6tw3q0fE7lJq5dth1qYELeLj/XK0P5vRqrkANwEp4rKLBl2B9tl5UTfcf21YL7EF/5nHVUdaXEjpMtg3yiDtF3mHqgz6ujotFw54YO7pkzZ7C0tOSNcyKRQLFYxPLysgcdBKP8yeVy/lazCxcu4OrVq5ibm8Pp06f9MWa8cUxlhBtEstks2u22TzVg2wiOdV8EI6QAxgCQOuqW92ynghuCHZu/bEGqjpGm7dgIJOvVnGK+x37oyQUqg5VKBU8//TTe/e534+LFix4Yss/tdhvLy8t47rnn/PnCPE+XKSt0ChgdpWPAQIXOM203x5l6l+kV5Emn08Hy8jIWFhY8aDs4OMDm5iZeffVVvPHGGzg8PPTXJHc6HeRyOZRKJT8fGNnnpsaNjQ1Uq1WcOnXKz+lOp4NarebPYr5x4wa2t7d9/jAwXLnMZrOoVCp+/G0KD/nOsQ3pQjowlDmCH5UdglS+z7OY1aZwPuhcIN+4Oqr597zU5JFHHkEURT7fm1HutbU19Ho9FItFzM3N+cuvtF1xejbOtodsKOVV03L0HQXAWod1qCaB7AehkF3R/il/Q2Rtov0u9JyOl6bl6Wp8qC+2jVYnqwyE2uCc82NqL1mhftG0ky9YEPz444/jjTfeQLPZDEbKVNlacEmG6qQMGVs1nlzCYS4XlZUm07Ne5rWp0eTE0pwiGtelpSXvyTabzbELA9S4OOc8kG2321hfX0ej0RjLi9IlMvKEfaIBZDRblzDZRvJHif0iqXBHUeRzo7l7mrxSIKXAhWVq+bZejRSGQI1Guz8XIByatEpx3mZIiYSeswrUgktbRkghKWAMvWd5axWPjq+2hwZPDZnmtuvyPmXa1m37qd+FVkgsMFfZsjzVtocMrc65STKg8wgYP/1E+aX1s0+UQ67kaHsHg6PcThs9UieQ5c3MzODUqVN45plnfJ79YDBMhbh27RouX77sl+94Vi3fP3v2LK5du4YrV674lZzBYIClpSV/ksDu7q6PBjPvN51OY25uzm8IaTabYzmWGlnkZl3nhvsNCICoW/Q4O2uoGaXk/OeqF3B0Hq+CYgYmGClW595e/MHP9agrjT5y+VOXtCk7LP+pp57CBz/4QSwtLSGdTgPA2ArW3Nyc163b29vodrtjJ0uk02kfoVUnnw6E2hv2tdvtetDFMWq1Wj4SqSeC7O/ve57zIox79+7hxo0bWF9fR6lU8ldd89znYrE4dlwab22jI8Qgyfr6uo9MM31mZWUF169fx+uvv+7T2XSVMZ1Oo1Ao+P7qDXlsN2WG/CeIJe8JQnV+c6Nbo9EYiyjrpkwCFf5Q/2iaC/uczWa9DDNyzVseE4nhqRe1Wg23b9/G5uYmtre3fZ5yFEVYW1vD4eGhP32FbQ2tplIXTApwqXOpOpvzRe2iUggExz0XZ6MmBSlsO0Lvx32uIDLuO1u+6k9NUw3ZuUkU117qKat31UGiI6Y54/akEj2e0/Iqjh4KEEzPeTAY+EPee72ez3el90fjrkwgMLXAggpMd5EDR0KpShmAT77u9/te0ZGi6Ciqy+NZnDtatuIEq1areOKJJzA/Pw8AyOVy6HQ6uHfvHl544QVflubt8iifwWCAvb09v0zG+igU7I8aI/VcZ2Zm/FE4zJlRQ0WjE/IQ9X+Wpd8nEgm/2UffYZoHd0XbqBrbqDwKkY4d3/9cgLBtg05SrVN5wR9NcQmBVYICfq+bSUL1h/gcOtXAgmv7N9usedwKlglEbP5mqJ80VipfqsxCyjcuekGDEVKYyqdQf5R0Diuotvxk33kiCw0Zx4Vl6CpRNpv1ewr4vDqZ+o62we5217bNzMygUCjg6aefxjPPPOOX3/Wym6WlJczPz2N5eRnNZhO5XM7PQy6rp1IpNJtNNBoNrK2tYW5uzs/lSqWCer3uDXA+n8cjjzyCc+fO4aWXXsIjjzziAQFvWGO+rUY0K5WKByMEvgS56mSzXzqOdjVOQRHzVovFIoCja6lZd7PZ9OkF+p7mIFN+9DYy6l7V0dqmdDqNK1eu4JFHHvHRVJVPpilsbGxgdXUVc3Nz3rmv1+s+msm5otFq9kNXBDj+s7OzuHbtGt71rnchm81id3cXa2tr2NjYwNbWlr9Rk+/xLN9ut4v9/X0fDGGEl5HPw8ND5HI5rK+vexki+OcGSB4Tx2M0K5UKMpkM6vW6T+Wg7HITNJ1iAGg2m2Ob8nZ3d7G1tTU2JuQdL1Xh/xw73urHYwF58hFTPnRVle1h2RokspvI1G6Uy2X0ej3PnyiK8MYbb3hbu7+/7+tpt9u4fPmyP8ljdXUVrVbLnzSlYE9lyNoaq5MsEKRutecpaznWBoTqCoHguOeszGu7QvbRAufQ57bd/M6ulnPcQvyx0f9JgTb9XG2FOl3aLrWDGoBTh8hiP5bLeWSDo5YPIXooQHAURXj55ZfvU7LcVUoG2eNKLBhQ46lgU4ED37NLJIlEAnNzczh79iz29/f98TWDwcAvo+npCyybAsQdq5cvX0ar1fIb3dLpNBYWFrC+vo719XXfvl6v5zfNqKK16QT04mm4+Y6CGL7XbDb935q3RwXGttvlKOWheuc0nPZ78pRLuslk0vNM+abvhpY77Djqd2+V7Jiy3tDksADTtlP5A8Avo3LS6aH3tu0hEMk+q9xa8GnbRaLMUoFYhaqgT0kdRb6n42N5oP22fLGAWZcIQ0rbevWqPONAr1XaykuCJZUdlklApydVsHxGpdTYEija3PdEIuGjhOl0GplMxkeNeSQU5Z8RsL29PX8JRSqVQj6fRz6fx+bmpt+pr0DCjhHPeCX4YBSO5w+n02l/AcT169dx584dnD9/3n/GczLZBxpt9pN6S38zugzAAzM9AaDZbHoQwrlOmVHgmsvl/OoDecmonm58It81oqPjqydqsHzNBaRzzkDAysoKWq2WT02gTNEQXr9+HZ/85Cdx8+ZNDwBPnTqF2dlZ7O3t+U1blCvN5+aYWVniXo1Tp04hn8/7iDdX8RisUf7wyEBGhB955BGsrKyMld/v93H37l0f5FE5ZxSU7ex0Oh4sHx4eolwu4/Llyzh9+rQ/uoypFsViEcVi0Z/KQB7RLjQaDa8DCIKZPsMj7vSYv3K5jGq16h0upuXoiSPWgWS7+cPjAzVqrnpia2vrvj0GtJ2aygEMN4aXy2UcHBxga2sLm5ubyGQyKJVKY3tpNLUlBDQ57/UZ1UV0HHUV2FIcMA0BX6W4705iA1UPar+UdO7xO2uLQ/2xOp5kVyHtZkp9ztq/ODtvsQDnveIUPTrP2g2LUbR/cXxReihAMEmNPHAE2NhJ/tZIKnAUCdMd1SyPxkpJlR9wxCB6wel02u9+Ve+VSovGhEQgQMW/uLiIy5cv4/Llyx6Qlkol3LhxwwujXYbTqJlzR3fE5/P5schhs9nEnTt3sLu7O/aORquAoxt41LCQX5rXpEBReaqTh/1Tz4+8oFGoVCr+uBxuQFFhtd7m55sscGS7Wa8F/MprSxpRBI4isFxeZrRdgbXWGVJ86lSEwLcFdlqe9dK1PgVwesi+jqONNFP+tK9ar65E2Fw3bZf2Q3kcAuTWyOiPlqtOix1P1qPt52cEVboxTPurEXuWxQ07fI4pBzTu1WoVS0tLOHv2LNrtNn7v934P29vb/sa1ZrOJ69evI5lM4sKFC5ibm8Pc3Bzm5+eRy+X85igudesJElzGLhQKYytMrVYLzWYTq6urXgfpiTS8/IAb77jUryCSY86xbbfbKJfL/rIDjZrXajV/6UMURSgUCrhy5Qru3bvnb68cDAb+XHEFnASqjNIREHJJkv3l86HIn84BjpXqZ843RkSpA19++WV86lOfwnvf+15/nvrm5qYHTNevX8etW7c8AOUFJTwSc29vb0yfnzp1CqVSCa1WC8vLyx7UU56azSaazSbefPNND2g7nQ7q9Tq2trawt7fn26zzkRFNyinBHMdHnVHKrH5PfqieB45y18+cOYPTp0+jUCj4VArmqZ8+fdqfdkIAyahxaPMzwSttUyqVQrVa9ReWqM7QvHCm5jCVgs6EXvhk55/qVtUJ3Minc53zg/KmDuvOzo5PCcpkMlhcXIRzbgxoq560YIz8jLNNNtA2ibRfIVD8+XrX6mtbDhC/v0J/QsA0rjyWyfqt7VMK4RLbdtsPle04ex0ai5AdCbV/EvZ4qEAwcH+eiYIp4IhBNmLH3zr4ykBGQi3jlcF7e3vY2NgYM7Cs0wJN61U2m01sbm5ic3MTFy9e9Leb8AxK5g7b5cUQoEgkhjcNPfnkk8jlcmO5VIPBAMViEa+88oqPTGm/bD4Tf+vGQVUGGmWwu7mtwmJZ/Gm329je3kY2m/VgnTlhCvb0ty0rbiI/iAI5jqyDoPXob+VX6Fk10qGoQqgfofdt2aG+0iBpxF8jsfpcaH5o2fazUJ+PcwZC/Iv7/zgFHucgWLmNI+sYMFIQN76qYLUdqkPorOZyOR8B5lJ/pVJBLpdDLpfzV64T7O/u7uLGjRvY39/H+fPncfbsWTg3PJbw1q1bODg48EeFOTeMeBIE37x5E7VazTuZjNDxiC4CFkbmAPjcznq9jlqtNnZRAfnAFQr2n6cl8Bl1ZJlvqmkQutGOwNMCVPKXgIlR0CiKfGoD+2J1Nusj6cqcypmmgSwuLgKAvwVtd3cXzz//PM6dO4f9/X3cvXsXL774Iu7du4dWq4VGo+H3l9CxYfqJnrvMHONCoeDzunUucLwIInnVMDfGMdfYBhqUl9SzAO5zUil7OjYqxwSl/ExztTkv6Titra35VYDTp0/jySefxPnz59FsNnH79m3UarWx4AvzjSkPmh4zGAz8qgZ5tre35zdYsn4dZ02x0VxmzjfdsKaAx0b9VC4o87qSSf52u11sb297G8jUD966qmdxh8DSJH01yRYoxenRt2q/Qnr4Qd4J6VBtU8jWTSI7LymjIfDMsbXPaz12jtv+hjZm2vRPpbj2T7Jrlh4KEKzeizIvzlMJGXoLuqzXwOgNjQQAn1/CMnZ3d8d2JLMczYNh/eqxAvDRGy4NFotFv+T02muv+XNHdYmNbVXgz8+y2SzOnj3rvWwuV/J2Iuaa7e7ujvFOQbA6EHb5iTy0S9xU2KrQaRApwOx/v9/3oKBUKnmjyHdYpp0UJxHQ44Bw3Ltah8pPSDnFtUXlxjop7PckJcMfm4YTaqstw8qGbkw6TnFpO6zC0D7o36Eos3UgNYqr9Sg4mtQ2rS/OuaBRDUWdLV9DbQWOctt07Oz4xgEtGm7muXMOMZ9zMBiMpRjpvNne3vbAdXt7G9VqFclkErdv3x47V5YycXh46CPB9+7d84qfS+TAUb6cc87nsDJNI5FIYGNjw7eL76uskB8EH0xTIo9s1JirW4eHh9jc3PR5pTrvFawAGIv2dTodfyYwo9SDwWDsAiJNc1D9rjJPnar6tlAo4NSpU2M57HQyVlZWsLOzg+effx5/8Ad/gHa7jVOnTiGbzfqNzszfzufzY6uFTD2h405Qq/MinU77K4vr9bo/49cCVl0dZB8pH/yfjhCdG31fHQR1aDm2HCe2N5fLjeWhdzodbG9v+4tCTp8+jccffxyPPvqoz41mNJs34fFWPq5gsg8M1mhKBp2PWq02drELT93geckc01wuN5buxx/aP8s/XVlQ2830JDp4qgcPDg7QarX8ikMikUC9XvcRcdURcfYiDhSy7jh9RlJ7Y3X3gwLht2IPrV7TwhfEqQAAIABJREFUFUd9Ji4QZPthP7N8OQ4EK55RTKHPhviq80hXU5wbvw7dvqNlWXyh5U6ihwYE63WX2pE4D8t6jkx70LxhGpLDw0PMzc2hUCig1WphdXXVM5CTJZEY5tTyJhLWqUZAl4h1mR0YGo9areaPs7lx4wYqlYr/f3l52b+nS4okjZYkEglvuDQZnMtNFy9exJ07d7C1teXzujSXUNtnvSgLcDT/Sp+3SxpcTkwkjhLVuUS6tbWF3d1dH/FSA6v5baQ4kPKgSuM44uSb5Elqe+L+12VZTc9RsiCWgEUjZBak2vdDStCmlWgdKjPHAX6+p/l51qHhM+o0cfxmZmb8sUsa1bIOg/ZPlaIFqPq9tt2CAsqQBe4ECKosGX2ypICKxDJ0hYgRTcpwu932N2sNBgMf2dI60um0z9m9desWbt++7W/KAoZ5ixr54tmu3DymfaXBJyDRkxz4u91u4969ex7wKHHZmGkeCtSbzaY/aQKAf04dHeokvSiCv/nDkwNYHwF6JpNBuVxGoVAAMLxshMe46bgSADPNgOOjESCVwXQ6jW63i9u3b3ueaj2NRgP7+/tYWVnB1tYWzp8/j2eeecaDeYIknoayu7uLWq3mdSQDE3rNN/nBXFqCQ8qcHTcL2hhdZhSc+cYEcnqChu7v0LlCvvN72sVkMolMJuPlcHl5eUzGufmtWq2iWCx60L23t4etrS1fP2/mKxQK6HQ6Yxc5NRoN73ytra35sS8Wi9jc3PQpB/v7+9ja2oJzDtVq1c+hRGKYY83jylT/ccz1CnJGj9ln1U/kPTfLs6+aw057xA2Napc5p6yTo7qWchACwvqsBZKq7yYB2JNSSMfzcwvwQnWrDFpAbuuxf1v9ys+Ul9qG44CmDdzYfsXZeqbzEL9xnwT3KMTxJs4ea3/i6KEBwYzUEjSox8hJQWWg+UU6YfiMggH+32q1/CRg/huNDRUAD05X5cFNJ6FonHr7wNAo7O/vo9fr4e7du35iawQlBAYUEABDQdje3sabb77p77anQPLEDBpL55zfDU1HgMqTAmzTO2zKhJ309hkAWFhY8EqcgDyXy/lbsajsZmdnMRgc5WjScPBz23+OP3/HgaoHkaVQebZMlhuqQyPz6rRYwM6JyjoVbBFEaV91CdC22bZJgaZdzrOKiz8ahZ9Uvo3oUo700HHWo0YpkUiMgQIuBSsdB+5ZDkG35lrrpiIAYzpAyyZ/aLg4zy9duuQNs6640IhrG2mwnXNj55vSiHJzDY0v8z/ZB24Wu3btGp588km8/PLLuHXrll9y5gkMjNZSB9AYE4ArQFZQy3Ho9Xo+MhdF0X2XPmj/NIpC51k39FJeSRw7gio+Q0danSy+yw1h1Dmq11iv5nCyfewTecPnma4ADHVaPp9HFEV+OZuRSwKrxcVFPPXUU9jf38fq6qp30MvlMjKZDM6dO4crV64gkRheppHNZv1mQi6XU1cxSs9TDjge7AM3Q1KvE5BbXQEMdTbtiHPDfREkptfQkeFcZWBBU23oINm9AzyJo1QqIZPJYGdnx89NRrKBYdT84OAAN27c8GB/bW0N9+7dw/r6OqIoGsvd1Qs32M6zZ88imUz6XG/a3AsXLiCfz/trl7vdLiqVCq5du4ZMJoPXXnvNn3t9eHiI5eXlMRuoIE1XJvmZOm+cl8DQ0dFgCvUE7QrnMlcdOHfYn1wu5wNgGxsbfo6r4xfS7zq/dF5OArwhwBjSX/r/pLJsfWrTbDkqi0raV4s1tK8nBayhQIb+cIxCNt6+Z8skdtDAieI57UeIVyGn4DgH5aEBwfPz8/7MRbvcpEzjpNKB5jOa2gDAHzUEAHt7e2PKTY9qKRQKqFarqNVqvn4uO+rFFmq4FRSzfdlsFgsLC8jlcnjttdfGbmtKJBL+WBseJUSlqLlLbH+tVsOnP/1pXLhwAfPz8/6+9m63i5dffhmvvPIKNjc374vOAUdLc3oepAqPGjfln/aFG2gAeAPBjS+aM8iIJ68e1dwwGnsdG/YxtPxnKQRcQ7IT979OrNDEjpvkXJLjd3YZmX0igKMyLhaLKJVKSCQSWFtb87vutR9arm1vHFjV5zVKxM913Ozysi3PRglUBugwWiXS7/f9SS3ZbHYMxHI+hYyIAlqWq6BKnQgaZ65ocH6E+qN16YoFo45WKXMZme0IORQcSzriXGYmmFGjzQ1WnM+tVgtLS0u+zTs7O77/HCebL89IGB1H3YxEnqdSKQ/M2Ff2N51O35ebznNlKaMaFOB4aaSRzs78/DwuXLiAarWKbreLWq2Gu3fvolarecBKQK7X/dKJ4BzhDWHkt56fzjaoY0I9GkWRf1aBP4EM5YCgeGVlBevr60ilUvjEJz6BpaUlVKtVlMtlbG9v48aNG/5aYUbqE4nE2Gku1ghrAIJzttls+tQ5Ai11NNQwnz171u/fYECCOcm6OW92dtafK1woFPyGxt3dXSwsLKBSqWB7e9sfh0aeKEDX0xt0flH/ZjIZvPrqq0gkEj6wQ3kibxOJBM6cOYNer4dyuexTJer1upe7QqHggxwA8OabbyKfz/tzjem8bGxseBB66tQpAPBHAtKx1JVb6gt1YumEU5dy7tCG0hbppkmdQ5Q72mGmNXHeM4WEm/ysvbU2gGOs+sz+HSL97qTPWVnUZ+LsFD/TgA2fUbuhn2uf4tpm50dcCoKNttvVxVBbre21fVZbpFF3G73XeRfahG3/Pw4IPxQgOJFI4NKlSz4Cys0NvDmNyl6PYlEm0lulUqVh5S5ZKll6tnwHOFpa6ff73stVwGCjgKSQ9zQYDMYiF+ybCoEKjB5HZpeNoijyinBjYwOlUgnVahWpVAqrq6tYWVnxR6KFhJH18XecANrIrH2WxksNnPKDyok3y1nQzb812kj+2zotWLVA5SQUJ/BxHnBIqals2AmskQsCGy4rVioVn4/II+NYN3/HKdOQZz4YDPP2CDJsLmrovbi+279pIFi28tpGoXQJnaCXbSFomQTqNUJA0lQGzXukg1ooFJBMJn06QohXOk6cL3aTDWXKyq0dV3Wg7S1viUTCnzVMZyefz48BXraHkXLySOdZOp32kTNe8NDpdLCxsYGNjQ1/02Q+n0elUsHMzAzW1tbGjAP7xnp4nJdGtTRyorIXcgDPnTuHd7/73bh69SrK5bLPa3700Ufx0ksv4c6dO9jb2/N84BgpiCA4I3jiEibHTh0llYV0Ou2P8FpdXb3vrPGZmZkx+aec7O7uot1uY2dnB1tbW+j1enjsscfw+OOP48aNG7h58yZOnTrlAQ/5RyeO4I2AkkCJADgUMLB/k6/pdBpnz55FPp9HvV730XHKdblc9rqdUV72hYEDOtQcS3uqga6MUAfrOcdsG23WwcGBP7OYUU/KJ9vO9L3BYOBvzGO9jNZzPNgGrm5oIGAwGGBzc9PLBFdCuOFTy9XNiHR0Kc8ErZy/oZQzBYXsA2WD5TDVQ3UEAbrqBu0HZVjHWetUHRYChZN0rgWwVu/Y50/yrsoG56X9LG7eT2qj/WwSUNbcfZ0PdtUtZEO1jfze7p9RvWx1N8uwK5rahlCdcfRQgOAoGkYleHwNN1vwh8/EeTj8TeVCcDk7O4vTp0+j1xvu6tXIjArHwcGBP96LhoRtUjCnpGWpgWCqhbZR28e+2aVcu7GPXk69Xker1fI5XTMzM/4zC+yoBJVHuimH7QYwpkBDAqOGTqMbBH/kj0aebNRXl6yYl8WlR+WBOgw6ptqPSRPSytJxz8VNEDuhQ8/od+SFLjnTcdM8W/teHGCdpAj52aT+ncRZUOOuhiC05GedIZ0bfEdz++x75FFcG/V/rqxwHnDpmt+F5r+mMTA/VWUqBORDQJB9YSTK5kjbNAVGQQH4/Enmk2od5DGXsi9evIinnnoKS0tLXl90Oh1sbW3htdde86CI/dHD31UeQuMVkh3bbzsW+XweTz31FJ588kksLi76+ay7+/X4NNZNw6TBCDoNnBOc7/aGMTV6lUoFc3NzY/qTPOOPvkdnnO1ihHF7exunT59GpVLx4O7w8BD5fN7LFceRKQjM/7YBFeVbnOPA9rPdXI0jmNXUsIWFBb/CyfS6kH5IJpOo1+u+XXqqBJ9TR0JXSewYM6iiIEkdJABep+tJHjaFTldbOZ80isuymFbDqDftHEnHEYA/frDdbnu+2E2dKuPWGbBzUOeGri7oD09CsRusQmWH5tHnSnH6OQ5E2/eOs3Nqu0L1qOyqzmVZIZs3iVS/qkOkZcfNLW0LdWcymRybR2qnQn1Wh0jLCvHmuD49FCC43+/7w+KZF0Zh1kmsxhu4nynKdI3SkdHqMSnDqFCtJ6EGKCR0VFAEe5r/pF4l66OysR6oLmmwXCpTeurdbtefOWq9UzUg1oPmJh/2i+3RZTStW/utQr6/v498Pj/mGBCE0DBR8fJ97lTmuau6PMW2cgx0UsXxOwQMlULgLU55UEas86Hjr3XaCICOHTA0ULy+ttfreYOmXm+cw2HbpW23uXOTQPBJvF6WpeWqQbNlsjyOa4hfKjvadpWzOMVEJ41tUUWqcmTTSpiTy/cJ1mw/Qm1Sw2IdPnXygPFNO5RxblilfHO5mvNAI4aJxPCM4EuXLuErvuIr8P73vx/5fH4MxAHAlStX8KlPfQobGxvY3t5GrVbzOY4W2EdR5KN0ujrDdmq6CUn1DPtWLpfxzDPP4Mro6mamgeXzeeRyOVy+fBm1Wg3r6+s+omgjMwRhzo2v8pDnoUgbcHTUGze9AEerE6r77SH5enKPpn3t7e2hWCz655m6wb0IqleZEqDpGsovXrespHqXtoXzc21tDZlMBvPz88hms14GeFES83cB+EixglgFtfxOx5x6hPXr5Q+qN9V5YARc92iQjwpoKb+6EmntK8eRAQ9d+qazpFd/05k8PDz0uce6epRKpTA3N+evNuY8sMCbPFMQTcddc+zVlqn9Uvyge1fU5tkUAZXdz4VU59uUhThAbN+1ZIGqykDINlj7Z/W1bkZUvWvrimujBd7KU1ufbQ9/c04yVUcdQwuitY8hHoUchuN4DTwkIHgwGODNN99Eu91GMpn0Jx7osiYwHsUicTA5gTWy1W638dJLL6Hf7/vcPht11cFXBqrRt6ATGD/QnJvEmKPFs4E10kAjSVCuAqTLQircCkYJtJmHpxtcLGDTKJYqAruxT3+rUaGyUsNFxc5zVJkLy40VjICyLLZbI3WsQ6N8muKifVH+kELjoBNQlbdVcvqjwEwnjH3Pglf9UeXJTUI0AOrsxCkm23674sC67cYzXYGIG0etJ9R2YPyCCX3WlqGf6fFdCv6jKPKgIIrir5Kmw0i50Dw/jWrxjFfe1KjRMNZRKpUwNzfnI7d0PlQOtS/sjxpx8oGfa38VXNBQ00BzFzow3IhEp0LBBufbzMwMlpaW8J73vAdf8zVfg4sXL3qncm9vDwcHBygUCshms3jhhRewvr7ul6kJCliegkO7msTv2Xa7vKvgXud3tVrF/Py8P8mEt5zxiMdqteo3CepSPeshKOERbowGMkIekn/KO6/uZXSUuaDkuW4K1BMaAPiILv+mvib/W60W2u02SqUSyuUydnZ2xnJT+/2+X33k0j8Bkm4oVGOtNkE3KwIYO5+Z/K1Wq8jlcv5CEntShq5w8LdGe9ln+w5BJeeRAnl1VBgEYvtoh1R3N5tN5PN5z289Qk7nMOvo9/v+mE62o1arja0Ikn/AMOrLQEmz2fTBnBdffHEM9NMh4ZxVp1Ttvg30WJ1F55AOFefGwcHB2AVYIX2oZYb010mBsdXx2j5LIYBon7fvapvJK/vZcWUTt9DJ0vOiQ/0I2dsQ2Az1W8fIpm6wzEQi4fdLWXvNwKdth7Yzjq8h/ll6KEBwFEXY3NzE3t6eVzyq0ID7o54K7tTjJdOosFutFs6dO4eLFy96pcJLHniWpbaDdSmFojEqbPl8HuVyGblczgsVb7Fhnhe9Vo3KsjwFyiyb39Fw0VtSL5beN8uvVCp49NFHfSSSB+qTP8y7opLiTmf2W405+60bl2j82RbmAevh/ArmuDxqgTTHlG3RPukYKNDXCUOeqPBbo6/lWafJvqMKFxi/FhsYB3o0IhxLRqZYjzpOuvysMhyaoBo95G8FvOoYWHDO9/U5W6fyUIGogj9VOHGkOX7KR1XIOk9UMarXTx4SWBDU2dxR7nZXueDFB5VKBQA8QGX+KEl5QmIf2X9tq6bxaJs5x4Cjywv47O7uLhqNhncMqcx51GKn08Hm5qY/yYDlccXLOYdGo4FPfOITePHFF/1c0siYdUYsz9XgR1HkQQ55XSgUvENFsNfpdLC6uooPf/jD+Nqv/Vpcu3YNCwsLKJfLqNfrWF1dxerqKtrtts93ZR4qo3lc4eGRk8wFJr80MKGyz8gc9QFXZHq93tjGQNX/KnPOOS8TTFVh1LVUKnm9TuC5vb3t280obyqVwvnz5/G+970Pr7/+Ot544w2sra2h3++PgXHynkBBgSf7QfuwtbXlx4ZpBq+++ipqtZpfPSDRFrE/lHm1EWrTCHopG/l8Ho1GY8zmUc/zeerKarWKSqWCnZ0df+oGeZvNZn0KDo+R49zRyDLli5HjXC6HYrGIg4MDH7TSUy34PGWYq5kcu7jgkvJCV2+Bo5UhOihql/m56hJ1YlVXqc7UdEsdD9UXqm+1vZOAciigEKLjgLW1i/qZBaa27dof5S9/rK634DlkN7TP1gbbOvXwAds2jh0daK6cUOZZvgYC+B7ngGIw2xb7t7XFSg8NCLb3riuA0R8FvsDREqrNOwKGSuTcuXP+vF5O0nQ6jaWlJURR5JWT9absZOFVkBZkcffx/Pw8lpaWUCqVsLOzg7W1Na88VTHYCU4vFRg/J1SjTewjFT+FkUtebOfVq1dx8eJFNJtND9gGg4GPguvSLs+J1HMx6TzoZkBGoSyw5NKwKiHLP7YRuP/YlklRdn6myku/VznQd+yyIT8PgU6OAaPr7GcqlfIARlM3CII155xKl1d0WlBuI9PqAFmyy3L8Td4roLPRYL6vZAGzglAaWgWtth3WISGpHNjPbFvIMz7DujW6GXJCyCvKjPaNxnowGPhd6nSkFNRSviw/lL9sg8ov5422j89rpEx5w3cJPq2CbjQaWF5exmuvvYZHH33U6xOC0eeffx6/9Vu/5fPuKVfKa3Ug1Lio/Otc1b4TqHE5eGZmBnNzc2g0GvjsZz+LXq+HW7du4erVq0ilUrhz5w6uX7+Ou3fv+mg1V7n0VBue3Unec7wWFxexuLiIl19+OXgyQLFY9NFbgigrV+RfNpsdO7tdea7Pk5eVSsWnV2iai/KN+cgXL17E4uIiXn/9dW8fVDYsj4GjVATyW+cmZZX9XFlZ8W3TcaTDxj7rSQw8o5k8oI1Qh6LVagVTuVTuWZ/m52az2fsclMuXL3vwzvQIjkehUMDS0hIymQy2t7d9JJWpJsCRA0obSj6r88A2EPyGdJd1OtgfqzvJd/4OkTq0NkhA/aD16W+SnVtxwNDKo34W+h169yRkn4sD4dY20I4x6GBXjxTPWF7YqG0oYGhtDJ9ngI7YRsvQlXuWYctXsK6rDJandgXV6oXjnAzgIQHBQDg3VQXXeiMhsKMMIFDJ5/Nj6Qmsi56sfk4KeUDcDU4FYkEAMFQyS0tLKBaLfjlQSXMNFcRRQJhXVq1WAQCrq6uo1+veeFHpaUSYho+71qPoKMdZlShwdJg+87EYjUkkjo4moqJTvqpRVVBgwY8FtOw/wQP7zHctcLTKIRTJ43jYz48TfG0PSa8EZTQktCSk42WVp20LP9dIMseZDkFcG7WtfE/BlG2PfmZBqFXgKmdUKFbx2PptfbbNqvz1OwtoQ+2y+cUswy75t1qtsfcV5CkYUGcspNRDjgO/05UFG72wfQ6Vzbb2ekdnvzL6xVSZlZUVfPrTn8Z73/tev4FrdXUVn/nMZ/C7v/u7/hzbfr/vV2jUCGjfdXMS5z6jvQSmBLuMrBIgOTfcEHflyhVsbW3hzp07uHHjBnZ2dvDSSy8hlUphc3MTW1tbXjdkMhmkUil/OoCOH+cNy08khkdBVioVn1qhMsSTGaiLeESYgiMdQ65aKXihjHA1Kooi7Ozs4Pr16/7MWx0XRgc1B/Lg4ACbm5v4zGc+g5WVlfuumtbVMP5P/aCOsF050zlGHulccM7h0qVLOHfunJcNbhDjRkFeAKK5yTboQ37o/NHgg85PRtgLhQJyuZzPn+ctgroZnfJGeWaqQ7vd9isdBDe0q4zmZbNZv29EN7fTztgxZhv5m+1VGQvpFo6F6g8ty85vGxBQHob0cGju2/keet6CQXXy/6TI8kNX3kiq+3VM4nS8/S6OPzo/OT42WmtthmK2EAZULBjCg5N4ELKVIXqoQLAKjUX0qqDsgNjIAH84CIxa2sgSoxsWfFnPQ88utIaWCnVvbw+1Wg2VSsV7vjaMr6F+259EYriB5syZM7h06ZLPM37zzTexvb09ZugtfwiMS6XS2B3rCoIp8DREulGNfSYICAmpCjn5p3fDk0KghwZbeTxJEamHNwkk23qVp3HKTeXDrjqwnVamWB8VigW+uoSpn7McKoY40B83SS0At4BzEu/5fag+laM4muRU6M59Bfas0wJb8i6dTvs6NWWE5WuEn0TwYp0qRpX4rIIRKzc63so7tovzXTcL2ncmKVLWx3YpzyhT9XodN2/exPXr17G4uIhGo4GbN2/iueeew/Xr17G/v+/PYFa9oICP48l5xzqoWwD4yKs6qIzQ0emrVCo4c+aMB36tVgtra2s+Ikinm/n7uhLHdpEvBFHUtwQ+zNHWOaDPUeewDj3DV1eYQmPIcnTT1c7Ojj/XmOWqrmS9HCumgzDCaSNW/FuJfda0Mq7OWQAdmjuJxDAH++mnnx4DwY1GA5ubm6jX6z4/V/mhbdFytY+2Xm0LVxXz+bw/q7jfH+6TYQCAq1nkMYEubQjLpkNG+0Zni6u45D0A79ARAFs9YoNAdp5p3+y42ACJzjdbj9WBcc+GwJ0lC3RD3/N3CK/Yco6jUD2WR6H/7dxRPaY2+SSA0tpC1mP7YXWennBin48DwpNAcOhZaxOBcYfxJPTQgGA7mCGvwD6nnVVjq8ai0Wj4DRQaUWG0QJ8HjqIVetwRDZACJ41UtNttf1bi/v4+EokE1tfXx6561E0K2gd+z2jO/Py8P3dyMBj4ZSQ93kVzbdWY53I5VCoVtFotn8NHoEvj5NzRMTd6EQiBPnPECFqtYiUQBO4HwXGCrMbYThiWb8efdbEdcYrNjl1oUtry+RwjbsrbuInDd3iCCctkNEQdLFXSts1x4NwqGO2Hgk67gzb0voI4OyYhxRNHlHe7DMZTEaLo/k1wIcBO2eIVrTSeCuJU3my6gY2wHR4eotVqjTmmmk+s7SfZNhFcsgzNPbMK2PZPy7dzudVqjZ1SwfYcHg6v5v3Yxz7mb69aWVnBrVu3fLqSrkawbAIKXlfM6DJwdNMfZZiywp3W5Bf7Pjc3h3w+74EWb8DTUxb6/f7YxRUEj7oRjL91gyQ/b7fb2Nra8hvRVGcw51Rz7PmjAAwY3yypMqW6nitilAeWwdxCe2wd5zvLIPDVm8pCG3C0vn7/6Pp69o1OBsculKrCdl29ehXPPPPMWAScqxq/+Zu/6eVYZcCCCM4XuyE8JKcKqDOZDKrVqk+5GwwG/z9zb/IbWXqeez4nOEQwIhicmSSTmVVZk0oq2aXyINlGw7cvPGjhRe/uthcN3H+h77pX91/ou2sYaKPbMC7sjRvdasM2bNmSZbk0VKmUWTmSyXmICAZnRpxeUL+Pz3nzBKtk9wXyAATJiHO+8w3v8LzD936pnjmRwyhrnD7gOWgihrZJSWHePSJZZlhAPw523QnjfBYBJQawp6xFueiGgK+l8+WXAaKx3/HzMoAb6cffNQzYDutLBPq39bHsHVGvMd/Rkx6fi/NbNgZozp0bHjXxe3w+yrBA2Tzybp9Hn9+IE+n3l50z6TUCwW5tOsDjcoXMYjebTY2NjanT6byysDy7sbGh9957LwkdT+r33E9noph64HmjcUGla2HR7XbV6/VScXtypOICAcgdQLhnhLYAupwgxG55z3V0zyyCaGFhIW3G6XQ6iQE8xHRwcJBKlwECSKfodDppg4gTrL/PLTNXiC60/R4fmwuqCPxYZ4wLF5K06UzmCph7ysBnmSGV59dHsxKC9jAbfY8eX4yKycnJdGT0wcFBGj9eRfqPAqb9SJt+DRP6hKOpqBGPzC0zDiK4jR7v+J4o2Hy+eNbTYSYmJjQ1NSVJ6TSssvn1dYHeuDfyO3zg60effQOfdLNR0Q0pQGwch3SThuS8yPvcA0gqBFc0AOlLBNN85oCOeXAA0+129Rd/8RcpRxOjHHrrdruFtkghos6wpEKqBDSKkexRGuaLXEBo0dMwut3uK+tD+lie5+lkvGq1qrOzsyQXmCM37JnHs7MzbWxspIgJBhCGo3vsWTdXmqRyRNlCP6G5ZrOZ3sfeCPY4ALR5P/nLZbKJMnv0xWVrrM6AUU5bbG48Pj7WzMxMKjPHvEI3PDs5Oan3339f09PT2traKqQpvPXWW1pYWNCjR4+0v7+fDBF3uDidum6iukWZnGadrq6u9Pz5c52enqrZbKY52N3dTX1EbkFf6AZonIinpELN5W63q0rlOufc6+RLSvyOIYQMj3xPH6hSwloB9p22nc/xapd5Cl22Oc/EtfmyVzQyyuSp/+26M7bj97ms5yoDiWXvGNbP6AxkbvHQ+pzH8cCPzrOxD8P6VOah9/HFvOQyDBCfLwP20JTjFH6QB1EeDrteGxDsoc0yN71PQL/fT6cNjY2NpdymqIhp57PPPtOdO3c0Pz+fzpg/PDzU5uZmyjl0QFVW4ikqNA+Bx00oMfeXz/EMw4zk1BFV2chVAAAgAElEQVSyOjw8TCC5Xq/r+Pi4kBPpwNOBLf35x3/8Rx0eHuri4iKduNftdlMuGJ6q09NT7ezsaG5uLilYStn47uyYB1wWpsML4mvH537R9+g5ioCFtajVamlHs4MeZxyfd7xM0TPAMz4up5V6vS5Jr9QMddDoXsROp1PYvMQpZfGY6TLmHAZEfdxxbgA6KD4UQpl3ZRiYjYIERVT23ijcXbHSF8CjvycaJNAkQhc6d2+r500DVnzN3CCJigshTV8APW54OZ149AfgRV9dcEdDnLn3ygXOg75GfOfhYMDZ6OhoMmSZTxSTAw43oHn317/+dTUaDe3v7yfAUa1W02Yu5hKw63PnZfA+//zzRIc4BWJEiwMU3nzzTb3xxhvpaOjR0VFtb2/rBz/4QUo7AGxGOmAeXIZISikb9MdPP0Om+zHFLn/8HYAv3/fAfLsiREayebksh9RLh+FMgBapNkI433lgYmJCc3NzCfT+2q/9mrIs087OjtbW1hKtA8pZc04bhCaol4zxjI5wEOP0DM2NjIyo1+ulOXXAODExkWSQ6xoilN1uN80JtEZ96Lm5Od27d0/dblePHj1KPMRBNG4EuqfX+Yn5HB8fT1EjNyAYi0ccMCrIPY8pPVdXV8m7z1ipyez8jXx32cUV/78N2PFZlGllVxmgK5ND8XI5E/vhWIP2IuiNoJwLZ4zTDNEGd/T4+OLcuMFxm/MqGho8Gx1SvMu90rcZI7fhP58Tn0fGEQ2fYc4xrtcCBDPAmDdKuR2EqXuB8Zi6Fzcqf/d+7u3tqdvtJgF6cHBQyFPCenLwJBXLqLjydLAQQWG/30+MzYW3gaN06acLbfp0cnKiVqulfr+fNklEyy0qiZGR6yNW/eS7SqWib33rW/rGN76hlZUV9ft9ra+v6x/+4R/0ySefaG9vLymeXq+nsbEx7ezsFCztSIxOWJQBYkc9go15cCJ3Tw2K00G83z8ycn305cLCgiTp8PAwKauyfrA29BWwgwUMDThd8LwDL2gAhehMlWU3ueJ7e3spf9JPiPOUCk/j4J2REYcJNe/nYDBIhzCgtKO1zbNSMc+u7IrzVqlUkjfMN7oMu0ZGRgoVAuL7nV5YZxQV1RxcEDJOTznydgADGIe9Xi/NC4DJjcM4v7SD9x7D0I2TODf+Pz8Y3Sj/WFGGK3r96f9gMCiUyCL1CKUPSHbvKHMF0PCQPzwSPWDRGOHdXqmE45vb7XYCEKzn2NiYZmdn9ZWvfCVVcDg9PdXExIQWFhY0OzubImhZdlOqzGkvet5J6UImOm+grKkxXK/XC+lFrCnzRV75yMhIoicMLcBX5HsOHYlGJTzuhoPnvHKYAzILcFqr1dIx6fV6Xd1uVw8fPkweWeby+Pi44Ik6PT3VwcGBGo2GFhcXC8b41tZWMi5c9/gcecoP43GPMWkw1NtnrrMs0/Lycooi+bHgIyMjWlhY0Hvvvae33npL9+7d08rKinZ2dvSd73xHP/vZz1LdauY66oXbwI4f1uFl0iLvSzdRUtJc3DHGWvLc1NSUms2mdnd30z0eJSnj7Sgb/PMywFoGwlxGOI3H6zbQLBW9vmV9LpNn8SoDwNFg9HbL+j6sb6y1R2qk4t4tflx3u/e1DMiCFTxy4X2NhoG/LxpaEURHmiyjg7LrtQDB0o2nCQZ3oDLsXoSxC1VJhckcDAaamppKlrd7DfwM+bKTZPjtOXNlzBSt9LKJxwtAwXC/V7oRkoA3Ujyo6+g5cxF8IDA8J3lmZkZf/epX9e/+3b9LHvDx8XEtLS2lMm47OzvJM4z16CAohqsiA+EF5l5p+HHM/CDg4ljcew7Iabfb6vV6rwgDD49Hq9LnOwptXzPGxQYen0+3LOPlc+1t0Rdn1HghBDzsD5254RUFtHvUysJNvlasY0wlcA8soAcFNDMzo2q1qm63m2iwjO98bX3TwzDAzb3DPLk+Dh+b38ffvGd8fDwpO/dy+no5T0rXBujs7GxK9wFMurD29XFwQv/wOJOCxWYi0mO63W5hbTD4iPK4YcRYPcc/bh5yQ3Zvby+Fm2kD4FYGRsrWAxoDVHNCp4c6kbukiwHq8Fiura0VTtaEn1mXiYmJJIM85Oq0wHOM32nBN/X6XPjzzK2nMLnc9vHyP55bAC1t8f7oTGDDHUYLaS7kwc/Pz6vZbCa5vLS0pKOjoxR9c8cJQA759uTJE718+TI5OPihIkfZuOfn53VxcZFkFfMUwU2kHZ83DsVwPZfn1w6D9957T9/4xjf04MGDVFN4dnZWjx8/1ubmZuHEO0A5Y3PPtKe6OGAvcwygV0mViSDG5UP09kN3eLt9zGU6suwqk3FlQNj7MuwaRuPx+zJQPQyUlumPMhqPnzt45P/4vQPt2DbzJ73q9ON5B7qSCs6sCFj5jPX2EnrxYCN3zMS2o6EQZUmct2F6pex6rUCwT5pv2ipzcUt6hdAjkcEsy8vLqWSPpIKXAaHuNWZhan68vAiT7r/LLmdc+obSGSbg8VqQtkC/fPGjsndPE+/NsutDBj744AO98cYbCeRXq1XNzc3pww8/1D/90z9pf38/eZncaKBtXxv/zEGGg1eEPeOJ6+YgzJVUXP8su/Z40r8yIR+Jn8/9Pd42uZExXcItUqerMiHldOPr4QpimPBirrg/ChWfK67I3HH8ceySUggSwcO8+uEETuMIJzZQeltxDLEvPg4Xov6/97tMmEbAKt1sBHSjM26ccl4tAz+uEAE1CGA32CLNE7aNCgHepL42ZdDI9fTd9YSN3XsWed6NKJRNzDfmwhD0fsU0BF8bB3+utACmDm7LaCkajsjAvb29Vzb9Mb/z8/OamZnR+fm5Xrx48Up6Whk/8S6pKOc9HS32z0GV98FTa/w5cleJdDCPEaQxX7RJxIO2Savo9/sptazX60mSpqenX0n3iakD9G1tbU0//OEPNTo6mipaHB8fp4OipqamUkoEntGZmZlUKpP1ZNyuAz2V7urqKm1wJgrTbDYTfeN0qdVqunv3ru7cuaN6va7Ly8sUYUVm+twzT87f0WHgcrTMsURbgKIy48ffRYoKMh/D0lNNygBS5Id4lclqv24Dv1H2RLA57F1+Xxk4/qJ+3QZoI7+Uzcdtz8X3RJ2EfPTa7+iAKJu535/zNA34qiyKwN8O6G/TsV+0jl90vTYgmIlisCgo9374BUM5GHFLk8VtNpspxEOOV79/feLO+vp6AlxsVsFyx0r1WpQIRt8k56HGqMz5DObFsxCJP3pevVpBHCeCne8grgg4a7WalpaWJN2EkFFuk5OTevDggb7//e8X+ujCyonN23eF4++LII31cHAe0yB87aKi8/SCaNWVKX3/zAVppVJJ4UuOfGY9er2ednd3C2Fq6Sa1wufWvR6+hi4IytY20mwUhtBPGYAs8/pyn4N5PqfcFLwDIPM8urKx9Xq9wrGuLky9n3hPHbhHT3wZMOPy7wDeDhqZ49HRUTWbzYKXnt946jzPkjX3OXYATE3sbrebjEvoOJYE9PFEfqYKAf3wQzWQGYzRPe3wKtUSkDke7i2LIgEA+F5SSjsCbDkvugx0OnF+cyOcHHr33vT7/VTZgSoLgDlymukj/Fyv1zU/P6/FxUUdHx/r4OAgpapEXuW5yEN4aZ1v+c6dEWzQYo6gI9bz7OwsPTs+Pq5Wq6W5ubnCaW7I4ignXPHz2+kKOXFycqKzs7MEXD1XlcuBqvPx4eGh/vZv/1aS0kFN0PSv/uqv6uLiQltbWzo7O0vyGzqARpDjTrucmAeQbrfbKb0CnifFg3zyPL8+frzVaunq6ko7OzspZ3d0dFRbW1uFVDzo3sfHuFjTqK9YowjcYm1+B1Zc0K8bwLyLVB5fv7iGTne/zBXBmLdRBnb/NSCsTM/6VfZZGVC97d23RSVva3tYRCnLslRWFjniuAAZUqYLGK/TTdxj4RjH23M9E68yvHXb2Mqu1wYE+ySgmMtC0g68uNwKkYou+enp6QR8sDSz7Dqn6Cc/+Uk6EcnBLKEvairiJQOgUtuRd0SvB33yz66urlJYMwKRMmbA+nULmDH4mFHypE1INwc1EDpzi56cMEpV+Zx7mMMV8bBwA8oEpc47Ue7OEMyvgzaEbQROeG6x9v07B2NOC9HLwGdzc3Oam5tLO7lrtVqac8Jpe3t7hY1evMfp0o2ZMhp0AXybZV1G054nx3duMDhtOOAltYIQJ3PpXl3my38zV2wmZHOf01bcGe9gOCq0SO9lnm3vN4DRgY4LOnbMk984Pj6uer2uZrOZAG2v10tlAFGGtOsggbmg1rZXkSjz0EblDdC4uLhIpwn65qk8z/XixYsESAGiEeT6PHokKc+Lp+rxHTLID7RxgO9pLg7Avf+0BxBy+nJ+913jeAi73a7ef//9lKO7v7+vdrud8jp9fJ1OR+vr61pfX0+bcpkbpyWUJl70aHw4r3FlWZZqmjebTTWbTXW73XQqHADSyxZK1wcXra6u6sGDB5Kk3d3dgmc0AnHmBpqjLfgI7/nIyIieP3+uweCm9nK/31etVtP9+/e1v7+fjsimfR9btVpNObbIDdJ1FhcXtbW1pWq1qnq9ruXlZZ2cnOjTTz9N6TbwV7PZTDqI/RO/8Ru/ocvLS7VaLf34xz/W4eFhiqjg4YU3kP94yNvttgaDQTIUu91uKt8XgU69Xi/sDcBJ5P1zg7LsoCTmlPUnd9hL/eHxdUPZeckrqGDUOaByIz4atLddZUA3/u18Fu/3d/v/8X7/4SoDe7Gdsv7482WGp/chthP1mX/nMocqRV6BhfvimOJcsU71el1zc3PJ8YJMgC9JU/VcfKlY4jLqyjhXcQ7K9LFfrw0IHgY0IrCBGd2DBgDwkKGD4oODg1S/kEXBq8Ek8zwAbGFhQYuLi5qamtLp6WmqqYkgu7q6Kux0jQsyzGuI0HZw7IDT/56enlalUknWeJwvQHS/3y94mfI8197enr773e+q2Wzqzp07aVPJ1dWVHj58qO9+97uF8lDOyJGopevT1Qin834XjjG02O/3k6XnIMc9d3mep/vcswjT+LrTT9bJ++0Kyz3eo6OjunPnjlZXV9OuehR3rVZLzBwjCO7tdPAXjQG3Wn0+aAO6YpwOkKOgiNa3pwpEAVOpVLS0tKR6va6joyO1221VKpW0EQcwBs3BF1zMz8zMjMbGxlLVAR+Pg64I0r2vMTQaPalOV56r7AYpXj5OKzw7O9P+/r6yLNPdu3d1//79tAkMwfnuu+/qRz/6UWHTDu3WajUtLi6mg2vm5ub0+PHjwumQ0Nfc3Fxq18FPnueam5vT5ORk2rRKqJpTvqQbZR0928yBGxbsQXBacqOh2Wzq/PxcjUZDKysrWl1d1YsXL9Tr9QqbEX2tmVsMGqcpT/fwtCW/h5Sg2Nef/exnGgwGmpiY0NHRkZ4/f66dnZ3Ub2Qv79zd3U2edWg+end4B995//jc0xr4n/sx4OkjoJX7Ca+vrq7q/v37mp2d1eXlpb73ve+lvFY3NPDk+2YzALuHbf26urrS9PS0lpeXtbq6qunp6ZQPnWWZDg4O9OzZs3R6nRs8XpfYASCpFZStu7q6SqXnOp2ODg8PC3OCvCcvWbqO9j18+FB/9Ed/pL/7u79LVT447IR1jnn0Jycnevz4ceHEwU6no52dHXU6nXQCITKp1Wql9I+zs7NCXnmUWfAZa8jf7vhhw5x7fKEB1xWsPxdtRsdKmQOG8Q67ygDSMJDJ/9FgGwZyhwE2N8Ri22WAfdi7vG2edQdImVe3DOTHNviMOUZ2EwUpm884nghcwVbwmVeoiU5QMgAiDhzWftk88f8X5Ye/FiC4TDgzaV72BEbj/phj6s8DeI6OjlJYiB3IKNmTk5PCscG8p9+/Lr/y5ptv6p133tHa2poePXpU2N1K3dbBYFCwQH3hykAlfWAcntzvxMIGnVarlRQ/ZW263W6ykvx9PJfn16W8Pv74Y62tren+/fuamZnR5OSkRkdH1el0tL29/QozxdCdg3e8BtFAQZngHUCosYsbIe9CP1pmUXkzF3Fe+L5sY5wDYcaCh6Jer6dwJoClWq0mJVUmvNyTFZnMGW8YeOWKnuOY8xaZ1tcRGi7LkyPPfXt7W5eXlyl1hw2VKJQYtnJ6dCMGjynpFLRBzcUI2iK9OsCP3gznZ59D1pJ18jWA3n77t39b8/PzyRvJ56S4kDIBX4+MjKjZbGp5eVkLCwva3t7WxcWFTk9PC4fAYARl2XVUCIOC9rIsSxET6doI/Oijj9Rut/XixYu0iYn76DvzyBzETYqeUuU0jALP8zwdviNd1xZeXV1Nc4g8/OEPf1igLZ7Fyxq969CNg1PWKsrRkZERtdtt/fM//7Okm2PPy5SJrx/z6SkoXs2EtXdD2WnQ++WGnINFanVfXl6mCBeGH3y9sLCgLMu0tramly9famNj4xW5hkwrU+bOw56GkOe5lpaW9M4776QcWuQypSapqPHs2bNUT5g24WfoJMqunZ2dQkQNfYPTBJBPSoiXdZSuZc3m5qaePn2aDH2ArTsZfB7I86Y/5BJz5LV74tBJ+/v7ySjDEIIH+aG/vt7kVbNp1GnLgXYEMWWgELDr68ncujF3G/j16zbgWaazyvo47P/Y5hddEdh9mTai8cFnMZIb+182Zr8cALPO3p6/M84V70cvE1Uv0xs4ryQVDtRxnRz7FnWv48Pb1iBerwUIlm7AjXRTe9YFL4rFJ9yZ2pmVNgDBgDNKrlGqxkPtTiyExA4PD9OhE8fHx8kjg3B3zwdhVldmCABPMyBFAc+sp0gAKCcmJlLYr9PpJOXearX09a9/XVtbW3r8+HEKOzJu9/gR2iJHr16vp/Jw7HyOINNzzPgcwvL7IuDEeMAg4HIvioe64jtYA3+HE3wUMOSExn76+FHK+/v7evnyZQLpHo73cPkwRU1ffCzRQIh99P/LGDEKoGgcAPI4vc9PHuQeFCTPEwnI8zzRp4/FlTEXHk08VKOjo2q1Wkm5UzcWD2kZgKdPrrzgzTj2srlC8bJuMZVjfHxc09PTajQaCQRcXl4mwOrRCcZPigfrSv/deGI+qYaCd8092eRIwxdXV1eamppKVV4IKUvFDV7u8WDnu4+R90Vl4hsXMXT7/evjbZ0OHQQCXgDrXK44nF7d++rRCgfIlUolzYu/k7l3fmPsThcOYF0puRfWn6N/HiWLdIZs4eRB39Tn4F26jvzt7+/r6OgoATaMX/eeu27xeaMtNybo08LCgpaXl9VsNguAlvxp5pPn3KvpIIE1934jmzk+m8jI+Ph4Su1YXl7W+Pi4dnZ29PDhQ21ubiZZfnBwkFL8KHvIhY6KPOiHjUCng8EgAWg37okkuvMF3oh8HeUlsncwGKjVaqX8bSqJxMvnymnI9UKZIyLqjy8CwsOAra+P67xfBlyV6bT4bNnc/bJXBMAuw27r8zBd67LGjSeXWRHkSsWNpZHOkR/OI6S45PmNw4vofOzbsHGU0dyXNXy4XgsQzGS6MGJy+/1+AaiUKWEXVDHczoYYwu7S9UR7qIq23JLodDp69uyZer1eypGjvBmLhFXui4VFE8PfKAbfMAMwc8E8MnJTh5L8LIhldHRUCwsL6vf7WltbSyFZJ1YEM0K+3+9rf39fnU4nbeKo1+uvCIpI0MwrFj7/R8bGuxGPfGX3ud/L5evna+b3ReEQFaN7092rw/iZi8PDQ+X59ZGxnJAHLZ2cnCTvXJlXKDLyMGAeLfCyzyOdld3rz0AH9DP2a29vT5eXlymth41MKDsHJj5n3ieAjlvjnBIGuMOzz7Oey+njcT6I4MT77XPqm8swKj1/Pc9zvXz5MpU3W1hYULPZVLvd1traWtpY5B5EDIKDg4PkNcabVuYtOj09TfMQc829RBZ9abVaCZjE09voswMDaBJAFKNF9DmCrcHgOnw+Pj6eTiUEgBKCnpiYSJ7fmNoUFYjTswNU/o8Ga/TM+fq719YNCummlBxrGMccx4jMzbJrB8D09HTKU+10OgXFDp3NzMzo6OiosLnK38FmV+oT8x0K11NnGGPkbQfjbkROTEyk+s605aeKHh0dJQNmbGxM8/PzybsaS0Ixr9D86Oj1aaZ37tzRyMiInj59qqurK62srOi3f/u39au/+qtaWlpK8p+SdDs7O8k5c3p6mupOO03jmXed5BFMB8EYZJGXMYJiVMm9v06Dzu+eu33v3j0NBgNtbW0VTvIbJv8B3zGi5V5F+C8a38MAUZTL8b1xjSIfDdMFPv4Yrh+mI/yZMu/ml70iv9/2/DAdFEElfeLHecX7znc+Bm/HHYbOhx4Fw1Hmc1Dmxfb+xr7/sgBYek1AsFT0RkjFmrwe5vcNHtEqiQIL5vTTc2iDsBqfsQgQfK/X0/n5ecp1QwEM2/DhCgYg4sDad3Xz28OoroRQeJIKoaPj42N9/vnnaUNQfI5i6ZEJnMEATC60IFIXWtH65vMoiGgnWvNlx7hyRUaLXv5okDjA6vf7aZMSYVjfsc46c11eXmp7e1sHBwcpZQCBTIjHN5h5H924KAN+Djh8PD7eMsE+bB54D0DCNy+6Uun3+9re3tbe3l6iJWiTjX94Eb3v8f2Rx7wtp3VXcvAB6+UAmr4RqoyKUSpWeWg2m5qcnEyHoXi4F1r7l3/5F42Ojurdd9/VnTt3NDk5qfPzc+3t7aXcNM8bZe7ZoAUY4Jhr+so43LPp8+yRG0DUo0ePXgFAbrgzrtHR0ZTHD69x2IaHsf0dDtKcplgXD01TmssBBvdxWpiHLt2QjWFkPuNdAKBowNBGNNo9T9k3BmKARPov++F56pg3Go0EJnEq8P3U1JTefvttdTod7e7upvEhu/nfS2hBxx4tZD6chr2PzWYzGfbMUZ7f1G33TdMYWkdHR+nEuLOzM83MzOiDDz5Ip5NCr74GPI9RNTs7q7fffjulpBwfH+vXf/3X9Yd/+IdaXV3V5eWl1tbWVK1W9bWvfS2VTnv58qWy7ObwDAx86IPT2JyHPcXQZRbOGqcJ9yo7P+f5jTPI5QLtucysVqt655139MEHH2htbU3r6+sFXmBeXFZVKhVNTU2lNC/nC/KdWXOv8hPl3W2grwxA3QamvgzQKmvzNj3g0cgyQ6DsmTLdctsz8d1lbXq7ZRESx1nR8eiYwNsEE4HxarVa2k8lFcuVOr77ov772MuMGpdft4Hp1wIEu9fXgSyMATjxSglScdHKdvu61RFDkShcLpQpihKhjjU/OTmp3d3d5IFwoiMciRUdlSPvZJzkJHc6HZ2fnyfwCkjN8zwdmUweL5snHj9+nLysKFXCtjFk7gLej2ulTyhnf1bSK/VUATZR4UcgFN/J3DiYjLvYXaE64TsQIo8sz3MdHR0lpcNYXWBysQ4e6o4VIHyTBv0iNOg0Sdv+LsbqnvcIHGifecNz71f0AED7eOO8D87Y0A3rg+KKaRAOgsuiJa7kyUUlDOu5WfTPU2CigRKFoPfXxyFJrVZLb775ppaXl/X973+/kFbgIPrq6kqfffaZHj16pNHR0RQqPjw8TBU/BoPrg1UkJX6RroEbKVCkOjAWgJobGcOAu+9Ap9wgdIPHEB7jx8dBrvX8/HyKLLkBwuVrhKE2OTmZxgAQHR0d1c7OTkFp8K5f+ZVf0fPnz3V4eJi8gr5+kUeITPHDBuLJycnED151hv/d80p/8ZKOjIykNJthnm+nDQdqvmmYzWGSUi3iN998UysrK/rOd76T1mVk5PqAj1arleQz7/WUt+jx9LSFqOSRA+zhAEzjgSUnf3R0VHt7e3rx4kXyzLIWeIEPDw9TBRa83PCRA/bj4+NC5YzNzU31ej1lWZYAMaB3cnJSKysrWl5e1tOnT9M7GZNHSKAPDGQAI/nl1AdGB0EvgHOOPebzGE1zeRD5Hh3aaDQ0MzOj2dlZra2t6ZNPPtHu7q7y/Po0x/HxcbXb7ZTqxhyMjIxocXExAV3an5qakqTES4yPDXus9zAngPN7GUByY9iNRm+z7IoyzwEan/HbdQb0GuVBlEXxXd5m7HscbwTN9JW19baQDfEzN0L4cXpA7jkWAh9xLzxAyUnkGHLF9/UwN7cZHhH4et+HzZFfrwUIBkz4YN06gilQuNINWCibKL8HZnJPs4fpo1fTj2z0vF+8EwgHwk8IzOghda+yVDw5yOsSx3fneV4AeJyKB4jwoy7v3LmjLMv08uVL7e3tFYAr74wALVqIrsQcIKDkAeg8S0F296JFADEYDNJ9MIV0s6PXmSl6C7w9/p6fn9fdu3dVq9X0+PHjVFw+Agkfn/94e/6uCHShDQfvfsJdGaBkDDFMFIUrbWHkOFj09srmxZmb8blnxgUcChZh7f3xNfd+O8+QIwgtsWbwn7fJOwkF+//QkRtDvh4Ayo2NDfV6vUK+oXsZxsfHU6rH+fm5Njc303rNzMxoamoqCVMUPLSGEqfyQ9yk5YrbL9bS73WagOfz/NoLNjc3l9qC3mdmZtLmNuZta2srCWjnCVJC+N+VM55HAEG9Xte9e/fU7XZLS59JKhz7zXoAKLkPw9rBDPdTVtENY+bL6dANauQWsgJwIykZ6p6TitHJfHOgxdbWVnrv/fv31e12U2UHKhZQMgze9KPaka2es+rRJpcLbuBFA5Y87Farpbt372pmZkaff/65tra29PHHH+vzzz9Xq9VSll3X/n333XdTmgYKf3d3V0+fPi3UunevtVfFQR+wBwVa7vf7+uyzzzQ5Oan5+fl08Mv09HSqfU5UjB+8phg2DgpcH2ZZptXVVc3NzWljYyNVZAHo5nleON57b29PtVpNU1NTOjs709HRUeKBuEcDGYGRSmraD3/4Q52fnydDG+80a4gByRzV6/X0rn6/r1arpXv37mlxcVGHh4dqt9tpfqGjw8PDgnHL5RjA5XiMBNB3aN7l5G0exahjHQ9wObjmfWWyxv+Ouos1Ks4ohD0AACAASURBVAO0/uOAPeIRvud5T0HD+RiNB5ff/u6Y5hPnlzGTdsbJpNC3yxVP24lXNJzL9LBU3PcQ+1t2vRYgWFKa+OhFjIMo80jGAfr/bESLHiusFVfqMKSHWEZHRzU9Pa2FhYVUJ5TNQhzrWwbEnMj5Td9RTFjuhPc5kUi6VmTkS8U2KbGDl9RzfJ3B3JvqzOFhSve6OZBj7hGeHKVZr9clXYMlCrL7BQD26gYObiLDRwHB5d7PsbExLS0taXV1VWdnZ/rJT35SuuaR0eN3kVFhdDxYVM6IQCwCSA/flYFpv99p2A0kN0awfssYH8HKb/e++d/xvQ7Eo+ET58bX3wEX9OIAD2+Xg/kowN2j4fzlv8/OzrS9vZ28VoSX8f6ixPAYwPN4IgEfeKKIXvgx43i88DBWKpWUZuLC02nJDSFfXzYqIrx93r182cTEhO7cuaOFhYUEVAHfrIcDMo6tpvwYoGYwGKR8bwfvXk4KeUVfR0dH9fDhw+SFddnhHhb4ejAYJOPDDdjBYFAoCelXlHVOw0TRMKp7vV4C+HiX3ciiDT/VjTljc6hXHpienk41RmdmZtLcU7sdj5IDWtbZq9MwDjcUHWAwn0RaqEvdbreT/Lu4uNDu7m6iJ0na2tpKmzKvrq7SkfS8m36NjFyfMogM6ff7mpycTNVP6DtA9dGjR8qyTF/72tf09ttva2xsTO12W0+fPtXPf/7zFDE8OTlRu90uePcxaHq9nqanp5Xn15FIPMGdTic5FOBBeMjp++joKIWwff8Fc8z84T2fnJzU7Oysut1u8sximEL3rJ3XBnbwjjza3t4uePfRyeR9Q89RB7jzwzGE78+hPXeqRT0hFQ1Al+e8B73q2MWdK/HyNsqAsj8XgTnz7H973+iv07u/M77H//e5iyA4ykl+D5sP50F3ZjI/rDOyGVlQqVReMfBjXyMv+3vh6WikD7teGxB8mxXDxf+eU+VWDgqM8M3JyUnKtXKmlm4sPJ+wKOB5J7V28TLgWWg2mwWCjV4yPncioa8sfrPZLDAzfRnGjAgKwmcI2wikIhCD8Z2Jo7XkYM49uNVqVSsrK8kTMRjc7Lin9BQX46IPzgyeZ8qY3DKOTMbnVLhgoxjPeRiHcSLIs+w6lBtPriqbU74H+EXg6l5dpwvvR9k8lhlxZcLPmTzOQQRrbuR4/6GpMu+2vzv2J8uyQukagIwLwChMfW2d5qJX39/hQjrP87RGWP1sAvM58JCW82+WZQlEwNvRswJwXVxc1J07dwppE1tbW9rY2EhtRRDvaQf+GYrN78dYZtyNRkOrq6uamZlJSp82eNZPrqSftVqtsEHP59Tb6fevK960Wq0kv1DQ8IqDbjeEWDcH+O6ZdDp3Q8bnyL2pkR8cAMOr8Hy1Wk1e+83NzQLYATwQyuaZ/f399B5C6s1mU8fHx5qZmUmyL8uyBIBj6pDzV1TM3m+nWeYlz/NkZJ2dnanRaGh8fDx5ezGyMBqcliMQin3y2tvQOkYKhifPnpyc6NmzZzo9PU1pF6ScvHjxQu12OxkXGLHRGUAkAI9yrVbTzMyMLi8v9fz58zTXgGb6h3GDjvH18BO/PK0MepZUqKREfrfzS5Sb0Ciy+PLyMs0rc0vtZKomudHqfYxyz3mcdwKA/TtfL7+GyWnvc5msHNZG2X2x3bKrTJ9E+Vo25viOqFfKQG5Zn+J3EYzyuRuYjo9wBvoeEMc7RKn82QjyvX2+c9A7bO3LrtcCBDvAY3BROcX7I1h2pcwu+cvLS01PT2tvb6/AeBH8+RUnk760Wq2CIkKZeY6VE1WZB86JlH7UajXV63VtbW29UkA9EqsTEd4JPNNOcA5wfUwefosg3XN43EteqVxvQODgAOkGnDQajbQRx72mMWzuwiHmPTGuYYyW59dh82fPniXPOzWIyxhjbm5O09PTSUns7e2lsF30+nAxn9Ewin0sA7Cso/eBn+ipdWFT9g7mz4G4/5Qp9vhONvkNA9D+PMCHMCoK1NNq4jOuaHxDD++Ihmv0ZDPfMQzq4LvM2OVCmU5NTSnP85RXn2VZgYYxMBcWFrS6uqqVlRU1Gg11Oh09fvxYFxcX2tnZSd4mnysiQG40YlA5CIaXAOHQOoaie15dxkkq5FsCIlD6MQ2B+5nfy8tLzczMFEq0+VpFmkAmet4egMnljAMaP2TB18PH4v12/ocO8zxPskFSilrt7u4m4M7znMjmGxV7vV7a11Gr1ZKHnJQw5xlP2/K1jPmFnovr/S8DyQ6Ur66u0oESpIJ5pMA3Zjnv+Xx45ZboHaX8G897upkktdtttdttPXz4MNGY656Y++x6IM+vo131el0LCwuanp7W9PS0lpaWEn33er1X8qmhTQfk8H2r1VKlUtH+/r4Gg5u9Hp5+0W63U3UjdOdgcHPgDetyG2iLcvLi4iKVFXV50u/3C1GTCDRdhjqQj/K+DBNw3QYey3g96oth7yj7O7ZxW3+83agvoq4qe86fj22V3VsGKst0eHQWOI8ho73UodPZF703yjnXm073ZQA9Xq8FCEbIeCFw6dXkdO7F4mSS3SN4dXVz1ColdwCKKIwooFz5ojBgpsFgkMJetVpNk5OTBeHpG58iOPcx0LaDo5GR6414zWZT0s0xkihDxulVEBD0V1fXRct9sT2H2fMM6Qe5zfV6XZ1OR51Op6DICR3HTQ4cSYo3wI0DiJh+OQhzpeJgmP+jUCljOgT06elp8t7du3dPp6enKdwHcOeAE07IOzs70/r6un7+85/r6OgoKT5XUnmeF0JyZf2Iyt9px4WOKx9XaC4AXHiXCUbAl++0jiA4ejtiVGSYII7eUukm6uDjhXcQSm7EeIlAxunpCvQJkONrjQKFXlD23rYLTsANcsEBE4DC6YhUAQwxSalc2p07d7S8vKwHDx7ozp07Ojo6SrmX3h/kCTLJ5w6wHRUr/cmyTMfHx3ry5ImkV3NzoYm9vT1NTk5qampKtVpN7XY7gZioLBw0AAj7/X4hZM26QsMeiSA6cu/ePY2Ojqa606enpynP0vO+mfP5+Xn1+/1kaLuMdmMIWQNwApTleZ4iZXl+nQ+4s7OjycnJwhrBuzH1C15gPcjtPjk5SQeV4G12JUp7PMecuUeduXEDDXqJ0RunL+ra+iZLpwXfQInsxtHRaDTUaDS0u7urbreb1onIJUahpxp5JMR53OVVBL2Mz/VAll1vJPvqV7+aIhT0u9FopA1+pEnAuxMTE8lB4ONrtVpaWVlRlmWpBCVzxwbkeHQ2Bhf6AT5njphTjBn4gZQU5uDq6ip53Tmlj/n3tCSXRW7YQEvIlOPj41f2Brhs9Ys+uDMF2vEc+jL55+3yWRkwi5+77PSx+PfedgTcEfxGAA9vuP6gnWFg2a/oWCrrY1l/y3jOI2DcE3Wgv9d1KjKJ/5EDt4FfrtcCBAOQPPfNUT0D5HNCLQ6CJSUlykaZsbExff7555KKlj8CkBCRW/G06fU3P/vsMz148ECrq6taXFxUp9PR5uamTk5OUsUIcgXLAJJUPAkHpXV2dqbd3d2UyO/fcS+7ygeD640hpHgwJ/4cROB5vhHA1ut1ffDBB5Kkv/qrv0oC1w2CGJoAALhHiM0KKFK3xOijh4LLUgqccVgTB5Xc40IlyzKtr68rz/O0ax6B/cYbb+jy8lKffPKJzs7OVKvV9ODBA/3mb/6mPv7448I8894oJMjRdmDLVZaCIxVPvqLfALJIB8MsbGg9hr49X81BLnTv7+AZHxvvcZDqYBQ6ZH19rXkXyoe15zMUjxuEjMOVEW2hfEdHR5NX1Tfs4Gnjnrm5uXRMK4cTbG5u6vHjx+mkvGgcwIOei35+fp4K9C8sLGh8fFwfffSRfvrTn2pra6uwxoAGwNr5+XnaJAUowEDF4+vpVhyxXqlc57BmWZaOQv7oo490eXmpv/mbv0lpOicnJzo6OtLMzEzaAOZ04vnY8DSpXtAkQM/n3Q1VDN/oreE51sDHfufOneQ4oIyVrzs0Va/X1Ww2U0SAA1YuLy9TZQPolpxVqr0AiDh+19OvSJe5urpK1XR4N2tMaprLQugcYMn4ANEAfU93QQ/gHeegCNbh9PQ06RPkCg6MyHsuQ8m7pc41c8kR9IBUN/S8ukMEDBGA8T5oBf5zemDNPvzwQy0tLenk5EQnJyeqVCrJEHr8+LHOzs5SJRKArad5OY9wAiu07TRRJs+gK+dJ51PGxRjdqCJNCnAP3UIbeOT5cdAd+wPPet6pe9DLrmj08pnrMsbhhmecDwezsS2/JxrB7oAY9gztDbun7HId5H2L3lt/T/SuxvfHtuFvqRjJcgOUz2KajFQ8wbZsrFwxusx6xPSYYddrA4K9XJl/LhXr8ErXk8Ou0ZOTkyTEAYdOiK6MmXhynjiFyr2rCByANjv6/+Ef/kEfffRRIYR0dHSkzc1NHR0dvRKOcu+w9CoQoD8sFuP3RSNUi1BC6MXQWZ7f7LIlvxhwQugKwjs5OdHPfvaztAuT+cB4QCg5MD44OFC73S6AM09wd+DvOcsupCHISNhcAEra8fuHMR05YZOTk3rnnXeU57l+/OMfp8NRKpWKXr58qW9/+9v64IMP9POf/1ybm5uF99Emfec7B50uJNybGhks/h09trSJEvY19bByzJ0uMwzdivY++/sdIDqI8rGjkPwi/xJlwX2dTqcwJmi6LHTO/9EIjGN1gQjAmJ+fT0bn5eVlMijg2cXFRR0dHWlubi4deTwyMqJut6vNzc3CxiToZWNjI21um5+f1+LiopaXl7W3t1eIAuBhRMG6t3UwGKTUEQ678Z3u7oUgqoKnl42kXkmGU//YZOWnRdZqNT1//rzQJj943gHhPkdR7khKURQv40jEy8PVgI3j42M9f/485fu7hxMZydHI1F9mX0CWZarX6wm8emlG6Iz+u6zOsiyVhGP8eZ6njXLOT57C4bwFnZO7S2WDubm5dEASJcbcwAA8M9dnZ2epIgKAFC/jyMiI7t69q8vLy5RHOzk5maJUzn/QtR9oI90YyIBfxkJZTPgfoB51mjsFXJ64wQyvjY+Pp0pCbOpDh+zt7elf/uVftLm5qWazqbm5OY2Njenu3bs6Ojoq1FavVCqpPvVgMEjebOaxLB+WsmgLCwtqtVpJpz569Ehra2uFaiIul2iTOWDjeK1WSwYUJ6BSaaCszFyZnvGqTj5Xse/we5nDwvUB9ONz7vLZwWOUic6nTsP+jkjj7vhzx4bzUdmYho3B59zvi3PHmsR+e3v+HXLdHSTeBvKPuUEu8rwb2h6R87ko67PPUbx/2PVagGCpmA9MCAZrwi2tPL/JM3OwQJgwEpGDNEnJUm61WskbgbeTIvHujcNLvLGxkXLx2IV+cHCQiuLzTqnoxndi9YV2Sx0Cjm3gdXIrk3siQxFqwnr3cBM1ZREcFxcXaSeyW6ZOXDC3J6hHQYXidCucfkQQ6AQZCdq9yFwOPPw56cbzyljZbe75cXzPbu35+fl0/DWeOh8zfSxjFsbuoNXpiXl28F42Zn9HFDLRGof2Yx/dK+TtR4+BC+U4pujpd2FfqVQ0OzubPMJeWxmAwsmJKEdoAKDjqTzRM4LH0GnL+1+tVjU3N6fV1dV0YAFHlvvfKysr+t3f/V2trq4qy7J0SEGj0dDTp0+Tt4prfX09rdnJyYk6nY62trZeSXWRVFDOPv+MEa+d8zhjplzV6OhoqmUMf3z66aev0FOe52n+Rkauj0ZfXl5Wq9VKqRyeJ8uzeFmcFicmJnR8fFyQOXj8XIYie3AaQGt4YPf391OupysjlzfQKZET/nYDy/nHeYK+eL1hp3WMDzzLyAdXmAAiDH+ALc+jQ7h3dna2MIaYw8sYx8fHC7WekanIosFgkIxB1sVBfbwGg0EyktBZMY1rMBikTYHSzaYz+gdteF+dftBXyHqewRlyfHys0dFR3bt3T/1+P0Xw2u22Op2OZmdn9eabb2p+fl5Zlml3d7dwGE2e32yY9TX0NYmfTUxM6MGDB5qbm1Oj0dDU1JRmZ2fVbDa1urqqv/zLv0wGKDTNfPHjDgJ0j8tINyId3PpGbQeWDsLKwGEZUCyj5WFytsxgBcRFL+ewy+9x/HJbv1zfR30bn4mfR56OfYnv8vGW3RffA19H/OKGHmNw3Rcj0zHFJb4r4ph4lX3G9dqAYHeXQzR4ZBFYLFgEhjCRAykI0MN91Wo1lcKijAve0W63WxB0CDYm7/z8PJ1H76FgD8HxXgfB3i/vpwPOKFxGRq43pngObgSNccxllhJzWalUkiJotVppEwQbMrxvUnEHeASITkwjIyNqNBrq9XqFZxwI0p+YD+3f+U+08CLDSTcb8+jX1dX1QSJzc3O6c+dOym+rVK5PG6pWq6nCBycBukVKOx7O5DOuCFpdwDkYiQDX24qgnnacbpxmJBVyRZlzf4/3163m6MmIAiMCa//bjZ2yNKQsy5IhGsO0vm5Opz6PeGk8/MtzrAM70k9PT1NeKiBYUsrvXVxcTHVop6en1el01Gw20zoTloduut2uWq1WSnMoUxYoYF8H5ttphO/wyPq8jY6OJr5g3KRARN6iLeQdxnmr1UqbXqOy9cvnzD3rTmNsxAKocg+nsAFKAV6ec+qg2vkF2cQhBXyP/OR9HsnjvZ4L7oYU3mMPdTMGaG18fFyNRiOluOCIcI8kvHF1dZU2Rnt9dpfTZTIJOi0DUdANYyS9wOeG5zy3PxpV3jZ05XnkfO4RSknJMCWC6N7a6FHDoHjy5EnaIIznnpQaSlT1ej0dHh4mPedVGcocTE4ffEZ1iLm5Of36r/96MnoB9tVqVQsLCyma45EWDibxE0DdaKI/nndOpML1vs+3y7nbAJLf55/znPOa864/75jD8/eHPRd5+jbwFp+FNoZ9xxUjhHE8/n/ZmMrkVJTnZVeZzvHxDvOyIw+8L268lhkEcX39+S9jeLwWIDjPb0omuTKmtiQC2fNSoxfTBaAvlqdZTE1NaXFxUdK1Qpybm0uKQFIqqg9Ioj3ARZ7nKXzobbt3tMxTB+NKN0KD+50BYF68YQijMlDl741/cx/KiD7V63XNzMyo0Wjo8PAwCTY3MLC6ygRCtMCkm40LzigOqimXw+5uAAv1M/3ZeLGG7m1wBce89Pt97e3taXZ2VouLiyn/b3R0VMvLyykHr1K5TqNh05wbCyhR5jLmGUXgyPjwfn6RwVA2hxEgxx+iEe6FgXZiugigMtLUMDAH+CwD/ZxI5WkyDlaazWYyPDzHb1ioz9/vwMJ3zPPZ5eWl2u221tfX1Wg0dH5+njZyEZ4fGxtLJ0bh1ep2u0l5oojcWKVe6f7+flL6Xj4vrlWZ0QqduGE6zGiABmJpNze+fH68z15thc+cH1hD/5v5dxqgDxiFpI04AJSUyo3t7e0VNqhF5eepY8hgUgfgA8CmR9XcMIw8g8HfarW0u7tb2ITncg+PkpfgokJBnt9snnU5SL+73a6Ojo4Kxga07OXMAJBeqs89VMyLn/wIHbmXkncw7zEa6evPvJKqwKEwLp+YRzz3yHQ8rkQmJBX+dsdEp9NJOdrOj5VKJVVcOD4+1vr6ui4vL1NlCGiee6MR7zzg6zM9Pa2vfOUrGgwG2t7eTp5uZAQ52zzbaDS0tLSk8fFx7e3tpRrg7hn23PuyviEvfW2c9ui30zXPRcdNBITDQJWvq+MO5hgjZphO9b56G/4ulxV87uMqA8+xrbKrrD/Dxh2BPv3y32XjipE2x0rDjAl/FsPQP/8yRs2XAb9crwUIlm52UvumpDzPk8KF+Qk9Rg+pVMzDcmCcZdd5aktLS3rjjTd0enqqra0tHR8fp7IxS0tL+uyzz7S3t5dCSlyequEKIm6McKby/nl+E/e5wHQhiTeI3GMsXScit5a8jTKw6ECg3W4nMDw9PZ3mMypeB8KxbQ/PnJ2dFU7noY9UFmg2m3rrrbd09+7dlIqRZZlevHihJ0+eaHt7OwkJ5oXLAZp7qB1kOCjY2dnR2dmZpqentbKyknJFl5eX9fz5c/3sZz/Tzs5OqsWKETM+Pl5Io2CdYhgqMhVeK9bEwYHTSUx7iSDaaSUaU1ReiMaHg1zupw2vmOAK3C9fp+gJy7LrHd+Tk5MpZx5PKpvVpqenNTY2psPDQ3388ceveGJ8rXwNfT5Zc+iRE8vOz8+1vb2tTqejRqORwCHhzn6/n44Lf/bsmcbGxlIpvL29PW1tbaVUiFi5BK+6A1RXWNzjESCnFR/n1dVVqlCC8uV5j8AwRuepGNlxYHZxcVHIaQakeaoBgNDz8p0+o3GMnMLjC68T7saTKSmBYDfw4QfAIfKs3++nFCOARDz8oMxwxggh/3p1dVX37t3TX//1X6c1ZpwxKpVlN04LPJmAJWSB80U0ZjEWa7Va4lt4h/EydkC/l3mLaSj0y3XNyMhI2iwo6RUng4NkQPBXv/rVdFQ1dMyJg1l2U6HHI6TNZjP1ERpnMyagE9nPGAEUWZalfSMcegT4Jl3DU5dc53nUA6OHdeJv6imTC4xHGv7mkCWcEg8ePNBv/dZvaW5uTj/+8Y/14x//WC9evEhpLtFrHwGQf4Ye9Tl3GnJd2mq1CjSEYRbzzp1XIyCONA7/x7mJfOD9LTPepBs5GZ+PeODLgr4ynebvczxC/1xGebUON1bLjITIfz5/ZR5k13/ehm9yHDZOb7vM4Ljt+jeB4CzLnkk6ktSXdJXn+W9kWTYr6f+Q9KakZ5L+Q57nh7e1k+d5OjHIvZf9fl/r6+vJopJUEEBS0dp1q5BnUOBTU1OamZnR0tJSsjSx6Engf+ONN7S+vp765QrAvbfRi/OLuUg/5DLiUXbA46ASwnOmGwyuT4p6+vRpAlm+AcY9e9Gb4N5xLCjPeXbmBJTCqHFzoDMnCtcZCIKjdBw5kn5q0/vvv69vfvOb6bz4o6MjNZtNvfPOO1peXtaLFy/0ve99r+BhiCAeoeRj5v1+whjK/fDwUJubm6kofLVa1draWio2j4BE8TN34+Pj6RjU8fHxVIwdAOIAyNe+zBtcBlq9/yijZrOZai9TgJ8xx8L7UXhHweUKMgrGSL9uIJXNa79/XYUBD1+/39fi4qKmpqY0OTmZaKfRaGhraytVWCAE6HPENTY2lnICX758mcL8rmDduIX2y6IFlUpFn376qXZ2dpJ37PT0VNvb22lTpAMw5oA58sMkvO1o9PGc/5RFcXyzGAAk0jKePDykvj7ILj9dDOPQgZN0oxTxXLlCwatKSgV8ValU1Ol0Eh0OBoOU81upVLS5uZmcC9IN0IuKudFoJPDvecqknDh/RKWJ/KpWq5qdnVWn00mGz/j4uBYXFwtRP28njhGjiJA98suBsFeXcOOd9WOeveoAVwRaGPXubYcOSVtzWsmyLPGH58pD7/A3KVutVktzc3MpVQ+geHp6mjZycjxwpXJddeS9995LVYkmJiY0OTmZ0vs4NZC+O5AoAyZsxhsMBildYXl5uVDm7Pz8XBsbG2kOmQ9fH+b+9PRU6+vr+pM/+RP9/u//vmZmZtIJqN1uV0+ePNHk5KTu37+v+fl5rayspFreExMTWl1d1fLysr7zne/o888/L+wzcNkXnQeOEaJjxfUl8h4+8ZQj57FhntZhwNNBcFk0w4Glf+Z9jLpvGGCMYPiL/ndeiu2gA6NM8s9c/oBj3MFR5kV3vRI/9754W9zn/UB+umMRPnPM5zLb3/dF1/8fnuB/n+f5nv3/nyT9v3me/+csy/7TL/7/n7+okV6vlwSxK5cyZVWWlycVQYlb5V7yaWRkRPPz88mLiUBdX1/X7u5u2pCztbWlvb29wqYr2gWsl1n3fgSgb0Tx/jsje//p8+XlpXZ3dwsgEGJzT1O06rxfTjB4O7H0OS3o5OQkFalnXp0wXXhGxnXBzq7uPM9TgfTx8XEtLS1pfn4+HQVLOsTIyIhmZ2c1NjamTqejTz75pCAgopc7AjoPfbnAoz+EY/M8L3gGXbjAoIDGqakpPXjwQE+fPk3F5Hu9XjpWlHG7ccAau9c4CjmnTV9fzx2TlGqeotDJ0fT198+YI7+iIGPOfQ29nwAy/472ST2oVquanp7W/Px8UrSs5+XlZSobhqI6Pz9XtVpVo9GQdLMZlE1eS0tLmpub02AwSMoXY8PH5IaAh+DyPE90u7e3l9bRKya44YbXjLmLwDEKTp9rV4KRNqOXc2pqKnldeZYSWIR+oVequ6A8MHSchl0pLy4uJrrAYEZWAsrY1EZFhEajkSIvHPm7u7ub2qT/HrJ3ZcN9tMfVbDaTTCWC4pubCIfjoX///fdTJYLd3V3V6/Ukq6it+vz5cx0eHqZSdL7JzGkWOmJ+fW+I3+dglN8uU/BKIisd7LvBXyZ/PDLDu3EmsDbIH69zzDOUB8QQxsD+/ve/n5wT1COWrj2lv/d7v6ef/OQnWl9fT/Lz008/TSU7OSVzYmJCz58/1+7ubkqnYE1cr7qBgv4bDK6rvCwtLem9995LnmSen5iY0Pr6ejLkygw8ZBq6e3NzU3/2Z3+mmZmZlIoDiPqDP/iD9Bly6+DgQJOTk6pWq7p7967efvvtVNUkegPhTffi+wU9RiOfcbsHPR425TI8glTuif/HuvBRz/j9/h7G4HP5ZcBb1NNc8R1lY4ifRxBb9h7HF9LN6a9ujMe+3NamG2ix/9F54V79CJB5xiM4nq7k9w27/lukQ/wPkv77X/z9v0n6a30BCM7zPAFS/ic9wsOmY2NjyXvAFcGAA0zPkzo9PdXz589ThQfAz9HRUdp4g5dycnIyMYl7TFww8rx732B+duX6+Jwhyy63auLceHgCxREZkdBipVJJu2a5ADsUBj8/P08hZfrfbDbTRiTG7tZ97LcDvxiORAmibCQloEztTEJ5s7OzhdPKfB3jPPj65ubRoB94LRE8AISZmRltbm6+4h1wAES+KOMH3M/ONGVhUQAAIABJREFUzqZccX82Wti+jrHPbm1Dk5LSRh2MG6dZDJ1K5TpfDoBFHm60plEkMRSEEuMZFJXnQMf59TYwnq6url6p79rtdtPOd6dVNsJE0E0akoN7+uxeHdaFPkdhCyhmow/tV6vVQuoUz3jep4/X+dnXqFarpRxS7oWu6Qv94PKT7wBWPg433kgVInT94sWLNCdlZQjZjIv3ijQE+osCYO3IhweQUJOZsUBTJycnunPnjvr9fjpQyCMPjCfP83TADqkVjM9zPCWl6hbNZlM//elPJSmVisMo89xQ1ufw8DCtK3IEBeg8Q78inWdZlg4dQs658wRFX/ac59mzBih5vw/+4Ic9K1NTU+r1eqk+MnOOgeB05955QBj1k7MsS6dhIsdmZ2f1K7/yK+netbW15HXf3d1Nhmu/308VHzzlK77XU00wgKCXRqOh2dlZzczM6NGjRymiAc9jAMVSidCfp35BG5SkA3hOTEzorbfe0urqqiqVSgK46Fp01f7+fqI3+oxMcWM26sH4twMn1g0Z5UDaaYu/XS7E9qP8j2kL0O8X9S8+E2nO9UsZmLvts2HvKXtv2XwxJtpiPFEeD3t/GW6IV/zejc4yg6KsPZdHyNHb5ixe/1YQnEv6v7MsyyX9r3me/xdJd/I83/zF91uS7pQ9mGXZf5T0H/kf4o8A1j0WlCaTbqwvt2TjBDqAPD8/187Ojnq9XvL0dTodHR0dpaLwCF9CiigYwFQUxg5EfOE9DYLPXHn/Yvw+FwUQ7FZbZPYyhcCF4PT3OUh27w2hLj8kgfJpbrlGK8u9Le4x8VJahGLX1tZSXm6WZenoTi82T1pC9Pbzbh8/8xc9ZfTRBRbMyjgJ5caSPNAIB5ew8YoxMi9epSGCJs9Tl4obMqLnxdcKzykKMYJSnsdQiXTm/XDP/DDLOioN5tdphP77PXjyqN2KN4j0Ax+zKwW33lmz/f39wjz6s95PF3zcz2coXAfyLgD9eeggepl9Dn1OAGHxchokl9oNdI9CeL/poxsgtIHXa3Nz85UqLa6wASm+1r7h1cPBtMHhPZVKpeA4qFQqaR/ExsZGOvzH00QckLP+XufW++bvBOQQ2s+y6xrjeCKhf/fEomwdpDtP+1q4EmaeXNbH0KjzeFnZxggS+T+mPzHP0B4GB2Un48Yq1sc3cscxOZjwiCEytVKppDQHB5nStVFFzevZ2VllWab9/f1UBaMMfJQB/aWlJe3s7CTDhtQLPP3oZLz2eLydT5xOHEzC37zXU/murq431VLdA6PIN7++ePFCW1tbhSolUQ64F9jnNQLXaBDEaFDZVQa2orzgPqfBYUAttuvPRVDt33/R9WWA5m33u46KeCWCafjLZesXvT+Ow+co8q/PSXwHbUVsJN04xtx45F1f5vq3guD/Ls/zl1mWLUr6f7Is+8y/zPM8/wVAfuX6BWD+L5JUqVRyqTjZAE/fQYrgY+Hq9bqq1WrKp/RJdQHLM3g6j46OtL+/Xzh6dHR0VJ1OR9vb2ykkBfO4wqF/7h125SUVk9kjkSMwGC+Cwne9/mJO0ns85DcstIKycqXLvMUcLnbc+4YFlCM5ab4Rh/B2vV5PAIeQXTQ4AElXV1d6/Pix2u227t27pzfffFNTU1Mp77bT6Wh9fV0bGxsFRgw0UghjoYjco8Fc0VcXdldXVzo8PFSv11O9Xk/KPYa+8Px6ofosy1KYjFBjv98vKAZPaaBMkwsFT2MhX9PDuayjh6BRji6oye8b5lkYdrkScGHi3zt90qcIuAaDQaqpOzU1lWqYYlTGteMZ5wP6cHR0lOYsgm0Hqm4YRg+up0Nxf3xf/N6Ba5zDqIDiZhbaPz8/T7vx3VMbAZaPxUEJStvp2L1RAAQAhssb7kHOXVxcJEMd3neA4N5oBy6URGu1Wtra2iqEcZG3tOMbC5GHnn4k3VT7YJOVA/fB4PqUS5dDbLSKqSk857Tp8tXX3+Wxz1+v10vlL/Ea0rbTjRvMeFj9KN2Y349+kJQcL/48lRfiu3zdnKYBmcOUPOuAPH78+HHayA0Qr9frmp+f1/Lysk5PT9MG5Zim42vrhufIyIju3LmT1la6TnVhQ7Y/7xfODuiG9IYyI4T0HO5D1+zs7OjTTz/VgwcPVK1W0/6Z8/PztMH15cuX2traKuSgYmi6weT87/2NgMkjYM53kff9KgNw/C4D2tBWWX9im1F/M29l7y17d/zb249/R7Af24j/+zMR5A9777DL5bDPm68H72P+XI/6/8Pa5Xlf11/m+jeB4DzPX/7i906WZf9V0jclbWdZtpzn+WaWZcuSdr6oHSceJsiFFoLJTx9yS9mVAG240kEIEOqkHA+KBEY9PT1NnguKhXOVWZrSzfn0gCcELIvnY2LHrQP6er2uqakpPX36tKBE3ZJ2zwcKKFpRrhx4jjCWe154lpO5Njc3Szcf4fGQrkHR/Py8vvKVr6Rdv1tbW6mmJLVbJSUwKV2DiZcvX2p7e1ufffaZ7t+/r5WVlRQW39raUqfTKaUHhF6WXXso2B0d66Yy3rguKAr6k+d5agehCyiu1+up3NLu7m6qA0p7FxcXmpycTCduVavVBCQwGPAyo/w8PM0cNpvNtK7QJveSH4VSjiF1p2VoIRpTLhiiUHPvdBTYDgx5lytTnltbW9Pm5mah/85r9I2UF78ALR5xgb89FYaUC9J+qCVKf/BUskbOByhMB9O8e2pqKh2qgCLHmHH+8vCrzy3z4v33uUZRu7KI+bXMJUYgwPH4+LhAy/Qrej753zc5Ad4oPVgWUWg0GsqyLFX2qFQqaXPiJ598otnZ2WTIuYx1RwQ0Uq/X02EpUWZgdLL+9J31q1arCQR7upbPSzQkfT6ZY/JtHYy7vJydnS18VqvVtLm5WeApZCl043Tv+y78cwwh50cORAEcw/+A+kij0Bi05eCfdgDyk5OTOjk50d/8zd/o4OAgyT6iWmdnZ9rY2NDh4WFKk3Aec9koFcv3nZ6e6vHjx5qamlKWZZqZmdH9+/d1//59nZ6eprx95oKUwV6vl07kGwwGqU/IMmrxs9lxampKOzs7KcqW53lKHXnnnXe0tLSU5OLe3l6SMZyy6PTl6ZI+nw6E4j3Ov+TIe+WMSGNOi5E+431cGAFEyty7H/tYBjL9c5fpZQDdxxM/9ytGs8oAfZmxNGz8/lxZpCz23XVM1A8AYDeqy8A9/IxccMMi6qvbjJkvuv7VIDjLsoakSp7nR7/4+w8l/S+S/kLS/yjpP//i959/mfY85QBLWbopteQeQQjt4OAghfLcAnDLgYmsVK7z4N566y19+9vf1ne/+139/d//fWEjCrtaOZ3KN4ygYPnxy5P26XMZwZF7i7cVhXB6epqKxXv+oAMEJyyIgvE5k6Fs6vW66vW6NjY2SvOVjo+P9fjx4/QdY/JSPKxJpVJRs9nURx99pLt376rX6+nnP/+5Xrx4oZcvX2p3d1dHR0cp/OcKjn4fHR3pRz/6kT799NOC1eZgAgDDmPBAA2CoHQmgigLBlf/o6KhmZmYkXQu/TqeTlPjq6qoODg60v79fYLBms6lms5nupR+VSkXtdlv379/X/v6+qtWq3nzzTX3rW9/S3/3d36leryclwRo8ePBAg8EgRRxYVzbcQdfQjqehkGtIiTIU/unpqbrdbsEb4goIQOSfDQaDtOnO+Sh6qZhDQq9RsKDkHWRBn57ig1KHBhzco6SoQUrIeGTkpmQVu+objUbqM5vtyDs9ODhIERo3cvFe0mf4pdVq6Vvf+paePXuWjrd1IRy9QmVKC7njB+TAsx45ccPC5YIbZ+RAuoffgbivOYYyoAyANTIyooWFBb399ttaWFjQxcWFPv30U21vb6eUH/rfbDY1Ozure/fuaTAYJH69vLxMoJWd8kQqGAcgmA1+eCOZD+Yh5r8uLS0lEIUspZSan+4WnQvRwOj3r0vieXpNrVZL8tN5plqtamlpSa1WKzkxPLTvnmBo3zcTe3oLtOWGTQSwOEAkaX5+XhMTEzo6OtLu7m7hMBkHPPALc+eODt8wCw15tIXNjqQT7O7upvVmzwKRAsYHzUJ/8CeOiPX1dY2MXJcpZDMrRgxebtaPdkhtwalEDjJGFhtnp6amUr17qniwftT3Pjo60sbGRspbJ2XPdTjz6J7m6A2OAM51g6eruDHJmpblfrs8dDng9AMf5nmeIpzwj19lAC225+MoA7cRfEYQG8Ff2byUtTsMbA+74ruisRq92XE94Pe494A2HOjiXKhUKkm3ls1n2diGAeay69/iCb4j6b/+4kWjkv73PM//ryzL/knS/5ll2f8k6bmk//BlGnOrFRDIAMoIBGbG0vdaiNyHcEYInZyc6OnTp/rTP/3TxLieR4iyxovhoSIYVCqebicVAQxpDTHUywaILMsSCMDr5wd00I9+v59qJDvoIxzvjMN8eVgqyzJNTk4mwexeQuYt1rnlWQCG5xiTQrKysqL5+XlJ1wr96OgoeXM9FcOBO+CGkls+dvcCAvrcQ8pOazxdHsr08TAO0hQArngTecfl5WXaaOQeN0DBxcVFKlyPkK/ValpfX9fp6WnqY7fb1cOHD/X06VNVKpWkcJnbd999V/V6XT/60Y/08uVL5XmeNrJ4XjJClCokrVZLU1NTmpiYKADJRqOhZrOpsbEx7ezsFKxr+CSme7jgkV7dAFLmLQDU+MYynkUJMr8e0XCFToqSA9/R0dE0Hk+hQAHX6/UkGAHGABv4w3nMdyq74vJSStDK3Nyc3nnnHXU6HbXbbfX7/YKyinzh+Y4+jwAD5s1lh0dDUKw8B2CQbkCKnwyGV4q2+Q7jxYG+exjZUOZygHt87TqdjlqtljY3N9XtdtPmqYmJibRBj/zMw8NDPX/+vECXGMPwLHzDHLCuzn/dbleHh4fJS+3z5jnU0chwgwoA7jINQw95DP3R9snJSdrn4Qaa6wLmxT3JyCvoKoJfpxMu7hsbG9PExISWl5c1MTGRvPxODz5OSnS5FwzD09tm3vI81xtvvKFGo6HLy8tUpcFrHY+Pj6cjs6O+ZL6ZCzfUAN17e3v6+OOPtb6+njzMzCFzT0rY/Px8OiWw2+3q6upKMzMz+upXv6q5uTlJSrJ6Z2cnReLcsJmYmEgGPel5GH5+b+RNl19RdsXf8X7mk7ZYg8jn6GhokD6zpuhZ1hMA7OcLRADqV3yfr5X3O/a/rJ1hANjna9gcxee+CDS63oCGXOdLNwaL64Ooq3EOeHSybCzQRgS1kTbK+jls7GXXvxoE53n+RNKHJZ/vS/q9X7Y9D5F6WKOM+F2Bjo+PJ9BCWZhoXQFOAEB+Eo0TnaQUnuQ9UajgxalUrtMxPvzwQz18+DAJi8PDwwIopU3AaL/fL5RkcSDEGPlubm5OU1NTqfbp+Ph4qg4QQ2zuUeAdnMAU5415jcTic+LCgZJtP/3pT3V1dX3SXr/fV7vdTrt42Q2NIolgGOXM3x7mAHizYQ6Bw3oy56xrHAf/e31UBL90c3gHPwha7mu1WqlcD+AI4Ez6Ct572r+4uNCjR4+SUeKASpLW19c1PT2tfr+f2r68vHyF9hgDa08YtFarqdvtJsCMYPad6NAPz/pGRePHwjGr8EO9Xn8l/M+6oAC8BJUbptKN8PMxMxZAKgCBfrDm9I82nS48qoMMAAgxb/CzC9GozJgbFNYPfvCDtNGGKIPXgeZyge3t047PAXzrHkRADvRPP6F/TyNwj6/P8+XlZQIRKGoUh99/cnKizc1NHR4eJqPW55j56PevT1ScmZlJO/x7vV5Kl8LYZ/NTvV4vHPDgcspziKFLB+aXl9c1gxkDvMvc+fo53TPH/l2e56kOr/O1O0A83OoGr5eqAyiyvg5gnE/QP05f/owre39uMBio3W5LUqGGsush5xufC/dOuiMIkD8YDNImQwf4jJe84UajkQwqNwShUQcubhhDvwDe/f39gpHo8htDAi+5Gz/T09P6xje+oZWVFZ2fn+vFixel5SUZm9cg9rWKhrqvTdRj0YPq3/E9cxodLk43Hn3gOeS+O214nrXzK45hGHB1enJc4/zkz9DPsuvLgtZhz3q7wwClf+7OBZfHvMvn3p1R6AL0elyzsn5HGVbWr7gGt123zcVrcWJcRP/Sq8jdGdeJyAk9ElK/309WtwubmJNFH/ifHfsuPCJIRQh/9NFHqcQNHi7u8WoAtIE3woWLC+NoHXqFCu/DbQQ0GAxS/mpM1bjtefeAxM+73a4ePXqkk5MTTU9Pa3R0VO12Wzs7O4VUCECAl7hzoo/vcMDhqSkILrystO0MGemDPGD67F41N2wAFWzcmJ6e1szMjC4vL1MJKnLQMSJYu0ibKIYYVt/e3tbV1VWhXNzBwcEryjGuKwKkVqsVSs9JN8DTPWrQJ166Mg+Ig2MA4MLCgq6urtRutwsGGRuKnHbLDCbapw/MC947noO28ex7pMb50fkQBe/5755n5waO99GfZ17Y1Eh43A2yWM7MaTIKWNr1efVnorKC7mLFCtp3IEZpN+je56RsYzBrPBgMkkHE5+RjOh8NBte5m9PT02o2m6rVanrx4kXiMYCTH65T5tXydfXwMseU8y7y7TGkGHcMO0e56vPv9ODgl/d7uoyDffrgIBkecDkrFetqu85gXbgiSPJ5gbdIG3CZ67Lcx+gRP75zXuEeN4yIYOBs8Lkve87n0Q0HxhbTgUjzGaYbGCu0xHzT5ujoqBYXF3X//v3kIcZL7AYIY41lPCN9RIPbL18HT3+KRgpjd90fDSfvl8sGd9S4gRL5z40Vdxp80VUGYMuAXwTI/y2u+L5hfXWjyuVZvNfBstMf8ua2d5fNi/PnlwHuZX167UGw9Gpuouf8SMVd9H4PYAVl43lDeBdrtZqkm7JUzlTRm+PCkHdHT5HnLlFXkZyVuIgQC+kXADsXCPx2hToYXOeTkkPHZpKYS+MM4pYx7xrGQFGYR2aMQvPi4iJtWPBjT0k5AJxwuEKz2UwAlrI3CFHfcOJrRb4h68ZacDwtXrEybw3rhNeQdtlBf3JyUgjLI8SoWUzdVN4zPj6eDkzpdruJkdlkSE3NMqNqMBikutMrKyuqVCra2tpKOaBuSUdwhdLAK8c8sfbUcmV87GhnPaIRxfO8F4A9Pz+vXq9XSJWpVqtqNpsFAy3LsoL17oogjnlk5Dq3d3JyMkUH3FPvHjyeRakS0o2ehui99yt6XKJnR7o2UmZmZtKcuaFKhMA9GJ436kre8+p9Xl3e5PlNpAhjzMfB75gCQ5jbDRw3BFkHPmfceJzhK7y0GF0OCiMALDOcoA9/1scZlQl/Uy2ENXV54PLQ58oBqM8x/E9b0bvN8/fv39eTJ09SLiltUfvWx8OceWqFzx9eaO+7e48lpUhcXHvWCe+p80mZjHXe9PFEoOe04qk7ricBXvzNXPics/YYfbzP++f3R5Dj7/O0mDj+s7OzlGZDm8fHx8nD7Hwfacn7w9y7Y8tpLcoSTgb0uYgRKvdou+xivFEPOeD1eUQm+pqS845ecRqPINvHUKZzywBwmVe5TMbHdvwaRo9lTo1hbUXM4rLRLwe9PItciwC2zOtf9v8Xfe5tDrvvNgPitQHBLjQhLl90t8YhOMKC5LZ6qSKpeEY9AElSAiPOTK74/aCHPM+TAuXErKurK21vb+vs7Ex//Md/nEq0odTc+wBT4RmRikwKUHTBgCInRMlnHkotA9NRmHBvnOcy4ncPbfRw1ev1V0KbEbyTz3r//n198MEHunfvXspfffbsmR4/fqyXL1+WKlPCfawpfXIPODlwXoGBd9NfKjgwt4R76a/X+KxUKoXNJHizAYlLS0vpcBbSWFwxoEw5CIAdzoB+wDXr2Ov1kmJ175hU9DodHx+r3W4nQ+L4+DiVYHIlG9fLy5pF5QpdwANZdn2KGMZVll3nj6+ururu3bs6OTnR4eFh8hIDitgcSpUNwlt4TaAt8gWZYwRjVE48F1NUuJ98UxeYXK4kHWhHbw2pHdALc+2lxeK8OSCO4D+CBOjL86il62OwOfjAwTxghD72+33Nzs4mfq5Wqzo/P0/GJTmwJycnad8ARpIDHOaKTZ0Yc9wzMjKi7e3tdGocXkUMQ9aEttz7jmzhiHRyoy8uLtRsNpNcctDEJkbaR47CM3FDGr89lYB7CPUPBtfH+r733nv68MMP1W63tb29nfrHODGW+Yz1JC3p/Py8cEy5Gwqjo6PpgBw2XUfZ6foiz/ME1D0y4zwX5ZUbQq6DfF8GbU9NTSXZenJyUjDIoV+8qkSOOOHPjV9kNGtEXzCyiJgiz46Pj9NmOEAvKSkYC57XvbGxoT//8z/Xxx9/rNnZWV1cXOjp06c6PDxM1URctjufMafDgArA2/kUee46yOfd59vbjkZ47IcbKA4ePbrghpR0c+iRA1Zvz3+7ge1jKdPLZVcZ0PPPyoDxsDa4HFt5Px1D0Mfb2of3kLE+Pt+v4m1E47BsDm4D/H5FGvK1uO16bUAwAtuFrjOxVCz0Lb1K/H7wA2E9BIXn0brAR2kBsgBDceKwyPGKkfOysbFRSLD3nFH3YknFUK0rL/rAkaLUL465cwBsgAHv8hytaElGAnPPqQtHQEe0iunDysqKOp1O6hvtM8+Li4t6//339c1vflPvv/++xsbGtLe3l9rGI//kyZOCZ2BsbEzNZjNt8In1PT3dgF3LvoMdhm00Gjo8PCyALrzLeLJRVl6DkxrCeH/zPFe3201zW6vVEoDt96/r5JKzSztXV1cp9AcdEWbe2NhIm4Tc2+cePxeep6en2t3dTSfXkQ8e1xV+wMvO5244ODDIsiyVX8KIQzg1Gg3dv39fv/M7v6Pf/d3f1Y9+9CP98z//cwHA+YYo2iE/kPq5zBll9xxgRgELv19cXKRDVA4PDwvr6oLPQSjfsZaUHgRIcGIYa0kECNDK2jlfuUIlajEstBmVbZYVN5kiB1AG7hFi7Mg5cmcHg4FmZmY0PT2tdrudDC/Amcss6ntjnCNX2Ejnc+7vvbi4SFU2kGdRKbn3izn2cmSnp6cp6uWb/Xz/A3N8dXWliYkJLS4uqlKpaGNjI/E4oB0554Y37+73+4n/xsbGND09reXlZa2uruqTTz7R4eFh6oeDfQdMo6OjqtfriQdZO/qLAeuGVrVa1ezsrEZGrk8lJP3AgZUbW9LNqYC1Wk3T09OanZ3V2tpaIXXHadl5nncivwHJjUZDq6urGgwGCUwC/qAdr47kffE0JF9j16n8jWHjB3BUq9UEYqOn3tPSkBEXFxf67LPP9PTpU01OTqrZbOrg4CDxEU4laMR1sQNDN1qcn/jNM4CtMsDqYD/ynztFHAs4YIPOPaWv7OAT2o7RJL/H90S43PY0DX+/62c+j5EC73Oko/gsV8Q+fk8EmI4ZIk/G72/rOzQDrSGfI1iNazDsGgaQ6ZP3bdj9ZddrAYIhahYVAIHSk4o5u3HhnckjcXI/HicI1gmXXeiEE72aAJd7JyQlUEb4H6XkDOiCwgUQgg4lC4FzXjz3keZBmgGHg3S73fQu+uaeDM+t5fsIft369r5EbwFC95133tH5+bkePnyovb29xFQonGq1qvn5eb3xxhuam5vTy5cvU550nudJgfV6vXSyUZZde97JafS8PxcYfgRvBBQOjGZnZwub66gn6x4dlMfZ2Znu37+fNhYNBoO0y5cNlO12W91uN70XhUrd1OPjY3W73RRxGAyuQ/usFeA9en/LBIx7pEi1ob/DQkku+JkDz0fkHQ7a6IMDZdb88PBQT548SVVMyBF1pRH51o8q9u99k6TzsK8rY4Z2MDIrlZsTCl1o5vlNCkGWZUlhT0xMJOUMLZMre35+rkePHiVjxZUotImXwp+P3iP67DwEv11eXurevXuqVqs6OTlJG/A85O+ywOfi4uIieX0bjYY2NjZSSb0sy1JUAVqPefNx/QHY9B0D0GmQtllD/y0p5cWz7jHlA5rEyKQ/0TuPcQN/NJtNtdvtgrc3RgIigKD/Xg6P6hULCwuanp7W6empNjY2CiXGmC8PS9MuQJW6uET3Dg4O9Pnnn+v58+fJox5lJf3GmMjzPBna8FKlUtHR0VHy4LvHNDphoCvoydPyLi8vU0m/Xq+XPO6+nk6PgCXfXOpygD440PQqE8hM6g3Dhxi+OCow5mM6iKQUXaIWO/e4cyXKE59Xl4lcvn7c77rPQTP3u6zj3mhcQ7OehuT86setl60b/CXpFZ4qA5x+DZOnbgz6WIbNzZe9GKu/qwz4Ov+WvSeCTh+r62Q3WqAVfvydsW2fN/++DCAPez5+/0Xg+rUAwZKSJ4Q6ui9evEhenDJgVDZBcdAuUDyM7wIjErbnHvrkVSqVJNQR0N1uNy12v99PZbwQhChIByMxZyvOAVe0qvCKNpvNBBZQDBDWl2EOJ1SUjLdx7969BCAQsgA+hKfnUTN+6lZubW2lE/foJ3PuRyZ7jhthYGcmnwsXoNJNeMyVyuLiot5+++1kyLinaWNjI9XTJIw7MnJdxgmwRfgPjzhpNl7+zr2FhAOhKa8IwPvPz89T9ZJarabd3d30vOeplVnY/r0r4AiqHFxFZRDnzzfIYTSxjr1eT+vr64X+o8A8/wtBhgfW03JQkL5xJyoQ3uufn56eam9vr5BT5zzrysEVW6vVUqPRUKVSSfmQgC/WKM+vvcE+HtpzBe3z6gY0IT5SUXi/82Ke55qbm0upF27YwmekS7iX0vtBJAtwg5eb6ggxnO604Qak8zLz6PLSNypF+qBPjUYjeUF9D0LkSz6HjuDjWq2WDpMBJGC8cNgOAIy5dY8R84ZBz9/NZlMLCwuamJjQwsKC9vf3k6eRNAc85T5maAMZvrCwoHfffVfvv/++5ufnUzSN8mZPnz4tlPGLjgHWLObYYtQwPtYLfYP88pQt5Kkbi75uHAoTHRvRUGMdoQWnEZdioAO8AAAgAElEQVQxZfeTPgFvYwR7hQhSZFx20V4Z6PETBqOBHHW1z6FfzpPR6eE07jTppfCiXI1txrajrIHfywwK+sucRPDq98c5j7K7DOAOA6jelvOLj6XsuWEAMhoYca3iVUZHPgY30HECIPfKxl7W9heBXR/bF/Wp7O94vTYg+Orqeif98vJyyn/CivbJ8TBOGRB2QkHYuzue7+LGDABlrKYAsRP6np6eLgguPykIAEC42AkQZeG5QH5FQRWFA8LFFViZxR//97b+P+re7DfSJDvvfjKZRTI3ZjK51r51V9dopi1p1C1YM5IM2RYMAYIu9c/pQpe6NOwLyxAgDTzWGD1S93SPpK7q2oss7msm9yUXX+T3Cz7vqZdVPb6qLwCCZOa7RJw4cc5zljjhgsQBvTPqxMREspy93M/q6mrKV/RnoSAODw+1tLSkb775JoWS3AvCxi7fZCVlqzhEbwk/0TDxzQxc22w2dffu3RQqxhOBYjk8PEx5lQCRvb29tJu+UCikozsdQEWPK985iGdOXGF0u91UixVAAD2dx/K8HHkC1Xk17ztXgP65v8P533nTc0kPDw/TSVUYMnFN8FwPi8KPHJqQB9bzeJE1hzfU3wGNvUKKK2DAJUCaMH2sBgP/OZCk/24MeN4afQAEuyd/MBgkUMa6x+vFJj/vv58IKGVztQFG8R3O/xE0IQf9MzfG/Rm8Hy+yp3n4fLhy554oQ+J8OmhgXVLTenJyUhMTE2kdMLeAvai4eA586o4Pp5M7Rfr9foqKseZ6vV6S7R6FYb7L5bImJyd19epVTU1NqVgsZg5AqdfrGQOJdC/qHUc5wJhI8YDXYolAX5tuWPvnTgPoHVPponEZdWCcqwiMfH35OuJ+1vBgMMjUKe73+yllI0ZEoJH3M6+PlwGRqO9obkQUCoWUxkTf/H08x2nEZ/BbHs0i/SJ98vS0P9fXY97zLxvvZc/1Pr3r3Ze197077x0RTH7fFvvhOCrKnMtocxl/5vXVx/8+EP2+Z3r7oEAwxGs2m2o2m9re3k4ClIGhuCJYuMyK9HwaB4qer+cLxMMakhKjcxzkxMRESp2oVCqp/m+/38+UrwEM51lmeQAhb+JQtpKShU5+kisgvz4qUf8bgTs+Pq6ZmZmkpOgvQIKcPvc2kEPqgBQBCBBYXl5Wp9PR6uqqbt26lUB2t9tNJwNtb2+n/jOuCKgR/C5kXDGyqz/SjYMmCOl5LV1yFN07gecIICwpeV6ioETIsVnR+4XwxTsEPVyR4h0jjxHvk5/mxBzB154y4nNLi8LAAQN0jPdCawfLpI2w8QYgAD+4F4hazHjMHWifnp5mytkxdvesEK6Hr+kjANbBHHPNxkmADt5BPPpsnGK+MYKOjo7e2vwFUHKARy44HkkHE/AlAMBp7jmoi4uLiQYx5McziOZQrcSNEgdZPi/wkIMj1gWfAxIcRAM2PUeXY5G5Nxre/E2VlphW4QYwc87ffhCORx6Ixvg4arVaMghRnIzLvZi9Xi9j0Ozu7qrb7arZbGpxcTHlxMKjg8FwPwWRAN/I68cRs6mTo4j9NKo4r3iZfSObb0xDZ01MTGT2jHC0MTyN7M1T3oVCIbPpOcoDKl7k6Qxf0y43vLmnMuoYDAXWB8agyzDGXK/Xk1fdDQvkgfMl+iTqoDhuxsJvnkO/PRIwOTmZ2bQHj7g+8txd1h0Gph9SlKc7I6bIA4hOax9PND78/7z59ub9vwyU57U8fZDXIk/F8eWB7e8DiBmjr1f0ID9+yNFlz/5NQWsc6/v6+77nfzAgeDAYaG1tTQcHB3rx4oVOT0/VaDTSgo5ezxg2K5fLmdqDLujxMnpiPx4FJtBzujxnzYH3+fm5Go2G7t+/nw4tYKPU48eP9atf/UrfffddEkSER/mJIT/3KPi7mFQPM+JN8nG4MnKg4SDHc33xauE1LRQK6Yx2NohsbGwksOe5ki5EotCldbtdbW9va3t7W0tLS7p27Zrq9br6/X6qEsGRqcy5LxBX2gApABhKxPP+3OBYW1vT8vJy8sqMjo7q9PRUKysrWlhYSLyCN4gQM1UXKO01OTmZEbIuvP3kKwBNTGuIeU/9/sVpdM1mM9Udpl4rRyjneZ+ZPzf64M88r4Dzur8fRe00cI82fWfzIDvQEWjcJyl50YrFol68eJFOfYqeV/jW+wCQAnjC3+VyWUtLS5nxFIvFdIgJxhQb3vD87e7u6vr167p69apmZ2fTuHu9XtpcJimzbhxQ0gcUGhsR4U0H5KRdII/Oz89ThRgPW/t93MuhAaQL0E88pxi4PvfMv3sCmbuYh+3v5cRDN1bOzs4S7aDtZZEXjHnq8Pp4uTY6EFgLGB/IDo47d14cHR1Vq9VK9cUBuqTYMFYAtPcLw3ZnZ0eSUmUKwBpy3cPhbgQCzPb29rSysqKNjY2Uv4qXEaDtMhuQ6N4+b17+EYcJR7W7I4SIQZSbDthcBsAnHolxo9OBnOsZ5xfWQwTQrAPWCt5zP1UPWVcul9VsNlPt8ugkoC/IZXQVYNlBnhufTkv6g+FMIyd5ZmYmHdJEtQlfZzzD3+NjdRAbHQ0edaAfnrIVQaPLXJd3EWj5/gzu9/VGiyAuD7A6qPZ1F42hy/6OID3yk7c8IyCvRXDt7wJDRAAcWxx7BObvA8dxTrzvl70jtg8CBLtF0el0tLW1lQF4hFsQZIPBIFN+yFMVOBEO4YuSi+FHZ3yAi1v8PhkoggcPHujHP/6xpqamtLa2ls5En5qa0h/8wR9oZmZG6+vrqf8AvrhQnZldKPhkueXuyhgBg+BnMQBm+A1g4t0IaYT5xMREJhTIxpxbt27pxYsX6Tn1el0PHz7Uo0eP0uYMz6WEhgg/gAQGDbVuOemO+aYhcDqdTlLaEXSOjY0l7ysA1d/f6/W0vLysX/ziF9re3tbt27dVLpfVbrf1+PFjLSwsqFQqJSBzdHSkqakp7e7uJhBzeHio4+Nj1Wo11et1DQbZ8DjeS19s7hnMW7Tu/cGDgoeJDU/1el1bW1sZ4wUhUi6Xk5D2UKr3IQoJVzQe7vdwpXtPoB/P8pQBVxj0yyM2Dqbcu8/1MW+RewH/vAOPLv2oVCqam5tLlRKoDlCtVtVoNPTy5cs0X69evdJgMNDDhw919+5dbWxs6M2bN8ljz9yxhhgH4MnXvytRxkDZKLxxrDUMbveA4lVz8BgVGuvWU5HwDMcoFH8jw1wWAeAxzs/Pz5PXnLx7AB7yMOaKer9YvygvdvY7uPN+ecTBZZ2kVPGi0+kkcOfGBhtjAQmA6FiFwR0HyDmeVSgUEs28T9DCZSy564VCQTs7O+kQnKmpqWQkeDTLc4gd8DMXvj6cp/Ban5ycaHV1VdIQIM/OzqpcLifPdNwE7s4GB4cjI8PTLL08oq/zvBZBX+Qjngv/UNIxD8xBO4w0dKtH75w2rAHmyz3JjAs+Q+64gUypQL+POu/j4+M6Pj7O1DbnXR5t8nuhkXvknVfof3Q0eOTY6exjc4DssiOCrQg6eW6U23nXuXEbv88D0Q4AfR7z/o/9edfn3h/v+2XgPTb/3A0gvz8PmOeBep7lsud97V0AWPpAQDCKwF3pDoxhBAeoLE4I0ev1ErADLLugccbHY+GAGKaO+XJuleK5kJQEU78/PM2n1Wrp1q1bunv3rra3t98riPwzB7rQw8GgL0aUD2kI9FlSBqRxX7TUut1uOuFufn4+s3mlVqulDUp47E5OTrS2tpZAqDeUPsoZjwlj9/Crh7Hpv6Tk6fW+joyMqFarpfxr5tMBq9MMHlhaWkobvDiyGM82whGBeXR0pFarpXa7nULYg8Eg5RETgmeznAtrSoH5ZikHjZ77TaMP8/Pz2tzcTJ51b06DYrGoqamp5B1yL1vkKRcQlIjz5zmYiIrLn+NCF7r7+hoMBimd5cqVK+p0OgnI+LXwGfxI+hAe3H6/n4xY9zahYGu1mm7evJnyi90jXS6X9cknn+hf//Vf1e8PD5Q5PDxMwNfz2H1M8BmfeeoNxi808XQjokzVajVTBg3AJSlt7nIZEueVexqNRuawE+bGI0A0+Ht0dFQTExOSlIwHADhhfpQ365u++0ZUB4xxr4XTGB6IPBkNdoAf4CAqNTaXMXaPDLhixkPMeotKOU85M3cRpEfliMEjZUu6bW5uZgwW+Ndz4B28Ixuch2jIFTz0vd7FscMjIyMpJceBvacjQXsO63H6Hh0dpaOs3cueZ8zENDFf29EbyqZE1pyvAQfhRMviKXEOIKGVy0KMiggk4/xzL4cDoWOpxFMqlVKa4dHRUdK7UZa5/HFQGOUZ/fE0Q6c3jfuQCdCX+XM+9HvyAF/87DJQHPVFnpOD6y8Dh3mAOO/+vM8i3eJ1sZ95IDm+M+9d7wKlUQbmjTG+Kw/E59HosvZBgGBvhcJFKJ/JgNEQSiy86B3b2tpKn1OwPy44F8p5wsKJG9+ztramlZUVVSoVTUxMZDY4IPxIgYheJRQv78qzYrxvAC6e4V4Cv95/O5hnHC58pYuThZaXlzPvRtjs7u5mNo+dnp6m8GNsLohRJi48AU+814G9j8sPBHFvwcOHD1N4ntA2CsNDnoyVQwbOz4dHFF+5ciUDGt270+sNa5DeuHFDnU4nHXva6w1r71KODmDp/OFgARrzdzRm+Azh6TVsS6VSSsHAK+2pLoPBIJVaixsMmHfngeilohEBiPR3A8R5yvnJhSMKMHpiHHg4n1UqleRZpxYr6SwYM1SAceDJu1wp0zc8nZVKJXkCPfID/VzxDgaDVH3Ewa2X3eL5DmBR5Bg7zAHj4x7WdeyrN+cFpyvedIAt14yPj2tyclJra2vpWRhgpKC45xgQHKMWcXMTfIIR7TIOJR+9jlG5OM8hZ6MSjhEFz8uGRv1+NlcV2eEtymD3srt+oF+cXhf5URqWfqNvZ2dn2t7ezl2rpHZ4CgRyKQIbXz/wE/PKfdQaZj6oUEHkk0NpokENfTwaVKlU1O8PNyLTP49cHB8fZ6IyTifn8bjhNRoSXO+gOD7P6eDyO97DvOKBjmkSvIc0B57vOdnMmX8f17i/6zIQCZ3gJwfplwFU1ob3Oepep12kZx7d8tpl4PhdAC724bJ1+75r895zmZ7x39+n/5d9F59z2fvz3vc+oP8+Onj7YECwh5tYqC7k48LzXEbAwfn5ecohrFQq2tnZSaeCsUgRWigBFosvBCe496Hdbuv58+cqlUqanp5O3plisaiNjQ2tr6+r3W6/xexuiUYw7mPK89S5YMT75ALePTY0fyYhTld65+fn2tjYSECQUmmnp6fa3t7O5A4Wi8UMDb3FcaJg/KQqF1h4UOPGDWjjG7BIg0AIYr1zIICkjBLnd7fbTWkbjB1auDJDUUxPT7+Vv8amRn58s0V8XxRUeTSBlpIyno5qtapr165pcnJSS0tLWl5eTqXpCoXhqW7sYCdEm9fogwt/b06DywSw81+esHaecqBOeaWY/3blyhXduHFDV69eVb1eT/wnSa1WS9LQqHzy5EkqX8fzT09PtbW1le5j3QLkfU3yG8+zRyL8+5jj7Jsb3SsavTyE9qk2Eg0v+NNp6B4kpy90gp8dDPvc8hmbNTHMoKEDccbNWolghCiHz7+DNE8T8fKCrNkIDKLBJF2+oScCVOcl7mNdeATQnxeNGp+vPD4F5DgPABZ9X8Xx8XFm4yy/SX9x/QLfRC8zMg1gilcVfuNer3/d7/fToRTn5+cpLQEecADpEQcMI6IqRAe8ChERrr29Pe3t7WUOT4rAFvkHIPSIKy0PzMbfHo2L/fcG/cvlcgaAQ0t4nOsKhYuNnuz3iRVaBoNBxlDxDdVx/fEun9P4uY+JduXKlbSZklKLeQDM5+BdYC5+ngdc8+T0ZWAyb2zv+t7H5tdHnHXZM75vyxvD+4yAy96Xp4veB2x/k/ZBgGAHqDGcHC0XGN1DyXzOgp6enlaj0dDo6KgWFhYyYXiuBwi70kPx8b9fyyJ/+vSpdnd39cknn+jGjRuanp7W6empXr16padPn2phYSGzsQ7lXSqVMjvHXcG4MHIL2AFbv99PXg7ujV686IlyL2u1Ws0crcnJZC4UECTQiTJqp6enOjg4eCvdwgWsg0xfyA6K8OJRisw3tkEzcsBOTk706NEjSUrpACiDWq0m6SI0x28AEKG5uNOf/lK+DVqMj4+rWq0mT4SkFLLG+8IBKq4QXVg7TeAt+ghQIe8R2k5NTenq1atqtVq6cuVK8hgxHg7qoGSZ86kLL5Ro9Gj4dW5koHA94sJzUCie5xYNVBdCzCdjZb7Hxsb06aefpg2YOzs72tjY0Pj4uO7fv69r167p2bNnWlhYSLzFeI6OjrS8vKyZmZl00IKX7dva2kqRAR+zRxtc0QHcaYAXvJN+JLHLIV8TrEmnR6FQyGz+8JQh33ToRsrZ2Zmq1WoCnIPB4K0SdPA6hpmUlXcOwgBHtVot5ZozF36Ng273GrsMjLzrBofTw/sQKwDwHAfZ3hwYs4fAgb3z3cjIRQWS+F4HzchOrve0hMFgkCr7nJ+fq16vp+PcyYV18CQpHa8M7b3PLtepCnHz5s0UySFU77T2NScNK9AsLS1ljJiRkZFMSUn3DJN3jqwcGxvT7du39fHHH2ccI+iFzc1NPXnyJKVdQbcIHKJsZGzMga+ZCNRoyAocBBHoOA2QgTEdiOeMjY1lTu+j2gy57XmgnmPFcV54ebw88MTn8HUeTVgfxWJR9Xpd1WpVhUIhOSgiP/h9zF2kaVwD/ncEjP5/NI65J+pe/9z75GDdMUbsQ55RGf/Oi3JeZiDHZ+fRII/+EZT7OOL1l93/m4B16QMBwSwQBNvIyLDskVd7gIEj40XmOz8/V61W0yeffKJbt25pbW1NklIOImEuB84usFkAznwIEs9NWl5e1tzcnG7evJm8daVSKZN/5gsfABQXH0A1blrxhYBAZwESrnNvAR5YSRmhhDCvVqvJQ44w9coELszYzDYxMaEbN27o4OBAT58+fSv/jj5CT+lCKOJdZYzQz8sR4XlBGbEL+Pbt26rX6/rlL3+ZCe26F4BydZz8FVNHEA5OW4Qkx1MfHh6mjVWx8gWfsenST/NzJZVXLg1vUrF4UbKH3NKDg4PEx6enp1pdXU2bcdg5f3h4qE6no37/IvXAva+jo6OJjzy0515OeB0hhAeS8fEM99rA93meVvjQ02tKpZI2NjbeMsq45/DwUC9fvkxpNkdHR6pUKslIPTk5SQAYWtLfs7MzLSwsJMXoHti9vb1Mrr4DEzYf0XfWAWCsUqloZmZG9+7d0zfffJNyvovFYjr+N+Y9Qg9PoXAj0+vH4pVl4xsb0iqVSqqW4Mf90uJud9aory2XGQ5OS6VSKjvm1S0icONegE6tVlO1Wk158eS8sm4Aep5z7GN3LyXrlLlzGeaGGr/J8af/yDUMQaePOwf43+U2BjZ55W6YjI+Pa2pqSjdv3tSrV6+SHCkUCqnuudOc9BqMO/rvhoLLIeQv4Jr/fa5i/u/5+bAu9ujoaHI0HB8fp81fUbZKFxEESSkn/z/8h/+QKuMQ2atWq/rRj36ker2ub775RouLixkD2ZtHMDxSEo1gWgQdUeb7dVLW++xywdcWvFmpVHT37l1NTEyo2WyqWCyq0+locXFR29vbKhQKmXQW+INKKKy72dlZ7e7uanFxMVMRxYF3jOK559j5fHJyUtevX9fY2FiK8DpPShf54ETv4jjzgKPTyD+PvBMBYfRex+bvvgzcu+ee6yJ4js/zeXZw7y0avHkGCM+LGCKvv3H8edfn3ZPX//eB4g8CBCN0Ec4IJqx3QAPhcDx4Tmj32iAMfvCDH+gf/uEf1Ol0Msq9Vqup1WqlMKfXH2UnsRPZvSVMdL8/PGb27OxM6+vrKceRheIMAfj1PEf3EJC7GhdnsVhMOaGAhGKxqNu3b2t3dzcdMFCpVDIKymkCOG40Gvqt3/otffzxx2q1WlpeXtavfvUrvX79Wu12Oykut+Y5Ba5arWp2djYJIEoNsSPcFSMKix3AhLEY62UpLnhDyuWyrl+/rh/96EdaWFjQ8+fPc0NX7inxkmjShfdV0lveT8A/G+d8Z7SDOf7H20M9Uu8LCo25QkCgsPAu8pxqtZpyy7rdbtpYVigMD/vg+FZACbvV37x585aXErDvQil6ZLx5Trl7BaBL5Dv/PxqaDqyhgzc8b1ToQBmNjo5qcnJSpVJJz58/17fffqvV1dVEI3gBLxBrh9xN5obrYy4u8+5jp2+A0X5/GLZ+/vy5Dg8PNTk5mYAevOkGuAtvL2+GIVGv17W5uZnxmpNmRMgaIwBPEoYRG3/oL+Hx8fHxBBQBRZ5Ty/2Ej6nmAGhmTQCW8Xy7cSQplemLHtHx8fGUEkT4/cqVK6kih8sBlzUOKKNB6fnU0Vvv73aPj/NXpVJJa5t0K3iR9XB6eqpqtZr61u8PN9x98sknevPmjZrNZpK1bEyFNkRgkCUuez3f3OVWt9vV5uZm2jMBkCd3e39/P1WDwKhBx8DDVDXqdruZmqqMaX5+Xr1eL8kKr5bx8OFDFYtFLS4uqlwua3NzM83ZZ599prGxMUkXm7ijDC0ULlIOPDUwglraZUAlD5xFo4t5xEBxcDU6Oqpr164lurMGJyYmND4+rl/+8pfp4KEbN27o008/TTJ5dnZWrVZLzWZTjUYj6Z9/+qd/0i9/+Us9efIk6WXfu8H4OZfATzgdDIbRg4mJiRQ13NnZSXzvvBxp6nwPfWKEjusd/Hq+ua8f77M/g3s8+sQ6umz+iJR55DYPTPL8y8BuXnPw7tfmgf13gVL/Lhpd36flPTsC8tg+CBAsKXnACAl5vV/pgvhu0UWBi6DZ3d3V6uqqqtWqxsfHU54rk3J2dqYbN25IklZWVhKDR28DTM+7UUJMTAzTeEjfa7nClO4ZhRklJeHr44RB2ZmOQnTgJQ0V58HBgYrFoqanp1NJJBTSlStXND8/rz/6oz/S7/3e7+nu3bspL+v+/fv65ptv9PjxY71+/Trt5nYvBgbI9evXM16bk5MTLS0taWNj463KES5IfTw0B2nuHWo2m8m7+Pjx4ySg2QGP4gc8MJ8YTixyT9vASxyt7Zs3b+r27ds6OjpKG7RQZlj5AAlqnvphBk6nuHABBG5tk+cKmOQdR0dHqlaraYe0b4CDx3guXmmeEXeJ8+Oh8Bg94VoEYV4eMcCAsbAe8wS8C2Uf68zMjMbHx1UsFlWtViUNwfHMzIwODg705MkTvXz5MiP4o2IpFotvGaTRYHEA7H3y/rjh6YdFoJTZTCQpbVQEWLpnrlarJW8jYex6vZ4pHegGAtEbDGB4gjlyQw0g7t4p5twNazcanR4+tyMjI7p+/bqq1Woq1UUKBqlNp6enKe0oho6RHTyXNeXRtMj3l5Wp8hrNXpIOHkPGeLqJgwn4wBvPxluLoTo5OZnWmXvWMYR/+tOf6vDwUC9evEiH/8AL/g5PZUEOuMyN4X1SpTAWPEWBKIZvoua38xieeOabOfZqIL6+MUZmZ2czhtT+/r6Oj4+1vr6ejpX2498x5vCqAqqheZ4H+F3NwZ+H5j3sDo9CB3cMOH8xZ9AMGmH43LhxQ59//rn++I//WDs7O3ry5En6bmpqSlNTU9rZ2UmgemZmRouLixkHkzf65GNnrY2Ojmpvby+BdvrtDoE80Mo6zIvCRNkE/WJKg0fsooPD5QMnMyJz3UDlWTRfdy4b80BnNGRcd1zWnBbx83dd7+/+TT9/H0B2nfiuaz8IEDwYDNRqtVSpVLS9vZ1CDwgeD1c44/r9XCcNBcHr169TaAym5DqqB7RarUyIIIZBI3BwS99TFHwTBM/K83ZIb1vG0kV5GffWcQ05YNLFJpHNzc2MEiVMTWiGE7DwPE9OTurOnTu6ceOGpqamEsABYJdKJR0eHibvIw1BjJJpNBqq1WoptePKlSva2dlRvV7PlPyKQEx6+7hTB5D1el29Xk/Xrl1ToTA8nY5yOJ5bmwd+fF7jAQA0jyTU63XdunVLP/nJT3Tnzp2UG/3y5Ut99dVXWl1dzXh3e71hiaDp6Wl1Op1M7jljih74WHWAPrAzHOXjwA4+wKhxL1e9Xk9hwrm5ORWLRW1ubqZ82uiJiQI4TzC5QM9bS5OTkxoZGdYRbbfbiX4umH2M8K+XoXr06FE6WXFiYkLlclk7Ozt6+fKl3rx5o3a7neERXyfRyPD3Ok0jD8QWx8/YMTTc4wmvU9Ma+vuzfYyefhSBQ/TKw58Ybxh00ahCpgDs49yNjFzUU3XDHTBDZIhNYBxWQ+idawDnXj3C6ezGpStOronAic+cVi6rLzOcMKB9DbDufP59DbP2kMVsNOv1eik65/04OTnRD3/4Q927d09PnjzJgEJkr3vWBoPhYTbQ1vNA6UcEPwBt+h9lCHOH7oA+zDeOhpmZGfX7/eQQ8lrmrqt2dnb07NkztVqtlDJUrVZTCsGLFy8yG22jFx6au6MjrhtvPhf+t//O8wb6/b6+iRbBP5SmxFvOc91zfO/ePf3O7/yOrl69miI5zCFriwN83rx5o9XV1Qx/+zjoLwZONGKJ7BJtif13WsAD/l0Ev5GuMVXEG7wYo4sxDaRer6cosKQkB2LpTdcDjnGiPI19ibLpfaDTr/X3vosOv8nz4ni+7/3eh7z2QYBgScnbd3Z2lvLaAD38MHlxM5t0wdDS0Lv25s0bra+vp1xOGoJteXk5WdQAWhZBDJv4vc1mU5VKJeU4xs0DCGwPcThIzwuN0FzBSBdHJbuyl5RAiQvZfr+f6kxKF95MaOvhbL6fm5tToVDQxsaGnjx5oqWlpbc82PSxVCqp0Wio1WqluqiNRiPlI5LL5wLBlUVceD52wo6NRkNHR0dp3qh3yrzAD+79c+UZ67UOBoOU4zkyMqJGo6G7d+/q93//9/XTn/5UH3/8sbrd4Sl3T0Ns7DEAACAASURBVJ8+VaFQ0BdffJHZBdzr9VIJqEqlkqlCgODGECIPmMhDVPw+zw6UvfSPg7orV66o1Wrp5s2bmpub08zMjGZnZzUyMqKXL18mmvvpdpFn8/jK6dPv99MOaLwfklI4n/tJVYGeKFboD78DEA8ODvTdd9+pWq2q2WxqampKg8FAb9680atXr1K1CwBINF74TT4t6z6G3PMAcB7wpaFYMPaq1Wo6lIR59pJVDshYG26wHhwcZHatR88FCorUiFqtloxw5s3lhINaN/xcNpXL5cwGSt6HYq3VagnccVw4tCT0f3JyomazmaITMZ8PgwcZxLh9zqNsdHlBnz0S4eA5zpfzbl64ljXs0SjWPalH7XY7HcSBPIBfqTvNiZZ4/jnuuFAoJGBGytn+/n46NATHgkeD8IrHtCSXdx4BhKZuwLDey+WyHj58qI8//lhHR0fa2NhItYz90CWeu7e3p3/6p39SpVJRtVrV7u5uOqToxYsXevPmTZJjzA/r09cb30X5lAdm8nSiGz9x7RE5cJ3g0TovjXlwcKBarZbmnt+ecjc1NaW5uTlJwwju/v6+RkZGtLOzk+b70aNHevbsWTqR0HV0BKZgBkos0lePsnlqo0ec8loeyIuyyNeCN5cr9Iu9RN1uN9XGx+ir1Wqpiokb2jFqEuWpG3F5LQ8E543vfePx7/OArD//+4DjvM8ve258d6RJbB8ECB4MBtrY2EglX3zDQmREmMIbTEMtUJSMl2Vya04a7tD1fNDosXALwhXy7du3NTs7q1evXunFixeZjTKMhffyTv8dvZmS3gJM3hc/uALa+OlMtF6vl8JybhmfnZ1pf39fCwsLScjMzMwkT5F0EfbnoAHe7UdkkifIaUtra2taXFxMYNutTE8lcRrGag3MCx4SwoLdble7u7vJa+XMfJmggTe8jiRAEiX28ccf64//+I/1n//zf9a9e/dSnujc3Jzq9brq9br29vb0+vXrdKQqhtLa2lragY/iZayFwkWeOeHy/f39NN/eRy+4D92ki93//A8A/slPfqKHDx9mjrEtFouanZ3V/Px8OkHPPe0xn8sVizeE/vj4uObn5zU7O6tvv/029R8vCTw7Pj6e8hc9yhJBk4+DOqgrKytaXl7W2traW4bQZV4Rnnvz5s2k+Le2tjJ1UKNA96iMvyMK0dPTU42NjekHP/hByutnwx35r3GevH5uoVDIVBOJSs+9dsXi8DCQ2dlZNRoNnZ+f6/DwMM2lAyXmxefHwdRgMEjr3EO0gAyM0nq9nsChh7wLhaFHular6dNPP9XXX3+dPP6sb4A0vExYGKAAP+DF5d3ucXPaOZiHTshIvOHkyRIS9/u5l7/Jq6VWLulffsgFG6YAiRsbG/r222/14sUL7e7uJuD54MEDPXv2TIPBQPV6PeWX/vjHP9bjx4+1t7enbrebSkk6mHOQ73taPBUGuceaxmiORnylUtH9+/d1//79tBEMEE9UzI3GQqGg//2//7dev36d5Pnm5qaePn2aTqDEs+3vJ0UJo4LqCzHczrx5i/qR3x6p5Rml0rCMKGvEeRm5Tp4yntixsbEU9cKhsb+/n0ApGz+J4EhK3tCRkZGk5x4/fpxxhsRGH3yjoUcemDP3xsbv/TnRO5zXIu3ieuC5OFgAus1mM23Il4aGRYzeRoPqsj7wDjdqXF5F3ez3vOt5l10TQe67aBOviQZY3vveNU5/9v8vQLA0tOw2NzczCpwFhrBh8TgI8R3uMC+MApgmxEIpLkkZ64oFwcKTLhY3IRqqKmxvb2c2gMF0HmYiV418QiaBcmP0FWGEN8G9gHmWNcKWfvu1/M+CBaCRsvD06VP1ej1tbW2lXOl+v6/l5WU9f/5cGxsbGe+xb8JZXV3Vzs6OVlZWEhje3d3V7u6uxsbGtLy8nPE24SGFtiwwV8a0QqGQNvgtLi4mwc94JCWFjvfxss0AvmESixnBf/v2bf3pn/6p/vAP/1B3/r80CPfIFAoF3b59W//pP/0n/dVf/VUCGQANDuwg1IyxBR90u13VajXduHFD29vbae4J2fomNJ8bD8m5QTAxMaHPP/9cf/EXf5FO7cO7wfhIT9nc3MwoomhkuVfT5wLeIuWBdBFOFPQ0IcL4CGOiC8ViMaUPeP+hLe9mQ1g0DuPGDw9LM/eff/65RkdH9ebNG3355ZeJ7h6+ZA1KesszyzWeBtHtdjU/P69ms6k3b94krzpzAS97v3y9u9EHbdyD6d4uDpzZ39/XzZs3U4oNdHX5FuUK8ycp0RFgwPjoD5/h3WUzGQaMpLQxdH9/X//rf/0vFQoXXnHm8/z8PIWel5aW9I//+I/J8Pb54rf3z0EwKRjIXmjv9XoBkRjf0AM+Yw6ctgBYj+S5o2JsbEzT09NpI9zGxkYycPEM4nn9d//u36VNZxzqcnBwkMr3UZ2FtQoPed4w8oq1Dm8gF5y/5+fntbKykuSL02N9fV3Xr19P84pMuXPnjl6+fJnyuNEnr1+/1ps3b1IdW2jKvoHR0dFkzFCaj5MPV1ZW9Pr160x00B0T0VD1354aA1D0lI+xsTE1Gg3Nzs5qdXU141llbcALrMVut6uXL1/qwYMHydBbXFxMEduRkRE9fvxYjUZD//7f//u0eXVqako3btxQrVZL8+v1vJ13+I18uXLlSqrKE2sQ+9pzgOh0cFAfQaD/T+TC9XQeMHRnD8bszMyM9vf3tb29nWjoPBgNGMdD3pd3AVt/bxxnXoTOo9nvar5m/frL+uLv9b65HM7DSJe1OMbL2gcBghl8BIiDwSBZz67EuMfzaweDgY6OjjQxMaE7d+7o/v37mp2d1dLSktrtdip2f3R0pJWVlYwHN+/ZPiF4mQmdc+BBoVDI1KSUhtYzmw487DQyMqLDw8MMaIJhXZjQF5pb1myUkJSrBOOiZ8F0Op0k1OkjIAKh4Rt9PBe7UCgki5zwkz/bj5JlXHkAxJV6oVBI4Rz3Yl67dk31el37+/tqt9tqNpsZbzSggnfzP8L/2rVrWltbS54rNsWNjY3p4OBA9XpdzWZTN27cSIrCrfxSqaS7d+/q9u3bafOQp+I4uPMw/cnJiTqdTtpgiJEC/1KerlgsZjyhLGi8YdPT08k46XQ6Wl5eTpvKKLFFJMTDnLyL05h8HnwDFR4tT1+RhjmT6+vrWl9fT3OEEQHfAjgAoJ4XDe+wm7vT6WT6Bs/xuYNX5x3AhpeaOj091cLCQgIzeGPPz8919erVVEvUS6kRBvUUE/rj+Zirq6v6+7//+0weInnfzDFz7yDNvVq+kSl6Wz2SAe8ge5Af7jl3XnPvkm8643kuu1wOlEol7e3taTAYJCOJ/FY2gJLCwbxSGcN5ivVYKpX07NkzvXr1KuVPu3ElXZSQcyNIGhowGM3FYjGVROMajCIMBkCxG0iTk5Opuo/TnT0kKysrqV9+0AybznAynJ6epjxbZOnW1pb++3//7+p0Omo2m6laxszMjJ48eaLFxcW0hsi9d/DmcwP/ABBIL3JPa6FQSNUrrly5ort372p2dlbValUrKyt69eqVpqen9dFHH6U1enBwoMnJyXTEu2+wI/KJHKb8JO8rl8sp2nHjxo0EjM/Pz7W2tqYrV67ou+++e0uXOH/leQcBhtHY5jqMvDdv3qS543sAns8n321tbaVynIXCMBJJSdPz83M9efJEk5OT+qM/+iN9/vnn2tnZ0e3bt3Xnzh2dnp7qf/yP/6G1tbWMR5Qxe8Ua9sR0Op30NxV5fIw+vxEgOxB8F7h1g4HnRuORhuHPHLbb7VSFySNHLgNobpTzvgh+4//vAqOOXVxW5wHVvOfH90dQ7n1wnstr6DDHapF/8vrguONd3uAPAgS7hyFapj4JKBeKyTtg9hJH5XJZjUZD5XI5LVhq5JbLZe3t7aWyKdGao4ase8/YRY0iw1MB8IBh3Jvjng4PpfgEemiR5n3xvkXrCw+iW+FxEZIeQF1KnoHX0a3GPIvNhV0M37lFyLW8F8aD3pLS8bjSMN/0o48+0uzsrBYXF1WpVPT06VO12+3kVZydndVnn32m7777TisrK6kChnuXfAGQIsBOfcbFjvGjoyN988036nQ6evXqlf78z/9c9+7dS16og4MDLS8v66uvvlK73U6RBJSo11RmnB7GLhaLGc8xYP38/Dx5qLnG6eV/7+7uZgq/P336VH/zN3+jBw8epNOiAIbb29taWVlJm8u8PwD6Wq2miYmJJOD5rt8fHhBCFRPfFOJrklxJFLzXPOZaz532Mnv+PDfyfL5iVMDzOJ3nX758mXIj/Xjlo6OjVFu52WymZ2G0Hh8fp0M1ouJhXHjWXRj7eFwJAvp9nboAd8+Hz7N7UTwP2BUG9MKA5jnuoQKEeT+jt5pjjOG5s7Oz9NnJyUmKVrBGtra2MiUiae12W48ePUrltRifgz3oQp1e5LLLDTfCMJgYrxsL8KzTFTmFrMPTSp1lnler1XTt2jXt7Ozo1atXSe5h3Pf7/cxBB5JSXnSv10v33717V61WS41GQwsLC+r3+0nuM6YIgvgNb3jkA4CPbjs/P9f6+nqS7VNTU/rxj3+sBw8e6O/+7u/0+vVrvXjxQuPj45qdnU012o+Pj1MdaK+CA08hZ1hDDhRGRoYbKaemptI6Hx8f1/Xr19Xr9bS6uppSDPJAkP8PzeNaho+J0Ma15c/Iy5+OMsfThFzvnJ6e6vnz5/rbv/1b/eVf/qV+67d+K+V0v3z5Ur/61a/U6XQyWIF68mwCJzIoDeuYs7nOnTf01/vozqwIJN2YjaAvPsf1eh5o5F74ByeVV6BCnjLv6CXHFt4H/n4X6OV33LcU6RHnPG8sfO44JjZ/p/8d++WRD67l/8tAs/fBjerL2gcBgqXsgBAa0ZqSLiYjWlQOWkl1wMpzxkUwt1qtJAgRjixifz5/x01A/HYLj3vI4fXJihZKZKg8q8YBMBPK5yMjI8mbioDwesRuIKBQaB6q9vfE/6EVQi1av+4Z9T77YuCUuJGREW1tbaXPms2mpqendX5+ro8++kgvX75MuXrFYlGTk5Mql8tpvgHAsaarjw/A40f5Ug7o5OREe3t7evToUfIQ/cf/+B/VarW0s7Oj169f6+nTp/rmm2+0tLSUCe+VSqUEshivh6Q4wc7L1Dhf+NG1rkydvowDQUfKyS9+8Qutr6+n0C70J78WT7nPGwYQNUgRpDRABfOdJzgB4s6zbgw5X9MQyHGzqBtu0bvkdPLmYyInDgAM/U5OTpKHfHx8POXxkvPK2kDR5QnjqPiiocMc+WcAG5S6pMRneA1JL8ELCn0wlPPoMBhceKp9DbnR7AC5ULjYzEXaE15fPOTSRZ3y2dlZ3b9/X9VqNRmdvoZdJuzu7qbcSkCS98tBzfT0dPL+sSaKxWKKcEAvADEl6OgX44ZvAZ3wYL1eV6PRSF5UojwYvPQXb5l7Xhl/nFfoitwfHR1VoTD0ILN5jj7FdZFnAPn88OMb6riOEo/Iim53WM0Dr/Hq6moK0zcaDTUajeSt93QfAILve4lymCgUNcjZZA1Pj42N6e7du1pcXMwYba5DeBZAL2+dDgYXNezpoztYoJXLavc0RzDma8B1caEw9Nh+/fXXunbtmh48eKC5uTmtrKzo66+/1uLiYoY3x8fHU1WdSqWS5AHPHRsb0+7u7ltRYZ9naBI949IFlkAf+SEtzh/vAoFOX39XHvaAp9C96CCucx6PAPh9zd+Xx/N+3bvAdJzL7zv2POzzLkB+GajN69tlsp/2QYDgSDyUbVQW0ts1ZqULxM8iPDk5SYALhsErwoYYCmQT5j85OUmC0POQvRYr75eyKQdujQ0Gg5RnRHPBmOfR9cUe6eKM4B4AvF3kKvs7EFaEqT1sxbs8j8itVX83QNjz8uiHe/L8Xh9jTB3gGjzrh4eHKpfLmpmZkaTkrRkZGe6Ax9PJ/aTGOJ0YH6f4lUqlBArwfDWbTR0eHmpra0vtdltPnz7VwcGBDg8PdffuXa2ururRo0d6/vy5Njc3M7Wo8TxTgghlRm6lNATdGFq+exx6OHB0fqbuL8qfKAd5i+fnw8My9vb20phQhhxC4RERvgNw+LxDM89V9VQWTznydcVcwzvulYzWvEdoIm9ERcLn8V3Ro+L0csGHsQCAIV3DFeD4+Hhan7FsncsZVxyuxBzsOt+za9s9lHNzc5qampKkdFqVH67hnpo4Lh9TXkg2z0CBdmNjY5qamtLExIT29/c1Pz+feRaRoHK5rI8//lgfffSRut2uHj169FaJNo8qkV/Z610cXsR6i/S5evVqOqyD+QdQ4nmEHzic4ODgIFUvcLp4eUc+u3Pnjur1uqRh5R9SpvCUU/sYWnk+MREZp3Ecb6/XS3JmMBhoYWEhncDmjhGXvYA+gLwbftDHdQnv7Ha7SfdsbGzo6dOnGh8f1+bmZkp/OD4+Vrvd1r1795Jh5cDUvfFeQ53vkUXVajVVVGg2m0knAd4ajYbu3LmTwu7wv9fGZp6LxWIyMvPWrjuEnMaseZcxePg9nczlSZ5hyjPOzs60vLys//bf/pvu3r2rBw8eaGNjI1WcGRsbSzoE2Y+RTGqXbwD3NCBfj4wvGofMqdOR8ooOplkneS2uNVqUf8x1dPi5E8Y/f5dnNILD+F0Ei44n8p7xmwDry/qQxzOOi/KiBnly87KxxrFc1j4IECxdhNekC6CJYnfCsMij9TEYDFStVlWr1XR6eqqVlZUEbLGyKWs2NTWVNghMTExoZ2dHW1tbSaiXy+V0HC9heAQOIAxl5Z6BWD4KkOyMGkGje1yjBS5dbKxy0E2/z8/PtbW1lZg3z+KhxnAEIXiAIsBw2qPUXJjHhUaYLi+cVCgM87y2trYyC+3o6CgVrJ+dndUXX3yRCTsOBsONEb/+9a+1t7en+fl5lUqldOxyt9tVtVpNIL9cLqd80evXr6cqGJJ0+/btdCoWCnZzc1NLS0v6r//1v2pqakqnp6dJAeG5YyHhlW232+kgBZ6Dkj8+Pk67sPv9fgq3RQDqGzrhJ6o+jI2NqdVqqVQqaX9/P9XRhe7kb8IjCFFfByjtfv/iEAjC3dKF8gZM8zy+cxDvgt95K+bke96sfy5dGEHwN+sWIQ5fsoYAMB5qd+UYBT9Rn263+1ZagHvwJSXPngtTj7KggNzo8/c6X8BzVB+4efOmfvSjH2lubk7tdlt7e3sJnJD7yrsvE9AOyqPRHI19pzVAGG/fD3/4Q5VKJS0tLaV8zEKhoNnZ2VQSbXFxUW/evFGxWMykCEA7ALRHj1z2xhAl/EMqB2lBLq8wylm3OCT8IAM3NpiLa9eu6ac//alev36thYUFtdttNRoN7e7uZsAfcpvIHmvX00+8v9xXKBQS4KfaDfLbHQfFYjHJUmgtScvLy2l8vq9jMMgeqc6P50Hv7Ozo//yf/6OvvvpKZ2dnCWSWSiWtrq5qYWFBn3/+ubrdbtJF7FNALyI7mBNkNh76a9eu6fbt26myDeuz3+9rc3MzrWm86BgWjKdWq6XDicg5dsOJ1BPWYNRBrGs8pr6eOYBpY2Mj6bFoJLsxwXPPz89TrfG1tbWkO0l9Y+9NvV7X3Nxc2gjum0JjLXZfTw5Qo4MnT1969MGfE6Mscd3H9c/zorPK6c018HDe8yJY/T6AMc9xcxmAfdfz4nsZR3yP09B1GA3d4vrhXYA67/3ft30QIDgKG893krIW6WAwSJ43Fki/30+lWO7du5c8aOvr67p//36qqNDpdHR6eprOJsdbJCl5hdkhHkEvihDrxENTnnfqeZeMwRk9D7zzPleEruDxHly7dk3tdls7Ozu6deuWBoOBtra2tLKy8pZ3DWXllqR7fxGk0oXyiSkP9NMT9hkXnuh79+4lj617sdhY5QISQT0xMZFqA//6179OcwgooVa008bzzdiMyDOoDdrr9bS4uKjx8fFUX9crHVSrVc3NzSVl0ul0kkcEXlhZWXkrjMeYKcRPxAAvl58aiNcY5etA072pHuVwHmezC7ud3cPgeX7c40LCQY17MNzAZEMUNY/53jc0eZ9pl3kue72eJiYm3gpDR+ubZ0alBtAlLcSBtp/uBv1cUXa7w6OnR0Yuytx5q9Vq+sM//EMtLCzoZz/7WSaqw/zmGSnU0kV5YoQgEzAiMGI4ne3Vq1d6+vSpFhcXk/EcBbsbrL4Oob+nPgCofK12u90EhPr9vtrtto6OjrS6uqpms6mdnZ1kKPo87u/vJxo4v96+fVunp6dpw5wbNP5O5ADPQzb2ej19++23GgwGqVQVfHx8fPyWJ/Tw8FALCwuZPHR3MiDbAYUTExMqFoupOgvr2eUs40Q+O185HV3W8bcbFnj2WWPwNOt6cnJSMzMzmpmZScdtz8/P6+c//3kCoxhy8LjTBI/67u5uiuBhDHiqDHN8cnKiL774QqOjo9ra2sqU6KPfeDVJx+EUPowR5CjH3gN4V1ZW9POf/1xffvml1tfX3wqrMyc4J0ZHR9VoNFKNemQO65b5dKMY44Nnsv5ZW/SdMnTwiMsXB2PMl6cYbW9vJ4OAlARk+Z07d/S7v/u7mpycVLfb1bfffquDg4PMEeZuYDr4RBa6weceZHf4wHvRmHQ6eITJnQARzEUnk+t01xXRi8y1l/0dwSgtD5zmPTPiljwQGoFnBLfRwIkOv7zneOTXZea7vN557V2g+YMAwdLbXtJ+v588bvxg7WP5cnrZ0dFRKvfy5ZdfJouTnKx+v58OMGg0GpqamsoIdM4pZ5NRv9/PlOFyQOrhIQR4p9NJwjiCDhaMgwr3YEhKYM9DibyD+1qtln7v935P+/v7+sd//EfduHFDd+/eVbvd1t///d9reXn5Ugbp9XrJA4jCgCG9b84oKPDBYJDC5r4gWPSEJd3KJz+TzYfu6e73h4XRCdWNj49rdXVVIyMjade6pIwVjUef/FZJCcTFusD9fj+dUFYsFpMHEH6hfB4Kn9w8ACRjYZw+p75pi7Chg3Pe75vj4Bf3gPhJY5Q9GgwGiWbUwySnNAJKB69RaUC36CUAQKNgCYWXy2XV6/XUp06nk6pq0Ef3lnjj+VTDKJVKqlarqtfryThxY5DnwWsO0qMnLYJ7F4AuJ8j37fV6mp6eVq1WS7VteR9GUATxVCtwOjoIoKJMBN80gNo///M/68svv0z1XKEtY/L7WIMO+p3PIkCOcgTZ5J6xXq+X5g0egm/gV8qmxXfhBICPeafPk+edIjcBuMhJ1gxeaUlaX19P+bgu01hLnpOLYue5jPX58+fa3d1N6QIY1INBdu+Fg153VCBXXb7Cj/AXoXLkGnzgRkmhMDzWvdVqZfLpJycndePGDb158+Yt7xUHwuBddZDoJRFd7nvfut2utra2MnIAXnUv/dnZWUphkC6AA2BvdHRUf/Inf5LWxvLysh49eqQvvvginZDJPHrEgtKSbGL++c9//lZ+vYNdB3fMQd5aLxQKqUqTAzr3cDsNXCZE3bi3t5f67Ztmm82mzs/PtbGxoYODA21sbGhjYyMZjZ4e5aDXDSt0GvPnm9Ois4i58Xl0ueERgvcBv/i9O89cFl72vLzn85y8v7kn6pK89pt+HsH19+mvyzpP63P55Xya9zynd9413j4YEJznPUJAS0pHgCJA2b2PMATM7e3tJUELsEJZsYlkcnJS4+PjmU1F7t3D2nMG94UcP3eLxsOyNPfkuFXnP3h3KONFUX1OlsLLQMi8UCjo2rVrmpub07Nnz9Lxmh7ycqFCQzi5kI/MEvOZXAD5Zwhp9wBCD97rFjHPPzg40J07d/Txxx+rWCzqV7/6VQIPbhgw14R12eDQ7/fThh28XrzHgaiHD12gTk9Pq1QqaX19Pb0T75Pzo3sJ8/KTeJeXbeNeogN87mDQQ2SECSltxSEURBXwwEXjJc6JA1WfzziP/j18f/Xq1VRH9eDg4C2vQ1yfDla9RJgbVXhM/TCJ6AGPip/xsnZZ39EQgL+5/+zsTDs7Ozo/P0/533gMf/azn2lrayt556JAJLeX9/M3II0fj5YwJgw7jyr1+/23QrsOLF1Aw1fUPMV4cSPW1xWyhPuit77X62lnZ+ct71k8pAG+GwwGyQvImIrFYoqwuLfJ5RzOCfp6/fr1TF4n81Kv15P3zGUENKWPfAfN3RjodDra39/PePExMJ2GjI+6zC6LXP768wuFQnKS8L/n/fqaLZVKmpmZ0fXr19XpdDKHxeAVR28AygBOvuZ8/n0u4mc0B/cRYDG30IQ0HdYLeuXbb7/V6upqAnV7e3va3t5O6RCsSedTZNLZ2Zk2NzcTcITejCkap9ED72DF+d8BIjIFT7bnPFNW0eWXzyEVXJx2IyPDfUELCwva3d1VuVzW4eFhSoXwPjnwjwY2YBiZHeW/yxKXR4zFdVkcQ5TN0QEVr3OZ4B5mf7bL0ticd1ye+Oc+/suemQcqo1yNYPv7At+Is1z2+VxcRsP4rMveFdsHA4LzOupCmN3uFPzG41QsFlWr1bS+vp457pQfBGi3OyyQXqlUNDs7q8nJyXRqnG8g470envK8HPc2eN/jxPiCwHJ3t74LQxZhvV7XrVu39Omnn+rq1avpIIudnR2dnp7q2bNnKpfLOjg40Nraml6/fi1peEQt73PlG0Os3iIIoaHQfbyUyspjZC9HhhBld76Xz/KC/H796OioZmZmVK/X0wEC/nwEKRvpAB6UufONWIAujlBFSWFMQWdAGnNLGsdl4Rn3gnq4P3qgvN/kMENjBy88B++FJE1NTanX66X6tsyR59K6sHF+c6Hpn0cB5srK+396epo2ynlY1PnZ/479AKjDD9IFiLjMCneQ5uuV5hvePGzpfXFlRW4paUvwJZUl3MPktIhlBlk3XmqKzxDEXiqu2+2mAxbI/3XPngP7CECjMRDp7qDJjTxXEnE+PKVJupBXDjB9nJRSc8AHkPD1EEECBXWllQAAIABJREFU70f+krbDHJRKw7rRpKJhrHr/88CeKz1Jmf0VvJ/3RhpFXnXecx6L7/U59rXm7+CdOCf29/d1enqaqcLhz/f5iTwbDQFkQrFYzKx9B/Kx71Ge+7ohuoSxsr6+rqWlpYzxiDfTjzbOMwY4xr5UKqW8YU8TZNwRrPsa978Hg6HRQP44m1ad9jwXp9Blh0NJ2UoSrvdI+dnd3U28j7HntHP56Z9HB9FlQMoBJHPJ6aEYQa77vXmkxwFznl727yJNL/v/fS1GjV0OOZaI470MGH+fPl+mD/Lug/5x7mN71zO/z/s+GBAsKSMEB4NBCle6oJiYmFCr1VK1WtXMzIyq1aomJyf14sWL5HVg0N1uN5XNcqU3Nzen69eva3d3V6urq5lyOHiE3Zq9jIFZONEKckbCa+ugOoZIyGUj/PSTn/xEt27d0tdff50ELEdiIoBfvXqVxsYmQCnLdAiV+OPCKzI0NMJgKBaLWl1dzZQzojmQdwFULpfVarXSZq7z8/PM0Y+FwrBQ+eLiYsotnp2d1crKSvLOu/BHIB0fH6c8Y5S39x3PBUDk6Ogo3evlu3xO+T4aCg7u2FjHwmQMKH4XxIB2xuuhvsHg4vAXvMT9fj/tbGcnOJ5QBz70VcoKTJ7N+skDwa5UHJBBLzaXQDv3tPAsvOVxDXiIF1CPEnZLPipGX+v+uSsz7uO9UcG60EahEgnyMHa8x98DjR30AIzjWJEJMX+SiIgbhC64mVOeEY0W5JwbS6wlAKV731DobpznrWWeEzcO+ndOD0mJdz0UDN3YG+ApDvARG2T98Jtms5nZLBc34cW+xzQtB+TOv25Y+DPxjrN+nPehVzQyPKUiAiLnT6INvi/k+Pg4nQTo7TKw4oDJ5w9A6REWrnNZFZ/pQJv/mRuAqssiKhlQ0YS64+QJe/RpMBgaVJRXhFaAYGjla5xIhs+rG3+MtVqt6tq1a8nTv7Ozk97nHv9+v6/p6elcI4PmvOBRJp4DXfOAJdf6pnQaa/ZdRrzzCzxXq9U0PT2t69evpzSVTqeT0QX0A10Af0GD2D/e76Dw/wUARyPR771Mh+Q9IxruzrORPu/r52WgPg+rxL5fZizktXdd90GAYICXF/xGuPoGhb29PU1OTmYmCk/WycmJGo1G2tzG4nAr008Rw1I7PDzU6uqq1tfX1e/305nzeJN4B/0htMauWEmZ0ClCG2Xnu3ZdcaDM8Ar5JhTPaSRnczAYejSXl5c1OjqqdrudipEDXKSsBwngGAEwfUMIosihf6fT0dWrV/XDH/5QrVZLP/vZz7SwsJBhSuYNwep9gD54bjn+cX19Pe3cXVtbS7nADx480OTkZGJUV1ackMZ8etkpxssc4dVncwjKGMOB09LK5bLW19ffCpP681B0lUpFt2/f1qNHjzILEqOF8CveQ2ko0LxQvM919LSXy2W12229fv06eQ4cVPumJEK3vA+6AFAcNLp3x/nCgQ3GQTw+/DJr2yMZVF4gB9XLDCHMoQdjjdEAzx/kc/eM+CYwFKgbqBEwuxGCcI5eHh/HYDA8ZXJ8fDx5p1CIgDY//AFg77zS7w+PHndDkGdzH4rWZRYAgjJv1Pf18DyHwsAHnp5Bugh04pkxasCP53JyncsC9zIT+fHGdfQDfoeWRFugiR/ZSxQHuvJ+z+2NBg3P6vWGJ5/B18h0z4mFF0ifiQqT+9xocCObuYCW9I0xMu6XL1+q3x8e2Xx0dKTt7e1U29zlkCtn5wn+j1FBxgJQZT6lC1nqhwA5EIkpGAcHB6lOOiXyAO5sPKR+fqlU0u3bt9Vut7W8vJxJW8GTGj3uhUIhY9Ag19xB4r/dQ4/OmZ2d1cOHD9VoNLS0tKSvvvpKm5ubKc0FkO3gjHG604VnusxG9rg88IiGA2Ua7/BrKKXq/XDAz3NcT9XrdV2/fl3Xr1/X7Oxs4vN/+Zd/SVFqGkYIfQYjxKiX9z8ah79Ji+CV8UY+9WfH7/06B75gN19fTs/IP7Ff/ne8xmVZHhB+X4s8mdc+CBDsCgvFwAYMtzS2trZSHlOpVEpnvVNvlVCQ52EhyAqFYX7U4uKi/uf//J/a3NzU1taW/vVf/zXV9UTgfPLJJ9rf39fm5qZ2d3cTCHcPEaCbkDt9dDAc0wB8AfuCGxkZUaPRULfb1eLior788kvNzs6mTWcsGHbqnp+fJ6WDEEIxoXx5P2CEXLF+v58Wn3uXisVhLmCv19PNmzclSV999ZX29vYS6PLFCLiMIf9er6ft7W3t7OxodnZWrVYrlaibmprSzMxMJg2lWCxqYWFBa2trySPqQg2PLwLg5cuXb4EaV+ojIyP66KOPND09naxrjvDE4+GgD6ED2MYgGBkZ0czMjB4+fKg/+IM/0M7OjlZXVxPPorx8Uw2f+7y4EoFeDuJQToTYGTfP4Dr4Gm9RBIFUraAPLuwByNCH/GNCov7e2dnZBIzdey4pGSCAYD+oxUOH7hl2MEGKiEdC6K97ipy+8Cff+1r27+D3a9euveXBoh+u/BDYpKDgjQWcA0bd28sacQPDc8UjiHfl6iF839DJvJyfn2tmZiZFTzg1jA1XEQBHOeIKuVwup7GgWJ0f6INveIPm0cDw1BCiNqQ2MP5vv/1WP/zhD1NllGKxmDYbLy4uJg+xh9L9vbyL8Tkd4V8iRBjuMRcU3kDO7O/vZ+og12q1t0LcrK/oTWT+Yppcp9PRv/3bv2VAM7LHo0mRfs6/pOv4Z4DDaAAUCoVMKhpjdPo5YHcdgzHNWsVgZy2Pj49renpaDx480PPnz9PGSryuDtgiP7v3ORoXkR99fpB1GI7b29uZDaze7/HxcVWrVXU6neQk4zls8paUidwyZ/DY2dlZAvP0CRozFt/QzfcuG1xusIYwJHq9nvb391UqlTQ/P69bt26lfQG7u7saHx/XzZs3tba2lqpPQTOqoHiU0jdMu5HkNI0tAs285gZaHsCkxTmPwNn1XOzTZQA38vRlDpa8KFkco/9/2Vjz7n9f+yBAsFvrLqCkoQUIwIWhmZzDw8NMOMtDsNKFN8ZDgefn53r+/HmqX0v4DnCJFw9hweJnUfoi2t3dTZa9C1DGJF0oFt944gwFCOt0OhodHdXa2ppOT081NzeXym+xOWRvby+FVijtBV0Yr4cHYWoP2aPU3MrlPrzmbMxrt9vpUAaErwNshHL0Ona7w9Op2IBGWSYUIUIbgYfw8o1BCEv66B5MwAg0rVQqmpmZ0crKiiqViqanp3Xr1i2VSiX98z//s4rFYvLe+KEoKDDmBCAMj7Ep5Ouvv86kA5RKpUwoC28WxlilUtHm5qaq1WoCY4wZAOeGE/zAZgoPK8JX0SvpVvjIyEhKBYopMChSwBs/8AL8DcDZ2NhIiqRarapYHBbJJ7eesUtKFVfyLHX32uIloDmvsFZQBozBvYy+lnyM/i5O2YI2vtnIPeY0N5x4R55CcNlSKAx3zMOrPCcv3xhjwBWr08XHgAyhygwgFeDnnlPmnDULv7AW/Rhip7F7Fr0SgOfbQncPDbtnjWe70QOvPn78WHNzc5qZmVGr1dLY2JhevHih58+fZwwuD7fD28w1yh9ZgxFEX9wbzv9u4OE84YQ75wXfD8B4fP1GPnPF7PIN+eUGH4ad8wvfRd5i3PF6eMONxnK5nOp8O/j19euGG3LMgb6Pw4HKYDCMgnz33XdaX1/X0dFR4iF4OwLYPMPLWzRiHaw7bUkt6fWGpwzC5y7vkYfoCY+oeB12NzSLxaJmZmY0Pj6uer2eIpSvXr1K7/Pxu3HK+vYNcD4/DtK8LvPExIQmJyf12WefJRmEwezRCqeVRzTceHKd4PPn8+jrIc5HnIu8/yNGiaA2fu78633yhl7yz73fNO9v3ne+LvLGEfn3XUbBZWPJax8ECC6VSqpUKpkdqAhd9wZJSmkIgDgWm+d84XWKlpZ0oUjJP3UvQL8/rDe8uLiYQBgLsVgsZlIovLg4YRw/k7zfvyhl5ILblSV/swBHRoa5ouvr69rf31e5XE4A0r0pUjaEzGL33EKnGTRxBYkwd1AEPTc3N5NXgLGhwFyw82wXfCgbwkN4gSO4K5fLKpVKqSyaCxdpmPu9ubmZUSrShcfAFRPerlarpUqlIkmpWsba2prm5+d1//795P1HqKIQ4Zco8A8ODrS8vJw8x4AtBCDlnMhB9koPDkzdcOK9LvQYtx8TTd1p5hGQAp0LhULakOTA3cPMLmA9R87DrW64SEoeVvcaO+iAX+FZ3oOCwBCgHBNr2ssKuVJhXh2QOmj0vrjHJwpZ7sVzxHtieBk+9DlxfuIz9zIyNkrvUb3DQ8DQic+iceBKnmof9Im1xXxDGz9Rzb2FGGgedaIfzieMl+beQgx6PzTAAb/LD57LunGZwXXHx8cpmrO1taVaraa1tbU0hgjKkVMOgpvNpvb29hIPs0mUKAlzjRHmJ9k5H/h80j/o5TzmQM1BEc9yw8kVN/yQ5xRwWcV1UfHHagauxwCxjA35Rm51BLc+v74O/dnwj68b0gupssMhIxFYxt8+X9Ex4f1y2ric8MhLt9tNzhHm0I3+g4ODVC2iWLw4qZH5Qc7iWSeVAi/3/Px86u8333yTKSPnc8Q6dbnk8obrnX5uCOGMm52dVb1eT2M7OxsessSG79jv+O7YN38/KXQuy+IazQOFsfnc+r3vA4re4DHucxq5zIsA1tv36au3PLD+LpB92f157YMAwcViMZ1o40Kf09/cYnPACpPw44c6OGN5jUU+83Jc0oXwpNQPGwjcgkIBu1fHlR0FxVEuXON9usxqA8D0+8PcVuo7uodkMBikckrSxUlWLvDzmHN8fFyNRiN51I+Pj1N43UPuLOzd3d3kTQH4xjAc9HWQRz8AhnhdybH2Mko8072bl4VCXEC40mHeSXOAh8iXpixOt9tNHlqs9ehldF7k+QhiDAFXQtAeUMvcUs4u8p3Pr887u+jPz4dH287OzmpsbEw7OztaXFzMbFRzcFcoFDQ9Pa2xsbFUCs6BunRhoaP0XPDnAUjno16vl0m/iR6nqCx5tx8zDfiOgjuGIFHUvhZckEZPmr+b76APp/f5PXGd8Ww34HwcjGEwGHpbyUuWshus6IfTNtLXgRF0iHntzCmgy5Uf7/JIAmA7z+OH0vfwsfOhv485cwOd3248OHCib3E+cCBgvHU6He3t7b11iIC/hznxMfjY3UBzA49weTSI498OAt14glaMIU9ZR2Ub+8i7Iu18XA4O/FnusfX++trq9/tJXkJ7fxZz6YaU99PHgcMDMAnvoEcAwJ5+mNf3kZGRlEoXS+j59eiASFf4lgge+cqew+sHR+FYgJY+v9FxI13UXwcwkyo5MTGRC8zol0cEXK5Eevq7WWuFwjAivbS0lA5RmZiY0OHhodbX11N5OdcRjmPi8/OcUkTpaDyLPken1/dtl12fRyf/Lm9tOLbxay7DPO/rz7v6cFn7Td7l7YMAwZISuGMHaqFQUKvVSqcZkag+GAy9jOSiShfeDt9c1uv1Mha3dOElicDPnwH4QQGinDhmGVDCGeWEZ1FUV69elaSM1RmtTAcArsgc1KF8XWiPjo6q1WqllAhyRPFERuubBd1sNnXz5k3VajUVCoW0qYOaotCBRYnhwXPwfqJQuQcw4zt6ub7T6ejNmzean59PJ3l5ignNc+FcsFIfMip4PFJc530mNeTo6EjF4sUJTcfHx5mSae5RYly8I/IMfMAPfMXc+aaTwWDoFXDl5QLPjQboVy6XdffuXb169SrlkE1NTen169cpNcY9WIVCISmie/fuqVKpaH19Xbu7u5Iu0l3ou2/ujB6ePMUJv9NX1iJRjqiEuAcvsHuJ6W8EDuTTcW80Jv0znhtBn4/BvTeebyspAXneRcSGdebrkXnkpDgiLLu7uykiE72aKPsYYnde8giMKwz/29euAyMHAQ4K8yotuLHqESxkqoNG9zT6cwAqvi4Be/AV44ZH4AN+MEo9AucAICp87qPWs4NCGrQaGRlucPbNyR7hcI8k9/m7PN0AMJcHjNwb6ECLuWUeHJDEtRX7H8fiRqjzhNOW+xxEufES++5Gjc8p9PG5gMYu7x0Ixr4ir5CJeWP1cfpz+A5gi8wGeDMmZBv95HPWtc8xPMkzHQT3er2Ub+yHMLk+QVeBPaIevmzuHAQzTy9fvlSz2Uw6mlSPlZWVlOfvINHXhYN8xyZuGLhciQ4CB5w+Rm/vApTfFzy63HV+edez43Pz3pX37rxx5d3/fcHyu675IEAw4ArrjQU7NTWV8mQ7nY6q1aquXLmiq1ev6smTJ5lwIeBOyuaOuTJxxeeLyZWu5xI60Lpy5Yru3r2rw8NDbW5uJoGNoESoFgoF3b59W2traxklUy6Xk1fVd+H6wtvb28uAST5nkTjY4NQv6MfiiAxTLBZTSTjeMRgMND09rWazqY2NjZTagTKXLix374//QGfoz+EIktJJcWwsBBx5DVzykqvVqgqFQm44jnQYV1zj4+MpZIrQcw8HITaEbL/f18bGRtrFDT0dlDBGngk/xMUGPzgA9Pqr7sFwQOPgjv7irWs2m/ov/+W/6G/+5m/U7XZT7lq73c4ATBdAIyPDY4I//fRT1Wo1PX36VE+ePMl4c3wd5AkvBzDOOxGkUfO51Wqp0Wio1+tpfX095QN7Tim0Yf49h98PtvE0IgxN37jpwjVGfwaDQTrohvFEQ9bXHeMi/WZubk43b97UyMiIlpaWtLGxoU6noytXrqQQKiHYmZkZjYyMaGNjQ1988UXiRwfq8DKGz5UrV9RoNCQpGfV4lqvVqvb39zPRJMCyAzJf+85X0IXNYdGoIwrgdKW2+mAwSGAA4OOb2xxoIx9dQTsQjEDSAVqM8PAZ3+OhdlAAH7H++B9+AtSQtzoYDNRutzOHKXlf/X3IEfZR0D8/DCM27uv3+5kNZUR5oCfVhlym+DzF6Fa/f3E8uIMuX5foCO71sLu/x3mf8TKnUV4g1x1kubc9en2dNg7EeAfvifTKMwZi9AvACo+6AUAqletfIrae9uXP5vlsVpuYmFC/38/sZ1lcXMycDgldx8fH1Wq1UuWi7e3tjHEYx+Zykr+hX7vd1i9/+Us9f/5c09PTajQaev36tTY2NjK8LikZbp7e5nLFfwaDi82CHkGjb3ngLhpZbqzw23kyNjdY4zPhx3if8/27mtPzfdfGZ7pjJY/n/l/bBwOCKULOzs6trS3t7OyoXq/r9PRU4+Pj+uijj7S5uanPPvtMpVJJz54908bGRmZzFkIOQrFZAiVK/pF0UYyb3dQcOwrQBNR1Op1MGSvCfgAmTnkrl8sJbM3MzKR8WE5Dw8u0v7+fNgPkAcxoKUoXVvTS0lKypFFinlMcvYbF4nBjE+ez7+7upsM1pqam1Gq11O9fHCsdFyz9IyTsihAge35+rps3b6rVaun4+Fj/8i//IkmJ9qQiHB4epn4xLix2BwX028u7kTdOqIlwPQKNclIOlpwPeBbeDDzKbtECPt2T6caAKx9XDqVSKYUWYziN/NhKpZI8E67cdnZ29Nd//deShqDpxYsXSUjNz8/r6dOnaQ2cn5+rXq9rampKe3t7+sUvfpHm1Bv84ykGCFPeHxU093kbGxtLIIp57PV6qSbs/v5+JroBPwLGPf0FWvX7/UwUx3kbwQtoJFfRN54NBoPMSY/uOYH25FYzb/1+X3NzcxoMBvr000/1p3/6p5qbm9PPfvYz/frXv9arV69S7jIhfGlozM3Pz6eyR2/evMkIXwyeycnJZIRNTU3pt3/7tyVJX375ZQJ0bJyUlKIGniriu8XxptMP+NrnzDco4gRwY56fcrmsmZmZVCsWPqI5EHaDHlqzzln/0WvPvAMwqWTD5krvG0aQOwyYJ6phjI6OpnQK7vVIHuM9Pz9Pxgayxr2yLk8wCABaGBGEqR1owo+ALgw55Gyj0dAPfvAD9Xo9LS8va2VlJc0TDVk8Pj6uqakpjYyM6PDwMG18dODnMs8NH/fQ44F3HuD/hw8fqlKpaH9/X0+fPn2rH26c+qZSf34ELwAy53Pm2StuuHGKseIGCN95Wh885xUb0Lf3799XrVbT/v6+9vf3U2UMTnqlUpAb6oDxbndYHu7KlStqt9vpHYB20mdcb01MTGhiYiI5T1gzPi6ngY/LDVnGxgZ2yphGpwTPgl5OA+bBI3beHzcMI8jNA4vxnX5fHgDOA6XOHxjrGLh52MXv8fsuA8z+//cB0fEe70P8/jdpHwQIhpkqlYrGxsY0OjqqnZ0dbW1taXd3NwFISo387d/+rdrttnZ3dzMltKRsuMM9GO5hki5yfAmXUh/YPRqevH56eqqNjY0kTPHoFgrD40Hr9XqyCH0DUavVSqWCJiYmND09LelCaDvDx9ChlF9DFU+wMykLxcECHoC1tbXk0WN3O/muXsMzLq5araZms6mRkREtLi6+BawQ9qRusBEM5eyCExCFcCJ85cefuqcCwYS3F0WEsPKcMwQQ73RewEPgpwlyGICH5P16+hH7xLz0er0MuId25EHjEUTYNptNTU5O6uxseJQzm1yg5/b2tqanp1M1kMFgeHpgq9XSJ598ok6nk5QxP0dHR3r16lWaYxeQMRLiQIJrfA75LAq10dHRDMAn9abT6WRy6lEK7oWLubPwJ4rSQ7Nc794V3yzjQNr77kYO81IoXJQwkpTxuHHt/v6+Dg4OtLCwoOPj4xTGZJMORvXJyYl2dnZSXwG6vJ/w7cTEhJrNZqrR2mq1dPPmTb18+TJtvu33+0khQ0/3rLDZt1KpaDAYehnx6nppRuaXeXPwyjuiJ3BsbCylJ7hsAhQ6yPTTFd1j6556DNJyuZw5RAZFTVTHZSnP91xlxg9YxrvPPJLSQalI905jQAIQoYdH+aKXCJnvqWPwI/OAt9c3aDv4Z1O1pLRW43qif742WQ+FQkHNZlM7OzuZ9Uf/fH1GcO7rl76zTjwq6F5MT5nwdcr/vqbcsEQ+1+t1VSoVFQoFHRwcqN1uv5VuwVqMnnB/Z9RLGILw4tzcnB4+fJg2lRHFIzpMOlJ8Ju3s7Ezb29upmkZ8p3vXoREVl9ivEiMaESQ6z0RvvNMRB00EpZeBvCh3o4H0LhCZB3bj/86P3JMHUKN85bcbKkSsnCZuGMf1EA2+vP56v/3vy0B9fM5l4Pdd93v7IEBwt9vV9vZ2JjQOI6Ewu92ulpeXk4eQheJhGSYVRvcNQpEIXMNiI0zjnjw+jwCIhtJ3pUmlAklp41S5XE4bxAjBwISMzZnUGcFzVhF+eI3w7qCY6JO3Xq+XBIQ0rLowPj6evF54tR08ItSuX7+uBw8eaGdnRysrKxnFhrLBY47lLmXzJKFLv9/X5OSkarVaSiVh/B6Sc0GAsGOx8Zl7i+Pi8gUOzZlvvuNd0UvlHi7vW1QW3Btz/jzUiIeJU6XOzy9OsPMcNizrk5OTVJLs5OQkVbfAk4WgHgwGyavPO6AJICfSg+bKED53z2E0vBB6GE0YTKS1REscukTDIhprESigXDznNKZxRGsfHsVw9RMJOe1QUvJCsZb29/f18uVLjYyMqN1uZwS6rwHpwrt0eHiYTpX09QXdjo6ONDU1ldbx2tpaxtMjXeRSe36z0wdZ5eUOfZ4cMGOM4JmRLjZBAvBY98gHPMDwJ7zuIVYAdjTMuc7nxGUda8r5wQEc3/OO8fFxlcvlTA45oASQhWzNM+igR4x0OG/Aw76uPbzrNGg0GpqenlaxWNTy8rKOjo5yQ8+kmxQKF97JRqORUmo8rYo5AcD7fgKO2fboEfMNqKCvziveZ8Dj5uZmkiGMPa5Hn7/oAeb9Tku8fmxwpfYzBlYeqMV5ENeI84akZPT49Xy3traWDFQ/QIXDQly2xfdjSEIzf6ffQ989ypDnLMgDlNDG5ZfrG6erR0zdW+4GSjR6+J+8aHg8HsUeAXKU8f6955f7u+PY8gB6NNDciGKN+QmoTgfv62X982si+H8XaI0t6oZ3XZPXPggQ3O8Pw/Gc5saEs0Bg1Ha7nbygLgSlLONJF4tNusjBcQXMe3k2m0Hcg+CLJgIht6JQXL74fIGNjAwPw3j48KEmJyd1fn6uzc1Nra6uamNjI+M95idars5Y/nn8zsfngHV/fz+lmkhKyh2AiuArFoup/Fy5XM7swo4M7QuCihautFkQKGFJSQFAcxfMhElZbHGTh4dknM785HnTvRYjfWe80Nk3Yrh3iDkGpLkCAuRAPzeWXJginEmBwcs0OjqaPCw8Bx5iE557jf0EJ08ncOHs/Oo8HA0GmvMJdHAvY0wvAYx7vifv8N8+X/F90DW+28FwFNZ5YJg5wkj0EDEpKJLS/EPfra0tdbvdFEImJI730kswSUpl3gAzcawoKSqhcPDJs2fPMuHbOF/wUTTovMoH/OnpBqwNHASRxtEjg/Hiytrp6BEvrqdP8JI7B1g/vnadHpHXHMgDYji5EQ8331MKEh5EbuS9x4G6y2UHKlzv6501Ap/x/kqlkiKQBwcHmWdgUJOKxKZJ9AXPxjilT8h0B4ZuHPkcFIvFVOLR96VQci5uQOR5e3t7b8l8aHOZFy7KjPg54MY3msOHEeC60eOy2nWsy6DR0VFNTEyk/QVEX05OTrSyspLkG17gfr+fDvKIcsf7HMFoHgD2OYj9jEZ7BE1x7bthEkGcXxe9xnFteD/gOSKkvgYdH8R7vUU+cBDsPEBzz3jes5wW8C7j8H0BniLh/JQHrr1FWvs7/18AcR4t3tc+CBCMAKEBdiL4AsxcBrTyFnn0SMCUMbTmFrdb5v537B/eOHKXY9iPUPJgMMzv/LM/+zO1Wi2dnJxoeXlZz54907/9278lZRmFloM9vqfEGcqdhqKMngD6f3Z2loR0oVDQ9vZ2BvyOjAzPdJekVqulw8NDtdttPX78WGtra5lNSx7+YXGhWACv/X59dezHAAAgAElEQVQ/U8i+3++nZ0Lrs7OzzIlz5BMi/F2AoHgBpe51Ydy+EYzQJaXqoIUbD5IScAFc0B/nHVe4zm+9Xi8pIRS8gwpoSoSDw1WoUMBmSfrt+Xa816tS0Ieo6OB5Xwd5oNE/ZywAXZS6HzRwdHSk4+PjFJamrF70mEalxGcu4KC9//Acr57g7bK16+9BKDv9oa10kQpQLBbTqU2rq6spF5B8fZcHbM6VhsCs3W5naOz9gQ92d3c1PT2tyclJNRoNvXr1KjNvLmfcu+qlB6PiZn79faOjo+nkKY8iIS88/9UNNwB+PGGLa51/+Jx+uqLkN/cA2HxjD9eQ6sR6QFFGgIWHtFKpJNAL7fK8etDF++7NeS+CAZob3+wDKJfLGW86fDs6Oqrp6Wk9fPgwpc1IF5GSa9euqVQq6dWrVynvF16MrdfraXNzM/Eb8ndiYkKfffaZJicnM4bgzs6Ovvrqq0yOtM+VA3k37N0gh17wIaDVa7g7HeG1Xq+nw8PDJBO9yoL3g3XofOHGBn0DAM/Pz6vZbOr4+DjJZ9KObt26ldLr0J8rKysZIOuywPtAv/K8wJ4W4uuLOXD6+b3+GXMWHSoO8iNIjYaBA2EHrFTM8UgA1/s8eb/is53f3eHg8xtp5fI06owI7tmgF993mVGF/HZ65QHay4ya2N/L2vuued/3HwQIlrIbiiJ4dU9AzEmJVjCt1+slj+NlhHfB6B5A6SINgfd6npqkBFwlpbxlQnzFYjF5Udlw89u//dv63d/9XQ0Gw+OfDw4O0rG8CwsL6VQx+uYKyftPji0C0Bcj6QmunAFjXOObIxBM9Pf27dt68+aNjo6O1G63tbGxoULh4ohapx30IgeYz5iPfr+vSqWSPGyS0qljtVotbRxwReyhO94DUCQPllJ5zBEK1dMmPPQUhbULT59/BD7AHjDhm//i6VTQ0DfXQFMA7djYmCYnJ1WtVtNBHYXCRak5fnyOmLter5c54hpLnBQUD3E7v0A71gu04pmFQiFtJBwMhrWnp6amVK/X9fjx47c8VSiky3LHoQmgDmDt1VP4gbaDwcVmxzt37mh/f19ra2tpT4BHAuIOfAw+5ur/UvcmsZGmaX7fPxgkI8iIYAT3JZPMPSuruoSewaBUoxkJGGAOggeaEXQR4JNtGNDFvls3X3U1YMCADoati5eDMB4IDUgaAz013TPVrZ7urqmursqsypVMLsEtGNyXiPCB9Xv4/976gpnVo0P5BQiSEd/yLs/7PP9nfQGD9IeYb/YLLlYPH9rZ2Qma85jatbW1iFd0Ye6g0HmPl3tCgaAqCvTlCrzT/OjoaBwrfnBw8I0jZIk3hy6Ojo5iDZwvOI1TF5V6vcViMazerA+CfGBgIOPG9MoFrDNWQVeQmIfh4WE1Gg2Vy2Wtr68HLbpwZszwtGKxmIn3dn7nsc++nv0a/fY1cT7EeEdGRiKR2ZVp7gPoORByJRtauHfvnvb29rS9vR2glPm9c+dOJHK6oui15nmOh/DBI/7e3/t7+qM/+qOgwa2tLXU6HS0tLWlra0tPnz4NOvD97UqS7xGnDZcVzAuWb1cy/McVLGg3NRzBT3m3t1R5oxTZ7OysxsfHNT8/H0nk7kGkxjuHeHiss8+Zj835kSseaZ9SJdaBGTzA91NqQHBekQeYU3nD9f58lEV/F14GjCReCs6f6fPuNOS05TiJvcdnqSEvbwzp/KZ71PuAHHQDmF8vZQ15vgb9mnsUvg0QTvufAuvrnvGdAcEuUMjqBADAnBEWACgfGJNNCIRvUtdeYJrEDLp2yeSTnJJufAdYPB8wgfYqXS5ko9HQ9773Pa2trWllZUUrKyt68eJFWJnoR6lUUrVaDQGD0KHWLn10cOmujTyt16277rbxzHA2ZqPRiAoAs7OzarVaWl5ejvGmhJ3nJsOSSH9grHt7e5l1wJ1OLCexxKyNxzez7g8ePNDe3p52dnbiWuaY2M9C4dKyTeiGh3i4xsz/rmykNYc9qSa1NpTL5TiumVOPAMvcD7Ov1+sZ0EIiHZU5oCvWYHd3N7PO9HNyclLz8/Pa29vT2tpaxjMBzUsK4J3ntiS8BaEMOKAiy+npqba2toLeXDgC4knudOGWut6ZAw/zYD6xxKLYsGf29/f1+PHjjDLAnF9cXKjRaKjX60UiHu9BMLurnnl9+fJlRmHhlDesxoBAB+7u5UB4eZUE+uZWiuHhYS0tLaler+vZs2e6uLiI8Anp0jqW1lX1w25OTk60sbERgtL5FGNkLqC9wcHLUxZ3dnZiPPT17OxMExMTmp2d1e7urgYGBiIO//nz50Hv8B1ok7lzIOWCjXh2FBfoeWZmRh988IGazWbmCG1oNwVoPBOLIv1GEWcO3APYDwhDyyntOUhkLCn4dn7pwIbv0nhgTp784osvdOvWrZBL7n3glFD64ELf38mecnlTrVb1/e9/X4uLi9ra2spUr6hWq/rwww81NDQU5SyppuMJm56Yxnv7gbputxu8y5VNB4WuiPt48kBT6pVyBdyNE1QqGRwcjNr/DtoIF/O9nCo6vmZObyiiTjMOfhyY+lrwnffdjSQO8P0zVybJ3WAuUvDs+98t2T4ePCeuyLDX3AiVKlT+mV/jhhEHyCmwdQOjf+eGAf/e5zKlC//N3PQDoOnnzpffFvT2e3a/9/Vr3wkQ7EKVyUgBmJQ92coBrWt2MAOErGuHKbDBwgf44rtGo6GJiQmdnZ1F0gNuVkDq6Oiopqamopbx4eGhms2m1tfXwzKMVWZwcFCPHz/WD37wA/39v//3gyGToIYg8PhPmKprtq69pQKG5gkzXO9Zr14eCesSlrenT59GHWG3TDoo9M889s3nlzVF4LqbzhMEJYVCwzr5iUSDg4Oan5/X1NRUhIFgDfXkPqcfQg/4DDryskwwIfrqVl3mzucPDd4ZHpYUBDpKHIL50aNHuri4CPoh9rTTyWb7w2Tq9XrGygZIIfQFa70nFEpX5ZPSI2TTTe9gmQS89957TzMzM3r69KlevHgRlsg0Lvjw8DA3NjxlwozP6TR1WWKZA9S6dRrg7AmYCDdnjli1fVzQnLssodP9/f3wtDjj52/2nx/FDt16FRdXnviNUkMsr3R58A+hMhyJzTwODw8HECBWnGf43nJlplgsxnwNDQ3FOvk9nU4naGhzc1OHh4eh4G1vbwfd9nq9qGhB5QrnwYwZeuY7583spbOzM7148SJKFjKPgFovR+mCOLUOM994udL4Rbds0lLay6NJ6MEt1yjp6bj9fv+BZ5ydnemXv/xl8AL2cKVS0ejoaNSkdSCG8paCDMbnSvPt27dVqVR0cHAQlnxilF++fKn19XW1Wq2w8PvcpBb+FPygELpCCs06vXq8f1qzO50bb67A4bViftlzyFlJqtfrsScJsUJeHxwc6MaNGyoUClpfX4+wvbSloBU+4+FHLotSZYS587H4WD1R3hW6FBCn+CKlxzxrdN4cUsbt4OAgs1YYvfJApit9/l0/j1W6Z/ze1AudYgynaccgDubzgHbe2vn13u9+4Ddv7a67Pq9dd+13AgRL2QSe1J3Db7fWABQQEJLi9C4YlGfk+jvQuLxkEAAMV+vs7KwGBgbC6sfGLpfLWlhY0Pvvv6/FxcXo88HBgba3t9VsNvXFF1+o3W7r6dOnOjs7ixqRP/vZz9RqtTQ5OalqtapOp6P19fUQghAWrigsVcwHxNWPKfF36pJ0JsB1TshYTkmUQ+hxrcfHOXHTF3fXpy6zlBljCSK0gc89/AABWygU4mAM1hUBwvq5pcyLitfr9QCkAALvC25MwDpzTW1KH2evd1VKiufjIub5eUmcxHnB4H3OPORidHRUi4uLOjs7087OTsaycHx8rPX1dUlX9TudHvLirlg3Z1y+JiSB+ulo0DdA3EE6QtfjT/M06xTUOANFmHi8NMpX+ky/zw/F4IdrPXnEgbYzXgQKc+VMm2v5noQU+kjzQyxSr4KDzUqlorm5OT169EgjIyP667/+6+AdeKgajYYWFhYkXcVBAiJ5h899arlykExFiXTf+wlxHiPMNYRupPF9Tu+u/DL//GZ/cXrl1taWer1eKBJ+iI3f54YG6MmtffzvfXqToPPrWB/mJ+V5Pn/szZRWnfb9/YVCQdPT0zo7O9PW1lYYORgnx+Om1lC35kvK9IvcAORMr9eLpDvCndbX1/X48WNtbW1l4nd5psd4Y5jwEKQ8AOiKvSuMvsfc3Z4qGD4n/pl7ceAnrDUGhP39fc3Pz8e+AxwzfhQ0B1veb++TvzvPKul9dKNNek16X8pHoCdX7N1S6iEzKZ+iD2mffSz0nYRdcEkaFuDW5lS+581JigtS7MBa5SkCPp/95snfk/YxHZu3PNmR19J+vem6fte8iYd8Z0CwlAVc3W43hCRA0InYtT/u5bcvsD83JUx397hlkJqB7mqFUV1cXKhSqej+/fu6f/9+pnTY0NBQxPh99NFHev78ubrdy8MBTk5OtLy8rJ2dHc3MzGhyclKDg4N6/fp15vAHGEZKzGn8akpwzhiZPzRArHhupSuVSkGgx8fH4d5n47sbyy1vDp5dy/STqlJB7hsL6y3g0AEmYIETnrrdy9PeKDiPJSeP+fqxvqOjo2o0GpqcnNT5+blevXqlzc3NDLBPQT6/ARIuAAE4KdCl9jKltzy+bmdnJzwEfE74iM/p2dmZqtWqZmdno2Qda8F4cG3zP7+dPnm2z3kekOCdxWIxapVSKiwPkGIVojJFHgjOEygp0y0WLyuk1Gq1oBUsf25BS5/t43Lh5PvB97yP3S1BNARYKvC53sE6e8rrXvszisViWNMQ3jdv3tTv/M7vaGFhQcfHx/riiy9iLSuVShycAuDxsCUATQr2XZDk9Yd7cC+7gPR7HSgTfsUz+WFu8yw48JdKpaKFhQXduHFDn332mdrtdvQdRRaw7N6NFADwnQt7f9fbAGBff//cPRDO0yRFZRYvq+c8iv99LQYHB9VoNNTpdLS1taWjoyMNDQ1FRSN376d07MAXBQElhmTGx48fa2xsTIXCpeLfarW0sbGh169fa3t7O3JL/LnQgvPSPP7o4/H5oXnpvDwQlzZ/Fv+nVlXfizyLUp2EtmF0cWWoUCjEZ742qZznnd4HV9ycBzgv9OvzQF36DpejhDaxV+CXrAE0ls55qkzxm/1Iu7i40NzcnE5OTsJI5EqjA3FPKL9uzdL3p3s+HW/es/KUoDz66vesvPamvf2bXpunOL9Jmf5OgOB0UyL0KKdVq9XC9eyMxksQcZ8nCrnwxBqMpQSGlrrnCoXLLP7Hjx+HKxXXRK/Xi5qhlExaXl7OHJAwPj6u3/3d39XPf/7zcEMCqgDRh4eHWl1djZhYiMWPQXX3MzHCCCcshSxuGgPqhEixcYA4sXiNRkOSMszb3XQOCnCl5DENtzo4iECYstGxPPhc02eAOuOuVCpxsESr1dKtW7dULBYzpwP6OwHhvHdqakp37tzRnTt3QuBzHDFKxsnJScSdM16em1pS3GLkoHN/f1/T09Oq1WrqdDqR4MFaE4eKAgKgGxkZ0fj4uC4uLrS1taX5+fmIw3XrCImWXr2Ad7tFEMCGkuDMB2Hk1tCLi8uSYE+fPtXz5891fHwc70gVAl/zPLB7HeP1/znx8d69e2HtaLfbWl1d1atXr9RsNjPM1r0PNKd5PD30gXHy7jSmDcUnZdKuOJCLQKgLYyNsCisb844iw6mTHMG6sLCghw8f6vd///dVKpX01VdfaXt7W4XC5YEDa2trkWiIMtXr9XJL5lFyzYEcHqt0bVg/j5V1+k3BsAtk9o+HPXAPvA8+xP5aWlrS48ePVSgUMpYr5w0eO+uC39cmBf3er7zv8kCX05rTJf1Kx1qv1wNopUp7+i7mY2trK/aj162VrkJ00v6yHowXCzRhMtJlMth//I//USsrK5qcnNTp6al2d3e1vr4eXhsfqwMZt9x7f/w79zK4YuBgjrXIG7vvcbec+zy7xZdx41ljvbCYA3JZHz+qmAOwAHopHTiwZf7oR5q0Cw9IDTjXgd9UofZ1rNfrGToCF8A3Unrt93xXztP5m5iY0MDAgNrtttrtdoQBnp6eRr1mwuR8P/UDeT5fzh/z6MHbdcqw993nw70oPDPt17cFv3l7PP3+OqCdKk957TsBgiV9g1F2OlfVHQYGrqoYwFTRzqSrWqBSNkMTiyfAwoWBTwqMCmsXmxUm4aeaXVxcaG1tTR999JEqlYq2t7cD1GHFLJVKmp6ezvQ/tYh6WbTUSu1JSz4WLKbp+eYOPF3oAxQKhYIWFhbUbrcjA/XBgwcaHR3Vixcv4sx0qiMwJwBM3JwoDPT55OREo6OjAcyx2sOQXAv3jegJR71eL46UJQbbAc3CwoJu3bql9fX1AJL0C3ph3cl6rtfrcaIVNUndUuwx4DBptzQPDw+HwsJ8n52dZeIdu91uzJdbj/mcE8Cw/HASmXRZoxkhWC6XNTw8HGuDQuXW/l6vlwmnYNxueb+4uNDY2FiU0ALUOuBwhoFLXFJmbxHy48zZhWieFSCvOX1Wq1Xdvn1bH374ob73ve+Fu3dnZ0e/+tWvtL+/r83NzQzTZN94yAP7+eTkRNVqNVNE3hsHGSBMnEaYOw/H8M8KhUKc8oelmhrAnhAFrdfrdU1PT2t0dFTT09Oam5tTr9fT8vKyjo+PNTY2psnJSZ2cnMTJf4Q/wcOmp6fjaHaPRXdaddp1RdD5o/NEQDw06uARcOr700HswMBl/LknmEoK8EjZrsePH+v58+cxfyjS7BMHha7YOM9z4ZzST54QYwxY0J3fY5V3y74rO25sIBE1VSQYByFZ8MJut6uNjY2IY3W6cX6X9qlQKIThwcNt2LvwtFarFcoR61MsXpZY9L3oYDM1WnhzUOvzCG9xoJ4C3X7Nr0nXw/uQgmzuQ7mHzv2Z7H3mN0+R5lrm0BXSTqcTHjT2sMf0ukEiVVRSOkNRof+Ejc3MzERNY+bdgbDPTyqf/X2ejOqAnX19584dFYvFMJBhLKDKSbvdzsjTPLDdrw8+b/3WP+WX6fz7uqRYypXo9Hne3ha4ujKSN07oL0/xuA74evvOgGAHE71eL0ryDAwMqNlsBmO9ceOGXr16FW7dlNkB0mhu4XXhcnh4GEIPgiCBRbrKQEXocdITRPnLX/5SZ2dnmp+fD0bFiUc/+9nP9Pz58xBAziCI9YJR81yYFv2jfIy7g+mXC0bfQL4ZERRnZ2daXV0NlzrW6rm5Of3e7/2ebt26pfPzcz179kx//ud/ro8//jjKBQ0NDWXi/Bzw4gacm5vT2tpa9CHVDGn9NgrXnZycZMqhAYpXV1f153/+5+EiIsbRS8oxvwDKg4MDvXr1Sru7u5EANDY2pmq1GhZmhKZ7A2B8h4eHAb5giljwuRfmilvZAYakABGe7X5+fh7P2tjY0MDA5TG1q6urOjg4yBwgUChcJYml80XSRsrAqWfrxzSzNs5IXFFij0hXghMrA/vCLbC+l1hL34MOpFAea7WaZmZmND09raGhIc3Pz2tyclLb29tqtVoql8sxh5VKRYODg+EK9EMhEH6FQiGsRdAdf5+fn6ter6tareri4rKGt7v+mAP3GrkbtVar6f79+5qcnNSzZ8+0t7en09PTCIfxaiCApGfPnqlUKmlzc1Pb29taX1+PJBeAq/MX9y6NjY1paWlJxWIxXJxYlnd2dmItUgt0r3eVoU7W/fDwsNbW1lSv19Xr9eK4ee7D/Q5YJYkW2oeGUx7jFkWsp5ubmyHQAW7QOCcKphVznDe7cPbvaW5RygtlwzXttaud7zUajeC1HI29u7sbsfjsW9aBd/FuVxzcQ+NGiTSm2Pldt9vN7GX2ihswXOah3KTt8PAwjrxO58f3J/vYZVyqMDsPoc+sPfSVhqakYDQPbDBHXuXDgXBq8ed6v9+VLZcdzluoZe4KH/wWa6zfgwf58PAwrk2NYSg8Tluu5BIGAU+BHzF+FGO81M7vnXZ93v1+xy2lUkmLi4u6d++epqamwkvZarX0wx/+UE+fPo149JRvpYYJB4ZuFIMXMM5+VmQHl6nCwN+OO+ANeQYTv8+bf3cdKE7p7brvHDS/bXsjCC4UCv+rpH8iqdnr9d7/+rMJSf+XpNuSXkj6571eb7dwuRL/k6Q/knQk6b/u9Xo/f4t3hJWTBQPMwahgsOlm4V7PRHYNAmL2eE8vxZYercwEQqi+uZ0J9no9PXv2TK9fvw43ZqfTCRcOgIoNgSWgWq1qZGQkE/fpBdhprok60+BZPk7mwxffGY50ySRmZ2f17rvv6h/+w3+o3/3d39XExESUpJmfn9fMzIxKpZL+6q/+KiykrMno6KjeeecdjYyMaGNjQ7/+9a8zlqnZ2dkQ/JxGx4bA4kkMnrsnWRNc9AhrhNP+/n6URmPsLogYn1uxseARBkGyGUIGsExMnwt5rMD0xWNDUYjc0gOt0D/GhkUCoUJFhJOTkwCHgKNut6tGoxEC3IW3W22cvqFj+uD0Tq1NZ/JUlvCsY2d0bjniHU5DKeB2BuSC3n87OPDT9YaGhsJKz77qdDpRqo/7p6am9Pr16whHgA94ljt0ABDCIoQln/enTNnDCVgDqjWwr7HMl8tl1Wq1OG3O54Ha18RNHx0daXd3N6zdjUYj4ynq9XoZ5ejg4EBPnjwJL9TQ0JBqtZrGxsa0vb0dgpz4YRR4PBtnZ2dqNBq6d++eOp1OhJUAnlKrqIeLwWccnKbCL7WmeH1r5zP+twOUNN7TLai8m37webFYjNKR1Ft2QYp1joorrgy5O973ZfrDvs1TYNNxpWDT5RTvRV45TcHDHUyzHz3RFiXUa0izZqVSSbdu3dLm5qZarVaEwvk1LgdTzwh96gcOXJ762jtIZV2uAyooVrQ0HCmdGzcq+fqmyo73EUMM4NBpLAVfvV4vDvuh8gL7izmjGgV04wqahzCioCIT/BrWObV8pvzR14nPnJa4loN+6vW66vW6isWi7ty5o+PjY+3v74c3ydfPcUC6b513Q+/QiAP269Y55QFSNi+COUjpKwXR6XP7Aey87/P60++e62g1r72NJfh/k/Q/S/o39tm/lPT/9nq9f1UoFP7l1///D5L+C0kPvv75UNL/8vXvaxubnUn0IHSPZcSS4hPnVrl083MNi1WtVlUqleJ8ereAuGDw32hoVB+AmAFa1AWFqXMNAmtwcDAEImPD6pHGcLmQTgEtDNPH7ODDKyXwmWdeVyoV3b17Vx988IE+/PBD3bp1K2MdGx4e1sOHD/Xo0SP97d/+bcZazbwDYBgPp2kNDg7qzp07mpqa0srKil69epXJcGUe6Z+7JlOriwvRbrcbmjZMHKsO5Z1ckLp1GIGCguEhEA5W87RRt/JAQzMzM9re3g4t3O/F9YaL0j0IDkJg/MwLa7q3txchG3xPc8sowNqZHM+WrhgRVlT65wl0vkewwKau3RTUpH/zfwqIU8WEtT89PdXOzo7W1tY0MzMT1kKspngVGo2GGo1GJNDA7D1mkbVL++NKopcDo48ovr7PHQDx/+npadS3Zi93u5fHjhNHj2XOjzfFjUvtYzL/Oa4c0La3t5exsl5cXGRKnnU6ncg36HQ6unHjhsbHx9VoNEIYHx8fq16va21tTa1WSwMDAxHz3u1eVl9BCSCmFAWeMcPD+jW34Lmy5yDL9wGgzpUUp480NCJtvtfoZ6FQ0NjYmGq1WqZqgqQoA8c9ACka40fh8ATVdM+n4Jh92m8/ON1hLUxjon0cPjbAiANwfrNGXEv5NH++j9XXB5CYWoxpeeAoT3m5DmD4uPKe7TyVfqUWYAe2PA96S8ME0vfzLA/RI9TB82m4FyOD88Lh4eFMBSI/TMLf4TRLqODu7q5qtdo3PMZSNjfG5ylVVFzmMlZ+Q6/QAfkxpVIpkorxMKZ7MPUApLzaP8+jY782TyFJaYB3ww/yjDXfpuXJlm8DZr3ffm8qo/LaG0Fwr9f7qFAo3E4+/qeS/uDrv/93ST/UJQj+p5L+Te/yjR8XCoVGoVCY7/V6a9e9A+Jkoaivi/CRrtyrAwMDmeQ4Nlo/rcNd5lNTU5qdndXTp08zdUrzNGSe5Voh/WTD8r1bkZ3pYd2iVjBxmvQL4dTtdsNS533xZCgpK7TdrQHjSzcamjkCeW5uTvfu3dPCwkIGiLp2Sg1kXIdYKo6Pj7W2tqajo6Mor3R+fq6TkxNNTEyoVqtpcnIyXPAeTuBzlAI4B04OoACFjUYj4jsPDw+1trYWQMk1d4ArDATgi9BkfnydEEh8xrqnLrzBwUGNj4+HK9MrGSDQoF8Yno+Zd7jy45YkmAjfefwv8a3Slfu9H5BIhRo0Ar2msYDlcjn2kluE/VnpfnDG5PsPWvTQC953fHysra0tffXVVwF0W62Wnj9/HrWpsfLgVen1enHEtq+F74N+zJ0QIveSoFSlwjptrJtbLwkBuH//vs7Pz7W9vZ055QqQizDm0BKsN5OTk8EDcNt637zf/E9c5OLioubm5iJhBm/K3NxcWKBJtsNVDEh3OnAFis9QTH2N073JnKdKN9fiuUgTw1DwfP1S4JPSrf+NRXx0dDSUAEKaSqWSfvKTn2h3dzdTvs55JwoUvJG66067ef+7Au6f51k085RAWj/lGhpzxc75mM8te3J3dzfW1N/pCorz/VRJz+tD3l5PQVxeS9c/bx768QpveUDdWyqXJEV4DTLY63q7QctpAR7KeD2siB+n23ReoGMS4qluwxhS41RKCykATo0RPofn5+dqtVo6ODjIJNRzmiT8wa2+vm5OM3nr4fwlvfc6QJy3/tftB7/ff7+pvQ1g7de3PHp9k0JH+01jgmcN2K5Lmv367xuSlu26la8/eyMIRvuWrtxUnPTkCQTj4+NqtVrfcCOQiAGB+iYipGFyclIPHjxQt9vV6upqxIQCnt5cgRwAACAASURBVJzIXMvGWgdwQKhIylhJudc3ZLlcjkxkYgEZI8Dp9PRUs7OzccIYQtIZABv26OgomLQDWY/zQdPF+oXFz91tWLmkqyODnz9/rsePH4e1l02OwrC3txfjI/4KcP/s2bPodxq3KF1uGuLwWG/WGa0cxlgqlTQ7O6v3338/aipLl3VVf/rTn2YsTTyL+cItzfp1OlcHaKQbHrphDd36kwrts7MzjY2NxboifKE7D5+4uLiI5CdCLyR9Q3kbHh5WvV7X3bt3JSksgi64CPPwvqXAxQUqjBDvhaRQYnw8qUuVZ7lg5TNnOKmy6RafNFmJvp2cnKjZbGbCBYrFYpzC1W63w8LhIQdYVt1d6gAb+nNFwkOFXCh4fwD9hKWkQjB1LRJ6sri4qNevX0d88O7urjqdjubm5jQ9Pa3d3V3t7OxklB7Ay9nZmRYXFyOxlj1Nvxin7/XBwUHdvXtXi4uL4QJGqSAJkjCTgYEBzczMaGRkJIB2KqTdW8S+S2Mz05hQ9jMKO+vL51jknJ6w1G1vb38j7KRQuIpP7WeAKJfLmp2d1QcffBCfzc7OampqSjMzM1pYWFC329XLly8zCaxOz6l3I7WQOWBK6cWVU+bAPU68C+XS5YbTUa+XLZ+FRyb1kPl7uB6ZtL6+nhvTDx93XubWfl8PeAMeSkmZRK50jlJjiu+LVHHgfr/O1zoFhqmXjTVI+XMKtqEb5CMndyKLSUJnbdmzAGbmC2+tG7EckOcBOuTdwcGB9vf3o44x96a5Hz5+N1Y5P0oVGEmhYG9ubmpyclKVSkVHR0dqtVr67LPPtLy8rHa7ncn74bc/2/uRx6vzWgoorwPAKaD0d/keytvb/d6b90xXytL3+DVvAs15Y/H2d06M6/V6vUKh8K3t4IVC4V9I+hdf/x1WLknhUqzVaqrVaqEZORj1eM1ut6tKpaLz83ONj48HMFtfX48JOD8/18uXLyMLm/hE1/5dSEhZzb3X6+nu3bvRl4mJiQiR2N/fz9RxdOYBeE8Xlfdy8tnq6mowLkAT/YN5cj3CPt0EeYQEczw6OtKnn34aiTi3bt1SoVCII0E///xzffTRR5Iu44MlaWNjQ/v7+wGaAW5s/nK5rPn5eW1sbOirr77Sq1evwiWHJdiPez0+Po7YYBrKj7sHy+Wy7ty5o/fffz/cT71eT5OTkyqXy/rhD3+oR48eqdfrRSkhlIlarRbxW4DcNHEGpYB58zJmjM3nEqXJQyGGh4cjrhXh42CTzzxW0ZkCazM4eHkq3vr6uu7cuROJc261cKsAY3JG48CuVCppampKt27d0p07d1Qul/U3f/M3cSKcWwMIC0KJSC2DTscuFBkHeybdKykgZ6ytVku/+MUvtLKyIklxMiI0invbGXlK51hT2UsANOKomSfAH8/Deu/rCvB2QITliPVkfi8uLvTDH/5Q5+fn4ZnguvHx8eBPniDGPFDSaHd3N5IC9/b2MsDEY5oZa61WU7FY1MOHD0Po+8E7f/M3f6Pd3V1NTEzo7t272tjYCH7ImuIRAXzxPhdSLvSYe7eWI+BJjKWxB6Bv1oIj6akHnvI9+uFKvBsHJiYmdP/+fX3wwQfqdDpaXV3V9PS0ZmdnNTMzo9nZWX3/+9/Xf/gP/0F7e3uZnBFXwtKW5+Xw6wChrnCwt1xB8GcBDD3MzUv3QU/c4/Ig3WeVSiVoEsOD0z/P5H0OhNMwCO8f8u3iIluOjHWBZ9MvwDvx+VhgfZ+4cpwne/yadA2cHlyxTT2CeZZx5nt7ezsqv7iCkio1vNP5PaDUK+g4+PX94O/FGwqfYl7I70nDtOBfjI33pwYN33e7u7va2NjQ4OCgtra2NDg4qGazqSdPnkR96rzQg9RI8W3CE1KQ6Pelf+eBVp+vVPnqB279vvT7fv172+ulbHjpdddJvzkI3ih8HeZQKBTmJTW//vy1pEW77ubXn32j9Xq9fy3pX3/d4V6r1Yo6lFhz9/b2gtCcWH2AMB8OJzg+PtbIyEhsDkDlxcVFJBdIlxn0S0tLEQPI51hSU/cK8X+cREasnccnoY1ieQbMS5fAkox1rNsOdrCqSFdJejD0brercrmssbGxcH+en5/r7t27ajQaWl1djUM7SLrwGDmA8+rqqn784x+rXC7rT/7kT3RycqIvv/wysk7r9bpWVla0s7MTGbWVSiUswAhDwlXYbABcqkrU63XduHFDKysrURDda6+SKDcwMBBKDYJjZGREk5OTMV8kiDEPVBp47733orLCZ599ps3NTZ2fn4d1DrDLOxAwADcAiwf3u7vRrV1udeYZMFOsm1KWgY6OjkacJOXVAGoIf7Ls/+Iv/kIPHz7MKE3dbjZEJtWyUUJ4FmXmbt++rXfeeUe/9Vu/pffee0/Dw8OamprST3/6U33++edR0q/T6cS+yKtB7a4ugDcxoV/v2QyQka6ssy5sUu9Ot9sNepIUz724uIh59JhJFCDASblcDlAJreOOL5fLccS5e3aYN8AIwIykF4/rI4af67hWUlh5oY1er6elpSU9ePBAv/71rzU5Oak7d+5Iujzpr9VqaXt7OzLH9/f3MyXOPHzHeRrel0KhoOXl5Tj4hee+fv1arVYrEgB3dnYiNInqJSjO5FqkISIeZ58KKyqz+Pz1epeJRtzP/DhdUk1GUsQ1uxXM95Q/1/vA9+VyOY6khyaPj4+1ubmplZUVffzxx9ra2srEfTrNOgjKs2zRH7eaUmIRmsLbhVxI5ymdO+cT/o6v5d03ZEraH0rstdttNZvN8Ji4Auw/Pqesue9F3oU89WOj6ZN0deS60yFGBcbp/fTx0vKsxinY5l733HCt70ufM97l1m9kvq9P+nz6hAzzCjLsv7wQMQeqzBk8qli8PGUU5c73sHtUGIP/TkGm0z7j7HYvvaVra2txIiHW4fX19czJpLyHufF587BKn0NfO6dR75NfkwLdfoAyBcruTcrbd3m/03nJe27av+vGc93faftNQfCfSfqvJP2rr3//P/b5f18oFP5PXSbE7fXeEA/sHYSYiIfzzS99s3SNlI1NI8mE8kkQtVvKAMU3b97U/Px8EBuHJyC8fTELhUJYR3mWF/xuNBqq1+saGBjIZDN70szm5mamRJHHygG6abybvgJ4bty4oU6no08//TSeQR/YCLzbBSyll3q9nra2tvSjH/1InU5HGxsb2tnZiTAGTibC2u0MFmYxMjISTGF4eFiNRkMHBwfRh06nEy5vd8f2A3NsXoAQ/fRse0+O5Pfm5mYcJEDM5a9+9asMPXlSmh9F7MqTVwfBepxaBVj3Wq0WVpqUfl3zJQbNGTygIhXIhMk8f/5czWYz3OcAIei+UqlEkoTXfsXqTAUBYqk7nU4kTXW7lweITE1NRb1arzXLeAHFee40Ly3kdMozfK8wD04/0DphNq4U+dHC0L6XNkSB4fCQSqWizc3N6IdbYKgjXChcHaXd7V7Wfh4bG4s9Ce202+1M/Gync5mY5pZoXzPWFpfkwcGBms2m5ufnNT8/r4mJCUmXIHBnZ0cbGxtaXl5Ws9mM8A7fCwhqtwjx3cnJiT799FP923/7b/X+++9rZmZGkvTVV1/p888/D3r1kl/MudM+9YzdBe7eCrcMu9cqTd7y/UCfCQsjbhqFD3rJs9B5iBT0DZ0CdldWVvTLX/5SN2/eDLCPUr2zs6PPPvssc3Qxz3G68blM++DvBcDX63XNz89HhRvnsan11gU8dJOePufAPI9fsD6usHOUNmAt9bSk8+bPSkG58y766pZtB9beF77PqzTh/IJ3uHzOA8P0M92r/lx/Vgq2Ul7kSqjPi/NE6HdkZESNRiOegeEKmZSuDTKXz1Mlm9Me4dPQRZ7hwNfFx8Ea5q0XhhGSczudTuYwo3Tu/HmerJd3zXWfpetKS8HjdWvX7x151+W97zoLcvrsfv3lu7TffycQXCgU/g9dJsFNFQqFFUn/oy7B7/9dKBT+W0kvJf3zry//gS7Lo32lyxJp/82bnu8NAgf8AgQhzJGRkcgkdzcrmwLGzv2AWWcUCFsYpmtNMAIWgfdIVxZiFyJYktCwiTHkHi/032q1worIs3muhz/ApACGCCgv/M33HHdLOTIpyywRNjBSNtnGxoZ+/vOfxwls9KXX60UlgrSUEnMsZa0MeVm5nHjkwP78/DySaNITdkiKAoDt7e3pq6++ivlzJn1ycqKdnZ0AeFhOq9VqxGoyFhg548g7Fc0ZuM8t/7MGJAwi7D0OkDVywesgxz93JuAClFJbMFb/npI5jUYjalVyYhUgjxJwhL40m83woqyuroaVNRVSDn5cOHINfc0TroyJv/1zn1d/Fs8ZGxvT9PS0CoWCPv/8c0nZklUoWlgEEUTumoROfc39tDQHbJVKJRQFSp71ej2tra3FnDn/cYHu/XaPSKFQiAopd+/ejTKDvV5Pe3t7UdaME8Z8bVPrGsole4PM9Y2NDX300Ud6+vRp1A7d29sLz4cLU18bmgNteBE8JuWx3J+Gb/G3J7umAsjLLnl4gs9bCoj8nc6zz8/Ptbm5qZ///OdaX1/PJBzu7+/H0bs8gz7hbXEllWe6RZ9Gf6C3Wq2mRqMR9Zm97msKLPIAcb/ma817fX6HhoY0OzurxcXFyFVB3ringHf5/3zmACzto4PgFGCkYN77lT4nVSLy5sEtqb7O7pl0CzD8L6/lAZd0jCk/S/92upMUfKTf+/x69gjeIcJkULR93tM+pn+nvDWvn+ASvJ/wZFdc8lraj+tosR8Y9Hv7rW/e/84L8r5LaSalpd+0peDd+50Hgq9rb1Md4r/s89Uf5lzbk/TfvfXbk5YKUSfIUqmk8fHxjIU07/QebwDd1OrY7XajVNHZ2Zna7XYwQoC0pAxo29vbC5ck2iGWLS9h44TgFhaAU7FYjFInANli8bJ8G+5SmKZb0oiHduC2t7cXIRiAZicINFo/YlG6ZEKvX7/W0dFR5vhQAHmv1/vG6ToOKhFyXgvXGZ1bMV3hkBQVCXBlAVywoLVaLbXbbX3++ec6Pj5WrVbLAEky4XmvW+Nhbr7WruQALChrlFpGsI5CX94/CrSnCpivE9czVvri9JyCeuiRftEPt1LX63VNTExofHw8wlA2NjZ0cHAQoAzrZbvd1vb2dlj62+121JZ0q6eDJhitj8XHl1poaA7A8gSz7+V0PxJS4wX2eWavd1VXu16va3FxMdav0+lEwsje3l4mfITn8h5fS/ZctVoNsIPCxoEYbu1zwM2ecXcscwhvwKXstUv5vlarRTkntz75OtRqNU1NTWl7ezuqHrB3nzx5omfPnoWyWC6XY++lz2H8rBtjSZUUB7PE6Pq6egOoEZfsIBpeSPiDC3vfWz43TlfwDeYewEqN5o2NDUmKMDIvSekneRYKhYhHxpPg1ut0TD4/PoeErVBNIh2Dz5/TeTpvvmdSIe37Ar5Qr9d18+ZNbW5uRjlEnoMynioPqeXR91keMEn3tP/2vrqBIM+KyfPT+fV703lOZbA/JwXB/q48pY4fl8PuEaVhnefIYfdMIAtSoJaCOtaHBGq/ztcgXXOa89N0/nx8YBxAsB+UlM5BSlt565vOX7rn3zTfefz+OnCdtn7vyntWSnvfpvUD3nlz0699J06M8wWSrjRFtzwQj4NLt1arhXAnUYbjXp14PTSh0+lkNDhnoiMjIyFcSXLzzXt+fh6xpSQMXFxcRLyR16KFmcOscGdT5H5kZERTU1MaGRnRl19+qdPTUy0sLESmN82FzdHRkTY3NzNafRqL5AeOYMHEWu3AglijSqUSFQvoJ4csSFcbnD7wt7stqInqlQGITQbkAVQAFQ4kSShAwCP4d3d3tbe3p1qtlgHZgAuSdGByftSmW58YV2rJBuinc0aIB6fLARy73avjkHk2dJaGstAPwDbAOGXYTqu4varVaoQKUNpucnIyTiwaHR3VwMBAeAC63W7E/XJqWaFQiCzi/f39oE0SOFKg60yfuXFhkjIprvMDAlIB7ddJV/G2WLg2NjZ0cnKiSqUSrmDWBqCF1fbmzZuhAOFup0KAW2V9nT2MgRCKBw8eRAWFTqejnZ0dVSqV2B9uqQScswbsS1ysVIc4PT0Nj0q3exnTNzU1FQo0Vnr4jru4mfeLiwuNjo7q+9//vj755JOI/UN59cTLdrsdcb/wR18r5swt2lSMINmKufJqAmk8twsN9gWH/LhgxmLvHhSnGWiBZ1QqFe3v70cIlsdbwnNYUxSGiYmJ4BVY1KvVaiiADr7ppyto5C2ktOpjPDg40NHRkdbX1zPVZdzK3k9wM8a0pdZ5t76nfGhrayuUVqzQLvsIi4NGj46OvrFHvU++jvDX1KiRB4T538G7X+/vTJUtH5PThIdROa9MwbDPV9q3lCYJ8SmVSjo+Ps6UBaTBI7HkFgqFCGMkKdc9E/x2msKi7VWhvCJJP6NBHlBlXjwPwWWtxxfnrW0613n0mH6ezh1733nzdff2e8bbAuJUCfT//RpanrL6bVoe7Uj/PwDBvnH9M7eUHRwc6MWLFxoYuDxqFEbKoDloQNI3ssVxM3uoASWtxsbGIkzBjxglmQU3aa/X0/Lysmq1mqrVaiaMAOulb6qRkRFNTEyElQ4wCoET51atVqM8mZQ9wYkEvOHhYU1PT+vmzZtR4YIG0/FQDTa9M35AZqVSCbf+5uZmJOmlQHB6eloXFxdx2hrPoV+lUilTkF+6IjSsmDB4f36z2cysLyXEVldXA0BjLcRCTVxXtVrV3t6e1tfXIx6QzYyigYWZslTEhfZ6vQA8rJMXPYfBFwpXSRGuncNQ84RDyqCgR8AIjNRjfLFE+/wxRpQKsv7HxsbCFUyZPRKuCIsYHR3VzMyMhoeHI7kCMOlWd9bQBRWfubKTgpk8K1a6h1lT6Jzn0whvIG6ZObh161bsH38XoP1HP/pR0O3o6KiKxWLUpKZxL0oRfSLUpF6v65133olwhfPzcz148ECLi4uRYFWpVDQ1NaVer6cXL15keIXH1QPep6en9fLlS01PT+vdd9/V7u6ufvzjH2t6eloPHz7UyMiIms1m5sTCi4uLAKWpcnd6eqrx8XEdHR1pY2MjlBwEJx6Jer0egBgltlAoZOoPe3IvFk63LJHwA0BkXdl77jHhfw/T4XqsVp534QozFjSUW4+xla6AYalUCo8c9Me9eOB6vV7wPrf4OF26hc/HhRLudMp4/X+Se+GtDoDzQG8q5L0v3EupQq9Q4v0vFi+rajx69CiOUCdmVVImidflDutKn1zpwfLJvhgaGoq/PUnXQ+U8DCDPC5gHZNKxMG43dKQ5Bm5ESdcxBef+N/cVi0VVKhXdvn1bpVJJ6+vrQYcpwOSgnk6nE8qvG048ppc59DF5IjvKlctMv5bx8G6e5zySOXNFEjo8Pj7OVBKiX86XUyCazlUe2EvXLfVYePPnpuuSXufPzwO1qexIr3GauK59G9DtXsm88ea17wQIdsHMjwNGCMxL4PR6Pc3Ozmp+fl4vXrzIBIXDQL00kDNWZ2iEFLgbkWchtFiAkZGRcGsi0CnoD1DEynpxcRHMjKQsrIt+ZDLWHE92ogE46VOn0wkA4QkgzqgZI+CNovMwpHa7rc3NzQCDafwfAs1DDqRLxcIFKVUORkZGMqCD9QO8uwuJAwP8II5utxsKiIM06Qo0cWDE5OSkGo1GJEDSH/pPgh5KgR8/LF2CzKmpqUhESxUHBESr1dLu7m6sg4ebuCCl/wgn7zuWPMqoObhOQypYQ6yXbjHv9S6TvZ4/f65PP/00rFQXF1enYEmKih6sjYOBPMHtAs+ZeR5jcsDszQGzx2+7dcSBMSEQ7Ak+c8bPfsf6ura2Fn3Fojs9Pa35+flQJBFcgKvUWtVoNPTo0SNVq9X4Dq9DrVbT+Pi4Dg4OAigPDg6q1Wppa2tLJycnUS2CeYAmeH6329Unn3wS+2Vra0tra2uan5/X69evIzwFfuJVLaC5gYEBra+vx3Vcc3FxEW5+wjju3r2rra0tra6uan9/PyyHKKcelgRo99MKAQHsO2jT43qdB7E2Ho7FD14w5gcwD1jxEAg8N+5JwwPCQR8eFiFdKkKff/55KLV8f3x8HEqthwpQHtHDUqBR328OtlPji5d8c3CTgrYUmKR7gzlxJTTPw9LpXB53/ad/+qcaHR2N0wGpLAQP99yDWq2WUfxcqSAXgOcPDg6GFZ91wWvqybouR1J57C0P8KS8g2TdtOVZXn0u3IvD9yhz/hngdnR0NLxbjN/lKIATD4qPiWu5j+czz/AWZDPKJ55iNyD4WBwU+5z4u9L5Y9zuCfFrUq8CfCdvTdK1SkGo/9+P73tIy3XPzqOFvOvyWrr+36blyTQ+97l6m+d+J0CwpEwSmxNWiuwBFwMDl5m0flynlAVixOA5o0QrhlnT3ILC506YxWJRc3NzcXDDxcXlwR28g1CGFPhivTk9PY3sfrRQH6/HCyI8Op2OJicnNTU1FULSBZQDJYRrr3d1kANCc2RkRMViMQpvHx0dZQ4KSYnRtWE+SwUA8+XuL+5FuM/MzEQ1Aq+jyjNdq6f8lIeAEKNNXdZ2ux0AknlgfmH+uKX5YS6KxWJUwuAarHusAXNOBQN3tTO2vPlIQwugNSxpAAnogJCA1M3JaUgAk17vMgv5iy++0LNnz7S1tZWxXLkCgNWe+eHdfiJcGovm/U8Ztl+T3ufMk72V5xJM5wWviAuIgYGBSHaVFApPoVAIMA9IYd+w/1utVoBA5tCtTtBvpVKJmrsuSKUrMHtxcaFWq6Uvv/xS7XY7kvHwOGGhla6OdUe5IbcAWimVSpFwt7m5mUlKpA50KvA5KARaHhwcVLVazRwCVCqVwgvVaDRiLl2ZwesBuPL/PU5Wuorphh5HR0fDE8PcpKE+zLODWp7FNe5dcaufJ/o42GD+nde7J4K5c+DpcoBrUfxcsU9j4D1MrR8o6Wc5cn7reyEFFf4sf08eAGdMKD9LS0vhOWy1WiqVSpqentbExESAekKFKOvp4WbwQYAb8iC1vjNXvo/5zvuYgogU+DOO9Bp+U6LPlW1/pv/vcfh5igY/KE5bW1thdILHuXz09XWw7+/NU5BYawfsJHvDp9MQj5SvpADM/3dcw//wLufDPg5/fh54TecypdF07Zy3+9z7/s3ri/fnTZ/3A8V5Y7mufRsQ/W2eS/vOgGApf9JS4pKuBBcWECbfXTmAXzZ43qLD5GGSDiKlK2CORdZBLYSCexa3K9omfZibm1Oj0dCLFy8inpHvGYeXwUkZJG5u4sbySo0BoNlIMMVerxfxosViMZIBObACQOVz7wKS/107dGIjo51yLnxO/BXNmTPrB9MCUOSBKzL6FxYWNDAwkAkBwFKDJZH6q5Rnov9ukQSIY6FOGTRWbkIZPJHOa9jyTD9kI1UOsAy7lVz6JvPlnkqlooGBgbBqALCohuH1fXu9XiZbGRoiWcrdwA7oU4Ca7o00Ti3tdwoemN9UMKb7FRqln8Tns7fcOkot4MHBwaBX5t2B3erqqqampkLgu4BlPDyz270Mw+H0Rj9GlSNpAdJUcvBxMnd4Fugz8w3w8gQzcgg85h5FyF3z9INybYR1uZWJuSK2mIRId5FTI90BAc2BEPTB+9OQIK+w0A8MuiLLejr/SPmph2XwP/TkABartz9DugrvAjwA3pzHO0ByOnYQ36+l9J7uA59LeKxf7397v/OAil+L147DRag0QllI9i1063V+yUWBFugbc5yGebnBh2dAD2m/0jnJ63u/+UuvGxsbi9C8bvcyrJH6/w5yXZY5+HRw6HMqXVn9U8CeB44c3Pvn/RQX5JgnUWM08f35pjnwPvuY0n66JZvvruOpee/MU1je1Cfmmphn9qYbE657Vj/6TvuT17c8/nLd89Lr+rW3Bb+07wQIdquAL4Bb26T+bhgEHdfAPIj1BZDAdPkO4eCWRw+ud0IYGLg8dGFkZCQKqp+enkb8MZblVLucnZ3V7du3tbu7q5WVlcwzAco8P928eZYEt076Bs3TCskyJjQAwAjo9JhKt9jkCQ8HebwHCxvWbxjHxMSEut1uWNGYY894TS2PPve8h7qMN27cCCWA7GkPGSDZiBJYzJO7dJhL3L61Wk3T09MZ6yJJNwgnlBu3UHiJHXddOfMGMBFLihDvV5cSZafT6UQG/MjISJzwRs1SwDXvw/XNuABlMLOzs7NIsuMZKW0BFhlPurec/twV7jTh4DMFxVg/2TMO4Himx+xT/UBSptwZY0WJ29nZ0YMHD8IdT9yfC1OqQpydnelXv/qVTk9PdfPmzTjt8eLiQi9fvtTOzk4kGp2cnISVDasPCZKsaRomxV5GmTo5OcmAXdYDQJPOuVtsnX8Bev0dPIv4dw8f4FnQB/ueEAjWDL6BMgBPPD8/j3UCXHCPr7sLdazWDgx8HPA3V9zzgCnKAl4fBz7wZumqlry/gz75j+cppHSaAot0bHnu6vS3719/nlv4XA7483yveNWNnZ2d2B8oM6xxoXBZL5vwOLw8eTyOv+FJrhjwfqcbl7XpWuXNQ/pdGg7AvAwODmp8fFzT09Oq1WoqFAra2NjQ48ePv2GZdfni4S08y9/LuLySkl9Ln2jOn7ylMpM+oFTilSJciVPq8izaeeAt7330Lw0repPC9DYtnc+05T0bGvDQn/TafvIgb/7epvWbu5TGfpP2m9z3nQDBkjQ9PR2WMIR/6k6VsmAGBkItTk6RgvkjOGEcbHaEG0JLUhRLB9C5aw6ib7VaEWIAANzf34/4VM/alpTRfBEUh4eHYeEERCHsYdwwLly+WD6xdrKBJicnNTg4qLW1tQBZDooODw/1+vXrmKf9/f04KrdQKGROJEvBk4P1YrEYYQSAboAgiW0I3mq1qnfffVfDw8P6q7/6qyjd5a5TJ/qjoyO9fPky49KlLwBAKjTglsbt72N1SzCfLQAAIABJREFUCz+bmXWsVCohBPi8Xq/r1q1barVakWzDerl1wZWbFCwCJByMFAqXoQm1Wi1ozhl+mrgBcNnd3c0wGao7uBuXhrUO4OJhFWdnZ5m40Ha7HbGTUhasMRb65hYK5tCBCALKrUh5IIPn0gdOZ5ycnNRf/uVfxngQaNTdPDo6CgvXyspKgKI0xhPw8OrVK928eVP379/XT3/600zfocW5uTltbm7qV7/6lZrNpm7cuKFbt27p9u3bOjo60i9/+ctYf/p+8+ZNjY2NqdlsamtrKxQ6P2zCvRDUHPbSitVqNfgB6wrglxR7GQWdBFwUa4S8W+pPT08jTrlarWZAIJY1j2V1XsRed2FTKpWiPrVbj1OAzz0Ojvz5ngTrQpS9Bh93hcD3kns4SHj1pDx4p8dKulfKeUo/Jc2NDNA8rvSUbiV9A7wyPylA5rkO2tnjvIN1SpVMnot73WUY8z0wcBn2R2UYwtu2tra0vb2d8TQ5/Tl9IgtSsAofhwddZ4V0WZz3nPTa4eFhVavVqN8+OTmparWqRqOhZrMZ9A6tpPI9D1SnvAjjh8+7g8l+QMvpgPc7nbOnqVyDQeT09DRCUPLoLv3c+02ffRzOX2nXgco8ZSNtqSKWN34fL5iD8JnUo8a9jg+cF7ypL3mKIb/T+/spAnkKjL/Dn5s+29ehbz9/U8T9n7MVi8Xee++9p8nJSZ2enmp5eVnb29sZ4UEYAkTv8bMAApjGxMSEGo2Gzs7OtL6+Lumb9fycuWLNmJ2dlSQ1m82MIGARcdGPjY1pcnJS09PTYZ3c39+PhLdisZhx8dNfgEO5XA7r9cHBgcrlsiYmJjQwMKDDw0O1Wq0AEYDlQqEQySM+Tkna2NgIK6Jbz1AG6APMDoHJsxASxA37OeiMG0uldOXexr1LyAAaOrWHAe8uEH0dGB8M3N0xlKFaXFwMyyBWxWq1qrW1tShq74zE15QGoPZWq9U0NzcXJ+SlYQsuGFImzxhQZra2tjLv5BlYA7vdbihZhUIhU4IJOqPsk8d4exayM2/cp67UlctlbW9vx9pgwdje3o559rhAAGUqHFIm6e8ZGhqKdeden588QYZAHBsb061bt/TkyZMA6e7mJpSoVqtF9ZLt7e2YK/bb2NiYlpeXI5uaGO7x8XEtLy9n5gRF2OmW/larVdXr9VCoULIGBwf1x3/8xxobG9PPf/5zPX78OBI5mQvfF843KOFWLpfVaDS0vb2d2S8ofdJVCJQrMB7CBM17bCcNBRYrP5ZqFDAHkLwLemYM0AIWZF9/1jidt7wwAeYg9eywd1hr3gmYQsmXlAG2Dmj8NDiu8377/MG70lPbnA7d6gl/TC3Jvs9SuvZ8BFcA4DleflBSWP7dQp96EfIUSF9ngFO9Xtfk5KQmJiY0MjKivb09NZvNUNpZY/a+J+piTEkb8pPr/PO0D85X+Uz6Zjz14OBgVIDBqu9ViXq9nr766quoBuTjZs966T+XG8gGD3OCzgCuhUIhDD0pDTA//dabcY6OjkYSN3IXL9aLFy8y+8KBra9ravFN5zcFv9yTRwOp4pEqc+l65XkyUgXO+5IHMB17edgV4/RysHn3pf3396XX5YHevGdd165THmjdbjf3i++MJbjZbEaNWoCkM9VSqRTHBr969SpDHGQjT0xMaGlpSY8ePdL4+Lh+9rOfaWNjI5LYpKs4IojfM9M9gYtEGi9cjgWZTPxutxsn/HilAunSvedgxS0RaP4Q1/n5uQ4ODjQ+Pq5KpRJxjl4xAWsDMcflcll7e3vBkHgfcXUwLQAq5V2wPCNcPW6PMaSCAOYgXVkSXTBgvSNZZWtrK2Jr0daxoiHgAeMw73K5rPn5eQ0MXNYq3t3d1eDgoBYXF/Xbv/3bKhQKajabkShVrVa1uroa2feFwmUiIApRr9eLagQIAZLkEFytViuYNsKNkA3GVqvVNDExEUe2OhPd3d3NrJHPVxqHe35+rlarlbEMoVUD1KBzPCJYz1Omxjq6AMUijMWPGEtPFGRMvD+1mrjGn2rv3OfhOy7EnJnCzCn5RogKNbGPjo7CSkSIA2EIHpMrKdaTUJW9vT09ePBA7733nv79v//3WltbC0WIUnKsc7d7dbz5O++8o8XFRW1uburp06fa2trK1LiGVrvdrh4/fqxyuayVlZUIZwHEOTABaO7u7kZpO+az3W7HXmfeEbDuufDQEAdY8AtXWhzYstcAAJSNpA45ce2VSkUTExMaGhrSJ598Eic5Ahw9eRJ+yngdGGM1dVc13/mR5C6MUMLprwMEB6M030du1ID3pZbAgYHLyh8AFqoEuaLq8+shAaxTClJSZTAPqHu4DWuCMu9yoNfrZULkpPzKAKkFLAUF8H08AfCL9GRPFBiezdgIH8sD2nlr4Pwfwwt8mWtSUMdcpuEMKAduFMk7nh6e6c9kbB7aQp99jpHjpVJJY2NjmcTvdFze0vkHhPtaMgYSWmmMkx9ksIf75a2tjyMPCKa4x71z/sw8WsmzoqbPT/++7l5Xcn1tUVaRBf7MvLH1s9amoP43Ab/pGPI+u25epO8QCMalLGVdqTC1TueyVAmHTDjgHBgY0Pj4uL73ve/pd37nd/Tuu+9GLU4shtQYJakGbRWQ4a5KF0Z+ohU/nU4nrA5kKCM4pKz2x2+SsPw5voFJbOIZCGT64/MhKWI8AZ++WQA4gDrGyCafmprS2tqaut1ugGPiy8rlcpTS4d3ER3l/sL7dvHkzrO4c57q7uxtlyUgcxEKDtVq6Eowwq3a7nUmqg4A3NzdDSXELOcIeC2WhcFXWhuZuZwenWLtHR0ejDjEbnhAT+kptaKx4tIGBgQzN0Gd+p4LVgZQzMg9tACgNDAyEwiPla8susBgz84fnAWUrVV5SywI/LlBpzqRSq6H3jfugSyoZeNy1u2dZB/rjscE8OwV+R0dH2t3d1ebmpmZnZ9Xr9aIOL2uBIuEKA4oWp7cBqgmnYmzDw8Pa39+PgwugN/dSADBQDAcGBiJphvnyMmF8xnNqtVqAI8AclnqUF1dIoUnuh+6YF9zkhJBgeaeyzNLSkl6+fBnzkeYlOC3B+3yteS+eI8bj1i4XNE4bzL2DpjyvnPMBv5d3pzRGPDNjHxoa0vr6esYiytp4WcWUflNgmAfK/TPoyLPpoQXG4LIpzwKYBwDywLHzELeG8r8DYJ+bFFyl883vdGwp+IfP+umZefPkzyUky5U8Xw9KjOWBUge8PCulHZ8v+g/NUv89z0KZ1+8UHDmt88M8w6tS5dANB37wUj/Fxuk9r28pbcDH8tar39icL+eB8HQu03lxXuAWfx+7e4v60YI/67p23Zh43tuMu9+9b3r/dwYEezwsC++LjssP95IPvFgsamFhQY8ePdK7776rO3fuqFgs6v79+3ry5EnGTYXFBi2eIHjAH3VMaQ4yWXQSnkimcTAO8bi2KukbzNc3GszTjyF2SwWVKXq9q1P00gQRhCiZ9wBfd+nDuBEu/gzGyrw4cWPR8VCFqakp3bt3T++++27E6a6urgZY9iQnGAsADwudM7jz8/M43czncX9/X81mM2LmAFgkNvFMap+6y8zjhgcHB8MaDbM9OTnRzMyMxsfHI8FqaGhIc3NzkdSXav+uELFWbvlgrZ0mHDClDN3vw7rnzDdPO4aWncGkwtLXHs09D0h768csoMWU8ed9740QA18bXIzQu1ur2Qe+V9yN5wJmfX1dN27cULfbjVAkvA9eYo7Gcdt+ahrzmFqhOE3K5x/FG17gQh7llH77fvWkSnfjppYVypPRAMNuAWZ+nDfAwwiparfbAVxQxre3t7W8vJw58AO6dkHmrl33XPFeF955CpD/nbrQXUFKjQAIVRREb6kLNwUcyAVoyJUOSRlQw+cpqHgTYHIgwbvZz9JVHsKb9o8/M+9dKTD2z30OnVadttzo4gAyjfF+E/hhnPztls30vjww71WAoF1/lleqSOnI+5sH0v3a9B7oO028fBMISq+DrnzsyCz2XYpRfP+kvCdvzfOAsCuY3if3zOXx8G8LOt8EKtPnp8ac1ODzNs/4u7br+pzOF+9M6aVf+86AYOkqpkjKboZUqPspSQiCmzdv6u7du5qeno4Yu4mJCd27d0/Ly8s6ODgIwISQwoVaq9Xi0AdiebEUYnXBWtdutyMWldJgJLDQbzaE13R1lyGxigMDAxGDiyCVrjRgB+ksqCemOSPClUySEX1wIA143tvbi5JKHhoCmCYe0ZkA1t9e79LNff/+ff32b/+2vv/976tWq2l5eTmEHnG2JIe5a352dladTifcxVi0sB7wP4JmZ2cnI/RYcw6GoIKExwMCLLzIfKvVCtDF846PjzU3N6fx8fE4qvnk5ET37t3LKBN7e3uZWq/QIwzP3eBucXWghEcBMOhaPhbbTqcTh7cAhBmPb2how5kwAAAri4PePKHQz2ICcHKA4sDIwbfTmAtDviM2zy2oqbUvjclMgYcLJv4eGhqK6hCEWhQKl16biYkJ1ev1WDv25u7urlqtVqyRe1qcrlIrDH0hTImjjLnP41hd8YF+iHFkDjmMhc+wtnEgB3sIXkXzeQPEMv8XF5f1lyuVSpRhvLi40N7envb29rS9vR2KZDr3vjbMgwMrxsW+zFP2HCQ7jTEHfk/aB1e04WkpHfjau4IsXZ7WubOzE/3he6d5FCTnl36Nr7PTcvo5vNT3BfLHvRgpSMtTGNPPuT4PoKYCvdvtZvih70tCiTyEwEEwz0pBWB64Agy6xfk6EMZvz3NwSybXuxfD5wQa9P3UD+Ck39PXNHTC+5bOYx4ITb0w7BFi0Xu9Xnhl/D151mrnk6nylc5JynPTln6f57Hz9/ue6UeH/VpKa+l9box4m3ad4ve2978t4KblrUG/9p0BwVgfASkAP4QVf7smiYWSuLfJyUmVy+WI2yXBDdcsBzdIl8L+5s2bIUSx+g0PD+v27dsRL7i4uBjxdtvb2/r000+jHJPHZ8GAcR2VSiVVKpVgQsfHxxodHY1TxKampjQ6OqqVlZWw+LhAAnRCbCMjI6pUKhHLWCwWI2lse3s7SpPt7OyoUChEzOXz5881MzOj6enpOPe80WhoZmZGv/71rwOccSxweogH4/JjXiWF5Qn3e6FQiJis8fFxvX79WtKVNdAtfg8ePNDOzo6ePn0aTJvxYsFCiFIfd2lpSe+++64WFxdVKpW0urqqnZ0dvX79Ok7tA5QAgElQqtfrOjs7y7wLAA0w9WxlDkEhBOfly5fBID0eamBgIGp4ViqViHvzcmTSFXMF6KTWNhQAZ+7MF/HpMGSAj68Pz69UKhkrhgt6Z/q8ywWRpFhDXLrE2fnexM2fAgQPAYIe0pClXq8XSpfH0pFM5nHOkjLxg3x+cnKiv/3bvw3L6f7+vg4PDzU4OKh33nlHf/iHf6ilpSUVCpflmH7yk5/oJz/5SfTFgQsWU/YAoRGSAkDzXrxHACpAG6AYBZKYb8rcTU9PR7/xHrlFyefevSPdblcTExORkQ4PI876888/D0X95ORE+/v7kRBFpQ1JAZBJbPV6wW4Zpvn/buH0kAdPdHMrvgt6nu9KlAN3wLErgRMTExHTDd06/UIX7opF8XWlwq3lDmJ8jA50mRv6x/jYZxheoAtJ4TFjXISypLH27H/emwJ61ihPUOeBZD5PS8/RpzT0iXf6/fzNOuS9N1UamJM8EO/KOM9GVqRjT/lOntKTN/7UC5GOyXlGqkg4D8prDiz9CHDm1/vPXHiYJDTgVuPrFJp+ANy/dxDn3hRveeDQ1+dtrr9OIcvr55u+T4F3XnsTKM3rc9711/U97c917TsDgl2guxvXXYG4I2HIgCbpskLCF198EQlMzWZT6+vr2tjY0ObmZiRJNRoNtVotnZ+fRwkUd9ceHR1FsfJ6va4bN27EccnValXHx8dqt9tqNpuh+c/Pz4cFtNvt6saNG/oH/+Af6KuvvtLa2lq46y4uLtRoNAI8TU9PS5L29vbimFiANARG9vf29nZk+rOZV1ZWAuiNjY3pzp07ev78eWQNb21tqVarRdm5o6MjFYtF3bhxQ7//+7+vlZUV3b9/PxQEAOfo6GiUhyJZ0Rn82tqapEshubKyoqmpKbVaLW1ubkYtRSxwJOpQs3Z6ejpj4ZYUVl8YOACT2r+dzmUFgIWFBX3ve99TvV7X+Pi4fv3rX6vZbAb99HqX4SJuvXjy5InGxsbCeg9Dka7KjnmZvXq9rqmpqaj8AGDxyhusnzMbQC3XSIrxwVw5uc8FLGAB63ueFo4CiPBLwbBb6FIt3UNZAAKpRYLrqtWqbt++rZ2dHW1sbITyMjIyovv372t4eDhqmVLDFqEwPT0dIJnKC+12O5O5LinCEdjPecLYx4AgdTAuXQq7zc3NUCDm5ub0z/7ZP9PMzEz0e2pqSn/yJ3+ivb09PX36NOgK4H3v3j0tLS2p3W4HIGQ//eIXv1C73Y45Ojw81NHRUcZaSRy9gw3v3/j4uD788EPdvHkzTp9bW1vTxx9/rKOjI42OjqparWZio/FyeZ1p+lwqlTQ1NaXp6Wk9efIkACONA1eYV/pDJYmTk5OoGnJ2dqbXr1/3BTsIXxLssI7RqP2cJtg64ICHQ3upS9cBM4okfXZ6hUenFnvmCYWKcDCOFPYcC3cp0+gzyg5jIpSDBn1ubW1FfHvq0ncLWWrlZD+n4M+TIFMFzZUDT5ZCwef9rB9AvB8PyQNlzJ+va56VEVCbjpfv+gG+1HuRgpM8YOfAGtph/vNa3rOvUybSsI5UmYf+0jnzvsJz3MPDHPk69wsh8ffxd/qedA357G1AZjrmtA9vaxHOA7qp8SX9vF+/UnrJe3/evdf1L++7PKD/pvadAcGAHYQ8gj21JkF40hUjkaQnT56o2WyGtQYBDHNwixuVFNbW1jQ7O6uRkRHV6/Wwgm5sbMRkvn79WgsLCyoWi6rX67p3756Oj4+1uroaySbUCS0Wi2EFBKyTDU6imKTI8vUMb0CjA//d3d0MIHCwhXBzizlCa2JiQrVaLaywCHBcdk+ePNHOzk6EgYyMjITb9vj4WDMzM1pYWNCLFy/05MmTYMaMk/jajz/+WNPT05qZmVGhUIh3bWxsRALT9PR0lEwDOK6vr2t9fV2tVkszMzNxMhhgifEiDDhueGdnRysrK9re3tbr16+1urqqZrOpw8PDsNZ5Ms3FxeVRuFSGSN2HJycnevXqlQYGLpNnpqen1Wg0ImkLAOnJb4CCwcHBsOoBolgXp19AE8egIuidhpm7lMkxBsIjUi3fn0HMNMKCvqehQ7wP0ODCtVarxcEkzWYzY8Wj4gTvGBy8PLr3/Pw86nqPjo5qcXFRDx8+VLd7eRpbs9nM7EXAFAqCJ6ACBKF1B/lubXHAAO9oNBq6deuWXr9+nXnH7Oyspqam9Pz58wDebt0EXCOUCSlCccKiSiKdx5n73AGwPQZ9aWlJDx8+1NLSUlREOT4+1vT0tP7yL/8yjoseGRmJZFJoBqDup1RtbW3F0eGuLGK58xAQLFXMF14xQi+Yc0nf4DF4O1zpYpz+PWE5KHguNJ1fSVcCyw828rU+PT3V0NCQbt++HWMleZf9xzihE8aPpdaFs/MSXzPvi3QFIimrWS6XdXh4GOOlxvrIyIgkxYFHvlfhnfBXaJqDUZxu0xwPH38abgJNDg4OampqKqqoMCbG70pFHih1YJm2NMPfn+W/U4Di/+d5lFIg58/tZ9XMA7LsdQeb1/Wxn1WwHzjLmy+eiWclld+efOlz7ga8fmCMz/PGmwLftD/pWuStsT8/r70NQOQZ6Ti839fRQ79n5vUjDxDnPevbgtuU9q7r33cGBDsxussdcEBLQQngFgsVLmeASOq2goBLpVKAzImJCY2NjalYLGpzczOANYc0nJ2d6c6dOxocvKxFODMzo5s3b2p3dzdi79wNvb+/r88//1wHBwcaHh5WvV6PI56xjHm2ablc1t27dwOsujsQwSUpY11lUdmgWFIRBlhSOp1OhB8ARCiy/s477wRD5h3F4tVxxSMjI6pWq3GyGkCAz9fX1/Xy5Uttb29HQtLg4GCUj8N6srW1FULBXYCEErTbbU1OToZ7t9vtZgARa/H06VNtbm6qXq9rY2NDy8vL2traUq/X0507d3R6eqrt7e2MhQVgkMYiAgB3dnbU612e7Le0tKSdnR29evVKa2trAeyGh4e1ubkZDBkL3ujoqLa3twMM83wHpzQEeGqNAhADumGsgJqUGfF8j0P2xE0EbSqYUmsS97oF7+joKDwXKbMGwKXJYeVyORIaJyYmtLCwoFu3bml1dVX1el0DAwNR19Sfy5x49j/9d17gMbfuUvdEIE4TpAaxZ+qzvh5mgIK1tbWlubm5WFPGi3LoST2AEZ9PrJBeMxNgMjo6qrt372pmZiaOvO31LmOL33//fW1ubuqLL75Qu93W2NhYWNUbjYYajYaGh4f18uXLqBlOX4rFoh4+fBj073WkoQUHqcwDIMuTYbEEuhCH9/kBQ/49NAR9MT/QBDSaWhd93/nnvANPC4CTfAD4TRqXyW93QdNSFz998/Gkgr1cLmt8fDxyQrinXC5rbGxM1WpVm5ubGRc/e9ErjHhID9VR/Fhup3Ua9AjP9P7xbJ8rN5j4mjh/SRWNFBjRxxRcuAzOs0o66H7b56fX+m9vKQhKQwSua28Cu9dZRvv9n/Jf70uexTgPvOb147qx9xtLnkzJW4tvawX1lgfK+ykm6fV/1/f5O/Pa244rD0i/qZ/fCRCM0OdvBKx0VSKJ/4lZhKFgMeEz7uE+iJIsddxyp6enUQHArR6bm5shWFqtViRgjYyMBFADTHqpLxeyBwcHevnypSRFyAVgwK3TWKVGRka0sLCg3d1dra+vh5sTbZOY0Ha7HbGQJL+4gGP+eDYus3feeUdfffVVhDecnp5mMuh94yIUYdySNDMzo2q1qk8++STAmgsqLyXWaDQiHhqrCpYVkgEZU7VajXEAor1OLwIFiy7u51qtFie9ccLU/Px8HLiAIOkXnyVdMTOE0+joaGTXP336NE4pw+pLqa/BwUFNTExoZmYmQkxYU+mqnivvdYHpmepuNei3J/LcaYyjWq1qYWFBJycnUT/ZrRUIZOnKy5LXvC+Hh4d69epVxL3SUissz/e+etx3vV6PmHAADFn8bgXPUxhc4Lglz63s0tXBCfRpZ2dHP/7xj7W0tBQnBLJXvXQWczg4OBinPXIADhZSKpqw7nkWKNYTa3sKPMvlshYWFlSr1SJWk3snJyd169YtNZtNbW5uBp/BDV+r1ULRdaWJkIi5uTmdn59HSBYgitMLXXD7/HpYGW52gHwKcj0hF0UbPu3eFgA6SbMpIE1p2vMK+AxaJcab58ArCIdw8Jh6xxwIMjbG7fPYDzQAwD0B0ufPrX8+vlThhDagbU+k4115e5G59JAKaAHDBMpCqqj4+np4jLcU/LtSnQcwCD3Ks9rmteusj94Hxtrv2jzwlbrd88aT957UUpqOP+86/87legqCJX0DBPu78/qT16d+114HzqVvVirqd923aXmgt9+6/ucGwNd9fh047nf/dVbztH0nQLB0ZbmFqVC9oFwuq1QqZYrAc5Sw9E1zt7skEd7ukoagm81mCH8Sq46OjtRsNuP+g4ODAI2np6d67733dHBwoMePH+vly5fBcLyiBNfDiEm4Gh4ejnhFtwYgsNxCcn5+HrF21OPFWjg3N6fnz59nXHwIEA4ZARjjpmw0GqrVahE6gPVib28vTmaTrqxblDtbW1uLOOKFhQX99V//dbi+eS/9dRfgzMxMHP8JM4GhuCu2VCqFdfHs7EzVajWswABmABRVLQYGBjKHleSBFgQ9QhfA4paSdFPg3p+dnQ1Bx7s5SpswgImJCS0uLqrZbGp1dTVTPg7h5eEX0Cn1WwuFQhyRCpNNLcXQRco0EQj1el3/6B/9I21tbelnP/tZhLu4pYxx1+t17e3txXoBXNJsfGLPPWwEJnhychLWTLei4c3odC4rW2B5RSDzA7BAeUwtcexdB1KsHaEdhDIxPlcyTk9P9aMf/UhTU1OR2Ej8PsCKfpE0iaW4UqlEIikx5aw1sbnMj4dOoKz5UdW8p1QqRWUS7yffT05OqtFoqFAoBJilbyhfHE7gylOhUAjPEwCWuRsZGdH+/n4mAS21gDLnKe904wN0MzY2FiAfxdkBCes1PDysqakpHR0dxfs9jtMVwVRoezjHxcWFXrx4kTlSPlVm3QKdWnx9LClwyhOGDgQdeBOagyIFPcB/3EoqKVPa0t93cHAQnssUtKd9Si24vV4vwnXIH0GeEHaB5415qlQqoYymPC7Pfd8P5BQKhTgcIvWi5YEUB9P9QIy/Lw+I5lk6U/CTXtOPplPe7vz/TcDR5yTPUNEPnKZA1/lNv+vyWr/5TceZhs74dW+yRqdj7QcQ8xSnt21voxR9m2e9zfe/6fu+EyCYhev1eqpWq7p586Z6vZ6Wl5c1OTmp27dv68GDB3r48KGq1ap2d3f12Wef6Re/+IWePXsWC+Uu6V6vF/Fnzigg7IuLixBcnFLlSQmSApAdHR3pL/7iL/TFF19E3K8fZLC1tfWNTGrXIunP1taWxsfHI3YWC1Kn09F/+k//KXM8sINZyoSdn59rYmJCFxcXmYQ1jyv2+QR8/tmf/Vmm9mmlUtHi4qKePn2qjY2NqOgwOTmpYrGoJ0+eaHV1VYeHhyqXyxmrE8BifX09M0/ValUDAwNqt9sBujc2NlQoFMLVDEPBZX1wcKCVlZXIvPdkFkAPY+NetwACVtvttr788stYL67FnYkCkYYjUC6vULi0sv/0pz/V9vZ2xATjJXAATcIh8bAAJeYawZHHBIeGhvR7v/d7Ojk50bNnz/T69euwqqVAKbVmQddu/aGqBdUV/Phw6LBcLuv999/Xy5cvtbbDa8U1AAAgAElEQVS2FlZ51o15QgB70qLvl2azqaWlJTUajQiNIXFLulQi9vb29PjxY925c0fz8/PqdDp6+vSp1tbWtLu7G/Hy7sVxiwbNGTNgulKpRDw1CrDPD9djVYX+GV+aFAhP2N3djVJknvDnB3DgKXAlTlKsN0CH2FBJcfw5AJn55r3tdjs8CYBrSdrc3MzwE/Z9tVqNajFffvllWOvx3JydncXxzh7/Cl8AtDN+96hJCo9Hu90OmvVKIFh6PXwKz40kjY2NZUIg8MTxfAfazjd4FuBtf38/A6gI30otq9yfBw7cCJICLg83cprb3d0N+oHnE1vOD+vkVnA/MImxQc/uoWRve6KXKx5+wAT77uTkRFtbW5qdnc0kQTIuwDfjcoCeKpko56mnJW3wjVqtllHSfQ3zwKfPse+zvGvd+OP3en9TBcXf/23eex1A6hdOAJ+9zhKevj/9rN+48owb/szrlAj3OOQZSK4Ds3mA2cOXUoXJjXLp/W8DOn8TQPo2wDnv3Xlr+KZrMtf/50Lrf5c2NDTUI/FgbGxMN27c0NjYmMrlsv7xP/7HmpmZUalUCqsowuAHP/iB/t2/+3f68ssv4yhgt4AhINKF7vV6Ufye/ymNBhBDwHtiChYajwMcGBiIericikVsLkTLZi8Wi5qZmYnkPT/1zQFBoVDIJCG5dXxxcVFDQ0NaW1sLC2WhUIiwAoR06pb0I5wLhYIqlYra7Xb0E6HGoSETExMBgDc2NlQqlXR4eBiMnfn0k+awWgwPD+vBgwd6+fJlpiwZjJ6azCgtnU4nkvmoMjEwMBAuQLeknJ2dBYMim7tcLkcFELcQIexGR0e1s7OTCX0ZHR3Vw4cP9Vu/9VuanZ3V+fm5Hj9+rE8++SSSFlMBAAio1+tR5QPgBD1ICqupW8AA5He+PshlY2NDu7u7Ga8BQg46wBrpjBgFi+QtStsB9HgnVsXR0VF98MEH2tjY0IsXL9RutzMCCEHggGtpaUnVajWOryY5jDAYLIMAZq/+gJeBqgu7u7tBNy6sKSdWKGSz4FP6wipXKpUC5ENHhAygGLHvaawZAJL9hvJEGA/Jjm7pPj4+/saBGShUvDOtD06pxtnZWb18+VKPHj3S7du3dePGDTUajQCi7XZb29vbev78eST0elgK8yhJN27cULPZjEo4vV4vjtBNQSDJacw1DY8L85OG5DiN4nr/4IMPVKlUtLq6qmfPnmWUAHgka7a/vx/rXyqV1Gg0NDc3p1u3buns7EyvXr3S8vJyxOvzPubaE1ndUgc9OP/OA9I8x2PV/ftisZip0+7jfROYSz1u8KvUuu0KKnKBZzngTt/LNXnhGlzrnhD+7/V64UVzzw3v93X1vuZZC93jwz6v1+va39/PKDZ5Fmxv14HRdFxcn37m97qCkPfctKWA05+brq/PiTd/d174V94apWNJn/c21tS3AZZ+bUrL/ttzK3im98P3UD8l0r2K/fqWpwj4mK+bjzeNO/08j9aum7O877rdbq6W8J2wBEtXk4Pbe3BwUB9++KHu3bun09PTOPN+b28vk8nrdXpdGKfuM7fUptbhSqWimZkZPXz4UEdHR9rZ2dHZ2Zn29/fDKoMV1K0ngBFPRvM4wjTJqdfrZSwtWH88RszjhQEUWKPOz8/jVDbpKisZKxkWJq9h6yW1YNSNRkN/8Ad/oD/90z8NK61n7vd6vUh2QkBRnq1QKIQ1hBjnkZGRqIGKRezFixdqtVoqFAqRXDf5/zH3JjGSZVea3m/ms5m5m88ec0QmyUjmwMxKFqlmoxpgA43aNaCunVZaSFBrIUEbraReSIC2GjYCBJQAoSCgJXUtCUGACgK6ySKaVWRlMQlmDJkRkTF4hM+DmY/h7jZo4fkd/+3EM3dPSot4gMPdzd67795zzz3nP8M9d2ZGg4ODevXqVXiWJenu3btRjQJl1W63A7QgDAntc+iBVziYmZnpqe3qHlo2ZLmnptPp6M6dO/r44481MzOjo6MjVatVSdLvfve7AM1cCE7mDiAGwENZ8h4U8tjYWIDLw8NDPX36VJIKhYwDE/eWsj6cV1qtlra2tgKo463O/T05OdGDBw/C6+hrwxUkhsz4+HgPUOF+xgzQht/dw0Wbu7u7evHiRXjPaA/6wz+sFTxa/k7+hs6+KQpw7N5MB86ueLvdbs+46bNvLMLLhhF48+bNN6IBTn/+993/eEpJYRgcHNTDhw/11VdfhaHGvAHqqRdOSUaPIPCO69evR5oVqVUYDa4IoZHLIxwB9NV5zeUYisI/e/DgQURrkCmkAlFFBkMII2J+fj5OYKzVarEpsNls6uHDh/rlL3+px48fv+GYYM5Y4664kL2uvH3jawYprFGff/ivCBjldeN6IwMFeAb68jn3UZGD+cngl/cuLCyE8exgNQM8nyvm0kswViqVN/a6ZJDhtOb/3H4Gqe12uyetJt/rbee+ext+eb9yn/Ll9/UDq1w5pauI3rTlaSznATVPvym6igDZeVeWaecB+POedboU0bCIDkXvdH3jgNl1jcuW3J+LxtvPYCga53nA2v/Pm0CL0mfyOy9jUEhvEQj2Ul8nJychfFmMbEA6ODgI5Y1i91xHZwBXFAgIfvxQCHKuyNmt1+tRN7fT6QTY3t/f197eXmwac28lHj3pLGyN91pShCoJf/OdA2eOhN7f39fu7m54O2mXPK39/f0eL3er1QqPq1fDKJfLcaQxh3SQr7q7u9tT0aHdbofnC/qQmtBPwGAxeqF6Qim7u7saHx/X3Nycrl69quvXr+vGjRsxfsZYLp/WeL1x40ZUnyiXy2GIZGVEKgVzzQZA6qC6whgdHY2Ncp5iQh/9b4wF5oIDUqCr8457fd1TxYWnGqDW7XbD6w0gy4IiV0HgeweQAEffEOaKPgtGQLB7nP2dzCHtjo2N6caNG3r8+HFPLq8bG66UMphGeJIe4PWuvX+e1uKgww1Hr3Xr3lbeDdhgTbmHN/Npp9PpWe9+OZjiHvjQx+e8w3P5ou8Yy/AmB9jQLwAwUZRKpRLpWHmOSJmBFu7l835AYyJV9McVP/dlAybz4snJSaQgcB8GMSW62LcA/aanp/X+++/r+vXrOjk5iTSPbrer2dlZffTRR2q321EKzhUuc4TMckPQZXre7JbH73zJVQR8/e8isMOY3HHia5C154aX1zrnHtZ65pF6vS7pzOGRL38f8877/L2euuf3O09ngOP0yKCQizSPIgDG35meDlZow50G+Spai/l7B/X+Pgdv7iSR3qwMQlsuuzKd8715vJe9LgMQv8199KMfmOw3P5dpk9/QMn/fT84V8UHRu8+b24v6VrSmi9o/z5j4NvR4K0Awk8HAyEX78ssvVa1Wo9QSAmBnZ0eNRkMvX76MUFxRCMAtJqlX4QGwCCvPz89reno6+rS/vx9pC0NDQ1pYWNDr168jXL+xsaFO5zQXdnR0VFtbW3FMrO8I9mLugCdyLkkBAbSxExjPGKfbMQaEHt/nDX/ValVXrlyJ1AiOit7b2wtjAaH7+PHjnt3weBnwsqLA8bpIvUYFHi3oWK1W41AMUkdu3bqld999V7dv39bVq1c1MzOjk5MTLS8vR33ecrkcxg1hcoAeANs9JIRkASx4kx0YA1pyaBVaolyXlpa0tLSkZrOp/f19bW5uxhGsExMTPcYFBghgA/Dc7XZ7vBEOBnm/h/udT13ZOs9mj4orGtIseI8DZ3jc28o5ia5g4T34FfqRDuS8x9+0wd+u6ADApBplD4j/Bkhx4bXPpaJotyikC0h34MhvAIkDKp71iIC3h+xZX18P45K5QVn43LohiAEFnQARgGHnTfYqsK+ATaAuA5mPpaWlcBBkkJ/pyW8HJW4weftZWXi0RTo7GY0L2cH+hMPDw9iXQMrKxMSEZmZmtLGxEbW/JUWt8Nu3b2tiYqLHE+9A23nGActllGA/pef3MXfc38/j52kHDjQd6CEXuccrEiHPvdKN9ydHWoou3o8xiBxhLvCY+9p2Hs00yQayvyeDwyLwkfnF24NeLvO+7dUPFBcZNNnIZa37Oj/vufP6kMfd77oI/GXcUWRo5ffmey8Cy38I4PN73cHgF+ui33OX+fyiq4hHi+65yFj6/+N6a0CwFzeHiX/729/qxYsXunv3rt555504yWtrayvy6ba3t0OQ0lb2jiBQKFXkZ8mTx8exy9VqNcontdvtKFnG7nFq6BIqHR4e1u3bt1Uul9VsNtVut6NsF33KtTgRHHg1KcPG0cdTU1MRAsWrVCqVYlPb0NCQarWaJPVsjLt27Zp+8IMfaH5+XsfHx/r666/1+PHjOAWJe+v1up4/fx6bWUZHR1WpVDQwMNCzmx6hhsA/OTnp8Wx6vjQ77NkhPj09re985zv68MMPde3atchXHB4eVrVajXb29vb0+9//XouLiwGsmR+AJhvnAAHs2PfUADyv7hEAkGeBLZ0u9IcPH+rKlSvqdrva3t7W8fGxVldXowYwubbSaUkyz/keHh7uUdp5Bzje0OzNgp7wJ5EGeKCfAHTBlMPBtJsNQL8Aq67IvX+AMtJearVagEIAsa9XLgfAKH9AEesh98UrJvCdHykNUIROGEWsHRQeAMGNTebZS+7t7e31gH+Ajee+MaevX7/W9vZ2AHoMRQxN2uVd9Xpdm5ubsYkOGpDW40CLOfD8XORFrVbrOfyAceFNZROv72PI8w1vOcBz/idFiL7zHQYjNIBfcqpJq3V6iAXri/nBsF1ZWdHk5GQAZIwIQApVeOgr65VKOD5uB/wZMNBnXxNOCxQ7vOTA0A36DIDdIIBeGCgeeaIdUsI4ECmDQiJsPmZ0Cn1A1/lvB5RcOT+VvngKC/0qAlz9DCevN+70vgiA5bmgnnG73e7ZUJlTNIqM6vx3Eejx530+2fdQLpd70p769beo/Qw8v+3lY7qsEVAEln1Nu8FS5ITw+y8CzfmzfuAZHpB6878vAvv93l00p3k99wP9+Z4iY7Xfu4uA83nz+laAYEk9wp2UAEJKa2tr+uKLL3Tr1i29//77ajQaun//vpaWlgKsuvWXJw7h7h4Vz7nc29vTixcvtLCwoKmpqSAi/djZ2dHi4mKU8ALwtNttLS8vxwY6qbd0CcBCOhN4COhKpRK5qJubm9FPFD4KhpxEau+yaZBaqFRq2N/f182bN/XjH/9Yc3NzarfbeueddzQ6OqrPP/9ct2/fVrvdjhPUqtVqhFrxgE5PT8ehECjdwcFBVSoV1ev1OHWLBQIQbLfb4T27fft2hELZzAPoODw8VKPRiNPiSLc4ODjQ5uZmCE08KCgBr9FJTh6eEN8MhmIAQPE9YIb3uXDmwIsXL16E531hYaGnTjIeGa9ffHR01GMQeCkh6XTRcRIfgI28SjZSYpQAAhzswZs8gzKnuoPntMPfGCW8HxAErVB6GHE5HIqHsl6v69atW2o2m1FK0D2MWfjwP+MkOpA9tCgwfx4Aljf5kKNM3ql70NkciXeetcXGStY0awoauDHC/JAmQs42xnIOHwNy4LFSqaSpqSm9//772tjY0OLiYhisbDiFboB+QCE87HLC+QeaYHgCvHM1CqcvoNI9h/AGaRIYZ+TwLi0txbM5cuIbQz0Nw8Gj80Oj0dAvfvELbWxs6Pvf/74WFhbU6XQ0NTWlVqulx48f69/+23+rlZWVODyk0+no4OAgjCX64vzi3mv3aGeAnPmeC9pz5dAv/OYX8+uKl7nwY8AZ/9TUVM/mQN7j64Y+kipGm/xAf6+H7H1lvfqayz++h0M6A2TZQZRpmlNm/DoPBNHvWq0WG9mRUaVSKU66ZM76tUe/+gFC3ufznHmjX6pDbqPfePz73IZf2UjlszyW/H9R2/3oWgRsMzh0I6MfqD1vHFJvFQh/R/5dRMv8v89hER0uMjzOm+8io6bI03/eeM8zTN4aEIzQYVIBOpICZK6srEQliGazGRuXHNTQFr8BF9krwwEC29vb2t3d1dLSklZXV3Xnzp3Y8by8vKzFxUUdHx+r2WxGhYWjoyPt7OyE95b6kXgESFfAMwSI8TAYu/pHR0djJz5WNIrUj9eknXq9rj/90z9VuVzW8vKylpeXNTIyoqWlJbVaLa2urvYolXfeeUdPnjzRxsaGqtWqJicnJZ2WdWNDF8rIczTxVkmKklOAEoRqp9OJXf54tL/66qvwgn3++edqNBq6evWqJiYmdHBwoJWVFd2/fz/SSTAUUIoOxtxrA5CBxoAVwCDKY3h4ONJK8EgRpvWIAIdM/OIXv+ipxLGwsKBKpdLjyZqZmVG9Xtfa2lrwJd59wAxAE6BBGo9vljk5OQlvmB+16krCw8Qu5PgBXA4ODr5RPYPcdQw191pxMAlgGnplBQ39h4eHVavVtLe3p2az2aOkXMi4MOp0OrFRh/s9DQVwTz983UuK9CDmEy+iGwbwA0aYgxWqPTgAwZgCLENj3yiW00F4BnA4Ojqq9957T8+ePQs+JG1pdXU1QOXBwUGso+zJZP1ioLkS8JQLn2vkhoNgHAOeesFvNs45uKJdjCk34LMC9fQRjE54EACa5995vtFo6He/+51evHihH/7wh3rvvffU7XZ17949ff7553ry5EkAftZ43rSWPbueK8+a4G8HQEXgwz3hRUqZ9eQKOKd7QRfWk3t84bl2u90j+6meQspWXiv0BRmXy2tmBU8bDopx5Dgf5dx5p00et7fvG+C4x9spehbaEc3EQKOPbJZ2+uf2M8jKc+HvLPqs0znd1Oql4ry989rI3/UDwL6W+t3nss2vIlCfaZsNPr/Hv+NvzzlnPReNKf/v8s3plNdbP8DsYz3v835GTL7f8dhF/T+P7v3a9zFddL01ILgoPFU0aTs7O1FXMnve+HELUTpLR4BRR0dHw7ImpFWv19VqtfT3f//3IfxQxmzG86L7WNCEPn0R4LnymqIobYAnNSDn5uaiRmen0wlPAykB2SMFkBsbG9P09HTQjR3u1OZFWLPp7/nz5z0ngR0cHOjq1au6ceOG5ubmVK1WdXx8rC+++CLyEFFYnU5H29vbkZsN0EChc6IT1RxQHPfu3dPKyoqmpqY0OjoaFSS2trZCYUMnvIfMITTMCwxl7LVXeeb4+DiOOO12T0+9m5ub0/Xr16MWNDvo6/W6rl+/rtXVVUln6QFEGagTSrvNZlNXr17Vq1evwmvJdwgw35A4MzMTNHQ+HBsbi4oSvNcrWjjfe3jcveL8dmPElSrrCSBVqVSiDrSkMPwAL9zfarXCQHj8+HGMLx8G4h4uV7x57WalAB9nEMj7a7WaSqVSAImizX5ZkTjdUIb9fnhG6t3Q6HwnKQCnf7+wsBCHzWDQnJycaHFxUYODg1EtwYE/c+5KHpDjxkqr1YqDgHyjL0bYtWvXdPPmTb1+/VoPHjzQ4eFhpEz5BjRXag7s4SE3wnEgZCDp8+ihUZ87xsJ6xLDBIG61WvrNb36jtbU1VSoVPXr0SEtLS/Ec8o0x8nkGovTPx+CXg5usOLPXlPsZh9PLv3eF6/PjDoLMtysrK2+cUuj3+/xn0JHp6/zeD7z7GHN/z7u/aO0UgR//zO8voj80RFciG3xNZfr2M0jy1e/+Iho5Hfx3v6uIRv2AsL+3H5j1aIrUW6as3xzwPzpVUk+KF997f3Di+MFf/cZXhKWKxn5ZAJzpkMd0GYDcj59yn85b27zzvOu8eczXWwGCfQEXCULuARgUCS/P48qeV8KmeBI7nU4oM8KDhK5RaFkJevki6Sx1AWZ3D4p79ei79xPBihcBEOwnbLmQdk/X3t6e1tfXA5CSqtBoNMLTSr8AkXt7e5EfC2AfHh7WD3/4Q3344YdaWFgIEHz9+vVQYGzcgeaeQ4qnDMXI+3ysx8fHWl9fD8OFE+xc8bk3D0EiKcCxCxn3nkpneYsAD891JGWBz6Uz7w7zTv43NJH0RrkqABal7eABQBQeMwdbAElPQ/DL+wSYchBbFHLjciDlBgfAnzkDIOPRrdfrmpiYULfb7TleOXun8DQ6QObqp1xduDm/u9Ln/+zt8XFSNcA3Y7ricaXvCsflRz9PYR4rAMc3Xnr42J8/OTk9LAbegdfd2+7PAQb39/ffkAHupXaaoPyyDIFv4XXprBYvaRfOV3ljlIMdV/bwZubR7HWF9t5nb495YM0wXsolzs7ORuoT/IgRwXgzr/s8Op84v/nnGWw5H9JW0T2M0cfl65BxI3s8hcXp64dKMLbM2/nKAIW15xEl+MPBbRFoycDW6eJXkVGa166v16K2HPAwf56H7rzSDyzl9nM/isB20eXjz6C0qJ2iKwP0ou+LQF4GaY5BMm9mOvS78nz26xPfFe23OG8M/n+Wr0U0vgyw7de3876/iB5FALiIJy5D08tcbwUIzlc/geeKLhMAYAGgBVSenJzo6tWrUaYI75yXvpIUHs16vd5z/Cft+s516QyUAaBcCHAfC8PBnYPGbrcb5b3wTgOQpbM6kIDP4+NjNRoNLS8vq9PpxIYALk6hA7yQRuK5sN72Rx99pE8++USzs7NBl/Hx8aiWAKAqlUpRIo52AIfSWd4ydHEl5p4UPF5c0MZBvytVgDP0Y6OKz5mHuAmx4h3DM7e9vd2zg1tS1GoFXEAXj0jAT6RHrK2tBWhybwd8xHhQmLTBPf4eF9y04yFoN8J8XcCPDmAGBk5PeCqXy1ESrtPpRMrE1NSUJiYmoqoGfXcjgstD1PTN/+63Nn0tFQlm5jYrCQcaDhq9P0VKxkEwvJerbPj7M7iDdm685PZ499HRURz8kgEAHhn6zRgpbYiyYk5IRwAw8m7SSFzw0x/ynIlK0X/vu6SeVAsfe1bWDnDzfUXGWBFQzTRzwxRDvtPpRJUEnkU2utPA5zj31wFg7q9fRUYTF+syt0d/8posAkbokyJQAxAuUu4Z0BTpLr887SXPWdHl3zmIhxY+pvMARb9x9wNJ3IMxmNNE3BNe1OfzwJ2/t993eXz96OPvO++958k170t+V15rkt7gsX7v8vG4AdPvPulMh7hRet5Y+P+yoLFobOcB5fyO89rxtvo9n2VA0Xj6fca7Mi9fdL0VIBihXrQDlr+lM+b0PBgEMRvHyHudnJxUqVTS9va2fvKTn+jevXtaWlqKfFVO9Wq1WuEpJZw+MTER4JG0CcJ+rgD9t3S2ocVzWimFNjs7K0laWlqKtAFJkf/LphwXLleuXFGj0dDu7m5snDk4OND29nYcarC/v6/V1VVtbW3FgSLSmWAmt/edd96JCg0DAwNaX1+PWsXdbjc8N7yn2+2G0vX8V99AA/0dZPOd58ryDHnDeIEkxWYT5hkwmxUBdPe8Vgc3vAdl5N7z58+f69atW1GVAk8wxw4zx5KipFypdJpHOz4+rqtXr0bdaMacS7mRHkJt3Gq12nPACPcB7H2xeuoHQN3BYR6n9wEg0Wq1omIIczE8PBzpIGwM5NAF96j7GqNt9+zB/9yHYAH8MTfMv3uB3DNbpLz4ztv0/gDmfZe+51D6hiEOcchRItqGR0gnynxIW+Pj4z31pQcHB6N0IP8DuD1CBACBNzl8hXKDDvozb/NuB2zc22g0os44UYOVlZVInWKMDjjdeMGIZzzQsVQqBS86sKZfDhxzyTufU3gDw5PPka8Oqsn1zjI8e0B9/n2joINmN1r4zP/mYr37Zx55KsrfdiPXx5jH73115e2y0OUlc5FBArIPxwcyschAyIC6iCb5/hyBcbDstHd5VQSycl98f4HzD8ae08n/zvLAr/PAWpERctH9RZG1ywLi8648Bnce8H1Rv/O7ofdl+lSUy/9trgxIsxzOEZg/pN38eVFf+421n5FYZGxc9L7LPvNWgODBwUHNzs5GPpWfGpatAl+8gAbAjXQGAOr1uj788MMQxmySevToURxKwaJlQxptw5AAc8/DdIVBLqt0Vm5mYmJCzWZT1Wo1TgUaGRnRhx9+qH/wD/6BfvOb3+hXv/pVlHbzY4XpF0COsLQz0c7Ojj7//PPYIAjgZBECZgG0bOwaHx+PqhLj4+OanJzUX/3VX2ltbU3z8/OSpN3dXa2vr+vhw4dqNptBIzY55PA43nIHQ9CLXfA5Nw7QzaY/hD20Zkcx9ACMoZCoxIDQRWHlQyTcO9hut/Xq1SuNjY1pZmZG165dkyQ9efJEpdLpEdLlcjm8cYSYOejA+QPvsOeZDwwMxObBUum04sTk5KSazWZPHjZhbwfxGfA6OOIiJ9fD9K74ut2uVlZWejZMlMuntZtv3bqlmZkZHR4eamdnR3t7e294NF1AeFSDNebrzr9jTIAMeBTQAnDFe5GBu7+XAyO4PA+TShDMca1W08DAQOQNw3M5jYG+UjUhG5mjo6MBJJ1vHEDi2YQGPn6PTMHDjJ0qHvxPyhNG18TERJTcq1QqPXwCSHa+GRsbC77B+GXtMEekcXkkg/WRDQ0fB/RgHQFifIMgUROft5yT7n1hjbt33qMumb8cjHv0zKNAAFk2IGZjIffBLzfMXJegA3yDKs8T/SuVSnFAkfeb/mLcojugC+sWxe7l+Lwv9B3DlDZ4BzIKwIkMcTkBD7I/w8Gxv8PTzdxwc9AOHXyu/R6P+jF3tMln2aHlY8ng+iIAleWh95krAyw3LMbGxqIiR35ffnemaQZwRX25CLT580X3e9vZWClq+7zvitqHT7MhlwGjrz/fLOljcQPa+5PpUtTXbIR6285nlzVOigBvpt15MoHrrQDB3e7pRic2TyGMASPuOfEFxUajSqXSc2Quh2m0Wi0tLCzoZz/7mV69ehVVHKTe8NbAwEBstsPrysa7oaEhTU9Px6YqQPXk5KRu3bqlpaUlbW1tRQ3f7373u5qbm9Nf//VfR5v07caNGxocHNT29rYePnyonZ2dsALL5XLkROIt3NzcjBJRMObx8bG2t7cDhLMRbGdnR/v7+1pZWYlxVatVVSoVffLJJ67l6SAAACAASURBVPr+978fIfNWqxWeyi+++KInlOm5j5Q4Q/ACSCS9sbHGQS8Alx3ThODZBOZgIYe4XVFTZo3QKm2xAYq8XkqOcQAHi4ByZND58PBQz58/19OnTwMcz83NhYcKJTc+Pt4DRPxADpQxAB2lA8+wWWlzc7Nn05l7qvAmlkpnnjgMIABJ9nJBK6n3AATWD7T39XF4eKgHDx7o6tWrarfbcUofKTwuOFgH0Nnf7+1LvcrBQ8kuwDHmfK1OTk6qVquFoUu0ZWBgIEpM5b4MDg7Gxs2Tk5NYa3jMXCb4Jj0HqM5nLuQ7nU4Pr1P9hOoLGDoAcoyMfnms/oNRBZgByFG55I//+I+1tbWl58+f6zvf+Y5+/etfR3vUIn/16lUApv39fVWrVc3NzWljY0MnJydh2JKWtbu7+0bVCORL0TxlgwHew1DJdWiLlEqRQsfYYX5YS/6sAw03oOkfURUMYObVwbCDKeYmp7Q4T2YAnHnFjVrkPHWT4YMMtvuB606nE7Lbc7Xx9sJ3fp2cnEQlFgeM9Xpdk5OTUXubNeMpdtAdME/aCQAVmjrdMhAv4g+/MvBmvHmPQl4bPt9O+yLARr9zn3I7GGsZCLlXXzqVT2wC5rosCPf7imjBdRHAzd7VfsAbGeG0K9pg6e/pBz69n07LfvfQFmu9COT635cBl3l+LvN5Ud/79bno3f36068d6S0CwUdHR1EKiE1akgIc4Nn0CZHOvMF+whECa3NzM9IFKEHmocF6vR7A7ODgIEBYtni73a7q9bq2trZisTvo9hSA1dXVOKGtVqsFsFpaWtKLFy9CMbZarZ4SMnkzEEoIgCQpxtDtdoMeKDjSDFxJjIyMaG5uTp988onu3r2riYkJlUqnXo0HDx6E12FtbU2bm5uxcWx0dFSTk5PqdrtqNpva2NhQt9uNTW0I2kqlEsCdxeNgGODsQASQz5HCnDK3t7eniYkJHR8fx3HKzK+DZg+34qEFuEnq8dYAQmu1Wk/tYc8Fpp3seQQottvtMJ6Ya79ev35dCJh8w56Hf10QuvcFr5PUe5oaAizzfPbKeb66g/eVlZXwrmNEef7e6Oho0NN5MAM9PMxZoDJu+u1/O9BhvNAjGzwebve5kc6qWbjgZWMrfcxhd+51YwtA40AW/qQPzD1gFG8e5QzZVMg7XcEVgUUH5szx69evdf/+/aiCwaEsvoYqlUpEt5BbgCR4Y2pqSteuXdPQ0FAc8HFwcPCGMUEJwLm5OUmKKi3Q0sGwl9XjM8boJf2cF/3iOWjtR7ETRUE++JolDekyQDV7oLNHsAh0ZW94kUfUP/OIYJHHMQMzX1O5354TjQHswJHLgbv3nzklrcZlRpYn0Cl720kz62cQFAGQfLk8KDKCMiDlKgqx9wNGGcg6/aGLGx/ZI+z1tL3PRWMrAnNF4DbfW/Rsfk8RH+Z7c3vuqfVn8/wUrZF+13lrtagP/rtojv1z+pijBv3elz/Lf58HeM/7Lt/neuoydHorQLALD6+lKamnnifCiQtl6WCVi+NPKXvlnogsfHjWhYaH8vb39yMcy32tViuscvp3fHysjY2NOH3Ma5wuLy/rN7/5jcrlsjY2NiKsL/XWwnRLzPNEs+WHx5zNcli7AHNCyNPT07p27ZpmZ2c1MTERodWxsTG9fv1aOzs72t7e1vb2tqQzz56XiSOP1nPQ6KuDjixIspAdGBjQ1NRUeLb9fWwOdI8pOcxZaDtd/XAAvOPO8AAIhKsLVZS+/48nyPnCN0jCFwhanxcUnC9Exu+gr0ipOlDI+ZEOAvweD5nm8KY/S/8RVg4eMNQ8wlCU/+gbseg3NEe5uoJibuAVPMMZjDtfYexhQPEcXvtOp9MDrniPe+vd6KI/9Xo9gKYrT8bg9/u8OK1IgfH8d/jV8/ncAw3N/F30aWtrK8ZOzWzvB55z9g+w1qENdKQ/0Ml5F+8fPE1lHAcI2VPKmvEIAKfMuTc50855fXBwMAxaKuCwNsbGxiI9xQ+ecKMpyw7vD/Od5ynzJc/6fUWgpQisFMm3ojXhdCa9BmPUT5vMCpzIFn3J64Z++bznNK+srzLdsic8f98v1J/fUfSbiz7ntv37ft/ly40u/8x52GU3fMEFH05MTMSaOW/OXG8Vgdfc3ywfuLffuJzfiu7pZ2TkNBh/Rwat543tst8XjTWvp/Oe5fe3HSuXr1X6cl5bRc/mPnzb660BwRxF6h4gFL6kHuAknTGMe2SdeJTnIvzrXjbadq+dL2hq8QGA8NgSAkfBN5vNEGi0RziLDW9M6vr6un7zm9+EQpbO8mscnDB2z78tSrinagRt0T88Xp5HyWlYnALnh48sLi5qY2MjNub5hhU2f83MzIQX2MGrh9pcSHjoz4URoW3m7eDgIPK/a7XaG/lG2ehwb44rbASlpJ5T6rrdbqS3AOT5Yb7ZIOl85eAWemeg4Z6WPD+k1+DBgUaAW3+XKx5Pu3DeyLnx0ACvKqk0/RSJ8zzz5MDeNzB5OJJnAGXZkORzaA/d4WXqITM+vILOP4ytXC5renpa0qnni/xg5o7Ih9S7mdJ5A1oxLn7ef/99ffnllz3HpRcpvnL5LGcbGUJkoFKp9BgZ5BqSykEfnHZFBhzPMuZOpxMRJl9HAwMDmpmZCV50g5/5JM8RIySDAlJumEffv+D3eeQiOxsArqOjo1pfX+/hK367EQ9PTExMaGtrK2iITKUtT5UgSuMAxFOIHJhlR0hWlBkA5znwzx3o+7pyUIrMY94chNEOc+Z6g1PTuNfXOYaLt9NPNnhOcRHQz5fzstMDueZGGu8vMiwuA0QyYMxy56I58svlit/DptgiAyxfGKZEOXLbTnPXGTlKl2lA27n/3t5lDICLQF1RH/p99odelwGKRfLxoqso7eg8HiriiaJ5yt9d1O+i/l80hrcCBEsKgd3pdCIvD+Xe7Z5tKsiLrt1uB8DDS0cbhBqzJwFB5RZ5t3tWrsxPMyKECVCAwK6Enei+8QkBysapV69eaX5+XtPT03Ha1+bmZmw6ow2ELZstUBgoeXKVyd1D4E5PTwcIxHhYXl7Wv/k3/0bvvvuurly5ouHhYS0tLenBgwd6+PBhVJQol8vhaaKaxezsrKampiSdbVxZXV3V0tKS1tbW3qhnTM4sOZtsXkLRoFzYnOXGxfXr17W8vBzhvkqlopOTkyg15cAVoU3uMQCCknEjIyOamppSvV7Xs2fP9OrVK12/fl3NZlPNZrMnzMlGQt8ECZDyBQ3tHYh7mThy2MkndaDMAvYSS/TZQ3+07zWK8Ww7yOF+cqLxrGUAIakHVAF4h4eHI8d9Y2Mj+F86y/XO3lRo4AJqYOC0NNv29nZ4wTDE6NvGxkbPxk3GxjuZ01qtpu985zvqdE4PZllbW1O73dbW1pZ2dnbiNLx2+3TzZK5skQELf1cqFf3Zn/2Z/vzP/zy8x9AQnkS+QHs3SuHryclJHRwcRJk55m5ycjJOG3Tw4Ua0g4VGo6FarabJyUm1Wq1YB04PvK9shqIyRavVCsOq0+lod3c3NmwBLv15UiiIOpHWBA2YKwdoDriYcw6X2draCpo7UHTgzzhIKWGtUa+aTaiSevjBFR6AnJxaB73MnfNs0eVePgfT/j3j8HbdaPR38XkO/fIbA8rXXu43n/V7t0cBeV/2jjmNM9BivtCl/eQmzwEaSbNwL6TzQBFAyUaD60AHtD7WInDj/S+aQ07czBssnVf57OTkRKurq2HUZU+5j8srxOQ8/0z37GAruooAXBEwPo8GeT4z1vH+fFswnJ/r18/LGEBFvIi+9LVZ9K6L2smf9+tDpg+f+frs9958vRUg2MEF4JXi/5IC1HmRf65OpxMenlqt1uMd9rxUCAGwgPFZYKRh+G5hP5WORQgzASoIWRL2o79e9otF1+12NTU1pY8//lhbW1sBlBqNRoRxXBCxmKempjQ2NqZ2+/SYZxSrb3Di+GbpDMhUq1W1Wi0tLy/rs88+05UrVzQ+Pq719fU4FQ668C7Az6effqoPPvhA8/PzqtVqEXp9/PixPvvss/DyuUBF8ZTLp1Uf2IhHmgKKm00h0JE5cUUwMDCgO3fuBB2plAEoYXPI2NhYzCe8MzExoUqlEhsYX716pa+//jr6hmLFa4UAhSeY2wxY2+12bOAC5KO0mRPfTe7eVmjMQmWMeMWYb64MRBD47pGgDfKrpbMTh7gQ9tPT0xERODw81OjoqMbHx9VoNMIjy1rEIIMGREMYh8/1zs5ORBjwcmFoUrMb+nhNVhfozCNlDQ8ODrS/vx/GJ2kHgDlSenIJN/eweYTnX/7LfxkVMVjjlIwDLLinlf4BpnlvjvpAO/iR73JKF3KDCA3vlM5y2Nm8SQRnbGxMtVpN09PT+vLLLyPE67RnfHjJGU/OQ56amtLm5uYb9bhbrdMqFRir7fbp8b+NRiN4j7Fvbm5GWoorF8Cf81yn0wnjSpLq9bquXLmimzdvamBgQJubm5F64xGkHKL32sm+CQy55XtEXPE5kC1S/tw/Pj4eFUYYi7eRwWqOkPiFDvG9HFlRQ3eP7vhc5NQF73/uA/nZ+TuPxuS16vzjUTba9P5xeZQgj9uBt8umDID4Ludc833RBd2QoTiEXB/jxPB+YaAWzX2mqdew9744aM5jdZAITXP7GYCdB1j7GTm5Hak3t7rfuPx7v1xmFLVZZLCddzkN+PG23IjLfTtv3JcF+ecZh/6bv88Dwm8FCO50TnNmWbztdjs2yK2trfUAPbdoWcRs/tjb2wslJ/WGOZy4XktWUiiQoaGhAN++UcdLBeEZwbNx9+7dCEW/fv1aS0tLPaE+SaF0W62WvvzyS62srOjw8FBbW1sBgBqNRo91S/7k0NBQ1DHGW0l6h1tf9In8ZzYL3rp1S9euXdMXX3yhtbU1bWxsqNlsanh4WJ9++ql+//vfa3NzM2jcbrc1OTmp6enpAJMzMzPqdrtRlunFixfxft+8455NV0TQsNvtan19PbxWkiIVAgCLkmMHtVeWkE6Zf3Z2NrzJ+/v74VEGDL98+VI7Ozuq1+taX1/X8fGxJicnJZ2V3nJPnc8Ti+fo6CgA2MnJib73ve+pVqvpyZMnAcxZ9Byj7IqEvEjeRQWLly9fqtvtRpkvr0cLYITf8ORlz+7Q0NAbRsHMzExsaqRP8E273db8/Lza7bY2Njbi0BNOHcQb6SfseUoGANa9JYA9aJ43urVarah/nfsPjRkLa5pauJubm1Fa0I/v9iohniNMOgt9nJqa0snJSXj5Hz16FHSYmprS7OysWq2Wnjx5EmuFfjugYj2yPh2MwUc7Ozshc+AHj9h0u6e5znhpMdZI98BIQU55GN2Nao9EubcWgOD5xxjhrIlr164Fn2Hk4MGnogTzinEJKGNMzDGglzXuY3YFh7waHBxUrVbTjRs39MMf/lBDQ0P67LPPIoXE09kyqHKD1KMSfm8GHK50s7EAr0HXw8NDTU9P99RXZ07gB/9dpMjhYZf3Pj8eOcqAtmgMvr4cDLiDwVO6vD/0xaNj7hHnXtaORzz9nbRVZEgUAS+nUx6fjxk57iAu9y2H1d2w4zvK97nzzC8Hev2AK/rGjSuuDOyzIZN5wJ/zz84DgHnenI5FAPCy4ND70g9g+oXsvUwbeZ05r+Q1WTT+i9p2nvC/PVrq9xa1759dllZvBQjOYEQ623XPoiU04mWRGCQLASDiXrwioeMeHZ5vtVo9KQn8jTD3vqJMjo+PValUdOvWLZXLZe3u7mp4eFi//e1vw8tHH1hwa2tr2traijH7JhevY+pWn9eGlBRjRch1Oqcn4LkHAMHWaDSihBzeCgDBl19+GUqP93JqXr1ej41AeAGptEGIm3mZmpqKnd1jY2M9B2/AxIBb6qQyLygclKHniG5ubsacItwPDw/jiGgUD7RAwbPRa319vac9D3PzbA5ju9CcmJiIEmsAWQAoYWlAAd67oaGhMES8dqjngfsmNehDvrnnfbqHAh48OjqK0ngA2bm5OY2OjkYZLepir62t6enTpzo+Ptbz58/DmwpNV1dXe/rkoMOVpdPP+wTIYg4Iww8ODmpnZyd4IIfIoLd7yY+OjvT111+H5xUFDb+60nPAQX/gYXiEucHzynsBXi5rSqUzLy2l7gCBnlaAPMpGtvNQVmjwIwbV9vZ2zymT8H25XNbMzEykeuzt7Wl0dDTSnQ4ODiLC4+uJWsw+JgfG1Lr2VC5SyJAjOQe+n9x00ABN+3l73BDe3d3V5uamdnZ2NDExEREJX+/Z+HAF62Cc9j0VyWVm9ghnBeneqm73tO569o5lIOhtZXCYdYJfRdVU/FnXK0W56rn/3pd+F3Le5R5rNbcNmMzh434e8SKvZ+5rEe39M3RGEfByPuK9OAVYz5J6+syVQW9RP/NnTp/zxuL3Z3BVBIb7ve+8fnj73+aZi+5hLM5r/r33v2is/frivJINl3709yvzR79xFBkguZ2iZ73/F/XnrQDBrqzcO1t0+pODmAyC3RtVKpUi1JwtWpSpL0a8j77ByBcjm2PcI0XKBV5LNvQADqhuwDs4KILnXWlBByYdb0w+Pc29JDyLsiO/1k9HOjg40KtXr1Qul6M8kaQo5yb15iJKitPRAGt4qbe2tnT//n09f/480j+89JiHpJ3G0HF4eDg8tw4aoANACiFODufU1FSA8Ha7HYAAYIxSLJV6q3oAtgkduqfXlQK/CSUyBj7Ho0uN2uwp5G/PWXfPoHt3aRejhntITXCjwXnfeePo6ChSHO7cuaObN29qZGRE6+vr4XVstU5rQa+vrwdf0q5HS6rVao9Hd3h4WHfu3NHKykp467ykk4evAb9sXPMjmVGwWTn5endvc7fbjRKAnpqRwbj/sJYxpkZGRsIr7+vX1z+1hl1ucDnA5f4MBjwSBW+xLv05X9f8jXzxVClPywLoIyPYOOqGiAt31jrf8yzAG7lAzXQ3RjAecmjelUX2BGeA6mug6KKtg4MDLS8v6969e5qcnNTm5mbwb7lcDlmSZX0GRc5HnjaW+ato7ormWzo78a8IcOb5PG+Mzot5/ovyU/3vosgZbft6y4A68y5tMddE3HLpOS7PD6YN5wV/TxEA9rEWpULktZfnw9vxZ4pSJ7yv2WOawVtRP/1756siMO5t9APa/cBXBnZugPcDmRcBxvxMbusyz1zmcrqcB+D9+37g96I+5nHkNos+y9GmfoZAXssXXW8FCEZBIEhQEl77F9DiO1y5sqICSHB6m4evnSlZ8GzoqVarajQa4bUplUrh8ZyamtLt27e1tbUVNXUpv7a9va2NjQ09f/48Tu7qdrsR5iTk6psQvB6ng0FX6AAZ8jhzOSFoAMjrdDoaHR2NDWLd7mlaxfb2tiYmJiK30umJEgN8Hh8fa21tTffv39fS0lIIN/I0X7x4oY2NjVAepHXgEcSD70q3XC4H4CmVeo+6xTNHlQgUO3mkpVIpcpsdJLjRA/0cWPFODBJyxfICcRBAisvy8nKA7XK5rIWFBQ0NDfVs8nIAi6eQzwhfI7xzmJS58vzA8fHxMA5c0MDrTjP4+fbt23rnnXf0wQcfSFIcpY0Hqlw+PTkRDyL0KZVKGhsb09WrVzU7O6ty+TQlYnV1VQcHB/rJT36iv/3bv42QIakj3W63B3jt7Ozo+PhY4+PjMYe8Kys8/mdePLwJ+CwKeblhy3pxxeVC0XPxs8HL9fr160gHcd4H0EMf3sNvB3rwonQWOseTzhh9jcIHpD746VX0tdvtant7O2jBJriDg4MwXjMI8nJ97s13wF4qlWIvRQawyL4cPuZCJgDK8+XAxp/NXluiMvv7+6rX6xocHNT8/HxsDl5fX+8B2BlE+VqDR7IRCY197hmrVyxxUElfM3jNfOUAz72xGbDntjMfOW0cNBSB89xGEZArAlFeEYQNmMy/G5w+x1JvCgGyyd+Xn8vj9AhIBvw5XI7RVzRmoklEnTwFJ8+NvyODsotAUObdfPnnGcjne/q9L89Tv+f93n5Auaj/5/FNUV8yUD2vr96/3P8i2mQA7Ebhee+7qM/5KjI++n12WUPhrQDB5fLpLm4EOuFhDikgB8o3mvjFoH0TBTumAS/cxwLnGRgJcFEqlTQ1NaWpqanwcp6cnGhiYkIff/yxXrx4oW63G0fQPnv2TBsbG5GfSggXBZ9PtUPRotjIxaTf0plCn52d1fj4eJRQ8pCZC28HfdQCJiewUqlEeTNX5i6MsnFxeHioe/fuhVeBEDGgxNsix5E+QVMvSUa/19bWYnz0FyVLuZpWqxWeTvJpV1dXe8AjYXsPVR8eHkaZtSyMpd7cJwyUnGby+vVrXb16Va9evYr3EV78yU9+oi+++KLnmF3GT270jRs3dOPGDb148ULr6+vh4YKmeO2dLu7JnpiYiPZJu3DF5Zup2PU/PDyshYUFjY2NaX5+Pg432dra6qnLy7N4jz/++GP94Ac/iFMM9/b29OjRI/3lX/6lFhYWND09raWlpVifu7u74WWu1+tqt8+qFqytrUVeLoaLbxT0OfDqLRms8QNfDAycbjzd3t5+o7waoJJNaFTnwICCz/KaQTAC/lifuZ8+x9xL+N7no91ux5HG3oYbS6yVnZ2dAOmSeniY9t1AZ3MlbXiZuG73NF+yVqtFHrjzO3LLq9j4OvDQPfPgoMxTpJg3nvFoXJbBrCWfa0kRNaPSxNLSUpR4zBU0/Op0Oj05191uN1Kq3GPIGNwQ4ZnBwcFYSw7Qsy6gfZeRzpfOV0476EYlA/gie22RKV4JyfmyHyB3w6+IRg5SZmdn1e12Y98HtaHhT2S3A3Tm2sE8JzSyDpxn87z7mvJ23AjxFCvnYR9TqVSK1CH4jiic9zunU2Rgdh646he18Lby1W++/bN+oDoDyQzaslHar53zwOlFF7Qs8noX3eu/i65+xq/ToYj3871FUY3z3nsZUMx9Tue8nvL1VoBgFmi5XI7atp1OJ05s8tBgzh3meUkhiAC0i4uLarVaERbqdrvh2e12zzYn4X3e399XrVaLdhGk5LI+f/48agMTmueIZvoBwDo6OlKz2dTU1JTGx8fjHex4ZuOfl6vCEBgZGdHMzIxqtZpKpVIIJJQXSgPhhYKBhhyhivAol8va39/XwMBAbL7y2squTCTFARyef81RwQh393wR9vYqBdeuXdPa2loYLqSRuEfLlQr9l04BxOLiYlSXYOObdLYDGmXBLnrK4Tnw8ZJd/PYcS1IkEBCtVkv3798PmtGX1dVVLS8vB01zn91D22g0oqQWG8M8ipG9VdJpWPv58+dqtVqamZnR/Py8yuWyvvrqq1j4vhmGNbC5uannz5/r9u3b+vjjj4NflpeXtbi4qIcPH2plZUU3btzQycmJ1tfXowrBT3/6U9VqNQ0ODqparWphYUHvvfeePvjgA/2Lf/EvIofTc0aPjo60ubmp3d3dAHBe3g/Q4Tu0s+e8Vqv1nHzId54SBL+Q13r37l2NjIxEGcSXL1+q0Wjo1q1bUUv3yZMnsenQPdfQ3YEG84UH/v3339fMzIxOTk60tram1dXViPZg4OA5X11d1dbWVuSEl0pnexF8HXp0wEEs5Rw9px7v6PLycsx3Tp9xUAWtd3d3Yy8AchPecF5jvXl+dI4wOOiFPzOgJEK2t7f3RpoZa9PnEjnhRsPS0pKWl5ffCGn7mshA4eDgQOPj48GDnoudFWn2wJdKpR5PKPe4EeXjwGj0fhFlIjUlpyi4oQIARi5mkMP97rFlTTst3YDyVIAMzH0zOSASYwNQjhHh69D1lb+b+9nngW7iKvLiOsDnf+bdN32yNsfGxqLaSZaFzC/pMjix+gHdzIP5ugxgc37zNZfb9KpCRQAuGyj+/HkAPs97UVtFY+p3ZYOfzy4Ctv7+896VPdA5guPt9XsP7yp6b5ZDbpj6laMVPOM0voyh8NaAYDxJCNxXr171CFFJGhsbU6fT6fEe5MvPVc/hFMDQ4OBgT0gUZUEuJR4bBAQFuD///POe0mkIZT+O0vMr8W566SaUMJuleAf9HB0dVa1W08zMTHiPOX0Ig4AcZISOj8GFC+9yjy3gm3dDK/IIUVYoPcY5OTnZs4sbhVAUJhsaGtLq6qra7bZu3rypSqWiFy9ehJFB2SWeJZ8ZBeMghXnjZDPmic1nnJRHPV0v9wVtAMN4mdlgKfWe0Cf1huEBNo1GQ5999lnwBYt+bGxMU1NTunv3rubm5rSysqL79+/3bND0UKArIF/kh4eHYZxgZLGQc66kC46DgwM9e/ZM1WpVr1+/1uzsrB49eqSHDx/q6dOnWllZ0fHxsVZXV2MDVaVSUb1elyR9/fXXEaIfHx/X7Oys7t69q3/2z/6Z/uIv/iIMSMrB4VXEQwQ/InChC95YgAZ9rlarqtVqevfdd7WxsaHNzc3Y4OgbplDo7XZbKysr+u53v6uf/OQnunPnjiTp6dOn2t3d1fz8vObm5jQ4OKilpSX97Gc/09OnTwO8Qzf3QtEnAMLExEQAVGjOGoY/SqWS/uRP/kQfffSRfv7zn4ehRM4/BpXLLwcmAGUMpHq9rtnZ2UghIk8YfocvWJe04+ASHuY98L2nzbgyYbwOgH1uoI+vBbzsAKqFhQWNjo7q1atXUd8coOcHrjifu/yBV4q8X16Rwdugb6SQeP9pn/Y8VSp7vJkDB5A8i5e7CGzmfub/2TDbbDZ7gC6XOwucP7wt3useWvd8+2ZUlyNelg2Zv7a2pnfffTfWK7XXnQ7MDX1zUAOYRQ7liAFX1r0ZnOPU8VQ92vb9Ek4vB/YAd1KCAELc42C8CLT65w6KiuToeePyOctj5VmnXwZwUv/yY0X8VMR/Rf/3A3dOJ/8s0zm3mwFzNh78vUU0yvOQjY6ie4vonuckj9np45Ht82h50fVWgWCYNQM8DxlSbB2vXJEl5cwvKUJQMDOg4eTkJPI3K5WKXMFAngAAIABJREFUJIWlSniVWqCTk5OanZ3V6upqgIFqtRqb73LFiVLpNDSFJUyubKVSCQDs4c5qtRr0YIOWl0VyBTM2NhZCkMW5s7MjST1egFarpVqtFuOn+DxeyuwNBlzjhSOv1Tc4uaCTek+94++RkZGop9toNILW09PTun79ug4PD7W7uxs/Hj6kHeYQoOEMPTo6qk8++SRyM+ERKiH4/fTdDzgATHv1CgfdmY+Oj4+1tbX1xklPnU4nykzRl7m5OTUaDe3s7PTkMUOrfgKHEKFvznNlmJV0qVSKo8Hv3bunpaUlDQ4Oan19PfqEFxbAPzIyosnJSdXrdVWrVR0dHWlnZyciBeVyWVeuXNEnn3yimzdvRi1oqlFsbGwEPfmpVqsBOOBJSZH3iTcJRYwRdnh4qP39/QBy165d087OjjqdTk/lj+PjYzWbzSgD1263Va/XNTIyEuB8bGxMN2/e1MzMjB48eBA5yqyvzFfQuVarRbUGojA5Xx/6r66uhlfq+PhY1WpVs7Oz2t7e1uHhYVTrALB4ZQAHNHNzc5qamtLk5GRP+pekHmPaZVr21LEms9xzmenrE8MEPnL+dTDsfOmfMb/b29vqdDphZLiic+MRo8MBHn2hf0Vy22melZjznK9vNhtjxHBlBZi9vdAie7GKlLODWI9k0Va9Xg/DnPKbDsyRO/BHHkvRlcc6MTER0UTPj83GEYeiwMeks+U5zcZEphvVbDKo4V1FwDNf2eiHZp5KVmRgME5PpXOeygCrH6i7CAT1o30/oNcPSObL5UxRPzLPX9Sfb3P165fLjvPuP48mF73j2/SriMZF7V5Eo4xLsge833N+vRUgmCsDF6mXiZhAdoH3y3PxBeubRVAeACe8vBT7R1iQt8bfL1++1MjISNTWRKncvn1bc3Nz2t7ejpOtCFsPDQ1pfn4+ck89rERons0veMERkoTVj4+Ptbu723M8M+MFzPlx0wBtdvwDJrrdbo8n1FNOXKh5WgDeMHb++xHAGC2AarxiCDYOZtjf31ej0Yj3zc7OanJyUmNjY6pWqwH83ZtIX1Bsk5OT4dVvt9sxD3e+8QpCFw70eP78ec/xuPBSXmB4KKTeMi+EE7OC8trP7u04Pj7Wq1evYl4xpnIem/8UeWU835J2XUFkDzL3kpazsrISz7lBxv3k+VUqlQjH0x4e2P39fW1tbQXQnJ2djeO03RtJhIC/8RhhuMFvV69ejYoX5LO+fv06cnw9zIrx5XMFgFtfX48d7myiJaLjoV4OrfHQL+ueNQM9iA5QI7nZbEZusYfIMZ6fPXumra2tAMF+1PbAwICuXr2qVqsV6xyPVwaGs7OzkhQ5qvBBtVrV+Pi4dnd3ewCuh835DB5x0MfazWW5svfE+a6fE4Fn6DPykiiTlzajP9nQo60cOi1ai77WPBKUx5zHw/y48VGkBIvAHuPP/fN3+jPwN0DCgSSGXFbIPOf09T75ve7VynRxI8bTk5hzjCzG02w2IyrgKS3ertPax8P73APsNCm6XN863TzFzenudHWauczyzaf53ZedM39Hv+8u00Y/g6GobWhKPy8LdC/bPy53FOW+5DZZ72748v1lwGiRDMlXP6OoyJil/+6dP+8dRWPN8srbcF46r89cbwUIZgEDUMnt9AWJoCWnDuvaF7F0RnQ8RKVSqedELixMQI3XlWWT2tDQkK5du6Z6va5KpaLV1dUexYMC/vDDD3Xr1i1tbGzo2bNnevnyZdS2HR8f19TUlCqVio6OjjQ6OhoeUD+Ug3xiqiMgvHZ2dgLIMj6+8xw3fgCVCwsLsTmu2WzGCXModoC3JFUqlUi5IF8ZKx2l4rVvYUbyJLvdblQ1gNat1ukJVbRHX6enp6PUGd5AciHJMfVFgXIhHxOQNDc3p4WFBc3Pz2twcDAUNIdFcGoeoVouD9GTWsI43SNBnWNfVNA+C3DaW1paUqlUUqVSifxt3yzoIJs5BuBkjxvgKAteeNrzD+k/wIv2vT1fEwCq/f39qBHtynNtbU0HBwd6/PixDg4OYtMVFUYcCOQQr3S2AcbnESMTOjYajaiFy3s7nY6ePXvWA3bwKuN9XV1dVaPR0NTUlObm5kLAYaStrKzo2bNnkXaA0M8beVxBASCQO2zExFj2KNTy8rI2NjZ6xra2thZRlrm5uTCqJenJkydBe+6HR1ZXV8OAxCip1Wqq1WqRWoHi8pJ/XC4bHbwwB0WpIJ6e4VdWov7DXBKV8BzXIpCYw/x+j/fRP+dvNwjco3NZJV2kVP297khxumUFWnQPdIWfnH+ofOF7Vdxo5T6nA587YHKAkg1mwG8GGegjdCF98w2cfmV5wvqC97NnNs9ZkSeRe8rlcqxz5CJrowi8ZIBI29ng97z2bwN8nda075/nNURb54Hg89rPfXL+db7oN46iNvI7Mm/kfhTxMpdvbC0aw2Vo269P5/UdPssOS18f/d7nn/czpv1+1lSRfDgPCL8VIBgvJTmC1B4lVOjCwQ9bwOuE0JcUOWzkOK6vr0s6y5vNIUM235GTBwMBVEulUnhvZmZmNDs7q83NTa2trUX1hoODAy0sLER+5cOHDwMM1Wo1zc/Px9GjLqB4P4CTfFMu0jTwTtJ33xjCyVrvvfee/uE//Ie6fv16z6lh9+/f11//9V9rbW0tlBmL+u7du7p586ZWV1f19OnTCA+Pjo5G5YT19fVQ2J6ygEfuO9/5jprNpra2tlQulzU3N6fNzc3YzQ/QQNnjLQQMz8zM6OXLlz0eFcboG9wAAnfu3NGVK1d069at8JRDA+m0pi/AemtrKxaQn0w2MDCgWq3W4113cA8veG754ODZISNSr5cLDxxGmqcu+Hy6UCiXy5F6Q040PE/aANEJV1C047mF3n/4jvkDiM7MzEQJwF/+8pf65S9/GXnnpIe02+3YzEdONxsiJUVEw/OUAQbQlX7v7e3pt7/9baR3VKvVyFP0fHBJ8TzKwwGwdJrn/vnnn2t8fFw//elP4/hd6TRs+/jxY/3qV7/SixcvekAf69FlCuPEg85vBCdznatYDAwMRD45vOTe3LW1NZVKJU1OTur73/++Xr582ZPny6bQtbW1SD1hLYyNjWl9fV0bGxthNGJQlEql8G6TokTpRz91zo1/B/bOex6VcAPG+RJZRA4vhjOfSYqUNIxn2mP9lEolNZvNoHcGd7yXyw1SV5ZF0Q/nmW63G/PjY/RnGbODgG73zHPM/9CtyFiA9jhNckpJToHg3e4ZdUDpf3M5UMhAqVwuxzs8YgTgLHqHj82NajcySqVSHAbkKTcZhPs6L3pHqVSKI9JxhMB/1Cf3ucuAyMeT59Kf6WeA+VXkac7A3vvtIJ73FF3+fL+Qe+434/S5PA+o9rsyePY+O0/7VWSsON9mo+88QO/vzPIjjy3PoTuA+gFt72PRVcQb3v5FQLjfnHK9FSC40WiER7Zarb6xuQtABJhiQt0ydwHGZiZ2rpMmQJsu8BCQVI8YGhrSzZs3o6LDycmJbty4oT/+4z/W7OysBgYGtLOzo8XFxThQYGdnRwcHBzo+PtbY2FiAAI4kvnXrlq5evap6vR6K7uDgQJubm2q3T2sQE2YtlUpR7uq73/2u7ty5o6GhITWbTT158kR/93d/F8qNE8ykU4/Yp59+2mPZ12o1/fSnP9W1a9f0r/7VvwqPJcemttttra6uBtBFkM3MzGh/fz/yOY+Pj0NR+QlYXPV6PXLIJicn1e12tbKyIkmh6IeHh8NDzia3VqsV42bupqenVa1Wtbi4GMBzY2MjwMnq6mqUr8NLvbe3p52dHT1+/DgqcoyMjIRHVzoFSyMjI7HJ8fj4WFNTU9rf39fs7KxGR0f14sULNZtNzczMhGLgeULgeNo8dA8IOTo6Ci8743VFiFKRFH9zOhogjVxuUkT6CS7PMeQe0nmcpyVpfn5ew8PDAZwwNhYXF9/wnjG/kkLBE61gvQwMDMSY3cPO/YyXteibXBBaXk4KgEj6Baka8OTw8LC++uorbWxs6P79+/pH/+gf6fbt2+p2u1pcXNTnn3+un//855G+g8BmM1elUtHjx4/fqJhAnrjLGi8n2O12A+ghb1hbtAFNVldXNTg4qEajoaWlpcjF97na3d3Vo0ePND4+rpmZGY2Pj2tsbEyNRkOPHj1Sp9MJTzR/k9uJUePgns8cwACY3eCDlvSFdUzKjnvL4Vu84QAm1ub09LSuXr0aR7Q/ePAgIndeHcMBC78deLvhhszhMBr4yT1XReArh53hYWq+t9vt2Jvg3l3aox+ekpSNVw8j5+dd4WaA5fzlhhnzwTpwfmSjJD8OeF1/+bgBqTiGHOBnoOV/I3uo0eygxjdEF6Wp+Xi4qNzioI+UPZejGXRmWmagVWS4OT9d5OXj3n5pGLSRPZJFQDe/rwgI5rmAP/L78vP573xfBpDwTj/DJ78jFxJw2maaSG96jnN7RVemT7/UqCKjNdOR/+ETN+TyGKkIBl7rN8/9rrcCBKNsWLzumcKzlHO+crgJgOLW9PHxsWq1mqrVauzsd0XR7Z6GZ2u1WoA6SpOh/Eulkv7JP/knUVEBRX7r1i391V/9VXj1HJiPjIwE2Dg4ONDS0lK0CxBBwXQ6ndhwBHCZnJzUzZs31Wg09Nvf/jbC0uPj47py5UrkKMNQg4OD2tzcjPAcigRl+e6772phYSHKnkmnQqvRaEQFAZh3d3e3x8MDqEfIMT6qBhweHgaIJnfSN2+gaPDY7u3tRZuHh4daWlrq8e6TW+3ADoXc6XT09OnTyLtlM1Kz2dSLFy+iZBSb7fw0O48owBudTkfvv/++hoaGtLu7q4mJCe3t7UXon/uxZukDysytfvfU4tGF/oAnPPsOauDRnJtNP323P7/di8X8u+DlGh4e1vz8vA4ODiISgBBxBe7CFG+3CzDaRcnhxfRQp687qVeIsj48BxP6kBqDt5r8c9bPzMyMtre3JSm8yy9fvox7t7e3Y1Mouc4+J81mU59++qm2t7cDiDebzZ77APOTk5P6oz/6I3W7Xd27dy88yJ5OBMgGLFCPdXJyMt7PZkNo67yEAXZ0dKTt7e3YjJfTugCq0Jt28Hxmjyky0svVeeqKK2PfLMhaJkWM5zxqBv9PTEzoT//0T0NOwGN4trkXGY53N3uTcGjAJ2NjY5qdnY2UNMC56wTaGBw8raeNB19S1K8mLahWq/VUG/E15ADDQWZW0BkcuLzOoI616XOSwbW/N6cM0ZZHKfmetn1DqqdUOZDOl4MSf6d0ZgxlwAx/ZMDJODx9o4hnmVd0UL4vg2G/ioAw7fncuQHj9yKX8t4Cn+t8ZTzhfSsC3v3G4n30z4rGW8Rj/YBw0f38Ps+DWwSM81VkoLrx4fdkeha1nVPPXJfxvcvEoraKaJJTarx9n6t+xmjRe/x6K0Cw1GspINDdqnIh4/9LCm+C58LRHqF8niOshWAi/Oil054+fRpey/fff19Xr16N437JX2WT0YsXL8JbVS6XI7TtniN2wVPizQEDAAYPN+BidHQ0jndF+I6OjurKlStaWloKLwBpAltbW3rx4oWuXbvWsyEHb4iDuYGBgfDcSmcePnJE8T5xv+cmQjufF4wW5suVrCtiQDceylarFX2bnp7uCaNRQYDDKqampiKF4dGjRzEPrdZppQ2MHN7P/Lbb7agxymfUfcbDXi6XI0yPp9fDONKp8qW8G/fmRe9zBV3zBqa8qQh6A0C5SCEAUI2NjcXmQ0A6vO/9xJMIfTHcMEyKLGOAtIek3dPiwMbpmsG5r2W+z0aD9OapWQCezc3N+J9+YSAxdryyT548ifWF0vM8YwQipQ2bzaYmJyeDLswx64T5puIEufI+lw464Gn38pK/z/rgtC7o72AC4AiNmHvP7abqTKYVGz9d4Pu8uFJwJeRKwj190IJ1SRpMVobd7ukhQc1mM9Ymm4oBWkWKKHtqHXjQR+Sw84gbr7RLFIuN0ZVKJTbbEk3Jnl331jodsoIv8lBlb7Pf588Wram8Yc2/8/szqHEaZLDo6zLTme+zF7voyu/yywFgEShxOqJjaAvvLwZcUR56EQ1oF5lZRNPMG0XfF/HaeSC4X3/6XUXgtEim+vf5s0zX/F1Rn4pA+kXPX/bKgP68+eoHgCVFBMHngB+fM39PUXuZ51wGF40vO2AuA3z9emtAcLZUubz0DWEhgKxbf/z2BSQplIYrVrek3cIfHByMnEfSIKrVqkZGRrS9va29vT01m81Ip6DU2v7+foBoFDoA1cG4pDgqlEXpoSeUOSCOvEC84QBLDw2gNNvttu7du6dSqdRzctrR0ZG+/vrrnvC+V1sAwHLhxZZ6wQw5mjAcAIuSa5LikA5KfJEDzHecqocXGyE5MDCghYWFKJkGGJ2YmOjZYIYxQwkg+CNXUmAhSmceNeZFUpzWx4YqjyCMjY31ABQHE6QtuBIFQPpCdIXpXigP17inI4dcXXijUObn53XlyhUNDw/r888/D8Dv6yfnVJLDm8eBkHB+ynyV1+bAwEAcloKhR/QiAy3ahoeyMvS1Di+RTw1NUK4AS5+PTqcTh78AdOiP05Hnv/rqK5XL5Ug1cf5wg/rg4ECrq6uRhuCAknWTIwR4qsh99LkmPx2PZBH4chqw3nkHdPb0Ewf7vqnS+Zy2L6MUAOC+qRGPNykXyNTDw0M9evQoqg8w9w5qka39QHA2LqFVs9ns2QeQ+8w8AbIA3hzjzT2Ad9K4pN7SYA4UPMfVQWU2GviBh7Py9jaL+psBZz8Qfh7QzvN3HtgpmucMLhygFD2XQU+mnfcRfnVPsa/hfqCt6EJeZJDvdHF5VmS49BtT/v8yNDwP9F1mLP1o1g9s9uv3t53v8/rzh179QD+fu9Hm9Mv3nzeWoj72m1f+95SionV80XUhCC6VSv+LpH8qaa3b7X70zWf/taT/SNL6N7f9l91u9//65rv/QtJ/KKkt6T/rdrv/92U64paje4TdO8Zn1Cbtds9OKdvd3e3JqXRBTHklQJ0DP0Bnt3saVgfUuMIhfwpvD4dhtNundYs5TQxvKe05c3Cy2fz8fE8NV8KhKBbySAnPs9GPcbDZC+VLGHNkZES/+93vdHJyoqmpqRhjo9HQw4cPtba21qOI2TDkdB0dHVWpVArvLDTAQOAITrytBwcHGhsb040bN1SpVKI+LX3zGrJe4srfyd9U0XBP/dWrV7W0tKR2u63NzU1tb2+HB77RaPSEVzLogu5+pCxgolaraXJyUi9fvoywKp5Xcjl97kgdoXC7A1tSReA557t8QEHOV0JJYky55wZFTrrAjRs39P3vf1/j4+N69OhRgH9PE8r5obQ/NTUVYWFvH/7z9UUo3IUZAGt2djYqcHh+bQ5ZOxCCh9wopE3pzFvH/aw9PGiev498IEccoOogAznCO30tepoCNHAP0fHxsX7/+9/HPoIsVMvl8hu1pfmb97g8AXgjF/xd8D4pALyLvFDfJNrpdGJjIWk00M7lDNET5iQDkMx7ns/tBhU8j7HomwgfPnwYYBCQgxHBmNwQy5crTnduUCOa/maDMvMNm3cJf1OrG2DOBlX4ycfoChQ6Ov8CSLOscuPNgbw7VXx+eW9Oi/Bx+PvRe1zZ8+WGYD/vchF4ghf9+yLQmEFOlhUZiHqfPTKWnTRFvOBtXgSOPPrLe53+3p7PZZ5n/zzTwGmfjR9v399XdPUDirlP/cDoZcHvecZSUV/+EPDer49F38OTWWd4pCun2Xh7TpMiMFvEm0Xz+23GyXUZT/BfSPofJf2v6fP/odvt/rf+QalU+kDSvyfpQ0nXJP0/pVLpbrfbPTcWgfICTOC98hw3B8i+UxYwCYAcHR3tyQU7PDyMsCSKhU1OrrQAYJOTk+FV2tvb07Nnz+KkJ6n3RKhWq6X33nsvTuXa3d1VpVJRuVyO45fJd7t9+7ZqtZr29/c1PT0doOX58+fa2tqKFATGubi4qE8//TRSANbX1/XixYsoneZ5MiMjI5qamlKj0dAvfvGLHgGF0sZbWi6Xo6QZYNaNBY4q9o2G5AJnISSdboS7du1aeH9RlqVSKY4zJh+YnFhXlszdl19+Gd5WjIzXr1+/UU8V5Ux/XJAhiPkf4L6wsKBmsxn54eVyWT/60Y/085//XPv7+xHepXYtB5rAU3gd8b6yKNvtduQnAyZceC4sLGhkZCTq7wL24Vt47ODgILyItpZiQyE56yhj35QI4MighjY6nU7UnvX54x73AOJdZ01KZ/WOBwYG9KMf/UiPHj2KtCAXrlngAgzdW+pgCYOAOWTOXbCi8P3QGHLJ3evrytRr7GYle3h4GFEV7qEN3ssmQCJO9IFjZMlhBSCSv+6eeN63vLwc/eDQF7y7KAX3lkH/Wq2mer0exka3e1qKcHBwME4my+uQFA43Wl0O+hzBR9TWdtkDb8CTrDOMLtIfaIej33d2dqJf7v2khJ1HQBzcOv0dDMLH8Da8NTg4qCtXrmh6ejo21XrkrVQ6rXjgesLTX2inVCr1pMTQBzzLOzs7sSaZ8+HhYS0vLwewdfnjoMwjH/4DkHa+Y0wZjGWAwZ4Xn3cObeJCJ7DuHECwdnz8vteGd/va6ZfuxTr2tce6w2mFQe6GMX/n1IQM5JyO/k7oQpQQwykD7aJUCQfuLhcYi9OFy1PNfD4Ze56rInmYr37G4XmX09wvn1u/soHgRnx+Po85/+3tZCMtP4M8o6IQNeTpE+ld3r9sBDk9XUYUgd0iY8UN8Ayc+10XguBut/uLUql056L7vrn+XUn/R7fbPZL0tFQqPZb070j61UUPAu6oEAEBvaQS4WjflHRyctKz4Y1FjbJlkZRKpQBzlUol6nqSK1kqnZ7KQ1ieig9PnjzRF198ocHBQW1sbGhjYyNAxfr6egBMSQGUqDs8NDSkGzdu6Mc//rF+/OMfq1Kp6G//9m/18uVLNZtNNZvNqBnqwujo6EgrKyv61//6X/coSTxLKKVSqRRH3uKZhRYwGn8j8KDfD37wg6imgLIYGxvTj3/8Y927dy82G+FpwQNarVZDELRap9Ud9vf3I5wMIGi327HzmLEBfgjxAzJLpVIAZwT7wMBAKGeYGK+Ulyrzy700WKaU+2JDEt7wBw8e6OrVq+El3dzc1MrKilZXV3V8fBwniHn4lWddcXqJJgdegHWqjtBv6WzDJwCaDZgYLLRHbvjg4KDW1tai/i1z44YJhmT2hOBl43PuZ30BDLNiRlmjAFqtlj777DPt7u6+kb/p84NXjJA6NISOHm0BLLjXzGkJ+PUoUbfbDSMITyAKwj3KLkCRA/k9/TxhgAX6Dd0mJydjzpznKAeYAcLR0VEYvH7ync+Z0wq5hhxzhbuyshLjmZmZiWPD3SPCoTqMx+WGrxe+Pzg4COM+ywmeJ9LhXnVJEYFjLdNnB3YA++zRzCkbbsi6Usx55MiVr7/+WuPj45LOymuyiZENqIBcB8dc2dBCt+B48Q1qyC+iCG4o+JryeXClnRW7bzb0sTpPuBMD/mNDpu83YWMyfcqGRuZp/8yNbtpzYMh9Pkf873IKvmm3z47Fho7OV/yNsyRfGYwVATsMkpGRkTjxMpe59DHn8WQ+dP2YP4eeRXzjQCvPL/e5fMnvcxnn7yvinSI6+XuK/s/gNr/T11u/vueriA7O8443kGEesXK96fcXvSevC2heNI48b4zLDfGLrv8vOcH/aalU+vcl/Z2k/7zb7W5Lui7pb+yel9989sZVKpX+uaR//s3fYU2Pjo6qXq9rZmZGBwcHWl9fDwHnXiQHPDzrIS8nwP7+fnjVUGyNRiO8OQC64+NjLS8vR2i6XC5rb29Pf/M3f6Pj4+M4atgJTf4oSpjxILBpd2dnR9vb21pcXNTLly+1s7MTp1WhzN2Sd8+ce/BgJsqDMS6Angt8vKpY6tBjcHBQz549040bN8IrSUrG3//938fGKwAY3mDPs3Pvi+czAnZQQN5nmBhwy//87UKMOcHDCSjd3d0Nj63zC0c+S2dKlhqso6OjUT2jVCrpypUrmpiYCMOIzTa3bt3S/fv39fXXX0e+K0AUb3C9Xn9D6RF6he/wiK+urgYfsPP+8PBQ5fLpBqzx8fGYHzyQDkagDfMDqHCQBKiqVqt655139PDhwzBK3CtH25J6+AFeBWj6vFHZgjz5V69e9Ww+4yKEz0V7ExMTkY7CfLjBA0immgc85AoEur3zzjuqVCpaXFyM6ACAlr7Cl9Cfi3F6fisgINfSdSDC2iK6wXHTAC8OZqGtHM5n7dMG65noltOKZ/hxo9iNk1KpFGW/vO6xGyv+GTTKihWj1T2MntLBuvOyXfCBn6znnkn66H/7GNw4cc8gRleugMA7fG7c2OZ5gGu3e1p9Y3FxMeSTAzVXwG5kQw/aw9ObgZyDGFfA2YPKvGZQ7PdnwOfznd+TUwXdSHNZlNMteKd7gHMf0JsZdHCPf04/sxGR55y23Yvv/Udn+FUEGmnf6cc64hj7vBk+A2AH4Q72ve1+YL/ImOHv8y5/xsGeR22K7s3gMwO+fu8p6lf2+ubLx+ifeVuZNud9V2Rg5PQ7956zxjKgLtJVF9He585l3mWvPxQE/0+S/htJ3W9+/3eS/oNv00C32/1zSX8uSQMDA91SqRTVD773ve/po48+0ldffaX79++HtxEg0O1242jg7A3OygPCjoyMRCh+f38/PFpuPSD4ODUORqLmLcfiohAIy/qGMRYqE7y1taX79+/Hon316lUcSOBghh8EGx4UQJqHhgEL9XpdAwMDUUUih4FYhJ72AINsbGyo3W5HakSlUomd34BSVxJ4mznymUoanpJCzi2eVPf4OE3cm+HWdT8BPDExEcdYU5rJn+N9AM5veCpAcKVSiXGNjo5qbm5O4+PjcUSwpADCs7OzPaeXudKhQgN5nnzO3DImaICX2FMl6DvpHggF0mhcabiHi/4A5NyoL5RbAAAgAElEQVSjTgQFo8gjC7TvPJEFr5czgo94PzWr19fXo0wgNHOjyvNgAWfVajXSbghbMy+VSkX1el1DQ0NRVs/D7w7UKYWGN5317HzU7Z4dDV7k3SgSns4vWVjzGUAQQ7pSqWh6ejqOf86KDs8pkRNP3WINuNc4A0E3dpnzbEQSkZmZmYmSixhfRWMpAm78TwjT23avG4YwVRcwgHiOucVr7PRzfitS9m6AMf6icKbPEzKRdA2AlaRwcjg/s04rlUqUUCsK62a6ZM+0y+gM7n2deRuML48/GyTeZgaYGeD6/Z7ShIcVOUrJPiJB5Lj7eB3AZiDh9yDn0AXeD3gir7lsIGSaZToW0ST3E95gLTH3+Rlo4E4iDLgMFF3mZRrnfvcbh8+zAz2XC/zvDg43ep1WRe/rB4gvI+cyoOz3bH6n832+r6g/yBNJPTLFo9m5/X5X0brK/Sxqo58hcd67/iAQ3O12V+0l/7Ok//Obf19Jumm33vjmswsvQPDc3Jw++OAD/ehHP5KkyIuD+fGa1mq18P5QUaDIeofRUWZ4dznWF8YgB5A8OsJqCIDZ2Vldv349PI7Ly8t6+vRpj3B2S5jT5vb39/XkyZPwTqBAWMCAJhd4KEOAu4fhciUCUhUAQr5oslcNhgCQHB4ehoLAK+fWG8rES8ChHBE0hF/dCyUplI4vcFdYDqCgez9h7EJQ6rWkAZOkKtCme6XhC+aKDZTkPrZarQC28CEn+ZFLjvedFAfPjXRjYXR0VLVaTY1GQ1tbWz2pONCMeYMuzmd8RqiPlBHGhHAHYNMfUnGonUz6RxasnrIAcKXvnrMonW2uwoM7OzvbE63wefW5wlD0XfwYq4x3fn5e169fV7Va1fr6eqRY0Ca/4a3Nzc0eI8830MHjzvsXCW7aYbysQYzp7OlkbPSLd7PuiAbwLILfjzjnnd1ut6fii/OF998VNAqJv2u1msbHx8Przw908fH7HHg7eb7hCx8Xxgr8TmUW51/4hPXjcjWv5Tw2nwtkFv8XGcpcpD4wJsYI3QcGTjf6UmEGHi7qk1/QJhsP+fsiUJqfcf5kzbgR4PLOZRefZQ+uG0ZFoJGfWq2ma9euaXJyUp1OR8vLy1paWuqpn+tRogxk8jv9f6dDXmM+p0VzxuVjKQLCfo//zh53p7nTk7+Hh4fDiOt3nQew+t2fjSIHwT6ObNywrhx8c+V5KKJZUT/OG4+/97y+5ff4GIva7vc948CQ9lSr3HYeUxFOKerXef3u9+xF1x8Egkul0tVut7v8zb9/JumLb/7+maT/rVQq/fc63Rj3PUm/vkR7oXQ4PYjd6HNzc9rZ2emp0oCFB9AkZOoLzgEwoM29HNmLgNDlwsM5ODiohYUFffTRR3rnnXcir3FwcDAOevDNOEzS5ORkAG6sUAemgFzAGHlWXCMjI5qfn1elUomqBPQRgO6nreXNcigBmLFUKvWcMOUeJ4AeINiFPF6gUunUY7izs6NSqRT08ZwsFCGCh/7yHUDVw+eAby8PhwcQweAHIhA2d6AET9Tr9RgzQpADSryu6fb2tsbHx3s8WXhMdnd341Ss/f19LS8va3NzM9IxECjMpx+NK52C4A8++EBra2v67LPPwns+Pj4enkM3NAAabDTDg0zlA3gFrzZgGrDGMbp4GCnrt7q6GikgzpsjIyOq1WpRrs7zGn1c0JD6vYODg5GHSVlA5ghjCv4GQElnG+vog3Sq6Ov1um7duqXJyUn9+te/7hGUDqzhZ2gGb+bQrwNYBw8ZiHAx9+QXk98KCMQAlRQHd5ycnGhzczPKAHKIDdU9MCxcHmHceZpSuXy2cZYKLQMDZ5VwAKcu2F02AbKRiYAiaOMgPXudeD9tVKvVWFcejQFAcHDPjRs3dHJyokajETnQgF/GSpsYYUUAmPfzP/wBfzKXrKk8dqIhknpyU6E14HFgYEAzMzO6ffu2lpeXtbGx0dMG/cqAxEGDf+5gy2U2NKPP8B3jLJVKsS+ANA7eA62QuaXSWYk3/kZm5xx9IlROQ+lUni4sLOjWrVuam5sLrzCbt52/OUad/ni/nZcycMprivud7+CpIjo6n10E/PoZIsy5O49oP88jEQDnwSzrHAs4ICu6MgDO9xYB5ezk8nt9rM4//n3R+4vWlr/fI0v9gHkGpt629+cy4JnfYC2MYuTieTQtmrccXfF5diOtHyAvomfRdZkSaf+7pH8sabZUKr2U9F9J+selUumPdJoO8UzSf/zNy+6VSqW/lHRfUkvSf9K9oDIEnbxz5446nU4cqDAxMaHFxcUI5bh1T/oDix/PrnsOICKCudU6O5ihiGkl9eQCs1iHh4f1ve99T3fv3lWr1dL6+nqcasYku4Jxxpufn1en09HW1laPt4LC/xMTE/qTP/kTbWxs6Ne//nUc7wxQwaPIJr1Op6OJiQnNz89rdHRUh4eHPUcbA/IAU8fHx3EvAAymLJfLb6SUOCAiz5eNdzdv3tTm5mZ4TD3kjqCnTune3l4YJ9AEw8UFKwKc97gSIRQLTZzOnjtIf+nP+Ph4j+ea1A92yS8vL2traysqgUgKI2BjY0NfffVVeI1Q8rVaTd1ut2f88BVpNShkNrHVarWoBOECe3x8PKoMQGc2t8zPz+v169fa2tqKMDrCc2JiQnNzc7FGZmdng05ued+4cUPXrl2L08wYAzwNH7IhMK8Bny82da2urqpUKunLL7+MsKsDGje+Tk5OtLa2ppGRkch55uJY43b79LCLp0+famBgQOvr6wF8STkqlUpRhzoLetZRqVQKw+fg4CA2ohHNYU4AetIZKB8ZGQkw5fM5PT0d/Agwnpyc1OLiojY3N8O4ZXzvvfeeWq1WeGQ5hAbec5DiYUFKBgJmmEvWh9PD5Qu8tLm5Gek8eFxcrrkCIHrgINMNEiIxrKmcljE2Nqbr16/rxo0bevDgQQAI5oV1C2il1rgraldgDuZYM8guj3qxZpx/4eGJiYk3PK9+8iXVf/ACY9BkI9v75p5Z/9tpDx2JcqAzMKA8RYf1jRykXf5m7F5/vNv9f6l7s+e2suzM9wM4gCMIgOAgiRSpMceqLLvLdtvdYTvCYb/6uSL87/Sf4Xe/OKIeuqPb7m4P3W077XJnKVOVqZRSAynOJAgC4AyCwH3g/S1+2DpU9Y0bcUP3RChIEQfn7GHttb71rbXX7sWJd6Ojo9rY2OjbcOhgD5nh96GhIT18+FCzs7OSFNGT8fFxPXjwQI1GQ2dnZxoZGVG1WtX9+/f1T//0TzGHDnDSnE2eTwTK9a87wKnj4/KGTPO8X3c5QPXnucyVSqWQX3L0XXYl9W0eTN/rMuWy+b42OTijHVk5/CkwS9lRd7ZuAsDuWKRAFVvu9/MMt5fMQZq24mOSBSL5zNuUxcZngWbwljtF6Rxm4bB0HfK9m1Kl/B5/jjtp/69BcK/X+1nGn//8Pff/B0n/4dc916/h4WHt7u6qVCoFiGg2m9rY2NDq6mrUaPXQMosZ5qnX64USdQVLakM6qK44YCMxKLBqfE4Cfr1e187Ojmq1mg4ODnRycqJcLhdH4QLUBwYGtLu7G2katHlqaipAHKCQ/o2Pj2tqakq9Xi/KEf3www+SrtnP2dlZ/fEf/7F+4zd+Q2dnZ2o0Gtra2tLLly/19ddf9xkSFCw1iX0RFYtF3blzR3t7e6GkLy8v+8KrGBFY6FarpfPzcy0vL6tQKGh/f18fffSRVldXtb29HcbFlTmGgbFmcxnKmzH38kUoU8/NxvCwGDyUz1yTF8zxuFyFQkH37t0LkIRh/K//9b/qD//wD9Xr9XRwcBDzKl2ni7hDtLS0pHw+r42NDTWbzT4H69NPP9X5+bkajYb29/f1r//6r7F7OZfLRYUT8qphSSnLtrCwoEajEbmOHrZErnEgcIry+XwYO3JBOZGQ9cKYOkgC8KfKgf8j/5Rh6/V6Ghsb08TEhGq1WpSO4ohg1t/IyEgw1efn51F6ziMvDgxgElGYyIuHMJEDHALWLZvtZmZm9PDhQ1WrVR0eHurVq1dx4ApjPzg4qNPT0wC0yCgpDDiNHHHOWO3v78d3/FjkTz75RA8fPgwHYWFhQZubm9rd3ZUkHRwcqNPpqFwuq9VqxUmT5Pi7USsWi3F4zv7+foAl9EWhUIiSaClYw3l0I+NMkzNbLqvoloGBgZgvr+EJiOOIdVj/zc1NraysxKEgnn6AowoQ7fV6UcfX25bFSknqi0yRApQaaGexnaAAWGHsmdd8/qoU5NramkZHR/Xo0SO9evUq1qID0tQmpO/kc6JfqcElIoCuBJh4njTRC3cEnMFljrBFNxl5xtFD/Px/ZmZGP/3pT9VoNMIBdgcDWUNneFTPgZHPk4+Bn17oFyA1TbvBDmWl/fyfgGCfC/ruIJtoDGltOJQjIyNRmpP2MU7+bBw25sfnn/el7fE58GemY8YaTh0t+uCVJ3xN+5w6kEtZ9pQQSPGNX96Gm8ae+WJ9ZUVDbhqPdJ48auHAlX4hk2maCnKURgFdprwdWcAdPIauQ6+9j4X+IE6MGxgY0IMHDzQ5Oanh4WG9fftWJycnOj4+jlCGezbUnEXpSdcDgrFh8UnqO1GMC0/eWaDBwcHY9ALQ6XQ6ev78eQh0q9VSo9GIMmkoEb4vXYduAZQYh0ajEaAml7tKT9jc3NTQ0JB+7/d+T5VKJRhJco4JhRE2/83f/E0NDg7q4OBAg4ODun37tkZGRvT27dswRsViUdVqVbdv39bOzo6ePXsWz2GMarVahCwxKMVise+wCy5nuhqNhoaHhwNoSdcga2BgIFjTUqkUDD2CSH4pzounbLhBkK7rTC4vL/cp1NPTU+3t7YWTAgCGDT47O4s6q5OTkzGWnrLCZonvv/++r87o8PCwKpWKHj58GPWhAeK3b9/W4eFhn7I7OzsLx4H2kEvsqSKMMaARsNHtXh37ury8HECj0WjE90jnoGQg8g/7i6ctKcLrlHmr1WphFFBKOGqMZ2r4Uc44GaSveB9gQRlDqiVMTk5qampKo6OjOjs709OnT6OtpDEBmFLGAsANCAB05/N57e7uBsvP+u10Orp165aWlpY0Pj7eV6kEo0gKA+lMgA6cKk55pPoGjmG5XI5ayJRog7mfnp5WqVQKEIwzfHp6qqmpKVWr1dAR0lVePJEDNvZ6nUw3joTMPXTI5567CUuLs4L+Y4y81Jozk+gyZ+KQCVI90hxcoicnJyfa3NwM5wJdh6HDeFILmQOFnKlyQ45MpMbJyYr3sV/5fD6AuxtHT2fx3MvBwcG+g25oj4+Ds1kpA+ptcsBIu0grIk2N+svIBTKKPqFNUn+5LYgBnlGpVOJgHG+jjz9jwD8iKcwpc0OaFf0+Pj7Wmzdv+ko8umPg73P7yu8OepyM8LHlWb52nelPwdhNoCaVAZwsNrx59RxIphR4uZz45ZuOsxjhtI9Sf7Q3ZUbdAUBPcw+2iu9539LnZM2B98fHL21jFlh1EJw6WFn3Zn1+k+Nyk5xkfd9ZfbfrLnv+PV+Lzq6/z6FiLl3fve/6IEBwt9uNUHqz2dTe3l7sdPUwDeAyBVUoFC/QjcJK8318sAlFecUFgAPhs6GhITUaDb1586bPaNAGACOTxaBnhSYBe4A/8n1v376tpaUlDQwM9JX/OTo60sbGRkw0k9rpdPp2++bz+diQhYIsFotaXl5WuVzW5uam6vV6X3jRjSPjwXHJjJPU79VdXl5vUIJ99DAr+cAweGm+KRvLYE5KpZJu3bql09NTtVqtONqZcRoZGdHt27eDdWc+FxYWIqcVw0Y7T09Pw5icn5+HE8VhA7BkbKYjVAbASPsL49But3VwcNC3YZL3b2xshByMjIzo0aNHevPmjWq1Whw/Ozo6GtUVTk9P+xyIfD6vg4ODAFSMmzsX7gjl8/lwEmk7YE1SH1jB6DNPnhPuToevRTcmWQqWsRoeHtbMzEzkCxPCJUoD88/a9Fxe1oUzNzDQxWJR8/PzsQb8yG++S1k8WCDA5ejoaKxjGM/5+flgNGHHnHXwPEnynnFcpeuNj81mU5ubm5EegkPcbrc1Pj4e6UUXFxfBmFL3nOcAWjGItBtH2kPHXk/V9ZfnXKcAamZmJgCZH4LBTwfXvMNToWD56T9RouHh4Vhr6D1YyxR88Dtz7ACBC2CCfGTlj/r3PRrEPbDYzDsH4XhaBOUpcUxvAhv+vjT3nwvbkTKePHt0dFTz8/Mql8t68eJFsJPIOe9krlwXeZu63W7ot7QiA21KWdHLy6syfq9fv46qK5eXl5EyR61wTyegVCHvdubWSygy1rTXywqmc+xtTZlV/9uvA7w+L+nfvfziwcFBOMHuJPvY+PylLKKvqxQA+/ek7EMo3GlMAWQK+NI14M9Of0//z/x4jv9NYDXrumm803FJ3+06n/dmPTMdh6y/u7PBuk+dgawxQDc7qcRYZLUnZX+9DVnXBwGCYW4ohUSOICDAvV435vzDyADo3APl/lSB8nyYSUKsXn2CiWq1Wn11Zl1ZoBD5GxPtzCufY+wxjMViUZK0tLSk0dHRKAE1NDSk6elpzc7OamtrK1jS4+NjPX/+XMv/NzuKkdrf34/cVa9A0e12g6EiR9LBQSp8MFgOeBA2gBNAy5UvRgMjzuYODz/BErOZcWJiQrdu3dKPf/xj1ev1YMTd+aGeLyAYcDU3Nxelt/ib5yVeXFzEMaqFQkGlUilKpWE43759+07e4sDAVR3fra2tkEdkZWdnJ0LdnsdHiSpC5zhQhUJBxWJR5XI5GMSxsTHVajVtb28HAOl2uzo4OND6+nqm0WTTn6eWMK4OcgD/KBkHDr5hiLFFSWQpr5RR4Bm+w/7y8jJC9gBiZ1xGR0djDtwYkmqUrlUHFThIzgx6m9zB8TnvdDrBUDtLgOPgaTRUh6F6CPLPCWc4Ca6UT09P9ebNG5VKpTis4uDgoC+lCkfYK3rgaKPLWJ/OqgLmXFelETCpP/zKZ6y5sbExzc/Pxz4BN8quixykeA4r653UG48KeMQNuRkdHVWpVOpL47kpR9LlLCu0mwIQlz9Y+G6325dugDPDGmcekG8A4Pn5eV9anI9dKufodHReyg46WeKygaNQKpVUrVb1/PnzkDPWBWPCXLgtYW7IZz8+Pu47hS9lTx08sHaOj4/17NkzLS4uRtSl0Wjo4OAgdJ2vU6IzKbPJ/HvONilKnjbjl7cl6/9cN4WlbwIpKRCGYYVQYa+L35sFbLkc1KWfO1mVMv5Z/cwC1P5M7IfrOP9u1rv9s3Q8nYBIgWvazyxA6s/x/7sdSMcm/ftNYPmmv9/UN/+by0QKhl1/+ToAbzhRw7vQm97+910fBAjudrva3d3tU1q+05iFR8d8gwlABEOM8vKwg3ty0rWygzHlUACAqlP0FLv3MlgYbwCAKzeMvxt5BApQz07/yclJtdttTU1N9dWDpR/sPIfBajQa+tu//Vv97Gc/Uy53tfGM45SPjo6Chb24uDrN7smTJ5qfn+9jwi4uLmLDEeMrXecdk77gAL/X6/UxdfTp4uIi6rUCrmC3vvjii9hMRH5qtVrV/Py81tbW4h0zMzMRRia8BUNbLBbDGAPCYXqmpqa0vr6ugYGresm7u7vq9XoxJ/y7f/++FhYWgoFmA1673daLFy/eMYg4YQ4ou92u3rx501dRwsfI2a9Wq6Uvv7w6L+bRo0d6+PCh5ufnw0FZXFzUixcv1O1enQJ2dHSkly9fRuqBO1UYUWrSckpXPn99ahztPzs7i5xz5hRnjrXl+eKkCAG2UwPiBgEQzthhQHFAMJCedkT+IWuB9YEh5fk4wKzp4+PjyGk8OTmJXFl3Dqgt3Gq1Yq3QLmoFw2ASZRgfH4/+E0pHkUoKx2h7ezsAvht7Nqjt7e3p6dOn2t3djVQYZ8AZd3JPPfcNkEx7GS/C9ciclO2QuJNNRQ7WfC6XU6lUinQu5hKjgOOW5gojA1yMXRaAcKe2UCioUqloaWlJzWYzctWPj4+DXfa8emeR0rSLXu/6QIgscDE+Pq5PPvlEFxcXWllZidKDsOfj4+Ox4bTT6QQQPT4+1urqqnK5nHZ3dzNBpzPQACzGxvU38svR1B5y5z42hXIUOjqa8fR+kxrjfUVeiPI5EHPZQEcgowCJi4sLbW9va2uLwk3vpiZMTk7G2mRM0Gvk8jsQwrlis6qH91kbPp6MJaAFO5y2JUu+/Fnp5d/BvntOvAOplAFMyZ4UYKUOGY7s+9rhTgIOcwrmUpYzq6/+WdouB6c8j3ay5qX+0wtveofrkDRqnTpBPqbcm9rJNFUpqw+pXKRj4455+jN1ptDn/rd0nm9yevxn1vVBgGBJfaW+pGthYxe7b77AKDurlcvlNDMzo/39/T6w6sBCuhow8g4J8V1eXm0Ku3XrVpy8hpDgyeN9kiZxeHgYho7LWWf3XBCsVqul0dFRXVxcqFarRVWHVqsV6RHsqB8YuKrJubCwEBvTYEz//M//PDZFtVqt2JQDkGJTm3Ql1OPj430AFbDX7XY1Nzen4+PjYLQA/owfIIhcTphqN6jkVQOsp6en9bu/+7uamJjQt99+G+P09u1bra+vq1wuK5/Pq16va2VlRb/7u7+rwcFB1ev1UOJnZ2fa3d1VsVgMY9/pXB3eQNkzUgJgYVBKJycnqlar+vzzz/X7v//7mp6eDrCUz1/lDq+srOi7774LYMlCkxSbeqRr4AJA81AoTBTADHmDObt3754qlYra7bY2NjZ0cnKiYrGox48fBzO0ubkZgNbD1VzOIqBoybmEcc7lcmGUYeOYO8APG9cA8LSVVCByGP17jA15v6Ojo9re3g6nrNvtan19XaOjo9rb24t2SurLYfa1CGj2YzW73W7k8p6dnWllZUUbGxvB+KbKDQaLHEtAK/PlYe9Op6Nf/epXEYHwsPjo6GikL5DSwdyRluLsO7L1+vVrbW5uqlgsxjix5nAiHVBxTPudO3fUbDa1vb0dDq8DUECROx653HV4ngvngrrq+fxVBQ+q5qQn5g0MDPSlDbB5Ead/eHg40oN6vV4AbMYzTV3goI5SqRRs9uzsbDjzjUYj5o+IjyStrq5qeHhY5XI5nGPWLI5BKvPU5KaUHbIOEKE6COw3bS2Xy3Gwyfj4eKQmMacOAHxc0WdZucWMo0fanKg5OTnpq0SAPnVwj9Pj0RhnDpl/3s173fnGAQcY82zPD3eSA6cPecIO8uxWq6WJiYnQFa73y+WyyuWyhoeHw/lgfFz/Oyhn3WdFA9KIRjo+6AMHNm6/uZ/16ZFH3ucRKd6dprDwz8Ekf/O1loLoLNbS9amDMf+XAkUnmNJ70ntd9/kG/CwHIItpTZ/JHCNv7kzxj0h2Oj7SdZpeKr/u2PrPFABnRQBvmjf+xnrx8UBO0nFyOeOz97HBHwQIBoC4p4JSBCCgCKnRyUL0Qv/Dw8NaWlqSpAiJ12q1vvAB3wUMUzYml8tpfX090h4IA6Jw2XnfbDb76u3ybuk6z4/P2ECEMcBASdeVAQqFgr766it98cUXqlQqkc8FKGk2m5GDnM/n+8pawRo4E0v5NcJj5+fnKpfLoaQxFBiRVqsVypw54PssEGdbzs7OND4+rmq1qtevX/cpYulqgc3MzGh6ejoMFAA5XWw7Ozv6+c9/HsAZAwoQrtVq4fhgFA4PD7W2thasNiwoqQ4nJycaHR3V7du39W/+zb/RZ599FrtFkQtyzmEqYDtmZma0tbWloaEh3b17N57N+LJhpVAo6OzsTKurq5HiknqpXg7s8PBQe3t7arfbqtfrKpVKcQoicuksKn8jpYLKFl5phPnM5XKxcY68bxQLecKkMkjXYSQ3koB/gKszjMgqkQbGCgeEMeWADOaE51M5hXV6eXmphYUFHR4eqtFo6PT0NAwwY8i6Zk0DgFDOWZv2fPOQK2DWDOsZQDs8PBwpQrdu3dKPfvQjLS0t6b//9/+u/f39d5xZHCAM0MXFRZxaxsl4gCQ2lC0uLuq3fuu3NDc3F+M/Njamv//7v9cvf/nLqPxAGTkOdkjTE7zqDSw8c1Wr1WIO/UhpgA/j6YYI52d8fDz0hssNMphusuMfMkD1ivPzc42Pj2tsbCxyo0lhArBglBYWFvTxxx/ryZMn2t7e7qv8QamrNGR+dHSkf/7nf1a3233HTsAIe4WfbrcbEYharabV1dXQnwA0BwEOiEj5ccbc9aWPp8sbmzpx5ADrrCF3ijwCwfuJOKYyzIWe8VCvb7ymzehK78vFxYUmJiZC/yOfpP3Mzs6qWCxGeh1Ai2glm50d/OD44xQ4MKMkHSlH0rWD72A4XWNuT10POthxZhCdmLKGXPye5uamP0l/yGIL0/vdNvr7/GfaHu9LFsGRgtibnuNRopvSNfz+tI203cvceVQ963L22aNxtCH9njtxyEb6eQpSHcin/ef9DoLTPnKlc+F64qb+SR8QCHZlPDw83LfTHAYTJpXcL8LxxWJRDx8+DEWKwZOudstTHUG6Dh0ASFnchLDSzRPOMAIsmBDAhPTusZkoOdg5NiZgxLjy+byazaa++eYbdbtd3b17V2NjYxFWw/N30O3sMawl4NtPQEPxEg4ld9YXJO2mpBfAhtSOcrkcm9eGh4fDuF5cXKhcLsepcO4912o1/Y//8T+0tramg4ODPsUIo+0L9D/+x/8YO5phdBhnB+bISrrIWUT0mTnAcfKwy9HRkVZWVrSyshIGmPGhz+SmIys4Qffu3dNnn32my8tLraysRAWR0dHRqEyB4h8eHtbm5qZmZ2ej1iypKHt7e9rf3w+A6gsf2WENYLCcXXr06JEKhYJWVlb6NoX5gSfIOqwt+ebUoKY8kqf6uNLxtUGlBum68okfz+zjxE8YUgABGxso2s/32OTidVYdiAF2GRcML2POhUwAANzw8H43SLBIGO6Tk5O+ShSp8k53ejNf6BUAmG9EfPToUWXiSowAACAASURBVBwyQbrO3NycHj16pFarpTdv3qher/cdhONXGi50ufc0Dm9frVbrS1siLYF5cx3lOeXuIJDi4/3ls16vF2CKqJU7bYBgUr2IejFWu7u7kfbkOhPdmI4BAJp9DOhMACYb0sbGxvo2Y0IykJcO0HQj7MyTky8ONnxt4vy4QU1D3v4Z1UX8b+wl4F3IX6fT0cTERN8GUg+3p4Y9Zcxg2CWF7vL1we9ppSRf4zjp3icADWPiueLuOKUMr4fReQ7f97/zLv6eAh1Pg3DZRTZ9rriywFHWcxnHdK3fBEp9TFJAS5/9PVnXTe/MAq0p+E1Br9tdn88sJyqdc39+lpPsc+FjPDAwELLiWCmr31ljlHVP2sZ0HN53pXPtz0zZ+ZuuDwIES/05NIT5JiYmYsc8ObOepE9nK5WKPv30U62srISyJwQ8ODioFy9e9NWGZLAvLi6C6WSxA4KcjeFeD1NJ14NMGArj40LFYnUPPlUubPqSpN3dXY2Pj+vw8FBbW1vvKFC+t7y8rGq1KumqpunGxkZf2ItNGjDink/qdW673a4KhYKmpqZUqVT09OnTqK84MjISeX8wVJSP29/fl6Q+o8F1cXGhFy9eaH9/vw/wu0PDdwcHB7W1tRVMh3RtoFPQwntgzhgL5MAN+vHxsWq1WrDJjPH29ra+/vpr1Wq1vh3sDsDSHFTCxjMzM5qbm4sSc8PDw+GYAVzz+XycLvf27VsdHh5GmSSMM2DZdzEzjj7fbJZMDZ4zAQAEfw7ryccNNvby8jJKyDGG0vVRzZLCIQFce+jVxwVGGjknNAkgZL5hypxZ5lkDA1cVUebm5lSpVGKTJ20n9JsqMq8MkBq41ImVrg+FcCPNGJ6dnWljY0N7e3tR2zudCxiT1HkEXPFOZPD27dsqFovqdK5K2e3v74dcAvyLxWJfRZSUfSRli/kF0Dqb7eCVeeQ5bnDdQXDgxb28i7nxVBU3hNIVkDo8PIzoCYyjpwQhA/xjraJ70hMR3ZFiPbszRHRidHQ0NoxxD0SBb24+OjqKKik+jw5g0jnmecj3rwMqLgfOZPr9KfDiuVnzSypTOhY4g86GeRtcDsld9zSeVHZTXYG+R8bok8urpxwgUynxwzPQSVkpH+7IpeA0Bc5ZwCoFZTeB3xTU3QSCbmIJU6bRyZWse/2dWUDW5YZ16STOTUznrwPU/0+urGelc5Pe5++gvaztLICZOg3pOGbdc1OfssYgq89ZMpKC6/ddHxQIRvkUCoXwaj3/CCNO7U2ugYEB3b59Wy9fvtTh4aEuL68rFngIx39iDMjFpR5rPn+16chPoev1rsIvVADA+KO8SHlA4cCmurKQ9E44zJV/t9vVq1evtLa2Fuzl8fGxJicno80AjLGxMf3Wb/2WFhYW1G639fLlSzWbzTgxB2/t1q1bajQaEXaenJzsO4bZwUyxWNTHH3+st2/f9m26od6ub/yBXQGgpKGNoaGhyPkD6MBK8gwMsbM7VM0YHBzUyspKn2w4QHCljnH1sHcud5V/vbq6GiFfxmd7e1uvXr3qO9kLRwg2F2Pmc0pomENDACOExFHOg4ODwarv7u5G+sPc3JwKhYL29vaUy+X68q6RIfqIEfPcKRRKp9PR9vZ2OAr8HSfNmTva5ICNsOXjx49jzPb398NhyeWuNso4mKR9KfPK3ONESNebPv2kR2fqWXdUxuj1rvLTZ2ZmAhTy/BRUsFY8lOzgz4ERax/jzb2eF+mhc1JTmNeUDWIuXI/wXJ5DhES6OsmKvnAQB3nupOd4eUfmnGcODQ1pYmJC1Wo1ygfCrPJ+vouD7WybOx+QAegunGRKvEkK9pa0HV+jtI+f3e5VqlW9XtfU1JTK5XIAdI+GeN4sThSRKsaSNno/sgwraSEcMc59yD6ngeLUHB4eRs4xgM/1rgN93uFreGxsLKIwfB9Z9nFwUsMNf8reOiuF7SKXnHFKq9UwB9L1gTg+z34f+tXD5HxGnry3yx0nNjSm4A0HrtfrhWOcAtsskIMD7M6stz0LFPvnnmedxYKmzon39dcBnizQlUZ3UiDmhBv3pI7ArwOsWe1FHrL+/r7v0K73gdebnpM6T1J/Djb/d3n1Z0rXecn8LZX71DFKiZmsdmSt+7RvqQy8b6yynn/T9cGAYJ+I8/PzKD0FW4FBhKnwfMuNjY0o1O6e/9HRkRqNRjDI0vVEAPLK5bJmZ2d1+/ZtLS4uqt1uR7jcd/biJZNLl8vltLa2FiEyFBu1ZHmXMy+5XC5ydqVrY+WKlXAbzAbsLv9yuZzu37+v3/zN39Tt27fj4A6MPc/xMBy5shRvX1pa0traWgAKauBywAI5phxBDKBBUWMc3EHBSQHsULLL85XJwZSuGWQ2HEpXtV9nZmaUy+X04sWLkA0UVZbRAdhgYMkNZCMeJ/KdnZ1F+gFKjxxX+nt2dhY5xYBSFP/k5GTIhXRdi3BiYqJvfOknihwm18EW4SSAZC6Xi3xIjBiGC/YSgHVychIRAtI9SA1ylgT5Suu1jo+P69GjR/rTP/1TjYyMqNFo6Fe/+pW+/vrr2CwJo9btXuVzHh4e9lVQwbCRMuHK0/OjmStnOXCqvG35fF77+/sRJfA+MD4pa+d5bciBVyMAYPAs1hrPBER6VRb64O9yMOIKHLYLOSEXlznd2trS2tpabCxiYyc5/efn55EiRfsBhzgSOLLValXb29va3d1Vp9OJtQiDR5voJ+1lbc3OzqparQYQnpyc1MzMjHZ2dvS//tf/CrBIlIJ+IlvUum40GhEuPzs70/7+fowLaTmsM/Kd/UJ+YD+ddUWGfczd+SBiQKkzB4LtdlvNZlP1ej1SItBJyJcDLAC5y5CPYS6X0/z8vI6Pj2NfhTOk3IMOSx0mHA82YboRZg36iWbu5Kdt4XcHtESI3LnD6Wu1WqpUKmE7HQjgkLj9cUeHPvlawqnhPekmMMCyr0XXQw5usIc+xw6ku91upDryuTvCKfBOZSsFgX45QZDKWPo3/y757+g/dDRzhvPnaTJpGx3IpUA2vT+rDVnA3H/PArb+vfR9Pnf+LuTIbYb/xDY1m8132ps+06NPfrIjsuJpT6lezeqjdE0ipt/N6kuWc3XT9UGAYPeiMfReaN+NTrfb1crKSjA6LOx//Md/jFxHFDE1WWEspWtgWigUtLS0pPn5eVWr1diU9vr1a9Xr9dgAx+Y2drNjJGAPc7mc6vW66vV6KJCxsbFgil2xABBnZmbCy6ZCBUwjAGx3d/ed9AvqZTLBlM7a2tqKsmftdjsM++joqNbX1yUpQFar1dLY2JiWlpbiaFtyVb/77jv1eld5iygf2FuAL0oRBnliYkLr6+thdLiHBUMOdz6fj0MGPIQJgzE8PBz1cvFEMTwpMGk2myqXyzGXjC2bUwAdW1tbarVakYNJeJT2MNYYK5h9cqORyaGhoSgzlstdlaIaGRlRs9mMaiEpk0e4GMeh2WxGzmSj0ejztvk+udxUCfnkk0+0uLioWq2mt2/fxqmAjC3AhTWCvPhcuHNJHdnFxcUozzYyMqLZ2Vl99NFHcVT5xsZGbDDFqB8cHEjqP/SCnF5X3PydNeDKstPpBKMJq4bxp9KD1wYuFAoxrj5OkvoAr9TPImKY0Q2jo6PBsnGvb7h8Xyje2Q1nxh1UAQ4ouTg7O6u9vT0dHBzEpsjJyckAoqenp9rc3AygAissKVKWkIf9/X1NTk4G2+onOlLhAWbXD1phDIeGhvTZZ5+p1+tpb28vDmsZHh7WH/zBH2hjY0OvX7+OuWPM3XmZmJjQj3/8Y7158yZKWEIK0E90paf1MF7MKWkT/J1xdabQxz11gNAH2Asqo7hzgV5xAgBQ53LqoCg18sPDw3rw4IFu376ttbU1PX/+PBxEoiEOqFNQjkxn7bonnx1ywxnZFAzRruXlZW1tbYUOPj8/19jYWDjYDqDz+bwWFxe1tbUVhIxHT3gPfUB20Z+kDTGWDmrpJ6dieqlBJyh8bh3MeNTOdbp/10uRot8deHv7U6DL5cDQ+/w+IMT3UpA6NjamcrkcfcbZxZE6Pj7W9vZ25vcd9Ht7+LvLvY8Tf3OZSK+bnIF0DPweyCJ33HxcPSrN+pMUqWzusKd5xC7j3r60jfzNSQX/mTVPyAC6wNue3p81LjeNEdcHAYK98wDh8/PzCONhzNgo5AytdDUYf/M3fyNJcWzu+Pi4zs7OVK1Wtb+/HwYBpQW44R0AxLOzM+3t7UXYLpfLhWFg4cMASVfspSvZXO76gAPCKKOjo6pUKtre3o7wI/ltU1NTcSocz0bBopwwcp1OJwzOX/3VX0XI9YcfflCr1dLjx4/18uVLnZycqNls6ocffgh21xckeYgAKgcW7XZbs7OzkZPNRo7T01M1Gg0dHx8rn7/K7avVanHcqxvdqakp3bt3L0JojUYjau+6Z48n7YAUtmpwcDAMbLrgyEn0slgA4EqloomJiVDat27d0ieffNLH6nqeHDVqUcDkJrsx5zvIUavV0tDQUF95NgenOA3s4if3D6M1OzvbtzGsWq1GKgAbIM/Pz/Xq1Svl83ndvXs30itceQwMDET9W5g3IhOuzNywojh2d3dD1oaHh6Os3c9//vNw0GBOe71e3+ELrmAdzPsceeoSANjzilnTfoS4p8pgnDGAric6nU5EgpAnT1dwIMK8ulPFBZB1I0y7eJ90DbxhNHwcut1ulJ7DocPxZnwBQ69evQpG308q5G8YB2q5puuT9UKVEq+XS7SCscCpu7y8jCoMnG43MDCgw8NDzczM6IsvvtDW1laUWQRUIUfo4svLq4NBAACsSUA940jKGCwnBpSa5/QBeXEggHz43+iPy42nKfm8+XfcsBJVScOy6Dba6Ea20WhoaWkpbAnslwOkNFXJQR0yl7bx8vIyoh7002U4db6otME6g4V3YicFPOvr66GbuFyGXP6ZIydrJEW1CGc5Hcj79/13/xtjmTro2FW/0u+lgJH1ALGUpYvoS7oZkedksYUua6kTPDIyomKxGIdxeTlUf24K8vynp0oiFyk5wbs9VcWf9+sAXdqG9O+kEk1NTQW5l64tH9P0GV7hg8uj17Q57Y87rClAdmfI2+r7P3gm+iiNlrgOTuUpnROX+/T6YECwdD2wbgTpOB6qh+BhHs7OzlSv1yUpjA8hHHJ+CWsxGCi6crmsoaGhKB0GI+WCSjkuH0jAgx8lynPdUNLeg4ODvmoOgGu+4566pAB4bjgYj/Pzcz158iQ28TWbzWAracfJyUkYY2eUyX114XYlPT09rXv37sWJefRhbGxMU1NTevv2beQYSwoQi7GZmJjQ48eP9du//dvK5/Pa3t7W2tpaAEXyiRlDHJF8Pq/5+XnNzs6qUqlobGxMGxsb+sUvfhHG24Uf8EHo/uLiQpOTk5qamlIul4u0jcvLSz179iyqIThziTwQviyXy8FuOEPc6/Ui3QZnCGAMM+6OFQZQUuQXOgM8MDCgH/3oR1peXtbU1JRu3bqlUqmkk5MT7e3t6dmzZ/qbv/mbGKutrS0dHh7GhiB35ggPI3fIYsqksTY46vn+/ftaXV2NfPB8/io/GGAA6PU815SxcMPPvMC8AmhpC4wc8u4GDMPlgMH/+XriXc5SpQrWN+Hlcrk+QIJCBJQjh844pc/zNqObAHD85Hff+InuwiFCx6BL3Bm7vLxUqVQKvVapVLSzsxPs39HRUd/JkOg2T9EiB5/1zlHW1Ob2ubu8vFStVovjpwHODhA8bWBzc/OdiFpqsInUeb30+/fvR5oRG05dDtwYp7oQp9KBAI4TFUsA4FQfQbe4XDgA5h28p9PpxCEwyDkVTL755ptIB0rz04mEoT/ccPPTAb2vH9auAzkH1A5c8vl8sI8QDuitdO0xnpSHY80xRm5nHfBjV70N5O93u90YV3fIfE9HFhOHvUZGccocSGaBRyI0qR31usA4aA66GDfm2W3y+0Ckyxb98JQ0r7LiMpCy2f6sdD55Dn1JI2Qul1nj8usY37R/jqPoT7fbfSfP3S9vi8uyX05GpO3zqF46J54O589ypyOrHf4u5p53pXrf2+Pfuwnc+/VBgGDpmoHwQcVzQfhSQ4SxAzBLCpDoxgCg5fmGsID1er0vz4wNLG6gHEhK1zUfEW7CTu6ZOEOWMgMwyXzuwMU90cHBwTgJifbhme/v74fCuLi4iBrKjAe5SrTbc5M9VOyGCIatUqkEMGFcUcDkgiKU0nUuGQzVwsKCqtVqnILleVVnZ2d9edG9Xi8OY7h//76Wl5c1PT2ty8tLFYtFra6uxnw6eCYUCTtHDrWzKzhEb968iXvcK3QQw/cZc6k/H9VDYMwT4NOZasYVJYkxweFAbubm5vT555/r9u3bqlQqcVADNWq/+uorbW9va29vL/LaGQfAIu/wDT4esnKljFJrtVpaX1+PUwQJP7bb7b5qJAAH+sk8p8oyVWKMU6/X6ztKmL4z7xgVxjYFwM4iZSkwD/sz7sytOwDOdNAu2gNgHx0d1cnJSTCdzlS5IU1zTL3/9Is+ufKmBBqsozMe7gRI15VPyB8HxDNXDsCRM/KHvR6yM9CHh4exuZXnDw5e1dwmT9/DolmMFPOVOuuuB1hjALherxfrExBMHwH+bigdTAHy+emOJ0fBe41aZD4Fq/QhZfzdWWLs0OGQFug5T11gzsg59+o3WcyrO1+83/NK6auDghRcAiadgae8Y5ZjimNE7XRKJzLeKSvLmnWHmbFN5dnXAbLg9pCNl6QGsW+FnPYsYOqXM6n+j35jx3yefa2mzkF6T9bf3ncvz0oJMC7a4XrKMYz3x8tGpvemwPL/pP1p270/6f2Xl5d96VLp9/1n1nN8LlwvZPXDnQr0uN/rqWjuOL4PrLqT521KWfNfN0ZZ1wcDgt1D4v9zc3Ox4QLlgSJOB5hF7Z4Hxr1UKkXVAfJlARU7OzsBLgcHB4PZA6TCKBPWcEVSLBa1vLys77//PlIMaLsrMoQDo+ZetHSdi4M3zlj42EjqK2GUgmwWP4d6YIhYfN4O6UrJkbcpXRswL1OWXmw0hFmQ1OeVYxiGh4e1v7+vWq0WeYi9Xi82olUqlWBaDw8PVSgUdOvWLX366ad68OCBCoWC1tbWVKlUVK1W1Wg0+pwclAn98lJd5O0yx91uN/JxMUhZ5dfYwAJbj5wBfN3D573UKkVJwyaRC4zSJpecTXjsxK9UKrp161ZscGPO7t27p7t372pnZyfkMTVEGDqADjKPXKWsA987OjrS69evQ1ZYU17Gy8fZFZsbcmc7XBFK1/m5sHXI69DQUGwwgR30DVK+fpytcyDvDDCXGx0vBQfIgbXz9BmeXalUVKlUdHBwoFar1RfVSMFKyoTRfy8f5ay8gzJ/BuuesUSeKHF1fn7eB8JoF/IIaPU+0g7C7IAXfj86OtLc3Fy0iUhYvV4P1p+xRmbd+aO2bxYbkwWwOE692WxGG1gv7E9g7pBn13eEwAcHB8OhhukmRE0ED+NO//1yBzA1xrQVnem6lcgh9yN3Pg+sfe5JGSzWYvp82usyBCHh7ebvpDxBoPihSynYkq6jc6mO5HkAVk/hckBN/9FnaXqKO6pOSlFNiCpL09PTevz4ceixvb29d5zotL8+Box1OmcpEPI2ZaUsZN3roO0mMAzhAxbAZiH76Jqsy+286wPGyteL69X0ygKi6X1Z48lY+pxiR28Csem70vGTsmshO0D1v2UBa56BffV16e3I6p9jHh+P9F6Petz0TL8+GBDMRjOEC/aUz/B+MV6es+khEDeehIIuLi40OzsbHohXXMAQs7EMBtY9ck4JGxjo36FcrVb1B3/wBzo9PY3ybB4upT9uSFFCvd51rqIfI+vGfmBgQG/fvlUul4vQPzvKMeB8l002ACrpGixJ1xvjyOn1NBOEi81k29vbun37dvQZA/38+fM4bS2Xu86p9vzlk5MTfffdd5qdnVWvd5U/C2jm+NJSqRShGRivBw8e6Ec/+pFmZmYi97jRaGhsbEylUimAFcdno1BgSDCGk5OTajQaUcpscPCqZBntofSdy4qkAKoYjMnJyQD0Q0NDqtVqyuXezV318D9G5ejoKAr444j1er1wciYnJ2NDpnvD9IsDYKTrCIl0bbQBlOzez+fzUW2A44edaXVF1+1eVRX41a9+FQrDDRDt9PxdIiIOhl0uGAucATY6TkxMROjW24IjICnAcKfTCUPtBs/1A2s8ZRzcOcHBYdxYU6wfd5AACT6OuVwuNqIdHh721Zp1QMsu9k6nEycp+nxlGQva6c4H+mFqaiqqETgrx/iPj4+HziiXy9rb2wsdwWZiKgf4ITu0q91uq1qthh5oNptaX1/vS+dy1hwdIV05DaTr8Dkywlg7Q4x8nJ2dxcZaKuh4XVzXiTgwDrK73W4cZ395eam9vT3VajW1Wq042ZH11e12o+qCG1UfQ/5P+9CdOJmkNzi77LYFJxm9BRDGXt0EgqempiIViWcD2llnyJGH3TkwR7rOB/f63R6ZTMkTmHdkiSomtKdYLGplZUXdbjf0Fv3hOZ4+6PLs4N/HmLVEWUoiT6xBBycpyGJNAw55p9sn3uUR3dRJ9zn25/O8VDZuApCS+tIsq9Vq6PnT09M4jIVSo/5sXxMOmB2UsnZSPZYC9BRAelv9fQ4IkeNU/6TEYRaYpO1+OQh1IJol795GB6T+fAinVGdkOSupA5ZGdtIxSdudBerT64MAwTQQphCB4bhLhJWfAD0ArR8lnA44C5qNHwgHCsfDkkwObSL3TLpaEOVyWd1uN3Ixt7a29Hd/93fa3t7uUxgTExOamJiIU7oI5cH2sZDb7baKxaIqlYq2trb6cnVY9IODg7p161ZfTt/q6mqkYMCW9nq9OMQCb3VsbEyVSkWtVivAvhu84+NjFYtFjYyMaGJiQg8ePNB/+2//Tf/8z/+sO3fuRK5os9nU8fGxXr169Q6bIinYJ4T66dOn+vjjjwN0Y2jOzs5UKpW0vb3dxzD46WNeJuvo6EjDw8NaWFjQxMSEdnZ2tLOzE6FWns2C6nQ6qlQqfe3q9a7KN8E4Y/zy+Xxs3vFcJgx1s9kMwOIbI2CdCW2XSqV3qoAAtGBcYO8wao1GQ0+fPtXU1JT+7b/9twF+yQne3t6O3E9q7qJ8hoaGdOfOHc3MzETO5+TkpIaGhvTkyRPt7u6qXC7r7OxMm5ubsWHOWQccnkajEXNGSTzeAzhyEJEqeamfwcIxcXYwvZ8TvnBe3PClLJBHQ5hLHA/ftIeRYZ3RLuaEd3iuNjl6rJk0XYl647zPNz9K18aY3wHWMOCU+2OD587OTlQmoWIKqVfd7tUmHDZpTk9Pa2JiQi9evIgcWAeopO6gJ9GBgCEHsW5M3759G+QC6UZ37twJppgUGBgjZ63q9XpUQmFcHcARNUNnAWhxwnkO48S8IF+5XK5vnSELpJOQtgIIxXlyGQBwpak1kCgOHNEf+fxV1Rr2joyOjkbFHBwJBwG+adbz5RkXZ/v4fXd3ty/VD32HPgcUc2hMu319GhdrANn29zkhRCrC4uKiXr9+HSdFck+j0Yj2cZAS649+0l53GDzVxB32FLSwfrHF5IW/efMmThiknWkqSNYz/f1eS9mjJylYS8FdCoJSoJy+PwV3uVwu9ODJyYlmZ2ejNGB6eInrLU8jI/0IHYTzQ71+l3MfFx9XB8UOuB1g8ncchywwm+b8sxZw5tNUiZS9TUsb0i/kw4lJPuNebydrgbQQPuN+sF0q66l8ZLHAPrf/p9cHAYKlayZueHhYt27d0tDQkFZWVvpAJEZpZGQkjBIbXAjvAHQo38XJYC6sQ0NDwShiPGAFmFAPUZN/dXBwEGHVs7Mz1Wq12DTnCeeuMAA+ABqqBMBIUsMW7xCFREiK8HG1WtX8/HyAqMPDw/BUPYUhDR/DXPpGAncsKIZeq9W0vr4eIcbXr1/rzp07mp+fV71ej7nxxQrbg7BSsq3ZbOqrr74KlsR3Qk9MTGhmZka9Xi/63e129fTp0ziwo1qtamlpKYrjd7td1Wo1SdfpDiMjI8EoE0XwWrZshtzZ2YnSeQ7WMBr8H4PjBhgnaGpq6p1+M7bb29t9jpSkPnYco8+zP/nkE7VaLT19+lQHBwc6Pz/XT37yE+3t7enFixd6/fq1NjY21Gw2NT8/32c8SqWSFhcXdefOnTjcgnmZnp7WF198oX/8x39UpVKJqAQ55W6cGXNfS7DU5J97egXAPzWOKCbP+2V8yKX0UCyf4eA4aMpic2gDpX1oC/9P048wsM5uO1vK+wHYzLtXUuh0OuEEpfqJead9zLUzaZOTk1paWlK5XI7c8mq1qnK5rB9++EGDg4MRaoZdzOfzcQAK6xhDOTg4qKmpqSh92O1ehTUxFHzf0xfoP0CEPQPot/Hx8TgFEoAI04ujmzJS0lXFAHQUexNoF+sI54Zd6F4mjAuDikG8vLyMsoNHR0cx7+j+i4sLFYtFzczMqFAoaHV1NeTZw7vOLrlMoPORWY+uMGbYGECgAxIPwedyOVUqlWDTAfvpvhHGGfvCmuN38uW9DTjmY2NjKhQKcSonY8W4uf4pFAqam5uL6jKff/557CFgHj21q91ua319PUokuk4EqLGefQzc6XWZYO2y9typYyzIZ+dKmUuXN3cWsFXoH7/P9fZNTKmDw/eBX66sZ7H2IZIAbw7KvD/YIfLMfVMmsjc6Ohq1v8EWjKenUKQgPh0vB5v89EhG2pc0xZLvYStd56fPZrzTXGx3HIhwZUVGsr6TstL87hVAvC3pnKZ6JZ1H/65HFdPrgwHBHooBzFLqio0hMHOEXAGdac4rhtC9W+l6AthJ7N4ZF0Xb3bt1oXKvEaYTBcrzaOvY2FgwdZRUc0XWbl8dUgEr5cACAQZooWwA7/TBN/XBPNHmbrcbjBYAwBcrRtLD59VqNb6zv7+v4+NjuLp+LQAAIABJREFUHRwc6Ec/+pF2dnaiXq4zqoyPp7F43qIr2vPz8yg11u12o+9bW1v68ssvtbm5qYWFhWA6K5WKdnd3AzR5CIXn+qaMXq/Xd3wqv/vBCc4GAuJT5gt5KRQKmp+fV6PRCMPDu2HUAGae6oIn6/N5eXmpRqMRbNOrV6/0X/7Lf4na1Kurq6rX632lywYGBjQ3N6fZ2VktLCzo/v37Ojk50c7OTow7Ye+Tk5MIFxNClxSK1nc7n56exkEIsBWw8ThykvrWkytfZKjb7fZthAOsPH/+vC9/jrUE2IQ9TQEXa9Q3faYMia/ZlJHwzW9uLPmOG0RkJzUqzmDzfWdQ/AJgE3pmXXQ6nagGgiGfmZnR9vb2O+/jHYxJo9HQ4OCg/viP/1gLCwsqFotqNpt6/vy5/vVf/7WvLqnrJmqQc8y8p46g08bHx+PAEtKGcrnrQ3xIl3Dgh65g7XlFFOaHe32DMOPuRg8nwxliqlvcvXtXz5496wNvPAsWixJvsKmMIzrZ583niHXqbCrtQ94p55i1cc0BSLpGUuDmrLfLDJ/hcCD/Hi0itYXnu40bHh6OTYWw2NyDjfzqq68i+oM+xOGl/RBODnrQUw4sXZ8BfnASHJQ66QOAgZTK5a4r9XgZ0VT+HfQwhzhyvl58TbruoA2p80J7/bvvA2jeFpclt2Pp9x1goS89qpmSBJ3OdalTnpUyqP585iD9LJVPB89pn1Lb5991dtfBaKrzvOKP//TIyPtY2PR5Nzk1ab/SeU2/m85llr7Omu8Y3xs/+f/44uhiNiaRuyQpNpQxUYCPrPwhlD2KIQ0ZSO8aOYSQAece31zCJDvYRbGmA4wRmZ6eDjbHw//OACBYrtTdaFxeXm2M2d7eDkYNhU8YA8aF78PGwKRMTk6+s9uX2sepQMK8ABBJ6XDhdm8OB4TFiRJMAZMLJkqeeZKuAOvGxoaOj4+1tbWlmZkZzc/Pq9PpRBoEm2zcg4dxBMywK5r8bUAwP7k8X5I+5XK5YKPoH3LEnGPkGTMMsrPLLiM4I/SXsDLO0rNnzyLPul6v90U7CHsDZijc7qwfxq3dbkd961arFePAwRukZ/jhAeS1Ip+e0uPKw0Nv6Wc+F2z8w+HIYkFcBl3+XKGRmpHL5SJSweXPcVlM13n6z42oA2H0BRdrMw2pp8DVAaKvWwyCh9RpX6lUipQEPzgin7/aZMv4Axbu3r2rL774InKOy+Vy1Itm/mgXc3vr1i21Wi3VarXY8IYcOxlA9MprvpIDT34xTpjv+veKEqwHH2P0HM4t+sCNFe1h7hhDf64b3nw+H4d8wK45SObKclTSuUvnj7+5HvK5Tdc6oXGe7exYKivUHYdYYYMw84CDwImZzDtt8IgHdglnmnaRa0zE7+joqC9nmDnx9AFfs1mXt5FneB/TsfW0pjRCgm4B4NOHm+aCC/s2MTER+sKBdwocfa2nskAfUqY3dWjTK5Wjmz7zz3kPEd3UQZIU6Udpf9xevq8tqcOQNX6p7kuf6d91+w4QpS8peE/7y5giZzzT7UU6TlnANav93O+4J2u9vw/gZj07vT4oEFytVlUqlSIBHYMkKcJuHPFJxwCK7qEiTOfn5yoUChFC9/AnzKwvFlesvssbYJCGZAhtuHBIV5NVKpU0MzMT7F+z2QyDNzo62ncUZ7vd1szMTBxQgMJzRoJcJAwVAu45do1GQ5eXl6pWq30AaHx8PDagEW5kE5EDtW63G0ykh7Dz+XzkmTHWkvrYL08pIIeL7wI6uN8XvLOlvV4vNiO9ffs2gCUeNcaAMSE3kLxtDCp959AQN/AOfvzkO8aTAz6Yg+PjY62trfVt8EJeCH1xDDBOgTPjjCHAoNlsam9vT9PT0xoZGVG9Xtf6+npEBhgr//7BwYFyuZympqYiNO4njA0NDen09FQ7OzvxPi+oXyqV+k6W6/V6kWeKE5MysynTkrKobkhpJ7K8ubkZ64z87ZQVY754lhs2HGBYMQdFbihYu7CJzsynBsyVPjKJM+DtwUlw59dTYfydMHgnJyfBvI+NjanXu8o19jrUVARhTLkPR4E5Ojk5iU2PrLdu92qD2OPHj3VycqIvv/wy1rG3GyeOtYmDzPgRvTo8PNTIyEgAGJ87jA45sszRwMDVBmH2P7hBcuKAy50I9F7qcHv0js2wx8fH8X3YxE7nqsrE4eFhONAADJ7heiHduNXrXdf5TkO+TjZ4m7xOLu/yaJyTL75WHGi1221NTk5qYmIiNlSht5iXQqGgUqkUa5z2SOrLq6eN6Dzayzyj+9jsydj7mCD/DlJSEMl4ORhyveHt4f/YodQmn52dxWZUB77pu/xv/I4jXCqVYkOh1L/53R32FEj63HsfvK9Z4PCm8XA9kgWkXdbT9rnNZOzStmWBwqxxS997Uz/Tz9MUH+ndso4e/UEO03ZljRny59FU/34KQm8Cxz72/ndsFOswa/x+3Tj8/wIEA7xmZmY0PT0dJ5JhBAFCLLoUeDEBKeABUKebZorFYp8hcXCEonJv0xeQAyeUtpdQ63a7qlarmpycjOoIflwpgI7NEePj43rw4IHW19dVq9VCyZGDy3NrtZrGxsb005/+VI1GQysrKxHOxKDBLg8ODuonP/mJPv30U71+/ToOAdnf3498Uk7hAXgQZut2u7HD343R4eFh1PTtdrt9O9IxpgB3Nnd4CF7qD1EB5GCs2LU8MDAQ7aRQvINpN3jkw5L/yjMI8X/33Xe6vLwMEMLmSy5ALWNXr9fDyDKuyBfPdO8eZY1swIISVi0Wi+p0OlEeiHnCCfJ8N/I8O53rY2C5D0b45z//uR48eKCpqaloM5s0X7x4oUKhEIbx8vIy8thxvvywGeYDpc34puFg7kkNo3RdlktShNdZmzgk7jymYCOXu2YF+fz4+DjSbhhrZ9Q9b5PvsZY8BC+9m9Pm70E/OKOIE8nJjn6vGwWUtjt7U1NTmp+f1+TkpLa3t2Mdl0qlOH0Rp7FarUZYFH3DJjjytGu1mt68eaMHDx4EY3N5eRknZ7ozw5x+++238f1qtaqLi4tIPyKHn5QCnCpYymazqZOTk3Aip6en1ev1IneUPEbWt8sMY8A68H0KjJmnuxFB842wOGFsHoQFbDabUZrRwZaH7pk73sk/dP3y8nJEmxgPnDuXD6JrnkNM+9HfXqkktQ/cSwi81WrF8eTlcjk2Q3rpTZwLB9roT9aRR2ocJDtAou2+AYr7fL0D7r29KWCAjfa1wU8fk8vLy8iV9TkmmgYQxil25zl9r+sU9DXzwN+d6PKNWA62nFQBjKYAj/6kYDOVWf+/Y4D0MwdxEBisS3QH+smjQ6kM+nOZq6w0AweqWeDVc+MBkh614XLg7vLBPPszmN+sPnvffVzTiFoqc/58+uzvhmyYmppSr3dFkhER9j6kMuTPeh8Alj4gEOxns3/00Ud6+PChut2udnZ21Gg0+hghH4CUrcJrGB4eVqVSiZPUUkED0ABwMAwsXBZaumBTEOdgFTAwODiozc3Nvpw1Z5Mp3+V1KFdWVgKAwuywu5R6v9LVJpt79+7FmKAs2XzQ6VzVfH3z5o3q9bq++uqrSAu4uLjoC8PQXoSF3Dw/JhEhPj09DYOJwSZ0CrOOkYfZ6PV6sXHt7OzqCOvBwcEwbkdHR1HhYXZ2VrOzswEgMcgpO0DolDJm8/PzWlxclCTt7u6GE0B/KLnGzvJ8Ph+OycXFRew6z+evTgusVCoBYJlr+l8ul98ZF5TL3NxcHBJSq9X0L//yL8rlcjHesMbIDnIyODioRqMR1QKcjQXgDgwM6Ntvv9X333+vy8tLvXr1SouLi8FaN5vNvg1trmyRT1IwHLzjuPnhMIROMTAoNdhBwDmAbWZmRuvr632RE3eqSOmYmJjQ4eHhOxvUfB3TPvKbHVTxE8XKukyNAwbf+wo4SJX96OioPv74Y21ubobDncvltLm5GelC0vVGWle0OIfHx8d9ueRskPWNVjCwRCWmpqYi6kM0aXR0NNJh/HQt3jMzM6Nms6m1tbU4cIbcWub98vIyGNxyuRynTbLZle9J0t7enjY2NrS8vKyhoSG1Wi01m82IHl1eXsbGLFKknjx5ErnAOKCFQqEv/5g5ITVja2srAAAADRIhTS9y5wgdPjc3F5Vd0I3cd3h42MdCI1cOhIaGhkKvYEgHBgZUq9X68p8BWMiIs+ipkXWjnsvltLy8rGq1qoGBATWbzTjpj+ehK73UJ/aqVqvFfoPLy8tI/0HOkQF/L2sr1SOS+k4N9BJsvJOxdYCWxRK6c/HrLgedXK1WK1hgUq68PB5rK2Udc7lclFkjpYIxpO30C5nCsfNneHs8NcQdeQdzWVcW2HUZSAEl7SJ9iD1NlDX1sQKYOyDksyxw6E4mMgBhIV3rI3eAIJ8gVZhrfzbv9pQRZCmNBnKf2780SufPdhlyYO2fuX1PU3b4d3Z2punp6T5dkc5P1hp1uXRbk14fDAjGe1xfX1e3e5VOUK/Xtb+/r1arFYsh/U4aFoExkRRsZRqy6vWuKj3AYqa7zf1+nzyn+mEX2eSE4uHzjY0N7e3tRTsRwMHBwQATDt4Jn0rX5WVS743UiidPnmhwcFDT09MaHh7WyspKhNY8f29wcFCrq6vq9XoqFouhiNOTjmgXY0kpOMYLA8exum54YHMBTxMTEwHqCIkBIMj3JvRJWHV8fFyPHz+OXEZK0KBQfHcz4efPPvtMf/RHf6SPPvooyrxtbW3p7//+7yNHmPGjykK9Xu8DT7lcTvPz85FrSQWJTqcTDCHPIpTNSWvk3XINDw+rWCyqWq3q6Ogo3uGsK4sRg47TJylyHZ0pdSXp+ejIF0wrbCwyhqFwRYDDhGx4AXiUHo7f2NiYjo6OwoDlcjlNT0+HPPgmJTZ/sf487A3jAfvV6XTe2eTBOPn69d+9D1mRAC7Wn3Sd18vl+aepDgHMY6D93a4zHCjQRgwAaQMnJydaXV2VpNgMJF0DAubLN2yyhryCCXqrVqvp1atXsTl0e3tbz549i02NOLL0j42JpVJJS0tLceImqVAefSEViPA6KTY4VkQgkEWMHow7cpMyws5esQnQDR9zx7qiH6xXmE5P3+IkSNZRqVTS/Pz8OyUAOVac9wC8Dg8PwwmYmJjQ7OxslE1kozVz6qFcBwZ8Tnt7vau9F9VqVX/0R3+k27dva3BwUFtbW/rmm2/0v//3/34nDQXCAt3sDowDDXfU0NVuWzzS4vX1Wb8ecfD16naI76UOo+upLKC3uLioo6OjSEsZGRmJOXCyxwE8gA+HyaNKrGHsikesALg4lX7hdOOgOdOd6hZPYcsCnSkI9v562kgWg+mO8uTkZIwBhNz4+HiAUHcU03QUH2+/0uhTyvai63q9Xh+BMjh4dWIf5Aoy4PrV3+2gFL3N5xA3jKWTE6lTkdot+uDv9LlxeaT96Vycn59rY2PjHUchdWDe58zc9Jn0AYFgSbHpYHt7W99884329/cDHLIwYTt8N206MCgDlEt6LCbgBNYSAXJh9zCfpD7lw99T7xrljtLzEC2em2+KoFQK+a8ILwwLzK50LUjT09ORPwxTMjk5qV/84hdhTNicRPUISaGwnCnBKwc4A7jpJwa22+1GmJ/PWSz0hXGD+XNmULour4Ly73a7UebswYMHmp2dDaNGuwBaaQh9dnZWX3zxhX7jN35Dd+/ejYUNm/bDDz+EQcTBIafclT6HNhwfH2tvby+AH4s93RjJ2DGfGLRu9yp9ZH19XfV6XbVara/SgssUzojXiE29VGQKUOAVP1AYtNHLc0nSw4cPVa1WIxWCEnpsyuF7jANgAVBGKNiV0ujoqO7du6eJiQk9ffpU+/v7MUe++YoLYElkw43jTR65K8qbfqaG3KM7KGrfie3f9/c7g7S1tRWsLPf7muN7GDMcOo8IcRiCz6nrE9hGHI+xsbF4Dw4Mjqoz1rCdr169Uq/Xi1MYO51ObJD0o7Rh62GE/GCYi4uLyJ336gPOWHa73QDEHnZnXFIj5TrWZXZ8fFwTExM6ODjoKwGV6mgnDhhP1yWQA7SRd56ensYmUGexXC4IqXN4DH0bGxvT1NSUHj58qPX19WDnWQc43d3u9eZhD0d76LlQKGhhYUHz8/PhXFDazsP2/n0cKtawM9hO0gAGFxcX9cMPP8QcsLYgKmhzPn+9edCjLK5feBfvGRsbi3robGT0UmYpoMSZ9nrZnuLggLnb7QYY51nu9DjwdlBJJASdxHr2drtO9nlPHRYnEFwXuEzzXeTfv+t67SawxT1eFtNtIft1UtbXAR2fpc5Iuv78d7dFvC8lE9LveMQjfb47gu+7mEf6DQh2ItLHJiU8vO9uG73NDs7BDWCpLIckyzlJ5+p9fftgQLAbKw5mwHNOmYdbt24Fo+hhTB8cFny6CF0pIaTStTBneZS+wF240p3P6QT599yLcg+L38mrRaEBqtOww/T0dBRUh6Esl8v65ptvdHh4qG63GyfcsVEKQAuYpV/0mfeSg4axAyhxrxsixhijA9A8Pj5WuVyOBerjSP8nJyc1MzOjarWqxcVFff755/rhhx/CYPuud3doqFpx9+5d/eQnP9Hdu3djo1in09HExIQ++ugjHR0dqdlsamtrKz7z3ewoxaGhoTgRCMa61+u9U36JvpMuICnqPTP37JqXFOFsDCrync/nI18TkI2SRFGmIMPnyuUGmYIFQa6Wlpb02Wefqd1u6+XLl5IUzLTXwuW7sIOAF+71lAMYzGKxGDUlJfWNpQOJkZGRvpqRKVDKUlreV3csb7qXz7kAUVnOq7MptBEAubOzE/LL95y55ztEWRhr3uWRIXcu/D5YOdiucrkcTgJ1wjmBzMsOsqbevHkT7HBaV9TZF/SkpGBSnekld51x416PMgCEHOwxLmllFAcOqf6lIgkyR1uzQA9tQEe6DOBM4kD0er2+Uzud8RwYGIi8W9czbLZFD4yPj2tubi5yjXO5XKSX+Lp3uaK9zA2AYmJiQrlcLtY/Tidgzyu5pAxZGnF0EOPpRmtra+EI40gvLS1FbiT6myO3WZ8exeD/XC7vqe5JAaCvSxxG5sflJr3fxw55o7RnCppdz+Js9nq9cMjRl77G3H45a5/qjJTxzQKJ/D0FUP7/912+GddBKTbSc2m5x2UAW5e1lrzN6ZXVPnQekcW0HKGnumVFx3xdp7gmJTGy5DoLoKZjD77x73j+sN/nY5r1vHSc+H4qkzddHxQI9oVFjiMTVygU4gz2jz/+WMViUVtbW8rlclpfX4/n+ABKCkFAsThoOzs7i535vNdBsAuney7+fFfaKEZXDM500D4WuHQFTIrFoubm5mLHOMcxOkMLwzwwMBD5UsPDwxEqHBkZ6cvDpdQXKR+EoWBjJYVh5v9encBzN+knoUNnSH3O+DsHBfBcB7Dj4+O6d++eFhYWtLy8rOXlZd25c0cvX74MsAEQZ7xSNnFxcVE//vGPVSqV+hg2DP3c3JxevXoVedbkILvSxNl6/vy57ty5o4mJiVAIfi+yQT6vs27IRqfT6dvBzFzPzMxEkXU+IwwNGPNNEjzTAZTXtHZGxGXV8+Vgp3xDEe0hquIl38gJHhkZiQ2FHr6knWxMghnO5/PhfDIm5JNSF7tQKOjg4CAOlPE1xDjxfeba9YGzWenl40EbnRXhHsYJBctzkdmTk5O+lBDShPw+5AKwwT/ehfMH++UsNZEdTh4cGhpSuVzWwsKCDg4O9PLly6jsMT09HTm79L3dbkdkAXmE9XMWkXFCplqtVl9FHaqhoDtyuVycAAdA9Png/VnMjRsWvxedSqoYaTfO+maBAtaQP9ujZ6luYl5dLtADs7OzcZomYNcdfJcLxjSXywVxQDSIz3kneizNnyUn/+TkRPv7+zo4ONDBwUFUJcLRTAGB6xHWN+PN32FnC4VCOPuXl5dBHrDHAxtXKpVUKBT0/fffv1P1xMPYzBWRTGTYwRv99f7jIKVgKAVADupxnnAAXZ9xP/+wVblcLggCyKFUN7sdTp3CLF3hOoPLZSkF8P55+uwswO+fu2PqUYoUJLt+kfpJsbQv/k7ajOy4w8r3mF93siT1HV7j45gyuh5d9DbzmWMbbOpNTkj6LtaD94/3OQ5MQfhNz8ya63Q+3nd9UCBYercoNQKSz+fjpKOhoSGVSqVQtH6ai7MOLH5ADIvLvVCMFLmmUj+QRmHDwPgFM02urQNG6fqkH75HPiBCNDo6quXlZS0sLETfC4WC7t69q4uLC/3P//k/+2oiX1xc6OnTp/rJT36ixcXFUDRsqMHIUEyfXdie80ufR0ZGQhnRXlgXBHlwcDCAjX+Xe/wYU89jPjs708cffxwLBeA/MzOjf//v/70ePHjQZ/ALhYIePXoUm/iYMzdcjI/ntiIzLKrT01O9fPlSv/zlL/X9999HyogvUmTJ5Wt/f78PQHgKCOxvq9UKJhfWGEPtigOjVS6X9Xu/93va3NzUq1evtLW1FbnEvIOySdIVq0qZLHI+P/30U0nSy5cv+wrgAzRyuVxfHdJ2ux3VMIaHh2MDYLvdDjYMFob+ehF7jDdHqsLAsSGQ8QR05nK5qESysLCgjz/+WI8ePYoTEnd2dvTVV1/p22+/1erqah8DxDpjrbohcgU3OjoazJYrXBS9h0gdFKdKE8cqLdpfKpX6dvu7bLvzfHR0FOWumCNYqrt37+rly5chE4AuZEy6DpNz4fRwOlgul9Pc3Fywic1mM2QLw4+c0CY/6W5gYCBKL/IdmE+OQWaNA0pYa16+LpfLRVUbZ/FIA8ky5jjW6J/z83OtrKzEHgGqnqCrWbMe1maMnIW/vLw6OpxoDkAOcgA5wCnpdrthC8g/ffXqlSYmJgIgTk5OqtPpaGVlRc1mU+VyWa1WK07hK5VKscnY0z+QhWKxGJVLut2u3r59q6WlJR0eHmprayvWc6fTCUDtYwXA5WRTL/3ooJ/NpMwnUTKeXSgU4uQ65DGfz+vOnTsxl2mI38Gpkz2eruHtTSMtyFnqtGaBFcYMHc6cjY6Oqlwuh0PukaRCoRCVfoiSkBPOeDsT7/rcmUV3rLlS251eKVDjSnVVCqjpO2korAPp2gFmQ7CPmzvmvr7d+fT3pcy5pHAosP3Yp16vF5jEwS1z4fjK3+tOBm3w6BoRAJeVlNF1Nhf587F0few/cZZ8/F23p/J4k0PimCALJGddHwQIJleI/DapX5ABh3Nzc+p0rspNHR8fB6MxOzurtbW1YN4wnmNjY3EyC54xSpeFKSmS1vG8Uy8VhQtLhMJKJyxlR+mbp2HAKHIE7ueff663b99GziYC/cknn+jJkyd9gI9SWV9++WUcM9rr9WJz0p07d2JnPQLVbrdVLpffYXHJGQZgE7rzCgP8nfGixBgLndCiJ/0PDFzVEz06OgrjOzU1pcePH+tnP/tZbOZj0WGQK5VKMP2+w5UFgLEbGxvT8+fP9dd//df6nd/5Hc3MzARI/eUvf6n//J//c3jH09PT2tjYCKAGaCwWi33Mnp9Gd3p6GorXc9ImJibiIAJ2c8Nsk5rT6Vxt4Nvb21OhUNCXX36pdrsdwBdmDsXpzgYGD+XFfFarVW1sbMRmw3K5rL29vZCTyclJFYtFHRwcKJ+/qnzx9ddf9yk1asOmpc/YHY8MkNdKGwuFgsbHx1UsFmOeYdFJDyDa8Du/8zv68Y9/rLGxMa2trWlzc1Plcll/9md/pm+//VZ/+Zd/qW+//TZkyxmnLKYG2XBj7Z+58vWNGw6oncV01s+NQL1e7wNUABWAHWkItOEP//APtb6+rpWVldgg5DnggFuvlc3YStfVYV6+fBl/J5qzuroaGyQ9pz4FSPn81elm1L5lPX/22Wfa29uLNCA3HuQ0+zgzXr4pifVIBAodxk82mfqhDB6a9jQRSbEZ7e7du/roo4/0q1/9Sm/evIl54vu53FUqB7oE/cw6pa0coPDTn/5U3333XehNUhMApYuLizo9PdWzZ88iLYwKG+im+fl5ffbZZ/ryyy+D5MAOpGsU+dre3o65OT4+jmgToJd7s1IGAIIDAwOanp4Oh4pj0vP5fEQFSdXitExJcUx8Pp/XysqK7ty5E2uXe2q1WjDQyArj5yw2RIhHsFgTgJuUmfS8Z2fvkTEAPmNFxNN1DvtwxsfHw4nGsWP82H/CWPrapW3IL8Avn8+HfXZQ5lcKIh0Qpiyrrw+/bmKFISbQRawD0q5Ye7zX12AaQcx6J/LorC2y704GFSlS9hlnJwXcvmaRf3c2fDxTVtvTN1nLtNdlI5UjxxU+nylodRuBnmI9uc7JmmNngbOcIr8+CBDc6/Wi9qUfx4kyZYMDnWHRO1t7eXmpYrGoYrEYJbYwJj4QPhgwfb5QPUdNUp9x9cXOOwGDPviVSkXSNXviC4JyTfRxbGxMi4uLqtVqobhgRBA6FNbw8LCWl5dVr9ejnmepVNL09LQODw81NDQU5dJo09DQUIQ7ab97074pIA31uTHr9XpROxihJ2GdZyGge3t7sUgBCcfHx/qTP/mTvnxh8vn29/f17bffql6v94FpV3rS9eacjY0N/cVf/IX+9m//NmpQnp2daWdnpy8EhXH0PF5ADex/sVgMLxSFxeXKtNvtam9vL+7zxdrpXB03zalvtGd1dbWPeWF86RNKBNDF5grm48mTJyFLY2Njuri4iHxHgAps3cDA1QYtL8eDzDJXhCPp29TUlGq1Wh8j0Ov14h2E3E5PT3Xnzh0tLy8HO3N0dKSBgYEordVoNLS+vq5er6fNzc1IN7l7967u3bun3//939fq6mrkYPrlCpfLFS3tcvAKGPJUEJQirDhAML1whnz8XJfA5sHSEao7Pj7W119/Hcwba4qUEw9vdrtXFW6QZ0l99VSRM3eOPHfd54/fnd3A+CA/pVJJlUolDl0gX5vvAcxzuetSZRhO8vAhIsjzgntGAAAgAElEQVRPdvlh/wHONGsLlp558d+R+U7nqmxjvV7XzMxMgFLm1cE5LL2DKuQQOR8fH9f8/Ly+++67Pl2xvb2t8fFx1Wq10HmkIlG72dln0pgKhUJfFRvWl1+AcUgMxpdIErKHTfFTMekba5/j4CELdnd3++aa+zhFb2ZmRp9++qnm5+eD4T44ONDKykrIMu/Y2dl5BxwwXykbzXx5ao9HX7NY0G63G+STO2lEpJw8Qfc6uLm4uFC9Xu9LcXBnmI13/m63zw6KkBO/Fyc9iwF0PZGSXX5hJ1wvOghNAbDrHccbyKYz7a4jUlbdo4oud2m+OH1wkI7scfKkp1w6XgFXsL7Jo+fUQX+vdJ3rnNoISX2Amr9npUekbDDPT+c4lTe/n/f5uxzg++Vjk4LirOuDAcGe9I4SQrBQ0NI1MKPOKUo7n88HWwYIJB+LReRhoF6vF6GZdruter0eguQbnnzCPQcPYIuAu5ATKsWr5ejk8/Nzzc7OBjNYq9X03Xff6e7du1paWopNDZ1OJxhJWAdSQG7duhX5mfSJAzOob4uB8uLpzgqllR6c6WaRuXfZ7XZjo5OfVoTwYRT4neM7Ge+LiwvVajU9efJEMzMzKpVKMb7NZlP/8A//oC+//FLHx8d9Xn7qpUoKr/vt27eRE47Qw1C6ouM7ztJLio1rHHaBcnY5QXYAn17tAwUP081cl0ql8Px9UwygC2DiIV3u97qenU4nwFW5XFYul4tcxzSHHflLw1muyF0RuSPH+Djgka6Poz49PY2DVmAZpqendXl5qefPn2t3d1dDQ0N69eqVOp1OOKG8v9FoBEBLD03x9mQZLmeZ3DFjrMfHx6PPzsIA9FIZoE3OmKRs69jYWLDQOJGe08lhKtJVyPrWrVtREYJ8a6IKRBNcFs7OzoJRc6beGfm0zc6WcHluP2lCm5ubEQnj/lzuqi4xud7sIzg6OoqQPHLH/Dgz4xUozs/PdXBwEESFMznOPjFHhUIh9ieQegOY9H0FRFAoB+aAx9NKeM/R0ZGeP3/eV42j273KgQSg0WbmEscXuyApjmjHWfLQvMtmCsKyDDPvlfTO2CDL3l/qJRO1473n5+dqNBrBJk9OTur+/ft68OBB6E1sxPn5eXy/3W7r6Ogo0k2IErrj6LYLuUnXfwrg3Gng/qwTA9kn4GsqBTMOtCG5HFg5aEoZPAfm3IP8+7ylINXBUtbnPseud9J2exu45yZgddO68Gez9rCPLiP+XPS8vzcF58yVH+Ti8+X9R6+57SbdxPvqF452mtLh8uUOFG1yQsplzNvEBUEDm586POmYu7z6nohUntL3Zl0fDAgGZKAQAT+E3Dy3ld3nkoKZAgR6aScWPSyss6HS1UCyaQrGoFgsvlPQO8sr5Lnk/DjDx9Gn5KBxaAdGE3BQr9f19OlTSdLjx4/Dkz46Oord3RhGdkJPTExocnIyPqPmbq93fVSuhynSUITUXwQbsEs4CebF50C6zj/iHfQd4+lsK/OFoicf6V/+5V90+/Zt3b9/P44SffHihf7u7/5Or1+/7quf6XlOtJkKBih9QnksDIC8zy81YPk/1/HxceRQel/cWDkQBthMTEyEwicFgVqZKHae42yWb95DgTsIhtn0vGRyE2GfkGM3FsxJWpKOdcU8p0q+17s+FdEvH09AW6vV0vb2tiYnJ9Vut/tSWhj3zc3NMEoeHqMfpPL4CXLMCevGGUF+sq4GBgYCVO3v78ecufPMu/3ySI6zR5TGS2UNOcCRZR3wPTdw+Xw+HCjAHjmp4+PjsV6pGQzIYS17nqsb2pT1cfaINnrKBeXQ1tbW+kKevmZglCjR5+kZjJnnQ7ss8TvkQsoApaCDfkxNTcUBOaOjo5GGxJig76knOzY2FgcPeT8APs6APX/+PNh+dyBOTk6ifJgbzXa7HevIwROOZQraWPv0n3lJN9j5OEPmeG5jaoB5hte/Rx54B+w6RM3k5GQQKZL6nAvSO87OzoLNQ0boB/NHnxysjo6O9kVMXHe6/mWNIcM+7+gA3pcFZrOYO39nGv1IZSnrgvVNGUKPpmU5lK7fUrl14M2VOgipLk0BHff5nKbgzJ1a9JvjDnd83Va7TneA6cQGc++OoDsz6fP9GG/vL+3FxlF9xO/l4pmpA+62AECfklqpk/8+sJzOh7Pa4KSsOUrn1K8PCgS7xwlIkK6rGIyPjyufv661WqvVVK/XA3ykeSgsXPKPpP7C+YTrR0dHValUVK/XValUAtQycJ4a4WHofD4fBwvwOSHF09NTVSoV3bp1K8JYbGBikxIsGzuL79y5o6mpKXW7XW1sbPTl5p6dneng4ECHh4eqVCoaGRmJDTSwMwBIL3EGY46B81AYC1W6Pi6aNrqiApzDlqAcLy8vI0xPKIVNKAMDA9rY2AhQfnZ2pq+//lqDg4P67d/+7Rjvf/iHf9D3338f6R7IQ693Xd6u2+0GY1upVCI3NfUUYUl9QQF4mEfajlNUr9cDqPvJfM76w4iRk3v79m2NjY1pZWUlwPHFxUUAYca417vOJwf0OHvr4eLp6WnNz8+r2+2+U8cV+WIOGGv6ASNGu1PmwFkdgCVpK65k/TsoKvKtX758qf39/SgKPzg4GJUfYI0Be/Pz8zo/P4+KJ61WSxsbG5HPeHp62ncCJG1MwZUr/ZGREc3NzenOnTv6p3/6p76NQowhjhgyg3zzd9jQXC7XF/0AvPR6vb5DLHz+2NTDusD5ePPmjdrttu7evRssMg4Wm21Z76QjnJ6e9uXoFwqFvjrdGCr0CesZMFmtVkMXsqmT0xe53yNqRJY41XByclK53NWBK0dHR33sUS6XCyBKGsL4+HjIgsuQrz0ACWtyeHhY8/PzunfvXhw3/Pjx43Dgd3d3I3LlzCD50egr1pGzqPwjF9Q3SvZ6vTjxjv0RRIc4ypf7vQ5wCkx8sx1RGiIjsL6AZF9TniaBHDFODqR3d3f75NyZZJ5D2t/u7q5mZmbiuR7NzOfzcdCPpL40Do9WOpng8l2tVuNUP28nzwfI0UcHaW5T0ZUOWtxx5ErBEe18H0hJ0/T4PnbMHR7WDfJMn1Nw7/LugI97HKymANblHjnIah8ONfLq40JU0dcLfUjJtrSP6Wfe9qGhIU1NTYUsYxdwFpkPdGKn09HW1lbYppSJ5l2kDqJn/P6bWFa3wT7vAH7f3C7pnRSi1GFJHSRnvxkLdGjahvddHwwITtmhXq8Xhc0xKJVKJTq7tbWlnZ0dtVqtKMnEph48lVzu3dw4f+fJyYnW19djw1e3e7XbF4PjDFWn09HY2FgYQoQoPTCD08vevn2rubm5KE/G5IyMjOjf/bt/p5WVFf3iF7/Q2tpaMMLfffddX7jKWdx2u6319XX9p//0n4LN8EL59InxgfUhxxFwDoPKIp2fn4/UDFgJhBvvD0bSmcp2u61SqaR2u635+fnIz5ydnQ0ngLJjhDjb7bZWV1f17NmzYJB5D8bm9PQ0GI3/i7o3ibE8u9L7vjfE8OK9eC9eTBlDZmRGDpVVRbKbRbKaqB4ol6he2FpoJ60MyzCgjb0w4IUFAwLa0EYrA1oZEOBFG7DQNmAL7oZaiybZJESqyFJNzOzKrKwcIjLm6cU8v8mLV78T37v5kk1vjPIfCETEG/7/O5x7zne+c+65OEMYZXKLUbZueFlovjsX9srLnwG+BgcH9fbbb0ebyKWTrk6ForQVn3/vvfd069YtjY2NKZ/PR8H+Z8+eRQoARgIGGiaUsG1fX5/u3LmjZrMZHvj5+Xnks3temYeNK5WKcrmcnj59GpucBgcHA9R89tlnMYYu4/xGRnGq+NuBZ8qGsA7Z3Ies81kMP/O0sLCg/f19FYtF3b17V8ViUU+ePNHCwoIWFhaUz+c1Pj6udruTR4tT56DPDY1XC/DoBm3iWbTJU6gwSs4MALhI2UnZB2SEuXK2gdPBAFSXl5c6ODgIGVhYWIiUrVark6JEShD3B3C7vPLZSqUS+byeB02fyBtmbQ0MDOi9997T7du3tbq6qg8//FCXl5caHx/vOiWTaNHAwICmp6eVyWS0tLSkL7/8MtpSLBZDPzAnXhmFyJbX0U2BwvDwcMizp4IMDAzEHoZGo6G5uTmNjo5G9QtngQDFLpOMEX1hXpvNTuWIarWqRqPRdWrn4eFhHBgE2MBBQOdcXFxEJQLfOOuMJ2sFhg4bA1nAnMKMOojAMUvBFCCdtDtsgzP+3AeQ9/TpU+VyOU1NTUX0CiC9tbXVVfXFnVe/6vV6V8qCAzAHkzyf9mOHnKFHNh344vjxebefbt9ZnziMHnFz5h+wlIJo1w2MmTN9yCVywjyiWyCxWFO9UpDy+XwQDb+J9YXswBHB2WCtOOj0+6RRPfQJzjapjg4yUwfDmV+PHEqd/SN+wAznLYCDXD6Z07SfjAXy71iDNcS4+XcdC6W6Dqcep8HXtMuu35PXU0cplS3GlRRQt4MOpntdXwsQnNLhCMbc3Jyy2U56wfHxsTY2NrS/v69KpaI//uM/1tnZmZ48eaKHDx+Gl4/yKJfLAdpqtVqX8obhgC1AKaLY8IABFc1m53Q3ajVijDwtA+O5ubmpcrmsbDarGzduaGBgIDaawNpWq1VNTU3FwQ6wjIQaEW4WE94OgHB3d/eVUlYs8KOjoxD4g4ODyOfx0mwXFxexaQcAyn1yuVykHJAzDZNFGA5mqK+vT/fu3dPTp091eXkZDgt98c0SjUZDz58/19raWoT2yE88PDzs2sjiJcA87A6IRcGmmysAn76IUQ542owrBoyQpDNJnDKFEhkaGtL777+vP/qjP9K1a9dCCbD58K233tL169f14sULbW5uRooOm6dYkCxmnDUAeS6Xi8iAK4Hz83Pt7++r2WxG3jsKk7xW2PH5+fk4HMPXFaynszisr9nZWW1vbwer6iwE65Afdyz9QvZctv76r/86GFCAnztUpAx4uTbukTqUrA+O//3yyy/VarU0OTkp6erEKgw8B0Q4A4dRc9bk+Pg4jj3n+e12O9YP30PmK5WKpqamND09rYmJCZ2fn+vzzz8PGcCBY3xYc24AqOYAUKS/HFLi7C3hdQCPR8aQpX//7/+9ZmZmdPPmTf2jf/SPtLCwoKdPn3bpUkkql8t69913lc1mtba2ps3NTRWLxXAEnBnCqfCQvqSuFA8HTwAul3GX808++SR088nJiR4+fKijo6OoY8x3AHcYPdY8LKwbcOSY9DcMIca0Xq/HXLgeZ564dnZ2JHVHT9ADrhPob6VSCXsBMPY0OL+8Nrsb+XK5HJFGB3TYHHSeO20XFxd68OCBnj59Go4WJA7r0sG3R1h43dlcj9wtLS2FbmUuGPdcLvdKxSZnRl1PnJycxAmanpvva8sBbnooSa/wOqArZQAZG2ybt4N7pcwp9qpQKISuQA7pN8902e/VV8aCdjhQRzYA/Yxzyoo6gHT58LxelxEuIhmAevrfaHSqzlC1RlLXiZHIJHn3lNSjT/4cjxpgK8Ai7JdKI4u0w5lbvy+Okfe3V9WP17XFx92JC0/rwrlwO8J3v/YgWOpOTkdg2QQG+7GysqKtrS3Nzc2pVqtFGLHZbMYmAYAB1SSGh4d148YNvXz5MlInAHruQbiR8QWLcqXGJ21ptVrhgcMEsGAPDg4kdTYnTE1NaXJyMhTFwcFBHA+8vr6ufD6vSqXS5XGxiAAwg4ODKhaLGhoa0vT0dBgqwoGA3qGhoTh9amtrSy9fvtTh4eEr4VHydS8uLuKQCgwzBswX4MjISBxnfHl5GbVNX758GZve2Pyyv78frP2tW7e0tbWl8/NzjY6OamNjI5hcQriUWgIweg1XV37O5OPxIjf5fD4OGrl7967a7bYODw9jF7J0tVEAwDQ1NaXV1dVQXrDKGBkWfaFQ0LVr1/TOO+/o2rVrcR47bXNwgyNRr9cD1KSMrrNWzoQwboAnWDXkG1l1z3hgYEC3b9/W/fv31Wq1tLi4+AqQ9HQAH0NJXWPtDJErdV+TyJCvkdRzRxm/fPkynE2AZLVa1d7enlZWVnR4ePiKIXTlh3yghN044RjjIDUaja5Nsc5YkMeG4WEcjo6OolqDs0fkpiIrHrGguguGjAjV+Pi49vb24jusxUwmE0xlu92OI89PTk60t7cXx09zBHImkwnD5Y733t5eOKq5XKeGKvnMi4uL2tra0ujoqO7fv68//MM/DD04Pj6u8fFxzczM6OzsTP/23/7bKC+Zy+U0MzPzSuqMl1bz6BxGi/EjLWZ8fFxra2sxxuhQIjq+63x1dTXWnFdhwUAhjwMDA5EWcXBwoGKxGBuYHTy3Wq1w9JER5BNw4qHXcrmsubk5SQqHESfVQYiziK5n2KhKP0l3AWw640d0xNtBeUY2JvrnuYez1b7JuV6vh4OXGnj/SUEja96ZVtftKVBMw84uG6/7vK9R3zzsDgSvpSD6daDHHUdSzvx+OJ0eamfcU1aR76RArVc430GZX+n/zClOC1EHX0/uMLoz7HPh40ibUuDrADqdX+YLhwO74+Pr44b9o7KLpz76c1kHvA75h07EmcKGgR38wl44uYhj704afXS77yA6fc9/Uvl34J6uk9ddXysQ7Fer1dLe3l6E0shpOTk50c7Ojj755JNgEWHdJAVAQ8DJhZucnAz2YGhoKMAFbA2sD4Cj12ADNpk8hMQVB6/39fVFvmCxWAy2r1arRSHw/f39UOjO1PI/hgigiwF4++23NTc3F4wzwIsDMGq1miRF9YR0UVOP00My9LlcLodX1Wh0ShtVq9UA3n7UKs+CFe/r64u8T5/T8/Nz7ezsBMCgPSxoPFdXSMwJBgEF6qVffJG0Wq04MYrcSRghlzEM3fz8vB4+fBhh9mKxGGkPzDVs+9TUVLQPBgIgTB9rtVoc4c2GQArzA2BRGrTJF2a9Xg+w42EqFnMv0AlDXKvVuhQ6SsDHNFUGzqK4l+0K09eisxepAfaQF58nPYQ5pC9+5C3vp6wj93Ym1ddhJpMJttcBsjN6/f39Ghsb0+zsrOr1up4/fx5Muzu3aUgVAO3sObJ+enqq7e3tcMz9MAQfE+6LA8R6ubi46Nr8xUl99+7d0/b2ts7OzlSpVOLzmUwmohiAUx9j+g5wzufzevfdd/V3/s7f0ezsrEZGRiIi9vTp0whBw64CxpyRJTcf/UB/GDMPhVI5wg2jy8Te3l7IPnPmO+Fdtpk7DD3ra3Bw8BWm2cca4OFpZO32VRqMh/Vxlt3wOoMsXZUnI6ScAqiRkZHYQzI4OKjHjx8HiPZ1hEwjb+RWl0olHRwcdMk0YA/CwoFTqVTStWvXtLa2Fvn36J00RI5c+Nr09z1i5muJi7XgIMrXXa/Lx5LnukPg303b6q/3coR5tusIXkeOaXO6DnuNC1FB+p+mjPym76fvc09kyMci7Vuvy+eHMaeNvwmY9wLo3h7vE2vC0w6IOkMSEMlypyEly8BJ6ASXO9qa2gzuha0ENxGVc8Dq9/hNsvabxtXvw/vuYL1uzKSvEQiW1CXQzWZTy8vLETriarc7LN/Dhw8jl4m8KvLAPM2h1WoFe0ei+ujoaGzs4Z4OWjx3j4FNd9870EgFlGc9f/5ce3t7qlQqGhwc1NHRUYBfcuQAou5ReQjPlVaz2dnMNDExoW984xsaHx/vCs0Tcjw9PQ3hxwh7WIZxJtndN1YUi8VQ0oDgQqEQebKt1lURdBQJ4BbWic1U9KfZbGplZSXYEUmxODz0icJzD5sSUz6+DvCYC8Cp95NFzAXg7e/vD8aFZ/rmp8vLy8jPxCAvLi5GCbRqtRo5usfHx1pcXNSDBw/0xRdfhEPm0QMHiYAqV4DMba8a2T5fLgvMw8rKShcQTkGqbxRwpfObPOVUcaSMhRsdwms+L5lMJkKjR0dHkhSsf71+VWYPhUob0+e5gfX3kTsHhQ7W6Gt/f3+skZWVlS6mhjFMw7A4lPSFKJOkkGmPWAAE0/w6Z9M9Z35qaioMD2NBukVfX5+uXbsmqXPENdEM2pkaSTdwZ2dnev78ub7zne/o3Xff1a1bt7pyQE9OTjQ1NRUbatExRITa7XYAYwfwGE8fV8aJcH+9Xg+SgdQ1SV0pCYy3y5DPn88D92y1OvV9qYCDvCDHKfCiTz6vPhetVif/mr99TwHyg4MAs8eF/E1OTqpYLGpsbCxYLj8WnXWQMsM42oy/A458Ph851X46It+5c+dOpOl4+J2QeKoTezlm7iBzMc98x0Fw6nT6vdJ12gtgOEPp3+MnBXopYOYe6H4+489P2ULXk2m7kAkOo+kFmnuNVy/9mP7fC7imbXXnEFljDv077pB529we9Bpv19GpE+O6zNexs/IpCdlutyMag02iiID3x3W1ywz/O0PMeOCYeq1q2vo64Npr/HuNb6/P9OqfX18LEIwxgU1kIe7s7HR58c5CUhuX75PrgzECcOXzee3u7kb+TyaTiXq7P//5zyMhXZLGx8d1cXERhzZwLwYz3RHpJ5+5guZvDkxotVpRi89Db4Cfdrsdpdnc6GA8fMLr9XowUSjJTCYTOab7+/taX1/Xzs5OCDLtxru7vLyMBPUbN25ob28vjAPhFDzvXC4XpcDwMukjfc/nOydJ3b17V/fv34/NNQDkZrOpWq0WuWjkavM80jgymUzkjjI+5EjRJvohXRlOxv3s7EyfffZZGAcWGAsXtn9wcFBffvllAGbG20uRIWMcV7ywsKD19XXdvHlTN2/e1PT0dIDjn//85/r0009jlzXl3zzc7wYlDUeSLsGcsCnJ2UoMNv1otztM6dramtbW1rqOFU3ZTa+yIl0x0hhh5pH/ncn0NcpvxiuXy0WevCts+lypVKICgbMN7gS4cUyNCEwGBoz30/xOvzftYB0/f/5c09PTIbceLvW17Yo6ZXYY91qtFmw9bSJC5Q4yofJMplOC8f3339cPfvADDQ4Oam9vT2tra1peXlalUtHi4qL+5m/+RjMzM3rjjTc0Ojqq7e1tvXjxQs+fP38lBYU2k7rj881rOK0OcCYnJ3X79m19+umnWl5e7jKMjKGPvVdl4DU/yavVagWg4LS6wcFBra6u6uHDhyHPaag1deaYO+8nG0nz+bwmJibCsWTtEmlhrJl7HCp3ErAbhHI3Nja6dLADPuYcQMq6QW9ls1cbn/f394Mg2NnZ6XJo+e37UADM6BY39Mj5wMBArGMAYLvdDr3AfeinG3nGwwGtAxXkJn3dARefc6avFyDkSmUmBdiuK7zt2Ww2nMjXAWHWYavVihzp9NneB9qStj1tH+vfx93njDF0Rt6Beyq3nhubjk8ajfPxSP9P9a2PIVggJd3SPqYANE25cP2ZyoSvc5yFNDUH4s6xCboHQg/bSzTZHR4IBcAvv339QuilADeVNZ8H77fLkF8pU+3X1wIES92hGD+FCODL+2zocHDAogKQ+UaDXC6npaWlyC8cGBjQ06dPu44cZVf0F198ESd0MZFMOqEoB7mE3GmfpK50CgfMbEIBhPI3wjI2NhbHsLZaLY2Pj2t/f78r/A9I3NnZUa1W08jISNwfNvDhw4d6+vRpV/iM+xcKhRBcQpsLCwthVNywA5RHRkY0Pj4eJX0c1I2NjUVof2JiQtPT03GwA0BiZmYm2vnpp5/GaUfSlXcOQ3V2dqZisai5uTnduHFDl5eXevjwYeRYc/CIAyJkoN1uB1OHwGez2diMhTLFuBQKBU1PT4cDQJvIl/QQ/d7eXuRADw0NRTmzSqWiBw8ehMEj/zCfz0dqiitSioF72J5n9fX1aW9vT0NDQxoeHo46toeHh13OFcobp4D+I2/O2DPG/EZW+XtraysUDpcrJdrNlbInKEups/mKNcVmw4ODg5AD1oVfDkjTtAhXarQL5ZsaV+QyVcIHBwc6Pz/XxsZGVz4r9/LqE26ovJwQ9wdskbfvYNTHijbgON67d0/37t3T6OioTk5OND09rbm5Ob333nshN8+fP9e/+Tf/JvLPc7mcXr58GbmgkmIDHxtT8vlODeJvfOMb6uvr05MnTyJ/lggE8keNb0AZMsex2DjUOKBbW1uRvoEjyvgCJukvhm1/f18//OEP9cYbb+j8/FyPHj2KMcWZk64MMI4uF3JInjVzCmvKWJHf63VLPR0CZ92NI+sC/YkO4FAKN7LMOUwVAJR9CB9//HFEkHACXcc4Uw0BgXx7SBh9S+oWGwO9LZAEP/nJT6IWPERIyugh19lsNnLJW61W1Jt3RzcFFb1Ag687/5vf6BxPU/D7cc+UgctkOqkmpVKpa1+At8/b4M6Ar/d07aef9R//LBfpUkNDQ12OLP3zjbvpfVjjLl+SunQS9t33Y/Qa8173T/vve5bQT4yZry1kIB0TJ0fQwd7uXswztpm+0D9SIsASVKnyyHNKWKR2sNFoRAQaYot1mJY4SwG6j2XqZPhnfE30clD8yv3Jn/zJa9/8/+r65//8n/+J537hNTsVjzCUSqWoqQiYwKNoNpuxKY58F68lzOebzWbUxsMoENo+ODgIhoPv+AD29XVObpudnY3J97ZgYGBBnR3wBeoGm9xVSl59+9vf1g9+8APNzc1pZWWly2vmWZlMh/3d3NzUs2fPtLKyoi+++EJffvmlDg8PQ1D9FDkMf19fnyYnJyONxMeA6gupUqlWq3HSHR46BgJjSRmpbDar3d1dSR1wNDw8rL6+Ph0eHmp7ezsYWFINuB9VIwgTf/Ob39Tnn38eYXRJUfOXZ0tXYDrNq0bR+A5njE42m9X8/HzIHKw6Bq7dbseGB0mR4sDxr2tra1pdXY2qDrSxVCrpe9/7nqampkKOcCpcMbhScObaDSCbNzE6RB6cmZienu46dhvZckWWGgVn89L3uFKGgdfc+yZvkzWIQ8qxwkQVUsPrfWD9+E/6TG+ng3RnQRlDZ3gZR/SHGwxn1Py5zhj4/ZEDbxNrgWdx4EmpVJIkvfe693gAACAASURBVPnmm5qbm9Pk5KQGBgYCjPhz6vW6VlZW9JOf/ER/+Id/qEajoaWlJS0sLEQUgrlHV2AMWXOMJxtdpqamNDIyokqlEnOyvr6un/70p7GBkI2YADKX9dHR0Tj5zucPo+7hX2fDqPxxcXERm7gkBTOd6tJstpPzOj8/H/3hsziUOK6+XlgPRPtgvzm4hH45c4ZT6rI+MjIiSZEe5Zv60OHYAHQkjhvr85133lE+n++q5c1Ps9kMsMBm2fPzc1UqlRhvduxTFYc9La4TkGF38HEUYJcdwJXLZf3+7/++xsbGtLu7+0ouMTKc7glI5duBBXPd6zXXW05MpREvgBdrJ11rKVvnujFtH1cK4NLP9NIr2Wynvv+tW7f0ne98J4CZ20k/EMJ1Eb+x98wP6yPVV3yedYK963W5M8JvZM6BNrKAfDrwY359nr2NabuRAccpbOBk/GFnaQ9j5Jv8JL3igDCuqd3I5/Ohq1IG2seb8UhtEQ4GJIbrB7+cLZakf/bP/tn/2GvcvxZMMB1z5oVwmu+4xwtxJgbDwEBsbW111XD0jW/8ZnOEh564PCUhl8sFc+BevqQAbRyQ4ALg3+M1T0lAsDznbHJyUiMjI8F0b2xsaGJiQt/73vf04MEDbW1tqb+/X5VKJfJ+nz59qtPT09ghPTIyEmyy5wVh7L1ecTabDWBL8Wva5p4b7fT8P6mzaGBN+/r6tLu7q8ePHyuXy+nmzZshwJTJWl9fjx3Rvii5F+NK9Y3Dw8NgwqXOIoFtQS58obsCwwhKV975xMSE6vW6+vv7df36dc3Pz+vx48dhJPx0O8Ku7kX7kbL0GQDCccsY6I2NjS7w7QYjZS+4UKB4+uSmu+PGRd5yJpPR9evXdf/+/aj76s9xMJwyKBhplCRtSgFpr/am6xX5gq1iLhg7rtSYueFyefD2pSxVaqABnsViMTbJei4bn8W5cb0BiGI9ulFg3dA28ls9ylAoFOJ5U1NTmpub6zrwZn19PWRpcHAwWFSMBwYFAPTo0SOdnZ1pfX09wvGet878cI+LiwstLS3FesjlclpfX9df/MVf6OjoSN///vd1584d1et1PXjwQA8fPowc40ajUyQfwuDmzZu6d++epqentbOzo/v376tWqwUghxlzI808AeKWl5c1MDCg4+Pj0CfoXNq3s7PTFblAnllTHj1Db6KXiCZglB0A8rmRkZFgeHmvv79f1Wq152bNTCbTlVaSy+UiNcxlzyuRADRv376t3//939dnn32mra2tLqcPQ+2VK9Bh9Bung/QPr1fserJXaN4dPn+90ehUTXj27FmsRfSLy3PqiL+ODUx1QAooHSil7UvXOt9DjtwBdh3ll9/H9X0vp53nprqrF8Cu1ztVjTgxELnz/Tku6+lYpW3lea7v3BFIgTEkgnQFbNO+MFfoWQefgFL/Tsp6ehtTcMp7nmbnURB3uAC5af4y32Ft8lmfU5ehXqCWdv5tMuTtdtLDnUKcTW+fy8Xrrq8FCJZePZcbdgIGAWaCzUM+ANKV18D7CH6r1eo64YfNT7lcrmv3L5OHcfSQh3seCA9sV5o3zKD3YrLTC0MwMjKiubm5OK2q3W5ra2tLuVxOd+7c0dLSUlRXGBkZiVDm7u5uFEsH3PtGOBSle+b0hZOmvLwbRodau+7pp6eW0TdYVIxqq9WKEmC8D2O9u7sb4Jv7uMfLnDJmR0dHUcmDOaLvjCeGMc1/8gVFv1D8u7u7KhaLcWKayw6RCDe80tVBDMhJyuTzuXq9rvX1dY2PjwfI4tm0MWVgXVkgf3ye/rgxrlQqUfkDMO6f83H4TTlrKdvTa03yfc+/TcErc0P/XBGmwLYXmE7Ze1eivS7uMTg4GACYvG+KpbuD2+u5XADNdru7wgFt8/ngcl3CKWz37t3TzZs3Y+NULpfTl19+qVqtpi+++EKNRkPXr1/vOsab1CBkhNQkDxM7q4ls+jjgwDEWzWZTDx480Pn5uVZXV/X222+rUqno888/187OTmyAJXKSy+UiH/nNN99Uu905yKRQKOj69esRmfniiy+6dIoDYNgt2GUfK9K9eGYKuNjjQElAv3K5nEZHR1UqlbS1tRXpToxLWoOV6jS0idKSVAdig93BwYFqtVrobhxK0h84Zpp+AJDdKQPUb29va2dnp0tWcWTZmOvyhm5zJyANx7u8ulPgDng+n++qkIKsZjIdFnN1dVWSorwYzhTPcMeP/6Wr9ezzSHtSR5W+pmvKdUkvYJvex+1mejmISe39bwKjXE6wuLNPZSMqOLGOHFuk+iclMbgcHKZA2NMmaANzlTpar+uDOwvYd+Szly7mHv477YM/F9n29ngaZq8IDrLJM9yOpEA8nTt/DuPljqKD/tRGuXPgsuvy73Y7/V6v62sBgtMBlBSVHGBMpKud2m443RtFITirg+C4cUV5uzB4IjfKhoFFoXoJNT9kIRU4n0zpKkzgXr50JUzDw8OamppSNpuNUiQo6hs3bnQdDyp1mJNyuRxMKez1+fm5isVi1wkvjCGCRi7h2tpaeE18BmBLSNLZBmeQ6aOzMrA4HAGN0aYtZ2dnOj8/jzxjDLiH8D3M6nMDaHCmLgXMPreeawpQPTw8DNk6Pz+PHGdCxnyPnF6O5r68vNTR0VEYDZ9jZMGdICoFkAeN0fIKAoyje8nIh6cYpCDOFSFh36Ojo9js4wranRgH7+k6S41YqnwZ716sQqqg/L7O2vB9X5tcad/8csWW6os0NQpnd3h4WKenp6EvADgoxVShAn7YqIk8+iZc5s1DhxxWcu/ePb311lu6c+dO5BiSw9ff36+f/vSn+vWvf62VlRX98Ic/VKVSUblc1uHhodbX17W1tRU5uUdHR3EsKVEP1qc/F/ljbbLOWN84nM+ePdNHH32kmzdvxomQqePearU0Pz+vb3zjG5qentYXX3yhk5MTHR0dRe77+fm5njx50jUf/PbNwV6An7HznL/UaEsdAEh5uFarFUDe1+HY2FiAVnQpqRm+hrye8vT0tGZmZjQ7O6u7d+/GSXq7u7t6+vSpfvnLX8YY+8EY1DtnjwLj75VO6P/+/r5+9atf6eXLl6+UbnQHlnlxOWR8ABM+rumPrwcq5pTL5ai4g04gvYIN0nwX+UZuWNu0h/b5msYe+Hru5ZT2cp59baXsrTuXaR9fB6S53G7y+V4gsldb0mc2m529R4uLiwH40U0+Dqlz7u1MdZ2333EG93P9j67xsUnvwb09ssePHyDj7XjdWHiaRAqcsd0uS76Hwh0Jv1eaDtLrcnvJ/6kTlN4/nTN/3WXQo0RuV1zWXzeufn0tQDCL0RtMeNiNF69Tvsa9ZzZ/cC9n3VCM7Xa76xQv90AcTDsj5AXOeS4bbjzkJnXn+XGYhysVwtjeH8JyHDvpbejv748DOQirrq6uamZmJjbKwLZmMhltb2/rxo0bKpfLwfK6x+jGG5Drmww51IDapMwB/5MygEHzMImPqbNwPqe+4QVm//LyMja4ABS5J2wHgLTVagXTh7Knb8ViUaenpyEHzCkAIw2DHx8fa2pqKkoPkbvLfM7Pz6tUKmlnZycOVjg7O4scREld4+S5Wu12Ow6u8E2avMeRmrQdmYa5AhDt7+/HvCHTlAwEWCwsLMQhJCl7w+9eRoD5cAY9/TxzlSr51JgQ9na5dhYhlQO/D2PA+vT7u5FLgTsAmHloNBoBXL1+tqSuPrpjgYMEU+Y1skdHR8OxRC5Zz6yTqakp/fCHP9TMzEwwvO6kXbt2TXfu3NHCwoL+8i//Uj/72c/05ptvan5+Xo8ePYoDfDKZjN59911Jij0JRFjQbUS3PF82k8lE6kyj0VCtVlO5XA75IEq0tLSkycnJ+KzLXjab1a1bt3T9+vWIkLEpE3kvFosqFovhYKQ1iwEQrqtZ467DmX+OIkc3sWm4XC7rjTfe0PHxsVZWVnRychIlAL1UJk4dusD1b61W0/T0tL773e/GsdLkZGcynVrFn376qba3t2PDK/f0/EfWOfp6eHhYx8fHAQ4vLi5Uq9W0tbUVud6+dtDr3m/WWybTXUcYh8btEJfnxKIjCoWCZmZmtLKyEmurUCjo3r17yuVyevToUaTpsS4BXL3C/L2AF6k7DsL8fY84puvU++zRJI+qpWHrFGD2Wvcp+PQQur+ejqPnpab3pJxoL+c9Zea5b/pM7F6q27LZbEQmzs/Pw14hFyl4dB3N/2l7kB+ijE64YWN6safouXQM2+121MhnLtFz6FQcbz9O3skwj5ynY5MSPdIVs5zKFWObpvh4FCa9L31O9YBfqVym19cCBKPc6Wgul4uz3hEyNhd5CBpwAdNGWNAHGNDmTCMblhAkjKeznblcp2QNR9KiGAYHB5XL5eIY59XV1a5QOxNDnqQb2Wy2sxHEqzaQlvGjH/1Id+/eDRA7MDCgarWqxcXFYFABi1NTU13sqKQI6bCZxDd9+GEUrVYrTpgifcGZCxi2oaEhDQ0NqVAoaGhoSCcnJ3EylCuD1MMn3QTD4OHLdrvD4MzPz0doFhbb540+eT4sG9rwptl46OkG2Wy268Qi2gMwdyXpIW7fOZ/Ndg7kWFhY0NDQUNcGIfeYCbnPz88rk8l01ffEAfGwER53NntV4QQ2t1KpxIbO8fFxDQ4Oqlar6Ve/+pUajYbm5+fjoAacEsAzIG1oaEinp6cql8vhXLhxTS9niTznODXMXCkD704Fhz5UKpXYLc/9SYcByHAv/76kKJ2TKk6UHOuZv11ecrlcAGFfe8g7AAtHjg1KLgdHR0ehL6g17nJVrVY1NDQUGzthStbX1zU3N9eVsuPRjNHR0UiROD4+1ieffKJnz54F+EPX/eIXv1B/f7/eeecd3bp1SxsbG3GQxfb2dhxC0263w3DTNhz0ubk5bWxsKJvt5CvjUNVqNU1OTuru3btaWVnR2tpazAGsYavV0sjIiCYmJmK9ZTKZaOPk5KTefPNNPX36VLVarev4YE9PQt5Tp4W5rNfroXu9Vjf6G7KgVCqp3W5HqoTn0rLmPZcxm+1UhaDywOjoqEZHR1UsFrtAW7lc1s2bN3X//n396Ec/CnlF33AY061bt6I8297enjY3N19hIj2X1NvkQAvd57o6XQPIMPbPgbRHG7En9XpdS0tLXZuVxsbG9P7776vRaOjFixcxpym76Xsp0H++Id2JGbcZrgsAX5JCRxYKha70Qv9eyqKSWpimc6QMpYNBX1Ouh3qBbiJw/jq6o9f3HVTz7FQf8j1vp9sTxtWBNu1otzvpFx4toF0uF87S+3McQNIGiBTwhbPEjLuvEcbZZYx2kqZIW9FtryMjUlnGzpKqif1JAa73AefT9SV6P7UBqTPi4+v7FHg/dajo/+uurwUIBoShEGHkOHPejS6MoOc64ul5OTVXKnzfJw6lTPgZYeJkH0kqlUqanZ3Vd77zHb148SJOewMYTkxMaGNjo8vgUqmCsCgLEyV5dnamUqmk6elpTU9PRz8XFxe1tLSkly9fxolEnNxEhYdWqxW7itOTnhCYra0tTU1NaWpqKsaATV7Dw8PKZrNRR9jbh5JlZzTgDyVXKpVUqVSCBZeujBEOg6QAm4VCQffv39f6+nrUsYXRWllZUTabjZQBwsMARLxP8gQ9TMM8sSnPFybOkINoB1OEBfv7+yPkjBFi9zjKY2VlpSufywEaXn273dazZ88CuDqogqmijvP5+XlszGGHPk5GoVDQ2NiYRkZGNDIyEqlAvrMfxec53NevX1elUlG9XteXX34ZQIC5cWcxVQKpQmGc0nwqV9R8FnlxReWO4/j4eMwTZaK2t7f15MmTrjJQqYLlOa70GAtf/7AWAEOP9EhXTg1MGHm2ExMTKpVKMU70xdd+LtepkLK0tBTtA2Qip2wSXV5e1osXL3RycqI/+qM/UrFYjHu1220dHx/r+fPn2t7ejoM72ATHyYLIKKzzf/yP/1HValWTk5OanZ3VwcFBbExjfugzuob1ur6+LunqyFNSgHCgZmdng5nCARsYGNDHH3+sYrGo733ve8GYbmxs6NmzZ6rVahEF+eyzz+IgHWep6YOzMT62KchJ90h4VYbHjx+H7vQSdoAnAJiTCDg+OOCkMcGo83xPbSkWi1ElA1n29bu9vR1AEObSK/7AlPE+807/0rQH7y92CtvjzHzqZDLOjAHt85Js7XZbm5ub+rM/+zM1m82uSjE8P7UTqS104PGb0vxYX9zL9a1X+nFA6uQWbU/BjRNWvRxyBzSpHvM+SAq9gE4CVxDdSBl6bwNynL5P/91pQa8yL+nnkSO+60C+FwiXXgXArttSp8JtN3qAdeEssZOAzuAyrr4pG53LJk1Iw3Q8+CyVpprNpq5fv679/X3t7OwECTQ0NBTA2tdEWqnF589lz+efMXcHC5ljvaRs9G9zfS1AMAvFT2pzb9WFxzdDIJBexN2VSC8Pguc5YPZ8LYCDhxs4DY3ctcHBQU1MTOj69etaXl7u2mCFx+UbImhnq9XJObtx44bGxsZCwU1PT2tiYkIfffSRtra21Gx26vGh2OkHbNnDhw81MzMTLAzPhQHL5zsnEHGakdQBhA4g2HBCaa96vR47x11o8ezIKYRxo2+5XOe0OATRQylsOnAWEUFmAbvnOTg4qJGRkbgfAJv5oP8APVfozWbzlXST1Esm1FutVqN+JpsKkYf0nm7wPcxJ21ASHC3dbre1trYWbB1GOZfr1I71UBAgZGhoSJOTk8rlcgHYtra2wgj6wiYE7EwgMgDo4/5S93HcqSFxwEL/vOYpV6qoHbxyEalBvrg/7SGM6yE1QHO5XI4DalwRwlw448M9cSocCBEuJmSPvmD9Hx0dxTz7+LmuoW++W1vqOC7Hx8c6PDyMtCX+/3f/7t8pn8/rm9/8psbHx2O9LC0t6eHDh7q4uNDs7Kzy+by2t7d1eHjYdXS2ywTtbLc76RTT09NdNb997J1xh81P2Ury9ff39zU+Pq6RkRFdXl7q5cuX4Uw+f/5ch4eH+vjjjzU4OKi1tbU41RJHBpaUzcqscWTc838xUukmIzeCzs6SDkH6Ewa0r69P1Wo15pb+E5Xh2Yzb8PBwgP8nT57ECW3oQuSp0WgE64zDTkQFYHlxcaGdnZ2uAzN8zXCR8wkZg3x6aDtdKx5+5x6U0MPm8IND4OvYdRvzQMUgB6YOHh14MdYALOSHtjoj1wts9RoHbHfKWKbAhjngHilbiNx6P7lXyg4jA9gXZNA3sDMvRBLb7asN0NwHgIWDiD331BFv48DAQDh/VMTxMUzHO9W93rdUr/q4pAQEz3CswfccZIM3fL1g/1Kd76Cf5/0mm5GOB/OQyWS0u7urg4ODrlQanp+SG+jfdHy8zn3qJPRyjliXvl/Dn+XY63XX1wIEI6gOVh20uWJ3xO8MQ+o5uPF0pcNnUW5pyBcFiWDs7u5G4Xp2/JdKJU1OTiqbzapSqXTlaWYyGU1NTalcLgeAkToLdHFxURMTE5qYmFAul4sQLKAadkJSMGZUfEDoKXWGMcdAIUiwlxgIPy2L0Go+n9edO3eC8aH8E5tBmA+Oc+XIW3YxO7vjNZspQQZQ3Nvb6wIpjD+/PZ/WlTZhU2dEfKEDVpg7WN5bt27p6dOncR+iC8iAs8GpUWLj4/HxcTzfjYJ/1r/PjvKxsbHIKd3d3dX+/n4XG+Xl0hgLwDRyjyE7ODgIRezMF84b9+EERDcwvqZc5v13r375Z5wtQHZcEXMPfjsjjxwwRh7CdWDgyrpUKsUx1Skzkyov2k4oH/kCKMA0uQHgnjh2tMMNWqt1FVpjjmFgmEdAHqlN3H9xcVEffPBB3IeDd8jVxvEiPQFWxuc1Tds6PDwMh7lUKkVKGOOBQXMQA/vNBinGH2C0v78fudQ4T5eXl7G2a7WahoaGuk7qBDgPDg5qe3u7a2Mez8TAkirGWLNe2RiLE4vzgXNIm13XkSbUaDQiIsiP5wez/vP5TonIjY0NHR4e6tmzZ6EDLi8vNTMzE+kNq6urWltbCxlGL9TrVyfDMbepAcbo0+cUJKe2yPWUA+Q0xI/MOUHAHElXB584QHXQ5GxzGvWkXb7uaKfLO3rfWU3awhpPQaoD2xQAu15Jr166xD/LHKSgzd/nBztLhJR2pToQ0Nyrbcy3p9z0ip65Q5Dq1VRH+uupfu41Hi43/jzXWQ5qHeC5c8B4OCvv7fHPgHW8X2nkwm2Ms7D8D7HB3hl0Tjqm7hT1YsHp++ucBHcO/D7pmuolj6+TQ+lrAoKlq5wV90BTjzrtnAuZ576kDLB/FgHwQfOwFuwRk7u+vq6PP/5Y169fV6lUitzNwcFBnZycBKgiz2loaEjvvPOOZmZmJF2FpQE209PTGh4ejjq4sGEjIyOhVAENnpMoqQtMHB0dRS5pGpJC8Mrlst55550AakdHR3Ga3NTUlLa2tsJIARhhjiXF6Wh4u+nC8PY6kC0UCl21NlFQVNkYGxvrOlGN3GBn5FDGMGbMl4Nif52NSktLSzHuMABej5n8T0LafHd0dDTGFZlCHukbAIi5JheXA0EGBwdj8wwGhfvB1DtoxKEZHBzU5uamTk9PdXx8HPmzgC0v3QbwoWoFh5vAevnGTw9DpsCzF1Plzihj68rDla2vKxwvnzsPXQMiU6PC81xZp8xVCvB9TTvQRTYZM9rrz/LPtdvtSFdxRwk5zOVyqlarXeFlxpNwLs9otVp6+PChJicn1Wq1tLq6qk8++UTZbDZOUZyYmNC1a9dCngBnpBa57qOtrDvKn1GWkT64s8H90GUcQe+bZfb29mJMqQDjzDzROOaUOWHDJiXKcCb8Z2RkRGNjYyqVSgFsmYeDgwPt7e1FKbF2u7viDoCYcog8c2xsLMqatVqtqLfMqXnopIGBgRjf5eXlLv29tbWlWq2mW7du6bvf/a52dnb08OFDffnll+FME7lInV90aRr54mANd1CZQ9czvWSW/1P58UierylvE/PoetBlHVDCeukFBpF9JwrQz/467Uzb7JET1wM4b72Atn+Oz7pz6s943f8pMHR2z6NqrivTMe4F7Lg3exdSe9PLmSDalbKlvUBd+qy0L/zfC6T1upePbTpG7hSkuptxQLZYS8gb93Kg6q95jrXPLeA3k8l0nU/Ae05E+GuecuLPSmUo7SP3oT0O0FOb8f87ECxdUdqNRiNCy4QdeoFfBsoT/JmwdNJIb4B9IHTCd1AC5A8hRJeXl3rx4oUWFxdVLBbjJCbqkm5vb0dd3Gq1qjfffFPvv/++xsfHQyHn83lNTU1pc3Mz8on9tLlyuRwhXDaI0E8P0QGcUFbT09Nx3CZAEman3W7r7t27mp+f1/LysgqFgmZnZzU5OanV1VU9f/5cZ2dnwT4SzkLx53I5HRwcxGY7GBxAIAuOPDkUKTmw5HLSH1JK3n33XX3zm9/U4OCgdnd39ejRI3344YcaGhrS7OxshFb5LguLeQW0+iZAyhf94he/iPQCWPWzszPVajUdHx/HpigAD4Dp5s2bmp+fj/zL4+PjVwrd++J15hHmmxQIVwSVSkXSFYszOjqq4+PjOAghm81GLifljhi3vr4+DQ8PRwoFV6vVCsaZNTE0NKS3335b+Xxejx8/jmOmWSeAZlfoKRPFOuG+sGuZzKtHo7qiQaGi4GDt8vl8V0UVws081yMeCwsLPR1W5NydVowQbfDoAf97WoODS2cvstmsrl27FgfesOY8l25sbCyUu5fHcjBAuk+z2dTy8rKazWbIGywuIfm7d++q2Wxqb29PR0dHXU4TYId79/f3q1QqxYbXQqEQa5B5arVa4Vy4I3F5ean9/f1ID8EpOTo6UqFQiJzjjY2NyJ/FGQbsk+N+dHQUdY5LpZIODg66QCDjNjY2FpUY8vl81AIn4rW8vKwHDx5oYWEh1jD6dGJiQvl8Xvv7+1EjGZnd39/X+vp65GqzFillls/nNTMzo3feeUc3btzQxx9/HJGAo6MjHR4e6uXLlxobG9PS0pL29/f17NkzPXnyJBx+cvVT1il1rrAVAPhcLheHE7n8IrfobZdRNm87WHVAitw6qeO2j3ungAu59NQoZ3XdXvJ9/+2201PO0vsTYWTNo/PY8J3Wbk6dW9azr18+4+Fu7gFg5nVnrbHrKcD2aCWvpU6/v5YCM58zB1a0n/FycJfqLdeT7jikKUHeJv+e9wld6ePCunUd523w/QY+zh7F5DnoL5cHxsEjH06Q0RacTR9rLnfanJhMZYJ7vS6fN3USHK+5HBA99jz6XkA6vf5WEJzJZG5I+l8lXZPUlvSv2u32v8xkMqOS/ndJtyQtSvqH7XZ7L9N52r+U9J9JOpX0j9vt9id/yzNioqXOYFBzEkXHRLHInML3skEYJdg6BttTCshZSRmQdrsdlRh8gDGABwcHWl1djfZyP5RysVhUpVJRsViMOr+1Wk2SNDIyovn5ef3sZz/Tu+++q5mZGZXLZdXrdVWrVT1//rwrn9U9Mhd0hAqAyIads7OzyKUFzM7MzGh8fFxHR0ex0a5UKum9997TT37yE01PT2t+fl6VSkV9fX3a2dnRr371qxjrQqGgkZERHRwcRCkzjvwE3NI2nIrz8/MAn7CzrVYrgNnf//t/X/Pz8+rr69Px8bHu3bunqakpra+v691339Xo6KjOz8+1vb2ttbU1/fznP9fy8nLMmdRxdggtM8+SokqBpKhOkc1mw6HyMCyefKPR0OPHj/X8+fPYYMT3WPxuEBwU5/P5rpJRMAnIxvn5ue7evavBwcFgwUhngMVttzvlvkZGRrry9AYHB7WyshJMoXSlQAHKMIH5fD5OPnKQjhy5ocDQee5hmmfG85EDjIODX+adsUaJt9ttbW9va2Vl5ZVayx6xQI5h1FOQjdwDah2cejuYK8aEUwl7KfqUTRobG9Mbb7yhDz/8UNvb23F/nvX48eNYh4VCIfINOIkDVgAAIABJREFUffMhzi8s1NLSkvb29lStVnVxcRFlymCYZmdnQwehc5AJZ2+LxaImJib07NmzSCcgRxbH+uDgIAxVq9UKxw/njnEH4NTrdW1tbQVoOTs7e6WsG+uYCjEXFxeh/8hVTuvzIgfXr1+PE+rIt8ehnJ+f182bN/Wnf/qn2t/fj4haLtc5cAJngNrn7XbnwCB3YkjHYh1QQWJhYUHLy8sBnIvFYoxZPp/X+fm5jo+P9R/+w39Qo9E51IPol1c6QDacUeQ1HAlO58PQEukgFaYXc+ZMJMRGyoRho7zMostwOuZpepkDXBx8ogAeksbeoUfQEV72zgFqSiohg6TZvXjxQgcHB1HqLwXmDpa4r4N9dBL6LY2I8L4zx95O1xkeIUkxAP2jv4yfA+l0LB2o8ToOBu3iuSnIclCK89ArQuVRXv+O983nDh0NmVOpVHR6ehqnvjJWjKOTVegJZMk3htMul0tSIl2PM760E9lwBpfnYh9dvr1aFboH+Wb9+vh55M7lxTdhul1I0108UvO667dhghuS/rt2u/1JJpMZlvRxJpP5K0n/WNKP2+32v8hkMv9U0j+V9N9L+k8l3fvq5/uS/uevfr/2Ash66AlFQ5iPK/UWHNzwvv/gNaHUXFlIV8ftubA6OHb2igulQhtZDIC3Bw8eqN3ulPchN3R/f1/ZbFaHh4f69NNPIwe4Xu+cMLaxsRFAxpkvwD2lipjooaGhrlJPLHQqDjQaDW1sbOjb3/62ZmdnoxIDbM/777+v3/u939P09HQYo/39fY2NjemnP/1pgNhqtRohUhgA+spmnVKp1BGUr3IZAU8IN/NQr9cjv5h8bxSqh6bp/7179zQ3N6cf//jHwVwjI7ABsIwYD0qV+UIEnHv4zPMXT05OotoECsjzm2HbuRjvoaGh+L5vDCKScXp6qmfPnoUcE8rmRKpcrlOO7o//+I/19ttvd224Wlxc1JMnT14Be4AGl9nLy0utrKx0sT+e15WGUD38iqJww+dpKKwDDz85mMTpZO0wdpTJ8VxD2uJr1+fEDV9q4GgD69OVo8+3sze87rrDFf6TJ0+0urraVboNI4G8Iiu3bt3S97//fT148EAvX77U5eWlSqWSjo6ONDs7G2XDisWiZmZmdHp6qtXV1QBOm5ubWl1d1e/+7u9GWoOkcFyLxaKmpqY0PT2t0dFRDQ8Pq91u68c//nGMExteG42G/u7f/bv6xS9+EXplYGBAOzs7AbBxDHO5XDiE6LqzszOdnp6G8+rjhFNPFYyJiQnNzs5GOUVOmmw2m1Fz/OTkRLVaTR988IH29vb01ltv6ezsTLu7u8GS1ut1jY2NaWZmRnt7exoaGoqSj9vb2zo/P4+Dgbg/zClrBeBC7i4hbOmqhu75+bkmJyfjYBAvJwgwJs2EVC4/Ih1ZTeUPGcQmAGTRN++9916Ukdzc3AzmGNDi64v7s6b4nLP5Pl+9gJKvSV8PXKxHxtDzNH29SN11tL3fLhcebT05OQl5ODo6egWopCDT75U6ov49xpi/3XFInQp0oTOd2AH+d4fJgbNHlSANmHtvJ31JGdOUoHqdznFM4Y6m66n0SgE57XZ21pnh6elpbWxsBBuLvLm+BKSCY3jf25DKGT/YbK+OJHXXMAYUO/gmbcg3lCLfOJ4+vsiY6/fUOUV/04+Li4uufUX02Z0+2prKtV9/Kwhut9vrkta/+vsok8k8ljQr6R9I+k+++tifSvqpOiD4H0j6X9udp/4yk8mMZDKZ6a/u87pnvCI4kgIM4blgyDGsTt83Go0I0TCBGBoPHUvdxjAVNl8A6SLDaKQej5d2W1tb0+PHjzUxMaGzs7PI8dzZ2eliZg4PD8MT5+S01IP1SgAYJxckr1fqO7Y5pvjhw4f69re/rfHxcdXrdR0cHGh5eVnLy8t6//33dfv27dj0ks1mNTU1FbvFFxYWVKvVwmBT5QBmxXM53ZCmLBzM1vn5uTY3N/WrX/0qSq6hqAj3wowODg5qdHQ0Sm2Nj49rfX09QCTMhddJxMixSJAVwBhKgAUxPDzcFdJyb9IVAJ93Jp6FBaBAflLWwx0GT2Mhb7dYLOrOnTv6wQ9+oOnp6fg+zOG1a9e0urraxQ5JVzuEYTm8TSgRZDc92MDXDQCPUJLn2LpRTAGnr1t+wx5nMplID0pzcLl8jrjSNvKav897KSgAuDiQ8fswFs7Q4bRQT9XblbZTUoBeX5esPQ4m8HWws7MTu/1xGI+OjsIZAkC22+04ee7atWsaGRnR8PBwVDp566231Gh0NpmyaRXnbGxsLHKYR0dHlc/ntb6+3mXkPLUMXSJ1oiakWxAVoe0+pgcHBzFWRNzcwcLB43MYwvHx8ajB60y0JBWLxVjLkByXl5dRi5d589Qw5rGvr0+jo6OamZlRNpvV7u6uJEU+PHWyWe8e8YCF8j0QrEsnR1LbgCx4m/gsBM3i4mLo8vQeKeBhbpiLNCcZ2WV80vC+j5G3M9UPXOhIXxftdrurxmrqjPK363T+prJOeg/WizPl7gTwA4hJ7b6DUbex3jcuZDkFbox9atcZFx8zD6n7c9wZh5AbGBhQoVBQrVZ7JcWEy4GuP8dlgU3jKQD2MfZ7u35PgXe73Y564j5u6T3c4fKx8RQIlw++x2c9bdQd5zTC6HNB1N4JROaHSIvbJtoBtqOfPq5OUnm6kM+XM7/entRJ9Ov/VU5wJpO5JekdSb+SdM2A7YY66RJSByAv29dWvnqtCwRnMpl/Iumf0FhXDO4JeucldQ2SM1Dcxz1XV3D23C6vLRUs90R5nXvD7rkXg/dB6Ong4EDPnj0LcAQQRjHjsbpyJwXDPR3awOsO2FDsvvkJlpZd2BwP+vHHH+ub3/ymjo+Ptba2FnmA9+/fj9xmwFR/f7/efPNN3b59Wzs7Ozo+Pg5W0MMPvthep+ARQMARIfuPPvpI7Xan/BO703d2djQ+Ph73hyGFzd7b2wtHAYPmOaAAQp9nFgOLjYWe5hUDbCRFXjVKyhcbAIpF5ywK40huNuwIRtYdHFJJSDeZn5/XnTt3NDAwEFU6Wq1WsOspeE3lF0cCOUnb3etyY+SHPPC8FEj683zN+Jj2MgC0z6/U6OHQpH3tZZx6AVz+9jlL1zSG2dcV/WRMvfQX7Xam/Pj4WAsLC9rd3Q12EsDHfNNG2DfSHJBr+opxIHWnr69Pt2/fjmOXybltNBp6++2344h2fsNiw0JKCsYzDVV6KUjG2VNc3FBwOYDxQ1fSC10m6ZUQ/ze+8Q1NTk5GCbNWqxX1zrPZbOTtutGiVrjLsLND6D4OvNjd3dXh4WE45PV6XXNzc1paWuoKubMOkTf66ukCLp8pIOB11prrQGRgY2Mj7keaFjmbKeBJwQ2f8ZQfXndnK10byCifTefR7+U21u1rr7bRvhRg8ncv5tifk8/nI6rFSZzp2k2d4l796/VZB7fp89PPOYZIbX76kxJgbltgNYvFYjhd6b08Bc31NDLH/6zrFKgil36PXn1LAd7+/n5XBMHvlc6nz6vrv1Sm0gub56Sgt9HHyvvk5Sm9D76+0gihA2sfQ597H7O/jaDh6qW/uH5rEJzJZEqS/k9J/2273T5MGtTOZDKv55t7XO12+19J+leS1NfX1261WgHGAHdefgcA4hs5YAbwoH3jFhS50/EuDD5IgFgWLfl/7qUQckTZMpG01Zm39fV1HR4eqlwuS1KwHShHFyDawWYLaP52uxPqHxsb6wI1tJVUBBRbs9mMk8hgm1ZXV/WjH/1Ie3t72t3d1erqqnK5nP7e3/t7KhaLXc4FbSmXy7px40aE8dm8431IAaWH2j3fjL5juI6Pj2OTzZ07dzQ6OqqLi4sopebKs17vnIr0s5/9TF988UXknLEgYL7YOORhL34jEylzwjxkMhlVKhWNjo5KklZXV6OqBWPtzhe56chDq9XJ46xWq7p586bOzs709OnT2C0LGMJoNJvNCAEj76TFONBA5nd2drqUWqrQkD/alzomtCHd5MLl4bFU8fjzUgXiMoOMsF7TseZz6ff4n3WUAu308ynw93unbXbHlTmkjQCvXC4X68xlj/dTZvr09FS//OUvwwnm/qw57s2ccNw6DrAkFQoFXb9+XbVarUtGjo+PY8MsOaeAtzt37mh/f1+1Wi0A4eXlpT766KMYe6nDRntIEPaK9AicPa+HS5pEOp4eevboQrrhEgbYHSkYa3SCnwzFBkQ2BafgE2YVmXMg5s4TKUrkVcMqs57Roa6303SoNBrhxtydydSAu952sOOEBKW4WJPpOvO0IV8HMJPoC0C1R6R8fTnr2WutuAwzlu5kuH3zdcnne41BClB7/c7lcrFnAyclbWO6zt2J9CsFqb2+k96Lyx0sn1Pu6+kSfn9+ey5uChhTQJbeX1KXHPQaV0/tBBwz5+m4+lw4EePRNp7j0WpvY3q5c+nOgn/Hx6eX0yT13mTN+KfzlEZIUqcvdQx9jaZtJCqVOkapnKU6Lb1+KxCcyWT61AHA/1u73f6/vnp5M/NVmkMmk5mWtPXV66uSbtjXr3/12m+6f5cSwGh4ojeDApBA6QB0EOjx8XFNTk6qr69Pa2trWltbi+/5PXgu/7vgee1aD58SzpSuFgjF+d2oUY7MGUvpqii8dCWwKLKRkREVCoXYbVwqldRsdnY4E4LAaAPgnA1l0wsbOAA/f/M3f6MXL17EpjZOodre3tbExESXADs4KxQK2tzc1O7urkZGRuK+sOuEdXg2PzBuAESMICGbi4sLPX/+XAcHB1He7fj4WC9fvtTc3FzUWG61Wvroo4/0+PHjrg1g1FQeGRnR6OioTk9P9fLlSy0uLnbtDmWcndl3I3JwcNC1KUjqKCKOmyasyea4UqkUoIY5u7i40NzcnE5OTlQul8MY5nI5TU1NRQ4zizGfz8cRlcj55uZm1JIdGhqKaMLW1lZXvx3Qu+FFjlkP9NkZcuQXeXFD64cw+Fp0Y+Qsg69Z5Jqc+16Gks9yOXhP89JSsJwCNP+MP6MXCHYQhUOGXBAhcKVOuTrqBqNgGXNPPWLc2fi5s7Ojvb29aOPp6amq1aquX7+ulZWVuI/UORjn3r17+vWvfx1gWVI4/Mxfu92O9XPr1i3t7OyoWq2q0egcQoP+4AAbZzoBklQqgWEkWkEeN5U8uAC8nsfvcwh4S3+cwGi1OhtEHzx4oKdPn6q/v3OEe7FYVLPZjGgL84FjyVrxZ3q+H/eGWX/06FFsUmY9XVxc6Ne//nXXCVeXl5fhZLM5U7raO+KOEo5cu90OvQUbzZp3csT1DDLpbRweHn4lVO0RpfQ+/EY2vRpIarP4cVbNwWwKeFkXXt3H2fteALSvr68rkuHAOQXDvob5LE6AOzXeD34DUvw59C213S6rqR5wRybVQTD2jJN/x4GZEzquG/b393VwcBBtLRQKoZfZoJ4y5Mj30NBQjGPqELjseNvceXIHiHYiH4wnJBpHu7tcMMa9dK2nDLEuSC10sE0bUsCLk+kpVanjktoOX+e+fsBbqQy4c+X37jVm9NcxnNvKXtdvUx0iI+l/kfS43W7/T/bWn0v6LyT9i69+/9/2+n+TyWT+TJ0NcQft35AP7Fe62FBSdIYB89p2DjDa7Xbk3qJ4JyYmAvA4w+MefzqgsD0on6GhodjpTAiZED8TdXx8HCVimCQYD/IC2YwyOjqqarUaG9go/u47qSuVir71rW/p448/1vr6etdpQigwyoE5I8Rk53K5OKVLUgAuKlb84he/0O/8zu9EZQhJ4VQcHBxE3mq7fXUoA58hpOsepwstC6ZSqQSAXl1dDePE/QEnY2NjWl1d1erqaozr4eFhPC+TycQxsgAo8iy9rJRfsAAsWl+QzWan9uvIyEgAXHbmc1JWu90O4JPL5TQ2Nqb33ntPX3zxhdbX17sA097enn70ox/FoQOtVitOfPNUDAeiUif8++GHH+pb3/qWZmdn47WFhQV9+OGHERb38maZTCZeT710ThlM11Hq2HEvDHzKgqRGjfukCgsZ52QtFD1XCmr9Nb7v7HfKeDs453Kg5p9PAQDP7e/v1/DwcDhrfm/aIV3VF+ZACWf8kTl0Dwb97OxMS0tLXadDes7+5uZmnKCE3mDd4jw3m00NDw9rbW1NuVwucvSpn3twcKDPP/9cz58/18bGRqTfwOxyah15+5lMJtIKfAPN4OBgbHaDNKAvKZhjLulPJpPR6OiocrlcFMNHRtjxnbKsgG1qj/MMr97hjhDVa9zx4fPuYGUymTi0Y3Z2No4N39vb6xoHdBlz3d/fr/39/QDCjF0KrIrFYuy8L5fLqlQqGhgY0OHhoTY2NmKzjwM7vsvacsCFnHldZuTaP4/+536Mqx/e4WPAvKbpGQ5O0D/cz/dwAIZ9rGlLJpNRqVSKU03Rt6yH/f39ruOHXX9AdOzu7obdS/VOr+hDs9ns0mmpvuBvB6rp5XPhAM6JGc8hTZ1/5isFVFyAXqomtVqtSI9wVtm/R5lI1gQb3BkP19OMN3nrTuC448HnkUPGvd1uR61txiCNXLt+lDqOPHbZ92AxZy5T7AvKZrNdWMeJJ9Z2Lpfr6msqJ6kT4iUI/XXa7ZWz+C7EXDqPrdZVKqKTQ6+7fhsm+A8k/eeSHmYymc++eu1/UAf8/h+ZTOa/kvRS0j/86r2/VKc82jN1SqT9l7/FM7oMaJrTArLnGGDAoAt6qVSKYu54be4Nc//0fs4EM1nO2DKQeHazs7MaGhqKXBzyVxFKD7/QL4RxdHRU9Xpd5XJZU1NTmpiYUKt1lSsHADw7O9OzZ8+0u7vbdVoVwBb2hAVeLBZVKBTCi0NQUV6Xl5exi7rdbmt1dVV7e3t69OiRisVi9JU6v6VSSQMDA6pWq68oPPccXZFQnsnHEUBBmNcL/QOi+/v7tbGxEZUWeJ1QIfmuLB6AxPb2tnZ3d7uK63v6C3NA+om3CwMM68MCOzw8jPnO5XKxsQdH5enTp9re3g4gwOEWaSoAskZeL2wc3rKzKYeHh/rX//pf6/bt27HZb39/X0tLS3FMLSAaoO5j733inPZM5iqXk7ysXoyqGxU+k3rz6Xd4VgpsvYILn/H7pyyMKznAqrN9rg8coPMZ3xvgOiQNDzebV0eQsw7TNQqrShlAzz13FjdlU3i/Wq0GuMRJBNS02+0AHAMDAxFR6O/vD+e3XC7HbvvNzc0AyaTOfPDBB9re3o5Uh83NTa2srHQ58LlcTuVyOQAYhqVUKnVVi0jBVaFQULlcjvriMExpbdJGo6G5uTktLy+H8+lskutsHDXmGVkslUr61re+pUqlorW1tXAwPXUKHYHOYhOgG+bz8/Ng2FiDbNSizzDi1OVmHbhTOjw8HGyrM1nIJX1Bt7OBeHR0VGdnZzo8PIyoGfnZKQML4zwwMKD+/v5Xxg4Z9SpE9Jn30hQGnNoUAKfz5XNBVNUjm56v6vohk8nE4TtcOGb0fW1tTdvb26Fv3bmn3Z4i5LJBP1xHODubOrfODMKuutObXv4s+sw9HGTxG/3MhY5NiQQ+f35+HuAXvZfqV2QNooq0HSIe7gggH9/5znckSV9++aVqtVqQTS5L3hYnvFhnpA1S3QhHxMfcQSH95zseQXMWFrnGnvI38t9oNCJ66s9K5bPXPNAm5JHXeWbKsLs+JprrtqPdbr9SBjclyfz6bapD/FzS6yoN/7DH59uS/uu/7b7Jd4Jx8ElgoaIoOUedXDYGt1AoqFKpxKQhcG6EU88Tg4kSdOOYGlNfgMPDwxoeHo68t0KhoNu3b+v4+FjLy8taWVnpmhRAXbPZOVWJ41BRdBg8AA/GkzAnSl96dbcyYNiPPuQIX5iO3d3dABgoW8oJ0UYE5vbt23r77bf15MkTSZ1d3JKiwPvQ0FDXjk68P1dkgDF2n2OkWJQukMyJn4iFMWJ86d/Ozo4kaWZmpotVL5fLkX/GPVOjgAJhTtMUCJ4H2HcjjgLh0JSUAaG0GnOCBw775AyAyxPKh9ztWq2m/v5+Xbt2LYA+oLRUKoWTQ31onDIHoITkXDmmY5ICudQg8ZpfDkL98jXI+8gl/eNzPNMZGX/PUzUAHelzvc2+gcTbmTLYgFIfd39uqpydyUjliDQj6SoiQh1dZ+UBYKw5nsPBD2dnZxENyWazcbLZ0NCQlpeXY4Pk0NCQRkZGtLe3F6XGYF35DG2FeUFO0D0cAz4zMxObZn0PBODMUw4w0r5WqWjjfWRcSK/wNcAccS/GjT7TdgCoOxGps1Iul185Krnd7tQR9o2vzto7UZKmcjmoIAUJ8oFa45QVg3Tx+cRhh1gAYLrR9aoUyBBOujPwfN8jLcgZupC+Mdfu+Lrs+1pAjnmugwrkBTLIQUXq/HqqIffCkfP6tKxhnp2yoimjmtpjB2O+5nz8/N699Jjfz193EOXrPpUnf4a3y9uOvXAW1NtMm5irZrMZ44TeJpUCW8I9ONHRowW0w/dO9GLL+XHWl79h81MHQLoC8a4H6a9/Hp3s0XMi4p5uxrgyhr1sD+QXusH3FjFXzBPy18shStvL+Ht/PCr4uutrcWJcL080NdgIlacESAom9q233tLOzo4ymYy2traCaXBFngLi1MNLF6YvMpgRACH/Dw8Pa2JiQoODgyHE/uMThyA60+NMB4aMHD8ADUrLFTzeKjluCM35+bnGx8c1NDSkvb09HR8fq1QqhUDBorET3ts1MjKiW7du6dGjR1Fovlwua3NzMxhm6SodBcUPoPY5whA4k+0MFQBeUhfrwOETLCQ/mKNer3dtLMTAZbPZOIEuBVjMs+fdeWoMTC8KCY8UxwEj3Wg0VKvVQl6YEwcMPBMZY648F8zly8OT5AXDTiFzFCsfGBjoOnkNJeQKnfaiNAE6HhZOnQSX/VRRuEJxAE8/fXe9G1dk1deaAx9f36nDyTO5D+1Kxy7tQwpqXUb8HumznCHgnn6EbPoMZ4xoHwAVGcMR8pCm1IkwLS4uqlAoaHd3N3K+z87OtLe3p0KhoP39/a6886mpqVgrnqNMe5Bjnkc1BsYCZ9QPf0AH8T/rje+xZpAB5Iioh6dP9BofxojxdQZyb28vTmhz+fc67nyX8Gs6H4y7l6tyEMZ6hUnzeeS7vI9ssIbr9XrUb6dd2Wy2iyVjbLBFfX19un79ujY3N+NAEQcVPI+16G3mx/vGeONcODDgSkPA/rdf6JlU5ukLusZLs6ErnBxibA4PD1WtVsMG9QLl7vxxpU5o+n+qj7wtaX96OQHp59LPu/OTOsop3nBgmzKWqePiz071Sy53VePfCRbug/3gorwhpFEvXZ2OZ6+x44e5c/uU3iuNtqWYy8cQ4I99T4klbHMvByPVy/z4WPncpnLoa8Tb5nOVzlevsep1fS1AsBs8HyQuPGiYF38fOv73fu/34kjOXK5zoICzDlL3jkM3HK8DBr4oyOfa2tqKvDNACowBjG3qvWMUNzY2VC6XA7SxWQSQAsN5cnLSlUuFYYNNLJVKkTd7fn4ejLKDPw7NABh5Thjt8bJjpHhQ9H93d1fDw8MaHR3tYjmYLxdCUjRQrmwgPDo6ipAJz8GoVatVVavVOLSi1eocB7y3txfGjZAt4zU6OhqAGYDNT7Va1fLycswd4wDIYB4Il9br9Ti5BoXuC8zrG/M5383tUYNU0WLEOBqXhQoLRxuRYzZa9Pf3a3t7OxRTsVjU6OhoMFPkf7oMu4H3TYueV+qHjMBEpYYh9Zx7KREfH3d22u12zDOyxdg708H3fP05a+dGDZ3glxsx7zevp+FClKi3G+PD89LjN1lLvv54hhsxNwKse2SVCxCMHigUClpZWenSOS4vz54963IIj4+PtbW1FXn11BjH8UtTQgBrnp+HzD58+DDaDXhBp/IZnxsunMZ8Ph8pBw7UnL3BefTTyvw+2Wy2q4oF8kBqAoABPUHN5O3t7QDqjD/6wTd+onNhbQGczrC221cnz7EvgXWOo42+97WNc+ybntFr1WpV77zzjj744IMuXeFstDsrjC/3dH3g1XFwOHyOHUDwv4OWXgYfHdPLmYVMod/IOlEFX3utVqdGMHtgnIGnb048OJB0HdMrvzPVQ+m693XFay4LvOZ9Tp3nFLRypcDYHXPGzVlq13u92uNECLnxHmnBjvtzm83Ocesp+KUfKVsvvVqVIY3KuqPE5XjIxyKdI3dcuQ/6mjWD3KTEUkqupQCc99LnQ675PVyHuF5KMUlqv9K++3fT62sBgsk1Ojw8DEOEsfbFwaB7Th8L8+nTpzo/P9eLFy/igIFsNhtgxnMdnR3ykJODZQw6ColcNZLWi8WiJicnVa/X9cEHH8SmE+lK0Pw5TMjx8bEODg50dHQUtXABi5QL29nZCQYim+2c2Y2nxalIKBfKsLHremRkRAsLC1paWlK73Va1WtXU1FQA+IuLC01MTKhQKOjTTz9Vu92O4vzPnz/Xy5cvtb+/Hwbt7OxMExMTWllZUbvdDkCezWa7DgMA3LOxDPAJ8BwcHNTR0VFUfqhUKrp//75u3ryp4eHhAOEvX77U48eP9dlnn6nRaEQIVpJWVlaitBtjVywW45hUB2AAy+Hh4SjTgzwUCgWVSiUdHx/HiVvIC+wHp1ph+GBhYb097QAAiJPGmDabzTg4ArngQsESFRgaGtLQ0FDIDSwU+eK98usAJb4+qALC5inCcYeHhxE14F6sh1RRukHodblyIlJBvqS305kRN7BpmA1WzvP9vNqBsxX8nxo4b2+q0N04S91l9NxxTB22lAlGJ9E35o//HaASSUmdYUldkQ7e99zUqakpzc7OKpvN6tNPP9X4+HjInI8vcw1wHhsbi3XOxhXAYr1e1/T0dKzL3d1d5XK5OEjDoyrej2azGSCfeuEOwpgvQG5/f7/Gx8eVz+e1vb0dwBLgj9NOVImxm5ubU7PZ1NLSUujag4OD2Mzm85TNZiMa4vK3FCfaAAAgAElEQVTP2JAvjBPWbrdjQxtpdc1mM/oCgQGoBgQBSEltqtevjoUHvNPPhw8fhq6CvXWm1ccMucVBBFgxhp42geMMa5hGuVIAl4Irf8/3iyB/HpL36+zsrCvNzO0vBzT4PhOe631Kga3rgVTv9HJiHYS6DXXW3MeC+/ta429YWb/SKJBfTjT4ekfmXef65z0aAhmUMp2NRiPS+ZifXgeX8D0H9HzH06H4rLcxXS8psZj2mfXuoNXz4hlbiBTuiU6CrMHJZN35z+vG1w+f8cgCn+P73tdeYJdnI9/e9tfZMulrAoKz2azm5+cj3JbNZrWzsxObz6SrI3krlUoci0no/OTkJLxwP0aXwcKgSt2npHiRfowRidZuyJmgarUaBqJer2txcTE2mfh98Y6k7pwYPrO+vq79/f0wBKVSSdVqNXJfj46ONDw8HKALwYCtuHXrVrQPoIQgSQqjl8lk9MYbb+gP/uAP9Mtf/jKU3rNnzyIcCrCenp7WjRs39OTJE52enkapsJ2dnahjS78ZVzcyCC47rwHMzWYzlEE2m1WtVgsgOT4+ru9+97uanp5WX1+fTk9Ptbi4qKGhIb18+bJLifBskv/7+vpULBbVaDS0srISqQop8HLmReqEpNfW1tRoNHT9+nWdnJwEq+GVBGCYcT5g/Nw7hw3DYPDMbDYbBhFghcFEQUidHePValXlcln5fD52B9NHwApVNlgX5AV7OEq62uA1MDCgiYkJXbt2TY1GI8qy7e7uvtIH5F/q9tR9XbgCweN30JTm86YeujMEvRgA5gVHwpVeGnp3RcmadaPuOXDO3Lsib7fbsVmTTVYof8bHjXk2mw1HKHWYLy4uwijSXjbwXl52TpkDeLCuyKP0uQNISooqLsjG4eGhCoVCAGOYyIGBAd29e1f37t3TjRs3NDo6qq2tLf35n/95Vzm3k5OTKP+HDnEG1ZnHoaGhLoCJvPJ5z4UEFMEMARKz2ayq1WqUbEQ/9vV1TslLd743m02tra1JunI0SFVwlhodTvTAD5QBzHJgDfpnZGREp6enKpfLGh0dVaPRiFM8yedm7plndst71Q/XJb7hCaLgxYsXXalp/JBW5aDJnWIA08DAgCqVSuQle+oKdovPsgfEmT/Xe2746RfRO1hI9hd4/7yNmUwnRxXdxf3Rlamji93z+zFvHiFJ17frAgec7uD63gbaDvhyUJ8y594fZ6h9jtCb/jwAFJtkHWilzqs75akOQVaQUeQfpy5NcwSr+NjAvKJ32bi+vr4en0+jCz6+2C/AoW9qp70QEG43eZ2xYx6dIOCZx8fHQeZ4n1IHxvuVOkpUzelFPjB+/Ga+GZPUXqX3dlvX6/pagGAMFxsO6vV6VHvwhdzX16dqtRoT5IKyvr4e3+XzUnfupXs67jX5BDmr4QxNX1+fZmZmgsl1o+c1Lr1eJsba2Umn8cfHx/X9739ff/VXf6WnT58Gqws4LhQKXaFWmJuJiQltbGxE+SUPEwLmYLTW1tb0F3/xF7ERR1KXcFNeKJvNRqF5SfFZjJInwLuAZ7PZ8ABZ2MViUZVKRdVqVZlM5xjdly9fdimpo6MjHR4eKp/PR2qJp7ow/r7LnDSN1dXVqOWKovEIAR4mVRx8AXnqDfnAhDABRnwepdBut0PZ7uzsxNjwfqPRCINCzVzed9lzEIjhAwiXSiVdu9Y5dJGUEElhlDEeHgXgN+AJ2T85OdHOzk6MLevFj6r0y8en3W7HGLgiYm643MNnzlzRpICav1M2zNvgcsz1OgbZHde0H64EmQfe53uE3QnlAZqJHHhKExuocrlcV7THHVvmnhSWtbW1LsA4Pj6u9957T3/9138dMu3MLu3zWumEpFO2Fsbyd3/3d/Xtb39bc3Nz4aj29fVpfHw8nDtkKJvtnGoGu+hj7iw4xpj17fsPPM0Fhpg1jwwcHx/r+fPnwegiSzxrcHAwNn/u7u5GFZ+Dg4PQf6kMSVc2Apkm0kNqlNSJhq2uroZRRT83m50NqISbHTgMDAxoeHg4xjWX61SF2dvbC0PrFVlcBtloiAEnfYB1AWOGLNGH4eHhqMBTKpU0OjoaDuuDBw+iFB73QSa4t7cBee8FNJhj3/xNO9yh8LXpYA9Gmmgq4NvXpOsJByO0wdeHA1i/HHw5kGfeU92AbXVdgLyip5FN1wfoYNroetSdfeTe9Rt9QZ7Scfbx8x8fIx9PsED6XR9PB3HMHU5ItVqNKGM67k4GgAnQdd5HnEkfC9/D4rbY9Xuav3t5eant7e2oEsH8Qhy4LKbg1tuDjknno5cMMJ687+ugV7QktXl+fS1AsKTYLcjEcOAFu6mZJGr1uqcMpc7lStyVBkrRBRyB5zVf6AgIO0IJm3l+D2CcUBOnzXltSxdU/r+4uND+/n6UQSM/10vBubeF8seY7e3tBfvryh7PkzEiFI5wIKQsxEajsylse3s7ABTK3Rc5bKh71IyPhzBgaG7duqVvfetb6u/v18LCgmq1mvb392PsDg8Ptba2ppWVlagRCkjz0JCkYOapdYyCpj/OTrOIXPHhoVLXt6+vTycnJ9ra2oqFx/cZF34DSMjT9IXlc+qePePiC9Y93JQBIfca+YNF5BmuWFzpc0/ACWNydnam/f39uD9pNuzAZy146Mvb6kaJ93xDUdp35sBTiNyYert7GUofE38dufayd942wI+z0ihCZ1lTZerr3sPVOAC91iuOD21yWfPPsXnIDX2z2cm/X1xc1OnpqQYHB7tCs25s/HUHTrxPe8fGxvTmm29qfn4+coaJSHiFCI+CwSAzFu4Qpmu7F+OdyVzVqGatU5OYlBhAKdEW5oULEI5j5jvOfX3wGs48+hXGlOeXSiUVi8V4b2trq0sOU5beDak7j4A12Ftf48g9tskdIE+14buwv34iIQCtWq3q2rVroU+Iwv3O7/yOGo2Gtre345h419lO3pDa4USQr2nXOS5fDsxo++scYvrv69ejI/5ZnpeuN3+P92mf6x4uZ2bdZjvISfVI2v6UlfUx8OeletR1moOsVAd6/xzk8pl0DvzH+5fOh8tQ6uy7nnGQ63YvtS+vs1N+MT4Oav3e6Tz6HPnYIuvoPF9jrCVvm+OmtJ/cM52r3zQurl969ddf63V9LUBwq9WKWrt4W2yCOjg4CO8d1i6t4+cLIgUfUjcThFJKv+teIoZeuqqE0Gw2Y8MWbeSZKD5YG+rNupC4h4Oxq9Vq+vzzzwPwnpycxD0AwnwfpjyXy0WtWoCaszH0g+cxdi7onlfoHj95jC5cAIVqtSrpKp9RUlc4wsMgg4ODGhkZ0Z07d6J2LUXoEfTj42Otrq7q0aNHMdeeuwr7wFwwhsfHx2FAMBCwupVKRUdHR+GA9PX1qVwuh9GGrSEH+sGDB12MNkbu/6HuzZ7bPM8z7gsgQYIAAXBfJIpabMl1HCdx4nTJMp1Oe9CDnvS0/1Zn+m+0nXSbpu10sriNPY5ja7ElWaJEUtwBkgBIiiSW74Df7+b1PoKcfmf63hmNJODF+z7LvVz3+nDIiCsbV5QAE0CrKx3WCyDNeiOcuVAqFE50Op3w1h8eHkZIFBrylAz3mkCDDvzZ86Ojo+CftBgr5RHojLG9jofYe58H73Q++n2Cx3+fPsuVmCvY1KPrxga5yZ4CkYb3GB/PRql5rm8K/vg9vYbTsaaKcFAv6F6vF4de4DV0cIusYB4+V773OeG9np6ejs4hvBMjHdDm3hIAtudSpiFY+BgjjDnQecJzV73oFK8sB8+sr6/HmBw4+vzoGsM9nU5HpVIp8umJZjBmoiekHsHTpVIpDAvSmZw/8Lp5fquDVz9S2Xna5fYgLx9yg/Quxkg0MJfLRbrN8PCwJicn9Z3vfEezs7M6Pj4OeTsxMaHl5WWNjY3po48+0pMnTzKGmxt80IHna/rfKVBzR0oKCphXCqQHgUH/nb8v5RXnifQa9D7/zsPoyDv20UFpCnR8L6Cv4eHhTBrHNzkhfO7pWFP5OOi3g5wJHiVMZa57n/mN1w/4vrnO9t/i0GCOUjYPeNBe8R3PcWeT77PTms8p1QvuaHIZxntSHejYyx2JXIMA8CDaHARy+f0g2vt9euiNAMFnZ2eampqKkBxAygUZXk68svw/zZ2SslafC4tu97IpuW8ISgaL35kfa354eDiaQaM8SAMAONE6DQXkOTGek8wmHR8f6/79+xngBCCdnZ2NTgGkBRAy/+KLL2LODn6Hhoai8b03X0ewe34WpxM5Efb7/TgCkTEXi0VVKhW9++67arVacXodqQSAxFKpFIwFaCCnm3xPWjWxrltbW/r4448jJHh6eqp6va6TkxNNTk5GfrQDTwcLPAvv+bvvvqtnz55FQU6pVNLS0pJarVakRkBflUolaA8hBCOXy2UtLCxEE/xWq6VGo5Fp00aB3ubmZnjUYW4AfKVSCQDqYAzaPDs70+HhoZ49e6aDg4OwkMl3B8yzryMjI9re3h5o8bsByG+KxaLq9Xr01fbv05Cq/xuA4AL/dYKJz91bnSpS7k8FXqpUEKwOXj2Uh/cVxUK42vvcurEpXXb+cMMWxcGe8Xcul9PBwUGGX31syAZPc2AdqSWATn2dUGiEx6kZ8EjM64wS9hklCd9ubW2pXq/r6tWr4W2RpNXV1Uzud6FQiG42frkSA1wQIfIQKTQGj7mSy+fzYeQid7yg12nMDVbyqF1+0b98YWFBi4uL6nQ6+uijj4L3fR1zuVzkAzvo6/V6mpqaCjl9enoaxbscGe103ev1Qt6x3szBIx/ugU89UMgCxuAeWhw3/f5FfvLY2Ji+//3vq1Ao6OHDh1EAyDjn5uY0PT0duk+6DCm7weZdMRiH8/XrvLXwTy6XC3ACTadgwx040qvV9oPAhjuSfI1fB3oHfc6e0r/a03882jkIkA4K22MkcWhKermRyLzd0HdQf35+Hsdp+/e+rr6GHsHx9AdfTwfGzCEF6i7PeNagiFy6P7zbi1e9gw+07fTv4we/sI+pjvF3D/otBaieK+/RF3cU+DqktPY6AJ5+n9J86kh53fXGgODT01MtLi5qfn5ezWZTh4eHevTokfb29jLFEXgJWQSAIwI8tV7pWtDv91/xrjlAZcMhEr6XFArLlR95OWwkBSd4ELkQ9hRTkNOTy13m/8G8eFY5gIGCsaGhIV27dk3f//73devWLe3u7mp1dTVyTxEOo6OjmpubU7PZjBNnyuVypt2Te8LcYmXOeJgJP5KDfOvWLf3mN7+JPGQvkJIUShcP5LNnz1Sv1yOPEq+HW/bNZlP3799Xq9VSrVYLQNDpdEII1mq1ENr5/EVHCsAogqfT6ejg4EAHBweZ1JaJiQm9/fbbevjwYQbwAM4RVNKlEdVsNlWtVrW0tKTl5WUdHx+rXq9rdXU11pDQq9OhpGi/Nj4+rhcvXoSQ8XQBv//09FQnJydqt9uRUyUpAD5exfPz88id9DQbF1LOI71eT3t7e9rd3Y13pVGSQYLb+cIFG/zFNcjDypX+liv1RjgYYdx4JH2saTidsXvuvwtGfuufU/gBHcF3DlIYCwDV15f5e9ca97pgEJPbLik6x2B8AV7y+XzGIEU5pV4hxtjtXhyyQ9cV7un1evrf//1ftVotzc7ORiThwYMHWllZkSTVajUNDw/HMd/ICQCnH64CLQAY2+12Jkc+l8vFkazwPp5bLzYjrxZl7esE/Ver1UwnFPKfh4aGojONgzdyDfv9izzctbU1Xbt2TbVaLTzK6Aw667gRD/0cHR1lPGqsg+f8YlA5LfN/7wzDWkEjhIOhKRw10CCdXFZXV3XlypVIecL4Zmx4tfkcgIKsZ1wYqs5vaeoQn6F/PAKQy+Ui9Qew4nnDDjpcDvizU8PN+chBXHpfmiLFeIho4u0vFosBXB2MDQ0NhQHBb+hAxD7gjJidndXt27f10UcfZfQ5PIZORn64QezRXGSUH1zFOrlc5+805cFPgPT3ue71lDdfq1TWAyYHFam5XGbd3ZnlaTDs//7+fmas8G6abubr4vKVtXbv9SCZ7fe7vOM7Up9SnZKuk9Obr5HTtvPf77veCBDc7XZ19+5dffDBB6rVajo6OtJXX30Vpx05WMUyBEQi2Jmwh+vZ5J/+9Kfa2dnR+vq6pEsG9uRvlATeAulSwdF6jNQIwNn169d17969UIocNXzt2rXoYAB4Oz8/j7ZEELB7scvlcpzIdnh4GC1o+v0LT/Pa2pqOj4/18OHD8MR6uIh51Wo13bx5U41GQ5988knmyFRnFlIK3IhIPXEovJ2dHf3DP/yDGo1GCBie614f9ml3d1etViv2jv3xPfI9ffToUYRDpcvepJI0MzMTNEG1uaQYm3TJDJx0B3B6+fKljo6OND8/H8Ku1WqFgeCeCzwy7NPh4aGGh4c1MzOjycnJUPx4ocbGxjK/dc8aHQE4RIEx4tGA9qBTBLevKZ5DBBPHsnK5Bw8actpmT9jPtBgFgeTCmogDfOYGowsgnp96HvzZfi/7TDqKe6t4VrPZDI8adNnv9zOHD6AMPNQmKQM8eB+Kjv3BC8K6wT9ppfug8CK8UKvVomVd6mHA0ONe1jtdP+cDWvXl8xcdH9Je34DMnZ0dDQ8PRzSA42o3Nja0s7Ojfj9bZIcRzZ5iEHpthXSZBuA8T9SGVoYOBAFODgb39/ejw4IbIQsLC3r+/HnG4yhd5L/Pzc2pUqlknBOkATUajTgdEvp0gEcR8traWua+XC4XKRGpEdbpXLShhK48AkgbR89fpmOOp25AG8wTjzHywB0NDrbYz263q/39ff3Lv/yL/vzP/1z5/GXnCAyBu3fvRroXBZqArDQcDk177YADRcAQqXu8J+VTTxFxOeBGTAqQXudZ85QV+ucfHh5mAFTqseO98KZ7+Twsj9GeRtOGhoaiuxKdQA4PD3V4eBjRRlLkXEa6Ee6A16M2Kdhy2YaOIiXIcQrjciOFfeK5tDp1wI6RzeW0BM1yYSj5iYk+Rpc3uVxOU1NTEVV1+Um3inS+yEF3FNAJy3UHn7G/qaFFq0JfX/e+O00SPWcMKc25PPd983vgZd/b3weE3wgQLEkbGxsR3mw0Gmq328E8hJIKhYI2NjY0Pj4eTCNdWuiEMtkkwnW3bt2KHpcQJ4TjSomWW1ibvvh4RvBg0JrMczRhUnJ6aWeSz+cj3C0pcobZZArpqtVqpFQcHx+HxxUP+Pb2tvb29uJ4XbwGdFagvRn5ZV9++WUA1jSUcXp6qkqlEgTixoUT5vDwsA4ODgI0umdEUggAKQuQ0hCvK0gp26uVdAG34qQLAIzyxJrF8+THHHMB7AGszWZTd+/e1czMTLSRS4Ud+wtDSRceo7t372pvb09jY2Nxmhd5WO5RcqGM0Pf0g9QTgjBhvVzwQJMAUxeCLuRQoK5cpMvDANJCkhTsuiBHyZbLZc3MzOjKlSuamppSo9FQvV5Xo9GI/XeecYEsvdrtwT/DU1oul4M2PP+M99MiDkXaarXi9DTny9Qg9oIdX3M8ddAOcwAoEnFwYwj6IWTvudjMhT/+fzc+GIMLefaAdyGoSTPI5/OqVCpxkhzzrFar2tnZUbfbjZZfvV5PjUYjPKR4UomeoAhIo2Et6CTjCov7XWkgdwDX3I83keednV0ed+xdLFwpUyjs3VPIHSY3X1KkWeEw8L12Y2R0dDQMZu8A4Cko5Pb7b1l35L3LHiJ3rIEXKLsBD0j21CwcKC4XkZPwF7TZ7Xa1vb2tu3fv6tatW6HHhoeH9fjxY92/f19PnjzR4eGhJGlqair0hoMC5M4gzxh057LF99zlMRGK1JjnHd4xBI80c3Jwhve8Wq1qcnJSU1NTmpmZUaFQ0Mcff6zd3d1M3rWPlTHh2WY94StkGr/FO06aCDqBNmDn5+fRN56cc4C46x6AnRfCu7xNAbvLNF8bSZkx8g70pf+fNaxUKhk9T/QJ/k+NGgfTvAf5NDQ0FA6ZFAxDC6T8wM/oIA7UcmNHUmZtUjnnhh28jqHFmjAWT+Nxx0iaP5zyp8vRlIdTek89zsw5NZa+6XpjQPDR0ZG2t7cjLIp1KF0WEXnOHYLLCdfBG7/pdDr66quvtLW1lTkC0y0aNtgVk3RpURE6c+/d2dmZtra2QhhBIIyjXC4HUaCwUerebgqBRs9K8ow9fxfBm8vlVKlU9Pbbb6tUKsVBEXjX6vW66vW6vv766yCwUqmUAaQIdwqmvIjDwRxKs9frZTxG0iVTAkDdM8Y7Usvf98U/dyHqc3WgNzIyEgIWQNJoNLS9vf1KaNrHgoex2+1minDcYHHlz5yOj4+1urqqw8PDMGJIS4BJPdTqHiSiCV4MlM7fQ/Cp4kHIeQ5rKticZv35brhI2QLP9F2+X5VKRYuLi7p+/bquXLmicrmsmzdv6uXLl9ra2tLdu3e1trYW9P9NwsXnwf9Z7/Qz/u1gjP9zXHR6whp75qHmQQKPz/FqIryhL3rVktbC7wFQ3sCd/UZRSdnw9NDQUHg2vcjOgbnzM/viBlXqQWFf+M35+Xl4xQGIkuJAAzfm3SviII4/0I8DtxTEu2fXvczey52e7KwdbRSRu3iBfD8ApxT2TU9PhwPDQQNj8jSZFAiwLvAeBlE6L+brIMz53T2O3IPRQe7x9vZ2gCU8uG5YOrh28AEtISs50KlYLGppaSmOyn7x4oW+/PLLaM2Gl4099JxSD5unvOcOHOYxiDcA9dzjvOtr40alg2uXsThjxsfHVa1W45CRSqWiq1evhv5A5roTJZWN7BMeenjX0zRcBno6CutMN6AUsKXr5LzochJZ6Zd7FPP5fJzwyRqRh+587jKX3+F9RZ+7QYKh6E4M3umhffjIMZHToTs5xsfHMz3m02gHXUhSj6l/5qfPHh4eZsad6lHnH2Qk6+upGE6bLl9JEaJ14fT0tFZWVsLgddrDg+54BN5LdafXeKTXGwGCIRZSEiCk+fn56MuKxTQIcOIVcEL2sBFFCDAJStU3GqGOgHbidYYBUJLvJ2UtkrOzs+jPiZCWpJ2dHe3t7QWw5HcQ1NnZWXRGwFPIMx3437x5U9/+9rdDABSLxQCI9+/f12effRYgGBCQeq5gGrdWXaAghLHmfJzsDcTsudKuPLlSMMD++IXR4V4WFEyxWNTMzIwmJiZCcLx8+VKVSiWeTdhwaGgohBHhJe7397tARNEjGPCqAZrPz8+jXzMeOhd0DuARLNABa+FCO/VsOQ+44hpk/abKDEDhghz+cWHu4Mf3Jp/Px2mNV69e1bVr18JbOz8/H/1SO51OGBwp4By0pqnB0+1eFLNwTG1KC+w7yrLfv0gpmZmZiaO0U2XFmg+iKQfhhEslRUjclVy/348UEEnRgpEIjO8ptAmteTSBwtDUswSAceXG2sOD3EdEi/l5GLzX60Vxj6esTExMhEeYXEN/D3LPPTI+9xRUIFtdvkI77kEFlAOk+BtlubW1FfyHMwCjAzpCdqWg1eUeY3A54h58+A7vvQM3N75cyTuwczphTXnn0NBQODNoSQmI8D+pccgeMK4UIFNjgLG3u7urp0+fand3N57jBXC5XC7TFz1dj5QHnQbSFAi+Tw1iX3vWJY1IudznApBR0IeTAjADfeItT9d90LjdQMSxgJcXfvMIoIfsfQ+RhQ4MfX6vA7o+zkFyhe+8gNTfwbuRfb5PpFDwb/DI8fHxQEDqOoTfpWufjgnsQw/6paUl5fP5yKOWLo/L9hNNU/6AhqempjQ9Pa3j42O12+3Q+U4b4DAfv+tW1jvFBr7uGLLI3/HxcS0uLmp9fT3G7o44aMHb6/IepzGXKYOuNwYE+7GUCJ/vfve7+vTTT6PojDCJlLU48PShaJyAsFAR2q7kXBmgVKXLkA/MBRACrLHYnDjFOMi548AKL3DY2trKJPk70eJhJLXCLVTWh4KVmzdvanFxUfv7+0EYnFz07W9/W0+ePInwKUIztZgJMXe7l0UyntyPssILQ/ia5H6e4/lQnueTWoUuPJ3BWAvP6/E/BwcH+ta3vqWlpaVI6qdNU61Wi7DSl19+GQzoz3JBwJ6SxpIeHpHL5aLCnf0BuAGkUVq+r5yABQ1hqGEguEDznELWh7G6MPPPAWDQIfRJ6hBCnfd6rjL0StpI6vUDvC0uLurKlSsqFos6ODiQdJFaMjs7qxs3buj09FS/+c1vIoctVWSpUmNfXTkTNiMSAehwI41IjQPmhYWFDNhymeFz8XVjrQn5UQCzt7eXSZ/AI1ypVCJtANCAB2Vqakq1Wk3n5+daWVmJfHwv2pEuWylKlz3Pc7lcJozshx64ISVJjUZDExMTGY8GTgHfu37/ojiMY8OZJxELFAW0Dc3gzYG/obW04wNecacljjoGdJdKpYwxLylSI5C3GKO1Wi2K8Jiv521SB+GnQ0LTAFvmDT91Op3wyBMOJrcR+c46YLgCGJh/p3N5Ch58TY4l8hgvvYNB9+65MyZtNwV9uTx03lhdXQ0w32g01Gg0XjGO3UuN/vEiy0E8h9zzzxzQudMH0JF6MPk/wIe+124EwXPobOiIg3242HciCszPo1gOmnwO5+fnUSgJOPI5MRb3jCM/cITkcrnoEIL8cRqAN1Ojnuel/4cOSGn0LlbpPuO4Qs/CL55CCP1JClr1NfY6JdcfGGPoBfAL6ZrQ+/j4uK5cuRLOBGgH/Uc+v88dfUINB6ePcuAVaaMpnaWGrOs+r9kgxcb1A/oL+Ud3qfX19cyhV6nBR2qM40IMhpQ3Xne9ESBYujxeVroML0JcXEwM7wZAjgUqFouanp6O42YhjOXlZUnKAEAX/A6C8VpJlwtKThRMwf9hAGcCTmpiPHiUAG/7+/th2ZPLy3tgEk+Ch+BRhvv7+2o0Gtrf3w/hUywW1e12A8jQmmt3dzeAsp+KhYJB6eMBJ7ePXGH3BNP7l2JDgDHe8BT8+jvc45XeA2MDlFwIA7bZZ4yLqRhMCdMAACAASURBVKkpnZycaGFhQQsLCyoWi/r8888zhWgowGq1qvfff1/lcjmYn+9+9atf6fDwMAwQPMYYEIR/8ciMjo5GwVCv14uTnwBVqXes3++HIHZL2YWFC700TMi9DqZTBeCKBK8CgBPB6ULUn53L5SIXeGFhQePj49Gt4ujoSM1mMyIU0Kcrr9Trn16p4EEQEioHMAEyUMLkD9NzNlUuXKmXhvXxuR4dHWlpaUnvvPOOdnd3o30YvN/r9eIgEVKXAH4U61E9T1SKPcUzWC6XdePGjeCvYrGozc3NAC3cx7pNTU2F4gXwd7vdOIadvW2325qdnQ2Dy+eGrKQjSur94hm+3x4lgGfdiykpwo7NZjPTf9jTPEjLIJKAh44iOVK1ms1mFMg63bC+rVZLX331Vaa+wj3p8HO5XA45RpjUW7KR2oIRBXjnXTgnmLPzAfeQAjY5ORlFjufn50H7nncOMMaonpubUy6Xe+X0zqOjo4gQwJ/uUfU1Tr1wbojz7Bs3bqharWplZSXWw4EBcgm56zzi4Bgn09TUlA4PD8MpkHaYcV2Zeo5dL5NWR47z4eFhyCBkv8u2lG+dVh088V3apYG9Q2byG+jKva+pfvbIgBdspaA8zat2nmFMpM6lHUb8Oe5Mw4DFOcM7AI3o+tSYgi45UIu5QlPumPBoeb9/UVBNvj2GMcYd8sL3wCM/ROaePHmira2t0PXUU6Qg2GnXaTpdE+abRimIFiCTXr58qXq9npGdqR50OcGzfI+dtl53vREgGLCAMux0OpqZmdGXX36pnZ2dKMjAmmPSCFf+jUfBLcFer6ef/OQnKhQK+u1vf6v//u//zpyIxmaxKRAS4BXrLE2sd7AmKRLdAUy9Xk/f+c53NDMzE0Vr169f15dffhlhy36/r1KplDnJyft7YuVg0dVqNd27dy8UDaGmoaEhtdtt3bt3LwrARkdHtbi4qBcvXiifvzxjXFJYYqwnViVzduXpuYfpcbooJdbCQxIOuFHcnArnHh8EKgLYDYGhoSE9ePBA4+Pjevvtt1Uul7WxsaGDgwNVKpU4OerKlSt68uTJK6FZ6UKotlqt6K6Ah/P69etqNpv63e9+F4qOMdFTlM9GRkZ069ateDfChMNLODULpsTaRUghWNzz50IeoTs6OhrrxvNQ7Kw7RkMulwul0+12o/OIK4DU+8u+pZGB7e1tTU5ORuEVdHj//n01Gg09fvw4Ez1w5QCduND5JqsbpYBAJ7ozMTERABCw9vz5cz1//vyVvqBuIDI3LzoDFLKHDx8+jN7LaS4ez0HRzM7O6sGDB2Ew440oFouvFJjy7l6vp1arlUkFYJ/hG8+fr9fr4R2VLr0Zvo58T2qVFwKzv264MRe8KK5IXZG7RxYjEUOPvRkbG8t4zBk3BkqxWNT5+XkY+87jyM9Wq5WhMegSAEnNQb/fD099ahAii/z0Svio1+uFlxBw4UDV92d4eDh6xZIaggMC3kPHzM7OamZmRvPz83r48GEcTORAK/UO0tmDin+vpWBvvfMHz6DdZ6VSiRZqLnvTe3d2dnR4eKhWq/UKwICv3QM6CDgWi8U4pjmXy0VBNsazA879/f3MGjpo8TUmBZADU3CgtNttra2tRcjdgXi6PyMjI5lOMHznANwBL7QCnaYRNn8+NOnfQf+MyaMV5CMPArWeb8rz0/QULt7B73DYYbxhdHuU1KOmg9Yilb1uXLjDDJqhU1Mul4suGegncIanmbjBzfsofi0UCuEQoCsEsqbf7weNvA50pjI8nYtf6dpLl4Cd71g7x2apMeNg+XXXGwOCqSxmwfGYehiQDaaq0v/PRnJcrIOsjY0NFQoFNZvNDIjgub5oTsgsHgCOyz0bbPr8/LwqlUrkrywtLWl8fFzT09M6OzvT/fv3I4cXpQBD8SxnXMLsdDTA4mu327p//37kys7Pz2thYSFaotED13uROihkvfAWYFAUCoVMJbcTDWGWNDTLeAHVCBOYH2OEe91owUJ3JQoxw8x4MJ88eaJSqaTbt2+HdVsqlVSv17W5uamNjY0IHTNHVyLQEnsIEy8uLurRo0chDIeGhiL/1JmwVCrpJz/5iX7+859ra2sr9uz4+DjTY5N5MkcXaH75WkiXFc9uNPi6eXhXugyTegEWNOQhWBec/kzCuHi6Hj9+rN3dXX311Vcql8sh1AGBFFQMUqrf9P9BlwNQFJikTLUzOZiSMjlrqQJ2bxT3eC4eY6atGfMiKsJaEEJl74kEQZOtViujgB0MEMFqtVqZg3jcYAA8AkIwBLlQ0G4gAaJwDKT76d5lX9f0PucDADMe3F6vp4mJiUg5kBShR6c35Ai054e4OE0hDz3sfOPGDbXbbTUajUgf4XcAXwxU3uNg2A1l5tPpdCK1BecJTgPe7YY53i/WK424MI5+v6/19XXNz8/rnXfeUblcjmp9B03e9UFS0AtOhDRkzf6kzhT6yuPQ2NnZyfAJf0MPFA86yHOPpa8B703vZxxDQxf926EjjHAMAmjSec3f5fqz0+loY2Mjulqgq4hw+J6wVmnamvNW+l6XYem6DForpx3+7Q6vlDdcdnqkMwW7yBavB0BPEK2A55k3oJPf8x06F/7Gm+7peM4TGFbuXPEaDZcbrB96BWcAMof9d2PYL1IwyF9Gr7pjCIcY/OVAFd6A/3yPpMF56indMwentRTgpukXqaHk8vCbrjcGBNPbEoVBUnxqDTI5KVvM4GE9QCtM+/jxYxUKBdXr9RBirtDdsvDEeideAKIzp1vN5IzC8Hfu3NHVq1d1enqqzc3N6P8LM+fz+QCPaVjZQYqkCLv0+/1MLiugeGdnJ06Y43MEG+vk7+WzSqXyisfWCZixAN4ZC0KSe71yk3nBqE7s/lyI2T3wjJNnsv57e3t69uyZcrmcms2mpMu+rNvb21pfX8/kHDFHGBSABVMDbs7OzjQ3NxftfE5OTlSv1zOGEbmBjx49in6KGAwYKdwL/RC14G+MGL5zZZrP5zOdCBgnh654bqdXv7sR4a2MXLCzd847/EFI8+xWq6W9vb1ITwBo0arv91nurhT9b+dX/7cbkOyVC2buTUNbqfJKaclzwXiOV177WFyporA8lcXn5ScwDlKifI8R6MWYgDTaOrF/DjTSMbsnyt/n73UDzEFXqVTK/J85oTRYJ/jJQRPK83V7xvjdmAWAITudJzyP3ffMWy5ypXLX1wb6QKZ5xAnZgSzhHumymNEPGnFQxT3T09PqdDohZ+7fvx9eYGS6A18H0+leulOG+xi785Ebgrdu3QpDahAPMWdoDI869/mceLbTCn8j93B0uJx3kOGX85fvmfOp97X3SBT3pw6Q18mB1NB2b6q/bxBtSgpHh6cZDloHnxv0BUB3Q4ULGnMDyp8xqGjYUwCdv3DIEDmiiNCjE24c8CzG4Y4EH98gw8D1hEdXXDY6sEeP8V73VnvqCDoeLOV54D5+n4Pv9yCAmjpsfC6uA/xZqV5Ijb//y/VGgGBJAXopKMPb5f1QU2aiTZq3YGFhETrd7kVjdcAIG+ghABaZ3F2AlgtX8n/dI+Zep/39/cgvpefp/Py8Hjx4oK+//lpnZ2fa3t4OwMg8XGk7YTA2iPPo6CjCuRD2ycmJWq2WVldXo6WVC2nWzD1fXENDF8UgFD0gyLE2fT29ry0C1FMPPF+aYgCUD79zQfE6jyLvBcQD7I6PjyOshrFxdHQUfWxJLwGgSlnr3wESxtHe3p6azaYWFhYi17nRaOj+/fuxBwj9o6Mj/fd//3fM2Yvj6E3toJc/HpZ0EOaCNI0C5PN5jY+Pa3l5WbVaTfV6PXL28K6gmLnflZMDJ75nPfwejAb2mQIXcjgZK3vhCuf/y/W63/jnLtRTIQmQTz1FqWIBfBCSc4WJknHvjZT1ojmNukeFPSVc7jLG15FcYPjaK7EZJweopEAboyOVXfzbUx6cpyuVShRyAcQ7nU6kKwwPD6tcLmt3dzejNBl3oVDQ3t5e0C7PTo1i1juVLZ4aA29hADAmUj/cUGMeFNwh89ODUVBkjA357N57l1Nu5DsYgZ5TL7PPyxU6NRc8x5Wv0xC/YwzIdT/tz8dDJM1BK06N5eVlPXv2TI1G45V1djDAOIn0DfLypmA2NTQoTHQd5EbX6wAj/JDqWebu3lOXNb7GrwPZKaDjXS7HBhnC7AljQQawtmkEy8G0P4/x+xG/KfhymcgY+IzortMKzheXbcwL/cAzvB0sc2Ec/j4+8zak3Mv3vV4vQ4PQXuo5xsDAS48sc3rwdYDOoX1fR99bN+LTCEJqlPi7crnLrh/uyEqdAIOAs8+J57q8TAG0X28MCMZLggClXROAotfrRdgIy56cFHpXugJh01zweBgCzxyCilDI4uJihpld8eJR6vcvwpo3b95Uu92OcDH3Hx0d6Xe/+536/X4GwOzu7sbzEOIp8UBAKFWIGPDJqVqdTicIfX9/X8+fP49xk2OHp4dKdpQbhSse+uz3+9Gsnk4MeDfoGuBeJdbTk/6dKc7OzqLQygvO0vwnfoO3mbC1J+x3u10dHBxof38/iuMoAvSWWygF94h5+zWs2pOTk4gOlMtl1Wq1aDNH/ibrhPHj+VQYDGNjY6pWqxHF8DQZjIFKpRIC6PT0NJO7615qrmKxqIWFBf3Jn/yJ8vm8nj17Fv1i8cZ/9tln2tnZUS6XC8HN2g4SEJIidxhB5vTK5d7h1OPg/DBIOaaf+XNTIfS6ZyE0/T7ogtx4PPMOfFypuFfJwUCaagPt+dwAgxiqDjrwjnoFN88m547f+IEugLdcLpfpruEhSebB+vPsUqmkmZkZra2tZdaW3sc8d2JiQteuXYv0FQ4ampyc1Le+9S398pe/zPTsxLC5du1aFPr5vqdr52vjIXM/UERSfObhTtKUiGxsbGyEAwPAWKlUIg3Ho214lvFs07GDtfQC6dTggJ6Q87lcLjosdLuXBb3SRe4rESDokt95MWFKXx7Z4V2SwsvHejrg9jXlO4r7lpaWostGagx4BMidHQ4OOaXNdcwg4PHy5Uvt7e1FrrK3dfS5pSlDLrfdEPTIqst030t4m/1x8ORzcO88ctFBFDTs3Vh4LmAOJxq/8QgxOsAjB97rGtnNe3ys8Lc7MdLxc7FX5XI5UwPEb51/eB859k5b8KsbXYVCQTMzM9G2z73fDkJ9HA5MfU4YDann1iPsDsjdcQiPsc/+ey4H2G7cuVzBKek4LY2cpBEInuPvch6DF7yt4euuNwIEu6AA8LTbbb377rv6sz/7swAnFIEhlJ49e6Z79+5FWsCgNjVsMCFsAA2bw70ogbW1tVcsC/IFCeENCgm5F0uS7t69qwcPHsS9CHO81w7u8YCg8Ml5xtubWp14X715Pp4LGB2gj/fJC2IAVaRpsAdcXnmM1wEFTi6xC0YHEr1eL7zLAMVKpRL5Uq743cIulUoZhs3lcq+EXmHaXq+nR48e6caNG3r33Xcjv+2rr76KKn9aQjWbzcgJJo96aWlJvV4vvHIAlZmZmUjFcaDjeZnS5ek/AIharRZV4J4H5tfZ2ZnW19czITWMGweJt27d0ocffqjvfOc7+o//+I84wjmfv8jj/N73vqdqtap//Md/jPZt0B0eAMbOZy6gUg+W730KSP3z9N/+e57xTeDY6XeQVe5K0e+bmJjQzZs34yS7QqGgRqOhJ0+eBLCj0I7iokHGlofDSZdCOPpnGIz0PO33+yFbWF/WFE8OXmL2o1KphGJCkZ2dnanRaMQBNyhTaAHDBKVD2y8KI1OjkDSoSqUSBbKTk5NaXl5WuVzW1taWnj17pl/84hdBj+45rFQq+qu/+iv97Gc/08bGRiadw9MhPL0HheLyAdnqXR2QmezB/v5+yGEULL+lT/XU1FQoXuRKp9OJFmuTk5O6c+eOvvWtb2l6elpPnz7V5uZmtPDioCDmCv14ZMpbIkqKQwToZuBK2uW2e6Nc3qcAAOcFRWIof/emufec+/f39/XRRx/pJz/5ifb29jJODzeQoV9oJfXENZtNFQqFOCyCcVJcydwYA8YeebA+b+dtlxmu95DljCVtVeVr6s/i9/4cigShf/8+lRlpuouD1KOjo1eMM5w5pCTRQWlmZkbNZjNqStywdgCcekMpckRnQ/OpkSApnCoeAS4UCrrx/+bKe7cm1p+5u3Hl9ExxKgage6/Ro3RzSR1cPAfMxGfeqtLb0dEX2NMfcD6hB1OQ6jwkKYxBB+HcT3Gv7yt858awG7p+rxtVTt9gJJevr7veCBCcz+ejOtUt37W1Nf3FX/yFPvzwQ83Pz+v4+DiqHQuFgn7wgx9oeXlZIyMjWl9f18rKSiblwRWHdNlr1QV2CgAAa/QXRQhiWbPop6enUbmOsMcKPT8/18TERBA5zx4ZGdHy8nIwLECsXC5nTiGCCPA6eQgCMIpHxNMR2GjaoaCwYRLm2m63wxODZ3BkZETXrl3T2tpaxqNIBT/hUzcEWJPx8fGM4ObCSp2YmNDCwoI6nY4eP34s6VWw7sDCc/hYe0AKJ+D98Ic/VK1W0+npaRRDvvfee/r888+jmJAcbLpStNttlcvlKAbyVlyTk5PRkotDFbwg0cGkhxwxRtxrDDhiH8mtZS/wqLlHg/snJyc1Pz8f3ndotdPpZCrD2W9XgtDx6Oho9IscVOg3NDSkiYmJTOjV6YPLAewg8OreAAevg+5JPTnps9KUAAye69ev6/3339e3vvUtXb9+PQy4k5MT/epXv9Knn36qx48fh5Hq70eATk9PZwqj4D/e6YYtNIgST7uquNHY6XTCsO52uyHD6LVMyhHvg8ehG5RfsVhUvV7P5JUeHx9rb29PtVot0qA4mhh5J10cLT4+Pq7Nzc3wgF2/fl1vvfWWJiYmtLu7m5Fznhv/5MkT/eEf/qH+53/+RxsbG5lKe7zubji5txOl5jmBTo8pkHSgAOhij8fGxvTBBx/o0aNHcRokRW90ffjggw/0gx/8QO+8846ki4jJ/Px8ePFOTk706NEjffbZZxmvKaAdYOi0jB7J5XIxJu9EwRzx7Nbr9Uitge4lZeQ+CtijQ9Che47ZZ+7f3d3VgwcPMjqKKKZ7VN3LxzrQkYEjljl0wQGi83QaBXIHhnuQ02gAPMCc4QFoHUeS05v/bnR0VM1mM6PnnBdcTrj8ZB3d2YL+8X2AXnHWeFTO6a9QKGh+fl5/+Id/qM3NzWgFyZq5Bz9dd56fy1207qtUKsFjqXyjbmRqakqtVksHBwfBI6QyQnvIZY9cIz+IRFFAKl2eWJl62NHt0C1rQ29i70DEPrlnPJ/PR2cXcs9TmnFw7tG7VPamRqN/5/NkHoN0h9OAry3fO0B23vZ0tEFOF7/eCBCMIgDsEbLwI4T59+joaDS/npiYUK1W09HRkX7+859reXk547EFYMGc5D2iyNzd7kyPFwjLyovApEvh6ACYxceTQr9YFAV/V6vV8BaenJxoaGhI1Wo10xAaAnQvC+PDG4WSYh4IVuYEgEPIMjaIWMoeq9vpdDIecp5J6A0FQg6R5wmjYLyNEmktroTeffddbW9vR8shGM/bP9H2ixASF/d3u1299957mpmZ0eHhYeT2Dg8Pa3l5OYqFvBsAz3ehfuPGDY2OjqpcLkc4cGdnJ3MP8/bwrpRVfuwDFjNAhRwz5t9sNkPJ+DN9j/P5vBqNhtbX16O3dSpoms2mXrx4EWvvXl3WCMXL+3w+CARCrr9PQAy6XNjDD990H/ekQo7PXUgyJoT49evXNT8/r2q1qnK5rLm5OVWrVY2MjOjhw4dhHBCG9+cShr969ao2NjaiLZt0mYsGD0MzhKZZe997pyH3Pg2ad79/0Q8YY5jjRlOPEf9HvjG24eGLgxvGx8fDczs5ORnpNdDq5OSkqtWqtra2wrADNE9MTGh2dlatVitzehsKaG1tLVKWWC/43A1dl3FStucs8gU57V5Y7vULw9U9rJVKRbdu3dLOzk7kVWM8ugcO2dLtdjUxMZEJo9IBBI+XXxgoXtzMPSh36bJYGFrCuz49PR0G+MbGRkau8zz3pLsS5j0uq5HHKfDb2Nh4JX3Pw8jO025AsSa+3u5McT5Ned5Bro8nBX4uQxz0AKCq1Wp0UfHn8UwHywAojwyk3maXj17k7qlc/I53uQfVwXOxWMy0aUP/0hqTCxpHPqOLnffdeeb60UGeg/tOpxPHJAPGaQc3PT0dji0OwEEO4ShhPQCw0FtaS8T4oB9PJ3Gnlu83a4/OhVZwAnBYja+xg2H2CH2TpjL5/rv8Z71SD3tKN4PoNqUPvPIAe+bl72Ler7veCBDs7bl6vcuTfTqdjp4+farl5eXoQUg4wc+pz+fzcZJRqVRSo9GIXDQEFN5BDz/74gLIhoeHw7OJoHE3vvSqB4xFB7xyao4LGzYc7yeAEuB0cHAQliKEiJBwz7Zbqe4lQDh63mdKRA54PREfogK4Y0m6AHXh7FYgz+NzFCkMhlckl8up0Whobm4uulhwwRD9fj/On19bW4t1Z18QBLdv344UCLzU7CdGEmuAl4o5NptNrayshCe92+1G8RlnlKPcUgA0CMixVxTsFQqFaJ7/4sWLCNNjiSNEPPzoSvvg4EBPnz7V1NRUKDH4gXSd58+fZ4w3F2oukNI2Wi4YXPn/PjCbzveb7nud8HrdvYMUL98NDQ1peXk5TlIj7YBjkMmf9CPTeRb052EzF7oIdPbY5YEbFr6+DgDStfMxe8qLn6CVrgPvoy8pQGtqakrlcllff/117L//FkCNPEEW+gl2/f5FBGR2dlarq6thrLlRtL6+rtHR0YxBxPzSUDIXXivGj8z2nG0AYT5/0XPbgQu/wTFBOHRzczOOlSeUe35+Hsb2wcGBNjY2ND09rcnJSRUKF4cztNtttdttbW5uan19PRMJlC4jSd1uN2QvKWl0xki9YcViUWNjY5qbm9P09HR49GZmZuIQmZRu2O+UjqA95E9K9/w/n89HcTi/G+QdY07s/ezsrDqdTtR+eBEihrgfbuIAwY2BlJ6d7rn4rUc0kLl+QIfPKZU5g8CYj8V1Lfekzip/h68n70zXmftYN6J36+vrgQ3QFcxTusxXdX3LszxnFQPSeYt/k6KRy+UiWgBNz8/P6+TkJKIws7Oz4UwBRBIFRD7k8/noRZ2ujaQArs7P6T67Y45IqDvHJL3iSYVHUq+rA/DUWMJwSfXmID36TZ+lf/t9qZHJ3qTRz2+63ggQ7CAHRUO+yWeffRZhvlu3bgUTkvtyeHio3d1dzc3NqdO5OL2JNANJQfTuKXLrFGUJyORUMPduuPfGhRxWEIvNHJwhpVdPniN0zlgIeZA+AQHxewTe2NhYMBaebQc50mUeKAScWmRuvSFwGV+3242jT524BwkTchVZR/bRvUcAabzCv/vd73T79u0QzNyD4O50Lg5JmZ2d1RdffBHrwP6wN356jqTMqXk+f8YPCOn3+3FiGJ4yOiLs7u5qY2Mj4/31eTC/VEng2SXnC+WLUccJgr1eT2NjY7FWKS3y3Ha7HWk90uVRmuzN9va2tre34/cOMh3ceR6aX+n4U3oeBFgHCajfd70OAA9SXP5d+mdhYUG1Wk25XC4AEwWG9CZNPfX+rG734iCRNKSMEeoeKOjVlUeqqJEJkl7ZA5QhOb+08ZMu+31CL25I0/e6UChoampKt27d0uTkpHZ3d9VsNiO6RHRka2srgOXx8XEcpJPP56PYCbnAyZS8i8/7/X50AkFZ+YXyd57O5XIBapEf9NEFBANsAUekL/FeL5w7PT1Vs9nU5uamPvroI62uroYDIzVQ6vW6Hj58qG63q9u3b8dBOXt7e3r69Knu3bun1dXV2HOABsqQVAfyQXO5i1ShFPh0uxfHw1+5ckVvv/12eO329/c1MnJxjDeAFTDP+rncSfnK3+M07/cyRujLQ/gpr/AsoogcQY2ewHDGOHJHQcr7TtupAev8xNjRQ25w4DH0+4hKpKDFHUoOeHmue1vd6+z0kKZcuLxBp7OfnjaB7mw2m3r+/Hl4YR1Icj8F5vl8Powy1ozcfmS/GzopEGy326HzwTru+IOOSqVSpjc4Y/MODqwFkUWP+vE+/g/PomP5vxe5VqvVTDE4UeZcLhfpF76mjnf8b98LjxylOe2+V64fBgFcp89Un/heDfIip7z4TdcbAYI9idktqLOzM62urqrVaunx48f64Q9/qLfffltXrlxRPp+PoqeJiQnNz89re3s7FAEWGGE1t2p8I93SQ2gj0OlGcXR0pK2trUybNOliA2q1WhzC4VXS/lw2t91u68mTJxHerVarUQhHHqqUDfOwuQ44EUAeMpIuz5f3BtnpM2EUSVHMRUgHoeX5RhgGzujudXYrEWLDm+N5X73eRQHgysqKarVaGCsTExO6c+dOgJzbt29HNwAH8hyxOzY2pq+++krLy8vxzrGxMS0uLkaRjDfzJ12GEDfj+MUvfqGxsbFMUj7r6FW7LkQ9vOShM4oqTk9P48zzq1evql6vZ04Z8zPseQZ5X14IeXZ2pr29vfBKERonX90VVKpoKQ77JtAKXUJfqTL0KxUiKeD236SAcdB7+XsQ+PXf9vv96AQyNTUVyoP9/eyzz3T//v1o0J+OAWXa7/e1s7MTn+MBAQCnPJTmHqZrAzjzoiB+h7FaqVR09epVffzxx7p69aokxamFp6enunLlShi8PIs/AFu8aycnJ6rVapl0DekS3D19+lSnp6d65513MjxSr9e1vb2tJ0+exHwdqDF3X5PUWPe6CsAZRiFpAhh6DiSQsXhQke28n+JD6JUIjHe24Do/P4/oztramvb39/XVV1/pxo0bOj8/15MnT7S5uRmtCrmYY+qBJl0C79fo6Gimb26lUtHZ2VmkmbRarShOHR4e1q1bt7SwsKC9vT1tbW1pc3MzU/fhBhwGgPML0SAALjLVx+mg18PGPMeNSFtB1gAAIABJREFUcU4zRM6xF0RO6YCDfOEdjMflmwMT7/jAb9wbyb5CW158idyfmpoaqIfcseAGArmz7tjBAMQxhUPFadm9nIwfDDHIK0zqnzvHfK6p88fXrNu9KCScnZ3V1atXVSwW9etf//qVtWL9qtVqxhAeHx+PmoGHDx+GJ3poaCgMQO8uk+bvwqsAVlIfoG/vRMEaDQ8Pq1arRURgZGRE4+PjmpmZ0dDQkOr1enTc4Tu6ULmzDV4k1xhZ6OucXo4ZfH1SunY9NshIQz4hJ6G3tJNXGuV0h8brrjcCBPf7fV27dk0vXrzQ3t5epgfi0NCQWq2W7t69q3v37mlubk5vvfWWrl69GrksHIW7tbWlRqOhbrerycnJCA1sb28HIeXzF3m+AB0UER5DQhZXr17Vt7/9bX33u9/VgwcP9E//9E9RqARwoUWJz4O/IVpPOO90Otrc3FS9XlepVAqFNTQ0FAqAEPb4+LjOzs4yRSS8NyV0wBgt5QC5EIMXnzE+Wss5IVJIdnR0FFYuoaNyuRyAmWcNysnCGHBPF8KTArHFxUV997vf1e3bt3Xz5k29/fbbki4EOiHO6elpbW5uhtDCoGk2m3r69KmePn2qarUaXvStrS2trKxEfmNqDaYhJuky5OPhZr5DwDvgdC+hW8EYTni28Mq4IPLnuNAFCLhydC8CAtMFCcYWwsi9nG6YDOKzVCDx+eusZVcermCc3l9nzQ8C1qngS8fq8z85OdHnn38eecAnJydaXV3VvXv39Mknn2hlZSW87Knnyp+TCmhyDL0VHL/xNfE5EF7mPgAU4FRStB7s9/u6f/++ut1u0DDFOHSIoN8z3jSiKyi/QqGgw8PD4OXx8XG99dZbunPnjj7++GM9efIkqv5fvnyp9fV17e7uanx8PDzQ1D9MT0+r2Wxmoi+8EwDGvpA65EavJE1OTsaBCLwTuUqf7YODg0zot1gsRuqTe/BQxOwPz4KWWWdk2ne+8x3l8/nIrd7Z2dHnn38u6bItFN41lOIgTxBK8+TkRDs7O2Fce/u7VqulWq2WccRQDDc+Ph5dSlZXV6P3+yDal5Q5bhmagq+dh1zhs0aMzR0SHrVgvACsXC6XOf6d1D8vjkpTBVLwyz2sp3s1c7lcFGX6oR7kZeOpdLBIwRjvJz93aGgo0/WI57MnLqN6vV7oSaJAAJ3UgEDOA2J9vZDbDpS8NVrqyWQNU70APx4fH6vRaGRyUpEJvMeBmxeNQ1NHR0fheJuYmMgAXpx5GBWeKgr4RW+QS4x3GM8u9F8qlXTjxg19/fXX4SQplUqan58Po4mx8b7FxUWNjY2p3W7H94yhUqlEOzc8zNRduKMG49nXN03/Y51Yq5TuuIf1TY026MD5KwXQLs8HXW8ECD4/P9eVK1ciPL+xsRGC0itx+/2LUGCr1dKTJ080NTUVp5598cUX0SrHc9wofGKzer1eJg3AwyZYtz/4wQ/0/vvv69q1axobG9P8/Lz+9E//VM+ePdPz58/VbrdfaWUmKQSsg0O38LHiJEVIBksQy4ZTZBByMBDPwjIDcLK5KBMnBEmZMAoAGTCKVY9ggBFgPil7xGmaZ5N67sk1hoE9JDs5ORmtysh/ev/997W0tKSZmZmY49nZmer1upaWllQul7WyshLPhrkAyn6oyaAcbC8489wpDBPv00x+1P7+viYnJ6OogTk4o6YMhVe/3W4HeODvNPzpgpWxp5YrV6lU0tLSkg4ODnR4eBi5ztJlr0x+g0Lw4iQXJOnf6ZWChRTY+r47KB70TFf66VxTcMleSa92mej1evrd734X3tJWq6V6va719fUoBPNUiPRd7t1HcLJmhMWPjo4yJzdhHPt8PR0GGoRf4GuPBB0eHkYOOM8jfLq3t6d6vR7P8TxDxomRC82TM9xoNPTs2bPwluZyuegEQ1EZQNVrGajIh054T6qMAOvQUVroQioE4Lrf70dLQQxwBwCkqqSpJZ1OR2+99VYUwNbrddVqNTUajVcA4+HhoVZWVnT16tUAr71eL3M6maehDdo778QyOTmpWq2mQuHiaO6//uu/1s9+9jNtb29H1PDw8FDNZjM6e+A9np6e1vDwsF68eKGvv/5aL168yMwvzR9N19bXMuVPOjx4/QIhco/uOK2gewhtE6n096Lz2EuXD74vKXBzbzURBpwnqVHD5e3ier3LWgzGgqeStAAPz5PySASRlA6M3MPDw0gdYLweFXMHA7zIXLxHNnPCI50aLi5L8YDymRfa1+v14CtSaOguJCnS4AB1rjsdCPKde7lpicm4AL28y9MyoBuPLOZyF1EIdBhRKPYL4w7adQdRirnSDjm0enQ+Rb6x7uhaT/9yp4Svt2OH1KufOlHcOPLv/XLPs9OePze93ggQ3Ol09OWXX4Z3EuVVLpdDsKAUKPjB0iV8sLq6Gt+xYXQxmJiYiO98UyEcCKPf7+vtt9/WH//xH0d+TqfT0ezsrCYnJ7WwsKBisajHjx9rb28vcziFh63TlmRuufr/IQCvanSgyncps7qly+9gahQCa0if4G63G1X15BRyD0SDgJ6bm9PIyIiOjo60v7+vfj/bz9YtrzTHC0WaWt4IMARJsVhUtVpVv9/X3t5eeMSPjo7UaDQ0PDycaSmDUINhvAMF48Jb4B4Vfs/YfPwe8nLwwb2uzFIQzDv7/X5ECLw90MnJSab/5iBPUcrErhylCwH5wx/+UCsrK3r8+LGOj49DObjw9NwvgAjfpwKH97rnx79zb47T6yCgmV7+XL/3daCYexGint/LvtTrdX366afh9YIn/UALxkyEx40D9sMvFJynv/A+cmrxeHr0gPd4aN8VGrKF0KIXhnS73UjdICyJZ4U1phqcdfR6hGKxGN1wCG+OjIwEIMZb5DyBQoJ3BxklkiLtAZqj6Iz8XoxmgCb0BX+MjIwE8GdP2YfU8GE+npKws7MTbapSo6bb7WpnZyeTBpIekDE2NhZpa/CGOznGxsYCSAK4kNUPHz58pVMKYG14eFjT09MZWfn8+fMowmMf3bsKfTkPO/gEMEGbyCgcHh5Z4zlegJUanOg1Dh1h7RkT8sHXH3rDQKAmA3pFlkmK7/P5fBwbn44R/nADPfXC+3qk68V46FRSKBQ0OTmpiYmJ6P3OeqUAOOVt50cH9imQclp0GcF9biykz3K9zG+WlpYyqVJzc3NxCqnvGXTE2JkXa4suh1aISEInvjcY4ugd6IS0BcZPj3rwgHThsNvb29PExISq1WrobHjj8PAw0iRcB3okySNKL168eKX1LLTre+361nWN68hBMup1+jM1xFKaGEQj6fVGgOBer6etra0AuVhdHt4HBGPdHB8fRx4toXZveYJ1A6FCFIRZeYczV6FQ0Ntvv607d+7ECWWSdOPGDVUqFU1NTanRaGh1dTUKI7CQORGJUA8WLp4VUg9SQcH/vYCNuTr4ZJ0895b7AeEo7nz+4kCMK1euKJfL6cmTJ6E4IEze78VBAOjFxUWNj49re3s7A4JRgp6D5MDShUYa8ie1w70hw8PDkUM7NzcnSWo0Gnr69Kn29/fDIGJOLoAAe27Rp+FClDTPwFtCAY97a1gLSQG02ANnwNSDk8tdFEB5Wow/LxWA/kwsZ9bXmRoawLMHCOOP7+MgC3kQAPXvBgkTv5/fpILHv+PvVOik9w8Sbv4cN/LS58LnAEyAjD8bOiAFxcfnRlTKe3jQPOcu5S3/494EN4Z4Lrn1RB/8WZ4mlNY/OH87wIDGCXmTmgRQHR6+aBPJ0cNPnjzJRGZQeqOjo9rb2wtDEb4D/HvEArlJqzA8afybLgAup/B4O72/jm64Dg4OQp4Dth1IOS8QYvWOD35h/CELUy8kAAIvdrPZVD5/kde6uroawIX96na74cmj3SHFmJwuxwEbPtfXKXAHXfAxzgDf95SPWV+Xc07bjJX1gz4BaDzXow0pTU5PT2txcTG8s5JC3qBn+eO1NT4ODLBBfJ8aQb4eyGWe5QAJpwnjZ+9fJ7/S9WfPnUZSA9v/+G9dx7kTxffReaxQKGhpaUnb29thGOERht5SRwJzR+d6ZwZkE3vuDjsH+JIGOjpwgEA3eJfHx8cjfYO6E2p+XLax3+kBZKyJG0+53EW/bZ9jKoMd9wzSM67TmL/fP8i7m9Kg72vqvPn/BQiWlAEBKACqrLm8UAPGPzo6inD04eFhWLQuaI6Pj6O/plsofMZFiHR8fDwENBXBU1NTGhsb029/+9sALYBNQp4u6Dy8kMvlwhOReo8An26ZDmI8KSt0WCcU+djYWOQYSlK5XNZ7772nTqejFy9eRKgepQWB4DXI5/MB5DmuFWOBywnSrWhXol6FjBDiN+RCsn8owu3tbZ2dnUXT/8ePH2ttbS2Urq+HpMibHBsbi4Mwzs/PIzyYAnLGPjo6qlqtprGxscjnThkLpnamYh9SYcPe+TqkytSZ0L1U3Iu3OE3ngA5++ctfZnpOs6buFXFDwIGErz1z83n6v1OF4NERp79Bis7XJL18DV/3G1KDXMnDo164wu88qpK+A0CUAhNOOHLPHCe7tVqt4B03UlhnN/KkrHdYUsbj6YaYR2oKhYImJiaiIwPRGQc+KCcMRDqi0BVja2tLe3t7GbA9Nzenubk5FYtFPXv27BVQm8/n44jVXC6XCdl6gS9jxFggB5pneag73Uc8db7evNs9u+zt0NCQ9vb2tLe3FyDHDQLGQhTLDVpXcrwT3s/lctElxmWQd5s4PDyMfEaMUs+tZ8+Pjo707NkzFYtFNZtNbW9va3d3N4CB56Hyx9/7Or5wAyz10Ppa8Uw8xA7K3MBjHym69OhV+j4fC0Dm9u3b+uCDD2IteF6lUonc6/39/YxMTIEHIC6VKSk9uP7wWhk+9ygthyB5tySfgxs8gwyIlO7ce+yXj4n/Y3w6+HK57XIcnlpcXIz8WQehtNVzgxngK11Gq4ni8ltPLUgdSqmeTQEiet2jhsiWUqkU0aH9/X3l8/nMaaekA9Guz6OfOChzuYve3qSwUJvg6ZlOA+l6uXzFUPeUDwoCmXNarJwC2/Sd4COXK64v0uuNAMFsAELYLUAPEbEB3mz95cuX2t3dDS/fW2+9pX6/H6F0zkhn8VGqWDiplfFf//Vf+oM/+AO98847WlhYCOZG6RCSJazV7/cjLElhmzOQ99sjZxcFhwfbQ2FsIknpgGpndJLjERg+JoQCXp5KpRJHsMJUVMszFoTr6enF0ZV3794NAwKm9wI95kY+NuNzzwPtX1DokqKLRrvd1qeffqrd3d0oJGJvSKSHCSVFuA5mqdfrmdP8XDCkIWWUG0KelAxff/cCohwdoDiI8ueyDtCHAzUABHQrKYoq+b2DMlecvOPs7Cwa6LN3KWBl/i5k3QiAXqRXC2D8civcFVPqwUivQcCXe1OjAGXCu1Ohze8c6LBmDgLw3MEzrGW9Xs8oajcUUuMgl8vpzp07WlhYCKOLdIxu97LFFhcK1J+BZxfg7OuL4kaAE7WamZmJd+7u7r4SGsa4Rq54TjtOANqiUTAEYJiYmAgjc3x8PELY9Xpd8/PzodwA/ERmoMNc7vKUK+QZXui0t7l7slqtVkY2uKzq97O5sgAg99KxR4yB1k3T09N6+PBhfMeautcS+dlqtYL3pcvuGW6seI54LpfT5OSkrly5os3NzcyRyuzXF198ESkmyBHkW+r18rk4j6W8KF3oAYwMl5tO/6wvPEMEy2kPw8bvS8Gfj8tpn4KqP//zP9ePf/xj7e3t6cWLF7GOP/7xj/Vf//Vf+vzzzzPFpy5beRb86PNPdbbrAe6r1WoRycAp4mviwBoD1ddofHw80iLd2+3gG7nR6/UyYM/f4/PBAOPEVV9TnuP1Rdw/OTmpyclJ9Xq9KHo9OTnR7OxszA/ap2sIHRjoFFOpVOJ0y3K5rGq1momSeEQ8TUdwOY3RWqlUoic24Pzly5fR/YqCVMdYLg+63YsUylzu0ukIb4G3Dg4O4tm+3xik3Js6GJhPuVzW9PS05ubmorsJ/cJdrjL3VF6mxqQDXudFjzqk1xsBgoeHh3X9+vUI/W1vb+v09FRbW1vR5xIg8PLly8xxuL5BtAcjf462O/zGCabT6cRzHNjdu3dPf/u3f6sPP/xQN27ciARzgObTp09jgwGUADI8KCnzejI/xQtYve5lIiwxPDysGzdu6Isvvsh4nciHg/EcwFIEhgLf3d3V3//932tkZERvvfWWpqamtLOzo52dnRgThR9SVoiSf0neLkLQPUMoRM//hUEdQLvH2wsJHz16pJWVlag4Hh0d1fr6ehQifvjhh5GCwvM7nY6eP3+uTz75REtLS6pWq2o0GlpZWQmG8uIc1sVPbvN9Zw5+efqFe/aYF4zIPvEbB80O0lwZMyYHk65MUwUiXXqwPRUFhUKuJl4E9w7wWxSep3cw9rQjRfpuB6k8L1Wwgz5zT54LJNbRAamHyvi/KzOEpXtncrnL9IbUEzTI+0T6i8+j1+tpfX1dvV4vQtv+OwdLDvjcE88+8zu8OOwDjeir1ary+bx2dnZUrVZ1586dOP7dadBBJLSKEYsBVy6Xtbi4qGvXrunWrVu6cuWKxsbG1Gq19Otf/zoUJjxeLBa1vb2tycnJ+Nw9a8wPQwQacVDBNTo6GtEh1qnXu2wr5rQEj6TGJbQB3XjBD3SAcUtkCv6hdeLp6WmkoWEY0yv5yy+/lKTYT/dCSYraA9YJ3cEeeD0KaygpuhDt7+8P9G47zaZgjIs18ec6f0H/KXCemJjIeCN5PhGP9PnuVU/HxDU8fHHC5k9/+tPQlawpLSw5jdP1F3TjsiIF7Z5DSu9f7uPesbExLS8va2RkJDy+HGlPhx1oDTpJgfzY2FjQi8sZl5OMeXp6Wh9++KHa7bZevHgROd3uWOC53lHDc4N5FsaSdKHfd3Z29OjRI127dk0TExPa29vTwcGBJicnIyeYZ4yOjurGjRt69uyZJEWUB3lO9Pno6CiO6c7n81pYWIj8/7GxsUwXBnc0sO/5fD5qEwCh4Bj09sTEhIrFonZ2djL8znO9QI71Z96bm5sZvZc6gjD+O52Ljk4edfM8Z3QRuvLs7CwwASetdjqX5z/4vrD3zJfx4wh4nV5LrzcCBPd6F3lnCKiRkZGo/PcNIeTvnkYEPcDy4OAgXP5+Ag8KCqsCxeHWJQru6dOn2tjYCHDGbyWFIL5+/bo6nY62trYyPTLdQ0iHBBfCEKB7GT3kgbW2tramhYWF8NzwHYoSSxWhincHj8HIyIhmZmaCsMjvRbCUSiV9+9vf1vb2thqNRsaDjLCh2wVzc4bDEscab7VaYSmmc8TLh+ec51WrVX3wwQd6+fKlPv300wgbSdL3v/99/ehHPwpjg5Oa8I7u7u5qZ2cnGAqgxPz7/X5GuZHbB9N6jrMrFwwT75CBZQyduNDhM78AASnzuUfWhQf76payex2Zgwul4+PjV/KaPazn70w9RIyLVmEYTw7+/P4UqPp8B4FiV0jsjf/Oi1sHea1cIQES8SjiEcVYS41YH5MbmNCE79/u7u4rRY2e7+4H6JBH6wWa0B4eD2SLpAwQJcWh2+1GG7/h4WHNzc29UmyU5j632+1IzyKVaXFxUfPz83rrrbeiWJeDVDY2NvT48eOIDAGM6CyCfGWPkVesJ/vuBjp0xzidb9zYJXLDve6hSvfIj4XnWSgs9qrdbuv69etRhIyi7vV62t/fV6VSCVrrdDqq1+sBkpG96bHvXgR5dHSkp0+fvpJzD+/zW/bF5UB6DQLFrg8caA3iI/dYcj//puDQ76cuwg1BNzg80sOY3ejI5S484TMzMyoULk6eIwowMjKiL7/8Ur/5zW+0ubkp6VIG+O9dVpRKpYwh4eDD1wLZNzs7G2sMCB4fH9f8/LwmJye1vb2t1dXVoM1BcgGA7rTDunmhH7KtWCxG5A/+xrkCjeNo8j1ibzDI0LnseafT0S9+8Qv96Ec/0sLCghYXF6P/9DvvvKNPPvlE6+vrocu//vrrTN/6VG7h0KMbC46sFy9eaHd3V5L07rvv6sGDBzFOoqVELl5nwCKXkHn9fj86N5HjTj0WERd6tXc6HTUajagn8LWFRpgDsoeLgzfSqBm/bTabOjg4iDExhrQg2tfcI638weHhzhFf20HXGwOCaePhlqSUbQ5+enqqiYmJ6ByA0kGRS8pYGh7qRnhz2tzBwUEmR1jK5vq1Wq1gdFIPer1eNCGnlUitVgsCY/EB5ekpOlwucN3Ch3ghgPfff18PHz6MokEpe1CD5z9TeMa7+DM3N6crV65EqNhD+Kx9SpAeZpYuCw8ZO8+h1ycCztcaEOzfn56eRqsorq+//lpDQ0Phna1Wq7p27Zpu376t5eVlvXz5MjzSExMTyufz+u53v6tf/vKXYQ2j5AC20A0ABOHPWjMmB35uSbuXUno15zQFhK60fF1ZS/7PPQ4w3Zvi73fvA3uP8HaacSZPPTTOQ/6OFFymCnzQZz7fdLzpxe9RmAAbD+kPCjOm4Nq/Y/+g9zQ0ylr5mqRebfdkSZdRGjeCHARDH4yfNJpUXgxaA5Q3HjaMcQT9H/3RH+n8/Fxra2tRgQ3wBBh68Sff41XBa4uRjQMgn8/HITzQCx6vdN8Yt7cQ4zRFX0PklXfUYP7uIHA+cQMqVXrk4cKDyGa+Hx8f18TERBwd7oY5HjMuIhrIF7p74PFiPfGeOb+58eNrQ2qYK92Ub3/f5fI0la8eOfTnp2AZmvT19RC4f8ZvWEdPT/DIEXyAI+W3v/2t3nnnnQA68NfPfvYzra2tvdJ33deJ/WXNfDw+L5wf3APNYPC58e/RQ3+H8zb3MjaXb26AeJpeo9HQp59+GqAbGgIDwJ+OPXx/oH/nS8ZC+tC9e/e0vb0dXY86nY52d3dVr9cz0R53Xvjapo4K8ApRJFqq9vv9aFM2NDQUzigcPRwH7bSH7ERe8K52u61KpRJRYRxZjo2QKdPT03r+/HkcTy5dGjwprae04nvnlxuqKXDGqeWgPn1XyhfoR9+f33e9MSAYz4UzgxMEjDM9Pa1KpRLeS5g+BQps+PDwcJzJTXh8bGwsUi3cbS+9KrR5P96ecrkcHghSIfCsAB4Bp27BO3hikxgjBA9oIJQ8MzOj58+fB9MB8NLQO4TqIeNutxvHNfrcGEev19Pu7q6Ojo5CESB8SCvxC4+Yh7PPz89jXXkGYId1cyEyPDysSqWia9euhTfn+fPnYcEirAk9Mna8M3hovve972Wa5WP0MGZowj03AD73TPmcUyaDpvw33Jd6OtO5cp9/75bpIIDpzO3/T0GgGxzpuPGsuWfR35c+31vt+FgGXa5g0s/T3zqgTb29ztep52oQ37kQdUPL1zYdjytGF6qpMTpISPIZ4Aol1+l04mjiFAw5ffAMlwt4H9lHct8YH4DADaeRkZFo+cfngLN2u63NzU3VajW12+0AePQtRQmzdmtra5n+s4zD1xBllu4PfADg9yp95pqCNN87N5qQjw6I2FM3kkqlUgB5B2Hsjef2sk7sV7FYVLlc1sbGRqaPc0orjMtBD+/xQkff09/37/RK70uBXiqLfM39fv7tPOL8CAjm/74+/K5UKmXSuAqFgra3t/Wv//qvevHihaampiJ1Z2JiQo8ePQrZ7vtKjqnrnVwu9wqA8/VMPbIOHuEVZDHdYOhr6+9IL7y5vn++Ni4z2u22nj59mgFank+ayoVBHnYvDOM3GOS53EWrP/iRw2I2NzdfMeBZv/SdHrnh/6R8eruyfr8fvF6pVOJ0Q3KAT05OtLu7mxm3pyfxPgDoyMhI1OZwr68LtMm8XGZLWR76v/CFz5t0JLCNyws3iPyd8EvKX4MM8kF0k15vBAiWLpnKQROL7wKbzUdppBuHkvKw/fe+9z199dVX2t3djTAs93iBAgzkoXwWlrPqr127pqtXr6pQKOgf//EfdXBwEK1HSqVS/KZSqajf70cIIvVSuSDsdC5PiMN7STU4SfMu4LgcqALSsboJ3x0fH0cahCuRs7MzraysZPbAlXBadDQ2NhbHt5LH1Ov1XgHR+fxleJiLNa3VahofH9fy8nKs+erqqo6Pj2O/ms2m1tfX9eLFC33wwQexFyizXq+npaUlzc/PR7gYgQnAcEYnb4zxpozjoIrP3DhxukA4ueCHPlNg5AKZ37ogGgS+0t8xX/ZmkJJJlaIXMDlYTt/ldJiCZAdQg+aU3jNoPh6CZfyE4dzAYD1T8JR6u7iXz7xi2PfGDc4UiKWFUelcWDdJkS9HWzLnBc/99bw41nNkZCSMdQ7C2d/fD7CXy+X0xRdfhMeXlAjCjzyjVqtF8VOqjB89eqRGo6GJiYkAgaR5ISdQxC9fvtTq6mrGo+opF7ncZRcbKv19TVhzUo2+KefUgTWf4XjglE1JmQJiB1F4v6SLdKzDw8No0YZTww8UKhaLmpycjFOzRkdHde3ataiRAPyn/U4BX25cpvScgu9BfPBNV2p0uk5JLweJLpMGATs3KOAFZBb/T3mLCAxRzH6/r+fPn2tjY0O//OUvw/M+Nzend999V41GI7NWyMXx8fHQWcizQUY6Y/Q6Cje2c7lcgB/SfXq9nra3t6PYCrrAS8uz03XzdXY6TOW7G+SMD2Drsib1SEIHbkDisOE5fopbu91WoVCIY6NxtrlnmjH6hVxBx7PH7CeOM9aCSC+dGkqlkubm5tRoNDLtYonuON04tqJ7FqlEnqdMBKHVamljYyOTQup0m9I73w2KnLp+BevQMxwwzO/ceQVt4/ACczhPDQK+vw8IvzEgWMpaAS4QpMvj/A4ODjIM6hYpxAtzAnAXFxeDuZrNZnQpwLOC0nGLzXONcrmL0BneCUIPCwsL2tnZCcLnYI6hoaE4/hnhwTOly1ZIDu7x/r58+VInJyd68eJFCAMUgJRlehRIPp+P4hTPn8T6J7e32+2GR9fm9onqAAAgAElEQVRbCgFKYBSeC2g4PT2NRvQwEWCXfERydqRsMaALw06no729PX3yySfqdruRuA9z866VlRX98z//s+bn5/X+++9H6K7Vaun58+f6+c9/rnq9Ht02qFTlJDlygfP5ixY1MzMzevToUVS6I8gQjmlYGw+S5/7CfBQvAoiYq3s/XWFJijA6gj01iNhL/g+94NVNc94caPgFHUEnnufKb1IA7ON1+nLQNQhccn0TWPB8MT73vObUs+3pPQ6efXxO++5B5A/eDReGKCuqt8/OzlStVlWv1zN04AYiCoWemZ3ORUElBh3zc2DLu+bm5vTTn/5Ui4uL2tjY0Nramra2trS/vx+trLxTjHQZIqd9WbvdjvQG1t7B5LNnz7SxsaFut6uZmRm99957mp2d1fT0dKRhjY6ORrHR2tqapFcNNsLRrDtAyXvCQg9UlrNmLguQLYAt6FaSpqamdPv2bd26dUv/9m//pmq1qtXV1ahPQPkihz3y5XUE7Dtt48jpZIzj4+NaWFjQe++9p+vXr2t+fl4///nPo7cydMizvLeuG1nQltMdYNKVvvOjX4Po1XnAjRH2lj1IwTjvwjCAZtzZ4/noGIcOTrvdboAX/mBY5PMXx1FvbW3F+j948EDz8/Oxl/ApPMaBLdDu6upqxsMP38PP6FVfQyKxeBeHh4e1sbExMM3JDx1CJkAfqQedzgupA8BlkTsmWHPWn/F6Z5ZU1rqMJL/fZQjvbjabURjI3uAUA5vwGz5D55TLZU1NTalQKGhvby/2hrmQE06qFfMZGRnR7OxseL0dd5ydncWeeqrP2dmZdnd3o0aEz1gv8AcGqRf+wxt8lsp7zw/n8qLQTueyxdr4+HjswcnJSdQZubedPfN9db7jSiOl33S9ESAYgnIhSH5aqpxhbgdq9HIEaLHoEMq///u/q9lsZjwunU5HCwsL2t/fj8IzqjIpypMuPTu9Xi9A2P7+fnhfyKcjMd27N+CpZazktlII4B6ser2eYU4HAliSrlhc8XuOEtWlMAaKxhWdA1S81NyPQoKZSVPgXnKNIEQsRjxJrD3Azw0J90xLF4J9cnIyktnZh7OzMz179kx/93d/p7m5uRDmJycnqtfr0eEC4dPrXRSKVatVzczMZI5+bLVaOjg4CFDAvayxC233XLkwc/qDXl0g+3qk3n6UTQq4U9A7KD9XejXUhLXsBUUICA5NARxAD56ewjP4fwpi+d4BcwoG+HyQ8ue56X388bWAf/k3eYnDw8M6OjoK8DJIoHk4HYX4R3/0R1pfX4/DbHwc7uksFouamZnJ5AYyFhQHRrPLERSke4JOTk7C2PTuJFeuXFGr1dLu7q6Oj4+jjZKDA08jYg/Yr7GxMS0tLUWIlb0m1Omh2v39fX3xxRe6ceNGHDqDsgBoAFDSPXM65t/Hx8dh7PE797y4nKJA2Q+OkBRedA4xWl9fV7fbjSOd3QFAS7S//Mu/1Pvvv6+pqanoCtTv97W2tqb//M//1Oeff66trS0dHh4GAGK9e72LLgp37tzR8vKyzs8vDgj44osvdHh4+Iq3F7A7NTUV9R+SMs4C9xynebWv8+bxWeqdTMFBalwCtNzQdAPIAR1yOd0/z5VOAZmULcz1/UImAeqeP3+u+fl5VSqVkC/lclk3b97U9773PZ2fnwd/FYtFbW1tZfpeu9MH3nT66/f7UVBNJwjpUtaltTrwHrzJ3qPvffy1Wi3Si1hXxpEa7wA97mOf8UrSso3PHRjyfj+RlWtsbCzy2fEOoyPRp+VyOdMbnVxcN0bRn66X3NAvFAo6ODiIsw2Qr/V6PWgH3VkqlTJ6DRqUFEV8Lnv4PaCdNXcAy+9Z35TH+A4ZnxrV0Hi32w06IBXSW7JxsYduKDkPuK56nW4adL0RIBgi9hQFCCC1lqRLJYvgoL0KhVF4NySF99GT0QEc/j6Ygq4R0uVmebL12dmZjo6Ooim7j4XxIDgcYMBspVIpKvshkNTKBdQ4oUBELgyw6oaGhnRwcBDPQmEBKh3MMD4IH5ABox8dHQXo5zveh1HCeNxIYeye6+QM40Da294xXno4ej/FtbU1ra6uZgS6H82IUJAUHnO8CmmLLo7BdiuW/Db2gj3H2+W9pH3NpEuGdMHv3hdXcqmXwE8v9HwtB45uPAwCr/43QtPDRNAKY/cQJTT0TYp8kNBIBZyvQ/qZP8MVceqNZu2c/p320uenQs758/79+9ElBXqm3/bZ2VlEkKSLkwlZY/gfb4x7mKTLfHh4HvnCPQBG+P709FQfffSRCoWCGo1GJkpSLpcj3Ag9uBfHu2ZsbW3p/PxcU1NTcUJlqVTS9evXVSgUtLu7q/39/YiSfP311+p2u+EdYuxpuJCxDtpzV2xe+OqFa9CnpFCY7C37xZ6Uy2Xl8/k4cOHly5dqNBqR449R8P3vf18//elPo/c4fFoqlXTnzp04rGJvb0+FQiF+Twcfwvy0Vdvf38+AGF9r/mAkeHcdn0dq/HkKgu9/Sp/OBykY5sIRw1zpPZvSOXLC+Rc+h/4dTKdpXC47Bhm7PJ959PsXKXwrKythUOdyOS0uLupv/uZv9PDhw+jWgbwjeuHP5/3wCmvBuqV63Y3ilMaIGKYGNaDUvcx4vF0+QJ8p+PO/8ZLiyAJce7QKeVIqlSK1j5S8nZ2dKMbEmD84OMicLMgz4EtfD99nvMjUDdAejJQen0+9Xg/9jM6kBgBnCDLA5Sr06bSc0r0b/h6NTlMqHKs4faX4B4zn/+diTx27+bO4nK5Tg5LvBxmdg3Qc1xsBgtNJvHz5UrVaTdVqNdO03oFmu93OnFc/NDSkarWaCf/7psDMKJh8Ph+K0IWA59k6UzswBbixqfyBOBBuXHwGWCXU6IrWLX82OD14A0GceoPJ002JPfX4sYZ8hmfM/58aHnznvyUURsso5pgqW8CDpEzTfV9blCWKG+8RaQYe6kPIwwhpzijAH4UAEHZvLYLdq1vJc4SBUtDJfSmju/Hia5gCYP+M97lCZe38N4wnVdxuyKTvwUhIlWAqGNJnpQJl0JWCz0HCZRBI9suNMQfIPicOiHHPeCpkBwnRTqeTOXzC9016tUCPQzhQROm7UgA4OzsbrYQo3CG9ZWlpSb1eL1KjTk9P9fjx4ziwwlO0mEeaQ8kFjePtkS7z2cfHx3X16lX98Ic/1OjoqBqNhra2trSxsaGNjQ01m009e/Ys0rVKpVI0tE/3xmnHLxS10xDj8/QD53c8X4yVlkbwIHINGdnv9zNpRdJFDjb5zd5WDsBL8U+xWAygy3qNjo5GsfLp6ameP3+uhw8f6vHjxxkv7yB69FoB50c35qFN6MnpJM0f9fUd9F7nVQevTpv+f+e7FEimPJQCd3+274HLrUFAo9/va39/X4uLixFBoVD7448/ji5ORCihNz/62mmaOflc8C66buU+Xyv21417xghwc/mOXEev+RxZi3RfPKrKeE5OTgJ78N58Pq9araZKpaLFxcUoQJWkxcVFPX78WO12W0NDQ3EyYVqQPTo6GpEJ9KzPiXWhfoL0E9pYpjpPUhj5RFgoaHR6o4gw1c+8y1PRPM1rEB5wIOtAeJAecTmTYo+UZv25/hs3Yl1X8qz0+r9+xvVGgGAuJo/X9vbt2xEO50QfSapUKjo8PNTKyoq2traCuUulUsbz4VbgIGuk1Wq9Eory/ov8zgWWpLBYPMzs1meaI4qHiLBiKvwGARTpUiHxrBTUcY8zSCpEBlln/kwY30Ez//bxwSROgKyvj9dDeLncZb9dAK0XuvEuxgWhu3fU1xFvGTmfqUXrRo6koKM0R4099zn7u5zxXxeSZL5cqfWb0hyf8f5U6LqgdUEwCJyiCH2vU8PABa/TrY839cq+7kpp6P96r49v0PqkdNTv98NYckMjfY7vmY8fA8ANOxRsmlbBM7wrC8YJCsWLzW7evKmrV6/q4cOHYQQzVgAZUYjT09Pou1kqlWKO/J2CLZ8r/EJeIpGnQqEQOa8LCwuRXjE9Pa1qtapOp6OVlRXt7e2p3W5HP3M3+Px6nUHk3w8yopAfrOn5+cXJc7Ozs/8PdW8SY1l2nev950ZERsSN20XEjTYju6pisRqSUgmUROiRgkYPhDQwPBHsgT2w4eeBDcOAR34jA8Kb2c/wyIAMTwzIMAyYECyRkiEDJCSRoqRHlYpVrCabyszI6NsbN270t/Hg1rfiPztPJksTI3WAQETc5pzdrL3Wv/619toaHR2eHre1tRWbcVw/IPfOTqEbW62W9vb2tLKyonK5HBtamWPCyZOTk5qdndXk5GQchMT4XF5e6uHDhzo9PdWDBw+0sbEhachWs6HaL9i1FFy5083nUmc81U2pbvBx9Od6mJqw+NTUlHZ2dnL6OgWzrCd3EGmv/0an8JyRkZFw6LwcoK/T1LmUFPs8WBfn5+eRQ085LXLOObQoTcfw8XR9gKPnupB+pWNFeNwJFrdXaf/drvG6r6/UvvK9dL+Lr01kEKesWq2qVqtpcnIyGNdaraazs7NwRg8ODp7bYMqY+fy5XXGQ6Fc653weG3V6ehopU17GMGXgvfY9hBCVtly2wS8eKUYOeT73YXxe5Ajy21M2U6efe3kE1R1v9gWkEQGXlSK7kq73F12vBAgmB4sryzIdHBzo5s2bevvtt9Vut7WxsaGdnR1dXFxoaWlJi4uL6naHp5Gcn5/r9PRU0nX4z0tueOjRf1IAyGueKuADngINJt+L9/O5ogkBXBHGy7LrmoGpEhoMrvOMYZWpcexAkVzaIsBEnz2PyhWgMyD0CwXlgLHf7weDy7iw0Dw3F0VCG2C0yMNstVoRcsKQeljIK2m8qD+c4Ee7fezcEfH+Y2hh7tzAFYUgnaWTrlngIiCYGhOUfcqmMTapk+IbT7hfkZebypGzxJKCvfR59e+nMunK/kVK5UWgN52XVNkUfa/IyfN+sl4Z+6JUjvT73s6UZZAUERJApc8fcsr8U3WAtQ+4Y2PZnTt39Prrr8cGNzcYT58+jVOOyDWGEfV8RGe8fAzoU7/fj/zdi4sLVavViBzBiE5MTGh/f1/9fj/KIxFKp34nRfm5vFqAP9/H1ecJ/enhdWnoZMAesX45tXB0dFSNRkNZNiwVBYBJmUfaQIiVsPo//uM/amFhQb/1W7+l5eXlKMXU6/VitzsArNlsamlpSZ9++mmkPbhxb7fbOjs7CwZ5YmIiGOEUBHlKV5F8+Jgw3wBLnHv0VtH6wNlNgVi/P0wjWFxc1J07d/TDH/4wJ9/pGvNQtV9Fa9EdaULzl5eXITcpYEjb644J6SwHBwf6h3/4hxhPxqhUGp6u5zqT+xTpYuTCmU4cziJ5dH3pNcb9vVTPOZPu73n+sL/X7XajMkuWZZESwTrw75ycnETOOfJ7dXUVpT+Pj4+1s7MT+tnZ11KpFOlDsLZ+b4/08plerxcbaX2McUwcrFNFI5UTt2v0Z3R0WK705s2b6nQ6UaHJIwdEVRlXd4AduI+Pj0dVptSJ8TnHGYOY4jluGyG53IGASPCUDO/Xi9bClwXDrwQIBtS59woIzLJMp6enarVaOj4+1sXFhdbX1/XNb35TS0tL2tnZ0e7uro6OjnI7FBEoP82Ji/f5Gy+ZCeW7HrJwrxDFhuEm5If3hNF1UOgeVblc1sLCgqampnT//v0A0HiaKFcEG6Hj/pRdSQE5Agew9MM6fEc7baZvpAgAqNP2EmZMT9VyQyddKzpAry/U+fl5tdttnZ6eam5uTpJy7Ts+Ps6xgD72/ABqWEhcrng9tQGmxxUyc+0Gyhe45wZzX9hCz4VyVqHof1cojBVKABCQzluqXBxcs5B9l2xq0FJA62OXKoui94oUCmORjomPuytvd0q8Le58eEoPbfaUBJdhZ7x5350y7zvjljp8MKruoDj7ICkquywtLenRo0fxGu04Pz/XgwcP1Gq1Ym1zotPq6qqyLFOj0YhyRbDD7Edg/pk32BZShjgS1Q3v2dlZ7HXAGLLRhk01pBgAHJ29Yd2nMu3z6yAjfd0jWuglSALWysnJiSYnJ/Xhhx+G/NJfLuRiMBgEu1ir1ULuS6WSNjc39b3vfU9/8zd/o5s3b2pxcTHA2+eff67Hjx/HwTm9Xi+Ok+50OrH5jrxpQAJAxYFhqjNY18gQ/U2ZX9+sNTo6qoWFBc3NzWl/fz+OwPU1A7ibmppSvV4P4/7s2bOcrLOBD/l19hxZcOfJNxQWOeQ+1+jttbW1AEi+Nj3P250Vnu/7H3q9nv7iL/5Cv/M7v6PFxcXQ7UdHR5E24Az5ixxoJz88ekm7IX0YD6I7tHNsbHiQFPJHLjd9Z85cX2DX002No6OjmpmZiXJiHoGktCC2Hf1B2uHl5aU6nU5UI9rd3dXdu3cDtBGN8Yg0uqdWqz2n631deqpQr9fLbTp0uwWYdMcKh4T7+fcuLy9zp8DhzPj65H5gkdT2pE7G6OioZmdnczX5Uz3NuOFEl8vlSPXkyrIs0qoODw9jXTuRwDNchlOb5PcrsmtF1ysBgqVrts3zZDY2NnT37t0oDcQEsqCloeLa29srHAhpOHGNRiNYUxQ7z3AgkIITgCYCLF2XJ3GQyufdS6UfvOdKbnx8XPV6PY53xjt0o8YZ6uwshR2iFBt5QoNBfpfrzMxMlGk7OjrSs2fPNDIyPFGvXC7H+d3UZiRNwfONHPTTFxggHzMUoQMdFiO1ElGw7PQfHR0N5hqm2MM2GAFYHI7QRtnQthSMIQv+nhuT1EtNQzz0M839RXm48uTyRZayN+nOY4ANgBw5dBbe7+cyWcR4FHm9qWPgn0nHynMb03un4JrfKC8fY34I86XMus8DY+isBesI4+Uy4zuk037QTh8fDIMbcl4npEobYKEA5AC63d1dXV5exi5z9h38/Oc/jw1XbGwtkhNC81L+uOvUiXEd5lVO3MkZDAY6Pj5WrVZTvV7X/Px81NleX18PIHB8fKwnT57k2CLGy/Vkkcy7jLj8AVY9XOnRBhhQUiDS8DO61o82ducTgIHcjI2NqdPp6LPPPtP9+/dDD4yNjeVqluJck+/r8z02NqxF/tu//ds6OzvT6empzs7O9NFHH0UbPJ+YGsxpziPjhkySikGOdr/fj9rRpFMA7MrlckTrpOsayejks7OzSJU5Pz/X5uam9vb2VKvVcvsZ3Lg7KeOveXjZ33MQgu7xiB3vIz+sM98M7OCPNdRut/Wnf/qneuONNzQ2NhaVdxwEpzaYdvu49nq9XMk39JbLPzIEIPP0GBwMyBsvI+r9cz3BM30Py2AwiOoKrE1wAgSXEzOwt+vr61peXo6UHI6apgIVkRu/1+zsrG7evKmFhYVIK/EN2YPBIGRbuj6m28fFU0AYZxxO1+f1ev25/GzWCEBYkvb397W6uprTtczX+Ph4Lp8+tSVOXrCOfK5T5zolOxqNRo7I6/f7gU9wQCDQvCqHt8fn2N8vcsReBoRfGRA8GAxD3QxMu93WJ598otdeey12Y7Jgp6enY5dxq9WSlA/vsRg9xNJoNEIBcblRZdJgBlB+HmYrl8txNOHe3p5arVZ4mO6VcdIZk54uTOoA41GSHgEw8v7wHfKQOGM7BRs8B+O1sLCg1157Lc5+z7Isd1TkxMSEDg8PcwxAERsBYJueng5l4892wOwLBNCBV7u3txdg1xc+TBhGES//+PhY8/PzEZZxBtYBol8pWGLh81rK1DAWKElAVArIUULOBHOv1Fv2cXBjRIoJDlmn04l6lqkR9ja6Y4JMOzPEe1zupXs7/HNFoDj9O72/y2ORQmQjanovxtJZcXcGWJ9pfiDzSQkin8MUfKZrOJ0LWAd/nTYwv/3+9b6Dq6uryLHjdVhIjDHhfNoMeCd0SeqCdL0pjzCr72rHEWBN8hqsB/NfqVQkSWtra6pWqxE56XQ6Ojw81Pb2dhjN1FHwsUqdJ+TM57lo/pk/Nq06MKN/hM5JO8KQp1EN5sr1NE6JP9PZct6D/VtbW9Pp6WkuD3x2dlZjY2N6/Phx6DXawAEbkA2DwTXj5huZU50CCJuZmdHOzk7oeQgK9DwHpMzNzalcLuvZs2ehK6mzzga+vb29eJYz54BUxoUfasDzLGf+ihjuojmGvae/gF0v28VcpAALR4E5ffr0abzPGkCPuYMH0HYm1Flw1xPsdXFAjJygO5E5XzuARlhHt4W0Z3JyMj6b5ukC/tyxla4jodgFZLRcLmt7ezt0eb1eV5YN2V9kApmh3YuLi7p7966WlpbUaDTU7Xb1/vvvxzg76813KG1IjXJ32FM97EASsO51vn0eHNf4uvbT4Di9N7VtLrNu23BuIQH9vjwboF2pVKKkG2PqbaXSjVeickLO2+Hyw2tFTtDLALD0ioBgV4x4I51OR3t7e/r0008DDCGUrVZLOzs72t7eDuWZsroO6vDm0gXoyobJTtlQKc/koKSka7DIQsGz9hqMKdOCh4iR5T3u54bZFTQszNzcXC5nBsXA/5yNXqvVND8//9zYYGxdETAWvtC4EG4EHWXFgvLPolDcgGPwvR6rKy7pOgQmXRfp7na7UdLKd9mm4+ntLGJM6RsKIl0cvpj4DPdzo8FYOxvscuOLtFQqRe6yh5kGg4Fu3rypfr+vtbW15/K80nv9MgWQsgJFQPpl30u95RQopVdaYcHH0eUgfc+f7Wk5zii7w4ii7fWGlQeQs3Tu03F35cv8IY9puok/15lKxhtWjnECCGMo+ZznsmEQeB99BtPs4UTWEPe5ceOG7t27p729PbXb7dyRsuRzEjZn/XOQBz++Trl8jn1ssix77rP8jZH0+XbjkjqZfCZl9VO5YCycufIQNkzYYDDIpWa5se92uzo+Pg5AjtNKCgonZ3Hgx/b2tiTFAQ+ww6ktSI1nakv4DJuhXC8DsCYnJ1WpVOL5pM0QcXNgkIJXZIm/uS9MMjLE+KcssMu/zyX38rQO2pDuv3AdmsqNgx/fmOzh/tSZImrgKXtpGhJtzLIsGHp/j/9PT09z9Wv5DFFZfy72BT18586dcJzStEbGjzlyWWAMPXULHQV4Q/ZKpVLsPyD6wZzPz89rfn5es7Ozmpqa0ltvvRUnpTpxwxphLRBR8NPf/MJuupyybhyMonNZj4ydkxHs1WHc0tQGlyWfM9dx6V6fVDZZI81mMxdl9/lkvF3fF11FdsrX1i/7rF+vBAjmQrEgBGdnZ7p//74ODw+jfiSLELDnBo7LhRf2xReKAyI3ugxUkeHwNA2MHYwvGzYwhJyAUgRe8Gi5J0oCheQsrDMoCHez2VSlUsmdRjc5ORmeE+HR/f398FJZqGwsQEGTo+pAK92ohXImcd530TpzwN8sTN+JnI41rESv18vtsCcHiHna2tqSpPBMXwSCXYH45xxM+nyitFlszjrAGqQhSH+Wg06Mui+8LMtyrB7G0vO+/flpP7hSoFcEclOPuOg7Re1O75WunyIFk+b7+v2L7lPUZpwK+s7nXVly9Xq9MDBubFMjlTouzur5vLjT6s9wEM59U6fajT73dMCR/rhsud4A2Lhh5SLa0ul0wjBRlo0IVr8/rA1K21lng8EgnFt3BlPZZcMbhqfIYLDGfW1wYcgcDE1MTET+Lc93oO/35W8fE9pO+alut5tzBLwP/f51vVTG2Nc08kKqmW8oJPWCqAX3cBny59BO2NzBYBBRO8pw8p3JyUlVq9VgtzznUrpOg/E0E5dZjiN2AgH2zMcROXYnzu+TziV9Ya5dX6OXHLzyef728XFg5GCHOad282AwjOSSnwojzhy5DXZZ4TAj1hltgTTq9/thx+iT1+DmvuPj4+r1htWiZmZmApRyb57pm2DTdDRvG3PBuJMeA2j0VA3WDukRY2Njmp+f19LSkmZmZuKQreXlZe3v70cUaGTk+qTKVH+5HeWiHfTJ5Zc0JdrjdcxxABlLnDQfc8c7RT/0FZlDptCv2E7XrXwvJQJoI1fK9qd9dtlO7cCL7NnLALD0ioBgBhSBnpiYUKPR0Onpqfb39yM3BeFIlZf/+GswSV6rjwXO+w5g2BGe1grm/9HR0ThNrlQangq1traWY2qbzWbutCopz3SjMHkeyhRlhAeNkLDgLy8vdXh4GGESTjbCeFALlGe12+3YrDI6OqqlpaVcqRny7EqlUpTD8QXljoUzupRdcqDgniYORxq64/MIPTnJ5PpOT0/HM1hAfnCAj6P/7b8B+Z4/xf18MTrAZeMMpW/m5+dD6bkCx7tmbNxQeD4V4ICwtyvz8/NzffTRR5Hu4Y6MKxk3wEVAi/s5ICy6fGycBfK0G5dRn6tUefn9UkBdxMC7csIBKJVKOXa8CGinYDgN8dNvf4YzEl6RANnBUQYY8flUTngOn/ENJsy3O6zuMMKCOpPGGmWOPbJUqVQih5gx2dzcjDJAWTbcPHbz5s0AfchjOucYOHZop+yetx8DnvabzzpT75EyxoaKGeiuLBvmIHqNZmTCdQR6luewgZixHhkZiSPOeY9jWgnLMv6+J4O2okMvLy+1tbUVoWpO6cSxQE94hMdBYBopwE74Jt65ublcjXoqYywtLcXmt4mJCU1NTUUEjHZ72gcyVC6XdevWLR0eHkbaGHJzdXWlw8PDaBfj5aU2PYXIv8ucsQZ8rSKPzAtzhY31lAYngNyBQV4AkfV6XXfu3NGNGzf0/vvvx7g7UCXCkOoR1mwaneJ/bIWntrBuHNjSx8FgoPn5eU1PT+vjjz9+DiyhD0gdcEDvaTg+vpOTkzEulUpFzWYz2jExMaGTkxOdnJzkctir1aru3bunr371q5qdndX4+Li2tra0uLiozz//PNjjSqWivb29yDOmEADzjhPljryvM+QJBpqxvnHjRuRfpyXP3MkiHQQ5AJy7k+xrgvmjLb7JEufE5Yk5ZXymp6dVqVRCn0LKwYD7wVYub1wvsntu8x3zvex6JUCw0/II59zcnHZ3dzUYDLkgNVUAACAASURBVCInlMsNNANBCY6UMSTtwHOO8BR9Aaa5uwy6ezSAaow5hf0B8JJy3r8LKZ4kxoP6kF6KRbqu++sbEgB25+fn2tnZ0cLCQrQbhpiwLxcbfUqlkmq1mqanpyP39vDw8DnGg5wgvgMQx7PEUyWHDMXh+Wwp2HRFzLyWy2UdHh5qd3c3xn9qaioKfKPwMB6pUvQrNeJsQvDXXemj0NMQLRtqOPSACAOOSaPRiPbQFlgmPGoUHGE3NgL6NRgMtL29nQO2yG26qYlnoJRSuU//9vdTZcG9YLlxhFKn0RWqt8OduPQ1v4e/zuVRD1eKPkdF88l3PY0mfUbKGvhmEsa2Xq/r8PAwnE3klHZ5NRFXoMgL9/JQNeOM4mYdMIYAcneYU2Pxa7/2a+r1enr8+LHW1tZ0cXGhx48f5xys4+NjPXr0KAz05OSk6vW6NjY2ND4+rkqlkouokD7gURqeyzrFyDtL4wbDAb3LQr8/PJK20WhEFQZYUa9f7nqTXFrSNXgWMoDRK5WGJ8p99tlnUUYRUEub+V4a6XE9w/o5OzvTycmJtre3NTk5qYWFhSiz5mPDXPgcsTYYO1IbcKjQ+V4BY2RkROvr61Hrl3FcXFyMDXAcolKtVnNrjdzSt956Sz/96U8LnUPWTdrW9HOw3p6q4c6Ng2FnNt3mpc9No1zoS1/TzLWnXJRKpQCtrr9Ys87kM4Z+8JVXifAxTdMAHRzhPHU6HY2Ojmpvby+XX+oh96ur4ZHNrA8nCfg/TeNgnE5PT9VutzU9Pa16va6Tk5OwGeiCzc1NjY+P69atW/rN3/xNffWrX1W5XI40pvn5+fguY3Pv3j2trq6GLXA5LwKf6ELXi67TWBNF6RTojMnJyXAqHA8xDqwVn3OvQsMzUtaXdYTTia08PT3V0dFR7mh2l4ujo6PQc6xld8zdGWb+/UL3+FymdjW9XgkQLOWrQ7RarTAgCD8/5XJZ77zzjnZ3d3VwcBBClCpgB6dMIGztnTt3cuVNAH29Xk9TU1ORjM6FsXPmcDAY5I5EHAwGAV4BGw4QvQrD1dVVeIukbMAOM1mATTzQfv/6KEVqI0sKQOq5Xs704Q3u7u6G8oGpJv0AJwHmFUDtCtlDW9J1GJmxhh12L5pxcUfFDS7fpQwKLCxnyReBSC73BFMGjn7z2x0sQJCzedVqVTMzM1H03XOu+X6lUlGr1copJACYpJBXz11OQR5GlmtiYkLz8/O6e/eufvKTn0RfHHykbFx6pUYz/Rxj7TUWHQDzHc8Hp+3ONhSNvz8/VdTpnKXglrlhbXrupDMVPqcYZB+TdO49XYG2Ly0txVGvhKNTB8Db6mkf/kxYFmSbtUwpNf5nHUxNTUWf3YhL0urqam7jXBEL1ul0dHx8HOAmjX5J16c3evQklY2RkZFYv57fzti7g8i6THO3YU8vLi7UbDZjp/zY2Jg+//zz54AdOgSmG33IgResP1inWq2mq6srbWxs5EATOdFe9zh1SlzGvMICDvz6+rrm5ubC0eb+roP8IpeXv32jY7/fz20olhSl0NDF6G0/MhswgNPsLOzp6ak++eSTKKfHfcfHx1Uul3MbKnFgiHg4g+pjT8objBxyymcAi7SpKDLEsdZ++Xgz36QodDodffjhh0H0pFEASTl7WeRII4fMT8oA+usuJ/5d2GnSEXjNcYSDKbcNrCXsqxMDRPh6vZ62trZ0dnYWVWSI1jB/6IDPP/9cf/RHf6TvfOc7eu+996Iq1NTUVJy4h3x3u91wBDxqwni5o4GT4EDdnV53ICRFLjvzAOZJ9Ykz617dxlMYcYL9s3zOySd3Yr2qEO97iqq3g/Jy1B1PK2D4vDjYZt2zBnwMXmQ/pS8BgrMsuyXpf5O0IGkg6Q8Hg8H/lGXZfyfpP5O0+8VH//VgMPjBF9/5byX9p5J6kv6rwWDw//yy5/hVxEa40VteXtbIyEiAOAesPjgMSjr47i2XSiU1Gg0tLy+r0+no4OAggCHPbTabqtVqsTuYNqKEeCbC4jnBhB9LpVIOsBPKQSnR32q1qrm5OS0tLemDDz6I8iNUTkBAfFHzrNnZ2eeE4vT0NIrnM34YS3KQANCE591DL5VKqlQq4SykIBOGigUF4+GLgz6jKOiPlD8c4Stf+UqEgtzIpF6sv5Z6xwAS6dqAOzDyMeAeMAccy+rHZfIsxihlRwCYgCs+n8ouF8qaNsBY+Xvcwxe2j2MK2viuG4X0tXTMUgfCwYmvKQf8gH4f16I5Keqzh5wZT6+2gKF2ticdS2cM/Jkua84sSUPnxGvSYijSjTAOhtwYYmg8fxaHD2DmBp51TN4s9yNfks116+vrwSgSYapUKgG0YEwwNhzOgCHyVB3Gj7HCuErXZdrQe856AzCZSze6pVIp2nJ5eRkgmO/4jvClpaU4na1SqWhmZkbb29vBPLrMeqjWmR2YOvSXfyaNplWr1aiLLCmOj2asvAwWLOrBwYFqtVpEXSAhXJ55JvPuMjw2NqbXX39dH3zwQW5MmRfAJvdAl0uKNnkU0cPFZ2dnkVbnjsj4+LgajYZGR0eDTaZfjKvrItY1zgapFpeXl3EoiYPMLLuupJA60y4DhMw5dc9ZP76fOuvsN0nLW3m6Et8ZGRmJELjramd76adHG1lbXMwd8uZOH2mWnEY4PT2tlZUVffDBB3HU8dTUVKQapicJMu60jVQnxhWSwdfG+Pi4Wq2Wfvazn2l9fV0/+tGP1Gg01O/3dXR0FOQVc3lwcPBchI5xSDfnu0Ptss44QdoxTufn57n+pZWJ3BF255n5hrn1gztcXpxRd5lMCZW0D84c83nfG+a2z+WXvhbZt3/q9WWY4K6k/2YwGPxDlmVVST/LsuwvvnjvfxwMBv+9fzjLsnck/QeS3pW0LOn/zbLszcFgULx9XMopPgx3qlB8Yayvrweb6fmpHkJwVsInttvtand3V91uN44fbTQaajab6nQ62trayrHPLNJarabj4+NgSJkoSc9NJsobwXI63gFBCtTdOPODFzs9PR3lf0j4RwgALZVKJRSPC6nXOnSF2e/3c6EKjDGMlvfPAYPNdYRK2JRDSMrHnH5icH3eYMEI1/uO8H+KUDvD4YwzjpJ7hKmsUWx/Y2MjCtszF87eI3/MnRttb2vq2bqc+/soF2SO+UkXNu+l4+lXCp7TsfHP8Jp/FmeGKAV9xbMGGOJ8XVxcFKZ8+PO4HLz5b/JLPdfVPX43tm5o+d9/e0iT/mRZFrLvqUK00Q0oc+XK3+eBNeohOJ6bGnra6Xmrrkt6vevqMDgEjUZDb7/9doC7w8ND/fjHP9bGxkasP8YGGfG0qSL5ctlwMDk2NhYH9qyurgZD6nNH6UbA7+XlZWww8j0SpVJJ9Xpd6+vr0Ya06onLkofqMWSMaboGmCNfe+VyWa+99ppu3rwZ78/MzGhiYkKff/55Tu/5bw7N8fxO6brUXeo8eb53rzfcQ0FescuEM+bOPBHhGgwGwfwBgk9PT+N99J8DEO5Nuggy4nbD9RnfKXIGnYhxWXRGNr3SNXjjxo1w4NzWoYvQ61R3QM6xL87ceoUQ/2Et8j0fB3eAaTPfKwJTPh70H33AuNbr9ai3jfzTLiI4bsPSyx0sdAUygPwAcA8PD3VycqL19fVcnWruT2kyz1t/kX73/nvaA6/znudq8x4pTC4DPmbpWHpqITjDbbh/x22S62TmkNddJgGzqe1K0zF4fmqz/Ls+BuiLNH3qRdcvBcGDwWBT0uYXfx9nWfaJpJsv+cq/J+n/GAwGF5IeZ1n2UNJvSPqbF30hZVqKWAnATblc1tOnT2MBVCqVCEO5AnLmysFMt9vV/v5+MAqNRiPCTf1+P3ah+qLCa3dwhVcuXRsfnsHCZ0F7viCv2/jmxuLi4kK7u7uhdLNsWIOw0WhocnJSOzs7mpqayu123tnZyYV5eS4MEsLOWHpepIPHSqWihYUFnZycaGdnJ06lSpldxgUj6MLI830x8R0EFNCMIWAMOVHun3oxtrTHgRu5ZhhHB0/ucLEx4PLyMmqy0m5neukv48tnXBm4XLyMxcW4+oam9EoNuivHdGx5rwgkO9BwJ9FlPb0va44NIc4M4Wil8+XAn/uSkuNpOw7onI3jPe+HG3xJOeXoDgWbRj2K1Ov1IvcvHQMYWt8dTnud7eY15jstpXRxcaF6va6RkZEcKOXzsBq+NugDgGx+fl5vvvmm3nnnHc3MzKjVaml9fT2iBM460Q8vmSVds2KprA8G1/nLrBMOcFhbW3tunUrXNWC59/n5eQBHN5K+KXYwGATT7ZEc18lu+NCFMDw+98wfsiYpjgD+2te+pizLgt2amZlRvV7Xzs5OYYgVx42ccOTEdTHPBZCQv+kbu548eZJb3zyH9qcsdqvVCoa/UqkEa+zEB7YpZcucBXOG2NMf0pxI77MTSQA/5BCihXa4baDtpCfBKnNCn7PRyNzIyEhs6KR/yI2HsF1OaBPP9zQobzu21NvKekSe/L7O4GMHqMhAmtv5+XlESCF9PD2OCEPqmLhOZf58LacglDlEz5P2gBxAOtVqtRhbxsLXAmPCemB+WJcOCpELX2u028vJ+j2RN/4uYnkhFFLg6XrG24rcIgMO2umHrwH/XhEwT5/rZJbPv8tSEUguuv5JOcFZlt2V9J6kv5X0LyT9l1mW/ceS/p2GbPGhhgD5p/a1NRWA5izL/pWkf+Wd8EFImZ7R0VHNz8/HSWqATRbr+vp6TsnzXmrEBoNBnN7DbuzLy0vt7g6zOlLFjAe0urqqwWAQOxrx8l3w8a7cQ6Mt5BJiWFPQ496qA3WYAHaR3rp1KxLZJUVSPsyxG+HBYKB6vR5HSwJcq9Wq2u12CD6bR5aXl/X222/r4OBAP/rRjwIYcmEYABycIObMM5935gxFwVzV63XNzMyo3+9H6kOv19Onn36a64PLAP1JLzfgHkqkjeT5pqCcNqbsyO7ubjA13NOdgCIlkMh17r0UCKfMjd/DGRMHqg4EPb+9aCzStvAaRrCI0ZeGCnJ/fz/HcMNEeUpPqVSKQueSggF0YMv9mdcbN27EBiPmtt/vh+GUlAux0WfvtwPjl42rR2yQBdrm92D85ubmolIH1/j4eCh8ngcgBEjAZANi7t69q+PjY+3s7EQ0xJ0MSQHoUj1w48YN1Wo1SYo8zV6vp9u3b+tnP/tZ9M+ZJ5cfn0833Mwba5/qGDicn3zySTj9qdwQ4vU9AIwX9YrL5bJKpZK2t7dzhjV1UvjNnDjr53Mi6TkA4IdhTE1NaWFhQffu3dOjR49CNubm5nTz5k09evQotwkIvb+0tBTrBtsBuVGpVCJNxAHQ0tKSer3hkdhra2vq9/vRFsYIFhn97qAf406+MM4Z/Sb9yKNMLicw7rCDrF0HZQ5kPULgziL/k+LloNSdZ3dIXY6QdcYfQgg7W61WVS6Xtbq6mqtY4Zv0HGxBJjDWyDo14VNZdGbYmUWcGF9HnmrB89mMTTofqTDtdlurq6tR7o5nO1BMHW3G1PWTO83uwLkjntoo14E4XERmOJWScpqse8cT1E5P86vd+fGNh64/nZBDFki1BKwzvzgGjCkYJrXJ6Fmej66lz6SiuN6TFPLhtsIde9dlqVy8yPnjf0+RTecwvb40CM6yrCLp/5L0Xw8Gg3aWZf+zpD/QME/4DyT9D5L+ky97v8Fg8IeS/lCSSqXSIGWP+B+jMzY2FuF+FhaMIkn5eKkomNHR0Sgz4sqXgXn27FnOyDrT6W0ZDIY7tVlE0nXYLPXQaV+pVMopdBSdL1gXikqlkjtNjAsQjuKoVqt68OBBLJQvxi/unbbf83C5SHKfmJjQ9PS0lpaWdPPmTd2+fVuvvfZaLlcTYeb5ANl+v69GoxFMiReQ90XgHv38/HwwzBhSjKlXrUi9y5cJsLMOvkDd+0xZKO5JrrMbL8CZe6As0nSzH/eYnJyMXcgm38/dg3FxQ+aAt2gxp6Dbd+V63x08utLlvl7T1L1//seg811CoITEnYHwfEVqObMm3JgSUq/VaqrVasHGEOU4Pz+PHcrOAiPPbDbysfJwo8sGhmdzczPyEXHwyM/FYXMFytG7zD1pQNVqNTduHrZljNyxu3//fow14+TMqQNqnx/0Ra/X09ramg4ODqJe6s7OjiTl+lwulyUpqrgw5jgpR0dHGhsbU61W08LCghYXF/X+++/r6OhI7XY7Nnghs7Q3NRSkA7gMPXr0KPLnJcUc7uzsqFar5dKgnB3z8YYBnJqaCrnzzYRczDUbvBiHq6srzczMhNyNjo6qXq9rYWFB7777rj799NOcDFUqFf3Lf/kvY1NTp9MJp/973/tePNvrvh4cHERZMj8qOY1IuMOYOsZZlkW5N5wsB8HkBfvr5PFy37Ozs9jcJSmXoubtQf5xFtJNzS4/tA27CdhxmQbU4ER5TjDRHNIIb9++ra2trZyMS9fRXd9cxf2wFV4alIhMCm68pJyvH3S0pMiBx3EbDAaanZ2NNTEyMpIjb7jX8fFxgDOeDfvNWCKzKRh1ve5R55TI8Eis26WpqSm12211Op2Yn83NTd25cyfwDHJDFSnyfA8ODkK+U1Kk1+vFQTHoK8bbo1mpHsI+IUfdbjf2iKCf0AOMK4De78Xr6X4LdCtthYV3h81zgT2drcguep8d2xQRZi/DD9KXBMFZlo1pCID/aDAYfO+LG2/b+/+LpD/94t91Sbfs6ytfvPZLLwdATIobQC9BIikElsWWCiUKzgeLScYz9Pt7QjuKIfWOHcjgGbnikhSg1fuBIHBvvzwniOezWAg5Y8Cbzabeeecd/dmf/VnkZNJWz+2VrhkHKlYQjnn27FnOw6Zkyfb2dpRsWl9fjzJM1PaDZSmVSrGhDoOdCiWf4//x8XHNzc3p4OAgUiLS3FtP2yjywgvkMsb3xo0bqlQquZDW1NRUtJ05Th0s7sNvNwjeF4Bw+vrJyUlskpDyp7whOykLyWdeJP8v6quknDIq+ny6+P3/IubUfxyQO1iZmJiI9BsczyzLwiAitz4f9JFanX4evCQ1Gg2dn5/r6Ogoyk7BnBF65VAIwDp54+VyOY7wdgaS9UWYkaPGR0evj+ckFOoHJrB+YWm73a4WFhbUbDZ1cHCg3d3dkNmvf/3rOjo6ioiBsyUezuZ5DizoCxVouK6urrS/vx+lE6ke8Pjx41wbHVR6ziogrtFoRP1tHG+e4+x1rVaLiBaGzPWtO760H1CAI8ucXV1dRXt9zbKJBnACMwcAY86QaQy0p6UMBtcbqxjT3d1dPXz4ULdu3dLm5mbk25L2BMBwADY5OamnT59qe3tbo6OjWlhY0NXVVRxHDBBBl1MJxkHni9YqZAxt9EohS0tLoaN5hoMkZJCDMqgownu0iTak4W1fc74GUmcLG5g6mdzT1xFkR7PZjIoSg8Egyr+hBwnjLyws5CoauL50u+BEFLLr0UkAOv3wvz19ULp2gFMygPGtVCqq1Wph73Bm+Izbc+SXfG1kGrtKu7D39DFN+6CfvE7fPBrK/d1JBhiycZMqToBNT9fxNAV0DgdngUWI+E1PT0f6h1e8cr1P+znK2ecDvZPaY/AXcuG4w2WP3zjGRevIba1HWVNdUmQTi973/91G8t6Lri9THSKT9L9K+mQwGPxbe31pMMwXlqR/X9JHX/z9f0v637Ms+7caboz7iqS/+2XPoaEpG4sQoNBnZ2cjZD4YDOKgB5LbR0ZG4mCDer2eC8tQr9K9DUCcb8xhMfngpcwm7/mEMzFFSpGF5ayLC4l76OlpY9L1hhOYSzeuTHqtVsuVlkOZpmEOFBB1RtkY1mq1ooavh+EAJ56TiEJJBZZnLC0t6fDwMJ7b6w3LysDusBMeBhKW0A/ISJXMi2TGPXBy72Dt9/f3c6yUf8/zyFOHxeebPqXznf5NO1MAjKzxOWdcvf1pH92J4MfzvYscxlQh+NilBpQrVTTIFg4mzCLsETJTtEuYe8G6wLz45yVFeHVkZCTq3sJ0zs/Pa3FxUSMjI1pdXQ2n0GW+Xq+HkQNYY8BJRyAP2QEnzA/y5ruo3Tna398PsM8azbIs8u/RP2NjYzo9PQ0gCDucykUqw6nx3NraCl1F6Bo2Ep3gO/U7nU5s6Lq6GtYEx/lDV3L6HMx2r9fT7Oys7t69q+XlZT169EgPHz5Uu92ONZcaJG8vbSWt5eLiIphpd+owehh9d+DYw8HJYpJiP4JvvOJyowzT99Of/lTf+c53NDc3p2azGeld6+vrajabOXANo767u6udnR31+33t7e3p2bNnIT+Li4sRjdra2gonn70m3v5UL7FOGTN0Xbfb1cbGRqx9nHPK9Dmokq5zX73ecsqm+dg4S+myT99TJ5n55J6u127duhXl7MibZk0BIklrQs+cn59rc3MzHNksyyLdBueF+XKGH7DmbB/tSfvjzjT6xCORtAUdxD263W6k+XhagNsnoqqc7EblCPDA3t5eDsy73Scy5mRBenJdCjbpI2PhB+Bw/0ajESlpvuaKUqukYZSDTXzcg/HGWQGPYDeQU9rJhUzyTGTJyR0ngjxl0SMctNPXr4+B2yX/nM8Nc+pXCsZ9jNPPcKU27kXXl2GC/4Wk/0jSh1mW/eMXr/1rSf9hlmW/qmE6xBNJ//kXD/tFlmX/p6SPNaws8V8MXlIZggu2gIWR1nu8uhoeB1yr1eI1JpywHBcsIKwI9z87OwvmiQF3Tyv1YlIA5gDWBdvBhnu2KCZYjtQbybL8WfS0u1qtRkFuX+CdTkdPnz5Vu93W8fFxLlTsCiUFb5Ke8+pILyEXUVIARq+CwSL3/DPu52ycOw7MgZdg6na7AdBhu2DrGVvyn4uUif9Of2jP6elpTkmenp7GSXpc/jcLmnmlHV5xxPuMrADGHDj45SwBCpewlX8n9VJdPgA0LtcOxNMrBcJpn1OlXOQ9p2PjpQJdiUqKscXRSxk87uWRCvoOK0mqwtbWVjDcvV4v7s08+CYKGFtY6ZSRcaUtKUoXsQ6JQCCzbuTcyTg8PMwBZOSS/HI+z/Huns6Bg4ghoX2eN8+zkF1Ag+tA8gIx0Jz+5LKH7iDsDkBhDTi7Iyk2F9frdU1PT0fJJNcZ9Xo9p3toK4wRTCs62tPMkCnvD68BfLzeaupE+RplzJk7nJH19XV99tlnunnzZuTjbm9vx+FK6A/mcmNjI8aENITz83NVq9WckwFg6na7wc76xr903fhv1xu83m63Axj62vWNO9J1bi+ywFoGGPvzkWsAmNstWMwiveCRKLdxY2Njun37tk5OTrS1tRWOCGCY76OvPaqJowWYJ0ojDdOMkAtnCD1KluqlFGz6+NIGHAn0hY8la9nrSnt/Ib9cD7B+eY3ULOTa9Rrt8PSH9DV0EM9MU/BoZ8rK0p/0NEdIJE9dc5uCYzk6OpqrX+1HmLPuvBKTg1UizT4f6AyPfjIfResgtc2sidRxpP1FUdVUB6TP9fcY9xfZOv9ekY3268tUh/hrSUVc8g9e8p1/I+nf/LJ7czE45CFKyp0UhZC02+0IW8DGoNQQInLE5ubmYuHzmjRkVz7//PMAee4lSsWblfw+KXhJJ9mBBoLrHpgr/dHRYW3ao6OjHKvqZYnccz8+Ptbx8bEeP34c6RzuOcPOeG4VisuZmlKpFACYE4xgTPykJu4B2+XPu7y8jE0mkoLpRjC9LBv9hR0iX5v+YbQwaDw7dTi4H8o5Bf3kd7J4/dATN6zernThOnuVshEYYwytM/E+tm6oKEGHXL8ovOoADONUrVZzaT5838OAvn5c3lIm0ueBz3iYMVU4/X4/t6P59PRUjUYj+n5+fq7j4+MwHi53Pt/k9LlT4fmBrFkYIhim/f19zc3N5cace8POkXPrF2waY/misU7XDkA7y7LYX0CaB/JIPjHr0wE4h/J4qLdcLj/HpmCgiBC5LCH/DoScSfT2whZzMdboI+QO/caYnZ2dqdVqRUqJp07RHk4643100vz8fIBH1hhRHGSIdiObzlim1XVcjv20MPQy92QsPSr48ccfa3NzM8LI7DPAOfCj53d2djQYDHLloQBV6Nl+vx86yxk6xgYn1kEnc4/eI7JB5A2A6HOEzvCIp+sowKek3EYv9FrRMb++hovYak9BYB3SZtJzAOIOVOm3yxLOOfIGyYF8eqQIEoTxdSBMe5FtB8LIhNtO+gDYdPDIuk/Bla8X1gGOJKk5rke4nzvEnqLjcu2yyfP9QAm+4/dj7Blr5M8dg2azGe3pdDra3d2NyBZjAwDGqZubm4tN3QD99Pk4VIy5pzAcHx8/pyOJ1rgtdhLoZbalyK6m8pjaJ+bKrxQc+9in90zXQfpa+l2/XpkT49yzpHPuIfOZzc3N3OAT1iBHbWVlRbOzs+GJo6Tr9Xrk4LjyBoixkKV81QA3diwE2oKw+YUCu7y8DGVRKpUiR4nC3NJQydXrdZVKJbVarSiRgmeGEUZReJI6baGtR0dHGhkZCU/e2XKMKsaMguHUMJQUxxO2Wi3Nzs6Go3F6eqqDg4NQuN4/P1QhTSHgWGRXkCyktD6hh7dcWaQG1Z0HFCEX8oIcASbc2PA5XyRFGxpoM5uIsuw6/zUFTmkY2UEzIXkYkrQ2soNbcm1985Yrm5RpZay9b0XKx50JH6sipZH+z3OpDwnTiGIlxxRA5kYMsMdRtTg+sDkYGJxCz/ul/Z7j7SwR30nLcfV6PVWrVS0tLQVQZ4e4r1MPGXoOMseGE7FwZicN3dGuVqsVesCZbmfM3Ci6fDtDKCnSoNxw+oZT36SYblYkbM1a52CIw8PDiDLBcB8fH+vBgwcBZABe7FK/d++eNjc3c5sCR0ZGwjHgnsgy7fPPcoQ4wIO2ohMcYHtovFqt5tLbSqVSVGCgwghOCuxlrVYLh4Pjmd0ZIrWFvHbGlHnBdvgmWdJLnJxw3c/nHCRwND02DLvCGFGWC7bdXuh9BQAAIABJREFUHVrGE/LHI3vI3PT0dFRiwClzW0DbHFyiW5wl9vV+eXmp999/P9Y4YBciiXXEfdGJPJtoBWAqrazjOd0pI8o6TqOlKbkBQ+ubggGg3nfGwjdguS6D/aVmMvZycnJSnU4nNqoxb77ukWt0s8+bOxDoV3QipI7bGZwJZBbb0mg04phl5uXv/u7vgtxxMoA2NptNzc7Ohgw7WKXfEIVuC93OOYGS2hnaPTIyEtWgHIOk4+6Xjx3Pxd47yYaz5XuC+Hxqq7hYj+48vQgI+9otul4ZEIzQSdcAg8XlXqmXifFwECHDlZUVTUxMhPFlgwq5Nq1WK5R7pVIJRS1dgyL3KFPPlc+gLHyAnRmAWUCINjY2AkACKE9PT/Xo0aPIr8GY4unzN8rcN+wxJgjxwsKCDg4OItdWUpwMgyFaXFzUrVu3tLKyopOTE3366aex6QcgurS0pLm5uRDqs7Mz7e3thVFCqTFfKKylpSWNjo5qY2MjxjUFZHweJopws4ePfGE48GCuXZn5YgUUYQR9Ab0I8PGZ9O+UTWC+nAGS8oucz3vYDWAwMTGhmZmZCK0y314qh7959sXFReQwpvLl7XXF4p9xhez9Tp1K5NeVkst6ek9km886G+7AHkXM2LEO3WCRcwlbjJEl2vPkyZNcqpBvwOJUpzR1Zm5uTnfv3tXp6alWV1f19OnTYKccXE5MTOiNN97IOXHoHZhtj9q4vsF4cGjN/Py8njx5EiUFAbgc/80a5XWfHweNqXPI1e12o5QjTodHOzy9gnJ0gBJn31nTAH1YsNHR4Waw2dlZ1Wo1TU9Pq1arhe5gjW5tbcX4eGoGusOBDnPPGifCtL+/H5E7+i9JR0dHKpfLmp2dVbvdDiDJfWGg6/V61De+uro+2GVsbCzK3SHLRBe+8Y1v6K//+q/VaDRyegdb4Js96Y87ae7oYsCxT71eL1j11dXVnN1yB2dsbHjgEYAJh9iBB463O8rYu36/H+PS7w/3PiwuLmp7ezt0s4e7ncVDv7Am3cEmzZDv4HhNT09HOdJOpxO2TFIA+SzLAhjRL9ehzCH984gGjg+yRepXEas4GAyCUIK0gpmHEUV3oEfTqj/MgY8/a4s5TiPK2FdnsV0H0g+Arkd7uQ8yRz14+ktqFfuS6vW6KpVKHJYzMTGhxcXFeJZXaqAtY2Nj2tjYiJPmeKavS3fAGVePvsLeu43wNQegHx0djU2eHkVAn3kEl/FDL/k88L+D0/QntSnMn9syXzdf5nrZ514JEOyghcElX+fo6CgU5tjYmJrNZm4HpYNn36xRLpfV6XRyZUVOT0/DYyKZPcuyXBjLTwXyXBrYXCYc5YuH6gLkLI97vTAA0nUeILlzsBycKOP1d32TCUKHoCE05DA2Go3I893Z2YlSSgsLC/rWt76lb33rW1FTc3FxUT/5yU+0tramy8vL+N7+/n6uPjAGl00DDv4YR5hfFDHj7oLPXMGWkHuHcwAbkYLfFIACilCweLqp0isCgy5zfm+exWfdiKaeLPOZ5jO6c0J7UXzICxtjnKFljIo8YX6Ye3fQUrbY+8CFXKf9T8Fy+syizzkT4Y4AYJbnpECb930zGZ9zh5L2wxhXq1U9evQowsoexvN6o7T7/PxcGxsbAT4x/LBVPJsNNrCpDg79eFkcrTSlgzFmHp25Z8wdFPp7ACxJOUbo13/91/Wzn/0sokHMN+AAOWdnNiXJPG8PY87paG6wOfaUMUeH9Pv9YJNmZ2c1MzOjxcVF3b59W5LiGHkiG4yVh4EJnboDxHwCxN1p8/Xk7eh2u3r27Jmka8BCbi59OT4+1uTkZNQ1ZT3t7u5qZmYmqo74Ovz4449VLpfDkfC5u7q6UrvdzlUPgHUHVPE5d1p9bZB/6gykh99h+hzgHh8f59J2GBv2NSC/vsa9LBgnNkrX4WWcOw+zS4pNiMgdaXD7+/tqt9tRFcXZ+k6nE9ED1op0zZDTrlKpFARUp9N5blOqp9sNBtf58Kxz5IBoLuPKGMKOez155oA1xWEpY2Nj+uyzz54jBNwJ5bvYXyIcnsqFrWa8nOhiTNzBcUDvYLhUKml5eTkqmTx+/DjWJjZyYWFBd+/e1dLSkvb29vT555/HCaKtVivmt16vB0t9dXUVUe1+vx+Yhfum6SduEzwqy/+sbeYDh4qxYs5mZ2e1t7cXMsV6wSFxm+o5z26P09eYf48Yp8DX5ce/k36uCOimkeCi65UAwdLzO+FhP1zo2YzF/wwCVDpGEJDEwm6326EAR0dHNT09rSzL4nx7FBP3daH3BQWT5d4V4JVNYgiCGydfNIQl3DBQzqlarWpqaioqMcDyALYw4lwoCmen8AB5H8PVbDb1+uuv65133tHs7GwwXQ8ePNDe3l4cxiEpl0vLGMBKu2KQrg0+YBvQSP8AbuS00Rdnj/DmnX0rAq3ISa/Xy51c5PPhC5zvUDbGwTVyRu1pnu3fQybSMI+P8YsWucss6S3MhQN9HKDR0dHYye/AnfF2z9u/mzoIqYLms95OZ1oc1BVd/lme6bmILnNusGk7IUzP4+M92lkqlSJyQPQBwMd485uQbcoY8Yxyuayvfe1r6vf7Wl9f15MnT0LeGA/ue3JyolqtFvIH2ElZzZTZ43n8vb6+nmM3few8iuDMEuue6I6H6J2dcRaS8SXNxEPgDhAAXzCc6D7aA9Bh/prNphYXF4MBnp6e1htvvBHs4O7uboBZD7Wmc+Oy5s6yO0boAKJVONKAT6+cMhgMtLS0pFarlSuvRzi7VLo+NAEnslwu51gixpa/U92IQwXRge1xZ5f175v8fPyQEZ7JHHqEzUtUpZtk08iTRx79ef4/xIf3hZKGVNogtYL+eP+YT9986vnb1IP2tDPm2GvDSkMQykEaACZ3WpzkAchxoQv4cdaSfnsNYfQgctLvD6sqcNKp98VBsOsKZ/eZxxelVjC+TgKg77g/c+rMJp/vdrsxlktLS+r3+1Gze2RkuNmUtBPq5ENGOQHIOOJs0gafB++rv8aVRleLCBDWo3+WdBTKT7pMpc9i7l0XFD0Pncvrzq6nZFYRgPU16G1I+0J7/tmAYDeiKdWN0vCQCQLPgHa7Xe3u7qrX66lWq4XyQYGOjIxoZmZG7777brC+7IKmDVI+v9VZtIuLizhC1hWYbxTwheDgxNk+z7OZmJhQvV6PmqaUoZqYmMixMEWT7K+hQHxHP6B9ZGR4RDSsKwuY0KqDIBdsFhsVIFxRO6MkPZ+Llvbbcz491MGGGN/U421xsE3YCEbf75MykN5WZxqlfMkx9+DTBe0K05Ub4+KKtWgM+Zt7pEwuzycSkY5B6t2mr6fgm884s1TkUBQ5GLQtNVD+XGTXHVbp2oD4a/x2UO8pEuQp0l4Mna9Fr1rgbWZOU+AN23bnzh2dnp5qd3c3FCoMrK9JIkUYTNrF+0WKM53bwWCQO9zGX6dNfqUsGqDk6OgoB1L5HA5TasydUUYe3aGh3wACj6ahv87OzqK+dqPRUKPRCEd8ZWUldAeOnDuSruPSvqfr2HWEj6tHN1w/uEOLE+HAQ1KUgnM5I3eY9U576Tvgkb8d3OFEOcng+yloG+3mf+q0AvqdgeNZRCOY3xT8ukw58PS5TPWspJxeYgxhsD3fGKfP1zFMOJERUoaka/AFsYEO87Hkflk2zIVOTx5EJ7FhdGRkJA5Igdyizb75DsLE+4xMkF7DBrT0BL90btK2MM+uo5h3/1xq91N5dwcvtQsO1EdGRuIQKGruQ+6BZ5hzNr3zXMcZyDInxbEmi9afkw3MT0ow8uNj7HoWGSRKjQ7DqfJnuBz4+L0IeKZ2K8UbLqf+HX+G3+dl4PbLXq8MCOZy5SE9X4sXRtEpfEAWnifhprGxsSiNUyoN83Nef/11fetb35Ik7e3t6f79+xE+dcWLZwf7hAIgHw4lw8knCKd0XfNRus419HCLe1zNZjMOE6DGLQAVtsQ92pRhod2+qcoBJoYWo7+xsaGxsTEdHByo3W5HTjTGGCAmXRdS9/Ai7Yd5wIg5+8icuSPgm5u83Fqv18sxCKnidwZpampKy8vLcVBB6tUy/q4Y0w0mDiZwSmB8fEEyb8iclE81KArPuHJJF23KWPv7yI4bwFTB+Jy7HHmfil5P15HLk98TA+oRgBQE+2lRjCvhOTcGPibIkXR9UqHnkuEgkMeaOlPpmkFmACtujNABp6ensUmHNexsDkYEHUGfMUoePk3HzJ0Xdr87GPW5d3aUy50Ncimvrq5ygNwvX0s+vuTkphEMXwcp0GAD2cjISByQwzompI0Omp+fD/3Tbre1t7f3HDhFV7Gm3ZiVSqUAqg4QnC11WfGNp77uyNsF8DDvVDRg3BlDXwsOIFJWEzlyQyxd14CVro+YJeUrZcJHR0c1Ozur/f390EcOUIuc67GxscjrLVpnpOqwBiB3fC0z36TruBPB+8igO1TOMPN8Tn7ks9KwglKWZTlwnzpf3p9KpaInT57kNt45SeLPprweY4vj6rnmyLSTHKRIsYH1xo0bUcqT1BLAtq8HZzMZa19LWXadH5xGMxzYOUOcgj1ep82sDzasuoNzeHgYJV1xoAHF9JsqWLVaLcdYpzbK86H9GY6XpGvQStvd+XadxnusayIv6Cj65pUmfD0xnz5vqXz7+nD76HaRz77sSu3Miz7vtvZF1ysDgh1kSXnv19+HvXQF5wyDAytJYVxnZ2f1la98Re+9956+/vWv6+bNmxoZGdEf//Ef66OPPorwEIaInbj9/rDOpOfW9fv92Px1cXERHh6DfePGjcgF9VJIeFJcpdKwrA5HPFKLEUZXUixsfggdY0jx5m/evBkOAOFkNzZPnz5Vo9GI3Mosy/To0aM4s71cLuc2CCDEvnAwiswHrAO5aShjQtbuqZdKJb311lt69OhRjjF3tss9V9gTLsJKz549C8WSGhgHJS47XvMYowDY9/IwKTBNASf3cABfdHk/vH1FCpbw2GBwfVSxdG1EU0/dnakiNqLo8vukyoDvwgh6bnVRaHAwGOQqb7AunEHhu4AGdwRQsGxwIQ2gWq3mNscwl7DEyGK32w0DiBJnbZA7+P3vfz8A1dTUVDi5ztARmi2VhpVZSL8A3KVzABNFlIlqM9Q4Zi6d9WctAzRx5Ig+YaxHR4el4WAV2dDKnHr6Cf3o9YYbspgDB4SsHXdQlpaW9Bu/8RsaGRnR5uamLi4utLS0FOFpZ5+QxZmZGbXbbc3OzmpycjKcipGRYY3n2dlZLS4uSpJ+8YtfxPuDwTBNbGFhQcfHx7lUNHIIPSrFxi4Al4MMTipzp/Tg4CAYa9bZ+fm51tbWYhx9TaSOJMAL4O1y66kMHDBCRA3iw9c/88VaYQ0fHx+HjkydTSIS/j+bvaanp2MsqO6RRjDQQ5OTk+FI0UZOCnMgSTuwmVTaGB0djfzqwWCgdrutw8PDsA9TU1O5PQxFIfBer6eHDx+G/DF3nicOsGNMsSOQLsgG44Etcidxbm5OlUolB87ICz84OFC329WdO3dULpdzUQv/oSpSv98PcsxLpbmzljpM9JWc/BRoOkHAewD04+Pj0DWksKBLd3Z2NDExoXfffVflcjkO7vA8b3QINgsZla7TClyeYP5TnewpmtI1OEYnS0McwOEpvjfIozKsRb8vr/mmfMYljU65nnJ7mqaouJ0sioa7c5g+w0mffzYgmEXgk+YDTSkjzmPHm/J8Jwc51WpVd+7ciaT0b3zjG3rttdc0Pz8fRu53f/d3tb6+rr29vcgxlRSGdnl5OTYQnJychIBPTEzorbfeUq/X049//GM9ePAgNxmtVis80/HxcVWrVZXLZT18+PC5PJhWq6Xp6ekwCCg0aqV67dBerxcpAQBq8gM//fRTjY2NaWlpKdgwADI7eO/fvx8nJRGCJZTrpWPIScZgTU5OBvhJQR3VK1zpeO6vCzEGF8UjXYfIUfSAfvK7XLhRyIALLl9EqYJCYXiIkAWVeqopo8o8+XP8tXSh+ed84bnnzeUKl9fZYJN6uenfqTJgzpi3lGXiWe55u1IYDAZR99k3rTl74ArHAbnPrz/PDTa/kWNvE0qVjS+ETRcWFrS4uKhWq6WJiYkcu+ushzM7afUYz9MjZUlShCZPT09ztWXpC0wH6x3HCqOJQ4uxbzQakb5xfn4e7XL2sl6va2VlRd/+9rf1J3/yJ1pbW4t2drtdbW1tqV6v5+SBeURfeTTBN0Y5u+NRKOmaNex0OpGb2Ol0tLe3F4D/8PBQOzs7UVGANbm/v6+NjQ1dXl5qcXFRWZaFEaeSA6flQVDgqPR6w0MtUkeN9z36BsME8JOuj1LGoeYzbP598OBBOCIwajgfhPEBuoTaJeWIBn92uh5g5xhDBxnj4+Oanp5WvV6PPR6eJ0ufK5VKbh7oCzoNfZ9lwyoLWZblKghQ4q/f70clFJdTdBrsbMr4eeoSG5VXVla0uLgY1T9wUlqtVlSfcHsKUAbop2yikxULCwsxHxcXF3Fk+draWlSZuLi40NzcXGyi41kOsqkO40RLs9mMw66w1awtaZjf//Tp07BJVEAC1DM3KdGDPmAduRPnuhYnyMmRIraVjYmDwUD7+/sBjCGmPEUmy4alTdfW1nTr1i3duXNH+/v7mpmZ0fn5uZ4+fRprCcfAQT34QrreRMkP+sLnEl1LXwHayBB9/Oijj0KOncSAPEBGGRee746W74NhHFMyyY+Fxtn3sn+ONdx2uUPobfDP+m+/T9H1yoDg1JNMAQRCRu4RQI7JwHsm9LewsKDvfve7+va3v62/+qu/UrPZDKV4fn6ug4ODKG+0sLCg9fX1mMhutxsl1QCQPpCUw2EXLuG2crkc539L154XO3AdYGBA9/b21O/3Y3drv98Pjxwmi886CHKggbHudrtaXV0NoS+Xy5qbm1O5XNb29rbW19eDNaK9gEevMwgYZkFPTU3p5OQk6mwSMhwfH4/jXp0lSWsSAjq2trbiXiw6vgtwAFzB+HtOJCEmr1yBbLAwHIC7kvLNVP67CAAjTz5XbijTRZWCw9SAYCQxSvSxyLv1eU0Bpf/vSgDFD/vJWnHgyjil7ec+rB8AAxshBoNBGJ5U/pwtYW4Ag3yOqyjNhbEAZMNkrays6NatW+p2u5qfn9fV1VWALwcbzoi4E8w4MwalUkmvv/66NjY2wjkklMpc8110SyoDLltUkeAzc3NzOjw8DNYDuXXQx74E1qCHFLNsuPMaPUg73Ah5LuTOzk6sY95HD3jOKT8w5x9++GGMobPFnBR2cHCglZWVYGcBRicnJxofH9fXv/51ScOqMzMzM7p7967+9m//Vo8fPw6wSZ9dbyN/nhLlYArwjJ71+YPUALRkWRabio6OjnJVHZBXxg1b4DLum8VSwOcGHz3mKRrcP8uG9Yzfe+89/c7v/I7+4A/+IOwFLCOsYa1WC2aSsfCDc7gf6wA2nTa8/vrr6vV6un//fqxnz9l0dpZx93rTRFzOz8+1srKi1157TcvLy5qamlKr1dLa2poWFhZCrj799NMgRgC+6DIcDNcDyPD09LRu3rypy8vLYGbZqMgR6LDafuIbfUV/IfvS8yd0Uv3Jo09TU1PRxmq1qvX1dWVZpr29vYhY8B1sv+usdEM8oBWnmR/0tac8soZdD7kN4PS5FPhCskEeXV1d6cGDB/rVX/1VlUolHRwcaHd3V3t7ezE+RKqRCwf0tC3LshyITOeIiBTzyYZ+dDa6iu+BlzyNBoeeTdzMHf1ifHHu3Fa5bnC9zZi6XaefqRPNfXi2E2WMAW3l98sAsPQKgWAPo7rB5G9Ck74r1Nm+FKiMjQ1POGo2m3r33XdVKpXiAIr9/X1tb29rc3MzNtLxXDwj6keWSsPSaFSSQKmS7O4TADvjQg+z6eFAwjqErMgTwkgg2LAifsQwfQXIUuh/fX09l6vMz+HhYe50Pc/Je+utt3R6eqqdnZ2oWej5ZqRoSMNScJRmogwbudcobt+wkM4JLCChN2dkYQ4YS5RRasyL0gCcwZGuc6LSBZF6iRjZIq/Rf/OeP4t2vNS7/CL0zcL3Z/g4uXOTPt8ZPX+/CDgjN86sOIh3wJ8qphTES9flCGHNiip3uEOBw0bpOjfm6fPSNc7zyuWylpaWtLi4qMnJyQATV1dXkTcvDUGYG3+fj35/uFuclBfAKiDVQ4z8zdz4BjLaVeQw+JjNzs7G6ZSE9VnvfLfb7cY6I4pFn3l2vV7X1dVV7rAHSblUKMAh5ai8/RhYDDPzwt+eCuBhaI98eOi60+locnJSc3NzunXrlp48eaLt7e0AUhyGQX+4J2MHsPU2eu44n0NucVKla8OILqKdyAg5pMgHxt3TQtxoOmHCuLiOctlhfTIfvOcsLk7C+vq6Hjx4EKACG8V84FDRdpchj2Yhd+50SUObsrm5Gc/09eTRLbeHEApe6YF7z8zMaHl5WcvLyyqXy2o0Gup0OqrX6+r1epHC4WPi7cKeeRtpf6VS0dTUVE7OIFc8fxzHzYGakxL0gWcA4olM0i539tFP2M2UrUWWXA975IQx9Qv54JnMKXLLGA8Gg1zJS2SNz3lk0vsJQQKm2d3djZJ1Xvs5PeIdR8H3OjEWnlLkbXb976kLvi5S28q68zFDrzF3qe1F1xURN37xfNYNhNfe3l7O3rtspGPIe+n/jHvR6y+6XhkQTINdafrCYJLSkJB/15Xr6elp5MGSbnB4eBiHP+zv7+vi4kLPnj3TwcFB7vnSdQgMQ8ChEu6VpqAAloj7AOJRCBS8npmZUb8/rF3suZE+ac5AwPCUSqWodsEC4LNcDsoJO6Y5t+Pj45EWgmGSFMrCcxWdKanX65qdnVWj0dDk5GQu1ATYxyPkHoBN8rhYqA4QGDsWKGOW7rpm7Bkjl4FUZlxh8RwHNg64uVx5pODI3yuSWy6+hwOBcnbA75u+PO+56N4vW8ApyHSAl17018eOdjBHHiJGdr2urr+X9t3XIPctGh8HwQ6ikUvKdEnX9Sqvrq7ikAROd4Jp8PnlHl4nlbYeHBzk2IlUj/A6htXnO3WWsiwLh/DevXtaWFjQ1NSU9vb2IuqTgvPLy+HpjEdHR7k59fWbjqsDj5Qd9s/zOWdKvN2wPm5Q0V849YQwu93hZrSrqyvNz88HICyVhmleY2NjWllZiVQuIkrOFknKnS7FXDtILJLfFFyRBgPQ5X2eNT4+HlElGDzfnIWcsQ5h6WFri5zJLMvUaDT09ttv69GjR7mSXgAsHIWHDx+GzHB5O9A5yCOsYZEuYQ587UgK9tTH19NoUuDDeKNznN3DsV1aWop9K6QvEH1E57JWXcaQJQcmDqzcoUXmO51OEB/ILDYnXWPulPB8Psu6YQ4Zc2zN5eVlVEYCdDM+7hB5X5gbPucg0OfKnXfGNHVS6Ys7TrQ1xSrulNKus7OzYH99j0iWZcFmA76pX+1g1PUo9+dvt++uyzx1zjdPYsPRl6R2ui3zPhWliBSBXy6fD3dIXK78SvWE3+dF3/H//9mAYL88VOKLjXrAzhCnA8pk7O7u6gc/+IE+/PBD/f7v/76mp6fVbre1sbGhTz75RM+ePVOr1crlFnNfD+GRKP7zn/88FxaR8qEPf7ZvZPG2V6vVSPI/OzsLwyxdJ7i7IBM2433Y4Ha7HUzI5eWljo6OwqOU8jvHqYHJNTIyLOvzzW9+U3//938fp6wBOFBS/r2pqSldXg7PKOfAkIODg9iI4ooJ5o1F5eOUZdd5ku61sYhQpoSjvHi6j6WDWN7HGKE03TD5gubiXhhoX7z+Ph67l2Tz60VgDwXm4+pK2OW2SFkUvZ56yOnYeLt9fGmn93FkZCQ2YEjXgBOjwnHZsE2+UYPPe7tgxwA+GO4iZ4W+oXRpZ7oR0kN9IyPD8oYLCwva3t7OHbvrfWKTKvfkuWl5H/rkRuny8jJOpStyiNxZGB8f1927d/Xee+8FUMT4b29v5+aLH0L3lPBCZjHyzswg455mAoD1/qErHSj7eLM2G41GgBJnkbk/36UmL447Ogqn7tmzZzo5OYn62hMTE7EPgTbBgPnBH4PBMJWNSBmv03+PBNK2Wq2WO7IXw392dhZ7LdBVyAfAyR2GarUqSbnKPpxU6GsHGWo2m/rmN7+pzc3NSBODgHBQiP6t1Woho9TpbbVaOjk5iRQ5wBZlL51hdLDlIM43WbktRH5brVaO4WQOYXV5HWeHk+HIpT46OtLFxYW2tra0vr6uzc3N+IyvVWTW7++6pN8f5iyTZw7Z4ykInv/b7XaDfebHnRf67Kzi/v5+bGzD1nipNwd6yKrXf/ZUNJdTmGDfcOzOsEcu3Hl2ZtZzax2YDgaDSBNKv08aAnqyVCrp+Pg40mqIAne73ciHZp8Mcopc8Gy3pTzP5ZUoUcqUUt2KuRgbGwsdgUxzwBWX21L0Ew4X904joK5DaZ+n7BQRU1xFQJe5QR+ma/lFIDy9XikQnIbJEFpPVfD8G/+e/wCGnjx5oocPH2psbCyO43z06JEePHgQYSomwhcSz9/b29Px8XF4/O7d+WlSaUjBwzkIrJeHonRQKsTuGaHM2UBSq9XUbDZVrVbVarVy4QsXfsZocnJSzWYz8uYQ0pGRYYHut956Sx9//HG05/z8XPv7+7ERgTwfFvrl5aWq1aqOj491cHAQlSg6nY5mZma0srKiq6sr3b9/X1k2PL4WcI6iIH2CcfS+OyDh6NcUOHF5LirvO1vpLKN/NgU1rhSc+UzBmQOTlMkivJx6pCnrxeseNvWUDf+M95M2pJczUN5+76s7kBMTEwGyGBfGGWPlzsDFxfCoccbPHYTUa+d1QCufcUeEC4XpzDz/t1qtOF7c2WCMHptAYad9FzT3ZrMYYNFZGtro69jZYRxJ3nej6M/hu4TxxsfHNTs7m3MMSKnyZ7t+Ys4wAlSMSB1q1y3ci42lPtcAndSQIBNsekLkNKeSAAAgAElEQVSu/Jhm1h9OqjuiML1vvfWWarWa7t+/r/fff1+rq6uxp8D1F/n/7GXo9XpqNBq5KJmPMScDAgypyHN2dqbt7e0I+9N/nCMcCn//4OBAU1NTkVKCDBLaRs58gyYXa79UKumzzz7Ts2fPYq4AgKenp7l89/Pzc+3t7cWGyPn5ec3NzenGjRtxDPTy8rKazWbu5DiPZDDf5GpC8sDakmfpUTH6QM6p26aTk5MA/fQTHfHJJ58EwPna176mhw8f6rPPPtPjx49zm8wZK9YKdgu5TvM6Ly8vYyMU6SqAKVKSsLeMNfnDrVYrIgwwkK63AVaMjQMfB4U48+g1zzNHJ6UH0/T7/VxlEsbJ9RwA1vWjp1f4oTRe0x/Zx3EjEsO9cKq4+LzrVGwL3724uNDJyUmu6hLRA9cH2FyXF3eoaTu54+4w4NRub2/r4OBApVIpHJlutxuRFNaAywubjT0VbDAY5NJz0GGeDild2+Ii4JraGdd5KQnEWH5ZACy9YiCYBee5uBxp6AqfSU43P2BgHdien5/r+9///nPG3A2LA5xyuRzPQykgHLVaLQzv2NiYjo6OcrlmDkQ9tSDLhieTra6uqt8fbsrBg+W73W43ytVUKhXNz88ry4an2vX7fS0tLen27dv6y7/8y+hfKgB+jju7b+v1eo5h7vV62tnZ0Q9+8ANtbm7mQnAwUow/uUdra2uamJjQZ599FqfLkad8cXGhRqOhN998MxbM2tpaeJBcLCRn0Z2JRdlh4NrtdihSBwcpqPCSeeRJc+AISpANMA6mU/BKmzAafI42oURcYTKeHkLn8iNNfdcshsoBFgasaD0U/e1srDtazkD4dwaDQdRQZc2kAMBzqekLtTxTFqqIJfXn8XnPWeN9bzPPdGBKjdJGoxG7qrvdbtSGprb1YDCIOcbIcW/WlbfLmTaXO3eymW/kysP5yDpgBbZtb28vwr0YgkajEZvnGEcPk6Zz4w7nyMh17fNOp5NjYNyQsUsb/Uf60MjISOgpjBbz7+ONIe31eqpWqxoMhkyr198tl8u6d++e3n33Xf3Kr/xKtGF7e1unp6dqtVpxbPy9e/fiZDlpCIxIVbi8vIxxabVaOWedtkiKv2u1mqamprS7uxsMnpQ/uYuUAxjh0dHrmqyAR0AIjLGXm5yZmYkjYJED9A2ltzwNg7XsuZfMGZuWkD/mgqjE0dFROAteksv1v9f8Jcd2YWFBa2truQomzEG67vghr9wBFY7T5OSkPvzwQz169EgzMzOxwXFlZSX2y1AxyNvGWMDC+iZf7A2fw0nFhqAznagYGRmJ0oIASbdRjLmvEWSAXHbGm3uyhjlOeHd3N0deeOpIanckqVqthvPldtujsegCtxH03zdNOohmw+Do6KhOTk60vb2d0wU8f2xsLOwCsgLW2NraUqlUypWvpB84eGxmRubBSDgzyCmVKwD4FxcX4cCwDp49exbRFeQdQqFSqeiNN95QtVrVzs6OHj58GCloztwzZ/xO5RGi0tOcPBXHx9HloEh/+4XcpGzyy0DxKwOC3SuWhvlgb7zxhj7++ONcjp17pTAabMbhNfcAU5peen5A/H8HVoRVDg4OcoW4r66uYse0h3mcYQTAp2xOqVTS48ePc2wUm+YATJVKJQSaI47n5ub05ptvqt1u64c//GEoFrxQTuYB8GHU/OhFxtlBZr/f1+uvv6433nhD9+/f1wcffJDzymAiKKPDHPhi29nZ0ccffxxlZfr9fjDYGHRJwei5twy4wIN30JkCRQdZriR9Qx9yhELzzVA+zyxA39H+IjaA17wNLjveH+6FgXCw4YCvqB/p/9wfpis1hOm6STfZcS9niF1pODuTOoNu1N0B8VBokdL31/yH+3p+dApKUfTb29va3t5+jg11wJuOG3PuDqlvdGMMfK1yLze6GHevSuKMNn2ljCG7pXmdHezknMJ2es1UZNYNAwaP+rtjY2N69OhRsIKu1HEUU/lzcMgcAWxhYT3agU7kf8A68uAgQlKADjYE+3yura3F/bkPOnhjYyPnMJKjiwwAUCAAOPqY8U4dGh8zQLanHzEm/E30yY/VxXagcz39q9FoBPCEyXPnhHYgb+iQ/f39SJ+4uLjQxMREpNxhtzxVDdvBGLAW2Ify2muvxYZsQDJrYDAY5JwjSRHtcbba9ag03MhJKl25XNbdu3fDYcH2rK6uRvTQwRqsPvrNHTDkysvRQUrQV9pOJMTJA3S/57YzNrCt6AB0EOvW/0dO6T9ryllad3qxyWkag+sst01FbCV2Ehn01ITBYKBqtarl5WWdnZ1pZ2dHzWYz8q/pH1VE6AvrD/teVALN9wKRhtJut3NtR7+xliA2XMexFlyPpvsUGLNerxcMNsw/hN3GxkYuAooT4WvR7Sn6A72JLkJHprgsJcDcThfZPb+KSKYYuxe+8//zlXr7l5eXUWrMFaGHC/E0p6amIm+TC6XjO2+LgEB6DQbXR5dOTU2pXq/HAhoZGZZcGR0djSR8X7AsKAQXJomjE3n+2dlZbKBAAbhC91Cxn97y+eefx2YUhBQljuJJ++KK1vu/s7Ojk5OTUMq1Wi1C0D4XvvjYnU2ohXsfHx9rbW0tjAmML6F/FnrKoLLg6Y+zYd6H1CAi+ChpQLMrS8YdhZ0qP093YL4xzL4Rzp/vIMqBkzsZ3m7PVaLvL/JIX+appkDTP/8yj9nv7TLK55A3Z6XcuLu8pGkFRe32tqTrIv3tffHv4LAiH7SN+wEIYQ+RF05cJLeWdrlh5B4wbWdnZzkWmef4fLFO+Rt5AyCNjo7q6Ogo1iO50YS8PR+Qz7hjQrt4NikfgB6AAd9zcApgcLmmDTjz6EgYbHfGiZh4fiH7LgaDIXt8eHiog4ODqFnabrdz+dU+LowvzBSXG0YcVgdXvE+epx9lj8yga4n6+ffTMUVnuXx4tQq+g1NOxArZOzw8jOgf96avXobNnWZklyoS6PRUztGJRWlX9BN78fjx42BlU/aXMWNjm0ekPNrCD8QOmxzPzs5Uq9VUqVS0v78f+hp74iF3xoC9Av5almXBLvoaxvbRVtYzssl4MKfValXtdvs5vcuYraysqN1uRz1xl3cfO4/iOoCFkEp1Nu3me87E+vMZs1R3+Zqj2oPry6urKz179ixytInOEvVtNpu6ffu2bt++rT//8z+PvHPHKOnhJ67fsUPMjTvWHi32fQXoBOzYm2++qcPDw0hl8A2GHqXj4nChwWAQURN0Ks4ZeguHL7Xj/Eafpuvd3/d5Qp5TxziVSb/S/9PrlQLBrlzOz8+1sbHx0s8zIIA4L0hdxNylYMYng7/JleEYUS+LQ+iGdqIAMEyufAaD63Jq/f71SXP+bPemuQcsiisIwumrq6tR/xCDyj1YdJ4L5IAj7TtMLaWFTk5OIqznhte97HK5rHq9HvlxhDTYrEfoxcfK87EwjA4AyHlyFsfbmV6pcu/3r2vkUlDcy9QABNLQvBswZ4NhpLykXNHF/HClStVlhM+ncuhX+pp/3hnOFOimwLYICBc9G0ORMrUY5iLl86I5SR1UN2LpT9p2V+bcyw0qChtggdyTJuSs7/LycoQyWUM4Vx52Q1+wXlP2wvUBa8sBKMaIsLCnGgAAWO/u8KVzgAyxHtiU55uTPMKRGgAvsUaExR1PWDmMkRtIgCFz5mCZ/pHzSs5ov9+PdCiiZNzH17OvLW+7lD+alrFw9hmw4Q4QDgSgH6Drcw+AlpSrKYwO9VOxPDyfrp9er6ejo6PQd7QV0LK9vR0y4DbLdQFzSqja5R8g4uyikzSACMpkeV55up6xP87e8X2PgEhDEDQ/Px/RFgf56EtkvSiXn/khFY6+05Z08xcEBPKfOsIOhBkLd9LSi5PguFLH2XVGo9GIttJut7sv0kfp39J1mVPG03Wwkza+qdfH/eLiQhsbGxHZYixee+01zc3N6e7du3rzzTe1srISYNk3KKOPiyKIPg6eVpTqbuTRU+YgjbIs09tvv62NjQ1tbGxEmTLHJ9yLcWT9k3vNRlpIMkmBDzwa53Pg9szbWTT3PuZf5iqypS/7/isDglPvoN/v58I9DJB7gfzPxg4S9FnUGMMiA8TfDqYlhZeOgBwfH+vs7Cy3mY37cY65nwXO+2dnZ2EgUFBeOcEnHEXtC83PU6ddqafnBsHDbXigjFER2IdFwPDu7e3p4cOHYdw9xWQwGJ7iMzMzE0eSkuRPjVAUOYaYNjEe/X4/7unpIfQl3Z2bgkguB7IsJtpcq9WCTSBCUK/XdXR0lDtdiz6lRpE5bjabOj4+DkYqBZHuKDjj9TKw6nNQ5MWmXrJfGPwXybDfz8FluvhTQJsq9heNfdFcpOuVzzmYSL+Thjn9/g6CAXCTk5PxjHK5rHK5HHK3s7OTA1tXV9dHsuLgpSDK24ccevgNxe8Ojq8xZ4u4F/n9qUJHJ+EIExKmHb6ngTEghYr1xOsALi+w7w63j2+tVlOr1cq1BfCYpn+QR8vucF9XfJeyb2xS293d1dTUlBqNRjDw9Xpdp6en6nQ6sXEHHYiucyeXNDLmj77C8hNiR/adpWQMdnd3Y80SnYOhSmULAJ+mLaGbj4+Pc4cCIBuwb6Ojo5qdndW9e/d0cnIS6Q1ZluUiKXxvMLhOX/DqFtwb0gNigLQRjzSQ+47zkl7of5wRmP1KpaLNzc1caB2gePfuXX300Ufa2tpSlg0Z55mZmUihS8G4r3Nf9zwP29rpdNRoNHLRPsLtOGT+42kWrN3T09OQE8aLtYEzxiY2SA13ipHnZrOpe/fuaXV1Vdvb27k69kX60NdtKqfu2PB9J5lYS36wBm1Ht/iBLPT98vJSv/d7v6d33nkndxz0d7/7Xe3v76vVaunw8FCHh4e5FBEfW2+D6+1UHwBk3WbTPw5yWl5ejpQLcvbdyWAcnF3nNEQOHYIZRm/zWZxrx3WpzaLdKQZKHY708/66fy51vl2ei65XBgRLeSPkIYV0kvGU8Gz29vYijIUwAo6lPLvEc/jtTIKkuA/lfVCEbH7xXZKTk5O6e/duHLt8dnYWnvvZ2Vnsvidnt1QqaWlpKTbTNJtN7e3tqdlsRikiwgooGqpKpOERSTnhTD1bLs/B9cWEYQEosrlEUoBVFm+pNNzwQ/iMRcCmAapA9Hq96CdK0kOu5JOdn59HLVKAO+xyCszS8I0vfowmoWlKU0nXBe+XlpZ0cHAQBso96n6/n6vjWC6Xtb+/H5/DsBUxWhgrgE0RQPT/vT/p4kyZVHdUXIH6vYsWdhFDwGv+XG9fqnSQl/RKwX2W5Xe0p6CL9BI3fL5xI2UAABus64mJCc3Ozgagw1BeXl7mUnJwSI6Pj/WLX/wiQtmMEQbXSw5dXFzECZGuV5BFSi+lRiWVO/qCwWM9ck82RaXzlKYw0Hc+646WHwLhOoBx9/kcGRnR/Px86CL6Vy6XA6i7o+YboNClXs4KR54NPaSdSdeHwdRqNS0uLsa66XQ6Oj09zR2q4KDe5c3HVBoeMzw6Ohq1oq/+P+be7EfSLC3zfD4z880WN/PdI9wjIyIzg8qsJaksSKDUAroacQE3ddOCEdJoLkbqP2Akrmdu52puZjQDd4NAaqGWhkWQIFAhVSEoSj1UdmURGRmRsXpE+G6+7+72zYXl7/jzvfGZZ9JqjeJILnc3+5azvMvzLuc9Z2e6d+9emiPkFyXIUJzNZlMTExOam5vT/v6+Hj58mAwNAGDkaQyb27dva2lpKYFA5Em1WtW1a9fS/o+dnR199NFHhT0grAEyyo0aL4Hl/MN4fU+Cz0UEOshujADWJc/z5JBwgHPjxg1VKhU9f/48hbV7vf4ppB9++GGB3g8ODgq54gB70st8nFwj9WsXe8WW8/P+xlXAXJ7nrziNGL/zIbKTaAr54NAvfFGtVlPOudO7p9RVKv0T47797W/r5s2b+pVf+RU9ePBA//zP/6x79+4lJ4zzta+JYwT/ng3m7uX0SBPzgNx0oOy6gfkdGRnRz/3cz+m73/1u8m6zBl//+tf1O7/zO/qDP/iDNF74Gh2PLozRbgeSvnkfnU7u7srKSoqcIuv+/u//PlW3cfyFg8eNaK/u5HoZgwiaJs2GlEvomWfHTXTMm8s315n+OWvvDpWy5pEjT02M7bUBwWVKOno7uMaFC1YICjKCDQ+VeOOz4eHhdOoaRLG5uVmoCdnr9QrKzEOYBwcHCZS2Wi212209efKkAJLw6k5OTuq9997Tj3/84yQEDg4OEvClzura2loK7zPOvb09ra2t6cWLFyk9wsGZE5gThVtX7vGCkY6Pj3X37l1JShvU3AuVZZfnt1erVc3NzaWao3fv3tXo6GiyBlGmrNv09HTKWUMZdzqdZKwANg4ODgqCljX2DTQQsjNE9MLQb4Tz+vq6dnd3E+MydmcejIPR0VFNTk5qeHg4hXIIlyJUaGWA9Crr03OzIggFfLkwcAMk0qu/N/Yphu7LQks0Bz4OAsnvc6Hhylu65JmpqakEkgA/pLdAd3hDEboccIAhi/BEcSBYPY/V89egkdnZWe3u7ibQdn5+nrzDlH1zMIyiccHLHOCtBSBHpej04kDX+xqNEwf/Djy5Jnp3oJMIhFzZkffnIHpsbExZlqX85p/85CcFeekOA64FFAJy8QZ7HqukZND6GF1huTJrNBra29srlI+U9MpGRsbkc8hnIyMjWlxcVLPZTMANDxXPgpcBJtBptVpNR81PT0+rUqloZmZGs7Oz+od/+Aft7e29YmRubW2lTXVExOjb6empnjx5ksZIGgRy3ytNsLa+TwDa4nMfN3NGriegMXrPuAdDgnnEYJ+bm1O73U7pe61WS3fu3ElHH3s6l4Mbnk8o25/LD4Ck0+moUulXbYmpHYyLHGLWA5CFnnIDs91up3VCLvCcTqej27dv68GDB1pfX1ev1yuklNBvADY0ubCwoIWFBV27dk0zMzNaXl7WO++8o29961saHx/X2tqaVlZWCuCeOfHnwoNZ1t+cSPoFNE9FFs9rdvDHZ25MOxCFJlqtlmZnZ7W6ulpIcZyYmNBv/uZv6sWLF5KkJ0+epDWkn3j7e71eOkjFAbCnZbjzC36HxsEaw8PDevTokVZWVpKxyomUjMvT0cgZ3tjYSOXwJKVKNezLgTdwGjpf+PzRMDgos+by0umW9Yj3RozI39EBWtZeKxAsFXMtsXz5zPNPXPj4Zo6o5K4CwFwDmEIgkuCNgHCL3a3b09PTRDxuEfn/lPBpNpsp3JDn/TAq1RYYPx6xzc1N7e3tpeLggIWYjhHnzIGdKyrpkiGioXF2dqbx8XFNTU2pUqno7t27aTc5XlPyjQDou7u7yUOCNxUBCKB1qw7Fy652GIPv+O0ADqZn/B6K8Tnz9eQ5eHUIxwE2nJZ8XsbGxtLGQPfouWB0i9M9XMxxBMQR6Pr/Loij4eLXRivY58vvd4AYr42grIwPmMs8zwu56/4MridXksgBAIWasdRM9eoIjBdDiee4980jFm50YgySv0h42cGv05ikgixAkDtdRRkRvQSUSSzLCXeQ6nPqz3DQixJkDgFAeMl9bvnta+zgk7ns9XqFuuOuIMgDhv6jB8YPGnDFxPORsXigkX3INuRirXZ5WM/z58+Thw+5B29cBYLd24PR+dZbb6XI2MOHDws0xvzt7u6m9Ts9PdXa2po2NjZ0eHio6enpNDYq2jiPuILEc01aQjSkGT/1ZVkT99D6GuDdZR14XtRD9IE1g56gcSIAk5OT6ZTTCITr9XqqIoLBSLRuUIt7AJxHach7+gNtTUxMFCpaQF/MKfTB3DEXpL6gw6hWBAiGHnu9/gFXed7fkOmgy/vo6Y/QD1FZIphEA0g1eOedd1K02DewOq95w8Pve3oYG9GqmJYINnDdhwxhXrn2/v37evDggcbGxgpVp9iLgvwAS3g9aOaA1BPWCH3P+5C50B5132PlGEnJgch7h4eHNTU1pW63m2gdLzglR8n7JhoB7UIHXn855ksjF6Ej5w8/yTHqIZ9H/h6k11y2+v1l7bUBwdKlBYU3DoKj2gKWpRMeTMDkDZqYQY1FihPnYSA8mFhBEIyH/umrb2Rwz0CtVtNXv/rV5DEh5MOOUq/jileHDTautGE2mlvUAM0Y4nbDgs/xLPV6PbVaLS0sLCTLMIYqnLDxKp2cnKQkfqxy+oJQZyc5QoFcPqxQ6dLQiYDTvUzQhiumaOQw3x5RcBDp3izmKcuyZKRw7r17D/FmeOko5o93scZfZHU6XToo53kOdsuAEdfFdeV5CD0XEmXN+aLsPYPCRg7caXjzUS6e8838SsVUCvdqEKKr1+taWlpK6TA8Y39/PxlY0C/1afF0lc2rj8EVKMAu7tp3JTI5OakPPvhAjx8/1osXLwoHPMR1csEclQ6fe//8cwfXUSlwDc+HxtzAZU2ioePr6Q2vmnumHBgyb14e0mkMMEQ9WWRAnvcNeuQYtOByNPY9y/p1oMnJ3d3dTf0g9xOPr88nPBa9/az30dFRcjLg3Ih7AdwzD727Fxjw5l5Y97xLSl5brnUHiqQEhqA5V/ake7AByUE1ukzqp4YsLi4WALd0mQLAxjMOXsA4rNVq2tjYeOVkzkGyE9qFrtk0ihFKvjJ8GJ1N3m+X3fz2VEPkK7TEgU4cALW8vJyAcJZd1sB1Zxjym/QEjKKtrS3dunVLc3NzWltbS/1uNBr6yle+oh/84AevyEYHrO4Vdm8/73Y5x2eMIxrVnlbDuJ3fut2u/uzP/kzf/va31Wq1NDk5mfT9X//1X+ujjz7S2tpaIYLj5wo4sHZDyg21KAMwHiJPewojfJLneTrsBkzDfLg31uuowyfQhEeqY18cnzmvDcpJL5Nng/BdmTws64O31wYEAyyw6gjVORhpNpsplB6Vi4eced6g5hPkQobPUEgsLJ5Cr63r+aBYjjCuC8tGo6GhoSEdHx/r1q1bkqR2u508w4AprF/3oMJErkggTPdu4MlgDmKJIBfg3phHgAF9AHgjvBAChLyZM7d0UZw+x2ySQXDgPQLkO3D10K+DJgcoLpw855s5waIuM4IA6ChyrqnX65qcnFSn00l1hR1EeZgrWv4IYgyjQbTnBpYD2egRdka9yop1o4a+0KIRUPbcQWDJQV4Ebn4PApd5x7ODkcEcxjWMwrnRaOj27du6detWSm3wd/hz+O7w8FCHh4cF3vBxlXkAoK+YWx+vr9X6J9W99957KWoDX3tEId6Lsi8DyPQtjp05QcnhBULxuyHt+wI8ZO5zyrNRPvCozz3Pp3+EOj13LssuNz51Op3Es1tbWwkEIR88PYnNR/AHsiPKH2Qt8pzoEafTsb/CNzOxhm4QE66OnmZkGDnkRNR8jpwmmQdACHNGPqTPIQ394DxfqVSSd46UGjxkzCsefHKaPdTtRoOHlTktjLnmORxT7LTLaZ6rq6sFj1qkQwdl0BjG1/DwsObn5xOtML9uLJTRMn0mFUpScpLgwGAOMUxGR0c1Pz+v69ev69mzZ1pfXy8c0uD9jDQPnZJORzWNdrutiYkJSf2N6zh4nEacjki5Yq09SoHBcn5+nqK27sV2sB+dGDzLo9bQyOHhof7yL/9SeZ7rK1/5Sjrc5t69e/rrv/5rffLJJ2lTZJ7naQMg+hq6cR2S53kp8IS+6RO86PLcq1FhZCB3kSlOn+CNXq+XnH7OI94vlwnQiv/2z68CqmU60Ofb19c/vwoH0l4bEOw5cn6splvXhPcQwFEBxIlhMaLXrQyQuDck7jhFsfuJZyw8womNJ4Rx8ry/25vTYj755BO9ePEiMS0eyO3tbU1MTGhra6uQ++jMSEgS4e4LjZJ0j6dbVZ7KEZWA1Gf8Z8+e6cWLF8rzPO36dG8QuXMOrmu1fnHug4ODVOeRnfncizDGMHBPrKc3SHpFIcDkhCLjJjqEN891bz6Ki/lz69Q9PHiUrl+/rpmZGa2vr6ci+awtQMxpjXkdGxvT9evX9eLFiwI4GcTMDs7991XM7yCv7Dl8F73/gwCwt8gT/vmg7/x9nuvmHh4AodNxTNdAmM7MzOjnf/7n9ZOf/ETdbrcQbuVdeKWisnEFIBVzr32ueI5HaTCuo9fg4OBA6+vrCci4wnTgBP1gCMR19+d7v50HMbDJgz06OtLOzk46wensrH8S1fT0dDLwCEnHKhGkOJSBFNYpz/NCFQTkDbxcrVa1u7ub+rK4uKiJiYm0KUzqAwv6xhoDiqPBCq9hAEuXYJkUBumyIg9lKTm5DIeI510iY50+4T2Xa84Dvk7efLOtRyj4nzWPKRJsmsY4KgPq9MU3yAEc1tfXCzIaUNVut1O/8jxP6SAYIgBS9MCTJ0/UbDaTcY98ZZMifUKWOQju9S5TY5wuJaVDSzw/Hq+zgyXWmnfNzc3p5s2bWlhY0NDQkD766CPdvXs3ObGo5PHpp5+mNeJkPOrf4+DAwQBNYrB5X90Lubu7q48++khf+9rXdP369bTPplarFVKrnCYwxgDtfrgR75icnFSWZcn4w2tKfr2XYXNZDa0xJt9AeXx8rIcPH+qP/uiP9NZbb+mNN97Q6empfvSjH6XSj5OTk2q1Wqm0mh+YxHpCN/BQ3DMjXTp/0I/OI5ISnTMG+oyjCrno76YEHX04OztLshVZ5E4aB8H0wR15EZu4zomf0yJ+izTsn5XpMG/ZVQr4/69WrVZzPyVIKgpuBzRs3iIHBaEYj1OMC13WUMSed0ftS/JkUBCAcyYU5QNzwWDk2JIbC8OdnZ1pamqqkBcJwUxPT+vx48epJjCKH++m10g9P+/vhEcAYe1eXFykQuLMC0DRrWgEMoLV60w6QGi32xofH1elUtGzZ89Seor3Bw+yK5xKpZJKypG+QkrL0NCQut1uYeyksniyPMxUqfRz0VCCzC+g2MOUKFv3KNMcgDijnp+f680330w7ipeXl/XRRx8lr4KDfv1i69UAACAASURBVN7tAKLVaunmzZt6+vRpShXh2thgQs+h43ek0QgCXUh42MoBPte5YndvrIOGGLp3AeEgwvvuYVSUGnnAGEiAMProxpcDVQcFbOoh9xE64HADT0+Jc+AgHCXvEQ/3QjptO/B1oJrnlyV+arXaK5ttfR3422WTC1438FyQ+/yQDvLmm2+q2+2mMR0eHqrb7aZDOG7evJkMbQxxNquyWQ554yd9uTeZvnmI1/N++f7i4kKzs7Pqdrt666239M1vflMzMzP60z/9U3322WcpFxzA2uv19MknnxRoGjp3o3FoaCjtNSAlzAEgBjgKGzCyuLionZ0d7e7upv4zrnhwAx7dyC8U7HcjqYyfJBUMGuiB50K3GB9+X9RX0UBC/kGvGIruMb5z505BpnHt8vKy1tbWXqmf7KlnPg/wHXspnC8icIiyH57w57mMwMni/FWv1/XNb34z5ZPnea5r165paGhIf/M3f5PWpFarqd1u68GDB8qyfhRuYmIiHTOOA4KqQtPT05qcnNT9+/dT6hV8FX/QywsLC/rt3/5t3bx5U6enp3r27Jn+8R//UR9++GGie3e4ccQ2Rga6wyMWGAt8dnp6mqojuTGD/HKPMvPkBiJr45uQyxwPzO/MzIyGhoZSuVZP24k5tayZ3w+/8h7PaWZjm8sl8pBx7EGP1Wq/wlO9Xn+Fjyil6JEZ6NfpL0bd/bqoc2jQuHu0nXd93NEY8Wedn5+XIuHXBgSzGc0H4kILAsKLyIRk2WWtyO3t7YK17zml0TsiXQpIFAMEQ54MIAIC8gWEKKLljxCKShPgTv/5Hq8xAh0GjTt7neHdE+HETouAB6Dpz0OIAq75jNwjByr1el137txRt9tNXgZANLlDDrwQouTkwUwk7jNHlGd7+fJlMm6il8GZEwGEkJqYmEg5u9vb22lsLrix2r1ep4cV2+22Zmdn07GVa2trhXxT+oOnDfpyxeY7mJl3hK2DLu6TLnOUoT0PtyPwI806gHXw7+Dbw9CMUSqmSVQqlUK4ywFQmeUcgbN/7vNMfxnP8PBwSgfK8zxtmvP1iX1yEI6yiF5kHz/r48AkKhO/x4WuJI2PjxeOdXXAH/mIFo0HB/pxveL7nJ47nY4WFha0uLio58+fp5zcWq1/1OyjR49UrfYrskiXpZk8SiL1N5McHh6q2WwmsOgRFs+780MuqO/qud3w/dHRker1uqanp9VoNPTs2bMUrWIjFrLj6OgolVvzdatUKmo0GgkwDw8Pa39/Pxk9p6f9euRzc3Pa2NgoVMhhjGUyzjdauTFCvwAIzWZTrVYrefahTUkF49yjSO4JZi7ckMqyTK1WK53sx1w7PbguwMPuwAregP9HR0c1Ozura9eu6fz8vHB0NJukHz9+nECi0yigyp/P99CdpyzFOXWdG/mS9A7nSS/3OTIyokajoRs3buiXf/mX9eLFi3TgQ6fT0de+9jWtrKzo008/LaQTUB0CfQZtulGPjCQVyIEi43EZyhyfnp7q61//uubm5tTtdvXixQutra3p8PBQjUajEPqHhlqtVmETPBUg3HNcq9VSaUZkmHvpkcEeHWZdygBuNJr9GjdKcQTNzMykU16ZNy8pyrudb/ydIyMjmpiYSCkq6EUqNLkxgfHk8hRefuedd5IuZG5GRka0vb39iu70PkS57OPm7yiv/bMyR2YEu/4c10d8fnFxUQqCX4t0iDIghyJwIhoUckagRZALiBrk3ZIuPXAeDpOKp8ygIB1EDgI6DgQBSZSvgWGovECKh+c/uQCIqRd4VBx8u2fXic+90J6nDHPiSecZABfAOoJ4ampK3/rWt/Tuu+/qT/7kT1Lfx8bGNDU1pZ2dnZTPR/UHTrzy3CKUpjMW5eU8BEX/PX8X71y12i+DJF2WQWPtfa5cMTBPMVSEYDs6Okon+iBEmUeehycI+mCd+QzFG4FmFIJOt+xmxjvEHBLyhu5cYUXacw8OLVrU3sqAmnt4/fmuIP1ebzEFg+vc+3X79m1NTk7q/PxcDx48SCDAQ/kRvMd+ujfewQggBvr1cfg6RGHOGIlkROMwCmAUczQOuMdpInqAouEQ16harardbmt3dzftOUAhNRoNHR0daW9vL3n9ooKBXn0+GQOl7DqdTlKg3I8Xy49Ox6AjhO85/RiyWXZZp53IGKFun1fmYmpqKnna2GCK0wLP0p07dxIg8TmSlFJCANG8Dy+50z/rybrMzc3pZ37mZ/TDH/6wAICZK99HEeUj1zpIQ65jiACkfK35G0Bx584dSUq5uvCsR7ScJ0ZHR7W4uKjJyckEKHAQRMAfDdPIL9Am44wRQY+4ec454wUsuTEdI42Ewtlb0e12U51oqshAt+gW6Jt8XOiDz12HoYPIHQdwUo7RjVtk9ZMnT5JjhbzxSqV47LHLYj8i2vUVmIB+X79+PZX4ZJyOUdxgKItARbnhawbNeJoga+77E+gT2AJ+i8+PwBuaw6igEe0eGRl5hXcjoMapxXsxOpFlIyMjhY383Bt11CCngc/HoP/jM1zv+D2ui8ve4+21AMEwoYMHmDL+lCn4PM9TqRAPMUFI7sXler/XibdsceJGPBcK/hz/m4MyOp2OZmdndevWLY2Pj+vhw4d6/PhxOq/drcYyi9HBLoIZsERtT4SRpASIo/Xkz0HhoQy5nvmi3xMTE7p+/breeOONtFGx0WikE/IQTJSTQXCenp6mFBLp8uAKNuW4II3jd2EL8wBweCefeajcwY4zAII9AqT4Tpjcr4lCxHNcaZ5TBf16eo0zKjQNOAH4ImgB09RdLjPsXNF533m/X+Pvj/QZjbiy/jqv+TuuEl4+1tHRUXU6HS0uLkqSlpeXk5clAkrnJ392mUXvv8s8hpGH+LtsE1iUDV92fPz2UKNvlHL68jn3z1AqpAj4xixy0Xu9/pHrgEw3ggiNcp1venNa9OONs6xfA7XdbuvZs2fJq4eRzjPgGwdFeP8I+0bjhBOoyK2ULkEFgBVDGUWO8V6v19Xtdgv5hNA246BUHmOhLnSUyYCPg4ODwi57cjMdaEQQCcCMRhl9IewdFTvvjX+zrtEgi7Jqe3s71X/1vE/kaaRP5LU/J/Kug0ovjcWzotzy8aBjXOdG+QC43d7e1s7OjlqtlmZmZpRlmebn5zUxMaHl5eWCkeneW8preY45a0f/pqen9fbbb2t/f18bGxva3t5OG5HPzs7UbDY1PT2toaEh7e7upnHzPTrO9xrwfo/qMZfuKaY/HNwzPz+f+j86Oqrd3d10GmmZvICXnUYZV3QcwF/wiUeaAb+sB7zuOKlM1/vaMs9RnvJOd+aVOVeQldTuBjg7X0cZF3VPmS6KLV7DugwCu2V4sOy6q9prAYKdYfF0ophcGCMQnXj5qdfrhXA13+PdcEEWFRmfIeTd4gJM+uYOJ/C4aPSHuo0zMzN666239MEHH2hubk4XFxdaXl5OhOuCmz7xTM95ZG4AXb1e/9hjryNMHwFWzFelcnmqV7VaTV4YNqTAlIS6ms2mms1mqmJxcHCgzz77LKVhXFxcpCOFUaJ45Fxpufd0eHg4KQ8Pu0YwxPz6hpMs629MPDg4KAjUOOcIG/d4wNCeT+Rrxs78LCtucnHadEHiRpJb2E5PEUgxB/R1bGws1YDmWtJDAPr7+/tpTJFu8/xy40UUVN6vOIbYfP7KgLCH7AZ5NKRi+I6GomHs0JnT+SAQXNbvCMi9v2UpE2XPcgPRQXDZO32sg+YPup6cnNTx8bH29/fT0ejRQIljqFT6G0q2t7f1/PlztdvtpOh8Ew5yAv5nHJ4XD6/hbXNDiZJmvV4vbTTitEo2dHqlFvoJz3jfXZ44+EL2sO54ZAktc+Q1gBdPM6kyGxsbr4A33sHfAI+pqalUd73b7RZkqPPIxcWF1tbWtLW1VTBIfLxe/3gQQHSAgS7wVCLnkeiZ6/X69a6JduGwcB2GrNve3k45tVQOIqq2v79fkDHOQ8yT8yz98Gu9oo6DaAd7PJN0DQfBHplEXvCsvb09PXv2TD/zMz+j+fl5TU5Oanp6WpJSbVpPbfAUE/QAGy59E5nUP4Dqxo0b6TlEPlifmZkZLSwsaGRkROvr65KU0m3cqHGjmQ2X4AWvB8zaww/VajWB+4mJCW1ubmpoaEhTU1NqNBrJcDw+Pi44gpifGJnKsstjs927T//AH9C8b8ym5Xme6In/Xb446HbD2Te6sY5uVEeZFR0LvV4vyTf4HVmBIRP1lN8fgWwZiI2612XNv7aVYb2y9lqAYJiQEHytVkuhOCY2egWl4ik4sZ4uP+5h9sWNISQ8oFNTU+nYZN9RSUoDeY1uhTmhS0pjIBeu1Wppeno6lUJxosbS9JrDLB4hQKxaQmYwn3s5CS1B7AB3mIp5wOM4OjqaTuXByzI+Pp68NMfHx9rZ2VGWZep2u9rY2NDz58+T4iEnieYbR0hVIGcJAOsbLpj7Xq+XNvi4UCBsmmWXp2GhfLCOPWTk+ZzOtNLlZhpXCjQEonSZrxmvcSXgIcgoJADZXr4rAk3Pv764uEhpKayn0xF9cmaOdOvP9h/vO/2PAo7c9yicmAM/RMDD7rGPKDfG74YaNTsrlUryAkdhWzamuIa+Jt5f7nHaiHPl9zrYBsRyv3sB3fvGtTHsiEK7ceOGjo6O9Pz585R7H9eN365g8c4sLS3pyZMnqZSih9tdkQAC3FtEXrCDNYDh+fl5qjhRrfaPVL64uNDh4WEysqDrnZ2dgpHLEbiAcgxRUp2cp1qtVuLPWu1ysy7lEI+PjzU5Oal33nlH9+/f12effZbk/cTEhHZ3dwtlGTHkXSbw3PHxcc3OziaZhSff+dHp8OTkJF3n8+kAjDnz1IhqtVooMwZ4jV49/z0yMpLWFIP//v37Sca0Wq0U7YHeeO/5+XmKDi4tLaWNktQ+BhjyPp8b7x/5xTs7O6+UfHPdiexknl1+Anacf3yzHc+BxsfGxvTo0SONjIzo3XffTTXnv/e97+nhw4epGhJGWKXST02A3ohEuKGMl5kNs+gzN44ajYYmJycT/S8uLhaMFzZfSkpOGOYB3chJgl4NAccZ8o9DSLIsS+Caz2/fvi1JWlpaUr1efyU9Isop1/fMN98T3YX3cQaCMdDvDg55lxuO0UCjHxg27lBETkTwiaHtOk66PKUVuYlRS1pM3EzuEVuXwWU8VOYwcLkeDYE4t2Xtqu9orwUIZtJpLtCZRCYWy82Jnftd8aA0XEjS3KNRBmBREEw+/XAA5HlWLowQvFK/HNDu7q6ePXumDz/8UKenp/r0009TnUR/HmNGYOZ5Xtg0s7Kyko7zxepktzhz4QROpQnGi7CV+jlQhB5PT0+TR4bxUFJmaGhI29vbWl9fV7fb1fr6eiLKCPB8HWPdXIChlzZCCOPxYGOkh48k6c0339SLFy+0s7NTCoScZjyPy4GqbyZirrjGax+XbRZz48H75fQRDSEP+TF2F1h40KErQrzUYua0Hea5LCTpzT+L37n3wfkGb4JHPWi1Wi0Zbu12W1mWaW9vL/14nWcMpk6nkzZ+oswvLi7U7XbTkavUYXbBHtcz9j/OuSsC52uEvQtM7sMDGaMLfOeGgSsl71v0lvOM09NTvXz58pUwOd+7d5VnMwbGA9AEFAAy3ZD3MeGNgSalyzxXwqQe4mT9u91uorUHDx5I6isxqsBg6EhKuX/IDoxpDFPyAWu1WiEX9OjoSO12W7dv39bjx4+T4UMKRaPRSEYs9O4nU8Ev0BeNNCFJiUfwsLLunnoBLfV6l+UrneY8rYq1Yc6o0Ro3wjYaDW1vbxd0D/Lf0w486sbcM1eMDxkB3bB2GCzQ5vb2dspr5VnQDLLEdeDw8LAWFxfTnHtJPCKA0BLy1OUlPzH3nL9jxMY/+/GPf6yPP/44ebS73a6uXbuW1oq5Qh665xCnB4fTsJ6PHj3S2dlZqlntsoIIA6l7HKW+srJScIiwJnji+Yw13N/fV57nKToHeGb9yf3FkHLv8sHBQdogSSk3j4C5TJIuT3TE2xt1GnoyyjPHGKQDUZLUaR2jhut4/tzcnDY3NwuONvqH5x++dBDu8gh5B52jNz31yWUpfYgRb8caLo/dUI1tEJiNei/iApfFg9prA4IlpYmVLo9HhXEhhqGhIY2PjxeAnXuUECDVajWdO49gL1O6bnEcHh7q0aNHkoolq6rVasrdcwVMi144GJyUgfX19UQMbHbAYgIQZVmm8fHxdJLS06dP01Gg5N0yB3ik8eQ4CGYj3htvvKFf+IVf0NHRkf7qr/4qAeharZZOfKIh9A4ODvSrv/qrevTokQ4ODrS1tZV2a+/u7iagyfygzF0g00+fF/6O92DR+8YbQAQM6p4hn19yumAcxuHeAhTHyclJ4VQo+uMeWZ8Lpw2ES8wd5Z3c615pvEJe/s0VDUIDxTg6OpoU+/b2dsoJLgsD+ZyWWcg+9w4e8XwAhGu1fnF9lJ6PC0V6584dzc/PJ+8Up/1tb2+n3Dzev7e3l3gXPvMxoFTKxuMCP47R/3dvviuWsufwPcaE04+P1Y2TMgXB2k5NTWljY0O9Xq8Qobi4uEg1tqO3JtJQmfzxv52G6DuK7Pr16+ld7r102cfcuPKL64EH0d8T6YR3w1uEZTHAfWxZlqUDKtjsOTo6qocPHxa82i9evEj1cVHSy8vL6dh51g4+5T5q1kr9MkwrKyupr6RHMWbGPzExkcCl13FlHpyfXea40QHgBnRWKpXCKXbQnDsyqIE8NDRU2InPJkIAB3TCMxg/PEJ5TDyGvgHR16BSqWh8fDx57ba3t3V8fKyPP/44yUZoBCPHjQD4AiDNONzpxGd4YqOMBngvLy9rbm5O+/v7WlpaSu/3NAHoxOsPQ7fQutMs73769GnaCOk8jWGysLCg+fl5tdttjYyMaHNzM13HODgMyaswEbHEE43TqFKpaH5+XkdHR/rGN76h8/Nz3b9/X++++66mpqZSBObo6EjPnj1LVTugHXSQdHkMsPMmUUzX3cxn2R4FagS7LiXyylh8vHjcoXNJhbSKGPXCkeEeZ6qmuDxxmQVf8b1XLXEZOMhocn4rcxjwe1AELj6H5vKMa+M1sb02IBgryK0BmMhDsHneP4Si2WwmTys7aLmvWq1qfHxct27d0sbGhpaXlws7QKVLEBOt4Qh0AAUueKSiB9objIulx3UsGALGlS9gnzAU8wAgcoVWqVSScnGPhOc5MVfUHIbY8Ta4AnCP2vj4uL7yla/os88+Syc3wSzRgwaxxzwjriHs53Prc+WE6UzuHrKhoSG9fPkyAX5K9jgg4lnRgnSvW6z44O93T6KPz5newbsL/0HAw5k0Ppc1cOY+Pj7W9va2dnd3UxqQg/WyFi1g3hs/85Cv0zifRUBJX9vttubn57WwsJBC6ig0DEavGBDD/y5sIwgsE1xln8fxOtBlvcs8ANHAdQUe31mmXOJ8EIqnkXqEMvdydmVGSeynPx86RykTUo+pKlSOcGXj43Dvssspmuc+Ixs4pIC14lkeQnejwNeZa+FJaod6yhblnLgP4xuZEp+V53nyckuXNY0dSDLX0TB1xU0aHXNFtZujo6Pkkea9yGmnLzdsXTfFtXPljXePz102u07zMdN/xs668xz0GrLTAbe/B3rE6w14GURz9Ava9Q1X6Cbmwn8zDgc5GEFSvwKGb4qUlKKC3ofIIw6EqZbj3zNHeLaZg3q9nk4XJEq1srKipaUlraysJKOgUqkk/vE5dF2P0ZRlmW7fvq3t7e0UkQXQHxwc6Gtf+5rGx8cTAMZh4euHznWegJ4kJd3Nj68HfBGN8xhR8udGMMiaeYUlzhbgGYwZ3etrXq32q7bg+PK1B0cgcyKdRSPRsQ/v9NQ/77M/K4Jpl2fxfWVy3Wkt0n5srwUI9snynBaEhBMrChhl7NYHwAshT93F5eVlScVJc0AjFQnJwY1ULEMmFY/SjOEMX3QPp7mA5R283xUXQly6ZBbfde0bOxCwzBcC5OzsTN1uV5988knyzkZvCc/wcPD8/LyyrH/iEHloXgbFgV1UHGXg0YmTzx0Y0lC4ruB5ru9ER6EhzOK8A+7ifLhiK2MYPvfwMt/zEz18zuzRSmZM/tvfjVAl/ClJW1tb6XAGvzcCy7L+R4UV54V5xwBjnDHk7H0/ODjQ9va26vV6UswuaD1cFseM0PTQqyvZQWC3DBjHsTt4HXRvHDvvx6vpwD9uMIyGC7RDqgLr52s+CNCX/Y79Q1mSL+pF+Nl9Tg4vsrHdbqtWqyUPlK+HAzH67r99PuA392JBf0779NOBtK8rDWOzVqvp+vXr2tjYSPIbDzC0CG34Z76uyB32L2AcIvMiLbly9f0h1Wq/XvCdO3e0vLys9fX1ghctrjnr5LXj+d7rjTPneJ6bzWaqRwugcrDrY4P/3CvudMHaOCAG6LIevDs2T/Nw8OHA2eeM35E/I+1GPvITRYkyAng9gsE8Ma7ojIi6IgIWnoFR4wCM0x3zPNfy8nLSe6urq9rd3S0cvkNzbzZjYS2Y59nZ2WTkc4ql1Af5KysrGhoa0s7Ojrrdbtp06jzhet0jUGAIDpFyWe1GbZmOIWro33kliyi/er1eqt5AKpjrVdffeKAdcDrAdT3kFWScPso8vrFFOVlGX9wbjaZB+jXSS7yurB+xvVYg2C0UBh933vd6PW1ubqYTzCLgiR5CLJfIWM50/uw46QgJrDYXHG6d+7NhqOh9QTCVWXhuCblXu9lsqtPpSFICTG7puycBcNjr9Tckdbvd9D/5U4RxsNrJXR0fH9dbb72lly9famNjo1C71+fKw49usPhcEp5zYEZOUZx/mudrwZQuSBFEbD5w44f3+O54n09ftzKGou8O6r4IrEVQHRm8TDC6IsFrg9LwupdRIUf+KOv7Vf+7omN+AT/R6yP1+W9lZUWVSkWbm5upGDpeFxQ9yjzOmXQJFCNQicA+zt1VLfJl2XgHGQHOw+45o99+D8qRdnZ2po2NjfT+mBLghrT/HfvpQh76HBoaSl53qsmQo7uxsaGPP/441Ucl4jMxMZE2DzvNMCb408OkboD2ev2UnNXV1eRM8DQiGjzoG9XimM7Pz5PzAXr20o3R04i88/0BfBfpHqcDG9vge1+3CBjgK09jGB0d1Y0bN3R8fJzyNulL5Dnkm5cvZB78hDDmu1araXFxUZ1OR/v7+yl1DWOAOYLuSa3BgIkpT86fzi/SJVBirZBv7vWOcxr5zSOfrKfLxkG8GD+PkUfG6VFbxuG04BWDfA3dWHf5jd7kRETfb3F0dKTV1dXCMdRs1HIedH3Lvax9jDT7HJPKSB/29vb0ySefaHd3V/v7+1pfX0/e40jDnorBWJE91ICmb05Pcc+Nyww2xHtks8yj6lFK1xvRawt94vF2QzmWAXSZ5etGH53O3GHk1zktDaIz7zPzGPXgl2ne7y9qrw0Idnc7/3shZjwAeKbiKSecRpTneTqO8Cc/+UnKy3VLxsPWMczgG35oFxcXiZHdgqxU+jlZCCEnSPfK+DhjOAElQ/K+E22z2Uz5h7yT70ZHR1OYULpkWrecORa53W5rcXFR09PTqtfrOjs700cffaSNjQ1NT0+nWowffPCBfv/3f79wTGSlUkng0r3YMfwdmQ7PDKkYjDN6CshjZp7dEzQ1NaUsy9LmtTzPCxsX3GjiXg/R85y4m9m/Z02c7qAH1ogfX9NBYTXoyD/jfwQFIMzLWrmxFwFvGfAra36dr0sErC5UovLLsn6+9sbGRsrvo3oHYWYHNm4QRb6JvBT/vmpMLmDL5mAQiI4ePoCdR1wcrDYajQLfo1wAhq6YHYDxLl9b70/ZuMrWcWhoSJ1OR9euXdP09LQWFxdTfiMe4OXl5YLy8RJRDsahLYzeoaEhbW1tFQCyG/PQfLvd1tnZWZKfXBejZNIlEGP8yFRPGTk6OtK//Mu/FNbBPTfOU94vwCbRLjyLhLQdVHgpTfoVvX7w0fHxse7du6fd3d3CRrqxsbG0qYn1dfDs9EE6EGvtYIx6tz5XUc7z3djYmL71rW/pn/7pn1K+qPMRz2bjM7KUHGH2ZLgBgGHq+s2jZ/wfac/p2QGV03GZQe6efecXvie64RVloufRdbCDyOhlBzgyl7VaTY1Go3DSqudZ8zvKl/Pz87RPY3p6WhMTEzo6OtLS0lIBLJ+cnOjHP/5x8qRCA51OR5ubm5Kku3fvFqoVRb3ghobzDLpweHhY8/PzGhoaShvr2PjtBpPjE/QkfH1xcaHp6elUfcflL/OGkUwfms1miqSDr8bHxzUzM6OVlZV0imOWZanmchwLWMqdKi6D+GEtooMh/l2mGzz9Mq4l88I4B9FsbFeB4dcCBANeIFIYHY8nuXDVar8sCp4oF4aEPtg1OTExofHx8RQuQfgzqQ5AYUJX7JGgSM1gp2+e54V3u0cWIOGLFj0YgHd2U7si5ffU1JTy/PKQCDxBOzs7un79esqDoi+e3C5d7nxvtVpp1y21aTudjn7pl35J77//vm7evKm5uTl1Oh1lWaZ3331XDx48SDU2EWReIYOQGOvk/QdMdDod3bhxQzMzM6pWq9rd3VWl0i+NtLe3l6pOAHQ9L7FWq6WTiPw0NdI0aAid4eHhFKZx77pb6K7AJRWUpocmyyIFKGie63117zPP8jV2BcNRwuTOfRGAGgSAo2LyzwdZ09Fi9zmieaQDYOSAv8zzEIFHBNZXjSd6Cb7sGK+63tdOuqQH93QwFk/bQDGU5YnyPUADmnCw7HPJvET+j+C91+sVDAs8w5S5ajabKVUIg2ZpaemV+fFnVyqV5JWFlpEfGDJ+1KxXpYhlnpg3gCh07yAWXnWZSdWJg4ODArD0Em/VajVtpGNTtG92i0Yb4x8ZGdFbb72lRqOhpaWl5FUjDYG/Oajl4cOHWl1dTc/geYeHh4WcSH++OySyLCscN+vAsgeQKQAAIABJREFU9OzsTD/60Y/S5t5Ij+R4Q2sHBwf627/921ecCPQ5z/O0GXBvby+VSmM9R0ZG1Gq1lGVZquIDzTkdu4fZabhMVtAcVPh18R7AZ/TMe6qDg3DWO3q9XT7G9wGALi4uChUz8N7irWdNMR4og8ZcQnc4hDqdjr7xjW/om9/8plqtln7v935PS0tLiSeGh4fT5rmZmZlU3vPo6EjDw8Pa3d1Vu91Oc7Czs/NKuqbLDea10WikA5LIjadePBv4t7e3C44/aBL5SpoicuXWrVspVQv5gQ786le/qrW1tbSnhtbr9UvJzc7OpgjX3Nxc8m57IQEH4lSbyvO8cCgPz+R/1jkapE5HHsn2SG4E1U7TLkf9PWXOkqjfBgFj2msBghGuEKKftx49e+QfSZdMdH5+nvK1arWa5ufnNT09rQcPHqRwlQOBWDHCrTcmlqR2BBv3OlA+Pz9PCfc0F7LOzFIxpNBqtdRoNLS5uflK+IZrKNXjAIr52traSooRhowpCihtmI5842azqe985zv67ne/m/ILEYC/8Ru/oT/8wz8s1HDESxYVIH2N1l6v18/xnZ6e1szMjJrNZvLIY1RMTEyoXq9renpah4eH+uyzz14BCIBgym/hoYygO8uywmYM5iR6YgZZm5GRIiiLgMZBniv++BxfT65xDz7Aw8th+T1fZDnH+WKszi/e5xhacsER19KFb8wdvmp+HIwNArdl47kKDF/VIuD1zxHg7p1zxVupVAppP1J//kZGRpKCjwKY9ZIuQQt8F9OueJ6/j0Y/jo+Ptbq6mnb+k/86PDys9fV1PX/+vGCgR0XAcz0FSbo08DA6vRwe8+P1avmMPrAZ1emG+fP5BURLxZS0drudQv4xesbcjY2NaXFxUe+9956ePHmi+/fvJyWLwY8nmOhepVJJ6Racose8+Ea5PO+Xr1peXi6MxQEpYDsaMDEaRH6yb0Ry2sV4cp5mjC4/+XFQkmVZSkkByAEiGo1GMvz9XQAvrvf0E+Q2tBE9ZbHFlKYIIvwz/nbPdpkeYC2gywh4yjy+zqs8z0vN4XHP8zw5Uzwi0uv1kleYKCT3ecURTp7b2trS3Nyc6vV6onHk89TUlPb399VqtZKM2N3dTdfNzMyk6KTzBmspKZUdA9NMTEykqk6s/8HBQapB/MYbb6jb7SrP84JzyfmPv1mPTz/9VGdnZ5qZmVG9Xtfx8bGePn2qsbExzc/P6+ysfwgLHntK81FOjgpUBwcHCQCzJtGI4r3Xr1/Xixcv0tiZe5d7ThMu867SIa6HnY9itCjqiajD4t9fpr0WIBhCZWcrAwZMSZdWdZ7naecxi3Nx0S+lMzo6qunpab3xxhuamprSo0ePdO3atVRJwvMUNzY2kgfXvcQwOf8jlKRiqFXSKyEQFzwwtS+ue4PIX4Lgotcrz3NtbW2lMTMH9IUafQ56Y98hJvKpjo6OUp3X999/X9PT06/k0P7sz/6sPvzwQ62srBQ8SdKrG7UQZg72GU+1WtXMzIymp6cTaEdwn56eanp6Wp1ORy9evNDz588LXlbGgtWPJ3hsbEz7+/tpTSLAcIXoAKHVaqUC9syXp8hEAe794G/3SjlgigrRAWj0JjJHsfoDdOl0UPa7rA0SApEmmBcfw5cBqxHo+7VlBkFsZWD8ywipq571ZT73OS9TvBiFLuzLBGn8DADFO1zgR7Dg93Gv85N0WaeU4303NzeTh2t/f1+rq6uFgwuky6PRo+Hnz8bLVKlUUpUXxu1GkXtt3JMIOHBACJCgLBfpCi4XPV8z9gkenZycTPJ4ZGREN27c0O7ubjLGMVCHh4cTwPboVrVa1fLystbW1pLn2EGky1E/0KfMUIr062PmQBCnk7LUHwcJyN7R0dEE5uP78zwveCvdwALcwbeM142VPM9TZLRer6fTzM7OzvTo0aNXAHDUK04zXxYwDAIZrgPKgE10QCBDyK92+QQgZJMw72k2m6kmfrPZ1OLiYjpJz9N7PIrFfDKnnEh3cHCgBw8eaGdnR5988olevnxZSNkAe9Trde3s7KjX6yUDlYNiKFvnRhV0TpoMG9nYCNdqtdTpdFStVlM0RlJyTPkRxJ477brGjfher5cqPpyenmpiYiLp0/Pzfkk3ohesBREZsA8OJSJaEch6lJxoEMYA64ZciPqzzKkRP3P5HOVmxBVl9Pbfqr0WILharardbifPLyEzmIXJQBjg8XAPCUTpoKZer6f8IUmFcLkDJSe2WIuQ8EgZCHDGjmDXvb9cy28A6unpaQp1xpC6pBRy8ufTr0h4vBfF515bD/VdXFykU4Xceyf1Cb/dbidmkYr1Gl1peH5wGbGiTFB0MBRC3Zm+Uqm8cnQlYyQcLyl5gxEI7sFGWMVQDXMCaI7r5jRIysUgoIZh5n2MDFzmQYmgOAoM96h8WWBaJmQG3XcVSP2i+8r+HwQ6+a4M7F4FMKPXge+u6m8ZSI39iUAgClAv1u/vdpp2AOvg0a+POeFldMH6ugyhj9SGPTk50cbGRsEDCyCjVav98o+tVispPDewnF/xpiIzUMoAraj4mAdAsM8VuYyUbHR5xAYbFCflwjiYw8fb6/USyM/zfn3ply9famtrK/Ggyxbe4bVVKfnkUQvu8dQUwKLPtY/V5yvKdX6z1nGu4vf+TkkFQFPWkMvc43tVPMLnc0ufke8Am7GxMY2NjRVOXHMD3VuZPvqvbVc9I74H/c3JbZFv3WHkzg3pcs8HxggnvU1NTSUjKMo47uFnfHxcGxsbhWPp19bWUqTZdRm6YX9/P6Vnjo2NJe9n3MTsEQ7GiC5x/q1ULmtYe53di4uL5N127y/zBoj2Uqf0hTQcqlQwT0tLS0l+OH6S+hvsd3Z2XknjpD+klHI9pfrI0/e0Qe4dpBuczuP3UV/yWdSTTm9fpMf8OVfpK2+vBQiuVCrqdDqJsR2sOmBFOOzt7aVcLkAR7nxOaNvf309Hf7rFyzt8I5srSj+EgRAMYcQo6GIoyTeTuEeClueXLn76MzIykjw1zowIUc/FLSMYlBtAqtPppIMvCG3GMkoeRqRfvHd9fT2leDhwBmT6WvjcxhBIr9fT8vJyCi+NjY2l0BBeJjaa3Lx5U5999tkr3g68ZIwHzwzCnnEQNvMwtv/wPFd8zBv0QHgV6zmCsEqlUtjs4fmlvja+Rq4keIeDbweBZdZtmVU9CJj6dYzPxz5I2Zc9Oz7nX6MomQ/PtfX3uEHgALNsbHHtvqjF92CIuQzxlAGAlRsj/PZ3loF6Wtm1jI13o7y43qM3NI4Y9oo3KFMcAfDgrVu3tLCwoJ2dnZQP6+UbiaDAu1JROTMvzrsOspweALWSNDs7m4Cd0z6VX8ipdCPV08nOzy9Pjms2m9rf39fKyop+8IMfpDxP1gkeI0IIqGdsLrPK+s1cl/EA61RmcPq4ACP0nWudj1hjwAnv9FJ1HhFyuvHnIRvcM+deeOYTB4VXBzg+Ptbe3l4hHzXyMn/HVmYEfhHPO1CMQCY+w/+HlikFGfmGGvmSkqHE5lBkyfHxsba2tnR8fKxvfOMb+ulPf1pIS+BZ0AreeCosuZefNEqvtoDBJV2mRnp5spja4vPgBhApRRcXF+no65GREc3OzqZNefTn6OhIKysrBQeLz9nU1JQmJycL+o4oCGk4lCOkxGGcD5c/8E9ZXjobBycnJxMNnp2dpZKZ7niM6z8I0JY5CcpoyvvqcxEjL/9aveDPL2uvBQjGO3D79m2dnp5qdXVVa2trmpmZ0fDwcAIfz549S5Ygi+NhodPTU3W7XR0cHKjT6Wh+fj6lTbgQJD+OCUcREjojWX1iYkJTU1OpPAoKxwEsz0T447kAbLmHgnsIlwDqfKMIxBkZgn6ixN26w7NKWgiClE0ZsXh6mVfj/PxcW1tb+ou/+As9evSoAIQxDlywZVm/ZIsfoUsO1tDQkA4PD7WxsZH6wEk7PGdlZSUdzfr+++/r4cOHrzDN6Ohooe4mXvHr168XPCfM1draWgEAEnKkvJUDUKkIjIeHh1PahBfG9/lvtVqpMgVrU632N2u6Z83nKSoBgAzrgbIvA7nuqaJF5RIb9ONgzJ9xFYge9Lwv85n3j3EyBgfVfObAy70lPucRzPv3ZcKPOfVnQxvQFevkJ/lRgUXSKwLen+nAxYU1/fE55m+MPpQXtBM9e3FjJxtR2BOAAh4bG9NXvvIVvf/++7p//36SZcga51OMyGq1fxTw/Py8Dg8PtbW1leSnhzyZw17vMs+XMC6yD/qin61WKxmgDuA9RO1j2tnZ0erqqtrtdgIfh4eHmpubS2AOmY6xS1qE78h3JU6/PNUjekT5KVP8bjCzLoBSgICHux18S5cGiNMtESyMa2gLmvNcUp4ZgQK6hPVhLur1ejr2/vj4OG0wBlB5vnClUilsWox8Mwg0lwFhBz3MFRV/4JEIDv1/r4HPPNEHj8DOzs7q+vXrajQa+t73vqdWq5XewSmArVZLd+7c0Weffabt7e3UP+aZuWMNX7x4UXgnG1DX1tYS6D0/Py+c1skxypVK/7ANT4txPS1dAmbfVOslUbe2ttKhQx75pDrE/v6+sixL0U500Pj4uK5du5Yqg+Chbbfb+vjjjzU+Pp4820RHoEfXUdCee5idnmn1el03btxQq9VK3mL4anh4WC9evEjRGnCOb5gfRDN87/I86iVozlM4osx1uh2kC7wfX6TfpNcIBMPks7OzeuONN/Qv//IvhY0VCAyIDwLE03jt2jXdv38/pS5wEAGl1KRLBief1hlPKlojAJWTk5NURmxrayvtFMWaRdDCbBCGhyCHhoYSwHKGRpBC+NJlWD7mvNZqNY2Pj6fNcniPaRR339nZSUxNqMdP4cESfP78ua5du6ZKpZ8z+PTpU33ve9/TH//xHydli1BFyXkfx8bGUgF6dl7jCbq4uEi1B9mE4Jv2EE542qk/60ASxkUZQgOTk5OanZ3VyspKSoGp1WpqNpt6++239ezZM3W73UL5Iaz+yIT0WeqXdSK05hvVWMNqtZo2GTgociUXaSBaroeHh6pU+huVKFfDEZ9cFxndmfiLwCfX+N9RycU+DXpunCt/zqB7HZzEyIUDDPguAqaoeMs8C66A3QuLIeheQgfe3nd/BwaWA8coqLkuCmwX7g5suY7Shyi4sjCiyz4/OQ4FgCxCDp6dnaVapZLS5hv6hNfYx3hycqLZ2dnEX25Ms2mIPESPguR5rp2dnVSBBmMSfmu320m+UJIRIxKAhoMCHkb+cfAP/MIudmQL/IbDABnu90Tghmxj7gADEZixntBepFPGSFSJiBEear6Hbol8OMBAhkNbrrDn5uYKclpSSo3zd3EffWdukRm9Xq+QMsd8wBcx3SfSvvNDGWjw68uMBp9Hf4c7JyLPlYEXvvcIwuLiot5991394Ac/SPTi3tjt7W390R/9UcEZ5s+I4/F0GozXk5OTVJWIcUR5wb1U4uB9bsi7vHNDF13I5m9KoXlzumTtpcvSnq1WS2NjY4VoUqVSSRvaMXroA7TosgXZ5PKN97mRRT/YnLu3t5fSU8Fa4CA3cumXR0eZSzd6+AzjMB6cUhZ5dJ51+onAOso8+vdl2msBgrMsSyEvQgn1el0rKyvK88tDEAjHQ+gsAqEAdmQiHKgW4R4XnpfneQIwCE9A3Pj4eLK8YKhKpaLp6elkLdJvCI5QDyGYoaEhTU1NaWFhQTMzM6rV+gW/l5aWEqFCoFjTNIgErw4hxbOzswS4GA9KAiDNyVKSUk4tgF66rEv68ccfa2pqSqenp3r69Kn+y3/5L/qbv/kbnZycqNFopBwo31ntHtKxsTF95zvf0Ycfflg4GYowLIIGa9g3g9EPDBI/4YnmFSkwNsbGxjQ+Pp4UKqFfUlc6nU46HjUyl89ZmbcDxUVVEAQjnl4EnFQEVHjNokfQ/wekAWQ8VB0FAc/3fjufXAWEo+D/1wLfL7rmqu9cSLs3xJUFAt4Br68Nzy3r25fp+yDQ730pm484z34/ymiQtxoejMey+9jKPNrIFQfZ8Cnyjf4C1JBxKysrajQaBW8279nf309lEAGKjUZDFxcXqaKMA0hPNYCmK5VKqpEKAEF5Vav9eqPT09MaHx/X3t5eCtniJMiyLHnRhoaGtLGxoc3NzQQ4fE6YKz/oBuCIzKekIPd6ni80h6zgPj53uVMGvuDxGDlgHF4Oz2knepShAwcZHlVAtuCwuXfvXpIxGOo81z2M3i/3gjvIwVMtXRr1XmXCgVYZ4B/EbxGAOG372vka8Cz3wvtnzLkbtDTWYn19Xf/0T/+kTz75pFCRw/V4tXp5uiHPdsDHGFz+5Hn/8Kl6vS5JWl5eLqScuMwYGRnR+Pi4Njc3E28TPXa55qDMx4/BhP4mf5fx+zxDs54PzzvQc+CdPM/TBjXo1MGtpFfKHDq/u9EHz7mcIjKDh9pTFE9PT9Vut5M33p/vTg7W0g35QTrOf/v8RQOp7POy3653o6NkUHstQDDMmmWZtra21O12CyVJnGkQWFHheZ4mjfAZwtWJdWhoSIuLi5qcnEw5Nufn5wnoDg8Pa2RkJHk5PFcL4ShdEhWAlUlvNBoaGRlJu7S5n6NRAawAXIgFI6BSqeirX/2qnj9/nkqnNBoNvf3223r+/HkCVCTtNxqNFGpxgodZp6enk9LkYJG/+7u/S4qReceTRN8QKoBS33jiJWmiwGcePJTowMdBrOcsQw/SZdqGW7SSND4+ns42B5iSgrG7u5vG6e8ssyYZC576mZkZVSoVra2taX9/P1mxeOroF8zlCtL7GcF1HD8enQg+6Fv8fRUD+5iu+j9+9kWAOs5VbGUWu/NYfCfz7J70+JzoIY0KuMyw8e9cAPKZGz2xv192zGVz4O9wg4hxeD60KylXbig+eCsCH+kS8EEzgNmHDx+mk+Scx7jHeY2a1GUHsvgcITtwDMQ5df5EJnr5sk6no6mpqZSbPzw8rE6no0qlX+6RnMIyIOSeLF+vLMvSYRRsSHIwEaMBAHj2gyAT6D9yG/BDGpmvlb/fI3r+PqchV7iDDCucIh988IEePHhQ8Gbj+dze3k56z8GUy9To3XJQTl+grUifTrfex0GyIAJV/9vngLQz39zsc0FqiRsO8Zk+l8w30YadnZ00rqGhoXRy2sjISEoz8Gguh7Z4Wgh7e8ihjWU249x4dAQAy/hIZ8DQQabhuAITnJycpKhL5H/Ap4NGB6seNcMRxfqfnJyklCY3pLjPHWx8xvPca+v30bezs7OEN3DQlK1ZpEHGGWkn0gp053uyIt8NAsCxDZLL0OCXlfevDQjmGGQ8qTTCfRcXl6e2sVg+UCx+F9YOUFgoD8tNTk5qcnIy5dXt7+/rzp07evr0abpWujx9zYGRdLn4Hr5kYVFu1Hjk/izLUjI+Qt2JAULNsv6BFisrKwWvarPZLOTDulc8epz872azqWq1X56Fagm7u7t6/PhxwSuVZVnK3SoDkjzv+PhYP/3pT7W9vZ2Y18cRQ2F4kC4uLpKXhbklN9GZVSqeg47Sw5vEUaq+gXBjYyOl0ETruMzTyFpMTEyk8BuKiPxwhA6CnmdwfzTGEJBek9UbyiB6lsoAZVmLguW/dbsKdA8SUtwXQbb/DT+xMQq6cqMtKoH4jgg8+cx/HHzGfpQZAVEJ+7XRcxbHBm06sEceRADs/eZd5P2S947B7oAKRRwNJ0+poi/MmSsjByVcR/SIsQN6SZdAgUdlAiBjo6rU51/SNTqdTqqtykl1gBbyol0eOA3w/LjOeKIBiz6nUc64sel/RzqBvgD8XjrRU+7oA2savf2RJnzzUQQOtGq1mo6s93fOzc0lPQNN8Rz6UMZfPlfoO6fN/5oWeTfOG3TgPOrf+/zD90T0XCZHfkbGk0c/Nzen5eXlwj6MkZERLSwspE1h6GTfM8Mme3QYaSboUMplslbSZV43c0wqoOOHKGsYA2kPIyMjKTce2ozg1uWK4wZ42+mXyDT5+N4vIr7+Dnjbo46MDdqkDy4TfC1It2k0GoW1pc9+Qp/LskG/4980l4mD2lV68ItaxEKvPQju9XrJ2qM5WPVcShSG777N8zxtAHFg4hMAA7GBbmpqSpJSHihAc2FhQaurq+kZhAYIQbiXEqJzoOa7fKnLi+KoVvvnxjebzaTY/MhDnkvfX758mcbb6/VDnc+ePSscG5zneeE5buHxnRd699SJO3fupA1q5KTBkAhe93gzlwDZH/7wh4VcLL4rC3fleV4QTljWgM0I6hGI3Muz19fX9ezZM9Xr9QQYMGA2NjYSMPbwEXTiaR15fhnyWlxc1DvvvKP33ntP9+7dK4TWfE4dDLgQcABcq/WP9YwCInqQIo3SrgKT/n8ZUw8CsGX3ROAXr4mKyp8flbsDkqiUHZxyEpd71D0U7cfS8tw4DgfJzLmHm8n3j2vkY4hzHdMk/H2RhqMhIKmggHz3vnQZlnaDiPu9Uko8MTHPL/PL8bw6HyB/UJZ4qZg/pzcP2zIuUi9qtVrapIaypV67G6P8AGiQSw74OQCIGq/kXFYqlVSqEnBHapuDRyoceCrI4eGh1tbWUtkmUjtIQYpKF/nFEdBeLQbed1nASZvMkx96AWiirx4O9+agMBom/Jyd9U/n+s//+T+n+qyRHkZHRzU5OZmqfpSB/dhif8povszQYw7KDA/XZ96cT9AjACPpslIGfMCYpGJEIxo+rvOYc9YCzyp9p8LC06dPCznb/KYGPXqXPqFzXE85b3vVFEmvOGs8bQ2DkXHU6/V0oly9Xk+b5IeGhtIJp2Uyk7lCz/icM2bSQzwVMkaluR9+phJT1H+u+6IuYixEmpBPMZ2EyhzRMIjyjZ9BnvZBbZD+8v7yvxth3v61wPm1AMEQK4RPSP7s7KwgGGu1mt58803du3dP0iW4YAFJJfAQoFSs/QtIouIDIXUE/6effiqpz6zkq5JfDIj23LTj42ONj4+nn1qtpu3tbXW73VQwHsLs9fqHdGCh8lwPHzlA+OSTTwrMc3h4qEePHqXw49jYWMrd81w7CI+c5uHhYa2uriZG29ra0uzsrFZXV/XZZ59peHhY7XZb09PT6na7yXJ2g4KjHR2oROufOYZ5fX2yLNP6+nohV4xQLnPpu8tdMHoYdnd3V3fv3k0b7wAICESMGb/XvRYoPuZvfHw8CbGPP/44hSpRfggpBA/PgNFcQCMcKWIeN2hEcBcBZlnKRlReMezKtfF53sqeNeie2IfYL783ems9/ObvZa1RJJ4W4bn+nvPoIWp/B38DPCSlE5lmZma0traWeNrnalB47CrBDD+659q/A8THDbLutQUMRMGd53mKBPEeD3lyPxElwIB7I91DA0hDkXnoOc+L9WbzPE8lFNvtdtqYygar6JGOOYzIOeTX2dmZ5ubmNDc3p6mpKZ2cnGh7ezspU5wDY2NjqVQUu+49RcHLqfFOvFqADfZ8uHyI9OspVjyDeYmAkfqqLmOgGSKB7nWP4CkCmAguaICqx48fJ7rnGScnJ/rhD3+of/Nv/o2azaYePnyop0+fFnKf43ryDG98FsdZBiLou//vcix+FoFTo9HQzMyMhoaG9NOf/jS92+Vks9nUzs5OIcrHdRhe6BNf86OjIz1+/DjV8fXIZ7fb1fe//321Wi3Nzc1J6ut3NmXiAGGNWPdaraYbN26kqK9jDXjQ0wiq1WraNEq/4jHRvjbMF3tTSOPwPTWuM5h7dDT8hxzgPSsrK9ra2tLOzk7aIAd24J0+f1SxchrjO+bBwT48E9d4Y2NDrVYr1UmuVCra29srpCQx19RtdpqJeibSUpkxGWXyIEDsv6Nu97WIqU+D2msBgrMsS0ciegqBlxgh3M2mpwg+SJfgWgQ5BIJApxZnt9stADLCDD/60Y/UarUKQJpFPT09TaEzn/Dz83PNzs7q9u3bGhoa0vr6ura3t3VwcKC1tTV1u91kmfJulCsE4YyO8vSQhnQJlM7OzpInlD4hEDudTuo7RynjUYLJj46OtLu7q+fPn6f0iOPjY9Xrdf3iL/6inj59qpcvXxY8zh6mcwE8CAC5cOEar12MN98VuT/fFQ6MxmY9SSkcxjpUKpXkafR1HR0dTYqecm68jwMBPI8Yi55SNChUjDQfJ/2MIPP4+LjgDS4LKTvtUwvVP3OPuFSsJRyFR/Ti8Ld/F6/132WW8yDw6d8xnqhwnQ68v9EL2Ov1UpSFuXbl5RtGo1Hjyoj8ev6mHz5fZQrfwUwENoybz91zg+zxd/lcOIDz8eNZ4TOAq3ufHMQC6OA3wByRMeaDtAqMMO+3r3+r1Ur5tUTOTk9P1Wq1kteKMDHj8wgXICOu9dnZmX784x/r+PhYd+7c0dTUVOK78/N+BRROjATwY/RiYHK4hkeS8vzyZLFqtZqq8lB9gjmC3pA5pJuxDsgV3xvioNdpGT4bHR3Ve++9p5OTE718+TJVZIhhZX8Ga8LcePSM3zG6AS3kea7Hjx9reHhYW1tbKXJInXd3bpTxlo/J1ya+P7430rmD7MgneOI5SW1/fz/lMDN/Ppfdbrfg3OC50BKbt1zPc43v6yB9B3xAisz09LSePn2qPM9T5QLnP/qRZVlyYEFP0uVJdOhE6MzzdeH9WDXF9Rbvz7JM7XZbX//61/X+++/rr/7qr9KaEgF1px3YAf0cnQ3wM3Tkm+DckeI0AG94VRXmLEZWkTX0x2V5tVpVp9NJ+7Poa+Qf1494ql1X8axoNJb13T/jHneMOD06zbOHirRaxufRrKvaawGC3foifMjnKEMmwYnVvRxMlufWcL+XNGFS9vb2UqUBABnEAoF5aJEdl2W7jaenp9VutyUpeUAODw/T82u1mlZXV1OuqCtovGK+YHghygCFhyX5zBUW3m9AMLl/nhfkggfv0sbGRrqO02smJycl9a1vL/3CMyLQoMUkeZ935ps5pB+SEtB0sAE0BIm3AAAgAElEQVSTzs/Pa3FxUffv39fa2loBIEAH5IYxL8wD5aR4NvO4u7ubGJf388MYyVmGljxnkM+cQSuVSgIV0JVv2nTBCbiHhsmHw8p2wIXXhPV1YeC0GNtVINeFX3xGGeD1+waBa7/O192FooPd6FmJ73b6oGHseF8I40VgcJUxMMjT4ACGhpHqKULQnCsUnoEh5fVmPa3BeUlSAaDxbOQcMoz/OZLX++s/cRMXIIQULd7l5Rah86jspUv5w3O3trbSZ85PDx8+1PLysprNZkq5QhbUarVUt510APfWnp+fJ4DuMgVAUrY/wUEpgKHT6SRg42CI632eXN84GGVM7XY7OS9arVYCMvF6moMMFDi04rxWRntujLO2pKy4rnPngM9TNOgiTUdniv/tMix+z//IIPowOjqayluWRQXRuXzmQNhPd/X58jWCJtBV/M0cX1xcpKitA8h2u61ut5tOifX+UhUCPX94eJiqmwCU3TA7PDxM0VanGa+7zPxRmg9Hz61bt5IR77L88PAwOZ3gjZgiRkQbYI0ejJWXIv35euH19SovEWR7BN7f3Wq1JCkdHR1llesMmjsx3OHgkaovI5cjXUjF/GG/13GDOzyj0TdI1tNeCxAsFT04gEUYACHg3lLyaiEmdvgjRNybEkPiAB02ddB8Y557Zd16jcKPdIM873s619fX085NKkNMTU0lxowC1BfdBaQLJxdyDnq5D0HuliUWIR5NUjOky6MMYw51r9c/5Y384NHR0XRuOsxYtvnDAU70UiBgUDjsdmU9JRVypmBg7qWRGwjQLVMCfr33JQJ25owcaDZAuLfcAXDMd4JOXTA6TaC0aWVM6N5M+j86Opro3Q0BWjSUyloZrQxqXBOv9WdHPojviuPz+S0TdsxtfGfkKx9nBPIe7mSuULzwjYfzy/peNn8O2t3TjzCn/26kR49MtVpNlWFQZL1eL1VHcCPY31MGPOm/e30ZtxtTgEnPMXTQFIE7nwNI8Eb7WPxdcd5Qik73gGoOBBgZGSkAUlfu169fT0fYMmeegkU/nT49oud05oqdfuB5i+sSecPlh9MHcvTRo0eFDcwuu8tASKRT77+D4Aj06Tulp1hL1jYC2EgzPl9Oy9DoVTIgtkHX+hrkeZ42ZnnONe/11BNoHX1DhDMae7E5Dbsx4fpvb28vRURZMwwIIkOE8nF24EygLr0fUMPvsbGxQp159Ch7a46PjxPIRh/h7NjY2ND9+/f1ox/9SMvLywlwU2kKp5Svr5dHjXoXhxcpkM5PUT5FIwKj2zf3udwAM+CIi7JsfX29UHmDdXaaijwa9QB/RxrxggdlNBxBNu/yZ3I9Y4yGr1+P07CsfSEIzrJsVNL3JY18fv1/yvP8f86y7Lak/yhpStL/K+m/z/P8NMuyEUl/IOnnJG1K+u08z5980XsAHR6mikoJEIXr3RdibGwslR7zvFUHYr6INKzbGBaQXk0a9/7QZ5iPnB5qZVYqlVRVgHAl44ihFsbgAtn74+CK7z0H1r0NeLSxjmBWhLh7WB1k8w6Em59khsfSwyt4j+IYGCOfI/j43oEDgoc1j9874+zu7urg4KBQg7YMNNAik8ZrKaOEII8g2BWde529+XidZmKOaFxHxs54AfCNRqOg5AF4UYiUCZrYp9iikoxgLz6vDIRGwTao0Xe/zoGk17CkD/4Op834DFf80dMcn0mqgG9oinPovx04R6FOP/wdke5RKFRIgC/xyKDUaKyvKwL3qkEXUf5Uq9W0oQ66xdsVw/Xc6x5b5x+PfjnIjDRSr9dTRCUq3bJ5ubi40NzcnLa3t5Nc53CcmZmZlC/pssBpJNJrmVxgTX1uOMEOEOwOAmRhNHYjIOWzZ8+epbH52rg8cR1RJh/on+sunhmNDj95Db3iHsIo03yNfM68T76GZWAz3v9FzUEw6+fy2wG/G4s8G+92GaCK/aERIYs8C52x/h7pQD/6QSt7e3va29tLaT9lRtDw8LBmZ2cLVRDguYgdIl+dn59rZ2dH9+/f1+npqZ4/f56cUr5ePNfpENlAnjJyCE8t6Q0AfTf8kRMe1QBPAYRjv13O+rqiD0ktcOMz6l2X276OPp/RUOO+er3+yuZWl9FX0UTUQx65LeNB5mdQ+zKe4BNJ/y7P8/0sy4Yk/X2WZR9K+p8k/W95nv/HLMv+L0n/o6T/8/PfW3mev51l2X8n6X+V9NtXvYDJ9BIqeZ4nUFvmjj8+Pi7kDTF5fhqR3wNjMqEARJSAh9YBbQgqFj+CYCaWs8HxcnJtr9dL9XbZSEJfPKc2AtJer5fCKOQRel96vcuTkVCufO5F5WES33zAGCOjeViEPiEoms2mhoaGNDs7q0qlnyCPBykCFOaWuScsfHJyUjgkgj4D4n0dy0CIW/kIWDcmABMYRwgYV0TcC+BsNBopz9xBsINTjBg8A4yVFpWhdFmD0WkODx3zz/i5j0oVrD1rCB17+Sqn6UGALH5PX32tore0jCdjcwDuitYFnc+fg7o8z9MGUU8jcFDFOmCwxX5lWZZANDzkXgDeSS6iH1lbBuShVejQc/Fj2M+Fvcsc5hHjanh4OG2ohYZqtX55Q/iGOfb8Yuc/ACqGmgMHDpBwMIKy8/qlZZ5L+D0q4TJDiL+HhoY0PT2dKunEE9zgX3iL0CiRFn48tQmeIGrlfS9zRMDznjLk0RYMjdu3b6vb7aYqIX76I/tOPJXEDQCnhzzPCx46p+2yOYr/u/zCCTI0NFRQ/H4tJ2g52HDPloNLnxunF//MZaPUl8O+7+CqMQwCIQ7EXWe4LmNsOEtcTiCzfe+GA8uoY6NR5YAUXnEDl+/ZP4LHF8C4u7v7SmUljypx78LCgra3t7W+vp7e67gCvgGYUkUCucM+IB+XyxTojvFhDFMBAv6NOcTIqOPj4+TdRpcODw+rVqulTbm8M/KQG3WM2SPcvV5/n0bET9zPs2n0y9ehTJbAq3xGVD/qmDKdUXZNfEeZXC/T12XtC0Fw3n8SheqGPv/JJf07Sb/z+ef/t6T/RX0Q/N3P/5ak/yTpf8+yLMsjpxXfkX675cvxfTAbVQxIN0CxONqHQdzS9Dwi/259fT0l+1Ng263EWq1fdqnRaCQvJIvC4t+4cUMzMzOpLA/9GB8fT2eCew4UHhGELGkLCGzp1ZCrbwCDkSqVSgo/klfqwp3xkt/rIKzXu8xxRiAwVzC2b0g6OztLp+j5812x0VyRIyA4tY6aqJ7niqeL0keeE4cS9/xn3uvA05liYmJCh4eHadc3DbqgjA2Akw1z7hFy8IrQ8zlinFE4e3OlxZwwDgfArDMgjXVCyRBmiyHrK9ipoPyuut7f7wIM2nah6d+XGT7xue6tcE+dp5eUAWqfl7jxDJpwcOEAKwJxgOHU1FQBBOPl8FxtQp4jIyNJ5vjzokHsc+BAGgPdjSDWvNPp6OLionAcvOfFQiPcc3HR3+3tp1ydn59rZGRE8/PzmpmZ0ebmptbW1rS1tVWQP76WGB2tVis9Z3NzM/XL5w6a4QeFzcYwl5/MM2PgOdDt/v5+CuWWKVeObSe3k8oRzCPrBx1JKsz/1NRUCuWi/JeWltKmZPqB8UiInPfHEDNjiMYPbZBRGOmX5gYeXkoH9G4wohecHxwAOK8MipTQ78gHWZYVADDrHmWDX+8y1fWdy0k3WNwrSIvODadHr35CtAY95kY5kcTobYYX3EF2ft7fINtoNNRut9OhLdBn3EfA/dDb+fm5dnd39fDhwyRToD8MOzyvOJGIuMJH0Jfn1rvuAPxzH7q52WymzapOz4wNZ4wDRz8m3veeME+RFuhX9OBGZ2Ge5yl105/hhovrCV9Dl5vRM+sG1MbGxivv9Wv8njiPZddF2otA/yp9+aVygrMsq6qf8vC2pP9D0kNJ23meY4o/l7Tw+d8LkpY+7+h5lmU76qdMbFzxfPV6/ZrAMA6WGJ2/uLhIRcZZ/GazqUajkcDUr/3ar0mSnjx5ok8//VSbm5vJY8x78NZ0Op20U5SSPoRS3IvlCexu9VYqFXU6nVQO5dmzZ3r58mUSylJ/w5yk5BEiTYEEfLf6HXgBhFBmgEZAvnucWXCe55YjQIHjTVHOMDPNhZ0rKYgbIfry5cvCjv1osQ0PD6vRaLwSipSUiuZLSsdOj42NqdVqJYagDFQMXTgzoVBYC7/+9PRUq6ur6T48Rig56pgSLiPXr4wW3WJGQXmNUWgSUOGAyi18N2h8nf1Y2fHx8ZSr5p5Q9567YnSr3ufFaZx5i2PzNXda8c8jSI1eZh8jCjC+Ixp9eCrwxLhQ4n1U6/A1iULc3++bBP3d0cMwPz+vN998U51OJ9Wmvnv3ru7du1fYREUINc4R9IA3jz47wAL8SZe7zsmt55nIkrixpczDBU/3er3E69euXdMHH3yg3/qt39Lt27eT0bi+vq67d+/qz//8z3X37t1XjBPmDU8YNO5A13nOPfA85+DgQLOzs+nUNy8BB58RQuZ5m5ubqtfrhdQ1DAFJWl1dLXiIWAPkIrKa53m/MY6RZfDM0tJSwTB3sEnlC8aFg0FS8ggDuOkjXraRkRFtb2+nDa9x7VzmRkVN3+h3NHyky03BvgHQI5Dxfc4/8X8Hz77+fp3PkesNftB5Pleur3x8vnGdOSBlZ39/v7Chjk2V0fsLQHTD2Z0MePGZp4mJiaTzMLioRkHJP+oM0zeip86r2ecOmMnJSR0dHWllZeWVNBiPTDF+6NE3SkbnG/Pg88LzmDOuybJ+ZQmwAj8Y+vx2Y75erye69vza6FBzgyWOy2moTN67zOfvWq2WdDBpGOhlDsUhAh2BOM+KqTmuy2KL9BzlvMtS/96fW2bA0r4UCM7z/ELSN7Ms60j6fyS982Xuu6plWfYfJP0H6TLc5uDLN1344mDhIzABam+99ZZ+/dd/XWNjY1peXtbDhw+TQLy4uNCDBw/U7XbThjWELt5UmAJiwSOKcnCw5Qrk5cuXWllZSf2i791uNxEoQJZyN75jHIZyDzhCF8L2viG8qG0L+KR8yudzm5gdb1L0hHnomNqGMzMzunfvXinhEw7C4nVh7IyOIHewCrjmMAtCn71eL6VWsN4oPhSt55ZmWZYUapm3HwUDQPb+tdvtdO/Ozk4Kl/q8o/zLPP5Y/h4OcuDg3iqfI2dOB7AApE6no5//+Z/X9va27t27l4qR+zG5fm/0yjgwjgo4KsqonF0h+vjjcwPfpt/RSo8NYY8B6B73KJDzPE8g0d8Jb5BT7x4t99D7GH2TS7PZ1Jtvvqm33norbVbD+yNJDx48SGF+wo/wuNOGv8/psVrtb4Tb3d1N3nvSbegzdaypswnPMn5C/J6a4LRCalKlUtH8/Ly+/e1vJwBZr9d1584dvfnmm3r77bf1u7/7u9rc3ExGGSAOj5HzjQM6V9IAfjcG8zzX22+/rZ/85CcpV5B5wgnBJiToc2hoKNVi551466ADD9nGNXVvoF+TZVk6tY6+V6vVdIodn9E/l7UemYEOGSvhbgw37oneTJrzHHzp3lHG48DWAZ6PDy+oz7cDchw2DnYiP5cZq/479j3+zZp5BSQfpzfGgbc1GtNS39OOwyO+izmH/hknKUzIAwAwUeFqtZpqUZNm2G631W631Ww29fjx4zQPR0dHCSOQ9shcU73k6OgoOTLoh+diS5e6AQPW59rBZpb19yZVq5cVJM7P+1VPJicnValU9PLly2QoMqc4/Sjt584wL/tK5JjG/p0su8x3R044//CsKNPdKOJ+aC86dNwY4154BuMCOe/z43nKTjuRBiOdlfFavM690oMANM33SsT2r6oOkef5dpZlfyfp25I6WZbV8r43eFHSi88veyHphqTnWZbVJLXV3yAXn/X7kn5fkur1eu7eMEBRDBvhhczzvLCbeHR0VP/23/5b3bx5MymgdrutmzdvpjIjP/zhD/XRRx/p6dOnOjo6Soc/YEU5QcZcUhbUvQVSf6FRaghMvKTn5+eF/CO3XhiXg2mug/BjJQlXWtSypQ9+xLGDP4jZN2NIl2DBvXiUhKE5kI6KOQoJV6Jc7wxEn3zHLZ40VwYYCIwNowHGGh4e1tzcnNbW1tK43PqNRgDzQTgZ6xRQ4l4wt/IZ01WAk3FFgBvB4SChc35+no7SXlpaSt4LxluWC+9ji5+5EIjg26/xdS0DsMxZBO/xGZFGyhq04oK1THA57/mz3HsxNzen0dFRPX36tDS3MQI51odoEXyO93h4eFgLCwva2dlJJzO6p6WsOWjzd7vH4/T0VNvb2xofH09Kjfq2gAsvQC+pUAfW19vHRN+IaCwtLSWgRBWa8fFx/eZv/qb+/M//XGtrawUDw3nCZZuDbfoDEPRI2cXFhdbW1goGInPi8sznBQXpXjHG6nQB6HTDg/X3ayNdYYSW8YrL3TIFzPPLGvOKXKGfALU4j35fBLFuLPicxffBG2W75sv4JeqmsvFFWRHl0aCxx79jvyOYj+9lHeGpsr6VySLnAeivVqul+vAXFxdqNptqtVqF0l3Hx8fqdDpaWFjQs2fPkocfxxUpTpVKJYFU6Ipn4AzDQeTjdGMEnvFr4NHR0dEU3aO8GPTu9X5d9rqsBkt4JQP64xFC7mNMjkciZop4YBAtQZ/unCgDqVEvON/FiKKv+xeB1C/bvqhPg+6JnmdvX6Y6xIyks88B8JikX1d/s9vfSfr36leI+B8k/ennt/zZ5///4+fffy//EjNA6IKQiS8gi4vQ84oL4+PjunXrVjptB8traGhIMzMzajabkqSXL1/q4cOHqeTN5ORkAh3uFXVF6EIEQkZg4/GMm5UQAL5xw8NFNq/pt3ufXDHEXDiUyM7OTrqePtAgRAe9keh9sx3ev5OTE62trb1iYZUBsSgovPlYIsNFRRB3raLYAKbz8/N6/vx5MlLYeb+1tSVJhbXjHe6NwQvWarUKBg9pF1GQsVaM0ccXN9C4AI9M5n2K17sBcnbWPxGR3cSeU1UGYn0t/bl87rR0FTCN95SBavdWReAbnzfoPaypv4ucT/e68T5fT38X3h6UYtk7o9HmfEPpouilq9frmp6eTt53jyjEcTKGqNTzPC+E2c/O+of9VCqVlOZydHSUFCyRq0ajUThimVPurgIKlAkk5cffTc7xz/7sz+r73/9+4hHGC327wvQNOf4+5te9J1mWaWlp6ZWNMa4QHcRmWZZouqwf8Az3+7HP0LZvuHHwGZ0DnkYR12dQSpLzoctc5yHocnh4WJOTk1pdXS148WJYn3l1GVcm//waPj85OUlluCK9RWDjPBOBKnPtn5Pa4Dm93nw+WPdodPjfvu9mkLHhtDnIGPn/2HvzIMmP677zk1V9VFVX390z03MDGHAwOEiAB0hQpERRpEmbCkt26KCsK7SKYMSuHZK967W13ghteFfa9SlZCptyaJeyjqUOWrRlHVzwAEmRlECCIIlzAMx99PR9VXd19VFH7h9V31+/yvnVzGAAzAwG+Z3o6J6q3y9/+ct8+d73vXyZKbJnHSLpRfEBRch1QIyi1SpDKUHVapWxsbG2ca80LKUnqc10j3S6ZoLCXVLCGcVw8aol8KqrIs19fX3JwjzpefW1lUM7GyAZtjZIz7RrdPTb7qalduzkBKWRQDsGbG5zGsJ31Vi1+j3NuUsj3J30a6fPOun7tLLTylNbdcK1RIIngN9xzbzgDPAp7/2fO+eOA3/onPsl4DvAJ1rXfwL4PefcKWAJ+Og1PINqtcrQ0BAA09PTwE5EQlG6bDabHNkpRTI6Osr73vc+Dhw4kAx2Xa/8z9nZWWZnZ5MIsPJjNT2raSar/KWYrFHVIJICUITE5u5q2iaXyyWDVVPB+r+UlJ1208pORUu1x2iaYlF9Q2/NRsKsV62tVVRH7VUIJNOy4Z6JnSJTUjyW5IYEJDRGIbkIB4MloVKC2WyWo0ePMjU11aYgtduGImn2fg1ivaemvRqNRrKwJ5/P09fX13Z8JuwQexthtwTQGmbbxro3bQDaAWqjmvrMEmzl/uq7sAy1v1WCITpFhUJCbd/Jtp99TytL+txGDq8FobJzrnnkbrFYZG5uLllVDbQ5jfaZinyurKwkZMdeY9vWRt2gOe5WV1dZWlpq2w1F8iuDKqdIfX41xRv+De37CtdqNWZmZlhbW0vk2aY0dXd3Mzo6Sj6fTwzy1tZWMp0vWZZh0nutrq7y/PPP87nPfY5HHnmElZWVJE919+7dlMtlnnvuuWRrRksaVWeleMkB7upqHo4TRritoxIS0pA0Onf5AR3O7SzGsnKVy+WSBUBWNrVwz+pB6WBBY0+kSTuApJF2TV+rfpphsQRX/a131z0bGxuJbtD0+9ve9ja+8pWvJLN76ifbZlanaQrejgP1Zaj7RChUH81y2i2/7D2WPFqnP9S/9rmqS5gmoj7UWLALs0J5twidH6vbQpJux6a+LxQKSX9rFlKRUNXPuWba3/z8fNLv5XKZUqnEwMBAW9qG0mM0ru3MqMZeo9FI0pZstF55ytaOWHmzTpRSl+zCONkVya5zjuHhYYrFYrJFoOUXoU6U/bVOgNV/cqbtPaFDGOprq8+uZDesUxo6ppb36Hst+tdMZtqMcOj4hTIT/m3b40r2LWyztIBJWhvLgemEa9kd4hngoZTPzwAPp3y+Cfzw1cq1sINQyltHFyuvzU65aTBIqb344otJOWle4ic+8QmWlpaSXDRNr9jVlIpAqnElVNY4aABoYKk+dqUr0LbAy+aidXd3J/lxpr3alKoMQqlUYs+ePW0J8Trhxkab9QzVWQu4wikd/agtpTD6+vqSdwcSgy3jYg249RytEpfSh+YiQLtfqQRQXms4Za2BZSPIShN49NFH2wbFxsYGFy5cSN5TdRBZyOfziZwogtNoNCiVSkm9pWxt/rZ9J5uKo+fausopk0GTfEphhSRKdbQRBEtARC70/nZaOu1wlnDcWOOYRsRtX1miaxWcJeSdiHOaQbyagVRb2ecp/z6MENtp89CxUVrT0tIS8/PzyXvYMavnAW3jcm1tjVOnTvHQQw8lMwJygrVQL9zqL2xH6/ylOTHWmdXYrNfryVi3+kuyOTExATQXh1myqOuly5TD7H0zR/LUqVN8/OMfZ3h4OGnHWq3GuXPn+OpXv8oXvvCFy2YtJFOKjEl2FVmXwbTvrhxEO6shsqMItnScSIwlF5px0UJgS6o1TtQukv2enh5GR0cplUoJmbA5p5IJm7tuAwFhalToVMm26B0kU3ZGwqalqR+0S5Da7mpOoNXDobyoP8KIoNqx0WgkDpL2RrfEWe+nMuXsK30u3GZUjoR9nh0vGjOKvOo+pWWorNCBt+2sSKUl3Urd0zi0NnBwcJB7772XAwcOJIulNzc3OXfuHJOTk21EfmFhIUmLE8k8efIkfX19FAqFtt1HLly4kARHCoUCxWKRbDab7G8tmySbYdecWP0rjIyMUC6XkzRBa3dUnuRTNk/tvbKywvj4ONPT00m7SjdILiX/klX7t9rR2sbQ2bPE3fIVO3Ng5cTqXAXscrlcckiL7etQXvR5oVBI+kHlSafZdoT0wIYQ2lXJVKcARFiGtX1qC9uXth5XK/OWODHOOZfsh2k3aNbgsYpL+85KgDOZDKVSiVKplCyO0PHGpVKJRx99lL/4i79IBqyUv36HXrglC9YQSyHI+7REyRoGkUb9SOjtakp1pCKXms6x5KJcLjM5OZkYQZVRq9XYvXs329vbiUBq1bcW04V5jSJTUuLWWJVKpbaBr3e104d2UNlr1Xc28uC9T7ZBswRMZekeOyAymUwSFbN5T+VymdHR0cvy5JTSov6So2BPoBIBVnnWWNr3CMnJ0aNHWV5eplQqtW1er/eQ8e7t7U3INbTvYGEHtGANtGTAKkR7nZVFGV3roHXyrsPBnkZaw++tMbNOjiVkNpJv+78T+dXndu9jOZ3ancA+3xpYKxOS1UuXLiWESmNG/WXlJexXtefs7Cxnzpzh3nvvZXR0lKGhIRYWFpifn2d2dvay3MUQtr5qE5Wtz0WeNBZEbGyETm1bLpd5/vnngfbDemzkUu/Q1dU8xlSH02xtbfHSSy/xG7/xGxw9epRyucz58+c5depU296koXOjqJWe571PyJPdWUbjJy0KZI23HH0rm/pbBEjtYady5SxbWRVxWVlZSbYxU33DvlWZmg0LjWLalK7dmlAEK5fLMTg4yOrqatv0s+pqZ65mZ2f5zGc+Q6VSaXMawjL1fxFa64SmObJ2zOn77e1t5ufn2/SnjXhJt9mtNXWvXcxnx5fax/aplZFwL/rQubDtK/m3OjW8ttFoJAt/bV2ca0Z2jx07xr59+6hUKmxubrJr1y7e8pa38MM//MM899xzPPHEE7zwwgtMTU0l5dtUIgUQjh49yubmJtPT04n97+vrY3h4OGkLOWd79uyhUqmwurqa9Jdty5CYAol+n5iYYHR0lOPHjye8QTpNbWVPmRUZ1foku7+wdRxse4rIh5FYu1DQOqVAsnOKtXG6L7QRofMk7Nmzh4WFhVRbpHvt3/V6PTn58kqpY4LaKszrD+Vf12r8XanMNMIsDmYj4GG7dMItQYK1OnJzczMRUk0Njo6OJo2zurqaTGcvLDR3XGs0GszNzfHxj3+cRqORlCODcfLkScrlckIClRpQrze3t7KRDhtxUBSiv7+fwcFBLl26lHSkoowa0Lt27Uq2K9nc3GRycpLl5WUWFhYSUq+pXKVJqCz7PKswROrsdmTWIdDKVg04uFxRhSRU5diFbVbobGQgrE/oeVmvy5IBITSGWnUMOx6sVcZ2QPX29jI4OMj8/Dxra2tt+WFyjOzUt83htttxaSGcnWqyRCWMboi4QHMrJy1okiGX8g/bOyT6VuEIaQbFXmcNpTVC4XSnlVeVZfvoSsqjUx063W+/s8+y6ESEoblF4EMPPUS1WuXEiRPJ1kOhTPAA1n4AACAASURBVIb1smktitZaJ0B/23ayZdh+9b7pTF+4cAHnXLLArlKpMDk5ydra2mV5riFJCI18GGVRvcKxEzoXIkha4GvHm2YE9M5y7OxODHb24dSpU1y8eDFJo9B7qO1E1tQGKl/1U9tJz9q6KfoYkiFruNWu2hlCC42t8699xdMMu20X1QdI7QuNA0UV9V5KXRKhsQttbf/o3TT2vfdJnvbw8DBjY2MsLS0lNkVtZsem6q3IoxwWpSyIpNkonUhgGPW176XvbfRN7SR9ZceIdpRZXl5ucxBCpzl0YtLGWijT9tlhGWFbhMQ+1BGyUdZxseNiZWWFWq2WHKSkmdrx8fEk5VHvK9tdLBYTG7C5ucn58+fJZDJtC1O990n+v9pQKS3ee1ZXV5N26+rq4sCBA0xPT7fJvNW1mczO4VAKSFlHUj8iwep/rbHRbItSIpSbrICUHf82kq/3UcBHsmeJnk1BsjO/ej9bfngQi/p8dXW1bZ9s9RXsrOewdiE8ac+OqVDW0uoRRmgFGzyw6ERgrUxqrGnRowJmNmBj6xXiliDBjUaDpaWlZE9fKVi7x6adniuXy0kHbW9vMzU1xcWLFxOjYRWpNpCXAEjY5FFabzskArlcjl27dpHP57lw4UIboRseHubYsWN893d/d3INNIV/ZmaGZ555hscffzwR4L6+vssWclmhCTtb0Y40oVFUTdEGO+2URkjtvSKN+r+N2Ng2sJG0K5Eg3WeJrdrTtm+oLHV9+Aw9R/WQh6r+08C3O17oHTS9I3mxOy3YfrUK3hKVrq6uxHGR921/rKeqd1b/KPJspwXDd9bnacbN9k9oyGUQQjKShrTnpl1jEdbX5iCmkVZbjp2Ks3W3pCpc7R4aYqtIrdxJedq80PCdQrkJybX6ulwuMz09zdraWiJD8/PzlxnQTmV1Iu1pddBnlkRkMjv7k9ut9bQbjF0YKSKrMQ20HYiTyWRYXV1NFL70ovpBh35oZsoaCzvmRFhFNDROwpmTtHe20SbpRCvDtq+tDKXJUhjBssRLMmDJnSVUVmbD6LHqJn1v75FMHjlyhLGxMba2tpIDRATrgEr3KACSz+fp7e2lVmtu/ahTvEJbYmHfKwxYyOlJa3NblvpJbSVyb0lqiLRywr6x11hSFZZpx/mViIWF6iiZXl1dTU5GU58tLi5y+vRptra2mJqaolwuJzp1c3MzWd8joqgF4lZviUD29PS0HQQFzaiu1iAUCoVEniwvsO9rybBsSDgDJKg/BwYGgCYH2NjYoFwuc/DgwSQN03ufkNh8Pn+ZfnHOtaVpWsfHpn6pD8JDpQTNoPX39yd7o589e7Zt0TU0baRSj8LIsQ2i2fqlRYvtLJItwz4rLSBnr7uS/IYIy5F+1fiU/rIyd8uTYCDJddVUlZ1OsUeNAsnuCIoo6BANG4WAHcUoL0rTbjLONrfFpl4ogtnd3Tzr3u5xqojk3r17+cAHPsAjjzzC4OBgm3LQVMjx48eT/YLHxsYolUrJwgpLyEOvHy4/690SzHD6VoIUHvNpYQ2H2kBtJSGSEbTG0hLiNK/MGglFRxT1tqTIGiBrFG10QAgjaGpT73dSOuy2Unq+8pvtPrthBD0tqmHfY35+Hmjftkr1VRpEmmOgd1e5Icm1f4eRoTSCHt6jOtjp/itFm9OcClvfEOH3qkfafaFs2Ol0u5Bqa2uLCxcusL6+zsrKymVk2yKMJsjAp7Wd2qGTMgwjVSIOSpuyuWyhQevUjlZW9XlI6ux91lGRjGqXAc0E6dnFYpGNjY1k2yfV107RihDI8a3Vam17DeudNSUsZ9BGlqyOgp0t6VRXS67CPpJBsXmF1iCHi85Cp9qWE/ahdJDKljzZvH3pSisDSjEL+yV0aKyeE8FTeygnNdRJanOrC1UvRYO185A9YdAGGcKxrfe35Ev2RjbPyp19J91bq9XaTt6zh7eoLcN26OR8qC1lj+yYvxJxCNtXdYMdPWqdFfWhPl9ZWWHXrl0JufPeJ7Zxfn6el156KUnvs8cAayGWtcWNRnONT09PTxKR7+7ubovW1ut1pqamklPpND7q9XrCO2yKWug0ptkp+5nkZXh4OClTOxFZ+ZMMaUtDtaXKkm1TIM/yodCGOufa1q/otyK+9XqdfD7P2NgYuVyubWcX6wjbxcmhrNm0n3CMhOik16VXQjlJG7P2e1sXe32aDbFEOnSO1Y+dIspwi5BgVVpHGBeLRWZnZ5OpBOW0isgCyQ4HUlZdXc1T1LTfqu7JZrPJkb+h8ZARtEqyXq8zNDSUTKMvLCwk+aGKIPX09HDHHXfw1re+leHh4SSSo/IKhQL79+9PjinVXoXK77MKSwM37GQpeJErq+CgfZWv7XzY8bxDo2IHW3d3NysrK0l5VkhsJMh7n0Srwhw9tYUUsT4PT2GS16r+su9hV3db4Q2VuVVONu/HTv0qAiCnKTTCMs6h8dX7K3qtk9t0veqg2Qnvfdt2ZtnszuboIVkIZdy2r52mDY2PrbPuh528qZCUhU5G+GxbVppRtnIQOmQqIzQK1rEIDX53dzdLS0ssLy+3keMwqm0NiSVp+tuSkLCeYfQmzdGybS3iYNNnbOQxrb/SnJTwmVaGrFNox5T9f6FQaNsTXfoqPHbUkjzJspVHa7yhGYHSmgmd3AQ7ef6KhtlcWmg/DlXvYeXCLqLRVk9WVpUipCiXomwKBqQZMNvPYaqGytBMTkjiLKHVGMpkMkl6mJVxtbuOl7eOj3OO8+fPAztBGEVle3t7kxMMJUNK+1D7yqYovcaSe9v2alMRAitDsg12x57QibN9Ua/X21bla/cI6yjYcRSS4DTyGjovYcRQ34VjQlC7SReKjMmmh0RNebr2oIlyuczs7CwnT55MUtC890kwRTtHWD0Jzdna0dHRRAcrDzicAbRb28meZTIZJicnL1uUZnWd3eFJOkQyIhtro8phgOXs2bNtY1T9rZkafabxqvoppdPO5miMiEdoVqhQKCTyqDUOItOXLl1KxrjqqHfXgly9l+1v2156n7DvrQzYd7e63MqOytH1V0Ma2RZC+6FApbhdaAuv9LxbggRDs9Ht9JLSH9ShGvzaEujgwYOMjIwwNDTEyMgI1Wo1EYBSqcTKygpra2uJwMrg2LxeGUTYUQB79uwhn88neUqWKHZ1Nc/4zmQynD17lpmZGfbs2dPWwdrjUGfYa5qsVqsleVyaCrLeoZSt7bzx8fGEcNnjGe2CFHWu9WIt0VPkAnam8BXdDj0nOROhdxgu2rPCrRX31pkQmZTTAO17ZNqt4rRTh8q27yQDZ9tGf8POftHKsVSUzy5CsPlIeobaUO+hfVuHhoYSh8cSMGvsJTfWUDUajctOAbRE3Q5Ea4xspM8uVrSQERU50LuGAz18ht5V99r/27ZI+ztEp/vUrjY6qHewB6+kEUerVO1Utm0Dm/8ZRl6sHNjPbB+HCKcNbbmCXdRkF0yFdde9+lyr88Mop33vRqORjC07juyeySKU4WyWZMo6//l8nqGhIarVKpOTk0kbqh3tiZdAsvg4zH20UUAZbDn21rhrxwIgWV+h++w+y7AzNq0zaQ26dJglpTa6Zx0xG1UO+1ftJT0vB9FGWmVb7M4Jeqfp6em2PF61sY411yyh1TUK1uRyOUqlUpLKp/fQcxXAsEECtZNdX1Cv19tIdOjsWf1lx4GVQyuLVmeFzlias2fLCJ1w295pJFr32jEblivbIGcqm81y4sQJdu/ezdDQEM45zp07l5ymJthjlMP1Otr7t15vHuKid83lctxzzz3MzMywvLyc3FetVpNT4paXl1lcXEyCOL29vUngQzKlv1WfRqORLPS1i7LV39Vqlenp6WQMyu7Kxtlr9VtjqL+/nwMHDrC4uEi5XE52rBEJ7uvrS4JwwsbGRnKMuZ6jI5fFo+RsFIvFJDBVKBTo6+tLxp76KEwbCJ0w9bHlFuG1ocyEes6W02kGLrRVob2w19pxIb2nDIJwLF2JUN8yJNh7z9raWpLDG24fpZeuVCr09fUxOjrK4cOHmZiYYNeuXdTrdS5dupQsTDtz5kyy2lhTs/LC5F1KYSpdwjnHyMgIy8vLiSDr3oGBAcbGxpIp93K5zKc//WlGR0fZu3dvkifW3d3N8vIyTz31VJJfagXJ7iKhKLAlU9CeuqAcIRuttpEstR3QZrgtWYadgV2tVpmfn2+bbg0Jhqa4dZ/IPbQfH+29T7YCCqMXYcTXkjib77i2tpbcE0b95KSoHxTRsYtT1I+WSFpiZcsLB56NCJfL5SSSYKPsVvFaUmC9e6s0094jNBydou623217WofNXh964mlEOEQnTz7NW0+7LyQYFiEpT1M81rmwcp+m/KzM20VeaXUL2zqsa+iQhMpd96gfbYQ7zakISYM9FEJG2/5f8m6dRSsHWoRpHQFrMOxMRbFYbNtVQspf7StSpoilIl82GlUoFBKnXJ9pzGp7KW1DqfrPz88n1yuoIJ1q5VL1GBwcTNpB/SyDrL14bWqC1VV2rIoIWTmw/WHJrkiA3eJMbdTf359El61jY2dtrB6xDoOiZtL/Sl+ZmZlJtpu0xj6MVqsu0slyMkLHr9P4scEBq5fCe2Hn8Im0GYk0cqs26EQUwnFkn6X2Txsj6suQyGjtxfr6OmNjY4yNjSW7A1lZ0niUUya7Y4NXWkOkvuvv7+d973sfjz/+eHIWQL3evo2llbWhoaFkkZ7dqlLPEfmU3e7r67tslk+kWONT72+dVkvStaWg2kLvofx+zWYqtWNjY4OxsbFkgZ73PkmJUTqP/m8PslD7yfGWXpJsSCatY6g+tOPPyqOcQZF961iGMqNx0ImrpOnrUD+Hz7dlpNkCywGsHHayh3ALkWC7vYtVTOoQEau9e/dSLpeTrdAymUxbTq4Utab+7KIqkR0pNzuwJbB2uzJ9l8lkGBkZSQi0yqhUKnz2s5/le77nezhw4ADd3d0sLi7y2GOP8e1vf5u1tbW26RVLDO30gzXY9m+dfR5GbTuRC+vNWSVpDaRV7GpTe62Ujp12soRaA91GYEMypmeF6RM28qRBFE67WEOi8tQu+q2tYYAkx2t8fJzZ2dnkUAyRDtu++jx8huQsnBIStM2LrrEkTvemlWlhDaB1PvSOcmDURjK6YXTTvov9v1ViNmpm63klhIrFyplt+/Cd9PtK0aY0BWjfQ+MsVHRXIuZpxNcqcf1fMwn2Plu27ZcrlRPWwRKItPqmtat1+ixBs7MYVyLqtr7Dw8NUKhWWlpaSSKi+r1arbfvLilwo7cLqEt0nolytVjl06BB33303zz77LDMzM22HEqiv7XiQ4Q3bx44n6/CIBIdtaZ0QXWtnVGwfdpJHS77s7JGIp3X+w3Erx1n9vbm5mZBua3Ng51AfrfZPexdLJKw+BdoIVyhnabITOnXWQbTjMJTJNHlMIwaWCKWlc+n6cFZN9wph1Dp8nuxRvV5PDkWRzZXM2ECG/duOU0vK7OxfpVLhySefZHp6uu3AD/WHZEpO0vr6etsWnHofO/uigId2qFKuusa0bWebwqmgmLiGcy5xHrXLhWa7Z2dnKZVKyffh3vHDw8PJ9bKteucDBw5w8OBBJiYmKBQKTE1NMTU1xdLSEqurq0nKjFImRLLVn/Yd0saW1dtqm9HRURqNZn63nMA0HW3lMw2dSGra2Lb10D3hdZKxNJ3dCbcECdZUlp1OC3ObJPDaM3Nzc5O1tbUkeqyo8crKCsvLy8l+k+pUDRY73WKjeRpoMhR6vpSOdguwi642NjZ44oknyGaz3HPPPeTzeS5evMhjjz3G1NRUG9mxXqwVbttJqoO2+9D2SGFoP62DrbBZgbbEzSoQW5badmBgoG0LslDIQkKiNg8Jl5RDGB3WdKcltnqWnBT7PrrOpkdIGdRqzf2Sd+3axcjICMPDw0xNTXH27FlKpVKbdx4OHksCrAxcaSCH99tpobSBaD8LjVQauQzbOTQcVxrMV1M0adfbZ3UizGG72WeFbWJ/X6mc8DtLWqDdiKZFGFReaPBt+eF9ac+3ylLRGkuQ7HNsne04stHEkMCEUB9qKzPl5TUajbYT0sK6SifY6KTkVkTC5rZrHClKY2dQrDNtt2OzBNf75i4oyu8N3yF0ANNmJfS3TX1Q++hkL7vQtbe3N0k7U1uqnfv6+pITA0O9bOVAOkRlWF0l/WfJltpWdkdtJ7KlYIBN67KLtKwMhbLf09PDxMREchBKqL/VNhZ6p3Csh22bzTYX52oNgo0K23v02xLU8Ps0JzOtL9P0S2hr0r6zU/+2DEVv9b7av1d9pXtsP8GOcx9G7vWOItjPPfdcMkOhKL7Gm213732SK64gmGyLtTkqWymZdmbJjh1opgn19fUlEVp7IJfKVP0VQPLeJyfhaTZSbao1TNo9xu58pXcbGhri2LFj3H333ckmAc459u/fn+y2MTMzk9TTjiMbqEpLdQhlxs562u8s5wjvSZOzq9mrTs+/Vryc628JEmzJjo0yhBFL7TUrhbS2tsbc3FyiyFZXVzl37hxzc3NtwiPlBrQNMuVqwc5g1+kpUqry+Kwnb/Puzpw5w/r6OmfPnmVgYIDz58/z1FNPJdEZ3S+P0EYS7Y8MknJ2BgYG2vZVTetUK1BpU1KNRqPNyIUKVu+XyTS3bxodHU3ykcIoQyjkymezKQJ6htoonMLWdSrXTgXlcrmk3e33Ni1DMwEzMzP09PRw7Ngx7rrrLgqFAt57isUihUKBixcvJquBLZmXgROs4bRRmdCwhZFbtYV9v07GJs3TDY1Dpz62nveV+j4k8deiANLIaFpdQ687TIUIDZ6V507kPZyt6PQ+tnxdExIcIYxA6XubdmBlz34W7jhiSWVau+n+NLJypXEKJPpFziDszAqF7x22td5Hq8KtIU5zxDRGoTldauVN9bfES8RZW4XpqGq9s21jO0vWyVmwU8SK4onwiyz29/czMTGR7N+qcao27u/vZ8+ePQkJsKQvnCVRhDR0IKT/bGBE3w0PD7dtuak2UrTPzpTZaGHa++qnWCxy7NixxPGwAYFQlmxZaVFU+35qZ81YhjNroQN4pTF4Lc+x14Tvq8+tzkkbM2H9gLYFWfV6c6/a5eXlNt0r+RWs/bUyGc4QNBrNU+YOHjyYBK42NjaSmQ6rZ5RzKyIc6tlQ3+v5hULhsn7Vtb29vYyMjJDP55N97nWf3evXRnQ1u6CTLDWu7Piem5tLbLOVF+89Q0NDTExMMDQ0xEsvvcTq6iqFQoE777yT/v5+zp8/z2OPPUZ3dzelUumy97EpUVoTEeo2yyl06BHQNkuU1vdpvzt91gnXQpyv5JRdDbcECZbASzEJlsCowy9evEh3d3cyFbi9vZ2cGKNFcVK82uFBSk2DUZ+JIEvZ2SkZ1UNCWS6X6evra1N2Gkgvvvgi586da9slwio1m9MXpnmIoNfrdYaHh9mzZw+7d++mUqlw+vTpy6I0QEJsQw/OGoDQC0sjwL29vYmiqNfrSTRG04DW0IrMS9HIK7ZkQu8lhORDnnl4UADsnFyj7W+cc8nBImpTLQZqNBrcddddHD58OFmEuL6+Tjab5ciRI4yOjia7E6h9tfhNSk9TxtbrDqfc9K422q12sMQ/TWFo5kF9ILIlB8o6fZKXNFKa5hGHbWzraq8Lf6c5NFY+9HcaobKOib1P49LuQCIZsvn8oUyoTawTEJI0yY6im2nvZ4lESJKtIbEEoROxTjP24XPSDIR9dug0hO2oNrA7MoTkz/7YtlIZq6urrK6uJotdrBNkiameo7awq/HVFja/X0Z9cnKS6enptlQmybSipFbH6RnhYlD1m03L0LM0HsbHx7n//vt57rnnUkmHdtGw6WthxCrNuMLOHsx2P3XBOcfQ0BD33HMPL7zwQkL4JcvS/2H0sZNBtk5LV1dzX3i7cDCsZzjWrPzbfg9lXno31C32aN7wmWmkwI4Ha2PD59v70+psx7PtO7W3TWnQNZIdjaVGo9H2d+gcWMJmZyOszROJrVQqSRrC5uZmslhsbW0tWUeicbC9vZ3k18umOufaFliG7ei959ChQ0xPT7et95G8DQwMsG/fPoaGhpKF+bJBIpm5XI65ublEXvSdPYrYtmm1Wk3y961eVCrS2NhYstjwwoULySEwtVqNoaEh9u7dy1e+8hUeeOABTpw4kRwUk9a3dgYedvLxbV8DyZi0pD102O3v8O80edQ1YRn2/k46Na2sUM93wi1BgjUlqA2xlS9WqVTaVvrZfRRnZ2dZXl5OyMbm5ibFYjEhKV1dXezZs4eLFy8C7ZGqvr6+ZJsSO/0g5a5VpHaafnl5OSlHhLler7ftZFEsFpPTblZXV9uipFaR2lw1q3hl1BYXFzl58mSSt2OVgQh9ODWp31ZopfRtvqCgxWUiZVpNGh6jaqPyoWBbJWrraaPdts1Unj6zP0NDQ5TL5ctWTyvvu1gsUiwWuXjxIgsLC3zkIx9JFiGurKwkhq5cLicn/ck41Ot1BgcHEzmr1Wr09vaSz+cT7zpUsLatJAfqLyk2mzNoiZOmeOXpO9eM3gwMDCQ5y/ZHZdu2Vfva/kszbKGhShvsV1Is4TgMr9c0oTVk+rEr5sPodldXV9K2eqYMtc25tyTKOnXWGbYyI1kMHZBwWlKfdVKa9j4ZSlsH++xORrmTotf7h/0UjhdbpmAJrd5Zs0oa2zKASnfQtmjWqdO0eS6XS3RcGEVS+XKEJf+W4FrCC6TKdTh+tOUXkDitmma2/VipVDh58iTnzp2j0WgkO2xYY7+wsJBECSUXkj3lFksf2v2F1YaWvIaGvFKpJIcsWV2l6WTNNoaOe9r41Vjx3rO8vMzXvva1ZMFVmvylyaUipPY7a7eAtggkkLSDUnp0nfpNMq0yrO4O66Mf9aXaWuXZcZ4m/6EcW3tltznVPTbHNY3sqw6hTKpdNNOhVAftSFOpVDh16lTbO+mADNkBjfnV1dVk9w9btiV2khvpddkQOa5Co9HMkT1//jyzs7MsLS0ls0z5fD7Zu3tqaipZCGjbUbn16oMwd93KsNqjp6eH+fl5Jicnk0X8WqQvYr2+vs7i4iLHjx9PZsl1wq09jVM/YTqG1XsqV45YGOSwMmhtRhqhtffos/D6TnYuRHhdWJ9bngRLGDRlJ0Mq42s9Ju89IyMjCXHq6elhZmYm2aB6e3ub/v5+Dh48yAMPPMCLL77I008/nRgSCbhIlt2LUh6lDI6Iroj41tYWo6OjyepWHXyhe2VQYWfLDktQBb2TCJr3PtmT0q7YlrK3U10SUqugrActkqYBKoNoB62eaw+0sJCCCsmurYMVdhvRtcIbEm+7AtmS61qtxvHjx9v2SZUS3L9/P0eOHOHw4cMMDg5y4sQJ5ubmOHjwYJKTLIOrw03m5+eTFfLWOKpNgWSXCZs3ZusVkhO1QXd3NyMjI+RyueQobfu+sLO/q31erVZLTjjSljnqy3BxhZWXTn/bstNwtcF/JYUSlh8qY8mu9lINjaPGjVXcllSHfaz21W8rb6EDYOtlCYiNMobvaf9OI5w2Qmiv6RQ5tvenKWsZ63BzeukeW3+NT0s+VJYlXNKHcr7seLTbOFmHDWjbhUD1U5tplwMtmikUCm3RLUU1RWLsu1n5VVmNRiM5REILiKxDo2jb4OBg2wJlmzNsFxLbtg+JkY1A2pxu1cP+hMRfn1cqFS5cuHCZs68Fv6EcKWiQ1ofSIXqWgiOh3Fp5SJMtW65+q33CcSAiKD2Xy+WSKXf77hZpMhvOyITfWzJr21L3qc/snvEKZFm7671PyHA4lsJxa8em/U5RU9lX2+/a2lTPHR0dJZ/Ps7i4mCwKGxgYSBaGaSzpejkTknW74FOzA/39/czOzrK1tdV2CqF03uLiImtra4lzb9MflNceRletXtXzrG60dlNtr1mZarXK8ePH2dzc5ODBgxQKhbYt/iqVCidOnEi2NiwWiwl/ymQyzM7OMjc31zZbbYm47RvxC+vgp71HaOPDvrUpSuH3VndZeb2arbJyFI6hNPmyuCVIsDrdDkprLGHn6FgNqPvuu4+JiQnW19dZWFjg0KFDyb68GxsbzM3N8cwzz7CwsHDZALXHDofGU162CFV3dzeXLl1KSOPy8nJi4FRXO2WrQWWFWMY87TMt9tu/f38yXS+FOj8/z6VLl9qeJQUXKtJwEHVStjJcKiP0wNOmf0IPTT+W/No21DMFS3DsPVaha3pFz8pms+zZs4fv/d7v5Z577mF8fJyuri5GRkZ44YUXKBQKSe4VkEx3VatVpqammJ6eTgy0lSVr7PSdfUcbBQjfTd55uHOD5NMqL0XpLBlWlMz2kxSiTR0ICVXaAE4jZiHBCw3gtZJea6Q6GVMpTKBtrNRqO/t8p80e2NSPtPqEn4UKMSSoV3IWwt9hOaHzp+d3Iia2jTq1nZ4VEmv73JBoSC5EEEKjE473tB1VbMRdz1cUKNz1RHWzpNAuntVn4VjNZrOJjhKhkYHevXt3ElWTXlU9RFQLhUISHbMOgci29KiNgod9J/2l9w+3crTtrTJs4CPUhZ2ikNLXtr9FOkJCqr+tvITkLU1O0saovc7ailC2035sX2r82YBPGtG0bWGfY2XBykpoVyzh1poWtZO1M5YspcHqRAs5PBon1jm2jp1m2hYWFpJ+05aDzjVnf4eHhxM7rWPIFfmXQ6Z2F8m0sqjtQIFkhyLvfdsOIXb20hJD75tRcJHxer2eHA0tZ9TKcpjqGDpwmploNBrJlqflcpmxsbGE62ix3YsvvpgsFFQbqszx8fG2heRWRtNgZ1msHFn5SRuHIdLuUdunyem1kmA9N40Id8ItQYKhnRCpgSWU6kANME0rrK+vUy6X2d7eZnBwsG0/vO3tbc6cOZPkmNpVnjYFwA5Muxm1npPP59umwuUl2hWkVkgtsbY7QoTKRR3V09PDrl27s955+gAAIABJREFUGB8fT95Lzx8ZGaFcLifbIKlj7bSgPpPCsZFMSI+MWeVhv0+LCut5nYhDGqGxStK+u/1tf0Iiqqnct73tbTz00EPJiUDVapXh4WHuuOMOpqam6O/vT3KftMXM5OQk586dY2lpqa1+cm5sv4cOgVWwnZR2rdbcdzHcwsZGLGFHdq2Rl/G3/WMX/6Vtm3Slv68XaTKhtrK/7XehkpIjaCPkMoia5pTBUZmaqk4j7fYZ9v+2/W1UMYywhfJulezLaY9QVq9WTkhQBNv/YRt2enZavUKnzfaR9FLoqEi2wz087RgL62edMFuexojqYPtP5YURrDDap2tELGyaV9osUidnoVN/qb42wmTL0XPC51kSnlbfsK9ETNIWxKaRVFuPEJ0IsJ5t70uTr04kWHUSkUq7z7ZHmo4L5dS2YSfdofax8hG2tbVN9v07tU84G6Dn2eBGmjOh99FuIEoP6OvrS+x3JrOzK0yYjmXrbt9deca6T7ouJHF6vs0DtrOz4jSKLGv2UkTZ1iPUP/ptn7O5ucni4mKSP2/XAczNzXHhwoXkdENtv6Z6DQwMJBHtK8mA5WahDuh0T9r9aUTXvluaI/RKcbUybxkSLNjKijwUCgX6+/sZGBggk8kkuzBoj0GtwJTwaJP45eVlKpVKMk3UaDTaEsKlkOUtWoGFneNEFeUDkql3TYdAu0KTEVD+kKYSRZq1UENQRFNT+/KotSpai77sgju7YTXsKHObK6a2TCOgQpqBtEo4fDf930YF9Fmn/9vBk/Z52r2ZTDNP8ZFHHmHXrl2USiVWV1eTqa7Dhw/z5JNPUqvVOHz4cLLn4qlTpzhx4gQLCwuJNy7ipek562UrZyqMetnBGLabovRSprCz1Z5V8HqW5CmXy7Ud1CJCp5xalR0uwFGZVzI+th3Dv217dyKK9rorkUZbjtI45FRI+VYqlURetRDQGl5LPGx9w2inkOag2Fy6qxnSNFkL2+9KcnulZ9ixktbGtt4huQqjLuEOAuHz1Q7WiIb9Gb6DIkZpsiFZk66T824NucpQH2pVeL1ev2ynhuXl5TanKITK0nHtNnAg8hQ6DKqDzbsM+yIkvZ12crFli8yFMpjWtzbaa492Vl+EJDiUgZDIhcQ0JP4hQtkJ62ifa6N0V4pES/doyt6WF5Zr70mL1tr2VtpN2myaJdvhuFD5Vh5Dkiz7bmcxrP3VHtxhnq3azTou+kw7IdgxKXnTGLD951z7Yj+7aDPsd+99su5E6RvSlyLm2WyW0dFRxsfHk73C+/r6kgi+HYNKc7KzztbWb29vJ4dzLS0tsbCwADR3eJmbm2P37t3JDitqM60LsgfldNKXaf1oZSbUe7bfrBxB+yxeqJvS7NErJcVXu/+WIcF6Wdvxg4ODFIvF5Lc2otbgKpfLyRTc0tJS8rLah1JEZdeuXezdu5fFxUVOnz6dLIqTAEvAFG2VMtd0hR2wulZTI1KG4elHEly7QMH7ncUPWiW6f/9+crkcCwsLCenO5/N47xkcHGRsbCzJeZYxKhaLbQIlYZEXaSM5jcbOkb7QnmpilZI+t7tCWOKn9xZ57OrqSvKfrZJQ39jp8PB768nbLegsqd/a2iKXyzE/P8/c3BzLy8vJtFNfXx8vvfQSL730EkNDQxSLRRYWFpicnLwsTUX1s8oujILYOqZNx4QDOTRKUowyRGEkWTmXIhlqY+WoFYtFYGfv0NCAdXIY0pRVuABR13Ui0teqZMJnyxkol8t475NtprTyWKlBaitdr36x7diJAFsDaY2gvccaS0tabL2t0g3f295vCVOaQg6jg2Hd7TPVx9bAhtPrulbj1n5mx0nY3zLAKt+uWQjJg40W29xMOz7D8RDuPqPn2lxMq+uszghl0ZIKbQ+nMtWndvGd7RvJsJ19sATA1t2mKIRkTQQ7dN4VpAjb3RrncCyJCOl768BaqI21xkTX2CBMSBjsOo9Qd6qtwrrqWXon2za6TvcrEq8fICFFnXSe6qWT3EJYshYGZexv26/huLe2QbZK75EWcFGf2/qEM1JKD1KgoVQqJfdbvb+5uZnM9sruK4/ZBp20aFNjTXrO5uta3dbd3Z0cCa21SnYGUg6hnW0ul8vs3r076XsbPNM4Vx8q7RNosz06N2FxcbHt7AW9n9pWddC2gXqG5QRpMq3fti+tTHZCaD9smaFTlGb7Xi5ezn3ulbLsVwPOuXlgHVi42XWJeM0wRuzf2x2xj29vxP69/RH7+PbHG7WPF7z3Hw4/vCVIMIBz7knv/dtvdj0iXhvE/r39Efv49kbs39sfsY9vf8Q+bseVz/qMiIiIiIiIiIiIuA0RSXBERERERERERMQbDrcSCf7Nm12BiNcUsX9vf8Q+vr0R+/f2R+zj2x+xjw1umZzgiIiIiIiIiIiIiBuFWykSHBEREREREREREXFDEElwRERERERERETEGw43nQQ75z7snHvJOXfKOfcLN7s+EdcH59xvOefmnHPPmc9GnHOfd86dbP0ebn3unHO/3urzZ5xzb715NY+4FjjnDjjnvuScO+6ce9459/Otz2Mf3yZwzuWcc084555u9fE/b31+h3PuG62+/CPnXE/r897W/0+1vj98M+sfcW1wzmWdc99xzv156/+xf28jOOfOOeeedc495Zx7svVZ1NMdcFNJsHMuC/wH4G8C9wI/5py792bWKeK68dtAuBH1LwCPee/vBh5r/R+a/X136+djwG/coDpGXD9qwP/kvb8XeBfw91tjNfbx7YMt4P3e+7cADwIfds69C/iXwK96748Ay8DPtq7/WWC59fmvtq6LuPXx88AL5v+xf28/fK/3/kGzH3DU0x1wsyPBDwOnvPdnvPfbwB8CP3CT6xRxHfDefwVYCj7+AeB3Wn//DvCD5vPf9U18HRhyzk3cmJpGXA+899Pe+2+3/l6jaUT3Efv4tkGrr8qt/3a3fjzwfuCPW5+Hfay+/2Pg+9yVzk6NuOlwzu0HPgL8P63/O2L/vhEQ9XQH3GwSvA+4aP4/2fos4vbAbu/9dOvvGWB36+/Y769jtKZFHwK+Qezj2wqtqfKngDng88BpYMV7X2tdYvsx6ePW9yVg9MbWOOJl4t8B/wRotP4/Suzf2w0e+Jxz7lvOuY+1Pot6ugO6bnYFIt4Y8N5751zcj+91DudcEfg08A+996s2MBT7+PUP730deNA5NwT8V+Cem1yliFcJzrnvB+a8999yzr3vZtcn4jXDe7z3l5xzu4DPO+detF9GPd2Omx0JvgQcMP/f3/os4vbArKZWWr/nWp/Hfn8dwjnXTZMAf9J7/19aH8c+vg3hvV8BvgQ8QnOKVAET249JH7e+HwQWb3BVI64d3wX8befcOZqph+8Hfo3Yv7cVvPeXWr/naDqyDxP1dEfcbBL8TeDu1urUHuCjwJ/e5DpFvHr4U+CnW3//NPDfzOc/1VqZ+i6gZKZqIm5BtHIBPwG84L3/FfNV7OPbBM658VYEGOdcHvggzdzvLwE/1Los7GP1/Q8BX/Tx9KVbFt77/8V7v997f5imrf2i9/7Hif1728A51+ec69ffwN8AniPq6Y646SfGOef+Fs08pSzwW977X76pFYq4Ljjn/gB4HzAGzAL/G/AnwKeAg8B54Ee890stQvXvae4mUQF+xnv/5M2od8S1wTn3HuCrwLPs5BP+M5p5wbGPbwM4595Mc9FMlmaA5FPe+//dOXcnzcjhCPAd4Ce891vOuRzwezTzw5eAj3rvz9yc2ke8HLTSIf6x9/77Y//ePmj15X9t/bcL+H3v/S8750aJejoVN50ER0RERERERERERNxo3Ox0iIiIiIiIiIiIiIgbjkiCIyIiIiIiIiIi3nCIJDgiIiIiIiIiIuINh0iCIyIiIiIiIiIi3nCIJDgiIiIiIiIiIuINh0iCIyIiIiIiIiIi3nCIJDgiIiIiIiIiIuINh0iCIyIiIiIiIiIi3nCIJDgiIiIiIiIiIuINh0iCIyIiIiIiIiIi3nCIJDgiIiIiIiIiIuINh0iCIyIiIiIiIiIi3nCIJDgiIiLiVYBz7redc7/U+vt9zrnJ1+g5bWU758455z7wWjwrIiIi4nZGJMERERERLwPOuS8755adc72voAznnPs559xzzrl159ykc+4/O+ceeJXr+tvOuW3nXNk5t+Sc+7xz7p7gmv3OuU865xZbdXnCOff9wTXeOXfk1axbRERExM1GJMERERER1wjn3GHgvYAH/vYrKOrXgJ8Hfg4YAd4E/AnwkVdWw1T8K+99EdgHXAI+oS+ccyPA14Bt4D5gDPhV4Pedcz/0GtQlIiIi4pZBJMERERER146fAr4O/Dbw09dTgHPubuDvAz/mvf+i937Le1/x3n/Se/8vWtf0Ouf+jXPugnNu1jn3H51z+VdSce/9BvAp4EHz8T8CysDPeu9nvPcb3vs/AH4Z+LfOOZdS/4edc08651ZbdfuVV1KviIiIiJuFSIIjIiIirh0/BXyy9fMh59zu6yjj+4BJ7/0TV7jmX9CMDj8IHKEZxf3F63hWAudcH/BjwCnz8QeBT3vvG8HlnwIOtuoQ4teAX/PeDwB3ta6NiIiIeN0hkuCIiIiIa4Bz7j3AIeBT3vtvAaeBv3cdRY0C01d4jgM+Bvwj7/2S934N+D+Bj17HswD+sXNuBVgD3gP8pPlurENdps33IarAEefcmPe+7L3/+nXWKyIiIuKmIpLgiIiIiGvDTwOf894vtP7/+1xfSsQiMHGF78eBAvAt59xKi8A+2vr8evBvvPdDwGFgAzhqvlvoUJcJ832In6UZIX7ROffNcBFdRERExOsFkQRHREREXAWtfNwfAb7HOTfjnJuhmU/7FufcW15mcY8B+51zb+/w/QJNsnqf936o9TPYWtx23fDeX6C5GO/XTH7xF4C/65wLbcGPABeBEynlnPTe/xiwC/iXwB+3Ui0iIiIiXleIJDgiIiLi6vhBoA7cSzNP90HgGPBVmnnC1wzv/Ung48AftPb87XHO5ZxzH3XO/UIrP/f/Bn7VObcLwDm3zzn3oVf6Et77zwNTNNMtoLkTxCDwCefcnlY9fgz4X4H/2XvvwzKccz/hnBtv1XOl9XGYUxwRERFxyyOS4IiIiIir46eB/+S9v9DaRWHGez8D/Hvgx51zXS+zvJ9r3fsfaBLJ08DfAf6s9f0/pbmA7evOuVWaEdujKeVcD/418E+cc73e+0WaecI54DjNVI3/EfhJ7/0fdbj/w8DzzrkyzUVyH23tPBERERHxuoJLcfQjIiIiIiIiIiIibmvESHBERERERERERMQbDjeEBDvnPuyce8k5d8o59ws34pkRERERERERERERnfCap0M457I0Vxh/EJgEvknzpKTjr+mDIyIiIiIiIiIiIjrgRkSCHwZOee/PeO+3gT8EfuAGPDciIiIiIiIiIiIiFS93RfP1YB/N/SaFSeCd4UXOuY+xs23P225AvSIiIiIiIiIiIm4zeO/dtVx3I0jwNcF7/5vAbwI45+KWFREREREREREREa8ZbgQJvgQcMP/f3/rspiFLhgwZsmQp0Ms4w9zFfvazmxOc51lOUWGTrQ9/P43uDJw5CWdOwEalY5kHBmFXESb6YbwPir2wWYMvnIRzyxBZfcS1IIujSBcZHPvJ8yYGyJNliwbLbFNimxWqVKixyBabKWcUjNJNDkcXGfrJcow+imSp0qCPLBkcmzRwwCo1lqkxT5U1apSosUTtFb/Hnn0wMgaZLKyvQb0OuTxkMrA4D/Mzr/gR1w1HlgzdODLU6Dyme9jNAPcDWTx1PNvUKLPJRbZTTxO+scj2QG8RcgPQ0wfOwUYJttagXoVGDeo18PUbUx8HjNJFP1l8S+NlcHThyAJn2GLrNtOEBZo5hTVgM/iuh+bmy300TyPxNDeEXm9dmzbKHBNk2EuGPThGcQwBDTwlGkzR4AINLoGR264+8A2op+zU3AcUXPPZWaAXGHbNk03mPcy8Rt3xDo7yFu6ih2422GKNClVqbFFlkgXOMs06m1DMw72H4F33wrlZeOoUrK5Dwzdfau3atp929OBaWs9Tp0Gp47VHOcwwA1SpUWGDGnUcjiIF+uljhTXmWKTUVaK4q0quAJNnoBGPg3nZ6GcUhyNDlh7ydNNLlS0KDLCHu8jSTYk5LnKcEnM3pY43ggR/E7jbOXcHTfL7UeDv3YDnpqKplJsko5duxhnmAY7wQd7Ju3iA/4+/ZoEV5llm6cN/l0a+B774GZi5lEqCM2Qoun6Ojpd4aC+8dR/cvwf2DsDiOkytwoUVqN9euj/iNUIWRz/dDNDNuxjjhzjIBHlKVDnBKqcpc4JVptlkgzqbbF9WxhBd7KGHUbrZTy8/wBh3U2CNGvvIkQUWqFLDM8kWp9nga6xwjk0cvCok+Mg98Oa3Q2+uSXhXS1Dog1wOTr3YHErlVXtHN03TLMbW0/p9+fu9Ejiy9DJEnjF66KfMJaqUqbNNnSo7B59l6OMu9vETZCngqScEeI7PsM0iN9O17c5D3xiM3gm77obhg+AyMPUszL4IG8uwVYbtdajdIBKcBQ7SwyF6qeJxQFeLmgzSxSrLTFN9XR8t54Bu13zXDQ8Drim5676dBGdoEt/dwCEcR3H0As/iOYdnGihxORHOsI8u3kUXbyfLA2R5M5516jxPjS9R5ct4lvAtEpwtQN9haGzB+gVomOHSC0xkYNTBtoce1yTAhx1UgWcbMPMqyoYjgyNDHz28lwf4GT7MXsbYYIsZllmgxGku8UWeYpblJgnuL8B33Q//4O/AV56B8gZMLcBWFTa2OpBg12pNtXSDLINkGSFDjgZltjqQ4C6yvI93cISDrLDKJeYoU8HhmGCcQ0xwlkt8mxc4V9jgnoer9PTCdNC2EdeGIsP0UqDAIMPsoY8h1ljiIPfyAN9LFz2c4klWmL19SbD3vuac+wfAZ2nqjt/y3j//Wj/3inXCs8E2G2xRIM9FZvksX+cJnmeFtdZQzuB+9z9CbxYWZmFrR8VlyCSRjgJFHnIPk3Wfp7wN51eg2oAT8zCzBtt16Mo0I2EREYLDJTJksU2DaTYYo5dVqkxSoYcMdTxVGtTx1PCsU6PWgYSdZoM+MhwhTz9ZnqbMbnpYocZg664LbLJAlXXqrFLj66xymo3LSnQ42jKrrmE3mUwGhsfg0F3NaHD1XnjxWZidgv5BuOeBJn38q8fsc3YD63hWgW4y7AM8DSZ5NYlwjmHGuI89vJNx3swyJ5nmcUqcpcw0VdYRue1mmCxFcuyniz4aVOlmmGUep0mHbg4JdhnYdRR2vQkOPwJ3vAf2PtCszrf+AOrbMH8SqmFo8rWuF45Ci45UaJCBhAjfQQ/3kmeB2usyGpxp/eQzMJ6FgSw8u2m+c+A8+EwGPPT5Bgdw3AM8iOO7yXA38AU8X8HzNJ5TeMIJkQbT1HkK2MKzTYa91DlDlc9Q5b9R57nkoS4Do2+F4Qdha6FJ0tYv7JR1V6b50wtMt+qZpRn99cCWz9JFhhrVV6F9uukiR548b2Uvp5jlv/AN3sv9HOMAdzHBAiU+x7d4lCfY0jM3tuCZM/CL/wkWSrC0Cl1ZWN+EmaXUZzl66eEgTdqdx7PdkrphwLHN+Q73OcYY4iHuYYJxznGJRUqssEaVGgssUyTPNlW6uj3DE3Xe+7fgO3/VnGWJePmY5hQHuJdR9rGHuygyzDIzPMSHyZBhgzKblJnm5E2r4w3JCfbefwb4zI141tXQwLNtBv0U82yxzTzL9NJDBkeZDbap0v3tJ2n0ZKhlfVsU+D7ezgwXcTju7rqTtd2f5y9Pwo/mm2kRs2uwUIELy1BvwIfeBH95Fko32Ci9JhjKQKkR8zteAQboZ5xxTnOm4zXdOMrUeIlVVqnSS5YN6ng8s2xSpkr9CjG1FWpMsUUvGcbp4c9Y4B76qOMpU2eSLbZpkMHxIhXuJM82DS6w1VbOGPsoj3SzMZhtEuCzp6/6fnffC7v3wt4DcOzN8J1vwAvPwAe+H/Yfgme/BavL7fc0pzMncAzhGAb68SwCAzQ4Daxd9blXQ45hhnkTe3k3h/kQe3k3izxPlh6K7GWRFylxmgrzOBzdDNPP/RQ4zDZLlDlOhVNscombMQBcFnoKMDABe+6F8TfByGHoG4VsdzPqmxtspkg4B7Wt5s8NQdZRzWf5WnaT7yv106DZQjU8GWCCHo6S468pvy5J8NtycKQX9nQ1VeBqozm7t15tphyMAsO9OU7eeQ9sb3Po7AneWW/wEI5jOA4Bwzi+i2YUdi2FAAN4LlHjEnWeo6uVNdjgDFUepc45AFwXFO+AkQfh2D+EzXk494ftBBjgf+iBcQdP1+FiHTZ9M3rdALIO9vqHOcg7+DN+/RW3T5YcI4xwNwMM08/z7GWF+/k0JznEN3gvRR7j23yWJ9tvrNaa5LfRgPkSbFdhdhlK61d8nqfRijx308MddDNBNxNk6GeZT6be43DsZw+H2ccRDtJDFyusUWadEs3nrbPBBpu8/yc2ef+/2qS0BF/8k5gK8Uqwi8PczTvYwxEK9DPNKRrUOMdz9FBgF4d5Jz/IX/PHN6V+t8zCuI4YGoTDB+H+Y/DgA9BXgLUyLCzC0gqUy3BpGr729WuKUqVhiRIVNilSoIcuqtSoUWeLbWrb7SHcn+f/4EHezXG+xWleIFvLcnjqIxzgBZbX/jMXCxv0t/KBaw3IdcHnTjb/nyAL3WNQnX0F7XKj0QXsysJgBsYzcKkOldefMbvR6KWHj/KjfJLf5508TI06DerkyF2RBDeALjKsU+c86zTwOBx5sgzTQ40GC2yxkz7QjiG62U0PXTieZ50qDVaocZg8dTynqHCSDfJk+DzLbLWizABddHM3b6NAP44MW0sbVJerbOfhzMO7YWAAFhbg1EtQbpHTnh54/4fgc3/ByeMNzp6El56Dn/rvoasLfv33oKe3mVX05Ufh+afDGvfjOECGw2TYD/TgWcPRg2cW/yqQ4F6GKLKXLnKsM80lvsYmi61Uhy3qbNJoTVB7POuc5BL/L1mKbHCWEt9ijedpsM0rIcF7yNFPFxXqXKJ9urdAlh4yrKRE5xSMqlZgZbIVnfJQXoBcP2xXYOZ5mD8FqzPN624IuhwUu2A8B3cU+ZeTG/zu6XEe2cozSJYacJwNHmWFxqtMgHt7mvKVyUA20/y7kINiX/O77Sosr8DUK5hp/YlBONoLeddMX6h7eFMPHBiGMysw1oCyh8dHxzj5sX8Kf/UFhi+eY7y+yV5gAsjjeBHPt/F8A89LwGL3GBTugd59zQfV16G2BJvn8VtTVPkyjt04umgwBZTpBYZqGTLn4L5PNhi8Hyb/FLYDp/IdWfiubLNrzjRgyTfrvdt/hFn3Jd7S+FHeyU+yizspMMAf8UvX3T7d9NNDP5t08xKeGYZ5B/+MQe7gKX6dJ/gaf8V8+sxVV7aZElGrNzvr4hxsXH3mx5Glmwl6OUI3++hijCxjZOihmwPAk4RjNNPd4NCPv8C53z/PW7bfxJs5iiPDJtuUOcMaFfyPfI0HPljh/kcaNOpNAlwpw5H7oLoNuCbN2FyHqfSA82UYIE+ObuZYvfrFtwoGh6C7BxZeeYrCU3yONRb5AP8db+PDZOlihjNk6KJCiTUWyZB9FSp9fbi1SfD+vfDed8Pf/D64/15YW4OZuabG6+6GfL5JgF8hPLDJNnUa9JGnTp06jVSFfRf3MscU88yQp8ibuJ9Rv5s7uI//a+rPyfZs8OAE7OqD88vw+IWAAAsZ6NnffHh1EXwYJe7the3t6yb2rxoKDvocFDJNErwv27QEI3VYqMNiA1aim5yGAfp5Mw+wwQYf5APsYpx1Kng8fRTYaOXgPs0zbbMToMU2DZZakdl6K3limB4aeCrUO6ZDAJymwho1DpEj21qctNqKAPeQoUyNr1Mig6OS0N8muujhft7NHBepU6Pgi3T7XvyGo3ryHBf/+Q/D3DRMXYLTJ5tkeG4G1ppKvtGA6lY3T3+jh1+fz3DswTVOHG+mBBX7m7r14ffA1//S4dgF5HAM4xglwx4yHAQKeJbxXCDDQRpU8SyQxfEIu3mc2aDWV0eNLTZZpswUAGtcokaFZU6yzAnWmKSvuMbdYzBQaFDbfp5TZ+p86OEVBgZKrG2VWdva5E+//rIe24a76OMQfYzQg6PZr310sU2Di1SYZyuVAAOQaS40rG5B6VIz57c0A4Xh5uI434Dl87B4BgZKXYzVMlTxrFJnjQa9LRpdxb+6ebldDgpdcLAPfuUdbJ5Z4xf/9RkGzi7zN1YLfGx1iKep8HlWrxoFHmSMYcbppcAys8wxecXru7sgn4Oe7qZJGCjCQ/fBg8dgYRlePA3Pn4S19ebPtSLv4M05eEcevrsAWx6W61BpQKkOf1qCBzPwMxnYm4Vv1eGpviI88n745ld5emiYwuI8W7Ua08AonlngazR4Fs9kz15W+98Kw++Dnt1QW4GtKaguQHYAMjnYOE+Dk2Q4AtSZIMM+svThmGrU8Q0oHYfKFNSML5WlhwNumy/X4Uz9IE/Uxtjym4wxQoEx7vQ/wAB3scEGJebpZ6RDKzh6GaRBHVpO+M4yR0+DKuDoIkeWHFnyZOijjmOe7zDPt5nnKSoss0U5fRFqeQOeac0ubdeaucBXQTNZsUiOY2QZo5u9OPKtOlXI0Nd2/a59cOCu5iLRje0GX/nu36X2zQ0OlO6gSp2+XJb693yLbLfn0LvKzC81+OS/y3LumRzLMxkurVRo1GH/HTA0BpsVmEyZECvQSz85ZlPykW/pcFE22yS92a6m8h4ahtGxZmCjtA8KBVhehlq1OSO+troT/LgG1KnhcOQo0qDOBms8y5fJ0UeeIg0a9JDnzXwfz/KlV1s7XRW3Ngnu6oLdY3DfMTh6BP76CVhYanZUT3czKtzb86ok7Hh8slq0gW/92+mMDFkdGDEEAAAgAElEQVT2cZgVFtlmiyrbNFpRvX4G6aGX/Vtv5fzsN1neKJHrgoslWE7P68d1Qd8DkMlD5ThsXYRGWe/d3RTM3l6oVm9uQnEXUMzAniwc7W7+VIFLNThbg2wNar4ZCrlOjNLNBnUqr+slM5cjQ5YCBUYYZpABeullP/vooYdNtihS5EVewqWcWVPH08Cz2pK0Bp4CXZSpskmdebbY6hAFBlinwRRbVGgkZusu8myTIYtjnTql4P5+RtjNIe7gfg5yDI9nnkl6ydNDnmpji76yg+ERqG032SwetrdwW9v0nV6i0RhgmwaOIaqrY1x8vp9qaYOT316l2lgmVyzj2WJ5qQEtOp9hEEcexyCOcRx7cOSps0gz/plnN0PcSRd7KQA7UdGXg21KrHGBBlUqzJElR40N1phklfNsUcJVa9Tq8NBdUGuUuf/QSR6+d52BQo21DZhcgHMz8Oz56/NP76LIvQww0lr410cX+8njcDzKDCssst5hYaKjmQfa1dPM961tw2YJ1hegt2X3V2fgwEovD1QLjPgmuZ6kylm2WG71+atukDOuOb/ugcVNcPBi7zZ0b+AzNQZo8CwV5q+w4HKAUXZzgL3cwRh7yVNkgSme5a+Y4QL1Dvdms00TUMg3yfDuMXj3W+G73g7ffg4uTjfVZ/ZlBpoyQM7Bvb1wTy9MVpupBL2+SZDXq1DMwkA3rHk4PXGQkw+8E7705/DU11mtlDndaLCF5ySeAs3M9jPABWCtcIT60Htg4B3NCHC9ApneJvnN9kG2SNMqreDoYYQu3kMvx+hiljpnfZ2VVnrw5nRzYRw0CeIQd7LZOMCz1SEWGrvwvochlqizSpUtRthLA7jIC5ziSc4rzzgFdbboIt8qu4tMS5s0Evu3RYMuGlSps9WcOWKZaR5nixVKnGnNnNAizeEDGrD68qYsHAXy3EeBt+PIkWWYBiVqLNNImTHK5WF8AnKFJhHe9YFLnMo9yszKOPneDNWhEn17Slw6C49/sSnGpXnPzNk6pfnmjjpL1FmYgfVyc9xtt9p7kAIeT1eLlhfJ0cAzb6K+GZr70dySyOWbkYlMpklwi/8/efcaJNl53of916fv0zM999mdvd+AxR0kQZAgJVEkRVN2JMeOEilOVZyUXEqVk0rFH1NJKqlKlStxPiT54thWKnHFkmOXFcmmJevCq0wSBAHijgUWi73Ozu7s3Hump6fv3efkw3t2sVgsFgtgQcLJs3V2enr6cvqcPu/7f//P//k/Y+G+YjEUcOzZFwDxyjVqm1y+GDDJB4xITiRr2QV5RdP26Wqr27Bl2YYrhvpyqYvRTzM+2SC4sRskD1vbrK5zYYErV8OINzr6NiP8IU7K7SKRvC3YvyVC0UdFy65RVVNmNTU07RozIS/vfo/65vZbTm+/tz0LqbZvP5O/QnYsAOG4E5gdhEllGIdFwDD+2YLgbCbMBrNZPl3ks8UgiBuPAhjeitnK3BUInlUwmlp09cUGEjsGDilpia3q2r5pssulK/ow4N6bc/zTjXBMDjuUroRL9tqjoqKlpaZmxYroNpAuFvSUfUOd1MIHanpqurZ09d8HznQlVm8qKtuneAMAr93meI6b9pCnfMm/mxaPNjTtpG4qWe3rrxWlVTkjFaZn2TMvs1EzeS4R26suL+uYomOy/RnblzrWLOg6r+eKobpEJ/2UDYlR1yu+M6oy5mSUJX4isYsdB2R93UGPmfItV9Pj8cHgXF/Trmu6duRVZBUMdXXVdW1LxOI4fLyTBxgrMz9VNzVGMR+ytJUSjx7l9cUPDoIn5B036mHjJuX1JUblHDYiJ+NHNnTFWu+xuEkS4iFRLmh9hx0GnXC7txsO5+RG3te64z6vYkykIXZZ17y8H9u1/XGAYIKl1VaPf3EljBm1Lq2BC92+f/IeVn43xxEPOOkzps2rqCoombY35Rv7tqzq36ZAMpMJ5yuXpVQMU8PkePjbbiuwv72+D0zF9bEyYHMYFh/j2cAG54RCs5H0cc8OuVoo+v74nEvlUf7pb/PGS2BdULJnpa4S6c9WtmpYeYTq5ykdZecnQQYxbBO3A6JNBojFthQte0zilxUdlPXNqKM9Eau9TLZEd5NhN0gESibs9wWZ+Oc1zCpin6aWddsu3eTTsKFtx6Zr1m9bSJaRkb1BBIU81DDNjvYN9cR6Bto3wHHY44FYTyLWUdOzc0NidK8iUlRwVNF9aTEcbVv6rhrYMPRObchwGLaxiXD9nHiEy4UzNrbPyOYoj9A7Q3SJty5RmKM8HRvfF+sMGe/mxM3IcIP2RqjXOJCOxyUFXbG8rDFlVaMi0TtAcE5WSV45zeK9F8b4mUShQKXC9lZgeHN56tvBxmfPPh54mPlUrtPthOx094MXNzVtueBFS95ynyftcdS6K+rWbFl22SlZWUUFQ4N7Lpu6U3yyQfBmjVdOMTvNoYOceoNWO5y02elwogaDAJA/ZtnA0MBbXrPHAVUTRozatCYWqxhVNZlyd++ziskE4Fv9Bfb8FrJh3Osuhs1Q+KJBpvyzl0NkhFG8nOFwjkcKXBkE8FvJhL93724fnzLuYaMKIht62mJv2HVISU7GZUXPabputTPqiNgghX01yR2Yz09iRLIqKo447KgjZs1o6ygomDLpO77nPid82/fcbLAUshKxjqFhmoYciC3rO30H/8v3iy0DHbFNfVduKYCLZJWM2uOQh33Rqstqls3Yp6Opo2WQGehUBCZ4mE5scSyzuqoQjZoxLRIZGpf3RWWPiVT1LcuqCunKtuSGHVk//bzLeMh1w6hQHDeFnsSaoiUHjfisWQ+ZtKAhK/OhppK+ZuoAcfuYGOW+fcxP8fChkHCKIgrpSFnM8+M3PxwTfdKYoypOGDWtoG0oI/Dhm/o2dLXuABjiQfAAzhXC7UEvrEXiQQDDxV7klxsT/oZpc/K2DSzrp3ZdOaeKQ1EUBRpreA/ZlmFCe8hGh29fC7/X+9T7ap2h29f4vx1FI57wVXsd1tG0qy6jrmzUZ/2Svr5XfF/Nu4soBgO6vcAX5DrUdzj1VtheP8vFxVB79UFPWC/hXI9v73I0z8NFjhWCFGJ5QBLxcsIPBlysTtjc2ubb32D1bQv8errdHHsRlw5TeYSRE0QjQQ/XWwtMyGCHwVaQR0gklkxa8TUVn1a0JXYuNxAfS+ycIzcSXCGGbXLKZjzkfn/FXp+WiPU0dO0omzHlfhd902nfsms1HQ0Ghu9yOL6uua3IKafL8LAcf/cYnLmxQCdOH9tJFy9Nfa1UynTvxu7E0NCOxFDBMUM1Axs6XjewaWDNzaueXpfdOv055g+FrMCxB6mtsb1Ce4W1F/nqClNRYOt7EZUJRkbZuTb0wOWiJKYiMi1rj5wcTulaMtCXKCmZNmYgVpS7cVxKCsaUZUV6Bq7a/OTIIwYDms0AfGFnO3hXTkyyZ54nv8jMDKdeptUMkogPEYvesOi0khG/7r8x0E8t0RIjxtN8X0lJ0dAw9T5KvP39up6bv/dH7pMNguG1N7hwiQdPBnBYKjG/h3abTpfzF7m48FPbnW2bIpE3vaxuy35H/KF/7LzT/rU/0r3NgHJzZKuMPEj5ZBjzhg0yRQoHKR6ie+nmRyd+5mqiWhzKijtJKIR7qRuYnq0hy8MghcjeHSt3SNlTJpRlPWvbw0Z9wYR1PVd0rJkw75iCcWV77Tivaz1dR1c1vL8zwSctcrIe84gFi0aMaGtbtuwlL/s9f6Cl9S6GK8Yb6r5kVlnWjoEVHVfu0NjhbuKtOzx/2j5VUzqaLjuNkKLuOaWhpmHL6kTTwm98JmjEfvlXw/X44nMqb1x1/1uzjnlCTt62Fo4pekDWmIysviWRiowCKfR7Z5SEhhSbEosyKikQ7vsVB/yGaY+asqRlr5GbJt57GytbAeR+9r7ABp+YZbvJtc3wM8qEwqsPEzkZeZF5JceN6hraNbCh5ydqXrRl+X3GjyRmd/2d92XzVHORx9sV/7FpDys7q+OMjst61gxEMl7+hZPivdP86FUu3cN+Rd047c6BfsLK3TU4gLyir/kNP+dXrViwbknNqoyMCbP2Oux+n3Leq7cFwbutt2uqmq0wJTz3CvUG11bZ3KL1IV15YvygFXTA/9kUX61wosBSn/9qnu83eblDprbK+t1VOa/AcDdo4BoHKB8Lf0j6AQh3l+gs0HvbO6IsY8HA7xi6ZOhHvZ7aC5T3kQ1KBYPtSFHVXp920M8rGNO3m8KGRE5JRlZOKfXE7hjoSN5TehNaHMQGurbf8/MUjInSa/r6e5HoCamJAFg79zSTN7Biw9+TpLmylhds+wNtL9728aPVAH4nZhgLxLF8IWT9y9eY/F1+s8zjE3y7zT+IONUO/FMhy0OXRuyTNyNrv5zjCh5UsE/OdzR9w64XdOzqaeo4bEZJ3nSa4erqa4Uyex19S2puZ4/5M4lWM2zXY34/e/fx6Kf4/Bf57Of5yTPhb2urd2wY9n5RUvGIL7vgJc/7V/o3jXWh6Ltov71iQ9sa2joikYoRQ0NNLXW7+veYSf/kg2DC6PbiK2//nrnxn1yScdKMdkqhr2tpfozphr/tPxcu+OsANfCWn/EL4nRiLxmTV7Jr04zDad19rGlLP24a7NB8lUEqeeyvBjY4GrnlzXL5cKX2+0GM9LOKVsLCIPxcHATX9UES6JI+pqPgIL9259X+iKyeWEdsTsFP1H3OuDfsimQcclzPX1Mya9eCujMSFIwrmEgV2x+9EPKnFTU1f+zP3O9+T3pCzZZNG84673kv+oY/vKE+v13EgmNuVU5WWUXOmY+pwnjdFRuuesW/9i/8Xb/it0RyalYsu2hX3WCrxz/8Pteu8vBjIce4sa5woeGAB3zerykoG/PnXvKyNYuKThiq6Tqn67y+lZTFeRv4Rx4WksUNoRtWTmJL7KJ/344nlJRkXdKwoOE1m5406yUbdj+Ga7034OJKqNl58TxLG2w2gmvT1Q3+7h99OCL1GZsIDVF+SWKfsk09V7W8bPu9C+LeJ4b9sBVl9CXO63pN22U96wZ2DLUzJL/1V8MTnnqEc1d48U2efuXOL363MUjY/mB+ziPGnPSEL/pV9/t02o5kR05eVk5FVcO2JRe078Ded7phywaLXmcv0mgFNV3vxiGNTLpPxbyC8Rs6175dPTvqLmhauS1j+WKHf7DFqx3m81zohdsvtaUlY++O2ambnCsyAajvNqnV0bnE1b/H2v9D5SFGTgZtS+cSrfMM33mNv5WqXVsSTYkow75Rkt1QjzqMw2wY6Wu4pmVNyYRcykEGB4Qt1zznsj9Xd+W27C/YP0JzIN7t6Y7XORYxkufSkJ2UCElPc/6GXK2fgumMxEAv1eUWjN1g8z5qVFSVjMjK6evZsmHX92z67fScvfcFmcsHPXA85KUfht+n5oiep/QSR1LLuxtJzRyN7cAeH3+EUyea5i6Oy8RBorYrVhd8oKdk9SXW0uKvWVWfc0JTx5qdNKs31NLTSF1x7zNvNy3Rbd3jZkAfOa4uBglEeYTzZwPw7bRDm8/ko53LnLy9jhozLRE77Yfqwoo+1J/UTKj6ul9wwmFVoyAra9ma73rGS15X+wjZ0Nvv1yc4HtnHYweCFU2zl9huBQ1YLqLeTlxc542rkaKcoURBVlnOpra1j8iavVcMbzNIxnjNszdWKJHIuD1O+gXz7tfTlojtWLe8e8aVc69I+hT2BmlEEhO/7dF/0wvHQaCez/9MQHAlVfD29HUG7QByc5nQzKuVsBsHEFzJMBmFxiKNhGbs1vl8zBH/TOSspp+XdcKIY0b8vhXfsqFuYNw+RxTM+aJNzxvqGmoa2JVJE/b/pkVb29/327b8um11p51x1VUdnRuLplsjwn2qRmR91pRJBRu6nrX5sYFgriechprq/sT/6YRPa2lYc1lDSM/q9/neN3n6X4PisGS0d1DWIRNpR6ADHhS5bNOGdd/xqoupAOOSoS3JLVKM2DmhFHAV52W8KGNG7IyHlPySeU19L9vQNfSACWPy5lU8b83Fe3xM6k1+/2m+83LqdTsMl+IwDrc/rJIgwYu2FGUtapmUt6zjmrbvW//QIBg6Emd0/FM1nzJix1Az1d13ygX/8i8/Joky4cN1+8GW6th+rqxy+ae/sBwxasKMgZ4zXlA1KRarmlRUkkjsqHnN057zLTvvK6oI52WzRi0K5yuOKZk27riqI6oOKZkx7qgJ9yua0LDoTb+jaUVGdFsQnAig92w3DH+9JIClWznUbBQcPffOBBA8O8XBeeamA0j/wfO8doatOsM4prfO8IUgh8jP0DoXiuRu8/4bYtUiD4xzcoYn9oV58FvneWWZWjvWVbfsBa/6hx7w7xmz30DbjiXrXrfgO2rO3ShUe1c8PM5Mia0uVwUR/L4cf6PE60Ne6rMQKzZiJ3uxx4+2FPMZrW74Wl3byHp9ofSO/b4ubfswEYlUTRtVtcdhVVOk34urLlhz7sZiuqAsEuncslg6+gAPPcGhE0EGsbXJtQXWlti3xP6YRobVIf+8yT+eZ7XKviGDrYypV4vuG+bsxEGbvm1oS6wptm7glK4FfS2JI6qecMwhM5bUrNkRiWQliqkmeFbVhoarNrU/LrIuw/hB6leYPEq3Tmsz1CKNztFY5oBpEyq2NV1NF+fgwUeY25taz14NrT4LeQqlAI5nZrm8wNLie779e0VT3Z/7XZGsh/xCWq79zjjpmL/iaw7br6HpoiuGho46qGpU9mOArJ9oELzaZ2KCX32MlTrXthkfYaoSBqPFLb77esbiq5GKvEyabozTREnN3aflPmp0bnqvSE7FlGM+a6/77drUsWvCPmPJtKidc3nhBf1VioeDrm+iPq20Nu78zd6x2Syze5iaYv/B0Kig/t6pqY8UpQmyRZpvp/W6ukaMKKXgszNoh9xgnAlL5+vO68OUFY6Fn7fMIw+oWLRlWawjkVXxS6YdUPKmXat6Lmhp2bHpZQWT8qkkoumyoa6CSZGcvKr+v0F+i4lEzZY/9S1dXTNmPOIRPUPPFM8HLUz3KsV58lPEfUnzTavavmzOXzCvKu+sHZfvwIbd631u2NLRtOqyXVvv7CrVbIYNAzktOdtWrFuQc5+yUVOm0NG35oChLX1NObvptfnOCAZhGauCAD1CUWLHjhOKsuaNGEv9kRPM2TWpaMnuPQfBcRIK1j9g0fpdRUfsgl1bejqG2um2pfeRaqL7Eiv6/ljdmzqm5BRlbO+f9savfFbjN7/O9m7oyNVP4VuxQKlw5xf+mKKna9uGpoYdNSsuq6jKyBga6mq77E01a+o2U5uu949hMB0BRVPGHTPrMTMeS2VWs0omlUzJKiLRVdeyesf36CbvX/qQy7FvlgeOc+xg+HnicCjUW15jYYlLV4JUIyyk4iCNaF+iu5IC4Nt/C2ZHOTbFw3M8eYAn9zNaCEC40aW9Rrvf17RqwZ/r2jGe1lQ0raplFqyVIt3kqKS7S5IuRAsR+0aYKXK4EqzuChG7Azb6gfh7MMf92dB/+bmBkSsDT0axY3tDNvTK+vXixER30HY6dbUbarsuk/igkVMwatyMedPmPeIp+xzT0nDea2rWJBZVTcsqpN+bMLJ003Hy5/5iWjtfCLrg9SXWfsCRDqMJ5XZw/ixnQonLn47y/HJQohTLjEcZo52svIyOJBVxxVr6Ngy9gEv6zuiZMuUzjvq0IynQ3dFJGxrFEpGMMSM3gPBZy/dMElGZJVcOrdSL1fD7vie4+hx7Hw9/62xRu8TGmfQ5SuaMMzXj6uyeAHb3HQymyFcXg1a4thEcIU6c5PhelpcCQ1yt8iHUVCEbHvDLeS9o3SSzCSz6lC950knH1NSd8pY3XZCI7bPHwMDHIQ/9RIPg7YizLZ5dCk1lNht89T7GSwEIz1XJDfn9V0uyaSvjvlhJTiSja/CxSiPeKzIiRRWTDpi0X8monbQvdklFN2naaL1lrFW1PzdrLKqq7FZ1GwObtmzZCjmbsSr3neTxT4dOA3/0zzn1amCFo3R1/VGcIypzFMcpjjG2P1xBrQ3am2wvGLS3DJOBvLIRZbGhXjMdGG8Gu73093cdh2w64VTlUv1ZR9uqrmVdU/IOKXvcmB2DNOm5YM0zCqoKJuSMpvY7HX2Nj11LlRWZNJaWpLGrbXCXE3DeiJFCWzkfumS1h2ylWcdLabensrJjjpgz75nkPJXjYYmeyZDJky1IsK2vILrRRvm8xkfWBH/QGOhr2bljW9WhgZa6dZed9WNdLX2dtKdd21BHUUffZroEeq8JsSm5Dchf0nBBXcGkKUWxxGlbajo/dSudO0VGkPvkRbpiXe/dz29D16ae3etcYrnMxHywONhpUH/vdF8GxUxIsbdvatyYoJ1JXJrq2xyLTRdyKv1I62DepSeO8eTD/PDlgL7iOCB9KBfD1v5ptZYLMdBPv1cNdRsatpRVZOUk6OlYdWe2qTwZmoTcKA7sBaeMZBgyt+XOuMpw3qiDRh2UN6JoEom2NT0Na1625U09Oz7MBDtSSs1SMsGibXqSfXs4doj7jgQmOJdlbTMwxZnrvaRvRBIKQ4bv7bs6kg+dSI9PcXyaIxPMV4MX/RP7efEaV3do98MIuxWta2fPKkddQZ9b18q0dYr7GGboBs2/0VyQPzw4zniBsRxj+cAwNXpBv5FgIw4NkqYilSqHconje8JaahiHzz5aolxItHqDGyA4k7rKhOK7oYzce2qQb46C4g3LvOu68Ac96aD7rFq0nI6l4+Yc9EAqo9nStC17E7s4f4grF7h4OsgbogyXzoapdV+WJMMgEziclSHnJkPdV2MzlDtMTAYdf0eil1YsNISsy04q69sWa8o5bMJRcw6bNaliRNFAbEfLUKyQinyilBu/lzG2P0zlo3uo7mN0L3MPBxa4eoDCaJjWc09zLW3Yd9CMbilnZ7LE/HQwGxgbU966rFTfFiVDSb8pjpr6rTG2slqXr0iyxVA49xFj8xb/70hkvz0e95CKsrdcdM6C8xYEP5KBut27nos/SHyiQXB+mmdb/PBpBnWSHuU8e8Y4NsPBCe6bjcypmFRSltPUV9NWljeUOHsXabQ7x/Wu8TdRDO/7jMBZFpSNmjZiXBDIN/V1VFQdd8Ixxz28+rCDDuloe8tbaja94PlQADg1zf0P8OWvcehIWJVtrHNlMYy88fDDgeBMFMDvgS8wc5KROUamUza4wOZZzn+T5Zf0O025uK+gqGLUoL0tzr6b7X33McgpmDDhQevyJhTFesrWRdb9gRXnVfVTA7RtfeuaJm0YeEnJnIGmvFEDzRQ2fNRzeecoyptWdZ/9Bobauq6p2dJ4H1ubjLySarbixFTHoWoiTrjS4LV1OjcdqwsuKinZnzkcwO/EU4w+SO3P6a2SKdz02F2/b9GqjtPqzn6grmm5tAjtujFTkqYOu+72e9yy856SjZujp2PNRad8V82SoopgW19Xs6RmydoduuPdKS6o+zOL3lI3oyiS8U1X7OhJsPxTXhjcLiIZI7IOGFGVt6Ovrq9loGOoe8sxbBoG5JDNBYuiw4d49NHQ5mzhMq+/HsBw5526zYwgvZ/IUYpY6QV2Mgk7Efr3PhDZOZqxMxezPQytra6ucmaBa+ts1kNuvtkOwllppV/nZ9GYJyIzQmZELZMLIlf90DkouXMWrzDK/seZOU6umHom7wTP5M5OcNHIrJJtRDLDrMQg9bjN6GlqW7PtvGXP2PTG++7pDQCbkAwDAZHJxibHAwNMINWLhdDAI5el3QkMcKvNG+cDEG61g/ztg8Rshf3j4WcpF5ov7XQYLzI9wr4qU2XWmgzjjG5+VLd8SL1wLDC+cTW1XBsyWHUD7O8b4ct7eGQyFDMOEuZKodB5o82VTBjnn+sHudtGrFpLHNlMjB4OuvlsxNQYlWLQ0m/eNEQVjMkqGero2pZVSLna5F2L4Ww6Y5Ixba+D7nPYA7Jy9jjooPtUTVlzRVdbLHbS5xzykGUXtFJH9ZuLjJcvc+lN1q4xOs5jT4WSlsVBAMF70gaouUzo9xRlmT+cstp5xqYTvdWhejOItfoSXYm62NJNYH6fMWXFFOJm5GUV5cViNbvaerIiDW1lRZt277BE/uAxuoeZ+5m+n4kj4XrIVzj2S6FWIInpt4ON3u4K8gVz2T2em6pZLfdMtEd1chWdSxfMFFbtn42VK2GIGg7ZrZ/TXj7n8grt5sfTQjqSMWfanGkNTTV1DbvaqWzwqhWbtt7VVOpexCcaBJePh46SvVWarwfnmP/tWQz59cf5K49QSTIKso6Z8Kg5XUOX1b1pQ1nuI4PgjDGRSlqWcLdShEx6mffNOaZlS0/LbmbTtcxblp325eSrTiYnDQ0VFIwalZO3YyeA4CgKeuBuN4DfqRkOHw3Vm91uSEe3PmR6vDAWrpBP/xbzn6F2juY6cT+M9HOPUtlDqaq3+CO9xpKcnGmzRo1q7O6+DyObMWKfPT6nYr+Bzg27nbZ1Z53yQz/27pxKw7LvfLjP9BEjg2Pm/aLHjBkxo+pVF5100OsWvO7Se37ivJI9TqpOvOIvHeMXD3Jtl+9eDgD4tVuq+TfVvJq7wrH/kkP/abBFWvx7bD9LZ8l10PonaWezD/5JMrL2yzoma6/gbNozcN7AeYktd8N6LTl/V+840LVuUV/XqosqxkWyQjPiluYtvp0fJH5s1Y9v4wrwSYpxeSeMejTVKkdC8duyjjdse9X2u492ocDsDMeO8cUv8NWvcGA/y8v84Gn+6F/x8is3gOl1Bngyx1SOPfmAe5f7gRE2gk9neTDieMQXcizG/OE1/qf/i3/xvTCmjI0wOhJovJVNTl+6dc/uPq6zmjcTW9frhe9mosyMUXyS4lPkDjJcor9A/xS9l9/zadkCx36eJ/4DDnyG8kSYsPud0Cxk5XXOfY+1txbsXslQy+nbNemkccfSAtsNDYvq7u7zV5p9nd4AACAASURBVEcZKWVEg5xerWwolhtvKuQSwzgU4HW7rG4wWQ2HeiW97usNLl7hzMXw9w/sL11iLJU+9AZstrnWCGT+xRrNXmCLp0qstxBVKD9B5RfpL9J+kf4VhtvsfgdJOGcnxviNI/z8HL+3wOk6zQGtYXD56CdsxTJnYpkqmTa7CyWXz1U0Tm578GDs0GwKgkvBWWXxprHuevF4JK9gHLGskthAX/MGKxycQGbMOyKn4LhHPeIpxz3qmovKKno63vCcc16xadWkfb7qr9ux6byXbFnRuFnbih998+3bu3Weuen3a8Ow3RyZF3nws5x4lOokhWLiykjbS9+/8/npG9rRctGq55xzxKyaXdua1u24qmZXx6wxk0at2dG7h97J2QKj80EHXJkN0/juCr2dt5O9gzZrp4X5ff9B/6yyLi7kPbhR9KnX205nFr2aWbDvKzz1taClHp8KDx8O+NGfhduXz4Zjea8jSt2fa7Zt2rJqQ0cvlbnELrliXe3/fyC4eJC9fz3UDFz6b9l5NpzgJA6DwYtvFfzo6RlfN+pBMz5vnzUtscSGlnMfYfK9HpFRWXtl7BjcJQhu27HqvDN+IKtg06KLnnfuxFs2DoSOd6dWXvNP3vr7qqpycvLy5u0zYsTv+kdhCba2yjM/4OJ5JieDLdygH2QScfyhTKsRRuFhP4iIShOBkWxco3aW9jZ7HmXyWADLUR4MDKxats9+BUV127e1KikpKTtg2hP2+6pRB6x7Qc6IquMSsYJxq3784fb9Y4oT9nvcMYfMGVH0sCOmVb3hsm27mjou3saZomjMpEPG7TVeZLLI8fHUSiv/dtb55giV3FE47rUfpIUx04EVbl8O2sDWuQ/1OfKelHVA3uPyPivnQeQMLej5sb7n9b1ieJcA924jEduybCs9RkUVBSVx6ory/9WYVPCwcU+ZNqNoWUdFzqMmTClY0PT3nfPSrcdgfi9/4Wt85ctUxxivBq3dkcM88jD79/E//B0uL5rNJuYLzOaYzvNQmXLE31lKATBhJJ/OMBexi0OZQHVtJWzm+PXH6A9DC8v2gN1uyGGf/vCffeznKB0nNxeanQ0bgajoXqL5Ylrse6dI6nR/RPGLiEKqr/cK/dfe8ymlagDAX/pbHHkqsHfXQeXIJDPHmDzI0quM1z6lU5uw403n/HNVh1UdMeag2EDdRbW7PADFnar9O9P2GleUs6FhvbZrzY66tq6BbDbg/0I+OIuUiwEc17a5usKlO3eAfs9odFlvBruuKJN2NOuw0uCZRU6t3tyZNCI3G7w48/vITSMTTkbvpmv+gfGgA77Q4P5qkENMFIKGa63NajsMVNuJT/3v+x1L9ohSpjMr8to/GWg/+bT/4t/m/v1s7QYQvH3TOS8YTUttuwZa72qbnFWWldezYzMtTITx1Koxr2DavCvOecNzVlxRs65q3m/6X/V1/K7/zjXntD9Qluz28fDnmJzlsS9QnWLpIq/86P2ft27Huh072iIZl6x5yYJzVlyypqkrL6utb8mVj7yft0Z5iqnjgQkuT4YiuF6TfovdNRaf4epPqC/neeABCgW/9ua4F3pvOG3VuTwz8zx+MHz+XpftzXBdTUzzxJcC7Hj1I7SLvzlmTekb3MgyFhTMmlJSdNp5GVyzms66PdesWrSkrfuxyCE/0SB451ly1dBeODcVaogyOQz509NEg56iml9yVE7kjE1LGi6r2xb0UB81cg4p+oJER1NNfMtq83bR01Jz1bnoWc8c+GPx5/aIp/IGmYjMFNmM4Xzbf7L7t/zJyh84ODxgREVBwT77fM7nvZi8aVjfCvYka6tUx4NEYqf+tu9PsRTA8gf17us1uPjtoAHutxiZZWwf7VrIm0T5oKS/9F12Fs3OcPRoeJv1N2IjRuQV9PUMDUUyqfgjFNH19EU2dKynSqpY2R6zPpNqfceteMaKuxhhfkpxzLyHHXHEXvc74IAZr7poM121F265VMbtt8cDph1RzmZ0537HA9MB+D67HJjg9iAwOLfGaqlkY3o6gODKfQzmQqX47mlaF8iNvePxU8ZMGhPJOHfbioSCrH0yqvIelfOonPvlnJC1z9BViYbQmvi6T+/HG10tvU+AVOGjRGkidGdLktTBpZ92ZktjQt5JY54w5RETmgY2dFMNW6wsa17ZfiPvBsGVSpBBzO9lZZWdHS4vMjvL9BRHjoTtylUMtWMqWf7SBL82xX9/9RZFUh3fGlxfYfG/JIEd3kE1Qz5Lu093GBBUf0i1GKwG3tp494fPUjpBdjxk1LuXA5GIoKB4nMm/SuXTQco+2KS7EGweM1lap7irOs6kzc7/HHa6+CTJnfWGuRIz97Hv0ZD27bdDo5BhOiSOTNHaovBnv2HP0jGRvJ6mfT5jwdOWPWNZRiH1cL2bOGjSU477VY/5nGM6+n7grNctOWPZFVs2NOwOu9ZrVMpBcRInoZHHzi7rHyEheXk7zGS1NmPF1B2pw6kVekMG72LdM+x+l+aPwskbbsr1lpzobllStKsrObvDpV3+fIXnNpguBnefhV1erLGwo1DOe+rMSX8j+bqKklXbVm3Z1VaKC7Ze/Lr/+vU3jB5al+R7+oPAyF+PoZ6c8o325FBQTS3UkrQk9G0iZzO4KLvsrEjWeac01a24bNuGtpYHfNHn/WWjJv2e/9E5L6TdBD+8pj2bCzKIkTGm9/LEl4Mh0+JZrnwArmDdjh8754xr6lrOWbkho+sb2vqYCpsH7aBmHNsXrolhj9IkK7950m67rzcYmhpU/Fz/kCc84OXMJRuDmn7KRueLHDzO4fvDWDfos7IYmokcPE431DfKZt95fj9sbNw0Fs6Zdsg+k6q27HjRKXUN62q21NU11NS13sc//aPEJxoEd69Q+yaNF0IRbXIT8djtpzInQ4t2fN+iiryOgZqOBdt+8qHSye+MrD2KviTngK5nU13q+4PrgZ7daEv7eMSxXBgRozyjeSZLtPp2ztVk13Kyw5yeri1bznhTX1/SaZOJg4is1QpguFAMbLCEqEW2R3Hog5tgJAH8Xvgmq69x378V1PXlCUrjIbey9BO6DQf2x+Zmg+5tcor9X9m0uR65eCnRbuYUFERySkqOOu5hjygqauhZddWGU1omZZVd8i+1ral5XfMeM5EfNfKyhmJbGhpaXrdgRNGcCTu3DF4TDjjqix73a/Z6UDt6y5XR/0M5x3Y31JRstEPa8vRt1kxxJiOOUheEfp3Ga+G7kVyHNQmjDxEPzHV2jMYZRXklBQ85rK5pRe0mXVlfbE0kb2hNxiIiiV0DZwwtGVoWes6dSr14P+74xNjBv2dkREbMS9JCqayhrIxMFtXYyBQjM4FdkaG9xdZ5Mhuh8LYipxA4/dTPIjKS3jetaFrRIK0qf1ckYQ+Uy0H7u7MTZpl8LvT/7fWIYxPZIGYZJsEt5+kGSz3+YJPm8JbX6+BaEgw2Xh6EdPa+cb50X0BOY8UgKi3nAhgeDOkObg+CY3pLlMcpHgnNfOJ2KtcdUHmC8oPB3SZbDTUbcTN0vUyGFObDGB3fztkx/wi5w0SjxDu0/zTc33spvMEdIh4E5VZ7i8pMuG84CFKIeBDA8OXn2NnZFcdL8kqKxuz1qJyCl/yuoa6O/l1ZdxVkVRTNqTpoyhEz2nr2Grem4Yqa7E1nOI5DjWGvn7Zs7r1tsfdhY5iw3Aiyh3yWVj+sYZq3JOJyIpNGlFvnTWWqygoySRyaY8R9WTnbilp6hsM4ECjLbf7V1QCAs5kgkRiGBkmFftYXhw/5mk87a0kkMqGiraeuaXuwa2XQ07gYG6SHMooylKbpbEhS+UPwZE7SBUkAwG9HctOtcJC2rTunJ/GKloaejpyCaQdM2qOn7Wm/71Xfs2nJ4CMAYAKwq1SD+jCK+P6/ZOUKr/4olN3cbTS0nbMsn35n+rdIHj6OEXHmZLA8e+UfcfEfVoz0S6LPb8n/3lHH146YGY6rGpHBro4lq/7Ys1q6ttN5LYooVQII3lxhbDxIHzKZkGw+/zovPx2kEK174NR683EIwqQgc+jqWbRky46OrkHaOW5wj9tu3xqfaBCc1MMqpLNIVOIdnthZJAyGsQXbGrqyInmRmrbztmxoUymEESORVkZ/sC9iIk6l7gdFZlzXa75fxAZame2Q5i7nw9OmRzhUZf9YQEjfXfBC9kVL/SsG+mpqTnvDkiVJfN0OZJheiUMmsxwaMplhpEdhGI7HaoYzibvE529Hcy1sSczkccbmw6w/7CktPCvbz5ifzpmbH+h1Q6HH3oM9+REurdBthqrfvp6BgYa6shFPeNKYqssWPOOHBjYNNezatWtVw5LhPUhf3cu4PrAX5FJT87A1tKyr27jJhmvCAQd92ryHFVRsZDYUsqFgZTF9WGtAPw7yiPr1MbowG6iy4p5wzNsXA6Lob4T7B1sM6jLdFZOZKZkkazYZMyJKq4uD/T2s2b4JBCcSLbF1QxUMUhfLMURi6xK7aU3zsuTfcIb2XkQmCu2Ho6gj39onIxLnN0XFjvxIYEAre5j/VLAbyhXZOMuZb7C1kdxYYlzWkk/TxAeNmE5buxwyYkzOgqHt2/myttusrISODvEwaHRzuXD/0jUWF6nXlTKJciYA3mu9AIiea3D5+kserDIzEkBMkgR/pwxW4sDERujlg5/WvmrIp/dS8LvVDuPHVDncvgWbxLv0rgbwez0Dl6RyNBFROTDAg00GtdDrobfIsB6kEck75q4M+QeJxsg/HEBwZoThtQCC92bZ3H6Xv7jRfHAwgGbfoN+3fr5v8fngeTrohZRvYzUouTo7bP7+k/rNrEHaWnfEtBknTDrsnO/YsZQ6KL8/wgmFdENrdrziiqaenoE3XbNgw4q6nVQOcT36fRpzk9qNXcNuX6RoxLTWRyBlOoO3p67ebXY7L2vCiCOmzA/LKmkD8zh1Be7K2xVrj8yJo2k6qwyaoRhu9aaFx/GxsGBKyAyoKpszYdGaqrIxZX0DRTmXrGhoq3fTkSiTIz8aqEWhEUlOSVZJJC+rlNYj3DladnS0DPVvFLqNmVZU1tWx4HWL3rDkLd2POJYVikzMhkK4YczqVd58MfysfcBShIH4BiDv3jBz/HgjyrF1icJCpLUbGww4urjXnp+ErOYjKc9as+s7XvWWaxasmUobUZBe9kloIFIsUxlLNfa9gL9e+D4//JPADA/vMR5t69q0rZteV2N6trU+omHkB4tPNAjO9zLiHt1WIjvi7VRfJiXOMgxTELyR9owrydrScfU6yBop0OmHEaSftu75AEA4tqnvjMhYugN57mLlGRvqxDtsjbDbC342B8a4f4oDVc7VKOX8UfSHxlUMDOyoW7Jk7dZCoDgO38ZRfD3iWCY9FlE4Htv4XszTSUiLflDDiLVT7FwJDPDoXnIlueVXlZOi0VLe5MQgNAfbCHLkKAp1PcPUSKwnr6npkosOOedxn3bIETNmLVuy6Sc2LaUGM01RNJCUq6ET4Cck6po21I0pm1DR1Pa6BRctu2DZRtqlJq+sYsa4A4b6Vp1xKX5J1CxJRjoaPXpxOOXdIccmqHXY6SFbobgveAJnItqLdFfT3qdRkES0gmfoiIGSghGj9poyb8qkMQtWDcVGFDXE73BvSGyLLUnUZRRdd4ZIbrQw7Ys1ZUUKsqmRe5R6X/Z+KoP2JyUyEdlS4IBLrRkFEzpRVmZ8VXlvR74cQPDsA5z4C6G4ZPR5lp5n+ZXrF9hQXd+2ni09nzXlAVXj8rIyNvRc0LB0u1RNo8HZC5xeCoVInQKtHuuXg0fT+YusrsokoUNYJwkLq07M+vWJ6LE5npjn0ESQNhQyvJDjjWtusAXNPgvbPNFjduRtoNvsBXlEkoRF+nbnthVb/Wthe0dEQSox3KZ3LRgOdBfpvEGlw8ZV+rWiJInID8NsKkPhM+TvJztHZjTdxybjGU7kaMSBvb5xkgS96i/vZ6fP6W2D0zWbFzn7PeZOBgZ47SzrZ2lcy7I2b/R7X5FLVtBRUDFqzoz75JRVzetrpa2DQ4HWnSKWaOg4a1Vd24+cTzNGLSvqVtQ1U8gjyjBW0i3EmlNTCqujyiIl08YctekVA21ta6EoLCtYE7yfAXEloh3rTWQZzQav9vV3opGinBmjTtrrKcd1DSzbDoAiGqjn8lpRUb2SD37wmYj2cgDCN0ejf8POZmDojKuuWJegqGBgoJUaVu5qa+u+PW5EeYrTIbslgOBglFaWkRHfJaPX03XrHBuJ9PWsuWTVJVed0bgHbkHZXGjK2mqE27VVNpbpfMSpqf0xdYKryhiVUZAxJTKyyaW1obG4rG6opuOR547Za8K0UXPGTRmzrWVN3UpaFD2iqJMe6eGA2jq9TiiGy2aDTfCgnzLiP+aN5z8e85jwfWopiM2JzEus8zEdvdvHJxoEj8qKJXrx0DCl4aNyWHBm0j0fSlzR4HbMYkaooIsiMsnb93XvfjkzcFXbt/W8aGgpdYpI7WbeL+KES3XmNoNYtDtkp8vlOqfW2Or4VvZbRP33B+ZZzGT4jyKOZLiQsJ7eP4UnsqGo4bnEh+od0NkO28abCLU1I9lpw2Eil2PvXvbvZ2ws2P/kczmRnEhZ3oyuKzZtecbTBvouOO+AAwYGcnKi9B8MKmXtk4d5pRaonE9AbNqxZMOcCQ87Yl3dN/zIzk1MQ1bBhAMKyvraVrxh25LNwZbFq7O+cPSKsUKQQ5zbCqf6U3OcnOLlVQada+QmAujNTSDDsBWAcDKgdZHmmyIZyzYdMGsott+Mv+hJX/KY73jJ/+07djQtWtO8RSsVW8ctdhQ3RSRj3Ig540YUVJV1DVywqq6V2rv//wMMR3FBYee4UYclYrnuiExUUNlzSbYykC+n/rNdign5kaAWujky2M30nbZtTdt60tU0cFnThq6XbLngNjnE3SZnFokvB0qzNMOV51h5nq2z1MIEP8iFa7EXMtQ614euco6//dUAbLMZqiWOjPP1E/zNf0ymgXQ19sZqYII7g/ClXG+y2WKjyWKdpQ84YCS0Xqf1RniLznk6p4gu8Klf4LvXSPYcDFR7Y5v1FEVnikH3G00HLfBwPTj531dgf44Lg/CCsbeB4Vfm+ZsP8uomyy3xalcr4tIzzD/C9lWuvsTamxk2xz3h3zFpXwpux42aN+sBsx5UdwUZU46K5LRtWfPmHT9qaHnbddXWjQ5gQ0MdA9s3s5AZwSfs0QMaOx0GsenM4+YyjxpPjiuo2uMLmq644Pe0rUrKgtXHcv/t1+gn72TkczhWDBqYXxzjZIk3O3zjnUXaQZ5T9IB5f90XbNr1J055w5LV/MCzk1WD4gS9LblBl8pRmagkU39TIgDehKAPTqOt53d8x1F7fdZ9RpWsqXvVRadcsqwWwH8mGwBwoUphnMaFm45fQ/8eZP0G+ras2Lamp2v3HhXbtpsspjXIcweCHOBes533KnJ4WN6j8uZlfVXRcIVvaDtrWl1XIbVha6TZiXOWvWXJOdect2yvoO264u3z3Gnx5kuB8T1yMqyPmjusLwcJxGv3qCDuvaIgcVDsPzRm29DrOrcbMT+2+ESD4GraCyYrYy1dRcbtYKWapAqB94woE1jgUnA30E9TgIM4SCSadwe+YjV9r+tjeIvB8/tGIgi4Xl4JwPdHV5kuU8pytcGbm4GpuRtmOsONDMZKwia20wGzm+EB/FoUfF/Oenda8UPEngc3lafednMqFEOWdm2dYu9xezyq5JBIQdslu06pO+8ZT3vLGXP2GFHR0rSbyiG21NRn9/PX/lZoxfjstz6Y8OpjiktWXLLiBWddtCwr+w5v4LyySQdTnnhGzYK2upaapppacsUfXwynNhLSSVGGV1bDfdMlNke/YpCbDl/guEVulCu/zexfCqu78iGlaMzBncsyMkYUFeQ1tJx2WUfPVRv6/y957xVk53mnd/6+cHLqdDpnoBFJgGAWSZGjNKJGntFqZ8bruK4N5U3eC9/sbm3Ze2HXXti16/JueWtds7ZnNDPeHckejYcaaShRFEUxgEQgiAw0OqfTfXIOX9yL/9eNBtARBCBIelhfNdHxnC+87/P+3+f/PFj4Pev1/WKUJAfpYYQu+mhjnCSdxJgjw2mm+IgpZrxgl19mqFYYf3mUHl4mxigt8uiEaS7GqFXaaHv9LIoqndbz7wkBrqSgeZc9UDIIvWGI+VxS9SZ/Vlniz/YyTvgSED8G3cfg4JfE2kAPQnZqgwCvY82UXesNKMB//Yzs307lZXEdD0g1tzsC/92vw//8E5jMSbX3Vk6O9+aE8N7bSbU/uGDMQ/2SSB8aNyBpwX/8n8Lx42IVdvrIb1NbSMPljzwS7ED1X0Pkr4PviHgCK7rnCOFZdv3tCHRosGzBDxowY8F7a3CjBJkmLMjU6LpQy8HaDcjekkpwKNfN53iFr/Esc8ywwFnCnCJKkiAJGhS4xHdY4VM6OYCGj9Yep9oaBrXdalNtETjYDcm4/DtXYyV5jpg6znBuggYZArSR5FlMaizxY6rqIsQ0mAjI+w+qcKYGaY+FacDTYan+/nochnyQs0QXcxc0NKIE6KeNGEHqGChAiSZqK88z2SofDyUhMsxT82fxmSL9CnOMOgafskCZxpbL3z/ixzRoESXIdRZ5h4teRdFD4ih0vwChHshd3NM53S9sLBpUCNBOglE6Ocosu3iX7RPp+3TveFR4Ah9j6HSg0oFKHJWT+Iig8EcEaRBFRSVCAA2NKVKsUiBLmQWyLJDhq5za8nfbFvzFH8PxZ0UHnFmB0sO15d9AAo3PE+bv08n/QwH9ETRub8ZjTYJDqHSgE0UjhErdiyA0DakA257T4D0xrLoqW3wBHfy6/LtpSiXEdSEagJ64fC5d2XFScKlg00Ilse33bAUVP366oO7ib3QRTz1JafoKlcBNQBFSrnRA/3HR4TqWdHu0ytK0VlrmjpKAgxDfCy70KpB3pfitAkEgrEC768VJPZhKnqaJTDEUkqb14SHoTsJbP4Ze/hrtfAWNCBZFDNIk+BxN5qhwgRST5LlGVIkzd6wLlxDRhQKW3gbHnoMXviKjztmfPBYkeB1l6rzh2bdtNjTXCdLOMH0cBxRMGrSo0KBIw7POa/eLNNOvgk+VAp2CaIPrNkRKb1G3FUytSxrf/EkJynBdMcN2WjQVjZn2CcYKt6jS5CZLlKhRp8U0KxiY1D2rmD468OPbkGrsBbonhdBQaWGy5lk8tRHm1zhKN3H+A+eYY4tmKaSZ7EU+z2/yu3SSZI0VPuY9vs93t/x+1Q+Jg1C4y4lKD0NsBAo7F+IeGizqVJghyiA+IoTpJ8Y4AGaxTOW7T+J+499QzyMX0YFyCkqbQsy+0AdfHYQv9MN4HH66Av/8CpzJyDXfEY4jtgZGFfIzsFKGW28Jq9uEzFZVKRc4l5Ieg6YlVgGWI9XgwRik6yKtuBsLxa17BtqTsmozWtKAu8fdGSsP9YswFIMnT8p2cjYn48T59hg1IwCpOUksWEfjTTCvS0OcNQfaMhzwwesh+FpIKsA/bMBPm977zLDRh7HpnPrDcvpUP3TrSQY4xgu8xO/wN2jSoIde3uKHXOT/oo5KjF5MajiYrHF1j50de8STgzCelGvwxifgwhH3v+A4/y0Rd5AWOUyq1Fgiz0VaFHA7+uG534Zf+7tw+ftw+R9A3IEuXY6A4kWxafC3O+BrCZhqwR/n4Ny9e/UKElJ+kUX+GT/iOitMk2GyY4DVnpeh6wXoeh4CnXwydh5W34H8BQKVWYbKRZLE6CFOE5MCdSqbdphmWeXf8R5FqhsJaBuIjcML/wS6nobsBVj43mc+neM8zyl+k1P8Fh0M8C3+AVGSxOiln6fp5CArXOAdFGZ5b0/a7l8GJFCp4lBG4Ql8LGBxFRM/CiYKPnQ0VExs5lgjRIC3uUSCEMMkGaCD73F2xwa9a58ggTCPcDMwhMIYPgrYP5cr+ViT4BgaBwjgQ2GaFssY2EhqSxPHMyPaQmlkOTI5+LTbMaG2K6Q4qAtBPtwtVZJifQ+VERPnPvRHEp/czUH379PGc8w1f49WaxUDb2AfPQ5P/Q3of1riXLKTkJuG4gKsXoTqmvj9WA2p7F514V878LIC3QqEEBukODDrwgcupNwHJqi5cVMk1PE4lMoih3j6aVhchPL7h0jTQZN56kwCoBIkzrOEGKPKZSq8R06ZxXnlb0EwTO2Nb+FWCpBdgX/5v8Bbf/LYyCE2Y+s0HxeTBotcwE8YH0EsWpg00RWVDr+Q4Da/2G+ORGEwIkT4dAauF8F0HJTQBATHxfvPKokEorEI4QMijWguYSsqCzQ5zBAH6CNHhbf5BA0NiQa3PNGCu+8YySJ1FsnjAhH6pYMc8KPjR6eTKG2Et/15FYWneYHX+QY2NmusECREkyZv84N7vt8xoeyFxfW/CqFu6Z3xxyHUBZlPAReW3gFjr1k0DwAqPnzEaFHEoo6CRoR+YoyiE2XVeJepH13CePFTqqsWdksqwYUpua7PdsGhBHSHhPDWTHg2CX9lWKzxbnq5A9uiVYL0VVjoh84DsHpZFr/q7dhX/CEwtrF+OZ+Cw53S1Kar8keXysKGKsZdpWMPd39KUSEUgeFDMHRQRIDVEpRysi+cWfH0vFvDqYHbNYwbrGOZWSoVqSK1WnDi6r/guvMU6bsXuNU/2LSVZ4BuSWbtmg2LFsxa8LMm3PJOnnPnC1dU8AXFBSJ1FSId4NNVLCyWWOQd3qKHXiJEaacNhSZp5sgxRZLDuMf7YTCBW2nAQh6WPmO56+99WUjw1WX4/fdkngFm+S4xRhnlG8QZRydMnisUuUGaj2jYGhRTsDYDz/8tGHkCzv6/sHZBQkMCNejSYNAvGuAPq5C15FSMB4QQb4KBRZoKZ5jlNNNMkaYVG6Xl9+EYeSjfEOmJHsZpO+GFnLgYRtVT/Lr4WSaIRgjfRlD9+tlfIuO11SKDVgAAIABJREFU2W26iUK9EGgTKY/rQm0JytPsFz6CfIX/3vNuXqWLUUY4RYgE3+Yfe30YSfp4inZGMamT4iJLnPuVIcAA3ah0o5FERQOKuEx7DXgfscA0Dgqge05HqpdSV6LmhXUkdk2q22+a4f2iF50ICiFUhvDhAD+mRg2HNjRy2DQfkSzvsSbBUVSeIsyThLhKg7cok8GkjO0VzB1cFCy2SCS3bJE8OK6QYZDynF+HZBRem5BqyVRGqq/2Tlffc2nYB1zEJlwlgEGBClex3QY+N4axvt3sC0kVONgmRDfUAfGmbItqPiHF2oI4OBg1qCOV4BIw4EK/Ar1ACphx4S2HPYaB7QnNJtSqtx3aavXbK0SbOiY5DNYwKQAKQQYIMECIMVTCtFihQhpi7dDZg9PZLazINGD2mmgGO3uhmJUJ+DFFgChRkviJYtJghUsoaLg4qIqDXzOJ6BDzQVcQxqNCkk60yy2XbsKtkuc3a+Zk70nRwG6A0wSaEpChBiDYD4qGUbvJCjkUFGo0HlijRcnTMWqoDNDBBD30046BxQ1SzJFhaUe9nUKAAAVylClRIIeKylGeZIobLDB7R6VB9UF8FNqPQGJC/u2LQaQXosNyfPq/y6m4b+iqSJ9A8mT3ABcbmwYOLa82HsDBwsZAw6JFkaq9jLHooOhSsG3kxXZ1qAtOdckCp2TATAWqJrQFoCck8oi56jYkONoBwagwOV8I6stw+f8TT632MRkDEoOQvyGWFOUMtGr3zk51E96dhxM90B8TiVfDa4JzkZ2mnaCqEIrC0ISkA4wdk4jlUh7KeShk4NpZWJhiuwHFqUN3oEhXxEL3eSGWClTKsNz3PLVsAGp3N/netcNgAzU/XDSg6kDJhXlLBNCboPmkE15RAEVcIKyWvA1frEwtmWI5s8i7/JhRxjG850WNhLB641hj3RQmxnB7h+Rcz2ah0rw/EqypMNIJf/V5+OYzcCOFUsyhdTSxPPlrizzTfJssnxBlhAh9pDlDjos0yOA0NFi5Cjd/Cl1j0vHoxkCNg50FtyaJKCpwpQln6kKGUybk772xmpgbcbwFapTbJuRBa65Iz4FVlbHXMSHzEbSyYJRwIoNU/YOQO4/abBAijoVyz+La3Gr+Myuyg7n6oaxO1t6XYs4+oaDSyTAHeZEyaVwcEvR6scMrREhi0qDMMg0KVEgxz2mM+1SOJobEUcRuSY9gMC62e48zBtE4jI8j6MQ9EtzExQdcwiJNi+o2BDeMis87gz8XeA1cftdmFB+TGMRQiaHShko7Kllsstg0cdCAOCoKzjYCnQeLx5oE27h0oPE0YfrwsYbJpxsSiHVJhIoPsSe5Ay6iAXaRDmVNlcidoE+kEF+YEK+Z71+RBpEdSfD+oaCieormEhcpc5UWq2hE0IljUZHQikpKJkTLKzUZVZn8EoNQz8vTulkjkwdqLiwBSVdSonRXSPAce4sr3SPa28SquJiDlRTcuiW+l5UquG1vQ6yCU4miEcHFRCOCjw4AVHRcbBlMM8tSutE08V/xB8STZvyYVESvfwj5VTA/m9/jw4Ocf5sWdQqUSLFODPyeifg6CY7qEPeLDhikocly5KPhgGPnwd1i4jULEpKh+hAxoDTrPWi0vIYeFcUzdT/KGEmyVLjGMueZI7tjI4tLhTJzTFOlTJUKFhadJEnSwyJzd5BgzQ/tx2Dst2TCacl6CX9c7EQD7TJXK/uXN8vOTsgnMoBEUEjgnkmwg0UT2yNLBkUMStRZQSNAlk+oKylaq4itthfK4FNlKHFckeIam1wXbVeuta5ufmIVqe5quhDg/sMQ65L73/HsD+uLQBDcpAjwI+1QDcszs5M7/a28CM9LzdsOD+u64KAu2pzWNmTYF5AF6LFnJSu2PSlNbIGwxGX1DEnHzOqitI1vAX8dEqEyIUXWsJWyPNotA1YHXqOWvwm1PTRFKcCSBRlb3k9xi0EsHIdYAjcQxnF0bEPBquWpVzIEww30WJ50ZpUiRfLkCBFmJZGn0qfDwX54bozaq+OQr8L5eSmSRIMwlpR5AWS+MDyCqShidNyy5IKqqhRT1iV2fW3Q347upvCFb6COLOGcEFs5x/MGz3OZPJfxESXOAVoUqLKIiKqB7CzcfBfaB6Cah+IK1EsiS1EdIb05GxYaQnwtFxou5O+9phYOVa92ZuMT4mGUxAHCaYHdhMYa+OLeitMFXwI32I3pc6ERQG35cV3Vm1f3MJFYNWjmRAJhN6G6iAr0+uT03aNl3wYONnN8wlG+QCcjNKmgoNCitjGP1Mlj0sCkTpEFVtg+VntbKNAxBm1Dsv40qt7OQvjxJ8FJVCIo9KIRRSGNQwmHLA43PDPArdDp2TV24sfEpUWIxf0HC3w2qD78KPTaBqcIUsAmvOHSrWABBWwsz8SzioPNo4h0EjzWJDiLxQIGOSyS+JggyDQt8tjoKPhQMHF3fhOGdVseEA/KQJYIwVC7nOWEt534gKGgoyoxHFWlwgwOBopjo7p+QgxQZQq3tAzL54T8uo5UpB1bktwUVZaqrfKdMVUg7jGr3rGHldL96t8OHJQt6twqXLsuA9vyChQKoI/8K/RqGir/CUEGcWjhowuVAHUmKXGOKlcw3BR8+j6Eo7LVGghDJCFeLLoP+p6DRkkm/GL2NjF4jNCiQgkHUMh40o91KMjtE9Hl0BTZGr9ehMkyFFpiglE2xbzD3u5CmFk5HgEMLFYpkaFCkhiTrLJCkQ+Y5PIusZ4uLvPMMMQoCipNGjjY6Pg8w7w7oegQ7oWuE1L8Ls0IEbYaUkgK98HR/xzO/iOoLmz5J7dHVwRGO8X/NuyH5SIsFvfh/iKCkhYFGqRpsLaRYFVjGWML/ua4sFIT3W+7Xxrjwh6HshxYqUO2uUkTrChCOKOdcOhzMPEihBOy6K0WwKjLM5FbkrGgmIJmFVp1qO6eTsnNnByb8WS3RBXWzO1JcCgCvcNeFfioPJuKIiw2EJLkgGoZLn4oDPeuZ9Lng04bNC+w0jTE6jjhRYbj9zQLrT1MuA6ysC858hoqd91F/gh22wR2zyHoGJTSXSgOCxdorXwPtZ5DNQ2ynsysRAE/Aaa7S+QHgM526IhIAWQqjf7xFFqhihIJ4Dw9hBMLAWA1TKkOg4SWFGpyhL2YNr8OIb8sMEoVlD94m9B0huhftWAIag2ROTt3XQ6TKjm2aBhrlGHxU3nPgQgUliC3KLt+ZcXr91DhamNPxQ0blyotxhlntTCDQRMLU2wUyzegfAOl6/O4wQ4hw1oQ7CZKaQq0OD46cWnelhgoiORO9FKiU9YQZltDbEvqy1BfJqDISw374LW4FLHfLknh2thl8rFo8R6/zzAn6WIEHT8BIrgouJ7sq8g8Fi2alCizTIHZ3U8IQnD1oKxDHQvGXpEdufiA7CY0CnKounz9cYUJzGGR9Kqn81hc9lr2b264Kd+GD4UAGk+Q4Dhx+pF7fJIw32GR5metlqmK5IID1LYrPKiec4ifOAoHbYUTBCnhUMfx9uEcGig0UbCBNBZ5bMp3mH8+XDzWJHgZkx9RpojNYYKseq0NBg6mt1pYxzoh3hWWDakS/E9/Lk/DTEaSc7zwjY3js0BRsXWoBosyKmh+sJr4Kw38DQWNECEGqeenIRATohvwGu/slkwelRVpkml+tmqgAsRQqXk31X7eWn8vmF0SZlWrwacXpXG9UJDTWLVvUuBd2nkVP70EGaLBLDl+RI43qXNT/uDFD+DAExBvl8lX1WQrtlKAqbelk6x/AiKdUEhB+dGQwf1AQUUncNfnFFmturKRYNgudQWW6jBdgaIhTe0FQySb+8xpeeiwcfhTzvKnnN3zzzg4/IjvESDIICP48GFiUqFEjix332GK/BCuI85wZgWMssR66mFIjINjgC+yzxevACcH4IsTMJEU4nt2AVYrcDO9uxyA9WsapcoCNRapk8LaxXzfdkX+MFORDIeJhMgeqhas1eFyAc5nN5Fg1xHC2z0Gz35DiDBAYQVWb8n93tEv1eFaAdIzQoQ+Cy7v4u7h88sC1OcTX6gDxyG7CsGweEapqkSylwsQjctzuokEKwocPAiDgyKVarUgl5edIpCvGZ98DNn0PZVseWIUb2Hu4tounN9J6qPA0S9Cx5A4aMSS0H8Mjn0Jiis4f3gBu5SjbFdZYYp2OpjipvzoLe/oiMj98dMb8MYF+oI2/VHZrclfl5RHTYGlI2NY0eBtV6HBduiOQzwEpTpcWoRba6CB7yBog+CsQfMDUHxgL4J5eZ/XymzC9GmI98h9Ynm7YU0Xbt2ftKCXIQ5zkjlusswcpU39LKHsCs0OGyeRgEAnqmUSyp0Bj/qaFHHWm+ICwKuaEOEJBZ7VoBNYcuENG/7UXr9CPBGGz8VEwnwsBKMBGA/Cn+Tgyh49d9e4hY8gScbwEaRMlhpp8syQ4uLGrs0+Tgajr8DoyxKnPfeBSOwTAxItbJvi9uLaEO2B8qMI0rxPXMHEwCWPQxyVm5i8v8350FAYIcJJ2hgixFHiHCZGF37eJ8dlSlyl/NkCKaIheO0UoMBbZ0RidPcE54tCsBtcC92oEcWiC42vE+WnXjDVugNYBZvLtGjh0ImGDVQeEQ1+rElwA4dJmmSxOEsNPwoFLIrY1LxVhAWYuHsjwOWmbJnmqzA1B38lDv9NSAZ/y9tmuty8bVOzyzUIECZEjOLd4RaKJkvQaB+0jUsLs1XHiFRxygUCuRw2NZSD4GZWIG0LGdZ0T8ZRFvJbXr4vjdU6fMATBPl1YmSwWMJkAZNlzD3dYG/8BRw8IM4QlgW5nHj8h0KSipRp3GSFSVb4A+I8SzuvUuMGZc7TuruiaJmyvWoYYkJYygoZdh1PLGuI9sIXvO/3+zDRokKK2zPcCKP00Uu700G4GabRbHCNKwRiS1jYtGzxnG85Qoiaj1dx+zPje/w7Rhgn4vn2mRgsMHPH9/gTEB8X1c/Ke+ISoWgQSooUQg9DdRmyF6UyvC+cGoRXD8DrR2GkA+bzkKlCXxyms3siwQ4mufvZVvWwXJfjp6lddltcF+pFb0u/Qxp1jQbEkyIBqpcgdQtWbsq2+MOGadxOBAiEZFfmwJPysV6FQlrMU2euQTQhi9dKcaNJTtPgm9+E//F/gH/+f8C3v32bAANMTQFTf7jlnz7JCxzlBAGCLDDDT/iLHV6oAodfg+TY7fHRqENmBhY6IZZEURX0gLQXNEIOucYWC+h8Df7kYwD6o/B8H3x9HPoi8MM5+O6kFM3ds7NbX8RDvbBcgFpr42UpEbE9dqrQ+IHYHjs7527sjPI+48m2gYtLkwbPcJwX+CJrLDPHTdKs4OCQZRVf/tfQ8l0U4znW2iaptQWIFYUA++nBooTVVoTjqhDhXkVkd8cVGFEh7EDqdtn0czF4KQoHQ0IoyjZcbsDNBpT2UV2tU6SPIwxzAsurnx/gBD/i/+R+KlPjr8GzfwfGf01un94TcOGPRdrkOl5QRlyeXetxVeJtwiQWk1gkUBhA54gXyz6HsdETFUfnGdoZJ0oXfkCh4UkNOggQQSN4R9D3fULTINkBA11waAjyZTh7Ha5smgO0IGhBOhtpOowyRTR+QJUvE+GrRJHWWJcCNkXvNfpRmMN8JFrgdTz2JNjBxcClhEUIFdv7fBMHAxfLc4vYM/wuDAJfa4eTQdFYGY74NY4G4CnvSf5+eccknwTd9DFBD2OsMcMNPrz9RVWXTtxAArqfgq5jUFmC4gyWNoltl3BrddQQqF/IogQLUorwieOD2u9gn3awP7ChBFEF+lUpDizscXGkA13ofJkYzxHiEk00T0ICcGNTIs9gTHz22wLS4GPa0BYUg43JLJxf9HiqK4UdxZvxLRtk2DUoc44ql3GxcLZaoS5Nyw92DcPICRg6KiR44Qx0jEO4Ac7cozMn/Azoo58hhuihh3baCRPBxKBJk0vNFBXbxvLO14PYWHhcscT8hrJrq3dplCF3NUBh+RjlmQuEeuSRCPWIJnjxLZEUan4w99rjoiCa/tFOkTYtFqUBdn2B2x6GnhisljclSzx87HiNXUdkDvMXYei4VH2j7ULoqnlYugZTH4tTQHP/wQJdxGkjytR+Y3lrZfjwTUivwMtfg0SnNMUtTcP8TViZhVIBQmEhw64LrQZOq8b5c/DGG3DuHGT2oKdUUDjKSX6X/4xneQUHmwucJsUS1/l0+x9slkUW0qyKW0Yw7umyroDr4FRKWJYMJb6QEJyd0BmEk0kJsdFVGeuqplSD79mpUYDhTjAs4p0OpiYKBlxwiuDWAc/q2C2BvQf1SgchSjS3EA49KLg0qJEng58gMRIc4BhtdJH2ShZP8jdpsUSwUqezeZJr4X+MRRWTrKfnd2RnNAJ0KNKAk3Xhlgt5Bz5x4JxMRKci8LU2cXVrObJtX7Il2+MnZVjdR/H2HH/GAE/Q9HohSqxuxBDvBdEeGH1Jqr8zP5NaUnYK4oPQPiL/1vxSBW6WxIwFhCDbj29f9j0o42JhcZQg6U0GsQeJ8hpJXqWLdvykabFMgyg6ITQqmJS8+JJ7ApFU4GgnXM/vvGU53g/9SakE1xvwd78BkRC88wkcGoYLk/Ddn8IT4+JgYlUp2HVKtFhC5TB+fkAVFfCjEEHFh0IdhyQa6b2p0R8oHmsS7CJV3obnAmF4j6jlEeN1ErwvaEBChYN+ESvlLPno9zpcBnzwRAg+qkPaZLukxwTdHOMVnuHrLHOTOmWWuYGN50XsWPK0aX7ofx6qg/L56gqu6hnIJkDtc6QJwkZuxAgoXV6qqApJBQ7rcEqXi/WxBbM25JydndA0FGKo9KBTxqHodV6KzEshjELdO3cnu+HZXiG+K1XprUmGpQF9pQqLexjIXIydt6vWY3jyK/L/9bJUoWo5sHzSfFPJyfbgY44CeeAACgqWp1TT0IgTJ2R1UXYz2A8irWQTVD/4o56zlCID+iMfLe6CuDruVHEN4LidOHWN3PxTaCs2WiiKFg6h6g52JYNduErHE/vc8FC9VVi6Iv8fDQibKTVlZaYq92zD/1zhuqL/nToDB56VRTKIG8PqlBDg1C0hwPsw6BwiySBJvsBTvMoJVsjyQ85xi2VusEidXZ4l15Vq8NRlqUgHw6INLmahURVLGMeWBi3VMw3XdBx/iHPnG6RWIZWC4i7WdiHCPMfnGeEgQUK0aNJFDyd4nmf4dAcS7EJ6SkSd8W6wo/I6WxXIL+JfO41SWcXw5DatPawfTAdmSvCDGZFLX8yIo9z6vB/rkr5EzSe8O9JfIRh20RyLzIxHgm2wU8gYriJyn/Vu7W2go/IUPZygmzwNCjTJ0SBNjfQuEpz9wMFhnluMc4RxjtLPKDo+cqxxgwvcYhKXMgp+DHeaoi3nvsXqnR5L66v3JFKc8QFzLtxw4OLtyefrbUKCGw5MNeVj2YLLdShae/NUUtDo4AQ5LvIev0+QGDG6SDKGjp8kY+SYv0sAeS/0IES6paVm+Ty0DUNhXuy39YBof8srUgG2PDmE1ZQqsOa/j5P9c4K3TKENjYLnlNVPkBMkeJlOvkwPCgq3qFDHpoHNDcpYuFyhjHE3Z/KrYvZ9IAFjcViuwkIFcluMH6oqBHh8AE4dkgfn9BX48BJkvIHguaNwfR7cNrBrOI6JA1RxuIVBExcFaYYLoRJGIYPNMD4WMfe2q/8A8ViTYJCLbeCiIoTY8T5nIWEZ+z5dhgtZWwYsy5Gn1kUGM8sVc/JBH8RUyClbtrcm6GGQo4xxilFOEiDMAIcpk6FCDtu1ZX+3kRNj0ex1+XczJ/6gVgOwUftAGUauggW4oMQ8AuyHsAqDmhDgr/hlUR5X4H3gBpDZgQirSNhIEo2AV62T1i5ZgQVQqXuDSldIXJY6gpLGWmrJRxepEi9XJW31gcBoCBFu1aVhCAv0nOgtjLp8/nFDOCqHVw735ZsECZKgjQRxdHwb2th2t4s8JYwHTIIV1bP5DInLAorIDNzHuJlDtg1UcAzM5hCmGQZ3AppBMHPQuAn5q2iBfZBgF6i2RPvrAsWGNLyCRAFnqlIV3oMc4pHCNoXwTp8X4qkqkJ6DhcuQmhS5xD4d6tuIMkAXRxjiJY5jYpH1qmgtDBbJ3BH7vS2aNViYFKJrNO/1Brat24fuA9cllxN51G5op5OjPMWrfBXxuDZJs0KMOP0M8zm+yE/4PikWtx7NG2WRP9TyMl4oKmg6mtJCK17BbjlYXi/tXqp52QZczsBMUXT68+U7g01sS0hSWw+43RCKGcS7hTRVNyreClojjMXe9A8hdMZp43XGOU6SMi1qmBRoMkeJt5ll5QEGxVYpscQcvQyTpI8+huiilxyr6Nis8C0UojSYp8RlcBScYEI8MdevQQNYdGEYCWGyFFh15HOTt0/YcAB6fFCw5JZeNeFWE240dtxI3YBGkAjDBOhEAVa9xuMuX5xEaAWdNobVJsWSu2tPhWNBswipS5I11XlQespzt2SHoFmWj76gNyx5U06z6BUVHiHixNHRaWFQu89rryD2Z9L346MDP2346SKAg0sYHQuHLC1q2GRocZUSeVp37kQENBhLwNPd8lC4rny0HPGA3IxCRchudztU63BpCv7oTciVpHHU74OAHyoW+AxxEPEmKQco4qB7i60SNj5vd7riFegq99aoHzoeexIsli8uLeSir1+8/TZ5baDpwrwBcy0xHQ+oUh0OqdCuQ68OyxroyrYeHQMcYoyn6GQQGwsVjW5GWWOWJjVsty5Et56B1JnbhoSVJSjNQ6sIjoWSBPWABMdhe7LYsOeg5UJMgT4VxjU4psOgKjaaJRfKrjRUb9d5K6bZCu1o9OPjOk0qOKgoqCh3XPiKIUd7QIhwR1Amho4gPJEUEnztQWqmbFP8T38REAxDzwAk+0UH1agTsgq0CNPR6GXCHCFKFFDw4+c619DRpTs+KB25KMq+ZR5BonckqLtetSsxBvFhWD0H5XmPCD9mfG8Dru35HwdFDBwYhsTLgAu1K2CsAlCZ3+fvLTdhqQi5GqTC0BEW66p8DeYLUGg8cMvDB4JqDm5+IA1xrgvltDTC3YcOOIAPPz5UFMrUWSJDhCARgnQRZ4JB6rT2RoJBGuI8KJ7tXzAkh+OIlL/VtDGN/d1sPQzyGq/zDC9xkys0qZNhlU66SdLHYZ6kkySrLG1f0iivyrEJekzmgHV9516RbYgzpqrIx/pdi0jblN8XiECkTSrC7b3QqIghRSAKrqkSbPVSZobdZiENhS7CvMQgrzJMDD8NLPxo+FA3qsEPkgQDLHBr47X5CTLMQUJEadIgxb9CVXtA1TC1OijdYtPSysskBEKCp12IONCjQNiVhrhZh80tMFlLCG/Jlkrw+ap8XDJ2n59V/IToJcmz1O6KGg8EynT3XqYrDL2WZKmka6Jc3A5GDTKTsHpVpDGBqNwfRk1IbmVNTok/IpVfRZOpuVmWePSHDRWVbrpRUTnEITR0cuSYZZYSe0sK0mFD1ljHIYAETviBKgYL1FigTgd+Shgs0WCGKlkMVmkydfd9pitSBXulX44PU+IBGfZBxHcnCY6GPf/DnLinpAswvwrfex/6u4QYqyqsFUCPSMez3bznAc1uquibmwSDSzttpTxEPPYkGG7LIh4YDBfer0kba6/HdNs0GPHDsB9O16QCvMWfVFDpY4IuhrAxmecSdcokGSFBkjRz4FZlj8UtQb4BlWWpslgtESJZdVDk25QeUI9777MEtMCZBHcRdENcaQCyjlwsvwIjGkzasLjDSsABmjjUcTlGkLM0SGF5aXsujudk7OJyJuVuxP12R6RhxKfC8aTo5W4V4NrjZ9jwaDB6CIYOQFcvxNpgeY50op20T+PoZILjy0/xjH2SKlUqlEHVcBUN+kdgdEKIoK7B+28i+6aIxcAWXmkKCioaOkHGeI45zmPSwsbEMRysJvS/CBO/Def+mfjeV5ZEe/tYwjXBKkvrvFMHPSFpeU4DGlMyC90v6gaslKRaEfZBV1QcANa23xP3chZ+TjptRbbyp894ZUtLJgf1/obgXjrwo6OgMEOKMjV8+KjSABRihAng2/+r9FzS2jvg4BEYPyTuD6klmJ+BpTkhxevYrXgdJcoIBxhkjFlukWEVE5MiedKkyJDiMuf3+SLl797tHLlXlHdQbQ0cgZ6DEIxIRTiWlFS6Zk36GAePaLSyCdS5o5SZZbc7KYafMdp4il5iBJijiIlDggAHaGeUNo6T5Id3NZXeF9aLNi7kWCPHGkvMcIvLvMCXvH1UgRlwpTvVNya6/voKuhvDonRbFmEC572f6VWk8nLXmurNIvykJNKHFQNW9rwBphCmjy6epoMTlJm640xG/OL093eegPeXxMr5x3OwWN7eZrJZhNRFGVa6j8p9Wl4RgmvWxHYfINzp+QOHxJb9vjzK9wkFhShR/hp/nSAhXuIlatS4yU3O8DE/5M1dQ4NFQakRRUVFoeFJQsfx04bDAgWWqdLE5lW6uUqZj8lzlRLF7XYm4wF4vhf+4QvyYHx/VnRC6bp4QW7G0RGRP1TrMJeCtTxML4szxPSyHOuvNNDuEeDHvyPmF4IEP3CYHgl2gd9pg+fCMO6HuAbTLXijDHPGlvs5QxzDwmCZmxRYRUXFwaZCDpPWpoHG9ezOWmxpOOqC9YeADdoLoLRLh7GbBftdsD+AigNLGlxXhAx3KVB1pZitsvPFM3FZxeJbFEhjMY9BFos8FgUU/PRykBhFCqxVcvx43iTXhN88IAT4ZPftwIdfgPv44aF/BAZGRb+saUKGk70wepjfm1gme/5j/umZTgwMPuB9zh9o0Gh7Ejq6IWhD+l0haa93w8kE5Aw4X4CP7q3+tdHPGE9zmFc5yIsYNLjOO1zgL0iFLxMblLGl60loOwC5q/urgv18YIOZgdYy1K9B+t96DGYFmrP3/2uzmwbougkLO6XcCQYU2V3JupB5VPe0oooPsB7ldE9TAAAgAElEQVQQvXu99EAumotLlQYp8jQxWCFHgxZVGjQxCOCjvo+monUk2mHsIJx8Dp55ETqTQorrNbjyKbzzlzA9KfJg24JyUZxitkOZEtPcYJgD2NhYmFiYLDPHIjPcZH+eYuvhBg9LD+8PiWz7wHMweVouWX4JZs6LMiNRf5ajc/+EEpMs8uYdxHIrOIAPlT6iJAgQxY+NQw8REgRoYVF7AGmQetirjhtgbHoUMqQ4x7tkWGGYCXRv4YTroNUL+Ft5AvQQ5TlMypQ4R4s092Swrm79wPzsPhfgUYbp4RV6eAkfcc/n6TZsRxRNownPolkTvvbuApxf3fp3+sLi/9t9GFpVSSKvZUT3uxnrVd9gAkLt0hhXfTDmHNuim25+g6/zVV5HQeUIR3BxGWGETjrJkuUMH+/4O7rQSKARuG3OyTA+XiXCQQIYuNyixacs8QPWKGMy6emCt0XCLxGX2QZ8exL+5WWRQmyFs9ehp0Ma4RRvJXprKztHRdJP7ce/yR1+VUnwOj6qCdl9LgwTAdkauFCHH1e2bXJY5Bo2FitMonmVlhY1FrmGg72reP9uWN8B60+5s0QlcXiUgWnb67h1YUgTArzmQNoRLr8dbER4foY6170koRYuHQzzAq/wIq/xHC8xzwz/nj/mTP09zqaWqBpwsB2uZsUt4v0l0dD9SuKlX5ejd1CuS6MGi9PQkYTXvg7BMG88+TE/8/9DDn+4yJn/6BhmaRAunYaJBfh7B+HgS/BPb8JgSGbE3+iD13vhf71+BxE+wmsMc5IE3RjUWeQyvUxwnC8ToZ2r9g+ZLb7N1J9D6iMoL4jaZttClBoDrQ20CGgJqcQ2b97e7nykcMFIQ/ksVC8KCbQrYDzkmWcTOhT4ig8mVLjuwAcWzDyKBYSiePuupqd3fzDse5EMS2RI0kaSBFFC1GlxlbmN77kfdV1nEp56Hr7+OyIPzmWhowuiMegbgO5eOLfJCOeOBbLuhye/JFqDa+9Bo8IU1/g9/jcucpYQYaqUCBJBAbKscZ4P9v0aXXt3F4j7Rb0s6xTbFNvmWx/BzDkp4o89DcN9CXpuvUwXz7LEWyzxJuYOCYtlWixQZoUKX+MAATRMHILoGNhMUWDhASRDOrYEwymaWBMapdtfq1LmOhe4yUVsHFwcQs0gCU7RwUt08ApxTlBnljn+b7K8TZ1ZnPtYRO0FQ/wGbRyljWNEGcHFooeXCdJFmtOYVCR1UYG35kS2kqnD23NiZfe5ATi9haevWYfivGy65qY8a+sdHoFmSXTBoY6H8jY3cICDvMIrfJ7XuM51DnGIt/iR54rrkCVLbRd9+Qg+Vj0bgHY0Iij0o3OCEEcI8BxhMlikMFGAFGVmMXY2DjiYgBNJ6Yj/82n4zuTOvRSvnISZFZjdxYVG4Xbjyi+AN9KvNgluPwqBJCzGIKfLknHpFhsB8FvADUJaW0TVdBQvP9UptbDudzVvesc2KLniBlF1YcoWcrvsadp281EQIbpN2QshfIJTvMCrPMULtNGODz/P8jkiRImT4K3Wn3MxneJmXqrAAzFxh1j7LP6Xv8jw+SHZB4dOSAlq9oaEBygK5NKg61jNMrl2lQtjDUyzCvoNOOZCmwpTRcj64UBUjII1RVIVXORzHgnuZYKX+Zsc4hVsDK7zLjkWaVKlhwPE6aHTHWaqBdUVyFySio/ql1+pIr/SQIKdTMD1JSF4GHz94B8RXa5dgNY8mCtgFQAHGvt1979PWEUhvopKuxsmgo+lfS4Y7wcaUv3tUeB3/XBEhTdMuPSodNSOLWUp4EFOCK6noM1RpkzN25HaY9ztDtB0TwscFOkDiDQim4ZL5+GDd3bYGVI16BkFFJhoQa2EU0pTyS5xmnfQULFxUL1GXQsDc58NpK5zd2UvgIyK2+kJfcg0tzfWvHoL3vk38NG/FzLcrNzu1T3yCjx9Is+5N9/FwSBIJz28TI6LNEht+ftC6Di4fMgSx+lCQ2WZCmvUSFFlnhKLlGknuNHvYniB3vuB5gefl7dUX7r36473H4CPNqIcoo2nSXCKAN2AQ4BuIoxT5hINluABkOAwA/iJ4+IQJEmcgwzyOj5iKKiepaYJuOiEAJWeiPSiHO2EqiGV33wTeiLihljd4ZaxTSjM7T39zWyA/ZDX4k/wBF/jN+giSZgwOXIUKVD3/JmqVJlhesffMYqfKCprWBSwaUOjDQ0XWMXiGk2KOBSwUVk3LdllvBlLSBV4tgTfuibV4O1yrl87BQcGpPlNAZa3qYwpOvhicvyC4FeTBCsqhLtg+PMw9LLsiQA08mCchtx3oX5v+hUAARUzZImlmq54zhIW1FUxSnzAsBECbNqQ8f5cxRW7471MqbdNrFy6GWSIcWIkaNAgzSo6OoOMcIwTXHMvsWKmqHmDTNkQmaX52G+57x16CAJtEOyAcFJsdWxDTDvqGWikN02y9Spc+liCPgbHpQIMkqR1/QJUi5Bdw62WqJcW4EoZ3GUJ/XgqBsNhqNmSq1u3IaLBW2twvQIztwWNNYrUKaHhI0EPScaoUfRIgmiCbcvBrImGreVtdwZNmeLX3cBUV0ix5Z/AjTwDoRMQGAX/kOds0YLgGjSuQO1jaN54VKcd6fy0wYUAAZLE6GCIz3OECAG+xXusUdr914CktTQ2kRpdF9Zmel1Nxu1ZUkNkRCOe7q/iijW4CoS5R+L4cPAQY8AtbKwHuJho1qFSFj1lOCoKoHBEjANyGSjutMOpqNDWKy4Omi7PTb2IszJJZXqfut8dICQ8Cvik9OmayBLQYYO4KT2I0a0L1L3BcncibDTkKNxV7Oo5CIkeqLtp5vgP+ImjEsBPAo3t/bWkO7/ORywTxoeGyipV0tQo0KSCQQ0Dw1u+hNE9GrP3a6qHIT4B8YPQWIPaLo2mOgkCdKMTx6ZOlZvUmUNBxSDv+bxvPejHiNNFLyoaDWqssrRBriPEGGYcE5NpriOh5FVcLBR8RBmljSPEGCVEDy42LYo0SOF48Rgutkj8Q0J6TVskqlUDusNQ1qCy07rJvVf+sBNcR8b/h4UOOhhljEMcJkGCRRYoU6aFQZkyJUqsskpjm3tTAfrQcRBXpwQamuevawNZLBxcSthUcFjApIh9h3/wPRiLi7DasEX3W2zB3C67EUtpKFahUpMel9FemNukS1H9cughCHRCZES2IwzP9UbBe3Ad6Yl6jPBLRYLDCRnArN1uakWF2AD0noSxL0GkSwRuNe+iLp4WU8G7/ad0BcI6JHRxldC9GlxIE61npvVQtGo23mS96a6+nzV6kBABgtiY1KigoqKh0U0vbXTQQdcd318xZDfdHxPy1fyMaa4/bwTaIDog7gqxIeg4LOENtgH1NamwrnwM1voEmF6GT94X79RaRZrkijnIrcHZdyVqttWAWlX+P7tpUGjZ0B2EsglrTfl33YKfpOHsnfrVChmu8Q5hEozzHAEi+AnRpEyJFFXyFJ1VzIaMMyBhPLoFPltsPNdrXRagq0FM/zBu+JRUg7U2sFa98nEQrDUhxGaKsApJv6zfypZYwm6G+Igonvbxs5OtGEF6aWOCXnqI81/xReKEucEK73GTwnbbgutENxiARJtEF5qm2BYoCgQCEn9+1+vXEFvBkAJvmSKLuO4IEf4MbXm/tKhWILMqH8cOilVwswlrK1DYqYM+GIWRJ6FzQHQU8S6RRyhj0DkonWXLD2LRJSaPKHEkz9cFZd2k1/S6jWOgPi+Rbm4GnFk+69X2ByEzB8X5LCneJskQUZL4qeMSQCNMaYsllYlDiRYVDP6SaU/LbVDHwtpishCivD+P68QR6P+KEOGlv9z9+zVCqARxMGmygkV5Q/pQYwqTgledvRcddPM0n6OdTuaZJuK1adnY+PDTzzDpTVVxgxJQQiVAgxQmNQxKhOj1XkcNizoKqucz79I0ZajUVYj6JROnZYtUtdiEykNOd1O7QI0gfcxNUZA5XkjKftFBJ0GCONhEiLKM6Djq1FlkkTnmyJElTpzyXbIYiQ1Q6UDb8PZtQyO4yR2i5dV7U1hkQrAWcGkWDQo7jdVBXRqKl6uQqu2tyjW9SX/SmYCuxJ1fV3XZjlADMjlFBqUaXJuXVYlreUUQW1ZqVk06ux8DucQvFQnuOwT5ZXEesnfaDlFUKQP6wtLBaDbkgpgNYXyBmCf83vwzSEWv3SesIajdlrw4rpDikils4lFe1/W98D38zRpVqpRpp5P1VmITkzo16tQw7qLWaghCByByBPQopP6tZ9X1C5SusxmdR6HnGbEZC7R5JDguz2yrCL6I2DrX1knw/C3xTI3GxSqtVIArZyC7BlfPSdlsOyw14GIRkgFYbsBKE66UYHZrkneRH1BilTSzJBmlQYkUN7GxqJEnxyI4t6vAgQ5QixBsCrELK7DskTtf6waO/SKW3g7+Admiak2LLtgugLkK5ioKcit/s1sI8LkyXK2uU13ZVFNJoKB5GY0VPsvN7UNjgl6eZ5zjDNJJlCE60VH5Bs+Qocxppu78IUUBnw862qGvDzq7IBySUIxaFdIZMayt1e6sDm+Cgzg7vWFK+msAWTDsP5vtlx+1ijhBLM7C0y/I/188B+dPw9xOO7adg/Dl/xJ6D8CND6USoeriqNIxIB1n3/lHD+AVaqAkgDAoQdhwwHABW3Zh1GdA/yo402CfRoRjn82CbPEK1NIqkZCJwiJJXNrJ00kMhz7m0PiEGZqYW0pSHFyWd7njVBT8nlhEQ9k2VU5R5d0qqkgvh34LRr4pPGP2T3Z7J4r3PBtezbCOSYEWa1hUaLKMSR53CxLsx88Aw7zEFznEcX7GDznOKdrppEaFeaa5xkUuc26L998izxWCnvSiRQ4fMUwqVFlAw79B/VM1uJUXS7RDHUJ812rSm1J42FlKfgg+DfqYkF97FZwKtD5FEgL3WeRSUVlgnvd5nxOcZJppokQoUuQ855lmCj9+xhm/gwTLTpWEXVVxiKOBrqF72VoNFZqdfvwhH/Flg6mAxa0+H5moIpXdnXD9Mzas5UpybIZjyQmyPZ2evx0GXofSDY/0VqUI41hQW4TyJLRyHhH++eKXgwR7lr7JEdmNW7kp/vO7/Qy5STERDMRkwLZNqKxIyMXdHdwKENPhcBROJWQUKppQMGVrIe4Tg+jlhgRwPAoEVfE3/v/Ze+8gO9PrvPP3hZtT54gOyANgMAGTE4fDYIqZtJaUlcq1kuVyebXetcsqSbuqXW+Vy+W0Vau1ZUssl1RU7YqiSDGMmUQOJ3MCJiADDaAbnbtv35zDl97943yNxgDdmO5GD2a41tP11e2+feMX3vd5z3nOc1wlDdvfBROcIUqMEGEG2UUn3QwyzAKznOEEE5x9x+O7PwrJ+8DskLqm5AMi66yduzFIfttg+KfsTVc566P7CIx/XKLA9WW5Hp02RHpkLeTa69iNLc1Cd7/khXUdogk48a13T3F/bxleycP9nfDjzYnOKmSY4jXmOUWDMpO8tlZoeV2NwWqGaVCH+wPSVvuvWkKC2+FDOFoQrDkIDkmRnFcBtyyuDPayEGLk1PnNIdgfhT+ah38/C8uWjkk3Jt1ofqrXo4aNh3cLZOIQQzzCfg4zxCAdxAjxN5zBRCdBmCSRG58UDsORw3DwDtg1LBHhclmivr19cO4sHH8DMpl137MJnLzmUGXe/8DDBxrtNizMwbM/lDXf0gKceB2mL0PlZmoV3ZBo8K5DcOFl6TjXrIqwNhiWirMdgYYQYRMIX0OETYkO68cg+LsiS3KPg3cB1PrnxlYRzXRyhFHuYTd76CdFlCRRNGCOLOP08TxnmWd7prMpQiQJYaITwWR+HdKsh6TwzbMl6zzwIRj6CNhVmPs2LD1z8/cwiKJwaLOMRxudAA512izTJotDFZcWGuYNDhFHOMZTfIpjPIKNhYfHECP0MkCJAnNMr0uA1+CxxDMs8Qzd3EuAOB42JgnCdLPCKyh/vMs14aV5OJ2FPzlx++JKobshsB/0TuF0egLMftCT0HoVvHc3oXkHLnGRS1zku3yHcXaTJMlxXr8qIQGwsJjgnVmSDgx6MbFQzCAd19J7E0QLFh1ZC3qjzPznh+Dze7hr79eZP9ZNsdSAZ9cRhN8OeH76XQ9J2jg2An2PghGRaLBdkSiw50GwQyLBdu1vSfBOIBiBY5+BoQNQyUFubhP8SHniiZK/LLKHcIdEnFolKM+Jh8oqCR7QIK5JKbmj4I44/IMxyFlwvAgnyhJGcxV0BXwTfEe0oI0d1AJqYYh+COo/AZRcpXEdRi0Yi8CJCsy1brpSXWCOLBmO8zIDDNNLHyk6sbG5wGmWWUt5JO6F8JiQ3fYSOGWI7oXwCJidUD0ptU63HbouIRBdlwPtbX7B4TkQiENyTAL+Vk0kTOEu0QR71gady/IZ0QCHY5Bd2rzFVcESDfAmUWCBBiX62ccsp1gd+nvuh/huaKZh5SUZXxrL4mO/PwCfD8ETAThui3/0gQOniSXOYNt/jNXSMAxwI4rFC53UzCO4qirRYMQber4Nu8KS5BgKhSlYu4hyHwEGUbRxyGKxgEvjlkiwjsYoXSQIs0yJNg42LneyizQ5auuJfFJJ+NSn4PHHRfJw9gxUKkKCdU1sC5I/P0UYH3REohJ4v3IJzrwN6cVNXmLVHJx9Dh79Etz5YZg5DXNnYeJVmLoZMdoqNIT0xsRXUosDESHA2iiYXxSTdevfgfM9UHO3/I49JDnIEPexl7sYo4cEbRzihOkgxig9HGaEHpJMkt42CS7SorheuXNiUII0zSKoGp4tNmhmFCqX4fz/Da0clM7d7NU1dMLoBGmTxaKAhoGGjoeDxZrVzKoE6npEiBEiQp4sP+AbnONtDnKUu3gAhfJ7l20OeU6s8x5rVDfXgGdm4VLhNidWo9KwylyNHTRkvWUOQ/AOsCfB3YZbUoMG5zmHhrZxU5hrUMClcI2kYQ4bLhawPrILFQnRd6oIYwmoWpx+7XPs/o0XiT63cs0M/j7BDEN8FFIHRPurHF8rHPPrUhwIJEXL/wFpbf9zS4I7BsXP8ejHxL5GeTJYJ3okGhxJwOypDZ6sPKil5aC4LYn8Om25rWfkFgXjGgzoazUXOQveKsPTaSG90w0CU3XGflYApYg5ipinUJ6i5kEe2cEBoA6UeHdHh3UR2AepX4eO34DM70LzdcnVpFx4NAq/v1tI8D+7BDPNjdvIAW3aZFmhQB4DAx2dDrqoXRd1SNwFo/9YBgUrI8293AZUTkDttPRAuO0wTLlwTAPUqsP55onw5b+GRgbGPwY9d4k1jicyNIwgBJMik6inr3viyoLogDVNIsBbMU7e4gjeps4i59/xxNEvwO4vQf6kf7cu2abgnKQJX7LEMq+NaF8HB2HvEUUo7JJekIKmN3+aRG9HGB06Q0tp5JYGGNTTmBr8v8vwrRVYaEPJjhBiDx18ljgfwqVAnbeo8yoeTRQN3G1aOp1nie/yNrvpJUmEICYmBhdZ5k95gcnVVlTJOPzqZ6Ftw/Nviu43Eobdu6UorrML0mmYm4OZaVjZmUjff+tY7RCHgkJOiuA2vcas5ODFvyJwcgnNBpw2jn0Zz17cYTNrC1QaIb4dSHFcAimCq4Dzl+BNgncSab25E1AM081eBugjRQsbhSJJhC7ixAnTwkJD29EiRfQAHPosHPiEDFC1DF5hCitzGoqv0UxLRlkz/CDbTWthlEia9ukw2wJbXfWaVdfp6W7wCPYRIUIPfexijBSd7OMwA+yiTo3XeZ4X+fEWv+DGg2PFEou6d2uVvJMIHITIRyAwDlpEyia8IqCD0ScS81vFZgjwurizG/amYG+KameIxgO90t3tQgFWGswHXNSuMMy/z5FVIyoRm+iwX7gSlVuUzJvtPNSmZdX2AYgCw88xCe4ahgOPwn2fg2oWVq5IUZxri8G5frM6COVBqyira12XUcRpSiS4VVobtDVNGGwQ6NMklzpVo+MrM3R4imTTJVF2iNYcaqxVokcRQjLtN9nJIjx6W4dci4PRKVegFgejH/Q4aEsStsxF4WwNFtsSGQvqEiXbcCxWuP7PKmzsq2l3MwD33A8HR+Diq8BeCHRBdL8Q4uz3hAxvuQCwPyhthbbroLHay1U3pOBG+dprz9v0h7GqsPy6kNzOvRIBNsMQHZAocWVGZOKhzjXtLSAR523IL27Anr3Q2yuRzAvn132IVFSvzWbhfiHnekDGk0BC6gw0HdqdMKdJRPuEAwsumKqX6VMuDz1R5+GPtTn9hsZX/lUMu6Vz14NFbFosp8F1AuR9e7UztdXkRQDLDaMRRMMkQL+fmL2CTsS/PwLbJMEWDudYZJYcQUx/CaYRJsAUK7R6EzA2BIf3wcceFeK7Z0R8KZ99Dp50Yc8eYflvvw3nz0O+AM0PVrXxzyPiSQgGpdawUZfLyt0En9PpkM1LoTc7MJphFG08GmjU0DDQGQZsXHZqseIgZLiKTGEuUAOlyX1qGlROHrMDqPiV+zFCpIhi+uVIYV8qNE+OWbK8wgSTbNDJYSswQxDrh+Fj8MhvQ88+KEz7HRaVDAbVPCp/eVPHiIEgPJCU+WGuJbrpbdCxHCtkWMbA5CGexMCgRIHXeJ4pLlLbAb/jVXjqOgIc7ZEqZt0Uxu/4tTxOS+buHVhoBfZB8AiYg6Ca4CxLFNirgLMIzrxfIPd+YLEGD/RDKogXMfE0TUyTyxZkGjizZfGRez9gxny/zpAUxEUGJNobTIn0wa7D1eZhTdEIK3trwSTEnWW1vKBegoWbZj628PF35mVuPxplqGTleugZg3oZGiUhwMEIBMLv8gKuJYR31R8l6cDeNgTa0G+KL1lKE9GlhtgzFDxiK212zzS4W8FeTeIPlzWYVkJ8Vznz6iVZ9rdtQYsI4QWwp6H2XXDmwC2BVoOmKyzo+zlxp2i4MnJscXRbLYgLBKF/EB77MPT1igzCBaJtIAZnzoCVh44OqOTFAWnT6AtBzJTPWd4GoVwlvGYAYgkZ0JsNqHtbIqitvOh+q3MihTCCQi51Q4iw3YBgXIzn7Z3gVroO47theBc8+BCMjcPSogwAExfe9emBmIwZxbMigdCDQFPmQXqg4ol5hY40TzFIUVxymHhDJ2gaXLmsyC+GGdnfIN7XpJBTuDZ4nnPVh2G+BVUXHKWIYNHFCk3OE2AQjxYtLmOTIRxpcvfhNi0HzpwDZxuHsUxj3Sp6AEYG4f6jcHC3LHhiEbjnDvEynpqQ6O/DDwsJTqdheRmKReln/7fYNsIRSKaER7Rbsm0GBv1+7XoXJqOEuA+DYSzOYnEKMNCJYzKGywrsGAlWQBPpM+/KrWYCprhDqBKoOjvhZgKyeMtSZoUSfaQIYBDAoEKDObKcZ4ELLDDBIsVbLMADhOyGE9C9D5JD4jPdLAiJCCXl/sKUyPk2g4AmUr2ABier23YwWmKec5xgP4dRKGLEybHCBU6RZoe1qGZY0nIgY2jHHrEy1XQhvq2yrP5bJTEP3gESrCcgsEeivl4BvBp4dXBnwTotBjvqPXamuAEa0B0R70vbg2IbajY6BslLOkZLo1jP481Vuepteruxao2mh+Q6dBsihQj6x8+zoF2AVhaqUzKhuRvb8K2HeBcM7IORo+ICVs1J7W36mkvADEmszN7iWuDnlgSnL8PJH0LPKBx5Sr54eUV2jOuIHOJdYdf9VQqwT4dPB2AwAHcaMOeJdqFXk2NVVXABYpbHEPAhHR7ThPD+lSfDe8snwqveviU/Crxt6AmxtFJNsCagfRqcrCxLcaBhQNqCF4uiQS77kdZtjgeRKOzdD/c9JEUwxzSwSxC1JRB95UUxOzCGpZ6waWuYvl2Lg8JFYa/HwBMGjEbEJ3e+CRN1KSjcEpSw7mBQ2lp19EAxC0tzm5+1fXg2NHPr/083Idoni1u7ya0J0gxDUvePPwGPPAZ33wNju4UEN5owO7Oho8EqnCYUz8lnVu5aRbgelLnSqhs0vAC65qCUSRSJxD377Sgv/cgg3t1GQ2f/PQ0WZyXFff3uKl4lsw4ByvQyzQLPkmMGhUt3f5quWJpIIsenP13CsqHmGzM0GmDvVJHknhG4+yCEgnBlzpc+JOGufTA3D199Gl55FYYGIRqF6Rkxtd0OG/9bXEU4IpdVe4sTvEEfOkl0khj0EuRugtwJWLhk0IigaKERYpt5sA2gfCs012clusijtIBvXdNGSiJ3TpowxQopJrFw2UUXQUxyVDnBFV7iArNbHukDCMNZZwHnuTKhWTVYOSee9e2ayMFCSQgnITHApjpyxQxxLlpqyyp5rrXtMS1Lmrd5lQBBgoRIkOQ8JznPKcpssWLs3WCGIT4gqblYP3QfBCMgA2KzIKTLaco+saqybYIIryrqXOfGQKTrqyC1MGgxSbxqpmiA22fZqcTC1qBp0BOWvtGLNeleZWiYRBj9ST8RYpzg5A3OTrcVyl2boFo5qExB5aJEfWtzUJ0U8Xr1CtTnibVzhFyblvKu8qWbQoOuXdA7Lnwv0Q2dQ3Is60VpZqNpEO+UY1rYojD655YEAyxegK/9L/DA52XnLF2SDj+aJtKIa6GxJsNXrA0fVx3G+nXUk6a0lGoqaPmuC/t0aTmVU/C0RabbZGHFYUlTVE2NAQ1CDYUBNE1pDBZUMuS3kICl2npwdu1TKyVhSSqA7afE/G9ieUImq47ogCvOLZE204BECgaGhCg5tpAcMwCHD8I3fw3+/E/gO1+XhWknAYaI0EeIEjYZWqRpY13LwoMaPNENn+yF7qBEgl8vwV8u3bzv80ZQCobG4MlPwewk/OwnUNyA0W4DniNd2XYEnV3w5Ifh7nul2mhlRazWQiG473548Q44eeKGp11bLtBalvEET4i5Z0thnNOQMUbTu9Dppa7yxOnFIIBNBUWDsQMtPvvrDf7dP0+Rz8ClM8K918Pq9RFGpxsNxWkmtEsYAcWv/WaFRx9pk16BpdtZ8XIAACAASURBVGUY6Id/9j/Cj5+FN9+CBX/Q2dapp2trec+D43DsCCykIZ2DXAlWcjDUJ8e90YBTp2Tr7pb9uImUmvaOq18+qdr+J/7/HUoFkUEYxtbWExZnCHAQnQ48GtR5mhY/Q2FjMohBJ21O4LJTF9S1qAkRxhPGQkDqJGj7tzt7bOfIUqbOBIsM0omJwRIFJlmmvWG3uo2gozGM+G9PszYbGfJ93DbUs5C9uFYUZwR9rVZCHm/4Ya+Nzn/df9kHknAsAS0PfpBHU/oNGuCtYIoJpq5zMnhP0CqBfQH674I9H4WhB6RgvTzr+9GaUsdjhGXRUJ6T6uabQDegq1vIUz4r7pfXovkTKA1B9BNgdIk9mn0Z3A36Zt0O6J4GE9dap+lo6MRIsZePEyTEGX6Gtb1qo52BXcGw/WStWRfN3vz35BxtLKHXF9Cby+itPIZT5WFgHI1LKC6yufxQICycLjsN7Tqk+mDfQ3Isr7wtt9EUVPP/jZFgAKsBP/vauz/uCBH6CaCALDZBdNp4jBLCwmM24nE5ouBFB467MOXBUUPMRPfr8JABX9ThuMupYZNTn+zgD55KEFZw+MtXcIDzX+oi+VKV0LyNC3gGPDgOmQosFMHa6li52s9RC4PeIVdlYDdXr0gPcaywlESCbxGFPLzwE3jyYzA8Ck99Ys0uOWDC7BRcPAen3oJHmr08QQ/H6GQXEVZo8UPSvE6By9QoYUtTkV8dhr83BLuj0mykYIubxZ4o/B+bTOddi1WLtPufgN0Hpavb0uy6RFhDI0QAHQ0PhYX97q0kdwqdXTAyAsEQpJfFwiuTgVxObL+yGWnFdR2Cukj4PKDDlHXCymUoNGHwoxKZCHVJI57qaym05SQBdBQuNi1alHmCDCnaaKekOPQwRV5/Ae4CFmDd2vURIowTZZwovYT4ASscOJThH/0DGB4WV7JGU86HegN+8+8LB235zmshAxo2rGxFQmLq8NAd8OqESF00HYb74egB6OmCv3lRWNlrp+DsdedKPg8xX8cSDktHh+tgECBCnBidxOjAJIiDRYuaL8oov7+TxwcI9W2aJnvU8CgDJh5lFE0MBgAwGCKIi8XJnfugNyDvSx9CrOmD3xvbmlUpz8Qt1uDrPIhGF4o0ikV09uNxDoOP4nEKxQq0KzDzkqzK7/gMBP2xop71CfKEyAOaxfUjoHclYDgEvzUMn+5Bm2qT+E8ecXpwsSixSPuD7pTtOWJZakah5whUFyTaqDwhwm3ftzwQ8/VhGyMckeYv4Yg0fdE3MCaofhWazyGNzd4nt7FVxEiyj3tI0Y2OgYvDHo5yBw/Qzxhn+RmTnNp+sd0O4rP0skibN5QlxW/zfvGQa3Of2+Jx5XAPMIrOGJJBfxH4cxQ/2sTrB0JSClTO+O3Ma9IX4p5PiRx29hTkZm/s9LgZ/NyT4M3iAWL8Cj2E0flD0iQwOEGdF6nQRuEWDThlwlkPCgpWlKTboojD/qgG9xjQqcGEJ64RY0Fao0FO/dtdcLaJayuKH0kKMS25GHNtqvkWfQlIl28hm6Ja1zQ4v+aQ2UqaBtzCNZCIQqMFrj+O1qrwL34HfudfCBHu7pZB441X4aVn4bt/BUdbnfwSIzxJL6NEMdEYJEwBiwoOWdpCgqMGfLQHHuqQSETLhbgB+2LiuVx34Q+nNx8RNgyJfMxdga9/RRjZ4syG0RATnW6SdBGnSpMydeq0sLYcudkGSkWYQchwb59UGdmWFMUZhuzo8o2RC8uD5TYciosbn4YEz2fzMP01CPVAuA/CE4cIN4JoSGQnTAqbBp8jw0O4PIpGBxqvo9BRvImcfwPIGXStcdshEowR4dMM8BhdLNLi/2IKLsKFixCPQzwmE4dty25fWIRcHobC0D8OiSBMl6T7puV3d6pYUN4oSxc0YaQHPvcghEw4fgm+95zk5D/yCDRbEj3/469BqSrn+fWoNzaMhpmESNJNP3vZx30Msp9OBgkSJssclznOOV4gzVoHiES3vFRtp0wFPigwgd0B6DAgpEHNg2UHVm5x4dwdw61k0OwgJhoeVSzOEuQo4OGyjLtNu7CtoYWQ3zDrWXt90KARQWM3Ondh8BiKNjr3ozGERIcXUJRR3gLMvQqLb0HUr+JFkwhodQk8l1hE0bbACenQE4SREByIQZcpY2zRhu9kUAttan9X8fe+/S8JqhiX+Cnn+RELvP1+746NoVxxcbr8PZEtrva4t+t+YVxDtMHtyk2tMRIpGN8D9z4oMq7sys1dJ95v8nstdHR2c5Q4SRaZIkIcUJTIsMBlsizg3o757BoMEuQOYkTR+RhdvEqZHDYrtP0sxmprWcVTwBfQeAyNcSABFJFATBcau4Eh1Ia5IiMA/XvFglw3hfy6/hwU64TdxyT7f/JHsHBB5BFbxQeaBIeSsuizdqDWYAWbCzTpxmSAAMMEcVBcoS1W1MsevO67KnhAh+8MUVFw3oUTwDlX/m4oSNuwZMNoEHc4IA0yCg5KQ15DA2dRYzoHd4/AeA8slaC07WIr/6p1FniHiuYWCHA0DF1J6URbrUPLEhJQr8Gf/RG8+oIE2MpFkV6u6kl7CdHpt/esYNPAxcEjjkkcky6CFLEoe0q8civOWl9eHdFSmBocS/lL8k1+Cc8TIplLw8u+HU+lJJVh1383QozQy1PcwwMcpE6Lk0zxNpe5zCL19zoCqJQQulwOFuaIHp+ktacHLxmVEbhUgOkbW3AFNJnLBkPw3w3ApTocL4lbmNMCLw3h/BBuw0ApG4WHi4NDjTspksKlhljyRVCU4aoD6CxCEdZTZ3YRZIwow0RYpi3dqlz41nehtwcefxQSfiZWeXDuAkxcgoUViLehOwxjKYgExOi+ZkEsIBHizHrnfDAA/Z1Qa8nmKbg0DZk8PPOq6IN1TU7MtiVd4pK+hUE8BtWaWKNZ609+JgEChDExadOgRoEuhhnhCLu5l35206ZOmSxNv6o90e2n1DohcwWGD0EoJs13mpW1V0a7E9Saj/MHGn0GPBWFf9op0qQrNpxqw6kWnLFg+ha0uuEAjHahskG8hZLf6MDB5hIc6Efl2lDYQcuwm8JByHACIcNtJN6keH/EnOtDYz8ag+iMojGORgcQRjGPx2XAQlFErS4ePMePiFqSKQFfIifEJ2CKjK0V1Wl3mTAegcc7pA4jYwkJLtjQ8lBJnRg99HGAJiWWOffBJsHg25lOwpUCmF1SIwOyELDrIoGwahsWR+89CPc/Ao89Ja5H3/x/4MeFdynqvk29rgCSRBmmCxfFpWsyDH2MMs4huhnEogmk6GKANk3muEiIKG2anOM17Nt4fj9Giv1E6SbAQyQ5SIwsNlWq14yGaztwDxqHgF3I3JMBLiE+AzUUYaAHNiTBngP5eSHCKDE9iCQh0Sv3xbvl0BeXxBhhO/WRH2gSHO2SAqBmXuRAt4JzNKnhEUOn7Nv+V3HX0uMZD15Dxs0hXeRZYQ1KkCi6HCp49NuKsFL8eBHKXgsGmrAvBPtD0rjicluiLGUX2hINblhQa0ukdYuOIOtD3byQaiswDYiEoNZciwSvYnZaCu9bTbCui+bFMHFRFLGo4dDCpYHLAk0ytKjiSK/ztgcnKxKRGAhJVV3YEK21pknEfCtQSohwvQrtpvxtWzcIGSMEGaSbA+yikzglauhoHGKUBBE6ifMaEzTf62ICqw2LC1CvoS9WCVg17K4oHo7IIRo3skNdk2B53IT7U7JeOFdbs372LMCKYNPE9a3twjjso8I9WATRaCKEt4YMPKuOyte+m4lGD0ESmHQTIIDOEk1OoDNxTZp0KQ2nfzJE9EoXmgaTlSyJvSv84Mdw8RLU8zq9us5Q3KE7IsS3IySdOwtN+T5t148Id8Z9Vw9fs2k78NYkzGVFK+S4kpZYyYsWeHwUDh4UAtzbA4MD0j55eQW+/6N3du3TRDdm+5eHh4ft09y8P7kk6aHKKD2MMMA+DvE4k7x5lQSbQfEY7x2T7r8P/yJE4vDyX8Ll16GcSYB2ALQesePS7hepkqqBysJOV8jfKuIajAXg/jAcC0PGhSUHYhp0GkKQSy4UNztzhIAIUIKuGBwZgmOjeMEkqqBE8zVRQF1Myz5JmuBGoLxzY9bGUFyNYGhd/u+rPpmrdmo7e71HOiUQuZWJV+coGrvQ6PS3XegMoBhEsYBEXrwbP6u3cbRP131LUF2TAaPDlNuWJ7aUGrK6thUKlyZF6uSxqIOhQyKy5ip0bVpwG9CQMSCgy/CulJgatLe6FgpGIOmvSjv7pOtgMAKY0hig1fZdCMp+MeQ755J4AhJJeOBRePRJOHhYAjjLixKb2JG5+BbQQ5IUUXpIMUQXQQI8yAFK1Ghi4dFFiAG6GUTHIESECDEcHFrUWWSS87xO5bZkWgQHiDJKmE5MouikMOnA5BfoJoaBjpy5i/65GweS/hZBlqgrwCKKBmtL05t5GCglGuClizIuR1MSAY6mZLwvp8UkoVF+9yauG+EDTYLDnRDpEOsLy8+AbBezWMz6u90Acjh+ba5/NVSAioemw5FuCMXhkqZTzSoSeY/7Wh7HBmEwCVMNOH+5TauzDntDcE8UdutCfh1bosorNuQdDB2yVbBdaH0wvKGvQtckGmzo6/+/so60LoFJG5eL1ChiY/o97gtYnKLMBFVWaNHElQbnrxZhqQUPd4oswg2IDGK5BZdqW3dD91whl6vMfJ0ZqJcO9jJIP53MsMIbXCJCkCOMc4BhuklSpMZJbozE7igcB/I5yOcw2AWZKm67hqe1RS6xHpSO5wVxVIuwAamAFHdLklcjgBiPO1g4tAhjM4DDYZp0oGEhMbFl1kjvqsd7N0KMPTQ6CTBGlG6CGGi0cDlBmfNUyfiD2BBDdJAidPxuSsfH0TGoapPk7/8ZPzyxRNvxCGoagYSG40F/VN6nIySWlcrQWVBBQiEDqh70d8iMnStDuQErJSHAmdI75zClZNbsHYCjR6C7U3z5erqFDL96HP7i6+C4BKNyrQYjIpusF6ROwG1YtJwqFQwU0hggSQ9ROtAxSNDNbu6lk0HSXAEUriPpt55RqT6+7zOiXJk+JYNwORMH/TCgg7YfjF8S2xQ1A96b4PkkWBvzi7PKsJEd3DoImGKMEQkJ788WZF1gr1PJvimYmnRPMYEZG8604bIFOVdIUpcB3cYWSXAK9DIc7IfH98PhQdRgCqVpcDEN3S1oO3Jd67pUtd82KKAN2iBiXrnqwNAE5nfc3yrWL9zUakjmfjPQGEQjxWpJtrQntlA0URRZ64i3ebguuMo3/W57UPLzxWWHrvkBTCdEpu8K1FxaVKXBcfgtCvEidA7CQKecaJUGLOWh2lxffvQu0IGwCQMxGQNWG4JVLViu30QatR4icRi+Q7RW8Q6phIp1SHVUMQ35RSH4FX+BdV33sUAQevpkUwomJ2B6Ek6/tTOW76sIJdaan2l+MaJuSKC6VWbdZFGCCKP0MkgXKWIkiDBMF49wiCUKZCgxSZ1Z6hTJMMhuBhgnRAQXh2WmmeANLnNjUfV7iX1E6MCkisvSqq0qGnuIsIsQPQSIsXa9d7PmLlthjQRnENV+G1iJxah1dEIsBpc2LrhcmZRrbfQu3xCkAcuXJEN38RWRSWwXH2gSHIisWQNadags+Atib7X0FaTSe2srVxe4tE46XEMniM5vJx12d8C/amocz4BWUAQ6oDMCR/vhQ2NQuuhy5Y26XPl1T8hwW0HOgek2TLWh6hENQ66GeEVvc/WpXWdtsROrWEMXGcRAt0y+xgpkCn5AYIPX14BRolymxiQ1whiE0HFR1PCYxsJD4axe+W0P3q7IlrNF7NodkAjFfBOuNLa+UzbRHGMvQxxgF21snucUOcqAxgTz/DJP8RB3oKFxhmnc25T7itJNgzxaOQ800fz47LXnroaOUlGq7T4K7UXeKrdZaEHb1YnoOiYmCQakUBFFAMUeLO6mSRiNWRSj/olSRccCNMSGJgLcA0wAFgH2EKPXLxsUQ6s20zRo42KjCBLgC3yO+znGLnbRTTcRImRVlm+/0U833yBHlljQoSPiEg3AgS7RA6frUvN2RYW5qPdCd0IkD+GAH21qQ74qBHg9hEJw/73wy1+CB+6TWatUhlpdolTxGBgmZrjNwCEYvhNSgyIXrGQgOwWZyw7tQpOmp6OhESBEgSUiJIiRIkiEGB1EtS40PwjWqonNYjAC3btg5qQMsgvnxZzdr0QF7S4wDoH565KZ8V4DLY2QxAAYvwxqBby3QF1gs/ZgqQTsGoB9o3BoLzz9U8iXIFcUOcyWr/uSB5cseKUlqYSzlujvo7pkvHoMWN5gBXwzaEF4YBwe3wfFOswW5IDHQ/DwHkhF4I0ZOL8M+R3Qsl2FjkxZ+ppLjnKQ/euy5h/sSlt5rQ8wQBV8J4mdc5EBCdB4Dqj05iV7ihVfpd9GJ4AihccbuLyCxzm20lNU18E0odoCy9SlBqPhwmk/Cl9zOXr6I3Qu9PP9u/8NtDQKzHDZeIGpkSkqd0fhro9CVwKKNTg5JROAkxUivAVoCAEejsP+ThhLwmAcoqbIod5Iw8uLEhXWEAdpmbnXTmoFwiB1XQjvwG4YuxNSvTB6BHpGpDJq8m15nOtIVPiq39OatK6Yh1QHvPkKvPEziTmUi5Beemd2bLs+GZr/MXsPimwzEJEFtKbLbWkBFt4Uiez1OMAwo/TSQQwdHQeXHlL0kiJMEA2NNEXKXOBtZvk1fp8jPEyYGHmWybFE6dbMV7cFHY0kJtM0+QF5vkeeFSwOEeM1yrxOhRn//DUQElwCzqAo+c+fRXEFyKEohcJcPngH0488Dvv2wx/8rmgxN0B2RtZCRkDkD+eek2K4xYntySBWsaMkWNO0GcRPwQUcpdT9mqZ1AV8HxpFSoS8rpTYlX3ZaIoIOxqH3AHSOQfYCkO8hYHegYdCmTG0HLHjEYbWbmOrltYW3eXQE/nXI5U/KGi83YDghKZ6hBHz5CFzMwZVJB75fhpNNGAvK1TVnQcaBuoemQSQoemDXg+USFLeoCQ6GfR9PP5xntaG6xRTcDd/VgP4uOLoPPv4gzKUhFYcrYSjVxJlqPSjg3DpdgTR0OunncT6Pg81FjrN8fZT1pYJstwFJIvTRQZ0WDdo4eAT8iKCLSy8dfIFH+So/Zoql26LsbJBHx0CobJgInYCiek2HqTh9dLGHmOomVzrEf5z5G9qeQ6Y+RLvdR/9VBXCbg8xzLw77gAQaS8BDaIwiU/1f08kUAT5EGg/4RWAOWX3rQBCdPkK08Qih4wEzNJimQYAAD3Af/4TfxsbmFV7lBV4kSJAwYT7FL/BJPsH/GfkDZsIn6I7AYAwOdkKxJUVxTQeCsaBUVu4fgkIVshUhS6Yht5PL6+8sw4CBPnjiUenaUizJls1CpSpyiKFB7n5ojsd+1eLAk4AGs2/A8gXoGoVgFJbO2VTTFTxcPFw0dFxRO1MiQ0nL8lb0BNTlDMgvyDbxM/jZX8KDn5cs1OQbMveK/VYa6AT9w740yQEtBdo+0P8O6A+A/jBQERLmhkEd39Q50tcFD98Nn35SGuZ1JeH7L4pj3FIGKtvhk2kXvl+DqCaL9FUeGdJBUyKJ2DQMIIXGEGqlCnt6YUaDxZKkuQZS0BmFmRw0rB00kPah94N5AMxx+V2LgHMBrDfAnV57nLoEXsknwSk/VBfZcQm3VZfsgxHc/HNcvnlNRUcPOgeAIAbHCPAruLyMu0mCsxrAaPSGpNA0Z8N0E96sSLChM8BK7gzBrMsDz3yKMsu8yB+RHavhPnUEfvFx+Oi9EgH+2nNQrsNSbssEGCAekJqAhwdhdwp6InBfv/xeteC5eenlcNZfh+iaJ8t1TaZNT0HNBgb3CtNJdAujbNXl90pOOjQVlmF5EkorsHQZSmm/W5lvIbfq+w/MTMl2PboxCPphiCaK/Bb9pANRSI1ArAf6D8PYo9AxKmNFowDzr0N5UeScjfxaP65VDNHFOP30kERHo4VNnRZvcpkwQQpUOMssrzJBmBg9DFMmT55lXuX7vMC3OM9rW/rMO4EwOgkMHqODQ8Q4R51lLC7T5ARVSn6BngGMIoGX4yiOsyqNkBqVmr+tfPwTtD7ycbjrbqle/Ke/A//mX0r19QaYPA5sbjjdNN6LSPBTSqlrl9y/B/xUKfWvNU37Pf/v393UK2kQ7gBThZn5r+MA6F6DTvbTzz1oGMzyHMC2iXCEPro4SowRAkQxVITZU/+I//mMxace+w/88thF/vsRmCrAybQEO2IBeHAYVurw9jIwawn5XYU/2OoaDHWIfM40ZMV+MxJsmpDs9IOdmjxHNyAUgd5BeOgpOP4cXJmAaml7PQJMA2JhiEdh/wj86i/Acg5eOAEvn4LZZXlMeotSIwOTHob5DP+YEzzDK3yHeS6wwKXrHicF6lFEct1U0lRkp8pnQgRYoUQLizsZ55d4klc4TwCDhzjE4xzlECPYuHyUe2nQJmIWsfCoeFB+jwLDZRaI0IlJiAgdROnGIECMHizqaGgkGBQSTA8ROgjnnqKXIcaJ0KBImnMscYI05/gFFENAAXgdxRyi860BjwMHSNAmwgOk6UTjf0PxOUSfVQVqOBynyC4iPEeWESI0/KNgY/Max3mbE9zJYbrpokiRChU8PHYxTJgwvc2PM9XsoG3Ms6djkuGERH0atmxtR0kIM1uGUAAO7ZK0RrUpOsR4WCKFC7l3hjldV4juqTNiSlwoSne4dEaE6ldmGErMsusOm45hUcgUF6R9uueKViySEiKs8GhSxcGmRY0sM7wZeJ5WMIgKxCR1vw48F17/jvy+tuAsgfeqNLHxvgO4oA0AcdAfAizQOuR+EshZvjnmNdQHA73Q2yk1g/PLEhke7BGjjPytuH61FbzQgKMh2BuEYd9771wbntnMqnwfGgNcFda43Wjf0FFfTsOHRmG4EyaWYTon29Mn4UoWWhsMUHvHpEnM0hY6yOmDYB6EwN0QfBAiXwI8qP8xOJPvJMEAKuPrtN87rJyFvkMwdMyv31qRyHC8X/5vN2VrlSSLeSNyeOSRfM1LmPwWLq9IrEyTanhvPT6gSSv1kQEJrpQbHlTaJBxHOmY5csmotseV+gvM8DxtpHWtQkEtBZcX4esvwDdfhuMTskhdyr+rHtjUJOIbNv2Iqv/3SAIeG4JfPyLzY7ou97ccUd6MJ+FQN1wpi9JJ2SHCKuo391GsUAAsWLws5BZNUjJ774WuIXnzSk6sW5q+RUB2zq8TaW1JK7mfEE08FrG3TIDj/WLdHE5Bz37YdT8c/CREu6GahtIcLJ+C0jzUMu+UyZgYPMgBHucIx9hLlBCSp9KwfIHbAjmWKFztPOjicJ7X+EP+iV8D4uHtYBOYreBbZDhNjTuIspcI9xDnh+R5g8qarNRHGJmbpllTt7+jBP7RJ1APPgK5LPz5n0kTqX/++/DKS/D6q1Cvc7twO+QQnwc+7P/+VeB5NkmC3bbIIYaPteneP8Pr//swOkEUin7upZO92NSZ5fltk+A4Y+ziEyQYp8kKNeapqAXCbg+vvfl7TMw/TaD72zQd+P4l+NMTcKQP4kHojcG+LpgscMNcFzQlMBIyoSMqQZPeBJyehzPrDIjhKMSTEvUN+JEF25KXjcRgeBx+5X+QBVPzL0QX025KcXx7Cwv3Ve2S40K5BsfPyUQ7OgBHKu/0T8yW2FRveoVHgTRXOMVP+XOKvv11ij5AY4GLAHRpsM+EgyZ06X6LaQ0mHDhnw5wr6r1bgYHOPFl+yHHe5jKdJPg0D3GYMY6xDxeP7/E6z3KClzgLegkLjw4dRv2r4aIFufeADAcRr08XhxoZNDTq5FFDu6CzC6fooS/NoqMTo4sAKcJ00cM+bJrUyKBQGAQIIITWRnRZnl9soCH6qzJ1prH4MYocohOe8f9XxKbqa+IDaNgoZq9SYIGHx5/xVf4z/4En+RAjjHCWczg4nOEcz1EnxIe4j2NYzZf44fQkFUuiPbYn+r+640m6cmoZ9g7KyRwOSB4RZMK1nOtGRyQSMDkFf/xfYHxMfIBXm2Usp2F2Dh2Xdg1WLkE9L1rg/CxUM1BaElLcuiZpYdPGwaJJDaV1oIyQaESdjQfb9bMtbfCekz3tvgj6XtBG/aOR9yPFb4J3GtQibNKLNWDKtVeuwcQVuDwLk7MiUSqWNzTBWBd7IqJEKtrQ8BBOvuhA3oOUIVHhsgczziYr4UPAmP8di4Al9Wf/k4b6xRMw0pIBpdiA5yaEAG+wuODXviiD0OkLBJwMnU9C5hub+Ah6DxiDInMAsE/LrWqIh7reDd71K/cthn7//m9BXz+cPglvvgZf/DL8l/+08eMV2FMxyiWL4IAtpOhBiHTB0ttQXhCZRCAim12HyvL1H2stIe/wdaCGpivpAn39LgiAEYFAXNzCEn6d6QOdNkqB1ZIs3sVpUFUbesCyG0g/z2veNF+B1ydgYh7CQVjMS+QlFRD9gqvA8eRjeb4+vyGNmBwlC9ymf3hDfp1zsSXFsKYmkgjHkwjwbAXKFsyU5f+WC2E7yS41xFH2cYjdxIjwA17mZU5Qp4VS/j5pN2DyLTBOy9+e62/+Sfsu+qC7eJB5rlAkRxiNvQT5uyRxgReob4tKmmGRwYT9xn2BiBDf9GnpbbJ0UqLBVw/ryCFoViG3gI5GJ3HuZjdj9KGjESJIF3FaWEyxTAuLLGUqfi2BjcVzfIMWt48UbgTJFkrZXg6bSRrUcG8gwC74VRYyP63+V+QuOnz5V2SMr1ak8t5xIJeBP/2KkJ9VF5TbhJ0mwQr4saZpCvgTpdRXgH6l1GreMw30b/bF2jVZcY09rqjtb3H+mxmy5zQ0T2eelygzQ4MsBkFCpLCoblkfHCRJkt2kOIBBkBY5bOqYNGk37iK//HkqRZN5niHbEBVH1YJYUMT//TGZwy9fl+kP6EJ+dQ1iIbh7FPa2ZJV+j8F6/QAAIABJREFUIwlO4Vgx6tUQrXoA3bDpHZrBMBWaJhFiqwUnX4HM0prlbLu1OZJ6LVbHl9VOdsUqdKWkcH98UP4uVaFQgVpD5JveJnapi02OJU7xPBoark+yrh3xD5jwsRDcaYoZR03J9HosIFbMZxw4aW9FFXcjLBzyVKhQZ54sCaIskKVGkyghspR5mTO8yBkKVGWp7oqsu6ILP4jqsEeXAnpbwbIL2VtcfMfpI0o3Di2aFK86Eji0YO9uePAJ6sEUXFhC/85xdEw0TDwcPBwc2tTI4NBGQ7tqBuUhq+4gch4+Q4ppBqiym34S5MhQpkYXi8yQoeoLAlz/uEzTwPPNra7H25zgm3yLIxymjUWGEhdpEMYiS5wuOhhgD/VWhMm549juG4RNWSBaLnIGeC7MrIjusCMGR8dgrE/I77OnoN6Cvg7IVdaKcVwX0iuEqKMvXKBtB0DT0E0Nx9JhYQmrzyN7RR4e7ZB26bUsFBagMCOasdY7lDvK//Gkmtxp+bdb9SxUrBHbCngVYEoK5HAQvYHjRyE3fybnS5CICRnO5MWuMFuA6QW5DpubeCkN2BuBQ7G1RistT+TASy04WfXglSac0uXO/OZOao0oGofRGEGxhOIS0EJbsOFpE5VMgz4jB32huH4EWNPgyYfgN74Mpy5AoYRupIkcKDL2v8Lcv/WL/Nf9ACmf6HaIrMHLQHte5CjOFHhVbuoPHIrC+CEYHIeXn97YHysWl5bsH/8kfPoLcOfdsDAPP/3RhinaUDsMuQDKaMJ4m5GHoHO3pMB1A5olIb9GEKobqH/WIPOLZkpXYCMMTd/Q24xJk5xATAIr9w7CU0dh34icK5dm4O0L0mjR9fBtGB1wFDc0U3A9GdgtR4pDbBv2JGFfh4RtXSWV3A0HZqpQtd9B3D24+veIu5c71D5wW6wsz/IXEzN8cb+Q46YjzXPmKnApG8BeGeMRp4tdaog97OIAY+xhmBQJBughQ4FLzFGnydWudlaT60MjIcIMMkoHXQQIEiBIhCid9NDLIEVyxEmQJU2dNCkCHCDEx4jzGRJ8lwoFXGrbqAcxTMk0GSFAE8K7fArqOShMQWYqTM4+gB1pow52we57JBCQvoKWWyG2HJa1BYoEEcIEcXApUGORAhMscIppllglFIrae9T8ZTuwUKz4/QAKN/En3rAGUtOgq0t2ZLMhgQ1Nk99PnYDDR8TMeeK8FJXfBuw0CX5cKbWoaVof8BNN095R7qeUUj5BvgGapv1D4B9ee5/blvSSHpBBJDRYxboAnqeY5yVCJGlT9dU9NxkEbwINA4MIYXoBaLBMnWU0DBzqNFtRMq1hZq95TqEpWzUsWuHVwtSIvzdtT8aRWkt8UwdTcHhICuIvpSEZERK65hmcwHH6cJ0EQgttuvrmABfDl+yVCvDs07A0J7a461mXbQaeP765nnCOZhssW/SHmg4LWZhNS0o2FJTHWM4aETZYky6YBAkQQkenThkXmyJpdAw8PNo0qCMevkGEBD8YgP0mvGKJ3bIH9OjQGRB5RNaDqVsgnA4uDi4toEqTHBXSFIXwAiVqnGCKhdUiGf9sbCgxMIhoItdI6iKXHDXlf7O2WKwu3MJns6jj0MKmKeR3Ff1DcP9jOEMj1PZdQZ+fR3trDh2DCkHKLOLhUGIOmwYWdd5EMYAQ4QSiv7KBDPsxOMIw+9lLkgp5FFnuYIEsCwTIU6VA3SfhxZsUbeXJ803+mrc4SYIOmoTJ0EuSBEmGCdNBnH5ZRFQOMRUTEhw1xRQgELbZZ9SYtP3K81xFLgLbkQtA10USkYxKYc4qCVYKGk2MYhOjnsWTTC562EAPxfEaZaw6ZCehURQvX6WEBFdzkoZs1TZwldIMWfg4dXBbfmHVraAim2lKOsVQMLUIrkeQBFH6SDBMit2AR4U5ckzQeEe7EiG6Sxm5NU2xRm62IF9893imqUFYh6QhfRL2+ES4JyjX+1IbninAqRqoK1u3qFGU0EgAR9AY8+/NoqjDdANxop7f+AUCJozvgs98FO45DOUKjA2jBdKYySLxuyD3HWhM3szAwRPHDVUGtw7uPKgyQbdK0Gugqyg2cZrU2MU+yuRpUMUNh6B/BPbdDSMHYWESmnUoZ2/0Fz93WqJSA4PQ3SPVVPrN5xYLm4QVQ2/ouO02ZgRCKYj1ih7UDK91921sck7XDCG8HQch+ybYVYn+RiKQjIn65JED8MAROHYYpuZFN95oynh+Fa13IXmOX0w4FIPHBkXIW7HWHHvqNizUZEK7BkGCjDNOP30cUUe4y72LjJvh7eLLfPvyDI4H+zvkaYUWzBWDLKX7OFx9lFEG6aOLHlJ0kqKTBJ0keYJj/FdeIE3+/2PvzYMku670vt9bcs+srH2v7uq90Vi6GxsJEAQIgutQpGaGHipIUaSske3QKDwOhx22FaGRbMXIIY1kj60I2RwrPB5rFtKcGZAcriAHJBY2FgK9b1Vd+77lvrzMt17/cV51VXV39VogMQwcxENlZ2VlvnzLvd895zvfh4uLF8qX3sgNLU6SgzxAL4NEiZEkRYQY3fRxiAepUEJH5//h90njMkSc95Hg/pAGMYVDbl3G8w4ikhAcopDD5jtCgQg8Me4rTkNhCuqGAXveDx0D0tDXqIJh4ueXmWONk4yRo8ww3bSTIUBRxiJPhbcZZ5ylq5ngd2M0CGjcTUN5JAKDu6TBqaNjwzgqlRLdukJBAHJLizRH/5xiR0GwUmoh/Lmqado3gMeBFU3T+pRSS5qm9bGNVXSYNf6/ANaBcuBDcQomXhSHxGZZJjuHKmUEJDjUaWUY+y5WSwJ0LSyWcKkSo4M0uwnwUAQUuUSFKXKcxOb6Xr5yU0wBNGTS7wwloso2VGyYzUNnGvrbpGG60oCIIaDY0NdBcARIIaLpWQRmGjSsJJFIDcMQ6aZyAQqrUCmKTO5Nxb5vEkEgoNd2RB+4UIFCGTpboasVsiF/OWIKjdML5ZnWx8EYGs1w8IiTJEMHJlFsLJK0EODj0KBMjgJL4o0BtGhistejQ1Zb/5YyoOhAryFSlpM+TPsbVdqd6GVpYLNAjsvM0sShsk1pySU0r1MCxlM6PB6D+6Py/EtN+FoVqnexUzVWqW3nkh6NQUsrdHTjo1H67LNEJ/8YvziGgYlJFB8PizxNKlgU+DayGHkIjQhyXlZJcoQn6ed+snRhYJChjSQZBjhAkxrTXGKSc8xxBQ+H9Z6e65U2Jd7mFKc4R4oe+jnOEY7RySFSdJOkHYMYAR66ilB1ZNKzfeEF9qcbPJp2mO9so+l4wv39wUl4Y0QusnxV6BHJqFxsrr+l7BB4sjAzwzS3pvtEgjJuQpqSCrNCfdB1+bPK8g2+wJbQpIkGwG8ICN6JMA3oboOPPyEI9s++D45LnEF6vUc5YH2MffwKoDHDTzjPHzHLSzjXUCUKZdnuNBK6mKsMxcRyu8WEoTgcSsm99VZFnAjvKuIm2GOgZoEPoLEfsFBMACdRjME1gP66SCbgQ0/Acx8QhY9YDPq6UW43bm0Mv+bS/knwvgb2Etc3CKgyBDnh/QbLgpSDPEZQpcX3yNJClB4skiwzw4M8yTjnWIgtYfV3w8Hj0NEn5fUHnhCr9dGT14Pgl18MM1PA5AQceQBe+fFNv1qBCq1kiPsJrIo0bnsNAUWBJxnDSFLA0+qF2zvkRgwyu2HPr0siqHhJ+MFUoc2UhuaBbkm+5EviKH5mFKYWZBF1R5E04ZEu+NCAAN5KyLtJGJLOvYHEXZo0H+E5PspHyJChjTbGGWfGm+GVXAt/ZrkMtTVoC30t7EqaVO4Qv8qztJKhTgMPnxoWFg3qNBigmyF6SZEIx2cND+9qxWpzJEhygPvppBdQJEnTwMIIa8I9DDDDOBf5GQOUGCZFNyZXcPgmFV7FonoXIG5dDs2pybFvloXv7dlSdSrPQ3XWgfQs/K1/DOk26B4W7jIaXmGe16lhYdNJC4cZZDfdtJEmS4oSdc4x9a4GwPcUiSQ8+QGxII3HIRYXhY9GA4oFAR0/e0MMpmo7qSpz89gxEKxpWgrQlVLV8PHHgH8B/BXwZeBfhT+/dbvvWV+F0e/C5Evinrg53JA4rmFsU8y9dcRop8Yso/whq7xBB8dpYQ8Aec5Q4AIVJrFDQeqYIWBwfaGcjAjwjRoQ1SXrC/L7qi3JrkQURhalP6hkCV0uYgggFirkABoDQDsbRe00q/MP0dFzBk2ri+SmJoslx5Yx/FqKwnq+YjP/5kagxjQEbygFlTq8fRmmFuHCJLRmhJPoB5IJjkZELSJwIRUqCGgIZNcAEyXGDxh0syu0dAQNDQMTHdHrj2uiz19SIqGc0SV7lQwTLFlNQLKvw6AhmeH1BjWHnTPwMTBIkyBN4rZef86R7ZEYfD4N/7JdDLC+Wd+mkW+TjN0dRSEHF09DMQdWHVVcZeWLH6T1P/wFCTuBUj4WBSqbHIUAvgd8D0UH8CFMLvA4/wnPYRKlQp4KeRyaNKjRShcZOkjTShs9eLjMM8puZDEyy/aKtgEeTQoUmaLELH0cQ8cENKossshJ1rhMPLw35qsChGcqsCvjc8TMc2qoR7LAl+Y2us8jBnzkGNy/WzICk8uSEV4/jGqj32Vdg1MFQpO6qzBigiaU2hmdwfXo7YQPHodHj4iI//sfhEyKiqFjzDsMvJzjgvoTMgwSJc0BPoNJghG+viMfnzSgKwIpA/KunIOUAQs2VD04VZVs8F194wf64eISQePbaKyh8QRi72sg3k9j3JL3bJow1AcHhuH7L8NqDqp17NUIi5d2se9/nCDaC81JKJ8A50aYOiiIdbwqARoYQ3T4AogkG5ihlU6SZMixhKYZaIcfh+PHYHA/TF+GK6dEbcCMhWX2a0LXRY+6q0eux9dekZ+34JzZuNglWH1bLqvW3QKQnKpccvGsUCOat7nAibVB5yNw4AtQm4PqDNh5qRgbDnS1C5vhh69B1YKlNXFuzN2FZSxJEx7qhPYYnFoTcq8CvIgsgFpj13H2DQw66OD9vI8yFYoUadCgiy5+hU8xYU1ywnqLbCwgYcIuP80jDHOYYcrUWaOIjRMa2PtUqFOmxgKr1Gng4OLhbZFP23J8SLCb/XTTT4k8JpGr10FJKzCljXJOe4usZuMHcFk1mVQ207hcugfDlNqqzLuBKzSI9aSc8uVxPQckM/DYp2DPUdEzblQEMffuhQefgbe+y1mkifNFztJGmkMMsJ9+Jlmm8S5yN9yJ0K7+D4iYqP4BOYgzM9DbC3NzcPmiZPWaTThz6vb4lzsYO5kJ7gG+oQk3wAT+TCn1A03T3gK+rmnabyJGVp+7kze1q7JtFwqfElPbv+Am0QylaGrMssLrGCRo5SBN8lgsbuEXdydh6b+Cf/QD+PPLG2OFrkF7XOhT9bCRLRWBw13Q3iqWyQBzBVER0jRpkGtLyZi7UDiIHxwF2hC4V0EhLBLf13AdGYN1XRpibzR3m8BngCE0CkARxRxw9prXJWIbWzopChAT80J7yKYEBKcTkC9vqEMkYgKKq2EqKYVOGp0WDKIid40CLAKKJIiTwaFJBI9OXb5RI8ys/n8N4fy+LwKPRGAgBLxJDZYDOOfCzxxY2XwPxGKhXfK9OY24+MyyEtroerSQvO0V90kbxlz4Rh2eTcApG+a9a9RfNWBPVLDBgiscituN1SW4cAqWF+QCKRXAcSh9+TOUzp+EKxchd+NsWy9iO/ktdH6VozzMcywyQY0SLjY2DeIkSZJliUmWmWaOUdaYvzo2pdnw1touPBxKzHKWP6HCPH0cBxR5xlkzfoaTeB3HgYXqxnxZtsWfAQ04rG9tigPJ/H7/JDw0DGOLoZPcRqyD3ZYWuQfuuWHYTMnx9V1uV7v3tmLfIPztZ+TmHJmW67WrFXo6KPZWeWnlDzhw+SESdJCgnWh49+xUNHxYdqDiSzUlb4hTboCA4JwrjXJ3FYNtcszG51DFURR/jsZDQCuKt7gtS+IggFIFzo/CWh7GpqTxwDBQSqd6BlCQ2Af1S9uB4M1KDwr8WVaBIQ7i4WJRwSeJhkaDGlPP3o97+EF46CkYOgBosDQlHchmBHI36E7+u/+pWIsZBhw4BF/8TRgbga/8O+Gf3ejw0EOGJFXquA2Y+alsm8OMi3pAZeH6v9dCyWPNENqfmYRkj3zFxZehNhOydywBXyt5+MFPr3+fu4p0BPZl4fHujW7WZmikEqhQ0Pd6KkiaNB/iGUqUOc1pnBC27mKIOHG+yTdIk8C0oyjboIjGOa7wAq9zjENEMPHw0dFwcFhghctMc4KzlKjiXtvItyna6KSDLkY4xyEeIkacCiUSpDiX/Rn/dt8/gQHgSSVF1rPAW8D2Pgx3FFZONt2A9r2QG2fr6rI1LtrGp38In/5taeZxm7Lo+qPvXvd+RWq8wShvhM3jv2xx3y7obRcMMd9oMnH2NERikgmem4HRyzBy+Re6jzsGgpVSk8DRGzyfB57bqc95J8OnQYGLCG1966zR9OEvRyBnQUtMrvtoWDHyAtnW+xGMsOlspSwN0x1pyRp3pKXym6sKKJ4rgAp62HDXbqIiE6hf+/uQ6KR0/vdIrH6TmDV+tTl2nZ4AcAh4Eo12oA48AOSBlZBc0YnixfUvsCdCJvDp0AKiESmb5cOVbMOWDPD8qiRtkjHJMNQsoY1tBt4WAe0YdGAwRJQuTDwUszjkmSWPTw4XnzjpYIgCc1ez0hUFp10Y9+CEKw1yB0PO7RUPLnjyuy1hmhCNykRavotacRg6GhUsLGxsHJLE6SQbGmncOqqBgOFaAJ9IwnkHLjvScB9+AHy5VTyPv1mGc83b11s797ak+Ad2QbZdykUoAb+Xz0KpiE6MaOg01dykLbyKtI0cR9GgTo0yJlFa6EBUhSWL5eEwwVkmOEuBJSJE6WaIBhP43BoSKnwcapSwGOHbTPEyoHCwcPzKVZGFm0J/L7jxKu7S3FU+cDoNe/fAww9Dfz/MzsLICExN3yMIjmQg2S/1ZacEwQ66hyViMNQjW7EC5ao0/M2tSGY4lcAggkmMAJ8ICbp4kH38LSb4zl19ZLIL0l3QcUiUpOxQHSM6BTUfVhzp5K/7AojvOvH9/YvwXzwF+zvh9DyMrKC0UyJ+PnOb6hK2A5fG4NQFmFuEyTmwLGLtFn2fnMS6LCwVzQTtzszSwqYhRZpW2unmaX6NRaaY+em/x33jG/DIc/D0r8LaAhx+DPr3Ci94eXbrG33y0/Dhjwkd4uI5aczp64f/7B9DWzv84VdgZgoTgwxJokTppo1O2lAoYkSwcVm7AW3Oa27TFKcB+obqgxGVLLAWgdIolK5AaQTsoqzfCISHulMsHvqS8FQffGQIFuswUoT5unS0rQv3ugFkIvI4PNdNmlzkIiOM8jqvU6VKJ514uLzAC5gY+ATUsPDwyVFilSLL5HmK43TTjgZUsVihwBQLjDNHjiJN7G0B8CB7SNNCkRx/yR8SIcIAwwwwzDcG/4gfDn0D2kPwq4DPA18Cvgr8G3bU1TzwIb8ugbAeAwfh8c/A3mMw8ga8/GfiyGdb8u9fkkjFpZE+UKKqtzmiprR45CpwcAD29MrUPbsG0/MWzPxErvuHH4PJcaE+/ILjXe0Y94sItU3Ho+XA754QbeCKLfO5b0LThGxMegrW3XB0TTIveUeaylbDLvVkFGq2SKMul2V1pJMBjoRcuxzKG4cT/zd84ndQ6T00l9rwq6FVYHNrJbeFDVHqIUQCK4Y0SomfktSxUnGwHohT+mASK++hf7uCm3Nxwq+62T1H1yQRkggTsNdOngrwUCTROUaCJ0hhAj+mxgwO8yji6BRxaFBAmRu9RwoBW6V4hNFdbSwmTV7TwWt61JeqVAuNrUc/HpedcRzhgtxp6GAkZXKNl6NSXsfHxsOncUetlApoKhh3Rdbtg3F57owdei3owFMpyQafacDlO9hfz4WpK5IBbu+EZAocm9h0FUeL0hJ7lJbmLiKkMUnSZI08b9NgiYAmNWAMj2m+zyAH6WYIkwgGJj4es4ywwgyjvEWJNaLEydAOaLh0EiVPJhzNbz6/CqxukKcZcvDVum7lNiArGoX9+xWXzk0x2BuQV83rZfA8n44OAb39fTAwAI89Ch/9iHhk/MmfQrUK+TvUrt4IHVK7YM/nIH8aiuel22inYjkHp0bg4cMi+HthQkBwuUpk1aNjLEuTIjomSbppUMAih7UdR/wmoeminZ5oha4j8NDnoeMAVBbh/Fchp0u/SW1NFDN8JWB42/fT4MgeOLALphdFJ7y4+dDYHgy0wjMH4COH4cqqNEOYOlxKw6k5KN1C2FBDKgClClwaJ2FdxtRqmJ6PX/CxXFGGcFYh0gbRfnBuonipodFBHzYWCVJkaGOY+3icj/EIH+YC/xLfqQkf4exptFUb1WFAWzeszoFVhfo1i9+OLgHAs9OwvBRyFS3ItMCDxyCdAcDEpIU0EUwimAzTRw8d5CmhcRmFooGNRWPLLXFDuT0tNL5b/2fYJOHVhbLuWbK48erQru8iq/poC4bpYB8NSkzxOktcwL+bqkbMgLYYdCUka5OJyuOVhpQV1hpC8J+rhaB4408dHCaYREfnBCewabInFWFXi8cHYnkSBry2oliwFG6g0NFo0GSKBarUyZDGQMfBpU6DMlUqWDi421IgAPKsUCKPhk6KNGd5kzpVvt/354wNXaTeXRUAXEUyv1XW+8w3JrkdjOussqNxsXvOL4rFZODLpJ1fgMmfr8XxOxmeL4okqbhUkCOGTNOGLsNCNAJ97dCZFTC8UhSpeN9XGxZ6ly5IVmMnPazvMt4DwbcZnoJz18xZypMKUiYq2eGoEmDrBvLT92G1KlXeaiNUo/FhrSrUCADFKhpXQl5zA1QDbWEKdfqvwKwTxHpxzF4Me/k6c4xl4HUUceAfhgrKGpIV9pC5JxaRZKqmwHkwgWMF8GYTLm0MnNcx3jwBwbGoJHGu1U9vIm73BtCFySARqgQkQ96wg8LDxdGaVwf2qwNGKkqwr5P6J+6j3im6uQRKJte35+DcptkvFpOO0kbjjp1BtCgYaYh0gJECVXTwAUP3iHoKr+Th3wUOqiu44sInk/BoTBrmfrbu3Hm+KaThBVc4IHf0xjWhfNQqYEaJ+hk6i4cxk+8n4XcRIxMyrZO0chSDGGu8jsUcPg4lFDDPy/w57fTSRg9xktSpMM3FsFFxOZSu07Fp0MQiwCcNpBBZm9tJMolY++3x8A1DTN862mt4HsS6wGuX0+o4oTpOA3bvhsOHoK8PEmHPRDQGe/bAoUNw6hSMXrn1510fmtSjW/bC4MfBrUDlynUuBIOE9AFuV9l3U8yvwnd/KhZeC2twbkxKKbaDqgTY5ShNFBXmaWUYDweLFarcoD5+i1BKdn1dMSeaElBslSIU1jqo6CZuY4Gmp25KrUvGpRm2pwM+9Ag8dUx2+8dvwcnL0i9wNTxf+KF9WWkq8HxYq8mKuWbD2NrNXYAMAzpaZSE7OoHvroFho5KSXDDS0JwSzwO/fuskvQIcbKIkiJMKWf5pTCKMc5YpLpGlA58ITiVAsxZRRR+SE7KKSGWhbiGIKeSoDe0S3dJaVbQnm+GmlIizmzJVaogWeZQIJgbdtPN+HmCNItMsskaBGtat+ddaSIUIue7r3EkVqg4oD9waBI6MnSm/my7uY5BjDPEIOiYt9BEjTZUVmlRoUsW5lZ5sRBfQGzdkUputwo/nJdN7oQBXStIgl2vKc7XrAbaFxQlO0BbVGMguEjF82uIB6YQiZUqCKBERQLTekBmgqFCnRoMIBhp62FEShPzfYNsM8Ho0QvqaNAub5FhBQ+d8x1vUOisyiDUQhs4KcAkpjb4FNzA63fnwXLDKoURNUYDw1FmRqqm/e2TO7jVcTzjp8Sj0d4gEbDQiWCMe9jibhpgPzq+JLHXz2suo/O45Hu+B4HsIT4x6WDM2qBGWBw1XpDKbvjjFrlahUJPXXxuKSwS4YbNJmvX2JG3ke6jhfoh3olK78azQUWdTzIVbEvgdYDcaJWAJydYGGqQS0pSnVj1YCe174rfOgTqeXNiefz0IbhCQx2MKhzFsWtDpwWQR4+oFpQGa0kTaKhqW8BSQicGhbvjkfdCflYPSloDxnFiuzhY3MktKSQYpErm+QSWclK6mxtd16nwfLSLgNzYEsT7QU6DsBugif2aWwRrlOhCsI3NDNiKZdEdJg1cj2Npdn9CEHrHbBC8GOR/yCspfLUmr/rmmCA/faThh5yM6UZJ080HarGO4VLFZI8DBIEmGA4hleAGXCvYmm9WR0FOylS4SZLCoUGZrycmliUeTGIS0GQHA74Qcu6aJ/vmX/g68+lOpLKPklHqeXFtzczA0CENDopDTbIpazoULAo5bs9DVLVnlOzGNkB3Qw1pzUtJxgYsRRDBVa0jxkPL1YeSaXUMoJm74+LYiV4JXTkG9IRpWb12Umw5ZjG4ukDcpYFPBuetZWcf2Mri+olSIMfW2orLWoLpiMDP+ALQPg/0dUVO4iY5nNg33DcORvfD4EXj8fhG4qNbFQfIqCM7ExB2hYIlArRl2ABct6GuBQz0yw9mhTeC1YRiQTkF7G1hNmF/GqQvK1eMCeo0k1C5wBx2wigp5OunHCOUYKxQY5RRFVllimjRZahi4GODpaKtlFIuAJtJVTYVGFoUtHxyJSVYqEg0vTlcuUM8TYBxmrAIULh4JYpjhZ8eJkQybbW1cmrfBk143LdK0cOjSw/6zUMY6cEIArCBOC3FaiJEhQgKTOD0cIkICDZ05TrHGGB7OrUFwPLQs14BcA15bFiqE5cFUBfJNUYhobr/IdXCYZILeVIkv7oGWqKipVVwZL1cbMtSv421fifmOFy6c742IFMcnSQmbGBUsath6uHS3gRJyw8WB1xAgfC58/p2Oegl98TIt0SqllSnJAs9dgpZOUYr4JYlAhbKpSiS3/1EWAAAgAElEQVTfe1o3+oo6MkKHmFyG0+OwWpLE37s53gPB9xi+EovI5bqYBDTdjfKjoUlJYG29WUjnetkG7RJKXUKRBboRSFuDoadBC6UZzCTE28HaXgPKAA4i938XkERjWlckYiKDRlPB10pCah279SBds4QbfCMuYRPFPC4nQnXgCWzaMBjDZgKHORyK+DQICByItMrXUOvyEihZKtqepIL6W+BAF7xvN5xZgBfDlF+lIjsQjcpEWt4EHDIZAciuK+DYDLv+azXM1oDkIUgfFyAcNCQbrCdk0m1MgH2DcmvahL0peKZTOu5XmrBkw1gNZqxQPg34WFK4wJ4HvSb8VhZ+0oDvvnmvfnfrofCwyHCANHuoMRlSHzwiYUNVmr20cJg6s1tA8HqUWKO0DYzTkCrhMPAJJIFyGSgTAj9t0ws3dul6yoNmsk682UhleSH/ZePFpgF/74tyGi+PSLW50YS2VqhU4cqoZBeq4aLEdeXxeV/oEJYlQLizExbv2BhS0mvR3DjqzX+Bai6SabSSYR8edZb4EQYeQxASRAQ65oDnIaxs3AY+s5rw6q1LntV7JSYaEeh9gJJnUMrtZvZ5j/bMCC2tq7DrMXjmtwEFl74H1ZVt6vCSCe5qk8lregnQpLzZ3Q67+6S/D4CD3QKEu9Ki9+gHsFwRL/iaLa5BfVlZ9V+5Ab0jlYS+bnm8uLJVAq8JjfF7OxwWVVwaWOTIMY5BDEVAmRUcvLBe1US8EbsBEy1vIko8HVI/U3WCv/4RfPpXRY8vnoTefmjJCgA+/ZaMRYBC4YTiXT4B5xhjnhUsmsyyfENO8I1CBUgxxQy50CEtIgi1CgNXNi0wGOAoJjGqLDOPh00VCGhjFz0cYomLNChhXTVYuElE9JDv60HBhtkavL09LSdChChRPDzc0LY3QZzjHIPkS3xiSAQmZmowXoa1plRCt1BBUFcB8L3HXuABFMss8zagxHnJ0yCipIwziQxuLyCyN3ffSnJnUVgieXGJx9Pw40uAJlOTau0RPuMvUaybgO3qhgeHBSv0d8DePvFE+trLIg0f3AA/vNvil+vM/IKjdg229BVcWp+0e3VZnVoKVjddGf06FAJolJHBugeYhdGJ2/5cB/g9FF9Gw0bUIU6Z8PWkwlxPBp1ryor4DsKyZbKMmDLHb44KARPY5PA4SYMkOlV8yvhX6RLrYuRmCmLdyOBuV3GXVnBLFhTrkKvDYlkywotlyS5tjmpVVOLj8a3PJxNhGgVwNaFOhOVLLcTDgSNZpli/ZIbjeyXLUjsNzWmon9/6lr1xeK4LPtsPli9d96YGY3V4cRW+Fa5BXrBE8s3UYI8JzyXhn7bB96y7lKG6LhRNlrGYp4sPEKcXlyoBHiYpaoxT4DQlzmFzZ40FGaTe0Aa8D/hfNRG5+g9KkiZEQM8CAegZadJRDgRl2bZE9llI7Jd6tmbKKqN2Fko/Al9Ag2FIdnd+XkBwV6ecm3xeAG5nBxw8KEC4WJBscEeHNMgZBlTKQsnRNNFUv6PQY2AmMVWcz1RfwK7mWOM1akxgU8AkTRdP8BA/pQfFAHL+6kiH75PABPB1bmoF8fMNz4bp1+DD/x0MPQLFWQpLUQqFCjx0CDI98Ov/OyTb4dzzkLvxONJ0JIFtGDC7DFdmpWpUqV2jNXtyTrK9H9wPRwdCDbyiUCBeHYfvX4KZreArHZGkcACyyhkZFzrED1/d0UMRI8Ea8wzgcYQIh4lwDpcZ2ukOZbhsomi0otGKwkYji04fCof12odOP7w2B6/9OxQN1JPH4YufhbYO+Iuvwh/9gYwtSEaziU2BAA2NKnXmWKaJQ/HOiTTARjY48BGzQRWuJR2DnsZDtLELl0bIxy+RZ5osA/h4rDFBhaVbZ4DXw1MyUd1G1j1OjI/zcT7Hb/AWb/NdvscYY9So8xNe4mklykj9SZnrFuqSRC45Mpzr61nunQRC2sdB+12gCOp5oArLP4Dli7B5ETC9g595BxGJwOAAHD8K2RY4fRbyi2O/mJ15ByMaEcA70LFx/bqhsVYmKVnhREzyeO/2eA8E/7xijw6tuowWVQVFBSO+JCT09ZHC5m6mWw/4CxTfDEebYSDuieJDe8vN/vLWcS343fK7MCtSJcBH0dzE6tIMAb/pfdD9LKQPyPPNVaiNr1D+vT+m/PDjId3BkJHf9mS7NoJA7rLBQUFTIJy+bFYaV8pleZ9qFZTCWZYmG2tEDk7yPiTTdVRKkHpKssPXfUzYTT9eh7kGZE040gK/1gfvb5Nmxx+swuqmpMaiO8CV5l7+NPIqn0lBvyFnct4T9YiJe+D9L/I9Onk/KXaj8FnlVdY4QZHTWMwT3KSTervQkSxwGrn5J4CLwChQjIHZDdEHwNwN/ioEJfBL4Yt1CNYTXZ2fg+6/K+Rrexb8GsQGofUjkH0aVv8Yam/junBlDP6X34eOdqk2x2LQ3Q09PZLl3btXJo9z52FkFPbvk1Mbi8HqmtCl6/WthYDbi4BY0Mpe77NEaafGFAofkzQmKXSimMTZwwnehyKBZIA9hA7RBZxhe+WMzh7hLrue+C5YP68BXykBwp37oHO/AN7CFMydhPKiePUuXxLAvE0srolK2YEhyQank/K2peqGPOLV+PopoSl9YK8A4e4MvHAZ/vA1qFw/QKQiAoTLjvRUUW/Aiyd29hgAi0yiUAwT41GiDGNiAvup0k6MVuK8hs7XSaCzD9iPz5v4rKGoATUggs4hNDrQSONzDt74Ppx8CU3rRPkLW+QZPXzK1NAQ6oMOOCQJSKIxQJoHqPEace5DI4rCxaeEy/UlDOULTUwzAUfGJhXI84EDnuWzwFk62YuOgUmcKClMYqwxxgg/YoEzVFnFvV2L7spGpqaVDLvoYTd97KaPWVawMbDxcfGIEmEfe+mnn3/O7/AkT/BjfsIFLvBTTnBqDf6b1+BYpySYVyy4XIIla0NYYsfkuLUvAY+B9hBC+C0BHaAdQRj9Pwb1KpIGBg4eA9eBlTlpLsi0wdw7C0azWThyCO4/LH0ODx+F+++DiSkYm4DRXxIsnEnAcK+A4FRcep0cTzwFZlfFhGsxL0oR6yzFd3O8B4LvNXQdUq1QLcCgDhlNKsSmBq2aCOEeCQVxC4G4RawEMtrtN2DJv8Ya/fZHDTMN0XYZNBsLGwzASWQXAiUTdEtKsjvvRGnCQ2TT1qvlmiHZw0gLpPZC/2eg9+PyS7sg9qEaCt1swoVT1GfAO7JL/tBytk6qsZjQHAxD7iZdFwmBanXj34YhIDmXA6XQ45LtVb4kIytvCSCO9ghWi3RL57l7A6ZAyRXqw/5UKJUJrNliSWv50Bcmo9cPYz+foY9Pk1X3gZsn4g2Q1xqk4/8tTyfe5DfS8JYtmeNx98ZnNprYmPx8d2uzbJVxxvgKCfpxqVLgJCXO42MR3IWo+iBSjMgg3oR54A/CCmIBIAHmLkg8B6nfgMaL0PwpqClQzWvkq6I9EN8XtvXPg7sKgSVfJvMYlH9CZ/xt9u4RALuwIA1yriO83vVrcWpKMrxnz8LyslTbz53fOOWeF5YU1faeBSlaGGAPKTKYRKlTYY4JqkGJIChS5QpVxmiyisInSpYIrURpxSZHCSEhHUGqKqPASYRS+AJsm2vXDalyahqkW6C1Q0B+rQyVknzXdyysIpz/ptiR+S7U12B1THZo6BFYOCPq/tuEUrLAHZ2R/e/rFFWIRlPGjC3hBaICcWVFBM6P9Mp9aslFHdWFLhwNK+3piNw/DW/T0HZtY8EOxPoCsBOd/lB5OY6GTUAKnaeIcQRIUuf/lToHijXimAS04bEPnV4gQKMXFcqtEfjSHEed7ZZACqiF/RsmWRIcJsOHaOXTLPK76MTwKNFkFI81QQr7+6WG7AcwJ+OV6m0lmJ6/SjdSyC3lO+ufE5BniiwDoTJ7lRLzNChSZZUyi6EB8O3TDbKk2UM/exhgOATAj3E/XbTxFZ7nh7zJNIskSLCPfayxRpUq8fC/Rgi4ay78aAFGStARquUs1uX5hifbzZRJ7iyeA+1RhLxVR4hbGfm3dgjUGHIXh+HYMogcfjgsPd3C1fB2omW/qMo0tr7Xwf3w7NPw5GNw8IAwgA4dkOmrbsnv+3rktXULFhZ3cHHwC4hEDLqz0J6RJjgQmVXLhnIdppbh7GRotPXz9b24q3gPBN9tmNGwiSIGLe1CfI9YUC5C1oVOTazQ3mfCJ6IyK4x6EPGFC9ZEkE9NlyXzXUyYicEwy7oXFr4J9VmwVzY1Dym5MJ/9ELx6QrJutxMRLeS/RtMQaxGw6VjQuDHnbPN1rgJRojDikBiAjvdLFrh2BbyKyP2gQ7QDMvUa/gw0Rhfw7VBXLmTR38/DDHn7MYIovubjOh41p8GbLac3auWRiGRpLOuqeoTywMyAkYFIFqJZ0FzwlqC8IM04eiVCeiFNI16U/dWEf1fxYKIOozXYm5TTstyEggNFF+Y3LVbi9JPlKBkOohGnqTTyqolOjKb9eX7mxzDNVzAQ2+X7IrIGuuJuzSSbPvjbrJZdKqzwY3TiKDxscrj30OERQ0CwAVeLwReRS7EGMhpEQNng5yG0BUSLbJVyktCl4zFADmq0F7yipLAiXZB9GqtZYiE/QcNSDDXmWVndaIgLAlnfrAPcWl3svOEm16kekftsE7jrpJc93Md+HgQgQQqbJkPsY5wLTHKFImeY5k+J0o5LGeFcN/Fp4FLmJPBweGwSCIVwCVlM5gDaxanLvybTG43J7R/4kGqBD35CFjFvvSK/f0eBcGlBdNC0sNHAtcWrF0IAvCY7aCSvtwcOY10jHCT727RvglUtR7aCBeUGDLZencl1TSoMTV+apLoSAoqGMtIw5fhQ96RvouLsbHUcROOhBY0eDIoERNBoRacNHZOALhwCFkMqxF4Ug+jsJcIuNNpQlFFUUayhkUCRRu6Km6exAgIM2tFpxaSTCL0E1IgxjM00vcY0praMjUvdMFjsyYobUSwiHUQRE/raCPZ0o67Moy3lUE4gtIhNBynPNHXyGMTQ0UNr+joeDi4NrtW0v1V00so+BhmgmwTxqw1+g3QzRBftpFkhQhyTKFHqWLzG67zNSU5yihlm5PtHslScCpOBomBLY3jZkXHT9ncSAN8H2jHEBcNBKqatoAVADNQIqMvIXRtGbknmrWynaAUW7gIEGzFRlYm1ixRLvFMmuMYalK9c7dFpa4X7DsID9wu9a20N+nuhUJJWlkZTxrrhXUIBW1zc+Xvg5xmGLk64iajQJdNxMQPNl2GxKmoQl2dFEes9EPzLHNEYJFogmYauIejZDauzMHleEIQRQFWD2QDmAskEJ8LMcCmQFnRTE7Bc10SK4HYjm8GgSWq3S+dT0PVBsdVUL4u8UFqTkoWGZGYGhzbEFG4URjiJ6Vpo/2zIpGVlelBDT0KyE8pzMPtaqNZuCyi+TigRyWZ4EHhAEHJKA/Bq4BRFoSpwBM/Ee0QX1JksE5RDAEuEYY7wBM9y0L+fqB/DxaGBRbVZoarXGImOEMTCFJznbpEMUJ7wf9MHITEsGWnfDgF4RT5fW4iQLrai4ho5CtLXpclkvWrDxUpIG9BlMVD3YMWGkU0gKEYXEURhoMECdaaASWJ04HnHmPNGWdJeYZcJu0w4EoVDGvQaAoQXPFkLBRsa9KKooW/0MnlY2Kzd8SS3XfiI9si6fJ6D5LkKgGNAUwdlgTsB2svymHX5N3XN6farsvNGEqJ9suqwo2Bm5cXRfqzabqzFebRICk2fp1iUScH3Ze0STwhP2La37d/aGoYhArmbQHA3gxzgKIPspULxqoVuBz2YRClTIMc8czzPMA8BDnVsHCJEaaXCGGsoXgi/Zi+wiFhbzgN6K8T2gpO7HgQnUpLtUQq6+uDjn4W1Jbh0aiOT/Y5F4yYNWG5FZL1SWXFHS2RCdf8bOTZI1G+3p9MLYKUiqd9gAwSbOugK9mfhiT7YHdKwao4IDixbcHYNJsrCCFs3IrN9AU33EiUUNRQPoHOICDn8UOnDZ4GAVVwkJ92NwSNoPBpSIHqBKIoCAafxeR119e5QoXLEzUOkvpp45HAZJaGfwgsa9Buj7DbHSek1XAU5U2MxGZd2+pZkKJtiQCKK2tWF6siifesEyrt+lWBRuNr0tk6LUCg0tDumQwG00cIQvXSQxcahTpMZlumhgyhpdjEMxIgQoYN25plnJnaZ8+oiE8ESOc2FyJBkYRoLNLwaeHVinn0V/N7rOZVjq5EgRZReyvgoKsio1eBqhl7NAD9EajebeDy1MFnQqMu1796NznwUMsMCglv2QbxDbNfrizIYeg1wyqKM0CI82VwOpmahLQsrqzK21WpQKkuDsNX4mwOATVNcoE0TCmHl1AiFRWxXEmxRAwY7hTo3swITSzC9DHNrVwVy3vXxHgi+m9ANEcZOpqG1G/YdhUc/BhdOYJbK6PMurNTx8fFPNuBFB56IiEVaRhOUWlUiOpvWJP1kcXvSq9EIHNxHzJsl1lXATEjWNTkoZmMZpI9lb4/MUaWS2HRvV0rWEFWvuAEpA9qjUv6vejDWOoh99Asw8CisXpTvXVsR4/TKPNiVEO1uDeWDW4baFORfA5QA4KAZAikVJpFUSJ8ItTIBEiT5KJ/hUZ4iRZoYcZqhF1qECNlyK/+a/4GaoaGUkvTVtYeoA1qOQ9v7RZnCyQslQjOgMQf2GwrtksaBxkHWeHPLRGIHcKUGZVcmdj9spC46UN70VQ1iYYtMDo86Ch+PCjoGEdoAn6YyGXU9Rl2RVPtUCj6fgVUPvm2JpPBimCVzFbgGYGxI6Xm3bLS5kdzI9lFHqA/x8C8c5JKbB1REEit6HpxLwv3VWyGoSWOcciRDvHGgZsFdgcj9ED8gHBM9DWYLNGehfgGsy2DPohl7ScTDjHuoquE4cs5tGwrFW7hiayHvIJKUSWhTZOmgk150dJrUKZEjwKeHIfrZzUGOkuMHlLhAOxXimExQYhEHjVasUK3hJYSevw+ZSkeRTHB6N6QeBH1criHCzLVyhI5uRiXh1DMAA8NQyovcbKUcqt39IqJvL7T3CBI3o5DtkMXiS38p7lX3WotVbGmG0zVxxOyMw4eH4O8chL1ZKYcv1mGyDOOlkHPvyWIzGuqHr1j3DpjG8TiNy3EiHMIkhcYcPi/hcBGXM3hALMwPP4TBU+gMIaV1UKRQLKNTIWCVdZnK25EV8MjhkQPyZPRxdkcmqLmHeDo+RkLziYfsuBUTXk3G4P5d0JoWWkTDgaWCECo/ehz112eES3CT87OeBb6XSBKnizZ6aKdMjQY2MyyFrprQzz46GERpPt1pgxP+a1zIvErOqWN57RA5BNnDkNwNzSVoLOHUJwgaswTK2iEArJMgyX4OkUHjrPoxdQZC5r6PZJEM4E1Q32Fb0pJri9pHWzcsz2w8b4YW7kEg98YNdyKsdjllyO6HrofBtcA4B/V5GX4XX8N21NW+7YUlmF8QykPdguUVAcOrOcjl4dIO2Te/UxGJcDUplG6BwWEpdJ99Q4RSTEOKtYsFGF8US+RsSipKs6swMic/6zvlavhziPdA8N1EtkuujGwn9O+DY8/C8efQZkYZbu4ja7fj4lBggXmuwCVfJMrWArgvBMITvmSJ9xvQo4OhhC98s9A0qbs8+RjqskVjscjSDxTliyL59dwQHHpGpKQ0TW7EM2fg8kXJ0qzr3G+OpCEAeDgJ96VhKCGTWtmDpWgEu7YiWaeWAeg7BounINkB6W7Ij0Np+oa76tehcgEmvwKFN6VBLtoham+BCXYOapMCSp2S8OBA8i8WNR7mSQqshkbHRWpU6KKXQzzIYR7kYnMaq7wqHQjXHiYDYp3QclQoGbUr0AiRX+CC1d2g0LbAgfx+NDTMiML3ZTz0lTj9JQxYaGzfRK0Tw6GAzRomGSK0EGBjkkFDI0IrCQaxwjblN2zBDg9F4dMpkVZ7I3RWvuzApAeVkEpy2710Rjbsorm9jrF1GnSTG8hmhjrOgQeqBv6aqERoMXl7vyjPX43SX0PiELQ3Qh06W9L7zQkovgCll8CW705jhHhcsqaBkvnHMKFYhG/91a32WoNMN7TthpY+2cGVy6wDf0VAlDh9DGNRo8AoioASOSoUyG8qkT5GH8fp4TQrfJ9Jzl0jV/bDG326CfFBiHaC2SZccr8muraJFMQS0LRgegz+t38KizOwMr/9vPrOhwZdA7DvQWkGynbC7kOQaYdyHk6/JDu8g/moIFzUxk1RC2iNhZWGQACvF0DJhmwUDrWJ62bdg6oD1R04TlfwCGiQROODxJjG4xVsXsZmkQBIoHMQnV40upCrZhZFFbH2sYAY7TQp491ui9mW6DFKPBsr8esJKAYjrIUyYd06DBoQpE3+4JF98uJkFI7vE9LkhRmYz0na7KE98PYY5HfQzfAGUaFGnQYxovTQwQTz1LGYZZkmSSKYOFqDtdQ4w5//9/SuwtwVWJwDS7VD21HoeJ/w8Iw4aAZ+8Qz+4ndh4dvc+7WlkaGFIzzEl/ktFpnDUd9ghBRVrR/Rtikj3K3L3NTip1aWwSbVEpbZwqTB0AFIt0rGeOrSNrthCgUisxt2fVzKirU5MBPiUvPIF2D5Td5826PZhN5uaVdZXYPxSaFJpFKwuASvv/U3gwc8fEhwQjQmY1siCQcegKE98J2vQrUs7m+FqjjBza1JBvj0BFyckef+psV7IPhuQgWhng1yvy9PwX/8n/hHzx8isD6AwidOihhJXuQ/cpofEUyG+iEJDZ6JwD5DQPD4bTY0RKNw7H4YGoB0isbHvoA38jbNE98h0we//VHYPSR9Y3Nz4rB18ZKUnAMVljFuUJ7VNQG+T7bD+9pEK3ekKpPYf81f8/ximlOVBUCDwoQ04ESS4Sr5OqLo1sPkQX1KFCESAwKE431hRWkaSmfBXmXLmFmjwp/yFX6Df8ABjqCjU2YAizo9DDDBCP3sYixZxkqGxNLq1knDXoHqJUgdFJ8Es0W2+jhUL0DlPNSLNj9r/xEfKDxB3i0wzwIVquhAJrwr+uOw5kh2+NqoMU6DeTSiRGghxTA6EQq8SYCNh4XBVlm3N2341yVxmzscgW/VxYL5b6eg34VpD4q+FAgqgQDkq6FFJdPqhxm46H5JR/o7N+ooe1O2N6TQ6S2Swb8hZ33p/4Cl/1P4J5nHAR2KP+BanWClYGJSXGgNQ06ZbtyGY2b7Hjj4nFAgUp2y8PJsqUTkJ6GWYymYoUyeX+MfcpwP8CLPY9PAok7AEm2btJIXqTFHhdOsskydh+nhFNtwBTURu1A+OGtCrcm+D+qXwC1A7SJcuQCpUK7a92BpDuwGFHM358IN0oGBzsw1Os4PMESKOGtUmNxuv24WugHHnoFHPgwPPgmDBwQALE/D3KgAgWNPS4m4URVQvDJ7559zTVieKGMs16HYhIUaDLeE9vG+ZIR9BR0JWVQu1cWRt76DC4VxfH6fGiew+SkOAZuvwAYBF0JzjBw+JxG18yqKZvj8LA7lm9r2bhcPmnA8Cu+Pwq/E4btNaAt7pBXwdirFPzlwAJZL0JWVJ6dXYLkovrIzq/IzUD+XdvozXEFHZ5ZlsqSZZZkiFXwCilTo21vgqcer/ObTivt2w//8tdA0yewAvVPGfq8G9hok+qHlPmg5LFskA5Ux4bz5IRXBq8prbyP2cYgOujjAfTzHr/ARPsW/4Z9zmfPUqIBaPz4mIvLYATyI6Nxc0wi670HJAPfthr5hePaz8PaPoVqUsqlugLWNn3J6F3Q9AtEMJHsFADfzkgFurEk2JZ4FRA7t1FnJ9K7Lhfk+nD4H+QK0tcEzT8FLO6sQePdxIAnTjQ3h+02RbZUqXSIlhe7Ah8kR6B1kC0XeD+SSzVXgyoIYZDq/eAfku4r3QPBdhFmpYFRtAsvF1Q0MN+B33vzPqTQmWCGHi00LnXQwwOf5ZxRYZD6+gLtWhZ+64rRwp9rhugbJpMyuVgM6O3A/+mm8v/f3qfd28K9GzvOp7/739GYa7BqCo0fhwAHp3XvthPRgZJJy8TaaGxeshtAf9iTh4azQlJebQgfoicGX7BfY40zzlzwCThWaJX628CSvBFd4JUhxnnam1vUZv3BcOASVJkzk4bw0DvgW1CeFIhFtl4ShnQvHxRvMOR4e/4BP8V/yzxhimChxPFxO8TojnOMnD85RS7fIAGaGQHwTEG7MQv4lSU7ay5B9VB5XL0L5lFTyo1HQTcVbnOQjPEs7bUwyzSJLVD2ohefH32ZOtFllfVTQ0KlwMfy32H+K+kAbGQ5RZfTq342FLlCXI5DWYaYVflIVsFAKhDYRICB4S2hxiAxA/AEw+yVV69w7gLlVBFVuktgJsypuHsqvQvrRDb7L5lcpOH2aLcZ+N4xYVF7QtGWiPfpZGH4CSvNi/NAoCRh+9Etw+mtgv828PcnLfJs2uvgcv8VRnmSSS5zjdTTKHKebJh5nWOV5xITFCY0ORvE5TjdnWOUInSxRo7Apq2S2QOqQbIm94DegOSfze2IP2GVQ5Q0dfMcRMHyrjE8Ug0MM8DGOUqPJDGv4BNi4zJNn5U6bH5NpaOuBti5ZJAwekON45RQsTUufwtgZuHJaaBK6IbPbdhypuwxfiQnZtyalOS4dEbm0VEQywiC/LzQlC9zY4UmzgeINnG2GVp8Ipwm4DxhCNGosFHkUV3iAKUbI42wriLd9jHgw5cPLNpx3xZUyGdIgTrlwomQRFEbFUzZXlsH48pwA4UZo9vPQHrg0C/Um0dA23HXCpP07EMvksWji4LJEjiCsefkEBI2AK4uKb/8MvvkGvHJeyt+240GkKQoJzWXhnrvr5SEdqmOinNCYkyYVvRMwNhJGtxEmJi20kqWVBg3+gj/mBD/Bvnpfrt9cLuKHrCMj5g3O28yITICJI9C7S6R4ZkYl++sHkEgL6fVGETgCet0aVKagNCLzXyopmaU4cBykWD4AACAASURBVOV7oAIuXoKWjAxbKoCLI9L7oGlw/pIoeP7CssBH0jKpe+r/Z++9gyxNr/O+35duDp3jTIfJYXd2Z+NsQCSwIAhAJKiCGCQVVZKr/JccKP9lu1y2yy5XueyyRJlFBZbKRVKmQIECiAwSm7C72BwnT0/nvp1vTl9+/cf5Ok73TM8mYk2eqa+6p/v2vV983+d9znOeI0UuPZbs2IK9Jwju6IF3X4W+QRg9LnKIbB4+/cvCDP/0OzA/tfNvyvVPRlOM/eJvQfD7iCB0CfGFslvT0TxFf7OTFWo4tHBpo6HTpsFpnuAoD7BmNPBCF0oK3vLl2b2bUCqaZQO549Ip6OtDHT5MMDxA2cwQ/NDk0iWYm4PBQWGFP/cZ+M3fgO99X7SYSt0qiWgEsOyIRdiZLIwkZUIbT0HVa9PRXIRGEs33eLDk0XLLdAKDpJgf7oe/c1IerJO90kVqrQkJC7IJ+PnMZrGcWxJWUY8LML5dvdcqS/xx55+Szg9hdPej+nqwcxZ1M049dgJVr0rHhTDcegIjIKx8GaNLL8vX1jSUqnnsGwFOwSGse1i6nErfcih6RUYYIUMGgEWW7pjR225JJC/dSZV6lAhosrvCvBLCFQ8KAfQbYDZgygLikj62Hem2uePjrUOQOA+Zz0L8FDg3of490SnsZXj8YcaBBrdQLqhf3vcP7tjuOJsWvbsbteBNd8O5vwtmHCrz4NRFCmHGxRv3wj+B8hyBM0mFOa7wLf4j15lnnWssEFKjA48sPkZ0DXpIskKTbpIMkSGNRRqLk3Rxlh4Ok+UmZeaoM6Zy5OctVp9YIzakSB6TebF5CexZYYc9G2xtC9iHkS/qnSa8LjKM0MMIPRjo5ElRokGZJj4BIYocSTwCplm9c/GTFZfJXNMl/Xv9DWF7FyakSl6F8n27IT2+tWjwuQtwcpBQiDtA09vqoJkyRf8bhAJ8E6aAYDv4aAqEbifDdmmi8W7U3D2OooZiDUWBOiv4+By1YNyCrA4zHrx9AF23h+AJO4Dv2tIXKa5JJmcphHKoRP+7WoG3ouKtSgOa2978RgEa0uzH9+SeiidkgeXaIq/5MIFUkSoV6tHia+fDWShLpuOdKbmnS3XZVZcQ9JYM5EZCbHgAvIowHNUrkt7brH5OgJaKmukkISjccb8KzGMRI0GSFk1mmGSCq/h7Lk7ucHF8T+55pQTwuo6kbjJ5scBz4wKMewblOYnCSoORKoN2mcC18MZ+B2begJNPyUVpLot+rzwLSuF6cPEyzMzKPV2pCMly/Ij0WGn/deljRxMwEBNiSinRPg7GRet4NGKDGzvHgIuvQzoDQ6NS4zB2XE5bvgu6ekQmsTs+yQAY/iaB4GRGRpTAlwfjA4QilIp9r4VWXiPuxKmxRpoOGpQJo25CIQE6OqV0G99QoHSpfqoi7U9Nf5us4g7O4htFYBviyt5u6O+FVBK9VOLExe9ihh6xmDx4tRqMjcLIKJw9Cz/8sTALuhZZ625jgmseXKpBt7U1MfVFur4VB1ZrNShPglKknCwvMY1HgIOPlkvAoyNS7r3WFGbD1OFQHnJxAcEbh+CB34J4AN0K+qMxtOKLDre5a06+YV2D+Ar0HYEHM/DEg8KCX4/D7Jyg2CBiHn1/BxsctMBeAK8MrmNRDy30ckDYUOLDacoYaegwq81zSp3iHPdwmpP8kJ8wzwIt3j/ADHH39PL1kMmxubEA8KHdDT1HoL9bLF+XJ6C8JCALEE1C4hRknoLYKNiXwVuKurLdSqfpURr242UfQimOM43IMysCWoYuC7buTshnIi2ELj9Hg0oNVtZkhx13y6Q2DCCeiXKLvtgcbdyd6W44/BD0naCjUWXI0cmxzjovEEZ+F5nI3skDUlj0kuIzHGaSCgppkVDHpYITNQcI6CRBJwkWadBFkuFaBveKTXC6idMdENqS2fWKYo7xflBcLzmG6KKHHCnidJAiSYwlKixRxifAwmSEHk4xzHd4jRlWcfZSinf1Cz2Tzknxj2vLeXr9rwQMry+C3ZTcZjPSjTttDFLIMu7Dn529UO7xdiSDsCIZloqK4jKWdFj+WCdOTQPLInRdNG4ibsLxyP3BRqNAC49uQzFqwpNJuCcGr9tSvDrvH6jBGj6wEEg2Rwcaahs/GUbewEulzfvGwiJFCg+PVnlrTtowM9CjR8SKb5H3SsnPdSNSo6loGNzw0z5gUdpu4Ls9mvY+hU26A0ZdqpytvKT0WgsijWgXpBJ6Q/ag94J5RLruaAb4c/KafUO68TSwKVCgRZMYMVZZof5B+h6HIcRT0HdITt7agtwPxWU5ac3aDl1WLAvpQTBiDm7NwfVieF2jkOyG4fPQXge7LEh5W5FuqSzb9kgm9qzb3gwrLfJiNEmg2Qfoen2g0IAuC06kIW+J5m5jpa4hXaC6Y7Dk3AKCNQ3uvwDnHhEmOJcXGVssLvfdJ6H5xd3G3wwQrBuQ6xaP0cCDpWmpkt4RGjJ03QU7EvhorQaxVpGrvMwwx8nShUkMZRisZmwupZa5aN7EqzU3c6V6zKKrO0FH3KFU0ai3dTw33EKmKpT92T6ihUoAoGHIrlqmLDeDAO3aNY58/w/JJRzyIzJYdnbB+LhgjYXCFgtsmGJ2vYk11BYIrvtQsEUjnDFhrg1vV2CisjUqrqPxAtOkiVFO+lS6kpCOyRtNrEPdgd4MDGTk57sjhGQI51Lw6S7J0NxswcU6zLTEq3cTDLu2NAVorIPuw7lzsLoKiwVZDGTSclCmIQBqfX3TL5hQWOfQAW8uBjEX028TqgA/KgoOAjmdSyzj4nKe+zjCOA4O3+NH2Cxupgk/7PCBOV+aCCZzcPwCjD8o1+fS0/DeX0G5sDE+B4AJZrfogO33wJsBtUdRIPIeG8e3X2g6xNNgf2g1OKG4RcRjUYMTXe7RTBrOHIf7T0Nf1GPTMGSG6MjC/BL84Fm4MS0+QhuzRrsCE8/A0H2AEpcDNIilpEOaYUK6h4FYP2cdxUm6sPHJE6efFC4BNgFNPHQ0uknwAAP0kOIGJa5TYoKtWSuOQS8pGngEKOq4OATkXsyxMuhQKwSELWhPg//+rZoZoYdx+himizwp8qToJU+CGB4+ZRo4eFgYPMYJ3maaRcp7g+Dho5K/TKblgi/cBHS4/OrOsaO+tcMaRlTE6RN8gEXeQcINZdsejb+OgkFNk7EyDFH+OgHvokWgSydGWlsjpaXptxS9JgyZ8GBCnqWftcXO8G5GgepeAD9UoimIIk2aLrropIsqFVZZpb3teoShkPkga5x4ZHlpWLLeMU0pMAVh6uyWcDutxvtf/FoRwAnUrcebALzQJfAawvoGbfBjYK9Ae1EArrvxPMXAOiKtJxNPipTL/jnYz+8Ys8zI6l3XQSkT3zfxfI2yqlKmiKwW7nTmN1DZPgetR0UIsQRkOwQMmzEhxVbnBQxHC0TdhI6j0Hlc3M+K1yI5mNeGh35HnJEai6IHthJbi/R9Tvj8PpjfysjuZoYFdHsNgSUfGgjWNbgnK1KIViggGGRyrfjQFxOJxB6AduwEPPkU3PMQ5DqlxmGjyNf3Phm+v3cbv+AgePtV+gDUQSorq8FDJ6RiOpWDK6/ses8YW1b5B//MkIAyy/yIf8O9fIYh7Tid2hDFTo0/efIy3DsIf57GqAVooQPKJ2fBr59v8atPwn94Gn56OcNSObYlmvQcDMsAt00YhFFBayh9Y69NiCOC68LSKgwPEFy8yg+H/z7/7vi/5M1XXEIdevuhf1Dx7e/AH/wrAUSpRMQEb7vqdqBFldyKVgBLtgDTduSU0A7EImzz9fhMsE7SiLF+Ks/ypzugNw3LdShUJffZm4KxLli9lXHXNLFh+2IPfH0ADiUEeF9uwOsVeK4IL0ZjqRbU0K0aFFdRzywSxlLi27K0DK2mvFkuJ/0qNV3sBsrlLSAMW2Xqs020YcnQGR7oUZvSmCk2XQtBgWVWeID7ucAjvM5brLASldh8dFFVUnk7ck6AcKYTMt1QXQWnCc0yhEEVnBvQeE4qlp2JLTuNXWGagj09f28QrEUMUqoDjjwC154TGWmws5bt/YfjygYicRjohV/7orD4q0UBvW0b+rrgS5+WHb54Hf3tS+iugx7ZPzteCN/+L+Gp/wESOcgOyDMQz4lN0TvPwOTPyNYduhkmhsEUFSo4dJBAx8OOGN46Ltco8S6rm9/fZCdtc40S19iahS6zzmXWeYB+am8r6pdlQYUWfb3LcxXDJIZJjiRH6OdxTjJCDy0cZlilEbGyNh7LVHidmxQo8TqT+PstzLOdMrYdvw+GjsCP/wRmrt52Pyw6ED3sJ8TE88OIMJTe213dUCqBKm9ePg0YsWDUqtJlyIQ45cFPmpHq1L4Lt5YDhoHBfdzHCU6iUEwzRZ4817iGuwdD26wJ8O0ZlBqvvuHI19wRIKxCaNZhtQAz1/bXEW/gnj2koOhIDUioJFveCkTTDHL8YxisEFIOXbEMs5eF9XXWhQ0O2lvvZAyAMSRfrVOgpcFfBPM4eO8Bsv893TA8CMkkBIHNehEWl1PYThwVSoMgVHOPR207LtgoPvbY80r5Hty8KCfFikXMhym64GbEAPQdgoVJkr0w9pSA4PINAcFuJYCbfwVdR+VEFydh9aqMQc21u15xaAYMPCh2+5lDAnxX3ryrt7hzJHT4Ug8Mx2GqLRfTDbcqVcvevqmYWAy6+oT5DQNRj6wsiPtNaf2v0fbxI4xfbBBsDoqWKGxA8AHaHjYqsoTOdcMDvwRH74eFG1DbZq6NhTSTzUXfa0ABDsiWrCTWWIn/EBIZ6OiHs5+B3/7foLYOrSqPHW2Qj/vSLCgH54/DLz8K00vwxvUGS7sGrifOyEp5YgHmVxFR3dKKbM0WXL4OL74qkoi2DYUlnrvg8ZPpo6w0fPh5Df6lDze37LNadlQPEBG0OQzymDIwhgrHDSm4ITErpLLHHKmAqQ2g8OQROJGHjoTof0c7ZbMM+Owx+f5Ht5oi9hvSOCJrwktleT6dUDyKj6ZkoN4AwVhgPQrmvaDcAs5/+p/w9QeEPthol6xr4uPSkYcHH4SrV2FlRTQhlg4D0SCpiTxie2gapJLi97rcnOdb7nd4lTcoUiQgYJghlljB/gjSxhvRdTiqU7gCrYpIXtt16BmB0oIAYdexwVuA1qugJyGs7Jn3jFmRzyNbioTdK/cjj8CJT8HxJ+Hkp4Vo/97/Cm9/F+r7d9l9fxGGovENAvj5m3BjBmoNubFrDTg6Cv09UKpwbizgaAZOHIaePPyz34/e4y//Zxg8JzrgZB6WLsLk8/DutyD0adFDBZsMFkXaXKNED0nWaeMREKB4J6oan6LCu6xSOUAThI14ixW4uc8vY7oUnNwht58kxu/yVf5znuJtppljjUmWOcEgeVIsUKRKExuPVaoUKDFCLyninGCQKVaw9wKtui6L+6EjcN+nYHUBfvad2+6LSRqXEj4fTBL2yYsoA7EZaWT6qxICRy0Bw39a6yDuKo7lq2JnmIEfNN5XQ8994wt8ga/wVfrp4wY3UCiuc51++lllFWeP+9NuyTgxNAYPfQ4aNShMifrFMKH/MAyNy/eXX7v1M5M6PNUrmfBvL0N927pKA05lhPBYjNxw+tF5HAsXxQ9xSaFhQVRtHFU0h9FZCXffmy7SJakNQaS19SfZXrw2NgJPPAKPPiQthQf7RU7wl8+1eOei2Iq1bVlPqxAq1QShspC52UIIKxONPhRtxACyEn3GtvNXmJRVxNwNmIsKlE/cL2OTYUba+UkAxn8ZHv5daK5AbUbYYFQAEz+WjnGBA2vX97UFvVPoJvQ/BF2nhAGuzkLjzjLpHZGMS7JNKaju9QjnTHisAz7VCRc64FoTbjQl3Wq3pIhhtg2vVsG+dQ7p6IbZCfk+DODSG7C+Kozwj761b/PJT3T8YoNgLSGO/Zpo2Ag+wCwdBrJ19MGZx+CH/xbqpW0ruTxwP2hngBlQq0A/wgyvwZ0si6x41EAjJxNTcQG++T9CfZ3HO69xctAhn5abOJuS+eubz8Ds8hZxBpJFPn8ChntganGrremOuDkdnZ+dVTn/YSrEC6cErY6m4cuH4O+MSIP361VwQ0mpadCJyUmSfIFO+olRxecmbS7TYsazMfHx91iD5yJ5lMUMTM3iLOVYmyyKBOLfvQ6fOwovTMP1VXGI2BUKwQ01XwrxmgGsu8I8gwzEAIcQg3l9HGJfjMiEqyHBj99GNYFMFiyL/KjPyc/XGf8VjeaiorkY0pgPWbyYoXA5B0ZNTH8XNXbTd44j5z6bBc9ts+AWqFKlTRsHlwUW8T5kxsxKyDopkZFbL90hE9nqtIDgdKdsPaPQKMLaDLjtKjjXJTfnTkYssJwwTdtifzckEO4+aavBU3D4HHQMgtOAtSnoHoXf+r/g7FPwsz+Ey3uZ5b7vg7WEDfZ8WFqDRktG8I4s5DLCDL/6Dly5yfCgw2P3wBP3wr1H4KlH4Lsvwf/+76G6fEm8gbWta/hUeIgEJkfoYJAMNj7DZOkjzbus4hNSwqawreHISyxwhA5iGKyyD112N2FGXSC9UFZz+0Qbl/+T7/E6k5RpME+RI/TTwOZL3E86al27RJl16jh4zLPOYbqZYAlvPyZ4cQqW52D2Knz3DwUE7xEaJmnGSDCETy1qHf03KLJZWSCnUnDxoiySXdEa+MB1F/5ZJ3wqCS+103y/0cGs18MX05N8v7Gn78BdhYlJhgwWFgkSnOEsF7hAhkykf22xwDwrUXHe7SLTAacfEgb44ityyV1bSM5cF5x+UJzvaqWt9HUYQqcF/+gQPJiXwufrTemOWfZkHF5yRBY3hoHBRhtqnUiERA1FR+TEsKp8kUFsxvZxVZPBOmyKdMubEjDsz4I3AcY5uvNXOH+vz/ioPNLNlpQNPHgf9PZIIm++AEsrBtCDxsOgutAiNb9GHhgE0miYKGxgEsVFFFcQMLxt4qyuy0lBNK791kXqVahWwPEUyX7oPAHjXxLgO/esbI3FbYd140dynAcVXSOAt/8BMZVoFCSJ1XEMhp8QLXDqipDqpQM20Dg5CgPdMt7XGrBWka+V7e4MoZJJ9bmSXOyhuKRyFx2ZXANgzduyPcqnpYPhvGi5f/RnsLoEx88K4P3hn20V+35kLeD/muMXGwSjgTUKZj+0nv9gIDjwobQkDHAsKegjmdmqHqUFeKD9BrLK/OegZhCwESJ3z15daTTRGIWR6DbwpKKpURLdsdvmUmWQyUqbTx2vcn7UJhUXPFCuS3eV9kb2OAUPnJD78tm3odEGe68bbx9hjlTgR79r+bL9N+fgVAf8wVW4USV0fDRfY5g4n6WDr9LNEDFsQmaweZsGL1DlbRoU8XC216ZrkBmE3GGI50NiWTDSNcZSlwk0g/kjLqU3ZgguLgnbZ986oBddGYDHUqLdbwdQ8gQIr7mwGJGuHRp8qgpvLsDye4gveonIdxKo18kf1Rh5WDH+hYC+e6DeITIt5YE1EcpomjTkgd+PrFMwNAy5Y2Vw6zRqBs1KyNqawrfvPP3FgIQGtQNmxXwXWlWwo1W8bojMtVmWWygM5WfJnAw6skZTEQCeAuUQj4u0ZaMVdhgKmLft2xfE6YZ0u25V5HXNskhC+o7C+ENw9emDHcOBwzLZbBXX3QH5rGy5jFDV712DHz4L80uce9THNODdm7BalsVfLgWfuR9evhyyVtl5z7fxGSXPCDnSWMxgU8JGoYhh4BHiERJsu/CyqNM4SRff4BS/yjH+ggn+gHfelz8spiadZnTttiAYRObwMjcIooLSOm3+gJ9wmB5CQhrRvg/SQQ9Zgki1e9v9KkwBEeWv67fMUhmOk+EYFnnSjJNmjCKv4lL6mwOE+/rg0UfhH/5DeP11uHz5lgfEB162YTmAQ+YaX8mUWfHhZ80UwgHvDUzNLPhN7ihbDQho0qSLLgwMLnIRKwLGk0yyxCK19BomvtQx7HMrObbUOYJIIobHZTyplqLyiYaA38CXoc+xBbPlTDgaExlEf1xcfxqRyZCvhBAsOHAag88TI4tGpPzZPPIE0nPPZmMhepv7UotDWIWwiBRgFMFfAOsxsB6nah/CMF/FdYssr4i6LwihGBWXlSvQaMZQqgeNB4AvA000CkhjDAuNDoSkWkcjiaI3+v80sKt5kNraX98HTQVokdzYMCHZC6lemH8OZp+G0lWpA99xiLew3XeO0nUB1r3nxFDCqUDvfZFZRY9suW441C/k1wYZ5kctBRxXOmkeHoBH7oGvfRr6OqFYhTeuwFvX4PLkrg9tBVJgA7LauTcjF97UhP2yNJl4DU0+uK9TNIHDPWB7eKUal94rc/OKRxDdQ/9/j19sEKxcAcHpp+T/7j6dXW4XhiXA1LVhbR6uviIVoq2q/G5T2O4Bq6BeA+1hII48BQEyFOxzN2jIBOS0I8cHS76igSmq8poTp+YExGMGh/vkhn/hXbg0Ld+7nkgkxgYgm4TrcwIEPlAFtRPAauRIf08nnO6A5TYs+5jKoAuTYeJkMEhjkMEgjk4ekzg6a3g0Ik1lgIAlKyOr2WQPpPsFEGcGApK9DXQDjBVwv92mvtjed8zwlNix/bwM53PyTFY80QUvOcIQg9yYvxFA9nV4tgHzeQiX2GrmEAS4JSEk/LYU7DaXwGtG6xHbhWZT8n8bDc93RSwOY+Nw4TE4POoRi3k0G1J39/yz0LwubPHtwtLEE3QDBHdqu6rCd4UKZcAPohfUo3VVLAntmtyWtVVhjNdntlre63pAIh7Q0wVjh2FkWEjVegPmFsWb8k73i2FJVs9KyrqtsggL74nkol2VddudQ4P8GMTzoosLbGHV7G2sfyoRdWcCCsvw3CvQ0yk73ZmDah0WluCty7LZNiqUy9Rsw8UpMV+vNuVc7VWRPEmF43RSx2WNFjcpU8FBR2ORBi08mntcBQudMfI8QD/jdNDY9ZoO4gySwUDj0n6tWDciaYgG3j/Yg1rfJq1q4nCJeX6fHzNAB1VarEWTd5o4LgF12re3R3NulWpZ5MlzLylGSTKISQ6AGB1kOE6IR51r2KwSbhvTkqQA8HDvyEZ+IiIeh/5+eOQR+NrXBAg//7w4yOwhln+lZXFJB0MLcZRDJdApBQlimHj7nA/NZM9xZXcoFB4eDRrY2FzmEmVK5Mjhxdp4p2Y4e9LFbUN1BSrLUFvb5g4Thd2SOq7lWbGwSmWlJrJaglpZtJsLEzAEFJ0t4xxDQUoX5nfNhYwhw2LFFDDcDERG+vUggQV0o6MhnfhSaHyDOG0UUwRUD7JYVD4QCBAOonaTIWB9HuK/gu/maLZv0GwVicdFpdJqRXZsFWk60WjoCB/9OTTOoHgVaKFoIvNxAg0LxQxQQrGONICPyKx9IhYXKUmjLmtGLSHTv1OF2jy0VsGpRYubDxhexADnx6H7DFSnZNiMR/X5aFHyOAGZ5FZDK8eT+uAgFEOdJ8/D5x+CB04LrzC/DGtlmFncMtnZvCwhUuFedOGn61LkkzOF8neVaF3sAMYHYbhfmLdQyXukE7BSpjFl0Fgp/7X1Ps6RwcG9rYPJhxm/4CDYAXQwD0HySah9E8L9vUhvCcOUPJGuC/oor4qB/OwVSZHseB8f9GUIv4VIH1aQFWVj27bXPiJPr+8IvacbSPVMIMhGBZvMgxdAqSbbmzdE7nByJGL1DLnBF4twff59nKvd4YWw0oYfLUBvVBGXNaFsodkaJho+inU8LDSS6MTQOEICl5C/ohyphbdCN8G35ZCMGCS6RB6RHxXgmRuBeAe01m6/cG4FcKkuRav9ccnULG8DwCA35hlN2nVeLsN0H4Tr7BDntSsaq1Mm05csik2N2o2AtOXgVhWG4ZNMhbQbSeiMid2Q2iKBYjE4dBg+9Vl47EnxVE6mhClYXZGv1SosL93e4zauQbchltH9RtQR29+7+GSvaNfk3MUiYLpx+4CAU98RxrcjB2OH4N7TcGxMugNaJqwV4d0rMDMH9TsM3HYDassChq0ElObk/efegWYJlu60xtR0ucDDj0PvvbLqaCzK7FH0ZObQdXHuUEpWELMFKeDs74V76uIAUWvAtSm4PCH0D7IgDJUA+9USVJqwsCqZEHePe2mRBlUcpqlSps0abYwoYbpMA3sfCYGORhcJ0lhcpcgrLG6yrV0kOEcv99PPGq3bg2BDk2fK38MC4YDRwObPeYVRejExcPEw0Ilj4RPQwr2jR7A8tVvDeJw++vkSPTxBQJs2BTwqhAQYJMhwjBidaGzpY2PEyJPHx6eBQhk+yeRWqvr92AnnIyDloGh/JI7Ad4hUCkZGxB/yyLi4yty4Id6RuzJpJgYFLwmAjYNHIAY8ePvu+UEB8PZoIg9olSo1amT1DLm8xuiTy5x6EkoFkT8tT8gzWlqInAGjcG0pfrv4ivRHaTWhvAZrBSjOSDMzcw0GDfCyMFHdakgSKsm4LTuRim7j2DUphM6aMBzoFBDJXAYNA400Gr9NgnfwDwiClYBfTZdnI9RkwtCyYBwGfQT0QYqVOMP9In9Ip2Q8jlmwti5Dgu0Igtc4jkYaRRlFFZkAAhQFwEIxAdxEUQTqyDx966JF0wQKJBJQq8q5UwiJ4behviDzlrN3ucX7jvJNkVr0nQfzjEgJsyNbJhNaKD1UOnMw3Ccs8GpJ9NDZNJw/BZ99EI4dlt9V6pJB1jQ5XxtOlFsHiqxoQuBqQ8blTkuyoQu2gOAgKcCjKy+TSBDZs/ZE3QyXyxG6/vhCA7JkqNEgF339WxAMoGxw3oXmT8RyJX4G2q+hRz69KspD6RiEuyc9TZdllhl5yiglI0qxIE+D7yP6pYglNALQa+BeB7WCrCZtRFt0u+I4JUgCwG1vGTr6jnzeho5R03h7Ai5dgSuz8pGfOQ9xCwa6pPjtlfdBdO8bvoLVNvzpJPghettHmTphVwxn0aGGzyw2OQwcQrIYpDDIRovZeQAAIABJREFUYmCg3ZL0UqFUslZnBAxruqxqU71gJmD9Ciy9Ae4BLXoCBa9XYSwpIHg3jogBV5UIUNyaVNPuWODrQEeMqpXhrcudMGPCYotj3SvE8Yh3hfSfDVn4qY2yTCkYM2Qg0XXo7oHPfh6+8Zvi4tVqCTug62I28dSXYWkRXnwBirfBQkkNhnQIDPhiAlYCWAr2l0fsxWq6bRkQjcjTfDvo0zWx2D13Br78OXjo/qjJhy/HYhjinHd4CJbv0Jl09aZsm/tiwD1PwZWfbjHT+4cGZgq6TsDo5+HUNyRnuPoOLL8lE139suiAgyBqS7jtTYuVyM2kX2iOpTVBWFF8/+cwWYDRAXk2zDBGUEkRKg/l2+xlXbhIA40mNj7x6K6191Syb4WNT4Cigs3brHB9myPEOXr5Oie4jz6+ye1dFkgYIjdqB+8bBG/E7vbJdxMmOUzSiONDgEmWDEfJcZYGN6lzHZcKFnlUBIQDWlEjF9DQ6KKbHHmqVABFJgPHjgmZeukSNBp3b410hjgJdFbxmY66uIWoCBpLBFL//9HEhp96qQTPPQ8TE/Deu7ewwBoaaRJkSRKicHA3md99u8dpYKQECN9aaXCA0KBFEz/RxOqHQ2fEHWZDTacbsij2HQHGm2OGJj0dXvw+LF2HoQHRb85Pg1WG4RC68zBXM/jNYxp/eBnmG2AqjTCAVuBRiTTAa65I0DacfwY1jadxOYqBF/GtfeiYQC86xzHIHchCNIRwRTaQog69T3Y+mAXvRQgXWVz2OTGmMzwYMjQAR8eFbJiY3PDb9YAysI7CQABugMwM6WgRVwOWIja4wm7wu71kxrRED6zrYhSiEF2uERcQ3F6XeebDjuYSFK8KWTT+5YjwyIktmlcVTq8zB4f74dMPwloJXopu09FB+KVHoL8LpgswVYD1ihS4u56UWtwy15oa5Cy5sIES9neqJSug1QhUfvGYSCFyaUHgpi5A2POF/V1ch9pH1KpwnzAwOMk415giReIDefTfbfxig+CwBq2fQvtliJ+GoAJGFz1BjjZF6hTRMeljlGV2i2NUVBUQbAHiXJfYCpmW5EIqqwKIlYocyn1wK8gDpxCk1eKgDhGbEXjSNMK15bN1HQKfidlgC8hpIn346Zv7FL990LADKLQERdkBg4ZNpaxotqCBRgmfG7RxUUzQJoVBHA0djTlslqJVmI62Q5dYm5Nt7RIsvgaZAbBSYiezdpm7nhFm9jm1P1fwLwK4okSrp3mgtnva9ibgRA5O52E8I8c7mubmRALeLdGh6vSnFadVL81Jl7U0EBPskk7DkaPw1V+Fhx6G69dEOdFqbnX9Smfg4Qsyd9Zq+xcFFALZAK414NHY/n2MEnFZvRsGm537NLascw2Dzb7zG1LgdAoePQ+//hX4e18VdcGb78HKuhCtoRLt2PgIvP7u3Z17FcDFHx3wxbEMZIZkxePbwv5qhtD/vgP2OtSvQPk2WlM3sk/z9/ZjuzorW5Ikn+YC/wW/wUWu8i2+R5WpW17/MouMkCOOwSWqnKNvcwG3X5jorNCkSJtXWNzxu2GyxDC4zDrTd9LMNn8xJAMu67jbGOs288zyR1h0YBDHIk9AmyRDGCQp8RruNns4DY0RRllhhQplAtNhbBB+5SvwyKPw3/93cO3qnWVBu+NhkpwiTgvFNRxmcSkS0BWNMzaKFXwu3YVTx12FpsHCglgm6roUw63cWlOiASJ6MGjhYGIQw8S9HTxX4Nekedj7iXgqqqNOSUamsiRZn8CLmmQYkOuD4dMCghMpSWrqupgZrEzAgw347bMwU4MpBe0spE1IGBrPXDrM4lySLIrzxEj5SWJVjdf0V6j74v/eDCRrXg8gA/xru4M38IkDb+IzTcBpTI5j8N/S4FW89wlLHFkt6L0QzolGIJxnvpDhxVe7UGqdr31JzukP/lIMj1Y214QNQv4Cnd9AHCHSaKSBwcgVYgVhfh32Aue5vEz1liVMs6YJCwwCgM2o+1ngfHgAWEPaom9EbVKqEqy0MMJmUrTCC89B7TmIL4n13X0n4EsX4PIUXJuRZFnLFnnY4hosrMjXYlV+7vlQrkXdX7cPpRt6w40YTUrKdTuxa+gw2A2DXaIH9gJoOTL4Lq6LHuNjDhOT85zmEc5h4/ASb1H6mOoWfrFB8EaoJthvAgr0blaZpotexrgfULh7PZ5KSWHaxv0wehoe+ypc+DL0Hoap9yTX7trQqot9ypWXRRQEQBYBv3sPhicx0IGrux8+uyEjWywp9Kmmi+eV09qRZ1EKvv/yXdsM3l0ECmYamPQxct5lfDBgcQVm5xVlfK7Q5DLNHXUdPopWpAM2gAx6pIpWBCjc6IlrrUr6aN0Su5d2iQ/HZ3ZbPLtRz+Zs0wJvxIoNZztgMClWaEUHehJwJAOFJhfePsLXF0/xHd7mHeZoNrfqV1pNAZwvPg9PPAl9/QJ+K+aWxXA6LXrhs/dIx5xC4WAeiY1wb4noGRPWLHE4i0cDcnFD961kUPP8nRbHm4e6DqvrCBlrCjDu75WCEtvZIrfisZ1OIweNkXHo7Aa7Desr+zDfbl08fXQLll6F6jSk+iUVsKH/bdxBj9FsiyOEH8j3e0QXndzHWT7LE3SQ5xxnOcQQP+FZvsuPb3n9XKSjTeow0rnM8SRcCGGiDZM2rLsGmSBNgCITtUl+mUUWaexY3D3KIFliXGadK6zzLHN7H4OGoI2GL3lkX21VWv+CxDI/AaCfL5LjLGnGAVjnRWb59ySocZTjWJg0o38LzBPgE9NlrbJehKe+BH/8R7C+BmtrB2h9HcU54nyGNKeJUyMkjYaLYgiLE8TwUFzFYfqjTHcuLkpKJxaTHa/eOqFqaMSw0KKF/jrVffW/u/6QWJcsIu8UA3HR4N6MiLV0Bxx/HPrGpYCtOAfzl2DguLDBoQ9LE4CCfD8cOguleRmfjibhTA7GsiJFv1qCGxW5JZs+XCvDXF3xubMzVK9+id6wnzRJTEy0ECrF4zxTfAk7MceK5282JYoDb+PjoTiCSRHFJXz+OS00ZNx8X3e4PgKqIgyw1rn1TsoFLcn0fILFJXj2BRgfhYVFWFzefp/ZKF4CfgWNJ9FoAVk0RoEBFP8axRqSsVVSUJyAbF5sL/MdkOsQmVsYwMIczE5Dqk8WHGEgDZX826F7DTgVl+rnCVcG+H3CRNsEwAEKh4DhTwlJVLkJb//fkD0UEUk/h6QHiayM2XPL8Ec/EAB8fSYiZdswvyK1a63ILs715OeVOpSqIhe77bWZ3ePg4pb4pB4dkjS0H8DUEvzgFXh3UqryPsbIkOIeTvBZHiVBnD66+RwXeIervMklnuXVj/TzPxkgGNi41L1hnhSHsIiho+PjscL0Af5cQUcvDB+TigLXliV3vgcGx6Ulz8qs6IYBogTeXnEGk88SExYPlyvbBs4vEuOcZ1JXIf8mrgSh7ALA23fpQ4ukRaJ9lCT3AjoBFQKqhNgoPIKgwvGxgJgFM/PgoVjHxyHc1B1u19YDkS5OtGEh6laFnBKZgn0XMu27idu9pdkPoe8SFh3oT8LhtCDKpTY4ISN6N/eYh/ndge9hBz7hktp8wwAo2/DtPxcZxNd+DU6chOFDAgQrFZiZhrfegJVlAZ59ffK3vie1Na3W1vXTtK2e6md1SUs2Q2mEcSlaVN/0QXPBUuLiEKodagA53j0OuFqHi9ekSrhcEW9NpYRVVqF0HZ4rwPXIKOCgkUzBmXNw/hFprFIpweyUsCaJlDDfq8u7/ihwROQWz4FdkZlE+aLlsMt7fs4tUW/e9savUGWGeR7jYfJkeZjzGBg8zHke4yG+y495mTd2/M1YHH61G77YIUSIp2AkDsccmG7B1YrBIVKs02aCMk3cW1wXDHQqOPSQ5DTdzFPf0VFuMxRbFYgJQxZgRD8LlGReKneamT6CMDTpSRzTIVSsVV/E95u0mCfBAC1mUbzK44xjcJiQABubm0wwwXWCaAzTNGF9pyfhj/4fmJ+P7te7kEN4yPiSx6AvmmJqhNzAYQqPNXyu4zB/QPOxLPfQySN4lCnzGjYHNFet17cVPu8MHQ0LkzQJeukAuEMOYVtooMfBWbk9EB6MS3fa7YviVg16x+DCN2Tt+MZ3YP4yTL0h1oUdQ1Lv6EaFYpkuGC7LNHKqQ/DKH1+HXzoE/+oSjGbh/h45zKoDN8pwphM6ydFFHgsz8hhRjHGIhznP804LTxXZaJgSAnUUv0eLB7EoEHAR/4O3CQoXQR8AvV+kjUTewbhi4UMax+tleXWNYkmObScJEAJlQv4Mnf8ajQeBrujnN1G8jtTueBgGpNLQ0wcjY9DdK0x9vkOyeq4rZEY6I4uPjQLq2z6nGR0eSopw2NJgJCasqh3CpAtXdrIiWpRJ9QlxCei9TyBGdUakhF5LAHdrVVw+YpE8r9aEK1NwdVrY3kp9q+HmezdgbGirEK5clyG01oBKQ6Rwd40jlkry5gNdMNovb/TqVVguiSziY4xOcpxgjM9zgXOcpEmbwwxymqMcYwQf/29B8EZoaPQxThdD5OnDipL3AT4JMjg0qbKGj4tDkzb1nW+wviils4tT0DssT8KGWt60iLdt8qtFsnTQxqdBSBPoooNh+ugih4XJIusUWWASn050OtE4hcERTMYxOI9JBzoFX/EZfJ431YertL/1xEhKQ9cw6KSTv0eMYVwKNHkNjwIey7juFPWmWJ5sgFrnViX1jlDIZOZHMHm/Z2334VlR4YX7EQGB1IOQOA7aQAM3DKk/3RZ5RKjoe9khtxbjelDgfznVpPnrh6HukfrOdRK5kPQQWDnwalB4Gr7/Xem2fOFxkUgYBty8AW+9CRffBWsZHmvD/QoGNZgP4feykEhGJySaNzUELPxO9PMXHHjGgTFDxtLrEQniOFs2ZgcZvMJQHCCuTQrR+u4V6OoUxsPzRH0wX4DpOfn/QSObg6e+BqfvFQCs6VAuSkO+IBAPzXhcJo+t/VQChFurcsRGTL5vr4s+5iBxBzQVEmJj4+JSp0GFKho6aVKc514WWLoFBPfH4HMd4vzzej0qRNfgTApGYiFe0KJYjzNEhhgGBeqUdrm9eAQUadPAxTYC1jrb+zoiYunQY0LKlO8NTbR4+RjEDZiuixOL8zFOKIYGeQvOdMBMg6DZoOpfpM0iFhlSaPwDvsJn+Byv8xpv8hqLFFhndUeXMhXJawqL8O1vw8K8SIWCQKQkJjr2HdjSAh7fosY6AfcQJ4/BYSwu4/AqTWqE1AgO7L/bxy/Txy9T5U2qvHfwc3Kbe00Ai/wz0AkINwsSb9cqXbNk/IC9AbAGPJCX7POCLQA4uS0VrUJYnxUHiFQ+AmRtWJuFy88IQwzSJNF3xSHi4T74qxl4ZUnqnUs2lB34xjFYbIqks+VLS2rb11haOsSRsJcsaXQMFAoN6CDH4zzAvFrCA+qRLjyO4iQGLSzeQqcFUcZvjwPMJiCXgMIBeofrQwKCNQtUDU2Ds31XaTghy/VObNeGsEHA7Vq8ByiuEPJNNO5D45CcR95E8RYbldJWTADv4DAcHoOOzi15WRgIeRGPZOLVRlS4vd/4O2xCtykDd5chWwicjMvWYcCkA79XhPdsLKVjRAA4RG0tsZUkzNpFMdEpXYP6vOiDW23ZP8uUZ67REoZ3uShsr6ZFFqkOzCzJ64tV2fcNOYS7f+O328fNglQiD3WLBU+5DpdnhA3+mPsiD9LHfZzmMIPUabHCOi3aDNKHiUl3tED9KOMTA4JBJsgEGRJkyNNHgjQ+Lp0M0qLGPJdoUN57eG3VRP5w401ZhvmeCLPCEIpLZJYLjNZ8uuikhksFmxZpjjPOQ5xijCE6yPIi7/D/ssoUTQ4hVdDHMbkHkxiSElklZI6AwP9otDUGpgApXaFMpEubRsTV+givlcIgR0iLgAqlUpZc1gPNp68LyiVh/Hazkbvjbh6JQwlxjfKVDMo1f6sJxocSGph90PnroMUA5aKv+HhVF70jLoPaTEiynmW2Y52ZQ+vw9Qeg7KJemmPwUy1671fE8lCfkW3+KthPC+M7Ng6dCROu9nJtss7EWpNjrmIc+JwOp4A5YDIO1xUsxaAZPUG+B30KBgzo0eCGL84R91jy9YYri+wNzfHdRBhCrQ43WtJ1uCMXMcFKBslGU35/kEhnpdP08dPw2KdheARefl4WR/Ua1CvCRAWefMaGVGNrbFTQWpcXOBWhU+zyNhnRBw8XjytcJ0WKWRZw8VAoatSZ38UCJjToseBwDGwFxYjd6Y1BrwUDluJK0uFSvckX6SVDjBCFgYaJzgAZWniY6CzTpJn2aPcFVHrcvUEwCPDNx+RmTxiQi8FwCh7tkRv/BwvCBn+cINjUYSgFv3VEHGFaPt5yDc+vYFpx+p1xHuMJBhjExWGZJQos0NjlehMEkSxmDUpFqStzHLnXTHTSUQaudRspQ42QF2iygs9bxBjBQgHXcZjao9xMR1aOBgm0CLSFOJvFew7LtJimzSL+bnLjfYQW/VMoXDzqUeMUEwMLI/Lk2HpIjbQwv0YSrA6IdUN7nluq4gwN+mJwLgfDCXixJFmJ3fxy4YowwImsFLiVCqCvSHOc8iJke4RB9F1R1xU8MfrxAsjFYSwnl/tYHkay0JeEqiufHwQ6WvEwIwyTJLG5TreikskEMYboY4lV3MgA00DRF5UsrkS8saEJtwICtNxsCmUZMNoNR3rh3Xm4tjtVtCuMY6DlAAddK9ORmOUfXyjw+gy8MutTqLi44UGUxkUUTwPXUIwCKRRvsr2BVSwmwHdkTLZ8p9zHxXWxj2vUZYwzLZH5bbRnJ0oU7Kj5SOti+ZPWxWlh0JKT2GfCYQuGLGGEO0X6YKETwyBE0cbfzDK1VmXRo8JomCzJZiQid8OoHq3Rlvq0WlNY3g1ga7tRDfG6vM71pH7I+6BqhVIdJgow1AOrFVgqwkuXhBH+GCNLmtMc4SHuIUWSEhVcPAqsYmAQJ0ZHZPH4UcYnBgQrFGvMMMBRQgLSdNDBAC5tXFokybLCJKFRwifYu4h1ZQYuvSx3fLZLZBG1IvrEO2RnJhkmSwdxsrh0Ege6uJdTPMo9HOcwpxkjgcWPeQWbFk0UPeicw+QQBm/icQWfIopJfN7CJ+NrH3qDUos4IQG+qVDJqARW1/ByVcrhX2A5PWieHnG9HiEuK6ud9PW2GOhvYB1TXL2qke+BwooU8t9pAbhhybKf5tTUpEHNyQzMt2GiKY0vXPdDlEzqkDgGnX8XWm+DMwuGEZI72cIcbKEnYCUNZlMjCAzwY5AywLfQ++IMfN5m4MEA3YLMCLQK0JgRW57GqzBz2eSU1c3XFh9impvcYIoQl7auqCtoaNJX8D+rwH8M4ZkMVJLConou9IbwmgMnTPEKzmrwcAxKIaQVtEJJFb+f06E2dMP1gwPe7RFPSGHNwBCMjsM956FvUNKH7RYszkmV+Uphy0Jpo5gkbO26P5yKbB9BGJGm7hleJE0KD48mLRwcSlR4h52Mc0KX+agayJyVk/UgOUMYOFeJNGWBOr2kqOKQxmKQDHnifJYRpqkyT43lRIW1Q7ZoWvIGTCsoqp0XTNcEgSQMyFpSiT2agQu98A+OwJtFeGlVEMnHGZYuQPwb46KPL7REKNrw0BImaSdDgwY/5Se8zEtMMhG5QeyMINjybFVKdOfbw0SniyQ+QeT5sHesELBCixdoEUPjKDGu7lkEp2GRQ8MiwSA6iSgXsLwJghf4Eyq8QUAbl7Vo+WIRbi767y4MdDQ0AsLoHavEo6nQwMCIGpUA6DFIDkOsFxKDkDwMsR5YewbsApudg0HGwIG49Cj4UtSieLIFMy0Zhjb6qaxOy7Y7qnlhibtHoPuQuMa0qvDtJUDBQErkD4cyEIQa18uKXzsKJzuh7kJXHNK6RqGYZYxDZElHCwpFDJMYFmuUCAjw8CM7OB+fkHVSHCLARVE2Qpy4oicj8tByLIl3ZBCVTcCZIbjvMAx2wFJVkLm9FyUZA30QtCSoBobWYjA9wT95XN5zan2NYn1v+8NbwwUWUSwC80AnRO4teuStm0iKrOvkWTh2Uori5qZheRFWlmRR144kbPGI+9L1qJwhFEYeonGuHsKqL4NIzhALoLQuVYQzLpQCuOHIa5DMqoWOS4C3jTZqLksxnG4K07sRlagtcQthdQ0dunJSm7adIAlD8UuvfxRGDeWGyB+qTbg2B6/cwQ3nI4gcGU4wzjlOssQabWxyZFhkhTYOMWKkI//yjzI+MSB4I2waxElFjHCaGAk80ji0cDSbWo9DOwyExdn9XBYmpbzWtOCxrwgTPHWR3OW3yc0votGJT0gKizgmPglKVHmNK8yyzBhDPMhpTnCYG1Rp0qJMyHJ04/dGRWSVyGcyATyOxdO3nS7uPgJ8edwsUwyulUzU3pNxKs47mNc1YrMZLNVHiIPCwdAD0ilFf4+4VHV2hOg6dHXAtZuiMdo9jm2380rE4egIXLqx9btNTSySih5PwT8dh1fK8K0l8efutracWT6MUEqKy4ycfFVJMTzXTMhcgPIRcBseft2BlyrwWy+goXjwv6qQ7lQ056KiCA+GvgALfwnlyzLZ97X7+ToP8Y95iBxxSrTQWWZSOfwn4DgwDKSRW8txBGAZhgxYN5PwQxumfaiEwgo/FIPrPjwRE11wIYD6HVDwLoLpQLFxqfb7u6MnZfDPRAb7jTq88DScf1gYv2vvyYQ72B/1fnGjvgL+XduhfqDoIMcIwzuK4G53bJUA3mzAt4vwT4fgoUzk66KJe9m1FnwzYnQL1HmJBVZokcHiBF24BMxoVWq6g3tawUlddC+Hdbl5f9/dMofR2dIBG5pIHzKWoI/OGKw78LMVWGh9YNu0u45QSbHeeyXpfxsq2Vc7wKs2eYs3+Bf8H6ywzBpr2P8fe3caK9l5nwf+d07tdff99r6yua8SKcnarMWKE2+xJ7YzM/6QIBMgwcTIwJnJh0Ewg8F8SJAFCJD5MBknTmwnDhwbsazY1mZJFkmREkWyySbZ7H293bfvfm/dW3vVOfPhrV7ZO7spajAPcFB3qeWcqlPved7/+/yf5ya9/kkSiPC1CPZydZsN2mLIWau6N1gruvKzavUa4S4juuKnWCSraJMhT8koa7igdYV1HZG2Nam2WE7ehKLN6s5oWbpjIhxfqgVHvaa4pOeTk+pemdIXUdrB0NP07Qk/9+3pbbupnQgV4bT38s0khHX9zW08OnDZK7zW5anBEBB0M9TWwlZfD6EZcSZUhi/iQi2Y4Ky3OL6c80v7Wo6tcmad2WpokptZT7Qs6Eo8aJeigoaWmrpz5nzdi171lrNmNXqfSQu/LfKbBu2R8XvDVV+frtk1xrvzfPPJR6WPbwsrjiNlxvp5ejszjwRZxDvnqFwTrJDZQbqEYdI10jNaXb53PGxHF977kNtDzZXnz8BgGK9Gxti5h099jieeDtri5cUg6zo/E/obGo3Q3Jx0w9gdx6HfI4pCj0QU9RyCZjvMdkIKUgZDvZl2hNPtMON+rX5JExz3+mbi64yUaffWashuEiKQP1CU8mGQrFRDJfhHgHPmzFmSk7PHdjMuaGtbtCInp6Fp/laBRfcAP3Yk+KKKa92imrVeMGpqwWnnHttQH+kjLbO4wbvXaaBYvsC3f5+5M0EbfHS/8sKKESUjioqy6toyIlVz1iUyMjo6Tjmv0VP85ESaUmd19YtslbdVRkUqj92yHpFVuQcdMrFYTkFeMHRvqQdSXc4z2R9MyZerPDjJR7fr/OC09E/Piw7HOlZEYl/87BlPPdqydTqQtrPnw4Vq365Abo+f4eTZ4ERwETu30l+mXApehpunePtcgW5q51RbrZpeun8cBfL71flAfpM0VEay95JBdam+xOLvMv43KeyhNRPIcHY89FpkBljJVsP704pEczUP/VxDvszGmeDPmLTJDTD8IP3bWDvMdHPAZoPaur7vjDkbOhKlKFUQZCFHUw6ilvLlNBQGstFlJ75PtMP/TqRhIWIt4X9bC0v2L7duT1pSzrFrhHfuQF2QyzDZFxotml0Wq7SumXUdvI59WjbLf/NrgRxvmuSTz4Qu7aUVXt3PsROhMhh/cJaNlqxYuqYh7SmBhx66wWPONPl3c4F3/r3N7CtxoMp3V/nKFVzqP7psxL2h7XVzXjfH0zFP92yNmoL9aBZPxVePkImQPpDmAwludoM48+0VjlX498c4sREqse0PmAQ3umE//uEPWWlxvPKeKOdXvfK+X6at67QVk/o9aFJLR7sXsJCX7RHJ1FkrN5z699nbq/g2RWKJhkRDzWkZJR3Vq5rUSrYhFfV6x8lY9cO7PoaL9mdZGf1KCnJWbfRkN1cjLlDcSnFzqBo254IsYvgjjH+e839I5wrjiSTlxZVgy7raDhaQFxphfLxd1Cthux5Wm2Gj5feO8HtHrr1Hgtf9rj+yqmKraV1d51zwF17xDS+aMXup0k0Yq/6zpu/0NW0a5Iv7+AeP8/gm/qcvE+2dkg72Ep1aHY7MhbLl5uEba4O7R8PWQxvH5vlf/guH58Il6+7QC9DSjw3NXphQrmc9ubTA/lc5eZS33uDU8SCJqNXChD5NL69ydK5x4+kfCJKKVitIJ9oJVrq8UA3Sh4v3Xete1RSXFV+XAMPqtc6tHxbs2sTkMG8cZ/+xW9//PmHGBYed9FnPGjZgyZq1XrLia075lpfv+z782JHgsiE/5W/LKTjqh972HTXr3vjLF7T6BxjtC7OcZpvpIfafYq12dWmi0+Kdl8Ko1u0oJoMmDNltWFHWck/Z0zWiZNSgPk0tz9sPDjqBDaOCZfeaVKVXj5gQa8uY0XWiVxF+PzS4oGTUJts9ZJPdGqpmHDXnlLW0oRVF9OVZqYUR+JmtZCLpoarOkRXN4hnT/W2jI12jQyG9dqA/VINXK0GDNNDP0ABbp8NsuK8Usg2eP1h0dj7LeHnXAAAgAElEQVQcQZyk4jilVKDTdXq1Zw+V70pbHfPNMFH+nZnQlFTvXl45vte48I/pLND3LPktoe9i43us/CEbL5Fc1J90UuYa6vOsvHu5kSVbDMe58g71+fD3jsRZq77miP1mrWmoaOqmqZmI2TQMvSP4ahrqEek1g+hfCJ91Ic9UxFYhRe6bjZsT4LEyxWwgsQ9P8o8+x9eO8EfvcHQp/H2gEN7LJA23qTCYd3ur9VHE6d716HabJbpdXvxmqPI//gif+wyf+gQHD/HGW4EcZ+KgG2/cJzvXGyHGr0f8ZBSO78sph25yXNUuvzMfrNE+P8yROq9uhNtb4pMZxqJQom9HDEVMRHwsw/+c57fanO69eCoQzmonsO7VVnjDk97fZ2uXf7+XmN4etmyOV7/z3v+3k9CM10oCMb/NKOe7xYKqVOqnPGjaQK/Rtmu5Z6v1WXucteqIeaevmdTUXLQyCfuYSo14TqKlbU3LvNoVFnV1M7IGZRSlErHCPTmGjq6KqoKc5o3a9JJQ9R14lPYyjVmqvd3PjwSrtKQeZBH5iB1lfrjK4Y0wDs63gizsg1xNGdDvB970liOyPXlRq1dh6+aXJNdZpRguhctmPstKnf0znFtjo4Vto+zrpdisN0LBJRMFa4N3zoe/3QzlHCNlaavj0Fz1fRoQNIUvVx+C7revn/U13ng1WKAVS4HELi2SHv0VW1c+oZBOiGRl07J3/V/mfV/b1TON6gbRwBV9G42UQxdz66+44zX7PygvJ5ZK5cRXSSKuRIztSk7/aDIUr0YmCnrgxRt78eb067NVqmvN0Rve7/1gxgXf85pYZNyII0560yFzlmyo3Tiw5h7ix44EH/Oqb/v38opWXLBUuODMJ5paj4wyMcD4AJtHGO4THZ6184VVadrvghWNK9/QK5rWYowqedyEMSUz1p2zbtGalpyz2l7MnFKKzoiiyJySKBnWSuom0pZ1qVmJRzAuMoszEm/3po7v5zs/YNTDnvMFv2arBxz3pj5DSvrMr52z0l5RKa0EXdab5/jtV5itSM5d0Cqt0WjKDKZWK0HyEMeMDYfQhZVKsOBaq4Tq37kLYe4wPtJLhG0lOlGB4TKjA6GVNZthbkWyVgtVgUxI3EuaIalr+WKDRhquw5mIR/qDc1O9G5YM22ngC0t3eX4nVVb+gMo3QxU4ytBdpz0b/nflCJN2uPACrZUgmcj2kR8KpuX1OVYPBpu30AjZdtqqvIxhJTPWxDrii88XRfKDI6pry9fbrUutQp02F7KkGbanN0uyZ7wcCvrFLH05Ng/y2FQ4hNfO9fhUejlNrtml2QnEOI3Cx77Re+E77RRO0+AUWMwHX9jvvMDJ073o0uVQEWm1P3DXHCV8NuLZiI9HLOBZQQ343ZQHe/c75bJSIRWaMF/d4EQj6K/Xu7fggllB//t0hjLWhAcMRiEGcCQKesArL4Ap1trhxC5nwwld74QT+uJJf6/x5E/w6HNMbQvlrC27OHogbFd29HTTD4QA41LFd1K/vSbAipqsWFHOHmP2mTCspC6xpiSSlWhqW71kzxU0waNaluSNSXqer3kjWhblTYhEMgbQlWhfqgg3LXi/XnSBvN/4G9qu0K1S2hwIbxTTqVE7TvUk7dXLEfFRFIjwRiecMqvt2zgH7zEuVuQXLPfUvqm+DFOl1HSmI59NTHXDnKna6QWLRUHhEwkrSOfWaHTCKT5XIX35OB/fHSq/tRbnVji/Fq4LT2wNTXI3I8KlPDtG2DGiu1jl9Aozq9TuluAkLjb9FAqhAlzdCJK2s6d7EczrT+lrP6y//nHFZIe8IUWTyjZJdK079R4SnKa9OOX0Cm1u95rbKw9L1iZ9PmZKJHLOhsSKZY33EOExOZ80Yq8+L1vxhor6PZ8p3wFOXKBcYCGQ4EjWPr9myZtWHTFkr3FPyylbcsCaY+6H7+Mp53zZn3vBq3bb5pATlyKTS4oGepOd+4kfOxK8btHr/kxGTkdLJ0pV+obCtHywzHBfIMFbx2TrXT/XeUYi9S1vOmVe/TpdzY3eYDGiaJ9RWbEzKpZUzEcty9khZ3NlMsOkTboTdGONNJFNWybEmlKjYmsSyxJHdW4jZ/3WyCkYNG6TXUZM6jdkwKgR09J2KlvJShtt67mG+OBoWHurd6QreWk3S5KqVJnpuQoM9IUK4PEzIaKxsh6E9ydnODUTmq8WlgLfbVU7Ya293Q0lgmcfCNsf/4B3Z4K1SqMdLr7Njo1Oz1IxDheBiw1Wg1kmCyy1mO/fan30Aa1cmdlTrJ4Pa3/Jnamm2+fDdj1kFcWyoXkwrWvMs/x2IMuZQiDAUSaEA7Z6E+HWNY0+VW3VS9EgwkjbP8wDT3B4P9XKDbsJ0zQQ4uXoqrnWddHq0h+FC04cs97k2yeY2wjktppkNLtBgJ10ujpJeMzFqnCzE7a7RbVGuRxI7yuv8dbB8FEsXFxC7FX0C/nwendiw3anGMYYxrFLj9hiplftfkwgxCM47fq9r5Vu2K5GZNCEypWkKY/RKCQFnEqCBngQEzHTcTinz/TMnq99vnYSdLeNHsNpdS8LQO8VMkRPkQ7+PI98jKGx8PfaRmjo3flQsHc5/g5rV2j6PkDGVdeWkzGiJCvW0dXUMaLsARNaYYR2zJIVGyJtsaKs/p6KMidRF8trmtdV6zW7taUSWYOKNkl1dKzrCDPcjD6xkowyIhkFqUT7er7Ot4FrPaMvIQ1V3spB+h8k2x8IcP1MqAZX3qSz4dIpFbksF8/FwU5WenVT3P1G+M40tXstb31ZhopM9YU5W3+W8QLrbU5XObYRihG9IdxGM6x6LdfodGNrG1sUf3hc49iT0nY33OHscmiKa3WYHmRjIqxENntJqWtXLL8MFMLM/uEpvvRgKKL84ZvhxWYr79Vt3QSRQbFBkTKyEouyuQXtdhqsHBPSJFbOjBtobFO2UyrfW6ONZJXkDRvzESMe07B4jfb8ZlZtlxGjKGuzPo8b94xJObEzylKpA5asXqGBn5T3nGF/3WZTCoZkDch6Q8X8/QyMuRmOnQvX9o26WE6/bUY9omHBupOKxox53IAdcgZc8NJVjin3CjV1NXXnzTtv3uIV3+FhA8o9Cej9xI8dCcbVEcndDGc3B/LbasvP1xRWU4WZjtGDNb/kE2KRWSuWrF+XBK9ruWDDBVW7DWvoOG3NqajhZDZRyfVTeIjyc7RO0zyCjm7S0EkbNvWuky2pgZ4+6F5ogQlNcA1VK+a0tVQsS6WK+gwaF6WRRrNqPbcme/4h6fm6VFWqJEUqsb6x4uxsj8h0OXOe8/OBAC2vBtuV2fkQ5sWVybdJKHOs11mpBinEozt4+TBnF0POeLt7SfC20Q0XgHx8WQ/cSVntMJqn0T9pdftzlnb/JPk+Bl5h/jhzx6jMB4f494GMPCJ5/TIKEp3e1ta4Qwev9d4gVpLXlWgVSux8kM/9AksXaNSubg2/BmkaKpOrtxhUK81QBc5E5LvMVPjXr2XVOxftZnNa3ahnKHrvr6S1OhsboeK7vBL2O58L3sRXRnJmskTdm1e13y+GsSdip0CE53EsDVrgVYGj7ooCKZ5x6xWWjLy8klhswm6pVNWKRCc0vBQwn/KNTmiI2xaH23IaXCEOJRxMuF4QXr0btvuBHNEWMr9MJ/OrTOxm9jRnjrKywPpKIMWTWwIpbtR6nksfLOraFlQ1dEzqN6KsKGfKgB1GrGsa02dA7hJBzRlFLGdE1qCWRR0VHWs6l2JSI7F8TwJR7kkkVnRtiORklKS6Yrnec42je9ck+GZIEypvhKDE/HggxRvHqB6hetxVxbFIGPvyMQNZ+jJhsp2Pw7zpXs+TboRab32kEDNWYLrEcM/Rb1c/HxvjXD0M2xcaIXyzEYXhpZuEuga0O1nt2j7F469pvnBM+vrpQHbn1wPRvVgEKOcDoaq3WVi/TILzGcb6AgnePMQDE2wb5tUzvHWe+dj1p7JXI7ZFrCw2LWNaLEwIO05Jk5dpdETJRXlNpNPuk1FComVVLC9nQLd37U+lyrYoGH4PCb71vkTKsqaVPWzUQ0Zs0acsp19OXccZ69Y0pSiJPaTf5435lBFVXQ/q77lJJBoqKnfhcPK+ceHycWcMGLQb5AwYtFe/rco2GfOEtg33W9CTSq8iwOi14d5V9+Qd4UNNgqNer8pN4ynbXQ6c5fwqaWp8vWxza9AWYx61zT6PGtZnm3HlG2jJ1jQdsODLjlhQc8yK5511PFtWyw6SHSW/k/G/w9qf0F0Rd5fVM33Opy1Rt6oq9WeaflXJE7L2ynjjHpzcNevOOeYtLxg2qW5DW+OS2ftFohuMf7YjK7UmcV6iI7ZDx/MWltuy2aABzmXDpL1W48xN/bF7HlndJOiH/svLvH486Ig2eoaF3eSq78fadQ55tklFwfJDf0lj3+cY2cLGYsgE3fURzhzg0F9w/t1bVISvr7AOfbmxklEZ+d7vGaGZJlK33Gug7Ib1zIsnVtIOP9/gBMvL2mVaTdNsf1nzyU/yi3+bb/4B50/dZD/f23RxM8xXEUXiDJVa1vdWB0JZGLJdtG/nWnHXWFph8IqX7HSCROb94OJnEomlureIZQloCTK8qCfJnU85HgUO2klDv9psqqfMvzWGTNrkYbGskkFlI477vpqVUGK+qPM9lfL93pdgLApMeyDifMqx5L6+99fFaEb8830yv1rQ+dYwW/ewsRacbVYWmNjUs+2Ig054fYVzJz/gnQx40Ql98r7gAbuMKsubMmBQ0ayKGasWr5hFtHukI5brVXLT95DXYDhV1LasbVTNScklAtPWcPUSUM7gPdMJXw/1GRoXei0kjaANvhnycXDLaRVD1TAbBwJ84QPW1Y8XAgnOx0H2kInY0RfsrN9cCT2cI/mQsbLUzCHSTdqycaSTZDTbBaPGNJuP8Z3TIYp68QaGn2P9lHJBP3ERo+VQhs5lghXE904yNRCWuZZqgTTfFJFIn7JflfWAQEEHZUwgq+2AVm3JpLZib7yvqzrvhMSTUknP7K6ubUPLqq6mRd9XdUZH7Y6seCKUZW3T72mT9hk2KK+hK0Vexg6DJpSd7+VS7lDyUUOeMKAp8bxlC1pG5HzEkJbUS/dh8nYniGUVjGpYVjJus88om1K2WUbBsrfcDynErbChZsP98Ie7Gh9qEjzycBh01m6neXHxonlqXlnBiD7r6n7fi6YNW3Lzq/qimhfNOGjRaRWrGiHZMakgIrdE45BASNbsaJ4y0ZkzIvIZJa9r+011/1LNAzImrhIS3j3q1s04KhLbbI+cnKaGdcvWLFgxb82SeGOXxJKi3xDqxy/r+AupdRmP6jpodr5l9g4qomVf0moe1GmeCH9YWg+WKt0kvCe1RigbFHO3fK7zj/0iH/vvGZpmdTZUfjeWQ/U3X2TLo6EMee6d6z4+kpHXp3nN55hV0mdCwZC6RQVDCgZ0ew6z/aZt9TErTll2VHtompHdYf9PfpPhXaydvizsuwJf8rS9NulTdLKT+r25s/zxb/H2K7fWOdwh5vWbT0qhzXmoFLo9pMHLbGM9rNPdxzLs3XgP3wyDNhm1XcmIFWfNeuuWjznf255PiVP+YRT4aV1og+lzZ2/BDs/4gv9RousNf6JiLkyEboalXhX4R4nCbt1N/6fu4i9z+rfYkYaUk6GxIOLe/UggxEcOcOh1Lpy59XPeJxyzaNV+h8z5JU/4aQ8pyPqqd33F21500qnrVNuaLmi6fthCqqUrUbRV3nhYyTEruYGtW82pe3lIV6F9B/yknTLbCKRzthFow8UY763FD54Epy7rW5M0VKNnanxlhpPVIIeAYpwx5NNiJZX2yxKDCrbJaFnwnw37AgdmuBkhWboOOc71ig21NnPrwbZmo8np5aD7ugUiI/r9upJfEqKyKiJ5kYKuC2h71IQBZUPGDRmTlfcDX7OkItES96IsEi3rjttwylG/ZcH3JX0V2ezV7h43w7CCKWWPGfMl2/XLqWjpkwurhbraur04mVAZ2qXsEf2G5LxmzZqOZW3rOsoypu/j5O12kVEwZI+SSTl79NmsYFTZlEjsDf/iR72L9xUfahK8869SnmLmm5z6ytX/i4qISa/5Xs5avtQcMGXYvMPgXE+ufiOkgi70jIqVXgm+JKvbrWg1DtJZovGWT9Xe9NfTjBGpOUWvavu7Kv6tQb+jropjuo7fo/JRV0fFkhMOmHVCoaeRqdvQUBUVG6Z3NyVJxfyR/06SzIhNiT0gdlbHi5d8NLOmkOhYQMTIHvo2hdjbjdmrAhCKPqvgk4o+rWtJO3NcbejrofKe9EbWbhK26m2M7mnK4CRbH2N8J6VBZg8FOUSUYfqB8LdckVOvvefhUa895iLy+nuW73XrvcpQLK9u2YrjOhry+o3Y5Zf9viWH/ZG/aXZqO0/9LTY/x3f+V85+j/7pkG3Zrl16rWc94DMe06+opim7XPfr32r4V/v/iZ/rPOMvHLB+E6/VO0YUh7bm/oGg9dy6g4lp5s5z7jTnz4ZW6B8DbPesHZ7zgM/Z5hkHfdUP/LZz9t92WG6Cf56GhrgTuKh6vdW3autOpMEqKakl8sp2eNpLftdx39f+AJbX3jeWj4n+69+V9g2Kvv0PpD/8Ch//JT7+xWAe2+3y0lc5/naI+BPUHQMi4zIekdOUmtc1q3vJx/x+YVHVdxzzklP+je972lY/cNoZKzauG5Bxa6Q66s6oO6tH5+7pPt8PdNIQlXwthnM81P/B70+314BczARL607K26scXAumJsuti8GGsQHPytssVpS3ScleXTXjftGqb93dDjQ6VFuhq7fTRcRSNRDi5s3HgdiEvE8r+jmxUYkVWTtFhgWvi0Oa/kJWRtmATXZ5xHMe8JQJW/yefyH2RE8WEam7YMl+y9605qBEW64QZC63S4LrOpY0LKhr6XrKZi1dDV1LGk6puKBm5YpzfpuiHUpG5JRkbFFU71WOg7fwjx4ZRSMe1upF1OcNyyia90NH/Icf9e7dd3yoSXCEkYcojoWkrHM9Z6DsLqJy8IVN1oUGhl5RIcWcNWtqcrI2GZHpnWrdm1xCGz2/yyvF342LcoY0oRPWw/bnt5psnXM+zluNM4ajDR/JpA7UO5cu7/d6yO5qq6loa15K1BqYbBob6Ni6N/U//O989yupF7/yryydGNFqnJE4IXEMsTE/J7GCVNeKZnZGfQoP/ALlyUD+1k6y8JZo4bj+jS8o+LicBwWxxbJsd5fM2rT18m8FEfFAOTSL3W5t7vy7vPKHoQI8uTtczKHQF0hw1NO9jmwODvFrs1c9PNG5qgrcVrv0WaUSXa3e0nuqYFDZhLIxeQOO+FOrTiGS68Ta9SWqc+T7aW2ESUDn8sCVl/Uf/IaivP1OOG1eTsZ4p+yfLv0VIwo6Ol51zILbHEFvhSRhrZfvuWcfm7bxN/4eRw/y7T8LHWlJN7RBp2lwff+AkVMwZY+2hgWn/VWfNmvRy1ekuI3ZbdQOEx4wZqeyUQOmDJm26aOx0SlOn+Lg9Qv+V6GDNwVTpNudUo6Os1EJc4oz9vuqf2a7p8w5dpmA5wtB+9GbVMTDwTkk7S1wxAXiMXLbwu/175N8kH7ytVT61gaDvxv0voe/w/79PPAkn/gSpw7znT8KBLgdzoO8yHZZ0zK2y9gha1HimLbTuiq9ht1lyX2hxCEytu2gOacsq2r1xtP3gx8P8nslrt3bgSzD2SBHuF/YPNlraL6m4N5Kwuumgi9vptdMW+2Exrh6N9yn2klNWJPrFUmaziFVsMO0v2HQTzjk1zTd4YrDcq9ClY17dkNJ0BSvXTThDR6/Q8Ph67hw1SpljETbAV1lqXqvMW5UONsOe0BTTllGVoSmmiWzatY1Va1425rjUqm2ihUHdNQNf7atUwnOQUkrvFTaobVw88Np6mpreNeyP3HSmJKftkNNx6K6s9a9a9mSxqXzIBYpydikICNy0LpxeTMa5jTNfAgm5R11y962zV9Sc0HLqlnPm/Hn5u6Bt/iHHR9qEtxthXSvbJmpT9BcYektMrvITJA2SNbIbqPxLbpz6DI41TUy2XX8rSCujnq9yNdriruIVPCKvYgnHw/+uZ0O1Vqq3mgZHJoXxSWFUt3y8ZbmYupTpdRfHeDtSlO0nl4eBTNRCHrfMhhIy/EVStkwGCzdeUUv6X0B271llrSaGCqmBkbZ+zhnjvDKNy9ox7+jKSe1KpYa8gsGfKZXRU2kOpq5VeemXw4kePVEqIIO7aQwJBp4XOnAcwqeFRuUakuMipRE3aJm/YdandeDWfqtspYvojRIdYU3/iszbzO+I5Dgyhy1CvXVUAHO5IM8otBH30iIT7oibufKpey091ll5BUMSCWaKvL6DdisbEJen7aaw75iw5x153UrCae/y/IR5t8KYe6dpsdHUoP5YPN6dj3xLQf8go+ZNKShJSejI7GjO+G8ZResqN6rASzf8/lpt8IJ12wEuUWhSLn/8v8zvXijeyzFuBUKvSbMSTvt9ZwxW62Y1XLMopn33DeroKNpxRl1a5ad1LDul38hNb2Nb37t9kgwN12AvS7On6F/MLxN6xYc85ILDqtYCPSvf5BNWxmbDOfWypJ0Y15aWZbd3JXfHcaTeIjMaPi58BS1b9C4+3yGO0OCWoe5F0R9XWljI3Qv1msszwU3iMWrJ4kZDIqNiLWkIoyJ5eTsktWUekvbbG8q0JKq9XwYYlTuUe93U0fzR9Ho8yFADlvllMT6xTrSUI6Nu2qZ+/OePLg7OP4kabg9cfby/6qdYKlY61DPhdskDcS33ZNIRGmfcvq0Po+DkgckWgq2GPIZGYPyphVktN2h3Wc3CVrgSHixThJMiNuX7c2Gh5mc6qWTpiwvh4WOVEXHO1pGhClwQdTbgr3eUX0y+g2JxDasOeWQs456w/Mqlgyqa/ef0S2tUWopTa4aeJRNf42Fb7D8vRC2lNzmgaXoSi1retW8rFhN24C8Axbtt+CYNaualyzS5jT9wKpZDbHIvJaDNpzprXN8GEhwy5rT/tSqwwbtRWrRmxbt13aPdXIfQnyoSXCcCxWdOMfo47QqrBztxeSWkQvpPeW/Rtqi/qekG4xM8NBHgq98u1V36t0gp8s0uIU0GAwO8vN/hS2bqVQ4dYZz51MT41X9/VXDQyxkguvBQJsdOd7Id64W2ZdzPDzBp7eHZaFNC73JbcpcleU69ZipsTB6VWucXwjmvTdAIlHsxTtGPd/Y2gYHXmZ1MQwenfT7uoj1K3jCiC/KmuylM0ViA7JJolQ/r943zdx+qvNhJMj3M75FqiXV1rUk7bl8pjZEYrnOHu3iQWlSDwd70RT4poiCDdrqLHPHKQ8F0ttth+CSjeXwe/8IpeHwvFdmNt8EGTlFI1o2es1XkbJxA6Z1tcw7aN472qpqliS1hAsJCwXWTl2SQEyVmCyFi8bJ9cRv+aZpIwqy2j2rp5auirozFsxYVLvLpd73IJ8PJ+vFOKN2m+UFXnmB+dmwNeqBIHc7t+fjcw/Rb9Qm++z0hL2e9ZBP2rDikN9VUvOEbbKyTpt1Fk0bVs1oq4tlrUanPPX50x57smvHblZXePsA7x685UvfMRbnw1dwcIh0sKXTWVRvL8okgg/w4BCPPMWTz1Lu48Cr0nffpJ6KB9dkt7bl9vZOvwzZzRQeRof2md5E+4NAmoraM5ebTgdQWmZu+bI25AoECVigCmGYS4yI7e1Vh2tSG1INqdXgjxFsDH2wQQ7/X0VJZFrWA/KmZH1USUfqdNr2TqduNro/JHjrdBg+4jikeq5WAtesrAey2xJum8n1q9GxSFFOrCDEV+8WfJo3K9ql7pCWC2LtXm32DtHssNEO3pSNy81whQI7dvDAg0xOcvYsc3OXh/1UXccpodG7KdLXEw+Eum5kXceDIpGadXUbZp1SteaoN9RV5SxIBy8wXlGYYOAJJn6K0c+wfhDdO9N8X0RbYlbVd51T1TGp5JwNJ1XMq2leUaw5omqtp/8tiXVxQs2KtkUt1Q+86/a96GpY9o5l75jwEYm2qvOa12j5C/rFcsF6VOOS28aPOz7UJDg/SGkCMeVNgfid+DO6Cz1/xihUhAufJVkl/yaFKlv2sPdJdj1Ko8qf/Tb7nmbxPMffCj0lN0IUMTHOT3+RJx5nbp7X9vPmW6GDfveuUJTbqPLmOq8fpFjhcOsKC5wIoyU+t5Off5Dz6zw9zWItsKw44sgSJ7J87mM8uJMTM/zZ87z85k0rrP1DoYiaL4b9OHeC3/w/Aoe60ro2a9KAv6zsOXVvqNkfEnNMyDQHjR4eNPvoW5L1c1RnaVXJFqXlbWr5d3Rbi1LrEutSDSTEsbSfdLyfjYv+qF2qt6hM1q+QDLQ617dCa25cXo++SIxvhLgnoUiaojQTkqSyWbmonzQj7hYlaVfVgvlrG7La1SCFSNNA/gXvzFbCUoPlZhhmf+io3/YtO03qSnrW5omzFlyI56Xa4vTOAyquiygKH2Zc6Gmtu0ED/Ie/3Ys+mg9SiUbtPhj13vzSlpEzYpNJOwyZlFNQMiij7uc9ZcJDxg0b1OfPveIf+2OJVcuaVs3IKmhkFvzG3z+h2nNVevZjgQif/Gf3R+a8NM+zn2RqS3jLKmuhyH7qGMl4VuOxhzS/8LMMj4b3urpBpyOJT+qurYjn05A62A0yib6fofA0hdeo3U8SXKTn8hdURhFpHSWiTUST2OhJMwpohgpwhKzoUqUqRU1qvCeReE7eWV3f0LAkMaN7V5lVce91cKWD9p0jyoVNpjebbwXvsR8nxJmrnGxGZTymYLxHhP+GIbHIN204mbTM3if1UiYTaiiFPN0BHnkgWFy+W718LeikN5ZjJDZUvKBklxE/LZJX0tavIWe/Dc9b1dFVu/tPvJulUWB9nTgrjjqmpviJT/H5L1Aq85/+I4sL187v2zreve5TxjJWjYnEqipa6poaaq4iCd8AACAASURBVCqWeg2XFUf09QUOUdxO3z7yE1SP0jxP930YD6RY0vCic0qy2hJ1Ha1rxtJ3bHjHDRw1PoRYcL1+nIycgnF7ZRW1bKiYu+S69OOODzUJbiySdBh+kFw/fVvY8nHOfI3mMlGJ7APUvkx3ll/+O3ziEyHTYPYkb73E6DS//s/pG+TsUX7wDZ7/8o1fM005foI/+XqYoY6P8dQTDA2F/+3aEVYm3z3MesyrdU62L3cCI1SBd43w03sZKvDdUyzUQpfsaIlnNvGLD/M7Tb70Ezy8m8OnmFvi0MmQWXwDXFwFHRoLY/D6De6a6vRCTF9V9bJ1Xxf3Mm7ydil1nzTwB/9S5Ys/Je2bJluhXZNunFTdvaF7+Mua6SvSiwvSEfoL/Moj2MTrOLd+b71rWzWWbkN3Nvp58tOsv667cUQt01Xd+ivEWVrzZpdel68fvP5MtbURNpcrYF/awmiBw2ucuGL158u+/56HR/joaEiCSzYCaX7f6HYDS4tCKIbV5XDbqIf/LVxgefEevNB1kO2n0xPWXweTdtlkr4I+C85oayIy7WVZeWc0NLXstMkzHvSP/JIXveF5R5xTk1dWj2Z94+uBax4/yr6HePAhPvosLz5/fw5r07ZQ7M1kg0Si3eKjnySfP+kHW855bXleOneek0dCTNTkJu1TG6KkKTtRDc55HTrnaLxKZ4Yr+jLvC+JniB5ElvSt0PMQjRLvFmL0uqQXEBE9Hu4z1gxL71ksSbRRFCmKjEl0etKIdYmzOs7dJQGGYRnb5LSl3u35oN7FUVLcS347uSmyI9QPUvmLcMAfWkSXy5RxJjTTVs5dkmvFQlW1LVUQWe7Ffizoqt5HXXMuFzy+B/vZPMXkGC+8ctsLaeh5yfuBYZ8WyXjYH3janynhbfyhL6hq3r2WPM5QGggSt8a6kfi8pz/S8bM/x09+Pkij5i5ckdJ2m/u8Ys6sk+o2bqh0j/JhvtWtsvp95v+U2klqJ+7NvKuqc2ni+X4V8B9GRGJ9Rm33nC2e1rBqwdGwyhflrLuA9M4+vA8ZPtQk+MzXgoXrli/St5nld6ieu+xmldZpv8v6Pw364Gd+J5DD04d4+/vhwnfyYCC/n/pZjr5xcwJ8Jf7Jv+DQYT77aR56IKRqZbM0mxw5xjsHmTkfmnfOXDvLjnqJEf25QBTPrbPaCOtUaRoqwntH6V8L5PfcPIsrobth06TBpbbKdR36L2PtFo06sT45mzW8peGgnK2yxuVskrdHn4/b8B0yRXL5IAuoXmDlCLM/fK9SKZdh2yD/98/w7VPhGM5Wbl0Fvh/ITzLwNNv+vk52QGflBVrnw9pWc1a1e0r1Gi/R9zxFzMcmQpUkwekNZm8xKBZifmZ78N98Y/nmVeBYViyjczuSiVo1bFdiaZ6BocDi0iSUS+r30jMxDgQ4LnIT3VdGRr9RfUasuqBi0ZKzdso5b9GKioqaQ07babNh/b7iBSedl1W0ZaLP3/+NJa+8HNQHSUqpxOgou3bfHxI8vZXHn+GjPxGWiTdvDQXHykqQAk+d/H8Mv/C8P4/+2yA1aTXCHeNMOM+zwkmRpbtI9eu0j9K8D/KNK5G8hJcwTPwsUUK0HSsoE40TTZGu9AqpD7PnZFb/WvCBOXBFk+oWGT8Q+4q6MbEBsfr71P1Oy/qEsllt07JOazunfUUb0M0QBfI78nMM/ATFB8htCiS4dYa5f8P8v6Vzh6k29wPZYgjz6bZpViiNMraHiQfDNryddp2DX+Hkd2lV1aRmdWyIddWd0LKg64CGQ7ezbDyUCTFz0nBRaSYhbedWu5ph51a2b2bLVAi6OXyCHVs4d4HmLV46aMkT0w6a9LfsEfkMPik2iX8p0fXn7rpBsW+Esa1M72V0K9VVSxtLzq+/4o+/vOhrX+WtA/zgvfWGmyKVXqr4Xg/FbWEVJ6mHiOukRf303R3CrdC4i2poHLs6nvlDiGBKOm7MLk/7FQ/5acd8J3QnDUQWP5VjYDAsOXz32yx8UFqxe4sPNQlePcT6SY79fpBDVE6E1eyrgrradI7y8Z/m1NtMbWJqO+dPhh6S1cXA8Q58j7O34zfcQ5rytW/y5tvs2MbICC++2ufph6vePsjKyk0GmGqLw0v8l0M8NhG6Y4vZnt1FKSTpvHCa8y2KRSobPvUin/vqtOPNB70rdsRpNY27vmx1zFn3Df0+L2ezjBE5Uwr2yhi15F9b8pvSU38piK7Xz4Ymudp1Ko7lHJN9odHvN1/npRkOLoTj/FGgMUNuMqxpRdtEUUb51G8qpP1WR/dJ4vwtnyJJWWqytY++LO+uBj7/hc18cTM7+3lxjuPrQfVxsbl5NM9cnaNrrN3k8DNyckpyijpaMnKaNi419N0WNnoe1bc8B0pkHkCR7mtu6KUQTRGPk66TnAmaolz2ch7sdR4366i2prKCrKpddui3brPHnDOjK7HJmJysd5ywal2zd9EfmWjY+2TL3AVGRsMksr+P8QnGx9m2PVSFjx6+txeD4RH2PcqjTyNl9z7OneHkUVaWOHsiNX9omc5rQVS/tCCaKYsaj+qe3qd67rD+X3o3FDiSMNFuHQuSqw8EayS9yUG0QTQcpBDRCLYTvRYKAOlRXqu1RN77yV3QNafbq1CGKuWTch6Rk0q1UJWoSc1dc06OynhK0aCMhxU8puDPbXhH0xvqujjQiwi4faVrGgbuzDC5zaFE1zpH8yQiBj4Rfl5/Ifz9R4lOI3zwfeNs/Sh7Ph/IbyYESugbpzjM2F76Jzn2LStrZ72hoScldzELrX2z724+YizH0/1szvcayISM5fMt3qyy2rFjC8VCSPS8mOYZ4ZPPBinE6HDY+nqGPc/0LNf7y8xcCK0Em6c4dPz6uxHCE1N9iKRmRL4jVcd3pCp3NmpdRnmIiR3BFnPnU0ztZukscye8eXbVyRMUmosWbuHKcDdoXlEDyfQFpdn9QnyFsD5y+edu9wqN8xWnQT4Xrj8fcGvHHaFgQNGAvD5DNisYlFOSVbAxlXX2mT5+8tNMTfPJz/Db/5Yv/0Fo9vgxw4eaBCftsLVrQf7QuUGlLm1z5FWKvVjgLbvZti/IItKUYh/VNep3KM2pN5iZYWklliuXLC7n/OBAv/Xlmm7nJsNCKlRK//QoF3ovmotDjvpwMTQLfOUIC0P+zfd+wUSrX7K4rLJxWsOKlq1mLWpq6dzNLNOAjFHQsSBRkTGkbUaiLlKw7HcUPaR29qVQcurUwxt9ndCIYMnVCdFm/+kdZtaYrwUTyh8F1l8LU/z2IoWt0jivMbBXe+VFiT1up9Wnm3Jmg4UGn9vERNGlqOLZWujlOFcNHdXz9eDos2+IB4bCx/ulOFgOnUp56TrXuUgkr0+fUWvOy8hqqd/Z5SS9hUVUNE28PbCk9BzJMeLNyJMuh5LhVfcvE+/CKtEi4t7VoRBKi2k7EJXkcvW6q2PZObE+uwwaVPOW15x3zBMesdMmA/qMGDCgz9d9/9I5W6lw7Fhi6/ZQjY3jYIe0vs7iIqdOMnvu3ldD4gyV1dBbmMtTXQ8E+OhBzp3l3Tc5eXqd4tuhirG8KKp9gXRQqqp7YVL1K4MkZWkyr7t+UlKt3UVX0F0iWNWInghyCGVUSU9jSEgN2UCb1g3eu/d+MwNhDYqOSBYFGdcLD9mQOKzpI0oeUvApfY5qeU3D6d4E567EEJ35QHQbR8kM9tajk55FYi5UhePynT8v8gPB8nzlCKMPsXr8+kPZbSPtrdr1jfPoL4bfFw6xfIKlbKgWF/rZ+wU25iX1Fa3WHV5ghrM8O8BfnwgD0rlWIMAwkWOpzWrHwnIYaybGQiNcrcfRt21iZIih/tAId36O6Ynw8DgKi4sbVUrFoBnes4Pj16mGdoUGuo6w6FCTOoBlHL7uGXKbGBhn0z52PsmuZ9j6MMdzrM1r5YatVEvi5fvQ5sBVIaDdagjduoQtj7L9qRDMdOaN9/1aSW+YvtiwHrncWBt2hvQiSY5CI2O7E4aeD1sluN+UumVtdRk5fSYUDepoWDOjrqIzPar73GZ27QlWncMj/OJf48yp/58E3zckNybAF7E0y8EfBpnAnsfZ91TQA2/eTWU5yCIW7qLA0GrTqsQ08+TLVht665SNq+y73oN6JzS/VVv050MFeKIcfi9kOTBnx4Wsx44ktrXzFhW9K6+oYNigQX1WVO6KBIeY2qqWs7q9nvCWs1INkTxiTUcVPNTr9LnFa1x0XW92WWuGtJ9W90dn4dlepHqQ5jmyQ+SndAcf1135OrXDdG5dskuFZpEd/ZSzDOe5EIdEpRfmwkVkqhiqxKUs2YTJYrhfMcO+iK0RZyPiJISMXdvCkZEzaNqQzTZ6ASVVyzoaiOQUkfZ0tnf4ZkZbQlU3niSa6PkdVTDQM729jstINN4rKUIxrADkBsn0BwLcqdKphKvGJRNN8lJblH3STk/Y5N/5oaOW9Ctra5syYVCftx33gv2XrOOaTS7MhuXObI6pKZaWmJ8PZPT11wIhvtdoN3nlxSCjLvcFQvzayyzOsbwUFBDrlSaFWcG5ZEpkune5T2kN65zIiExJbZZYdOdmbe8TMdHW8JFpoR9biXeQLpK+6Y7jnNclsiK1njtE0Apffd71i5VFWlIruk5pOSDjmJYL2tbez0wgqdM6S/0dMkNhDzJlogJxqcdc7m5QyRQpT4enLE8H45e+8dBTUr+bSmOahN6B9blw8SmNBrJeXw2/x1n6pxjdRbEX8nMnJDiDqRwf7efZfs62QuZ8I6EU059hX5lzLbWeNKJUpZALFd7+cjAW2rODLdM0evPWVqtX+CnQV6LZF0hXml6+z0Vc5GldIZVxHQ3hdFuXWnFdI5LbR2mQiZ2BCI9tCZOGuOcJn8npJlndD0BNl+nGMnFZc9OW8Fltf5KnfpbTe8Mbc/bNWz5HXuY9OQLXIu2tHKUR0RVuqdKrz+okCdeXO9Ft3xGiiPHRMPPJZsNSwEY1WIfcAnklXX262mIZkagX2DUrlTi1fdbig3kmp3vfkRYzZ4Ncr/9HkAhzD/DjQYJvE3NnwjZzLBDeJz4ZzofF8xx+/e5I8CXEGfrHKY2wfJLqYqicpuTke17EGXkleUW5JC/eyGgcrqla0xhZk44WQqNcIStab9v0zprXvGXFVtDWlpWRESsrXopevFOkajpqOmZver/mDTpv34MkDdXrlKibipqJ6Ip9+5E0BbQXw0aoII39ZXLjVN9xo5JdFOLlr5q7bOsP85WNdpDhNbrs7438f2sfg3l2DZCLeHCYkUKYCwxhV8R29MccTVlJmL/i1WOxoiEP+rxFJ513wJxDNixIpYoGJDo6Wncue8k82vMKLAbSm9nXO7gLwSew18AWLnNpuI3HAuGQIc6HKnB2iMHHg9dg/SzV47SWAmHpkeCCrHF9HjbpZzziy962rmm/tx03Y5ut5ix6yVu+7bWrmlSaTfa/Ft7zfQ+Gqs/CAmdOh9CM+4HKGs9/g9deCjbL1XXefU+BontJYx2ZwkjPXKwgWDR0MS62R+odqdXee3pr5MUikaQ3HU2imImt1NbDlfKi53OK1Rvo6C4uAuTQCkX8aCvRo0T7Q+H/Tk+ZRYkcVnpWadfDkNhEz1e4JfWimgMaXlU3fy86wdtz1A/3qr594Tsbl+gs0/5/yXvvIEuv87zzd75wc+qcJ+cZhAFAAATBJGjNUCBFaymZkktcrb0rl63d2t2yq+zyqkpbtVterdZ/2BusLYnmSrIt2VTgMoEgKYAgQOQ4A0zsnpmezunm/KWzf7xfh+npmQ7TA4DSW3Xn3r5z+/YN33fOc57zPM+7CMHOclOVIWxweggwILMXOo9KH5z1IDgShm0tj2ABGzDbOoB2Vdjfi0/Bkb8lcohISv7PjAgbXFsQffB2x+qYAQNROJWEvggseWI6WH5hMUNAcs4ScNwOWMhDowkjg2KE6+2GB04J1vE86OmEqVk5vKJRODECxbRsu2cS0FiHaJelMh4CgouhibKJbDTUYGshWPuGhKouVW80dRsGpDoh1w+JnGTFN0qS/hPsfMGz1TLD9sVRTKx4F+1Tn4G+QxDPChOcyEl0Z3URSstdRxV6g9E4RgSFi4t/27lumRW+VWktxFrEvgsg2DSF9u/sgMP7Jc4qEYd6HSam4eKYHEC3KZcWBiYmUSLE0WialCgwzkxqnCsfSZI/3SOOzKVFyHbA/Gxo6N5B3tyHoP5ageDlWpiSy3N/KT+felSkf3dUyoDsCNz7ZTj75zD3LtQWMF2PTvqwiNBFP3s4yiAH6GKAGAmu8h5neIGx4hnqxbJsh1sGuj/FJcZ5ip9yD4fpIYeBgYVJG+cu9XXaYXkBeIGMzdhh1JoRDhjSZKT+gWYGBsJedv5nkP8WKqjdoCRQYRJTNBuqPtZ40J6e2vAJATiYFvnDUEK0wz0x0QN/cwwKAVzW0KPgIQVHFTQw+Q+BpokO27OYmFic4guk6OZFfp8YafJco0kl7IJ3ewPkxmWAeUikD9oRja8yQWVB5yFYRJjLKKgUAujCFot6SRhjFZ76VhL6n4SOh2HpOZj6k5vSIgo0OM88LzLOAboo0cLBo0SLPA2mmecl3qBKe8PjVms487YAUddfjZVengN2eyqcv70n8qbSvAx8EsX9KHqAHAIP8kAGxWU0FaSB8+1LAYOkiGBQx6NEm3osBl/8TbjwijwikYZkVpqePP21jZufaNCzQElejq6AmgX9NgSvsqMPbWkLY4qPgMIkBt1YXKbNOO7tta3bKTcf2vWrsgPh5YUB9hbF3LrVHrbrSplgJ+QcH3gMBh8TvDr1PMy9JoywgbSq7ccmgRGmzkKLgOs3hVuFVZuH178mLG9urwCoaAoSnUKIzLwtj3G2cR4vg9weG/ZEIWkK89sZg8CCtoaiCxOuXJdWFx8B4KHQEUVXLuD4IQG+rfaq1hTEZ/toD7TTcv4d7wf/JPz6v18N9PFZ3UywkFS+5ftc2LyNg2UKAv8nvy7i5GdegT99Svb6AeolaNXCdIgMlC7LfU4T2vWVbod3owwUWWJEQk1CK5GD01+EvfdL19LyHFSXoOcAPP5V+O7vADK/ufh4BCvjk0jbTGxMGrRpbrVL6i3K8+S7Mk1hhbfac2rTyqTh+GF44uOik1k2YZQq4ub3Azhz+y5F1dBsGCVNhDgGBg3ymNhcPlqh9eBn4ehxSS66Pg4PPSLbba+/Ilt8P4P11xIEr6/3tuk83bC0ltXr/V+B/BVhgn0P32qy0JzkOA/zVf5HTvAIEWI4CDswxEGO8iCv8gPe4K+YZkxA5VSFIvA8b3GJcfrppo9OsqQYZ4Z58rgfos5LBooENtEQAKuQC1aAh15pm/qBlFeGK/8cDv6vJGNPE4nVcCoSf6wM6H0AsvtFF7Z0Dsq3MIisr7NFiUzriMJAHPoScL4IvzgLC4HgE6WhU8HHleIfBR8jxgQRfEyscGvJ5Q3+hEHuZY6L1FjCpR1qg/XKoLOtMo6BfxawwRgClQHaEHkAgmnwXhUEpUsQhNpfZYP3E2m/aGVk/3iZdgpcYYWVvfo31sVVLVLnB1ziFSYAzUUW8bexUAtCJ3QiIn8VJX1WNCtrLPxAHrd8eT8r4BkMXOARDPajOAq00FRRdCOdqm5dskC06CTKVzlON3HOkef5eIULB4Zh4BB09MMjT4LbgsUpmLsmZoUf/8mGT6hSEPxUlC+6AsTBeETYYJ7nrhBpc3hU8OnF4g3uQnavOwNBQ9xKy72qncnNf2+Tqs/AxLPw+L+A4383fNqqsMP1ORj/HhwkymOkcNFUw6g4H00JHx+Ywdl4xC1NwE9+V8xw6X7IDkPHPgHDs2dlPnA3kcsoBOwCxJSA3nYAk204GIOEAbP3QrJTTMidLbjyDpSeu+FpGrEIo31ZxkYyHB67QtdL0i7Z9eT8Oj8q5rmTocT/egE8Hw73wlcehN/+MYxPy31raws9pG4sQ8HHH4T//qsS8ZlNwdH9cuL+++/IY6pLMH0Bhk9KMoTTCC9N6Qbq3r1uafvpxA4BcAOXRuBBvQDP/j/ygNyggGHTgqOfXAHBDRwyxMkRJ00MG5MIVtg6qkZrl+a4IBAjIwhRG4QR+ctpY0GwgzFweXug2YJcFs5fki2BwX4Y6BeQvMVqU8XHIcAjBTQpcfjNNJP75igODcP9p+H+B0VfVsgLC9z+4Lvf7aT+RoDgO67Ag2YRlkbh6d+CmXdkbynwINw8mWeCGmV8PBaZYoKLeHjUKNFFP5/my/i4NKlSYHULtEqdOg1mWSRLmhxpilRZpLQpG/zlvw3/7T+U7eWXX4MzZ+H1N6G87RHt9mWGXYVSRIljEUPAkkeAh4+NprERE2woSCegvBO2c+ulTDHF1IIaVjQg3iU/Z/bJ/+/5OTj8Zbk98QyM/SXMvLT58/75Ndmy+twwHA1zop+egkc09EAIY+Gahiva5CP8GnUKnOf7lJlFYeLSpMgkZWYoM02TUjjAbHcwzYC5T9jeYBFUEnQ5dP9EwRiGyJeh+S/Af03A8Mqe+vKVFs0vhO0YFThLMPmHMPNn0F6E1qQsKtwbGbkmLtOUmQmny15SFNd1R9qsAg0jWTjQCf1pCUxxfLi8KF7LQhNqjgDi97s0b+JzBsUP0DyBwSeA/WjOopmB2yxIo5iksYlhMUyKh+jjYfq5QJ5E8xodVxd5afICDB2BWlGcuqkOiC2CfQvbuicAGB/0JPL9leU+6x+B+Z+D/xR3RarcQHP9bi5o/RL4O2N8Ny0tcvbJn8DsywKMp18UfJHD4ncZ4buUeJEas7jEMbBRVPHDZf1tkEerJJFp+VFZXdtJsOObs8CWgowpTx0zRFvlanirBtMB/HEM9vfBgAU9UTgyCN0ZSW559TJcnl11UBUdeKeINhWvlKWBpOdBtS5NR9sOTMwAGehNQcyGmRb8z8/Bv3oNhgZEnz81JzLRHVUsAscPwpOfhOsz4sA7dgAODMF/92urIFhrmB2Fl78Bl18S5rc8LxKEZjWcP7dW3X2S9R+NCrHsuTC2QWShjclRehgmRxuPGg4BmkirCaMvSV6xMuDtb4fvJQ1XXr3hOdLEOMYA9zBEJpQEOPhMUmCWMktUKdKgTJPSNk9Ac9kspyTRI5OBVgtK4engefIdOo7IJpYTJEwewec9WLdzqNiHPmRBR0rE4b3dMD0rXb4sSy4RW+Qqse1FZGg0Hg4NipSZIUqG5osvwPS/gT4LyiY8+pvw4vNw/r2/OXIIpdTXgSeBBa31qfC+TuA/AfuAceCXtdZFpZQC/jXweWS4/nWt9Vu789Lf5wp8GQQvfA+qc2GSQsCyArTEEi/ybWLhRtsc0vShQZU4KdJ0kKWbPvasKI5cHKSVsYFLmyVK1GiIjnATAPxLvwi/9ivSyCNfgHMXJHZq7x5xCtcb7CB6xgKVRuzoTdBlLHS4GjaJY5EgQpII5hopRCvcLPUIaOOtTiOGIQ4O24ZC+a7Qe0ZEtkCtmCalv46hKuhABkorJ+RNvAdinRDrgNKYGGcSveFXehvnhxdiyMUWvFsUgGaW4ZsBdAO9SvxKJQz+nZ8kyXN4OFSYx6GBQlFDdMsxMqHYxcajvXL/1qsOwXUwjsq1ngXrcSAtLcSCUWmP6L0s4Ph24FT7IXh2JSbNLQsgDhyJSvM3bp5hYNBBnCXq5Gls27TZlYB7++GBQdiTk+S9VBReGIe/GpOIutoHoap5oE/QuGWgYw0C7y14IyDgt9HUEcvQzXqqOBZxTNJE6CRGhgjDpKng8B5LzFLHxqAjsCSLuLwIF1+Vdo86kBaPnf3wlX8O3/o/BRisreWPV6+5bkDwLkLuD4Xa4HXzcNyGiCXMuuPJW9tu3X0ifud/QSLI1E0SjXYZXvvf4L2vy22nCk5FQDFAGY+vs0gJnzoBrXCU1Wham5ieVl92EL50H4KKAGC9yQesECCskUHFDTOALVvkBP02YEPTgVIdpgty2wn3zddic41E1rxd4JwnpN9AjzyN4wqAikXhWhPGQgm6H1oCXEQyOtgHhdIdgOC2C9em4NAekUG0XUFyU/MCur74aXj2bWH6K4sigZg4I2yF25IX5bUFwW+h9h2GXBfEkxCJSuLLcpf5q5fkK0kSYQ8dPMAw++jkIgvMUaVCizYegduE2Yvy4Ewf9B6U17IwBldeAyBFlAgWe+niNHt4lIO0camFXoA4NhniZIgxQYH6Fj0C68s05PtaJmn7e6FYku+uWoO5BZnTdTjkaA0qSGLyEQIuoymi6MVgEEUCPeWh58oE7YrQy+kU5Ivw6AOS7zo0AItL8Nr2kjB8XBoUaFJCj0AzWcHv9yEewKKGMwFc+prEADWX8dDPXu2ECf5D4P8C/njNff8MeEZr/TtKqX8W/vxPgc8Bh8PLI8Dvhdc/g6XFKOE0QiPEjQOmj8tZXiRKgm4GMTCIEMOlxTRjtGkyyjssMYNDixjJle5bCoWHixfK7mNsnnObzciqcn5BHPdXx6FcluM/m5XxJZmA8S0FhKclhNToQfqz9ojONLhIoGfQuoERgvUIJmmiRLFIYmNhUqLJOEXMFVeHlrM8l4JEVGZk14Vaa9fDEbUvuE1I+Rnc5ZgaU4gUw4ZWERbegmS/hGFoX1QBOgi3TcvcNujjahUqjhji6h4sAikFaS02qiaay7TJ8OKKkWCZVZLVdJsYVWJkIDRebL/vuh9+J9cR60pC5A6EbzaYhfZ/FAfVZpNy0Aa3xE0uwWUa7Ra/r9dIXtxtAmDTgO6kgN+hrDDBuZhcl5rw1rTEaX8gtT8n3RwnKzCXDz+S+9C8d9tfkwUgKNzwHA6wMXmTeTJEaOEzmba5eOIB+YV4CtoNmL0KlSVhxpQJsQSbgUIrjOQLfIk3JoIk4G1A2EYs2e72glX99V+HUoiUJiKCmptAsPagck0u60sjUo9nqWKiqOBTx8dA0SZYkURsq5YHkM3KxoVpngAAIABJREFU11D3hQVuBAKIHS0LT8MWZjViicZWA8UalGpweQZmi0Ie7ElCxpYPwAkgadEwFOPFBsWJNrlYQDIu2uD5JRlme5JQb0OlLZtyliUxa7YF2bQQJfWdKF60hloTzl2BX/28kB3VOlQbUChIbIVhySTkNGVw1sjjgiB0hOlNQbBlw/B+OHwSojExuUZjomAIfFiYkaeKYnOALj7NIZ7kJNco8CyjFD9Spl5zaVcyOKofrChcfRVzMA1uF0HVRS8sQEMYzCg2WeLspZOTDHIvw0xSIE8NHx0GlmpauMxQ2pYcbLmCcPvQtmQOH+yHwwfk3HZ9aDTgrTNw0RdTsR/Id+kzhskpDA4CrVCilZMnbTmAiVpqoueXYCQq0oi+XrjnuHzuk9MCVrdTtibI+jAYwC/YBPuAugHXgLd9qGvRIf2M17ZBsNb6eaXUvnV3/wLwqfD2HwHPISD4F4A/1lpr4BWlVE4pNaC1vn1swXLFMhCJC6qBcOtQyUHbrnOrfBUbRRRjZW3f3C2TmXf7ld8813mLZ8PNmB5SZJH2josrLR7L5FHYKHppE0VY1yQyulXwuRAK8S3ctazquiqV4fqEjEeVCpRL0GxCLC5yoOWuXJUKFG63S6E6hF009ocAuAtUDmhD0E3gv40fXEPrajgJKWJYZIhygC5GyFLD4RucDQNVQCdjMNANe/qEJaiH7mnDkNvO7mmdtR8a3dawGsaa9rZOXPqAeHWI90JlXBzjviNGmlgHRGr9+EGASx13A6PafFMuN/7h9T+0KDC+co9JBIGNAS5NGhTIMYxCYRPf4bsNQIdSGpUTUxxNSXxQSdCL4fdn3B5TaQ/87TtFA/SODZCWEoYybosMImIKC9wZF3Bsh9/ZB5KbaRkSY6gU5JthbpsN9CJLno1flEuAS0ALnwYeVSyaeHgE4QLRoGrmKKfC7zvTLWHl3gTkZ6A4z0qukrvx5xoPdzKTUfmMXF98WPVbDEUxWx5Xb78/spKIAdHwu6veBQXFcqOP5dsmikgY4bbdquBzniYmCi/UAy8D6trdNCIHCPg1lQBiE/mSYhEBvq4P9bBrYcQCtDDBozOwFAKXg2nYl5RjteZCXxz649TeylN7YYFKvkkuI9rg+XCTaTAuQQxrk7FmFwQfRSIyR+wIBIOg0B++CI/dL++h0YLFIpwfD2VwMWEjndbmi/INyjClYeaRe+DAUSF8UhmIhqdSuSissALSROghRT8ZssSZpcLMsTytj9XxKxpqPiaaaFDCuz6HZczhT49KKPKa9+/howAbizQxuknRCOUUddokiZLGIY5NEPpgtlvLzLxhiGetswP6egSvLqsVgkB2c4slkUVIjsYEmn0h+5tB8okCwA1zaJLo6jX01KyscI4cFOJpmVp+4wxcndjei40CIwY8ZsJXIjCi4BUfZvX7l5m+jTJCDXiwzeXsbmmC+9YA2zmgL7w9BKx1PUyF990EgpVSvwH8xg139h+Bzr1gCaCgY1g0WFdegql3obqxGzGOQTc2HhoDxRxtPFjp8X03a4arzHAVC5s0nVjYLHJjnpEmQo0TKI4AgyhGkDTWc2j+Fzx8kiSoUL8lPzEzKxKIak0Y36EhGSgMM0xGScjW14H9cjJtDC4MMO4H+3Ng7AMs0A1kZMiCOQQk0Non0OdWtFEBmhgWR+jm5zlEHJsfMYoVTigM9sAjJ+G+QzA5D6NTsq0Xi8BCEfLb0wMuh48HWsZbM2w56a1x1hqsnpetpXDcVZIGYRegkQJ7Qsxy5avQWJAYJWXCII/i4lHiCiVGwxTVOysfhzYBy1N4gyIBPh3sCRnhOy07NBaFNLZ5AozDQB38MbnejUirXaymC5WWkK4gQNgwJDq74cq2/VYUM8uE0q5UxISZGnTH4UBOQMZ5D92eRHEUSUu9PboL0LTWHDM+OpRKWMRKTY4//yyvfOazuL4nJ2mmC9KdwghfPbO6yFfqhhNVKRjICZ7IxgUftVwoNmAiL2zvsplQh4/vSMh9hhFmld7FAc9UYhrtjwvuOVcMCT+15vzc6XMjgDeBsRIWuWzGdZEQyJ3U9Lrv0gD6Q49DBIP18Vi3piG2WRrRAWdMuU7G5RJomFwS9jdqixa4P2T4JtdotYbicCQjx2fJkciaT/XBfR0w26T6Uotq/cbX6oTHx9o6d1nkELa18TmksMJkG8nO0KGvIMDlhsVgoOG51+F3/62QGvGovK8LU/C3TosgOb+wIwAMAtJzXdA3CEP7hAXOdkocrevA9bFVfW0UmzJNXjKuccVe5Gx8hvavVDG7RHJldRUwMgWcUSiFEkF3EvS6BUA5RMQT5BknT4E6HSQwUcxRoYGDjYVk5wZ3FAvqh4S4FcbZ9XSJaiGbEQA8NQPXJiTRbNnEqMkD+zE4iKIbTRlNE4WFpkxQnZT5tjMHD94HFy7DO+fgyjU4fxnGt2lAjYVh+CdM6FAwpeE1H970YeaD32IyMAnwUaFRPxKSS60NpGu3q103xmmttVJq25+Q1vr3gd8HWPn9Padh6B5ZdUaTMHK/3Hfm2/Dj34MLz7ARS1PBpxKu6o6S4BhJavgs4lB+n4CBh0txjQHuxkqi+CKKTwIzrLR/oh/Fk7T4Bglit02efOkVufT1wt/5siz60mnYv09Y4rfegZ+8sMmLVD1gfQKsJ2UbPZgHQnZKRcNg0howju+eparbKBRV2qSJMk+N65TYQ454mBxhoAhScXjoKPxXX4TXL8AfPSUjruOGPSa3V/GoXEo1ODIEXRkZd6/Pw1xRJrJuzJUc0wQKy4HWkqYRrpMye+W6VRSdIED5qryWPXQTJ4KBgcanyOVtv8aNKsCjySoNX2KKNrVwgrnDMkZEDhFcB1rSNMN8SECxdR9474aC0Q9HuQEs1ODCovSN6U3KPFpowKUlmKsKSN5s4FAKOnqgsLALAC9iwn29wsQ5vmR4H+mERJXgpT/flmxVdpw8mnjkaRHDJBrGKsXcCie/+w3OXnqVwG1J3qwVDr0DB8UoBzB7RdIikIVfJgaHeqEvI+A2EhoJ62144jhcWYDZEpSbcr8CauEWasIG35LzpH2XQmZGkpC0oTcOaVuaYrZ86I5BqQ3jNSjsQDYZC+PZerHpJ0I3NhlMIhhU8HiVKgu75dIHZsLnOk2OBh5NfCwMfDSj25xQb1vNQFol+wgK1cBMAfLrtOADHWJ0Or8GtAwnZcWRb8FEHWabQil+9QA81iP3Xb9xF+viLaafmVtNSyjSHCTBIBZJAhxcamg8ipzF3yg07akX4KFTohGu1OFjp2FuCc5cvqOVaqsJs5MwPgoHjkFPv0gjOrrl/+Ym5VoDU5SYooSZg9i9kPy4pO8RgNUF0RMQPQDOAWi8Bs23WR9+s1JlmlxhgRcZJUucJ7mPYTop08InoEaLEg0qNKluHiJ3y3KcVba30RAgnAtTzdIpuSTicn8QKme056BIoOhF0YVgBgOJb/RR5FD1DvQrbwp6LpXly3Z2aLQwkUHl+y5804WXvPe9Z9CtyiJChl4KTJGlN2w8JQD4gwLB88syB6XUANIzAGAaGFnzuOHwvq1VbgiGTgkIdkIdrteGU58V9iSegbf+8rZP0Q5FEadIUiHKKE0mNxG0pxNQkz4YWCFb5WxhzB1QkjBaBOZuO4GmMfh1NPNoziEEuY/sPxwAoMDW2NL5Bfi9P4AnPiWg4Nvfk2N/awDBDYWFCmnBmwJtgU4jlq8y0S98A/vED9GT0PqaQUATjaZMiyvk+QveJUAzQQlnmWtfKsPL58Q00Z2FRCxMInBXQyq3UR1pePAwPH4KDg3CcA8Uq+K9ePoNeO+qBOB3YGIRmmZ0QNvXEsvaJ5KItfI9ixiH+BJ7+DlskphECHCpMsko32KGLcRH7KCabN7NbtOyHgddgOBKqAsG3KfB/QFE/x54Z8Q4B3Lw9nTLYNZohtTC+x+9F2jpuv3qBMxW4eIinB4UtvD7l2C8KMa4rTDBgQ/JtGShBjtZ0/YnYU8GBlNwvFvQ90JDQIXjy///Tx+Hp67Am3M70hW08IX8IyBPkyoOD41OUaLNHA0qtCGagGMPCyiuLMHIcSjOwfw4KMjEYagDhjugIxnGyykBvVoLAPYCWUgU16l4YnYYPbf+8+nskJnVD0Q/tcOWfT0xOJ6TbooZG9IR2LOm++JTk9Jh0VRiLN1qdWBxnDiPkSGJgYOmG5shIhwkRgyDb5LnGlO7KmEYIEYUAws7bCetMVGcIkMBhyWcWyUJb6/K4RdSu1GjZqdCWZdGdMCz6zRshTaUHSi78qG2w+eZqMtxG7mThbVBF6fp5lFMZE8+wMWlis9VvM0kUG+s0c5/61m53oUtiFYDXvyhSB8OHocjJyHbJc1vzr4m96/9MyoioNfMSviI1SG9V5yxkPn1ZA5oXwyVZLeoSYq4jOERkCPBQ+yjSosCdSYocIk5Rtl4F3rL760t5reZOQlzmJ6VKXJ2Hp5+Bt54G5byogvW4c5OoJIo3Y/BYQz2A/fi8w4+Z9CUETIt3B595/Z+hk1rvwF7lWwoTgUwegfbOnehDEwSZEhykjgZzHA3p8IC1W2azncLBH8b+C+A3wmvv7Xm/v9GKfUfEUNcect6YIDp9yQ3MTcos11pVgaJgWPQdwQGT9wSBEdRHCBODzY92PwPDNNPhJeo8L8zyRIuaUxsFNM4lPCwLZGyJuOi+2+2RGPl+XKyuRtghzjwoCFZsfcaMKhgWsObAVwI4PqGY8Fywu7ao8pEvo7ti7RcF37yU7ndbm9jAa5L4L8K/n0h8zsA9AMR4l/5ItHPtjB6ShBoghlw3TblZ8GbDmgELopViUkTl3qon6LZgvPXRPbQkRbEOrUAM0uyuthGJWNwcAA+eS/8wmNCkCRi4qTNpeTpf2gZnLycQQEv0mAy49AgoF1E5HWLNwLgKB0M8gj38Rsk6afBIn64MLJI0McDdw0E31mlIPLLwvb6z4CugHkfWB8XK7HzhxBMAS2IxaCrA/bvhY89Ilut712ES2Oy17bbOXpbrHIbLi8JK3xpUebv6yXpxL1+63Z9mZboBHPdUKvIOrjVuKWc9ta12BCEmInCp/fAC1NwvRKK9YBsDB7sl6iKsws7AsFRUphogrA3WxWHMyzSR4IkFgEBNd+DahH6D0hqhNteRfVa5PS2CQd6oD8rtxuOLBTenZLLVFHuW1/tW7HqKz10m1DbOmNyukuIyIWmmESHktJBMWmJJjhtyw79w73S+GysAuPVrTHBxsq1og+b+0nxBDka+IzRIodFBxZd2OSwOE2KLmwcHNw7lLgZQBdRhonTgY0R6oVdAtrhxULddlfuTsqwIbUHOo5D4Rw0ZiXP/KaarMOxrHzQ+basNmab8Lvn4Er1jgTZCkWCYdIcZIjPojAocpZJvkObAlXGVsbHTWuX9TdBABffgeIijF+SZIhWE4pLwgbf4EsMnZO6JaDXuSzA2OwCq09uewvyOw9xFBODpmRHcD70c3TGZEGXsSssWef4g2Cc84ufokabBSpMUaSwowZHN5brClk1vwiTM3JaXrwst98+KwRuoyXzXOBLFJpBJ4ooijiKLjTzgIWmhqaCpsmuSOAGlUiOfcT8dvXDBYDjpMnSR5pu0nShMImTxsPZfMG2Qe0kIu1PERNct1JqCvhtBPx+Qyn194HrwC+HD38KiUcbQ4j0/3Jbf+zKS5IpOHIfdO0VxsRry6VekIiTbL90f1lXHpo5HBQwTJQGASlMhsOVbhmPRugO9iyfbAw6MrB/EO49Ijs6lyekC2S1IQfkRpUEPmtCXEmz1REF/Urisw4peCGAd286hqpo/hT4BIrjaFKIAWcczY+29REtV3NHBocAgnHwnpMfjYNgLmHt/7dEPnUd+6MBwSL41yAoAF0adRgaDYdWycPwFWaoo2vhrWqkKvVwf7gN04uwVJLbzfa2Y9IyCWF+Dw5Ab04WIrWmXKcT0BlTMG/zFbKkMSgRUG8GNHBphX9rvSwtQoouTtLFSXzaeEziUEZhYWCSZogEPTRY4gYoYQL7InDVgRFbOjlV3s/RIQBq4L8Ouhq2XU7iqDTYnwfzqOiBMx3QkxMA/JHT8KXPixvmp6+K6My2YezqHWQk3cE70KJrLYTJBWZC4uqyUQGztQqUCzf/nh0RY0xHD/SPQCkvkgjX2QEI9nWIxgvw7iL0JWG0IAxbZxwOdkhsWqG55cgKA4ssg3SyL7RDevi0cKhjUaLGAm18lmiuMMT4COtbyUu83Tpa2wtk42SoA470CbtbbYWfXx3mq6ugeH1teJbFw/3VSkV2BLYBWCZqYg51A0hFFGP9+3hYXScbCYiaEDelxfhAAl6YE+9WxISYKYkqt6vlV2EipuYEBl1Y5LBYwsMO4xjzuMzjcJY6dXyidBDBoE0dd4eNPRSKGAZ9xBgJ9Z8NfAo4tMLenQVc+b52uQwLYt3Q/xic+Afw7v8B0z++BQieqIcRD4ZQ6wkLphuiD2760vt9B6WwSdCPSYwmMzSYCW/PU+EydSY2lkG8j+W0JQmilBe21PclJ9hdi/tt8E2DRsOkTQR/SCQPKqJQHQoVB3XZxXunxQF/gCRxOkmTJo4ZdmktxmbYm5WmSN0JTS7qYCqXpdTLXCxqitUIZd9d0Q7faTWawvZOTstQrDXMzcvP5Yq8P39lTbwUgtwsig4gjmaWgPcIuELARTSL6N2Q75S0cHFxLbrgD6gH1q3KJEKCLBl6SJLDIkKWPgI8Wmx/Z2sn6RC/cov/emKDx2rgN7f7N1aqNCOAt1WG6jGIJMT55bvQqkJx+pb7oT5QwiOLRR2fFyizgEMhjDlprBnU0lHozMJQDxzdB1/6FIxNyO59qy0nYdoWBmR9xRTcb0AZuBaICzCmIKfgcVM+4PM3geAKAX+EQQIYQDGMpoooRS7u+OO6XdmWnFA3TZi6CP7bgAfqArCEkfu+hEPMQDAn5KI/B0FdejW48YCgGmD4Ahs1Ehe1Uo4nQNgPKfQ7aJYRsWTyt0xh5Mt1uV6WFhuBolU2yWHSEV4MV21imxGQ4oUCJ42PgU2EDFGyeDSJ0UWTAhofkgZkDUgZAoKzJjySgAsteLcF+fdDZ56Uhhi6RVcQIcIpLCJ4QYq6X6BizICxV75PdQzSLejvFtF4R1Zy8/p6Yc+wZEbmC7JtsNH2xl0ujYCphgsRVxjejl6Z4OJJMcH4HlSXPX+2AODOHtEEDowIzteBtENv7USn5gYwX4fvXYGhtKC2XBjBoDWcX4LZ2pYXbTYxhjnNXh4mwA/zNSs0KVFhBoc6DvUbDV0a0QDXyxJGoVlBhBoBu9NFGF8SaURfJkzR0jBfkQCBba0p06lVWZLnyW3bFs1gLBQfet6GW0l5OwmZFGY2id+Xo3DoMO9Ue4jPXiDVqFJ1ZIwbr8KlkkhXFcIUL9etwPDat9AgYAGXKRw6Q6ttA58pAq7TZhGXF6lhM0wn+wnQtKlQp0CDAq1t9j6TdAGLx+kiikE5BLw+mjo+dTwaN45uu1YaietuLoLfliaOa5NtbqiZJtTC76zuigB7ZjfAmIyFVa5QZ5IWeUwiNJimylXc7feSuyvVbq1pSKZY3TjVyGRvKXTcwM1EcA8nZIIItIzbWQMaGnW5ycB8ikG6MTFIEucYeznIIAUqLGqb/tQ0/RmPobQMC+mI5lJqjncDWGzHKLcUDb07Y6bjCtidmhZZo+cLO1yuyGbqjWmitTDPZBIfCQrXLOHyIzTF8FKFHWYX31ANoKFFXZH44A1w60t6sWZI0Ukv+/FwyNKHTZQqGzAomz7fh71qeWGDi9MSmea2oDS9aVzZcsUxqOLzI4q8RZV46DaOYdAKh7ZYBLJJ6M7BcC+c2C8JBG+chVkbiEhzhGuhE7vly7kXAboV7DUE6M5oGNcikdhvwM+FIPjrnvSbWj2cmsBfoekBPoNFlAhT2EwQYFK5C+a9iC0t6W9eMzjCBuu6mOMoElSh/SPwx5HtpSYEZYmi1Q1W3kwQpkVsWK4nTrY7rLYnKUHX5mCgc3XrN2rLIFJpgEPA6zSJoSjgUcYPN6E3LocaS5xlnB/SxQl5PnIk6SdOFz5tImRQIQNFhwmHIzBoQ86ET9nw6SQ8VxezS/4utJcFia4IXdqoNMoYIaojHOATdLCXFmVaukLNrXA9+Ca+OUxLJaC5B4KiTAS1GlwcFRZwZk4ATiopMTqlsmTH3arucl6ZH0DQlAi/zi7pnpTrg+g+qNdg4rq8hHQOuvrEHJPKChBGCQDOz0Nlp42K2j48GwZpn+iC/pQg85kqPDcB+SYpw0dHw7k2EJnB+pLtuBwjPMQRnsDDocwMNRaoskCMNFXmyTPOLd122bCZQlNDCwjkWL8wC99+R0xwB3uhKwmTBZgp3qjSUIgs1DRW53+0kN5trSCZlMzERmM1NNYwxH3jeZBMCaXe1DeD4GQCDu+DvUP4vV0U9g5Bbzc/cU4Sf92m68J53IUiUVMk1cU2FBzp6aCUAGGlNmeEfaCAx3kaZDA5RpwSPlV8ynjk8ZjFYwKbXh6kj2N4OGh8WlRY4DJTvEV7G2yYgaKbKF9kgDcpMUeLPA4FHIo4lG9KI9690p4k2Uz+AMyIRDd6tyJdi45ctlDLDem29BrwaDJLMwxsWvxQysDCWgN+VTTc4fNhhaiOKhiy4HSYneZq6DeFvJjzMbIuJ9mHQhEQEMNmD308wYOc4Qpz7SyJ+CIDaY99WTjUIZtEhoL3FuFqpEXdkfl/N0prYYPnFsIsYD+0zbgy1qwffhUJNE0CLqHJo8nj8yyKvvCDibIrIHi5XNiiNel9KwOTGEnSdJGljz3cQ4FpEuRIkiNL77af88MPgkGY3+LUtn9NAV1YxDDI49LGpAODEaK4aN6jvmJ+s8KA+elF+HdPQbEI7jQcAcgKC9wZk+tLJTkRhhX8vAlHDNlBSIaDT0RBl4IDCvJhysiY5ia1iuYiCockr7OfJfYTA3J8i/yuw+BlUnbjqsmIok1wanhvg/c2WPeDOQjYIRAuCBAOFnjfNEJzBXjpHORDINzfEQISXzD2lWtQJeCPKNEgII9PaZNPr02JCX7MBD/mXv5rermfBD04VCkyCkCcDlbVikjQbacJDyXgYAROxIQBfqsJr94NEKwg0gVmHAjAq2M7r3CYzzDCw/RyDIWiwiwFrtLlL5D3r3LR8ggoyjqrkIHrk9Ieyg1ph0ZTWGA3jOuKRtccGHo1a0sh2yC7925uABPLpKdthgr5GqTj0JMSTd6chmq35ILuPQL7j4oMwrJDjZwBS3MwdUWutb5DzH4+L5d19dBJufZ8MZ+Nho6G5XB73xf9b44RYmQY4jQODWziYZ6BKEqT9FDg+q0VrAdM2GfCTABnPKjK4yYLsFSFl65AOqboTEF3CgoNfQNWjZmwNw3dUUjZUAlNhhUHrrRt/AfvQ9s2emKKIJ0WzbgfmmgScfnOm611e8xhtO2Dp+DnH4fuDgmhrdTk2Dm8n6f/wT+m58/+ku4//BO0HzBRg/0ZYYIXWqv+rc1qWXdbx+ciDWZx2EM0jBcMQlY2wCVJJ/fTx9GVqMEM/WQYQOPzDP+SyzzLVqI9BFMpuokwRJz/l+u8TJ5ZWjTwaYfg+66XhvFv3/nThJJYBi2Ycm8coj98fN42SyGbYRkkWt8BSqxEYdLUIk1rBlAK4JAlelZbyQfR1hgN6KeTJcpEscmRIksSC5MBurjKNEml6UnAQErkPQkLuuKSgmIbYZ+PXarlKMF6U1ju5YXrrXZ3loFvwDQGAwRcCO+/ZdzHX7uKkSZDD12MMMJJ0nSj0dhE8XC2nQwBPysgeIelgSkcHibKLA6zOFSIMUKUPuyVflDVBsznZRVWa8L4NPxSDB7rhZ69wqa8sQjvLMGZPPQp8JWcixMB/NQX/e8jBixo6FFw0pAP951gYwAsr+4tNG8hvbuSfJQ0/5AB/j6j/AX5O86oVMguZ3NLWOZmIBcsifdKVyHYdgvm3aulChQvwLlxoG5QJqADkzjSdsQG6gR4aCZwtxWkf5Y/ACATtrNuUWSQR2lRYmUamXKhFQij0OvAkA0/rMKzdTh3N/RyBqT2Q+oQxHrBzpCo1xmZmec0v8oeHiFBFyYRKkxjYIW93VMo788AF/IdMD4gzgqQLJ5aXSQQrfZqUsRyfE40IqDoLiVH9HVKRPTyAJ+MifSoKwfPvArH9sE9h8XsWKnD7BI05uDiLAwfgJMPwQOPC+u7rAX2PdnN7+qHxVnxmOXvzLR9U8Vs+NLDcp2vhcx0HD56BP7N0/D9d+D6YplxXmaC19EEDHAKEIlEnBwlpmhRub2Fa9iEf5qEcx78ywZM+lCUxzddaCYyFJI5rscT4PpkvdGVZ0taMJiAYzn4eD98YQ+8kxdTWtSEpOXw07kXGa3AYlNMa6X1A9It9OG/Mgzf+cgJyp/5hDQ/eP610FjXhn3DcGAPi49+lMU3RzGffxVfw5UKzDXDtuNbrLVjnYM0ZSnj3ZQAkaOXA3ws3LIvhqauDhJ00ssR7ucao/x4U7tcFosUFj6aF8jzEZ7lGvW7yPvuoBSku6CaZ1MUmzOk+3LakKFqyJZ5K2ZIc7rJu67rjKIw0XcjQysFRg7Mg2FPpwi4r4gXmLUd3gsBvNgW+cOXk/KhjLkw48MFF+Ntjwc4QoMWLj4j9GJh8ixv8x5X+WH0OR5vap5IwJEOAbzXyqKKanryee7m0bEcD+46G6S43LYCeD8WZx/CalDCpUWMFBl66ecQWXpxaTHFBSrbTIaAvwEgeCLcK6ngYxJlFhNnJcBIqt4IAXBDbn+2C4Y7YV8KesI887Yv243FNoyWhKiZAa75ikt+lL8badGvZEMihsxfrwTwH7ytHa7zOLxElWGiPEaGGRzeokb9DijXZW9aIiZyiHhMtMExO5RW+7IAqDY27mYczKx5og+4fMOiEu8gVc+jP/9kbDGXAAAgAElEQVRFip/8OUqA/fprZP78PxEAWQyyGJTwt63lryI7DZqASX7CcsPjlcr78L0q/KAqrPDJmMwsszucXeI2PHZQtqSfvyy6j2xcpApLBqSPQHwI7DTE+mj0HGDq0F72Pf9D+jhBhRl8XGossshl8ozRpEiwfLxU6yJ/aDQE6NbDOCw/YIXxXUudtrfrLtte1VphsEs3DPfB4b3w6D1w8iD85t+BB0/AUlFCRcpXZQK6PgPJrLAkb/0Url6ATE5ikrr7YO9hmUA0Ypy7ehfm32fehcMD0rFttiTEaRDK3L/8UZgqwPVwgRjg8T1+ixN8nj08RIYB2tTJc5VFRrnpRFKIdiqlZDezGkC3AY/Z8JwW0XMp/B3DgFRKgsCPHKIyfR/63AWoVkm1S+wxKhwNwwN64/CFvQKC6yEjeKkMZwqSspUNo9a2ktzwZ9PgvHYO7r1HVtTxmLQg8324fA1mF+HZF+HFN9FaPFq7EaWg2biLm8LAJkaUNA3yKExsEtjEaVJmlvNsZcCq4FFdA73zYWubD1MppDdU9x4JRoomJVWv3RRf+NoatOFvZ+ArWfidRSFGT8fgYht++r5ku2qEV09ty5wVQzGMTR9m2PIASvjM4zGvfEhKzybzKEQ+B9bHgDb4lyCY5Mavuq1hyoPvNGAxgIOWnFMzPlz3aF/x+C2+xmOc4hh7KFPjNS6wQJGneBWnrZmowGxdLANd8TAgZlECZdxdPEDssBNkEGyeirO+VNg8fBdfDQa9QIyAa+z2Nu/AiCT6uG0YO3/nz9egwgLj5LhIhh6GOMYcY7i03p90iJ+1kjD0Ni6aFBYtTEaprPWgiFHHhYovBMe7AVgaRlKQCjPNK45s71kGDCTBq0HbU0SxyBJnwc1SQ/rQv6Lq1FQLK0jhLLe23aR8YAmXF6iQxgwD4+2w6e6dHZQtRyQfPR3CyPV0CDA2DJhZhLFJ6XjZWqO3bbt8qGJRUAZBNEr95EkYGkafvAc9sgfn6HFKrkP1W3+Bwqa2w35ves2bDTaC0BqhVJzwh7MtcIKdJdKMdMAnjsC9Q4L2Pn8KJgrw6jV4ewaMLnHJEKyGWxoWzUwPr336V6k+969p6QIBPi4NaiywwEUCXDHygQDcdlvYO9cTJLk9umFXS2tpeOK4EkE40icTwPiMkNDxEF8loiJB9TyZHOpVuHRGJA/xpHSM6h+B46dhYK+4xNtN0Qf7d4EccUMZxHJEohdANgGLlTDEft3jHepc5lnqLJFlCI3PHBdWv5e1pRAdY8aQc+1NTwxyUaDDgKUgBMoJMTYOD8IjD8Evfgl98RJ85ykYH6e4GGeyafFJq4BtwI+mpZFFxJBDtOTAUgvO5lf9DFtNfftsHwxWLjD0//3f7E0ZdDfKnK8E/GP9ADz9E/mSSpWVHQQvEKLAv0sL5xYVrvESh/gUCTqJksYmRolJSkxxhr/YlAWGGzyIKz9vVhY2cRLESeLQRhS1Hi2aeLtkoU9kwYoKSRGJQ98huT14XMZrz4Fq2BGzsUav2dZQ8OViKXgwBk+mQVXhlbtkWbixXDQKtY2W8D2YDGGRw+QgEVKhyXoKFxfNPL50gG+JFM+7hCwalcjzbpqfPEQSEVHwSgvOhK1Fm1okEotidHyNC5xjPIz4lJYg7RA8zdbg2XE5jo90CBN8KS8Z5013dzpVGsaqwdXzNyagblcaH7VLCRWKTAiAI6zSdfcDh1F0AnU0r8EOG0h99pdgcC80GzB2bldeMi1qFJmhyCxVlrjKm1TJU2b+/UmH+FmsG7fHDTQxGuu2bZaNL00HLpZk23A4FU5+gWiD5hqiV+xPhLnlnsEAUT5OB3t1nAoeFTwsbWGRIEucY7SpoleA+K2qhs8UbWIYZDGp4BEJt/vv9HAPAgG4EUvAx71HJEHLMuG9K8KAN1qrGsftrkzfl/J9qIZ9ABsNWFqETBZtmLgDg7i5HIulMu0tTYG7UPUdfkgHuuHh/fDgHmh58sHfOwz7uuQLuFqEkgt+E+iQ35F2QQTOIkVd5qL+Pj4NJIrLx8OgpYaAHOhxYB4RlwWCOtvt7Y+0u1xGGERgmRDJp3Dei/FSxxK2JdGErbb8X8uRl3w59Kv5HsxPQbUEkZjogRdm5OdTH5E4tWpJ4pNqu2hkt0z4J1+Av3pXJqrOFOztgbmS/F9/DoY6YaRb/q+whvxqkGeGd6kwh4lNkYlb/6GVeHANo76wwg6yj53rh1xcWkF2d8PhQ3DsKBw6KCaGCxeh2cRxPfLa4UpFQLAfaoEjhpjRphsiUSg5W9/UsRWczsH+JHS7NfrGa2SikIrAI0rxufmLPHN9GmcNPaaRuNr2XRw/HOpM8jYKgyzDpPFwadKmxizvUWHrMfTbLR2GQEaIUqNCkjQKMwTEu1OeIyA43Q3DJ2Hv/atg14qIL3zpuoQjrQXBSx68GjZ4GnNWvSnzzS6yvg3cHCO6u6WBAGlh2xUu+lwkSd5jo/3QHixOECOJohuLQ9hEMOjEJABayuSa2QVtRTDj4b1ZQM+1wRRQrNcr0XT4J8tB6Az0haQIAF+j2tBFlhRxZsnT3mDhUmrDqyWLiqE5XvRxfIkQz7fE6Lkdic9GpZQwwBBK8nc0LLcJuNm/cPtKYNANuJicQhElYBZNC1AELKG4BxhGcR/QhazGLRT9aL6LfIfL+uM0shd+63rwcXjyV8XHMTEmhMa+IzB+hw1ZXdrUyFNijnmuhrOgS5U8zg7Q0t8IELxcLi42NkmSN4HgtbXQlMtiaOxo+5KetNAUhuVgVgwjCuk3v484J0ixiMMCDtnwY+3EZgmXBRxalksx8HFuMUE0CJjFwUKRxaIcxvLshg5/ueOd44kH5vAInDwgJ6Pnw7tjIpMwlIwZHyBheOsKfMk3rVRg9JIYc0Yvyf8tzkMkQvkuUNcqdHTtCrDuSIgE4tEDsiIZm4C6I9qbj+yF0yPw3iy8m4fGFGZUQxAn8Cx0IwqteSi8RYExeVFEgW4wjoDx86C6IXgF/O+GLsZA8sc+YAAMwvYm4yHQLdlMz6TJpwN822Oss8LohMQUdudEurOWqWzUJKbQssKopKaE57sO9AxCMhN6Y3Yx9thQcN8+eGdcEkgMQwCvZQoQ7krLJGaZIi9aX3WWcGliEtm4S6Ay5A25rpx0VS3btllj1UVoZaAjJ8keyYSsIrQW167WIo/IZqFWo95u8OZMDE2LqCnGOFMJA3yuKGPXVo/hiAF9UbgnI40v6p40jZppyc+nMppPVye5aMO0JxskhC95swSIOy0flxJTONTp5QhJutAENChSCBse3L2/7dOmSZM6DWqkyWJjY3CrXLPtl9OUQ8MwYfAYHPkYlObAbUqDVN8TScTc2I2/Vw5kc2rKFahy1YErzRQD/jBDfooaNj4BV8KGrT3k8AkobBKBFous7hBuXsIEm+zBIIXGJ6BMwDw+C6x3xmQxOIBNJyYJDA4SIYtJFCUmZyPGtdQD6EgOrQP01BmC2TnQLXShunEQgkYMccvjx/LBacrrixJhiG4KVFZBsEJyUuMW7WSEia44VTxmyxU6Wy1ma1BpC2exnUhCtfLPahmG3BcEq9Kq5YqRosVy28DblcNGLqPbv5YEJvsBkxh/D9nFeBmPiwRMo8kD/z97bx4bZ36feX7eo+6TZPG+JFF3S2p1t7rd7sNuO7E9ie0kPjJBJpgJMLM7CPbEArNYLHYHWCyM3WBmMXF2sYPMBAEyjnPAsTO+4yPudt8tdat1nyTFu8hiVbHu46332j++L0WKIimSotQtex+jXGyqWPVW1fv+fs/v+3u+z3MIhRSSWqsgi5p24ARSEZ5BIuQMJCFhczzxnDQ0F7JChONJ6B/eDRLcpMoSOaZR0QgQxkeQMos0dmDp90tFgps0cXFJktzS43OrVpqL3gJjpiaVjqop/pUT1HmfMieJs4/wbScKFRghTB6Tn5DjSAxmW5AxZItyvWpJE5cxmvThv62w2g1aF/DJQFaswOKSNIEP9wrBS0TlwjStD8Qydmc487bcOrsgkZTK8OKD6ZD1qZ596m58EScGRAYxkIR3J6HYgGhAVh3JsHhgHetFqdZQLl4mnLyMYoNRe4xWaRjXqEBllbZU6QP1M6D9DqjPIV7PHwXnfbCz8sWGfFBXHrjd2WbQVDnPhrrlkDJLBWoth3+ee4JZqvzAvIJTsVlKu2QSDsN7bH7v1+CP/nLFoMIy5QaSFlUuCCH+jX8mDXOlPEyOcmeC1HaOEQ0Vsf2zcWhZ8LtflX/b2yXvodoUKcSNtFxT1+fg9WtCitdDixpslC7lC0AoJhaQCRVK7sp2lA5UXZhfgGJRWJFPh/T8ioODC+TzQoxjMZqVKle1DrR8moAm6W4R3WWxCW9t89KI6/BYHMoWtPk9F0CvuqgCuZbcH0/IY/IPVk6+DlzqLDHJOw/7hTFpkfcic/0EUFCpUfH2uH2ezZC50nC6Axg1KGelKhzrgES3VH5DcVn4NSuigV8LC1hctd4dYYQk/fTQwYucpEaDf8tf0aDJKQ7TwuI1zmOuU6VVkFOrOyXa/HtDQSGASid+niHAc6gksbiJwRsYymtovnkCAc+e3ASfK1H3RwgwhA8blyQaVXTi6NT1EHQ9B6mPQKAdd/YHuPmzUBmHwvnND6exZryzwcVljiy9tK8EOynIGHmiG/a1waEO6IpSSJepvTbJwNlJlhpSBd4uNE0u3eU1retpcBwbXM8REVdBRcXBoYf9zHAZ+4E1vfnQOICfT2Mzhs0oCn5kFa4hRrAhFBJAN1LtDXj//iLwt947WfJuG0P3Ccm/+j5k5mBhVnbqbFt29Fr30U9u0qToVaQXGKWTYRL0UCFLaQdx1r9UJBhARSXgpcbtFIurKu51bN6myBfp5gXaCKMRoEGGFmcoUcXGweWL/dATgfkmvLwI39lg184F5nYg7t4My+4Q+RK8eQFKVbEX6+uEn7wjmuDqQ9GN7TKyi3J7VOC4UKpDxJvB2iNQ9lIFppfg+gLqaJrQ/AztHwc9JGb6RvEKtfkbVBYCd/r6Ks+A+iLQAc4l73cjSGsmMjEH/BCPfWAxybomzXDhAPzXX4KPPQE/eBO+9TUFrabQQ5j/NfcSFg45mlyOppkMj/K//1dw9Rb85O313U2GDkjld/wKRGLwzCfg/NuiHd4J9jBEJ0GWKHJzzZb6xCJUGnBuEma9Xchvn4G+NkhGYKADprfblNxqSFmvay/UDWgtSAJh3NMI+4FSSW6RiFcetyQaci4N+/eJo8NyhFalijMzxxWiqPhQ0LCoYe9gezDXgpez8Hy7JMF1+IXsLjRFGtbmh+8/6N31RwBx2mhQk3aurh44+RTsPwxXLsCbP78/IlyFyXOw9yl48vOSLlfJSbRyZlx2Q+6FGCH2M8AI/WiopMnxBT7Gd3idPCW6aedJDnKau7uVImEY6pV8len5e6+hFWJoDKCzH41+NHrw8xR+nkKlg0Bokqefn+fTn4Yf/QjOvg9uQTwl9uHjAAHSmMTRyGFTDCQ52zYojFELQvwQDKryc3O7UoA7UaaOvVxeivjhQDv86j54YQj2JqE7Cjfz2MUGpTcnt02A1WW/bq/q63o9rsvVXxCCjAsRksTpJs1NUgwyx/UHQoJdr+PIpU6N/xGbaSRuuYpLC5VeXKaBPcAg0I9Um+eBPC5/ApxhxZR5Y2g6HDwGV8/Je6yU5OYPwBPPi+/7qz+Q3b2dwsIg58nMFpmgnyOoaFg7kCY9kiR4kP1UKVFge75d3XSTIkVrF3MAW7hcosrXSZPDpJ8ANWwWgmUm+yfpDoA/7zLdgs4wvJCCT3TBSBT+aPThGy8UK0KET1+WBrnFJc9DeJdfR0N0hc1dfWIdH59Hgs0rKMRRvK5Wm/dwuIHDJLthHxMLyuClKncaKbirjBUUxQtQ2MrL7f083JyDH8/ASxa8eABCfhhbhJ44jGfhh5dQXr9JYB90PgWhFBhFKE8AWDimRW1u1XMqKaAOzs+ReJ8AaImV929bUjmMhD8QEqxrUjFdKgvP/8O/gHQOMksw7Svyr6OvYjkuuqrw7foXOOK001RrjNvwxjl49gQs5OHaLbFNW43JG/IdLM7BOz+DVA/sOww5Tw69HXyWJ+kgRpIIPjQyFPk6r9/+9z1d8pyFNceQLsB8YZsvF0lKGcRsysxYK0EoCoFDkJ0SU+CUK5Zpx3WxTFs+0apVsbXL5mBhQZwikgkprRUKSGxH0NtUDiJav9ZtMmxsI02p5cCrOfhsDzwWE4mE48Kicf+6yEcdAYL8Kl9giP1c4Szlj56g+lgXxBIyYAwMw8c/BWdPw9L2LZtA9L5XfiYcMH0d2vrkd5lxmLtytzvEevDj4xj7OMwwlxjnMMPso4+f8R7vcp0huukjddff9aTg6Ag8dgCujkFnu/TXrtcrohBBIYpGHzpDqLRjM4NBE4txFOLYzOPTYnSkoKcHfv/3YWAA5ufqXCg4HDsbYAAfRRzeocEcFj7D4svZKt/0J+SFfHEwa6AGIDII3R+DzGs7+mxHmZFrNhGA4SSc6IFUWGLSXU9KoSrYPTHyqzhf20ch0Cm9ykYOimfWf37FC6ux1w9fBORlhtzj9LlHiNLGYV4gRIwE3RRIM8d1Mtza0fvbGIYngTjNSmtoGI0EOhFa7APCuPwIhY8DjyME+B+At9jOvGpZkvDZNyw/1yteSKW6O82FayF64Povj0/wAPtI0IGCgp8gEeL8Nf/3HR3+q9FDD3vYw1Ocop123uFtRnfY7bgebFy+zSJzGDxHEgOHnFpiJOiiKNATlEllrgndQTjVBp/tha9+ACQYVjrdM/k7BzYNiXxe1iI3dqCFDSkQVlZSi+5FgjWfrBDNlmz/bYwAKnvQeQmd38TmfVxKKEiqmkIMCxWHNGAR0CHs996rDTV1kE7/IkHNwHEljcu0JaxhGaoiA5hle53YtjQZLbsCwKrPw+XuBIjNUByHQBxmUvAtG350Bj7XJeazbxmShjCexTVdzAroQRj6NJTGwKpDdUYGEC0gEasCv7RJu1NyIEoI3FvcXq1b9koo/UNG0C83XZP4X8OEvj+Db/0J5N6AXBEadZV/7T7D/xV+hyY2aYqMq0WaLfiTb8L1CYiGpXFOVWUBt4zlt+Q4ohlemJHfDe6D9NT2nCKeYC/9tNNGBBObaXL8Fk/zbd4FYM4rPK1HArb1yXYOwcBhOdGLi1AtQEc/+IKSCpLsFnZTTcNEVipfUa8RNBAiGFJIaGUyOVVCThxHUuAANdFBgBY+ovhpJ0iKAO0E6SLMAOBymX9Lk8X1nSrWgQO8koMzBbkOWo6Ecjzdtp03/YsDcSbto5+9RIgBLkk6OHS+QsQsM/VcRPwmjx6HkYPw+FNSEX57Z2TNasHNNyE/I5II14FGBao50QnfC50k6SRJigR76aWXDq4xxWd5np9wmjRZFrkzbrGrHT75LPz6x2BkEP7nP4JCabNmaRWFsOcKoeBSwaUBmNgsouDDoUDIX2BkH4TDsjn10Y/ChQtQPi0BRxYu79HgAk3eosESNu1uDOwmtIqw8Io0C1enwaqAHt3RZwqrrtmQT8hvd0RKt7NlyNcl9tB0oNKC9hAsNeh4Ebo/JyQYT+Yw9w3I/IC7XCq22oLR7g4wzONESNKgTIQ2QsQY5TR5th8OtjV4DYMeJBU1gEOMfvzEeBIfbWRYYJHvouC5FHECuMJWEulsS3S/qR6YGoX+vdA7JGv1a+egvLRz2dpG0NAJEQOUbTtEPHIk+FP8Nsd4lgYVGtRI0YeOzpf4l/w9f0VtlTBaQaGbHo5zjI/yHM/xUUKEMTAYZZTJzRopekdkYrJtaNagVoS699zJLgjHpV3XsaFRoZRP8z5lomgowFzL4GJaTrkXU5DyQ1STKspCE85tt4J0P0h2QTl/Vyvq+it7Ia9hVdxoXOSYN6qdK0gX8rLTU78u7k4g3uUBU+SNhgtmdxSnKwpxT45iWDilBmqxhO7aOPZm3bKS7+Ri4DKNSw6XosdFg57Vi8RHBnQZ33yakNeW2wmBXqqBPTQVE93OEnTGpRHQq+Q6LihxBaVPw0kJM3aiKm5Qwc7YuLcsmFtzcNv5AqszoO4BewCsLmjsESPpegkKC7AQglYAxzJoLgn5jfRJcnL+ilgiOeaKwbqghuRaVgATXD+4s9wxUNm2VA8fMkxLiKu/DYa/AOk/h8wFWBiHhldVajo2P2CSE0YP7zqLXCTHu/UFStPSyFmsiG+34jV2bgTXFY1hveolL21hgNXQiBJmkCSf4XG6SFCkRo0mvSQ5xiAdxPhLXqdp79LOkT8kq77uvdB3EJbS4okVSYg+WPdLMsLCGGSuwcQs+CGmOkTDBtEoRHQHv+owY7akum8YMDKCevIAsQsXAQU/CSIMEecACQ4TZS8FLqLiZ7uttlVLbqsRVOFwDEIqjNWg8qj0EtwHwkRJ0UMPA7SRokCOJnVUNOINP+1jeUr1aVzTxLw0Sv13vgR79kGzAblFGL2+o9c1apCdhP19sjAutyAQhfY9QjamZzbOt+mhnYgnjQoRIE6EgkcQFBRMbMw1C6JETKrATx+XRlbL3rxR2qXp3cS5RyGESgTbs5ADk+7eDE8/N8GhQ9DbC82m9HoWS3BpyiFFHT8KF2lyBYMpTArY5GmCUYBGGlSfNAbX58GsSDXgfhDUIRmUW1AX71PLgVxDzLVLTbiUgaZJeARCeyS8U9FBi0KwD3o+D5Wr0JgGd5tDRLszcJv0djKMjUkbfbdjf8tkKZKh9IDT4BQUfAQIMYgfFZUyCi4wSYgKKY5ToEjFKy5tFS0DRi9DNC6R95GYbIDVqystDbsJB5swcVT0X0wSrKOTIEUbKZ7n14kQY4JrXpduBT9BPs/v8zrfv4sEDzHIMY5zilMc4SgKCkc5ynGOs8QSFaprKsgKpPph3+MQTciMajSECFeWoJyDYBSSmpQ9XRuKFuRhCZMZmoRQyVsu494i+8WU6OqCGmSaMFmD780/RBK8haxHDR0/Oi42FubtLc+AR3Bbruc24/1eVVZiOiMqdGqw3yf+lH26OIhdbckJtmBDwYbKcBJnbxuEfZ7zuItrOliZMO5USTzo6huNuBYuRRxuYaHjksa9HRcURKENlwaxgHvbgqZpqlhKGFPvBX8fjchjoEXx2YtgvINaehvDkkqlC/KdPhGAXh0WLGjTYFiHcVPar9eSYB/yIaytYAdTwlhbJXmAPwa+qAj7AkloOySPyWWgkYFCFZwYaEVoiew3ew7m35Snqc7KXOCYdy4SBpw6EaVJDY1ZRQclCO48uGsO6AGlwG0G25H8DZ8Dvm6wAzD1DTCmABVcn3yjr5HmeauXHzPNKEVmW9U7ei62qlV3HdEI1yoyp/m9kc10JO1pNYIEiRIhRpgOYvSQpIckVc8uqJ0Iw3RiYfMe49xknsZu6PQbFaguQTwlHU89I0KAYx0QbRMSXMx43qY1mFgi1lEnGQLNtbCbUNcRU+WqLSwiEgbHwY2FsfraCKVtLwstjIofG4Mqt8jxLha1DXfLtgrThdmGnPZdAZh+FHsJdoAEbXTSSztdBAli0MCgSYgIKiq+Yo1IcYKWYmE+dVT+qCMF/YPQ2b1jEgziDNHTBv39sqatVqGzU06TS5dhdFTWuX6fLBbTafgET3KAQWwc0uRYpECTFuPMUaC8bjMcyFTRNCQDxWiJfeY9jg6XCjag0kAhiEscBb+349Ak2bHI4yeX2DMM8Ti0tckxAjR8Nq9QYwGLKUzSWJSxMXAxXFMGw1YRVD/U56Celopw4G4Zx7bg14T4Oq4kYizWhPhWPBuIXB3GCyiGRdtHILJXCLBjgtoSSURoCAJd0JzbPgl2UXBwUFEJEcNPiE6GCZMgRju+5b6OBwwpLen4iePQoMkECjqwSASdGHUaNKiwyHaDA7Lz0sRczEsho1YWS8ud2cJtDoM6IWLorGPVcw88EiQ4QIj9HOMxnmGYA8wx4WmCc5RYoochDvMkvjUNbwoKffRxkAMMMIAPH02adJLiMIe5znUaNDAVpGylqNK6+NjzMHxUInpUVSanaFLuz78M1gR0LECkKqvHpRaMijN9HpMk+h2mObN1GAjJvDVTh/NF0dttBbctVbZz4mg+ac9UNWkjrpXvWR7zecISxVVQaGK7Dg42fgVCioutOFTc1rJcCu+w0LwK8F4fPBuCz0Vgjw8WLakQl708CcOFek8Uqy0EdVNuySAc68AIDsJbM/DWNDTLG/jQWLhkcJWLOC5EAvMEfRV01cJxVVq2H8vJ0xEzKTeh3ICmrYI/DqEuCPRA/BSED2HiUiwfJ1K8QMNcNcp3afBUQA58ypKDT6lQUOWNrkXYu1/mR3pYKhapE9Aqw9I1GbDDvZA8ALgQHZSfQ93yeC0AlZk7SryuIw0w735FmuNqaWhkveYK77V6GOBX3Hb63XYWiPMPWoRplsCdYStbVjuBglT/HFdqAveKEbUdMT+Y/S7YIVh83Su6JMFaNfK8uQverq4rBDjsg70JSXtSFCg2YbIkO5u3I5sJk6KdAH4qNLnGHC0sZsizRIUIQTqIEifMCxwhS3l3SPBSWrpGWk1IDcLgEWjvFVIcFVkDrSYEIxBNEu1MMBSu02rBYg5KFWRASIRkoVMug09HmV/EbThU9rmE0nJlmlQpc4MlzlFlggKXMHYQKboWDRtOe4v7gBfG8QsBzbd2m0XgWODYRIgRJU6QMD4C9DFEgzpNjwy3AgpWopNmVKH+27/pDdiKNMdtxcBaiSCrwwbrVdz8fjh8GLq7pJJ26JCMw4Ui/PXfwOiYNFvVqlBNR/gXfI5eUtwizSIFqjSo0WCcORYpbNgXU6nBe5clvbFah8X8vdVU0lxl4lL3fIILLIcvBIMtEm11urqgt09CK0dG4NIleS99B11eWzC4sJHfmd0EsyxVAKsqYlxzF7wQXagFK9YAACAASURBVFfSL7Lec00VxQu1aUPZQKk2UCp1tBikXgJ/ytP6GlL3MhaEn2+hvrQu8sxQp4SDg4tLkAgBwtQpkWeOPLNUt6Hhv1+4mFgUMMni4qKjoRGmznVp/Nwh8ouQnvbOyzLMTckQttsKvSYV6gRRd0BpHwkSLO0eYXz4CBGljU4G2U+ICAZNRjhGkTzOmq0dBYUoUTrpIkSIOnUyZEiTxsElQEC+4HBMmlOCUejdByc+LhNRpSCTkqbLRPXUp+DGGfinPjg0IC+SbsBEFcaqcKNMxjKoYbN6OP3bORivSZJPxoCpbcRYhuPy8qXtzF+pfujbB4lOGDoM778Mo2fB2PiFm9TR8XGA4wywjyolyhRxHBsbmxol5riOi0NckTRKCzmBlglxShMtcMuTP2hAxNMIKyAr7GpLBLnVliwgemPwpcdgf4cwpO9eg8L6HagKNsHAWzQNePHgJZ7dV6EvKdZVNzKQr8GVeVisyEuBBUYGoo9LQ4UeA38HoOD6uqgGnob6a9xB5RwkXUhBKr39mvgOrdcNtKwLBhkNu5+BxD4hvVYdgu0w+4rsY0YHwBeBaL9UgaP9MunG90DxpnTANZeE7XpYfHf970pD5yv8Rw5zgjhJdHz8U3uBT6v/BaZbh008sO8HURWei0Hd8ez+TGg6Ky0Wa7E8aeTPyKAX9HsV4uyDsS5WgOf74YuHxOkooEG6Cj+dgG9el9PKBfIsYWAwxCAROvgmZzhMH7PkWaCIi0sncV7iCBECnnnaLiE7LfvYkYRcj4rmxYT5pVLcrEKtgD83xksHpVz2+hmPAIMsZgurPNnmF/DNt4jQJEAHDjotirQoYGNgUqZBhuY2m4i3gvOlez/m0YACHXtEm614o5miyM+leSgvUHSXUNFo0qCPIeIkMTBo0aRGhaUj3WR+7x/Dsy/C339HSp5jN+D0m3Dx3J2vdcfVosot9HFQ49B8C6w5ZCBaeVwwKKTXNEUifvMm5JfgH38ZTp6UivAbb4Lu6vwOL/A6F0gQ5VXOscASn+BJchQpUuU9rtPcYFE3n5VK8NiM7Kakt2y+Y3hSNWCVzvixE/DMR6QhbmgQ3nxLCLBpitHJwmbrX8eE8g25AYQHJEYeVWzS7heVFjSLMF1aaQ7Ro1Cr4wvWiAwY6HGIHoDYMSlAGBkhwK28SCGsCjtOVnW9fVcbEx0/ZXJMcp4ZJFotxeADaI5bewwmNhVsb5fIwcCmAqg4RLCpYW/Ju3h93LrmmeD0Sd/P+C7EJm+E8g7HuEeCBFcp8irf5VW+S5Z5DvE4XQxwgBMECHGGn/F/8AcsrfGIc3EpUuQ618mRo0KFOeaYZpocWTJksLGlQ3u5S7tvRKozvoDM3NWCp/stw+xNuPGu+CL1h+W80BSI6fDZPqhaNOYbtFot1DWrp/c38BK9F3ZEFiIJGH4Mjr0IT38G4p3SfTZ2TrTBG0BDp40UX+Jf0qDGHBM0qKKh4+Jwmpd5je9TXnXRW0DWhouGyCZGW5BUPXMVy5NCOEKc7JAOe9uEncyWIRGEjw1DZwQyVWlSaAvJaJ+/c59VVaTRzadCZ8db7OuETx6CJ4dgqQbfvQivj0kD1p2evg7Ur8v+lV2DwOug+KBxCxqT3HFxLy9PezRY8ATOIz4JMQitWQ3HkWKHilgq+hURwHacEEJrG+BPQM+zUon2RaA2LyS3NAHdT8Pe35CyQrgHijdWyrybQEHlf+Hf0UM/S+SY4RYODr0M8rfOH/J7vCS+pbuMpAYvxOBr+yGhwddycK4GUwZMGnBhDe/uH5Dt20gUigWxtDVNqQaoFjg+0e/uFnQVRpLw354SF5aWLdK+RAB+9yjMlOGnkyvnRpUas8zxu3yJL/F5bjBKJ0uoqHSRoo8evsL/hA9t3WSp+8JSWvoNho8L+Y11iFtEdQmW0kRr0xyJ3aBWh3xxcz00gE2DJjks6miEcDBwsLBpYlHFfADnwy8MVB1Se2HoFIQSKxVhBbl3HbjyI3L5KXLWAn5uMkEnXfTh4hIghEkL7fwc8doU5c9/CSbH4O/+Bg4fFYu71Yg9DbXL4NRBH4TAR0Hvg8CTEPkitM5D7XtQ/z60VnJmP/GSOOXNzklVbTErPP0//KlUVwcH4NhjcPWywzQZ3uISx9hHjiKzZPlzfrjlj6RQlttuoFaDXB6yWbk/d06sr3M5ePc9uDm6jSer72KzWKUlt9X49RekE7dUoTWfozWxhOKD0F/kOf5V8LeL7MHIQGMWSu/LVLLTQukF5UdkucVJ99dIMcg8Y+SZZZTTOyZ024VDkxYLqARQvXle5kTVI8ZNDObu9TSbIhCEcAQau5H89QDwSJDg1fghf8GP+Rv2c5xhDmDS4jW+h0mL1qrVrYZGG22MMkqOHDo6NWrkyJEli4ODhYWzehnXqMGFn0sX92PPiU7PH5SmuMUZmLkBz2ZFL3rVgoRPukQGw/Cr3fDeEhRb2C0H+z4Vv+09XhKWp6WpbpVEpwagd688gT8gxD7VB/0HwDQgPQ759d3PYyQ4yimSdJCkgwBBGtSIk6SLAY5yihpl5pggzyKmt4XlIMlRmgHTljS0+7z0uaItZLjkgJ2uwnATDqWE7O5tg8EEvDEFPx3H9+Y4oVqRVsu9y43QRQiMrsrgv1CGs9Nis9s0YbYgvys1wWI/aO14+XdgZ4T0NicBFZwmtBbvJp3zNrxnwK8EhQgP6ZCzIefcvdqvAH1ADxBFKsW3MkJy6xmpBPtj0t3WyMKVPwW7BZFeaH9MqsOuI1XguVdFBNzcysDnssgC/8B3vOYWExuLICFUNPZyEBWNBWZY3MUI2eWGyasN4f2jTSjZ0OeHA0F4LAR/5a2vDh+Ff/Rr8ORTUsG6egVe+ZlMftGoTIyV8u6SYE2Brgh8chhen4GZipDgsA4H2+FICl6eunOjWUEhRpQECRo0KXlayQYNFFRGeJo/42uUdmC7c0+4yPevqjB8DC6/BgsT9C29yT7nbQIxMfa4MS7azNtQfZAaEalT9ibYpmd/JvG0JhVsmtg0vJ2xX3I/s82g+yHRB0c/A4NPQOamXKO+EISSEGmDgZPy2LN/C6U0LQwK5NjLIZ7keeK0USDHBDe4alUoZzOy6nMcuHxRvuPAIHT9E2j/dQgfhuY42FUoX4Xsq+LqonUCLbl3DWjduONQVXVFB5z2Gq4tSxK1XQeGCweIXz9MDwvso48yNW6RproDn+jdxI0b0rupaxJueO26eA/PzMrCeDt4kkFqGNzYQSDChoiEYG8/HBuB//6fwL5++A/fgm/8BPIl3GSM2Z8kcP6bMnrYxbVFndGYATMPtVvb1wOvRkYZ52X+FFwNG/t2T856OHVCdN+ZHMwtwDOPQ3cn/OBnUL+PsdTFoMkEgEeGQ16IBtiUMZjlfsaR8WviFvEB5jVtikeOBDdpAA1Gucgs47g461a+HBzKlKlTJ00aBQUbmxYtzA0rO65sUZ7+nrTljjwhGZWlRRg7L01x/gwoBpxqh6MJ6A9JZbMrCAdiMN+QGdl2hTnYrogR9VXRMZYDtfVLvIoCbd3CW1/8gtcfcxlu+SAztYUPqJyDxWnxI7VtMeWvlSDeDgMH5f0EQkKGVyFJB3s4zB4OESCIg0OYKD78JGinjRQtDPwEqFC860K1EbKbs0X+EFZEM6giTXE2wPUsFBrw3pzEVPZG5Q1fy6IvlgmZdcJhF2OdwpXrSuxzQJP7Wzkhv6cnxN0hX5O8iaJxBFP7XamyONfA+TuRQpiAswh4oq71Rq6KC9dMkUOMmyKAHdGlEnxzzeNdxD5jENgLlF2oX4WMCvY8qDHwDYFRgoW3IXkI4nulIu2YkLsExVGi8+/gGEsYrRL2Fn1jZhhnkH3ESKChU6PCNOO8xxsskUVBxdjlyW+5ETJrSvW3YK0oRIIqDK2S4w8Pw7PPwYnHYcnzoc4swK1bkMveV4bAhrAcmCjCTybkUmsLyrliew3fzXX6gFq0OMNZnuFJQKGNJCoqUSK0kyROAgNrJV1qN1GYh4uviPfV7A248TbDC3/P0+3X+NjHWpw8Cv/+a3D20qq/0fzQeQC+/O9h9GV49atgS6XRwaTlxTO7Xu7d/497wLak62zwCTjw8RX5g+vIOJnsh64D0Lkf/CEixIgQw0+AIUb4PL+Hhcnr/JgiebILl+Bf/QGMj3ot8N717A+AvweMSTAz0mFlN0APQPvTUJqFxutgTYM5Cs03WasL/rv/DC+8AAf2w5EjcPWqXFtXr8LUFKRH0zQskwE6adBihgw1GncWeT4AWBZUK+Ji8corcqyhkCyIt9KvqwCf5zi3yKGhYOxmkEQwANGQJzEqw/vX5T5fkuS/qDR9OIs1Fn/koniKCdfytMHW/RFgAMe1aVLfcITx6fDJ5+DEEejsEAI8vyiNkNGwLI72DMLULNTuY8h3MTGYQSOOSgAFH+K5UMPeQRTxatjW9iwrHzYeORK8jDoV6lRQgBhBNFSamLS8ScvF9WrDO5hxc3MwfV0kEYGITFijZ0Wvp3jZf6aXfWx7p2+6AYWWCOtNx/Pc8sjwcl6igvxsbz6p6j4Zgx97TlzZmjUhwIHQFpKCWk15sKZLU5yiyB+6yCAfjED3HrFNK2QILGTQXJUYbYSJYGHSpI6CxDn6vS7VJbKMc5ks8zRprNtl3vR8gRtARYGgIwYLIVU+ErdsSENcuiweZhG/mPVmawSjDpE2OWxrg4HFcYXM+E1YKEGpIeTMsORpig1o2n24gadA3Qu2Au4b4OTB1cSSwBUPy3VRd6QhbtaCrPf+pi0ROVfX+c5iwBFQPg7uTSBTFKFYvQKNCFS8CmItDYO/Cv0fg/xVfItniddGaXdVIuUZStiUcGiiYCL91hvBxeUq58mywAGOYmExxTgFskwxRjIonwUu+Fc9jV+DrijUWlItX48UboaGIxrgjCkVYZ/XHKkhp3V1Fedy3ZUu8GJRvrdwRKxtXVdIsLHLvXu2C9k6/NkFqfzGA3LK103Z9byau9sSsIXJac7yIh+lmy566CJGjAhhNDQaNB5cHdWoQ+YWXPgpWAbcOodSH0UNFvHrEI/K6XP79fUgRNrFG6v7MBSnoW1Q4t3MBkJ9d1m28YsO15HBJhAVwtuxR35v1GTB4bqQnxRjXj2IrfuwLQuVEAXyVCiSJcMMY+SYp9nIwel1mjdcV3afqudBb5efXRu0iGhQFR2sW2C8A+jg3C22futtyb0pFGDfPlgqiNXYmXelMlwo1rBpYWLRRowytZVUtA8YiiLH+uprkEyKFljXpNlvLYZpR0clQYgRUgTQOUI3AXQK1MlvFEO+EziOxFHmimJe/PIZaE/A9IIwStMULVLLovWAgkldNq+Qaho88wT8yvPyeU3NQHZJfp/Nw0xaNNwb+zjfjUFipKnetVvtIOOIjYaCyvKY4j6wGOcPBx4pEqyjoqDg4OJDI4iPGEH20EGEICXqLFImT40KjfuTJCx5W8k+XVrcF1eVYcer0ia91BLiezQBV0pwqSgmwI31qjBbO0tdpPrbakifTMsQSbJtye7dVuIyKec9P9Jh8R9tNeV3hQxqrYKm+KH3CKbux79YwWcruDjkyXCZM/jwEyVOgBBBwlQpkeEKr/J90kyJjnoTWEiV0PDIUrsKVc8lAsvxKuGm2NAghxqMSF+KUYfNbFkNS/rqmp6VIwjpu53cpgNuHdwqqusQtFOoTpUqNmESWJ5wZi0UFRQH1LqDu3ysIGbHG0FH9MAnQTHB7cKL4AMaRagXV/i2HgbbRG3miVRm2FNZ4FPEsIlxmjo6JmVs6t6wsxkmuMEEN6hRwaDJ2KrY064olA35jGxXNiV0FZIh+OwhmCnBhXmYKGzyAuug7sB0C2424Xh4pStaQWQRl1edl/PzkMmI7AGgsCQ7xOWy6Bdr1QdTDTZs+ME4XMmJLtiviT3aYg1K6ySd2diMM8ErvM5v81t00E47baioLJIlzcKDraS1mnDldViax+c2qVHlliYSkkIJro2tMnUJxiHeB+F2mDsv51e8X8I1HGvzi+Z+sVrL9yHd0twxXBuKs1DzbBAURSQRRll8aWfegol3wXVoBlWsRg3btrnOBb7PX5NhjnkmqVHCj3/9ootrgDELxlUIDIlzjN4uv3dyoLpgVqUpzneY9eaKuXKI5hWYL1iM9JmYptQ45tKitzVNAJMJ0vSRejC7FzuEqsl5fOUKHD8uFeB4bP1+l3bCdBDhAJ28wAgBdJaoM0KKDBVantK9hkFpCxG+m8KyoenZxlg2nL8pB2XbEnqyVX/GnWJ1Y/UGUFXo6oBUu1ARTYWBPpFFjE3CXMYjwZtMySF0wuj40Aih8QRdjBGgTIsiBsVVzhzO/X6mjyAeGRKsAAnC6Ki0sOgmwQG6OUovJxmimzgWDueZ5lVu8CZjFO+nSz43K7dkAEK6WDsst8FXLZSbFdy5upDffVFhGreqUh2+H7hiR5zR4Ov/p2d7U4ZiVlQNW4ZpiPa3VgLVh9Ko4Vby+AtloqUWinKZbE8AyzGoUWOJRWa5xSVOk2aSIQ4wxAF6GKRMgTO8zM/5DvVtNNnYQMaGPZucZYoCsTapfjcqm/bt3UZtMwLljKO1voGm9BByy+yzbuHHxyWlzgE3ThGDWap3EXk9BME2CCaEUxQn5d69s0n7TswDl+XmllnxDRbrYimVLr+f/EW48RcEzDpxdPYS4X+jl2laTJGmiI2Bg7mNLosrvH/X7/yaEN/ltUYwABEf9EThX70IFxbgz8/C5A7CWmo2/LwMT0bgVEQWOFfqcLEO76ySzd4ahzdekzCzvj4hw6M3YWJC+oQaD3humSzJbav4Bt/mKIcB0QnnyDNPhpuM33PBtyuYHyPerqLrDjcn4NINmfhmVku6Q0mIdQtRu/AtKKXBakKkwzOTzvFAGKqCZCar3q6W5ay8zNqXU/D8E1d5KDrI391j9+sDg9mEy38PKFDJQCUL9TzUF6B5SVZO2ab4e/ujWKpOsbxAkTz/ia8C0EMfUWIoKCww7xVqVs0DdhVq50B5H6pvge9FCByXRt3Sy+DzxL6uK41xq6GpEA7AqQPkfTr5hQJnfzAnHcCOy4svSDF70WsnsHF4jTXP8QHDMKBckrd38eLmjz3HLE8wQC9x3mUaG5sB2ugnSZwg/SQ4Ti/vM8vbno51xwgHIR6BWBh6O+DyuGS6PwjrmnXg3v6/TR7jQrEsFV/HgZ5O6O2SS6tWlwXF40fgvUtSGV4NFQUNhQMkOUgbbQTZQ5wofr7IAdLUeJUZ/oFpLO6/j+lRheJ+CNXKiqLcdVAKkCJGjCA9JPgMx3iWfQTw0aBFOxEO0kOUID/lCv+GH/Jzbqzz7NvESFKMR+umlJUKBpF6Bc1xMA0hbijA/piQ4A/hYB8lgZ8A1bYQjmPhK5VobKHZp489dNCNDz8Vioxy6Z5/s10ku0T6UVlaCeS7X5ziBCPsIUmcNs/KqOjpmurUmWCGM6smCj0EHYdg4KNyC7bBrZ/C9Oti4WuUpTi0LgaApxC3iHkgB4zDZmuFGCrHCfHf0YkL/Ck50phUcG5Xgl2gtoMqZFtQeMdyBVhVIBqQHsR/91khv9+8DP/5ilSMtwsVsUlL6TDWhJmWVILXoqsL9o3AwCCMjcLUpGzntowHkx1/vzjMAUKEMLEwMPChc3U3xo+tonsflDKifVoP/Seh86DMirkxqQTbJtRzYrPmC0o1c7cR90FIk5uuyqRd8zQxS8bKJK4r8tj+MByMw2BExsV0Ay4XYKxy/wWCh4GQBhEdkj4YCst4vtSS3b2cAcW7K+572EeUGGVKWJgECDLN5J0LKE2RhuBsDfTfAkcT15rKBj6IIAT45D74yj+D546IhmAsDT98D/7sxzC2e42vH0ZE8PNrHGUvHZxnjsN0YeFwiTRv7IZ1WCIKHQlpjnOBK2Mfup2OaAT+8o/h8H4ZPyNhaE9COCSV4G//GM6ch3fO3U2CD9HGMHFO0EmSANNUSBLAj8oe4nySIbI0+Guu8xMmufoQfYkfBlzX3VJF6ZGoBCsoBL1DDaBzkkGO0U+YAFeYo0CNMAHSFHmMfixsImuCM3aE4yn4SC/sTcJSA2Yr9JwfJTXsEE4ArhC3pXlIl0zoDkLe+NAN9hoaJfLYBTkuy7vS22jHwUHEAnfrfuaZYoFpIsSJktiVYwlGIZGCZKc40SkKZKa3WeXeBP8D/yWneBwVlQUWqdOgnx4SxJhkhh/xc97jznKEHoC2ERh+CfZ/VlyTFFVkGoXT4FREhjJ9c82LJRDyawBzwKugfAGUf47YpxUR//sb4P4nbve6WLjMYvJvyBBApYhF02tnUvA0tjvchi80RWqtafLZ+nXZ7aub8Ievihx7LL8zAgxCsN+qrBS8NzrKbFbcDaamRA9oGOIG8SFccwNwg7HbpvCu9z08VARCsm+8EQrTUJ73tu0dT3jdI1sX6gMcxk1HfAktVzwQw9pKSkZHQE6EiC7k94l2IcA9QfnvVEC2D97Nwf9zHV7bgrBSV4QwLjcVmw/xhInqYnfZ7pf30BmQE/xAVE72qTpcL0tknoe9jHCCk7TTQYkiE9wi5wUOEPXLNoxfg4AOf/gr8HfX4Oc/FqH6Zl1Vfh36OuA3PgJ7uiFfkQql3weffhJiIfjj78BEZvNc40cUh+jiH3kJr08xRIkm3+MycxR3r2JZqor1SiwC+SKf+BS88wY0HozN+o5gWXDmgvTKHN0PXSnp2csXxDmm1YKlDWwUb1JgLwm6CNFBiAJNblEEFHqIANBFiEO08cP7rao/wvjQk2AdFT86fjRcXKoYzFFkjAwVmmQoU6FJkYanGFa4zjwL3CerivthMAZ9UUgFZXAO6iTnoXMQeg9Ae5/odAvzcPlNg/QY1CyXRll22T4sqO4LYuODxZIkS3goU6KLblwcSc5b01jjev+zaNHaRgqZpstN8ezMHFvkDrEO6BwQt7a9J+S+WoDT3xdTi+o2darrYYIZhugnRpQmBhYWKdr4BM/zMm8wRB9TzDG3yj7MNsUzvZKG0hTgQm1RuMbBk9AelbCS/IJIU+5AFZgEVFC/AspLwBBilFxGUuVugvt1bpNgBzBwyAMBHCyPAMPdVvrbQdh3p8xMU8UhQddEQjKWFzvmpfuUI2yFnruuTCYtY2Wn98NKgGHlXF/57/vHUDe0ReHCVnz9ly+YjdAoeRfTqsVq1dsD32ls1VbQtIXwlj2Jg7osC3NFJhHSpQJ8MA5fHoa6BTM1OUmaNnQG4cVuIbSZJix6K6HlD3h528L2bAhdd0VCsV5AzYNETxDafNAXhv1RybrXFLmP+UT61rBRZw266SFJG4c5yiGO0k47TQz6GOA9TrMQyeKotnw3IR8MxODjwxLLeyULS1UR7m8ETYV4WBoefubtWqkqhPwij1CA2dwvJAEGmGKJ73OZ3+Q4n+IQoyyyjxQNTDK76XttmPjVMo8/4+LzwbHHJePEsiDlqVQmH2xexYbw4aet1cH3/salJ5XBdVym5mQtVChLZs74NFwflyjttXCBWSrcpMBhFAaIMUeVJjYRfBQwyFDjHItM3acDxKOMDz0JdrxMExsHBYsGJueYoo7BMCnC+AniE40MBldJc4U5Mvf7paZCUgHe3wZDMRmYKy2Ut8QwIhyHrmHoPyjV4GDE5ZJf3I7s1sMkwSri1YV3r4CvCWpDJpJDvdi/cUqY3Og8nBmD89LkZ2NTpkScBEFCGDRxcSmv+exatHA2WFSoqAQI0FhlyeU4gLUyN7uuBO717pMMj5GTcPCUWBkXs2IBN30diosiZb4fnOUiAfzsYQA/fjQ0WpjUqFOmioNNOxGiDBEhiI3NTWOa8rTJwjmRRrg2FMagMAGHH4f9B6GwCNH4GhK8nHBaQPTATwD9iBSiANQADRQJqbsNF3GAcNZogB3W5kRtD7oqih1FXen1aHkLkYYjKaENc7UcQYHIQXnDzTlwdles67pbs0H6RcQTB+D5YyI7TOchey+f70Bk80qwa999YjgP4cN12VjTa7pCkBc1yDW9k84R2UDVksQSRZGKcdwnldaiJ6lQWXHPUfCSvh1wFGkUcxHCffu9uruzMtkMugJRHwyG4ERCKsF+VSQSLmJ/GdLw4eMUH2GIPfgJECVKiAhJ2mmjjQwLnGudh4Ar5N70HIN+PA43l+RCjfvlfTct6ehcCxcwLVgoQKMlF1PAJ7GLqgIzWWnq+iCga9CVlEp1JCgNZItFyJXkWHcBIfwkCPIyN2liYWKTo0ptN+LLV8N1UR2b9hRcuyIN6OEIhMPQ1iFuFrYNczMPX8alouBzA5SyCmfOw9UxYPlSdOV4Tp+DUnljd4gZKrQTpIMQh2lHQ0XDIUeDGywxQYkr5DF+iS0VHwkSvDYOuYZBhSZpSgzRTi8J4oRYpEyaEjeYZ+l+rVQsLzo3oEmSWXcYSgbFI4P0kqZeNmlUhXBEktC7H9KjkJ/dfC7bfXgWBUoHt/fm1UXQsxCz4NmD8FtPQ3cCJrLQEZOy4KhUQmvUSJAkSpQAASrrrLIl2nH9CVdFxYfvDhLsOndflMGwpDin+qFrUO6DEckh0X3S6az57p8Et2iQZg4/Cina8ONHx2SacfJkULBIEcOHThA/C7qL6xapLJRYvCTv0bWhOg9KA7p6oLNPHDs0310vxu0x2Q/KIJAD9yqQQSZ2G3gWlI+AO7UfyiZ2vUCjWUH1jGh8XgODhUvrjnrk9mB58+1tqYLr5bSz0vi+7NyHAloQnIAPVxsCHMkDtVftBUaPQn1sS0l2jyoC/jVhFLuArjYY7pZeG12DgU7hM8UHkLnxgcLxLGCyTZEJvJuDnpDM0i1bZGGlFlRMuFyEomchCfLBaKpXAfZIou0KOWaV/573n5gPgQSXTJFwhDXoC4nvu+sKoZ+sQdZArblEiHKIIzzHiywwj4tLkBAhQmhoRImimA4Ea5tOSwAAIABJREFUWPF1zNbg6xdFh1RtybaNromlTdkQnfVq2DYUqjCZgd52+Zw0VW6GCZenPhj9qq5BewyO74VnDsmJninC2Zvw3k2Y3h0vMQ0FFzjPHOeZ4wkGmKZAdRs7kltBIChjvKaL5K2jEzq7hQSHwnDwiKTbpZeTrB8iVDSChHBxefcCdLRLfHq9IXZpqgLj98gOKNFinBLtBGkniI2DicMNlpimwhRlbq0ucIW9glrL/KWpYHzoSfBGKFD3iHCBftoYJoWFzSQ50hSp3++Kcboi21adQegIQk8YNJX5Tz9B53cKOKMmrYZUgSNxsYZteY0/D9cYOgDKCKgvIXvvc2BekyukswEn98D+XtGlhQMrGel//MPb23FVqrerpkW2q0lY0wm9AZaJmGlAtQSFjJDfyatiwlGvyFy4XWioBPF7hFLlSQ4SwEedIvNUcHF5nj1Mc5Ui8/jVADG1n7JisKQYnI0GcO1D0JykPJMF18R1dRo5i4MHYeSwNO7lFzb2L/Y+BtgL7vfAfRdYQKrEKih7QPkDcF/5MtyoYc+8T2PhmnT3t+pEUNE8AtzCJbBDRWrdO76WDdhgeb1MLUs+/4AOrgqKX3TQgXYXo3AZK3gY4ieheh1qY6JV1KPQ99sw+f9Cax3v018AqCok4rC4i28v6Bd+0GjBezdE2tmRkDmlVNtEElLO3v8K8INC3YabZfjWNHxuQEjkskyiacNoBb49I9aSy9BVudkOmKvGar8q5Nfx9DPLKS0PA/NNiRhcNKBsQlSDkgWzdXg7D2cL6HMtol6oykmeYp40Fco0EYu7BebJk8dVXdFSK4qQ4GoL5qvyvoK6CPfDPsn1jvhhbE1TkmlLdfWmLisow/KIiSP313cxQng7iAZhTw88dQBeehyePQJzedEoF6qy7bELEo0cNXKrClnneDDvN5mEE0+K/dipZ+HZF8SisFyWefy5j8H3vsVDX3CoqISJ0McARQpcvKXwbJtLuQLT6we+bog5qrSwqWKB30elVWOaMi0VckqTRRpSrPH7hGkring0Vn454tYfWRIMYOFQoE6BOtPkCeCjTGN3UmUUJObqtf+PvfcOkiRNz/t+aSrLu/Zmpsf7NbPe3O7t3i1xB57D8W5xECEiAImAxJBCjBAgE5IigEAgQpSCfwBkkGBQjBBFEgccwAMOOG/2bm/9zO7YHd897ap9VZf3afXHmz3T09Pd0z3TM9t3wDORUd01XVmVWZnf93zv+7zP24KrRdiblJXgcJHsWIu6ArkMZC5JJNjzYH4UFsahsUVFXhtDAJRB0P57JEdyGoiKke7sdUmZvXtNBqaADvEQvHgELk3DN08Bog32cAn4rRKVG+VZS1HJ1UeAIEFCfjONO6Gcg5kR8T9enIHrp6WeZ2ECpq5KW+gNNky7AQXoJc1zHCNFnCRRajSp0uAqGc4yQgCNQbqp0+JDxhhJ7mMx/RQEB8Ws3ugW8/r8j2gWfkzz/AiEdkLzOvu/BF39sDAFcxN3WNx4iATCAKVPLECpAl1ACpjW4eFXoS8O2WvSonXsXTj/V9RxiUgIDBe2rEWD5dzU/0YNP7nRA8EuiEbBaUM9A3T2Q+wghHdKeLg2DAP/EAIdoATAN07fdqXTW4Ct1CkrCjx3TIoSlxYfxRpMLcDYHOufvtmRrfsgHwWKJrw2J04KnxmEZ7tETztcgW9Nw+kVpetaQBqAOCvC4+bKQeABX3OjNYlcZxrwru8dnGmInnmuhVlqMUeDE7zDl/kvOMAhihQY4SpjjHKa9znPaayOAGh+dHspLVP1yX7VlBVrMiRdXeJ+14iVfsyuB5mcbNsFkRD0pmQuyZXls1Ub0JmAh3ZDZgFGf3ZcKwIBSHfArt0idzt0BI49Ijrgd96AaAwu3cHW7X4gQYrDHOMTfJrX+QEKCtXa3WetcjR5LTALRw7C+evyZCoNkTiYIVjMw5FDUnHnOpufjH+G8TNNgpejQoso3tZ1yfnVMHw5BP1ISuqrE/CeAoUm8564HBghkT7ohsggPprCn6Uafemdh3pc7AyUvLTmvD4vq/elgrjuhGzPH7xBgjvpREVDIcBBnmEPx+mgnzolckwxzygLjNOgTJQUDjYmTVTUVTXEq6FWlEh5fkbuO91vyNSsSQDM3uTNfYid9NFJJwl208fv8hu8xXlylMlSJEmUEAbvcYk/5D/LmRr4TRj4dQgNQf4HUH4PAp3Q+Yuw47+FyH6Y/rfgiiTgymn4/f9KItelHBTXm4tscH8PlGPAblDS4F0HxsF7Dbx9i0AUYhXpUNVzULxe/cVG4z7n2qwoJA9D+mHofBJieyD7DuQ/AKL7oeMF0QdH9gEu9L8KwT4hxpXzULsG1UtQ3XqbvLvFIGH6CKKjMk+LybvwBQ/osKMf5rP3HsBSgHQcBruEAOfLMLcI0zn48kticfTWh1DZRtXnWwrbg/cX4VoZnu2WYrK5Bpwv3uqYE0pIKsL12xZvN2Tb8JMsvO6n9ruDvkWcAh0Glm7zVuGn/O/8Dl/iKyyS4yIfcpHzXOWyhA7ahgj0bVei2SFdyO4SEa5bsmXr0COV+vziHokM10yYrMCFbZiB8TxJc0wuiCzi5BW5cdqWpEFCW+DK9IBw4BAcEHtwevthYAeMXJOfQyGRHPzN1z+az6ajs4s9/GP+O+LEeZc36exw7q1/h2XB+Us3f9dU0VbUG7B/rxz03l2yMhgdF3ufvwX4uSHBAC4uOqrUcqwkFQlNCjMCqqToFtZgXQrwdAB2apBWYbcGezVIKlCpw9uAJ5012/5kpiibI8CqIn6uqgL5piz4b8Pzx0WTMzErXch0DXYNwONHIDMH1yagVAVM8MbB/T4oB/wDsEGJQTMIfzYJyahEgJsmzJXkcToPOzphtiDFKGgkGeA5vswLfIUwcfLMMMMwk3zIKKeZ4jI2Fk2qJEigoGBtQnZitoTwVgvcEK7ecA3YpOTvF3iKJziIicV1ZrjAGFlKmNiECZIgSti3ybuhsm0OQ2sSjB7QIhKFcltQ+BEkn4dAF4QGofBjQKK/KELUG3fKDLngfQ28ACjPASHwMsBwEJ79VUjOgRaUyV9RZbUdSW3iiO8N0SFIPwrJIxDZCUYawn0QSIA18vvQ+DUhvW4b8CD/pm/mf0YWU1oEYofuiQR3+d3YQMHCorhJB5cACt0ESRLAQKWbIB0YOL6lWQQNC5cJGjdsANeCpok9qGlBqXzvBNjQYe+AZK6P+0VxZ6/DX78pwTMFeOM81LeRa8x9Q8WCSyVIGVC3ZVvCkrDeakq76O2MpUtoydkioEJIAwW8HoN3sm+QZZ4iBQoUsJYr+mumEF9VEX1ScxUtVUgXG7UFPxo+GBNLtaAmhPmL++FSHv7m+vbxn29bUKgKgVLHRGPleGI3NleQOfJnBLEE7BgS0jsx5jtBjMLwFb9JRRF++J2P5rO5uBTJ8y5vMsUkHi4nzmyhTPfQfujtEU0YwO4huHBJPNeiEUjGYc8u/6RktuhNtye2Nwk+oErh0YwLcQWK6w8ESzKIW0qL4hp0GdAZgF1hscApWXCpBlfrtzIvDehWoUuFlgdXbGh6MKDBXh1eMWDYgpyL53DjtZsdnhRk7BhKQncb8g1p69pafoFX6kJeB3pktrYd2D8E/9NvwHvn4Rs/hpFJKf9fnAb366A8BHEPlEVw5oTguXFxhEj5djvVpnhO5ipQa9PldtFJBy1MDAKk6KWDATw8gkSJECdGmhgdBAjSoAI46BhYmDQ302bRJ7yb6XO+FlxcdtFLD2kSRJkiS4YFTGx6SNFHB0fYxSyLXEVu4t7aDM35b1ExFyB6DJLPgF2RlL9dhNYUmFmpjIvtoVSYxDBcLHODlcH+XOadRO6sJpJaPfsWaDuhczdoBph1KGRg4gQPIt2rhSB1FHo+BqFeUAPQnIfGtPBbrAJUzkHsGIT6QU+CZ4NdhuYkNCakYM67N6ZYpY6CQpwoEUKbJsEOHmUs+gnxCCni6Lh41HFw8Aii0ksIA40MdWrrVDwbAUgl/a5LW1AYbTvCAVIxePO8kOuOBHzueckWj86KMmk728RtGTzEKm3JT3j5MSuqRICXesFvAA8/CdE4zE/DxINQjYQ08Qt2PcibolOucbMhiCYVpq1cjeveCBYm9koJXki/2WEPVr/NLUcs05YIrqGJN73rSRR5bwpman4l6za5cKrNm8Vvli2pFBBiPF8QicTPCGxLrMWUechMwPwsnDoJdb8Blm1D9aNwDtsXodalcq05zXcufoO3D3yAPezce8mAqkAyKZHeZ56EjrTIHmxHKgFjMRkQxzNyYh5Q57yPGtubBD+pQ48KEy4UXHhr/UHzln7pKjKQpQPS/ScREDJ8MCqE+KE4/MHo7StsB4gpUPdg3IaGJz/v1qDfJ8g2UHG5l9o7z4N9aRiMw0gBLudgorTMLWcuC7UY9HVC95AMOLom5ez93RIVbptQb4PXEEYTiENEES2aGwKnWyr7r18BfVEmnpaFUmsTbqjESbGTIdKkqVHDIsA815ngQxRUSiyQZ5oyWVrUcHFxsAlioKBg46zpGnG/UaSKgkKaODoaY8zi4GJiYeEQQCdOhF7SN0hwl2XjlkfQnRYFpwXhIQjvk4HAXAC3DMl90PMY6DGsxZN4zgyeV4A1Uu0xgnQTQwECaKgoFPMNSrRoYQEu5K7D2DuwOCbv1ShCaRrKD0A7p0q0N/UwdDwmT7UXoZWD6rh03AWkIA5FiuJCgxIRbs8LAW5O3OoacZcIESRKmD56SBAnQpg8JQrcyT9M4AItXMJoPEMHHRjkaDNPy78KFGLoxNDQUWE92x/Fr1nazMRiaJJRyd8e7XL9YFgmK/VME/Nik7Z/EGoNud8/9RTM5eX/iutkFjQMonRQYX4TH24bYqkadiVcx7d3u/3/evqhq1d6h7RbMl+/+GnYsRvGr8E7r8HUOJS3wFN87c/t+1AtpejCmjTQCGo3ZREKENdp1hqruwYYmsgdVk3z+XA8IRoKcKxTosDdEeiJSNTZ0O6vB/TdYMnmRFfFEm2prXO1CfnKpmzbOnsg3QWNmtRGOo58r0trIxWIo+PhUb0PTX1zC3DpvBRoL2bBCEok2FqvAPp+o8eAvRHMR2PMdcPbmXFGO6vw/xow374372wPieZ0pOHYYTjot6GbmZWTH41AoSidjQxD5qrFn68ucqthe5PgIzp8MiAk9AMbztpsoNuvDCohTS6osCaDWsuBmiPRiZc64GXgX2dkpb80iDkI2XYQ8uv5TzoelFyY923TYgo0FTDv7oL0kKhvVwRePSoEOKSLU87c0vHly7Kl4rBvp7SJGZuCb70hA08yBjt6IV+SsFY2CHoE9DQYnRLuay8IkSlkoDYNnomKSpgIgwywl3300keMGBUqLLDIBKeoUyZOJ01q1Cj4Kts5XEwC6IQJ0aJ1e/TjAWKSBcaZI4TBOHNMME+SKA4u0+QwsShRo7HCUidttdHK12maGZqdL0PnLxL0FOzWNI6uwMCr0PsSlC+D0YFdPAvWOWjf7kUTRGeINE+wEwONNBEMdD5gkqsssEAVc4mIVeahMAlmA1pVaFel3a2q31e/V0UBPQpGUh7tOthNMAt+UdwSWjMSFjYLEB4Eo1ci41tEgA0MdtDPXoY4xF666CDDDGe4yCWGqdO4dRG71vEAUXSOkOAAMcaoE6ZKERMbjzmalLAwlzGT5XIlVZVNQYIe9c0cWigAQymREzVWnylnfRnnTE6I7si0BMh60/DsUdED//CDtUmwRoAonfRz9I4kOEaMCFFUFL+dTRsX90bnO8BvduNsSra0JViVvClyza/meexjzyF48gXo7oP8gpDhhx6HY4/D7KNiZfXDb9xnEtx2b61ACmmib15q5OH5z3UYEuluu7cfj+NtLOyvKtARgpd2ig2n64mH8GAcik3INjacPlB1CKeg7l+DmgEBvxGh3ZYE1JbAdsS/eAnpuKQ+GhtbUYZ8O/vdB+ChJ6DVhOIilPJw8TSYiiRldUujBwMbDw+Txq2NqAGIotG8y0qg+TnZ1oQOdKiQfYBFYkfjsCcCxxM0P55mNK3CWB98UJJrrWDdPRH2PDEV3r8HEnE4fEDkD44NlZpE9S1LyHA0Ij/7JFjBYGk02TZZiS3C9ibBNU8I6V4NDmnwYwvesrgj9wqqkPb7v9ds8Zh0ERlEyZJBa08Ynk/Ba3lp7bkEF7hmQ68qMogqUHAgZwoJvmjf8zXgelBqwWJDJBEdYWl3O1JYRoKXUK5Ke5jBXpm9v/cWdKbg6F7o7ZLw045uiJSh0A/xpyF+TNKOxfegdAYCfmtVxyRChCF28QRP8BRPEyWGSZtFFokTZ5opvssf068cQvM0bEwsWjiYhNEJkaBJkxpVzC2ZWHXwe/0th9xsa0fy3uUiBjpPcIgmbTJkmWSeNHGukSG7IrqoojLMNDvpptft4EC9zJX6v8DKfp297QA5I0hh/1dwd/2ykFLPgVAndDwOZgkaU7dVzA6R5ml28RL7SRLmIN1ECeLi0cRCRWFyyXLOakn0d0kHqajSIEEP3myFex/geWBVIfPXQn6DaSHCtQmRRNwCqyBb7QokH4fS+9zNxa7436ZIveX1g/QyQC+v8DFe4QUG6eMkZ2/8/Xmu0GBjVR8hNIqYBFCIoBFBwyNAN0GuUCFDg5Y/LaqqJE+WIr7xGISDgCI1IZuCrkI6Aod74OzMuqdmV6/MKcNTQoQBvnsC/rf/EhLRtV8XpYsBHqKXwwzzOt4a07uCwpM8xZM8TYAAU2QY5TotWmhoN8iwaK+LTPGAdX2mK9vyCVsPQiAok67nrZpuTXfCwWOw/wiMDUs0uN2CVkMidemuB+3DjhyD69x0etAVSdnpqtSZuPbtrha1DY6NER1e2iHR30MdUDFhpAg1S3Rj39pIu0F/Vx3w0Ofh5L+X31M7oP+YEOPcdZh4b8O72hzWS2usgp175bvcsQeOPgZPvwTXPoTT78D4sCgYE4oG00FiaDRxOUyMEeqU/Ml/yb/oOHEuUqNyxyqATUJFstBfDMEfP8BK1ofiMBS6KccxFOEeR2JyjV2swcI96iIcFy5chnAI+vtEF7aQkyj/jkGYzEBmxm9DJyO5QT/gYFHEvZEV/fkgw9ufBE/5g8/HAvAVA05sgAQriG4rqokBetuVnxWE8A7X4WxFHq0Vg5cHXLDhAiJ/CCqiC17YepIyUYL3piXLVm7L2BoNrPBNH5+BhQIMdEEsKhU4Q33w0lOQK8DCIhQqML0ATIGxS3SdqBIJdhoQPQB2FRpjhO0wQwzxIi/xSV4hQYIKFUa5zjDXiBFDR+evu35AqhAi4cTpJEUnnQwwyCQTnOC921os3y3ifAWdATSSKISQ6d2gzndp8FO8dTTHP+UcE8zzEscZYZphptb82yc4yKPsZx8DOLic5hqPso+vtn7Ek/wCtOFSM8CZ5jyULkLlqpDfQFwqypwm5N+/ZZ9H6eMF9nKUPmq0cXAZJMkQaWzcmwQYJAK8XFjsudB6AIIzV+QPcz+CxZMQ7AA1KIdTX4sXeRaUTt71W+5jJ0EMSlSYQfSDKgptTFq0MTFRUUiTpJduIoT9grk7QwFi6LxBjlmamLhUsDFxya+I+gd0CAZFRZROSdAjmZCvoVyFymZtMNNheGYIfjR8xz8NB+W2HF8RafpnX73T8SkYROnnIYZ4kgynViXCPfTwOb7AL/EPcLA5yQn66GeaKWxsLExChHFwmGTiwZPgtgN1vzsLCgRCUggaSvh9yqty/a8ojqtXoVQQv/VwWCKEjZo002k1YXHB12w+SFQsCayoiswrqiLzhuXK/GLdAxmoWfCN63AgLRHhjw2InvpSHt5YezxbDXYbihkYPC71h6EE9D8M4TQ0N6Y4eiAYuQQf/0VpSqFpsGOXFKlNT8ChR+Q7D+Y1ugnTS5ABglykxoS/SA6iMkCQDgIcIEoUjUvUmNnKRhqPB+DTBkw9YKuwpaDdUkyo6cJ0C643IG3ICmHhHt/j3AUxR6/V4eghiQzomkSH5xaEGLfaqDUPgx5ajBPhAAo6FnksCtiUsMnf+b1+BrC9SfAeFY7q0gPCQ1ITG5FINV3IW9Dnt+30ECJtebBowYkSzLShaK0rG7whf1g2xv1HPo6Nx0lyvMMCFzfdXELgAZky/JtTcK3awUIziGWbONYqF1ajCZNz0NMB83no64JL16HRkjSU68pxFk5A8bQ0N3Atsbdy6qCnxBFB0Ug0w+wx97KTIVRUYsRvEOFrXGOaaTJkiC6qlJMNSlqDYLtAojbHGGM0aeDEVFCNmxojy5UIur2ZAUMnwst08L/i0cRmDps5XEqoREnwa7Q4hXOHwrsEUR5hL5afNJtgDmuVL/UMw5hY5CjSoM0Zhvk9foMnOUSUMD/iFFlrShhjuB/MomyOHy7Ubrf+OUY/jzBwg8DVMbnCAgYacVb8vabff9P/aGTd/L5VAWsp03CfFvG/xas8w8NoaJSpMcMCJzjPO5xjkhkUYIwMMaIUKDHJNO9ymvYGsgoRNA4Qw8TlDXJcpkIEHQeXIhZlP2expB5UFBnbjQAcPwbTs3LLlMpQ2uz64+V98MpBX0h85wXgxfG7K4JT0dEJomNwhE8RJsUEJ5BmvWHaVGlSpkGTDziJhUWcODVqSP7Epk2LIEGiSMg5TnzzH+ReYboQcIXlBKPCyGKdEEpKliUQknPZKAop9lFchOycL0sMQaMuFoWzGahVYPI6zG6OG947orrI6ZbaMQLk2nAovjVFa64Hf3jad6EYEAnEDyfgO2MbevnAI0J0PQeMiE96izB1WtbeoQRce+321/VGRIJ88SNwYtt3WKQvAGdPyGmcn4bBDzs4nouS9MRFJE2ANDpTtNBRSKPTS5AIGmkC/HMO8he+bKiFS34rgjP/YwQ+ExR3qLIfgPvtqsgy7xdU4Lf3Ss3SbBvGm1KQGdclez0Ykutjb0R4zOQ9WgsaAZibl0hBZ6dkOkoVaZDhQcBMYZBCIUCYg+gkUfyZzaAPmzJtZmix8UzFdsX2JsG6AlEgqohbw7yvveruly0cgWoZhlexbWr7K6i4DmFVVvCmK4NX0ZJHF9YdwHzrrp1E+RX2cpAECQyuUiKMxkv08fcYYJ4mX2PZgKUFxQjec8BcW8RcNeHkQpR6xzPYnfvAacHCO1LkZq0Id1g25IqSQnzrDJwfFgJqWpBKwEwWbF/E7pqAh2pV6PI66FBDBFHBixByFaaZ4i3epEyJXeymQpkrXOE0pzjPOSaYoOU1caoeBFVaYbC6dNQuB7czgRuOy4mxXEnfZari9VbbDAlWUIkTYIgGr9PmIjYzuJTR6SPF/0CY52nwNi5ri/NHmeFf8Q1qNKnRwF5jVfMrfJIIQS4zySXGqdHkX/B1nuIIlxjHwsapWDD+p9D1jESBrYo8li/Ltgw7SNFBhAAaHlIUlyKMhUOaCAfoZpwC1/HNhavZ+9tKUFEkzNlors++7lNgQ0fjEQ7SQwf7GKKTFCG/gPJ5jqOgcIIPOcNFrnAdFRUbx9eybowADxLmEHHqOIxQY5T6jfixjecvg7wbiVHLb7K1ox/++e/Cb/8eXL0ucs9NEdSnh+BXHoOX98PledjTAZcX1tzJL70MLz4OsTBMZ+Hts/DTUxt7Kx2DIDGCxNjF0yhoaATwcPDwqJGjyBQNCrzGj7jMZQbZQQ89hAihowMhuulGQWGRHAv3HDq6S7ieaBeMqBDgaKeIVB1L7gWjAe3aLSR49BrEkjC0VzSjlimyiJFL4CxGibRS7HIVJu5TB7FVsRTxba+QzbXcrbP7aDuSEjyXhdML8O6MBBWe6pPf1ymw69wDfQ9BKC6EN3NKTqvnwux5v+xgFW7YEYJn+yX47CFTZLkNszUYr4hV8f3C1LgUpBmGSCCadRi5DM/Uo+xxYoRQaeKSIkAekw4CPEWCMjZNXKrYnKLB7zNKhiYjNCjfa43KMwEpLH/ZgKcC8h1POhJ8+ycR+FpTnKruB1zgz2cl49B2oS8IT6fgU93CgyYacLUGRRua60TuwnHY85h08KoVYfycZF1WYm4B+nrkcXJKsszTMzA5he6m0MwwKgkM+rAo+M20EgToQSOGS50Sb+Nh0WaaB95TeguxvUnwRRuOaHBcl0K1Ny3o2gHpQTj6OBw4JoPsv/zd2zsZOJ6IyD0g5R9mzblZxFD1tb1hTSLH6/gwJgjwBJ3sJc5JcmSo0cAhjcFOosQIcJAEo1RxAmEIpUAPQ7uyOglW5L8tC9yURefDE7Tjj1MqfFaqGaa+54fsVnwm0x/JihXZQIrkWm2/kGMFmXBqOBiYroZJHhsbF4d5MkwzxRSTHOUYiywyxigjjJDxzaXk9UDbwwu52GkNHk/CwQ5IB/2WWA7M1eHkHJxakNTehuHQ5pIfAZ7FJY9LBZcGHjY6faj+SnQ91Gkxzp1dFq4zA0CGBcp+O85RZrFxmSWHgSFhwpk8lC+BkYLKNVmMtLJCiG953zYfMkuMIAMk6fd9k5u+YZKORszvwAeA3SZGAMP3sq3ei55a1wHfa25pElaAWGTzptVbBA2Nw+wlQpgaDVxcksQZpIcnOMYx9nOKS1SpU2VzFTpRNIaIsIsIVWyuUqW2AQ2g54nNkWnB5Wuyfqw3RBaxKeRqYmXletJq3PZgRxJmK7dkPxQFHtoHn3gKXnlanA3HpuU+r9Tg3LX1zQJAIsFBooRIkGYnCfrwcCgzS4sqJg10Qjg45MnToEGFCmVKxElgY2FgkCCBhcUCC8z61/4Dg+K3PgYhvYkh6DsiP5t1mZTtlox16q1TULMOM5Nw4ZTIIK58P405kyI2p5Ju9jDEACbWgyXBRVOIh7PsXotqElRJBGQuua3T3V1gMAavTQrpLbaFFD/bLxHoa0WxTVsFqSEYeFgaELVqEnhPDULPYVgckZKD1RDUoC8KRzulFi9KtSMrAAAgAElEQVQZlCD02SwE5+XSntlIIfomsWu/RPRrFUh1yOPctDwea7m+3CFECBUXjxYOfQQJojJJkzGaWHjE0Pg2OaJoVLHvXRWcdeGLQUioYsda8+C6AxMOPKLDd+5zKm9qWdazaEHFlkBewxECPN++s/QmFIP9T0HHAJz57trZx3Yb8gW/5qgk+i1FhXoDxY2iEEQhgE4HAbpRCaKTJEgfAXrxMGkxSYvxLTv8jwrbmwS/Z0NIgYoHCUV+7+yVOyeZhp37YOce+NPe20mwh6zUS5ZEgl1kIFuq7m34hFiB9dyUOglykCT7iBNGJ0uTIiZVLCxcYgRw8YgSkN0EohAfgEg3NBahsUqbMQUUXTRckbRJ974rVLRpqi2DyB6FVsnDqrOxLJvjSnHcKnBxqVPDpI2FhYmJ66/YMmRYJE+ZCovkmGWWHFnqKwmK4+uTUkE43CEj5o44xAJCBqarYnVxpSBauTvN8ss+ncUwTd7EoQDoqCRQCKMzgIKBt2QxtgV4nyurPj/pp9IsmmLgX85C+Yp0l6hPrfn+RZq8wxglmjzCAM+zhwotctQYIccURcorpBw6Kv3EMNDIUqdIi8bdRC8URdLMqu/x6PodA4NB6djk+F2qVFWuIdPckMv60nh5N1OJgkLC79JXoupvFUwsUsRv9e7eBMJodGIwQJg0BqcoMr4JEu16UK3Bn/wlzC7cpS/weAHOzUBXFE5MihxiKC2kpNS4UVegKvDKM3B4N3Sl5GuKhqG/C47skeTNnU6Dg0WLGm3qqOj0cIgUO2lRob2KNU5Ea5LWsnSqJmElSNuDDiVM06oz71hkvHmKdynZumsoCgQUGVcNvzviQ5+VzNjMRchPQKN0829XoJSH8++pNEaT1N86wE76GUClly520k8bkz/lmw/ueKrL7h2Fm00zHE8yjaoifuCtexyrMhXRAs/Xb75XwoB4UN5jDXQMQe8RmU/qH0KsW8yBXAccU7pxtlcJBip+DcqBlNTl9UQg15TLOlOB6/eJHXT3iWtnPit2eI4Do1cgEoUrToM+QuwgxBAhWrhM+eOoB5h4NPysSAiNOdpAYGvK4moePBwQVjTliFNUzoWyC0Paut/BlqPmwLW6bJuBbkDXEPTsFieWaEqkR54nF0hz2YWQy8vcUanKxdDd5QdQXH+89lBQCbEblRAaUQwGCZDGpoqCjkOVn/UCue1Ngi87sv1ZGz4RgFkXIk0INWDkoqTU2g2pmlgp3l1C0xUdsOFrg11PBq/KxmbCR+jgS+ziOJ0UaZPEIIpOnjY5Wn5/NpezSyJxVYfkLhh8Si663GWE0S6DK4FFRZOOxq4FzsIZjJkSA498k/lRKC+sfjibRcv/txIeHlNk6KSTLFkKFGjRvH3lqKkyUvZEhPwamvzeFfaLRIDdSZkYdFWiFpv43BW+SoinUImhIitQg8O4VPEwuTcSrIISEh/lTcGD+u2WaCsxyiI5akxRZJE6nUTIUeMy84yQY4FbZ54SbQ7TyWE6aJLmBLNMbqDl9G2wLNFkh0Iyg7Rasoo3AtDjD2SGn2sEsbnJLt4xQqwuq/nZLFxcppjnALsIYRBAp0Wb81yjQo13OIt5F3q9TgwSfjZgkTYjG/JIvAnPk0jw+ctS8Lyhpier4fKCRITfGIVPHpD7oi8u/ZHLcn+pqkSAkzGoN6HWlLbJpdrGC+hrZJnmHHG60QnSpCx1vgRwcXyjKCkAiqrwbASejzTYZzRQgUUHdgTge1U4X4dpUUatAt8o+X64krgO4HvcBgwJSx7/onwQqyl2ga4t4+Mq9oDVMlw/a9DHMV7kUZI3FlEyOHWQQkNbxTDrAUBTbhJgza8zSQWE9M/eYzvAf3Zr4S22B+/NiTRinUxltBvSQ1JnqKiQHJSvtTIHiX4Jvmev3f66pT0mDPmqXE8OT1OkOHv0PhXT5XNS+NioydY7KM939cF700UCbZU4OhFVY8ANMkmLq9TJYbKISdufE0ZpMEiQNt4tloh3jWO61CAFEellzYM+Vea4mrd9uvatBU2XSHA0KY89u2+6sVgtKM7BzNWbf19a1tjE8yArATvPF5c5NLEoEOEIIXYTYhcB0jg0aDFBkzEstmFr701ie5PgJRQ8+Es/h3nd12YO7IJmQ/Iql8+s//rK3WuFdBRcYIEmCvAifaQw2EOcLE2GqfC95ak5py1WQL2PwtALUF+A0/9uVVFWfC/Ed0F9GuqTEzSv57l2LibsWHPAq2/NJLWS2C67lw0/Ze+pSBWRrtyMzqiKkNtkUEbKmCFC5vm6aNhcD6aqYulTt+RG2uQ40eQtHBZRiaMQQacbhxwOeRRUuIMcYl1oHZD4HBT/A/drtVqhxVmmObvB9OwJZhmhyA7id0eAl9A2hQQn42J9YFuwY0C2JbPzeAwiYVnxf/918Zpa5zTcKHy/i49jYvEd3iRGhIc5yBB9jDLNa5zgJ5xk7C7T19M0mabJBA3CN3LsG4fmFz3fM875kgJDkzzxT0ZWzXp4wJ5B+XoMXSLB+RJ89+2NvU2LKnnGmOMynexhnksUmaLENFlGmOPijb/9zTQ8ERblwawFeQfantiX/4ME7AzANytwYrUamlBE8ubl7KZPxYbQ9D3ZawXInJGt/4jk62s5qOZ8d4jVrzYdjT66GaCXImVUVOp+v8rH6GMPOxgjsyFv6S2F7UnUtzMI2fvc9tl24Sd3dvW4/B2ozosjRHEKrAYEE9KQMje8tjNEtgFvT8vQvSshKrdiCz5cvL964PFlhLzVlCkcIOPXWE3T4v8Lz/N78Qyfzya5Sp0AKgpg4WHhofmT2pY6QvzUhO+3RQ9c8aUQgyqct+ElQ+bG7YyBQ/DCP4SXfg2aNZFDeB7kp2FxCuavb3BHHi4tLLK4NIlyFI9BohzBw6HFaaqcXWaV9rONbU2CH/4SJHdCIw+1LJQyclN7uw9DJAazkzfvnPuE15jlNHkeIU0vYQaI4AElTK5Q4n2WyR30kCzFmwXIj0CkSyLD0R4hw8uiHooKh/9r6HpCeHMtU6V0tUrpKjTmoXRp9cDdIR6mmz4qFJljmtx6hvoGGI9B5Mug75en3DzYk2APg/4XCQwMGV5cTzS+JjLRB/ySI9O5KRRzPYmAaX64sG6J2fFYWfJodxNCBEyWrU5vMHaFII/g3e0gFzwKqVeh859A9+9A/l9B+a/BfjBFQh2E6CWKhsLFFatliextwYBarogevKcTnnsKvvBpSW1lF6UT0BIDPH4MLl0jkMmg2TYB9UbnVwC6wzIBBjVxZ5qsQuEuT/t/5gdMs0A/3cyzyLucuyHBuQ2KeJgqS5IkTzLmtikT+RL0ICieh3UXukvHkdNUuENUS02B1wTvTsdtOvDj4VUXE44Lf/JtuDgCzTa0LYkIj29Skuvh0qZKlmGGeZ0sw1g0b5OUfDEB/TqMmTBrQ0SFuq8g69UhrUkCbFU4toxH8Q6o+oWnoagfNWpLWLtzh1Qv1YrQqN5SwLbBAxHSO30Ovv47kOwXKUR25I72gOL4USZJnBBBFljEwMDD5Rv8kOvcOVNz3+ABi/eZAG8C5/8Szv8VhJOw52Pwyv8M7/07yI+tb402WxNf+u9PyO+f2i1GGJfycPUeG4W99KIMQWNjsLgZJ62dQa71qBAAr6ry52oRb/7Wc31flz1/UJMBekAVaURRg8s2fGiJRGI7w7agkoPhk1CYgVxG9PfTVyC38fvFXuaxr1CkzLu0yGCRwyRHizH/95+PbnLbmgR3HYSBR2W8dCyoZ+Xnc381RnVYlbTbfWoysAQhvG1OkkND8duximrGXBmHsNvCbgvXYfibkHkL5s/KB/cJsE6AVE+Qo/9njd1fBLMC1TGpw+p+EoY+A9kP4OywTMid9KCjUyTPYzzHIzzJbvZzibO0aK5LghUN9L0QehnsDLhFUKIQehHsHWD9hcgi3BsaIB/WMjsgD0kDZapCdJc0wq4nkYq2I2R4U/Zoq53l2382uezrgjeIPYNiCZAvgb4bYp8AvRu0JHT8JhCA6vfB3OiK+O7wFP38Gsd4kj6+zXX2kGKcEiXaOHgYqJS3KoJhtoX4Nhqwd0h6wFdrNwseFgtifRMKYnkKtl/fE9VhZwxe2QGPdIhdUkSX2sYzi/DVYRitbH7CcfE4zWV0NGyctQkwgActPyOnB+V6VVSJaCkxWT+qmtRTeZZDs+KwwX4aK99mXWi9YOwFNSwWyW4VnDK4dbkH3Rq31gyssUPXhe++Az/+wE+KePKcpsKv/n25PB0XfvAOnF0lPX1jPzi0qVNhnizXMGmu+qYXW7ArDo+FoVuXnj6OHwl+vwnfqsIHa50vy5QPF45BJCn7V307M12XLyTVIysSz5O0qtUGsyUStDvB8H11HQvaRZi9CAvXoF2XVf8d0KTFm7zPP+XXOcp+DAzOcZlv8xMucmef5r9NWJoCmyUYext2PQ2XvweNDXCUpeEdxJZY9fuA3C3RDAXh1S/DJ16WUoTRURi5DtdH4dLlO7z4xRS8ksZTgJEmnCjj5h7wYmPpPp91pZvsO0h65TlDCvTHHJjepk4IZgMWM3DtXVgYhw9fE05i330RtkebKqcwmfelDy4uLcAjyCAqBnWusr7X7PbGtibB4STE+yHo2zH2PwTFSVi4ZOLUJUK8VdBUCAbkfeorpF0u0NzQl+yLzxuLUpGgaFCbu0UKocUdosfaDHxCJvlWFpoL0rjAcyGxD1IHoes4FC5AuBGhmz52c5BneZmjPIqGziJZBthFkQK5tdwRVFB9W05nBpxZUAxwe+WjNmnSuNGMctmw5y17VBWZuaum+OcsTwEvtRHdcDHc7YjFxQt0Na3mhqPAqiqVSPt3wkIerIPgHgF7ESrfE1aDCrGXwZq57yS4iUWFNhYO/cRoYlP1l0w5mlRpb100w0NEr/midP15+WNyEecLMJaB+SycvyS/O7Jos31r56AGz/VCf0QC/0ENukPye0yHP7oA843lRfE6IXpQMWiQYa1uZq0NfG8BdJIksV0bF5dGu46jyv6WrL0V07eTjfk2s/1+wy5DJni7JXVXoaSfCp6E8goPWdeF+h1qS8KPQ+LLoETAWYD2MJgjYE37RLgl99BGUGvIthyqCqcuw7MPw7fehKkFyXNoJBAF3q2ZAps2i4xSJbsmAQb490XIWHAoCEk/ug9wqQU/rcOFlvT5WR2eRH1bdbFVUhTRFGoBif4GQvKo6TIwRZNChF0HMpfldetBQS4cx/cQb/vdpzZ4IsUOrsH7nOcxjtKiTYZZLjLM2INu/HG/0B2Gw2m5+RZbcLkgq9FYwK9Ou7OQPMJO2uRxaEj/nTKc+ZrcH5uNDzXu0WEsHofHHoV/9KuQSsH0NPR0w8c/DoUC/Ot/Ax8sswrs6YR4FEZngKNR+Ed98EQcztfgXA3mzY+OW9nc2u3wsi3XdHUb64KrechcBCMM1UVoVnx9/r3BpUmbGRT0ZW5NLi0yBOi65/1/1NjWJDiYkEpXMwqeDZFOmD3nL2y24FrUNZmgFIQABw1JXy4hoPlF+ApSR8LtBPk2eI5UIjh+BMVe8YKAC3EX14ZqBpo5CZS08mITXJuU9raBuHBogyDd9LGTvTzCUxzgKHmyxEliEFyTiNyAKgTYLYFbkd8JSPrX7bJo5psonrJ2xy4/TY25zCJoK6DIoLl3P+SyQoRbTanx2hSMAHQkxCt5CaGjYO0Eaw7sOXCqEhGOvQR6x9YdwxqYp87rZMjRJIxGC5skQSq0sXGpbVG3vRtwHMn3f3gFDu6HRAxKvixiagYuDUOhDK4rZii+9jcaENLbtKUAOqBC0pB5+Au74d0F+MkMtMwUQXoI0UuEfizqGCRokcWktGpDk/WcJtKkOMQBnudp3uMDppmhqai4gZQU/FlF6XDoCplWqkJ0uw5C71FRHeVHZcIPp6X4J5SC7BW49j2ozNwc+5cK49aDsQ8iHwc1AuaY3MJuzY8AA27Y5253SRJcF4Yn4d3zcOZynHplkDh7CbIbBZ0G56nznl8ICi42DQo07pBuPNOCkgu7A9CjixwC4HobzragekcS5Pnak/ZNEqyqEhHWdQnLBwwIhqXIpm+P/J/VhpkRMO8Ull9WI3AXGTsPj+/zJvvZTYZZ3uU0VxmjssniyG2LiA47YhDUIRGUG28oLudspLQqCQ6QIMoQCho2TcL0ESBBkzlMCnguzF968IcSDsO+vfDZz8ATT8DIiDyfSMDuXVK+8N6JW0lwZwqG+sVcSOmBmZdTeLZHd7WJWmiwUNtG0cX5bRr9XQ6zKfpfVfMzOFv3mV0amGR9Iqzi4WLd8B/fxguDDWBbk2AjCtEuCLb8QmIHpj6A+QsbS/XcCQF/rNdUsckzdMj5cpiQAYmI/3zgZuep+bwQ4Za5htVSICiTCYgtlardshoLmEGis0nsH2q0HZNWpIhZdtEqYbRCkNzpEk4TalPCo1VUosQZYCe72c8gu2Q/BKhRYXGFEb4SRSplPIn6em1wpoT0ShgNtD5QoxA4Cq13m+h2gACBVV0kAGESW0iAFVUGzQOH4JmPwfwszM/B3AzMTIn5wYYRi8D+Iflyak0/lRsDOyA5bTsvJ8GLgVMSNqMENyD+vHss0uTHTHKKeR6jl5DfZ+e+wXFF+HrqvKzk0imJDI9NwtURMUH3VxeaItd7SIOOoO9yV5eGWLoi9Y8e8Gwv/MIOuJCHkt1H0n2aLp4lTC85ThBnL0U+pMp1WmRvyFaWaviXopL2isvGwGA/e/kSX+C/4Tf4A/5vvssPUQMGdL0IRjeUTkPlArhtHFMk9uGUjAUPvyoZlNmz0mws6DsSJgdg51NQW4D6IribqNnwHH+BCODI4lONgBqTy0SNi0zCu8dI2Z//IESYo6R4hRgvEOIwKjFqvMEcRUwyuNRvkwBFkGLF1W6LMVO2e4LVkqhwIChhdkWRiLCqSdu2SAL2HYc9x2VivfAG5GfkdWs5jixlkTRuvwg2CA+PtzmFh8c1xln8OdEgAiIX0X0Rt+mKKP/ze8R1Z6YGtdW/1BC99PNpgnTRIotFmQg7CRCnxCU8f6WmoEl0eIubGKgEUDGwV9gURiNCgl/5pPTsmZuXxWe1BuWykOBdQ7fuS9ehMw2PH4ZYuM6JqI33foWDkwV06lzsF219rSGXpKqI2q29yqkJ+0ZF97Op288EzOatDhBbiNXaJJvM3pf3epDY1iTYbAj5NaIS7SlMyMS3iqvOXaG5or9EeBlPObADupLS9SkSglQM9g1IscuJy3BmGOZWk2MM7oeOfvl5cQaqRShlwXNRUBiqHeCXTv0y8VMJJhnnvc/9J5rBKnuHj9OXOchPnvgTanMO5RHAhSYNalT8ZrAeJm1qVKhRxlSaKCsMGYynQeuUIh+3BF4VCEL4M6IJ9hqS9gUwHofa6QoJO0VgLZJ2lxPYeoiE4fBD8OnPwrMviJnB6DCcPQXvvwvjG611VBRZpQz2wMcelS/EceCNnPR817vB0hFmEwZzUlYGxj5o30mgdu+wcSnSIkmQAi2yNGjda1ej1eC6UoUyPAqjE75tWluIb6t9Syh0iZsENQlEeZ4Q4LrfV6blN65q2rA/AXsTcKVdxW23idDLAH+fCsNUGUXFIEwfGjqmOikJAz+ivGS5tPziVFDYxU4e4RgH2Cv3AzvRCaB4beh8EVJPi8lp7VZf53YF6jkZC5YcfzxHxvx6Tvhax16JCCtrJDXWQvVb0DoPej9oKfHwdn37S8+VY1mSaNwLQhyim98ixgsE2IFCAA+TMMcZ5P+iwNeo8QamX/Sl+dtT6MziMunXILhsZZZYgVQvFHxJlevICV6yTwsY8vult+HU92BhEiYvrr9Lf7db1Sb8HU5vzY62BGtYcW4GqgL7UxL1VRBt0mAMFhrSJKPtQGjtqVkjTD+fxqFBhWs0mcMgSYhemswBHgFS5Hkfi/Ka+7kbhBkgzj7meR3wbqx2F4swNulRLksyIRiEfF7W5NWauHEFVhj9FEryumP74WNPwJe/cQojAKMhsJ+B3/gSnLkEPzkh3X1DQZiah+Hx2z/XsaA0e3vzHrsJ/x3+9mFbk+BzfwbVWeh/VDSBwz+C6z8WYrzVsOxbpQ7dKYkGW7Zkli0bdvfBVz4Bzx2D//gD+OEHML88ONHRDx//ZXju81JUcu51OPkdGD4N2Qw77QE+zit8ni8zxSQp0uz+9l5yZFFR0dB4+idf4Xt8E/yVto3FPDO8zne4zFnipMgwit17BoJZdtdhfBkZ15CJnEHRMroFcBckqqWEJCpsj4tLhBKExucK6D/RsXNbnKJfB6Ew7D8IjzwmwXJdk5937oLOLvjjP9zgjh4/Ak8/BHsG4LHDMFSWEP3fS0ph2LsZ+A+WRIPbwxLOMzNgP5jVax2LC+QYJIYHLFDHuh/tJZfIRqEEzaZf7WJLhHiVP12yQltswXBZSG884Nc8KiL9/tE0nMoKKU5FZ2iH/pxJ63Xyjd+iyhgWFarqWRQvgOrFwI/EBDUpuvMQEuz6+3Rc6LN30aLN25xgmFH+E19jggx5CjjtHFz+P8BIi4a+fWuGo12F0jSUpyHWC/E+eV4zpHYg2i02UfMXJIOyGdjTsqlp0NJy/2idYiRiz0sCYSvWLgo6QQ5iMkWF13CoYDCETgdBDhDjeUwymEwSAF7F4JcI0I+KDVTxKOByEof/Z8t05Z6sJGJpIcCmr0G2TSAK+VlZVNUKUFmE+iZI1YpF0Ero6MSJo6KSXyXKtO2g9Mpi2p24t/38whB8epfIH8bLcDorjjxHOyUdc7kgnThXQYscOd6mk6cY5HMYpGgwTZUxXyLRYJ4f3dvnWxcKGhE6eJwCp+HVAxLRrppM1Kr80b/MEYmIUUGxCKmkRHxNEyorDEFmFkQT/I9fhecfg7EpePcM5Iqi6HJdeOwoTM/DX/1QGnquhWlLrJr/Dn+HzWJbk+DJEzB9WjJzKH73m/uUxbZ9Q4RoSFayu/t8qWVVyLHpT4LdKYkKP7IPRibSmIXDpHgMixKzXVM4vbsg2SU6ulgKhg7fkEcoeQO7bePh8XE+AcAHnORDzlCjioeHgkJjmf9eMzjPjJKl2lJQ0djdobC/xyEUslisw+yKOSkwBF4A2pdDmBeG8HZ8FqVymOqHqoTIGgW8xQsw/T2MoznM90Gt17G2YJbfvR9e+JSY3V/9EK5duP1vQmHo6YM9+yCeEBJsGBCOyPNDu+HUSYkIr4tnH4FnHpb2XP1d8Ogh0apMzUu3AjzoD8CXFuHanIykc7nbNdr3GS4eM76G8b55mi41ymi1JOq7TlMMzS/ab9hwqQCZmnR+Des3yarlm36UTbFKcz1fR0yOYuAPabsObcfDdS2EVmdvrXfyblpNK0hkOKBCycjgelD2FLLuLGm322/tm5XiTDMHVn7Vz2+3oTAG574GH/unMPSMBIw1P5rdWIRLf3N3JHgJbgncMtghCAxK0sApsyUEGMChTINTiP9DFY0kAXoJcQiTDA3O3IgC68DjaPSgchGHBApDqDxMgC9h8DQa/wtN8ltxTdWWdZQLhOSkWm2xTrPa0KgI+TU3ee/Ya8uowoSJEfNtzzxSpPDwaNLEvJeW4sBDMWm0dacOs5uGl9sa+ePrU3C0A17eIVtYh2xTbrKuMHSEhBSvAosyJS6Q531C9GFRxqKC6xejqvdpSk9yjCZzvh7Uoah+CC/tgC/s84eABqXJCj+4HOTtX8/xuefa1GowOwvRKCxkYXgVUw9F8e3pdXjrFFy+LuNNuQrVumiG//KHkuhaD7qy/W18/w7bE9uaBLuWbPcao4zTT5QedIIESdDJAYIkmOEDpjiBtUQ6PeESqgrpuJBgx5VUTE8Kju8XkjyVhYUiWNX97OLXiXMED5uFwB/hFOZh5KzkZ+fGxIookoRIgoXyLG+3f4qGxmf5Is/zInvZxxwzNKj//+y9eZBd53ne+fvOOXdfe9/R2ImVJAAu5k4xpCVKViQ7luJ4phzHsWWnYqcm5YyrPPNHnPGkKnE5yXjGMy5LJTuRbUWW6JFM0twpihApkiCx7+h93+6+n3vPMn+8pxcADaAbbECgxi/rsBu3736+833P97zP+7zMM8coQ6ycacsNh6Dh0JGEra0NDm6Cp+6CzjiMpeGF0/CND+S+/j0QeRZp1oSBebIV2p7FraVxCwuCGvw9kNwK+j7qx34HtwwV92oP0rVEZw/0bBZgG09ALAGd3dDVK30ZVgPBPp8UxDW3gD8AiSQ0NUvLTE0TTXAwtIYXdx3IFmA+I84Qlg297fLTNIW+n12QBb6vRRby+cVk8u2NDQe/Pt9yC0/XU+FattAt1wDAPk1kiLryQKNXDJcxl7tEKe9vi00VF49Fna/CBSrC8C4989WvV3cuz4Qv/9vBWJIqVLC0GTQFfmxPdeOiKRtdrV6pXsnAOa9b7o6npVDOCIgcYuJDuPTKzQPgpY/iipSoMQW+bum3Ymf4+JMQUGeKPC/hox0fPQTYhp8+GsyS5duUOEzDc3pRQDsaMzgMej3ixtA4hM5T+HgGH0/Q4DAWqY87vlaOmYYJVU20wT5LLM5cxyuyWcfraEpWl8WUwBVhYhIgwFa2so99XOAiObKUKVP1/iuss5mMX4ODcXi6FV5dECD8MfokrRIOqBYwDoHWhXSkjIEzBtZZcCZA3w72DSrT6g48NwiZGvzjnfDZLVBpQEtIGOCatSyqvypc6uQZ4ZvoRLyOpVVqzFJkgByrTLobEH18gSqz1FhAx0+n9jQz98wJm12sL0mH6pEg9aYEr745j2OJhEHXRcdbWUWn77hCMCWisKUXRiZFwRXwyzE8IXv7JmL40KlgUlrFJ7FdF29sHRi8fUnNv4+fgFg3CFZK/RnwM8C867r7vNt+D/g1WOoc8b+4rvuS97ffBf45ImP7V67rvroB7/uGoaEToplmthOhjQBRHGx0/MTopLFstpYAACAASURBVJ9H6eE+DIJMcgTTTlGreyBYQaYgF+bi0d8pJgQXJ+BHZ2Dy0hMEc5/Hz31onol7/8IzTE6mqVonhU2pliUtrevgC1DT6owxwhu8Qp4c00wRI8Y0k0wxyTijjDJ82eewHSng29QM9/VDUxhKNaiFoDUKB/vg3REYBYIHwejxNMGNOvXxHFU9CvlLUM+CFgAjAtHNkLgL99j/Bm7p+l6uq0RTq/R/33YX9G8XANveDd19UtQ2dF7WzmgcSlesY/U65LIwPQUtbRCNLjc4Kxbh3CkYX0XzdVVMzEkhXDons2VPOzR7MojxWfjgFPzwuNh9bO+DVE40LT8JYfhlTDXqskt0AdO5plWdXxPXJV3J+lu3he213Q3BdlfFVVnwFf9wlgCxSwMTjWUWR3k/DW0ZiK/sv+I0oDAJF1+S4rfW7VIkV5qDmVOQGti4D+BWREWjhYRo34htjPCcJ6mTxM8c0pq0gMkQBV6nzjiuV5yqgASKUc/AMItLFZsw0I1GGZcU7kaa7QGguzqq4WKVckLPOY6nE74JFbK79L+rwoePOHH66ecX+UW+zXcYYZgiRcqUSZNeFwgOatAThLvj8A874GwRRj62PlSB1geqGfTNgCWSKq0L9D4gJLfbzV6hbV1A8ZURAFqBlU1TJorw+rjojT6/BTbF4ewUHJ2DS1kYufZnd7EoM0qaD9DwUWMBkxQmacwNlJUoDGLsIEgrMbYRopMSI1SZJaCC0FuGlqBU2aZryzvf9jDzo0HImTcsqG40pKGloUNTArb3Q6UqdSPxKIxNQUcrxDJRcDT8GGgoCld0K9MUdBqwxQcPOvB2BWasT7J77U9ORGklRjthmtDQsTAZ5xj2LVl91h83wwT/V+CPgW9ccft/cV33D1feoJTaA/wCsBfoBt5QSu103bW6bt58aBhE6WQf/4gGNapkqJLFwqTILD7C3MWDzHOWDENUnBTVureAu3BhHLZ0QSwsxXF+Ay5NwMgsHDneizn0ZaKVz+FiUWUCiwp98w+Rmfw2VXMCAkFJLfq93t0KQFGlwjADzDPLABfo1TdTVhUyzgLzzjSpxX2E7lUPuxAIOnTEHDY1wUQWPhyDsQz0NUFnAg70wXgG9FZZvPWtELq/TmNyluorY+K9pozliiFNh0AL+BJea671geCuXrj3Qdi6E5rbhZjs6IaDD0FqDkYHZHLr6BZ2oLzC0ciswcw0fPgepOalgCLRJF9PNgsDF2B0+JovvRzTC6JVMRvSm1ZTEAoK0B0ch/dPw7Hzy/TmxNzqZsSflFis2FcK4i0ChIsZaY9pW9cEKYsaYL8mZ3nRI3gj3e7WE1fidNtF/KwVhFCE0PC5AmoyztXTpOtCZkRY4YlmwBW98EZ6hi+91yxeJSGSXXGlTmy9qoCVYbFw2VHiMHUmsVhg8TrUgRiKLA5THoh0ESB8EQdoMIbDcSxu7CS7vjDwYTh+VK1K4+NYkVnuskfwKhEkSBNNJEiyg5100UmWjFcZoVOlSoAA5nU8pzsD0s+g4ULSB3fHIKpDRPeMcLxN1U3V9mpATIdoC6Q6wP9PAAesU+CMiG5GC4JKgEqCinuuM9mrnysK6h6gA9wZhCqygGwZ3huWgrh7WkUbfCYt4PGG4ZLjNAqDKtNYt8A2TsNPGw/jI45GkAARpLxVp8S4FADE/SLfKFswW5buon5dPJCL9RtONMUyHD0LJy/K7y1JbzrXwKcp7HyI3s4KgXycquMQxI8fH0UqNOvgR5rDOK44RDwdgV4DZi1IbbCr59/HtSNgyOV+Zc+sEEl62E8P+0nSg4uNjUWOKQrM3RFAeN0g2HXdw0qpzWu8+xeAb7muawIjSqlB4AHgvfW+7s2EQmMzjzPLacrMY2NiU6NEjWmO4SNEngnqXhGa64olS9WEk0Nil7aoAR6cgukUTC5APPez9NgPESJJhQlqzFFjBnBgfgJVG8IN+SGSlLakuFCrLNlauLgUVYGj6kOORk4L2K1bUGuA6xkXx4IQDUqaWzPRVA2loFATF4t8DcJlYYa3NEPjKNQ+FOMDowu0OPh6TbTC93HbH8Kt+WRBCrQIfZb6ULygbiKa22DbLujpl8nKrIkOuFqBSAx6NsnfA0Fhic+fkkKJxSgW4N235Vh3aJroU3QddmwTj52L4wKG59PC/BbKQuUvntTza6GWb20syg1guWBMU8s9BW4Yhh9iTdLAYOchiCZg4hLMjYsDyTWaF7hA1QbXW48s585zdXQc0FAkCNCCDx1Zaqcp4ENhr2L0VMsvd5u7pe8t520uDVEHNHXA7Kj8bXF/dVPPS406U9irMHchYBMa36VBAZcoiprHEWewOYHFB7eI43IBgwAhEmSYwllFEO1DR6HQvHNjY18t+blBC3XdO8spFniO75Ahg4mJRQMbGx2dFlqYXrRgUhq6AgNH8LXm47PtDd5IwawJXQF4sAkOp+E/DMFgRQqlwvpNSiKCCvYZsG0I/vYkaP8zuAmwR8AtA2mgXVgHNw3OJNjXSEWEQdsP2u+C/XVwXgJSQAeovRbu303CDyav+VbCBFFoHnywsLxzX2ItbMHNhoZBmDg7yHAchcIgTJA9xNnFsPsNAbwOAnhdpJCgbsNESVDR4oR3nVjIwDdfkB5HB3YLh1E3wbYV9VKAMy/2Ez8wSBNNlLAxqWOg40fjoaBDVIOCI03ddIQJ3uUXIHxHaz1vYciVtWGlDNcNvy4sfm8SynVYKMoas0h2bOIAe/lpOtmNhkGeaeJ0sJkHGOAwpSsaBf04YiPHyW8qpX4J+Aj4bdd1s0AP8P6K+0x6t10VSqmvAF/ZqDdjYTLPWY7xX+nlAZrZRoR2GlRxaGBS5DB/wEVexFwl7VapCfAdnLr6uQPUsMh76ac5KoxhUcKiTMfCbihlSYdPC/OabINgFMq5ZSSoKQG5kQCE/aJ3CPmFbi7VIOiTSaVQhVyDct1i3DtTOzsgGZLBZ7swW4BLXiF99V3x/zVPg94Ovs1l2n/tazjVr5F+4d9gl5uhMCSdOVJHpU3dTYSuC8vb3gXlohy5DLzzhvhBBkLw6NMihfjeNyEUgePvS/b+Y4WmYPMmuO+AAOBPPwXbt8LFQXjhZXjhT+5YtndLs/jhA2QqMFWATUk59YPpNXSd1jTxbE22wRd+A+5+DL75H+FHL0i6+gYdvGp3cF5wO2EOECOBTg2HWerkvSn8cZKcpczsxyyW+ljhLv9YObySbULE19bhSbwYCh2N4KpQtgQcwebHkcytUwFcAoTZxF5GOcXKbVOEAPeznQQRWogxRZrzTDK+zsXMwqJMmTnmeJlX0NGwsKhQoUCBLFnmVnqgt/SyK2iyx57jQkXndM9DbHLe5Sshm2MFqNiQb0CmAS8tXPt11xwO0m6vXYcvxeBwHuZbwNgjLQxVUOx3Gm9C/Q1wrtOFcgLsr4L2C0AOtMfBOQ4MgTt647fyW/wzWkgyzAQfcpKjt0j3uzJCdNDGo8zwOt08i0GUZg6h0EjxAZZbhvMZcbdwXSjUhfkt1OFsCk6tvYiwYcErh+Vp/AaMXQqTnYqQIMJmEgSO/RR+fIQw8Uuugi10AtM8V4RPR+BAEHb4oOzAR14TmTtzJbi1EVSyAUhocNy8td+BruDTe+DgJmiPwmQOjk/AmWn5HSBCM7LZHSbLFC4OVfKESKAvdZ/78cZGgeA/AX4fGfa/D/wn4FfW8wSu634V+CqAUural08wKMLSNYAdB4sP+SoGQXo4hE2dFBcpME2VNHOcWZXpuFEUOUuRC2iEcLCwqSIV32UsyjjVDFQ93830lDDChg9wBfXEQ9DbBHu6oTkin8XQRQKRrcBEBgbnBOHWJdF1vgYfjcPn9klRXLYig+3tAXjr4vJ7K7+BbAONIISaUHaN1t/NEm79P6iOt2FN+6Qbl3nzNNrcNMxMQjwpRWydvTA/DRPD0L0J+rfJ3+ZnROv70btr7N4YCkJHuwDbni6YnvWogbpYf1Vr8j3FojA2IY0gerrh7r3w5tvwr35D7CZOnYHzl2BhnbvMpk5o65e+6/n5m/purhV/8BnoiMILF+DdMQHAD/SKP6+uYCQrtTHXDM2AUBRausCsSrW+pkmDg40yZL3NoQMHiNFNgEPEcHAZo4aOYh9RPqBAHYfNBDFQTK61jfYGhiKCna6hN9sEu2Xv6jrQ2iPEfK0M8xPL7PBaw6GMw02g59sQdaqkmcTPDuK0UiLDNtrZTz876MKHjo7GIbYyR56/4f11g+CC530eJECBIhYNgoQwqVGkdHXjHqVRR0MB90Zt1NQ7vKU7BDQBvtMt23lj56dwXv7axnwJOhDXBADv88MX/hTGOkHfBsYD4MyAfQzM74B77SYe2s+B9mug9oLqAf2/gHsatF8FUuC8I0DYfeXqxwYJ8L/ym/xrfpUCRVJkeZ7O2wKCRX0bZpy/YY7DPMMb5DnLGN9mmG/gOjacTcC3Lkqjj1JDmnxcysJg7qbSTa+/Kz8TrkbSk8XUqLODXr7EE3zIBS4xyQwZwKVFh89F4cGgnKq0Dd8rwZMh8Qy+Y2bFJh+EdJi+tc5E232yGfApuHCLp8pkCD6/H758CD61Ewbm4dyMcHpbWuDV8yKP2JN/DNvWSTFKlkmkHXqKEinsHyexsSI2BAS7rru0ZVdKfQ140fvnFNC34q69XF4esL6IRKTayvJyJmZNANJ1wsHiON/gTOd3CVSjuHmLPOM42DcFgAFKDJDmPQ/8gsksFSbJc5o6WRrk8REXo3IXqOQhFINAGHxhaPPDZ/bDv3hS0kcfDMP5aZjJi05sKisAeEUhV60h8rGRFMSDUDJhpiAPuSydvrg3cCxwKrhWicz/CcEDFpjzUFHenW5+jzhyCU4dEQlEKCxYrJCHfAbOvy/+yqG4ECnvvLGO9uU1U1r9JuLQ3ART0zC3IOXBhg862qSt7uCIVDCe8RoqJBOX98lFSRtlnyFAGtjGJppIMM0801d02QNg/6dg3xPQ3g8zg3DqLZgfFW9U6wYXq6ZEG5cz6YrLPsd25PQ1HMhW4a5W6E0I6zuSgXRF7pctCCtcu9FQNAyIxEWUeuJtGDwJQycFhWlKxld1oxWiHz+UAeFeCPeJOUmgFYqDkD0mEohO/GwlRDs+gmg046OfIK2eLMJAUcPBwr3lILjHA+Izl+kr/Sg0nHwNI9xg073QtUV0wVYd8ikZelZDeuOsL+40YcpyuF6+rEwWB5sGFg0sNBRRgjzEXWynkyxl5skzSZozrC+zVKHCEEO00YaJSYkJLCx0dPwrm/fE26Gpi7H2TZiGxT2DL3Hpy3+AXq+iFkaw50ZoNHVg7X0UNgoEV104asLvpaFFgzPzUNdA6wR7EGHpRZ99vfPovClqCf1/EEmNuhtIiwOJh+XQ7gP71cufJkmcx3mAn+NZTnCOLHlKlNnKJv6cP+Tr/DXv8OHGfNbVPj7TTPI84m3j8CN+BXCok8PBK54ZzssEV26IFKJhy8+bXFoWeS0NDYWijoVC0UETO+hhjizz5ElRQMfP8yV4NAQBBX4lLKgCni/BK2U5hT/26A6KB6V567I6D4egRZfPXnEEBHd5RYIZBy7WYXqDtRG6JlxeyYQfXIL5IqTKcg5bo6LwnMpBr/0ACg0fIQwC2DQIEaeNbcwxQOkO8AffEBCslOpyXdejPvlZYLGl0PPAN5VS/xkpjNsBHFn3C2iaUI4dXdDTJzYCmTQUcuLCYDWWe+02aXIElGwN5x0qpKCUxmgE0dCWNMAA9OyEpnYoZGB8bV3E6uQocJoGOVwcTOaoMgU4ODS8Y8WC7ThgVqTHq25AXUHYB81RmMtDsSajaCorFG++KghqxUVsOzKo5osCnhq2AKf6tQa3a4NVAdfGnhWJhJ21N2TdNWtw9D0YOAednfDog1CYgHwO7CpkSpAry8eIJyEchYWZNZD3riuAd3wSCkVIZ6BckaIv3esFbegwOyc/Fx3YlRLAXKpI/85Cwcut+dFbWnkivYN97CRKmDoNFshwkWHe5wQc/LSwv83d0NIDkSbo2wMtfXDuhzDwofRjN69g7boj0BERi6COiHSbuJileClFl1Ul5DrULdFu9/nhb89DSxg+moKUVztycgYuLEgW8RrGDhKBEAQjgrbMKkwPyneSnfccSBa/nzsrjChEt0Db49ByCMwshDpFhRPqguJZlzOjZRIYzFKnEz9JDNrxsxdpa1jAZgaTAOtsA7fO2EYTrYTJXGG/pAgDFv6ATTTaIBiGHQfkVAydgnJBCPpY082A4DszNHSCRPATpJleapTIUWeaDFvoYDudbKGdFmI0sGkiSgvRdb/Ooi9wmjQ2NiYmLi6aJ40APHvJGARD1Ju7mGvt5IRfp2bXoVqApm5o7ZVNcmYGNu+H0Q1gSh2g6MD7VUFYGW/utGueJlgBhodmrxN5cKflIe4YaB2AD9G8eB1Lnde4al5OEOMR7qdKlSlmCREkTpQkCWJEeIv3eNdrKb0UCilWg4+tf3JoUGe5yK/EKm08TVvYX9O+wQS2vpBxYVKkQitxZkjzIu8zyixjzDLBPNNkyDpS/OYCNReyDuRssX7M3arah2gAWiJChWYrML5KISQI0RU1oD8CcUPce0I6ZBsws7GM8ENBiOsyRLM2NOlQc6DdEPA7Y3Hd5sa6Iet0dp2JU4XgkeGUkHSGLstQub5sfXee77OVn6KZPhxsAkToZh8X+T7aLZ7T1xo3Y5H234EngVal1CTwb4EnlVL3IuNuFPh1ANd1zyqlvg2cQ3Ta/3LdzhBKif1AUzPsPwAPPAwjg3D+LEwqqJTlaDQE/O7zw3YDIhqcq8OZBizYUBIfh6ti+wHY9VMygVp1ARg3CJcGVaZpkMOmikUF60Z2PlYDVBUIQs0Hwwvw5jmhck+Mw/C8sL/ZsuiCr7iCXaDakGNt4Yqdz+LLX7vu4qZiehysVtjVC4e2Q8SFCzUwdSmQy2Vhaha6+kBzWHtuynEgm5NjZdg25Fd8x+GQ/Ht8Eiam5Pdajfb4FprtGH4rgePaoGAP27mHXYQI0kITRcrY2AKC7/sc9O6S818tCvNr+GDbQenQMH1JJC0rI+6HHU1wbzvsa4UdSdn6jhUo/c0AxbPTRGoVWoIuui7FOT8YFqn3SEY2L10xGMoICwzIaxp+YXw1Y7nqqmEK+6uUiK8XdxJmlaCVQzWqOFaDoGERiIgf8GJ9St1eA8N8C8OIQGwn9H4eEvugcF6YYc3nGZZoMDpaI45BHoudhNlBmB2EaMZHNwEsalRwqNwCfayGop0IPjQC6FRoULmsWllH4cdFJxSpEE2KsUo0CR2bYPKSGHOYVZ16VScQqmP+BLRt1dDxEyZIlBitmFTIM4flGf9WqdPAZoECE6SYJE36Y7gTlLlcz+7grGiYocAXkvGfaMbcdoAJww/pGfEA790Jm/agl0r4vv8dat5mMEErLi4mFczV5v21RvaqkkxwJyAKa7bmMMEdR3KgVYRE1hFrAxvcVWihGBHuZQ8FyrwduEBMJQgaCcJ6A5+bZqYwfzkA1hVEfNATEZpusiS9zxvXtk7ckKhu/ARj0qCORZ0GOUoMMs1ZRqlgUqBMigJZ78uftGC0IYVxE5YUyTnuLQLALRHJ9e/uhJ3t0qnq+dMwV7i8qEMBbQHYGYPeECS8dpwtfpFE1B3INTbEuqLPECedhueO0eyHTl2+h/oan17XId60PhBsWiKB6EnKMhX0ibJTVwJpCh6EOcF3KTJPkh40NNrZjp8wU5yhusEtvW82bsYd4p+scvPXr3P/fw/8+/W+zlIsssAtbfDIk/Dl/xHeOywjvVaBtBKAWVeijH8qCIcCENag2dtp/MiRreKVEYrClrvh0KcFAFWKawLBAEqVCOplgsby5F+1oWhdp1NRw2OHzQC8MyCjqFSTEVWpQ7EKuU/OKrp9C/yDx+H+e6G3WwzRxydlz+LT5bRMbGQBs6F74BBoaxVtcLkMA8ssxeYCHKCfTtrQUJjUqVLDj48m4nTQio5GFRNQwvq2bYL8ggBg25KtcXs/xNuEATavKDprDcG2JDzQKcemuFDz93eCaTM7WSRp1tjVZLOzHRbykCpBqQ4LZflZs1YAYKWJ1CHaJGNS9+zsHEsyFNWSjM16lUBNIxjx49MsWsJZLMekWIX2IPS2SvFdrgZFE7I1mCzI6/1YQgkb3Pow6EEoj0F5BKpz8vGa7oWpF+AUJU5RYhdVHsYi5CVELVzSNBijRuoWWOn4MLibdtqI8DwXKa4EXigUQQStuPj8ioCHxQoZ2HW/OCDWSgYLExFSE0GirQuY1U9+OY5C4SNAgDBNdBMkQoYZmqhgAR8wQA8tlKlxgSne5NS6pRBrjkpOmN56DSIJ6NsNc6NyikIRya61bcKwZoidv0CjchGNAHfzOCYVJhlgejUW82bCj7C4LpLXnGJZDXG9OsYsuD8EYvIc7hzCNPu9I8ZVgFpHJ0aUSX+ZP2s7R01zINgMwaTMCxePL5t8K8QIfEscHu2GoAFHZsVrOFW7JUD1VkbZ04PraMyRpYHNIFNLrhgrY8KCt6uQsmDmVtaRhv2wv1uM+R/YDI9sg3RJ0rNvXrxaMhf3waEkdK8AwXFDgHDdgRM5qeZcS/g1ecwVoRAnjItej6Ttftjrh1ZdmPAjVZi3pFjwWqEb3mUUgmB47UW+JVM+9kNbYXsbhDwQXDLhvRHIeEvmGEcZ4yhR2tjMfURoYZB3+IhvY94CW7+biTvfRUTThCULh6GlVXx3W9uhswsm2qRgqpCDTQZsM2C/Hw4GZFuUsuFoHdo0mLO5TIetFNz/WZlYs7NQr8poWGN0B8v8dBv8fKeAXp8GP8zAX07B0PUGUsOE9Lw47CwUBa0EvN6v5s1PVmqpBcHy/291jE/B//siHH4POtthaBQyWcjlIbe+Zk83Dr9fNMF+v7Chsai4QsxfXgp+hFM4ODzEQfaygyhhfPiIEOYg+1ggw2kuMsok4Ir+d9tBiLdKQVwpK3RfMQOT56G2fKEuktnucB4e6ZHUo+XCdGm5LVrNAtcl7If7N8GvPwovnoF/+6LXrMIWUHoZMI0moK0P4s0yLnMp6XBnW5CZW5pg/T7Y2w2PHoK+TqjV4dRFOHYKNBvu74FkUPaHcb8wwh9Mwl/d+jqaVaM2C6n3RZlTnRX216pIgkIPyrEyLlAhi8UENSzl0o6fuGtg4twwkaA0ll0c1jT8fSjiuMAhuniNYQ8E+zzwCxBAEcYlS61iU8wIAP7oVRkWPj/k53pJjXbgYpGbq8JiRkhxuy7DDQ8NgyAxojSzjfvYzgMMc4wzfJ9vcYQ8M4QJMEWa97hEesPdiq+IQkoKQScvwfyY6N/LeWjuktW7WsAMKtKPPkLrawUStPGb/BEDHOcV/mzjQPAuUJtF1oAB6klwU0AZsTybucbjdMT3riC2wgTBPSOPU7tA+xlw/vvlD5lghn+n/wmv7uqFvn8KtQzUi6D7wR8Xf/eLzwEuhA3JRj2zSTrQNQXgBy3Sle7DuU8cCF4MG4d5csyTu+79Tt+OetnHtsHeLmGDARJB2Wx0JYScWRkKiBiwPQr3JOT8lC0xsz5XEBb4XGFtINhQsCsm97/C8NoFXq+IO8YzYdgTEDOToBI9dIcBp8zre8x09MDW3UJYtXfB+29KydVawnHh5bPws/cKQT6Vg8EFkUd0JaSnwWKUWOAML3OGl9f25Lcx7nwQ3GhIt4VyCWan4f13YGQA5mcFJICnCdVhyoETdVhwZPtzsg5TlrDAK3dDugH9e2UlGzgKw6ck9Z251ix2dXQFYV9Mxvpj78Ev94rUJ2ZAqx9Sa2HfCp42qLY6y2XEwKmDc52L3E+AbvrpZwd+AswwxiSj5EjLxRj3Q37FmwnpclGmP/7MMTktB3y8NV8RQ9oq1XFXk5Uk4mKJ9thD8MqbcHHgugLjDHmmmGMH/TzNM7TRjEIxT5o3eJe/4nmOLsrW//p/FwDctQN2PwJTFyUrMHQUjr8GBRHuNwXhQJeoHt5QCZyhHLw4DBczwgQHdDidgtdGaZnIYmk2p6elscmXDsDX35PCxkXwq6ETo4M80+LzG44L41vKSbXVat+Tki5K//znoVSGiyPiVNARh8lTshGrNiQreqgb9rTBY/1wZAoGrl3AvqERD0sjP8eF2A5oPQiHd8LBV8BMgS8mxXGaIRrhKyPlr/N+S51EP4xHIXVB2iJb1xmufVvhkWdgbkpSeueOS92sFLUFARdFEidcRNU0cHSv8AbepECOM5RJoNGKwkBGs4YihkYSRROVbJKp2izVygKJFlkoEi3gVB/Az14cxnEp4+DD3WfCJj+M1eDsnekAca3wEyJCEh8BFBp+QvSyGxeHWQYY4H0cXD5kkNOM0bgdNm45KW5l4pwIrx/4GSEuWnrENnB+As69g/Pa15gH+tjFNMM0MDFWFth93DgF7ikgAOpTQBy0R4ESuJfAPQaslkjMeUwwYP+ROEY4r69whFhl4syQ41XeBu1XIL4JklugNAtmTi6e/qcEBLeFhP29rx22JqQTXboGfTF4pFsaccx+ssbgHRkPbxWUV657BYAWbG0VRvj501IAsxhKwV1ReKBZqtQqnnC5NwTzpjDC2nW29VsiklauO/BQi9Sb7EvCyzOQvRpYvFqWgri0DY+F4ckw/FVBtNE1V4rkfMCYB5c2d8HkPLT3Qu8WaGmH1k44fWR9a7jjwgejcGT08ts/aXv/OxsE+wMs9a2v1WByXDotTE/CxBjMzUI+L0DZdaHiwjs1odxcV3ICC7YMxJUa7EWtZT4FJc9qqpCGmbUzBiVLrHl0Bb/YLaA304BxsfZde8SDouGyvX62KwBxuBf8LfJ7Iw92Rbof13MsgfpWOvlVfocDPESBHAvMMMwFjvEuh92XxbdxMTpCgpBuATPwcQa+Swn5QNeYGCxL6OVLoxgD3eD0eFrNsy6RmAAAIABJREFUEg7TOFeYxhcpc4EhylQoUqaHTkzqgMsbvMtJLizfOTsD//evw6e/AtsPCbge+AiOvgyN6tK2OG8Kq7q/A9xmHyQCMFoQSyC/Jt/raAGG82RNi4KSmoljEyIfG03L6V0OaTewFAuTMnleB9z7fbB7GwQDcOI8jM+In7WuSbatZokMJWDIBJWqwGju1nsEB3zQnpTeLj2tEAtJUUSqDLPvCDE18sugPwN6THq0OBaYq/i5GiGIdEC4BcKtoHwQnoPCFJSvMPXo3QL7DsHjz8LTX5Qawb/7ltz+4WGYm6rjYoMK4e7shc5NuOUCpKdxU9MEinmeoJ95ithkcPHh4kcmCwWksSij0YYiiqZF8fsX8Afg1Pe+yiO/9Hvc/ekXSHaUOPvmF7G1Geyfz8LDSdgZgowFFyswacKfr+JIcgdGTK/RY8zSrM1Tds5z3vRRJkuaSUY5gUkFF/f2AeCVMTMMJ9+EbffC/iclczNyCo6/jn/gHGHayLFAM50c4WWyzDHBxRs+7boiDuwGgqC+AOpx4Lz0zOCjGz/ceRmcH4Bnx3yDcMG1oJaF9nugdZ8wwLlBmDgsd9kShy9ug51J0T/NVMBnQldEWhr3x2G8+PdA+GYi5BP2d08X7O+RSTXtFUW2x2Txt2xWPZHKE+hWbamOzjekUC6kQ9Ivj71WjFdgcwQebYL9CbmtZsOzXfB+GoavlhF8UBNddNWFdyoiZf/rgkAi5woOUCnYc1B8zmOesdKZj6QkpXeLqE9Tc5Be45T1SQO9V8adDYJDIempm0hAIgkXz0kRXCEPpaJIIRr1Zf4+5UDele1PyZX0QZ2r26c4DixMCCOM18qrYS5rdm8QW0Myho/lRQPsAmVbuhQVrHU6xFQaoEAPga/FwQgAGuhh6PtHELsLcKE0BMWLkl5uFGRfECBID5t5nM+goVOiQAvtBAmhUIyrIUajI6IX64vCA+2QDIhW7KVxyN5+31U0n4gpjYD0u7UW+4MFUQTAM9cWZrghv9c0mI6i51vxW0/hUvXS1DUcprA5g805HA/c5ihSoUqeIgH8jPAiNg4KxRwpGp6YLoSG7bg0imncH34Lzr0jY2LyvFSerwjHXXa5ee7BAv/6kmI84wo6ztclbVW1oGotGdDla3BpHqbyUK0vN9HS8RMkhrVSn7MGHzmfAXfvFEN5EDBsO1CwYSwHPTE5dAXjeXF1emNYdMi3KtqTsLUT+tshHoG7emBbt+wzT4/Ai0dgNgvpS6AVBdSC/H21DIfug1ATRDuhebscmUEBznbt8i5xW++Cn3pKWniHwvIVJpphy065xC+chOEhH/Rsg8e+KE4D2RnZ8M6N4b94kvuyHZxFI0+NWarLWnF5l4CFwzyKMvVamNT4DqqzT+KUPovP95+INU3TedcRyoUSAyfugi+NyqZbV9BswD1R2BqEog3HSzBhrr1i5TbGHj+0GpDQXJK6TZNmM2s3mOX7nKgPknYzFEhR84rYbjsABsjOwcm3ACU64Q9fgmIacjUsM0hZKZQLERLoGF551QZryavACBAC9z1E6jAKzCJT1loev5ayDyMI8c3i5z53XPTARgj8MYj2yO8gBVkdYdgUk2GbqnkpIUvaLy9U19iG+c6NTvxsIUg3ARaoc5YK6dvRbrduwVhGOkLc1SHfa8FrZhUwpOvRa+dFCLsyXBdGyvD8tKSKCw0BwUp5npl16AlKxXTDEcZ3ZerYdgVA70vArriQLEfSy7cZCi5dLkFq0UT9+UpZrNE0IKGLCuPKb0rT4JGfhokRSbCHxIiHWBz6d4jMyzTXDoI/6XFng+BGXfQ28QSgYPCSmNM2GiKFcFwZcMrbkaUcmZTq7g1MAt0bdthajIgOSUPGcsTz4tschrEKnCjAQFnGZMkWJnjdBZ+WLCa+FojvhPhdUByQqvrm+8VSynM6Q2lQm4PqpPfxPQ9HPwHKlKhSRkPDwEeUOM1aB6OtsxDQPBDcATsSAoLPZG4eBKuoZw20joUw1LTcRlPTBe3UHM+CyodGKxqb0OjFpQhUcCgADtgOqpLEV7kfgyexOY5LDYWGzl3o7MHmLCZfw2WBxtJ/FqeW9L+Ltf6KBAZ+NOIYXvFVnercCHZmWgB65eqqVV1J0VnYB/eE6uypFbHKCr9j0RJusFCRDfzKcD12tmaBjxAxEoRIEqHFa0s7Rom1NeUwDEjEBPgmYtDfDQE/zKaEJPfHYSAtr1V0IavJvs+IwyN7YXwBRuckk7eW0ILgXMPJJxJcJqzbk7CzB/b2Q1MUdvTIAXJ5vnceLkxAxUTAwhpC6QKC+58QOZDrCBOsXwEyujZB72Zxj5udkP2x40hqz+eXqWJ4zAdt3XDvU6L79wdES5rsoFFvcLo4yX6rDR8a7zHJ1Kr6VlPgsA2VYhibECEKjB5/hL57ygRjk7RsOsfgyYdhewgGKpC1ZHaN6NATgKeb4Ejxjm1jldRFU7jXL+nTigvvVmBSm2WGMgVqlwHKVh0iCkqO8A3m7cD1jRrMj8NHL0OiHYbPAy2g9eMYraIcd7pI2zOeKX8Wc6MbkjSAFLgjsqFzR4GMpw2+hlvWTYXrCOubOiv+k7ofKvPgjwowzo/J/XKmdGcLeFklhcghzmXgYhbGCjeXCjICEGsTb3vbgswE2LcBeK4IDYhj0E2AJ0hykBinKDFN/faAYNuFXEUu/HbP/Lbi+X/VGnB6Gt4fvdqyyUU0vH8xLtd/SJcFxHQELOQakko2bZFFRA05bwseEI77oDcM26JyzHuOEjVbrCBiV8O2VgOqDgw35KehIKbBvQGRRRQdr966Fzq7oW87zM1IeZJjy1rlC0A+C8kW6Un2/5e4s0FwpSLms6GwWGTNTC77Aa8Mw5ALdYOLDeMGbAnB1jC0B6Txi64EZ49UYHSDjBw0HwSaIbkXer4A49+GlgfB3wRWGeoZmRND3cIMZ44KK9Zw6ywwyyk+pJNeGtRxcCiSJ8MCSlPQEliuLDUUNAflYt6RhKGCdPpZb6iEpOluCIKV5FiUBh27wK5DNQ9mSc6X3fCew4eiBYN7MXgYh0lsLgBzgAk4KHoweAKNHizewmFCvju2YfAwBndT5zlc0kvvq05jCQD7UCTwkcAghkEEgyZ8OLhcoswsNcoNE/ca2QBdkzqIug0/GIVIoUZLSeojdrXDpbSwr9eKFjbTxV7a2UmCbnT8jPMRFbJUyHrtIBZjJaJwcXAwdLFbOz0AB/fKbj4UgAYaGUfHv9ng3IjGZK7OwYSFL+iSDMP+FvipAAzPwXfegensZT1YLj9bhhyLmYmVIFgZ0qdEKWjq8wwzbNH4uiEgDN0t0JYQptp1RR6RjEoB31rDbkCjLEC4fQ9UswJ+nYYMn5VRrYgGeGpUJm+zCsWcJI/iTeJ96QtAQykpPGzUxOTatiAcx16YYuLcAP/U2k0HEaYpkqbmFfw7S9+9hAOYOKRpcBSdtzh3+D4C8fNsPTRJe79FrCVFJaYLNT9Tl4Wt1ScTyaYAzNWvKm65nWHoS3vuqyLvCOjY4Ye9ARioC7BN21Byi5cl0jRgpw92+mHWgnEL5m3xJi3d6o9n1SWLtzABqhuMe0HbCqoVVABck0Eu0mdPkWWOKrcgDeIAY+CGgWG4JT1c7DoUx5ddI5SC+RMyl9aLnjbIFcD7t8MwlJfaBMuRjm3nM2KTdjNEhxGAZBf07oNYu8zX9SqUUrcFCOsIYeFD0YxBAn2ptXoFmyi30RPdQdJ5E1lZNw1NvuNUSYo8xjNXW9C5wGhFDpAioWa/XCA+JeB6qur5muniGBH3LYPgsC5zRrMfNoUFBEd9y2nnVcL2JA91d1n7u90Hj0XEP3jOlrXK7hMg7LjCByglMrJFLtHwCblQyosNamEjN3Z3aNzZIBggnYJsBgKB1QEwLMshtCsvDm/ErKHF8pWhAfcl4OEm2OH531mObLiHK7KBM9TVepubiUAbBLsE5LY8CKVBCHaAVRIdsF0VIKD5INgJgRYBx04NUszyDf6IX+d3AShRYJwhhjhPVqXkjS+yA69NwPms6Fm3xWFvExxduImFebF46AahGxDvhEAMdn8GMqMwew7qFUE14BXCFXBpQ8rFtqLR7umEDVzyQBWNJnR2ARYuBVwaXhGTBdTQ6MFhgMt1L8vRhp9dxOgkQAyDEDoJDAw0DK+sb54adSVn03HlmRbPbd2G6aIc5TqcTwnr2h4RScKNbMj28Xn28Bm62IOfCBWy9HIPYZo5y99RJr3UwdDFxfGAvHTuqlIzTQbH4D//OfzoGHS3S1+QS+UAH1SbYXsT7Asyc2yOrxyYo0OvM1+AchVaY/DbX4RsCV4+CtOrFMkpHfzN4EsK+9rIsySNVZoUs4X7BQxHPwXOGdGnj5ZhZBp+kIff2S+bhZFZeVy6AK1xaImLJGItYdehOAszx2DqI6kFmj0B2RGoXVEk/vxfwtgg7DsoDVnMmhTExZNS7VyrQFO8xvz4eRg9Azvvh+5t4vxRSNGUyfEXtWeI4yeOn920ksFmAdtzwm1QpYyL6+m3dRQ2NiOYvIhGF416jqZ2xb5HcszOfZ253kfEuX7UEW2U6UDCkEJdny5zkXWrnPyvHy0RsS5aLRtw1vSctry06qQFl+pyXPlWfQruCcA/jon28FIdLtRhsAEfVC834bmloW8FfReiQ/BWcuNuZkK/Qzj/SziOteSac0vi/Prurvm8ae9mqoinfrT67fk6vDsjh6GkEDqzfuCr6Z4iS2nQtgX6D0DXbmn9WUpJsfD4cch74BsdtQKMimexw7qyg9eIGAYxdAwUCkUJm2GqNGMwT4Pg7WyyYDvw3ZNyzfY1SYFHwBB/sOeOr+05UvVrV8pXbZi8gk2brcFQSX6GDdgek8Lr0bLcnrn6uc6t8vSDDXjIkbPSosMBTfZRpwyYHhCjpeZ2KBWERwyG4Rf+Bdx1Nxx/V+bSd15d20f8sYYhkkpA5td14r07HwSDfKjqGmjXbQeFIrM9sbptC4U6fnYdvXsl9sdgbxSeboVdEXgrLfUtIR2mTGGIk4Zs3k59TIcg5QMcKI3C0J9CYQCUX0CJ0sCXkN+NmBQTmelllq5MkR/xOiUK9LEViwZzTDHJCPP2DMxElnVHLlBsQMIvtObNLBAqvrbHGUEIN0v6ru8QPPYvYfIYnHgOSvNSdLYibM7SIIzBQfz8HBqt2FzC5jw2o7iUafB9DB4Ewmg0oUiisQlFGIsTXGtlSWJwH008TjM9hAihedIIDR8aBRrEAyUSQYfNPnmWcQverIgR+5XKmuOzy7/Pl+W4UeziacIkmWeAEvOUyRCnk8f4DWoUGOQwJRaWPoODRY0CPkIr2EiJ90+u+MfeCDzbDY/3SfOOY3MER97mxR+ZfDCm87PdBaIBYWg3tws7u+p3dBCCPdDIQuqwFGSGemXcRbdD/G5oOiT3C3TAsV+F0gBUJryeLH3wnR9KJ7yIZ9PmMwQUh9eilfTCqkJuRI7UBSmEt0wwr2G5d/J9OQwf9G/3cJAhLHE+A4VcA9Qo/PFvwY6Dop0o52FuDG1yila+RAcRDjOOgUY3AXyYzOKnQpEQ0aXvX3nscI0iDd5FkeTIawEWZjo5+MyMzMXfWRAKVSFpy4AGl2pQTMIv74apsmw8x29/i+vWGEQC4u1fXgUnnTFF3vCSJr+vFmEF9wfhvqCUXviUeJVu80HaEav2/1bYCCi0htD3AwqcKXAz8rubAt/PMBR8hN5ag6Cz0V6NNxeaH7Z+Doaeh2i3KBrqG/3WLPemALDSYNsjMPQjcDp2wwNfhv3PihXdhbehlIFkJ9S2geugFcqEuI8A21AEcLGwSVNnmConPvbH0JHMnY7CxKGCwxnKlLCxcIncTiZ4MV64zT6T01V4aRrOF8QibUdMXCPGK7KGrzH+whtjPZ7iQmnw2r+DkwPwtbdkrnzgSWhugyc+B7Ek5NJw/L1PCAAGePwxWWxsG2bm4OzaOv8uxicDBK+IhwhSx2Uci4WVU+2hZ6F9k6Q666aUn2vSXKF7sp2wk8TFoU6BKvOkOLXq82vAU63S2CVVh++n4J0MXChJ9qJowXu55czE2jxJrx+uLQxBPQ3zc8L+Vqeh7VHRBcfugmCbuEJkjwtTtzIcHE5xhDN8hHCHwiViuzBRkha/fk2oy9mKpMiSAaGEvPcfT4qOMn1diaoCrQ1UElRY0o/o4MyCc0VLOtdZYntJ9AiacZGfvhAELAhEoZqDehlcB5tLVPm/AIXONlyqOKSxGcFhiDrPoXMAYSFCQAjFu7gUsRlE5x5cCigCOORxmRSXOHzcR4L7SNJDkAgGATQUMOMZswc1IVIarpiO/2YS/jQPf5yDodXmnL09sL0DQn4xTR+cg5FV7A6WvjlFkXmyTJBnmjoVSizg4pBhlAIzlFlJ0cqJaVyviqYnKuf11ILoxe5pg89s4bf/4wzW7DhdlRzFClRj8M45kURUrrFGmguSXbBK8tL1NDRthVAP6BGozcDsSzD+DWGJU//hVewL4/CNb8NLr5MbgHe95+pskh4w5Zo4R2zpvPZHuF5kPdMP1+WGzJnVgGHPCEB5j1m6Nl0XJi9KIxwFu91WDrodbHG28E1OM06BeXbzJP8Td1Hke3yNEoMeC1+ngYmDjYVFY0XuW7TriuGzLvPTcM8TLuoradx7G2IW3h6FZ/vhn+2GtrCnpdLgrUn47jC8PgHTt7BqEanhaYkuu4bYzvXdmRY7Tx0KwtFVNOGGEs1why4bxAbiS9qkwV0+6VZ11BRm+JbrhJ150FtlPmKxnbEO9hmwh5jiBGsWot/C8EWheRdEuqD7EZg/Bo07o08ATX3w6X8DZ17xSjbatsLmQ7DpXknLhBPgWAQzL9BQrRDcjL/QQKFhsYCPHoLsJsh+NMIUeYU5fv+m30/Sy9K5iPhIR+HikqVBAYsqDgu3L9fw44uRsgDegAZPdSy3XT6Xh+H1zxmRLtj/afjsw3BqCMwG/NazcCYFz5+Hiyehb5uwwK89B+eO3oLPtNHh88HnPws93fDMU6L1ev37P7kgWAHd6N7+00cKmzEsUtico8FY9w7p8mWZIg606uL2UK/Rqz5FiCgu9lKaeYHjXOJbnvZvORzgw5zIeKZMcX1QSuz9qo7IfC5zgIhF4HNPwPAkHD93bcHlNaKXbkLzAWpunlI5g+M1EigNiRbYsaT9rOaD9Acw+T0BK1eGs+KzEVfSMc90JV85XwVdEUtauFWb0hyyKm6NL5G60bhU1be0ScXoW393jayC1g2BL4JrIv1ATQHAtb+8/H66X2QQjgUzZ+Cd/wdyk7AwKGfTH5ZNilUTVth1PDB7gip/iKIZlxIu8zikPNmEhcthZKuyeODdbqLRjSKCwzyuByhdoOwxCFIM5yOOgY6iis15SuiReaqqSqoh2qmaC/8gDP2GAIKrYkcHfP4gPLNXQPCRIfj2keuC4LO8TD/3EyKJhk6VHHWqTHOaIvNYmKw7R/r/sffmUXKk15XfLyIyI9fK2vcFKFRh7W6g0RvUC7ubzSFFihQ3aShKtmTZPuKRLFke22MfnxkvM56xZuaYR3/MSCPNYo0tcaiRaJHmTjaX3tCNBtCNfSkUCqi9KrOqct9iD//xohYAVYVCo4BG0344cbIykZmRGRnxffd77757F4MFzbWCjGYRFZqiPHt1jMH2IvE2FxwZ8L59An56DhY24C0bc3I4/eXf3JfFVukSOIl2/MOPw4c/hOdr+E2tuGUXOjvh6adgMQsnT60sSRcKArY8X26vbV1++4bw76yqtfL8dY+iLw2WABMsUqdOhmaihLhMlQ4aucgpbExqVFHR0NCCTJeHgX2jmsfKnnw8TzxWzryCNMmcq8qC86E4PNIGfQ1wJtB+3tEgfPwXe0XD9R6DYNOBxVIwhpUkK29tMkQprIpbrBeWL4vCBVe6z2tr2g36w3BQlea6ZSvbexrOT0HtDSgRw+BlQGkA501wz+P7eVpCPn06JDV46z4m3yMMYTOPR41QFBr6BFO2H4LsxQcHBOsx6D4AF34IPQ+D4RylbHwEQ/14kM5XIDeD3ljHm5zAzbcAYg7jY2Ezi0YKhceIshdvGxpzlte8CuAFe8oHPRN1XIr3sM6QJIKJc1v1ExWFFhIs3SvXMx/J7LsuvL4og6mqCHe4MyqZ4juIqQx87RU4fADqpkhrOg5UbdjlwVgefvDXkFuA+Wmhlj3woaow0A8fehaGhyGTER3RO4wPDAhWgYeJ8Ask2EmIGRxGsZnBwQCmogn87mGZ7OolKXlWC5CbZzZ1iZ7CbiJuDJUwEZpo4xEm+D4mRW5m9RYdAcHFWgMWUXRCKJ6G4rlEHJNGbKoYWNjCR+lul5M2X4SZtJxlm34XlRaaSRKnmWYSVhwv20LBamQyOY6iCUezPCocTCMjmsG1Gfl7Q6z0YhSSisxUeU98JPOA7dHaarDzKZdQyCd9FiaP2jLbDaYgZxJtsmjt8OgZEI3A9RkPCmgDoH9E7vol8BbBaQJtL7ij8uEUTQCu7wqXKjsuzRWOIXxg35NFilkO7i8POB4+JRzOoaADLj4Wkm9a5shuXEMUKasoCkkU+vGp4zOHhcc8JlPUCaMQJ4SBSxoTJTVFSK3hOB41Xz5uzZdu2qK3AV16Zzvs74GhzqD5KQXJzWv+l/g+VZboYC9J2ggRpcwiReYpMHtDhnHLYXmrTY81WzSLDYfp2TL93TaNbTBfgakFGJ2D+dwaAKQoENWht0OOXbEC5SpYq0CvPiMNmF64jr8nDsNPQWeHOHXMzEJDA+zaAY8+DLNzMCc8kbWcU9+/7eVw36OOwxxl6tiBzoOKzxwn+BEeLlnSWBg4OAF90w84j6ARwl2Hd+554nkCddElAvltipZUXybLQktK1wRh2p4A4iAa6KROgTAqDaSIEmUng3TSyQILzDFLhgwlNum+XCd8f1WfuiHoiW2MS0XgZmUnEGn1sAMtG1ScbR/Gbcn2fiIOXWHhzkcUEeS3fPn7HjJxV8PPg/Ma4IG6WwCwvwjOGLhXGNCrDEVFoa4zLLcXajBaXwXv2xUazUToxcPCYBSXAj4O4QRE24QO4VngPWAzrlmB8RMyHFSzEE3l0RfPYVw/KRSI8gKYFdRWD8UzwLZQCAXjrEhxepjYzKIQxmL8rj5PHRcbn2WWZwwNF48l7IBx7GPdQ4mVGDpRwjgr2ks+Ng5mcM2HUAkHvSSb8s1bkLn3bheCPiKvthxtEZm35+7sbQwLxmbgX30dnjkomLpclbd3XakAj40Krrz4LmRmbvuWdxW7EFXBu9Zu0XWZs6amoP7ekPsDdkluHCrQjcYQYcKIF1QyYIV2oglxv7ENEk3S+JIZR6kbDKYPUlS/Q01ZwKOBEFEUNHz8gBl663kaRafRbaDF7qfZa6WBOCoKCxSwmCFLgRqm8FAScShWoKMVHtkrf99m1ldQ0AkzQD8KCi00kzDimE4v4GP5dWa1BYysT/4UVMelYSkUDwbTm99eQYQCvxCXOuWYA++YopUVgMf2foedz4r1vN4A6fNgpusiph4LoTVDOGygadDUIjIqmfllUz4V0EFJgLoD1C7ZqR8TQKvMS4bYvSpHU1GEg20KzQGzLJsSdFr5LhglqK1nYya5W/89dXWX8SkHg3MCcFfameYxOEWBaeqoKBSwmaPO09EFcIQO0YjIyvRoUPKkpFu9+eTQQwJ4XQ+ms5JqyxRvO9iluYxBiQJztDJIlCRZJqmyRI0c3t1I/miK+CW3x+GdNKPjLnEDSjVYLMLkokik3RARHXZ0w+dekhL97AJcnYJrM5DJgudjrRjXVWBhCcoVeOIwjI3Lb7lsaR6JyGD0AQoLlwxVdFziJCmRo0x+BfB6uAHYlVY4AAWVGwxONnjnlZirim1ta1RMa8qWIEhVBRUULUyCdqKkaGc3GUbQsemknWZaeIEXeYojzDPPCY7zDicY5QqVLWafIqFVSdNUDJoScuqmYkJXGV8StZC1bu2uL0DW3qgLHVGMeKsuDvX7dZlEyp405yy58hXvmxSyexbwQctLv4J7RRbjfpp+3WV/DPoj0KvDCyk4UYF/nRalq7WhB7NBPGjIsgOw5eBh4+NucoGrxIjQT5IjhGlhPvHP8LwsqiaqP/E2GbtjrcIFbuiTQplVfv8zwmYVJk4icuxliCRAnX8X1W7E634C5kagtIDS465Z2WioJFADe3EfC4sxLMaocXd1dBMfc+V6W7VQKm/6C2xfJIjQTRMxwkFt1aNInQomtUAqEcTSub4RLUMJVEQLbH8DbEiRlewdRjQMDRH47lFobpBMMMg04LpwfRbGZyCRgvERqG5T1aQDQQ/SSgmtiN9MDChylyBYUaCpESanJDHT0S737zA+MCDYB5ZwOYfJIi5FPOqIUakCMDsqNcnmbqnxmDW0YomPn/odLmJTZhIXA/CoYlJmEoPcLXSIEBo9tLPXfIjH2Mtu+mmmgRxljnGeCebIRyzMkAZNzdKmf2UcXngKHhqGsyOwkN30u7i4zJPhYQ6gotBFBz10EXOiDC4OcnnxChP8GB8HpyI8TWVOVCT0ZuFv+murNSoyI/2tGPRq8KYp7d3XHDnzXGEmJLvEiSvVC61DkL0EWrWGOthANGGjqgaqCrsPwJPPw9uvQHZRxbEjoKYCANwJ7jT4FeHg+fmgMaWA7MwTCoRdF07wst+tFhbg5PuSEa7dO+0VjylpAgAiaCTRWMTkdSwcPOp4VHCo4mLUoV0TTmOXJnzHh3SYd+CUKWB4JRRFOsvyVTg1ARemZTZdKkP59qvQArMUmEUnTpxmLGroxNfNLN5R6JrII+1phrfnwPc5cx3OXN/g+SENWlLwocPwP/ymdEekl+Dt8/DdN+Cbr4msxNoYn4Tv/Qgef1QObEgTUDx2HU6fg4mpu/sO71NYGKho6IGZCkjm18VZAcHLNCMVdR1KxCZoJIbUAAAgAElEQVQxXpIMPQo80gI1BwoWYSeCWgdtFgZ4ki4O0Ew/Pj4mM0SJ0U47OxnkCZ4iSZIBdhAlSp06l9ka5y0Vg74WGGiFPZ2SoW9JwrAk/zk3Df/+GEyvWYt2hKSJxthk8vaB0yb8TQWejclVv+DKNXPNhjPmfRa/cM+BOwZKC/iSwkqqkv1tDa1mpvfFhaHy4wJkbgLqDYSIo7GPFK3o1HCZpEoOmyIWVdwNYViIFnT6iPMQbcovU2n/D5j+NGrCQ48JnS3WCv0vwuyb0PcilKchNwL50UBt8n0IRZVh2ffktm1Q5PP9zFnCSzPYE6fFmal4hVDcR4uDqzn4romKjo/IZApBIYfFNDU2ULF4D+Ej4Pd+hYpCN418jIcZoAUryAAvUsbCYZwlZsmRpsgiZSobVe80bnWo2K5YbnC/w2hOwMO98KOLcPk6nL8OA13i8Gk7kvsAuHBy+z5qAngRORx1IAo8CTwC/PF27EBVYccAnHxXAPDQIBTvvNv0AwOCHeA71FjEJYG6YmwKMIeLn5mAr39ZMsGKAlYdv24zxteJ0ESV+YDEkKXMNEWurwuAu2jlCA/xAod5iocYpAcFhVOMMMMCZWp4j++HnZ3CP5lfhB+9Je4FDYmNZdxuCh+fWebopYceuvgoH2aYQV7mFY5ybKX8uvJ8F4w0JHeDuXTLm8mIPu2IlMGEA3Mu5DxBeGmX7FV5aqINYk2Q7IDdHdDVV6appUxrhzTHaZqsDFvb4dO/Bq+/3MiVCwp4FRGP9XNgvwl+Dfw6+GXwpsGdF4DsZQA7oEKsGcAUj5V1vXJvu3sjQVZHBRKBLvAiFiUcyjiYa373CVuAbqcmzfwKktEas8Vx+wY6hO9DrgIj86I1pYdkVe4D6Zv0uzYJixpWsAaubYfCft2BUxnZthKxCPR3wbOPSgogk4W2Ztg/KCPiyAScGrnxNeOT8Jd/AwN9chwmp2FmDs5dhKtbtxt/EMMITGaUoAkH5PoUOoSCg3XL9bjlyNThq6PwdJdsCZ3hH+yj7UwDJdKk6CZBC53s4xR/xTgXKdPOHvbg4/MmR3mMxznMYxjUOcnxLe+6ZkFCh5f2i7b/xVnhBRsWvLgffutFGE3fCIIV5HrYSB1ibfyoBqcMyX2X33cTkJqMSUH8ajs8l5JLc8YU6eYlG/bF4BdbxMDv1Jpik4VHijCP0cyn6KaNCP+Cq7wbVAcMvA1BsMUsKjEsDuD6dQ5MjHFpXy90LIAF9UUoTcLgL0DmXajMSH9wQ79QJApj9/jQbBAN7dC5F2KN0NwL8Sa4ekqkgKOJLPHoq+hd4O+Bzs9D7jXIuQXM8VFUUqjE8YJxzGICm8n354tsU7SQ4CUO8EWeopkEV8kwR4FB2ukkxVmm+R7nuEJ6YwCsiw4vYWCR7TfHGX9vPQSmLdLGigI9cRhRQXUgEZhoaIp81O1o9F+OzwO/iRyGkeA2i0hf36HV1vrheTA+AV2dkFkUOkTkziuSHxgQvBwn1jn5fIC5URG/SzaL4J0WwtUTvMuXUVAwKWKQw14pJd76azu4zJNFJ0QzKeqYpMni4bNAnmvMYGDiHzsN5V0w2CerEc+Dv/xu8LZbP4suMsIlrpAnT406+9jNq7zJMU5uOOkuG2do7aA1SBbBngLeMuFPywJ6Zx24ZAsYDqK6CGf/AhIdUJ0Hcwzij8Lv/X1RhchnhQtcyMLSAjzxHBx4FHoG8nz3/x7ineMfkQYUpQcIgeKD+yY4r4NvgRIDb+LG46pqkGwR4fW9T0OqA2oFyFyHxUmYvrDp8WmMQoMOsUBYYqkGhS3QfhRW3eGSAeWljEMRG/um4/qWcePr1saG41e6KBtInSmuCyj+oIXtSFrAtCGdhcYkdLTAf/5ZOPVPb31+oQD/51fBMOH6hHRW3Hy+f/LT8MarUHowpKlujkFVWEJLaz52PAFezQFfWaFDCAjepi50x4Ojc/DmHC/ydwh7MZYYY4lrhNBZ4hoznKGZASyqlBlnllny5OijDxcXE4MyZbJaAXq6YDp9291WTdH4PzctAiZLZfkoi2XhBFoO/NIT8PU1FeyJO8xgZbd5ko8FWdvaXU7GTSEYikrGN2PL/WWvgvXUbMs4NBFmnjp5bHbTQA8xTlNARSGKutKkdctnZi8RhnDIsaj8BfkD/wTfs1FLQBLcOMydh6N/H5bOCx3NdwUcv18AuH0XtO2Cph5o7IaeR+D534bZ8yIHPHseZi9A+qg831oQ90m9E9xalWrm9Zve8b7m/u9JtNPAi+yjiQSLlJkki4mNhkKROj4+Fg7V9QBwK6iDoOyXgqlvg/e66Kmva0J5nyNXlUXxc3vk/j/9giyINRUODcBXfwf+8AfwB9+WBfN2xEeBXqAbaAOuIGD4J4iS0F3PmIYB/3OgRPL7/wWcfAfObY4p1osPHAje/FLzpRmuVhRKRFeKPCPB/3j4uLd9B1QXnnqV+d63yb/xSdzmRapDp8kZNk+qZdRJl12ax5hfIjM1D1ZwxrzHJZSPzzkukmaBFCmmmF4fAKugtYAXhpD4SuBZsrLT2sFdBI6bkFAh76GaLuH9gALmZShOw6VvQKwFGtokad3UAo0tkJmFqxdhYkykph46LLss5mUzzEHQPyNXtp8HXFD7QP8VCD0P1l+C9Y1bj60Whs5d8MwX4cjnZck5exlGj4kIu1GGpal1j12DDo90wHAr9DYIr/HKEvzoGixWN/8Vl6V14oHcTh0XM2h0uPX4r//3lsO0N2+3fxDDcqSJczoDn3kBxqalqtHVGlQ3lqAhDuWbGFumBZevyO+1rILS0wuPHIInnoTmZkg2QCol5vOzM3D8GADDg0KfTzXILgwTpmZhevbefc0Eomu7GPywnQr8nCaZy2thmE/JOi0aBaNmUK2CUV+9pLc1gpZ3jdCKKUoDnXSwlyLzlJjneX6XBUZ5nX/BSY7TSiuP8hjXuMoIl3mFnzKuXAetFXb1yzE2LKGuGOtnprJlODkOB/uDdZonrQxlA64vQG8zDHWIsMnNxlfvR4QV4eeHg8bUFk2Acc0XvnJEEVUKw5O1/kYf+d+koeDAgbiAYQVYtOHbeXinLFnhm8PC4yoV/oopfkKGWerUcFEgqBPc2kESYx8OeVwu4GkFym3fQG+18T1R9FETYkEe3QnR/xbUfwvpb4iWtp6C1A7JEt8QTQ3Q0ih8hUd2Q1sTnB6Ba1NQ2B5E1dgjXhgN7WIG57vyd9c+cUiuFwMhn+Dr1qdAbwMtCYl9oHf4+LYU9XwvkO2sNKJmHiZEBw5L2Exis4i/mczjAxTtpGgjSY4K8xRw8YihoxMiQYQCNfJUsW6iryk7kYaSVlBaQX0S1GelXxwTvCtsA+K7+/CCYbu/RYzuOlIyfLx5VQqc/a2byyduNaLA55BxtjW4ryN9gt8KbrdN5G5Zwmp2DvIFuHr1jt/iAweCbxt+wJkJzDG8ZAIqW2OohzUxFPjSZ2okozV+WHqFnFMnnMjiRaAjCv/wWfjBaVgsRcnoLcGMUoXp96gDBZhYpMmwSBaDDVKdvjAS1BSoEXBLQQI2BGoS1EZQLBe3GMgbBGIFXk1eG2uXpgxq0ByBnTugs0dAbqUkRyeekHOquQ0unoILp+D40X1MTT8L2oGVhpMVARslkCPxMtzi1KaGIJqERDN07BTgVEhDaUm67bSQyKRtEMOt8NEh2NsGsTCUTWEeXFgQFaq6I71pPkKJDqEQQkUP2MB60MZkBVYH3nsvaG8ePttbQ7ofYduQycGr74jEWywq32E6Ld10715a3+vY91cR4mOPQ2cXPPQwDO+RrPDiAvTvgMOPw7WrMD1FIg4vPAPtAb5ubRGBiVQSsnn46Rtw4bJUs+5QXfCWUBT49c/B138ofRImApwUoE+Bj4fhgCZn6k5g2obJITj0GAzs9Hn5u3DmXWH52PdIivQC36GDvURJEQMqLNLOECH0FZ3oFga5whhv8gZ72Mck41xllAnGsV0TFnMCkjRNDqqqyqo2okO2cEOXdN2GmZzwgHe0iiJELLhsMyWYym5spXy/IhZb9UJyfVm47IyIccfhmADeyYDDm1KhSYMr5ubGawUXfpCHE2Vo0GAwCj06HC3BuAm5dUCwi88iJjYeU9So4lLAooaLgYu7Tm3IIk2IJtSIgt14GT+eXxHIUcLyAX1beojTX4PSOaHZupqM46EEJHqgutztn4gJVengXnhkDzz9KKQS8OffkutvbApKd9dNl2yTYTmaglizeBrFmqRBbuEqpEckP7HWIdlekkyw5grgDbeC3hFYqatisuONtxPNfJYkz1HjNFn+HQ65Oxp31SbwDfCTmvj+1nw4997kZfQ2cMrrNJKvE9GgEW6RCl00rqhEeAEQ1lDIUKRA7dbv0yh94TQhTMA0oIL6GHjvALM8ECA4rMGeLhhsh7kAEjXFZQpwfUiGAq3obYop4DySCK8hFZgh4Kts5Ot6F3HsuCD48p1fGz97IHg5XAfKWaFHVItbAio+slo6uEM6psvNMyxkIV6ViaKjEY7sgUvTEOvqhc5DMpvvH4KX34RLY7efUTRFDA7qrniE18WwwsbB3uzU8IPBIQRExFFOCcmGKvfVCKgxXy5GRc6JnqdAPQzxTsidgHBJ5s/WDhm85qdW7Wa1ELS3CxCevAZnjsP4tTClqi4TrNof8O6kwRB3Wrqz3fU4oX6QInCgtAgzF+X3KKRFyQMEJN80lSkIj/FgJ3x4ELobIFsTEBzRRAAhV5NjUbcD+cQAACfQiKCulCzl1sMMOrw/YFB1y6GhkAgG6gLGyvcUlVsNd03HNSAHrVKDC2OS3W1vkevFdqBUhan07RHp4BD83DPw6GGIxeGVHwsINurQ1ATxODQ1kTiwk098ZIJCUdaKyaRkgwd64fFD0NIMuYJgt7sBwREdnn4Mfv55ODcCo9cDLUzknHKAhzR4TJPBeM6HFgsiFXjyCDx2BK5cgvOB2MC9igwjuFgk6VjhIKfoRkVjkhN4uOjE8fGZY45znOE850gzLwtkH8n8qqo0Jy6PaxFd6CyuK1nh4HHXg5IBoxn4yH5h7xi2ZIXnCzCxBIXa+7OOU1UBwKkGKcs6roxZYRW6VMn4fjYFeRdeq8KCA3qgAFnaQn/QtCVbRFmlRJyqbMxFrOPiYFLDIYpGGQcj0BhfXkzfHC4FVHTp/onl0RKBh1Dw4XxHNrcE6T8HewHcspybehLCcWgchAVfdIStjna8w/vh+Sfh4WHY2SvXa0sKGhtQGyOEqWzooLiV8FxRES0vikpFoglsAxZGYeYcFOZEOi2aEhEfWHUoBel31lMQ2ylGOooCdg4ctUbYnkG/MoRLGZUYq1ruWwutDdy2MP5AVKRHfKAnBNctafa+HU9GgVBSsvCRVllkWHlwbnO8fHwylDjONT7CATpIESFElgoOLuMscZ1FCuvoGUQc8FLgtQNh8JfAvxaYq6ZAiSTwiSJQ8P5nxZvjogzTFId9PSKVWLdki4ZlUex60jS3nqX6nYYDXApuW4K/K8AgcplsvXvmDmLmvZcUf6ZAsKbJwKoArmfj5uZh4IBcpVsY5B0XZrIiGxQNi9JZvgLFmoxDu3tgYgHyrd3YOw/AwEFoSkFfp7iXZLKwlA9sm2+KUDC6x1VBc44HqVDgKBBsy6NsPGgcM9xbiKleBbQmCPcLJxgF7Flw6wKIw30yCIeAVCPs+2UZEBRNMizKAqS6oVYVdauJMfno6WkxyWhuhYmrQo+4ch7q9VkInwN3BEIPgd8rS11vCdxL4LwB/jonoOeCUYFCRugPrf2rj9XLohoRiQttxbHk/3wPNVD7Gm6Fhzsl+5urQ9GEvCH/1xpfPWTmMhsFP3AXAhsPBx8VhRgaxZua4X4WQkVBR0NHJYFOHw3ECDNNiRImNi4RQrQSI0edLPUbG3tcD3IlOH7nHCpAVk59fbBjJ5RLkJ6XDHM2K9WRWBwGdhAdDHP44ATvnIH0gtC4TFNAz54h+MRL8FffkPt3E9EIPPcENDZAb6cUZpZlgHwg70uvSl+wH80HzQP9KrTW5XT2TTkNt9jbum5oaIQIESFClCg6Oh4eOXIrVZ4lrrPE9UCuUcXDwcWmyGywjFttHM2RI8vSrRWi8k2ppYgOyYTQWJY0WVEEaR3H9bk4A8/tlkmuUoFyGUplWMoJbQQFKv59sjsOIhSCxpTITUcicl74PqieAMd9OjyTkIb4jCNNqmVPeMuZO1gwmT5c3UIvQRUXcKnjEkGltMV8lc0CKnJ+aXGhDCjhIANsglMEYwKsNdqu9iLojdC8W0BwKC69GtnmNsyDe+HxA3JSz2QgX4JsAdU1iSQ8ovqtNuI6skCobGGeq+Ul42ubog3c2COgePG68ICrObkOYikZph1Tvo8WlUSL70uWVW+DcIt8T0nAzOG2/Tvq80dWQKey0sK+tVWW0qigfCIBhxMQU+WgHozAj2vwRuBjf4tuJSva+koIYj2StVZ12UILYj7lbXIOmDjMkOO7nKWTFB9iL100UcXiErOcYYrLzN8AglUNQjFo9MHSwGgAJwk44F0SsRIsUPxuFLrxuIZcYffP8S4WFnWYvd2iFNOahIlFKNVFMcItS3WoJQHfPHX31TgQ8HsWgfttwDFgCaFB9AINCCh+UJJSP1MguDElVUGQRFc270O9ckdpDs+DV87DJx8XOaFJTYTl4xGo1OHrp8P8yWf/SxZi7TI4FUrw5MMij/bkI3DstKS1bo6WMPTHIKpBds1F0BcTNFeyhcSmAgdTMvKPVKB267SkxCH2OOi7JCNafROcNLg5mTzUOPS8BB/+x3DlqzD7hlysqZ3Q9XlIdcHb/zE8/TyMj0ry7voVyMzB6beFF3zq2PJhy4H9U/ALEP4IKG0CiL1r4JwFb5PODseCqfNCOus7IKlmqy4g2KxJ+qFjUDjclRyYNXx8bBdKJlQtKeFYrmC2ui0XdU/gMeB6kHPB9pYbVmyMNczfcKD7Wb+vU/v2hpA7VmtUPj4KCo1E2EEjfaToIUkHCTqI00SUY8wwTYkwGr008CqT1HGoYG3fwPOdb8GuYeH/xuLQ1g4zM1ApC6LxPBTfI2Qb6GGIRyVB6QTYrFASm/fHD0G1tv668U6iWIb/7Y/hv/7P4Og7cn85NGBYlUH5gitgIQY8oUGLByO/D19z4FT07jMhjTTSQw/DDPMQD7GDHVSp8hW+whnOrGgOAzgYXF8xm74xlJUFnQOBPrG/TCxeL0wLrk9De7NUp0qVICOggCH6pmemxDGwvQq7XHhGgx1xWSC8bcNr9ip/+n7EsrW1ooj5YLUq54fjCGXhSRvmbOgLwy5drvXr1r2ftMygenQnoaiSbPBdAV7JR6UQVrsItVGw1uljtIqweFb0gl/4Mky/CtWrZaxcXlwYfQ9lMYtSKkG5QEJZIqLmb2hB0BHQMaBBnwavW1sTJCjMBdngDMSui0JELQ8LY+JiDwLy2gblMb0Dwm2S+dVsiA8FjXLtQQJGl810SxQ/9GsoP/w9fMcKiGkh/C1qhln1sOjYPR0TGsRbdTkBDkegRYXX6vDmrdnUcDPoTQKC4/0Q7WHlUgk3CEAunmdT5GVg8zbXqGFxjhkO0c8MeV7mPBMssURlxUlO0aS/pvthaN4pWfxsDuZSCBWxBN4k+NNhlNojKBzEZwnQ8Znc/INsYwx3QluD8H+PDMHrI/Avfwq//ISofV6cgVdH4AtPwWceg6+8tX0tLqMI6C0i0D8MvASMA29wP5cCm8cHEgQ3JFeVMCxbMhqpBvGrCIWC8moOwIeFiTt6b9uF3/5T+Me/Bvv7hI51YRLm8yIP+0cf/4c4PUMwOQcTszKD/8U34fGHYe9O0QleDwR7iAJ9yJPOj4EGONAAO2KB9IEFU3W4VhWP5vHahqOZW5D3iz0OsSch+ohkcp05cPOigEUWrn1TBuZkrzh/+S6YBbA7oOe34OxX4Pw7sHNYssKFLIycW2eH/iLYP5TtvUR6TBoWQ7rQI8yaZIRByGkNrdA2APUSXm6WTBV+NAZNEXhmQLK/j3RCPAxNMQHHuiamW4YLxWCFX7/pgNn4zG7Esf6AxF5a6QjIDiYOeQzaifMsfQzQiIVLmip1bMpY7KGVX2CYU6QpYLCPVl5jcnsB8HL88z+Ek2/DRz4qDXI7dkIiAbv3wj/5X+l+4694/Ck4dwn6++S6NEzBZrYNI1flOvWWFfG3IdpapCK0HFEEAD8egjEXij70qNCqSJm9UYEnQnAyMDdc1yp8i6GgsJvd/Dq/zjM8wyCDJEiQJ88e9vD7/D5TTGHfBhCEidPCIAYlpqnRxc9hUKTINCU2Kfv5PiwEfOGWRiltrWmYmy9AXwW+FIaHIqsJtTBwJCRg6qh9o3LGvQxFkfXSs0/D8BC88hosLEqVynbEpn7Ohv0RoUW0heDrRaFFPGjhVsCYFrOBpg8LPSDUBHo3RAfl78o6PhKeDfmrcOkvYNenwEhfpXL0KtqJf4umQ8swDH0MnHbIXYPJ1+Hq91Zf/89S8O/rMoXsC4k87ZtbRBdmRbaNwnMFAAOYswL043sgeUBUImK7giKrJ1lWzwRzDuwCOAf+CO/KML5pbRkAA9CqCSdmyoajdRgPHFgOReDJmLigrgOCQ3GI9UkWOLkH4gPCXTbSUJsAuwiJXVDdgprjOaaZIsuPSOHjM02O+prvEIqIxGgoAh374aP/kywc3nkVZl4HdViSUd4JUC/+N2jZX0Va84/ic3/lQM4H+r8/uQR/9OPVx792UvoB9vfCLx6GE9elQW6745U1f7+O0CN+sv27uat4oEFwqFuYAwlDjEASMQG9TY2BW54p7IOGpDTelMowm5aMwt3GH/wNPDwAnU1QrsNbIzJ5O78WEdrD/CLU6tKYYtkwOgEocGivGGhkCzC2pu03a0FCkzTmoZRsvTGIBbzgnCXZ4gUTjuc3Xc67i1B5Gbw6WNflFkea4CKejmG5TKQ98idCfPx7No1D4NSk0cFYhAt/CiN/LoOW68ikY9ShkCNwn4vC0jaDR6MiO/PdGzPzy2oeinLD4+czIod2dAr2tcHOJnG7SoZhqSr0iLot2eAHJaQUrqGhrhhr2jhU3yMPrEMK1ZQwiaDRgM5DtPPz7OJTDDNBkVOkqQYAV1yMbBaocpYMp0ijoTJB4d7lHU6ekNr67/0d+PRnhVvzxmuQzZLOwE+PQjyp8o3I53Cm03x64CLZosbZyQaGlQlsR8rg2/UBF7LwSx+HH78J49NSWEko0KvCeRe+aULJF3fxHhVaFAEOk42B1u1dUvbKlGmkkXnmmWGaGnVq1KhS5Tf4Df6EPyHN7eTNfFTCfJi/xwBPk6KXMvNc5xVO8xVmuI2ifb4ErY2SHa7W5dpKxLC9Go9q8EhIik+v27IoSCCPDaowpgrmWI69JGgkzDg1Frc5d6Mocrrs3AG/8yU4ew6mZ8RFLVaAekKa2q5ZUHRhyhJWWZMGnSEBw37ySxD9GKit4E4hvQoLkpas/F9gn9nWz7xpeFJeLh0TEKxGoD4GtUu3KUZ6MPb/QPm6NKk19EC0WUBWy27Y+aJkHi989VYaxP9Yhmd0Ob9N4GAIjoThj6rbn2nzgyY/zxDKR/OzYKZBWxAqnZ0FNx9BPf55PP8SjruEd4d28BGnjrtg4PgRSDuQcaFZg/aAOriBhInviYx96gC0f1j4wOYS4Im5lBqRDD1ApDOQGt0EmxepUaYedJXcuM/lvnvPgbmzMPI94U4vnoTEOagaiGz1K89DzcDla/hk8EnjM82DQgR4d0KqQ4py/5pjw8AfBNv7bJa4Eg80CNZaoTUFO33o64a21lVpUseRDvBQSLq8l7O/dWN7pH5qJlycgqvzkh2yfA2GdsJkwH3MFWVnqirZl3JVurYvXxP5qZtrCj7QG4VnW+BDLbLazVpCe1AUuXV8oT/cDtj54Nj7sI5D5MQsUT9KZLZKzNWIEcU0LSzLBiPCmf9EpWqalL0qu7wdtJgtJEo17OqqGUJ2YYWSK1Hc+vDZ0g2HPww/+eptnuiYG8wEQU30pv9yfZgty4VyuSydq82aLIryBmQqkhH2fMkKW2sv4iEFdiCaWB2K1GSO+vCGx3Z4U2wUEcLEiBAmjB7AYRsHDZXSe2gPLgR2nUqgdKGj0UmCPbRgBAxfNWh+0wP+bwiVcYpMUGQuGGbuqeGo48C1MckKj10VmbTvfBMuX8LzoWBG+X7lMKXHnoH6SX4yUcGq21TUODU/jjdyCUURvHa34fvwte/CnkFZn8aA5gDkXnfhuAM5XzKedV8MFMLI5WaVgjn2LhdVzTRjYDDKKHnyVKliYpIixQ52BKbvm4eCSogIKmF04oSJ0sIuAAxK5Binxs2OOTcdiHA4UI5QROoupLFUhrQG00EDWsWX4+Ag2snLl1ASjR3EiaMxQIwkGk/QxCgVfrzZfu8wLAvm03D8JDj/HK6Ny3qqWpOcwBkNPpmCM3W4bIpCxIIjGfy8C378ixD/26D1CS8MH/SHA15YCdwFYppPzDlL7j5kj30HzGmZGuJ7IbJfaBCbga3l8CxYugQdD0vDnFMTgZ1wDMrzkL8OMyegdFMh4NNR+GIMmhRYCHSQJx3JCo86bGsdzLeE32wXINQA5TNCP3BKUHA/yqL3MF7mNaJOHqPNwvdC+F4KTE1oibeJ2PPQ8AXwW4rU5nWq9ZCsTKsenDeFD3x2fVDtWULLcE1xVQ03iQqHFpNGuXBKOM2RTjmut2sTkqTC+s9wLajlZMFSXYSxV8EoQmFKqrTeiIIyfQhqMfAz+Czik0MkIh6crI3jyXa/QgOagT9Dcg0auxHP37nNX3iP44EGwZE9QAd4JTiwA/YNiwJGZlFwpucJCDZN4RjW6jfiLFWRbO7OTnjrsojF30lUTdnkzTwhGn73FZlgPE9mTQXpzlrISkZ4MSfAWA/dmFVKBAS8hxpgT7oTXyMAACAASURBVFL4vhM1yNuiGOH6MGsIDWKzaBwC18BP7MXyVSqLKmZpGgsHFY8wYRzfxfd9VCtE5XiUAg4eSQY5yNMcxsVjin/NHOIwZi1/R00RznL19jNGWy+EI9DQDLGAozv8KExdEdrvLfEe2s/VONhJyCuQNWDOFJcb2129eFVFmucsF7nCBhUYVmCnAr2KKHU/poo1zoV7B4JDaETQSZEkTpQYUcKEMDDRAj6ni4eFjRNojyZYXQ03IqV7ENCWQ3RLrTWDpgKYuPyAa7QSozl4RScJwmjECTNHhQsssEgNUG7RtLwnUa/DlRFBsok4jF6RDrhYDLdvgIXdz8BLL8HUJItTU5DJgFmU777NzdKzmUARIVABqAKz3qpBxvLRXE76ruz+LrWBFRQSJDjMYTroYC74Vw9E9ttoo4kmtDVNbzdHD1G6iNBMgjgONZYoMotOkiiNxGiiiX6SdGwMgpNxkbzrahPOWKUmltgKWKEIZ2yTYRX6VWhQoFMNWhJ8uOyC5YXZQZQ+ovQQpYkwcVSeoIkh4oxT49o6HfK3OzqE9FUL9dVH8TwYuwbpDExNCQC2LfkNR0y4bMAlE84akLalyc32A8tjZ0IaJLxCkAXWgqaIGJCE0A6Gwi08pUPagu9t7mb/nkLTBFB5AZXGM2Srh+XWWtj6e9k1yfQaRTk4igrZUagtCRVi7iRU17zf4TD8chR2h2DJg3ygmFH2YTAEU+7m9td3Gk5ZEuyhBSidkiZAFHm8UglhVLtg5wvg5fGwoBb0flTCUgW0NoDkKoT6IPk5iD4JzpyDnvdwvDA0ubhpDz9rQdrBL7r4cdaaA66EZ4NTEeqfFl0FwKFk0NDnQbhRKBLe3WQ+AyUPEBrE0hjUllqoLoWwLQMqUSgkEH2iCjLaVGGTa///C1FHTDLG6UehEZVOPIr4WAFf+v2JBxoEh/vA3iFOZrUO6O6EXTvg4hUZLA1TgG+pIveXIx6B1gZoS8Fnj8DeXsFgb4/CYvE9fhjPh7kF2VJJ6YBXg1ZzyxaAnIzLlkrKyFhcs/ptDIsaRFgV4cusBdMGXOkBT5ercikHs1M37jcUg3CgpaNFof1RucrbDuGqIWqhsIg41suga/iegePa4PtYWITQ8PFJEKOJFD10ESNKPz3UMShQWhUPW9Yn2kJ07oBo0IRoGdC3B/YdgYXpDUDwHYYWFovnUEwGHNOCsiMTBQjwDalS7vZ9URdwuxR4XhUwnFKkNbUzAMRPKfLYPciKKijohIkSIUWCDlrppo0kcTJkpdkPBweXCjVUPGL4tCKZSBtJVieRzM3iBvvxgQoWJ5knTiN7SNJNlEaiuHjMU2GcAhdZooCJul1E262E64o28HLE49LttGtI9IQVBdo7oKMD5udh9t65ZFi2NOLVFSgE52LmHibDNQUiikrCS7Cb3TTQgItLnToGBjo6TTRhYKwrtNVPjDZ0eonRR5RWdMDgElfI0UKUJnw8DErY1Akti4CvDUWRzG9HC3S1i417LCKDY0QX3pgP13I2r9geezXoVoUS4ipwyYGqu5NmX6cRkwQmTYRpQAsc1nxiaHQRuXMQrCgQiq7SoVYel//KLMgpUa7cmInPOPDjiiQAr1uiG3xDWG+Dc1XeyJ0HrROcScTMp42+0AJPRAv8fAPUPBipwoSxuhBSkMyppgj/+E5C06CxUah4miZrvkIRasGhsWZlu9OoBxbWdlW2pVHJbtZzAoD1mjTA+cAnI/C0DhMunLbhqiONcl0a7AnBCQsK23jee3Vw8sJ9Xvo+RPtkKvJMMJQ0NGZg136spgzMa1BYgHLQH+PasuJfDwhrEDkEiY8BimScFcMjopj4jeCmHTltVPDbwQ2BMyXKGysRUDWcSrAOigRKHQkBw4oWUDksec7dJWQ18GO4ZhTfjVGeDVPPDWFWYsACkMfHClpblwkVpryOCNwhReRnJWqEOEYXYZ5AIQW4KCQABRcT/32y1nugQbBviDRLoV0ElnvG4D/9LBRLcOkKzKVFdmmtPnI0LKD3hYfg8C740AHJAH/p50VW8xtvb8MH20isvK8TOtsARTLCyxFSIKnBggXHczBvwpIKMyE49gWodwAWuBeBq9yQHkv0QNvD0LwP4m1B+jsGzXskVRBtllFy7nvQkcJwPKlzVk3yTpE8RRLEsXF4m1OMM0WcGHGiPMJe3uE8JhY+Hr7t4Rc2r0tHYrLbpg4Re7BNaOuBT/6WeJJEYtJVfDcrbUWRrxpvFa6VUZQMydpE0tpSjqqIBqLXDeoQVCywDB9KiswKJrBLEZR5D3CwAmioRAjTQILdDPAMh+ilg2OcJc0SYUJ4+EQIk8KjE4tGoB9JTg8E7zUNbMV2JUsbx8jSRJF+GtAJMU6OcRbIUMHGW6FRrI31XPMA+dF87/YZe01bbetf77maJlv/AAzuhNZWuHIF3n0Hnn4GDh4SGbXx8S18y62FogS7DdZvTx2SNepMGq5OCG1qu0MJ9qsAiRA0hsCpq+TJM8ooJUoYGNSooaLi4PA2b1O9iRajAp+hi4/TyVWqZAKiSxSXgxzjNM0UacWiTJUsS4xSXS9rEtKkGa6/G/bvEqexUEj6F0IhWaR4gFrihAMXHOjXIB8SzvRJO8FL3t8mj8U13sHkKnMY9BAljcFb5CjibFk27IYjpShyfoWjYNdXeFeeJ/0bG/Vw+MC3bjcv1l8GrQPUNlBbJCPsZggrCh9v+DpPRM/gAbui8Jvd8OUpKAdjU0SFlCZ9ylN3gEsURfpSnnsOBvoDdcwFOHcOLly8O83l6oJsWgQS7VCauXG/u8LwCR1qIXhRk9/utA2ng2F7Vwie1+GiI0572x1uFerXoT4OicCRVIuCp5XAnoPWbojGoalNJgHXXXXdiMRgfkL+XlZOU8RVL/Y0hHdB/W1J7K/oLBuiHay1ASHw6+DMglcU6vfK5zKF/uCUhfvrBYB3OfyAw1ub2I6jEEfxd2Nkd6PQjlVoQmUnIZL4TOHwZ0hbtoWQjXwkvWEB7Yh7xoPBCwbuyZy4/m4aiPBpNAbxSCNL6wYUxDTLuV2vwz2KBxoEu3lwMnIC12PwDwrwzBTMzMP0nDTBFW9qFPjMEcn+9rTAX74hxhazOfi7n4Xh7nv8gUfGZbs59iSE1HqpDO8WxPZt9hOgHQZ1L2j9oHSB9gz4WbD/zeprNR0S3dBxWJa4iga1BTkoWiRQLU/CrxwRIcCWBIxl4Ng1OC2NeVVq6IRZIscSOSxsdHR66eRJDpJmkQIlKtSobpLlUTX4yH8EzZ3Q3ic0L9eB/U9BYQkuHYN9T8HV05B+jxhHUSHaCD2HoDQvfDjzNhOhrsFjA/C7+3265l3+l4LCy4oq2fsFRXSfehWhSlz2YZvLosvr/Qg6MaK0kGKQXgbp5TLXcXDx8LCwUDCIYAtfFcHlYWR4rMOWc2x7eIIOBnBxMKiiotPIDGn+D2w8moiTIrZiyGDjoqKQo0p9vZaZvj5BI9lNylK6LgoQhgHFgjz/Zm2z/n7YJfxVTBPSaXlusQiXLomRxtz2csBSSRjeKclPH3j6sPh/RCIwMQN/73/f1t0B0BoROe9wIPsNLpfrab7CVzAxqVNf4QPHiXOMY8wyu65lSz9xnqWVJSzmAj1nC49WdL7Aa7xCC/PMUmCGGd6hyPStH0jToDklB2GoHz77t+Tx05clCzw1j3I2jR8gtBpwxZUN4L/jv8JHx6KMis4iFnMYTFCjBZ1RquSxabiTKSMck5KOEtAhtJDcNyuCSLYjakEzQviQWGfaV8Gd5lH9x9SMGsctAaW7YvDpNrFMfr0g836DJvSKOwHAIKD3iSfgH/0DGBoW2+3RUfjrr0lGe2kbxhfXvBEAAyRbwdXhVBWyj0HlbfGOmHShSYVHw3AoLMD42wZk7yXf04fqJdC7wE+BF0eyvAszkExBaxfogROlZci2zJsDtHZxOVVTEB4A/YDIfNrX5dYrBxnhqFAwnAWhRXoBJnBvopk4Jcnmq2EY/UNI7ARUoaTYJXCqm+sE30kotKDycUL8Ci5vAkV8DFQGUXkUnylcvoso4nrI6F7Fx0Ah/CDBXxm8IqpItN7jUGkixm9g8gNcxlGIIEKmDeg88/+D4PVC0cX4wa9L1224Fz71HahfBKcAdgiMtWpkD/XTM5QjX63y8hn4yqvw+DAMtEOxKuYX70cM2RVmpsKYRReMJtCGQHFEb9e9DEoClGZ5sp9ZfWHTbmjeK3ZvoRi0H4L8FajMQm1Rrm5lBL5owe6DMJuHoQ54YR88PQz//V+LLhKQp4iLS4gQNjYVqlSo0kYLJhY16psCYJAEzvVzMHRI+L879gt/z3Hg+V+C6RH41p9ALrPp22wY0UZo2wPdByWJMH4UrE36KcKaKEbsaIVfegKO7ILrS/C7YZ/fU13m6vDbY4pUoY55dJR96mG2regS02UyrVui31vHpEKVM1zhOjOAwjyLLJCjTI0yVVw8NCAFHFGEtxryIQ3MAde3sN9BDtLNLn6OT9FMBznSnOEVjvMdXFyaSXCEYY4wTBsNvMs418hQoo6GSp4q5ZtbZlwX+vqhoxMuX7zx/3RdtsYmePQxAbdXLktGtx54DFsBsI5G4dgxeU5jk7T+p1ICgkdG5GTZ5iiWYeQaDPbBr/4i7BqAjjYxUMsWpF+gUBLw8vUfwPwd8DRvDhXoiYvpY6Mu4i4hJXCabPaJqtdQFJ+sKTLYdRsqwb/1wgfepUAFh0/QycfoAKCETRqTMCoZvsZrtDCNyyJXNvlwqvBATBteOS7AeG5B+hWKZfCjwaKowiD9PMkRuunlBV5klCtc5AKTnKbMBFEUQCVJCD+A7lXcwFBiixGOijW67wv4tetBiegewAD7HOT/LstL0qdbBQFmbWGfFR1phPzyMHx7CV7OwekyLLyHuV/X4blnheVTKMilUyoJAygaW+cFWkgSFQB6RITY61Upo20xdhyGoaeguUvWEC1xSHwR/mwU2r8Pw9PQrEpv9X8w4IemND3e67DSYGWAdgMGDTkA7X3QPShPiCaEqrcwDUYFrRNxOFWF1+vWwM2CFkx/aiOoeQG5vhE0mhVE/tMrCDC+5fQZaIewhlOuU7xQpHQJYv1gzEuDXKRdJNTUdVhE7y2a0TiCQhsKjfgsIhSIJRQ6UXkOhz8GQKEXoUDYCCCOAD1AhntgHnxDPEobEVRCgWufh4+Dx8m1hDtdhUR4QxAcScAL/y957x1cWXqe+f1OuDngXuQMNDp3T890T+weDjniMEliEEVJu5K2pJLWlle2t7a8pb+ttcursmq9a1u7VVp7l1rJWlMSxRKDyCE1gZxADnump3Nu5HRxcQFc3JxO9B/vuQ2gG0ADHWZnrLfrFtA34Jx7wvc93/s+7/P8VzB9Dg5+QvSlV2bBqMprxWVYuH7vyq9COzrHUelEpQNQvUWBH5VB/JzCZhGba1iM83BbOrePDzUIdhsChP2d0oWq94L6LJTHoTYtUmG343Mn4B+9yJ+PxPFPpLCXzzLcdYlIQJxRDAt6WuHIgGSHH3XEYnDkiMz5jx+DazdNxsYgVyuAdcOz32naEFclA+yWRGEboOsZaDsqIDixV4Cw3YBQp1AjzBJkZ8G6DIE+Ab+ZotSEE2HoT8JA620QDFCmStjjBkcIMcY0GioxoqIqgYGxTYeQ68LkFWmIC0WFA9zeB0uz8N73YfoaNGrcNUhFOqU81ShtngAaeBa6jkLHIeg8BPFeeOff3rusaNoQ8MHRPnjpkNAiVAXifnneH4Vf7LKY/CGkzoFa3EhJvCv8MQjEobQzMl99nVtdjToVqsyzxCpFNFRMLEpUyZL3csEbUzM1pCEuqkDIFay+k3lrnlHO8gr97AcgwyyTXGKR67jYFKgSJsAJhnmKERqYVDyOsINDHfNuEJxZhFoV2jrEDnllBZYznr2bJpO3PwC5nFzciaScoHJZ9PUa3mpoaoq4YZNwfUQKJs74ArcGDJieFhIlCHGyutOc987C7xPHuGeeEPpD0w1tJScMgbFp+Ok5yD6kxsj2APSFJZES1SHhh7wBmbrLUl3mlp3Q613g78jQwOEl2nmOJAeI0kqEdgLMUiVHHZtx/Fi4W4FQ111ziStXJANcb8BKXkw0ckVk0tUZYoRf5pf4b/hvcXH5Y/4tBgY99LLKNGnGUNHRULBxUdmGRrNdaH7hAjuW/DTr64Dwww6XJqh4vgV+p1fYZ2eKcL0KFVuA8PGoCPEsGQKQ7zdsRxg91arcEtMzcP6C3A63IxCGQFBE2BVVSmmRuHx/3QflwtbNYusi3gnDJ2Dfc+I0P38dyivQqEDnXqh/BV5+G/7sHZG6e8PYWUNcfyf0dsCZa/d+77bhIgekURMOcJcN8TboGYZQRBrk5ieglBONexD3hnhILMwO91IyKlT+wxJUDcJPFNFb67gzUH8PcDyFja0uG10VHdNsSbjBNtRS8hljRdQstKCA4YcfPqT5RPX4rSoQQOEALuO4LCIt0BEU/EAIBb/XCPYQQXAoKtdVo4YCDBBlDzGKGLepcToKOiqHSDBBERNHOspNDQajMHv3Qt2owU+/Bif/IfQehmQvRNthZRpKK5AZ29nt7JLD4goWVwjyq7iUcUih0IrGMLJAaGAxyQfNmf5Qg2BrRSgRWgugQOMm0pmZleywayDpwEP98OJjMNJFdqQbEu0kSyYns5dIRuErpwQbprKQeSTG1WvR0QGhkOCEPcNipNXfD0tLMOsDzW8TiBRxnGvUSzOg9HpL3ArisViD7ueg9bDwfV3L028yIdwJSxektlOcgdWbUBmD8xb8+il4YkAoEe1RyQqrd/JBHerUyeNSoeqV6K3bJXNrB1keoyYcYIB6RbLDwTC8/TeQXxZ6xF2fKUNLnzS6NYGt60K0Q8BvzxOQHIJot7wnEBMxcnUnIMKVr9kSFk/0tohwhTVV+g1jLvTGIVuUfb99wyoqRLoE+Lq2t8oKyPOOJa81ilBelO6PLba9dmxdSlSpUidBDAWFGg3PxmLjQTER//QZF9o9qaoSklVuQRx2tguTOqOc5TJvs8w8y8yTYuy2JqeDS4pVzjOFi0uOCpYn+OMI+/vuP2pZks6yHTmJfj/09Ar1QVUhGpOLOZmUzFZrm2R9i0Uo5FHyeeJ1kyFb52mSDBAg6fjQKhpT8/ATI8CFQAizXFzLGj/EcF1Z6J65JH1h8ahUfsoVsVLeNwTff+PB9TBdIGcIHaJoQo8ORxNwIgnfS0kmLteQeTmqC+C6V6WxiMVPyDJDlVdYYpgwz5IkgsYiDd5khWkqVNGAID7CmHdWbRRFeMGGKWoQ1bpIOOaKshJYLSBug1EOcJBeepljljlmmWGaCFFaaeMxnqWFNsa4Qo0FdBSmqGPhEkHbWSY4EBXQG4gKJULVJCNcL6zTYXx0MVOHdwrQ6YfugDS+RTXoC8BPC3DGD5V90GpBYVaG192EZcHYKDz9pPSjTEzAjZvC9tnAb/b5ZeGo+eQeCoYh0SHPr/i8Csq9QbCqCZskkoRYO1RyYndcWIJwUhzL1DSYl2CfBQuOSMzd60xpKkSC0NMO6RU4NCyFhIVlWNwtpaOch4VJz3e8IVy5th4Bw/ufEGrEzfeFK1cpQakBSR0e3wO/+TGc1QrOf3wDymVq035UvYGdtXHjNizeMSL6NOl8jwS9zIcqC8B1ovFNWTrX9h7Ww7z0KjhMoPAkCj1Ia3QYhQEghMv6VYVFUxrNJY5C1ZNLewAArOlyLfn8QqyPxiGWkEGwVsG1bfL5IoGqhg8VE8cb98HCoZMQ05Qw/R4x27ChZ7MShhyzchZuvg2pG9BzEFq6YPAJuQ5VFXJpyM7cqyHexmaBKn9EiDIuDRQSKPhxmMPkHUzOI6mhD5Yw8qEGwcaMB4ABVKidE/BrzHr8Hk2FRASe2Q/dCchXBeX6dOyRHgoDvSRzC4ynRcD6ZkoWi48yFAQA9/QIXujqkgspnxc8AaCoNoFgBsfKoGgmqrqC5aiYbhuEhmHw0wyPXMY2MqBo1MxuVnKKNMgVp6GyCEvnID8qTQfTGlyZE1m2agOmanBzQY7HHdFUKLh9jDEwMTGxNu1c3yxsWwDv6FmYH5Vx7/LbnpnIJhO+WZWmNs0vg7kvAqEEHPxZ6D0B/ojMmXpABnxNh1iP/H6vMCxYLsHoIhzslnHQsiFtCN9R7YGRj0F+HlKXodysHigqBBLQflh41pqXrbHqnu9pD1TSUMtuCYKbjVjNsbeZRZccmkIDc9PMeh1uKyMmXOFnLiFAWEOYZBWvn2grM5AcGS7wQya4SJk8OTKY65QtF8hxmjHS5MlTJedxgeuYt60/74omEG7UhcoQj3ul3JDUfkdGIBYXEBsIiMtKMCQ7WiwStB1OEeclkiSaR8GB/UWXfXRTqdWZqjWoWdZDH+YaBvz0LLx7AX7mJIwMiFJYKCgd/Nm8OEqml9cYGQpiwOPTpHJQqAi1ZbtwEQXBTB1KptDpfIqAYtNr1rTdtarETiOLQRaDixSIo3ONIi34qGFzmQJFLM+CZYs/6vdBX6d8uZkFOSCGJWYZpeo65zgbHz4yZHiLH7HKKjY2rbRSpEAnXQyg8y7nqWGgobBIY+vtbhqK3MyaLkA4OQCDT8GtH8L0e1LPf4RgONWAv8rAnhC06ZDwhHlWTPiLDEzshcRJoQ/c/IZ8ZjdA2LKkAe79s6JONDkJ4+MwMysS8hvDA2mBEERboG8vtLRJOa1SgNI2pQkFIm0Q7xMFj8wMoELfEcgtSCauUfZULgIyvroWDGnwHvcGwSjSQNrt6e/v6YVYWBaPOwHBUcK0kSBCGF9Dp7HqsmRkWC2swNyoALWRY7DnMdh/HFq7oFKEhQlYrcr8VKgKlygWlK72kB8zr0A9IHNZ3NoIgkN+kX0a6hAZKEWB0QWhAG0Tri1Ncw8jXFZxeAuFPSioyAgeQUbvKg7XccmxJkFh0VTGdanywDqdmgaRGLT3yPcPRSDs0W0MccAqmjcxay64oHn3rh8BxZFmw7SurA1Utgsxnwxqm0RuQaBG5wgk+6Bjj6g2Rdtg/F0oLt0NgoMEadDwyFRin23wJpIt96MQAhRcitiM4TB713Y/iPhQg2BzyhO1NiUjXD19xxsifhhoh2ODUg4pVGF+BVpjFH0a34s9znNnFvjj74tiRH43XeKaKqusXczWoaAkX0CAsO3A8pJI59y4KUAYoJaXkkIoDqo+i+6HutuHox3E13OQevuLHD7xdQLMoGKyvNjNxfN1SqVnID8OqzcgfVoU1dv2gu8p+JPzMBwSkqwVgfE8LN77CzcwKFPFwERBwecV5Y1thtDxCwJQi1l5gIzxjW1Wgnnv+vZHINYN8R44/CXJBufnpEpqmzI36gF5HzvIBNdMmFiCb56DFw7IWFi34LIFF+Jw6AkYfk4mi8qqbOt2qDrEBwQM+0KejJPXSaMo3g5tfQH4NUC5GziV7sGtriP9wUWEIWYgw6jl/b9bEb67qkDD2voyvMmZLbdRoMot0syRRUHBxsHGoURte+1g15HVWt1raAsEob1dMsPdvdDdLYuFhXmpAweCAorVeUwFDrkRevCTwyKDgYFLL37+a3qYWp3iWyhMo/BQYHBYh5DIDtZc+PZFl2i1RjUa4njB4HCfzZ4BiEVEQrG7Q0x1LEuAbyIqGuLRELREYGoRMjk5n4V73DqL3rUe1OBmUZwMc4Y8X/Vunap1f/0mRSze2qR708HCuM0t9kCp4ml8JWJw7IBkgcfn1pC+Za8NSt5nFpjHpUGQIEMMEyPGfg7yKj8gxyouLpMeO92HioNI2u84GqW1Zjh/CLoPw4v/FGJdUEhDIQXWOnKn63pKAiYPKwv0Zl4eHT54LAJPxSBvCTgeeQGOfE76imfekJ/5GgR1r0ihiKBGfYskrWXB2Bh842/kdikUvT7RO29705A/5AvII9IiYLB/r9xDizOQ2Zybp6jCzBp6HrqPSMPX2GVhG3zi16B1QICHLyi8zOISrDTg+3VoV3emAKYqop6XjMnlk4xJJjgWlp+WLYWFTfcPhf0M8wyP0UUHfnSyVp4z+Su8n7+MiWfGNHkVDj0Nz3wW9j0u2eFFj/KXysGrV2SAawnDfG5tvHVcWVGuH1wDOvS1weF+mfdNj19+dVYGyju/HxoKqpcHfZgUnCw2f4eLiUIvCj7v5zLCdZ1D0hrrw0Lqfw8hVA3CMRg5LAvNall+gtAiVBUyKcoeAPWj4Ucljp8hYixQERDsOlKy8qnC5eoOyTGv23fdhr2HYPhJoUT0HJT/+4Ky8CpmIHUd6qU1IRCAVhIssYKFhUIQlVZsihi8zv1EEB8G1v1Rs7aJDzUIRhOivBLcBAADRIMw0g1BP6yWpRxoO/J82I+jaZz2+kiu7YYHrCrQ1SJp401urq3iieMwNCQDS6kEZ89K1tR1hDumePOWY0Mx00R40sjhD6do70/R23uai+F/xg9+/L/yi1/8H2mJTBBpX6Fj34/45g9/EwpTMPOqiEi274ehUzDyGZgKwKtfFdHGn/l96DwO2k0Eam0fee89EQIM0oaNwwRL3uBxdyzc4b+u6bDvSVGHuFeCx6hAdgJKGciOCw3CFxY8qgcFi9ZykLnpZUHV24do879nQSoPX3sPfnDVK4vb4O+F9ufkxrz6siw8/GHZFiCzjD8G+SloGYLAMLQMS5p6dRQqGVi5tqaKvkXcrwqRy8Yz49PAr8jklUYAtu3IuO+4MiHtxt2nSI3igzpR1OvysEyhQ+zdByeegsePw/WrsJCCmWmo13AjEVYLeaYaom6Q9+S0dBSymJwkzi/RwRUqpDF2RL25Z3ysF071QF8UahaUDF585z3eOHmC8uQElWsZJmZhJgUTM3Dh2hodYqADfuUTAoKbGf1YCIpVODsG/+mVnVlyZxtwZgVSXkKrbEHDFif06sOcd++KEKB6tnhhGO6D6w0ujQAAIABJREFUtgRcn4DF5S14HyFAx/QoUK20cZDDzDOPjc1NbjB2R+Pd7P1eQ/WiDAaaD5bHIH0NDn4abr4GiX6hHDWb5Mw6VHOwOn2XocaDxrIJb+Tl0QzXEYpWUIfEMCxfg5Z+YZONjQmG6O+BM+e3vgaqNaE/bBuNKpKK84EdkSax/cfhwHHIZuDKO5t/ToFQEvZ9El74Z9C6B8pLkJ2Exavw1/8STn4BuvbL8LQ0BYtjkC3sTvimbkiRIBGD4R4Zk4a6pToSC0M6C9e36NT14+PX+QLPc4IiFVIs4gJPcZRFlpliTobsbBre+S68/5pkhYcOyblvgt3lEvzlOt3SnoQkclykfJv2ssCKAocH4PgeaezpbYVyTeb+hVV434KljbSJMO0EiNKgTJklHm6ZvYHD9+94LoFCN4+C09qkLAKS9R3YC3sOS+YpMy8UFNuRybglCd0DLKeu02P78aMSxcdhkvxzHucPOC+VnZo3UIHMs0eSsL8FJosbDLMURegPYa8qX87KNdd7CI5+Sl6vFuHmm7Ays7bPbbSSJYeF5WV7d8k7uiMeY4Apllil/FDP5IcaBHf9PiR+HawsFL+5yRtCful2U1VJ5QR06E7Ko1SFM2ObfGibaArOfvlp+NRR+MPvCs2g+Vp3CyxsvZqzLNi3T7LAV6/C+fPy/NGj8vPZZwUgv/2TMEQ+DloMzBQ0bmBU82RGYXmyxN5TB5hU/iXf+tFXobYswNeuQ2xJlCGa3WWBOHQehgOfgZUxOP47giLrDTj/nwVl7iJc718vSfbSxSRLpMhRvkenpm3BtS3G8y0/04AzXxVOcKRDyniNsnyNC38BZ4xW3N/VYdaAC55v6ibhuFA15LG8rtwVAfJvwek/kaxzMb0OoOth4Vs08nJccxMw9EnoOg59JwWN//h/umdnXtOyORqAsrd7bVEpShhbACCtafKhyJCsqwKAm+u3miHZ7V2svR59NBoCeC9egAOH4LmTsGcETp6CK5ehUpafPh+vNXJ8iiQ2LmXs28n8MWpoKBS6E1QUzXO4eUCQ/tIA/OywHMTTaUiVefnTL0BniJ9oh/jJD8NEvz7F0QPw3sWNH+1rh1/+OEwswIUJOS+xEOzthd/+rAwh/8t6K3CfAgGPo1JaO7mZuvCAXSQrXLZgvCTPPbzQkVJrc8lVBxwUgriKI/zf0Wkx5ylXtvF+VoAg17jBNa6iEOFP+Rag8k3eQQT+2/E6nXAfNHPVKMPSqDzO/pX35B0HRlGlYcC/OSfxYUdij6xvb35DBHcaJRl7vvisvB4Li+lhfy88fRz+3VcfcIONmmRCFAWKq3D9PeHOXngLVtICjOtrZYdoJyQGoPsxOPIl2POCPK97amOKKj0Tb31DijKTZ2HhJlTv41RFgtIc190G8Ygo7B0/ILSISAjeOr/55+JE+Rwv8Jt8mSp1bnCaq4yRIUuNOvsYZJqUx0L1wqjDrbNC/0h0SEp7M3WM9BZf5JOPwWeOQ1dC0tMrRRk0/d6cHw3dBYJ9BAgQIUI7cbpZ4NLuD9KuIv/g98wWcZTjTHCLWkiB1k7o6IWWVtEmbWmTJkvHEZ6wpoPuI8QeUkzjx6KNIFnq+G9nle4IB7iagy8MSsdv1YayiVas0xcuk+iR6y+fhuUpmUu7D8CTvyC3eUuncNbXg2A/PpT7ThPdHV/kSWbJcpoxrjN/7w/sMD7UILh6VgYoeysKjapAyAd9rbJq7GmVx3IB7a3LxCYm0JJSAt2xgLnjCvD9rY/Db3wM3hmDqSUZxCIBeX2ltGla7tIl+Lmfg89+Bj72PFy5Is/duiUA+fx5UHydEDsF8S+D3iYacE4FGteh/CZO+XWm3nNp6f9DitVZ7PB+Ga1RID8Bi+8JggQZwQspqBXgwGdhdQqWb0Lmmjx2GQF8dNFCNy2UqHu3yqMhqdsm3HxZfj/0eeG+zc/qnD4dwuz24x709GzmDIiqcCAgjbgrNixZ99ytalYyyq5zBwCO9kCsX+o4qffWcIUelDJTyVtkzP1YmhG3CJ8GLSGRZQ74YH7Vy0Braxn/OyOgy0NV1sw+GpYAeL+X8TV2A3511jLlJiIQWnkE56vJFR4fhb/+S8kC+/3CEy4UYHpKeMQKjO3roHe2xgFDp5SI8MpgANXv5/8JBKC3g2LLfgHVy6uSsVxYkt/vZ7ffTcOTXfBYGyQDQo2YK3nlvQbULCo1OH/17o/GQnBoQGgP2aLMH8WgmKyFAzK/3o6wKo4KQVV+7/BJx1vFgYrNasOlaHj2ue7DBsCwdpGqnrZmm9dp7uBW81Jm0quyikrEtvkrYVR6cAniUkSMuasIISfgbae5bHnYnN0tDorryBimKI9INWJjWA2hXlUyUn3SDPil5+W8x6LwMx+DvXvk97d2ubDfeqMG5Lzy+MoCaDpRf4ZwIoeSdFCQIcesyc9aQXoYsuOwPLrGFjG9niFVl0zxlTdhZUIS6buN/YOS/bUdWTut5KGtLAD4+EHYNyCvvbMJbqzT4CaTGJj00kmMyG3AY2ASI0I/XSywjLWeeuW6kJ6CrhdFR9h1RDliJ3GoH547INfJ1RmYz8rit9qQ1+omqArKeIYwrQSIo6B4ZvZhdPwkGERDZ5XpjQD9IxD/gN9gglHeUc8xTk2qc/FW2PsYTN+EpdRtPjCZecjMccx5lvNUmGSGcQqkqfJzvMwSNapbUeJcF37nkBzb0QL2rTypVJnP9KUwKsJDV3VhOuXTcOUVaZRL9sNAIokf0bpTUXmK47jABFMUHiALrKLw+3yF3+JF/Oj8O175ewSCT0P9Cls3Uja7oEa6oWHS+3/9JW1qFc00aczmsWI2Qa85plITzpbherp4+U1WoY4LlQbMZeH//amQ9Ttia/xgw4KOOOSqm4Jg0xQskE7D8soap6xJzzNNQElA5JA0Yzk1AWO+HvAPQ+AouAZ25W3K6RLO8nfxxWIEYhr+sIumGZSjDak0ukBhHq59C8oZ6TRzbHmuMC/1s11EC2H6aaWPVr7MU/zUa6pSNxBzFYY4iZ8IfiIEiOIjjIPF+/zpzjcWVKDPhzVhMPkmLKkB9GNBah1+qh/3S0eHpkDGFMCbtsQzNaFC/m6+0mbhumtyaBsoGrWczCaK4rUMe8+v3hITkqnXPT7w1jSIRBj2dkBfUoCwpkJ3XBqel4prVr0KAqZ8TWDsCui1PY7vbeM15PLaaljuJUYHYSwcrq3XeFTwEoSKVLqjimCYivvwMYxtif7T3IxkfjWvg7FeE7J7Pg+mhVUscyGqMIZNvV2nNtgFsQgVv08czWIR+exgj2jXXrol93ChtDP+wfp4Jw2dESgaoounq9ARgtYgjOYgU72tHBaLCUWpGYYF+bIsPiJBaQZSkF0oVYUfDAjwDakiL9CiQ7suLhkKIjKbMXBzFmbVAfNRdTVbyAYtXEykySaKQgeqG8Elh2stS3a9t4PNLaCCKHQABi5FXArgGSLLe5vjYRNwf4Ad2u7uei8edFN2XegQiTAcbIMnj8Gtcbk+4jEY7AdcmE3B4QMCiG+OiezebiPih2AAKppFpGMFPbBKNQfmsknB9AYoBXBk+G62IxhlzzmzTTLDtiFUsvISrE5KxSw75QHg+zh26WVpiktERU97fE7+zMVR4QMP98BLT8v/X313YxLJxGKGBf6WH/EbfIkWoiRpoUgZG5sEcYboZcUrhW8Ix5YOP90nihE7BcHRIHS2SNU3lZWsr0+TG9mwvOZPA7GwjxClAweTFvpI0O+B4QiG169RIIX1EbAv9uHn5/kyhznGIHuYq88znn0P0jMChPceFSWOWgWW05BbRltc4OmFNhpuAxUdF4UCBmPkmfRkD82tJghVgeGoHNu6BZaDbTksTUn7R3FJElhRr7cznJCE/sIrSRpXOugiSYwYB9jLp/gEFaossXzfIDiEnxc4SIQAN1ngOEO8wEG+xFP8Lece4MiuxYcaBNsr8tg2mtyh6SUOLI/y0r48kRCMGpLdNy2wolJBUbtC0BWH/ihUTJjIw1xZ2rpBLoCgTyblc5Owt0tEhnsS8ly+Kvy7RAhWHY+YvzFWVqRzeH4OlpfveFEJgX8Ago+BWwdUUQN3LQjsg9AJCD8Ptcu4dh7VXECxgQa4IXA0KYdp/qYTaRXVnEBbymMqcVzFh04ZlSqEq5I5RRIRtinjj2Nvztu1sDGxCePnFPu5TooKjQ1NVCoaR/kidU/9VidInB7i9GBR5yJ/vX0Dwj4/dPkgoUGLCqs21axNNaXB/oC4EIwEYLQBEw2YM2HehKwFhisdrI2djfgKMl5qXqbU8T5mO3XcxiapE6O8vTOHF0EfjLSLMcdgqzByDEsuEcOE8WUZP7IVT7XH4zMbtgBdy1nbl/Vhu1tXK6L4CeMjvd7mQ0MAr6aINXSrCid8MGHDlAVFdwft4bsI2/YAb27j6s5oSGbX9r5g0WFV1ygqKkpdF2rOvkEPAEflp6pAsSIHJugXZYOt0ufbxUoN3piDigFPdwv4jflhqUpgOodWqEBYepNCIdndel2Oc64M74+K0lJfmzTNuq4MJVdn5DVRJFPWQHBSh/4APBmFPj+8VYCLFcGSTQ2mh58GZiMp3kYsWV2k7zuBQhzF1XHN+m1HOAkVcWQKotCHQhyHWdrUInHFwKesfcWC45Cy5dToyOXz/8cwPLM6LS/Vp0SPNLaVypJQvzUul7JlwdiEJE5c9/49XmxHmvCH46ArBtW6iKqY5e3bDWwT0leE8dY24oF3Q7LEhTlYviWg+H6jXJMijAIs50UiLeAXMHxjGnrapMk4u4leo4tLmQpf52WSxDGxCOCnjSSaBzf9+AkTwgj4sXRNMhJVDwitLoqG8nad1HfG3Ir06HS1iDpEviKk5nJdXptb8TrfFVQ0NHyESdLJIXo4RpA4LjazvIeGnyAt1Cl8aIFwgiR9DDLCAb7IrxAmQg/9HLYPc7N8g4XUFNy8AH17ILsEq0v0zhbZM6vhy3dyvJZgiAGKFEmRJusJZd4VPj9axE8sVCafRgTO/ZokFEI6tAdh0c/imEJ7n3vb9FHzQahFwPDMBciPBiAbJEGCvQxzhIPEiXvq+PeXkQnjZ5B29tLFPKuUaVClgYbKUfr/foDge4aqyuR5cQr9rct0hev8zPPiFpV8H2bnYWlFBjWzPYx1sBMe64CeqGSDr63AdyalhFr3ZoBYSIBFxYBiTUierZ7bRjNT3Nkivxdqd9Wvp6elQjw3D6urd+5vWBw/AofAmBROsF0EexXMRdA7QO8ErQVfsIBjyVRn1rxSmeNpRvqkHKH7wRe0iCYzuG5G5Dg9xSrHkYFTUbyFYgFqRahXN+89qdBgiQIZiixRJEuZJYrU10l8KSgMcpIyGUZ5nTJLBIkTo4sX+T3GeJ0KWSk1aaqkQddL13TocCoMewOQs+BiTUCtgzx8ihjeGw7MmjBpSCa4aX1U2vpmUn1eJq+5OUXu43hIjkXNE3pQHZmYHO5NkVGUtbxYswk/GYbH+uFYP/QmBPA2LAG8uibZ4VgQppdhpSxZ4WpjzVhjq9gsCdpBGBuXBEFUFBZZN+vpyA5pyDHr0uBXQvB3DSg40vDwMEGw60opo1IR0Aseqrc2IgTPRllDQbdctHCI+okj0NclALi/W1YLYzOw5LlZGNurcGwb43nI1WG5Bqd6IaijvZ8mPJUlaNXxtUMkKo36zcx7oyET/2vn4UCfUCIKFbmVyzWYW4ZrM8j1qCuigxZShZbT7oNTcTgRka6rlCHaWzUVGs6jNoFaFw1cMoCBQisKrQLE8w64LYDuaZfGEZvXAWxGccnSozY46oM+be2Wy9hwyRSThYoLxQ8TJ/0hhlmWB0gxcKFdTFXKFTE/XFyGc5dk4XRrXOaQB40WP5zsgJIBUwWhcPs0aPhlmtksHEuyvpNvCbNN1bw1liEsuMqdCZa7YrNqwMbIl+VxZ2xGgbhr/3B5m7P48LGPIVppQUNFRaVAmRVyqMEW1JhPQJVZXwPBtYo8dhMXp+D9MTg2JINxexwWcwKCxxZgMQ+mjVjE16iRJ0YXSYbo4RghEixwiQIL2Biej5qPD9qYYafRTR8v8BLP8yIHOcIC84QJc4DD7DP3sLD8Npz5ITg28ZJNx3KDx2d0Hk8lcGihjSQneQoFhQIlCpQo3umVGghCoh21I0Y4MEs+XZFjW7Gk2hXQoDUAUR/ptA9/0KClA4IxcYuLtErj+fhpsAsBumlnD4P00cMCi9RpMMk0Ze5vtRYnzD66iBJgnAxTLLNEkUHa2Mx+/n7jowOCm51ECgJAFTyE14AfXSb2dz9h+YjLrXGZU21HpDKLJcjXVMqf34v1XJ9wB1frsD8Bv3FI6lVfvwWjefn7li0l20RYOMCxoMi31AxJ45Xr4nbj10S/MLWRsHztuiTHcpvx411D9N7UMISeEoMGa1ma44wpqJ0RIrRTEe6Xl/l1XY/L1vDkNz2+oqJIRaltAAaOQPuQp3BVFqfKZt9BoyqE9fQY2AtbN2CvUuEHXCLFKlUMKncMEC5QYpFhTpHmClkmaVDGoMJ+Pk0XR5jlfRHyDwehIyEtxiCA6b0adOnwRAjSrpSWbcT0fawhG7hcl2zmqAGzFvdQG5PjoMqqVFVFwNsx18qK3XE5bamc/Hmftqa+08TnzcuKdaAXJOurer1QzSJBTwKO9UkxAKSc3hmHuCdzOdDq6cO6Uk0qeV9LVdZw3k5uXx2VFxmigkkPUWxclqkwQU7UgJs7rSMNW3EFvhSEaRvOGWs78TDDdUVDagdmFw1c/LU67ekCM8urcGgPJOIw0C3p1vEZuDoGozObaEvtMrJ1eG1WHp8dInwpRUCxiMagsxP27YeFBZj1mjaKRUkavX0F/v33tvm7prdAa14UDpLpLVlr1QnwLhK2rVKoyuYVgK3iTg3qrcIlh0sJhRiq248624XCMAo9qHSj0I1KBw7LWLwD2ERUeNoPnw/KVyy5spaquHDFhNcacHMXIHj9PfNRSiCvZOHVN+5+vqsDurtgbAtlhN3EUBJe2gef3Q8LRfipDv1eDiVTgusZGSfszQ6cK70N1d0aVwAafmw28xh+uPFDTnOeawzRRwet1KizrBYZdcZx+58WHS2zLhOTqt0/7/vGPHzrXZhYhOFOaYYr1wUI35iXDER7HDeVpUiaImlCtNCghEUdgzJF0uSQQeDhtWs9muigk4McpYMusqxQoUyOLEHCtNEhq/qbYjxyaCHJP7S/QAftpEizQBoHGwWF3+bXaCOJicFb3CGx1d0Pew5hJttZmG0Hfiwrw5mSOMgl/BD3wZiPeVqJpJdxTJv2IUj2AC6c+zZc+JbKk/UuPsUnOMYR3uc8/zP/iqMcYpwpGve50Ah5PUohApjYZClRxyRHhepDtFX+aIBgv+51hVrSWbSYFyKfT4Pzk6CrWJbLrQn4o69CNAwokM7AzDzw84Owv03A77WsCHhmqnCwFf7JMaia8I0xmC4KqVPXpOySjAglYm+XlGIuzQoisrxu3+ZMtS4ymW2+h1OCypuwaED0U6DFxRbPmBQ7vMYNMCX1UNuCKmU1JNnU8HBDPgOr0mvBJ/8xxNrktfIqVPIicl3ISIZ0NcU9734Lm/NMb777WLzF/06S/5MhTtHBAQACxFjgEjO8u1ZeioTgsb3wu1+RstXMIrzyLpxZhaIDAz4BFSpwqwFVB1ZtsPwwf1gkluoF0Orgr9yz9uc6sqZI9IqlqOEtan2aUBb8+lrSvpmkDuhrpzPokwa3pnKDX5eeS8ujgiuKrIe6W6RAUInIxBX2Q2+LPA8wm4VrC/DOOEytyOFujQpIrpmyLduRz9qbM2rQUHiWPr7FTQ7ShopCCB+DJIgS4DzptQq5ixzHogtfq8JNU35/JGX53UXJr1IKuXBjAlYLwlcd7JXVyvQ8ZFYeHADfGa/OiNtIBKJRUWT53/41pBbgv/tdaVJtNKQkfSsl18G2LnKGI4s03asUqXX4+gqYy5Ax5F4uWdvqoamKqFHML+8MkkRDcGRQ1t3XpncCni1c8tgY6HQS4J+jMoRCiydI72JzCYMooNKqilFE1YX3DMkC14EX/aIx27oDfe714R1uKuxEkPHDH5lleTyM2NMKnxyBE31wc0nGAE2FRACe6Yd/chL+jx/Dte3mjXuETtDLaoLreYNZDyqPuIvIUSTXPPOaDntOwARSFYpGRBA/GJUy5fQDKDS8cxNuLQgI7krIAF6qySC6iQvWCpOc4z9zle+g4cOkQiggx7/pRup4bUX1HZpY6l5/h/mIKyUaOkGCRIkTwA+AhUWJItX1mdVygTPuJCc4TIQwYYK4QJoMaeSiaqOV4xy7GwS3tMKRE/D8Z6CjBz63H5bq8E5GssHDMQhpMmhlatyadMEUl8Lu/bDnSXjjP8BjHOQ5nuJ5niVGlAtcAeBaUyv6PsNB/ApqGNg4aKisUKJM/eFIbHrx0QDBIGjiUJ9wCNvjMLsixhiWDa0xSmXp2ymUhNvkuGJSAcC+hJRMcw0oNCAekEaab47DjSy8PA0z64bvdE6sh/MVaYx7dkQcGX4yKsoQ6bw8ypusRkKDXufFFo1pVgaK34HSy+AbAKcKTsGzwNs9d8Z1xEM+Ow+ZCdHya+mERLeAYaMqdoerKQHWqurRse4Le7ikOM//zWdwcWlnHx0cwKTOBG9s5Fe1xuHkY/Brn4XZDCzn4EsfFyWAq9fhJ68KOhjzUP24IeB4nwvKeagmpXkwOSCuU44NpSVpl/aipRdahyDcKnw5VRP5oEaT/pGVqruuyjjprEvcNV3CWkLyfM3bvKnBHp8A3qZRi2kLCyZfFSWHmSyMdMBAEh4fgP6k0C4uzcHX34c3b4l2sRwxyJZ3UpzcGCoKv8BB+oijolDHIoqfPmK0EmLKzJFWy1QtS9DMog1/WoMlG9K2NPz/l46mxML7V2VRpCBOc36fZJWL9+Zg3080J7ZCQRRa/uRP4MgR4QX7vE3bjjQG2fcaS8sOKLaXMrVhyYBJr7Gy5tFOyo48Nol4GJ46AL/3y1IcWSnA4iosZGF2Ca7PwMUJeHxEkluJqOzf+IIYd+ycJSLNbQpRVHpQ6fcUJOQ1lT2oHMFmijbVoEMVKvmSI5dKVJHRx2Dn6ye/9zgCHENO77e52ybg72v0xOB4DzzZD60hWKnKuGM7kAgKQD7SBR/fc/8gWMOPThANPwoqLi4OJgoqFrUPXgXBtmDi3NqFm+gUmzFNh7f+/MH/frYIq6W1HoKDfVsi0hKLlMnIWO9X8OkuyYDMgariDU+KVIzLNVHJ2Cx8ujdf+D1WmC3/b1ZkbVuqirvt690s9tHFMQbowaXEOVr5NG100EUvJiYzTBGnhb0cYALPrtWFdzmHicU+humknSyrlKlwmevcYoJzm8nDXT0LmRSkZuCf/gv4wz+DP/49eH0BRgvQFRZaRE/YGxTknHYMiT5wk3p4iP300o2FRZZVHlaefZYVvss5fpYn6CBOjCArlGhgUXuIE9xHAwSbloDO1bJcweGAIJhoUCgLPUkY6cadWaZatcUg6c5Go5jXPR73Q1tQxPVfm4WLy8InXP/eJnIZy8ArV2C1IqnBTEEe6bygos0mC387YpXpF2Br3NnZ5wK2NAqYM95ONju0N48wQXroYJAepkgxz+KGlZDjQHYOpi5Kt2bSsxyuFmH+BoydESBcXPEqU64nc+K7l9/33SFDrHxohTHyzG147na0RODAIHS2ygZrDSmj93dJO7KiwvdeXuOtuqyVmIf8ouJQiXiCmT8vFnLf+b0Nm/CFoH0vHHhJcLKiQKRdrJFTl2HibZEoDftlgDLsNSaNpkp/XqEGRU0S0LYKWCIF3aRNNEzpm2xKr1YNOGT7uFI2ub4Al+bh7BSMdMJPxuDstFwud47LuwHANi4XSfM/cIrPMkKJBldY4jrLtBHGxCFHjWW3JpOO4UIZ4YPWePjKEPcT4aDMGrWGHLxK1WtircnsoWsbDsqLz8KBYUkcFctw+aYsaCfn7pGp3SRqNcn2NuqyOPpP/wYOPidVmuZ5afKDVZV7c6crtkwCfm9wzyN8bNtrPjQ3P+CqKi5cJ/ZBV6s0sHclobcNTh6WQ1CswatnBQwHfLK+d4Gx1G4nVQWBpE09YcdTknCRcotFs3RQ9Y57lwYHdPkaAxoM6/C+IbzgnYTJ2gQyjMJXgBIu30cswD8Ml+EjCU2FPQPCZy+Wt9RlXqlAtuoBJBeifu8saZAMQVdMwPDiA9j52pj4cPERJkw7LQyS4TJ18oCLRWP7ZuWHHaoGfYcF/IZaJAPcvReOfRpO/Cz8+9+Bcg7yi/en7ebizZneRTq5uI2ouujeK6qMK/v7pS3BtmVYsmzPULEBOU9xqVz1QLK61hMS8CqJmua1L1he9ti8vZldUZ22izaifJLDnGQfDeBf87vkqfOv+AvOcpr3+DHXucJ802K4VADX4RYTmJjkKRAjSisJbjKOhcUSy1TvnJ/3PyacYJBGoUYN9hyEggWZMpFymWhWRY1qpEu94iaXqoBp4w9Dax/4gwoHGKGVJCnSXGx7l/nQDMvzD+d6cxHTp1e4jILCKfbjAksUmOfOhqv7j48GCHaR2as5gzVM9FaxRDSXTbF/6m0F28HJ5O/2sZ0uiiJEe8gjC9twYRnOZWCptjkha7UiQLfcgBsLUu+ezYp8WrWx9VUf6AR/GwS7oLEsBFVrkxZbkDTjNhEiQJI4g/RwgkM8z3FmWeTP+VtmWKDeXA25Qn+YOu85KsZlgVgvw9h7kLoJheU1atbtzbvS5alqa66LZmOj9eF2YdHYuru2Uhc+sG3L6NEk10ZCnsXrEbhwC5ZnxabL8ZqKCjYsmEACksOyg9WcWL6VNqZLXEeSxZE26D8utsihFnGGy3sNLY7rWQ+7a6DCRdYgdRPMIDSC4Aa8Fyw57U3N1zuBSLUBra5GoqRSqbip5NAAAAAgAElEQVToJahmFTKTCo/ldWIVh0XXYRyTuQeYfMqeAkCRBv2e5uUsBVQU9tNKiQZzVpGi4wExnwIxBQr/5WkQgJxz1xVrLVgnz+HNGI6DFvTx+BE4dhBOHoeBHqEymRYc2QdvvAuz6d2D4HZdGrusuiRr57NQ8YlQRa3quTi68tO3kxHQwWt6U9aA+3onQ++7+XSRw9J16RV0vCbMdFayuvmyZIYjQa8KEYU9PTCRgtPXIRHxzFIMmZgr9d0snuTidUhjM45CEoWmZnADhwVclgGbC4aA3wM67NM9yo4qgjeTlvxsV2Blm403ZZRdIAfM4rLs+WW1IAD5/mpbOw/FD+he34TlCe5ssqOKDu7tYepxFA56e1bzvkkDsbod9/b8HuHzwakTYkV4dVRSiHeWFNqTmKbJzUKD798yOdAOvXGhXTkutIVl/LmUhvOp+z0C0GwO0PCTZIQT/BZv8weYVLExUTAJopAkwMJ9Nijtbndc8XE2apDokjJlMxvVNSKlSrMhk87DiHt1HAMoQjF69gh87iRcmYDrU7CUkzW5AtSD4K/Kveu6a7lMy5ZWHpE3XasyOVuo/DxI9JNEQeEq8/jQCOBjgQmKVPkL/g2nucAEEyyxSKPJifU41nXqLLFyW6t5kD4sLHR0VlglRXrjxhKtYrvcMwhD+8Rw4/VvCy+kYWMs2TRMCHeokMuJRb13UErLMH8V+g8rdNGJhspZLjJdG6dg5hC9zu2jjX0USWPe45p0cMl577nCLDYOBWobGvYfND4aINgLXxy0MOhRk3C/ieqH8pxBeakg6b7InSr3XtxYhc4QDMQE3cyV4L1FWKxuPcs0Z6N8VYBvW1SeX/VOmuqXUVhRBY354hA9CC0nAMVDWWlBacG4KEqHvWVoIQ0FT4g0EBV06mxczQbwM0A3A/Swh172McgI/RxjPykyfI+3mGXx9vvNBizPrEmhGd6fzKW9RXeDDd/VdeS9qsdx0nzclj+plyTB+ECRK4rI5PUpme2baTfHFZTj80GsFdT5jdUTB1GEiCiQbJW07vgb0hJd29ht6NjCkTaqYocc8/a/lBFKRN3LsGzGu3WRDI0RBcLIndCQ7W9lT6wALa5KHzoJW6VqO/hNhd6qRgcah/FxEYPLGKxgPxAIBliiwlnS1DxVRxWFAnVi+FFRUJqqGq63c3t14al+GMKyBDRuUqoM+FzCYYdg1ObJo/DFlwQAg6eAosLxw5DNw/nrovCyHRCOEKGPQbrpZZEFFH2ciG7ScCRzU3ahkpJrXtfXEne24/mN7KRpzWHLN6kqBIPQnhTKc2uLbHcpK0Y916aFBlFetx5QVZmYw55HRc67Vku1tYrvTnmKa2HiMIPFj1EIojKMQhiXGjY3cUgBNpM2vF6XXspBHZIK5Bwo2/JIAsc0mHUg7RUX1n9zhbV8s4JCEbiFy+sIIA4AQdboFY8UCCveMOxR4Nz1a3JdepAVD3i6Bih8EYUngRwuKyiEvb1cxeU14BZbMptVReg8fV3wpU/BlVtC72p2YTvOWq9IIg4Ng9GqyjdHYXDepDcOez2D04YFFxdgdAVm72kytj2ZSnjA0ggVJIFOEEVGCIaIM0KIBAHOkGGOR0NBWtsZR5pQChnJwkRbhYeXTUH/YQHI9dIHYowCGxV+An44OiL32tSC13Du9WgoAO5a330zL9bMFj/SfUQhgp8EEWwcplnGxaWVKDGCODi8yd9wlult3VsrVEmR9tQgihiY+PFRpnJ3JrjgOUl19cHACEzegNe+JQ13eIYyrlxbOFUYiN6+BAsZGH0HqjkXWkoUikXG3UkWq82q993XmI8wETqJ0I6DTSsjtLGfGnnqFGhQoMj2q8HZXZmC7zw+OiBYhcgeiI5AdD/EDoAWgNxlm/G/WsSOJYTDuxk/aCwv9IfeiFAiZkswv4vBwLDW7BwVT3zX1yoZX81zcwsPw+BvCx84fwYq41C4IO/tOAJHPw3DTwtqu/QynP+2vBZtExuWO6TWOkjyDI8xQDchApSpcoarfIZT/Dqf5xYzpFjCXjfF2JZkfUtZWYD7gtKLYG3RJNzUDQYZEIJR4QvbJtgPOlauluC9a9Aag08/K7Vg2wErLxqxEymYX4J8aXNwUVkWNGvVZOlZ28Q20AWzKoZT2SnoOihrj3wKlseFQrxdGDaeNBtrM/Y2jawasB+d/ej4ET+iJCoH8HHUa0z5MQ1S2OQfwtQ/RZ5ZCpwnjR/VM7KtM0eRFCWq61fDGnBMh/PmmunXBxBNW8zmz9uakLXND6RPh45W6O5w0TXT+11em0tDJgu40N4Kzz4O718WekNuE1wik36IEfbz8/wCn+JzvMnrvGl9jZbYDGW3zmgFcuaa62Q8vv7zglt8njT4bfOSXWR4dE3EZHo74fFD8MJTMDIgIPjyLclmX7gml3+zxNpszFRVSWTVPfm2pTysFiH9AJU+lzQm38elhM5xVPpwsbE4g0Oapobb+yZcNeGQD57xCXA9CvS5YopXVOCICq9aMO1szI9qyHCiI6qsJi4pXF7DpYEUJkShuMlUfjThGk1gK2BXbQE7KxtXNNCS8pwSACcvQjxq9VeBMC6XPPgeAVpR+UVcenH4KnBx8w36fNCWgCcOCX9H1+BHp+Var3t62aoqQNl2QFXIGEEySy6nC3IE/9EJoUBkq3BjSTLB9w6dNTrL3WFjUKfIMjc4x3+kRg4Hiw78fJkBPkEnOQxi+Pge05QwMURj5tFGISNlScuAuaswec7rzv7goqnKkyvBu9fg8DCklsUhr1SVaotpyik0bYEPDzvDe6/QUEn64hTNGlGCdJMgQZgAOgfpZooV5sjelgXTEAHExh1nsEadmgeSl7iHwcLoFU/jvQ6paTj/DlzbqLtr1uUU+nodzKp5+8DUijB3BeauunTvv4pV1qna2/MqY/Syn88xyPPUWKVIiiFeAFwyXGWeM1znWzs+Zg8zPjIgWFEg1AdtJyF5AloeE/wZ6nMpXCqxOBFem8k2i/ny7oDvVhEekvqaHodgD0T2QuwIGKuw9KoA4PLoRi5wICL71blXDLazM2sgODuz6WYOsYdP8BQxIpSokKfENCle4zS/zZc5yl6uMMrSOm5MMCq0iHpFsqNG3aNHtEC1wKYmGc0w6/dH0doyKjW4OgHXJuH69Br5yvBGnJW8jEbbxcL2ncRGTZLqqSuiE7x4Xb73/HmYOyfg+J6xytqMXYXtqjMKko0dRscGqt4gVMMlgspZGvyQGmdokH/AKUYBFimhoBBAo4jBKFkC+iYUOMV7lN0PVKPKhw8dHRUVDR0dnRyrbKfhuHcQhvrkMvjxWXFz/OzHIb0kOALkUmkYcHAPfP6TkMpsDoJjxDjFJ3iOjzHAEAYGT/Eszxkv8J3aHzARfJNDEYcxXBa8v130/o7iNcY06cnRiNwfhin70cz++H2eDPI6MZjmOtvnE+O7E4fhE8/IY2RQLHgVBU4cgaFeKFXgu6fhVz8pmd9IUDiG+TJcHJdqeiQkGePCfVesVaSk4eBwA5MlbH6KQg8KCRxmkAzN2rmpIUD4Cxp8SocJB2ZdyHlv6VHhaQ0y6+SPPcaQHBvAj43i/a1V8O4LWU/W1r33UYZbEdaZ2iJS62oL+PrANwh6N6gxcIriTF97pRPXSANTuLyP3PAtwAEUXkThB7hbgWBVlVJCuQr/4o/g9AVZtVmWXDSle5+8r124n2+4faORRR0HGxuDiteWaFHnj3iBT9JDGZOfkuZn6OMYbfw149wgR/GD6J6tl2VCyi3c8YKy8df71Qm/R9geJckswLtXhcbdnpB7rymlaloyJdn2Bzp83g7LD3NDCoyvckrZT6/bykF6OKb0M0wHY+4i/z1/hu1N4B342EeAdyg/2P5Oj8pjm9A12Le3wY23NumBcmFxFBa3ul/+P/LuNMiy87wP++/cvW/v3TM93bNjBoNtsBAkAYIEBVIytVBWrNhSlMQux1vKVUmcSipOYlfyMfngL05if7DLKsmOJMuUyZItiSJliKK4gAQBEDswmH2f6el9v/u55+TDe3qmZzBLDzAzAJ3/1K07ffv2vWd93//7PP/n/2zAoB0e8At2eMrb/o2ulqIe2zyqz7jTvvvB9+ND4ieGBKcpzRl6tgclQtoNq/3y1kCIp/5smj3bstmldn3nhjuB2glGv8DIsww8Sq7Cxa+QJvpmXtTozuleq1fpNPn+b/LSV8JAunoN+esTIpH1EN0at0VNw4JlvXpUlOXUsk48RedMWbZ6JQocBTeIUuVKdzhIk4KV2Qdt2/ee5lqqmwwLE2XH+2u4h2T14nf2eKUp3/zhXRldanPhcfFNzvwomHi3myydDw5rm8YcxgSvp4RrPcXXURL5koo/0jCjqyA0oy2LfENDn8iPtKxeZ2cnDjJ38voLjYrQ16sq0i+0NxiX94C6U2Jvip3LpBVXfXLBlc5xrZSvN4MzxJ2TS90UnewfoVf8Djv16dPUEHSKgRqHlPmKlpbzpyI6HQMjbXEcIqVJEgJrP/PZoA8e6AvNC06eCxKDSvn633/QEx73pDHbzJt1yQVbjBkw6H+q/ysX6mf9QeE3VEd+S2+Nk7Urqfn1dsqdOBDdQp5qD73VwGlyuVDbl6TZZJm5IhYKIZpdLjI2yi88x888w8P7w/tF4b31RpA7PPkIv/gF/ulvc+R8GKImRgLJPn4xEN8UTz3IE/tDYuTifJBE3B4SG9OQqXld83gXRTkHXO8mLOCXi2EIOutKEmEtDevCfTl2RkN2pPcpyDvqglOZDCunJBGLJZed+lLh8rvXRXFpO/QcKmxj4JepfJridnJDmSSiQjzJrO0a3/8N6fIO4XitYRQ5qTekN4ugNZrMzoc55tDxQIaLhUB+mx823r1+I69HfKMNr9262j7R0baaFcFFErEpNe9Z0NTV0lVVNKWuJCd3hyr4b4nF64S6n/hMqMqOovBcrjAzyZG3bx6p+RBI0hCXOTMVMi753BWDiTQJ2ZjOjYPtdxdRFOScf/MZX902SNwURWfouSiqlqWnZiUX+3kh76mVkuf0e1DF46r+uZm7uslxm8Pf/fCfk1NQ0qtqVMtK1mH2X+u1Rcua457/8F/yAfETQ4IlLL/N5DcY/hStuRAJblxi9YRw8Y72B/JbuwsJuKjElufC/8f/Elt+msIga0fpe5jl13wq/aJDvmvuWhF6rsAjXwrahNo80yfC/4s9XHiHSkxMrl5Uts2qvNcdMW/J0x5z0H7DBgzpd79dXnPIYacuezNGEQNbQ9R3XRN8+aBZELdTfSPUlx/SaT4oTG/TMot8TAqxm7u0cLjLA0u3w9ypIM+Wbk7PHBUZeTyoV1aOZzrR9Vn8Otgu74sq/qkVsSuGAutB2PXpauPavNwXJBr5AoMTIRGwdInFc6xsqPHrEdkiZ1zeDjnb5Dyk4KeVnRL7lxrmJWrSqwMmcfZYnyfPdINH8EdQlp9ITLpo3ISnPWOXXXpUdXWVFLW0HHLIaafMTc67OMW6j9tLb/LmYZ5/gYMHQlO5ZjsUyS2tBJeI62HchK226dWnoW7VqlRq2ZLd9qprWIg7vjfPzgr//X1cavH6Eic2WAS2O4H4roauq5crwvP5K0G+LLutXA7P9W5IZpw6z0P7wqObhG1ttsPEul7IPjYaiPzkfIg4vXs6cx3ZaNu3NVj9lVbCd/dXw4R9Z5CiKzJ+uThu428aKY/kOZvQiMKibC0Ky+XplBED/rafM6jX7/i2ROqMaWvayvIKcpku9YqqqHnVt9wjREH6kBsm1xOIb66X/FD2PEz5sa7ma99g+TMiT2BHdhQmpf6QG3ikX8a6Zcyl2YywRXeIuHVl7R9lXVmy11NXyhBvjlSaFcNFPmfUt5z1bed0JCI8a8LLpi1rf+BWtteiJ+tm2dbREQdSe/DZ4MGZyzN5kqVrAis776N/iJ4qPb2USqEl+8gYb/6I2gezyyiN0P9wSNJ2lll6jeQaKrBSy+wR81ckSd0k6wDfuYccuLAnpCmKByjt4+y3+XxRuj20lU/7K4z1s6WXZ+/j+fc88Wpqprjs7XzqCzNF+5X9r8b9MzNW7/Ggn9Or1xNWvbip9y8775jnlfRrWFLQI9a27KLVa/nSPcZPDglG0mbme+G5diqMPY1LLLwstDtux0HzW7rDu1UYZOiTjHw+U9oXkAvh6PZ8KE3O9zmy+zHbprtKjR+bdPrK38+dDix19xOh1+DqbCiUW5kNjDWqK6+VDZqw1XNyyurOqTnsxy445YKthm014oyLLpoxZV4iCd3S+imWwrgTdzaOyYEE11fodn5e3Pk8xgWV3qwQ+T2AH+P7ZCbXHyc8/Azb7xOan5wONRZn3nv/vJNsMu9aGqayNQyYwwep7mTmRRbO0lp0w1FwuZx4daIleSLV+1Rwv2sdovkWnVM3+LIoDLI9g4zuZfxB6ktMHuL0y8wcp09kQM5WOeNytsvbL++Agl3yRuV8V1uv6P0k+PLOC5Hgu12FdAt0dc2bN2zYIw7aYquurn599tjrHW/7it/1RvcNqxs0ZK12eLx7nHOTISKbJJkUoRv4xvWwZMmieX36FJX06Zfo6tNvwbzXveKHXlDvMtnk7RU+N8J9Vd5Y5k83fG6y7vSw/nMrFLXF3StuElEUWt6uZJxkfjFrvNEIUaQvPp1Vm2d1TK1OKO47N52zOLBd3JOz1G3pLq7YNtbw9HM88XSYgBdmg9vRyXnOzwTJxPZR4vmKBS3xh5qeU6Gr3JDUvI30tIuvdUKRXD4K9ajLKXMJF1IuJNTTpu95R0Hee86bt+I+4yLU1TW1dMSXaVuQxyQSyU2lMXccGQtPa1mmsBASdVFZcIkQutLn+n8gLhwhvg+fFJauL+KUUNp3E7TboeLxshvEndy/jSvagivtCjf7HcGsEo5ZtlXZFhVbVGzVo6nrJVNqYvU7IFTp1ysvr6sbnCCGhsPFP7iVg58LMogXfv9qErxjL6Uy/YP0DTA8yu4DzF1i5hIjW8Mk1tp8QGbkM0GRWNlOaSj8X8TUH4dH/dyGI5SGgH63eOWezufDeHNPg8C5PipP0/PTlB6ivY/6r4cOts1MmFwtcmBbKBx4+4JPFyPjS0XlKHFU0zktQwr+S6Oet+zsPTWHz8nrU7ZXyzm3mniWXXTC8wZMiEQiOSP266jf0iHibuMnigQTDBcWX6fQF4hPZ5nmNHqzypLeyl341oRuPXs06KxS2hq0GGkn3EnFAdPVvPLoo+KVemax0KBbC6HKlRkWzrvcPjJNQ6e4YkNprc9g84CtHtPvQeT12Cn2uFlfN+1FFRcM6dejrK5pwRXbtaQbiuG6nWzwjzZKrFpadZLuZ0mfE0pgzguDaxEPCoN/psf4GGHvQX7qr7DzACvz9L0RuuBFuWA1uZLpnzeL4iA9E1QnKI/Su5sdX6bQS/MbtBbccCRs9qUuPR6rPkv1i+F95UfCYn7t+esT4W4rnPaeoeDfvOepUBeZKzCdSbHW6/L6RIZEtso5oGBMTkPqkq41aZAtZxP5dd0M7nLYrVyhtzcUkazeJFXf0VZU0qvXoNBGr6rXDjsR+YEXHHfc4nV8Hmv122sgd8oJFRVLFvUbUFJWVTVk2Fmnve0NF51HcD14Z5WxMo/0c6CXHyzcuNFbkgRye6simUbrSjFNXzV4HedywT52ao6jpzh6Jqc5totSWafRsHvXKc8cbPiFX+H+hzl9PHjW53KMjtE3HCSU6STVqGI17XzIDkmJ1HJ2hfVJrVqPNMb408zHNhXEAYsJUymTCdvSnQpyzpvTp2KHEVv0KyqoabqoK9FVkBeJxBJleflMJtGVSiQ6GSW+q0jproQO9MV9pDuE6HCm8Ug7AscsTJGbkjonjIV13FwbeRndJLCou4JE5nfoSjHc+uubw3pzjGl1bXFwtFHSp2SfARUFsxq3tai6THQzhJmjqKSkqRXO9MAwux4KA0XPAPc9RqWXtaUwQU2fC4N33AmPpBsiNyNj7H8oTFoTu4Jl19rK+0jwsLwReUPy+uQURKbEDmsa/ATDT4dxPK6FQEd5PHCEeI2Zb9PcUB/SzbT/6/d2MR/0/fcWCbmRoN/JVSnu59gEj3bChRp3WaiHdNFyg9k1B+LEvlZkGSfElnSNKHhOvzfU7ykJTrW1nJNuUnvXUTPnuCP+2KBdBu00aKeGBbmPmIbe9rdHUbQLv41twrj562ma/pMoikbwb7FXyCn9Wpqmi1EURfgn+EVhtPmbaZq+/mE2unbmei82w2Ok786Xd8arLL0eRMjtBfnShCTtSvsOkO8LIYfSFpKWc1t3UamxsBAYev0s/VspzVL/XlgBVoeCcenK9+kk+laeMtp8wIBHNM1INJVts91f0nDBtB9ZMmfqOnq1NAm1B50W3fGwibnC1V6/SVzGLuxDS8E5I8rI6ZhRc0bH4u1PUVFOiIh/8KhCJC93WUyQZNNmGHB33M/BZxjdzplDDI+FIMKBYnDcOXv49khwz3ggwKVhiv2UtzD8GM1ZSj+6vAnvR5H8ViqfID8abJhyvVQ+SX4w+JMuXYcEx+3gV9w7Egr2oig4dkS5K5rlulQj2+NCpgneIqeLt3R8X9u7OuJ8qlQgziyX08y/Uu6KYUl6lzqllsps3cr2HaGw7NzZMI91Ou+vZyllXcramV64oKCjbca0WEe/fn36snP+4XDWKatWnHXaVtuMm7DHPgUFb3ndEYeuev9cm2/NBuI7VKSSu2m3400NI504eBk3fxRI8N/9tfDaiXO8dzrvvXMlhxf72bOboSFqaya2tDz66YaHHl/TaXP4zTD/P/IkT/0Un/gM3/wqy3P0K8p/aP1mKsie6iLD0tAX7vJvjiQc2TB/RiJFeQV5v+Yp81aUFQ3rMyxYRb7sqJqmVKqioEdJj4KGWEnOmvZlEtwSW9XSvtsrtYRkkeY7oTAunzlDEIbd7gLd2XD/hut2xQ2dID4SrEd9c0F+l0ZuprDuV7ampaxwucXsOlKJBaFrVCRSVfQX7bHfoAVNqzo3XJSEOF3QDadSPSraOrqZo0ReTkVZLFbXCNH+UpGRbWGwTpKgAdtxgE9+KUxOr30rkODpi9TWaNSCwH5oNESE+weDVdf5U1w4zeKVua4sskfRA8ruV7ZHybC8I1r+mTm9W2P5cpimG5NhOupvM/gJtnwhRII3kmCu9n+Pu6EwtR69fzy7OyhmF2EmZE/qwdbkvQN86l0GkpCWiSLRsRmjr8yZ+9Epo7VETqSW6fYG5I0qeEDFiPxVy6a7jVRL4zbbInfUnPRtuzxjwA5dHXXz1nyInuF3AB+Egsf4+2mavh5FUT9ei6LoW/ib+Haapv8oiqJ/iH+If4AvCzn3A/gM/nn2fHewcJd8ENMOC0H/MmBBQylYlBSGRM0pydATwS0i30u8Jup7VBqlwUptpMWXT3BwiZHZcNR7I94p8bstQ4tPGvBoFok5JpXoamqalmiKNuF51e0E65JiJbM4u2qBtltQ6S3JWTLmvF81JpWa8aIf+7FJU7evCC70B2F2a877zH7TmwhsLyPSY1TZoLyyrpaGeU2LIqkffZ2HP8OuB7l4nNkL4RFFVzyNb4kcURIG9vJAqjRAsTfYOveMU7/IyjHai26oCS5sDVHf4u4QvI/nM0K7P/yu9y+w9FuuO1clXc6/ESTgqzPkS0EGMbVh/LgoUdU1KGerxGGxGYnvaXlNx3IhkRYyzfcYUR+FLvHFQIDz4+Hwd+6wmiWfuSfcdx/7D7B1G7PT9PWF7muzM6HR0PohC04WZXU1dTWJRFVVrz7Lll1wXk0tM5e7Mz5uC+YsmLMu5dlup2mX3he5Wt/GhU6IAJdy4f93At1uMAn42p8Eq7R6k9ffi7w7O+BSeTcPPciePTzxCU6f8vKlId33+o32vCCf56Xv8MnPhczw/oc5cJD7H2F2itqF5I5ZqqYWRVk75XRDCjKQnij7R0XJuGF9evyqZ0UirzvhgnkzlrzrrG95Q4+CfmXDemzX74Atatpq2qataYp1dNV1rN01o7T3o/U2YtrnKD9E+QFKB2gdpf5yZpf3EcqGboySELrOggJRPpCl60TbIjxpl5edsd8WscQ5i+LLMpQQ/1/QsqDltBX7DZhWt1WPJEpDQ57sxtiYPSwrqepRVtSVKCspyGfLmG4W8e+a2ygd6cbhRqj0hVXz2hIXjlFbplimp+/KexfnGN5Cb38gv1MXQ1R4ImRLrl3z7Va0W8mogn55WxR8QsVfMuCCttenltXKXUmbzlLYl1w5a97aDVaql4eb65z3KApFrbVmiBDfdeS3BsG6hGSNdI7OiXC+5zeIluNEz4vn/cr/MuU3HRXbqS2vlSm6n1C1T9lDKvareEPdzF2jwesynXAAo8wp/Eo3ws3eUKlJr+ox5JI3zDlufrNZmLuE2ybBaZpeIiiZ0zRdjaLosFBd8Mv4Yva238J3BRL8y/jtNE1TvBRF0VAURRPZ5/xEYtGMnoUfGF54S69+W+zwRuM0w89QP2Vk6bzq2kUXnA6mxl84y98rs7fMasr5hGrE7hzNVPH/HVE5Np6VNazKKaiYEFvT1couuFsjbtM7FJ5bV0VIdwhpv9/2lN3+ok85510Dxjzpy+DH/tAptxmgLw4x8GCQhRT7gz4l7VI7y9px6udv8seRimG7PGfEwwrK6ubMOWTJCX3mDX1q1al3UpOnAqlv1UNQodMKEeDGdeon+pWyyTcc4+iRgt2vVg0oq/+4Y+3HbStDbYVHOlpznPsDzj8fzMHFrmtqWtxNzzOUHw+p1mQ5LN7jefL9YZfLDweN8I1w8sXwuBGO61qUOp4lKmckZiVKhSATy0UhpZ92KWwJQYRihe4UnXdvcpg/BD7/BT73eXbtCR7qZ88Ea8n5zLN82zZqy3lri0V5eWVlJWXvOaStbcG8Rz3mYY+AQw5lUogPkHXYJFCMCJgAACAASURBVCZduOrnQsRgkfkNkc7FuzDRJUmwcfvOS8Hy7ERt1OrABLt2Mj7B2Bi/8qt8+8/ovGx5vuD4IfY9GDjC9EUmz7OyzNJ84Am793P02+6Y1CW1LPji9oouSyQie4zZb8KEEeFM5vXrMW/FK475Az/yttNiXRNGbDMU9jmLMg6qeMKEv+oTTllw2IyT5s2qaYj1ijXFJm/UhOIuoPUenUs0XiK/hcrBcO823yL52PZ0Ds4OQWInCyRcf/GQCi1lE6kve8RPe0As8R3HvOqcOTVnzGtmpKgjcciCqoJjloxt7+rrcmkqkMCdO7g4SSkpqyirZLX8iUSPsn122227trYjTjnk+NUb1FgLxBeWZlldCj8vTIbBemjrlfe+8WKIAOdygfwWM3uWKBder1QvvzXCXiUj8lpSp7QsitUl/pphT6l668KqZrmrOBBqPfLVbDpqBmJfmWD400Easfre+49lkgbP4HtCgAkpisKuYF1y2dZkV7AvSQUPzFrb4LtLPvNnF3zJF/2WH/hvnPXXjPqSARNKekSGFXzdkkWxnrtoEN/jASU71b0np6TPp+RUrXpZTkXTKckmGrFE8p7235rxrkmva9xKg38P8KHEGFEU7cWTeBnbNhDbKUEuwRUGto4L2WtXkeAoiv4u/u6H2Z57iYaaprpFM6EIbo6e+dcV06JuGluQVciUx9h+ISzyl7NKk8PdUJL9UJ4H8qYG/lTFmO1+2Q5/WaSgxw6rjlh1RNPmysTbjSCNIEysncvjZw7f8kt+1TOe0qdf1aARE2It9/mESUfNO2fEVmN2GDFmxkUXnbJgRnvjYHzgaSaPUd7G+M+x/ZdYepOF15GGjib9B5h6/gbalfVGByN2+Lz7/Seqxqy66Iznnfcdn3XGz76+lzdTi1HDtJqZtOal9KKj6VzQGl4zkW1V1at4WZtYS2KLa8EWfk07i2OkoXL4ZeZfDX+X9AgyvBuRjVwgu+WHwqQaZwVV+X6K9wVpRO3PN3WKbopGMbFYTQz1sKvIRBomgeUGS3mSbRTHsiBC6FQgvzP4onYOf/jvvxaf+CS/8l+wcydHD3P6VFD5rK0yNcnoFmJdzezA1TNN+awZZ5z2mldNmLDbHiNG/Ngrplyymtn1l5S076KObbDAQCEUxR3oDfKHWjfIIlauCZj0OiCnR8eC5jVEGopGlGwRKeqqaThrY9ogioIDxNJqKIZrjw5T7aVW4+xZ1tb4xh+zZQs9VScv9Pnttx/y85NH7NwbSO8Pv8XkiZwzh3LqSdejhr3ZWcz6Bd4ZpNaEdsoF/Xp8zsNycgZU1bXMW7GiLpE67JyveUFQJCeZqGLSyWzofsw+q1aUFWzV6zHj4B1TGmLLmtZ+cUX+bzXs/LUxS0+saLz7odRTt4VkKSxY41nSeiC/H18CzJVk9no/vpsvFd8xqSt1xoIpKz5hp//BF73qnOcdMa+mmRGTWOKMVZ82ZkyPzvCM1b66wYFwaaYpW7dQW0zlOznFzAU8wlYjPuMJv+SnLVjyG77mbUev3pjGLNPvBJ/OvqFAis8eCvvQqLF4jUPEC/+Bpbmg//2Vv029FohzbTUUx9VWmbogxXes+etGpFL1rNTyoo4jmlKU/qwkvtiVfi4x+rmM7B4NMZjOUkjOVvfSmrq++2WaBteIe4b2UXKjQUeng5jmK6z+G74Ws3uI4V7Lzdifu+SHjl1uE/xVC35g1aN6bFG0ZN4LVq1m0qO7hX7Pqjqo6hGdrHNbx7xhv6Bkp0XfVPe2+Dq1HhsRodcWF72muaGu6aPEBybBURT14ffxP6ZpuhJFV3IYaZqmURTd1hlJ0/TX8evZZ9/yb7d5TJ8Ji05ZcOL2Nv4OIdyOafDrTWmlC9rFUYrD0vx4KDFPYy52eU0owV5Og/v8ZBIW+bXUWvmYC31f01qb0eeAVGLJa2pOq18z2d4KrfrG1FZBUKFU9I28pVM7rdt6xrAHbLPPhAPqVqyYs90eo/5T+z1ixDYT9lix4DXf84o/d9QGl/e+YSbuD2acI09RGQ82HbXTYX97dgYz5969NyTB60ewZUnNlEhBIlZU1vWmPfaodEsK3WBAVlF20LhHjftNb7hoVZxZ/6RctmpqiC/rEBtJLK1HZtQuvy+RStI0aGrXSW/oMXD15Dg2xuwsaSq+QPNt+n6R6rO0j2cp1Uza1TpN8wOZ4F9BtcQjE3xuHw9toy+z4joyzZ+1mEnDUiY3GOQQUTlM8Gmd5C7VFZw5ze/9TpBhzExz6kSIVJ46GfTA83NXWhDn5N3nPkUl24ybNWPalHe944zTBg2ZNaOlpa0jvgdmxmtdmlnV90gxSCDyEeUcYylrMVPZ2i7RUjQkb0KkoOGMsm0KhkQKyrYa8KStftaMbzrrn29IBWb1/PlQEDc7cVC7m2f5omihKZ0fZ2YmEOJHH2V+QdJoWzq15E+PBmlkf6dkNOkx1qh6sFE1pkdRzptu2VP3NrHeZypQ2ymLzpmVl5NKdXQvF+G1r5NaTVyx0TjigoqcvNRbLvnX3pAXOWXBooamWGslkZ7uSqJYcYLGYfdSuBjUBRFJI0QGo5Kg1op9jMnw5uRk66RnWcN5i6pKdhj0Mx5wyrwHjIklFtUzG8dIVUFF3tFTkZX+0O477rKwGOaMJO4oZONqV1dBwYqa4874I9+2ZMVJ5zZ4gWCoj/Eh+nJcPEZuhcrOoFmLIhamOX+NfjTucPTtEP0dGWNwhCNvhTTI7KVgl7L+VszoGFbQK68qsqzre2peUXcqblldSVROBsvLKGL2O0ETXD8TEpaDj4fCuW4raIfrp0Pd+nXRRzSMEunJ2ztzm8LA36HyqbAii7NYYOdsqOZsH+PCElMrJKlYIt4QgOpITepY1lUQiaWW7yL9jZQN+hkFg2reEPy0m2KLyvYq22PEX9a1rGPmliQ4lZp3PNune+rHcUN8oOkziqKiQIB/N03Tf5e9PL0uc4iiaMKVrgsXhaqsdezMXrvdbzViv15bDdptzCOKelz06kdGgq9FIgkCpNJAcI8oDtD+AUdjhlJ25AKTmU+DAedazHKqO9O00jmkbVHVTqlE24JULLYmr6q7SeeGTmsjCY6EDhBlnVbTVPe4aafs8bht9impWDbjtDf06/FJP2fUNj16bcuq+Xv0inVMO29pvTAvbgcbnMqOUILbWQ4EuLMcvri4Fkac4tANtzOVapg374iCHr3GpRJ15w1qGVC2rKkor6pgh357DJpW8w3HLWqq64gl2lmcKhUGjWQk0i2m4lbKQqp9q5tt/S7YMszQjpCmS9OgcVteFs/FGi+z/BXKB+muEs8EAhzP0HonENJ1VDMVXVdi9dqe7TfA+ACf2s0XH2C0GlJ0lSJxwpsHKffQfEGYETooZk59JR8yn3NjvPV6iAAnCc1msPLsxjSyS7GzgcdGKKv4tKd90Zd83597wffMmjFrVk1dUyNTLN4b66xuxtcGi4H4lnKhm1sh8/k9teGWSsTZlTakYEBOUV6fgn6RnKJRPXYY8mkr3natcDEVLpnVGvH2RVExlkvWpN22qBarTvUZvLCm5+SqTretszArmSdu9unBI0Zs12uXXnv126FqQcuLtnrTvNodY44dIeUR7ovzZi1uIo15PaxpoGRZ0wnzulK9iubU1bWDI0Qn1a3TSDtB3nqv570045NJVouUWadFskVwZqv28UIqnKNb62DG9asqWdJw1LQldb1KZqwaUNarZDHrbdmW+KFLVrRN1tvaneD40tcXen4EZ5ZUN1sI5TJpVkfHUaedM6muadK01noGZ6DK1gG2jTA0QC1lNaY2SVINEd2lmetXMNdrHD/E136Dal9wljhxKIjh21fLQN7VdEDZdkVFOWtix7S8o2lONxQ9ngkkt3kp1KOn3dDItdAfzvnwpxh6MvS7alzgRkNzdB+5Z4jGiP8Ft+pAfNvoHAmi5c65UKkpT3z6yoXaSm7aa7wjtXTPXLi72s6LzYvNK5oQKUo0dK3pmNHwnrwhBaO3/LRU6ryXdO+pndvN8UHcISL8Jg6nafp/bfjVH+Fv4B9lz3+44fW/F0XR7wkFccu3owcuqqraot+EMY+oGM7I8BhSnU2SjHuGtENcp9gNLZbrX+UEOmlovzQchRq1+SQsBSYTLiU6rSUdS1ZdES0V9ImUNq0JxmWT/uwnLGNMXCuadt5Jr9rmPtvsd8E5p71pxQX7POWAx3S0FRQVlfXq96AnzbnkDS9cIcGLl9j1CL158vPhhm0vCsa4G1J50c00SiEKPOeQjrqqUTklqSWDikpymmKp1Jhe9xkyod9pSxpZwU1brF1MNPu7VKLwaKQM5wIDmhFaX90KPdmh2jHOp7/AyAjvvBtM3M+elS4vax3pWP4Kfb8QJtP2sSsL+faGNdg2ww7YLifnkgWrm1jvRdg+yMPjPLCVWpuVZtikvnKwdcv3hiK47jJRTNQO25xu7Nxxh3Hm9Obfm0qtWNarT78BVX169arrs2JZU+Nyd7l7iXyO0SK9BbaWqObDAmO67SoFXV5VxU4VOySaCgbEVuX1SLM0QcNF876n5vh1SXw3oV4mV56UGxCy2k3ShUWlWkt1reUTkyXtbteyhpoek5qG5T1tq/0GbNdru6otKmY0/KJdVnWcsPJ+b9dhobNF3hXr71viSsqji4UPSIDX0dZV0zZlzaqWnEivku5jbUlfR3Qgpppo7W/qTLtbDcFujNTlyHPaFdYA650WP5YEeB2JG7V+zIkM6bGgbpdhvUqaWaPsFU0NsVlrVrR01jtNRqlmT9OReE0UZRZhHdQZGAjZiPXgSVeirS2VamXPjawcqyPW0AyNMQiWpIN93LeN+7eH194tcOgsS8sszF/R6F0Pq0u8lGnJ7j/I+ZPX9Qg+qyMv0pCqZs+ntU3qhDtxXeeQUsuit41M1dStBx+QwcfprgWH05tdh9F2cs+SO0D3a6Fu7Y6i8YJiel4uXZTEyzr3vKvM5pGK1V0pOumqyesXiuKaQg7trJzqpjTBpOY+4kK4a/FBYkjP4q/jnSiK1v1l/jeB/H41iqK/I3Tg/LXsd98U7NFOCBZpf+t2vqzfdvt9ySP+ippZC05YcMKqS3ptVTH8AXbh7iAHrWlRa5p4SVrdI1nMJstLMWcjxnKhKC5OWUw5k9wwPRhveoKKrlGQrf8vFjkm1aeiom7Ze75vzaKHfM457zjhx37WL3vQYyp6NdSUMqdP6DNom13G7XZkXRJx4Qhje9k2S/EYc49cqUaI8uQrYZSJb739S05mThhbFfSI1JVzbc0kNqiiV8mwij4l09b8vve8Y9pyviUppozlebTEjjy78xyPOd/lVDcc381gvUnTxFaee47PfIav/B4jw6Fo4/Rp6cKC1rFUrjecrOabQYpwLZ71iL/sWXOWfcMrjm+CBOdzbOkLDYJ6y8ErvZALD2h9N3jWdqcD8c71k64HVpLrb8e9RiJxwXmvZQ0qmhraWpJsEr7XBHjdT7mSY6TEeJlnhkOQ5UKD2TaVDWvLsm36PaLqfl21TBJxXl5FV0PbrBVvOe3/vuF3plHwvM+Nk99LbiJsSPcwa9vr2hfb/sahZxUbBRcsOGHGj53WUdGv5IBB21VVFfRnEa+ftcO8lljimOWr/V0fEaorSgIB/o4wCG3kEOt24H1C5Cu4Zt0xBMV9sOda0dSVqirq/2sNxftT2iQztL5c0/5tH0Ebuesg2fD8cdie6+LGG1dS8IQdfuS0PmUNsZy2krxlDYsa+pSdtWA2m0PSXKq5Zc1YNxDe+YXQmjxJgkpneb1msRCEMo2kpZN0tbXl5eVEmSN0crUUIkko5XlkN19+KqRa/uXznLzEwpnQPnGzOHGTymKc0nbqJhHEeDU8roekxeoRpv9kE9ux3olzPSB/h5HPMVA8o1Sg0Wapdq23/8cTOVWxOR1TAucoyala84r0NjNVRUWp9HJm8KPEB3GH+IH3mZhcxl+4zvtT/He3+z3ryCvqM26v5/zQP9YJzVB1deTkxXer1e8HwJicnOBrWGhOq539TZMb33Ap5VI3TFQDEUsf/qqP5FT0KCpdLl7raOuKs+Kzfg0zZEPYgouWTDnhFb0qRmzV1jBvSkVPJilYVwbG2lpiHT16r/7i1/8DwxM88TMc/j6VrA4yynyDG5dYvfWKL1ZXMyXWUFCRy7dVt0z599MFD9pij0Ezal5wzhsu+ZZTljSl+/M8WuSJAo8XebTA/gK/0+CrDeq3cWzrwhVdqTKxnfHxYGm1ZTQY5I6Nce4ctZrGi8dv+lF7jHnKAw45G7Tim0CcsJhNSLuGQ1S4kXnwnpmn9RKdY6EhXGGXMD9mLaLTRvBG/bjgYY/6I//OogUVFb36bv1HdwF9hRABnqhwfy/7e0Oh3GybYi7II7obLpGORTUnpFIFA3rdb9izVr1jzWFNF9XdqDUg0hBhjkbJbafwGMWn0Uvr90nm+PwbD3myu8cuI06aMZ/ZlM1oWtRSlFOU08mSjTCh6mft0BSLpY5tLCYZFEjtonBxPIsh/LErk/gAPoH/OeJrKf/e9auDPgQ6WTOMdTR0LP4fDLQriltoPtDUOhuyGB8F0jSrQco2Mb13bm0fACXh5r4x+8qLbNHnCw74nuPGDWQR+ZZn3GeHQcsa9mXWaVNWdLucPcfP/4WgA740xdnzTM8wN7/hw/dHOsWuzmKdi1dukJJiVh557ZgWsVJncS2Ii8eGgr3XxwydpU0SYCSvkp4Waj7ugiZ4+0ggvXHWiTIXBVXJ0kfbOO2W2OqvWvUjdYcy1vHQptsmX4tHPaYrNmXKjJlb/8FdxMe+Y9ysIw77A4/6zzQtaVrRY0RJn7aa6Q2h+huhV17zLldPwh55FZEg1QzuvpPXE/ck3k+AR7ez+yG27Ajmq6067WYoIMgXgs9iu8lrf+bqmG+ioaaRTai9+pWydEWUrVXKGvIKWTy1oqAoJ6+l4ZzjJp3xY9+xy/3u96iqAQUFXbGGmkWzmuoGjVjeKHxfmmbhPbadC9HhmRm67SCNiNdsNuTUtioR6ynk9FdrkpSXXPCyi0b16EotZ5XAiZSnivz9Xu7PLt84DX1etyahId5QLvgwbyo9LLyvD0srgex+9rP0VnnlZU6dCvvVaFK/dcj1n/hDX/cymLsNS6h3LvH1d+ir8Jm9wSXntXN88xAn1wvQEuIzQdOa3x4m877lHgOTvTq6SvI6umatXreo6W4iJ2eHnVqa1rtWNbN/t8S2TzGwKzP4LNEzQnuNtUku/CAI/W4T5VyQPgwVebCPf3A/nYSXFsPlMttmohzs0ubarDlszRElo3odMOhTJjycUYtp8S2YY1olfYaoQ3KBuOxyO8Duy5HRfz9oNOlT05KXs0Wffbb4NU/5qh87bMkusw4YzHrf5WxVMaXuh6a8ZcHMtdKvPxEiwU8I5pSPR4H0bklDPeycEP19KuLn8ap7NuInNZY0gwfQlI+2BibJapQbPJ1nLKIcBarZSvmje3ur3ALrBPL9B2zCgDH9ygrOWrCmpStxZsOY/KeOXI5QPWb7VY1Wooj9+0LU97697NjO0hInz4Sk1zt78rqfyjMahevmbHJ5MdV+qcvp5P0LqOnFkLJ68T0uztHXw+FzLKx6n33PTwqWSZfdONT3IVFr8qn99PewXOfcLKsNRvtDm4OPQ0R4j+122aaj62VvgzWv2qeq4qA5LfNuvztvTs7P+/msjD2yzz7z5r3ghTu9C5vGx54Ek2pacsb3VG0RYp8FNbPmHHHBK7f8hLK89uXE7J1FCQ8o+CsqjovVpFk5Ws64nDO63rtVk8rhbUzsY+/B0HO93MPM+eB5Vu3PyvPP8d2vudVsEutkhTwlJWWJNIsUly+nIOrWzLiQlScFb8p5U8457m0/UlHNUhVd9SydFmQRu7U0NdeL9LqdUEQ2fh/L09RfC90hLlec3MZxLDZVSiFVFEXsHaEZp5brjdBKfePn9UWM5hjJhYjv2YRjMe/EIYAyHLEzz1rC3Ca2o509Tp7h977C0SO8/jovv0yjEQrkuusV2zdHInHGdFZdvflJYKnOd45xbpEHt4X54/gs5xaCf3q8/lEpW84PGrpU1Um7OnH3cpqyrisvZ5tBpayL1LKahXvQmz2RuGTSN/xhaIixJauwjkhulRAYuo+B3fSO07uN8iDz71EZ4tLLt02Ce3KUsgms2WWxzZ9Mc1+V842M9MbBLm3xcnY1VNG1zUt15fU66R9b8rLYmvRWhRwNOi8FKURugOQS8VshApm8Rj7J6VN2vzG7jGRNCIpG9Pqih7xl2pSGnYIzxJCyPfrMafp9Z5y2+v6Oa6lAMCsCGf4STguGlENClHgIBwXN8FE3kpneXXzUk3qSRYKxM8fn8sGivSQMD+M5fqP9cZEHrzckeD8zn7FmIXN6IIyJ19rnpRvU6kdM60qMjnDwYeKYavVK3Ui7HcbaPd0wjEfjmXd9QVgpbokYj/ipPL+Q53divh8z72pMZ/UgK/WQDqm3OD9L+2O1urh9bLxuy0+GDGf3Et0PJxIuFvjff5W9Y/zoKP/iTzk7ixZDvYEQxx+RTGe7MX16DBnQo6IqstcOTznofgfEWs6bxHl5s7eVVKqq+qzP+ryf0tY2bcqUaasfsi7hw+IngARTM+N1/8puz8opWDVp1hELjutswjVht6qiyLSWaU2tOzjc5QTr+ccVLUoUpHpE7pf308r6Rf5Pazefe8rVQITHdgdT8ZFxBkdZWw5R4FYj9F6fu7m+NER4wynt6mppidCRM5w1kFjWsqh2te8vumIdbQ01efmMEoT2HZGclobt7jNgRFtTsuMAB5/j4Wc5924gv/c9xtpiiBDfrBjiOmh3U/mYniJjvewY4vULxN1UPh84aJIGvaxLCc+32B2HgWomYTEJpHg4F4hwRYgIz21iNMkL887qPMdf4dRRZhZDV4hbLMvLVXr6wy6vI/4Ay60kDWS30eH8Ytjf1RbNrI18QV6/ijEDRjv96p2WRUvWsta16+4YOZEBVaTaha5atR2ORbgQwvFqsUmzkdtCLLZqVe4ghcfJ7UQc2nnH37/JH+ZL9I6x9SBD+yj2Uepj7hDDD7BwlM7miXwnpZ1eITX1Lq8uc6EZIsCzLRYyr+D3n6lEbMWKt5Bom7cpFpeiHshvOi8MDPmw/9FquJcmLXnHRXVt01bMWVXTNqBiSdW0hovZgqVf0YCSMRVTGpe9mN+HGJOCBeMTKb+LU4IpzBahN8a6i8hWVwKN/39CKrQYF27n4YgHcmyNWEjDrfFKjvcSH3HNetHNhKjri93NopUR6UqZ7RNB3TUyxEB/WGQvLYWocKcT1vlpPspuHqGguJYVFy+lfDrPsYTTuVDUvRFxEtokzmGlwWBv6B3+HwVyVH8mdF/JD5Hbgnwo0FhHYSfdJdLNzXk9JY5cZH6V45doZG28U0EjXCqE9yQJtXsu3Ul1xFasicV6VOwy7rM+YZtRsxbU1cxb1LgNU4IHPeiX/JKnfcawYd/0Ta97wyWTVu+0Pus28bEmwcPyulIr6ia9LqdowHY1Zy07pf6+Jen1Marki7Z6z4rvmjWntV5T+qERY07igq6yyABG5Tyg4FEFRxRu3cclXwgWMSPbGNsVor+lStDXrksjakvBgPwmKCpJJcrFrt4SURRZXCtbtWy/fm2xlqaStrKyvEhNRysTiqzrgd/v4ZqoW7NmSZ8By+a1h8alEweCX/DipczvcXvYl/rybZHgEooJpSR4rYpChq2UD6SYIA9or88Nl7oOnmk5MJJTrnJyIfXq8YjxPCuJT/Z2tQcS725WFxx8gIItT3OGhZlN6ybzRcq9t37fppDkxM2CtVZeIS3qQUGI9PYoGTdopxFtsUmLltUvm6hvRE5TrhDpVLtaI50QDSyjJlywNeHO77ihTdBtIyLaSm43hedCZXU0FL4vmgjpxe4h1y8CXTwRIsFRnkI1I8UTNJfoGQ0/3wYJzmdFJp2ERsJ0i5k2J2vhVK/FgQC3b8AnUrH2B9WpNULaHVfZ13UljpjyH7xjuyEtsVNm1bU1ta1qW9W0qqWpqyQnL3K/QcWsBKV9AwIU1cmdyMn/cU57LmYPJgRpRAUL+HMf89H+LiM7dHNpKM1YzMhwOQqnaSj6qNcHOeEEbc4a7bY+OUe1h/Exto0FQryywtHjnLsQSHDcFZx1asKqYD07Np9yKGFbVtBdvcGXNNvhQ9aaQeT6UUf/7xii0HIwKpKskBsOPbjT/cEXM+qhsI3OeeJzoUPLLVDM8+dvh4jw7EqQQLTjEEBvtYOiJJ/7aNQka+pqmvJyigp6VIwbFYn0qNhi2JqGJatWbiPDOGbM5zzrWZ83bVpZ2ZQp56/qo/bR4GM9LO5X0pE6nHUtP+9FQ/bImxXfxuxd1/WMEWU571i2llG9O4EYp3R9XdMBBVWRYTllkVO6Dm2m31PSDVd8oRg0wY1aMGRN00B8F6aZm7zunwbdbySVyMlTqBkZ6NreH343v1ZUs6KgP3OvzRlR0Zv1hT9p2ZzGLbeyKzZnyi77lfWIWy3d2lKQbPQNhy5BK3PBqDi5vUG8R2RIpCeXyhVSa60gCygXAglud0Owobl+ypZTnynG/qsHw6D+B/OcfTGn206UViK/+oXYzHLqyPQmffnX551Y1vXgmmOcC9w+lw+7FrfJFUKVdS4fDsGHRU6kR8mQXgNpj1F9IpFVTU1tJQXbDOpRctGiSYs31P3WtAL5GRXI0E7h52WB3K8IjhjL7hwJLpB/mOJ/Hp61MweLEoWnsUb3ZHh+Hy69Eshu/84QAS4NhINe6KFTD+24bwP92flrJEHu0OiGIrg4DW4RxVyIvBfukuZvHVEvUZW0nmrquGTZvDX9KgpymRF+V13bksZVtmvr2aqLaoaUtDPbqmuREynJ61ku6flW0cJfrGs+F4eo72IaJBHvpfxbxsLFrgAAIABJREFUPOg/InISkLNudRddFnfdDKcSfhDTTLmQCyT4rYSp9N718Hg/IoGKr/u53Tn2U6kwOBj8gHM5hod48gnOX+DSdJBDiALpqsylGmuppBJdGQdbOJzQ3+V44oa9Wxob+5J/tOntO4s0+GEW94ZnEaVH6Hk2NLiIetEmfzhor9oZMb6JZU834bVTIcvX7oSxqJsEGcT67ztx+P29xrXENienqekNh40ast2YHhUdseXbiOA2NC1YUJDXUHe/+/VdW2z/EeFjTYIPqiiiIXEya3mw5KwtmWXLZkb0vMhL5v1TJ7Qk1sRX60vvAFJ8W9uS1CcVrUi8qO3/0fH8zVyv17G6yMXjHHudkYnwiXOTgVw2a0EGcfqd9/1ZTl5RSV5e3ZqursfGUhMD9JVodVP1aJmUk5b1K9mhzxO2+KRt3jBjTsPideOJ1+5jqqlu2aKcnOjEawwM0zvEnoNMHOD021w6fqVjB5tS+bczCcloPpJUUiO97B0OcoALS2GQuDYt9Mob3L+XJx8NBQb/9XOJxeXEvt3s7mWhEIo9Zm5HvtUUombrM2kJMdVBBsfoHQwB+enTDGwJ5hjNGpNHb/yRm0W/HkOqhvXaZtAuo5knZ8eiNUvqzpu3rO7iZvqtV7AdT0eZO7dQpHQmDc8Jt1G3d2vkye2j9CskC3TfJr0gTKYzQRoRlW5yx869R6k//H/n5ylUmD8cJBHt6w22197/V34uRCx3aOXD5D6bTS6LnWCVNlAMRXOjJc42Ajm+K8iHR4rFTH+ycJsa7XktPQo3PG79ysb0mTBoJK4694eL3vq5Sd13k3CeV7LHC3jaZXPkiMzLxmU5zfrr64Ty/2PvvoMsS8/zsP/Ozbdzmp6enGdnM7CLRAQCBCFATKYomZJDWcEq21SVbJX/kUuyyn/ZJbvKLrvoKtkSJdmSKDOBFKNAgEgEsFhszpNzz0zneHM6x398p2dmd2LPzuwOLT9Vp2+He2/fe+53vu/53vd5n3cDmfS3iQ+ixcmdkfI2MJIaKybCOrFyBxp8OeFyl7d7QR8c4fkP1SYttJkRFUnW3e9dyiMH+eynefwIs3OB+P7wR6xXgk1alBLgHvZf6DlzIKM+IfxiY1GYTfhql5d6TD8MI+CDREzr1aAJLhwKPeszw/R9Kfy59Xb62cV0zoVdb/Fpmi+4VUR/wwWi1gwZzvei/hC5l8Ris5Z810v22+VjHvdRR2wx5pK5Oz9BivPO+aqvyggtuSdNKt1DYd2DwENNgiflHFawRc5pbdM6XlK3eBfpopzIhIKvmPIdC16yrC3R1FN/QOaQr+i4omdcRhfH7za2UF3h6I84/QbP/0G6ZZ8KhXJRhovHuHSjNVesp62poKg/rSnfNdT2+QOxsTKvXOEn9vHts1xStVWfQ0Y8bYt/3yFnrLqocmu94U0w75Jh4wqKklpVb+4shSLTRykNhJT26Lbw+qMMZ165q+fNi4wWgjvZzz0emka8PcvXjgXt2no7UrlugXj7OH//HwYi/Bd/hkP7gvbt7EX+4BscP/3ujmZ3hbYw8ReFSFoZXYpDIUA/dYCBsaD0mD9PdTkc9wP7TTpkyqQhw/p8ykFVTe+45B2XXLDkpLvuMRMiOD3sxl+Oggb4jYRXIl5MOC8UVd0vpCQ4GsVS0MXGF9PXUA4kOPeTQRuc3GzuXL8QCk9qsyEynB9g/rXQeGawmO6ErkWbJu2wYl5HW1GfIWMWBHf8jVbIpZ2s72Dt+fDzcNop7EozfP/lLXxpC//jqQdTFJUs3h9KU0kdl9+LbYY8a6eP2+Np243p831nHU3m9I4kDCT8SPAPhv/52mP3mvKsQ0YMuGDOd72ho2evKQPK3nLu6n0/7pFw3iy7+CHaGZVFBmWVZexUMConJ7Kg46L2HQnw9biUcOl9LwPl9Lbt7iUMG7KHbLiNNkycm27c2L1/vPE2Zy+wb3dweiwW2bolkN9qNRDh1TVOnsa+iG/1UhlNFObCEeFkHbt9F7P7isEovMD1h6NUEbReu/Z9b5n+nwvR4OwC6/8CPXI7KFRDpDi/m+rvXqvIvA7L1eAEkbmjTvLhwUUzvu8V20z4tI8YN6x/EyQ2I2PenF/yX/gtX/W2t63f1yjMveOhJsFjssblrOp5WslBBdvlvKnpik7aDPLGx8QSdcEV4jlLrmhcbdT6oPexc2Id16bHTaHduEZ2L53i6PPseiRIDSZ3B4eI9yCSUVTWZ9CRPZftn+jJREFCsHuYxRq/9AlOL/PWTN1LtTlr2r7mvNctaN3DhmDdcjiPxXzQCVw6zou/z/5nOPTxaz3jb9Yq8yaIsdTXMzzMY318dAfbhjgxH3bKnV50S131uYv8yq/yyWcYGeb0Oc5PB7ez3i3eWl7ZgHErLtnrWQkWnVOzfK2L1JgQTW3TP8HkPnY/yYFn2PV4kER84x/z/V/b3Lm7FUb02WnMXlsctNUXPe60WWfMb7ogBkF2cA4/THhCIMMbnrKzbqzwfr9IgvwhSee1qIhCWiuySpwTzuvtLsDqDLV5rrwYxk/cDW2tsmVKGbls0dj6sF0Om7ANNFStWbLoRrlQ3KZ33RBc74aOrglqXX5rhicH+fQYr6wG+cTDiARFObmrRa+xISVfcNDPe8KzdtlqUCzRr+Dbf++UF//ORZW4ebUAMsJf92V7bDVmSE5WN210kRGpaynIGTWopGC/bZas22PSjGXHXDR3NxmIB4Qd8nYp2iInL7InbaE7JOuKjudVTX/gZW0NofKwJC0quMX90o4l0UAQykf9RGNEW0OhVdKm+83QbeUBoFrl1Jkg3Wo0Qr0voVnG4hILG9myCwlR8u5Wirc2q7j/2JplWy5YuzRi5nvMPYzdTDqpOXsUJrrcJJWv0r0UosSVX2PgL9z2GR4WK7TN4Htetmrdt7xgUF/aNv0a8rbJm9RT0XqPp/qCBcuWJRI/8iP/zD+17D5FkN4nHmoSnAh+u2UZFV39Mv6cQfsVvKbppJaqWA5FGeU0Sbaqp6NnLvUovYNB2X1FjFXxvdc7buhp417wCL50iqFx+oduuGtWLrVBi1WtOjIZe3Y7Y32hsCzCapP1Vqo7wqqGmo63ZdR0bvBOjnL0PRlu5WieprsAmdCEvbsmyY8yMhJ0At12kETsezpomif30Kgwf4HZu3Maj9FssbzGmSW+eybIIV64SDSTNVxh4RYksBeHyfzKHNOXuTRDtX4jAe4zYtQOw6YMGFc2rGTIDo+77B1vqAYSHPLEIVBTiiiS6Q8OFRsOaXGPfDFEhftGNk4cW/cFaffa3OZ1wnFa/LbNiAmDjrti2pJq2oVr0wj5Yc7gHyXBKaAjOAdcdP+jOk06vx6iwdknhZklIVkmWSX+kyCTS25XN5Js2NBdF8LvL1wVhpfrBUd8zLgpfQYVlQ0Zk5Uz64Jv+g3VRy4qbKV2nNIuxn6C/kNUj1I7weCzdBZpnAsFcm9XQiFda5MEeK+temLLKmoPuGFPXVdWRkFOSU4kstuIT9vrI3bYbhi0tPUrGqmU5S6nE0Aqz0zwJ171N3zFuEG7TdpmXEHOJx3xprP22+aKJS85adq8d1xwzoyGtmoaSHig2LqVcjn4cc+/O+I8Je8JZXsUtcT6ZBxQ8oiSip6uxDd8GN04usJkUUApZMJsjOMkRHqjwZTwTgnhkSiQ38wRch8Jht+9N3HZg2hRlqSa03KJk6cCEc5kQ6e41bXr5sqNa+CD5p0ZHMwHAlyMyEe0M+E2xsJDRoS7s1R+nfaJEP2NBuj/Mt0ZOudDZ6P6t65ZktwEf9YIMKGT4HHnXHDlakdZGPITCnbL6Beqh1b0+7hYXdMJbZfFarppA68X/MiaNb17HGiR/TIOoSWyW2RAYk7sgsRFySazVQ81CZ7V8YSig4rqYnmRAwoKIjO6LuuJRaqaYrGeSE+inkZ9mx+S8+NG18WbIZuKF2I9zbtJBzRrIW9S6mfbPtaXqVdkkihtrJrVutoKJLF/LOiB271QWFbI8sI0M5WQTQ7dnW4TMYnIlAJRkCHplWUGyfZ3ddZHyfVT3s34R0PZf2UgdAn6ib/K+WCqbe4cS9PBJeIu0BNqCtZqkUszfCOf2DfGO7M0O4l6nl6U3NLjtBdzZTYUGVSrgfC/F0Om7PGMYVMycno6Bm0x6QA472WLzutqXbMRG8QQayORM0WWVxIDZ0KQstNi6dJ1ZDcJJh5JvOm6QCV5FU1XrBjRp6mjrmVZzZw1Vc3NF3Lm06OO51yzSasK5Ph+F13ExOfp/Crxs2knu4vEZ1Pye2MS4+5QyBInSp2iqe5Oj/qYjraNhhwDhm2z1x6POO+YV6rThn82MfA4mTLFrWHvVtxObiAElzeiw4kQHb5bZESK8sqKBpRviIQ8KHSF9qKJrkQiEumIU31dqI/oinX0LKmqa/NScIdJFq5dDJcsaqf9IDu6IpQVjRl0xG55WTlZHV1nzFhRue+x37xc+oqjVGOchFa8Q/189jM89SQzszK/9uuG1gKD70jkZYzI2qeYJmsS43K2KRgTm5Lf9GvJ9JGboH1PYzOVM8i7qlDeqIO4qljOCMR4iuyzadR3LSVH/WlkeAuZMTKT9B5cfjybDa4Qs/MsL6fFV517kIzdJ0wZ09KxohJO45NF9uWDRVszoR4zkBJhWOrdUbOUzzJcDl679RZrjWBa0bvfhDNeDZrfzCD5A+TTNp5JItinLdC+fQvoB4kIW/vZNsBwkdkalypU70OipJa25tr4TwW7jfoFOaO6VnTMyehTsBMZPWs6FkjrIBKJ47mj5LsyvaCAuwv7fZDxDEoy9sjYh0TW5zAq9gp+qGed/y+R4BNanlX2WSVtsZpEQaQtURNrIiNv7UGYnt4XREqG5BX1dMR68sr6jYvTBa3lLjqrdVrU1thxkEJZdPmMXDeSkdXT00nDeqeWWGmEa7HVoz8OZPiFSzcnhjdDEtOep3U22CJG5bzCdrIjic5bo4FRDD7C6M+EB8yfYuAcT32Ri++ECPDcWdbutl1bmNtaqHSYX4qsx4nZpdDUoCnWyoc7BQOhXLrkX/f4mMXbZFZyirbY66BPyylaM2PNnIoFdauycnKKsnK6SSuw8hoGEyYiq1OR1V3kM5GBt2O1NVZnOfNquN3A6j1qbPOy5q1727QVNaP6ZWW0dMxYtZzS4E2hIKzPNZudE94Xut+jd2LDFeEW+l8CPyhm06h7FGyVmnHwLbt+sGYimh2lZr8J2223z6yLWhpaGro6+gyasN1OB/zwcmTg8UTfIXoN2nOIGXgsDN35P6R3D8XrGRklecP6DerT1rGu/oF15osl2npXG2bMi5y25KylqwaHKxpec9msdd23ezdVmK6pWbKuICcra0LHZYt6emYsW1PT1nHlvutlgtf1sH5FBRkZPbGOjpaORrFf59Ej/PRPcf68zL/9mqG1ho5EJLaqa15XXWy7vKKMkoyGWEOsncmEYsr23UflM/0UD4duct27rvGJXNPzFsPPSRe968J7G8K7DdeHPJldZMbTHVgb3aAVStZTMf2Ea3YM9x+5LHt2BUebP/k2leoDsuCKMjewmoK8If2G9FtTlUiMGrKmaiVToT/DU0WeKrAaM9tjpRcs2/pTp4oNctxJRL1IScGoAXVtFTU9sb4CB6f4/BG+e4zWHK0Nb/T7iaRF90pomtG9QnaUztnwfVQkO4kPhwTnM0z28akdHBxlpMTJZd6a50qVpUbgBvcHkZJDBn1GrJ46DC/L6JczJqNfdJPN6Xx+Tq5MthOW2mRjCr3FeIyyJD0i22TsFJkS2SqyRWSfjCmsiZ0T6d/0x/1Qk+B3tLyj5bP6fcGAM9qOanpew5ta5sSGrnd3zOXCljebCdHTJAkLauODidi8FxkZWx22xQENa5oqKREuyirqN+aiV/VuFZnNF669j8oSK4Ns3S03Nysr1o3b2nG6AchmfftCZLDUc2A0MVIK9URrm8nURmHAda6EBWLwU2SH12WKxJ0+tbP9EhP07Q1H4xLTr/LKbwXS+/Vf2bSd1QYC70z04sTgUqSzFKn2xeJWJNejKDKAmgF5a1o32CHdqqgkMmDclCMe9UUtdRcl6dah7oqjlk1bdE5ro2q/K1iJFYTCkO34ckZnjO/8vUTnYs7a5ZwrxzPWFrre78IV/GGbllRNW9KnaNKQWGJFTU1z8yQ4K6y190jMr1cnbnZSSeZu8ZjrCW9flqky5WzwNCtkOFfncjM1hE5CZC2KaHQk7bCJ7OpIJMr6bXRGzKaErqsjyiXK++g7RLYvrbU7GSztJHSXMpabVE9urkKgrGDCkC1GNLVdsmhd7cFLBG6BZTv90KKeY3ambdJnrXvdZRetquvc9LW947ycrKK8IX2yMl520oqKYf3pMaAgr30f0wURhvTbbovBdJPX0VVVV1FXW2hafeekzq7XWVmSdDrqYovpJmNFz7qeFV1fNORpfZpiL6uZ1/FmIWFkK7MX7u4FZUMkOL+F/BdZ/g13WR2ZRndJSe+Goe4tmEXSIZkmuUwyIqRguultMxXRN1PJRDE1mb7/7DSbZXILe3aHIrjW6SCHeP+IAvGNMkFjkc3TuiYGzMqYMu5ZR3zMo152TFfPq46bsxwivdtyHCnwiRLnuuQ7YQNfiRlKo+ONhJWeaCXRVyk4YLuf9DEnTXvZcUvWlAs9R7bzd3+WH5wMlsXdB0H0CQVv1d8JR/GjdC/T+/CKRjcwUuJnDvLlfYH6LDZ4cksgxLNVfv8UF+5bPVokZ1Qki0SkKGtIoqVnXce8rmU367aZxELWOZ8qiBJ6N+EqUZZsiW6Nnj+S+DFZkcgWGfv0fEfiIwJDGBXdg+3aQ02CL+n4jqq98v4z4xpif2DdrAEFWaNa7zbteeZpDuxj726mtlJvsLzC//6PaT5Y3d7NEOu54CVjdtvhaV0tXS1F/fqNq5g3451bk+Af/xLbd7K6wmsvMn2CXk1nYlBny1bWVjh7KhDlI0+Qy/m90yc8tVR1ZEvw1f3943f/enPjDH6a4l7Kj4QB2L5C6yJxpW78J5+z+LXPsfoayy/QmqcxHaIvf/jL7/t8bQRga2kkJV+nlya+sxIDImVrCkJquilJl8iMnGHdmyZvE6uuWDatrW6Hx43b7YLXnPeS0553zLeuEeANbJjG5xLORswn7InYFjnxv3zCZPfT9poynH3d2fy/cj9koQ1tDW0R1tQtq947xdrQNW8SIXaVSVPjQV60kY6PXWtffU865X397OxjTx9TpbRLX5cD/YEU/+Ec9Yix/mC8318IObxmR6vdtOCKE16100Fb7dbWMmZSJHLaW055w9DHyBSpHQv1dH2HGf44jQv0jtL59g65Uxll6xqbSPaX5E0Z87i9XnPamtqHbBgWO+FzZr2g4J20bXZbVVv1NpuybcaNG7Ki4qwZa2r+mT8Gv+jHPeOgrUb8rE/6HT+4L680EiJ3Y4bsNmXEgJKijIyqukvmzVni33zT+p/+QCvT1Vtc9F53wys6Vqw5p+VRZVU957Vc1rEe52jeWDdxK5Qfpe8ZsuPUnrOJ/VDPzc2ub4WYeJ7Ot0K+/qrBW1p0kTToPhfE8/oErVLLfSfCUXCGqNc5uJ+5+ftEgvsnKA8zOEVpiOYal1+jHYIzj9rnEXuu6s8/5Qk1DWOGvOyYd1pnOdfhTJu/0M9MLxDjUkQ3QysJ7R/XQpHccKvf4/b5K37S3/aXfNsrXnHCb/uutxvHPH+Kv/krTC89QAL8XlzvHPEhY6TIT+zh9XkWakz0sXOIA6M8sYXnLt9PEkwwoS3rd0TBXi1ndS3rWtZwTMt58XvW1l6qSSdVEGWuiwZfh0yRfD+9d01nDV3fwm/J+kmRXTKOCLumgntZ9B5qEgyntPyKZT9Ud1LLspJuqvrt6pnvS/hL/0HY3v57Px2u8L5yIIYT4+FJzpzju98PhPhDQCclvuP2GjBhwj7bPOGorynot+ScFdOWXbR0nTWRyxf5yLN8+vPsP8Q3fp9imeERtu8KDuif+QmWFoJNWSZD/4DJzEmHijOW6uwc5tJd1ouU9rPj71I6RPVlVr9G4zjNi0N6zTHjf/489fO0FsJITjasFB4Mro9D9bCWrlT9nhTJ61MWyYm10gvvxs83FBFt9Ybfs+KSHZ5QMmDWSUd9M9Va3iKKUxXI5HdizkeBBF9IbIl/TEdNz3lDvUd8pvcvdVSc8X9Z9obkfUbQEiy9337qd25cdAMKMsYU7TfkKeO2KFnQdNa6i6rmNTR0b9m57LYYL/DoEF/aGohwtcsbqyy1AjneWmLfSKiufmIbnd41i5Dvn9W8sOJc6x2XnPaMLzjkaQOGLZlRseqoF7zlecmLiZnfYOzzQRNcPx1cIha/RvGXv6JQrehZS2l9V+suS1hDcjuSkzGgbEifivqHFgnuWVD0lKZHrHlL0480vX3Hxx1z0Xe8bjXdYF1P5H/HD/yu54wbctjO+/p6AxEuKiuaMmG7CYP6rKvJyamoW1aRLC+5nWC9IfGOhmMaV0UH4R3kr9Pk3hqlR2lfCGOifYnuWzTesPl0x6bQJD5D9wdkPxp8BKOBUCXa/WO6LxGfCDlfWcGjcTO2a7fG4EBYJvrKvPUOr7zGidO07nXTnitRHqF/HBETB9j2BPs/x46n6DT5rb/FiT8hiR222y6TTrjgDac0tT3riJ/zOUV57zgbiO4/WePRAo8UgjZ4KMNyj9MdjrWDuXOHnSb9uKd90mNmLalretpBC1ZU2w3HZs47PRuioH8Ga8/uHf05yjnNIU6vNMUx59Y4sxo2A4dHOTx2XcOp+4KeZV814BPG/eX0d4lYU9eyujclN4kO5foCwY0yoRloppA2nVoPEeLCcLg+426aZMiGiHHSJVt6IyiQWjsk64/KeFZiXs93dH1X4kYr2TvhoSfB62LHtJzV1pI4YNAuAypaLlsP6ab1Cvv3hvZhB/eHMtjVNbpd5hdCtdSt/LIeICKRQVsVlGVSAUROUcOaqgWrLpv2qive0tGUVdBnTH3DOuTcKf7wdzhwmIkt7D8cRsXwCNt2BOJbrdBqpSG8In0DDo0W/ML24BBxbpnLa3c3IXSXqDzPwCfDerKRsihsrcpPNvU9xda/PmPhN7aJV5eJW4YVPG7KipbjVh74xJMzatRX5IyJZNOtUFXTeT01bbOuXzwSiZqmLYa1XXLcRQ3ttFn0XZDV1Gps4PJe+1/4awY6eyzHr2uYUTQq0ZNVtNXnXfTbacHPQ4DMGPLEdyd2zIqMKdpnyKNG7TNoi7JPmNSVeNuyb5j2tpXUe2WT73K1w8U6p1JyH0XUu0EeMdfkkUEGCxR7aQVnWtn5mX0s1VlvSmYr2pre8APHvSIrKyjjczIyIWcQs/5ykF7mh9NTkeTt/Ff/uVa1p5Oc0VRJpRR9QkL7zkS4IG9A2Zghn3TEvFUjBjS11TRUH7BDxI3I6llR9CT6xDoiw3pWtB13q83pSZd001bc70Ww4gvv9VG79Sv5updvTfSfmggrbeXW11Embb+alRGL1TRlRB6118c9rqbhnCs6uumG9M7jKhGu8H4fMeTH9FTVklNqyZlQQCwJ7eZvU4LfW6NbIk1vfADo0juNEtmDqYn0Ir2zqaH29XUt99EqLQrteYtFLs+kBLj1fghiEiwwR3YysouhbQxNBcbSXGd4B4/9DDNvU5mzHK/JiCxY1a/sbWdMGlXTSHNLwvm/3OX/WOOvDrEnd00O8U6LUx06TKTetIvWvOKEV5zQ0jFmUD3NCiceQCHcw47hAtv6OTxs9sCQfxK3/cJzx0300Z8Pcohijt85yZn7HgfsmfE/q3lJ3naRjJ7aVRIc32Re7DZDfX3fVgZ2M/lx9vwcL/x91s/QqYbob9wODpkbEvMkQSaRyZHEBZEpGXt0fS0lwOfcy8X80JPgGE2JZnrZJvh5jzljybecUWl3VV97k89/hkMH2LUj9BysN4L6/+XXOH4q/PwBY6PwbcUlWXnr5pQMyCubd8oxf+KSN1TMSyRy8u9eBFotLp5jZZnRUcYnGRmlWKLcR19f0EG3mnTa6dYqK8pE+gpsH+JLh3hpmtXGnYvjuitUfsDwFynsoO9xckN012JxtW3pt+hVO5LaEnHTtqToMaOeNO6SqgF5b1tOI4XRPVugQEafSDY9ijKpCGLARw37jI2uVoF09uRtEatb96NUh3RtYa6oycvZomhQQaQoMiQ2YVXFvJVb+/DGaJNp55WMG/OMeT+QVTJgv1FP6rNDzQXrToo/qOar0UBqxH6zPNJY6HF/sxzTLVCUtUXZDv3Kcmq6yjp2G7DbgHFFq1rOWE+bq2xysuklXKhTWGK+yVghFLtMFNlSZHcfR9thzM+npLTa4sltoXPKhWVW6rR6Gqoa10XKNzonbqB2nNYV8vmiokF9xg0uHDAkZ91MGgUOQpvoPYRj0oj9qQfxNmOetM+EYdm0kKur55IFA0omDcvIaOuoalpRcemGJP77Q8ZIari4cS1FMgZkjUp05GyTMSS2LGeH2JpITtspyU3cK1p3sfFbUfFDRzW0bh/p7suF+otbYEN7XJCXl9MTW1UxZ1lFQ15Wn5K6lqq6hqbe+JagGV+4Euazv/K3eenbXD5Lc6P+IcMnDxp64XO29H5BV0Um+RO15BQDw7RbaajzxtceZSk/jYi4QvvyHU/HfUKCGvE5V2l8spxuUms3ea3XxuWU/erW1VWCe80m0GyyEgcLyrFR+vtot9+HRVevQ6tGr8v4for94fvVaToNWlWGt5MvEUWOu+CArsfsk5N1xiWTRu21LUSBN9DBy83gFbwzH+QPb7aYTntco66ppmld3QkXdXSNGtTQcs6MmQdQzPlnAn05Ros8Mabzk7tcLmZ8a6biy9NXlKPEYoNTK/zh6ftZFHcNHTPWfUfGoIyyrH6xhoyiWMMNGY2YToXuYNABd5vhttdkSU84AAAgAElEQVSguXSdNjgJ4zS57uG9Br0I8aLIr4v6viPpnqUzfVtLutvhoSfBBP1nOTUEG1L0Y3YryHrFFYu9uurFaRrNEPG9dDkQ3pm50Cfyuz/gykyICr8Xg4/SrdBeCmf3AaClask5dcvyynKK6VFwxdspAQ6E4qaFKI06jbrs0rId1WEX188xPhGkD4VSyCP0D1Crhtmt09ZqdTU6wV3qk7sZLrHevDMJ7lWpvcnqHzP42WBxGbfoLgZtcOW5jXuG8rQnjPuy3Q4ZdsyKnQbUdF3R0EgH/r0T4Q3tXIglZfTLKOj3hKLdOml/44w+GeX0fgU962revvr38BmECvTdphy0wxYjaSFVz6qKafMumbds/d0kIZcNGYSEtjWLXjKQWrP02WHU04Yc1rHmnP9HPe1Y9sARDQXZwNUwVpJOAKlHaWY8rVx/d4Sz3B+GTbdzYzq0JGuLku36DCpo61nStKpllwHDiqb0yV1tonsPWOtwosJiiy0ltpU4NBgI8PYyww2ygegqptquHcPsGmG8P2gqbzKLx3pa1xG+zlI4ejIiBUXDMvK2e8a058VXDcU6N+jxw1xTsNWovaZ83lOess+6ujec9UNHveGsVVWx2ICy3NVY9E0IYTZLqY/a5p3Dg0P6iETjOslORsaIjDEh9VhHImNMxrhEU9esnjWx1VQ137lpccqtUNF4V8e4W6KcC4S1lBYj1949f0WiNFIfzktD05LghvK6E8qKenoum1fT1JrYIu7vC1WMfQPkCvz832RpluW5ayQ4E3FgSumlPXK9MWRlDYS5cHCUejW46fRuEu1ep3Qk3HYu0/tAFXI9kiWSNLebVNycACPd4I/Y6vP+I6e94oK3rZjR28RGe8MGrdUOfuqZP/fpYBcwtxKCRM325nzSkjiQ3eYafaPk+2isUF8OkeBuM3x+cbAMm7Vkn+0+42l1Ta84bpetRg0qvNc5YDnmtVaQPyz1QpHcdQibpbAFnreioaWWymLOmbH6fiVkfxaRz4SUbzFDX57Roni86J3JMYcuLcmvtRxdTEyv88rdFkkP7KA8Hj7HdiWEZddv7yPYMYc5kZK8renG/dYb5F4zyB9qM2ReDwn92hXaa0JNdDbsgd+L+OpQXcef2ujl8n6C/w89Cc6IlOSMKhtVts+YTJpyzsvIpZNsb22NP/5miIy220Eice4Cz/3o5k8c5dj7V6meYeFPqZ1995bjPmLdrPX32aO21Mv6/OUpv3r5dyV7DwRy1tcXJv71NdZWWV810liSLzU0OkELNFoO18ndIGnTnmbp3wSf4O4i6z+gdZP1cK8hn7PdT9tjqz5lOedVLGjqWHBZXTa1MLqXAqLrxfSxuqyWjH5xME1LLVm6NnrmZRSN+Skd83qqYi09VddHLPuV7LXNIbvk5XR09Svp6PmmlzzvbZc2/MQyUZhU6gndWNOcC34TiYJR/XYr26qnYc6fOun/vP0b2riik825EtwUuZ2B5GbGg42HKHx4UR+9WXRkMzXill43mIxEEVM7AhGurDF7KSQPNlCUNahgXMmEkiUt69ouqyvKaovNaVxNWt8zKmnbttkm6/0hIlzIBGIcR2HHliT0FRjtY6RMKR8+j0382yCP6Ghb09CnYdmI3SJZXU1dTT1t3fek62atqGj4hCOa2voUZQQv8hcd9weed+K6zc6QPrB+fTq73BdOej4fyNzoOGdO3CURDhWNkbycrTIGUzIb9PdBldwvY0iireV1ISvSECmlZDeSNSFSkGiIVTdFgu8aU/1cqDBUCJuWE+9mlJ3UBnJDeRykI83Ua7Tpdad0s4kT0SXNbkvyxBe4ci4QrY9/OZzD7XuY2h1qIa5HtamdW1DpvqibrGpG50OznoGRMH5uoQ9uX6T0WJjbusvB6lWP+ANz2WwHazTCP75NRiUja6dH/ZRf8i3/Us2qmlWNzbZiykTicsnSlikL/+Xf4blXePENTl9kfin4S3Y2kcFK4kB4416IBHdboRCuVWVlOqyj7Wst0QZzBfvyYxoNcv1to8VEpXxOpTZ7Y+3CWsx0HG5vgrqmxfRBS9ZcNKehZfbf1ShwMRvOczvmUpUX5hgrUmn73ZVyKDpsboLXlCfY/2UmnyZXZu08rVXe+dep68fdTMI93bvoBtdt0pgNx/xLaQFc+vRJ7+7oWPc+XLcPPQkeVjKo6JI1Q4omDfhdRx0zb05VhEkDZmbmQgT45Onr+kDeChmKkxz+O9QuhIDj5fVgLPiQIi/noL3BCOzyRZ74KAceYfdevvN1zp/m/Bl/Y/KYpweram0urvDt03Q2kblOutReDsetEOGztvlx221RdklVW6yuoySLno6OgoI+pevMte8Ngfg2sWjBbyrZp2CrnqqWaSSKdivaY9AnNJzTU9U2r3vd5JiX09Q2l7ZvLCnYasznfVS/knW1QIIjqUPBu09cT9NZ/8qT/oG6y8761xpmrHrrzm+iP0TuNKth0Xg/yAwFwpvbSXaK7E5Knw7EeO1/ojttdOySYm7W/AyHHg/8YGoHO/YGEvzmi5x6J8yfBRk9iQUNl9MofyQ0Vjmv4px1i5pOWFXXvT/FYM2YkxXWOyy3eb3C9jF2jYYURhSFri8vXAjHmcWgFb7bUyQSSzQ1seykr2tYMectdUvat4ka1TR9x+vgh476HT+Qk7WcOipcj3eR3yi1i/rUF9h3iL2HGRtnfoa3X+X3fz2E4W/7ugdkbZU1LmMgJbyDaTFfLZX5RBItHWd1XUgzSV0kepbUfc8H0uf20TFKuRCdX2lyMiXB1w2PoNi/8fpftKqQu2J9NEOpyKUGRz7Krv1U1xmZoLLKc19j7yMMjTJ78Rq5XVh3ece/MHnpp0TNSDu5EnZ1vS7V1Vub4EbB5rV4iNIjgc91l6l80/vem941kiZRyZ2W31hsySVf84+d9rKKJbduIH8bDA7ofeZZl/7wV7g0y+W5oI+YGGN2gXdOcfoureUI7KRVYeksoqARzhZCRHjxNAsnqS7aOKEnt73iXx4+bd93f8GBL11QfeKfy3+R0u8T/fJ7pBnF6LYF/vNWrKnZZtz591yL/06ims4nhXpYr06lodQrdWbrm1v8oyw/9t9w8OcoDAZxbqdBYSBE/k//QYgM3xbJXRWGZ1Lv/04taH8/TDz0JHhcn73GzOs4at6wkkn9KtpXdXqzqrx9dJPPHDP9W+Hb9kq4iHMDdB/OlEpPbGmj8Oy1l+gfDPrgOObyNNMXWJz3YrWjMRoyyK9l+KcvcH75/s7vP2bKp22zRdmMulctWNbU0nPAsLyMNy17y5qMjAmjqeKvfa0Y4p6QaLlo3q/Z7b+VS1PCXRVZAyp+ZNnXVb2s4dwNlak9vVTyEMbOqCFVdUU5h+22r7CLgbcZKDIxyJvTN/XZeWvn/xCyMZnxYDbaab5XeXANUcTQZLARaqzfVQX7nU9DKxxdwiI0lf6+R+GjJD2Ly33Gxqd8/qde8bmvMDQSFEHFUsgqb9/Ntl28+LWsBOva3rLsrHUTSkaVZIW2JFUdq9pWtbT07p8jQoKZJr9/Jfy82OT0YkjvlfO8Mh3KmVcb4dgEutfJcBpWLDhu2VkNy7e2JLwJ5q2av5PVxuBwOKGj4/zUXwy6o1YzkLi15ZC12XeYP/8X+d7XWb/188XWxdZ1nJGzQ8ZwSn5D1oNI2zFtx+TsFCmmj6nK2alzD9XR94zTq6HyZrAQinN+Zh+NHt+ZvqP2qqmt2W2zFDG1JfxyeDyQ3elTnHk7SMFGt3DgiSApeWQ7T+8JrGmkn4GS+T0v6zs5JnOlHSKTcY/FGdfPeFGR/A7aZyk/Re0lMgOhQr29Ce53/1BHMe0og1t0Dk3ErjjlN/z33tcMns8x1B/kIS+8zstvsbAc1o4tY3zi6U2S4CSQ4LPfZ/pluu2gFe7UqS1Rfbdf7sQ4+59Z8/WV/1vvQihv6e/j6Sf42Ed56dXr7pwTsj63QUv7/yfA16PaCdfbSiucu17adKi+iY1wtshX/hHDe7jwbeoLgRSPHeLQz7P785z/5h1JcCQrk2bHboe4c7204c4oekTLGQ9ic//Qk+Al9TSplhi2xUpKbNppHHD+vf6uGNBvxJCqmtX3TjBRLpBdEdO/GX5uzgYBbKZocx6QDw6f8TGXzFqwZNSwL/mMJx2x0W7Ui8/x1qsMDIVo0/oaV6a9lHScLQcSvGOY8yv3P8BRlnPYiCEFb1j0hkURSmnxy3La3KEoVtOTlzNkQC8loO8XTWdc8Y9klcU66FnzPR0LWi6nVmk3vuvQdKKtX0lRQb+SQX1W1bztrDOHuvzMj7NvggtLHJ8JE/x7MZOELOZwnuGtDIxTW+HsC9fuUxqgbyQUiAxNMTAW7rM8HchwNh/Cs8t30BEf2sXESBDzrtdYXGX27fD2shOha1G8QlRm4K/biAjqnre6Pu6td7b5hf/kD332KyzMMH02ZOWTOEgnm9f5PLTSut4lLX1q8jIyorSzV6ydlpN1H1TIrNG55uETRcHbL0lkkkgUBzHAnaQ1udRKvat33X0TzZTIJu9rE3YLVNfDiS0WefJjNBu8/FzQnPR6YecxMMRf+U/D+3rxe8xducOTxrquCN1OYlmjIuV3Fbt1zZg0pWhAU1bT0n3vhn1bZKKwAD82yGd3hAr1X/rW3T8+n2NkKESCB/sZ2xIW8+p60AN32zRq/Op/x2P9jD4RdOETQ8ykUectgxrtZaJV6qVQJ3EdCnsoP44cQ19CQmc27F2zd16rHxySViDBmdRZ4bZdT9/n9VZrcOwMX/1amq1AfzlIByUs3qUwOptPPa1yYbNRmQuyiE4zzV8n3tst7hPPBsOm46epNxka4ugJXn8rlO3c0DJ3OEv13zV7h/uARjcct+oZJVyuE8W07rRJb2gvxZGQverfGoju4jssn6RyOXymlcvs/Oxdv4xYQ8s99SG/w/PeSjsfkLdd1njqln5mU8/90JPgipaGjo5ERlbVqFhZRztNvw8qKCsqy8jpaOmTNaCopa2ocI14RfngoJ8pBvJbvxiuwrh1LSafK7OrECKA8/UHU055C2w14ef9OQuWVVTlZIwbcdh+H/GY5esjUu1WOCrrrCyFXX2noy2YZHdjWt0HYxj+hkXfc9khI2bV0/4wbWU5dV2z6ipCv8qWtp6eYYMG9MmINDZZ4ZxNi4466S6wY8m6H17tVLOBWMuISEasIblhO9PR1dLW1VOUN2JQT+yPPOePPjbj1Y8lbBtm9zhTw+GYXg52Xddj48fqcmgUsj7H+B62P0ZlgdIg/SMU+sP4Kg8Gsjyxl9Ed4T7NKvU7LD67tvLFTzA1HipbLi8wt8TjSdDwTS+HVHt9JrTtbL+OXOhtn6yJ47raWs2xN0NArdVkZpqzJ8LRab97WtlQb8YSVZ3U0j+TvuXkfsaAb46E61vPPnIwDOv5K1nNWlZWXpRaoXV0dVM6Hvx7Q/PrrMxVC7DrCfMDIb9XnzwJxPfiuaDNf+KjLM0H6UNlPZDgqR0hmlkoXHOKvyN6rg22DWf0tXf9fc2Sgx7xrE+qWHPROTVVC+Z1HoQO+Hqst9k+wJa+YHV3apXXF+6uR3sxz9AgW8cZHggr86/9r+x9jN2H2fco06f5xq/zxBC/+HH2TrK4zpm5UIiXJPRiyWQvFHidvzGA0V2gM8eWvxXI8Mpv0/eRMP3LhSWh/qH0OmihTbSFaIzkAYqSW23OX+aff5VnHg9jcHw03FZr4W93g7gbznmmR3EgaIBb1dt2Cd0yzu4doQbvYj+jw+HflktBtXjq7HsecLIdusPdN/TZaKIQyUnU3Tpt92cYyXtub4I4Ya0d9kFxIkR7m6vky6EQbu1C+HzzfWGz022kJiUJrbWb7Fhu9UI+DDvaQhooKG76sQ89Ce6mtdzQ1rAmj7IBWw3rl1dU1JfWZ4fWqR0VbctGdLTTI5Fca+9IEL92KqEs8SvbQq74e5c4PMFkLlg6jRaD2Hz5AXqAjmdCh5ws7TxzfRWrrbrG2apKUrPVFk854llP+re+44ZRHsfU3x0N78ahXfLdrEX3gkVNv+ecrfq09SxqqmrLy2iJrWurpU68cRpBrKkrKiikVlaBxNz5YgnUJ3Ra2iDBifa7tL5ZkSl9Dhm2Pe0dfkXNCatmr4uw1LUsWtPR1dDWk3jlUx2X4jlHDzUsDUe08tTbHJpkYoDZtRtJ8Aa6rXC0qoHYlIaC9GHyAOWhoE9s1UIEpdAf/lboC6nDpQshInw7PLafzz8TFvwLsyES3GyFqNnWMU5P8/pJTl0kXqQ3Eyp9MsNEwVKu1ex67tvbJPGMweHQZPDcyYLjbxYk8a2zHhvx4eAcG0k8mP5oAwPB1GVoKLijFQpMTHD+PDt3cfYMUZw1aMCIIcMGZGWvZnmaqY3XRobkXW4khWwoqpOESPpa48HpPuM4yB/eeZV9BxmbCHqT/lVK5RAJfu1HnD0ZIp2bffqrncTeHestKZkw6YBDqVvFoLy8C84555RFC/fn/b0Xk+VAfLf1BwJ7bFnu6LJnlxpechcGerkcfaWQpt+2JazMx4+xvhJSFLsP886LXDhp65G9DnWPG4uuiHM1S9V5lUrX0f2HxRPDzK2RnOd8iBblN/pmJKHYpruQ1o3mQgFc6TCi4BXc+9DqqXpBG5zUQsvkpOj9tl+/JeKY9Sovvxn884eHwhxSLobN9F1LITY2Hu3U16pzWwIM56cplULAf3iIQp5D+1ld5+Il1t57Kazcz81qUWijOyAyLLJT4pzYRcGV44NqKffwoBWHvkSLMb1Oyhu6dVbPcur3GHskEOC+LYgYPZBqgleCTri9Hj7/DxhZw2KNNAjw7jGXMSRYsi6lxfCbw0NNgq81Hghfe7oqlpX02+0xBzxj0m49XQ0VsVhGVs2qJeeMKgpevS0tbclInvG+QErOppWOjw7w1/aw2uLkPHtK19jjZF/YOj1IEjyVY3uOgchKqeX3Rr7PUs+RC1NGu8MO2+cjHnPIPjX/9q7X8HYv9Bh4UHhuk5qsuqaeWElRvz5xmjhp3KHJQCG12r+V1VpGZEjBT9jhC7YbkNcVO2NdSdaqVuprG/yCW2lhXDm1RXvpZ45IGq3QmpOwg2i0mRxiqBz0qegfZtejwXnp0vG0oCwtWG83OiycY2grYzvZdiREg6tL16K92VwgyvliSB/Onb7zSXv8AB85zPQcJy6EaFe7ExaufTtCGnlhJZBgCfFCODLjZLeSGdfpjnjttV2S5If27l/Qafdcmc65Ml3iNiR4A2GZeDDMMZNhbCycy8nJcNkND7F3X1i3R0aYm6PYKJsyYZ9ddttmQL+ahgVL5ixZtGxNRVVdJ40DJ5IQbRzvC4xooj/ojdea77HOCoWc9wVxzHPfYngssPlGPdWpxlw4w/e/wbE3r1l9bQLJLdLl2+w0YTI1ThvTUHfQEU971jf8kR/5ns5mRRLZiHI23K7d5LERdg0yXmZrH5W2/FuLtr4651MZjvaCqOy2oyaKggVhfx/7d1IssLTK9EWWF7l0hqOhOvfJ5nm/ePm8A4VQ+3y8weUVWgd3uvjJp7Wm12Qur8pmzuh0OwqFhCT9/50Q5+hcoXWeuEZ+exj63aUQJb7laRDJi953JcOt0SBZJNoe5ExJ2wPbpSUJK+u8dF0Rb6kQJDxrdxEZzWRDt7ikF+av1t2RjXeOMT8fLPwLBRoN9u7hRy9x/OQ9vpe7RhklkSEZB2V9Wc/3JOqSjUj8w4BM2AdFAyF2kXRI1rEeycrr3qfXGQmX9f5BVtvXNRXptQMJPvHbHPzZQHZzJUrjjB4Km536fPhdJv8hkOBIzpRIQcsZcSjISf3+c/KmUhnEudQycnN4qElwTlEivmEQVKzIKdjnKU/5gstOmXFaU1XJgL2eVPJZF/2mEaGf/BWzGp+clPzc/mB99V+/FML7/9vHGcrxWpUn+vntmxeWbHSnkkab7ltcLINPltifeiY2Yi50DWcG/cd+3l47bTOpqaV2Dx/ww4QNWUpJwXaTEomjztzWS7iUWlQ19ORSb9/r0S/nCWP+K0+KJc5aF4kcMKQg46x1p9IU8vU+khmRStSQ7PgUy9XAyAaKwRVi51gojCtda8V68Fn+we9y9Dn+4S/SabHtQEgsXD4Z7tZenwtaxvIQI9sD4S0NhH/YbYfIb2ON5l2m47aOhRDKhVmqjUCAW52wmDVbVz2M342IeDlUn2e3kn+E4me9/uaEeuXXZTPrlhfqH6Qn1G1RKkUOH04USzz2WCDD9Tqf+ARHj5KLssYM22+XJx1xwG7jRowZkZP1mqO+7Xk/9Iqa+ru9tqMoRNEHi/z0o7x0kR9dZLWemktGaRTuHnpM3wxJwvPfCYQ3kwlHPh823aeO3mU6cXPYYZeSkrNOGzKkouIRj/kF/6G2tjNOuHI3/tXZKMxFUcRInsMDDOb4+tyNAbNIaEG1cyA87nLV+OvzfvyNBacTdkWcSe4Q14xTG7PxYb7wCV4/zuxi0KcuLLJ6zeHnxz7OF3+cqclgZlDIhzT7I6u/65dnJpyrlOWjhoHsktnKEFFGvR4HZU2W8hYGv4QuuS20zlB/ldYt9qER8iLD8rYquqShqvcAtPDdlO3kpSffvZDgTNryJUpvQyP4u3ieZjscd4PiYJoibwYSvAksLIVjA9/74aYefs+I/L/svXlsnel15vn7lrtv5OW+kxK1lqRarFpkV9kuV3lLys6GOOi2O92NSbqRdGdmMDNpDDCDyTQwQKMHgyAzmPF0OkHS6XSSRuzYju3YLtvlUql2lfaNkiju5L3c7r5/6/xxPlKUREmkSKpK6XmAT5d30V2+5X2f95znPMeHd7KiMoSPf4RCCIfruCzwkSDBqti++z8Jvo/JkO1kwHgT3BN+mqodLG6TxtanwnBcutZfyUvt3FrBGKU5WDgH/rhEfyMdMnbVliE/IXZp1sNvOgYafoZw6cUig0MZlRB+Br0osI3J3AMRYPiIk+A4LdiY5D3vVh8BfATwE/JSnxZ+QvgIeElzHyoacVrooIUKSVxcokQYZZzRzghLT7VDfxxeTcJsCTIV+L0zcPzuE0WUGHvZTzc91GlwhgvkWcLZjosoocJen/RMLzkwZUKLRr/SwyH2rWocgwSY+XtQEdvAIEMBBYVP8wxZCiyQwbpL1WcLCWxsSlTWlU/sIcFv8RitBPkPXCNFBQeXvTTRT4wh4qsk+HY4rgOZMhwdlIKboA9aohAPwtujIovwRonlWfjJn0JTO3z6H0JhSdQOsSS88KvQ0gt/8E+RwrcrP4PhY9C5VzbHgdG3bxbG5TaowTt7DV5+VipKDFNuLUvSmNPzIoeYuc1/WusAAqD3gL4HfAckD2xc5fpFY8cCTQ8Cx1GYvJ7k81/K4A9ARwf09Eh/iUBQPPyDukYbSVpJ4kOnSo0kTcSJMswABUq8xSlyFG8lwCGf2HcFdDjUBf/L5+Df/kyIaaogXetmTamA3u59krpt0lJV6BuEmQkevFXX+hhgiBbauM4I86SJkyDDMjY2u9jDAQ5vjAQ/l5TmJV1ByZcmfdLR7yeLd+qqXMSu7lIGzi/BYpVYps6TCswBrzobqOGu1qBQhlgUvvC83H/7zLruKcWSaEqbErKmaW2RqGIwAF+v/DGvn4Qfvgmn0irEc1SadkNtAmyLyFFo/U2IHoOlf+81yUiDfY91aBM+9hHheZJ0EOA6FY6TYYYa9W2PCbvg5mCVsG0egyToJU4zITQU5ihxitTGiPBGofnEEcL8MEjQg2JFn1rHJYPDCBBh6+0Vtg9aPwRegchvidOlvQhKBEK/DoE3wrR+bXhbSHBQE/L76Q5RMgG8vQip2w9nak1xtx6GeB8k94pe+D7Sl52BToBd9PGHVHkfabweRiOOnyGqnMJgnK0cz480CQ4R9eQMNWwsVFRqlKhS4gpvez3CgiTpQkPHT4gYSY8kW3TRQYwI+wnQQRsNJ8OSpkBrEMoGvDUHf3CaQKOM2yLN48J9UiNXnQMcOMzjHOMF9nGQJ3iKG1wnRoxxbpBmjkXW5NM69knaqLwMpcW7/q5b0K5BmwZ9uswcNtAH3/7hRfK//Uc8d/UxDrGPeRY5zrv8Gq/wPV57pKPCFhZLZHmHs3TQQo7CuiQ4RIAu2qhQY46b+zOKjyg6Ufx8nE6+xCAXyXi2eQphdAJoOLiE7nKKO7hkKMD//Rr84lPiT6trUKzB2CK8Ny4RQ02BoE4pa3H+pyKBaB+QKHAxI8G9YFR4ziqunYZaQ8LET/0C9B2BkdchfRXmr0Fpg611T1+BP/870U42DPl+rc0iqHvzrJDg7O2iOh+oIfESxoT6W2BeAOMyD8U79j5oaYGI17nOtl0GB7O8/FmYmICxMXnut/4FvPsOjFwBxRGLvVaa8ePzor0GKip5iswyzwLLdy6Qaqb4DMcCoun+9kVZ8CoIETUViZY7G7xOtwJFka6OO4AKFTroppMeFkgTIICOzjxz+Amwiz1c4AxL3CPvDxD3QXsAhiLwRAKOtUDZEqP9/+M6LK1Z8LvAxYzIIcom/3W6xL9arhDU4ffMTUxH9Ya4FvzP/xdcGoWJOXnsNvzoNVkYPX8M9g8LCW5uEk3pT47D62/C1XFNmpRoumiwvdoPYxqKPwKtCQo/gPIb0jFO8d/xMXQS4DAxPkGSZ2nCwOF98kTQ2EsEgDR1HFyq20KGV0iviRAzlY0SNAV4kUH200o/CQZJMEySvbRwjnn+OX/HODka2yT1CTjLKAEXW5Us2KMAlwwQB3zYXAX+CJdFHC6yY/rrTUI/DOH/CszzUP59qY/U90PgJYj1xDnIMcoUuMHZLRX3Jv3wXBscaIKSCUMx6bMxWRZl6B1kGEQrXJiQBVC4VSLFD9d/BgAXE4cqKmFP+lAEdCwWtkyA4SNOgutUsL2WqBqaNzzID86zyCXepEqRfTxDkm6a6CBIhEZsmskAACAASURBVCpjNJjgIP2eyX2eOg1if3cVTp9FifuIdNiUz9QhVYFml0ALhHs866gZwIFOuhhgiEF2c5BDHOAQKhqXucgYU5Qx5ARp7pMKy0BEVsqbifbM2fBaDZZtGPIJGW5WsSIq7/2LCS7/xxuEP1BWbZ966eKTPEMTcSaZ5V3O3P8zPoKwcUizjIpKB62YmCgoJIgxQA8GBgoKT3KACeYYZWo10lfFooFNHoMr5DjNEgE0gh75HSJOOyHyNFi8x2LBxYVUHv7z+xANysxSM4RAlRte60/AcalYMPIO9D8G3XvkNr8AC5MwcV7l0pueqAsbXBXSs1D/PuTn4IkvQWoE0iNQyW88LT49D9953bMz8hpIaBrMZySKVqvfea7ZC+CoUiSHH3Ck+OYjQIABCgWpiWprl4aHyRYXTZe/I8IzWFyEhXlIp0XxESRAghhJEhiYnq57mauMcZLzTDK7vmrTdiWaP1eAvzoDxQZcKYggznC84/AQIkK2Lc1stjkKDHCa99HxcZBD+PGTpIV2uhjlKle4yFk+IH+v7k0a8Ok2IcABDXIGjJbFS6k/DD/fBafz8MYSLKwhDo4LpxbAdvmGYXPZhn0K/I29CYV1vQGjUyLvqdYl3Nu4M7s2OQPffxWuj8H+PaIvbTTgzAU4fQ5mZqFatkGtS0tER3xOQDrDVc+Afwgq74BTg/pViByD2Keg8t5NWUQGgyg6fQSJo3OKAgs0cIEDRBkizDwNxqhw9i7evpvDze+5GV16CJ2XGOLXOUKKMlMUSFNmmiIFGuyimcO0M095W0iw7gfd74o5xCNVS+YCZW8Pa9ic9ojxwydy60HtAq0PaED9e+DMeEOEAW0ndzM4/gla6KaPfYxzHvsBSfDnu+HFToj5hPQu1WVobAvK1hmCN+Zhab11gW1AbkwyZvbDXzgI8/GzwP+GQw2HEgohLNLUGWE7xu+PNAmuUcbBxlnxPl0DO6yRDxlcc66Syc3RyyC72YNBF2FsEhhE2c0AvZzjEjOfOQd9Iwy5GcwCJJ+EsTPgdoIWkcg/QC110y2tQoUGDTRUdHzUqZFmjgqDBCiTwIfj3KBeL8Guj0PPIVgchZlzXvHABrSf4yaUHThVh34djoVgUIeQSilTpWRWWLtqPcFJipQIE7rVMu3DQKRJ2pTalugFEm1Qzsn9DcDEZIkcu+ilhw66aWeAbg6wmwpVqtQYopcgAd7jHCXPE9rxbLxM4Ao5/h8u8Um6VltsA6SpMkKOsftNVqYNC0VY9vTC9voDjW1BKQepUWgbgN59MjnUKzpX3g4xPx4EIqAOSj7LXIDMDIwch3Cz6IAb1c2llBqm2KLpupBgTRUiXK3Jc+vCkzy4O1jMuQXYlp9KUSMccGlrrRMMSrFMKAQDA+ISceE8fPABZDJgOPaq1CHhWdrVqHOOK1xljHOMsExufRLcsCBXk0VNruplRw0hSab9cPdRbWcyNylmuMQ5LEwMGhTIMU+KcUaZYZIF0vcujFMUaAtAi1+K4LINKFqSAQmoYhE5X4fqOmSqKANlGsgBowr3izffCssWAlyqeFVT9XXb9zYaEvXNF2B8EnouyX+dnoX5RTl/HAcp2rIsKeTx4Jpgl8EpQrMLgSQsFcCY8Nwh1gyhphdzMpFm08sYuIiidB9ROgmwQINvY3OJEua2L6A2tijTUGklTJwA7zLLFAVsHPLUqWJi4xDDj/Yg3eVu/yyfWC87tjj+2Q/f/WqLsIGKN2PkgDrb4gqhqtDWJpW7Dwi3IuUbTlE4ppIQ/2rFB7HxNgZGnuAAzzHJZR5UKtMfEQL8cpcQ4PeWJAYQ1IT8DkRgX1wu84kyVCz5u2DK38CHpAMW2zOVGBZLlHnDux/EIovJFM42Wd19pElwg+pq5NdZu6KNhKCrDbs5QdGyKPpnyVeWsSvzlN0OWkni0MYk04QJMUea0SfOUj88R7sNjWVofwGyZ8Cu39zMgjzni8uKt1wrsmwvscgCc8wxTZErpFimhSAHaUVDcTXylTGqyT44/AqMvS2Vs/Ui5B0w7mzmcQuWbNkA4irMWNCji23amAmpWyeFk1471w8d4QR074aWHiguCwnW/Wz2Yq1QRUNlH0M8yxH2MsgQvVSokqFAhBCzLNBBC/Ms36r7BOap8j0mKWIQw0cTAdJUyVLnKnkWN9qy+S7kdy1cB7JpWJyAmati/7s8o5O6EQY00d5qHwNlGJSzYKVFAzx36cE7xZnWusRAIY5CGJca7l00z1tGlwJL7rYGkRUUajWNbAaak36amgwWFyQColsdzC5FuXSqxKlzFQy7QsO2SLPINCmaiePgkmaJ64xznQnmWaayZpy4BYbXbU5TRRqhStkQiiO3fw8skqpUGOc6eTLo+PATAFwmGad2P8mUoohDQMMR0ps3PSJs3nTWn6nCtRKU7n0S1IHpzXJC1xWtu2EKizXMu0bL6w0JEucKMJeWl9Vq61waK2xt7fs4oBrw3AHoaILvvg/z48DtHrVA3WsM40NBQyGASjM++gjSQxAHFwMHdZNFbCoKHbSQZpkoIc+68/Yvv7H3c3EpY5CnTpoyNSw0FCoYTFOgw7OJ3EpvSkUVZYkvIKeJ2fB26yN5yVhsqzewrkMiAUNDsnqv1STFVd/cototgjUCxlueM4QN+pAY/ATcEE2000I3QSL4CVD32oZtBi0B6AkL4V2oSxO5hgNhXYhwdxjag0KAHaTp3GJdlFAfPqRY1CaDScozJtCxyWOzQUnhBvCRJsHrWoNoKuzqg32Doo+0bcj3k52YY/xGllK1zoKVYcZJM8INfsZbLLLMXDpHRQFM0DQVa1Yj+ZSJa0N5UiQQZgHUIER3ScCoMgkL1TTnOEsFOIlLE8OomKjoxOgnQBNR+hmvGlh6UGQR4WZIdIkjQPY+JHgtig68vrlV10qhdv1hn7S9e2H/s1IpNnZORszMmoIvRRVSrGlQv/c+sLDppJWDDHsWWGGC+HGBgjd4ddBKE2kWudPYs47Nq8wA0EoQBZFMVO7D3sQASV8TV3aRC+/e4Y7CMoydlfl2abVmQZxDUPpAexYxifJ7bVwnIdq6PS2TPegcQWUQhwUsziPFH/eJeod84p23hvDr6FJkGtGFCGGDbsoi7LMa/NCGjLttfNGhATQoVnRGLiZQ9AyNhoZRjVC8/jL51AB5TlFhnAo3AJd5ljnFRaZJYWJSoMw8S9So07iXgZXp3BQwKor4Bmernu+z7rWtffSN80sUKT1Iel5XIRmDAlBSoOpAxbNUMPxwoQavzkpkeKexAZcCTRP+0WjIKbxKgNdeVyuMbQ0Jdi1QCvCPX4InhuDiFCwWvejxbahho6EwQIgBQpSwaMWPhsI4Vd4hx2XKNDZ5Qfjx8fM8z/c4QQ/tLJLzMhguDs6GPNNXYOEwQ5ESBj3EaCW86uPtQ8XApoZ519Y2ilhJrN7iyu5SFK8Xhjd0+4PyWK0sjXU+IrVkHy4URbwbDx2Czk44cADyebhwUez9jI0Vy+uqJKSs81AZA/9LQA2Uw+BcBTvrUqXENFcIECZKMwZ1bCxPIqDeGhi8CwqGrGMX62KP1uQXKUSTX9a4Ua8lQtUSAlyxIF1bEwXeSaxct3dZ+LrUsT0LVZc6JsvsRODiI02C10VXG3z+E/DEfjEVNU0JEyxkSJ+/SvrSDXyTY0SWHaI0M8s1+X9/JTd+/LSSJKx0YvzOeTo+6xLqgdxZGSx9MYkEmwWpcUsxRx6HBQZ5jH/GLK9jUsJHlCBtJNhDm/sUxok/ZSb929iWZ4FVzUPhfq1Rt454EI72wes3dq45xrro3QeHPwWtvWKdMz0Cs9duhgoSrTB4CFr74Kd/ds+3UlFooYkWmqhSY4Fl2kjSwGCGNPMs4+Li28Dpunwf3+EVKPiIcpggPZhkqXANhwY6cRrc271h9qpsAgcwZRnvKmB+HaxvSsW3uwi4UFgAPbD+rPtAUAjyVXSeRsGPTRqT41T5N/f+b5/dD+fnYCrrvYtCH/0YGCx9ZTdGqw7qIuy5DgOqFFLXgRM2zG/vyeViUbMznD4FIbro42v08BUClMhzGnfNAN+gwSzzTJPCwGQvu+imkxBBpphljvl7fJKH3O1RUc3zZn30SfADY0WS+vhR8OtQOAUdndKg5dg++OAGvH9hZ9pOPgBcV9aUdwRhA2FvsV2FYERY29qJ1QUsiQJ3J+FAL0zMw/w6arI0DfKYtBPgGZpo4GDhcpwMFyhxniKpDY4xaxEhxO/z3/FFPsFVJrnBDLMskKNIkSrX2WjDCiHB0xRIUeIV9hJEJ0uNWYosUGGULLOUMO5CkkIxKfD1+SV24Tii1KpX5L4/JB3dLQPK+fU7x/8Xi3hcvBy/9GU4fx5KJbnf1QVnzsB7723obYZbYaksXv5uGRp/K487RbCuQzGbZ4xzjHIaDR0fAVRUbCBIhDgtLGzgnBkvww9mhex+rhuebYPlOvRHRQW1UIfj8/BH6zvD7iyiEZEv1e5/PVnsXAHzo0eCD+2Bf/JLMNAtPdFNE1qapLL4H74Cf/QNzFffojyVITDdoJVeMqRWKysNDOZ98xhPzROag+bHwZ+E2iyU/NJRuTorntBhtwuVBDEGaeEISR5jmQuAS4gOmhgmzhCgMMa3YPRbQI2HtWRuj8LHB+E3n4V/fBR+62/EuWjH8fTPweFPwtARiDbD8gwc/YLcz6VlFNV8YNSkcuw+0NE9gutSoMIok9Rp0EITE8xxhstcYYy52xSHGisFg94k/Wy/aGevLcJyBSJ+ONItBMinwXgGfyVJgE50mujjn9PBL5PiL1jmR9S4gbWJtFm8FRTFpbBkgauBYoG7JAb4bhlWfImredm2BQohfhuHEibHEUfTCBrD6DyOxSXuGsnuaYKxZWiJQGsEd3SJiaMOhEOgmfB4Cp5KScgg5PnG/ooOs86WSXAXIWxc8hgYt63ma8wyzZ+T4wMUNIpcpO7ZAcrA73idEw/QTy8KYGDi4BAnhobG9H0WLndA0UBtkvyjawgZXnGpd+7TzvqjgqgK9Y34kd0Flg3pHCzkYU83fPnT8nhXMzyxS0JE25i92ChiYehKSnB4es3c53VJRuE2GYQ/AE1tEI4JS16cZe0Y7DSgdAP++2vg0+HCBBTuohRZwuADCnyXBarYvEGG61SYoUYe645zd6NwcFkkxy/wKUwsshSo0SBMkAD5TZFgG5d5yvwVlzhJiiomWWrkqFPBIOtJwNa7Yn0BaO+HjkEhw663qHBsSd5ZhijbFqehlN1wecd/OWhpgcOH4ZMvwOwM5LJibJ5IwLPPitH5d79737f54gF4ewIyt7mfme8DLtzgHGOcR0Wjj32EiNDNHnz4sLHIb6IT5NuLUDRlLRvRZcs35PH3luDcPepmtw1trSIfaXh2nz3doqeeTW2IBO8kHj0S3NosI5miyGho2V5BhSlO6h9chA8uYVsuJYLo+AgRxcbExJAUgiIWOcVrMPEX8jaNDKh+qC+AcSMBCpjDOdyBDHUji/qaTifH6OFTlJlDw0eIDvw00SCPQR4hHw8vHNsShsFmIb4HO+CHvwFffwdOjENqO4qX74ZdR6R7hD8oItlgFAYeg0PPw8/+AkZPi5Guu7b6+e5YJs/3OM41JvDjp4HBSS4SIsAkKVIssowQEx8qcXwE0LFwqGJRXpmYzqVgV4uQvLYoNIVgX7vcXyrDQgmjsoRDjRCD1Jjyor8RAnRiUVhNv2wE5SygmAgLUTzj+ygSPt2J1UiYAF9EYz8KfqTzkeQpRSMcufXlzWHZH6dFKkLdhM/uE0lEsS6NQfa1g6by3PFWnO+qTH+yzvz/nhEJxF4VDqvwOU9vc2ZzBCCIRhN+Iugk8aOj0sCmik0Fkyo2Ga/os8E8BhmkRfOt+87CpodOvsCLHOYAc6S5zHWSNHGAPXTTwZ/wnzfxzXyAXzTcka9B6EtQ+joY74M1jixk7zwPIn7oT4r8KBGS07vcgPmiWA8/FGhAqyYEOK6CX5HTr+JA3oaCA7VNjEGWDd89Cb/0HDy9RyLClTq8fgHev/5Q00ttCdjTA584BE8Ow7/+j7c+7zjrJFPCMQhFIRiGQAgWvO6Ja+A2oDoKZ/HG+nsQOwOHCxTJYpCiQZo6Bi7WFrvGNTD4Bj/lCfaSZpk6xmrTpQRR9jHgLebmKW/A/tIFxsgxTcFTt7vYngDiXkfMH4Jdj8PBT0gkeGkWqgWJAHcOwewoLM1IBHi7CbCiwdH/SYrQjSIUJyB/DcpzUHvw+rKHC58PmptheBh2e92S6jWp4g2FYHAQenph7u7e3Ac7oNSAl/fCoU54awKur3DaNQfPR5B2ejExSDFGglbqVFcNAzYKF5gqw38aF0XYDY8bGI44ID6UKzyZhJdfhH/wFchmoVyBb/0tVN6A3IcbdHj0SPBbZ+CPvwkHdkF7C7QlpWLi+hS8e078JusNRFCtYWHieE01FFRMGjiORWNJHD8WXpPor12XorjqFFhmDY6B8ykLOh3qpRwLbSd5h99l/zf+KaqtAQolZlDRaZDDoLxp0fpW8FQPPN4tcojL81IA//Je+LUnpDPsjpJg14VaSVKQtbLX+akHcvOQuiHeYcbGyGQQPwYGVxljLFqi1t4NZp3kzBwGBiY1TGp04WcfEZoJ4ENFBQoYpKjQwMbEkdltNg+PdcKeNuhrkrxTNAALJXnu/BxWpkyNabK8hoJClXFMljDJ0NhIYwEPNydkFxQXHusAQ4XZOlS3+1wIojNMkH+CQhwh2SoKERSC2MxhcZ1bNFN+DTrj8PI+CaHZjrQSXqrgf3eOgXInhxefoFlJEpitk6pr1N8ow/8I819dgrwrXDAGDCowr0BqY78rhk4rQXoJ00uEGDoW0smqgMGyd9VYOBQwvWfuHNgdHK88pIMu2tnLLpI0YeMwRJ9XYGRwiP1c4uo632QtvMJNRZfJyzXBmgFnGdw8OHkvgn+nm0IyArta4bEuaI0KmSo3hCPOF+HiHEzcKVffXuhATIV2XbzF+32yhRSxWDxZg4sNqLvrzmzDhyDRIl2dw1GRe1WKkFuqc/7tS9iqCs0RKSh84zKcvL6NEp77o1QT/h0LSSC6NQHX7nc5tvdCx4DXBGUCcuukTV051PczePKhEEajiMV5ilSxPX+IrcPE4qe8zxlG0FAxsbBwUFHRUUiSoEJtU8VsplfEtxmEItC1C7qG5Pi7DhQDXqPLqCj5aiUpgttO6BHo+STs/lXIXITaImhBiHRDdR7m34Pi1i1fdx75PNy4AaOjcOyYyCAuXZIVRaMuvo75e5O6dBFeuy7T1HAr/NJhIcJvT9z6OguDHAs4OBjUKbCMjYX9AKmfsgXXi1LvWlx7bBWfpL1XOoj6WiRCaJfEVmW74NNFS71nN4xYMDsHHe3w5BMii7h+Y9OFhduFR48ET87Bd14TsrurT/rOD/ZIBPjVtyC9sqQS1b9JHRcHdc1PdW2J+PoSQnxVPzgm2AUFNe+X4p1+4EkFYgrukkktssiM8VO09wPosxFvnpRyBJsaDbL4ieFg4WBi01h3Ut8u7GuXIF/NFMJrOtDfLCvLZ/rg0jzM7JSD2vVTEv1tHxA9noKMmjfOSHHcBgkwiEbbwGI+WKcx2Ezl45+BUpbm7/wh9XoGn+swQJQnaOMIrUTQaWBTxCRDnRh+ihgsrUTuSg0hvcOtcLgLDnTIBDmdlb9n85CpYlGgxDkMJDLs4mJRwNpMgVHUL+HBgC5yi4FmiAXF8qm6/Z6KIunRUIihEEUhjIKOQwGHNO7tFbM1ExZL8HgvPD0gVnD5Gszm0MZzJOjh8GI3L/BJUqQ4DZSWSqjfUzCCBtkXCxJZvOzAnLsZK1MCaJ5bh59OQgwQQUXBxV2NAM9S8Uo9XGo3RS13wMImT5EUCxQoEiHMfnYTJcI40yyTvbcN2FooOjLseeOBeQmqGphXPI/l9QtTE0EYSMLedumrYruyOw1banUXivciwSoyoEyxpVleVyCiShS4XYfHAvBEEFo0WLQg58BViaIH8HnmkjcP2p4jMLAHoglJizs2ZBegPggLs8ssnr2G6Q+J1iBfgamNp1wfFAoQ9yywXQecMsxNS5+Y5/wwH4KpOljr7TZ/UCwaw1GUagk9Nw9GDVWBxgPs5gAqPhQMHPLb7KttYXORGyhAjAgJr/xX90Rd4md/W9fDHUAgDM0dkOyW3af5PFmEK+6WS7MSBd5OMqpoEExCx3MQ7YX5d8EsgRaA5GPQ9bx8XmnSk2d8lFEowLlz8Jd/Cb/xG3DkiFRqzs/DyFUhxJV7F4LnarIZtiyij/bBi8MyNc3mZWwBccSqrJmPjAfQoq/Adu/i+KCFwd+OZDItCA4KKTaz0EiDuQzONpBTXZcWj9WaEOCr18VVo7NDmHm+ANMzW/+cB/lqH8qnbhWjU7CQgWuTUih39DF47zyMzayarUv9pLZGC7xmcnPByMnqFDwCXAfXUAgSpE4D8kjgKAbYihQJpVwmP/F9+D6QBw0Nn+diECNOnCgGKgY1TMpY1HaMCMcDEPZJVtu0Jdv/5rhogx/rlJTLQkkutG3HudekXdrQEbFJC8Uhm4KLJ6C2CTcMRPPZwKARjGB19cDhz0AlR+7VfwcNA8t1aSHIp+jhi/RTwqSIQZoqBRrE8TNPlczahqaOK+W3TSFhLJoqO6o1AuGVVlEOBksYm9BW3YKwDzpj0BGTg+HT5PMOtMPZOba/w3Udh0kafAc/n0RjD2Bgs4TFBUzeXPNaHwoqbtGWNMGBTvjCAbiQgh+PQLaKg0ODOg4Ow+whSpQ5fZxJH1ho9H8jjrIvR/2qQ/2EjT21uVnR8qykGjhUsIjjp50gflQCaNg4XKHAOGVsXHI0PJUvqzZUK1gmy0WukiCOHz+D9NJDF6NMcIL3eI23uMbYBr6VyaoMQvEBOtjTUL0hUWCngGgLNG5n/AFd1CXdTbC7Ta45XYWlkjwXDUjgff3rTQeeBmbueN9NQUEcPBQk+tulw6BPbhMqdOg0OTHAIkEUE4sSVao0cBSb/mEhwo4tl2m1LHLaoQNQLsCJ78+RechpaQXoDIDfM1fpt6E+Du8uw6/6YD4O6cY6JFjVINaE32pAJoVWyhKq5lA1ea1pb76OXEPBwt0B/18Jlyx6TUsWyNJCgpgnX/KjEyLIAhnMHWxqs2LYo6hSP9jcAZE4RBKi/x0/B/MTUNkmaY+qCwHWQuLPHOqARg4qc3IbbIFgK/S9BIUbcOObjwAJrtfh6lVIpWD3MLz0GYlwmqY8NzKy+lIV9Z4imrnCzfHilYPwZK/ELSqGJGNM779G/DtY66OGIdgH/g4Rz0f2g94MVg7KI1B4Z1NBrbtC8ewwZmZhckpuDUNaP3Z1wkD//0+CN41iWbaZtETeLlxbfUr1mlvcD9VZ2W7CgRXP1VeB5114RYHHERnh3ynwReBNFwoQcG0S1LCAA54r5xRxDIL4iKIRoL6Opdd2IFcDFIkG+zUYz0qQr2zIpihSBzUhMktURQKirrMhS9z7Y/yc5w88A7EWqaaYvLhpI0kDgzoNnHwV3vsWzF0TR4lsCnDR0GgmwAAxOgizTBYfKp2EaSdEEJ05yoySp7QSRRlbFjswyxEC3NcMN5ZFeHWHS8ADQFMkyhwPyPvbrnS8+lgvBHXPj3b74VKmzr/H5PVV/a/DEs5tRWE+OlAIi2JaXRKZyFwBchU5+LqKo0HZrpBijh/yAyy1wWT7CQodP0UFmoEn34br03A1h6h1lY03Pctj4OLiR8XCQQEO0cQgUQaI0k6QMDrfYwYVhR7CNLCpY1PFYpxbU3GTzJAhyxSzdNHOUR7nVY5zniss36sj2looAUn1KX5k6LPkB7kVbrautbmdqCpIvWUsKJKIY7vgwhxUTdmdxboQ5K7EqvEGK5molSMCfWvuPyBsV2zMSo5E6KdNaNNRS6CnXfyTOl/IPImNQ5gACiqLZDnFCEvkiMRkDFDwbLB8MLAXXv4VOPwsXL/AwyfBCsQ0SOgQ0+GlZngpCcMhKFgwEJIA+G3/C2LNqNEmelJX0L1JOuiHoAo3HtDbv/AQuypmKEjb9ocERZEFj21Jwq6lR3TA0SZxuawUYPSMlHhsV1vkYCv4E8J/VA1q80J2jYLXM8iz7TYrUM/y0ZdCrEWxCL/zL+GXfxlaW6G1Dcq3jlkhQtSpY99j4WvaMjT/+WmROL60V+5PZORW06S2+/SsEOMdgeuA7RX060no/AqYedC+D+ULbLIFzvoolWB8AoYGxNY2FBRnCE2DWFSI8IeER5cEr8C0biHAAhk1NyMeXxfvAX0utCrQBCy70KbA05AwoDMNXUAC+G+R+NG/pcibFCmh4ydGiDYs6lhe15rtQrooHWH3tNx0DPJr8MfvwxtjcCYHSiuQAfUAPB2BZ/bLmuE7P92mL7E8K9sWUF2b4ill4MoJfKhoqGheBzjphtTwyJSySq50VDoIsZ9mdpNgyrMFsqaKWFN57OM34EdXhRDXTLiUFrnEVvHZvSJ96EsIM7Js8brJ1WCxvOMWHTb39rNRCOFnAKdVw3pyQkTiZ6YlXRD0wdF+zPYYk69e5cf8mKtcpe/oRfzNBXZp0NsGX35eujZ/owGT89DWBF0tcGEjAVcPklaWfeGnjIrCJBXeZcmrcK9h41LBJIBGGJ0I+l2pYokKb/I+ACOMMsYU1Y02QyEomxJBRKJ1qZhSdCHHTpm7zcK7WkVaHfdIcK4KM1lJXZbqkKlAurCWAIPIH7qAMFAFfsKWosB4/73uQsaWgoa0Be/WeH7mEF8992n20c8lxilQIUKQHtooU0VF4fvu27z617DrACzMQnZRSPDuxyDWBJ39W6boDwYXag6EXFF6xHUx8z9fhssVuFG9ixQCl2ey1+jyufh9Ymsd00RaUbahXH/IlpEPGZrv5qLU8dZyiioyF9fhFhs5xVvwaD5YnILj5AS7rAAAIABJREFUc3D6x9LgM94KsWaRSaTHt48Ag2h9q557oebJb1wX2j4mp69VgcwlmP4xXPr69n3uQ8W3viW3jz9+S4QgRmy18PFeyNeg0pA4TakhcsbeBHTHYaYCOV2MhT7/c3DiBBS2W+Jol6E+C/6G6EIrlyCTkLa51Rt3lYdtGpmsRNBf+aJwtrBnaxiPyQqpvI36403i0SfBd4GL67Vb3gJ+DLwBdLnwJPAD4GsuBDyfRYT4diFTXjfwCaAI3AhDercGw3HwJQj8uIyVL2BveNK+N6Zy8IMR+GBG9Ir5GswWYDILxQaQALUH6BPXrs8egy+/IHWE//p3oNaA576ysc96ohV+bQ8cSsJQHH42C2+m4NQiTGyTzaqOgo6K69dp7OtBvTiF42lFL5Hlm4wRRGcfTeSwyFBnmRrjFDnFElnqaCiE0T2iDGbFofbBHA3FK4G9LQSuoaCibLy4xK/BS3vg4wMihfj4gAixs1V49RpcWoC/Ogv5+6ePVEWKrVa6Nbd2SUatsA2NcALsIcKL+DKdRI9fJ6f8JaY+Al84KEzNsPEP99D9ap1pphhggFBAoWrCUt5bUOkwl4GmKIQCIulqb97c96hhk/bUvjXPFSKMho3LMg2ukPeaBdxKwDbCXa4wes8Iy52ogxIDrRPcKthpMeXU2oU1KJr4PK+DiYwEYX2aHC9NFfLr16FQg+uLcOGWteDzKPw28ByiBz6Jyw+BOOJRsIVshAuYrnSWnLVAg3BDpYMk7SR5Et9qe/EuWqlR5yC7eIeLXD1b5PoFT3vrWY1NjMDoBegegtk1hTmBILz4c/Dqd3a2S5gNXK3ArpDs2+ksNCsyrmZdmLKFFN+xE4pZiLjoHvlt0qHLD4fD0OaDP1yA6caDaYMfBdimRHI1XWqy8FQyinqTbDorZkXe30b9pudvvQrLc15mQIV4CyS7oLB4JxHej0oSlRAQQKGGy+ubnFvtBuQuw5RftMG44g6RG4HKztvp7zwuXbrlbpwE86Q35CmSDMP/8CJ89WPwn05JGYdpQ7UC0wX43X8Fu/fAxYs7QIJX+opbAfA1QSMFS98HuwqNWWhswIN9I8jn4YPT8Cd/Bv194qQRiYg+eOQqjG4iurLNeDRIsApaFPSoaLXvP0u6912BbQimt00i+eAykIfoSQimZHqzgDngr4FdSHNG63CSzPNdsDsOL/WAqmB+uYh7fBbenoORrZ/J8yXI1sCnyuRsOeKAVbfAiYLSjAS80vB4MxwchO52kUxPpSDgh699Gb7xo1UZ9V2xJwH/YI8QgeNzUDFhfzMs1LaBBO+X9IgdDuG0JqCvHQ7vxsiVUE6OwJlrLC5XOMUiNSwGiFHHpoBBljrL1JmnSo7GaockHyo+r+o6Zmkk0HGBOhb1FScJxG9zU9Ev04YPpoUMd8dFF7xYERJs2OJN3BKRPPl9WvjpAeg9DANBMapXdVhOPRgJVgig041DGR+dBHmMMEfxu8P4zD4MJsm//W343ZegKQgTWfRMifZdaSKOg6tcgFAFdb4XJnoxEjaVL31AwAc/f0yq9EemxYnw+cPw1sVN7DIclmmQxWCBGpoXyTdwN911ay02R4BXoIES9/yALcACexmhD3fKIFbguBLpLdTg7MzNx/qapSHkYun2fhIqsjSOAHO4zCBDbQewH5gAHsAWyEbCpo1bv+o1d5Jvc5zP8RwDdBIi4MmIYkQI0koCBQXbutP2yrZh6rrsAaMOfbtgaA8k2+CJZ6GQg7PvC2naNOLdEq4s3N3DWUGWBp+wYECRRFsSaFKgqsAJF37owoxnVIKmS+gyFEGtTGG7QoSTOgwH4UhYosE/K0DGurcd2qMO2765mLl9Fel6t+DJEWzJPq++xJGnHe88yi9BOC7jkKqBZkMrCh9H59P4MHCpIWd2BZcRbOY3Occ6FmSvyHe161BbgnpGgo4fZbRGZe4r1e7RN8a+eUEqKIQIESZMhepqRlpDZxdPoXlevwuMU2Rp9VgpwKkZiQgXG5JQtB2IxGB4D3z1H8F3vgWXL637DR4MTgPMDFhFqOsQ2SdNnoxleXy7steuC8US/ORn4kvf2yPNzlLzIpOob1PE+QHwaJBgV+YsNQx6AqwSMgmsuB1pyNXpAIaK4kjFLYCPADbW1qQRJqzKDutg+sDUZC4qARXgLWRqGx2MMXW0DeNjbeJK3RuFhB+nJQiZMoxsj0bYsO9ShBMCJSH7xZkGChBNwnIWTl+GclUkEcGAOMwN98P4jESG10NzADrC0mf8fAauZOV89mmwOyGvmSnDxFYs2YIB3KEu3H39QoJbE7ifexo3HoblPNXSJOlGlQY218hj43p+syI0aXgOAyuwcTFx0NeQYc37GyTqvFKAJfdvXVfZdxvcXWC5KmKtsA/enpRJvmFJrjxXFd8se4OTgw/2PSn7Mz0pvUVAIjtTtyt87gKVKDptqCRQUPEzjEYrCj7AQSGAj158uRbMqZKEMCN+zP5e0vsiOCfGUE9kMEyo1VXKhkU0kkVTxbe1JQ7DvdAwYWZRnG42i5Uit/oOuqVsCIoKTgacrMghgPX9nFXQIl4IVOLUDVenYfjB8ktzDaeBaVeoGc46650JXN5CYQmpsB3zbn1AJzJyrKk/2AR8NuzXRTawZMOSBRk3w9tcAOBFjhIjTIzwaqmh6p33d0OjLtnJXfugoxsGdkNXLxx7EZbSMHLBI8G+GIS8SvLijXt/0eQQ9H0MAnEopuQkz00Jw/KFpUKrUUZNnWdAgV9UJfrrIPXIUaQm+WMqTLiQC8So+wNiaZBohUCIQH2GgGoTUiGqCRFO6jDRkEzLhyLveJhwPUn7/V7neEmOe7zQNsUVwh+Uv30V2IXGPyOACczg4OCiIxm0BMqmSTCIBKKSAqssWmBnZ80wtgwFyfg83i8ZoIYlpRWTy7B8jwCQgYEPPyo1muimi7200IvqFdOHSZCgnSkuUjYm+dtLEjtpWF4U2BCVXTIsWm4U+NhR+ODkNpPgFf9A1zsQVgFiDsRdqPsgV4e2ZglWnbxyd6JwX+hg+8RPOQOUyhINrlQ+VCmE980eAbgiTXGq4EvK/KRooAZFxoIqXr+o4OQV7GWwCg6upaCt+Ylb1ggDpKDhg7JPxpQqMrXVkWN7dTBGfigufQozDUhVJFyrKhDShU3uFHygJEX26NbB9dJMmRyc+OBmjxFdF7vY9LIsynSdu5poBjQZCJZqcD0PRUPqwuIqPN4CR1rgpzNbIMHVOiTjkIxBexOEA5Atwv5+SC3Dm+dxxlPUzApLAZeFmnyQpNHXj/evPGfiYHiSB5+nMVZQ8KF51nYrGQPllvXuynlyzyF+qQIji6K31VWRRxTq8vh92sz6/BBPiu/64EFoahUtn88PRkOiMwuz0sb0flDwoRDAoeJFhFsBMJnFpohNAXDRacF6Zwo3rkB3AnO4g5kjT0HRh3U9xXR4jqpmYEWnObB3kXAQmmKyWAr6RBZh2TC3DXKNDwe6VwCSWlMIdzconn+mH7BlRanFwdcKehOYi2Auk6vV76IVmAG+g8sehMrlvS2GULwmRDS1cRKsI0VfHRp8KQYDPrjegMsNGDUaLFvzvOHaaGh000o3rav2aPcrwIrGId4EobBEgKNxcQ3o7IWuPm98ANkfgaRUPN2LBEfboOsQ9B2VaLBjgz8CE2/KSq+5X9jb/CXU1Hm6VHhelWhv2oWyC3VF9tSgAkdUuBJLsBxrkS8WTYDjUtTD9KsVwqqDX5HrddGE8xWJApt/T6UQO4VKAWJJT2KBQjsKL+HjrzHI4dLAJYqCBiS2sMQwi2BWvWTMbYjRQowkKjoV8uS232Zn0wj74UtPioW27Qj5PTMFP7kE6XWSumIDWcXnOdq3McDjfJZe9nOZN9DQaWeQEHEUFC4ZGX58rUSqCMcGpXzF1SHRDq0tMsSUSjA4BI8/AdevweTEnZ+7JSgKDHVJx7uYLaQmX4LLE6KHOzgI50c3TIJVdE+O6olGlQgQET92LGlZly+ybZHmLeDRIMEArshVIo9B7CkI7RJCjCuRYT0O/jZopG0K79vkT8iixsLATxAVDXFa3eJOPyk3K01xNaAVOdRppG6FigVzVZgqQcIPNVuWeVVrR0mwkgClBaiDu2beuzImG0iH6aFeITdvnb7/e85XYbwofD7mg6hPON+hFngsKTYuF7ZCjIJ+iEfkIsyXxV+3UhNtR9AvF2DAhxvy0+hOwlhqUwb+tkd2VyQQChLJWIkMa6i3EGoXkVM4uLdEl29BLADvTt1aADe68Z2QaIEDR6FnCIYOim1VIin6zPQk3LgALZ2QGr+/G4NNDpscoOJnt2dItoRNFhcLsLHIYpHBHW3AMz0i50gVoDsBfo2F39zNwngC5q+xPzLD47sldWrbUiQ3MiXfY6BD1ixbgbJGsy3F4Q8pFKTGRAvsNpCjrHN3ImyLRVCgF/DLaju0GyJHwN8NpffFy8mYvxlBuQOngRQwiCT4DYQIm8jIsbk8fViVvhjPhuBX43DAL7LgC3V4owo/rVhcbaT5NsfpoZ1hemgnCcAMC9h3GfcUFXoG5JIqFaXxmm2JNGJyFBbTayQUjYxYNkT7xV/SqrLuUnHgGHQchFAThJqhqQc6D0GsHebOQ//TsDwKk+8AksRTgKQiwYQVeqUDXQo8pcKPAkFIdkBLl1gaZBc4He5htzmFRY2yLRrgixX4dhZShpDg+wRAdwwrmUh3zb8fFlx3Y0OmUZPN9uzlargUcJnDwcYlhPSlFGGPyoMWehr3CJgMc5QjfIYgYa7xPu/ybZxVx+uH25EVPG7YBr/wlOzHoA8iAZFG/a9++JMT67s2mBiEaUJFI0ScJjrwEaRBDReHKkWSdOHyFHnmmVBP0rDEXMi0IZCA3mHYtx/m09DZBfv2wS/9ijiL/Z+/v22/UELckSD8+hfhiWFYyArZnV2SAf/cDTh1VfqYb/A9AzRRIwdKExAVGZoSA7eT1fHPSSNhRIcP8xp5dEiwh/oktH4B2l4BXxuUz0PpgmiFA12QfFmiwqXTQoJhaybT94ONGIio3q3zRgrSFakmSwbg1BIUDAmhls0ds89aRRXcHDLfrgPHkQIs//0d5FZxowA/nILP90N/TDTBz3QIn39vHka20vWwKQqLWbEfGOyC7lbRWtg2jKekkrS9GTqaoSUhJDm1vHGvrtvgIh62FjYNbI8QK55WlVvI8F3x+tZE/MEwdPRBz275IE2HzkGv++Y8LM3B3KY/wsFgFINRYryCTgfSb62OvaLliQVhMnNTsvHeJHz/MjzVC9M5KNTJl+H1s/CnP4RffAHOjooMwnWhOQbpLfaZT/AYPuK4WCjoLN3ib7yTUMAtsfHB1pWuSXoSfO0QexZavgTBYTBS0JjxosKOR6zXQ9rbNEQLfGUTn38rVKRHRlKDKROWLWjT4XBQXBUAUibknBI5SlzakG+yRJmuXYRAQAKstiXd5J79tJyP/++/kfFiFYoG4S44/N/AxT/wiPBtCCVgz4tQzUJlUaqIS/MQ7RAibBtQWYZaHhu46MCfWfDLOvQr0IZnS6dIcKHqgBWOQfcu2P+0rByPfxPKOf56skpnZZE2p46K7Jc5Q/ZNTJM9X/4Qgk1xEmjo1KlRZXPe6TuBjRY31isyHtXCLu9Wbf4Gg71oqw3ZgyiYQOcO2cm10EOcVlQUmuniFf4lC0ySZpQ0N6huppnRNkBT4TMHYbEonuB1UyLD3c3we78I792AK6k7ibCCgh8/KgoNqlgYdLGHg7xAmSxNdLKHZ6hSpKYt4Gs9SdgvpPvKAoxnIHwFrlyWsXdsDKanpCHdB+9v4w8MR6G3G17YA8cOwU9OSsHDYKdEf+uGkOAPRu77VitQ0WliNzUl7VlU6aCEPCK8UkkVA2VaiLCb5UGkYduFR44E2xXQEpKddA2oTUpTE6sApbMQGpIoceSgRI63HYO6lBznHajdnNBuSdqMFqRBt1+FF7pES5BrQNaTR+wUQrfKe9ZDriiLvMGejb/t9Tz8yQg0bPj/qHvvIMvS87zvd8LNqXOcnumenp68E3Z3ZmcTdoFdgBIIAgQJkSIl0WWapEolWnZR5ZJEl21VySy7KFsWbZVVBRQkmhQJgAhE4mKxBHYRNs7OTtoJPTM9nXP3vX3zvSd+/uM93dOTOy6wb9ep7r7h3HNP+M7zPe/zPu/utFwjl3NwIy8Yf1NM8NQCLBQgGRcR6jJl8YXvyIVXqYtEolQV/Ua1zlbOGpeZYjPQDutogYJ8e2amh56AI09D734Bw+d+AhfflMYFxZwUxzmbLBSxuI6LtI9VWGhEcJgQYtLQpWgvZMBr12VJR+HNYZgvYTSLJ+7Z62KJ1hwckroNl0bg9Yvw6afh+6dFJ7ye6OGz6ESI0ESCXpL00sIpClxmgddxtvMG528Avbt5GVjMZgHElctQHQRrCjDAaJDKau9hKUKPzQBgEFazrsQubM4NtIqB7jURsMQxXYaljcT774kWWAPKJdEAv/Q1OPw4XDknumEgYMALEG+HtpOw/3cg3CCl//PviFSiasDL/zcc/0XoPiSA9+aP4fJ3ZR1t+yQfHkniA+MK/tiBlzzo14X9TSEKras+XPThpu3IiZhMw56jcPF1mTG2dDKrG8yVclAurOzhhZ9BQZyJSQvttNBKD70c4Ahxkkwxxit8hynGP/iNWmc4loAu3YAqiv8Pm98izDOB834BxbT0VN2WOMf3qZCnhR14uKRo5mk+R5w0BRa4yKu8x0sssUWuBQ8JTYO2DCwUBewuW62HDAHHLx6G8Szk7jjfwoTxAkplkNdR+Bzl4+zjFEvM0UQnIaJc43t81/s8KrDibU3eSjBWq7f0v1evwDe+tnZW/6HRtVtmvYYJ+7vgT/5bKFbgP3xNMrCeD13NsG8n/PJH4Fs/XTPx5OOyxHV2qkeZ0So4VEDVABe0HtD7wPwMeD8C92Xwtr8z5YPiQweCAepjcu+JdAjrqxlgpKRwbllnZKa38ANDQKMBO0yhYlwV5No0iGoQ1+TuM+LAvCcgWSmoe/DmrOgHPF/Yt20UqmntQA0oPfh2q2kih1hrKCBXhz8blEw6CBC2PPmKm/pGc0uQjMlGTWdhbA6yBdnAqXnIlQSB+UE5s7vZD7x3+Ph46OgBEN6u9EylKJXYxTYo5eHGBaiVBQRbNXl+anhzn+EwirOSZPZZqRrd3y7thzRNKi9sD/7Fx2F4Efa0gqYR1oo0BROd187Bs0cgEZO5yoWbchqvn4TXaOEUCfrwsdAwcClTZ4Fd/D1ukA2SrB9MZNhNiCSLQTHZg0OBuwiVi9JKVDNFKuGtV9KwufOpqoQRjWiiBy75AooXPQHFE879/HTXuHVK2hXPzcCVC/DdL4s8ol4VnfpKOCUY+zZMRKTKqfEwtByXfrjhNNglaQkWbgRMcGpQzYoMojwHRhhmr0DTTmg/ADd+CMAC8KYP54PvaCDfzwLqiTS268D8BFx8Q8BvMSda42gCEmmUF+h3arcX2WRI00wTdepMbxNwStPATnrpY0D2JYoGGtlJH3vYT4mjzDL9oQDBAK4DmiNn7NnA4f4CHhFgAcVY0Gi+HY35VXUZZhgSLUL25TdoH7/EHEvM0kYvO9iPjkkz3aRopo9jtNBNKNLA99q+AxMP9kvfivB9eOsGHPiIDJtlS1jfeBhuLsClidsdSDQ04sTpoIsMDeTJUaPGMGf5Y36Vj/O7FFggThqLCkO8e1ut0k9vQm21i4e69XtT4DcUEda3kIXjz8HuR8Snt5QH3RJ244XHYHcXXJ+QDGwmKYP/upPXCosCeW6wyz9Fmh7yWoFh7YZog/VDYOwD/7pIJNbQ2Gw740MJgkvnpZGJHhEdsL0gxXKRTrFbqU8EVmpbFcu0S7MBbYY4s6vlx3TYE4YeE75Vhm9VYGrVWVzZJkoiAXqHZBv8aVATUsujHHhIMTi2Iw4Ry9FMEguH8gPm954SIntLIx2XEbOlQfZxLqCpC2W5QOeWRP6wwas/jMmOoEBoksUVN4h7haiS/BUQLA4SW9neRKKyAFNXAQsOxWFXCQanxZbRrks727Ua1ndr0KbJtl9YtaHqno4HwDujAnZdX3y99rTKYrnSSCMTZbHq8aPzkq0o12CxAOPzMJu9pQc+PyS6tbWHRoIewmTwAtVnmEYyHCTNPrKcwd2GlHGcNpo4QAN7cKkRIoURGOg5VIjSjEedGd7mgSDVLUJ9RCyD9HjgHFGXtNSD0i5bGAoBviMOHHCh4sOYkvT/pAvXbShu8mR1bFlqFVhald3ZvU/8ZPM5WJzzhQlejux5MGPQegK6noe5txE7AheWJkCVwbVEDiFOthCKQjgJ2i2ZmoeoA2uApm6Z1gFCS1p1yM1JXj8btDUrZAWxRaLQ1iMao9zcbVqibjp5gsepU+dLfH1zOwgwCZEkhY1NlCghQhzmOE/wLHvYx0/4AUXy6BiUKVKhTIQIvfTfc32GLt3c57bIb31LYpXjRA24jkcehYHohCsElnp3FCabEZF/R9OQaJLmHE5dEgHFNTYd83GpkMfHpZMB0jSjoVEhj4FBnAzd7m4ypRCFvcfl+BeyUFramva+d4Tnw6tXRPFUKIudqI6QQeOT0lDIWXWLNwnRTieddNFIIw42E4yTZZEJrvAqf4pDDYMQLjblO7pdlrfSLq67X9KNK7OUELR2w8lfgL3HZCI5PymT1DcLYJyDF09Ae5PINpUSQip7u1TBIIxJHBDpg0MFFwsNLWhhZZCih2YO0s/HSdJNSWUx/Qau64HXrPsa+O+BP8GmfNO3ID6UILh2E/JvCAOshQOniJBY3lWuSdMTe0FIm3tVoK47FIICl28yGgKEY5oI9doNeDwK5y157IOKBtD3gdYqIGql6+sDboYGOoank827NJMkR5ndtIoDBCWK1PHxWdruE1PTIJ0UzzYNKYqzXanIWs6zbxAAx4nQSJKWwCfVCW6nEUIY6Lh4lKgxd4dwWnHLHs1YcYzYWka4XIDFcfFBfewIhLphalQ6f7s1Ic4eFt1BxXy7JutxgRhyMb/lP6Bc5dq8AF5PSZuzeBiKNen7uyCd7kp1uLIKAE0tQqEitYrLMTG//u+tUJgkMUlhEidONzE6qDBKiaFtSrBqmMRo4gBRmmlkL6CosUiJSaI04VCmxgJFxu5fpOdX5NzU89JdLtwhbUZ9e+1iyy2IogeXLEjpkmwq+jDliFXakrd9jSE0TbxKHRsW7wQzhRsCgsMNkNop+yPcAJV3oHoV8k2Q2SEFcr4nRrTpLnGLqN4tUbmnHt+xxLrAd8VU25wW1nfZYDsaF7uVpnbYMSCWK+PXaFmoc7x+hE/xC3j4XOQyi2TJsYSzCU1rAOVX/rOxSJPhCI9xgfeoU0PHoECeHIukSBMmDEAkcOjRg3qkWAhaU5KUydc2XOqwrVEFRtdAB4Ti0LIboilZzIjMfxaNtYNggCILzHCTBcZopgsHiwLzlFmiTpmiNysM5q5+sdRJZmTyk5uD6tbOJhRQKsD8qBg+JXTRqrsKJhdhviDJSQAdnQQJuummi24yZAgTQUfHxmKBBYZZQzX6RiOeEvvAeEraQBohSS06llw7tiuM8OFTsOsAjF+TVI/riOF/bQ6e7oWOJmE/bkzCyLRkZ4MTUydEiAQRGtAJESaBQxUvIF7Ef8mghcP080m6eYowaVJkMVQYy78KysThOgX/GnV/Fm/bxDVriw8lCHbzUHhLMpKxPSLbs2bkXuXkBAD7lpA23lbIDH1E/5sNWvFomuTsEpo8HtJkuWFLzvKDiAoE7lfoB0FlRXajHkJOhTFIEqWKzVP0c5FJHqeXNFFmKTJJjjIW5xjH3qbiB0DuIpEQTFVkpLHsdVSfPjiaSPI4AxxkJ4NMkKfCDlpop4E0MRw8xpjnVS6SvwcDKU004kA88ImQkrllB2LuV2gpJppogW0fvhCGq7FVzYFQEYwCHNsB6Rj86VuCQ0vWwxlWDamW/5/D0sV7XgkIPqXLc2etW3Ohe54Go6uAx9uj0vHuwhT6ZBat5qyoTpZjekss0RQVxmnhScKkiQUAuMYMk3x72xwiqswxw9uEydDHJ0nTi0sVkwQhUoRIUCdHJ6eoMod9XxAcHERfE02sXw4O8gdbcVVRMGiJ/ZcHeMkIpbDU5uF6D23QstG4OQjt3fcBaLU5WDwvpq/lCUh0QqRR9MHVaUh1wM6T0PskoAQZpdpFR11ZFOTkPGTCXa8CVdEL1crBCapkwqzrEImJuW0yA/sek+VHX6Pr9AyPzB7lSe8kCeKc5yLneZ/3uMASebzgZz3h4rAUsHcVRHoxxzSNNPMUH6WVdpyAI/XwqAXNEmaQApVMTMBv2JC/mxIiPdI0sfDejKTlZxm6CalW6HsC6iWZzPseRJJiEmKEpR5yLVFggUHexAr2XQf9lMhSIscMNxjiPQr+DEwqsdHp7JUGKuEoDF8WY90tYoV1YE8SPtMJ6VAgMFNQ8eDtHLyVuzVehonQRBM72UUvfSRIkCRFjSqLLJIlu3l3qgdFYxscfAJ27oP2nfCDLwnQra4CQZouPbKtmnRmyi8Ki15ckvZ0s5NozWlpHXp5GM7fQOEHfkoGYdKESREijkmMCA0k6EBDx8fFpY6PQ5RGWjhEmAwhYih8mtjJ414cDYMKOoPALO46euhq4s+qcWsWaQRSUzdYNjCLXDcI1jStB/gzpP2RAj6vlPoTTdP+NfC7iLwL4A+VUi8F7/lXwH+DjN3/TCn1/XVv6R1hzwVdVa4JCFbiBoVblgHFSIGZ2iIQ7AEFX8qyFwK0sSw5MDR434BvlOX53AfXEMCfAt4C44TozdXZwBv4HhOrZZWrgU6aKAfp4n/hM0yTJ4zJBDlihDlIF0PMs0CJCXIrLOqWh1KwVJLfha01y9bR6aWdz3KKOo/yn/kBcSK008BhdrGTNgpUaCVVq273AAAgAElEQVTDF3kF966BycTgKeK8iKKMooKihs8SLkM4nOUuAKSD3gV6K5h7Rerk58A5A/7o7S8t1uH0KPyrb8qN8PK0OJYZujBFDwoTYYB36jInm1ZyKv49E6748vxhHWYVDD9sPPB8+JIwE5keMJqhXobyMvDdshuyIss7JNhFjE5s8pQZYZG3GOHPt7WpgUWeG3yNCrNUmSNOG60cp5NTNHOQOc4wzZs8vMPkKi26u9W9S9ceHjDrB1TiC/vEs6lmw3QRTo9tm9PQ3P2bvkF9QZaFM7DjRUj23ioWLM3CzZ9AugOskgDgygKUF8CuCDgeem1tjLpj3Vsr5NoiXM4vCgg68jQ0d3Jx5xgdznUG5k+zi5300E2KFDo6I4wzzwKLSMfAdXUYXW7MtCrO8y5f4N/zHB8nQoQiRcKEsbCYYIQLvAvI4TJ16UJ2uBuO7pCW2z+5cY9D97Pyd9tAJFuh/xl49h/DhW/BzBWoZCEUE/VLcy/MX1/7+soscZmfMsswz/ObxEgzyVWu8y6TXJX9kp2RpVqC/Y/Dzr0ihek9CNe2jnE1NXi0QZjgsiuHPmPCWBUOpeD9ItR9iBKhnQ4e4SiHOYKJwQQTVCgzzzwzTFPazuLfZS/DpnYYfBfOviYs7+pQCr74r+XxcuFWH22rLrOWqy6xJQ/dWXbRbw6kZAmiNBIiCSgcqpSZocxM0AHPxqUWLBaLXCbPTbo4RRMHiWqNeKqOTYE4bTQyQAN9LDFEjbUxLQYR/IYwKmlCLCydRDoyYtsxuSQSv8r6ibSNMMEu8M+VUmc1TUsB72ma9rfBc/+XUur/WP1iTdMOAn8fOAR0AT/QNG2vUmpT6Eq5ItVzsgFRs/o5hAne0lDAki/LnTGyTbrADEFlyH2erwnAUlUwP8YDBeyP08cYi3j4dNPICxzgAF0cZxff4hyzFHDx0YAZ8ts/9ipEA7wNYeEwxDRvMcgj9FLBYoAuksRoIMlOWomzAxODy4xzhiHqK+mcJGGeJc2/xKeKw1lUQLnrNBLjl1CUcRlmpdtYFEJHAR3MRyD+zwQM2z8Fb/RuEAxyrX7zgugBXV/wqOUKodeZkTa9d0YD8D+E4YcevOtJVb0LRJDK+hTwaRP26vCaB8PruMI0XUi6ZFR0fa4lej7Pkay1vQXqmAKXmeFlTFKEaaDAZQD20ImNQ5Yy5W2wM1R4TPFjDMLs49fR0FF4RMjgYTPMtwJj9w9BRE04uQue64dTvZAMi7Tl/LScQOcfhFa3OXwbxl+6+/F6Ht76/O2P9T4F/c8Jsx5JwpXv3urhu95wlgtnfak6LSwIO7xjgMGk4kvzX+NRjlGmTDttGBiEMGkkQ5oUJibXWGOR1S4TPpGAL9x+gY4zwlf5M65wgRf4JAvMM8sUk4wxxTi54EYfNqQDWXMSTvbCZ44KCLZcoDUMeRcsX6w+emJQcmHW+rkHw8qXyfPQ61ANLDOXZRFKyTiyHhAMog9eYIyv8r/d/0XNHZIBKGShpRN+4w/g6rts1QxCAUMVGK3Cc9KHiOtlGHSEEW6PwtUSpEnTRTd72cfzfIxHOEqeJRIksbCYYToouN7GmB2D3DxcOyNyIe/260nHJE0vtXfeIUQcgzAKDx+fGM2ESeBh42ERIUOcdiJkKDKOQwWbImWmsciL48MDwqLAHOcoMk6t/RBWspFwtULvjCJKEwZhUuykm6fwsCgxcd91GYTRMFD4qIgBDXHREO3vgEd7YCovs8iq/cGAYKXUsvklSqmSpmlXgQcZbn0G+LJSygJGNE0bAk4Cb617a2/bDiRDuX0WwD/z0BqQa7kYWOndK1xQi+IN7E9w385vOSrEiaBQlLGYo8jXOYOBzo+5RlFKUligyOvcCGzCfvbdXNYbKWIkiGKgU8FikkUOs4swIZpJkSKGjjQTPkgPv82LDDHNLDY6TZgcJsoLhHmCKl/BZxGfQiCD8NBpQKcVjfFbBWh60BAn6PtqfVMmad4Q+A9xf8lWxaFMC8ZH24O5O+YGJ3R43oCjutg/N2jQosGSEr2egaTKrytIaTCnIL/O8d+pCWOTaIJ0O1hlSWtalUDDaMj/m4ki11B4OJSpM4eGRjeN9NNOFYs+2gHIU+E8o5v7sFVhEuGX+QJn+VMm+AEzvEOYJDFaA7Zj6xHGx/gon+UzPM1ThAgxxxxf4it8g2+yxCaMtTUN0hFJGaQjsK9N/t7VJDOnkgUjWblDPyxMpLA3ockJlPMf3Ejv8H743Kfh77wI1Zp4OP2PfwQXNtDHdeJdKExKV7nBlzcOgJfDc6Wib/nvpQWwLSZbd1I71IN7+T266CBLjvc4j41NE00kSWBhrw0y7Q7B3pAYD/9KUlyBvlOB4xHYF6ae9bn4tfcY5BI+PhlaSNLETh7hMM2AIh/6Jqbp4XhwfgJyFbg4JfdxD1toxr0JeKpJft+oyJK1RfdS8mBuezWUDZ2QaRXSfXqN7dvLC3DtVXGFCMdlvPA9qOQEIHsOtPbDwuYs1u+OUATGBoXZTDVKMVg8CR/73C3Naykvqf8NhALm6vD/DsO5vHRQLTiQd6S0oho0FnGwmWeec5zlS/wXcmRJkSbPEh4eIcJEiLLtfrh2DSaDnXxHdsXHpcAICp8IKVzq2JTwqGNTXBEmRGjAJI6PQ5FxioxRZQGHCst9VtcSFgXsHc+jYm2gXOwQ3Oxy0azr4NVoLl+i0e2gm6eZ5i0s8ugrwFxICR0TI9DTVzssycI4njSserIPfvkYfOWMpFRDG1P3bkoTrGlaL3AceAd4Gvh9TdN+CziDsMVLCEB+e9XbJrkHaNY07feA31v7Z7N+6w6zTTw/AfSEIGjrxgPM7u+OXkJ4KA4S4QgRGjD4Swpcvl9F/mbCQo7QWjK1Fnc7NhliyUcCZmt58BWqCNV5m2aS5KlioPMOw/gowhhMk8f6sLBi94gQJiEMHDyyFAlhMEAXIQxMDMrUmGCRJcp4+LSSwUB833xKuNzA4g2ifBKDdnx60AjjU0RRQlFHJwPBe4iB0R7IHwrgTYA3JiBYlcFUcPLTIlHzXBmvF1f5VysFFUuYYBBJRDws+sBkRCa3N3xoDYrhskqY36u+jAftwTVwU8kWHdXhPzkwtM75ixGSqu7W3bDnI5K5HvopLAzLc0bcBKLSVSEWlQ2t1KTve21tM1HVZAiAsMV3w0RnJ608Rj8+PjYuVWwWKJCngofPNEtbMhnTMQJt5ttBJbPo23p4nmYOscTgSnHHZqOXXTzFk+xlgAgRwoQ5wQk66WSAPXyZv+I8F25/U1McmuNy0HVNNDPTxbuZDV/BYkW03ckITBUkx56vygxqtvhwANyoQYt+q8KurETu9aDL/tlT8JGnYN8ALC1JyqK/D/7gn8BffA1eeW19O8lzoDgDw69L2mENIc3PU5i0YpBCYWMzhUcRQe/B915O7VaK+NoESw0ubwx0EqsO4edmmbdyKF9cXFtpYYLJtd3WZ12xxOwNwS8lhK09HJELLyn70rF9nG+LvOsQ+9nHCVrpwcCkSJYfWd8mrntULLg+B1dmYHD21vVPTww+2Q6/3iUi1IsFCOlwtgCTNUFf2xTpVmjeAXtOQtcAFBfhr//3tb1X+VArwPQl0QfrRkBUqVu+w5HUNmz00rxIYZQvbLBVE6+2cBj2PiqNVTwXbl6C069s4AM0/LYdnMlPUfV8GkMCeisBYb88N/GwKZDHwsLGZpQRmmnGR1GmxCILpEkzzxxREiud47YlHjChVIG8sco8IRIrWt5lgAsQowmFT55hykzjUsPDXnl+7aFQkQxEW+X4aCaePy2uMKpCjjFsZojSiEkUGx2DEBAOtMV2AIY1FB7GksLXHJRhyLnlqcD33pGxb4MuUhsGwZqmJYGvA/+9Uqqoadp/BP4NMhL9G+D/BH57retTSn0e+Hyw7oeOSYoAA2sQzkC0PSgI08QtAk30wdXl7KDRJKX4oU7QY2A0gj0BfgmcuaCC6eFRxyeERhqdw0R4lCg3sLcFBKtSwDBGkVz4shQxCgExKaGB1gTG40Ac6RqXB3xxjyAGVsGWojkdnJLPYG2GeYpUsZkkh1TS65RWp6OTQfGfrolp572kID9noQf1qSVqjDBHhTpdNBEiQoIIFSyylDDQWaTIMLPUVo6dg88CDmeo8iVMBtBIoQdqah93RR+8Igr0pCDRn5XMrlqU81AFIHbfcWhuE8yw/1EYvQrnfwo3V1nUuqt2q4YYsSfCkjr1TMmIjitZJoMeLe/5In/o0KUpr4uIM8aULOslba2yjJ3pDhh4VljfyQtyA7P9CE4sBQ0NkElDIgHpFNTrMDoui7WG878lBraA4BAGraTpo42Pc4QFikywyCx56ti0kmH0NhfSjYePxzA/osB4YL1VpU4BnVAw+Ja2lA3exz762Y2HxyDXCGFSpUqGDCd4nHOcZ5gRisv6wEQYOtPSuW9/W+CYb8EX35H2UatBrevB2JKA47orjIivxFpgcO7h6cC4BntNOBWGnSZ8swaTjky4H7QL9uyG/QMCLiZn5PeBEDz3NJy9uH4QDAKEy2u1Gglh0k6E3YTYiUYoMGRqpc51HGZYQfHLICAAwq7vsZCxxHaxVQOrHWolijUb5SxQXqs9X1XJJK5RFzegcOAR/3Yd3rdkIhG07+vjMMf5GPs5SQOt+PjMMcahyq8yanyPsipQqsthLq2+9XRH4XAKDqag5kFbRD5n2Xfe2p4xON0K7bshmpRxLJoUMHzpNbhxGtItUi9gP6CKSXkyjtwrNF0MCrY8rFUbpCPuTG1JaQMcDZihvoPQ1bdBEKzArpMPJbnm+cQdC911cJQMZXV/2ThKflxcRhkmyyJpMoQJoVC4uDi4JEiSoYN5xnG3gzhbY7iBVeXyuLcMcFP0oBOmTo4aWaz7tZ5da8Q6IdUn17qmg1OEkEx6HW2SEkUs8hgrwNdDQ8PDQeEGOM8GFJplAA6qYokO+L2xoKhmRtKnGywM3hAI1jQthADgv1BKfQNAKTW36vkvAEF7IKaAnlVv3xE8tqlYJoH1MDQehbZTYC0JA6dHxDKtNgPTPwC7GIdwD4R3gNkubVC1mFTNhfvBr4G7NhA8i0cjOnO4TOGyF5+OZVZwq8ND3AYyIo3wfcCW7oPKDp435TljH3AAtEbwx8SHWlURUKyCzEiwPjfpMVHLUcMmS5kMcRSKmubIGREO7N+6TdhlQFwXH6Y3rdu65N0ZoS6xpcMXC1VvM+2UNxEePgUq1LCoYdPLIi2kgQwFKsxToECV97jBMHOUb6tPFVfhKn9BhGcx6EXDDNJADj45PKYCeQRggz8vx0NLiztHUzuk0tDVBo99RBpihCNw6BQMHJcM3moQvDqUCnrHmwKOdV2yHksKzvmBNY+CKQ/CwA4FuzWZE4348I6S1643agWoF4U00XTZDuWDY+vUSOGk2qCtFZoaIB6D9jaIxQQU1+pimvmwaIvJlzJ1wpZJe62BDHEG6AwcOxaoYuHgkSTCwhYVkfh4jPITauTo5Bh1GigwgYdLgSGs4HNCJFgu+thM9NFLB+1UqXGd6/goJplmN734+ESJEiN6CwQ3xGBHBo51i0XR3jZ5/J1xGJy/HQR7CmaKsiglJ0rNEV3NWsxmm3XYYcD+EPQZ8C2gsIYTprFBjr8GzC3IcY9GgyrtjY1/mgahUKBHDwFKZIyOc6vGZzkM4kToJ85JDFL4WBikCdENaPiU8e6UmSTi0nTHMMDOg6NDaxfEEhCJYocKZGuV9dmULjMvthL2F+CqDd+rSKOkg5K6PcJzHOE5utiNSSiwX3R5sv5fUzZnmI6co6KKd89Zkob0o7d9yDkChJccmQlvUaMlI9jnui6srRmClh5o7obFRbg5rhHphacfUTz5qzAzBI0dkJ16AAheHqi8e7OFy0zxtkQ0DLEINKdhTzcc2QOpOJy+CsNnhILuOwhtO6BSEru9e4UZvlUotjryC9DQQlY3ydrI9XafUCjqwU+BPKGgdbJ46BokSNJAG1mmf6YgGLjLl0HHJEkXVeYD+cMWFKzHOiC1V5ghTRNrSX3ZJ9DEpYCHjUk02J77z7J0QsIMVy0Yy8lxGF6UorjZoqRNNxAbcYfQgC8CV5VS/27V452BXhjgs8CyUOzbwF9qmvbvkMK4AeD0hrZ2dejC+JoJ6P+H0PMpKFwDKwtGTFx6avPg1WHqx3349ECoB8I7hQ12ZsFslB7MzjR4wYxHeTzAaRUd8ZCdxuU7lDlNDRu18txqK+FNDVka6N1AWqxJiYDRBmom+O5RwfFaE+jHAsbXFfZYzYF/M5BIXAXsgBlOBMxyMHYvBif5Kfpx8bhmzjHRlIdOAwZMKQJ5KgpdBoy4MOHC9XvPtrQQNP+mtLP2a1C9CMUfBLvzA1RXuHhyRAwfZYSwbYfL0RGazARhwyBUD1O1XK4ywcucve96PEaoMozBHgza0YigqOIxi8cYtx1dXzTby7rtxz4Bz35aXGqGL4mVZbpRZGkDx2D/Y8H7lmdyd2Cc0j3mY1PA37jwoiEs8MpbfGgGXjClOG4zYZVh4iy88m+hNAfVAuTzcZzGRmhthpYmkUJEowIs+nuhIR10X5l6sD1NSIddKem7vVRHjTvY12DEXeSH7vvMU+AGM8ySx8UjtAmllh7cdkB8K01CpGmigTYy9KHQaGQ3NbL4eEzxHuDTxkE8bGbvlCqsM6JEaaGFPAUUihIlPDyiRJhmhktcZo5VDGgyAl0Zof7zdRGIhk3Y0yLpvuVUgc4teZQDXNpAB7ROHRZ9+HpNhrmra7w4dR062qCzHQolYYUzaWGAr66z4onAZTIKza1yfTQ2BUYxeVjKQjGwf1zOcBo0EGEvUQ5iMxJMQjViHMenhsPs7SBY0+DQATlHk3GoW/Dlv4b8PGSaId0MrTukbezgGUGFnvtwl4q6Ehegb5ThuRi8UYd36jAe7MezwnL1sI9WugkRoUoRDxcdnSQZjpd/C0e5zGtvsFjmlqG9hgDfwZIUyTk+jNdgsg5TdfHl2kToply2qWCfh6NB8Vrilu3yvK1T6TBobAHPcdj/LOx6Ccq5h2SbYzGZ0RQKG7Kp2lT0tEl730N9cGwADu6C+bx43b7/U7hyFXoPwHOfhRvn4fLpYLYPELDsmgaNrSKvWAHy6tZ3yS9CQ8ut4o01hB38LIeGRoIG3G2yhNxshElRZY4ys0FToy0I3xUgHErLee5ZAgoqEwE4IKgTeXg2ZsVKs2oLU2Q5cHbzXRg3cqd5GvhHwPuapp0PHvtD4Dc0TTuGDNGjwD8GUEpd1jTtr4ArCBz6p5t1hgABWmYSMvug5aR08KwvglOQiWG0HZoehcIVmD7dAW4bxI5C8mmI9EPxe7I5fh2ST4F/TFZcH4Ta+ft+7gBhakGjw1lcpnCIspwCCzEbIL4wGkub0PxonUCDMLtag4BdLQqqT4rg8EDrAmM/EIPaP1zDSksCku+MR+gmQggV0ZjoKEGPAQfCcDAEj4WlS56OeCHfa1tDkHoemn9DCsTtcQHD4Q6oDUL5jQ3vhnXHsj+ncbCOedBi4hsutX9+gfoT0HIAFv6knav/IcKl+7YwNdFpBcBnDo8hPIbWtQ2pBrnJDF2E/+cP4L/797D7sIyv5UIwxhoatESF8cmvrfq7BnznHldOFvirLZhoeA4sTcLcdSjOIinv1jS0tsjSkJYvlogJy9bUCB3tAoJPvwfT9wFlGvDxHvjEDmiMQt2luljn8kSZyz+ZYuat79Lgx3HwcPEw0AltIrvSx26iwU8DjfTTz1GOUaXKK1xjgSomEcIkcahxgt9BoUizgzkubhoE3+AGw4zQz25e5AUqVNDQuMBFfsirjN5Z9Fd3RBR6c1EY3ogp58dsSdwfXA88hdYD+kdksuW/xMZm2RaBEN2HhWBZS3z1WzAzC8+cgqU82Da8+lN4+Ydwbi3tp2+PphZo7xTclExLXZMVKBYam6CjU+ruxkfk9QoPjRAGDRg0Ajl0EsR4BA0dhwnqrCrQ6+qA3/8d+MTzwqTfHIFcHl55VbSjhaw4SLR0wZFnxGP1ymnIzT7YY9ZDWvcNOyJ/GHagcPdFOcQ5uugnRIQcsyg84qQpU2CKm+S9osAjPQ7ppyH/t9AVWA1cL8NfTsGOmPSmH6pI3n0TYUZg4ATsfETmM6Ws1Ix5NuTnYOScvG7HQZ/dBZ/9WWGM3/0WXP3pQ+oW43EBwZEIxOJQLkHpA2yB19EMzx+Hpw5DW0OQLclKm8u6La0Ozy/AxdfhwEkYOCp+0/GUzARqFcloaIZMinRDwK5VhcXVrWc35+4gRelLZJleYYb9BxBua4kQEZygGl7HQEffMMius0R9M0W794r5N6SZTqJHOk1WJ6A4BAtvb87Cy/GkwdMWxEbcIV7n3mfDPbxxVt7zR8AfrfezHhq+TCzqCyI1cfLi2W4mpcV9ZUzn3B8/iq/vEhlEZBeYTWDdFCbYzYEblO+braIbDu+U36oKtSvgS8pSB7oxsVHEAtDrB4qVKj77CRNDIxakvkJoHEBnCY8lPBbx1kWIai1BW+R20Frlf60JmbhOB3KHJfBHQN+zud34Vc7QRhrLC/qx2oak+BY8uBRULI+7kL3PQGxAdABiB8FZlF3mxISpNpJr24aPfBSeeArSGViYh++/BDevix/+eqIaq5I4XCV1EtqOQOjvzJLph84TUJyAG5V5rjxwDRoaYRR1Nsrlf/Pzwq58+nfhX3xBtMDzU3LPvfouTFyHxz+ucWYoBKUgTbSV7MkzcWgyRT+YD47Z6epDv04lK9XcK2HoMqNsbICebtjRJcC3uVFYwL17oFyBkTEw7zOUmBp0JeAzvXCsRXpvz1dhvgYJE35zLxe1IbRzU6jKrcFbu9cQk2mAU8/Czj448SRcuwx/+zdw8dxtLxvmJi20cJJTfIpf4imeoZ89XGOQvexniJtcYphzGIRI0MOTtLKfLEPMcO7uz11nvMwrZMnRRpuY66OoU+N13sTGvrtBQ8WGoUVoTkAmKm3EfAVnJ0Xr6ylxZe8U/TkGaEcAC9QkrDVrafZCuNsh1COadfsmeEmRLfkB83rfGJ+Er8zA174dMGeBZmZvEzzTBj0D8v7Lc/DDmw8tzssuCuOrG9C3R8Cv70O9JoDYdQUgL4dHjjqDRNhNhD1YaIToCgAx+HemURMJaGuBShXefBfePiPn7SomL2NZ7J2eITWzwGvHHkPtOQKjIZgfl2Kre8WiB69UhSS4asuxuQeO+Vv+nBARmumiRhkPF5saZfKMcQXfHCemQdHypd3noR9I+izyElQuwMiCGNEqtqQni25AU7foes98F2olQIkCIC1zfvofh72nIJaC0iL8+b+U3937RBJxL6UAAOmgTsAIquE0ZEbjOB8MK9ySgaN7YGAHXJuAq6MwtSBuAbu75DWzOTn2TSa8fRqe/pS0EFa+uEdUSwKAEyl5Xb0qdmOpumjZdEMGcL0J6hVpN7zBqFIkSRMVlqitQ3IQJ4OOjkKhoREhjoNFiiZcHBR+AKprWy61OHIYrl1fW+nHbZE7C4XLch74lmhUlb/CAv88xIeyY9xyuHVh1Ys3YOdnwHdkH+NDaRgKV3wi8SvUKh2iSSn8DZGld2istKJ5dZTK4KgKdYbwM6fRGzwq2Scguh/sMQjvAlUn5NfJOOLzN41LD2bgXKet8FXLvcU8wArKpxwUKXRMtKAb+joGhKrIGfQY6DtA3w2YImtQCEZXk+BNiiZ1MzHFEvlIkYYWxRP7XI59zGP0usbrwyEqo7oM8oueLPcITZM6Q78G7ryQ61pIFnvmnm+5LZ77GPyj34ajx2F6Cq5dhc9+Ds6egbPvwuJDbMZWh1OHekEsv8Ip6DqpCCWgMApXvgLTZx9Wk6tQQZWQRgPachs4NDB8/H1huaAbk5KyrtRhOgdTt9Djjn5pwjP4Lhx4XGRonbvg5f8C7w4mmMxHqdc18YEublFqTAeOxeBEDDqC1kZlX9qL5Tz49Qb4blEee/DXvxWeL22tszkod0AyAYcPiCwinRZGeGaO2PgkXbPz3NP9aFkG0RgRADxZhtkaFGwI69CZwP8He0QGcKMgzNddGwIcexxe/LvQ2g5jIwJSfuU34PlPwGvfhy/9KcxMBe9U5FiiQJ46dUYZYYxRLCxMDCYpMEiOOC2k6WYPn2CeSyg8TCLoREiwk9JavWPvCA+Pi1zExGRZGOWjqN1P77ZUg+EsTBbEBzgWdFSYEacH7THQT4F+JGiKUwT/ZfCvgRZYJK6lfkVPQvQoJD4p2ffqD6H2Ixka/SKYysTAQEMLbqerOqopJch09aT01x6BEzugt1EY66IFj3bBj0YebnmmBCf7PowPQ+cOwRmGeQun+j7s3ivPe66LxXWKhMgQIcwOYhzBp0KNS1jcIckoFuHiZcguwfuXZaJWLsNjR+HSIK2lGs8R5/dVI53K5J9cvcJbne3UMs3Shjm/ANXy7d22lsNSMGg/sE+1h8uP+Som4RW2b7l0yqYOVVvGIc2EcCckT8oBqk9ICtkrALp0J6xdZ5PiOpw6nH9F9m2qEOEX/BaSGIwbZeZ7c3TvE+Y3Ny0A2aqAYZhMvj9A/eNDuIeA065U3S5HZyf84qdgZw/kcjA6KmNFpSIgOJ+/r0Z4y2L/TrnE3r8ptQkVS/znpxalGdPEPCQb4HPPw7FjcPgg/IP/SiQxfQcFCMeT8O0vyuwrkRFAXK/JjqgUoapD3wFpSbznEWnRfeVdmBmBkSvrBvoeDhFiuFi4OMGV9mC2J06aBtpwsVc66cmZVMEkjEN9ZR1b6ToRCsFjx+HEo3IoK1Uh+bP3s2y9M2rTrIhDlZKB5+csPtQgGF8Y4OlXoOGAaK7tAliLYOVg8V1wilVwJkDPkVD7SLu7SDopIIlGFwaPUmOIWuUdavpZwuG38Qt9aF4R5bv4qoamyphADo8wGi6COTTARjBc4koAACAASURBVJHFoxI0RIyjYaEo45NHI4pGDH3dp6WqAouguoAk6IcE9PqjoLJABVQ50Pqupcwwk4CaJf3D7wgt4hHr8Og+CI8/C8/9XcV4v6L4Vw5XpgwKRU0A8H3OX+WDNQzFV8EribzanhH3OXsNkp1f+TU4FuhkyyXIZSWr9uQzog206uvIrimozMLsueDvOTAisHgFJt6AwsjDVuChKKLTiEYUEbZoMrCEFTwzIOn/jgZoSEKpBu+PgXsd5gSJFLJw4XWYuAE7XoXe/UIinL4UZ7icpGJEIa5k0PYDH6ENRyAY14pi37Q7DHsiYt9U8OCaJcc9od3qcrjWcF0oFGFsUgYwyxJt5f4BCIegWGLf66c58fKr7LE9rqFzGkURRZHAsnrZyqbkiPQjW4dq4DQfMSBuwrOd8M0RGC+DrckBc+/QiLW0wu4BEY1WynD1kpwknd2wYxfEE7e93MPFwCQZmNXPMgNopElRpEodaKGVRvpQeBSYpMg0Hhop9mxaE1ddRzNQPB9yVUnJ6jokdbQdGrQ40Az6k6A/JWMAHaDlRfevh0ENIYzwA0CwEYLug5DeKwR+IQpFQM8YOHYSz3QxsAgRIkmSECGKFKk+rGJMAXuaoSMJZVu2vyMFL/TD66Py2BrCsmROE4tL8kH5t4rjEinYdwiWci52bQHlXqSQ94lxNLAuLFPlPWzuYObyRbg8KNdYtRZUnLqSutd1Muj0EKKXEFF0Oms1dszNMNXTRzUaFyAcjYv8p5i9G+jUH37NFsne/8nlG4KOrLv6Pnhl0ZD5e8FZkP8dsYjaLAhWPlSCTHcnIV6kjWbC/EDNMG0LopFuke3Uihl8N4lhpKjlEzjdo7AfyGjwuguDfuBXnYZDh+DUKZibgzNn4Nqg/B2NCoLy/e1lg7NFGJ+H80NQrEAmKfKhcg0KFR6r9FHftZfLH30c9u6FI4/A534FUr2iAW7tgnBMtrFWlt/lghzzUj6YzHkii/BcWOoI/CTjcPRZOHBCuhRmZ4T5qN1H2xqKCHjOzqBQQQ6qAZMwHi4WFap3ePpoaBiECBHBIESZJVzsFdYXNFxsPNyAYtv6/Wya0LcLujplrlOpwszMOkCw//Opf14dH24QjDDsC2/BRL/0J6/Ny+SjOg2lm+CWG0CvEdPayfi9pPxeFC4+NQyiJHmMKLvRLIOaO4LRcA6jZgWzKg+DCiGq+OiU8GnHQK2aa9koivgrdewZ9BUjreWBK71i9rH2UGWE+Z0DNQtqAfxxAcH+FKhCAIJzrK26OZOQm+09QHA4Ks12dg4IY5lMSyHt3i6fhRnwTI1Qv49qBntR9u1qVK9cqJ4LCkB10QV7ObDGb9UbPih29YmcbGoSZqZhdgaammH/QWjvgOGh9UnMrCLkrkEtC/MXxSkkPyr/P/yaVCiqKKT7hU4E0KExinqiE07thcUitKSho1FuUskoZEsrIDi/IMvYVZGhHXlapIejlRSV1oxogQEG8zBWYlM3OS2KmKUVxdXD1KArBB0mFH0BwkOWyCLWOxPzfbFBm1+ASgVzdp7W0Ql69vRjocjnlthzaZDHrg1zFJ1ngDgeZ5BsiAViZzFThet5aI4K+I0aAoCbIiKJaIhAMiTbrget65R7q/UuSEoyFoe5GXnN/CxceE8AcW4RqnfffHJkGWaYxzlBggR16oFuTsMkSoI2IqSY4l2WWKCOi0kXDRxhnp9s7HhsNOxVjJmPSBxMxALECP42EdCUAH0vqBj4UQQEF+BeZhrRFHQdgKO/KGlu3YTJCagtadQHTdxyHJwaYQhai7cRJkJlZVr/gChZ0BQD0xB3iqoj/7/QLx3sYkFGYv7hRS+VshTKgTBOtiWN4FwXjp+E1g6fSsmisDTHpFWiVJvDJQtoWNzAv7Owpl6Ha0PBpCIh6B8EXSPFzT6KeTzKOBhotFfK5MoFqvGg24MZEhaxXhXB/DKgU75Q1ndaWGwofPCrUHgNIr1gpIQZRklqzVtiswD4zlCAjU8Fl6LjsTQrzTGKszspzz2GZzcAJhoRdArQq8NJXRyD5n0BwaYpB2p6WnyjPU+AbzyYOJimLE7QVYIQcgKv0Y5urbGQDyboNswvQXeLyDJmcxyZbeYX6ge42XSAywP9IuvSdQHBb44Ky5ubv1UVWFqSxyolKOdvt1/LL4hWXPkwMyqscSgiN03fF1C8MCWFH0oJmxyJyXt1QwBw7wHQdUILFWIkSNBAnDRhokxzg2EuruSLFX4Ags1A5yus771Y3u1samUasKcf2tthV4/MLTUNajUolmRZbzRkhFv5oOsn7xcfehCsfKjNwuhXgp3qa7gVDbsAYEJoH7oyafU+RUodROFS4SIuOUwaiXMInRg6EXzPxsmKeVGdIgpFDI0I2gqIVQghGobAz+72E7BwjxOyuJGTtCibr42B9iNwJ8FbQBjgefAX1wiAo2HRRrU1ymBkO3cBYU2TGihDh9wcnHtdJsORGLSmfEI7IfOCTDiy78LUt4VtX8lseFJPWB9c/9cEOBN4hdi2jKfLeKZek/FlHQW5K+FUwRmH4gaLR30WVv7SzBhqfwv+Hz4PiQi8Py7FS7EwtKRkpLgxDW9cvWs9ngvnfgxPfErDb43BoSYYyAgQNDS4WRCZgL2eESGy6u8QKxL9mC5FO3VfwFJck4YIIQ1GbQGkGwnbBtsmupTn8eFxfu21t5gB3g9U8UtoKDSeR2cJxc3APwMQZ4PRIrwxCwcbCbVGMRImWsxEi+iYFRv/9AzVUpAeVr4s0SaorNLSaLrcXDON0OVKsYvnwchNGBlakUKsjve5SIECu9hFDzvJkiVKFBMdE50wCWxchnkNly6i7CGBjkecRd7c2L7aiqiDWpXd9z1k4KmLHIIk0CyuMbovel5tTmQSd0ZjN5z6+3Dic1BagKmr0DEM+bcNRt8M0dRvUc7VSak0GTLsYhchwozdr2OfrkE8JINtSBePY8cTEKxpIuMYaJbmH11pmXjPDz/0KxfyEI0FbmY21KoyDhQLMg4MHJCxYHLMx7LKTE9cpOCMEqIbj3Lg3nIH+z48Jisc2H1Lx37tBijJ1E3gcp46eXyq+Jho6EsL4CSFGSjlBZnHU7e63SwvkZgAnc2G8oUpKL4pLYDRRCKhmaKbtDZf/X5nLGHzZSZQwJhboZKDzn6YPvdRDPeT6Nj4jMoYqIVF6tLuCwBOBRPVcFj81P76G3DtmniIo4R1X7H1MFgBv1pKvD79cdbnSXe/0APrSldcIBYL6DdnCbW3ohshaqUcv7P4e+z3eiibrcKyeL44RRw+DC+9LRXA0bgwwMuAeG5cAO69olqC0VU3uauB3q2rT6qhPTfQ9BgwPSLMkhs81tIBO/eiYdCQvUij30oPh9jDY3QxwBt8nSzT1AInGR83kM94VLZkf20szJCYrPTsgGxWSgOiEVHEXR6E4ho7CkIwH03Czl1w5cr66322Kz70IFhCozKhI21tE+iEMQNDEsfYR0O9ThMfw6SJGlcRdVYVG4syZ7GZpsKPcLmGS5UI7VSQyoFasCzHfKDv6sZEQzG7yerOB4XKQWNOI5aFXFFRekdcI9QsD3JxuxWREJzYD4f7xD9xaArevgLnbtc6lvLw3k/g5hU4+iT07JGsTn4Roi9C38fE6s8tQ+szkNgFw/8JylvUAvN//Z/g9/4pPPeCXCSxmNwEi8Wf/YXiMw+dLbA/KozvsT7xMPv/2XvzILvO87zzd7a7r73vQGNfiYUkSFGiRJOyJEqWS5JjyZbljDOxU8lknHgSTyXlxDOTmsSZxalUXInHS5UdyS5ZjiVroWxSIimSIgGSAAliXxqN7kbvt5e7r2edP97TC4DuRqPRIClWHtThbd6+ffv2ved83/M93/M+73xRrBCWI2qwtfYH8ublODwehD0peLTd779pwvmstB+arYldYD3QHmQx9NmblupIB3i2JGTpSkMyntM61FxRiE9U77nAxkDqs9IoXMVdjASsANNIPz0XuI53s0XVA16bQnltiu1xaAnKGiCuSwF8yYbv14PM1WxhfFYFIh03k2CzIVz/yEMwOgIdXXDhLLzxKpxbPepulBv8Y/4hP8VTKMjCtUqVOgpXqdPEF4nwScQDrmNTQSVIiA4qS1T+PYV3XnZXvGlQ94LShzTPmQL3TTm8VQJMXFfm9HS3tLPNTkjxo6JCx1abf/onZf7818F4cTctVgfb2Y6HR5wE86yw5xkPwtO7RLl2PLieFSIcDcjCMKRLod/Tu0QZHlh/u9rMKvUDrzwPXb1w4LC4XxRFCPPglSK2o6IQQiWMcysJnpmV4+IVePJxiUt7/S1oNJgAzlBnBwE60CjhUsTBquRlSyuaEGUvnpaKMA9fLfDtR5vldfXqUHpdvo7sk1trRvxk1joKKjaAeczFzzaWggc/BVPXQPP2ovMYLjdwGMRlAsWLo/5aM+6/zci1OesT3IqvVOTz4rVubYVYHPBEySiVoZ4ALyq+HYKgtoG6HewX8M1SG4SGTpIQ/dQZwSYPOCSrGjuHY7SQ4jmGeJBdFKmQrU2jzKt4ybjs5UejMHoNBhYWZ55YHCaGWEt1Nwj4tHTZpHT5LTkWEAjBlj1w+HFfKR8SZWlqGPX8GyRIs0vLEuVDpGihmU462Eon24iSpET2/naTu0u4roTB/J3Pye3snHy8+Grw3SARh89/Dk68/v5RgeEDQYJDEHgCov8LeuF/RXFnARdXUbH1TnCGsAnhUkWjlwCdfsxOCdAocZwSJ7G5jo5OimY/YmTtT2niPoffplDYikquy6XyYY+OpyF2BKb+gDuTma4W6GySJdvBfnjqQfjph+D4BSFvt5DgBeTn4JXvC9do65YLoGs3xC7B7Gvivw40Q3QrpI9IBnPtntueCP7496Ug7l/8b7D3ANwYgjdOwNl3ILOBONRNRaECV8bhtcvQ1STqb92UaKv5IozOwqk7FFHN1+HUrKi+z/jkaqQEE74PLWagqjZqwEEJyHxrjrDCaaiAfgz0J8C5BN4keCVwLsuq6QdDLJ4gLRrsDMLrd06GWA9cRMPRWHQiL67FssBVPF7AXbXe+ed6RDysO3KOdYYhHYBDKUgVG/ywCpcWBtZb5f/n/xYunIEv/rKwoRM/huMvwfkzq7MnHw4OL3Bzt6gobfTRSYAmNEJYFDHJUmOaBvOofr/69wu8q/5HfcHPBv8EoIH7zs2q8SLa42BoZMouz/5Xh9b+Cn/4G1EcVKlRcaFzm0M5oxL4wRH2entpp50+enHxeJCjhAkxxTRFikvWiEId/nJZJNqNHPSloDMO25tlMfgPvg0NG/a2QWsUDrbD+cwKL3L9GL8BqTSkm8Uj3NouNqrsfJ7xoSSzmTUi9fIF+N6z8OhDN1kY5nF4mQrt6AxhMoIl4VLV0pLKW1oWGaUbshuhqJIQsNkwx0URNsfYbAvEavBcaYAxeAoCnMKjB7FCxFDpwKOB+0vj8IoN5x2YWuF1VSqQTMp7m83C4CAoW0B7AJQGMmroQPjmoPoNwqCFVn6OOMcY4bdxKLCNHvrpIkWcDlr4Ck9zgescZAcff26UzDsv8vwXe4Ssn3obTr8uhHhdvy+IQRAdiStxfcOCeHEdTGpLflyzLlnEyxBGOpVvUT1+I5jlswa8YH2Tt51vctk5xGn7Z8kyiYuDReN9Q4BBYp//538GT34Mdu8QcWr4BkzPweVJaHNhdpI7xmuDbEIPDUvKxPsJHwAS7IJXgcZ3sL0xoCjButp20I+A/Q51xpjhqyR5giB9BOnFJkudQSqco8F1QkAzHegEGGdwVZN5ipB/EYCFQ+0+keFDaPSjsjUToOtvFKw34d98rEryo1B8g9W7PLen5YiFpUBgaAo6RyRGZmQaSncudvGAigZbvgKhHWCXhAC7FjRmJIGjMizK8GbB82B4CL71DSmSO3Mann8Wcus14N9PlOpwcQz+9EU4Oww9zUskba4ohXGDd2DqRRMqeRgqiO8ExCrgeOgtHlq7R+QYRD8ku6C5r0vKhj0LOD2gdsnWpFcFbT/ojwF+cgc50FPgXAR7hEUSPO9AsbZp82kNeBuPJ/HoRyGJQhkPA4Um4CVc3sRbdfOux+9eWLLFCbIjBl1h6Qy7LSbfM10YrLhglsQSUff7f+OJD/hPfl/UONuWiknz5uKrWDM88Cno3g/VPAwch2sr5FTbOBQpUeQyXTxNnB3UmERBo8YUznu4BbkqyuBdA08FdyESdyUuFg1K442mKKgK5dkSX/sXAexwGNri8piaRdWtcu77Jru93WxjG6200E0PQQKAR5gwb3MaB4cq1WVJEf7vebBbSPDVOflADd/is9C+9NqcKMV3iEtbD0aHJVs43SxHJCqbAbYDl1uLXHhHYWJsjSewHTj1jtz6KOJyjgat2ERR75wCa6/Qym6zENoOVgbcKlraQ4sKJ14PHsJgLzppVPJ4mHhkcXkTk8IdLv5qEd75gXxt8iwQQKULsPzy7ix82/TrSVZ5knJZyK9l+11OAO0oGH/PL2a5Au4U0uHFAO1xcN/2K7zvAAV4dB9MzkMmh1YPkeARtvDb5HgeiyxPcJi/w1M8ykHiREkR53f5M3IUKVCm02vm0ZkOnv/a10h9VCP5oEPpgSpOn/QVqN7BxmfRwMb0M6FUQjTRxB6ynMUgiEcSFQ0NHQ0dF4coKQwCVClRp0TDMym68Bkjw6gLJx2Pay4k1Ys8FBrmmuNyxmohQHixqFdDx8aivhmd2+4BjgO//X/Ckx8VF4zryQaAEYTmTpifltPjjs9jw8w9JlndD3wASLAN9mU/lLYTvHbZdtF3gNYObgsWF8nxDCZjhNmPRogSf4NNEZd5ohj00M8ejqITIM8s5i0rMhWFbhLECVLF8usxHUI4NLCpblIXGB34BAYPodOOQp+j0lZV8Sbgt1+J8G8OVAn2gjkh9RS3IRwEPFEoZ3LQ3QoXR+QsffMynF7fMszzu1M5pvA9RQf8WqXiFahO3F7AD0hhh9tA+jrfHWYy8PKLQohf/IEQ4M3adeyISs2O7UKuDrN3w3E8T6qNByak+K2/XawmjgPZMozP3TS5rggXkdYtuM3LYkucXGArRD8mme2lH4qnWVHAUyJiAPUqoDT7FZLX/WooE6j532uR0Gh3BKjL71wjxuluYQHjeDyDywEUtqHQ4aelZIDncBd7ea2EayVRfTvCENZgVwweSEljrFNZGKpApg7gyYlmxKBRWCJdjgOllVspK6rknXbugV2Pw/ZjkJ+WTldTV6F8y668g0mdWXKcI0QbYTqxKONiY/ilrJuNYFDWP6a1QZuPB4tv7mq7yemI+HYX6nJVBc/QKbkx8eh2p8TKMF3AnIDxv+rkEVKkSdNGG1voI0WKCBEUFGaYIU+eBo3b841j/oy4WhtZy2VTQm4RsX9+VmqtOrqkRtJxpGYtP+8xPLiO8/yWkFOxWUtx3I7FvJ+1n0f1PAzubTP/JmgSXR/78AxaooA1VcStgltaPwnuQONhAuxAZxKHWVyq/uL0DCYTyz8Dw1gsDgRfCV4cC6tYvIzSHJWilykHlXao3OG99TyRDCuVZc/tiPWBPdLxiTfBm/MFqjS412Ct9AyASBA+egi+8BG4PCo7mFcKuNM1alxHweBh9vA4RzjIDqJEGGKcIhWe4RWe4CFOcoFZ8pRSRTo+VSL5CIS3iHW9NgSV28s4Vv4T8fzsXekFkKCfCV6l7oekBghhECRAiDBx2uijTB6PAnVqNKhSRicIFD2Y8yDrQcOzaFcKfDoAz9kOWc/ERnKADYIEMd5zEgyQ8+DFH0MkBK4BFUVcH1Mjd1Gzo8hjU0nZUCkUbtMw3hN8AEiwB7hCEvTDLK42lZAQMSWFp8ZouJNIN7EcAYIojKJiEyNIB33s5igH+RAxUmQY4y1epLLochQS3EmcLaRpYJOhTJ46DWwqmDh4NDZh4tSAo2g8jEYKlTYUEijYDiTGDP7twxDslT/ZykiKzs1vhydMr9qQggFFkYisUhXOD0FmfR1hrKKovZ7tdzusLR2lQTBz3B75pyekVZydF/Z8l6jXYPQGvHlCbjcDCrCzCVoiMmcDRCp3SYJBJvtKQ466KcWGjgM1U+5bJ8KEfF/qMkOVmFVximAOC6GzRiUi1HMRsutq/kpEFw+w/Y5Eh7gTfqXkGOLavbsmH5GIdOYCmR9VVSKrVoKHCI8ncZlBoYRKn6+fXcLlPB5rlQpdKMCWKPRFRAFuDUk/j8ESPDsN5wqiEgNy/kS7RBG2K74CtzKh0gMQbYJ0l/heq3mYG5XJPZqGrj0wdArsZX+XS4MqkxS5SoAkBkksCthUsaksSwDfPETDEAlDtS7vuWWtT0G5KzguWP4YoCri01UUONgJT++XFs1v3YBSHSccpTggFewBAoSJkCRJO+3o6NjYnOYM17lOEQPbL9ZZxGRxSfW9z6jXoJCTNdCOmHiEI1G5f2Ro9V4t64EkmXir7v7pyLJVRa4wg6U1xr1KH4ohjYZav1LCmilJtvo4VM/Izlt9HSStA5UeNNJ+gpGNSgyPQxjytyk2c4bqtzwPSsxhpbbiSsz72CxeaBbGXJgCWWSHWGtcicdA00wUxSQYF/dJ3RwE56TfySkCSjfyDjr+c95hjGpJwsO74ctPST0LgOvhlYZoTE8yx3dI8mEc0lSwGWSMISa4xhhValzhBhHCZPonyScK6AloOQCJoxDs8utvbTBnZBFir2PH0Vu0QViYFLGWSeMeLjYWJnUcLGYJUKFAhTy1kI1laJRLVV60YZsKKQViiljK4grsUyGiVCU7G7AxF7vKvR9Qd6BkgKNJI6jmDolMPvsazE+Knbqxhkc4GoX2NrkNR6TE4/3iC/4JJ8GqeIz0PWAcA7UV3ElwpsDNS5K8EgG1G8Wr4HpVHCbQgSRdlMnSxVa2c4BdHGYLe+hkC3UqjDPIGNdo+GRFASIEOEoXKcKcYoyLzFCigYOLi+dT4TU+2ZAuT1RbfeKQ36PQi2RZLqTVVoB5XNSIeO8VVbbNbyPBNb/3aMMU4pbJydGwxNu6TpjzkDsLZl64l+nHizkNleqoi2drtywBPYn2URRwKmw09ssy4eL5u/6xFaGrogA/1CXcoOHIRxDUYKoMmbuw9Sko6BgoKJjZja3MQwRpoxUVjWkyODiYmDIgm9C4KNFyOFC/BN4iacuI0qv2AnnxSfCObCd6c9Itxb37aA5FkRa19bqf8hOSFfpqJHgBU8AUHjO49ANhFIbwViqjugk3qqIGd4WgPQSzDTg5D2/Mw/enILs4p3hycse6/dzDWVGErfKKGXdGWAq/ku1QK8K1EzB+AcIJiQDt3CNqcGmOxVPSxaROhhLX0AjhYlJjCpuyT4DvrUXqrQgGoL8PtvbCZAZujEkX38UUODXoX9QAjlTCLUOICAZBHOzb8kRvQnGZT8q0IWQI8d3dDj9/RKTo4XnQVbzmCDYmZco0aGBj06CBhUWYMGmaSJIgTIQwYRwcGj5dDBKkcW0d29mbiOwcXL8qDQPbO8UWYdaXkrjuBflVAuFURBS1/NsIUmdqexLgY3NvbiPFkGS06CNQfBEiD4DRCnZOdJzG8BrWNx9tqMRQKOFSwvNJukIvGtOKwY2QwVw6Ah2t8mZVqjCbhVJFiLC1bD46pkHeg2FR8V0mUEix2EBIkellYehvboLeLrFL6xq0tcLYBJy7eImG/cd46jFQtslOrafJAt5bJcpkAeEgPLANfuWTcGQnDIxDuQ7pGF53ksbIEPPz3yXKfgZxMRhgnEkC6BQp0+m3vX+byzTvgWSPEF6n7L/fndCYEgeZkYZQt+wY3QkaAb95kkeRMQxiWL5KKw3fLVxcKuSZWx7en2iFRBMlZ5I/NG3+JAwHfW4bRr4uezfvD8rzbc4CU0FZnI03miU8MyaxyNEkhKPQuRUefBKKOekZUsjK3H1rj5yFpLyOdti9W063ahVGbtz/PirrxU82CVbCoPVD4OMQ/U1wxsB6TQiwlwNMIcFKEIMwGjphEnTTTg+7OMcrHOQxOuglTRtBwoSI8BQ/z5s8T5bMIgl2gTkqdJHgk+zCwmGMAiV/Y0z3PWVrnmJbksLArsz5Nkf/0Z7/tX8hnMPhCLqvQkuJThGP49i4DTC65WfMlWyoM3k5bsXwHYoAFGQSXmjh67oULogfGKByw3+QFpU2n0ZSJm78x+NCoBWseakGVoM+WVvrF97fpWBLBH7lEIz5gpXjSd1ORwx++QH4D6+v/xUECNJMGzoGE4zgsjwt+s7Q0dnJTnrpRkEhTYoiJW4wij1nYzsebgmUazJQG92iCi+9wDK4viyk7pOZ0SshrQU3XqQTiy1NaIHAUlbrenAdjxwQxltXvxaAs3moOnC+AGUbLhdhuHLL56CoYESh9QE5jyoT0uWkMASlsdu2IFRV/GmBsHTGyk9CIQPxZiHGHqIQ39qd2sOmxAAK6mJh3L02yVgJqgrdnfDFz8Iv/Rx88/vw598SDlJvIP6XaL9cW54LdhGqN276O7eyj152UqHEmzy3vgmyZskJb2gwOAvPXIC9HTCWQxnOohRdXCJMM80kk4QI4eIwwcRiTFqOHDGiNNOEhkaePDY2/fQzyCD2fS4QXo6JMVGCyyVpqb7/MMxl4PSbQpDvBXOrxO0EWSoEjSjQDHQrYCnwirsJI5gjCWm5b0H9GtSuAK40HTJHIdgn96/1i7RlJCeOQhSVWRwiqMyGDa51xmHvDtjeB8WyrL7aW6BQgrkcjE4uXRj/7+0r4OVZL4EAJGKyaxQIwC9/SZLnGqb8/4G9QpL/+b+Cq4MnMK0RaXWo7gTnVXDP3Pb8t2FHF3zqGHziYfjaD+HUVVGudQ2vM47z6d3U/+wlpvkqGmFOM0SUPrbRQoUaj3KAP+JbeIjCW7dlHquPQqgPjCa5tNy6OPe02NovR0FHwyBBH0FSGETQCdHOEcZ5+4nkvQAAIABJREFUDdGBV2F0iiJSeV83VirJj86eY8pzeFyHNkVmwT4V/siU+OX7gRAGBhomNvUN7l1cPQ2tPSLAxVNyO3IZhi7A6IAQYzNxcx2pokBzM7S2QFcXtLUBnjTdUFUpkqtsfOraNPxkk+CF2BVFhfp3AFc6d7lTspes2MAsWKfQCBElQR+tPMWXeZIv83/wBXrZgYpGnQoF5nBx6GMXXfSToImi36XFweUCGf4/3uAlrpOhwhQlctQw/WS/O66yahZsT8NT/TCUkxD5ZEhMqmMFmCxjAd/AJIvHPjSa/Q50Q7icxkZNg9EsKqF6F4TljmhKQ08XtLVAZg7OSzvIyqItQRW7g5GWX6wG/f9vEvIb7AJzFvKvy6SuhoXN+UResi+Xq2uKP+Gvz56xEcQD8Hgf/NezMFkSK2RQk5jToynYmoLhdTTzAGhQJ8ME29nLAR6kRIEZJimvaQBYwpf4OT7N0wQwmGWOaTIowAijHOcE47lJ6rk6SgD0VlhzF0xt8tXfCe4lfN7zpCW16w++iiqD093gbusWZxowY2p+V5UVBmRFk4K4np+CbT8rtohGXo7KFGROwuC3b/oR1xHyq+pghCTRSlHl/tIcFGZgfg17jUmWBvN49ynu0POgXIGXTkgX6vGppfc8Elaohh+B3i8JCbZLErlSugzTf7P4HL3s5Gf4+2znIL/HP+OHfJ11UzDbgeE5+J3nQNdITHoES6ILVahyicuUKDHNNBEi2NiUKTPKKONMECBAJx300UeVKjlyHOAgVapMM425asXU5qNYgB89J8e7gRoSy+yHfNGiwCc0+Kc6PNWAN1zupjfgbXCrkH/W1xVawZuA2tX12SAWUMUjjso+dKIoTOHyHWxOUOdaTzcc3QMP7Ia+LlGAr4/6K0cN8iV4+Q0hwyAnprMQ+3j7AqfRkB0cTRMC/D98GX74IxiflPviMXjiI/Crfxf+/X+E6cyk72IqrY8Aw1Kefb4sNSzzBdnh1HWIhoQMY1PgZYL0YpLBohmTJCYWEcIsiCyFN5c9rybkt3JJ3m+nIkOQukYQjILGNj7Ffn4ZiwplJqkyi4NJlVm/m+ga1+H2fti/Gx44gLd3F4X/9m3+nx88x7/WXfZrIrj/pQW/u2km85uRIkqMEDoaNRrUKWz4uV77ntxGk6IEnz8BL/7l6o/v6RH7V2eHNNzY0ifJecPDEiZivE/Y5/vkZWwQXg7Ml8F8TWY9bQeLDi6vCs4IMlHYNNAxsFHRidOEikqDGu30UaNEjlkqXEVB4ToXmOC6X6Wp3qR1nGKc00zi4qGhEEDHxaOKeecpaawoDOyBdvjFA3A2I5FDA9nb2MePsHgFa3FT1m/eSNM8RA5B9ABE9kN4J1TOQfXiPb6XgYBECP2734JX34B//TtwbUgGo5ugLttH6oHobogfhtSHoDokI0vhlIwuni2jjRaXZbdnsq4slU1CLAAf7oUfjYhFstAQImy5MF+DG3cxHkhybDed9GBjo6CQYx7uQIINDD7FJ/gNfp1hRphkinnmKVAkRIjP81maaeKv+S4j3MAzwZr0f3i1E8qr+6Hzm6BaKtDbJ9nMiaTc5TjSue++QDXE4qAaQniXy7OqDsE0NO+HA78qZLg2K0TYtSDSBvv/R4h0woU/XiTRtSKMXYDirKRDuDbkJqBW8p/+Dqece8+b2mvD82QH+sxFuDSwRIpLVR1CnZB+EHp+QWbjyhDJ6bd4KDNNnc/SRDtNdNAVfwVD/X0qhf+LR/gkz/MX69vatF0ZYwIV9s504+IyFcsx11wVsqEqELbRpzLU3BoN3x5Ro0aWLK7fuSpLll562csenuIpTnACG5uAn526XBHu2gozk7IY0dAIYFC7Dwr7u4UystSM+W/3Mw4UPClw2pSzxoPSa0sagXeXa7Gr2JzCRAf2Y1DAZQCbv40oTHWkYXc/PHgQutpk+2FhBWbZUt+gaXIe2C5NoToNEyqOJv5hVZUXqGqga8SDFu3RGskEPHxUtrnBbxSnw8iokOKD+6RHSbkC5XLFT4dYJ66MwrMnpcFTNAyhqviJAj5dyS/Z0RqMAx6tpDDQOcc19rJ1ZTOTA/njkH8DYvvAysq0FO5f/aV4uBS4QRN7SNHPOMe5wYuYlEmyhUf4l0xzihnOUmWF6IP2Vujtlnyxz34SDIOvz+fov3gGtVrjpA3Pb3gzRYUHfg8K78igooXBzMLEXyw+IuxHPVZpbFgFvhWaJg32XvnrtR/X0izaWle3EOJDh+CxR+F/+nUpiFsIjTHoIcFnmOcPN+X13S1+skmwT3DB9r8cWOarcwGLAGFMbFwaWFSZ4jrP8acMcY6/z7+ij50McYEiWSYZJkuGCkVmmWCeqdtUDgdvsUraASx/S3xhMGyiCQuL0krkKB4UElysS6D8thR0x+E7V2+TJP2/6naooEUkuiyyDwJd4FlCgmMPiYrgbKSR0VxWguT/6GtwY1z2aVca4dWAXGx6EsLbhACH+6E+BrmXoTYsirCdX6jq8j3CvmXi3UIaBloVPnMKfqXFIx6AczNwfgYuzMCJsZWTmxSChNhCjaUUjTBROujmMMf4h/xLvsp/ZoDzrGcKNNB5nMfYxU7e4jRXGKBIER2dKBYBguxlN3HiSz90p6d1rnCv9emaJk2e0mk4dERuA0HZngqFpG31pQubXLygBYX44su0TkVsDwtd4lxLHuNaEExCPQuVaemFblUhlIbkDnjwN+V7U69DdRqcBo4JhWko+zZVu3G7P201WBTvytqyEdTq/jzlK/yuC6GAg6rOUXUbkPUT5OtTqJVRwl6QCO3EYj/gSFhhfyRHs6ZTjP0CJ8sVDhYe5TJvY/nngYpKmPCirxcWCGiAsBMmPd8Crsc8c9Q8E8+yoeqPbWUF240xyyxlKlTUBm4wiGOkIBTDiyQoqgEGGzb5wlWcshDjVlqIEMHExMLCxRGf+7RJ1FIwCKD7tq4wEerUqS3PVH2fYnsvfPgwdLfB1RH4/o/9RptIRX/Fg2lP0m9XPMUCzRDbAZGtYCRECChehPwaSqi9cUJ9nAYXsehE4yEMkqi8hUVBD8pZHQzAli7o7YSL14TYzuVgYhquDsH0LFRrpBIeQc0lGIF03CUcBl1XMAwhLZWagmN7OI6MnadOw87t8vSdHZIgNz0Dg0Nyno9PLjRUKN9ubO7shY5uaGqVgWfwMgxeWrTicfY6/JfvwMcOQW8bpGPSnGgmB9PL9p+CgAkve2+joeHgcIYBnuRhXuUM9VvGSc+fWCtX/a9d+XhWg9SCBMnwNhoGIdI0sYsMp8kygEWFOS5QZ5UdzfOXpEdwpQrRCExnMLs6uHTZIGfXuOxsUMrQ49D9RYjvh4rfKUdPQqAFOn4Wpr9HmAAaqt9/zkFDpYUEcyv1V18Htkbl4wn4G8Bjt0TjqzHRuxRN0jyHsxCJye5BPg/DI3I+xOLiDV5Yi2k0k+Bn/X1vnQZXqfAG1rvUrOgnnATfivriSKKgECCCjr7YKUpDo0yeS7zODDdoo4UCc4xylUHOM8YAWWZo+N3kTOprTo4rGc0DBFYfzAKqFKbUHVFoehMSMt8WXYouWAUqkNLBrUBtANwaRA5C9AGoD0l2sJ5i7W30tWBZkoL9jW9L68u5+Vuc656v5vqrSUWXi06LCPEtnYXsS2K8cspLjwPW195uk9AGdCrQo1BpVzjuQedxj4oJw7rHlOORr7HiHqZKCJ00y8Pcm2ghQowoMcJEiRH3q3+nqa4jS1YqyG0UoESJIkXKlAkTJk6MGjXKVAhgECCwzq3le4/MUVUZjNraYes2OHRY7stMi6ozdH0preNei44WoWgic7m+8upaYFeXLVp92bY4LN7fUBrsulSPef738UQxjnZAMAV2Tbq2AI6i4jiKPN5tsN7z7n7Eod0K1xXfpKELgRB12sN166LeZE/6wdBlaladgYTHzqLO1vAUmmEz78nPhYI5PqLDsLmdwbqD5eHHKUmgkuL/8/DQ0DD8f4rlMsM8JUrYDf8F2Etjm4dHkRJVqtiq6m8NtEgQaPtWnHCMajnP1Oggbw9dIt7QKFPBxl4UBVQ0AgShHiHqvyYVDReXOjVsLFRUP4dh9TSG9xKHdwsB/tAh2LcNLg/J53Z9TFxi5bKowgVvKTViCSroUYj0QusT0PwY6DGoTco4uRYJvgfk8MjhMIHDJA5x3xJRbyBE9/xV2NYryu7wOAyPwdAYjE/D1Iz4bR2HRk0Wj4oK4ZBHNAy5rIemSThLw5QpoaIIpyuVlghw0I/udlyxHZ85LykRMoUs7GMuw7bdcOAotHbIDza3QjQuHZtmM2L8vjIq6u9HD4lMnitJ7v3QMlU5LFWKc46ISCECfJVnmGD29ki/ZVgeL7qWaOThUWKCYX6Ai0OcHhL0oRFgiOcocgMFFWW1BiDFksyrtZqsEFqaoVSm5LhMuNKAb0PQItD2CWHywU5/vEPGEDUIQBxJfqljYuMQJ0yCyIZJsKZARJfmKrMrFIHoLRDeI/Xxnit+7LkIKFVgVNwsqiqbDjMzQo5D7CfBp9BpJcgOTEbR6SDOU1iMU+ci1rorTjaGDxgJFixU8geQwq2gPxgrKFiY1MhSJscP+ToJmskzywwTZMlQX4fHUieMi+Vvo976u9XFice6dfvBQwpVyn4bzq0psUhYrpxhqyCkQmcAdsegmoP8KZh5A6oDkHoCAm1gtPmC673wzVIZzl1a5Zs+CXaqwsDdGtgFqI1A+RIUTgoRdkpsJCN40/CgCv0qJIEQ2IbC838K5mGoFhwc6/ZRRyOOQgCNKCoR7GVOVwMZUOrUyTHPyzzHEANkmFosmlwLDg6XucJVruHiEsBYVCw8PAa5zgDXqFBBu8dOSncDVRWy29oqxwOHZeAKh4X0Fv10vUpFesZbm/WRuvbN+723Rum5FpTGYfYdaD3s5/L51hqrBPMXxR9cGhMCrChir0CVLdtFi4W7nG2+L+A48tJcd0kFAaA+Ka/btcEzqbsWQ3qFPk2hP+BRcWHCgpID/QH4aBROxa/zYgMUTxb3GppPK11UZAtblgweLi558swv5LLe8pYHCGBhUacutgY1JJUv6XbYsh92H4NkC+QyWJrOcOYZmhoNTD/GaYHM6opGKhIkZBiYRQPbFdnNA0x/IpZRTv77fiPBe/rh44/CQ/tgazfs3iq8cXIWAobYUnP++nPFdaGiikIX7BAlOL5L6iIUVb7WY3fXYUgBEhoUlg/qmjznCpERJjCyfAJomDCRgZPnRMIrlOHMJTh7GcamIF+UP8oXO5a3wTUlDIKZNQoOZ2aFv+7eIQW2mu+gKFfEFrFmW93uPtjzADS3QT4LPVsh2QRXz8vqu1KSRKO3BqCrWaInRmdgJAOzy3ZNdeWmIJc6Ji9wco1ffLfwqDDFBMdRUGjjMGl2kWQbYZqRGT+wdqRipQrXRyQS5sBeMC1qpkmdDUbsGSlIHobkUZh/TXZn9bgU1NbGoHIdgAA6Fs6iDUJHI4COgbbY8EsjhEYYBwvVb/ThYuJg3lYjEdWgIwSZhqxTlkNLSHRreLfUtLgV0NNQQHo46UWZZ3RN8oHn5mWeiXKIOE+jEgZcX/3VCLKTEPvRaSfHn23kXVo3PpAkWMMgQBgP/OlhoZOLjYpKgBA1ypzndTR0rJWC4FeA4v90ih3UmKXK7G0nijzCwCJGbmGLZIHgLhhTM2UhwtvS8Ofn4VwGsquPGO0B+HQLPJ6CUBl+PA7PzcPgSzD7dWj9BakDtDJLC8L7BqcGVh5QoHgKSmegckVSIcwM69nUW4jZ2VDDgDvh85osBMY8mJVsdgOV7K97eL/rQZnFiVghjIdLiB0YNOFhYzODzezi02X8VWiUGDoaF3mHMYbWPYHb2JzgDbrpIu03IchT8IuKMlzkMjcYZZrpd9U3qWkQCktmYywuSo7nya2uiz/YA/q3CwGe34w0LM9hXZu+TgMmjwtBVo0ltdeuwdhLkBuAyhSqVcXzbDxFBT0EKPJ4z/GJMcsyyN4fhOv2c96T6BUtBkZc2HF9Cq9wlmoEkn4TNteDqOqrMSrsCoCh4I9uMoxXqS5aIRYgaqxKnvytv3gRSZJUfFV34SUBUgGzZT8cfhLiaZgaguw0xNJks7cvlg0DUr3ghSF7OUy5br2r6REbhaHL5PyPvwQ7+iShS1WkP45tQyoByZiUTawNRVQ4LSxB6oVzoBhodp2wF4XQbsrl06zrXFSBmApHw3CuBmU//9kLSmGss85OGvWGKL8zc2KFmMgI+XXXXhw2zLUJ8AJGRuUAWVRv6ZU44nfOrWGlCgQhkRIC3NQqb/L23ZLPmJuTBdgCPA++e2L1F2BvljF7bZQYZ4xXqZChyBhN7EYjiIdDlWmc9ezguR7MZ2F2lqxt4SERaXe9rxfZKlYIIwmVAclRTx4GPJmbC6cBaGD5KrDsCpl4FKkSI7QY6xqigyj9WFRQCWBTpU6eKjOYyxTjiAbHmsQScb4gqT7mQkF1EMIHRQVWDKhdFj6ihkWcq1tiB7NtWW8NDS9tMmvEMehAIYBDGYUgNjOYBInyIZr5R/+dBG8EEjGto6IRJAIIObUBBWuRwFiYNwVe3+k5I7TTxSPs5POM8yojvECRkVsepyxWUC+iKy42iPmqdGmIGfDONFyYhTcm4K0pKK7OXpM6HIjBrghUXPhICmIa/CgLr2Vg8j/d1dtzj/CE7JqzQn7dhi9Brx+RCGzfBuc2KQ/4JmxVJedy2lsIXZaCk0suVCCAQhANjQgBvoBDHgUdDwePSVQyQJTKLUNThTJXuPsX7OIyxDB/xV/TTDOjjJJZqYDiXcRCFFp2Hq5egW3b4cXnpWLX8/yiBVc69hULm2iHcNaxQlMN8QXnB0X1VXXfJ+i3KzSXqhk7aaVMjYJXBuuWc1ALCRHWQ/Kz1nvfdWlV1CdE6dYiouaY8zjAiSr8igN7gkvraEOBk1X4ZkHGApCxTUG5iQAHCeLgoKERYvUYGdk106lQWVrYuY4k39smaDpYDagU5D4jcDNJ8REISYC+58LAGfC8e8lMePdg6PDATti5Bb7wlMR/Tc7A8CTMZKEpAW1NEqJQvOMp5MnnaJehfA2lNgFaiN6awS+Ounj8NP+Bc7fvEK6EdgN+PgXHZP7iL3JwqgoztjCMu4HriuVhelbi0e4TqlW4fHUdD3zoI7D3EHT0QNTPJ1NU6OqDUOTuImrexY2eMhNoGNSY4zLf4PP8Naf5z7hrcYiQIeTX9E2w0xlojjGbLWM7zsZefuEMnPsnkh4T3SbWxPqkMNBA0+LDZn0SG6AJgzQNNKIUSBPDxaNE1bdSxWhiNwVGUNEJksTFXiTBKvBLW+C39kLCgB9Ow1gVTvjCSOIJSH7ct2peBWtBQ1LFElEqQ2UGKmUYHYPJySUSXOE4CgFCHKDAt0nyBRQ0HAo45DB8tf1+rnQ+kCTY9dc5KVqJkaZCARsLxU+HCBBCRcXFxcXBxlwlKl2gEiBCC0m20cFDbOWTVJlhgttXqFGiNNNMiDBj+EvksVs8ONdyEmD/O68JCa6uPijGNQlnH65BW0B2fwwFHk7I6kxV4NU8dAcXw8hQ8B+nwsDddkZbFYpM0q4pVoh7OCk1FWJROHoYzpy7oyhxd/iqDY+pcFCFCHhbVaa2uYT/gYdWVDFQUUjicoQOfhWNKEWOU+IkDeooeDTTvESCdyAtospIOv4GE2Zq1DjLuXc1Tmo1mCY4BcBXft94Hfq3STcf04R8DqoVmBgXD+SdOkJvGlQD9IiQYLMEDVlIttFEgghRknSzn3aamCHLMFOUV/NlO3U5FA0CcQg1SzHd+0QRvg2NzIp3f78E845Y/ecdGDThuwXZ7EiQJMBSGL5DiDp14sQXLRILSvBK0NCIE7s9c9ixoDgHk4MwdNZ/sA7VIsyMQq1I9zYIhpd+RFGEu1w7d69vxLsLy4bTV+CdK5CZh2MHxA/8wE7IFpcWhddG5ftrwrPRalP889pX/MLXGAECpEixjz0ECZAjz1/x38iuFS54NAw/HYetQdkKCKvwm23we7Pw7TqoEWmc42TAnWNdTNDzpNbj/QBNg3QLtHWIhWl2GqbGYH4GJm/AvsNSOPf6j+78XC7QrIlSXr3/13aBEUAhRBqLKrv4PEP8LeZqKUGeB5EAtMQhFYGHt8O2Nia/fQoGM9IEZCNwKjD9Xej5ilx81RH08gSB0hQ6u4nQjU0ZkwJ1MtSZo4sd/BrHuMgYlxgDoMwsJS7Sy0epkMEgiotNmh2k9TDticv8k53QG4G5hqi/exPwj3aIP/iFDEQfhMSTshPtOaBG5SUqqqwJjYUmRoOiBuvGUhJKnYs4yM5yE38Pixv0MojLl+hmF4/xPeDf8QIv8DrHb9vp2gx8IEnwwkS3oAjbWNQo+2TXwcHGxcH0ux/daWLU0InQzk4+RztHGeQ7zHF7JlkzzfTRRy99qKjc4AZXucIYo4sqS4QIbY12ou8kuXjuEtQsQn7MkLnC1mHFgXkb6q4Q3ZDqk1/k//tCclwoQ8OTydJFdolcD7aHoWhD1roHu7BiCAFWDLE93AORaGqCrX3Q3i4+u5YWyGalg8zcZmy5f8+B0+5Sh85HVajBwXqcD5Gmgcs1OhjiaSLsQyNCjmexmKFOFo8KMWJ00MnMwxnc/92FWeAbwPMbf1kzdyjU2Ex000yZOoU7+NsVVTIbjYAsRHRNCK9lSV1KIS+FcnfqILdp0IJyeDaYRfazjQfZTZIYAXQSRDnAdo6wiynm+C3+gFFW6hizDJ4D5sIi9H1KgNfAi2U44X+MDn5HZCDs/wOJcXJwMfziStcf5RTfwBUlSoI4xVsmageHIiVirNAtwLFh8jqcfUmIrxEgak7Q7pyn70NldEVC85MtMqGV8jA++JNHgoGFPkW8cQ7OXIU/+z40JcUjfPKCEOX5dQqoKgof5SPUqTPPPGXKVCgyQ4YP8xEOcYhneGbtJ4mqQn4rLgybYHqQVKG0UByqgdoCajOocfEHO1Ngj4G3yird86Rf9/sBb70GT34G2rvEGqEocOkMnHoV3joOW3fA3sOw5yD86RrbnEEFdgRgZwAyNlwzYerdsN/IOKL6Lts0u4jRRZ0sExy/+aG6Boe3wpP74YE+SEVlW6dhw8uX4NI45DeoVHmOxKMF26F8Fb3uEaYdFZ0InViU0YkRxiFMiX3o/Bof5wwj/Bee9XtEOtSZ4zK/zza+TIgmioyS5zpVO4pV383PdF3lVBauFIVbGIqIbz/TJSTYmpIygugR8QbXLoNTBBwpG7Jz8lIbDUmIeORhGB1dUIM9XOrYzBCgH40EWcIcYZ5PMMXjfJYCeZ7mZ3iFl/gj/oAr3EWI9jrwgSTBQnBrVHzZrkoRkzo2pu9R8/wq5ZVX0CliNJMkQRQFqQbOAXNcwKHBJG9QZpLGLT67ZlroYyuP81G66eFt3qKFFm5wg4yfJqD4Hdam6qOASQsJ2klhYjPju0WXw1BEDW4LQG9QyHBSh6AqaRG2Bx1BeLMAc9bSNL/Qg1xTZPV2T2KrosmWi1PmJiKhBkWVUHzq7Tl+i7mbf1tLsyz4W1ugf4tkBgYD0kvcsiAzK35C25EolXtCCRj2lhLZSi5JT+eIleBztHORMoPUqXONeb6DS5kSJ6lxDYs5FH9xlCTFLDOSIlEDxVTQXWPd9plb8W4RYIA4ETppwsKhRoMaJmPLfM6wpNxZvvK7YHlo1H3115L7Gnfo8R6jjSRd6AQpMUOWEZYWoUE0wtj+dRJmOxF2oJPAxcRkigrXQM1hu6B5DRRHuucpnstetvAERzGxqFIngEGEIC4e7TTRSTNRQpTvVKD4HhXHHQzC3iBM2vDaBue5irtyOxQLkyrVxQJLBQWTBoq/wwVik7Cw/GX/yuef6/9bSCa5yetum0KEcxlQVcLpKp07c/RtE47c3Q+7j4pLYvA8ZFcWs9816BpsaZV+CokIZEswnYP1djmvNfziN8QKsXDcDRQUeugBoEiRGjUsxBv9GI8RIUJMVQjjL2hWurYMRZKEFh6gAVkHreaiqAa2mgQt5WfutYKaBrdXOqhaF2A1K8qm5h1uHIFaFXt8BHfLDlGE5zJw5Rzk52UL6voV8WKtZcJWgBYNPh6Vi8wFrjbghQpcqK+SL7p5sCjzJv83nRxjghMEiOEqzlL8AcjXW1rgY3vh00cgbECpLquqAz1+3pgOJwbELrERVIdlF8nKo3hNGMRJsIvt/F2u8gd+8k2QIFU8TE4xiIJCiAABPzkrQBPb+TJxdtDCAapkmCLBLDpBL0vCuErcZ4o5U07LiCbq8Oe64cUfQ/EYxB8TDzCOkGBrRghxfVBUYpA5pW8LXBkQ8cu2waVIhRM45AjzIPuw+STH2EaaV3gJE5Pd7KFGjcMcwcVlgPX4btaHDxwJVtEADwuTMnmfAtQWjQ8L7Q29Nao5PTz2089++mkigQkMUOBZzlJklCxXsani3CLNp0gRJUqSFK200UIL+znAFrZyguOMcsMPol/yDG+ljSNsI0eFt7h2Gwn2kEz7qgNZW659wxXVd86EK1W4XhUCnL+HrMlVoehyeM7tbZAVQyqe1YgkQrh1qe536ywnwp5fpL93N+zbI/m0jgN7dkvLzaFhfxu+sAkkGKAuQrCGgjahEEfDxiODyTg1MlQpcpwqV3EoYDGLxSwuNXTfS95CK+XpMnM/mEMtKgRHQ7i4GybB7xZ6aWUvffTSShCDeYoMMsk4szedG64rhBeE8M7PyYBkmeLtWw+S9NDPh9nCMQzCTHOJUU6SZYQGDZ8ER/CwCNJJgodI8WFC9OBhUeYyBq9T5nVQS2iKheJZKJ5CnDg9tLGDHvKUKVBGQcHGYZp52kizlS6aGCSzWkbne4AtBqQ1EakeCsOhkNgYZm0YMDfv+rRxFkmwioqGhrXCzL8QYbaW3cvCIkjwprizRdRKciDxWel0AAAgAElEQVROlWhcFGDbgkQTtHWDWYfsjLRODYaFFL/b6EjBo3tgdzfEQ9CRhlcuwPEr6yfBy2E7d0+AF2Bh0UsfbbRRoUKePHVqzDJHnjye4vqzlH94t8gGZRfmbFGEA4ocMzY0AkJ+9W2gtgMWaO1g7PXTInSwBri3Hnb3F0H/qI4N485Mif/8R9+XgUdV/Si0eTmWIR2FWEjmv0pDmh3RbcDuILToQoi3GmIdydj3XRF2MLnBC3TyMFt4ChWDnDoopFb37UeqAm1J2NEB/a0wOg/TecmRS0Tg2HZRq65Myv0bgV3yhSeQ/nYhQrSR5hDS0UAyKCwc8lR5jnfoIE0diyA6IQI4JGjnMTSCJNlCnC5MSlSYxvUKjFUhFYDuCDRcyFlyziZ0+EgLnLwKpW+DW4LwPqECdkH8wdVzYN642cZeKMCuHXDhksz3HiYWo1iMsoM2+kmylSQ6Omc5Q4ECWbKMM0YXXcyQ+e8keC3oGHh4WDSoU1k18mzVXt9AgQr9dHKMfexhC00kmCbHaS4xziWqzKFhEwQSiGW0BIR9T94Iw5Qpk2GaZlrooZdTvEmRIlluvri30c7j7GOUWa4xeVsbRtODjAmnS6IIbwnLbd0VAvxqDk4VIXe/rnk15Mc3rbaVpkoRku2TQzUgGcHL1Lf5rDRg6OwQFVhTxRa2pQ927lgKVh+4xqZtdKgoBFEJoaGh8DYFhqmSwWSUKhVW7mCkohInQQ+9hMZCXPnWZVRTJVKJkCO37jbJ7wVSxPgpDnGUnfTRioHBJHNYOLzGhZvOK9dd6ttuBKA0L5FG6xWLNAy28AhH+UV28lN4eExyjlZ2coXnmGaEOnUUNHTSJPkQMQ4Q5yBhtvshhk1ohKi5I6hGHUWTBi2GotJkJvxOZA4RgkQIEvS3+stUSRGjmxaaSSwGwr9XMJDEBkOBJ6LQqUthf5MG7TocCUHRgb8swJi1wVikFbDQzW01z+/CY2rUCLC6qtagQZQoBoZfM77ySbDQx8DzAAWqJciMgRFcqpeLJd8bEry9E379M5CMCvdoScDA5JIo927BxeVN3iRFmjRp8uRp0MDF5RxnOcc5im4Nx99SDgCeIuqa4yEnTs6BM1XYF4aUJt8c83BKSdC2Q+AgoIPXAK0bjH1IA5oKKN9837p+VCChyPXijlyjMXAed64N5/UfwSc+D+Mjq+7a9DbBzg5R+8fm4cSIIjaIoCL5gfr/z959B9mVpudh/52bO0c00MhhIibPcHZns5ZmWpFcUtRS5Fosy6JtSS6Fsv+xrbJsF10uhyqXLJXlkixTpESJFlkUl8u4y13ukrs7OQ9mkGMDjc755nSO//gOBhiEGcQZLK0HdaqB27cbN53zPd/7Pu/zYFeBHx/ge7UPSRYRNMLP+PsqZh2Jfissbrm0wJYkF0+aVif4651bDkR/1zj7tgRGv2ng5knwJbjAHdrK1h3WtKJuXmRDomnZhlecNKBHTVNO1oAeDWw4adRDEomSUaXUL3+9u+pb83xiLFR+G90wb5TLhKM3x0iBk39CfY7ex0NtrLtO7W2ap9/rmBrHvPYan/ssp85cWfTaraZk0LIlscSaNccd09a2ZtUmm/SkZge3C3/uSHCUemTeKsrqXnLIcefsMOEBu/0Tv+i/9I8dtmIi4sGI/Rm2RfxRl0ZctWbVYYeCQb3IoCHnTacWWO8tsUUi44beNdseUNKroHpZhXmpHSzRvr7M4/1sLgat8NlGOO4oku5lVeALC26aBpe0aC3TnA4xMp2yq6mPH7gvkN16PRDidieQ474ZZmaDBdftnNvoSDTESrIWtUxdZ3UkL2/cJpttCarL1Z53k646OpYukxXcLcjL+hmf8mWfF4nEYhtqyup225wOgl58XzKZ4O25sRGuyQOD4fbrrQIP2mqvz9jiIWSsOqWjYbdPyuvV8C+d8QIyiraK5MSaqo5pW5VR1DSvo6KYGZQrZYPmtUO723XCtN/3nKa2H/CgR93jXtv16fGWE9ZUnDOvKzaoz+pHuDnZmueZnkB4n+rh7QaHm6GA10x4uof/fDR877+e41T7sitUdMn88wddui6JmR40gEhH5wMdBz5oILOjY0C/rIzqNYYNO20q66wthrbm6gLnTzE4Fh5Ws35x4OXDRqfL/BovH6fWZKPGH77KiRtI670tj0PH3/G3/VW/YIcdysrWrCoq+WN/7E99W5zECgKZyETha18UKmzxX+hnrRuE4LOdMBy33uWNAeoTFHaRnQxDcdkOUSnIIZILpO/D8xp/L95/gj+DPoxEgQiPnDioeuKgjb0PWPnb/yBogl9/Xr4ThDuXU+GhXvZvY6w/HC/N0P14b3gB12LqrXCy7SrwyR6+W/1QnCMqZpzxTQ0r1jonrhx0OzjNyyfZvSmUsvO58GHtTX34urfvQXY1NS1a0/GO/03drLKTstpiBRcCw2asSCT6lJTk5a161T+w05c9ZlBkp4pZa05Y60z756fCZ3P/IKUs48VAhk9WeH6JE5VQIXYgVH4/CDOzfPvPrt71/R2/7TGP66QyrwPecspJj3vCksV3kylvJ/7ckeDmdaR4XQ/mLatpmLFkypzT5jxol/XotAd1fCHLj2dDNsP5hC0R/0f7VfNJJLbHkCGDhvTq9ZxnnTetfhkRe9hO/8BfMaLfN7zhZcdSz89rTyK9WXE7AsOuH/GljznCp9OvB4L2rNu4eAFuX7t/uLbON77F2CjbtrJzRyDFL73Miy/z6utM38ZgmLxIXsaSlsFU+/RB/GLIsHvc41GPqaqaMaNsQ1tbJDJsxITN70pa7iaz/7yc/9iPeMaDTptzxDnz1lIrnLpPeNArjmmkZCiKgh8wnDsbnCG6N3BtySnqaqlZFutYdsq6Gds96RE/raBX0YCjviWjqG0p/bogoySS07ai5qSf/6HX7N/R9cIxnj/KYjrHdtqM/9tXveKwT3jYE+4zbtjLDnnOAa87qnybzvdbQS5id4H/aYJfWwvdm235EG6x0AkVvp5MWKO/NMQflnnnklN8Yhel/jBBXV6hca3ze2iEye0cCVZ9azdrVXIVbNiwxRYlPWkI8pWkenmOjdVQ/e1c8u1cPlSCo0zqGHFnHY2uQH+J0/P83X/O8l3SqPl1/+Z9v99FJgkOPhdmNwZzVP7WuE5fRu5fLBv8zXUrByeEKu8azoSfTOJg//fFt/iGIGSOV2g+m7pFfMjoHydfCnFz5WsXCTLYmeGLeY53eTtm6tQRmf/ub1r6qV8wKHRJrkYLd2/iSx9j5xjvTFPP8av9mSC8h3qcltYjfmyAf7YaNhN3mAif8x0tFWXTaq4iil8q85WXQ6X3r32Oh3cgCbf/wet8+yBvn7stjyXWVjNr2etKJjQskCYZRCjKW1VR11JWF0vk0xSFupYV/1RH3aSPOe1rzvgmCS8uh+Oe/iBVzwgvdTsJfsE3g/n3mR94y5ve8qaddvmkT/m8H1RU8imf9tt+y3HHr/3DN4E/dyT4dqKhpa6hqaVfrzUVg9iXCaQ3J9jRfq8b0hvvyTDfrVm2bN26pqaXvQRXXVQa2t42ZcyAKQuWbNi4jsS6Dx9b8TE8QzRJ8ntIJRLXmc5x9tzFYaxMJhiq/9yXOHaCN98K8eq3E22JdrpjvN7i1KBB+z3sx33RUYdVVbTSDUlHR1nZosVrDlTeLEYGgjF/+xY6eLHYQVNmrVhRtmhdVUNWRq+i3bZ408n3xnFEjI6FDl4i+DheL7paqpZU0tejbl2sY8OsrpautmE7jNph2Sl1Uyb9vKxxiVjbokZ0XN/oC/p7u/7ik9TbvH02rA+X4oATzlnwba/qik1bTEeN7o4ghnqa6HakFdbgngwbMdtTyeKhJs/V+CcrQcbUTAliNsfYdv7CfxSI8PoCM8c48xYnX09/+S/8DX7kiyFUoF5l5hwz08FeanGer/wbjl0r5fHGsG5dUVGPnmtWlttNpo5defuFCnCSNohuBj/v75ly1DteUn6fcI/LUW2ErvL3E7pJkM8M5hgvhM9NNuLILy/prcW2vVVVKyaa9XOq6RQ9eGKQv5Hh8Hlqef7eObbWmOgj+wAHivzqixyeC3rTO4n+cXY9xb2fZnwP7QZH/5QXf/2Ku16YU+6P+Mt5Xo6od1iOiVtNmd/7dUudzlWvrPdPsn0kqAyyGUb7eXRT4r/6k1n/6Ok9WvsK4SI/lGqQKvH1X/RvAxa99f7Vyfl1vvk2J+d5ZAei8P6dW2b19q33bRu6KopyGhZd+MxkZWRkUluAruq7rlgXUxt7FNS11Hp/w1TjrJX4vRWpR8bD9XmlTaVN407MH12GirLzpm2z3YQJhx32qMflFRy6ijvXzeLfk+BroCO0rJLUhTMjUlbVK1R6ppPQAmgmnEnYHrGSsK6mblZNzZo1cTq4crU0sJnckn/Y+aoxA1ZUzFq9i2qLF7ATezBB9CQexStySnKyEjSvoz1xwQv4QrWx2w0TogfeCS352+oVfBmqutf1uubljRrzpKdkZR13zLx5GzasWbVm9bYTYIJV3EgudMbiJHTLMmnXu1q/vo5ZR9cfeFFRwZA+pVSO002t977tDTVNpVKQoxRLISK50QiT/tXKjVmhbZhzxou6OkbtFuuoWDDjgJpla6bVrYtkjNttyUnLvqlgQs6wREs1OSRutn3vUGhfn5hjaePKinRH14p1ZVVxOkZxtyBTYL3Ia1l+dyPMMpUi5mOWumRbzHX4nY0g9bz0c5grsGM/2x8ImuwoYvMeetLguNNvCvm1u/YxMMTM2fALSqUQ6bdjdwgb+Obv891b8O9LccElIhLZcO1daXybupEFJaMmzDnrcZ/W1rRmSe0GW13XJSO5C1DKhKObmtf0ZUMa6P394e+lLPtPV0WdRJxPTBWZacYpCU7Rl2FvP60K1XzYGE3XyI+xa4zJoYvJKncKmWwgwPd9jsGJ0MLYWGBgnH2f4tRLLJx06ZuSCON6p7r8SovFmJn44j2iRuOab+H0CudX+ZN32D4aBh8f28HWjVj2V1f5iUHuK9IbhZPuO9WwSH9In4n4gzbjcRJkEsdmQ5srTtiohyi12yiHKMgqyouEmZi6VrpGJ5qpR0kYxrz4wnTTce8L6Ck1NFrr9gw2PTPCSJHBIgN5ml1mqpxeD8fyHZZibthwwAFnnVVQUFERi68IsrpV/HsSfA1U1fXr0aeoX4+sjGe9oKtrXagAV5KQn7CWMJNwPKFqRUtGM9WRvgeXyGmjPM1Cy6v5o3qSom6cqHabt2Dme6dQFEYZqjiAGubdq0/RmGV1525Cj9nthirw2tqdd+7pXOfVsK7uvGkveM6UM2adt2zRsiUb1jXuUKxxFIWkqmwm9entUCrQaIXjeq6TXbHXHJeRca9tdprQp2Q9qjjVM2UlWTZQStvYEb19Icv98MHwXjSbN7YR6WhYcFjdqj5jMvKayqqW1K1ppCSqqF82HcpqmtWxIatPcHBZ12yHAsnCRqiGb9RpX+Uc6KbGhx82sqWQ3nz53ieT2ptm8rRzLEVBBzzfCXdd7rIlFzqy8x2mLuPtUSZIIDbvYWCU+VNBBpEvMbSZfU+lJLhaobwe3qSNtUCKOx3WVhgZC0R48+Rte76hAnzrJ2SPPm0tnWtsWHr022y7ez1q1Gb3e0LVhqqNK8I7Ng+FKmClwfpHr365aVwgv6VsaCuP5tlWYkdPIMEjeQpxVxtL6SR+KXOZuqTZCWXvj+8JVcSTS+G2bsxyhY0GEwNk7mAlOFtg017u/xyVJZbP0k4F4RP72PcJFk+HWZJL0MHZhN9PNfH1JBDjThKWvfc82lwfpU0ksWq3Zm5jxcHp2HqNfZuDw9h6jckXK86N5rRXumF9Pd7im5VreM99VBggGQil1OZyeF/uwKIXp37hORn9aUpkRpSehWHk9XJcToqXGpRyM/aO1TyznS2prXEpSzHHmXVeK6ZV/DtMgjs61q1Zv4Gu0M3g+5IEF/LhnL8RDeONYkPVoD4FOQ1tZy35Uy8ZQk9CLxpRIMKLSdAFzyJ+H51eJhuMFpIk2A3l+mlkamrtWkgfrnMnJI6ZYeIN76uPikhzp4glcjI6YhlVWUty6vLJjIIhWyz4i7ao6/WC2ZsiwUnC7Ic8tPJB2LDhLW8oK6urO+esNaupLOL2ELBsKgeJXLSGHB1k66YwM9HuhNemvzcY9FfrIbL1g1LbEsylVmFFeQPpxm0tKjvVe0auycBACMDodEI1L5ulfAsayopFlQ8YFKxdlozVVdW9RPLT7rBeTclv57YWRq6K/GhqeBKlScw1uu/zGmR7wv0uH1rPlgKRjdJzupvhbBRkD3HK+6qFQHwWrlIoymQp9NA/xtBE0NW2GuF96R9l632BELfnZjjyDqPjVDYCIa7XAhku9oTbNm6PNjgWq6m9r53a+yPSq09eUTFdhOuqV5U2DBpxn8d82o+bdlJBSdWGnLySXh1tHW19RfZM0FMIet/zK9RaYQ7q+w3t5KJ0tTeiJxsqbP1ZBnI82B/839c6RHWWC+Hf78F8mZem+Du7GCyFvnSjTbnJwdlAircMMdQTQhi6VyFbg8UQ55vLBEK23ggE7XqRzTEwwbZHOP92qPpW6wxsojTIzid56d9edS+1lnCwG0wdLpCPOH1tZEvkB8LiWJqgbxvtMu2y6Uosm9kQJx3ZDH1Fjs0xvNgy++2K9uuNoDU61+Zs+yqs+vpRkNWvaFCPopyqplV1da2rEskPRDRAtE0w0G256djRD8CFCLCSvGF9MjJpBfj6idJ8jU09s/pKbOtna39Yj7b305cPx2qTE2tcZnT1fYvvKxLck1ZfJsZDHvXqHWyjryqnFcRIWduMpq6sxaRrs0BiCglrOHGd50WUDYtqtofiCP27gwVva5XGQjg6t4sEZ4hCpqrSk9RfJHmf350TIoWDvKFjQEFZS9GifmuGFG3Sa7Ne/6EHfdyk75r2hoUPew7mA5FNyfz1iSAuoqriuGOOu4ro8Tahp0hvSsIWVwPx/cQj7NkaSGm7Q6kYbCSPnQsXoCNTLN/AdfO0OVkZk2rWbEgiytVAvLI5opjV1eDXiA99kOlSXK3qe3OIgsbjffy5ohyjn6FvX/h7e43qMdZeCWngScjRec+vFKXxn5f9Vxc0sLle8oNhSP+dZqjwNdIk2zhhPebA1WQmSSDXjTLbHmApHTZrpudovsjIFhZff0EyuZ2HHgtMeXY67KJyOQ69xenjHH77Vl64d/FBDhMfhPCZ223cFvOmbbVbU8PbqWwmEac+7gwbd6/H/KCf8abnHPaqopJNtkkk1i1bzyzYO8HkMAM9wVXq3kmOnA+Syjsteb0dyMnJyr7rv9yKO1px8H1PMJxnoxiqwB8bDrcdrzLfDJrhK9w2Tizyz77HnjG2DrFQptri1BIvneHlKb78A+zfEkjxWv3iC5XPhkm8J7ezc5ThlES/cIZjC6HffT3odkIFOFcIWuC5o4Hc9Y3SM0ih931tQqoC6c25eOmJoXcr4z/AyMMUh2musH6cngmHylkc1eismt5IfO90uinKkpxryr7ZEK/HlxefbwoTBjxuh6ftMmHAEXNecNpxC8oaujdKhZNOeD2iHWSGiF8Qht9v/wc4kWhoB7mNopbODQ9wL9Y5vhqIb6XNrgG2DVBt00n5Vk+aWnsp/Qp+5RlEt3wt+TDxfUOCC3l+8WcZGmBxhZNnOX6Gc3eomnjOgqxYxpCMMUXDOua0HDEvUU8/Vzcyz5XJh41ucZzh/dz3Nxm6n+k/YOp3qC+ENut1zpq9L3Lb6fuxILuIa0SvXvuU65XTkWjq6pM3qFcsMaKoX8GQolElm/Wa1C+W+EOn/JlzTls3qmT5DkkFbgYPGdYWO3yHdty3gigTjgwmx/nko/zkZxkeCBWiTBSI8v69vHYkVG0X126MBMMJM06YCf/IRIwm1lcDAU+SUEx8FyOC0fVVrls5uXdTyC5vU99V6O3nC/8pX/nH1/QaHXycrT/P2GcpjNNepTbF/O+y8hzld9JU8BS5XlorKcnNpp2aiMJQOJejHMUx+veEolV9PiQ0R1E41waywcP/auh2WFvg9a+z53G23R+sttfmqaxw8lC4DwLZzWbZey+79zE8ytwMX/sdjh8O1eC7AF1dJ73jpHeM2+q8UzbZ5sd82ZSjls0ZM6lHn0m79Or3jpdIiw1DxrS1ZGQUMll9Iwt6ixTz3DcZKsK9BY7P8X/9ccgeuEtC0K6Jhzzifg8447RE4jWviMWaMXPNUKjNCqfoVMpXp+rMNEIY0lUv2osVfvEa7hPZDLPr7B5jrI8DM4EgF3N8eg+f2sO9mxjuCZXgRpsHJ3j2NL9/kNZ1sMh2ndMvM/UaD/0I1WXyPWzdH6rBr33lA9+YVnq8B5kCmz7Ozp8MJHj5jXAuN5YoVRxaq5svZWzbs2RgC0mZLU12lLqqSyyfZOHIBz/8D8JuYz5mt0dsc8KCXcbcb4vXnfW6s45bVL6R9S4qEW0l87Q07or4eXfK5imRWFFWlL/ppNKFGoeWg+xhtUFPjkKW6TKLtZBCu7mP2Uvm+rbabK9depT8sT+7PU/mQ8BdT4K3bOJjj/JzP86XvsDpac5M8+rbQUdZKgYyfLuRMSzSJ2+3Hp/W7wvW/ZrYuo4FGzdICC5UgDPF0PXJ9VEaCwtqlE83itlAkG4YOfq/GDacxYcoPkXh3nDuxZWwWGfHqXyF9skrf7x2yXOpaCvIWlY3ppS6LgeCvKohI/LvHHPGullVaxqqHyE52qLH08b1yfmsLR407LvmHLVuq17fukYoxoeNwsOIqc2GIahslk3DgQg3WmERHOwLleFM6rc+MhA2fwO94XsbNzNIHGMhYTLi45FaMaKWsJ4EsVeMRuJdf6Jq2t5AQUFBUa9+BYW0ytDQVFdVuass4nS7rMzx6Z+htsGpt0Lc7yXID9NZo3wonItJHIju5M8GUtuafy8JvlAJfo/jQUJrLcgVIVtk86e4/28Fs/jvfDmQ5dYqBxq8X4222+b8UX7zl9i0Kx2EXAtEeH0h7XIlQrV36mQgv/vuD0S4VuXoQWofpl/i9WPJjGWRc0543XfTz0rivDP2etCjPuEhT2uoOe+UjIy8gqIeBUXZuM/Ayo+IRr5hsDcQ4Kf3hWS4zcPBdWp65erd/rsFv+g/8/N+wT73eNmLOjpe9bJ166acsRavKjWK2s2Sd6Jv+1fTwS2i3mW2yel66PDfELox3zrKTz3K/ZvDFFlvntPL7BvnL+5n53CQTyxWAuvev4WVOqeWObpA7TqqeN02v/Ff8HP/kMe+yPAk63M896/42v8a2hw3ivWjbByndv7iQpjrp3lcGGSYVNpcN7xzSaGXwW2hY1IcDOS3epss3Mf0G1JS1XTKkoa2UX0ettWYPgNKvnNDNl2jRDuJRjFMZj1EXMevkUzfngd9GaqaV+QN3AjKrTAEl80EwrvWZL3JkRWmK+Hvs5etR6OG7bFDj5Iv+LxmuqFdTZ2yumKHL3vdNsvpl3XyFh7rreKuJsG5h+gdY2SInVsvhi3EMb09jI+wefzOkOBopEylSDsja1TBffL2iJTcrP9K0g1t1249SB/OfjUQ4pUDgRxlbpYEJ3RX6fkMhfvI9NBdDMFtjddCnGHl39G5Dh/eWGJVmNRti5W1tcTqOspyajrWNa1pWtd8D4H+KFCQsVmPSb2KsvYbNqtmQ1tOxjM2efEjCLjIDIVE09wWCvdQeormURqvkBwJ79fyepD0nF8I1a5CPmzqCjlmFnnrOOfmabbDZ/+mcWEKpRqxM2JzJsw6ZoWS9HTCuSSQ5URgY+sUFI3ZZIc9Ro2DZQtWLFuxaMXy3RMj3arzytfYfh8jm4PuI0Um4smdvP0ypR2hupvtI5ML58rgoyHjJb5s7e/UAknOFEIyeH4onL9xO5U2FQNBrs+HolV9Lqz9ud6L90u6vF/RKIlZPHeRr8fdwC/e48CQJIHkr67w9uuB/MZxcAa4i5Gkfy6/NRZraVq3Yt45M6bEumrKVi1at6KtbTiZkJz9KRNzf8ti7n/2v7df8vxQr8bWgpnPt3U/jokcR5u8WQ8+dXcJPuUzPu+H7LVPUdEmEw5620Me8bgnPO9Zv+d3vOwFvVFktBa0wWMFKh3ONTjfCH+/34/qt0lHS1tdItbVdtQ3rv6fx0kgwsvVIJc4sxzYDIz1MtIbNMDVVtAYRxFTK5xcDvKI60W3zQv/mvnjlAZYnuLwn9wcAQYJ88+Fk2bovrBTvbAgJjFJLN8T65+gb5yxfeG/WjkVvl0aYmAL5bn01/UVw8Wzc2M7iZaOmrZ+HbFERqQgq6ZlSdXqdQ3uDBONk8ykz6GIfqJNZO5JdQQncWdI8K2i1mGuGsjwuTLFbCDCMxXWR4h3Rbzx3nP7mFNycv6an/Vlf8k2Wxx23B/6lu960Slnr/h/ijK2K5iU9+yHGoBwEXc3Cb6XqI9mShYOHef4FKvrQRMcx6FdfLsRDRANdKm3ddvLGl4VrKhPCMzhxklwEocTNm4GrX/tPPPp4thYSIdGb/a5xLQOBwIc7Q8ELCqGYbh4nc40naX3xhe+Hy5oaROJXjkFGQ0dVW1NHWUtdV3NG1bd3n4EPVkiK7Ki6bA1DV2blQzKK3/I2qTMENlNgfxmt4SvfT9E8eGQO9I+SaaPeDUMu00vMjbMtokwDDc6GAbhjkzx7Vd46xjzK9RuRW1SFD62WQxH3JcJZHgsndB5scu3umHCs5HQCDKIoh73eMAP+JRtdmppOumos04bNiLrlBWLd8w144aQJFTWgk6x02FiZ7BdaLdoVeVz0zoDe7XWZ+SXGrK10DnJDdFaCqGHV8iQ4pTMdtIuTZQGKKbnsmaoCq+8GQhzpxLO7QsEOG5dX7u+2w7HByLuBh1L/Q5Mz35I6DOoo+2I1y2a0VDV1BDrWjB9CXHO2+Ihu1sfl2/t87u9cEMAACAASURBVOZb93ll86yDn2yx0iXTZSLDJ/t4oBjihn/zzk6R3wh69IhE6mpaWtpaFiwYMZJWx1bMmVVR1UhCzsTpLBudoBc+32CpmbUpftJ9fvhd15VYR1G/Idts8ZAX/bLm1QaTNxpBE9xITV1LOc6vMbUadoVnVkLld2qVhQrPnabSvHGh9exhykuhJNuqhWrwraByGgnVc0FrlO8PJ2YSEzdlM219Y+x4KlSCuy02ZlOnllw43kUkyEDySWgZtK5vgZ2y4oQFPfImDYqxSb85G85YdvayYd+ro0GyIrTX+ogm0mOSZDkQYZ8lHiM5S3L6Bl+oO4t6J0gispkgI8/89YzWELWziU5diP17IqIf/zymETqHfXoUFOyxQyJxzElHnDBjXvMq1d5ROY/pNSlvVM4hdWVd67qubZp3e3FXk+DsVhp9zG5wYopKlW8fYSChXmZlnUaTYoHmrRak0kGyqBRITNRD0m6Kq+c1W1XtximhilFxUzE0cVh0u+nnIGmzc3bSQFyy0KxYaJc1uo0rqlFXQ98wpb50yCkK2sHyMu3jtHYEApzbFkhY8YlUl5+9cRl+Vsa4kqzIWeW0KtxV09ERu7q1+YeLqrbTyjbrsaHtLSuKsjbrUdUxf51xybcDmSFyOyjsIztGZoDsBPl7g0Y7OxJui8LgvCTh9Pkgi2i1gwQijjk5zbNv8twBTs/ehs92JLjxD0Uhu3RAkEfsyoQc06k43JYRrtlNsnLy8rbb7XFP2+0eFRuStJLXp181Tc5rad2Co8BtRiUlQpt3UyjSqEnqG+YbBSOFvPFKZHAhVHGbVcpZKiWqJwKJvRzXOh+7F8ISu2ycoDpN0uDRtV3qnbaFRtVKN7w6H4icQEyy0cU4JlLvqCRMEX3Uu83bhEikYsNxB5zwtoyMXKpdXDanqKTXkCE7TLjXiB1WTDk5W7TQGWXzEseaLHYYzgabgad6w2v0J+XgTXcXoKrqnLOGDCnpsWBBU0NVxVlnHXXE+bQK2Ekod4JGuJ4OzS00aXRztnnGkK3K5nS1ZOWVDNtsvwd9wRt+4+okmFAJvoBOzLHFMAQ3u8H0WiDC59YCGT55k6P+jXI4MrmbbGNehnaF8mkay4EAX3CLSGL53JooLou79G0Ka1+rQn0lyJLrq7Qv3x8WLiySqbboQqfrfarD01Yd12eHUQ+aNKikreuoeTPWrF3XmtJwsQVUIhoj2k60meg8esh8DAPpbvkaJDiifyh8rW18gEd3bxTOiVJENWahe9PXjXZMux/7Igr4ciZ8PZAEn7tIWEP68Uc4S6YV7NjOm3XAYW855Bu+4x1HrppuOSBjp4L9euxUkBEpyVjSdlbLrLbqh7Cu3NUkOBqmspkTS7x2mm1lfuMdnh4iKgerzGYraIMXr2dzdi1kiHrJDpMZDdU7MfFAVVyuipdXdec3JJ1Y92rRiNeBYpJT7OTkkoxMTLaW8YWNpz1oq1ed9p3MYW9mzl6MgL8GcgV2P8LWewIRbjfDyXHsldBSrf9ZiJUvPkXPx+j7UZJmIMaXPWV5kZxILHjpXj5H2itnXElLrKajoq0j1vhIzIwjGSWhPh0eLaxoedmSPQYsa6poe8SIQXlLGp638GE9PLmt5HcHInzBmSMqCOnSK4H8ZnqCRvsCzsyyZ1uQRkzPMzXL157nu29wdOoW3E9yuaChSOJQDcpjNArV4LIgfehLgnnn4oXpcdLh/Xft8goKevUbNCQS6TNgwKCOjj4DevSqqWpdkkL0keLMO+x9lMExxreBJMo4NbPDQyd+ywOrTVs7oVPaaPP2ec51aB3IyJYjkUT7Oi68nZRfJN2wsc12M0Yq/f4Tn1XWcMB5b5p23IKN96uUR+jNBqPYngy9aaJCIuQur3bCcVf5nt48Ktbl0s9YnFz8fGei9N8SeUMG7DBo0pSXVSypWw9JYOfbTKUJJGvd8Pd9Re4vsbfA8oe36X0/LFrwlje0NI0Zt2ZVXkFJj2OOOOWk9UuIQTuh2g17nmqXajejV7/N9msqa6qkJLggJy+naMw+eVfJqc6WyOYDI7xgl9CJOb7E148ESUSlFUjyYpWZ2zBAfNNtzKugUw3HhbeyZ5KIntEVSbVp+RQLR2lusHic6ddZPs7aNLVLeUA2E0jwhQ/XBUu4TujyXosIb2iYsuKsFT/oPo/a7lVTpq1avsFE17y8WKQrE+QResKQXLIQFuVoPdym5FLdVKkvOCC2m2zZlTa06u8zt9gTsTsfuiIDmWATt1S7tdyBSfxsWjx5IuJ0OsWZE4olp1KLjycj1hNrixtOOG3EkDcc9DXfft/iyC5FD+ixQ0FWpFfkcb2WdQzJyas7qal1h9eVu5sEl8juotzmK2/QPRAqqM+tU1ygtJxGKd6KXlLawh4lMxiO/K5we1yju0w339LNzepO3fz/8Uhnpwc6k8YNyMooyvthD3naXg/Zph63vBlfqZm5HDsf5JN/iU/8dJgmP/gsc6eorgfP185y0J22DlP9XUrP0JkJRPgCshiQda8eOxVt6JrWNK2lfEnU8ObUJWJZw3pa0bqtBPgGrLmyBgx4Al0N01pmxWl7parjVy4R3P+MXWo6vu46RNC3C0kYQkyqQYaSGQzXuKRG6xCd2bA5ia/ijFOu8icv8Z3XWK/w9kmWbrWzu3ULmyeo1Tl8JHh3XSDAUzGrEe+k8aLTqR648d7H1tRwwGuycva4V1HJGScsmrNsUV1NTk6P3jSdrnt3aIRzBRrVsJI8+HH2PMqv/Q8Ojn7Go/3P++S+Fc/sSYz3c3iWX3mW17uDMkpWNBy3dt2X3W49HGP6/be+4GN2u9eEFVUvO+Or3vKrXrj6D0cC8Z3Is7PEpjyb84zng0HsbJPvblDp/rkhwYRh52yWjXKQuUF/H9Uag/FWOzxpn0/rN57WPStWTMktHud4Mx3mjAOpOdPiaCNIJDbukm4ETjiuoWnWrL322myLRYu2mPRNX3fWlYtJ7KK9bcmgXZ4xYgdYdkpOUVG/nB5NZfMO6jNmw5y22kXj6skfYHgPp79BdcF7Turn7q62+3WhHoabmznWz9N5lqkXAuFtlinPp/a7lyMbpXKIrDDR2g0V4UbqPddoX5NVTlnxW163oOyLHvWck553ysINeOJHInvtUktaZuI3iO6XaIgzD4Q7JLOhSpK5D83UMSJUWZ/6QZ74PC99nZUZpo9/QC7Cx3t4osRghhOti9nst4IaTmFzwnNJMHl+KQmesIkQlrA/4pMZ3uyySFPLGeccceIDf/39Sh5U0iPjoJoNsT4Zq9ihoEdGXuTAHe7m3tUkOE6LroUnyIzRPRWGvMT0H6Qv1dyVb2E+JLebwoPkJpANMojc1kCMtUMFrz1F8/Vbey5/0+d92n1mrfs9r+uKfdM7FmzYZ8JTdvuEez3/PlOnUcRDnw1reindzBdKoROVzdF4+UptYeWr6V/eLfZFJhX8qGFfMu5zhjTFft+KX7Pgeyom9NhnyH9guzctOZKGMNwODAwztil93FEYcp+bDt7/10LOiD4PGPEZkayqQ+rOiDXEWtpWtC8ZfsuJ5NyG1twNonMOEd21dJNfTLsKEdn6xUqwyzZt7U6QPjRbYThu/XbMB3TjwDS2TbJ3d4iEW32ZuMGKQCJawhWgIlzgKmllWLC7aqg75pAFcwYNKylppM4QFWVNjXRsMk7T6YNDc1v7o60KZzKhPTJ3KpwYzTqVdfY87N/WdirWn7Nl+U3tLttH+KWf4l+MrrnvxU+Ymy35Vw555QY7PkE61A++7ai2rpysB71PmlskmMHu7eGh3kB+txfYU2J7MUSGtRKW2sy20kSB72+MDAXtezYbinRDg2HYudNFxKqzutraGg75mi322+lpkYzsUiZE741keawnlE0zEa/WOdIIA3J3EUr2mpd32Pcspt7jX/LznvVda1e5pvankrXeZFxkUs2qc17zqJ/xoP5UF7yho6Fs3vf8n2a8raPBpkfY+vFQAX74rwUSfOIPOPCrTD/7IT/zO4PmhsBla8Glrf5By1IuG9wxJgcZ7w/a6MOzQcC/Uf/Agbmyhj/yjtOWbGhYv0Ey9oynPOMH7E/ut7mzSa1z0J961i8XPqcbjRK/SXwg1Q4PkvmUrbtfNjDSsv8ZRjfzxp/y1Of44S/xvT/kzFGqV3NEjJOwEazE5CKeTx/r3rzhbCy31rV0o/Ph5/DLaaHkEwk7hJ3akLCGDUb8cIY3E/ZGlBOV2ep1EeB70irw/UomFZzXkuhoS5TFhmSNysrdpAnBjeCuJsGNPyZeofApCk9SeCZoLNtvhuJIc5HRdZZukqNlNwftZn4XuZ2BZMaNIIsoPBy+ts+GdnbjFmd/VlQdNWfGqnV125X0KVpT85ZzvuuoV117l57Ns+1ePvWXQqFr+miwU+q0GN3Ca/PXsEdN182CCR1l/dq2KRiVd0zdsJxBWXmRRw3bbZuP2ex+wyb0qmh78za5K+zYy/4n2PdAKFpUy6EdOjLG8gKH3uD156/2FNo6NrTMK9mlaIecUR1rWhbSk+fiY1zSdI9Bf9luv+3MbXns14vO+VD1FQXCG+8OWtHMAJJQlY8vI7mHTgcSkCTBLg1BCFa5hTZlqcjYaKgI79rB4AA+z/ISJ1/j9PNhpx8JRKsq2KalmroLkbcdHU0NyxZlZCQSba10mCnYXl2Kj1wSMb6N0UnGJkP0WqEUBuQ+/uOcPeivNH/HQ62Tas0QmjW/EdbKR7bzrb2vybd3+dtLj/m6M37jOkNTPm2fv+vzHrPNQbNqWk5Z0q9oi0H/i5/29331yh9MhApvIw4+REkSplAGc4EEr3YYyQWJRDb6c0GCoygM7PdmGR4K9n/lGksroZjR7VI273jqM3rS97zoX+pq6ZxqMt0OxDfB4z38cTnoH++aSnlk0kM+4+8YNGnNtAVH7fCU1/y//sDvalyDTO3sCVrMmWTFbHddJDLnHee86iE/oWhAzbIpLznuWwYVbTVqafeTasNbg/ShuRGqIkuHw5HJ0j9J5e6wirwUvfIKstZuYLD23QHzy9QXRTsUTUrEyl4Npra5DCM9wRrmB+9n8yB//6uhspy5PnIVSxw1L5Fc9xh4RsZf8ClPelRW1jnTysq2mvQlP2Gu9RXf9ryyC4NzsXAhjs1Pf1ytcshLX182PM6mrdQrfOoLwQ1x254QGrk8x8oCSxfe1pcavNoIA6L3FC4+mKdK1rfnRJmI1S6/ss6ne8J9J3PhmjL9AVKWBK8mvIEHIu/u688kHOuGivCbCUvX9fKEH9W0pG1D106RzxhQ1XVCU0NiWFZV/KFYp93VJLg7HdodnRN0T9LzV4mXA6mIc9QHWMwQxcKu5XqRw8MkD4fNYLtONJcOM/Wm3tbZMFgW17xLXm4FyypWVNS1ZWUM6TWQEuET5p21rKUjEtllVEfXgrLCSFepP3WISVidC0lS9UpYMAZGwyzQ+2lH88YUjIu1JFpaEkva2umOqyTjgKqmkl9wv3E9xhSV5Dxpk2PWnFO5ZSnExCR772fnPSzNh4SsTIbJneFoNa9Ogrvq2hZTErxDv4cUbVF32rpXtS+b1n3LilPKH83gXte7Oqy4S+tkIMX5PeG2zizdy2TK7UuuQUkmx8BQWLxuNsptcgv77+cHnmDPrsA8ikVGhlleTr2Da5x9I1R/L/RhL0tMS9LtRVdHdMlCdWE47q5CJsvY1rAjbFRpt0O7pH8k/Ht1jk7HpkLNlr62gVJIq2t1ODDN8Xn2zex1z8Y+mw0ZU/KGRQ0dLbENLdVrOI2M6feAzcqajlvQlVhT16dgXJ+JtEJ8BRKBAM+3GM8FAtzfCqS32uV8i5lW2KR80Oegty94CL99iy2rO4xyJUg1B3q5dxc/8mnePMyfvshsuo9NxKG66UJjIt01di7ckL4WBxtBN313zMIhlXgblUjMekfFgoYNidjDvmjFGQuOvfv8LmAoFwp4SYZSNtaTjYNGWMtpz1lxxohdciIVJ2zR7yH3isXOL1YsrB6wUcyobH+Cxbfp1Mn30rs5LaG6NSK8PcuWXIhAPH57HHcGFAwo3hAJbjfSbmc3Z8TntK3IKOr3qH6Py8g74tWwsLe6wfO43kYUAkSGSjds7nQj60hW1oRxP+enbSg746xZVXlz5i152uM+50EHvaChfkWyWrd1WGWt36m3E6W+FYUiq0t85/cor/LMj7D7Pmam+M1/EtaYtSXid+UPMbWY/QW25vzSX296cU/J1zb6ONIMA9JdYSiomjB/nVruC8WZE4l3VYYX5HN5ITXsBpaEDt5Qs0leTuQBPXYpOq9tu3wYVdFR+RBO7ruaBMvuF280xQdOSsqprjUXZDSdY4FQtDrXb/2FMM34AJkfI/oEyZmQHJVEwQ80fy5U6uJ1ZMLmOrspEORbiTR+zjE1LaP6bDJgmxEEQrGo/K73YAYT+k1ZFUt0O8E+J45ZXwxWqFv2hp1wNhcqxMvng4D+SkRyBhVtkTMkY9GIrAcV7ZXTJ6sfGbFxfTYb84CRdDglKyfjQaMeN+5Fc87f4FDABRRKIQRi+1523cv4BAszwcmqUAzXpO17Aql//XlOHLr8N3R1rKs6psc9ej2gz36RvIZzanrfc+9lTcsfofn2u+iSVOima3h2NNUNX+2aXyiGWNxCMaSfddo3zYG1WxQKTG7mgXtDmS2XZd/uoLdYXmXXQ8FD9M33N32/utfrXYgoQ89A+NqshTZJvRJWzaXz4UPYbmq2YsVhxgfoyTOzxsEZxk7stWt+p62tEf3ycjI26bGuaendqvfV0dQ2Z8NZK05bkggx5F2JWGJcvx/ygG87euXv6WK5w1QzVGXKKfktRMy1OdnQW+hoF8JTuQLbdjI4wsAA9z1EX39Ik5udpnn7retyWcaHmUvNBIr5oLzJl9hxL3seZGkmVKvmpti4rEvX7oSK78gQw4N89ulg//f8694vaffqWLuL2G+KSNb9fkiso2JRQxmJSMa4fXZ40rP+6buJY5Eg1+/Jst5Jp/KTNH475fc1K2pWNFUMGlJQ95AHfNlPqmn49ewbpgvndQfG2fMj1FL7k4Gt1BdZP30N0ewNoIUtWfbkgvvA27f2+8b0KMgq3+B1OumSdHv1eUDRdl1VGSUZJUWTSvaGO8YJ1SZLlSCB6MmzsMHcRiDFN5O5vWcLlTqL1+7QZWWNG/WMpxx1wqJlZRU1dStWnDdr3KhRw+YsXBkvnF/X6elXyQ9pxV2bMusGRjlzPOzlk5gtOxmf5A//dVgm3mPD2E5Y6BraHFl/pGh6R8HaRDGcuENZHiuFbko9z1vNoKOPyJXC+XeFu8blKKfHbcAJDSUZVV0nNT2lTyu9Qs5oOaRu6kOYMbm7SfDQJ4O/13JF5+iqzpHwguTuDSQ1vpnB/01kvkD0o0RP4I1QXW52iNbofoOojW4gLPm9ZIYpfTy0I4qVYBzdjgMBb1/n7ud7jllT85Q9HrRVJLKmpqFl2oq1lGBGIkN6LDmnK9YpBzu4C3j5D0OxK59ypgSrs4EkXy6HiGQUbNJvv0TXgFlPavuCAZPyCiJ9MiKMGZMzqSiroasrCS4oeu02aFjxpklwPk+xxMBgKHL29IUK8IXvidi0hd4BHn36aiSYWFPdCXUnFG3RY3fqJBgGCTKlEICQdOhWwwDl3YTuQrBIu+pCny8EIlPqufjCdK9zh341bFRYS/0DS6UghYhjenrC9zMZRse4Z/8HkuDvGyRxIL+5fBirrqyGBLme/vBabt5NZc38Rsda/8XOyVvTxOfGfPLsY6JWXlNHUdacmpqOqo5VjWt2QUryllV9zUHnrGpoi0RG9FpVM2NdTtaPe9iMNSctaeqEz2wmtTwqd4LFULUjmmmIihnZHPm4K9vpGpns2mgk1mpXGcLf/zj7H2N4hPHNPPAILz/L+uodIcH5HNvGL5LggV5yPYxu5zM/wed/mqNvsjDN81/nyBtXZno0muEjulEJBLhSC19v2gnlo0J/gfHe4EhRbsrIGjTpcT/rlGdl5RX0pB2VsHbd74e94t8omxcJ1d+e1AxktnFR8RInoWLeveQ1ScSIlZTca48v+Kyquj/q2dDqj8XD29n0MAsHQmckblMcCW3N+k1aoF3AQjdUgcfy7MrdNAnukZMR2WdUS9fUTUTb540Y8UNa5nVsiJTVndRjr5JdF+9Yb7NYDgNwZ5b55uHglVxu3FzU4MO7AuM8u8BymfNXvqaRSEFeSckD7lHXMKBfVU1WRjn1WMqmf96DXC5MjW4dZWRInNup0zhnbODUuwOTZ46FuZrxydA5bdQv5gLF3fCW55c6+sYzNrbk/D/rvXQzrLXZ6KatiuBCUxAr9MUKExQHwu/YOB8s526n2ce1sKLrLTXntXxX2acNGJezouO4pkPqzv7/ngQXNtN7D9lBlv+IxlmSls7NrtvB8kD0gxgJVWAbqS49NcJvrOC19P55csdCFbj3h5Bh73PsHWK5FnzGZ8uh83I9p9TbptW1FOS84pRVVQN6vOKUOetyMopyxvSnlaQrV4XKSjiuxKWDYEn6dIsySrb4GVVH/bBFPynjcb2mtCRpyERBJJZLa7+RHllZGXkZa7rKWreUDFcth+PtVxkZ56GnwlcR/YNh7S6UqJRTFcA1kOha85y6M9a9IhJpZea1e8/q2Uv/oyEWt3KA1mzqDnQ3LayXf0gymXAF27orvCDdDhtr4crWbt28N+zEpjBq//ahUA3etZOVVV59k+nzTJ1lZpb6rZOkyAU120eMuMv8GfZ/IuwQ263QOsnlg7fQ1CEWzzlVrXu2EdbHPWN890jkfzz2g+41YkZVRcu0sq874/XrsNfbZsiKmn/k2yKRT9mrV8FpS9bULKl41ZQ+Rf+NH/NL/sBpy6J8otBLfV2Y5F5s643a8o2g+e+fYOJ+hneG6sy5TPA1viIadvc+Pv8F7n0wVP+f/1POnAg7zfW1DzAWvYmXOb4Y353JMNzP3ifY/1me+VHuefjiAp0vhLfh8GtXTraXK7x8gP/+H3HwBMdOX1+wyF2FJ7fypYf57YN874xiPODBzBf0xxPyehX1SXR1deSErkrZgji9luajoI3ORoGjNNOTKBsFcvz/sffmQXZc15nn72bm25fa9yrsALGQILgTFCmKlChZsrW0TS2W2mNNeNoxDo+7o5foiejo8PQ4PI6YtiKsttttjyy1NlvNttQSLVOiKO47QQAEARBboVD7XvX2/eVy54+TtQAoFKqAggS79SFevMKrepn58mXe+91zvvOdS+9/kyAmQd+k0uU0F7Cx6ZuZ5PaZQcZjFxg2FbrvQSjPCfkNNUC8c/2fTeE32PG9qzXwdg2O1C6eata5ye00EyXALbSQJMxWCvyIfkKY2HjUcK467JnESXAnWV7BJIZLgRoT5DkCfn83vUCeKr4DRL4in6F2HeyuIQaPPwhdzfD3h+DLT4rBu+0sflcODlPM8iKv8Rk+QTPNzDFPjgI2Nmfo51leYpo56pdGgVua4MH74K790NeNE48zb1fo+Mq/oNkqcetDMH0BnvyvUlg6PghtXbLW1X4DyVpV+ghMbYmim02RRuRcmHelcC5q+E1EFJ13wqZ2aN7hN/dxYOo4XHgWCgvz5w1Gzm+MAXB0TZ34Nh43Nwn2amA1Qstj0PxBmH8Kpr65Tv3DMnSB2oHIHA4DWZZu8DroSS7SFldekGerB+KfhbYvwef/D/hQH+SqcHIa3hqDV4dhYqWKzRUwwCwDl0yu22jlHjbTRJReGvHQbKGFYVISNboqDBLsx6UIaOqksIjTzAeoMUUnv8ZJ/jfaybOFIEEUA9RoxmQeV7z6sWlFE8HyybFBlirPMcbTjDB5jVHg5Th+SJ6tAOzYA5GozNWRKBx7E159Br7/jdW2oLFJYZOiyAkAIjug/TPS+UsFZDBI3gfl81A4DOUz133YG4b68jorKwCbd8DBD0p+a3YCBk7BzIRoRa4H4xPy6B+A0XH4tU9IR5m5eRgeg/mUsJCx62/Z2erLaoZvBvkJCrq2yUoqFJVK0sY2ePZb8M5zAJxCCkpOT0LQUMwONfA6U+yhhU6iHCLP/+A83+bsmvZ4YVk1iEbzGhf4JfbSzyyNRElT5nUuAPDv+CXuZxsaGGEeZUK0Gcp+QMkwoWUrtN0CyS5pC9t7h1TDW2GxhLqMBKfnRWAfjcHZE/DSM8I+P/JJOPL6hmqEQwEIB+G8f9ns2QSxCAwfl7T9478jleuxhATge7fDvntlgfvOKxdvq1QR4tv/D9CxaxGfuQ3u64PhLIxlqUzkObTjKcKn4tzKJ9jHx6hSYJpTTHOGKjle5y8pMU/IEBc8pUTyXVu2inT1yoHKMmkUNTw8TjPAn/JNqtQYY5osOdxSnaYj3yRtF2Xl5Pla2Oo1VI63GnAwDHeGoM+StHnaEzlEhwW/fG364kbCHKCTNmIEMGgkTBdxfod7eJ5B/pjXmbhKvt3DxiFDgDaS3EOZfr94OkOBd+jii0zyVywyU9e7OKR+rdjRLeH5dAHu3QWv/jF87Rn46xchK5o3F5cpZvhz/ivnGKCdVqJEMDAoUuIV3uQwx8iQw12eXVIKbt8Hn/wI9PWKXqi5EbeliRPbnuLRL3+MRz9ToZSHw8/CWz+WRWMoIlNJIScLTQVYGnqPFxmPG+iPxWFrANr877DoSeph2mH7o3D7QUj0wPxZyI35WZ1tcP5pGF2hPucfI25uEmzPQXVEiHBsH+z6TxBsg8mvS6hvvZgCfQL0GfmZMiLqjiLC7rOw3AghGPKb4KSh+k2YPQUdDVJY2tcAXQm4oxvu7oE/fwtGs+vPstzPVvbTQwiLIjW/SYHoCCfIrokEKxRhurFJ+6vk2wjSSoQtxNhBmUE8avRT5Tw23QTZR5gSnm8d6zFEnmlSHKAVDQyR47sM8EOGOck8tQ0SqI8OwNPfFdlrpSSRaD+e0wAAIABJREFUIqVE/J9dZ8OT+F3Q/GGI3wn5Q741WRgCrZC8Vy6Zuf8Bhbev/Xgt3xFhwxtEG6ZIIA5+CO79AHz/63DuxMb0Ae/tFhmEYQjhPXceImGYmIJcXqLCqbS0YLye3RCkmyAxDFqw8IDthDBRHKbI4M+cGGt46W/lRwXc+hDsvgfeffGiv5rOiSuEQqPJ8vu8yY8YwsJgkiIXriFFuxzPcRYXj3mKXFi24P0Sz/mpcQ/TtypdLmFKdkHTJkh0QDgpH8cKQ/NWmDopdU6X4e+egB99z9dW+H3kv/Q1iQwXCxtKgmu2HPP+7fCFD8OOHrE7S+fhnfPwuw/Cb/2RpGunRuDQc/DuazB2YcMO4eePthgc7IPWGHQm4OUheGVI+sw+uh3v3j5e6foJr7/yVZRf0OhJdQeA32fTJaCh4q7P8EP7Ttxl6gwwTJQINg5lKtSxqWGT8bJw/GuXvHEdBLDb7ziWMKQbX96DjAe3B+E/5eCPs9ccCQYIYjJOnjhBgoSJEaCZCHto5WG+TmYNNmQ280zzHWxmMQihCKBxccjjLN67NyCtcPS8WMr0tYn3cHcLfPExiIbgB2/C+Ql/z5pTnOUc54kTI0wIExMHlznmcfEur7NQCnq7oK0VGhJyY4VDcl93d7LjgOLsYSgXRHNfK0Nrr9QDaU8SilZA3CAzaZEe4mjpoLgjCK3mUhFb2YOSR7JTE4xDdki4TW5Uig5jbbD1EQg3wvhhSSr8Y8bNTYI9G5y8uNFbjRC/DQItENkqAlAQT7PaGiNaGhgH/bdIC0DXf25FWn1PglSRboK+TdiZeWKFKRI6S3MD/JMgbE6KDCwSkMyK48EDm+GFQcm6zJVW6eqyAt5jkt10sIkmGomSooiHJk7IV+uu7WO5lLBIIErgKEHaCNKOTYoJ/hqNy5u0MM0sLzPFdkIkMEhgMkqd09QIYbKHJqYpc4gZnmKYIfKLVfEKxQ72EySEg0OVMgUypNfhqZrPQrm8pIdcSIE6zvoyt1ajXAbhrWBGwSuBWwbKkgUMNEGwG6K7oTokr2GIVtgty9+vhiAGYSwCmH6XPGfDFgKA5JqKOTjxtoQmj7wKIwOQv57Whz5m530LICWFcIYBiTjU6zA2ISTYca5bhGkgBQwuml5CxDH4FZq5gxg/JM33SHF8lRSXAWxDTIKmkNqbENLBeR5Igl9WtA74RtkWITh3HGf0zGUXlubi1HsNl6PMoFDYeGvqGLcaFqrJL53o6v6CNhiDUFxql+wyRBoh3CCR34Y+iLVCpElSnrUC1BukK92K6UnHlsdyfPkP4Au/DemNnb0CFnS3wq89DJ9/DI6eE2u/vVugpw3GU3D0JZgegy0n76JrJgmFEpY7zgWuM7txs0D7YdoFj9nGCBzcJPq4jjjsacN9ph9XF1lNJHQtjm4aTY06eXJkKSxaFno+qVosYr1Sr++1oNWEWwLixexqab5Q1jDiCBmuXhu5DGKyg2Z6SfqiDhMDma08PP6cwxTX2BvMpUiRY3jYKAxC9GAQwqVMZRWf/etGviypkN190BSXVeG877FoXbwy8PCo45El78/jEtxyVptDXFcydNEIYohsS1HzG4exSy7nj0tTrOys3xvAhC37YHpY5EfGgjbYk6Ge50tinfaZBHwkLl3lPESHU9HUc5CfhNwIzJ0Fx28Db1iioOm6EwqT8lplA6almxU3Nwmuz0CwFaxmIbrT34H5H0N1DDx/xXi1PsOXogD6OEJ+QXRPXZJKxw7A5m74+Mfh4fej33iD4Inn6aln2X0r9L8Dn90G0aBcaCUbshXpTpirihvLerMu3TTQTpJ9dBMnxFsMMUxqnRX5HiXOE2MHQdqJspU4ewnTQ5a3cchgEKRII+dwKQCKPL9OM0+S5RR1sljEyfPfOM8ERdJUKRClhTaagbpfhBYhTgMteLh4uNTpopUu5plaExl2XVnTrBchoBuWnJR97bAZgch2CG8Tsqs9MONy49ozUJvwLxXlF865Vy6aM1GEsEgSZBuNhLFIU2GeCg7expJgz5Mc1olD0H9SpBCZuY2JBNeXyYVqNTh/QfSiIJHg2sZEaCMYWCgKuExQYxcRPDQJTHoI0kbgiu8NAh1IN84MQnzremlAmkdI8VruAoWBRQCFgfKnVhMLKi5mJY9HGJsqwXbfCWaF77+0Ssali1YsTIpUyHAV3dOmAGwKQqMp817Bg0kb+pfOuWuL4wsK6v5irFYQfXAlDYEIRBqEg+TG5e8zY5e0hPVhNUCoXR5WAmZ/gmiCn/quyCQ2EJ4HlZoUx2cLMJeBSAhaGyAZhQO9QSpPP4yVLpGc7aHVaaKVCnXUPzgSbABJExImVHwb4ooHNcuEZEjS4pEAdMbFa28sJxXTqTIMZa6aErwm0xcqOCgcnOuo0LgKmgxJn/dZcpBJA3os+fBXvp1XRRiLZiIEMChQo4M4nl/mF0BRw+UJ3l2HFZnnS/98JWNPFRVVaNvBTduQ36gMlPJHOEOOdmAO/e4wuq8V2nZBQxQch8SRcZipUcNaXOguwOryCLRI4bZXBasoye0VL4BIGHIFiEVlDK/bqFSaph99h3yXTXZaYiTZOcjMSJa6vQ9RvJQkOgyyTstmQBc9SHnwSlkWL63m0uLG1sydhmBO3PSqGSlJ8WwI+pashiWOWVZ4g07nTYqbmwRXhwAtBXK1MSidg9ybXJcxpA1cWtTpBNBNQQnHbLsVHnwfPPoIVKtY8ydor8PBj8BfHYNjKTiXhUpdCJ3jwNsTMJQWIrxe55UuGkgSpodGemnkFFOUqDNDAfsKnzPEbZg0+iVtARRB6gxRY5Ywm7BIolDUmEHj+oUCGoMwNRoZp8YJZriHGq9TYgxNEMhS5DRpstToIoZLkhbaiZLApu7HRS0aacXEIkgIUOSYR6PJMLuhdlp3Ae1KPAVtDZ0KmrSoWMZqskaqTyN95beJFZlXk6hvfRqqw1A+vWRRpj1ZM60kKTdRxAjQSpStNPApdjJPhbeYJE99zVH5NWOBBA+cBrRU86/WNu9aobU4RdwA1PzCShBPx93AGHXGqJHBWTWuYwGtCnYq+T53Aq7/84SGMb12Jx4Ti7ARh9YqkdkOXH8ikhRpnSolLELEdteoToh7yEKHWScPziqnJ0qYPjqxcaherVLZAB5JwAMxicRXPLHxmrQlBTlhgxa3qpon5Nb2F4R2BVIDgJZLIxgBIwDFOUgPw/Qp+flShLsgeTvE90AgCaVBKA0Axw+v8eytHa4HmQK8dUokEdMpaGkQOUQoAJZrsf29e4j6nudxooQJ0UsbQQKXFwLdhFiYEAMKtobEvnmiLv04AJyAgZsM+9VrBmxt9t9oCBF+dwpmNqLl4+VwfxYtyQueXMc9lhDipAHbAvBChWv9+gx/eZqm4tsGgo23aEVYxOYo1+5h7B6IiP9vBhhNQrYqzWc8TyL2VQdqfkvCNS6rFxbUxuIVoWEii3rjPJ4HarpApKsD651xmo7O4KU1JSLkKOPgEmiV8SXcB+FNouJUARl7pr5xSVZHKSHAibhI1jxPpBDVKmpsjOZzbzJVFqfHQlaMbwq+zNt1IN4oMoj6sjrn0vJLsL8usohG3+u51cScd5g57MGkFOGi/KJ0LWNjNStRYPv6S4FuetzcJLgyKA8VEBlEffo6N7jQgGDZak0psJPgtUJjF9y6T3y7RofAqWGbIQINQfbfW2ffXfB/vyBa1noNtsRgfzM8cUbs01ZCKCZaHdeVyc+9JO2fpcIUOWYoECO46Dd6QU1QXZaz9Qs6cXQXzfweYfb7RDiKRRtZ/ppp/gVNHERTI8cRSgzQyD0IHSigcfGokKfIsxR4lgJxAjQSwsZmhjLzvn9lFzFmGUP5yq12emmjx+/0bZKkmTBRiuQ4Qx4L3+tsA0nwvzHgAwpywDEt0cEPKpjS8NdFmDgHmRfBiMvloQyJ+tbGhABX+i++ZFaTQESwaCPKNhq5kw6+yG08xQBHmcbz7eI29NNpvWSbcRPCCi1JCT13ZVnh8mK4AAoP6KdCEpMjlBhexQTfAypabr+9CrqV3J1jGl5DJPqntcy7C/ZAV4JpmESSYfS9KTpPdpDP5XFrLrZXxzNqOLpM0mgltrtOoE3jVSTCYSahdBbyh6+8gw5aaCTOKNPM+a1urbDMU5697H0G4sP5G81wRwTeKsNIHdotuC0sLOo76aVGKo5YLC5HalCIsTLkfAdjUghXmoep9y5uE6sCvjXyZkjuh/gtkmHp/jRc+JIsBm8EqnU41g/PH4FkTAKisxnwqkFGTrTTiYGFSRWbgm8L1UicJuLMbGD79RuFmLnUzXpXWCLBGVeu1aCCsCHNFbFMyFflBBzoFsnRezPw7qREiB137bZBl8DAlEwG0p1xAQFLIu/RkN9mGsmYl2tL/79uvFOXSPDtIfnAOwJCjJ8qwdC1seAyNmWfQY+RZ54yncQJYeHgUlxk1wuBhnWetPt6IWLBcA6ilixIsjVZqORrMJKDsTwG1qIzx5X3oXxfJOEKosOWm8kggNE/hdU/g/Gt1+imgSRRDBQOCYJYeIZHIVEieZd/jwYkWxPs9tWczTD3A7CzLKllDEP6h5smvHMCmpugs12IcSqDacHAcUhPXa58Sk9Dokk4hmFeQVKY8XXdC+f5liDBbJ20Bm8GOm6DSLOM+cqS58wwzJyA4uyy4/xHipubBC9A2xtAgAHVCURBL9MNRSJysUXCEIuJ2fyFC/Dmk1CvkQkGORm5gxefOkTfdug/AXlLrEgmazA0IvZ+KyEQgvsfh023wvwojJ6EyX7x9V24B48zTtU3228mymFGOM44vxSGt2qQ9cfRiIKHQwYD1Z9g0AkE8MjgMI3CIMYjGATp4FM08yAamwoT1Jklx2EqWOQ4is00AQwiWGIxhkeK6mVayCI2SQJMMUCQCHfzKAd4iBoVHGx2cYAqZY7xCpMMc4Yj1//9XIJOZMLp13BSL6XHtyn4JPDsLJx4AUqnINQj9mheVSLEV9P8XooQFo2EaCNKEJPvcY4jTFOkThiTGEE0UPhZRGN+zrCCsO0eqOSFjKXHoZxd/T02mpd8qcDfrKF/ZhU4DzzpwRdM+KiS7/s8stiJIvKXcxrGYVXzHK+5gnvnBIl90P7km5T/IxRfl6iLFYXGOgSa5sm+ARi+6Uwc4rdCbDfkj3DFOTFGmBGmmPUJnBmCTe8X29W505JKBCR3/utNQoS/n4NXijBel9fvjUJ3wDeJXn2Cr2Rh5gzM9ctkZFiQurAUMV5AYg9YSYj0igxCayj1+6USG5y0uBSuB//9Bdi9GaZSEB+EW9O38qVj/5EhJslSYoQZqtSo41CjTgPRm4QEr/4dhBS0WBA3YawupLfsiSwWBWE0pVJdZA8nZ0QDt7UJcjXxDd7TDj0NkhocTENx/VaHzXTRyRbfBWKpRH/vZvjEA/CJ98GwPx2+fRZ+8CoMTFxhY9eC9+piTh9W8FAYjtfh+yVUXk7C9Wb7ZFR1sX37zQVYhFCYuNTx1hN2NpQUJpbrUrBWdaAxBB+/RdKzPxlAjRUwCREghkvd95i/nN0FiKEw8ajjXDLqeP4sCcrPgopPeDuN1LGZI0+9uUriN0sYYQnERLaC1QRGCHQNGg9C++Mw811wFm4H14WpGXjpDTh6ApJxaXff0oSuVUlNQWryyhaCuXlobJeGNam1qI7O1RfLD2sFWWi37YFkr9QkpM7D9AlIDyw1G/zHjHWTYKVUGHgFkWlawPe01v+XUmor8ATQgjjt/obWuq6UCgHfQrLbKeCzWuvhDTr+dRx4HxAE7beCU51SCVcuyyObk6ick4IP3yujTb4EJwcZPFbgjw7t4H3tA3L7L5tkDHPJrHo5IknYdRA+/fvQ1A3jp+UxdR6m+uHUy5D1M0DnmCFFiQbCTDDP7zfIInyrBXOuaCVbTLgr6PGKcSeHKv+eut6KRxGXNEG2U2eAffwpTdxPhWGKnEFhYRBmM79HibOM8F9I8ywec1ctAMpQW0x1b+c2PsU/I8Msh3keUIxxnhnGGOI0GWbpZiuTDLORkeBhIIwQ4bz//3ZgUsMT2nezq0JtBGqj17dr1z8fFWxGyTNIljw1PDQhLMK41DGIE1gWufgZoBdUCyKajSAFnOPIScnCRnPyaAP03ArxZlnEVfLQvk0iDNUCzA5u3L5cxLLs37vwnAe9Sl6b0RIVDiMSmJRenQSr+Qi82khBTVEbE3JoxkX/C5C8SyYhtyLPThacAlQnILH/CtsENtFFiCCjTKM2l9i2S5pwbX4Ykn0w8DT0PwXpBeu7uob3KvBmydfvBORGHrMh7dCju5hl7vIuUctQK8jjalAmxHZAuBdiO0UO4RYhf0J+Lp3zC0VvIM6OwLlRaCTOvIadvMr97KWbMB4e3+G7zHCSA0R5hDolAkxdd9nhdSL2W+BOgX0S3NHLfu0CDyXgU03wBxOyjim5kP3lPdTiIUm1z5YgFhB/zP55aI9BIgRBS+yC2mLCWFJlqZQ+NQtPrtABaAXcw8f4AJ9jOwc4ySuLJPjADvjXn4F/8pD83XwOZjLwf/66NC/5m+fg8Npc/a6Oczb0+9fokyXQENNRHudXiRLmeV6in4Hr2kV6BRcIhyoBYgSI4WFjr9WWcygLjWGJzuOIJjEWhD1tELZQoyWMvx/1nZcgQBQDy/f8kUlD4+EutuouX4WE60VpSg+t/K98iNOM8hInmY+kiN4N9VmJ2xl+dBUl2Z/qBOQOrXBvag2HjsoclsrIQ8mCY/4q85rWfqbuGuY/pwLZEbFHS3RDtAXSF6B+YxQ9NyWuJRJcAx7VWheVUgHgNaXU08C/Av5Ea/2EUuovgd8C/sJ/zmitdyilPgf8v8Bnr/mIla8E991tZdhqAn2M1a+Cdv9qtH1x6CVFI6USzMzClha4bw/s3wGvnYD5LMxkqOfqDGYk+1WtLLkRLbQtDIYv1uREG2DPg9DSB0PH5JGfFXnE/scg2QZP/+elQ05TIkuZiILPxWDAgUwVoko+bd6T+XRXwOV4pQGPVjziiFLsAim+zC5+ikuFGjNUmcajDBjE2UONKSqMUGUO1mD4lUcqdzSal/kBx3nNTwyV2cd9mJgUyZElRYk88ywLb28QfqrlG24B7lewC5FFfEXDZTVC17nrup+WS1MlT33RDaKGQxUXGw8XveiUcUOhgBZQd4PaijR4aQEagDJ4PwZ9dPVNXAsau6Bls5itey409UAwiuhUXSjMr48Et9HBXvbTSTdlytjUmWCUCcZIL4sWe8AbWvwtYUnxv9CE42o8v06VfDVN0yubmH44iVdWGNUSrpOm0pgVycA9EgH2qn6hpB/hqI6tvE2FYgvd5Hy3lqZe6L0f4l1SONJ7v0RJJt/2SXDehe9l/T64Cpp8Amz4H2K0zk6200iScSbJXa3A7ioonILodiHDZlQi20ZEiH+p/9qKT68FWkOOEq/zHqcZ5Xa2000LzYyxlwofookkJo+R4D5i/AVznKZC6edFhc128K6cqcj42fLtYWgNSNOKIRf0TBH6UzCckbHGAHa2Ssq97opVUK4q5OvdKTkxW5thW5MQtNs74fjq2czN7OMgn+RWHiRJCzb38Sv8Dk/zVU6P2AxOSsR3bBZef08CiJvaoSUJva2woSpwvfQcJ06COB/kYbroJEP2uknwlWBTJkjCbwriLEoRVsWRCfEpbYlIdzitZZHSk4CgiU6YeNgYWLiUMQgSQPwGpcBb9rPQjARYLIa7EhnWaMrUKFJhJ91kKBIkgF13qY5Bzz+D9DNCdlVAMjRGCGaeEA97vfCx2mJwVy88tkuul6k8nJ2D14fgnbWF9wtpaO4Qz+BrhfakQUZpdtFg538arJsEa601sLBOCPgPDTwKfN5//ZvAf0BI8Cf9nwG+B/xnpZTyt7N+LLR3QwEJMDaD2g8cAD0K3nGWm/0q2gALTQiZXi0k2XrJUkxr6bJ1egiGpmFTp/TytCxoTqJtm+IF0eE5vge59sTntla9vCOSYQqByM7A+UMwcwGqRYg1QaIFthyAtk2QGvfbHaIX3QPLGhoN6DNFBuECjQoeCcO7dXg39G3O1j9CzmvCYYw6g3hkqDAMgEmUCJuwmcejRplBsrxNjelFv8qrYcHkCaBMkTJLS8PTvI3CwEkqnBaFG/RwK0EYczaUB7+sYUBL8dRuoEnBS742eCPpdmszmGUDVYUSNlUcbN/RcyFiXsOhhL3BNH8FBIEuMB4EdoFqQAhxIxIJ9kB1gQ6yoWnvRJuQ4HiTpOC1C1GfDEcS4ltrV6Gcg+n+q28PoIkWbucuGmgizTxhItzKAfLkGGOYUxxn1Pf7uL7edRpb18lV0hijYTQeJXJUKeOmIfOqVGfX58RDOtgphNHJShPK5V9qA3G6aCVGhBYaKFCmYbNESZQBxWmZKCKt8mxFIJT004Y5F96rStrGUjySeR8fm3+EuI4xkR7nde81UqSprMEL9Wrw6pB5Swo9lQnlYSiegcq4rwe+4RfqsmNBU6FOlRRlqvQQ438hjAcM4WGgaMGilyD/hk7+iEmOb8A5uAjBBCS3QDAJk29wxROga35l7MrjoAccL8O35+XrLHq+Jr1QEw1weRlDGMqIM0TVEdlDzRE96rw/t/Q2CEEu2VI0dxXs4SBREoxylipFapTZxn462MysPcqZ0Tq7RqApIY+zI3B6BDqb4eCtcihnRzdYGgHU/A51P+YZmmhigItXwrdsg0IJJjfEjESirIowFpG1keBBf2GypVEWHA1hce2ouzBRQE2VMbAwMLGxUZiLUWCXGi51NC4GATSeHzFWq86VGqhQY5BpvsdrTJBmihSlYp3S89D4gDRtcvKy6HaLUO6HqW8tGVuxpQnu2wwf3iW68qoNLVG4u09+Zxpw+Aqr9GXwPJGwXcpB1gvtXv82/iHimjTBSikTkTzsAP4cuABktV70KxsHevyfe/Az11prRymVQ4J785ds87eB37763penSBSLZTPG7aDbgLyEe3wjMIigCKOpgi6CznPFAdL1YDoNT74snj9js0KMAa0Min6aUnssEhDXFSJ82aZsyM+J9GGqX6LAngdmQPSVoRjEWyA9yUXjse0XfW22pJuq9l+zldTWlDzI6WMUtEGJJlwyOL41WYoXaeERQnQSohOFSZUJchwhxzHsDdLkZZiD9jDc1gi3N0BjEJ52Yby8oZPvpP8Y1zCB2DkPbdzmF9GYhFiDh5d1yGdqFLBxfPdNx48VbIR/7BIMJOFvI6x3IauhIeai7q5iPA66ioRBF+z8HP8tDms6zwFERWHAVVW62hPpg2lBol0KLZSCtq2QaJWH68DIsbWTYAuLKDGixKhTI0yYGAluYS+3cQcGBhXKzG+Iq4imRpEC82g8apRwsaEOlWHIviHR0WCbFKdoB6rjMkkt7LqDFnayie30opEWqAEs4q2KUIMsCMrzYie0UIDiVJdp9TQkB0PcM3s3Li53pHeyI9NNjBidNHCes5zyy1PXiqDv7OLi4l3yvuo45EyozYEVAzsHtZmVixh/FpDWI0WS1GmhmywOo75HyDQmtxLhERL8iCjj2KQ2yugrmIT2O2D7J6AyD5NvcvkNYkDgdjA3yc+6BLoC3uW+c+erMs46WhQuJReC8yWsqoOr5DVAIr+NYchULrflSoaEyHQlYDwH6dVJfzc76GEnRTJM0E+aKRQGu7ibLraTYYbjA3W6WuBXH4L924Twjs9JsVwsLD0cpi51PtoA2DjYOLzOW4QIkVpmr9TdAZ1tkEzIXDhz9XKAq0JGWhPT191eFYW6EOF8DboTQoCVguPTqLdnMA+nMAkj+R0TaVhTXYwC60U3Ge0XzmmuNsAuRIInSfN3HKJMjVlylKp19DGY+Bq0fVzKmZw81CYhfxRKy1Uxu9vh4W2wrwPSZYkCB0y4rQtu7RRivAYSDJBPrcxDfoGr45pIsNbaBQ4opRqBHyCBuuuC1vorwFcAlFJrnBEdPzJ8DnQ7YIHaBsoFPYFcyA1oTP/v5oGriF1cD773EjQ3QKEMqay0RMyVqKyj2KpWgpETogcupkQqEQjLais9CYUUOCtctDXgTwpwd1A0wY6GghbOnfNgyoV3LIOi885lXpRzPINFkjh7MYnhkPdJ8NuUGcS52mdfC4IGhE0hwL/SDY91QUsIXpu97E8VEAlKk52QJZKtQhWy69QqTvmPjY5uBYPg1BXRiKat1aEQrjKVcSlh+119pPHBxu7WAEIoQmjKKBpQhFk0Pg5WoTeF+rANx3z9b1nmbADm/dcqrFq1G0RWmpsMmbRTevXTV0z5jyZZoAWaZSG3+QA0dMhrxZRvo7NGFMgzwiA72I2HR40aGtjMNrbTwTlOMcQAKeY2gAQLSpcLZcCD4kn5sTIg0WAjKBPTAoIE2M9OHuIONtPNCFMMMEaUMEVTjPDdmlR1hwZhOg/xHummVPcXxwpF10wLX5j5JFWqpMlwmHewsOimkzu5nRHGcHDIkruM1K6EIBLyt6kvusOKe4AhzRJGNKURF8dftt0ssNHU0Nh++dEcDiPUiWCwlwjHKW8cCQ63QMddsONTMPSjS2rfwmA0iAwi+hkI3gEcACMBugz1y6+XtAu5itQ4mkqiwU1zJUwF1eUkGGS+WMkXMxGC2zqks1xxdXaiMNjPB4gQZ5ZRZhgmxzwKRS+30EYvUZKcG63QmHB4/37RAVumOHNoDcWKJDBzN9DSata/T+u+QCkWgT3bJVmaiMv/y1Wo1sC+jpT6Qmc8sSdTF/0G/JcCXKyTKtblMVGAve2oZAz6c5gvTmKNVP1mGjVMP3FtLxtADUO8rgOmh6kc0nlNueYt+QNfAVVsqti8yxA2jjTCcIFZmPo6VM6LAtMtika4ulyCHraE6O7vEsL+0gUh8QZyPTVGYFuz/F316vfJzOXy9l9gjbgudwitdVYp9SJwEGhUSlkJdFPVAAAgAElEQVR+NLgXCd7hP/cB40opC1E2rm29qvwuLFcMbfijnZ4H92nfk2Q/mB/3f1cWGYQ+C+4rCHNYow3LV/5uTYd4JZSycPJ5aO6WFbJhSqFRtQQjJ+H8W6u//0hdHsvxrO0f+4EEDJchbS8JJ4EyQ0zwN1gkFlM+CpMC77EhDFIBvVHY1yAk+LZG8YmruBIuuQThANy9BXa0w65OaInDi2fhu4cldffzRMCCTd0wN2YRC9vU65CruuT9Tj8+70HpK1flroallNql124c5VcgK5pQRJAaUz/6MJNAfyMM/88oap8HGdBzS2s4fRZ0P5AC5eC3hrg4dqGATQr2GOK48C6s7etX4LiKfApUQJNsh86dEg0uZ2HyrBR3rBVjDPNjnuTT/FM8PDrppp1OQDPAOU5zgtOcWPsGNwj2CtGqbtq4g908xkF2sZnnOcQsaRLEmK2YVKalmtuYgs8OwFdtSM9A5RLv3maaSJGijk2ZCh4eFhZlKryfByhRwsTkFGfIXtKeWbHUkVYjt3WRIhH/n+kvlJpoJk6cCFFs6r4yP0WW7E1BhEepM0iNdiy2E8ZDM0qdKAbmYnnSBsKpQOoUvPd1kUIsv2GtbRD9JER/HbwCYENgvx+iuwD1d1nJANdFyPACqhpMvYKIYvwK2u6JPLTHJVJsu0J0rjCQKBS7uY8SWfKkqFMlQNBv1KAIEaWDLdjUGJmZ51s/hURUmpWkC7Lp6fSSY8SNQm2ZNMEy4fa9EgG2TOnS3tIE8Ri8dw5Gxq93xtG+9NqSIjZL4ylbJAohBe0mDK4wGNke1vEs1vHaRSRWpA3SYU9e0xiGqFcaEvCbH4dYxCERc/jbn8LRM2u3natcQbKRfW2VN+1oFSeRlihcSMP5ebHUC5owlpUDa4rC9hY4tbFNb36Bi3Et7hBtgO0T4AjwGFLs9iLwOOIQ8ZvAAov8of//N/3fv7BmPfDeD0hIdeDQCr9s8QWTnv8x8uANg5EE8yEwPirRYGMzON/C8jpBX8BjDE0KqPrPNw5ODZ7/6gZtLGLAh9rEDsYApmvQaUBHCN6VgbiReylymiprS6GsGwohvW1hyNbh2Wl4JwMNATHYvATtSfizL4hUTmvoSMK9W+FAH/zb796YQ1wL4jHYtklcaLrabcpVmDgXIJcVx0dDwYfvEKI8nYHhGZhdZ7+JbrbRQCunufTazaPJozFQNAIOBu0omjDoRNGAl5vBiw/B06+i0y56HPQ5YETWe5QAT7TStxniqjCiYciT+aFbSRS4QUnApGmts9HmOLUtCcZNxXjW5tRfzuHUofdWKM7Dqedh4CqLt0vh4ZInRy+buZ27uZ27OMdpvs9/4wV+sr6N3UC4eFxgjDc5TpYC6cVIrabhLMQGYG8APhaBxxrgdzMiW/qrgujCFpAizU52UKLELPNUqdJIAx7S8raFFnrpJsU8DjWKy9TQW0zYGZAeBcMOHPIXwRUqaDQ99HIP9/AJPkUzLVSoYGOTJcMgg7zKy7zOajPvzw5nqNBJkm1+SjuA4iAxqniMUSe9od0XbUifg9ljUL4kI6VM0QDX3vD1wAVwZ4Ucx/93MLdC/j9cdRfla1lb/KRfIsH5mkSFT6zMUjWaE7zMfh6mmx0kacHFIUiYecY5yyGGeY8aZfLzYon280Q4BHt3yHM85summkUbvGsr/MGfwujEtQUPFiA9IKMoFA4V3N+LiguHi/iGjtowuFJmU+NQwaHiF8BFfNs1B4/6RU0wHthf51OPOrz/TnjlGLxzFh7/IPzh78IPX4Y/e+Laj/+qeG8afnxWoryRgJBh25XsblvcN+AuQuEGGX7/Aou4lkhwF/BNXxdsAH+rtX5KKXUaeEIp9YfAMeBr/t9/Dfi2UmoAKer/3Jr31LsHOrbD9rulumxwuRetiSR9/ViYHgRc0APgvQ1qi5TU239I1PkEij14DOMxiMcsigBg4HICTQ6ooymjr4NAbt8K0zOLMmJMTPZyB0200EQbs0wywgCTrCF3cWeDPBtAWwj2J+FAEk7kIefA3Y1Sfd4QgJYgPD9PhD7KXCBAKwZBaiu0Kn2cXXyG3XyGH67vwwUNIcCNQbA9KTqYq8FwCZqDEg1ehkQYdnbA7i747hHh7tM5iIfhjs3wJ5+Df3kjB5kroLkR+rphax9EozCfgnQW0jUx5ElE4Zdvhwf3inf5c+9KitHxJOqy5v3QQRdbViDBC9BobKCEJodBFxYPE+ADOByjxl/hfnYbeusouDV0CpiVyPQXTVn/bDHggIIOBT9yoWLAj11Zq9SAtB+5WvP8bSjRet/fBu0RGCrw+uEZ2n+QwpuuXpM9mo3NBKPczf1MMMqP+D5HOcR5zqx/YzcQE8xwFIM8JU5wHgeXOdJMk8LVNUJa0uLH6lK4GlQSHdxkwawLY658owMMYmOzk+1sopciJTRwmrP8d77PS7xEnRJxguyhnaw1Sp8JuwIw7kBGy+1duYRAVKni4dFDL/dzkFO8R506IULs4hbu4E4e4H38S/45Qwz+3CPCJ6gw5kd/QxiEMXiHMlEMBtdS7LQeVNNQy6zMuuzT4OUh9nlQCYkA65zfFeAWMFqg8vdgv8OG662eOb+UpnGv/H1oPF7lu3i4dLCZVnoIEmaIkzzNV31H3RvWKHlNUH4UFTRaS/vs9oAECkJBiEYkErx3J1Sql55JhVoxK7YygiQJIIbXjlHB/XxIBr4JR/QpXSZ8tAHuC8O/S0nxzAqQvIOB63v+LmiMDQLYlHjfHQ6PHYTBcRifkeP+u5fhfbf7lt43GkfGoVSHPR2wsw12tS5JZ05OwQsDoif/GcK6A9zzUj71PwuuxR3iBHDHCq8PAveu8HoV+PQ1HV2tJCXrvfvkeWgOCIkLBLCUPCyB6kBsz8Iy0HknQQ8Sdu7GpBtNGkWn3w1mC4puFA1ACJejeAyhl7lKENwC9owUT6yCYAC2bBZd0Re/AI0N4rQ2MwvRiEdxtp+56QCRIx8lWNpCO10ApJnjVX565Q2f98VdHSHYGoVdMeiLwHhVyEpTQB6NAXn9dIHU9MvYWroaqMVzczHCWGynkd9gH9/m1KqfDYCEBfEAREzpxlNyhBDXPSHDCpjxIH2xKXy5LqS3XIeBGZFGxEPQmoCuBnhgx7J9dLdBQ1wminRObOluEBJxacbT3ioD+J23weHjYsuokVMbC0NzAh6+FZri8Mw78Prp9ZFgmzq1VSvgNeJQ0oAmjcsF4Clc3sVjDs005B3oD0sqz3HAJ7g7TOloVdUwgPgmzyOeuhYwqyGGOC4MaunIdlVsTcCeBtiVhB1JCBjQFMLpjTH3dhSdncFz1m/rVafGSd7Fw2OeWTKkKZKnvtFEyMe2LhidXX8HLQ9NiQpnGOI4/f4SRQqCNlFbPN8XHJj2AzYuog8NquXb8fgK3+Cz/Cr3cTeb6OM9TvMqb3CKU0CNNmJ00khSmYyao7Sb4gaTNqQp16iz8sLFwaFKFYVBzW8dI2RXkaSBbnr4FT7ON/kG+TVqjm8UprGZw8FgoQxUGrwrIIlJdUOPbTXNkisVproOZgJoAbMHVERe93I3rrlIfe0XoU2NYzxLkAib2EMTnRzjOepUUG1IS+BLeLDqAhVmsaZWO4jiLwhGJ7hnYTWr3VgMmqIRgvPbCd/yHmf7pXh72R64SG/nv+bYBuOTiu4Oh2xe5r5qDWwHzg/Bqf6Vvo6FCKyxavvnEA1YRNB42IEy7hYNtwRg2JaVYQC54aYc+FwC/iIHI/ZlihbLd5eQO8TxZRBLdmgal2IFzo/Ai0dk2olFoDEO0QXL4RuNqbyIzy+k4OHtUixTc2E4LTZpg6mV9eYbCOsuCD7i14cGQcXAm/0FCb55oH2lYyQBex4G/WVQzX7nt0bfPFUh071ofiQqfB7l5jF1MwHuZkFzqQgBbb4ec8Fv2EWTQZPxt6Mg2AeBLtm3MwfelSu5lCHEastm+PCjMogMDMoA09yoyXXneV8rHIsewzz6KO2z76eBZsYYZJoJhji3WPByEQr+awoYLMO5EuyKw+YItAaFiDZY8pyzwVLUWUoFrnTr9BAngkWWGv+UvRSo8WMGqV9pQmoMLskc8jaU/ZW46086mqVIR/XiAd/1pAhuNCU/Z0pyPyfC0i62sjAONiagpUG65CgF4aAwmOzGthMOYWKgMD2PStVjPg2beuBTH4VaHfIF4ZlawYlh2N4FHw3B7h7on4AT67SlKJHHpsatHCTDLJMMrlD8taBTs4Gin6mYQZNDU5TfVxacI5YQAbJa0iozftFkEZFAjGjIayHJtoZZJF9y1aF0RwJ2N0J3DEImFG1IBuFgO3bJgTNFuAZvWw+PPFlOcZwC+Q0rgFtAawN0t0JHM7Q3yuR14gJcmID8OgswC5QpUKJ6ySTtIMGmrCd+3aZfHGUgEeD0JbfPEY7h4THCGFvYxCDDHOU4c8yynTaaiLGFVnbrdva5MQpejrQ7T1bPUvCq2FqCXUOXcKgyJYYY5CxnsLCoUKFKDROTBHFChLCwCBEiSHDRUcLdSOnBGlG/SoX9DTcbDG71x+6izOi1N4AAmB0ynjtD4B6C6nPgLBRR/3yR8z1c6lSJkiTlZ/JUk0x5KihcXqcBD4w9oOL+m2u+4UVB/s68A3QevDEu8x9sa4VAADraoSNhMT3fispvordrnOk5j3odwsTpYDMhovRzhIVorkKhtUG1oqhUHSanLDxPEQhAMOii8civQKAUCosoIZI4VEXiQG2ZG8NCBDix2CjDobo031hKBj5LyUSS9QMwFe1z9KVaH5Mwhl9Q6uFA0MUMaXAcdGXpZj07LNNPPCLPXa2wow8yedFb33DUXXmUbfEFjgTks82XxHGkdGPtHowtQoKte8CbQNigCYGDYL8N3s1UbKeiEtxcqzXSOnBzk+BgVFim9qB7F4TKopvRbT4ZbkKm+IBUD5EGcuClUExg8mkMNvmkwgLCKEIogigsXM7hcQ7NBEuuEQoCPWAmkRPuRzz1yk6mnicEqq8Hujqk+6G3cH9WhQx/9EMwPnGKyOhHuGX2LlrpJE6S3exnnKGVSfAC8g70l4Ts7k/A9phE6dBCGnM2TFRXLExbjiRBNpHExGCMAo+ziwkKnCbFCHlqK02UIUOut5Ij+1FAMiCE2FRyHJY/+NiXE+lKHV7pF9cXpUTzb3swkYX+Ba1/S4M4ccQiElKIRaTceD4DdRsyBWGp64BEn4xlw6ImjIWJwq07pLMe1RrE49DaJD7BDUko+kR9aA7eHYYfHxXSXqyKHCIagvIaA5hVSoDiAT7GMGeYZngFMiK3n8IgiYdLhTK2L89xWLJSs1i4FjVCgOcRYrawxbCCCQ3DWqQQy8eJwauNGWETemLQF4PWkBRllF2Ia2gKyWIocn2hkTwbk9ZTQIcll1+oCe7cC3fdAr1t0NYoBUJNCVlHnR+H6jouneoVotNFLdHfiK+xdhDXFg+YcGU+Xo4MWZ7nZfq5wCZ6qVJl3K8TNjCIEKSXZu7nForOFk4yxjgXyJsFTKr0WHCLdTkJLlLkLGd5iRe4i3uoUqFKlbr/b4ABTnEKmzrKj7tt9KJjI1DB21harkJI8MMGqw2sRgjvg9oQOPMydtfflrCp2QXGMOCCcx6qz2zkkWwIcsyRW56VdMDoE69wbYOOAEEIfBQwRd2hM6BT8oxG2i0uM51ZQDwG3V0y9u3aCVtaFT96LUZtcjst2wukzTwWUbrYzi3cR5goJXIECJFiihJ5FAoPj7kUDI8aeN7CIt3wSe3F367oe2Mk6CVBHx4uNgWqZKiSwaYIKMI0IyZlounVngtZE07UhQg3GBIF1ogm6VgN0i7KNRedJDQuASIYHTZQQzs2KuBCCLySx/Lk3OkLMqZ/6H6xmdvUCe1NcOgknFln0OO6UHfhzOXuSjcSKgnBRyFwF2KyZcviScV8UjxzM5FgQzI3+M0ZLrq+TFYoV10Xbm4SHE1CQ7v0cDUtkUTM2fJNATIdxcHYKl2AvIV+siKP10g0UdGIooDQoQqaOppRbJ7A4U0WIlyLBbzKEA8lGuSkaw/slR3IbRsuDEG1CsNj8n/LEjeIySmpnl1AkAAhwlhYeLgkaLiibOEiFBzRAv90Dn47CruiQkTn6jBSgdfS4hSxCrbSQBCTFBWmKfrd0DweoIccNWZWakw7swLxd7XogF0txChhCRmueZct0LJl+P9egg/vg73dcn7nCnB2Ct5YaDgUj0JnqzyjJWy8tUeYzOQcvPA2jK29Olbcc0xCmFgYi01IgqbCxaPmeJh+x7+jx+GP/gwyWSHAVkAC0VYjnJ6Gv/9TeGCPtCgdnoXOJhha46E42AQIspu7iBDnBb7HxTerQhEhgMYkwA5cqlQY9nVspcWCzyDic62RkI7mXT/6a+JnB5Go72srVa+vBe1hiFkQ8aUvcUtCyUETLuRhrASFn18boYiSw0HJHPjRBkia0PgQfORD0lI2U4DRGUlnRoKQyvu2UVPXv/8pVx4hoMkUQrwWjP3/7L15dBzZdaf5vYjIPROJHQQBAtzJImvfS6VaVKWSJbW6ZMtuWfIite2eXsb2sfuMTx+rPWfGnmOP7Tk+crfHdnu6W27Jlu1uWW1tliyprCrVzmKRRRb3DQuJfU3knhmZEW/+uAESxQJJAASK2/t48iAzEsyMxIuM+L37fvdehhli+B3b3KDoXpIo62niAGcp45IgQkzZ9NqS+N6g5HMv9AZXqTLEOb7Dt2kgTYQILi5TTHKIgxzhMG+wh9KC7/L8cXI91cDPr7ZNw2mXPtneHKSegfh9Eu2N7pZkuNoIzH0T3CA5bgWoi6parHbhxMvh94MuBXngURErVg9E/q1c8ryjoAfBHxOB7M+A97r8v4vtEBs3QnMzNDfBru02OzpivEADFhYzfVuoc4JutnEnT7KZOylT4Bk+Qysb+D7/jaO8InWutc/pQZivU2YROt9xzeXCKp7CJkyKBnro4H4a2UKIBAqLEpPM0cccZ843rcgzQo2iWMA85Mv2d8GH2B2GnhC0BG0YT5egrnCIne8A56kqdtQh+uEM2pU5kJcHvxi0D1jAyBTE+uG2zRKoyeRE/P5gL5xdhfPG9Yy9GSKfFJu8+02xQNhbxCpvpYNjLcyV23WuOerCEggW58PVKlj1VxHx/F9h5elyXN8i2C1Ld4loEo6/LG3XANQ9wSg5EibHAT3HO0/1XuC1PIqiGZ9xNDNBVHgajzep8z3mI8DRqJj7ZzMWRHdIVrGXB3f0kgJ4Ht+HP/tzaG2BHdskoaohBamUJGJ9+/vwxj7YMpPF4ggVyowzwhD9S094KHrwF8NSGu3JVhGdIxU4VYC9V/bQvh1EFjaTJoTF53iJ/8zbS3vveTTQt2Ctq+y9KyFuIa4HR0bk9vF7JDJ8egIGFpaoak6LCSsRFSHc3izrUj/xDHzjBTjatywRHCcEEHR5k1NrDIf2bpdwGCZnoP/shd8/elHjB9uWMZsKCoe8vMA2vVQBDAQWiAFsHE5xYJGkEA3kuZceWohgYZEgzOPEiRLmP3CaC90xfBQhNApNiW+utqJxLPGijZZE7LZGIB2G/hwcyUBfHibfoz68i/DpFrg3LtHulA23RWFXDL7RLIsFJ4fg6IB00NJIn5tNnRIVXg0RPE+VpQvgSzFNnjNM8H0OM8g0sxSCWK5Ho1XHtkT8piz4dBz+svhOu2ONGoc5RIgQ29hGjhxDwb8s7z4PJBV0WHDmelLBq01kM6Sehsg2yeHwqxBqhNjtYKdFCSXeD7nvQO4fgmXV5dFEkihhrCAKOrpYPeo1RI/LDYAU2HeJLlANYLVKF7L5ErMqe2k5kIiLDWL7Nji7r5dvff0+woQokiVKHBubEBESpEnRgkuFJjp5hGeZZpgZRhnh3d1y/KAidIg4NuHzvt8QCRropZ17SNJFgRHSbKaDe2lmJzZhRniNg/wpo7xKLWhyZQX1fH3qRAiSxI8CR+WTWUGAQ9FEmGTwnjV0zCXy7BRtvwDVPsh+V0ob6irUFzl/nxmC3/tvVzEwNyj1g1B/U7zj/gQSfzoNOODcDuEPAR64/3CNdxQdrMJXRLGHNoLTDVabCGFvFty3pfyhrvAu4/wSuL5F8JvfgNFT0NgBwwtarSgH7E+A/SygofbL4L/CQhGsqeBxiAq/Tv2xz0Nit/QULfVBXUHlbpiZhZmXiIWK6HA3szwAnTuh83Mw82UoHYTodgh3y1mmcFFtGltJFwhLQcHldz8Pj70P5jZ0cKRpI2xoRNUcKNfwOmZRu56nMfI8bWejnOZY0JNsmVGRl2fh1cCwNO/LXQYDZJmlwqPnG/q9N3zroPx8V8KEAtqaRPw2pqCpIfAF16FYXnaGU/GiDAmlYMOmOrU6DAyJReVyeN4FAbwkkhtg3cOQ6oVqFk59WeqWAlXKnOMU3+PL+Ph8iJ+ij8P0IZ0bFIrdrGMbrSQIY2MRxaGDFJto4gec5of0MXdRgl2cuylzDL1a0/SIBSMlGC+LGA5ZsD0N0xXpAnh87rIiOB4TO5AG0LIi4q7Srv1ZD3wgBZN1eL0A51wYduFQGb6xB7aUYWMH9I1KZCcakWOsrRFaGlZnH64apcSImYgza9tkWls51t5GGIuubx5FOlj57FBFdtpwfwR+Mi5VJ0oavlsWC8xCBhnkEIfwg/avF9se7nSkgkhYSbOdm14EhzdA5agoHz+YqPslSNwvQjjUFljclpcF10oDCaI0EKeBOE0kSZNgiCle5ug1sZvE8orHv5TilQ/loCWwQ5SBiOSHq4IUSVps16pVORzrdeh9YICG7mm++cd3YWFTIsd6trKJO0nRxAinqVEhSoJD/JC3eZ4RTl9yvzQeNcqEiOHjYwUZezVKVJjFIkSdEi455ujHJkIDvaTowqOKwiFMw/kSZgoH0EGCm4dFGJ8adcr41AJbhkue4aD0mULjEgMSD8s+2Q3yd/BNpbF34fWLxca5WxbSVQisLtGXXt91mBxnJSH18xD/GNhNUHkd6ufAWQeVN+S+vtlEcGYE8tNihagtOIq1BqbB3w96BPQY3V0+4+MLNVMFX/Xj7/w5oAhze6CWkdlDcgu0PwNnfhe8ErEG0LEWKtb7oPVnAVv8ZO6QrKFYSYh1Q3NRKlbMDEi7N09Lnb+QDYkwXsxh72078D66i/qd3WIkzZSl5t9HLNg/TOY7p8lP9eGVVljyRvOuTnHL/e85XF5cq1rCyMV3iw3bbFm5OuPB96rvys8Q8iUIOxIJVkq8wNkCvHwAxqak/s6uzUHq8dJNSpKNbmFri/Ehnwoeui7mk1Vbytz5Weh6Qo6pSgacGPR+BEZfYVO5jTt4HzOM4+OzhTtIksZaYNLTaAaZpY0EG2lmHUmaiLGJFnbTwWmmCF9s6gMUESJsRlPDY4761da7rniwd0oE8Hyy454pqRRxMivWm0v8yTraoGeDrIKsXyfzwc4+OHYSplahherWaJD76UEm+G4P12DAhcYKzJyGfBEiIfH1dTTDPdsk+fI9yfBeClrD7Cx0d8GzH0bvvg2dSFDJ5jj3zBOwfSu6UKD1D/4AdeQtmizxHPddokoEEDTGWFzZfjwCux2Jicz5IoIfD0FRw5E6a1SXAywHeu6AswcvU6xhrfAKUD0N1X65EFpRqByBcC8kdwIaQm9C4n1Q2h80zlicBFFaSBHCIUWMVhpwcGgmSS/tbGU9+WBieoJhMhSovUclzKIoeojwhJfixbdyqJ7gCTu4KUmIm8+rvZgTJyUp7s19kEhqNvcW2PrMAY4/t4saVWYYJUwUhxBhYmQYp4ttHOJFphjmSlEXTZ061UCQSme2MtMUGSNK0/kyZWUmmaTKNEeY5QQzHKfKXCB+51sAgY+LTQSNxiEKgEdVkuaCdxTDW/BhyxL9Hf0tqI1B5bQUeVosCnw9E8IhgoOPtGdeC+rHJbhqbxTLrdUtUsefhNqbUNt/xZd4DwmJLSK0FZyewNZkSXUXImB3ELl9FhUqUtm7vFe+vkWwV5fbxehBqP8tqOeAAuhBohFNOn2hXaNta6yQy0zDNsgdBHdK2l05SYkkxzfR3FCguVHj2DBXyUO5Dwp7ZPronpNIgp4Px8/B7o/A4W/zjmx9X0PNoyXmk9nSQenpXfDQJmmbOZKDck3E3aZm2NKCv2Ec1752/koQEVhYpEvSavBQCHbasD7wNSpkebeq4ZQn1dSKC8+jyTjM5kS1KCSTaWgcDp0W4VuqiN/E97GQIgZn8leufTufyezi4dfkFKlWS/w2bofup2HLj0GsDWaOQHkCqlnWZSpEaxu4i/t5gA9i47CZ22mhk3HOkedC2rEGjjDOOlLsooMGorQh6d4lXEbI4r7r4qoI0U4j/4QqpylzHLCoL0ykWS5TFbG1vGNyVYfTORHAl5h09W4Q4dvSDI2NUnquMS3lks4OcTV7BMCGkLh+3CA5PBG0gB6tiUgsuTDSL5Gwnb0y12xukPzK4UkYW9teOMuj7smEbstmuPN2CZ+PT1JrmIKudpiLUIuEqGgY9eC5Cuxxxet9TxhO1mX7PIsJYAVstOGpMGxx5NRURn5O+rCnBie9S5ZVXTHpddC+Gdo2SofB3ntg39eg+F5k2IMoHYKmGADuIES2gJeF4h6oDQEO5L4L9ZlL+oKjhEkQpZ00HTSh0UQI0UaaGBHaSbOZdeygmxoehxlklgIhbEpUKVOlskbn1QYsqmgU4OLzui7gD8O6VyC7Ayo9kvenc6AnRcgstiuVqlQvKhUld2VmxifkFJihDw+P8vkaKXPUcSkyx2t8nTIFZlmat2g+SquDRx4VqszhUyNMDACXIiWmKDHBJG9TYRppl6zfEavXC1ZL/eADvUP0XowWa/jsVyDUDu5wMOTX9pK7bKRxtCISTL5mWf2wrHdKEimtLnB2gfsc4Ig32DsJi6UJzeMQp5ldTLLv0r+0mqiQGLsrr4OgP0oAACAASURBVAQJruuCLNEa4NLw4yOEN+Zwz3CTieBLMg16+h2T0nxBfL3pNMRi4n2KxT1mml7l+JkoXq0oYtR3wJ2B2ZdJJX3iMSiVoVqageJrUJuE1GNif8ACPMk+6myC2z8Cb/71+d6xtpL6t80xzX1dGre3xps9caYaY1CpQaYE2YqIiA4RN2krRke9mVMXnVDaSdJIlFOsQvjsGvJ0GDZYcv4taMgGjo0tttRZLetABCslNohwCIYniNUqWCGHYrIBDpyEgXf6sMOWVO/a3SDzkrIHczUoLDJHslBYFmjbp7agasXqXfsVtN0LiS6xPpSnoTgO7hy7s63YXhM97KCDDWg0j/AR8mQ4wh6yF0VtJyhwmHG20UYnDURwGCTDAUY4ygTlRa5kETbSyEfJ8QNcxuASzVccBXELcotcLxygHZs4Fn5BE8ZhGo/phdOLmcXFQiIuQnNDl9wa09J4BCAcFktCPCZD617FxUcp6K9CkyPL+p0haVgxFrzmWRf687IU7PniovF86B8RL3Df5a387z3av1CI1bYuhKqnZyCXJxONcyySYLZcRGsYCI7tDQ4klrSKr1CxLvpice7R51ivKzhKAoSTvlgrDtZg0IOVOrwtBxpaIZKERCM0dECiSW7pdvnZuUMWzE6+Iot5a071NOBLWTQrCVhiBK2clhU9tFgiygcv+RIhbFSkHRXupGa3UfVjtOVGSBClmRTNpOikmY100EM7Y8wyX0vaW6N6zApoxMZBkcCiFDhvy0rzRqKIPwbpfYqSpSnHgbQkyvl9QJ5LRgoyweSk6l5o7MSC81KeGYY5jRN4hQc5wvLOnu+053i4VMhQZAKLMBUyVMlSZJw855ijf0HtYFmnCxElTiMKi7mgVNxyrIPV04EPeIYrlfpfFcJBqTp3lbSqHxxbFiqw48QoUFnVhEw9K5Zaf0T+RvXXg/c+GwRYL4NNhDTb3jsRjCf+jPILkggXuk3ytnSB+COnSP/kKFbjygb6BhXB72ZiEtZ1SBOE9evF/N/eVsNSv8MXcv+OUgmKtSbKfruoqKEv4dk+o2OQz0PVzQKHoHwMIhtktqGqYFUkeev+p6DrLsiOnRfBsRD0NsHDPfBPd0Fnapz/e3KIH46myEZj0i9YBVehbAVGc6wbh/eXuzjFGI1EiREiisPD9LCJZv4jr1K89imZK+bRkKzCHatL1DfjSxesbguaLUj7MKkUXjQM23tJlPNYk0Va56bwUwmKm3bCyDvLxdhBb5A709CTgJaICOCjWSlU4WuJGM7jWAorCl7IZ5Uqc72TuZMwfQDCKfkiunOyBFuvsJ3HqZDBwWGOaWwcnuKfcYQ9vM4/UF5kRn+IMdaRwsOnnQYmqfIm40yhsIljU8GjhiSMSIEthyZxEKsScWuSupa/0/xCoo902m4OLV4vN4HFI0RZF9gtElgcweUgVcpoMpe44CjE+hCPyc+eDSKELQsGz0GpJEH9WFTKA7pX0ffknAt7g+qArY5UhEjaMFmDQRfOVmHOAwrwVpCr89qRlb/fmlMqw+g4DI/IzCGXF/N0vgD5PMPJBobjjTAj2fApIoSxSaCp+i6XrPFgRcBJoUNp+lue5I9i69lS/j4t7glavCyRoLTbfSE4UJdOguUV6jYnBK0bpVDP5gfg9g9CdgL634S5Mbm//VF45hfFxfbWt6C8/PLSy6M+IUul4cAbEFoH1VPg9i35JSJWimJ6G+XG25mOdTNer/PImSJtVU2cCB000k0rHTQRJ8IgE5xmlHNMUl6D87VCrA+biBDHooJPGZ8ympLlMdtQJzwETh3CU+BMQ90BPQb+iat772lGmGbB7KWxGWqulEBabGX2CvjUKDPLDMeZb1tcYIwS41TI4C2y3J+khc08QIImjvND/KDRRZ0aNcpUlhAZdde6xJel5KY1iQ6N7UA+kAd+HbyrPCx8NBVcyoRoIYW0Xq/hB5OMecvJpYSxdb7ZyWJZAxfQhQsCGIIEuSuizltb3hPmV2/cY+BNouJHsDt7UZEyLb+8h/j7PFQYakv/yp/nphHBIDPbSBTaWmBjD+zaKRGq5ub/h9kMfL/vf+XVcw9B9jCMf+ui4kXzeJB/SdZSdFXaEm/aBNufhP7X39FSpy0JT2+Ff/MIbG2RNt+//v3v0jo5yxcffT9eKiqh4pa4WCMOj1M+PskEPhaKn+AOHqaHe1hPL01MkOctRvgup95Vkgfe27I8K6XThnxQJ9nVF6K/DZZUW2m1YDoSYrqzHeV5PDF1lAbHp+DA4Fge68Q0fu/6d/h/2yKwMQEVX4Lq3XHo9CU62BSWFfsj82JXAY2+lHe5QhLcVXH4T6E0CV2PQ7IHlI0VaeXY6FvEUeTJ4OPxID9CJ7141ImRvOTLPcdp/pEzNNDMXTzOZj7GT5LkFPs5yh7GGEQRIsbtVBlgkv9KmSP0Rke4LQkzNWgJSfUER0kxkTkPJhc5ESsgjcUHiBFBsQ4bF3iMKAU0r1DhTy4xe1CWCN6Odpl0bt8iFVF8XwKbkQicPCNxI2sVOnG9UoBjFYkCb4vAjqgs5/9tRo6vVUFduFisqZl1NgMjozDRLY9LZQmVV6swNCLP5QooIIzDj3Ab22glUyszSx+K8cXPAKld0PUJaHsaws0Q28CvVj7Dpwd/m09NfomtDjQF5eXKWqwkK8Utw5k9cj8ch9seh1IGJs6AG0y2TrwEz34OHv0Z0Ux7/sfK32/J1IYgs/I+7IXGrRDvhsRGSGykYEX4QTjGEwf+AhuLnWwgQohpchxmkC/xjxxigOoa2R/mBXADNq04ZPEI4xPGx/GgPgrdeCRRxI7DeAWGtmr88Su/9tJQslqhFPzUz8NgPxzaD+Oj8h1ZphjW1CkwHHiGy7gU0ZfxUafp4F6e5X5+lCkGKJNjjjGmGGCAt9jH15afVL6aKKAxCokwlGs4DVVaejy6HoTcMBSnYebk1QthDcxRxMZiPc34+IH1pkYYGxePPKXz6bELdy9BlBA2Hj4Vaqt4rEoVchHi1ns8Di54o4Q6R2n7zTeI3gNOhzhWvfyFnNjlcFOJ4EwGZmZgphXa22HdOrjvbuhcB8+/COuP/imbRv4TA4OXuwpoKB2Alo2QbIP2bfJz6ACc2x8UaxZ2tMJP3wPxEHxpPwxmIOrA7ef28itHRvj8Z34cOlMigL9xFF7oI3RKk6QdjaZEjZcY4E2G6SBJFOd8i4cn2BREgcKkg4SAL3JdOdUX5dtV6Amy0h0l7WDDGvrr8EoNxnyg5mL3D3FbbohIMzzRC8kwDOdgz0idvSPnzptFumPQE5dStikHeuPS2wFE6J0twZEc2LGgKtJ6aNgu5+nCGcgdh/plWodeFX1fhZlD0PUElrb59LE0CXYwxzRRYsRI4eMRIcYM42zhdorkmFnEW7eD+9nKXaxnE2la2cWDbOZ2vseXGeccYwyicSnyJhYxbFIU2U+JMUIKHkjBbXHYHIXbEzJZOFCAL03AnotygLYS4hliNGIRDfztdTSjeOTwaV8kGQ/EbrR7J2zeKI1hNm+UeqOhEDQ1SufE1/eK1qvXJRJ4tQy4cltTtjwITV1QmoPJAZgaWJv3KVdg3wEoFqG3R/5oloKjJ+CHr8C5ITpLIXrpJYTDJHnez2a6aaSIS5ka/YslQdoRCLdArAfQkD3EXQd+iZHcEf6L7bA5UqdBweE6PO9e5Mm/Cl77K9hyv+ihSgEqeQjHJIf51Kvy5/Tfm3yxqyfeA/ENciJx50D7+PEeXkiV6Ssc4G3dT5gQZaqMk2F4jW1rPlDEp4RPEov7iTOLx0kqnKFCIzbTKG4P3OHxAXAG4NRqBUo2boYf+zSkGuD2u6G1HSplyM7ByaPwm7+2opd1yVOjxJXsFU10sZunsLDIMomYITx28RT38aO4lHmb76xoH1YNT0NTFMI2jdvqdN7uEU1D4yZo2gQjb8KJb0B+FSxBM+Qp43IfW3iQbeygizgRTjHKSYYZZIoJ5shTDoIcCSKEmCIbFGFcvS9iEztpZjen+DKb+XEG+Ab+e7h6bbeI8K0eB7cfQj0Q6pbFe28FK783lQgGSYzL52FoGJ7/IRw+Isu0p07D2SMWDFn0Ajn8Syz5KujYDulOSLSIyc0tiQAeeOMdItixxRIxV5ZW31MFuabt6oCHsmP82ue/xB/seliefHUQxvJQkbpNFhb/hod5K/B+hrHZTQc+GhuLMDazlHiLESYv1wD+OuP3i/BgCO4Iok+jGqZ8eL0mHuGFJMLweC881gPrU1Bw4bZW6db7Pw9vpE6JpDNH2HZRiA1iW9B85NAcvD4N+/JhVGOCSDLDtl+SQI4dA68EpRGYOwSZt6AyLmLYr4L2wApB610wuZ+rMwtn+6AwhMZmjI/wNJ+kmUxQZ7OJY7zBFCN8lf+XBGmiQVH3hezgPnZwLw00UyRLkRw+dY6yh2nGiJOkiXYywcWgwOtIml+N/rL4oz/RKrYBBZyrSk+ZU2WpfrY9Bm3bpFiJ70NyVqPHYRdhdhLmOC4D1KmhacHmMaK8SYXvUHrHN0Qp8fm2tcgqS/d6qYcdC1ZfWlvg1TeCzp+zYnW9rrFsWdtfvxOe/feybn/0B3DwO1KVZuTYFV9iWcxmYP9ByUxqaZZbIg5HjsP0DA/VuugmTZwQKaLU8OgizaNswsXjIJe4muqgpEcoBXaCrS89Tbo8QgMKPIcDZcUcPhXLW73oeUBmTE6RjZ1QDMrTRRIwfASOPg+DB1b3/VYdFYL0bRBtl5NCeVyWO+Ld0PEktD/OcPHLjOmp88vPa+UBXogP5xPhfOBZGjlFlQx1RrAoUedJfGJA5XxcbpXYsgMefxoeeQKaWmB2GooFsUX4PqDg4cdgz8tXfKmLkajhlfe0SpFRjjPOaaYYwCFCmBiNrCdGitqKXe2riAK2t8KdHTR0nCCcH2UmsGUpC9LdsPEJEcOzS7IYXJ4yVRpJ8BDbeYo72MtpGonzENt5lgcpUeUYQ7zGSQaY4BxTQeN0HSiKOLVFaokvh3YeoJEdhEhxB7+IRYhuniJECpccOfrJXqaM3mqgwkESaAXwxNdsJcFKXMiNXQ43vghWCtKBsMiVqLqabOBBKxZh4rhNuQL1ksLKW6Q9uSAs+jW0HEh1kJpzKLQm0MlW2ZafgkoWMsPvWC4tVOHcHKxLBX5MJbtTqcH0nM/IcB6OH4HRnJRKc+uM6Rwv0i/fH1rJUuEYk5xhhiIuc1ToIMlmmtnHCJrZRZOjrlcKGt6qifBdb8HRuizBFvSFPI2IDT1peF+33D8xDVMlaVYWsR3eONtDD/+aKf6BqDpIynHpScDTHfBgC7ydgbEKTNtJavEYlu2S3g2Nd0JlQgSvX5MTUesjog1GvgW1nMxhEuuh98Ow+RNw9ttQmoCJvVBY3B9zebQH9TIaOMhLdLOVTjbi4JBjlj6OcIq3OcVBbueRRUwucDdP0MI6sswwzSgWDllmiJHApcIcUxQW2BMW1gf2gKIvPtmDBRgPS2vq8RqMVGHCg3SXRGlTcZjLg6s88qEqc0M+J4KFySQKDziNSxGffVTfdalXSOJbezs8/j4Rv4Wi1Faue+IHnp6BE9mtzCTi+B2uCMtyVsKF9eusWKfvQ3Zc/I7hmNya1kOqVSa+bZtg+uw7Jr5XhdYyS59vUTg+IX1sp6ehVmeGAptoZitt+Gh6aaaRGEVc5lt/X0wHFonCGXTfn1Ef/Qa+cqB8jqr2g5UkJRXagGHv8q151uMQD1YGSviMLiF69MbfwsZ7oLUXahUozsLsEJRSEKtDc2zxxpPLoYNHidNJhBYiNGERocIUU+xljmPUL5fGfiV0HYqDEv1te0zEb7RDbnYc6iV8/NVu9Ly0XUN6mxbxOU6F41Q4h0sBn0lqbMUmhTSFCxNUAgH6rlYOj49A/2lAw4ZeKBWguRUSSdi/B77yJQivrR/Up06FInmmiZEmRookLSgUIxzj7BUaPcVIUaFAihaiJND4lClQYLVKlihpMrSjBT6+kzPfK5I/naOzs0AoDrFmiDVBvBUqc6sjgh1sWkiRJMoYGU4zyiwFWmmgi2bW0UQXLfwjh8hQpBYcs5JXEluVaVKYBlL00sBm4qyjzCQ2MarM4lEN2levMRqwwGoAp/Oi51ZgwbvxRTBarsCNSQiHyPgutVmP8YLCsRWFEy7N2ERRJIPl3xQ+VTRzF13mI6TZXP8UrdVuTk0fpF7WeOTxvTz16iyl/AgLZ7GTRdg7BPd3S1Qz4kCpBv2zcGQCDoz6UJqC4gXRUqJGiRoOFnFC5y3rA8xynEkaiJKjwnoaGCNHbk2NrWvDnJZucdN+YH9YQMgSi/S2ZmiIwEwZZiuQLkBbHOqexUSumbv4GHmO4PrH0Yg1uyEEAwV4dRoO1NJMhaUSuuXlSN8hOWqVSahOAx44DRBph0SvvLcOghDJbtj+0xBphNRGeRzvgNkTkDkOpRX66maZYC/P0UYXMRLUqDLKIC5lCswxzGlyF52Em+nAxsENUiCqVKhSQmERJY5CUaZI7TK1In0NBQ+Gq5LwVPBgwoWMBVYzbOyVztS1OpSroBMana5xJJFnJgO3TcYJaUUJnxE8BqkzvshFXyNftXgU1neKnpuegYkpyObk/ovDdzNqbaDaHIVUBXKTMO3JenndZTVrdFw1SkEoCoUZCVuGwjDZf6EmeTgW9FJf5ff1PLm5rrx+TcRmlToaqdRRoEqOCgPMcohRXmeAcd6dYeaisWoZnNocTfljOIj3PoTFBmzWY3OaOvtwLysVHyZGFyEUEoGsBMvwmaCnZREfd5E/xNSAaPvclLzxfb3QnAQnAvZtkG+Xjn4vHgr+w44QjNQlatBqQ0TBscuHb+J00cRukmwgThcJuqiRp8oMOfq4bC2nK6JldlzLwex+qM2BOwtuRmbTc2+vqAD/1eAgnmCFTEYKeLxAnlNUOEEFF4/NwC4UDcHktQGfOhAFymjGuIrDtlgQy8O3vwbdvbBuvUSBqxWYGodTx0QUr4ClCrEqRTKMYBPCo0aUFB51zvE2wxyleIWOfamgrUmaNiLEqeOSZfrqRbClzqcPADCUg+NTZI+7JLMWsd2Q6oTWHWIFOjeyehUjIoSwsShSZZRZZsjjUg+228SJkCJGnvL5utVROgnTisKiytRVh9MUDiGSxGgLxPBGFDZ5zuKSRV3CSrea6Dr4c1AblECXiklZ8HoBvBXUg76xRbAKZmM1T6rlr2siW3bJKgWxMFRqNIZHSbiKMIoUNt04dOEQohSc4KXioEWMRn8rdxZ/ihbuoDDxOSrMBB1qPEpUKV3kxxvPwYv9In7HcmKHyFQkuXuiAON5WKz5toUiTZRDjPMmw4yS5yxzzFDiDtbRxwz7nWH6IpNUQxXiwXHluVAr3xg+u5KW28XEQiJ21yVhtiy2KoXME0o1qNY1HmU8SmjqFOuaXA2mqvD6DJz1k7xSbeBM+zbKODAzhp0fJr0bvDLU8/ITX5ZN5jsF+VXZZkeludu6R2D0ZaiXINwAHQ9L8zf0ykUwwAn2ceLisjEqBjrMEBe3cQqRUF30M0SEMErXcKmQDapKZJjEIbRoRYmF1LVEgvMezNblHfJAPQ4dXfDQHTJHHBiV3iTxCMRTPmc25Dl0BmrTNtqDs9Q5R53MIgLYtiDkQLksxQwmJkUEDw7B8f4IGb+D6TmHl7IfxGuy5SAt58H3pGyAn+X6EsA2ROJS5LaUlcK2ThiqJQlnai37vtYEibZxwmhgigKnmCRPhaOMEcLmDNMMMkNmkSXgDBrQRIE4iljQpyuOYgchduCQQzN+mWofGwjxszQCMEGdOTw0sJ4Q/bjM4XGO2qIiGGB6UHyPvR3w4Sel941bh2gr2JtgV6909BsuKXg0Bq9VpIzJ7jD0hKDkQ9aHnL9oAQwJWXjBUrqPQ4wQKTwqq5uUkz8h5TNDjWCHZfzzV1lqYQVIox8VTIB9xqkxjMsYNWbxiAMPYhFF0YmiEYhhkcPHBwooJrhkJd2lMT4KX/sbuPt+uPNesQ6Nj8j2eh0mV3qSXNp45ZiinzdpYQOT9ONSpkyOSfoZ4+Rl/69DiBbWB0VHEygUFUr4eMwwRu1qAkuKoNSqL5GeN4al8tNEAS/t4RZEmDlRyA7Budekoc9K34pgMmRhEcZhhjyDTLCOpqCUnE2cMD4+sxQYI0MJlzibCNNIA7cTpYM6RbK8TZUpuFyd5StQJUOJcWK0E6aBBjbhUQF8fGrB/TXEEctDfUyCWl4G7GapYeDNQnUFX9cbWwQ7tlghElG539kC6QT0tkN3KxwaYG5qjtmJIkprElhsI8ynaSCFRR8uOXwK+CTYQBdPECJOiTEUNjYRYrRh4Sw6g50tw/5haIrB148ufbfD2NxGO7/Kt3ibMdzggGwlTi+NtBLnpeaTNG7xaW2VgBRAfgKmTkNhSpb7L0ad77YDclBef2o5YkNMOkmTq8r9aBBBL7gwkq9R4CiH+V9wmaFRZxkuwUARhmph2H03PPI+uO0+KGRRh17EOXGK5Ob6+V4ofhBwdBJi8yueFWGsNSS7oGGTiOJI0JI+c1yqTIVT0LwLRn64mp/YArtLvrneBNKvSwEhsFoYchyG1BjoCmmvRpMn2dMViswwuqTISdGHvQuS3zZHIdUMDS3Q2Qo/9iT0BU6eeBRyRSlKYCnxDH9XlThFjcJl3isakzyuYgkOHJZC+60tMDhk8Wp/N6/ZPw3xNHR3yFUgMyqCsla5cLueCEfF+mDb4NUkAux7clNKSh84Yfksa7UU7vtSJg3opYlh5nh+iX46FQlWNuqAlkIop6jTi00IRRpFMxZd2CQvs0boAD9Dmp+hkf2UqQVL8DaKbkKksThMlbErnEvaG+HHH4OPPQz/39/DbF7iEl2tsGkd/NyH4ffeDlG7IyKt/0oatobhxxKwzoY3KvBcScTwRWQ5jU+dIsNEaGKCPSgUQ3wXf7W7aVWn5HYNqaLx8YkEE5pDlN/xzXSBI2i+gsdnsekIxHAXijPB2K3KhLNSgq9+GZ77NmzeKsL3yKVrLS+Fpe7VDOfYy1fp5W7OsGfJr6+wSNLEJu6giQ48PKoUKZJF49NOnnEGzrcbXzaevvAp8lU5lXs++JpcxudMEWbPSEJcbgjG3xY7xHKxsbCDNHkHm1DQPe5tBqlR5xF2ECccfGapbjPCLG8xQJUQW/hFWnmMEA04JKgyzTjfoUAfHiXqFFjJMTLJXkqMk2OACE0k6WaE5/FwKTJKaYkNVVaKlQTqUJ+U2JJ7JqgMMQX18WVVRTzPjS2Ca3XIFCAZk7pN1Rp85AH4wF1y/8XDMJ6hD1leOkuNVynxX5gjgqKCJhe4vXTQhXycNxjlZUpMYOFQo4jGp3iJpBTXg5PLPGdWqPMKg+/aPk2Jvwm8Tvc+A3f8qCytWLZYT2tlGHwdDvx3mB2Qxwvp4AFSbMAhRoFhhvjB8nbsPaDowkheziUxB1pispxfqokv+FiQdJ1DMmrGq4hujCVg9z3wi78Ltz8sf5RiDt3aiecP4yRfpPFuQIvFz3elMWBlAiZflKUSfIg0i9jN9kFxFNw8FEZFUETSrMhTdHl88MbBahdvgp6Tb6+zA5zNQZRYZjRZu0zWn4LacVnvWeGFrL8CjMJtYbhjC2zqkr9xPArtzXDwJOw7Jslr6b4oh6hccbpULMrq/YYuqeZVLEJPNxzLbOTNmXugxxEv7c4npWvCsRckRJiblNv1RrUIY5eLKClo6pTPkptecz/zcZaxjqeg8V9BbQDKey8sAWpgMBDsp6njAXcQ4uxlRLwGzlFjP2UGcJkNKoSIF9XiNC57KVG8wrFoWdI9/q3TMJ2FuQIUqzLhak7Bb/wU7Dnm8uIbZdw3KtDpQIcNdwc17z6RhGOjkH33ytkcx/BxqZEjRAqwKDOGvoFyJZZLDc0ENboCobOQOtCPph+PMpp7sQgDg2jexOf4aq24uC68+sLqvFbAciKQNSrLEsAggjBEhB08wG08xBgDDAclRx3CpGgGoEKJInNUVpp0rhA/n2WJCM67lPIu507CuVdW9pIg7ZKdQACDWKSKzF8EpVzaNDlGmOURdtBFMwrFDDkOcZaXGKaZH6WJe6mTx6OEQ4oo7Wzk5xnl62SussFFgXMULtGgaa3xF0wo3NMQ2iy5rdVTIoL9FbhdblwRHHbE8hCLSCS4MSmhrq+9Ct/aI6GI5y/MWivBiaGG5iRSbSCJdf50UadEmXEqzFCnHIjfGkXGqJIhy5lFd8P1pPjDamHZ0PsIbHkc4s1Qr1wQu23b4MlHITcGlRxkg0QuixB38Uts4ROk2YKPS5YBeniGDKc4zhff41p+l6ZUh1oBKnVIR6Bcl4hkpgLTRfn5LsJR6N0Jn/xl2P0QDByD/JxE7ZwQtYc+yak/fpGd/xYS81WijkJmL8zug/xJmUQAFEfEBuHm5ZYflL9xtAXcnESFVx1dAK8oIjh0Jzjbwd4A3ogIZBUFq0m2qV0ijKuvBemvK2NzFzywWwKz9bpYUI8Pivjde1S6UmsNisqSL0u1GgyclUCpAjZthIJTBHtaEuDqNfHXZsdhYJ+UCJhb28jA2qGl9MH8/WuMsx6i90Hig3I/+TE5pkvPQfGHUH4DKhfphZepsg+X1GVmdh7wOmU8IBIsv8/HHfMojlGluoTPP52Fb78hnaFbGsQOUfekfF44JHaaOzbBa39fwO0NQ29Iioj3ubCvChEXNodg1oPxdx+ROfqoUyZCM1lOkKT3OhiVtcUHhi9pQhG+gc8ImhSKUTQnbvq/yuWZF8Ht9NDJlqCubo46NRpRTDGEj0+O6cvmWVz5jRTExXJJwZVb9epXjGrUrzi1y1PmCOcYY5aNdNBLGx4+A0wwRIQN3E+Ww7hkUFjYxEmxnTR3k2IXBfqokWWp1pTrFl+aY8TfD7WRlVWGgBtVBMfCYntoSIjBMRkVw6KvYWwGjzBUtAAAIABJREFUSi4UK9AQFzF8EfMLGtaCbR4V8gxT5x8ZZw9h0iisIAEje1kRuRr19e0whBNSla33YSlNPNMntTY9V57TPrRug7btkFonBbmpxGjlTnbyszSyDYVDmQkUFnE60fis42EmeWvt/TpLpOaLlSRbhdHA7ur5UsLrkn9Kx4HmDhgdgLMnIRf4NiMxPD/CyPfiuNMloh3gZqE8BMVzUJ0J7BEB5UkYe12S4LqeAK8q/i00VDJQWLM2r1qMS3YXONsQ+VEHlZQ+6M5OEcjzdV5qR8XzoudzvpfHyCS8+BbMZuGvvisthV8/LI+LFfl7r+hT6AvH+7lh8NUMxE5KXSylYOac9ModPS4Wg9LVleS5tlxfgsJugcidUNkP+b+D8HYI7wBnA4S3vVsEe0ARfT4AsBgaGKLGDHXWE8IOtkWxiKMYo74kU1W5CsfOwtgs/IuPQFNKTtFtaekX9OpRGJoOmgeUAv/vQA2+XoQXS9LecH8FZi4lJDRlJqkGeRoFhrjhL+JL4EpHYB0YA0bRTKxK/v9asepLbIviUWeaYQ7zMjVcQoTx8QJPcZ6X+FtK5Khd7SqCryVq42s57630hLpC6nhMkydPhSGmcLCDLJr1QR5TgRpz+Lg4JHCIYxNHYRFCEsp9XKQR9w28oqKhNipNI1faHlvpteyQtEKUUpffqZAthrNwSLzAjn0hPOXWxSZR90RVlS8924ugguJD0gs7RBKLECXGcYgD6vyBstYoWyyIoRi0boVEG1RzEgXWGuwQRBvkufFjMHkiEMH1EHE62MDThIJSMDWKuOSpU6RGiQJDFBjlch16rmssGxpb4a5HpW/r3DS4VcT4G5axP/gy4XQNJyHa0StJXeBLJXYrG9JboFaUKnjKkQTx8praAR1wNoHVJhYIHZQ9U0mwWsBuA8JQPwG1Y8G3OjB9roBwCNJJsZ5GwjAxKxHhVccJQ6oNks1ysJbzslRRLQYVIQxXi4pDaCNEdklzNBUCuxWslNiW6+NQ/N7VvUcS63xutxMkZ42v4Jxx/3aJ/IIs1KXictwdOwdDk+DFFaQtSFkQtWCsLp11JuvcyNfja0UCmQ5cB5Vzl8Aq+ZWvwCbuoJF2wkSpUqZIlhpVBrme+6qvDKkZYeGjUKRoYBc+bmCWqaMI4ZAiRJoifZQZDQxPXmBPubEnkyoJusS7PobWekkzrxtTBBsMBoPBYDAYDIuwVBFsXflXDAaDwWAwGAyGmwsjgg0Gg8FgMBgMtxzXqx1iCukGOX2t98Ww6rRixvVmxIzrzYsZ25sTM643J2ZchWmt9Yev9EvXpQgGUErt01rff633w7C6mHG9OTHjevNixvbmxIzrzYkZ1+Vh7BAGg8FgMBgMhlsOI4INBoPBYDAYDLcc17MI/s/XegcMa4IZ15sTM643L2Zsb07MuN6cmHFdBtetJ9hgMBgMBoPBYFgrrudIsMFgMBgMBoPBsCYYEWwwGAwGg8FguOW47kSwUurDSqmTSqkzSqlfv9b7Y1geSqk/V0pNKqWOLNjWrJR6Til1OvjZFGxXSqk/Csb6kFLq3mu354bLoZTaoJR6QSl1TCl1VCn1K8F2M7Y3MEqpqFJqr1Lq7WBcfyvYvkkp9UYwfv9DKRUOtkeCx2eC5zdey/03XB6llK2UOqCU+vvgsRnXmwCl1KBS6rBS6qBSal+wzZyLV8B1JYKVUjbwJ8BHgF3Ap5VSu67tXhmWyReBiwtU/zrwA631NuAHwWOQcd4W3P4l8J/eo300LJ868L9prXcBDwO/GHw3zdje2FSBp7TWdwF3Ax9WSj0M/D7wh1rrrUAG+IXg938ByATb/zD4PcP1y68Axxc8NuN68/ABrfXdC2oCm3PxCriuRDDwIHBGa92vtXaB/w58/Brvk2EZaK1fAmYv2vxx4EvB/S8BP7pg+19oYQ/QqJTqfG/21LActNZjWuu3gvt55MLahRnbG5pgfArBw1Bw08BTwFeD7ReP6/x4fxV4Wiml3qPdNSwDpVQ38E+A/xo8VphxvZkx5+IVcL2J4C5gaMHj4WCb4camQ2s9FtwfBzqC+2a8b0CCpdJ7gDcwY3vDEyyZHwQmgeeAPmBOa10PfmXh2J0f1+D5LNDy3u6xYYn8B+DfAX7wuAUzrjcLGvi+Umq/UupfBtvMuXgFONd6Bwy3FlprrZQydfluUJRSSeB/Ar+qtc4tDBaZsb0x0Vp7wN1KqUbga8DOa7xLhqtEKfUxYFJrvV8p9eS13h/DqvN+rfWIUqodeE4pdWLhk+ZcvHSut0jwCLBhwePuYJvhxmZifvkl+DkZbDfjfQOhlAohAvivtNZ/F2w2Y3uToLWeA14AHkGWTOeDJAvH7vy4Bs+ngZn3eFcNV+ZR4Fml1CBiK3wK+I+Ycb0p0FqPBD8nkYnrg5hz8Yq43kTwm8C2IIM1DHwK+OY13ifD1fNN4LPB/c8C31iw/TNB9urDQHbBco7hOiLwB34BOK61/vyCp8zY3sAopdqCCDBKqRjwDOL3fgH4ieDXLh7X+fH+CeB5bTouXXdorT+nte7WWm9ErqPPa61/GjOuNzxKqYRSKjV/H/gQcARzLl4R113HOKXURxEvkw38udb6d67xLhmWgVLqb4AngVZgAvg/ga8DXwF6gLPAJ7XWs4Gw+mOkmkQJ+Dmt9b5rsd+Gy6OUej/wMnCYCx7Df4/4gs3Y3qAope5EkmhsJCjyFa31/6WU2oxEEJuBA8DPaK2rSqko8JeIJ3wW+JTWuv/a7L1hKQR2iF/TWn/MjOuNTzCGXwseOsBfa61/RynVgjkXL5vrTgQbDAaDwWAwGAxrzfVmhzAYDAaDwWAwGNYcI4INBoPBYDAYDLccRgQbDAaDwWAwGG45jAg2GAwGg8FgMNxyGBFsMBgMBoPBYLjlMCLYYDAYDAaDwXDLYUSwwWAwGAwGg+GWw4hgg8FgMBgMBsMthxHBBoPBYDAYDIZbDiOCDQaDwWAwGAy3HEYEGwwGg8FgMBhuOYwINhgMBoPBYDDcchgRbDAYDAtQSn1RKfXbwf0nlVLD13qfrhal1D9XSr2y4LFWSm29lvtkMBgM1xojgg0Gwy2JUuqHSqmMUipyrfdlKSilwkqp31RKnVZKFZVSg0qpP1dKbVzl9/mhUqqilCoopaaVUn+nlOq86Hd2KaW+qZTKKqXySqkXlFLvW/D8xkBoO6u5bwaDwbCaGBFsMBhuOQLh+BiggWev6c4sna8i+/pTQBq4C9gPPL0G7/VLWusksBVIAn8w/4RSagvwKnAY2ASsB74GfF8p9cga7IvBYDCsCUYEGwyGW5HPAHuALwKfXemLBNHOfx1EZ+eUUn+ilFLBc5ZS6n9XSp1VSk0qpf5CKZUOnpuPlH5WKXUuiLj+xmXe54PAM8DHtdZvaq3rWuus1vpPtNZfCH4nrZT6glJqTCk1opT6baWUvdLPBqC1ngO+Dty9YPNvAq9rrX9Daz2rtc5rrf8I+Evg9y+x/x9VSh0LosYjSqlfu5r9MhgMhtXAiGCDwXAr8hngr4LbjyilOq7itT4GPADcCXwS+JFg+z8Pbh8ANiMR1T++6P++H9iBRHP/D6XUbZd4jw8Ce7XWQ5fZjy8CdSR6ew/wIeBfLOuTXIRSqgX4BHBmweZngL9d5Ne/AjyqlIot8twXgH+ltU4BtwPPX81+GQwGw2pgRLDBYLilUEq9H+gFvqK13g/0IRaDlfJ7Wus5rfU54AUuRE1/Gvi81rpfa10APgd86iKf7G9prcta67eBtxGLw2K0AGOX+UwdwEeBX9VaF7XWk8AfAp9a4Wf6I6VUFpgGWoFfXvBc6yX2ZQy5pjQv8lwN2KWUatBaZ7TWb61wvwwGg2HVMCLYYDDcanwW+L7Wejp4/NdchSUCGF9wv4REfEG8smcXPHcWcICFUedF/2+QlDZ/6wFm/n/27js6svS87/znVkQhNmJ3o3P35OEEcobD4TBTjDJlSlSwJFtHK8kr+azT7nr3aL3a3WOtk47Peo9kr49lakVatpeyZFISRTOKmdTkPNNpOqOBRs5AofLdP97qMDMdgG6gge6u7zmFUKi6961C3Xt/7/P+nufB65LT3sAupDFct2XM4N+h7ypeD/y9OI47hOh2J7Zf8LeJS4xlK2qYvsjfflIQ6aeiKPpewzvcoEGDjUAjc7dBgwa3DPWl+p9BMoqiswI0i01RFD1Qj8iuFmcEcXqWnYJdYdTrReWbqCelnSOKom/i70dRtD2O44uVbDuNInriOK5c06hfP45X6uXi/k0URW+L4zjGN/HT+OwbHv4zglc4X7dFX7idZ/DJKIrS+DuCdWLHao2zQYMGDa6GRiS4QYMGtxI/jiruEWwLD+Ju/EDwCa8mf4j/IYqiPVEUteKf4Y+uRqTGcfxN/AX+NIqih6IoSkVR1FZPyvvlOI6H8Q38yyiK2utJefuiKHrfKryOPxCi12eraPwmHoui6J9GUdRVH8ffFd6/X3/jk+ul3f56FEUdcRyXMSdEjBs0aNBgXWmI4AYNGtxK/CI+G8fxQBzHI2dvQsLaX1/lurafESomfB8nUPB6b+1K+Sl8BX+EWbyKh4XILEGEZnBAsCR83uUtFMsijuMSfgf/e/33I0JC3wM4KXiBfxIfjeP4Ly+xmV/AySiK5vC3BL90gwYNGqwrUVjdatCgQYMGDRo0aNDg1qERCW7QoEGDBg0aNGhwy9EQwQ0aNGjQoEGDBg1uOa6LCI6i6GNRFB2OouhoFEX/y/XYZ4MGDRo0aNCgQYMGl2LNPcH1tp2vCV2GBvEMfi6O4wNruuMGDRo0aNCgQYMGDS7B9agT/AiOxnF8HKIo+s/4pJDBfFGiKGpk6zVo0KBBgwYNGjRYMXEcR1d+1PWxQ2wTCrmfZbB+3+uIouhXoyh6NoqiZ6/DmBo0aNCgQYMGDRrcwmyYjnFxHH8an6YRCW7QoEGDBg0aNGiwtlwPETzk9e0xt9fvW1eSskioKmCNfdEpoiTNO8Mt3cbcARYHqBXWdNdrRvNONt1H83YKo0w9R2mauEqtFL43aHAxshnSSRaWzt+3uYvFpdffdzlak7SnqMYsVllofN4aXCs9W7ntfpIpzpxgdpKuPkoFFucpl6hWqZap1cL9NzCZLF093HEffVvDS4siEonw8opTzZq+9LNisaqKvAXjRgw5adzweg+/QYNV4XqI4GdwexRFewTx+7P4+euw38uQkNEpo9OSM8oWxNbuKhqlSLXS8y62/Ci5fo7/O0ozFEtuuAaiiTSb7mXfL7P5A0y/wMF/yexBqnnK81QLbrjX1eD60N5MW/N5wdvSRF8no/HyRXBnmgc7SEWcKbB/viGEG1wjm3r52M/T2cfTf8ErT9GzhcU5JkZYWqRcDOK3WrnhRXBTM7vv4Kd+ibc9RqkY9H86TanEzP42PV/6Z2pqJo0ZcMRLnlRUaIjgBjcNay6C4ziuRFH0d/B1JPGZOI73r/Z+oggR8TKEVyQhZ7Md/opxz5jyooLx1R7SOWoFkt207GXT/aRaSDaTbArjXh/vx1nP+Mr33rQ1iPpaOYjeVCtNW1gaplQ7HwWu5ldvtA1uDhIR7S30bmJoPHz67tvH/hMsrODzEuOD3TzQzukCnz3Ndyev/Lx0RC22hlPeBjcsR18O0d+7HuLB93D8AN/+wnqPas2IIlJpmltoaSObDb8nUyzlmU8kbNKlquoFf+n7vuYVTxtycr2H3qDBqnFdPMFxHH9F6Hm/ZmzZEw7gyTPk5y//2EhSs35v9Y8M+YaX/daaiuBkMxLMvEB1MQj1mRepFrlchbpUjloliM1VJZGhqT+cBRdPWWnItnkb2e5gf5h6geIEiRTpdiqLREvWS9k32ODcs4cHb+eOnfzsh5mZ55VjpJIcOc3o9PK2s7WJ1hS7m+nKsDu3vOf9cg+HCnzvCueIBrcoz32XqTEWZoIl4iamXGR2iolRUila2+qXhHnGzvDyS0WDvm7AUV/3BUe8at7Meg+7QYNVZcMkxl0rza2851Mce4nDzzJ2+tKPjVUtGnTIpxVNKpld07FV81TSTD0drANxlco85VmXFYtRgkxLEMKlhVUc0Nl9Riv/9+f6w7hKsywcozhOeYHiVF2s1yPyDRpcjGQiWCF29LGnnzMTwQucTIbI8HKZLPH7A/zuKSZKDC9zZTqOLz/xbHCLc/QVjr3K2GCwPNzE5Bc5dZTvfJkde9l9O+MjHH6ZF57khR/Mqfp1g04qK6o2/G0NbkJuGhGcTPPYj3Hbg8Ha9fTXGT118cfGKuYcc9QfIFbdPKStJ2jC4hjFNbA71UrBK6sWIsBqrhgtTSRp7SOZYX6E/MQqDSYuUxgJHoZ0e1Dky8xkK06Q7iCRDb7fZCaI38J4iAxX5qks1F9jgzUl2xH+bas6QVpjmjJ0tNLZRjYdEnAy6eCNr6zAozBUYLQYrA3lmMoyhO3729iS5thFPps/1ckL+Yv/bb2JtiODReLR9R7NMtmziaklZjfIG5rEh3M8mOVgiRdKDFwgcrfsJJMLfp35mZAEdwuQX+TlZ/gvn6FnMyODDJ4M36cnKmLHlGyQ/2GDBmvATSOCJ4Y4c5xalXSWdObyj6/Km3FQJJJKFHTcTte7KE0w+mUWDq5uhYNaCRXUlr/dSpH2fnrvZGmaw1+jOLcao4mpFYMYjhJWErqtlYL3tzwXqlykWkPli0q+Ht2eayTFXS8yLWGilEiH3xNJUtlwDBTnKG9AT3axHARvKsm2Xk6NBPF7VsO2t4RKEUcus5IDxZplXZrTURC++7I82kJ3ive1cXcuJNK9vBTE74kicxvVKJwiyhDfSHlYezbRmWNkgaVy+Adnk4znw8zlehNjsBJE8Cdb+Fgzpyq8WuJkhXSRUoVC7pZaKqhWmBwLQjidZmaS+TmKS6FaxPKOsgYNblxuGhE8NcJTX6GpJYjhK/mCoSKE0OLFEN3s/XAQdMURCmcoz1g1MRdXrTgbp1qkqYNtDwfBM/IqY6vWbDquZ7YVl5dNeAHlmXArNYf3Ld0aNlErh9sKN9fgKqlVzltmWnpJZsN9hZmNKYBhYpaTI8EG8dCdIRI8t8j0HIUS6RSty/T3LodMxO4Mb2+mPRkCfQ80szlFvsafzfBinufytCdoSzC/0T6/JeKzc9VmrNL/NiHSJCtveeo6KSEjLSkpITKfXBLXaq9f0WpOs6+TO3sYXQhjXiqTS5NJhujweojgGl4t01XgjjQPZNidIo5Yag519manWWoLb3a2meIGPYhWkTiuC+FRigWKK78cNGhwQ3PTiGB47lshs3VxlrllZIqfpTJHcTQIu+ZdpDvJ9gUv73rX8a2Wybax85107WXsoFVIOkvUy1JU6yUcrm6D1XzYRCIVxFiUChUv4loIMjdYW5amwnvf3MOWt4afR15gfpjy4nqP7uIMjgXhm06GiO/xM5wc5sUjzNc1x+Q1WPSbojDXrMThU51ANkEZBwvcnqU7STXF1jQPNtORDI+/J0ehxovLLNN2vYiLRGk01yPCq5SvlZa23WavuYRv7AIikZwmPTo0y4lEDjWfUS2WKNdD+cmIXR38T49RqfH9U0EUb23l7t4ggF8apbyOKuv7BSYj9jXRnGQkyekt4aQ1MEdlktZNdPdx5uT6jfM6EUVh5bRcprDBPvcNGlwPbioRPDZwDc/9WrgRCicURmyIJf38JCMvU16isBr5e4mm4GFIpELY8BqJq8EDfNZRUVloNMq4XvTcTfdtdOyi715mToTPyCr8W9eUMxN894Xw8x9/e3W3/aF2JiscLjBVDVHd78/zI22MlynWy6OlIzpTfKCNX9/CQi3c93x+44ngKCmo+FX+v+Zk3WX3skRwq5xO7dq1ykh71oEQLe1qZa7IdCHMbN6+jQ/s5ugULwzT38b7dvGrD/HVI/zpIfLrPEOe6Wf8djp7SRVpG+alH563QdQqoWjurUAUhPBGtEBHGkWGGqw9N5UIXi0KZ9Z7BOeZPsGhL5NuZvIo3fE9yvLyxlRWui6a6aoL4CaaNpPMMbc/lHioXd1ZMK6EhLgG15/mbrY8wI53svVtvPQf61H5G6A6x9g0n//O6m4zwjtamK0GITxVn4yVYv63Id7VGuwROzM0J9iU5LVCEMAtCT4/HfzBG4IE0W4SO0nchSzyxOPUuqm9fG2b32ObR93nNjs0azJg2JBx46bfZI/YrNt8pmggN+N0a57NrZT7mMyHln0tGdoydDfz7h2UqswUgv2hv42tbQwv8MyZ8Lf1ZuhY8MxdWCv9rADu3xOWKkauPDGw4/ZQlmhkINQXvsFIJEJZ0bi2sUTwY+28bxO7mvjGFH+yWgnhDRpchIYIvgit0jKS5pWU1zkcvDjJ0kywG9TKCR/2W076huP+q7mVFi2P4xBWSrWQ2879/4JT/ym0r8uvcFsN1pW++2jfRuuWEAnOtIZb4gY6olfbGhrjd8aCyL0nx3vawj5erCe/PbMY/L9fmeX2Jj7eEcRyRzKs5MfWYfEnIvlxLAVhG08iS7Q53BePEveF+ywQz4RqEYmY2iEhQnwV7LLVj3qXnbZ61H2edcBrBoybMmPeRDTnePcENSbSZTURmYy4OU25wmuTwfJw4YxrusB3T/LkID8YYCLP7d20ZvjhAPvHg3ViIxDHLhpnHBukp5973s6BZ97891xrEMpNudBU4xO/GKpJDLzG0Ammx0IU+YdfWr1ocm5nWJqMV1+pxvHZBLj1Z1uWt7XykS7e3UFXmuESfzrRiAg3WDtuoEvm9SFCpyb36TWjYNiiUXn5q73aXCNx9fxJKhLZ4h1g1LMrF8HVRcpRqG8WV8kPru5gG1wXWvrI1jv2zZ5m8CnGDzBzMviBq7ewH3uiEroW5hJ0pWhNnj/JLcXhNldjMR8eW4lDFHhPNvze0kvnTkqLjB26ToOeJ9pK8r1BBNdGiIcjbBVXNrH/OE3vEFfvC2n7iWFGvhqisFdJTlafLlt0O2hOu1Yf8oikpEVLRuMpwwvTfq/1yz66+LCmatrxxJAXZ4+Ek2TxrHK6YAyLZb4/EJTV6GIQyYNzPH6aEzMslNbXD7wcKuVQXiXXyr77Qtvklg523EZrR7ht3sH8dDDRjg1RyJNfYGqUg8+G51eu0buSaKJ5Nz0fpjIbShaVVzfaXItR2TgCc08T/dnQCn2yHKq3FFb6cUlhR4YTGyi03WBD0xDBF6Fd1qfcrib2Had9y6lLiuBEgvYuHn4vwwOcPBw67qwNsUXDIimR5MqffrZYcZQKkYUzf8rcgZAZ2OCGoaWPVHO41s4NsjgeIsD5iRCYW79W3BuDuRrHi6GMWmuS0YvokYVa6Bx3lskKM1X67uTBnwve6q/+r2s80AgtxLNEe0h+EBWqT1P5YkSxg2iX2uQWmj9J6h1UBsl/msmYdiy56mhwVc2MhXOe4D5dtuqRlVFUMlAY8VzqsDvz/SZq06oKLlsyqxYH0XshMwVeHQui+EYhishk6egKEYg9d7PnHro3s6mHjp7QVOP7X2RmIgjnxfnQoWngtavaZU67qrKyolgttBltu48dv8jIF8/XQVxN4vUp1HEp2pNhAnuqEAQwPDO3wnNZFAWvUy6iEN/aJ8IGy6Ihgi9CWsKj+nVqMirvOy6dcZdMs3Unv/Z/8Nz3+LPPcuzA2nisYrFDPieSUnCVUYG4TGmKhaMsDbF4wobIAGywbBIpUplgkSnMBMEW18KtrT9Egsv1yh0bPUlurRguh9tyGSyHxi9b3sLb/xsqhesgghNErcR5zJPYQ2IrUZbaU9ROJUluIrWP7G4yCQolUeJFcZZoU/Dkr1QEt2mWlTFj3rhprzpmqx5njGvTrFeXTm3GTfv4wtvlFTzrgIOuoixFvrz+iXArJZ0lmwte3xMHQuR3YSaI366+ECU+8Ax/8u/CTPQqiSSkNenQq89uo46bNaasGERvdguZvlCzs3aDvYcrpDkRrkLjZUZKwZ5Ui/n2Sro0R0JTlNlqWAoqVhsiuMEVaYjgNxBjTN5ve1arjCcNG3GZKEYczoNxjbe9h4FjLC1y6sjajO4Z/0K3eywauYbNVDZW9l+DFTHyYmiMkcw4l9tTnAsTsnSOrn1BxC1NMd/4Ny+b9v7wno4eCGUJ15wqcf0wrhwNYjj1IbQIM5xUF8kOUe3TosQ/AXGpQxz/dxK7f0vteHxVUeDHPOB+t5syZ9y0YRNGTJoxr6yCyJwO3/CkrLRt+rRqXq1XvfE5Wy7hRL0o+5f/YC12IqfNLvf5pH+gxSb/3v9s/mxwo7LIzFMc/g2G/rA+27k5SUXc3xp+jmMO5kM0eGURYMHX1J0KNZ+nNojRucGGJ4o3YHecKIrWdVDtMnJSYiwoX9YP3NzKYx/h3R/n6H6OvMzxQ4w3xEeDNWbvh8l1sjAS6gJn2oKISzeH6PDsKaaPr/cobyxaN9N3F+1bePGP1nEgUYq2jxGlRf3fkdgzI9FXb0rzCrUX1nFsNzsd3cH2cOrwmu2ixw63e8TDPuH9fsFzvupf+0Xzpi54VILWO1g47FYIaX5wE1sywad/rMBzK7EV7s3QkwpR4KUaAzd35LzBlYnjeFl1khoi+GL7d75G4RUHEtHcwn96gs3b+dy/5qlvcfoYo428swZrSDJDxw46dlOaD+K35w7KBZYmQ3m98VXrMHhrECVClD1KhLbl6zuYjGhfJGotkY5FObShRPUv1nlsNzNRVC/Hs3bRxA59drnf3d6lXa8f+iNHPKWi7qNLttByW2hvLxnGVBg+nxwXcdeHgvXpzKss3gRlxNIRj7aH70MlDi+zXGGPD+hOvl9T1C8fHzcQ/3uJWkbBkHi1i2s3uGFYrgi+ue0QySQf+hiTEyzlGRkOP1+BZYnfCx68tMj/+Wv8yKc4cSi0oJy+CU5KDTY2uW6aOqmWmDzClvuDAC7OhmXF9Cq2H75ViGtUN4pFPi5YmLNsAAAgAElEQVRJbCPqJZ4mPkO8f+1216Pdbbbp1u6MSS84unY728jE8Zp3/FkwbcAr5k3KyjnlFZULVxxrBfLH6+Oo98yuty9NZdn5EO/8ZSaOhWO+UqC4sDpj69drhy0yMn7gudXZ6DIox7y8GF5tsUZa0j49kpImLZiyqOT1/5fNPqHTO3RX3yulTU1Rt3dLaTPphypmxapCbaWEotHr9noa3Bjc/CL4wx/n+BGGBoMQfoMIzmqVlEasoqS00gYUwjnzxcdD7/XFOabGKa1zu+UGNz+ppnBBjCshQW7mVPABJ7NBGC/dePX7G5wlIuoh6iDqD3fFg/U6wmtAiyY79fmIh9xum+95+dYVwdeBqrI5E5YsSEpa8oa1/7hK5c1+gGSGjn7u+Rj73k1+Okx2r7U+eJsWKUltWjzqfve706Kl6yqCYbZCTlqHnG6t9ukxYcGoWbWzoal0RGdGx9g9dvkVCTlVC4pGxKpydqrKqynWK5qcDWklrutraXBjcPOI4NZWFhfPd/4h1C+7935aWkhnQiR4dCQ8rs4m26Q1KVq0YPyahnDw+Wt6eoMGKyOue0Sr4eeZk+Hulr7QZru0ZqX6rg85CYXzl76bj3qJNG+M4EXIEfWFYi5RxZoXcGnXbIsue2212xbPNwTwmlNTVbxc0vVFSGVp6wu1rJdmmDrF0vS11wbPymjT4i1u82GPudc+zzt45Semc8E3FK/OBzQloU+bXbr02yQr5YgxM5ZUzh4EyaR0a6fOsUd0eocFh437piWDcrarKVoyoGRM1Qbrgd5gw3HziOB9d3Bwf1AEyXrv2FyOVJJde0Jh86lJFubZ/8q5p+3xiEjkjP3GLzzxJ+o+rLiuNDagd7rB6hMlvK6L6kanWqLyhnJ8i2PrM5ZrJYGE6JwdaaesE4pKK1CAWQlVsap4Y4vnCE0k9lLb73ywKg73R5vDz/EA1QnME6+hxSohoSb2rNc87bAnXB8z+dlT7LJIJkjXz+1L623YvjZSqfO245V0bIsE+8OBr/PyFxk9xNRAaO5yLUyYlpN1t73utldW1kHHperR08rFjsF0Ez27wwCKVx5AQnTFKW2bJrt126dXRspx0w6bFkudOzMkCy1aju+Q1GzKE6Y8bsxXlc3q9A4lU4pG1Rp+4AbL4OYQwVEUrA9RxFsf5vY76dhEewd33B0sEEdfCz3h33AMftw/1KrHD/2+Uxcu/ey4nUxT6AY0O8HclAY3N5kcuY5wYZq/tkWB68LMyfPR35uBrTJ6ZdQwKNKGTmnT8krLuKBF+KQ+Jyw5YtHMRr4ItpLoR0ziNuIFIdpbE15IIvwcV0On83hy7awQMGRCVtqgcXPyBqz9TCqVDg3YZpYr7u/czWP309rMb39uLYe25tz7Nno3M3iKQy8v/3nlIjODzI8ydw1VMi9GStKQMf/BFx0z6Pue8ZBdYrGXDSlc6FlOpHj0b4QocH76iiI4LWmbTU5eob59j1ZZKUNmnDBnVK/NflRNUcWCWEVCVkqHkkmn/UdFI4rGxcqWnJaUs8lDlpxWXadOrw1uHG5sEbx3Hz/983z4R3n+GYZOB7tDczN7b+Oue3jhWWamGRsJIYempnNP32SbA76hWacZQ9ptNnfWOL95F+/7FIszvPRDDj3L5PA6vdAGa0nzptB8IpkJF+aVRGYarA53abZLVoukmtiPyPlDC+4WOSBaliRL4DPu97xZv+Okb5syvYEugolHBYG7SLwUvNxRmnieeBRVtBC1o0StXt4uPvdlbTlh2Pm6OGtPpbwCAfzYA/zNH+fHP8CLhze+CO5qJpMKgZdKPYo6FfJN/vY/5CM/ztQEn/ltVtKdu1picY0mQyedMVD/DDRLe8A2v+kT7rbFZzzueQMOdGcdu+9hPvoP6N7J5/7euVB+mya36zWv6Kix132KyqpOXUIAJ0S22XROAA+YNm7elDxGbPKQWS+qKiqZqCe3RSJs9lcsOKJsUkavtE4t9tniE9rd57Q/MH+dVjUa3Jjc2CK4WqNUpq+Pn/45Tp3k618OSXCzM2zeEnzBPb30baa7l8WFIJgxb8xTPichad6ohQsP0qX50Coz00SpyLEVTNcb3FBEiXAer5Wp1qsjNbi+5CRkJXRLu1POz+jzrAXzFhQVXKkrRErkTi0qYu1SMhKWVR/nOpLYimZqxzBCPEOcQIVzSe9LxEXXU4ueI77g6/Ug18quO0LH4cGjl7FFbGoLVogDJ1gs8PSr122MV01faxjzUjncoojeVh9+bMEn/ho79jD1g3A52ijEdRsRLKo5YtxnPe5uWwyY0qfdXKLNsbjGiac4+C2PvLRf/8J2sc3yyiqqqmL9Nhk1p6KmSUqzrKkL/M/tmuSkZaQ0Sdskp6zqNaMWlVTOGZqqZr1gwWtqyvWSZ7X6eKlaktUjo1usbMYzqhYltUhqCi2oGzS4DDe2CJ4c5y++GiLAv/xrod97Z2c4s1SrHDlMSyv929i+I4jZg1vOPb2qbKRu/q8ovd5DND0Wbtv20dNP0y3UMekGIZEMN5zrnBZFwSN7uTyNRJJMc3isKMyTykvhI5NI1O9vcF05rWhK2W5NNkn7PfN+wnsNmzLjB2avkOCSQE7SF4w4o+A1ixZtrJB+1EdcwALxLC7WWv2sJeImprmVbXvZ9xb69/DMtxg6dhkRXChyZIDJWZqyjN0A1rR37mF8gdfGmC2IksH+0NXLq8/z3OO89DSnNmj+YVSPtO437BVnlFTcabP2+cg9rx0xe2bYULasdy6vp5aT1mJJ2Zg5BPtDVD8pV9RUVO3SZcaSWGyLdt1atcgoqzpkREXNrILq6w6A2KJjKhZcbII274CqfH3EKUk5VUsWHdFsr5QWSS2qK0xAbHDrcGOL4IUFXn2J/S9zx51s34mITZ2USjz3NOk0d94TrBFt7SEafAGFN5amOcvMOPufDF7gkVOhGHCDDUUyHXIzzhIlzte5r1YQn8+aTqbP/y2ZJtsS7i8XQofUcvHaM6wbXD0TyiawpCYhLdbp33jEIQO+48UrPr+GKSX/nzNmlB2XV9xgarI2gDniMdzYeV3XRE8/D3+At76PpQW+8ydXSI4rlBiZDLcbgc5mPnYPT53k1BT5EgkSS8xO8dUvhPjNyGD4vhE5uxAxbNZkXUB2yNldSLtrmAmDmtuyemrtWmSkJEWCrzgrJSulVVZVTbOM7Tp91D0OGvaC05plNNUjwVU1o5e6DqNs5pJ/q5iXkBVJSMhIaZeUs+iIhCZVJTbcmlCDjcSNLYLPEseh4sPYKD19QfguLvDCc6EaxPPP8mM/wY5dZDLL2+bCLE9+lZf/kvkpRgfW9jU0WBaJZEgUIkRzm1pDjkalGMRtHIffa9Xwc3EhRIWb2kLRkERSqDtfCXa9fP38GiXqtoiNpZtuOcaULcn7a7bp1KqqqrYMMVsRO27J8fUoiZRsItlM6fIRyupXr9N41oEQhWtHTSU5f0ljfTrDzjt4y6Psvovv/RknllGJ64YhirhnMx+8g5E5mtKiRLgkjQxx8ignXgs15TcyISr7+mNpQVFNrF+HTjlvnW+ySU4kUlJRUJYQ6ZBTVROJJEU2a/cOu/2qd/uBow4ZtaAor3yuO+uViGTq3882swrLKDnbpXVJSKupqClIaTNTT3JfMqT6phqEDRqc5+YQwQQBLCKfD1HgodM88ZfO1buKohApHjmz/G0evwG8Z7cSEe2bQyJbFIVktmwL2bZQIqhcCEnKZ6vbpXMhUpyfDsI4kQzieGmOuTdkWrW0he+LczdOebSblbKKA075X/yeV51w1NB6D+kS1C/fXQ+y9YO8/M/WdzjrSJNdtvoFFXNOd/+heGqcypurc+y8g217OH2UJ7/Blz67DoNdSxIRj+6hUmVwhqm8llZ238b+F85bsG5EZuTNWLJXj716JURy0iYsKIqlJLXImldQVNEsLSVpScn3HfWkExYUHTGmvEKrUqvbEYsk1VQsOFT/PUiYmrJIUkaPSEK7+8x5Se2inqMGDc4TxRvwih9F0dUN6pF31tVPmq3beOjtLC3xxA955kmmp133bJMGq05bL+29oWh8ex+tPecju3OjQtmperS4sMCZAyHKm2lmcYqFi6yq7rqD3q3UYsYGw/V7bDBss8H1o0nGJq1qahISxs28wSO4gdj54ySyzB9h8gW36rkla4c+P+E2v2XS173yrt8Wjw8Fu9r8IvNhqbtnK22bwjE1O7mCyhA3EsmIX3iEbR185wgHRnRES+57qG67KnHw5dC8dKOyBT0iSzj2hs/0Vu3eaqeH7JSTNq9o2qKCipKKWUum5Y2Yk5QQicRqynVfcEHFlMUVt8BpdbeElISctHYJGXknJbVqskVNWdWCqoKyabGKJYP1RLrV4i7MYQWBtAbrRhzHy5pu3jyRYCgWGT4TSqJ1dYVyaB//MQ68GjKebtGL1M1AMh3Eb1wLore9Nwjglu5giUg3hTq/XdspzDEzzMRJps8wW18kiKKL2x06e9hxGzv2hd/jOESMU+ngWaxWQ7Ldwtz1fMW3Hm1vof3+kmxu1uzvt4jR+pbY4mkqs+s9OmS6QtQXRr5LYZxsF90P0fceDv7Oug5vOezro78uRM/McGIVhGhSM2IzfmjWk/zOP+cP/gNf+TrDo+ceV60yeCzs+6adXFZj/viFUCJtOk++rNrG7DSHXw3nlsoGzj14j8jflPQWCX+u6jffELGtqJlXcMaMTZqNmTdVF8FlVXklS0pOm35du5qzlUdirqoH5KIjcnbKaBKriCWlbTLjhXoOQUXBGSWTmmxfAwGMaC86cIr48dXddoN14+YRwQ+/g+YWhoc0lWLZiaLZ7/xFMF898UPmGwpmrUiJ3G+TF0yv6TQjroWIbiIZRHEqSzobLBGd24LIPWuJKOXJz4bI8Fnhe6mx5Vq45yEe+ZEwV1qcZ/wM0xOhQt5Ne8G+Vlq6STfXZwijV378FUhkSLbTdHvVli/mlcY5841YYWKDiOBkE627aOpl9HsU6ytLzdvovI8dn+T0F9d7lJdkczv39vPQ7nAsPHdydURwzZJFh5SaF839vbeJ79xLa8ub2sEtzIRI6E1Htp5nUqy/uHyJciXUB45D1PfkkVCcaKMzhW+reUHs+YuswJxNfFtQNGnRiDlDZsRiORkpCWXVeomz1SNWUVNSNCpvUSQprVNNUcmUqgVFY2pKCoZWUQBH2E30FqLbwu9xTYgKw2GN4NqNzc0jghcXmJsln5eS0lxJmh0a5IffD9HhRsbTqtIto1lKl4y36vQuPf5vhx2zsKI2t8ulVg3WhigKXd1KS0Hw1irnrQ5iCovBH7wwFQRweRkJKJmmUF0vVT8aSsXQKHB+up7fE9+kF+9rpWsvLT0h9F4pULg2pVocpXiG9vvIvqWieoLCKNUNs3RcCx0uMp207aU0Xa/Jlw/nl83vWjMRnJKTlBGrKV0mk/5yPLyHn3iI3T2cnuTgKq3qls1YTB2ha1ax73aefpbTgyy9/uC7KY+hllxYcazVguAv1cO85fPnwGrlxonBnBH7nlhCZPIi4i4pkpIwr+iMGXMKxi2oieWkpSXVrirWe2Uq5qSyVYnUosJiVK/8UKu3SC6o1UuurF45tBS6hFIuXdgsTBPKRN3EgxoC+Mbn5hHBB/eDrIxevXp0mo5nFc4MrvPAbj6aJGzWZLMm9+vwt9zmTm3+2IABi0pIp8jl6taCOOQrXrX9PBGJUwnFMqqxpdmaRDJEgdM5sq0h8isK3ZQWJkPb44t5fy/F8CleeSosVY4MMDEcfIu3ShQ4SjiXer2s+WIyw46H6bmNuWHyE9csggtDJJpo3hMqgCydZu4FKhtFQNSqVBbDm9VxDxNPE6VIZkPmZbb3yttYIQlpSVmttspqVzJvxtLra5ovgwgP7+b9dzKzxIsDDE2vzhir5lSTRbIRzzzPS6/y4ivMbpR/3BqRzbBjG81N5AuMjlPaCEsWV890/XYxcZeV0iwjKWHSojNmz9UADnHatW1Tnmiak+sINrXCYqxSL51WtlZ1o9PYipeIWol6673LF9CCU2u03wbXk5tHBNfZYYsPeMRd9pg177XGB3XV2SY0DonQJatfzryKJ0xaUpUS6e3ktjvjEMEt8OqBUPP+UkSicz2+zp5+z5XGak7T3Uw2xcySmeFFtfr5tlYL0eBEKoi32RGmBllcwQV+YZaDLyUNnM6oxilTk3mDxzdWo4W1Jp2rl5ar1CcUV5qwtPVxz19h3/sZO8TJ1fHI5Y9x6ndpu49agerZKk2RkHQElXWKvkQJkrlwy7TT9QBNm9n8vlAd4uC/XvVdNuuxyW163SelybhXFEzLW3mB2UTEU8fD7dsHeen0Kg60WOTEqXBAFkuMXbw6xE3Fjn7e9w629HH6DN/+S2Zu3vIyW3XYpVtOxqBBY1e5InE1JBJs3UtzW1iheyNnM6BW752PkKxvMU3i79d7m59EGzat2p5uCBJRiGbdhNx0IrhPl3d6wHs97Bseb4jgNeBYve7ipJJFVU+bNKLgdq2q2CyrPVNW6ZgSY3KSO+/g+MlzieJvot8WfXokJFRV5eUdN6CiQleOh7bxtm185RCTeXNjQWBXiiHiG9dC+bSh/QwfOl//dzlMjDDR9xgP/jL3v4d//kv4wTW+SzceqSyJlhDkXbrSJCLXFdrszY+wOLGqvaZrRWaffcOdu3Lc1UIp5tvr1DShMMqpPyXbza6fYmmYzKaQMDf8TV7556u+yyZdHvMb+j1q3CvGvHRV24nxhWdDJ9+TEyFna9Wp1YIQvlV423382t/gzr088zKT08ECMnozlr1gTsERY2pqBi/TwGIt2P0W3vpB8nO8epH5dleaVMToqllu+gT7w36iHws/R/P1nuZj3God6PbsYOBM8LrfZNx0InjCtK/6gZccNnsVRbIjkTs86KhXVNd0eSdyr5+QlHXS981t2FqoF2erJu3SxhU8Z+p1LrC9tnn4TB/5Poc+fki5FKLAu3eG6+RinpMXXCvf7R0e9oCdtktKmjHruFPe791mzNrfMWv/w1n+9qPMFjg+xUTewlRNuUDH1hD5HT/B6ZeCX3gldHSx1N2ulExLTg1qG338Op/i159Ujm1vo3MPMwOcfipo20tSnOflL/DS55k4wtDVibNl05HiA9380g5+/gW+MxUy8a831TyHf5fXfk+QlmcLv67NWErmzTklEhnzknmD8q5OZL1aP8WsRUAnLaFN1tR6NCu53iQSbN/C9Az/4t+GxIGFfLB/dLSvjgjubOaxvWHW8uVXqa6/L2vaomnrY9D/1N/n4Q/z3F/wyg+vxx7HMC4c22UcofZfiE8I/uBV8hJtZJpz7NjKll7SSYbHriiCOzS710679bnNVi876RlHDK2ZZeXauelE8IBh46alpeStrC1PUkqPrR71EVk5x7xq0dr52jJavMt/b7d3OeqbRr2qqmTGZbrTbbuLkWOX7fHbol9SkznH12DUgQlF08riesGaC6npsTt+1NsSPf783n9q906++R2OHg/e4OgN1fv22e2jPqjLJt/3hAWLNuvVp0dZ2Vz+NfsPHOFfPc5fnmJ6KWReC4J35kzoBjd1mtJVdGJamKM2Osbz31IVm5+6tawQ0NrL7R9l7/s48T3GDwd/9SW13dwZDn+jXvOpQLzG79lSjZlKuCZ9YjOLVV6eD9+vN7Xrl+G1aMRBfyyjzaJhs04h1tZ7fgVkuayF+G2V0afVNh36tHrcScPXcZl8XYiiIBBaWzh2KlggiqVg/5ha6fQ5JWELMmpOoRoE8KN7+Lsf4MVBvrbfCntLrAnxBV/Xku50WH0frx9m/beFVttnjvHac4y94fLYXlcx+VV9j3YRPYhs+B4PEf+AODTpsMb+5w1BWwv33k5XB6euHKTr0mqnXjv0+ID7fNRbfdFTBow3RPD1pKCkcJVdYuJ6gZUP+knN2uQtGPCa0grF9HKZMywtp9ddppww4TV5V1jqTWferCLfQIt+HW7TbIsRa1PPsCy+ZNef4ApulqpsMnCan/vpcH3IZBgZDXbBC7nL7bp1Kikpq8jKSkro0C4vr2+8yc6nGTh2mMPjlM7vN66FVfmZM6E02tVQrQiFPI++yNxU+P0WpLQQKp0tTgZv8GWvd5ViuK0VUcTPvI9DA0xM0BQzXOSr4xSrbM6SvvxKT5QgmUxIlnNqasorjFJ2y2iSNKGouE4NO6pKxrwoklKxpBYVNLUGy0q2bl2plihche7MSXiLVndp8UdGlK5C4HTKucdmj9rlfluMmDdarxZw01KrMT7Jru0MjTA3HyK1Z/3Qy6ZJ0k5ZPyFWVvIlVafZ2sHbd/HAdp6/TEAE92ZpSTBa4dQGrj+8ErKJ8/Z/QiLci99laZ6DT4dARwJ7m2lLMlthuhzmyatHrX7LoEjts8SH2cBiblW5cy/vfohHHuD4afYfueQseotOU+YVlC0qSohU6u1LZiwq2tgfzJtOBF8LNTUL5iSlbNIjq0nC6nkdX09s0lHHfEesZsGoQr3fzptIJIJhM5UJ2UuXodUOm71DrwdNObRmIvhyDJv2hNecKYx54unQqK+7i96e0MBv5g0J1FVVpwwqKWnRrE2LqpqcJvMWmCvKLi4wNsbMmyckcRxaIV8T89PMTTF/i5zk3sDSDEPPk58KUeBrLPRw7SQifuVH+ZMf8MTzoff10UXEtKSYLF02QS5K1iuHpNOaprdIazJr2JJZtWWE1SJsktEvVxfCBUtRJVREi9fWiRElQtm+XCvlIrXKpDgKaTpJZNvD5C+VDfWya1cZAWuV9B6dPqXPqxYcsmhpBWI/LaFJWouMNllZKU1S0hKKGyF0uVbEMZMzDAwxMU3paoIuTRK2SHlQ1s+qOqrqVTUT4pYMrU0MTnNg+E3iI0IuojXBT7aH79/P3zwiOEJTgp40mQSLMzz5X0P5y7n66TkRsS0b/l6OmSqvdr7sLPExom2hIkT8F2xwMbdq7N7Gx97DR98bosHPvMzIeGgF/gba5GzTJSGqBx9jFVUjpr1myLOOGV/D1fTVoCGC30BVxX/0fykrOOOEwhp6oGac9Lh/BfIm5KNJiaRzlQ/OkcqyaTNt3fRsZ26c2bFwhbyAhIydPup2P6tFv4V18RknPO+U5w1QjCVe5N98mq1bGB0LAZSxsdc/45u+56DXbNfvbndo0yopoaRs3oITBhypHnUlo26UvIZV+bl1SrbaIMwPM/DEeQF8xcS4VSYRhcDzucT6KOLB23jlON99kSP5kPWSSdCW4omZy171Mi209NGRa9Ix/RZb3e2YJwx4XuEyy/XRBd9rYvfZ5G4dDiQnHUtNyyaYKTN3tjrJarz4N469KSwB732QsZMUF1DvYrhUCAuxi9PhPLE0e1ln1OX3I2G3Jm/V5q/qNaHktOVH93PSFpUcNm7MgpKqEfOyUsqXrRabEEk6/y7Xi3Evl7NJ++ttkz149KqfmrBJ0m5Jd0varuJFCUmpKFKbWxI/N6B2aIzvvvYmP3ACXUnuyvIzHeRrHL9JajAno3DrTrOvOXz/4hhTw+EccfZjEsfBCfVaPgjm1Z+Tzgqit4n4uVXf+oaluYlPfJBPfYxd/Tz+PN95khNvLjUbiezSq1OrrDRo0STGaeOy0p5wyJj1jqhcnoYIfgM1VV/3ueu2vwmHz/2cbqJrN6NnbUfniIMo2NTH+/46H/lv+fxvcfD1GQI9HrDZ2zXpNO+kId+7Hi/h9SQ6iZqRRU2tetLv/n7skYfCSxgajg2+QZt/tx6t7tPjMY/4GX9Vk6xhIz7vS15xcFm7bu9jfuzqI2O3OkvTYVm9vA6Jzx0dQeAVzgb6qzV+8w8Yn2GuPhGdqyy7MkRbP3vey77+Hj2v/Ir7fcIX/LpRr11SBGeikGF+VgmPWvSPqveJRD6T3O/Pc9O2N3E0z0AhBOgWqhRXWYx19PAjv8Cn/ke+9Z8ojIVo2NhICD6msrz45675yr+o6ilzdso5raC4wg3OKZpTdGaFkZ6UThl9kpqVTSmbVF3uNjLoTVKMmazdsL0KakYEP3CXRf9Yxcvas4/LpUoMsnRy2lSxU3yRmX8VgxV2pPk7Z3i1yMRNcs7blg3Cd0uWB9rC77kE/3mE3kw41s4Uw799vMRIcS0/AimhTvAtxI++n/vu5MRpvvJdvvY9jl3akpOS1CwrIWFJUV5RRdXn12EF+mppiOANRHMn9/4YfXex/0sXRIRLBUZPMD7AAx/mQ79E55Y3Pb8i71Wf9rTflDcqXo9QSaKb9CPkPkHTxyg+Tvl5Tx8piyqviqvjpKaovPqmp46Z8EVf9SVfw9lgz/JfQ7aZZD8LEyuvENGgbvFdh9aura2XqLA2NsNXnmJxZZ78XCc9d1A53O/4//uw7dpMOWXWSL3L1MUpxeEzl0sEHVyN+bphm+WUUkXv6+I39vHcHP/oCENFshXmK8yvoghZWuDQk/zXf8uxF/ib/5DuzczUGM8FD/w/foTxYxdZNVoBMyo+Z9h/Nqzm+unJikkVkyJpKR2S2iSkxWqqFsWXy+koYbjK1uR1Gu3aUTOoaAiRjnQsnYjFdatNJS6LjV32+U/Wz3Fr9X9LiuzR5ug1LGd3R+FYmqgPsj9iJA5B/Jww8Zy94AX0Z0knWKoGi8POJu5rCyXQirUwDx4ucSIfEuJOF9bycztH/OU12/qGIpngA+/k0bcG0fudJ3nulctm00bI1ZunhBoaVaNmnDR63Ya9GjRE8Aahc2foPfDev8uXf8P5ddkLqVX5L/+UF77OqVfe9OcZryESq9aXGNeBygniErVxit+jOkSih/S94vS7SdeozVG+jcKfvenpcX30V0Ouvb5kPMetUKnpZqGtlXQ6WN85Gw2OGbhySZ43kmkJtvnZ0+TnC6LaUd/020ryTnj6slYIgr/wbGJkjD824A5txmqLNtWjvg+380A7xXP6+IIAACAASURBVJlwjTjrDz5bMG2hem0X5oUZnv0aL3+P3n6+8Tla24MN9cwMvXuYPHltAvgssfUsPBCO9oRIymZZ29TkFQ0qXKy+e1+SLUmWYgobPATcsY9UC0vj5Icv88AYsf4W3trN4CLH5phfhr1hrd+BjITH9OmR9aIphRV8UvYm6IyCdacS0xdRQLNgMqg473FvihiNeWcHH+qmJ0O6botIJ8Lx2JNhqBB+35QKE9ap8vWYuG3wz9lqkM0EH3BHW7A/PPcKIxNXLCdTE3vecSkJNXHd2HTjpcQ2RPAGIdNKa1+o19rcfZkCEPOTHH6y3tbr9dQ2hHG/THWYeJ7KfuICUQvlF5AkyhGlqa2+B7elO1SISNz4QaJbgihicx9vfZCpqeAZLxXrIjhGqcy2HkamWVpeiLpSDBfN6nGiyjyOmjSgqmTJnOVc1C5cexiSVxObrRbUZvknx9jRxGKFXDLcSrUghM/aIpoS4eerXYeJa5QWI7sXt3tX8TaHv/Ksjkqb4mzK88UBufZLFOaIIjZvZ3TwhuhaFtfb4qR0SOvW66eldJj1A0P+n9c/+LY072nizgxPFni5yKYEc7UNUT4sISupJZSM7H+Ae36F+ZOc+QHVAsVLm+wT+EA/P7uXrw8xV2ZofcrxgjZpPZrs0OIB3WaVpVZYF7cmvK6OKLhrR2vsS9CToKXGeFyfcGK6/lE9tsR7aqEnTlsy+H1P5OnKMJgPR25HKgjk1mTYx9pV6L6FKFeC6M0XQhmniRnKy9MSReX1WDxcVRoieINQLYXmW8e/H5oUXPYalr+E0XzXtvB9fjHcLvggN/eHJefyAqU17wRRDG2/zjFB9WxkJxuE8BpcuVJpak0NEXyjkErywH38tZ/k698M3QSnLpz8FcuhHvTlDobeJJuTZCMOltTyMRWqRULM6dqSMobr9RKWamXzS0yU6G+iJUm5FjzETcnzBZVKtbMR4YxITXwV9UTTknptcq/d3jX/NjsO9CgVOVwcNnW5GuKpDD/9q3zrzzh+kMI6KqllEYuVRdLSerV7u7ReJSNvfugdad6bY2+a54osxOxqCiHBlvoBP1xicPUyxCL0ixTF59KkLiSpTc52Wf0SsirmLEWDKtvfz66PceJL5/u5X2FHLanznWnXowfMhXTJuk+nh/TYpfWqontpwb69OWJT3RLRHJ0Xx6U4LNZVnF+0GysFv/1HeuhMhxWV8XLwB1+YsJpJBCvE6tYFvgVIk7yXKEVtiNoUEkS5mnhqntmbvL73JWiI4A1CfpqB5yKzYykTh8rLrHKQEBaU6qfnO/aFjM6BIQ4cZWySmNYtJb1vC1pi7thV1HNfVYr11pOrT60ahPC1iOD/n737DpPrvs9D/zln2vaCxQKLSoAg2ItIilShqF4sKbaao9hK4iiJndw4vonTrnLj6zhO4sSPE6fYN7YTF8lRriNFshjJkiVRhRRFig3sAAGilwW299nd6ef+8RsQhei7wO6C++I5zyx2Z86cOXPK+/v+3u/7HrfnydStsApzqOgt49zI5rj9Nj70YzxbD5w7Rf0wOU3f6NnTstK4Jcs7mkJV8D+MMTO/Js99CnXXiqpiNZDcchJuwserUNmo7kyShL+XalkpK0VKKsZc7IAvI221Dut0WaXDeyfvst8xY+dqdI1iWtv5uV+iWGSobwmQ4EgsJ9YgqxuUDSkbeu1T2+LgBVZMQlfYYJW7cmFuvDsTvpTn8vNGgjNYL/I+KbvUPK+mHKuLxcNzsrqs9F5d3iVRNey7CgZoXMV0H2O7mDwgLk/IpcKxkomZLp96TUkSXhgNx87zIwyc52uL0CRWllySt/O50CRto2b36PZuaw2ZddSMilqYaTgu3q9VpZ0aGREJ+y2Hnph1EVtSNAg/762xuxpI73AS5BGxMIZJR2FQuXcm2IE3xhycDfskG4dq8O7pkNPWWCfB8+sLfJUjRdRJ9v1E7VR+RDWoJ2mk+vp0BsUyCV40mBlhZjKr98gaho8KV9qzneXHx8WtRK0kveECNZjn3/4MR4/yhW/wxEtUSt7wj4+KMzXTvZQnw3XsYpKmlgpSmbpdVBR2R8JFz5U1xdzSHLqSjxV5eWZ+m56WEZBK0dzE5CQ/+CF79gQ5xMzJBKD3PPGzXRnubORDzUEv+ocTHJn/be1XoEY6Ce5stSRUocrJicpUrr5EyNog53pVEwp2q1xkzPGMou0OudEGOx02ZNywSf3nmpLONXDN1tBE29oeIhQXBSKB6hxnjydOyFhOzgZZq0XShjxgxg5Tnn3tap4uMFANFf/eShh57C+wIccTkxycv4H18Qrwr8r6aRmfUbQ3Tky2xYGtDR+nfokmW7S4WcFRJSOqSZ6X/5Cdn6MwxOyw5jTXt4eMn1WNPDlI/iT2mODBXl4aZaxI4aTrzfE9F9W3LEaz2D2aHVFyQFFJ8upenSslvlWn+/W4z2rXa/M1h7xoNPRpZJrINoZ3yY9aGQVZQ1LfzuYokN1NcVhuTbEhDqS3iIM19pxWVGhJc1tLGMsMl0PxYdd0WL43wg3N4bPPVnlsPMiMbmoOsojjQ6XYcWX1Ml7FSS43ELWRuj7QhdQGoneQvptqL9UXF2wrFwUWy5VyGQR7g2vv4O2fZO+z7HoyxOScjmhj/bHOZqOIzVv4+F9id4mdAwzOBn3PkSMe/a2t7vv7BzX1lK28ExFHH7qin+yKoDRLQwurttDcGbxUJ87Vk3IautLc2cLPrOavrOYz++ktLpPgy4FqleERHvweX/9mSBG8QBnaq+gauEbh6zOmd42ECZHtl98s9bgyY6oalBpRRGMSuFG6nnTV7i9rco8pjypdIiuvqdmnTyyWkZY3e+6u61qNsWF+9r0hB3z8DNXUBUCkR+xOdKt5TOKA46XUpO7/0ug6Ka0mPSbvJeUzuSLsq4Tl2gb++eZgjvuZ/eFGPz2/I/pVIjeLDUp8TcUPVI3f2czqDKMVhsM1edYh+/0HR/2JREXBESVDoQp/EmrpcKxsbeerh84ud+g7rQKcwm2a3KhBi1irlJs1+jHt1sr4gSlfNuY5M4aUTavpm2NfSF7ZiKLHDfh9r/if9p34Y7Yx3KPKBRHWx6xMAvm9L81fyPDmNP+zxFCND2eCBniwFj7LVEJfwvbqiQryZCWQW3h/F3e3BQK8bYJDBZ6bCvZoP7cuDD6PFMIA4q0dwTni+SlubwkW4keXujh1vhCTurleH5slytZbcVrDY7yWzAcQUfh9in+00Bu8sFgmwYsJ1UqYwnzfp7n/J/nSv2P7I4ydfvMrIkUyTVJv9jm4n69+mf/4u2GeufcwR+sG1wf2mT1Wk8pRK5NquLIf63IjnWXzPVx7T/BaHjnMeF+QRlwoCe5IBRueGvbM8tB40KPNbwrRMk5Grcahwyd+vhisdYf7/QNt+9baf/AR3/Ov538DT0MiEJipaiDDUURc13Aeb44rVDZZ6wMa3WLas0qXGFhTVfOsvUrK0tKOGjZ4rrSYUoHDezmyL2zcXMyyM5203UytxNg2c6+xrZb1nwVn4U+I9UrLSuuUs1aiZso2U55ROZ+Ge2WGT60KRs2/FLF3dt71SoPNke+2xn4wUJK6psHMX1yjek0uyC1ePpWpFvQqOoZELlVzVwcdOfJldo2TS7GhOVSAz5Y9GuEdWo2qqPKqO06rlJxIn7IV0prExlV8y4SDip4140fysiIVifF56LPo1qBJ2oCCp0+WpXRvZvW1ofAyepRqRakwZmPMXWnenubGFH01nqoEucPNVdprwflhXzUQ4TUROzmjUv6hUT6wMhDbI6e5Iv73viCXIMy4bGwM59sdraFKvKwPPglRkD7E7cSbSCZIxok6AhGu9ZO+N9j5p99I9sOUXidOcGfC1UOC21YhChFK5YvzFV00qJaD+0Mhz/obWXVNKG2eXgGKOolWoUjcT1s+TH/OTPOHv8d0ngP7xPkRnXfQvLZmy0+GovHYrqBfLI0z/vgqjVZrtVlVQd5BE3YvxCefE6pVho7wkXeFKvB4PweeZsd3OfzCha0jXyMuh4rew+M8PsmOmVD4Wcblw8WS3+NIy1ntZs21lfprr7ULvByo1mUQUY2mFFF9KriUhN+lo0ikUd6TCl4x4wUnM7Q3t4RZ/L5y6OHKn+ezV1TtcUwkdGFXz8f25iMlJtVI61bWf5zSKDMHw+NFRjGmddSbAzN4RdXnxe5Guh6W0SatTU3JpMcVHVG5EPeOI0V++SCrs9zQFEjpfIpDW1OS9pRyS0q5rS5W3TvL9ukgv+g7fbahdoofeyoKx8aLI2xqZV0T7dlA4AYKZ+7xTPCCGWWJbmkliTFBcxuJdEsbr7sr71MUoU9ZXs20qnqY+LzIAd5hjW4NnjbsiJNSc65/K2/6RLi4fvf3JIUp+6ocrUsidlZpjYLTQ2+NQ7UgheiJmMaxuiPEoXOYeZQTfudwsD47/Rs9OZBmtBxS5BKhKlxNwjm4jDoSkjzRhmDMFDUTbSJeR1JBmfIPAiGuPEr5yYXd3IXG1UOCG1q55s5Aggf2MbR/obfo4lEpM3KU575L/wEOvEj+DDrAeBPp94cqcO3bFF8M3WCzs7zwbPCZmpqUFErBmaepWZSa0bAyCSdBjWwrI48XZLW6xo9r0G3Ys3b6PYXzmLQvNiRJKKCXi7SvCdrgA08xuA8RTT2hSTvOhkp4aYrSabu1Uq/wVYuhS7l8vOK3IJ9oGedDo06HPSEtZ8Q+LVbLXwGT9iokQbcZQRS0wtWEplQilxo2Vv1TpBTrXrcxNmT5hdXh9X82xljl/CQYpl3hAf3xKvCq9zDxIunW154sF4BIVkqLSFpiUtl31LwicUQigxaJirJRBQdU5S9sxaNlHhhhZV1EOt9WCuWa0AEndGDla4H8DpZDB9f1jQyUw/9PQnOankZaM4yVaEhzXRvr65rW0WLw/z3bVz5Wp4ZRvRo8c9IzaxJpkXZVGZG8mhk17VKv+jxnRVrE4pPWdbFYp8m1Wl99z5xYtl6/np4eVxs+wuRAcCeqVkxjOgla58O18DkLwuNYwnfKrI5Ds9yM8Jzx5NxtovsuwN+9lIR+jWWcBQm1XtxRl0KsCFb9UTe1AeI2Ks/VXUyfIbm4loWrDlcPCY5iNt5BSxcHtjEzzvQSa3msVZkY5vGvhgrw7qeZOUNaT9QeVO61EaqN5Os3kKYmhgYpl6hWJVFKfqhRfjzt4Heyum8rS6Vrsh30vJVXrplUOjImW+vQ6VaJRM6KJUeCj2PXI4jCV7/vSfpfIc4Ez/o4Q7aNVJbKDJMHKZ5mVVxOmFieVlsSaNLlsKfMGJE3KKPxir7/q5WnJHiz1JLQ1JNJDZmsDp1CdmJBTvq+9sCptuXPPjW+4Eg1kG4LJ0xlJowaLwFJ3bsgqJvLag5gh8RRVa0qchI1JccunAAT3CEOFDhwSZt1fhQSomr4grJxGB0fN31+Q3MgwQ9PvIYEN6XpaQryh7ESqxvD0poJA6ZKjdkLmFWaOgNNPv67ikQsMlGnkR2CDU6DSINYpt44d6m43QqRyFHT+s3IitWQk1I9slOhMKVWmgmzladsX9D7no4d9YpwS90irW+5onBlkJAMeTWNJOoIOuCoK1j0qwUyXHmW6r7zrOt1gKuHBJcLoTNqy5tp7wllwF3nsBRarKhVQ0PcOZ9zkPL/DlZjtfowLpWiWhOND0tKFbINdK6gaRVHDnnq17tsuG9a27qCXAfX/RTr38fuz++0t/gnRr2kbFLl5CmwpYIkpGc9/Dl+8Dkqsye0z1Gaqf1BCtK4mpV30XEzjT0cfh3roJY6MvXbfp8X9LkycoizoSbwpELtRKf66X8fr/LMdOBYfeXFNX2bkVU+HlVcmWZyOwc+y9ROZo+6FNFtxVjdHo5Qp2wS6oSJinGx4DJQMlCvFp/qHLGgmK2FJRLcJ4o1tjbw4yu4tSl0y/7o1IblahJIbrkW5A/HSe9ExFQ9/OLOLp4cCi5+l/JJTybIaeTqxHeNjKLEsTk2xd2g3U7jHtbniZMKIas1ah/pl4wcMnuRVea8YOm8jAVAjaQcHjUQr0Yn5W2BDCcTQTYhx5JPvJgDomQek4WiKDooDAyrqCRJ8sYoilbgi9iEg/hkkiTnnF+LoujiN2rFBtbeFAT8hSkOv8jR7Re9miWJKGbr9eSntLUOKRUyCsU2MlmO1EMq1m9gbIzpvIaVbPkEO/7riVU0WSut2aQ9C/MZ5gHHK75NPcGqU8Tws5SnghyieT1r3k7X7ZQmeeZfLvQWL+NSscl9+ryoeJ4Y5MWEG+sNqf3lQIoXA2Kxe73DNo+qHCdRcY5MB8X5kpdkRDZInJCopbSKtagoarLejCMSkxZF/NuZcEMj97Wyvt4g92dnvoVFuGtlIMEbWoJMolAN1mdb20Jh+c8OB3nEpSIjcp2cgkRWpFlsWMVhl88dZZ0m40qmLyH8ZRkLg/T9pG8mXk+8KsgipIJH8PFGORUquyn/+UJv7fwjSZKz5e6egstBgt+YJCdUJlEU/QZGkyT59SiK/ik6kyT5zHnWc2kbFcWsWB+kBMVphs+QP381Io658Rabrn9ZdaYqismtoGUjlSm2f7lb0tQWpBL5QBqi1Jl6XZZuCGWcC7LoymwgwV13sPJOUjkOfzM8Z9W9bPggHTcw/gpPfobR7ZbqR35dIxKd5I66NHD8iryYtrpBo696xrd9xRf9vqMu1zXzTNeWFrEtaFGzG6MWLQmOBDPbznoSz/6zs9jj3/P17aHqO1Ph7pXc0hkkErd0hmrxRIndE/ROR76w/VZFeVP6lZ1bGJsTuVOTJ027VaMIgyr6z1EJbtPmF/0dHTr8mn9nxBKTCi7jopG6g9QNxD3EnUFFmZSovixMWVXDZHIySPnhE69bkQ5jvTXZIIMfLIcAk4lqsLRbTLNY58KFkuArIYf4CN5Z//mP8TDOSYIvGUmN8WN1/9wl8k3NEZk2Vr+pJmrcLUoCAc60BO3rbD19dNWWUZXShKmJyqu1gjM3ey/dfVYr1SdtE2aHGHmR8jRtm7jxZ+m+O1SHK7OMvsT+P2ViTxgslMZeGx7S0E1h2OXZJekomP7Ps7/p6wlLjQCz8GfXWhsNOKZ6UjWvpmaH58RikQu6Z1wiXvvpI+1S3i92t5JfqYcTL1ISnGCiErJ8L+CpcGAqaMU7c4H0NqXZ0srNHaEi3NPIm7oZLsSGtn/GAU/Y6yGjDih7bWzcJlk9MqBBLMHueuNk9RxH1zU2+HEfdIfbPOYJn/ATBg3ZZY9dS9ANaBkXhuouQSp4jLgjuENEraRvCe1EtV6UcFLC6soMb2zljS0hxGRzQ5D6fGuULwzWD/8FvpClrZTWrWZKSe88rG9+keDBeiX3vyZJ8t+wOkmS426t/Vh9phdGUfS38LfmvAXV+Z+uSaFJpCy50r3a50W1EKKQu+8uGnqGlg2hyjs7TP5IqEqUZ6qSSlX1Csl9122lewMSenfXA/AuM+JMIMJxuEeoTDN9NOyfcp7JvTStCdrhqf1BJpFqPNHhfzqiy9W51BTTmAoj8WUSPO/4sRZuawhj4IEqrxR56gI6zl8PSMvosc6oIbNmpKR16PKIb5o1Y/piGtTmBVmRDVLeLrJaYojFTIRrqKXEGtUuQIZTqp/e1SRUg2tJ0AYP9Yb/p2Pa0mnPHdvsWu80Y8IBP1Q9i6xhTFW7lE1ynqr3bhTPw0hW6bbFZh3aDRtB4nrX2WCdWcULIsFrdRk0XvetWMbpiKxELDHDFT+HzoFicICIGpCpN8a1ErUQ5YN1mojkJFKzJsuWhhBEsibLpoZgkrJjOtRuFgNS2uVco2JkUZLgtyVJcjSKolX4ThRFu07+Y5IkydmkDnXC/N+YgxziOOJ0aBQrz13t3SO2TkqE7XNsPLgcqJWYOkhDF1OHAnmLc8EHePoKkM8zYe113Plumtv54Z9eZhIcBeuzdOMJA/YoCpXd8lTYP5P7GHkpuEOkmwMxnukPr0kqgTgn9dFwFAcJRWUm/L1amMeI6WxESyosieDBVriwlafRVj8Wx9T0qb6+b0kbmsI+HC+Rr8hE3JrjAy28tyUQjx3FQIYXIwnOorXeyz+pdkWuLNOmtGrXrFUsJRVFGnI1OwsvKCubnWNTbCTWZpWsJnnDimbUzqkhLUv016UQFeELXSR32jMgkhFrkdJWd2poQaJq4pzlkUKVQ/kghdgxFmQQxSqpmLSUvQOtflKfgikls2fdZxOqjilrEIdkuPZmJmfOOevZrEmbNpFIRcUb3G69tUaN231yGtwZkBLbYLU7bPGEl42YWCbCr0GrSBdmJeeRsSwEkkl0Bv1v6honJBDB9iP0qp602V3pEEmdjcI1dLISmryOlUIVeL4dCS8GKW1yrtPoZmkd8kbO/6ILwLyS4CRJjtYfB6MoegD3YiCKojVJkvRFUbSGK+C/lcnR0MzE3N4qxq0y3q3BtJpdr16oFxeSGoNPh58n9i7stkCukZ5NbLyJQy8Hs4vpicujUIlSgaweT8GrTAuj21pdIlEOj6Vx8ofqUpGG8LxIIMCpRtRODCBy7Uzso7E73MCS+eicjQXy25wKbvoxiumQ93kB95VmkZtlfEKjncq+ZNa42iI8Gq8Q3tIdoqO2jbJzQmPEh1rZmqUjDrN82WjR1hS1i90srVlsm5JhtfkOPnsNRgxKJFbotiJeodQ0oqFnwOjeWEnxRGPcJSIl4wbvtMJ6L/uuQfsUzlExDRln31XzvMRB4Xa7WBuvYrFWaSultMpYq8H1KobNeF75HMmAM5WQHteUZtvQqV4bsao2w570Byb0mnVuT+ahqGIondDUzHXr2XWY2UIoM5/pvc0aNWbSlFvc5E3eqEmjbZ5TPs/3nZP1YW92j5sMmzCraHIpugddRsTWiTSrGWMR7ptkhGQlUS40xiVDdWJcEwjxGNX6oZtCQypIdWZrIShqphbiq787FrTB5QW84WSt1+3TcjabtUPJA/Oy3nkjwVEUNSNOkmSq/vP78S/xNfw1/Hr98avz9Z5nRSoViHAUzYl5NYs0iWyW8n7NXlD25wqX/Wa11LHrKaZGWX1NUKe8/S/y8BeYmc9G/pP6bJIa1dnwVWda63+rBQJczgeSG2fD75Mk6KGrhbBQl0XEYQIBarVIY3cSdNPz9WU3pQJpS0VhXqm5XnqerTF+fs+kNrE3yPi7WuXVvKTseWWzr1cafF0rb1sVrsq7JpQTdhbpSvH0bLCT7S2zfbHpl+pYIXa/nHfL+X9MGle6jL39J9CsxS3uUmsdNHLDTu99B//6N49dcnLfychp8mP+ofVuM2nAeL26eXbk1Tw19ze+AggV4A4pbTJ6dPs72rzfoP+s6NA5STCBWDw19Nrf11SMO+x5X0CkdL7p9IYca1fyjjfQ0ki1xt5e8meuQg4YNGDQi3bYbJOvpx8yVhvxxeTLdiQ7zvlWrZr8rB93i00e8qx9ji6T4FMQia2WKIp0CDMbFx8sc7mRFIIuuLo9yCGkg0SiNkZ1D7V64awjHSz+8lWGymGSsljjoXEeqwe9xPV2q4VoucpYo9kbVU3Ke/K859yFYj4rwavxQBRFx9f7J0mSfCuKoqfxv6Io+ps4hE/O43ueGZvv4q4P8vTX2PXYOZ/a1Ba+2HKJ4mm9CDEOqvqeopTo9Uo3LhrDvWEhODb81D/lgz/LY/87BOHNBzrfQHGI2b5AdpMatXrFNlMPxYiR7QjbkNSL+KXx164rSoXXVqZRzZm9ebPcC7sUR52XnGZTtOQC7x55bS/Lq+jONxvrqqq0RqzLhY6DY6XgOXoeU46VYu1iO5X9XaMyIttfzwSYkEhwUzv3dPHUsOqBvN4yz8yGQIpiwsESu64Es7wEZITv9W1ymkRaxSbOIx6YK3rWcs3AJn+p+nPG0i95dMOD/unfZ+crfPWblOaoyYilrLZVWk5qztENiws1k2py6BBpkNZl2lMmPTgvN+OCifM/qWcFt1zLe+/mn3yKrz7KE+cmsscxHuf94qrP8isv8qPP8XQPh48xc2bSttFqH3W/Z+zyZQ97wT75RTjdv3BIi10v0ibRKzEocYabyyJA7RDl2br2t0K8mdrRemrcSS6II5WQDj5UDpOWtSRUf/cXuOtOGhpobaWvjxcXwJq90c2m/MCUR42bP5P/eSPBSZLsxx1n+P0I3jNf73NerNrM7e/h7Z+isTVYpR16KYRQnIbm9hPKieZ2so307WO8rqKYlHhZ2REVjynar7JcBb4IpNKhQW7XUyHHJD/Xa0RM5+2Mv8jqdzP2HDO9oQpMqPbGmSCPOG4BV6uESu9Mf50In2k7s2HSAGorWviF9yh2fJjPPc63XmLw7NWslc3csZbWBh7ay8j0qTOTkcganRplTZTq6+nMcEMzmZiG8xOFUbV6U2bKj5REvL4JMDw5zH/aybYRDk0rJTw3Gwrr6ShUgUcXqxYCg2q+qWCfqn0ql50ARxGf+mvcevNjen/3c154PGv/D6/zj355r/e8g6k8TzzD+AVwsbOhaMY3/XsZOQP2qCy6NuK5IVFRNaVot17/RMFOVZOSK6Hobm2kMReExDMFvvIDvvIIhwYoXMBIr1ZhaB/f/g3W30bbqpAvfxYcNeQPfF1GyvU318wWS6KBqs4sXV3sXbp28vOAFim3yPpLanar6bMYZZKnoEQyStRGdUdYkjMU9YfKgQwfV+Yfv5c1NHDTjczM0N9/xbb6VTTYatbLxnxN2fxuwNWTGHccEwO89P0wD390FwMHvGauL6KhiUxDyJPo7OEN7+bWt/PYV/je50NVOBEUaqWGRNPGil/7Kf7kAV7eTeEKJ6xEYjkrl1Skca0aBhS5Jkb7mL1EOUTj+mBZNvEy6z7Cbf+SqVcYPq0wUauEprak/sVV65rgyvTZCTChgS5JSHJZuprJF3jPTbx0jOEpDo7oTKbdsXJCQwMPJ98puwAAIABJREFUfi8cUrkUPW28dTMfuomDo4zPnLhwpKV0afUud6ipGY23K5ULwWppsBSe2JoOzG2qGuZMz7QfkZcoqS6T3+PYPclggcnyq90aZewvEUdhly5iDmxKYoeKA6oquiSGHdfeNFvnBp9SMuVlfzjntrlUmk2b+elPMzFW8kj3Nz3emDY8Oubwn/PokwwMMj2Hme5YWk6zvR4z4rBpo4qLqVN+nlAzo6xf2goVw+d/wXygpZFclkqV3kEmp0MVuH+UsSmqF3ikV8s8+kd0XxsI8ezZqxJVNbNxQeOK4HewbjN3vzW81aEDDA4yeREDplSW7hv4sV/n6T/gwA+ZuUK773yIxbqtACu0m1UwZsLEycfvzW/k0G7RdE7KXbI+IbZOxQ/UVhQlM4nFPOZL8lR3C1NQ5XpS3BluJTUn7l9NTaxfR3s7mzcxMsqePRw+cqW2+gRKjikbVpOf90Hn1UeCUxkGD4SmuNkpZs5wpiaBoEURosCXp0bDFH5SC41dpdkTupdyNTRQ/uSH2XuAA4fPToKj7HG3gZRa3BKGUAOD8yCiiaQ16fYm03oVDKst8qzDJKEwHQhwfuzid0GmPcQeN66h9brwmG5k1f0c/bOQ6Hpc61srBtnDcWnE8e84qZ6bABNeA1I1Jmd54QhbV5MvMlVkumhFd8UH3sf1WxkcYsfO8LpqLSyV2onj6ThikXZNPuyNWjR6Jd9vpqlfcbLC/tl6Z55A4s6zc6qWTvU30iUSSxQklyvRLV8Jy2mYTiz6ogzB2mpIVSSSUzylxTGr1WpvEons9DnmeNGPI9raGejjpefZ3t/vaJVihckB+uYlGC5RVtBnl4l5rtQsFtTMSpTVrnRuWi4btCqlMlMzHB1i4hJHLMP7mRqkUji/nWgSZILwF36CG25k58vs20PlInZAnKahg46NrLyejmvIPH1pmz/fyMro0mGrTTq02WStMVMOOGKPgwaiMbbezqp1omNlGXfK+KCUG5X9ueq1JBPjJ7R4ixWVekPcBaKlmY0bgwzixhsZGAgSiEOHyS/A2LZm2uVqPLz6SHC2ITCvwYPnfFqpQLYYiNJYPy8+zJ5nTpz0pzy3TP8gk1N0d5E+x15LNZPrIVrZIp+9i3Vr+cpXQ5lljkS4puQ6P2PUiwY8asp+1SWg05q6xHCiVFNwc4jTgdh23snM0RACMrotPKYagvShUgvODpVpl06CihWOjfPoXmZK9I7x8jFG8ppbueUmPvQBHvwu+w8yXmQwz7O9gQiPzZwqhUgkqmp6rLDVWl1xm0zzqGK6Qn8pkN98lenq4i5bXhQapPQIvplTaiKJotd1OP0ZUHN8jyQqpiWSemBFLEbZlJzOOb9PFIXrVT7PE5+7xuCudiO7DysW51e/WFNVMHWeRriljTCoC7gQn+B5QToVpp2mC+EiMx8oXhiLSRImJ9kQc/sddK/i5R0heHTmIvhInCFb96Td/W1mRs6oTrziyMpYod0m693meltsdIPNRox73k7FqGKgqcTtb+Zwr1Rlq4wPy3ivanq30g29aj0ZHh+ndPVc39ra2HItd9/F2+5j4wb++PMcOrQwBPhy4+ojweMXXtbIX0QjZ36af/ir4aYye45pj1Qz7W8l945V8tFf5X3v5eln2Lef0qV36SSqZg3Y4q/YIvKiX3fAF02dx+txvnElg5ULfURrQjPb2PO0XBca4iZeOpXsprKkVoQ0uDljtsyT+8NyEmZmwlc4PFqffay/d98kD77CkXHGZ08d55RVHYlG/EH8oNuym+1416T82mywRjtcZN8sR66eiyek9Ii0oiLSILZe1WE1hxd60xYt2rQbN6ZBg6yctLLDHpSoiaWRq6vCL54EZTI0NrF3V6R918/5mLc75t846NtLMnUvzK+kJa/aVc7nZ4jNnx3MPCBCa1OQPCwgSiW+8CdB/rBjeyBDF4OkRmmaoVcYrV9Wiws8VopEenTbbL11VrnRtW6yxVabjBqXN2N75gjrIxqbxS8cFhfvQk0l9ZzSmu+r/sr/wa/9bSqLLz/gUpHJcO8beec7AgG++aZQ9Pne95k+R+P3UsbVR4IvE0plvvvD8z8vqdB8I213jznw7x/mL/90ENHMgQC/um41L/q3clY44utXnABDe46JIi3ZUH2dvczzgrN9J36e3Enrtez/YwqDoQIcp5CEKnAmVdf/XoYqw979/JN/xmf/By9tP5XsFio8d6YG8UyktII/2bCNnzzEp9dwqIUHhvjeGAcWsYjsElF1UMbb5LwXsZLvKHt0oTdrUWO0bvoedP9ZDXJKpkzY7w5/z4wBxzxq3CsXve5SidGRwKfWWG2rLW50vWc8r2+JyRZSWjTYoNVtJjytbFzFpPmaRklZq2Zcsli0zIkFJ8CwZ3dYLhXVItODYVksWKPbBmtca4PbXO+d3mSLjUpKBo0oKKo0NfCGt9G9lihW9YyqFyR336v2L/4Z/+8v8dITr+05WsL48Q/z6Z/h3nvC/7/7fX7ndzl6bGFs0a4ElknwPKM6Q/8XGH14WNPRL5v56zW2XseuVyjMlfQkDvmqtCbTFkCdLlyXOxtozQZPwbjI9BUaCCc1Jl8hv++EjrdaCGQ42xFCMeYt3e0MqFTZvuMiLgaR4A3ck+Wm5uARfKzI7tmrkgCfwKyUTVI2Skwre1HFC+d/WaYzGDaX5pgEtLqN1e20NVIos22efPkuA1JSPu+LfugHiopWWonI133DrBbrvUfZlGnHzBrSbouicRMurj0/kfi8L/pfHvCs5/WbFyHwFUOjzbq8x2of1+4ez/qogiPmU0fU7h8hUfSMgkdUF+ga687beftbghTiN39nYbbhKkefIa2ardblmEGHHdOmxRrdZhT0GtBbPcZUO4NZtS25IIRuX0HzML/yaZ794VVFgAnNb9/9Pt9/OBDf7dt5ZffVS4BZMiQ4FsupXWH967vl3CsrJ/KggscvwM6+mqdwiOoUolm+9vXQRVecn2nvKftFYrUrYq1/hvcvsaaFu3sCCX5lhN1Xyh+8Rv7ASY1sdSTVIJnIdsw5H+X8m3Ax17xywnA5zLAOlvjTQZ6YZHt+STRvXSpqhhR9Q6RZxR6JC5hHW/NBOm6rjyK/z+TLl74BI9OBBLc0hOX6HnYvvqpnWtp6G/TrU1J0o5vc7R4VFd/xbSk5swascZ8N3mfGoHF7tLnmkt7vR55AZNbskpJC5PRocq1Wt2myWd5Livokd90aHA+O9gWd0hyRslbOXdI2qRkxuxAk+Nab+NTH+eTHAiNZJsGXBYnEuEm9+mVlPOF5/Yat1OkFuzxrh0PTO3nsEJtuCNZ0pTKj/fQfZOjY+RsLlyDGx/nhY+GjTU5yrO+q4/mvwZIgwZFYSrOUJhVTdYuMy3sRf6ec92vwFllt9bCCAVUHVM/9zvXQhqRGricx88p8N6AsrIa0ltCS4YPX0t3Mk0f5gxcDOS5cgWvC2Zpwk5N0uosG6SgEsbfEPJdnx3TIoBy6ejRkZ0LFblVDIimJvJoLICiNa+l+Wxjh5A/MjQRXqhwd4/aNfOgOHtvNxCyDkwtb0tiyLlhcFcP3X1MzYdyTHnfMURUVRQVlZdPyrrfOmJetdKecds16FIyInd3f9VyYWizT/BeJirwZew37rqTzoPZ3HFBa8T4++GYeeSwYHJcrTFxE+/sZMOubqgYlZkVy87T1F4lshvHJYD8zx8+zjHNjwpRjBuVklZQdckwsttsBex1SrM2G68bBXaSzQfvb0BiuIbNXZ3Lekd5AgGu1cErNg4pz0WMJkOCUlFaNNstaJe8lJYN1Mnj2G1qEhig8zlzCfW+TlI56v3YKa8XWSjl4PhKMpBy0wXHTxb/vUkFbji0dTBQCKZ5eBCdLpp3S8Vz0hUY2ojPNhlwIxXgxz3NTTC+GjZs7cg3BSeVMVYKafi5Ub5pqCuX7yiTFkWAFEs3DZWkkH+QQP3Y7TblAhJuywQIvXwijufamkHIyPsPEadYe84FMOrx3S2OIul3XzfD4KSR4zJhtnjJt2oB+u+wUYcKYj9iqYo1DXjCtTyQtEisu0mSqy4WqvFl5jRtHNb79Kd2fmFAd+je87V4O93Kol6GReSDBDyp5WaxZ7UIS3C4Hhkd59InQhDDXCL9lnBMFJcPGxGJD9YF6SdmAYdMnzzpPnDSIr7QGQnyVYnTuEypLDoueBMeyclbr8Gad7nfUZ00qKButdwifGWl0xaRwpHrxvGhPPR3ugIoGkX5VJRdWbKwVKI+E5WrEyCwPHuDwJIMzoTluZhHMDDVdExrpFsUsVUuKnlxIhxstc7BAabGVqi8dK7uDTdLsTLhXX5rlUUS2MyScTL5CcSxYfRTmSa86WwpWd9euorOZe64Nlnf7B4Pd1E1r2dTNsweZLlKa5wOnMRfI740b+dT7QsTtY6/NG91nL+jXp02bZs2Kim51qw/6oL/ul40YVjJu0v7XvP71gChNz/1TbvsHU5rWZcX/ZrtaWytDQyH3vrFhzu9RdUzVsXnY2jngcG9YFhnaNZhVVrp6vBxBQdHhi/nOpxe+UXEZ84tFT4KpSdSktFjl4yY8Y9puZecWoh7PIag5Jb/ggvGYksfmoLutTjH1zCW/fFFjeJb/vYeWg+H/V0IGcSEoDF4eZ4hLQimht8gLS3MK+nzYcgNr1tHXy87tDF0Sb01C4knTRiozlPfVLT8ubbr/NXh4J7/4P4I+uKuVm9cxMBkIcDomm6Z3lO29l0cmMTkdtIS3bOaj9/OdbedN96qpycnZaKOddjrkkFifZompBeoDWAxoWRsGWr2PUKuWtHztj0z+9h/RszpEW80ufr/0pYy/4U1+YJ/n9C461dkyljEXRMkibPuLouiUjYpk5azV7h4z9pi2W+0czTbNUagCd6W4L8fOMtuKTCy+j7qMqxWtKRriq1b/+3/9Kp/8GV56ls/+Lo98dx5Wmukg3RQ8lebqEHEckdBl/75becM1HBgK2uBjY+y8AlW/hizrVtLZxnO7LzjwIC3tLd7icY+rvirBev1ewHLt5DrJNAU/8InFa/hxVeI3/YRxsx6y16OWd/4yFj+SJLmg+md8uTdkPpAoKeo17jEFhyXnqYjMJBytsrfMfQ38ly4+3sy61BXa4GW8vpBC12mTKkskvvdSMTzAwLFQgMvMR+G2YQ3ZduGSNE87rruVG9YG4jlZb3Kp1kLT3OBkkENcbhRLHBrgxb0XlfhVUfGUp1RU6k4OV/HBdAEoTjJ1hLE9TC6Qc9nF4o9v58X7+K2bTvyuq4fUEph/PR2dmnzMbd7vhoXelGUsY16xZE7HREXJsCCPOPeUYiK4R84mPDTLBxu5v4Ghakg3HLo6epOWsZiQjuhIU6mTldySGF9eMl58DhH5Kfrno6BaHqdcFzDNVdOysYvWRjqbQmNaLMgS+sdDVbinneZssE8bnWbgMjZBJYJbxSWguBw1fQJJOCwWjdzpPFiVDZeEVHTqpWDFKlZ0B2np5Bj5Beq/uxDkpL3TdZpl3KJHpyYZy5WkZVxdWDIkGOetAJ+OKh4q8JWZUBXOJ/Nprb6MZdSRYKbGinpJtFyrj8SSIIkoXH2jrv27mc5TLjMyNA8rrM6jprNSJZemMRt0v50toelteCo0yK1sDUS5pz2Q5b397BukvHx1uCoRZcmuCT8Xj5iLfUxaWqsWORmx2KBhlTPcVXIxj42xMx+WVJqtt/PBnyY/yc5n2LcjuG4VFmEcbY9W73SdG6xynZUqavpNGbvCXv2nY4VVVlsnFhsxaEDvkvK8Xsbiw5IiwReLBHsq/MZE6FMaqV5luuBUFBp8akkgXstYGNQwVQ0kuCGiFlGsBRKcjbgKw+FGR0KAUrkcHCIWFY6N18+JarBFO+4S0d5IqRoS5a5ZyX3Xs6GL2zfw5ac4PBIS5pZxdSHVROud5DYy8jWKx0guvskwI61NqzVWW6vHOj22ed5BR0w51Td2pso3h5jBWC1YCt7yRt79cfa/zLEDIfI927B4SPBW3VIiWWl3WONn3OOwMbdY7QmHlNX0LqA9X1bO9W5zn/fLynnUtw05prpc2lrGHHBVk+Dj2HXV3deisLRkWdEQKl/H8uHGfzWR/KWGQ1ch2z0HJhfxVK7+ibCcjDs28sph0WCX1OoeUUOn8pta2NwdPH2/8ITolT6RILpa6jjeFbL0P8lFIKp/6pMbvqM0ufVc959o2EDvb1M8fNGr7tJptVUaNbjPPf6ev+lxz/h3fsfDfvRqRTIlbaRcMVKmYyU9nSFb4YXH+fxvMjLAy9voOzQfH3h+0Crnv/iEtNh67RpkPKdXk6xnHfU9e5RUHTUhFi3I+bHGRm/wFu/xUSt0e9mzIrHl+d1lzAWvCxJ81SG9hriZ6UkKw2xs432b2THEwDSl5arwMpbxGrwQiM81+Zvcse+nXfPf3++3PvoR3rKVJ/cy1mpV1GxNMu35hfaLnQd0tZJJ0fd6ydZIp9iwjvw0I2OnJrkkleBbOQdRcb8h/Ya0aPYRH9Ci2d1ud7ub7bRHv0Gx2Ht9yEO+raQonaGpJcgh9r4UlsWGZlmjfk1VzW962E4DKmpy0t7lOn/sadsc8XbXutEqFTUvLtD5scd2X/L72q0QL+uTlzEPWBIWacs4Dat+jdJBMttYcYgNbTzwcX5rG7/3HEcW1tA7p1MkUriQuNzzIPthkknKP5yHDbvcaIqCHCIRujILy4fxYkOTVXq8wWp3aLDCrsyf6Wv7Y6pdTP+8zeXveJMN1mqz17BveWVJBgS88drACfvGOTQfmu3FjC2buGEL3SsZGeX5HfQNnOTJHBFliBtJivXs9Us7Nzt1eYN7rLXWhF4kNrrJrKq9dlprg312e942FWWd3bR1MjXB6DxlwMw3slJ+28ftNuTLXtCh0UadxsxokpVIVNTsMWRAXk3tAnJT5x+xWCxVz3GN1NSUX8fe2cs4Ny7UIm25EjxP6NBmwtTlF+mn19D83nBlLT3OzJcoPM/OERozrGgMaRazC5Ng0ahblxtlNJtyxLAdF7eCHJm7SGap7CC1juxfw99h5rcpP35ZNnt+UEjCGdUUBS1wFpNzPx5WtgTpd//cUmEvCff2kEvRP82eBawoxhniLJKQq3GpiDDuoEm9SgoK1ZVM7ySZoHpIUVlOyi+4zw79HrZv/klwQxdRzOzlY6e/+KGQBv2Vp5Y4CV7REcIwJKTTgdnPFkOVt6WJN7+RD76brddy4DD/8b8ylT8tzzsJGuDqBRCmuKke5R2LS8Pe5H6dugzqc8h+kdg6G/y8f+wP/EcP+rpOm9zqTlvdqFmLb/iKaj3NdHKMmanzZqQsGDo0eretvmq7FxwzKC8lNq2kTYPVWk0qGDKtqKq8gAPCWv3fMpYxn1gmwXNEJNKi2XWudcgR4yaUzxHnPGfE7RS303gvtVwgu6MFPr+do1Mh07iycBeKdtfY6F2yWh320MWR4AzxarLvotpPdQ/VY6F4k9pCatMiJ8E1gQh3pWiNQjdmtcr0xRPhtgYmC6xupauF4hUY00SyIrFavZOvq4FP3xIen+zjC69wbPo8K7kMiDMhWTnOktQ4R07OeVGSVzarpqKijBbK3xCs2YZMKNhhwKMOmFCY/4pXz1to7mG6/7KS4NFpJmcoLtV+iDimvZWWFpobyWZpaaapgZlCsLzbuJ733M+mDYyO86On2X+ImdnzJwCmMsQR5ZOIcdxE0yYyK6gVJLWSgUqfvEktWm2wSSSqJ5imNWkzbcaAPnd5kxvd6ik/kndiJq5aWSQx7mdBUcUBI/pMGjAlQaOMNjmVOuG80WpZwybNKqsaP49DRE6jSErRjGSZtC5jkWOZBM8RKbFO7T7qQ37kaU96xsg8yADOiqTI5Jco7ac6RHEfQ9Mhx7hQYaywoCS41Xo97pGS0+fpi3ptlCVeRfouor0UM1R3UH6EZMrSiHYpYUXM9em6dVqR6ddWTyLBvet0chtFNKTpaAz3+RXN4XdXwrQgZ6VGm6S1mPSC7sYBt69kfSvTZVYeXiASnCO3gkxbmMmuzoZQuUtB+RQGnSZJRLUYkUSDabxswO95XIOM0nwPaK/9CC3r6XuU/ss3ovvz5yhXODJPwXtXHHFMW2sgv5k0rS10tNHUSG42/H7VSmYLPL6Nl3bx0KMMXMDAoqGZrjXBmmHwCNP1BsrGjXS9m0w7+Z2SmQP22w02u85612jTbsK4R31PUVG31apqSkrSMh738OXbJ5cBs8qec/TV/3drtkabBhl7DZtSdKNV1ml3zKSMM09HpWU1adVqhVhs1rSyguoyCV7GIscyCZ4jIrFWLf6hn7fOAw46fHlJcPlAWPLfOvG7GSywf+NxpOTE0mpKii7MPiCdqhtb1KV7USNRUygCJQNUH6HYSzIjHLGLuLICNqR4V0OQRRyocPi1JDiOgmPX4Gny7XRMR1OwuF3XEf4+MEX+CuQmNLnWen/Fah+x3S9oyjzg24dqNrSwezwQ4YVAuoH2G+i6neIYvQ8yfdQ82B7EJB1i/1xiGwYl+swY8SOXoXU/SrP+HXTcQOnyalu+9fxlXf3lR5Kc0BCk0jQ2kEqJCgXZQl5UjlR2TKl8/4ccPsbo2IWtN06xdgt3vZuWTp74BrueCn9rv5M1n0REoZ/yiRHEAXulpWVkTRr3P33Wamvd6V6r9EhJ2eF5D/m2jIyypVmCv0WPVVqMmLZDv0Rio07tGgyYMiT/mtdEIu26XecNbvU2h7zsFU8bX4RVi4yMrKyysorKsrxiGcskeK5IJGYVPeZJM2Zf98bdRz1u3H6JmikXlm+6+VrGxhgZTkm2ZxUfmFXr5+c/RrrM08M81kcyTnorlVfMxe/+ymBtimvTYXnytVrEavJaAkywth2cCjKItkZe7r8yBBhKhkx6Uc5azbYqVSO/8TTFBdYzNq1l88e44W+QP8zwc8wcO/+M9/mRElmLFXhe4pDLaurcsYWjjzD0AgNPXr73uRpQrdLbR3dXIMClEjMz2qaH3Zs9oLmR3YfZf4zCxZwfXWt420e5/2NBN7z3uRN/q0wx+oOQXjix7TUv3WOXPXad8rtP+ZvudZ+1NjrigLd5txHDtnu+LrdZWnjYPrBWm4+5zaSCXuP+1CEzZ/k8zTpc6zb3+ah3+KT/7l8sSilELHaL273F27zkBa942ZDBhd6sZSwwlt0h5oiUlG5dbnI9GDBkypRps0ZdYHXiqsMZHEq3XBsaXIaH6es/5dmbNjGznrEqtb1pDaNrrFx7xCNformJ//IN/vNnuWNPZACDSWLcIi4Ir0lxXZrOmH0Vdlz4zbAhzTVd3LmB//Nd/K3/wY6+y7itdaS0SFTVFOvem4l1LVX9MwuqrgFtW9n0E6z/ADNHeeZXmTpkHirBKWzEOuzFKJe12zwKDXEIzVqLiyQsWkQRa1db1VJ2/7oRv/xpbt5M99/uNPGe24IM7IVenjqX92/EitW0rWDdVnKNDB/lpcdO+h4i6sf+ieXcuMd93uQ+N7tdl26HHXSvt/pXPuNpPzKxgOESc8F7Xe+/+Yt+26O26PKvPGjgDFXgVis0arXKRmts1qzdYx4w7OiiKwg1afaIp222xT/w877tGwb0n/+Fy1iSWHaHuEKoqhoyYkKoHDRokJJSW4K2SvOHM1z8oog77+DWW8LPD3yVHz2BIP3L/FXKnZR+s8U1Qz/tWN+X/H9fOSybqzr2JB87EPu/k7T/oOoBVY1CzW5R1loGqyEmKoXyiX2xsoX2hnDPPnravXFdR9ABtzSwpi109n9xG8NXSINbfTXxKnm1gtM/TWUR3MdmBzj8TYafDSqCfHCmmgdUcQR9wpF0uc/ZZE4+ta8rxGgT7lCjCf1D4q5Ean3QOo9OUuto4qfuCteTb7RwZJy+s8lMEsaHwvTBbJ7ibLBtSE5zkbiIY+AX/ZJD9jtkv2f9/+y9d3wc6Xnn+a3QGd1oZIAAAYI5zQxnxMnSJI3CzMiKVjjLsi1pVx+v986r3bX3fLtr357ts3W7XusczpZsy1rLVrK18mhkaazRRE4e5ggGEESO3egcqrrC/fE0hyAJEpkI7B8/xUZXV1dVd1e97+993t/ze97iAt24OHyKz3KIN8lcQz+7GvAaF3iUPydBAQ8acaZviHIkUdGIMcgEA2RJUiC74ggwgItDH70c4wj7eYMYq9k2pYLFwk1BgmsikMlJYbWlgI1NARs/Ppxy3nmRGzSHvVqQz0sUuK4WHnoQtmyGf/PvUSYHiERdaIIou6i78FmaeA8j1k/54U8HsU2bwLjCrSWFPJDDJQMYrOA6QTaid7gCmiqrqwOwrlpkD32T0FINd22QCr9ZQx49GiQL0FglFX8zS16M7urzXQkEGMDKQbZXosCOJXUP5goPwSuS4t7eOyt4TmFmbNoFG3eBpsE/f3u5z2Zx4QH2aDDkQJ+NLxkiddLPb/5FnKAfCt0J+NZB8OmiG0rNcJM4NmSTQpqtkjxfACaJcYpjpEmRJ0uKJAoKP+QfSJFc1XrTPCV6ZpHb4uCQJ02RHA42pRXc75mYfJn/hwIF+umrlFuuALgJSLCuQ2MtbGiFkQkYjS3dsVygVJbcr9bEiCVDOgNnzsGhI9DSIh2R4xCJQFMT1MYhORJBGd+EZOpbnDwLJQOaLJdqXH6AzWlcCqxgAnwFVAXW14ikwKvLQMx2wO+R5LfqADRHJArsIprgvClfj6rAuigk8jeCBK9cuPb8vYE1vFTTVtaoj2Ix/0IJKxKNbbD3IQhF5kyCPUATMqCMscK+FQ/QrsKnNHhF4c5UE/cMtVI96uc7oyfoZhLIw1PHZcSYMeTGmQmlxSNph3iTXs5jTNGRu7icLztK3CxYycR3KmxsXuGl5T6NClYY1jwJ9uoQDsHPPAyHu+CZV8VmcilgrJLGYFmQzcry/Sfh6DEIBfGODdKyEXZug7oUdJ8Z5zmeY5JWCE4pAAAgAElEQVRDFJnAyIlLaxw4isMJYIzVQ4BBiOzGBgh6RAIxkYV4VuQODtBQBTVB8XXNmZAqQMgn76sNyRLwzv24fkVmlPMritncWKjoRGhhNx9mnDOUKJAnjrOaI79XwihIgpc/MKvN/Vwiu/XAu1EZw2VfeXC5Ii4XBQgCd6jwSzqkLT742nY+wlYMbE4zUSbBiARimXCC1W7BUUEFFax5EpwvwkQCHr4LOlpgLAavH13us7qJMTIKI6OoKqzvhJoofOAJuGU3PPPUCN/726dIY2Mw+naHXABGYVUOMSwHXjgDn78PeuMicchN+SAqEPaBaYtnsK6JHKIuBF4NJksSHX4bOsKerzPTqgLbvFClwqsrwzlvWRCkjk08zOP8Pgf5W+Kco7CyUyrnjkP7YKAbahpmtflW5D7SgVtR+HVUXselG5t+ljYtcNbwALUKtCpyQjGXtFHkCKP0kqKLJZzOW01QLiZaurydjLxAiUcFFdxsWPMkGKBvGH7196Chdul0wRXMDY4D58+LJ/4//Qj6+iBxqpm7lLvY7/0OOwNwLCVF11a5ahOAr702/fqxDJwZh0310BiWdbVlAqwo0BOTyDEAEQW+EIQuC543rmkN/d4Q7PDCmH1zk2AVDYAs42QZJ8kA9qocSs2AiWFZZoEiwisVwI/CdhRiwDgrhACDTPUkXHjWhqMOnHH45sQxnsJLEYu+WfqPr3l03gbrt8tsQDACuPD83y33WVVQwarCTUGCAU6cE8LlrN5chTWB9hbY0i55PL1DcOEC/Pcvwxf13+Kj1r9kizrJ3zR+h4gOMRNGimCs8d9MQaK/jWForob7N4qDxEvnRBbBbh1u88C9Xvi4H56YvG4kuOTCsAVDq33ksEAUSdHDS/wtn2CEY5RWSEGZ5cR5LsUNUzj8eyDHCptlsYEUcNKRaY00jFpZxlghco2Vgr4TcNvD8NDPicvF608u9xlVsFC0NIHfD+k0xG9Wi9Ubi5uGBFs2q0tMusoR9EOkCsbj8NkPw55tEE+BYYq5/bGzMDQudkdeK8wYBc7SR8gf41c6IeqBY2lxU0iWILOGCJ1Xl4S4ar8kyF3M61EVqKsSj+CsAU8dlYiwV0FKMd/tkWs4oFyyYp4GaQdGLRhcQ9/ZfFCiQIZRTPKY17B4utkwtQmMAf9Q9jBYMVHgi7DhbYcxG5wK/b0atiWJfkZO7N7is5sNqGCeaGqQMt3paaocLQaaG6GhXqYACzdxJvQNxk1DgisQVGmwzg+dAaj1woU8nMxAZpEHCAE/tDaC3wu3b4cn3gUnuuHoWegZgu5ByJUDcxYWJzmIQZE6cvySCptD4FNFU7uQYg2KAq3rxKEtHVyHpQegkIfxJa5A0VQnGZndVxv466oUxciZogUOekT2UO2XiPAbF0Qmsb8PxsMqBY8CGRfGHMi6woqvQ4IHShDRoFqF1FJH0e/QYacG5214fWWxbheHEsUV6Vm6ElACVjRtqgQtZsaZt4QAmwXoP7XcZ7N2sX2LdGojY4tPgjVNKiMaBsQnxcs6l5P1wQBkRA/nQZp9h9UvD1xJqJDgNQpdgZBIIklZ8rcCNHhhZxU8XAe7w/DNYSHC1yXBvjBUNYGqQ3oIjCwzTUx6PeLP7PVcSk482w8Hu+DYGdFpX4RBgdMcZZgeajHYFJf1iZKce2EBRE5V4f57xaL4QMdDpAKtMNgHz/8I8ksYHWyph451EgpPX34cx4ViSZwiQAplTOYgG5RSyd87JJ7/58Yh26bhRFURRx8tyY846Uwrh9DRsbAYtSUpLqpB/yK0lgFqUfFgkr5aUnCfBz7tg382VxwJFrhYS1kKuYIKlhPnDshSwdJAUaCzAz78BJw6DbGZvZPnDE2TDPGus5BIia+rrqOGgni9HshAUdPw2dJJr7hZm1WOCgleQ/AoUuDABcK6kF2At5KwISARyKAKXlW2C+kiObi+1ECBxp1w+6chEIXX/xwGD4BzHR9kRcFBwbAgnXV4YT+8sB8OnBQyPB2KFNBUA0XJ8t0heHoMjqehuMBIpkeHn/8kTMRh4M5/QarqLnjrFejugtPHF7bz68HrkWjw3t3w/JuXvWSUHR9URQix7chvZjlinXbWknUt1dDng+I6FepViQQfs+DN0lVjEBWVCFUkSOHi0luS/WssPKDWwQOEqGeQNxnjiu8siJxbozrteyuooIIKVi0CfvhXn4Nf+BT87h/A0ZOLfwzblgjwRYSroDaKF1h3vhcH6AsF0XJ5DNuukOBFRoUEryHcVwNH0hI9VQBNgawF26sgqIFfFeJrufCjcXguDkfTl1X2vRqhemi5Fba9H2o64OwzMHz4+iS4OspYoJrEpMsm+jjbB73Dcq9fC0XyFB2IF6BvEfOXVBV274T1bfD1rl7OxjZItSh3iafId22GL3wc8oWrSHA0KAU0UgWpGDda1j4WS1JF7jKMleBiCfQeG56/ugnU0IhSTZAASVK4wB4/tOvQXYJjC8x62sGHaONujvGtq0nw3xvwjAlHKnPXFVRQwRpCMAB798Djj0JtFIpFkSwsNmwbxqfY/vl9EK1GVRQCQBJAVSueKEuECglexWj1w9aQBAU1IGtfqtarIBHfvVHYUSXSgpwtkce4CU+OynYzBlptE4YOwfO/K3KIwf1gz1ANryoMzeswVZXTb/YBc+GcHvBuhMBeSD8J7sIkC4YJv/6foKYGup/9ZRhXJZO6tMQV/VQVIiFob75sdWcdtNXI93F8WMjwcHLaKsuXsM+El7mmAsWLh1aacXDZGRwhqrm0e6BFh3cBL+Uh54hd2lyLZ1TTwQSnMciQ4MLVG/Q50De3fVZQQQUVrHjYNoxNwH/4L2Cvg1AL3PGz0H8STixh5blPfQSam8gfP8Wp0XEYHMZNVijwUmHNkOBmFCwgjXtTTBfsrILbIrDeD2kLPrEO1vng+Tj05IUA3xKGNj+YDnRlYcKEQjlgN2uVgZGB2DnIjoGZBTMvdWyvh5IJqSTYFm4kKn8DaI2gN4BaBa4BxSsqLmm14NsJnk7QqsUIfoEBW9uGZ54T2VUma964jIJ9ByCVgeqqy1bnTLgQh0ROiPBo2QGjnjo2sJ6GYICxTa9zaGrA9Yofq0OHeh18irhA5EsR3s8jTJKkI3Aen2pSrUGnB271wV4//FmybLc2x+8zyzCH+Gs0PJSYpnZxJeesgpsIqgaeIDgWlGaasdIaQfGDWwB74oacXwWLCLMEF/phaAQ+96ew/V6YHIH6dgjXwevfX/xj/ttfhp//OAyOwJHjuBVP1yXHmiHBt6NRh0IXNudxWL5imjcG46ZIH87lhEQ9XCeEeEeVOCtU6+IC4VPglQQENKjzQt4WucSs4TpCfq3CzBHgqfB6oaoOGprg3GmYjIOTlSmmphCEw7C/vK3WBKof9Bbw3QJqCEoDoNWBWwJ3YYlNS+Voc10MjkEyK35oU6AUgoSVIOGShwR5Rm0Z4VcR4p3cy4ORTvbdcwUJvgJJB0wLWnWoJ0o9t/JxPsR+DmOo38NflucmbPELtlzRVs9HAWJTIk+lA581/F6oj4oheToP2WkGDhXMDI8POnZD98HlPhMAfCEIN0EwCqUiJAdnQYKdHGiBMhn2gTW4KOeiq9BRCyEvdFnrKaXiYJSvM0WFtp2wfhccfw4yq6+6nhIGVHCXO/jpuuLhufEd0LYDTAPyabGlM5cg2bYmCpkcPP0cDA4TOtNNRzLFsnh+1HvFnmlo7ScVrwkSrACNKDyBTgMKFhYZnDXtsBMzIV2CKr3sqZuRBDfLhWqPXL8FG0oKHErJcxdZZzgipZj19e06kqk1W6gqrO+A+x6Q51/7M0hMgpOHBgfuq4cdHTDcBcMxabi1KHhaJVJc6gPj1MwR53mgOgJVQWnbXFcS5pYEBUOWKVhPLZutJuqpooTNecZJUaCIiYOLi0u4Cu7bCz95EU6fn764S8q5ZH22UVXY4lGxSiZ4eqhS5bovOPI7Gy4UXXkMqmDYFXudJYXfR6sWogqFyYDGhOtAbu13JIsOzQNNHSuCBHv8EG2Fze+Cho0w0gWZ8Vm80c2BGwalDtQ6YOEk2KtBWxQ+c6f8/VfdGoM5BVOrhmgLhOth10Ow+S5IT8D5g1BYHDYZDIDPJ/1IcgmjTFozKCGw+8FZAjOGOUFRoGkjDJ+FxCikxmBiQJ4vwbGqDhxBeeMAZrEImSxafpqRlqZJ4vVSeQl3BGB3RBKJ9iehd20P5NcECXaBUVy2opEFzuBwZo2TYE2RwdrGIDT74HQW3khC3oIaD3QGJSEuosNPJuTxIjwqvKN6CQd5tgMbN8Pnflkq33z9z8SmQVWgtR4e3ANP3AMvHqEqPYltjmCqDdhqDeBC/nUwF7eR8XkhEoZbd0JrMwwOS9GO2OTS58hdxH1s4X4240XnKAMMMkktIWJ6iYyd5nnteUrRV/nV7fCLH4ff+gPRNF8LIxa0+hN4ffv5RvYvCIV/wP26SCQulptOlSQibAPNupDhdGWGbeng0bh3wGSLE+StpijPNXvg/OJEAG8uuJLAsERQkDwKtfx4vaCuPwK17bDtQejYK0Hq08/N8kCuAU5BJGBai7A612Q+OiJVgWgA7miD//BuSOThxcE48epqzNrtsOlOaNgA7bdCQwfc8ihkJ6H3yIz7ng0iEWhqBI8Huk4LF9M9kElLUGExoPjBswv0digdh+ILi7PfBSE9AT/6U8gly9HhIsQGFmnnCiga+DRIp6k5cgovDsmqIHGf71IasqZdyiz3eGQm9QoSrONBR6e40MqYjzTAQ/VleyGlQoJXC36ChYciOVx6cNasM6hSXlp8ogvuDMKoAT8Yu7TNripxgcgkxWnhQOpSk9vsk9erddnPknQz46PQdRJOnZCqRrVe8DZLp2bZcKQbNjSjlUw+8ACMjUNXfDOjhdtlCnGRCbCiCPn9zMfg/rtEHvFnfwPnexf1MDOimQj3swU/XsZJo6PhR2d9i8JYIkW2JoWzA0JB+JVfhN/70+uTYICsA2NuAk/VD3hvQGYCPEq52mxZDjFgCTFu0GBcuVSIq4LFh+K4dLohHqCORI2P5xqTy0eCLxZUWVW6bUVuWM0D4RqWqpUKKlCjQF3ZffBF89pWgpYB6TE4/TyMnYXxc7JuVnASgA6+PVDzHyHx22B2zUviFfFDXUi+nkMDkDI1Drd8iNT7PgXBCAychNMvw4nn4YHPwMa9cOEw9B5lMb7D0TGp6LvnViHDLc3iuvM334SeaXJm5w4N7x6b8OfBsxvy318BJNix4fAzS7d/LQBVjbCrEQaHGBg1aSylsBWlnMSB/OCN9RCLy2ijWJRlChRU2tlIE628wQvzLxCkAPfWwqON0J8XcrHGsWZIMMA+LFxgLf9sD9bBPVEpfqEqMFmC7iumjE6Wk+DujIo0YipKjiTKNfpER/zy5PQWaTotKHhxsXDI4MyVOh18E774BZFGhDVoqYO8ARdG4Eg3of1H+eoTZ/j4e+DrT8LXnrMY7Z6AUu/cjjMDVBXuvxM+8hh89HFpxPe9AQPDXFd3uxT4IUfoI04AL6cZ5gj9bO6ET/wMNNZBLi/R6Vf3y7rf/jX4g6/IuV6JBnxkKFFwHOK2FMbY6IG4LQUyei0Ys2DIgtfKgYGMDgEVal2ptzEt/KDWgrOiS4mtTKjAE/EA7fh5ngkO5DSYXCbxyS1+6PRKp3bagDOrpFXccS9svgNqWqBtG/z060tC4nVgnQaPe+E/VcGnk/BjUwoyXolCCoaOyzI/Tl6+2UIfhPyPpI2bBwl2XCmi0zUG3zumwmf/X9wPfBCqm+D0K9B3VMTLpUno2gcP/IJIIyZ64fz+mXY/K/T2SeGhd94HX/0TePk1ePKH89+flxA1tDNGF+v5O5KB/4iTukCpC0onwbMdSqcX5dRXHpoaYMdWeMdtsKEdTp2Bf4owHnsZcucgE5cI8N7bpHNIJK8Zcv8Yv8hH+AWaaeWP+C88xbfmd07vqoNtYTidge8Nw4urT1M+V6wpEnwx/2lVBT5mwIO1ImX4aQzeWQuP1ktnm7PhYBJeik9fUS1mwiuTsLf60rpNQZFPNHjFP/iWsBTVeGUS4lfkvCkE8dKJTQqLgbmT4FQSstlLoWsFmUqyHXBcSofO8+OIRGUPnAIz8QwNzosoukUhJPkB0yIchMzsp2cURApx5ATsPyLR3/N9b1eivD7+t38HT/0j9C1KmIM+4oyQREGhhA0KbN0IP/cRkXg99wp89yn487+Fr38XWpouzXhp1OOjkzz76SSEgc1mD7R7oUmXiPA303B/AFI27C+IP/DU6NZIuf281v2hNoHaKY/mDxbhA2sR8NRDsWfGTff4xfEibsPhKbN5ndukwnVuhYevvShsJMQnaeX9NPJLrYMcNYbhzDKl6NZpwppyDoRUaPdA/+LaAkaaZZBZMsDMySzx9BvWwxP/Cr79OzPvtCoKuhcuHIUDP14yrVLahW4LXlbg7wqQm636Yj6n4yQg/zRM/Apk/x6c+WXqZoqUvS+DuLc8CslxiVQWs9BzAM6+Dh/7TZE/XDgMAydgrEckEYuESASaGyUq/L0n4Td+EwaH5revKG10cA+beTc/4SmqeB++1zYzOfo7pPSnsPpERaI2ghNjDpZGqwB6sxSfioShvg7aW2V9qQee80G/H/wmrG+V5eSZa1579/MoH+YzbOdWznGKGGPTbzgbVHvg6VFJJHp1qRJmVhbWFAle8eQ3ijRi16iaNh38mjg+1Hsl6ns6KwUucrY8v1a5YwdJlDuSvvS9jBmyzquK1OfuqLw+XcU4lRBVvJcSfeQpYTE6t8/qulKU4hooFSyefwsO9+4l7dxFJpPGcU8QcI5cW++vKBAOSYZGriDSClWRnvgaWfguUq+ifxiyOegfgvhsv3/LkqTARYKNQ2FqS+7CwWOy+H1w4CgcPekhk6rnyKE6ukM2RsbCSwmVACpB/GyjhnESmIRVBU0RjW/SFr6zLy9EcsyGgnvl8a8PdQP4Pgiee8A+B3YX87+pIvdC1R5QPBD7ARhXmwkrQK0mRP43GsGrwE8yl5PgBz4gidg9XXDuBEzOJiFpGWDhMkSRP+I8Di6Dk2OU7LSUBrzR2OIVTUx/CXIOepuHbacdFrPWla8K1u0St4TkkMgESkWFIPVoeFBQKZCgRE7uz+oG+MzvwMmX4eyBaxOzdBzGLkB8WNqQqhrIpRb1PgS5rNMuHClJ4mjMgaVzDndE5lU6Kw4587yp3Iv/WQZcOCg+balx2HA7DJ0WQlzbJhHEXAKe/xqM90Byjm33dVDIw/CoNMW//99gYECa4fnATzVNbGcL7+YZfkSK72IYXeR7zmIpIqe2DXHOfBs+aVLc2QQxVjRcic44DgwMyWMiCWpR7hdFE4u20XEIBCSJZRpv+63sZi/vpIfTHOENznCcUyxAA2444rE6UBCScRNgTZHga6E9KrYykwVIzkEz3hSG2gCE/RD0SFnb13rnn6+htIC6C4iC/SNgZOb3XChzOxXoL4gd2vn8DFXeynC4PMKbtWUBISB+FQYL05MjnQYC3INKFJPumQ82R7gujMZgtFAN1XeCouLXddzSkWs3qpoKd+2GVBa6+4UIg3QMXo80GtMc56KcwCwJEZ41YhPicmEYMLZ4HclUjE7IIL+pXoLktdUuSqGEXcxjZDz4sHHx4lKLj21E+RhZvk6Wszi4+BXwKzDswvkS9JWgShVrvKgqdmpzgg1uRjqaecPXAbXvh+hDYKUh9cq0JBhEw5xzYKQk13h8yoCsph5q6mDzbmjrFB7UDeg6TIzcuITG2cABMljsJ8k3GGCokGIpadV1UXTBgZ05COXgUEglX6tJaeuCKyMmY/6aQW8AatfDXZ8Uyf/ZfZC44EWljmo68ODHpoSGjyIJbMuPOd4HrdugqRP6Tl2bBE/0CxG2DGjdKsRuicIbFjDpwhFLrr2lFa7YEuVbjM/i2DA5JEy075gQ4Gxc7NBe/66Q3tS4SCAKizuFUrKgVCagR44tbF8KKg4OOcbxkCQZ/GdKpW4sc/jSvW2ISZDiLytIHBZeB34lwMmCUiuNfjZ3ackXoJQrJ1SWX+sbmHbqUkGhjQ0AnOQwPZzmAudIsoAIbqIkFlLZm8dDaM2T4LogbKoTAmvY1ybBXk0SD+qD4NGgaMG6CLREoDkMNUEYSsHrfcy7HVNqQH03aO8H90I5Z2IGadjZnCyLDRc4c539qkRQ8KHiR8G7+CcAoHgBB/R60FtxlBGsaw1SFEW8zX72UUk0yhVgJCbM1jAllGo7gCvbOi44zmUkeM5IJGDrdjCKQoIVBWrrIL5wnZSqSIJvwC9B7AYXOlrBuMXiTDGG5cSojTfguBAjRBIfLhup51fo5wgp+mmmgK5ARJUM94wDAUVcIEKKSCSyzuw7d2cMSvvAOgLOKPPvrwObwN8J3nWg6GKBNw1cynZvBvxlXIKXsSkdXFU1DPXBrjuhpR2a2yGdBH8Q8llZnKAfQn4Z5RZMmFz+ENGzy+2rPFCCOo1tBrRZKufzLhc26CKLGJDo8HxJsKKA7oNwA2y+HyYuiIWYZgeJsp16tuMlRJYxdHzkCWOULMzeE1JEx+uHhvUS7SpkrybD2SQUcyKJ0HTxZV1CuIgU4noIoqIBJi7GvG8KB6xFLq0YLydcTk5JvPzRlxf3GEsIgwyjymkMv45S20LeMwyTCckdmdJouQbgAUygJNbxqx5ODrIpSFSDXk7ySQATCcjHxE5UUUDXIH9t+V8Jk5McYpwRhulfmBQCYLQoDfF008NrFGuWBCtA0Avv2wbDaTg2AqkphFNTJKqql/vn9VF4cCN8YCdUeaE3AS9fgHgOiiXoT8L3F5hI5aaBSUAFdSu458EdYPlHtsrb/70dXrNJkORvsBnHWIJIMCjlCnLN4NkIeiNmoRrzWnI5nxfaW+Bjj0LfMHQPSBZZKnvJOkYNyqOuQdFceKGCkimdtccri88LDz8K3//76Q18ZwFNk10GfHDnbbC1ExrK032hIGxvg7YR4fD6ZA13uHX0kOUl4uznNA5Z/GynwGEKTpERK4epiS64WYezphBhEI/oak3kEbOB0wtm77w+1uWwkhD7R0jtKz+f2af05DR5WwPn5ftKxkDRFMZHFEzDweOD9s1woVulsGUd3NEJtWE4Mwz/dFCuYcdZBfqoRYSCtOYuQiCOFDmDioPCPW/Y/Hi3Dl4XLphX62TmANcBI6lgjqm8+S2b1CgMH1dQ8xGauIV27sdHhFGOouFFJ0jOzZDIp6CQkejuez8nU/Zn98PrP5Bp/Yto6pBEr0IaJpbfWk4FbiFAFI0LGHRjrClp6nJikj4m/SnoNOEjfwz7/kgqk+YvHxgte9GMpcLgMIwY4Nelf3Gykj9RigGmFN6pqxFZ3ljsqvbMxeVlFtm5YmCB9mqrEGuWBDdUwefuhLva4SuvX/6aR4O9bfBGH7xro5De21vh0S1waAi+uBhJQdPAnQD7x+CcBLcP3CQrQ+wfjYhA37ZhUKb987yIyRkAHJYgFI0rFZTsNEz8FlixaztDBP1QG5GO/k++DRvWybqWBmGTmbxEgRNpqArI3/MVql12iq5Y0ezYCZu2QD63YFnE3lth8wZJ9r0wAKYJ+aNyGCsLe4LwrfeJg8f/fcKl4NjksECdoE47S29pAgUNhwx1moOK2J9t9cLBopDJ5R5TkT0kyyKg96wsrK+FpmrompJkd+9mGEnCCyfhsdulKMXtnXId94xDcimu2xWKGg0erYKYBftyYMEpHE6FVehQhc29kFvwwMCHyha3mk+e2ciffuUosbRFqNTGOu6gji00sgubElWM4eLgpQqXAWBY3B4+8K+l9nD/KXnMJuDo85cO4JRncwD6F1PFPHcowEZ8/JAt1KHzVSb4MqOcW9P+QzcQgWpo2Artd0HtBhEA5yfBWqsGp9PAjkPulavXN9RCxzqoiUhCy1icm2tUf+MwZxKsKMpfAx8Axl3X3V1eVwt8F9gA9AKfcF03oSiKAvwR8DiQB37Jdd3F6R2vge2NsLVe9LyTefivL8DhYfjYLSJ3uCiH2FwHn74DWsLw1gCcHIVXe+HVxTECmB7jMguiDEgxIVKsjOta12FDK7S1SNbYP0sE71Iy3BKeZPYnU44xzYigNiIlmEsWxJLw41fgnlvlud8rSXKOKxHhgE/Ir88L0bBMJyVmOZ3avkHCXAP9Eqp97ANw173QuREmJ8UhIheEjg1QVw/PPSMu8XPEgaNizeYi/b2iCNe+m1rCro5eX+RYPE28CMOuwQmGmMAgouf5YFWJP57sRiWAi0XRBU/5p8k7cMJYGWOqRcddm2FTs0yTHu6Fe7bAG+egyg93boKAR6Z93rERRhJwYRy9VcXTAWoY7AQUZ8Gn/FH5LYwrIk+R9VDKQ2GlJks3atDqgeNFOGtAoy5uEH5VRNd5R6K/C7yNA2i0EeKdNPFr3ELvZIaX3VGGGGWUozSxmxJ5NLwEqEUtdy8JPQbtu+RiH+uFQJUUHrBKUNMsO9+4BwJh8AWgdh2E6+D84fmdaFuTSKXshQ0HXaAHg6dI0omPXgzMFdFgrxE4FqRH4PB34PTTUovaWI4a9ysMG9vg0Xvh9h1w4hx0L7KMpoLLMJ9I8P8A/hT4xpR1vwE857rulxRF+Y3y8/8deAzYUl7uBv68/Lhk6KiBveslEtw1BjuaoD4Em+thZ6OsVxTYUg/n49CfkI4vnoeDg6IFngm3dMBoEibmOk1TNjF2U0i4bqW0pwE/3HcHfPR90nGcuQC9Azco82iGLzydA68pBDcYgFBA2KNhQrYgXmpFs5xJHoR8UV7XVLFT8+pSrc5xhURPTZ4L+GDjVsm+bW4BfwB23wbxiXKN6QJs2yFWb16vhG0PviVEed06SWxMz40I2w6EHJ1WAmgoZLAYpMB6QmwjDPk83+7KEulbT8PyBDIAACAASURBVMlyyWHxWHWBrcEiR0wFhywlBnCxOWeWaNahTYeEAw8G4eX8PBN8OltFPjIxB+uSGwXbgWgQtjRDtgh+DzyyG9bXQWejRP+TWdEteTTwe/BuVAi2gxqC1Pevv/uqZtD94AnJ+MdF3ItQINkLgTqwCjJGKi7216MCP79NSj2+OgIjc5TwNOlih6YqEFQIRyHzeFh8gkcsIcYTFgyWYKdPwpsDpXmVDTSwGaPAKZL8Cac45MYZpUCBEhZxBniDLTxGAzswyJBnAoMMatGg7s0+4t5nhATvfkB04pk4HCpP5w6dk8hwy0bIZ2C8d87n9za2tkNtNfQOSfuxADjA7zKMH5UUNvFK0fHFg5kHy4SsKteDUwJ7LQh+Fdpox8YmzgQmBh68VFMzO83urs3w7rthUzu8dRyMtfCdrFzMmQS7rrtPUZQNV6z+EPBQ+e+/AV5ESPCHgG+4rusCbyiKElUUpcV13Vn4IswP3THpC4NeGMuUIzvlhLjjIxIN9qhw2zohw0GPEOdkASbysK4RUITg5suzXqoiPOrdt8q6105DYb4zYhYSE18pBBiEPDY3SDS4YIh570o5P8u+ZMcR8EMyA+cHJMI7mRbiVrJkSWSkk/eUia+myWerrrq0v0RaGhW/V7aZjEvtz0JeylEaJuSyMD4u0od1rdC2HkJVkB4W7VZ/r1xY5gzl3K4B+TQKDfhQUGjEIYTGdsK0GXUc79XRkhHqyJDE4qyhkFUVHMXBJgkouJjkXZdxS/bXrEHdQsRNelmsvJKgbAIlDIMO2CMQHoBYWiLBHl3sx1RFZBJttTCehl4ZwPh3K4Tvkszy2Fevf5hSHmwTVB18dRBuhY4HoKYTXvkSZEbAzMps7aLCq8K2KPyLHXA4BkM5KDkEzHo60g8zSRcTHMK9Tnzfrzo4qoqpA7qC+VAVfLqmnPBgSNlAgAYd9gagShNdcL8p5QR7Zn8NO0AOi9MkMbC5QIYcFg5QIk+M0wzxFiY5xjhOnDNMcp6k04eRSgETMNoDda0QDEtiXLqcZGqUyepEvxCi9DySTzUN2hrh5x6HnkH43rMLJsEAvczvPl8Q/H5obZFymnOytFlFcB258aZB0At1YYlnDK3Acfl00NEJECRIFU204OBQTyMuLjo6foKAS4wZfB7P9sLrR2EiKS5IqczKssJZY1gsTXDTFGI7CjSV/24FphbZHiyvu4oEK4ryBeALCz2R83FZrgddha0Nkgz3sVvEAi3sh5AXolXCo/IG7FgPAS+YlvS1H70Xgj54/rgEpOYFl2VzTromigZ0nYenXxJSGV8mg/9r4WLkN5OD/lEhv0VDorqlkvxArisE/uKIJeCXqLGqitxDVURfparyPq8u74tPyHOfV7YpWW87S9DbI+7w23dKJHh4CGpqhDgvYKrVwCGBSS0exFjKSx4bHyp7rDpCSR9jFMlgMY7B8aLOUUujw2/jkEMl/Pa+sq58DAVxxppXU1kXhUiVRNSXGT4/RGshEFTovbATtHshdhDGD4iQXtdEGtFYLb95yYaQD7a0wOhx6BmDgBfV56LokmvizDBjY5SD+a4r9pyBWokMB+ulj86NC1FedCgKBHTJ0jVsCOrQVkXQ2szOE5/nJH9FjCPXJcEBHOpbbaK3KKDDyaRHPPPOmWK1oShCgDu9sM0nEolqVQyaPcU5kWAAG5dximQpkZ+iPnewyDHBAG8wxAHSDJFjjCzjFKZaNvmCYOTLzhAJaGgX4nsRmQUUdtBUiWI8/i547Sg8++b897WcCAZgyyZ47D3w9E/h+Kl5J+KuRgS80ByFjQ3SFK8GEqyhESRELfXU00QjzfjwEyCIjgcFBRuLInksLNKkcK6VvXGmV2a/2prgXN8lK9AKlgSLnhjnuq6rKMqc+2LXdf8C+AuA+bx/LrAcODUmywMbIe8E2D+q8Fa/wVt9cmFGAvD4O2TGdSwF8QxMZuCuLVAfgb7xy33w/dVibWmbi+7rvvToGYCvfEuWlQrbEd1vKntJ9uDVy1ZLhiTKhfzyetGU1tOrSyQ5npTtNA0aa8sEuCRT6CDR5YvR44t+w0VTCMRLz8GLz5a9iH3w/icWPCo3cZjAQAVayrKIPnKcJcvt1BDBwzgGYXR8aOio9FhwpHy6Dpfr5kwXehYysHrn7dBQA4e6YGBp/JBnA1WDxha4+wHYsAX++2/X42qfFINQp0s2smxxgHhwJ+xoLQ9qylPU+07B8X7Y3Ez+LRvrJFhz4FTFhCypPgn6+6MwekxmaZcEhg37x+E/vwVJQyQRrSH0UCPhE+2YpHBnGNboHtjzDpv3/UtpjP6vxw0KYy5uzBYtsIIYR2/zlauolIXjWWdBAvL8NB24i02cs4xwBHDFDk33gRIV/aeiQstmKYDRd1KkEdvvuZwELwQKQoQ9OqSz0/qGr3hoGnSsh8ffC7/+q1Ka7eTpm4YEe3Vor4PNTdBaI03wG93ifriSY6F+AlRTQz1NtNJOE+tooQ0VBQUVBciRI8kkGjqnOEqB64ysu/tlqWDJsVgkeOyizEFRlBZ4O94/BKyfsl1bed2KwfPn4Gz0PQxoYYi8BinJjPvC+yQoGM9KoKlYgnRBgoWfuF842LGyXl3V4cF/Bz37YPAQFFbByHVV46L12dTIZa7AZSYWucLlI+hwmThXBYXwVYcl+qup0vIqqvy4li3v83mFENu2uA4UDTANeGoGgeksYeMyTJEAGioKaSy+TT8vM8EuIlTjYYgig+QZokBsFlOyCvPsKH7tF0Vi0jdfQ+XFQUMT7LkbnvgEvPNRly//9n5s60tgPQfuFaWXc0Xoi8kNeqwPUnkZle7dBAfOkz9Rul4Xc11YRRg7eu3XfSgL8Iu9Ai7wwpQmcThHIvAyz/I5hnhxxrdP9MOr34ORbjALMNAFdF2hU/cqMlJykcS548XZ++bNAQ4WI0xJZtv1Lth2N/hDMN4niW877xcf4NNvwNm3ZFksuMh9+t/+B7x4AHpWVFczO6xvhXvuhFt3wbGTcPDITUOAAW5dD7e2Q2NEbudkDt5zC/zkmPTBKxUaOkFC1NFAEy2sZwMdbMTGRkMDFBLEGaCXHFlUVpj07CbGYpHgp4BfBL5UfvzBlPX/q6Io30ES4lJLqQeeD55P34q75wsQaYeTfwdv/ldAZKObmkX+kCvK8/Ek/O4/CE9SFPBHINou7i47fwYmL8Do8rr6VHAtZMqU6GI0+Ur4fZd0wpomP3zALzIMtUyQ84tv3XP+Cvu5E6R4gXE+RTtnyVDApgqdRnyMX8eayQN8LgpfTwnfmRO2bZDI2eZ2GByDrqW0SLk2auqhKgz9PfCDb8HPfPwE506dpK/bJXtl0viBnkv+1p2N8J5bJSLcs0Cz+OtAB0JoWLjoKORxFj86lSlhZkYYmkOZ8uGzMHLuOgMg04XX81IkI1y2S7sROPwsHHlOqptsvRuOvQD/+Ify2lJMl5klONgljfWZ3tUXCQ6FRP/7k+fhxz+F2MJkV6sRLpAzhAA3V0NTBFoK8MKplU2CAwSJUksjLWxjN5vZzno2kCJJnhxFChgU0NHKBFhZ7lOuoIz5WKR9G0mCq1cUZRD4PxHy+/eKonwe6AM+Ud78x4g9WjeSDvbZRTjnRYVbTELXd8BfA/Ezb6//xgvCh9Ry8THbFi500YM/b4AWgdpO+Nifwetfha6nIbfwYmKzht8PobITWMmEdApqO0DziNd8Zun4wJzQxhYChBnmPDkuF2ju4WFiDBJnhALLWO3LMMqJbuXGKaVc8i9z3fnXyp4jIni4hzqq0MljY2BTj5cGfHhRGWR6fZiDlEye12l++v8QScxEYgEZnwtDXaNM7Y8NQ7EgRh25DLjXk5645f/6Y/DDA/DJ+2XwoixNB+MABRxKuIRQ8aNiXlvZt0DM7YecUaHjAl2GEOA5j5Lmi/K9U8xB12tCfJf60K67ZL//kiOfF0eai+3OTRQBvghVEYOXKj/Uh2UW9pGdkCnC/9wPgwuQjC8lLEq4uPgJECZCA03UUo+BgYONgoIPP9XUkmCyEgleQZiPO8T/co2X3j3Nti7wr+d6jBuK/AQMv1Uu0Xmp3GlqhrlUX1i8vhUFiik4+vdS7dC9gQP3tg64ba9U9T16ECwVHvm30nZ274NzL0J+maUZCgpRGtnLeznDAc5xmBiDqKi0s511bCJAiAh1FMhhYZIlRWIOkbBFgUuZSZR76WXqf1TAWybiTlkR6kejCh0D+7ok+FBxnoUy3jwuNesXo8DIPJFNw0APZJLQ1CrB+EIORgaEFF8XzVF4/Hb49DvFHeJgj4gIr0AUnXq8aChvf7c5bEZmWfzg4tWhlh8VVlk854aR3yvguqLVuFFwnNWZTX9xwH0TI5YRB0TDkgroTdWiDd7aAh31kMwvICl9CZEhTYI4OTLEmcDBwcQkR4YsaUqUKFLAi48QVbTTST89ZFjasuAVzIzVXzFOBWq9EJvS6el+0AOzM/W0CpAZRCqYzb6hdl0oFSDeA2/8FUycnfOZLwg+H2zfDR/+lDh6nTsNeRfW3SrJeeNnJSdluSFmGCZe/ERpIEQECZYrBAhTIIOGTphaAoSxMFHRbhgJrmkHx5ZCRaWCRNEjzZAYmPm9S4EiDj3kSGMRx8SLSpoSBWySM9iKqMAmDwxa4hQxa6SXMQJfhlEsL4bMaqBILYVUYhYBsdoqKZrREJHpmw/fCU8fhoHLbWLq8bKDKmrQ8aDiAhOYnCDDAEWsWYYphUQLVBQ03OWv0lfBJcSTKzuK6vOIy4lHl5mLSEiSdMcTN2zGaaUilhHZw0hSosA1ISn+WBsqJ8et0K/HxCBDmhjj9HCOVtpJkXybGOfJkSBOljRZMvjwo+NZ7tOugLVAgr0q3BOFfZNghgAVfNXgCZcNQGcR5bHmnkJjZmXJjMLoibmf9kIRrIJNW+Fdj8gs2h//vjQQ42fKbmFJSchefrjEGeYEr2KQxyhHMl1ckkyQJ4OPABr620uIahppx8EmT5oiBZxFNqlXVAjWwvp3QDENIyeEBHsC0HbH8pHgAjYnp0QHavGSx6KIQ+o6JFgBmnWpnRCz50iCVxCKeRiey+1YHRTy6wKvnpEw0SfuFQI8npKQEhBEYz1+NhOkkyCNeAmgMoJBFJ1niBGjhD0DEb4YAb6oBtZRypHhq43MlCnvqeAGYuQGatLmg6BP3GwaqmFLG+zaAK8ch5czN31hhExRlql4sQt2tooUIreCK1YbFJlglBImfvxEqUXHg0GRFAkmGCNHlj7OkyGNWSm/vSKw+klwtQ5f7JS/Bx8EKwRmBnKjEG6D5PnlPb8lgqZKlOz0ccn/KBSk6uRrXwNvqBzZnM09pijXntNdpKhEjCFiV5mCuIxy4TILqCARWthIK5t4jM9hkGc//8wZDpKcyWB8llDKxYm8Qdjzs1IZbOS4OHyoupDg6Hqx67q4PRflwY5EjW+kBd7kLI36HeCIATddu/rwLrh7C5wcgNPD8MIJ+NXHUCIBWF+P2z2KjsKthHkH1dTgox4/OwizjRA5THQUxjE5SIoYpWuyVxcuixZrSCRYLy+5KxLldBQ0oFihwRVMhWXLNba+ET7yTvjgfTCWQHnjFK5ZqoyapsGpVWD0YVEiTRpTg277NCHC6GWKVaTACIPEmeA8Z2a0PqzgxmF1k+A6DzxQC4/USSWkP74Xqj4IsVPwxu+tWQIM4JkI8tZXfJz6rkPtAynyWYkA9+2f4462tEJjjUwflmyZqssbYuB//MKSFFDwE6SFjZgYDNP9doOQJ80gZ2mmgw3sYit3ECRCkfyikeDND0LrHhkkdNwJE+ehbhM07RCf51JRkgt3PAa+EDRsgZoO8Phhshe6noELr65CL+i1iuqgmHj/5bPw2O3wnz8Kpk3bsXGs7gRxFNrwU4+HVvz0spUErXQTRqNIDc9Sg04OmxKulJCMBuRmGrnSkuJy2EjhEx8qAVSi6AxOGbSIZnjexnUVrFVkCnJJHOmGoRj8z5dhcILODouxTAO5REnE8RWsKtg4ZMN+eh58Au8//Zg2OlAJAAo2Ni4uObKV1mCFYXWT4MkSPBODzx+DlyKgPgfrDDBSS1TiaeUggpfPsI0PJzv526e7OFY6C+4sP7PfCzs6ZCrusbvggduEAB/thp/sh5eOQP/Y5dVAFhUKGjrtbCBMlDwZJhklSxKDPG/yNEd4kT08VK6yk6OWFiYZgbACmfk3I5lx6HtL5A+WCdvfCzVtEGmRKG9qGHJxOP2MbP/BL8GWhyVKbOZh3W4IRiXp0Lg+R6rgRuA7r5YLppjww4OiBXZhyLRwy5HZvnIstoH7eT+P0UYrOhomJj4e4SgnyfANSvc0wD2NsKkOihb85ZtSftK+9vXmIMVPFCTyu40A3RSwuZhIV+nyKpgGCuzckOfTn4zzkZ+7wFf+0GX/Ppt4zqmMsFctXFzXwTWzHOMgw/QTpRYNHQcbBwf77ZahgpWC1U2CXSBjwT+NQ3IStBHJpol2wrp7peTTwL7lPsvL4CNIFXWUKJJm4qrXVRU27BQpw1i/1Ge4Eq1+cMliWgUilpctZi3rCDFGYUZNIyD6ie5BGI7BiR7YdwxqwlKO+GSvzP23N0H/uFQMmQOa6SRLgizXjmToeKinjdt5NyYFDvM8KhoR6ihhMMEgFiZHeQkAGwsLU0JrAcCnQNJlPjJhywAzB1WZGr76068wcXiQJz/7JYyHJtC9EiEeOnqppP3L/x8c+q58JblJea9lrPkx1uqBMeUiMC0uBmKn0ggHF4Mge9jLRjqJUIUL6Gh48LATjQYa6as1yO9ZB49slrKS3zzMXEqQGDg4uETRSWOjUEmcq2B6RP0GQRd6zzp896/hSc+/IdnYS27sDDC43KdXwTxQpECpNARDx7GxiBMjRbI8GySwFjm3pYKFY3WTYJDebsIETGEmyfOgeSHUDNr17RH8RDDITpPScnGDkIQHzcXzZFHQCFBFAx04OORIXH58RdzaUnE5vMvl2t6QBrvD0BGw8OUmeSY+QB8Z9Ln4DjquTMllCjCWgEQGQgEpTZzMSr9fE57DZ1KoogYbiyBhijP6/Srlf1BDMxo6JkUKZC5rJK4i0goQUWCDBiMODDlChueAXEwS4VTH4vXYadbFmhl/soGhiQye5iKFlMgeLiJ2XpYKVil8Km5biHR1iA1HO2ixG/Hhw8XFWzajS5ISF+Z8DoZScHAQehMwmpmVLt4BSrhYuMQo4UNFQ+QSdiUWXME0CPkdfB4YTwR4vXg3/e/7NCSfgfNjoKwCAWwFV8EJhHFqWmSKEdEIWzM4+lSw/Fj5JFjRxbfKdcEu4sGDAljl6YWL8OLFxIRCDBLnoDAJxvUt0gJEMclPT4K9AQiXtbJGXi7s4sLDfwrgo4p38AQuLn0cwSCPi4uigMcnh5kcg4bWslR3CgnWFdgagvfUw2Q6wYvZc6QND/GFpN+MlB3IVVU0wY4jFdRm6UejoBChlhqa3o7m5khRKoflojSW9VAprHJ5gTxphuimlhYKZMkwSYYZLO0UoEWFD3rhmAWvWpC15xQRLpR5tUaOP+SveIT7GHo9TGmkE3VjDGonKV6oQSeDddNlma0xVOnQHoJ7GshGPORPFnFslwB+PHjQ0ShiEGOSPAXs8TS8kYfDw3BiAhKz82QSG0DZzsSmFgUVBbtMjCuT2xVMRTAI6zdA+wYoeTQuJJskA9c0wLLm7wOmAn4dIl7ImFCwls3vfCmhlOV0K45g+qqgZkpWdQWrAiufBPuiEGwGx4TkWcJU4UEnR548BdzyvxqqiTGJbaREEzwL6PjK3ZVMV1wWs4nWQ6gawrXg9cHkKPQcX/DHUdCI0sgH+CJZJplkEIsRLEw0HSI1IgnTdLFBsy3IZyQgDaL+CGrQ7FNQIznUaInJsTp6SC+8iKvPA821IpfQtTlWAlB4Jx8mTC0HeZYCWRKMoaJxF+/HweYYLxNjCBeXNHHOc5QBzpBgfHbTRCr8/+zdd5hc6XXf+c+t0NW5ATSARhxkTM6J5JAURTFTEkklS7JsaSXR8jrJa8ty2Edre7XWWrZW9tqy1rJkilagpGFYhhGTmCbnwWACcmqggc65qyvf6z/ewiAMMIPQEdNfPPdBd3VV3beqbt37e8/7O+fYmuZnc3wGh2NOxExd/uuuiR1zwqf8ha3eaf2pB8TRcUP5J2Wev1+r3cadWpIwi5VMxPZ2PrKed3bRO+3rTY9oKGfcltxotVUy0oaNet5uPXoV+0bqfvM02oJKOXGcajH4gi/xMMuna9JxJEqusHnJEtc06zbyzu9n+/Uc3DdlwxMPOvhf8uLuI4wMXtgD92ZkoiB+N7Vxx0peGOTAeBDC1xgpaS3aTRpz+qo97+fpVCaI37g6tx2zlrhqFr4IXnYDmz5KeYxdv2nEqPXWWmG5dq0qqgYNq9TbFl4OrTqN6dGkox6pPKu+5MAJbtrAOz/O1lt57pszIoJJlBUc96oGTWK1177A1QrDvWy7lc03smody6fJNXLqaHh0ZwO7Jnikp1WhFFrprpa1Q4eDxi/NE/xGRGhrDoXc+0ZcymU8FjvpoLwJW91mve2GndJqmeW6/EO/q6Lsv/mnXvG4WE1BXllJRUnqrInIG5JgMGZPjSMxfVcmgM9nrZs1/MATSptftqx7lVY3KpowoX/+T65LXBk3LeP+ldyxgg+uY6jof3z+O555/AV3j9/kTrfYZIMhI77sG044qTRSophl03re+wl23sBXv0zP0/QOM3KJ3uAtKU29ZPPh61RaMkQscRaNjQwPhYZHkxNMTSTWjD2kr/dMsOOyuWUF79sYJn73dvH5wwzuuyZFsHrgq8t1YlVlJXkTyuaxldz6W9l4R6ix+fDvzt84lrhsomQBtmCJoigMqmUd132YnT/Dqnt44lfY94chKozllrnRThuts89Bex0MlohLZLWdmi2Xqpe8ryg47rkzd9i4kx//x3z0F0Ik+Mc3zMjry8pZa6eUtB57QtLX6deeYv02dtzOB/86qzdydA9f+F1efYrONbS00XUdrYOtci+tsEqjitiokqf1W61Jq6wXXEHR+OisHy7z2EhJ63KdKWMSiZXWa7PCTnerKOl1RLkueieNmDal15HX5vKQltFlk7SMU2+L1EbG6BtnohDG1hUFS8R4wmByVZUiTnO992m8d7+WZJWWF96vPz5gTI8eu2a8SccSs8z3r6G/EJroNKRpzwYh3Jrh370imo41adRRN/CkpRzRLV+3JOno4J638Zv/ka3b+bmfZO/3mKpbdVLCxGv8DY67H2nk/qzcE1WZL5XklyZSs0LmelKdJBPU+ogvdLpraqSjLVi9TvXP+RgvxLIVtLSG1uClIv29V/mE1y/jx7by49tZ1kDvNKUa/24XT/Uzcm3ZujKyllvt3T5mo+0e9iUnHTZpTOFN81Fmi4jV21lzI6/8Je/8JE/+j9CBaflG1t5I22qe/pN5Gt9bjyRJLmkte2FHgqcH6H8KEb2PMnWC5rVM9xKXFRRNm/aP/a/ypv3f/l/P2mXUpdkhhh1zr59WNKnffpPOO0n2HuMrv8e+Z2hqnbGXVVFyyn6R6BwBTLBC9HUz2s+G7UEE33A3972foVOsXIeEkQEmBqoypjyt3yZtNmp1m5VIVMQ2adPtMut4Ja/74ZKJ1Qw4IRZr0S6rQUbWN/3RazP3dp0SibKiAcdfF2mtqRpwQrStS+0//kJoIP+nj/OnT9YjwQmjteB1m6FVp2HHNL3cZgJR/LiyvH57lwTwYqSW0JLl+BTjlVDv+oWR4HAohHWSgqKKigmTGmTP5BbkGsk2MDTIn/0xXWsYfpK1eYppRuIgfjNYlQq/n30MpvADDXSm2FsVH6te/crMEq8nIn0dje8mewflZyh+9wL3W7OKttZg7zo5N23YL4WJMaYmhDjDTMyPNrSwujlM/Na2BFvEcwPk0mQvI2F6kZCS1ma5Vdb5gJ9y1F7jhl7zCM+PEE4oTobyQXf+CM8/yJb7gyhOpylOhSL09/40o8fDQwYOMbFwjsu3KgtbBCdVJrtD6+PWjZTHgy2i7rkpKxswaK+DPuZDbnGDAw5fsgiuKVttpxWuc8SThpxXBqBa5sT+EAVueONKE5fL+eL3/N1Wyzz6JSrlEPUdPElLe/AKlwqMDVIeq0inJ1VbK46OJ0YU6+aKRE2iOA+OxFpdOBZN63fciH6T6ol3EmMGJCjJX/Q9qCozPBy6gC1vCf7kMzuYcaPlhF7TxQaRVH2hLVaZz6W1BURGTqwqXizu1v3jrGoMkbBifcz5cycziUSlnlpbPft1VStMTXKim299LSSIJsN0JqEqSZRirBYiwWlnko6WRayve+izEU+WySeSkdOtla+omt8SFyNFagXZ28i9i3ic1EskU8SnTzVdK/nkT7J9C3sO8gd/zvCbJN7OEXEcthkjioLYbUiF+tbZFAOFemLctTcJSyRKCo474FXPmDZRX02MpC6nStJMUxijd09oQ7r5vmCR2P6u0J50aijU31xzI93PcegxoiPzN9YlXmNhi2CoTAUhXMmH38sTTkcpY7ERYz7ny1ZYpnQZVojT5I3Y5gFdRmQ0vv4OxXzY5ogoonMtU2N07w+5eSN9oVpEpiEEqqrlcD1uWlXTsbKmWuHoeFm5paxUePMTbCpFU1vogjY+QNLcHHZcqVCamQ5xVWUThs+5bcrYG9YPPoexaf7iadZ0cGB2Z8tleWVz9xkvFtIaZDSozGTYfbbpr09eSm+uMmKxqopIFC6itVrYSmWKBaan6UpRitiQZkWK3prgMjpLXLRGbEoHpTsYs78qdF8OabcNItUFZIlINSIhXqyr5EmwQFSPk3qR6tEggM9JK+hayc6t7NjM6NhlJvkuMvIVhor05Jmor348MxB+r8RBFFcWzvF3tdRUTRpxSMjR6dUtb1LJ9PxWjKgUCMhapwAAIABJREFUmRqmqYPr7mbzvbR00raSrutDbc4V1zHcHToylZeuOQuBhS+CIa4EC8QFKCr5im/qdlKDrInLXP4/4ttWuk7e8KwmQaUzYVWEYLWtXERrRinWbaHvOJP1qEapQH4ylEprbgt6dUUXG3YE7/C+5+k5yIo1IWL8ZmWNs41suoW1W3nySxTWr5U0NjIxxYleyjPfKvmK+OYr8z2CtywZDZq016P1lxhNakBW0MsV86eb+y89il+70Hc+iYMAhv6YUXSl2ZxiOM3xCzwmxnTMcExjFCJwtdBFLidSqa/OzKcUyS4Li2jZFeGUWh4Ii22LjpjqYaY/w3SaeJTk/NN+cxPPvMirBzh0jKGFEQW+It6sX8tAgecHgxhekQurIF/p5uRUEMQN15YIjtVMGJM4ZsygqnJdBBfme2jkWkL0N9fCqu30vBiqy2y4PUSx+g9w7GlO7aFwaSvWS8wui0MEXwIvefWKHjfu2x5xyqiik3bP2HhCLcO0uP5vVRcrVoVI7tQEh/dd+HFxjZceD97fruuCBaJaYXqC4wdYuTZEetuWBwF8z/tC1HjtFhqbQ9T4zWhdxvf/FB/92/yz93Fg+82K225kcoov/VW4cCzxliUta62dSPQ59JrF5U0exGbcGNGHQ4nzFgIWL5vT3J7hhkx4nc+cF20aTXixEgTzOxvYluaFCsPkRDZrNKZqTNW42hXUsZkBItb/NJVRKhNUhkNVp8LxuR7IzFF7o54SJ/t4eV9Y9mppnrMxzQaZFqrTLl7z9/BE2L40l6NaCCSKpuWN19sRLwCSmHIhiOAnPhV+b2jh6NOU8nztNyy1TV5YXDMi+ErYolVN4pgXTM3wMsoNrvcv/Kov+oov+rKb7qz5+V+maz2f+/TFRfBphk6FLT/BdTu58d5QR/3Zb3Hz/WFS+epTHHmFg7s5vv/Sx1YucvhFnv9GEOXprev48HtCiPrl/UsiGA2rKA95y52vmi2zzb3e4+d02+1ZXzTk+Jt7pCN0RPxZht+L+XTM8DXy5mUjCkmwOXzrAqskWcES0Y/RmNXBl9goZacmP2e1LXKGVb1s2mMmvGza8Bw7hZs2cf2vh9Wm/q9w9HeoTgZhvFDIaBGJVK42uenEWSuHk4t02Tki20YqR604Q0l01wxJvU7wAqMwzrOfCa1J191Sj/7u58SuYIPYeEeIDi/AqlxvVa5pERxhp3ZFsbRIq4yVGq3XrEHaKXnd8iIsc6PNfshaD9jl3xvwtPgqhPEKK/yQj4KHfFUhXzM6HPLrpi/j/D7cS3M7G6+n72iwQZRL4TlOHg7/t3Zc3tjyo2mP/ekyj31+WClPtfh8yKbPT/PNRy75ebZpsU2LqtgOrR4z7JC80gLyP14uUZpsJ81bSDVQGiRZIO6QC5IRCuUXr/6k2qDJMl3Wu8G9Pq5oUkaDZh3KGhRMXPzB4UtEN/YmITp6rVBIQvR3MqHnrIjTmlS4rYrpejONfVUOoMJmOe/V4QM6dGkQS7xHu3dp85BRnzWsb648jAmnHgzHd9NGJvcGAZxpWxgiuMP1bvOPVOSd8m3H/eVrf7veGqeMmVwEyaopvM8yqzU4quiQgv4r+IyjNJnWELVvbJr5cS4xC7SvYfWOkCC3/7vBH5xrCd7fdDaUUHurRVUWAde8CF4uZ7VGN1hmnWZjmnxDm0hs3IQpU1ZYqdl1Wm20xjts8F5Ddl2xCG5vJe7a6/fW/Izu4oDNIxXDfXzlz8Pq3EvPvflznCaOzxRQr9WYHAttlW+K77Kq0qincsJQ6cQlP19Gh9bkBqsLH9VX+P9VvSTZvY9Dx88kBV0i6zS6z3Ip/KQNGqT0KV1RguKCIUW6mQ0/w8RLjDzKdDfxArCbXZBcxLJU8P5NxSESeYXn2aTeyGXAUU950BHPG9dv2oQQ1+wSn19G8DRV7Er4ZJVjiSspUf2GrIxCjeg8js3xJKu3Foz41fNawG1LszkTyrJ114IC6glja5KyQ6N7tVpdb/Yeo13aHVqUJXpVPGTkahqeXxZT++n+PVJN1CYpDSyc6GJWm5XuktGKxLQ97tPmZz2g27A/9Ki9rrag7uySFdko5+9YZ7NGf2rAiMpli+BUA7lO2nfSsIypY8G7XZkIXu4lFijpbNhGjofawOtv4ciTYekl10bf3nAeWYoCLyiuSRHcKK1FRrneSHi5nBt1mNTqiEbDQs3fsrSymgYZFXnjDjjlESWjmnWBkjGl10p8vTnLO1i/hq03j9r0/r+S7ePoo+zaw66ngqVh9DyB0NB0pkRpkjA6EG5fs5lMJnRwrlVDxHdqnHWlHd7pR+oVGL7k1GWI4JRGTTZZ4+MKuk3ZIxmfZPwy6wmjT9ErJnTJ6ZC1Wk5msadhR6RbWPUBGtdR7AnR4AUpgjNYkebWBh5o5At5xktXnJBWUzFtXL/DnvI5o04pSostE2kSyXAxEZwIwvexWTrBt0VBdOaEWr1zEWlekwql0XriEOk9n4E4+KAbo+DXXJ4Kk4FCIpdPWVttsFno6lgSq0qkRdqlbdXoDs0eN2FItV7W8PW8WU7U5VCbIn9whp5shomV9XtSznI1/dZqts1qH3W7r3vZdTr1Gjdmer6HelFiiaLYlJqiWKH+mV8uqYZQDn/t99N5N/t/j+IgUYYonp2uvA1WanWDmmkFJ5QNzvxOrmWal9O2Khjti5NsvJPCRIhgNTTWa5vOVyOPJd6Ia1YEd8qpiBXVTKooqNmv7BWJTpEaUqpGTCsbl5cYlTXhqLweGc1yltdrEl66CG5uCk2K2lu55YbQrGjXK6HCw+hFkkGz2ZAA19IeJo2nRfC6LaFDXFNrsBYt7woieIMtbnWPEYMyl/0RxhJViWo96nJpojUrZY0mEyomlCU4KK9H0fVafcuAI/LKi9gKQZiopxpCtCy7knRrOK8tSNIR7SluzfFLHTxd4qUrF8GxmpK8MX2mjNQrQ2ypHyex2LhIq2Q+itGnhGjwA5kgSl+qMW32VhcjQQDvyDBSOVcEN6GAgzUaKrREoYV3k5BEN5mIjkVy1Uiz1GviqCLRKKVBpEnKSlkt0sbqaT3xBRLm0q79GsMpWRV5h3ymft6dtsy0fhOeddQhA1Zo0aV9QYvgGvqUfcGQ9XJeqH+LLpdUloZOVtzBuvdz7LPCJCsRvgczLoJTmmy00c8qOG7It42ZEFusNfTmgVxLXQDXLWNNHcH7m86GckzVRbw6eo2zUC/vV0VZTUnNei3yqvYak5HSKuOuujd4StUqjY6aNKCo25R+JVV54w6BZuvULrPsysm+sB09wdBIaFg0PBqcBhcjP1Gvy5/Q1HLm9mI+dI3buIOhvlARIpViID7pRU8ryitc5kWhasq45+3xK4pOilWk0mHfF1sajdAp55Nu9IwB33XKdD3GkUiMKvuX9uk2fU04nuIyPf+D6aPkD4WklAVJKQlbvRyXUnLVojCRiFMVcZyWtkzkLokGsRGkRXIqXnDxVPVZYjIJZdc+kWV/jZEklCormhkhnKlvkfDSqjhUC7WBK2ftII1NGQ5Vw31ePUvkpPBDGTZESkNVo/mqARWrZFUlyhLp+mCn1AypyNerRVzsRURnqhhfo0QaLBMrm3DY6dh3j5JdjnrQM3bostMarRqlpS5c1m6BEOMLM1AWJalQHGLySOgPVZ2evfNQJK3BSuv8qGGPKuhWcELBpa8wvuUZ7QkbIZJVqzJ6ghWbQv3g4lI5tIVKlCxAf0oURVc9qDZZD1jtfqt8VY9+BRWxZhkbtGiTNa1qXFlFbFjJyRmOMjRk+dgH+cLX3lgEvxHX38VN94Uo8N5nObSb4T5W1tZp0qxg2oBTVzXOG24LrTxPXaRcUocG77bWl3zQqJKf97BH9Bq9ViMFEc2b65nz4+GCtGBpjlibYWc2RIFP1a5KFKbbaN4YSfZ0avRZWfcp+Zaih14Tv2HB94g5LwS8IeIXc/TGPFINr3MgCYL4anlblgcagujtqfFIOUR/u2vn6v2MUCqtiiNV59jf0/inrfx4o7a/P+X6x9Lu1eourXZoFKNcf/cGVO017XOG9b6BZ7RD2tTCKQA1C0RyOkVSSkbqhSVDd87KWYmY26zSpUNFzbOOztdg54RUA9kOmtcEC8TIbrM250zJabZVi+22+xU9/sSAv1JwbHZ2uMQSc0SSJJe0zH1NRoKhInbKtGOmTKiYrF9oUiIDCvoV5FW1yeozbXQWkrlqcYgIv26e0drMR7+fl/ZxsDsYhc9j+RayTaEY/Msvka2ERhmpenfWwRlMEulaz9/9P2ht41/9XboPnfv3cWVP6PPLnvDjtiqozk1satP/xvRhJl+kOIcFTROmj1kcibzTCUcqHKucWTK9ClJZchsSDXcNK3zmhEx8i0RBIl/fymqOXv2OroSTCb9RDK9ze92vOz5D4zgVhwoQ29Pcm+XftXOwynuHGTtrHwnKF9lnItQLHohF3bHDqg4p+qxhnTIikbJYqf7eNUtZJatQvy1CrW5WOi16m6VEyNftFNceiZIhpyPAieoFl+GPGHJ0xrMtFyZxmdIQpdMB5VkMfMdKpuyXd0CibMwLyovifU5r9jY1Y8oOSxZB5ZAlFibXrAiuSYwpe86QMSXVsy4yCdplwbSqhnoi3dQMu+9qNfYcOK+N8W038Es/xQffza/9djChdp8kX5BpZPlmdryf1TeEn5tXUBzjxOMMPxGaYYSo8sxcEJevZKifl59l1VqWdb5eBMOYsj9zyNed0Gfa9Fw4Fdf8NIV61GcuRTCLQwCfJjFjQdlUI83b2PJPErue+zUjh39LrTIpNiZ5zYQ7T29O4kzk9VjMbemZO4P11kK3t95asJWsTbPnvEhvS8SGVCiZNhB7LYDbFoXawNmIx8raMmm1yeADPp0YNVH/gBLB+xsJ3eQ6ZDRLSS6QRJXBeP1xaWECH3PNiuE3/uu1bAm5AHP6NQsJ5CMer9v/FvY7ndKm0Z0a3Wzak67tnthLzDbXsAgOFodRJZV6VnZDPapSlSiJDSoqqVkhZ70WBVXHzWxh9enzLcXVaijeXiyFTkYtzaTTMo0s28jOD3DbX2N6iGwzTctpX0eunakeKjO8NF+cpucYT3+Xzq6Lt3OuSQwpGprLGff0AeJiyE5r6Arp7bVFWvh+kVAdZ/RJ/BbF4W7lhboOXxSE8IWqNlwJFcH7e7LG44LlYiQOgvhs0vUqFZtwrCozmNAQqbZHlGicICVRrkduTz+6fAFhESbqVRmRlKiernqmtXKMolgkCOCUpcv9ErNHdT4SXi+DlOVytmlyn1bvN+0JFsi3Yp027XKmVRy35P9dTFyzIjhG/qxoZa4ugMPFpGpa1XB92a1ZxjINOuuJdMOz6XUdGOZ7T4fyEfm6Qo4imcYgdjfcy5qb2f+NkGia1II1YuVOOm6c+TKDhemwHdxD74ng6V8QpBrp/3wo2lseCP8ntVAwM54nL3IqxdpVtLYEn0t5IZuFr4xaPrhPJl+c75FcAgOzELEq4HiN/prXzfcqSajD3JkSNUaiTCQTEZUjJojyiQYpFckltUZOUJIoSeREKqcFcIqokY50OMRSKSpxEhJnI5rrZ+1yNZT1rs1znlguCv1a8gs3X22Ja4C0Dg12aPZOLd4r7zHzujJVZ70223RKSzm+ELvYLfGGXLMi+HxKYiWxgpom6XOsDwOKUiLtsjZpnV0RPDTKI8+QipiYChHhOJbKkmmksV4mrTxZF8ExmSYyOTo2zN6wpqcur5PdrJNuZeCL9RpluTO3ZzqojAQxPNc0ZHnfA9y4lf/wafoXg3duicsmLZSeK56l6ppaQ73P4byotyArem1SnUZm8ozdqlBfXr4cSmc/IkNmORtbGc/TlGYwCU0BOxLaMuFQHJtieJxCqV4gZJ5E6PIsyzIMlMMkffjamxsusSBIxCZVdCvZLzYuUTGfIrhDzn02ykg5ZNjhyyinusTC4C0jgk9Tk1zQ+9unoO8yy6FdMdMFvvq9c24qNzJ+kqGD3PCDtK2jXLdgxpXQirz78cXYbCYKV8bTZf+TS5y5V+oCszZB0hg6WKiXAMsspzo690K4McdPfJgPvJM//tKSCL5WqQqe37N54GPc+i4e/bzcc996zVoVFk7CsV2RyM9EFlOZSi+vXo92ttfIrmaikVN91F7hvhtoa6KpgUqVqSK9V1+Z64poS3N3O3e1hYjwrx6itBQVXmKGqehW0W3SQ0hrFJJ250MEn54A/6J7DMh7VLdjFkD/8SUum7ecCF6oVIsMH+SZPwiR4K3fR3Mn5SkmTrH/a7z0oPle+bk8cq3c/BHW3sKWt4ee6rs+ywsPXt7zxMWwzSeNObpWsnsfw2NX1GFvLrhZJItTEgPzPZhrifU7uOUB0e6HNdYtD2mRKq8ltc1o++OEeITUck78KLkfo+sk7X+fyno+dB8nBnjxEBPTVOfRu70sy/amIILfvYzOLP/sED3XaAXFWWH1jSECEl/rrVFmipqi3fOy5xWavMN1/r63ea+t/thuew0uieBFyltTBEcp2tbQuiqEWPPDQYXOM9USw4f49q+z58usuj4ETsd76H+F6cW20hKlgr9j451cd0/ontO3F5cpghcAbeWSLb09Xvqzh2hpCkJ4AfJrMhpEPq3qywu4qcCiY9e3Ge6VHN9rQm3256IJySC1ESrPBFtUOaJ0Ax+q8Q9+hC8+xq5DIQI8n3Pj3ZNMVaklTFY5WaK6mCbr80kqy7Lr2PYDNC5n4NWlxgoLnGZZO610l3UGTesxbplG67Q5ZWEGR5a4OG9NEZzKhOjk3X+DfV/n8MNBaV4ty7I0psmmqMT0Xb6wjqsURjn5AsOHw22VAqXxi3d0W7CUpznwPe74UbqfCe97QxPb3sXhR+d7dJdFS8Tdyn4tf9yXh1OeS8qOR+QX2MW+ReRWkaelPCJeStOYKY68TO9R8uNzN7WIw1bdRe1ImFPGBY4s52tP8/Te4Ame78S4csKxIn/RzzdHyNcYXQpoXhrpDCu2cO8nqf4Oo8deJ4JXaDKhpLo0qV0QDCv4poM65OpWiGP6TJmchV4DS8w+i1YEpxoQXWGhgFSa1i52vi8ozIG9Vy+CWzKsbaIzF4yCE5UghKdrbNxCocDIKPlL60pXmgjboiauMnyUE7voezUUTK4UqMxsZ765IBYiXWtLBRumOYy+i4jgZZ2h1Fz+rKDAne9g/26mZ7nC26NiQyLHzmq4sMQMMDUWtnkgGQ4bVNKhr8c3n2Nvd0icWwgUYg4WmKu0itmkE9ukrBH58mx/i1KZcC1q7Qrny3qkIyNlhSbbrFCTeEX/kgheIBRU7DPkL7xsXEm/qaXPZhGz6ERwpiVYBDItRGnKo1cghJM4dKDID9HYFsoyXA3ZiBUNbGrhto6QVX6kXmqhr8h73x0G/dSz7Nk/88V+FzJJzMtf5sQL1OZuphyJpKREItUZaOwxHfNKmT+YCOVjx2PSjbSkQwmrphZKRXKNbL2BsWGO7g+3NbfywR9ldIieI+c2CMw1hrlBlArXwAs0D7wsPq8mh37J0sLcNUQmHf5PktAsZ99x+kYovYVOJbNNC7K4WcrHpd0nZbfYibNqN884ifChHn04BGPKU/VKRTm3W+un3OYRRx01qnCNtklZjFTF9hic72EsMQMsOhHcfoNw4qgXG8i2MnnY5ZniqiVe/UoQwdVSiFZeKem6AG5Js6OVn90SjHEPnWSsTC7N2+7hQ+/nv/53hkY4eerK97foSDj21JzvNSurWYuMrGGDsplQt7VWC+WkLpephBdKYSOsYm7dyo415HLsuIUTh9lyQ2hDfXRfELfHDnDz3XSsYMfNITo8eFbH6w2bKZfJZJkYZXggiOr4Cq+6h6/gMhmJZOoThliiuhRDXnAsaw1CeHSSjhZGJs+cBpeYGW6Wshp3Snm7lDuk/HMZ/0zFuFnyXVcLoexP9+NhNTKpaZS1UYf32OIn3WqfQcs0mlBSmotOnUss8RZi0YngkedD04iVb6NpDfluqtMUrkRXHnvy6gcUIZMKXuCxCoengjBOR8EsV2xm18v0DfDciyE0uMSsU1aWkrLZevAzPzpodCrxzKvsPXb1z//uD3P7/SHKe2Qfv/+b4fa/9rd4x/u46U42buPrn2X9Jv7kP3PTXaxYda4IjlK0tgf7RJLQ0sb2m9j99NWP8VK5zio/4HZrrXBUv8/43tztfIlLoq2ZFW20NDI0HqpBDE9e+WRpideTlzjBa0vbQxJF/Ji0h9T0zcZO4ypj3efcNK3isBFfsc9eg5530nHjSwJ4iSVmgUUngqFWZNXbWf9h+h9h4Il5HEw1obcQml8MlXhkMAjgE9OMlBjI8+3v0XOKqXwIRS4xJ6RlLNepy1pf+sJe7/vAgOXtM2PJyNS/OQde5kt/HEoh3/F2jh/m2YdZsTr4f7vW85d/zs/8PRpypNNnniOKaG6hrSPYIIqF0LCkkOf7PkJDA08/HCLEs8lyrT7sHu9wo+ccXBLBC5DuPo73h4nS6Yjk4qsZvrDZK7FaiGvslkjEDkscl5jrLIYpZc/q8YJTquIraL+yxNl0dPLAR2lfzu7HObqX4gLx0y8xvyxKETx9imMPMnU0RNLmo3nYOcToL5Kr9xxuTDNQpGc6XKkOHw2d4ZauWldMUxNbt7NxE0cP032U4psE1SsqhvS7y/1OVo67+/qUlSsZm2TPVThgCLaGseEgUCvlcByuWBUiuS1tjA4y0MuGLeHvrzxPfw+D54eTonBiXrWGbTcGEdzcGuZKJ44Qz9ScKbc+7CxqCGb6uEjpBDjolN/1lx70qP55rCfRaLUW6zXVpUiPr8/bWBYa8fx3h73miTGMCYl+NXkpL4qVmXMRTGjsVFuyJl01qzdw//v5m7/Kq88w1MvJI0sieInAohHBkch2q22ykhLdL/Q53jMs00x5Hq7bqXrHqNrplIlyvSRaUzr4gEfLZ9quFhaOBaJRqzad0jL6HJ7v4VwSGzfxtgd434eYmuQ73wyR2J4TjL/BZ19VMWhAsxabbdcSDejsKNq6PoiKVcvC8nKpwlSB3iF6LqHDRKsVBvbHtmyddvv9ZdtuYmqctmXh7w254HppbQ+R4Pf+MC8/w8gQtfMmbOl0EM33vCuI3+5DvPRMuL37IKWZyrav5Wm+nqZtRDnKfSGjtDIgr+h5h2Sklc1fplWDDqvcZ6OPKBnV4xuWlN+FacrV59XzPZBrjEp9K+MVsXlqwrfEDNLaEYRwOhPO06ODVJcSSpeos4hEMC1y3u8WXdo9OPKMgyPzc4o6nUhEVF80q1+KpqpBCGeiUBptgZCVE9UbvK6w3jZ3W+k63/YpkwYlC/hS2t7BTbcEAfz+D7F7F6++HETi9PQbi+BYbNK4UcO6rHFw3zJTzVPWrqy4fUdIMIrqSWi9Qzyz58IiON1AtoWGVsqTbB27R3QipXD0oNX3n/Sxv1k0NcHeXfQcDZaIJAmitlrlfR8PCXJNLYwMMlUvfZckTI4z1BfEcTpNcZp9u4Mw7u2ZwUhwdYx0K+3vINtJ/lVKJ6mEFzwxL7Guc0nJarbOam8z4ZDXsl+XOIeGDOlw+ll6e2aJKvrnexBvNZpQNOPHdLXC0Cm+/Tn2vcBAD9Wlkr5L1Fk0IjiWeNFxf8f7/ICbvaD7zR80S2Sk67n0KWkNyipnxPDgwusV2qpTRlYkZa0dbvN+9/mEY17ykr9Sm8fo35uxZSs7b6CpOQjggf5QjWHlKjo6yGYvXnEuimjIxvann7KtcLev/OUqqTVT3v2eIf/opxP7u9l1gK7l4f4tF6mUl1vGqhtZezd9u3jg4Z/SGq/09Lc+64ncN+24q8+qteSaQiT3ka+G6MOOm0NJ6g/8SEiWa27luUeDyK2Uw3ZoT9hGBulczdgI+1+enfdSLR9sES03osbINy54t6h+bBOJ5zAZJ1ZW0GvQM8bsFYmWNN55pCJam0J1iMVMSiRVr0ay5He9StKCcFzMSZJZXJeiJw7ekxk8JIZ6eewvGa5b0VZvWHImLnGGRSOCT/M9e8ViR1zCuvUsUVFVQaOsDq2a5OQVDJtYkCf004ImkjJp2GHPabViUbRTyOfDNjLE4w9TKrG6i3XrQ1mxdIbnn7nwY9uaeeD2xE2bu33x81WtpTVG+9qdOD6tvSXvujV882km8wyOUbxIdCCK6Lye9/yf7P40TY+1uDF+p1ebvuAb3+nzte9wyz2hJ8rXHgwJbgO9oWoE4Tb4+V/hwz/B3e8MYnjXWQmdLz3L6nWhlNqsUR7g+G+SaiKpBEvEeaRkNGrVYpmcZn0Oq5qbiV3RkJO+ZdBzykblLFc0YnFf3WeWOFn8AjjCWu1WatVjzLAlc+bVkFtHXKEyK+Ur5oAM7kjzQIZnquyLGZm56+j0ZNhOMzADzWGXuHaIkgU4JYqi6KKDusFaJ42aUprXZfwGGSt12Gadm232uFfsdXwR1Fg9HedLidUWtBXiNKkUKzp553tCxYR//W956Is8+Kc89/Qbz+pzWf75z/H9d/F7v32bfQebrFg/5B0fOuyWbYxN8ephCiXKVfqG+foFKue1rmHjOxh6jAfuzxgaTDnZW5Vtje24NSS3pVJ84Q8pXMRZkEqxfkv4//ihM+O++S5OHKW1LSTXvfL81b5jb8TZlWUv/MZlNbrXx/2Ef+Xr/ovnfcWgY+fe6aa/RvMqep/n5AyUGqyT1qRBu8LSYvQ1y5d80o26fMM+v+lbeq6B5t4ty2lfTe/+ud930000rKY2xdRzZw+qiUqV8put9EUs2xh+nOynNoermZ0R78nwg1lGE367SM/CvyYtsfBJkuSSyqgvmkhwSuROm3zCPb7hJa84aXQeIwgpKW2a3WqL/91P+1W/75CTi0AEJxLJmYS+RUAcMzIcEuJuuoVf/eXglR0afPNlrVKF//wg+QL7J/rldcr3p/zOZ8k18CP2CmJZAAAgAElEQVTfzztuZWSCo6eCCL4Q+UFOfJd3v53/8J+qvvEN/uIvOHqcgVNB+MbxG1fAi+Pg+01nQhR7+00hwW/dpuABLkyH8mjZBn70f+Fzn5qNBI43v8DEavod1mmDrJycZlmNKs5K8FxzF9s/wpFvkO9j7CrLbdSpKSpamIa9jJRmOSmRoorSUgevK+I7Djhk0EtO6bPYe8Ozdicda0JDzM6NDJ+Yu31n17DmF2i7l/zBrKl/vZqNq5iaDmVwhscuKoLXt7GulWf7IlpW21J6Re+GWxUrMROnmJrl0PLKiDvTfCTLJxr490UL9Ku/xDXMohHBkUiLnGFTtlhlwOS8iuCKqmlFE6b1GBJdA72bIqTrkeLKLIjkVTJWSmuWMil24DKW2eOYyQkO7OPgfjZspHCJlROGx/niwwyOjVmmVVO1SWGiyYiCrz8ZvMCFEvu7eeUiBTOSGqWp0N1tbCxUf4jj4PNdvpIXn6I9x8ocjc2UqowVyZ93/RnqC/aKKAqCeGVX8AAvW86Nd7BpG/0nefI7M5gUd5nEqvoc8l99UrfdRpx8vW/85FMhY3D4QCj4P2MkC86m0yCjU6u1luvSrseIHiMSiYragrRALWS+66BWOUOmXmtMsZiIUixbG1Z0ohTZRqaGmBwmNcdX1NoEDespR10GD2/m9jZ++cf5/S/w4r43fmxMsQYRrV2G3/23VYZPhSZSEydfu9+25RwfpzLTH1UKBTxXIy7z5QrjS9+lJeaWRSOCE4k+45500DrL511y1sQmFRx2ykOesN+JRRAFfmNOi+CU6BzJ0yAk7sZCDsaVthBdKe1dWm3V4EnTlyWCCVHf0wVB0pkQNb1UDp6AklYVaW2atSooONzDd54LgrZvmFNDF3+OOKa/n4ceYt8+CmWWraSzi807Q+Dkns1sX86hER7tfr0IjiIam8g1hhbJSRIqShSn2bSD1WvZeWvwCM/XQZ5I5I163J9d/E6nngkvuDxBcXzuBjcPtMi50XoP2Gmr1b7seUMmRSJTispLnbwui0MGpUTKi/R8mUqzciOrtoSo73g/E4MUJmhsmcEdRXWbQyFYHS40X4inKeylnL3exNoPUD1JZ0fIoCyUgh3iIkyWiaMUje3EVRMdNzIxGULa5TMn1ytpM39JFBKOxwzHvFTj1dqS/X+JOWfRiOBY4kC9ceV2XcbnuaRTql6faErefkftcUxi8Vctiuoi+GyasAZ5QRBPcomXr4hMg8akJE7IxpHr5bxTq/1XmWw1cIUrdVVViVibdmNGwHN7L+3VxDGnTvHggwwPs3Id61aEyhUf/xt858u8J80D63jy0CrdJ1eaNG7CmZ7eXetZuzE0xXj+cXrrS6fDA+x5MXSPe89H+IEfDhHhUjE05lhw3bYnT4btIqSzZHM0NNGxkskRxgdJFuFFrlHWVqu9w07XW+tZRzTIaJZ7zVq0mOxF8830Aq5GcylEqeD/vf9H2fMwL36N6bqtuTBTSYspMm10foD8Xqb2BMF7IYa/SNy6gR+4l6+M8pmvcbgnLIGVzrzXuTSlGs1ZyrWwqWaCCB4/zq4/0VIZUp3sVipPvfa4o7Nl2Z7E5OnvzeL7/jSnQn+sCLUkXBOryZn2AEssDha0CE7Va7/E531BDi2ApJl2Te6yxU96h7/hXT7g3zis35DJRRsZCvWPIzlp06qvifnTB8llJ9Wms6LVW11f2WuyzMF80YPVMfuUPDZPVpZK/QK8SpcxoyKMG3vdMXYmDHtmSpMkQfyWSqFGca4tNLOYzjM6FOwaT0ywr5f2U7/ovSN/xyqf92X/8LXnWLYiRI2rlSCCT7N+c4gQ73mRof7gGf6xnw/R7ie/w55di6usz4q1rNvB9rv5xK/wzf/O5/8t+UUYNC6rOqTP1+z2lIMO61dRs9YyWWmJxNgCqLO8xNwQRWEl6rYPcMeHyY/Sf2hm95Fuof0+bv5DDv0axROUL3KI5Xej8izPTtLdE5bLDp84J4SbSbF1OXuHuGctB0ZoynBdR9mjx+vlRgf3un8TfTH7onNbdC9xLtmI21u5uYWGiNEqIxX6K7w49eaPX2LhsKBF8If9tEljHvGV1/2tY3kQCsPzVCltzLRhk8bkPWa/CYVFHw3KiKyQs0GLU6adlLdKYgVXJusjoijljlUcGWe0yNPVaU/Po2DImzJmTE5jXbyMXuBekTVukJYz5JCSc89qU/Vfj+4PEd1EsDO8/Bj7UqQra62PD1jrU8acmyVTKoZWy+XzAuFxjcFe+s6badz1DpZ1hiS6g69e3WufSwaPh2XjbXfT1slt72Xfk+x9LESFFxPDpnzPXo85oEXunFWoCdOm5qiE3IKieRnTV2qMWrxkc7SuYN9j/MYHgw1ibBbyx5IK5V7Gn6Khk+jNrtR7DobtIlTjIIDhg9soVJiuButWZxPDhSCK71pDoRoE855Bjiz+wh2zQjriuhy/uJbbWng5z9dHeGipxeCiY0GXSPs3/lRKyoN+V5/jes9qkLHjJpqb2f3cuY9dtSYIiuHB2R/nCq22Wq1Nk0ftXdSF35drcJdOP2u7j9jor3vYo/q9XdXbsQyv4NOX+HzXtfF9G7izK61BzYMH2T3I+Jxn/6bJfozKV6hHgVu1WWejSeN6nbukn9VkrZslEqvtNOq4QYdMXmT1YeNWbrsvWBeef5RchkotJUqyUjJiNdWzqiqkM2GTnCuEU/WC9/F586hMNkSe4tobV55YiKTqSUONrdQqFPPh/wV4yrlkzrY7peodIxfxy7ksogzplibVVbeGD3LoRPABnN8L/Bqlo4v2VeHl9h5g5XWM9YamN7NxEKRyLH8v409QnTRjjoGWLD97G7d1heS4VMTQdBC/E2UaUsEq8cog35u/nlQLmoaId3TwsU425OgpBSH8wtRSJHihMGsl0qIo+hR+EANJktxSv+1f4ZM4LT3/RZIkX63/7Z/jFwTLzD9IkuTCbaouwEP+SKt2sZpOXa+J4M3b2boznHzSadZtDPVVc40h0tbfe7mv6sqYMG2vk9JSizLL+TSbtVquQadGOWkn5U2qiCXW4n6R7chJvIzd3jwyXImDYPjxbTUHx4Knbcazi9+UZtK3Eq2k3jYaysqmTFhtjbwpUybFYh3W2u49vs/f8z3/yVFPKJpQfoPI9WAvT38v2CIS4eIRJzFK9e1catULa4aLVYJYzD3u45jSdNgWA81p2rI0Z8Jy51CJ0fK5+ubsnxfrhPdKyK2gdT2NnSXDx44ovv//4rt/SM+r9aytOaAZjZinlYT8aPg+NjQFb/tY3+wJYELBhPEnqc6ghej7NnFjJ7d3BW/wZJm2huD7rcTh2G/KUqmxsZ0PbOWvjrzV4v1vTiUJYvdkKfiCSzFTNSYXWaBiiSuzQ3wav4M/Ou/2/5AkyW+dfUMURTfhJ3Ez1uFbURTtTJLkkg6VVz0jp0lWgw6dr93e2BQivtkGNh5gapKGHF1rGRqgqSmI4oaGEHWq1RgfuXh73SulKp6zblqzSVZKQc0RE76t19eddMyUitgoDkvksQtjLu2EWKxyaoq9I7wyTH++nogxp6SImknOXbatqpgyaaPNmjTL1+0OjZZZ40ab3GuD2x33vLLpN/yMi4WwnWbWMqmXmHU6GrinkwdWhWjYg908NxySXS77uYSTa0048hahFfocGlew9u2suTe2//OTTtz0bp79Yn0JY47YGnFzildiXp37L1q1TDxOtX46qMx2smpCdYbtCMPTHMvQlmNVMw1pRKTrnuHmLNMVDo4E3/D6trAStZhXb2aDBGPVsC2xuLlsEZwkySNRFG2+xLt/DH+eJEkJR6MoOoT7cEktpiaMYlRWg9pZ9QgmxoKwXdfFDbfy6F+FJZ3G5jONCJqbw+9xHCJvk+Ms8qTkWWNcWVFNWaxXwcmzIp/7URRKo+3mklMSSzW6J/nvr3JiksHClYmJy6eFqEEYcRNJAaPOFsGx2LRp0/LaLTNlUlUsp1lNxUEPy2m3wkZTBq+Jic6Mk00Fo+E1dHFsTnPHcn5ua8ikf36EXSNXdtyuiNgY0RoxlrA7dtmpoFFjvZpGxby/z5kc7dex5n76dydOjR9SK0zMXTHrNtyT4kPp8NV+dX5CbnGN0iLu8vzKYNjGity5JtQAhpXN3NkVxHHPBMfG6JsKQrk9Fyb3hcp8rOYtscTsMpOJcX8viqK/iefwj5MkGcV6PHXWfXrqt72OKIr+Fv7Whf5WUdZ/VoLRqROhwUCukQ2bgz3i+ltD5v3EaOi81fOW9zJFImlpDapvkog2cJZn9eR59z1U3y6XWhKE718cuIIHXw2praRWEbUiTTzk3MO8AVk1Vccddbe3iVAQadDimKd9w79xm49LydYrlCxxDo0ZljcxWggh/2uEcr15QLnuk0y9+UMuShYfSPPeNE/FjFfYcznZ9inS68IcrjbiTJHu2IW7as1ybcbyJCN7ybaSP1HW8tAPmzwRmsjMCTtTQQRfn3KpBRqXOJeGdFiNa8owUgjbtuXhWO9qCV/rDe0hGjxRConM+QrXd4bD69Bo8A4vscS1xEyJ4P8Pvy6chn8d/w9+/nKeIEmS/4b/xpnEuDei51jwYzW30rYsJMr9yF/nj/8rRy+eJPuWIatVh+tt8CG7/YZkjj3LpVrY5pzUciR1C0SG1DLiYa8phOxHSN8tqT5pvPpVzVrc4+1e9qIjXqhbIyKDDllth/TCLqAy96QjfubOcAV9qZdTE2H99BrgxDR/dISnhkJU+NWr6JJVQnvETSmmXZlsixqFerGNZHYEURyPUfjiefdrIWqqz/dmidI4px6n/zkKw4hJ56gV56j2c3/CH9XC9sxSOPJyacrw/q185QC/dFdYyCnW6J0KP/flWdkUbBHtOXZ2htseOsgzJ7l3XfjqL7HEtcaMXOGTJHltlTyKot/HQ/VfT2LjWXfdUL/tqhnoY7D/TAvajZtZs57lnWzZyYE9l/+cqTTtyxk762KybCWbrmfbrXTv54WHF37B/3bbZbQY9bJI5i2Uv47qY+H/aHWICmskGUVM5gdp+EXSN4k0aq8+Ybvr/by/63P+1IP+yD6vINHrZb1eXXAtfOeNXD36u2kZv/NxPvUsvRP0X1up0P1FBusLI4krD64eT/itCp+qsjcOwdvLeq6Yyt7wY8PdNP0wmc0Uvvr6uyb5sM0m5fHQHDDscHb3dUFOJpx6C53HZphIsPj8k7eH4MSh0VAybazEj93A8QluWRW+4plUiA5v6gjR4zvW8PJAqB6xxBLXGjMigqMoWpskyemaDJ8QqmnBl/GZKIp+W0iM24FnZmKf1It518+L3/wST343eIWnJt74cefTtozONazfxi33MdzPkVdD7deVa7n9nbzvJzj4IuNDdB+gskBtoq02W+s9Wmww5AXzbiaca1Jb6z+kBekxTdROajtRmtoLxHsk1YdNpbc6XDvou77hmMMqZ60zh4nD7Avg5ltpupGGdZR7mHqW0lVYeRrWkF1BeZDKTJYJTEXh6liJ+dxLvHAqrJlegxkzMzHHTZCvvzVXfKqoP77yKlN/QHoFtbNM+alVRDmSqRAhnnXm86O+mhnJEgpVvnWUP/whHj0REt/GSyHxrXs8iN2Hu3nmVPh5bWtIlPteN7etnu/RL7HE7HElJdL+DO/ByiiKevAv8Z4oiu4QTlPH8EuQJMmrURQ9+D/Zu+8oye7zvPOfW7FznJwjMAABgpkQQJEiJZESRUqkZa+VbK3XlHa98sr2nmOv7T3aIK92z0q7tryyfCxLlmRTpikmUSRBUswEQZAIRMZgcuye6ZwrV927f/xqAoAZTHdPz3T3TH9xLno6Vd2ucO9z39/zPi8OCqlavzbfZIiFMj0ZtsXQ0k7Pevo2kG9jwzZyLQweD9Xh0UG+9yVGBpkYWYmxmCm9XqfNJh1267Rb1bQphyQroavmptJCMoUCybjgzoxJ7UWO+FizWW5WI/OgpxpfcN6ASeNGXDn1PqdVWkbJUs1EbRKR207Pj9N6N5WTQVNejwjufCPrP8TsU4x9kcrZa//OvEiS0Ag3U+YzL3J2qimCr+dGI9q6wxza0vTNa7K6ScyhvARvvaRE/QiNrqZFoklmN40h4pU2UnuNFUcSRSa1+sNniu7bwIb20Bw30FzMyaWbq6q4ez29LUyXw1v8+GSITFvpRDnSPWQ3Es9Snwkfk1vDrbXGDWIx6RA/f4Uv/4fX+Pnfwm8t9H5uJrUKs5OcP01hhnQ2FL4mRkIu5OQIh54K35scuaz4lUUH+oUMy3GMuY7Sz/zJ65fRLi0np1uv16sY11Ay7bA5Z8y42V1pK4Bkqml/qApPUBHtmhPeSYrhZ+JRUlMGnTbo5FVvrkOvDv1SIg2N18wMXhApMr2ku0i1E2VJtZHpuc6bbQ3jVkXMPrOEIrgRU65KtdXlUmfU6zWNSixZ7NkxSoXA1U37ybdz/jBz4yGH6hbhyknRiyNphAvydH+wuKfX0foByl8NleAkFV7aa6zxKqKITI58q4dOx16/sSKbSpQbV250O7Au+IInmtGP51eB4ynVSX47bffR/gZKf9hipqWiWkzWUqHWeE3Wun4ED/DUVZpK8q0hhSKOmbs87DODdUSvI3p7sKDG3yN5BOddeSU92xm6XOIGtVnihbw7I2ktWvRLyet2h1YbZHVot1PZqBM+pnET47yysnLyUtIqSqpXbFu/ySQX5g53ho6hpETUG6rCMVJbhIrwcaovXfPmtrvbBrvFGjLyBh3WWIKjapQht5l4jsJTFJ6hPkHpOq9bCi8y80QYuWopG1lqsahUke2i75dKCg9RGKW+2FWRVJqOfvbdz4a9PP0Fzj7LzJjba+VifqTaSK0jvZW4QMsP0/mrwQscT4drusaaCF7jSqTSYWkzk6O/y2T1rDMz9asmPXTkwnZ2gbbCm0fExdSeejiWbmXDm3P2vKuTB8oG/3mnue7RmxhfssZqZU0EX4NKKWyvYgupdxP9AqkfCcXFVG84QSV1rriyvveDbHmQwhBHPsnkoXnvR1reem/3Zr+pz71GfN+0oxpKEjXP+51F/X3Xww673eMNevV50ve95PmX5TkvL7OhRCYJwviCroq3ktpIaj/xi9e8lf3e5p1+Qad1HvYxX/fHhpxwvUItqVJ8IWyVs8EC0VgCX2fxMIeuGDS4BKRIddD+/iDia6fCcmO82EkQqTQ73sADP8/QEcZOUZq9CVMIVh/xJNKh4pVqJ/t64gka52mcbX5/jTWuRKMexjZu2sH+N3ru5GdNlK6ucIfmODcbLBErj1SIQklvDj6Hxhm5bYlMJ2/5wV3+94/+vI951Cc9Jrl2yNQaq5wLdZ7reabXRPAiie4h+ilSD5I8SvIiyVmhApy7yi/FDbr3sev9HP3kvO8rp9c6b3a3X7PRg075jOf8tjFPyuuz2buW4k9aMMcdkUj8bb+iQ6cNNnrMdy9OYFtWUneTvpPaX7z868kgjfkFlGy024hTnvYVea1e8E1Dji/5rhafDR/TOqW1qc57JMnNJSlR+h7Dv0qqi3jG4sN0k5jiNN/5U57/MqefYfLcmgB+DZIKjTFEISat+AlqB9cE8C1JG3amQrTI9ZLJ0r+ZBz7AR37To/9snMHvCvM/X823TvPMUEiHWFGkt4eYlLYPI2L6t2gMqJxq2H9qm7c4oF+HRx11zHBoCVnjliWDd3dSiMO46oEak4uowa2J4HmQb2X9Flo7go49ezS4GYyRjJIca27nw9dc7Tw++B0qk/TsW1B3XdWUYd8x4Rkb/KkxjysLy8YVk8760vX/kYskEsnKKSoqKUkkttkhJeWMUxd/7o3epkWLkqJxo866wdNMojzpt5D7VQo/+YpvdpLaTvzaOXqjzpg05DnfEIlUXWlJIJAS+Tl3+ufealTJXzrui7lj5npnnbuGps3bKqVVuzu12KngRZO+Pc8/9CbTYPYTZDZSH72OaK64EZrhho9x7lD4d315zXvrU3SlwoS408u4oBG1kd5BvblQlG7aZi4kJKTXXaoMXzHKIt8Rquy1cnPGbxQ6flfzqLNFktsVvKKz31mGO9+1lUyG6VlGJ+b1Kx9xr5rYN5OzzlSXqJhQrzEzwchZXng0BOxfwyo1XeHgDcydXjCp3hCHkr2LzAHKXwldoc0aYF3Ddx32mGNOGFkzVN3C9KR5cxv/aD1va+PjUzw0zfAirXlrIvg1aOsMiRHb93PnG0M6xHOPhhGSyXHirxAVMU0yjPMkE64ugkujDD3OxCELK+AnGioaKoY8rGrapbNfrPEa4uxG0qZdTt5hB51ywmEv6tFrky0yMnLyevTabqd3e58zTnrO00ZvRqUzmaBxMPiBLydqTpOLB678e5cRa6gqvab4bZe1Xqs2Geu0mFE1qayioactZc9dtLRw8syV08QyekVSMjp1e7t1ftK0JxQcblaEV97hPClSP9fsur6e3YsboRkujomXN3KlPeKBPO9oCf/+g1meXSZNnlRevlgRTzYtVknw/ma2BqGsEcSyTPi6KGL9Plq7woutWgzCt96caHGbieD+v0X3jyOiPkXp+Rt0Rx15+trpbqNYpYT/6v388Fs4cZbPff21RXAKv57ngYwHf3unsSdnfaNyhvNLGEhfKfGDbzBwjMFjFF/7tZBYYSOS4znSNWqHSD7VFMGnXTgPnjVhzJxYrLASelPWuGFkI1ojijFfneXJIocqTC2ycLEmgq/Cus1s2c2mnaEKnM4wMx5yguO6UAV+AiNob1aBpzRzka5yo3GNyhSVGXIdi9qvqpWz9hmLTRr3pO+ZNGnChD59Ghr6rbfdLvvc6Y3eKivruCMmjZuxWBPpQnZuHE80r04up9YsXy5N10dDrNL0QT9j1JyaGVUTHTO23VXxMx/moa9xeiBkWL+SRF3djJQ2VSNKTqoZk6zwA3myVP2XKyQNooF1ae7LsiXNV0rLJ4I1SC5L40suO57EhfB5qjckQqR6w8/GE1m6N/O6HwuVv+IU5RnKc0EM18rhsa7Mrb5s576OZjpJjcr8npR0F6ks9cngtY9vZNPg5h4e2MfdW/jLpzkyzub1HNgTHuvuztf+/Qj7U9yf9vD+c2aOFMzMVC1VEE1Lir5sQ23mnNGxc0tzozedWgjJrjxC9QfUj71sGaqgonATm8LXWD4yQvTkowVeKHOqwlCN6iIPa2si+Ap0dHPfg+y4k2wurCQ9/z2Ov8jsBRtVFYMk5wT/1oKKLPFl45dWL2UlQ0qGXDqwBltEUV6Lve5wnzfZ6w5f8BlPedwJx8wukQB9beaIj4TtcpKlnSpQ1nC++eSfMuPh5kDEja386EZedwePPx2KdFeicTF7OGXStxUcVDOlZn7Lp0tBVlpdYwXWnG8e5YThBqfroQq2oibEZoSCV3OL50JlOGohaaRCA3yuje338aa/xuALjBwPXtBsS7BE1MqhIlwtNcvKq4TOFu6/g4k5zo4xPE392iWf/N7QbFo6FIbQVM/cwH1c18F923n73iCCxyZ5/DnaWhkeY/wax5wEx2OebPiT6Hm66sw0341tLqU8Vi0o7isXkUuxvZW39wSbz18OMddYietL8yAeCdsatzV1jNT4Vp1nlmARfE0Ev4JMjnvu5/1/O1zEP/5VvvMFzp+6yi8kFiiAb22222m9jdLSJk0445Sv+ZKP+RPF2+iBGh7loW8wcJ4z565cBb6cuklzy1TlX6fTuDlVq0gc3QAeqfBiLSy1za2gpeBUd2hKvJADnFSpvUBmd6Qx2yGZjmlpY/vrues9jJ8JOcyi8DFKhyzmlq7m15eHtOCdjyVi8xBiEe7ZyT/5EI+8xNeeD9Xg8WsPrel8R7jDwpM3WADDRIHvHefwECeaYxo//Vdhmw8Jvlbn+QYDcVhNTAtn5zvTvNBgf5rhmPPzl68b82xr4V39/L2drM9xrMDTM1RW0Ot7jZXIUuQu3BhG62FbKtZE8GW0tPG6t7H3Hr75mdAAd/YYEyuzWX9FkpG1zgb91qmpOuawP/Jvlnu3loXpGR5+bLn34tq0yEqvrNrnsjAVh22lEV/e5Z4EO0RmJ/WxPjq30N9o+qsnwjYzTKNKKkUqg0oIdG40jcXLQIQ3arND3ikVp1WNz+eiqzXHgW0cOR8qwPMQwIThM+s/wswe5h65vn2/JkPTTBXDWLWJRVzoJ3iuwb0p2iJ2ReHMvDnFxuYYt5nk0hzuedKepjdLdyZUhfMpNuVJr73V17gG7XpkZE279SvvayIYre20d9PdF5qqH/0igyeDtS5ZgSfFlUxZybQpnbqst1G7dpFIsgKvKG8J2om6BHF05anP1+R+e0UiE+acNu4lq9U3eBsQhaxgMZnUhMZcJJltJm1MNMcDVovh8yQOwrc8d8kjvEwHtBT+ml4fsd4fGfVxE9cWwQlOjdh64J+aaE2USvM3yU58ktlHgif4hjNdYmYJ1mWzUbA/ZJoiOIf3ZXmmwbl4QR7hzflgfxir8uwMfzLAVI2RKo21Q/Ea16BgUr9tHvRzpg0bcMiMEfGKmQOwdNwWInjrA2FQW66TdI7SOKe/cen7lRK1GnNTDJ0JCTLV2zyudEOG/kzwj002FrY8PGvGgDPKSh7wLr/g7/iMjystptOjvytUgKZvHyvFvOgn/ZNh5kcyQ+MhVx7QMg/W6fAmuxw1bPI2sqysSqLmliCdUJoKhuYkDn7fH3wq+LjiRvihRJia1aiHjt54eU5iCR5TkBJ5QsHkPE+mnYOzNlba7Z7NOafmxDzvrzZEXAlDXdLdNG50L+5SCMvDjXC1EKEj4nVpSknwCy/wfDRWZSIKtoek+flMg4OzVNcKO2tcg3W2e5Of8j5/zzf9icO+d0sKYG5xERyl2PYO8l3MnA2ft/S4eMBqXUd5MpwX4uqKaVRfEby1nQ928/0C355lbh6PzVY7dOtRUzNlQl5el26vc93yEikAACAASURBVJ/P+/TCg9z2bObADoYmeOroYv6MW4pIpEWbUntB1Nr8YrW5XYfVs6TmTpv0aHPelBNGjZr1i97rhHOOOGP8pjQzrnFN6jTOccFUm5Tql2UFJ8yO3pC7zTXtMtVFqr0YP1BwSsWExvysEKhWKjr1+HBjt2eNOXGVAQ+vJKkF4Rtllmhy7n0foG9HiJkbPsL0+dB0OHpi6U4cl19/lhMONfizarBCLFC41pqZ0mNVio1ggagloaixxhqvRY9NemzWZb0+W7Tr1VhIR+Yq45YWwSLy3aEZujJNOhtEcL2ZpNK2PoQ0NBqkcuTaSbdQOL+8u70S2JblXZ3Mxjx7jQJuSsoW2xxwjzHDSooiKUUFs2Z06RYtRqW9eT/vuo8nDt/WIjgnLyMLOnSJ0tQqVfELdY2zSWiXvY7V2MPOe8ppVXU1DX3azar4iA941jGf8A1POaK8wmPbrotMa7hKTpJwwGhc9remc6HSusxZxgjpEDd5iME2OS1SCk3xulghPKBmYIEn04qGRGKTNgMWNsc3qSxhlN/r3sfut4Vc66MPhzHfSczk4I2pnlRxNuHs/F5z2U4ynVSnaFx2vC7FYVtNtEqJUFyo8l9jScjIqSkbcsxBDyuYvKXtjLe0CE4aHPs8O99N964gcuNGGNqWzpNtc7GClmunZzedWzn6+eXc65XBiWoIoR6pXXulLyvrAe/SrsMPhE6wTl1GDHvC97zeG5v94AvkwA7edoDRm5ArvILptU63PnU17bp0zHQbM6QwOitWD6/h9sXf/ncc8R0hSq5NziY9urU7YKe9tjplyBnDBtyYKuOKoHVdELtxneosjcsi6nJdNCrh67cZWZGf0acucVjJC4rGbnKKyKiyTzvu7HKNY8+00NpNSweSEEXXs5XTTy1r2sYFohRdd9H7eoa/xeyx5d6jxdMisqXZqHtOVQOlNTF8Uxlzxpgzhhx3yjM69K2J4NVOpiVsjVqo/CYxW95Oo3wpCKQ8yXg1+IbX4KszDNeCvhq7xjkvFjvvnO/6prh5wJo0LiunoWHUsMpigsy/9DhffJzzt+cQ+JQWsYpufXbar12nd3q/z/szs6aUFIJLK8YS6bOiqhPNjuDf9Kc+7J0ikbYFVuFWLfUi5VdkNCfx6hswsUTs0+If2mJYzWeMO75Qc+oS8JJJLy3nkKB9D3D+YPBf925n74NhKt/wkRUhgvPr2fZBtn+I6YOrWwQ/qFNeSouU9+gyqOrz87TArLG0VBQMeGm5d+OGc2uJ4PSukCeUvFwRHP8yUptISrq2Trvjw9z7t3j8dxk75GLTQa3AmYdv9k6vXJ6b5xJ7Tc0jvvGqq8WMtA02ysiK8D4fNGnC4747vxt+8si1f2YVE8lKyyElo01Wt5wukayaaTUzyoYlEv02eLsf9WM+5Pu+Lit3w/fv3/msf+8vJRLxLVwJALNnad/sZebq1nUhYiyVWV0DJrDhQfL9lIcZvY6Yvil1v+e8ithRZbUFvA5yO5Ciemrx978iyLbQsS5snevo2xa+vvUesvnl3TfhOT7zKWYOUV7lizXfMONHdfk5/d6ty993arl3aY1bnFUpgu9ovxT3QprUNjJ7wokqnnOpLBaRviu0z8sRtZsd6Xf8r2re83+fteOdzJwJVeB8Fy39FIY4/8Sy/Wmrlqstl0QiW23zf/hdHToc8qKKsmf94Cbv4cojUUeL9R7Q7y067dNqk4x2NbOGfctpf+6042ZNOeO4b/uCFzxpzLDaDfboJpLba45cOhtm7cY1JJf8U6y6SnDHLvb8PJk2Dv8BJ/98cbczouZPmysDNYnqApamN/59Wg4w9sdMfnZx978i2H5fGDZSnmPkGIUJjn2P7/4JczfZoH0Vpl9i9nh46XbfzfQhC26mWwkkGFP3OZM+Ydw31hpy17jBrDoRfG8Xv76Hvxpt86lz6ZAcn+pCC1GFVC9JBlmi1jCvNp5unsQiSTWnONLm2T8OArhtA6394fwXN6gtcl57S0Q+Yl2K/nSoJx2tMb4KD0RLRVXVYQfd6W4FcyaMO+qQAaeXe9dWCIm0Fr3utdG7dNgrp1tKVqwmkjbuSROmLjYcHvG8glm1xdhLroOUnLS82lL5LlYixbEgfHMdoWkg10llKowbXmWB4dXJsCyeX0eud/G308DMIqOR6lOhMS2zbvH3vyJ49vOhGnyBVCYMJJkZsVImasXVsEVZ+t7M7FHi1fWSvchJFUNqKuK15rg1bjirRARniHpRV8NdHbOenc0StQhyM008SjKHBlEnsig1BfCcCwerdEtWvqvu+f9E2zqK40EER6mQH1xY5HS4JKE9xd4sb8vTHfHnheAzXo1suTOMkB4foLBIO94FP/CLnnXCUa3anHTMuJVRPVkJpLVos12b7VptkpJvDheJtdupzRYzDimZMW3i2je4hOT1ymhVVxJrVkdvZepFMvlgg+g/wKY3cfqbjDzTrA6vHkpDwQaR7aS4TGk3xWeoj1M6vDz3v2QMvrDcezB/ktDrsprfqdMapm/RTNrVwHZp7c1uqYLE2Vv8uVg9Iji1nlSnQyUenTppoJQI1d48SYF4gmQyjM+KOlEhfvXQ+EyupqV72rnH6N0f7A89u8m2UxhZfAN4RWiy60lxd5btGR6p8OQqFcH772fTfp75EsefvCxWrqvZQF+eX6Uhkfie74Cd9qjcjMaaCz5OQhUPsq2IQvTV1aKuoogo3YzJuoFv/FSKXI50RlQIHtRLEXJx87+qRE1au5S8SxMSbhyRlJScjFaRlE475HQrG1M0rGJaSq7pEK6LpJo2mNV8yn0FqRztG9hyP/f8UjggjD7/8si0G0VOWMJeAvtxaShoehH1ZQpVKD5F8Wlqt0LkZEs+VErq9TBZaZnJieRF5l7h1k8ajD+x6izsa6wQ+kTeLadfyozESfU1EbwyKNM4Rss/QuyfHN1M4wzRZDMV/aiLOQ/JVNiuQmWGkefCvyeP0bcvrHROnw6V4O5dTCyycjETc6LGl0t0Rpxfxa+deo0Hfy7oxakhho+TyfLW9zA5yolDYcKexLy9Z6fnPe9pgUSpSwI2iujcTMeG8L3zz4czwsbXhe9PnWH2SmflKGTm5TtDjEjxlYkUUbht0fUL5PYOdu5i42blRx4zWnlUlztldctoVTOrbMS0Q6rNrvhIRnLDAsvDeyenW5dd+t0jLa9kTMWklGyzKtyGRENFyZisDrGa+ismAYZHKdxmstrCdaIo+KKmT3Liy5eu/m4CqS3CtfsSiMbiOZZ7+nVtkRMMVxxRxN49tLczNcWJUyFcfpl84hlsl3VAi0fMmb2YyYOEwqll2a01bgE+oMWvajcq9lUVw7eBHWWViGBEOdp+PaQ8FP8lpZM0zpPqI7UBrWE8UDzctD9cm759ZDuYOU2pudK8WAEMswnH6pxrBC/d8CoWwd/9GIcfoTBFaYa2Tu5/H//iz/nk7zEzRPkM8YvEzy7jjrb2suEu+naz9920rwsCuGd7+Pf4CV76QniCT3336hW93p20dAXREzdeLoJzHc3b3UjXJg5+/vo8olHE1m38+ec0Pv5nzv2z39SYLNnoXTrtVzRgzBNmvGTOKVWTN1AA022PjDb97tHnbkROeUjRkDkDsjpAxSQiXXbpsltDReUK8UUbddqmW0pk0LTB1dTcUhgKnbKzZznyF6Fx4Cb5gaPsWgVvRXLgDvbt5Zd/kTv28a9+j+89zkuHl0UIZ0R2yPlLu33ClN8x4unrmZazxhpNYqyX9qyar6s4fJMzwZeD1SOCkxrlj9PyN4hnUEOZeEgoR0ak+hd0Fpk8Hn5tKc9xteSSNaIrChMvVxIdIn0ijYjB3SlO1a9ayR0fuHSML87xyBf4jZ9n/ByF3yLXRu1TyyiCOzcFsdvai4jiBD07QhNLo0a1QP8e9ryT6UHKs6HhqV4OQjlK09bH3EjwfGbbQqD0xAkkTJwML47owipDzJY38tJD1/eiieNQUfrS59mzV+3Ndxp+8jmzU8fkrVc3p+CMujmxyuIGjSCrXY8DXufv6rLb0/4f004om1A1LZKyxTv1OqDbXl12SjQM+nYzuSLSbjMiNXNSstpsMttsbEwu+//l/KQ7/bI3mVTyL3xj4SI4HbGulZ/axQvjHJ5k+ib6ihoVJo4Kc4lvjgDOfRhVGqvdP3srcuQYba2cPBU+trXR27Nsu9OQOK/mS2YcVDZ3G1Tr1rg5fFLJebHzGo7dBgIYomQFRv9EUXSFnYpCDnBqQ6gAx2N4ZZRDVqjBXvmg0LeBfAvnX20VXjLao7BlI0oJEyvs+LRVyhtl7cxm/P4/zYYIi6+XGJ3fjnb20qgT/wpxN40naSzHhL329cHnm0qHz6uF0Nnfvy8I2Xo5fC2VoTrHpnuC8TuVDt9v6w0/37GBwljYGtWg+idPMz3AmceCOI7SpDNBJO955/VXgtNpurp52/10dvHwN5mYkqlnZbRJxM3qb+zVIjPiHX+NJ75MpXDVu8holder3RY99tvnZ1XNKBpRNa2h0gxAi3XZo88Baa2mHXfcp007YcZpl6RuXawhLadxjWSKd9ntR+1T0fAZL3ipGbE1bzIROzr54s/wqWP8x5c4emsH5vd8i3iW2teofonGrR2RvfrYvStUgbu7GDzHxCSHjixLJTgSJqvtkTerYVRdaXWZjtZYwXSK1CQ3dyxOOs29d1CuMDHN9CyV6yt8JEkSXfunVlMlWELjZNiuytWXjPs3snM/3X1s2cX6TTz5cPC3NpbQtlBNggCO3JyYxlxzaezt2oyre07ZtIa4KaEqrzg45kV2SPvZdIvf/3ALIw3GGjxemVfZeraZFJH6ElpIli3oIQkit14JHt1aczmwOI5UqObVLlsiLE4E4duxKVgfurfStSWI5vbxUP2dG6E0GX52eiZ8f244COp6I1SXB5++/hNfo8H0FD94gkyGsVHiWENdooGo+fEVRCm61/ETv8LgUQaOULvyoSrWUFMwZ0DJqLxe3fbI69Vph6x2FVMKzsvplNEuUW8mQdTVFTWusMR6LQEMh42aUxVLDC8mUi1OQuV3sED1BnqKooiuNtryjEzRWL4r1qTRnPVzD6mDayJ4xZHETE4F8Xvy1LJ6ghOUJF5chul9a9z6zN7sC6pMhnU97N/Jex/kqRf5zg84corqjW9CXUUi+ProXcembezYz4Yt7D7AycNMTyytCK6hGFOPbrwIzqBP2hu1+jXrHVZWNeG4qsLFjMWXv6AbQuh9VhS69zJpNmZorzEz/wcivsI0xf5OUlHQi+UapRu5gt2ohxNTXH95o1r5Kkvvk6fC1r6OeinYJvKdoRpcbXrIiyVG50RjbUxGkq0bgyi+kDCRxKGxbimI4yB+LyMRi9VF0lf+nShFayctbeTbyDVtH/Grn7dYtfnfNDjra4ru0e8eOQfkXVrOTWuR1a6m0Pw8p3EdgziGzBlyHZEEMSbKoQI8XGTqBjWnZVLs2cxb7+Th5zgzQvHm5i9foPo5sj8a2hpS/UQ9r9nfe1vSJq9Tm5TIlDklVS1y6hrqN7qDvVKlUAgn5bHba4x7al1z4asacp9vYHvCGrcjmTTdnbS38rPvZWM/p89z7AYu2V9+9zflXlYAtWoQZz39vOVd9K0POupGUBUqwjeSCJ3StsnZLecuLcpiO+VMayi/Imj8QgDXrNhjao7WZ/ijWoi0OFKjfP07/KbdtOaYKnJ2jJMLXAVfEOlM8PdKgo2hMM+SdGGM8eNsarauT55i6izjA6KzE6JTeSn/tdhfScqPXD1O7YaQNKPHriKCkzhEcvzef8/g4WDKzrdSurbgnBJKi2l5aS0iKTmdOu2UltVll4ppBYPSWq9cib6ZJPhPN3hufTbDW+7kt/9b/uUn+S/f5OjAgm7iol38Ot8+pX8dos5TW5AhfYD696/vNm866eAcEt+YBr/t1nubO3Vo9bDnHXPOVv2mFI2bcUOj+s4Phe1m0AyhWRHpgzly7w1DVxsDxANNJ+IaaywVcUyhyLkRXjwaLBEXtpvAbSOCTx+lVGTwJA99LGio4wdX3TTUi3RL65EWSzyr5B8Y8HGTqlc5aq6XkhIiSE9peK5R51MxJ6/eGLdQGjH5bPh37UZrqAuiN9MSUh0WwtRZHvvDEAydyhLXRafbpCbfJuWnRfrEHmH8GMvSdX2VJySJmR0PG9SnF3SrU440A86mFZ3XZa9W/bZ5j0hauy02eKsxzznmk9f5N6wS4iTYITb0hiu4BdLVHz5OL4EwqD9NalBo1l3k5MrlItVKfietu6mOUDxIvMRvnS36fcD9Puh+v+9zHvKYNi0ORTPGZUhukQptV4quNLMxU8t4MZol+1Z6/oTy5yh/Ijy3a6yxpFRrDI5QqfHL/4yBoZtig7jAKmqMW6rbvvTvFfinL4heaV3SzjaXrl8pnSL0iPRI+SWtzmp4Rs0RDUXJks9f+KE72NjDc6c5scjJezeNVJre3cESkcSiqb1Spbfocod3eNbzvuSMZ8RL3SHb1RY8I1NXb2q7sUTNDN9IStYeH7LLT2i10ZSjYhU7/aRD/sxTfmf5K8I3kkyau3bw7jdwcognj3B+/kKqrZNaJawyvZIWWQ2xhlheVqn5Hu3ToUOrVjlpKdOKCsqmFSVRcjHufEVUARdAqp32u9nwi2z+CCP/heH/zNyTNJZoWEdKJC0lK+P1dnvSUXG0WSIliTJE3aEEHT+/NHe4HNyZ58c72J3jP07y3DL6ftOk99L6c9SeofYk8TJnT69xi7OEmuQWbIxbGla78L2caQ1zlwelv4IEMxJ3SfnrWnxW2RNqlzqJl/ixKFZWyeOb76RvD5JwVTR+UlId12XUvaa9z6855uGLAx8WzPZ1dORDlbHWoFzlzq2cmwgP0txCT2y5MBlRGvV552BfmUvjKxoSkw7JyOu217STxj3veX+gaurWFsAEf9SRgWBgz2coXXv5LYro7GNmnGw+uFHKxTBBsWc94xcHXYSLjVii3DRRbtCtU6teHfp0aJV32oghkxKJvqRDPWmYWYWZr3GR4ktMPERuE/mtdD9IXGD2iVf/fLtu3fqlpZ111H3eoU2HirJRg846+ur7kDQbPhuedSL4gNP7Bf/IXeQ+Qu3LVD9KfMiqM6+2p9iX44E27sjz7cLyiuAGjVMU/y1JOWxrrHFDWQb9cNuJ4FuJmFcMzXw5EVpFZiS+q+qUfjmttqoY8FopG4ujkbC+i009jM0w0zyX79nI6dFlbb5/OVGKdDZUg2ulZsLEiKKiASXP269gatH5vKYKTdN2K6159m7iH32Qrz7L9w9zZAEjwaIe0vtIbUad+rPXKYIvJ1EyomQMKXMGFJxXMLhEt78KqNQYGAn+4Gt0cra0s3kXG7Zx7iTZpnui0QhOlVxLEMNzU9SS+sWLjUSiXV5Xs6mrrKqoKi8rlmg0X2fd2uVltCkYusIQkhVNQqPA3NMM/n+07CHdQW4z2Y3UXrEyVFVSMqfPRtvtt9Odiua06pCSUlY0eoXXYVZOn41atTvtiCQphwFKUQ/JNPFZ25K9pkwqGbmuBs+bTktEPgo2iDM1KivggFld8wCvcWtzy4vgVt02uUvRhBnDShbmo7wVGBL7hLKKFvTqF2vVpqxk0KnXqCUvjGyaHeuDljg/eUkEL7KeeuOoV4KnuH1dyBHOtVGZVYknnFfzuL8w5fziRfBsKZj9a43gM93UTW87PW1BbC2kXB51kLmX7NuRUF/KZrHgEI6kVEwoGVVbTKTZaqdUvaYATqXp6GHv63nbe3n6WwydolISIszTwRaRawmfN5JYi0hWymzzdZSVVhcrq5lWEIuVVbXKSSQikbS0Vnk5GYnkZSJ58aRp2UqqjdLxMHjoRpBQGwtb6Qgtu8JdX7CgZZunm0SioWbOlJy89bba7W6HPaWsplWHjbZfFMFtOmVk5bTo0muz3QYdDzcaD5K+h6hfuvYNmxux+5L3e9GMIYXVJYJrSRC/3y/SnWbk9hhWsMYay8ktLYIjkR5bvcf/YMRRz3vIKVdYm7tFSTAnMSfxLVWbzOmS1aHL2/2I884YMiBeohNFkrC5N2jA9V2MzVKrc3yl+YPrZabPks7R0h3EMFRmVeOy0541s9ABD6+kUAnbhcy4P/wa58bD1UFlnie3lnzoZMx303NXGBAy9QdM5KlULi0dpSLyeUoLXa+MpGS06Fc0rGJCdTWNOL6JpNO0ttG/iQc/EOwQQ6dC5TedJZUK/uDLE2c2yuqT8aJqU8hGUiJ1saKKooqKmh7tGmJzSmYVxRKtchpi9Wbmd7LodcIU2R763hs8Cmd/j/rEEjwir00Qw1HzFRbJS2nTCuoazfi+mlHntGjXrluCajP7Nit/8ba69OnSZ4vddjmg2zrf9YXwzeRMqAJHnbK1TzgQ/4x93mfQ94w5hMkb/rcuGTMxT5Y4VwuxlQOrzM6xxhqrkFtaBBPJyLnbe73Z31BVuq1E8CsZElrPN9jiiOc97uElvf1nTjE4HiyvG3vYuZ5TIzxxfEnvZmlIhGlwA0+w/s4wfrk4qTE9YMLCYrJekzjhzBh//PX5/046FUqPb76PFw+z5Yu8Y5x3PUDxb/HvP8rzL12aqNPezr138ejCXtuRSE6XXgfMOq12Pdm+N5Eouvne81qViWEOPcFn/m34eOgHQfxu3BHE8YUJ2xcSru7S4j7dKkKjXEpKRU2Emoa6WFVdppnyMqOoqi4lalaCqVyvrzXTQ9f9bPm7ZPs5/6c3RQSH++7Qpt3Gel6XDkUlVVUVNRUZKWUlZacd8n/6iLu81Xb7TBv3dNOTn0gMOa1Np3v9kJ/yy2Kxf+1/vHQ/9a9Sf1QtftJLGk572JzzF3OvVx3FmOE6o7e4J3+NNVYAt7QITsTOesZ/9t/pt9OgF7XpVVxN1YElJpGoKDm/lELvMjLpYLM8N8F0kWPNaM0dKSoJs8mrh10vC0mDiaYvevRwEMHd28I0uVOPLN9+re/nw+/nF3+WA/v4+iMcPkZvN2+5j707OT9Mbw+lUshSLBQZHr32bV9GSkarDSJpVdNSslKXVd9WKqkU++7k2OHgOLmZFGZ49pGwXc7UGF19zfktCfvl7ZZXkPdFKZt1m1VSUlXXUFEXN938I6b16oCXVXtTUorzmM53Tbrv596Phwyz5/861YW9ThZN2y5y6/TU2t1bb7HZBuOmDDpvTkFRyayCWKLS/Dtf8oRZk7r02uWAXhs87dugpuJxX724vYzGM+EDBn1fu42KxlZvY+dUHLY11ljjhnNLi+ALPOchKWmxmsZq6xheYhrN5dV1Ni5Jc1wkJ2edvI3u2PuMN+xKbO6lUuDpp/gbOTanwgttIOa5BodW4rlpepDZmxSGfzl37WDHBp4+Fkb3blrPf/Pz7NzmH/zQ7zo88ZLnfvkB5+7dIvPJh+z9N5/3xrl1Pl/7gUJSDqorSRbcVRvJyOtVNuaw/6JsTH1lXJ5clY5O3vpD/L9/wN/56xw+SHkFBClMjlCf2O++5Fu6GhPOxr/pTi+YVvADDJk0pahN7mIj6+VV3ikF261TUVNrvj9LSyKAf4i+H6MyxOQ3Gf/Ky8N7WzrZ+05238/Zpzj2MIUlyNrNb6LnbWz+aa0Fdh36lnd7wAbrfMLnHXLMiDENDYWmKeQC55xUNGufez3gp+x3nyd8zYgBQ07DNa0hRaOL9/OvscZNYqfdUlJOWolLpbcPq04Ed7TT1x8mxc7OMj0PC2N9bcb6RarKZk3JWvhggCuRqKublrfRzNBP+MNP9JipD0pmj3tHatCPNIdnTCe0RRQSJmOGV1qUWhLf3PiKbJq9W/l3/5AT5zk/EURwI2F8gv/5/7L79E6pRrvGZ5+THh43+YbdHhzq9uve5YjjDjqnvMgc41jVrNOhcWj7DnEhZi6murKE8LoNzE43LdBJqP5u2RbGzW+yCx1K5gw7tWz7mMSUqtMGfVRal7rESTVFJTMoq5pSkJZGIid70e5AyA7u06Gq1vTL1pcoKSjF3DOMfjZUgONXPLfVEudf5G/+G+7+CXq2cuoxJk4zex2e+GwPuV5ad6o25syYFUvc405PetawUVNmpKSlL86yDMQaIimdenXo1m+jN/hh55x02uGLQvi1WBPAa6wG3u+nbbTJx33UIQeXe3duW1adCG7v4EfeGfqAjhzh299Z7j1afTQ0UNWhS1ranFmNRQ+FiDWUVAypFd5t4Pg7TXrEhvSYPflBP5RlNOZMTBmdEdklHtKx6shlWNfN3s3s2sQjL4T8YBgdk/7oX3j718/L2SkjpXb6lHL9pHhmyJyyw0LFul2+aW9Z+HOXiIMHuL2XH/nbHPw6xx9fcSJ463Ym25ieakY6j/Effp/aua3eWfslHTYZcNh3fcb4Mka7xYqmfEdWv6xjSuZU1eTFWsTmZGzVdzF7uq6h1EyGqKkrqKiqv2bk4YKpnKU2SvHIVXa6zuxw+FgthMpw/+5wtbEoERyRbgtbbYrxbysUppxw2pOelZczYkxRSU2tKXhfkR2T61LOdRtKamYKE6qquq1TUzVj0pRR5RW+YrHGGtdij33e7K222u4Fz62J4GVk1Yngjnbe+2OsX8fXv7kmghdKLFZVEYvltejSo6JyHSI43GrFeQ0lWb1S8hrN4LXeiEpEe0QrYXTz7SyACcbptnyoPH/uUf7iEYaay9Cj49If/6y93m7ErFPGnDRqdHBcdvC4520wYtaYOWmRjPSiRDCCquzdyps+xPhZBl5cur9xiWhvDx+ThLlZhs/z2/8bm6a2uNt7bLXfS77nWd9YVhEcxjjMiUS6nNAppQPt2KLFt9W90+us121O2ZAJpwV/7jmhUa3Y9AwvGeUz1/6ZuMEzn2HkCNPnyeToWB+2uYX6hyMyneGfxTPMHjRXmXZURUXVYccVFIyZNG1WWeXVkr97p0LPbidrKYcKo7xbRwAAIABJREFUP9CqXUZWQ12bTj3Wz6saHHYnK2S0ZUh3k99D6QWSCnGVeb9v8sLgjVT4G2+GpS6FFmEXV1HK2xrXpkOnN3iTfut16LDbXi1alVfhkJxbgdUngjvYv4/163l+5Z2zVzxzZsxdFoPVa52MjLSMRHzFzOAQdJQSSWloXHW5cdSXlRxVNqwcD3mqzmP1MOeskoThHlFE+navBBcrHDsXti+/OtGhquGjHvWj7vKkU6abB8dEYtSsCQVVDXPKatclmiI61+sZeUZ59qxqrbjiFpKPH6GtnVKRyctCDTrN+L7POeDthpx02vIfDCJpGT06ZGyQ0i6tV9p7dTnjnLfY62c9qKLmRWc84qCHPOmcieWbEteo8tn/6dLnXZtYv4873sMznw5V4oVSm0JCdVSlPmdIypyi0wbETQNVTV18pdfuhnvZ9qDi7KCvDPyue+v3ScnIRi0y8tYnW+YvgtNdpLrI9NPxANt/l6Pvo3omTO9ozHcgyRZMCZc0aeZ7/4sljW7swTAG3N7Hy1uMA+62yRajhs2aEYlsscWJNW/wsrDqRPDcHH/0x+GYcHAp5wbcptRU7XaHjKwZU4579YPapccOe2201YueMmzwimK55KROFbEZA8mcT1X5VJVtKTal6IuYS1bg8IwVytcvey7a5PRpN2DSBp2mm3my10fCzIijmQ/5najh06y4w/DwEJ1dYSrb5Qw4bMBhe9wnr315du4ygh3iW/p90ISaSIuGxLSGMXVfNWOdgx5wtx3W2WOTUTNedMZTTiz37l9iZojKHKVp9v0wR7+18Dy6xhzVCZIgoGOxGbMqqi9rgrsi2XZyHbT0cP8/1njky6rmHFsXW1/rtWmqa/77UR8nVSHVHvYlqdMoUj37an/0axHtI3of0W6Sg8S/Mf/fXQx344N4D/5XDFoTwbcQUya96HkFc1q0Ou3kmgBeRladCD5xknI5xKjOrY5Y0xVHVs4mWyVClbdbn022XVUEhy7uWcMGbbPLG/2QQadMmxRraNFmtzsNOCklbVBN4bLM2cGYc3EQv4m14/liKKoqNddFM9JNL+X1PZKZKPFLm16SxLH17exfRz3m9HVM7L1jO20tnB1hfBo9+/mb3+eTP8zkkYvCaCHMvkbz60nPr6CLqkTBCyYVZbTIiTyh6Peag1c+6RHDptxrp416wAY99trklBEpvXL6pOTVzKibUr/G8JLW9aFYW1nK1MfKHCNHae+jfw+TZ2jMxwIQU7kwGefVr81rCeBOHarPfUzq+U/q7thv6L3/i0N+K8zNG6OYROZh8HjFLs1RPkjlCLPfDh8XOjEvOUjqN4jejF68DY8vdE/mRwd6sAFvFjxkK+cFvsYScNxRicScGTNmnHBsuXfptmbVieAkYXgkLKvf7JzQW4GcvDbtigraddplvw22aNMhFtvrrlcJ4aI55w1YZ6O3eIdf8Y8d9LTv+YaDntFQV1O1yx3Kisa9fETcdQvfzo1sfwP738lLX+fYt4OX8TbjwmM4anYJRumGOR4vDMV+46t85xQD05Svc1Lrv/hV9m3lo1/m09/mbKHM8ONhPPUNsMEkS9tKdp0kKs5KNDyrpFfarIZycw/rYo854jmnZJsXMlV1s0pa7LHRT+vxNonEOX9uwne81oO2/o3c9w9olDn8nzm3lP0R9QpnnuKuHw9jxSdOUZ7PSO2FZvWl6Nque3pKv269cbc2rUrVdkPDz4g3vI6xg8S16ziOxCRVKkcXOTJ6hPh/FQTwKDfSelPEYXwMj+AxVmvc8RpXJmn+N+CsSZPNRvU1lotVJ4KhfiNGqkc5Ui00VtfY2FyO9RsZPDu/n2+oKzX9h936VJRNGgPtOux396tE8IVmuqqKWdPGjVhnkz7r1VSNGVIw64D74NUd39dLrjV0rd/707z45SW5yUikVbf97peInfG8KeeX5LZvNBd8wP1yWqRUxMYW0T0TJxyfYHiOkcL8pzm/FulUSH7bso72vBD39tS/Ym7wtrhwSZrPw0vKWkQXBfAFCsoKr4hszFmvxXZ93qnLfUrOXPYeurrsS5JQDGjpp3MnlrRJOKEyGyLUsq3N0eIR5aU9PqaSyI5yl0TDFhvl5VRUzV1IgOjazsThMN3xekkW22FWI3lSOF3WuJGT6GJh0nNJ8CbN57pjjVXHmFEVZdWlyANf47pYlSJ4yUi1XtrSXaQ7Q+dw4dnl3rN509nFD7+b7z/CmVPXro43NDSURKJmP/usSvOk3G+DLr269Zp+1VS90P8+acwzvm+nfVJSEokpE6ZMWG/zxW7uTt0Xl3yum2oxdK6PHGH8dAhmXQJS0t7op7Tr8V0f85JZVQUZebVVkC2dRqu0rNSiRDBMlsK2VDx+kM5Wzo1Tb6Be4MxXlu4OVgmjC0jsyOqR0YlI1biSU2qmr/l7xWEGvkXbxlANDrfVsrSv3eHDbLiD1u5wEbPUIlhkR6XNoBmtWsy0txvJFE2nZsjM0JkLSj/bHqY81m/s+7JdVoLiqxIgbqIarbkpARRrLB8z83h/rzwu5jtxC4n321sEp7to2Ut+B9l+Mn3ktnP8V5d7z65JNhtGyG7czC/8Ml3d/Om/pzrP12YiMWtGp25lJSPOmzMjr+WiPzgt3ZxfFZaca2rmzDjiRXU1RQWdumXlmhXhYe06ZeVstFVKyilHxWL16zmqz45w8MsMPBP8iUtAEOgT+m2z25sNesmQY6ac16bHxA0aK72UjKgqi3WsoLfxl7/Ps8cYnWR6iQpmYcSEFZdcsVT8/+zdd5hd933f+de5fXrBFDSigyBYRVVSFK1muchy27VlJU4sJ/EmTtk8yRZv1mnPs95dO9lUx7F3nTixncSxHNmxpUiyCmVJpGiSIgkWEIXodTC93d7O/vG7AEEQdTADzIDz5nOfGd65c++5g3PP+Zzv7/P9fGN1TRXTnpaQUXZG3axIytXsEMURjvxBqAQnUhBp1ytvshV5uEhGkUo+VIOTi7+fRUhLKSiaNut036BzXd2UG/SdYbCT4+3EnWG4xxKL4CGdIpFTZtTu2D1ulVUWwgDSmHMnieAovtHO31tAFEW3bKOigU+J2+6hbScdD5DdyjNdt+rlF8zd99DTy9Yd/PK/4T/9e/7e/xKipG6EB73HUQcvW7G9yzYzpsx7c6fUdrv1GdClWyRh1Bn77HnTONNe/TbYIilp3pxTjqjfVBbx0nCPx61zt3MOKZnTrldVyWHP3u5Nuy6yErIS5pbh33ax2CCjKjZ+B5fHur1T1pBIQl1e1ZiaGRWjrl/MRnoMy8iZNqK+Ak5UCZH11jpr1E5bTZk2kSPe/Qj/5l9x12b+2k/xja8yeaO5xTfOPQb1azejZJ+bmJp3i4ha/533ma6yykJJRG9ccjcvuys9KFiBxlmMFd4lJo7j6/JlLp8S0iKTk7RFtwNvWdZ/M9898bSD6eedbN9Ex8MhWH0F0GhQq3HsCD//t5mYoL4AjTBr+opV2qqKAUPatBtz9sL9OW26dGvTIStnvbtst9teL2ioy8jp1qNDl5OOSMvYapezTiosM5PbAU864CnE2vXqtXbxPc1LSEVT5aKK1RoZs2qLNnh3OdArpax5x4rgtDWqRi+q/jbVFTQU3Eg1NxLpMqBi5cTmNMVOG/GTftQ/9Lc960W/mXzKE7UKv/lrbNrK8SNUbo096W4DtugzYl4stt/SC++Fcq97fciHDRhw1FFPe3o1ams5kmkjmaa0PIVjW5oHh/m5x7l3kN/byx/s4+Vzlz5yBHnusKEeK0Px3SBr5Nyjz/sM263PFxxXbQmFflnvMCgrGfxoOp2qnaNYoFmyEgK8PvjRMD2rVAp2uQP72PN8EMU3ymnHLx9aj3HnJES69XnYo97hEe/2Afd7l6am53zTHs9o19ka31u60OlakZWUUlZy2nG4yal0S0n4Ny+ZbQmIlSOCoVvKI/plJew1Z34xl8JvM/drt0ubOQ0FDedaQnibnHfqlBM5ruKppaxMbP4wdz3Gml0hj+zzf2FRn76p2vLoVzWVNZRaVb2rL8e36VZV0rhwcRCrq0jLSUgs6jYuNROmRCKdOnQ0ksxO8FwUlrgK8ws7uC2A3YZ80gMykn7VM2aVnZNfVhkkCQm9eqWkfcqfscMOn/d5z62Q1au3BR29IfkkkXwjyirbQWUJmyoXSLnGvvHQGL2pN1SEG5c99KQwQLSb6AGaX8beW7uxS8AdKYLzas7Im9QjJeFR6zQ0pSW0SemS0Sfri447YNqYIvpD93Bp+Wf2HdgXvL/1evAFJxI3boM4z9WEabMVxFVRvtA811A3YVRGVqdua20wb1ZFRa81aqoaGmZMOeOEovzN+YFvIbF4GQv1y9Mp6X7d/qothmT9nNeMqay4Sau9g5SLlC85R5Q1rZHWI2VU9YIIHpL2Lp1KGkYXuH8lsEab8VZlo1dWLDZ7/q+X7Q1e2ETSvWePWFNu9+R7f5yhBxl71WJdaDQVNVvWhVjD9WRitenWaY05Y4hldWjXJy0rupAjvfwJY6Y7nTLiN/2eabNG1nbyyH/HS59jevKWbUuXjMMmPeGIDhlnzOnTpinWEMurKi2TY1lCQkHBZ31Wj2777DOzIput7lASqeChj6LWsJlGOFEn09eZuX3riAUh/PxZTs/xhdc5+ZZdqZvETyFLtA1biF64I2otNyyCoyi6C7+NYeFP8OtxHP/LKIr68RlswXF8Mo7j6SiKIvxLfFxIQfzpOI5fXJzNvzxh7HrKgDZ1TWvkxJhXNaHsiFld0k7Jv/Fv2CzJVCdtaUSKrcrm/dZIiJwyb6+pK7/gLWZ0sZO8enPhlkkyX2HkzcupVRXjzjlsn3EjOnTptUZV2YwpRQU1VQnJi34rVle7IJ5XWRoyErql9Eh7nz69rQRayObo6WFs9BpPcpvp7ufxT3DmCEf3tcRw66KuXVJCqM2fl3brZAxKm1RzWsXJBXpfg30gLSuhXVosVlDXbNVh83FDrklq5qy7ylMG8w1PrltPqm2R3nngeoXvxaTl5HSqKanJyunQqU9DXVN9xfhDw4Vn06w5T3pOXV2l2Wt3OUn1pEQ38zXGKpSXuE+tIfaSs86Yk5V0yqyquk5Zc8rL5m8ai5Vaq25f9AUJkXn5FZo4cKcRkUqHBKO4lWzdbIZkleb5+5YfjZhvHgsV4EOTFN6i09uJ3umN6S2j7hRbxEIqwXX8z3EcvxhFURdeiKLoq/hpPBHH8S9FUfR38Hfwv+H7sbN1ex9+rfV1ychKGdJmtz7TKk7Ly6sZV/K6GScu40tNNeYNNho+bIsZVU2xj9usoOYJp5eVCF50NvXwrnUMtbN/gs+9/qYf11RNGfOaF021PHJ9BqSkxGLtOnXqljenrCQpKRulDKW6xGbll9eF7x1DSiSVppCq+lZp0ga5C8u26Qy9fazfwMw01WVcGl6zlo//OV56ivkZxk4TF4OQH5RW1JTXUBFL4O5Wde4bZh1XNrHA6n1IJkh4hwE79Tpk1ml51ZaUPFKds7ZaFRdnNPSbbtR47iC1BS67LCKRSEJSu141FQkJDXVl862tXxmZzBEy6YKeZEoqMSIdNWwsH3bvwSeU08wPcKzAd6YpX2YfTnaSbAuaoz63wFkYLYpqjphy5JJj/Sa95lSUl8kqUbhYC/9NX6PnZZVbTBSRzlGroNVp1mzQqIcKcHN57EOX0ox54exVH0E8Gnqm4pPEB4jfYhpekdywCI7jeERwSIvjeD6Kov3YgB/Gh1oP+y18QxDBP4zfjkMMxTNRFPVGUbSu9TyLTiRUfI+ZM6HkNVPOKHjRmLSEnJSUyPk+yKZQOR7W7mGDHjKoSxocMetrTnnWqIyERmtZ7I5jUzc/sot3ruNLh98iggn5wlMXNYmcH7ABkTFrDJm4aFJcf5adfWzL8uxZ5qt3xMrJgokSREniRiSOk63/abbGCC/sL9MtpXcNxYE5n9nb8Exy0kiuqF5qGl7LwBCFQojRO3Vicd/PYtJs0N5JW0colhSmIptkJYXGqXE1VU0JpEW6JH3J9Fua/86vQ1y//ItkJX3ERj9hpwOm7THulLx5NWlJ95qyX8PzzpipnmEsSd+O8A8a3z6hWVdVV5WS1dRQNGvepKKbmHl9i4gu+tqV5gfWsbFt1ub2WWsybO3gni6O5PncCOOVMITlck/Q+1667qeRZ/zLlM/c+PYkRS0H9uU/hydXwN90lWVGpRDsD6JwnG/UqC/jSsQ1GaP5TzElZGYnhQmKK5+b8gRHUbQFDwvDHYcvErbnBLsEQSBfPM/sdOu+N4ngKIr+Mm46oHebHoNy2qTsMe4zF83lvt8ad+tV09AlY17NSfPu1muLLkkJzxgxp+ZLTqhouEefP+tu2/T4E6d9y5k7Lz3y4CRPHAs2iJdu/OouFr9JAEN7mgeH+D8fZ7Cdjb/K2ZXTtL7orHsP/XczsneDyZH30vcY+QNMfoPSsZYYvjGm1FTOJfWdy2hLNhQ/OO5X/gV//adDM30i4vX913ya286Jg3z6TWtDsaPK7tVuruX5jQT/8wf1ulubL19SAcuKvFuXrMjT5pWv41Na1/SKSS+bkBTplNEtY6tuRXWzKn7VnF8R+13NN6RQ3GDN3UwfpXHrYsiS0rLaFVvL3gXTGuoqCqreXJ3u0K+m/Jb7lwNbOyg16M/wj+6nN82eGU4UOZznSCEI4LEK//EkG9vCci1EadL9JHMksqz7MQa/j9Ip5vbeuAjOSHqnTWaVHDGuukIq6KssY6LWVVppPjTDJZPEyav/zorg4kpKg4sKYSuZBYvgKIo68fv4W3Ecz0Xn/+ERx3F8o1m/cRz/On699dwLLhoeM2tKWbeMpy4Zg1vXlJGwTbcuaR3StuvREHvCKf+uNS74IQMXKr6vmzGqaLMue03eeQIYjkzzRweDED50BdtHJsGOPn7hMb5ygs8fuaKq3drD7jX0ZfnOCDv7uXcNhSqzK/li+Cbo2cqjP09+5IzXvp7xynN/mdIJCq9TPrkgEQwFDdob1t7HhrvYtIVsNvQTXW16YDbH1u3h+HzgtRC5t9w4oOhR3U6pmGgJ4bRIQ+xR3V6UN98SLW0SflC/9+nyZx00cgOtgb/lgP/o9QsFxi4Zj1tnRtVH5NQ0lPub1ndTLjV09x91YmLXLV/ZaKipKFprp7V2GnfcpFNXELrLd91lczs7O5nv7/UT975LtK5f4z07Nb+x19ZvvWDjyTM6k6FKfLgQRPF5ESx+46PSKHLq33Puv1KbYW4BnSZVDd9xwlrdC0qAuGdTsHlOzjGxasldJW5SvCipJpkMVojK8rsYXSWwIBEcRVFaEMD/KY7jP2jdPXre5hBF0TouJI2fwV0X/frG1n1LQhNzqgpqb5r4s023Tbp0y+iStk6Hj9roPzpotGWbqLROqPtM2aknLNfJGNSmS0ZSwovGlvHpZYE0Y87OhzXH6jXU0Ic3UapzYi48duKt5viRPLMVDkxyZCYI4r0T3tbe4ONP0NZPIhWbOfwd9v9tmjXmXqJ5c1cGUYK2TobW8l/+E3394cQ8d5WTcrMZIvZ6esI8gvO508XC1X/vVtLEKwpKmnISeiSlRL5j3j3aLzQqdUm6R7sBaQ/rlL3BZIQQn/jGsaIhtt+0flkHFeW6G7bdz0c/xsOP85Xfbcp/8bjp6NbXDZNS1tvtU/5vn/ePNdRMaVxGCC/fdIgXZzgwT318XuHcS7zvbv76DzE6J7n3oLbWsMZz5YvE73nqKYnZHol8m1r3GbWZWFylnl+4O6WhqV3mhhM1+rv4pb8SxoP/8bN85k+Yv1GtE2Xo2EF+3w3+4irLl9ZO29ZNIh1inFZZtiwkHSLCb2B/HMf/7KIffQ6fxi+1vv7RRff/jSiKfldoiJtdKj/wec57d0MneYeHDdisW4RJZftN65K235Rj5pVa7sIHrDGtLCVhrXYVDYlW4NCAnHFZDxuUlmj1rMfyal5x62J8loxaM9yuRD1mtMivvcRIgVKN1OWzSMuNcJuthK/TFaYvd0J7G1Ea58gXSWao5M8w+QVE1G9ecVaqwfN7/0PMz/LAO5id4dTJ8PVyaSKNOlMTFPNh8uA991GpcOLYwkRwJDKgy/gi5/Wer/QmUNSUFMlcSMGNdEoaltYj6YSyJ0wr3eR6TU3TaXkJkZK6ajVWrtPRza6Heeq/0TE/aLY5clFG760kNmy7Xuu06zFn/E0iOKdLmy6x5rK0Q8zWwo0GxSleOMxnnuS1E5JT85rI15mq0pUK38dI6dZhmzX196vVZ43nvyjRP6tZbWrcZPxqhEGdphSVr/PfNJFg33HSKWby1G5U62SG6HqIts2rIvhOIJUh2x7i0VIZ2rqYG6fxNl3+XCEspBL8GP48Xo2i6KXWfT8viN/fi6LoLwnmkU+2fvZFIR7tsBCRtqhJ8xF6ZM1cFJPUJW1Im24Za7R5r7VKfZzOlByqFr0wfba1YSfs1HOhYa5bRkldRlJeTUFdRcOsaktAl/TIGmx1p58XyW8LmjGTJf75C3SmQ+GsdPWTRSMOjolkRP2O9JHcGLPHz39Xdokl/qaoVTl9knMjYcDWmkHyc6RSYc7A+Rzpudk3LBLNJvNz4dY/wLadYQDL1CSZzPWnSaQldcgZ0G2X9b5ln/xNxklFaJfQFHKCY1TFqhoirJcRo1OiVSFOqYi9quiESrCI3ATNVlbwmGLIiC0zM8HpI+x/ntHTJGaH5JrlVt05oWROaYk79SMJCSnzJrzuaUUzmppvqmAmpbXrldO1LAXwxaQiOlKx2bmi9n/7JeVCVbk0Z6YlkqcrCamoKSMlKSljSI932uTPmfSUsdLXNMuRZj1Ugs+T0N9ycF//QScrbUiXnFlTCirqb8kETrZGFNdbz1up8jtfoz3H5Ozl0yuu/Oa76biH/g+RW8f0tygeua3NlqvcBKlMqPx2rSHXGabEZdspzFzdl7bKbWch6RBPufJa20cv8/gYf/1GX+d6iNAhbbc+L5mQltAU267Hh2xwt14vm3DErC8/lDe6KWayylciauEkfeg6sxVfvajau1OvSSVTC8wnXSip1kH4fHj7bWGidFkLxNU4tbwmJd8RJBKt+e6t3aDZ5ORx7nswWCHKZTI5tu5g7XpGzvLKniCGz0dWnqevPwjmcik01HV2hyrx9dClzd3We9xu77PTcWMOGVG9iTippMiQtLrY2UtalWKcUdUnZVBaJFLWNKtuTl2f9KJZFEYvysEszrP3Tzm4h3MnaDZn9dtsi0dktDnpeQd9fZFe+fIkpWWjDtPtYz6T/IeK8axifVqtVnX+z53T2cq/OZ+AE1JwFpPzovtmc3PbkuzsTnh+81qDB48aKcbGk5TTiCP5SruCkj6dunWIrWmlv9+loaxmRuVEgwtWhqpITtY7lD0rVnS9771L1g5DhnUbN2/UvOMmNTTVNSVE2luWuJnWfjFfYu+xBb759h10vyNUgbsfYuPPcOyfUJ1wI+J9lWVCRy89Q3T20zMcBmVk2hg/TnGW2mpe/nJlRU+M65N1nzXaJH2fTR611piS4+a8ZMKrJj2hZTD74A4+uY7ZOuNVnlv4MvSh2xCZk5awveVpHlUy1opLX+XtydAwMzNBuIIoHHfHR4PQrdUp5Bk7R3s7O3eRTodK79hIqBqfp1bjya9z5nR4/I2Qk9YlJyftR7zPP/W5mx7ZWxc7do0LzHYJ+xTlW4IhI3K/dieV1ZbgArEwx4lD5C989A/Z4XEP+AFDdnnV55ZcBNdVzHZN8ukeE1tK5BPsT/FiklaqYcG0gml91otEMtoWtSKcEOnULiVp2vxNCeFkRIcmLxy50HdebbmyhjMp6w2oa2iT1dQ0Y9So3zfmq+oKmq1Kbc57JXQqeVK775GyRcOYmmNi1+eTeNpRw7rdY9hDNphSdMA5x006ZNygTlkpxcWaxZjqITMcLBGd95IeYH4vE1+musyn26zyVs5XgnuG6FsXsoLnx0NCxKoAXtasSBE8rE1R3ZSK54y63xpPOO2gGVlJE0pOuyS54EvjVJr0pelYWXEl7VI2ardLj9/1Ef/SXv/eIQcXZULQo9jH6rShFcW5S90UcfAD/7tfC01um7cGm8P4aLBKvP+DoQLc3ROqyLE3vML5+fCYwgIi7PLK9jvjgLO+7CUvONoatn0ZUg8R5YjLNCdpnr7xF2xxabpyVWyPgl3alsSgVLqMlpp2xjN+S7s+444swatewvo2PryW9w/xXUMMZHlyjH97mNff7MWuKKirql5tqlM6wVAnHRkOT7aWFq5FqLk2NPTqlG5ZFZISrZ+ECXBVdfMKKmrSUjYZVlY1YlKztX+UamnHJvq8Q4/7bdepTSxWa9RVSzXnTNnjdTPm9eiUldElFps20xpo0ekndfqkpLXafUdTXsnXhfWE5A1J9BedNGLWTkMet8Mv+hHfdMgv+7pT3cfUsnNhGMdi1EDKpyjsC7aI0vGQ9yYOXa6rrDwa9bD0NrSNgU2U5jj0TMgLXmVZs+JE8A49hrRJSahoaIr9hJ0yEnpk7DNlTFVWu/MH7JICL89zqBgyngsrq4JaUndaUYe0/9Vzii2v8sLJYivWEj1E/CCOYj/eECb36TUkZ0LZq6uB8cuW9g523sP+V0NVlzAkI51pTexs8sIzQTRGrcd3dYdUiGKR2engK14IeWXF1sSyDtkrxExFZD9B6n4SvcRVmqPU91N94oZeL4EtcvYrviULOMbRJaoEX45pp+SNt6a13YIGubGy1OdHbP56ypH2l8KxrNi4bO5g6UpV2h/czXiBsTy5FI9v4Wcf4UO/zuzVK1Ztsrq0q6mblbdGr5TkhVtSQlJS3HrlDjkNTVlpg/r8BT/gUff7oj91zFlZaXcZlpJUVXfEGZNmTZk1Fk1o5sY82l31xHjTTDN/hYubSNOspAFZ75GyVsb9JvxVzUsLIdfgjBmj5lQjmNYVAAAgAElEQVTU7TJsWlFNw3tt0dE9YueOohi/+I0betrLUzohjNStke6jMsL0t6mvHmdXJHPjFGaDHzjXyYEnOf4ypbdxOP4KYcWJ4HElOUlD2g1rt0mnH7bVWu3+iT3GlTVEcjLadekzLG/aeOWMamVlLkvEQsd6Sd3nnJAQGbfQ99KJodbXJPEIBoUUu5LzIrhDygcM+aBhM6p+z3HfsHKX6dLrEdOYo3kHXZx3drFjF9/7CaoVDu4Lond2JlSE29vD49o6wvjkZiNYJZrN0EA3PhY8xDfc2d6iKdYUizSdNXUZ4ZUhtZPUbhJ9JNYhTWItUSeNY+F2HcI1LTIgrUNC5Qpyu3oLvfJNNZVbmA7RVs8YmuuTmatzmdHvFxNfzVe6po1skvYM9w6ze4gH1/Li2RDmfQVCdbeooakpNq/QGt8cnLgDemVlVNUkRBKti6JY7JizDjttg0Ftsjq1m1d02GmnjEnnph2qzJuLqyqq6lHZlmzZ44OcKHGk0FS85Lo/bQcSKl5UNyLnUUlrJZ2Tsk3DrPgG0krqLf9vRV1R1X7nvG5USlKzGbmrl97cRb/Qtj4kAVQmqd/gQSWuhXDjygiZAWaepTZt1Q+8QohI9VE/H6vfbISq79xYsD+c3Es5H3KDV1nWrDgRPKsqpahNSoeU0VaD2pD2lk+2Li0jLaPfsO/x5x3zmm/7nClvNjym0tRrwUsZJVptJAmqy1Arx61muJPX6XG72jNRw6RggTiDAXQLu8MQxsRiA7Lu06uo7gWTnjGhvJJ8yMlgvYtS5HaEFcfyYSoLbWZZZnR2MbyWTZvZso3BIQ4dCAK3UiaVDPFnawZZsyYkQTQbYZ+fnwspEOUb63G8IjHmrrT0HjeF1YccUTeJoTD6KzFM/QCNE6532HFTfJmByXcGA3oN6tOlQ0nZqxdNu4S0tA5tpm4mhu7IJJlkiG6pNhiZ58ljVOrhaugqNDTe1IdQvsQfm5bUJqusIiUtLaUpVlAyZtoTnnfCOQkJlcS8YiKvUI+MZY/pacs7V8soNxIy0nrjLgO1fuXGWblk8A9fSsKAWFFDQ7gkOSRpSMM5SUMS2jSu82/VJadw0aVVRd1xk/YZ0dB0PF/z7Cm6sxf9Us9u1ryHsaeYejFM77gRGkUq5+jYueoDXmkkSA2Gb+vng0jKBcaOhQNwcfaan6dVlgcrTgQTsn47pM2qOiPfskJkFVtVmbDsm9Clz/f7ac/5sr2eNm3sQoUkkSDXEfbbdIZk+sIvXrcIjlrLf+erWPWb6Ii/FrFgi7h5Cq3bpfRhLTZhVlG7YyL7FTVUzanJSa4oEZzIkt1Goo32+8hsItkVqsH1lRjtnIjo7ghDTfIla4bqBtfGEkmOHWFu7s3H3ShBWxtrBsLgotFzlKI3nmrqCsMBF5cqjYM0x0muC8MBEoMkN4SqcPWbgsnh2vtVTWz0tuTy3hqG9HvYPXbbKiPtt3zeKefklWjlnpdUnGuNK81Iy8mqqyte78rQvrE3vs+lQuX3hdPsOXv1nPCrkBBJS8vK6NWppCwlJS2loaHYisx70UEvOqhLuzXphu4Utcawjdmk9qjbrKyShE5thuN+7YV2Xx8bNV5pXHbTYnl1p6TtEsmqekWsquawpjlZCUk5CZFayzoXhmJoVaqj1nG1Zr0e061IvN6W3W5G0Zh5kwrOzkX2vpBSufgY3L6JLT8ZRmfnj4SO1BuhWaJ8OkSjrbKiiBLhXCKmkQ8OL6U5Rg5RLoaM4GSK+mpG8HJnRYpgOHnRcuD5ccfnqauaN23KqBd8zaxJbTrktCvJB3HQFXzsUdRqFIrDcnL5Bgqtbdr0G9DQEIuNGbnQ9LFwQgzapcuZDbHTS5r7OS3EOA9hGx73O8b9qUO6jZpSMnPTndGLH9d01VdLk1kfvm/bTf9/T8+HgzVi9Fdu2WYsHh1t/Ojj9HXxx89KpM4p5iteep4//L23PjyZDHaI/gFy2bCPz0wJFt1ssEycuEpV/Pzn4mIWVtyIqe8N4lcSWaIkcaXVHLdaMYF9jppX1KPTP/U/+St+zKf9fd/0gqamdjl5xQvibYt17rPdWROe9eqNv2C5zis3GAdyGTq1G9CjU5vN1hrUZ9KseQU19bdMYptX1I6uKKMRc//c9yqpGHdYmPdZc8aYU2Izkx1Smcv7m6v2tr6LW8fMhthr5vxrxHZba4e7dcs5Y1pexbttlpbULiMnrabhJafkVTxuhy45QzoN61ZU9aCNiqq2GrDHSfude2NLZvZy7D8w8+rCByI0S0x9c2G/u8ptI25Sn6Zy1BuHr+JsuEUJhh8LGcH5yVUhvMyJ4mVYso+i6KY3KiGpS5+MnIycsoKKkkaqJNVdkc0xcfbmXqNHn+3u9oB3+VPfdMRBjZvKR83otk6XdaYdVzChuYTV5asS/SrRp4ifx5eIv4UXFvZc6dbyd5QkrtMo0Fj6NIpUP73fH84zHe+m9/uonmbys0z89pK//OLS3cED2/jZH+LPfowP/U1eeJ3itSuAUcSnPk1bO2dPMzkemuFeP3D13/ve72ZqJmQONxphotyRo4vwXhKbSfRT37MIT3bn0SHnHlt9r/cb1GePA3KyenUpq3jZ64rKcrL2O2riNjatrtGjvVVtTUr4gIdsMmyPQ150wMhVpmlmpAzpd4/NYrHn7FPXkJFWV1e44b6HtLStaq28uAds8BF3+4hd1uvxolOecFBZzTlzJlpTAZMSXjdqmwHj8uaU5aRttcZ+53zAdpFIRd2kgiPGb+Ivtsrbgu4h7n6EM/uZOkNleQ+uuROJ4/i6goJWbCX4WjQ1zJn0RmU1TBaI67HEbMhMvVmycna4x8/5Bf+7v+aEIzclgtPabfQuP+7f+C/+B4c8oXxLo8uyQiW4i/hLeBDF1lrPnFAhvhEVlAydz9kNQQhnBpEI/rf8Hmpj13yGmyGuhZdoFGh+m7k/oXKcyqklfdmlIZcJNoi/8S/4/NO8dPi6BDChevsHv8t738+xwyFe7Wr9Gm1tfOrH+IkfZ91aZmfDdKy5Of75v+Kpp2/yvTRP0Txzk09y51JQ9rLX7XfMw+5RUTViQkbKbtvMynutFclWv832pGQrE7qobEbes/Z5ySHzCuausXJVVTfSGkjRr0tNXeKmZnDW1C6KqssrO2xcp6yH3eW3PWuPU+qarda+UGuJRD7ufjsN2eusM2ZUNbwuHJ+edRxaLX7Lr2i0ytKQ6KTznVTOhD6S3Pbg5oJkZ6uekw8/i6vBdpfopD4uZARPnBQ66DKrIngZc8eKYLwhfC+9vxmag9o6g/1hocXwspJTTnjCF4w5d9NWiLqKSUft9wVVxUU74KbaqQdb4TWoYVywRowS/4PW/WeF1IgbOT0lSORI9oQg+I776P8+0oMU9lIbDetJ8eJ7PLfq1C2tUmyqvFBXazTVk00zjapKKQ6afqVRqTIxy2yBJ16gcGMdbZUyr7wYbIv1a/zJk0m2bOG+3fT3cWaEyanQ7/HYo4sggjWtdsFfnbqGuoZXHLLNBg0NZ0yba2Xv1m7XCtElhEzoWJ9uO2zUq9MBJ42ZUbqOiZoNDRNmzMmrqiFSVVvQsS8j6T7rzSk5YepCykNDrF+Hh2z0vBOXmWYYG9Rpk35nzZpS1GwFcEJtBfVBrLJ4NEsU95HdQuUEzQqpNqKsC8MYczto29VKfayGCPTGWhqFWGX0ML0bw+S4wmr03XLljhbB1yKZCr7gWmVh473Lio466DN+04TRmxbBDVXTTnjOvzPthPqCY9DeTPsw+dMhkvLqNLnwmnk8I3g4axfdf73E4fmiRDhqJDvJrCW7kfosye5wWb0EInijDu83ZKiR8/TUmL1mnGu1Td7KOk4a3ZImF+MkWqow0lpanlxYOsDsDRyHI8zn6e4mk6YtF8Tz2uEFvfQqC2ReQVPTgD4ZaXlF+SXtDbgxIqSktMnq0CYro66uonrdx8Oa+kWi/qrhblclJWGzfmnJ1hCPMGJ+UsEp01e4hE9IW+NVZ00oOGnKhPwlw7pXeVvSCBFo2c0hZagxH9oYojQSobZTPRl6TJKtxNHaXCuGsyxkBPesDkBZ7rxtRXCjEVIh0tmQcb2QWLSqqlEjRo3oN3jVg346Cj3wTdSuoMRiDSXTjvjGjW/MFUhm6dhIZZbqLPENHdtv5mQbB4HbrITL5PospUPha+VE2JAoJYjsq2xU1CXYNBKt57zIjxd1E7W37BpN1IiLkiI7dfsua5U0HDArr65xiyRwGmukbJWxTdaXzJm62ZNqtU716tmwlych0i8k6OZdTwW2XufA6zz9DA89EO4rFEOaxOjSOlhWEZbn01KtymhoJAsZvP2t6uRNRKQtMikpGWmx2KRZcwpKKrfFNtBEXsUOQ3YZNmLWjJLDxnTLGTN/mXTphJQBe5z2glPefJmcYplU3Fe5TcStCvBAWLysTQq7RDKI4cpRMlMheShKBCtE5cRFv99oFXmSqTBV7k4hEk7LSZcPm1pBvC1FcByHi7S197V23OrNZQMnJc2ZvmoNoz9FJqLUZLr1WVjqWkOUpG2Qrk2ImTlIadKtW4mOm8E0VZuguJ/qudYffCZ8D4lM67L5CifN5PYQpRVlkaHyuTfeQOoBkttojhHP0ZymccQBs75tTK+MbCvW7VaelLskfUyXT+v3Lm1+Qt0T5m9DbSkh0iPtQ5rOadgrVhT2vCtvTbnM73yGY8d5/DFyOWZmOH6Cg4du1ba/fUlL6tftnEkpHHfWnIKUhDHTt3vz3kSmVXEtKZswa/oaQzyWkrKarzlgzLzd1ppScNykLjl92lXUL+M4jjWV5GxVdkizZeEI7XKdGtf6e3ck3/g+QrVJddU3fEfRCJXeKBV6TOqT4b5Ky35ePRcEcbJLEIUX13WqJdI5ugbCVLnmHbDCkEA71iGHfZZczKQkl6z/4Y5Nh7gayRSbdvEz/wcvfZOnv8iZw9f+vcuRlXW3XbKyXvaS2hVyTLdlSUU04xD8nozYt0iDCq5EIsPgO7n/Z+ndwb7f4MSXKN58KtL1bkE4eiRyrXSIRBDGcT0YrpqVoNSbZddU5omNtP0lGqdpniXKEXWE9anG4bckDfRIG9amTdLLt0E4fFSnn9LvEe1+zln/zdwtF8EJm6R9QsrDmk6LzWk4ruE1zVYH/SrLm3dn2F+jsPwO02BQr5yMitqyEuif8IBebV436jlvlOY263euNRr5YtKGJXSJVcXqQi9JVf0q6RbgH99DvRkOX90pvjDGlycW/w2tcnuIgh0isyH4f2sTlPa9eeBSbieJ9tYtR3WE8vnknbU72LA7DCU49iJn74Dj7ha8M6INR2Ket6QLJhEe8oDXHLiivrocb/t0iKuRSDC4gUc+zr7nbm6yYb9+f8ff9QN+0I/6hO/4jvwl1ZANaToTtCdbI2rjIIr3lXiwjZNVZpZAITWrjH2Hyfez+fvp3cm5Z26lCG4Gg1RjLhwhCBaJi33A1zq5JzaR3EjqXbT9DPEsxX9F5Y/CAIbzr3MJs2rmbuNghZeUjBvTK2lc/Za3gSVskvKYlPdoOiJW1DQq6S4Jfeo6Nbx4i7dqlWvREZGLmG6yNcXWJEfry1cEt2dnDKXpToaiaC1mbYa9hbD61Z1iqsYTtzLkBl+01wfssFaPd9joZWdsNyAtedn8iZpRWZ3ShqQMSulTdVbJq+qmvOlAlUvw4+v4+e1sbuOV+SCEd3fysQHu/dZq9PUdRKKDtvvJDJMeJtUb+r2LL4Wfl1sFtPRQGM6U7ie6j9L0Vt77Y9z9vtAcd9d9PPP7nHh5eU+T2yR4+orCUNlLXZHbIv5ixAcj/kFr5eOgJbRFRAYNeMh9DjlqdpHtYG9LEdxocPYYv/y3eO0ZZm4i9rGo5EnfkpSSk5P21uy1sTrZBG0J2lse+VKTTZkgfitL+HmIG5z6CsVR5o5Rvl1Fiub5svcNvtnmCMn1pLaHcbuNMpUvtgTw1a8cbudhZkZDXvPCytit3pZIn6T7pX1MXVbTmEgfIvEdPHVtJbI9xfF62E/SgghOYHeK7gTLta1mQ4aBNLvauCvLXCNs6ycHOVGm0KTcZKIW9v+v30Ih3BR7wQlJCTUNEfp1aJd21ozSZT4DTXmxLhlr9fiYdg877e+Z9nnxxYOCKs1Q8f3FXfzXcxwuUo/D1x9e7Ry9o4iCzWH4Z0ivo/QaU39I+WD4cXYb1VNBFCd7wyLnBVW16/288/uD+E0k6VsfYtNOvnqjzTlLTySko/4A0TriY3gRlxbMhoUr8t/EZ2MOxLyOJVzVjkQ+6DE7bff/+GXPW9x8+belCG42mRzh6S+Qn6FyE/+ARQVf8xV7vaqkqKEuEwXrQ7FV/stFTNaDFaIrGUbWzjXCiaEWh/uXkrljlMapV6jftsbyhb7JWss+kaf6VRojNCcsvaP65giu29snw5vOaDqESMqjYrPqXtGwR8N+TSdv27a93WmPWvbRmE0p7k9zpkEjvpC8hLAP1WL6ExTjcFtOzDVayTox09WMVG1AX9Tpm+lD4ii2PRcEcirisW4e6eJgiSfnGLsF12GFi4RrUiQnJa+ifoXPZd2shA41o0oOSBkUyXlLNGQslLdPl5lrrQNXm+H/zy5Oos8qy4Q4WB/mnqLr0VYtJxFEb+auUBUWtRY72+h4mGQHs3+Cjp7ww1olxFB19dO7lrbuMFnuZpagF5sIW4g+jXlM4nKxqnlhVMDJOPysIlSAl+jYlJCwRr/DjvqkH/W4R02adGwRz19vSxGs1RhXyt/8U9XUHHbIYYcMG1a5JBvzfPV3sh6KBZVmSqc2SZH5eE6uVeZJCeJ4KXoqaoVwW5FE3SEhIi5Qey7cbkMlM0RBhVfOaV3AWL5pt7EJdXvUPCFpO7Jioxpe07BfbNW3eLvoiehKhH3onhSDidBLQzinRK3zy1gj3N8RkY2Wnwieb7xxOxtFuhtJG3Q4JGd9rqwjEetP0ZtiMM07O8Pn5YVFOO5eLxlJbTLSksblzSpdJic4EFr8KqpOaCqqOqviiPhKF9yfHWFDjq5UaPJIRxQaq1aIO4k4pEJMfobaSPD8NotkNpJaE8RvlAjiOK62WmA6hCvY+SlGXg9it2sgBLAnEsEfXJ4PH/RkFPaX6jI4k5QF+8NJjLi8vaFwhfuXiKg1dP0Z33HaGb169OlbFcHLlVGj4Zs4iNl0xMb0G99XY9R7bLBTUtJo8tvWpMLqWixYzc6trlS/mcQgiTWtproS1W+6HbFFSXQIF8ebJBTEZlpZC8v1nNd0VNk/k7BJ0hZ1ezS8JjZ1uzftbU0uYmOSwSQDCUYbb1xMna/4RhhtUhWqwcvZQlhqUlIx7rSCkmahXZSo+k6+4Xg59EJM1IIuOFclf4sWcdplDOkypEtNwx5XHhUZSeq1VUpWRUnBQQUvalzNf/hPjvFXNwVfcHuSzuSVH7vKiib/DLVzofqb7CbVTyIbYkcrJ86ngEbyryUk0rH6dJP5vUgzO8bgZrLt5KdJpBDRnqItGapjk9ceLLOkNPEy8S8IleA5rmPWzZLT0DBmwpgJv+U/yysoKUtKaizSavDbMh3iVpCOGEzx/b2cqnCkEvxy74rf7c9Uf1aXNn+89s/pTcW+OstUy0+3Z/nk4C8fkveTeSxUhGsvUPuWW22HSKFPZKvIR6Q8p+GwpnHxUtqhVllEIrf3giWK3lhYH0rwQJreiOernGy8eY+OMJxgvFUVXmrL1FLRlQwNciduwwn1e+z2DhvVNf2+PU5c5uIvLMRF2q1zn0/Z6rvNOeklv+Gs71zfC/3IMO/sDkLiWJHfWh0JfieS3dKa8dS61mlWQ1LEhYPKUI4d3VQbvDAZ7u9bFywQ3QO094SJQwefpjAVDPW5JLM1ZlbiGNNbz0brtWlTUHD2LYblN7OaDnGbqcWh4e3Xt/B3T/NSkXd28L5EQne10we8yx82I9/bE5uq8/kZDq7ayS5PYy/lE6QeItHvxsY3Lw51zIh1SfiHsv4vFafESsu2DrzKpTwm8qrYLQ4quMCPfoCh3jDx+uxpTh/mDI5d5nouxrkm/+OPhEnZf7qPQytQW523S9wOXnXGS04bN3/ZT+kWnX7IZmkJ/9pxo15ytx/UZ4c2a67/hf5wlD96YxVwlTuTyvFrPGCszHSV9e28Z4DZKvU8mWNkTpHKMrOd+Uk+OESxzsnCqgC+AU47u+jPuVoJXkISWJ9hNten0LfBQ9VzunZ9lxPf/Yu+++/9A88lntbRdtaxSiN4hm/3Bi9rWiNqUjupv+ZiN+5ght9+mN8+zefPLe1yaxaPS5oROyo2tXrWW/Yk8KDIZ6UdF/tVDX9wG9zcbVke2U06xdlxDrTiay/93Pd38bF38Vc+wVdf4CvfZP1aBoc5cY4n9nB3KkSnXe2YsVO/Ae1G5B13AzOz7xDOR6G9dUpcYJceP2u3n7LToz5vTLuU3tb4jElFNxEbtMrbkihNen2kGrciQbNJNndybw+bu/j6ONUKvRlenuLw/FWXeaKI4QFGJ5a3JWo5sloJXgY0cboqJBt0Vh3Z+pho13fJZ2Z8YeuU+WOTlJrKzeWedbAciFGmcczFAjibCL0pj/TzxEToM1hKKni29a+1aoNYGTRxXKwgNoju27QdpQqTc2wZ5sMP8+nvI5kI9/d2kk5SqoYJ2f1dHDlL/8t0z7H7HazfwtQs3RGd0ZWj03rltEn5cffZrs+ve8GMshmtpaaom+S6sKpSP0bzlgWH31KuJH7PM6Xij532hLPOKigrik0KgzKWQaPSKiuK/l6G13G0GktVyupTgorNJdnY3so97GA+w6kC+fo1fU7JJA/sZvypkB6zyuKzKoJvBfUacxPmZqc4vo/RU84lp1FcvvECy5X4za3lCUEe/8kEe2ZvTZPt7RsMu8pCmcH/pyEr8tptqt7ft4UffJQd67lriA0DnJsiXwqiF0amOHSaZ16jOcXwWYaG2LWNXHvK6Nl27SjHc1d8F3VNVQ3jCtqlVDTePK4l6iLzPtLvpvQ7b4wwf5tRVHfIrKOrn+hVFoHODjYOhyjgqfkGJfqH2fGOgt6HeOVExbl6J8NtHJ0P4rgzFcTwZUinWDvEfXezZy/TMzSucn5LS0lLKVr1Vd4IqyL4VpGf4tDzHH81BGenMggNdPV41Uq2UBoxYxX+xVGenFz9O65yZX71NlxxppP0d3PXIN/9Ln72B+nrZDofrA0vHQhWwWOnmK9wbIyXj/DiQR5Mc2+aNVvo7KU02aN2fLet0saae2TbZjWrscYly0h5VXl8wSG9ciYV5S8e9hClSGzQ0f6Q+3v/wGtnyb8NU2nqmvKrg2NWuYhMG/UqzQUszSYTdLVxdz/fPhruW7OBD3xX1eb7qka/POvcmi1s6gh5qGuyYenyTIHiW18wl2XzBjauY6Cf+TyNiz7GGWnVi/bfbh16dDlhZNGSE94OrIrgW0m1FG4X0ZMMjSNLOTXuTqYaM1IJt6Xj/MLzatl+lesjmQjnueF+fuhR/uaPMT4T7j81yVOv8ntf5fXXeM97OfQSR0vk48h5N+vLtYZd6XCefPKVSO70dn/GX7bGkN9o/jOd277l2JmyuSvYfc+ad/YyVc4onpGsf8u9uWO+9PFv+L7fZ89YmPz7djoMVTSNrVbNVhESOBMJNmxnepS5qRsXwpVqGMT18Y/yzJ4wmbacZ+R4OHPMTkS8uys0xOWSDOaCNzibZO/0W54vmaSjg1qdTDo4K86TkrTOgFPOaYpFIusM2O4u0+ZML/Jo4TuZVRF8m5lY7YZb/mQ2hWyc0iu3e0tWWSG8Ywebh9g4yK4tPPiPQrRS9XXSO+hM0/taiEqL9jAcU0qSb6yVjDdLSoiTT2vEfO2blBqDPhQ/4mf9JGJf9F/0bk4Zm3FFEXwl1rXNun/g294xwK/soVynLxfsiYUapdVj0ipvI5Ip1m9nww62PRimyB56kf3PXv7xKUlt2sx7szXv7Cjf/g53b+eBe9h7gFMH+c//b9bQppTHNpUcPzQXrjY/MBSU8cFZTlx+ekytzuwcaweDNeJiEZyUNKRfQsJJ5/TrNqRfu1xrvMQq18uqCF7lAmut9T7v80f+6HZvyvKg6yNh6bhZob7aKb7K9fGTH+Xj7+PezRye4C/+B5KDJNcSZUkOEeVD3klvgpdqzNTXSxuy2Xe528d1Wuupxi+pxJ+1Llk3GUeONA745/6+k4465ZiO2araAlbzRwrMVXllnOkKteYbnefXrAR3kH6E5MPUvtjqU13tEF1lBZPOcO8jvPt7ePf3hnkWz3yRapkjL9Opw1abrNFn2qxxExqakhJmLqm4zs7zua/wkceCfeH0CD2Jioe6Kx7cztEnjntlP/HPP0ipwWRZJhHbuo10mrl5xiYpV8Kgudk5/tG/5vDxkBAzO095Lq1P9//P3n3HyXWf971/nynbOzpAdIBgAVgkUiRFVdqSKMmWbMeOLd+XS4pz7TguuclNLJdESW5udBNbURJHtuy4SZbtyJJsUZYsyZREUqwgwQISvWOxve/OzE4/94/fggBJdCyws8B++DqcxcyZmd/MnPI9z+95vo+yikb1IpF2LaYVHE4f0dQxYXThdHXB1LQI3rwyTAMMTzBw/Tn8XBHq0jQ0UC6Te93Ja5FFHvSglVbaZ592HV7wvKOOzslYryhRAx0fYuwLXk1zSC2h4eYQ+S2PhgbxUYL83tBAfoEFLoBKNXj67jzM3gaaf53ibvLPBpFZdxOJ1hkP3e0MlzslNKrTpslirVZot0azFborkY4EU0YN2C0vZ59dyoq2FEvuvIcVN4QT5mc/fWHji5ErhQhw+SLzH6I6EjfS8AvE41RHQiPHWSeJpSkaI46XFvwjF7hyRNQ307E0COK6Btq66FrB4ZcibVr8pB/xNnf7ukd81hf0JnrcsCpWn2d4lNZm1t7AquUcOkZnO+97J3sOkjFU1i0AACAASURBVM1RKrJjJ6lqbM1SencMKeVjLb2TlstqbwupFJOnBYXzhVArEMeUK0Ekr13FVFtZ34kpjerFM/81qteyJKN5Q69ty/jydxkeu77Smy6VmhbBd2wIU4rdwzy+i56RuR7R/Odk7lPpDCeVvLxBQ+50pxVWGjNqrz0SkhLSytdS/lyUpuEWGm8nv5tEC+nlQfjWrSbZRTVLXAqP1a0OjeNPpkTUraE8TvXq5F5FEpLSiMSqKhYM1muV5w8EEZzLM9ZBcRXlbop7SbSTXBy6gU+3cKRMRaOklIqiCd26PW3EIVnDTizr0Dg+qqVako+HHKzmTQr5g1NTbLqFN99LexePf5sjBy5sjFWX1oUuLlI9QPkp4rxLOsu2SWuTlpQwpmDyTMVp6Ygtdfx0B4MV/i7Di3mGFgp+rlma0yEXZw7aI1ZKDPfQe5DxIYa6Q4EcNGiQEGnUIC2lvqFq5dKyllYamkgl6Whj5bJQwDY2wYHDQbhOZYOrQ08/qRQ3b+L97+b3lAz2FtWN5bXXVdXVUSwGwXtyVqYaByF8kmSCTevI5yJDJ5Ia1VumS9a0rLzj09P05XVmuesm/m57GMMC56amRXBbE3ds5PYNTOYYmggemgtcOtHM/14/jdqoUULCYYe8zdust8HTnpaSkpRWr0UBpWtGCMfEZZrvpng4iN9EG3GFyjilQZId7r5nUEMqo+9Eo4P7W8J6kF4VBPJVEMEJSY06tVupKGvKoFhFdaECuCbZf+LU39EodV+lOk35BMkKlREkKWWZrNImIVbVsnpEsbDTgcERdVpM6TG6tM1gXVUqVxAli6ZbhqXGKA8yNsrYMMODIYrU0HgVPlye8kv4/WDhFl9km/c2ae+2wlotJpU8ou/MIpig1O9qZHmK8QrHSgsi+FokQlcjq9romWRyJkfnKlEp03OQwjSj/Yz0hn8Pz3RozMt70SsqKvam9qrUZ6XTIcIbRUEEx3EQv/kC+TzPvxIEaCYblnwh5PWuWcktN9JQLWsey2nP5jTUz7R0P6n9z5DSm07R2hJEdiYV8pJbNNlkjYxpJwzozUzJZ8Js7y//KNt3MzYVjg0LnJ2aFsG7jvOmTbztFl5cwzP7wo9ayyH+hJRYjFhKg6SU/Gl5Q0lJDeolJU1eJX/KRCJUmiYSNDWFJZeleNq5Z4klVlmlrGyrraZN22+ftDppjdosV1Ey5OC1Ib7iErnnaNxGoilULUWpECovHCHzmIZl7/Wvf+UFSxcPeOjz/Oa/S9F428zzK0FEzwINM9tJ5KRNf9X0aYmWaU2WuclNHtRrp32++ep2tmDqX9vEhSB+q9MhA6fSx/RjJBdHqgPBBaKqpCLphrtGFHMDDj7VqzLZLKVe26LYkWUrVHJlDZ2T2m8ZVthZNP5VRgZ5aQeH9ofp1hPHrsIHqhAPUfrWxT81KbJOi//bNtt0edqgl4ycOdkqH/N4jk+P8aNtjFWCFcxsk4hORR6TiaAYavkEcy2STLBtGffdwCNH2TvM2NULtpQKvPid8PfqLYwOkH01/TLWa8Dfecyjnlatn5Q1ZezQJbxPme9uD9HczKIpS4+NWjaZUY1Ck5yT292ZytqaGkOKxWSG3sGqaXlVVQmRrTYZNWFoZoYoiuhoZfNq9hxhKneZwfVkMuRilMtBqVdPKyK4BqhtEXyMT32VLz5B7wij88DTvMtaJXkVJZu9S5e1HvFJlZlox2orPeDtlljkv/jt83Y1mg3a21i7Jtx2doQdau9+nn/p1Dp16jRqVKdely4PechTnjJkUKfVtvk+sapnfNaEvvkvvuICk18PS/NbSS0m2RoivclFJJq97c1flY7yCvmZytxI+CMuM717Zj748nmXB6y0UlqdooJhw75yWnFiWqNV7vRWP+sRn3DAd1RMzv/f4DohqqflfSF3NvdtSseIjjdp6O+SlBeLJdV57q+WuP19Yx78p92+8ZtEMT/zYT730HJ9zcvk2zcoDd1g2W3bjX81vPZQf1jmA0s1qAr+vA2SOtVJnrXvnRAJ/h+jfGmS0QrTs3isjNBQR3sT/TOKZ3kH41myV9RvcYHXk4hY2syvv4MTkxx6o13Y1aJ735nv7z/ZQjt7+e/xR5+Hw0ZxstIkikJOce+AN/h+Ewrinn0peAcXixSUPGe35+z2cb+ooCgWO6xHHNM3zHveEqLUu48weqkTlskka1Zzy80cOEQuF/KwJiYu8QVrj5oWwVPTQQjvPnaJF+cJ2t7K1NOngnbJDho3kXluNkcaWGSD5W5xs/dZ515TBu31jdeMvVOHt7vXR/yQ7V7wpO0KVzi/c2ycdWv5uX/Effdw9Dj//uOvXeegg8aMebO7/Lx/qlevlJRIpMMqd/gBK2z1iq+ZNHBtCbDsU7R+D/UbQq5wqRsV33ryQ4783CNamwZVK2y8MXKot52pR81mo+suXX7Wz1tnnec869/6ddvcZpdXRFJKcnb7qn67DDkga6H0t9ZJdIYiMmYcIRax+OMM/iK5v6XcU5VSVlWSNy4hJZJw/EBVuov3fyzy+3+0xCc+Gas2pvj+Nbx1s2omY/w/b5+X0cqiqt3G/YwnLBNyN/pcQD5FzyznwK1ZzNtvYf1SDvSx8xiLWsnmw7xzcorJBcuLq0a5yvYTfN+fcXA0pENcRzQ38ta7efi7rw2w1tWxuDMIY4JTxJmk52Oet9Umb7FNTt5wdcThHn7lp0KR7njmEkVwcxM338yv/mva2/nsn7JnH8ePn1UEd7axdTMjE+w5NDsB4wj3beW5vVcmHbamRfBJLuV7TDTSuCVompM03kj7O2m9j95Pkn35El/8bO8pKaVBq+WWuUmDdk/5X05vsjBoyDc9oqDoGTsUr1KB0/BwuKhbtjTkAy/qeuM6Y8Z812OeklJRcaMbbbNNWYOv+09aLDZgr+p8LtVOLSZ9Q4j4Zh6duTOkr0g0hIK4KEVlXBxz7MRqiVKF8ohqXAoVQbMkgCORu9xtxIjf8p9FIgP67fTSq2kRFFWUlPXIGVWZz9/9dUR1wqvzmpUxsl8LF+K5r1Puh7yyQScPQGUFJTnlZEEiSVyN/buPj0il+dSnFulprGPtYnGl0/Qrc/ShLpMxRVWxI6Ycnwmpla/2xfSGZbztZv7+W1m1iM8/weN7yRVmik4qC0mUV5tqzIkp+rOUKrNSGNdpsQZNUlJKSrKmTLm6FlNdm1l8M+NHGTyLxXx7K/e+id//z/zTX+PvHgtNNwgR34Hh87/PI57zEz7oLrcYNOKR6oi9x9ixl42reODNdLSEDpXdA298fptm7/Qmn/DLnvGKf+8P7Hc8dLZtb+M938uTT9F9gkOHGTtzpP62LWxZH1wpGuou7Ds6H80NfO9dIb3jxYPXqwje/C7e9KOht+jX/i3jJy7o8iKOQyVzXKLtHTTfRsudNN0S+h6MfpmOV24yEB9WniUhWqdZn5e9rF7GoIwhww7P5AgHRox51JN22yd3iQaby5eFC7Hpi5iNHxrhc5/n+Z1kMjz97BvXeX0u6mGHDRtWFZmUl5Q+y3eV0mCbpCWS2sXKSo7Ie/HCBlfXGKoTKlehhWklQ9xNYoSGW4MzhJjpV6hmqFsfhHK1RN1S5dS9pG6jPEKpn9L2WR1OUdGoUfvtlZVVUFTw+khIrKIgvyCA5w+n66hKyAvOPkR5wMw1VCw+7WKqaEpVWaFQNTYYPErz2YrpDLkDE6wdYSzLig7xPDUGqb4q+GPluaorGJo8JbKmC8F7c2SKRS3hDFteEMBzQrk6q9/9Rjd7wIdkTdnvZS977qwiOJUM1mPTeQZGzpyOcCm0LOfWjzB2OFgYDp3h4nU6zyv7+Jf/gZ17QtqtdXcTJTRkj1lR3+9I97nfJydvhz3usc0P+R75uOiF4Zc88RIbVrFhJds2MTTGr/7Oa5/bqskGK91krfVWesYui3XoNSxTKTM4xB9/hu5u+vpDOsRZvqDsdMhb/qkf5A+/GPyO+4cv3aFiaSdvvpE7NrPrCJtXsXxRyJ6ZzIUc6+17Lu21T6f2RXD7Sm58INx+91OM97qgSFw16JhEPalOWt4UIsDpJRSOUbeSVbYYcWLWRPC0MVOGFGQMO6Qga1zPa1IH8gp69et1cYl8iUTI512yJBS2VeOwEZQvUBfl8zz2JHt3NmuqLFLqSWsxKmPc2cLhkzP/nZu0lGXq3areNvW2qMrLe1bFhNKrWU/nIFkXCtLi6qU1bb8Y4jyVPNUcLfeTWkrxWAjPFXuCh1XxeHCISDSRXhaK51LLqEyQbAmCOL/vsnOCY7F+fZJSRo3In8d5I74WChKvU+J8EMJn46TlXXaCEwdDjmD3AaYzZHoL7OnlsX2sXXSVRnyNUqkyPMlzh0Kk/vkj5IshD3gOrLlqmohEB9Wxmdtp3nB9XoOE5hFd7vdexx0yqPcNXdQWdYR9rFINUcu1KxmdCFHM2RLBuWEmuylPk2468zrFUrBP+/zfzNyxdBN3/CD5KfGBrylPn9IJSZFIJDGzxCjMBEa+7VnTCtZb5Q5b7C0c9fzeCYNjbN0YhOTN64Ig7h8N139xHM5BWXl7HPU7vugJLxk2HgJ3xRK9vXzmTymX6B8I4emzMDTKsZ7ghJGdDt/t5exR1Wq4Lk1EYSgbVnHrelYuCvc/s/t6EcETvRx9mhVbXfBXmgwz24m6kBaRP0puN6kOir1kXwr5eu3RMi26lBWUz2bTcxGMCuXZ43LGneOMdwmk09x8Ew+8m917gqjN55m8iFyf0VEaRlda7X7rLfaib8nPGO9fKpE6KUsltKuzQaN7xYoikYIDZxfB0UxBTCJJQ3PYIxPJ0Gw9vgrRmCgRBG79ZrIJVEIEOLWIqZkIdrkvzGvXb5oRzJ0hvybzXYpHg5i+TAacYX5qgeuWzERY3sDePjJ5Opuv+piuKZrqODYUhPDUNPt6w/3js1DxdC2RDvGA1KrQpyS1hspwWGpdCMdik8ZNmTCox7ABhdNmOBvr2bIhiN3xyRAJbmkKIjiKzvHCF8nwHnb8LulGChdynm5sZ909YRk6qLC3XnfvqYcbpDWp06ROg5SCih7jSiqet8dxfbba5F3uss4KL/dmDY6XHe0LqRAPvJkH7uLFA+w7FlLgM9VpB3Q7oNvfePy14yljZDQsF8Bkhu0vB3/0w930XWbpyvBEELpdrUFQr1/JxpXcuDqI+O88f3mvf5LaF8EHHuHI03SuZujCnOCTrdSvDEG7wozozTxH/apI3SqiVCwRp1SqRTe53z5PGarxrmj19bz1Pn7jo/y33w7tFcfGLk4EwzLrvMuP2+IeR71iSLeM8UvO8w3Xka9IWa5guaTFoKRP9Yxp/ILYrWtCRFM7q2+jlGesJyz5q2ADElfClMDEQ6jSfN9MxHcRdT8Z1qlkmH4hRIZLvaF5RukEo39moYXV7JCSOEdeaDCNWwDDU2GpeZJOzdSFC90oqgZTlXjm15zLn3TefI9zSBRaeze8PXhBp7eFmYzkcspHKZ3FQaGW2GWHj/ppORl500qnBXpuXM+bbuFYL8f7Qse3+jpe2jP7m+b44QtcMZnipneH2+2fY6yb8Z7XrNKmwa1WuNFSizQbNOXr9jhhXEXVsHF7HbXNZot16tBqLDfpWK5iMhtyjf/xh3nPPfz253n5UCiam03GJvjuLJoOZKb5wiMhkv09b+a2TezYx+8/xLN7Z+c9al8EQzl/wQKYU1dz5UmmTwuXN/YsU9fTYNyAt/mI271XSd6QYzUvguMq2Sz7DzA0TLFwaTvscbv9lU/osEyfgzJGZwqwLoeijK/J+JoWH5i557Cis22lEak6GtpYso4f/y1GT7D987zwlaskgvNM/PXr7iuHlIfS4Kl18ocodpN9OkwrTF2CQeoCZ6RBys+53297XOlMqR5tG5g6Fn6XdAvJRvILzhi1S516Dyj4JqrS7tbUmtC++ikdSxk+EfyMJ2ZynheoTZIrSW1ETGoziz5JaT/ZL840epkH5GTknFnhFUs0NtDVTnsLfYM8v/sqD/B0Gpu46y2Uhnjua2EnOQP3Wu89trjNKos0m1YyYMqgKdMz5/CsnBfstUi7DW7wioPKpo1N8fhLIfXjS/8fg6PhO3jpAAMXFuidM6IED97D8/v5rb+g5wKKBS+G+SGCL5JqidJo2KZOZ8IAIlFUtW/R53zh4b/05R/6c08fru08u7p06Ab17UdCcWZ/P8eOM34JVn2j+kwYFEmoKM2CAH4tGX8389c5XrdaJjNKdoxKkS/+G4o5ho9SnCNrotIg5SEqU7Q+wPgXvdpVrhKFx2dzruw6p1W9rVYYkrXNCtBt3FCqSvNKmpafusqr5E/ljJ+Pd2AaBzF3dqPXPXXeLmmNxSt73ff3+dDP8//8CHufXhDAtU6lj8oApXbafoHycWY6tl8TE2D7j/Di8uA4sG5V8N7NF9h7oVHbM7Fsc7gduPBgHehazH3389GPsfMF9uxi4swieJ0uXZo1SFmqVYt6t1rh2/br1KGkbNiY7V6x3iorLdahVVlFQVGxxM5D/PJ/DUVnjfXUp8/4VjVDfZptG/nkX4Yc4VKZztbgGjEwxvfdF3Kcdx4K6R2XwrUpgnOhF8LJ4FKLLpGEgqziTG5QvlLw658sGBj5on6X0P7lKlIqMz4ePKp7e8O/C4VL8+CLVa+wLdGF5lbPNEmfHGTXw0HglAunGrZfbUo9YUySoY1yw5bQ4ivRHCzTqtmQB1zqCw4SpR7ztkx/DtliqdU6rNJusyW6jVunyyLNtlhqX13S88tu5I5/wdG/CcvEQcrZ8099JPBfE3w95q9jdnEhNrQLzBbBVbzd7yj6LlJGum/w4lff6tb7nzQ9NXtFRwtcQaphqY6T+WNyX5u5e3AmJ3ieU6mGXOBFHdy9jTdvZcUSfvUTPPnCxbkugft/krZl9Lxy8SK4vp6ly9i4mZfP7aZ01KjNls78PLGMgkl5P+ABb3Gbg477Sw/rNWRSViw2YUrptHNyHPPFb4f0j8x0WGqVlkYWtbP/eMgBPslULuQdlys8/nKI7Ocv41R8TYpg1dcGjVa5SULitChorFjK+OajNOUOiFU1aJW/Sm2ML5Y4Dt6+pVIohrumqJTI1sB8zKtOD0kKh4MAjtJ0votEa7BSy+8LHsPVbMgpXuCCWapFvZTFmq3RabMl2jQYkXObld5stVE5i0rj8rmE3W0bSDVSGA0CuHKB1Ti70C9ErJJX8AOdRqRVwlIkVFzkSfCaoqxsl3pvk/ZmROJci9E97/fI//xeo91/qFrpdc5ZogVqh0rIAa7xTMFL4qSzUixM8A2OcvNGjvfS3R8iw3XqrbXJCqs96VtnLp5vbOdNPxBqWjLDtCwicxE5I5kpdr3M5z/H88+e033hRScs12aZVg1SekzokbfBGrfaKBJZrENOXrMGA0ZMK6iKJSU0RWmJqKC/Bk63Z6WpKVyFxFWlCplcsEM7nXIluGWtXEzPLGTHXZsi+HW8yftFEvZ7WllBHFcliw1S/cu1lJerSiuarlkR/Abqm8L0cLkYLMUaW4K3Uo2RiGhPMzavAqaVkBZxkmRHcI0oHgrCN9FM4WTUeIELIcIqHVISYqFNREbRpLyCsmZ11ujUpkGuVFQZySodfcbY0AGV7LhM5QK9W6r4nSoZDLnwSYnLJGmdOu8XK8j7E7EJ1+f2UVH2srK96n1w5uKgS5xZ76W/rprymNggV6lBUK2SRCqaseiKKV2Pm8ocU62GaOKRE6EhxeBo6NzW1RGio6PjNBZbvMU73ecBOzxxZhGcqgs9DLJjQQinGy5uIFOTvLgjiGHOmg8MR4x41jH1kvpMOmTMtJSSimFjpuW1a9GpVZtmvYYkJTWol5Ikrl5WxPSKkEpR30BjI83NNLfQ20NmSqFYfrVxyOtJJkJKxKwMYXZeprZ5l5+SVj/jy3pIVcWq4hZv8gFJafs9bfwifXtnnSgKqlEcjoxno66BVZvD+pmx4N+38XZ2PkZ+7m1+GpPUJ8NHaUxyWxdPDYY0p9o81p9ezf56UhSOBF/g8gTppRTmQWl0DdKszrhpY3JyivpMSEhokHLYsEl5S7RolHb3dMoND/9333ZATou9csYuNK/hqSv7Oc5Eyu2a/YqK48qeUbLDVVPgNUjSOpG0hC6RJhVDIvUSOpx0jJivREjOfIZLTStrS7G8Lhwj+wuMXAN5tvONUplsLth4vTBTFJdKsvVGVi4NdTjVgXo3xbd4e+U90s6SPDs1xHd+NwjgwUPB3ehiKRbZ/Qpr1503x3GXfn0mLdamXpvbbZaQ8ISXZE3r0GrImEikS5uSiiU6VVXtrh42UWuFjc3NrLyBjZu4/c5wMfDE4xzcF3JAz8J0gf3naSJyoVwXIvhxf2GVLVLqrHensoLF1njZt2SMOe5l43Pt19rVxJJWCmWOnC3xKuKtP8CG2+g/QirNzffxjh/hc/+BL/zWnFedfGQj772BtS0UKowX+T828QtP1mhEuOFGCofOnN/bdFtIgiscCkvp+NUf3zVAjMcddqdVTsjKK1uvy/02eNIRX/aKr9trmxW2WekG7ZrU+bb9NXrh9FrKdpn2B1K2mu8ibzaItEtYiaqi78j7ilhRwd+c97m1TrM663SKxXYbvKTtc2szH11LvsovHHBNFJvNN+I4eO831Id/R7hpI7ffFNIkJpYwvrzX58f+ue7Dx1/TSfUNvPiV2RnUsaPnXaVevS5LrLbctIJGDRrVS0ioV6dOWr06h53Qa9gSHW61QVLSbpdT+XeFqFQQs2wFv/JvOHaEnh6OH71qQ7guRPA3/I6klHpNWusLli3eb0NX5FB37NAkhVroFb+4hffdyge38TOf4fjYGa4KYx77PG2LwpKuIzfJric4vucN3dZC55xGbRpVVY3Imr6CU5H/5k7uXRoaL40WaE0zXaarfibIfYkkNEiqVzKpwTJ5A2Ytrpzfe/bXyr1A7mSxQg1sI/OUCHdbY1rJCm3guDFT9vi2A6+2031Fn136NUq70w3zQgBD2YsyXnaqfH52R75USr3ItNjwPFBME35Op88LsdJhKZsVfGeuh3XZbNLlh231Ue/wsEP+ve/Ya0jhIjs5VtFdYKpMbqG0YE5oagi+uWMTtLXwSz/Fjld479t4dHvwEK7GSJf8gd9SqZFuneOmtGnWaJ0YRWVTcrq0qUooKCopKc0cJ+53p1ttcmKug3xnI5Nh7x6OHKb7WEiP2PkiE2ePAs8214UIHpnp3paQkCjGeoarljfz4Q3053i0l8MX2XRiVuloZGUH6xdzx2pWd3Fi/MxpEdUq3/kzlq2jpTNkiFcr7H8upEacRoRm9d5srXZNxmXt02+PvivyMX5iMzuG6c5QrNKUOtWJ9FI7kr7NzdZZJq/NTht1uMNxf2HCKwqGVM/Tavj8nGtg8XkeX+BCiPGyvlfFbqcmZRV7Db5638n1YrGcoh1maa7rqhCHHKCbbuIjH2HVqrBfjo7y3HP8yZ9c8ivfIO1eLW7XaFrV35rwwrmiUjVB2YRfEn7REiqq5j5V63Ipqeox6W/tt9OAvLIuTTPZmBd+cXJomt/tCZHgidq/prkm2X0oBGbKlZAGcfg4j++gpZnegZArPDoRTre1IoBPkpM3ZtL97nCHLQ47ISlhaiZlbMi4enU+6G3e7S5jJh2e5Q62s0och4r/xx+jszNYX7l6dqQ1L4JbsAIbRW7E74ovOpZZmcnPqxCcuUr0ZLljMe9dHYTwnIrg6RL9k7zUTXMdU/lz5wZNjYU5m7r6cJ6plMiduaivoiqj4DarfcBtnnPUcaOyV6D35bLGUPAxXgw5wC1p2us4nj13mvPZeNCdfszbjcr4uhHLvV+7W/X4q5k1FgTqfGH6tBzZcTnZGcPCMxG/bv15QVMT998fxO/evWzcyNat3HhjiG78wR+c/bmNKdrqWNQY/JuGpxkJF3cTKupEtmnULmlKVUbVgRrvXVu9hIuYVl0SUkrycubygHxmhuU864RJBQeM6DOlcgmWk6MlJsuvOpEtMAfkT9t9KlUefz60/X1iR3gsk3PWoqy5Jievx6AR4wqKBo2pqCgqz5Qal6WlrLBYuxbjpqSl3GCpcRmZWvWNzGWDZVzi6qaU1bwIJgjh+0W+T+QPVS57Qr8Sc2SSfeNsaqc811qqUKZnjGcEMdw3cX4T4OmpsJyHkooBE4ZMWaPLlLxGdVdEBB/PnIr45spBCB+cDCkRxZNH+9ZOGpsZPBmdXyRpBSJVoypOFRastVRayoApRwzr1CdWMa1XWUZcY1fo84WElKT6Gc/oqx9VzCtfVOSs5mluDqL3rrvYv5+HH+aBB9iyhVtvJZc7twiuTwYB/IF1TFd4qjfsQNNlU6oOytst7wZpsfgqxkiuDo1adFhmhU2qysb063dEocZO1llFh40ZMW1IVjIVHLKWLAmPTw5emNtjMQ7LtUBHczifFooU5+kuXalwbOa001OjWQOnU1DUb8TLDmpQ75BukUiTBkQa1EtKijFsXFrKGiuMmzLu4FwP/9wUCiFEfxUNxS9aBEdRtBqfwTIhaPN7cRz/tyiKPoafEcyJ4FfjOP7azHM+in8kBGN/MY7jb1zo+2UwMPPE+kSrKNkQWttWCy71OroSc3SKb50IQnj/1Us/OTuTeQ4MMpplcHas2sJkZMWYnGcdcYc1hky5UhHUvzoaTCumSkEAH82E9IhXaWpl41aWrOKZbzA5JmWDRh+Q0KJop5wviGeE2UF9DunTLatH2YhPiVVkHFAyZSGOcvEkpDRarMlSeWOm5lXaQY2yeDG3387KlezeHTraDA4yMRFmbJqbaWg4t8l3OsH3rCVb4vgkJ6bC1SO2yxlWsUzKlKr9NR4FvlAiCXUaLLbam73PetsMOGa/Z00YrjkRDEUVQzOpHelGVt7MTe8Mj+35Doe2h4aY1xqpZJigrsQhRQDSSbasnCN5xAAAIABJREFUobmenhGODVxe04IFLoyKqglTXrLPsCBeOrRabZlFOmS1KynLmrbfMRutdpN1xkza7pU5Hv15yF39tKlLiQSX8S/iOH4+iqJW7Iii6GSv3P8ax/Fvnr5yFEW34MdwK1bi4SiKbozjC+820IuPSfhYxzvpeJDhPyf7UhDDl0FnPdsHyFdOjjXcXkontlmhVAmR4FkjVlaRV1JS8SU7DJg0fJae6pfLb+w4x4OJJPe9n1vfQnNbEML/+7+JKk3SblTvfnXuUHZQYcbn6lt2iqJTv0fOsSsy7trhZIzvym2ALVZa6V6L3OSgry6I4NmgWAyi9+mnQ8n5939/6Gzz1FMcmal2vvVWXnjhlII4nfEC9VkeOxHE8GSRwddG6DMq8qr65luayDlo0GSNW3RY5q1+0DrbPOrPTRiae7eeCyBVx+rbedOHETE9yeARJvpdc5laKxfNBDhyjE6FYN2qxXzvm/hHD/LdV/jvf8WO/XM90uuDqti4jHEZ662yWIcObVZYbFrBsHElZYPGtGl2g+W22uQ7njW00E/+NVy0CI7juI9QWRXH8VQURXuw6hxP+TD+Io7jAo5EUXQQb3Gxjp5RgoaNLPlJss8zfeANIniplDJyKvIXcBTacVpPhGVL2bieiUl27bmokdUsMXKKcoozEeA55Md+iZb2IIDX3sR9D7JstcbfrsiUPmPK/xQrqzr1o6xbGwwwxscYugbadZ6LBuvUWSFWNuXZK/Y+kZSl7nSrHzep24BzXbkscEH09fGVr4TlUhnI8Se7aK8PV31LGhk6JYSbJCyXtkLajhqMkF4KdRottdZRr/i0f+6EvTUZ/T0bxWn2PkL/PpJpcuMzF+xbmjiQO7v9+DykoY50KkR/m+pD292Tf1fjIIrr50Vy5bXH9Myc3jN2+o6Cqqq1VpgwJRYbNmalfttscrP1ho1da9dol8VlbbZRFK3DnUI26/34Z1EU/SSeE6LFY4JAfvq0p51wbtF8ZuIy43/H9H7yh0Pr2tO4Q5Ofs8xRBU+Y8ryszAVOl3d28H0P8jM/xTPP8Uv/+qJHd0Xp0GaLdZbostshx/Uqz5cjbJTggb/Hj/4yTc1MjpHPhbPF/heUqmklL6k46eIdfrOuLu65h/5+slcmcF0zpHRqdY+lflhKp91+XMngFXmvkoyDvqzfsyYt+B7XDF0NIXG+eyYN4nXTUTlVJxQNXEO51JNGPOMrysphqn2efbbiNH37GDgQosLJzoTc7e28o4MXMzw6zuC1EbmvT4dIcK7AeIaNK2lr5hvP8vAORqboqdFARXMzXZ00NgVHrr6+OZztvQIMGjVs3OpW3rSc25bwe0/mvefmcS8cbXd8umC7XR72jK02zfVwa45LLsOLoqgFX8Qvx3E8id/BRtwhRIp/6yJf759EUfRcFEXPnXmNKvlDTD5O4SiV14rgstg9WrxVq80aNV3ER0ulQrvEzRu58cYEWz/A+ntpaLuYj3DFWG6xH/JeH/ML1rtBSkrbGlbew4q3zPXozkNcZeeTDHYjIpkKThaHd/HMN+UrfzsjgEtO2ilBWyv/5B+HeqNr6YB1JioySgZkvWLSdmVXrgV23rhhuxz3qFEL3e9qgpaZblTZUiiIq8RvSHcfVzGkrHQNxXBiVUV5VeU5F8B1OtVbKuEierHGIf+3XKSQZToTiVuSfGQp97fRfu2ERrN5JrOh1XC5Em4TM6K4d5SxqUu3wbyStLSw5UY+/CF+49e45WaSybke1exSnUl77J+ueGm44shUxc+/bcwv3VuUbhk3KSuvYNSEnfOkAdHV5JL20iiK0oIA/lwcx1+COI4HTnv893m1PVAPVp/29Btm7nsNcRz/Hn5v5vln/p2qOc4yXTag5Nsm5VWNKYsuooY6N832vXX+x0NNevZGvOWnKBf45sfp333Br3OlKCubkDExY29SVbVkG2veEQRi3/a5HuF5GOphx3eYGg8C+Mhuju1juO+s8ewowZo1wbfxmiuHfx2xkoJu474rHNKuXOFTVVHxCjZMuRZIiyyX1n21vqemNJliaLF4FiVRXDh1XVGSmqS1q7dIVVFZVl7/BT8/jolzVQ5M80KGvuJpljjzn0IptKrNFShXGZ4Mt21NTGSCzdjJ9IhcDdVtNjTQ0cHatbzrnXzms3M9oivHdDnU0z7bx6LGkuOTTFVKr55jq2KjNWg9ONdcijtEhD/AnjiOP3Ha/Stm8oXhB3m1DPEh/FkURZ8QCuM2Y9Zl25CyTxvQICGrKn8RzgHZLI8e6fToMxsZSvCWrbSv4IUvMHKU0tzmqQ0Z87AnHdPjsG5lFe1rWXlfCLTOC576ehDBk6O8/BRHz514nc2ya1foN1ALDf2uNEWDSsbE11Dh03ylQcJWTVdPBDcmGTm7AF5gdqgTaZBQVFV6ncFiSqsmq7XYJKVR1jHd/vLi3qAQ83KW/36CbJWx+ZXecS5eFcBxmMybyIZl9RLGsyEq3NxAS2NtieBqJZxLBgbpPkF397V9PsmX2TMcBPHuYQbmf4+aK86lRILvx0/g5SiKTvaU/VV8JIqiO4R6rKP4PyGO411RFH0euwVniZ+/GGeIi2HfpXYPS0TcuYaPfYjWJn76c6x/K52r6VrNwNxOG0+Yst1O2+189b7sICN7TongSHrmsP66PTyZnMknOM36Yi6U80uPs2g548PnFcCEYvvf/lQ4aGWu8ZxgqMx14WKtcbotyFWmXmSdeo0Spq+GDV/qGpufrUEi3KDOFg2OKuhRMnmaDG6wVLtbrfYjmq03avvFi2DC2e/RK5fONFeMTgWDn45O2jtCh9tyie7TissrVTpb5m6MZ2J0jH37mZzi0UfZex1kgFVxeDwsC5yfKK7BhMuzpkNcKTYv44fv4mffxZI2VnyMVH3Yy/MTFGpbhUWSlnmPSbvl9auejGCl6thyJ5mJ0F0ukWJimP5r3WpsgXlNMsHiVgbmRkx0SvqQLhvV+7heuSsthDvrg01a7R2KrxnqRT5utZ+11L/S7cvGHD9DpL/VFg2WKssa8/wcjLR2uXkb7/0gd97NZ/8X3/rbuR7RAgucnTiOLyiR8ur2p6tVOpoYnuI3v8n6j7EuxcSJIH5rfO6kxUZv9QX3+5J2W08VdjS3ccvdPPDDoUGFiN5DDCw4AixQ46STbFnBL7yPuzfS1nhV374i+PL+Kys97GY/apHl0lfuDccWBPCVJIVFUqZUZFSMK581XW7KfsOeMObFMz5+PbNoMVtu4b538IEP09p2ylt/gQXmK9dO+erlsKuHUpk71vDutXz5+dDpqXLluqvNBnUWabZRxbSikZkI8Mx4G5pZfwsP/gTZSfqOBUFfg5H/BRZ4DakkG5bxL7+PP/0uf5xl8uq1d86oeMSkTxlwi0btkpqv83jB6kXhyHJi5Lyr1hxlDCt7yLj98h41ZfSsbhSxuIaP+XPJvl384af42l9z4ljItV04nSww31kQwZArcniY6VKIQk3PTJPVeNVZrKJgSJ+vmbDTtB7Vk4VV9Q10LQ+pELkpioWaj2ovsACCB9Ohfv78Sb69O5iQXiR16Zm24ZdQZ1jFqLLPGLJSneMKRuaZh+1s8+F72LKKp/bxZ4/N9WgunqLYPtNOKBpRvs5/zUtjbIzcKxzaTyEfis4WOEUiEUpwLuWYs8DcsSCCTzI5fVWjTbNBRU7OMQVDElKKp7sLlIoMnuAbn2PfCyEXuPzGvTMpkhSJBQuVykIUZIG5plhmdw89YxwfDl5MF0gqGZrfrFuNmBN99F1C35EYL8p58VwdzFJJDemqxnQskWDkcgpR6pEUwpY16GB3yw28cyvJiG+8cEnXJXPOlKqpq1HoeI1SLoVlwXDgzCQSwTljQQTPLxZE8DwmeL6OYvSND44N8d0vB0uysxChRVqr9EyL5bIpReUFIbzAXFKNGcmE5SJpbOSOW/n+94bt+1uP89A3r9AkSGOjFUsLNi0vaW7i64+RvxR7qCTRIqI08SRxDYrgwwN0tNA7xurFV0cEn/TMCN3kajkxbYHrnSgilaahMYjh/DyOlKfqwuepVqhcB1Mm80cEn56Av3A0PD/l4jkFMEEA36LTRm0ikSHTDppw8Ho21I4sbF/zmHSKmzfzznuDIN13iPZWxq6E0URTg3vfXPEP3l+yeW2wY3rsLP0uz0oUiVbEkuuoDnJlzCMvny9v58l9oVPYi0ev/PulsELYHRMYdLY2SQssMPc0NbN8Fes2BQu5736L4cGaz6h8IxHrbwvmWGP99B+a6wFdeeaFCI66qHsvUQtRHYUvCUfHOqoLbl+XRIR1Wv2kLe62REbJXuN2GlFwTLfatoWbdRbVc0NzuD08xdHr7PNfI0RRiP7u2hdqXXv7Q4rxFSGVdnwgYe8h2lvCVOgFsXxVCBeNjfCWt0nG39T8v8l/gtLnqdbgNeiBvrBcLRoEQ/oSJrEc3c7QanSBBeaYRUvCvr9+Mx/5h7z7Qf7hD/LEd0JW4nzi7g9y3w/Qc4Ad14kFXs2L4MQyUttIbaHuwSB6o3YqeynvnevRzU8i1Eu6QYstOmzQZkpJUdWkolWanZCp6YBopwaN0pIiZVV9lyvaW9J8cDU/sZkvHOE3dszOQBe4qoxNBGP8Q0dD5XqlEkz8rwi5af19Zf/rL/lPn2bsQsXrUD9LlvPgD/Br/0X5s59QfunTqocy4nmYa3slWIJP4vfxNI4J0eAFFqg1xkYQceQAT3yb0RGefmx+CeBEklvexvf9MzbcyeQfkxmb61FdHWpaBCdWk76T5E1UR6jsIy6Q6CReTWKEyvmbj80JqzX6e27wSQeuyOt3iXRKqBcZVjV4EQUfMSpiVbFh046YUlQxoSivMovFcdGrvsVVebOZZ7BOhx9wkxu0+bYjHrLP1OVUFMUxmTID00zOo6PXbJJop34d9VvIPEK5dmRHU4L2FK0pVtQxUORonvzrNvtqNSylq5HLVihQqciV6Bs6/+qvUqmEM+e+3ex+iZ4h+f+3qnrA/BLByXWIqY4Tz26+SV4Qv/vxMkZQE5kiLdiG/yvBkzF/Ep+xJGOB64eT9QbDgzz5KE89Rr7Wa+xXrmb1Ojq6yGVVH3/Yib0ce5mh4+x9ismLOabNY2pbBC8muYHkRiqHqRwV5scaQ1pEVD/HAzwLrVK2avf3rfYFJ/SYntWoaofIBim3SlsraVDVS0qOKBs5ZZJ2Tqqqmjqm9ExkTMcVFVUjCnpkTV6imExqnXnt/IxLRSRSp6pgthNtkxKapLWoUyepSfryRPBkiZ2joYX29toRfxdKQmSLZZZp1WNcv0lTLrJKK9lKwzY6fojCgXCVeTKprRrPmQppTLCqgTUNYRajNUlDgkyFoSKFuZqyKJZMTiepRlzQXncahTzHDvIXf8DBvSqHi+adb1fzT6OB0rMUHqc6cFkv12mVvEnTpkzij7APvWroq0mgNeLdUcjNSNfyfNkCV5NshmOHmJ4PyeuLlvDu97PlVrqP8t2HjQ/wzFdCSln/YYr5uR7k1aGmRbA0UWcQwYlOKoeojJBoJC4R1+jVVrOUTnVisWUa9F6ACI5EEpISEkrnEXPLJa2X8iZp96gTYaeSh+TtUDR0DiGcTtCUoilJ65JxxyYnHY0zymJTik7IGpG/JMma0iWSVDKmakqQLFWx2d+bBmQ87LA29Y4Yv3yJPV5kxzAHJuiZD0exU0RolHaPdR50i+cc94j9XtEnfzHiLEIqRV0bjQ1ESSRClLwUM10NYvh8kw6p5ExIdnYEQkOCm5q4p52DOV7OsLqBpXXkKhTOoJCiFOKLLzRLSUtJy59WhtWgSUX5jftluWxosj6Yg9aheJFCOJvha1+8uOfUEk3/gOQKcn9O+dhli+B1btfvoGlTsvjy7IxyVkmUqR+NpXbEprbHXIlzUFMiHKDz1XClt8C84KSF3LygUqajk6XLmZqgrp5iwa556AF+udS0CI6zIf+37q0z5+GniQ4RtRIPU63RnJV+eV90wqOG9FzgUTKtXpNW9ZoMOHe1X/tM96p+VUdV3K3OR6RVoiSSdijpVT5jaeryRu5awrpWjmfoMWJM2bSKooq8iqkzCqcz2XNEp90f6rgTWqRQlVZVVHE55qlnp9uk7tl2sZgqhWWekZa0XJuKqve4yf02WqRZXslu/aoXeokQ9zD9WYb+lM40dakQGY9QqDJVCSflc52YkwkWt5OZJjs9KxMAY+UQBf6xZfzVEH/cRyoKS/osjdzSnTPHjDFBtJ9nHJGElLQlVlpsuT12iMUikc1uM25Yt4NvfGKlQkszne0cO3HttdA6l1vKyaKMOGM2YrUr3SQva9BhldqJ/b5KFNHawMYmlvxR1be/FPI+T7YOjmOz4y6ztYW729if4+HRBbeaBWaf3Tv5lZ8Lf9c3hNSIQ/vmdEhzRU2L4MouCn8R0s2iNKnbSSwSjrep2k2HgILqBQtgaNKqw2ITzt+XNBarQ6NIGiWxJpGPLt1oLB1ycE0PM7L7Dc+9Zyn/8W5Wt3D/lzkaj8iqKKtKiDRLS4gktajIoSpSL6nFyXh1ybCUDkktEpoktUnpVDEloVFCvZKqqmlJbSrXs+XaVaCo4ogRaUm/4W+83UaN0u6yVoO05xy/sBeKUYlPNWtoTbG+gRX1TJZDCLa3GDomJDFZofy6M/TdN3HTWg71sOcYw7OTK/o/T4TlJM+cZ5Nq2kTdYorD5E+Q7z73+hvd6kEfscxqA7rd7n5jBq203mqbPOYrZxfBTY2hO0cmy/C1lSAa3UDc58wad/h9pO+gOkHlyGW/11d9wl0+7B4/4kl/ftmvd7E0n+wyWKF0htmOxSvYcidveYAHfig043z+MZpDFpjRIdo6GR++zIG8q4NfW88zE2GfGyguCOEFrhyNTdx824IIrlVKz1J6MfwdJUneipjkGhpWNElYZNJ5znCXww0b2XIbXcv4y9+9Im/RpNWN7rTCeg/5vfOuv0PJIkkJ7E2m/IO2DonGpSbq21h6B+veS6XE4x+l/9nXPPeJAX7xSVY3c2Q0bTIuvTq7XRWbeFUBnXJbiBVUVCR1SGpVZ5WkVgmNklqlLdNgrZIRJUNyXlY2oeLCqnwSmsVK4lpslTVPqIrtN+iwEU86bJFm9VIWa7FGp+POM21SH1GXCJFfQipDhOX1IQRbjfmzAZ6cCNWp+WpI1i1UKZ52hm5r5l99hJcP89lv8jdPXrHPfC7W/iyL38vk8+z91fOL4MN2WWKVe73XuBHtOj3mb7Rqd8x+g2YUeBTR0U59Xfh+Vq/itlvYtI72Nl54me6eK2hJcRWoJ1pB6n00/EcKH6f0JeLDZ1i39LLZVGgtFlltq6Kc565yQsTSFla0kS1yeJSp16XUR4mQJ3n8APt30rWUTdvIZcL9S9Kk07Mggh8aDhebddGCAF7gypOdYsdTLFk2Y258fW1wNS+CVbxakBOj/MrM3YfCvxuu9BGimCczRWsHm2/j4MuzvpF0We52b7fBNl/26fOuv1rS/8/enUfJdd/Xgf+8V0vvK7ZGYyEBAgQ3cZMpUTslmZYjyxZty7Jjx4ntcU6cmcyS+CSe42SSTGaSccbxSeKM7TixYzuR7MirrMUWJWunJIqkuGEhCWJHo9H7XnvVe/PHr7AQxNIAuhtoEPecOr3U8l5Vvfd79/f93e+9e9RMSWxvNNy3UPf1fDeFApM5akWqs0y93kNuvMS3Rnk2w3xalzz4VltOvuzhtlktGwd8bO17QnXrL/70NTFbqbqGWZGcWJtIVt6AvM2yejQU1U2rm1TLLmioLXqFNBLfHOeXAInUZr3qEqPmTwtVRi82GWmNw8W2NQ4V3lPxXLWUQoMjpUB8uzLh/u4M85lmhFdC9Zz136de4vc+F6QQ49dOr1QZoTJKfZ7ieQq45yKReNoX9dvgTg+aM23MCScc9qTHHbU/PDBNQxxULstbH+T97+L+e+jqoL+P9laeaWFklIViOJdWEzqCBC3qJJ2h/mXSIS4s61+697fWLU56RZ+NPuDvrSgJzmfYvoaf/i4mCvzqN15PgqfHKM5z5OVAdCdOhr9TrB0IdZL5GYbON1m4HAynfLVCeeEmAX6DIMIjGR7LMpnyTIOnE8ZX4vuv15lo6vnfYASY1UCCBaVpu3aRSL1Yl5eTFsnokNdvztClX+RK0ahTKYbZ0uzksh0kbbqsMaBdl+IlKqjzUvUoEUeJTNT0g5o/RlKnXmTmUCDB1de/Tj0NRghB9puSJgpbd9rRO2RbX87Hsj3Bx/Q8SNU0zIq1yihKNZCom5WqSxSUMsfV2lI6d9HSxdRB5s6U4SJZkRZRUzmcNKu/p/5Or0Mt4GrCvLJ5ZY3TSuBU5WKfaT6iMxMacTJRUw6RhspvOeFklafmmuS3EThPJgrPa0TkouCOUGueFzMLfOob4TyZvHYymNFPMfcitRkahcU95zlPaNWuaN4Bu33L59TUHPeq4tk+1JUq7Q02rGPHNnZuC5KIKAomxfOFQH7roxRWV5OlLHIokzxLdZL0cCDEy42yBSftl9Ui17RWXCk0UsYXeGaIhSrV83D7WjXcivO88E1aO5ifZutO7nmYW3fx5U9exkbjTGhErZ7DtmsxczGztZDDm4RxWqO+TPnfN7EkiIVzJ+OK4g3bIx7NcjRhNuVgukIkOE2prb5emKXCqiDBkUhWVl5eq1abDKqomlNX1i6rTX052nRb28nlw0ESx8HW6DL3XK6T2sVJbUNd2YKKsn4Dqsrqzea0nBaxWOWs9zcpsTHDxlyqO647XEopntWZ3ShTW+SV/+Swqbe83bE7dmppr3Eg5fArdLYEcVy9mTbQ7PRPFCVK6ubUjCOVKMvboqGgmp2QdG9k89tYdxf7/lg8Ny2SEfTFoZJMLFEQqZ9FfKML7OTr0alXuy5ZOYmGSNy0VpqSXIZn8o2GcQva5dWbjY4XRabZWdbS7EaPhFlSmgRSW0uZqQdLhrYYUbBjSJvPzURh4D/3a3vp2sc4Tn8j3C4HJxzypC8YN+ywlxy7kMf32USkVguT0DhmYH3QBg8Nh9SOQjEQ5voqmtjVUQyHQDrJUtic57AZl1IN52T1G9BQ9ISPXf2GLwONhKMz/MnuQIhnLzLUJwnjw/SsCZXfrl5uvzcsFP7l71/GRuMM+dYzhZW2DtYPhk794gKVUmhaStNAlJdoVaF1LbkORDQq1AvUFlZhxO/1hjx6Q8KtAulxl3bSOQvFNFSBq4IqLbM8e3kT52BVkOCGhhkz+vS5y10+4HsMG/aU5x0wptOAmUsOsZeJTJZ1g0E03trOlh3hYvblT15gNt5GVHequkoSRGRdtzHTTPTINKsb9QLpmQtjTt6UUUfss95mc6bMmRKJ9ForI2fEkddsbTDHI51sy/GbjcaZ5cq0cXmj2cgJWlp9/K0/HQy0Z3+XqRM8tI3xOcbmmSlSPjNTTJQ1zCirqjgq1ZDRo2ZMGtXpGmTTW8LtxFNaHBNrkahIm6NCoqh+hS7zHXrs8qAtdurUq64mK+eYVzzlC8oWOQG4QTGox6yS8Yul6EWCDjjjTHs7geDGwijcSAPprSWBLId5DNUmSW40iXJ1JcoVK4MhBw05ePEu/zgKFbyJSQ4cCXZyGzfQ2kI+z9o1bFjLzGyQTszOn7OClF6/y9yF4MqzlOjAd0f853Pec4y2sEkZWfd7xDs9Zsxxv+kfLe1OLAKVOsOVcFgvBrOTYYhP03BpKC4wflm5zmk497qbVia33cUH/3ootjz1ZarV0H2XzYaVyORKSHBOCKHOoizTUjL4bnq2hXuLY8wdYeK5QIRv4iqQD1r6+GH00vg1LqcnvIT/WGUw5kjCxPU6RtxgWBUk+BSmTbvTnT7qoz7pkz7js6YNWefOpd/Y5u1hRp5vDb9/30/Q0c3X/+I8LtIZWj5M636iKuVxyqOIyfXQfz/5PjZ/X3j4/v/IzN7Tz66redaXPeOLOnRp1W7elB5rdOk7XRU+G1ncluevdTFc59lTu1S5gnXLkyeYmWbTljAor+vmM3+fT3ybj3+Lpw69hgQ3zJy2PovkZK1VNWzek2EJfeIlXv0sY7uZ3C/SomZczcSSNL/9jH+m11pF8xKJdTZp1+UO32WPJ9/wJLgmhJ9cEqetw5rSh9MkNw1Et94kuqcqv7lm9bfe1AsXG9dJjNcSIo6D3jeOKZ1znsdRILntbaED6vDxsFI0OcX6teF5KWbnKDeXuNvbm0veVaH0dmplpbGC0XbXFjP4rfTMgsGpa/sgfiDi11O22OVB73eXh6XXaIZQvoKvoruPV54L8ojC5ap/6rXAnDu6gtf09jt54B2Mn2T3twMZnpsO919xmfbNIo/iTvyFwfd83Hf9YirOUTwZFhDrJYojzB28WQ2+KqRoIX4XmR8l+TzpXhfR07/2qU82Qkri3TGFlLGbJHhFsKpIMHzJlww7YcSI2WXyoAVH94dBKY4pFcLAtO2O11bN4lvIP0rLR8i/j/m/S9vBkEbRuj6sOY1+LZDg7p303hVGme5dzOxj4L2MfcNwcsipS0RW1gMeMWlYVs6o4wpebzP1VIn5Cb68wImrvY5+48sh7LytnfUb2XQne4dDdSJNqb9+ZIy1y+qTs0GLzU3BSq+6GeaHKc8ipVZsapyX7ozeYqde6+z2DaOO69SrU493e8yYIZ/2Ww7be+kXukFxdDEV9tRrM4fz6ZnGuFPkt9Ekx5UkEMC2OBz/szcwcTtFTNuaqza5HPlm239LPvxeKAXiOzNLscjwSHCG6OwI8ojhEU6cZGYukN8ooqWF3u5QMqzVQrBGtfqGIMG34lMxt+PXUr6SMiokEJ+aWh+xz7/1d8Xia0aCrwT5FhbmKF1pFTVNAhGGV17g9/+/UPU9sPcMIy1cTZZ2HWtFPkSU2vDQH+i+tWH2AIXhoJrrGKRzE3OHXdby/U2cg3nSZ6n/IvVfJt3t2K62AAAgAElEQVTjsoMkYV9y/S4U3YhYdST4kEPmzQsuuf169GnTZ607TDm4yNDgReL4wUCCZyaCNOLZr782EiY5QfULZLYFI+NkjLmXSafJdtC9g85bmX2JnjvDz7ZBtvxAuP/Yn5Kcqoye0twmZk16yPcomjfkwHlJcIpXqxyvvd6q9bJxaj1vYT78HBj0Rx/5oH/Q9b85fvKYqJiKdSHSMCfWocUWrbZrsU3eenVzupRVDKlVJzWqc5JT4sIlPqV3+6atdumxxjqbbXKbFm0SDbd5k279S7q96w13e8B+ey+ZLLgoVJIgd2jNhEpvLJC2RhoOrErSdGhJF6VJ7NmGlOLEKl1ezcSB8MYxXZ2hQpdtqvMqVeYXQpX3lLxhZDw0wrW1BjlEoRQeUygEgps2l7xrdYolpKEynM02Xzu7ujTDV4A8dmACj0VBH3xqWnwY78VXpRINyRUuLXTIWavD0assjMTWyNgpY7O63eou7p1ar4XaQeQMl71spGkoIw8fDWLjapVycYnix3ZL/YbUd0TptIkXE1N7QwW4MhN6qauzNyvAS4Zq001l2BURYG4S4JXGqiPBNTUTJrRao0WfnLyKBZGM6DIaqxa3sSbJmJ1m/wsMHzlHl1UnOUn5DwIZbuwnmUI1NJXNHySphUa1eoG5/VRnAjG+8++FavHIl5h7lXoYQVOpsoKHPOpVz5kwfOHdS8805S8J0lSu0vDA/h7fNb7dA21bFGqvmkqLTa+B8PnG2pokeIdWt8kblFgQyYlkNNJZNSXLtVb+VX+mU48HvMeD3qtTj0wQt5ozqboMMc3XAzIy1tuoQ6dNtigpWTCvsEg/5vMiFb6mcoNKdCYEMBe/PiJ5ERfK0iSdg6y9k/b1tPZx5K8onN9w5PpDkgbC2mggCgQ2agqEk+ZE4OyegGIpkONsJkglyuVAahuNM1ezUysqp56XNCedURyeF7mhK8JlfCdlDA9F3BtxNGWP0Ie739Vd+H/CvR51m3EF/9a3DF/F+RDplfd2Ld6n6LcuSYILc80545UOdUlCqRh+Fuaax079zDFz1ajgBL4tNW3s6dS+3wn7nNTOzNHmj94kwkuGG/dUviGx6kgwRFrldGnVJ5Y15VUtepZvGa1c4MgrnDxf8laVxp7X8720TuWs9LfyONVpoizd20KowLq3MPb1c5+oqiwja41BHbqX+M1cHGmSqI8P+7ovq5UK2rUoyKk4Y+MTa5PVL2eNvA063CNRUTenbkKsUySzbHZnxwT/4whtOrRo06rdlDFP+YJJJ5dlu9cSOXndenXrNWFUtz591poza8yw+Qt0YEQiHTq1aTdlQuNCE5MGr6EiaXNN7jJPqUyetn7W38fAg00S/IXLe41rirRJdBdLahqNcKsKFbz6Ip6YJGFCESVkW0LVOY6vG/urWCwnq7JE4TWz+L2URyMmhWY4AldoESja1WCnNd5rmyFz/sDu15Lg7pjNObbnEfH4HJtyzCdMnu+7SqQKEpPSRZTyznU3uyLUm59zpXyGAC8pSkJpcl5xhONfINsWwqdEYTGyOOqmFOIm3pBYVSQ4EN2GPrfptEFOu1pUMt87r3W6b+krwadQKV+AAF8GFo4E5/6kFFKWtowz8JPsGyN9beWypuqolw3Yqlu/jKzGCk0v62r2ecHH/ZZZM7p1qiobM376MfFpn99YJC9nQKouEot1yOlT16NuelEXkivFXt82a0pFSZc+Qw76ok+c32e5tSXoMJebaJxqLrvK61i+aY13Ch06bTCI1HHDdunTb512HVKJiorqWROVjKxYpCHRpcdmt6ooW2g2E14Sl7HEEMXB+CSTpW8HnRvp3R5+TxMKo5d+jesGcfN26ntsGr4sCoshwGcjTUOT3CkLxiWr/l05IpEWOZ06TJm98KTpMjCL38WjeCkNxHcqQy3DAFwlkXzVpKcMNY1NzrkGbMrxoW5+pDf8/UKJ+9uYaLCvzNRr319iWsUX1TwtWUSE/ZJiSeQP531hzhoTC1c767iJRSEnp0OHqqrilRgHn4M1G6lVgv68tjTz05uwikhwVqtdPqRg3Bq3y8iZj0aM9hzmo++X/c/Hg2n/9YpSkDVE6zeIHnonj/245P0f5hc+y5f/8kxii0gikZMXy+i2Rp/1F5VFLCWysm63w0/5qI02ND04Pv8aEhws0ubVTas4YtpnEak4oWG+eRndINau4pRn7PJc3Ie86r/5pfNX0qLoDKnYtYODR1hYRueICL0xc8kV68EIlbittuvQCU2tZCIS6dLrfg+JxQrmlRRlZGy1zcHm0m0kts4GeS2GHDFq2Ga32uQWQ46aP4/G/GqQ62Td3UEGUS8Hl77xFxnfzcJqKsrn0BrRGbMuw2wSyFIpXb4qWfX6upq1atGtQ4d2MH6FNobnoo4fTflwTGeOo/282h/S3U+F8V0pvuiQF41IsNfYa+8cyPJwO29uCxO7x3o4XuUtbdzdym++luimTeebG8305MJo6p+ibNO282Y5eCkQiWyxxXu816v2e8K5K76Xj5/4eYYP8+0vcPwqz5mbOINVQYLbrXOPH/VBv+obflmnjSpmzd+RN/U/beTvPKb+X/7n04EO1yt6uxnoGDUw9ifi3/1zX9r6LF99/DQBjmV06rXJdiOOOuAFsYx+AytGgmORtdb4QR9SVPI5f6V6zrJo1ZCCnERJzWgzSa6galjDvERFJBJp1eZOqbqyQ5ZNLNXWygce4c8fP0N6N64PiV7PN10iXlhGt4gsNmRYnwnL4pXaVYm1E4kDXnrd//Py7nSfjIysnEFbRCITxsyattNdMjJ2ust6AxKJE46aNGHerINeWZpmunOQJtQrgQAnNaoLzB6jMMHCuLD+vQxZNkuOfMTmLN/dxr/p4xen+UQhxIe9QbhBSVlWxoB1unWaML2kMrMX3sE7/xfe+y7eNs/XfpmJq7ygj1gwciFP7JogfZhvWv79ywH+bJahGqM3Zu/AopHpoHUjPW9i849y5LeYeor6tUt6vBEQiWx3m5/3D32f7/fb/tOSkOCkwS13MD1+kwQvJa5rEtxhvS6D+txmnTuN2SOVyuuU16GzXGJoNweGTDzSLn0ium4vtv09wV1p/Ro+8ig/8oG6jT/4iGT6TDdzomHBjBnjBm130mFEUokea82aWPb9rKp5wrf8hL+tqGiPl5w4DwFvmFNyQNlRqaqGOQ1zUqlevSKxGSOy+vV6nw73KtqtYkiy1D6+aRqak3bdFqq9tXqwrLpzZ5h5fOVbS7u9s5ETCPBjnfzzfv7VNF9LOFBhZikEg2dQVbXX8+5xvw59Wpvqyi7d8vLWWO+og/JarDNg0BZv8mZf9BmPe0ptmaQptUKo/E7sOWM7fDozBiucgHvliFBOg/H2/nogvvGlnnTjoaEhlfpJj/mgR3zKXzlkSHEJBtdjT/LHL7JuFz2bGXt5CXb4Yvh2gRdL/O8ngyzi7tbwHW/JvWEmNhdEoxBysaMsgx+mcDA0cc/to7Y0KwBvRKRSRxy22RYvesGYcYMGDV9lIev+dwXTkJefWaIdvQlc5yQ4p12rHhlZY/aYtF+LHkd8RU6H4skx/vjLnJyUPv9SqMBdp8jEFMscOMonv8TuV0mnzj/QdOrVZ70XPSGV6rbGWhtXhAQTiPAe+0yYNHcBDWnDrIaCqEnSQxNco7n/nWKxaePqpsz4srxBqbqMkNeZNCs3a26jtZtcO+195Nt5/g8vd4drPP0cfb3usM7IphYz69YE+6l7mt7OxRL79tPRHgjy1AzjS6D5iyNaY9qicCsmtOVobyw5CSZotg94xYP6zJhSU1VUUFcXy0ilOnQasMkd3qRdh31eWBJt5wWRBqul8+KUQqlVODwuR2O70iilQf7wQpX/c5qTDRaWUQpxnaKs6qRxFVU/7YedMGrK7JKQ4KQWLMRH9jB5gNpyFy1qggXgfMKn5oKx+v1tFBJeXfrzc9WhUWT2BZ79OUrHqM1eTnr9TVwADQ1/5QtmzRhyXLuOq37NT/z7kFJ4aN8S7OBNnMZ1TYIr5lQsyJk3Zq+Gqk4DEnVEyuVpDg8Hdjm+jMEZS4BCOXjkl8o8+xJ7DryeC2RkdesXiU0YVjSvptrUgvatWDUYThqxoHDBJqpAeuuvew/91hq0xToD7nKfESdMmZQVKcubFyucJYuoFugeoO8WNt5L/7YrIMFJIpqY9ouNd+luVHy2NOrZ4WkL5UqoBnd1hqalNf3NsII6a/qCjnh0/NKvfylUU47U+e8JtW7yCZnl03oumLNg/nSSYCzWqs2cGcOOG7TFCUdFIj361FTd4jZzZsybfZ28ZUXQE4UDvpQGyciZOdP1gwaKaSC/85VABgpvPBKcSMxZ8LTd7nCbWfPqS/xl1Yrhthxo1a/LJmUzyqbUFMKxN1oPKR0NzDfChOdqsX5jSMsortKUyqRG6QQjnybTTlIJEXJvALQNErdQPBZ+z/cy98pZ1v1Xied8R01NWXlJihDPfDkYVZVW6aF2veK6JsElU7JaJGrG7AGT9mu3Tl1J1UIY0IbPQwwzMV0dlKunI0yDTjVGurgO+SVE8axxZeo8fUmxjDad+mwwZ1LBrLKiqvLppqiVJMFzV+i1ud6ADQbd57vc7m5f8bhnfON0tbikJiuVbc6M50cKWrvpWNdMrL3CpfNI5N3r32ysZ9rasQmdB4ctDDfTuU55vbbkQ4pXbYbBgZDwdbUkuJGGKtNLVRpZ3rKZwjiHl3ekmjBirQF9+rXr1FC33z7Djjlpq4qy/fbp0GncqB696mqKCqwkCY4FyciuODSdHU+YTAO5LLt+iXCtuWPXV9/aVSPOk2kJzYv1i5DQmronPa/Q0XCoeNBCemXHcyQn1qJxIc3uMqDdOrf7QSO+Y8SzgQSfjcNL+KWuH6SllWQ0rFWvOiRBFtEokK2FynB6vZ2Uy4NsF7nu4FzaczfZThYOLx0JPuSgFi0aEoUlkABOj136MTdx+biuSTDMO2n+HN/XoksQlyiis53772ByhoPHKVXl0pycvFSqpLAEDR+BVEfiq06qCwR4vZy8Q3a/5r6KojFDNth69qaXdlk5JxwNdVflbHBKp9qhyw67fMXnvOg7CJ9Wuw7rbNBnjYa6l+01vj9RLTIzdOXjbxLxgZ/DRGrdn6caLwll9+f3hkCCtz4Y9MKzTXL/6uErf5Nnoy64QeRTvruLn7wzNFLtWd7JyrAh62y0zoAOnQ7Zf7qZbsq4ogWpVCw2b85hry7r/pwXGUEG0RvxWI7BiE/Veb7RtCFLXcDe+NoidcOR31Po2EjPDirTTLxwgfMtIskwkk4Y2fYShybCMR3F4c7aYk/SjJx+eQOKXm6u4C0/wYpk3OmjKmaNeWF5N5ambNpGWyeHXlrd6X/1q4lnXn2YfyUQ366ddN/O5FMXkXVdAU5ctQP2hRGJpW+0JaplwnVPgq8Ifd3cspH2Vn76p/nCN7U8/pzs+FzTCD4vK2vuKiM2czp02qjToOO+elWv1apdm44LBj001A07dOYfHc3l5cISMeH3EN1H+gxX81bmzRs17PP+3Fd87jVL7916denWb50d7vCSF09z+SiiNMXkoQu+9MWRpnz8T9l1m/GtvZTWcnAhaHbvueNMBO5yIBPT38XL0/yLJ9k7yejyVoUe9LCiguc9JSf/GteHV5tkuF2HNdY7bokI/+Uig86IdRH3xrwzy6GEE0motq7Gwtkqxy3fxz1/h6l9PPlPmDt4ngf1tHH7eiYWguPOtjXks3S2hMn31873pNejzXZZPVIV633UrG8pOWy5iXDFjD/3Y+YcV1liO8DXIYrZso2tt9HewfNPLu/2bmJJ0bqBgfcR5Zh4yqqQPrVq16XP+DKS7DcSbkwS3N5GSwtfeoqH76NaU0mLKuZl5UQiGbmr2kSLPuvdZ6fH7PBh/8l2V1OanXTSlJELv0IWWzMMZFjX9KKdS5lOOHR5F5WsWJ92480lyuhXiD6McdKnrmTvM+Tvpfq8Q9m6JKmqJzPqatqafqOEAAgiw47b6zmJ5HQ1fmboSrZ7Dp59kef2cM8utmwM1ml7XuaFfeH3TRsD256cXoKNnYVqwstTvDJ9pkK/zHZ9QWJy8W0UFZQcWdb9uCgyyAsXlo/V+Mt6IMEFV5RGdxNXj7nDgQCXp2jpucCDZko8c+y1wR1b+8PPJOWWfo5OMdjDe3fSmguhH5t6eOEEf7GPJJWqS9XlDbrDf3Tcf3DEv9S4mpjvRWDBSQtOWpEDrG8NH/qxIIv4yz96Q5PgW231N3zUve72//pVe+xTvtoklGVExy30v5n2LQz/pVU1HsWyNthq1FWGeN3EDUaCb9kYuv8720OUaZKQyzI8Fiy0BDVwXV3hKgfiSHCv6DCg3bol2HkXJzV1DDf4Ox18qJXHK3ylEgz9I2yIGU0ueCJ3a7XNGj1aldWNW1BUVXxXlQzpp/Aknl3cvj4oXBSHotRYppe0ROv7pdlt5ioHZJIRbdpFIuttNNGyXba2IJsER4nXNQpcyQDU1xMcIE65PCQpGkxM0d/LvXeGn197MhDhgaX5ns6L1IqmfS1W075sUeKL23g4bisC+T0suC3MuT71wG8AnHyCqb1BBlG+mAvWuZO44Vk68jy0Ndy38QE29vDIDkbn+cwefutblGokqVa3Cu2z03LWINFupza3KjogWVYvyxU85nv6KJU4vJ9Xdl/68TcwsjLW6Pc93uczHveqg9ctCR54lJ67QtLl1HcoX0aqZWuGDe0h9GXf1Mpz54qSeVN2ekBWzoijS5YoO+AepOaMKK50YuI1wo1Dgu/Zyd23heanao35QqgCt+Q4MkypLCevU7c+ay2YM2tKVeWKiEJN0YQ9dvttR3zBipwKFYwkPFvjaD1IIXIRa2JuzRLVmXh9Wlm3Vlv0+lEPuM9mI+b8uq8bMsP9OE66D8+xGP3+/fp1yBqPWhSya8nvonaQ1neRGTCfUlWXS+ty6YLORpfJqFNy2m1iiT6rzo5Q8T/X6mxqhvEpBjcEItzZwRe+yvq1WIZK8E2cHw3hmC2mzeq44KRREY7RkHO7KpYgbxTU5sPtstHZQjZmokA+w+Gp4KAxNi87RO454tFbFZr9DDlrVI2pmZRKHfZ/qxo57exzw2B+jk99POTZTr6xO5emzPiir8rKOuzYsvmSLwW2/DBS5r9J7kUKxyzqstSeDeTX4h6+LEilaqrqara6w7gTV0yCW3Rr06tiXl67Nr1qimLLJB28DnHjkOB1fTz6tuAIcfQkrxxmZ0cgxPl54oYWHTa5xQPe7qRjnvI1NdUrIsENFXOOmVvJ5YgU36nyUo3xJFSBK84Y+rdF5zX3b5XTr8PdNnqH7YbM+G+eVlvXEMWk+7EXIxfedIwuObHIdp0mVMxlehVa3kTLu8msp+Wt1A+rRolqnJDMEkVub2RF6kpxqpbW1NKrrALtui1UeAc3hO+3UGChyPxC0P62tYbr7EKR9eu4YwevHOSWzUHDNzL2WruOlUY2Q2s+aJRnV65rfsWRoJJSjEKCXrNQryakd62i5cdLISu2VpeRZdagBrvEdnNLHThzKcQRc2VeHg0keKHCuk6Z6azWifVa5wfQo2C3t9nlpNiYsoqiihNO+l0h+KfRtFe8AZDpCI1wzz9Jvcrgrdd6j64p5sz7lqcNGXbCSZXrtLu0+w46b2X+BdoP86YscZZL5bb0ttCWJRs15/PXcCUr0TDppE122OZuWXnTxgx7rV4/3ySzDYnGOQNuTpsem/TZYsZxkYy6ipIZtes1dWwZcOOQ4JPj3LqJzRsCuTg5Ql+G8RPcFTMTyU3l3WKnH/JTnvekZ33zWu/15WNPjZlzvEsjIfe9kZ53ibmqrqzmoAl92k0rSeOUO0ifxwlcojiaFduoXV7ctJojjjrJbKXlzeTvIbOOhf9KbS+NSdIiuV2qUVGa1szFWdIajcuzBMjGZCIqp97bww/y4JuC1+/4JPk8J0cZm2Db1hDLJwoSmFIpSCbe/85AmqMoPPbI8cvahyVFWyuD60KE4O6LuDZkMkISRbqiUoslQ6Iph0ipNat/SXomNKNh1VeB8zLa5K3R6UG3+mNPL+v2WuS92V2GjDlsaMn9ey+IyUK4nY0a+ekN2iqD8gaUHdIu7x96zG963JxSs/exoeoy1puva0QhYS2K6byL9p1khzEfGuOWbiuyIrVVNFOsq5s0ZdL1mzaXaWPjB5jdy9xXuXOSn32EwW7+9VfC8NSWDdebpDn0lpun2ObOpiNmlbZMeExLJvyvfmEl4rKgoW7UUbPZuz1Qf69dvsuLnvBpv3naPx66mlfsqoZi82hKpMjosE6/W/S7VUPVgnFzTlowpnGdTmCWAzcOCX75MN/9s2H02LGFt2yl9izzZ47QRKJFq1vd7rjDTSq3yjB1nlMtFSrDF8CMkqcdc9yMPm1N26xysK/6ikVZoqWYV9Muoy5RUFeuPcvCiUAsu36OylNUvkn9GJnNtH032dscifeQTBK1EC3eCDgSXnpLNxs6eHo4DDh+7494+SDvezs7t/Pou4M++PveT2sLpQovvcqrh3jgHg4eZeumULWJIva+suh9WBZ0tnHr4Gn/6gtiYE1oOJpbCIEwqxENwW4sbh63p4hxw6rXBEfYacB77PIut8vKLDsJ7tfj3/kFb7LTbT7o8DXsEM+ORBLzKkY0zKva561u9z3u94SXvGLY1Ar6A68IMm20biHTyY5/TPpOGn+f2l9RXLqGvzYZm7XZf6N9ftcQUYa1bwv63yMfDwvEb7ubezcydFZQ3sMDQfM7VQ6hn08352+leiC97dlgCJSJuKOfQo2RAvMrrP5Ipb498GXlkYJ31H/AHR7ytM8bsv/0Y1pktcvJiEWoqJtWlrVRVodEQ7mZChvLmndSstoH5stElF6HFaYoiq58p+7PcktMZ8z6iMGYsUT8yYp4NNGXrLVr4UE1Nfs8p2BuxYMzriXyMvKyFi6jYWGTdtt0esKFNG9RuK35DYqfJruRzCDJAo0RCr9P7z+nMRZIcvW5RW33LYO8aT33bmBHf1h++sGz0+SiiIH1vOstvOfh4AV8YoSvfovh0aAFXtvP9CwdbbzjLRSLfOkb/M4nFv3+lxwdbfR2ceI8n2drnsH1weO4o52hkRD4spqRdUamk5x1W8W4y6BBvW6x1oAeWRl7DPkTzyzrdtfp92v+sce819/0i77o28YvtYyzRIi1Ny3PqrKCtURGtxaDOuX0eAGpnQZ9W2zMgWWoAOeI1jpdd0snXZWx+ZUgztP/CPf+Di3r2f23GfrdJXv5rdoManNc0QmrdPK7XGjpIt/G/OXrr6Mct/0Mh343BOPB2vZAgvNZHn8lHFUf/wD3r+Mzh/n0Yda2MltlvHRGApGkoSCzo5eJEkfmmL4WPYADraxttevYnTrn2k0be03OQI8WbXIGdXmrzR51m//kGV91VKRbXrtYRk67nFYlsyKRgkmlFRpXlgtpmi6qynnjkeAcbsvwthx3Zfhmja/W5OJUvodsSywu5pRHKZeuTA+82nE5ORs/aKsP22KdVv/U8+ZUHbJwRl8Ur6X1HSTzdP+P5B+k+EkKf0h1LxpBFhF1IyE91RV1cdyzjo/cSW8rnfkwWA108pWj/POvnFmiEsehGbKlJTRBNpJQYW00wn1xHFxCTiXGpWmQSRSugUntLRvp7gy/V2t0dzBXCLKIo8Ph95Z8kPRs6Oc7+6hcv80lb2T8hr/p8WaK5ZSC5x1TayYiLidisT7d7rPLM/Y2o81XagyLTt/abBOJ5awTycorWGNErw5ziqbdZ84xJYeWLi0uWkvmzeT/BvE2yv8P9a9b8cSVKEvXPeTXE7cy9zzlpesNWSNvrRYVDd1ysiIvm1d8I1Xosi3k2ylO09ZLeTaM3W29tHQwc2UrINkO6mepeuKIXBwuD+WmVP1Hb2dHDwdm+YvD/OfvDrbvf3aQ4/Oh8jtRCtfQbBwI8UrLIRBOxbes4e/eLvu5CdHXJyQnFjTOGoPC2Rq5Va8fcbf/w3v8lD/zdUdNq6hJxbLa9MjIa9Wt360y8uYMO+aKPFOvCyyWBN84cohTqAkG/Zti+dHEv3215tPV1IvrcS/5/sTM8xXl4zdUX85l4XLe91PNmOY36ZNKdctbp9WUimrcR3ZzsEer7mHml2h9hOqzVPeRnrU8mC7+QhVH/M37WNMWBpgoCjPwaoPb+sL9p5EkoWpaWkTFZOEah66PTwdSvnEda3tD497LRwI5PrUYV6sFffv0XCDKN3FdISfjYbf5a+71O54wp6Sibm6FGkkSiUkznrbbgtIKT+KDnUdObzOxqt50fCgpWlBWU9MwYlrksKpJyZJVMrvCRDrqJN5O5l5BT3MNRvG0QfEgxcOIQ+TwEmJOTVlDgmk1b9Jtly5FdRWJkobR69R6bMnQqFE5NXk66zvOZMm1k2ujdolzLreJxjTJmYJH/ZyvKknP6jVp4itD7JkkH7O+nTet4WsnODoXyHA9DTdCreWaIEZvPmgz3rpG/dA8LzY48dprRrBjT80oe8oJv+QJu42aU1FTb/YqJ0pmRCJls3pscqcPatXlG2JjXpGRUzApvQEnYjceCd4ac09W20Dsvj8u+0gxNd3CyCD1t9GylvmX3zDx6FeNE4qeMGZEqSmliDWkofqU1khmggtEMkZ1jGQq3C6D9J6LCB/YzsmFsOSUi4NF6Zo2Xp5YxZOX9rbgXtLVHvyrh0ZDxberI+h/u9qD9GFyZvVqgG9wxCLrdTtp1oR548sc/HA+tIglKlbyTOjpCoW4hYWsvAGphrpZiapERararD9FFpRlDWkoL6ETRCNMqhuvUvtDGntIDnJNyGC6rBHDNalak2yUNFQlumTFqKutqma5K0aahME/23omrjvbQq41FBLSReipsn3kN5GUqE9QG6X1dsr7XUyPNVoMWuC1bdzVz9s0DssAACAASURBVHAh5CBNlileL8YmURS68wp1np7kRInKhd/Tgqq9xgyZdcK8cpMAB6SnG+HqKiYdMmtY3g5dNpg1JK9LVVFN8YaLa77xSPA7crwtq7PGO5+vm+oJCcNtfdQ3k+shuVlguyyMKyuoe4u1IhTVgxwinaN+DtmtX2nu8WuxpQdRqPq2ZoNBeYrvnAyKh1WJns6gBc5mmZlncpZ3PhCq2e0tgQDPLgSpxikdcC4bBrwkoX5z5natkUiNmPVx3zSjGBpMVwghoCe2Xl6PnIMKyiskhrj3jqDa2fNyJCrnzRSn1Uw7m0ykmGv6QdSX3CquGGRV6TiV3UQbSEet4inxJRGhV067rA4Zc2qmVE1fx/67S4KoqU+IYlq7yOSoV+jfSr6D0kz4+1JIa7RsJ26nPkZ1mN7vZ/JjVI+TXrjXotJgoUpPnk8e5MTCtbVEOy9qKSdL/PZBpqvMXvi4qGoYUzC2CGvFSQft82lr7VBVkNEir11Om4ZKc43ixsGNRYLb8OEWBmOZ3yrpiPmFibyZRsPJsYb4CUSUh6/1jq4+JFIzqsoaeuTUmjWgU4iQETV7nq7+wrR3jP62MBjVG0w0gjvE5w5SW43nYCbm4PGgR96wJjhEfO/bw3rcQjEw+0Yz4XBwPUdOhPv6e8L/ShWmZlenVRqB+NfPKaNkMuG9JQm1+qp4bzUN3/Cqb7iItd0yISvSL+chvXbq8AfxsJNJeUUqgz/1w2zbwm//Udm+V58zsnfZN9nE+dJUUtKLmJrfIMiKvM0aD+nTKetTTpq50QkwZPJk88SZIHtoaaelkwd+mIVJ9nxmca9TfgUxHQ/S/Shd76Tt7tDYOPob1IYu/vQGuyf54wMMtL8+RPGaopEy1pyAz1TDculFKsGXi5N2m3BQtwEZOZFILBZpVuVvoMnnjUWC/3UnayJerFsYSnypmDVS/htm7Te/90XJkTlpg+rEtd7Ra4s4prWN4mVI2coanr+A/2OMjdrdr98xBccsmL2KwbqR8q7f4+2bactRrDFe4MBqblZ96G52HwgSiGqNRx/mv/4rvvI0P/aP2HUr2zYxNccLr7B1Ywh9GZ1kywCb1gdXiWMnr/U7uXxEER98hM9//YwtXGcH9+3ih7+XfQf5s8eDDOQmLoisyDp5H7LB37LZn90xrHEitcz5HGHbWVpbkfLcihFgZO+g/qoVd4C4DtCQ2mfOo9b7cVuVNByw4OSN7hhRL5PUg/yh2Gw43HQvd34PY/vZ+5dBFpE2H3sxlF8ityFIzmojFJ8Pt+TSjdGVRpBBEKzR4kW1WV0DzC+PRqOmaFJY2R1wtxZdstpUzClex17Ql4vV5w7xKx38WolD58x6Hs0FV4gKqqmO6UH3/8Xft93PetrPG/V1C9FRNfPXySQmYucDrN3EK08ztfjKRmcn5fLrC2sXQ3dP4CKVCrUqXd1NaVUakj8v9lr98m7VKSd2VMGY0unaTF5srRYbtfu8R33SMR93yLdNKFylHjBz1qCTphdTcV2n6Gznzm2s7WN9f2h2y+eC9reni7u28w9+mULpjJNFZxt3bKe9NVSNF0pUq0EjPLsQXmO1IY75mY+Qy/HZL3OsuRTT1sJj38MH38MnPstTLzJ2gbz6lnz47BaKrOkN0dfXxXl8NciQWxcuzotAq1hvV1b0t+oG/0XsxO/VzXyCyh7SZbaT3b41jB/HToSi/Yoh+wD1PVYzCc6ItMuZv4IAggiP2iDGkJLjSldVYFi1iGJ6NwlLuXOhca66iCrOI5uob+TFPiEn+YlQDS6/Eiw8F7t5N8BwcxWIxPrdKhIrmVFw/VcSb1x3iDdl+aEWDjXoi3lnjh0Z9tTpj1kfM5+ofr3o6F88LpVXNqFsQj29BrZY50NrOw++n+/5W9xyB//hf100Cb7v3jAeHDnCzCILZ+0dgYdEEW1toaITxeRbwuw2n2d+/sKV4X4t7tZrTNmzpvRpMaemJhGLtMlKpP69lwwpOKGotARdpI3VPuoUy+w/GgI8OtqCJdpCieGJ4BRRKAWCXKoEKURba5A/ZDMhIGOhxMhEqJ5mMoEIrkYkCZ/6Iv/ll4IzxvMv8eph9rzK418PM7Dn9oWkv3tuD0T3qRfCc/t6gpQkmw0kuL83VHXW9HH0xKUDR65nRBky/YsmwRWJKTXttdTUaKI+F3pSV2JYmzu5QWvarateMbXcUfFRL9kdZLaTexsL/ydxf7BXTC5ijRVl6NzIml3Mn2BuiNq1C5vIy+jRYlCXbfocMm23UT16lJXl5KzR54gLp1emeNKkFDXJG6Mp7hTiLD0DLExQKwctcJwLFZE01aFTIlFWPn+z1l19fP+tvHkTM/jNffxVv1OeCZeDN9Cnfl6kErPNYJ4bLUxj9ZDgFvxfHaHaezLhQIONKROZYIm2M8PaOLjmLETqbSWTO55TORAIcNXM9WPvkc2z9U46e4PofxHJdXFMby+/8At8/vNMTCyeBGeb33LatBuLIkoFqhXWrqM9T0dn4CK1GifPus5s1GazDpHIjKpa06LnlO43I9IhK0Wf73bAc8rmJCvt3Xk9ImmRKWzWSJJAdDvbWdcXKrwz82e8gdM0+Ad3tgUB9KGhIJmo1oOtWyMJRPCa+fEsAcYm+drT3L0zHICTM+F9T83wrecYmwolxtYWNq7nkYdDyMnWjc0ljGr4THK58DmUyiEYZbUiaiU/SMcDwWKwcsylIvRS1Kqpyj5mf5fqK8EBaiWWSBZqRak2ee3Lv7G0Eth9bi0t30vtGerPhdTJCyHbTvcm1t7N/T/D8W/w8p8wfWD59/cCaEh0a/FmGz3mTh/zogOmVFW1anWvu7zH2/yVr/nWRUJW5pbMYWOVIU1ElQVvW9NQq/NqoWymnojjnPZGiywKCpy+FmXktZwO6/bWDWHsOD7FRJnDJ8KEvDp00aa4mzg/6jeoLd/qIcExtmU40uD5OnsbDOXEhTUyPZsl757WeGSCQxWON6QLiVLrqJIV6oJrbw0X5+oiGnwaDSaHeenbHHpxUVXgKKKri3e8g2efC1xgsajXm8s5aeg1iKIgp4DOrjAu3Lqd7TtClfjxz3L0cHh8n7yMyEHzjjc7S4tnDcqn6PusqrJ+M1rUZMTiN1QS3+vRJmunfPoDKlPPaBSPhQ9rw5pQ0Ww0GJ0KH35LPhDkfDYQvflC6MIonOWD2WgS6dWMP308vL+tgzz0plDJPTIUUvEIRLleD5/P+jVBBtLbHazlTklCcjnGJs5UzivVFV6fv0pELYjJdJG/ld4Phf/XRoKV0yWQ1qm+SmMiXMeTFXJoK5tvmul36bLe/AXTI5cCJRpD1A+STpG7JxDh9CLi50yetrW0r6N3G5P7w/+uIU5ZSeZkdMtLpWKRgpKcrO1u8UO+z4Ki3YZUzKqrXLcWVF39tHaQNCjMUl5m2/UoTbRXZ/zkrbwyS1xe69VKaj5T1JF0atFi1sxpr+ysrHYdZ0jwurZg+DtaDCT45dXcVHITy4XVQ4JL+JE5fiDPSBgk4qlO+Sfu0+4nVT/7pMKv/KH0lXnGm/Ete1agchZFQdu4fTCQmpmFS1+US/N84WPccielBWbGL7mZNA084NOfDlKI0mV4858tc8jlXkugR5t9Vg8+xIc/wq67wgrzx3478LR5NfNmHXf+Nde61LSq4wp+3a8rKauoysqqXoEGbjmRF8mKJVLlZb7QxNbKebv2xt+VHvw3Sp4IVc8TY6GsXygFArdtExMzgfQmUehY7GgLx+/R4dVF8C6FA0f5d7/Dz/8P/O0fC+/5N38/VL+rtWZleJZvPnvmOcdOhsbAzvYgCcnEnBgNFnKd7U0SfO2WvC8bmW6ifEgay3SErvXGPDOfZTGBG0mQMqblQIjTFeiRipqZ17GMdj22uNdun1M0tYxhHSWqn2e+SqYZyHMxJFWK40y+zHd+g5HnWLj2NkCTSr7umOPm7DGmoCrFrHlz5uS16LPZTt/rqG+YN6S2QsErl4sd93PLXVTLvPAVTixzkT2O6MvzgUHmSq0ejt4uTsZ9J/m2VutsssWYkyoqUqlILCMrI6uhzkvTPD/B8VU0PtzEimP1Ncb9cJ6v1phIRdpl3aXXr8p7i5GP3KfxnZc4vIIz6Y423vdmdm3lN/7stdW7S2HdllARTi6PrPf2UiwGUrxUuONuHnqYTVv41J/w0p7Ld6zaqM34OTbc1xMe1usW7abVfN6lJx5Xg9igrHtksncr3f98qPjOHWN0LFR6W/LcsyPIAOp1cl30DQSi98I3uXsHs/OcnLjxkuM++n383F8Pldxf/1holHt2b9ACs7gD7747A6m+FvHXV4u4K0yexaz9mUCGR/7dypV1LxPt+mRkddvgdu/2If/Eiz7rE35e+abs6ZLIiXVpMXUOuW3XZrM7vd2vuMW7/YEPG/aMoknJddj89uO/GNpY0oR/+hjHX1m5bb/P99rsVvvt86Lv2G6nvFY1FQe8crr6m5G12VZHLY1f/U2sXixbY1wURa34mqDSzeKP0zT9Z1EUbcN/xxp8Bz+Zpmk1iqIW/Fe8GZP40TRNj1zudk/jT6unVeqporq95v1rLd4h7Zght8I+JvU6R04yMnn5ZGX8wg0RF8NitcCXgyMHmRynvZOjlzl+RFivVUakT96cmsoyVlp7cLdQNxtiUXT2Lp3ebY0fMmBMddlJcGJYtaMYdvT7f5YnPkNp9Ix+pNEI9mdxFNwOerby8F9j0zbGT/LifgbWhkS56fkzBPFGwHN7+cyX+Lkf59F3hsrvvXcEUjw2GTTCr5znIOzu5IG7wwSit4vbtvLiy4EMryZEGURB0Dv672m/f2VKuleILus01OS0aderyzptut3mYVVFk479/+2dd5Qc13Wnv9c5TE9PDhjkRIARYBQpSqQSTUu2aMuyJa+9on2kI+86yUfe4/jHWl7rHHt3vVr7WJZsr7SSFa0lTYmSRclMIikGkQQIEDkMMJicejqH6q6qt3/cGgAEB8DMYELP4H1z+nR3dU/Pm37dVb+673fvXfxkuRVMDfdNAhigQo0RRtjPVxjmFfIMU6VQlwIY4KmvSyGjWAJyS1wha5QR9vATokTZwfUECHAf7ydOnO/yEIfZT4Y0oKmuUu/qQtPBVqIkqZBnjOPLPZxlYz52CAt4p9a6oJQKAj9WSj0GfBL4jNb6m0qpzwMfBT7nXae11luVUh8G/gr40LxHrC+8W8HiCRwGcE9nIbeEUciGGHQ0SeevVPbc0nUkJE0A8itHuFiNXdAcw5/zxMc110OyGU6fgIlLe5Y1MIlFC2GyXtWIxaQF+DNgDHgIOSOLI4L4YpygyD6voOqSdVxatwU+8d+hZzN890v4BsPoYghNUSwAI5MiiqMR+NB/hq27Yd8LMOKJuokpiRiu2BZ5F6FvEJ58EW65AbZugNMDkijXlIBtG+GeO8CxoasdHntG/Du5giTCuVoi5B/9Rdh/VLw7tiOveT4qAPgBVzpH1Ru+mBTtr41B+UB9jtFjktNoNBmGmaKfM+zFh49eXsKhKkvPhjnjYnuVWJ+gjx9RJoVdxzWAJwZhakzcXNUldmzkydJBF40kSdCI4zmu38+HqFGjQI4MaRwcxlnBCbNLyH18kuu5nzPs5XN8cMFfv7tBPivpstT6X2xaWIefIBNzXAWYswjW4p+YNtkEvYsG3gn8B2/7lxGd8jngAe82iGb5O6WU0gvmw9Boitgch0NlKCyhYIiFoasVJrNS9mqa6RIMKwhtO2DXCAQlWa4Q9hL93Iu8n81tkkVXrUJqHAdN1qseMZ+JDdJMgCZAU6bvks+1gKeRHgEDSET4ch/kGprXyHGKkufKWwLKBTi6F159GnoPoEodaPe8kU5Xexgeh5efg75TcPzAuaLNq038TlOzYXhMosEb1kBvvyTCpXMihqs1qRDR2Sal0Iolea+CXseGigXXbpVawS/vl+sL0cgemICs39ZLZRgAtyhZbdO7wDrPVHe8k0YXmzwT9PICfkJY5BfRE3x14FCjwCh+QriesKtXHFsuc6KlS070U1cmTCcZJ+j9dNJNkBAF8uznVRpI0EDjuXHO5bvemYDru+HJqy8SqtG4OLiLdBK7Nglv2wDHU7BvBAYX0TnVxBp28m5AL74IBlBK+RHLw1bgs0AvkNFaT7+bg0CPd7sH0SporW2lVBaxTExe8JofBz4+n/EAaApitlgKGqK0uDVi1KiVi4wl4+ceCwXkYB3wS8kr1MpYyi4VcRIRyhtvIlbdTyE1LkLCcUQV+/wiKsIRuHYXNLVAsQADpyAlmeLVK9iBa1x8hAnSgk2RGhP4acClgr7gS5oDfghUgFGY9eLXBFUmlipZLxyV9+7FH+IbyKKmkigdQeF7s2zIl+D5f4doHLKrpxPPJckVxAZx4JiUO1vTKTWSyxYMjogoPnbKy84syvNtRzzTIIJ5Mi0COD9Tmror4tcXBF/Uq7wwfXBc5tL3ulafkd9AyKuooMGaOfVf41I2PuAFRONQReHHxV59JxU33gVrt8GZI/Dco/N+mTIlykCGNCWKtBHnDKdI0EiCJB1008kaxmZbDaotLsfqG7rhQ7thKAtHx+Y9vpXIYZ4gxRnSl1xDnTsKiAUhEoD7tkJjBMYKEhEuLtJuL0k33eygOo+k0nmJYK21A+xSSjUBjwA75vM6F7zmPwL/CJdJjFtEFBDxSTW24gx6LuaDkgs0ROl2NO26wlR6imJHF4WAXw7QjTFINkBTA7Q0wuAEHOmbe5bZUqMdapEk6S1303VqPwx6Hr/2LmjrAH9A/r/WdvjQxwANRw9AdmHKzthkUQQI0kKUtWgsQnRiMYrDGxOGCsARwOZcH6m6W0QMRwAf6sAh/GNJ/NyKSxZNCkjDhWL89NFlGOQyYlWlRNo0vf2woUdKDQ6OQt+QeIM3rZPnOo6UTssXJVL+7MuSTDdxsZMG1yufEBDrgfKBa3HOlO09XseRtyXD53mUQzGINEi47yIi2LA4aNy69QJfEbe+C979ITj5+hWJ4GmyZBjwVgoHOEOCRrroYR0bqHIHe3iJMmX8+LGoYFGZOTK8tgkawrCzE+7aBHdthOPjYre6SniNRxbldZWCeEhEL0o6v4b80o9gMUSwjwANtBEmTm0eSuCKSqRprTNKqaeBO4EmpVTAiwavBaaPcEPAOmBQKRVA8pqWKmY7J8IKtkch4Yc9Bajpc4fMgIKb4rLdGZ1Cx2B8fSdnNqznrpdf4anWZpzmRimXdtNWeO9d8I5b4BOfgeP9EsWqZ9Zthk3bYaj/jcUq2rugoxssr09zSzuMD4uoT6ek68YCUSNFlldpYAdNvBVwsMm+SQTDrIpJLS+5NCrnEOB6FE3IV/UaLxLs4F7G8nFVcmZIkgHv2AW5vDQUsW2pC3xh1ZXHnoFS+TId4xxwKxIJDvWcdyLqynYnK5ernVhSunOhpR2tXZMjWb2fuK8inNWazKV8clmgz1KRPL3k6fUSuapYrGEdd/J23s37uJ5dHGQ/bbRzlIMc4zBZZgjUWLbYzV4fhq/vmbf4vdrbKc+Eq2G8KJePf1t2JXkLphbpoB2nmQZaAbU0kWClVDtQ8wRwFHgPkuz2NPBBpELEg8B3vF951Lv/ovf4UwvnB15YfEoE8I4Y7IxJ5LfBL2cyWRuqGu5IwEQNyi70uQ6hWo3rohCz0vww0kplYzfsvgZu2CK2iJODF/fV1hORKPgD6OE+iufr2lJBxK5dg0RSxPALT4k4SU9eNmlu7jjUSGOTJ8ZWZtNNr17R5KjxAgBB7kVjY3PUCOBLMTopF5Ducq4rB9ELGU/BwMgs2iZrsR7EdkHibdKlTfmhOgS5pyH7NNiL2fihzlEK4q3g1kQIN3ZIRDg9BMNHlnt0hpXOFz4FX/zUFXuCL8YAfVhU6Oc0SZrYwGbGGWE3t/Eo35pZAAMc8awPIT8cGpW1+3kI4a4GmCiBvQIO8ctB/xLEGPJMMEkf27mHBB1z/v35RIK7gS97vmAf8C2t9feUUoeBbyql/gJ4DfiC9/wvAF9RSp0EpoAPz+NvLgklF17Kwyt5eG8LbIlA2AcNPtgWhXQN1obhxjhUXCiSwsmlmWyGX7R6sEoWTGTgyVfguf3SEnfvsZWxxOJIYpx2NIXzA6/9pyCZhp4NkGwSEVwqSm3jcmnBBb7GoeItIviJEWU9YbqpMUXlgjJMCW4kRDsFjmIxNNPLLRs+1uNnE+CiaEC+KhV8tKMp4S6wD2tVcrQXNqxlOtaSIMH13MBhDpHtHZhFfW2fWCFCa6DhDmi8B4JdEhl2chDeKI9nvg+1SeoqeW6xaFkLyU6IJsGpwrEfw3gvdG0T8VstQXYUJldY2TlDfZJefJ/tBGM000qaFL0cR+OSIU1hhhXEN1F1YLIga/VzQAGJMGxqkvulGlgOVEyhlGWhTJYojURJzvl351Md4nVg9wzbTwG3z7C9AvzinEe2RCS2g1OGahrsAthavKY+JZe9BRiyYHcDPJ2Bn2+D2xMQUtBf0jybdfi3NFiuF70anZKkOJAs+Hq3QYAkuYXCImjbOtFvuw+ee0ISi5LN0NoBsbh4B8MRqJTlzYFzFQ4WFBHWJU7TyC7CtNDY6LJ9dz9Dw3CyFwJuB118kAauZ4gvMV5nIthlHHDxswVNGoiiSUspv0WuUVzvhGghTDsalwInLv5Ex5UqErUaUaLsYjef5i/5PX6Hk+4JChQu0ZrbJ2XSfGEItIAvLtFfe0pKk2kvca7hdrBOg/uadG5b7R7h/ISI3XgLxDpgzbUSBdYaUv1Qq4Brz7mBz2rDB8QJ0kKIKaqUsHHMwvfcWYJFX40mSowQIcqU+Ri/w9/zP7BnW/XA0VCafcJ0wAdJTwCXapCMiPitXt1fmWXFxWaME7jzCGSsnLbJi8TmX4fcMZj4MRTOawN5qCjR3r6KXAqOxIn2FuCvh8AOBRlyAxyzNIeKFc7WKChfubergcTszmIXis41IoKzU3L9Cw9KpvjYkIjeRCM0NMpjVUs6alieAX0RrR4uJVzKaOJ0d/j5jY/BX/319GMVwIciiM3ytcWMEydJkuE3ZSVXPLGrgCo+NuIyjMsks69nsZoIADZ+4jRwDW28lRgbOMgfX3r+PLuDHz8KxQQT2NjULptJrz2h60hLXScHtWGkdrDn5NNVUEEI9oDvGLglr5zaKqZmiciNNMDa62DDTbDnOxL5LWXlsWXgZm4hRoxeehmZbYb/IuJH0UqI32QHX+UUJ8hRvhpWClYoBXL4vH1EnATWXKsAOTPvS4I+6dQeD0qkV2u5vS4JnXE4mYbdXXDIB+UpEwleLiwK9PHKvGqWX9UiOJCA7vdCoBFyR98ogo+WIeuIEK5qmLLFJ3y8DM9koZYIShKc67JQtQkUihBh4iQoUkCj8eED1LzOcGZFMCSRXteVlnHJZrj3fvEAH9wL+az4BsMRubZt2SvUqvIcn0+aGdQWJ7PZJocGXF+ReDhJMQvoLDY5sryCxRilZex200ILO9iJi8vom4q0W7hSHRBFgxcdvhoFsP9smbIACSJ008h1tHAHQZqwKXK59BIHhyEG+Rr/zBhjVChfXgTjSEUIOwXVMxIB9kUk8umWQVty3xcWMTztP/f7IBGXxLyWpFSk8CmpjlK2IBETq9NKxRcQS8SW26FtI+z7voj/YBh0SKLA9tJ+Tt/CXexkJw/zUF2IYB+KBEF+nS08yxj9FIwIrmOySBvVKDFe4XkWIl1NIV/7sB+aIhLpdbVEgTcmIezZiHsS8vyaAyemLqqnDYtIiSzDHLrEyuDFWV0iOIx4GWa5r4pvgPKI2CBmyr0Z8U4mm/xwTVSS4QYsea7fr0G5aLeG9l1ZAEmh8OEnRIgmWt5wcA8RxoePEot00G1pk6S4Qh7sqghaX0CqQnT2iMgteWWpYnG5n5qEXFqiwaEQNCQlSW4RsClQI8P+42V+5Zd24CME7ENhM86jLGdurh8/3XRzN3fTTDPf4l8u+lyH3iUcWT2hRAD7k3Lb9VNlkjR7qJLCR3BWr1KmTK/3M3u0CN3aOJReh/Bm8LeAzxKrklsEpyQWCX3eTiMchp1bYN8RuPlaeO2ICOBYBAbHYPsmOHBcGsWsxAOePwCJdui+BhJtYo3o2i5+YLsGlRykl1aIxolzD+9gH/v4Mc/Ofil7kdBwdq0hiA+1ghN0rybKlPjB2Zz8K0Mj0d9wQCK8MW9XFQ1KCbBpy+SxFNy+RoTyaFEqIbj64ruGaSfh2V45CzLaqxuLAiVCKPxz/l1Vj4Ua5lsnOPQBsPeC2ze750fXQGwd2CWojII1S6tm+zqvEY6CbAoqRUhfQfJrM6100EUDjaRJESXGEV7HxaWRJD78ZFikJgr3/rSI27FhmJoQf/C6zZIQ19zqRYB9Eh1yXSjmYXJcrBN2DRE2jlSQWARCdKGpUSOFIkA776PGFDWmsBimdrHs3yVgC1t4kF/jIzzIb/Kf+D7fX7ax1C8BCHZDeBtU+8DJgLbwaR9BHcNiiQrU+5OQvA9aPgChtSKOrQEoH4LMD6Ha70WHbTnqbV0PN18nwvd7P4Ihb5zhELz7LinP9vLrby7dthJoXQ/tm2DNNbDjHihl4ORLgILsGIydgPG5dV1aCG7hVhpJMsE4Bzmw5H//QhSwjUZ6yRs/sOEsfiWWiJaY1MLtaoD3bBJhvHcUTqSkYkSpNrPAXd8oorrmSlWJmiuC2DILDQuK1npWZ66rQwQrSHwTQvdB/uNQ/X9z+11g1qdjXZvgtvvh5ndDOQ+PfwVee3JOo30TG9jCFq6hkSSHeZ0gITQOGdJYVKhQobhYHuEbboFMWkqhuY4kv6Un5VupFHSsgc5uKY9WKooITqcgMyWPBwLSOW7J8JHgeqJsxCZHidNUWJ5M9nWs4y3cyQ528Gn+Yl5LMasbP/ibIfFuWP9/YfgPIP+4eHO1JZclHU4jxG+HUaLfeQAAGd1JREFU6E4ItoFTgMJLIoSdAuzaBs0JKBTFDvHWm+GTvwb7j8Hze+HYaUnWi0fhiw9LNHmlonwQikLnVqkNPHriXDKc1ixHfEp5P9r7qQcWrQ5sI6gGeXE9shh/wLCYKB/E1khDSj0GHWFoCIqTqjUqpcFSXv54U0QufiWCN+iTz1SpJlHjjAWZK3FUJkLQFoVYQFT1WEle9CpntiK4ru0QLR3Q2CIr8FPjkPFW3Hs2QWsnVErQexjWbYWxF8EdBneuAYw57uEmB+HeD8HWXbDncRjrm+PfA3z4aKSJDFM004oC0qRwcVjHBpK0cILD5MhQpoR7wSC7G6W8Yd6Ccg02tpwrezgnWtrlzc2loZCT90JxLtlNa6hWZG0nnpBvfnpSBHC16uV8LVEb4rO4FDlGidOE6cJHeIn//jlGGOWH/ICnecoI4BnxCuU7ach9F6xjkqCmLUlKW2q+/ucQb4avPgWPfB9pDpE7FwEulSAehoY4bF4HP3oZ2luk7XnvgLRu3tgD69es/EYS2gWrBMNHOdskY7mHVEfid5rFGo1qBd8NoNrB/sLln78iaPDDlpgcF4JK7gd9MGLBgYULlIh1MIGNhU2ZMAlA4WBhL0HOhT8Cjdvhzs/CyNNw+u9h2IsbhfxgNcKaBDSExDrRGRdhXHMlAux40d+cJSL5ipPpAgrevwXu3yTH6j981ojgOVDXIjgSkzytlg545wOwbgv86HuwZoOs2Ns2vP6S5G4FTkFgEvI2ZBISsFwM7BpMDErQpHcf5Oe4Gp+kmW1cy03cyk5u4AgHkOq4DhYWLg5pUmTJUMWaseXj1jZoiUO6BKN5WYbpboTR3Cx32oEgtHfC1p1g27xT38h2J84Ueb7Fcxc8Wck/XchLdzjL8mwQ06anpT9ouViAhYWelwdoRmIRaW7iOFCswI3bIB6BoQmYSEPpzafqNjVyq7HV6UKhEK9t9TRMfRms4+BmpHnFcoid5/fA+98Bt66B0S4RtrFmOJ4GXBiZgGgErl2DcjUbDmbob3oR17EhX4JYGCJhsUZs7BFxnMnLikhD7BItnOsVveQJcAZBrQX/28G3A+xHYLHcbkuKQtqu3pYUEdwYgKYg7MtdsQj2E0LhI0CYMI3EaCXLoJdM3gBII/qlEMFuTVIJWndD5hDYShrQaUTcDnraIxKAthisT0J7TOwOhSpE/CJ8x0vyllVsyFpQnq8YVgqmKnBsCirOWQHs3wa+9aCL4A6AW19VROuGuhbBIIHKRBNcdytsvg5OHZH78UYIRWDnzfDEv0IyCv48RBPQcq3keOWzMLgI1rZ9T0G0AQaPy9+ZCyHCtNJGJ93cyC300UuNKgqfJ4RtsmRwcYgQPbtdhLLNr94GN6+VTNSTk/LlG5/L/iUcgeY26F4HHd20HjnNz9Zu5VbWsI/eN4vgauVce+Rq1YsY10e0xlmo0mgNUWiMS1KgAjbG4NfeB6MpeG6fVAeYQQQbLoN2QZfF/mCn5LZbYdlq8T76lLRljkZgxzpJBAsEIJ2EeExCNMkGeU6+BMkE978eJmVXKKHJdgXoL1tw/LQc8RpiEApKLfCVbI24AIXsd9ErM9O9ixATVOu7loNXVEhnlnsgC4ijpZTS9phEgBN+2BSF5gAcL8FL59qHdRCgiiYzy1ny4cdHgAARgkS9+35CxGlhMw5VcgxjkVus/+4s2oFKCkZ/BLmTUjX0bEN2LRHeIUT4okUMJ70Fy2QYdraJZ/h0Wr5rJRvSFYkKl2ryfJ96Y4+tSwpky4F94zCQF0WdkjyFwJ0QfDu4vVB9au4i2Iecy6BXd02juhbBlZI0JSsXYaAXju2HvmPygQvtg6Y2saoeegWu2QWOLdu2XicWifFBePIRGB2UIgZeU7QrZs/jEIlLXfm5Jg1bVBhhiJd4lglGeYrHcHFJkCRBAoWPAjnCREmiKFHEoiIl0oI2X/hlMeM/cxJOT8mX5vTlctJ83rJ0ICDVIHo2SK3fcpnuE2NsrzXRSIyyV1txulCGCxIBLixhzeLloLVJyt2BXN9xPXzwXfDQk/LerYSOf3WJI7V3AVQN+UQt43vZNwRPvAAbeuR+MiEnODu3wNouOblLJqCpEe3z0XdbJ9/49l38yHeUU74UfQGX/qFRONkPY5OEky3Y7S04xQKcWB0d1vw+yQuMBqFSg+IyuFbmgx8I4aOMy3qipKnVdTKbHgD7Ma8yXxb5B+patc8CFwmFNgYg5Ing9RHYGJUuVJ4I3kqYXUQZoMYeirOqA6JxcXGwsSiToUwGhypRmtjEPZSYxMYit0RNk2p52POnUlbbniEWk7UkQDtRgu4KdMTEF9wag3dtgiOetTNXhZGCVJ6IBKRgTU+jHINzVTkvB9G2F/00F2tw4M3VmfybILBLFnvU3BriARLU7/DL3x2zJdJev9+o+VPXInhqXK61C4deheG+Nz4eiUlQE+DYvvMe0LD7brjrp+DeB+CTvwBbrpXiB/0nrjyQOTEA4Zjctkpz+13HszsM089BXiPF+FnLQ4AADTSSYYokzfi8KLCNjeMvc02beIC/tRf+4QU4ONuEioYkRCJS9iwYgmwaRoegvZOD7ik+zTcJEmCQSRTirwcoO+f032r88J+lbMkZks8nEb09R+B3/ycc7YMzI1BazefBS8RSJ8FdjL5hSOfkCFWtSbWHHZvlen23RHerNbnO5FmrWnlyp8XTLVmcWg1OeCeEd9/CzudTDA8NMI73etPUyUrJfGiLw4YWOVgfGFl+ETzbxLQWQmwnxvNkeJksPkRILE+K3+XRRWAcdED8wWjQKVZ2w0K/gnhARHDUL98DjQjiRjmoKOAZtpPD4StMMUyVgVlYyqZtDjXeeMBtpIcb+CAjvM44Rxf6P7oo2oap/Zd+TqYCZ7LiDY4FpNNcVwNkK3LJVGCiCEN5uR8PwaZmuGstjBfhxUER0fOl9CmwHpLPlTuP6lVJH9wWhkYfvGLB8erqjAjXfXWIxmbJyRrpn/vrhCLwp5+VXK6ejXDiIDz/mAjq5WAN62ihHReHHFk0LkUKFMhjz7Qj8Cel2D8KwkloHEVNzPMY29UDuYxUeAgEpEFGWyccfX3G1sctIeiIin/JcmDKgjHjCDCsJsJBuHM3PPsKvP02qQgRCoogrlbB70fZLl999lZ+4j/N33btle9OYwMMj0vt4OExCdes7YK2JhHDL+4TIb3CiAXhp3bCR26Ht26Gn/8neOH08ohIv4KuMIR90F+WQOKlaCHIRqLs9ZbD30c7DppeSpy4QDgliRMmSBWbzEJZqpTXEMYXO9d58FLWn2ZQCUSpR4AS6BISFV55Hx2hwQ/XNcDHemBD1OssEYBUDR5Pof6mn91E+RIbSWHzMBkeJsPIFfzDMdro4RYs8qQ5TZ76KrXREIKWiPiCb++BXZ3QGJZI8KEJODwBpzIS3IoGYEMT/McbYCAHDx855y9eDrr98EAcPtsGf5aGb+RhwAGr/iTjjKyaEmlKnStTOx8akrI/8vkh2SoFEUJhePWZhRrt5bmLd2BRpoaNz3M25clxkiO4uGg0EaKECJPjPJOYv0U6WoWrsD4Nv6Xhqy4cR3aWc7Ehnl3W995afwA2boXTJ2Z8c7cm4Ov3wKQF3+6Hh/sgtRpPAw1XN6GgCNZQEDathe52KYEW8ENrM5wZoikP1XiQUnNUEiinstz6xAiHdoQpx/3iMW5tkooSQT9sWQ+HTsLAKKTS0mDj6NLX3Z0r0SDcsg7u3QbbO+DPfwC9E0svgqM+2BKH394IP9cFH9kHP0lDdob93W4S9BChiQBx/LhAFB+thDhCgSEsUlQ5fF6zoWYSbKIbH4pXOXblA1ZB8McguhU2/iEMfh7yr4Gd46IeBwXEQXWA6gR92iuYkmflimCFRHx/dz18uEvOZPrK8Fwa36OTNB8ocS1ROgiQxWGYGsPUZu0LnvlPKnwE8fH7aO7E4ftoPr9w/9MVohANkwzDde3wlh6J+P5kCE5nYKosqy1lW8RxTwK2t8JgTmoOz9WJF4hA60Zo2QRWASZPQjEFzjxWdBoV3BiGBxPwwxL8uAKTztxkx3KyKkqkgbeicgVeqcI5Lz6VMpTyUm1i0w6JFJ8+Isb2xcCPn2u4nu1cywRjTDFBlSoBAvjxv6HyQ5Xqm7skKT9Er4V2Bdc+AT/rg28q8Os5e5HPlj07e9+Rjm8XOcQNl2F/WqLAExXIrdQds8FwKaYjttWaCNzOVkmSS2clGXLbRjJoqQKRyUsN4bJFZy3OMasCTWFoSogQfu2wtA8/PSQieGJKXre8MpZQLBtOTshB+UcnYCK/PFFgzbkcq4BPVtN9F9nfnaLMCBZJAqwjyjXECOPjAdoJoPCjaCVIDptBLBLEuJEtfIB7CBNkmBTDXGG3S+UX02WwCZrfBuMPvdEec7F/sgx6FPQUUGK6Td3KRQMFG74+Ajc2SPj+e5PwQgZ3rEoelzQ2E9iksLFwr/jf1WgcWtBsRNFNvb2BGtEwOQsOT8pqSyIEfRkYK4id1/VKq2mkuMPxlOS2zScVJRiBruvgPX8CL30BsoPzH3sV6LfhizkYcyDjrnzb+kzUvQheSGqWNDpzHGjvFkdA/wkWzeii8NFBN92sI04DGs0YwxQpUrxgGc7FkeS3N7xACEJr5EhQBJ7VMKGhzJV7xzRvTGu9gJIN/3JKvpxnCpLvYLhKSTbCjdfDnbdBJgd798G+A1KjsI5pbIJEIwzNxkrV0SIRYNeVLnCprNgb4lGwqnLJ5KQSRCBAX4tN65SLa6UppnNSXm9kQjzlvQMwPgWVlbV04mpJui3V5G2Yd8mmK6SmYaIKj42LpuotijiYiSw2WSCNTQWXJAGi+BjCwkGjgDIOFpogfgL4vZYc4OJisRCmZ3k1aimY/D5Yo56N7TI7TQcRv1fg+1xKEgSJEMBBM0UFAmEIhCSgYlclS8wBesvwtRHRo/tzMCDfgyowQg0bKHppiwvTjNpC8zzQi2bPgrziQuNo8QAfnoANSfmO1VzZrrUkpFq2RIa1hloSAq1gz9EGql2wipK0X85CtTz/VfSalshvyhHXzkqsFDMbVr8IVs2AAp0DbBxbekMEAmKNCAQ9p8ACizyFIkyECBHChEnSTIQINjUyTJGdVbtfF5wsFBQc1fAZLbVXCixAiEZLaPwSL/TECMQWqAyvYQUTjcAtu+C3fwNGx+AfbDh0pC5FcJPXXKeQl67fazdeQgQrJGE06Ic1nbJTyHt+znwBWpMSxc3kaR63aB7z42pFPq7ojxW5ZiRAeWKC4hKUZVoqbFeWTu1lPOl1NEx6IvjVDKSqlz/nt9FksDlOkSCK7zJOihqT1JigygRVIoSoYtPPGM+wD4UitRBzN+3/LZ+B/s+ANSaFZOsyJW8OKCCKF5qHdXYja9wGytjsZYxyMALN66QsUzEFpbQIYYBvT8z4kqlFiSWm0TyCxg/Ub805V4vHtykCKBG+PuS8wXFl1XW6dXIwCYHOuYvgWgXGj8Ir/wxD+6Ccmf9KugOUvI9wRMlYF62D4jKyikWwAhWFyLu8gv3PgSvLXtqF1JhUCYvGJSBqlWf5stGIJM5YFlg1z69x7mOhvHPbMBE66CJEmAH6yDDFEP1kyVCk8Ebv78WojUD6O5zVy6fn8O/Phtzlx1BajesfhrkxOg4vvgzf/p4kgx05LhHROsDnVf7zB8T3f+e9cvvgXohE5RIKX8Ty5PfDhjVSI7pmS+Q2FoFkEz4HXNezQVSq3DrZxDtOd1FSNgd1P0PKR01b1FbZAqFTZys+E7MM1Mbw0UmIA94Kmx/Facq4QJN3mKt4Ud9TlBljCv9CNdrRFjgWUILSdC3sFY5CEva2KbE1lOGG8XbeUuimQJU0FQ4rF9bugkgCxo7B4H4Rw8vCyinjmSpLEhycS/i0LtiN6DK48zg/c6ow1SciuDZbTTMLKqtN+Z7H6hXBqhlivwRNfw/Fz0PtdbjA+zXQO4/X/W+/Bw9+AD73Nfjmv0EqA2PnXreJFgIE8eMnTgMVyhxiHwVypElRIEdtxWY+GK5afvKqXOqMzdth951w023Q2Q1Tk9B7FG64RWyZqQkpjPK1f5jhlzXijXr5wLltazsJr1vPxpeGOLbDs0f4/Ryf8jEScTjeZvGewTb2dBdwxyfr5mTgaiePQ/48X0HAMz1MUWVqhv1tkcUQqnp1CGCANuCtCnYryCuwoPLvNpuOJbmZTo6R4bB/Alo3wF0fhWNPQm50GUXwymGkAHf0eB5gG6oz7ELsQeAK/LwLKYBXO6tXBOOAm4LSV6D8yNkoMCBLES0QXAPBHrBHwZ4CbAka22OXeNlgELJ5KZPU0QqTb7Q1xGkgTASLChOMMsYIU0ygz/sxGAxXzk23QUe3tFbvWQ/XXA8nj0KtCq3tgIJYHDJp2HU7HNhzQTVAx5HGF+czNI41PMFxreEYJHWMorLo1w4RHWTNUBIXl58eWcMzOkthlUWCVwsl3LpullHXNAPXK7jPBzcrGNOQgu9df4YDz6ZY/3ADP946DAddeOUbcPLHYkDNzqMY7VWK1rCpSSqyHL7AORK5G4IbJCVI2+BOQfEHrM6stDpg9YpgXYHaQXCGwRmQ9QWAIPgbpfJY8v2Q/ACk/gnyP5RcBvtyJ7JPPA+jEyKEazWYOmcpaKcLF5cpJimQR+N6dirz6TUYFppaVUTwrtth9x1ifbjlTuk0qbXYJLp6pEfM3hek1OKbvooXloj07E0awIUCZRwtHoEKNSZ0jo20ktSxBUrqMSwGCfwEzQzNjyhig3hAQVLJ7bTG8WkGdhYZu6aE/ZgL7RoyAxIB1i44ZoVzthycgJs6oTsuCXPDnpsjsFECc+GbIHwjBDdD8d/AzUo3OXsAnCssZmJ4I3VfJ3j++EDF5FpXkdxUVzaHvepjN0F4B5T3gnVSzrr05ZYRujukJJLWki0+eu4TOV0BokbVWB4MhkWmuRU610gX8O61ss3nh6E+8bb6fHJBw7FDMHhGjtVXgg9FF0nCBBlkatV5glcLawiToUZpRbdgWyYagM0K7lLSztlFKij5gLKGUeCwhhycV37ZMEc64xD2iwjOed53XzP4OyQpzt8lK9bV41DrBV0DN+M1VTFcllXTLMNgMBgMBoPBYJgtsxXBvsUeiMFgMBgMBoPBUG8YEWwwGAwGg8FguOqoVzvEBOI2Mhbw1UcbZl5XI2ZeVy9mblcnZl5XJ2ZehUmt9f2Xe1JdimAApdSrWutbl3schoXFzOvqxMzr6sXM7erEzOvqxMzr3DB2CIPBYDAYDAbDVYcRwQaDwWAwGAyGq456FsH/uNwDMCwKZl5XJ2ZeVy9mblcnZl5XJ2Ze50DdeoINBoPBYDAYDIbFop4jwQaDwWAwGAwGw6JgRLDBYDAYDAaD4aqj7kSwUup+pdQxpdRJpdQfLfd4DHNDKfVFpdS4UurgedtalFKPK6VOeNfN3nallPpbb65fV0rdvHwjN1wKpdQ6pdTTSqnDSqlDSqlPeNvN3K5glFIRpdTLSqn93rx+ytu+SSn1E2/+/kUpFfK2h737J73HNy7n+A2XRinlV0q9ppT6nnffzOsqQCnVp5Q6oJTap5R61dtm9sXzoK5EsFLKD3wW+GngWuCXlVLXLu+oDHPkS8CFBar/CHhSa70NeNK7DzLP27zLx4HPLdEYDXPHBn5fa30t8Bbgt7zvppnblY0FvFNrfROwC7hfKfUW4K+Az2ittwJp4KPe8z8KpL3tn/GeZ6hfPgEcOe++mdfVwzu01rvOqwls9sXzoK5EMHA7cFJrfUprXQW+CTywzGMyzAGt9bPA1AWbHwC+7N3+MvBz523/Zy28BDQppbqXZqSGuaC1HtFa7/Vu55EDaw9mblc03vwUvLtB76KBdwIPedsvnNfp+X4IeJdSSi3RcA1zQCm1Fngf8H+8+wozr6sZsy+eB/UmgnuAgfPuD3rbDCubTq31iHd7FOj0bpv5XoF4S6W7gZ9g5nbF4y2Z7wPGgceBXiCjtba9p5w/d2fn1Xs8C7Qu7YgNs+R/A38AuN79Vsy8rhY08O9KqT1KqY9728y+eB4ElnsAhqsLrbVWSpm6fCsUpVQD8DDwe1rr3PnBIjO3KxOttQPsUko1AY8AO5Z5SIYrRCn1M8C41nqPUure5R6PYcG5W2s9pJTqAB5XSh09/0GzL5499RYJHgLWnXd/rbfNsLIZm15+8a7Hve1mvlcQSqkgIoC/prX+V2+zmdtVgtY6AzwN3IksmU4HSc6fu7Pz6j2eBFJLPFTD5Xkr8H6lVB9iK3wn8DeYeV0VaK2HvOtx5MT1dsy+eF7Umwh+BdjmZbCGgA8Djy7zmAxXzqPAg97tB4HvnLf9I1726luA7HnLOYY6wvMHfgE4orX+X+c9ZOZ2BaOUavciwCilosB7EL/308AHvaddOK/T8/1B4CltOi7VHVrrP9Zar9Vab0SOo09prX8FM68rHqVUXCmVmL4N3AccxOyL50XddYxTSr0X8TL5gS9qrT+9zEMyzAGl1DeAe4E2YAz4r8C3gW8B64EzwC9prac8YfV3SDWJEvDrWutXl2PchkujlLobeA44wDmP4Z8gvmAztysUpdSNSBKNHwmKfEtr/edKqc1IBLEFeA34Va21pZSKAF9BPOFTwIe11qeWZ/SG2eDZIf6L1vpnzLyufLw5fMS7GwC+rrX+tFKqFbMvnjN1J4INBoPBYDAYDIbFpt7sEAaDwWAwGAwGw6JjRLDBYDAYDAaD4arDiGCDwWAwGAwGw1WHEcEGg8FgMBgMhqsOI4INBoPBYDAYDFcdRgQbDAaDwWAwGK46jAg2GAwGg8FgMFx1/H8nWtgJSQnUTwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light", - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "n_cells = len(stats)\n", - "\n", - "h = np.random.rand(n_cells)\n", - "hsvs = np.zeros((2, Ly, Lx, 3), dtype=np.float32)\n", - "\n", - "for i, stat in enumerate(stats):\n", - " ypix, xpix, lam = stat['ypix'], stat['xpix'], stat['lam']\n", - " hsvs[iscell[i], ypix, xpix, 0] = h[i]\n", - " hsvs[iscell[i], ypix, xpix, 1] = 1\n", - " hsvs[iscell[i], ypix, xpix, 2] = lam / lam.max()\n", - "\n", - "from colorsys import hsv_to_rgb\n", - "rgbs = np.array([hsv_to_rgb(*hsv) for hsv in hsvs.reshape(-1, 3)]).reshape(hsvs.shape)\n", - "\n", - "plt.figure(figsize=(18,18))\n", - "plt.subplot(3, 1, 1)\n", - "plt.imshow(output_ops['max_proj'], cmap='gray')\n", - "plt.title(\"Registered Image, Max Projection\")\n", - "\n", - "plt.subplot(3, 1, 2)\n", - "plt.imshow(rgbs[1])\n", - "plt.title(\"All Cell ROIs\")\n", - "\n", - "plt.subplot(3, 1, 3)\n", - "plt.imshow(rgbs[0])\n", - "plt.title(\"All non-Cell ROIs\");\n", - "\n", - "plt.tight_layout()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "nAkuc_up9SRV" - }, - "source": [ - "### Traces\n", - "\n", - "We will load in the fluorescence, the neuropil and the deconvolved traces, and visualize them for a few cells." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5s7r6Ny99SRV", - "outputId": "f490a0a3-8a6e-4f4f-ec57-f588fb498772" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "((2372, 4500), (2372, 4500), (2372, 4500))" - ] - }, - "execution_count": 16, - "metadata": { - "tags": [] - }, - "output_type": "execute_result" - } - ], - "source": [ - "f_cells = np.load(Path(output_ops['save_path']).joinpath('F.npy'))\n", - "f_neuropils = np.load(Path(output_ops['save_path']).joinpath('Fneu.npy'))\n", - "spks = np.load(Path(output_ops['save_path']).joinpath('spks.npy'))\n", - "f_cells.shape, f_neuropils.shape, spks.shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "29Wr9tUz9SRV", - "outputId": "c2ff4f26-f515-4725-f10a-02dba5ae8350" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAATBCAYAAADq2CcHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5hV1dXH8e+aYYbeiwUE7L23WGLsPWqMiUaTqDEx+qqJryZGfWOLUVGTWKJRIzbsqFhREUEEUbr03nsdpveZ9f5x9r1zpxeGYRh+n+fh4d5T9tnnzm1n3bXXNndHRERERERERESkKSVt6w6IiIiIiIiIiMiOR0EpERERERERERFpcgpKiYiIiIiIiIhIk1NQSkREREREREREmpyCUiIiIiIiIiIi0uQUlBIRERERERERkSanoJSIiIiIiIiIiDQ5BaVERERERERERKTJKSglIiIiIiIiIiJNTkEpERERERERERFpcgpKiYiIiIiIiDQSM9vZzN4ys0VmNtnMPjWzfWrZJzv839/MZlaxvr+Z5ZnZ1IR/qWZ2lZk9tbXORWRra7WtOyAiIiIiIiLSEpiZAe8Dr7j7ZWHZocBOwPwtbH6Rux9W4Xhb2GS8nVbuXtwojYnUgzKlRERERERERBrHKUCRuz8bW+Du09x9DICZ/dnMJprZdDO7rzEPbGYvm9klCfdj2VdmZo+a2Uwzm2Fml4blJ5vZGDP7CJhtZslhu1j/fh+228XMRofsrJlm9sOw/Gwzm2Jm08xsRFjW3sxeNLMJZva9mV0Yll9lZkPM7HMzW2BmjyT0s87tSMujTCkRERERERFpcfrfPvRx4LBaN6yfqUsHnHdzDesPAiZXtcLMzgT2Bo4BDPjIzE5y99F1PPaeZjY13B7r7jfUcb+LiR6HQ4EewEQzix3zCOAgd19iZtcCGe5+tJm1Bsaa2Rdh/2Hu/oCZJQPtzKwn8DxwUti3W2jv/4CR7v4bM+sCTDCzL8O6w4DDgQJgnpn9G8ivTzvunlPHc5bthIJSIiIiIiIiIlvfmeHf9+F+B6IgVV2DUpWG79XRicCb7l4CrDOzr4GjgUxggrsvSejfIQnZVp1D/yYCL5pZCvCBu081s5OB0bF93T0toY0LzOxP4X4boG+4PcLdMwDMbDbQD+haz3bmNOD8pRlTUEpERERERERanFoymraWWcAl1awz4CF3f24rHbuYUKLHzJKA1Drsk5h5ZMBN7j6s4kZmdhJwHvCymf0L2FxNewb81N3nVdj/WKIMqZgSao5HVNmOtDyqKSUiIiIiIiLSOEYCrcNQOADM7JBQh2kY8Bsz6xCW9zazXo147KXAkeH2BUBKuD0GuDTUjOoJnARMqGL/YcD1ISMKM9sn1HbqB6xz9+eBgURD/sYBJ5nZ7mHbbglt3BQKvmNmh9fS58ZqR7ZTypQSERERERERaQTu7mb2E+BxM/sLUc2kpcDN7r7AzPYHvguxlmzgl8D6Rjr888CHZjYN+JyyLKj3geOAaYADt7n7WjPbr8L+A4H+wJQQDNoAXAScDPzZzIpCn3/t7htC4G1IyMpaD5wB3A88DkwPy5cA51fX4cZqR7Zf5u7bug8iIiIiIiIiIrKD0fA9ERERERERERFpcgpKiYiIiIiIiIhIk1NQSkREREREREREmpyCUiIiIiIiIiIi0uQUlBIRERERERERkSanoJSIiIiIiIiIiDQ5BaVEREREREREGomZuZn9M+H+n8zs3m3Yn0/NrEu4nV3NNiVmNjXhX38zO9nMPmna3sqORkEpERERERERkcZTAFxsZj0as1GL1Psa3t3Pdff0WjbLc/fDEv4tbVgvK2tov2XHoCeGiIiIiIiISOMpBv4L/G/FFWbW08zeM7OJ4d8JYfm9ZvanhO1mhmyl/mY2z8wGATOB3czs0bB+hpldGrY/2cxGm9nQsP2zsUCQmS3d0gBZdf0Lt28J92ea2c1hWVX9/nM45+lmdl/Yrn3o87Swf+x8jjazb8PyCWbW0cySw7nH2vh9wrmPMrN3zWyumb1uZlbfdmTbaLWtOyAiIiIiIiLS6O7t/DhwWCO3OpV7M26uw3ZPA9PN7JEKy58AHnP3b8ysLzAM2L+WtvYGrnT3cWb2U6JzOhToAUw0s9Fhu2OAA4BlwOfAxcC7dTkpoK2ZTQ23l7j7T+qyk5kdCVwNHAsYMN7MvgY2V+j3meH+MWG7j8zsJKAnsNrdzwvtdTazVOBt4FJ3n2hmnYA84Bogw92PNrPWwFgz+yJ05XDgQGA1MBY4wcwm1Kcdd19Sx8dKGpGCUiIiIiIiIiKNyN0zQ5bQH4gCITGnAweERB6ATmbWoZbmlrn7uHD7ROBNdy8B1oUA0NFAJjDB3RcDmNmbYdu6BqXy3L0hAbwTgffdPSccdwjwQ+CjCv0+M/z7PtzvQBSkGgP808weBj5x9zFmdjCwxt0nQvRYhrbPBA4xs0tCG51DG4Xh3FeG7aYC/YGMerajoNQ2oKCUiIiIiIiItDx1y2jamh4HpgAvJSxLAn7g7vmJG5pZMeXL67RJuJ1Tx+N5Lfe3RE39q05ivw14yN2fq7iRmR0BnAv83cxGAO9X054BN7n7sAr7n0xUxyumhJpjHVW2I9uGakqJiIiIiIiINDJ3TwMGEw0Xi/kCuCl2x8xi2UlLgSPCsiOA3atpdgxwaaiL1BM4CZgQ1h1jZruHWlKXAt800qnU1L8xwEVm1s7M2gM/CcsqGgb8JpYVZma9zayXme0K5Lr7a8Cj4RjzgF3M7OiwbUczaxXauN7MUsLyfcIxq9NY7chWpEwpERERERERka3jn8CNCff/ADxtZtOJrsdHA9cB7wG/NrNZwHhgfjXtvQ8cB0wjyoS6zd3Xmtl+wETgKWAv4CuqzzhqiCr75+5TzOxlygJjA939+1gR9Bh3/8LM9ge+C0MXs4Ffhr4+amalQBFwvbsXhoLn/zaztkTDH08HBhINy5sSCplvAC6qrsON1Y5sXebemBl9IiIizVP4crQESHH34m3bmx2PmY0CXnP3gdu6L1vb1nyumZkDe7v7wsZstymFC4AXiS4AFrj7MU103FnADe4+qqo+mNn1wL1Ae6Cfu29qin6JiDSGMITtT+5+/rbui0h9aPieiIi0KBZNe5xnZtkJ/3bd1v2S6lk0zXSRmWWFf/PN7Ckz22Vb9217YWazEp7vJWaWn3D/zm3dvwpOBM4A+jRGQMqiacc94XzXmdknZnZG4nbufqC7j6qqD2EIx7+AM929Q1MHpML71uk1rD/ZzErD+WVZNM361RW2MYumW18Q3gOXm9lDYWap2DYvm9nft+a5iIiI1IeCUiIi0hL9OFxYxv6t3loHCrUJZMu97e4dgW5E9Sh2BiYrMFU3IeDSwd07ENXyuDHh+f9gbLtm8nztByyNzdRUH7X0v0s4/0OB4cD7ZnZVHfuwE1HR3ln17VPoV3JD9qun1eH8OgH/CzxvZvsmrH8SuBb4NdAROAc4jaiejYi0cO4+SllSsj1SUEpERHZIFTMTQrbOawn3LwjZJ+lmNirUQUjc9y+hHkSOmbUysx+Y2bdh+2khjT62/VVmtjhkOCwxsysS1v3OzOaEdbMtKh6Kme1qZu+Z2Yawzx8q9HWwmQ0K+80ys6MS1u9mZkPCvpvM7KmEdb8Jx9tsZsPMrF8Nj9E7ZrbWzDLMbLSZHZiw7mUze9rMhoY+jDezPRPWn2Fmc8O+TxHNdFMrdy9y91lEBVo3ALcmtHm+mU0Nj/G3ZnZIbedsZklm9lczW2Zm68Nj1jmsi2XYXBmySjaa2f8lPP55ZtYt4RiHh21Samq3wmN4qZlNqrDsf83so3C7tZn9Ixx/nZk9a1Hdi9i2fzazNWa22sx+U5fHsMKxYud4jZktB0aG5TX9bdua2T/DuWWY2TexPjX0eZ6wzTVEtTyOsyjr576w/HdmttDM0szsI0vIbgz9v8HMFgALajtnd1/r7k8QDcV72KKCv/HXfBV9eJOoGC5AupnFHqP9zGx46NM8M/t5Qp9eNrNnzOxTM8sBTrEGvmbN7FWgL/Bx6M9ttZyfu/unQBpwSGhjb+B/gCvc/Tt3Lw6vo58CZ5vZqVX8LdqY2Wvh9ZJuZhPNbKfaHl8REZHGpKCUiIhIBWa2D/AmcDPQE/iU6IIxNWGzXwDnAV2IsiyGAn8nyvT5E/CemfW0aDaXJ4FzQibQ8cDUcJyfEV04/5oo++ECYFO4iP6YqIhpb6Jsh5vN7KyE418AvBWO/xFRYdNYxsYnwDKiIp69w3aY2YXAncDF4bzGhPOszmfA3kAvoimtX6+w/jLgPqArsBB4IBynBzAE+CvQA1gEnFDDcSpx9xLgQ+CHoc3DiWoA/R7oDjwHfBSCOtWeM3BV+HcKsAfQgfBYJTgR2Jfocb7bzPYP2XXfEV3Ux1wOvOvuRXVsF6K/474haJDYzhvh9gBgH+AwomKvvYG7wzmfTfRcOoPo71Dt8K46+BGwPxB7DtX0t/0HcCTRc7UbcBtQama9acDzPJG7v0BU0Pe7kMV1TwiYPAT8HNiF6O/4VoVdLwKOBQ6oxzkPCeeXmE1UVR9+AcSCcl3c/dRwPsOJ/k69iJ7r/zGzxONfTvSc7wh8SwNfs+7+K2A5ZRmej9R0UiEgegHRaytWW+w0YKW7T0jc1t1XAOOInkMVXQl0BnYjek1dR1QEWEREpMkoKCUiIi3RB+GX/3Qz+6AB+18KDHX34SEA8Q+gLdGFdsyT7r7C3fOIZo/51N0/dfdSdx8OTALODduWAgeZWVt3XxMyGAB+Czzi7hND9sNCd18GHA30dPe/uXuhuy8Gnie6MI75JhyvBHiVaMgSwDHArsCf3T3H3fPdPTYl9HXAQ+4+JxTgfhA4zKrJlnL3F909y90LiIJnh1bIBnrf3SeEtl4nCqwQznuWu8cCOI8Da2t5zKuymij4AdGwpOfcfby7l7j7K0AB8INazvkK4F/uvtjds4E7gMus/DCw+9w9z92nEQUVYo/lG0TBx1hx7ssoCybVpV3cPZcouBZrZ29gP6KAmoXz+l93T3P3LKK/Sezv/HPgJXefGYaZ3duAxzDm3vDY5IV+Vfm3DQHR3wB/dPdV4bH+NmzX0Od5ba4AXnT3KeE4dxBlMfVP2Oah8BjVJ2gSG7bbrcatqnY+0fC+l0LW0fdEM0/9LGGbD919rLuXAgfT8NdsXe1qZulEgaP3gVtCvyAKUK2pZr81YX1FRUTBqL3C33myu2fWs08iIiJbREEpERFpiS5y9y7hX0Om+N2VKFsDgHDRuYIoAyJmRcLtfsDPEgJh6UTZN7uEYMKlRAGhNRYNd9sv7LcbURZRRf0IF6AJ7d1JlJEVkxjkyQXahIDIbsAyr3rWt37AEwltphENq+tdcUMzSzazAWa2yMwygaVhVeLFbcU+dAi3dyXh8XF3p/zjVVe9Qx9jfb+1wmOyWzhWTedc7m8Zbrei5scydh7vEQVHdgFOIgq6jKlHuzHx4BZRds0HIVjVE2hHVDsrdk6fh+WxYyQ+bonHq694O7X8bXsQ1Vaq7nnZkOd5bSq+3rKBTVT/equr2P5pNW5VtX7AsRXO9QqiWmdV9WlLXrN1tdrduxBlVT4JJA7J20iUZVaVXcL6il4FhgFvWTQ89BGLCr6LiIg0GQWlRERkR5VDFBCISbzYXE10kQnEs2R2A1YlbOMJt1cAryYEwrq4e3t3HwDg7sPc/Qyii8O5RBkUsf32pLIVwJIK7XV093Or2LaqfftWc7G7Avh9hXbbuvu3VWx7OXAh0ZCxzkTD4qButaHWED1e0Q5lj1+dhYydH1MWBFoBPFCh7+3c/U1qPudyf0ui2j3FwLra+uDum4EviIItlwNvhQBbfdsdDvQ0s8OIglOxbKuNRFkvByacU2ePillDhccxHKOhEp+vNf1tNwL5VP+8bMjzvDYVX2/tiTJ4qnu91dVPgPWU1YuqjxXA1xXOtYO7X19Nn7bkNVuxrZo3jLLJ/gIcbGaxoPtIYDczKzeboZntRpRNOKKKdorc/T53P4AoC/R8oqHEIrKFLJoFdWqoHzfNzG4Nn2vNjkX1AKsaft6QtrIbox3ZsTTLF4aIiEgTmEo03ColFBy+JGHdYOA8MzstZA7cSjRUrKrgDcBrwI/N7KyQhdLGoinc+5jZTmZ2YbjQLgCyiTJuICq2/CczO9Iie4WhdBOALIuKqbcNbR5kZkfX4bwmEAUzBphZ+9CXWD2nZ4E7LBS1DsO1flZNOx1DfzcRBe8erGa7qgwFDjSzi0Og6A+UD/pVy6Ki8fsT1braGfhXWPU8cJ2ZHRseq/Zmdp6ZdazlnN8E/tfMdjezDuE83q4mq6oqbxBdqF9CWTCpXu2GIYzvAI8SDSUbHpaXhvN6zMx6hfPvbWV1iAYDV5nZAWbWDrinjn2uTbV/29CnF4F/WVS4O9nMjjOz1jT8eV6bN4GrzeywcJwHgfHuvrQhJxf6ciPR43VHOKf6+gTYx8x+Fd4jUszsaEuY8KCCLXnNQhTM3KOunXP3QuCfhPpj7j6f6PX9ukXF6JPD6/w94Et3/7JiG2Z2ipkdbFFNtkyi4XwNeaxEpLI8dz/M3Q8kqul2Do33Hi7SoigoJSIiO6q7iLJBNhMV644HHNx9HlH9nH8TZY78mKgIcWFVDXlUTDhWRHwDUdbEn4k+Z5OAW4iyQdKICk5fH/Z7h6hQ8htAFvAB0C3UnDmfqEbTktCHgURZLTUK+/6YqGj2cmAlUaYP7v4+8DDRcJ1MYCbRF+WqDCIaUrUKmE1ULLlO3H0jUe2dAUSBj72BsbXsdmn4hTWDqAj0JuBIjwqO4+6TgN8RFYfeTFTg+arazpkowPIqMJroscwHbqrruYS+7A2s9ajmVEx9232DKDPpnQqBq7+EcxkX/iZfEgpzu/tnRPW4RoZtRtaj3zWp7W/7J2AGMJHoOfswkNTQ53ltQsDkLqIAyhqi1+VlNe5UtXSLZsKbQVTn6mfu/mID2sGj+l5nhn6sJhp69zDQuprtG/yaDR4C/hqG/v2pjvu8SJQh+ONw/8ZwzNeIgoKfA6MoX6w/0c7Au0QBqTnA10TPaRFpRO6+nqh+4I3hR5VkM3vUohkvp5vZ72PbhsD2jJBdNSAsO8zMxoVt3zezrmH5KDN72MwmmNl8M4tNDDLOys+oOsrMjjKzbmb2QWhnnCXMYBu262zRrKuxGUvbm9mKEJTf08w+N7PJZjbGwvDs8MPMd6HPf9/aj6W0TFaWhS4iIiIiIiLSMhz8ysGPUzYJR2OZOuPKGTfXtIGZZScMxY4tSyf60eFCoJe7/z1kh44l+iFnP6IA/enunmtm3dw9zcymAze5+9dm9jegk7vfbGajgMnufquZnUs0+cHpZva/RDOJ3mNRTcRR7r6vmf0b2Oju91k06+m/3P0wM7sKOMrdbzSzD4HH3f0rM7sUOMPdf2tmI4Dr3H2BmR1LNPnEqWb2EdGstIPM7Abg4YrnLVIbZUqJiIiIiIiINI0zgV+b2VRgPFENvb2JsmlfChNhEAJSnYkCTF+HfV8hmngjZkj4fzJl9QEHU1aS4OdEGZEQTUzxamh7JNDdzDpV6NvblGUaXwa8HYaoHw+8E/r8HGUTK5xANAQblGkpDVSfGT9EREREREREtgu1ZTQ1FTPbAyghmnzBiDKfhlXY5qyq9q1FQfi/hHBt7+6rzGxTGJ4XmxW1rj4CHjSzbsCRRMPG2wPp7l5dxpmGXskWUaaUiIiIiIiIyFZgZj2JJiJ4KszgOgy43qKJVDCzfcIkEcOJJn1oF5Z3c/cMYHOsXhTwK6L6b7V5G7gN6Ozu08OyMcAVoe2TiYbyZSbu5O7ZRPUEnwA+cfeSsM0SCxOjhLpYh4ZdxlJWA/CKOj8oIgmUKSUiIiIiIiLSeNqGoW4pQDHR0LbYbLIDiYbaTTEzI5o44iJ3/9zMDgMmmVkh8CnRxBJXAs+GYNVi4Oo6HP9dosDS/QnL7gVeDDWqckO7VXmbaMbYkxOWXQE8Y2Z/Def0FjAN+CPwhpn9BfiwDv0SqUSFzkVEREREREREpMlp+J6IiIiIiIiIiDQ5BaVERERERERERKTJKSglIiIiIiIiIiJNTkEpERERERERERFpcgpKiYiIiIiIiIhIk1NQSkREREREREREmpyCUiIiIiIiIiIi0uQUlBIRERERERERkSanoJSIiIiIiIiIiDQ5BaVERERERERERKTJKSglIiIiIiIiIiJNTkEpERERERERERFpcgpKiYiIiIiIiIhIk1NQSkREREREREREmpyCUiIiIiIiIiIi0uQUlBIRERERERERkSanoJSIiIiIiIiIiDQ5BaVERERERERERKTJKSglIiIiIiIiIiJNTkEpERERERERERFpcgpKiYiIiIiIiIhIk1NQSkREREREREREmpyCUiIiIiIiIiIi0uQUlBIRERERERERkSanoJSIiIiIiIiIiDQ5BaVERERERERERKTJKSglIiIiIiIiIiJNTkEpERERERERERFpcgpKiYiIiIiIiIhIk1NQSkREREREREREmpyCUiIiIiIiIiIi0uQUlBIRERERERERkSanoJSIiIiIiIiIiDQ5BaVERERERERERKTJKSglIiIiIiIiIiJNTkEpERERERERERFpcgpKiYiIiIiIiIhIk1NQSkREREREREREmpyCUiIiIiIiIiIi0uQUlBIRERERERERkSanoJSIiIiIiIiIiDQ5BaVERERERERERKTJtdrWHWguzj77bP/888+3dTdERERERERERFoSq26FMqWCjRs3busuiIiIiIiIiIjsMBSUEhERERERERGRJqfheyIiIiIiUqObv7qZEctHcGLyy3w2cy1XHtePO87dnzYpydu6ayIish1TppSIiIiIiNRoxPIRAHw2cy0Ar3y3jHcnr9yWXRIRkRZAQSkREREREam3lORq69aKiIjUiYJSIiIiIiJSb9kFJdu6CyIisp1TUEpEREREROqkZ8fWzL3/bADu/2Q2AOm5hVzz8kRWpOUCcO2gSfS/fSjTV6Zvs36KiMj2QUEpERERERGpk85tUyoVN399/HJGzF3Pa+OWAfDF7HUAXPDUWIpKSpu8jyIisv1QUEpEREREROqkfWoUkLr48N4AlJY6rZKi2lJFJV5p+9XpeU3XORER2e4oKCUiIiIiInXSulUUlNpn544AFBSXUhpiUem5hZW2n7MmM347p6CYx4bPJy2n8nYiIrJjUlBKRERERETqJLVVdPnQNgzhyysqIb8oKni+dFNOpe2/nr8xfvv75ek8MWIBd384swl6KiIi24NmF5Qysy5m9q6ZzTWzOWZ2nJl1M7PhZrYg/N81bGtm9qSZLTSz6WZ2REI7V4btF5jZldvujEREREREWoaKQakj7h/OEyMWADB1RTpFJaX07NiaXxyzG0f168qSjdnxfYtKo/pSizdUDl6JiMiOqdkFpYAngM/dfT/gUGAOcDswwt33BkaE+wDnAHuHf9cCzwCYWTfgHuBY4BjgnlggS0REREREGiYlOaofFQtOJSp1yMgroriklJTkJLq0SyEzrzi+vjjUnFqlOlMiIhI0q6CUmXUGTgJeAHD3QndPBy4EXgmbvQJcFG5fCAzyyDigi5ntApwFDHf3NHffDAwHzm7CUxERERERaXFSQ02pU/fvVeX69NxCikqcVklJdGqTQmZ+UXxdSciUysgrYkNWwdbvrIiINHvNKigF7A5sAF4ys+/NbKCZtQd2cvc1YZu1wE7hdm9gRcL+K8Oy6paLiIiIiEgDpSZHlw+d2qRwzO7dKq2ftTqTopJSUloZndqmkJ5bhHuUIZU4O5+CUiIiAs0vKNUKOAJ4xt0PB3IoG6oHgEefapXnm20AM7vWzCaZ2aQNGzY0RpMiIiIiIi1WaiuL326Xmhy//dyvjmSPHu3541tTKSguJSUpiYN6dya7oJhpKzMAKCkt+wqfW1g2rE9ERHZczS0otRJY6e7jw/13iYJU68KwPML/68P6VcBuCfv3CcuqW16Ou//X3Y9y96N69uzZqCciIiIiItLSxDKlANqntgLg7xcdxFkH7szxe3WPr0tJTuKM/XciJdn4bGY04KGopDS+fs7arCbqsYiINGfNKijl7muBFWa2b1h0GjAb+AiIzaB3JfBhuP0R8OswC98PgIwwzG8YcKaZdQ0Fzs8My0REREREpIFap5RlR7VvHd1OTgrFz5PL1qW2SqJzuxR279GeZRtzAShOyJS664OZTdFdERFp5lpt6w5U4SbgdTNLBRYDVxMFzwab2TXAMuDnYdtPgXOBhUBu2BZ3TzOz+4GJYbu/uXta052CiIiIiEjLs2xTTvx2u5AplVdYAkBCEhVd2qVE/7dN5fNZaznvyTFcdnTiQAYREZFmGJRy96nAUVWsOq2KbR24oZp2XgRebNzeiYiIiIjsuBKSneI1pWL1oTxhXee2UVCqcwhOzVqdSVpO2Ux8p++/EyIiIs1q+J6IiIiIiDRfyVa50HlOyJRKFAtKdQn/A6zNzANgz57tKUyoLyUiIjsuBaVERERERKROzjqoLMNpz54dANilcxug/PTYsaBU+9ZlAzNWp+cD0KFNCvlVBLJERGTH0+yG74mIiIiISPP0k8P7xG+ffdDOvHbNsRy/ZzTrXmZe2fC8WFAqsQbVmowoU6pj61ZkJGwrIiI7LmVKiYiIiIhIvZkZJ+7dg6Qw+95Fh/eOr+sUglI/OaIsiLUmPR8z6N4hlfS8wqbtrIiINEsKSomIiIiIyBY7Ya8eDLv5JP5w2t50ahMNyLjg0F2Z9/ezAcgqKKZ1qyR26tSG9ZkFeGJldBER2SFp+J6IiIiIiNSJu2MJxc4r2nfnjuy7c8dyy1KTk0iyaOa+1DYZ9OnaloLiUlak5dG3e7ut3WUREWnGlCklIiIiIiKVuHu5mlAATv2zm8yMtinJtOo4E+/zAN52NgBz1mY2Sj9FRGT7paCUiIiIiIhUMnjSCn706CgmLU2LLyv10ga11TY1maQ2KwHYVLg0+j9bdaVERHZ0CkqJiIiIiEglSzbmAvDtok3xZQ3JlIIoKEXYt11qVEFkU3bBlnVQRJ5HYrEAACAASURBVES2ewpKiYiIiIhIJT07tgYgLacso6mhxcnzCkvit1slJ9GxTSs25ShTSkRkR6eglIiIiIiIVNI2JRkoH1BqaKZUUYljFu2bZEn07NCajcqUEhHZ4SkoJSIiIiIi1cotSghKNTBTavDvj+OMA3oBYBjdO6QqKCUiIgpKiYiIiIhIZSWlUVHzvMLi+LK6FDq/ZdQtPDj+wXLL9t25I/27twdCUKp9axU6FxERBaVERERERKSy4tIoKyo3YfheXQxfNpw3575ZaXls6J+Z0aNjqmpKiYhI4wWlzKzEzKaa2Uwz+9jMuiSsO9DMRprZPDNbYGZ3mZmFdVeZ2VNVtGdm9qSZLTSz6WZ2RGP1VUREREREarYxfxVt+z1DdmF2fFldMqWqk7hvh9YpZBcU17C1iIjsCBozUyrP3Q9z94OANOAGADNrC3wEDHD3fYFDgeOB/6mlvXOAvcO/a4FnGrGvIiIiIiI7PHevsk5UflEJY9Neo1W7ZaQzo2z7BhY6T2QYbVOSKSwupaR0y9sTkeYjMYgtUhdba/jed0DvcPtyYKy7fwHg7rnAjcDttbRxITDII+OALma2y1bqr4iIiIjIDsXd2f2OT3nw0znllqfnFnLIfV8wd20mADkJNaW2JCiVOHyvTUp0GZJfVL+hgSLSfA1bOozj3jyOWRtnbeuuyHak0YNSZpYMnEaUHQVwIDA5cRt3XwR0MLNONTTVG1iRcH8lZYEuERERacGKSooYPG/wFg0VEpGa5RdFr6/nxywpt3xTTiGFxWWvvYzchKBUhayqH7//Y4YsGFKn48X2TbIk2qYmhz4oKCXSUny3+jsA5qTNqWVLkTKNGZRqa2ZTgbXATsDwhjYUAls/BB4O93cHjgLeN7O3zSw1LG8d7i80s/Fm1j+hjTvC8nlmdlaDz0pERESa3MAZA7l/3P18sviTbd0VkRYrMQNq1uqM+O2ikuqDwRWDUkszl3LPt/fU6XiJQeY2raKgVJ6CUiItRmMM75UdT6PXlAL6AUaoKQXMBo5M3NDM9gCy3T2zmrb+CKwH2ob7DwM5wDHAZuCasPwaYLO77wU8RlkQ6wDgMqIsrbOB/4RAl4iIiGwHNhdsBiCrMGsb90Sk5cotKAsI3fTG9/HbRcUOVghVXGCW0vDsxfjwPYw2IVMqr54z+4mISMvS6MP3Qs2oPwC3mlkr4HXgRDM7HeKFz58EHqlqfzPrA5wHvAj0CbP0nQmsdPc1wCvARWHzC8N9gHeB08L2FwJvuXuBuy8BFhIFtERERGQ7YNi27oJIi5eYKXV4367x26tzVtFxv7tJ6TSz0j6nv3P6Fh/XzOjTNfrtedGGnC1uT0SaB312S0NslULn7v49MB34hbvnEQWJ/mpm84AZwETgqWp2fxy4jahYei6wmChjKjZbX2JtqXjdKXcvBjKA7tSxHpWZXWtmk8xs0oYNGxp2siIiIiIi26HcwqprRa3KXlHV5gAUlRZVuU9dxGtKkcSePToAsHJzbr3aEBGRlqVVYzXk7h0q3P9xwu0ZwMnV7Pcy8DKAmZ0PrHf3yWZ2MjATuAoY5+6TGquvCcf+L/BfgKOOOkoDYEVERJqZ+l70ikjd5SQM39uQXRC/XVxatyF69Z2IIDb0z8zo2KYVyUnG5tzCerUhIs2XakpJQzRaUKqRnABcYGbnAm2ATsATQBczaxWyofoAq8L2q4DdgJVhqGBnYFPC8pjEfURERKSZi0bji8jWFMuU6t2lLRuzy4JDxaUVLyyrfj1uyQVoUpLRpW0KaTlFtW8sItsV1YqT+tgqw/cayt3vcPc+7t6fqFD5SHe/AvgKuCRsdiXwYbj9UbhPWD/So59UPwIuC7Pz7Q7sDUxootMQEREREWn2skOmVL/u7diYkClVUmH2vZ06ta5y/8Sg1Pnvn09+cX6Nx4tlPsaCznv26sA3CzdQUikIJiLbo4Ki6L1j4DeLt3FPZHvSrIJSNfgLcIuZLSSqGfVCWP4C0D0svwW4HcDdZwGDiWb++xy4wd0VrhUREdnOaCiAyNYTy5Tq170daTmFlIbgUEmFYbN3nrd/1Q0kbLYscxlLM5fWeLzY6zkpXIKctl8vVqTlsSYjrwG9F5HmpqA4uuRenV5zgFokUbMNSrn7KHc/P9xe7O7HuPte7v4zdy8Iy/PD/b3C+sUJ+z/g7nu6+77u/tm2Og8RERGpv9gMPrHMivnrsuh/+1AmL0vblt0SaVGyC6KgVN9u7SkpddLzoqF0xSXlg1IpSVVfMsRqRMXUVgOuYqbUHj2jkrRpOaorJdISFBbXr86cCDTjoJSIiIhIrC7FNws2AvDxtDXbsjsiLUpWfjEpyUafrm2BaCa8uWszWZ9VPsuhuhpvFYNQtWU2xtbHgs7d2qcCsElBKZHtzrQV6fS/fSjTVqTHlxWWKCgl9aeglIiIiDQ7+UVRMOqticspKC4hOSm6iH19/LJt2S2RFuPbhRtZkZZLpzYp9OgQ1Yy64KmxnP34GN6bUrf5gSoGoWoNSlUIYnUPQam0bAWlRLY33y7aBMAn01fHl5WqPpw0QHObfU9EREQkXvh4ZXoeV744gXGLo2F7RSX6wiuypbILirl84HgA+ndvR48OqRW2KP86s+pm36tluF6l7WM1pSz6XbxbOK6G74lsf7p3qJzpqDwpaQhlSomIiEizkzglfSwgVVFtv8jW94JZZEexMatspr2OCZlS9VUpM6qWl1zFmlIdW7eiXWoyy9JyGnR8Edl2OrSO8ls2JWQ6Jn7upucq2Cx1o6CUiIiINDs1laUoKillRVoue9z5KR9PW13lNlNXpLP7HZ9y38eztlIPRbZfKzeXzXbXsU0rOrdNqXH7umZK1bWmVLxdM47fswej5m2ocT8RaX6Kwgd1YqZj4m9F01ZmNHWXZDuloJSIiIg0O0U1RKX+/slsFm+MMivenLC8ym1mrIq+DL80dmmj901kezd52eb47U5tUkhKMgb++ijOP2SXerVTqaZUbbPvhe0TtzuiXxdWbs4jJ8wEKCLbh9gsnZuyyzIvS73ss3t5Wm6T90m2TwpKiYiISLNTNnyv8kXu0BlraJuSDEB6blGV+/fq2LDhSCI7go3ZicP3oiE4px+wE09dfkS92mloofPE7Xp3iWb+W52eV+U+IjGfz1xL/9uHalhYMxH78WhTNZlS//lqYVN3SbZTCkqJyBaZsyaTiUurrvciIlvfl7PX8ezXi7Z1NxpdaUKiVKtO00huPy9+f2N2IWk50UV1Rl7VQaliFUQXqVbicJvudaknVWH0XiwboqHD9xL322enjgDMXK2hPlKzZ0ZFQY5FG1SDrDkoChGoguLS+OQkiW8BazLyW1QG5Or0PFYo+2urUFBKRLbIOU+M4WfPfhefvl1EmtZvB01iwGdzeXTY3G3dlUaVeNHatvebtOv7Urn1sWEBm6v5xbw4IaqVUU02lciOKjO/7DXRtV1yuXVJVZePKqekNPrMrxSUcufMd8+sfsf4dWvZfrv3aA/A6vT82g8sLd6q9Dzu+3gWxVUM4S7x6jNopekVFZf9jVaFOnWlFd4T1mS0nNf18QNG8sNHvtrW3WiRFJQSkUbx4tgl27oLIju0p79a1KJ+kaz4xRbgrvMPiN/+am5UGDm3sKTKOjZFJY4lZwOwcEP2VuqlyPYpr7CE/XbuyJUnJ/HU0osZt2ZcfN1r1xzLUf27ltu+YqHzotIoqFVVZtSanDXVHreUyhlWbVKSaZuSzOYcDckSuOuDmbw0dikTl26utC6WAZuV33I+6xpDUUkpb01YXmUgb2sfN2bYrLVA2Wf3mQfsBMCajJY3LLegWD/ENzYFpUSkUZRoqIzINre4BQ1piI0EaJXwTeWaE3fn2V8eCcB3izfFl+cUVv6COCt9LB32+TvJ7RYp3V6kgryiEvp0bUv/PtGF5Lervo2vO36vHtx4yl417l/iIVOqEWpKAXRtl0Ka6gTtsLLyi3hq5AKKS0oZOXc9AG9UMYlF7L18Y7aeK4kGfbeM24fMYPCklU12zFXpeTz0WVmG9gOfzgEgFm8+uHcXABauz652mH1TKSgu4cOpq1i5ueHfBUbMWRe/fdcHM8tlm9bV/HVZytyuhoJSUm/uTmFxabOLfLs7j3w+l9+/Oonb35u+rbtTSWmpk93EWQx73vkpDwydXeM2paXOFQPH8dW89Vt0rH8On8/C9VkAjF24sdk9P6R6hcWlfLtwo36lbgHufH/Gtu5Co4kFpYpLy1+8nnXgTpW2PfeJMeVq5AAszZkJQFKbVVv8/ibSnBSXlLJ4C7L/1mfmM2t1JuMXp8WDS62SWtWrjXlpUY23xJm2oPJwvhHLR5RfH4JRFffr07UdSzfWPag+fWV6k2eFyNZz1wcz+ccX83l9/HJSk6PL0/WZZcO+Rs5dx6vjlsV/gPjTO9N4Z9KKRjv+hqyC7Tr7JTZJwJ3vz2jw511mflG9XoML11f9HhT7yO7SLgWA+z6ezaH3fcHw2euq3L4p/Pfrxfzxramc+PBX5WYKrI9rXpkUvz140koOufcLlm7MqXXG0ZiN2QWc+dho7v5oZp2PmZlftMN8N1dQqgUrLfV6zU7h7jz+5fwaf1E++J5h/OjRUfz1gxkc99DIcnWEPpuxZpt+8d+cW8R/Ri1i2Kx1vDWx5g+q4pJSbnt3Gv1vH8p7k1fW+Q2looy8ojrPFvPP4fM46J5hfL+8cjry1pBTUExJqfP8mCU1Tq3+/verGLtwE1e/NJHC4uq3+3L2OtZllh8XXvGXj9P/NZr8ohKuGDiei//zLc3B86MX86sXxuPufD1/Q4N+2Wjpjvr7cC4fOJ4rX5rQKO1lFxRz7aBJrNJMSk1uxqqWUyg49r583sHlp6g3KxtGdHQYYrQ8LZcj7h9eloXhzoJ1ZV+YZ6xsOY9LS5GRV0T/24fywfer6r3vqvS8Wn95zyko5uv5GxravWbtiRELOPWfX8cvIDdkFXDXBzNrvKj+8zvT+NM70wCYtSYTgKyC4vgwvCQrf0lQW8bT1cOuZnH64krLK+43aNagWs4mcuwe3fh+RToz6/AetnB9Fhc8NZYBn20fdfTmr8viizC0Sar2wdTVANzz0SwKw3fW9NwicguLuWLgOH7z8iTu+qD8xfyf322cH6CLSko5+oEvua0B7S3flNvga4jGlFgH7uqXJvJlCADlFBTz6xcnsGBdVq1tXPLMt5z8j1H8cuD4Oh0zu4ohlP1vH8qyTdH7Ukpy+feU3w2aRGnptnmsEidR+ONbU+u/fzXvSyf/YxQPfTaXeWurfnw3ZBXEr8Fi19cfTl3NsFlr6/S8uf61yRx+/3AmLGn5E0opKNVCZRcUs8edn3LY34bzwjdL+Nmz39L/9qH0v30oWflFlJQ6twyeGh//C7Bycx6Pf7mA3w2axIq0XIpKSikqKSUrXMRPWppGVkExy9Ny4+mh6zOjaHNBcQnXvz6Fq1+ayCfTVzf6+azNyOfDqas49Z+jyC2M3gRHzVtfbkrjim+O5/97TDwAlJ5byJRwOzO/iL3+77P4Odz6zjSuf21KfL+pK9K5ZfDUslkkKtiYHb3BlJQ6h973BccPGMndH87klW+XVtt/d+fpr6LZsX7yn29rfVN2dwZ8NpenRi6IP/6bcwq56c3vmbg0jee+XhR/HKpz89tlb7qj5lX9xTy/qIRbw5dUgGe/XhQ/HsDs1ZlMXraZjLwifjtoEsc+OIKM3CKyC4q56OmxHHrfF5XafDsEBNdk5NcalBizYAOTl6U16AO9ugDavLVZ5BeVsGRjDje/9T0PfDqHMQs2svsdn3LlixN44JM5Ve43eOKKcs+n7dlTIxcwdHr1NT0qygyvnemNdOE+Ys46vpi9jhMGjKz1F6llm3IYs6Ds+XnXBzP5ZsHGRunHjqCq105z+ILcGGJvk3v26hBfdvfYu8koyODwvtGwgMQaU0D8l9jvFm9iQ1YURD+ib1dWbs7bJl+Gxy3exPSV6U1+3MZQXFLKS2OXbLVJLGIXLv8dXTmwURN354QBI7nsv+Oq3eazGWu46qUJXPniBPrfPnSb/Bjh7sxancFt707j4HuGVQqiFZeUMnDMYq57dXKNPwhVJXaBsiIMRXnk87m8Om4Zw2ZVnYlw1UsTeGfySt6dvJJpK9JZlJDhECtYnpyUXOW+MRVrSgFsyNtQ6f2mUuYUVa+vuN9vT9wDd7j7w9qzCGatjoJqA79ZwhNfLqh1+4ZYtCG70d5Lz3xsNNe+OrnG9tZn5nPr4ChwWN3zYc6aTE79x6h6/eBcV2MXbmRSE8+k/MH3q5i9OpMl1WTnLE/L5YC7hzF24aYq1wMNynopKXX63z6Uc54Yg7szOGRcDatn4PCVb5dy0qNf8Z9RdZv99oPvV3Hr4Glb5TM6M6/8NcF/Ri3koc/mMGNVBqPnb+CMx0bX+l4+P/yQ883CjXw1d32t28e+Mz9x2WFcetRu8eVZYVRI4g9IMZf+97vaT6YO8otKGPTd0nJ9XLAui0VVZJCWlnq598ZvFm6s1/fM0lLn/H9/E7+fWiHY9t/Riznr8dGVAkd5hSUc/cCX7P1/nzFkysr4d22A3786udbnm7vHn/tLN7Wc0gzVqV+urmw3ZiVEdO//pPzwrVsGT4t/cR8yZRVLB5wHwDNhSvG5a7MqzSyw5KFzWbqpcgbV2sx8+nZvx9KNZetufON7zj9k1zr3dfKyzSxPy+Giw3qXewN7auQCurZPZerydN6ZXDZG+vnRS5i0LI0x4Q2lTUoS7153PF/NLZ+lNXNVJnd9OJOPbjiRw/42PL68a0gnTfT5rLX89pVJbMjKZ1q4MP/1cf2ZsTKduz6cFd/uuh/tybNfL6Jz2xT+eNre8eWDvlsGwJXH96/yHNdWyDDa485P6dutHQN+ejDH79kjvvz971fyl3dnxH8lAvjHF/P55Q/68tq4aGz9x9OioN9Dn83l29tPpWu7VNqmJuPumBlrMvLo1j6VcQn1Vn43aBLf3XEqyzbl8oM9ugPRrydH3F/2uAD8a/h8XvhmCYN+cwwTlqTFx4d3blv2mB36t8qBqIG/Porbh8xgY3YB93xU9nidMGAkD//0YP7y3gwO7t2Zj286sdx+v3qhLDPn7vMP4Dcn7l6p7c9nrmXRhmwuPqI3u3RuC8AXs9Zy7auTOXb3brz9++Pi227OKeSsx0fz0yP6MGHpJlakVQ6KvT1pBRcctiszVmWwNiOfPl3b8s6klcxbl8WhfTrz4Y0nUlRSyh1DZtC9fSo/O6oPL3yzhF8c05eu7VLZrVu7eFsZeUWszchn3507ljuGu1NU4uQWFtOlXWqlPmxN/xg2j6e+iqZMPu+Q8+q0T8fWreJfIpZuzKF/mAmpOl/NW09KUhIn7t2jyvWtW5Vd3Bz59y/58paT2KtX9Bitz8qnXWorOrRuxeacQn706KjouAPOo7iklFfHLePVccuYctcZdGvftI/dtrAmI49kM3p1atOg/XPDUIafHdkHgHcmr2TIlFX8NNyvq0eHzSU9t4gHfnJwg/qxNcQmz0v8Bfj9he/TuXVn3vjtzazJyKNtavkL6fS8IvKLSliTMItX9/apFJaUMm1lOof3LV+8uaLnRy9mz17tOXW/ykMEaxN7D47dHjpjDTe+8X18/dOXH8F5h+xS3e64Oy+NXUpyknHWgTuzc+eGPScSLduUQ7/uNb+eY2aszODAXTsxesEGXvhmCecevAv3fTyb3MISbqilvlBNsvKLmLR0M8lJxqF9utA5fAbnFETP3dlrMnnw0zncee7+dWpv6Iwo4D4nZPtUdO4TY5hdYd1VL05gyP+cAMB3izaxJiOPnMISfnlsX8yMopJSPpm+mjMO2JkOrRv+1XjQd0tJSU7iF8f05b6PZ/Nywo9V709ZyVUn7E5WfhEDxyzhvSkrWRlmq1q0IZuiklL236VTpeyCopJSWiUZAz6by1kH7cwRfbsyPlz83DFkBq//9th40eenRy7kgkMrf/9K/GHqypcmkB5qmnxy04mMXBd990tJqvzdqDaGVRt0qu5+dTWlYs+LKcvTeeGbJZx5wE7MX5fFI5/P46ObTij3ufLPL+bHbz/25Xz+cNpe8ddecUkpM1Zl1Ppar8nYhRu5YuB4enRI5Y5z9o+/n67Pyue/Xy/mxL17cGS/rnRsU7/H7NpXJ3PjKXtx6G5RUD09t5DsgmJe/W4ZzyUEZ4/u35VLj+5baf8nRyxg8cYcxi7cVON7yfrM/Hp9prg7V4TsmKUDzuO9ySvp2j6FE/bqUe5xj8nIK+I/oxbysyN3Y6/wo0Hs7xp7bnVtn8pLY5fQrX0qP9ijOztV6E9aTmG5H08ruvjw3gypJovy7vMP4G/h2ubWd6bxmxN2568fzGTYzSdV+kyoSuzH1zlrMvl+RTr/934UCC0oLmXBuiz23qljpX0+n7mGv308m58e2Ydbz9wXd49/33102Lxa3yPdPX6+915wQK3PnU3ZBeQWlpT7zlmVFWm53D5kOmMXbqJdanL8O8GU5elMWZ5Oh9Sy97P/eX0KL151dJXtTKkwiuPqlydy+bF9eTDhO0FWfhFDp6/hqP7dyMgrip//mQf24OR9e/F2FcMp3/zdD/jF82U/IFRVvL6ijdkF9OjQutr1v35xAqNDFuy7k1fy9OVHMGTKKh77MnpfGH/naeWeb/d9HPXzmhN354VvokmZ/vLedL75yylVBs5iJi/bTGZ+EQfs0qnc8vkPnMNbE5Zz+5Dy5RJ+/tx3XH5sX/563v7MWZPFvQnXQ7cMnsa/f3F4ue2/nr+BDq1T2KVLG/p0bUuyGQXFpbQPn0GxYO0DPzmInycE/VoqBaVaqIpBkEQVx/T2v31ore3tfsen1R6nuKS00pfDC58eyyVH9uHsA3emZ8eyNxZ3598jF7Jycy7XnLgHazPzufLFKDCRmpzMeYfswvEPjeDwvl3jXzwrir3pxOQXlZaLYCeauSqTPe4s3/fNCQXmOrVpFY9cfzmn/ONy0dNjK7X3bAjcZeQV8eG0yhlhK9Jy2a1bOxZvyKZLu9T4RXVVWSvL03K5/PnxPHrJIdwxZAY3nLIXT4yo+he/WECqouMHjKRXx9b06NCa2WsyOevAncr9GvDH0/aOt3ncQyMBeOe647j9veksqqYgckZeERdWOPfahkmcul8vJtx5WqXHGuD+kJk0Y1UGX82Nstt269aOX71QPj34b5/M5uyDdmbXLm356wczWJ9ZwHO/OpLrXpsMRB/6ix48l+Qk46vwBXv8kjSeH72Y3520BwAjQmDyvSk1F3q8oprU5GkrM3hj/HIWbcjm3RAIjX1RfHNC9GE75rZT+GreemauymDK8nQWrs/m+7vOYNKyzZy+fy8y8or44SNfxS8SXrvmWD6etpqHLzmkxj41llhACqJfyv7n5NovJju0aUWvTq1ZtCGHz2au5fqT96x226z8Iq5+aSIACx44p9IF1Or0PD6ukC15+r9G88wVR9C/R3vOeWIMHVq3YuStPypX/+g/oxbyyx/0i98/4v7h8YB5SakzbWU6R2zBRcbWNH9dFnv0aE+r5CTmrs2kuMQ5qHfn+PpJS9NYlZ5XLmX850f14ZFLDuWSZ75jVXoe711/PF/PW88tZ+5b5TGmrUinS7sU+nVvz8i56+jfvT179OwQf20e2a8rO3duwzuTV3LrO9PiF1HfL9/M6vT8+AVMYuAkUSyTszkFpWIXrclVzE/fNjWZPXp2oLiklCP7deWKY/tyy+Bp3Pbu9PgQjNa9om1j78N/+2Q274fARHVigfjYc6+uVqTlxn/MefaXR9K5bUq5gBTADW9MoUObY/jRPj2j83MnI6+ILu1Sycgr4uzHR8enzr7no1k19mHl5lwKikvZs2eHarf5duFGLh84nj17tufTP/4Qw0gNVePXZeZTUFRK3+7RBc+cNZn8+KlvuP7kPXnhmyUUFpfGa3Sl5xZSVFJKqXulC9TBk1Zw1gE7xwMKiRauz+bRYXP5fnk667PKshlG3PojurVLLXeh8t/Ri7nz3P2ZuiKdWaszuOLYfpXai0nMmjjmgS9Zn1XAM1ccwTkH78LMVRmVAlIQXaANmbKSnxzeu9xxd+/enryiEn43KFYrZBqH7taF3/1w9/jfLzFA7u58u2gTx+3RnaSE5+XkZZsZNmttPOvrjiGVa7vd+/FsSjy62KyYWTFxaRp3hx/AHvnpIXRqm8Ktg6fG6+dc96M9eW70Yp4bvZjHLj00vt/KzXnxwD7AvHVZLNuUw+BJKxj07TJeuOpoDgsBkJj0hO9AB/XuzBdros+qZKslU6qK9w0zqz0IVU0h9IrbAbzym2O48sUJ3P/J7HI/qH41dz39urdnv507UlzqLK9QZuLnz33Hy1cfwyOfz+WV8CPhq9ccww/3jl5r4xdv4pA+XSoFLD6Zvppdu7SlfWqrcj8uxS54N2YXcus707jo8N688u1S/jNqIRuzCxkYLmwfu/RQTtm3F4MnreCo/t3in1EZeUW0bpVEm5Tkclkxw2evY/jsddx9/gFcfmxfjnlgRLkfIWMeG76gUlCqtNTjGfxJVv79I9HgiSu47b3pDP3DiRy4a2eWbMzhvCfH8NGNJ8R/HKoosfRGYXFpuQz6fXbqwH0XHESblCQO79uVopLSeJb8c18v5g+n7sXNp+9T6fvf3PvP5r6Py/8oft4hu3Bk367xgFJFH9xwQvy792XH9K0yKHXxEb05bf9e8TZGzdsQD7o+/uV87gjBbXdnzposzn1yTLnnwsi56+jZoSxgcelzZZk77nDGY6OrfO+9Loyo+PfIhezVqwN9upYPFj01cgGn7b8T+1cIYMT6MuDzsqGmH09bw+XH9iW3sJhWSUmktkqq9Nl88qOjyCooZsDFB3NU/6707daelGTjD29NZfGGbIb+4YcAnPPEmHi92l4dSZpT0gAAIABJREFUWzPqz6dwwoCR8ZEK/xxeds00cu56Fm3Ijn9uvPDNEu7/ZDZnH7gzn1eRtfPG+OWcccBOnLJvL94L3y0qSm63kGPeuJ1B5wzi3IN35tMZZe24O0f378q1J+3Bz4/ajdP/9TUQfU/ctUvbcu1c+PRYpq1I58MbTuDCp8fyxGWHceFhvdmcU8iytFy+nL2OW8/cBzOLvz4hyvCvmEjxzKhFvD5+GU9edjjnHLxL/D2hXWoyx/TvxoTwnezBT/+fvfMOj6r43vhnN71DGglJgAChJaH33jtYUKQKKgKKgorwQxBEpamggooKoiCCIL333ksoCYRAIL33Xrbd3x83e7Ob3RQgIPLN+zx5srt37ty5bebMe95z5g6CAL2b1CArX8nE9QHMG9yE0KRs/D2qGc3R+dkQUZ09om0tA1JKe802XjI+Z9OKBQY3dWdvYDx/X46W5hYg2jpqjUD7uo4oVBquRYkq64ZGSNLnEbLnReb/uGjdurVw9erV8gs+40jPVdBCR/3y5Yt+/HYmjPd7+lDXxaZS8vwcn96Nubtuce5+KkOb1WS3EXJGF9rOffaOIIMX9YPePnyvI72+t2AADT498MhtszSTs/BFf6MdZ0mMaleLz4Y0ISVHwcDlZ57YyhB9m9TgcBERGPxFP5rMO1TuPu4Olqg1gp4h/yj4elhTZpZI+v5SCw926Az0e9/vTB1nG/w+K79dJbFydEucbS1o6+0IQP/vTxNSSlx1RdGyVjWpI3azt9QjWIe39uRKRDr1XGw4eqfYiIpYMghBEEolT2993g9zE/ljPVsVQTtvR8mDXRJ3vuhfpgcvI0+BWiPgZGtBvkLNugsRZOQp6VTfiU1Xounq40xApOhhsjIzYe7gJpiWIIQy85UGIZU3P+urp3TLyFMwe0cQcwY1waOaFRfDUhmx6iKj2tWS3s8d73akRa3q7A2M40RIMote9uNmdCaudhbsuB6rR57ufb8zfh4OnAlNZmtADLtuVF747rlZPUnIzOfc/VS+PXJPatftuExO3k2mYz0ndl6P5cz9FKb3aWjUc3wgKJ4ClZqXWjyccqgkVGoNP598wBudvbE2M0Eul1GoUjPkh7PcS8yhn28N+jRxk3K2nJnZQ/Jwlkb8zxrQyCAnyuyBjZjYtZgUzFeo2XApkgX7RLIk5Mv+NJp7EIA/32xLep6CaZtusHJ0SzrWc5JUoeGLBxKfWUDHJSIZrVWi9Vh2khFtavFC85pYmpkQEJlOP183qY2nZ/SglpM1D5JzWHroLm929qZNHUc+3RnEXxej2DihHTHp+czcFshXw/yp72qHTw1bLj5Ipa+v22Nd45IYu2MuN7J28n7zafxwY7n0+3jf8UxvPV2vrEqtof4c/ffbwnUv5k5n+ajVdD7/y0X6vZajNadmdDeYZCvVGnyK6tCdlAiCQFa+CnsrU6MTc4VKw76gOD7cXDzutKlTvVSPcMta1ajnYoupiZy/L0dx9KNunLybJN1jLbZM7kCbOo5sC4ghMjVXj7D0++wQOYUqXmrhwTevNDXoCwRBYNCKs0YJmvEd60gKnvEd6xCWkisZ+aZymUFieV2MaV+LuYObYCITlTu/nQ2nVyNX1oxvw6HbCZy+l8zM/o0wkcuYsuGa0ZxOPq62FKjUBkrWG/P66D2/Ko2AqVxmcM3f+SuAA7eMhz183LcBSw/fw8nGnNQSyWGtzU048XF32i0qTrxtrFxJfD2sKfVr2NKyVnWO3UnkrXVXmdytHrMGNAJEQunVX0oPSTE3kRslHp4WRrerxYaivv3F5jWl3D3WdX7CpXoug+oOYn3wema0nsHrvq9L+30f8D1rbq2Rvq/osYKpJ6bq1f1Hvz/wtPOkz9Y+0m8/9/6Zd46+I31v6tyUDYM2MP7geNQaNdUsq3Ey+iSz2s5idOPRBu1dsDdYIn1KQteRWBHcXdCfTZejJUXHAD83zEzkmMpl+Hs66JEmp2f0wNnOnHf+Mv7cVgT3Fw7A1EQu9acb325Hao6YeuFRcGNeH7ILVExaH0BcZr5EKP44qgUPknL57ug91r/VljZ1HFFrBGwsTBm1+iLnH6Ty6aDGnLufIjnxQLx+P49pxb3EbL49co+b8/oil8vYdSO2Qnl2ajlaGxCCAHVdbCpl5deIJYNYtP8Oq06HEbpwAN2/OamXBuLKnN7YW5liYWqCQqXhrXVXpKgJLab28qFBDVu2BcRI597W25F/JnUgKbuAtgv1E+8bg1al9c0rTXm1SKFS2jg+tn1t1l8USY8m7vaM71SH+0k5+Lja8mprr1Jt04glg6Q6W9euztXIdL4a5k9SViHH7yZxParssO/Lc3ox7Ofzev3orimdaOZVjVuxmaU66wGOftSNEyFJkhNGF8bmDWXB3OUAFs6nmNZyGm/4vsWgFWcIl/2BebWrzO8wn2ENhkllfzweytIilaP2mQmc35ew5FyJjBzXobZEIn0yoJHe6n4f922AjYWpAdlZGrQkjxZfvODL2Pa1S50rVASB8/tiX6RyW38xEntL04fOURW+eCCf7rwl9csPc8znAKVK054pUkomk3kBfwI1AAFYJQjCcplM5ghsBuoAEcBwQRDSZaKlshwYCOQB4wVBuFZU1zjg06KqFwiCsK6sYz8vpNSLP53jRnRxR1aS7Z+1LZCLYan88UZb1p4Ll158EHNzJGUVSMqQAX5uHLiVwLJXm0kkz9fDmjK8TekddO/GrnpkAYidZGBspkGCwopgUFN35gxsLE2sQCSeCpTFBt4fb7SRlBtrxrWmZyNXqcPRJTW8nW1IySnEx9UWfw8HPn/BT+9Y9WfvR6URODOzBxl5Sob8KHbob3fx5lZsFk09Hfj1dBirxrZi4voAab+7C/oTlpzLgOVnyj0f3UGoNLzQvCbLR4gSz9/OhOlNVA5/2JW+350GRGWElqQwhkZudvwzuQP5CjVTNlzjqpGyXXycWf9WOwC+O3JPj2z4Z1IHhut4kLwcrQwmEedm9cRDx9uhbe+mie1xtrWQvCKlQXfweVg4WJmVSyTO6NcQ35r2dG8oSiZ6LTtJXRdbPh/qq/dMAVz9tDetFxx9pLZUBMemdyMjT0kNewvsrczouPg4K0Y2p2ejGtyIzpAG5Jn9G/L1wbvl1vdaay8D9dWJkCTeWHsFdwdLSXGhxaeDGlPXxYY314r93KCm7nzUpwG9lp2Stns5WjOp6NnW9XhpPUvG4OVoRUaeUlKGaeFsa8HGt9ux6nSYpDp7XHz5oh+CIEiKgpKo52JDdoGK4a29OHonkY71nPn9nDi50Rp7DtZmpOYo6OtbA9+aopopPjMfWwtTrMxMCEvJpUENO46HJLLyxAP+mdRBz2jXkqZfD2vK2fspZZLyK0e3pLOPM03nG4a8loVpvXzwqG5F9wYuvP/39VKJTl1smNCOTvWd+fbIPVYcC6Wui6gq0N7DX8e2ku5tSVya3Utvol7HydpouHZ52DWlE/cSs2nkZo9Ko6FFreoSoROVlsfsHUH0auzKsJaehCRk4+dhj72lGQLohUz9cuoBf1+OwrPucQJzdjK1xTRWXC+blAL49dQDPQNWS0p93PpjAgKb6t2r63P7UL1EeGhcRr4eiQdiXr2BK4r7do9qVliYyRne2ovJ3UTyUDeUoLKhS5o8WDSQhfvuSM+0Lq7M6S2pkqNS8+j6zQmDMk8KtZ2s+WFkC4b+aKguLg8lJx1a/DCyhTSRH9ehNp+/4MeWq9EkZBaw5ly4ntrHGCri4HK2NX+oZeUjlgxiwrqrkqp69eut6dOkBmN+u8TZ+8UT4xr2FiQW5dvUTiZyC1X4GnH8fD7UVy/k/WEwoo2X3qIuuuSTMSx40Y/R7WpxJDiRiesDsGs8C4CRjUbyd8jfBiSR/zp91eTyHsuZdmKa3m+LOi+idY3W9N3WV/rth54/8P7x9/XKBY0Lkurr7tmdkzGlk1LGCGZjWPtGGxq72+v1Xc8C9rzXWbIfdeFRzYpPBjYyUFA2rGHHhC7ezNgayJ0v+rM/KL5CjtWSsDSTo9HwUATo1skdsLEw5VJYKvMrONGvLDRys2PHu50IT8llwror9PV1Y/5QX0lZJpPJuBSWypg1lxjazIPG7nZM6FJXr46UnMIK2W1u9pbsfq8Tbct4VkqzR49+1A1Xe4tSx/GpPeuz4vh9o9u6N3QpNadrSaf846KkI2Xt+QiJvGnsbk++QlWhcT188UAeJOfQ+9vT5Zbt2cgVM+f9nE/dyrSW05jgP4HXfr3AjYJVmFe7yucdP+dln5el8sZC3p4mtNEWX+4NlsL4HhZhiwbqqWSh7Iij25/3Y8OlSBbtF8e5D3r78EHvBgDU/WQf5aW6bFvHkX8mdyi70H8LpZJSz1r4ngqYLgjCNZlMZgcEyGSyI8B44JggCEtkMtksYBbwf8AAwKforx3wM9CuiMT6DGiNSG4FyGSy3YIgPJ1lz/5F6BJSLzY3zCuwZFjxJHb+UF/e6+nDvsA4cgpVvFWUz6euiw1NPatR28maKT3q4+fhQPt6Tmy6HMXLLT2k/Qc1dTcIS5vet6EBKVUyFKwkLEzlFJZI6ljbyZrI1DzaeTtSXUearJVzrjkbzpXwNCLT8ujR0JV3u9dj5ckH1HWxRSaTcW1uHxIyC2hS01BGWxoC5vZBrRFwtDHHy1Fk5J1sLRjZtlhCrZUF63obLUxNaOxuL5F45eGnUS2ZsvEa1+f2oVClISI1l7XnImjr7UgdZ2u9XCZvdPKmtpMNjd3tOP8gFZ+i2P2RbWsxZ1Bjo+omU7mM4W28pDhwe0sztr7TEYBBK85ICUIBvtJ5HoY0c2f5sVB2v9eJpp6i3F9L1LzdxZs5g5qQr1Dz9+UoHKzMsDCT6xFSIMZrd2/oIknE/3yzLa//fpmpvXxo7uVAO28n3tt4TfJevd6xTqmkVHnemhFtvHCyNZc6el180NuHKT3qG4SWHZveXfrsaGNOWq6C7e92pIa9Jc62FoQuHCApJVa/3loK6bA0k3Pkw26k5BTyUpHa0MbchFyFmo71nDj/QD8Jp7mp3CBR6f7AeElG/d1rzcgpVEkEkd55V4CQAjE3lr2VKX193VBrxMT42sTBGya0o+cyfUKwpApjX2C83vvr7WxDr8bFz56uBLskIfVO93r4ezjw7oZrRvN2Afw6tiUNatix9NVmfDakCf7zD2NmImOAnzvNvKrphWbsm9qZQSuKjfhPBzU2aC9QLrGtDUnVhjDqqvb+b5u+IXThQSr/TO7A2DWXOBOaQiM3O/w8HNgaEMO3w5sxZ8ct8pVqXlt1ge9HtGDGFvFZ1Kr4KuJJfHfDNWb0MwzHK5ljoSRKC+MtC9qll1sUheqEJefqea5LI6QAg0ndoxBSYNjXN6xhx90SK/4ExWYaNcRn9m9INStzPbl8vDwdC+cyLJgS6OzjDKXMZWf2b0hgTIZ0bn+cC+dWXJZefo1L4cXv8b7AeKZsvGZQj9Zrv+RACJ7VrQhPLlYZOViZcW5WT77RCSF6XOiqeCb+eVUKUS6JNguP8m73erg5WJZK2j4KKkL+R6bmVYiQOjerJ51KOANGtKlFt4Yu9P9e36mjqyxZdyGS1FwFe3X6qy4+zix6yZ8uX5+gi4+zgVrC3FTO1F4++Ljacjchm5Un7+sZ/zP7N2RDibD4kl71khj8wxluxRaPn8UhfyLGd6zD//VvhJW5iTRJ0Xq3bSxM+b/+jfjqYAgbJ7TD1tIUU7mcJjXtic3IZ9XpMKPnURYWv+zPmdAUqlmbsW9qFw7dTpBIKd08lCDaBaPaivmz+vq6sff9zowsmstrE52XB2Or8c0+O5tDw/TtEJXGUMmUnFc8MdfWU5pT3NREzmutvaT8NHcX9KfhpwcNymmdTdvf7ci43y8bOEYeFy80r2lU+RvyZX9Scgp5/ffLRtVBxggpEEMTvRytDJy36ye0xdXOUlLkNPV0MLp/edB11lYUr5Sh8NPm5TE24e7i48yCF/34cPMNaUxsWasaI9vWYu35CD070xje7OTNez3rY2VuQpOa9pz/pJe0TVcZ2a6uE9fn9S01z5uzrQX7pnZmwrqrzBnU2IDw0yIhq6BMQgpgUNOaOFibs6LE+KvrXG3q6aC3IIy/hwPDWnly/kEqeQq1gTK1JCEV8mV/Nl6K4ou9wZVKSJWc78lkMt7o5I1XdWsa17THo5oVao3A1E3Xy10ERyaTlRrmCTCkWU323IxjZv+GvNu9Pt9ePcP51OKFEJa+2owPjztw14hwrqyVwB8WJz/uTh1nGz2nUMSSQbz951WDNDVaaFMBzBnYGGdbCyzN5Aaqq7mDm+jZp1+84Mu8Xbf5YWQLQhKyDAgpEPPqmprI8KxujUYQJPHAslebYWNhysSu9XRIqQbSfpfnFDvDrcxMyNdJ2v7t8GZibt9nKKXCk8YzpZQqCZlMtgv4seivuyAI8TKZzB04KQhCQ5lM9mvR57+Lyt8Fumv/BEGYVPS7XjljeF6UUlrFxci2Xnw6qImULO1JQKnWsPlKNDeiM5g9sDG5hSq8HK3JLVQRmZoneurn6hsS4YsHotYI3IjO4JVfLmBmIuPwh93wdrZh9804pv59ndpO1nSs58zfl6P4ZUwr+vnWwPuT/TRys+PgB11LbUt4kcLhaSAtVyElCdd6J3RlqXcX9EepFlfn0xq5ujHtj4M8hQoLUxNM5DIazz1IvlLN1F4+vN3Fm0KVpszkgNprrG2jsQSWTxrhKbn0WHoSRxtzrs0tlvyn5ypQCwJ/XYzkxeYe1HG24eMtN9kaEEODGrY086xGnkLNvqB4mnlVY9vkDpiayDkTmqyXMP3oR92kxJtlISAynfUXIlg2vLlezpq/Lkby6c5bnJ7Rg/vJ2WwLiOX7Ec0lgisqNQ8vRyu9hMZLD9/lpxMPeLF5Tb4f0YJ9gfFM23S9zDCY8jDI351GbnZ6+QAqAiszE25/3g+lRkO7RcfKVRQAfP1KU15p6YlcLiMhs4D2i8s23rTPvM+c/SjVhuf45Qu+jO1Qp8w6FCoNvxcpHmYNaETDTw9I5PSx6d0IiEx/pOWZHwa6obWVgbmDm9DPtwadvzJUqdz6vB825iZoh1xt/o2FL/kRmphDWq6Cei62BjnzdLHx7XaMWm08H5qu9y4gMo1hP4uTjRn9GvLNoYoRnWWhnosNBUqNRMr8M6kDX+4NJqgCy7c/KnTDApZfK18pJQgCq8+EoRFE0sjCbQfm1S/xceuPGec7jpj0PIN7c2l2L+wtzVCoNCw5eEcvv8PDYlK3unwyoDifyZWIdHIVKlJzFNR3teVIcIKUu8sY/pnUAaVag5+HA32/OyWpbUrD1U970+WrE3qGrDEcm95NUkSCGLquUGnwdrbRezaWj2gOFC+X/VGfBkzt5UNWgRI7C1MSsgp4eeV5rMxN6NXIlZxC0UlRFvZP7cLAFWdo6unA7vc68+eFCIk0W/yyv+T0uRaVLqUXqMh7uWJkC72E3kExmQz96SxONhaser2VQf65qNQ8fi5S4IE4WajtZC1NyiOWDGLFsVC+LepvL8/uxbLD9/CpYWuUIC8JXWcOwP2kbAQBg4TJGXkKo4tfaJOZy2QybkZncCEslSUHQtg8sT2t6zhyJz4LPw8HMvIUvLvhGl8Na4qXozUFSjUymegcEwSBL/feYaC/G63rOEp2im9Ne9a92dbANtAql4b5DGNb6DZmtpnJ2CZjDbZr8X337/ng5AcGbf9r4F+M2T9G+v5N12+YcXqGXpmjrxyl99beAHT17MrpmNMG4YIl8d2Re9hYmDCxaz22X4vho3+K1UMlrzfA5PUBUl4cbUj/3sB4Zm8PYsFLfkzbdKNCJKsWuqFkWkztWV8vjDYkIYvdN+IY6O/OJ9uD9PrDY9O74VndSiLUdG2ukIQsiYg1lr9o8YE7/HrKcFVKPw97pvVqwLaAGNLyFA+9TLw2dNeYE9XZ1lxy+uq263pUOpfC02halCfRylx0xFqamaBSa8gqUHH6XjK9m9TA1sIUjUbgxxP3GdzUXUr1oa0rKCaT4yFJvN+zvtHJ/eNCV/GvXWSnNGx7pwMtvKqTo1AREp9NW28xBLKekdyoWtz6vB8XH6Tyw/FQ/p7YHmudJOKJWQX0XnZKWjRGF0c/6sq1yAyGt/EiT6GqUBoPEJVWy15thpOtBZn5Slp8cZgBfu682tqT8UURIkte9mdEW8Ok+KXhvY3XJIJ/+YjmDPJ3p9e3p4hMzdOr62hwIhN0iPcGNWz5Z1IHqlmbo1RrJJt42dVlrL29lg9bfcibfm8CMPfcXHbe32mglNLmXpTLKFMhVNLW2T+1C2m5Ct5ad4V3utdjoL+73nwvKjUPM1MZ7g5W0rtlZWbC8NaepOcp2X0zTkr/UBIHb8XTrYEryw7fxd/TgcFNa/LWuiucvJvMvQUDMDeV651vRbDjegxZ+Sq9xa+0tlNJZ76W9I1YMohDtxPYGxiPV3UrZvZvVOHj/cfw3wjf04VMJqsDnAb8gChBEKoV/S4D0gVBqCaTyfYCSwRBOFu07Riigqo7YCkIwoKi3+cC+YIgLC3teM8LKQViKIqbvWWZKwo8LaTlKpi26To3ojL47rXm9G5SrMRIzCowWI0jKbsAC1MTNBqB9RcjmdKjPiZyGbdiM/GsbvXUVzIrDRqNQN3Z+yUSAiAzT8m83bf4qE8DabWj3EIxbCVPoaJVbcdKb4dSreHc/RQ613c2yCliDCq1hs1Xo+nq41Luih5PChl5Cpp/cYQhzWoarETxqEjJKaTTkuN8OqhxuWRIeRAEgawClV4epoogKjUPj+pWEsElCAIhCdk42phXKLygkZudGIL11XEKlBpuzOuDrYWpROCCGLLXvaEL72wwVHBoMb5jHeYP9QXE5zQ2I5/DwYkGq3DqoqRR/MYflzlxN5mNE9oxqigp/PW5faR8dbrlN1yKZNeNODyqWbHjeiyD/N35aXTLcs+3JGLS87gUloZCrWFEGy8KVRpeX3OZ/n5uRKXloVBrCIzJICNPia2FKcuGN8PJxoIfT4TqKQK2vdOB1369iLezDc62FlyPTmfHu524GpGGq71lmYqhR8H9hQPYFxRPIzd7KVHu7bhMPeUXGF7jQpWavEK1XgiZQqVhzJpLRica2v1zClUcCIrnlVaeUpjy8endqFsi4fXFsFT+OBfODyNblhrGtHJ0S3IKVJLqa9XYVnRr6MJ3R0Jxs7egr68bJnKZ1E9n5itZcuAOo9rWxt/TgQKlmtDEHMb9cVlKil0SH/ZuUCbRVhYqQkrF5sRS06amwXg3/8AxtiWJE2gtKVVaWFAjN7tyc+F93LcBthamLNofUmp4zA8jWzDEyMpnWgiCwJaAGF5oXpP/2xooqW1BDNn8sE+xBzU5u5CvDoYYDX29Mqc3qbmFNHKzR60RCEnIMnjetHCyMSdgbh9+OBbKsiP32Dmlk17i60KVmui0PNwdrCQn1sMY4BsvRUnqtjkDG7PmbDgJWQWsfr01vRu7IpPJ9JI+g7hwgZZkKQ2lhUS+3NKD0e1qPfJ4WmfWPkzkMu4vHIBMJtObECQVqSnqudjoqWoz85R6q87e/Kwvx0MS9XKIhS8eWOk2l7FkwJUJLen0Qr0X2PVgF9NbTWe833iD7Vp81/07Pjz5oUE9L/u8zPbQ7dL3RZ0XMfvsbL0yx149Rq8tohqms0dnzsaeld7LikKjEVBqNKU601JzCuny9QnWv9WOVrUNJ59KtQZBgJ3XY/nzYgRrxrXB2daCrw6GMMDPDYVKQ1tvR7Zdi6VzfWfcHCzRaAS2BsQQl5nPpK71yl3ZzfuTfZLjQdtn/3EunMx8pZ5CQhAEfj71gJdaFK8qXBK6CiULUzl9fd2Y3qeB3uq42sUMAJp5OoiLtbzdTspD9fWwpjjbmdO6jiPpuQpq2Fty8FYCLzSvyYJ9d1hzNpzG7vbcic/ilzEt6e/nTp1Z+/QI9sdBoUpNgUJjdCGEJ4X4zHycbS0wM5GjUmsIiEzntVWiMtnH1ZbQJDEH5K9jWxvdX6MRUAsC+Uo1kSl5fLIjkFuxWWya2F5avbosLDt8lx+O3+eD3j7083VDLpMZrNB88FYC3s421HOxISGrgH7fnZYWNdDmo0zNKcTRxrzUfkW7auPbXbwrZP/rIjI1l8x8pQGxqwtBEDgekkSn+s6EJGQbLJigxdIrS1kXvI6PWn3EG35vAKWTUrrIzFdyPCSR9nWdcHewQqMRaLf4GMnZhYQvHsjrv1/mTGiKXv6+iiKnUCWp61RqDQq1Ro9ALA9qjXj/H2cl1opiX2A80el5UjqA/wH8t0gpmUxmC5wCFgqCsF0mk2VoSami7emCIFR/XFJKJpNNBCYC1KpVq1VkZOXI7avwv4H0XAW2lqYPxZ5XQcSt2Ezqu9pKk5TnHcbk76vGtsLMVC7lQ9MasPkK0fOte2203r9j07tRz8WWzVeiJA/gp4MaM75jHUxN5GQVKLE0NZFW2NLF+Qcp+Lo70OyLw7SsVY3t73YiLiMfjSAYrCKTp1BxPSqDTvWdic3IR6XW4Fndmnqz90uhnMYQn5lPDTvLJ+IBLQuFKjU/n3zAxK51sTY3JU+hwkQuw1QuR1ViEmPsXuiGD2pXfzKGK3N6M2XjNYk0Cv6iX6mGjq7qYmLXuhVe7l6tEZi0/ipH7ySxamwrPt8jrko5d7DhNQ9JyGLDxSg+H+pb5jU/eCuemzGZjGjjRW0nG65EpNHIzU5aktr/s0PUc7Vl55SyV6YrDYIg0HaRaEzaW5oytZePpC7RzaOnnfTkKVRcDEvFwcqMCeuu6q2Iuvf9zmwNiGHt+YhySak7qXcYvne40dw0e8P28smZTwD0Jr+XwlKlCUpp0M3zs/HtdmTkKRnoLybR1yUcfx/fmlWnw6hZzQo3e0s+7NOgwuOBIAgIAtxLyqb/92ekBQOsnMBlAAAgAElEQVRKlrkdl8U3h+7ycd+GRKXlcS8xW4+80mLm1pv4ezgwtkMdxv9xWfLympkYJgp/ElCoNJiZyMgqUJGeq9CbOD8K4jPzWbQ/hMnd6pKvUPPXxUhebulJ1waPpzbOLlBiodNHLj5wh7rONgYrnZVEbqGKA7cS6NbARcrd9fafV6nrbMO7Peo/tBPjWYCWdBpcdzB7w/ZKOWFKbtfi2+7f8tHJjwzqecP3Df64/Yf0/YuOXzDv/Dy9MrpKqU4enTgXe+6hSan/AubuvMX6i5E0cbdn/7Quj1XX5PUB5CvVrHuzbZnl0nMVbAmI5u0udR/qXddoBBRqDZZmoiP4aY/b/xUUqtQkZRVW2JGrjUgoqeYsD7tuxJKnUOulDPkvQEtK6ZLa887NY8f9HWWSUsYQmphNRr6SNnUq34lfhWcG/5mcUshkMjNgG7BBEASt6yVRJpO564TvaYOxYwEvnd09i36LRSSmdH8/WfJYgiCsAlaBqJSqxNOowv8ASibJrULFUZaH/HlEyJf9+XDzDd7uWpcm7vZoBEEiM+4u6K+XU82YJ/b9nvUZ0sxdWsb3tTa1SM1V0MDVTk99WNbqHB3rOQNwc15fLMzECVlpXnhrc1M61RfL60qNQxcOwLQMw7U0j++ThoWpiZ4XWpcoMpHrX8+b8/pibionJaeQQSvO8MuYVvjWdCDg097IZDIcbcxZ+mozZmy9SRN3e7580U8KK3K2NeefSR3YGhCDb037Mj1vHeo5wRExd82EznVLLVcSJnIZv41rg0KlwbzIO14aGrmJ7SsP/f3c6e9XvDJhSYMvcH7fkrs8FGQyGRc/6UVOgUryiPfzdZPCZA5+0AWFSiN5Za3NTaXcedfn9UWp1nAxLJX6rra4O1jh5+HAzP4NmXXiOifKSNMXmSU6kq4lXjOaMNkY2tV14u+32/PF3mDuGFmZrraTNeM61qF9XSdi0vOk90YL35oOUmiQTCbTywH4MJDJZMhk4j00Fr6jLePn4SBNSv09HRiE4QqTAF+/0kz6vHJ0S6LT8o2S008K2mM5WJlVCkHj7mClp6RtXUmTFLsSfWRF1SA2Fqa80kp/Bc/VrxtXWvzXoM0pZSwXlC40gnGFoLmJvi1UqDYMO1ULOiGmQtn1/Zfx2ZAmTO3lIxGXj4NfxraqULnqNuZ6K7ZWFHK5DMui8bGKkCodFqYmDxVZMKSpO7UcrWn2kLnBXmjuUX6hZxDaHHG6hKix/HMVQclw5yr8b+GZIqWKQvPWAHcEQfhWZ9NuYBywpOj/Lp3f35PJZJsQE51nFhFXh4BFMplMq9/tC3zyNM6hClWoQhVKwtLMhJ/HGDcwLUxNys3tZWoiN0g8+W73+o/UlseR0T8PqkDt+Xs5WhM4v5/0u5NOvpVXWnnqTUB1SQjt9vLQpo4jIV/2f2Q14MMQCkHJQTRwbICFyaNNhCpDSWMil+k9W16O1pLHqJFb2QtOmJnIDfLtWZub4u1sUyYpZcwYrgg61HNi7/ud+XJvMK+18WJbQAz9/dwwN5VLxFlDNzuDkAtdPAvh8aXB2ty0zLZXoQq6UGpE8liPODKC0iaavwb+qvddoTYM5dUlqqRE5484cX2WYWoirxRCqgr/XchkslJD3Z5HPI/kchX+HTxrM4xOwFigp0wmu1H0NxCRjOojk8lCgd5F3wH2A2HAfWA18C6AIAhpwJfAlaK/L4p+q0IVqlCFKpTAqH2j6LO1T/kF/4fxKCTE0whPzVJkMWr/KCYdmfTEj/W0oV3Np7Q0A9LS4RVen68YJnIZ84f60tjdnk8HN6F1Hccy82tUoQrPK3KV4jJZ5a7CV0EOKVdluOxWan7xypbaSeyzmD6kClX4r+Kv4L/wX+df4dU0nwYeZWyuwv8unimlVFFuqNKe4F4lfxDEEW1KKXX9Dvxeea2rQhWqUIXnE0Eppa9QU4VnG3nKPAACEis3gfuzALlM9JuV5omVlFJVhu//FLaHbudA+AFW9139bzfluUCOMgcAlVB2+F5FlU0rb6w0+G3O2TnSZ+37WqWwqEIVKg/avIuF6kKs5U9/ISPteA06DqXnTA2ZpcgiX5lPDZtHC9uvQtl4pkipKlShClWoQhWqUHGUlwfmvwxtPrDySKkqTup/C5+d/+zfbsJzhWyFuPJkeQqLx1E2xeUWrzSpfW/LI8GqUIUqVBxaNffTfq+CU8WVnXWdQ88bGaXF0B1DSS1IJWhclSP3SeBZC9+rQiUiMTexSh5dhSpU4akjT5nHtOPTSMgtIyFQKdgcspkHGQ+eQKueTzzPpJTW81parpvHCd+rQhX+l/Fb0G/S5yyFmPC/vL6ksiaa2nDB57nvqsKzj3W310mLZTwP0I6DSrWynJKVh2uJ17iWdK3U7c/K2Lzt3jZ+vP7jY9eTWpBafqEqPDKqSKnnFKHpofTe2puNIRv/7aZUoQpV+B/DoYhDHI8+/khGwIJLCxi+Z/gTaNXzCW2S4ucRFQ3zeZaTjlcBph2fRrM/m5Vf8CFR5XSrOJLzkiUyCIpDfQByFGL4npb8nX9+Pl03dcXPSX9lz1lnZlVKW7Th4o9DSgmCoJenqgrPF/65+w/Ho45L31UaFWdjz6LWqHlt72tsD91ext7lI0+Zx9KrS3nz0JuP29RnBlonztO0CULSQqTPz/I4PP/CfIMFGR4HQcmPrpSKzYmtGrtKQRUp9ZwiKisKgEvxl/7lljxdJOQmVLhDjsuJY/LRyXqG2hOFWgXJ9+A564w2hWzietL1f7sZVXiGoCURdHMMVATaSYpCY7h6UxWM43lWG5QX5lOVU+q/gePRx59I/iBjCrpsRTZ/3v6zKl9RCfTc0pNR+0YZ3abtb09EnQBgW+g20gvTH7r/flg8Tt+1+e5muv/T/T+jqm2/sT1vHHzj327GMwu1Rk1CboIUQvrlxS+ZdmIaAOuD19NifQveOfoOU45NITg1+LFDeLXzhKdm/z8F/BtKqczCzDK3P69hfKP2G+9Ly8PVhKv039afPWF7KrlFzweqSKkqVBiCILDz/k69pX2fJA6EH+BO6p0Kl89T5tFnax8WXFxQofIrrq/gXOw5PW/ME8WBGfBTGwj85+kcT62EW9vhxkaREKtEKDVKll5ZSmp+KgsvLeT1A69Xav1V+G9DO1l82ElNZXv4BEGQEoE/r6gsUio5L5kCVUGl1FVpKLJnNRrjBMOjkp9VqBjOxp5l+J7hz6waz9izv+zqMr65+g1nY8/+Cy16OMw+M5v3j79f6vY8ZV6lkmthmWEcCD9Q6vak/CS972XlprEwsXjs9pQWllsRnIs7B0BEVsRjt+NpIFeZy9XEq/92M0qFIAgciTzyr63ctvzacvps7cP0U9MNtn195Wvpc1mhYg8DhVokYh/GoXEs8hg3k29WyvGfBLRKpafZX+s6EI1dy+fJOVAeAVcRaPutmOyYiu8Uew0OzALF80OgloYqS64KFcaJ6BPMPTfX6MoqTwIzT89k+N6Kh/HkqcTJ58nok+UXTguHjOhHbJkOBKFiHYUgQPBu8XPI3orVrdGA4jEm1Ec+g61vwM53xL9KVGgFJAawLngd88/Pr7Q6HwY3k2+y7d62f+XYzzw0GgjZD9kPn8+p0ppQZIiYyEzKLXsg/ID0HFW2MbU1dCvtNrYjOrsS3vUnhBd2vsDofaMfef/KumY9t/Rk0pFJlVJXZUGD+ByVl1PqmUH0FYi+DIjvQEJuAvmq/H+5UY+OeefmcSftzjMbJmWMlNKS0BWyA54wlGplmUqMPWF7Sm1nrjKXdhvb8cP1H0rdXlHoEg0zT88ss6zuxOtJT26fZ5XnIyEvDeY7QMDap37oPWF7+OjkR2y+u/mpHxtgX/g+AI5FHSszF2Vl9flaMuVhSKkPTn7AmP1jpO9pBWksvbL0mSHtSwvfS8hNwH+dP+fjzpdfiSBA3HVICim/LPpjs7HwvWdOKXX+R/jODzJjH3rX0vrih4G2z7M0tazYDoIA+z6CSz/Dld/KL/8fRxUp9ZwiMS+x1G0qjYp76fek7/fT7/Py7pclYyRbkc2CiwsMFAba7TeSbhiv+M4e8e9fQlpBmvihvEEr6hKsaI4QdeHxD7prCnxdD66sKZsEyE6AvBSQySFkH2QasuTZimxmnZklXufbO+HrOrDIHVIfQZ5ekAnX14NXOzAxh6B/4NxySI/QL6fRwMVf4AtnWFwLcis2+bA0ETtU3eeIeB0PUgn5cGVPHsfsH8P8C/MrVlgQICve4GeNoMF/nT+rA5/RZcUrSniWQOTh/4NNI2FNH1CVEwb34Diavx9OhqwRNGVOJs7GnmXhpYWAoYJlxqkZerJ7lUbFzNMz2RYqEoyVLTs/EnEE4N9PZpqfARliSLVSo+R2ym1pU1hmGIEpgY9cdWVM7LTvZ2V5oSsL2nYZO0eVRsW88/OAZyR8T5kPa3qL793dg/x2fSV9tvah7Ya2T01dXBLxOfH0+KeH0edfqVFKagEtSvMEPwny70rCFQ6GH3ysOow9F+Ym5gBsubeF++n3uRBnZJwPOwl/DBInX5WAY5HHeG3vawaqgAmHJ9B+Y/tHqjOrUEw+vvvBboNtx6OO035jew5GVOz65ShzHvq4IOYmLQ22ZrYVrtMYTGQmqOJvig4UZQWI2xIKHskOfcRHMzE3kasJj6Bc0qghu3T7+pEQfgb2TYevvcXve6aJBNVTRFJekt7/p4KCLI6eXciDtFC9PnLd7XWl7lJZJIeklCoiUnaE7nhoJcxXl79iXfA6Tp/7quJ2uiCIdncl4m7aXdYErUFWdG1KklI3ksV3pTxHbmJuInt2vwmrusPKduWfU0EWmtQw6auxcVhv7Eh9YHTu88goyISj86Egq9yiEg7Pgcxo+K6JuH8FEZgcaOAISCtIIzFXpy8w0o+djjnNzvs7pe/a6yGvKP0Sf1Mcp9ybQeu3Ktze/yqqSKnnFIsvL5Y+R2dFo0m+C5d+hTt7WXZ6NsN2DyM2R2SKV95cSWh6KBfiL7Dl3ha+ufINm+9uliaKWmgHA6MTl4Is2DxG/Lt74LHDxYwZwZmFmYRlhvFb0G/i5DU/g6UXF0lx+sN2DxMLFmbr7acRNGy8s7HYY336m6LzKcL2ieJv2g5YkQuxAYBo/E07Pk0cSApzxEm+sijERaOGGxtAlS8y2cubwYNSQgHjb3LF0oLfO44Tj3xyMdzcrHedNt/dzL6wfay79A1sGVfcYW4eQ/DeKfiv8+f20jqiJ037l1KK0Ri0BQqzoO9CmFY04T36mdhG7aCgViGsbMfOs1+QJ6igMBO+qQtZ4tLNYRlhJOQmkJCbwGfnP9ObwGgNiIzCjOJj/tpV9ELEXoMvncVjpUew4OICmv7Z1Hg7r/4Ov/WBja/pK9dSQmH/DJGce0SE3t3N3k0v4P9nU1b80U68Xt83hV3vQXqEFKq04voKyE0R5bFGyCsQJz/RWcXt23V/1yOtLFcalBolux/sLp7UBG6Bz6uJhGfRMzXl2BRe2/tamfWcjD7J4MSDHLW2EkmQ1T0g+W7pRO2G4RTe21/8vZRyucpcXt3zKsGpwbyxZwQt1reAL13hp3YGZOw7R9+RPsujL+mRlQcjDrI9dDsx2THkKfPYcGeDwXV4VCjUCiYenqhH+DxpqDQqNtzZoE+m3T8Kp77Wv5abRsP3/qStbM+YvSMZsW8EYZlhhhUawarAVUw/8CacWwEnl8COd1Ce+grN+pch8oL+xPyH1nB4rvH+NzsRwk7pt6sM0idHkSMpZP649YeU2PNu2l0mH5lMi/UtnjjZou1zjLUvSed9rKwEqxpB8+jE6LX1xZ//fo2zV4oTSa+4toLvLy422EWpVkp5H8Mzw/Ff58/wPcO5n36/Yse8tR32z4S1g/VUtWkFabx/7H023vmLlPwUtt01DBkftnsYrf5qJX2/m3aXzps6s+fBHs7HndcLL6jIfQ7LDGP2mdn673BmLOz9SPqqO66/eehNZpyeQVLmo6sYpfCy9EhIE98n3bCyl3a/xMQjE0WVss6x84/MQxN5Fn7vLyoCUh+gCt7F7QeHKnbgEhPLWWdmEZwaTJ4iF7a+KY41P7WXbCXh1na4+gckVDw5rvbctBO9bEU2M07NICU/RVI8zDg1QyqvzogiYP9UA/sHHpKUUlRsgteyRkuWdFmClalVhevWha2JJarYq6IDZbEXxASAqsRzpiqEPR+INsKXLnDg/6S8nJLtkfNo4/DwvcN545DxHE+3Um6xOaQUxdDG4Si/bYw66hHztV5br98H3zsE6wYXqyD8XgG5KeyYbDgea9SwsqPoBH0IxOXEMXjHYOJzjNs3UKxulslk4rO99S19W3O+A1wWHXgqjYoXtg/i4PmvDCsSBEi8LRJtd/ZCTpL47F/9Q3TOIIaKh8ZdgTV9+fDBJl7c8zKFpYWOl4ho0CN+C7NFW7G8+UZJ51xeGoodk6Tzjc6KZt75eXrvU1nQ9mPaflF94Uf4oSUkBpe+U/xN0Yn9eTVY2b5iRGzxAcU5VinnOWrfKL6/9j2aInJGEbTFqC1XHqE3+ehkZmdcJUc7nq7uCfHFDrNCdaE4Pmo0Yv3rhqAOKRYiqHWcqAZzuPx08Rp95wvhp8tsR4Vx5ls4+504X9IicIs0FhiFR2vwfVn8vKSWSGrdP6pfJitOmgdRkEnErkmM3j+avWH6US7dNnej99be4lztSxdY6Fb8riTfBUS7fe65uRKprlV/l4ehO4eyKnAVpNwjRS5H9eIvYPF4joD/Akz/7QZUofIRk1zcMUaFHWFg9AkmpWcyJiubahoNZzzdwcyMnYemMaVfcShezP1DLI8tfjmXXvmasR49ReKgbnfiInU6kj8GQdPh0PJ1UCu4cn01cz1rsjohCa+/R4hl6vaAoSugWi0AFlxcQF2HuoxqPEpU7Nh7EJefTI4yhwbVGxTXffY7VMG7QGtbLnQHE3MmuDkRIhMNXqugrYy4d4F13mLdKt1ORV0Iv3YDBGg8lCO1/Fl8eTGLLy8m6PVAiL2KssVYDmScAhBNvuML4PgCfnOw57CNNf/EiYbOtKL6/f9sytq4RPwUhcSZmuLt3gaaFZ1n+ymQmyQSQetfEr/X7gBm1qIyyrEuJATypnsNiDvGm42HoLn+F1vv7+SFnRMx7zyDwPpdyChIB0CZVjQhGbtDJCTO/8ApRQxUr8YJUw2+ujf7x9ZQqyMpqlwSe83Gx7MTU8/M4P2IO/i6+oJna5DJYNxe0fAB0Qhy9Cb271fo7+UBdk7c8B3E/PBbkBRM/HI/Mrw7MVwdAUAP+wacyLpHbNwVVju0QZaXSmHCZbAsDpmUcPhTVAhEmplSLz0Cljdjc9E1zMvPwDorFizsuK3MIuLcNwy6oUM63T8Kr/wOrk3E8wK4vAq2AA36Q79F4m86sld1yH5MnBuAvTtoVBC0lWh7N9xSQnn5frHh9ruDPVMLzSAjUlSQXV9PrmtDsBG35/3UGou8dEwu/Qyt3iC+64cURJ7DO2gHC6s7cDvhMkEmAke8x2LXbjKfnvuUug512fXiLr3TH71/NMl5yRx+5TAVgiCATMaaoDX8dOMnzEOP0t+unvg8gkh4rn8J2k7idHLR+3dtvSjvH7QMnH3A3EaqLjBBJFNDfbrT266ROGD/1Fbc6D8cUu9D7Y4QeR5sXUGjpFCu45v4vBo0HgL+w9E0Hsybh96kqUtT2rq1JSQthO8vLeFaelGeN3UhJIfAsobiQG/vDoOLJ+IA8vib5K7qhqL5KOLaT5R+H7B9AD7VfXCydJJ+i82J5dOzn1bosmUWZqLJSaZ6yD6o3wdqNCE0QyTW0y+ks2XIFqCYrKiwkiY3Fe4dhOajxPemCCqNiiWXlzCm8RjqONQBIF+VT9sN4rUtVBUwuskYLE5+DWeWijudWAhjtnPGTMZCdRjLzcx40zKLrHTRWEnLjDYMi8qMAVMrsCm+LpJk/FKxk6Cldy365uSy7I/+KJ29wE5sa3+rXA6eXwGCBpq8CI7eYg67Ji/AXy+L9wugbneRgE25C2bW5KvzobaXuK0wByxsGbB9ABmFGVx65TjfBnwLwIb+6xl9cKzUjvSCdNxs3Eq9nEcjj9LY2h0P25pkyGSkZYRT16EOWFUXDdvseNHQsnQo3kmjgaJnUuuZVCaUyOOhUVPwR39wFFUxVhpDY/uhclkUZIIgMP/at+y4v4OgcUXkgSCI76IiB/JSRUO141Ro2F9/f0EgMvAvBnvX4u+Ws/HbNllv85/BfwLwQfBpaDEGGg8GSwdWXF/B2ttr2TRoExfviwbvnbQ7fH1pIav6/1Fmk6PjruC59Y3iJ/vXrvD2cbC058/bf3Iy5iTWcjNx2/kfIfg0jN7KwYgjJBamEp4ZLtWl0qiklYnOxpxhf8QBLE0ssS8ieArVheL11GiQmxg3Gz858wnBqcGMajwKP2dx1bbLuycQmhwITo4A3HpwEP/6A/T267VzILvl3ni/8idYVRPvv7oQzMonO1SXfgFTW9HhAjAnUVJK6eGfseIz33Ummi3jaOtqxah6zfkkIhhWtiPBxITvHauxz9aGrRd/oWGfRWRfWc1aIYPJDV7DrEE/sR5BEPvUy6shOw5Gbi56FsTnL/fr2tiqxclHTPo9sPUA4My+d+iSXyDeK8d63KjTmrHpOgqu7RPBxgXhwo9MaTmAYc3exitfh1wqzObA9V85GHEQe+TILOykTdnBO0m0c2Hbvon8ZSVn3aZX8O35JbPu/834hiNoVrPdQ4VfZhZUUKETvItBJ9dw1sWJvbY2pRb7Tu7BhxrDUBnb/ExUMhn49IUHJ+C3nuKGQcvEsSpgragqj75YvNOlX8Q/gCK7Qji+ELyLnqmMSPqcm8HLXr15p2YP8Z2t3VG8Z/V7Q53OUr+uVdarNWpM5Pph5iP3jQRg//2drGn/BaamFmDjCjc3wv2jtPSuRc+9o1ielAL9FkObCWBqLpKwDuI9R60Ux5LNY1DptJfd78H5H2DYanBpDCeK7Johy8lr2J9cuQkuzg3g5CLRMTfwG7HNuSnw5wuQdFt0gkZdgOajxedaJhPJn/wMcGlQ5DzNE9+nnCS2HZ9FZFYkO+/v5J3m72AMWhJBplHDnd1wa6thof0fw8klLLVUE+Zgx4zsv+h//neRGPTpizLsJGbqMtTZez8Qb3GdWuTLIDA5CmzF61KgS3zrRjGsbA8ejtJXPdJ7saf437sbvPQLbHsboi/B+L3iu+rVVowQOPY5DP9THAcLc2DdUBTpd8HDDTRqClNF5+6D6DMi6efoLfbTjvVE+0p7T4uwNXg9r/q+jkx7zbQbfu0KzUeKJPnQH8DOTRyLs+Ph165Em5riBeK4u6Q2dJom2lvV64ClveH12vWeaK/qIP2tQwTJFHT17AqIz7E2FFEpqEEmJ+/yL3Dqe3GsCt4F1pbifCovVSSZ3IudxNtDt+Nl50UbtzbEFwkV8np/hm2drrB2CPzaBV74CZq8SJtNHREQaFpQyFqvFzCLv4G6ThNAJL2Fo5+Be2fYNBrBRbRhhOQQaCDApVXFJ7FuCIzZLj678vJTPOQqc7EytSpW3ms0HNz8IsFJN2liY03/B8dJ2P8RP8UcYXZ8NFaCIDrjk4LBpZF4P4uQ1Woc9i1fF693wFqxbzj7nbjRqrpI/glqsHAA/1fg6hoyLMyhZul2DktqGfx087fOjNHdZ1FNGLMdoUjUoIy9CsEnoOFAsY+Sm4h2+a1tZPsNIzwznB+u/8CE2mPoUduTroE/8FOfn8u9Vv91yJ65nAz/Elq3bi1cvfrsJiGsKDS3ttEsYH6p2wPN/OhecJM0E7EjOB4Vw2JnF45YW9CyoIBrlvpxrm9nZNIrNw83lZrutT2l34PCo/TKzXd2ZJudLZ83e5+XEyLg4k/6B5ab4V/b3WBf/6KBOsimLZiYiYPqvQNky2R0rCNOkoZm57AwJU0qC/B+WgaCDH6sXg2AM5ExdClqn6NazamoWBJNTBjnXoNYs2Ij+mKagE1mNFs6jOeLBFGBsrjD5ww2c2H36c+YQzIAN8OjkAFNdY7ZNycXS0Fgt50tFyKiyZHL+caxGp8P3YitV3uIOAvb3iZQkYKrSo2bWl9urm1/wKun2Lt1OJ8JiUxMz6SWSsWnLk56ZYNSNfDRbXEAvfATKyP38DOZtHFtSUfPLsiR8aZdI1g7kDAzU0bUdCNfLmdTbAIjPNxoXKjgXee2OHWZib+Lv1ipIMCqbijibzLJzZWrVvr3etcLu7gfsJrpMfregM55+Zy1FicIu2PiOGZtTZZczh/V9AfRoK4/wd8jWWZjytpq9hzyfJmaZ76XzntHTDz1lUq9a3EqPh3HD26LXsJjX+jVR7vJcH0DKAw9v9r9L0REY1vUhwk692tcZhbrHPTbt6DdPA6GbmdJXDQOigIiMsMZ4lVT2j5MsGV+agbK7DhaFtVzKSKadkXPIcDm2HiqaTT08/LASiPQx9yFFCt7fn1pJ8hk+K8Tr3WQQxewsIN2k6C6t6iMCz8Nnm3AqR5CYS7hV3+hbmYCWNgxvZ4/h3PCWJicytCcXLD3hEmnIfkOyrWDOGRjzSeuzmLdJd49gPxa7dlgb8fyXJHweL/WQCb2+Er0Pp/+WjSOi7DEsToPzE1ZnZCMAHze5iW2pQQY1L3QryebckWC9Ge/Kbxz6yc6qORcMBUn+zc6LMPk/lG4/Ct3zM0Y7uFOu/wCLpV4riqKTtV9OZderHIKMveHBn1R3d7FmILbvF17EL06zEAZsJaWUX8DMDYzi722NvwVl0imXM4oDzcaaUz4OSaSoV6eaIBcGfxo14xu9YeKHrL0cJEwzoyG6t6o7+xC5uqLvFYH2PYm3N4B1k4wagt4toLke9x+cJARd0Uv8aWms8gwlTPj2rcEIhoYnQRLzskKmJaWwYRMfaWBbr+li5WZSt51MJO+LxWHGZYAACAASURBVJXXRJYQRN/cXJHIdvCEZqPwvylOWl5zbMZrdYdQLzWGZuFrxXsQHsUkN1e9ax5k2hhCS1d8BJmbU0+pJN7UhLpKFTIgycSEXrVEw3tLbDy53t0YrxBDc0dmZvO3gzgJrqdQ8MC8eNK/Iz6NOgU5mPq+JD7bPv3Ivr4Ou9CjKL270jJpP64qFcei43m1fmNC1DncCI/CBERyWesdd/MX35OcJIi+yB1zMzwtHFlgb8l+c4EBObkc0Jn4vm5dlwGh5xnpIRp943Fg+utnikJec4je8RbnHd1ZkCCuJvax7wTGpSSKZEfH90UvtUsj0Xt9ZTVc/0vvXl11G4yFtYs4mdFBtKkpNVUqTBoNhj5fiGRWUjDU6sD6dd342qk6IxqOYE7jcbx+ejrX0/Q959L7ZWIB6kImedbivBl8q7DhuCJJmtz3yM1jhccAsPcQ+5GQfZB8B0WTF/gl7gS1Cwv41MGCGanpvG7uLnqhc8Wxizpd+F6dyBrTAqwFyJPBGxlZfJSeQaCFOaNLGNfv+LxGSn4KW2KOAeI4d7gEyfBXzYF8kXoJdXY8O+OSudKwBzctzJkgdwL7mmBVnWERm7lXmMqGDgtpeu8E6qu/09zIsx8UHgXt38U/sXic6ZeTy9LkVOgxB059JToYukwH766i59upHsqkYFKCt+OuVkv3aX90LC5qDUsdqzEuM5tgKxv2VKvOKVN9QjIwzx5Z4i0A0uVyuhbZCkHN5yDsmKQ3zs9NSSNfJiPYwpz9tjYsSkphSKGm+FktiXaTaZ24j0KZjG+SUvCx8cRk2G8kZEXy9vk5UrFvlfb0iblNvgza6owp2muSLZOx0cFOsmn+jEvg9Zpu1FCpOBodxx4ba2a7OtM3J5dkUxOuF9lq6+MSGKtzT79JSuGeuRmrq4lEb1BELP519CfVQUP34L97iNHT+TophZlFY01Z6JuTy7LkVGa6OOm9myVxMSKa9iXOF6COQklDp0YsfXmn6KTc8gbEGVHh1+spOujSwsWwy7PfkZMZRYeiOr9JSqF/bh6YWaNS5tGi6F5OS8vgjcwsTIBrFhasrmbP++kZNFHo2yBn+6zjeOBa3O8do71VDZDJ8TcrDsk5EB2Lp0rNj9UccFGrWeBcTJCciIrBWa1BAAQTC+TqQhj8PQ+cvbm7ZSQDc0WnXZZcRqci0l93jI03MaFvLQ/ec27PpEGrGXdgHNeSrhE0+ip820RM+QAkuzTgM3k6XyanYitoyJbLcVYXPeOO9cQJbUpxKoWfq9mTYmLKSx1mcfjcIslWG+rWgYVNJoiTb63zIiMK3JryS8oVflLF83ZGJlPTMzlpZYXL+IP4OjUWVR9JwZAWTmboAXqapaGQi1RMUKYZpD3gmoUF42rWYH1cAs0LFSA3Y4uzG7kFGbySnUNyrTZ8WRjB4uRUeheNNY1MbAlRG6r4dO2IoPCoUsdQY7aQHmxrQI5OeFWTFyFYdIQG1PRlvEU21dRqfkhMZmxNN2w0Gi5GGg8vU8vNaF40h9E++x+6OnPUxpplPmPoW6uX2HeFGndI7rOxZparM57WbqzzGIzr4Xn6BWq2EO+Fk49of9jXJOfqbxTKZDjpqDLHubtyzdKS86aNsGs8hE63V5ClMVSyNiksZHOceO4HbKyZ6epMn9w8vk1KAZ9+EHqIDLmcLrU9sRHgYu2RtI/6h1zU7Oqxkrq1usCZZXp2ue59OBQdS03MmN9tAtvCxBDjj1PTGZcl2utTXZ05YWPN7JQ0RmYX3WOv9tBoEByZq9/Y2p1Fkr9aLfDph8rOlU3XfuZlbFE7etMx9RhTqM7k6HvQciyYmOOfUBzWHJSqYb5ZHtvsbamtVLIhLhEH3RBJn374q4oXzQp8PVB0WMYGiETQYdEZetemGmnqfDoU6F/PAAsLxtesYfS+QtFz2Gka9JwrOS6W3/yJ36oVO9suRURjLQgsdqzORgc7JqdnMiXDMHzwjJUl77q5St+np6azzKm6eJxxFVfaPuMo1UtcRUoV4XkhpXZsfY15uaVLSN9r/h4/3vhR7zc3lYoE07JFc01UAsGmxc/RdKWV2NkXSRL329pwx8Kc7p7daVWjleilCT8tEjVAvlzGyiJjy06toU1BAS0KCqWX7d30DKw0AhoZbHR0wc2+NjeziuOZp9V/heX3jXhuijBC7sQmTbE3cFB1P/al3zIo1zkvH0+Vik32xZ7GfnX64efkx7KAZcXXqelkNNnxrAzfZVAHwKs12nMpMYAolMXnDIDAsiJVwXSbhhAfSKJQyF86BElL15aSrN/LxoPoXEMv4jTntpjW7iJ9PxlzkoDEAL0y01tNR5kZzYr7xaEZr2Rls1Xn3LTlJCTfITloE386GPHKlILqcgvSiwa9IXY+7Mk2HjI4vdV0SA1lWYQ4WIxqNAr3hBCW/T979x0eVZU+cPx7pqSShNA7oUkHKSIoYKGooGJbe13Lqrg2frqo6LpW1l117QW7otiwgkiR3juhQ4DQAiSk12nn98eduZmaBIgkwPt5Hh4md2bunLlzy7nvfc97c1eZbWvtNNKPfb97Q3sCN/cwMmjycrazZ/8KOjtdWJNaGle/3GV8v20yUY5iLtFxxklraQ4v1zW+493WRsQntYSSHBzOYt5wVZ7K3y6pHYXOQnoltWdaxsLA79DrfnbtnMX3uUZw5NbknnySU56l0crp4tzi4pDld1tuPgXRcXwXa2xHYw7nVNiGnxLi2R4VxYjiUjqXlPB5UgKHbDYuKHHSrX5XttZtTDYeGsU1Iu3wRtZ5s2vMeXe+BPatMIcbzouLZXlQMCjgd89Og7gGoCy8vN64YjWm9cXkOwqZkDHHfNnDTc9DKQuk/cHLseXHhssKCvkxoQ6Jbjf53oD2Wc3OYkDTAVCSzYx981iXd2y35o7zeCj2y9ryLcNdUXa+TzDSlm/IK8Cl4OugdbxHaRkdHQ6+9U7vX1LCktjyTItLCorItlpo5HbTxulE+R32XqtXlziPhztzwwxbURbQHtbFRDMjPs78rHUxke88dU/HG4ir0wT2rURv/IFX6iWHfV0bp4ud9tD9rv+6k2WzhgRX/ffhF7YexrT0GYHv7/2wcTV97SQcCU0ortuSurl7oSCD7LNH8/HmL83XxtpiuKft5eRpNx9uC39X0Hput3kRI1grp5Pddjt/zc0j2e0x18Nr8gtIdnt4N9nolI0pKOPlBGOZ+V4bTCv4wxvw3hFlD3iug8PBNr9gWKcyBx0cTn5JME6Gu5aVcUZJGfXdbtLttpB94DnFJfQtqfzOgr790vV5BTR1eYdKJKdAj2vYW3aYr7d9T3OXm2vzQteVpbExZvD+5i438+3Wb0OKnD/c7ipU/j4KMjdjy9lpHhODtXc4GFXgV7/CYgGPJ+AzAJKwckefB42O8OrPzOHcM+LjAtbRHvU609dej48OBu7vwmngcpNlC/y9B5SUsNi7Pfn2BWD8/rkWC+cWl/Czd5pvP/9VYgL7w6zfD2fnoHT5sgZor2IYlRV5aBHAO8lJFFss/C0nj/e869XVsa3Jd5cwzVFxHZwHej+A7cAGSP2WnC4Xm8thTJ+Hmbb5azaEOQb7nF/qpFdR0IlzrxuNTK5lE9CKsNv4BSkX8Puu8uBwn8Z96Fq/q5k1529Mch9+yl7HdhV+6OiYwzmkNuvM9LIDJHk0eZbyvtiVJPI95evjyKRO7MvZzhqLi3puN7fl5gcsa9/8gqf5DCsqNvd1Fbmw6Vn8Z9i7PPzdxcwoLg8OJNnjyfOrvbJsxHf0m3pVyPvbxzdne9G+wOOUq9QIPO1fDXVbGyepzU6HKL9hK+4ycgoP8tF2Ixu2j70e5x5IA3ssJVYbb8eXr3NX5hfS2uUM+H18+9dw339oUTGnORwB2+WNefk0drkjLq9LnRZWUcZeuz1k3X7YFYfqdTPZpVl8vM3ov45ofQFNLVHUTV/KyoJdzAmzrB/o/QA2lNF/3rucqVYnm6Kj6G1NZI27EA8e7m81gtKSbOJ3zsdS5s1UUbA0JoaFcZGzDEcVFNLe5Q6pa/RNYh322O30LSnlnOIS8zv4/z4abWbNmsuzzxjQms/WvUemqyjgPf59ap/eDXqyKqvqd7Abk9iNl/ND+/IAY9pfY2Rop8021pu250JCY9i7gj2Fe8mMr08vSzyqZT8j+8qv/pHv+ymtubKg0DxmjOlym3GzirJ84+JBzi4oysSlFK/VM9aLxi4XN+YVMDEpgQM2GyNSRtC5fmdjxmX5xpDDA+uMx2WFUJLDD41assMbgGuV0Iq/JHWGQ5uM7NuiTIhvCEWZLI+NId7joUuZo3w96nE3SlmhKJOXvf39M0tKGej3O4VdPg0HkF+nIRN2Gn3yJi4XN+SVX+Q9ZLPyubd/4b9PaJ3Ymis7XGlkmJcVGNla+fsDPuumwlIatr+QVw7MMacNTurIGXvXg7uMT5OTydJOznfb6ZXr3T/3uQXqtzeW78H1RqA5jI3RUfxWJ57uDjddSovN/t61+QXYtGZbVFTAhTgLFqxonN6M1RR7Xa48sNPIhrJGQVFWQNvvO/2+0LuHas3Lq4x1e3SPuyl25DNp6/eUeMqwW+wVlpYYkzLK+F5+ZuyaxrrDgaUk/pJfYPZR++loBjUdAM4i2OoNZJ52AT8Vp7O9JHzNum8v+ZZO9TpFbMcJRIJSlTlZglL/N/f/AjpCQgghxMnGqiy4T6LbTQtRGzWMqU9maejwv7eGvMXgFoOZt3ceo2eNBqBv4748duZj5fU9gTU3reHVla/y6cby4tVd6nchJTGFqTunhsxXCCFqmkVZjqwEwHEw7sxxXNOp4rqyJwgJSlXmZAlKlbnLzLHh0dZoSt2lAXfA8t0a2G6xY1EWs1Cf1WI13+fRHqwWK1ZlxaM9aDRaayzKQpQ1ihJXSdhC5JVFk33P+2/sFmXBarEGFJf1PR/8v28ebu3Goz0opbAoC1prPNqD3WoHbRSS89UJ8LXboixmsVyP9hBljTKK/unAMeoxthgcbkf5Le29450tyoIFY3n5f89wO65I05RSZlt9v4nvse85/9eELD+rHafbaX5v328ZaXlVtFP1faYFCzaLDYfHgdvjNt9jtxqZCr7fxWqxYsGC0+PEajHWi2hrNA63A7vFjsPjCFgngj873LoRZY0KufuT1WINuH01YC6TcN8h3HK2KisaY1l6tAebsuHSroD12/dem8WGUgqbsgVkNdgtdjQal8dltslmseHWbrTW5jS7xW6ub0oprMpqvsbkVyOnovYHLyO71W6uc77XRloW/vOLtcVWeht6//n4lpn/MvJvg/864Pttwv12dqvdXLa+7c7hdpjTfdN8653ve/mWmW+/A4SsA/7bve+zXB6XOT14W/B/7Gu377Mjrl/e+l6RhLTBYgdl1Kvy/57B87coYxtzeVzE2GJwepzm66KsUebdDH3fyf838K+J5b8PC/6eNovNmGfwukfoeua/f/BfHr7t2rcfUihj3+B2mMcDl8dlrmNOjxOXxxVx/sGPfdtZRccI33Ly/+1sykaZu8xcFr5t0+6tl+T2uAO2EbTGbo0y91UAbrerwt/Wn/86H6yyjmrwMvWtI779tu+38a2T/uu7b1uAigv++47dvvWoorb4r/++97q122yj7zdxa7dxvPfuy8zjgN9+MMoaFbD+25QND56A41XwPsxqsaJQuDwubBYjg8W/aL3/Pq4q/PeDNovN/J3812mNNtZPtzOkv+HfLv/t1HcccHvc5vHP6Q7/3kjt8u0T/X//KGsUWuuA5WbuA737Sf9tNly/wL+d/n0om8WG1jrgO/q3N9oabS5X3/LSWgcs/1hbLBqNw+0gxhZDmbvMPNbZLXZK3aXEWGModZea+xiP9hBjjQm4uYCvHf71vHzfzfe7A+Y6a1M2rBZrxL5kVdgsNqzKGrLuBPe1gpdr8Gt9greVaGt0wDbmm6f/cSDSvi7c3zaLzSw0HfCbWsv3YxX12yo6tgW/TqPNPmLwHXArWp8r69v62uvyuIixxoT0M8L1PWJsMWitA/bRvmURZYnC4XEY+zO3kxhbjHk89x17fHzbktPjJM4eR6mrtNJtM9zyCW6b74Y3lZ2/+JZJ8DZ5JMEL3/YR3HcK/oyK1iMoP1/zXx/sFjsuXX7s9B3LwVj3fP2xYL5jrv+8IbQPBuXbgH+bfMdoj/aELL+qLNNIgs/7fMcm/+/v254Uyjyvsyorpe7S8OeoEfpo/nx9Hf/9nX8fCDCPif7nbJHmZVPGscXhdhjHGW9bK1ouvvXMoz1m38+3L/X1e05wEpSqzMkSlBJCCCGEEEIIIYSoRSIGpUIv39cwpVRdpdR3SqnNSqlNSqkBSql6SqkZSqlt3v+Tva9VSqnXlVLblVLrlFK9/eZzi/f125RSt0T+RCGEEEIIIYQQQghxvNW6TCml1KfAfK31B0qpKCAOeBzI1lqPV0qNBZK11v9QSo0A/g6MAM4EXtNan6mUqgesAPpi3JRrJdBHax2x+rBSKhNI/1O/3PHTAMiq6UaIEPK71D7ym9RO8rvUPvKb1E7yu9Q+8pvUPvKb1E7yu9Q+8puIP1OW1vrCcE/UqqCUUioJWAO01X4NU0ptAc7VWmcopZoCc7TWHZVS73kff+X/Ot8/rfXfvNMDXhfOhRdeqKdNmxbpaSGEEEIIIYQQQghx5E6Y4XttgEzgY6XUaqXUB0qpeKCx1tp3v+ADQGPv4+bAHr/37/VOizQ9oqwsCQoLIYQQQgghhBBCHC+1LShlA3oD72itewFFwFj/F3gzqKolvUspdZdSaoVSakVmZmZ1zFIIIYQQQgghhBBCVEFtC0rtBfZqrZd6//4OI0h10DtsD+//h7zP7wNa+r2/hXdapOkBtNbva637aq37NmzYsFq/iBCngh15O8gozGD5rmzyS4/u1q9CCCGEEEIIIU5NtSoopbU+AOxRSnX0ThoCbAR+Bnx30LsF+Mn7+GfgZu9d+PoDed5hfr8Dw5VSyd479Q33ThNCVKNRP45i+PfD+cu7i7nof/NrujlCCCGEEEIIIU4gtppuQBh/ByZ677y3A7gNI3j2jVLqdow75F3tfe1UjDvvbQeKva9Fa52tlHoWWO593TNa6+zj9xWEOPXsyy2p6SYIIYQQQgghhDiB1LqglNZ6DdA3zFNDwrxWA6MjzOcj4KPqbZ0QQgghhBBCCCGEqA61avieEEIIIYQQQgghhDg1SFBKCFFtHC5PTTdBCCGEEEIIIcQJQoJSQohqk5ZZWNNNEEIIIYQQQghxgpCglBCi2rjcuqabIIQQQgghhBDiBCFBKSFEtXG4ZfieEEIIIYQQQoiqkaCUEKLauCQoJYQQQgghhBCiiiQoJYSoNk4ZvieEEEIIIYQQoookKCWEqDZOyZQSQgghhBBCCFFFEpQSQlQbCUoJIYQQQgghhKgqCUoJIaqNDN8TQgghhBBCCFFVEpQSQlQbyZQSQgghhBBCCFFVEpQSQlSb3dnFNd0EIYQQQgghhBAnCAlKCSGOmUUZ/78yYyvZRY6abYwQQgghhBBCiBOCBKWEEMds+kODzcc5xRKUEkIIIYQQQghROQlKCSGOWaPEGPOx2yPFzoUQQgghhBBCVE6CUkKIY2a3lO9KypxS7FwIIYQQQgghROUkKCWEOGZ2qzIfFztcNdgSIYQQQgghhBAnCglKCSGOmdXiF5RyumuwJUIIIYQQQgghThQSlBJCHDOlyoNSJQ4JSgkhhBBCCCGEqJwEpYQQ1apYglJCCCGEEEIIIapAglJCiGpVIjWlhBBCCCGEEEJUgQSlhBDVSjKlhBBCCCGEEEJUhQSlhBDVSoJSQgghhBBCCCGqQoJSQohqMfPhcwAokbvvCSGEEEIIIYSoAglKCSGqRftGdagXH0VRmdSUEkIIIYQQQghRuVoZlFJKWZVSq5VSv3r/bqOUWqqU2q6U+lopFeWdHu39e7v3+RS/eTzmnb5FKXVBzXwTIU4tsXYrJTJ8TwghhBBCCCFEFdTKoBTwALDJ7+9/A69qrdsDOcDt3um3Azne6a96X4dSqgtwLdAVuBB4WyllPU5tF+KUFRdllZpSQgghhBBCCCGqpNYFpZRSLYCRwAfevxVwPvCd9yWfApd5H4/y/o33+SHe148CJmmty7TWO4HtQL/j8w2EOHXFRVkplppSQgQocZUwcdNEPNpT000RQgghhBCiVql1QSngf8CjgK/3Xh/I1Vr7CtXsBZp7HzcH9gB4n8/zvt6cHuY9Qog/SYzdSqkEpYQI8ObqNxm/bDzT06fXdFOEEEIIIYSoVY44KKWUciul1iil1iulflFK1fV7rqtS6g9vHadtSqknvZlLKKVuVUq9GWZ+Nyil1imlUpVSmwC31nql9+mGwBKglVJqrN/b7EqppUAHjKF5UUf6PbyffZdSaoVSakVmZubRzEII4SfKZsHplmwQIfzlleUBUOIsqeGWCCGEEEIIUbscTaZUidb6dK11NyAbGA2glIoFfgbGa607Aj2Bs4B7K5nfTuAcrXV3YB1wmVJqFzAJOAPYAOQD13lrRbUAkjBqSM0B3MDtSimbd/phYB/Q0u8zWninBdBav6+17qu17tuwYcMjXQ5CiCBRVglKCSHE0cgpcsj+UwghhBCnnGMdvreY8mFx1wMLtdbTAbTWxcB9wNgI78X7ukVa6xzvn3cDWVrrFOAZ7+NRwGxgI0atqFuAOhg1pH72vu8y4CrgD6219k6/1nt3vjYYGVXLjvG7CiEqYbdacLjkpEoIIY5Ur2dncP9Xq2u6GUIIIYQQx5XtaN/ovZvdEOBD76SuwEr/12it05RSdZRSiVWc7e3Ab97HDYFS7+N/ADOAi4C5wAGttUsp9aF32rlAMsYd99Bab1BKfYMRyHIBo7XWUuhGiD+Z3WbB6dY13QwhhDihuD3GfvO39QdquCVCCCGEEMfX0QSlYpVSazAypDZhBIuOmVLqPIyg1EDvpA2AL+tqh1LqaeBM4GmMOlNorUuVUvcAv2mtA+6up7V+Hni+OtomhKiaKMmUEkKII1bmkutmQgghhDg1HXVNKaA1oPDWlMLISurj/0KlVFugUGudX9EMlVI9gA+AUVrrw97JkepCHQbqemtI+U8XQtSwKJvCITVRhAgrp9hR000QtVSZU/abQgghhDg1HXVNKW/NqPuBMd4A0URgoFJqKJiFz18HXqpoPkqpVsBk4Cat9Va/p5YDHZRSbbx317sW+NlbM2o2Rg0pMGpM/XS030MIUX3sUuhciBAaY2jWC1M313BLRG1VJhmmQgghhDhFHVOhc631aow75l2ntS7BKEQ+Tim1BUjFCCy9WclsngLqA28rpdYopVZ45+3CKJT+O8YwwW+01hu87/kH8LBSarv3vR+GzlYIcbzZrRaccnIlRICiMldNN0HUcjJ8TwghhBCnqiOuKaW1rhP09yV+j1Mxio6He98nwCdhpt8B3BHhPVOBqWGm7wD6hb5DCFGT4qNtlDjdlDrdxNitNd0cIWqFbYeKaroJopYrleF7QgghhDhFHVOmlBBC+OvYOAGPhrTMwppuihC1ht2iaroJopaTTKmqW7Mnl/xSZ003QwghhBDVRIJSQohq06BOFAB5xXLCIIRPYqy9ppsgajmpKVU1LreHy95ayK0fLavppgghhBCimkhQSghRbRJijJNvuYotRDnlTZRKiDniEfPiFCF336sal8e4acCq3bk13BIhhBBCVBcJSgkhjplxU0xIjDVOuvNLpLCzED7ezQOP94Ta58ulu0kZO4VSpwzdOtX5D987mF9agy2p3TxaV/4iIYQQQpxQJCglhDhmvlveJ0QbmVIFcrcxIfwY20fwCfULUzcBkF3kOO4tErWLf6Hz1L15NdiS2s3tF9jdfkhqFwohhBAnAwlKCSGqTUyUsUuRzA8hypmZUkFJHkUOI3j77Yq9x7lForbxz5RSUhc/Io/fKMe3Z2+vuYYIIYQQotpIUEoIccx8w/eirBYsCkocEpQSopwRZQjOlPL9+erMrce7QaKW8S90XiiZphG5/bYhuYGAEEIIcXKQoJQQ4pj5hu8ppfBoeFOuYAth8m0fweVwOjVJAGBQhwbHu0miltmfW2I+zi+VoFQk/sP3YuzWGmyJEEIIIaqLBKWEEMfMd9IthAjlC0a5/E6oDxWU4vBmxzROjKmJZolaQmvN50vS6ds6GYBCCUpF5B+UcnvkjoVCCCHEyUCCUkJUgcvtIbdYihFHFCYmdceny2WZCRFBv+dnsSOrCJDhrqe63zccILfYSXy0DZtFUVjmrOkm1Vr+w/eyCuX4IoQQQpwMJCglRBWMnZzK6c/MCLmluzD4Z0q1axgPwMxNh/hy2e6aapIQtUZlt7EvdkhmzKlsY0YBAI0SoqkTY6NAMqUi8j8Gp+6TuxQKIYQQJwMJSglRBZNXGXfHcrhluEA4/kGpa85oaT52uGR5CeHP4fIEDEECKJZMqVNay+RYAEaf15460RKUqohv24m2WcgvkYwyIYQQ4mQgQSkhqkB579Fd6pSTx3DeWv0WW7K3AFAnuvyOSE4J4gkRELQtdrhCgrUlsl85pTndxvoRY7eSGGOXYEsFfMP3EmPtFMldCoUQQoiTggSlhDgCZZL5E9bHGz7mxqk3AtA4Mdqc7jvZEuKUppX5cPXuXFxBBZrl5PrU5lsf7FZF3Tg7eRKUisjhdpHQeSzW5JkUOdwypF4IIYQ4CUhQSogq8J1SljklKBWJWxvZHn1b1zOnHcgrranmCFFr+J82z9uWiSsoWCuFzk9tvsw5u81CUqwEpSricBnLpjjud+N/yTIUQgghTngSlBKiCryj9yh1SQc4EquyApAUVz58L/1wUU01R4haQ3uHHMVFWfl44S6+XrEn4Hk5sT61PTdlEwBRVgvN68ay7VAh2w8V1HCraqfyLEPjoFwsWYZC04BvBAAAIABJREFUCCHECU+CUkJUgW8Y2ht/bK/hltRevrpb/g4XyS27hfDp2zoZgPG/bcYalwaWYsAYvqcruUOfOPnZrRaGdmkMwJId2TXcmtrJ5TECuL7jTaEEpYQQQogTngSlhDgCf2w6WNNNqLUsqnx3khhjAyCrsKymmiNEreELOF3QtYkxQTmJaz2BuJafAkbQW4qdC6tF0S+lHlFWC3tzSmq6ObWS020EoZQ3U6qoTLYb8efxeDRtHpvCe3PTaropQghxUpOglBBVcFa7+gBc2adFDbek9gjO7LD47U5+um8grevHUer0kF8q9VHEqc23pVgsioYJ0aCMIUiW6Awu6dkMgNxi2U5ORe6gQt0WiyI53k6OZJmG5fJ4g1LexNwih2RKiT/PZ4t3oTW8OnMrJQ43LrmjsBBC/CkkKCVEFfiyGD5bnH5M8/lh9V7W78urjibVuODRRv7D99o0iGfM8I6AFDsXwrepKOD6fq3M6dF2CyO7G9lTtTkoJUML/zz5vqLmqjwIlRwXRU6xBKXCKfPWdVTe7uvBfDm+iD/HoYJSnv5lIwD14qLo/NQ0Rn+5qoZbJYQQJycJSglRBYWl5Vdjj+UE7aGv13LxGwuqo0k1zhOcKaUCdydNk2IA2J8rw1DEqWNXVhFfLt0dONEvKvXAkA74348vKTYKgB1ZhcengUfo3blptHlsKgWS8finyCl2YEtcTUKnp0jLNYYIJcXaOVggQ5/DyS81lovVoqgTbeOBSWvYfCC/hlslTkYFfv0+m9Xo3/y+QUo4CCHEn6FWBaWUUi2VUrOVUhuVUhuUUg94p9dTSs1QSm3z/p/sna6UUq8rpbYrpdYppXr7zesW7+u3KaVuqanvJE58pU432w6VnzB+umjXUc3nZMs2CBp1EhKUalY3FoDvVu49Xk0SJ6iXpm3mscnraroZR+XjhTtJyzT2D9dPWMK5/53D4z+k4gwzzEOhsFgUUP5cXe/dKu/7cvVxae+RmJqawfjfNgOS8fhnySl2YEsw7r63NWcrAD1b1mXtnlyKpIh3iMIyIzhqVRbq1zECund8uqImmyROUsV+9cp2Zxebj2/9eBnFxzBsdE92MZsyqi+QOm9rJmv25Fbb/ER4RWUubv14GTuz5K7SFTmQV4on+ARBHLUfVu/lpzX7aroZx0WtCkoBLmCM1roL0B8YrZTqAowFZmmtOwCzvH8DXAR08P67C3gHjCAW8E/gTKAf8E9fIEuIIxU83G7u1syjms/Wg+WBrZMhQBWcKeUrPOvTOCEagF/XZRxTB06c2Eqdbvb4deiDeTyat+ek8dWyPSdcx7rU6eZfv2zkuveXsG5vLovSDgc852PWlPJtIqp820mMtZuP99VQVmFusYPdh0N/owXbs8zHObV4eOGJQmvNwH//wfvzyosm5xSFLtd68Uaw5f6val+gsqYdKDDWU6WMTCmg1tTfkrtonlwi1SubsyWTtXuOvAxDbrGDv3+1mkEvzeai1+Yfa/NMN3+0jMveWijBkj/Zgu1ZzNmSyXO/bqzpptRa+3NL6P/iLF6bta2mm3LSeOjrtTwwaU1NN+O4qFVBKa11htZ6lfdxAbAJaA6MAj71vuxT4DLv41HAZ9qwBKirlGoKXADM0Fpna61zgBnAhcfxq4iTSJHDOLl86aoeAMR5O8JH6oL/zTMf17YTvIJSZ0jB3co4XIF3PQrOlPKluwN8sSSdlek5R9/AapaWWcjoiasocZxcd27yeDQpY6fw6oytNd0UXpu5jZSxU3hx6iYGvTTbzCYKtnRntvl47PcnVraUrw5UfqmTS99cGPBcqbM8Gyr4RHVk98bGdKC5N6MQqJHMmN2Hizn9mRkM/s/skOei/LbhQwWSKXUsnG4P2UUO9uaU8MLUzeb0bL/aUb7Avm9fPGvzoePbyBPA5gwjGGBRigTvXV6LjnA/fiCvlEV+AdfqsCe7mK7//J0vgofuihq1I7OQ537deFSZG7798UNDTwt5bvGOw/R6ZjqHjqCm2Ttz0vhl7X7z7yU7Dgc8n1VYxkvTNh9xX8znvP/OYebGyMMLN2XkkynDgo9ajN0KQMEpnsGqtY54IeCQd/16bdY2bv142XFpz6ly84G8ktp13vhnqFVBKX9KqRSgF7AUaKy1zvA+dQBo7H3cHNjj97a93mmRpgd/xl1KqRVKqRWZmUeX/SJODlprfly9LyC7wSfXe9LQu5WRbDdlXYZZbHXa+oyjurvcsdZnefLH9Qx7ZW6Fr1mZnsO9E1eabY2kqMxF96en89K0zRW+LlhmYWDnJjgo5e+FqZu58p1FRzT/6vDFknTenrM9ZPo9X6xkSmoGK9Kzw7yr5rm9waVbPgo9qF8/YQkT5u0I+75S729d1atUaZmFDHhx1lGlBmcVlvHRgp0RMwNenWkExpbvMoKR30cYxrntUIH5+HAtyXioKl8nwW4JXffDZUr5bgaQ5M2OCl52N36w9Lh3PG77JHLH0W4tz36878vVJ81NGoJNWZfBvKPMgPXZfbiYlLFTIu5Hb/pwKf1fnGX+Xeg9scn1C0rllRnL9+YBrQHo16beMbWpttBaV3ocqqr8MuO4o5Qyb6aRUj+OJ35I5b255Rloh/JLWbLjMMUOF7uCMkge/mYN13+w9IgCCpXx7cdmbZKaQ7XJ6C9X88GCnew4iiwi3wWTs9rXD3nu9VnbyCl28tLvW6o8v+Dj2/xtgfucsd+v4+05afy4et9R1+K847PIQ1kvem0+578856jmW90WpWUxe0vtCLp7PFXbPxV799n+NWZPRpsP5LM47XDE56ekZtDr2RksSsti+6FCpm84ELKPBSOj8M+WWVBG+yd+46tlJ+fFAP9g+t6cyCMOTha1MiillKoDfA88qLUOGHitjV58teRHa63f11r31Vr3bdiwYXXM8pT21E/refLH9TXdjCr7dd1+Pl+8i77PzWBx2mEe/HoN48K033eSWDfOznkdjfWk47hpTFq2m7u/WEWPp6dHzLiZtzWTjLzQzsX3q45tfPDnS9ID6lwFK3O5ufKdRUxNPcDQV+by8vQtPPxN+PTPN2cbQZv3IgQ6IjkQ9L0qCkrVlHE/ruelaVsCTv4dLo85lPL9eTtIGTsl7AG1pmzcn0+7x6cCxlDRC16dF/D8orTDPD91U9gAqn92TlWM+WYtGXmlR5Ua/NDXa3jm143meui/jP2vXG301s5Ytzd8QGO733p8pFdxnW4PXyxJP+YrZUVlLlbsOvIApS+gYLWqkOcCtreg4NOVfZoa77MEvu9QQRl3fLo8ZF4ej+b5KRsjZpsdi2Z+mVrr9gYOn/xiSWBH78YPl1b75/vLKiwLG/jKK3byyLdrQwJ2GXklpEZYryry+4YDbD6Qj9Pt4emfNzD6y1Xc/NGysNvUlHUZLKxCVs20DcZ1s7fnpIUMo3G6PSzZkY3TXb4evDsnDa012UVOc1jnc0ufY9quaSTEGMeaZTuzySqseJs4Ea6efrRwFx3HTSM7TNA5r9h5RBmrvqHgFiyckVKPoZ0bs+twMROX7ubF3zazYlc209Yf4Ip3FnHt+0t4YNIazv3vHDbsL19Pth40Akj9X5zFtPUHAHhg0mouem1+2DZWRYnD2AfFerMpTiUb9+fjcntwuj0h29BfP1lO/xdmRXgnlDjcXPf+EtaGGbqdV+I0L/ptPpCPw3Xk+3lfbb9w23ZFih0u3vf2iXwXJMNZsK3qGXfBJQ/iomxk5JWY6//SHcYxaMy3azlr/B9Vnm+CX/Z+k8SYCl9bUHr8h5iGC0pfP2Ept328nJSxU46oXuHaPbnVngn+yHfr6DhuWqX9D1/h++B97rT1GUc09P7PWv6Tlu3m6Z838PuGA0c9D601F/5vPtdNWBLxNaneY/T1E5Yy9JW53PX5Ss7zBjuDS3WE266rU+o+Y/4vT688OJxVWEbf52aSMnYK/z7Ci/BVtWxndoUBvSPlv67tzTn5bxpV684ilVJ2jIDURK31ZO/kg95heXj/94XX9wEt/d7ewjst0vRTltb6T09x/GxxOp8vSf9TP6O6FDtc3Pflap78aQNZhQ5We3ec363cS8rYKRzMLzVPdnxDdJJi7Qzv2sScx79+KR9Xfs37i80D64X/m8drM7ehtebmj5ZxxduLzE5H9+ZJgHGVLfgqWVVkFZbx+eJd5t8b94cvlrnNr37VnuwS3vhjO5NX7Qs5cB7IKw3YgQ5+KXQITyTB9X/CBaU6Nk4I+PtQfinph4soLHOZHdi9OcVsP1RQ7cOD/DPYJi3fQ1GZi9mbD3Hha+VBnvneDuW645ABMmvTwSp1qke8HlhrYsvBAt6fl4bL7QnozHR6chrbvCdXvit9/h2/lLFTuOqdRWGvABaUOikscwX8hr51dO2eXHYfLg4JUPjPN2XsFHPZudxGlmHbx6eaAabvV4VmRS3YnsWPqwN3w0VlLr5evidgWmXZOB6PZtKy3ZQ63Xy6aBfjflzPl0dxlezLpbvJyCuh1OnmsrcWctW7i8kqLGPZzuyAfeXhwjKmrMsIeK/vt6woILB8V475fYO7oM2TjUCQRYUGs3yZZf42HyhgwvydDHl5Lk/8kAoY2X7/+K58uGNWYdkRnSCtTM9mw/68gMDYpW8u5Ktlu8ktdnDlO4so8Z7IRduMbTv3Tx52fMkbC7j4jQVorVmZnsPaPbl8vXw3781L49uVeznzhZmkHy5i1qaD/POn9Qx48Q8ueTPwbqa+jKWlfkNjPB5t1szKLnLwt89X8pd3FjNz40E+8btxxfNTNlHmcgdsZ6O/XMUNHyxl3I+pFZ5M+AeczvvvHKD85KMgzJX1N2dv5/VZ28kpcgQMk1yeYQQl7d5pHy7YGfEzr5+whJ7/ms76fXkRAzu+K63bDhZwuJIAl7892cV0fWoa905cGXC1dkdm4RGdVJW53DzrrcGyPehCisPloecz07n8bWPoq9uj+WnNvgqHL5U4jKCRL+swMTZwOP1V7y7m7i9Wmh34Gd7hTCNfX2Bmp0XbjMCRR8PdX6zkkjcW8NOa/WzKyDfbUpFSp5uHv1nDdr8sT9/J2G/rI58QejyawjJXQHZcVezMKvpTM7BGvbmA14+gBozHo1mwLQutNbd9vIwRr8/ngUlr6PDEb3R6chqrd+fw7Yo9ON0e/th8iAMRMtLyip30e34mi3cc5plfN+L2GP1U3/p228fLOOvFP7j6vcVc+L/55nr067r9fLVsd9j1xO0x2jR/WyYfL9xprnPh+hfr9+WZFw1nbTrIr+vKh9Yt2l6+/wi+eOCvU9OEiM8Fswbt7//z+xYGvPgHl7+9kLdmbw8ZFpYydgofzDcCY063x1x/g5U43dxzbjuGdm5EcnwUOzILQ9YX/2322zBZyx6PZsK8HSz3uziTWVDGnGPIZrrmvcV0evI32jw2lY7jppEX4fiRui+PX9ftZ3KYfkOwUW8t5LVZ28x+zdaDBWHrIfordrhY6ZcV/9OafaSMncJs7/BoX3/lsrcWhuxHV+/OMX+DR73lBfbllpj9hDKXm7u/WMXZ4/+ocnD9jOdncs17i1mxK7taLiporfn3tM2MnZzKJ4t28bfPVwY8v2h7VsgNmnZkFoY9J3x5ennA77lfN4Zd5xonhAY+tTbWUf+bAwBsOVC+j3z21408Njm12s5FS51u/vqJkRmYVejgjk9XVFhfsO9zM82LPO/MSYsYqJ6x8eBRB9Oufm8x101YEvZGN0fD195YStl3CgSljq44zp9EGb2MD4FNWutX/J76GbgFGO/9/ye/6fcppSZhFDXP01pnKKV+B17wK24+HHjseHyH2uC7lXtpmhRDt2ZJ/Lx2H9f1a8Wj361j8up9XHZ6M27s35q+KeXDAvJLncRH2QIOvA6XhxKnm6RYO+v25tIwIZqmSeVX1NMyCyl1uunaLImD+aUBV/DX7c2lR4u6f+p3/GnNPjO7Y/kTQ2noLao9bf0BVqZn88TILhW+Pz3oIPafoBTsM71X9naNH0lusZM60TbsVgsx9vKThxK/Hdq6vXkBQzM2Hyjgsl7NAMjIK6Xb07/TUh3k3bgvOZ+rKCOK12ZuIz7aRqt6cXg8mkZ+V7jKXG5+XrOfK3u3ILOwjMaJMbw1e3tIO//583q+vfuskO8XqSMx/JW5bHjGKK82adluxk5ODXh+dwUFqYPtDLqFfXChc4C/D2kfcFexft7l2rVZIiUOd0hK/W1np/D4iM4UlrqIsVuJjaraVWePR1PsdJuFb7XWAenvj01O5bGg7xofZTVrkSzdcZiR3ZtW2Pk8FvO2ZnL7pyv4S58W2G0Wxo3sTFGZm5/X7ufaM1oSX0mdshembua7lXt547reAdM/WriLr5btJjHGRn6pi5kPnxPw/Ir0HP4zbQv/uKgTdquFTRn5NKsbS89/TQ/5jOkbD2C3Wrh34ipz2vf3DKBP6/J9hX8Hw6fI4eLBr41tcfuhQto2iOfxH8JnTD749Rrmb8vi5at7ArB2by5lLg+vXXs6j01Opdjh5plfNvLN3QMiLoslOw4zdnIqS3dm84M36DNz0yGuPaMVUbaqXWc5lF/K4z+k0rNFEqc1TjCzvT5asJO356Tx2rWnM+r05jz360Y+8AYF9ud2ZkV6Nkt3ZpNb7CTGbuH/vMOH/IM1t56VYgY6Hvx6DZf1am4mSvlODNw6sDPUpkF8QHbN/twSM4OpzOUOCFROXLqbiX51a/5xUSfqxUdx68fLWL8vn4l3nMlHC3aybGc2Ux8YxIyNB7n1rBQsFsWCbVm8Ny/NDCiG89jkVJ6fsimgMzrq9GZ8s6Jqd9HUWrNw+2HOalffe6fBQLuyimhWN9b8rQ4VlKI1NEqIJsMb2H9r9nb+Oz30anip08M5/5kTMv2sF2cx7aHBJMbYmecN9l/z/hJ2vDACi0Xx5uztvDJjKz/fd7YZ7Ckoc3GP37oORgaq78JKXJSVP8acaz73xZLdfLFkN/MfPY+W9eJC2hCcYZMydgoAz1/ezRyuGcw3xLVhWwu+NcIXbHnpqh5Mf2YG78xJ46x29RnUITCbO7vIYRbWv/gNIzC37unh2CyKYoebBnWiKSxzMfyVuZS5PObQoZ0vjjA/w9+Dk1Yza/MhUp++AIB/T9tMkcPN1NQD/Nb9ACO6N+H2T1fwx+ZDPDGiM3cObkthmYv4KGvY+S1OO0xSrD0g2HH1e4vZNX6k+fcr3oyHzQcK2JlVxG/rM3hp2hb25pQw+rz2/Lh6Hy3rxdGndTIej8ZiURQ7A0/iWiSH/haR3PflKsaN7Exc0HEl1S8Qnn64GK112O/k0+nJaYAR1Jj+kLHP9T/B+S3VyJz4S9+WJMXa0Vozbf0BHpi0Bof3ZMV/Odw7cSW7s4t5+/o+/LJuP/ee2y7g831BzhkPDaZlvTiztk2p081HC3dy+8A2KBT/nb6FwR0acnb7+hW235/WmrV781i7N4/7h3QImO7R5QGZDfvz+HD+Tv59VQ/enZPGyzO2cm7HhuYQnSmp5YH7y982huo/8l1ojUDfPlApxZyth8xAzMr0HDND+Oq+LXj+8u6s2m2cGC7zDqP7fEk6bq350rv/e2xyKvMfPY8WybHm980qLGP2lkxmBw0d+usnK0LWfd92s/GZC7jdewfHkd2bGhmrQcPg2jeqw/ZDhXx9V38SYuzmPnnOlsyw24HT7eHc/8zh3I4NGTeyC+/P2xE2GATG+r/5QPhMj+embOK2s9tw04dLWbIjm7eu783CtCwGd2hI35RkMnJLUYlLOejM4UB+KzZl5HP+y0Zph2VPDKGRN4DgHzRfvy+Pq/u2pMThpsTppl58FL+s28/zU427gG57/iIen5xqtvelq3pwSY9mZn/M6fawJ7uYbYcKqR8fRd+Ueub26fu95m/LDKgXCXDnZyv45u4BISfsd/ot6yibBafbQ48WdTmYX0rr+vGs2JXN0M6NA/pJOUVOxv24ipmbjL5u6tPDySp0cN5/5/DwsNP4+/ntUUqxKC2L6ycYGb4f3tKXh78pz7i97ZPlzP6/c8157sst4f5Jq3nkgo7M2HiQe89tZ67Lt5yVEtDmq99bzOjz2nEwvzzQP/KN+fwx5lzzgpXvvMTt0dz2yXJyihyUON1kFTrIKszmqncXA/CPCztxUbcmNE+OJf1wES2SjW1868ECsosc9G9rDB/dfqiQPdnFnNepUUBbVu3O4Z05aURy/QfG92/fqA5aB2Y8n92+PhPv6G/+7V/u4oMFO4m2W3hw6Gk8P2UTuw4XcU3flhH7yfO2ZlJQFrh//n3DAa4+oyXvzU0zL7AsTsti2oODsVlUQO3ZqnJ7NPklTno9OyNg+sxNBxnyylxWPTks5D3hSqa8OnMrYy/sxArvBbAyl4crejc318ffHhjEdROW8OZ1vRnYoQHXT1hCn9bJjOzRlKveWcwvfx9ImwbxHMov5bZPlrPBL0mgwxO/0a15Iq9cfTrXT1hKcpyd3x8cjMWiKCxzEW2zYLdaKHG4yStx0ighmo8W7uTcjo34evluPl2cztLHhpBZWMZwy3Lej3oV3X5ByHc42ajadKcQpdRAYD6QSvk9sx/HqCv1DdAKSAeu1lpne4NYb2IUMS8GbtNar/DO66/e9wI8r7X+uKLP7tu3r16x4sS/rbDWmjaPTa30df83/DTuO78DxQ4XXZ76nbYN45l6/yCzs3PTh0uZvy2LcSM789wU40A1qEMD5m/L4rVrTzcDQtMeHMSNHywlqzCwQz73kXNpXT/+qL5DbrEDp1ubO3QwOrjr9+Xx14FtUEDbxwO/48Q7zqR/2/pmp6Z3q7qs2p3L6PPa8cgFnQJeu/VgAfdOXBVy1Tacrc9dxNjJ61i6I5uFY89nampGwEn7kZhgf5lh1pV4rvmKYVPjSMs0TkLtVoXTrQM6qf/6ZQMfL9xl/n3HwDbmyXGwleOGUr9OdMC0a95bzNKd2VzasxmX927OC1M2mSfeT13chR/X7Is4nOqOgW04VFDGz2v306lJAlPvH8SszYdIqR/HvtwSnvl1I789MIjhr84mu9FD5vtaJbRiyhVTAubl9mjOGj8r4MBdmX9e0sXMQmuWFINSiin3D6RuXFTIaz+Yv4PVu3OZkppBrN3Km9f3Ys6WzCpl7A3t3JiZflcTh3dpzDs39sGijMDuhd2aEG2zVjnQUZFHvl0bsUMKcM5pDYmyWViSdjjgaumr1/Tkoa/XHvPnQ/n2G2xg+wYs2J7FVX1a8F1QG2/s34rTGicwadkecxheZXq0SDLXrXmPnMdrs7YRbbeYJxJQfmJ8zxcrmbbhAKufHEap02MGdq/q04KeLZL4S9+W/LB6H+d2bMi8rZlc3qsFXy3bzT9/3hD2s6fcP5CuzZJYmZ7NXZ+t5I5Bbbnt7BR2ZBbRuWkCHy/cxU9r9zOqZzOeCXMHnf5t67HEO4Tiqzv7V5jCHsmvfx/IyvQcs41/G9yWaQdfI9uykGfOeobLO1zOnoI9jJg8AoAHej/AjZ1u49NFu3jxNyOlPMpq4aFhp3F6y7r8sm5/wLILx/cbRvLyX3pyUfcmdHnq97DPX9GrOZNXh08mfu6ybvRvW5+h3hp2C/5xXkAgILvIwXtz03hw6GnERlnNfeSzo7py04AU83Vuj+b7lXt59Pt13H1OO1xuDy2SY3n6l41E2Sw8MaJzxN/1aMXarYwZfpp5DAO4+5x2vDs3cge+Mi9e0Z3r+rUiI6+EX9dmcOvZKditFh7+ek3EZRjsrsFtzaFBAM1P+458q9H/uKbjNYzrPw4oD2wBjBvZmUt7NiMts4gB7eqHvajgb+W4ofR5bmbI9LX/HM7789J4a3YaMx4aTIfGCdz/1Wp+9hZg9i2fDo3qRBwi3qVpIlsPFuDyZqr4H7sApm84wF1BV+t9XrqqB52aJNC+UZ2I6+PQzo3o3DSRN/4wTpBe/ktPxny7lmibBadtN/Ft3qReTD3mXjOX1L15PPnT+mq9c+czo7qSEGPj88XpvHVD74ALclD+u7RtGM/Mh84hs7CMn9bsCyhgD8YJ378u7WZuO/78L6b5/84+X9x+JgM7NAj7/MyHz6FVvThGf7mKGRsP8uxl3UiMsZn9Mt86eiCvlPp1orAqZQYMCstclDqNoCUY229v78ndrvEjST9cxO7sYsb9uJ5ih5snL+7CJT2actnbi1i7J5dOTRLYHObiRGXeur43HRrXYbh3OPrI7k0DAlnBHrmgY8hFuIr8OPpsrn1/MY9dFHk/MmvMObRrWAcw+pmnP2N871GnN+OnNcb6v+apYYz5Zm3ATQZ2jR9JQamTojI3TZKMIM8Dk1ab7/F598Y+dGhch4zc0mMa6uwf7IPQ/UWwhM7GDckLNo0PmP7N3waYdekOFZTS73nj+Hpdv5aMG9mFv7y7mI0Z+Wx//iLaP/Fbpe3q2DiBe89rR2GZiyfCXHgaN7IzZ6TUY9RbkbMNn7y4i5nxVpEomyUgs/y8jg1596Y+dBw3LezrL+zahGl+w9YeuaAjtw9sYwaQj8Z/ruphBlZb148LuZgdzujz2vHtir3kFjtJ/ddwom1Wxn6/jklBGeHh9GyRxNq9eQzq0IDPbz8z7H4B4MreLThUUMoNZ7bi7i/Cn4/MfeRcHv8hlfFX9GBQJSMgVj85jEMFZWzMyOOhr9ditaijLrbfr009M4js88eYc8xAqb8zUpIDLqqnHy5iw/58YqOsxNqtXPv+EqbeP4hNGflc1qu5GQx7/IfUCvtESbF2/n5+e+4Y1BatNa/P2k6r+rFh+9K+86/KpD49nO5PB17MbZIYw5LHh3DPFysrzJD1mXBzX7o3TzL7ufXjoyqto/rsZd1InHI3o6yLYPjzcNZ9lX7OCSDiFZNaFZSqSSdLUKqwzEW3f4bv6FXFaY3r8PuDg6sU2ALjzlGRxlL/cO9Z/HvaZnq0qMs957Tjxd82UeL0UD8a7r9SAAAgAElEQVQ+ilvPSmFKagZ/6duCxBg7MXYrny7aFdCZ2PniCEqdHqZtyAjYmYTbiVx7RkvuH9Ih7Dj8yfeeFVAToM+zM8wdwYe39DWvkIGx4xn6ytyQIErnpon89sAg/th80EwX9bmxf6uQ2ivh/B71KB0te+Gi/9D511YBmVa+77XteeNENdLBqCL9Uurx2IhO1I2L4oYJS+jaPIkJN/cFjKsfL02L3MGrqKPgH4T0Ma4a5pLQeZw5LSUxhV8u/yXk/W6PZu3eXL5fuTcgw+NITbqrP7F2K9+s2EPbhnW4sX+riB2Uijw7qit1Ymw0TogxryD5vHB5d4odroCT2Jv6t+bRCzuSEGNkO8zadJC2DevQpkHVg65H83v6AjeVHYCP1RMjOptXSKvT6ieHkRxfHkjs+a/p5hXKmQ+fQ5OkGLr983ezAwbwwtRNAZ3v4BPj01vWrfTkM9JJU1U7H8fiqzv7M6Bdfb5dsScgSyCm6bfY6640g1Lp+elc/MPF5vOptxjBhTs/W2EONzqe3rmhNx8v2hXSmQSY/tBgTmucwFfLdpvZhjteGMH6/Xms2JXDl8t2GxlyDePp2aKumb3WuWki793Yh8H/mU1ijI2hXRoz+Rhq6SXE2MIOgzsaNotiZI+mISeVVdEsKYZerZMDhnS+e2Mfvlq2m5xiB3ef0y7ihYsljw0xT2qHvDzHe2FCk9jpX2hlZIld2/Fanuj/BAAT5u0Iu20O7dyYFsmxxlCNc9ry3twjqwfo88gFHRl9XvuI+6eRPZqGDF0Np02DeD77az9a1otj/b48MwPlz2CJ2U18m7dpENuA2VeXn2wFL6vKTiIv6taEd27sw+K0w5UGn+f837k0SYoh2mYJyeK7f0gHXp+1rcrLyt+isedXWDvo67v6s/VgAU/+FBhkCXexIvhEcu4j54ZkFdaJthFls5Bd5MBqUcx79DxS9+Zx9xfhA4g+LZJja7yeybVntDRP7D+57QwmzN/Bwu1HXrtl3MjO3DGoLdsPFTD0lXkhz/80+uyAoEqnJglMe3Bw2HmtTM/myncWH3EbRnRvwmvX9qJDmEDQqieHEWu38tbs7Wa9z8r4glKDbJ8wNbX85PjmAa255oyWjHw9cHs8v1Mj/qgFd/a8um+LKmfg1hb3ntuOtyvISvJ3Vrv6ZjbricQ/GaEyjRKiual/a14OqvPVun4cbRrEV1rsfPwV3dmTU8xbsyteps9d1o0b+xs3AAl3vDojJTmk9ME1fY0qPl+vKA8Ifnf3ABolxDDklTnV0h9smhRDnWgb2w4V0jQphqIyF/nVXAj/M/uLDLamwkMbISnknm0nIglKVeZkCUrtyy3h7CMokFhbtG0Yz47MYys2XdGVt0t7NuOVq3tis1o484WZHMwv49O/9uOc0xpy4wdLWbA9i2/vHsAZKfXQWjNh/o6Aq54tmu1lzn238/v6TEZ/uYrLTm/Gj94Tml/uG8g3K/bw+ZJ0PrntDF6duS3seOQdyX/HUnIYet/Cu0kPMP630EJ7VenY1o+P4vozW5lXkSMZ1rE+E0YkQOOuvDc3zczCCOY7MQkXcKuYq0pBKX/+Y7oB+rZOJr/UaRYe/zOsenIYk1ft5bkpm5hwc1+GdTFu3nmkAdy1/xxOUqydlLFTUAp2vjgy4mv35hSzMj2Hb1fsZWdW0REVwfTxzz4Y/urcgGX0t8FtKyxMP/6K7gzr0phr318SENRpmBAdUszzsYs6BawbI7o34elLuppDLSO5qX9rbFYVkNEXqf0A785NC1jnr+jdnMmr9tE0KYbFjw0B4PPFu0JOwE4EvuD8orHn06xubMBVeICYpt9gr7vKDErtzNvJpT9eaj7vC0o53Z6wJypgXME/kF/Khf+bH/b5YzH1/kF0aZYYEhSLi7KyctwwYqOszNh40Exr989mPF4++2s/OjVN4I5PV7Arq4j8UhfLHh8Sdj3t1jyR9fsiZ/Zdf2Yr7j+/A/1fnMXI7k1564beLNuZzdXvhZ5gVpaF5m9UiovXruvDmvw6aK35evke80T67+e3N+8WB9D3uRlkFTqwJa4ltvlX5nT/oFRBqTPk6qw/q0WR9sII3p2bxsD2DcIGgz6+9Qxu+yS0eH5VDGhbn8zCsiplFUPg0FV/K8YNZd3e3CM8voRnjd1FXMq7NIxtyB9Xl/d1/LPENz1zIbFRVn5cvY8Xf9vEz/cNNIfk+6x7ejiJ3gsN785NI6/ESffmSUedCV2Zs9vXP6ogyqnki9vPDJth1LJeLHP/7zy6Pf07xQ43u8aPxOPR/Hf6logBAv99QHDg1iiOX1Tpev2PCztwMOpLbu56M22T2oY8X9WRCT7f3T0Am9XC6S2N8ha+k+t/XtKFtg3rkF/i5JKezczXP/zNmioF8n1BqdRbUo/qAlgkx5pVWpk1Tw3j1o+XH1OWY2X7+kiCt8cxw05j5+GiSpf31X1b8NJVPbn142VmwOWlK3uY9aaqwj8YZ7MoM+P0WFXlol1V/O+a01mzJxe3R1c46uDOQW0Ye1FnrBYVsN7VjbOz5qnhHMgrDShrUh3CXUR947peXNKzGdsOFjDs1dBAsz/fRbYN+/NYvTs37M2tjkaDOtGsGDeUvBJnSHkMm0URH207yvphmjXRd5HU5yrUpa9XS1trgYhBqVpVU0ocu4qKs/muHHZsnMCWg0eefh0suA4KGGPRI51UVeRoAlKJMTau7NPCPCmuKBX857X7zeEJYETQzznNqNHxxR1nBrxWKcWN/VsTF2XjvXlp7C9dT17SBHp9/iZLr1vNX89uwwNDjdoLP67ZT4fGdXj2sm48e1k3wEhffW3mNu4+px37cku4+I0FROMwAlIAhzbyt0va0qVpIjd/FHg7dv+A1FV9WvDkyC4kxtpo+/hUtIYLujbm2VHdaJQYw8PDTquwQ3TN4TfhnV9g5Cvc2P8Wdh0uDrlt6uZnLzSKGG+ewjnN+kacV1hBu5Wq3H3v1Wt6ctOHxneecHNf+rZOpm6c3fwe/VLqsWxXNj1bJDHxzv7szy0x0/2PxHs39eHntftJjrNTLz6KOwa15creLQIyd+pE21j2xBAzpb0y367Yw/VntgKMoo5jv1/H+Ct7hLzumxV7eDRMLQ0wTvKL/YphXtG7OU9f2pUZGw4y5tvyK98f3doX0hfBtMfghm955IJOAXUXHhvRmcdGdOaSNxYE1EPxGdihAfXrRDPj4XM4XFhGn+dmEmWzsPyJoazfl0eM3crQV+YysH0Dbjkrhd3ZxWYW2ytXn24O4wXjBN4/U+vaM1oGfO8re7fgxd82MbJ7Mx73FuF+47peIW362+C2NE2KMbPufJ0//3o7l/duETYo5RuOG2zeI+eRHG9HKcULUzcdUUbZ5b2aU1Tm4v2b+zJxabo5HCHGbqFfm/rM21p+he+dG3qzP6+Uzk0SzOy6pkkxZg2kiXecyTcr9tDUmwVTNy6KtBdGMHFpOk/5fR9fzZFIF4PsVkvEfWjduCjqxkWxa/xI9mQXY7da+HntPi7u0czMtnjpyh50aFyHxTsOk55VzI6sQtbsyQ24IvjVnf3p0LgOy3Zm07d1Mr9vPEhnb7He5y/rFhCU2uitPweQHFf+Ox1LQGr+o+fx/rwdZmf3u7sHmLU1wMg6+s/vm+naLMkcQtwiOZbB3v31z/cNDJjfJ7edwa0fBwZdfv37IApKndw7cRXzt2XRIjmWDo3qMHtLJpf0bMa/Lu2K3Wph0l396ea9+cTpLetyfqdG3NS/Nc2TY9HayBxWSjFtfUbEYRL+XjtwM7wKpz9tbJONE2PMoNR1/VoFvPbMtvWZsi6Dq/rFM8XvPMi/Lk1CjJ2v7+rPe/N2mJkNL1ze3dzOfJkxd5/TDoBljw9hX26JWQcFjKHBvpP4B79eE3AcjOTOQW2YMH8nl/RsxocLIge/g0+owgWkwOiwn9+pMfef357Xgy6m3HBmKzyaKt/SW9mN/UBwzSSlFF/cfiat68eZtW8u69Wcy3oZV5b9M4kaJUSbASkoX35a64ChXEdrzVPDmJp6wPydAB4e1pGHhhqf77++V9Uzo7qyKSOfr5ZVPgyouvjqKPkMPq1hwH7xzkFtSIyxc/NZKeaJ2H//0pOB7RswfeMB+rROpmuzJD6Yv8PMvPjktjPIKXaYmV7THxqM1uDyeOjaLIld40fyyvQtTJi/k5sHtGbsRZ3M33rJ40PQ3hFdFovigq5NIgalJt9zNgfzS7FZFU2TYgOCUv7D9j+4uW9I/Sifc7q7uObX79lweAPfXvJtyPNKKW4e0JrPFoc/cZ9y/0Byi52kHy7m6xV76NM6ObBWWMeGzN6SyYB29enUJDHk/a9cfTqX9GzG7M2Hwn7GaY3rUC8+Cv8j5o+jz2bC/B1HnLUXztiLOnFdv5Zh6/hV5vt7BvDD6n04XB7O79SIX9dl8Ktfm56+pAt146L4cfTZuNweswTIC1M3BeyjujRNDCgdcG7HhsZyeWMB13hHSKzfl8f43zbz1vW92Z5ZEJK9Nv/R80KGsD0xogs/rdnHoxd2CqiRdEmPZtz2yXKirBbcWjPprv7kFTvNdeShYacB8P5NfZm16SCzNh/i0tObcXaHBhUmBCx9fAgr03NoVtc4Fm05WMjzl3Uj/XAxo7+s+Njy/T0DUEpxhd9+PZwfR58dcgH6jet6MXFpulmWINjEO87kBr8RA63rxzGyR1Nzv9mpaQLJcVHcO3EVL13VgyaJMeZ5i3/tXv+LN9eeYRzrmiTF8O8ru/OP7wOHme98cQS/rMvg/q9WE6xVvbgKa9v6AlLX9WvJ8C5NGNihgVknskPjBGY+PDhsBqRPQowR9ujaLImuzZIqDUoN6dSID27py9M/b+DTxelc1K1J2KF6eSXG+psUa+eN63rRKCGafm3qMWn5Hkb2aEpijJ2r313MsjB3eW7fyNiOJ93Z36hr9c4iNmXks+35ixg67mPqqiJo3jvkfScjyZTyOlkypZ76ab158GqWFMOix4ZQVOYiymZh7Z5c/jt9C5/+tV/IsKcdL4wIqdPkc0Wv5rxwRXeW7sxmUPsGLEo7zI9r9vHC5d351y8bAoZk7Ro/kqd/3kCxw0XjxJhKs3mqKlz7fJlNZ4//I2wmyv+uOZ2JS9PD3s3q7n71GXtwDPw/e+cdHlW1Pex3JtOSzCSZ9J5AQiehdxUBG0VBVLwqiCJ6LdfuVexdUPReK3YQxQ6CSBEB6b0TeklIgARCek+mfX+sOVNSgFt+6vU77/PMQzhzzpl99tl77bXXWnvt1Atg6KvgsMHmj6HLXyDIm9jZ5XJx34IPWVnyHuCNaABJMlpS3eC3pXpjjpfUcOFrK2hvruFn+0TQ6kFnhEnHQaulvNbGtBVHmo16OfzyUI+wfXv5Yf6x9BAPXtLWYxADyd3xzq9H+OaOvszfle+XzDvbdBNaZd+vG76BdkM93oxAfQDLHx4oZa8thVdTIbEXlWMXU2tzEGTQcaq8lud/2tdyUmSNDUv7pz3/TQ9LZ+7IuS3WhcLG7GLsDpcnX0ZjzlTWY9JrPcvljp6pIre4ukUv+4bHB3Omsp7UyGAunrqSkuoG3r+pO0Mz4s5ZFpCljUcKq5p4yDrGhRBhNniev1tyGJV1dj8l/aou8fyllyR+1Gg0pEQE8cJP+5o1kG56YgiGAC19Ji+nY1wIO4+XcU33RE/SbyUh57NXduTWriEw1e2ZHf4Gjh63cd/XO0iJCOKSjjF+y1EdTpcnl5rCkZeH+iWQLKysw6gLaDHhMsjue1qtd2eqKYsPYHM4+evA1h7D3dRrMxnYLsqTPPWclOVBmHcy7nK5+G7rcT8lpXHi6Mae3q1PXUKk2cje/HKGv72WWwekcmPvZNKjzX4KflW9nVkbc5my+IAnCtLmcIqh53QloUF6NhwtZva2E3w+oXeTSW1+WS3ltTbSoszYnU7u/2YnfxuUztojRdw1MM2Tk0Up37KHLuLgqSqKquqbJEH1pe8ryykL/twvUupw6WFGzx/tOcdXroA4F4KNASzdV8irPx/gq4l96J/efH/xLZOS2LsxOUXVDHp9JfcNTuchn2id5pi34yTHS2rokWqlf5r3NyvqbIyetv68oma2PHkJC3bne4xXXZPCiAg28P7YHp4cbVdPW8eOvDJ2PH2pJ2Gpb2LeOpuDA6cqPVEFZyO/rJZpK48wa2Me9w9p45k4/Dc5UVpDflkdYz7cwHU9EpvkiIuhhE0md74Hd5i93eGk47NLuKZ7IgmtVjEoeRA55TlcnnI5doeW/PJaVp/+nn9s8+7rcmP7G3m8T9N9WSrqbOSX1dI+NsSvjzSOSATZaW/Wxlyu6hrvt1HBkcJKPliVzYVtIpssyQZp08nhwegDNJ4k1zvySrnugw0e49P4finMdOsYirHrynfX+iV5VRjXN4UXRnbyM8Ze/uZqOieEUlVnZ8/JcubeM4Aos5GvNufx1Lw93DoglRnrjvHIZW25oXcyWSfLyTpRzogu8Qx6faUnKiTBnMDP15z/8u0tx0r4dstxpl6bec4k4HaHk6825zGmZxJHCquaRKBd0SmWx4e1b3GyrryTxVkFZJ0sZ2TXBI+BE+DbLXl+MvCp4R3YcqyEJXvFWLLikYs5U1lPdYOdW2dsYXhmHO/d2B2n0+WnBwVoNTx3VSeedk+sGht4QaLdOsWH0DPVyvR1zS/RHdw+moSwQI+h+Md7BrA9r5Rb+qdyvKSWR+fs4oFL2jJ72wm/vIO+icOHv72GYKOO7/7a/CYVO/JK0Qdo6RQfgkbjjaxorv3+K7z28wEWZRXw0qgMYkNNVNTZSI82+xkdAe74fCu/NLM0evvTlxIaqOd4SQ37Cyr8Nj+Y/3ASNy26iU4RnfhmxDfN/r7L5cLhdKEL0PpFTvnmDGuJwso6Fmed4uZ+KVKPRYchsk2z56ZOWoghQMuOZy7lZFkti7NOcd8QSeadMTMD8B9HlLywCl9N7IPNKQn3fQ3AGQmhZJ0sZ2jnWF6/rgsGnZY2Ty4mKTyQNY8OBkSPNRt1/GPpIRwuF6sPneFEaS0GnZZNjw8hLEjPtJVH6RgfQt9WEezJL6eXz2ZKIH3qcXfydGVMb45dx8s8yydzJg+jxp0Ieum+0wxIjyA9+ty7HR46XcnUJQd55LJ2tIuV83OLqz39tW2M2bNBQWMUPeyG3klMHu11vvV5ZRllNTYOvjS02et8o5yfGt6BW/qn8vovhzhSWMkb13UlNKh53WvZvtNM/Hwr/dMi+OK2Pqw9UsQtMzbjOzXf/MQQokNMHDxVSV5JDdlnqpqsfEgIC2TdpMEUV9Xz9eY8kiOCWX+kiCnXZNJgl3ydY/skM6RDDIuyCvyMvbM25nqMM5/c3JNLOkSDywlar3OypsFOkEEMOnN3nMBs1HtWHYBsyFLX4KSqwU60xeiZu4BsLLMwq4AL0sWAlOpOfaHIAGXp3Qdje3BF59jzcgIdfOkKj67amNMVddz0ySaPruIbiHFgUk9ModHgfvZbZ2wm0mxke14pR89Us+bRQUSajZyqqKOoqp7uyVaP0TK3uJrk8CB+2H6SBoeT3OIaTyShVgPZk4dDfRXoA/3qTsHlcjF93TGmLN6PzeFi5oTepIQHeepDobbBQXWDnUizkY9mfModuQ/BLYsgdcBZ6+R/CHX53rn4sxilvtt6nGNF1ThcLq7rkdiiAN9yrASLSUd8WCA2u5MIs5E6mwNDgNYzqdl5vIz4EAPRO96BdldAXJcm96mut/OyO0LhgvRIv6gjp9PF9HU5Hg9ZY4/SvHsG8P7KIx5F7NkrO2LSBxBlNtIxPoTH5uxmzeEiXhjZiZv7pXqMT7f0TyU82MDfBqWj1WpwOl1syytl4e4CvtyUy10D0+ieYuXidt4dKqYsPuARHjrsHDHd7H2I6I6QPgTWvwPdx0OjEMkv93/JlM2SQLLx5JHio2AMAbP/zkgKdTYHvV5extuXBDNo2XBqknqjP74Z/cOHwBLjd56SkHHqtZm0igym5/7XICgCBv6dijobz8/fx7ODwgk5swPaD29W6M3ZdoKsk+XMX7+b7aY7/b98Ip/Vx2p4aeE+frznAu/OdnvmwOwJ8vdzTaNuvttynEfn7GbJAxdx9EyVZ3mDMjlQaGtty5yr5jRbD/8NHE4XAVoNLpeLjdklhATqaB8b4uflyimqZtKc3bw/tgfhZXsgQA8hCV5Do9MJRYcgun2T+3+xMRe9VsP1vZIorJQdDwFWHTrD+EYRbf8OigLvdLqotzt5dM5u7hucTpuYZvrourdg6TPyd7thcMPXTc/xof3Ti7n9wtbsL6hgX34F6ycN9gy6Z8XlAqcDAloOmnU4XdwyYzN/vSitRUNis8yeIG3rwkfgggfBaHb/pIu7Zm3n572nuKV/Ks9d1cnvMmWr5R6p1iZKR4PdiT5Ac947S/1foChMWc9d5jGcAty5VPrbB5d+4Hd+v8nLKQ1yG6WI4GqXmYP2Sq7VeyeHTeTKv8g1769nW27pWSd4le5dVpszWv0rbD3m3TWoR4qVbbmlfDmxD4nWQL7alEdIoJ57BqVTVW/n8R+yuGdQWrNRAJV1NgrK62gbY2HPyXLSosznvdvmb8qpPaJkRqT5HVYUaiUZ7ijtWt40TJMvI9LFERCRDhoNdqedbl94owdvz7id+7rfB8A7O97ho90feb67qcNNTOrtL1sbo+Rt6poYyryLT0P6pWBqWsfUlMCCB+GKyRAS7/eV7+YLURYjW5685Ky/uTe/HJdLcoX9c+khNmQXM+cuSVK7OaeEbzbn8cKozp4dUIuq6luceDaH0+lizvYTDM+MQx+g9ZvUKGw4Wswday8Gmt9Y47yx1cH+n6DNJRBohepimH4ZjPoAkno1Ob2mwc5z8/eyN7+CvfkVHofYc/P38tn6Y7x3Y3eGZ8aROmkhfVqF820Lhhlfjp6pYsgbqxiWEcu7N3TH7nSx6tAZ2saYPZvE2B1OPlydzQ29kwl3R/luzinhy025DO0cR5ekUOJCA/0MPDuPlzHKPakf1TWeN//iH7Xq68SYfWc/woMNtI4yk19Wy/3f7ODidtFNdv9TUJ4XWt7F8XzZdbyMIENA8+NfY+orYeZV0o6T+577/BZosDtpcDjZnFPMhM+2Mr5fCs+P7Ox3jsvlYsuxUnqlWtl5Zic3L76ZLlFdmDVslu9JLY6vZzO27S3ay9wjc3myz5NN6+7AIvjmBvnbYIa71oM1xfN1YUUd+gCtX7S3QnNGqdMVdczfmc/gDtHEhZo8BgUQA8qirAIu7xSLSR/AzuNlpEebPX13Y3Yx6dHms/bfqno7Jp32X9o9zeZwcrK01jsJr6+CqtNNZGtpdQNOl6vJBj7/DfblV5AQFtiikcjlcvHV5jyu7pbgV2c1DZInyPdYY95cdoj+aZGe5PLNsvJVqCyAK98EpD/O2pjL9b2SPBHqtQ0Oxs/YTHFVPa9cnUEf9+57jSmsqKP3K8t59sqO3NI/9T/qj0cKK3l54X7evyIU04e95eAT+WA4S+5UlwsKdkLhfug40ntufZVH3zsbdTYHX27KY3y/lCbtaNbGXCrr7Lz68wEubhfFpKHtqbM5eXHBPqbf0svrYHU6mp0L1TTYyS2uIdEaiMWkJ7e4moBt00lc70450uNWzzsA2fjgVEWd6Co1JaAzgeHcO7uuP1rEl5vyeHJYB+LXPgFbp0OviTD8jXNee15kzYY5t8E9myHq7A7F/yFUo9S5+LMYpc7Jia3iiTGFnt/5p/fC++7dER4/CQEG0DUdFOtsDnT5W9Hp9C2GGbpcLirq7BwvqeHomSpGdk3A5XLx/qqjuFxwz6B0v/Mr62zsOVlBvzQRyCXVDZTX2s4/wXR9pQzuPoL65z0FfPrlV3xvfKHl666bCZ1Gef77SdYnvLX9LQCyhnwmikKwe3L+nLseE3vDxKW0yImt8MkQMlol07u2jk/L7fDgXj+hd/h0JRFmoyifVYXwuttjdu92GbRPZcEH7qUrSX1lF4Z2w5oI5COFlbz05lt8ZpgKN8+Hz925a8bOgbQh/sqUywWTE6GhyntOetPJie92v0fPVLFk7ynez73a75z24e29Ie6zroGKfLjpewhNbLlevD8A2v98lzsPiiAHiMmAu9ZCzmqYeaUcM8fKhOSyl2RScg58lx+cL5+O78nzP+0jr6TGs978vJl1LZzYDBnXwZZPYOwPYjg9Hw79At+Pl7pPveDs5254D5a4Nyk930HPYYfyPAhvmmPDQ8Fu+PBC7/9NofDQfj8F5+CpSlIjg1r0dv0uOGxQkgNR5xdp43Q5WZi9kKGthnqMDo0NTP0nL8cZ9D7VYQd5/kwxo6uq2W/QMybBG8n3nxql6u0ObA6XZ1JxfoV3wq6vwNoKVrwibeXiSSIfnA5Y8w9Wx6Zxz8ZnmXvVXNKtXvmcU1SNNUjv3u6e/9jQdU7s9bDra+h6kxia/0NqbDUE6gLPT4lXZHyri6Qfun//VHkdDpeLhLBAahsc8NN9BB7+CdIGw16fiNHbV1AT3Z4+X3kdNiPTRvLSBS8B8PyG55l9aLbnu/MxSgHkFdcQmb+coDljpWzjm8nnt3UGLHgAOl8DV38kY0VlAVjiqGpw8PLC/Yztm0xiWFDzk7SdX0tfSOhx7npqjsIDsP1zuOzFZicO/w7KBLx1aGt+HPXjv3eTdW/D0qdFn3kgC97wkXvNOGYUquvt/Lgznxt6J6HRaLA5nCzcXcBVXeLJqcjmufXP8+7gaYSazj0hA9GbfJdK/7ukTlrIiMw43r1RdK8Gu5NDpys9S1Obo6ymodkdbc9GRZ2NaSuO8tClbf8ru9LidMIXo0RHuOrdlnWAObdD1nfy99gfZNL4w0Todbu0LX3L0eotUV5fzgXfXMAbA9/gstTLmj1ny6ktTFgygR4xPfjsis/k4No3YdmzEg15KgvaXu6nUyk0s/EAACAASURBVCn5H5szSvX7qh9VtirW3bCOEEMjI/IvT8P6RjljmmuLVYXirPTpT80Zpf7w7F8A394kf49fAK0uPPv5zTH7NrCmwpCnWz6nYLc4nC9/RZzHDhvMGCb61SXPicPsPyFntej3GddBWNLZz60pgddayd8P7Dnn+S6XS8aoMwfBHAOBTaOGq+vtBBkC5DyHXdrFf+K0W/IkbHhX/r7hWwlIaMTxiuM8s/4Z3tGnYl7jjvLtOQFG/NP7jEOehQsf+vfLgcjHJ+fu4ZHL2zbZARWANW/AisnQ9QbZma45x4yC0wEvx4LDZ7e7p4ubOmQdNngxyj2mzj+/gtZXihN563TvsWdKvfLMVitGrn/nvWz6EBY/Cn8/6p13/u/TYkX8F2eBKn9InO4F+JWnYPFj8MkQmHtn8+dWnoZNH0kHa6iBugqYf5/3+8kJ8FIUVBfB5yPhkDdJtEnrQjfjMvh4kAilZtBoNIQG6umcEMrIrgmeY3dfnN7EIAWST6NfWoQ8w/p3CS/e7m+QcjrF+LDmH1BXLgL5q7+IoKoogKnp8M2Nfve8vFMs/xzgTvQ85gt4pgSufMv/h78fD5+NgDkTwVbH/mIfY8Qng2FqmggZu0/C6BOb4e1ucHgpNGforfbmYdgcaILaEnglTgZHN21iLB5vKL++6L123Ztyz48He48d3wjfjhWDRSPSoy3MuEwHaGQyca87DHbWNfB8GJT7LDvZM0cMUj1uEQV9xyz4Z2eZiM2eAPmyxMN30pkWZeaugf6eLQBNwW54uzuUHoMjy6Bwn3g3lTbYbL0Uw4/3wAtWOOOze8e++aKkVZ57m9VmObgYG/BcRDjHi/fJM7kNUi7gZWM9e/d+K8sWqwqlTo4s85Y1f4cMdvWV4HJ51tefLy+M7MSQDjEsf3ggn0/ozTd39Dn3RQq1pXBkKVjiIcUdrjtrtNTf7Nvk3WTNbv5alwu+ug5sNfD5KDiy3Hu8Ofb7TGTn3Cbn1Z0laajTKXLg7W7w49+krL6/rZzzYSMFs65clB0f2sVaMOoCOF55nEdXP0qD4+xb4zZLXbnIo/8WG96F93pBQdOtg5vjh8M/8MTaJ/j24LctnnPHRa2J1kg9Od3dyNni2Wfh6K8ik05sc0e4ee9i1AVgDnDAsbViiDgfsr6XvvfZMMhdC6umiHzY8SXkrIIVL7F06cMA7Fo72e/SVpHBhAUZ0PhsNX9+vzkb1r8r8vNfYdlz8NP9/u11/r1yP8e/ljy0tK6UPl/14dM9n3oPulzS/211/ieX+eQ5ylkNn17qKXtsqIkE99LtQEMAgZW5ENUerp0Bg3za+sKHsU32lx8uvP2xtM5/ebmmZX3Nj+TwQILWveotW0EzeexK3MvC98yBFyPgpWj4RwfYNw+zUcfk0Rl0ig8Vg9Saf8gYU+/ON1l6DObd6TdGUXa8xfG9WX64HTa+16Tv/zcIKDoEe+fBu71g4cP+X9pqpS801IjBdfpQvz598ORGjup1MkF5o5Eh/vtbW/zNYKOOG/sko6krg4Ld6AO0jOqWgFar4fWtr7PzzA52nmm0k53TIWPvrGvh6xtEfh8WB5bHIFWaK4ay3LPnjGmJnMnDJI+fWyYYdNqzGqSAf9kghdNBiF7DpKHt/Q1SpcfEeWmvh9VTxRkFojs+FyqfvE3Nj0GHl4is2fml6AAzhvvrJw3VklZBMUiBjIU/TJS/t3wM22aevdwul9ynETnlOQDM3Nfy9VlFYuTRaXwmrqtek3//2RG+vt77zmx14HLx070XsF/JxVd5GuzecU3p9w6nz87LBxZJHa1/G2IzYbh3KS9HlvkXyGETZ+UL4d5++n/Flk+l3e6ZI3V45pD33QIcWydRmHUV/jLB6ZRPWZ68zykp8EZ70Vd9UQxSIO2gMefSQ45vhj2zYc3rsPwsTub590r7UXTq/J2ir4OMKyDP9Vyo6Exr/9nimJJdns2p6kY66dy7YPnzovOcbSwqy4N/eHMwse7Nls91o9FoZC7zXm94NQW2fdbknGCjDs2ZA1L+FyPg50YODZerZf2vMS6XjLFJ7mjEr6/30zMU3tn5DltPb2Xlfp9+ufNrsDeQfXIjN8THUPnrC3Cy0RK8L6+TchYdPq/imPQBvDGmS/MGKRBjo9Mmjo+N00TuO1rY+a7ylMj7S1+Ea93Go83uCOWjK0Q+2+rcY75L5FJ1EVSdgZxGm8uc2iO/rfzWwcVeg5TB7ZDIde/gWX5SjGHf3ex/jxWT4XmrGDQVbHVyT9/3VVMMaM7Lef5nQE10/ifklp9v4er0qxmZs10EX1xXCbFUOLhIlE9jCAx+GmzVUHxEBhiAY2tg/1ksxO8PgKpTkL0Srp8FHa6U6xVebwOPZotlWPcfht/u/Arm3eV/7KlCsNfBJ5fIUiwQ72/7EXBosXyKj8o5BxeJoaXLjaDVorHXkXhiEYQmS7k1GvG+H1kG3W6WCb1SBwC566lu3ZEmvBwLt7qTEV/yvNRF9gr48loIS4E+f5WJQmgiDHxMlM7myF0nkS1tfTx19ZUiZNuPkEn39s9FSDkaxFvyty3w0wOw9wdRArvf3MRTuKFwO67IJAYYzU3DaI9vknKV5HijiYY8C0671JXCnjnyGTdPlE5bjYTOL3wEW2xGk0fR4oKSo/D9LXLAFCr/z/oeVr8mbaTbOAnBN1pEWZ/qE23zXi94LFeMZN+Nk2Pr34YnT8O+eeKRbCSY155cS6AukB7W9lBbBpY4KDoIe2azN6kLc3Sl5Bh0zCxwJ4ftOYHyQZP4ZvYlLDSbWZ97XAb8ugpwOWhC7jrIXU+ky8mxJ/ZhC47F5nAybcVR+raOoGN8iMeQOOKdNZ5dYG7ulwpI4molQXMTctbAzBFw9yb/5YTbv5B/Bz0ubUDh48GQ7x7k59wmkVO7v5fIjEi3UVdRDkOTZBCe5c1bRM8J0tYTe4qCGRIv/aTNZTKZXv+2GCVA3tPId5suUzj0s/QrgB1fyOeOlTI53P2deMrW+ijVz5XLPaamw7YZ8olsK/kKMq+HDlfy4paX2VC0i1GxA+ifNvysSwk9HPxZImf2zZP/T1wuz/XvYK8HNBIBWiITFda+Cdd86u+5ry6Gw79I3jmA2lLy94hSVlniTba7792udGwzHC5/GYBbBrTi8JEacgDXsDegww04Px0I+Cjy9ZWgDxKZ4WiQtu5bvq+uF/kC0p8Uet4mYeIuJ0xtA/Vuz7opBExhYpRWvKs1JTL52/UNnPYm9ywMCOCwQc+AWvd7/fFuz3fKm9ccXAzbQmHoayLbnA6p/87Xgt4kipuyhHnXN1BxEi5sZCg4ud0rb3JWw5jPxWgS4yNfv74RDMHYXE6qe44nrK4S2g6VCRKIN7LNZdIGt38un+XPwz1bpBwAu74VBfWS5yBtkBxzOmWMcDkprJXl4gv3f8NlKZfxyeapPL32c/Qgy+DGfC7y9PQe8eZrtHDBQzL5yd8hsv+pM9JeCg/IeZFtZGITlyn9ZeCj8tn4Pvw8iYZGSxNcpcc8f9fYGiV1rTrPrdorCyRSY+AkMSh+eCE8XeQfSXaqkaFKMfx+f4v0oavekedoqJF6BFj4iNTdW+7l+vY66dvFR2DVqyJbHjyPHYtcLhk3ADa9LxEN3cfJfWLduVpObHEv8X0YzNEyCThz4NwRnoDO6RQHEogesOUTiYbod49MNjf5L6Plw4vgtmUQkca1tVmQGE9Wjo/R8cq34af7ZFxtfbFEu0W1k8jhNpf63+ujQVCaA4/m+CwNd48fpcfg6EaRY/pg+PmxpoX/8lp4/IQYzk5slbalcK3bqNzhKmlLvhFmjZeqVJ2BQCuaAB0cWAjfjpMlo0OeBq1OxvQOV3qvrcj3Rmf4yPaKhgoseos3crCuQibYwe5lQ5WnxHgXkggP+aTV3v4FzP+b/7OtmgoO/x1emX4ZRHWAicvEoZbQQyaQStoAhdy14oy6YrIYG+t9DBMjp4nBoNhnQhscLfXbcaQsA/tkCFw7g4o5txKiTBi7jhVZ9ZcvoV0z+YBamq8fWMSPW94CLWw6tYniooM8uPllngsOoXWZj5HrxBaRAYsfBX0Qxvt2gCVWDGFvuCNu/54tepd77Fz1w1iGZm/FGJsh1ysMfQ1S+sk7/PwqMQo9flJ0uOoiiWxWWPQojHwPR4sP0Pg5XV6dNKKpU1F5ZnDJ2LHQHeVyZJn/ewqOkqigje6lyspk/O6NIvdnXdP0vnVlYuyoPC3RHoocssRLe8xZLXpw3nrRcY+thQML5JyoDqJjKPJ91Wsih9J9+uSaN2QMDU+TvhveSuYeDps4R0F0lGFTocytiwdFyIS/6LCM9yBjbPYKWPa89E99ECx8UOrj0ucZOW8kACvGrCAyMFL6RcUJCIqEmiIxlCl5fxrrTl+MBnstRHeS9rHlE0nDcXgZ9BjfcpR6vo9h56f7odPophFBik5giRe51/YK79j3/S3Sj8Z8Lnq3gtMhTuPctTDsdeh9u4wXZblw0SPyPMVHYPYtIjd63AodRvivsql16zAxnaUPvJrKe+16sMdoZF1QIFd8PEgc/9oAcWAedu9Kt+w56Y//Categ9pS8nQ6TC4X0Ssnw0of59lDB6QtKTqc4qBR0rWsfgOWPC4fhZdjoK9X/2Fqo36iC5R3qPDLUzJ2rXEv1dMHy7zwwwtFtw9v7f3d/fPFqXzxJHmPitHqkyEi66sKZbxsqIQ+d4kukXm9BDQEhf/XIo3/6KjL99z8WZbvOZwOun7RFcBf4VLoNk4mki0RkiADiy+3/ype2IUP4dn6RCGui4RN7v3BP3TRl2s+hYxr/Y/lrJbJVmNlz+WSKCVbjeR2UparhSSK8AcY9jr1697CUXGCoLO2Xw0ejSMiXYSNMtBe8KAo3m62ntrKpDWTyLS2Y/yW7+hS3yCT+K3TmRgbzaZAGRCzuj/rnVj51k9CD6atfpqiXV9wc3klSXY7fiIkIh1HXQVdo9336fmiDLoHfxYhNHIadL1RBrF9P4pV/cbvZACY7jNBvW4m/6jNZsbeGWRl/F28QG0ul5xDLpdnQt84nLui6DCmDe9h2DZDnr2hRt6X00b24MdZHhbBxNZXo1kySTyV5mjxKJU1b0yr1Gjon+ofetzZnMzXWe6EsN3GSbTAP5rmbiKmM/S/T9qhYvwD7MCpoDASnYgS0xwTf5UlYNWFEN+NjG9kaalfWw9Pg5KjZF33MTdufZG2GJgT1leMjvFdOVVfyqWzLyVQF8jmzEebvk+AiDb+yq/CDd8CLjHihLeSib7B7FnSeuBUBfU2J12idTKoW1PB6eCjOdeSGBTDsMFTxEhQki3RRgqP5cpxRcmPSId73R73Q0vgqzGeU2dExNChuoy+dT6Kf0JPGcTaXsGsBbcxYPArtEodBG/658sAZOC0+SjVw14XhWNKkvS7xnS+xutZ+uovYvTtc5d47exniXi5YxXEiyzizEEx/jXiwehIlgXLEtYPThV6DSNanRjMTSFiLLfEST8LipRlN40nnCARjx2uEkNA95tFmYtqL0Yw38nW1DQxHI+fLwrp51dJP7v5R/h4iNc42fdutoUnEmhtRcftX3sN9Td+L3WwdTqvhYfxRWgIjxSX8nqEGExTbDYWnCiQ/HRDnoVAK09+0J75wUae7vs0Y9qNYdfRxYxd+6in6Fm0knJu+dj7LO1HiAK/82uJWAFRuLNXtlznLZEywKsE+TLxVy5f/3fya8+wa8watLNvFUNLpXjEn2nXm7kNpzzLDgF5Fx1HiaHBF32wvKNp7qjA3nfAFVPEi91trExKFMNHYwZOgugOHiPDfdGRrAgO8u/Xyf0gbyPNziIHPia/Z68n+/1ejIyLYHrBaXo96HaOvOjNyXHQoOfahDjSGxqwOpxsCTQxo+A0Pd39aXWgiZ519d6xJao93LNJooTm3SUyK66rGMgVQ6HCxY+L0qlQVw5TkjmhC2BokjdaakRVNZNbXQuVBYwr28ROk9d5M7aylscu/0CMzbnrYPc30HoQdLpaFFOnQ+57aIm0i9uWUvPdeEpqT5NoSYKrPxT50mqgGJa6jRXDhCVWHEptr5D2C5DcH679VKKnmiOqA5xpumzZMfQ1DqdfRPvsdTKB7H2HGEVstRASB6f3iXGpcB+uiHSOVOTSxtY0iuA7ixm9y8XVStsyhngnUO1HyD1stRDfDY4sxxmgp8taid7OCE7iqz3NtOl2w8QZBRBoJctRwwqLhfuKizyTx4xWsvlCVv9/wpfXiDG95wQxeq57q+k9/7bNa/gv3A/T3JEECT3hdolGveuzXqzV1PHuqUIGKnLsbER39E6Y3dgAu0ZDoNL2QpNlsmivhxWy3JPM6+Ud528XR4U+WFIKNLqXh7ZD5R0GRcLJrTD6Y5kgLn4U7tlCvtbF5Quu5bGESxk76FWR08pEqucEmXgr9QnSnvrcBR+cR9Ldi5+Ala+c/Zy/fCV9LHuFyB63DHQBL0VYubKqmq7D3vE6A05sk4j1G78XvXOXkm9R9L31JhN/jYvm04LT9PYdI1tdJM/jckLna9hZuJNxi8eRGZnJl90fk+hkrU6WBK6cDOvf5tnIcH6wiFMvyWbjuF7P4Ooa3hrwshiElWVOvrQbLmVd+JA3Qt6tT/RNSaTaPUm+rqKSZ4pLvWXzXX5rr5eoxvOgPrEXPfViaM/q+qTIiiNL5X3v+1F0kwOLQKNhf0MJkQ4HUZMKvEYehU8u9UYQKYx4U9rM7u+bGhrPh35/E0NHdbEYcRvrF6PeF4ftqilnv8/Ax2DQExLt+OFF3uOJvaQvvNNMypDojmKg/vEe6HKDtJPwNLlm9zeyDHTWaFm+XpojBozaUv/lXb7cv4uM+WLgnRk9hO4XPSUrMY5vEl1d0dE0AV4dIm2I6LKluaIP6gLh4QMiv99qtHPz6E/E6FNdJH0uqZcYKX55SqKkleCCoAjpM0l9ZCyw14kRRBMAE372GlLGzYXcDeIQVmg9SMbZjOukLhc84P+dPkjGhkcOgz6I8ikJhLojpbL1OiIcDkIDgng0zMRiczCTC4sYMforSOoN8+6GffN4OCqCX8zBTC0s4orqGkkJEpMBK16G7TNlzqhErXYbK20ksq0YcatOi/yP6uCfz8npEOeQoseV5MDbolt6ZHlz810Q+djjFonYBTEQB0fIGPXF1RJg0RztR3gNo+dDlxvhardOpORTNYXJ+NXleomOrWy0AdK5fiMsReZgsRlw59qWz/vfQ80pdS7+LEaprQvv4dYi2Q4zKzcf7liFa+4dTDTVc8NFL3BJ2nCxes8YCpZ4ao5v8CrfA+6Hi/4O0/rzeXxrolIuYmhcf/HcuCkoO0bYW13J1uuoS7+UHvsWUa2RBQdBwdGSJ2n/TzDbPwR+rlmW3V1dVS0KZr7PVqCWOByRbXHmbUTf3MA3+mPIuI6C3DVctuoepp0q5LVwK8cMejG6uPM1AfwU346+o2YQtWeeCMqgcP9lb26cI9+ny26xqm+4YQN3L7+bHYVSJos+mPWXfymD1fbPuGXfR2xzidKcNT5LBogvrsYFfNd9NEMumUpkUKTHEARwZ2k5Y1oNY/HRBYyrqOSQXk/CgAfpl/uN9z4Ah5Zw/LsbsGs0tAqOFyNGzmrxeDywm71lh8jdPp1h6z4RAffQPjK+FoX4s0s/ocdHl7EiKJDqICsjigrEi12e5xXU7t/JmJlBn9g+fHLsMFWndrHbaOSvcdF0C0qkQGPnVPUp1v5lLaHGRiH/Cx/xTpTRyKRh6KsUHVrIoFr/JU6dIjrxjSZBPEBK5Mrq171h07evkKUUR2TpwncWM+VaLbePWwFhSby+5C5mFm1hRe4JIq1p5F0/g3cXTeSF3IOYXC6cwHGdjmCnk0j3QNnigNT3brZ0Hc2EJROaJMRV3pNeq2f7uO2y9KP0mHgpV70mRrvo9mK4+2igeNxONZOr4balspwHRClpc5kMmttmiscdZFApP05GaqK3nG5jZ0ssDwokqMdt9Bvysvdg8VHxglcXkhEtUXFZBeWi3PhQo9HQJzWJKKOVX/+yWpYOnN4jESWRbZi5+2P6Fp0g3m7HovT7+3aKgS1nDWR9x87U3mxd/gQTy/3D54/pdCTb7WiV3AEgIc9HlnIw0Ewblw5tXZnstnf3Rhw6E1W2KuYcnsM/t/2THSMXocvfLpNYd9i08v6gkVHqfEjuz+1x0Zwuz2X+gaZbC/sRYPBTNou0Wg4YDVzQ3O8NesozATyXwvN8ejdmO4p5sqiElyMlYiJFY2BBtk/kaPebeTJvAfMtZo9RakfhDm5e7A3nblGhMlhkEmWrhptmixG/Il+i3Gy1onDvcW8uoAuEJ/Kp2vw+R1Y8R9f6psp1jUaDIyIdy9gfRI51H0/G56Icb7hhA2Yl9HzlFJzW1nTZKX33+ToDoy3pEil3Dsq1GrKMRk/d5ul0FOoC6IkJZ3hrnNdMR/dON5zAm9YwrqmsIsVup1qjIdjdJpV6v6CmFhfwwekz4vk8vIQNSx9FB5wOCCB01EfkLZ3EmMITKPFBX1vMvBIZzpiKSp5WJn0+7DYauCk+lnS7izBbPVsDTTKBvfBJjq14gSuT4hlWVc2rZ4qlTke+63WquFyyhHJP0+WzLqB2/HyCWjXa1akkm+zK44xc6Y0oGV5Tz5TTMpG8Lj6WA0bvUqrbqht4oLAZRTk0WSY47uiR04ZAtppMDH8wh7GLbmJXURa7c/K82p7ipR03VwxcjcrEor97lgcp5iL9g3v54ePebDMZubmikkMj3+TK1e97I+vSL4UjS3k/LIxp1hBmnyygXcPZl09+Ofw5puybzhf5p5q0ycb967XwMPrW1nFR435pjoGq0x75BtA1qitfXDhVjIP1VRKhueFdboqLIcrh4M3eT0LPCWTOzMSFi63Jf8HoXnql/O63I74lISCY0DBvQmnyd0h6gkaylU6jxWFXeMAbkQgw5BmoPM1duT+wNijQa5Qa8IBEami1Um8xncShotX7GUkBmdCMmsaYeaPYX5HtJw9KtFpmhVpIa7AxvLrlrdIBmdj+MNETBeIAsvX6Zg2CCptNRm6Li6FHbR2fnTpLlF7mX2Qyj/RpuwZa2+zk3/Qt8WGt2PXJBazvPY67kq4QB4klVq4r2CXyfscsFgYH0bm+gRS7EsV0Ew1XvkmVrYpQQyi20hxM70j+ssrQRPqHazFoDWwbJw4al8tFVlEWmVHuCb3b6OvL29ZQPg4LpWtUV17cvogEux1H2mBMR3/1O29Lq15M4DSZeitfHvLXZRYFB/FYtH/+liCnkxqtVoxSd+wTvWDvPG+03pgvIG8DbJyGDajRaghtNZianFUc0msZFx/rd7+umiC+yHbvoPbYMQi0MmHJBGKCYhiZPhK9S0OP7PXeJWa+dLrak7duSVAgj8RIlGqL4wheuRficLCu2N0P66uk/yR0hwMLKNFqCSdAlkSBN6eVoitoNBKtdnSFRNOEp4lugUuil4whkNiL4xfcS0TFaYI6jeZMQzmf7/uc+yP7ovvianDUs95kIsIUTrs7NwJwYtYojpUc4AJzKyjcK7pU37vB5cQ1azTfWcxcUV1NqNPF8qBAnMClNbVinGk/HA4twfXVGDJbJTOxrJz7Sxv13bs3eg3JCs+WwfQrJHIPvNFCFQXicFs1hRKtliejo0hrqOeRkjKP3Pi44LTXKRiSAPfvhgX3+680aI6/bfXurrhhmn+Uzrl4pgTbuz2xl+Z4jda+XPI8XPAA/PBXTz8FxFiVeb3kj0TG55ciwnm8uJRwp1Mie2b4RBC2HQo3fsPinMU8uvpRvtMk0cHuJCPgJK0bbPx4soBHoyK8Rqm/7fOuYHinJ49oS1hiDibFnMiIgqPcWdRox8t7t8syyfKmbTVbryPF5uPQN4WKPq70geR+kNKfIxvfZrvJyJhbVpOxQPL/rj92HEuXm0Q3nXenVy/yRWeCpxqVp6FajF46kwQ+bP5Y2vvlr4ihPKGHGKtXvCLtv8+doge1HyERrju+lB3ce4z33HLqxpdZdWINC65xO380Gu8u5waLnB/XBWI7Y9u/AJvTztQ9H3KftTvWi5/kyOqXeSt3EVNP5GByuWQsubQFh97/Ji0apdTle38yHi7zGtZ+Hf0Wx4u3kTj8RTaveIDNaycxtngPFyddTJ/7d/HjkXk8te4EH/V/hX7BSd6ohgezmDozAw5mM7SvLMFocDSg0+q47Mcr6d97FOsLt0HtHmaZTIyN8/HozOouhpDoDuIVMYVR/l4PnokSJWyP0UDP8oOsjQznjrIKUU4qCxgapqEgOYZJxSXcVFElicMVr02meCB2IQrZ7JAQjhl8ligk9oRnSija+C5PHP6ELlsn+++U8kyp5LY4uBiu+ZjyfXOpSMgE98qGZXnLMGh98ytoveHNPSdQf2opFPssV0gbDM+Vk1t+jJfmXcnytU/w0WUf4cumdhfzQeE6iLCSFd2Knx1lPBQRB40Dj9pezjC3Bz0rJ8+bw+Tix3BqA/jLAvEOho/7moO1hVhyvWvvb1k6kbUP7+e+HySSakS1VSarPsJ+7uG5PLNednHbdGoTjl5/p1/WVM/3O2pOEKQTj0R5fXlTo9QVU6R+LXHQ2jvZakgfCHMu9zvVhUsG9l4T5f2DKC6ZY8RQAZJ8+9cXeS/rEz6wym8N0DQQ1VDBzCIJY9+c0o3lMa3JWv0wBZoahk+Yx8Dwzoz5cgAHjQaCnU425p5gVaDX07dr2MsEtx5CfHk+fdY+wFOpXYhxRwPVuqN5XC4Xc494ExDbFMXLd5eM0R96/zYEyVJJhaIjuH68m2W1J7iwOB/Tpz5Rfl+NAWMo3PgtrJyCC7fULcv1i+uwA0U7ZlKv0xFvt/PpxXfTZ+N0utW5J2FxXXjAVAon5pOFj1EqIg3uXo/NYYNZbq/gpDzxqK15g7tz51Ku1fLaGcmvVNrgDrEorwAAIABJREFUNijpDKJwJnSntK6U1w99AImSYHvepdPJL9pLG2MgsQCtLqQioQvjvh4A4WGMv2ER+ooCXPPvJbu+iFGJ8dxXUsY1KX1Zd/Qntp3exgZTJW/dPJvr1jzE/R3GMzGyF+UJXXl45f1sKtgEgFYjnuESg5HojiNlqcUVr4qX+cjHnke0974DorqKErXzK8kzEWiV95O/05MEtjAggJvSO/H2Zf9g4wK3d7LrWNjp7fNFWi3lAVrSbHZqNBpsLjs2rZY1QYGMqqrmmfQurLEV80veSeZ1H03HijMMPLhSLr7oEeg+DptPJNtDbbrx2uEd/gPm/buo2/MhZC/A3mkUnBZngMYSB48tl6W1G951GwTFYKU4gZyNI04V7t4kkSbKRKtB8oZUtxvKN3V53OywoXfvoraj9ADGQY/QcfBTMlFOHQBaLY9UZbEuPpYNY9ZgPrQE2g8TJfvQEkaYKjlTX8Iqk5nwHrfg65SqslV5jFJlfe/ktS0+HtbBT0Kb0TKJUfIj9bwN0gbxva2ITw9/y5RD26jTaPgsNIR1QYGstPQlYvd3DE+S8mbl5HFXqIGDyybw7X3buOQn2ShhRlgIc04UcI27Xf4yegm4ZdraIDHAvn7R7cyc617iHOfdtZT1T0Cwlimtknn99BnWpHQjwGCGigNkWeM4UV7BvTFRxDg1tMsYy4DKUp4pXA3OOohsQ4AhFAq3cVtcDI9Zw8kcOgX2vM0vllCm3L4HjT7QfwmGRgMj35MJd9VpiWjT6qC6iMkbXmD22gdZk7iGYL0396EjLIWRP430e82OtEHQoRWc3E6tMxecXmODocNIKJkpHvDojhIhkLMGNn/od4+7okI5bDBwQUMFu9y5b25u24X+BHJng46D+ZtoC2jjm4kiCG8tS+9flonylYnxGIKjmR+ayLPusXq+xQxbX2X4DYvQlhzFbrLy8IFPuSbjTXZtlFxWp2M7086cIo6hxB4ijwLDOd1QRr1GQ3iXsbyeJUvTDl8zja5po8SYWnQYlj8HHHM/zHrsPz/OF+TwRWgIW3TtmVa0mRlhIVxXUcmE8iLigDqfd+HC5TV86IyyaYXLye7T4nnentiFjTunefL4lPWeSExib9EDisUxcv2C6+ka1ZX3LnmP93e+z20ZtxEZ301kq3v5TcNzoRhAonKA9YEmSlv3IrLLzfSZey871k4Rw5zbiGEb+Cj0eciv3VQ0VLA4ezHXtbtO5OETBbJM9vgWiS5078S7v8IdofT3bImyKTrIkM1PYnffa/j1az2yYVFwEPsyr+YRbaREdw18DDKvk4+bj7b+k2l7pzO3PoR0u0siMVa96vm+VqNhv6FxbikNrivf4idtLV1qakiJ7Qbr3yG/9wQWxbdmws+vePq0VMjfeWfwO9wbHwsnljLh4snkVeQRb7OwMHshV6dfjX7ke9gue4VJ30nk+7r2d6OJSKcsuj3/XDOJpblLGdN2DN8d+o4lD+3BumoqZR1GwLqHcfpk4Jt/dD5PrXvKu1GAKVSW0s6+VSb7Q56FHe9A1sfsPLOTK5VyOo+Q5bvMBqg7lQWx0d68lX3vEQfApveZGtHMbmcBBnDZ2RIWzSf7v2BixkTZEMfxsTg8Ol4FMZ1wbZzG8KR4CnQ6rk3vwmxn8/lzNFHtYNxGv3ay5ZToGwuypQ3vvnk3ml4T2b5zOjPK9nCXNZOOudvYd/EjTNeWMimyH48c81kG1X6E9MVG0R9VgWHc5N4BtSIgwBPBtc1opMJRiiZ3OfvDQphmDeO9QW9z0U+PU9BrPJFOG3qt3l8GXvCgf3LwQY9LQu5BsmGKw+lg2Bdd6RfXj3c7j+bZ9c+y5uQaTiSf4B9PnkKT/St/XSfXr3DZiAyMZExQPZX6SHaNWyP9QyO7LC/OWUzk9Z/y0ubn2WYyMuVMMQ8oBrjRy8ASQ72jnmORqcRMyoVvL+STsFDun7hdVllUnoIOI8jWG5h34a1cqbUyfd9MMpMvZpSjjt66fGiVTILOzPtth9AKICSOlen9qI77mOe3vU6tvZa1gUYeKvFG75cFhkDdGWl/tyyUFQoj34MeE3CZo/l123tckHABhm9u4rXWXega35cB3W7HHCEGqZ2FO/nWfpwFrZK5v+Ot3NoQwDtZHzOqqIBUxWAbGM5BrQtrXQXRV74L2gAeat+blQV25p/IZ2xcDFPPFNOxvoHVA/9GevtLOXN8FQkXPUB8bGeCctZAdAdqOl9Dn19u4rZBd3NntY3vi7bys6uYRLud+y+aDCn9JdrsxBbsBjOXl63l3iPz2Fwg868D/W6ndethMKsn2Qa9ROzMd+8S2fka/5Qaty9Hs/BmqMomt+oE71mM3FknDgUAxs7hu6JtnBgwjoc6TxTjzsrJUJZHjl7HyMR4WqHn/ePHSLC7I4J9jbJ5GyBvA2PdEYcjw7ybKGVd+hT9+9wvy9evnQ6Dn5JIMY0GwpI5Y4lh1C/jqZiZwfTLp9Mr1r3LqnvznZK6EmYdW8Cdlz6PIcAtE9OHUGuvJVAXCFf4RHz2vl3+Hf4GDH+D9fnr+avPfT8/KEbB8oYKimqLqLJV0SWqS5ONC/YU7eGGzY8zNHUoi+tOsLfewrf6QP5evY8jOju7Rr1Jn31L/JcU/slRI6Xc/FkipSb+MtEzGTwbmVGZ7D7jzTeRZEnCavIKF+W7zKhMau21HC49TJAuiBr7OTx17msUGhwNHCg50PK5YW2pLjrEUZ/ZXpQpgjhLAtRVylp694BYVldGXqW/dd33t+rsdRwqPdTkOCBubJfkY/B9boBwUzgldf7JW32vP1RyiDqHGA3aWNuIgEJygRwpO+I5v/F9G2PRW6i0VTa5v6eu9Vax2AdZwRRKbkUu5W6PrO+1vsQFx1FQXeC5Z0V9BVpHA9nV+U3OBegY3oF9Jc3vIuf7bOdCea++v9/4uc7GuerKlzBjGMkhyX7XdIroxN7ivU3ObWdtx8HSgwAE64OpdhumWno/51tehROVJzxtJVPxlMV0lFBgN2UBWsqNZlLC20lYeHURu93Lc4K1Rqqdcp0WrUfh7qg1o7OmglbrbQ+RmU38CQ6nw/PczbWhtvowDtlEeeoQ3gG7y47D6cDhclBnr+N0TSMvkZt21nbYnXaOlntzI3WM6Ei9vZ6j5UeJMVo5Xd806gRka3alX56tH7S1tsWk818y4HtuSkiKv1FUSbCp5ASoKYXiI5wMiaG4wX95Z0Zkht9Oar51uLvIvzwJgVGcrBWlPECjxeE2EHUyRhIQFAE6Y7Oypn14e1FWqgo5ba8hMiSJ3IpcqmxVxAbH+iVAzYzKFJlzajfY6z3vP8GcQERgBNUN1X51nRlgkeeN9Mlh4HTKBL6miN12kQMaNGREZfg/Y6M2rBz3lLeZ75TrnE4ne9wG93bWdhjdOQAbv0Ol3B7sNllK5tNeG9PW2haTVs9upb06dezWtpCE1IeUkBRyK1rIwfd/TOvQ1mSXi2FAr9XTPrw9hTWFRAdFe9qXzWHDhavFuvWtR8BPjvuivLf9xfu9BnIgOjCaWHNsk/OpOiN5U4wWMIWxu3S/5/cUmadg0BpocDYQGRCEU28i3BROkL6Z7a2dLnDZ2e0eEyJMERTXFfud0jmiM9oW3nNqSCohRv/8JnannX3FTZeSRQdFExvs/1zKPTuEd0Cr0TYr033xHQctegutwlo1Oael9tgqtBUaNNQ76jlZdbLZc8Bf7io6RWpgNCF2G8W2Kk7ifVdplhSOVvq31WRLMmEm/12yfMvUKrQVFoOF5lDO6xTRiQB3DpHGfRaHHeor2V193HusBZRr/d5TfZVEBwSGsbtRu8kMaQ2GYAprz3jkmXJ/5V7NjQU6rQ670+55PiWJuELr0NYYA4zsd7czq9FKaQvjiUIbaxsOlx72K8Ph0sMeJ1NLz51TltOsruQ53+kEez0V5cc45n6XmYYIGsxRaDVadFrdeeknrUNb0+BoIDww3O94Xlk2Zbaqc17f3DM0/t2YoBhigmP8jneO6OyR2We9n9Mh79kU0kQPz9QEQ2gCu8sONblHgCaAyMBIj65wtvZ1qvoUxgAjJXUlRAVGEawPxua0efTwxiRbktFr9f5jn4/O4Nvuj1ccb9JGLHozle66bdwuowKjOOMe189Vry3R+J6+ZJhiyKqTOokPjicyMKLZ3dTyq/IpqhXnYON3lRmV6Yn28yU6MJrC2kL/srvw6C5nK1dzBOoCSQtNo6SuBLPB3Oz7MAYYaRfun8fK5rB5+qhCgjmBUGOoR6b7vq9Ec2KT9t+4jErZGxwNlNWXNZErdoed4qqTBJms5FQc814X1lacDeUnxThlCpVKqS1jt07sFh3CO3jKawow0Ta85V2Tj5Qe8Zu/+rYRX31Pp9HRMVLyXBbXFnOy6mSTMb0xvs+cFprm1749v9eMPp9XkUdZvb8uq0HjtxGKbzlv7XQrl6T8C7t4/3FRd9/7/4X+8f3RoKF/fH/PsTCjKEjtwyW/T1trW8x6M33jvOGs0UHRmPVmzydAE0CEKQKz3kyESSYjrUO9SakjTBEkW5Jl4hFgwqIXJStQF+h3n3CTV2Ap5UgNSQVE6TcHRRKT5C1HZmQm0cGxcr0lDrPB4rlXokWs4r1jexNuCidAE+D3W5GB4qnsHNHZ77hZb8ZsMGM2hmLWSySAr1LYOrS1p0wgA6Pvtd1juhMfHE+4KZyowCjP8eggiRDrGtUVs95MkC7IY9RJsnjzLbWxindEmUwmW5L97h9iCMEYYMQc1QFzTGfMlgTMejMdw70JgDOjMjFoDYQaQ4kK9CbObhUqSrlOq/PcyxIkZdRr9SSYvXlMWoe2JszH8AgiyDtFdALwe7ZzfcJN4QxKGsTLF7xMSogsfegX1++8r1fQayXiLS44znNMmbgo9+0Y0dFTvyADeJOILqTtKRPnjMgMukR1IcGcQP/4/pj1Zr96A2lr51te5aP0oR4xPTAn9cGccgHm4BjMqRdhtrbGHBiBOTASozFE2lxMBubWg9BpdMQHx6PVeSeyfeK8O/KFxWZiNoZg1ptJDUklLjhOrm/0+8pzJ1mS/I5bDBYMWgORUdJmOkV0IiYohmRLMmlhaXQM7+jxDFmN0gaU+kwPSyfOHEfrsNYMTfWGcYcZwzyG6lSrDPYWvcVznYLSL3vF9sKsN9M71ps7yqK30DFCyhQZGNnkeXrG9GRQkiTkTDAn+H9vDPHUiVlvxhyahLn1INq5FYY+sX0879TiIyfMejMxQRJ5YDaYPbIpM1IG9xRrG4/s6+Uua7gpnNCItvL+3PKiMeGmcPnO2prgoEhCDCFkRHq3p1fatSIPzAYz5uT+mFsP8vxeSkiKlC84xlOuJEuStJO4Lk2f3xyDOboTfWKlrfSL9/YxnUaHRW9pUqdKfXvK20z7Ua4LMYaQGZlJRmQGEcqz681eL6IbpdyeT6DV824U+WYxWAjQBHjqJDIwErMxlPhgiVYwJ/amQ3gHwoxhnudRUH4v1BhKgjmB9DDvbqzGACNtrf7KZjurKNO+Rg7luX3xHeN836Py3fDWwz11Em4K97tfeli6p135ti+ryYrVaG1St5lRmZgCTH71aNabPfIVvPKub1xfz/e9Y3tzSfIljO84nls63UK6Nb15+WNthTk2U/4NtNI5ojPB+mAiAiM870ChR4wsgUqPzsQYYCTEENL8PY0WzCYrgbpAgvXBpIWled5Dq9BWWI1WQtzv2feddY2SqOp4c3yTe4YZwzzja+cIyWmXEpJCeljT50oLTSPcFI7VZPWT6f3i+nnGNuWdZERmkBaWRv/4/tza+VYyojKafSaD1kCYMcyjryhtJcWSQlpYmnis3c+o1WjpHt3dr534yl1F94kIScIc1YGUeGmnAZoA2lrbEmOR8TXZkuyRe4mWxCZlUt5HW2vbZvus8kkPSydQF0ioW1dR6hNk3DPrzZhNYZhDkzxj5tnGK+V3/d6TORZzeBrmwAjPeAbQM6anfGeweOquR0wPb/t2y8+0iA6eMin0iunl6bNKuTqES7R0akgqZoPZz+nZIaKDRzfpHt0dvVbv1+eTLEke2d4hvIOnDN2iu6FBQ5+4Pi0+c+dIaXNRgVF++o+fXA2OIt79LnvE9MAc2Q5DgMHTz3vH9iZAI8aRtFDpE8p4rdwzIjCiybhj1ptpH9k0j6MpwNTkmG/dKp9Ec6LfOYo+7fueQowhHt3TV7ZkRjXSZ4yhmC3y3n318ERzoow1QZEkmBOIDoom2ZLs6We9Ynt59FdPm2vhE6QLwqyX+YLSj5X7tLG2wWq0otN6Pc6JlkSigrx6mDKuKPq3b7vvENHBU08gMsfqHtN85xlKO2tjbePpz43LqYxJitwCkTG++LYzi8GCTqPz1HOIIQRLeJpHfqeGpvrNTXw/yljVPbq7n8FemU9ZDBbP2A+il6Rb0z1/e+7l1kFigmI8x3zbs/IbjQ1wQbog2oS1IcQYQogxxDMv8r1G+bdx2ZU+2jmis6e9p4Sk+M3dzHqz57vkkOQm91DqNcwYRhtrG8/xUEMoQbogdFodOo3Oe9wYSqDJSpzZG33ZxtoGc1Ck1HFUe9G1o9rLHCm5n0dWWE1Wz86Y3WOaPo/vR5H7AN2iu/l9ZzFYPG2jd1xvr/x3zyea06Waa19BuiAsBotn3OgV28ujbzenzys6i+/44/u3MndRPkr7+zOjRkq5+bNESqmoqKioqKioqKioqKioqKj8gVAjpVRUVFRUVFRUVFRUVFRUVFRU/jioRikVFRUVFRUVFRUVFRUVFRUVld8cdfmeG41Gc4ame6P9rxIJFP3ehVBpgvpe/nio7+SPifpe/nio7+SPifpe/nio7+SPh/pO/pio7+WPh/pOVP4vKXK5XFc094VqlHJzxRVXuH7++effuxgqKioqKioqKioqKioqKioqfybUnFLnoqhINQqrqKioqKioqKioqKioqKio/FaoRikVFRUVFRUVFRUVFRUVFRUVld8c1SilovIbc6aynifnZlFnc/zb9/j6wNesP7n+v1gqFRUVFRUVFRUVFRUVFZXfFtUopaLyG/PmskN8uSmP+bvy/+17vLLpFf667K//xVKpqKioqKioqKioqKioqPy2qEYpFZXfmCBDAAAl1Q2/c0lUVFRUVFRUVFRUVFRUVH4/VKOUispvTFiQAYDyWtvvXBIVFRUVFRUVFRUVFRUVld8P1SilovIbow+Q3TBtdufvXBIVFRUVFRUVFRUVFRUVld8P1SilovIbo9NKt7M7Xb9zSVRUVFRUVFRUVH5PTlSeoKqh6vcuhoqKisrvhmqUUlH5jdFKoBR2pxoppaKioqKioqLy/zNDfxjK2EVjf+9iqKioqPxuqEYpFZXfGCVCyu5QI6VUVFRUVFRUVP5/52j50d+7CCoqKiq/G6pRSkXlN8bhNkp9s+X471wSFRUVFRUVFRUVFRUVFZXfD9UopaLyG6PmklJRUVFRUfl/7N13eBTV+sDx7+xuNqE3ARXUKNi7Yu8N8YrlZxcL9nuv/dpAEOmIICBIkd6k99577yWUhCQQSCO9J1vn/P6YzRYIJcUUeT/Pw8Pu7Ozs7GZ35sx73vMeIYQQQggJSglR7mTYnhBCCCGEEEIIIUEpIcqd26/AuVuypoQQQgghhBBCXKAkKCVEOXP6BaJy7a4K3BMhhBBCCCGEEKLiSFBKiHLmnx1ld7krcE+EEEIIIYQQQoiKI0EpIcqZ0+0bvif1pYQQQgghhBBCXKgkKCVEOfPPlPIPUAkhhBBCCCGEEBcSCUoJUc6cbglKCSGEEEIIIYQQEpQSopz5z77nlOF7QgghhBAXJKWkHSiEEBKUEqKcuSRTSgghhBDigqeQoJQQQkhQSohy5irDmlK5dldpd0cIIYQQQlQAyZQSQggJSglR7vwLnTtcpWuMzNkdV9rdEUIIIYQQFUBHMuaFEEKCUkKUM//sKJdeusaIzSmNGSGEEEKIqkgypYQQopIGpTRNM2uatkfTtIWe+1dqmrZN07QoTdOmaZpm9SwP9tyP8jwe6reNHz3LIzRNe7pi3okQp3OX4fC95BxbaXdHCCGEEEJUAKkpJYQQlTQoBXwFHPa7/yswQCnVHMgAPvQs/xDI8Cwf4FkPTdNuAN4AbgRaAUM1TTOX074LcVZOXWG1GD+90g7fy7W7y2KXhBBCCCFEOdOVZLwLIUSlC0ppmtYUeBYY5bmvAY8DMz2rjAde9Nx+wXMfz+NPeNZ/AZiqlLIrpY4BUcDd5fMOhDg7t65TLciIkZY2UypPCp0LIYQQQlRJMnxPCCEqYVAK+B34AbyV/xoAmUqpwqvvOKCJ53YTIBbA83iWZ33v8iKeI0SFcrqVNyhV2ppS8/clkFXgLIvdEkIIIYQQ5UiG7wkhRCULSmma1hpIVkrtKqfX+0TTtJ2apu1MSUkpj5cUArtLp7rVkylVyuF7YASmhBBCCCFE1SKZUkIIUcmCUsADwPOapsUAUzGG7Q0E6mqaZvGs0xSI99yOBy4D8DxeB0jzX17Ec7yUUiOUUi2UUi0aNmxY9u9GiFPouuJwQjahF9UAwFHK4XuAN+tKCCGEEEJUHTpSU0oIISpVUEop9aNSqqlSKhSjUPlqpdRbwBrgFc9qbYF5ntvzPffxPL5aGV0O84E3PLPzXQlcDWwvp7chxBk53DoOt06zhkZQqrQ1pUB62YQQQgghqiJpwwkhRCULSp1FO+AbTdOiMGpGjfYsHw008Cz/BmgPoJQ6CEwHDgFLgc+UUjJNmahw6QVZmKtHUyPYSPxzuUvfGMmxSbFzIYQQQoiqRoJSQggBlnOvUjGUUmuBtZ7bRyli9jyllA149QzP7wn0/Pv2UIji67Dpe6pfsR2L5VGgbIbv2V2S+i2EEEIIUdXI8D0hhKg6mVJC/CNEZ0UBEBxk9IyVZPjeqb1qZTEEUAghhBBClC/JlBJCiBIEpTRNc2uatlfTtAOapi3QNK2u32M3apq2WtO0CE3TIjVN66RpmuZ57D1N0wafZbt3aZrm0jTtFb9lbT3bidQ0ra3f8js1TQvTNC1K07RBha8hRKXnaXwEW0yYTVrJglJ+0webNHBIppQQQgghRJXj36YTQogLVUkypQqUUrcppW4C0oHPADRNq4ZRYLy3Uupa4FbgfuDTc21Q0zQz8Cuw3G9ZfaAzcA/G0L3OmqbV8zw8DPgYo4D51UCrErwPIcpdYdMjyGIixGLC5ixdppTVYiqTIYBCCCGEEKJ8SaaUEEKUfvjeFqCJ53YbYJNSajmAUiof+BxP8fFz+AKYBST7LXsaWKGUSldKZQArgFaapl0C1FZKbfXMtDcBeLGU70OIclHY9LCaTVSzWsh3FL/+vn/9AavZJJlSQgghhBBVkK58bTi3LgEqIcSFqcRBKU920xMY2VEANwK7/NdRSkUDNTVNq32W7TQB/g8j+8lfEyDW736cZ1kTz+1TlwtR+XnaG0FmjepWMwWOEsyc59dmkUwpIYQQQoiqyX/4Xq5dZlMWQlyYShKUqqZp2l7gJNAYI4OpNH4H2iml5Mpa/OMVNj3iCsKpbjWTV4JMKf8GjGRKCSGEEEJUTf7D9yQoJYS4UJW4phRwBaDhqSkFHALu9F9R07SrgFylVPZZttcCmKppWgzwCjBU07QXgXjgMr/1mnqWxXtun7pciCpj2OFOnkypEgzf84vfWi0mmX1PCCGEEKIK8i/JkGuToJQQ4sJU4uF7nppRXwLfappmASYBD2qa9iR4C58PAvqcYztXKqVClVKhwEzgU6XUXGAZ0FLTtHqeAuctgWVKqUQgW9O0ez2z7r0LzCvp+xCiPPn3iFW3WsgvwfA9XT+l0LlkSgkhhBBCVDmBmVLOCtwTIYSoOKUqdK6U2gPsB95UShUALwA/aZoWAYQBO4DBJdx2OtDds40dQDfPMjBm9BsFRAHRwJLSvA8hKkI1q7lEhc7dfplSQTJ8TwghhBCiSvLPfs+RTCkhxAXKUtwnKKVqnnL/Ob/bYcCjZ3jeOGDcObb93in3xwBjilhvJ3DT+e2xEJWH/7wq1a1mCpzFD0q59MDhe1LoXAghhBCi6vFv00lNKSHEhapUmVJCiGLyi0oZw/eKH5SaHD7Je1sKnQshhBBCVE3+mVJSU0oIcaGSoJQQ5ch/5rzqVjP5JegVO5IR4b0tmVJCCCGEEFWT2y9Tati66ArcEyGEqDgSlBKiHKmATCkz+U53QJHL82HSfD9bq7nyzb6Xkp9CVEZURe+GEEIIIUSlpvu1AV3u4rUHhRDin6LYNaWEEGWjmtWMUmB36YQEmc/7eRq+dSvj7HtPzXwKt3IT1jasondFCCGEEKLS8p+8xr++lBBCXEgkU0qIchQwfM8TiCpuXamATKlKGJRyq+LXyRJCCCGEuNC4dV+7MCnbTnK2rQL3RgghKoYEpYQoR8qvR6x6sJGomO8oXl0pjcDhe2l5DnRdUr6FEEIIIaqSUzvydsRkVNCeCCFExZGglBDlyI0vAFXdamRKFZQiU+qGS2uTY3MRm5FfNjsohBBCCCHKhX+nYkiQiR0x6RW4N0IIUTEkKCVEOXIrp/d2iMX4+RV3+J6G5r19ad1qAOTINMJCCCGEEFWK/+x7t19Wj53HJSglhLjwSFBKiHKk8AWggixGcKn4hS19P9taIcYQQAlKCSGEEEJULf6FzluE1uNQQjY2p9TmFKI08h0uKW1SxUhQSogKYvb8+hyuYh40le9nWzskCIAcm/NMawshhBBCiEpIV742YKNawehKOhqFKI0cm5Mbfl7GH6ujKnpXRDFIUEqIChJkNjKlnO7iZUo1rHap93ZNT7H0XLs0YIQQQgghqhLdmy2vUd1asglwhBA+iVnGDJbTd8ZW8J6I4pCglBAVpKRBqRCzUUequrm2DN8TQgghhKii3H6ZUjWCjQlwiltrVAjhk5xtr+hdECUgQSkhKkjb0JF5AAAgAElEQVTh8L3iBqVcnvVNmomaIZIpJYQQQghRFbmVEYDS0KgmmVJClJrdZfymint9JSqWBKWEqCAWT6aUw128mlKFhdE1INhixmoxkS01pYQQQgghqhS3t02nUcNqZErl2SVTSoiScnkKnDskKFWlSFBKiHLU0HyL93ZhUMpWzDRtl+7pVdOM59cKtpArw/eEEEIIIaoU5Td8T2pKCVF6DpcbUDhdEpSqSiQoJUQ5UsrsvR1kMoJKP8zaX6xtuPTAg2ytEIvUlBJCCCGEqGLcypMppWlUt0pNKSFKq8PeVoRcMpM8+R1VKRKUEqIcKXwBJU0r3rC9Qt5U78JMqZCgSllT6mBCVkXvghBCCCFEpaV7M6U0qnsKncvFtBClE1R3FwCpuVL0vKqQoNQFZn9cJoNWRVb0blyw/NO0a1WzlGgbLuWrPwDG1Kerw5PR9ZIFuf4uu49nVPQuCCGEEEJUWt5MKaBG4fC9StjReKFQSrEvNrOid0OUkawCqblbVVSqoJSmaZdpmrZG07RDmqYd1DTtK8/y+pqmrdA0LdLzfz3Pck3TtEGapkVpmrZf07Q7/LbV1rN+pKZpbSvqPVU2zw/eRP8VR3BXsgDGhULH1/sVbDHxQPMGtLiiXrG24XYHZkrVqx4EQFqeo4z2smwkyZSsQogLjMute2dIFUKIc9G9JRk0qgUZmVK/LAkP6MQU5WfZwZO8MGQTc/bEVfSuiDJgd8r5uKqoVEEpwAV8q5S6AbgX+EzTtBuA9sAqpdTVwCrPfYBngKs9/z4BhoERxAI6A/cAdwOdCwNZF7KwON9wKimMXTH8GxkKRbUgMwXO4hY6D8yU+rbltQAkZdvKaC/LRkJWQUXvghBClKtrflrCmyO3VvRuCCGqCKdfnVCTp9YoQERSTkXszgUvOcfoUN12NL2C90SUBbtLhsJWFZUqKKWUSlRK7fbczgEOA02AF4DxntXGAy96br8ATFCGrUBdTdMuAZ4GViil0pVSGcAKoFU5vpVK6Whqrvd2jl3SGSuCrnyND6UUISUISukqMFOqfg0rAAv2JZTRXpaNxMzKFSQTQoi/m65gR4wMXRZCnB/XKdnvhVJzKlf2+4WisBRGkLlSXSKL83RqhqFdZuCrMirtL07TtFDgdmAb0Fgpleh56CTQ2HO7CRDr97Q4z7IzLT/1NT7RNG2npmk7U1JSynT/K6PCseqAzNZWQfwLnSulqGG1FDtrrTBTyuTJlCqcrWX4+qNltJdlIyNfGlTi77M3eS9zIudU9G4IIYQQJXZq9nuhtDwpgVARCq+PrJZKe4kszsKtAjv6bcXs+BcVp2SVlv9mmqbVBGYBXyulsv17D5RSSivptGWnUEqNAEYAtGjR4oIavC1BqYqhK53CdodC0ah2MGl5DlxuHct59sq4deMAW/i7KAxKgdHD45/+XZGypbig+Bu9s+QdAK6p8Tg3XlqngvdGiEBuXWGuJMdiIUTl5Sps052yPL2S1Qm9UDg8mWtSG7BqkkypqqvShYE1TQvCCEhNUkrN9ixO8gzLw/N/smd5PHCZ39ObepadafkFzeY3rjZXhu9VCP/he7rSaVw7BLeuSM31NT6UUrT6fT3z9hb9lXV5DriFQakawb7Ycq6j8gQbE7JsLD94sky29cuSw8yvZMMT/05xGflS5PQ89V4SXtG7IARAwAyokikqhDgfZwp+ZEhQqkI4PEEMmxTIrpJ0Av9u+ZXoukicXaUKSmnGVfZo4LBSqr/fQ/OBwhn02gLz/Ja/65mF714gyzPMbxnQUtO0ep4C5y09yy5o/gfYaTtiz7Km+LsoAgudX1InBICTfkXKk7LthJ/M4bsZ+4rchjdTytOvVs0vU6qyZcBtjEotk+0MX3eUL6fsKZNtVXZpuXYe/HUNHeceqOhdqRI2RJbNd0yI0vIPRMlkIkKI8+H01gk1LskOdXuaakHmSjej8oWiMFOquPVeReVQeI0EYDZpHE3Jq8C9EcVRqYJSwAPAO8Djmqbt9fz7F9AbeErTtEjgSc99gMXAUSAKGAl8CqCUSge6Azs8/7p5ll3Q/A+wyw4mVeCeXLiUCozgN67tCUpl+YJShbPW1akWVOQ2CnvjC0e11gq2UDvEyJYqzZC5TVGpzN1TlgmF6rR09JLwzz64EBRe2E7edgKnpI+fF+kJE5XBkDXR3tu5dvlOCiHOze0O7GisbrVwad0QybasIIWZUhKUqjrcuvLWjvLv/G9YM7jSzUxebAWZkHSwoveiXFSqoJRSaqNSSlNK3aKUus3zb7FSKk0p9YRS6mql1JOFASbPrHufKaWaKaVuVkrt9NvWGKVUc8+/sRX3rioPu9MNGD/awgwdUb70UwqdezOlPIEoAJvD+Bu5zhCMcavAopiapjH0rTuBM2RK5aeDfu7gxlujtvH1tL3n8S7Oz2X1q5FZBnWlKtOQxPJQ4PD9rT4cv/Msa55BVjwc21CGe1T5/bI4nIX7E3hjxBYZ9igqjP/kWT0WHaq4HREBjqXmsbmMsnZF2Zq9O47/lWG7oypyFrb1/I4fDWoEk5b7zw1K2V2VN+BT2Bkowyerju9n7OO6TkvRdRVQ6LxOtSCyqnp929mfwLD7IWJJRe/J365SBaXE32tPxlJqXd8RzZJNYpbtgj7grjyUxJGknHJ/XXVKTan6NaxYzSZOZvtmWSms/ZWZX/SB1O0NMPkuvmt5MqVybKc8Z+H/oM+VMOBGOM+L9bK6qK9b3VImJ4OsM3wOxTVjVwwP9l1UqYIWneYeYOWhwKxF/6yf9UdKMCvotLdgfGtIiSjRPn0xZQ8d54SV6LkVwRQSy8Stx/l88h62Hk3nuk5LK3qXxAUqxRaPpdZ+ALYeTZdMx4qmFGwdxqD+3WkzaltF740owjfT9zFnTzzJOVU8m6EUTi3JAFCvRtA/NlNq/r4Erv1pKcdSK+ewqqP2FdS87kdScgvOvfKFTinIqdiRN2sjklm85ygXk8Z3M/fh9jvv1qke5LuWcjth/ww4OLdMXz8r38l/Ju76+45h6Z6Z1a01/p7tVyISlLqA7Es3GmXm6sYXPD7zwj3gfjRhJy0HrC/foWEuO02Ur1i3QqFpGo3rBAdkStn9an9lFtEoKcyUOrU3AGDqjlhf0CXlCOwcY9zOSYDUI6fvU+G6J8OICWnDo6Y9pOSWzTTEtatZzhhYK46Vx1dS6/r2aEGl6+nuuuUnshq15+MJO1l1+JSTqNMGeyadV0ZZWXG6dSZuPc5HEwKzoUqdMl7YQBhyN4QvOu+nxXgaiAv2JTBp24nS7UM5sl60JuC+3aVXbDAgejVEray41/czbceJStvw/ydan9eBak0ne+9LXamKlXp4PSxtzwDrMGqTWyEdEmvCkyU4WRSlYPtIamMcnz6fXHTNyB9n7+eRvmuKfOyfwqUXZr/71K8R/I+dfW9jpNHZtiGyBJ1uf6M8u4vQ9osId05E0xSpufkVvUvlzq0rjhzcDY7zbDes/w36XcM97ScSlZz79+5cEQ4lZPPe2B38bJnI1pAvyM9Iwe7ynXeDQzJ9neNHlsHsj2BGW9jQ/wxbLL4J2w+wMnYZf649Wmbb9Oc2BRFd/yEclz34t2y/MpGg1AUiNddOapbnjmZc9Nqq2HjpzHwH03acKHUgKdfuwoybcUG/svCX10u3U8c3w7jWRMUlM3DoHxTkn+VAvvh7rJwe8Lm4dkjAhaP/LIm7T2Sctn5hMMrtyPVmw1xevzoAKw4lsTjMmPEudd1wAH51vmE8MTUS3H4XSamR0OcqWN8XNv8BwDhrXxbuSzzXuz4vD7m2lEmm1PoE4wLfXC2uVFP0arWMwvErDyedPiyu58Uw71PU/mkl3n5xnemCtfB3ecMltWlar1rxNxxS23c7bMY5V8/Md/DxhJ08+ttaVoefu8dr+7F0vp66B/e5foe6DnE7zztDr6Seur4xz9x0ccCy42kVFIjJSYKJ/wd/vcz2YxVbxtDl1mk3K4yn+q+r0P24kLgxekq/e7o5UA51pRL2gr38LwSqiuGTfcfzoUEDyfH8PeyJh8lZP/RvPTb1WHiIj8bv5P1xO+i/oogOoQtd/G5Y/B29gkYbdzOK7iSdsj2W42n5lXq4V2m57cb5yuTMgy514PAC6tcIIjXXEXCeXRyWSIGj6n8OhZ2ofZeWLJv773IwIRsATTPamXkO1/nVq8w4Ds5/Rif/rBVraTb9cfKHPnbuTlpbNqzpAcAtpqOsOFT+GVOZBUbg9jnzFgCyj+/G5nedYwva77sOyfabwXtVV8gsmwm/5p/sSbUmUxi7NYy1Ecllsk0v3Y0r7Rjrk6uf3pn+DyRBqQuEf8ZK25uDAcg+dahXodn/hn1Ti/8iB+fA3il/W7bJpG0naDcrjLl7S1eMOyYll9+DhvCoeR/PO5eBoxS9IeOehZgNNB91NV8l/0S1Ppdy4OgZskx2j0f36wvTPRlPd4XWZ19cFnmeBrP/LIkfjDu9plBhI8VtzzayYQCTSWN02xYAxGca76fmgQkALNLvMZ447S3o3sDXEN85BgrSYXUP2D+NDJOJRLMZYsqmHtFzGROITc8vMturOJxuX6NsT2xmaXcL0DGdVoHdeI09S0af+WkFmVBwepDwfEUm5XDlj4u8vUlnumDNySvgZ8sEHs9fQlxGPuM3x5z/i7idqJQIoq//L6nWpsZvMunstW0m/vkLvaJfojHp7IvNOuu6AN1GTMK0fyoJ6TmgF91AjkrOJXPvXBj1BKz4+fz3vwQ0DerVsAYsizhZQRfqkb5JXt8evp4D8Z7PM3o1jGttZOSV1Iltxr/zVPj9cumqUg1ZrUhZBc7ifRZZ8bBlCNhzIGGP8f95uKyuZ+KJM51jy4I9F0Y8YgzPTos+9/rlRNcVcRmVI8PgUlLJU0Z750HzQbaGx4JSREz8mlqrf8Qd+fdkNGbmOxi18RgrPRcRpw7R/luEzYRRT57zeF9peM6lT5l2UY1zHxfbzdxfZCddleF2QfLh05enH+OefR0A0HRPm2Da29ygRwLQrMNiAHYdz+DTSbvpubgc/r5Kwe+3GAGy1ChjWVY85JbNBbfZZFx65thdlSrIlp53SqexppOac/b268FVf8HAW8iY+VWlOM+uO5LCruMl7xCrH7MYs6aonhmBilpx1vIZaui93tvPmzdjOb1h/bcrDGbnYHTgtjLtYF+s7zgREmQiMctm/G22Gx31OW97Sjwcnl8m+5DtMjL+amtZ/DRuEQllOQrpZBjBegF79WakltEolspMglIXiFybk+q1jGKSt4QP5BLS+HWJ0Uvxzuht/HuiJ/iRlwr7p8KcfxvR/1OlRRfdI5AWDTPeg7n/gW71fGNgS2nPiQxvlNucl8Qn5gX8MH1XqQ7+2//8N8+Zt3rvRxzcVbwNeNLOjSyQ0wNwdcY9fvpzPKmwDsy+zaRGga5zTeNaAHSad4CMPIc3OAXQTIsnJTUwxdnhmanFVRjgshm9O49f1wiAkRuOga7jwsJs94OcUI1JUX7ZMzmJRuDwwCwIqetttD96eVNaXt6E5kdGliojqVB9+wmaqEQ+nbSbiJNnvpg7dCyOQX07sSHiZJGP+zpIFa/+uaVkO5MR47ut6ejKr3aWX+/JzbbdRmH4U2XGwq9XwMDbSvb6wJIDJ1EKxmw6ZryszUlDMmhIpu9vHr+LyfNmceDSnbysD2e19Vu6zC9Gfaf8dDQUY/fb6J77PAC2LSPOvH52Al9k96ehlsW2kM/Zst33uyjqN6bSolkY/BP9rX9y2eDLWNf5USJPZgesY3e5+WHASFYu9Yzb3zzob81IUCiqB/l+VyaNs9aLS862/W3BgpjdK7y37zQd8c2qOfH/IGYDzgX/K/5GHZ7e8zEtYUxLEmb9eMZV0/Mc5NicZOQ5uK2bb1/6Ljtzj7TuN2vNP1lCZgG3dl3OmE0x5/+k5R1hWQf4pSmMeBR+aUpKZtEBz+wIX0babQc6A5xXkLfEsjy9vG4HanCLM6+XfLhcs6n+XB/Ng7+u4WjKKa+ZFl3kfnSae4BJ24poa5SBe0zhHFJX0NnZFoCWc2+H1T2ok2u0T+xzvyYuNZNZu+LK7IJyzp44nuo2ncb4ziORybnF61w4g6UHTvJU/3Wn1wPV3bhWdIW4HeibB5Vo2+uOpLCpHIvBJ8UZgdRgzclkay9qBnHaMMflB31tgrl7E3hp6Gaikn3HdpvTTfgp559K66+XYOi95Ex4M/B8eHAOyjNDgmYOgg+Mjo0n0iYHPL1wKN+ZMsrOZMbOWPosDffOKHdejm+CTM9vcvCdMPUtGHCDUZvU7QJb6Y5rlrxErtOMztvCTJcSyU/HdbLsgnS59lPOg5qb10ds4XDimb9jCWuNEhn1IqbRsvvMMtuXkmo7ZjsvD9tS4lqs19r2kaTqAqBNfo1buy0vur2kFFq2kSCwU7+GB00H+GXxQSZuifE8rHig92p+82t7pI19A7rUQfm3x0vhZJaNn2buZK61E5dqxvH2cfMewhN8x16L2Qhz7Dl6EtKMAOvNo9JJCL7KOLdnxZV6P8y68R1eFtyejcFf89PcA8V6flqu/cznnzzjmFy3ydW8c19oaXazSpCg1D+Zs8A4mSz+ntSIaTjNxklJAW9bVhCRlMP0HbFsiExl2cEko0h2st8Bfn2fwO3lnIQ/7oApxnAw/x+RMyHwwln/65UzZlGcr3yHi1eGbuDz7r+Rn5/HHanz6RA0hf+YF5DvcBtZIFl+WVO6Dot/MNLCT2FzumnWYTGzdsXxltnoHX3S3ge7snBi9s9kHD9w7uFIHiuXzYXF38HMD3BpQd7lY11PA3CZKYXMrFNO2p6e7FRqeRepv16E7g24oa4RkJi9O56f5h7gaGoePUMmEhPShlXB37N+0IcBn3XjXONv5C7slDi+GTBm4QNIybETsX0JNclnjdsIohzSQ337knQIMo5BbhKbm33FjfYxPGLvj+7Z3gNaGA92/Ov80pbPQgGdLRPYHJ3G07+vL/LEppTihvE38mXeIOZP6OftNdPX9sG5pCPgnyll/F/sgFnsdhh4q/duLc1o1Mamexp3niGQPZxvEaS5UYfmAUZGWud5B1gdnoRr3hfGurZMbxCwuApT1id76jXZEw6xI+QzlgX/wKKwRGM45cjH+bF2X1bUqE6PBvW5ynSSV8zrCW2/iMjzKMyflW70yGeoWszTH2S++z5C9o49Y+/5gRk9Au5Pd37BUyYjQJ2QdXrv9YENgQUiHzHvZ/3EbgHLEhMTmB3chVcc87zL9uzZfs59L4quK5JzbGcduqFSI/n0gUsAaFDDyhUNagQEpRwuPeC7fHevVbw8dLP3/q7j6TzQezVJ2TZ2HU9nzp7iNVIKHG5a/b6eeXvjyYyP5IAeilOZece8ArvnQkBpxqk289jpx6Zzil4dcPfSsKFMnf4Xnef5NXyUYvbYfrTqPp2buyz3ptGbghPAZGPo2ujTJkFYsi+W7tPW8efESfTs8k2l6OX9OxUOkS5O1orLdfoxMHHdqCLXTdriyy4OjlnMw0ERpaqxMX1HLG1Gbj3jd78geqP3tqb004dKKwWbBsHQe41OpmJSSjFtx4liD8GOXDuZWdbOJKWm+RbqbqPtMO5Zdh1P561RW3n0x1F81W80E7cep+OcMzfiS1yPadST3GA6zkL3fezWr/Yt3/AbV5iMjI/q+XHM+/0LuszYws6Ys2cXnGv4WHK2Dadb5+SmSewI+YxtIZ8TjO+Cu/P8s0/pvTMmndD2i3h3zJmPlX2XhROZnEtUYcBP10EpMmL2YMk2zisJESWYsRXjYvatUdvOeBzItjnpszSc0PaLWHqgeEP8lVIMXRsVcHGfFB/jvX27KYpL0zZzdccltJ+1n77LwgEYvzUKzHnUoIDqnmyq//M7dv8wcz+tft9wzu/o+bbtzvIGwJFPrs1JVmZasTMT8+1O3DGbAKh1dDHueF/9LBW3g5OqDgBacG24/F64+mlCohYTajG+k2FxWd52z7Zj6aTnGcP6znXMXhuRzPcz9zN0bTQDVh5h1eEkpm4/j3qRkctRaPzlesK4H77Q+N/tMAJTvS8v9oiIkeuPEhaXRVqunecOfMQ39boSjINNUcZx4khSTrELRR8Y8gaWP+9j9fq1xXpeUXJ3z2DmpoM0wNd219BJzLLxzMAzjx6or/m+0185iz43lBd9/pdEBLflRu0Yn0/xtTV2xKTz8rDN2JxuopJz2HumEQdKcVHWAVa67/Qu6m0ZQXpRs0Dajffdy/kmE1wtqaflMjRoIJ3mGce5o0np3JK9lsFrjIw/UiNpcNyYPS5q2Z9l8G7hWNhGIkLe4zaT7/fYVEvlit29vPdvutT4bSUlGp04PZ1tAJica7xH96A7WLPG14FXIsp3bQ3wcFSf867lGZOax509VjJxa2DHzNC1UYS2X4TT00lep17D0u1jFSFBqX8opRTLJ/Q2TibbR1AvbLD3MXeNi/jMMp9nTNv4YdZ+7/Jxm2KIizTq7mxw3wR7/iIuwpdFNHbGbOPG0bXMX7edK39czC9LDpOaaycpxjgQ3Wwbxe+ulzClR0P3hkQeO8r0Hec3blfXVUBvTkRiNpOsvZho7U31Ppdyd4xxIHvWvI3M+AgjM2vADcZww3V9IWG3kZ7518sB27U53SRkFuDWFd3n7iZYc9HP+QpRqinD3M/zlHk39cY+wPaRn3tPtEqpIk+Qy9euRds00LiTeRyLctLd+Rahtsl0dbVlQD0jDbvugMvZss8vVTvNODCbg3xBLAWgdK7Z2cW7LCXXTkHGSd7CN/Xny6Z1zO/cmrva/0Vo+0VcUuAJSpmMISLM/gSyAxuJkeunU6CsVL/lBSZ/fA+j3f/iiN4EAFdiGHrYLAB+360DGseVryaPWVP8FPQXP3bpxIG4YqTLuxxG0UMPHXjcvBcTxmd6S5flgevrOulDW3nv3qkd4f1x24lPz8G0tidB2wbj3jbCO84fzTjkx6Tl8eWUPew6buybUoqPxu9gTbgvtXzUhqNc234OiUv7oWa8F/CyG0O+5HItiTdHbsXmdJOVZnx2a/TbiFcN0BZ+TUJSEovWb+XotgV8NG47qSfCvc+fPbH4PdFOt87O477PckdMOnUOGz2h9bVc4tJySI8z6o44PcFFy5WPAtA3aAS/Bf3J9kgjAHs0JZfQ9os4mHB6b+Wuw8b3LIOaAIxxPWM8MOw+ANxOO47cDE6E7+RYQjKu41vY4r6Bl6uPZ5b7IQBGWvvzX/N8Bq+OOm379pOnZ9x8mDeS7QcimLglBqdbx77gh9PWuWjuW2f/gE6hlJG983i/tdzdcxUfTzhzNqM7LYr6Ex7jp8cv5q+P7uHqRjU5mJDtvRD5cPwObvh5GSk5du9Q0ki/YEGH2QeIzyzgnl6reHnYFv43bV+RQyuVUhQ43BQ43Lw+fAtTPI37hKwCwk/m8NXUvTTRUolQTVmu38m/zNsZPmUG6DpuZZxqG+aEk3hwY8B2M/Ic9F5y5p5se4aRyfeSvQvvO74H4I1Dn9F1zwMcHvMp+2Izccbu4qXj3dge8hmNyGDS9hOAosZVg2jUfCIAzw82LopsTjcpOXYsM9vS6fDzfHrsM7oHjUPrWhe61CEhLYu+y8KL/H4VmrztRMBF/K7jGczYWfRxPqvASe8l4UUO4y0MOp6JrqsyqyVTmPq+5WhaQC/y6vAkhq+Lpt3M/ae91t7DEWSomt77ceoibtnT2dt7WSgr30GNY75ZHx2axhfB84lLL3ltsy4LDrI5Oo0vTikAHZueT77DRU7sQfJVMGGeDofjkfsDN7BvCqzoZNwOXwi6ToHDTerZemU9ctIT+alPP9rNCqPrAr9gSm4KKEVWgdM7McKpflW/c6cpktqxvmBqTKQn6JS4lzETxpIVvYO1wd8yMOcbYkLaEB38Fgf6tOTI/q3sikr01o0MP5nN1R2XBBzbz0tWPMTtMG7f8AID//cehy3XB6zynue39JllPmEhH1F/xZfGOayIz2bythNc+9NSkrJtvuxHPzaHi7t7raTjnDBaJo8FYE7NGiyp9RE3aDFn3VWbrYBju5bz+p8bCcFe5IyrUck5LA5LpJrVyAjtvSScGdtjoFs9cuf/wPEjRqfgBvdNNLVF0nHqlnPW3jyYkMUH43acliU5aNXpx/34zAJu6bKcoWuNi7///LWbvbGZKKXovSTcN0wZI4By6m99yvZY+i89yEsDV5Btc7L0QCKxx6NIULW5xj0AgLHWvsSEtGHpjkMsXLuJWZ1ac1TvQ61runMw5EOmWrsDxgzDj/Zdg3I5SNxvfMfy7C7iMvJ5a9RWkrMD/z7H0/Jo1mEx9/2yiqUHEknKLl7gIyv2MHStC70uwfFLKHV+vwr+uIPU+HMHppRS6LriyW7TMSsXk12PAbBseDu++mMKJ8O34ozZyjFldKp4Z9+7yAiiDqsxEoDnBm/0durlO9zc0X0FzTospuuCs2cJbYz0HaeGrY3mw/E7aT87jHVHUohNP8sQ27w00k0N+Mn1IY/Y+7Ndv9b3WK4ne23fZJj/pZFpYssyMnrjdsHwRyB2R+Dm7C56Lj7Mc4M3sjP8GMMbwbeNG9Kjem+ioyLIzHfQeeAw3ug1kQlbYrzPm7c3noiTOaTk2JmzJ47V4UmM2WhkmuN2clOeMZz98dUvBLxWwDAnpbzHrQCpUcZ+56Wi1vej5vyPeCvzJ5o26+5bR/Odk/2/V+uPpBDafhHpeQ4aatmsd99MPiG0Nm/1HuuUUqQVNdxq0quo3peTcTLm9MfOIivfyY4zBc5TI1EDb8O0ezz9GtTkoYZD2BCZ6v0bfzppN7uOZzBzVxxP9l/Pi0M2ERabyaZ+r/PHb528x4A9R45TTc/jqLqYOS2MdsMblrVk/fXuaS956IjRXj2p6vPiK0b7rpV5B/XJZn9cJkGL/scw60Aes3razqQK8YoAACAASURBVCd8Wfh1ImacfyH1M0kO576Vgdd66xu8BsBtrr3eZfU9pR1GLDKC2ZHKuA4a7n4OALPbzmPrXsFhtxOXkc+hhKI7nTdHpzLvlNIxuicwrHmCUvYajdiqX897luX07t/3vN7GvjgjQDhrV2Bn6ABPHcKNYcZxpkadBue1vapOglL/MBvDokjsfCVfdezIRccXepeH2Hxp0O7b3wZgmHUgD5n284ApjN+DBpO+eiB7NiwkTwXT02Wss35iD1RuMolp6aRF+yLvz695isFBg5i5bg+P9ZhP5omDpKg65FCd312vGCspN1ePvx3nvK9o9duKgAO0UgqnWyc528ZXU/ewIyadbgsPcc1PS+gy/yCh7RfR+c+/uNd0+hj8600naDLhft+C/VONYnujPL06BemkD2npvXC4rtNSWv2+gTu0I9zsNhrYlzQN5dFrGzLM9TyxuhGBvi/xL1jajhWHkrjyx8U81XMeB094GogrfkYf8y9arn2BJ8x7OKY39r58qqeX69I6IfzvM9/wnPvm3MuPU7ewJyaFnLjD6ErDZLF4Gx7q357el4OzGVJzDA3JYPuxdB5Nm4qOCT7fSR+ncZB9wbSRHSGfERPSBotmNPjcnuwL7FnQ/zpIieDTR5sBUDcnkiOqKb1eu4v7m11Eo9v/RUtHXxJUfezx+zGt7QlACnVP+3zXu2+mtXkbA61D2TL6O/TcVGNmumlvw+EFgSv7nVj0iS/Bat8JXT1l3P7UPI8vzLMZGvQ7YASMmnVYjL72Fxqk+E5Ub1jWMjWhFUmDnvIuMy/5npdNxud0b2g9AJ7sv575+xL4cPwOYlLzmL4zlpWHk/lwvNEQ2hubScTSYUSEvMclW7uhZccz0/2wd5suYLK1J6HZ2xk3bxlhEUYjPE3VZrrrUQDmj/2Vu9e8yURrb3YE/5eL3Yl0dH7AMb0xLWLHnfaZncvVHZewYH8MJqtxcfXqn1uIO+I7ceo7xhATbQR8nJ7vR5AlmJxHugLwink9b628B7ITWHoggTfNq/hw0Dxu7rws4AK7tjIyhN585FY2tX+cvao5J5Xxub3U4Xcmdn0b62+hXD71Cex/Pk4TLY0Y1ZgubR7j+S7zWXu7EXBtFzSVDTt2eht4hRexDWwnOKCHMsL1LJ86vuRAw2cBuHvm3Yyev5JvB0/m2uTF3v05rF/OXr0Zl5lSyEmIOO9hRDsXjyG7x1VclmF8P6KPHKJg8ru4Tx5iTUQyHeb4MjN1gIxjPLftKbIP9uLai2txIj2fZh0Wk2t3scHTML+r50qGrIlCs2QBbtqM3Mpzf2wkoogMtMJhLGm5dtoOnMeTPw6n+Y8LaN15NNf/vJQDx+Jxzv8GutQhPy2Ow8HvERPShoZ6CtS+jE7ODwB4wrybj/5chgUXA5wvk6Jqc8mMZzm8x9fzOmH+ElpteZPnOg0n/GQ2383YF3CRlxYbToGysltdzRr9Nka4nvU+dv2JSdww6iqSju7zLtse8hmuhE3UaGjMvFhgjgYUx1Lz6DFzMzO6vkbbXqN4ylx0oK9Hv98YsiaaLmfI7HC5dbrO2cXrf24kKjmH6JRc3hi2nvYzjeBJ6v5lvNh9Av+euJPwE0kM6/E5U9bt47ZuK/igQ3dmdWpNYnwMbl1xVYfFPNdzBqHtF3qDXJ3mHmDmrjiybU56LDrMtT8tJTPfQWj7RXw0bgcZeQ6yCpwsP3iSZX7De5xuvcgAlsutY3O6+Wqq8XvT0Lm1my9A/sG4nfyy5DBbd+1gyJrAC82LtXRW67czzfUo/3P8l5+c7xsP9G2GLTEcpRTpeQ5ijuzzDh8AsD34FXe59nDNkeEsO5DIibR8hq2JIG7vCvRdE1BF1BZbcSjJO4y3wOE2soGB5YeSAgplP9JnFe+O3IwjI55EVZ+PHd8CcGLGj1zZfoG3MUvE4sAX6FaPz/+cT4seK3mi37qzXpynTv43PQu686F5EUf3rOOJfmvpt3An/NYctehbXhyyiUd/WwsY5/LC44MjOxWrZyKVGzd/TYHdRVhcFgmRvmPdEHc3Fgb/FPB6Zk1xU/42rpn9NHf+dR1vdOxHQmYBu44m0d4ymcemXk3ugLu92ddZBU7m7Y0nx+YkJcdoV0zcepwfZ4fRqeNXzP3tIwCGuZ6jxU3Xc1WjWhx+ejJ324YAkKTq4m72FPPd93n3oVnCQujRkJxuTYke+S5bI+J4s0MfYlJyWbFxC4+Z9jBoxSHu/WVV4HAeXcc28C56WMawcuchmpkS6eN8jZ8bNuCVJpewOLiDN6Dy3B8bSU1J8g0ZT9zP1iEfc+WCV1lr/YbwkPc5EvwOJ6LDWRKW6A1Uv/LnFj6dtJsgz1CUXccz2DPP6BypuWcE8ceMc8cEd0sAeoa3YuOi8RyOP/0i1u5y03neAZ4dtJHV4ckcSswOCGANWHnE+5kCTNwSw5O9F3MJaZjQaa7F0Zh0+i2PINfu4s910bw0zLjgWxKWyHODN9JywPqA11wzbyxRIe9yOOQD8n65hvip/6O6LYmeF9UluPkA8uqFetfdG/Jv1gV/w8vmDeRaj3mX32I6RkxIG2JC3uLn7C7MGfg1M4K78aF5EXl2F3P3xLMpKo1BqyPZsXE5y1atIjnbxrqwGL4wzyY3K53Rkybz3VhjeFxiVgFbjxpZOm5dnZ5N5TLaWTsXDvcuqq/5zl81Rj8UkDFld7nZejSN8ZtjeGf0Nty6YsHwn/mx0/eMMxvtrZW6kZ3xL/N2Bqb9h4unPo3Vns4xZbQnC7Pdufe/AFxv38em4C+4z3SQ3MxUllrbERPShjfMq2lnmULYlmWEtl/Ew72WsmhfAm5d0W95BCezbN73FoyDK7VE3jSvMl4DnbZjtvFQnzWMXH+UbUd9GY2bd+7ivVEb2R95lGSXMXnOcXUxrzk6E2qbjE35OlWZ9xnsHu/NnIrr9zBJUz6FxL0w+kkY/gi2HRMh5ySrpg/mDbMRQNQjVxJnMTpUb7Acpd3hl9gx4FWmWHuyOvg7EjdPQbld6An7GTZtPl8MnMRdPVfyv2n7+GDcTpos+wi61OHgrsDv2OhpMzkQn8UbAxdxV4/lvsD7qq7wW3PYP42Oc8KMoFdBBgy+k4he9xM/8Cm01Ua29756KRy1Wnwb1Xznk+HrjxrHn+wEhq412oz7jqdwCank1b+RiNuMDunQSQ9AlzrsntqNO3usCAhyLF8yByKXo9myqPfnrWSfPM8yJwdmMfaPLvQbMZrQ9ovovSQ8oG6fM2IZWobxW5lSpxaTGli4U4vgoT5reGbgBu/v2X9Y2aBhA3kgZylf5A7iu0F/sTkqla/GGX+ja0Iv5/9aP8+GlkYb4tbMleyd3Ino+b+iHHmk5tqJP2F895NUfWrWuxjeMoYudgsax5S5C2h0wjj/3OQ+TJf5B4k+tAubCuJjxzc0Uqls7fMC01ZtZdvRtGKNyvCWGxh6D7uCg7n5yss5aA0iWr+Ee17/gdnuB6mh+c5tQWbjN9VIM4I/KaouEz+8GycWOjnf865n/aURM377nBtGXEbB9I/IjTvoC9zqOh+MXM8PU7fTdcFBVocnEZOax1UdFvPN9H2owmSG9xfR6A3juDzcOoBvpu1BKUVsej69l4R7g39uXRFxMoeF+xPYdjQNzZzLgYRsui04xHRP517hCJHt4TEAvPbAjef9GVVl2j89Zf98tWjRQu3cWbK058pkf7/W3JLju+Dp63yNlfod9K/1M280MbJh2t/dnrdqXQejiqh9BBzQQ2nt6MWooL48afb10upKI1I1YYSrNf2sRadfhtqM7I9vLdP5whI41Ker8x0eevJ57r/zTh7ptRgXZkKtWUzROmLV3Ex3PcJrFqMuR0f9FZKCTIxyT2dd9acIzo2jDnmMcbeib5BRI8emgkilDk01X2/QJveNPGAOvJg6pF/BxVpaQINi+90Duftf7xEWl8VzgzfygXkJPwcZPQPZqhq1tbOP22/n/JieltFYNJ22jnas029l7XePEnpRDU6mpnLx4GbedffozalpcRHiyuOdG64gy5mOS3ex8P8WckV+Nvzpm+bzS8dnfG+ZTmaNUG5ut5KbuyzjUcd6/rD6Mt06X1Sf2bVqoqGx//kFMOZpo06Ux0P2AcyzdmKj+R6e/9nIbtt+LJ3Xhm9hTFAf7q92nBBHhufvNYlnb76UNRHJmJsZPcd1wr9hY/DXZ33/AK6gmlicpwcZbr7ycgA2tppCnWEPnPb4fbY/SKQBq6zfkkUNfna+R/Mrr+T3hMBsmjaODky29qLjRfWZX6sm3VPS2JnxGtPdj+LAaBxVt5q9F28WXAx48y5+nrKOPSH/CdhWS/uvJF5nXJCsPBFPY3fgxWueCqbrTcuZviueudafuFxLDvi+ALSwDeN18xq+D5qOfuPLmF4dE/jG3C5AgTmI+MwCXvtzC5M+uofQi2pwX49O5F68EoJyUYc7kk8N5ll/Ik3V4WHTfpbod1HPbOMudZAXQ17hxKVbePLyJ+n/aH9+++kTvg+aDoBusmLSfb3QR/QmHLq3H48//iQ/zNjPJZGT6WwaxckPd3PxZc24puMSLtdPsDL49OylQgvqv89zX/7uva+WdUTbYnzfslV1cqjG+vsnkG69mNc3tWa33oxP8j/ltsvq0ulf13Ln+GanbTNL1eB9x/fkEUId8pgebFyUKbMV59fhWGud0uuTfBhqNoZq9UDp7PntWW7PN+qHhemh1NNyvb/zWe4H2arfwNJrjMyUey6+h1H26jycupIMs5nlBc359/HHuMsUwUEVigU3PSxjGO5uzVTuoeY1PXCkPYg9uTW1ySOHavxgmUaYfiWH1BXcoh1lvn4/91zZgNfjevCSOTCz6VxGXPYrTe9+Aev0N7nPdIh3HD8yO7gL/3F8TWvzVlp76tllN3+e2m3Gs3HguzyYZQR7E1R9ovVLqaY5aHxHa5o+9hErf3ubploKzzh+9b6Ghk57yxT+bVlU5D4U/mYKzThm5l3bd3QOGs+zZt/woE7O97jVdJRXzIEN/DaODrxuXks9cjh0RxdMYdN527IKk+4g7JJXuCvW+O5fYxvPU0H7GWLuB8DeN3dz25Q7ALjTNozVwd9SR8snTA+lv+tVxlqN3sPjeiNauvrTmo3ec8la962oNtPoPWEuP1imMdj1IofUFTTWMvjUPI8bTTHcbIphofteBrte5D3zUvapZqSrWoTc1Jp5+42A78h3W5CUbWPw6ig+aHCAOrGr6ep6l/tNB/nCMgcNxTDX87RtXkCjmPnsUVfzgmkTFk2nm/Mdfu7QFZSbXFMtgn9twgj3s/R1veH9bMYG/cpjZiMImG+qwQLHXWzXr6Of9U/vsW/KvyZjmd6d61KWEa1fwmt6D37WRvOC2bh4z1A1if/4ADc1rUdcRj7peQ5vJhvAfx+5CsfGwbxlXkkWNZnlfogn3+3AmvBkWu96n7tMR0iq1oyo3BDa1ezBoLzvucMUhUuZ+J/zUwZWH43JZZzDnrX34pegkdxiOkayqstM98NMcD1FAy2HGffF0C73Te6ok4v12CpeSx3MquYdaJ62huYZvnbES/Yu5FKN5cHtALjNNpxManHsl39x5Y/GxcevL9/MA+vfommOL2MrRmtKqPL1AM9138+LZt/wK4cyY9Xc5FjqU8sVGEB5x9GeF8ybA76bU12Polr2wLG8K20tKxjjasU6/VZambZznSmW202BWT4/XzmZzu+0ovvW7rx53ZvguJRvBo4nWdVlQ/c3ef3nwcwLNiZiiFcNaKKlcarOzrZ0DRrvvX+v7Q9uM0XzvmUpzf47nXqTWmHONYJMk1xP8JZlFQmvzOPpXcaQ77BjRkZloqqPCZ3G2rkn68hR1dis38g499PoTe+lIHYv7SxT+a3+JcTWjeCb6OY8Z95KLU87JVJvQmMtg1vso+hlGUUbiy9L7T+Or6lx20u0uecy7ryiPrN2xdFuxi7uMx0iUdUnVjVi/CcP89mIZdxZPYkt+U3JI4TrLqnLmLYtGNK3Pd2DxnE0yEJtt85Fnguw0e5/0cPZBisu7Fi5tE4Id+as5r+WBXzk+JYELgLg+6ev5fE1/8f1ptOHjd13WSi5Fp01rWdx0R93nfZ44e9p/1N/oY14+LTHCw11Pc9i992E4OBaUxw9g4zj0wO2gbQPmhJQQxTgweBZJGQV8L55KW+++AJRiwei17yYuz4ZSkqOncQVg3jiWF+mX9mDO6OHoGNiqX4XT5p28anza2ZYu3KRlk2k3oTs99bg1oIYujqCfZExZFAbEzr7G3SgZl7ge97a5jDVYlZy6+YvApY/HPweGZeupn5Ifda97qlNd3wzjH3mjO/5VEvcd3FCNWKkqzW5hGDFRTYhLKzWnpuUkeHxX8dX9AoaTT0tl1361bzi6Mxzpi00r2fm8SuCuOlQP+/2Nrpv5OvgrqT6Dd2qho3/Wubz5Slt+/PlUiYKCOaDJnUID7byc2ItXrWdfVgrwAr3HVyipROmX8mbljUBj33r+A99g4YTqZrQUMv0ttucmLG8MgpWdELz1A26xTaCbGqy5N6DXL+352mv07VBPWbW9pXY+PZ4Q253ZRCMk6GuF2j38EU02dqFCL0p/V2v0tK8k5fNG/hefcXHH33ONaOvDthetH4Jrzg60++9x3n86gbs7noPl2kpHNYv52FzGLF6Q2bwBJdYcmjx0jcc05rSe0k4R1PzGPJMPQYt3UeMupiIkPe829zgvolV+h2McxujDCZ+eDdJEz/mFZPxuRT+ZsKOncCuLAxwvUI1zYGGTqxqxG1aNB1dH7DB+jWXmYxO93D9Mto5P2actQ/1tFwOPDKCmx57naUHTnLnjLtpqAVmTa9238Yu/Rq+D5rOI/b+rPvlQ+OBOf81Muj8JKm63GMfwtigPjTSMnnW0YvV1m+5yuTrUJpc7U3a/DCMvn27ElPjVmJVQz59tDmt1EZS693KjyvT+eLJa8kqcPLvibsIdmSwJ+Q/9K9Xl7F1a/Nl81dpe297ClwFvNVlAkNqdKH1ZZcC0C4tg/WpH9FIy6RH0Fjusg1hR++3+XTSLhaHncSMm+iQd4r83k1zPcrFNTUesa057bG+ztcY5f4Xdqw0uboD2RadOc/PIbRWKDndr6Ce53v4jqM91bBzSF2BuX4oy75+mKFzVhG1dwPXm06wqbadg40Pknf0Kx5yJvN/5g0sMz/CCXtNwtXl/GT5i7fNKwnqkmbM6vPPcMY3IkEpj39KUMoeH0bwSF+Q4xF7f46rizGFxFLjSuOi/PsW3/Puje+i9k5Bm2tcvG+66mseOGpcmC63PslVH43nhwEjmR3cJWD741wt6eZ6lym1/w0mF/fY7OSpYGpodua4H2DERT8y/v27uLvXKkDxqnmdN4hUHA9c3oRss5m9sanMfHIj7eb6hk9doZ3kbfNK+rlepRb5PGXejQsTz5i284PzE64zxTLR2vus29/ceiX3tzAaQbl2Fz/M3EfSoU3MCup0xufEqwbs0K+lnfMT7ATR0rSTIUGDeN4ylI9erU2Xbe1Y9/o66ljr0avTZ3QKmhTw/P2qGf+7qR7Z9mxsbhsLXlxAaJ1QyIhB/fkQmt3XozK05hd8+l0PopJzmLc3gdy8fCL3beRbfRy/NGnA4RAjCLXv3X2YNBOs7Q1rfwl4vY3XtOPBNh289w8lZLNh6H+8F7J9na9Ru2V7Pnn4KjRN4+bxNwOQc7g3dYJNtLslnzZhH5z1czzVO4727L3WOCltfGMj4aO/457k6Wdcv6/zNYa4XySiRys6T1pNRsQmhlsHEKcu4kH7IK7WTnDyuqEAdEtJ4/9y89ihX8MJ1Rgzbu42hQdkKPjbqV/DSNez7Nabk0I9al3fHoC5N35Hs4VfBqxrVxaCOqfyf0M3cWPibO801YVa23twQF3Fu7fVoVu4kakytdmvvPHkfVDvSgipTe6876m+fzxaSB20vGTvRY7dVJ0WV1zk3dba43E08DTsM695lfATidxr8wU+ChsVz4Q+Q59H+pCZ7+A/f+3ihuOTvIFTf5mqBrfbh9PKtINh1oHYlQXnD8epWaMmCZkFbDySwsUL2vCw2cguetLehyu0JEZbjQboxtu6ck3LNjSqbhTKx5aNPvwRTBmBvXgJqj6XaulMrf02Ld7uRdN6NQkJMpOdk8XqPm8EXGx2az6DNi3vI6vAxcdjNrJbeztgW730ttx8w42kHljF/aaDXGsyGo15lrrUcBkXbTqwtVoI9xXYijyDFX5OLRq3YGyrsd7v7/5jJ854xjsaZOGFppdyucPFonjjQjLLZCLVbKKZs3Q11Aqd+PQElzeqw961s7htre/3M/6GURzONNM74f1ibe//2Tvv8CqKNQ6/e0p6IwUSIBCKCIJ0pEmTagEbiIKoV8WKYBcEK3rFq+hVLKCISBXpSO+9Q4BQAgmQTno5yUly2u79Y3MaCVKMJHDnfZ48Sfbs2Z3dnZ355jff941Nkdgot8MyZDbBPh4Mm+5cgS+IQo54OfMFlY7LYvUnD7I3/BRr/Hwd2+0D44tpV/ojOQTydtdApu5K405NDD94XFui5KrmlFzPMfDNUfwJka5spbzLMcHyL+bY+rpsUXhdt7DcwCxLCaB3wxooKPza/1fqezSCb1oSJlUcDrAw8Cla9X6MT37fzETdr9SWcphj68NX1iGM081zExZAnYTZJreiv9Zpp6zRdKf/hBXc+e4sdnuNvvgUZCpB3GFS289+mgNM1k91CBlXguwTiqZYFYMtiha95C7mZ3o3omaJOmO+0dbGMYnVqvQnPtT/xoPaXW77tyz9iWNez2EBunuO5c1+I9BrFTo1CmPSZx9gQ0OklMWb+oWO7xyUm5CshJU71uU4L9fCOHI3wTXM9F/cn3DfcNY/vJ4ft52lVd0gujYOZWl0CrF71tCofiRv71Cv7TPdz+UGvpfCtc7ZSZLDCB0fTcffVW/u6IiHSdq/nIbWy3tFpCihbpNsF+M64ATYZGtD77J7flquS423DlHT34sn3/03v3k4ReyXzKOpI2XTos/jLDsnMTlpSLlJl4tZZ2tPtKYFY6WZjnP7yjJ7E68u516WEkCYZGCV7Q4OyE05q9TmM/106krZtIq8FVlXQqPARix7YBmFJzfh/8dDAHxlGcyvTVQBfUzbMTyblw+bJ5IwYDY79+zg8YKrtysvh1Hx5JDcxNFX2nnHMpIFNjX07vfnOvH6Tyv5xeNLmmmSOCg3ob3G6cn4pPkd3tPNprHGuYDKWlsHIp6eQ6sG6sTw5D8PUrx3BiV4ES7lENOhOXvzZ7uLUgDJ+zm7azGNYlXhPlaOROr1Lrdue/GKrueZGrexP6iIw+eT0F9+dzd26TrRdcI6rDaZ1cfT+feqU6SXeVe2kuJ5Q7eQsZaRGPCho+aUw564x/RvUpQw3tItoIUmoZxQDHBPRAOSvWy80fx7ZiyOZ5r+KwrwqzAy4mKOyA1prXG+S0N9Z9C7YDHPXWKC5mI22NrSV+ue2/G8XIvnLG/gGbGIxECnWLI8JY2Gl7ELShQPFvXdxaOdG9Nx/AIGaA8QKWVyv3aXwzYtUrw4rUTSThPH6+YXWCJ3Y5xuXrlJpQLFh0Cp4rDKU3IkzTTlQ+Q32NrRV3uIvXIzHjVPwL+ZuhBKRX3+xyE1WOzvx9EE9Tjn5HDm2vrwnn6OYx+LosX2SjReofWx2mQGfrmSEYUzGFZBm5ilBPJdt494sfPdrD6/mhH170Y/uSkAuYofAV3+hW7PFOf9tHVhWcOPOHr6LIcvmjjOVfwcbdJ9pk9orTnLJ/pfHZ//Yr2bFprzjDaPYoD2AB/pf2NAQF9SQ04zqvUoDmUcYs+FPUzrupnNc19mQZRal97JyeNxg9MWiH0ugaa11eiBTEMp7y8/wfmT+1nnqY4Pzsh1aKK5uhXee0fWJlOnY+HAhTQNbsq64xfov6hpuf0qer6v1gxlk68PkzOy6Fdccd+co/gT8tHfT8hejbikKKW71AeCGxPPOrfDB/mQfgz8arHOK4ym761FcjEmrYrayEqtH4PGfcDTnw6SB3e+F0WUlMHB0ibE1vTjsHILX1seZq3cAW/MfKCfhbHjqzwt1eDZHNXTYXyzVcReMDB/Txwm9CSMUfPSdG0cwq74HBbKXYkJ7o7vhTgWe35UYZlHm18mUanFcs/3+cQyHA8sGMpmtrRthjO0UyN6NKtDp89U9+NEJdwRXliKJ/NsatjeH2VGw5N9OtJhfT3qSRmkKGG01cTxo8c37JObMu+2qSw/msiq2g3UWGBJws9Txw/D23E8tTHv/xDPC57zedX6PB88/yaGnwexwNyVjXJbNr87kF56LQ+tieW1vrdwx6cSt5hmMX1oB2adV72MzuafpUN4B36x3cs8W28aSWl8qZ9GU00yxz1aIiuJqogEyGW5lqgRhTQumbxTW6ix4AEAbm+uDrAb1/TnjX5qPP+BNvV5cGpDInQLAVWUssk2NFoN9Byr/mz6GNvu7zhkicLWqJ/bfY4K9WGi3JrnUTvCpbY7mdWsltNlvIz943vj46HjTEYhUQfm4U0prTVniZfrUE/K4E3dQhbYeqKTbJyR66LDxjj9PD62PEGM0hB/VFFKVmTav/ATBtP3BHh7sOJAHKx4hUFa5wp662nBUwOS8dBq8AyKYJ3cgdHmUUQrqvdNnFTLkRreEnkHtrh9dLCeoQNOI1AGiiUJPxeBPVfxY6j5PWwuqx3a8WhyF88G/0ZgSRKTS1QR8hnLW8zRSEx+pDWj5pi5ULCUEAp42vI2g5oFMaLpPfRqWpN3Fh3jV2t//qVbx6Nn34Ey7/2E/r8SFV1mJBtVjw37rLun7N4JFWg1hMgyJgl+8i3m0cHvEjv7BZpKSSy0dgcSANBrVTMyyMeD35/rTIOx2chIDNTuYZa1L0GSkXpSJs/o1nDeyyn6zIqaxEhf1UumaAUZHAAAIABJREFUdpA3j9xRj4cP/YcPi82M7NaQJS0jOJSQx4uzrLzovZFJtrUkLvyFF1q9wEutXmJL5kFajFxHcqaGE9Nf4AmdmgTSbmB9GrKdjtFvML2/mtQzwD+Qez5YRdMJyyjFk8c6RPLh/c3x1Kn3/vBHA4kaOw89VkZqV/K2/g/e1fwGsZTrgeyCFMBbvu1YXzOLLzKzae7VhpfS7qad5gxdNcdpIjk7aPmiFTDNIY3xyD3PSVtdmmvU5JH2AbNc1hdqcNaVu+vWplCruaRw84XlEQY99Sb9f1GN65/0k2mjieejBvNYFZvHaO1SgjxSmFTyPKEUstpfDXto3qk/1i0adGV5KepHNaKGZzhR8+cxWLuNT3Uz8JTU0MuXzaO5Q3OKQ3IT3tXPI1xy5h/TSgpKrdu5r6U68/f9sLZ0bBhMkLeeSWtieTLxD+qmrWV1eCLPnvqZ3s98xJ+rxgAuYkjLR9UwZ2BRh99pve91JAlyCKRV3UBeuLcrD3Yv5Yt1TVhw7BgD9dvwcXmfDIo3bUw/0UxKLBd6tdDflxz8qJPfwOGRsKfmUDpnLgBg9X0HuWelc3W49vJvHNSoq6GVShK/Br+N3lzAs4XlvW+3entjk6B3cQkjtR/TwiuHAYWL8cLMAaUp4eRwZ5lnrKs4UJEg9U5YCFa/VowkkqbnVc8Xk6J3PINnpQ+ZrnxY7nuPPfQQcxYWcn/r2kTW8OG7LfF8ZX2E/XIzEpRaDNFuQ4eNpKhHUFAnAUw2E2HBNdjw4FZKFr/MIO0e9slNecw8gQbSBTZ5vsWQgpmwZCazPJzn+pduHf/SrcMMzPf3Y0hhEdItA9DGrcVLsrgJUgCJwd34cM8HRHWLZ3W9WEr+GMnDWqeHk30VJYD1cgdamtrxkGbnJT2d7RRoNLweXJ+vRm5jzycPM0B7AL1kw6B4c0Ru7Bi02wUpwCFIvVDjZ77o052xs2UylBrEyA2JURog+QQzsm9zclrF8fOpaRSdm0fjevfQKkxdhKLNoJdoWSeQVpFBDBnXjIWeakjND9ZBPDZ8JEt+f4aHtDvZL99KbU0e31sG8lnZ5MFsax/8pWKskgdr9L05ZgzGgC+rfEycyVPz7ElISJLESz0bO8r8YJu60GYkJWYbb+9YyzsDmqL1ncJDSxaxwGMih5Vb6KiJJVaO5H7zRDePBXDWufGWp+mpOUJf7WEmW4fwkeK0t36uVYvnxx8iescqJq6JJ0UJQwEM+BJMIXu8XmGBtSczbAP4dvRwOnyzggNeL5d7JmbF2Zf9x/IwcUp9xrw4iid/nMYU/RRW2zryqp+6ku7o51+gz6IujDN/S2/TJqfQvG0e96s3AwDFPwKp8AIWYHagP8MMRXiVvff9tQfpj1rf7P2SUaOBJ1ey//BB7oj58C/rkB27KLvOdgfPvfw2vp466viPYsmGrfgZvsBgKeFsgVqP/G/rDU+vx+Bbn/WzzwCqKPXN4W949skY6PYGUZJEeLt7iXqvJ3WCvAnVFPCQYS5DtVvxKnuX7QN1UNuYZ2t2YMqDX7LjUCKDDlTsFQHgK5ncBKlYOZI5tj6kNxzMmw1CeKRDJDX9vfhgRH8Gzg4i3usJN0EKcBMDX/X5jGW59QFIaODM2/nGwPa8VapnYVkeGf98dUAsXTxWi7yDRo/ewZEzz9Nwbld+0w/hs17D2GuCw+cu8FKm+yIjFxPnXwBoSf7Xn2gSkwnb9zGeXr6MuXAv31cw+TDf2otc/KkvZRA04ENAXb1sUKvaDGpVm62nM/l9fzJrT8ATlnH0ujUMPy89fx71Iap0LjpsNK0TzPLH2tLrS1+3Y48f0Jimht1ojv6bZC/1/WhbP4hurz/C2uPdealnI0oLMhk99wD7k4swo0eHja6a4/zooaYVOCHX55v631Pv3O+M0i1luvVevnx6AL2/0JKv+PGEbj3zrXexRL6T6frJjsmux8zjeVy7gXu1+x2CVHvbp5RGzWd1VF8sUSMYWZzE0sRQyHFJddJsIGQnQJozYmSxrRvtNWeoL2VQqHjzvuUpvr6zCQDzXr2X5Ny7GDnrIJ9bH2OYdhP/1v+Cn1RKOymOedZeLJG7MahVHerf/hXzfy92E8AvJUhlKQHcZ/43j2s3unltAo56Pt/aC9ex/nbPnsQbvXhat5YdtmbYJFgY4J7H6VHze8x/ui3Mm4MFmKK/g9dH/Yo+sK7j2a95ZxC/729N0yUHGajdQ2fNSYf3+LfcxbLUr1iy6CsAPLWe3DdkEaPmHmSPfBvxPXtjOjQbT7Nq1+2Tm/HTE+15f7kXDfbP4Qf9N/TWHMZDsrmJ5BfbGADP6NQ8u/u8RgGqt/F5uQ4enOa7I85Iki6Nw3g/eDBQlkqkRhQYnO+0XZACqBngxdQR7bjry0JaZE9nhPduOj32FqPXxXM+PYfXdQvprDnJaMsokpWadNMcw4QHvTWH+Zd2LVrJ3anHKqtj6x631uQh04flnDou9XztJMthhEu55SZ/fLm6PHg3MsJTqoybxVPqUuy9sJeR60cCMLrNaEa2HFlunxG/7GNHXDYTH2jBiE71URSFX3aeR6eRCPX3dAyKFEWh5ayWAMQ8qb7sUWNVoSNhkjPfyQfLj/NH6gR0vmd5ru4SJpflumgV7sWT7Wvy+ko1Ge+t4f6sHt2dDSczOJFWQKbBxGqjGsp1ePgB9DovAIbMmUKs7Se8L0zEZvFl2oh2tI8Kdpzvj4PJtKobxK3h/mw4mUF8ZhGbTmUwonN93li0GX3txax89Hse+FN1e53YdSIPNH7A8X2brNDo3dUOjxr7tXX7z2ZS8ko4/5nz2gCGTN3NgYQ8Vr5yJ58fHcWRrCM0D2nOjP4z2HQyn1fmR/PF4Ja8tegYd2piqNG+NlsLvyDEK4Sc0hyW37+chkEN3R9CcS7smwbd3wKt+4g9ObeYPrNewaOGM/xm//D9eOu8nTspCigyCbml1A/xKSc4FZssbPvkbjbY2tFv2GsMaOE0lOyeJvbrBtgdn+3wzIidOICTFww85LL6zcV8N6wN46LVVQi3Dd1GsFew2+fPzDzApthMGkppJCk1adh8HRfkHXSt3ZXJ3adwPNXA0J/UgW3CpHtJN6bTd5HqpfB6u9cZ1mQYnv+uiYJEmhJMHSmHR8MHccL7CF1s/yE1Lp5SXQn3du/JsI4tWXs8nQ9WnOD9Yfl8Ha16zy1/YDkNA9X7bq+300a0o39z9V4kFCSxYI+B00XbeK/PIBoERTrK/8fBZN5ZdITJ+qkVhnXNtvaht/Ywv1oHUFvKoY0mjkQlnAmNnSLK1E6fs3zWZroHL2NcqDf3NbyPz7p9xoYdu0mSQ/lvgpq88eFbHubDLh86vvfhihPM3J3AhHubMbxjfSQJZJuFg5/2cTOklQ/yyz33iigsteCh09B+bmvHts1DNnPXwrtoFtyMPwb+QZHJyvtLDpMZs5naUjbxShhxt6qzaq71BNTVMrUaySFGuTJz13k+/PMkeqxM0v9MEymZ2zUJANxl+pIh2m1Y0bLUdiezPT6jSPHmgaBu6EJ28UDjB5jYVTUwnp99kHUnMpg3siPP71RF6FZhrfim1zf0/KMnoHroBXoGcjLNwL59u+hVT0vPhRYe71KT8JrpTDv9LlF48qHnIJre9wqdFqthIb1O30uDXnfTxy+a29d9gCJp2OlxJ7c8P5fw4AB+35/EubwLRAR60jikDl0bhdLw3dVI+lz8Gv8HU1ZfzNm9mTOqBhoJ5sfOJ/dUP17K+Iy2jevi9fg8JK2O+MwiTqQVMH1jNN3yVjDH1odRgxpy3rSVDoFD6VzPh4MpJeSX2vhl+QYe0u4gq+kIJj7ep8LnaLXJ3DtlO2k1nCEhjzQZyh9nFjj+j3kyhmKThe1xOfRvXotVMRfo0SQMWQZPvQYvvfrMFEWh8cff4xM1jZ/6/sST3+djtskMbR9Jj1vDCPLW8+2aaErw4miqOti0t5cPBc0nad8yMj2g191BvNpupKo56jyxGDLJSYrlqKUO/Vo3ZNOJNOb8/iOHblnOIw2f571uo1i07RA/rT3AXd17kl9sZtmRVPSN1bDTmOGHQKeqN7KsMHnDaWQFBjQP50J+Ccazu9m+/yAtNeepJeVhQ4NR8eKEEsWftk5Y0aFt9qHjXmyNTeepmYeY8VR7Jhx+kCFNHubVdq87QtFqkctd2mg22NpzcNIwSsw29FqJYouNV+ZFM6bPLaw+doHp9qS7wIwX/RizVTWYBzcZzAedPwDUVf8Csw8T1LAD/b/bR1xmEbdJCXyqn+HwIkhRQulv+pwBmgNM9pjK7/5+fBoazJvt3uDJFk/x/vjRfKz/jbNyBPvkZgQPnUKInzf1Q33pvaSD47oyCoqJX/QhP+W3xzcnhgTflvz00r08P/sQo3vfQscGwbT+WBWZn9WuogBfShRPzisRnFCiCKCIN3ULWRZSQlxwEq+1e40f53gwTj+fQsWbToNfY2FyEHN2nSZKyqCV5iw7bLfjLZloq4kjQQ7nkzHPcWu4P1abzAtzDrPxVAY/Dm/L3bdHOO7VK5teYWvKVr7p9Q131SufRuB4agHFBVmEnprLrvDhjOja2NFWv9SzEXc0COapXw9Qi1z8pBIeu6cPj91RD19Ptc+02GTS8ksYuLIzSpkAHeEbwfrB68udy47FJqPTqMJV1NhVaJAZ1LouZpvMM3c2ZOWxNO7T7qXd/tdZauvKf60P86nuFxbYetF7yEuYrDbeWXyEHk2D+eKRJvRe2Ntx7Pn3zqd5SHPeWHiUGj4eLI1OJdeohkV5YsaMjq+fCKHvLa34YXMyU7ecwYaWP57vzOs/LSdFCeM/g1sx8cQ9AGiTPsFk9uTUxAEk5xYzat5hwgM8mfaEewicLCvcP/477tfu4n7tbrcwnD0d/8vtvYfgh4bv/9uFqbVsRAU05M/On2I4uoKAPaq4stHWhlvGrOK+VZ0c9Sw5t5gJszcwqeYG5O5j0BQX8MAvp5CR2P/ZcO4YN4+B2j2sl9vTUjpLnFKbyDsMfNbvKWr5OvNx9ljQg9zSXMdxL8Zuk1T0+fHUAhqF+eHtocVik5m6/RRDO0Ty3aYkZu1JpFVkEPe3qs3MYwvI853L0FuHMqHTBAaN+xZvzBxUmvD1o+2IW/g+DTTprLe15wPfxWSbtARhpLf5S8zoGdaxHqN6NaZ2kLfb+aOT8ji4cx2hp2ZxQV+PBYQz3n85/QrOsdhnCHM8HmHJmL5kGEykFuTSsm4Yeo3TX2n7mSyemLGfTW/04IHVam4zP70fe4bt4WJyjWbaTtxAu/o1WPyiM5/qmKnL+DNBS8vavix7wAelRgMkawnZRaVsWf8nvykzSNTrmN5vOh0jOnL7b7dzV+RddPF/g8ISMyfX/syDQ5/iyxWHSDPC6Pvv5PFO9bHYFDx0l045/Mi0PbSrX4N3BjRFlhV2n80hIsiL52cf4v37bqN7EzVPq9FkJTGnmL1Za/j6yCe83eFtzuafZXGcutDOr/1/pX14e7djL41O4bUFR+nRJIxut4SyPS6bponfkO+bwedvbUCSJBYeTGb80hgaReawcuRwopPzGTxVvW+1AjzJMJhoEuaNX/ZRmmqSmWfrzReDW+JfeJYNG9ZgxIvNwQV4hm3ihVYv8HLrl93qmp0/7vuDZiHqAglN31tNqUVm1tMd6d7AH0oLsPqEcSb3HGaliNY1nXbUsZR8IgK9sckK1sQ9fP37WnppoxlrGcmEhzoytEMkkiQxfPpedsXn4KHTMFWaxF3aI3wS9RuhSi67EwwcMUXwkHYnq20dKdSHck+PwxzN2cpTMX5okUmo2ZtxuRPYL99Kw7d3YLUp9F3m7A8URWFLbAazE8dxMMM5vj123zJii3zJs+jo0jiUrcfO8sWxqSTZ1vJ1z69ZHLeYyT0m46P3cbsfWYUmEnOMbI/LZvmWPfTrXp/fM5x2h31sOWtPAkczj7E+fzzL7ltEo6SD6irCD/0EGqd9eDariPNZRhZs3k+P9F9ZZuuKn1TKTA915fckpSZDTe8xQreBf2nXosPmEGx+qv8lh0Kz2Z3rHi54+PHDnMo+y/C1QwB4p8PbPG7RQ8YJaPkIhJd/zifTDPxxMJn377sNjUa1nft9vY0zGUUse7krc/cmckstP77bHI+h1IqnToPJKvPRoOb8vieO5MAPkPSFzL57tls92BmXzd7TKTzauSHjfl5KoCGOGKUBxYons8cMROdRwH8OfMSejP282foTuoTfRcMwP1LzSrhgjiEzO4XwhZPQtn+KtoPKT1TcwIjwvctxM4lSH+7+EIts4dM7nTHTa86v4e3tqoH/UquXeLF1efffTEMpcZlFdG0c6rZ97qm5TNo/idUPrSbSXx2gXyxgfL8lnltq+tGvuVPksNhk2s5RZ0EPjziMXqNHlhUkCT7a8xHBmuYUy3nMjZvC3mF7OZF9gqjAKKIvxPLmTvUF3PXYLgI8AgAYvmo4x7KPlXvxXTFajGxM3MigRoOQJImckhx+OPIDRpPEqsQFDGkyhIVn1NCAbnW68UOfH9y+/8fBZIfhZ7+25Lx8YvOO0bdh+ZwG6QWlhAd68fjqxzmapeYZuVj0KyixcCgxlzH71EFlVEAUCYYElt2/jEZB5fPxWGQLc0/OZWjToe6CE5TrOPc8tgc/Dz+uhqixqwj18+TgBPdBrv3YR0YcQevSccSmG6gf7OtY+aegxMLm2AzSC0zc3SKcvedyiEkt4ME2dWgfFew4zpZHthDq7V6XLualjS+xI3WH2/6frjpJVKgvwzvW50zeGR5eoYo0z7d8nlFtRkFJPigyWYXFSEn7eCxxKunGdFY+sJIgfW3uXNgWL60XBx53rgDjet+WDFrCLTXU2P+zWUXoNBL1Q9RZvSJzEZ3nd6Zf/X6sT1xPPf96rHrI6WKtKAq3f7ieIpMFTdlwp5mUxMPaHeQrvkyxPeTY10OrYeqItjw984DDpRrg217fcmedHuxI3cqYLWNoW7Mtv93tnP2yl9VuRLuiKAoJhgTWnl/L8NuGczD9IN62Wzi8fyIvdXoaqXYr0LvXGVA9+JILk+kZ2ZPc0lxe2/Ian3X7jNp+td3uzXd3fceozaOo4VmD7Y+quVzsBjFAlw67iSlaAcCB4Qf4z4H/8GKrFwnzcS5XO/P4TCYfmkz0iGh0GqewarLa2HM2hxVH0lgSnUoEOTzSsSFDe7Xjqw1nWHQohSa1/BjaoR4TVx2hUbN1ZCpqyI7rgMQqW1EUhbZz2pa7ToBNQzY5QxFd7lu/xf1IN6qzoA0DG7Ls/mXE58fz0Ar1mU2+YxVv7L/X7Xw7UnZwIP0Ar7d/3a0NtX/+1frTLD29kfyAqbQIbk9X33eZluysA//t8SMN/drQINR91thO1NhV1Kl9HkOgmkx33j3zaBHawiEqnkwzcM+3Oxh3d1Oe6Vaf6THTeazpY7yx9Q161evF8GaqeJ9XYqD7H878bU/e9iS/nXTWqYoGfKD2FUezjrL0/qWObeM2f83K5Bk80+IZXm49mmMpBTSvHeAQruwJgbfHZfGvXw+UE/HH7xjPinMrmNZnGl3qdGH1udW0CG1BvYB6buc+fOEkT64fSoPABqx4YAU2WWFpdDKDWtXGQ6ej2FJMx3kdATj2xDHmnppLj7o9OG84z20ht6HX6PHR+5BWlEaIVwh+Hn4UmawUmLNYl7CW4qw7iQr15ba6EqnGJF7a/Gy5eyErMq1mtXJs/31/EhNXnmTTGz15b/lx+jSrydAOarmNFiO5JblEBjhFaqPJSvMPVxIZnkvfO1Icfcul7nl8ZhGT1sSy8VSGY1vTcH8+eqAhz267mxdbvkTb8DZsT9nO7JOzHcc5nJjLtK1x/KtbY/6zZSPfP9KHiLK8bBVNJpitMl+si+WJzlFEBrsPLLaczmTB/mR+fLwtkiTx7aY4vtpwBm+9lvtaRnAizYClxgLSlW2MuG0E90e+iFYj0bim2s/kFJl4Z3EMkcHerD2ezlv9b+X1P45yV9OaNKmXjdXnEOM7jq9QGE83phObG8uiM4vYlrKNt9q/RYRfBH3r9y23b6G5EI2kwVevvjuJOUassoKvTxG703bT0OsuPLQaZEWhRZ1Asoqz8NB6EOgZ6DiGa9sW7hvOhsFXtvR3sdlKVkkG5wrO0Kter3Kf74jL4s+jaSTlFlPT34uvHmnFpAP/5nhGAify9zH2jrFM2u9MIXCxzWJfBbGGrwctPljHreGepNV4jXa12vHDXdPp/NlmPn+4JQNahJNdZOK9zdMo8YjmUNnActUD6wn1DsOnLCmz3et7WfwykgxJjG7rDOV8+MfdHErM4+CEPgz6ZB66sE282ncgk2ImU2ItIebJGBaf/pMP96pefvZ6lH96B4/PPMIppT7HPu5Np/mdyl2LRbbQdnZbnmr+FI11j6LVSNzXsjbJucWkG0qp5e/F2awiDl04yW9Jr9AhvAMz+s/g60Nf0zG8I69ufZWSstxnVytKAZhtZjy0qljdeV5nzDYzh0Yc4mxWEXWCvPHSa3l23bPsS9/nmORp/8lGsotM7Hu3NzX9PWkwbjWjejXmzf5lK8wpCkgSu89m8/2WeCY8EEqRNY8O4eVzXtnvfY7RTK/Fqriy8M6vaNqor9vnLWe1pG/9vgy+ZTD1AupR17+u2zHu/P1OCkwFtAhpwfz75ld4npXH0ujYIIQwf0+37cfS0si3JtE87BbG7xrPJ10/cdhdDy57gPiCs/y353/pHtmdtrPbXvJe/pPYn6NG0vBg4wcdotS0vtPoUrtLuf3jM4toGOrLzrQddI7ozKMrR3Am/4SbTfnn2T95d+e7fNnjS/pH9Sc+s5Bco4VvN8WxMz6bla/cSaMwP85lF+Hjm0uhuZCWYS3p9O9NpBtK6dLuIDHFi/5SlJp/73xahLa4omuzT4ZVxJ2fqxPbM55qz11Na1FoLiS/NN+tL2n3yUo615WZ8uRAR9t5ICGXZdGpvNSrMUezD/DOLnVc9H3nzSTlFvN4p/oYTVbiM4toFRnkVh7XZ3zxtdkns+3jf0mSeHrd0xxIP4C3zpsSawmvtXuNSP/ICttmO7G5sQz5c4jj/zFtx/Ds7Wo/++3hb/k55mdG3j7S0R4ZzAZySnJoENiAC0UX8NH7OO5ZTpGJXKOZqTuPMbhdMH7Ht3Bbv6eZuPYsM3efQ+d3Ct+IdYyInMJ3m8/xfI9GhNbZybfR7h5/Ox/dSVpRGo+sVBeJeqfDOzx+m3v6iCshp8jE8TQDPZqEkVuaS48FPfi486cMiLoXWVF4ZfWX+ASkMuWub+mzsA+ZJZkViqyuHE8tIL2glDz5FBE1dLy40TkOn9xjMv2i1OiW1KJUBixWnSeu97t6nRDhe/8vFJgKHA3+6DZOw+Szfc58QwXmAjKMGeW+ixYaR1Dus++PqLmo7llyDxsGb3BzMbbvO/gOf7f/L+Zc/jmCPNVGc/nZ5WVlXOwQnGKyYxi5fiRh3mFklTiXRD6de5p6/uqgoNiquj5mFGdc8jxfHPyCdQnrCPAI4LaQ25h8aDJrzq9xHi/PuaS9h9aj3HF6NPNgYlnexRPZJwjxDmHKsa9Yk7CGoP1BvNn+TTpFdHLsL+kgw1hAVrGzzNkl2eWO2zwSKEsFYx+oZ5dk46cvLyitT1zP5EOTSS1KdTTwoBqAF3PBeIEAS0CF9+JSbHxLNSjtZZwSPYWWYS0dn6cVpTkMPYAa/mCwlGBwOX2XJnpADxTRq7knvZrXxCIX8120c9YiqzgLm/zXy7nbnylAfH48NtnGsz1DHOVzNezL3Vc/PdGhvqSfVIWGxMJEvGqoXnWltlKOZB4hwjfCMVNuZ/jq4fy3139pFNgIv7LxWoZRdR1OLlRj7dcnqjPqSYVJ7E7d7SYevjqgJl+uO81PI9ozflkMp/Jq8AmDaFzTj2n9G2Oy2DiTf4ocJZrGtZuzY3wr7lniPH9yYTLJhQnMOK4mYy20FFZYn0usJRVuf27Dc6Qb05l2bBo2xUaTGk04U3qG26THuM1sALMBWZG5Z+k9DndiV+yeev0X9+fWGre6fbYpSQ2RDfUJdTv3n6+2INjXg7d3zIMyL+sOc1UjfeGZhYy4bQQ96vYg0j+SyYfU3BLjd47n9Xavux2/WV1oVjeCp7oHcTjtPAOaNkbCwBt312JU3zAWx88nMCCL7l03E53jzCGTWpSKTtJRbC1m0LJB5a7JlbSiNIexlVWSxZrza3is6WMOQQrU8Kpfjv/CN4e/cWyLrOl0bU83piMh8dKmlwAY2GggXx780vG5/d4M7xpEjdo+fHUIgn18uLuthmkuaR9K5QJ8vIsc9eti9kxoR7/FYx3/D1s9jEaBjZjadyoSEiGBsGx0c9JKT9Fv0UiySrIc7fG+9H3MOD6DjuEdGdZsmNtx1yWuc/v/4npUYi1hSdwSR19x+2+307ZmW9rUbEOAr+oqXmguJLc0i7qhUGDOpsCsPmujxcicU3NYcO8Clo1uzogN7uc4mq2K83H5cQR6BfLODjU59h/3/UGRpYj96ft5+JaHKbCo+58vOM+wVcP4vPvnfHT8Xj46DhM6TnATeM7kneHzA58z9dhUCkwFRPpHklyYTKBnIAUm1ftj9t2z0Wl0PL3uaUqsJXzUJZA9GYf4dO1milwWZEg2JOOh9cAiWxi/c7zbPVLbsjZAAZ88HOl2XWO2jOFEzgmWDlrKpqRN3N3gbubFzqNR661klqay0D2Kp8J3198XPh0cScasdI6nGvjgUTOTD40loVQVn3889gMcc/9OujGdOqESHw+OQlbMxOk+4bmNc5jeb7pbn5BcmIyHxtluq+1oIRlGZyjj+J3jMdlMfPnQl2QWq2HGQzsFMLSTqyEdzsS9kJ4Cs0/O5snbniy7nrL3Q1KvAeCFu9QB4p4J7ZAk6LtIzaHWrU43mga759SQFZl+i91Dyr84qCap0zL3AAAgAElEQVS+/7X/r0T6RxKXH0eodygmm4nHVz9OoGcgiweqddRLbdoZtfkVYnNjefb2ZNYlrGPKXVO4f9kTnCs4R6BnIJ/d+Rk1fWq69WEApdZSLhRdQEFBVmQ2Jm50tFVj7xhLn3rukzRPrB1Gbmkuax5aQ6m1lEJLIRISKUUpdKjdgTdqOyfgXts6hq0pWx3/u/ZboD7Di+uDhycYrbB9XBsySzL41zo4lHGIQksO699sVXbPM0CCnXk/u30315SBp05D4UUmwXu71HD0R259hO0p2zmbf5ZPhjxCSk4INimfDB8DPqFH+SDauVrnhaILFNucYdOOctZtwqvPBPHvg+/Qab7zPRmxZgSTuk2ifa32Dltt5omZfNSlARN2fwB+n9GhVgfqhQFYuC0SFqaoeSXTitJILUplxvEZjv7P9bwKChP3TqRzROdyg+GR60cysetEh/2Zb8pn8J+DeaPdG9zd4G7HO55hzMDPBwrMRs4ZctiXrhpehWa1n5313K3kFpkxKmmkG73Z955a90/lnCKxMJE2YW0AaBQOI/uX8siqBwHYOHgjBzMOUsevDhG+EZzOO83Lm17m+97fu/WjQ3a+zsbwjY7/7TbOhsQNbEjcQE3vmsy71927w95Pm2XzJW3bDo20yOST4R6Bxdi9z5JcmMzgJoPZlbqLqUen0jmiM9OOTSO+LCwyzZjGqRxnvqZLneNK+e7IdxzJPML0ftMd2/JN+XjrvPHUqqKZTbGxK20XNb2dE0SyImO0OC8gqzjLURaTzYReo0cjafD3ha0p+xmzZQx96/flTL5qlM87NQ9vnTeDGg0iOlMNqduavJXWYa3x91Xb13EDw1l2pJSQwGIMllJCA6HPItVmWH7/cn58shGyorAx7Tgxp9SJyLQiZ/4vV1zL58rS+KUEegZyV6TTy/OeJfewZJDT0EsqTGLWiVm81v41Zj3XFJPVRrAPnMw5ydCVQwFY9eAqPt77MUGeQTRomcC2vNO0nf0B4zqOo0fdHtQLg9H9anI8ezfv7HIuPhQVXsKtdbwcZQsPdr4/duz2jt2GcWVF/Ap6RvZk5omZzDk1h0UDFxGbq+bttYvEXx/6GoC1D69FJzmlguTCZIqtxdxa41ZSC91zLxnMBkeZ7MKa63jt+Q3Pc7bgLKsfWs09S+7B38OfOn51GNZ0GF1qdyHADw7bJrBtZyErH1xJtqWAHq2zWJynCuYycML6DZKuB11u0XPUUD4HU0phCucNTg9m+3t/OQ5nHubt7W8z6+5Z1PatDRI0raPe1+PZ6qqF3x75mi51OqKgcMAwFwyw58IeSm2qzXTxGEVBYcbxGWxP2c7zLZ+nTc02NAvUM2DxK+XOn1Oa4/juvgvOvKEZxgyMViNHMo8wsNFAN2/LmxHhKVXGzeIpNXbHWFadu7KEf4KqoUvtLuxOu3QInEAgEAgEAoFAIBAIBG93eJsRt106J94NhPCU+n/hocYP0TK0JTqNzpFQ246n1pPc0lyHO/yVIisy5wvO463zprafmleq0FyIVbZSw6vGX37XZDORV5pHuK9zVrHUWkpsbizNQpqh1+hJKUqhnn890orSHLOkcXlxKCi0rdXWMTOmoJBsSC4XBuKKgkKSIYn6AfUd22KyY2gc1BibbMPPw4+UwhT8Pfwv6WpbZC7CLJuRFZlQ71DHMQEi/SPL3Vc7heZC8krzLlk+k81EsaXYMYtpspkueR1JhqQKj5NZnIm/hz9ta7YlPj++Qu+pqyWtKI0Q7xAURUEjacrNMF8NJpuJ1KJU6vjVccyYXY4kQxIh3iEV1ksJiYZBDckpySHfVH4pbZPNRFZxFjKyw6MupySHNGOaGgZVVneySrLw1HpSZC7CZDPRILDBJcuTXJhMHb86XDBeoNRaSsOghuUTkF5EXGYhjcL80LiErBRbih3XlF2SjVdZbjRfvS8KCnmleXhqPctdd4GpAAXF4Vl4MbIik1KUQoBHAAaTgXoB6rtjfzftpBSmUGorRSfpkCQJT60nZtlMXb+6JBoSqeVTC6tixVvnjVW2klua63huf1U3Y7JjaFKjCRnFGfjq1GvRadRwqwi/CApMBZzLP0ebWm0ued8UFBILEtXVJ11IN6YT4BGAv4c/CgqxubEEegZSy8eZhyQuLw5ZkdFpdJRYS6jjV4d0YzpNajTBIlsc99l+nvMF52kY2BCjxUiJtQRPrafj+MmFyfjr/bHKVsJ8wjDbzCgobnXXfj8UFI5nHyfSP7LcszFajI7nmFGcwfmC80T4Rri1Q5fCbDOTXZKNVVHDEn10Pm7hkICjrpzOO01dv7rkm/KpF1CPfFM+AR4BeOu8STemo6AQ4BFAqbUUjaThdN5p2tdq7xZGCep7k1OS45jNlBUZs82Mv4c/od6hl2x/7G3FhaILjmdnKPPMs98TCQmdRudom4wWIwWmAmr71UZWZJIMSY7vJhmSMMtmPLWeRPpHklKYgkbSUNuvNkaLkXRjOiHeIQR5Bjney7SiNMJ9w8ksziTMJ4yjWUdpFNgIT60npTb1ug0mA5EBkSQUJBDhG0G+KZ9iazFh3mEEeAQ4ZpQNZgPFlmJqeNW4bHtlv2e1/WpzNv8sjYIakVCQQF3/uiQVJhHhG0GRuYgAT9Vz9UraP7PNTHRmNHdE3EGyIZkAzwBKrCVoJS3NQ5pTYC7AbDO7fcfeT9rb6YSCBCL8IvDSepXzCq3oGq60bMWWYrQa7RW346AuvBGbF0tUQFSF7XlCQQJ5pjwaBjakwFRAvYB6+Oh8HN4k2SXZ+Hv4o9foOZp1lIaBDSvsp002E55aTwxmAwEeAaQVpSFJEv56f4xWI7V8auGj88GqWMktySXPlOfou+0JzwESDYlYZSv1AuqVa6sssoWs4ixq+9Wm2FJMkaWIYK9giq3FDg9vO2lFaZRYS4gKiCLNmEaQZxBFliJCvUO5YLzg6Jv+CqPFiLfOu0L7wm5HBXsFk1OaQ4RvRAVHUJ+ZWTYT5BlEvimfREMizUOau73/SYYk9Fo9EhIaSeMIdfbQemCVreUWjjhfoHod2L3YJSS3djulMIUI3whkZGKyYrg1+NZyz77QXEi6MZ3GNRojIXHBeIFgr2BH3dJIGsd57W2Mvd3NKM4g1CuUPFMedfzquB3X/vyh4n4zpyQHi2whuyS7XBiWrMhu99om2ygwF7jlwSy2FFNiLUFWZMJ8wjCYDfjofBz3MzozmqbBTfHWeWMwG8gqzqKWT61yKRUuGC8Q4hWCyWbC38Ofi9FKWpoEN3HzZrpS7G23l86LREMi9QPqY7aZySzOJNAz0C0EtshcdNXpHiqi2FKM0WJ066cu9pQC9f4HewdzMuck/np/R5+SVKja067vRYGpgADPALf30H495wvOo9PoCPYKpshS5LAH7G3fxW2Ua70A9d3KKckh1DvULU9SUmGSowxZJVnklOQQ6R+pPkffWuXSZ9jJKsnCS+uFv4e/w7PIR+dTrv09X3C+QlszNjeWIM8gavnW4lz+OQI8AvDV+1JkKcJb511hHQn3DSelMIXc0txy6QlcySvNI6M4w+GpmlOSg5fOi2JLsZprM+ekW/htZnEmvnpfbLINo8VIvYB6JBmSHOW2Ke7RDqXWUiyyxVHGjOIMJCQKzYXl0pG42kWgtmO5pbnU8qlFgiGBWj61yC7JdhtX6TQ6bLLN7V4mFCRQL6AeMdkxRAVEufUJRosRRVHQa/Xkm/IddSPMOwytRuvmIX85Cs2FFd57UNuluv51He2U3Y4oNBciK7Lj84sxWoxkFGfgpfUi3DccSZKIz4sn1DvU0VZnFGeU6yPi8uII8wkjyDNI9cxKP8DdDe6+4mu5URGeUmXcLJ5SAoFAIBAIBAKBQCAQCATViEvO8l96eQWBQCAQCAQCgUAgEAgEAoHgH0KIUgKBQCAQCAQCgUAgEAgEguuOCN8rQ5KkLCCxqstRSYQC2VVdCEE5xHOpfohnUj0Rz6X6IZ5J9UQ8l+qHeCbVD/FMqifiuVQ/xDMR/JNkK4oyoKIPhChVxoABA5S1a9dWdTEEAoFAIBAIBAKBQCAQCG4mRE6py5GdLURhgUAgEAgEAoFAIBAIBILrhRClBAKBQCAQCAQCgUAgEAgE1x0hSgkEAoFAUIW8uuU1Os7tVNXFEAgEAsFNwlcbzhA1dlVVF0MgEAiuCCFKCQQCgUBQhWxK2kix1UimobSqiyIQCASCm4BvN8UBYJNF7mCBQFD9EaKUQCAQCATVgAyDqaqLIBAIBIKbCLNVruoiCAQCwWURopRAIBAIBNUAs81W1UUQCAQCwU2E2SZEKYFAUP0RopRAIBAIBNUAk5jRFggEghuWrEITilK9wuUsQpQSCAQ3AEKUEggEAoGgGlBqEZ5SAoFAcCNyPttIh0838svO81VdFAA0kvpbhO8JBIIbASFKCQQCgUBQDUjMKa7qIggENzU9F/Tk8/2fV3UxBDchiTlGALbHZVdxSVQkSVWlhKeUQCC4ERCilEAgEAgE1YCP/jzJwYTcqi6GQHDTklOaw5xTc6q6GIKbEHvQnnQdz1lYauHDFScq9LK1l0N4SgkENzC7voXPo6q6FNcFIUoJBAKBQFBNiM8squoiCAT/CEaTlRVH06q6GALBP0OZKiVdR1Xqu83xzNydwIIDyeU+05QVRCQ6FwhuYDa8ByV5YDZWdUn+cYQoJRAIBAJBNcFLr63qIghuAKLGruKNP45WdTGuinFLYhg9P5rjqQVVXRSBoNJRylSp6+opZbICoNGUP6tdHCu1XJ0olZpfQmp+yd8um0AgqAQ0OvV3YXrVluM6IEQpgUAgEAiqCZ460S0LrozFh1OqughXzLoT6Q4vKatcvVYnE/z/siw6tdK89xSHp9T1k6XsoXme2vL9RqifJwAXCq5OYOo6aTNdJ23++4UTCAR/H69A9Xfhhaotx3VAWL+CGw5FUfh113kKii1VXZSrIz0Gji6o6lIIBIJqjKdedMuCv6a6LTl/JUxef9rxtxBeBdWFVxccYfT86Eo5lv213BybiaH0+tindlHKo4J3qnaQFwBJuX+9gEZ8ZhHrT9z8XhgCwQ2JQ5S6+d9RYRkIbjj2n8/loz9P8u6ymKouytUx9U5Y+pzTchEIBIKLEM2D4HKYbsDExa7OUfoKvDoEgutJQYmFqLGrKvWYrk33V+vPVOqxL4XJWj7BuZ1coxmA5dFpGEot2C7hodjnq208N/sQiqKw7UyWY3tFydOviOQDYKweKxAKBDc8dlHKaqraclwHhGUguOEoKesoDSXXNhNlkxUmrjxJWlXFzMetr5rzCgQ3EbvPZtP8/bU3nsfkZbDYhCol+GuuebBYhVhdki3fiJ5egpuL2AuGSj+mq+jj6p00ZVPcP7Kq6vdb4ll3IgOoWJxKzlNt3NMZhbT8cD0frDj+l8drMG41T87Y7/g/Je8abeRf+sD03tf2XYFA4I5GBw17QZvhVV2SfxwhSgluOOzdvuYa4/aPpxbwy87zvPr7kcor1JXgXUP9nZdwfc8rENyE/Lz9HEazjQP/gLFflVxqNlsgsHO1iYurA65iq6jigqrmasV/WVYuO5FplWWXv53Hn7zhDIOn7rm6Al4BX6xzhsRW5D0pX/SiLYu+utxZyXl/HfZXITY18bqwcwWCSsJSAh6+VV2K64IQpQQ3HPZZ1goWG7ki7Ktb7b/eg9mwZurv/4NlPQWCf5qQsiSucZlFVVySysV1YCMQVMSN6CnlOod0IwuvUzbFsSU2s6qLIfibWGxX185+uzmOLpM2szk2g+RL5GiyugqvZXX8enkFmioQqhXPJCSts3+82rJck6eUVazaJ6jGnFwBM++DoqzL71tdMBtB713VpbguVCtRSpKkGZIkZUqSdNxl2xeSJMVKknRMkqSlkiQFlW2PkiSpRJKkI2U/U12+006SpBhJkuIlSfpWup5LYQj+cexjtmv1lJKrKnRAKSu4qZLcxtOinTdDIPg/o3FNPwCOpeRXcUkqF6sI3xNcBvNVDqirA679dZX1wZXA5A1n+NfMA1VdDMHf5GpFqR1xao6kp2cepNt/tlS4j2sInV14vV753ywX2YKyrOAT9T0+UT84tl3tW5dbZL6GgghRSlCN+WMEJOyAk8v+meOX5Ks/lYmlRIhSVcRMYMBF2zYALRRFaQmcAca5fHZWUZTWZT8vuGz/ERgJ3FL2c/ExBTcwdoP2WqXGKhv0Wcpm10orQZRK2Ak/9YR9Uy+7q0BwM2If1xaWWqu2IJXMjexFIrg+uA6orTeIQKVzcW2ubE3qeGpBuVClf4LrcQ7B9cF60bM0X0Y8uhJzs9jsIkop5UWpuIzCy9ehzFhYPwFsV5cr8WK7Nq9YFZQ0Hs6IgKt97+zHuCos1xDyJxBcbzTaf+a4n9dXfyoTSwnoRfjedUdRlO1A7kXb1iuKYh917AXq/tUxJEmKAAIURdmrqL6qs4AH/onyCqoGe59+rQ5wVTbLbO+sK2MmKS9R/Z1+7NL7yDLs+qZyRDCBoJphH5gXXOOCB9WV77bEEzV2lRCnBJfEdQBafIOE8vl56Rx/2ypRlTqQkMt9U3byy87zV/W9jSczrvpchaabSwD/f+bleYfd/l8WnfqX+1+JuVni8i7KDk8p57a+X29n6vaz5b+YtBcOzVT/3j1F/Tm7+bLn82s6Du/IX4Dy4nS7TzaW29/VQ/H7sn7mUgT7elxb32opvfJ9zUY4vvjqzyEQXAuu/Y71GgTXqsIiwveqK08Da1z+byBJUrQkSdskSepWtq0OkOKyT0rZtnJIkvScJEkHJUk6mJV1A8WX/p/zd3NKrTuRXomluQrMZaJUZcTc2y2kvzLu4zfChvdh3bt//3z/MIqikFN08y93Kqg87KLU1YZhVHfsqzbFpBZUcUkE1Y3dabt5bfUPTNkc59hWYr4xRCmLTcFDq5qclRm+l5Sjvi8nr3I1tWdnHbzqc7mu+Pvn0atLGi2oXlxcBUtdxCNFUUi9KKm5dAW+Uq7vok6r7n9xrqcTqRXU0xn94c8xjJq5g9K4stDAgpTy+7kgywqSpKDzU9sCS5kIFp9ZdElvLNet9iTpFeWZeqlnI0L9PK4td93VeEqtHQuLnoaUQ1d/nr/AKMRjQUW45vM1V3IuUkWBc1sr95igekzKVvDwqfxjV0NuGFFKkqTxgBWYW7bpAlBPUZQ2wOvAPEmSAq7mmIqi/KQoSntFUdqHhYVVboEF/xh/d/W9n7afq7zCXA0OT6mrmEm6JHZR6i8G5HJZx2ys/oLr4a3L6ffJYnbHZ1d1UQQ3CPbVk27E/DpXwiPTKn+1JsGNzfMbnmdj1o9sPOVMtH2jDMBssoyHrkyUqkQvwL8Tzn+1iZ9dPUdemR999ScUVAsqCnl19T78dVcCXSdtJjb9yoVOm6yQ7TKxZq/irp5S4FxopyLOnz6Kl7HMYyvt8CX3A5ixy90z0GqTySky0eerbby56GjFX6qgussK+Lt4MQJ46rTotZprm/C5mkiA/CT1d2nl5eA5k1FI8w/WXdbz7WbkeiXVv2FxFaJMhZV77APTYdb9lXtMcAppeiFKVRskSXoKuA8YXhaSh6IoJkVRcsr+PgScBZoAqbiH+NUt2ya4Sfi7OaWqDLsolbzv74fUWa5gBT+dh/rbWs09kPKTaLftST7Sz2TDqbKQisxTsOOrKi2WoHpjN5jPZRkvu1T3jcjlcpwIBOCex6Y6Y7UpDlFq+5nKmyixj8OuZZLKcoX5JTedyuCrDWfKhTOJQeA/j9kqV/pqkxNXniy3zTVcevfZHAASsl28fi5TvT768wTz9yc7/rcLX2arex3x9nAOuwqKLQz473bH/09q1zt3zKkgzM+FeJdVZ/29dFhsiqN+Ljlc8ZBHqUCVKiy1lMvLqNNKeOg015ak3VWUutz7IWnLf+dvciJN9TDeVoltzI1Cg3GreXdpTFUXo/riKkQVXX349l9y4SIhuLIWobK/GyJ8r3ogSdIA4G1gkKIoxS7bwyRJbdEkSWqImtD8nKIoFwCDJEmdylbdewJYXgVFF/xD/N2cUm7Hul55W2xWsJXFMJfkwg+d/t7xUstm0byDLr2P/dKuMmHmdacsP9YtUqpzYPHbQNj0UeXPZghuGlxncZf+H86KVhopB2HLv6u6FIJrpOgG8ZSyys7wvW83x1face35qbTXYA+UWq9M7Hjmt4N8uymunCh1s3ppVifu/XYHTd9bW2nHO51eyG97EsttN5qt5Jcl9nZWJad9eLnatfiQe7idPZF6SlESnuFLgPJ1ZfPpDGLTnTbOI7pt6h+N+17S9onPLL9dr9VglWVKLX9dHysSYfOLy9uHsqz8DU8pFyGvIPnS+wGO+1ucc/XnudTpy65Re635Pa6W4lw4ueLK989Phm/bqL8rEbtwO29fUqUe96bC9Z0yVLLNqNW7/5+4q3KOa3+fRKLz648kSfOBPcCtkiSlSJL0DPAd4A9skCTpiCRJ9uXGugPHJEk6AiwCXlAUxZ4k/SVgOhCP6kHlmofq/xNjNqx6s/p7zVwB9tnJVccu/J2jsMZjLPKK0ZVTqMthvShk7+82iIVl1/5XgpO9UTRV70TnStlMgBbZYUgopWX5dIwinM/O5tgMVog8Jg5cDebrZoDejEzvDds+r7yZPcF1JTHn8l6zm2Mz6P6fLeVCif4uBxJyHQP5y2G1OcP3KhO757RFlnl9wRFS8q48p83F+X4uRzlR6nKeJLIMeQlXdY7/KxQF5j0KcRsuuUtcZuXmfunv4pnkyn83xtH64w0oiuIQoK7GEc7bwxmW17imn0Mc+TbmAzxq7Efjpfbdc/Y6RQO9VoMOd1E5VqkHPiEV2m0bTmbQ56vtLDyY7BYpkGs0M3df0jW93xUlM7fKCp46jVq/FQUKXOzV9OOw/YtL3xxXW7fwMvlb7eORShSl7GGYeu11sgmWPg9/jLhsDjAHR+ZC7jk4PKvSilBqsTFpTSxw7bl2rwulBWoS/6qyNeyilGcAFOdV7rF9QtTfXV5Rf1fWWNshSglPqeuOoiiPKYoSoSiKXlGUuoqi/KIoSmNFUSIVRWld9vNC2b6LFUVpXratraIof7oc56CiKC0URWmkKMoo5f/Zx3rbF7D3R9j4IRz4GU7e+E5jiTl/b8lZSQJPLDTTJKE7Unkdw18iVyAeyX9jgGDPE2X7iwHBzrLwt/Rjf7sDNFlt/1iogs1sF6VsDk8pk/3WXM6o+T/i6ZkHGX2leUxSDt1Yq4tcA66zvrpqbYn9PUbPj6brpMuvxPS3qYwFGATXnazCyxu/YxfHkJRb/D/2rjtOiirrntd5MgxZMiIiYFYMa1rzqrvmNa2rrjms+umquOYcEMwiKooJyQIyRMlIHsKQhxkYmIHJqaenc9f7/njvVb0KHWYYXdbl/n7QPVXV1dUV3rv33HPPRa2v7caEmEJx/acrcduXa1LaPqJQHSjVVvOJIDv/UlSDqRv24/npW1P63GfOEejwfq8WfZcxgC9vTKIPufBl4P3jWcC68FXAV5V4+/81i4WBwtnA99e1DAH6FS0UVVTAJyIx6ZMBqm6HBEp1ylTL92yiRM2CKeW025AB/T30unI74M6yZErdzcX5F2w330eUto412WABSuVmuOC02+CJ1AMvtQPeHQRsncZWzhnG7uXKLdY7LJK6/iUKzGNRJtMAtC0oxQEPh+03Cm/ruLZXIEWQw+Fmr8ZE9UHY23N2YuyKEgBAhsuReOP/pM19Bpj3rP4eaSPbWdGEPTVJEjTimcrpwQCytrT9+UD7PsAJt/DvaiMywOHyvcP2u7JFr7JJREz4LemMcYhaUkcwiV10TBdkQxq8fgtnSDCaXJnasoPp/hDgwpCpovEz/hl/3c7ZQMGkuKsppTj62Tl4YnJBCw4wdYuG2D3pJDHw6g7sVTqzNwcOi8kaLakeS00R8MX5wHfX/DYH9B+y/xWm1IxNB7C/IfDr69eUtBHd/LD9ppZKhU29BZupvDGASetaX0IiWEJbD6TmfEdpEA67dhxtoYUVUyhe5fpAonxv4Y4qneA0AGDUWcDkO3WLLrbnw9bCwNAISsVNEoR8wJS7geXvsr8L5zB2ySdntOj7fg0rrvahqqntAuKDMvn854/91b8uFW2qQDimuoRB6R6Vn6E0C7Fyh8TMcdiJWr5nA9uWEPOD6rLbkAl9MmAtBqugVG2c69QcjlqSTUqSBeUWZrynLzymM64+qTsqvUGcWCUlsSfdxl4FAz+eDpQMMFUUAMtGWG/XXM2kLIA27YQml++V1vlx7Itzk4MVLTRKKb5dWcJYqnau3ZpqQ6GfX2SvLRl7CueZNYskkwX5fw02apuZELRPRRO3hXbJe0vxx3cWJ95IVJh0PKrtQamaIqDnaYyFBbSd9IggHoj77Hduh/Dde9ja1ETq51fUF7p1zOrfpE2yVeeUFn1eoRhkk+qukzCWan0hnQhmq0wMLHIHha8uZ/XorTExocUOkiIaDQE/3AhMvQuo3mm5yQEOAk7OT5Ge3ELz/HQfAMCBmBpYeMHPU1uIESoKsOtnIHxoA7Jzt1ZgXUny++HvyZgJTfwZLFnWBkd16JoMSv1+mFLxx5lUnr9QNIaVxa3MOo+7vnWf+x+yeVsrsC1FEOa3slgSsLLGF1IDNfmZuXXMGjwxuQBNwdb5BAKUsqX47EV7PIv97R5T/7YCyoxGKcWkdaXqdwUjMTw4br0afI9eWqyKMR+QklWv5W3X76hyM7BlsvWXtKAbrj8URbbUqSzub3ijO7B5ovZ33uN8BzWpMyp+JbtgxBJcOGJJStvWNYdx5ce/6ES1W2PVTSHUGoFCQH/ud80zr29je/B7raNdhsu6C14gEoOXPxNCM4xSqhM979NRr++yaGcVmkOaHynrMdkID7MsQCmn3YYMws7BpOg5eDD8MAKRGODJBpQo/vDaLKDTFSsAACAASURBVMsucjGFYoIFoLy8Fd2LZWD13AGd8MVtpyLb48TWA140wqBjs/EHreNzvIRocw2QwbuZz/03sOBlBtIabcLftPdtGJfEOFrntBP8uGE/moJRk97Xwdqq3XV4bvpWPD5xk6Yl5EsBlJKRxJaAUuOuB0afE3e1nJRrE1Bq3ypg+8zk24V8QM2u1PcrnoVEXcNbaySFe8h7ALA5gA5HAaHGg6tWkY1S5ndnddN0fv1tJD1yGJQ6bL9LE1mNNmy9Kls0pmDZrhrWJrl8E9Bcy5DiXyG73yrxRW4xhWLhjir8zS7RRxMAOw3+ME5+9Wf8+cPl2H8wHb7EpCtTMCs3A7sXtWp3QocpYYmWMwMYci173/VY623qJcHPONoXouV4ohr9Bn8YOyXBTkqp2gUlVXMgpgY4Lq6zQA/WgV86HPj2KuD7a4HXuwHfXXdw+ztI27CvPm4L93u/zcd1n67EyPmFeHLyptbrv7SxgOahanJXI4f99zKV6cdLmR2VCiPllZnbcNPnq1BYebhBwK9h93ybj8s+OLTA3mTNOvbXa/OWPHeK5VGpDLa42oddKd47oRgbn1LGg4l+PLMSWDbarM0VeGJyAT5YwAKfVbtrkVdQjmensdKheGDJjxv2Y/XuFMHZ5sQldTK7ZlNZI1xSmZazNeNO1Y6Wf6aNTCT0vMHUyryenlqATaUNuHBkaiBWPDv1tZ9x8qsWJTtyYL4/P+7nb7XPA94/4aCOAQAW7NCudXM4hutP7oH26XqB4jPfXIgy9dnQzpdcGiePy5XeIO74aq2OneewEfW5IohfvmezQWVKzVTOQJ7CG+C4swAAWQhg4Q7z/bkiTuJh7tbWJ/G++PspGHPbKYk3mnaf9j6e3+w9ALTrrV8WsEi27V+nvW+t/k7lVuCLC7XKAWhMKYfdpiaTUwXOU7WbPl8FAFi3tx6NMQ4WpJJAlf3ZFoDhyczR1qDUl5cAE25Jvt2k24GPTmGlmKmYKGVt47hw3f4VyBr4HOzpSRpoBOqAtFwgPZf93VYldmEfoETZfl0ZQGbXpN0zUzYROx4GpQ7bf73JA73IEv5KDpGYsO02whD94f2AN3oABRPa/LvyNmsC5y0taREOZiHtri3M/zru9sJx3lbuxfnJqKGJTAWl0vXLV3xk2nT17tqk4rWxMJvQgs1xQEZKWalm7pHA4KvjU63H36S9D1oP0IGwCD4IojEFpXVmxtE1o1boBES/W7UXl3+wHCuKU88WUACjFhfjb1+shhvsfNHi1oF2qi18FdgjOdRF8QVVf21r9Edw9Scr8Mj4jaZ1lFIQZx2AKD5YsAsT15Xhh1V7Up/sZauWnvFkgpLVO4EXc4CZj7Wpk/RbWFRR0C3HA0ATOz5kTVFQVF6DxyduahHTc91ezYl1p+BsChFdXygKzHgY2PBd6sfY7fiUN122q7rN27T/N9mh1PEuRikopSl1kpWB3AC/fk9OKVDH9AtGLMFF71oLQZv3JdhLCoqrW86k8Vpo2RitIcCSLrXN+qBVBJuJfvObc/g4KI+BVuNEEp2nTxZrwcXG0ga4pORMv06Z+MfYtfCHpfshWTDS8J/rjlWXoii9sKYUwatWmwxKWehjik5zrzjHAvWtnA+5VXnN89vw64/HhucvxuT79GWVKigV5z6TmfNGsfzcDBccvBses/hMKUUBrrAzgKOJSglLXgKURfzqc5rIxt9j1c1ZO8bbz+yjLY0zVx7XI0eX3BlzVTc85+DzR+8/mD8QCQI7ZumfqViElbG176PfNllFQGsZ/4teB8rW6oTyBfA+anGx6he0pjNnIjumW7b6fms5H/tS0cWS2TOpajjK5zeOPydfN1dbJui8SSpf9q5gr/tWpLa/tmZK7V4CvJiDdZNuAADYM3Yn3j7QAHhyNF2vttJYFrGTKN3reBRQ20YdZlVQypl4u9+JHQalfs9mBTJsmQxUbkvp43//ck3KArveAHMWcl2GCXT3wWXYjNYciuoEjlvajSwaoyDOGr245LJ34m4vz2WhZJ12EplwuHgGTLUD600TzQ2frcK5wxcznScrnRclpnZs8RxYbe1oR4MAKGNmuTLil67JA2ecrIFwiuw2gtdmbcfZby9CdVMI0ZiCiWtLEVModlfrQbQ5W5lAeSqBa7Dbqey3IIJQVMHyohq4wc+XVYbtv9REScD2ci9WFNdg/T4NcKjyNSCz/9twd5umLrtm+Z+BD09s+RfJ1zFZJmjdl/x1DJD3WOJtW2q+aqAptcztvlq/jmmXikViCtJ5CUbkYJ7N38J+ehj9Rx+JKevLdC3AzaZ/luXSqpawMlx2G7D+a2D6g4k3lMceYl3OYrQdFV7cOmYNXp6Z2jzye7Rxq80t5Rv9EVRaBL6/tikKxVNTCtDv37OSbisCtqenblaXzd9WiccmmoHy5PvS7tU5W1rekKJl8ykv6+YgCeXPiUWHe9VUBpjMDrfS+UjSTMMInjnsNmx47iIATN9v4Y4qTFgrsVMXvJRwf/D+OmXwqVhLuw0etGxBMpOTZYF6k87LiHmF+u0PQgdm6OsL4q7rlZtuuVzc48YSWTkJYsQ7xt9zOpx2on7WpoZZ+nMfCMcwOb8UotffRtpfW5nWHgCQg+aUfCiPhcaVPJd0yNBYFk1xAPUMt14g+4Qtr8EtSqIueMH8gQm3sKTm1h+1ZU0V7HuNoFRtUWKAo7Xle54c9ir5OTLzU0uotm73VnbjZyuxvVz7vjTCfdVU9HrLJHZYqtId8jPypnVjBhmIOmimVKFURrv2i8TbdhrAXsfdkFpZso3fp23VmW7irS3bPtjIyutEhcnsYW1zHGJe8XBQqn1vfRXKwdjh8r3D9ruxeBN4gtpk2ZYWVictWVu9uxa3jlmtZjK7uwwDsy21QCdVMzoHqXbaEbawdAEy+7+Dskwpq+GvjTtIErTRbMa77xUfeSsw9B7gcUm/Kd5kNvUuYOxl5uVG1pNVbboAoVwZbABuOqBlNeLZms8sAS4ZlFqyk9XNNwYiGLuiBE9OKdA55MKJDUZEXb8N9c1hnRCj0Sg//iwSgI07bsIZIuHm1lN9433OSt/gNzChT+Fy2HDz56txzScrVMp/XYCdH0eG5oRnBw+0LqsuA5DxGHLCbJIjWsmfpYbSxKypSJDpDSRjVr3THxgxIPE2YJnbc4YvituqO+5hRKnqSEcSRaeHgm34FgDgRDTh7Zzm1E/J8rYtcayjqQaTcsmMNF9EYkrcMum/fMiA8vV7Uy+trQnU4L7596Ex1Mbiov8he33WDpOo8Glv/IzTEgS+v5bFFIqJ61IDOsQ1/WGNflwxznOplPCFJVBp+FxrPUJhVoymVMqTjc+KKH2u4PpRQsOyW44HJ/Vqp9tWvX9XfKgttNL5aCo3L5PMCMzsq/OjfYbL0ElQ2iDrCPZ6yRvWO0y1dfyvYC0tCW9rUGrLfsPzv+oT/d/JfNM48hP+cFR3P7bUOmd7LJeLe8jIDpdPizzWXn5cNwzokgW3w6aea7V8z8CUuu3LNZi28QA8CKOGZkORwzHeXr4D8aYESlkJr8t29zn90KM9Y2JVeYOWQvfpBo0twtkkNT0uZN3K4pkMNon3RlBqyp3AyGP0y4Tu1BEntR6kEIwbSSg9IiVamjmDsa3K9xbvrMKq3XowKQ382FPRLJ3+AHvtPCh1304G0sPW43Im94NOI9sxNLbechvZvMEIPlywS2Vtry2pQ59heUwvcd0YbcOsbol3lNuPvUb8wOI3k34vPHyMbqsxsH1fwwKaWOw/2MiAzFP+wf4ecHHbHIcARd0cJE3LbTupnMNMqcP2u7F4AYCiz0q8OGMrRs4vtN42iT30wwYs21WD7eVssOyTbgRM2ggR56aoHU0UXGdfAl8gcWDcHIqiz7A8TN/IxCJ31jNKf8htyFK82lknejdyfiG27G9su7IgPrC8PL8MuGw4kNFZW9fSziP8nBYp3Pm1yv6K7hbONKAPp17vyEu83+odQLk5Yy4YLA4bUXNvNgJUc0BlzHKNMiscMeGoRWMUV3y4HJe+F1+HhUj3iOiKKMr3CChenroOfYYlOXYr2xOHpVeVOsNj0rpSDJ/bNiWvwmmWs1qiW4jGGmDO00AiOSwW9+DI+YX6khHZZJAzGUVcnuiUGHOs3hvCANF49uM9LEvaRsLY78zTAtqWdA8KxxS1/fH0TWYx2EPRsuBPOKbMf1wflMkBjyeOMK8wRVdSkkLw2VAKjLlQ+1sCpY55bg7Ofdu6dFaAqzsqmlIWyf5m2zf45cAvmLgzfpfPQ92MZS97DYFqsIUslLYwp53oEjUnvTLfFMRe+bHGtg3HFMsg19g9PZUSvpaAABGLspNUmFLinIuYUjAfSmr9Opa0027DGUd2sN5/jeTbWLETRCC9ZLjGHJUs3vMqAzY68EaJMFDhpL+bP5R7JLDuq9Y3ODlIa+k9mjK4HceMz8wVHy5XgZ4N++qxZccOUE97rXSY61o+OXkT+gzLM4NiAetAb9Dzc3HtqPhJt2A0CGfuMljpOiUyEbRf/Yl+33I3Nxm8F+BQusuBYERBTKEgvGTJ2H1vDW9qkkZC8FO3bl1eMRtXc4lXTQrGne8BtM9IHLB6nHa8djXTFW3wRzCrwAzEEl1ZQBNyS5jPlX/Gx0BWV600yWhyPCF0lYyglGzNtUwyoLkaOP85JmnRaqFzfszS3CWPS76QllBtC7PyT9JF1UUqHeUEaNHj1Lj3sslS6OImxtcJ7lfwQuPzSbd/PW87RswvRP9nZgMA5nKm6y9FNRr7DAC2z0jyxZJ/SVKAE8L8HLUVKNX5GNOiJybH71KoglJODwND2ypBLaqSBFPKk8PIAm0hiXGYKRXfCCExQshGQsgWQshPhJB20rrBhJCFhJCdhJBdhJDnCB/lCCG3E0LM4jls3Xl8n1sJIUuk5ZfyfRURQoZJy/sSQlbz5RMIIf8bV6o1JkpnTjeUcKR31P05dkWJKiTaUhNOhyhbeL7pVf0GqdZNp/ZliEbZ5HWtfSnecY7GP+yzE35EaAN8tJCVqQknpxuxcArrGLgyZvkefLBgF674cLmJmVVU1YQ+w/LMGhrhZmD8LUDFFutD58BLGA40+MOAzQZ/2hHaZw1GZOfJOGHzc1qLBK1HxWThTAeGcHHvzM7m7Yxm4RwIwdj26S7VQf9m5V7M4tpexVLpXiiiYP2+emwqZRNuJKYkF4iXQKl2hJ3XNIQRoOzRnrG2dfcmvrnSevmYi1LWVnticgE+XtQ2goXCuXRLbBih2RE2ZLB/cEnPUbDRlOH+YMEuDHp+rvUXyY5CikypaprDhPcn38GWJwIwixez19IEXQANorVl9X48On6DZaZ+3GoNgDuvBbptcvnelv2HVke0eJZF/Am7pXXM1E9ndc1haZ3buLl+21kvY5zzVRxHikFTEV2t36O9T2vPHDZ+bFGF6rqZxTO545SVrSyuxcriWrWkYv62Nuim+WtY5VZ1/I9nxgC9wUKf53HHRGDEwIMGHaZt2I8Ja5Nn0iMxqjundc1hHEgw3kZiFJ8sMmtd2FqhuRKOadf+9H65ltsUVTVhbUmdJeMmFVCqMVIJm2e/WiIl6+vM3aqV3dkI8NhFR2P+/2mg7p6aZib4Lz9vzRZMKQFKLXoVmPl/ptWpgFKvzZK6/UVDgN0NuDOB5+uAB9cC/c4DHGlAXTEACrxtzPD/NtZSppTxt/t4ku/blSVJPztnSwX6Pj3L9My/O78Q87ZW4PHvV2FIeBNiIKCGLliC+Wc698H47MzNgoUVDTHQY/m76rpPNn0CT5c8OLLjl6n+8ehOpmURw31709CeAFjyrHbcPYC/TgeCCFBKMFf84ShA4wudA0A6QvDDgyypfG7YLPbsZ8GPBn8EVd5gwqqATtLc0K+T6JinP/Z2aQy4avBH8OJPSRJz0nMSjMRYxcPTpUyf1Gi+arb9izlA/lf8y3oCV38GPFJg3l6Wy+hzFmB3aEyTgknAlimJj002USUgATwy8OrjSZO20pQKWoxZaYT7rxwYa0zUwKHLYKDP2Qy0TjU2SoFdrEQjGOV8N+l2wowlnJN4d8LXZm3T6wDvSZKckBPqqSTwxRzbVgLjpioTogdXjRZs0NhanuyUAL+UTFwjIc8igL22kB85DEoltACl9ARK6RAAdQAeBABCSBqAGQDepJQeDeB4AGcCeCDRzjio9QmAv1BKBwO4ni+3A/gYwJ8ADAJwEyFkEP/YWwDepZT2B1AP4M4W/ob/HavmjtIfn8Z293F4IPwwyvteyyjsLWAAWWVWw1GWcRVztihDyo0Z2qJu/6nt2m4ueBkd3u2JLPjRHmwwuc/xU0Kxc6E9IcapGKf7ElA8EbkHO5Se2saFcwCwDlbCjM70bV+uZYeyXXK0Qj5g2v3AjpnApxaCkADCYTawRKgdG/Y1IBiJ4eFGLjIuOQDit9xv/0n7sLE2mYM4NVSAUhYDvAC6nOmshA8ktQHYYl8iGM7yOFQnceyKEpTWmSfVUFTBNVJWMZVMK4kGGSgCpqFgg4J0EkIlZboKGaQNgU1hUvARlFpA/5o2kutjGIUo1+ypU9knwtoTabLfNT+xo2OwmgYpA5csUxP0wkvT0Ui5I8ufAV1Zn9HacV2DaBDYFKeRwfSHtPeU4tlpWzBt4wGWiTNYazUQXNFmPF/+AIYSNs4JFsWhbJ3RoNO8AIArPtRYhNQQSMhjbzIh647rRuJM+zbMcD+Hk/KuSH4wst4XVVjGO0EHLCuzEcak3BanM+BNn6/CTZ+vUkHXQ7Yr4KgzgQ8S67eFowrsiOEs22YQKHhk/EbduOFAFP90TGPlYIVzgI3jgCKLjmMp2KMTNuKpKZuTbwgt8SJM1h4zzl+RqGKpKdMaUMonAZLxpuALRy7F9Z+utBSGf3KyRcBqsNF77kJGX1Z+9+OGMl2ZYJ7E9rhoUBfYbQRHddFrNl787hImwtuNdW6bsVofjO9VOgNVW4Ft8RkByXpFCFOf1VhEY6Da7Ex35e/TgWcrANt/tgRD1pTqMywvaaMYIxtOJB+//KUk6Xfd9x0bS75eod/2k8XFuOfbfPS1s/HHEazDpnIpuJTAYROYKWvycDNpEQoWxtIR6qImXvZEbPGF3r+6Y6hpmbGD4/E9WED7kGMaOhROAN7uq2dK8SRJupu9+sMxEIPQuZG0k44gAnDjkiFd0b0dK7FrBisnzEQQZfUBDH19AVbvYcfisGD9EEJwwUCWdLzqhO6m9QCQI0CpFBoMCP8xRJ36efXqz4CnDSyXVR8DO3lyuJhr0LqzgeNvYNo6D67Vby8L2md0Yv5zRQHza6feBUz+R/LjEyZAKalUSmaU1XO/yVS+568D3uqrL+1Nwax8jHRRvle2DvO3VeL4l+dhbUkcMCLIhbadaaxbWyrC/cJv730We7VINHYMluBP9rWm5fHMON438ntCVCjA4QGG3svYT4kSm94DjHHk8KQWXwiQpqXVIRa2r9YPxYLpFBeApFRjSgEMQGorcMwodC66nVuMVy22w+V7KdtKAGL0uxnAL5TSeQBAKfUDeAhAMhWxmwFMpZTu458TbVCGAiiilO6mlIYBjAdwJWdenQ+At5LD1wCuOojf8Ps2XzXgygLcWXipw9uYpZwOT5AHIhXJHUJhxoA9FI1hwLOzMfC5OapTI7fDNdlBiFMKe2T8BmD5SBAaQ4f0TTjRwbJGHUiTJfARjSmWdGc5sKuhOXgreqO2ct6zFvvR71uwfroIDYJwM/BG96RdHCK8W14UDjQEwvhhzT4UKLweWwoEBTjR3yaVIxkz+HyS2Kr0AQDQAxbZPzGRuNIZIufOMgu6CodUputaTCzimEJRJSmWuWCHPitaUJbk2seicAVrsEthQ0k70qy2SK4EB6U4PbqlnRYTWrqW2f/r6JU47sV5CTYGVliAKS215XwfmR494FPeGNB1xcqBYaKtKIjrSFoxEA5U1yFE+QS29O3EBxXywot0eIjBWbfohKSaLNT74z3W7APZkUnigBgdJKvujlbWJVKK3qFCvOf6GAA7j4eq1RJ2Lx9pO4CvftmjWyezvIz3uBwU6hhWsWhCEXlXKIVOQLJDJvZtUb6UyCIKxSXvLcVlH8QvzwU0xkObafT9BywSU1DsuRXfud7AP+wMvN1Xq92rOZAYr6Emlqj47trf+jB1pSpXfaxvlBGJKZZjRiLNlZhCLcc/uXQznv6YsKGvaVpbM/95VsJtrYyA4L2frRmzr1w5GMP+ZC7jAHg5eKCeMTIArNypjV0blX74RRkMVGzWC+YankF/il0mBz7HAf1YOH5W+962bfzSUgsamFLJyvlkNpuiUHWsbomsQbx7I5ufosfD9+GhyMPaCklrxyQVuNis02XSIvRy30maV6wO99bTe8c9ZmHr9zXo/F8KoB85gD/bV6rL5HMoBMdFWTkDY1mY9fAF/fCH/h2gUL0f6iJRhOBEl2y3yvxVYEPIloZMKSEnkoDxStEGHcEC4phC8cgFR8HIlBL7TqWbn5iz74z8S7+9w8V8SWOn1hkP6f92ZWrvOw0AzpKaqMjNfjI6Ab1450DZP30xB5hs5hsoCsW3K0sYAFy3h5UAAjqmVIOUwNvIGfumU9awjwEkS+M3ObIy8fzY04vhzF0CgCINYcSIHQh5kV/E7r2N++KU5gUamNC2g8cPqbClRIK5w5HaPgyWHU7cQdRoUgNRPLX0KWQOYCV/aoOhC15g14UqibvINZYBvc8E2vVODeARINJBls2V1DTjnOGLUFJejQNpsm4pjV+qGfEzIDCNM6XcOW3IlDKU72XzKpg2iH01ptRhUCqucSbTBWDsKAAYDECXYqWUFgPIJITEKUQGAAwA0J4QspgQkk8IEUX43QFI7UxQxpd1ANBAKY0alh82K/PXABkdQClVy4QqB9zC1iXpOCObsS3wyxL1V2QianxhTHGxDh016f30O7AoT2upTd/IKPY+QlDbezomd9OOPxI0D3D3fbceg56fqzojIhiS/aNm6kE51etQGDWw4gl9uh2ckj33mZSOPxph+43Agf+bsAkLd1ShGjlQKAGVKJ5CsDkLflA7p2QbB3ueHdpJGcuLrv/W/IWC1urkXWW6DAFKV+vFGMWAec6TwJUssLfqoCEC40gsOSj1zI/68kU5S2p5LhtLQWgMBZTdMzloVkGoasomj3QEcYEtH1GL6xzXpAzU+9FrgLsWAI9KzAOvBvoJ4CwR02ZFcQpBfoqW7dFPLjZCEFaPl+Cv9sX6DzTsQ32zNUhkZDEGIzGkI4SIEFcVzKd4FmxEE02HBxb7t7rYYT+7R+SSYKuuK/I9G2gwPYeyOez6ZecMt9YyMpqNt5HulMY+vz6eI3gIWEOMOaEX2NZj9haN4WEE8ykoVv/7AvVvLSCgOHftgxpwPvtJJiKfytga76FdpjEJcPVo9prVNfn+JItKA6oA1HZVNpmedZE4IIQgEI5Ztmf/j5lccr3yY+vykeKFSJuoJTCOsZlL69rJ7MbZT7bJoU3JL8MbcmlYCiafe1HS1JtU4AnHeISjkZR1gsR4+MmiItz8xWos36UHpmS/oCVaRQMkNpMoJ9te7sXF7y5BrS/ESni8es0bQswJImEDu2XHDUS6Ej42cUHeNGmcC8GFSmpRdviy3ieIN/ZaWSgaSwxKdRmsMU3l0pj3jgUWvmr9mTY0Y/e9plAc1oy3HAjU6+aX71fvhdO7Dx6EWtTFLx4olWXnPinao4x2xjO5IwEAK4s0sJ2NKRQhyhM5nPGW0FQfR7snZBDt6C5Z+PRvJ+GVq4akdPxCTN+Rsw6+aD0Wuv+lk3+4+xuNDSHK9wQ4FYzE1DmvfYYDZ/Rj95asseZEFHaHC3f8oa+ONRwkaWqCTrZ7zz3S8jhFB8Ej2nnwfxcNQOFrf9KtF5qEVnqDn/7tZP0CHqw3Uw9esir163M2e+1+snkdwMAr2Up40qJoga6sEu4soO+57L2x5HzLZBgtb3M5GvOex49TfgA+OAEo4+wgyQdp8IfhNrCvTeODSJS1sIpjM/cV03t/Dk+X2XAjAhuh8LkYSy0txs6bJWhLKWs45GnHmFJAappDApQQc7OFgLYzpvcDguHEbDg5EThrzywQO/sON+/q3RCxqWL7cYEVRQGiQayviLDrmAr7SQi1J9n2htErE85713D9OL/Pi52+NJ1XGTfBIsA8mSll1aG+NRZqYqwyAcaKuKskQbLOWw78/GJyPbXD5XsJLY0QshFABYAuAOYf5Pc7AJwM4HIAlwB4jhCSvF3TYUvNAqx+duT8Qmzl5RWN2ez0Rn216DMsDy/OSN69ztjuWW6HKix/bx1OtrFMZo3P8JAdJCgVjSn4yPkBACDCB9OdLi2wjzaaswQ/8/K6mBoMseVa+R7QjDTspobuEoZOPNE43H3V8S9KrdtSNMLOSRjMuVq2qwYUNjQhDWGfNqEKAKgzaUA0m5cWGrrrKWHmqPg5xdt2IN+kkbS7lIMuYgDuNIAJvr4u/V5xXdyZwHE3skHV0LY3HFUwm1//SIy2WPhdzrJZOqd80N6iMI2NbNKslutVcVBqsG0vxrhGwDbhltS/eP3X6tt3o9cBPU5hwYAQmD+wwUCdpgiUxteb6N3BumV0qrZOonNnecylcSojhgI9Ce9w6O7GnL5AnQr+Gs2Y9QxGYvCQMOYqp6Z2YEHOlLICpazAJnF/dDsO6HUme2+Vbep1hrQf7beHYwr+9sVq1bkDzOUxqdxi9cF6+B2McWSn7Nyk0qXoP2GUUrWb5EX29fijTbvPTnn1Z9O2XaROUH4ODPQg1ehRs4yVG1RtV7v5yYKhEVua9QHEcwAlYBadjwGye5jAgGQmdz1cs6cOxdU+XPTuUoyYp+/GJgAFXyiCY56fk7A9+29ueVIWf+6/rctHxt0Ad4l2zOJ5kcfDdkaGo7BUujJJViFpeT0+aRNGeQBeZwAAIABJREFUL92NxTtTz4SLQ5KZTC84vsGDjhko2bAIq3abAfalhdX4aKGeifTaLBaMFnH9xGqffh6S929k4ACw7PAFsHJdMQY+PnETmoIRPD99CworfbCN/RMr4Zl6t+4zZfWBuAwPY9cw2bLAzz3PXMvjXIg64YeFThuN4dHxGxCMxDAlv0wtmzLa/eeZwYG35+xEbWNT4qy2mHe+/rO2rGEfsHR4/M+kYuFmoDax/qHxOhkTjgCfp0cOBN4dojvnteX70OOb0/G0YxwqLEBlfziqslxlJlA83bkMXkontCOjdjZ+VVRr5zs3w4Vs+OEm/DiNIIIV48KCfSL/7Ay3HZcOse4q9vczzOyp1/O2gzi8SDtiMiaVvqxf6cnRlaY6eYLFw3UjGbucLbMRIIsnpCobtWSEAzEM7tkRHTPdcEilt2WRLHQh+jn48iFdcXPTlxhCzPp3153cA1/dcSr+egpPVhqYUh6HBpQZrV264X7lSaUmxJlTLnwJ+Od6oP+F5nUdjzYvO+Fm9mpk/ROigS3FyZNR3mY/HnJMx007DDq55ZuAZSOB4kXwBqM6/cUMBHD94gv0ILC4b5TE5XO+UBSPTdyI+uYwGgMRU3JSiJx7OSiVHmP7tXRhNnOQrWRZy5hSArQQ3QotmFLOqH6O8XoTM3TiuVguXr5X3qxojLZ4bCIOlswvbAQVAM/myXF1dUGpti/Dc7tg3wKEJXb+6j11GL00vsaj0NpMRxBeZCACzac2djBWTYBrIibyZDOQLNX67ERWMJGVZotAU4BSBRMY68+qPHzZOwyg3fpj4n2L6/8fLv3+raxVmlIAeoPF9WJk2AYGLqlGCOkHwEcpTQRFlgGYSyltppTWAFgKpke1H4Ak9oMefFktgHaEEIdh+WGzsmgQcKbjhzUa6SzoYmUkjhn3IxdejJWYLBv2WYtIDp+7E09KHQ2sEq0OaBNdR2IYEFPpSpHAwjEFV9hXxV2vJBD1NU7AwllioJQbYTiB+5YDV41iGxgG/HhMqY8XFbF9UcMEn9nFcvtQSJTv6R3oRpqBgFeb6GRQqtbJHSdDTXeklGXm1BItwBR4jl3A2sIqHna91awHoInwqmyqDCY2mdHZBMoZu8ykEvhnwY9LbOb6dtO5jIaAGf8EAKxTGFjaDj41m13DdabOsLHgyF7SgtKHeBPpE7uAc5/i22hD09W25cj99nxgp8YskgXaI3Gy9KlauRRoGvekUIqQKhpMkEX8iFA7xgz+ll0Tfz28vHzvrWuP1X3WeD0CkRjSEEIz9TBhXQDwJQhoQ43w0nTcHXncvM7qcwLIyD4C+OO/2Xsr0MMpObOjz0FulD2jO8qbsLyoBs9M24xGfwTj1+yLC/wmsn/M/Qfyu7CSS8Kfj1SEk39N21TagD7D8lBWr3cQQ1FFZf8BwMnp1caPqqYYxHCbecDTXgY89q3Srm2DNrZHbB78HDsRGxVDsJwkG7j2zE+B3L7smnr10+kl7y7VlagZTQaab/hslcoqWbW7Vqcz1dat5dvUErU7F2YoZ62lzGGXGUI6HTjdxgnKHyzs4fEbTMtu/8paL2S0cySWux/GYFKiHSpHpeRuZJ087DiLigqxW2pMMbCrxlp6Z56+A6/QqorHcqz0ssDabiN65gxnG3sD8QO+0zljZGZBOY59cZ5awtq+hhPuDWPPwh1VaiDSm1Tgecc3apmzKJWysgzCnrtxm32IUQIP0cCArHYdELACpQBM23gA87dV4vFJmxCJUZx9lNYcZukTfwQA/Ovio9X3wsYs34NtZbUIKHb0GZaHRVZg4tWf6v+WUfgXc4BZCVh24WazxqSwT88CPjwp/mdhwZQygFI7Krw4+RkePId9uvklp4gxCMV8bLTbvlyDs99ehInrSnUaiTvj6MiF/Ow+DEKAUixQdyraWNk1x4OunJXkIxmsdFycL18V8EZ33GXXmnJQSiX2iXZe1d9BqNo12MpevtLMnmLlm+zzzVGDjxxshF3yfYXIsmDShyIaKEUIcIStHj1JpY4N7EJU1XB0Sazh3bQbBtn2wibNCem2ELoWjMJMt1lqghCCPx7dWT0GYym4005gtxFLcPezHS/g2K8l34L7Tz4aB5SyO1g52VmGxgDuHOC2n8zbH8s79c76Fzs2TzvgSV7GLkCpxa+bP2doGOEIWmg15R7J/PAFLwHfXoVQJKZL/F1sW4e0UI2eiRi2AKUqNgOTbtcxV35cX4ap6/fjkQkbLSVKhJ5Uo4MzpRR23rxWcgsCgBp6rxYnJGmuAQCBIPtcNI2PQRbMJWdMP0cPn/CzjsVsOpQ487GLg78hxaHpI1n40pRS7Klj80UYDkTSeOww5c64uroIN7NyQEBjTAHIr8zHo4sexcj8kaaPxIs3xLyVQYJopm4JlCIqW9Fk4ncIsE2APHLDl9ZYwz6gYS8Qk+4Ph0e/zZynzZ8TzCc5fqXUnAxWImx8MLbI/Z1aq34l14x6GMDjHCD6HsBZhJALAVX4/AMASQRNMJ1/zkEISQdwGoDtANYCOIp32nMBuBHADMpG2UUAeDsx3Mb3cdisLBoEHG7oJmdbhvr+JedY3YQ6Z0sF+gzLU4NxIboIaN1QAGtqqguSuCB32NVOHQdZPxyStKHENxMAH0f/wo4ngbbKdZ+y2v8dFU0Y9Pwc7JBEMf8y9GjWJaXrsRql3kCN9YWiIK5qAHrnbVu5F4sLq9g5PvUu4E9vs0xGHCrmpwsZFVVG9DNcdjQiA75GrSwiEImBQEFHNGLeAT6w5Y8FFrzMNMIAOFazUjsvZPaOPmDIJex3Bh2iG0Q7baVgu4iJ2cXvCWeaqXyxukn7u7wxGJexI9ujjikY7XoXp5HtkO89U/kFH3yjsKMCHdBM3cghzUjjE30xZ7ENkgKuVKw5FMW2Gnacm7nuVv5eyZlpzzsfSZO7mpGUhIkLSrV7ISUdhgQmyybJ3eYAFrBr2kEEmQhiF+2BSVu9LGCu3wNfgDnalw7WZ3hNoFQ4xjoXwgX89Ru2kLfZtrRgI5qQjpXKYFRe/pV+XU2heXsRLGZ21SZ3K9Aj5NOyRQCGBBiQKsYOGyF4csomDJu6WQ1uu+VoE7lopBDPihpYoE8BECUCFyItalH/a9j4tQwgWlKoB50YKBXAJ9G/oImmoWMs/nglAokzeXt7wZTqRqQM7d4VQAZ3UBu0ANWhBLGbHoEVymD9TuNoPdTRTHwTvQjenuezBdlHmJiSOyub8O2qkrjHa3ymRdnK+n0NOp0pFXikKWhK7ZgFrP0i+XZtZfLYKEyJAVPvBSz0+kLpXeHhGWV5XLjHMZO9GaAvm0HDPra/Dd+p88PYX/Zg3tYKRGOKSRTXqu240W4a2hMZToJL7OvQg9Qgz/1vdZ0AAAsrtXnXobBnrJ0BOJv1MCvDcSOMv9nn6wJgsR91zjVcugpvEH07ZuDGU3uiMRBhItjrvgJe7Qx4y03by+YxBA6BSAzDHRJY44mv+nCNfTn+4ZiDW+xsrE7U7l0EjV/n1yAAtyZKDKCeZmgaKgCaM3oCQ66Fz56Dqa7n0W/jW+o6ueS6F2fN2m0EvTqk45wB+q5tLhJFU5S51jM26p8nAEBHqRgg1GQWEl4z2vrHUAq8fgTw/nHW60WAa2Dm7a72qck4I3DfZNAL3b2jAAUejaUmg649mpgOqUgWGcfntSVsDn1ycoHOb4hn1fVsftVAKeZvuiVQKhKlGOViLPk1jlOZz7CXg618LrrfoYEgS3fVaME/lUEp7XccbRDDj2fXn9xD2g0HeiR/JsaD2k4OM2jvVplSMen5obhoznlY5tYDOQ7EoHBQSm5SMDs2FF1JPa6xa+NollTOZ4vTzc/KKKUghOBcxzb8lF9iWr+22pDwE6AUZ0ptKo1TGu9M0+tFPb0PyLJIzLoydf7AjC4PaLqehm7gOnu7r64awRm0YC2e+Dfdn8Goonte33XxhDORxhwxJ8qg1I/3M9ZKpcb0SeeA99LCalwwgp2jY7ppY5PovNfgYL9h0UbmM32y2IKxKHzroy5iTHMAqEneWfrnzcyvWF7OxzkLUMpuYEo9VvU0dieYR+IBVkLoPEgdGqPIQjN03I5x+MucW7DJ7UIITgQyzL6DyURsld5BFxM28s51+30sIVYpsTAr45T5H81BqXSEEICHkQsAANTUMVM1ARoJwCidJ+w/PAlY8EriY49nZfnAl5ealxsBJFmHVRjh28j34PzngLf66M95onLw36G1GnqjlG4AUADgJkppAMCVAJ4lhOwEsBkMWPooyT62A5jD97MGgA/AQgAbwYTS5wLYCSADwDRCyHwArwF4jBBSBKZr9RghpIAQoqaICCG3EUJ28X+3tfY3/tdbNAg4PLpEXDRGWbcEAH+2r8LTjnHqOkGX/GVXDcrq/aZyqz7DWEZKbb0rmezcNSENfYLjcPF6LmDoPzg9nohP6k7HXwmgBl+0qQK7q5MDX/5wDNt46SGhAHVmahm9ND5ANe7HgC6aSOOUTTuQeeQIuLuasc9QRGETjcMDnHYvEwYM1FlmMqMRdn7CVAOlIgqFl2bAEdaCxkA4hhw0w0liKKN8sq7cwvRf5rC+Ac3dmWhrEZUy/IbWqMeR3ShWusEf44/4CVLpmyjbE68ClKIKsHkSy9aK3SYRsBXWJVvLOAtQaYL7FUx3PSf9XsO+OCvr0TBr0lmPLPQiVarottCU6mWLzyyxsps+W4lJa9k1uCfMGEDXjlqJ275cwzYQAY80ucfEUFiyXF0mi4sfbGmYlZaSDQo6oQFRheraq2cigCakMXZVz9OAsA9p9aw8M91tx3s3aLoaRi2XQDiCdBJCEG7NqUjAlKG8+x4AjFnPAVsB0Fo5GaL1rSdb267OwgEL+1gGU1gtc75EoGsjesDzltN6YeXTmpbSwz9swMDn5iQNbsR48KBj+m8PSkUCwNZp7J6hVA3Cz9zwJDBBc5RDQT9cJAYf9WA/7YhOSjUQDSUU7h/FNT4EU+o4224mpjrwCqBovgYINnKmFKVwKkEE4UI9zdTvzHj9y/KBfauQhQB8SNP08bK7s2tuOK4sycEvbSoFbJqjmLfZrP1jZVZMKbnEJ6ZQNoZPewAYfxOQZ8Hc+7Us4gdyeuqX7ZgJFIwHvroMeO0I3SrqzMCgjmy8kMeFoTZesnjmP/X7atjLWqVPf1AVkn/xp22459t8PDttC67/dKUOiKr3J9cweuOa47D1YWttGTlplAk/3nF+io4KG0O7kHq1WyWg6W886piCV51fqQzXHqQK53nZnBfvPm0ORZHtcSDNaYcvFMVpry8ANo1nK5eNSDh3WCW2rndI5TXe8rjNU4TOzlG8GYicPDNaP8LGsGZ40IBMtCfas+BFBjpxVvfwyF8x94I5QFY3OJUQTrIVYfCeseq2GW47OmZaBwZOAyjmRhjbq9ixN1t0HVTnWwAYOQj48uK4x6+zYqnk1TiXygzvaq2Uv6iqCeePWIKPFjEQPxCOwubSQHGfgSnVoT5+CXsPXlbez8ae+ccnbgI+PZv5C4YuYqX1ZqDm+B45ur/FPB/k5XshZw4AgoyI5i+GojEcSdh1XuE4hS0cexkD3jhwYpcCwFdnbsOXi8X9rR9fAOCaE7vjnesNIt1x7JLBjMHTGfUqAEqhIMbZ51sGPwEAyIw14rS+ueiQ4cIfj2YApdA0uv2rtahv5h3gCmdZfo8TUSgc4JIB1tkK6wZ4rFSqJ0s9LHdL4vAWJgNoFBSoKcKXtlfwgH9Uws8B0DSluETESouSX9UufAG44j3gugRNMggBMjurf26pke5fmw04+XbDPl/U3n93jfrWFbJgSvU+U3/okZipmQw7BincVUERaRxycrDis/PUxkVW+8lya8sEyF1nZ0kkudmFadwU/qY7G0jjgJyRFRMJsOfplw+0/UTZc+Kz8+SJhaZUZrQBQZKG8lMZI6cbqUsogxCKheDIWQcjb78zT84GFAdLfGV0ZuPOrp91fkFBNQOoSx0OBko52pn2ZTIxRmV3Z+yfF3NMm8wpmYMLp5wDQQKojaPnx/QOKTIQRDPcsEN0tiQIxtOGNWoznXyHtm4ZF7zfNAHYMpWVVu+crZVDl64Fyi2ag/14r8Yuvz1Pvy6jk3l72UQpsmDwUcoSVwBjw395KbDheyAWAbU78eTkTVjZhtq2h6q1CJSiVO/tUkr/TCn9lr/fTCk9j1J6NKW0P6X0Jc5sAqV0LKX0oTj7HE4pHUQpHQLgSQCX8uWzKKUDAEwC8AWl9CgAC8BAsKFgTK0iAEcBuAfAKAAghOQCeAGMdTUUwAuE8NZH/2sWDQEOt26oiCoKwjdobdwvtplbVj4zbTPOemuRZTlMVVPQcrATCHu5syceCrPJsppn1BKWDyWwwsomHD3sR1SunaYuk0Gpi88+CyHqwK6dW3D+iCVYUZxKhzR5EkrTHGdRBz/9ATzle0vdbtFOxmpxZDDH4BrbUrzu+Bx3Csq4ykaDxkgZfbbpW518kJXL98JRBY3IgCsigVKRqFr+WGEUYeeDKg16sYUzgN6O3MDWGdgQ2cSPcpqriXdndNAGTVFOuXsxe3Xzx1piXQinN5wgsBghOXejJKFMmcF1vG03xLk0BSm8Ha+POz6rlYE43lEEm539lhAsgoBo8oDtu5q/4gXnt4hQO6qgsSCWFFajwR+WwBoNlFIZBNXb1e4/ciCdSAQ9FfMZBGWJ3Yd/OiZjrecBOAI1iES1OzubNKNJ0OZ5Z5qOdflwOWxw2m246sTu+PZO5rAaGVyhIAsGAtSl/c5p91kLalIKhLxo4tdrYwkH/8RkalUCqVKgs1mmM70jy9D7qoFGqfSrZBkLvh7bgXDu0TgZLFDYVMYcE4fNpnPAhdi80IeZs5XpmG3en1i8/IKerM/FI46poMHGxO2L29pmPQFMug0YezmQP1bt8NO3Yg6wXcveR/zsfvbDg3Bmd1xA1gGvdsbUZetNu1Q4vd3FM+aCKdUZDQg4OzCh30A9UM6DR1G+Fw2BgCJiY8G3zpoNoO4X5wNfXgIniaGJSmzL7CPY2PDFBbrNl0rMr8umXoaMPlquyah1FE+M2gqEkEHqDxbswp9GzAc2fi996DcCGQ9sZFl8GZiayHuuRJpN5efE4cKxDQsBUHwu6V6sVgaiUOkO9DS0lp/7b41xZdAwmbCOXT95rh3YNVFvGMkMpZZD+7JARx63LrevxnX2pehEWTD3kGM6JrpfQTfonVvBxMsh7Ld+63wDdzZ+DNTsUmdMWRy3tM6PxTur4XHa9d3JRNnu2s/VMa0HqcYltjW67zMGbD2IwUfwluGaD6w1ZsQxdkE97jqrr0nY9v0bT8DHN7PE20V29ozV0yxU0Fx0gRbUemkGZsbY+JqnnMZA7bAPbqqNlZlck4pSYNmT52PLS5eYjsfYqCEbfnUOnLfNghUpg1IhLysbMtqkO8zLZODJkITCph+095JQ/8eLWFAlnuENjXnIOPJd2NNYyUpTMIrX8rZhyAtzAQCnbdI3bslRg3Kqah12JfWwQcHevcVaF+fl+tIbKxD61D56UXmh76WWUNrdgCsTZ5Z9AQ8P9uX5bblNeq72LFF9ngjRQIJdVT7U1PN5XdKfErdbt3ZpaJeeAuuAhEFs7Fn92vUW/ungSUkK2MJN+Dj6F9SnMf2p9vDh3KM7If+5i9CvExt7VaAfwD7eNY8UyRK82vlxkJhaSkTkjoGwoTmjJ/pkaM/Xtj1aufYRxAKgkb9BesYopSqD7Dz7pngf0SzQALhzQFMNEU+5AxiSpNOoJCExobafPpF88u1aOdXxNwFDrtN/tpmNT26rrrJu/XgZiiqsAsJo7aTxXW4AEw0zPaoyqUSaJ0Ws7mOPpGGXzplSm5qy+bpKECeLQ7xGvbZgI7vHnR4mBO/KNJUnYvGb7HXVJ+oiO48d/O4OrIxLkthYWVyLV2duQxo9gCWZXeHsfBT7SdSml0Wo3wuUrmHPRNV2eNOmIe2IybBn6Jla/3JMZL87EmRAYveTWPXA99dqY0z9Xh2LPkRdaLalwD4UYJpIZgImveHXVr4J2AIgDrY8XpOJQCQGD8KwEQo/9SCLg4F2GsGCHVWWSWRFNJsS44XNbmbp/XgPMPkOpj/2w42MRRWLAGMuNMd1lKrJVva3wV+5ROoUKrOxp9wNvNlb88uETzD3GQ2k3DIF2LeSlaTGwlBsTkxcV4a9tQffNOxQt0OqSJFSuhSAcaS9EoBQLf4awFXS8m8os1VgWlPdwATT51NK6yil9WBi7Bb8uv8BiwZBnR5ViwFgmgf3TtaYDfupGc0V+jmNhrroYvct6DzCWjNJ1CL/lH0TDoA96A3IRIwSKL6WMV2ETckvxU7P7Tg237rDXbcuXVBBcxFtYNnQHeUsYP5+dRzNBckIAKfDDkr5xGPXJrELYr/gmd4s23jMEdpgO5Dsw0jXp7jZsQjPOb8HUaJsQBH6Lrdy8CzYyJB1yXq3YxOuXL4HMOAuI1Slek3+cEzN3lbDkEnYPgPY+iOIvxYNNAMn9GyHnxVOEBx/s47l40QUETj0oIWYvAW9XwirphvAL0CdtOOxTx67aAAuGWLdqaunFGBU2O04r/1YACzw1BkXHV+pDAZx1mHWoBCe7uJCfn8GngWsQKnaJHTnWBTLM4Famw27aA/EDBpeTcGoCZTqgEY86JCECDnTTZ7YApFYQmZLMluzR86IKcgc8CoKu7KAqXfZdISkTHNn0qCKvE8vYV1QetSvxYPOn1RQLk3q7iNbmOt0+GWmVHM1sMiis1PYB0IVFQDbSvug2nkEm0wdHuuyr6CX0eBF8JndjYljvzcEeHcQo9oL8e3SVVhR7cS86vbI5JpKy3gHL5tNH+SK+2zGQ/p28f8Yuy7hea9x2FXB9UfXXQC81hUoXhh3+zY1qdQzWLoeLhrGYKLpEzRwxkskwJzvK4cOgK2dxm4s2GbuLiOy26ILkz8chQsR/NWxBAohQKZhvBZMKR6kemMu1Iny6fZ92KtF0Lve7cYBhx1NkID5bF4aul/XSBfr9uqzuTa3Bv4bgeZ4WhVisbxW1mlbt7dOZViqtvcX7X3Ix7qiibI+Spkg+erRwEu5KYnkqsCsLJZcls+A6JqdqWlLAXDXsuu20v1PtC+drwYWGQiilHZmItdZenaVKkzvTNeVTIlbu6iyCRh1FvBiDk4n1po95t+jB2DFmKAD06l1AN6eaIBztsehakJ2JXU4vkeOWv6Nj05B1yAD3mQW3HnvLGbf6bJjT00zZruG4Wb7AigOjbUkQMf3nB9jtOs93ffHFIpceHGFbSUusa3BcvejpmM8wbfUtOz6k3vgon4siZFN/JYC61ee0B2XH8fu5R6kCtNiZ6IZaaig7dGZaMBOI7KwhfZDn+A4lNBuLAFjYHVv8dyFYY5xUCj7rVbBrixODTDQrEHK3xaUGYB1m50Fp4ls61Rzxwc5uRduBqoLgR9uYskwWcOvShtXftzAgEshxl0RZPPnpSc48LB9KrrtnoTPl+1BJOQH5j9vOoxemTGcO6AT2sGHTBLEAd6tsD/Zj3S/BIoueg3EWY3OziLYoFgG84O7a+DBYLIH3QkbR0T53pytFSjJZIkucZ1yfcxXzet0F3yKpKH5w41qALfH4cSgXpqPm8kbpSAaUMtltbLx1ObwrIHP49l8lvATbDtmMRAligqaC5+dza/tSZOaRBAmBM+7o1ptbCF/syjDs6eVwJdBkJ3BQEwj0TTmzMa5vbRnOMeWJOkSRz6Cgqp+n+hI+fhFA9RugMLumncXA2jWjGaJTG4pFF0nN96ZbI1yNLzIxPkjpJLBI04EnqsG/jaFdYJOM/AIvmeAV1rQIsHt1idhFEXPlBK+VH7hPszeXM4AN3luCTaw4F82PrZa+b93n91Xff+wfSoAoKAxDTS9I37qm4/M/ox102iUugh5NZ8MYD6WDqgE8AsfJyXgycGbzUdsHgai5I9V1/1r0iZ8sXwP3u1cg391jMF17F/gpWlYoQzWP4NfXgqMuQiY+SjwyemgEeajEZs+WSkaDhVm8UY1UrfL2N5VoC+1Z+XD5RqwGYIDTcSQCKPUPH4JUP0P0lhvaKzSYDhn8eIPXyiq6nQKNh/AyBFDyXZE5j7Pklpz/s3YRrOfQv5uluicsF5KFPglIkODuaMuAMZaEtZUCezh5bTbDeLlvfSMPZXNDrB7bNME1mV180T2tyyr0VgGrPpY+7uUJ3F8lQyUImzss2QA/s7skAKl4lgXSqm4c0XXPwDoDqBU2q6ML4u33GSEkHsIIesIIeuqq1sHnBzSFgmiyq+fTgrKGrFol4b71SDFrCwAO5/QexFz9k8wpTaWy4LONjQhHVF/61q1+wwdJC4M6SXKiDsLTUhHOmWTbSiqAEEvnv2xQD1ONmlYlI64s9T6fTWwukjrrHJWM5ssRDeZDFsUc9zDdPtIC/KuhIIpldEROPav7P0YfVcSN2HOc1gCpTpnubGL9oA71qxOQv5wDB3BfncNzWHlOrJNuh3ZtRuxn3bCyb3b60t1RJYFgBMxROBQmRYAtAytseW5FSg1/iZg3I1wNpWCOPWO+jUndceDf+yvExQU7YgB4HK7lhW/q1tn5HfdCdiCmFmgn4BK6kPwUzdCcMHdaR7WhCuxLk2bYILUhbcjf9Uf16gzE9bhl9cU4anOHfFwl07YRnub1jeHJVBq/nOYubIAvY33M5+c5HM3ZvkenPH0t6m18DVYUzCCbeVedFW7qrH7bQW/dCfvfBdhHlx5HDZ0gBeNDnZNHhm/EdGs7jjGuxyP0O/VbJXQZJmSr69VjwQZKBWAG1QW3RdAUaBBm/B4WZcX7L5oRhrePGo80Os0NqFagVKhJla6JyLU7O6szbHoEPn9dUAlD6rPfQo3f74aQbjUUg1hDptND0rxZzAnzdxhJKlGtlF/5sf7k3yglVa9E/jkTKCJP/fKAJl1AAAgAElEQVSS4+jZ9A2e33Q+8twagD5+DbuPovw8E08WgunaVOSKmkuOBVPKbmOitM2hGE61MYA8LdIAnHir/gPCkeKgVAAuFFMOiPQ9F+hxKrDkTY25xR3F247ogkt6dkcTTdPYkNmW0yT/GMWOCu1++McfmPNqbABg1EeSP2+0SFRBgz8MRaGw22xqgwPVhHYMAGwcxxIAoqxvzxI2js1+koncLoyjCVG+iQFPe1cCr3VhItIv5zLdKkAPwKWg2/BW5Eb1fTdSh89dI+H/7hYUlDUgAwE0w8N+6/2/AHfMMe9g5qN4a84Ow0KKXZOeASoZePhMzRNJjwOACZRKd2i6QSIgySLWQaxgGwHAuLtPVxMhjzqmokf7NB2j96SmxQD0Jchi/2lOO872zcUxtn143TkGdqlEKRZgwJYAH1RbOhyjiy/A564R+Mj1oQmwqqAsIM0m1lo9okQmG82mIEa2vqQcnYgXzRx0r6S5qmg2ADTQDN32nywqBq4yiJADuM8xM2HXWf29TZGDZjRC2/dfPvrF/KF7Fsfdn2rRILD8PdbRilJgtwa8Rj88BbumvwnsnMXuZbU0iegZz9x2VDSh1hdSG26ce3RnPOacjLO3s2D8XvtM4Jf3TZ/zhBvQMdOtlu6J5ipfON9Be0UPVmf2H4FA/y9wtz3PwLKnACiuOsqN4X3W4SLbOuS5n8F9XIMtKCWf3qxgJXqiLKp/E5ur1udexu45oZMIqImzO7s7UZqhAWrZUgmVYChqHfBSh1d8UfZMhOBU73ybwu63LUpfLC9jv7Ed8aHD7unA+yeoZWFH8JLSBxwz0IOzEBVALWnP5WWk6X0+xfVd0uJ2awy7snUMuQ7OOOXsP97HSslf6QisZ+dIV75HqakhSZrLjjG3n4J1z2q+6ury1RpAY+UXHoxx4HRqzFxJAID5FP0vZKCtOxM4Qyqu4YBsjn8f6ozl6a5MoLeWzGoHHzIkNpNg5IV99bj/+/VmORHRFU+2sA+g1BIUaZem3a9n2pmvUxfzIJalnz9DRsA82Kj3Vfw1rAmGzEiXgQ3+mx28u7ACO+CrYGBsJeuaLro87nexa53tcWKfZyDSSUifIGriwCq/N2wNLNGgdiflZoeCCtoeby/kfkVuP3Xd7HU7QIxsILDnI79K+q5OxwAvtQPG67tlqx3BMzsDf+RC/fH08/gTF08fqsYXQjpvYuGnHsyJsW7TOWjGRPcryFr3EdBQwoCe6Q8Aqz+Fp5ElDEsbpesiM/I+itOx+mspBvvyEvZ3LKIHq2xOHbEBAGseI9uP9+iBr/KNms5axRagw1HaOlmDqqkCMQ5KyVIKv1f7bwClVOPlgK2nK5j39xml9BRK6SmdOiWp//xvMSUGrPwYCDeDRgOYtd06SBgXZV1jsmF2/JKZ0yD6DWiaUprgHDMvTWdlNa0we1gfFO+h3XQpG6fDBh/SEPGz/UdDzcCbPTHMwQL3Ec5ReMw5GUdKmS5RexzqcqKazVKDsj88AvpCA3YqPXGMbxVKPDejkmvadLJrE/qk6DkAgL47P+cHImUp0/UUdWHCmRHO/vkDO2PWI2drJY480x+KKqrj3K17L9bhxMJqkI1bTuuFekhovKRl5UQUYTj0ZWcCpKgt0mcxXIZJnlukcDY2bb4Hmf2Hw56pZe/PH9hZDZqFdcx0o1/HDNM+au3COaBoCkZ17Ls1uw4ghPiDbAAujI6xttnLYlJXnJLlrPTPQsC72cfOXaXDjonRc83rQzENlKovwRVzz9YDJsSmduMo1umUUazy/JMFti1s8f73L9dge7kX6W5+Lgx+sc/dVQWl3A4bbITCJ5VACmAUgEqBFqDUNIOQbiTIjjlIXQjFKHMQAC2AnfUEy5gVTAJ+fgEAdCVcKvMgpycDYYwW8uozQFndWAlZZy6uTRVgHO+0cwxrRBCgLl0rdgAI26pQ6HoGxM4cMuH8Zbj1zDYgBV2zy4yt1C2miLo97DibKoD8r4ESFii+//Mu9BmWl1yPyl8HfDwUqNoKLOa0bEd8LRsAjAEJIMqvic2VjnCm5rh6ouy3W5YagGXbm8NRtONB1tsdX2cOu2xN5cCLOVA4MzNI3Sih3XBt6AUGsnfnZbVC48oQmPiQpv32rK4IA1iR5lFFp9MRRG9Sgb5Pz8Kl72mCuzecykohjPT6N2cbARdmIqgfSPZhietRuBFGVVMIJ7w8H+/+XAg70URjVRNUdkXRB8y7F5vBYWO3m1iUjXGjz2HlivMMTjDvAqW7V444Ub8PQ2ep+bGTMSr2F9Ch9+i/qqYYI+cXIpME4aMerN/XwOaB3mdYnovyOv01uNi2Do86plpuG9d2zjGVcHW0sfvp2lEr8OcPl8NuI+hOatBos8FrKHHrBG1Odtptuufz/05x6Ri9l9d/CztiKg79zlxtXKj3h/GwTw8qCTtxMvv93YxlRlxDYyCxzkxvUPoDgGnMAHhZ1H7GMM0lTQhH4nf4e5if076EgccltnSsytBc3s6d9UzfCm8Qq/eHUKqYfcHLvJMYM8/CwrxM8TzbBrzq+BIOoqDRAHj96f1l+u7Guf1YQNJDKkm7PQ94sRG4jOub1BSyMXrKnawEdNc8dVNH2IujynhySYlqunE9hwK1Rbjy+c+A5lo1wQUAJ7/6s9oVTL4dHrBPw2NOi8AcgEM5gJBtH3pwYLGMtMOZvXpgV6ZPBRNfiOhlW8+xFei0tO6z/4QSzy0g42/C9RUj8blLK/ULUQcUKQzxw40R7dth/8BPACjoGC6Fl2TB7+7MAPBBV7LGNIBFK3WKPqRcB7h6d68GlryNTtWs4U0LMCkAwOuOL5BNAiB8nHBG2DO2nfbCjF1sDMpFE67c8wpQvwdj1n+Im/NuVhOefqm7IwWAC5jGZgcYEj4cEO/XSX/fhJ3ZQNkaHEn2wwYF/4am26Sb5Tb9wErJARXE1JXvgZrGC4/Tjghtxt/nXW39441j6sEaB06baYr7Pf854Nox7D33XR0Rryq0r5orE7hlEnDxawAY4CcH7yI2Ue8LUTInGlIIHR+jVRSguMaHO+15uMGuAcICCJJtN+2GWJoexAtFFWD3EmDJcDZfBQ1MKWFChw/Ql3fzrq1ZkRpEqB1U1sTiHdsyDSAFpRTdOnVEBgJ4LW87Pp5bYC4RBNRS3PPtmobcJYO74IYhmfqxa9CVKlvqCGKtZxSCC98XSMCaiPd2soqHaExBNKZg3BLGrqKeHOAcPv+u+YxVeXAz6oPHE2SvaQrjeK611oQ0le1/tUOrFhHAnbBOTSyGydsmJUn+LM1d0RQSzqJT3+wndSWWJr8MYA0tLh+pB1dlU6LAKXxOCftYFUjukVqDMG6hfeux38vG7azDTKlDwip5WR74q+Bv7gcgq5P24MviLf/fsO0zmAOz+A0g3Kx2zzDav6N3Y2nsWN0ELrJhst1lz8PN9gW6Ln2ZCMAGBQ4JnBLd94wggxcZKN5jIYScgu3erbXSnhw7BzHY8WCYi8ja3XDZbciBD6fZdmAo2Q5fPbs17nWwwfAEwr63p/S7xDETu1PN9p748nw1uArHFBRSLXAkHMQi0oD1Q+x8FCvd0Gs31+bqcYp20HImoVqru7bRKBQQfHorc0L/NKQrOma6NT2F6Q+AUopoTMGJtiKU0k7Y0ehkk4KFzY2dCo/Tjsx0+fpqTogo3xuzfDf8onuhO5OBFO17axPVpW9qnpqhC9WI3Pb4Lp39nvOGaGDS2Yv+Cnx/vemYjNoalsfNtYIAIMsR02VJZaNgGdQY7Dg3NBJ3Rf6lrSxbx4LM982CpTEedCuwYQ09xrR+0Y4q5hhIde3n2BizbkKv54GMTqBNlfho4S5MlwCfTKnrDb6xvibxbMM+BiRpPiKV/gcidg9CXOjcxpf6qebM7g5KIJDqYFhj87GQxpQKRmLAAC6iK4Q9BW196l1M1B5sUhemtgjvMsi6a1+oibV9FubJZkBZ1VbzthysDcKFjsSLztCCshrbPIRJFRxZ7HMis+5xmCf3kmR19LJGQXpHlgmV9RQiQeCDE1iJ4YijgZ8eZkzAwnkYs5yNEWTy7YyVUF8C/PySuQxCZtTEoszhiQZ018loHZrZ+BUNs7HF4XTD31Fru+2OssBEfm4Uafxw2W0IhGPoxEtZisDLy6753PRdtsm3A2DX8qz+HbE341ggrR1wpKQPFQmYutpV0A5S+V53DO/QHvd27YxB6SvhRhhfu97EEjfrrnSNTSun6rr1c/zBthlNJiFnBYC5pEokPK9xLEdvWxVOIMU4wLu8zt5SAbuNqOAB2vVmAczqUazN/c48feawchtjSsmW0Yldlwgv2Xmlg549td+gnejdzzLRYlw//ibg7MeBO2Zr25x2P3D5SNTexn73zNhpAADyJz1jN0bsCEZiyEAQPqTj2lESw8ui8OWqPS/q/nZYnK+3uywwLdPZDzeooN37UebE5lKNUbGt3IvT++Xi1IwqnNW7B/7QuydwntaWujepQMdMdu867QQuaPf7kTkERYq+/PA820YQsKBHiGYDwHpDaafud0V8eNRhDXYAQIYRhATwYuTveCrCQL90YzkngPbRalUbJ5MEcbKXn6fvrtMzgClF/+4skH0kwoKCxT224PEuGuB0+4UGEBLADZ+twn2RR/H38FO65Rft/8jMMBa/w20HQDHWNRx/c7DjkZlSALC93IurP1mhaYI4PcAz5Wz+lY4ZgMaaGX2Otk4EQMQi+Jn/HLCNSwccyTppnhrbCAzvh3We+3ESKcQ7zk9VXwYAbFS75/6fvfcOr6Ja24fvmdk1yU7vCSGhI4SOINIRFJCmCCiCCgrYu6IHEASRIhYUK6IUURSQKqCIdOm91wChJBDSk91m5vtjTVnTkuB5f9f3vpxzXxcX2bNnz56ZvWatp9zP/bxh/1lzODkoCABnk+dhU+nb6J5K5rAP0Q3FHIuPo1Rb4ZigZSTfzR1FablqLz1pk9hz2VpJAwBwMtr5o0x0Yn6EvN6JCAsWIJ+Ngp1jwMtzeoYx2QQAWa7B2Oh8Fb24HTgvJMAn2rBp/Urgr/cQXkKcSTmRdqXkCn468ZPpcdrVVnVmHrFtkM5E6r4nN0CDE2VwwifaEMmUgJWe4Y9PLcThG2q59FO238DKpctOD5nboHZHViB13xvdvZ5ms5sn6/afztfRnDmFaCmYtd3twiPJ5lIaOL8J2PW1Uehc1/DCZeew8+pO0rzCDJTNe6vBPFN0HI2zQhK2CmqC0SroAIA8I5n9gTv6KtpDbJA08/go8CDGB4biYr/lkj5TCBBP7L31zjdwd61YJIIEZeUxJuvmCZI+FWp0JP/Lwbp0HYNr7dv4atNZjLX/gKl2dc3Vdw4FSFVI0KUmpLNcj6DhN2nAvN5EOmHbJygpysPZYuqzchLkt9fUZ5/3A+HSOl9wCbh5Ho4bR3BGTCGNQR6XniWpI2GYLoknQoTDl4f67CU0zl6IPtv7kQ6GFujGqs+klzsOeAu1c5fdBYzcBNTsgihnFgpNOp36RDvc4ZQ2E8Ugx8qX0HjsCtT61xpEMcUIiByKhBDLASU3CJBhJgdQ6guiPMDjMwfRpL0oJmiSuAqoZjMAkHj1T+l8qcCO0wPEaZ+5KmGPTtQ/0liVAYYBWg4H7plgfE+GnDQ8LZVx+ku1iQoATv9NxU+sHm1ynbcZ/i8EpVYAkFMxjwFYTm0fyhC0BlAolfmtA9CNYZgoSeC8m7TtPwNydrnoKhhRULISdRM86NNEa2gWIhRN2LPowe5AI+YstjpfRJbrEcQjX8kujLH/gMn2b/GCTc1KhTJe7Iwej8POJ5VtToYYtTK9W8ZBoSYyyo5AvEXR2gt5pagbUB3dJgwxhPeIUjtlZzjsNpZ0GQPws3Mirh9S67NHcCthl0rm2rKH0Z3dCUBlSrGcXdHa4gUR06Tsr9cv4OXAM8pxWrMkuk5LEZTDqRgpAJRFRBRFXHKqBh1mtVT0XFghCJ6xoWuDRKx6vi36S+2G6azPr/svQ/SXoS17GLuEesgt9qmTlg6kaxYLG51aoDJjdiaIoMhh/fFcTFxFaZQ4QojjJgcn6BKvFw8CT6rO0HGn+ltmpkYgCXlIwE1E5B/WZG1To9zAlQPo6SMLZpCx46xbdb4BYELvO8jXUayQKKdgGC8yBKi0/gtiolb0/IBFZguA6CMGhtdmkpEC8NlfZ/DdtvMoHUrO38cA1SRn+KqzBhASi9ycK/jg91Oaz6UzajAN2buM9fIADlwqqLALpD8oaMrTZAO3rLQYAYmhFBGQumRFqovP24HhOCsHSiVKd0bwHNzwom6CB0v3ZSN99GoUlgWo8j0HCfR0HkcyyzdOERalSZlAEZUZK5H1blyRxLigusAAkIJSapDs4IUKmgtI1GQ52LDL9SxCpeCe3FXFxjEIS1qDTneSMcqyjCJ2LmPQ1zsIO23+A6QUK1ureaRBx9EkA/VulFr2oCulBUCyeQsfwp04ihrMFdhPLCeshK0fE9HeE6u0+8tNAQDAX0zKSAHM4607Z0WWEUdI7rxpszsgRNXAewGSGSzOJ7917XiVqUhntx02DqX+IOKYAgRgQz4vjYmG/YEu44BHVGdSno+uidGoFh2iCubW6Qbc/xH5u+AisH685hyPi2kqU4qzI8tDjMtClsNJ1+NoyZLnoAN7EB861NKmiC0T8IPjfUWQWIYrdQE89f+ldMySIeiMy3mO9+EL8mjLHsZg389oVr4d3zpmkDfv/0gN7l87bDAuse4t1UmXyx2EILDiOaIpJhuMJuVIGpzdoOro9PmcBFjpTk6hcTia0h8/ZYUiw7sAywWpRERnULO+Ihy+lI8Qxqest8o9raE60FkCmWt7cTs0n5dL3ycEhigBgQGF36K6mziFbWvFgmVIJzUZW9wuZJ6ZjUKWxQ6BzK3xovZZDARFhInUfFTtTmBcPq6LEajGXMcTwmKgNA/uonOoz15SytmYy3tgZ3jsEOqjt48E9r51zAAXLMU3W85pvmNaZ6PALR2orSoDbAnfFo283+B7/j6lnNiMveMJkqD8ldrkGRqZN4V0cTrzB2EyyYmgGXWReW0pDjN1cV1qdlFo1zKvnGHmrOajYgY2C42xUzBxVuTns+AiYasBuKtGjCGhV6gvMZJg6J5EMydk54i1yIZzTqK7YwY54NOalC734HYqby11jkd/bjMioY4FNt86UfgHrzSyRjlHrrdH3vcoEkNwQKxl2P+KviELgMa/D0Ac8tGZ3YdYxqQM3AIapj0jgCu/gSI2EhzLqE0UqK5WB13mJTcZbA5OitUMzxpDIqt4au0TeG/ne0o7ehrzh7cybDO3XhkUIRQdWJOuXADuYLKkvQjEjHZE4gHAbMcMNGMoG0NaK502Dp8MUnV8Iu1q0K4LpzbGGJkYjyPOCnTJ9i8wlu9R+jkMBLjtnEZY3YDwFGVt0pdp/yMkNUYX/wzkU5IhZVXpalyeTzT/zm9G0FcGgXPhE/5BfM/fh/xo9V7RTNdY8SZ+i5iKPS7yPJwUUhHFlCASxSgpkHgNcmmarMs4iGqykdEeuLBVU2XRjDmFKBQh+Ts1CX1NjMKHtUlJ3I22FQQfiq/iWk4ujuczahKo8cPq+6tJ4gd8QNU23PU1MLMJmrDncEmMI4kduYnG36TZyDH7y3BEqeXBgijAc52Mk3H2+QrD0Qr0r78vMA3wFijdmDUBw+Sm6J2ajEeSjTqyfthwrNAGb62eEsuHGit7v0NjEN8qCsXIhweFegF4CWV+3tBcy6xxityVNSiFL06JqSgUqx6sCcCmtUeGrQU6j9HulNYGeOkwMOx3VIg3s4AHZgNDl1nvw9lIgktGa9W/VDtYS+tqt0lK0oVGkRiC1S+0RUxYJVqEtwH+VwWlGIb5EcDfAOoyDJPNMMxwAFMAdGUY5jSAe6TXAPAbgHMgHfi+AfAMAIiieBPARAC7pX/vStv+MyB3JztCDDqZKTVrcDNMfbARalEOUJlkQH/umIkVzrHK9l2uZzHN/rWG+v0iZVwudExGXNkZuKmyJ6vyvYtiPNyMH2V5FtkYCUcuF2L497sVYz4oiBhrVxcJWfRakKZRhmFgYxl8Huyt7EM7TW/b1W40T9rW4AvHJ2jKnFZKtVibQ9NZTp6AywJBBGHDsRqk+80k+3eGcy0SQ1CLpcqmpJK9NUeuod0fKTjc4A31Pal+nRMD4KWSiIYpEYoxcExMR5noxGY+E/kFBXAXn0c4U44/ebLACoIIDJgPPKzN6hWLbjjtHBw0OynoJaURvhI4JKYUAGTdoGjbdiko9bOkTeOm2FHuSML60meMALDg8bfreex0aamox969F+tf6QB83QEver/EI9yfsIkB1GzdGwMS14KXIi/Nq5N7RNfZh9sEy/I9gXMqnV9OTCR9CvTZa+kGqX//+S6cxwj7p6LU3oSVxzDlTzIeW6SnYUoGCTj5YQdCY1GSfRT0wuqwsVjl1C1aJh0l+87aphXv1MEX5HHwnW7Qs5xSmDyE7yMih5zUYfGpVurin4NodPFNx3FHKI4f/wUYHwHu6/Y47hoGl4PD5xuJg3GlsByXcsh4KxclphRnA5o8CpTmEi0dE/YTzZS6VuhFXolPdb7+GKvdWdJFOHe9BDvP5eHTc5SRUksb/OE5Mr+s4FVHvw9HWCSyQHuQF8FEbsLaq2omMsShdcoKy3yk3v/sn6QUa3ZnwzWscN6Po67m2tLCqdXhndPHvLuVfMrIxgYnxcKTO8QUX9PuSOu0HFuu/LmA7WV57LhiIjgcDKpBKbeDwzd8T/hFDnVZMgZbZahOnXh5n5IVdtpYeAMC4lCIQjYCXvnRYVnC6km7S9EokctLrolRcNpYXC/2qayMBClAbBKkEcAqIsgAlGyzHnMdU02315aCT58+TOYru4cEF/90qrpI4ShF0jUt88fJBOENCFjgeB9P+BbgmWuUyHJCQ1gimipnjq0LDFsD2ENJEFHuDiRlkfWd7pCpY3euoeZpOrgvi1CzLHrO3Irp604au1C9U4DPm5JxsI2vDy5AHH65k6jCTh2oBtB7+Ul5iT7Y4ZG0k1bwbTDIr84z68RRAICIEDvm297D0k9eVd6bG0Ecu2NhkbBXI4mLZJ82YBQQBISKFMsw6ANYFjfECAywbcKzwo/AX+8haT6Z72VBYKx8kbC+RBfOiUnKxxMvrsJqnS5gywtG1h5dslQVZEc0R72nFyrBqIrgEsh9zs/ohVIzluKsliQYLZW3nLbXUd4S9Kw1i1J7GQP94zDc/6pm27WCLOw+9zsRrP1xICCKGBBYZhBql3Wx9DC0OJdL/8MS1SYGjQZq2Z8yGj0EsByEnmrJyXGhmnYfqZlJM/YM9Ihi1KAUU24tqbBDuAPp3oXa0+TLcFmMVeYZGZ18M5AL47U2Ys7ie8c0zHF8YPk9ZjgiZii/0k+OCdjjKcaY6DLYOVZlTXjUNefJgsctj0UH4eRj5pXnIPuvd1FYROZewUQjB9eOWB5T7yI7OaAgJAe5nI49wwfwm/NtACr7WUxtqQmoLXWOV/enJCCiqO6AjFy+BigaXHhoLiqFrlRPEAVNF9ZQeOF2sGDNXMCM9qR0rttELB5F1u7p605i3t9ZlX/vLaJKXY3lkvO5vdDAfxBFQdU+0GimUs9z2vw2iPap7NoNAlmfajBXUVog3Qc5KCUE4Y9vRALEw34n5VZSwIhexzpwBzHBPhdcsZpwic/sgrqZJFA08U+dzUBj73eoxV5BkRiilrbSbOw9c0hwPfeoquVFsXu7cXvJKKKTiuMjEEQJnIlqp18RIs53sEjGPP4b8OhSlW1lBooppem8LTVNuWg32us+OCCCxemOXwBNBhvel+eMGKYYN0UPCsrNO+ptP5MHTiABJ5m5GzQhM+RLOoIBxonZwe4QwBoaGimQ1/JYdR0oh1N7be4ooK00z9/9IvDsLmDwz2QOTmsF1O0B1DZ2XcUL+8lnGz1EOhdXhO5S2MIeCtxHdeXzJJFxly3pvNbooGXDSsxXlycKDZLNE+23G/5XBaVEUXxYFMUkURTtoiimiqL4rSiKeaIodhFFsbYoivfIASap696zoijWFEUxUxTFPdRx5oiiWEv6Z4wq3M7Qtf+Ws5YpkW647BwltgxsEJrACn247UqWoWKI+P6JlnjzHkIRnTaoJTa+1lF5VxZ0DJ3ViBjFegS8wJ45eO+nDdh5IgtncskCxFOTRrYYi4kBWeCXTHAMw8DOsVgvNNMEpirCr853MIDbCABgWQ7egPodv0iC0fIieSXdur3tZcShv49yoqR6YqL9w2AvTzlOkv4QJwYQZMwDMKVwoj13GMM3342YPJLlaN6Y/DZ+XgDu6A3U7Q60V52oIoTCZWNh41j8mCgtnGU3gM3TIW77BDbwiqh6qZ9yzuxurcFCtdPlBRHpo1djXs0ZwGtao/bYbh1jBgC2zUTItx3hYtX7ONn+rfI9pIMYMQcT1r+ALuxe+Kh77uBL1fJFHUSbul2mS28WjOV6SheLizuALTPgPiuV3zAVT21XS1UHpUAyKMvhAGp1QU32Knqzf4OV8qMHx1FsmM5SkOZ3bUfIfZReiFXb1hslZDFuzx4wvNfbRrJd8llxwVI801GrJzYgJQYDUpI02w5eKsD5st1gXZfw0R+n0PfKh9K1OJWMUmVdxWim1JVCL5pPWg9BDgzYdY6ixJTqPGMTBn69A+sFisnX90v42qhOXAlPxvsK4W5l2yu2X/AEtwYNqS51GvBBdGd3anTrerPbteVbJpgT/gymxL0PRGmp6q6LG8kfsXXVjVSgYDSl0QFA1SmRheGDPpKpvXbEEHTLf3g1sv1huN83CeMDQ7Eo2BEA8JKfZMJq56wBjq8ELzGl7HanNJYZXBZj0YIhGcSXu6oGk7hoMBHjBimr8qAMEUwpytlQrSEFEGbPC/s0m/LhUeaw4XOlJTGlObn+A8cTtoAAACAASURBVFKQv9EgzWc0XVZvUUdksn02Qh0sOhSvRIKhcS7BU7bVCC8nTqDMOOVFBvX3jDHsu7v5VMCTAAz/w/AeHvkZqNlJff2sxAYJ6J630xbE6Pq9gKHLVbFkK63DFw8Sw9QE3wyVsuQMg2f6dMRxIQ028Ep5r1xG8O3W8yS46/Tgas+5GOAbS5p+iCxasScw3z4ZM+yfYxC3AYM5EkQrRgh8cGBOkAThZU2lMIcNd3NH8YZ9kXIeLilo7AuLR4mUXMrM1wb+uGAp0gLUcyY5YfExVDCGWpPpUuqGbBZK4daU/zfa/w6GlnyLe9i9qM1kY579faRcJIG5OcH7MEtahwOw4WJKT4gAFoR7kK8TCtE79peS7kOD5Aj8NKK1sk1fPqhcN09+64jIaHwY7G+6D+ap9sAxzjzICkBt/AFgyxud8Gwno37jJt2a029VfwzbQgWqfEVg9YF7ACfENDSkus3JMOjjhSWQ4HK/L9RtnF1lN9KQ5p/iho/iBT9JDi3m22v3YRiM02k8yejF/q12wPMVG95/xP822vs+wj6Jjf5rlFZDy6nT+DohVMN5McnQUVhGA9akC7IVC0yCABaCSMZLJnsen8fbcC7ET5hSsoNKldtUFMhcI6hlMPK6+uOp+eh+iWLgyV2Sc4+TDmUHFwELKNuvwQMA1DErAsCrqqbaUvcDGJGUgIeTE/BlJPV7U6WKR4R0cm02p1Z/lAY1Fm0sAzABhNT4EHu8OZr1Cs0fBxr0NX4eIE4ypRsqXjmofb9UZemFwkvWIrPcXdOhRPMnMg0RIarNOm65SYl+FXE4uxC/7jeu4ZVqOQKKVpQMep7Sdx8GgJssiwWhds08s0UgiZmfHe/CnneC2IdU4NeRK7Hd0lrhWuux+PBqI8NxX7T9it7c35ptrNOjaNOuP6Fen5meKQAUIkyVSEhpZrqPJrEmYUpgEP4+e4MkkLoTDU1T7poIBCNMSsnavACk3w3U6mIU4KZRfA1uiUFK2+qmWlgS5MQyy8K0WYpchh3NFOGm6EFRuXT9OnZSGMoUjeP+klRAgBeBHV+SZg6ftwHejUG9n9vjGW453GI5VWkiDeTkpiiMp9iTr50iQVbqGfKBEBKOXSlSxw/LEj2/ru8CcXW1v8HDP5IgVUJDoEYn4Lm9pMyfEoGvEp7ZQZ5RGu5INWkIkIBkq5Hqa6nZS7RgXSZ/u+F/VVDqv/gfQIk2Wi8LYbulkhi6NGadcCeWUyyGf4KWzEl0TOVQfz+h+ddJjkU6JXj9nWRgAyDi1DI2TgW+6UyEo1e9jB+LH8cR15NwFpJsb7BcNZra+maq+kCSV8OAgcPGQgSLacFBqmA4gA28dbBNBsf7EW4iGidnXni6EwKNJqSUZI9YD/savYOSez9RmAbyvT3tqE/KawDS9SLnKFiRlO+ZIY6it9fKJk5xQBJE1tBZO6uBkCDrhI1jYecYbPX0ULtZABDKbiqaUgC0nYPsIUAelVGngj9ymd+41WeAsDiI1AKzLURrTD2TEIeP9nxAOkZNMVkEkxqDYQCbFNhxnP8D3zpmoNP2x4gez5rRqFW8C9kiobPrBfxE3jybckKfGZ6WQbSl5ugyGXrFRB3MTCEvnEpmYqbjM5xzPYomzBm4g5TzWkvS6JH0mGQ88LmqI9Nh+kbSelhCuMuGqLjl8FT/FLi8D5871EzWgmAXzfkwEIlh2XQIXqGCFVbY4XwWIdXmIjRjFnYcO4sEnnxvORw4nSNlGCOsu6oBwHUYDY6COpLDFyjVtP8lQudaZ2u/UAuCKwoIi0NpS5VJVxRQLV75d4tlivCOfT6asJKWE/1L8EFgYgwm+qehL7cV423fIxaFxu5dJnDaWGLgprUCntlp3CGSGjcVdNJSINHj8eMgYGo6EbhMbwu0VEuW39hJggFHxBr4nr8Po4NPYpB/DJZRQTgsehR8gBhldodD6Vj5C98Raex1fGD/ElyhKvgsMgCuE7Fw180TOOx6EvdyeyCwDmsDXu74CaBHZpIyHyn7syy5LzJ0Qt15pX7T7nhVQSabhdr8GYSvfwPv2Odp3nMgABd8eN6mUtv9mYOQU2sgOEZE3cvG0q4R+9JJK+1qd6K/43N8HCROIbq9B9S5F+g6kXQuG3dTZUPW7Vm1k3VFEh0RC50+BeFJxDA1Qd0ErcOQLcaiK7dPaWGfJ5Jn49MNZ9B80noAQElaF2X9sjHkN2nHHcGD3FZMsc9GXZY4MzLLeB7fVTn+d/dHoH2YURDcIf1eXkeIsmbFlmkTCcVXdSVa0jXFpFLzCq8GpeKYQowMPIMy6b6Sro8MXo76TNnnQe9SzLR/hi/tH6E9pzIQQ/tMx/6az2IL3xDvBQajw9mHccxhx9SYKLxdS7seC6Hxyt87hXo4mkLmmmqSXgbjuI4BDm3X1Zc610Ai8lD3BimnSE2phkEPGnUNAWjmq+M2cs1rX2qHihrbV4sOMZSKPHZXdQR1AZcSQbcubf9M+/rlo8A7BfhhVAd8PNBohxjKUTgbKR+pqWN/1ugM9PsKeJtiZDfoh53n8nAxrwwrhDZo5P0a3/HdUdL7W6Jb8jwJUP/CmzvEL9uXoE6cVObiL4ZPtOFV/ygcFtLxcfABbBca4KKolvMfFLROl4PSfyp2xOE+P8WeNJtz9eg5AxiXB77Pl9gd3Qv7230N75DVht3kUmSebmrDMgjwknh3chOg7StAt0nasn4Am/lMHBbS0db3MaYFBykJAiswPw4kfyx7Grj4N+mQRdvQXScADIsyO8Uo9ySicSpZM//ykdLZXJsNsyidLRSpv9suqbxWmWOrqcFX9QJV+4pjGbDOHHDOXEzbPY0E0+WggIWeFgCia0Mxq/Cn2k1ahLZ8L5nJQ+YfD4M1YXxbBksA1BmzBrwgGjvLVYDlBy6j12db8fKig4b3jl+tvLTzMFtfI4bfjVPL98t1QamV9afj9bg4TIuJwimHGlA7LRAbyMYIiD39MxFHt5nrmb76ywHM3HQB+RlVWFeCXkUTMiRDTdyODT5huvt+oZaaJK7eBnj9nHEnfRc3AIv4jlh/PBdtp27AycvkdzRbsQUI8EXfge38Hdo3OlFJVJOglwLejzQp8Un7HoLDukt7QNJo8gUF0wSoGz58Zv8ELdlTuAkP/JJ+Ktq/jncDQxTiRCyj2tmJTB5aMidw54mpwNo3iQZo7lFACMJVfEFJ0CidhuW7UbMLzt5P2ebuSOCxlYb1PKfQix4zt2D0EvPSW1OM3AwM+RWIraUt868q4uuThBtAGHktnyL+2AVKnJ3lyFwwYiPRDpWaUG1JevzWv+//KP4blLrdkNFR0x61QAzD1AfVSGyortPTTbdJQKECrONbaF7/4nwXmF5DFbeTghwtqhNK9zVQegMbJgKbpwN5Z4GNk7XiwRJqLuoALB0BlBHG1yv+Ubo91KCUjRLdkye28YGh4KVhvSnSoqsIAIb34aV7tE6/N8ArkXO3ncNwUc2AMgDpitN3Foa3JZmGM9UeQsPlcej2ISnZksuOygIimXBYG2lh/kUb2EU/BIug1LsKCwyIKTkJn2gDJ1H5DYt/70+xLXGIIgjocdlR5A0QCqmM7N0IY7xKBkPjb0alA7SOArVALdmnzWSJdvM67eLw2tgS4sacyAhc51hkpsZgPRW0Kr5vJslOACiWutDIy1tCwT6ix7OTZIZLHbHY+VZneJ1aIWKBs6Nd7VgMaqkNQvXzV1C3T4FhWHw9pLlBOFQ5vihC0InGFiFM7ewjYZlznFYoMrkpKZ0CVPFwE/x1UjX26kazCMb+DYRcBk6s1hgTMZ1fAKAa4gCIY+NJhI2rfHpOZNQMyiCqQ0y56FSNinALplSjQfij/mSYOWsl3iARGAWI4O6M+sDVQwZNKQAY4h+NvJFkcf9w02WF6VHoDcKduBz2qK140D/e9BQm2r9XX1xVGWSv2BbjcdvveN62FLFMEYpFNy7eN8/weRn7LxZg5/mbpHlBfD3i0NGgM/S1uwGN1Y4vbwaeQm6vBcbM17lNRHdIxl3PE3q3hD+O5Wh2FyHr+zB4Tm7IAIAPEiaS3elUOvccE0mWtj+3GfhEzcoKgFLi8bNjAo477OiQloICzm4dlOo4GgBwSMhAj8wkNJfm3mrRVCCZ1qZL1erULdx5ETMkDTV5rvitvrFc70HfO5rXgTBiEMpd1PTdeeozFzCrjU4fISwBjK5saodD7VKXX85j2joSlCsNTcPHwf5Y3GM/cNezZAdHCHkG6W43A+Yq3asUxJoEdKnPlFSnWG8pLYz7WoDTNXOwSwLHn9pJwsXQGQpahgFdnmeFLDEJ+2qTeaHT+p7oucNYEuGSSpl8rE3DFqDZLJaddemsNxVcj0YRttX+Da3SyZw7J0i6Ux33x2s+HsL4UJPVlvENbJmG2U+0RsoL67BKuAsiWGxJGw4AKAnVag6JQ34F3jiPqYFBeNg/BkUSc0BmHITVnIFANW3Asn3OPOxwPY96eRIbzJOEvDgOWbYKmDe1u+G5vp1QN8GD9JhQg4iuHm1qxWpej+/dAFlTehrnElAOoVwyCgDtXiNOGcOgRXo04sKMrEMz4V5TsCzQeJCGQcMLIgZ+vQO9PiNOTBHCIIBFQUYPoO1LSqfecrjwRuApAEaNT1Ze+30lyEM4lgjt0cs/GR8H+0O/Dmzwqyyzs9UH4Fn/C+p12HQMpXh1na3lnYfH6FL7t68SFoIU0OeaPoyWLyxA0y4DYc+4G3rIpbJ0uSUnJZnk2xfsNBbpK7Tz9bim2zA08BZ6+ScjW4wHDw7LhLZI9y7EdkHnpCvfJd8Yi3EUmQa8kw/7/aS5gSjtd2dGNEIcHM4HjXpaACAsIWP/eFQnyG7WyfyTGLZuGLyPLMK5R7ZrP0AFpUiQQxJWV85QuhcVsVxYDshoBwwipZdiuTofk/I9NSg1yrYSnmu7wBw2Ee+36PgMkETHkG93ou6YtdbnocOLPxmZ4TJGzN+LXecrVlfpNWsbOvhmKK+LM+7DiPbkt6fL/+bvuICvcuvjMkfGphxCPSyka7tUAyS5RmGIf7Tyt3zMC3dNxtrQEJx02JHvTld3dlPrV9lNpeKCc6pVKkqwNLK6wrYDyPqgKTkMjQEe+h7wUMxQbxEwhCRyikQ32nhnKjpcBWUBTNlDvs/MGhBFEUHOiUcCY/CiFJANRtchguUyHGGKbtThFu8bjuHyk9/jULbaOEOgxmc973e4SunIyfIP3gBP2NvdJpFr6kjKV1+1/YL7JY07P+waBtYcvjv+lp7NWsxl8NI49zBl+MX5LjKzqfnVBAcE41h12lg85BuHV/2jcCpHJTcsbzATrwUIC6nrR4SJtTvrFhhILFclxf8AL1Se5EtrBfT8wPp4yU2BRgOAUVsxIPguriRUEIy+zfDfoNTthkYPqfWrAK5KwrcyeJ1RNLSNtLAzHK6PNNdeeZLSVZgWHIiOvhkI9LdwEKWg1OKn22BMTxPq/IZJwKfWmRgAwKFFiD30NQDghoHFoZ4/fSkyK2iPUEcpOcjyGL9nBU8cICapicIek1Fv7Fos3EUcrBAHhx1iQzzie1vdQQpYPN+ZiH1uPEUCD1cKiSDtq7+QTNCfx3Pg5UKBGFUUNEwsAc+al+/9wHfRvM5DOEKlVq8aCi0ANBuKtYmjFAP7Ql4ptpy+gbXZqlPGXSPnUS4F6rRBKSoIyXBKrThAdV6TkOs1N9TEpqrw8AkH+d7FnjAIyeR+e2KMpRdWU3SAdSHGY7wvot2F+cNbYcqDWhp1OVxI9y4EP+YGodJafA8DoFuDRERL+gzpMdoA28aT19ElVHV8ikU3eAG4XFCusJcA4L2YKAxNIk7ZVTGaPD9JUklH3mmLqwICQYFoBGz5EKE+iumz5QMI1DrkTqqDdXwLZRvDcKZi5FUBraNWDopZExprun+g72eYGcwGWKOw4oYTOUA3qntZ8RVg4xTSHcat1RApQQgCUmnqgh0X8W5wKNK9CzF+xVHYov6GK3EVSi26gGowW73vchv5Ptx2DLOthYcpx6K8dMuPyqVt14sl5kfjQcBTVEApowMx1kdtJQZavy+AN7MwhRmGRXxHlKR1Umv56/Yg/1NlQOAcJIPpSQJqdq40A39CVIOp7Q6ScjyH3Ula2gO4LEYjMyMNmRlp+CRKneNEADi1Bji4COFMOb6NCMdNjsMBF4zlezJiauK1OuvQz/8uwl12PHF3OhgGqBlHiS03ewyIqGb+eUDpqMZLk8Ufxd9iSudnNfscFdM1r1mRzBdTbGSultlvMpY7xyHCpxU8Z0NjYHNrs67XOfJ8fSsFQWQ2iVsK4J264UP6W7+Rzplm4OxEAHp8ISmtGbKMlP+9cZ6IwsuoprLFGp18nGgo1b6XMFWqCLuu+1BiEpnrqrHEIbkqGnWK/j6nOoc7hDsUoXsrbH69E5rVrbg0wClp4fjyTqFZWhR+DQvFJZsNJ12PoylD5qVExsLZa2GexZ8eHAiGUcfYEp5oTeWUM1jKtzX9DACNwDCtB7fGS9Z/1hGqmf/FuLpASDS+4HsTBoQ05hy6IHxrr8qsbnb2c817YFk8teFZ9KomrTVmpREP/4S7asZg3cvt4bJzSmDDCh3qxGF8LzV4oYhANx5ExhYFHiDaT7JIMkCYlBTo0iflc7fY8IWGnhUiI6dI7ZImz38/8x3xvP85dPFPx3q+qRpQypGanuRn4aZozX4AgOslqj3g6f8pDlIi55G6a6MDC0HYUCSG4KTdDuGOfiSQbAGOZbCAFhZnggBLvpe+WpmNIpc/6m0VAEow3gy8ztXRPMXXjph2BtTsX52coyglZGwciwAvICdovq7J5+7qp7JnVp1bhd3XduNQwSnUqNOAsD5lUOzjyBATBk/XCaS02kpvj9KqQr2eQLtXId5US3fFKdWAK/tQ4CB6XPdyJAnIZm0xP14F2C6J9ZuVzlUFDzbTJskGfPW3xZ4qLokJ+EGyy+zNH8WT7UhwTn4meEHE2GVHcORyEUqk5AMLAOGp6OWfjCBsmBigGmbIa70UYNoiNMJ+SYJBnqt4ZwRej49F/5QkOO/orn52xEbqOIw2yEThp85bgKe3AQ99p5QKFiEEW05JTCeRyGV8k9cYeEVtRuTLPQOkETbdAaEWrkBrv/0lNEVn3wfYYdKIYeKOifBLSbDlQlu09M7Cji6LNPv4eAFbhQYAAM5tZE05Jd2o8zfUsvhgmCob4YUTewVSSfJtsDveG0RYQ3+dyCUSJm2eJ4LnbV8GAFRn1XU7DOUGO6ZEVJ8hVqqEuY+r+Hkk55SM67KeHaP+BhzLYLdYD0uE9li2X7U/TnpaYbEFi/R/CjvO5aH2v9bgoz9OVb6zjCck+2PIr4a3vO547ArW0jSIut3x36DU7YgQdRK7hhjEe9QSrRUHVVqxzXMQG2OT8Wp8LISRm8F4EnBK0Jb6PO9/ThEJBICbogdZYhJsDXrjiokBDoqaHy4FVh7xv23cTwbdgYJC/EmifyJnnt+SGS9UGzzaMJKDUiJYTAo8ih+CXXApogXQXGuAX5WZWy5zCuvSfZcBxg+B8aLUz6sinjE1lYVCvq7fDpsLGxZ5g6g3di0RFJcQIRaDN9GUmvlwU/jgQFPvl1jSllDZvwj2ltpMw9CNgmzjFZ0lWfRv1A+SQU45CGuFltI9oUBnyal99ej20SYUB82j+OGR6viSj81yDrCyPonEhKCDYWamuB9AbrmAoF6QGDCwmPQoCYB0vHhEyvS/eBAYX4jr9WVWAflyuXSxVUYMyXpToBfdq2I0eFHE8wv3YUxwGJ72E0bMT+Ee7HeRLFOp6CLMNVmfaJnWaafRrFQSPP9zAur61WDv1xHhoE1im82BMYEncFaQxFstyoY0eKcAeGyV5dunQpqhBCHq4k9nY8YXEqe939dYe34tsoKr4Iw3OuXjVx4zMqyukDEmmlC0f9xlLDHao2sXXzKQBAHzxTClzKkyRDLkNzokZKDAzwJx5hoxrWuQMacR0UxoiGtiFMYHhpKuVPV6aplw7ij8xHQHwJBgo6wZ1clkvpLLSTk7MORXLBNUBzTCbUeTapGa3c+IqcjxaB0It8sFVgpqXGdUR212JB14ZxAAcH2FjiFaEVMKwOJDeeDBIU3qvBfvcWoD2gwDPL8XGG38nWjIXWnK+AL8cH4lxGd34ftgNxwR0jVaHgDApVbOMIorOAi/yCHLTYxglmEQVq4yMu/xTcNFlqw5sqF7/kYp3l15TNKkUzuWfbc9q9LvgyeR6E65I8k81EViu3Z5RxPsFcCile8zlDz4wy0FgfXsxXMtxmJ1KHHAAeCTp7qbfUyD7ZJDIEMMicUnQZXVG+62GUXadXBIzSj8znC8168hxsXF4GGpRfxjNqKplRG6Cz+Em3SBS2hA5oGXDgOR1SGmt0M973eYzWvnR5ldkF8WwEbeRM9PxoiNyp80G+nIFcJG4FgOgkM9D0G3GshrnEPHZNKwrGnc9ZxxW3x9wnSU2b2ZD2nZdBZY+kwbLHlaLcUwDQjIGL5e+dPPMECYlkFmNo6e1ukC/qMuZi8fxc5ef2LFgSumb/+w46ISFLqUL7PjGKwU2iBbjMeTgdexTiDPqihr5RVfxW/8nSZHU0EHweI9LtxVQ/09GACd66nXrw8sHHSEoH9qEr6uaW1jyGhbW7UnnAmqaDOdvJFZdHJS1Swo1adJCra80QlZU3qiXW2tI39BNHYNAyQr4UvC1jptt2NOhEVpk/SzyQwIO8ciwIvwBc1/zz9DyTiMioyCKFqwIeguXJRQckK4S/m+EzdPoDRQCjR/HBdf2I0cr0WgecRGAIQRJYgC4AzXBoKl/8urG5uE/FPQvsStQJ8gBNSOahXh/eDDmBYYCEe97koZ/JhlR1Bv7Bp8uUlNiBTaybFYEUCntzC4FQkI9Rr1Hhp4v8W1pC5EWxAAnt6GB3zjAQAPfWkdHGNTqHFMJ3ecHk1HZRrFCINgD8Nvh6+isC4pE80Tw/HRehKwkOe9qWtPaGy0AVcGYcr6C+jrexfPBl40HhjAOTEZdRnjWr7i7AqcLCBC/S47i+uIwuxdWvmDs7mlYDhyjwzs0a4TEdZjguE9waNNNMvC4ofFGkoi4pst59FumsrWNyuPnM93NSTaS2ldWVHzn4IbLIvMjDR84FJtKq7susI8d8apCUg6uWGn/jbzpf6pbIEeucVeLN6bTTpFA1iws2I7S4Pqd5H1WF/CDShSDGZSM7cr/huUuh3hSUROwxG4x0cox0kRaiT6Xz0kp471wp36I17aOxW/h4agIDIZsWFOpMZIi/LIzcD4QrCN+pNspiQcXQhiXDIMgx+D1EPU72uiaUBlIx9snopHW6cZjHAFIzYB/b4Ehv2ObxykhC1o0y5YslZUz0YkUq90f2GAWKo95juBx4DYujgrJiEPEfhXcDjREOn5IfCvHKLxRBmVFd6+euMwfKNWo4ih6N0sazQy9Aw0AJqOXY3Ek3AJxnKK3o2T4bCxyEc4ykJT8WGrbVgodlMYFWa1+96AoCwY7/WjHN+3r2oEgs+KxNk7frWIlPgBgJNygHXC8576o+FKJtTvUzkl4EWL6aG2KvwtU+x5ZxiKZL0NSRxb05L4MdXYlNE8Iw1/Jp1FQAgY3hPunWz+3RKK5eup041M6BLj60qm1plXgmaVzHQfRI4BL4goKAsAYLBGaIUR/pc1+zwfeJ6U4shlXrlHgU3TNB0Ae7Hb8RC3EUMuqaVObwVmKX9/Gh2pWXBtHIPriMJrQXLe+hbN9RLJ83hucg91I8MAGe3QwvsFvggau7/Nr/MpBLDaRXjEJkVzBDU7AY0Hwidl1CJDjOP5gWYp5KY9TGXZiokResZnzEh/usHY7UkPRwpxbH/l22oC3XrsrGk0xJ4LvICcIh9hOo3NM7z/QmcS0LhJd7eyOdHaNwvf8/dZ0qTlrQFeJCKXr58zZqO7TQKGrrA838yUCG0HOwnXC7XlnTa7Q2HuFejLCSQIAP4VF4POaamgj+gQfSgP8Epg6lB2AWZvOWcwquTOTU4bZ5w7bM4KBUsBIxuLiauL8cHHcb9/MjSm4kNzldKi+1OT0KWakR0JANUvr8JVMQaHGZJUYBkGjoakLHResCvOiKn4IK8NPk6ait8EwkbYlXUTc7adx6WbJKgvzyPnb5RUyXnRICqdzA/tXjG8JYLFgK92GD9TATjdOBJcURgdH4v+qWR9SorUMifM2ARlUEspDj24CcwbZ7E4fCgAInIcGeIwZYHSYOQSklYj4JQM80KpYQMPFq3ZY/gu9RqmxBgTR7MPz0bm3EwIEanAS4fAPL4KXjjRoY7Ktvgo7TPQwfO9AimHNLC8dGWSYRrjmfxuLFiIz6nl2fox26cJWafsuoCfLcIiW+7RNnvAS1S3tEeXEHZcv68NHys3abXdLC1Kw7Dp3biCLkpUEDbw4kEtOwUAEo3iyKlR2vFgyXY0QdaNUpy7XgJvSBIG/pKDt381Z7Iv3X9ZCQpZBa6DsAH3fww5PsIAWCXcZbqvFd7pfQe6Z6rBHYNoOwXGTphlRwqs2cRm4Fwqs4E3Kd+TWZSKPaMDXRVAQ9a9UQ9I5kl6JD6cmoyPoqNMWd2ibqvKmDR3an/yEDs5MtyDEe0syuFo7SAq0BHmtOHRVunK65wyUibe89eeuGexttmG+nmSKGq9sDX6Le8HtBimOzNyvpGeUHTzTcUP4WHY7naZOoCTdkzCr6dV1sbDd5p0ggTwxuJD+Hj9KcOY238xX2r6Y47UaCO7rNenqq7O/ov5SrMYer4vQQg+5/uAtdmUpCxA7GG6TEsGM2Ij0PRRvNcvE1lTeiLcZUMp3NjeciZKku/C99vOY8jmCTiaQOYPRcxeuXHqHTwrdUg9LyRojEnxvqm4p74uOC3BF+Rx+HIhnvlhHxpvaoJG3q+VMjxy3mRtUOa97tNwIKw9Doq1sOLAZRwQ54NRoAAAIABJREFUa6EYIZYBiQ/4Aabbq8eQdXlSX5KA23hSLSsURRHfbDkHWyix1/TsVNz9AuyS0HlhuWqBKDpQJmhfRxsAvlJQjud/3G9Y+5p4v8IWoRHK/EHNmNlNMb7yJf9SZIA/+Obo7nsff/JN0YUhzZy+9cRjh0B8WG/3j7HiubYqYUFCjbgwpWnFJ3+q84+ZL/U/E5ICnpq7B6/9omqmsVUo86sK5FJSerzf7vhvUOp2BMNgov9hnBFT8Vq3OhodqSF3kfKtZmnmTlHIHVIwJiQGmXMzEZLyM8681x0YuQX++2ZoBAefHvcl+IYPEce18UBDLTrHMhjSOh0Ag8Miee/vZKozjOzcp7XCL7b7sZhvjwf8EzXHuClN4vqFgtHpH+wS6wPP7SJi1QAYWxEyq7NkAbG7iA5QtZaoDKwjp9J9ACN9fdraE4Z9tiZru9dEBMzLT5ZKmVoRgA+kzEB2NKyYUnLQKiaUyjI4QgDOjksD1uJx/xuaz4yXdU1ofQ9JrE8URcz4nXSUsUeown96yqhvbC4G33k/DpSpGTK+Dhkv21GOuz0+oOmjQGxt6bjqZ8W4OugbvoiwVihcDCswDUqJtbXG19QHM/FiF1V83ixTCgABefGUFgVV5L3iRSLXWR0lviBulqlBjWxRdTpecU3EcbE6Fu/NJmWYcovYv97D5cVvoi17GN/Zp+JTx2eYbjc6RDToX9TOaY1b/bhe/tzdODrhXuzN1WpuAUCJPQoOaO9DW9/HCHFwcHCs1lhMbmJ4PuWxlRGr0weBygaEieD8o4tvPUM6qt9xnA/mAa+cwBf2oYremRmy0kj3I5/kSKziW+OimICi8gAx5E2EQNOk7OvZ3BLsybqJSauOafQmKsuI3SjxkcxeaAwZO3dLLd7DUwkdvYY17XtUh5pKxo7Gc4HntRtYO9wOTuoyZj4exVajsF7KstPjJMp7CaIIXJSM/d6fbcOk1ccN2Wq5JNlpY6vkAHuoZ1wQRMtSBAMa9FXu0QW7Hbk2G9Y2phpZDJiv/FmdzVWcSIZhgDrdMCJjPcZJYrAiWKwtJ1pcNGSjVtbsuHSzHC0mVZ5Y+OtELn7YadL5ywTHrhYhWNF9YoIABLCubHjqj8bxfK1YL/28bovspSlfA0DGrA7x1Wohm01BVpPX0SiTiGH/9kI7/PlqB5yaJDGtYmtpgq90STEAJbgouiMNbe0f5LbiJ8cky0v6bD8R5+YF9bfeNrozhnRWmaMvDxuC7g3VAMRlxCHdu5AEeGmEaB0SO8diQm8pCSWVAjIMA5EqIdaf7x3JZI236ZI97mSd3g3Vwl0DuolB9TZA/28rz0JYgGUZrHmxHda/YvK8U45GwBmqKX3Hv3KInooOD7fUOvS0o3bgUgHSR6/GwUsF+o8BADp+sBGdZ2wylvBXgKcXGHU6FTR/XPmTgYiLorkzbYV6ieF4tavK5L2/UZLpfqQcT9aAutVyRUqewYQpJXfg0yQfTGB04nTzrVSGJ1IaTT7pu00FpKXrkINTdoVFYr6u2BhWYaLbK9EyIyesHTuDW6syC7fC5igPluNc4TnAFY7pKenKduHOkcAdfeDu9DqWTXgSU2KiMTIx3nQVWnRyEcZtV7tLv/9AJtrUNGctfrz+NH7Ze0mzrd/n2xXGzOK9xo57Ds7oYF+VJDBOXitGv8+3o8P0jQCA36iGMWB8sEdvgiAKsEtNfmTIFQMa6Jg6cvDn1V8OouE76zB+5TEcyNsORxTptKrPNf+4S72utSVEkPxw2hDNPmJIlCGRCBDfxxcU8M0WWcicIZqlFMqVoJT0+VYjsTCdzNt0R1w9g1TGIr6j6fYwpw1ZU3qiR6aRHTh/xwX8SpW0memWyoGqj9afQqmUbAvy5vZ2QjiRJHi7hxoYGvT1Dqw8eAXPLdyH6QE1cCYn4savPIY6Y9Yo22Vphy1CI6XMVgRwPbQ2iiLqYXjgdaWrrS3sDJ7K8ONe3xRwTR9BnQQPRnYwBn2HtzWWv/sCApIjXMia0hP9m5Mg7j9irppAHr8ygv9GmTYNOfBvNQZuR/znXOl/GFYdIpN5+zrabJ7LziFrSk/Mftyi9KLLO8ALB5TMy6pzq8jEldgQbEttkCXEaQfXfzZQ9z6zIwFQKaCnpBbPSy84ke5diHTvQmUhvlboxambPF4LjMIhfxIETwoOOB046bAjNcaD/s1TFXZSjTitAy1nOd+8TxstD6s9GWP2WXTngepMyGU/ynabym54sUttsE7zIFWhztn4arOxi8b2tJEax2J5zXcN+wCqQ+0PCgjyIuwso9w3uqtbiS+I+TsuEKaUiROcJ2WVLjpqY6Og7fxzuUDKEic1IS2oMx8C7iWtdhfsvGjKdNHb9WcKzuDQ9UOYvFNlMYnNtIs0+sxSyiY05XuigByfXRFYpGFavqczZge2TEMXKiNV7A3iWqFXWTTVY8lGv1y+J12LtO5b6U54Azx2nb8pMaUIToWrGab9NjULPn3dScLQkpBy7GsscLyPTpyxu4wZNEwp+SZTXSV3XN2BQkmQ1mnjEOq0Ydg67bMniAIap0Zii6CyekpEF7LFeLjsHBw2ttJ2y4ZMHQUlC16ri+G9XEQatlWWGPrhxFw8sfYJIDwJnwxWNURK76KCp5JWleiOQg3vArTwfYnZwe6KOKVVdhwAUiLdYBngWpEX/b/8G7O3nserv6gCq6ZMRqiG4fC5OlZG1wnAuHxS4lQB1rzYDm1rxyqOI10qfYHqZAVAKe8hpQfm5yO0eEJ5Z2d0byUrKCO3WGv8nL1eqnktG7hOO6sJylmBZrZcKSw3dYCWPtMGr3atoznntVlrgcSGyBuqZtTrtaLWgbo9yDwDYA3f0hAgi4/QikDnFhsZUPIcqw/sjF12BO//dtzymp74fjf+9esRy/f1Y8Fr8px8+McppI9eDU+9MXCl/ABbKMm47ri2VbMfPe5Xpb1hCOQ//p2R7fNgy5pIHXcM6X1V0XOPy46acWFaFi5nA57cgKNd5mJC8DF0osR+aZ2eWy1BkJ0oXlTHR0qkG18c0naSowOU3e4gYzkAGyZIjTn2R98H9NVpPYF27sh5cQxnYJpUdF5mCL6VTdh5ACnD/X+I6rE27LixrML7GuADZC2VYXeZ7qdnVS/dd1lx1PvO2gYA+GrzWcPnaLyxpGrrSsN31hmcc03giGHU7m33TIQcqDlLs3BvAQNaVMP+sV0N26NDHZApWfpSTSt8M7SFoZRopF9lzHKsHJQScfJaMYbO2VXh8d7r1xDN0ozrlB7CsLXA62eBYevUbU8by7hEJWBF/o9WyjzNxwhXo6NWe+jfwK0H9ghW21TbSGzQDxgwD/AkaALnzAPfVOlYr3az7gRsFTQN8IKGPSKjmglTSsa9H29W/s4v9SM6TIAzaTHA+uCMXwtXwhqsv0ASE3Tg8YbJ+qG/b/L4snqs5USv/DYdUCvmOFx9YQ9ONnah22LV9rOaI5w2Ft4Ar/hhZpCTLQ4bi9M5xTiVU6wwbEqpufdGiVUAtuI51WUzBv+2n9GyzM1mXDrYJzPArViR9zUg84ubGlNy4mz98VzM4vvis2Af/BQ21PDZPB3r2UslKoWoDFyt3ts0KQ82gJNimuY89aCDOLLv4w0KypiRP/nvaPzR0N+fgrIAOkz/y2LvWzku+Y1t/zDJ8n8R/zlX+h8EOvOmZ15UCpaz7PDBmZStVQY5eCKXgrEmE+n0dSc1r1+rthBDkhPRPyUJUx5ohA8eaoyUSDfG3X8HJvTRdlH5ZeRdODu5h6LdkBJZmaCy9vt/eLK1VmiTqv932Tm4UxeaHqUqd8LGsQBnQ3BsPtK9C3Eh2dz4C7FzCHFwyMorRZAXYONYZYGUkV/qR6cPNmLssiPYdOq6KT169FLiQA+ebWzPvPP8TeLUMwwR9n1wtuIkj11m7sDlFGkXDXks0Q5GVQ0mefFeKbTBV8GemBIYpLxnypQyGSdpFDW/2BtA6/f/VCZ+b4BH+2l/YYekP6P6RVIJibTYL3m6jYYBoNtNg7sbqZphnz2ilpt9ueks0GK42WWa4qKgDQzTEhM2HVPKx/vw1O9P4Zn11kLaR24cQeN5jfFUNx4bqTK4rr7pAAhbxmFjK6RcA6pRZDNZ3JWAliMUeCtbo0Ukd0fqWFe9roEtCFuhVryJho3yOWmBpYJgNIMCo7YCQ5fDYWMhgEUxQjApOERhP1qx4wDi0OoDcTRtnbcwHuV7YJoxY9lKGRehkjH2gCTe+tUQtbOdCBYNU5pgYGIqvuAewpNbXsOh64fQuFokvnrUvNnDL6eXICiNVXuv6bghBQBv1iUZx0Kd06lnl8iOfYTbjnM3SivV/aBZctvO3DBlSjVLi0LfpikaPb/XNxE6/Ssn5yrb0pMp5gVnAx76HpfuHIunAy8Z2EjPdaqteX2z1I976idokgRypzJ9MHL+jgumSYDKUOQNoMG4tZj3d5Zmu1mJ3UyK9m8PV7vnXSq+hAIvvb6qcNttBsbcsatFAAQ44taAsRGNpehQqXRIFDHh7wk4euMoLJHaHEXJ7RCADedFc2YK7fhnDa3YWQdIOR0A3LTSp5FAl7LdU58EpUIdHL7juyPduxCzknri1zxjZy2HjkXCMIzpmvFatzp4oGmK/uOm+O7kT3g3axnWPrZIYeL+v8KUXVMwdfdUbL+y3fCeTeqgO3P/TDRd1fcfHV/vqFfGhFp3tGrsbbMS4up6/R6PtPZ51ID5P7HrAPK7RrjtSAh3arYnR7qgdI+rYsC06x0JaJiiLS0+QjVWkEfU2dwSTeBiydPmJYjxHheWPnM3BrSw6DwrQRRF0ghE0gsFANFkfClBKel6asaHKu+YgaM0Mf9d3ZqqBHQrPYaFTc/oS1AtUC/RWgOSjiXnUwy22v9aY7I30Ci18mAhAOQUe/HXtSVwRO6BI3oLGI4EF3w8sUtDqEZF+mQNoGWCAjA0NtKjRbq1UP6S00vQbeUDmHdsHq6WqoEmq9/GaWPNAyoU5KSRnWPR9aPN6PbRZsV+YV2XwIVWUvpayWNLB8TlREyYrhQwPtwYTKeTAzIjMSCY25JNpcBvoIJrXRo5DA+89AmWP6vttNm8ItbzkGXwR9SosFy/oiQGXZZ495QN8AZ4HLtSqDSfkD8a/B9iSnlN5vALedYlrFWF3AGxogDc7Yb/BqVuQ9B02nidwSDjnyyU8iRgVqpiBTm4soAn5VhbeZXZceJakelnlu5T6aUljJoRH9Y2A7FhDs25sCyjMapWv9AWf73WsdLzkgMsHMvoSvHUa6OvUx/cq0rN8JlcUucuZ+LdFnXBNo5F7fgwXLpZjqAgws4xmqwhL4h44vvdamcxCChijI7MH8dyFFFgAIYShP0XC26pY4pVduTETbVUsaJMqEZTCiL6N09FADa8HxyMJXx75b2qMKUAIkK79iUi8CsHKG6U+FHmD2LonF24eLPMQCVXNKWon2tq/0aYO0wr8koHEwAgNswBN8X+viNJZ5Tpfv9RCXEYnhhv6L61mr8T3fzTtOc0eLHyt8pSkpld5LrPFFhrNG3OJkb5gRtaPRyZwSSX75ktlDTkLJHZWNb89k4P4IpAXt8f8bxfFRmmjUL5ENWjQ9Ag2dyAlZ8hOkCh8YciUoEaHUkmlwngznpFeKi56lTcKPFVWGqlL1mMokSLrZhSNM7fKMXyA2TuuVboRfro1dhwIgfF3gC2nblh+pkQqSHBqA41cGpSdzRN0xq2jOMmjrlZXG0+CDuv7sTg34gQf+uaJk0iACw7s0z5Oz0mRB3AkggmXV4KkPlLMLm2qBAHLuSV4YUf95sa7DJmPdIMk/qSOflqoReX8833JXOs8XvyvEZ9LwWeRER3eQlm1nNihAuP3VVdsy3cbYPDJLtrNY7NNCIqwomrxSj185iw8phm+63Mib9f+B19lvdRXtOPTqsa0ealHO4sOGM3ITKNCP3LQZsCXwEWn1qMketHavYv8BYgu1jN0pvFDOj1m/6biUjFwmDFelSspA9575J7K9yvFxWUipPsCFmvBAB2lk3XlPnIULLmjDy/sLhYpAa15TXjuc618eHAJobPm+FyyWX8cuoXvL75ddP3AHIflp9ZjrLAv+cM5JaRMnszh9MmaUuuOreKrFuR1dWywltA+ujVyt9+XsDZ6yWY9dcZXCkox/pjOdidVXHAsG+TZIxoX/n3vnRPHfRslITMFKOW3KbXO2LXv4xMWDNY2Yssy2DHW100DmdkiAMzB5FkyfYr25HvrVrbdb19RHeCPHeDMNgf0SXcmlc3n0cBoNBXaMkWNkuwyTC1aRQBZvJHYzmwwlgEpSiRfavAxcx9M023A1qHuyq2+m/nftO8pm00ABAtkivyXFAZQioI6NDT0/trrBmsNDa93lHz2sxmuO/jLVh5kDzbrWoYywfppKkZm4hmggJqAskMoQ5OWQd8t7AeWDOluAqDzdeLfQpLm04KeqU1LTRjFkLSvq3s26t8nk/NI/IPHl1QqrKA9JNzyeeCVglO6eMVBeDmDrsTDhuLxtWqFowEyDPj1MwHt+av6oM43T/ZgrPXS1FL6kgsP/+3ovFXEW7VFqkqXl9M5FTMqhluV/znXOl/EBbsUA3ABJNIOGBcKKsapPp8cDOse4kEFM7kn8Hg1YMrNALl4MohsSbSvQtxGWpmpiqBnR9Ozda8lp12KwZYZIjDVCNHhfE6ac0tkTpul3oJ1Hbt56py7nJ3vlJfEFzIWfitWnRL51DqCyLIi7CxrCYgVuwNaAJ4jtgNCEmbg+1XtpNOTRQe/kYNVKRGuTWG3mNzdqHt1A34pzAzrioaN5P7qZ3OBFHAs53UltLXqRKwAG/ClLI4rqyhRTva566XUi2ptcwo2WGnjbxwl91A7U+J0uoPCFwutl3ZprxmGMYQmDrAEu2UNt6Z2Bbixi63C8t41TifGBiMV52dYKszRXtsSkhbWWwsjFszfHHwC9PtckcUl51DrMdBBTHNIccyThftx74x92Db6M5KcG6ZSaenotQOWCmonarcdnXsyQaYl+oMaQADnCs8h1iP+lvQ2by/r5CyidgwB5yJy3GcmYxR96jOlC8o4PvtWdh0SmVA0XDYOA3tvYAK4JgFpegx1iMzEd0+2oQXfyLMDzlDtXDnRYyYtxeDZ+80LR+UjXWZqUVvo0EbFdnF2Zbjmw7GetzqcSJcdoS7bDhyWduavqDMTwKxrA+MPU8pbaADcl6/teEVFepQ9BVKKmCi2SyCUmYBZRoVOTMT+jTE0mfU8RTussNxCxlBjd5IFWA1Zd9qa3Mtw0g96L0NzDt8yc929RgnJvZtiLa1CDtQnk/1a1nvZb3RfanaxS/ZhP1rxVZNiXRjd60XcaHtVMvzryjDTIM27DvWicOcx1tg1mBzhh+NlEhic8hNSViweGDFA+q5/xsJMTPMOTwHALAnZw/GbBuDabunGfaxYvSWBcqQOTcTi06oDR1kQXQnZ0zo2VidY/v8XuBZUqIpiiJ+Pf0rSvwlhs9VBF9AwKOzd2L6upNoM2UDnpy3p8JOYACZT97uUd/gZAI8HLF/AIxP2W/WI82w8nnSLZQeN9VjQhHvIb/VgXFdcWcGCfDQiQAZek0l+vdgGMbgcEZTWpc/nfgJmXMz8cUB83VLRkSIXmdQPdegBVPDCpeKL6HtT22RXH03okMdlmLdZuOiKttsumSSHmke9fus7KZvDletdC4oVjzHAsCm7E2a118d/MrwfcrxqDm7qpUUFT1/41ceU4KsVmxmvb5RVKi6PmXEhqJalLlAvYyalGzH5J2TLZ/nvWNULVL9PmYNimQ0SIlQmEtXCowNEaxgyZSys4ZABf31Ld9bj9+PEf+AZj+X+G5lnFd9Ht1wIhdBXsB327Ju4fhq6ZsVU0pGRVIRcR5zYoQZ5PVfEIUKbQHGYW4DKu/rxqvcaVu118j2YBWSlVXB/9BhNKAlYsyqGW5X/Dco9R8K/YRdVYpwj8wkJVv60b6PcOjGIey6Zl0yYGg5SsEfFCCK4i3Rk+Us1i2XJUqQO3/Qk5amBIaqrUqjqO/6+6UPBlWE2VvOIaT6N/jm3CjLfUKdNpT4gggIAmwco3FiX1p0QEMzZZ0kk1voK9S0adbDaWMN99a6Pp0CY76PmTNRUflejTi1lKvQV2gZrDDtvmdxXNkIn/ybmgnMzqeCorI2EyMfh/yvDyLqa7SH/64txwtN1wZDAWD+cJVdVewN4LWQiajlnYcrUEvQ5Ha6APAt3xNcwu8K7VwG/ZuoY08VBdbvUxGG3W2k5Ue47UiKcONaoTVDBlBF4PP9udiftxUpkW6NYy3/3qIo4oN1Jw0BkZ6NEpXugN4gjzJ/ENvO5CHrhlbniEafZX0w7eCbymv6VxnxxwgAQJ1EDzgnCTh4hVIsGtEaQyTh10mrj+MxnZ6IfJ5OG4syv2oU0wEqs6DUvL8vKH//dviapoRP0d0RRPx9jrCBZKNVFEUwXCnABDRBX17gsf3KdgNNHQA25anjqTRQaskwNAQbpBvEsgySIty4WerXPIffbDmPN5cchqfuOwirNR0vb3wZoihqjH59NlD/HMvZ0oqynaxFUEqfjdajsgCIfP8Yx3VwjqJKBT1p5/dGsR/po1drtD/osuaT14rx10m1uYTVmdBMLG+Av6WsJ315my4Rx/DpjjUx7n61zJwLJS3AGRa4s44XueWkHEv+HfRrWb6PMEvKAmV4aOVDKIV1e2n9+mnjWHz0eCdUv8d6raHZEfty9qnXojsPfeChc70EZMSG4o+X26MiKOwVRk4QaH/TfxSUqmC9l5+l0gCZd66XGx0Wq3F6o5wwIL8/+r2yTS4PqlJQirMrjRcO3ziMcdvH4d0d5tqRVvAFeYU1UVXslyQa9GuqLWIfnHF/whn3h2mZuhUiQxyWre0BdV6qark+fb/lz35+0Kg/RqNnpq48lWJK3apwsMyeO1W0C/vGdkWY0/zarpZeRfP5zXHypiohYTY+zxWes3zPDHRQymwpryzQRI/3y8WXcTSvghJfE8SF6CQDqJPwmzQvuRX0bZKMoTqWK0DssDVHrpl8gjCH3upeD79Lc0cYxVpy2TncKPFVaDcUB1SmckmgBGcLzHXYYqiO3JUlTGhEhziU0vUqN/uA+jxkTdHq3LlsnGE9fUJnq62W9KaKqEDeGZMuggDQp4nKWu2r/F35WKQTw2a6jVWFJVNKQqjTogqEZarcOa5F9WilvFCEqGMHaef/sJozlLnbCo+0Mgai5WPKS1tVGPT/f2EZJUiv7/p7O+O/QanbGHrRVRqGoNQ/MBStjGoaZt0dZNz/6VZMWXNCmVv1+igVfec/hVk2OznSjT5NktGudiysHgn9/fru8TtN9/tYV45w5HIhsn2EAsvDelEIc9pQ6peZUoxmstx48ro2os+QRczO2sEwDKY9aGxFDRBHoupzrrrj050ttEuqmFU0w6DVgyzfMzMeZCPqYtFFZM7NxOl8Ul9vFuTUirtqS9ISJUFlvbaGnra8P3e/8veRCfea/la0wbP3Qj4Y1kZabVMY0qYmOvs+QBuvNTWfhrJIssRQNHOEKsKjrY0Lb7zHiaLyAE7mFCuMHzPQOkuyEU9DNqoKywP47K8zeP6nXZqAZUK4C2tfao+7a8Xgcn45tp/Jg7vabPhS3zQcC4AyxHZeVUsw9uUahaDDXXY0TFFZaa1qxGiMMuNh1aCUVabRLCO20kJvae2Rq8qMlkXpAny5iRjC323LQlidiah+x0KN4/790e8x8o+RyAkexL0NtCLnOQGtYLrVc0PPb/p9XHZSkvnFpoqFkYNiEFEU60Bfhqt/Lc+7pX5rI55lGFM2n163Q0ZZoEwpg6oIclAqrOYM/JwzolKaOq2XKLd7nrs9S9m27qjqFN378WY8QQmNW9l1s7ecgzfAo9QXRL2xa9Hm/aqzSelDPreBlLa+eV89PHF3urLdGSuxGESg/8r+6Lq4q/RSyzop8hfhyXVPKp/bl7sPJ26ewMd7P8bIDtpSrYrGSWVgqTXusbWPqcesYiC8doIHc4bXrXxHWASlKvgeqxL3imyMqtgEVuPUDN4gCeZzDIcWC1po9P30QalT+aeU75cZVnpn6e5aMaiX6LEcfwezCzUNNqww7v47ECMFm2VdMj0blmGk62QDaJZmrZFjhmRprdR3FgaoBEUVx8jT659W/q7q+OyRmaR0YgSA+klqUis6tOpJwFvBpuxN8At+/HjiR2Wb2fm+uun/Y++846Wozj7+O9tuB0RAqoBdEBRBRUXFLpaYWGIlRmNLrLG8wW5sQY3GFjVqoqAoiooiKCBNAenSe7v0drlwe9ly3j9mz+yZmTNl9+4te3m+fvxwd3fKmZkzpzzneX7PgwAU12/j4SwvOqjumVt9lPd58KcHce1Y+/GTCmFE048nvSPC6Aqo+303/nFFb4Nmj0CO0DDTKjeIO846HEcdoi1i+XwMvTq1xHO/PQ5BP8P8Tfsw8J/TbPefuGUMendOeE17WZRWPUdz4idBbpZfN0bFEAbgrb1w8pQSBjpf9jYA3BCRAQBb91k9srbbLCS+fm0frHzmIiz/+4UYemVvzaM9Ce96ANjrZUE6jkh+0DIniBXbSy2eUuZw4JtO66YUsH/5auPc5NNbT7FsIzD4BliMUlbcxhd9FOGCiUyY3ow8sRjH65PWumb7rA9ihj6+wU/faJBRqhkz6k61CCRgbbDrYqTyGg6g4j8/b8Dq+OqAFzfPuhqlVPh9DK9f2wfDbzkZ3/5lgHIb80qrOQsgABzZLh+/7dPJkJHm0jdnYG3Nd5Zta6O1hrDHljlB7KsIoypaCoR24dDWuRYB0UR5tWcV9GmDx9+f1MXg3mxAcbtUGjTyhjed1s3mUAo39CRjvac8eBbeNoWAqFYNRX38cdOPAIDvNmj3kDGGzgdpnV+g5QL4sraZOgytPGK1fNBnsY2vAAAgAElEQVRx7TH8lpN1TxtBwMfgyzIaJeY+di6WPH0BtlWsR1mtesVKsHDzfuWgAgA28I4G7ym7awMkI5tPGyhm+9XhtipU954xzR1+TjycceS8LZZt9HJI9UA+ljComIVz8w5/GQXHJDRkxASy28F5WLy1BEXlNQjkrwPzqSdYKu+gyVscxC4lzAKdhuPyRBabSoXYL6Cu83aaaXd+kvAe2Sit3n44sxBzNxbj8/g9LY6txMxtM3HD9zcgGoti7X7NSLKvep9rthS7dsygw8a54f3NCmq6Fy+NX63YM0EkFtEnrYA1PK3a5Akk2m9Zy8+M3YqinQfKKZ+egnNHaXo1654fhAtMRjqBWXxWNdkRnN/DeAxRP+V+Q+XtZRdaIAx33yzajmvem62n796rGIBaBKPj2PV9jDE8cL59xioV4zeOx5ydCYOtmHjFeAx/u/AYLH06kfVp5OqR+t/JGqXsypzMcXLznVepNayhXubzPDDtAQyZPkT/nErqa3O5VRPWZDz6hOdujMdQE63B9G3T0WtYL7w07yWLwenKMVfi9V9fdzz2iFv7Y/z9Z9ZZF+S3fTrhzes0rSZ1Hy7DbeusHX8bdAyeuqyHltQAAHyJ8Ylou1MZf8nPx827QZ6YvnRVwsvjT2d0S/q8MuY6KLwRZ2/X5A5kb22vGQMBgPnVoZryNavumZsXj9N9fnuR1ePMPBaQF37Mv8vX+tZCY8ZNJ446JB9nHtVWT6RiZuWOhMSESIwgUHn0f3fPANzYv6unxWgA6NbGWJ+HXtELQwYdg+/u9jZmB4DjO1u11QAtrEt4K+Yd/Thyu3tbVHTKvgcA/rxVyOv+JoKt5jmGsjtx3claEpmckB8l4d14cf5z6No6Sw+P9srz369w3yiOWLQtqQrj4jemY0up0QBknv8E/T48cUnCO/jouPGxVY5RFqOHjd4oYNVREwakAhvnCuEZa4eqjgaTTOowr7AY/5q0BkO+WmK7zfLtJba/1WW+Knu2JespmslkhFGKMXY0Y2yR9H8pY+x+xtjTjLFt0vcXS/s8whhbxxhbzRhzVvRsRvyy7RfkHTEUYGFHbSW38D2nQdzC3QtRGa5MS1YQAFi+XevMnELRBGLAsL3COatUKjDG4LeJ3TXfD1WDJ7ywzPG/qsH+77/7PU75NLFq0O3gXJTXRDCz8hnsbfU8An4fRtza37Lfzad3w6lHaB1r0J9Y0bQb8KqekewR8fKEeBgcc2/0VNfx+IzHDZ/tBHgFh7XNx8W9OkBeEFetGppTMMsTjdvO0LwGcjqOQt5hbxq0g+TVoy1lW8AYw5lHtbXoCfh8DDmdjJkV2xVko0V2EFd9d5WlPGZen7w26ZALwfbyRN0Vq9JMGKUCQo/FW+fZoaVxdWr53y9Eq9yQHubo1CfKburys72gh1aP524sxrJtJbqXkS9oTEwgDC9rd2kD82fHJgY9X9xxqiF7F+A+iHBCNrKYEfUsFPApM1ABak+pWofMK3Z29s3FlboRHQAemf4IluxZgv01+/WwiJA/5KoBYNd2GjxgEEMvaRCdFfDp6ZadiMQiBk0pcz2tqnX3yjDTJj+Em0+3euV5CZEI+H3o0lo9QTanrQ46GCXsMtAc26FA/1s1Wb/pf3PRbcg4XPmOptPjy96C0MHTcPkJicxvi7fsx2uT7LMdXXOS8donb5oMwHm91SzeK3su76ncY2n35IxdgFHHx+djKMhWhyCZ29mSmhKMWDnCtlx24saq9v3Zy3vi89ut/dBtE2+zPb6A+auV55Pr/o+bfsS4DQnR789us57LDXPfrHq37Oqp0xjGbJz4eMXHyu0mb55s+GzXdmfVwSj14pW90DovpI877LKJCs4+uq3FiOtGbiiAm0/vjq4H54GF9qDg6EQYoqgbyRpAtbImno8wVCe7n0qQ+Ys77Bddzdg9k5XFmjC3rGvpNJGUvYwAIP+Il5XbGcZBpjq2vWK7Qa9Sub9DvVRpSk7fOt3wuXW2UQDezrNSePd5YeJfz8LweIIYc3ZoAAatxxd+l9DN7NGhBS7o2R4r9q4weKQJvIZQma/x2pMPxZ1nHW7oIw3HVcxh7Nrr3JCm6SrwZ3vLeGmffU+7P75QUfzfXQbvZRlf1k74c+29n+XkKY/PfBxfrvkSC/cshJfwPXkcM3uDUXcV8D7O/PfSF/S/v7RxdrhAikLRNXH95YYkF06hfJpAQEIyQmhK2WVFdEtoYY6q8GVvRWVMuwfyfdm6r9I2GYxod3Y5hD461d9ojBvqVXlNBOv3qA3ZZi2zHfur4M9dj/xjHsW+Gi+LQM2DjDBKcc5Xc85P4JyfAKAvgEoAo+M//0v8xjn/HgAYYz0AXAugJ4CLALzNGEvNTJ1hPDf7RfiC++EL7XVcdXbzjLIbfOyr3oc//PAH/G3639JmlBK8cEUv123qnF7XZX8vAsSAOtRQNMRmA5Gq0VpfYuyEOseFHv1xvSjOudKN3seYPoASnlLmc17SqwNmP6IN/gb372Y5hixG+e+pohypGaXMdcCwQuhQP+QYdGUGHIfVb7NBcPxyWccgcSzZvfeeyfeg78fGDHs85t0rKZ2M25iYhGmrQ1Fkt9c8wYRRygsc3OJpIib5YgLsJEA5Yo6UEUu638LN/C8jfsWlb86w7XSFBkllWKtPsobTyd1b4434qn5dWLRbEx5vV5Btm9VP1J+WOUFb3QTVNThl8rPzGipXiJ0LZC0at6w2du2rPBGO8Ri6SdnOpq8twg4XnTBAM/LKRqk1OxNGtGe+W4FTXpis2s0RxhjuO9eaKt3NA8WN7JBp4Chum68KBccOwcl9EuF3douFkRjHte/NwtTVu5XZdIQmmCCv+7+R1W48AgE3g5p9+3X/tPu18jsMss2ZGGVDZVltmX7vhNHGbLypjWlGTs45aqI1eHGuVbycw6rJOGDkAAydO9SyrcBuIqKqk4NP7YYVlWNw1udn2R5PDn0W3H/ekQi00N7dCYUTjGV26IPtVtIdjUemcovspDLJ1FN5YpROLnMIQXZDZDQUiyt2nlKi3e/QKgezdszCpaMvxfiN4/XfvVxTflYAH99xhOG7ZMP3VPsC2rN6YuYTWFW8Ckv2LLGUx07A3/yMBx7dVhdmV50nWQyeUikY3sw4jYOemPkEHvrpIcv5X5jzgu5JlmwZysPljvvY3ddkjFIybh6NbQuydL1J4eF0zdhr8MKcFyzbLt5q72kiUx52TyDwxeov9L9V90MsRD18oTH8OCeoaUAlqzFkV+dUGcqzAn58eps1fC3vsNeQ29Ve9F7WExLX1DrXm8yDSvZgcP8unvaVqYwkFhT7dbPPePnTwwOx6Mnz4x7LHPf+cjkuGZ3Q2zIaimJggcRCp2woksP37Dx7S2ut2ds/X51IWGHeL6/7Wxi1SwvFln8Z8OJUnPy8ekwkdEbNHvhTVu3CDR/M1jQdpSpQOPQSFA69BP93kVa/Ppm9CT2fmoBNe7X7d9P/5uLcV4xJCQBgwaZinDZ0Cr7+NaGPuaOkGrld3wdjMYxYb03e0VzJCKOUiXMBrOecb3LY5nIAIznnNZzzjQDWAVCLADUzhBjv7/t1dsw2YQnfMxkl7AZxlRHNOi0LQ7pZ21XZXMx0apXjSRDPS2d9/bjrXbdJZmCu+p4xpne6gtz4wFE2WJ3U7SBPZe7ZyTgYr4pUKYVHfSwxgJKvQZ7wHJwf0rWUnrj0WH11S1BcUYuTn5+Eu0YkwpRkTynOOcbcfbol65MXXQ7zpNoOWUNDVddkkW3LOUzfbSmuAhA1aFCYmbZ1mj7J088RtcbA1xUvz9p8Tf++PWFAME9Ma6I1WFa0zNO5C4deor/zg47TdMHkuvj6pLWYuU694iKX26xFZw5ze/mq3lj85AV6tqR7zrEaK9xoYeP1MWz5MACJFWx5cn1cR/WKqCh79zZ5trH/T49ZbhBBBzRBdQAGrQrBOJvMbqXVEfhzN1i+Z4zpRqmQP+QakmAbvmfjaZjMhCvCI/r7DwDfLt6OTXsrsGBTMf43c2PSWhQCVVhLMlo9KswLJ8Ko6gtqE5WV1V/pv9mFW+4tr8XsDcW4+cN5ttmfVBRimMsW7vfptMPtB+it80J4b3DCEC4Pkquj1Xq7J9pxOY08kPDe4OD4Zu03+GTlJ8rzpCt8z45XF7yK4upi22ct62AJ7jv3SPy2Vw/F1qlN+p32ifIoRqwc4TjBdquncl8q3jWv5fR6P5/5TU9MfWigp20BoF/XhFEzL774INoVO08pMafmnOOOH+/AptJNePjnhzFtyzQUVRV5NirlB419qdhPZBZMJtGMuX//Zt03uPq7q3HD9zdgwqYJNnsZ94vxGN4b3FcfcwmvdC/aaqPXjsaHyz90LKNslPJ6j34Zco7tb5YwbBemb52Oz1Z9phtt6hom6RQJId9XL5n91OdyLh9jDPcqFjGSRSWT4cTwFcP1v1XvvFiIMnvditA6pwy0KuzqSm7IHHLG0KV1rqOjgB3y2F7Ui9b5Idx19uHK7fdV79PnZ9ZycJzZw5tBa4Sk/1Rc7u2+lMY24IxRfdGl43awoDXbuNxWhtpORP6RL4AFtDZFTka0tGgpGHM+544K6xhNNlQJ/TKZGCLxcliPt6vUuuD3v5kbAVjb2z9/8itmrtuLt6etx+X/1rweTzs8EekTjmjbP/2dFj0gvKMWbNLChs2LCoVF2rz657i3IefckLQlr3HWzxuFTDRKXQtA9gG9mzG2hDH2P8aY6MU7AZDFVLbGv2v2iHdnXPFDtvH7xdXFhmwzgLvGlP59TAhJ+7yM2QEA/3fRMa7bbC/xtmLzv2X/s3wXjUUxc9tMvcFeWrTUso1X7PQEVPdj/P1n4sUrE95dHeOpsGUvCZ9HsXFzGFZlpFIZkudjTB9UyB1iUNKwkTVRGGMWr41L35yB3WU1xok3M3bgvTu3QieTUcrLAMbrRPqS3glXXy8C6nJnVqXIjlJw7GM4ssdEeK6U2lGT2NYeWZz3hnE34JFBx+CcY9rFv3EvT5Y/MXAQAynxbJ+d9SyuG3dd0mV69GLtncuSVuz+NWkNbvhgjnJ7o6eUcXK8aodRX+vqfl0M6bsv7NneMamCCjuNoX/O/6ftPrKhRUbcK7MRVWbyqt34YPpGw3dVvhVo1fVz3DbQe5hL4b6dyO36nuX7Wdtn6eF7QV/QMZMdYN/OmFe05clfO5PmnnjGZj25SCxi0FlauHk/znp5Gl78QSwkeH9H5NAk1fvs5oEyb6dVyF7GPKE3e/7JqLygAGPq5JHz7MV2zeyusRoXjbh71bpNYC9QJNYANK8B8c7pRimTM7eYKK/cu9Kx7U12Amw2fIs2x80IUx4uB+dcFwIX5IesiwGMMeQE1O9jSt42Dtc4oXAChs4div/7+f/07z5e8TH2VydE8e3qqdP9StZ45nZdAb8P3dvkoU2+t0nh7/t1wRUnasNWEb7cqVUOAi3noe/RmvffXwYaJ6Z2Y417ptxjCLkUZd1fvR+/bP/Fsn3IbwyXFvdCZEhNBqf7KIf2OO3HOccFPdujz6GaeLHwaOk9vLdyexnVmNFMKp5STv1N0nUnXg/N/X8yyOc0G2RSXeCww26BQEVRbIFrP2CFw5+7ARclkUESMLZtUR7FtC3T8M26b7C9fDt6DeuFKp82LcwxGWuEUer4ZyYayuCG3XPWRc3jC0BX9u2Mvl0PMvRhwdY/wZ+7zvUceRbDktZnXH+KerH//mn3GyQo3pQ81oMHzcQDs652PScAnH5EG33BLhbzFmgkMrEf1W0bht+SCMV+df6rlm0D+drCIwto48vqaCVKarTFqKd+eQpjt/1b+93mXPtr7JP4AHCUr5E90AXCYCTz4wotjLMmbHzOog1/eULCOeOvkobkT2uMGly3fDTfYGQyj2WE3IZYVBvw4lQUhb7Rfz+Aku9lllGKMRYC8BsAo+JfvQPgcAAnANgB4JUkj3c7Y2w+Y2z+nj3WNMKZiNyZyW7bMo/OeBRfrf3K8J25o7LTYBCDOz/z6+f6aavVHVGmbUEWTjzUmgnBeH7Hn3VU5xq+YjjunHSnazlk7FY37Tpsu0HtGUcmsnkIyzxjDJMeOBMnHtoK4WjMVf/BcP6Y1jhVhTUj3fzHz7OUWx/A2GgulFYZQ4zcVrUAgMkeTjYTZi/6MV7D956+LLGKrlrh1oVVFcewpuzVtp26fUySXiB1b+n/NKA7vrvndP3zsr3LcMdZh+O/N/XDyNv7o4PCkGIeyMgTgOJq4+qSVy8pMwG/D51a5aAino3ObRDp5Ck1r9C64mVGGGQFbp4JZi0hL6juJZB4Z+0SAwjW7ylHdTiKVyeuxmVvzsC8mhcRzV2IV5bf4bkMoxcXGj4LY8GQ6UP09zHGY64rrl6y75lDs+T0znedfTiO76y1qa1yjRNIeYIlM9fDczS/P/dPvd9QHpn5O+e7GqVumXCLtq/HNvC0w60JAl66qjeG3XIyNuzRXOCvPckYfiAGjgBQHfY+WfIxZtH5KJAF9aV7oRKzjvJoUqLIqv0BoKRWG4ibjVLifpeF7ZMucM4dPSRU+EzDPuH97LZvWW0ZRqwcgZNGnGT4Pjeg1gvzUse9Ircn5oxhqvO8NO8lPDHzicT+dkYphz5KFp1PJ3baaCr+/pueeOXq4/VQ0IPzs5DT8St8vUO7NnPpnW7tlrLEOq24Z3+e9Gfc8eMdFkOj3SJlKuG6qYbDGTylTFl1VWFWqndxzs45KCwtdD1XaU3CwyIdRhuv4yAv+3tFvl8WnTXpmuoacg1A14tUZVwTHNtB8/5fGXtT7wdU9FHMDYKt5iC363v4aesUT+XJCfrRsWW25TrvmXIPnpj5hD43CLWah/vOPRKX9e6AS3snskyv3a0KDUy9HhSYErMIKQ456Uj2IT8gt+sHjsd54tIe0gKnpLHKmGMkjIx4DgCQ3X6sp30EL10ljL7eTAV6KLoPOLJd4ryyp+Lv+nTCP67opRuNstpqyW6W7F1gONbWyjUA7Ocvsg6cHXYe67ec3h09O7YwhBOWOUgzmMMxVYtnsuFKtThwxktTE9uaFi1FOOy2/VW45I3p2La/ClltptmWpzmTUUYpAIMA/Mo53wUAnPNdnPMo5zwG4H0kQvS2AZBHrp3j3xngnL/HOe/HOe/Xtq06VWim4aU/lTtgwYq9Kwx/v7nwTeW+orOUVyTkOF47bj/zMNdtUmVzmbba5iUFudsAwc1DzEzHVjlY+vQFGHvPABzWNrFifES7AhyUG0JVOIZYMiEuXGvsqqPaILFNfhbevTERAiK3sXJZH7vkWABato9SGLNsCCODOdzQAHOf2HgxSpXWlmLtvrXK43DO8diMx3DOF+egICfRqKsm0ZxzRGIRzN85XyuekwFJ8vJiHlP52uEmnmjWUnj8kmNxRDvrfWWMof9hBysFr0evG234nOVPGFOW712eTHEd2ba/Cl/9uhXdhozDNwsTzR/nHNPXGo3w8kDVnLp41U77SXGvYb3w8ryXdU00QW2sNu2aLFf17awMtRPvdEFWwsDw8lW9Ldt9u2g7jnliPN6Ysg5LtyV0LPZWp74gYcjSGL/cKI/ihv5WUXBDmb1m34vDGDOEN9919hG6ITpmmmS4v6f2z+XQ1vZ+4ub3ubS2NPnQMRdD8KmHH4w1zw0yiBj/vl8XnHVUW92D76nLetrun3XIGBQcO8T2dyMccx8zGv1lD7ORt9unrwa0+5FMHbfoNsb7FBH2aREE93BsDpNRyoORLNXsexXhCvxQ+IPl+7ygekXai26aV+T3YtDXg7Cp1Em9QUMO5bAzkot7bMj8FD/Xt+u+9VS2ZELZAHVSEuXkngEF2UH8tk8HXDHmCl1c3wmvkjjiuoW2pflZORk1VNs74WQEMR93VfGqxDli1jFJQG/zVGH9qRuIN5Ul6lM6NKWS9V502t8rch13Ev9Px/Ud1jYfhUMvwaQHzrL8Jjx4u7fJw5rnBll+lz0YAeCGU7oCAM45ph1+fvhsfHrbKfCFtD5ZFaKl4oM7W+Kyc+bZeoslQqQ1j5ZWuSG8dX0iC7TZCxkA/DmFrue1e7Yq7yYA6GkjQQCox+d/GtDdYHwS+n0MzPNz1LP++dyTpJhpV6CNB8RiuRuiD4vxmO17/69rTsB1Jx/qqksmgj/2V6mNRWY5DhV2Bi2fj+Hso9sZjEPib865rgElwkfNY2JVi9++ZaIO2SV20cseieHzeZv1BbVIXLtq1c4yPfGXTH1knW+qZJpR6jpIoXuMsQ7Sb78DINwKxgC4ljGWxRjrDuBIAHMbrJSNSKri4w///LD+9w3jbrAYmirCFdhUukn3DCgsLUxqxeWi4zpg7fOD8PVfTsMTl6q1JrxwTGtrKKAXXQHztklrSjkMpAuygziuk7WzmbOxGCt3lKK81r3xBBK6EeZyyHMIv48phViFCHTuoR9hQ8DoKtvn0IPw5nV9LNpShnNnWcUUzXh53rdMuAVXjLlCeZwYj2HM+jHYU7XH0dUc0K7t7UVvY9aOWZbfbj2ju/GLeOy5Dz5ktR+jf10dqcbeKqPIsUzfrtasHvdMucd2ewD4+eGz9RS9V5zYCYwxLNi1wHEfNwK+5ELfBMl0VJ/OTYRJTFi+E4P/a2wOVULnAjmrjorhK4ZjyiqjQbg2WpuWFVmZgN+nNG6LssuDnKv7dcG0hwZiwwsXe8ro5ebJ6QX5vTznmEOUiQrEdl4EZuU2h3Nu8IaUPc1iJkOsu86Tfb1x8uJI92TNjlDAZ0klDQAf3nwyPr+9P3JCflzUs70hbFbft7UWitSjQwtnIzy09sy8knrliYmQiMPbOg8sI7FIUvfEbeJvl33P7ZjJ9H9O53EzFtmFEOYGrfcpHA1bjO+C7zd871pGM+Z7tavCW3YsgV3ZHQ0mKY6l3IxUqsV71ZqX2KwyUom1+9bi8ZmPW7Yxe5w6eUXXRGt0jyi37Mupao6qMHvl27GzYqfhs3wOXUsnT5v4qSb9nHNsLduKX3f9avnNDUP2vTp4yMhlSeV4dRHZlyfpTkYpL+GMXjFn4SscegluPzMRUqoyPFz+7eWGz1ee2Anv3tgXH/yhHw49OBenHd7GfVHHdE9fnvciPl01Ql+gBoz3wO2dlMssyIonn3EiWQP7IS2yseTpC5S/3XK6Nq61CzuTjXk3jb8JW8u2Krcz0yKuTcuY+ztrXpQVnkTRCk24u3vL7pZ9ZAxGqTrqTYqqc2S7fEMIosDLGOrQuHHorKOsTifmxYGi8lrsq6jFqPlbcdbL0zCvsBh74olzymsiWLurTI8akOdkLLQHgYJlhsXp56XskypmrivC375aituGa4vuyYTDNncyxijFGMsDcD6Ar6WvX2KMLWWMLQFwNoC/AgDnfDmALwCsADAewF2cp3mG1ERJh0HVPIDr90k/9P+0Py4dfanBq2XJniWGv2X3cBVBvw8nHnoQ/jQg0bCdcaQWrmEXmmPm1I7OaYDNXgLr9q0zpKJXeXrJ2A0gUpmQJdLTe3sovww5V/dqMnaoCS7s2V4pxOomtnrZ8R3RrkU2TujSSr/nRtwnNl48pcQKdq9hvSyhaHYu7SpPqRhiWL8/kaGwuLoYhSWFADTxxutPTjhCis7W5/PBn50Y2N456U4M/GKgbVlVYtsiJt6O9i2z8cD5R+OU7q3xhzNaoby2HH8c/0fHfdxIx2TfDTmcbPt+q6CjwSilcE0OtEzO8JasF4lXBh7dzqJ1JspuTgHcrU0efD6GUyUBSju+vPM03HCK/UA4YQBxvyZd881mU865JfuSCnO9EO3Jece2g8/HpIGRyVPKTftNEeLavoXW/oYC9SteMHbDWHy07KOU9u3UKgenHKY9y3cH98XKZy+y3XbcvQMw/v4zcZJNOmkgrtllajdljR6f392rNpl319y3mL19zH2SKruQ6pjyxMjLRMB8zYn66nK9Nt7Csqen4Is1Xyi21Hhj4RtuRbSe23Sfg361wVfGIO5sc1+cnp9nofMkPaVEqe45J5Hh7tqTuuDDm0/CrEfO0b31zKnuVWMTs5FeGJXtxjFTt2ghJObJtLlvd9MYTWbC6TRukOui8BhUnVP8fefAw/DUZT1weZ/2uv6MXiYexaCvB+Gm8Td5LptAeKYDwPlfnp/0/mbMelh12d8rQtMQsN7zWyfeipGrRgIAxqwfg8bEPC5kjOGi49obPILMxi4zlr5RkZlPNT62exYq41nrFupMvjJuHs8DjrCOte3Ezq/q1wkv31KJz+88Ufm7eZz85dovXcsHaJESh7fNU3pomhm1ZpThsz6m4tr9a53dGot2L7KVCPDiKeUVv4/hu7sH4O+/OU65wPfDRqvXrpl3B/fFv68/Ef0Ps44Bg6axzhuT16LPsz/i2XFapMmqHaW6xlN5dQTn/+tnXP2utkgui7LnH/4Kcjobk5DYJfIRfDFfCqWOcVu9zAORjDFKcc4rOOcHc85LpO8Gc857cc57c85/wznfIf32POf8cM750Zxz99rbTKgPLz95sHDt2GulcyVOdsP3N+Diry9O+tj9urbGW9efgKd/r000b+x/qK2HAWAcDInzy2F75sbyd2N+h7sn361/1sVlkwxh8DoIW7cvIVw44f4zRUk97dsyN6g36qrznXdsOxzXqaXe4aUycAkFfKhViDBzaWIrDArmSZMXo5SMeX+7zHx24XtyNqqv1n6Fy765TP9s8OiIe0qZPQDqi7YFWXj8inwMnngZrhxzpeX3V+a/YtHocKJBjFI1LhpH0rMJmAcvvkrkdBwFJy7uZRQkjfJo2j2lAG2A9f19Zyh/yzJ5zuyq2IWJhROV25rx+ZijHtH4+89wbJeARHvkOrnnMU86J5xzw4R3wBFtcH6PQ/DkpVr4Wn48XLHTQUajgPk9NadOVzH6rtNw7zlHIDfLfkjg5l3hhVXFq/DKAk36saSmxHZwW1dvBUILTlIAACAASURBVHEPzBldZX0Oc/28tHcHQ7/gJv0T5dGkymlu0x/86UHDZ3Of5CT6L9BSUnvzythYshEzts2wrDCL5+pWb7dXbDcsRAmy/ZpB85t13+C52c8BsBoY6oq57gVYct6ldm2RWWx+X/U+XbPKixyATLLGhytP7IzCoZdg7fODcPc5R+Dso9uhQ8sczHvsPKx+7iIc076FoYxmFuxagJyQH7MeOQc3ndoV9557JO486whPZbELx9tUugmLdi9y7ZNkw3dNtAa9hiX07pK9b3YYPKXi9Tor4MfNp3fH0HkvYMDIAYbt66sflZM9eD2Pwcu1jsL+XnHS2NlZsRPPz3k+6WM2Vbw8A2VW5yTua0mtuwaj2/GY/q/k5Rz046s/WxfXp22ZhmdmPYP3l6mlU8wkMx6f/OBAzBxytuV7c/nN7YI+FozLe2zYvwGDfxiMHzf9qDyPuE4vnlKuUS3g6NW5pWPyEzeOad8Cl/TuoPSwFyFzZoQhal88Q3hBdsAwfuacO0paCN663urdJZCzRE9bsxvTVjtHI6TDezNTyBijFOGNhqy8yaaWVtGv20HY45uIh2bcgYd+egjP/bYXFj2pdm8F1N4207dN179TaQLN3zVf/1sWI3Y7vpfvZSZtmoTfjfmdPhE+un0Bftenk0GvyRVmLCcgr/Jon+tilMoK+CxW+Sv6dELPTgnX0xiPYeyGsZYVLXklzgvmFOZyJ2UwSikGU26dml/2YhCeUjbeb/XB9d9fD0CbqJn5aPlH+HTVp56PVR/GGzOyp9T8TdbBlvNqtrWehaNhQ3149fcnWI7nVD/r0k61zAmidxtr1iWxAnlEO03b7U8T/4QHf3rQ1vBh5v7z1Cmsh17RC10PzsMlvTrAycAsrkk8T7vsTF7fW/N2OSE/3o+HOABa+/LujX3xyMVHGbYTz3L4LSfjlauPV4TkWc/foWUOHrjgaHDFb+W15fjThD8ZQiPqyofLPsSAkQMw5Och+OnhgZbfvd6jFtlq44QIZZEznV13chetPVacY+DRbQ0aIwCwothZ3y3Ko0m1wW71MFURaa8ixvdNvQ9/nvRnS7su6otbKMp7S6xZJwFg2tZp2FK2BU/MfEIP+0/3AoH5Po/bOM51H3ki6NVTKhUvGcYYft76M7aWbxUnToqg32cZSwV8iX7x1QWvxg9r3ObrtVrQQIeWOfj75cfhgfOP0j0ed1c5G4bM9UR8vnT0pRj8w2DL706eUq8teM3w27mjznU8t1ecBPzHbbA+//rwzN1cutmQ7AHwtkBZ17KkMrbz2s81B8xtlWo8MWz5MOt+aTZc2npKuTz+vl2tC0XC829vdUJyYlfFLny84mPtmKZrdHveXpJXme+H/ZxO225fjTVDnYwYg49cPdK1P/NilJI+qLfx+J6ZM5ADwNZ9ibni4P5dLb+/+qMmtN6hZbYhudLfv1th2VbFoQ66UkXlibHzLR/Nx2hJ85X5y5DT+SPD9g0xR2gqkFGqmaF6R/+37H/oNaxXUt4b9c3lJ3TE0YcU4PQj2mDdfs27aELhBMt25oGYU4YRAHhr0VuW78RKLuA+GbZLneulURAC32v3r9W/u7F/V7AkJuDieuXziZTv5x57iKFcqQjGhvxGT6nOB+Xg1WtOQEAy8sR4TCm4rXKRdmLGthmGz3bin3bhe21z7ZMPyN7dLO4plezqeTqMqnZEYhHURGssE0AVdRkoee2Uy2sTA5Lvl+60/G5uGy7u1R53OCQnOPPzMzHw84H6Z7NHSrKhTcmiWkUXwpj++HPdVqZ19PIk4vjOLW0HC50PkoxILILsDp+jILcMV/fTQkW1yaO7oU08k2E3n6Tczut7G0MscUybNuSi49ojFFAPVs88qi2u7NvZk9u+fk5FiNbkzZMxd+dcvLPoHcP3yYQtmXXXxER74qaJ6KpIz+y17jxzuVq7QRhM7znnCBzZLh/zHjsP/7iiNyqkFU9Rh5b//UK8/4d+lmM8O+tZx3MnW8eTnUR4IRb/T/9sE2IH2HtS6JpSLtfiNBlfXmTsL1LVybPDXLYRK0cktb9XTalUPbzumnwXnpn1jKdtvTzmP47/I078RDOSCuOTuQ1QjUlEnzZz20zH47uF45nrkXn7vdV79Xu1qzI5fS+ZjSUb9b/N9d+Qfc90fpWejFuK+FRQncc1PBp1D9+rq6ZUQ/LrE3UPd7RDlt6Qcbo/J7XX+t0NJRv07+prUm/XL1/VtzMOaZGF47t416pU9Q9/mfwXvDTvJYxYOcLyDrj1J+btVfXWy+JgTtCvh/y76+Ulxhpu99ztd4NWos2YyctzLa8tx9I9Sy3fy0khhKC5iutONso6fPRLoes5AUlgXkFRuX0/Ezr4JwQKVhm+c+rXmxtklGpmmGOjOef414J/AUjeqOCGF6E5O16/tg8m/FULb3Nq6JwEOFWDaHmQI6iOVuOXbZoArhh82XVqBn0OxcQ3WQqyA0oNFzfkQeJhbfOx5OkLdIFtQUqeUkGfIbuD0MqRQ6C3lm81ZGMUGDKNpYAqxTOgHtTGYjF0bWFdvRDI8+x7ztU0ynw+dXMmT5jC0TAqw5V1qrte8DEf7pp0lzdB6zoYb/677L+etnMb45qNUm/f0Bd/PT/ugaMwxJSHy62p6qXsLtFY/YTv6cdXTFhEmnBzqmR5hfAvZx+BaQ8NVB5TNlIG8lYj2GohBg6Yqa+ybd9fBUdPKW70lGrXQq2T5/V5e52YyBmr5PMLAqb3gjm0R6rBn7h/dfFEXFm8Mqntvd6j3/bppA8oTz8ioRshJsyHtc3Hjw+cpev0yAkpxDnysgJKw51bmx+JRZKaPDp5mnLOU3pfOPeefU/35DHh5j1s3s4LyS4Q9BrWC9O3Trf9va5tSSqaUvWFSKpgTighs2jPItfjqK7JzpvNjHinxb8jV480Htt0v1futb6/b/7qLczIibEbEinqzXU3WcOO7JldrwsiHjyl7PQzvSJ793vFKXyvPmmdF8LbN5yIEbc6ZytNJ+b6Kc8h2ue2N2/uKdRt6kMD8dWfT0uqHHb1skvrXMx59Dz7ZCeK/VTafkJHdejcoZZrcLsmTzpwHqrmp7ed4m1DGMcIg78f7LhtMuF9yejcmucp90+7X49skHns4mPx7OU9sfEfF+tavmYKsgI4qZu7/AFgfaY5NhkYBdfbaJhybjVmkacUkbG0zjNmLVq8Z7HnfXsN64W5O5peksLaaK3u2io3QqpG7YR2J1i+A4BHZzyKqZunJvQzPAiac87R95C+AICLuyevlwUIoUD7BsXOfda8qtEiO2gRazTv+8gga2ZCM91MXgkH52v15dYzEwag+6fer6eelamrUdMuS5RwT5aJ8qhjp9W+RaKen9tDm4yahU8F145L6KDdPOFmnPLpKTh5xMn4eevPKZXdC6//+jrm7JzjadtUs5RwcLz+6+v2ZbhW/S6oWFq01OIJk/B+8jbA92cn0jdHeKRewwlUg5HubfLQJj+EIab3IBKL4Nu7Tsf3956BC3u2txitnJi2ZRr6fqy1AYu27NdDRZ1wmxAlE74nBttOhvu7p9xt+Gy+N7K9RctC425YkxEiwA2l2QYYB2HTt05Hr2G9bIW/R97eH+//oR9G3JrIsmg3QVMZpezw8nsy3qpO70OqiQFSyb5n5oeNP+CpX55y9TRJZmAs6wF65dv139r+1jJkn0rdC3Zlt8sQWJ8MvbI3xt4zQDeUpoqqDRR6WG6Iuij+/WDpB7qnN2AdH9079V7LMcRiUrJC73aYvQHsFrHskDNG12cKdS+JAQxe4SkYpd5Z/I77RiYay1MKAC7u1QGnK0S9U2HBrgXYWGpdXJZxuveH5B1i+U4sUjg9i+5t8pQZmR3LkeJitao90sOopTbcKaOimxHSvL2X8D0VfQ49CHefo3nNO2lQDVs+zND+ONXHcCyslL4wHDt+ruVFy22zaKvu49O/PG34rNJBBICD8kIYfGo3MMaUQvdABLzro5hXNEm5v9mAab6XQiRelTgIANrkWTMMa5BRimjGOGXkUHHHj3ek7dzRWDRpcWwzDAwvzNFELSvDla7W83Y57SzfAZq7+b1T79WNPfax4MaQvRYhTWz0+43fY/Kmycp9nGhbkOXoKVVUVWT4LAsFumG+hjvOsqa1NTPouA6Gz1f11byvckPuTUE6PaXcBo3hWNjRTf6C4xLPORmtq2SMtDL1qdVWX6u6l5/QSaEnpKawtBBvL37b4tn17o0n4rnf9fB0jLdvTOg8RWPRlFduvQzIVZ5SuaEA5j9+viX9b4RHcHyXVujRsYX+nZtd6j5JX0oMrvKzvHk9ptMoJbCrf6r21a7Nvevsw/HeH/rizwPtwzJVZRNedF7CVtKFXA7h/SFn45RpV5CN83sYJyJewrDqqnmRTk2pVBMDmEMIU2lL3lz4ph4i5oRbdl2ZVAyYKj1IQUGowPY3L9i9E3ahcfVJdtBvMI6a2Vya0G7bV22v4WJ+H5ORZ1DdjyvGXKH/nUwYY7rC4J10rOS/zWMmFenqU1X1QpTT6X39bNVnaTl/MiSr+dkQpGIc/OP4PyYdfipzSK7VKLW/en/K5XHCa0IBs+FWVX7xTtq1RfN3Gr3n3PpjO904Q/k8tnt224nvS2pK8M/5/8QHSz/wdLx3F7/rfs74vbt23LV48pcnlduo2jG7OZUTpVWJvvnZy3vi1d8fD+avAvPX4n8rzdliI/Bl7bQYMM33t1VOELkhP/4uSQwcL2VULbDL0KfwlGoMj97GgoxSBxBePBfSOfG4Zuw1OPFjdXpTr1RGKvHV2q8AaEYRN00pt2usiTivmJgHQnKn8/3G770XPE5uKIBDWthZxIELv7rQ8FnXlHLwnjELKidDy5xEQzjouPa4qm9nAN4MlnUNeZPvrdu9DMfCynsgDB05QZ9h2/qmofSR6sqcHXOwtSwRppMruRB3aZ2DOY86i9Ca68FFx3XA6Ud4Wz3MkvrYKI+m/FzeXvS26zZ2ovkqVHX7nRv7Ou4jG7AArd7lZvnh5DXm9b30HL7nYbW9MmKdyJuvNy9eB9rmZyEr4MctA7rbl01xfWKQ5zbpSUdIrDkEUi6TlwmFaD+9eA24Cq26nC9ZD0enNjYSi2B7ufPKsR1y3WgoIV+nMgDeNKXM90NVlwWptCW/7v5VP4fbO1kdqU55wpruVWzhmQho2n0y8vM1379kNJXc+nsnA6FAvGu+NE0jzPdRhC4Bxuu+bPRlcCNdz0TV5on33uldqwhX6J7b9em1JdMUhc7rayHD6fn2atPL8t2SIs1bJjugDqlPFTejTkVE08QavmI4ftryk/6902KS3TGfnvW04XPSnlIpakqpjiUYsXIEzhx5ZtLvmzkztwoO7vruqO6jWWbAi+zAb45PJEDp3iZfC+fXFyCNZcg6ZBzyDnsNO8p3GL43lyXg92HFMxfpcywzLXJs+kgyShHNCafGoa5eS8myet9qcPA6nVfWNqqN1rrqDLidSx7wqZAnZbXR2pTExM2YPYScBpaqfQTvL3kfF3x5QZ2y78npVeWMFF46lboK5cvldUt3HolFlGX62/S/ATCWtyEGY5niKXXrxFtxyehL9M+y6/BxHVviEEnn6J5zjrDsrxqEe31/5X3rYpTyQjKDIFX5L+xp1Z2QMbuLJwRX3UPf3OpKSp5SNoOz0z873fKd+XpbxnUtIjGjELvynApBTaHV4tZ22g00OefomNfRdj+5PKoQhmREPkXYmBevAbvnILwL3dr+ZIXOndrPz1Z9hjcWmldk3TGXYfzG8Ukfw4lU+m6v98X8jJwMIakaGUQGLjcDYnW0OuUJtPke1TWcbdFuez0p+TrM7Wsy3k1uz9VOYFpJmvKFmJ/R+0vf1/+Wr9WLjEC6vIZU99SroVNsJxZVnUjH+KKxNKWcqK85h1MfptIiFQZCt3YgWQOiWzsnPII4uCHMXrXfmPVjkiqDq9C5qd9UPQuv57Lrg1fsXYF9NfuSft+8bB+Ohl3rz7KiZeg1zGiENBuhvLTHLXODWPf8IHzyp1Mw4EgRhhqL72/En1sIwJqJcHyhfd/72MXH6n8L7cu8rIAhG7CAc6tZhoxSRMYiv+xmt+rGWkl5drZzFiOv1ERrDJ2KU1y2HWJi4CV8ryZaY2gMUnVTl4/xnyX/wfHDj7fdVpxDdW1vLHwDOyp2uOpiAVoqWRVyRogqKc2pl1X/VDMTCZIKdbHpkH7c9KPlWA0xGGsIjQrleZPQ/1Fpjcli22Zh3Q6trKuGqjbC4gZuU1cM+gex+jVKRWIRffBh+84zOP8uIa7pr+cdhbeu72NpsyoiFYjG4Jh9T1BaU4p/zPmH7STbs/cJ5/o1JPPumCfXwjtyf2XY9VhOhhjzQNKs8WQX+h3jMcdnoDIwqzxivbS/ImysLkap2Y+ci58fPjvt4XtORr1ZO2Z5Po6MnKERAF5Z8EpKxzEjtEFSafPtFhTMmI/t5GmXqu7e7srdWplcDE7VkeqUJ9Dpnng7jZcM70q0/oxSTl5rAlHv0qUp5VRnkl0QS1ffozqveI/d3v1kypCOSacsGp8O0jHmEZEJ6cbcT8l9g8obShgy5TGKHGqm8tD1Qjo1pQpLCwF4l5hwe4fNurCqNrSunlKCZKU9vHgyV0WqXBfChCFPxjJO8Ng8Bfw+3SDFAYAl7u/0/zs7sWHcaMQ5x7h7B+hfD18+3PbY/bodpB83FBf5zA74MfRKq1efylOKNKWIjEUejHPODY13Q3tKCb5dZy9gCnjvkGtjtY5pggH3gYAY+NpNvuRj1kRr0tIxy52BSmvghOFWQWqnQXhpTanrNkOmD1F+nxNMNHiVklHKyypxOj2l3AjHwrYN8dayrbZikHXBcbJejysVqR7bInypqPv/GZwIU4vGjHV5a5nVs0XpKWXWLrEZKMgD0ChPXVPKC1EeRV5QE+13q5ee0gbHB633nXckLu1t9eqpCFcgGospMxEKxADvg6Uf4NNVn+KUT9XZiLzW1xiP6Y5ZSRmlzJ5ScaNUSVw3IRlDp4x50vvEzCcMn4uri5X7xXjMsX0xeI7Gt5NXZvWwSA+GCWGUmrtzLnoN62UIZTVjd7yD87Nw6MG5rm3/FWOuwA3f3+C4zYiVI1xKrJFqG2D2vE0Xd0/WVvU3l2122TJRDkEkFnEda+yp3JOUp1SqguRiguJ2j2qiNSkbMhoyAYB5fCKTjLeC27V6Cd8bXzgey4qWpU1TyqnOJGsc9RIe5AWVl5Pob7zUKa+k4x2etFktyJwq6SjTfVPv87xtUVWRQU/NCSfvWdX7KOqz/I7ImSrFokCy13zx1xc7esjYkepCpIwwYtlx79R7XRfxU5ESUPHwTw+7HkPWx/MyNiwPl6c0tjM//1SM5pxzMF+iPerSOhcbXhDJrrTjhWNh9OyY0IhyG2cGD5qFSv8KVIe1e54d9CMr4MfMIQPhlkyIPKWIjMU84ZFf/kemP9LQxQHgLbW2YXubyYA5fC8lT6mos6eUbKyqjlanpTEQceWAejVYvg5dU8qhgRNuo0731c793udjuhB0Zdi7Lg/gHr7jRjLWfjtNKQAY9PUgo6dUPa6KChpDUyrGY9hQssF2PznbEAD0/cSqkySH69VGjdfw4fIPLdt7Cd+zq1vy6nokVr/Z92I8hoJggeW8Mua05064TcIqwhUYfGo3eNGUcntPvEz4AGNbpHrXvaZJvuz4jjiyXT5uPr2bdiw5mYPpHXMa6FbUJhHSI5fHJROjKpxZ5Skl+rY9lXuU2XhiPKbXBfFuzN4x29N5zVSGKy3u+SqEJ44dry14zfUYQOqeQKlm7XNDeMHd+eOdnraX62dNtMa1rT9n1DlWo5QH75xUcbu/nfI7pbxo50U/y8zOip24b8p9SXsYyMZds9GjrkLnMnZt/GkdjRmn7pp8V4N4SiVrlEole52KyZutyW28ekolU+am6AmRjjL9uvtX5ffmunr5N5fj7C/ONkgPOGFe5JDbQJWRVCw62fVDXg2NKh752TqvKqoqcnzHnM6TTu8yWadQVR+nbJ7i6Thu7ef6EnUSEplv1n3jWBYzHNzdKKUoFwPDT1t+0vvmVIzmWQGfwVMKgJS1WfvXPM5zel8YY8hu/y125b6J6oi2XVZcF/ePk36LXif/F+PvPyO+sfU4TbF9qC/IKNXMkAd67yx+x9AIO01wGxNzB2PXYJsHu6l4SrkJnRvC9yI1holhXSYOArsQBfO1eGmEUjWUPBqPb5abai/XVldPqWQmT4/OeNTxHsi/pUs/wmlS1BiaUnKK7nRQXu0+6VJ58Zjrhq1RSjK2pFNT6rEZj2Fi4UTDd5FYRM/IZX5u7yx+x6Az4GWyKV+T6l2oCFdgcP+u+PjWk2yPUV6rDXzd3kuvguDy+6J6d+zeR/P1tsnPwo8PnIXD2uZrx5LqsuzdJMpvR1k4teybMR5zbF/kd9lJU0ossJwz6hwM/GKg5ThCNwTw1iY4tS9/mfwX1/1VpGogcqujtosoSepaeSZ+Oi+GOcB4L4evGJ5SOHh9GqXsPPXO7KwJiZ/Q7oSUjVLm68gN5Lru887idzBly5SkvCwqwhWGCau5fU2mH3TzjLZr41X1MF3i0ek0StUnov12G6PVRms9jxmboidEXSMrnNrC7RXGpA7Jzk3umnxXSmWSF+lV9zyl56CweYxdP9axzjrVi7ou/spsq9im/61KhDB1y1RPx0l3/fTaVi3aY6+vBwBhbh1jztw+E3dPuRvnjtKS+qSSiOH8Hu1x7Umax7w8Xnr8kmMRiOtWmhcXnd6XI9vl6X8/MuhYdDs4Fz3jyXR2VuxEYdl6HNNe+8wURqlkdDUzneSXeIgmjfyyl9aWWhqdEStHYN3+dfVy7mx/th6uIDfIMR5zDGNYvDsRQ/3Jik9sG8CJhRMNaalHrxuNVlmt9M+zd8xWrqDLiEnYot2LlGVaXrRc/3vcxnGGDAvzd813vA4Rw71w90LPYRuCYcuHIeQPYW+1Vv4Z22a4rqLO3jHbtuNbu3+tbRk45zjvlN04octBGLGyEACwqniVaxm9TlDskFdKvCCL3Dsd65ftv6RcJhmz55H5tyx/FoD06kuNWDlCKWxbFanCt+udw17djisIHqTV6TYdO2LEyrXxz+prGLthrEWLwOxSP3qtNZRmxMoRWLBrgf75x00/YkfFDst2gl93qVdQVYxZPwZj1o/Bg+UPIujXQtGqI9W6UWr8xvFYvz+xUmfO3jdu4zjXwc3odaPRMV8bhHyy4hPL7xMKJ2BT6SZs2G8/eBbX62Z0mrndOd214ZzxEMvp26ZbBqt255mzY47jhEkenL7262vocXAPAFZx93Tx2arPHAe1Hy3/SP/7w2UfonNBZ4NBdmPpRgCa18LW8kQ4nrl9k8svDBxObSQHt20j5bqcDB8t/wghfyLbqtcJxrK9yxx/n7dznvL7lcUr0xY+JbO7andSfdiMbTP0v6dtmYYuBV1c9zHrgbiNE1JhyZ4lGLFyBJYWLbX89uTMJ/W2bcP+DfhqjbsgtQrzZG9p0VLX6xBt7Kzts/QxG+fcNaW6nCCkvLbccJ5kFjHW7rMfHwDAnJ1zLN+NWDnCYkwori6uc6icKIfchpuZunmqq1diQzGxcCI2lmx0FYMft2Ec5u+c7+mYok9YXbw67e+AjKpvs+OzVZ/VyeDoFKL11Zqv9P42VeT7tKtSraFqZlPZJuUcZeqWqdhRsSNlDb03fjUmqZizc45yUU6cW0hw1DffrPtGf6+89Gnzd81Xen6u2bemzmWZt3Oe3jd6DQt/dMajjr9v3L/R8fcRK0dYFju8vl8FbTYDRVr7LvbJaQN0PDiMbeVaaOpf+/5V335HxQ7bY8sGqzVV36NHn19w37RPMbDLQP37j1d8jIeuimD2zhIsNg3FRH/c75B+OLr10Z7Kn6mwhkpX2tTp168fnz/fWwfSlLl+3PXKARjR9MgN5Nbr6nBD0btNbz3lrsDHfGBgB5TbqR2ndTwtLYaz23rdZshIdKBze+/bMXz58LSuLBJEU+eao69xNKATzZ+8YF5yGfJSIOgLNlpynIbAx3y2xvIACyDKo/XqIU3UD0tvWmrJyJZODs4+WF88ri+y/dng4PXmIXj1UVdj1JpR9XLshsLP/Afc/OLxUx7HNcdc09jFSAe2K2lklIrTXIxSleFKRHgEeYE8VEWqEOVRZPmzwBgzCHcHfUHkBnNREa5Atj8b5eFyBH2aF4JYefUxH2qjtbpxIeDTOuoWIc3NsKy2DPnBfFRFqhD0BS0GlqAvCMaYJ1fN3ECuITzPx3wI+UOojdbCx3x6WQAgP5ivpXCOW58ZY8jyZ+nhLLmBXFRHq+FnfuQEchDlUVRGKhFgAYRjYWT5sxwb+yx/FmI8pg/ICkIFiMaingxIAV9A6cbZItQC5eFyxHgM+cF8RHgEIV8I5eFyi/FGXLeK/GA+ysPlttfAGNOvM1my/FkI+UMoqy2Dn/mR5c/SPVPCsTAqw5UI+UPwMZ/uNVQbrUXQF9TDvhiYnhWtNloLDq79Hk2I1Iv6GGAB1ERrkBPI0euJGAiL7XODuVrdClciy5+l12nA2CllB7LhZ35UhCtQECoAA0NpbSn8zA8f8yHCI/BBq0dBfxCcc1RFqpAfzEc4FtbvZdAXhN+n7eODD36fH+W15ZbOz8d8KAgVoCZaY/CgqopUIeALgIMjGovC7/Mj5AuhKlKFnEAOYjyG6mg18oJ5hnCj7EA2Qr6Q/g6IOiTKnxtMhITURGvAwHTdpix/FiKxCPw+P6KxqOeO2s/8YIwh5Atp74dN3QUS9VoM5EVbEfQHDW7MucFcRGIRvf7mBHL0Zxrya/dB/JYbyEXAFzB4elSGKxGOheFnfuQGc/W6CJi01xhDi1ALVEeqle+BuDYG5vgutAi1QFWkyrKNqP+VkUrL+yiOLYTWOecoC5eBKbBOCgAAIABJREFUgSHoCyISi4AxBs45Qv6Q/g4Iz6ZILIKAL6DvLxDZRcVESDwLp/bAXD9qo7WewgMDvoD+3C3XHcjS37mgL6jX8cpIpf4+imxloo0Qzy3oCyLoD6ImUqPXGfHcxLum9yuM6deo6itC/pBen+V3XdxbFeL9rY5UOw5ac4O5jtpeon0S15YbyAUH11d6xbMK+AJ6H8XBle9PwBdAyB8ytJ/i3ot3IxKL6OdgYHobVRur1bUUA74AcgI58DEfaqI18DGffg2q684P5sPv82vlj1+v3I4A2vsW9CfqZm4gF7XRWsP7kBfMQ5RH9fbMx3y6p2I0FjX0xfJCS04gByF/COW15Xo9EfVBXJMod8gXQlm4TH+u4r0U1wZofVBuMBfVkWrNYMA58kP5lvstrqkmYgz3z/Jr9TrGY4axhlwXAr6A3of5fX6Aa9puWf4sre7G+xDxzHICOSgLa21UjMeQ7c/2vNCkqp+i7wz5Q9o7F64EB4eP+QzvgmgbzYT8IeQEclAZrtT7VflZivZJNmiJ8RQAvR5WRrT+NjuQDc65IdOmeO7meyjCdMU7nh/MR2WkEn7mR3YgG5XhSsR4DH6fH7XRWuQEcixtlXg/GBiqIlUI+UNgYJY2PjuQjQALoDparbdlpbWlCPlDerZPeUyZF8xDwBdAZbhSe67x+mBGjJGDviCqo1o9CzDt/fUzP2qiNYay+Jkf+aF8vc8T70dttNbQh4vnJdpEP/Mj6A/q5QasY8eCUIH+rsvlFe+naAuARL8pxhGiLdbfIb/WZsd4TB8vi/rl9/n1v0X7oBrzpELAF0DAFzCMp+QxgEC0n0FfUK/nuYFcRHlUG7PF20n93vKIpQ8Q9wvQvLREGwlobUdBqMDyzqjql+jfg76g3veKMGlxf8Sx5TZGtFOiHRbXH/KFEOERyzUHfAH9GYmyifNl+bPgYz5URaqQHcjW62VBqEA/TiQWQVYgC+FoWN9P1FtxXeb3S8xt5DF3VaQKLUItEI6FHccOop0M+ALwMz/8zK+/36K/KQ+Xo0WoBUprS5EdyDbUWVVZRP8k2hox1pDbHNEXiL5YbCuPFaM8ipZZLfV5ivlZ5wfzU0pmYWeYl8cmgDcHA/M4VoxjxPxWfvfFffMxHxhjev8k39MMh4xSbjQXoxRBEARBEARBEARBEEQTwtYoRULnBEEQBEEQBEEQBEEQRINDnlJxGGN7ANRNsbHp0AZAUWMXgrBAz6XpQc+kaULPpelBz6RpQs+l6UHPpOlBz6RpQs+l6UHPhKhPijjnF6l+IKNUnIsuuoiPH+89PS9BEARBEARBEARBEAThCoXvuVFUREZhgiAIgiAIgiAIgiCIhiJjjFKMsVaMsS8ZY6sYYysZY6cyxlozxn5kjK2N/3tQfFvGGHuDMbaOMbaEMXZiY5efIAiCIAiCIAiCIAiCSJAxRikArwMYzzk/BsDxAFYCGAJgMuf8SACT458BYBCAI+P/3w7gnYYvLkEQBEEQRP1RGa7ErK0LsWJ7aWMXhSAIgiAIIiUywijFGGsJ4EwA/wUAznkt53w/gMsBDItvNgzAb+N/Xw5gONeYDaAVY6xDAxebIAiCIAii3nhk+iO4ffIfcPFbExq7KARBEARBECmREUYpAN0B7AHwIWNsIWPsA8ZYHoBDOOc74tvsBHBI/O9OALZI+2+Nf0cQBEEQBNEsWFa0DADAfOFGLglBEARBEERqZIpRKgDgRADvcM77AKhAIlQPAMC1NIJJpRJkjN3OGJvPGJu/Z8+etBWWIAiCIAiiIRk5d3NjF4EgCIIgCCJpMsUotRXAVs75nPjnL6EZqXaJsLz4v7vjv28D0EXav3P8OwOc8/c45/045/3atm1bb4UnCIIgCIKoT4bN2tTYRSAIgiAIgkiajDBKcc53AtjCGDs6/tW5AFYAGAPgpvh3NwH4Nv73GAB/iGfh6w+gRArzIwiCIAiCaFZoDuMEQRAEQRCZRaCxC5AE9wAYwRgLAdgA4GZoRrUvGGN/ArAJwO/j234P4GIA6wBUxrclCIIgCIJoNnBJtYBsUgRBEARBZCIZY5TinC8C0E/x07mKbTmAu+q9UARBEARBEE2AKFmlCIIgCILIQDIifI8gCIIgCIIwwsD0v8PRGIXwEQRBEASRcZBRiiAIgiAIIsPZtLcSj45e2tjFIAiCIAiCSAoyShEEQRAEQWQgsqYUAHw2d0sjlYQgCIIgCCI1yChFEARBEARBEARBEARBNDhklCIIgiAIgshAZE0pgiAIgiCITISMUgRBEARBEBmIOXyPIAiCIAgi0yCjFEEQBEEQBEEQBEEQBNHgkFGKIAiCIAgiI6HwPYIgCIIgMhsyShEEQRAEQWQkxvC9kJ+GdQRBEARBZBY0eiEIgiAIgshAzIpSWQEa1hEEQRAEkVnQ6IUgCIIgCCIjMZqlgmSUIgiCIAgiw6DRC0EQBEEQREZCmlIEQRAEQWQ2ZJQiCIIgCILIQDg3B/ARBEEQBEFkFmSUIgiCIAiCaAaQkYogCIIgiEyDjFIEQRAEQRAZDRmjCIIgCILITMgoRRAEQRAEkZEYNaViZJsiCIIgCCLDIKMUQRAEQRBEBsJNHlIlVWEK4SMIgiAIIqMgoxRBEARBEEQmwi1/YNaGvY1SFIIgCIIgiFQgoxRBEARBEEQGwkT4HksYpXyM2WxNEARBEATR9CCjFEEQBEEQRAYS5THLdxS9RxAEQRBEJkFGKYIgCIIgiAykpCps+S4SsxqqCIIgCIIgmipklCIIgiAIgshAonq6vYR7VIRS8BEEQRAEkUGQUYogCIIgCCIjEZpSCe+oSJSMUgRBEARBZA5klCIIgiAIgshINANUTodR+jeRKIXvEQRBEASROZBRiiAIgiAIIgMRifb8uZvRMicIAAhT+B5BEARBEBlE2oxSjLEoY2wRY2wZY+w7xlgr6beejLEpjLHVjLG1jLEnGNOGUoyxPzLG3lIcr2X8OIsZY8sZYzdLv90UP85axthN0vd9GWNLGWPrGGNviHMQBEEQBEE0Z76563QAQJSEzgmCIAiCyCDS6SlVxTk/gXN+HIBiAHcBAGMsB8AYAEM550cDOB7AaQD+4nK8uwCs4JwfD2AggFcYY9mMsSUA3gZwCoCrAPyHMbaBMfY5gHcB3AagJ4CrAWxjjM1hjHVL43USBEEQBEE0OgEfs/wdJk0pgiAIgiAyiPoK35sFoFP87+sBzOScTwQAznklgLsBDHE5BgdQEPd2ykfC0FUGoIhzXgzgMQAz4v/WAOjCOZ8N4E8AlgP4DsC/ALyYvksjCIIgCIJofIIB6W+/NqQjoXOCIAiCIDKJtBulGGN+AOdC844CNK+lBfI2nPP1APIZYy0cDvUWgGMBbAewFMAzAC6O/10VN1adA2A6NAPYVADB+L6XA/gy/v2XAM6lUD6CIAiCIJorAb82zKHwPYIgCIIgMol0GqVyGGOLAOwEcAiAH+t4vAsBLALQEcAJAN4B8HeIVDPAwQD2AxCjr90AsuJ/d4p/Buc8AqAkvj1BEATRjPlu8XZs3lvZ2MUgiAaB84RXFIXvEQRBEASRiaRdUwpAVwAMcU0pACsA9JU3ZIwdBqCcc17qcLybAXzNtRHXMQD2AagGsAdAjrRdZwDboBnDgtL3HeLf28IYu50xNp8xNn/Pnj0ul0cQBNH0KSqvQbch4/D5vM2NXZQGZ0dJFe75bCEe/nJxYxeFIBoIySglwvfIU4ogCIIgiAwi7eF7cc2oewE8yBgLABgBYABj7DxAFz5/A8BLLofaDC0MEADOh2Zk+hLAHQC6QPOcOgjABQAmAAgBqGaM9YdmjLoRwLfxMrQEsFdR1vc45/045/3atm2b+kUTBEE0ETYXa15Cn87d0sglaXh2l9YAAOZsLG7kkhBEw8BBnlIEQRAE0Rypqo1i2C+FiMWaf79eL0LnnPOFAJYAuI5zXgVN4+lxxthqaJpQ86BpRjnxLIDTGGNLoRmnbuKcHwrgmvgx+kAL1xsfFz2/CZqh6gMAJwIoAPADtAx9U7js404QBNFM8cXl8w7EJi8iddoH4vUTBzbCKBU9AAavBEEQBOGVWIzj1mHzMGLOpsYuSlK8NmkNnhqzHD8s29nYRal3Au6beINznm/6fJn091IAA232+wjAR4rvt0PzglKxhXN+aTwMcCRjbB2AhQDu45wPYYxlA/gYwFpoWfuuTfZ6CIIgMhGRIT52ABplItFE2FJNJIbsoL8RS0MQ9Y/sKeWPv/zye0AQBEEQBzq7y2owaeVuTFq5G5f27oiWOUH3nZoAZTURAEBxZW0jl6T+SZtRqqHgnE8DMC3+9wYAJyu2qQZwdYMWjCAIogkgPKUONFmZsuowrnlvtv65qjZKRimi2SMbpRhjCPoZwuQpRRAEQRA6YWmx5rVJa/DUZT0bsTTeyQ5o49iacLSRS1L/1Ev4HkEQBNG4HEieUt8t3o5eT080fFd5AHTgRNMhEo2hNtIYlmDje+73sUYP34vGOEqqwo1aBoIgCIIQ1EpGKbF4mwlkBTVTTfUBMKYloxRBEEQzYkNRBQDgALJJ4e/frbB8V1UbaYSSEAcql745A0c9/kPDn9j0ogd9PsOKcGPwzHfLcfzfJx4Qg2iCIAii6SP3i3mhzPGiF55SIrtuc6b5XyFBEMQBxL2fLQRwYHlKqa61qvYAi18kGpVVO8sa5bzmmh/wM0QaOfveN4u2AwBqwvQOEkRzZGNRBdbtLm/sYhCEZ+R+MSeUOepFe8qrAQDXn3JoI5ek/iGjFEGkgfIa8sogmhbRA8gopQpXCjdjUa3L3pyBt6eta+xiEE0ADmM99/t8+Hj2JlQ0Yp9EmS8Jonlz9j+n4bxXf2rsYljYuq8Sz49bgRjp6hEm5PC9oD9zwvc+mb0ZABAiTymCINyYsmoXjntqAp4es5zCFYg6s7+yFt2GjMPklbvqdJwNeyrSVKKmTyz/ZxQcOwRgCR2bxtbVqU+WbivBS+NXN3YxiCZIUXkNAOC5cdaQ1oaGW/y4CIJIlcYOy80E7v50Id6fvhErdpQ2dlGIJkZY0nxk9aQptWxbCd6asjatx8xHJe72j0aQNf/3n4xSBFFHflm3FwDw0S+FTWIiQGQ2a3ZpLvHvTFvfyCXJHHirKQAA5q/Sv2vsECaCaEz2VTSe0Lh485qzYZggGpIv5m/BkY/9gK37Khu7KE0asTCcSULWRMMQlsaEvnqqHr95awb+OXFNWj31/i/wOR4KjoJ/9bi0HbOpQkapA5Cq2mja3ev/O2MjHh61OK3HzBT8Uuu2s6SmEUtCZCKcc4xftlNfBRUeuqmG3/ViGzDYn8hEd9U7v+D8Juhmn16s94omxMSBgDl8rylxIIUQE0S6KK0OI2Lyihq7ZAcANAsdp4qaCPaU1c9YWYyjMik8i2gYZE9DzoFYjGPSil1pnQ+LYWdtGr0aD2Yl2h/R2rQds6lCRqkDjJKqMI59cjzemJxePZJnx67AqAVb03rM+oBzjr9+vgiz1u9N2zF9klGKFmeIZJm2Zg/u/GQBXp+kufyKFb5UV1q+y3oczwY/0j/P37QPa5vBQNYTPPECRpqpphRpZTRtHh61uEmEcTdqXxSvos30FSSIeoNzjt5PT8Tfvlpq+J7pvzd8mdLNRa//jJOen1Qvx47E+0caixNmwtEY+rFV6IgiRGIxvD1tHW4dPh/dH/keCzYVp+X4gppI+jq/gFh4qmmcZCoNCRmlDjCE3sTohU3fgFQfVNZGMXrhNlz3/uy0HdMv9X5uLqFTV+9u0AnLhf/6GX2emWj4LhyN4bvF2y2rA4P/Owf/+YlCxhqaoviK4fYSLfRMN0rVcfCZhea/qiJQ3arm6in1+uT06hUQ6WXUgq0Ys3h7A57RWM8Pb5unfdtI1f++kQtRFhdZb2qeUq9MXI3jnprQ2MUgCFtEv/XVr8YxuhhmNqZO2wfTN2DG2qI6H2dLcZX7RikiwvZJfis1ItEYZm/Yi28XbcO4uHdecyFn73J8mfUMfsm+F5FoFP+cuEb/7eUJddfoLK1KhMzXRNI3zysIxivzEeem7ZhNFTJKHQBsKa7Eu3FjgzBE+OoroLaJUytZrxdu3peWYxo8pWB/X5dtK8HNH87DM2MbTndq9a4y7Ks0aou8OWUd7vlsISauMAppT19bhH/8sKrBykZoiCGmMEYV7tUEyutqVClAFboNcY5Bn7NhL35ZX/dBZlMk0khGqepwFFuKjbof2/dXYUdJegbique1r6IWo+ZvScvxibrTkL2reZKaFfADaDxPwW8XJQxyTc2r780p61BeE2mQzITzCoub3PUTTY9YjOOBLxbh9uHzUVIZtu23xPigrLphs2pGYxyvTFyNveU1eG7cStz43zm4ffj8pI9TWh1Gr6cmYNrq3XUu046SKrw4fpXy/RLtntz+TV29GyPnbq7zee2oDkct/XtVbRS7y6rr7Zxm3pm2Ht8u2lbn47wxeS2ufW827hu5CHd9+qvht28XbcP9Ixfqn9ftLkf/FyY36HXaUVhUgW37ncdYufsShqe8CqPRd/aGYmzem7peW7ch49D3uYT3X20aPaVaxUqwuqA/cFC3tB2zqUJGqWZOUXkNznhpKob+sAq7S6t1oTf/AerbWh2JYlbW3SjMvh6/e3smejw5HgCwu6waq3em5hop30un21parRmHNuxpmFCquRvV7qg7453nvooDx5PGjfKaCLoNGYePZxU2+Ll1Q3G87tw3chEAIFZHL4NDmLvR9Zr3ZuP69+fU6TxNietPOVT/u7E8pe75bCHOeGmqYcB82tApOPUfU1I+Zml1WHcNr1UIuP/fV0vw8JdLLG1YOBrzlLEpHI2hsrZhJzvNiQWbitEW+9CNaSvL9ZXZxwvBgDasS2f4QKp4fQeHzyrEiu31ny1L6MzsKk1MopZtK0m79/LPa/bg6ndn4b8zNqb1uHZwztFtyLgGO1+mMn3tHkxaUbestqkwbfVu3PGx2pCzu6wGX/+6DRNX7MKTY5bZ9vuiRRHjg/qEc45l2zQdm9kb9uLNKevw6OhEOKF5QdMLCzbtQ1lNBM98V/dF2Qe/WIx3pq3Hwi37Lb8lPKUS9/HmD+dhyNdLLdumg6VbS3DME+Mt/fu178/Gyc9Prpdzqnhx/CrcN3IRXplYN4+f9UX2WZvvG7kI30iLDh/O3IidpdWYsGxnnc6ZDPsqapXGt4H/nIbTh9qPsTbtrcDYuYm656u1zvfu+GQBPp1jNF6u3VXmuriwv9I6l5q1fi9O/cdkV0OZF9qhCGWhdnU+TiZARqlmzqDXp+t///4/s/TBlz+NnlI/LE24eKbDtbc+qQnH0IFpxpr+vpWorNXuxzn//AkXvvZzSsf0S2+ROeMH5xzPjV2BdbvLLGFZRzz6vW3q0H9PXYdZ6/fWaaXVzjNDeHNxaBpjH88qTLvwfaYhJilPfLscD3xR/4M+GXHrzV52qRpVypELAOjvW+64nSykuj2FjnPz3krsLm38FTIN1Ypp49TpH+MD9nAaPVV6Pz0R93+u1UvVCpwYFJkHR72enoD+L7gPjK9/fzZ6PFm/YU3N2eg1YvZmjAi9gGlZD6IFyhvUU8pc98W507lSmypew/ee/HY5Ln5juuM2/8/eewdGUW7//6+Z2UYxgAKKWKLYe9eL19574VouiOXasCIWDCoWBEF6l96liyCEHgidJLRQQ0JCQhoppLdtM78/Zmd2Znc2Ccr1971+PP8QZmdnpz3Pc877vM/7bE0vDhN/bsiqAoLKJ6rcXPTFcj0pV1Hno8bjo7CyjsdHbabXKQ5Ytfn0zxKl1q7rv9X991B+BVWnmF1W4/Hx6+6cBn2PlyYlnLImOl0nJ/LG72D5/FF7dWoSqw4UWPpzRl+8ojYyU+rPxLlnbc/i8VGbWbY3T59PVh1oGIg6UlgZkYWoCZu3Oc35h89PS7RY+UgaqNdY/2nLkeLfzTBavDuXUQYf3vibyQHALLWg8k8Vpx+17o/pBTukcFjA7fOTkBGuw6u9k4WV7j8thnhv9i66z91z0l0o16UU0lIIAm5CbXjS9lB+hQl8TSuo5IFhGxuUTDhWEn4ug1YdJr+8jgMBcPd3m89Da8qpdv4NSv1tfwEzdrjIPFFDnVedzFN+JyvIymYbaLHzdmSfUhHxU23G7HEL1IVCUZSTdrhkOfidhUlZaIFByvEK0g1MqNyyWiZtPsqrU5MMQpXqvj5ZYfDq1LDFU1EUBq06zL8nbmdkBNCqMWY8rhas1nn9HC4IPvvPF+6l95IDlhmnP2qH8itYvu9/oybd6O8t2pX7p5ZdaD8lhszGWkDn88ss2ZPb6EW/WlGdvsvFyOVcVW4fF325Qv9/xwHr2JNdxsG8Cnov3t+o37pz0Hpu+SGOE1Un10VnbuIxomNiT2mQozXa0fR0AHr9ste0z8KdOZTXmktZ/5s2cWPGKTmO9i5q+g5WWgUuu1qyFaplVOeVOdEIRmRS5qkpZY5kG1OLuOLrVRHZm/8tyy6p+cOlWn5Z4eN5exhl4ZhWu33Uef20bOrgElENbPa63qKJu4haj5+4Q/89VobXL1uW5951SRsAWjV1/Nd+uz47kxLiHT24RkjnUH6Q/fSvn7ZaltA0Zq7ZnnGCzhMTGL3+5AKuZ8du4eZ+a/l26UFTsP/0mC38o/86ygOl7Wsa0YFJURQ+mrvbMjj7/9u0IF1RVJ+j6+SEP1RSMyfxmJ5wkGWFR0Zs4vVpSb/7eBM3ZoSxOL/77SA95iWzI6v+uWfzkeL/Z5roZJfUUFn3+9cQq0SFT5YZYh9LjG0OPlnBb8GEVe3PQ6VSC1Qf9v3ZuxtMYEfHxLI3pwyPT+b+oRsjMrk0f9QIrnWZ9Pu0XTUman3AU2NBqS6TEhrNPqvz+imsqKPO68fjk/lo3h4Ta8xqbX5w2Ebu/x/qfhzatXBHZgnfLzvICxOCzyp0rhy17gifzE/+U4ApDfD3Rhwn1maTRKIwsMBqGp7HiwK+7bZ65nxZViyrbDRwVHsNUwsqiY6JZWNq0UmcNfgrVJ+u2nXmSX3vf9X+BqX+j1ljBb6fGLWZHvMaN1GfqAoGPUuT8/j3xO3/tcyAoigMXX2YtILfB6q5vcEApTmq0/V7GCnD1qZy1TerKK/1El/biQG2iQCkF1Vz35ANepZEM1lWdO0pRTFP6h2+WG7a1zjZ/ro7PIOTU1pD18kJDTpHRie850I1QP/i133sCZybogTZVP8N8fVHRmzi3Z93NbxjiGUWVxPzy95GlR2dtJVmWW4OLbf5M3UbtMUr9BxkWaH34v3cPTie7nP3sLQRopOKotAcNWvTjsgLqdW78/SYLbwyNZGZ27P0xbgxll9ex1eL9/GfkKDlqTFbmJcUHoROCIA1x8tPHctKK1l69Jrgwl3tCb7TKccr+HRBMp+eoox7Y2z42lMjSB7aWtjtDf5fA6yaOlRQ6ueEY39oLJ8sE6Wxpjl1SZmNB6W2HClmzu/QASmr8bB4dy4Xf7mcOwau58UJv7+pRVmNh6fGbGbR7lyGrEkNY6Jd+c0q7huygbNbuqhT7Pr2tsXbeWNGEq9P33HKtMRCrcZt/Zy733cxoDISiqvc7DpWSqeftp5UZvlgXsVJg82aPS5tI1os4AUpnvdnB/VHdmSVWpbQNBRcrD9cyPbA+5NRFLm0xMq04HqphfB8ea2XoWtUodsqt4/pWzPrPVadV2bxnjxenpLY6N9vSJS616J9YbotkWzZ3jwO5Fln3Y1r5e0D1rEprZiXJzf+PI2WX15Lr0X7eDPAKNKAlAQLQDk6JrZBP1FRFPotP8QTozabtmuNPYygsdXcZcOHhLp9+b58MourWbY3L6zM5lTb2oMF1HrM53PHwPU8N27b7z6mla/p88l0kjbTzbYUv1+uh1345yXKHDaRy4RjLHF8xUcTgsB3W0q5UAgfS5M2HdXBgn259Sc4jeN9y5Ggj1JS7Qkrdcovr7VsyiTpVQeR78mpZkq7fX5u6x/HLT/EcVnvlZaafaHvS2Nt/o5sUzL7j1iTQILq95okCpwvHOcqQfXT0gqrwkCXUJ8EYNHuXMt45f8Vs4kCLYUqKpUmALSt2Btx3xX78lEURU/2Wc1LiqKgKApTthzls4V7aUYtFwp52PBhIzinaQxxbf5ceaD+UsekzBJ9njhSWMmUlar/Uiq2auyl/k/b36DU/xETkHW9i8bYvtxy0wRTn0NrNTmfaqq3ZgfyKhi57ggfzdujAztZJ6rJOtE4Z9XjDi56N4uqqPfJIu4QFHMtrVB/90VbvOnzp8ZsMbHUIKgZJCtKvUCYccL3WpRgDF2Tyqa0YlY2UMetBqwKPW1zaVKm1pkbg0IFRWeO1SfQ/nss9NpPxnov2c/cpOxTz6rYOx9GXAOZm8M+Cr36kkDwuTG1iLSCSp4ft03Pqlca9H1OhYVqSmkmKzBzexY5peo72xiWT3VtHc0E9d5fIuaYFkdjOY8vwjuvn8NJDAlBgFnbj7EuxSxgmpxdFtbWWv2C9sepcxobytBpDNGCP7Hc0MopjvT7Pr8ccY41zQd+2eQgVQUcHmPZ8GW9VzJhYzrv/rxT39bYDOapZNAaTQsiIr13VtZlUsJJl1WtTynk3xMT+GjeHn1e32egz+/NKePDObsbnYi4rs8a9ucG2T5WtzG3rJbmDgkJA1goOkjIUOevOu9/B+iri9DdRxQFTm/mYOb2LG7qu5Znx25lZ1YpH87Zbbm/lT06clOD5XSRrHUzFZyTQ2bVK4VMrhPCmU4NzaWvTU3SAV7bScgO7GkE+3eFYQ1d0cB6qgFMjdH60zulNbDrnMRjje5w9f7s3Tw2MnztAnWOuFQ4Rgch6LP93rHs9aknra2BDY2VhgJR7fuhgax2b7S5a11KAZf1Xsm+nHKOFFbx9ZL9vDt5Hfudr/O5bS4A7/68i/v3CLVxAAAgAElEQVSGbuD92btNZTan2g7lV/DGjB18tXh/2Gd/ZI60YlQoFcH7d7o3nxIDs/XxUcEx+Hv81MbYoyM2MXWLWYvMLomsdMZwrZjB5/Y5gDp+E13vsc75adgxWjW1My/QaKN18/DyvEdHbGJ0oKws0ni/rX9cmCbQS5MS6DEvOQzs0Vjl9Y3FU60p+eGc3ZQZmgZZPY+6gI91svFPz4V7eTxkbPtl5Xc1Y2rRxN7gPvWW49aWscH5McucXwGqbxIaH3gixA2hyXijDV+bGsYS2p9bTnRMLJn16FidKrOJAi2p4piilsE9WLk44r7v/LyLNQeD5bZ7c1QfIjomln6BEukLv1jOM2O36v7FYsfXrHN+SrzzYzY4e1AcIGtoEjEHAwmF2QnHIsplbE0v5rlx2xi/MR23z8/9Qzeyfr+aSK+UXX/o+v9X7G9Q6v+IPSjuJN75CY+IQVHjxbvDy5Sq3b6wkoOt6cX888f1EeuutXXhKiGDqwPo+skIqW89Usy3v1nr38iywk4DvVsrRTmQV8G0QGbzrkHx3DUovlG/5fUEwZIXbfFI+E3OUmMXMo3SbD++M+I+RZVunf1SVOWm009b+bcUR35+XsQszpI9ubwxPcg4Ka/1cqTQ7MgYNaHqs76xh7hX3M27tt/oXdlX/Y7hS5M2HdUdLCOwOGnTHy87Gh/o9hjJEjJOMHN7FjsyS3QBeM2aOWwAlIawEr5fdrDBbnIAJ6rcYcfckFpE6eHAon883NEMzU6WVHtIK6jk5SmJPDBsI4mZJazYrwYPV3+7OowVdLKmKApHCiv5eN4eHcAL1SMLfRcbE5AVFKmLfmHb22kjlPOkuFX/zHhPIupWBN6thrRgrIQdjfZniIxnFlfzxKjNJvAyEvgSLJ39r59WvbbhsDV1u/+KFP7543rLkhsjmNgv9pDpORrn7/vEnTwsquyIH5ansHxfMMhec7CA4io3F/SKZX1I9yMjU+HxUdZBb0OmZQ0jmcYS/aPi/aHm88sMWJFCabUHj0/mtWlJppKxUOs2cye/Jef9bvZSxLP312IXgoGTIAT3nf9f6oqosV+tzOo+n+yYLKj4fYmF5rK6pjQTgu+yLCvEOr9gsfNrDuSVs+VIMdExsYyMS6tX+yr0nVq0O5enRjf8jvr8Mk+P2XJS562BAVppTqhp9y/SfSyr8RAdE0v84cKIa3RhRR0xv+ylvMbL2PhwgG71gePMTTzG1iPFJja41diq9fj1c/H6FVY5Y4hzftbwhTZgGvimXcPuY+GB5rqUAp1J1ZBFWmv03wlMzhqD9qvF+7h/6AZmbMuiNn0rLsHLW7ZYXXj7964tDSXxjKYxpY+VWAfL3WZG9vs0+yk+nTUHC1i5Pwg6PjN2a9h+9rygL3E85ygPDgtqmxoBcSOYc6oSdoqicDC/gu9CxMdtBlejCR4k/MQ6v9C3iZjHR4umDn6KV30+jbV7osqts38O5lfoLCiPT2aifTAxttmmY2hjzphgzitT5xCvrCZjigPsTSmASn21eH9ErcIukxLCNG43NKJ0KresVp8LFEXh9WlJrD9cGKapZWQV3y/upC2ldJ2kxldXfdN4fUbtudZ6/SiKQv/lh0g5XsGY9Ud4JpBQOFHljgjcZJfUmM7lNJfN9HlFSBLVHyjHfWvGDqrdPo6GHPceJciw7CjuVxurhLiekZpoLN6TF7EL8PC1aWEs04WBstzQhCao89uY9UdOGXvbJgm0FKo5oUQ1av+3Zu5kTmLwWrQ5eOKmowEdXjXx0dxpw4aPiwPl++cIxbQXggzAWo/ajdl4rFAgf0dmCSv25ZMbSEAfKajS73ET1HfeJ/0NSv1t/6OWXlSlL+CanS+oC/L7tsW0RHV2Ppq3R89uaNZr0T5en252NrRj7cupX7BtmfMrljq/QkQO08cxms8v45cVKuq8RMfE0nlSgg4whdqULUfp9NNWthwpZmt6Ma8YJrW4QyffWtbjMTvaZ1JqmrAbKw6r4QNtl3bVt10mmOnkZbUePWj0+hUuEI7T3z6ZUcLAMMdK+3/3uXvYnhF0OKo9KlpudEobzWZxVzDcPgaAlr5CTlS5ddYNYFqMFs+dSKarM0PsY+kbe+gPMZ1CzcqhfmHCdnov3s+/xm0Lay/c+jRVCyU0KNI6CzXE+rix71puD+mE8sqURJPeztHiahPjJDSQrfP6w4At4yPb9DsE/Q/klTM00BllblI29w/dyKLduYwMZBBFQSC7pIYrhaMsd/SiosxcfteY5gQVZep5lXd4iirFxdViMAOqlacUV7m5Z3C85fe1AKEhRkuPvgMZaR8FWGcMI40jWQ6yBP8oPjFwVQr7cst5fnywnELG+nd15kJg0JTXePl43p7/GqMz1N6RfuMz29yIYrVam+zymnA2nPFebkorMt1vj0FLZrJjCOMcwy2PX+v1syOzBEVRmSd+WWHQqhTGrD9C4kmU1EWyC3otr7esRQNUR8SlmYK08hoviy2YFvXpLhiBu7WHChm3IZ3vlh6IyBwymnbnGuqOt2JffsCBVkzzel5uNrKFkyx51OBruu8BQAWHtff8p/h0ajw+lu3NI6+slvzy2lPSAay+AMvq6mRFLYmsz8asP8KDw/6Y/kmzACjVFjWZlFdWa0r8vDllKzO3qdnfoWtS6+1OZAVAJDfgh4B1qVnQFGIdvegkmhubaH7AZb1Xcteg9RHPJRImonUP1IJzK/t26QHmJmXz2KhNDFwZ3iXrrZk7iVm0j86TEnjAAE5UhzBFfH6Zy79eSa9FKjAZab7NKKo6aQA2dF7uMim8O+t/pu3QGzo0ZJFAJO13uk5OxOOTdb/H+HxbEQTmFu20Lr1vjPVddpBusxoGkiKdI5ivo6ESHFC7ob05YwfdZlmXZyqKwrgN6dQdT9W3nSdE9mmNz/j58dtOqqlQea3X8h2JtP5JfjNQ0QzzO6SNbc2iDEDIgbwKlibn8dDwjdw3JHwuSTtexgPSLrrZlgFw2w9xpnjFmBjR1muPT+ay3iu5qe9a9fwCE1zWiRqm1NNx8qXJCaZE5qZ65kzt+d4+YB13DlTHv8cvE5dSyJvTd4RpLWmgwZPiFiY5hvCtfToZxdUN6pEaEzh7c8pMCfmyGi/jN2bQeWKCPp8UVNRxY9+13G3hs609WMAdA9fzw/IUfZstRKj8mm9X031ukCXrM5TjvjIlkXsGx5vu/xm+4Lh+RtxMUaU7jKmmvUutPPk8KQbB//JaL5/VkywBlW1kPJ9INiIujUGrDrNoVyQyxMk5kJIo0kYoo4iW/Oh9EYDWlHOhkMc9ovX5/LIrWDpq9Lt6Lwk+s+ZOG2cLkaUyftmVE5ZgLw4pjf/XuG288/Muk3+i+eBNCDBWpT/eIOB/wf4Gpf5ilpxdxn1DNvD4qM2mybFFoOvAlWIWCxx99O2hLYStyuC0Cchhi/y6aDX/AI+L9dfcX/TlCh4buSmsc5eV85IZOJ9PFySHOXGCcPITk9erDvB1/usAaCOUmQSJGwtKaQBBrRgUVr5VPGTaZ3bCMe4YGHRuR9tHAnCJkB2GlNeG1Cw3pY6mBO+PcUIMDbCNll5UxVNjtrA+pZA5jr5ECaozUSK25h/1tEt92LMGgE6S6hDc3G9txH3rs2q3j1FxaSamTUO0c2M2EODslmrN95I9uZYixYfyK1EUhaPF1RHbiFeGfK8tpbxiU69xZ1YJ9wyO53ODEHbv2Rvoa5uMK5CVUB3xEI2nP4iiPDNmKyPXHWHalqOWZUlOm8gdA9czwD6RK8QsnpTMWdXGMKXkWtW5EJq2xImX12yrGG8fyi3CIb0rS6qhhKA9RWS6OtM/oImWH9B5akiPYapjEE9K23hdWm45ZqwEP0Edx1knTq5rSiRre1owcxQsrTGfi8bu1JkLgcsaG3+ERbtzmbX99wU6m9KK6i1pvkDI1xspAHxun8t7tt9YueOQpRZK0BkJP1aNx0cP2wIynF3wFJtZjJrj0t5dPzNREgU9uwxqAD5mfTqDVh3mtalm1p+iKPRatM/EUAXVAQ7dZrRIgsXzk7JNTtlMwz3//Je9fDRvD4ePV9J1coL+PCLp9mxNL+aWfnGsDgSF2pis88qN0tIKdrqs3975eRcbU4voJG5ipTOGu8U9nEkJV82+gYSZXwaOFRwjGii1X7kAgLOPLjQdz+tTeH/2bp4Zu4VOY7fyxowdYWvX4eOVbK0HNIqOiWXQqpSInxvNCnTbl1tOl0kJluLrvyXn8VtyHoNWHdZ1mOqz9KIqVkUIzJvL6pysOeodB6wzsWquVlJ1DTgIBndW05svUILupGGxfqPVB+C3pIorxSyGOMaZ/Bbj08g36N11nridhTtzGmToaJ8mHC1hYoBtvHBnDh8bNJc8gdI4Y3KoMRaqAZge0NaavyOHWo/flFh7TAxqqN07ZAP/6L/OUqS/oes4Vd3ejGB1tdunMx+Mr38k5m0TIbj9ouqT16cEda6bVA9wYWVBHytof7SbpYDMeUIBr05VE2SbjxQzYEUKO/fs0vXohjrGhX3vmbFb6LVob9j8ejC/cV29vH6Za79bzUuTE3h75g6TdlFFBO3MDk2C+5wnFNAs4Belyu0B6GufgvHuGH2jGo+fD+bs1suXLv0q2FAFIFowzxvHK+pMQJRRz1M7rBEUURTFxCrXyqPLajwUV7kptUjsaBYaw/QzdKvs8MVyXbuuyu1j2paj1HnUY0uigD0E7OkY8KdvC/j99sBcUlxdf0L3iq9Xce13q4mOieXJ0Vv42eAPaNdVUu3Rx7QRwBi/IZ3skhp+XJnCx/P26J0kZyUE11SrYWtkTRvnMe2dMt7/Ju5CipQW7JOjOUsoYdyGdFMJPARL0u7PG8dIxxjuEsO1Ouu8fhbsyLYE6TT5E6NlnajWk3MAVW71OUZKNu3MKiW7pIbomFhLzcBqt49Bq1JYsieX+UnZKLJMG8opUlpSoLRUr9/1DuucnzLVMYjPbXMsf0ezSGWnxyvqOIvwJEiTQPyWcrwyTNfySGGV7iObtBs1/0SAksB71CQgxyGLTeo9v7+K/Q1K/cXsgCFINzo+bQlSsDWaIaiDY5ehblkMceZmbstk8Go1kxM6KWumAKcbMlpRQo2lA3f4eKVeS5tyvNJCXDp8MZm1XZ2w88vrLDUijDTSGdsyLSnxRvN51QGer5wBwGViNuMNoJTb5ye/vJbbB6yrN6usLR4+j5s5vnuQFYH7xF0mJ3eZQSviIiGHK0V14XDhYdjiLTwnxXOzoAYZR00Crgr7nK+zzfm+vsVKWHDZ3vyw2uT7h6oi6z2nreZqMVPf3sJ3Ak+Eyd2JBzenplPTwJUpDFmTytQtwd++5KsVDF2TGlG0WAvOKuq8KIpiquP+wEIH5dGRm3hj+g7uGRzPoyM3MXxtahjAqVlGURXRMbHcJQUXzTV71eewNdAl0uOTWeWM4SVbHE8ZgKBQp1xuoETJaG6fn8GrDpucKe0ZfrvUum23Nh6059bPPsX0+aRNR+vVGKjx+CgtURdHyXkaRbQA4CFpBzEBXYhD+RW6QwEw1TEQgH/bzMwAqwVYURSu+mYV8zcHAbXnpA2Wzrpxm9EpWWQAY/9ohZ9GU4+iWtdBCcVptSxbmMZL4P8n20lp7cECVh84TtfJiTwywkJzx+9jrH04652fMNg+Xn1ehnemNOuApRaKtkv84aKwd6z/8hS6235FFBQ2OXto3+AlaQ1KSQa9Fu3j0WMD9f1bEq5bIgkCxum7Ph2fWq+fOYnHwppivDFjB51+Ci8/MQJVydll9F12UGdnZJfU0POXvab5oMYTLI/SHO7yWi+b0ootNVy0+zE7Iai/o3ULDZJGFVKPNwymaOBlZnE1O7MaZoh1klS2yhPSNhJc6nx8XqYKOBm1ovILVaDnhBJFleLiUsxz3UPD1eMUVLjJCwAeoWD9Q8M30tmClQLBezBmfXrgOPVro9WHJ1jpWXw4Z7el5pTV2H5/9i7uG7KBt2fuNDFMCyvruLBXLM386vt3oXic6wUVDDEyS9/wzjIFEe4AmGgFJPlkhdelFRx2vaofy8qiY2LpvyKYFDK+3048XC4Eg7a2QtCP+M3xlf531okay1KRrekn+HRBcoMlzcZnkmZo9LJody5fL9lPdEwsa+vpxlifSHKoLtm8pCDD/ca+a0zPaYxjZNj3h6xJDSurWbAjO6yUF4Lv2slgUpE6Ei7enctBwzty5Ter6DFfXYuNQMZHEcTSXQYw8un0b07ijILWL/ZQ2La4QwX8sPxQg0zZnVmlbD1STI3HF5ZokWUlrCKhPntH+o2Nzh5kpe7lwzm76RoQoo8WjrNHuUjf70NpEdcIwSTD7mNlptIfzaoa2Yzl4kCX3cSjJaw6UMCXhvXHeAxjcOysVcdrinwu5wuFnCGo1znJ/ygA90u7uUFII+7963HhNjF1Qi201OsCEyhlPaZCBfSNz+lAXoUpThm9/gjRMbFc12cNt0RIpj4oJnG5kMVZLYKJrOIqNxM3mcHK1YYSvW+XHtSTxTZRiJioayuo61+bwL+39IvjAXEHz0nxlvvXev0RwUBj8iYuUNJmTLb0X5HCHQPX81N8usmX0sb/B9IiWhRso9eivciBapRQi3Qdu46Vcteg9RTmZ1OktKRCacYd0n4uEsKF5o8UVpJbVss1Zer9nu740fR5UmYJvRfv57OFe9l5rFR/fiIyVwpHAbOuriDA3YPjedWQIGsogfTZwr06+/+DObu5Q9zL57Y5eiwwfkM6Y9an033uHnr+spd96cdwCl5an3UOq+Sbw473jm0p5wkFZLo6W641kaoHcktriRLUBGUv7+us9KvHvkwIjtmakLl9U1oxbwQqkoyAoDYnLtyZw/1DVZ9BmwNfvuvyCHfir2V/g1J/MTNqA91poKAbHTHAlHk0OkOhWlBGmqLDJtJ/+SGeH7eNhTtzmLgxQy8BO0MIOh6dpE2WE99Dwzfq2QVAp/BrFto2taFa4k1pxaYOXl8vOcDAlYdNdN2U4xWkGrQZvB71uvMCoNSP9ommY+aX17EsOZ/cslq6TErgQF45hRV1RMfEmur4NVDKobipxoUoKNwp7eNdaYnluf5HCmaLymnGQPsEBtknsMDZhzvEvWQUB53Y16SVSIJCCyHIxDAKns/fkaNf/zcB6u/BvApqPD59Iv9HIHuTLF9IknwJTsHLA2I4ff05KZ7Drld5XAoGoA7UhWxtSJvsUoMA576cco6dqMHrl/XsEkBhoOzvAXGHDrgBjIxLo9eifUTHxOqTMaglj35PDYfyK7jm29WMWX8Er1/hIiGHKKr0WvN1KWZnPs5Qgz58bRqfWHRVi46J1Usgmhvo56cF7qtdY7t5/Pr4sBuEwXeFZCaHr02rVx9myZ5c3bGbnXCM0euP8MPyQ40GsuYmHaO3bWbEzw/mV+iaFDUeHx37x7E1PRjsPTt2K9M2q4up5HDxsidG/6xFoBXuIyM2mRy8SwwAdRvKaEEVLanE65c5UlhpAm28foUqt4+Oa57Wt10mZuP2BveZuS2TnguTTY5oJCeosdogydllYaDjT/HppBVU8Zi4nb2uN7EJ6jWFlu9p1zpqnXpfDuZXMHpdms6cGrNezTw2ZFoXszdm7OCtgJ6IVYfG2lXf8qikBhsPSDvV51UXnHu1eTKzuNokequ9I31jD4VpV2Tkm8FxJx4m2ofS1z6Vlhu+Zk7iMbwEyyduE8ODMEEwM6V8fkV/1qE2eJWahGisqLQRqHpqzBYmbT7KB7N3U+f1WzLmdh8r476h8UAwU2t0vEMZT4v35LI1vZgvft2nZ5UnbszALys62LjqQAEvTbYGdEB1UCvqvHpJcOdJCXT6KcjgSMossQwwmwZ0kTpJQQCyPYXgruKEISO+5WAmAJVKU8b4nqaZ4OY8Ifgcj1uASJGYdlYlnKFjpaFguD6Wi4IKTH29ZD8+v1zvOuvxy2HnY0y2GNkbW44UIyvQSgiuZR1FdX0SkfEoqtaMVzFrnmhAnBGUUgPo4/j8MteJaqLpPVtQmDY5u4zKOi/ZJTV6qc34DRn6mPL6Zb6xTWeWvR+HXa+ywtmLGwT1vTb6QlqiSLPQ52S87/XNV/GHC/k4ALZcLmSxwfERpxP0iWaE+DqhpigKL04IZ5hrZfRGkK2o0m0qJaoJMKU0tk2ecrrlb4SW1Xy2cC+vTU1i2JpUk4/UUImr0Q/QrGuETn9GsEkIzM0aINncX0amqzNPi5v1BFGoGUGpjKjwQFIzv6xEBGqtylxfn76DCRszSDL4dLlltRw7UcMHc3azyFC203lSAh0HrOO6PmtMx5i8+SiPj9rMsDWphFr4mq/Q0z4fgJel1aZPooXjHJXPYoP/GgA+ti/kN2dvGtJnkESR+MOFETsygtr4IdS0tW/Z3jwTa+rGvmt13SJnnXrPytvcSFPBrYteFyktedXTE4C7pT1csPBhlhqA3VCtKSuLIpiAPY3IjMFfd+fqd8C41j4+anPE0lGrIdqEOiY4hrHC2cs0x3xjoWM7JUTwfVOaeh9skhhx/J8WqEa4Rjiqv+MTHUMZZJ9g2k9RlAbZdlYlerb6tFBC7BP7QuY4+jEnMZuEoyVhHS8BBqxQ/fLQ6xm86jBZJ2poKZdRrEThQ52vtTJLo2UUV3PnAPN4iDIww9ceLNATEVknanh27BYceMlwvUSs80seFpMoqnSbxon254SN9bO+jckB4xXMdAzgHdtSbvkhDq9fVrWwDLZ+p5rwuvema6jGmnV0j6jOV786VQD8MuEY5woF2CVB70IaainHK3X/erN8FX19LwHwmW1evdexKa2Y/bnlJlau1RumzYFntGxZ7/H+KvY3KPUXM+NEc6eYzG+OL4mimrsks0OiOYugAixxhwqIjomNWIIBYJcExm/MIDGzhE8XJNNv+SGeHrOFilovrYXgwni9eITTD85o8FxDdaQ0uq9mVuwgo51GDfcMjlySBvDw8E0m4UhfIIA+HsFxe2rMFvotV4O6h8Qknh+5hqRM9Z5M3XKUGdsyGbomNbC4KTTBTS3BWl+jho/RymkOwPfeLrQRKrhPCmal21KGxyczL0kNuF6SgtmecwIaA5pTujdHdag7ivuJc3zCpoPHiI6J5dGRm0yZ7rMFdUHo7PmSLfJVgLpQ/mibYAIku0hxYed6RsCZfmPGDi7otZzomFg+nr+H679fQ3RMLLO2Z/HE6M08N34r/Zen8OKE7XoZXbXHz7lCARMdQ1ng7GNyQDTTssUPi4msdMYwwj5GZ50s3JmDT5ZZ6+zJSmcQVPnPtPpFVSNlmbXxcJ5QSJWiZsluCXRd1EpI6kqDwEwHQ7vjvoYMaztO0K7msHU3OdQAs/vcPXSfqy5qWmZ75vYs03Hqs7IaL6/bzFT3n+39OI3w4DW1oIq88jo6TwwG4inHK3VQzWZ3cvPNHbnPPYh0uR0tDYFicZWb64QjtAmwJ7VgJsn1Lsmut1jo+A6vX+H+oRu5+tugA61lcc4RzCDJaXkqKCEgM+e3WObvyDFl5SM5c40FpZ4as4V7h2xgyuaj+nv248oUDh5M1lkBGkMxtHwPVHDbCPQMXp1qKhU6UlRFj3l7GGlR4jJpUwbzd2Tz7NitPGshUmu0KrePsoSf9f/nKK0BqDsRvBcaKHX34HidPQNmZ6Soyk1RpVsHHrpdbp4XD7te5QFJBcaqS9XrSpYv1D8f5xhuCoi1XzAyE67/fg0THEPZ43o77Do2bt2EgIwkCnh8Mv+esN2kgWRkvmmliG9LS02i+juySrmtfxyRpvDsEnMwYhSr7bPMzCSck5htes9BBTrVEr7GAWf9V6TwskXgvHL/caJjYnlu3DZLkfcmkcrGilRhes20MVpFE1YGsrDzHX30cmCjaYHRvRZ6KxDsqGg0I7BbVuOJyFrWTAMUXLj50jZLb0ACavKm44B1zNiWRWJmSUQGK8CTozdzbZ/VerlkaLDde/F+pm/NJCHjhC5K3EKoYpn/NgCiArIB7YUiHAEh+I7SwTCNGoDTmwbZus+P38bbM3dSXuPRkymXGDL2T43ZwpszdnDHwPUcM4DK8YcL8fplPpi9i9dsq/inFPRz7pKSceDlbWkpANlyG2oUs05HaJmFESA1zlc1Hh/RMbFM2pTB/txyU4b/fduvnC8Wcrdozf6xMo9fttTKurnfWoauSeUdgx6SVWn9ys1JuATVtzlbKNEbHjTGRsSl6bpRs7Zn6TpAkUbWJgsGuccvk1FPS/soqjjqeomXJDWQ7Rd7kJocdS0d7hgb8XsuwYNfEfApIleVrAn7XANkBq8+zK0/xFk2iqjP3D6/Lllx+4B13DloPUuT88KYSWU1Xs4RivjGNl1fazQ/cYTFuhHquxq1sa4Xg2z+06ihtVBBpnIWfXxdTd85k/o7r0kivDo1icdGbjZ1VTbaaxYNWbZlnKC02sP7s3fz7s/mksjd2epvOuvUZ+yPvsv0eZnSnE3y1eQorfnQthixLEuvvLDjI8H5HjPs/es97yhDsvVfUv36ddp8Y8VotuPjTIuyqTaUsdzRS2f4GGOTL3/dT1mNB7+sRGTXG00DciVRiOivRAXmflFQGGCbZPKvk51v6GtxfGoR1W4fNwipvCjVH7cYrc+yg7SniKH2sfSwLYy4n5ZMBvXeSKJgKZVgJR8AwXWptVBOES34zKv6Bv+SNoaVtq06UGBK9AK8KAXXw/EbM3SA/9MFyaQWVHGjGARvo4XjYbpKmv2wPIXiKnfEdcnIWPL4ZNpQyj/FoF9ux8c9g+NxhGiAtQyAZmLT03nwijP17f7XVlF9bz8AvrNPN3xDYaUzhk3OHnj9SkSmVJXbp69zFUozapqqJa5NhYbfr1Cfwyp/rfsg9r/L9/62/0Hzyj4kx3FG20cyw/Ej14hH2et6M2y/Sw3UwkW7ckzi5pcKx3hXCm+X6bSpyPlDYhI3Bfo7hLAAACAASURBVFgw5bVeCivdPCiaQYNzk+pfmBp1Lb7IQetFQg77XG/wpe1n3pKWEuf4BFONe4QFRCvfq8XBUflMvIHsbaidKxQw3jGMGY4BNPGoC9+K/cf5eskBRscdpq6mAideJEGhVnHymfctAIqVFpbHc+GhXGnKUn/HsM+uFDPx+GUd8EiUL9M/2+z8CFAdiUu/WsGTo7dwqXCM2Y4f6CDmc7GhBfRGQ4lEByGPIqUF1TRhgu9xffsLtniuFDIBsOHjOjE8K/GKLdg55CVpDZmuzizZFVwgtBKbggq3DpJpjBSPz2+iZ/9DtC5VAxgVEMp+SNpBe9SMVLXHj+wNOtd2fI1qF9uQ/sWZQqkORN4spgKKHthlpgYXtNdsq/T7o5kTD9tcHxDr/DLi8bVWwSeqVYfHWNYyefNRy/exHSf4zDaXVgGnxVj6OauF+j7dLh1gkmOw6Xt5ZbWmzlJGpo/mmNidLvo/ezUdb+3IcvlWzhAq+cE2iUuFY/SP3c9i59csD4B+BUor0/EvEvMQd0zSmR4zt2WyP7ccn6yYsmGjfCpjqm22CqS9LS1jufMLrhHSWbAzGED6ImSYjNsVReGp0ZvDRK+1zGKV20efZQd5dOQmvYw3xkIDwKizdvelbdiZVcpFX64I28/4vtR6/Py6O5eha1LDmHB9Yw/Rc+FeU+AbyUqrPbQT1Lliuf8WWlMOKLw0JhhMhYNFaqtko/MoCvDAMFUXcPyGdA4lqUHoA+6BYd9tVp6KiEwz6qg2BNhf2NXORprT3m3WrrAs7a0BcLartJp2nOBlaRX3iLtZ6+zJB9Ji/LJCRnEV2zJO8MaMHZzFCWJsc3hvVgKLduVQVOmm//JDgEIv+xxGOkabjl9W4w1z5C8WcphgH0K0kK8zXLTz02xPSLevSJ2majx+Sx2iSGZV/j16ff1aO5oWY6hNXWx+p04X1KCzRDmNo0o7AM4SSkl0vsdNQooJoDDek10W5bg1Bibjvhy1ZbaRDXFdnzV616IvbD+HfR+CjOcetoW8aVvOFMcgy/1EwTpw0SwjUFauMVnenBHOtp2TeIwXJmxn0CpV87EVVdx7y3Ucks8NBOAKbVDPXwNP24UIw74kreHdZmqgZuyS9umQ8TrYcpZQojMRAFNDEM3GrD/CR/P2oHjCr+kRMZER9tHcIanr12b5KpoKbl6XgszqUK0nIyhlLO1JC+hu9Y09FBZYOAKJgaGOcaZAsT4zjoVQGxmXpmtIaWaUHAA4tF/1v5b5bwXgPtFaf+nZsVt4eUqiiWELQX/JJNJuMbaq3b6IDD8NGLn4y+V8NHe3ibH+fAB8+ND2K6B2sGpN8J3uIFiLGTfBTR0OKmkKhAtsPzZyMzmlNTojqKjSzc6sUnot2tuoMsRus3Zx16D4sPthZd/bpvCabVWYdqiVhZasNReC71V7Q1JH01fKVM4iXTmbJQb/8Nx6RM/BLLVRX5MJKxsXoTtyj3nJlNd62XMoBY8iUX7+Q0zxPax/nqWcyV2XtWOQ93nT9y4XstREl1DOndI+nSXfjFoyXZ2Jd/RA88+NSbb3beFxhtG0IN2qzPJ72xQSXO+bxq8LN0mud7lCzNITrq6QMbgupZAOXyzXk82hdq1whGgh37TNyLCS8Jt8tSjDGvGCTa080KyFUMMUx0BuElJ4bWoSuWW1LHJ+ywD7JJKc3fT9jGPByuKdH/OstJnutkWmOdBoxvs6yD6O6dsy6z2mZm0o4yIhJ1Bips7VxUoLCmnFbN+9gFradq6B+ZucXaZf97felwG4VKy/y+wZBt/nDKGCx0dt1ruph9p7P+/SWW+hertG1mh24hKSXO8xyxGMNx8Xt5FTWovTbo7tXAF9OsHRhFGdr9eThtL5t6G0uyHsHB4yxLRNqCN2X37YPpppfkIlTel0Q3sqLn6G68QM/T15SEy0BFBDzYpR3URw41bsIFrHqn81+xuU+otZfNEkmnYYzs2O8AzJGv8NzAh0BzpTCE7IxgAS4Cf7cHra5/OMaNZMsQWQ5/GOYSx09jF9do2oOklPur8HwCeq7Isqtw9ZViwp3w2Z2x/OfrlJSOET23xWOz4H4A3bCr6wz6GDmM+1hjr8mpCJTCtBmLZJzVL5kFgu34pd8POhtMi07z/EA3pW9kYxjXuXdTQsQgorHDFMq3mfZgEhu1ocLPDfTarcXg9OQk1jVBUSBAAqlKZkyGfxuLSdGVuD9H6HYF6ALxOO0X3uHtw+mXOEQlYZGERnGxwcY9AZLR7nSECUsgYXxw3Aw5lCKU48DLX/pG8b5u3EB34VAOtmW6ZnmTQK6gVCPiPso3XmlmYas04TkJREwSRkaQQ/Q22JfLv+94aAVk5RpZvbcibr29NcLzfIhmvI/iVt4FEpkTocLPL/E4CrhaM6KDV+jTmj/bFtgen/FxnYU1asJUAXZG/mkPgp/oip0x9g0jvR7FP7fN6z/UavALiiUYB5ZBBfFQQzlLeKKTwkJvKNbTqghFGyjVlZh4EpBdDnqSt10KmzbR2rnDGMtY8AoE2AtZOsdAg7t2uSv2ejsweZrs4MWpLI46M2U+Px0SWQ4Vvtv5GffE8CEJ2l3q+rA3PA+UIB/7yodeCaqkiOoN3jl9XuQ9Exsbh9KlPgo3l7iI6JZX1KIW6fnx9XhmtVaICcRi8HEAMOr6IoPHDFmdx7WduwOn6jaawOwJQt7rlwb0SRdiu78uuVbEwtYkNqkamsaY/cAZfgpTm1elAN8EKIzsSCHdkMXxsERp4Ut7Bw8a86yNl/RQqthCpkReCIcjYDvS+Yvt9McDPIPp6rxKMUKi35zf8PAB4Ud9DDtpAE1/s8G+gyZtaRCgIj39unsc31AX3s05kaAC/+IR6kxuM3BeJf2n+mm20pdSlr+Xh+Mjf3W0ul28f9hgD4bMzBnVHjz46PZY4veVDayVj7yIhAX4e2zS23h9qCndmm7ji/x6rdkZ91c2o4SzAHLh3rRuJW7JxTsB4bPt6UlpHp6qx36DuBud10lFDDQmcfpjkG0s82OSz4fnbsVoauSTUFXakFVfp6OTsxiw5CLhm7zHPgb8l5nCMU8pYt1rRdC8TPaK6yjt4OfN5GsA56Xpyw3VIYWMJvAlA1ZoGVJlKKoQzVhZumgpumLdqw2P9PbhEP08s2W09+xMtqg5EoarhQyOMT23wceOlrn8pLJaOpq63mi1nrSXV25W5xD1cEyuuOnP88DsGvB/QiMtPsP+rsPCceRGQq6nzE7s3X1+FiJYoB3hcZ7H2OS8RcHpGCftFpTnX+/6Qe9kGdYU01MvieMiQFQs3IJE11vRI2JqwstNNs400L9FXQY7r9BdLk9rQU1NLcWwTzurPrWBkbU4vCmIeabxcaAPplBQm/Hgi/Ni1JbzjThDqm2X/U32ntPfL6FRaHCBl/ZVfB07ZCmX6sqwys8ofEcH8VVCCyVGpNz0DS73wh/P27b8gG/R2cvFnt1jwnMZtar5/omFgyGpHUCr0fVnZPQJeyhQX7O9R+2ZljKo/Wnk+yfCFthHJ9u5bAO6qcxah/30B37/vc4x4CEOZjRwv5/GQfxiUBn0qwgNv25ZQzZfNR6rz+ejVRQ0FNo705YwdthHKKaEnLZi76+F7m+6jvmH36u5QQRedbzmOJ/E/Td1Y4e7HAcL4ae2qRQy2DihYLyHR1oY9tKqcJtdQq6vx0hlDJJkd3nTlpx0dzg4+lMUStNJhuENV1s7f9Z/07Rn9T+9sVwnbVkuua3Skm6/pPdnwscX5NvPMTUymi0yCQvtrRk23ODwCVHX4mpczz3R12fppdJ2boz7KzQaexjVCh693tcL1jYo09Lm5jl/MtnhZVX88uBMdlq0Bi0InH1Bn2ZjHYCKoN5aQVmGORw8crTUAxwBPiVpJc77LW2ZOdWaW0pAqn4KUw4DMeVs7V993k7EEP20LuDzBXowLPLFdpTbnSlCuEyIxbgFaG2OhN23JOo8bkMxnN2D31h+UpenLA7fObKmpuEMNLZ4c5fqKjuD+sg68zAE5KjiY4bRKPuX/gTvcwAJSzrw07znjHMP3vb20zIurmgbqeVShNkBFp0cSOo1q9rg9sv2LHx3jHcBY4vov4fc2s2PouPNRhb/C7fxX7G5T6i1lOrZoFLLeoQ94uX8HXvtfwNzuT12yruETItkDdFS4U1YVymOMnE2skIaOEqwxlAOcIwUFfozhJki9hr9KB771dcHorqCjK46pvVvHThnR+WN64EiZQa91/TsjC45Nx4OUhMVFfIBY6+/CBbTGiYNHRwfk1mpMW2rWt+7zd+PyyDi55sbFdvgJQa/gvEnJoxwlWOXoyx9GPPvZppu93DmRdoqjhUjGH9sIJvrLPAtDL944rp3OWYB2ANxE8+kKcJ6lgkR+RRf47aCuUEV0ULKOLotqkC6HRXl+U1unMKc3GO4brZVhGi6KGMtTOgGt63Mm/PN+QEGBgtRNKeE7awJOSml2b7buHEf5OvPvuJ7rux1pnT9pQqutafWpbwFPS1rDf1+yHQImaJIrcIe4nS25LltyWS0V1oeoqraajaBYxNpZw2ASZu8XdfGWbyV3Hp5r2u0PcZ3mNRquvxbsGOl4lZupB+1LnV+SU1DB0TapOQ/7a+woANzizMQbtxpK+fa43TF0RNdM0D5o5bSZhV81CBTUhmPV93raBi4Uc2mhaJ83OAATe8Hyi7zveMZzXbKs4RygKyy55fLIu2qyV79md6jspCAIJslkg8SHJzGoc5XtG//s+dzijYrxdXZzvGhjPRWIuRUoL3vJ+TA3m0heNeXOmUEppjZfm1JDseov9Mz/G55fDRNp9ssLQgB6HNl4FZJpTw2vTkniq9wQmb47sPJ8nFLLFfyVb/Vfo151VkcXEl29iyqs315shD+1+aTSNHdKxf3hpa6hVe/y8PCWRV6YkMnDlQfyKwCjf0xQFuru0EcpNTvH5ohnUNeq8RFHFSMeYMFZLFNVU0gQFkbH+pxjnewKABb47AVXv6DoxgwJO1yn3UUIN3W3qe/+opAZc3xkE9ltSvyj4P6SDXCscYfHaeN1Z1u7n1JDzG2gfr/99v2Rm0hidzksFVWgUwluMG82qk46Vbc8oCdPfOlkLzcB3n7tbB/eHGUB7zfJoTRUuHpB2MsU+iC8DjLQbxTRKlOb4AtpeXTy9wr7bxRbHPMf3YdtHxqVx1TdBdup7s3dx/fdr2JlVwq6sMuKcn/Fc8utkujoDasfMc4RCk5CqZlr5arsWLlNJg3o9Y+gsxdFJ3MglQjYdhFwEZEtgr49tGrtc3fROujO3Z3HLD6HjQaGvbTJvSUv19Vn3F9pezr5AJ8K3bbF8bVe18rTs9PlCAeucn/KBbTHPGvS6to/oykxHfxyCn2mOgTrzML3Dq4DKHL5TTGaZ40vulpJ1dt5h16sMtgc7l2nlUp9732Sc/0l2KRebztyt2LntLZWpW6xE8bltDpmuztwbwjBqTEdHUJhm/5FMV2cG2saH+QBbXR9yrXCEa4UjXCJk85wUHzG5YbT7xZ0mH8tojjarOe3yGDJdXbhMOKYzcRZ0f4h05WwuEFS2/Hzn96YgP5IVVLjJK6s1ldFmFFXjk2XSXV31RIaRtXibeIi7pWTG2YcDKgOlz28HsFJG2WMoL35VUt/1s4RSjspnske+kJ72+bwj/Uai813mOr7nW9s0QCFaKEA5/QLyAu/NAmcfMl2deUtayqe2ebSk0sRKMraPv+Lr4Jj6zDaXGNvsBu9DY+xiC1ZXdEwsy/YG563vlh5kk/Mj9rje5kbhMMudXwBBUFYDaS8PgK6XXHY1T1x7NoDOtARM/vmXttk8IiWx2vk5zamx7Ab8xOjN9Fl2kD7LDuo6ivXZaPsIPrXNox3BgDvxaAltKaVIaUHLpmowvJHrWdfiWUAt43/4yrMY63/a8pgAXaU1xDp6calonltetq3hLVssTQQPR2W1hOpcsYjh9jFcImSz09mNOOenhL5DwfI9hTn2vqQ5u5r0MJ+WtjDCPtrUxKmjdJBzhELT+uvEozfh0GyG40cG2SewydGdD23BBHWG6yUeFJNw4KW5TZMuKKSDmK/r0o21j8AmyBxUzmeN/0bTcT/wvM9h+Rz9/20o5UXvr6Z9zhUKuSkAJg22jw+U/imMdozidKGK4Y6xYZ1HHwoA6x/bFrDSGUNHcT8CMuMcw/V9LhJzw7qovjUzVAJDYZSB3fy6tFyfb7R5eq7/Hl73BOOC7rZFTHIMIcY221SyttJ/C5eLx6hPB+0MoQJZCXpl39qn67+n+SZtKOV8Ibyra3ZJDcdO1HBryBr0YQSm3WzHDyQcNYNIGijlaqKyLstpzjFFfQdtdhedPeoYTZfbEWoXinkk54THIAIyt4v7+I9tpd7pvGVTB3IL9bnfKqToc/15YpHu97SlVE9WiMh8YpvPWViDXqESMX91+xuU+ouZ3W92QEb5nuaQfB4b/Vczxa/ScKVq1ZFf7fycniFibMYAHCA2sJiCmp3VBA9BZRSBmlVtLxRTpqgZ7kPK+QB4R9/Cg2ISC3fmmNhYLtw6XdWJx0SFTc4u4/3Zu/ny1/3888f1vCatZLxjOO9Ji8NKX3723Rd2/ZmuLlwvpDFuQzpzEo8FFnWFtIIq9uaWYwv8lg+JTfLVHJTVc13r7Mk21wf6Ito+pLzge/s0wEzVfVZSsxga2FRBU64T0xlvHxp2Xirare53uMNrgJpxyw1M/uMNC0oLoZos+SzWtfwXoHZhs+HTA4RQW2J4JpqdJtRQqaiT78VnnsZnLzzIC57e1Cl2zhJKeEwMZga1zi/tWrh41hNE85Nc7+l/P2zIMDcxgDJRVHODkMqeTPWdkgS1RGefciEpynl64PS9fRqzHT+YqNahJRzTHIN4I6CpVKkE66dnOH4kyfWu5bVrlni0JKJgdREqQFCn2EmV1cyPXxGodPsYGZemaxys9N/CUPtbtPIVm4KBC0Ko3JpQaUWdF49P5rfkPMpq1QVvQ2oRm9PCM5T/luJ4UEzSNWbuF3fqjulHbVtTeOloztNYaK2i+fmNW1kr38hX3tdMxxlhH0OqsyvPS+t1va5us3bqos0ay87hCHaZSVPO4R73kLBjadblsfuJrpvNGxfEka60D/v8H5LqMNR6/bShLPDOCoCgA51NqKN1gHn1lf1nPsz9hDcDLI1utmUMjd2li7Rr5pcVXUxbyxB1k5ax3/UGj4nbWemM4R1pKRcKeWS6OnOpcIxHxARsAQCqtVBOPmeYOhd1X99d//v3NvfT2AJ55Y3XJ4mimihqkASFMqWZ/s5dIOTrztD2ADhonO+Mpt2/VkKViVHTQqimXGmm/3+Q73lqX13LCH8n0/dFZMsumvcH9Os00WQIij3vki8K21+zXxzfss75KYPt4wEFj0FM/VrhCF2ktVwo5LFDvhSACqWJiVUIahn0VPuP3C3u4fzA+12tODlfLAxztv9ss+PD5zbPGUv25NFnmbqu3RooPV4a0EfSsuGag3inFAR9rhIz9fUPYIt8NS96wufl1oHsuMoMqf8N7fTTNtyF5kywCzdbXN3Z7PyIr2yzwr4jH1dBzrNbNjGVNAA8I23hB/tkhjjGsdr5OXHOz/jepiYAzheOEy3k8y9pA048dLGpzv9oxygeEHcgInMWJ3RmzBmUk+nqwku2OL6wz+H9QLm/rhtyzi36+mM0bb0bYGgwMsA+Sf/77ro4k/h4N9tSJrWIIkVwc0g+D1DXgysM+7QJgPvaegzBcspS5TQAOt73DJ9639YB3XntY2h9ZntG+57iPLGId2yqztQUx2AWO3oDqr9zXwTdrzaUMdI+iiiquULI4u4Ai+Z52wZaCVUM9D5PbqCZCqgJsyXOr1nt/JxB9gnsc71hGXxpJiIzyTGEWIcKbrbjBGcYSnycrYPMucelbUGQyxnFfXf8kwukAl1Pqz62stEGrzoc1uVv+mZ1jXpECko2AFwiZOvg9MViLlFUs+toIV/v6kimqwsXhswDTnyUBeawywOMilZUUsppFDnUNflz+1zaCmXcJh7iVdtqMl1duErMxNfiAkoCz1GzL+xzeN+2xFITL9SceHjP9hvdbMtIcL7LFSHl+UZ7U1rGk6IVCy44Vj+2Lwwr8QcYujqVC3vFMj8pGxs+3a/4xRn0qeL9KiNjmmMgz0nxvCCt57jSilEvh8s6gAr8aWw32ZBmuV3cT05pDWdQzivSKkAxsWDSC6to16J+DRoBmcelBN63LWGb6wNG2EfzhLiVtpRyp7SPIqUlLZqooJSa81N//2B5Ii/f6+bdPtPg61JqHgl2e6xT7NQoTi4Xj4U1EQi1Xr6grMgD0i5WOz8nSqjhTKGMd6XfiHN8wjj7MHrZfkYqy6KvbTIT7UP5h3TQxBwC6GufylPS1rBmPisdMXoVh3Y/I2l8nisW8UEIyDHBMYwE53usrHwWJx4WOb7VP7tEyNaZl+VKM9729uCiuhl0cn9DmtyedfL1POwZwCcetUwvyfUed4vqPDG9rVrp0c8+RY8tQPXvokJAZG2O1kw7huajznb8QHQIg/BMoYxLQ5hLoWXaj4TozvW2z9LjuwzHJQC4cRAn38gjngGmfbvZlunnWUFTvJL6rl0vROp+rnCxkEM5zSgPrAudpE1sdnZnvH2o3m0yyfUeG5wfh327qMrNV0v26wxysC75TTBIn7QKaeKigZM2R/i4kERB97FSlXNY5b/J9PnNYipRleaS1xZUsdbxGT8b1tlrz23JY1e3o/pe9X79QzrILlewTPOA63U6iRtJdL3HVteHAPSzTeYD2+JAcwO4QUgl09WZG4XDOPFwtnCCHu2acfX0qympa7gE8H/d/gal/mImyWYa+Cr/TTziGcDL3l4o2uM+L7gA/kdaYUKnNVDqV+H+Bn9Ly7Yfdr7C+WIht192DlNfvVl3Hs8QKpngGMYlJfFkujpzZ2AynWwfzA7XO4DCYderpLu66pnWUFq8Bgh8Yl9IH7t5cl4m32Z5Xi/Z1jJ1SyaDFm3hqOsletlmk1tWy7Njt+qZerVblaA7qY2xrtJqHhe3h20/1OYwD965BWcgWH5I2kGK8xWMjkxT6vRgpqatWr8sCgpZSlBwT9OfaEE15TRjZlRw0T7ietkk2pomt2eC7zFA1V5KdL7LmZTogFEUNVTSlB87XQ3AvZe1BQRylda0F4q4xFD/fUC+gNsvOgObJLJfuZDn3b3rvQ/7na/riH8v22wWOb9lhSOGJ0ZtZv3hQtoJJeQorUlRzqWDmK9n+EGlWmt2rlDEVv8VYcdPkC/jevd4bq8bYdo+NZCN7mmbq297XlqvL84PDd/I5/N2cNj5Cj1sCziTEq4UMmlNOWVKM5709CWP1uyUL0YSFNY5PibT1Zm+9qmUKc349Nnb+fiNVwEYaQ9mkFoL5ZQozXUA8xXbakRk6jx+Rsal8eGc3fxiAF1DqeZOPPS3T2aCYxhzHP24TTzIJMcQvWtLXLOmyIKhNOH0C+nYQQ1otN/U7EYxDYfgZ6B9IosdvblTTCb7RDAjpjOlDKDUV49dzlGlHbP8D3Bx3Qxm+e6jUGnJQO8L/MfzKac1Ud9LTTbhUfcPLPPfymV1U3EHOmVpAUlroYJiJViipI2fGQ6z03KNZw/dbcGs4OmJZl0sgC6TEvQSu+mB7lQaK0cTMP/cPpdOklp+tsoZw0+OETqzoiVVlCnNWOy/HZ+BFpV7aDHUVUTUlWvInh27tcEOMFcLGWS6OrPY8RUf2+az1/UmTwSYhxnK2RQFtOWmOAbrzpDmMA2xYOCA2Ym6yUBL1+YDzYa+eCNNom/myiuuorvnXV3Pzh4Au97xBIE5zTQg70rhKJmuzjp7aoQvCGzt6fCO+TtCMEBtgtsU9C9xfk0/+xTWOT/lQWknbsVGutKei4Rc7hb30IQ6nhS3ssnZg3ukZH60T+Bt21IqlCY0E9Q16rDrVQbYJnBfSCDRhjKaUsdZnEDCT3Nq9M5pbSgl09U5EIipJiLzqLi9UZ2fNBOQSXO9zG6xKzPs/XWmLMCs7ce4S0zWM59p8jlE1/3M5z71Pn/v7Wp5TBFFH7egMpNX+MM7hg2x/8R4xzAeDilZ+qe4j29t0zidCh2IjXd+YtrHCDRFi+EsMXni3ZC1lc/PD7IktHXCyl6yxdGUOuIcnxLv/ITB9vH8R1pp2meiYygvSuu5T9rN3VIy/e2TWOI0rxF3SclcL6TxhT2g89a8jalkXDONnewUwstxItmI01syKaM7H3rft/zcmDw5nQok/LrQt1ZO+d69F7PQfxcDfP8mum42L/5HDXzufrxL2PGuE9MRkU2NQ0BlMmpJhW62pTwpbWOv602uFDPDjpGvnMET7n71Xtd0+4+6Rl8oUK0xg1sINbwnLWaB8zt2ut7hSXGraT2VgfdtS4gSqlUWgqM59gvvQFKCxxton4AVAHqOUGTqNptaGC49MHFl8B0dFGBEtqGM1c7PTfvNcAxgszM476xzfsoVQia3CofoJv1Ge6GIePladsoXc25gvW4tVFAuRLGl6b313if/+f8kn9P1tSjUohpgfV4hBMGRM4WyMI1Go31pn81Ix5iw7aGizsZkrWYZxdXICvT8ZW9Y2S/Ax55u7A+wBwEG2SdwulBFnP+GMKa3/3F1/Zvj6Md85/d0EHL1+wZqEnNOYjbTHD/ynX06X4SwwGySgCOkGcK94i56BTToHHh12QDNnpK2MsoxmsTAeDpNqKVdCxefPHAJ47veRPf7LqZdCxeT077k7bVvq0iVKNL0lpdJvfoTHnP/wGXu6TrLJtT23WZO1vbp9pLlfgA97fPoIObzsJTE27ZY3t7zLC/Z4vQGH5HsPKGQWsWhr4nNhTp624Pg/VC7Kqov4WeOva9pLBktRQ6WrWndRD+0LTJ17hxnH6Zq/QCPPPsKMiI+bOxULuUBzyCqA+zmNXKQ8qRr+gAAIABJREFUQdVROsg6/3V0fPA5IMgu1+xhKYkZIcmE521mYLy1UI4dH49JQVDppwBb8RnfDzqgMt3xI31tk8lwdtFLPjV7RtzETw6zf63ZcaUV4957iuRvHuTydur8ma60Z6P/atN+WnlbJU3Z3/oRQC23tePjQiGPi4QcXUfpJWktj0mJtBKquDdQnqrZQ9IOHZDRLJTduTOzlJJqc2wb5/ws7Ny/8v6H2b57ANjt6sZb0lK+tqlNt7TYD5sr7HuSKHBAieZL739YER3D296Puc83km8C1RMAa5w96WubzE1CCmPtw0l0vkcHMZiw7u/9N0veu51WzRzYmrbQk1mhNsQRZPROsg/i3zZVT7CtUMa/pTgeC/hmvzi/47DrVe6U9rG/iTqWt+RGLhv/q9j/BCglCMK5giCsFwThoCAIBwRB6B7YfrogCGsEQUgL/NsqsF0QBGGkIAhHBEHYKwhCuIrZX9RssgpKfOd9mSIlykQFhkDGo+si5FYqndop+HR0+h3pNyYEJpqNzYPihtcJR9RuTPjxKSKjfU8B6gL+mrRCD16annEuV7aPojREV0ObvF6XVjD8/2PvPcOjqNu3/8/M1nTSCYGQTiiBBEJIIPTepPcmHSnSu/RiRJEiKreiiDRBQUVBUFREEAFFRGlSjBQB6U22zc7/xezO7mQ34P17/i+e+/4953FwHOzuzGTKd77lvM7rvAwrqOMiV7xNsA+Zhvs1BfWu1NHG9bKeccZz0JnB986KJFo2kGRZxz6psrpdJ923RHOH/SaFiR6q304loYhs4YxKurknzD/58dNxLx6/L5b2NM/wDlMMCiHyR6yHtLsScYYD1z9hjqOPuq9ZsPOJcTpF5p6M0X+gUS7FpmbzkzOVxfbOtGj5lHqc38z9eEH/BrHCbSKiS9O0chk+LyYJduMhJhY6eqmLnhjhDgfNIznuIoyCBQvX5TC61VQIwgCX6d+9wHK01h0iUrjPMkcHUi3vclxOREBQVSuH5Ioa4qGHTWvwrRNkV5UKmTqulLwU8QplrnxBK/EgJsHONTmcbyTfPG2AuuIxorlDKH/zk5xKdctKze/dbc/hQM9loimwegZOt6fDcP02Bum284xuG4sMb6qT4b9tEt8f/RmTYGe0/kMOmkey3TSN8uJfvCc1IiBeqUJ4QY4BUNNU3d/lJsdAtPLMq4tnMeCgifgjpYXb3JWDaGNbwCT7YOKEWyQJV3hgdajVfg74yTc34GCLcZbLC0pBtniWt4yeQXmZV+pcsnCF+2IYBIQjCAJtqsZxUk7wew/d5/+u8QUNSed+hwS9RzEzqG4yTSoq11w2KoznHAPJtb5Gu1GL6dN3KNXLK+9C88qlATghJzLSPhoLJvq60pDcngiRwl2NmX+RrOxT00WiTLUP1Bhuq+eg/0xVF7yo1z5vEzbV7N3f9Y7Qb9N8bigeVbwnBAt35GB+k8sheUWRJ+6dBIXlCHc83ijWG5113zDKy1tu4Q5fLytvfOKKKGaJ51UJuTtKe0GOoX/7luo75E7L3O16l9vrvsOInQzhAgFYqCz8zjLDCk1EfZp+PZuNcwjiEeHCfe7KQTxdOxGAqmUVFZaAwMfOAj6UCtgi1WWqfRAAd5Na0dk6k0MuBRNAF903xHBbNesf40pTKJJj2ehoSD/bZL5PGEwjq/8F20nzgMfej9/lOM46y1Bbd4J3jIs4aR6gMT6PFe5QVfyd11xjhxvd9Xt4y7iY4bqP0ONgpv5dNoc8S9/SkzlgHsU5cx9+NQ9iq2k2k/TvqQTEHMMa1hkWUFM4xWDddl4zLmeQS4VpwMFz+rUUmXuqvogBWFhvWKCqe70j6vV0v6hKWZAxYWOBweNrV6PPfF7umqV+3uWsySpHS/XzakdzptgHMcY+gg2DtRPR5+wDGGgbr1moucexlcalNBMP87LhNVYYlrHO+DxP6z/niHkYX5kmFDuOonLM8eOh4Q0JAVa3JOijpwG4LEdyKKrjY/c5YR6gISAnG97z2Wah4S0WGN4GIFc8rfomue9DDfGMWkZ7i1QXgOuE08U6U3McJyLT7AP9nsdI2yif77yplLOU1VSZ9Icj5mGcM/dRJ/q39E5E8yXNoj8swKB6IFbJ9gTovpWqqP+frN+oMdWuJ/7MMfMQTpn787LhNY0KoXjpd4CrRHCLUKpZ3uB9Rz2N8teNRPEax8xD+Dp6MefMfcgXj2PEThXhPMlei52Jhs3q/S5eTMBNPeWJJ3mAGUQRQrRzvhTxCjP1azWpYM/otrHPNJqF+lVM1L9HGA/49bLSB8dwmyWGVwnhb80iPEm8RpG5p7qw90aWeM6HiNlhmsYm0zymGN4jVHjE37KJ35xlydedoMjck0riH/xBGX7zSnHyNvr+SKrNGWc8cTlPAQINrb4KdIBj5iGqzw0oHpylvAj+BjqtZ2QZPxYLA3XbOW7yKInn6FczRb+BInNPfjIN4VOj0m+ucXmyArT0UpvnCKdoKP7E58aJfG0cq85J3CoZgCtEYkfvo8JwV+v0hq5MVc3n5YYVGnUgwE7jZDJdhOgQ/Xbqip5UcJ0oqj5hoJDwbxtfYqh+O9Hc4UvjBB8/uuL4VMpDEARGNU4jKSqIzLJhHJjqm52AIGDLG81xORGAU8XG8GTLOu5Mus69jAQykxL4U69jun0AAcFhJFq0hRrm2Xvxkr3LY8+rOP7ssl3tZyqKFzhngg8Dw7nip8J2pHCf7rqvWGJ4TVWA+8MAmy/h0dXlO3U3RnleyeJVTIKdHVIuzXMyfLZ34x5BjLZ5lP7vSQ3RBUeWuH2Wl7LLTbAANLQuZpuUTwT3OGPuq9knQ7yIJAucoSz/chU2Ki3cprf+S0RB5nPTZN40LCaG26QKl1hi9ATGRtie1RyrufUFjDrFG8k7yDLYPp4rcoTPfb0phzCtm0Ist9Qd4n2Xwnq3aRIHzSPJF48z30tQcBP/xaCWGDxk8K/mQew2TiCG2+wzPYtw5SiiVx/uTeLXt75MQ+ti2ljnI0VVYLPkuWfTDBsZoN9JTeEUJuzIwFWb0s99OqqAFT2zleOJAvPaVcFS7WlGtVGKRdwLiGeN1FxNMwUliPOBaS6tdIc8JJcLTbsqc5Pzd8+jE5VgFoBV1nOzmNLTjSY6beDjecNb6prqfyv+I0gpwAGMl2W5EpAHjBAEoRIwBfhSluU04EvXZ4CWQJrr3xDAf2j6vxB39cris0uXnljHnOYhnsmQQSfw+/OtwRCA2HaJz77ek1G9OYQX7N0B+Mg0k9/Nvems24tecHLTi7CY5fKK+NmZDA2nEhPiy0K7UV93jPY6TwqPd5nRKOEeXxgnUl34zSt6J1NO+IujTi1x1Nz2At1sM1Tll4zIYad2UDhsHk6A4EkP2WGaxoemWUrnaArjkhxNUlQQl+VodZtkyzoqW96ip206k+yDGWYbw0FnBkNtY7jgjNYc/8es+T7Xd0mOoZttBvtdBJl7wjBGv5UQHnGfQOa1r0KN8uGsqvAmr0gdqZcezWSv9Ltu+j2UEh6SUDmPuFJmhtjHqxUwAIqcseyXKlPoUCI8Y+yeKDEo6iu3Z4MhwjM50OtEdo2pR5UqnsXVfqmK6oEiCKikFMBmqQGgGNcfcHoIPzc66/ZSZO5FgqiN3r3mUrjclkPo1rETi4pVaQFYayzksHk4BkHigRzILUIZZlO8qpyygIxItbLKwOVvYgFKiph3e/Xkavv3nnogm6lfIYa4MDMz/aSxGXAQaNSBKPIgRGlvZ8x9WWVcTFPdjzgRcSLyh1MhYUoLt9j8wyU2/1Cy0fJm41xqiGfoqddWVnKf60pHW41Sr6f+K24HeJ6ZKAg8wkwP23RqWl6lnXUuV+VwCu3dNQqqYfpPSRb+JI6bNNUdUUghgzZ1ZlW/mhQVtmb7sx6D0gqlQ2iYEUNSVBCn5rWgU42yFMchuYLqJzBT/y4R3NeYOV+Uo9XfAXZL1alsXa3m54MnzfaweThP6Q7QRb+XGsJpeuu+IIbbvGNYxE/mYYCsLtgfh5a6w2rq51+uNDmb4BnKHK7Jy+D77sWTDMglps0JOHnJ8C/GG0oyPJbZaxxNV6+Sx9f9VNmsr1MWBbflENJKhzFdVNq0m3x3E3gAnxmnsNM0hRcNb7DdNJ12Xv3idTmUMOFvcsXTHDcPpLp4lrsEMa1VRbaNrENSVBDecKBnvP0ZTskJvDsgl9d71+AHOYOutllcz1L6h+cNb7HZqDXOBaXy4nPOIeQ07sLfNonzchlesnehKKFTiQTASq9qnm4MtE3wMfl24wOpnvr/nc6a1LYs59NiUcRJhs2cNfdlgH4nw2OjWR8ewDWd1pB2eDFyskB3nPdNc5nqUue01R1gsn4jB03D1TTgIfpPMWLnpHkAdXTH2WhcQCgP1OCLz3XoPuO0+WmPWfXkIupnxNE+K54pLTNY1ElZLD7v6MkNOZQ3Ha2Y4+jHe1IjTRqpGzcJ40tnDUbYnvXbl71hXEJH3b4ntvs9Ti3B714cz7NrlT7F9TDxwk3Gdm1KgXUZL9q70tE6m91SNtPsAzXvqD+MsvlXJrmx0N6D+Y4+mnZy0RmtIZ0Oyxk0s74AePryy14E3bO2Eax0tCXP8opG+TzFRbAW176Nsz/Dl1I2fWxTaG1dyD0X2bPE3gm/SF1OUJKWyDF4lwo3hdDd9hw35FBGeymxhuq3c8g8gmzhDG8aXuJd4wvqbx11+zSqZTcyLZ40RPe13iWYiY5hVLW9Rb7lFWbYn/bZL+m+QqhsNC7gN3M/PjU9x0bj41VWbtxvr5CnueJptUIdoR5S6lxkAwAG6Hfyu7k3Gw3zWahfpY6dXfR7GaHfxs/mIbxpeIlawkkOmUfQQbefrcZZtHGpPyUvLxh39UKAKl7X/CSY9aLm2QPcJ4iKGZXItbxKkmUdo+0jcMoCO6RcxthH0tT2IkGBynX9SRS9vbza3J56AKuMi/nWOJrjpv7sNE1hoeEtxus385JhpUax68Z0/TrWGRZQZO5JLLcYrd+qKjgB+um/YJj+U0BRyrhViV87sxhgUwjj143LCOUhicIVPjDNZbXxRdLFyyR5KRi931t39d/5jl5sl3LZL1XmgjNaU21ZRZlszUd3Ktwk+2CauKqwZhSrdrbWS62897frrD/oIU5zBA+Zfdg8nHJe8zZ/2QKDbONJa+3fP9QfqsSHsW5gLX6Z3YyVISOZa+/DJ1Ie8+y9cCKi14l8+IcyL60nTGC91ASzQQcImkDI9+a6fCgVcNEZzRT7IOpal/i1HciwKCTHVqmA4JRanPcKvveIL01A2Y2Ms2uVvxeSlSIhhYZVqp+qGxsdDSmweiw0pNB4n7btLgwT1k9L2vtLj02J1o7RXzhz2CHl0sc2hWnjJmIya0nqPMsrrAryZEZ8X3E67a1zmeYYTGPri7SzzqV1g7pEJ1bWtC9vSIIOG0aVHCyOprofmWLYSFMv37w9UjUadRjI6642sNTRkbsEq4TmlJaetpmTGke+dQX5Vm1/+kgQkYKUQORTugMaUg3Q9GUHnRl0ql6WpQ7fQEkHnVYFlCr+ySHzCMoKNxh4fozq/xjPdRbqlX7va6kaf8il+V2O41c5mWCT3q9C933TXMKF+3wYHETTHV359cavVIkPQwj+iXN3FFV8n/xEFnetRqBJWRNVjAvly/H1GcRMn+N5wyIbSLRsIKdaJkeuHaHdR+34+PwHvCm14iV7F6paV1HD+i8SLRt4xjaaefbevOZ4qsTjFX+vLbLH5Fz+H5tS/OfgP4KUkmX5iizLR1z/vw+cBOKBdoBbhrAGcDvvtQPelRV8D5QSBMHXvey/EO6880plQtV88PhSSgeoKc+d3AAm+qao3BFF3g8Jwm4I1iwmAF5w+UBEV66vVghx42tnFpgUNnhptyxG2kaxRSpgi6St0uGN4p1XefEvtppmc8bcl0+N0+iu+5pMsYitUgFXyysv8UumkeQkuj1tPFghteds9281ypoSUbEtZwvbsbx7Nk5ERtieZZhtDE5EHhKAhI7NUkPuEEI320x2OXNpaHuZSfbBrHC0I9myDl1AKF+E+ItAC4y0+0Z8U8Qr3JMD6JNXHkEQmNe+Csu6Z5FROhRjBd9UydIV6xBqVp7fNMcgnrWNZJa9Hw1sS+hln873zkp8M7EBVowqQdHfFd2ZaNgMQN+W2ntfoXQIhhglV/yQswKH5IrUKO/pwL3L3i52dGFM+Q855lKSPWfvz1qH/5ROf7L6m4QSXyqQ16R2PGWdR6Jlvbo40ezrqiqx05lLG+t89fm5m6qEjkl2ZbAebxvGfLtvugXAj6Zh5AonNRVgvHGXIEY3TmPnmHrcJ1Atne0m/AKxEmDUccdyh1tJzXz2P+JUjHL/Niukb5xwq8Syyu7UG6UcugdSC8/1S/pAYjoWsn18c80294IS1f+7TUYPOCuzqH8zUrLrk2d9lZXSU4ywa6NbX5kmcMA8ijzxJJukhqDzX60j0Og/BcLsUtKNaZJG6VAPsSwjssihkNMD9DsxCBK3XESQQSfgQK+at06xD+K6q7rkd84qzLb3ZZp9IJtcBKc3tpjmMN+wmg+Ms9WI5VrD8z7blYSqroIL7gqT+Cl8kGs7SJG5J0XmXhSZe3HO3AcBJ2asJAjX+NI4nmzhDG94ecB5+xxVFc5RW/xVJV8Xufq/MB4QLdz1m3oKSluLCTFxAiVVo77uGDZZx30C1Pbmln230WnTgX9yprLVpTTxxh05BKNeVFVS3jB6VQaqlx5NWICB3ePq8+2khtyt4pGf+0v3smDi3MJWjGqcpqrpVkgdeNhiCV1tM5nqRTDskyoz2DaOQkcPmlgXaRSOfxLJJTna5/gAX0seIrxILs2fRDHS/ix/yb7XAmB3kYp35CC/v5eETLGIZ/SfECF40nmmlHMwM0ZLrhwzK6kd7jTz63IYo2wjscoGTarHjeh8CFDasygKDKufQquqyjRCQkeOdSULHCWnoHjDEVedfOsKXoxd9I+vZ6p9IImW9WRYVvvc2zmOfiRaNvCWpE3Nk4ZqUz2etY1EJwpckqN5VWrPETmdQfaJbJAa852zChu9IvFVLKtYp1fGtJ+dyXzizFd/W+loyzJHB7XfBHhPUtpyby9y67wcp/qa7RyjtOPf5HKszd9Be6fiQbTPWQWHrLTZI3IahY4eXEUp7tDDNp2htrFslhqQbFlHFatHhSSgpJEMtE/kW2dVBnRuR2PrYnrYpmv81dztxtpwtt/7KhVL6/3eWYkc60puEUq+5RXNbx+aZtFUpzU/94dfnIncJ1Alna7IWiWEgKKUWSs1pbZluV+/sf8JTJVbQpDSNh641VgB4crc7rm/SHpGS7Tn607QU++/mm1T3RE2mTxG/GniZdVrq7HtJb/kxQMCaWZ9gX1SZYqcsTSwLma1wzOmOYBHrve5foKBYEHr07eHGkxvVZGXBjQnJjQAEKhifYuRxcY3N/Y5M0m0bKC/bSLTHQPVas+geAK5iaVWukOM0n9EZ1fqN8ACV4VfUKp/uYnFg+aRaqruA7nkoCrAKWcCXzk9iRfHzIN9UmzduPnseW4SpgY0U9KU8eKiHMsI+xj62KdSz7ZU4wP4Zt8c3huikLM/JI/gR2eaqlQ/54zjaymLs7I2eOSt3motfk+eeIIfTUNdY19PlhpWlDgvAtSK3ACL7YqP6Qlnefq5lLnbzm1j3+V9/nbVoCAtihCzAacxlLelloyyP6v2T3pRUCuD5iZFqN8BGkKpYoWKXCaaurZlvCc14qIcy4dSAXPtfahmeYOm1kX0sE3HgokalteZah+EXhS4SRibHfU153PAWZn9UmUeyGaSLOu4E65VnwHkWl6ll20qzzkGcEmOocC6lOcS1vHdlMY8IJA0y7s0tr7IcW8bhSAtsZqQ57sO+Hxsfc4saEnffGW/VjVSGW4fw7fOqpgMIsEmPcsd7bklB9PDNp1xnRqyP6orx53l+UCqx+9J3dUgxzk5np/lVFJigshvO8jzN6QabK72ljpG7yWHt/vVJD4qnI7W2ep23nYcHXX7NMHcp+2TaZ1VjuvpPTnlLMd7rvHAXZnaoBOZ264ypQINrB/kCRpMsA/lpDOB4YEvkpn7DvU+aAyxHqWpP7S2LuT58Lks6FCFpY7OJFo20Ns2VRU/PA4Bzgd8db8dU/Qb+dQ0nW76PQAsdGjXA1a7k6tE0s06g/ZWpc273+kx+q0cMSvk2ZnbSnr7lG+n0P5jrWF/fKkAXu9VnVe6Z5MSHUzz/Bqq6v1dR1Ok9FYaArOSdTXdayrpnn/cU8jjU7dP4Ch1jHdSjjKzvYdg/sxZi7ekVuTmKOOou69c7mjv45F8RY6gg3UOGdY1/G/CfwQp5Q1BEBKBbOAgECvLslvnfBVw6+ziAW+68ZLru/96uKdbsiwTYjbwYueq6iDnlJXqPD9cdVVhCIrixJCLJFo2qFUipkZHMjcqkks6G9cJ4wvJN/NxeM8uzB/YnouZShT+J0qzyeRR07TPjud2chvG24cz3j6cda6X7RMpjz1SNY18+e+QJHYGd6A4qohFqgHqOqkpsX1WsbLmZ3QZMo13B+by04ymbB3ukXpL6DDFpGrMRcE39Wx/YGNoMhtwmzfCdmceO525mu3ykpWBs31WGfX4m6WGvOTohhMRnSiwJXqYj+8RwG1C/BI1dwSPkiAiyEi7LKVJxoQFqwaYKspkE2r2HGObszZrJC2BkRARSHZCKVrZnifRsoGvnUrnd0MUeSgIRMf7MTGOUxaIJ5zlWTswl5GNUl33QtCkOEjoGNLc85zWSU2Z4RhAsmUdNS1az4WtaDvTLVIBLZ7q4VosCy5iS+A3uRyPdFoZq3cVol/lZGrXUM7PLjl5rrWSSrdZakiiZT1V2zzDKqm1OkDcIYRFdiX6ZRbsbPaaUOdZXiHRsp5Z9n5Mtw9gg9QYnSioRO1o+0gqWd7mNUkhO/c4qxFo1FN3U10WBnmiiDfNCdzt8gETHYoM/7dHyvknqMaSMgnCNYzYSRMu0Uw8rPGj8oauWjfP/wd8RsfqZUmODtZuVMoz+Zncwsu0MdCIwaui5u9yHI2sL5Fs8TU7/kSfwreXvkVy/pPKUVqMaZJOq0wtf79aaqH5XDVFGYCdMgyok8RcRx8m2QfzkVRHs907Ugs2SI05Jqdw0sujwRveSjt3BP6ai6z4zRnvWSRUbMs1IpltV2TrK4zK4vGcXMbnmEJwLGT5Jwt+N/fmlLk/e01jSRGv+Cw6++t2EsoD8sXjbDPNYINxoWb/KfqN1HalgJ2Ty6iqELfSD+CL8Y0oFxHIfcHzbI2CBAglRjHdOOssw1qpKeedpTXfn5d9YyruqNnSblk+v6XGBFMuIhA5pIzmfd0h5XJ1kJLOctxZnonNPSl+VcuWUhWKNodimr5RakQ761zaW+fS2z6dL5w5gMBZuSy3CFVVrDIiG6TGHHJWYKJ9CImWDRRYl7LM0YFvnFVpa51PZ+tMvIMJudbXSLas00RNh9rGqJULO9jmUNPyGomWDQy3PcvL9s4kWdaRY/EIn1tYCx+r+DlvNPBCpG/kFJQUjTzLKzS1LuITZ21We/WvBeXKs6KirxeTWe87ZZraMoNaSRHMbadVlA5v4FH45iUr49I3jkpUsayitmU5flG1O3TfQKJlPRulxoCABRMgkGjZwHP2/jxn78/GIbX5cLivObKzVHmY9Dv0+oBhcR+wzVnbpxKt5twdg0m3rCHRsoEHBLLW0IVXHO3papvJ+kF5KvlY6OjBEkcXptgHsyZmEumWNdxz+ZzdJ1BdWPwse1RTGaVD2TOhAdtG1qFP8zrUq6oQ+xI60qzKYu+SK5XajQPOyuxy1mRRl2ze6l+LR14Ldncquhvts+O5TilVyTvVPpBBtvFkWd+kTfBGTPXHarb/cHhtRNMVJJ3/inaHpzfhCiWn1XS1ztCkG7mrbR10ZtDWpvQTa6VmJFo2YMXIhsG1qJOqHK9KvFtZKTCzdzO+d1ZSUo4C/CuBQZvaXcPyOomWDapdgRuSLEF4IgAxZRI9OwdFgd6EqDdwLsq/Z9MtOdjv9/5wRY6k0NFD7X+3S7k0tr5IYcdMfpPL0ds+nQa2JRTJccxx9OOX9ruZlLqd0bHR5CaWQy6XR2TnpZrS5gXWZfwmJCKKAvXSozk4TQl6/Y0ZZ7GlSd00hQj4dpKyaD5sqIkNgxo0eyKazGH61NlYh5TsybLc0Z4q1rfVz42tL6qKHIBllTa5yNN/hsgIZduutpm0si5k1YDaBBk96k/lGrXB1aaVYtW+IrPnPL6us57jxmokWjbQ2LZYDfockCphlfUkWdaxSmql7v+qcTnvGecTKXjSF93ZCcU9gd531CPRsp4WdWoi99/JznLjeEXqSJJlHX/iIV6m75vOM7u1qqPHYWXvGgyum8THI+rQO095Zw1e/la988pzcm4Lr+qBAldGnIOxJzyTciA9NpjYUBMPCeBtqSV3CeaMXJYDzsqcW9iKm4RhxagGU5dLHX2sA3rZp1PF+hYyIvfStOTDLHs//iKc/c5MJJTnckmO4X5gWfWYdhSvxDtyMB8GB7E1WOnzRtpGKQGmUUcwtFSUQF9PaEBiZCAJEYHoRAGDTiQnUXm/vQ26jTqFlHrZ0ZXq1jfYuHASXWuWw+GUaW17ngn2YarXJniCxWkxIRBTUQ0Ob5IaYE6uzWapAS/au7JQP5yCtChW96/JETmdetYlLM79hoTqHtLRG7UsyjzVbNAxs28rWtheUNu391yzb34iR2dqA7UfSPVpaSvkvDGDonsuccFTrjmZM47aluUkWjZonsdxuTxREZGYDTpVKLHPmcnrkofsnmfvTQ3L6yUGn4fpP1E9vtY6mnCmGEEbGqCsmQ7KFTkqp1LJ8jYdbB5C1lVEEYf8eE/DlplxhLmCwhNbZJBjfZ2alteYY6rDzXbLuCTH0MU6kz9G6lH3AAAgAElEQVSGnOHU/NYUdtISngJgKv0xgs5Kp5zStKmqnb/pqnZinr2X6nH4sqMrO+M9wTNnzy3kW1fwU7GqscJja0r/d+A/ipQSBCEY2AKMkWVZU4pNVmj4f0vbJgjCEEEQfhAE4Yfr1/1PVP7TEBOidALu0tBdcspRLiKQ+unRvNIzgwG7BtB/V3/2XlIiSJXKKAv8ofaxvOZ4im8FZVIpYwcEBtsn0NrqWZi5J0p1UqO4nD1eYbvjS/MgQcvmrunvIXlmO/pR3/oyo+zP8rR9MkPt4xhrewarbOBhnx0k9l5OBcs7JV6TExFBb2JY69qUjwzCbNARHmSkekI45xa24oux9dj+bAF6nZL61c82mbWOJlySo/jeWZHm1kIaWhfTyPoStSdugWAlcuWdc++NosLWTGmpECIxoWYignwrWtkcTnR6A5fxVQd8PKKACtZ3GWQbD7U8ngJdsv2L9QJNep62T1bJFqmUorAIDfCvdnFDEATe6lcTs0GkZy1l8M+y/IuG5cvSsnw6hPnhYcvmcLb5Oix1JlM3LVp9Y/zdiegQE7vH1WN803T1Oyci1wlnib0TPzjTKbAu5WLuTHIsr9PcWkiiZQPj7cPplZdIzcRwFnWqyv4pnklxwIxLnBtxmVTLuzxv78E7xYi2AXWUa7dLTgbV9U4fEuhXO5ETc5uzu+YbXK05iSb6d3hN0nrUgCJxv0okleLCWCM1Z73UhKhQTzrbxsF57JvalL8xc0mOoa11PvMcfXC6Bqr9Vw9xtvMXzLP34mKPrwmr3JSTc1tQNjyAWR1qcM4ZR3fdHvLF4/xm6ste01g+Ms7kC9Mk3jAuoYqX8e20mNdUdcy75z/hlw4roPlCKONLJABU9kqvDDLpySitkGBGnch9qzaH/bxcxmfyDnA26ROGfzmc5T+VsPB9AsY1S1f9iwBSY0uRZfmX+vlugNKu3IqDS3IMm6WGrsWzf3SzzWCyfTA1LK9z0elfUQOKj1tTq6KoWOFoj2Xwfs49tRW6raNTwCofv4q7BIOojb4LoWWgrm8Fl8dhraMJ1+Uwphje45h5SInpM8P0n6gGob3HL2aD1JhEywY+dyoE7k6ppko0yjIssCtptl9INahcJpSNUiP62ybS1KpVzMxxmWdvkhpwSY6hke1letmmMso2kg7WOayTfFWK5SOVCXJ4oJHyST9QsdrHPtsIguLtcxelHa1wtEdfqgz5llfoZpvBiIZa4rpsuPKeeAZSgZ/lVL+paaAsuBZW+wJQ+oautlm871LGXZJjWOLowgMCOW4M5FiEEj/yVmc6EVnq6ESiZT2Jlg3scubicC0QLBjVKoY7nHkslzoiI5KRmkIFyzukWNZySk7gO2cVZgTNYlFEKcbERDFe14bKUc3YVddTWdbRaBbNrYX0s3kMmq8TxlUiueO6Nz+5KhHOt/firl5my0VfryB9MfPg359vxdD6KbzcK4Gj1uVYHBaWdsvi/WH5TGqRwcw2lRjdOI1Srr781gMbDwjkT6KoYHmHVtaFpFvWUMPyOr1sU6HtUshojf8eWQkOrJOaUi4ikOwEX7LNiRMCIyCtKXN71mVovWSyyoWTGe/fxwPA5kUUWMUAFju6YsWI2SCq5KMbDwjk1+g2mn2MOpHVUnNm2fvxiqMjS7p5AiyJUUGqus/73smInJPj6ZHr3zOvc42yNKwQA15eV/PbV+HXOZ7xQicKxIV5lC26mv3Z7TIVfn1AA59jVokPIyh5GXJZJc3p+t/Xqb+pPqJJ8RaMDjGRUz6cDMtqNcruRq7lVQ7JFQGB5tZCtkoFzHf04rizPJsdvn+rR245aqdEkRChvKPPd/QQAu7ndljOUBRNtZ6BYft5IIZyTS6ljhehYREw4Sw/9z7G8Db5fOcaR2WvPl9ySpCmLBjDw8PV6zrwpyc96edaSxhmG8Nz9v5skepyXQ5jpaMtjaXl3Aooz/Em63A+d1OTljvD/rTaTx81GXl1gKLy+ViqzVpHE150dOPL54fQPTeBTUPyGNkwlRyv95qodDCHsDdQWXwKA3dBaBxvONqw0tGWW6N/L1FZ6Q9rB9aiqLA10a757YRm6WwdXptaSYqawI29VV9Q09tUTC6CAiVoYIqrzCpHSzpZZ7G2yQ+aoKta4bTzam4GJFEkl8aCiWNOZU4yuktzdS70VcV5FMeztpGqQfZhp7Ld+kG1uEokcmll0eoO/IWY9BR2zPQ5hjdMeh0Tmlfg2OzmPr/1s08m2/oGMiIX5VhSLGsfeyxQqqR9I7kWz93WuQJtAqObpCGUz+enMorVgvx/uCxMjApieutKVCtXinntqnB2QUt0oifoKQoCAUYdEUFGhtZP5vOx9YiLjtLMV5+uncjnY+vzzcSGmmO/0iObl7pUQycKdHHZDehFkdd7VScrsyqVrR4ScfPQfF7uWo2JzTNoVvcway/MgzG/YnMR3VuluiztlkWLytoAkE7w7XufsY9mZnQks6IV0uZTZz7THIMgMkUl0pKigtgzsSF7J3nOuU5KJLmJEUxr5Qkwmgw6TVaCGw7JM+p6BxJ+md2Mn2c2U4ntGY4BFFiXEZb1FG2rxhEbFsSrUnsuW5TrCnKln12QYxneJBOdIPC0bSLdrDP4NF55D/ZKmVwjgmca+Cd1hRKawM8zm2kCWRrEV6enuIhmtkUqqVnPupR/OVrTK3wDIKhpjZ+MKvASFQh0tM7mbUcL3pJacpMwVkmtSLes4VnbSFXR7I0bEdnMcCg+lx8M8yh6V/Sszrz2VdSATWBwmBrkBEVxDkq/Kcv/jC5Q2q3AdcIITHibfjv7US89mh5dulG+TIxGqa7Zx53tIUss657NqXme4K7JHMRbUmvKxUQwuK7Sv+RXTIBpV2DS74jpTy409t8K/7kc/xdCEAQDCiG1XpZltyPtNUEQ4mRZvuJKz3M7214GvEPzZV3faSDL8hvAGwA5OTn/Fcma7s5OclVfOX3rNAH6ANYMyGX47uH8eE3xL7jyQFvmvkiOY5GjO4HCcnRo2b3jciJT7QOJE26y1NEJd42VrHKlyIwPo8joaxzpPQF1oOcPLz+VvvnlefcAfGity/GwGMJ0IlaMinxUaogFI/niCdrpvmNn2hwKHvmv5uG+3rRYpaNxlzz/xlmNb5zVcFtTVayWx0dHFYNzbzVQhdgQRjRM4cSf9/j6tJaUzCpXig2DapGVUIrtx5R7tXtcPbYcuczre85x5287hmIDy1v9ckiODiYpKohnGqSgF1OhWQUe1BiO/G47ovP9s/9/uwagHOtKArDw/YCmhAEhZt/Xs0JsCKeveaJgEUFGTs1rycHzN9lw8AJ3CCEEuC088tnXdQNIzW+Le4lZLkKZNBakau/xpBYViA4xER1iYlTjEBZ/oTXYXSZ1UlMmJFHHDcI0BtjKnxLo6pK1np7fAvcYYNQpVUr+5RUhWdotC6NexGxQ2k3xFAs3Ao16urdpCbREPqIshq8ZE4i1Kf4JGx0NVaPD0mFmwgIMHDh/ky3PeFQF+S7zxoPTGmOxS9R/ERAfUX2dZ4KaWiWXGQs8xGqAUce+ycqioM/H/VhrLNQQF7H6ixw2mqhp8fhSXHRGU69OPYZtDOPzxAn8+INCUP7Sz1NKXoPuGxEqtNR8VdipKi/tOk1qTDB3H3lIqaSoIH6/8RCAdMsaMoXz/Cgrk4UQl7XeD9d+8PtnROM1DKUO4ZRbIvqZfQSb9Mx+qjKzn/IoPxKnbCfRsoFo7tAxtDqgRMf8zN9UrOqbw6B3lXO4R7CSVgjUtS0jVbiEgJK+Nlq/lc2O+sxz9EFC5G/MJFqUakLLy6YSVdZDiBx0ZjDNPpCFhrd41ZWXb47Veg0JCBCZwvs11hF8aBlT7YOwYvBr1v1F1Zex3/+LXj3Hc2hhU6Lloz7bTDVOI/rhb4wr5jkllCpPt5x7bPrhIk5E9ZxPOSzIyJj0Im8+asMOqRbRZVPBKeNEZL9YA5vDySpHSwbpP2OyfTCbpIbMWrCCOX/e5a19v7P1yGX2Ox+/aJnQrAI55cPJT4nk1r4PuGXz3cb9zr0SMJQeD9dzSk7ApBdLVIQ83ymTWskRZJcrRc3EcLITwnljr/KsdaLg817aMGDXBwG+QZ1NQ/I4cuEOL+w8RWD51xB0No6Pe55nNx4rtmUJjUgo7iikoCAtin1nb6if3x6YztLPw/g9WCFPnIZLiMZbXAj0LJL19cZxesd2TssJtLHOJ088qfrpPdsoFQSB5V/KdLHO5LCcRgjf+j8n4NS8FmTM2IlRL6rjyaJDi/jq4le0TmpN+2yPcnRAgTLhvG+x8/uNh/TKS6DT6wphYMXIH4YUbDaJm4QxefgwMDy+jLsb7hTbue0q86JX1+wORgHEhJiZ2koJrmwdXpu06Z898bjeZrKS61DefQ14Fj2V4kKpmx5FVJCJBTtOskZqzoiGKXTI9vWmA4+XU9NME1/8eg9kE0PrJbPxkNJ3Vysbxs+X7mr2ead/dUa57NZ0okCwSc+ggiRyEl2KkamNuf3QxgOrg3IRgcxrp6SQFK9mpvx9bV+359IeblluYYjYh/WKkrb0fMdMmi65zVE5lRbWQtKFS5yT4/gLT1s6LScwzq4YF7e2aVOOl3XPoknFWDUdelbbSrTOjKNymTBCzXruWRwa70ZEEVoqJNmU5C1s//UaL4ZsAjsKkRwcTbVUqJYKVoev8lWSJYhzkYCuqlK9dvTiysMr6jjTIac807blYbE7WSd5VBO7x9UnIqYTbq3WzxnjGHEimT/lSH6S01grNaO5eIjvkrZiONgDmMdtQpnhGIAgejqbWsmR1HKpe55efYg9p69jNojqPfDG35gpdPSgh8m/8e/E5hUoGx5ASnQwU7f+wow22hRps0FHUaFHwbhpaD4NX7KSeEPpe1emV+fsoSNUsLxDZdOP3Ar5g6/NpTw9jCDwR85ztIkOolLZUnSyT2COvJp++i+45vZ8q9KRiMod2HX9AU1e3ksv23R+mV4XXKbfIxulsv/sTRJ/SmGgbjvhwgM+lAo4J8ezzeaZZxShBG9Pzm2hzsvLRwZy/M97fD+tMUEmPVO2+s4FHtgecPnBZcqFlCOwmDdk22plOPfXA05cuacSw6/2rM6th1a67X6ZTZInGFPL+jKvhU6lhlWZk/xepi2L/0hCZ3dyrmJbQky7uG91cObOz2SbsrXt0nUewcZ/rqbzB0EQSgz+CoLAVFfw1y7Z0Yme9uIOlpuKLfhrJUeovrWFnaoyo20ldKJAy8w4HlgdfHrMs67JTYpQUwUz12xRvixVDtvUK6TPUvyt2mfH0y6rDElTd6j7ub01G2XE8NUpZUl5j2C8W+xT1cqw7ec/n3j9kcEmNnuRJoBaFbFRRgz10z3ErMOpdLghJj3dapbj5S9+QxRclgvF4uKX5Gh6xgQjCALfTm5EyrQdjG6iqGrCvILZAUYdCZGBbHJm83zHTILDzGSuroIFI8fnNFf7cm/0zksgxM/3AGGBBrVokj+cEpKRvCwQbhLG845eDE5NYmSbWLXfjggyEhFkpHxkIH/c/JsjcjpHHOleRxKwYWCbszbbbbX4PGg2Uq1e3Dr2KXkPjvBr5Yn8NLApRr2ouYbYUDN98spz8so9BN197MIj7hHMSkcbygl/sVNKwsABHE6Hukb+51Cez6UHl/hsgGdtcOn+JZYeWcqCggV+PZ8cTgc6g6Bp3+51jkNyqvczPSYEjIHKvxLw/zyl/i+BoMww3gJOyrLsXYJjG+A2zegHfOz1fV9XFb484K5Xmt//CrhfuM6fdKb1h8ogfvG+J6PRu3FvHV5bkypU/HeAjVJjXnZ01URRzAadZrHvPSGGYoaiOJjauiz98sszt50n9zjIpMeoF+mQHU8L2wu8I7XgPakRo+0jFcly9xH0bnL7H7PaxREVbKRppdJ+fxMEgYnNMxhSz3+0oHZqFIFGPUYDGKN288B2n5ENU+lfJ5GuNcsRUMyfp3HFWJKigrhjuUONipcY30whCYJjyhMy4SjEVeXmo5s+19KiinJ+y7pn0TU/HXOgEg0s3vlvGFQLqYT7UJJX0JOQGhPCgamNGORi659tnMaUlhkMb+BfGZEe6ztJ0UpKZXztaZWon3uSKhab/Exolk777HhaZcZRLiKQKsk30ZVfxN/2v9nyjDKgu9MoveGWfwe0XcQ5ZxwVLO8w1TFYs83GIXkUFbZWFSDeiA01q2oTQ9jjSw17w13W3BsD4mIZEBdLjuVVptoH0tE6m7q2ZQh6AyCgN/iq7QBuW7wqFmW08mF5ssqVYt2gWhj1IlfueBRBX46rz9kFCoFlw8CPcgVE02VmtH1yOkNEynqMkfuZ/d1srj68+sTtvXGdUpoFn3vS5w9NKsX6kJ2GiG8JSnmRs3JZzshlWeLoTAXLO+xOmcp9AkktG1vC0ZTn5U4TS7Rs4EVHdwKNOgT9Q8127vPr0rYtLeftZv+czjxyEV1jK3ypbve5syZNOw6kVb+piAYjeWO0ZbUPBjaAmbfYK9ZkudSRd+rvV6v8SLIAgsALnX19KppvaU7u+lw2DM6jXno0l4lGEAWVILI5lPdjvqM3iZb1bHLWxhjxDZJTonKZMFXaXhJy1+fSa3svjHqRZpX9922yLLPlty08sCsE9jeGejS2LcaJqInsrT+5ntnfzVY/h5oN9M1PRBAE3h9Wm2mtPBVID01rzNGZvqkAQUa9Rk0JCllSKzmSZxqksKpvDogKoWp32tWJ+Cs9sn2OpYEfUqp3XgJD6yWr7apszG1Gf9eRR0ZfzxMnWon+tpF1mNeuMq9PHMgql9fJ1uG1GdesAiMbptI6swyH5QzSYkueFIIy7u2d2JADXgpQ93hZ0qQxxGzg5W5Z1Cgfwer+NQl2TaQDvSbUKcVTeYHWmb7q2ujwewgCbD2zlc452vS3klJ2ixMyQ+sns21kHd8NBUWtGl8qQE2FyEuOVKswDamXrLafdlllmNqyImleY0Lxv+PvWr53jCUx8x1SooNIjArizb45/DK7GR+N8D2fzLK+5vnPtalEiyqe+xIeZKRchPLMBEFg65mt7CraVeJ5eC7V1Y95mXinxYYQ6VJGn5IT2OaszXE5Sf29eH8G2jGxXVY8QSa9SkKYDToKXKln7nHPH2EG4JB1yIhcqTaKNxyt+cqg9fQ0+rm3klOClEZQMBaaKuqdKw+Vqa57PiYIAg3SPe3kyIymFHbMJDVG295EQWC7M0+TMtKgvZKebHd6AiKrBycQXGEm28/7Vm97uWsWz3fMJC02xIdQ8IabqKhY2vN8Cw8Vcj/oA9plxVMlPoxPRhU8dnxx477FNxXHipHTZfdyM/ooNy3ayrjz2lehfx3PM13o6MUU+yC2Oz1+aYIgkByl3J/7BEJIac1vBWlRjGiYwi/l+vCSoxvn5JLdQQKMOvWdead/Lit71/BLBriRvzGfzp90ZuwebfqpPuRX9tj6smawdq7eumocffITycmtQ6JlPd9JlVjpaMvduG94ukwslwftgpm3GPXMKEBQU9V2jq3H8z2C6f95f/517F8ahdCAZvfI35jP8Zu+hv7/f8PhdFB9XXVe+uElOmQr97GmK+1NEATWDazFzDaVaFM1jsggjxpbJwqq7yp4AjBPQrBJz8w2lYjLWE2LLS0QBIFl3bPYN7khRYWtqeN6x9/oU4OTc1v4PcbyHtkacvSfwN1PuNdFbz9dU/XtAnC4Aj7vDMhVszPc/Zo3htVX5nhV4xUFkE4UKCpsrc7Zffr6esms7F1d9T26TyB5aaV92qA7db9vfROdPunEfdt9/MH7Nhfvy54vQf03tmk6+SmRPufmnVED+KxDQUn3TplxhB7XNjA4+gaJ1jWcDAghPMioXsORGU353qsyZHigkeD0BTjLKirKQkdPRtjHEF9KoRYdToemT/tHEPyPrYWHCtlVtIsDfx5Q13YCgtrf+/s77vtgl2SGN0xlRc9sGleMYcf5Hbz8g/8qo/9b8B9BSgF1gD5AI0EQjrr+tQIKgaaCIJwBmrg+A+xACeWfBd4Ehvs55n81ihNEUPJkqHpCuEfGKWsnaobw/bSp7RGZFZ8kexNPDqej2G9eBFbZDaw435s5LkJqx7N1+eE5j0RxQQcPUeVttPzaz68x8ZuJfHu55Mi1G34UsRh0okpeFJ+EuZGfEvnYASY29hym6N2sOb2CIJOeWW0rE2zSM6VFhppu5o2xe8Yyds9Ybjy6ofn+4r2LNNjcgHdPvKv5Pi02hKLC1rTLiudhqTXkrFdSgQRBYEg9TwpbfkokzhIURJll/adn/BMyLy4sQG0b45qmq4OeN76d1JBdY+qpA78h/Ds+n5BF66pxDKiTqG5nKv0RIRUfX9Wp+GOSvJqqQScSFr+Lvx5d4sydM9QoH8GPzzXhxS7FPLfwDI5ScmPiZxxndkcldcOd8vZPs69zkyIwl/70H26t+Ax0sM5hsb0zqZZ3qWddwnmjMjm6QQgbpcYckZVFupuA8BdcOvrXUept8iw8nvSs+rhMM8uEmRFFQZtKJFgJSn6F/fefbKQc50pl/PDsh0z8xrf08ZPg/WebFyNF3NVa3JEgNyY2r8CuMfUwx25HNN7kudYVmd9eeeetGHmjfz67xtTjY6+F6YRm6Xx94Wsy12Ryy3KLlb1r+JyLv7Sk4nn33lL5OR2qMcfeh8NmE+NTrnHy5knPhmHxMPsue3uepa11Pq+GjgFRR8U4pT2J5mAOyxnkWl4l2/ovSsIti6IcTY0JZnILhZguExagtlfP4lKRhSenf4Mp9jN2X9gN+JIT1aucIKTiFB7YHtD+o/Y8cjzi2I3iaiMtjt88zuwDs3n9V8VcXxDgudYVycuw4b1WLDxUyJYzWx57LDfCA42UCjTSpUZZYkNNaipNhdIhjGqcpk4K57WvQt/8RHW/JpViVQWO3WmnW81yHJnRlJZVSvNUtTKqX0xxCF6TQHc/GxNiRhAEtZ3ZXObtj/Sn1G3dC0CDTvs+VS1bij75iZqJvts7w6gXebVXdc4tbMWWZ2rxJCREBhIZXHK6qj+8/evbnLl9hoYVYjgwtRFLu2VRMU5ZlM9vX8XvQnVx12rMaquQ4Kv65iCaL2ApvZCxe8Yy67tZvPyjdgL7uEhqi8qlaVIxlqLC1kxtWZGqZUtRNy2KsAADoxsrRIRRJzKzbSX2T2lERulQ1g7MZVbbSqwdWIvf5rdkWquKKm/uDpA0qBBD+Ujlnj6OlKqV7Blnb9p/58vxDQDFRyfEbFDHoI7VPQv8fz+aDbMPzGbCNxP+7f3c2P6sb6EBUEqIrxvkaRs1XVF/b0Xp41DYsSpJUUGEmvUYjLcJSnmBzDWZHLyiVF6sX0Eha+tUTWehoxf962vTZPzN35yyE6eow9l4pqbqHmgXQ96q64ggIzXSrFRfW53LDzxzO/ciql++x9fQO70yMkh59/8WFGXbnot7fM4nIsio7pPoVSXUTZa+PsREi8Y7CDLp2TCoFm/29fhWrj+5nvUn1/Pv4r7FDsggWtT5SW5iBIha6ei3l74ld30uD+3aIIYVI+9JjXzS1kRR4NWe1TX2A96Y2DyDzcPyme5F3Lvh7hvd2Hx6M6dvnSY6xKQGIZ+E7/78TvPZEK4UxTh75yxHZzbl3QG5vO+lwhFdaUY97c9R6OiBaFKUPEWCBF4qjShXvxVfKoCIMIt6TJ2rLxzVKBXJrPSnJ26eKPH8Dl89/D/yrXTIDsbtGacSXjZJeU6bTm2iTmoURYWtNRVmC9KiGFCQxIqe1f2mvbnx76hIBhQk8UA4rbb/dlnxPoFLvU4kwFiyKkj9u7KMxWF54nbvDcnn/WH5mvdYlmU2ndrEbcttxjRJJ9CoUwoS6URe6ZGt+gF7Y0rLDH6a0VQlu/2hddU4NT1UrxNpUSUOQRBUsstfAGTT0Hx+ntmMFT+t4MztM2q/5O963Sj+NLzng1HBnkBsSUHzxKggXuiUyeu9qvNs4zQ1OO4PNqfSTsylP+K1MyM066uIICOlvVK5w4M8ZKX32q55ZSW47ZD9k1L7L+9ny2+e+dCvN37l/F2XZ1YJpJQ3vNugW3novS5+b0ge7w3JU+codsmJ2aCjTdUyCILA5G8ns/q4koJ6en4LjY3G/xb8R5BSsizvk2VZkGW5qizLWa5/O2RZvinLcmNZltNkWW4iy/It1/ayLMsjZFlOkWU5U5Zl/3ks/8X4nwwW7bLKEGhSOuGIIKUTMZf+hG9uv8KZBS05v7AVr/bSGp97d7DFX3JvLyZDyAn1vK7/fZ34SJkFh6cw54DCZAca9Zye34JT8zxS57AAgxr1W/HTCr+L9juWO/Ta3ouL9y8SGWxiRptKpMcG07yyoriwS7JKSrkXAI+DvzGvey1lsqfTeyY5P1z9gXuOq8xs66uauXBfmbRtOLlBXaCCIvsEVD+v4rj56KZPhHeQK/0jOsSEIAjqQsB7MlcStp/fTtV3q3LtobJwszvtPhOyf4pyEYHqYCnob2MuvY3ZByfyas/qRIeYGFpfIc+M4cpA5o8UdSOw2ECfVkbiwr0LJWytSKD/enSFU7dOab53qw1EQcBs0NEjN4GiwtaMc6k2Hpda5o11g3zJjifhJzmNV6SOzGqfRVZVL8WHqCVmLXblPTTotW33ywtf0uezPprvnrQA618niaLC1nznFRFyQ3ApUQ5fO/zEczd4VeZ76Pj32kOn6mVVZaF7IevGgg5VGFSQxMw2ldg2Uqn86H4GMSEmKpT2COAHFCTSO6+8Zv8KpUM0/Unf2omsPal4ZZy9fZboEBPhgZ5z3zw0nzf75VA9oVgVt2LP3TstIcSkZ7XUkmfMiuLnyF++lbUigoz8Iidzhp3M/34+S7tns3lovhqV/YtwjYm5NxIjtRPbymXCWNKtGoWdMgl29a3Le3h8w9pnlaFmiqKMskpKmkW7rDIke5WU/lNW+oQbj6XjK1cAACAASURBVG5w7q7/io/F8cihpO/esXlUArUyHnJcmMnaE0/2H/FGlXil33QvWl/sUo2D05qwb3JDlnXPUk08S4eZmdPnBrtuaYtL3LfdR3apJ+1Ouzo51utElvfI9umXPekHnj5ErxMQzZewO5XrKuNSk919pPTJ5b2IJndQIyuh5Op9o1wFHmJDtYtHnSjg5J+NnZfuX2Ly3sn8fvd3lQj1JkSvPbymLuocTgdLflxCrx1KCneI2UD77Hi65iipIlUTZaZ8O0Vd3CRGBhIWYMBs0KnvfcUyoYhGZSLuJgTuWTXWmo/tQ1b2qcGqftpxY+3AWvw8qxmjG6cxqCDJh/itmxaN2eWBYtSLyLKM7ErP8B6OL99Wnsu2398nc00mCw9qCwT8U5xf2IrFXgGI/8k85v8U3osbb7g9XdyeaO5U1scpgrzRokppPh1dk6t//0mXpqcRjYpK9uOzisC/e81yHJ3ZlOoJ4RQVti4xDdIbDtlBzXU16f6pYjR/+Kqn//cmeGa45im5LgXK1jNbsTvtfHXBU4kvN7EUxuhd1K/srT7xPOQfZzTlxS7V/rHZbg8vY3q3sfCkb8ey/8+9SE6J2qlRqpnwP8WW37bw222tlYDV4cQY+RUhFWbz0KGkf3ovShceXEifHX1YcXQFjxyPOH9HWWSWDfcoUr0XrlbJyo1HN8hck4kYcvSJytXBXoHDJhVj+HRUAcPaXOPiPU9mwrzv59H5k87/1rV6Qyl641G+lQo0Ui89WlUUgTb1FlDHymG7h6nP8esJDfhirFaB54ZbvVaSdUJxDNg1QF1A/zu4eP8iX/zxBZP3Kv5+blKqpKC5G1/+8eVjld3FT/txc9DH4ehfR/nb/vdjt3E4Hep8dOWxldRcX7NEZZEbEUFGzfMCOHPnDPMPzmfqvqnUT4/mxNwW6ry2bbUyxIV52p7FYSFzTSZrjq8h3I/P7aErhzh96zSgpHR29+PXV7VsKd4dkMvUVr6KJLNBp3kf/7j3hzovv/LgCoWHCh/bH7vb2FPVFOJn7cAnB3dAKWDRMjOOcU3TMehEPh2lrRpetVjAXRdYBCjppSXBpNeuMdyBarNeuT6H04Fd8iWlhu0exuwDs9XPPbb3oN1H7YgvFaAJkvmDhqzzasvepFReciR5yZFqZW33PKSka5j9VGUOTPVPiv+34j+ClPp/+PdRfHKauSYTq8NawtYKlnXPJtkVoRhQN4GXu3omh4Lg9Em7uvrwqubFLv6Srx9Ui6ktM/hltqdyg1Wy0uj9RjR+vzG7L+zmg988Pi3uFK8HVgeC7iE1ct9Xva9O3jrJd39+x/zv52te8s//+JxjN44xbs84Lty7wMCCJD4fW5+hLrWP5HSqpJTEQ07fOk3R3SK/17+qbw5fT2jg833xDg6g/67+tPqwlc/33njzlzeZtHdSib932taJ6fumqwPg1jNb1d/cnX9UsImetRJY/XRN1/cyYsAfjDvcpIQB2tMxfnlBSVVyExXj9owjb0Mem09vBpRnkbkmkw0nN3DPdo/MNZklEmZurOxdQ40YuFPPvL0B3LBKVpyyU72OEzdPMO3baUhOiVKBRnXh+WbfHCYf7qKmmJaEFlta0OWTLly4d4HMNZns/mM3bz1dlYktE/jg3LuaCYjDaQOUamf/BMXJVL34z1Mh++SV11SrEwQtKaWoMiROCVoF06fnfJVZJU2i/rj3Bx+e+dDvb5uG5DGwIIkNQ3yrZLphk2wq4QFgEj0Lcbtk5/3f3n/iBO7L8fXZP6URi7tWIyzAQFFha8YWS9nqVas8ep3IgIIk0l0+b2ElmPW7J6KPg1FjjKy0620jC3ijTw2KCluTmxRBqNngUxCg+KJJrxN5pkEK/eskqpOFB4Kyj0nnq3ZxR2kfBOxg0+lNBJv05CZFYHdJ+nITIzg83deI8l99avDZaN8Jf4fssoSYDbzSozoTmqXTvHJp1Sy0TKkAlbhTiQ1BINUrkvk4D4fiuPbwGplrMtWFrrs7EAVBjfidun3KZ7+H9ocltoEPhtXm52LVd0DpFz+7/v+xd97hcVTn237ObFWXJcvCDTcMxmAbYwcICQmQ0AOBfIYAgUAgQIAklPwChBowIfQWugHbNNOMe5Ub7r0LWbaa5SJbve9q23x/zJ7ZM7OzRULS7krvfV26tDttz7RTnvOWyXh3VyAb3stbX8auql2a7SbNDQzGornv/Hzn/k2IxcFcSBn2FpbXKpZBfZItGNkvFTeerQibuQZCgtMbIq4elCyTWx77NfqlB+8XrVn/Zd9dhoWlC3HPMmND7CtnX4nfz1cybnKxyeFxwO1zo95ZDwD4zdgBKHv+CnxS+BYWlCzAykMrAQAr/nE+djyhdZUcmJmEP583FECgfd98bLNmG5+v/QOxLce2YHHZIlx9jg8fFT6vthtGfLHvC8yovAlnDGW4bmIgbOcHf5wAZq7DUZPiAjtj3wyUNpQG7a+3ptYjSdossGKWpBn7ZnTYjT9S/RbpHXv7xkD9+s1dP0Xxc5erg3eJMbx143g8/duRmFc8L2wZb19yOy777jKNRRmPNcIYw7NbHlXbZ5fXpU4ocSZffTpGCyKuT/bB5XOhoFax+LxtSSBu3od7PlQ/p9st2Df5UnxxR+iB4k9OboOt70p8vH8yXvv9OLw4aWzYLFWRxCmxv6jvG4rtUXv494Z/4//N/X+aZcP7psCcodQ5owYxXHb6CXj8itHqJELewTzsrArECuSWobnpdhQ8cylK/xvox53aPx0TP5uI385WEqjM2DdDXff9oe/x3q73UFxfjMNNhw3L9+5NE3DyCUl4fefzuHXJrQCiEVZ9eHDVg9hdtTvks7P5sV/jbL8roxRi2MZFKJ7sSHyP+PUe1jfFUNAAlAmnodnJGuu4SPeYC3wA0OhqNKw71x5ZizHTx6DGURO0TixbOI63HMf9q+7H4+seBwDML5mvWlBzfLpr1x5Bu6K5AmsOr0GtsxY3L7pZ/Z0A2vrjnZ3v4Np516KorgizD8wGADS0NcCIQ42HNM9LUV2RWh/xNrnWUes/Bx8eWPmAGvtXpNGlTEBMz1eSSjW7mvHQ6odQ46iB2+vG7Utv1wifqw+vxpjpYzTiKAD84uQcdUwz68AsXDfvOsNyv779dbVf/sS6J/B5wefYXb1b4/4v6oi8bn/j+jOw+dFf4dT+6Ui1mVUDgWg5XbB+n3XPuSHd/NtjGfft3efijduSMGXPFABK+xmunZdlWfMuzv3rz/DJ7ZEnr43KxH9H/D2bWYmNd7Pfovz6+dfjze2BxETiO1HYaGyx1lMhUaqHYjRjerQlcmA+jsUk43dnBmbqxn+qrRiWli3FRd9epFGV9S/5kOwU3PXLEUgT/L75yxauIfrolokYPioPWyo3aiwZHl7zML4q/Ap7q/cG7bOvdp9G2Ejxm4uaJAmX+N0WqlPewaR5k3Dl7CvR6m5FYW0hvtoXyND069G5aoyhjlLVWoXK1kr1u/hZxOvzYn/dfswtnosn1j0RtJ5fH0lieO6aMWpF7fPJsGYqZtz6AYlCoPFMtyqdVy568dn1yRsno8ZRow6MPtzzIQ7UHVA/h+PE7GQs/4fi3hCuUahorsC4T8bhjE8Vq5D7Vt6HeSXzcO+Ke+H0OPH+zROQlWLF2cNDx4ww6qDtqVYCgz6w6gFMWnwBjpu/wevbX8faI4GYMg9vvwJppz6GsaN3odpRHVKE5OhNry2S8rzur9uPMdPHYH5JQED6at9XuGiC9p6KAWjn/PVs3P7zYQB8gNSKc4ZnY+odw1HhLNSeW4iAiD7Zh0lzJ2n8ym9aeBOeXP+k4YDu7OHZeOI3o3FCZmgh7ZKZl+BnMwJucVZToFNa1liGZzY8YxgfRGRETiqcOIo9VYHArPXOerS6WyFZK2Ef+KnhO82Dyo/Quc5G0xHVB14FFJGPx1GaWzw3qGMKGHekH750FJ66UnCz8YuHXJSqd9arz0GKzawZqORX58PhcaBPhvIeXTtxkOoCIXLJaSdozP3F+nBhyULsrFuFv144Eowx1Q031OTw7T8fBouJYdOjv1JN37n5ejh4fTmnWBGlkqwm3HDWYLx145nq+SWZ/bOvpoCV3DlfnIP3dxm7JOpnUEXWHV2nEaU44rsrtjtGHUG+7R/OPhFP/ma0ek1KG0qRna5sP2GoUi9Xu5X3iDGGvAd/qQ7UjO45txYzwiSxIBcbjviePb3haTy4Knwmx1C/Iy53egN1zGNrHsN5X52nuUb6uk6SWNAkEACMHqCdNdbHy/EZxPOLxG1LbsPDax7GDQtuwOyi2bh/5f0ht+Xi+FO/66+5fheOykXqyBc02141+6ogi4NoREkRcWD53KbnUFinrUcXlCzAotJFKKwtDCsGhRug/vaMAZp4JCL2gZ/jl2ftwhVj+0OWZUzZPQWljSVK0H//75kkht+MHYByfIVH1z6Kbce3ocnVhLuX3R2UUIa7LIllNTGTumxJ2RJM3jgZK8tX4qrZV+HX3/5aI6jdfM4QLLwv4F4Y7rz0QpDVzLCwbH7IwRhvkxweB64ZPwjXTRxsaE0QiYrmiqD7rm+7xPchFHXOOk3/KVRZvrzrHNXqyWpmePemCRiclRyUFYtbLYruyklWkyreLHvwl/jqLsVdigsAIn9d8Ve8vfNtXD3nalz23WVB6wHFfZWfe62zFqsPrw4r8i594Bd486bhyDuYhz8s/AOa3MbWNnaLCWDh49bddM4QPH3VaVj1z/Nxz/kjNG1UNO5lJ2TYseqfF2BwVrJhfcr7iyLzSuapnyfNnYRr516rfl9zeA0+3vsxPvvhMwBQhVN+H/lvRFMncO8D3tbPKFDEQlH4vnj0CRqrtnCCqp7rF1yPe5bfo967/OpALK2Zd5+LBy8ertmeu89XOQIJPvTP+NS9U1HaUIrLZ12uPi+FtYW4Zu41+GjPR/D6vEHhE2qdtVhWvsywDtZfp4dWP4RFpYswZc8U/HHRH4O25xOf4Vz9n1z/JApqC8LXIz43Nh1ThBFZlvH7nwzGX345Ar8bPxBvCWI9r1cYY+iXbofX58Xuf1+E92/WWufuq90XclykZ/yJfYLGZNwVOdq25OkNT+Nfax/AK9v/rS4LZSml/u6n43Fn3p3q9+xUG4blBCawxkwfE9EyTvytvIN5OPPTM7Ht+DaNNSsnvyZfFcwArQX05I3BmT57MiRK9VA6arrKCTWjWe+sR4u7Bf/4/h8AgGUHl6nroplhNhqM6ss6cWgWTukfPAjiDcY9y+8JGojqyfb7M99x3jAkW8144bphKKgLDKgrWiowad4kPLvpWbVMK8pX4OaFN0e8duEq8Au/0ZpaenwerD+6Hs2uZrUzwcA0blMFtQWoaq1CfVug0Q81aP/o1p9gmN+1R5ZlNLua1dnZ+X/7Oab9KdBI8M6u0X1pdjers0HtzejgCGGBMF3ISPHOrnc063gnfN2RdVh6cCnOGZ6N7U9cpAlUqYc3OuGEMj47ZdRATfnhdVzw9QW4cvaV+PPSP2Pq3qloaGuA1+fF+qPr1TLpr7WZKY0en5EVZ0uf3fQsNra+ii/vPEe1dhHjH6QnA0/8ZjSsOcuQdsozaHQ1YnCW1hqj2lFtGEDUK3tR31aPwrpCjVk8fy646+Wi0kWYuneqJu23YQMtB35PPEfRfY9j1AnXc/Wcq3HjwhvV7+d9dR6unXctbCfMgiU9HzsrA7PRsw7MwpjpY3D52Eys/ucFOFOXvj5Sh4KZG1BUv1+1xhPfyWpHNXyyD98UfgMAQaKjmOUkJH53Rxky3F43zvvqPDy6NhALjXfCAGXG8d7l9+KB9ZPwf9ceQzm+xjlfnKOe71lDjYVV0bz84TUPazqg3HazyrU/aD9AERsP/Ody5AqWPJEsXYHgZ1mGjP/+bixO6peqiiRJ5iR8fOtEXH3hDs22XMgyosZRo3neIhFq0GnUEeTj8yHZyWq2OgB4dO2jMA95Hm/eMB6jByoDLIe3OaI1JyeSwA4Aj699HBM/03aaxfry2/3fIu9gXthjiBYJRqKQT/ZpBoWLypQseK2eVnX90oNLI5Y1GjoSgylamlxNQaJQJJrdWheLdotSuvPR7//Imkfw0OqHMGnepLDxiML1TZKt5iDRdf0jF2LJ/b+AJX0Ptjcp9X+zuxlv7ngTf176ZwCBFO483AC3emh2N2NJ2RKsPbLWULAFtCIBt8wVLS3+vvLvarybcC734sBbL8rpz3lx6WI8tvYx1dIi6FgGfb5w181IJJdlGRfPvBh/XfHXsMdp87Thhvk3GMb+embDM6hqrVIt6jn8fQGAo81H1fPtl2ZXLd3a+3yJ/NC0AgvKtBlWSxtKcc2ca7QJSfxUtlbiqfVPwelxYuqffoJ/+ePcqeWUgXuX36v2lfX7ljWU4eTcNIwdHOg/vLD5haBtOfx8Q52j2SThlnOHItlqxkOXjtJMeIQT6MMh9g2f2xzeJbeipQLFDcW4ccGNeHXrq7hn+T14bdtrQf1LXha+PJoJKi4A8L4Z59bFt2J3lSK65KTZsOjBQF1u9DyH6tvz8USDK9jaacKQPrjxp8bWPuK5iW1eo6sRr257FXcs1Sbe4b+z7ui6oLoRgOGEO0d/D3mcXVmWsbcm9H7REC6Mwyf5gRi4ty25DU3uOjxy2Si8+vszkJ0eqJ8v/+5yzTW/cvaVqhXWqkOrVEuga+ddiytnBTJvh6OhrUGToAsIhIXRPzefF3yOg40Hg47x7f5vserwKs32Hp8HGyoC/Rm9l4hX9mJjxUbNcfR1mN5a0gefJtC5+FtLy5T2/dbFt+K2JbepY8iGtgbDuK6hBK8fO65PBEiU6qFEengjCRFGnRGf7MN5X52Hc74IBN8LF1PKiOOtx4OWfbz346BlRg0vP36TqwlfFX4VtF6kb6oNe/59sRoo/O5ld2vWiwE+J342EWOmj8F9K+/DzqqdQYKX/lqKnSMRfawDQJk1vCvvLjy29jHNoLLFpW0ELvzmQk0A9FAN9an90zF+sDLAf3zd4/j7yr/j0bWPYtOxTTh9YAbGDw3E7eH35vnNzwcdp85Zp1a61Y7qdomL/Dz0s2lielvxXLce04Z0E0U98Xc5/Nnkjfwb299Q1+2o1A6k+XWK9DxvqtiEV7e9ip9/+XP85POf4K68u7CgdIHmGBy9aMPP87G1gVg55wzPxr0XKP7gYwcFYhq5fC6sLF8JW18lVseMghlBz9MFX19g6Hrp9XlVM24jeEP10OqH8Oq2V3Fn3p3YXLEZM/fP1MQG4Rh1egDAKgWb74ezMvjPxv/g+0PfG64rbypX0zeL92Ba/jQAwHFHBU70x1kSB2LhZspPzk1FyoiXce38a1FUXwQgcI+qHdW44OsL8P7u99XnW/9+cgvBcDCmPOMFNQUoaywDAI34IA4EffCps1vv730d0/KnocXdgql7FeHwk9vPwubHgi0tws2k+WQZ1r4rsaj2Mc2sbDj018zonumtLsVngNdbNpMNF47KhcmkrWNDuR8ASv15Z96dmnsYzhWLd6D1dYk4kC2pL8EzG55BcZty3UX3xUCZW3DVuAGaOvfe5fcGymAwG86fQ31HvaGtAVP3TtWUe07xHLR529Rr6fQ4gzrBkRDvAxfd5hbPVZc5PU5DSwX+fKiulu38LSM64r5nxN7qvUGJOqpaA1YB+vMJVS59zCuxrv3Xmn/B4XHA4/Oo+xfWFmLM9DG4ccGNKKkvCXrGwg1g9RYBY6YHMkF5Za+mjD7Zpz4nja5G3LH0jkBAWyhutfpMs3xygN83Hsx/UGYyth7biq3HlXZOH1vkh5ofMGb6GE3/QBwEcstFo74R/z29O4l4HhwulonnLMLbIb1LIEcvFgDG/TAuvBpZAPF6U28NoK8H7sy7E3tr9hpmSfxm/zd4bdtrQfdeHJRfMvMSfLHvC/2ucHgcSjsaYdLSiMfWPhYUC62+rR5F9UX4/nBw+/f6ttfx3YHvsPLQSlxwSj81ZASfPA1nqXPRtxfhytnKwFxsa8LF1uTXsCPCG29H39z+pmYQbDTBWuesU63DxfVVrVUhrSjFMu2p3qOZVOMB2/l56vslbT5/Hy5M3cb3NYo7JQaEF4Pve31eFNUV4a0db6nLjNoscVIi0ruh5668u9Q6yeFxoLyxHJPmTsL+WuVd17ep4hhGnAgsqC1AQU0B/rbib+oyXhdOmjsJY6aPwTf7lUk4fV832knlO5begZn7Z2Ls9LGajLuAMh6pddZi6t6pQfWGWC95Za86GQgAU3YHrHtqnDVqCBJZlnGo6ZA6ifG3FX/DlD1T1OfJaAxVWFuoikrWvstgHzQdv5//e1z+nXGYFLEtaGhrwPObn8ddeXeFPH+N5bLHqTECALSTz0bo67DypnKNWO32uQ2fYY/PE/TccvHz68KvsbhscdA+oSaJe4MoxTrqo9/TmDhxorx1a+LHQ79mzjUoqi/CiIwRyLBlGAbyBYDBaYPRL7lf0HLuyzwiYwQy7Zka3+YT005UzWiNGJ09OuAaIlDeWK4xczViQq7WX9fIp1ok05aJEZkjUNVapSmT/jihjjc0fag6GNVzWvZpsJsDFgo1jhp12xPTToRFsqgBh8/sd6Z6jTNsGWEHdsMzhqsd39OyTwubbvf07NNhMxu7l4S6NhNyJ+BYyzFVcMtJylGv+4TcCZr9xLLosUgWjOk7JmTgyUZXo+ruF+q+SUwKWYEOSR+Cvkl9g87lzH5ngjEW9hkMxbCMYciyZ0GW5ZDPvJ50azpG9hkJh8cRlGVGf72MvovwdQNSBrTLTVZkbM5YHGs+hkpHpeY3+LH5+yWWY3Da4LCDaLHc/Hj7a/cHuQkMTB2IE1KCswIZXc8JuRMMlw/PGI40axpkWVYHiKf0OQWp1lRUO6o1s1j8HdtcWgVmbkJWmoxhGcMgMQker4xd1cHH7mPvg1Z3q+oGEIo+tj4Ynjk85Po2tw/5tbvU4Nu5yblqx4tfo3pnfVRBxY3qG369T806FS3uFvRN6qteK759ZVMbDrVqRZOh6UORnZStWdbsalY7diP7jFTfOyDwvoi/Ga6Mh5oOobK1ErnJuRiUNshwn0j155i+Y1T3T5/sU0Vi/bM6tu9YWEwWOD1OTT03KmsUUiwpcPvc6gw3AGRKIzEsOw2SxILKNSF3AlrcLZpEB+Ge5VDXgB83zZqGk/ucrCnv+H7jITEpbN0a6pqIDE0filRLqkYQG5czDi6vK+i55e9AcX2x2kE2egZExLbIiFBtcDiieXYAaO7BSZknIcMWcCUMVe/y+81xeV2qCzagnG+VowoplhQMThuM3VW7NZ3/U7NO1Vw3/e8aPStG5zMuZxxMzKSWcXy/8ahx1AT1Z8TzFc9pQu4ETd2jfx7yq/NV0Xh4xnB4fB6UN5XDxExgYPDIHqRYUgytnk5IOQEDUweiydVkOLE1Ons0qlqrYDVZ1TparGPC1YdiOY82H0VFSwUskgUWyYJWT6um3m9oa1DFC76feL/077jRdXB73WrdL94L3p8JV+dEevfaPG1BQrN+35MyT0JFS0XEhC7Rvs+ccH1fsT8DIGwbpS/vhNwJmjo+XDn5PryvEwn9+YzLGafG++PHFesTo/sQqX/B9/P4PEGxBEORZc9SRUN93R6q/RH7D/p3PMuehWEZioVtZWulWt6xOWM1bQwQqOf158kRxwViWcQ+Yqg6RmyfzcwcJEpOyJ2AOmed2u8enT06bHbDcIjjDj36+zg0fSiy7FmG/Ti+TbjxiFWyaiaTMmwZOClTmZDdfny7RhTj67w+rxrHTfwd8Z6E6kMbXV+j8x3ZZ6Q6ASnWDZHqEwDom9QXJmbSCG768xTR1/9GDE0fCrfPjSPNR5Btz1Zd60/pcwr21+3XXCdeH4ptf6hzE8/jiXOewHWnGMcASzBCBqsjS6kexgWDLwAAZCVlhXVjOSHlBEhMCvob03eMuj+vvDlGneWTMk/C0PShSLOkIcWSYnhMsRN5Zj/FvSzDlqFabIztOzZon/H9jIPbib8rMQm5KQGz2gxbhuHvS0zC0PShmuuTk5yDQana7DZcpEu2JGv2zUnOUcsuMQlZSVkYnjEcE3InwCSZ1EHAyExtNjJAqXwApXPOr9+4nHFItgSyRZ2apQQJTzYHliVZkkKeC7+GgNKwAUD/lP6QmKRWZNn2bAzNUM6Z7zcwNZBqW38v+bn3S+oHt88Nk2QK+fuZtky13Pp1Q9KVwMP6+8fPkf8W3z43OXD/+G+O7TsWQOAZFMutlt+erfmdvkl9ITEp6JkXj6/vyJ3c52RITNIMmoDAfebw55O7WaRZ0oLOe1yOkhRgYNrAILFXPHcjeLlsJhuGZAxBTlIOJuZODHp2+fuVagnM4PMBRZolDWbJjFP6BNKIj8sZB4lJsJlsYGDq8UZlB2deGZA6wPBe8+vZP6U/MmwZ6r3jyzNtmRibo9yvnKQcJJmTkGpNVZ/RdFu65hrzd46/YyNyMtAvLQ0OjwNmyQyJSbCaTUH3KjspWzl3q3Luo7NHq8/JGTlnaLY9qc9JIZ9diUlIspoxITfwDp2YrgR2FeuhrKTA72fYMtRy8zICgQ6u/u+kzJNgN9mRak1Vr5WJmWCRLIHnPi0JQ1KUd5dfq5zkHMPrz+93pi0TdpMilvex9dG8o7ye4fB35oycM4LezRPTTwyqRwClrgp1zXin3262q8v4+5Blz1KX9U9Rgv7bzDZITNLUc4AiCPFnUmRkv0yYTcr5iO9LH1sfSExCmjVgAdovKVB/8Gd5Yu5E9TrxOpEzKHWQUq/4n9NRWaPU/QekDECqJVW9r6IwOyR9iFq3G10Tfi9O6XOKWg/lJOcgyaIVhawmq/rcDs8Yrr7P/B3gHXy+f7hnV2yL9IzNGRuyDQ73d2rWqWBg6rnzeyNeZ/096GPvY1hP6OH3W71mZjvSrGnol9RPPV+HXZIlUAAAIABJREFUxwHI0NwjQKnT+XXj9XjQ7zKT+hzq620AaltlNVlhkkwYmDoQmbZMmCWz2nfg11J8V/R1nFj38L6H+Hd638D7l52UrR57XM44jOuntA2nZp2qvpfi/RucNhgSC/STeL3GSbGkwCt74ZN9QW0CL5PYhvHrMabvGE0ZB6X5Mz3mjMWp2co7Jtb7fex9gvbjk3O5ybma+o2jvw58Io2/cwNSlExcvD/Dy51mUZ6lZHOgr2WWzGrZc5Jy1HNS623/e8XrYt6+SUzCadlKvMA+9j5q32BU1ijNMyBi9B6IFsS8HuPHzU3JRU5SwBI82ZysvvNif0Z8TvT3g18TiUnq+UtMQrotYNkrtt/DM4ZrjsvbOd7XifQntgkplhRYJEvQNdX3bSUmacog1oe8j6M5N+Zvs01WZNmz1OuWZc/SCHUA1Os3IlOxKBudPVpTrxi9V/yP96km5E5Q6gnhHRGvk1hem8mmPqv83eL1vMQkTX9bLaP/euj7timWFKRYUtSJM/Fa8PYm05YZqEv6naE5J6tkhcQktd89vt94w34n5+Q+Jwf1a3i7OCprFEySSb0mVsmKERnKNRXrW7FfIfbjgEDdzvsEyZZkdezHMTETrJIVY3K0y0dmjlR/Q9/P5+ssJguSzEkYmj5UuX/++p63LUbPMD8XiUnIsCr3i7/LJsmkvjPi9dbXDSMyRqjLhmUMg91kV9vwM/udqZZjWMYwnJh+otrP7JvUF+P6jdPUFfyZ4f19/l6Lz5jdZNe0/QNSlfpueOZw9dlLt6UHCXC8PhTrUvF9Ec9N7A/p36meCFlK+ekpllIEQRAEQRAEQRAEQRBxBFlKEQRBEARBEARBEARBEPEDiVIEQRAEQRAEQRAEQRBEt0Pue34YY1UAgvNJJiZ9AVRH3Irobui+xB90T+ITui/xB92T+ITuS/xB9yT+oHsSn9B9iT/onhBdSbUsy5carSBRys+ll14qL14cnJqRIAiCIAiCIAiCIAiC6DAUUyoS1dUkChMEQRAEQRAEQRAEQXQXJEoRBEEQBEEQBEEQBEEQ3Q6JUgRBEETCs7d6L6bnT491MQiCIKKioKIR/1t+INbFIAiCIIiYY451AQiCIAjix3LDghsAALecdkuMS0IQBBGZa95ZB6fbh7t+OQJWM80REwRBEL0XagUJgiCIHsPCPRUor2mNdTEIgiDC4nT7lP8eb4xLQhAEQRCxhUQpgiAIosdwz+fb8cePN8W6GARBEFHhdJMoRRAEQfRuSJQiCIIgehQtLhrkEQSRGDhdvlgXgSAIgiBiColSBEEQRI8iM8kS6yIQBEGExOuT1c8OspQiCIIgejkkShEEQRA9iiSrKdZFIAiCCMnS/GPqZ3LfIwiiJ+L2+lDX4op1MYgEgUQpgiAIokeRZCFRiiCI+MXlDbjskaUUQRA9kUdm7sH4yXnwCZahBBEKEqUIgiCIHkWfZGusi0AQBBESiTH1M1lKEQTRE5m/+ygAEt6J6CBRiiAIgugxnDYgXWOFQBAEEW+YJBKlCILo2dj9VustLk+MS0IkAiRKEQRBED0Gq1mCy0OiFEEQ8YugSeGJOfm494vtsSsMQRBEF2C3KDJDaxsJ70RkSJQiCIIgegxWE4lSBEHEnmVlK7Hj+G7DdUxw36tqasOC3RXdVSyCIIhugSyliPZAohRBEATRY7CaJXLfSzDmFc/DmOljUNVaFeuiEESn8cD3f8cfF//BcJ0YU4ogCKInYjcropTDRZZSRGRIlCIIImFoaHVTFg8iLDZy30s4ZhXNAgCUNpTGuCQE0T1IpEkRBNHDkfwVndtL/XYiMiRKEQSRENS3ujDumaV4Ja8waJ3H68P/fbMLhceaYlAyIp4gSymCIOIdspQiCKKnw8V3j4/6ZERkSJQiCCIhqG91AwDm7QqOvbH3aCO+3XYYD880jt9B9B4sEiNLqQRFBs2mEr0DiUylCILo4XDx3UOWUkQUkChFEAnK0XoHDte1xroYnYrb68Pv39+ADcU1Qet4Cm2vgfteXasLAJBmN3dtAYm4h7LvJR4MNEAnehf0xBME0dPh2jtZrxPRQKIUQSQo5z6/Aj9/YWWsi9GpVDW1YVNpLe7/akfQOp+siFFGZsC1zYoolZls7doCEnGP1cyoA0QQRFxDdgMEQfR0GFlKEe2ARCmCIOIGbg1llKmDB0o0spQ61ugEAGQmWbqwdEQiYDEFLKX+8fUuvLwkOAYZQRBELOGTLARBED0ViilFtAcSpQgiwTnW4Ix1EToNLiY43cENGG/UPAaiVIPD3bUFIxIGizkQU2rm9sN4a2VRjEtEEAShRTYQpdYcqIpBSQiCILoGHlOKsu8R0UCiFEEkOLdP3xLrInQaXHAycr/i5r9GZsDcesrpDrawInoXaXYzXF4fPQsEQcQFRta93HCgf4ZdXVZR33MmmAiCIAKBzslSiogMiVIEkeD0JCshd5iGi69rbvMEreOd/jYKcN3ryU5RXDhrWlwxLgkRLZR1j+jJGLVr3H1vcFayuiwrhWIiEgTRc/BrUnAbCPMEoYdEKYJIcFgPSuMTTpQyctvj8A6+l+J09Hr4wI4HvycIgoglRm0Xb7OSLCZ1Wbj2jyAIItHgcWLdNGFMRAGJUgSR4Eg9SJUKl6FD7LDrTYG5pZSX/NZ7PVaz0qy5vOS+lygw9Jw6jCD0GLVLXKdKtgqiFFkTEASRgHi8Pvx7bn5QjNtATCkSpYjIkChFEAlOTxrOhbWUEjr2etcsPusczpqK6B2Y/K0aBdYkCCIecBtknjK0lCJrAoIgEpAtZXWYtr4M//x2l2a5xaSMUCi0BhENcSVKMcYGM8ZWMsZ+YIzlM8bu8y/PYozlMcYO+P/38S9njLE3GWNFjLHdjLEzhWPd4t/+AGPsllidE0F0NT1JiAknJIgpZV2eEJZSlHa212Pxq1LhrO4IgiC6C6O6qMFVi9RRj8FhKlWXkTUBQRCJiNkvPrW6tBbqzG8p5aDEM0QUxJUoBcAD4B+yLI8GcA6AexljowE8AmC5LMsjASz3fweAywCM9P/dCeBdQBGxADwF4GwAZwF4igtZBNHT0As0iczWstqQ60TBSi/E8e89SaAjOoZqKUUCJUEQcYCR2HSgcRsY8+KQZ1lgO2q/iATg1qmbMfSRBbEuBhFHWP0dr1ATxg4XiVJEZOJKlJJluUKW5e3+z00ACgAMBPBbANP9m00HcLX/828BfCIrbASQyRjrD+ASAHmyLNfKslwHIA/Apd14KgTRbfSk2dUvNpcDCARHFBFnm/Xn7FMtpahT39vhM3ZkKUUQRDxgNFni8iku6FbJoi4j9z0iEVhVWBXrIhBxhhrLU1eHcTdlJ1lKEVEQV6KUCGNsKIDxADYByJVlucK/6hiAXP/ngQAOCbsd9i8LtVz/G3cyxrYyxrZWVVElSyQmPSl2zlVnDAAAnJybFrROdN/Ti1L8EpClFBGIKUUDPIIgYs/yguNByzw+DwDAIohSHrLuJAgiAeEBzds8WvGJi1TkvkdEQ1yKUoyxVAAzAdwvy3KjuE6WZRlAp4w8ZVn+QJblibIsT8zJyemMQxJEtyFZKyFZj8PVQwbfTU43qpraAARn1wN07ns6IY4spQiOWaJsLwRBxA/PLigIWubxuQEAZtFSqgdNMBEE0XvgfW99HcYnislSioiGuBOlGGMWKILU57Isf+dffNzvlgf//0r/8iMABgu7D/IvC7WcIHoMKSNeRcqI13pMTKmLX1uN77Yrr6mRxZMoVAVZSlFMKcIPF6XIfS/xeH5R8OCdIHoiXlkRpSymgCjVU9pygiB6F9xNT59lj/fVHW6q24jIxJUoxZQw/R8BKJBl+VVh1VwAPIPeLQDmCMv/6M/Cdw6ABr+b3xIAFzPG+vgDnF/sX0YQMcXp9qKosqlTjzmsb0qnHi8W5B9tQEWDU/1eWt2CY8J3QBsEVj8b45Up+x6hYOIxpdrxLOw/3oShjyzAhuKarioWEQYG5Z7tPtwQ45IQRPfg9ltKWXu5+57H64Ms0wQCQSQy/BV26dz3eF/dSYHOiSiIKEoxxryMsZ2Msb2MsXmMsUxh3WmMsRWMsULG2AHG2BN+YQmMsVsZY28ZHG8UY2wDY6yNMfZ/utUPArgZwN2MsaP+370cwBcA/sUYcwG4H8Ar/u2XATgJgAvACgCTAUCW5Vr/5y3+v2f8ywgipjw6aw9+/epq1Le6Ou2YZw3N6rRjxYor3lwbtOyFxfs030VLKX3nnbvvkXUMYfbHyG+PK8zGEkWMWrDnaFcUiYiA3Dke+QSRMPCYUr3Zfc/nk3HSY4sweT5ZSCYiPrJMJ/xEtpQiUYqITDSWUg5Zls+QZfl0ALUA7gUAxlgSFEul52VZPgXAOADnArgnwvFqAfwdwMviQsaYyb/vCABpAKoA3CjL8kIA/wJwlyzLVgCzAfzOv9vtAJbLsmwBcBuAm/jxZFn+WJblk/x/U6M4T4LocnaW1wOAGjupM+ipLms8xSzHHcZ9bwf+gZQRL1FMKQIm/3PTnphSPNsjPT+xocHhVj/TQIfoDXD3PTMzq8t6k/ueLMsor20FAExbXxrj0hAdwd0LLfsIY7gopY9x6yFRimgH7XXf24BAFrsbAayTZXkpAMiy3ArgrwAeCXcAWZYrZVneAsCtW3UWgCJZlktkWXYB+BLAb/2WVxcC+Na/3XQAV/s//9b/Hf71v+KWWgQRj6QlKbOijU5Ppx3T10NN37268xJnkfUzym5WB8laQ6ICgTSbCRYTw/HGgPAb6bmgOFSxRbw9Tg91Xomehz7Qr09WBmsmZlKX9Sb3vSlrSnD+y6sAANRtT0x6m2UfERo+DhG77RUNDpTVKMKzg9z3iCiIWpTyWzL9Cop1FACcBmCbuI0sy8UAUhlj6R0oy0AAh4Tvh/3LsgHUy7Ls0S3X7ONf3+DfniDikjSbMiva5NRrskqntbS6pd3H7KmWUqfkpmm+e8Jk3+PQzB1hMjEM6pOMQ3Wt6rJIVlMmSWkK9UIo0f20UUBUIsE5/6WV+Nd3ezTLvthUrvmu1jSCHuP29J76h+L3JT7uXmTZR4THaBiy61AgRmSjw02x44iIRCNKJTHGdgI4BiAXQF7XFokgei4WfxBmIzP9h2fuxgUvr0JLW/usqHpqcG+92CbOIocSGWhAS8iyjHS7GY2CS1hkUUr5T5Z2sUG0kyBLKSLRKatpxYzNWhFKb9HMv0qiKNUOl+NERyLrqISnNz2vRHiM3O5TbAEr0KY2j8ZNnyCMiDqmFIAhUPqO9/qX/wBggrghY2w4gGZZlhs7UJYjAAYL3wf5l9UAyGRMdbznyzX7+Ndn+LcniLjE7B/96oMBAsC6omoAQIurfaKUyyOjssmJ5xYWaIKBJzp64U78HqozpHeRIHofMmSk2LSiVCS3PNVSikSpGCOTsEz0SGxmbXc7IEoFxBl3L6p/RJc9kqcSE338IKL3IlZdXKA6VOvQbFPfSqIUEZ6o3ff8MaP+DuAffgHocwA/Z4z9GlADn78J4MUOlmULgJGMsWGMMSuA6wHMlRV7v5UAJvm3uwXAHP/nuf7v8K9fIZN9IBHHcEspI1GKB1tu76CszePFo9/txQerS7C5tGckmTRJDC6vVmBqFFweQ7ksOsmcvNejilJC3LZoZ3RJlIoN4lUnSymiKymrbsH/lh/odlcSiy5xhwylTmIa973e036J591TQxD0dCimFMER69Nvtx0GoGQbB4ATs5IBkIhJRKZdgc5lWd4BYDeAG2RZdkAJNP44Y6wQwB4owtJb4Y7BGDuBMXYYwIP+fQ8zxtL9MaH+CmAJgAIAX8uynO/f7WEADzLGiqDEjPrIv/wjANn+5Q8iQpB1gog13CLDyKKH+ecLH565u13HbPP4UNOiBHU2m9qbuyA+SLWZNd9tZilInGtwuJGZrASKDyUyuDw+EhZ6ObIsI9VmRm2LS10WyQKBu8D21KQB8Y542clSiuhK/jZjB17J269mfusu9PHq+FcmdMN7kzuUROZRCU9vel6J8Ij120O6McxlY04A0LuyixIdwxxpA1mWU3XfrxQ+7wFwfoj9pgGYZrD8GBQXPKN9FgJYaLC8BEp2Pv1yJ4BrwxSfIOIKixTaUqrZH0tqfTsDgLZ5fGjzi1ztdf2LFwb1ScK+Y03qd4tJCurwNDo8yE6xor7VHXaGrs3jRbI1YtVG9FBkyLBbJE38gkgWCPx5Ik0qNohioFHdSBCdhdlvrVzZ1IYh2Snd9rv67FP8iRcthpo6MStvvKOPKeX2+oKsyYj4hkQGghNu3i/F3x8nSykiEtQCEEQ3Ylbd94ItpZrbGeCc0+b2qsf909QtHS9cDPH4ZPxqVD/1u1liQSb9rS4PMpIUS6lwsbN+ONqRkHZET8JmNmm+R+oM8ZhTpEnFBlEMpLhwRFcyrK8iRO090hBhy85l6roynPvf5TjMs4L6H3pu/QsA1X6L596AXpRqpZTxCUd7LKU2l9Zi56H6LiwNEUvCWZknW5X+GImYRCRIlCKIbmRP2wcwZ2wzdFEZdUJah47p8vgSPpW016fEAeKYTSwoOHWz7ziS7Mp1C9cZ2tRD4moRHUc/4InkEsYzO1JIwthDllJEVzIwMwkAUFzV3K2/e6TegaMNTjw1Jx9fbCpHnT/ob266Hav+73zcfM4QlNe0YmNJ78jVo0++15qgVt69mWhjSjndXlz3/gZc/fa6Li4RESvC9Z3sFhKliOggUYogupHDntVIGvCNYTDfsYMyAABnDc1q1zEdbi9G9FNmfycO6fPjCxkD3F4fzEKQCbMkwe3TNmAVaU+hzPQGAGDBnmOGx0m1mVEnxBIieh+yLMOhs7YxskwU8fRg9z2Hy4vrP9iA3Yfjd5Za1rjvkcUE0XXwgXRFvbPbflPjotfmwaOz9qiiGAMwtG8KMpIs8PhkXP/BRlQ2dV/ZYoV+4qCljd77RCNaS6lvth7q4pIQscZn8CiY0/ZCsperCZ4oBhkRCRKlCCIGGFlu8M6yXoyJREWDE7sPK64IA/yzwImG1yer2QcBJUuh3lIKABpRCAAoqGg0bOBMBm5/RO9Chhw06x7J+sbTgwOdL8k/ho0ltbjqrcSYpXZSoHOiC+FJDcRsrl2NOOGSYtW6FjO/OJNmD1gKNzp6vtWQPtA5WUolHtHGCErUBDzxyqLSRTjecjzWxdDQ4mlGyoiXINkDAmTSoM+QMuwdNcETWUoRkaCagiBigNEgmYss0WSP05vKHq5zAAgMrhOBgopGDH1kAfKPNsDjk2E2MTBLNczp22E2SRHPpbS6BV/rZuBMEqPse11ITXMb9hzu3lgs7UWW5aD4JJGsb7gg3BMfHW46H8+ol52RpRTRtfB3vbmLLHN8BpWIWQp0tUO9j2n2QGyp3hBXjSylEp9oRYYUm3HimTeXH8DT8/LJbb4dOD1OPLT6Ifx56Z9jXRQNJU17IVlrYMtZFrQuK0Wp28g1n4gEiVJEl+N0e/HfhQVoaO2+mcl4x2jgxS2DjCyE9MghQjJHs2+8sGJfJQBgwe4K1VIqZdhbSBr4tRLoPMK5/P79DXjo292a54ospbqWq95ahyvfWhvrYoTFyFIqkvVNTw50nmyNf1FKcWJSIEspoiupcZfAlFyMlg4mFomE12CAzRORAKEttFIFS6mOJj1JJPRXiSylEo9oRalUW3AbVNviwqt5+zF1XRm2Hqzr7KL1WHyycs2Pt8aXpZTbp4TNkOXgez1mYCYAYOb2wzRpTISFRCmiy/lu+xG8v7oE73xfFOuixA16971GpxuL85U4SdFU2rxh0pNIggyfMXa4vfB4fTBLEphJiaVhNmnFJaOZNB4oVozPZZaY6p5BdD5H6h2xLkJUDO6TrPkeMaaUj1sp9rxnJxEspUQcNDglOpnFeyuwtUxJgLGq+VEkD5nSdaKUQRtsEdyXGhzGopTovtcbBBqbWTv86O7A80THsahZpKN035OCh5pim+wmC5p24/b6UNkYP7Hn3D6lXsuwJWFItrb/xTOMrjlQjZeXFrb72Pd/uQNDH1kAn0+O69iYxI+HRCmiy+EdrCZnz+9oRYt+kCy6REXjghdq8JxIolSSf7DsdHvh9cnBgc6FeAWiZZiUdFBzHHFwQZZShCzLeOrK0zDtTz/Bhn9dCCCa7Hv+eG4JnsXSCK/PB3PabgDx6x7DRWebWcKeIw0or2mNcYmInsRfPtuOSe9t0CzrKmskI1FKjJcYEKW026ULolS0Wc0SmeSUOtgHfgow5Xo8t3BfjEsUG55ftA/ri6tjXYx2YW5njCAj60HRxV7SBxgjIuL2+nDnp9tiXQwVt1exlDIxS5CXgyjK7z3S/vAPs3ceBQC8+30xrnprHXaUk2VdT4VEKaLL4cGDyW08gH6GySrMGkYjqhjFrQAATwJltzCZ3LDmLEFzmwMenwyT4OJgNmldEUXLMJNNa7Ysdm7MFFOqW4j3GBBJVhPOP6UfbGZF+IwY6Nz/3kQbuDWR2FmzHkmDvoC17/JYFyUiWSlWLMk/jl+8tDLuY5cRiU2bx9cl7aWh+54w6NYHMWfggc4DMaUiua57vD7c/NEmbC6t/TFFjSnr6z+EJT0fpuQSdVkoK7KezHvfF+PGKZtiXYx2YVYtpaKb6BD7C7zv2irEEAvVnyWCEfu3RZXxY13I3fdMzBI2yx5jHRcgt/itXSub2jp8DCK+IVGK6HICs37U8HD0lhviRFE0caE8PcB9b2vdHNj6rkSJe7GBpRTTWIyFclcEtDPeZCnVPcTzNRat6riLSLSBzntiyuKGNmVWkVkasXJfJcqqW2JcomD4PbMKwnRJdfx0uImeSYur860HjQbYouVTKOFFDAYdyVq6sqkNaw5U428ztnewlLEn0KYH3vneEEurJ8CD1Efrvic2q3zip0VwUXVScouoafMGrls8TQ66/KKUWbKgsqkNNc3GwtGPsYnjITtMP0LYIuIbEqWILoeLLD0wXEuH0TfCYuMejaVPSPe9BBpUe2WlgXF5XDD1nYfdzd+o68wmbUdec01kbYMkxt8wSxK8vcD1IdbEc0B9Q1Eqovue31KqB8a28PLBn8zwp2lbcP7Lq9AUIthyzPDfMotgMUoWj0Rn8MWm8pDruiKulJFgH04UX1auZKuyCi4uLo8PsizjwPEmw324KNCawBnrAvV0oD1v7cWiVCJNiHBNoD7K5EU+QTzhfV0xwyQlt4geOU7bRR5TyiIpFp+XvL7acLsfoyc5/ZMInSFeF1U2oaIhMWKk9iZIlCK6HD7gc5MqpaIfJPOG+oR0e3TueyEshxJpIMdL6vb6YM1ei53NX6vrrGYJOw/V48zJeahpbtPMHOvPUEztTZZS3UM8v8vi7KHZJMEksYgzuvy9SaSBQbR4DSwSCo8ZD3ZjBb9j4gxoTxQIie7lUG0rHp21J+T6gorGTv9NI0spHk/zzBMzg9btqNwBIBA8GlCErW+3HcZFr63G6v1VQfu4DaxNEg21nhYmmVq7wHItnhGflWfn/xDDkkSPw+VVxaj3vi+Oah+xTebPrthXFQUqIjyhvCRiDZ8oT7IoFp/VzS51XUVzhfq5vZqUUWzZzphU+/Wrq/HT/6740cchOhcSpYguJ+Aa07vFAlkzW6RthD9eWwoAGJyVFFUGMPFSPnzpKFz/k8H4xck5CXWN+eUwGnxK/santsWFlYVV8PrE66Vt1sTZbrOJsu91B/FsjSbrZEubWWqH+178nldH8fmCRamaFpfxxjFDKVt5bcC1MNEGKuuLqjF7x5FYF4MQqI3wnN8+fWun/6Y7zKTIkOyUkOvEYMAerw+7/THVSg3cbbkLlE9OLOtoERlKuS87vb+6LJFFto4gxh9bX1wTw5JEz+vL97d7H437nr+/J7a1jgSr62OJR+gLx1NvhU+Uc1FK5OKZF6shSlYWBovs4RCFal61NlLSrB4LiVJEl+NVXWOia3gaWt1RB1BMJMSZIb3lxpoDSvaVZKs5uphSQsN09/kj8Pz/G4s0uzmhBnJcPKg3iLGxbF8gmHl1c5th8FjOtoOBTBxkKRWgtsWFR2ft6ZJnIp4tpfQ9NZtZiugewAd20cbI6G5KqpoNB6fRYGQptT1Os9eI7nuOBHPpuPHDTbj/q52xLgYhEAvLR6P09ueN7AsASBMy7OlNBkRR6ok5+fh0o5Jl1igzmdhHKKiIL6vHaOEuXbecOwyPXX4qAMUKpzchurWl2oMH8/GIOAk4NDs54vbLfjiOe78IxD7jopTWUiqx6vpYIlrXxZNlIR/nnZybDgBIs2mf50kTBnXouGIdzvuyjfEWfoDoNEiUIrqco/VOANFbIYx7Zilu+XhzVxYpJojCSiihIDfdFpWoYuRX3i/NhuONzg6Xr/H7t4F/ZwCu7knHzi+HcVBX7flpt9F20r/ddlj9TNn3Ajy/qABfbCrHgt0VkTduJ4kSUwoAbGaToch9tN6hBuN0x7n73oWvfI8LXl6Flfsq272vGFOK8/73JSG2jg38jtnNgTImksBOxCexyKYZLki53WIKuU503xMxCuor1lOJG/NXeesZGC4YlQOgawLPxzPio5JqSwxRysQYmFmx4mt1ebF6fxUO1YbuM05bX6b5zq2ixPdkum4bIjTx6gnABdY0uwXnjeyLk3JTNev/c82YDh1XrOt4kogmspTqsZAoRXQpxxqcWLBHGRS3J0bIxpLESHWcf7QBR+qjC5YntiWhLDKyU23RBTo38CvPTbejxeVtf/BWtxNY9QKw4lnle2t1+/bvIOEThwRWMkTfEJOlVABuaWIOMdj5MSSSKGW3SIbv27nPr8CEZ5Ugww2eMpiSi+IyjpFYH/xp2pZ27+8zeHfGDMz4UWXqdPyVgVWwlCJRivixxMId1+UJ/Zsmv9WTte8ymOyHNetCpUo3G1hKiWJbomas44NYiUlIsirU9lnxAAAgAElEQVSCjKMXu++lWEOLUnN2HsGEyXlx4ap50LUKqSP/C8lejlaXF3/8eDPOf3lVyO19uo4ez/4q9iHKw4hahBZ9TKmGKIPNdzW8j26WJNgtpiDrN4tJwukDFSuqJqc76izAYp+Mi1GNITKYKuWQ8eisPSiqTEwL0t4OiVJElyLGdGiKovNkFCS0K+gsa5or3lyLnz0fXbA8sQPS6vJqxCy7RcKdvxgOs8QipoMGjGdjU6zKLGy7/fO3fgSseg7pTOkYyM6G9u3fQXhMCbDge/H4laeqn72yrBGl7v7liJDHtJpNaOvlg9k2jxdtHq/qLiu6hXQWce2+p8NmNkXMvrdLfgrJQz6Ew+3VZHOMB36sUGbkvhdvs/JqoHPhUaU4I8SPRe9K1x0p1B3uNiSdOAWmpLKgdVxgsuUsgyn5YFTHM3LfE8+rKzIIdge8/ZeYpPZdWhI4m2BHEPuhKWHq5BcXF6KmxYWymtiLN9WefQAAyVapCqLh+tN6UeqY35o/mn5uVxApzly8w/vCPANnvLSTfHxjkiQkWUyGAvNvxg4AAPzhw004/+VVUdXHRtbr83dXhBRoD9W24otN5WHjBYpuwk/M3huxDET3QaIU0aWYhA7V0SgsirojpsvKfZUY8ejCkOmWO0ptiytsJatvuLmY5fPJcLp9SLKYYJYk+OTI4pyRpZTN7xrQbgsDl3bGYtvG79u3fwcJnGLwuV419gT1s8vj04hSQ7NTg7bnZCZZVBNfPaGW9zTGPb0U57+0SrUSMBjT/GgiiTyxRP8O2iyRA52LcHfjeEFf9vbGU/AZZLmK1YAgJP4iWhLUfU+8R2+tOBDDksSep+bsxZ+nb40LN2r9gKY7+hdVjkqYU4qRNHiauuxPPxsKABg7KDj7XjQ43V7cOnUz9vv7LKIFWOJaSgXuRVJHJ9QSHLGfl2QNPRwbkGkHAExbX9rlZYpEey2vfTLAzA1IGfEimKVGzdznioEV457DDThzch7m7DROSBGpDx8P6EW+eGknRbHMbpEMXXGt/lknnsShLgorr4oG4/7YB2uMQxDwq1Mf5th/m7FD/cxj9xHxAYlSvYRGpxtDH1nQJfFlwiHO8lc1tWFTSfgMI93RKdl6UHEN/Gbb4QhbRs/LSwpx5uQ8fLG5POQ2oYSmEr8Zq91iUhv84qrmsEE/jY6V5BelNPs1HgXyZ0csv8jEnY+1a/sOow6SjQS2QNXU5vFpBtFWs6Rx8xHJTLYYBk4vrW7BuKeX4rNe0AA53T5UNDjVd68rBmJdPdvo88n4aG1ph6wAjLPvRX8NohHPuxN92f+3/EC7LEp9BpZSsRgQRIPoqpRIgc7FDvCUNbEfOMaS6RsOYlnBcUxdF/vroI8pZdSmdrZ1NheMmCkwmLpwVC7Knr8C/TPsaG/OLLfXh52H6rGqsAqP+2f1RbEtHl2Oo4EP/hljsJokmCQWd1aqXY1oPR/OM89mVvp2n20M3b/sSmRZcYk6+7llqrBw41knRtxv//EmbC6thSVjByRrLSyZm9XJQW6hcvrAdPRLswEAnltYgFeWFnbRWQQSfGwuDQ4Psrm0FmdOzkPeD8eD1sUTPMkRbymdMUwKdc/n2/CnqUr8X97PMDETkiwmtBr03cR+PQBUNkWeALz5I+P4wpWNbYbLiyqbASBkXfLhmhIsK9De40dm7o5YDqJ7IFGql8D9d99fXdylv+Py+PDfhQVqAGF9hfn7DzaG3b87VP8TMpJggherCis77ff4dV1REDoQcSjrhF+/qlgmWUxMtSy76LXVuOmjTSGPpZ8tUfZXXuen5/2gLmv68g7gm1uAutBiTEtdcCPscXYs01d74OIBM3DfA4DP/3w2AMUqRzxfxhhGnZBmuE+G31JKP9A45p9tebyHm+qK1gn7jjUCAO77cie+3noo5D7/npsf9QCSi4E1LcYdgs4ir+A4Js//AS8s3tfufY0DnSewKKUTZ6asKcXH7RjwB54JpW65cFS/uIhNIsJLqBGlEijosVjWgZlJMSxJbBHjePxQ0RjDkijoY0qJ/REewum9Tu4TtXlDC/ZK+95+UYr3C7wGCRliEcy9M+CDWFmWwRhDstWEljYvdh+ux3Xvb1CtwnoCbq8P455eGmShI/ZTZmwuhyzLmLK6BHW6SR+bMAnXXXX3U3P24tLXVwNQLFu+2FSO441tqqiUnWqNeIyLX1ut+W6SGOpb+bnJkOzlGJCRpPZdP1hdgv+tKOq8k9DR4hcqjNzX5+8+CgAorgru+87bdRT5R7snrEUk1L6wv/6KpdX6wj3HsLKwChUNjoD3BgPsVpOhpZR+2PJjym4ycAGQZRl3fKK47bm9Ml5eohU4P1pbimcXFATt9+WW0P3j9vCfBT/g0w1lnXIskcJjTT2qPgwHiVK9BN6ZCRVMs7NYuKcC768uwevLDuDJOXtx3fsbAADXTQykAw1nZdEdllIVW+ej2H4zPq6/Da9MndHh44gCgDo76r+8ZdUtQUo9n+HQLBM6GBaTpBmUbTsYOm270bG4Gf/aIiVQ+fFGJyoPKx3uqtfPw4Nf7TRMBX+8IjD75pKVGbl1e4vwYgcEAQBYvLciqpTzAaEpuJPuk3342Ul90TfVBofbC4+sPd9Qs8MZSRbIcnB2DnEwkkiD3fayeO8x9XN1c+A9e3xWaDFu2voyjZAZDtvwZ5E87E18tvEg2jxeNHVRal5+j6Ix7w5C9zjZzFLU95wxGUdDmIvHCiPXQ6OOVSj0llJWkxQyy+CMzeUxFeV+OiIbAJCTZosbt4RocHt9SEMrbjAtx9X27ZF36KHkHw0IUYNiLM41ONx4fpH2PfnpfwPxH3nzk3+kc8WzNk/oOsscQZQqee5y/POSUzTLHC6v6oIdEKUCx0hYSynddUi2muBweXHVW+uwubQWt3y8GbIsd3qYhVjQ5PSgweHGfV/u1Cz36kbpW8rq8J+FBXh8jra9Fi1MjESTrmD6hoPYd0y59mJ/itfLafb2xyVMskiqJbslYytShr2DJtP2LnEn/2zjQU1/CAjEYTJ6A7mFTZ9ki2b5kXoH/jZjR9xMaOqT/sSqnRTdHG+ftjWQuACS6rWhx6qLbxpttmNz+i4wk7YeMIqVqp98fGulVuCcPD+6fm5HmbKmFE/Mye/0417y+uoggbenQqJUL4FXGLsO1WPWjs5zW9Nz3B/E0GKS8MmGg2rHL8dvngsELDiMCJdVobPIPbYSADCIVeOxo/d2+Dj6wWJfNKjxoM5/eRXu/kw7OPnaQI1/UVDyzSYWlGknVKpdI0uprJRAY1pc1Yyzn1sOn/8Vz2ENmLvjIH73zvqg/ZIdx3DANxALvGfhTc/vAABvz8zDO6uKOzQr95fPtuN376yPKFjIBp8CS2T1nGpb2uAVyiFBCileZiYrs3f1Dq3wWdkYEBoMZxzqypS/BIenFZd0LpF9UixGm7cfUyNM9qPYUlaHMU8txZh/L+2c4+rg4m5H4jvoBztDslNQUt0c8lkWxeV+aRZVlPH5ZDw+ew92Hapvdxk6E97R+vlJfTu0v9cvYMt+d1mLWTLMnljV1IZ/fbcH50aZuKEr+MnQPih57nKM7JeaUKJUm8eH9yyv4b+Wj3BnxZNwVZfFukgxQXyX3lxRFNP4LOOeXqoK80Zx9Xhb29kxmVxe5XgMwT9qkhjAQrepksRw28+G4WQhnXplU5s6mN7pr4vEwVx3xMnqCvhEARfNU6xm1ZIFUGLJ/OWzbbjotdU4WNM9QkxXIYouYr3m9cmwZG6CZFPEE37++kk17r4HABsjhMDobDYU1+CdVYHBPX/exDIBwB8+3IgxTy0Jeyy7xYT9fqFLslUBANysCh6vHLVAEQ2NTjcen70Xf/lsm2a8wd/57QYTvrxPrW939vktPvdVdL04KssytpbVaurNFfuOq5b+QOBZCrjvdd/773R7Ue33gnF7Zdjgwo2m5ahsaFHfY4mFFqWuOmOA5ns0Vp7njnIjaeAMDDnt84jbtjfcwx9/OqRd24fj8dl71M9dlbCrN1hLxZUoxRj7mDFWyRjbKyzLYozlMcYO+P/38S9njLE3GWNFjLHdjLEzhX1u8W9/gDF2SyzOJd4Q0xQ/8NWuLvsd3mDZdb7D/dLs6ufjjaEtEeYLMa+66sU+RwrMnlbJ6R0+zugnAw3wIFaJrfa7cUH1F3jbr85/v79Ks/1ry4J95T9YHQjWZ5EkmHTqv36mh2N0bS44pZ/6+Y1lSrBdKwLC0BAW7KZX2eiAuaEMOzESV0zOw7k3PAKXbMKFJiUQYOuPGBj+/v3wrpqqdmDgvscbuJw0Gyqb2iCeLmMML/6/sTi1fzpOG5AOUdTKTFLEF7013sMzAw3Ge98buGv8byLwxrhg++IEw2KWcIdpPkrsNyEZgffM1AUWkl3pNsLCzGjq4Z0kjn4gPCwnBU63T836o6dG2P+ETJMqSu04VI/PNpbjuYXRWyUdrGnB1rJaeH1yp9Vfrf7B2190WSejFYwDs/F+UUpihvcuXL3c1aix2CFDkpiSvSdORKlQEwMiLq8PZ0kBy9LpC1d2ZZFUxEFCPKAfFIixttxeX5BbUlehtx6aduPooG34INQny/hm6yF8sqGsU37b4beUMhKllNn98PVCktWEO84brn6fv/soHvhKa2HjSsCYUuuKqlWrpzk7j8DtF8tnF82Gx+dBkt9SSmRJvtJneX7RPpz93LLuLXAnIlq2rTlQrX72+QB7/1lIGf46gMC9XL2/SpOYRXTf64rEJeG4YcpGrC8OCGF8QqO0UduPWldUEzHDtsQYjjY4NROWZpMEj0/u1DiVorBU3RQ4bounAZbMjdh6sA7vrCrStNHcHUwv8lQ1KfWrw+1FQQiX5N2H69HQEatuHd9uO4xJ723Agj3KOEiWZdw2bSsuf3ONuo3e8rk7J29u+nATJj6rvIdtHi/uN8/Ec5aPMM97N2qbAxbWySEySdp1YpXevdqIPewJAIBD1oqx+jFmeU0r6lrDP0MSfJjAAuOwzhKlDtW2auK9/fT55Z1yXEAZ6w1nR3GLaQnWHwgdHqanEFeiFIBpAC7VLXsEwHJZlkcCWO7/DgCXARjp/7sTwLuAImIBeArA2QDOAvAUF7J6M9x96SHzl/gJ65hbVjjcXh+KKpvVmR595p2slID/uX4WqKSqGZe/sQYPfr0TH60NxEqpakdnu77VhQtfWYXCY+GVZJezFadIh/GO5ypM81wMG9yQW5TKbs7OI1Er0fqB7yimWEHd3PwxXsnbry7n16HN40UKC1Tab15/RtAxTZLWUmoMK8GJeXcAHuU6FBxtQNWq9wBHHWbuCLa6Yowhzd8YzN11FGZ40J/VYKvvZADActs/scj6sLr9nJ1H8Kf/foS+rBGbvIrLgDU1CzvkkThXUkxQeSyy9nI6K0FFxeGwA+fAJQzdMPVJtqKh1Q2vzn3v7OHZWHTfeXjo0lEwpwXMZfv7s9TcMGUjFu6p0GTWuN20ENeZVmLR3mN4bmGBtjH3+TsUSx6N7gS7ElkG9i0E2prbtZvH68PO8nr80ZQHAHjV8q66LpTbLu8ED2bH2yXIZaAZZfYbca1pFWbvCM5k8+6qYo2g6nB529V5UksboUh/nr4FE59dhhX7AoJrkFuIvyOkd53giNnsBmRaUVDRCLfXh8N1ihhhZCYeil++tAqffvASLn18Cq56e23U+4WDD/RTbCbdcuPrubzgOEqF95ab+19yWn88eNHJMJsYPF4Zh2pbNdctlqIUh987uzU+RKm3VxbhvBdXYuGeCkx6d70q9utxudwwCdaJu/YVo77VhTaPt8uy0Pl8MkY9sRgTn13WruySXUmz7pkU2/qHvt2N8ZPzIlpPOd1eLM03noyJFlEcu0paj1/MPANjmDZb01lmZfLILDH889vdeLKT3C6cLv/AyKDO9cmy4SSMHrG+Pt7YhrIarTAqWpW86u9vTJ7/Q9xkPTTiDx9uwkWvrcbeIw3YUV4PXrnPKpqFz374DClWc0hRY9HeYzje2BZ3sfCiRRQOa4V4jHr3vXphUD1XiD8lPg+xrhe5ZeFX+z9r976Ds5MBaDMhmyQGr09WxR8gePwQDZVNTox/Zin2HmnQxCoS+wOLK1+Bvf9sSNZKvLi4EE/Nzcf6YkUk5NaIemFUDCFw2RtrgsJyyLKMq95ah3HPLP3RwtpB/3te4nfR9Pivg3hc3p7zR6KjotTzi/bhTn/8JT0N1RWYu7UkaGJtq2Bh1ubxYRxThMn+rBatDYpgIkMOaSml55aPjYOYG2GRtP2w15cdwOeblDASbq8Pv3hpJW6fHnw+fFJJlmX80bQUM21P41nzR0iBA2n2gAfBjxH37vhkK2xwwQblPh0PEYS9I9S2ujDD+iyetkzH8KrOE7vilbgSpWRZXg1AnxbhtwCm+z9PB3C1sPwTWWEjgEzGWH8AlwDIk2W5VpblOgB5CBa6eg1by2qxpawW+UcaYIIX95jn4hvbM7hxykY1iGFn8PS8fPz61e/9nY1AXCOO6H+ud9F7e2UxfqhoxHfbtYPbEsF33ueTw3Zmv99fhZKqliAfYj0up1JBVckZOCznIJ05wF4ajramGtz35c6o/XZ5Y3GVtA6zrE/iFBYQic5kAVHq2QWKD/ND3+7GH/xiAQCM9gYLg15ZVmdrTkjy4UPry7jEtBU4plj5PPq/qchZ9TAqv/x7yCxy/dIDbpLXm1bCyrzI805Ql50qHYLs8+HdVcXK+Zq2wSszrPCOBwAkW81Y4x2DsVIpTmKHQ2a+0ONwedVB7ZXSesy3PY7p1hdw1VvrQu4TmPEJbSllMUkoqW5BszC4EWegf3lyDpg5EIBycJbS6XG6fbjn8+14YvZeHKl3YIK9Ak9YPsOLlin4qZSPD1aXaGbGa2R/4PSN70R1vp2F3jS7prkN9du/A768AS8++3/Y40+dG40bzBvLD+CN5QdwQB4IALjUtAUTM5V3yMjdE1AGbz+V8rHG9gAaXjgNz3y3FSv3RZ6N+YNJmS17yfIB7v8qWOx5YfE+/OWzbRj6yAIs3nsMpz65GL965fuIx+Xw8vIZQyPWF1VjmT+xwILdoQexXKjcdrDOMFjpnZ9sUz+PH5KBulY3jjU41fuin90Lx9uW1/GG9R3kWf+JoiNVkXeIAj4I0AdnbWoznpm9ffpWXPDyKvU7D0A6sl8a/v6rkbCYJLi8Plz+xhrcNi3QiRNTL3e39YUaXc5/3wuPNaGkqkXjdhsLXvK7V8/fmI/HK/6K4rXfoLnNE+TyJTvrITEZZWPug0eWcJ60B2c8k4dTHl8csuP/YxEH8EbWXHUtLgx9ZEFU73Nn0dLmwSPmGZhjfRyAjI2lgdntWX7xWnQ3a2nz4IPVxZpB6IuLC3Hnp9uwtSw4Q1a0NLd5MJYV43nzB3jT+hYAaCzZAOBL05PoiwZNQN69R358MOM2tzL5xAzq3BOzkvH3X40IWq4nXH2ff7QBbt372eR0Y8baAqwrOIgznl7a6W6TG0tqoooTGQ2/+d9aTFtfBrHdr22rxQkZdlQ0hI9n1+j0dNjNq8npxtxdRzu0749FLLNTEEz04svO2a/jUknpc4lC1BHXBiQPex2ADIer6+tmt9eHv5u+wwHbzRiA6pDbPXr5qKBlvN00EpZSrYEM0XyuR2IMHp9PMznU7PSgpc0TVXY2zqaSWtS1uvH2yiKNwNAqvN+tXr8rPlPqzk83HsSNU5SEQrzNE4X0xXsrgpKtzNM9Q6JIeMcnWzWi1vf7q1BcFf3kIs++zcVXsa7kyWr0QmZHE0q8930xlhpkGqxrcSHpf6dh9Nwr/O9pMC6PD20eH0ZIgWvRjynX1if7wr6jj19xaofKa2B4isdm7cW7q4rVe3CwJrgdPO9FxWq5vtWN/kxpj24yL0e+/XZkWALl/N+KA4oFZwfql0F9klFovxWF9ltxFgtY1jvdXvh8MraX12mE2Ghxur245pUFyPVfW2dy/3YfI9GIK1EqBLmyLPORyTEAuf7PAwGI5iKH/ctCLQ+CMXYnY2wrY2xrVVXnDCBizZL8Yxj6yALVlPSG99bghvfW4OWl+zGaBYSM9cU12HesCUf8riqyLGN5wXFNQ7KhuAYPfbsrZAdnecFx1La44PL4sCr/CO43f4viUsXSSQx4ak7fhcHZEk7qp8RJ0FtK6eFt8R2fbEXhsSZ8veUQhj+6UBNocPL8HzSWGLqEFCHxtimVVhusKJcD7m62V4ZjlfUB9IdSaa0vrg456+Hzyar49qb1bYyXivBPy9fq+mnWF2GCUklOW1+GV5cWYsHuCjxgmalu06dFO2sLAI2uepglYBQrx0b5JrUi2rF1PWRZRiZTGrd9JaEzb+WmKwPwXNTiWctUuGUTvvP+HC+5r1O3aWtpwLT1pbhY2oL7zN9hvzwYtVDcGC0mhqW+iQCA8VKRYUXa6vJoLDEA4Japm3H2c4qK/z//IGCsVIrfVr0btH8woUUpPpD5aquQCll3kyWh85ZuD46ddPcLU/Cs7w31+8lMianGTYe9Phl2BO51w/EyAIpb2Kt5+7tsdrah1Y3bpm3FXZ8GBq3X/Odz2OfeBQB4yDQDU955AW+vLMKwfy3EpxsP4onZe0POInLT8mwWePd+i1UAAoKDLGvF3dUFhzHD+h8AQIbzCPptfx1/mrYlYtl/ai9TP/NnnaOfcfrLZ4roc6Tege+2h49nV9PchpnbDmuOUW7Q0QCAGz8MZKcULQx/N/d3mu3OHRGIxXTFm8HWSyXCs5yZrAg/jU63OlgNFYS1oKIxaFb1ClNAxD3//7P33uFR1V27/2eXKaRAIFRpoTfpooJKBxUbKiJFUYpSxIJYQpVepfeOUqX30AmhE3qoIQkhCYSQ3pMpe58/9syemSSg73me8/ud93nPui4uZtfs2bP397vWve51L/HfUybtYkrJCCiMl9fQQIjm9eknPBky94KK7LLpzKw63xMvo0Se1a6DGk6nOT41i7biVQSU/++bAbiV74FLdPbivwBM/DtNiDlHEzGS3spuXvztEI3GeWqnqDnadQqlAlhv78hH0il80J7bY3ef8su26+Tb7Njsyr9c1vkgKZtNF2M8MvZ5RXQxcv6u848Xze76P2FZ+TYGyXtpLEZRSUjkl203+HXbDQ8GiPPZOnjzCQ3HHWLKgbsccmNGxToYis8rS4xNyeHEvWeDbdkWG2uN0+khB+vrXi1d+Hx1xRgPf+TdBZ7jQ8TTzP8Sg9CuqFSJ2QqAqBZ+hwRBoP/rAX97HmdypSh7Z/5pbIrKUGkn35v2ATBkwxX2Gkdxx9wP8jOIS/33NSsICounx/LzRepRPs8inmay4Nh9VFUlLzudbcZxniz9AoyxmmV9iE0pfN3D5G10ErU5stPsk3r5EGhM7n86P4/YEcZ3m64+V9PU3e4+yfBg7zht/rH7BATuZ9vlf67NarEpTJZXEShvLKAp5br2luItphpWsdQ4l53GsSw/EY5dUUnPsXItfzGS+Qnw9+W6ORYbV/9FADEpPYsfDdswCHbOmr+jsRBBbSEWbaB2/W5ft65Bh7plPY5dfeYBNx+lFxncO1nHWfk2nJtFQRu/nOAQaPPvirm/8e7kbf/4mp3VGHGpuR6AfVpGFhwdD2kxz2VeP3X81hGJWfRcfp6Ip1kMWl+4acWv28M8/OKszHSOGH+mrXiVyw9TqTf2oB47fLH64n8pGee8P1ZnhYXbs/LLthuk57qqBpwez7KTnrFEarbFA+AraHGpOc/Ve10QdAmjYKem+JiMsANF7pOdbyPfYqUM6YTYGwJQ3gH4qKi0CHhGcVLKAwbEj+fgEF1t55mafifuPeWbDX/fNORCVArbL8dhwMbvhqXUE4pO2D/JyCMPz46R5ukVONZFGw8WndAS9bVGBel+VXqutRAzrigrLrt+p/ckrblXvs1O3TEHmRp0h48Wn+XLNf+cFea067FplM/T4r2p1p6k+ReusPlPs/8OoJRuqhZN/dtSQKqqLldV9SVVVV8qU6bMv+u0/7/a2jPRAFyJTWXfjcfsMI5lr3E0pUlnr2l0of2dpTfH7z6l/x+XWHoykoiEDMav+IueK86z5VIcGbmenTfyrHZyLXb6/3GJZhOPUHt0EAHZ1/hB3sFl82CP84umeIpV3MTCsKkc/bENpX1MRCdnP7fMrrSPxvbJyrfxydKz/LL9BgAbLsToJTWrTj9g0PrLhQCzv8uEWS3a8W0bVEas1cljW4CYwJtSKJl5VnqtuMBnbkGv0xIz86k+8oDeVTBVdQmS3lQCWG/rQHEhRx8YVVUTfC2upHs8uD45sbQUb9HSUSZnKr+Defd7cSF5D41Ez1r9sEshTAu6Sym0e9ZAjOY72QVwYXM5/EPb1wTgQ0lzrntbRpJISRbZu/K9ZQgAN26F4VfMyKdSMABr7W/SsrrW9crXbOChquG+lYQkRBQ+W3mB6Qfv6sFEv7WhtPs9GFVV2XY5jvj0XC4+0IIyq10hxe2eDJT302P5OYZscLFRnObUVnirYblC21j7LsTfwMuRWUt2o7wX1Or4oWOtwse72XbjOOqJLlDLyWqz2hV2XIkjOyUebyGf+4qGXUv7ftDOu/ka84/d18Rl4y7DnX3P/Tv/VYtM0oJGZwBx5fp1QkzDMAsuh2G+cZHO1hiz6ybrzj/UxW4LmkmWEFGoK8SwwtaFRKEUXcVTGNDeX5tdYfiW61Qb4XI0lm0P8jjHIHkvpUmnz9/Qqt+wu7bXErQxxKkXk5CRhze5FCebE8ZhfC+5ntUft1x/rq7M4PVXGL71OnPdyqRazzzxTGDKaf9VfatnAe3eJm1KjErMJixOu89FNV9Iy7Hw9rxTjNhxw2O9+7PfTXJzRhNuYR9fmoGjJjwzmLHZlSIZSk6nzTfrATWEx3whH2G/aSQ+5HA2Mpk/z0WTm5YIm3qQsbCtftyZiGNbu7EAACAASURBVCR2XX2kO7GioH03u+KZPe4w6yQbLjwk4tQW1hpnMkjaR3D40/8jItXRSdl89eelwkwjx+hYsPTSJEs8zcwrBMQ+z+n+95pKMyGcMooGgLwi3mWuYSFlC+hbCE5Qysufy0ptDIKdCoILUNtyKY5zkcnUHBXE1+v+NeZU10VnGLEjzGNeLqg5BFpZjIQdc44G+EQ8zST43lOdfZZntT+3s9nJ8MTnlqPcfpxRqLzb/Xf9StoPwF+XYmkywcUSjkrK5nFaLoPWX9a1AmNScvj6z0ukZlv0Dk0WN70R9wB3eUgkb8w4Qd81RYPnEU+zSMq0UErwZCh0Kl0Y4BxebB+p2RbeE89SQyhchtxxdojWMKQIIHHn1TgPsO1sRBI1Rh7AlKIlzzwwl0wX6OZiCD/bXq3uz+5vXqNN7aL9UovNzk+GrQwTNmImn1P3E6kharnbjcZJf1uJfflhqj5nP8+uxKQy+DmB4fG7CYVKR1OzLaRkW+g4O4RZR8JJyrKQFx7MS2I4Ewxr9f18cRvTVej9SpVC5/cjk+/lHawwzqa2EEtytoX0XCtbQmMJCNxP29+DmXUkvEgQ/VJ0CkcdTJD49FxdrzQjV+uEV1TJq8Wm8PPW6zxMzuatuadoMfkoYXHpHHFjlDjLJZ0Jlk+XnSMgcD9LggtrVXZfdo6tl2Kx2BV6y8cYJO+jZLLrfrp3anQmh0BLCH6YtYmla1azf0p3F9NZUFl3/iERTzOxKyon7hUep3/edoMPF5/lxN2n/0gPryh7dHG3x/Ju01gOm34l2tzbQ6cUoGGlEh7Ly0OieHfBaVIu76SxEIH5hU2Yyh4ENL00cN5DR7e2IjLJaY/v80PuQpYbZ7Pvhsunj03J4fdD94oEIp3VC2GP0j0A1DN718Dp2XBm/jODx/nH7uuJ1pDwRM5FJetVDkWZM2kC4HXwR2qJj1hrnMk30i5qC7FsuRSra8s+zxRF9fguzkoJm10hKCy+ULOkxuMPP7+0UVFoPvEQr0x+dpnX69NP0NwN2C2osTr25tv65x8SRhL9KF4nLzgtNDoFa046oqByUmnMSXsjSjmSoaqqUrOsL60Ljl2qCvObwO1d1NrwKq+K2v3d4Kj6yLXY2X45Tn+e+64JLcSUX9rvBUZ295xzzkUlM37vbUbKG+gmhTDdawbFqiwH0ZVMSMjIIzopmzpCHPnFq0Lfg/q2GscHcdX0NSVw/aZ1Rh/k7pMMGo8/TJuZwSiKSnhCJoqiyR4U/A3KZbo0az+Xj9JNOqmztlac0kAlJ5EBNG2ugMD9rDsXzd9ZKUGbo08rDalf4X9fA/m/i/13AKUSHGV5OP53psceAZXd9qvkWPes9f8jrLSjy93DpGzWb95AQzGaemIMIaYfPParKmhO0sGbTzh864k+IIcnZHJ1QW9+e/S1Dpg4AwBVVfl07EI+nbOXrKRYVhhmUc5RbVlLcAVaM+RlusMhSNr/qfnafsXNModuJfDm3BCaTDhc5KTp3jY0Jy+PzmIozgns9ekn2HdD00u6avqaqIMaK8c9mHleBwY1RxsYvL29+eCl6vxoGeSxvYEQTeC03wHVgxabmJnPoHWXGbXuKBPkNZjRQBIFgXSplHafVC822jsAsNCwwOO8jcRIjwnRmBHNJuNkNhknU1FIwFhSC/Ijsy7p4JPTWom3WBYSRXlHkOMvZPKp7Cakm+KaVFrVKE2HumWpLCSSoXpxUXVRZa+oGnhz/PAeXrFfooN0lWP2pvxlb6d3Ryxfwkw+RuyqwPfyDvYaR3E6IoklwZEM++sad+IzOB+lXUejcYf5aet1Pll6Tv8bvZefpTg5XFNcQq3no1I4EPakiCBXm4CLm4rQ3kiNguVtWft5IwAuPHg2hbx4MU921M4hrQBNJ6m1eB2DoDmfaao3D0q8QlNRAzwWnYjgxy3XOX1WK9mcbOsNgE/sCVRVdZSgqqw5Ew0r28NfveFRYXDtf9dyHPorzoAr9NTBIvdbaZjpwUZ6VpbLZBApTjYmwcYjtTSpYil8c2K4b+6DCQsxKTnscIDQY3bd5Mct1+giacBrnOpiEy0yziMk/J8zRxuKUey8GkfTiUe4HpvG49QcTpm+J9Q0mGpiAsMM2z26AY7efZN33IQ73e2Bo8uSeykZPF9frqoxg/j4/9oQb1NUvGtOpVjlNR7rnaDUt5uucuKedg/cs6LOZ9gJJLqPETkWG0/Vkhy0t2CJ7T2NKeUAwdn4KZJqZZlhFuu3bWdxcISHMGpGnpVXpx7npUmu4N1p2XlW+pg3IK1qxVHTL/r6m+YB7Lr0gLG7b7H9iDYeFLen8KYYSmUhgd4rL/DDX9fcNCi09yzarZNVKTIAlak7L+rAbVvpGt9vvka1EQcKNWv4V63t78EcuZ3AxgsFs5nOdovaf853OD49l5cnH/No5bz72iMajTv8jxkP/9RuxKUVeu57S8fYYRrHOMOf+rqu0lkWG+ex7vxDciw2eq04z4rD2rggeZdCKq6B7O9JZ3HPoa1xJIyO3nmKovzvd5tyPo9JWfl8Jh1hhLyB+08zGbPrJjkWG7uvPUJVVXItdr6QDrMpqx8fjphLx9khfLkmlJcdjNYft1yj05yQIgHfXIudL1ZfLMSafJKex6zD91AUlS7zT9HWrUw0O9/G+StX9eWOkiugElD4Rd7MbuNoBiw5WKjD45ZLsRy+nUDTiUd0fyP8SSbXYtN4bdpx2o76k+qBe/lw8RkWB0ciY6M42YXmlCfpeXScfZLPVhVoslG/Kzy9U4jV2dQeRnJGFguMC9lj1JJ2b887RWaelbVnXIzkJQUCt4inWQz76zo/bdVA6euxaTqQbrKlO76z27VdXKF//CegFEDjyn58+VoAMjY9seC049f20LBaFWJlmdpCHCVwvdMNxWgUSzY5FhsLjt0nO99WCMT9eMlZPbEGWjKvqNLFlCxPULLn8vN6gHotNo1+ay8x9YDGfgq+95SQ8ESaTjxCs4mucexpZh75KdrY4ucGFJoEt3Pf2kkpL0Oh7sPtRdfztNo4k/Ik86IQxS/bb+BLDtWEeJYER9Jn9QXuJ2R6sJC6LT3HAEfp7Bw3nU+bXaHx+MN8udr1bD/N0IDv0xGJbL0cR5uZwfq29xae5qsiSnCdyaELDnBv+sG7OhsSYPbhe1x8kMLP225gz3WNVZWSXZIG324onPh02jDDdrrGTKaXfFx/ljqJoZiw8DA5h6UnI+m7JpTge55jlvN37Ls2VC9d+idmV1QCAvcz92g4uUna75XZY1eh/d6XznksD21Xk4FtNH9voLSXF4UozOTzwsH++AYswlDCxRg2OgTbWz5YqEsAlEi/R0GuweKNWiKrsvCUKfu1ciibXeGNGSdYeCKCmqOCtMT28clcW/09o3eF8egZ7MCSjqCe5IgiQam3xIu8FNwHucA7lvMctrA7kJT9xAU+/WzYwhLDXFYEXdCTiUXZohMRTNkXxk+jA/lxs/Zs2RVVJxXkWRUGb7hSJFNYB1PdXxVFQTk0hvzpNQgx/UCu1c6xOwnEpuQw92i4LgPhNPfk17Sgu0UmoBbb3gdg784NvDbtOJcfplK3vCZzcSUmDbsjlsqVfLihVqe44912xmKtDQUaxNzZo3+U8tPYbJwEwNSgu3Rbcpb3F55m+Nbrum6VsQgtz5/P9WFB2MRC601Y6Ctr7OWNJWVk7yjefsX1Xny/+SqxqTnUEWIQX2gCVVvCUNc7XVLIYpSsdferKjzhXfEcb83VfNTEzHw6zTlJ5zkhvDb9OG/MOOExngD4JmpznbXrcuyqwBR5JXMPF26Qs/NqHCfuPdXlbWYcusfR2wmFQK7EzHzenBNC2KN0fcxcNbgTL1YsUeic/2n23wGU2gN84fj8BbDbbX0fRxe+V4F0R5nfIaCzIAglHQLnnR3r/keYURJpKd5iwt6bfCC6Jj8vIZ8Er9oojp/8pOlHaguxhD1K5+t1l5m0/w4yNnZfe8xHkvYyNhYiaSNeJ/jeU1aERPHiiO3sNo1ldNZkvDZ1pZN0mQvmoYDqodfQXT7JMsNspjZJ4nNZY2JcTrhEvj3fox46LcdK75UX2F6gpMdiV2gRUBJfk8y38i6WG+fQRnQxEoZuvEoP6QQlhSxqXBjN04w8VEVBRKGhEMWb49YT8TSzyOyZ7wGNLSQLKp0blKdN9+9YanuXGdZPuazU4hM5hEVM431Rm3i7LjrDn+eiaTH5KAdvPWH50170kY9w19yX5sI9SpBNqN/bjLT251f7EO6rlQCNdfWim7BqfSEGd1dUuO3KRC0yztI/y6KEv5CBRTCyo+kaJlp7U1N8zNfSXuqJrkDOYwg7t8jzO5pl/IRMck0uoGFhr6Z81vk17VpKWOibtRKA2bZPAJj4wYv6vq/XLE2wotFEG4gPdUf+4K0nvD3PBSY4KdLOAL08yVSN240sKOy0v0GEorV/HSLt4k0xlIYFAklvJ3B5vbBgpgqg2ml6amAR256fBm5aRaMObzVO4E/jdH19YvEGXKIB9cRY2ojXOSsPItrciysXNFDqtlIVq6pl8vLy8vlK2scp4w9cDnOVjbJzMCj/ntKm3Lw8PhZD8LJqk3A1k+vezLN9pDsFHaWrLDXM1cuBniXIaDZI+gSWpvqwp+JwfdskeTXt3Wjk684/ZMeVR7QVr3NBqUub/Dm8mKc9E6+Idxktr/tHTJkU1YfW4g0WHNccs/tPs4i7fpRSQhYmwU3kWP5L/7z/Rjy3HmfwKC2XR2m5HmwLl3aYyvs1XFpO7t2H3O1V8TYnxUFsSuv1t9fqbnZFRTSkI/t4Oo4VS5oK7RuZmE2rqceYd/Q+1UYcIC1HA/gAwhNcQVb3ZefwE7JIU725pNRGFhSIv6YxGdNdFeW7TGOZcfAe4/dpoL/NrtBo3GGSsvLJyLMVclBKplxhZ7UwBpcvzJrweqwF37mprkz+MuMclhrm8qYYioDCHcc7JzrGfoNDt+JraS9XzINYZpjDTfMAfpB3AFBdcGWmlzqy/7OPhBMQuP8fs6ecGgrzjmqlLi9NOsJtt5Lu4246R+7MOee7XdXfG0AXn97lJvrrDMLcz/ev2spTUby/8Ax9Vl8kyC07+7bhqsd+txStW09jIZIJu65Rf+whzkYm4+fIsnr5leGprI1738m7CDUN0Y91B/j6/RFKrVGeLMVnmc2uFKmvlJaSyCTDGgbK++kuBbPu/EPqjz3E95uvcep+Etn5NsYa1gHwphSKP56ByWkHU7X1zBMEBO5n5SnXfJWTmUIzIZz7CZlEJ2Xr9+TnbddZcDzCQ48vz2onI8/KnCPhfCft0NdHKC7VhHpCDEPkPTQWo+jhYOi+K55jkKQFKlGJWTQUoihFBncdLOqFJyLouugMalosZ8zfM0lezdWYNNJzrUw3rOCG+SusVhs/bL6qsxKcJcw1HM9w0ov92N/7T6wVGkHmY8KK/+i6ASWrAVrzFwBvIV8/x+LgSMbtdQGhBZ81p06Xs5Tqg0VnuBidghErXqI2H3qMWKd+h5taoP1385e7tatTloga87hv7kN10fVcSqLGQgvxMtNCvEc5QZtDguwtAPDdP4gF47/h21Mv8cG4VTQad/i5Qr7fbbqqly66g6UFGajnopL5KzSWh8nZOmjnLH8et3YPo9fsLXTu5CwLSqrm41UQUhwaRSpm2S2qTotBmOjPecNAipPNR80q8kIJMw3cfJ5KQhKbjZPYZxpNA+EBYeYBnDANR0AhNDqVTnNCeGtuCPcTMpka5BkQugfhzu90LiqZhIw8UrItvDzlGNMP3vWQAihoBy6Fs++K2ztiseudWp1WZ/RB3nPoaM4/7gIr5mx1gXStHq1h//JRzFqyFHu6Z8OaSKkG2d026ssVHSVRzquabVzEKsNMVp95oIMeI3eGkZyVr1cfSM9oz5eclc+deG3erTHygEPvUXumVp9+QIdZwfrn3ORYrMj41m5D5/zpLLK9zzZ7ayKVApo2F5Yj39nJz53rMOjlUowwbGKfaTSVBG2su272nE+LGSR8yGGIvAdvR2K3cdphWoq3+VXexB7jKPxJZ4lRk1vwFzIpadAA1Tvx2vf7RArmU+kEPRcegZAZNIlZy8kLoYzcGebxt96qq/mBTgYPUSeQFNdc06VheWYZlrDUOJdW0m0izH14X3QxrDR9M5Xm8gMmvu9M7qqYsJBvU9h97RE5FhtSRgyJqgssqCHGc9k82KOMLCBwv15lYrEpzDx0j/izm5ltXEqV28sJCNzP6YgkvUPwumdoxgJk5xfu7pmTGI14bj6m/BQqCUkEG4fxwx8hvDHjBHOP3ue9haexK+oztSKzLXZUVesYbFNFttvfYLatG4oq8HnibOoIMTxKy9XZaEtPRmLJ0sac+tUrc1MJQHVcjhN0/yB2hucfSS/MEHc+J5cepnLfwT5zjlMFu+sVtNpCLIOkPbwuhnkk8mVHvOLObr0em44l30IlIQnJ36HpV7oWjHoC7UeTpBanu3ySr6W9nDT9yELjAg9GYGSiZ7LUWZFzLjKZjrNPYsxPIVs1YWjyKeNtfTAKdi7cKsyUG/bXdZ3h60Uer1vOMODPUGYfuUffNReZf0xLbBy8Gc+9hEyWh0TpvkX5ci889378p9j/VaCUIAibgHNAHUEQ4gRB6A9MAzoJgnAf6OhYBjgARAERwApgCICqqinARCDU8W+CY93/CKuTe5VNxsl8J++gofiAU/YXWWj7AIBMY1kSurq0j7o7nEOAGsIjIsx9+FgMQXLwzgMNm/nDOJ3Te9cw+cAdXZOqhRiOd6Yrixht7s3bUiirbG/zZv400gxlaSXdpufd73hDdjn1T7KfFKrRjymCKZWTb6NSSS9y8/P43hEolRVSAdUx0KtMMrgYDo+vHqLLobZEmT9jr2k0Cw3z6Tg7hB/+uopdUcnJd01E5nQtyDLlJiKJAh80qcg0Wy8W2z8g2N5Y32++cSFtxOtci03jt93aZFcwk7LdNB5ZUKj0wgtstHcgVinFsi9fJb2n5phNMKzVGSJ+QhY5FA54FaMP1SRXEGiQJEoJGWRIJfnog4/o0EXTghpp2MS7kiur5uHWXl0H94+4nUOkJFnYzRqDq2ZZH95t9AID29UhDV+yEmMxq7kclNtzSw0AoISXi220pm8LWv7qypD1lI6z3DCLOoKWPasrxNDfUZrhbhuNk5lpWA5A22b1sb2gCaz/YtjCMuMcylkecuzOU9JyLKiqSm1Rm6SKmiad6wwxIXQVT3t8Y9X6zzqclMFFl81TDfj0WsOTmt2JUF7gD+N0yghakPaupAX2dWsEEGj9CgBh10B+lTdTWUx0sQzlYpB0D8L+uc6Bh9ksMLMmKefWMftIOLF/DWeWcSkbpd+4EJVMylMt8F5le5vt9jeY5QAMATpJl7lq0gC6Z3XfMcsSfo6M+YetGjC4d3cwac7SJ3KIB1tJM5W6QgxXlFrYkcjCi+sOhtsAOYiky4WzpO52v943nFUa0Fm8RFRiNgIKN65dJPJKcKF9B8l7aSte9Shpe23acdrNDNbZFgfC4hGs2bQSb/KttJP5jz7V2Zq2IijrNY3Jerbt72DCOZ9q73Yxg0SOxUbwM/RojLKAt7GwsPnj9DzmHNWyY3GpuR6CmldiUsnKt3HzUQZ+ZFGqdDkuKXXIVY1EH1kKadq4ec7uaku/wjALS1o8q04/oKYDnChJBmVIJSXbwoGweAIC9xOfnotPhgb4XzGbsVZpzeV3g/ijuPYsTM0eC8D9h55ObAPxIcuMc+ghndCdPFEQITGcRQ+60F86wAeS5oC/KXmyAEqRieB4VnzMMq9NO647S86ALj49l0vRKR6lpHfiMwgI3E9YnFY+0X9tKEHHjrLTOJay2eF0mX+KKfJKAuWNOtvy1uN0mk48ouv2OEGv4mZPUfc0h4Ct9j0cJQ6OZyIzz1ok6+hStKY18TxLybZwPyGTSftdQax7uVIJUfud7arAJ/ljeccyle32N5AElR3GsZiw0Es6RnkhmXklS5BjEhjata0+l5QR0nldDGOYvNWDpRN8L5H3xLOcOnvG43u7290nGeRZ7Sw9GUm3pecIjU7Ry9cBLoS4QK0x8nq9GyZoulPyUxdDYZC8j8vmwXwkagB8WFw6GXk2vMjTWb+T9t/RS/uuLejNDtM4jJY02v4ezOANVwi+91Sfr8fvvak77W1mnqDRuMOsPP0Au9Ol9ClHS+kOxR0OtbvOXWvxBhVJZKFxAYGGzZQgiyBjIHtNo7liHkS/3LX6ew9wzPQTAL3k44CKqsLHjsTZyZNH2HXtMTMP3SUz10JSVj5e5OkgTUjZKgSeHc3SfO058LK4sUre0ZJBzjISgFDTYL6S9rEi2BOsTszKx+5otpKUlc/kA9rzci02jYDA/fwib6aXdIxSZPAsnvatPYM4f3sL9qz/gvB8arTOzj1uHM47ojZXlXQkKKy+FeklHdNFhk8q2nPnH3eUXw0a2HbU9AsVSC5SH6mgxSTnUGtUkC7mnGe101a8qgePAIePH6PnzG3suqbt43x2g03DCTENoyDrZc/1x9y97mLXvCbd5E/DNGR7AQFoVaG0kMEu4xhSsi0oqsaUyfCtyWhrX0BL9gHsN43SD3O/tujkHDrNCfHQ2QkI3E/qjSDai9p7vfuay98aveumPhfsvxGP7NbhqwxpekUBqDTd+yZVd33occkFGX/gAkbdzSdHe/7SVA1sf+fxQoYn/Mohk6sbMuPSqTHmCt4vvsOBJp5anE6mlF0QeF26RaMHa2gmhPOScJfs9GR6rbjAm3M1mQf3BkGgMad6rzxPm5nBvD3vFEFh8XriY9D6K8Sm5DBh3229w2NGno3MpFjSJX8QRcLVyvwudGZcwFOSW33p+cWCfoZt/ZDzUgms7HqP3BluHvfh0iJumgcUWj/HsJjB8l4aiQ8KSYBMs89CVVUy86w0ESKYaVjOdMMKeqguZnkr0bPUbqFhPkuj36a+EE15XPpastUFXvycOV0fR5w237iQwdIeBkj7iU3JpbEQyXZ5FJ9f/oToqV34RDrJPfOXnL+qsYmn7L9NCbLZZm/Nk492ElnXVXmxxjjDA9gIT8ik7piDdBmzgmhzL1179Q0pDAm7Ryc6b3LxJQdvNNBz1Rcv6dsyMh1zrmJl1ifa+x7z0FNXKkBMIMw8gNkGV+Oet+eFFBlvgaYP/M7IxVxdPwJZUAhXKmFD5opaCz8hm0OmQDZt2+JRtjhtlxaPePn6c1OppnuX6p19oNjxthXQNUuNBqMvdPldX/W7YWmha/l81UXORCRRu5xvkdcK0LFeWQ6bfiXQsJn1xql6LHvcz6UnWjPFxRJUUTFlx2EQ7Iila7pOZCgGrX9G6qCxZEcaNumbBkt7qCwkUJIMypOMF3lMk5fjT7rOVp556C4RT7PoJR0nDU264fsPtOT/UdPPOhN9oryabtJJFhnmOqqLVKYZVrDEOI/3xHMsOhHJiXuJzD4SzoGweL2LrdWuUFLIIl+Vwej9zPvxn2T/V4FSqqr2VFW1gqqqBlVVK6mqukpV1WRVVTuoqlpLVdWOToDJ0XXvG1VVa6iq2lBV1Utu51mtqmpNx781z/6L/3lWJUtjFPWXgqgtxBLvVZeVti4E2VtwpOoPlKjfjoC8DYQqtRkgB2Emnw7iZT5xBIuzjNogcVVxvbjLjHN5gSSqip6dGn62fq1/zlLNTLL15p5ahQ0NV+vrLe6Zp/nNaGt/vlhmadM92vmsxtsg0Exw6cq8JYbylhhKkGkEAyVPbZ8mJ/pgtrg0PpqIkYDKoVsJnPhzIl5Ty5B68zDqli/0fe6X76J/LmaQkESBRN/67qflD+N0os29uG76imhzLyLMfTy2DypXhqNexahayYVgt69bjhJ1WpNTuQ3NxAimyRptvzjZZItu4qVyMei1BbFvkIcTW8rLTIvSdkqU1jJS1Rq87PE3N9vaArDA1tVjPRu6wfpukKbpLpQUMhG9/Tn0Q2u2DWqp73bdXo1e8nEqCCkEBFTn8LDWnAls73EqgyTi5ePHrQ81oGuSYQ2dpcscMgXSTAjnoCmQMYYNHDf+qAcdoFJddOlmGE1mxC6emZJjpp+JPrqMJhOO8Omy8/jiCEQpwl7/ET5ZC8Bc42Kaii66rHJqJu6iGQU1psh8goSdaLW8viq44kAqVKjE12+/zEhrf4/dm4iR5KgmSvh4c1fVKn/N93ZpTBfA6Cj/O9h4PlZVQr2xuagrLmSFBBzTYyE7kVKHhrLs2C0aiZoj4Sdk8eny88h5yTxS/Zlo+5wYtRx2JAZZXGW3BsFOJeEpw/66jqKorAiJ8gg0jLKoM6VeqlcDb5MM37oABycD5kUhig/E0/iRhSwoHrpoH1nG6/enzL4vaTJ2L4EOTTcPXZVx6SS+9CM2JEyCjWhzL5Ya5jIhti/95QPEqaUZYvmOT/PHsMjB+FprnMnvhmXsMY7C+as7QY6Os08yZMMV5hkWsdE4heEGDfhzBoxrzjzgj7PR7L8Rz90nGVhsCl8Wm8Mdowam2p6T4Qb4sGklOtYrR67VTv2xh4oUMAWwq3aKGeUitzktJiWHB4mZtBJvEiDEE5eaS9Pf9tNQiMIsWKlVtTKdm9flgPIyxWJPkpaoBSRL7e8R7qO9z52kyyx83IM5+y7xphhKN+kkG4xTCTV/Q3h8Gn+Fahn0G3HpkOcKugz99tL8pVZ07jdOX9dMCMeforWBphpWYcCZWQUurUZW8gmUN1FTKKy/l1GxDZKg8p6DKXrkdoKHnsRXf16m2cQjtJx6nG5Lz9F10RnybXaeZuQR5Gg88d5CjXFx6WEqB02BNBUjmGRYjYyNXvJxBsn7WG6Yxbyj9/Xv6QySnCwSuQjq/sxD9zgQFq8za50lxQ3HHWZIAd0bm12h29JzDN/qKTb/MDmbnsvPExqdgqqqNJt4hE5FdFz922V5/wAAIABJREFUK1QD4L2UHG74vE7t/D+J8tJKiSMdDNCGYjT3zF8yxbCKzj67WelXgt+uzKBVzdJUHuoqVVhvnMr38k4myaupIrjm0AXGhbxxuAu/7b5JtREHWHj8PsfvJhAQuJ+AwP28NfcUv26/oQeZ847e5/XpJ2gsRDBc3kKVtIvkqwZW2LrgK2i/0UzDcjqIl/ltzy3y4rTvfsruYsHONi5li3E87y08RRnSuG3ux11zX7zJparwhJenHKX5xCNUUjSA/B23RMiXa0J1MHaotItw8xeUIc2j/XVxIVtjU3RbgxErN8xf86p4m+GyJv4dZahNZfEpZ8zf68ccMf1CPdHFGBks72WTcTLtxSs0FKIo5lbmVc4RYDrHrKvBuwCVW6Z+xG75mTHbQrlt7sdvslZumSlqz36yXEQHzZodyDSVp6EYra8qI6QzyrCR/pIni+3Gg3h+WnuUaQfveghtg1YCO0TewxTDKt6XzmJ3jEWiwVOsvEfF8nwVOhH18mqeaafnwO6h2vwWtg1u7vDYvMg4HwB/VRvnFb+K1BDjaStqmmKhSp0iTzvCsJE3ZpwgI8/Kjbg0mgv3GC+vYdOFh7R3MGQAzkRq7LnJDpBWynzMWuNM5hkWUklIpIEQzUFTIGfN31FHiKEMqbo2pNMaCNGOTyoiCtsux1FBSOGovSk2VWSmYTmtpTAU93nbq5T+sbr4hK6PZ2NXVSoKScilAgho+Nozb9lYed0ztzntD+N0Vht/p5oQrzdPAW18+3GL9p7k2xR9/DFhIdQ8hJMmjVlXikwqCCk0FKOLSO5o5ksOjQUNOJ+0zxMk6SxpwOJQ63ce659VyPnW+z3ZZ39VXxadoJRj+VfDZnaYxrHNNIEb5q94lKCNKwX1gQD6/xHKmYhk3R8pWBrfembhEr/ypPJE9QOgZXV/DCWuIsg5nPc3EO6oBvCwmdXhyG/6ontw/0+svFBYmN3uoN40zL3IiqDzzFi1gV2msfr2Xwwu9vV7DoZTDeERB02BeqKxmXif6uJjLih1iVHKINq07+5DDtWeFF1A86thM6MNG2gvXqGyE/BMjoCNnzJI0hLO79zTQNGUtHQMgp001Qe/em2o8ek0Xs5bxAhrf8oLqRw1/qSf935CFqXI8CjBB42ZHmn+nD8NU/Eml/fFs9wy9yfMPICzpm8BaB76E9HmXnwqnaBVyGcAiIqVZsW0OXfhrmD9fHcVl3rNR9Jpos29qCPEEJ6Qxa/bPTUwnbb2bDRTDCtpHqWBoTWrV2dBz6b86kjSAnRRT3HBNITXRC1JX9yRAG1YowpjencmRtV0adXEOzC3ESbFExzl4nIoXRNe/grGJIFk4lXxDsPlLYV0ynqvvEC5EuYirxVg4acNPJadTaQav/8dWSW0MbBm6mkd1MuzKkRFOBINflXItGSSYXGr2mjpAkoz5ZL6OU+ZhnHVPIjz5m85b/qGHnIwp0w/8IF8nuNz+1HL10IN4RFeQj5PVe04/3ptAK0k8Ip5EB+Jp/hcPsrvhmW8I13kgnko0ebeehnsAuNC+ksHKOuY24ZsuML0g3epQDKpORb8yNQAr7/xcf9T7P8qUOr/2b9u1c3ai+Yr5GIU7NRt9gZp+DLYOowUY0W8jDLR096lXhMNqLhr7ssq4ywGyZ5Az1eW4cyydtOXz5q/43fDMn05VfXB1qi3vryk2nzGf9CQoO/fINtYhq8twwCwFXiPFhvm0UiIpBh5epBsxMoH4mnW+K8jv/oaTpa7w6QbrXlD0gY/m8mPDtJVlhrnAjDCMeEF15/kce6HSlnO2LXBqqnDOciP1DIh+Tu+RbitMT+W2d4hU3J1hwgd3ZHrv3Xm18Ffs9L2Nu/kT+Y7y1B9e3GhcK36CGs/zngVY1i5MhTzKcXs7o1Z3/8VfbtX5zGAVspYWUjAV8ghXXVzUkfFQ+03oUIj7J3G66slu4Uq5hwMvlpHE6Ms8YXlV+4omgjonuK9qJO3lrvl33Ody+QQv4s4AvMakZSVT0khC8nHnzrlffHzcnWcuCm4wEbBUIza5Xyp6Fes0PcDqFCjcaF1O0zj9M/VxSfcMH/NHMMios3as3BHqcI5e30SSr9KuTJlmGHtToxShm321oAWNJnJ52J0CtUEjTquFBCcB1CafQ513tGXZxtcmUMlOULT6FBVUOyodjfm1NX1MKsOkebPdeFXAB9v7TuaZImLaj1CldoAJKravfMS8pn+cUPuqlV0wfOCNuFMLuvtHeFBiIe4vNOeZuTpwM3lB4mMHj+Gk3cc2eSE22Q+crExekgneMkBtJUSsqgmxONPOql41owfVDxBydpCHO+I55mx5yLTDtxkyAZN7P9pRh4xKdn4ONhfsrfj+fYpi9pKCwAD5U38Im9mn2k084yLOWnS3tHaVV1OZsPK/uy2t9KXr4mf0fracAK33+CjJZ6AcqsapTng/6W+7GTclBEyeOpdhwPKq1xQ67HB1tHjuEbiA4bJ25kkr9IdmxeTDtJMCKeT5KnZ9b28Uy8r/m3PLb7ZeIW35p6i9uggpr9go3vFCsywdidbLdB1MenvRUaLMkVR6FS/COF9Nxuy4QpVrs9mo3EKwabhTNt0hIWG+XojCVuFpjSsVIKbSjXKCWnMXa8FlimqLxeaTvM410B5H8uMc/jdsIz6jlKVmEhXQDNw3WXik7RnSBLcyhkNMrscv9MO0zi6SOfJVk38ZB2ITfWc1nV22rEJuq6DQbBjEqzEN/+JidbPeD1/LufePEB2gPZbzTcuYptxHP2kIPzI5Gd5M19KBzkdnoCc7ZmcqDP6IC9POaazqYqyZmIEU+RV+nJn6TJ7jp3gz3MPKUYeTlfEXkTHMndzB58eJGXrAeYRhy7DkA2XCQjcz5jdrpLb81HJqKpKSHgibWYGcy4qmU+WntMF/wsyYEHrsNRhVjDF1GzsphJcHvsWZ0e0Z9YnjVluf4ftxg889ncG2PmOsahGOT/UEZ46Zz3lE4SYhnHDNIBX3NpGbz2nOcu/Hw6n31oXiPyGeIMT18I5cvU+oOndAHwr7+RbeRcdxCvcUatw1N7c4++MkjcgoHDtrgZ6b7W39dj+sniPwdJefnQARQC3zP05afqRaHNv9ttcgUgH8YrOpCpJBsHGYRwzDqebpAF57SWNESGgUE94SEv5Ho9qVEOt7JoLNxsnORJFYCvfmEqCJ4jhZPn0tIzihlJNXz/foAkdW1WJQKsWNPxi+IsypFLSAb7/YviLLcYJeAv51H+wlrtmjVFTx8HCNZi0uU82+1GUZYuubPz4Wi4GrLOkTzOVu+a+zInpxrIigv4AwZWMGWnYpAPkgugGbv/iYpbbLxUBSk0sA3u+g6PjNObz7d2wvT8cGw9e/jDWRfb/Ud5CWQfzzF5Bm6M7O7rTPVJL81b+NFrlzadFnoslYUW7lvcWnOajhSfZbhrPF/IR1u464MGsGbv7JjWER7TL3k/dMUGsO6j5T83F+5w2fc9+00h930OmQELN31De0bHYCSKMkDfSVrxKqGkwUebPKEYe/kIGT1U/Hhuqut1VN2v6Gbw7h/TXtTG0qzWIedaJNBAfIgoKbdu9yWhrXz7NH8OgagdZYetCdMvJRFKRTtIVZhmWcMb0Lb2kY3R26C45zZ3VremGFV0+mZSVr+uRHjH+rK9fZJjLUZMLXLhp6u/oRAd1hBgk7HwshhBmHsBu01i8yWXl6QdUE+LZbxxBXylIf18+fN+zM6zyjEBTFAUeOe6Ve/OM/BqdmGrtWWj/othHTkvIyOcjMYRocy86iJdZddqze3NRFdnlhFTibJovsunrV+n1suZ/CrKRF+q38ty5oYPRbcnEWtLVdObvilQvl3d0hH7tB2K8GzLN2gM+WokqmVAqNGVXmwOsKaGVP3c439cDkLrk8N8A1ts68Lp0i1eMZ3hadwFWk+t9HFX1Li3EcGLVslxS6+hat5tNhXWJRpUuRefKrgTzauPvDJddlSXcP6T7lA2Ue1QWEpjzUGPOvdqgOmaDBILA0XGf8pe9HQBVxER+NyylHCks2bafK2ZPDVt3ay2FccvcnzkGlxxHCSGHUfJ6/KK0eXu6YYWeLBWAKpe0GKi8W1ONzfZ2XFY8m/84/efLD91YY9hoJESy3ziCxzFRNBFdbKt2zRvwXuMXmDGoG5veukay4Mfn8lHKCWlsME7lvOkbvWGQ5O3HWw1foHhDzY9XADLiigZc/R3xh2SAbpo/8K28i7fEwo11HmckIHm5fAp3NrEh7lyh/e8YG+JfrQne/q4S0y7SBX1+z0pxxAM+ZWm1qRWvbXIB3UaDRMSHB1C8ShPddTebbO0Knd8ZB3oJ+UywzqJ92namR3blmEkbK1bZHALxvuU97v9sY2E2WEEbY1jPRfM3TJJXEW3uRbS5F+fM3xJu6kMZIZ1k9T9fS8pp/w+U+g+z2v1XMjvABR4JFZsy42Mtw9vOrXWrz3szCh3rbkmUYIH9QzLrF9ZqqZ+3mlfzFzK7e2MS31nL4xJN+emzrvRpGUC9CsUp62visNKCrW9dwv72TNeBDidtj2kMd8z9OG76iSZCBOHmL5hnXEy7bM/s5LeyBiJFf+DZCQQgi2K0/Wgg622asHjr/Dm0scxlfSkNTNpp+o1IU2+9RXt5xTVR5WLyKPfwMcn4mGRKlvDly/Eb8Q5ozh6lFW3yZ3PU3pRR1n5kqF4EWgcwxdqThnkr2WR3G7SK+fFRs0q8Xsul4UTlFmxWtABvt3EM1YV4ciSXc+GOetsbusq0hPBDWqceb00/xt/HhF+jt9nVcguMS2fCl114v3l1ZnV3aw06IhZ6OSZPVWGNaRblhVT8/AsH1x91cl3349KtCm13t1I+JpY128W1Ul2gWhvUUtWL3O9DyaVdNt3Wg57W0VglL0oUM7DY3pXWlnksLe5i/PxuWMpMeSlBJbR7oBQr3D5WURWQjfBbGrT5Va9X124SGm18vB9MKAWHXVR+dn/jcZ4WeYtYbXuLlz9wrW9Vw5/PLCN52Gkl2+1aViNN9cbLKGNHopNlJsMdAvgXqnzFRPsXnLE34DH+XFdqICg2uPIH9xMy9Uk+J99C4u8vc2H+5wBkXFjHXONirmybweoDpxGWtMR3hwvEHW/4w+M6T5iG0066TpZUePKZX38LG2vNBjRHaZFxPoHXOhNp/pzkh7f4dtNVXp5yjCOxuzlZO4jrJiNGH3/X7XpZCzI7SlcZIrsYHCUEzUGrXvkFTLJI5/rlWP55c8Z1e4XjNQP1/bpIF/niei+y4ty0tRy25Lvu9K16hLg6XxLn01BfnyC43oW6detz0vCGx3Hfyzv4TD5Gb0kTXZ5rXOwBeLrbBuOUItc7bbG9K4Nt33quXNgcxpWA+0chUwNR3n6xfBFHwytmF0vDrtopbnc5bkOlnfwk/0VfKYiGQhQmLIgoDJVdY9JJ0zCPErjKjdri52XkqKK1PXaKZGdSjCc2b+rmrWGUtR/gGuPcrXLCMY+kmLeksaAMogt4M8kiC2yuUpKGYjQWsz99Bo/k9fx5HufzFd0o+xmPoIErMKrQ/F2G/zaPL7u04eVXWuHX2lU68ZIYzljDOq6ZB/KNvIdxhj+JMn/GRfM3LDRojA0RharCE6oLj5kmL8ebXJoIEfiTjoiCogpkOMD47rIGju2S3wI05uQN0wDumPtRzqF3ZAs/VGSUVK20NwIKrwh3qCQk0kq8SW0hlleEOw5QSwu4D4Rp4/ymi67ftMfy81QbcaBQR0kRhfmGBUSY+9BOvFpITDoyMRtfcjH7+OHnZcQkS3zcvBIR0z6gyzdzPPbNekkLngS3H04w+cDwezDgGAfF1vr64kIOf7kFRbfN/Yg29+JNMZQPxVP4kENb8SrrjNO4Yf6aMPMAos29mWVYSlPhPh0dQFA1MQHVuyxX1Fo8VkuRrZpYYnuP6uITXhHvUlLIwoqBk4o2/wdaB3C1p8ao+dWwmZ5yYYYEaKwFJ6jTXrrGXXNfvpF28Yv8FwFiAjXEeKqKWsnTcHkr242/EWH6nCDTCI742PmGOA7FHiVvaOGsfHqlDvrnMGMT6DhOXz6nNOCw3VWm4iPkUUFIYZLtM84qWrLpY+kUUwxaMLPTrgUVL4vPFhS2Sw6fI3IPiS36w0v9PLafqOkqn/qtdyeOtdPea0lQWWGYxXB5C5NkF4h01TSQ/tJ++kiH2G78DSNWD1AK0J8i4RlMoCKDNbsFrrjNCVtdrG5K1wZRgiYaQ+I7eReS4xWx+ZQF0UAVUQMs9/3YmbtqFR5TmkT8qJ63njtKZT6WTtFfOsDD5GwOGEfop3Yy5MuQihd5vKLe4JjpZ6YaVmG2plNaKFyKVtDOm78leGxbXa/0dekWa40zKeM4tqd0Aj+ySMWXKj1mQek60HIoquSWSBAEeKkfvu2Gk6tqQGIrtGdV9a+NisB6eycuqPWY/HEzbB0nUbXzNxQbpLHWPpZOUVFIZophFcuNcxgvr9W7aX0n79T/jK+QS1c3rdWCNmj9FQQU/X4CvCNd9Ojk6CXkc9j0K42FCA6ZAok0f65XGAB6sumEaTgNxIf85tB1e1StGx+/Wpv38yfybv4kzlfq+9yy8xbttfF9jLWfXhar+FVimf09HqulCu3v3mzInc31iRSsB8arjLN4U7xItLkX9737c8r4PUHGQEbL62gmhLPSMJN6wkNqio9pVK+ufo7ybqwVb5Mb2Do6Ed53NfUxmMw8qKaBZnnveWqdAtByqFY2OzqR5jUc87GXP1V+Pk3g5GXQ6BOEMU8RBwbzcftWXPLXkq/uCcZLSm26WX6jc/50uuZPYIdd8y0+LqG9P+tLubo4FnusgRdB9hYccQPvnUmEYKUpf9g6ETfgJnt8fYiXte/mTAJXc1aHNOwOvp56WqdMwzA5GD4JJV3jVnGzgSPD2+klp92kEC6Yh+oMqStKTQLyNFHteKEs/S3DWWN7Uz9eEjznv69kLXliNZd2XLvjOwgS4oMQKpBMXTGWDNWLTvkz+MPemVHW/qyxvUn9PG3saiA+5GMxhGLkYcLCvjJLiDD3YY9pDA3Eh/STPWOvYhU1dm3zqqXo+Wo1HsmenTHLC6k6m11yxCqyY1BSfcryTHNPIFdvq3+calhJMfIYJm/VS7ejpYl4VXUlsmxux9qvaffveod1NM9bwjRrDyr+cJTYzDj2JLp8sZmG5USY+1BVeKJ3sXPGVgWtZuPXEH+JpOGLjTlVZTDrbR2Yae2uM/0BTtgLJ+oBclQTh5QW+vIQy/d6wtvdnqgluaDUZZ2tI9eU6rTI83xHPpM9uyYaBTsdpKtUqtmQ/yn2/DqF/2f/Le27z7ujTPkO0Z5PrdoNaGiU6da8EqK7AKLBTJjPazxJz6V971+RQpeRV6wc5psaC2l9/1coUcyAb6V3CQh8l0B5Ex9Kp+htGUkOZga2ro4gCJRp8SG08Kyz/7xlACW9jbzX6AV2R7oCWfuXB2C5Z6mYe/bDw6q+Bg8150EsVZkeltGMkdcxzDoECYU1P/XERzYSUn04m++3I0bVAJjsEjWJSyutCdoJRedqrik1eOkZnY9kSWTLwJZk5FlZd+4hAw5pE+fXP07CfCaa4j5GNtYuS6Ylh4HOcvRnDHKthq5m5fyBDJCDKCVkEUZlKFhqBthUVzAkAmQlQBmXQzCvR1P9c82yvsz8pDHR6dGeJ6n9Jgw6DUtfx/+RpnNg8A8o9Lcq1GoKjnGvfov2hbYXtIHvtwM0IEsASAyH5Puk56uU2NnbY9+u+RO4I9UCRaWgBNDaAS3pOXMUm4yTdW2sCZI20RWlp6KLwQoCtBvJkYgUnP0KFP9akHW90DHaca47rPgFkPikJOdr/0w/HxfwtWHAK3rwOGOvma321kSpFXDPH+5SXkOxCHR99RtuWuNY9UBzGlJxZNYP/MTvljiWGedC8Upkf7JDE2VNewgPQmgZoQWtw+xruHL+lAf8HyFWo6ai/bWvLD/yvbyDFx0lJEkUzuh/193hsKw/ABGepSPHTT9BOARIn7CueDwK8NkL5ZmfdJ12Pg6GUvEXiPBvh39SKCWFLCZae/Nh+9d48ZQWSJtLVeHm+PZIgoAoCnzyUmV4cQgxC4OYktKOpca51BNjOWr6hYZ4OieSKLCm78uAxujqO3ISa4wzCRdr6Pus/rIFM/aMY/f5rfT5tCfVd7xNcQcg9qthM5UFT+ZNRM1+1IxYDR3GwrEJvCLe5Yrpa64rNZhs680TtZSe+XdaqFoHH4qwDR/rHz9+eyYTKEEv6Tir7K62x3/xq/69lDPzGHFrA0/EIcRXeZ+fnmwtdEonEA5a10J35schvx686eWDrzmHWLWcx/YM1ZseLapw9PZTDie8xGSDK9hdbHufluJt6gkP8Y4KIsbUgo/FsxxRmmN2BEQFQalItSL9qwSxKkb7LqqpBI0q+RE8sTeq/DmKCrt+excFbQzWR7xOE+CWoyyodB28jDID3tAA52ImA/TZA3npsOXzou4ooOmwOUsk3K2HHFxoXWbVzhR/6ALf6n+1kjuLWlJPjNWfg6ZCFEfxwnp7F1xYDzXac3XACG7/OYxXhVtIWSo8m83PdGsPlsS/TyUhEasqkUQJhki7eV26yVDLtyTiCXy/JNzlDSlMp9CvMWrJk3ClIgLQ2zKSdLzxFXLxLlUYzCxWwp8H1XpQMWorl15fgXejAHi8vfCF+ZYH3/JMMnzPyoy2tHi1DR2erOKl+I2Fdl1mnFP4eDf7WDpVSAMlVShBk4AyvBY9HxWR+qVUBufs1bXWUuRynBjzIQETfZjdvTFN61TiSeOhlL++UD/HYMv3LDHO44bPazTKcgXsd5QqekfGnw1bKGh5qoGyQprOdAKINGjPaHJuMuaAqjA8HNa8zTVLRT5M+ppd9d9gYshnjDGs566hHg0raoHiA6Ucb79YnhU336GskMZFpS4LjVqwe0WpRYxajnfyp7DfNJJOjq5+v1gH6gmR/faXMWAnTi3DTSWA16WbfCSdxuZIhOXacvlOjWfTu5vgD5eD/8E777Puakc229uzH+jQpi29Do1ko3EKnaTLdMKTuVlSyGKMYYO+fNw0XH+/H3Q/TrUt7V2lxM+otlA/2wknh3qsO+jtQ4YI3TOzQDSA4lbO4ut4/rrMgGtaU5B0VZuHbKrdY9+aZX14+8Xyeint6Hdf5OTBxtQTYxljWE8GXtQWXQy+AXIQAwoEpE67Zh6oC1v/+eIa9l5+wFbTBECTD0ip04PfInsA0NahITTb2o0fDZ6ai06x/SRTZajZAYZe5HLCZZ48cRNFd0z3oiRyf8A9qsdsw+eIxkBQXh2Cn1kDqro0LI+/j4nBbbX55YXyL3CzeGtezPAswe0hBxcai7bWmMonkSOYa1zMXBZz2t6AqbZePFFLkexgKBcnS68aSO44F//ky3D/sOaTAbtK9qVrqqYIsvsZvutiw1z6Wn4ptD6lTg8qAjdU7drr9BxIUnJfOPFZkeep/0pnXt63iBcqV0MU92FXbQithhLoozLr3jzuPojh6zI3yUuJ51M5mAHSAe6rFekmhVBXjGW7/XX22lvpOp9OW+aoODDY/xd79x0dVbU9cPx7p6T3CiH03ntHiogiivhTENSHWHl2ERuKXd+zvic2VJ5dEXsBAQHpIL33FggEQnpPpt/fH3d6JqFKAuzPWqxFZu7MnJm5c++5++yzTwX1nUX5W+sOu/cDV9A7pX3lbBHwC7YanFn4T2fDzAeg/2M0jmsCJU+ji0iE7a/5Plivh65aVtfnOz4P+PzekmKjOexIdAcJe5reo5AIFj86iEFeK38usndCKy8MwW2v5NX6Y/hnRwOxs+6kMKwhC3d1JYEiXHl6tlZXwtbfaPHwbBxZpaSmeg3gPlfIotmr2LT6DQ4nbWJ7RD2+vt65emb2Lq55awEzg59xb/6ebQQDO/hmqzZNjOAXez8eN3znPscB/G7vxePW8bSrF033o1NpmJLM+mNmFjq68ortJnaE3IERGw9Z7qWeksvjXsfdovt28OmrD3JVkHbuVnVGFFRWhWgDcpsczfhq0jhemLWDudt1zEmdwM67+3B8pYk6C+7lP0Ef8h+cwVO/2f7/NGjZhJOtt9OpaSqjEhv63P9Z2O3cVDCVT2zDmGD4iVbO6dZ5aiQOZ60jm0O7jlE73gi3PojDWg7f9fN9oXae/hjBkXDbH6R/cgsNddnsCtEGDB7iF8ZaJrE5yLeRVluFezDftuNngoDIFgPIm72CVXXHMikshFm7Kk/FB21hr49sV2FTdVVmzXp7544hNJusvZ8/Jw7gUPEkxny8gePEk2gtBFSKCef7oBf50nY5c1J3ERnxEqBlUGcRR3/zFHY91Jz5Uyew3NGe+fZuZBHHDd1SeX1kR7ZlFDE+LQ+1wWzsO37DsG5ale2JSqxf5X0XGglKXYAMeh1M2AZl2YQ466PoAqzI0erh32lotaMPMUKroYSYS2H7DGx9H/HJ+gnS63jVdiN3vPAlfX/fyZ11oxjZNcC8cidXAXEAq1eHyR4aBaFxUJFP2WWvE354Mex1dogeP6iNJro6jNe8C+92YbOjCUkhYVw+bCQrHdcxLthAx9QY6sRrnYip43oz6ecItm/I4P5Bzdh8pJAh5tf52PgfGuqyCMLGE9a7uFS3idWONrTRHWKJozOT2wbOmnCJCjFy36BmNE2MoF29KFJjw3j+Gs885hKLV5QhuW2AZ4AGSdHc+dRUeF2bkmAIjQRKK23nOpiDV+yiiud0cfiNt5rtZkyxDYhuMgjSnCPgKZ0rPzBJq5tV2m8yyVHVXOVVJbEFJLYgGtgcl86176/k9b4Kk1baiQwN5qMxnbj1s3V0bahdBBp0CjaHSmpsGK9MvI/n3zris7w6BF6NyD9QNXjUPbz7mzMo1fs+0E2H5kO0FZTmelbosz2djVHRQ8FBdAnN2WOz+xQvBd9shq/s/FhMAAAgAElEQVTv6s1N/1tD67raqEbH1Gi2ZBRhR8+IcRMZ0DKJz9d4RulcI2jg6dxRnEHiJ17T7L4Y7nP93EXnmUr2ru1aunfrTcimN7jW/BK5RHPdpZfSbsnVmFQjRxqPgh3wzwFNtGKteq95+f/4iUaTZqPDQTgmZgVNdhd+fdT4A9v0SWx0vvK2/J0khCdjV+10SupEswd+ZcK3m8gvtzJ5WGta1olkVnYxV+6ZTPP23TD61/AJiabBo8v4ELjrKR3/C/pvpe8okDrdRnDVuljs0e1476bm2Oza9/jQsM6sbFGfTq2SueLbZ/nY+B/yiKSTLo2bnBkbNlXHj5fMZcxlvaD4cYiqy15LAi2WP0icUsog/RYG6T3BSJ8AmeL7e1ABJaGlVpjeZe5jbHF+MX112/Atp6pxbNOCUG8HTcUUlQHHK2/jGs16o8Ns5q7bpQUGga6mDxjVsgtXeG07xvI0K4IncFSNZ+ULowgNNjDv4f40mjSbH2z9GWVYxowW/6VjjxH838druFf/K48bv2eR9RZw9vfXGYOBZEINnmm2Br2ORY8MICUmlLWrZhD052QSe2id0xCjNs1Pr8DA8f9l06wxgA1H55shpBHE1IcR70NJJgT51r0BoImWPdjI9A0p5PJXiFYH5WnrbT4LTJyseoPGk/fzXuKLdzK1wVvcmxzJjbH/5uPCO1ns6ER75SB657Q993TvA4uIPbCIvieZy/2E8VvWOFoFzLZbF3IfEy1300CXzSJ7Z74KesWdJQjwle0yxhq0YK/rgn1G0Mu8bdM60PoqRn4b3fIhm4+8Sp8GsWzI0oIXlerbOU0b14MZa+vw2PC2vDYvnEWHbTxu/J5/Wh4+YTAKYKuxAx2sWuaRXVX4y9GWS/Tb+bWwKR/e25VfNx+jVZ1ImidFgNdPtTC0Pk3Cgzj0qmcqdNgVz/DDhq100e1jovUevnzmXnKODqd9064s3HGUBroskv/4J80HTmTspqYoaYt8VjFta/uaBXe14oglgp57Xgev6WhFbUbB0T88AdTIZHhwIx0cKrvsDvZnl/KJ/Uo2O5piie3CqMb9ucL+FunWGLaM6UTLp4/zrO02hrRJ5snCJtTJXs5252IczTv2Yd3OFnTX7aUorCHje7ek1eLPGFs/j2uuvgbFEMLl9aKx2BxUWKyglGPb5wmQ5Jk8dSdBO8eEhQTzjM03e+ryq27gqTlZ7owsgOett7DB0cI9RdfFOyBdt3knZl+7jVfmTQEWVLkv2GMbVLrtsSQt8+WGhw5C3j5YMQX6PqSt2nep8wI4KBxu/hGmj2SuvRewFrvDDt3ugPVebb2mLXO3H+eRIS24rW8jGv9+Ix2UNProd7oDFHdaHiGaMp8Mn0BcGSq3XDeCZ9f/QaEaToxSRqYaz11X9ufQ9ndptMSTpZpbpx/c+xH88QQfrzpKR90Bujszh+4Y55kWeusft1b5mh3qx0H98ZgdJoIXPkN4bF3CDUGsevJSEiMqLxbT7v7vtJUNO90M5iJ2vdLfHUx1eSf6cR4cey/Tnl7BeOcFeD/9DmbrJ7PD0ZADagoH1To85JVVFdt6IMRr2S6m9HVs/nMGV417A9RXYN5k92eemzKQeHsOaZn5FBJBV90+vndmQqqXvYjypxa8UhNb4y02PAgLVfdDQ4x63r97GI0TwhniHEOw6w3cPaABs2PD+ClNzxchnYlrHkTC/iJG+wXhrtev4Hr9Cvff2U2uIynN+UQjP8Wy5Se+32VijH6xe0qYW1IbaOs72OwScPVIQzBc53VRHZ2K3Rq4qPapeODS5jy56mY+CprCU9Y7yCKOFU8MIjU2jM4NYnA4VLZkFHG79THCrSvR8Tt6g5FJVznr6N2zAkeZBV5aQC7RWNUUIBdHnwfhmo9JMQSREutXQFpR6NuxDdeuuJPI6EmAV7ZgUmt2KgeZbe/BVfq1PG29DUunW2lXr3KGexmhdDB/zDd39eTNj7/icv0G3rSNwoaBoW3r8ObRYrrHx/JSjwQO5ZaxYGcWK4bvZFDrZJ4sMhEZYiCjbAopxxeha3kl8To9U+0j+NDShXDeR6fXQZdbYMPnADS9eQpR0SEMdQal33QWQa/T92Z+WjST6+1aYfg9RiPNrFb0w9/B1HAA06Y8x4POjO1dkX15/MYRld7LPTeN5PU/2rM08zdWx7Vk8zEtKFWqhhIXrnVU3EEpVQW9EVX1+60+k6tN2/PWsDcDLFM4FOI7I+eroFcrDYBavWeXADQZROOkKB4c3JwRnQKsTDf0VYhqyZqPH6Snbjd3GmZTqlOI1p24U2HQ67i1TyM+/+sQTRLC0SW1RR+TBYUV5HgNHI+waIM/keFzsHr9LJY/PkhbSbFuHL0mz2OAQUe37ccZ1CqJqBDtM2ifGk371GigCYZG/aBBT/jrXTZe9i1WVU/PxrHadzvnUWhT+Tu5UElQ6kIVmaz9c8qryEOv6InxihIb9Trfi9HgCJichcHoG6xY8cQgyix2jHodL4xoR3VeWPUCjaIaMa6tln7uHZSyOWzweBocWUt4/R7Q75+QuQXCEnzS2wGIb8oTxknMKWnGAkXh9n6NCcSg1/HmqI7uA/DXq9NZsT8X3a2z6Pe/1dx1SWOurhPFoz92RlVhtqMHddu/ws4SG82TT/xDH1rFlB/v97Xy6Er61quiEGdYHDxXyOHdG4hPiobfr6u0id3hSeKeExHOa/oULVOsOl4HwHJrOYN/GEyptZRtN62DrB0QFguBptvp9PB8UeCsklPUqX6M+2Jn+BV2FEXrSO14aSAG5wj1hqeHYHVoHZ5GCeFsqzeG7od7kkcU4WjT7gLVkfEPSrmWmQVAHwTjZpJbkasVKxz6OqzTavVYVTtGQ7C23CtaDanq9GmawIy7epESo+3zv97Xl60ZRcSEGd3L0od5Fb7OJpbtjW6l3aHPT/j5vGAdSxA2dw20Wy2PscLRnt3Dh7OhwyhyP1lIWOoHdOj2EfQvIESn46q8cqYeWM7obvWJTdzG+zteYldee1rHezq0DnSUEMZAy1uA6q7nZfO7CLr7z7spthSzbZxWm23KGN8g5fAb74GAoRlffxl60sf0jjs4UZ07+jXmsrWHSSizcHUHraPQZ0YfbmhxAxO6alM4P35sHPllN9IxNRp192yU77T2/9TzO64b6AzuRWkj9M0G3AzLtdct10cSZg9c0Nt//T3Hs/nozcVa7bGiDN+pMWgXJLg6PT3+CTlacNyuAO1GwvYfCdnrnOo4ZgaHEwZwy6eruazoJ542agtFPDC8N4cqwmi0zZP18uBgrWZCx1TtOJuhJtHI9A09G8fxnde0h5n39+XGqVYWWTrzyOBRNEuO4s+JA3jyrd0+7dzqaEyuXgs8xob4Zvs0SdR+xT36D8PSZyhBhsqdrfj6LYnoNhp2TUeNbQgdnTUtOgcenfd3jAT+L2kOb4zsyPpvNtLo+BDmDUinRa+rUA6vxjb/OW7Mv4t+g68hfdHHTDT+SMh175NQvwXq9FEoddpDo75Y7ljE6BmbePNabdrxh3dfSdsXtACXARuNHB8AR7H1GA9/eqIqKxvcTfv0L4hSKjie0JuRR8dwo34hi+2dyCWaJePqwrdah7aq6Z/gqeswweBbOHqNoxUfR9/P5Z0uIWLnt4QXaLWemuoyece5OpKuju8CGC6KotC5QeWpx4G0SYnipWu1c6fVpvKRfQSrYq5mk8lAL9O7LHyoJ2PemU+6msynl8F7i/ayxNEZHQ5u69eUBwc3h8MLObhtJRU97qdfaiKXTv6EHt16Eh8RzB3e58dH9mD58FJ2lgQT+39TK7UlKiyEy5/6mY4vzgecK68216YeDG5fH6gPbbUg20ftbbR5No8PO3zP7HV7aahk8eFtvUhpmEgKQPO3eN58E2Ubv2e1ozV9jFoNkGC97wWJTqcQotOTGBkMKGxQW1LfrB3Tpz9xM6UmG8EGPY3iwziUV867N3YmxNiNfVmjaJdfjk5RGNQqiVtee5BHyv5LZv/PeKxXKx69vKXPIANoCz4EGYKBYJ8sZH8qasDA0a19G9N3+dU8UBzKU6MvpW7DFjwblYrV4aD903XY5qzfc6DtAzTd8S67HA34ru5jPG/Uc3n7VCbMDyIE52qXgV43UBEfF0OQNiDlysxwLvbh1nwIRROPEvz9G8Ba7bx45WtQp707iJAcFcK6yZcRFx6EoijMuKs3//jkGXZEPkJI+TGest7Bu89P5p7pG/gzbQ0NlGyf7KmC+/ew+O07qK9kuwNK6PQseXQg/3rrZt4wTqNj90tonBAOA29hVnEYe7espL75APnRbUBvgKv+Q6a6k4LsLXRvlAb9HyPVEMSpCL7kQbjEc86pGx249iVBYdDFmdUZGgt3r2DvsfW0cPa17rQ8wht3PQLAv203kabWpbGS6c4OaatLpy2+q5e+bbuOOyISCLJbCNIHEdKwO73ucE3PCYUhL7Jqyw6+KevGpBueRokO4b4pyxjXIZSuyz01MpVON3LN0iQspYU8qZRgtVt5+LIWxDhXO/bp1wTQvZFvv9jVV+rbTJuef3WHFMb2bkjRxvthtnMBl+BoSm0KEXZPBiNPZZJkCOG5ZyK5XLeevm2vI6jd9dhWHqTZrJ1coVvHR0FvkZ4wgIbt+sCAJ3xKTHj/Tk7UZpfqfnsnKy48iHvueZhG72v9gpFdU0mN1QZSfrm3L8v25jinZStYMAZMpo0LD2Jsr4Z8tTodK0b0gB3Vk+UVgKtv2/4LrYxBkbmIaOdKxj/c3Zt/TC1nob0LkyY9T2x45UApwJNXtuKVubtJiAjmxftvJ6v4JnqsOMhfB/Lo3iiOF0e0ZUSnekSHavvCM1d7zjOu6ZLhwQaI06Yw+h+pFBS4/F8UpW+lqPsEGrTUpjGO6FSPoe3q+PR9W90xjSlTJzA8dCYjU+tye+tbebjrOEKAB176nEue+owMNZGDzw8nkBbJkXw8rhvtv9CmnI40P8uPwS9ybaN4Jh78lrFtxrr3TdeAeaX9xD8g5fTZbd357NA8blN/gy7jUHfNRFn8r4DbutjvWwsJLVCAiUNaBN4oOBIa9OT75m/Q88BwpsTG8HlMFKutZYG39/Ps1W14alhrd0LHvIf70+45bWD8z4kDKKqwMG9HFu3qRTN5s+9j68eFUT9O209dQShXokaV2o+E9iPp4n1bj7tYXb89nZM6B1i7/cIkQamLxMDvBwK4L1CrZKx8WE8KkFHjUB08vPhhbm59Mz3qerJEftyrjUy6glLeWUB21a6d6Bp4iqDiLNT52/7feHqlZxTyj0N/cOed9xO9IYPkqJP/Od7cswHXdq5HRLCBVU9eSnJkCDqdwvVdU2n77B+U2UyU2or415p/MaLZ6Uefvd/XG+ve8AlK7cnfw7d7vuWZXs9QYinhcPFh2rfuRna5ZynoYksxUUFadk6loMzdKzgR79GqiUsmUmp1ZmAZQyC1axWPqtr7m98nJjiGm1vffOKNAwgN8pwAe33TiybRTfjt2t+0Cx4vTRIj2HA4lqHtEljpfNuBOun+mWDe79d1spu8YjJ/HfuLR7t5ipB6BwtPVu+mXvWXFIWO9X3Te8f1acTsbZ5sqWt2X0ZnpSE36Jfyhm00KUounwW9zie2YcxzdCMECztUz0Xi5/YrSFHyOKjWZfGjAzHodfRsEo8xagv6sHQ+2/4ZT/fS9v0G8WFse17LtTm0W5umsq9wnzsodc/Apny79jAF5VbqRIWQU2rmA9tw7jHMIk1NBjwdUdfqInaHHb2u+uBcdWY90I/l+3JZlZwGKwZWu23jBC2QN7BTEeXWcsKMYZRYSvhk+yfuoJT3CZvWV2t1w6wVjA4KY96heWzP3U6xpZhJPSYRagilkUkL+vw5cQAL3rmbewyz+DZ5IqAda35/oB8r0/fwnledbZtqwxEUQZdDXzGp2+Pc3P8x+Hk8tuR2zFu9mWF6r/pCHW6AhVpQypHQAq58HbY7MyzuXAip3WgALHr0UhzqILpP7ouJILYZ9fznho4Ma1+XtilRNErwjLjGhQdx1yWN+d/yg7w9phNtU3xHUjukxrDj39cCnlU0myVFsEFtwWx7D/arqdQd8QKP/7SVRvrpwHYSQhOoindAatHhRTSJbkKj6Ebae3L+Xqq9GK7Gl7f3IDLEyC/39qXMYiPBla0Q2xBDx9G4Jjhmdn+e6NB/uYO4ygOeqU91o0P57m5PDbvoUCOd6sew+UghNgxkOJIxchRrdD14vsi9XR9V5XD+s0RFKqQdLiXj43Wsbnw/z13RiriIIIgJ5fVea3h8tXZOOZh6LY3Hvq9N/W46mOzjR0j6nxYIc01HOxDRjelJE3nq4Dhajv43S9s6pygPmUDhvlXEhIfAjl9g5dvkBKWS2MpvCkIAJ3uhBtAoIQxQuGdYT/Q6hUtbJaEoCkEN8ihOLyCkdT+W/KntS/MnDqRZknPKcMuhNG451P08816+A0OADGgi6xD02E46Vb7HzXVcHta++oxhbWEUbeBhVkYYvx8r5u2mvvth6wbJPLG+H2GN3mX5MS07Ikgf+IIvOSqEzc8OoeubHxAVrT1PQkSwe5/68Z4+bDpc6M72a54cSXOvpcGD67ZmxM6X+SBcG3DzD0h5W3d8Hbnlnkwm/wwPh+pAp+iY8+AlRIVW7grPcvThsdTeEBOGDgjW6fnp4aFc/s1M9maVsHpQH97ekkFak7FMuU2bCm/U6xjZNYXfM3wv5L1/eycq5h+I1WHlxVUvMr7DeOpH1eeW3k14c73zfKc3QrfbfLbXgn+a3k3jOfDvYZAeS8H817h+0KOEBulpnBDOnXu0KXKvXWJgdM+mkLuH2IQ6mId/wKift9Jbt5N1jpbsRxtU+sE+kOX29owM9VxAD79mJOrw6/lwaRoTWnlKGWgX2Z7tduXtIiY4huTw6heSOFOtU6IhZTBpqWkMm7KUG3q3IDZC68O+PaYzRwtbcWOvhlCwS8tK+1HLlNvhaMgCR1fKez9GRmEFvb/tQ8fEjnw97OvKLxIcQYP7fuX6rBL3QjF/PKxlmFJvhlY/NbEFRCRRElyXg2VB3L/8Bq7NvJaXLvPUkzvVfcE1gBkTFsSel4cSpNehKAoJ3UfS6KcQYilh0/M3MnPpVmb8sZQGSjaXd23JCGdG7Jj7X2bD8Y3c/WUHFoxcwK19G5NVYuaDJfBas+ncN7I/hGj90h25O4gKjqJ+ZP2AbTjZtp4po177HbVMjnQPPrukOD/74R1T+CO90kPd/jmgCV+t9mxwKsdrgH7f9mPO/82hflR9OjeI5a/nRpBbOpSkqCoCpcD4/k0Y2q6Oe3CzXb1omidFMm35Abo2jKVnk/gqH1uVbc9fzq787dyxwFmLKDiC6PsX45+n5T8Y2zYlmqD73+b91cOg6EU25XkyzhVFITSpKQnlJ993Hv+Pm2n0VQsi9U/x+rrXGdtmrG+mVABWuxVjgMDUoJZJ0DIJ0FabVJJaUdhmLMy5vMrXt4VXrqlWlVdu7Mea319hVtEngIUSS1UDm750OoUgr/NrRLCBBQ/3R1G0vhpoNbcAd1Bq+q7pNIxqSL96J+4znIx9Bfu4a/5djG452n2NcKGToNQF5kDhAT7b/hnP93nena3ydyi1lrLoyCLWHF/D6psq1xZJK0rj9bWv0y7Bk1nlHcjx98VO30yGn/f+zLTLh/LUsNZVPMKX3WHn8x2fM7rlaCKCtQOG/8jauD6N+GC5dvSosFWc0cW693vx7+yOnKWtWvjPDv/kwUUPsit/F1tu2cLiw57CsiabyR2UyijN4FR5B7jWZ3kK+6mqWm1HvSofbtEyCVxBqX/M+Qe96vbi/s73V/ewKqUVpQW8/cUR7biuSyodG4TS05lgEqiD4H9i8/7bFbD665i2Gly5V5r46QSlTqRH4zgOvjKM+77ZyJxtx3GgY4Pakg02benZXDWaruaPqny8mSAOqlrmT2OvwMXEIS2YWk2MONAo/hNDW/HE0FZsPFxA08QIokONLNvbnfbTx9K0zjRKi7SglPc+ababCdMFmKZ1kpokRtAkMUL7Dk4QL9XrFJY/1ZFhv1yJftU6XrnklRO/gKK4p5E9utQTYPxl3y8sumERcx68hHKLjWZJESwa8hz3rR3Iv8bdwr9+0AJH7epFEx6R6BOU+mHPD1zZWKu1NHXrh9zcdizcPhcDMGXPUjY21EOpM0ss1VOk1Db8bQiPh0mHtdouXtPbdDoFHQohcXXJyddqcYQY9VzVwbcAqssTQ1tx78BmxIaffIbAPwc2574lWvBuT+d6HMgp44sDKkYgxHBy020fWqyttugagHD9vk61I7752SGEGPXuAEFokN4n+OyvykyGKvxybx/3CnhDWqewJHNjpd+voijuTn3PJqGM79+E2/s29im827NJPB9su4dxEWtpPO5DMIZqNfaApHqNOTBmGTuzLSSkNAbrKpo2GcizwZEEquAW01xblZaUztBhDInxzcB/amsAp3Lc+UfPhrRIjqSX30XJlNGd+GXTUdqmeAqkugNSAVSacnuK9v/rSnSncK746o6epOWUovcLhI3sWp9JMxejD8mixFmLtrqL7ZiwIMIafow2wcp3ECQhIrja1S8tNm0fDjZW/d4dqoN9Bfu4fd7tVW4DnmNkm5TKBWkdxmNEtn6NTTnv0CDeU1unRXIkP9zdh02HC6iTEMfYJ6cRHqz3Oec2SQyFDN8+gvf/T/V3CLApaxO/7v+VY6XH+OQKz1S9UwpqNOxN7F2/4hqyyi7WVlV8algrRvd31gBM0DI9b+zRgFlbjvHXwcbcOCTdHcAb378J05ZR6TigKIq7zpPFbkFFrZQtd8PvN2BQDKy6qfLKWf42Z2+meWxzwo3hJ9y2Kk3qxLP7Vd/MdJ9shbodtH8thwEKxnwrQ+wO9wBC+y9gS07l2pXHSo9xtPQo3et0Jzi4jKE/DWXq4Kk0iXFmprcahtluZkH6Aq6KacjYXg156Q9tBdWVR32LrGeWZfo/fbW8v+/KWeAKbZtpbbixf3s6NW9Eicnqk23Vum4Un+3Tjrnrjq9jeFNPZkxJvIPe3/Xlw8s+pG+9voyZrdUL2zZum09/4mT3uZPdLuB0QC8tkiO5vksqD1zarNJ9zZIiWPzoQBrGhfHWmi187kzsm3doHma7mcsaXEaYMYzU2DDWPjWYgTPePqW2ecsz5VE/SgvQRYca3RlOAAsPL6RtfFvqhHuC/IqikBLje+5vEB/Gy9cGLlpdbClm6ZGlPt9JvimfuxfczYQuE+hTrw+RIUaCDKfevwdoXieKcX1bsGCOdv3hbd6E/lU8KrDUuBDQ+a5A7Q5KOb9P/+OcyW4KGJQKJCYxcJ/K5VQCnkEGHT2vvRfd9z9CRQ7pxZ7g5Jc7vuSWtrec9HN5D5AE8upabcbGCZM/TlKhWevP7y88vdWkz0ey+t4F5tGlj/Lbgd84UFh56eLqOFTHKf3QXQc1k83Ev9f8m2JLsU/g4K75d7Hy2Eo+2uq5WA8UlFJVlWlbp7GvwHc58VNN/V2asZQpG6fw1oaq63M8dkVLfr7Ps0LCymNVr8JyIidzEWJ1WNmVr00HqbBV8PKal933uT4/VVWZsHhCwMdXZ/yC8QFvtzgsAW8vs5YF7GAFYnfY2ZKzhY+2foTVbqX9F+3dQav1x9djtpuxOqzszNt5gmeqLDRIT++m8Vi8VtIIWFPK7zbvv/0DVuU2T1CqqsCnxW7xCV6diEN1cOf8O1mWoRVOVBSFqTefegbamqcGc2ufRoB2clRV1X2y9u7UnIy9BXspNGknqS4NYt2P798ikW0vXIHiVRfiaKlnOobZbj6p5z9ScsQn2OmvwlZxUs/zsDOosq9wX8DXfmfjO/xzgVYHbPKKydy38D5UVeWjLb6BPRWVqZun0iYlim7OjvX4Ac15/7E7K2U2+H/vu/J3Vfm+F0wcwKMjPN+l937h7kiFRAeutwTMefASbr16K5NXTPa5vf0X7Xl7o2flO4Ned0oBKYAJl3mWEg426LmkeSKKs/N3MsfnQKOUZc509RN1/v3FhAW5A1Iny/WZe/++q6IoCrPu78eH/+iiZT1R/cCFXqfw1LDWPgEpgAEtErnnsVcJu2eRFpDy07RVR4b3707vZgnQeriW1u9lTtocZuyeUfkFk9tQZK+gwFRQ+T5gxdEV7vZW125/Op1SKSAFWgbhg4OboygKr1/fgT8mXFJpm+zybPe50u6w8/q619mVt+ukXrfcWu6zDxn0OnQ6pdIFSlXiwoPcv0Nvep3Cz/f28rnNaj/9wYG9BXuZezBw8e0be2gXhf6Zhy7rj6/ntj9ucw8MVae6zMFmDbTj4LqcpZXuiw410qdZDA7VQVy4tipjbkUux8u0AnSufaHC7jleep+XT/V36P0Y1/HJ9Rpnko1SZtGeo2li4Mn839zVi9FD1/N7xv9Yf1wb+HIFOPo0DZzlUWwppuvXXek3wzdTwNVOm2o74fmowFTA2LljeXZl5ULiaYVp7C3YW+3jT5kxFIwhtEiOdO9XVb1GvimfK366wh3wXHR4EUdLj/LlTt86mW9vfJsnlz/JqsxV3Na3EX8+Wnml4935u08YOPVXXTBl+wtX8NltWv9WURTapETRs0l8wHqy3gY7V+UOidTCxGuP+65SarKZ3BfH4Lv/Vrf/ncoxsTpGvY7/3NDRJxPZW+OEcHQ6xZN9jXYdNHnFZJ5Y5lldMykqhKaJ2nNUFxiu6j1Vtd/aHXYmLJ7ALXN9gxs55Tl0+boLP+ytvFhKIK+seYWnVjzFjjxt9bnd+bu143v+LqZsnOLezvX5n07ms+u8bLL7HvMVRTmlwWyj3u7ul7i4rolc7fI/zp1s//FknE5Q0eXO+Xe6///G+jeq2fLE9uTvqfaasyq3/nEr//ebb822n/f97F7AqsJWQV5Fnvuz3JC1gbWZa/2f5iBWfhEAACAASURBVIIkQakLlPdBN9BF113z7+L6mVoh10eXPkrHLzvSY7pnGt5/1/+X9l+0r/Lg7XpOu2pnxu4Z3PPnPfzoVVQ00MVtoAPJ2uNreXfTu5Vur65Te7zsOJuzfSfxujrWrilLgSiKQmSo50DpfdJclrGMbTme6PaRkiPuk9CRkiPkVeRRZC4K+Fhv3icK74Nwmd88Ztd9m3P8JiOfhOqCK1VdYExaNol/zPkHJZYSyq3l9J3Rl4WHtYLN3ifb+Yfme6YC4onUf7HjCzJKMrht3m28vPpl3trwFqN/H83h4sOoqsqBwgPaCOlJnii9g3onkynlvY3/fd6fc1X7za1/3ErPb3oGvC+QEksJazLXVAoYdkzVOq2Kvgx0VV/MGaI2YYxbRnJUCM9f05bljw9i1aRLeXLFk3T8MvCysidy/czrGTu36hXRvD8H74s6733i420fM/wXz0hcenG6e98c9vMwBv/gWVnO38mmPe8p8BQX937tr3ZqqzD9b9v/3FluMw/MZFnGMsqsZby3+T38VTUNyP/353+8CTWEui8UqgvUAD4jZ97HqDJrGdtzt+MvMsTITwe+YeaBme7bXJ/9x9s+DthegKmbp1a62J51YBY7cne4/w426Fn86ED3yGW92FAUnfb7tKonvtD37/jlm/L5PU1bTepEv80vd3zJi6tePOF2ReYiPtn2SaXO+7rj6+j2dTe+3PElXb/uyupMLYPW5rChqip5FXmVjs/tU6MZ2q4u+aZ897bn2hPLn+Dfa/5d6X1b7Vb6fduP/t/192nb+Pnj6fxlZ+758x4eXvww6cXplQYpSi2lDP9lOC+vfvmEn+fR0qOVtrmhe31a1fFk8LiOf1f+dCXXzdSyPzZmb+SrnV/x/ub33e2duGQiS44sqfQaqqrS85uevLj6RZ/b5x6cS/fp3Suv5up8jKqqrDi6wv1d/nXsL/rO6EuJpYT/rP8Pf6ZrBeKDgny/tzPJWL1+5vU8vqzy6mUAQ9vV5dCrV1W5SMdt825jY/bGgPf5Z55WFxwa6lwIJVBNQofqoOvXXXltraf4+6DvBzHkxyGY7Wb3gJr3vuwdpD3ZCyqTzURGSUbAtrqDoWdQt6eZMxiVEhNKha0i4Hfm6vNM3TIVk83EkDbJbH3+cprVMQTcfuiP2vRS/4te1+8bCHiR7v3+tuZoBf0DBYZG/DaC62deT25FLtO2TuNI8RGWZSyj37f9fI6jn23/jF/3e1b8XJO5hpdXa4OCK4+u5IZZN1Bq8fRz/jr6F+XWclRVZf6h+e6+sb8HFnmKulcXkMks1TKgSiwlKIpCRknluWWjZo2q8vFVqao/XmwpRqezsOLoUqbvmk7P6T3d594Pt3zo81n469YojkOvXuUT7PfuY945/06m7/KsOOn9vqsaBIWTP5ZXtSDAqXIFVbx/a/4Dsa5p7tUFpao6dlXV73b1l/2z3lwDgz/tDbAqq/P2DzZ/4P7bFYwa8/sYjpQcYdSsUcxOm13pcaeTaeni6h+YbWbunHdnpYFAlxMNKiVE6XhrjO8sFtfvtarM7JMd/DgZJzVAd4rBf6vDyvKM5Sfe0Mtd8+/i0+2fnnhDPxuyNrC/cD8O1cGctDmYbCae++s5/jFXq/V5/8L7Gfj9QJ/f0B3z7yC3Ireqp7xgyPS9C1RWeRbf7fmOzkmdaRHrKQT3494fuazhZe5O5p78Pcw7pBVvszgs7uLRn+3QitBOWjaJJ3s+GfD5vW3N2eruTFSl0FxYadT5WOmxgNuWWkurHKG+7rfrKLGWsHT0UvcJrcymXWSabKYqHweQU5ET8DXuW3gfAL+O+JUIYwTDfh5Gm/g2vD3obYb9PMz9mPcHv0/7hPYcKTnivs1sN/Pr/l95ZuUzzLjKM+KeVeb5jPw7Ytnl2SSFJQU8COab8qs9UV/1y1U+f3ufQLLKswKetFzfd1pRGha7hWJLMRMWT2Dp6KU+I+3Ttk7zqSHgep+l1lL3Bbp3B2d3/m72Fuzl4SUPc2vbWxnbxhM0cX22t8+7nfjQeN7or41KbMre5LO8vX8HFirvK94Xs/77hvcoXp4pj4igyiO/23K1gOOuvF0+KdZVGfCdVh/C6rD6vNbHt7Xm9Xm7+aNEK4D5Ws/p9GqYSq9/L6JFnQh2HNPaGVrvO+dnoG0X4RzEc3Uycity3RleFbbK2RhLjixxBxOWHFnivgA6VHyoyv3bO5joLbsi2z31y5XJszB9Ie0T23P1L1fTKbET71z6jnv7gd8N5J1L33HvB2a7mSt/vtLnBOnfhh15O0gOS/ape2S1W32CRa+ve52rm1zt/tv7QsU7MORNr+h9Xsuu2rVOd11PgLHAVMDdf2oFvJ/u+TQvr3mZ6OBopm3VVgMqsZZUaq/363l3Jostxe5tH1/2OKszVzP3urlVTiNxbev9Pqv6fj7YonVAe9XVskpUVJ5a8RQAy0Z7ljKOifA8T0wE1E9QOFZ+4mMb+H6mBaYCdud7CqcvPLyQ/237H7//3+/uqcMuORU57lHDm1rdRHxo1fUuXlnzCnMPzWXKxilM7DqRa5td635+gLc2aiOH03dOx2q3cu/Ce3m468O8teEtjDojC0ctrPScrqBIqaXq4/7JKLOWUWQuIiXCdzWe9OJ07l14L+9e+i5NorUpLhuzNvoUj/90+6fUDa/L3INzebzH42zK3uS+b03mGu6cfyfvD36fVZme6UdLMpawJGOJ+2+L3UKBqYBpW6dxqPgQh4oPYXVYmdBlAunF6byz6R2e7fWsu2jukZIj3DznZu7tdC9jWo7hl/2/UD+yPt2SPVNK/zr2F5OWT+K7q79zXwRml2dzsOggoH3PBaYCtuZsZUH6AvYV7KNjYkdWZ65mTtocHuryED/t0y6Mft73MxO6aIH23fm73cGfDVkb3G0C7bg3+IfB3NfpPnfQa9noZbyx7g2KLcWsP77evaT7stHLyCn3nFdBC2aczPdY3TaZpZkBp6x+sOUD2sS3YUCqdoxecXQF8SHxPotBBGK2m31eL78iv8opsSZnlpPJXvk35/r7m93fcLdr4QCnUbNG0SelclaM98WEK6MqEO9z/zMrn2FpxlIWjlpIXkWez3twBdXLreUn9TmvyVzDlpwtjO/gybC+a2Ayu9Up3DBfO0d1SerClEFTfB7nOjdvyNrAh1s+ZFzbcaioDJgxgMsaXMazvT3ZTM/+9SwlVs/Axd6CvSSGajWmDhR5Mve9s0ldvM+B9y/SSgaEGkLZlbeLIyVH6F6nu8/2g77XplR6D2iOmT2GZaOXsSt/F//doC2W4NpHXNkRo1uOdp8rFh5eSExwjPv1Lq1/Kde3uJ5Hlj7i81qZpZmY7Waig6N9+rhHS4/y0mqtPtRP+36iVVwrEkITCDOEubPkDhYdpMBU4H4N/33QW3Xfoyv4GKgPDdD/u/7EBsdSYPbct6dgDw0iG7h/vwNSB1Bhq3CvFJpRkuF+rk+3f+r+PX+6/VOfC23vwE6FrcLd1wbILc8N2N+q6v1UWLXv2TtAUW47uX34RFxBI+/fmsVh8XluV1/Z//jknVmeU5FDhLHye8o15QZs57EyzzXM8ozl7pIlrt9sVnlWwMc9v+p5AMa00qZJuo7nUDmQ5TqvgGdw0L9vGsi3e77lYNFBnuyhXcO5+gel1lLWHF/DmuNruKHlDT6PWZqxlGdWPsO3V31b6Tzqkl2eTVKsJ0j3876f3f1P1zHTfwAqqzyLyKDqp7+drHxzPhGmyt+R96BcicW33+e/+qqL/29gysApdEnuwu783YxfMJ4vhn5B4+jAC20VWYoC3l5gKkBFZU7aHDondyYlPPDn+M2ub3ht3Wvusimu/dKVreg/wLIgfQE3trox4HNdKJTTLX56oenWrZu6fv36E29Yy42cOdInU0EIIS4W04ZM48FFDwYMdAohhBBCCHG++erKr+iUVN0SJueNKrMuJFPqAjOx20S+2PEFA1IHcKTkCIlhiYToQwg1hJIamequR7G3YC/JYclEB0ezOXszZbYyDIqBHnV7UGAqoMJWgclmomlM0ypfK704ndTIVNKL00kKS6LMWkbTmKboFB2Hig6RW5FLXEgcRr2R/Ir8aqPNeRV5ZJdn0yGxA7vydtE1uer6Pa5RNf8oflpRmnsUvDrltnLyKvJ8MoIqbBXkVuSSFJZEsD6Y9OJ0YoJjCDOGkW/Kx+6wc7z8OF2StAU7bQ4bqzNXo1N09E7RiuMeKDxAs5hmZJdnU2IpoWlMU6wOK8fLjlMvoh7Hyo4RagilyFzk084gfRCF5kJsDht21U5scPXLjOeb8gk1aLVTjDojiqJwqOgQdSPqEmYIXAfHoTpIL053fwd7CvYQGxzrXglHr+jZV7CPRtGNUFAot5UTpAvCoDOQXpyO2W6mRWwLisxF2FRtOk6JpYQ28W0INYRSbCl2Z9Jkl2cTbgx3Z5fkVuRi1BndI/G5FblEB0eTU55DkaWI1nGtCdYHc6DoAAadAZvDRmpEaqX3EGoIJdQYSn6FNtqjolJmLSPCGMGRkiPu766q73xH7o5KI65VOVp6lFJrKU2jmwZcMCC3Ipd8Uz6pkakBP/N9udkYDXYaxfgWbKywVVBoLqRuuHZ7VftssaWYcls55dZymkQ3odBcSLm1nLjQOEL0VRe8LrYUu/djk81EnfA6PhlOJruJg0UHSQlPITo4miMlR0gOSyZIH4TVYSW9OJ0wQxh1I+r6ZOttzt6MAwc96/ZEr+grpWLnVuQSGRRJsD6YfFM+heZC9/s6VnoMBw4igyKJDoqm1FpKubWcpLAk9/4UHxLvLo6fFJZEbEgshabCgBlK+wr30SymGSWWEiKDIlFQtOkLio5uyd14+9K3OVR0CBWV1Zmr6VW3V8DMwxJLCRFBESgoRAVHufdpF7tq53Dx4YDHrSJzEVaH1Scz7EjJEeqE1/HJAvSWVZ5FhDHC5z1llmUSHRxd5e/WJSUipcqsUn/HSo/57CdpRWkkhCYQGRRJWmFawGO6ijYFt1Vcq5OadpFWlIZO0VEvop7P+z1QeICmMU1JK0qjTngdKmwVFJmLaBzdmEJzIcH64IDvVa/oiQ+Nr7am2ckot5Vrv8sAx4/9hftpFuMplptnynPvy4XmQlrGtcRit7AlZwut41oTGRTJjrwd1IuoR0xwjPu9ubIRCkwF7n0+tyKXmOAY4kI8NZe2527HZDfRLqGd+7vYV7iP5jHNfdp1oPAATWKaoKBwsOggYcYwksOSK23TNKYp5bZyNmdvpndKb/d+7531VmQpIjpIO85mlWeRXpxO9zrdySzNpNhSTNOYpu7vy67a3RmDgY5BB4sO0iCqAYXmQvSKnpjgGFRUDhYdpEl0E46VHiM2JNZ9Liq2FFNoLqRZTLMTTv/IrcjFqDe62+rNNdLuOkb6yyjNID4k3v26mWWZRBgjtGOBoqBX9Owt2Et8SDx5pjwSQhPIN+XTMKohCgollhLMdnO1q1lC9f2JAnMBUUFR6BVtel+RpYjM0kzqRtQlOiiaYH0wZrvZ5xhjspvQK3qMOqP7ezPZTe6pmwadwee3ZHVYOVZ6jIZRDd3taRzd2H0s8//uq2Oym8gpz6m0kprrOLavcB9dkroEPH+6jsven0Wg822eKQ+r3YpO0XGs7BidEn0vnootxdhVO6qqYnPYCNYHo1N05FTk+Dx3iaWEYksx9SLqYXVYKbWWuvtEheZC7KqdfFM+WWVZJIUlYdAZyDfl0zquNeHGcOyqnQ1ZG2gZ19K9f7n6YfUj65NWlEZUUBQJoQkUW4o5UnKEClsFXZO7oqBwoPAADaIauI/nBsWAya4tTGNX7RwqOkRKRAqhhlAyyzLJq8hzz0bIN+cTqg8lOjia1ZmraZ/QnnBjOIXmQtKK0uiU2Amdok0hs9gt2FQb23O30zW5q3tfCsTmsJFZllnp+3PJqchxn3tdx4X2CVpB7ezybEINoUQGRaKiklOeQ6G50Kfv4uqX2Bw2YoJjKLeVkxKegl21u++rsFW4v6dDxYdIjUg94WJKx0qPoSgKeRV5hBvDfc6lZruZ7PLsKt/T6XD9Zo+WHqXMWkazmGbuzxu089yhokMBz+l7CvYQHxLvc1xwHSuC9EHV/taOlByhzFpGq7hWPrd7H4/9FVuKMdvN7mxCV4ZXsaWYJtFNMNvN7n6V/2sfLjlMSnjKCT//UmsppdZS6oR5Zge4jhvHy48TFRQV8HzsOt/48z82e7+/A4UHaBPfxqcciF21k1mWSUJoQrX91kC8f7OuPp/FbiGvIq/KDC4IfLwC7btfk7mGpLAkmkQ3Ibcit9I5wP99+/cZ/NlVOxklGcSFxGG2m7Grdp8+3oHCAzSKblTpt+3d73W9pn//0fXZFpmL0Ck6ksOT6Zh4eqU/zieSKeV0oWRKCSGEEEIIIYQQQtQiVWZKSaFzIYQQQgghhBBCCHHOSVBKCCGEEEIIIYQQQpxzMn3PSVGUHCDwElDnnwTgwl878vwj30vtI99J7STfS+0j30ntJN9L7SPfSe0j30ntJN9L7SPfifg75aqqOjTQHRKUcho6dKj6xx9/1HQzhBBCCCGEEEIIIS4kUlPqRHJzJSgshBBCCCGEEEIIca5IUEoIIYQQQgghhBBCnHMSlBJCCCGEEEJccC6bMYo2H1yFlCsRQojay1DTDRBCCCGEEEKIsy3Lsht9GJRZ7EQEy2WPEELURpIpJYQQQgghhLhg5ZaYa7oJQgghqiBBKSGEEEIIIcQFq7DCWtNNEEIIUQUJSgkhhBBCCCEuWFa7o6abIIQQogoSlBJCCCGEEEJcsKw2CUoJIURtJUEpIYQQQgghxAXLIplSQghRa0lQSgghhBBCCHHBskimlBBC1FoSlBJCCCGEEEJcsKx2taabIIQQogrnTVBKUZSHFUXZoSjKdkVRZiiKEqIoSmNFUdYoirJfUZTvFEUJcm4b7Px7v/P+RjXbeiGEEEIIIURN2JBeUNNNEEIIUYXzIiilKEo94EGgm6qq7QA9MAZ4DXhLVdVmQAFwh/MhdwAFztvfcm4nhBBCCCGEuMh8uvJgTTdBCCFEFc6LoJSTAQhVFMUAhAGZwKXAj877vwCudf5/hPNvnPcPVhRFOYdtFUIIIYS4qKiqyoy1hyk122q6KUIIIYQ4T5wXQSlVVY8CbwKH0YJRRcAGoFBVVVfPJwOo5/x/PeCI87E25/bx/s+rKMp4RVHWK4qyPicn5+99E0IIIYQQF7D16QU8+fM2nv1te003RQghhBDnifMiKKUoSixa9lNjIAUIB4ae6fOqqjpNVdVuqqp2S0xMPNOnE0IIIYS4aJmt2gpnx4tMNdwSIXz1byH9fCGEqK3Oi6AUcBlwUFXVHFVVrcDPQF8gxjmdDyAVOOr8/1GgPoDz/mgg79w2WQghhBDi4qFz9iptDlnpTNQuqir7pBBC1FbnS1DqMNBLUZQwZ22owcBOYDEw0rnNOOA35/9nOv/Gef8iVc5GQgghhBB/G4tNy5SyS1BK1DI2u+yTQghRW50XQSlVVdegFSzfCGxDa/c04AlgoqIo+9FqRn3ifMgnQLzz9onApHPeaCGEEEKIi0iFxQ5IppSofSRQKoQQtZfhxJvUDqqqPgc853dzGtAjwLYmYNS5aJcQQgghhACTzRmUsjtquCVC+LI5ZJ8UQoja6rzIlBJCCCGEELWbKxblypgSoraQTCkhhKi9JCglzticbZlM+HZTTTdDCCGEEDXI4SzfWWax1XBLhPBllZpSQghRa0lQSpyxe6dv5NfNx2q6GUIIIYSoQa41ZUxWmSolahfJlBJCiNpLglLijHgvauhadUcIIYQQFx/Xdb8seCxqG6kpJYQQtZcEpcQZ8R55khoSQgghxMXLNX1PQlKitpFMKSGEqL0kKCXOiN1rNLTcKjUkhBBCiIuV+7pfrv9FLSM1pYQQovaSoJQ4I94jT+WSKSWEEEJctFTJlBK1VIVV+qhCCFFbSVBKnBHvoJRJTvhCCCHERcvh7BNITSlR25SYrLJfCiFELSVBKXFGvOtGynx9IYQQ4uLlLnRes80QohKrXcUsC/IIIUStJEEpcUa8a0rJfH0hhBDi4uUudC7dAVELFZusNd0EIYQQAUhQSpwR7+woyZQSQgghLl6uYJRDolKiFio1yYI8QghRG0lQSpwR746nzS5p0UIIIcTFyiGFzkUtViJBKSGEqJUkKCXOiHd2lE0ypYQQQlzk/jV7J8/8ur2mm1Ej3N0A6Q6IWkiCUkIIUTtJUEqcEe+g1K2frZUV+IQQQlzU/rf8IF+tTq/pZtQIT6aURKVE7VNqlppSQghRG51RUEpRFLuiKJsVRdmuKMosRVFivO5rqyjKIkVR9iiKsk9RlGcURVGc992qKMp7AZ6vlaIoqxRFMSuK8qjX7fUVRVmsKMpORVF2KIrykNd9cYqiLHC+xgJFUWKdtyuKoryjKMp+RVG2KorS5UzeqwjMOyjlUGHhruwabI0QQgghaooqhc5FLXYhrb739K/b+OKvQzXdDCGEOCvONFOqQlXVTqqqtgPygfsAFEUJBWYCr6qq2hLoCPQB7j3B8+UDDwJv+t1uAx5RVbUN0Au4T1GUNs77JgELVVVtDix0/g1wJdDc+W888MFpv0tRJbtfz3NVWm4NtUScqYW7suj84nxySsw13RQhhBDnIdc4lcSkRG1ku4BWif569WGem7mjppshhBBnxdmcvrcKqOf8/03ASlVV5wOoqloO3I8nYBSQqqrZqqquA6x+t2cCaYqi/AisA+oClymKEocWCBuvKMoC4FfgWmdG1mtAZ2ALYAFiFEWpe1beqXBz+NWRyi+z1FBLxJn6YlU6BeVWNh8prOmmCCGEOA+5p+9JqpSohWyOCydTSgghLiRnJSilKIoeGIyWHQXQFtjgvY2qqgeACEVRok7zZd4G/gCGAgXAL2hBLp2qqk3QsqRuA5LRsqSSgZF4sqQy8ATNxFninymVWypBqfOVySL1wIQQQpw+1ziVrHsiaiNrNZlS3607zMJdWeewNUIIIVzONCgVqijKZuA4WhBowZk3qTJFUaKB/sC3wE/ABFVVjwAj0LKgAL4ArkXLGh+BFoRCVdXVQAwQ9He07WJn9+t52uy1fxRKVVVyS8+PKWrbjxads8ylUrO2Ko1dRhKFEEKcDq+BKv9MaiFqWnV91Cd+2sYdX6w/h60RQgjhclZqSgENAQVnTSlgJ9DVe0NFUZoApaqqFp/G6zQGcoE9aMGvYYqihDv/f9w5Le84UAfIRsuIOgLUdz4+w/n/o35tGq8oynpFUdbn5OScRrOEf1DK/+/aaPqaw3R7+U/2ZpXUdFNO6Op3V3Dt+yvPyWuZbFqmlO08+A6FEELUPt6nD/9MaiFq2pn0b44VVlDmHLwTQghxdp2V6XvOmlEPAo8oimIApgP9FEW5DNyFz98BXj/NlzCgBbmWq6qaCpThqU81ExinagUMjMBvzttXALc460tFoQXEMv3aPU1V1W6qqnZLTEw8zaZd3CplSp0HAY1VB/IA2HO89gelziXXqPaFVAhUCCHOJcsFtLrX6XB4BaLOh0EqcXGpbvreifR5dRE3/m/1WWyNEEIIl7NW6FxV1U3AVuBGVVUr0KbQPa0oyh5gG1qB8veqew5FUeooipIBTHQ+NsNZgyoFLROrjXO64DDgCiAL+AwYoihKGtrUvVfRMqIygDRgP9ABeORsvVfh4ep0vntjZzqkRp8XndAQox6ACqvUUPLm+urOh8CiEELURnO3Z554owuY9+lDziWitjnTEhNbM4rOUkuEEEJ4M5zJg1VVjfD7e7jX/7cBA6t43OfA5wFuPw6kBnjITEVRVgB3qqq6R1GU54Fw533XqKo6WFGUSUCcqqr5iqLMRFvtbxjQE3hHVdV5p/buxMkoMWmpzKmxodSPDWPPeTAlLixIC0qZanlQ6lzX43AFFKWmlBBCnB4tOfvseeLHrXy3/giHXr3qrD7v38V71T2LzQHBNdgYIfxYT7NfJatJCiHE3+uMglLn2APAdEVRgtAyoG5Dy/T6XlGUO4B04AbntnPQAlL7gXLntuJvUFih1ZmPDjWi1ynnRaHzUGdQqqKWrzbnqvF0rrimXcjo9vktv8yCXlGIDjPWdFOEuOgE6c9uUOq79UfO6vP93Rz+QSkhagnDGfRRz2TanxBCiBM7b4JSqqpuBroFuGtwgG1VPEXXxd+oqNwKaEEpg045LwIaIQZt1uorc3dzR7/GGPRnbRbrWXPpf5ZQ6PxsQRulO9sj8P48mVK1/zsUVevykrYI6vmSWXEy7A6VXZnFtKsXXdNNEWfovUX7GNKmDi3rRNZ0U/4WBt3fcz6xO1T0ur/3HHA2eJ8+rLVwkKrCYueVubt45PKWRIdK4L62u+XTtaw9mMful6484+cy6E+/j1qbyj3sOFbEtGVpNd0MIYQ4q2rf1bg4r5idI6FhQQb0OoWiCmutXwb6Q6+TeU6puQZbUrW0nDLyyyzuv89FsM+dKSUjgqKW+WDJfq5+dwVbjhTWdFPEGbDYHLw5fy//N/XcrChaEwxnOVPKpbZPN3fxzpQy18JMqV82HeXLVem8tWBvTTdFnIRle3MwWc/OfmTU6U47UFqb9pf7v9nEb5uP1XQzhBDirJKglDgjrmCJTgdlFhslJhvvLtpfw62qnveUgnNdJiAtp5Rtp1Eo81wEilwZUjaHg60ZhbU+uCguHlucv5nMIlMNt0ScCYvzgrC8lk+dPh1frjrEm/P2+ARlzqbz5TNTa3mmVHiwNn2/tg5Ina7bPlvLhG831XQzzqqzXWLBoFeq7EudqGbUmoP5Z7Ut3jKLKk6pX2j8mwLf4tzILTW7Z5kIUZ2cEjND/ruUw3nlNd2Uc0KCUuKMuAIZBp2OY4XaBeO8Hcdrskmn5GwFew7mlrF8X84Jt7v0P0sZt5l/GQAAIABJREFU/t6KU35+6zkoPu76Llfsz+Oa91by6cqDf/trir/Pc79tp+ML82u6GUK4Xcg1hp79bQfvLd7P7Z+v/1ue/3zMlKqN33eUc8peccWFdVG4eE8Ov55n2TOTf9nGzC1Vt3nHsbO70p1Br8NWRV/KOxs9UAmDUOPfd7nU77XFp9QvNNbCkhO12eLd2eytRYswdXv5T7q+vKCmmyHOAzO3HGNfdimvzdtd0005J+TIJs6I6+StU6DMrK3EV5vrNPiPhpnPUjHxIf9dythP1p6V5wrEepqd+6JT6Hi7PpoD2aUA7MsqPa3XrK3sDpWJ328+6x3d2uqLVekUVVhPaR8vdf6Ga6vtRy+O7+5CdbaOtxcTVx2pUzmW16TD5pVEtp6EYijm7q831HRzKnHlmPxdGW3i5E1fc5gHZ1Sd3VXglU2yP/vMgwpGnVJlwXLvAcpAGX79miUA8HeU9jzVOp5BBrl0OxW3fb6Oy99aVtPN8HE+1N8Vp8Zqd/DK3F1n9VztSoo8vG0ly3ZlnLXnra3kyCbOSJmtiKCo7SiK4r6gjQqtvfXzLe7OhnZCOFs1L1wnmOySv2d60emcwPZlldDxhfk88v0Wik0nPkjanZ30o4UVwN9XG6WmHMgp5eeNR3no28013ZRz6mRPkNPXpNPuuXknnSZ8KLeMRpNms3BX1pk076S4rh/fW1y7pwaL6tXGzJnaLjEiGDh/pq4esiwGQBeUVSvaPHtrJqM+/AuAvFIzb8zbA8DG/2fvvAOjKPM3/pnZmoTesaKgYBf7efbe/XmWUyxn11NPz4bYQBFEkCYCgthF6SBCIPTea0JJCATSICG9Z+vM748pO7M7m2wgKHg8/2R3ZjI7Ozvv+37L832+Wcf16Y52PPdTiHV409DDDyrYbWLU7ntGG8nKLmwe7wTg/KOg2YYzjClVX+nhcRzHcRx5zNmWx9hlexmY1HisJpsocL6QwUznhwRXj2608x6tOB6UOo7DwqLSgbhOHE9xbTGlNYow99HMlJIkuEXcQKb7UU4WDjZa5t6tUruXptVfwncoOBRtjt0q42na5lye+7H+kpJwh9F+DHR6agi0bobN3Edv0LQxICDhIMR4Kqr0RT22oMLDz2uzyC/38P6M7QAcKK+N6XO25JQC1Fl+0Xj43za688s95B8FDv7h4n8tKNUYnUxbJijOcGHlsaGBFHKQhbD3fw5e/nUzGzJLkSSZd6alsONABaB0U1udUfSnXttxNBzJOWXsLTw0FrfdJuCPMiazS0LJmI9n7YiwDYNq2d+RfJqLYtQ5C2dKRWN/HcdxHEf9OFjh4YbBS8kpOTzdpuXpynpS3YgVB4IgcKm4C1GQOeumJxrtvEcrjgeljuOwUBVQWBJBOcglp7YCYPLGXMpqojvCfyYkWeYu21oALhN24W2kri5ntlfam/eclhJz7Xp2cQ3eQDDCaLcy4huqfXWwwsPLv27W39cn0ilJcgQby/4X0y3Yla84Iy3UjOdfFSMcI9ntDi1ed4xYASiaNOFO8oNj1/Dhb9u5YsAifVu80xbT5/yRvuaxIvJ8pHDFgEWm3+hYxdHYje1IojF0i5wqY/Vo0pQ6WOGhU69Epm2KLCeQZe03Vq7bd5SInfuCErml5oB7RmH1n3Q1xw42Zpbo7OlDhSzLURlKDUFQkrl31CpuGLLskP7fJgjM35FvaWMZS9enb97P1QOXhH228jclt/yINYG5pN/CmI4LZ0pF08k6HOwpqGT1nuNB2/9FeANB+ifupDKGCotjCTsOlNOpV2JEU4Hpm/ezt6ia8Wuz9G1V3gA71QRGrJi2WVkPG7PBhygIdBLyqZDjsbfq1GjnPVrx1/I6j+MPh6zmjQQExjx+sb69X2Lqn3VJdSIoy3QVcgBoLlSTVVKDLMv0nbXzsDQLjF1ikrbXL/S+MbOEaz5fQtcPkhi3Yq9pn5UR31CjY1bygQYFDaw+869UvlflDfDhzB3A0c3kO1zIsszdatA1HN0+TOL5n8yMuSyLUr1Y2R3a8/VHPCV/tQDp0YDyWj+deiUyO+WPE0c+WgIUfxQ+mb0TUBIQh6ozoWlKeY4iPa69ajBn0saciH2SahOcc4JS5nS0BCK9folKjzmDXeU5ujX0DgWzUw40SgBIwwNj1nDVwMWHdY7eM3fQ5f25UVlzsXbZO1xnb3dBFf6gzMLUgoh9wbDEX0EYM9GoQVZ7BAPEsTAiw5lSfWbuaPROhTcNXU6Pb9Y16jmP49jAVQOXMG7Fvno7qafklvHFwt1/0FUdPkYt2cMTtnmkj+1BSk4pnXol8uT363WdOOMM8OyPG7hjxIpDYjs3JnPRJsKpwkH2yR1wO//aVR5wPCj1P4W9hVUx04MbCkEQaOIKDZijtUxDlqCrqESzOwrFvDt9GzkltXy3ah/PxFDiZnlOWTbRNWPpjLLXkKGdnZJn2uexYG/5ApGTnCTJUe9zQ0vvLB2HvxAj/Lct+/XXTf/C5XtGp99YwqdhUVqkMR6OWBdUvUjnSCi/huGE5m4AbujWjkWpBxm3fC8HK479crY/E5p22OglGUfsM96dnsI7U1P09wV/0d8sKMncLy7nIiHdtH26Ou9c8/kSbhl2aOwOu6isJzXeoycopSUsrIIfGlPqitMVYeijheHlDQQjgqK1vsYPSn2xcDdjlx25MVUfXvl1C6OXNu7nHy4r9meVgWAULjcGqDJiLMdrLHFoK/Oo3FeG+4QJIFrbyEa2+pF8pi/tv5DRS/ewKz96kjTcxpyyKZfpW46MCPLE9dl/idLxowV/djlzLNACo+v2Ftd53D0jVzFsYfox8Z0Amtdk09fxI/fbVvLiqN8BWLqrUH++jd9jvVpdEmtQysgqa0ymlKAypbLk9rj+Bxoc/PW/4f8oPP4g/5mwhdzSEBPihiHLIijJhwuNKRU+KR2tekRBw3WeKhw0bTuUefXeUas47d05HDAs2o4YGEZrDJN9eDmZlc6VFVPqg5nbOfODuZbnDw8yhdO9w7FsVwGnCGbB6kMtc/MGgvSalhKTA/r4t+voNS2l3uMOF0Yj8ljouvTI12sZcwiOjTFIGUf9999mMU61MsdY8UeMdO15FgV45seN9J+Typ0jYm+h/VdBYzoH2vN1JMfDhPU5JjbNi+M313H0sQt/UGKIcwzTXR9F7NPm84MVh5YQ0tYnTeS/U69EPp3z5zKRtXljh0V5g2YTuGxKGfDhlsiX1/r5ZPbOww4EeANShLNwJJ78YQvTGTD3z23fvb/08MrtjhTyDHqFRl8vWrL0hm7tOEPIpQ1Kuc2lUcrbJEmmuAEJV6vE4cIDE3A0T8bRwrqLstF2PNLsv0FJu3hAFee3wpHovheUZMprItmcvaZv45Vf/5rz9p+BY4ktnJwbW7fjo4UNm36wUg8mWcG3L1RF0FYINbr4YXVm1P+JtUpFa6AB5rntUCHLMgOT0thzoIQThSIy5fYxER6Odfz1v+H/KJbuKmBW8gH6ztpp2t7otGMtoBNm3olHaVBKkmUq5DggFJT6x+hVgCJ0OWrJHjr1SjQF8+pCck5kB59oE0dGYRW3iuuJx8MMA3Mn/E5ZGfFW7Klf12UD1pF8bZG4R1zNUufrnNgsesna/V+tZv2Uz1nuep17xZCjf6hR+eXpRUzckEOf33fUe+yK3cqxGhozw2CEcdE8Wll8GlbsLmTN3mI+OwTHxvjd7rGt0V9Hy2TZLFhOWpljfdiSrQid/xFRKc2xN5ZdFFV5mbl1v0kH4K+CzdmlXNp/YUTJ1xUDFtWZvazyBpi5dX+dWXYNidsUhubx1tSHD+O81VQox9VhOoJNYX9YBW4aAis20tfL91oc+cdBm06snBEtyOl0KEGpww0mjVmWwbcr9zFxffZhnccbkPRmFxq+XLzniK0H947884LmR+uYNj4vxjGTfrCSz+am6etUea2fiz5ZQPqBEha4ejLF+REQ3X4dsmAXF/dbGHMlgJWjqdmw0RJ4QcP/PPm9deCqMVFXMNdqyQ0vTW0o+iXu5IK+8xm7LCNCM6taLQ3ccaCclbuP60wZceOQpXT7cG7MbL+jJYATDdGCuzcOWRo1UTr6KOmKfMuw5Tw0do3lPl9AMgWi2gmRvpvRTNYqANbuLY7JLzHqnvob4Tf2+CW+WprBgjUbsAkymVKHwz7nsYDjQam/OI50ZY22kEuyeRA2FlNq+/7yOqmha/cWs68odrFSKRCgmaBk604VDiIgmSjlWrR798HoC0xqXkWdC5AWlJIkWTeSZFlm8KT5jHUOZ5xjiOn4ZemFFFSGGBBWRrzRIA8EJf4zYYv+3sqo1oy3AY5xdBIP0tabGfV6N2WV0l1U6sK/cI5m7dtXKtd/iAyKBJfijDS0VHRXfiVnvD+XeTvq1+RqKIz39GjvVGMsd1qcdrCOIyNh/G7P2OYA0KaJs8FOSiy/3S/rDs9JrAuyLDN5Q47+u1kFZQFem7iVD37bbtq2JqPYNJ6ORXyxcDeFlV42a4E/A/75tbVm2OK0g5zbZx6vTdzKrcNjb58uSTJ7CqqOeLC2IUyGYw3G0p4PW72Ls+V6XO2U8WdcC2sOoVzMZzh3+FqYXVzDsvQj0/G1LtSlWeSWlLUxPqisy4c732rJkeLqhjdPMTrX0dgeIxvBobpt+PKIkr1YWQaNhRdtv/OkLQmAhakNWzf+KBgDLcZk2qdz0hizLEMXnk/OKaOk2kfHSmVuP02M/D6Pf7uOEvWZmLdD2V8a4zNi9UxqlxONheQPBhEcCgsjvQ77MHS8xBcLdx9yJy4rFrOGoIVtdriaUlM2KuV/A+amURNmg7aMV5Kad45YyWPfruPeUasO67P+SDRElN4XkLjryxWmwFt9v19GYTUev8SNFuL7Ixbt5vVJW03bjGOgsbp/NyZS88wJrWpvgEFJaWQUVkckSttRyljHUH5cvLXBouB/NMpqfLQWQtc4zjk04hirJ+XpHzYydEG6xR4zHILMm/bJ3Chuihg/hwLN/2qtskQLaHnY5zwWcDwo9ReFcc1alHqQSRuysasaM0fCOQgPSgUlmYrD7NywKPUgd325kqsGLiFpu1l3Kaekhl35lTz89VquH7w09usMKN89S2qHW/DTkbq70lnh9i9WWC5AGrQ204Pn7+KSfgsprvJS6Q2QvV/5DheLkROckW7/fpiTDYo2SZpaVnWgzMOs5JA4sRUduNobwIWPBEH5vqd50yyj/Vpr5SqVPQbQ3K+wUQ4126olFBvSMS05p4yUXCVzMX9H4xvUxiyilfO9fl9JnbTfPxLGUtCnf2iYzpkvIFEoKwLD+2VF06V9M7fpt0/ankcgKLEkrSBq4HH+joNMteispcHI4DkSmb9FqQX0nJbCYDVI3BDj7ZFxa7lvlFL68MnsnZz/0bxGv766sHZvMZ16JXJp/4V8v2ofoJStzNiSG3MAvb6Rl1NSw2nvJjJFLY1bll7Y4GdFQ0Gll5uGLqPP75HzTmPi/RmRwcM/AjW+AIlhun0NweK0gwyZv6vOY/z+kDPsFLSxofyKGzNDgcVDEdb2GZ79cFbs9UOW8q/v1rN9/5EJgHj8ShemqjDHzOjUh8+nzYLKPNqqPE099vDmh5ZqGXmpoaPvx7N2MCwGR+F7Q1lGWhT2YEn14dtDafmVf0rJXiAo6QHCXo6JfOT4CVDm58ZmHYc/A4cC4zxuZV9o16wFck8WomsgrthdxDb1udfWsfqSsF+rzXis2OWaDRuNKZVSPYUmXQYhOGKbt2Zs3s+whel8sUhJ+G3LLTdpWxpxp7iWcwUz+7GuqgarbswNZSRuyVaEnjPVNck4jqu9Ac4XMnjaNheQ9TGowapC4HAhy/IhiUrXh4bYscvTC9m+v4LHvl1HTkkNm7JKOafPPJbsql+LEyKD9UMXpJuqIsA8Bh4aY83qORzsK6o+LHZquK11Tp95UTXqHrEt5lbbRp6zJ+pdnutDUJL5ZsVe/Rq3ZJfWaWs2FkpqfLSgigK5hWFreOdz83Vq2KcGy4ctSKdTr0TT/xRUeiit9rF90wr+Y/+Nb51DOMUVW6VNXdACz27Vnuh514WHfc5jAceDUn8xlNX4TG2aBQSe+XEjA6etYo/7CR6xLaK6EQVTNaZUUFbOeYmQRjwepmzK5fyP5gNK9upQsjgaG2l/WS0vjt9sakt89aAlDWIDaJCCimGVLp8EwPliw8oglodlpR0E6Gv/nuGOkfzt1KaAIlweCEokqYyf0hofXr/EmWrXPysBauO6qQVHXr/pTKa/dKW+XWOLhBteVkGWKm+A1+3T9PeXi6ncO3KV7uRreH/6Vs4QcjlRCGWGbNXKAnyoBoK22Ow4UGESo670+E2LttFoLq726pnB4BFob7xb7awYh8cyiPLQ2DVRab/HEnzBINpC20FQnOEdBypMwZAXx2/mtUlbeeqHDTQRvbxs+w0X5gzzezO28daUZF41MPKMKKry8pptGveIq+jYzN3o30MLaGvsiPp0acLHgDZXfLtyHxUxBAIkqfEM4jlqWVxhpZeP1fLpIYP6cM1vV/DQ4BkxnUNjxGhD3U6AloSyfFcPWoIsw4jFisMTSyYvGjRnc93euoOy3kDwkDvIldf6I7rHHSqbQ5ZlUvNiz8r2nrmDl3/drAe9Tdew82C93YOe/mFjvV2I9heFAk9C2Cuj1sSaeoRjrWCcr4wZ2KTtefoze9eXKymraTiTqD5M3pijdmEy3yPj3P2dGnjVEBAUpqwroKzf0TQ5NmWV8u/xm+odd1pjCmPp3ferMnVnPxp+XJ2pdz+sC3ZRZFd+5SHfv4YwMQ4H36zYy+o95tKpG4cui9qgZcZm6wDIoSK8O92hwBOFKaXBF5DwBoJ6t9V4IRQw7EDk2NHLZLROsPVEpTq3a6L8n6VAv/LXiiklyzL5vm0AiPbYujR71c/Q5te7R67kv2GsGYAXvkpilHMEwxxfxXTexJQ8fk8+QPM4B6N6XKRvb2ggQguWaExLY3KzyhtgvPNTejt+5jpxK83i7BwoM+uUTdmYw4QYS2q35ZbXqzE6emkGnd+b0yjBTyPqY/yPXZbBO1OVBNizhu7EA5PS2KoG35bW0yDmEiENAYnfk+vvZGucz5Nzy0nNq+C5nzbSqVcinXol8uu6bD1ZrGFvYRVr1bVj6qZcdhywTkJkF9dw/eClEfN1QxCNlW6FMpTxdLoQe9Jn2uZc+iWmMnLxHrbvL+e+0at5a0pyg68zHDkldQeCqr0BmgvVFMvN2KuWwp0kmP25cBkaDfFOZU2zWnMu67+I7p8s4DTDPZAOHP730eZbzTZv16LZYZ/zWMDxoNRfDP+ZsIU3pySzPtPsYJwnKobjK/bf2GphnB8u/JIfNv3IVFdf/mM3O17dP1nA3YegrxBus3j8QWRZtizne3XClpiyxXJAGeDrpLPwyA5L1hJETk45JTXsLaziie/MWgJ3i6t5wr6A/7Otpk9wpL59+MLdurEqCAIef5BhTsXosAmR12/8Tmd1VCafV2/swkWnhCibKbll7DhQzs4wh8xoTGzJLuW0d5Xs14v2Wfr2dpSyM69CL1Wo8PjJL/fwr4qxLHD15EpxJ1lSOwDsNcpEfchBKYPzefmni/Tvd95H83ln2jZ9n5EW/eFvO/TMYGNW1xVUesgsqsbr9bHG9Qqp7qc5qUbRTErJLftT9RGmb86lU69Edhwor7PswMqZjgZvQCJOXcS6iAd0gdiPw7TlNObInfJy3nZMZrBjjOX5fk8+EDHedhwox5OTzOuOaYxwjmoUUcdwaOfUXIzwgEY4rv1caeDQ0Gd23d5iXvx5E/eNXkXn9+Y09DItIdVW6KxUgJ/XZPKibRathUq6iPUbreHYkFnCy7aZbHG/yC3iBtM+LWPeRC2ZtUJptS8mx3lvPSyuf45dywUfz4/hiiPx6oQtEY0kvl25jxGLduullv6gWYjaWP5sxLAF6dz+xQqTblZ2cY0pw1tY6dX/V9MHtHJ2nv1pI8MWHnpAT8PBImW9XS911bc1V0teTmkVr297bWKkU1ofjAHXZw0BiHDR+MPVlKnrs/1h3V+Na204+0tSR63bU6Cew/rZe/bHDczdnk9xjEylcD0oK8iyzJuTk1mTURyTpiEoZVK3Dl9Oj3HrWJZeyANfrW7QPPJHacT0S0ylxzfr9PeSJJNVR/nmukZg/hrnDb8aXOwxbi39E3eSX+5pMBvLzJSK/N9d+ZV0/SBJL+GPI/RsPGyPbNKjHad3grX4TGMiTGNgWTGNtPkpXBO0U69Exe5r4DqnVd/9ui5b73Qafj0Ap+cq9vIZ4n6aYHasrXQlNZZ8ea3fVOLXUL1Y7X+Ttuczc6s5gFntDVAmKwGHy8U0sktqePCzSYxwfIlb/U3enprCu9O3YYXt+8tNQd67R67ksk8X1Wmjaxqp2v/tKag8pPK2JbsK9Ll+8sYcun2YZNoflGSe+WGDnvwdMDeNSRtzIsp4E5x2vXS4LnHya8Vkprr68oRtga699drELXw+z5o5GZ5ge/mXzSzYGUrQvDdjGzcMWcaegtD6dsOQZTyslu2/NSU5apOXzGJlDT+caoMaX4BP7d/wsu23eo89RWUydhZit2tq1N+m0uNvFIZUck4ZNw5ZykpDwP7yTyMbIviDMs2FaspJ4DX/KwCcK2TG9Blup9m+slofWgqhQOJ9/tkx2VzeQDCqPI3G8HOhrnuOxk/+Ho04HpT6iyFXLQP7flUmANWqhkVHQYmyt6ZCdRAax5OUUSbY3qt6Q8ZiAP5tCIZo2FMQmwigEeEZDlEQGJi0i9PejXQef08+wEu/KEb6Fwt3RzCa9OtVmVIenOTLrSzF7kCZwL5buY9Ve4rwByWuHrSEG8JK9qq9AYY6Q858t6JQmdDIJXs4UKY4WzZBwOs3G9QtMGfbjPNXy3gHN50kIVSatZV6z9zBnSNW8sLPm0zb//7ZYn0R/m5VJrIMu7NDi8RGxyU0E0LGjiTJ3Dx0GVcMWMSZHsWoiBe8bJG7ACDMeA5Q2BeHUie+wcIY1gz3aZtDi5DRidpfVhvqBtaIUY7L+i/ilmHL6eTbTUdBua7zqxVG1D0jV/HYt+vq+vcjAlmW2ZBZorNb7hyxku6fLIh6fKzOFYDPH8SNj8oW3YBQ+UM0LRtBtbRvEK0ZUWBegLOKq7lzxEqKZ7wT+sygYojllNQ0mkZCqBxDMZzrY0rllXvwBoK8OblhTv9zP20kaUf+Ieu/ZBZVRzyv/dJu50vHl/p7o3B8S2LLsmsQBIH1+0p40q7MLV87h5kCXnnlHnYeqKCk2tph376/nO6fLOD6IUst9ytZuNjG29bDKNnIKq62/JShC9J57idlPrv7y5Wm7rDDFqZzSb+FentqDXO3K/NilVf5ztXeANd8vsSkxXZp/4Vc0m8hV3y6iLUaA0yGA2W1nPn+3AjnKBaWgZUDXusLKoalX5nrFwUvwisrzJ6u7ZvWe85Y4AtKuB2KqVZXifHVg5ZE3KuGoLTaV2+2WcMQAzMvsrGHci8dfuUea/ctNa/C5KhqDlx9xFht/imrjR649waCfLdyH1XeANM25/LIOGvdNYCzO5ozzlr50s68Cv47cQsbs0obxJoyBgMywwK7WcWx613GirIaH0FJNmkvGuegHx2fAVBY5W1QQsMKRu0iLZCzOqOYcSv2ccWARXxoITVQF4wBPCvHrqfaiVdz0uPVAIjf0dRy7pyiOrVy2HphhMfwmRoDy7p8L7IEUDtuxe4ipKC5LHf9vhLemZoSdcwYu21e83loXgtn7r7jmKi/7iSYbT4rYWktYdo8zmHq9FzbwC6XBer1rdlbbAqWN3XbqfYGdZvxPGEvq/YU865jAvfY1nCTWHcnPkmSuevLlREJXICvDGVgHn+QTr0S+WaFuVrhqoFLeP6njdw0dLlpTo+GQFDSn//iKi9Pfb+Bf49X1pTPwyoD9hRUMiv5AIvSCnR/IRp8QUkP3EULrAOcoFYZnC9m8OFv21mWXsjMrQcYtcS65C1WG0nzH4y40bCOy7JMp16JjDSworRA7+6CKkufa8yyjIg5SsO0TUqSdMXGrfSwL+Ztx2Tqsw20pH5XMZfr3PVr82UWVfPRLGv26su/brbs/lgfhixIJ6Ow2iQHcLDCG3Gfg5JMc6oplxP0SpkxzuG0pZS2KPPk96syySuv1VlpGuIc5qCUlS2gMaXGB27kSnEnlfWwynNKauj6QZI+h2kYt3wvyTll+tyjBaVE5/Gg1FEHQRBsgiBsEQRhtvr+NEEQ1gmCsEcQhEmCIDjV7S71/R51f6c/87r/SIQPlhUqE0QbdG7Bz3/tU1mYWsDCnQ2Ppld4/KYSDi0olVyYDLtDjrXdokStoQh39gSIWMCMyC6pocobYNjCdNOCaDQwJUm59rsvOpUCWtAOa6PthZ830Xf2Th79Zh3nRdGkOafPPMrkBNO2HrZF+mstuyLJMtPXmLMmWoBEgyzLJG3Pw+MP4vaV8E3RYzC0G/x4Nx9cVb9zkxLmMA5wjANgTvAyLuhyCk0NGThPIKgbTHt9ofrqFKkzAIIU0LMkr00MBSuqvIGoC5oRs8L0W/YWVunlm0bR32iZ/cRteXXqkW3fX06nXonsKajinakp9E+0XuQ0Q9UXlGgXDF2TXJ5z2Hpnh4NZKXk8OGaNHkA2whsI0sRlN21rHhe9c2I4An4fdkGiptW5ADxyivJcRNOyaSsojmOC4OUf4nLWXx0Z1DHqxxRVKeV+19hCGVJ/VTHTN+dy9aAldP0gKWbHti5ov532uMTCRuj6QRK/bQ0FY2NxyOor9wjH6owi3VjIKKziusFLzaVdXsUQvN1mZjRpwb9WQmWdc1ivaSl07xtiIwmAIAdN47eDPnfIgMwdI1ZYlrOVVPu460slo5pVHPmbtKacXe4necY2N+r1NCaiJUKSc8rwByXS8ivJN5R4aI5pOFsrtQvxAAAgAElEQVRKcxRqfRJ7C6t0AevlFqzH/LCSkZV7ivAFpYiSs0/npJKaV0Hvmdv13/fLRbu5x8DwrfEFkSSZKm9AZzuc1TuJm4YuQwgoY9ne6hRcgjLWXKJynrzyWlqorKluHRoeqPIFJFqFabpEQ32i56XVvqiBq+sGL+XqQZFslPpgt5nHkKBq84gB5ZnTbJLbv1jBg2PW4PEHySyq1llYvoDEnG15UUtfNEZtqUXgNaekhrT8Ch4dt46+s3fys0UnzmZUm+yR28/twJYPb9bfLzKU5miBF2PW3RtQnOdoWX1jUOqdaWYn+trPl7IsvfCQ9J225Zbrmj/G/7+w7wJenbiFfxuc6koDC/Bam3INy9MLuWfkqjpF6QsqPHXqrRmDNyv3RI4vqxLc92ds441JW/k9+UBEsLenIchgxVYK/9w4wYcPBwFXS1NiLRx15bGM0hEOde7wh0VCvYGg7tQatTCNjm3TWuX3f/Ckck5rk8BDY9cwaWOOZUkeKCLXRsTh4XX7VDz7ogdMrxK3q2wp6y+0KatEF3V32UU9yBb+PevDpqwSvftqOK7s3BpPZSktBMXWO1VNbLVWy8f/Ju7kWVtIV0fTqH1vxjambMyhTPUPUtREjzEhlrgtj23qds1OsNIrmq/O/avCdAe35Zbz7I8bTOOhy/tzeUENQmk29yr1WQ1//m4aulz/vYqqvHUyt2Zs2a8zwcLj7v6gpH+vJihzvxY8+JdFMM7jD+rjUCMM6Ihiglg9AVojAOUalCMGz1cCQ4GgZNKV1ALimr2cklvGZ3PTIjpHzt2Wx7AF6QxfpJwnNytkz2S6H424hk69Evl5jfIdThBLyZTaA9DNXn8J37B527lJVH6rgCTzg0HzLzElj/tGr2pwYwC3ymYL/7+pm3K5d+RKPZkWkBSmVJncBC+h9XSD+2U2uF+ik5AHyPQdOIDHvjYz0eLDmFK+oMTbU5IZp3bB7STk8aRdsduc7c4gXvAydPYGvIEgL/68ic/mppnYkoBus83fkU8gKOnlsf3npHLvqFV6gNGlakqJx5lSRyVeA1IN7wcCw2RZ7gKUAs+o258BStXtw9Tj/idgdN7ceOks7KctZaZSrv/ap/PcTxtN9dOx4vyP5uslHGn5FciyYSLwhybM09SMz6IYdEM69UpkwJzQz5qWX8GW7NIIQ0OS5Xrrw+8L6wrSqVciF/ZdwC/rFGNVVrNdNpudArkF7YTI7lbhqKvGOlU6lfVSV173/RuAe2yrI44JSjIz1ioZmzXBswE4RTDfl605Zbw4fjN9Z+/k8hoDI2vfcm6x1f879fhmHT+tydTfy+pK97r/JRxNWtFWrEJb5jZlhb6z26AllC6fRPDMOwDULIk5yPnw12u4bvDSetvNX9rJ3CXihiHL9BIZLav+w6p9EdlsY8bdim0FsHRXge5oL0o9yCRV8yRcZ+alXzZx49DQfWweUM6XKbWnNZXM3BrpAP1N3MHgWZtNQdeMwipGLt4ds5CwLMv1OiBZUQJ72cVK5qTG6+NiYZeuPWYX656mx6/N0kugAl5l4fO26gpxrbi/9T66C7vJLrZmKmrlfQBDnWNot2EQzTEfu3x3yNENSqFnQ8OBnWt4Y3Koht7o2EYTLw1KMgt3HowaqPhhtTJeBQFW7ykiO0qg6zQhDwHr+/2P0aGxGO1zGhKTWrqrgB7j1vG1aohomeaVewyBAAO70W0oPXELyjhrSSX9Eo1LmBkTN+RQWuM3lbrZaouxCxIrgkqg8U5xHSISme5HedUWXaMquZ6gXFdR0bj70DHetL3C4z8sEfIqb4CNmSWWHRC7C7u5VozUWzBmrWVZCfxowtTanK+VbmvzRI0vwOuTtrJkV6H+uW9M3ho12xqQZFonKMbo9M37+a8h4L4rv5Lbv1jBT2uydDbSkAXp7Mwt5p+2JdgI8t6MbZz+3hzO7TOPLu/P1fXyckpqQQ1KPXv92fo57aqmUoUnwIUnt+Dsjs1Iy6+0LMmJhkqPnxpfkJYJsQWl+s7awdtTkrlyQCg5IsuynuDp/skCLu2/kIIKD5Ikc26febouTCx6YR6/oit2/0UnWe6v8PhB1ZcUg8o98QdDn7+7oIp7R67iOkNzEl8wyEu/bDbp11V5A5TVKGWnWmbd6vpS8yq4bfgKNqprWkmVmeEkIpHifo497if0bSe2jKOlVMIL8UsRw+YOLbhjZI5oQbyhUcTujcGAE1vERez/13frTbpP36/aR9L26B1ma3wBcktrdFbx4rQC7hlptmsSU5R570Xb7zSjmp0HKgjIyrjQGl3o11cHC/DRb9bx8q+bozIFexmCbLHqvvyyLpvpW/bz6oQt+rPudoh6sKVTr0QGJqVx49BlXCKkqc6gGZpDFocHr+BGdjXlMtF63OwtrNLZQ4GgxKgle0zPivG7aUGc8IDYrOTQNXgNxxttP1H9jKZUmxzgcCHtQFCy1E/qbf+Z1+zTOWHq3abteXIrXTqhl2Mi293P8qAtZLuszihiV34lb0zayv1fhXQvXQ7RlOTLK6+tV7dJg3G9DkdeuYeFa5TAxT6pPSeLhVwtpvA3mzIOH7Uv4gPHL8SjfNaNQ5fhD0r8ui6bt6em6POJxi45u7c5qXv3yJVs3riaT75Q2MSafVBpkSjU9k1VWTwv/bqJhakFEclRLYGhBbolGW4auqzekmbNlqwPkzfmmjpg/+u79Zzdex6SJHOCWoWi/bVCtw+T6DFOYeXHojsFynxnLOELR06p2SZ6daI12137PbQ5xzgfeANB/v3LZr5YtJtide40PnvR8OHMHZRUeWkpl1PQTtG9DdRW1FuB84/S7/jGOYRLhDTLOXBvUTXvz7AuCY0Gl/qchduI78/YTnJuOf83ahU/rckkEJQUphQJFmeBt+xTWODsyVfOL3jeZhYzd4XpzCWm5DFlUy79Vb91vHOAvi++pRKk27hzN5/NTSNpRz5jlmVwzedLyC2tYfLGHHJKapipPgdOu0jf2Tu58rPFJgLFveqcrzOlHJFry18Rx0xQShCEk4A7gW/U9wJwAzBVPeRH4P/U1/eq71H33yg0NCV+jMJoIH3uGMsi19vMcb2rd2HTEC5sbMTkDTlc8ekifYIpqvJGTDZztuVx2/AVyILZmBnsfxCAK0RlAftpTShzaVWWpS06Y5fvJWl7Hg9/vYbbhq/gvtGrI8SLM4ur69Wv2W2grBqv+f0Z28kpqUEOqAPc7qRAbhm1fC9WJAi1VMtuZkhXUd2kE1VyZDTbH5S5s4uSKZ8avAa/bON1+zT2uB6jmRoA0IyofYXVNAmYA2Xx1TkR57xB3MxZgjkr3HvmjpAGj+xkv9xayQi0OZMmVOtsuce/DWVKmgghIybl9N8Y2MbYmQIyi2u4WC0t275fCfrUJzBv85SR6e7BKMdwfZv2HGhZ9Y9m7aS81s+pQr7+LBq73uw8UGHZJbK/waE3juhf12dz+xcrWLWniI9+38GcbfnsNWSV4mXl9X65jV7KasQ79glMcPbnvPVvc8HH85m8IYfUvApuHLKMwfPTYzZe+iemcsb7cy2z0xpd3dgRyghNRPEecTXTXB/zkG0poGSjL+m3wHL85JTU8MFv2/WSzqBPeZ4EVwIktMG28zdmuPpwl2gt4t5GKMfnNDsx4Sy+F37epGtvGQN/mvNzvhDJ/PH4g2zKKmXyxhw6vzeHfLWjoCzLfLFwN5/OSeXZnzYyZ5u1c6Z9jigIJh0VIy4TUlniepN97scY6hgdsd94t4KSTEGFJ0JANBybskqjOmjad9AMYq10wmd0cApDjtPNakZQQNLHXishupFpZdD5gxIrVylGYrp8MgDvOiboVPE3HFP1Y/9rn8oIx5c6K8Qq+ClJMs/+uIH5O/L51flpxP6Hxq7h/I/m88i4tZRU+0xdMY3nqAuvTdjCA2PWcFn/UGDEH5TxBiRGx/clq/P4iA5WRk2NWn+Q+w0BxQfVDkVn9U7izhEr9Tkk3Nn2BSSmb97PuChMNI8/aNJWM7LqjPo7Uzbm6L/Fg7ZlDHSM4137rxGMEmMgraZKHXfOkH6UqzbEwOnYPI4mqmD3mGUZfD4vjckbcpi2KZfbhi9nY2ZkEF7T4QNoFWNQqsITYMqmXL2D59yUA9z23hjOes+sD5Jf4cEXlKjyBqKWBxufx8ziagorvfxz7Bou+Hi+qQw7zmFDkpSA4VPfb0AUVKaUT3nW/UGJBakHuU9cQWdhP7sOmseA0fHXAopXD1zMhX0XkLgtjybU8JZ9Ek5vCZ/OSTV13XOEOQvGpNyrtunsdT+mv+8sKLo5953fDoZ05V3pa+4So7NWCiuVEhDt+lxhJRxFVd6ITlfTVfHoi4R0fnIM0BMLy9MLkSSZ8ho/H8/ayYvjzSX4Gu7+ciVn957HVQOX6PffEwhaMiGvEFPp5ZjIJ47veXLccuzqfW8rlHOzGAqCWTW2Wbu3mF7TUshSHblo7LnfwpI36QfD5y+zWR0+h2nnvUNewXb3szxmU7RevlqaQbtgPlNdfVnqejPiczW7MB4vXtENNpfaKTly7rlhyDLd7l2WXsjn83bRc2oyd45Ywbbccr5dGWJFaixLf1BiU1aJXh5nYtMbPsL42wZVd6mJVEmB4X4ZO9H1T9xJl/fnctmnoblPw4WigRFkuE82JFZJ55CrdssFuM2gHdhj3DpuHb5cf7Y0uOw2k6bUjgMVlp+rfQ8t2HlO7yRL5qyGlNxyCnOUMZYjK8Gyn52fRRynJZ7LavwmRr1WMler2jtWuGj27fzkVLgC5bV+soqrLRuSaHbUoCRlXS2qVH6nCk+AZ3/cYEp6P/vjBhNr+VAkQ+pCr+nbGL82i9zSGlarSRu/JOn20kXiHk5XtZUuFPbwht1c/rY+s6RBsimvTtjCTUOX03umdYmssQP4z2uzmLMtn9vE9VwoKPcgr9zDK79u1ucvzZ8yJjmNCWaNIXhKWMdLJ9bJiiv7JeIQgtS4FdHwDxy/ML2O5gqSJHNtkVKq2kyoiarTZVVBANYlc+W1fl2jancdv3fvmTuorq4hXvByxdmnWx5zlpDFGaJy/Z3DtD8Hz083BaLDtdSCakKAO4dy3cXnAdDcfzCCFXfVwCX0nJrC1YOW6PbEnG35un80yFBuqjX50YgDx5lSRx+GAz1BT221BsrkEFUnFzhRfX0ikAOg7i9XjzdBEITnBUHYKAjCxsLCumnvxwqMVNlrRSXLpZXo5Mst+a/vJaDubgk9p6WQX+Gh1h/kQFktl/RbGEGxjVaPvVHuSq7chitFxdA1lhP0mp6iD+zfkw/w3cp9ponmxfGbQ/ofECE8+PaUUNZOQGKUYzhXi9FrzsMzWKU1Pl1TCpuDv194Dk2FWj3jA0pm7uwYxe8AEvBQTRwg4G16in6vjbhjxAoeK/oCgLu6n0KqfArdxBzsgsQ1ojK5aTTloCSTIFVSLTaDNmcC4Co134cm1PCdczBzXe/yH9t00z4tUBMveKiR3bRv5oJ2ZwHwNzGVZpgdVSMrRnZUMyFvJVz3HhBajIqrfREZuIIKD516JUbUXgN0q1aCCHfa1nOVaJ68HTZRX5g7UMwy1xusd73ET44B5JaErmXIgnQu7rfQ1HERzI6oYDCIMwqU7zVnW56JEqwhTqqmUo7j77YddBVzsdWGnrO0/ApdB+1W20ZApue0FG7/IrYWt0Zoi4tVG2LNkSuJImo+bXMu3YRszhKVcxjHaFGVT3cgNPiDkm6Y5JV5KKjwsDtXGW+iIx5coVKhc8VMvnCMNHUIAWgrlFGr6k9puMsWGcB67Nt1pB+sJD0zlC1sK5RTJLS0bNvd7cMk7v9qNSMWKc/uFQMWMWlDNtv2lzNsYbruKIRn+8AsBFtXLuEcMVN//Q9b3UHDgCRz2aeLTLpw/qAUIZ58/1er+ej3HZbsLuMWSZJZkGrOzu4vq2XijFDHyzNE5fduQzlONXivZVPX7yuJCFwaHQUt879g50G6Cco9XyyFWgIvcr1t+t+7xdX81z6de2xr6K4apVbaDdW+AAtTC3g+TJdO60Jj1CzalV/JvaNWcc/IVSbnQgtmvD5pKyXVPnJLa9iUVcKT36+npNrHdovOQPvLalm/r4TEJgkU2204WmyIOEbD71sPmAIXWtmcxy+xM69CN1propSrGB01IzwBKSrjzojpW/brAfiW6vz4rH0uzaniVCEfK8bpjA3KPRcdcfD31wBIKA7NfR2bu2lqKMsdtSSDntNSeHNKMmn5lTwwZo3uIMuyTH65h4FJIQP12jPbWl7rM7ZEMt099ICLEd37zid96kfMc/Vil/tJHv0mFIDpl5hq0iQKn8dnbMml6wdJernI4rQC/m/UKpP2mtYVzyYKnP7eHD6cuZ1NWaU6+8helYsTP/6gRJ/ftjPM+VXEcwtmEeGX1VLMUnVcLk8v5BnbXF6xz+Q1+zS+Xr7X1AEpXNDXmMgyBmxBKY0CEEoz9W2v26dEXI+GS/sv5JVft+g2y76iaj74LfSb3jJsOdcPXkppmP6UCx/TXR9xjW2b7qSCYgeEHxuObQZGrqbnVF8QuIuwP4Lx/X+G+fD2LyKTSA9/vZaJG3L0+2Vkt5bX+qOyDcM7sIES8Lhv9CpW7i6K0PBx2kUCQYlHRCWxdZct9AyeY7Cz2mG+/lD5nhefGEdV5zsQBVkvlQqH9rxoLNR5Ow6y40AFnyWlmoITGuNh6IJ07v9qDZ/NTaOw0stiQwmnkY2viW9DiH3eOorkA8C4Ffsst9sImtfJamW+LavxkUAt1cThkUOB5xttWzhfsNYk0uC0iZadl61wy7DlnN17HnO35etabnXhZHU9mC9dEvWY1+zTmOr8iF2uf0VNLlnBKiF+7edLLY/VngPNDNDGxP1frWZhaoGJgbgwtaBRhLPrwge/becqg+5hUJLpKBQTEJSk82LXWwD85urNq/bf9JJHDVYyBMbkqRWMif1oULTdZMY4h/ObqzcA/RJ3MjslT7c7NdvZYRMISjJ9Z+1kh4VmbHuhlNnBy1kSvABAD3KFQ5MUkFyhpOaitIOMXrqHjMIq8ss9Jv/vU0M1TDchJyqLbWOWeS4or/XTqVciZ7w/l9/CArMXfDzfVH5dF+Ra5bzt23VgyVvXUXLZW/q+acGr6SyGbOP7bSuwEWSSsy/3iEqC7Jw+1jIuAMul85UXFz9Fk04XA3BhPePXCsb5RoPGlHLHxUfs+yvimAhKCYJwF1Agy7J1eukQIcvy17IsXyLL8iVt21obfccabjm7g96edK/c0bRPQuDyK68D4Ewhkn0Tjgv7LuDKzxTx8tFL9sSkJ3TROWezVerC2ULkRDp5Yy7n9JnHjC25vDphC31n72xQG9tigzO/z/0Yd9rWMyRK1zCIpGj3GLeO1enK4imINrqerNAsV7leRXM0PnV8yxzXexGtQqOhiVCrs6OkhHa0jcK8KlGNpuuvvYEmp1+ub9cc62S97lkiPlhJra0pvLIBznuIJlXmzL8xk/GmY6qpY4tWS98ED4KrCYvfvA7anQPACOdI1rle1o8VkDhBKObXwPVc4jG0I26taEsZmVjhpZ6aQ/bDqkz2FFSZ2BRtfKGFQ6G1hn6HkmqfLlR/rvrdmws1XGPbRnt/pEGRGrZoRmsXvEFlGuSVW9PX4+UaKonTS6A2bws5F3cNX4JXDuk21SfkWSdU48kflNhXVK1ncGVZ5v0Z9YvCJrl68YJdCQA8Y5+ri9aCEiT4ZsVe7hut0Hr7J6bqDl1+hYfLPl3EpNVKhlN0xcGDP8IjE9klduZ5eyL32lYz2fkxdgL82/Y7L9lm0oZypKYdyJTaU6saxa/YZ1pe22PfrEMsMH+HvGDzOtmGRj2gvrN2Rvx+4aVMlR5/VHr741ecyu3ndtDftxZiF+G3MlY3WLBTQCmh6/zeHPxBidJqH516JbIsvVDX5RJF+GF1JmOXKeMyNa+ClNwyXv5lM90968mQOpIqncx5guKgdFAdxoCjKZc4MgGFkfS5Wg6UV17LR7/vsLzGiRtydLHf9dJZUb9fT/sk/XU0Ntby9EKDeKbZMVjpei3i+GjlXL6gRP/EnczYsp+Ri/dw1cAl3P/VGpbuKuTuL1diqyOQqM0EN3SNvt6mWZQHGzVgNPZFNIaPw2b9+Vuy6y/V1qAFBXs6Qvc12f08y1xv8J3j84jjtWym4IyDVqFMbHtKcOPlvNJFdXZIBGUs/GfCFsat2MsVAxaZRI4v7dQq4vg4PHzo+AWAwY6xEftLa/zcTCgIsH5PKICzfl+JXqImgN7ZCRRHa8zSvfiCkqnle3iCQNPZ0H6H8WuzaUqNXk4rS37OFZTEU1Vl6N6Hl9tuzirlTftkLhXS2FtYZQqWzd2UzusOJdDb2uK5Dm9Jr82HVo7vpWIaJ1IIk0OlfKeJCoMrGhbsPGias8avzWbKxhzS8iv05IKReQywy/2k/vpF+yz+riZm0vIryTAwNXflVxIISlG1gLQEnVHTzyi4qyV8RCTaqmXYqZLCpmxmsAlKa/zsKagyfU5ddQMXfDyfCwy6djeJm/T7GU70EARFs2ZLdhmPfbsuInnpsAnU+IMUyAoD+wox5Ji2Mczfl4rmYFbAwJQK2uJo1VqZ91sI1Tx4ajUdMQdRo3VLtIkiF5wccprd6v0zBrT/8dUqnfkC0KF5iJFgTIzGq6zyE2VrJzg/iu0Bih6TkZWeuFwZb6//uo4EwUuZ3ITX/K+wMNidrZIyf0x09ot6PltcJoVNhlPtja2xQSzBeCPaCaV4ZAfjgzeZtnf3jEG+7l0AbrFt4hIxHZfgx4Z2P2XDa2sYO7UZS9ytUO0L8sbkrboGaqxBuHCMcHzJQ7aG6+XVh/2ltbQTyshqd4O+baD9a/31qWEyHd7MdcxyvsdjtgU8d55ZO7Q+KPNm9AC1ccxfLOyK8H9+UQMeNlFgU1Yp363aZ9k9sblQRbnchE8Dip5UtLJEXePN1Yxp3IAkC8zZlsegpF3cOGQZ/xi9in99tx5Zlpm8MYefV4bGeE/HJB5UKwHqw3iDTuB/J21lVvIBfAGJfWMeJtPdg0x3D51Y0Ms+geujNO2RaxU7VY5ryWltEmh1x4ckXjuLKzxfkqXqYhlxn20ll4tpjHCO1CtaoqGlUEmp6yTFOIxvRYbUke5i/cLvscAl+PDLNtwuV6Oc72jHMRGUAv4O3CMIQiYwEaVs7wughSAI2sg+CdC84f3AyQDq/ubAoYtkHEN4tN1eprr68rwtEXvY4tDCIfHPW6/HJ9voJpqDUtnFNaTkllFY6eVsIZPXbNPwGUQeq31Bkw5ENPR88Hpqm3biJKEw6uJkLNWor1uQgMQFUSL1AO2EMp6yzeVpC7He8JbDVd4AE9apAR7RAWfdAyitPDsLBxh0//n8TS07PFWILfMTYkqB0LQDJwglOmXfiGSpM5XEQ7uzOP2Ca/Tt/7bPMmUJN2eX4fRXUGtXOwS1OROhPJfnrwhNmu/bfzGde5AjtAgWqXXh8YKHoCOBBJcdEloTUHoAECeEjPW2lOMSAuyUO5HQ2hDAPKE7ADe3CxmNKWHdyTSR1aAsc9PQZdwzchW7VXZDB7/52fo/0ayHoaFNGKvsv/ZpfGL/jgdsy4jDgwsfB1VdmvIaPwOT0kzMFqNhrWWYF1tkTW4VN3BHYBHlchOGB+4HoDA/FAA4U8jVxQRBcV5igVUGWyNpePwS1w9eqmf+rbKTrSlnofMtneUQrm8CimitVgr74vhN9EtMZUu2srha6f5oLbRtzgRocTJ0vZ2ttvP0/W2FCva4n+Adx0R6OiYpAaWEdtwvDOFJX6ijnhXzoqDSS01ByEDIcHajQG5J+zp02YyZQUmuv8vZ65O2mvQujExKl13kvJNCDkYbypEdCeyUTgWU+2mE0VH5wKJLVLyzbqNwV36lrsv0r+/W6/oBE9bnmBgNoHRy3JpTRluhjNXSOeyQT+MclfGWoDojtW3Oo7VUpDt4W7LKGL82i78NWMwPqzNNDpBx6ooTvHhkB37s3OINySNWyErm7CIhnW3yafr2FobWxEq2XbkPT3y3Xnfam6qMg58DIadjkrMvme4eugG2Kcs6aFdS5WPCemWMy2FG8v6yWr10LBxGB6S1L3pG24rpaCXU7wtIOkPCCE34NRwRArN1wF+HCPMNtkhhY33cueLBFmI8XCnu4EX7LK7f/g6Xeq1LaI2YlXzAUni6Y4uQo9yWMkY7hnOfLTSvxkVx7krVtu7a/1khPHv//ap9ESV2VvibvDVCD+he2yr9iZCBu21rqPIGTc9k+Pq1cPMu/mP/jV+d/QFM3WWNOkJWZdfh0JzWM4TI5+su2zpmtxoOhWpgpLtS2nebLTprz3hODW9PTYnakj0c99lW8YtzgN5t1xjYu3X4crq8P5ezeifRZ+b2iHIj7b2RGWZkCr9s/x1QtI6aqaLUW8/vAx3O44KW5jF409BlnNU7SX9vFTiWZdn0XZfuKqCzsJ9vnEP0QFu4sHlhpdcURAyH0y5y36hVYQFF5QkxOtGjnCNM9qIW/IoXvATtcdibK/bJOcI+Pj/4HGvc/4n6mUbYRSFqFzQNOSXmYOsDF53Ey9d3jvwuql3XsnhzhO7iw1+v4YoB1qVzEGKiDvE/AEDSynWk5VdQXKCMn1NOPpk9ttN51v+2vg4HwtwzN17uENcCMu4TJuOxp+Mp3URP+0RToLf3zO1RdS1j7fzWBA+VagXAbd7PyJA68pzvDUpphnDpsxHHL3YqJZif2L8nw/04XYVIxocGI2NMSWjJERqrRtRVEhYLWlLBPbY1DFKb/zQmHv56Lc2oxuMOJVn+aV+qv57u+sjElhz7w/ecJ2bSz/E9L2W/EfPntKKCBc6eZLofjeoPGe3WF+yzLdn6oFQrfL082piQaUE1ZSTQ5193Uis7ecS+2DLIr7EWBXcz0qWTEAWlu50GzQ7wBiR6TtITpOsAACAASURBVE3R5Qw03CJG18rt1CtRT2gmhImMa4mb0/JDPt8050e8ZZ/Ei/ZZfO+MTBoBLN+m3DchLmRD3nHd1Qx6+nZkZyQL6UlbiBnV1WI9USDTlBquEbdR3CyUNEyWO3OzbVOdMjmxwoUfL7E3OzrWcUwEpWRZfleW5ZNkWe4EPAwslmX5UWAJ8IB62L8ALcX/u/oedf9iuSHFvMcwmlRlAoruyLmG8haA+B4/IjqclMefaspWgNKy9p6Rq7hm0BL6Ob7jdcc0HrVFW2Sj3EpXM3DGU2xrjU2QuVtcoy6iZmzIDDmx9bUZf9o2l5mu3lwuKIakjWDEQO/j+Jnejp8jMrBWAQqHZviIDmgWCsQscr3NPflf6ob7aTEEpQQkmggeqlAcBkHNkL9r/zXi2Hi81KrHcZKZEv1mWAlBC6EKW4IqFt7mDMAc6LlczTa+4Puveq2RTkwTPPhsoYm2yh0KaglINKWGla5XAciV25o7vjVRdATODOyqt4uiMcB487Dl1PqCxHvNLLMLROsFMNxJutu2lsftCxnsGEuq+2l2uZ+k9exnmLwhhzu/XGFqJwzUaQwb8bnKImgmVJMttyMoC1wkhgx9jVnyiO998uWWdIpiIGUX17BPZQvO3Lqf09+bE9FpTisp1Lr7LU4rYMeBckotSvZusm2mi3iAAY5vAHMp5Z7TH0OyK7/fjRbMrR7j1lJiUQqiCWrb3CExxxsuOS/iuNDxfpzN27Psvdv5+t3nIUH57aNleVoa7tXgdp+qzQLKcOEjjshgxCRnX/rZvwWUAEatL9JYnrEllyW7CsgorGJhqjJmW1DJStertCgPsWFEUTCxd1oLFcitTqNv4HGAiPmuLsxOUcqH68KajGI+isLGmbFlv0XQXaYZNZSTwF6pA+2EMl6y/aazaPwtFUdHC+KtzyyxDJYB7DCUwCXgoQYXz19zOunyyVTHnQCEyvmmuz6iBjclagBioGMcj9kWkOnuwe+uD01B4dS8Ss4XMmiv6mBsks4kMXgZAJerRm2K+3lOEQ5GLUV5aGwouBJLoKe7sBs3Xk4X8vSC27jqhjkaF/dbaLm9oQyAWPH71v2ATK3sZFzgjoj92rr2kG0JN4mbdBaE6G6mHyPZXFxt26YHjLp6rbuEhiM5LAHQpusgXlvwT/39p02ncodtvWmd6SbmWLKfTxPz9OciVv3Efomp/F3cxveOgVGbCNwobmK4/5MIPaCThQIkNeAhA0/Z5zFi0W5Tl9tn7XMx2hDNDyrl3jW4CMoyraigpVr2opVMlcvxnCfs1QOmpwgH+cbxeUQGW+soFtGpraUStG1ZY3imbx+kntta+FbDfyZEZt6DkkybJtaZa01w3Iit7hcQkCio8HKKcJBk17N0MTg6P67J4vmfG9Z4RgtKl5NAM9VB9NibwRm30qxiD7//X/TMupXD+vGsnZz5QcjRe/L7DaZyuRZU6mwLBTKtKTfNE6cJeaakXEGFl4zCaloZyphaqgG6ZkI1Xjlkd6xyvarbdho7LR4PsiMBTr8Wvz2BZ+1zot8QC9gtSnnPPbGZxZHK9wGFTfX3Lm1Me1z4sBnGQrL7ef0ZBUyyE0Y8bFvMWxfbmO76CICtchdAKY+7bfgKXUagxtaCaf9WBKPPPO1U5Bt60yxMWuIt+2RGO0fwkm0morr2XLKpFy/Zf6fP30NB65/WZLF0VzjTX0ZEiql0DzSt1DgWvXktafIp3OgbwgKtlC+hDbtb32A6/lSxgHOETB63K/P0aMcXdBWyicNDFyGX/9imk+nuwev2KXpXP4AXbLPJdD/KctfrfOcYxFO2uXQXzF0L64ILn+nZAnjSlkSmu4f++8TCqBaQeN8+nk5CHnOdvehlYcNbobTaQ4LgJafawT/FwQwP/CPimMWutxjhUETdjd+9pTd6YkaxjTVh/Ro2u1+ki6pz9JlqLzajmids83Dhowk1fOL4nly5DaVyE26xbSKan5aWX6naWTKP2+brTM7/E1eS6X4UhxDkxu5duarbSayVz+ZyMY1d7icjEpVNBWVuEOOacfppynOt2TZuvHztGMJd4hqdlXhOmH1WlzA8wCX9FnLlgEXssdABnb7ZfO/OErNNDP9nbJHzREmxMiYEdygoJQgC15zZltTWt+rbklWmotGe7OP4Cav7Odgxlm3uZ2km1JDXMTQmtEDkO/aJXCdu5S37JK4zMLiaUWWaP+qCCz8eYtOU/CvgmAhK1YF3gDcEQdiDohn1rbr9W6C1uv0NoNefdH1/OOJrzBPHr7Z7Aci4tA+cfh0ALX153GLbRKa7BxSZnc9af5BOakCmv+M7wgfizeJGMt2PmjLqOtTOduWiElAZ7hzNaOcIMt099DagYGZHvT01hVOEg1FpvGeLihE0zjmYROe7ZLgfZ6RjhPI53f5pOvYsIZt37BN049zYQUeD5kgKNtUYui/EMnJvGotNUL5vP8f3vGqbzi1iZBb1H+JyJjn7qsKbUK2V752t6OzfY1sd4bDGCx48gmokqlpRGv5pX8prtpAWTRtbDc52bfAFfdC2q7LNk00TahhgH4ddkPgpcDPzpMsokZtQRWRXhng8+MXQ9qxWV4XOTzk3ipt1nZscua2uDwKAU3FibqmepZcFxRrx/2F1Jm0pY0PCdWx8Ip1q2YUQZXHU9Lce873LvKC1dsFttg2Mmj4fb2lkSZcxuGmF52yzledUdVCSgpdRSEt2yydxtpDJzeJGugi5enanWG7GRqmrruGjIR4Pme4enPJlRxxfns+GvQVM2agsivvCSlq1BLQxeHLniJURrekBWqnG+WVq6YKx7CqnxWWIH+Sxp+llPGefw1O2ubxun6o7iaszii1ZhpoDbHeFHK22bSOpyUYktD6RIk8u1828luxnFaekf8JkS4e0lVBJEBtrpLPx2ZtR6e5IW6Gcna6nSHU/rdbfK7/3TOcHXC6m8Zh9Ec2pwuOXItiLAK9PSuap7zeYhDsvE9M4SSjib1mh8SkAl6llTIMfvIC/d5AQm7TjgdtvAzA5efXhlV+31NsFp/+cVDKjCMJeJqSS4X6cLxwj9W0tqcQuSFTI8WTLyj3v6ZisB6WkZork4Sf2703nisfDo7aF2AngwkdTakyir/GClxrcvHfHWWR+dicJZysG1NeBu/RjHrAt56Ac6nrZzxH6jJ6OifrrV79bzO+uDxnrHAbAOaefzNfcH/H9nrDNj9imocDiubtdXEcv+4SI7SdQxAxXH/o7vuVcMeS82v2xl17+GfhxTRatqSBO8JErt+UMz09c6BnLo/FKgHu0cwRtKWOQYxzfOIfoJdT2OENQKqE9V4nbdVZae9Haca0Lb9/aFa9YwvbKvTrb4ma/UlIfj4d9UnukuxWHR2NUaojDwwlCCevUss8Bjm9IoJYWVEawCsPxlWM419uS9bKwcHzrHKK/Nq4NzanWGR5y045UyHHE1+bznN0seHyBkME/xOW86Zim2xvNhRra+XLY7H6RLe4XOUvI0nVLvgzch1MI6uzDHrbF3GTbwlO2eXQRctnl+peJQZCgOvPyHUOQX90KzyyI/BJOZY58yL4swrE1IlrJuJFs1IFitj3koY/9R+yCxNKTXog4/i37ZH5ZspnlrtdpLtRwt82csKtPW8YIxRFVnqsThSKaqmucx5YA7ZVy/fOT7lf1YMzr72q1xD8cVgxFY3BvgettBCS6CdmcQBGv2aazyf1vvZtmNyGbJa43GeL4ijvVoO2anfsQkWglVFIoK2NDK2duSSUVJCDFtda373I/yQf2nzlDyOV04QAtqcLepBXYHFR0vJJLxRALso29luvESBvPiPk7wxJMsswr159R5/+AIiIOYCfAYMcYU0mmhmjJKw0XCnv4zPENz1eO0rdtkbpQJDfTx3J8UAnWVtubc+6JzZn0/BWMe+IShJYK+/dOwzPyd1WntadjMs1V5qGtWkniXNbKzPYKj8X9xzaDve7H6LjygzqvWYNSAeCmc9smpu1971WeraL4EJNM6xw4yvGFvq2zmMc8Vy+GOb5ioasnb6r6bveJK+mq2uc+2caj9lDi+wbbVvo4fmaGq0/UYDjANWIyHdTClynOj9nsftG0/yPHTwDMcn0AyHoZPViLdj9tm8sYx3Ces89hqetNzhKzedE+my8dIzg7vlxflwE6CXn0t3+rJ2u1eb91mzaMeuMJfjEwjzWpCIB7VJ1Oo7yHLDos2fGdhf1scL/E707l+k8UzONVazAz0jGCvo4fmeN8l7+JOzlBKKGX/zmWqMmqLoKSWImWWL5TXMcnjh/4xTmA9pTwniMUiOvYQUl8XXbB+fq2cD3AEFOqOQ9cfykQCkq9YJvNLbZNjHR+SU2lsoa0E0rJlduQIymssnPELNpRyvhLMrhYUGzgPvYf+dbxOdqcdaDcw/i1kay7rMLQurQw2D1iv9JR2DzvaWuJ4I4MSn/+1C280+Eb1kndeN73Bn7VV5sYuA5QAlTv2X+lLaU8ZlvAbeJ6LhdSecAW0usT23TRX08KKgGqp+1J/OAcxCv2mfygMrhsBElxP896g5SK1XOgwY3vOFPqaIYsy0tlWb5Lfb1XluXLZFnuIsvyg7Ise9XtHvV9F3W/dTuevyAkVwu9nAVgdftHuNAzlpzOj+rbUs8K6YfsSxrBhBUhY9aNl1YGqn24UN8451D9dYr7efOH36s4aEXNzyUcVuV1IDPH+S7LXa+T5n7KMnKs6dw0E2p1g/Rmm8IckbvdYzp2jus9/m2fxXxXqAxJW0xOEgqY6vyI88UM7j+hA6trVOOmrTlAZMQbjql87RzGxcIunrEl0kXIxYWPoc4xXC6mMcv1PoBevteseUu+Eh6ijVDBROcnpnPF4aVW68wnCARUFtPKoLLIv+6YpjOemlHN9bVbeXPZm6o+iUCXspXcblvPI3alLl5bmGrPvIdLxXQet83HjVdfdBMED357KDCx+vTXeM//DKBk6YzdJQ7Irel91zmhixUE6K6wT563K0K6u9xPkuh8lxvFumXdBial0V4opVOnzniCNnLlthHd3DS0FcrYLZ3INx+/zcv+V037jBnUZa432OB+mbrq6SPOTSnvGxbZfLklnwUe4cKTW7BHPoGbbZsZ5xxKkrMXzdXsVbmcQJp0MqeKBSSoC+5t4np1cVdwklCE64db9DK0zdmlrDOIBGu2YLgej9ZBzIh3DMGC7sJuuqjZlbGBO9nd7G8AZDRVgnV9HEo76ZnOD3nHwvnXEGfUttFgyAxpGNjNIAKc0I5Ze2cRkALMyVYynS5fKcv+lsy7rikmp/NkoYAKV3tAwO2w8fCDPQD0YO4I50hess1kgH0cF4ihabe3aihaBYqtoOkomTTaBLjxrPak9r2NBy4+iXh/CSS05fruyhj+0PELwxyj1IB57A4eKPf/RGJvdnGzTRkH9/4/e+8d3cS5tfH+pqi49wbG2MamGTDY9F5N7yX03iHUQGihBEggCYQAAdIoIRBCKhAILbRA6JDQIRQHQu/dqnP/GGkkWTJwvu9b6957znnW8lqWNJoZSTPvu99nP/vZ0u9kGzuSJFynrGPBdMM/1YMgciobCVIDvRqSZ3OG7tImpusW00/6mbPG7hw3epZH+GHimeKmemg4ky7mMZxSEj22K6y/R5ZpJoftnosu95JipwI03hHotq+WxpqprqD+qF0NrMqI54nhnsdvX0q4wFh5BcWCPQlqATsL9R/RX17nlVzY6BiLSwmXPMp1BOurtS7/fxPOxcBVJRILMg8IolvjmloJzkHjQG3bUuJFbIqAZHAt4sSQOKKFB3SUVRIp4eoG2kvb/qVzCNa7xrwtQVNwHwMlQeEWYYhlOvFI8aO/vI58uBYwzkXzbruqlCwmXuaksRd/GPtx2DiAbGNHftK/pe0zCpdJudkRBHeXfZu7Or2LABqKLk+lUOEpVscoaI8rTbDwnL3G12noKJFzdufNEP9itn4Rr0vfewT26xim/f+6/CNz9eqCfq+9OAADJLVk7YFD3VRWPMt4eQUGwcIwWU3sSNh4U1bHViG5JkJ4EgS6eZi1WQz9PH2kjhj7k23s+MKyI08oJFlcyt19xtcJWtuTHo7v67p/UaZHz6K9eQLf2dRy/UHyWo66LaCdc/i/ivbSNmbpFiIKCnd1seQX7mrKR5MUAIUbaNv+ZJjIDNlVttRr6cFcaqcXw/2ejRIeccnYmY2GMfxuHKJ5fXWX1LLAko7xvpm0l4/1cwnhCceNvXlLXk4YjzllTwSgt7yBOO7SXt5BthID/feQLbqup97yL2wxjGab4Q2uBDxmmVGdAyJSK3qc2055EEv175Eh+C7X9YkpoQTk6e3mrL1/gFGnLo2KCZc9rk93GN2sEIoIl70SkbUdcar+qqoE/NZanfGtKnBDCae9tB0RuxZfP5HVa6FCcgQhfjoo2hiA93Wfkm3sSD3xEMVE1+9mdHTTFhwFIFE2z7lr8R5PlauTFOoq+yBnfSCQHOyO5OSuUbW055uXVhMr9yWVSHzffzitzVMASBTV8eaE43cG79LYBPE2PWX1ejmvxOd5/LriERqL+8g2dqSpI9E1S7eAGuKffKmfyT7j64yQV1PKkehwzlPuyrJ44Q6dpa18qHf5pboTPMnCNUTsTNQtdzS48URTaR8b7AM4b+zKWWN3/Mlhpu4zOsm/skWvEjTO2DGzSBJh/npuE0pSzldYX/+TLpaxHvvrI/1MS2kPDxV/VsWORLBbiOUeMlYW6OYwQ/4UAbtG/pQSL5Ft7ERnyfM3u416rVSXVIVTIfG6ZoXRo0UDfrSpCegQnvK2vJQzhu4e34sTH+vnav/vNw72UNLqHJ08A8p18niPu9eukwgvXywRKVj1fBssq11enWMDwLyvVgMQw31uKmF0tIzjksPD6YBxEFVPvMVs3ULiuEsPeRN1pKN0cfvMvtaFzgYkEy3dGGkZoD1/yO5az02RlxLJQ42MCnQqu3zEw2EBemb0a8Nr5oncJJxfavzEF9aG3Kw6DVOQup7uK6/noHEQ03RLWKSfwzcGzzVe4RLltP+HjJqKOSCf13GaiXvoL6lNlXSCjVriUdpKOzhv6MIc3XytS3YN8U/NL6utvMvD8/bfHf+/I6X+ixcjtfVEvslcSZWcj2htmkRmWlEeEESBCBdBEVZnKBVz1Oxq0vlltNhawzHwQ7qjvbszq5UqXmW8/NWrGX+XVIP1ng2reL1UWTpFknCd0fIqftaPo5G4jybiPoqLLo+ao8b+9JfWUsAtA+XuRZEbfmn183wtgoekCdmcNXbnsKEfVcUTlBXPMVK/knMGPYvvOErmIryzZu4+KwDfG6bwlm4F83TzGS67FvNOnwSn0bleFhnQtikA5cRzDJW+1xaDfph5ZHcNLPLIkzD8JO/7u+rKtxtGMlVeTKBjwN1xZQfIBkCh+N3NvO/mHSUJdkY3KEL+FqoZ5lTdUs4Ye3DO2I0AnhNADibBRUzYRR377WqXtYLCTeqJh7lsj6KPeQSzOlWmWJyrUxsATT8iN9LEv7UMeS9pPfXFA4CiZa0AAnhOoJCDMSwfhWMCuaZEUFz42ydJECk85LYSgk4SsSJrWQkAg2Clg3m8x/ahPGGEvJqubrXeGcI5ekvebYdb5urGFivcx4LMV70roES4Ji5ZsPOOThVY3iOYk46F/iT5S7LEgyzSz2Gt4S2PfZUSL2neHnO2/sVrDpPgh88smjz+UR4m0TXEP7UyPWf5BcAo+RvNB+Uja2uK5lNJjYtB5TzeX0q8xAB5HR2kXwGFSuJJj2DYzxGsBgW6/Z7hLr+h75ueJDFnJTeEKNA5xoTAKM9WxTHqIjbh6Pv0E35kvkN6Diopdd+YAKjXu1+Ed2A5WrdaI09BXUCmCxcRsNNB+tVnSW9uzNEvAFwL617SBsburwh/bcFPL6mmI09uQ0AUEW5lNE6fHWf23hdyd5JMEf7hR8Mk9hi9zb7zQhCeCqrthpGaZ8I1qQCHFdc15lyo2hJdXnLOILGSeFIz03ZXk7j/ps7yPQ2ygRatu/Dz61VhiIvkE205nFMK8Km1sfbcN4576lv9ZAAaSvs9ztsQqF5nY8Jm8YutHP3MwwHIFP9iv3EwZ43dtd9rpPwt/eT1fGCeinsGdqK8XNtfVfEEAnYShJtEc59gRyBoQkescE+jVAzPb5IunKeFuJs0t0x2cuSLS6l8IVG47tND6H+LQY5ygKturdqz0mIZOeEDr22bSPuxIiG4tdsWg72D0hm6z1mk+5B6L/DTcCKMR9Q5Plp7rJN13t5RfuEgSvxqzyCfcI/fjUOo7Sj3dXbvPGJP5azd9wKwtHiBxuJ+Gov7OGgcxEVjZ4J5ynlFXXwOlNdqKqJ83OE7/WSVmBSvcMyujitz9Au07z9auI/NqZRKreN1vPm2ltwWozzKp51tuG2Kp7yjkeQiu5zjcnXpONXFPxnjIPQzxL+0MpJM8S+KC9lcMHbRSl2caigA+myHHr9AidYQpyoAlFzz/ybDGLKNHb2Uwe4G7gCdpa2sZjQVxVO85sNAOb1iXTKrN2afvThvWPrzuNZ0r22m6ZawQDeH/NzWVOcGzI6xQaGJuJde0nrekz/RFuhf6t5lhu5zmjju48t+ajKptHABqyJiwsCuW4c86JH28g5tvPn1zC2txNGJaO4zWl7Fp7pZiNh5U/5aK+lxelWRmnesVVE8TQhPPOITgCzHQr+HvAlJUNgnqgqO1tJvmifU21EB/HRrL/F1B+IL/WKj+cbqiBENnjGKUw3nnmDTYWW8/BWRbgq/wFxjdbUVKT6V39pzf67CYDdx1tDVobbJhbI9ATQStIzwF5sMYxglryaEJ1QSTzJLt4B6zrJ7m6NRhVKUDuUTKCFmIwoKF42daSPtwqYIPJI9ywXR+ZHtZr6cW4XqHEftjlsmatsIj67Re87fJXHMelot2MO5m4857kYURfKQcoK3b2ZN8Q/WhMyii7SZIuJlUhPVxXhChL/WOdSpwDqbryWtTJNJqt2LQU0reezHjnfJZG6ctiegK1RNe2wLiOWkWzL9M/1sjTSZp5/PZ7pZtJZ2s0zv8lQc4iBAADbp3ySCh15NatwVwwAZjtLAVOEfthneYLZuwUvP1Yny4hmtxD1JvElV8ThLHE0vxMAYretr/rAA5IhE+lRLZk+xiSiF1XvHmSQNEZ7Rvp5KHP1uHMJ5Y1caSQdoL+/wSYB2dqjJMnMWcskeQxQPvdZjzuu9VpliWjlyfuEOXeUtyIKdRboPPbZ/WeWDf4qjsiKhIkx6gN0xNu82DCXb2JH5uo/Ix10UBIzB0RCkWqFUEM94kcSB91XRQ6ygklJXlBgPIgnU8k93nzhnp9QU4R+OGvt7jbHOzsYXlHw8xJUIKtLzE6iqrqm6yVs4ZBzAcWNv+krrtJhN9PNdvuve6bliZgYFOsxhQN00DD3XvfC7Atgd0ZqocFciMi7UH316G6/t5uo/ZpRutfZ4if593td9iigotJB+Z75+Huv04zyucwCL9J/ReQ/+S0r920GWRMY1LsZVomjWtBXdKydycHxdDxlufJg/N4jQHvsJZubp5/Ol7l0GOQb6/o7FySr9NPrIG/hAt0gbyJzqnrxQLC4YRp5jd75e1DG9z1fBfQB14TZQXksJMZsF+rnM18/zeu8Y3SoWOmTA4TyiibSfx4ofK621KZSznPfK7WafvRhdzGMw6HTcEFWG/qI91mM/6eIFvnZ0L4kQHmt12C4TVscAZAiEVp/B4MNQ/x3sCLxj7ej7czlkveApGX2KH6L+JtefXNeCXVCzBRNlVSHiL5h47q528A/nD9MdvhzWlJWpLvVZF3kripJLylnV2xCxbOkMBtZMgYAIr9c2Rc/DTzBzx+Y5kP2txPBI8aOseI4k4QYb7eXZYi+Ln07CnvuYosQBexGf30O8cJu3dCv4RD+HBbqP2Gd8XZPrO1sJixGJRAcbyVesEgXE2xwz9vEiI6J4SHJSMpIo8FrZAky09qCbw+Rzv70oe+2e19kfxn4MkX/ibd0yAOqLB/jBMJkJuhX4k8PWETUoKNwg29iRcTo1iJtqUTM9F+xxRAbqCTTIVKrT3OfnmtWhHKEl6/PYLx/t5J18qvecyGuYZnPDoYARzZ5lLQt3XOCQmzH0o+cWekq/aL5d6cJ5PtLNZ5l+Jj/rxzNE+oFg4RmbbWr7WEmwU1j8hyv2KGZ1qkx1Rwv4G/6FqZAzn7bKDI/jvav7gmxjJ77WT2enYbimkHMGK4L7Yiw6TW1T32EVgY4yzcc5ViimEqhOHykNLT72eFjPzZ8giOeYdeqkbpBFdKHeC293FMpZzlJbfVLEa1wyduZd3Rcs0M/Ns+yitnhELSt2IFh4RjtpO9FRa/kiJAhWtFHLhG8cA+tzCHQE7o08iYJ5+vl5ZtDLv+PpT/SFzptkcELAThHhspqx0rrFKNSVjnDMnkSmW9fKdrJafji4SXkG1S5MkZylHvsS9f58Fa1mQU8Ze7LXMJiv9a7FqrvfRJxwj/LCaUTshApPeKYYPfbVOjOeEvlDIDyJowk91HPtoC7UjzqUUofshWnZVlU8lhYvEspjrbOjEzp/NWt4Wi7GAMtwbhFGbizQz6WccEZTeKVxgWxjJ84buzJJXqaRbgC1xaN8rZ/OLsNwDhhd8vQSYja95F947CBtBGCNYSJz9AtYbxhPNVHdd9NSMQyVvideuM1YeYVGbqUJ2cQLt6giHucj3Xyqice0TPcOw0i2GFTypo542GNB6kRzcTenDd0xYCaYJ4ySV/GtfjKHDP35Xj+Jd+TPGSWvcnuHQoZD+XZByXWN+4XR0jTF6xgGIVeZhM4PBuxVF7Fle2lPN5AO8pl+NmmORWQZ4S+iuE8wT5mnm8s4eQXZxo4cNfYn3w2Xskp+dpPqome3pGcG9d5N6uCaQxbr1evZ6WvRvHY16ptn8pOtstc5/G0g4QAAIABJREFUg5oxd8+aHzP28eiSdsTYnz7Sz/SUf6GseI5+8nou6WR+83PNZ0v075EsXKOAcBsLqhJFCS8Ew45zyR7DLSUUa49NzG6XzpOYcl6lawBZ5vd8nl9b03gaV7qNEqqS4V+6BewBgklTKAYLz9hgGOf5Zr9Q1//5M6Cg53cgdPdOaIBnh1s/cjhu7M0lY2dKCRfwI4fqjuv1Y91HzNR9xh1J9NDxFk9OQC+r13r1wlEEVurpQQw40Ug6wB7jUI4Z+5IhnOOgYQCnjD0ZKK1hvn4eb+lW0E7eqf0+TnWEE+cNamlmGfE8j/Hnivkwg34dxLKaniTPfN1cD8WFiJ01+gm8IX/DAeMgBspryZIOc9zQiwHyOlbo36Wn9IvLC6xUO5/fE6jx45+5VfPgRVJFhgSy1uZJYGQH32XS75OQK/aH9l/DuBeUVDsWvlQdDkVcPm+1HHNJaeE86/Vj6SNvYL7b9TzOhz/QfN08j+5fBswUcyZIH1wm5fNUr/vZSU7bU+oB6gI8nEfavdJa2sl3+il8rZ9Oa2k3xcTLPIx1fd77ikqqPcocrD1XXTrOWSUBk5QrKQjcDXIlNrR29W0WQ1J1jfixuRFAHX14wB65fJ+Bc1Zyx02V95thKN8a3qaj9CthDv+2FOEflurfI910mKm6pYQLTzD6uxbvS3qUo1l6PgIczUF6Vy9Eq+ataJKej4Yl4tjjWBMs9uvOdrtnOdVcawt+tZVhbtRk9YmgOIqN3kZqp9kMNw8gOecrTENP8qjLVlqbJmkqGnc4qyPyQqJ4k8PGAczVq9UaSmZPr23sxlCyAi+gw6rNFy2k372384uAod5JrdxG3V/p33WR337qvPnDwMr8NEhNyo9vXJwqr41E6LiaJWGuSoDW4oeseXaZG5K3Yi/3PePEMXsSdwlhk7081aXjXt1yR+q+A2MIos7AQ9TYz6kyBfU6yzZ2ZLK8lKrica0c9SNrS1YlTNa222QrS9f4XyC6qGvngkAds2eM1ETaz3Dd99jCCoHeX53rHHD6p821qnYm/eV1VBBOkyJe0xTkw5uWd+0s0nudUV86xC79ULY6fid3U3R/cujqGMvO2NU5oZv5TUZZ+hKUmAG130Jxm28Bxum+Zpzua2yKgGz0LEl1R5kEdb4INurISotVx/Cwgky2uDq2tjRN0ZJ9AO9aOrCxwHDvncWla/8m5ryaRxlASR/eqIUD/7+vLP+/wn9JqX9DGGSJ7BmN6VY5EUEQiArybXi5xOqZ/aouHdeCnqOKZwYxkOdaFuJ7W3USczw76HghKIaqfWfz67t9qd8779a2AGfcSgFAXcBMkpdpteIKMM7aG71Oj5/RSHvzW/xmV8mf6KHbqWN6n9fMb7GrzBxuva5m3RfrP/A2OwVsjjncrOS4iJhS7SAyBSoNQpz8gNMzvD1W3HFDCeNLW5b2+ClGAgp9SNb3WRCWyCiLK0BzGj/6YSJHcC0sf7/6O11+6cKai9/QsVMvttgyXOeY+4C1XUqdNcXnQJ9tVG3tCmzOhXuaTsY/UoO0e26dl+qnxWBF5i8lnk7yrxgEC387fG9kScCmeBtgtjNPIjnnK87Z87PTVopt/g0Bz/bxzmz2x/q5vCN/zkaDat+mj1Enmpx4l2pugX4uO/XDCOQZhYSrJIo3ic2nTioz25TCjI6d9nRWl/yMHmZ1MmppmuJFOAJkGzvyiX6O9nhX6BSi9Bbq5/IA+8LWmI7mcbQzT+TdVuo1IyRWo47pfcrnuCbtiZZuNC0Vx4cdyhGUUNrreAB/K7FMd5Bche95ln/M3HiGH4+6yvy+2H2JibrlxAt3iOIBawwTae4IgAqItxnhkNPfUUIgpR4VxDM0k/ZyUYmjXnFXUBYWoOcm4ZywJ7Hdlo4vxAt3KCeeIVG4zjD5B/VJ2Y3EEEWo9zYUaUhEgFoOa9SJ0Gwu9NoKwXEeWSIciz931HcEBcHCM/LHRFM4JpB+NQqBbNCMfVNzvtRItmcYOVzuA2xInPSxGJsiL3V7pCq+Gon7PDqeOPGe7jPmh4Uyx5mJmhoJZx2dpNLUwIfyfWCyJxnxg2Eyu/RqZi9NyCYatfV8trETBYUbiNjJEM5RUHQtQFuLnpnKS8bObHJc0+/rPsWIiTThbyKFR6yw1eUu3lLwmiUSGZlVhD0TGnE/XL2WbIpAcGg4Ddq4SvPyKmsFeF/+hNWGqRwwDCRdvMhzfI/hAGV6zlE/e2F1TLpFGFVNc+hkHoc+vQ3XFdWHq5fsXULtNP0claXer0t6uJR5X1tdZRvfGt72eeweucq7OsrbPAgNd3wdFMiSUHWhk7sQd7l+Bq3EXQz/vSLDdd+z2zCUfvJ6jdxabxjHVv0oVujfpbn0O8v1M9hmeIOLxs7aPuKFW3yhn8Uho5qFDeA55YXT9Ei8xwi/9fgJZs4au3PM2JdB8lrKieeIFB6RKf5FR3kbg+S1GDBTXfyTbGMnooRH3CnWmbPvepPYR5VU6preY6qls9drHogpDk0+hJretpbrDeP4Rf8mPxomcdA4iA2GsTSV9tFX9k2UAJoXmL1kO05H1KVUTzWxU7p4UWjgImu26UdQTjzLFXsUer9AQGCEZSCfWRuxy1aSPbY03rT0eeGpb3Hcy6Bm+Xu7XT/N4vOxKN8zCFDJ83jhDtsMbxAlPMSMunC1K3YITaCW+UPKmxYgF6xIq4x4LkTV0/azIvoNAJqb3uaCkl+zHnBXzZ4Mv8quB7PZWt9TtbI5srv2/29iWcyK2yKvVHsYe9VjseQTQTFstmXyg60q1+q7yty2GEZrfpLJbo1E1hre4rSxJ8UcZX4RwmPO63TUSohnVbW+bKi5nmOd1AVtqL861j54ZkbQ+9PU/A7vWDoAsMzq+g6c+MEwWVMWjnbLpr8IV4yFyVF0BAnPsSLx3K6OKf8Y/ODNbLY1VEnN2tIfTNMtYYVuOlv0o7ho7Ey6eNHDHBhUks+JibrlrjKcEq0ZVdDVkGWJtT7lcj7mUPdLHt/7Rw6jZ19zdvPmr5GY6PIicld0IopQtBHoA9jU6rgH2a+haBP1Xqo+Gjp8TQnlG36xlaORdEAtRTVMpLBDdVdRPI0eC2WFM1r5rDvqSYd5X/cpw+TvKCb8zTL9TA/1HoAie147txR1wWp3IzqPGPtrZfhRwiNN9efE5Uqu2Pcvh/pQqTuZ8RYXaXJPCeSN+t42Epl1fBCB+TKgyRxt/LQJwPCTkFTDw7MPVOKxqbiXrYbR1JJcJIuzA/M7ui846vBvcy7+PWBzXQtlE8OZ26EMokMNFGTU0bliQYw6CT+dRHfLm5TM+Zxavd5hrrUllXPm8mPtbcy0tGe2tS29LKP4w68S1HgTev+qltPKBn60V8OOiJ9OolJqNIeVIjQwz2SpNYtF1qYesbQTJkXmNZMaE/9ZbKTX6wBC0w89uqDWNn0AsSWpb97CX8auPt9jTWsDmT0QB+2HsEQYec6jFNbpf1XVNMfjfYqkh3h1rMxICPPZACG8am/GWHpTPGcxl+UoJhyZxcAUl83JJp1ndcYqa01V1Vld/V2WWBtQLC6YP+zeXSE15Kjxj7uyF/AgULrLm/lK/672eKctnWv+LlJota0GgujdlfiSEkcD0wyv560xriQ8I11JwIeKP7Ot7XiqGIgSHmqlbsWDn3NschbVKrklBzp+4/PjJIguNVgd6SgHDf0J5TFvyl9rZaHO+GunPZ1v7ZVYfXY1iiAgNJ4FidUgwTMJIQkKgca8S+E+6ZzJ1hHVMeo8CcOltgastVXiab0PeBpdhqnWzhCXzvZiU/nE1hS9D4KR1CwITeB2dBXGNizKB8W/V8nLEq15XHUCJ5q8WIGlIECtCVCiDUIe39G/I17cE/u/+LfFyt4V6Pg5nFUKaCoid8x+LYMbQTuI/aomoBJFzmzdqcCK8EigaM4SdEx66bGigo0MCZ7D3EeqX0Q385ss089kjy2N1bYarLFX5a/ml9FtcgXu7oud1uYp/DiwMunxoVqt/KSmqseEGJKP8uUq8vWBK/wTW5LqEeE80scSbFa9U/qah6PHqqmyrrp5vey5uodq8S4JsQf6bHN06MundhV88DfMV/19qpjmYsM1CI1pWZHOp1wlLL/jmSlyKj9uGArx0PQQi93CVUf3qYsP1XLJ+82W8t5P0xitW401d7tmUWRehR1s2fUbtcOrQH7PACa7zkKaLN/HOWM3j+fTUl0TWEp0ENkzGrPlLVfG4ztbdTILhlEsLhir3bcZoh2RLLMqUa4UGkHtZ768wVQ4g7/D9lQy49QJt0jFRsy79DEZ5xdQRTpJQfEWJ9w9cwJdKh29JGK22bkbkckzVJn0USWVhuYZnDb04FZURQKqDyboB886d4DInL9hTiLj3OYbZxeN3+3quZRLVH97nU7igiNAvJrQjNvZJ/nOVoO3nd+75NrJFsoz1dRBCwI32dVFe4J4C+yqwe043UrGWnpT6tQHnBZqckHJT+i9Yzh5hNwmv+54FlYEUpPgvJr5CRaeIUuuXEGH8gn8dPQqs9ql03XhEJKs1/nZR0lBknBD8wu6J4pIKD7oEsgsGMbkpsWpVyKMK89uUaCA+nk8yvf8wmDUBTjxPX9cf0bpPybzif5DHit+aqmM+Tabh9fQNq9m+og44S5/zWgONAdFwR/IFAR+Lv2QZvO8TRwLirc8FFG+cIzClCIPv5Df1CDTi0AbdYEW01bwjf5tDIJVC2zW51JQfKyb67Nb3wzdZ3xvqkY+7lI1lyoB4IyxBxbHIuxhvupwBUrkfE5N8U8KCjf5zV6StY5tIwMNcE8liCVBQdLpMETHsjB4GAMeeQa2OwsMoMaVhey3F6WCeIZKkip5j3R0DnIvc34V/KO47qv+5mGsMUzkdYcK9jXTWy4/BAcpVTU1kuwZjT32Mdbah0tKrKY6BJhm6cQme1naSTu1/QFcVSIwYs7V+l3Fb4XHkp69hG0BbtdBiTbw2xce283WL3rhZzIKvktindhtcPkReVxbr9akE8DL0DgyqbSno7UbzivxbJ3eD+xzMU+JYrq1M976KQcCo6HmOP744wClH7iUesVEV8e8+FyGtgBKSj2wnfV6XsyaSrGgXAv/iv3Zun4VdaWjJIs3SOYGe23FiQ9TF9d2RKZbO5M/1I+rD1Ty44C9KNsdHfQycxZSWzqqZesHW16nnX0HU3VL8/pUMPwkW75bRL0zE7WnnqNDIAclDw/AKyFqAuYnW2VOxLYg8XIGVVIiGJ0SSe+NI3lLt5yZ1vaMtfZGhw0h9Gck4H4u9+Yzcc3IuqOeW6WWg0lZoceIiT4J1xnZcmCev1tu9LWonz+7UmMebRyqJbM+1X/IZXuUx+LIiQJuz/2tU8PofYKZj2q6GookhKtK5UrJqpq5SEwQn95sglSyFd/9cZt8wt2XKkBehIv2WJo0bomyUCX2ooSHePSY9guDkHj+sBeitKMDbhXJdzfRl0IQeL9HFkxWH26zl+E2YRSMCKCZeTobDWN4y9Kd5bYsThcZTNuy8SQXjea3aVlI5idUevt3IgWByPzvwMyvmSQOZFlOJYJ89CCqXyqBiqltOX47C7a7iHFEUSudA3hisrFWrKz5leWGMx4yuV8G467DO66uy8PkH7REzk5C3d+OMOwYraavoJX0GyJ2QvzhMeR5XfuCLcwVg11xjMlBBpkVtrrkF+6QKNzgE11X1oT4IE/LdGHpkXuE/b1JS2gRFAs6PxRRnYPsvbZASDwERlNa3Mk3+rcZZB7KWN1KWkueibM7SrA2n4yV6zGA7SRYXXHfFVkm2G4jxNmZMbP7K31GP72EBRkLMkmRAdiQuEYkFv9oFtpcvq8WRYBanvOwM+ZzJsXUsQkmW9VjZySE0v6faKqLx2iW/wlL/snHUlt9bEgk5qzkg5R00ut0hBPfcfDSXcq5NUZh2AmYpcbKF5V8CLnKqT+xNiZRuKn6SY26iJy76iAoRiNMnk6K1gjb24rrOnkYXY6QBp72Dr7QPLMgNYvPYNWUzbRIC2PdA7grCnxmbcQ2exmy6rWFkKPw22wsbZfTPDgB9BIUrEzTLcEcV5K4+HpV+k5Qy9i229KpOflXHpsVgmdGeRxr3dBanN3enyLn1Pn0VEB5MO3weV7hRarQqVEpthc7wt0LR/j1gB8TUiN9bntGSYC6U+DmCTiuEtT2Am4+b0Ex3IvIJPzuYSY4SNdJ1u584Oh+DXDVvzgVnKTQuOtw9ZBqL5FaH/7axCfWxnRMfELQP66mN05ECY8YKv9Atzx80Qwx65m67wD5A/NTJX8V6K5WtVQfu5hdBpeSSXjBvBAdbCQ62OjztSGW17lQqRFry9vV7qWGtpzafh44q6liPWAMhmHHiQLUtheFgGz1qwJKAGQ+AJtKEm9Ys5JGx9UYZqh5IB+8PQ2dnJf/3b8v/quU+g9FkVhVLrzKVpt6Jk/Z/El7QZqXzkdsShkY6RkQz7c2p0SK6iWRgwGeqwN9VsEsXoQLcgqJOStJzFnJTns6rxf4nh6W0ayxq0Gcrngzn+/rYB7PX0o8ZRLCEEWBbpUTmdy0OF0quurPoxyZCWcHuZsdNvGe5TWOBtdis70sF2Pq82zUP2xsfpTGlne09/lSB2nIn6mW4gVEgqyHyFQeddlKLdMsbEhsHVEDuv0MFQZQooynAefP49qwzL+b1y5tkj91vq1DrdW1EHLV3bcrV5CrJQcy2X+ct1IKsMgBHFMKeQadDmSlxfLr6Cwo3xd0rpK9SpkZXtsutqlqp3+USEzo+X5AZSIDDT6/i8hAzzakCgrjg6axy1ZSU8QAvG4e7LFdZ/NYbUFg1Mu83q0zwyy+PSOcsmcAg8NctGJyuMcmJvQkm1YQO3gjQaWawOtHeIaR7ubRpJjzMP3uu5Nu4jseTzk76jj9EQDOVZ5FC/NUnuE2ETVwZYRCWs7mshLDFYeqDMnAWXs8GcI5eki/sM/4Os2kvbytW0JfeT3f6qfwiW42NSVXeZq78mGjzaVEWW2twa/GelDGpbbQt1pA23VteX2bWl8fE2xkx6haZBYMp1vNEpxQkplo6aZ1K3yQTyWHpumWaP4JNQrGU/Ub1+LIHYIg0L1KEqP3DKLRj96t7jUEREKFfgRW6qWZXzu9W3Iv9t7t0YCJA3u4H0TbpkT+EOyIdDKP5SNry7yP5wNfWmqx25bGvFAXvaZd/jazmgnzcd5Rxaow10drZnf4IqRANZ/MNnbid+MQ3tO5lBNOhYNzG4DXapUjyCjzBH9+tlfiY1sLjim5MpnOEkk3VGgxkI2yS914I7Iy94PVMpzNeXShnPsvfnfuOKYke6gZBvZwG5t8BWj99zDQoN47a2xVuK8Esspak17mkZwq2IUrSgyzrO34sepaVljrMMXShVamKbQ3u4Lzk11PsCFlMjts6ZwNqczCjDXssbs1wAhx8ziq8/LEhhOmkBdkiv8HMBvCYIB3CQfAkjLfaguzyEA9fasna68t6pzBDwMdWVhRYmbVlfyUcogHOQ987MmBmm9yrspsSuV8SlLOVyywqnPeexaXIqKr+U22tzjEvkYb4bUVCJ3dGhK0W64qgBrMVBenPtDbMop9jm57AH8qhUiOCuTQhLoaOdWopOu9l5Q4UnO+pEjOUu4Swve26txUQtlmK40JPctt9Vgf1dujk9Rv7d2UcLIBuXQHrVTji4SZhDnUmIqvyQp4QgBlcxbyhqW/5lHTIC2WpyYr14hkgGU4j8QQFETM6Gjsdr6jU9YzzDyQa7F16NawKok5K6iUMw+pRAuG1y1MDgZO+pd/ZUIKICrIoH0nFU3zWWh13bNOQupLaz0Sc1ZiaeDqOrjFVorngsBNxZPMcCIy0MD+cXUYVV9VIvwwsDJrB1flzfZZ3CaUPpY3GCKO5XNrQ951jC/XgtN53+16YPJDdrU9RmLOSi4U7sNmWyYpOV/ydsYuwt/8k6ggIwutrtgpxM9bBdDL/IbHY6eyFeCyPYqnTluBupMhthS7Y7t4bN/f7CJ7neV3QYWrM7tdOpGBes4oCSTmrGS5LYsWpfOxqEsmdYrFgCBQZNg6AvtucC0EjSEw6R49B47VOrn5gr8BfrrqUkt52QsAw+qmslOuzACzS7n9VDGw0k3hCTAtwi2e0PtD1zVcLNqPawVb+D64zhELBEZzN7w0E6y9GGftQ1yI0XUubVxeRett5RlgcymNllnrUTrnE4rkLMWmAG2X8YGlLXbHcsupNnrP2p6BlmFcl1wkmQcEgZDMNgy1DOaPjn+qyhmH8u+e4ye0ORsr3FOTmxXEMxwyDvAipECN+Zz4ucBZGhfIB/XfhUqDIa0ljQrk47WimdDpO1V5m1zT93nlgnNB7iRhm6bnY3LT4ki57sHR9Yt6vffXkTVY3c9V4rj7zVos7OSKWyc3S2OfvTjvWdsTP+BHirca65EQ1kmCWuVQcwz/JKpz/phgh2I0KIb7I7Ipbp6PID/gSVm3GAXYa09jgGUYJW1f+bTBcMfwcJeq3oQrLg4ZuBWSa/h6ixdC/HQcGF+HAbXUtYssyEy3dmavPY3ulROhRCsYsBtdZJLqm+nAcUVtdiSKgkoMAT/aqiJIOoL99DD6EryZDRPUsapYXDBFOs7k8Zu3eNZ1E28MH83qEp/Qw+zZPW+IeRCfdy9PTLCRWumFaNOqLfvG1qVX1SRyo1VGfnVIrToMWn9O5Zy5TLN0wlbGU3UW/vo2TvS5TKkGvVjQKYMS9V0J6Pcsr7E52K0KRe8PSQ6fzU6rsU64R9k+HxPUey0TLd3oYh4D3TfQS+lJpQIFuSZLHmIFZ1wKMKhWITKT1bHvudWzE+VlJYbCOarlxwPxf0Z5NCyhzg+SqDb4CXSsIQo4rvkisXmXBL4QgqD6BssGslp0Y3Pbs7xXcT9r7FU9ktP/SfivUuo/FE5vGYC/lHgSc1bSsWwc6X9MYZ1fM75yTihBsTDmMsxIwKTIfGB9jR8qJvD9EdVozoaEBMg+JJ/uyH2DDW1akXWz3djwkPww+SFFx/zAJL95nE7syOZ/kriR42nsqpNEulfxHDQH104lPsyfJqXUyT01KZHR0z/l/K0nMHsnU1uUwD8giAZlgthb2J9637nIim/PfUvdhLqEGb29VHIjKLksl5RbiAKkRAcC1SCpGs/MnuqAsAA9J5J6UfVIhkep27OA/JhsJ/Lc/0ftywBlePC8L6yu7vGaswQzwkEUXXl0hdXnVjM8cziiIKqDY6P31b8nt+DsLxDj3QXxiD2V3bY0Vtrq8GYDV5Bgs3uTUpuGVefMjcd0+tzNHDm5Jl33J6PHQqjlCSZ0PCSQGrZjtJF2McbSG5ss8yDnAaFGV7A+tXMdvrh/lM7Hu2G4pfpxKDp/hDQXeWDUSTzOsRIbYiR7RmOqzNimZfQ9EFGITc0PI/55na1NivPR2rkMveyq2X886DhBUQlsGlGUy/eeaZ3vnMGTIAj46yWemW1eMl1AVceNvgRWE+WD4ziQnEr56b86zlHkqDWFNtIuqkmu37K1w1g9XHhCfekQ9VHL3RYkzmVgtnpuF/ucpf+8wzSy7WNmvzaMXvgPi2oUB32AVnN+vmQ5zvx5hjP3vI1InYbeh2Pasu5+Y2bnXOTdBu3JWJzo/RlegmO3Hb+Borwwc5QSE0xZZTyHcAvosjzLcWsWyeVJ5QN77CXZYy/Jh9a25OMO3xsms95WgbLiOS2Lf9yeSEkxm/bmCRiwcEguwz5LcR6GuRaCpmHHMM4pBcH5ofoon8ea16EMR04OhZ/UEpiHxToQctpFXg43D9A68vxgq0qrLkNYc95Crf29tfIZd7Q1TeSgUpTXer9JoWWu0k6DQUdyVCB/XnnArLbpjPz2T2oV8cxa0nox3LsAbuNjRnIMTPiR1mNn871hCjcqT+baowjamydwwF6UDbYK1JT+YNzg/gRKdgrPPku5Qt4+G77wXutS/H7hDj/94fJmURDpYRnNCv270G8XNeKiqGN6H4KP8Wb2ZrIScyUUYkuw4aGqzLpJOGVMavb5/PSGSKLA33efseHEdZpUSyZ1q6sRxfx+jWmz3EDo88uM9AvhakJzpp8oTA97BAOqJ7L0gtsxBBEmPdDIg8T1RShi3MeGEf2x7l8MN45j6PQ17P0Ye1wZJn/xLRZkBnWfxhcfjGaSbjl5osFMFp4LJOP8PM2YFuBtSxcmOt835goYg7Xlxanel9i/qD/H7UmcVRLwiynEV43qgEOWf2iCZ7lVgxKeC8nb0gbs4mMO3XyxgbmCwCOHMet71va8b22HgsgVJZpw4TG77KV4P7kAMcE+2tYXb6b+vQRTLF15K+BH3nvahFo1apEUGYAkClRNiWTVwSskRwXy48DKtFygknEWZIbUTmHutvPYEalgcjf/FTiT2pd5V2pjsJiJEh4w2+CZSa5VNJoe1nbMtrbjTJcGfPWjqi7wRSQAdK2cyLGrD3mzQRE+26Uqn2VJJNGtGYskCtgcio0QP9ciMDAknMX2qnRqMIpy/gZKFwjjjysCgiCQls+3ga07LDYLoiCy9sJamhRqgk7UcXC8q3Rm29jG5FgaUPaDRhwyDuAfJZIl1gYssallPHL5nrBRVVYtTHrCCKkAbxirQs5unwqaGLese4BBplS8OicemlCXstO2klixJdO2lSQfdxgbf4J8bT5j0ayznFCSuBdRhnVA9bSCbBttJDqgLnUmqSq7ic3UUu6HzyzMs7VAL0Fmg25UCLvGVjdhV4ifnruEUChnObXFo7SXttPXMoILRpV4qm7+CANmfm9jI6JsG6g6nC1rTtA/uwY2RJKEG5yWwnhqeUqALoCQ9p9SafkO5tYsRrlEleypVzyGLaduMqttOs1Le6pRooOMRAd5Kw8KRgTQsYKB9/MQwu67to/V51wljBsubaBJchMAcqw5SILEsLqFGVa3MIljbBTPWaypdYbULsTp3W1AcJIcAAAgAElEQVQ0FeL2kIJgdzVjIbkmyck11dfO3KDG5kbsvu3PSmth4KBaYpaqdon8YUBlMqd5ehDaFTuktQRRgqJNCPjrLpNig3lo7UX6+56+Q346SS0xr16M7iaXKml6yxKYrXamrDuFLOY9/7YsE0/F5AjiQvyARK/XtXssIMrrtdz41ZZBR/MEh5fdUgB+TyhNpXwD1BhgWUmuPr8Fqd6lpS/D0bfqIUvq55jXQa0U+PGoq/lEcOoHbL91gZLxnl2WC4T7awt7UGMzm4PMblwyjmSHF67zK2qSHsfxqw85df0RBy7dw+CmUClaNI3ETSsJEmy864hrPj71MVKRbwgEWh+IY2Sb04z/agclxIvssKcDAlZerkZZMLg1luxYunyxj6KxQbS6ORnBGMz3wMk7J4nwiyA2wHeiwB3RQUYuPlTXNO5rphfFYN/2r6R9/n7Na9H3zGbmd3ZrgOMf7vN9QX4GSFYT5lEla7P9UBBd4zfCPwfYn5PAiv7eZFpsiG+V0Ox2pZndzhX7XCOSz22NGSnrvbYtkT9E9bsEVh+0UsM0m9qGsyyx1aCOPe/PKcsSmQXVdVjbAVO59TgHEmPYHfI1ellhXZHa9DupqqRuJbdia3A/2HcXP53EqPpFGbrNAPe997t2cBXaLtrLEYOBbvlimHP5V+okeDfheBHmdSiDxeY9vjctFUf+UD8yEnwnJv4VyJJIVlosWWmxjG7gTeD+p+C/pNR/KJy+U0lj12vqmy5VUmh4qC/5pVxSYmMIpXI+5Snq8xkJLgInLV8gZ+7nnRV1YnyjYnRbfICvelfQBp63mhRn6s+ntLIqgJT8UbwTfAeYy7Fxx0gau0HNIrwAelmkXbkCXs+nRAd6laS4l6ldfHiRDw9/yJbsLXya5dtgENTP9s3Zb2hWqBkLOmU4CCkXzDbvThYTGhdnQYAeS9Y9Okz+mAT7VSZ1GgtrVKb/RRLwzZdd8tQlJ5bQtnBbOpZPwF8n0aKMWnY2cudITt87TdNCTSkclsuPIDCaZUawnlhMr5Kehn8m9HS2jGf/uDoeAbNV8S7fiwg0UCXFwN6xtan07jaapeendWZ+bj4ysfX0TW4RxqZh1bn7xMTAL+1sNWew0V6OomUXUe2bCRzv5ip/0hZxlbaC1QSW5wj+ESC5hiA/B0GUY1EDrQ1DqnHvmZlaH+zQVHBOtCwTT8syqtpiaM9u8ChLnZxlA07L0JhgI9EOMs8Qs4b265fybVOH7NhxvRp1IrIoqHJcd7hN9O5BdaOScZw4kkR7YYfX9+UL1apUo9O5sWSJh2gXpQaOG+wVWVAwnewZLo+o7pUTWfp7ttbBxRe6VSpIkFGmdUY8vZYdZMfZBJ6bbdB/DyyqwgV7nMPT4+XdQpywKlZ0wovbzYrGYNo9eYvVzpIvv5cTuC/CNSKpZJqvPdZjoYJ4mt/spTDqRGLCjPx99xm7h9eg6sztuFvA5hhDeLvOIIqGF6VrrmDMbDPTe3NvRpYdSeXS6dxKvk6UwUaIPpBTlydx7fMOfGhtoxnOLrY24G1rV1oVrs+925coZfqCNOESeqyM0X2tERrHFFUhUygpiVI5n9JC2sNDJYDOksjibmU5mH2PBiXiSC8QSqGoXN3jZD1EF8MXDitFSMxZydroInQpHsD5m/UodvMxJ6+JfG2rw6TIQgg6idPTCyM6gtaTd09isVkoHe3b96xduQK0K1eAn/645iEW2WMvyRtFf+UDh/nmBSU/QfnmMXLnTo4nepcpftmzPF0XH/B4zplYSIwMUJssAO+0LMm4H48zobG6SG1QszrT1p/mbT8ddYvHMH3DaZqUiiM6yEi5xHCOOirUBDc1HYBovMq1pJ9YdDGWQfXcyiGqDEEEViqPsdoVxvnpWGqrz4Oo8nw4rCvdx02naewDWvccDUeWQWJVSKjI31ePsdQ8mC9KHKdEg74Qnszicb/wh70QP0wdpP4ubigeH86plrOZVDyGQIP8wvvwf4M6xWKA4yzolEGjknEkjlFVlOvsldWx6rFJy8LmxssIZICfBlVh66kUKmUN4Kdc2zoTG4EG2SvAblgyjrnbzvvc55A6qZy7+ZhNJ29yTadw7pHrush9Tka3phl5zXEhfjo+61rWsb16TfnrJZqWysfjHCtv/3yKlKhATl1/RL3iMdq1DzCqfhEqJIdrhMhXvStwM1c3TWuubmu/XPoFi91Cw8SGZHzlUmHcN92nZwlPQ2Tnomxu7yzWPDjCH3/fZclBF8sjiKKapLOa+Ot7dWETX7ou7PPs9voyRAYa+HNSFkEGmbnbznONSBig7uPTbqH0WiaRKqiLdZPNRPN1dWmV0goorylSQFUXK4jcyhxOpcoluHzG03sks2AYCztlcPzqQxbskNhiV7/3Cjnz2T+2Frz7J4XiIoko61Kd1k+LZdlelZQ+pSQSlDqGDutXsbbFWmqkJbB9aiePZM6YhkV5+MxC/RKx/1J232LPuxw397Uz9rexGilVbkU5EoISWN/KpUB2Kp1rFYliRFZRyDrBJz/vYfbuW4Ti3UnYiVpFY6HIYXQX75F4YCYXzYBk0AzyIwINdKtUkGV7/0ZyqCwURVHHruKq15wzKfPc7CKGto2qSNfNrXgsRAIVeKO+p5lzpwoFOXdTTWZKksDWv7dy+fFleqT1wK7YkUTX9xvnq7TPAU3h3ngW5Dzk7/yNKbhXLe9vapqmdQ+sb5rBOSUeBZGDSlFtTu23tR9za82lVkItH3v3htVuRRRERMHzd3aqI93hvG+bpedju/kOnx3/jCEZQ7y28zqGY2ySREFVQoF2vxtkicnN0uixRB2DdG7XW0SgHsRnkPg2i45dZUD6ADZc3KC9fv3pdWyKwB1CkArX59NyBei7/PAriSplSYRC1Vj1TjVMVhtFJjxmXC2VOGi/vj2AR7wLKmFoV+xeCfscqzpeyaLM3rG1vRRlueH87ABdKhb0qBJ5Vdgd8a0syxyiKCasxIW+xG/vFfCyebJQdCB/K7GEVq1O3MHLvF7HR7LFB0rGh4DDgCIzIYzjT1E9Mx2kVHTjCYyKKESZwjcpHOPdJMAdpeJDmdm6FN22dAa2cOjGoX+ZlJIlEV+VdIIgaOvZ/+L/Bv8lpf7DsahzJv2WHybYKGuBhq8x8hGeRIxzIe+cFF9YCgeUTwrn9NQGHs/1qppEh/IFPCaW7/pXppyjUYEgCJyaWoeNlzagKMVfGpC/CtzP0+Qwcrybc5eNlzZSIa6CT8XUb1d/Y/r+6Vx4cIHxFcd7ve4ruArx1zG2kboY/W7akFdaUDgxdd9U7f/Zh2cjCiLd0rrROtNV8uI8Zl5k4AeHVO+o3KTU1hE1ePDM7EFIgW+llBNxIX6cm9YQnaRmpOd3LEPRtzY63qdQOSWSxb2r0mqBSHqBUC4+fYH/jUOqitE7q72gUwYLd1yggKPMJMRfR4i/jlNv1/dYmPhEsG8JvCAIDKmdwpLreznj5ivt/NqMOol94+rw1OTbUys3elRJouHBOoyUvyVMeKJ5ADlxxl6A3fYSpAjXsCFSu1BB3ujfj+1nW+Gnl1jVtyInrroMuW12GwduHGBS04q81eTF17gsibQrq5Kv77Upxfxt59WARY6EyQ+p41jgBjlIqRtPb3DhwQW1vj4PHLl5hP3X9+f5OsDKPhXYfiYZSraBMxsgIJLn1udUW1WNGdVmUDlfZZ5anhLl7ztbmz2jsbb49gUzOq1xgc2u8P2Ayly8/ZT4MH8uvtOI9OUu35EcWw7rLq5j3cV1dE3zlI5feHCBo7eOMm3fNL5t+i3Rwa7FW/GCceys8wW1zVbmbTvvaNTg+q7rFothyrpTnFSSqJAUjqV2Z/YfXUyFKBumTa6A+xGBfGmrT7BRZnpcMIEGWSNc3clqi93C6bunKRXlZgSaB4w6iSCjjtmvlebOExO9lh5EL4taFth9odf+Z98BcG4cnlAXOZdU3f4SNas7qheO4tCEujw326j2nnfLeyc6VkigSGwQZQqoi7je1ZJpm1mAEH+V6HRPCjjLc32hWYY/v96H03dP88zyjL8e/EV6lIu0bVQyjrV/XsOok3it/knWX14BdGXpO27jcXVXmVLbsvGsOniJW5Xbq+UdqMTHEXNhL0LKiTZu4+u/Cmc5toDwwoRDZKDBK1ECahlLcmQAD55ZCHCQUla71aPM+1UI5NIFQildwHfWdnDtFPKF+tG4ZBy/X3ApR5qXzpdnM5TYYCM6SaRe8Vg2nbxJQKEPmenWONOm2JAFz+vKOSe9LFEFMLJ+EYL9dDQqGYcoCvSokkh6gRASwgPotewgU5ql8flp18LSTy9RP82lSAg0yAQ61BQBBhnJ/yJHhU/ZfXUhVfOrJcyjd6mlVTUL1PQ49v0cH2l1ByqnRAKRVC4Sz5KDnkoZpw+b66T+Z1lyZ6ldtdRID6IpPkz936nsdcYpm/7exBfdBlIyv+v4Rp3EnxOzPJTvudGwZBwNSsSyYIdLqniTcAiJZ+/YCIJzGf9WTomkQ/kEvjt8BTFSdci79NBlop1bXVwoKpDV/T276uXGqJ2jaFaomYeH54tIqdz2Brlx+fFln88HuBG6rWqUZce1o1zVKTwz+dzccTCBSoUiqHw3gos+ejRMaFKcHlWSGH9ADUzzinX99BK/ja5FTLCR0/eP89B8j96be7OqySrSIrxLFZ0LekkQGL5D9bw5eeckm//e/MLx/ZnFRbra7Q6lVEg89NxItNnGjt3fst1emuNKMiutqoVFs6x6VEwOp/XCvV77u/nsZp7Hyo0yy8tQJV8VFtV7sf+f++ezvcI44I6aRaJIjQ7k9dopGGSJ7wdUpnBM7kSw+rndvXxC/fQIstrBdv3F9QxIH0Duy8jieJ+fXtI6HFcu9OLSvdxwJvRfhlE7R/n8LZ33syzKLyQc/y/hTELIoqDFmE7C73+DF6n8QCXFNw2rTuGYQIbW9SakFEXh6K2jZMR4W404UT4pguMnUEnhyQ/BZtWS2XXdmgK9KHZuUSY/D3TpzDrsSvgriqLOqaLvOXXHlR18deorPsv67P9k7Xn9yXWi/aM9COdXgdVuZeXplbxW9DUMUt4Nb/5d8J9ZtPhfaCgVrwY4Nruijd++2O/oXEFrZwdbr/DirOjL4K+XPUip3AHPwj8/ZtLeSezMZXw3fd90+m/p/y8fzxf5cvvZbUbtGsWIHSN8vscZBNw3+Q5iXxRcOfG/GdRMNu+I6n+6v5ToQMomest9X/YZ9LKoHdOokyiRXyWVrHbfJRr/E5TIH8LHnTK8sq3+ehlRtHkEY06YbCYsthef+4gs75azJqt63gF6mchAAwUjAry2cYczo58UGYAdkQbyF7QyTeY180SK5CylbM5CEnNW0sA8k/NlxtHd8ia9LKMQRIkyCWGMqKeq2SomR9C7mqq8URSFhX8upO+Wvvx+7fd/SZ0RHWTk7eYl2H1tB79edrWCNsa5OiTV+64e/be++B7pvbk3nx3/zOP+dZ7XjaeqQ3RKdBB9qierHWkqqd5g155cw2Qz8eHhD+m0oRO1v63ta/ca6hbzXeI3rUUJTr1dnz7VkvDXSyzrUZ7IQAPlk9Rr1Dm+OJHbL8AdLxuDBtQsxEjtWvD8rguE+5M9ozHZMxrzTb9KVE2NpEK70VBrLIBWlvfToCocfasexybXz1PRAjD3yFw6bejEuft51KeA1qUn1Y3Migw0sGZwVcpm/MbiE4sBWH12NSWXleSp5ekLP587IgINGjHkhICAoih8duwzGpR++dQfGWigQLg/NQpHMaR2Sp7bZRYM03xSAK/j+kJuwqKZo+xHQGD87vF03tDZgzT4oG06+8bWQSeJDkJKRY41xyepmlkwnN4tjjP0t25cfaI2ldg6ogaLuqVy5ZHLXPx+zn1tTnhoesjOK94Gq/8Kvjz15f/ofYWiAhEEgbAAPcduH6PLhi6UWV6GDutdXmZ5NaN4VRhkiQ7lExBFgYIRKvExo1VJPmpfhshAA4cn1PV6z/ZR1VEURVOW5oavc7I77lk7L58bgo06RmYV0WIANfMcTlSQgbWDq5LvX8jmV0wOp0UF9f9d/6hdNJ2/PcAft/7w9bYXwuhGpIa+wnUNsDl7szZ2vgqW96rA9JYlAfW+SI0OpF+NZBZ1Vn0b3ee3OsVivIx4Q/x1L5078ooX4kL8PIgcJ95tVZJD4+uhD9/zyp8jL1jsFjZmb2Tgr56+ki+bt18V/dy83pxzK6jKwK/7VsTu06Xz1aGTRBIjXfHBi+aZAuH+XqbHP/71o89tneoV97Fz89+bX3o+Hx7+UPu/75a+PHazj/DTS9Scugt9ZXXeH2ftww57GV4rV4DMguF81L40J6bU99pnXqW2vrDn2qtdE0UdvrW1XqG83x2h/nq2jKhBqkMBk1kwjKBcxKnZEb/pJJFLDy/xIOcBelmkpmOezovUTI1W91mzSDRGncSW4dWZ1yGDIduGaOT1/xXy+i2dMcy/Sk78b5DsUHDXKur6LXSiyM2nNxm6bahHbKEoCteeuMr/bz27lWeCQXyFmLVIbFCe48/qs6vptrEb2y57d8jME9KLk2v/D3vnHSZFkf7xb83MBjKCOaKY7hT1Z0JPz4TxzGc4z3BmPU/PeJ6I6KmIBEEBEZUgQeKSMyw5LgvssrC7bGQDbM5pdid2/f7oqZ7umZ7Z2Tgzy/t5Hh52emq63+6qrnrrrfd9y9f7qRahvLEcV825Ctf+fi3KG703sgCAd7e+i/iS+IDmdwCwJmcNNuZ57x4NyAvE9y69Fz8l/aT7vT9WH1uN7w5+h9+Sf2vxb8MRMkp1caxOK97e8jayq7ORWJqI43XaFabuEWJV1v0id9PJs7PqnVvx6DVn4xVXPqcvHvoj0kfcrwxm/jxtmmPQ7EGYekQ/fK68Se4w6j3yNi3MWBjw4KhGE6bmumWbJIffqTviltBeypUv9MIDBc0pEy+uf1GzyqlHTm0ODpUdapFMXzx0BQae1kMZ5P0NTelV6UgqS9IMPPHF8Zh7dG7A13tm7TMYPH+w1/Hr516Pa+dei5iMGJ8Dgh6PXC1PgkXy3+ZIH/EA8kY/iEiTAbEf3IYNH96FRC4bmqyIxON/dodTvXHbRVjw+k2YokrYWWWpwu2LbkdqpXv3o58P/4xfj8g7k5Q1lgFoeVt6b9t7eH+bnIh258d3IqJvgleZQCazwvD5U9JPSK1MxZSkKfjfXt8JqIXSd7z+OLJr9MN+1Pzy/HVI9/CUBGTjdvdIEz578I84+vX9Lg8FN+LdFAjXd08qmioUo2VzHhpbProd818fjH8+XIzb/rzSb1lAzqU040U5h8M15/XVDVVQ83rs65iVOgsAUNlU6bPcgc+GIOfbv+gqbHPT5mJCorxDnziXL+XJ67wlB2CX7OCcY3/xfjw/WPau698zEnW2Okw6NAnZxvHNnMXN7Fdu1DXs+sIhOZT23BqOVMj5zjKrMzFm/xhIXEKkyeCV78IhOTBq/yi8Fvuasoup5jyuvGm1Vtkz8ey+3fDx/ieUBP8Ntgbctug2ZZL3wfYP8M7Wd/x60DRHYpn3bmqplalYmrk04HN8s+8bJJXLBpS0Krfrhr/3OKksCYNmDwrYGHJev+5IH3E/nrnRvXtl/55RWPrWzVj4xk2IefNmzHz5Btw4/1q8t+093HKx/o5MQqYhl5+uGG5b4inVnjDGcPvF8mJZrbVWXmza4c479/aWtzXlhXyN9ka8s+UdnKg/gYL6As24pF4kS/rC/2YugPw8PtrxEV7e8HKzZQVmuxkrs1diY95GXDXnKhSaC/DpA3/AB7v/gYeXP6yM/8KoXNHk3qWxJc/4Ik1osRN1tjq/5Y3t4EkBAFaHvpuSerKXV5uH7w581yLjiGDoA5cj6Yt7kDf6QV0vwUDHVDGZbW5xozkZY/NikV3d/JgojIHXne8//Gd34W6kVabhWM0xFNQXYGHGQuW7BnsD1ud674gsFt0EYgHk0WvO0V1MaavBW4+LT++FlK/uw1+vPbvZsnanvUVt+Z27LkGEkeEPZ/XGIysewROr5QTan/3F/zj1x7N749Dn9yhesZec0Qu7i7di24ltus+xPfC8L/E+qD1M9xbtxaDZg5BVndUhMlx6Ri8cHH43nrnhPAx2LfhFmgyYcngKtp7Yig25G5Sy89Lm4b6l92HQ7EFIrUjFkMVDsCJ7BWamzPSah72/7X38e8u/WyWTQ3Lgm3g5P6l68aC1NOddqUY930woTfCrp1mc3jpnRlUGph2Zpjn26a5P8Z8d//EqC7h1NzFnlbiEL/d+qZkPCMbsH4O9he7NVxrsct7OKYen6DoodDXIKNVFqbZUI7c2F0llSdhZsBMj40fixQ0v4sHlWrfT6Ei5CfTvEYkL+nfHu0MuUfI9jDswTlHqzuwTjYnP/B++ePiPAGQLeaSJKZOBQFZF9RAK14+HfmzV71dkrwDnHNOTp6O4objZ8mrjmVCK9AZkzjmWZi5FRVMFaqzuHZXMdrMyyfE8T0toyQCsZ5QqrJc78WpLNVZm+55YJ5YlYvKhyT6/B4BHVzyKYbuH+S3jyY0X9sOWj+5QdgkRoUuPD3a3A3GPT61+Ci+sfwHvbXtP6Zxfi30NYw6M8Tqv57MVNDdYj9g3Av/Z8Z9mn+sH22Q3+fFPX43kL+/1WukRbUntTeHJpWf08jJMCDdsY/djOL9/NG4e2B9/GeQOKYwvjkeVpQqzUmbh/qX3Y1LiJN16a3R4e4P5IqNKuzPm+f2765YLZCBTTxyE4qF+L+anzdd4JurlIPOHyWjQTyrvg1prLSQueb1begoCANwZcyde3hjYRHDgaT3xp4GnYl72RByqiMOg2YOwJmeNX9kDWREU7Cvep/ytNjhZnVaNUscY0z2vp2FBKFvqyVKdrQ6f7PwENZYabMrfhC35srdccnkyXtn4Cn5O+hlbj2/Fq7Gv4orLU/HNY1fiw3suVfoSPa/D9mL0/tEYsngIxuwfg+8Pfo9xB8Z5lfE0xCn3xtz3+/629zE3bS6O1Rzz/DkAuV/MrJI90dTPVeKSz35EjZiUb8yXjdk5NfJYpn5f7E47Bs0ehJiMGO8T+MBT3mfWPIMv477ULfvJ/Zdj7JPNh3gC8jhz35L78Nlud8hiXm0ebph7A15YLyeuPlByIGA5Pd/HRnsjBp3bEzdd1B83XthP8XDYdmIbzunbTTdkRfQRM166ATNfvhGA+/kJneDHv/+fxkAvSKlIadXYWWou9dl+xURvX/E+3LX4LiRX+A9zBYCdhTuxo2AHJiRMwFub38KYA2OUXRRFeAozNqDR3qgvLxf/ccULoqBBTvLskBz48dCPftvjt/HfYvie4Ri9X971VfTrGdUZyKvL0xjmVx5biTtj7sTRyqMAgKvmXIUv934JQA4PEYt4eojQJQCIPmspbllwi9/xMlpvm/MA+GbfNxi+e7jy2VefrdZrPtj+AeYcnaMsmvoyDOm1b8YY+naPBOcckxInIb9Omz6gpW1Mre/p0ZxR6qMdH/l839Wc3bcbVr1zC0Y85r0hzQ8JPyh189bmt/D0mqfx2MrH8MCyBwKSx6laZP70AW3SZM++rKyxzKeBMqMqQ5nAq42hnizNXIp3tryjnP+bfbKxoWeUye+iKiC/I9fOvRbfJ3zvt5ya2y89DbP+1Qf1jlLlHgDvRSw91LpbRlWGJkKi0d6I6cnT0eRowqDZgzBo9iC/i9WBGFE9219Jozy+q8PGNufLIcLqxeEDJQeUhRVA1olGxI1o9djdv0ckEssSMeFv12Ddu3/W9ZAEgP0l7pyBWTWy3j0xcSK+T/geY/bLOrtwXNhyfAu2F2xvlTzqReSWGJQ8cUpOjS5scVia1XnVXmof7/wYd8TcoXyuaKrAsF3DlD5I6Mb/3PxPxXv9uXXPYdKhSboGbz2DtKe+U22pxtKspYpOvTl/M9Kr0sE5x9y0uXhz85vYV7wPs1Jmae4lNq95T8pwh4xSXZCdBTtx26Lb8MiKR5pd9YkyGTHmiUFY+MbNYIzhw3suVXbDmH10NjbkbfD5W/GCAi1z/1Wj7mD1FKTmjAyf7/kcBfUFmJg4ER/t+Mjr+3lp8zQGDXU+AKFAipe+yOwefLJrsvFl3Je4M+ZOjIwfqcjywNIHcOvCW1FtqUZqhWzl9qX0NDma0GBrUP7WW833RC98RFjKBWWNZYrx4vM9n2P4nuGKktpob8TC9IWa8rH5sV4ecv7Qe+aL0hdh0OxBPjv7XtERyBv9IHKs7phtPcOFL08XQPYouHXhrX7bXHM0F+K0+bg8+EcYDV4u4YCcX2xi4kS8s/WdZq+VN/pBJQzm4tN7wtAtH90vmKZ4P6mZnybno+DgKGwoxLTkaV5lgMCNBQX1BXhy9ZOaY74US9HOv0/4HjsLdmpWYQTqiYOQoZvJ7UU2av8ojWei3uq3XbIjJiNGE17gyb/vuljOTWY0I+rMZbr3m1+Xj1sX3orFGYu9FNomu+/wPYFQAIoaivwabNV8uuvTgMq1lNdjX8frsa8DAF5Y9wL+tOBPfss7JafX+ysQSj8ALExfiHW56zDn6Bx8uP1DvL9d9pYTE4fM6kxlYny8/jiev+kCREcY/YY/tgc2pw2LMuRky3PT5mJm6kzMPjq72d+JPketnIp+T4wtMRkxmJUyS/le3WbrbfW4b8l9OFx+GD8f/hm3LrxVeR/+tuZvXtertdb6nCyJZ9Rga1CU8kmHJgHQ9whel7MOGdVupXhB+gKvMoB+3/fWHQPx1HXnYlT8qGbDyxySA0XmIqw6tkoxmj+84mGfk35PzHYzBs0e5NNra/D8wXh+3fPK50AWTjz7+A15G9xjhOvnD199tsZAD8gGwL+v/TsmJEzwOmejvVF3nBHy3L3kbjyw7AFl3FV75YnfVVmqvH4fCCJEXzxTxhiMPY+i56XfYPD8wfhwm3eIv0QJe8QAACAASURBVHoi7Pl+7SzYialHpio5HvUQRmjxW88Jmrqd7i+WJ4wZVRkYukvOtbc0S67Pe5feqzv2CEb/9SpcfW4f/PrCdYjoK3v0me1mn2Oyr6TlL65/UZmc6rEoYxFWHnP3u75CWtV6jbhHJfRTR5+cdmQaXtn4itdxQG4Do/aPkpNpb30XZY1lqLZUg3MesFFKPAefHqnC+OjnvdD7zl+fe9W5fXUXa35L+c2vEUiNXo6rj+69DM8NPh/pI+7Hm7cP1HynzlkKANOSpyljFOC+h9zaXDy79ln8eOhHWBwWPLHqCZ8yfBn3pZJiY8S+EcoYAPg2FNmddkhcUnS2eWlyWHajvVHeXCh9kV/Pz39u/if+uuqvmmPNGcA88dSZBs8fjImJEzVG1fuW3ufzHQmkbXn2z9/Gy7t/N7dj+SsbX8Fz655TPs9ImYGYzBgMnj9Y8WIS5NflK16Ur8W+hoqmClgcFpSa3fnCVh5biZc2vIRdxVvwR9dOpYpXKzjSq9Lx7y3/1k05IOpQGGxX/Ps6PHevOwIjJiMmoPGCc67016L/Etf3pNZai5H7RjY7vk05PAVPrn4Sx2rlxaBhu4dhyGL/icyNzPcC6ZSkKVid494sSFx/T+Ee/JDwAx5f+bgyzpjtZmRXZ2sWsR9f9bhyr2mVaahoqkBBfQHUiHOK+/5g+wd4avVTmnt9PfZ1jE8Yj4mJ7o0aWjvPDifIKNXFcEpOjZu6mAz7a8x/u+F8Ly+LQJS6hFJ3qFBrXxazw21EuGrOVUouCEB2aV2X605yml2djY+2f+SlsDY55UHfczXS6rRi9P7RmoFL7f1RbNb3rEosTdRcV41QWm9bdBueWfsMaiw1moFQTFpqLDW4cd6NuHmBnAB02K5heHTFo0o5Xx24njHE02VW7Wpa1iR38GJyP/bAWMWIpkZMWgNBz5j08+GfAfhfLfNEbxXB0xPoqtlXYUnmEgBQDGt7Cn2HZT61+inFo0GPWpvcBhrtjc26pE8+NBnDdmk9xETojqch0Bd2l5v8Kd0j8cuLct6drOosNDmaMClxkqJwiXAcX0Y9MTgF6imlF2Lka1JrdVqx5fgWzEyZibe3vI03N7+pW0Y5t6uN59bmer1Twsiqdx8WhwUj9o3QGKs9+ejey5A18i+4++bDiDxlP9bmuhOgT0yciOnJ05XVwbjiOHyx5wvN70X9qvEVnvHGpjcwfM/wgHMxjT0wFoNmD/L5btqcNsXrYdyBcRrF1R/Cc0odiqVHXFEcrvn9GqRXp2uOi7aoTu4r+lt1vxuIAU5vgrS3aC++ivtK+bwiewVmJM9QPm87vk3zWVxL1NOGvA3IqcnBpMRJmvxmLcGfci8UtRH7RmB8gjvs0Oa0KQbIAyUHUGQuwvPrnscvh+UkvJ4hAWpj94zkGT7fNfGMnlv3nGLQsjvtKG4oxjW/X4NlWcsAyIaBzOpMfLLrE821fL3j72713nmq0d6IHQU7MD99vs8Jt0Ddn/1trbehrTnEBG9GirYuk8qSFPnTqtIwL20eihuKAwqH9vQKU4fL+dMJKi3yGJZSkeL13eD5g/HkKrfBXX0eMb5WWarw8Y6PsTZnLYYsHqK0xS/2avuLgFB5OglEPwcAz9/hbpvbC7Z7GdLVnz3fL6EbiD6Ic4682jxdMcR9enp3iXNwcGUi6+AOrM1x952BGJtvufhUrHznVpxxmnuiPzJ+JG6Yd4Nyjfe3ve/1rnuSWJaIuWna0Hub04Y5qXMwaPYgr/IzU2bqnkf9jJX7cC066PUHwjCsx9BdQxVjcJOjCUMWD8Hdi+8OaCFQIPoDf95mgP+oAL0J9Kpjq5Bela5TWsaXPmO2mwMKq9Mbr/r1iMTIxwcF7J2sDsGvtFSioqkCj6x4RDFG1NnqApoTqMfaw+WHAWjHZ+HRwjnHtXOvxVdxX2kMQ9WWagyePxhjD4zFN/HfKJ7tf174Z40hVBiJfL1veXV5uGbONV66sye+xnrPfFCe9z7uwDi8svEV3TY89chUrD7mNmqo5wfqdq2XUyquKM5nxIdnWxBj7ch9I/HQ8oewNGsp5qfNR3xxPBZnLsbQXUNx95K7lWuKd+FEvduAsu2EexOTp1Y/he0F2zVjmfiN2G1R4hIqmyqxIPsnrDrhNoCP2DdCszDjyezU2VibsxaLMxdjyOIhXpEPYw+M9frNr0d+xcKMhX692GuttYonnzpNSXOe0v6MUp7jltVh1RxTvytmhxmPr3pcSQmgZkPeBjy95mncGXMnPt75seY78Z5IXNK0wZbkDe2q0O57XQxPY4rodNSDoqf7rsQl5NTm4OweZ6N7hGycUq+miPJO7sSC9AW49JRLceOZN2pcJosailoU4iDwVABGxY9S/n5zk3vyvK94H76K+wpWpxVn9jhT8xsxAByvP44X17+IrOosvHvtuxrDwic7P8F1Z1ynWbHUm0DNT5uPUftHeR0HoNvp/p72u0YpnZc2D9GmaI3Lb0xGjOKhIxAuskcrjzb73LJrsjVl9LyeXt74Mu4+/25N6JCarOqsgOsnJiPGa0cKMYlYmrnU6/mrUcdIv7ThJTx5qdabZ0nmEo1hgYPjq7ivIHEJB0sPApAnKr5kTa9Kx6MrH8XwwcN1c/FMSZqCK/pfgVH7R6FfdD+8fc3bXmXEucWq8jWnu/NBiXopayzzKcPeor2wOCy46/y7UGlIQURfjv2VNThhlgfatMo0DN05FFtPbMWR8iO4d4A7F0liqTvnjNoz70DJAdkTQtVufkr6Cad187GjXV2e5vNjKx7D9Wder1t2UcYinxMDgVpJ2FWwC4D8Pj28/GG8eMWLync3L7gZQ28cqlFsBOoQ3ObaWrUkv0txRXHKoDw9eToA4N4L5OdV1FDkZcjZfmK71zU8FdOcmhzEZMQoYRy/H/0d/aK1yf31Jj2/H/1d+T/apM1flFubq0zE9hbuRUqlPJkOZHc9tayA7OXkuaU2ACVXiNooO2b/GN3JgEiYKRR/ABi+Z7jyvqVXpSuK15GKI/hm3zc4tdupysSr3u5W1kU/O7DPQEQaI5W+v1eknC/O87P62GeDP9M1guvdv1qZS65I1jwT0Yfn1uZ67Qa1IXcDDpcdhifLs5cr5/RnCBXXn5I0Rfm8p2iPomiWmEsQkxGj9HHrctYhrihOM6FtdDTi3qVyu/zf3v/hQMkBv8oyINeB+h7jiuO83gv1OGuX7Hhy1ZM+lfvl2e6EyfW2et13bF/xPp8GCuE5d6L+hOa3np4To/ePxqTESRqj3Zj9Y3Bhnwu9zvla7Gv4/KbPda8XVxzn07gvnm1mdabufeTV5SEmIwbbTmzD7sLdAORFMLXBb8vxLcp5ZqfOxg1n3qB7LV+INigMY+lV6cpkZnXOapzT8xwAQHadNu/H4PmDMWywezEjrlje0SyuKE5jGI7JiFHGQzHOx+bHIr44Hq9c+Qp6RfZCo71R8UwQ9TYjZQbO6OHeVUoYB812s+IN4PnMRN8l8KdXqBcTRRuelToLfaP6YsvxLdhyfIvmXVffj3oCJc5f1lim66EVkxHjNZH+LeU3zEiegVvOuQW9I9078AqD+9rctUitTNXNtaJ3foE6rE8sNtokm5fxzN+4JIxDObU5XuUKGgqUXHd7Cvd4LQo5uRN11jpEGvXzDU49MhU3nXWT1/EDJQd8eoYvz16OvlHN7+wYXxLv87qtYVHGIi+P0MWZizWffT3Hm+a77/G/O/6LVwe9qjE6Pbn6STw68FFc3k8OKVyWtQz9o+Xd7+ySHbctug0AlHpLqUzBvUvuRY21BnPT5ip9kF6/EpMRo2kHeh5knnIHmsNpSeYSjd4rvH/VCwkxGTGQuOSVimRZ1jKlHtVzhVJzqSKP6IM2H9+Mzcc3a/pUUUYdygfIHm4mg0nRG9QLS4mlicpc4NfDv+L07qcrY6joR5MrkhXPJ/Vv1Qi9UfSLuwp3aULd1Kw5tsZLRoGYd53aTc5N6Onhpr5PgahLce2JiRPR3dRd42GmNsz7Ox/nXOmjUitT0TOip8/yngsla3PXeumPAl+bGMRkxOjqB0I3FWNxva0e89PnK983l3uytRuKhROss5NRhirXX389P3jwYLDFaDMfbv8Qm/I3NV+QIAiCIAiCIAiCIIiQZdjgYfj75X9vvmDo4zOJGBmlXHQVo1SdrQ5OyQknd6JHRA+Y7WaYmAkO7oCRGXVXDwAoZdT0juyNBnuDxnXRwAyazxGGCPSI6NFsckh/6MknrmNgBhhgUGRTl4kyRikrp2r51TIKbwH1fUcYIsA5h5M7YTKYYJfs6BPZR3aXVp1DXFckTxXfRRgi4JAciDRGKtePMkZ5JWaOMkbBITmUawvZxf96z9zADIg2yl4aTY4m9IzsqeuCbGImGA1GWJ1WmJgJEiTlnqON0bA6rYgwRkCSJKWcPwzMgChjFGxOW4vaiK9ykcZIZaVd1If4fYQhAnbJrls3/tpod5PsxWdxWpR7NTADOOcwMAMiDBGK+7xnOzUxExhjcEgOzWqDZzlA264CQZK4krBa/Yw878XzfRTlAW3IpF5b0kPcEyB7Ozq5E91M3RBhiEC9rV5ZUbJLdkQYImBgBlidVkWuaGM0bJJNaec9InrA6rDCwR2INkbDLtkV+SMMETAyIxySQ5E12hitfBbnjDBEKLI0h+fzYWBK3UQbo2FxWmBgBkQaIsHBYWRGNDoadduIr3fKX3sCgJ4RPWFxWMDBNe+mHp73ptd2xH1EGCNgYiZNW9Wra1/PpEdED9glO2xOGwzMoDx7AEqfJe6VgaGbqZtyLc/2pX7n1MfEuyOerfq+Pe/N83v1ZyMzgoN79ZeA+90W9ervGYg6F+VEfYiy6vfC8x4lSMr1jcyoPLNoUzTqbHWaOogyRSlu8p7tRf1ZjBNCXgYmPzNwSFxSxgHxnkUZo5S2xMA05+0T2Uc39FRc02AwyOGIrndA3JORGRFpjITNaVP6TPW5xb0yxiBJUrP9s177FtcS1440RCr10COiB5ocTbptQfRnnvSJ7AObZGs2pMzXeOLZ9vR0AKPBqITFeLZFMQ6o277oJ7ubusNsN4Nz7rPe9eQyMZPSR6jHM0BuG91M3ZT7jTRGyruJqdq8+nzqdi5kF3Xc3dRdGTcjDBFwcqemrXFw5feibaiva3PaAhqn1e3I8/l5tg+1vL7KCP0BkEOrGGOad07IycE19ev5zuvVifDaVr9remOjKGeX7Mr7b5fsiDJGoWdET1RZqpr1NOgb1denLit0DF+6gXh/1GMRAKXd+EK8w0J2zz5S6COijfWO7I0IQ4Ty7gWaU06NOKf6WuI98Xyv1PXiqRfonROAph0D+jq++m/1mMTAvMZivb7G15gvnpP6e3910M3UDQ5Jvv8mRxO6mbrB6rSCgcFkMGl0HoG6fXnea5QxCk7JqYyFnr9V91FqPOXU0y+E3i90IdEmxWcGphkzPd9dz/FNyN/kaIKBGWAymOCU5HmRgRnQ6Gj0an9q/V2th/tr455zMqEvRJuiIXHJZyi9ug4ZY7rvfXdTd9glOT9ZpDFSri8PPV/IoB5HhP6qnjt5Pic9fd7zO3FeCRJ6R/ZGva3eq417Xhtw99fqcuLaoh2IMgZmgNluxundT1f62TCHjFLN0VWMUgRBEARBEARBEARBECGET6MUJTonCIIgCIIgCIIgCIIgOh3ylHLBGCsHkB9sOdqJUwEEvk0a0VlQvYQeVCehCdVL6EF1EppQvYQeVCehB9VJaEL1EnpQnRAdSQXn/H69L8go5eL+++/nGzbo74JBEARBEARBEARBEARBtAoK32uOigoyChMEQRAEQRAEQRAEQXQWZJQiCIIgCIIgCIIgCIIgOh0yShEEEXKYrQ6kFdcFWwyCIAiCIIh2w+KwIL0qPdhieCFxCZnVmcEWgyCIkxQyShEEEXK8NS8RD0zcBbtTCrYoBEEQBEEQ7cLwPcPx1OqnUGOpCbYoGmanzsYTq57A4fLDwRaFIIiTEDJKEQQRcuzNlnO8NdqcQZaEIAiCIAiifUgqSwIAWJyWIEuiJbUyFQBQ3FAcZEkIgjgZIaMUQRAhh9gTtImMUgRBEARBEARBEF0WMkoRBBFycC6bpcw2R5AlIQiCIAiCIAiCIDoKMkoRBBGyNFrJU4ogCIIgCIIgCKKrQkYpgiBCDskVv9dkJ6MUQRAEQRBEZ8CVBAoEQRCdBxmlCIIIWRwS7b5HEARBEATR2ZTVW3C0qC7YYhAEcRJARimCIEIWp0QrdgRBEARBEJ3NXeN24C+TdgVbDIIgTgLIKEUQRMjiIKMUQRAEQYQUnHOU1VuCLQbRATAw5e8GK202QxBE50BGKYIgQhank4xSBEEQBBFKjNi0Hjd9Nx/5leZgi0K0M5RTiiCIYEBGKYIgQhbylCIIgiCI0GJx8SfoMfAHlNSSt1RXQe0hBQC1TfYgSUIQxMkIGaUIgggpbA53cnPKKUUQBEEQoYnJyJovRIQFnh5Swda/qsw2WGgHZoI4aSCjFEEQIUWjzZ3DgHbfIwiCIIjQxE4h9kQHce2ITXhrbkKwxSAIopMgoxRBECGF2eZeGQv2Sh1BEARBEPo0kSdLl0GE71WbbQCCuygoZNiWUR40GQiC6FzIKEUQREjRpPGUIqMUQRAEQYQiFhsZpVqK0GrqQixnkwiVm7QlCwAQTEf1XFcC/b7dI4InBEEQnQoZpQiCCCmaHDYYogsAkKdUuHP4RA0GDF2LNUeKgi0KQRAE0c6Qp1TLaXIZ8mbszgmyJFokLutbFS4vJScPnv51oqoRAHBm7+igyUAQROdCRimCIEKKOemT0ePCyWCR5eQpFeYIY9SnS5ODLAlBEATR3pBRquUIrSbU1BtPcZxBzBcmDHdRJpqmEsTJAr3tBEGEFDl1GQAAg9EMp5MSnYczA07tAQC44cJ+QZaEIAiCaG+aKHyvxYj9CkPNKOVJMD2lxLWDKQNBEJ0LGaUIgggxhMrGyVMqzBHVJ5FiSRAE0eWwkKdUGwixcdFDHHX6BN7JY7i4toN2dySIkwYyShEEEVKIHWDAOOWUCnMkV/1RPRIEQXQ9LHbyZm4tobZW4xW+pxq3O3sIF9emBS2COHkIC6MUY+wyxliS6l8dY+x9xtiXjLFC1fG/qH7zKWMsmzGWwRi7L5jyEwTREshTqqsgFEoyShEE0Z44nBJ+3n6MwseCDOWUaj2hZnDx9IbSGqWC4ykVSrqD3SmRZyBBdCBhYZTinGdwzq/hnF8D4DoAjQCWu77+QXzHOV8HAIyxPwJ4BsAVAO4HMIUxZgyG7ARBtAym/EWeUuFOKCqWBEGEP+tSSjBmQzq+25gRbFFOamiS3nokHlpeZv49pYJjlAol1eGpX+Jw+ecbgi0GQXRZwsIo5cEQAMc45/l+yjwKYCHn3Mo5zwWQDeDGTpGOIIg24u6WyFMqvBGKbKitCBMEEd4Ymbx8UVzbFGRJTm6ob28DIf7o1EnGpU62nzlCcEEr6URNsEUgiC5NOBqlngGwQPX5HcbYEcbYb4yxU1zHzgFwQlWmwHVMA2PsDcbYQcbYwfLy8o6TmCCIgGFMnVMqtFYSiZYh9MkDedVKfimCIIi20rubCQBQ22QPsiQnN6FkNAg3pBCzSnnaF0PBU4raF0GcPISVUYoxFgngEQCLXYd+BjAQwDUAigGMb8n5OOdTOefXc86vP+2009pVVoIgWgvllOoqqBVKOxkYiTAlv9KMtOK6YItBqDAa5HGCwseCC43RLUdoOKHmZRaKRikH6Q0EcdJgCrYALeQBAImc81IAEP8DAGNsGoA1ro+FAM5T/e5c1zGCIEId7jZKOWk74LCGB9H9nyDai9u/2w4AyBv9YHAFIRTIgyI0IA/Y1lNvCTUvP3+JzjtXEnFtm4MUB4I4WQgrTykAf4cqdI8xdpbqu8cBpLj+XgXgGcZYFGPsQgCXANjfaVISBNFqlPA98pQKe5wqfdIZYqvCBEGEL2SUCg1ojG49u7Mrgi2CBu7xl8Yo1cn1LPQFMkoRxMlD2HhKMcZ6ALgHwJuqw2MZY9dA7kHzxHec81TGWAyAowAcAN7mnJOPN0GEA1ydU4oU3nBG7fJPdUkQRHtB/UloQPXQlXDvfWx1OLWJzoMUvmcnb3mCOGkIG6MU59wMoL/HsRf8lB8JYGRHy0UQRPvCmHDgJE+pcEfiwVtpJQii60LGkNCA6qEVKLaf0Hp26nD7uiaHZswOWvieUwLnXOVBTxBEVyXcwvcIgujquDylGGj3vXDHKTkByE6qoZbUlSCI8EVMWqlXCS5klOo6uI1SDNxjUZAHyVMKkA1koQQtsBFEx0BGKYIgQhPGNTmJiPBjc/W36PWHzwBQTimCINoP6k9CA6qHroM6p5QkaQ1DnV3P6mtnlzd06rWbgzz4CaJjIKMUQRAhhmr3PfKUCmuKbYeVv6kqCYJoL7qSh47EJcTmxULi4ddJdqV66HRCLG8mU+WUckiSNvy+k8VUG36s9tBKCRxKdUYQXYk2GaUYY07GWBJjLIUxtpox1lf13RWMsa2MsQzGWBZj7HPmCgpmjL3EGJusc77LGWNxjDErY+w/Ot8bGWOHGGNrVMcuZIzFM8ayGWOLGGORruNRrs/Zru8HtOVeCYLoHBgop1RXhFbUCYJoL7rSxHB51nJ8tOMjxGTEBFuUFtOV6qHTUD2ypBPVwZPDA20OSNkwxEy1AIBqs61TZVEvSIZaE3PQChtBdAht9ZRq4pxfwzm/EkAVgLcBgDHWDcAqAKM555cBuBrAnwD8q5nzVQF4F8A4H9+/ByDN49gYAD9wzi8GUA3gVdfxVwFUu47/4CpHEESII/QPk4EU3q4E5WEgwhHOOSL67QQMjcEWhVDRlRYsypvKNf+HE12pHjobBo4IY+gErKhr0iFJSK7ehZ6XjIKxexZSi2o7VRaLsxHMJBvsQi0fJemlBNExtGdvGAfgHNffzwLYwzmPBQDOeSOAdwAM9XcCznkZ5/wAALvnd4yxcwE8CGC66hgDcBeAJa5DswE85vr7UddnuL4fIjy1CIIIXYQLeWSEATsyy2Fz0KpUV4AUOSIcSShNQPQZ6xB91rJgi0KoICN3aED9esvRGn9C8/k5JY7j5nQAgDG6CGZr54bQ7bUMRc9LZF+CUPOy/m1PXrBFIIguSbsYpRhjRgBDIHtHAcAVABLUZTjnxwD0ZIz1buVlJgD4LwD1DLU/gBrOudiaoQBuw9g5AE64ru0AUOsqTxBESCMbpawOBxptToyLzQiyPER7EGqKJUEEgk2Sw1aYwRJkSQg1YjLflbqVqk4OkWoPyCjVNkLVuOrkXLPj3tdrjnbq9a2oUv7u7J3/mmPSlqxgi0AQXZK2GqW6McaSAJQAOAPApraL5A1j7CEAZZzzhGYLEwQR3nDZKMVd64nZZaG18wrROkJV+SYIv1CzDUlCLaSnLQhv4OWHCoMsScsho1RbCK1E5+pXyuHk7q6PBVdGSuFEECcH7ZJTCsAFkN0b3nYdPwrgOnVBxthFABo453WtuM4tAB5hjOUBWAjgLsbYXACVAPoyxkyucucCEKN6IYDzXNc2AejjKk8QRAij5JRyRdtGhlDOBaL1kKcUEY5YHCJshaL/QwmHs+v0J1aXUSocDfd2J1kM2kJIGaVUFniJc3AeGn0e6Q4EcXLQLrM9V86odwF85DIAzQNwK2PsbkBJfD4JwNhWnv9Tzvm5nPMBAJ4BsJVz/jyXfTq3AXjSVfRFACtdf69yfYbr+6081HxACYLwidEgK0SUCa5rQKudRDhS1+SV4pIIAbqSp5QwSpkM4bcAQ+9Hy1G33JAyuKg9pSR3+N6Fp/bAef26BUmo0AvfIwiiY2i3EZBzfgjAEQB/55w3QU40PpwxlgEgGcABAJP9nYMxdiZjrADAh67fFgSQg+oTAB8yxrIh54ya4To+A0B/1/EP0UySdYIgQgOhf5iMsjUqlFYSidbTlSaRxMmDevvvOgtNwEMFJadUkOVoD2wub7wwtEmhzuJovhChRTRaxkMq0blaEknikBRdDDhR1RQUmQAgVB6RgRZICaJDMTVfxDec854enx9W/Z0M4A4fv5sFYJbO8RLIIXj+rrkdwHbV5xwAN+qUswB4yt+5CIIIXUwGMkp1JageiXBEvUo/Y1cuPrjn0iBKQwhEf+LsAi6YIgIuHO32DVYHHE4JJgqzbwHuip66Iwd3XHoaQmFzcO7lKSX/nV/ZCADYkFKM+688q9PlChXdwWQ00G7QBNGB0ChCEERIIfSPK87pAwA4q290EKUh2ouQClMgWsTigycwLz4/2GIEBfV8qKgmeN4ChBYxUU0prENxbbjXi3wv4epNWk/eUq2EIy6nEsfKQ2MzF3VOqa3pZcon4cl3tKg1KYHbTqi8F8Y+u2HqmRpsMQiiy0JGKYIgQpI7LzsNAHBBvx5BloRoD/bnVjVfiAhJPl5yBJ8tTwm2GEFBvUq/OKEgiJIQatT1Ep8T3n2LuJNQ8QhpKbWUV6pFeNZyyOSKVwk2dWeOl+fepK3ZnSuPixCxScF0+ip0O+/3YItBEF0WMkoRBBFSCP1DJDonD5uuAMfo9enBFoIgWox7lV7uj6zKbnxEMFEbcHpEtSkTRfBx3Uoo5RdqCWSUai1yfYdA5B4Ab2OZW/UKbrsMNWMt5ZYiiI6BjFIEQYQWLv3DYBA5Q0JLISFag4Q3b7so2EIQRIvxDB2paaQJeCigXqzoEWUMoiRtR9xJuBqljhTWBluEsCZUbRwe9vigESrhe4K+3SODLQJxklFWbwm2CJ0CGaUIgggphAJidC0fSmGqqBNuTAb3booEEU54Toj8eYVY7E7MicujPqsTUC9WmMJx2zoV4d5aqhpswRYhTAkxTynu/3OwCBU5BLRQSnQmJbUW3PHddsyJywu2KB1OeI/kBEE0y7b0MlSb/SuN7KhftAAAIABJREFUsaklGLY8uZMkCgzm6p0ofC/8MZkAh5PqkQg/uEf/468dvzP/EL5YmYptGWUdLdZJT6U1H1FnLgMghf0k0bONhRs0RrcQj8cVKs2XewgmUl09dFXn77inJhTal/odDff+hggvDuZXodHmxNXn9g22KB1O2BilGGN5jLFkxlgSY+yg61g/xtgmxliW6/9TXMcZY2wSYyybMXaEMXZtcKUniOBQZ7Hj5VkH8OrsA37LvfF7AubHH+8kqfwjxn4GDsY6x1MqNrUEsaklHX6d5kgprMVXq1PDfpLiicnAYCejVNiTVhyc3ZeCiWf34yuUhNcWIjc9EYDs+UC5pzqW3Q1jEHnKfrCImpAL7wkGe7MrMHZD5+ftM7DwN6p1NsrTcnlIhYqRQ1Rj72g5R5vZIvdhl5zeM1giAQiN8D11FTmkUMlMT5wMNLh2Nz2tV1SQJel4wsYo5eJOzvk1nPPrXZ+HAtjCOb8EwBbXZwB4AMAlrn9vAPi50yUliBBAGHSyywLbcjgUlCOu+svIWKeskr3xewLe+D2hw6/THE//GoeZe/JgtnWtCa3RyEmR6wI8MHFXsEXodDz7RJ95fyZehS1RHwMAdmSU47LhG5B0oqajxTtpUQ8LoTButQX1vbTWwPPs9HhM2X6snSQKHANjYf/8g4dbP9uTXRFkWQBhJatzTYLTS+qVb56/6Xz06xGcXEqh0Lwk8pQigkSDxY6BrBA9o8N8Q48ACDejlCePApjt+ns2gMdUx+dwmX0A+jLGgut/ShBB4Fi5GYD/QX1efL7yd6PN0dEiBYDiKgWDgYXOdsmdgFB8utruLuQpFb6c7Aq45+57vp4Hk+S+8/9YFtYmy16Xh45Xd7h8RGiE97QXbU12vuZIUTtJEhgGQ8cvHO3PrerSedr+veAQnpseH2wxvML31MejTUY0BWmxLBTqXm2UCtcNCYjw5A/HpmNL1MfoUZUWbFE6nHAySnEAsYyxBMbYG65jZ3DOi11/lwA4w/X3OQBOqH5b4DpGECcVT/y8F4B/9+fPlqcof0/elg2LPbheOpwz1/+yp1QouG53FuJW//jFRhTXNrXqHOkldbjn+x2t2qZ74f7j+H5TZquu648II+A4mayLXQj7SV5vnv1Pc/3R8qj/wWyV371g25bzKswhMaHrCJQJNGcYH5sR1iFkatltjra9b9N25bZVnBZhZKxD29imo6V4+tc4zFUtnhEdg693iIMjOsIIi8MZlPcsFHRAdRvnnBZrBPQcOp4LyrcDAIwNxf4LdgHCySh1K+f8WsiheW8zxm5Tf8nlnrJFbwdj7A3G2EHG2MHy8vJ2FJUgQovmBo5oWHEaavDrjpyghACoEZJyzmE0nFyhAeo7zatobNU5JmzKQlYrwwGGLkvGpC1ZrbquP0rqm7A4oaDdz0t0PGSU0n7WTXRu1YZHX+TIASB7kQSLY+UNuGPcdvy4NTtoMnQkbq8OhpTCOk2oUbihblFtNUp19lZlTXYnpu3KbXYzlVbBOXom/op+qEN+ZevGw9BGW1dtrvs249lfuT93izSCc8AWhPEgFFRAu6SNIgj24m0osCOzHAOHrcPRopMv12RnYpZcYXsNpcEVpBMIG6MU57zQ9X8ZgOUAbgRQKsLyXP+LLW8KAZyn+vm5rmOe55zKOb+ec379aaed1pHiBx/OgfLM0NtbNRjYGoGtI4FarybRBZHr22dyXtfxuZGjcCD6XwCA2ka3cnm0qA4Dhq5FeknnDTpCJg4OAzu5VmLUq5CRprZNaOta4SnVUbCw3/T85OVkD7uUuOTxWed5NFYCANIkWe3oz2oBBNdTqrTWAgD4YXP7ez6GBB71EM6qjTpsKrO0bca1YIUyJnZEqGrRIdycPR5jIqYiwhg205Vm8VVDDdbgpk8QTeffd13scZwjyiQ//1vHbOtssbAtPfi7mdqd2rpp7GJ5P1uD2Bwo5uCJZkqGBpxz3DpmK8bHZvgssy29rNVRCh2Bwymh1Ox6MU+/IrjCdAJh0cszxnowxnqJvwHcCyAFwCoAL7qKvQhgpevvVQD+4dqF7yYAtaowv5OTjPXATzcAB2cEVDy/0ozdWaGQeLEDWPEWsHMs6r+/DkdPtN891lnsfl2bj5XVI3X1j4Cltt2u6ZeGciRHvYaXjBt8GnZEQu3rDfLEhUHSrEptcA0665M7f2c6DtlTKhRctzsL9a1a7K1bkTyzPhmvGddi6LLkgH9TZbZhZ2ZHeouePHVoc0hdauc1z7DLk8lIDACe+fkP5FV5F3LKhvxY6QYAQF+4PKdY8MxSxhBMTHcwr6rdJt6erdAQYtpsg9WBAUPXYsbuAMLpVDfzv1WpbbquridfJ/Dq7IOt+t2urHIMGLoWhTU6E0G7fOxqQw4iTSFWwW1CrqPukdp7qrfYUVZnCVooqjCOnntKdwx94HLNd9ERRgBAeb210z26dodAEnhPT6lg5dcKJRqOH0ZW1AvYFrcvaDJY7IGHlE7YnIWC6ib8uDXbZ/29POsAHv9pb3uK2CaWJBQgmtkQ5/wjcO51wRanwwmXXv4MALsZY4cB7AewlnO+AcBoAPcwxrIA3O36DADrAOQAyAYwDcC/Ol/kEKPSFZJTfBhwNu9Bcft32/H8jOAnXuwQjq4AAPRiTdib1DYFUJBXYcZVX8Zi/v7jPsu8M2kRrkgYDh7zj3a5ZnNYy7LQizXhVeN6SBworbN4lfl2XRoMcCsYP0RM0azamgz+k/t2BGJ8kbgEo8HQbkklOee6iYdDKReJWpLWuod/WfYehkfMQwQCn/w9Pz0e//htf4uuU3ZkMyasigssnwhzeb91wLNusDpQUB06oR23jNmKK/+3MdhitBt2j/o92cL5PD2lJmzWCW91GaWKeH8AwOlM3nWvo+1CTon7nCCajO6L1zR2QGhVC6k22/DkL3F4f+GhNp9r4uYsr/6RBT2Dl5bKBisAYNZet1Hq97g85FWYvcqq37Dz+nVv03XDzWi8wKUzJeZ7j815BbIHxumsBpGu9my2OlCmo8uEOrVNdrdB21VFXzys9XxILarDjd9uwS87cjpZOi0GBnSPNCqfZa91VX/S1Pn9iTnIXmRenlL2UNgUKLhcVL4ZEcyJp4w7mi0rSRz3/bATa4+0n3+Ixe7E5Z9vwPjY5r2BOefYt3UV8qKfxQvGWFS4+mfPMgBQ0sL+pbzeihWHOibypsHqQG80og5tGxfChbAwSnHOczjnV7v+XcE5H+k6Xsk5H8I5v4RzfjfnvMp1nHPO3+acD+ScD+Kct24JpwvB61yeLolzgMnXB1eYYNPvIuXPAVmz2uWU+VXypHhDim+PoiinrIzy4uY9WGbuycXgbze3SaZRS2Vr/3kG2QNm8LdbFHdbwZGCGvSDO1zgMeNejVIrVttbEhKQU96AuGOVLZa3tsnuZeDoFmmApZ1WpE5MeQz/99sAxKdqJ5WhFJ6k9gpr0jFKJRfUYtEB34ZPNVewPOzMLMfMPc2v1B8tbmF4Zm0hTl/2BG45+G5Av/3zJfJkvT2f9f9WpmDA0LW48n8bgxJS4Ivyeqv3fVblAqkrgiNQG7E7JBiijwMu4/XJtvOQuN1+PaJ8F3LICm4F741y3huXMFlB7WhDyb/mJeDS4et1v1N32dd8vQk55Q265VrK5K1Z2JfT8v5d9GcphW0PBZdDEpXsg20+X0cg6l7Ug80h4fOVqXjylzivsuo7uPb8U9p03XAzSonnY9DxKmyqc3sl9nLKHuaP/bQHN367pVNka0/e/P0gnvolTrM4KOzGdxiScBU7htQi+R471mvZN6IuGBOeUe5NZ87qG62UWxKE/JCVDcE1rDu5Vh/rzPA9p8QxeWsW6i2+HQpyyhswfEVypxrvrmR5AIA+8Da0e9JkdyKjtB5vz0/UNcy3hmrXYsvkbc3nTbQ6JDxnkudUjxj36uZ7bK1++va8RLy/KEl34b896M3MqOU9OuTcoUZYGKWItlNVqUqQVp0XNDmCDeccRZU12OkcBAC4u25Zm885bHkyhrlCpax+3JonRfwIAHAG8Np9tfooSuusXgom5xzrk4vRZHNi1Po01DbqD1I1jTb0qnFvH3om5EnEoRM1ynlWHCpEZmkDrjRojRYLVN5exlZ4St01fgf+Pq1l7ryZpfW4+qtY/LzjmDIJ5JyjR6QJZls7DLK1hTjftYOFKVvrxWJRhVoF22tKXL4bLDDrKCAPT96NT5b6N2omSQMBAPcYD+Ifv+3HV6uPepWpMtu8PF7OQiWMCFDRKpfb1h9ZfkCJTweeLq/yLAzQoBYIs+NCcDcmhxWfm37HBczDOL3wOWDxi0B9+4TBHi2q81rpy6swY6EfT83WklSegB4XTkFk/50AZCPVyYQwFJ/VJ9p3IZf3sQ0RyJLOxaUGedI2bHlyh3qWbUz1nfjUU8F+f1ESqsy2NofPjYvNxDNT9yGrhbmPsstko1i7RTSK87i8MEPNGCPuUzFKudqBXq4/9bDT2tDfew0HMDViPAzOjvcias9xUm0I8cTZ5E51cJokG2qyytrHuNrZ7MuRDWxmq0MxQlqdcl3PihyLVVGf46dt8iYzca0w+rYnDAzdIowaa+ntl7jz7o7d0Hm7Xf7hrF4AtHpaMLA5tde3tjK9QmvYdLQE42Iz8eCk3T7L3DV+B+buO45BX3ael/YQo+z12oM13+eo50Y7s9rH6FrjY/7j6/oGV4O+wZAJlHnnlWrtWF1hlnWxeosDlw5fj4l63tRtoC/M5ClFdC14U43m8+wpI32GvLQmbOj1OQcxZfVuoC60U3c12pyIhg25/EzlmN3etoTQ8+OPK/kQ/MXan+/yWILDisUHT2DA0LW6qxrqWOcGi/b7NUeK8da8RNw/cae8U94O/RUCi13CRxFLlM//Z5DL/bz9GPbnVmF7RjneX5QEm8OJWZFjAQClvC8A4EaWrvyuLeF7C/YfD/h39/4gT3jVnmYcHN0jjTBb266M1B9yP4uIGq0RzmJz4gnDTvwQ8RP+4SdkNbO0HrWdkDz8AlaCtOhXcEp26wym3DVbG6AyjGi3M+a4dsQmvL8oCRa7Exa7E91hQVz0v/Gtqfmcc5LEsXGHXF+l/JSAjBTl9fL78cXK9gmX1aOleS5K6ywYMHQtNh1t3Y4mZfU6ilhWLF41rceOqA+BwkRVYdd917SP0egvk3bhnu+1LvNP/LwXQ5clB/zO/XfJYXwZQP6aErPcjgxR8v85HquccccqMWDo2jYnaA5FHE5J6YP1PDkUnLJSaocJmfxc/J8hWwmfPXS8xvfv2okqnZ3PPBVsA2O4dsQm3DVue7tc8x5Xn63HT9uyvXb/nDBzLj4zzfW5Gm1zSBi69IjXavP2jDIfiY61nlKhZpTynLOL/km/GbkL+1vY8sfbppW415iAx+zrWvX7ltCej1qkC9B7LNzq9qrrU981dpFUe5pedkYvfHHfBcrnaLgXGi4e1vH16Inbaw2yUUpVK56eJYsTCrD8UMs9ppYkFLTI0+rdIXLS9WDvTOjZn6oX4zamluDt+e7x/oNFSXjspz0+z9VgdWB+/PGADXs2V595vKr5NAXNvZsphbUYviJZuXZ6SZ33s3U6WqSr/NW4G5C0enpWaT0Gf7tZ0ZPU88pqc/vo0UIfDyTfnNXhRF9VVEjx9mnK3w6nBLtT8srH99O27IDaajdXvrW7v98Bm0Nq181F+tZnozuzIp+f0W7nDGXIKHUycPA3nFqodXceUvobRq5N0y1+x7frcC6TDSh6yeC+WXMUs/fmKZ9/35ePTUdL8a+EB4HvtckRU4tqW7yi2pE4nBzdYIMFkcqxirJiv7vLTdychZVJ+vHCnuFm/gZOq+uaBdZuSjLT4lrvie3yQ4U4HdUAOOqtdlzzdSyemy57HpXVy0qL2B5ZdIaeeMpxKXN3rKPWpylur/3hvu9P7G8AAC4wlCKjpB7frktTFKhAFX71rhWfLkvGD5ta1jknF9Yqg6XEJSQer8Hu7Io2KyQNVW4DzcUFWmNPk82B8ZG/4HHjHphyfIdM3vvDTvx1im9Fo7242SB7Nt2b+SXgCNxl3e6UMGx5Mnq7XKlPY+5V5q9Wu40PoirXHinGnd9tw7Cvv8AthhQAwN9M25u9zvJDhSjMlVeZOFhAbuzq1f/9uTqJotuBUevT8OuOYwGXTymUn8/8+JZ7XG1JK8WNI7dg7zHtxPtwTpHyt6XgsPcPre23i2W1xyqheKcDXVRYfTAbC/d6rxbmV5o1/ZrnRgOez3jVYfmeO6peg8GJqkacqGrE8BUpmLdfbh9+HXxcOaVs3IRj/GwAwKEouT9tjWfQiarGFoVh/GXiLq9jnpMo4fUqxpDWEEj+uDqLHetj1+P96doV+2VRX+J10zrYLfr6wLaMMiw8cAL/8zBcvzTzAF6edcDPFWWZHJ4Z6QHg2FbA6u1ZszKpEJml9R22IcGWtFKkFGk3NBFjmJ5xU/2KHSkI3IiZX2lWxstoyG3wcql9V+n1aE8DoD9PKWZtgJVHoJ53Q99abbtoiVeDJPGge0ELNqe5F0GMBoZX+iYpn8U4DMjGq2PtFHIbKIqBkAHdIlXhe67jw/7i1u//u+QIPljkHuOWJRbg8Inm2+5/Fh/GfxbrjI0+ECpuR4eNpxTW+tUzbQ5tf6xejHvz9wSsPVKs9I/LDxUiyc+z+GbNUQxbnqx4z/miymzDwz/uRpHeJgA+GHia/zCv52fEY+6+46hptKO83or7J+zC5ytSNGUsU+8GJgxq0aZMPGuT5vP0XbkorbNiS5q8oKDWSzh4u4TwCU+pHpH68yA1VruEU5j7fTp0vAoDhq5FTaMND0/egyu+2Ojl9f/dxgz8Z/FhTN7q7lMrG6y4ZfRWpKnSVohNAKJgQ3f49xrjnLdobI+2y7n2Ml07+3Z1yCh1MrDuY69DPdHkc1ezLxyTsDvqPUyLGI9ndMKwivYuwIRVcl6EmkabV4em7tgfnLTb74pqWxm+IhkP/eitkPvC6nCgG7PBgijMcDwAAHj1pzW4f8Iu/GfxYY2iMz/+OAYMXYsfNmfivYWy4rA7qwIvzIhXBh/PTsyXosQttYhyKY0XGkpxhT0VUbCBS95K8TmVcdgf/Tayov6BfQvHoKbRhj3Zldihk2egZ5RJ/3qlsgI3w/EAqnhPnKoyUEQYDIqcA5k8oXzR9gkSpEsByPHh903Yiak7c5TcIU6Jo6Kh+V1XPFcaJm/LxraMlm3nqz5D72j5/nIrzFhzpKjV7rW8sQrlvDfSpPNgN2jDcKxN7oFqgGfYlQfHys3tGrM/Lz5fCWsRnMPcho763T8HfK74nCrMjz+O3kw2WN5oyABz5QGaHZevKOXqZ3iHeR2+N07GtMjvlWPnsVLklDdgfrz+Slltkx2nMHliOdBQDFut3IZsDslnXVtUSUGf/jWuQxKTz9yTh1Hr01FnsSu5OToK8S6meuTHWbbXPXE6mJyK1KJa3D52q7uAzgTZ5pDwwox4JBe0XOYTqpVTk2vL9ECNUolR/0R81NuaYwOGrsXt323HzyrDU22TXHeXnymHUdw8sL/mN6I9dfbuWJzzwJLst4I/j92GP4/dptnqWu0psD65GFkuz8k3fz+Ir1fI44MNJuyV5OTFPZkFjxhkI/a1w5dh6NIjLbr+M1MDD4HWS8zq7SkV8Ol8Yvcw/KiN3YC8e9gbX0/AmqjhWB71he45ejm9J2v+jKACb6OC9rPXpLU0Ffj9cWDUOZiywr0o55Q43luYhHt/2InLhm/QvVZrsDqcikfXq7MP4l/zZM+JwpomOJySyijl/zx7sgML3UorrsPt321Xdvfr5+qT+/D2M3z7oj13xHWfyfvBMFs96tAdhfxU2CryNOHJejkXfXHRsHX4zENPlSTutbNoe1NQ3aj0xwNYMc5AFcZuyFCMehwcyIpVyosFKcGQ8c0nkG4Le7MrNAvMAsYYzs/+HQ8btbuQDfmDt7fG+NgM7Mwsx4cxh/GoH++g1iLGNXVdbT5a6jN1RWsorm3CQz/u9prLqPE0eusZ9+/5YYdmoUrXeNtUA0utrD80F0q9+nARkgtrA9rB8zRUIy/6WdxqD3znOOF0sEsdTidJiC51bUYx5U++f+zKozjHcQ8AwFmjXbj39IC0OiQwSLiC5WHC5izcMW47DurtZNsCal0J93tEmYCmGqDc9yK41SGhL2uQd7ED8KBRHl9tvz2MNypGweb0vWvyOFUi9e0Z5SisaVIW53IrzEjIr8Zjht3IiH4JR6NfwZ0G7808Gm0O1DbaMXVnDq7438aAN2swucKxLYgIqHy4Q0apLs6WxHTAtZVpsjQAm53/p3yn119KEsdfjPIuXPcYE7xXPqrzMCVyEsZH/IKSWgvWuHZSuJy5lYXls8Z5ndfXKlWV2dbsCpY/Q8jcfceRUlgX8Cq93SavODTxSKx3ytt3nwr5HpckFCBF5akzbLl37p635iZgV1YF6l2DibWxXuMS6iu/TlOhrGxUcnlid7GhEBnRL6F/3EhwzrE3u0K57lk1cl7+CObEk6UTcDWTO78Xf9uvdPBXshxMixgPo1N/1TsqT1bCD0sDUcz74wpDnvKd0cCUvER3uWLC06XzUI9uaORRGqOI0bV86ZAkXP/NZny8xP8Kl1BW/8Dy0RPyhHnR/hP+fuKFWEHhnGPmy3Id3TdhJ96Zfwi/bA/cE0aNobES1bwX1jsHo4+1CKhxy2Q3u3f9eSVik97PNQrRFe20sxrnHJ8tT8EDE91G22kR4/FvkzshduyB1IBzwIjJTm+4DRXPGt0GkSqzDd+uS9PkmFKvzAp2RX2Au8bvwLDlyUg8Xg1J4miwOpTVOolzTXJ8U4U8YP8UewRr54zDBzq7az11w7maz2LCFigVDVbFs6k5Xp55AA9O2g3OOfIrzT6Txm5MbX1+pwiXomyXJDTZnKhptKGopgk9ID+jCt4bprp8/LglG5VV7knmuj3eHh+ZpfXYlVWBhyfvdu/O5IOKBqtGmfnzWDnB++y9eUo/GWgC1m7Mhj5M3ziolkMoxL27yUqRzSHB4ZTw645jsNidynUjjd7qRJXZhn05lRi59qhuiJk/ahptPsNDliQU4L2FSbiog0NcZplGYXrkeACAkbvfw4lbsnDPDzvx5M97sTG1FMVVsiHgyRsuwjF+DmKd8tbNfzKk4pT0hUg0vYz8hA0t8vhMLqzF1vTWhZYC7pxSNxtScQrq/IYfFtU0BXQtT/ln7skDIBtkbhm9FTN252K0SQ6LOJfpb+N+c3+tMp5ZWo+Lhq3DFpcHiS9t4MJP1+lPRF05pdQeKLA2AD+7J1SnHPxR+dvTWCdC76fvymlVOJJg9Pp0vDzrABJ1dni9+LP1mLpLHrvMNifKVRPamIMnkFOu9RpIC2DziLEb5DD7HZnlgMOmeMae7izD0KVHkFHScR7qTj2vtFbw8/Zj2J0ltxO95mmuq0Y97yaHxDbFYfgy99gS6AYoQq/yXGR5b1ESLv5Mf5MANSW1Fnwfm4E6P0mm9bA6nLh1zDZ8vOQIFuw/ju1RHyE++h0A3G2U4hyozgcGDgEAvGZaj9sNvnUszjkS8qvazevr2enxite+fH73d+ft+xKXsxNuOaG/CPrj1uxmd+711e/NicvDG3O896FSe+OKZPBCty6pteC1OQfxbjvs4ikQxpl9ub4Nwp6774n5wQPjN2ND5Cd4ybgBx8rNeHaaOwWE3g5v+P4PmHD8rwD8v0eJx6sxdae8C2Mgiy8XuhZUv7KMabYsIPez61OKwSChu13VZ9W7vb1R56c/NMvvrUiFIjVp+z1PD0iL3Ym3jKuwNmoYrmTyfWWU1iPGlcrk23X6kTtLEwpw48jNus9AhO/1iDShbPI9wE83oDpxhdKnqLE6nDgFDUjhAzDW/jTOZlW4w5CE0yv24XHjHlzB8jQb5vgyUIn7Ya4/7v5+B85GBSZETlHKPGDwfh/u+X4nrv46FquPyM830B3+jJIwSkU2U7JrQEapLoZ4wQcMXYsFi+ZiyKrByndWROJf9vcBAPHSH7xigAHZmqvGM/Gx1RWScj4rw4nqRvTrIb8oLxndK45/KxiJ2pwEze926nQSRTVNuHbEJs2qvCeH8srwzy9GIjbFf66qp3+NQ4JrS2HOOTakFGNfTqWX14CjSVb+LIhEBfoAAE5DLYQqXNNkx4WfrsOAoWt1ryNWiqdsz0ZFgxXd5z2EpOg38YRhJyZETIbNx+qd87hslX8/agQAYKhpgSxP0iJM2pKNZ6fHK2EwPZuKUMLdO/CoV896mfPRGw341LQA9xgTsCN2mRIeeay8AdWuiV91ST7qeDeskv6E3dKVuJLlwuDymnHvpMfxrHEr8qMvRyn6YeTjgwBTFF42bcT9rk51i2vld4HLsLQySTVg6T0fp4SbDalYH/UpZkWOBYMkr2L4wXtHEbmzlyDh/H5aV+TiZjryMRvS8fXqo/jvksN4eaZ8DzWHVuLMok2oQw8c4fLOi9Wl+YqXib3BPZiehxLk5nmvSlntTnxkisE1rH3yWtw1bjsenyKvaCk5VmoLcY9R+948YV6EYTNWef1eTyk1GBiiYEMUcz/P85jbIHPdN5sxdWeOJpH9+Uzfs0m0lb9O2YuLhq3Dkz/vxZ9GbwXnHEZrHS4znMBRSc6FEVUrv7+Ds77HuIhfUXxkM4prm3C80m3wuOLsXppE0UdUXkEJ+dW4YeRmv/m6Hpq0Gw/96DvJpxrRDzTanLj9u+0+FeaYg7LCxVoRX2Vyacqrkorwhy824JqvN+FPo7eiB7PAzo04xs+GoSYfG1JLcDpzG/YvK1gKQM6To34+gqd0duYCgDvHbccd323D9d9s9tp56u15iZinCkH87xJvj5zUolrfnliuFU+1x57eE4kwMJyGGoxan46LP1uPUevTcfnnsqHFCCcijd5t8ulf4/DM1H2n+BlrAAAgAElEQVSYtisX36w5ioTccjz/zXRUuvJMfLkqFbeN1d858cOYw/hg0WEk5FdpVpyzSuvxn8WHlf5ST1l1ShyrDxdpnktruM3oXpjoW7QLR6JewyjTNKS7Jvwi6XI3Vy6Yvr174U8D++Md+7to4NF4xrQdF+/7FACwIHIkLh2+3mdIDucc29LLNPf6yiw/Gwc3VuHHiEnoB30Dht0p4VqWiQWRIzEncrQSvqfHI5P3+L+WC73JZV6FGZcN34DCmib8tDkNAwyycciKSEXHsKr62PsN2rx9CfnVuJGlgbt2p/Q331ZvRW9QVuLl/3/dkeM2OJVo34G/m7YBmbJHit0p4VvTdGVrcJEz7Ju1aZpwpJYi3h+9ROaAvIAmuGHkZqUd/HfJEWS4xvCLTpXHuwd0wjE92ZYh9+1mqwN2s3syfYGhDCUJq3HfhJ0aT8r2pKVhj5xz5GSmAI1V6oMo3PQjLnHIixo7M8vx2uyDSDpRg4N5VZi1J1c2SqE7qnlPAMDXppnKzwP1lFJ70Kl3BV7t6j88PZUFJ6oa8fP2Y/htTy4mbc3G7gOJSJn+T9Q3eodSNdocmjE5t8KM30a9i7sMiYg7VqlZ4Fwd+ZlSloMD5nKglzvH6YemxZpzz9qTK/cJ1gbU/DQEX/yyQNHH2hvh3QKba1MCcdxSA5Qko9/6txSP/0CJOXgClw5fr9sWv1iZitijpVhxqFATojZqvTuvaYRLfXQ4ZYOc8IIW55u5JxcH8qqQXFCLvdkVuOf7HajUMwb5QXj5+vMy9kx0Lniweg4uN5zAlxFzcD7TGvb10nPA7n4O/kIS/zplr2Iwr1Qt6KjfvbI6C95dcAhNNif+aFCNdXb3dZ0S172vDSklGLU+He+ZlmGz9CpQL8ueNVeeI9q4ETBGwe7Kt6RmyvZszNgkjxdFXPacbto1WbMztLgzsQupxS7heoP8rp/B5PHA7pAUfUUY4L5efVQz//psRTLK6q2os9g1xnwAaKwqxrSI8agsLcDpZvncp6x6Ec+rolkENksjujMrqnlP9GHyPFDk0wWAtVHDNOWnueTRPrNifBgjjxHiHXZKHBcZtPPTp007vDa1EXUp7JDLEgtR2WBt1rNdeEo1wc/uv10IMkp1MaaqXqT6ZO0q8lrnYNgQgQ3OG3Cf8SCer5gAALj3hx34269xQOLvcKZqJ8BnoBoWu1PxFEnatQYAcLGhCGccnal4xpzPypAiDVB+Z455XdMp6CmzYhDa7CfRcHHsRPwWOQ48bbXmOLfUYePsUYiEHd+YZuBWQ7LSWV/46Tr8c24inpm6D+M2yjlTGqwOpJfU/T977xkfRf29/b9nZlsSQq8KGIpIkSpFQEBEBZWmAiIIiohUsSAISBWQXqUqvYOCdJAaivTeCRBCDaGkEZItU/4PZnZ2J7v4/d33/X/y+748T5KdtrNTPp9zrnOd6yB79AkhCyf3tPwADLUvJsHVnvbSTlJSktnq6B8WfLiUmI7b6LgxZ2883646jf2B7mxMdMympXSQEhknwupTqRmP8Gg2WrzZAFUTTIZCQSEVMXYkABcT09E0jZSUZB5pufjMq5dd+tksBUil9aEWjLHPpa6kZ7fKCbdoN1d38htN3MvbU3TWzdUbN3ik6aBbglYYh6BQVzxPc/GgGfQ0Fw+SU8ikoJzIpZ+a0K5mcVyifg1nO6agTysa1YTg9tuw+3ISLaYfCDuYemSVFY5RAFQX46gqXCPK+c/13uGyGgCa5yn5M62A5fIjtyxMEf851Bu3m2VHbppO5Orjd9hz5SGv/ryL3Os7mufz0LgmPyzaSb1xe/j72iNUtw4aXHXqtN7Zv83QD+7LMidqNvbmK9s61jmHAP/v+hTxj55y+nYq1YQ4InDrZZJPAhPbVPl9Lhs15HXuLQrZP5wvI4mCyZL6K/pDALrZNtJDWsez+AfBgMkGpTbz5SYA/O3sTURQbbw/CH9t7B46HWhAYSGFy1oxMjQXken6mFPEpzvKLrx0X3qS+uMDYIOqqc90wKbsjOPhEw+nwjAMvLLKiZspz8wqPccjagnhM2zhGAvhbPfl8ABRsKVl+ojpv9l0uvzj2eVsbIRIPGTi5KZaiBcMBzWPwSq7oRbSy0MVH58tOGa5Pn6rKVzi8rlQNtWNR09JeMY5bj6XyP00N7rClxq2c9N70w7QbHp4UK/R4EWM3nLJIswaDqiLfHKDY64exAhWB8ynqFx0fk7tfR1D9gkO+LyKytV5X7BU7sORP6cDsPBgAreSM7mTkhkyR/gd+g9nHTKzqPfT3CHl4MHsVL2kaQ8Ttl/hqxWn+PHP85y4mULDCbFhQbkH6e4Q9s0/ZaVzCpk6wJHNogV9LrNF5WZp51ocHfIuF7UXQrYDfZy+eC90jthxMYlOC48xd382Z9jzxOLg3k3N4nZyJsqZVTSTDnPS1Y0SQmjSxqeorHUOA6CimIDdSDDlINMiwu8vzQZd/P9Buhv1/Dru/FyFVUcTLMcLDhb9tvZUoGzDDxqka5F68GqwKN1JAU2OGPclbj3OpNuSE2R5FSZsPsNq5wjGa5OMgNd6/d8QT5LgakdD8ZQ5d7UUD5DbKFcb17qiua0ZtGSFefeXtwb04LadTWeQjrAvDAm4/m/Hdr8vFJkaRytpL2WEfwYO3p26n9RMa4BvlwLvnayorD9995nPo4DKZ9I2rtxK5MwV6zPjTyr9v+iHPcvupWYxIkxH13+yg+vmUHJ5XbTxpc1lvoubGWlfwAbnYERUlh25xc5LSXyz8hStZh9i2MaL5BLdKPYcZtOANtJe5tgnMdI2738OSgVJCnz822Fi+m+2XNM3nwFifLf6NGO3XeaIwcLPv+MrXr6zggG/LLK8v+luH+WH/MUUo+PWrktJNJwQS3dlKfMdE7CJAlFiINlbUUxA9Cd7VQUykiBHITYqrwJQWYw35mzdhm28yLbz91FuHibPoxMMtS8yQS5N00hMywppKvB/av5n/mqSPl5ryQn6X6fe/Ibza2D2a9gvraWLFD5h+yzzgw5XHwTmyud5CHcCCbhvVp2m/dwjXH+YQZMp1vHdz9b3KSofzjpE50VGJYEk4pEVhm+8SOvZh2g2/QDt5h7h6oMMS1fS/VcfMvoZLJzA79f/htPQ9Vs46Yh7qVkm0ALwq30SIio2ZGzIIY2KghH3QujJlgyPTFzSk//IknbhYYJ9Npk3T/HUYK7X/HkXG87cY+sZHRTz28Oto83/+685S9nB2zh9O5WNZ+6ZOkx3UzNpLh7kG5uusdp79FT2xz3gxYd6tcBS5S1QPLwxeis1Ru0kwyPz45/neOqRGbftCltO6L55Jnqy0SNr/LDmnMlo1wKoFKB3T3xD0svcXzNimmFhxpH5f98w9tcP4Gelf7f6DDVG7bQQJ166uZy3pBMcd3UPOU52ZqP6VL++qUSzXqkb9hpLKAy2LeEV4Qp3Uqzgs6pqdFtqZfj771kOwmh+7fk57Hf454mFBxN4ZeTOsGX6Xyw6zs9bLulJYH/5nvYvU+pf+19owZNtsODaEy2CBco7vF2+EEdUXaywQcYWDl++Q1xSBqdv3IcNvci18XPL8T6U9lF28DY6zDsKmka5pMCEVPzoT4zfdpke0jrqSBd5iovy7vmArkOyIgg1d4bRG/HHPSeDuhOdvZNqUug1TePqLd3hLZRhTCqTK8KSDxDGFKPxjTHEuT7lE9suljpGs2Dv5QAMbdg9Q3j70/lHaTJlvwlKvV+zNF7s3NHymxo8o+zzkeN2UU68xSLHGEoJdznh7MpKh85u0rOXGkNti6giXONxRmjGqJ54jj9PhoqiK+4MMnERFRHBHQMM85u/XGvO3niWHL5JWloqmTiJVasyV36HmuIVnHgpI+pOrr+8EqC+eJaHTzzmQO13yvORTjI5Abij6a18lzjGMM0xHZv8lDrieaY5dPDlapFmRDgkBEFA/HwrtwVdqLeHtIEEV3vWOoeR4GpPgqsd/W3L+Xzhcc7cSSP2ygNeG7ubLxYd57tVpzkc/xjlqXVi/UiKJU/kMwZTxUfKzkkUP/cL4UATbd84hFm1Q5bP2KMDhiduJlN28DZm7LnG7eQsfvwztBTtfrqbR5p+HQb4OvPQ6DDoL3X4euUpstL1c07IrX/XWLvRleOPz2FiGXbv3ELUheXmMSsJ8f+jEqlJO+L+UdvoPfEwa53DuOT6nLa/HmbbcT3g26LUZIbckrbeQWRoLkqJ94jpv9lCaQ93XFGAnEYGaGvKc+byfvbV9JTWW7Z9noc48ZKfNJKNLPQtrSD7VD3AKyIk08+2ijzZWBiRaYHgUtYkbmiFybirv5v5PPrzmZPMEJFP9fF1PGGCiOSnXvYboOTt5Ex2XUqi7pjdpFw5gPfkSiZsv8KHswIaCcEBY3EhiYOu3qxyjmCM7deQY3eYF3hP/OPiGxNjmbbrakiHrz9O/nPZzp1UfYwYb4Dc/g5ZeUinEIFnPlrIIoMIbmkFKSSk4sJDpKC/k0fUckiC9syuNkV4zGrnCHKt+Zhpu66agE7svj0kuNqR4GpHBSEBgEbiCVY5fjKZrPnFDBJc7dnj6POPv8NvPm8gCNvl7Ivv7xk4PMkMtC2jgXgGr6zSYsbflvtod+vMjFhnH6KDSkQzPTJOwUeeRyfCsoAKo4Nk2y/ep60hpF8o66oFvH9t7B6GrLe+v7YgZs+Wc4mWv8EW3K1s+p5r3HysMxz8duDqI248ekqf308z4a8rJKZlmeNlzZ93UXuMzjzL8MgcT0i2gFyJWt5Axjfo2XtNPIeIyhz7JN4Wj5lOqSMqN6IokMNpo6f365Bz9QN6707bHwLGT92lv1s3gxgFIiqMLor2SzXSnurfUXfMbuqN28NTJQD273H2CQGzvNn0/YY96I2Aym/2SfBbQ5Yd0PXXxm4LAE2vj4+l5s+7ENZ+QVHvDUatPcqdFP29/G71GS6d3G8yJZx4+d62CiE5kMDxB2iT5Fb4NAn3n73h1hF8yfozf1F9gUK+OwzfcJ5tF+7TeMo+ingTzP0bi8fQNB148zNo5zt0OYAFjvEcuPqQJ24fTaVD5n1x+2QqCdfJQ3oAhDFAqaG+T2nuGWEePyEplfn7r6FqgWdLS7ZetxqjdvHetH9mKnWYd4SY/pstAZIfMKu59T0m2Oew3fmDyTgNZx5ZtYxRYBVBH7/9Cl+vPP3M7k+vipcYZl/MUNtijl3Sf4NfJ9OfVf//V5BcY9elJL5acYo/T4eeU6WiuSg3eBvfrTodsq7aeT3xJmiKyZ6LOx8A34PLXYLB9wgtE0dkLg4ZOm02QdUTqrZd5hwc3FwlnHkVlen2aSy0j7UsCzY/S3dv3MMQyYq7KQGNRoDo9DjeDXo+/MDDSsPfPX833QTRADr7llNVsj5jkqafu3b3lC6vkbckYuuFDPR1BvQ5O8HVztx+3em7HNu7wTyPEkIimqZxYNUEDoxvQ/u5R/6P9bGCn92WM/5mwNoAu9D/TgjFdPkEzR0Yq7+3/847kaHgdDgLZsEHn97frq9h7huWbZPS3cyOvR6S6DFL5bONZzceP2XNiVBf+zkeUeXKFL2DHLofMGdfvKU7bGJaFoPWnTNBKP974pZVuLoTRhcLAbZ9lsoSffv3Z/5tJp8Ayoq3+dk2l2uujhxz9iD2ygNuBAt6JwSem/LiTXyKxqs/7+LtyftoPfsQD5946DDvCEOzzYVfS2u47OpEK2kfUZu60mr2IeqMCUgzxB6zgiUFTk4x///dGD9azvibr1YESh5lRWWaY7r5eZpjBisW6mXOC+W3TZLBNO8QUjN9vDz0L5YduWUmiFyCPg9kaQ7my02MBjuaCUb5WXezY6/Tf81ZHt0NvAOdbH/9R0FwTzZZgN2X/YLpxoMUv5d3UpaF3beFeCAkiacabNIULQcXtRheds/lrmbVx7zu6kBn21b62VdxJekJ6xyD6WtbCWgkZ0sgnLubZjLbo40Ycp9SkVfcug5sQqqPJlP28dGcQxa/NfvzHexjxT/MIKb/ZnZeSuLXfTrxwabqc9q/mlL/2v9Kk1QvFY163U9sgTKP6XJLAH7tWJ0l6tvm8h1LRhOJ2xS89lsPb2/i1OepIl6ntniBY/FJjPzjADmFp8ySm5nb7c18n3721YDuwGfiYrnckPykWECCYGfridvH4fjHYdkezaf/zberzqBpmsWhehh/BoblgrRbcH1X6I7Ab7feg5/yUIDAS57Tpb/I/pIer1G+lyNKD8RH+D6xHCP/Vf235BIy2eXsSz7hCa+Kl0x9pLw8oZPtL9Y5hyDeD3W+uts24vZ4+PPUHbO8BED1POEpLiKdNnap1cKeP8C6U3eJFDxkabpTeVgtj1PwUUFIoGSYbHht6SKlhLuUHxLQObqUmM4LkTpN9cbod8mIsnZtKOK7RT/bKvPz0Re/DVpZmZ8ifwCgn30V2a2bbZM5mRyOT+ZOShY7LyWx9tRd2v56GCFNnwB7e3sBeje3KEfg3sc/zODHP4229fF7yXNgOBXiZrDWMZQp9umUEkKdjFK5rcNUWpaP5Kdejt7Q76kfKMhueUnnG9sfSKgskxuxQmlEMrqmV4xwny7SJtSMR/x+QGedPcpf09zX45Phis40fGl/L8txP5Z2Wxwcv7l9Cn1WnyExLQuvrDJt11U+mBkqOukXye5i22QusyOz5ag+2U+UW+PFbmZ0KgnxlBNucmP/SooKD9jq+IHbc1rTZvZB9sU9JKb/Zq49yMCnaCZTKkWN5ELTDcyUmwPQ176aAujXS0Lhb9fXrHUMxSaozJKbM0tuxkK5CXvVyuY5dbL9xSlXNxJc7cjp1O/BDmc/c/1jcnJde46SYiK3kzNxevX37j3pMCKqxanWVlvfM799MjdQyjN4/QW+XHQEUm+RZ8V7ODZ05c99Vmdr6/n7pvM9xz7ZXN7WFmsJBLKbW1b0EpKHT5m0I45a2UrgHFIoMyj+YQalB27hxqOnJgX9kQFE101cTIKrHadc3QydED1IbyXt476Wl1tG+94KQgKRRmnXFU1/D3/bEHAmVx+7zWe/bKaGcJlKosE44yGTdsTxqVF2eP9Q4D3c7BxIAVKY55hILfEy7xqlUL00HTSNEZNoJe01mFM61T+YgeR3jjZss2qpDLEvIdb5LV/aNrPIMZYP7o6j1N0NDN8QGMM1W6T5/xe2zRx09qKUcJcPUwKtlRtNjLXoaCS42nHY9RUVhBuUUALlBTl8yWzIVgrsfy86LzxG9ZE7LcLiiWluqo/caZZNBlvw77OFKVHzZybjkjKYvucatUfvpvyQv0wALdKbzK7Dp/h6hc7QKD9EL0XPRQYFSOWCWlw/0At14SPdCZ5jn0QRHtNYOs6vjslEC5l4NDtvVNC102ySyENys1upYjmXWGcf2kg60+qTedYythv3HjDJPpP7dxIAqCbE8b1Nn48E71M+GTmX2It3KcxjigoPOHXUyigYvfk8J2+lMHbbZZYcSiBHijVwLOG7xg3XJ9SW9Oz0/M37mPDXFTafTaQAKRQg1WSfCKoeTFYQdZ2NzouOc+DMZTY7f2Sc/VdaS7Gcc3aml209lc7rJRAiKqlEcUUtyraolvytvowr8SjMf5v8m/Vg+5RamhxaBt6ruygt3KFd+lxLE463peMUubqMMeNG0nr2IbYfs2bS52/cRZfFx8nEZYJS3qx0NjgHs8ExOMDeNQLKNUo9zmqlzP2vLezGR4eaIQoac+T3ADi/53cLC+JRhocLYZhsoINlD564TSDdXwKWtGcW1e4sDSltek06QXNRT2aFs3PZdPKCSyzn7NXHg2eVe/r9gVLiPU4aTKm4Qu8SrxY2ky5+ceZt5+8/U1sP9OTAprP3uJ2cSUz/zRbWxp0d05m1ZDk7LibRedFxTtxMsYBts+2TEVHJ9Cpk+RQLcw70+TrTHhT83dQZmYnnAyLeMxzTKC2EAl3RQhayPYqNah1OqqUt61L3zWbNlK+pPXo3a07c0QPfoLFH03RGc8pTL02lw7wuncF/H0Ib1Bjj4sIJTJo1k6dn1jE8uR92ZNKzsV1G2+eR4GrHwXNWUeWkdA+Hrj9m9+UkS0ltF+0POmobSdZy8LH3RwBsRjJB2zlY36j0m7xXqQjLlTf4ztvN3Pct8TgFSGXHxSTyPwoAd62kvfRZfYZ6l0fS2raPgqT8j7UnQe/aGOwznrmTxrljewPv4uUN8Hx11OK1rDuW1kWtZ6k/UVGIpwiPqfwPkgbBzCOPrOBTVEtCI9hEQQire2czsPfs0iJeWeHxxsFUEG5Ykt6LHWMoHz+POeN1X0VEJc7Zgfjp75vb1B69m6WHb1FuyDayvIopaeGVVVj2IXjSeXB6G9ceZLD9wn1GbrpIli8AsPl1XtPS0ykiJDNF/sAEOPyJlzxCBvWOdOWNCbuJ6b+Zm4+fotwJ+DMLHONxe2XLfZuz9zr7rz5i0aHAXCmi8q19jflZtuUI0Zx7eEe/B2uUegCkO4uEXuBslnggFNCZ6ZgGwAUthr/VlwGoKl4jH4FxapmhzRZhjHVvVCzOZa0YLsHH6+JpsnwK149tQ3p8jZw8Jf7RU/48dp3W+xrrxzZkH447u1v0eAG2zelvaqqdNGI2exitSgAWNw9Z5CdcTHXM5ET8Axb+fcNsvqMZpcPv19UTrxlEUtfziwkiBVst8TK/JrWlinidnrYNjLX9ZoJifgsuqfT73b18X/GYXFxSi+OL30/c/TSO3EhmyGrrXA+6v5gTfWyvP24Pn8w9Qpds+mrrTt9DMIXO/y3f+9f+F1pXzwI2OgdZJopy7vnMUZpxfNCbAES5XMw1MmqD7Uu56PqcLdnqabeotYjTitFIOsUKxyiuuTpy4ZSOCp/O5hyAPhgM8uksq7taAQoI6RQTksxA8dStFDOTW3HYdtr+ephJ2+NCjuO3EgO2kJblI58xuWfX2vknO+bqQREe48BH7Qer2HhMvxalhLtk3NazQaIziv39GrKfqpZ9/fTS7LbPqddZFxECpTH9bKvINMCjOPV5c3nm5V18u+oMvYOyEr7MJ2RqTvJGOhgud+Rdz8986v3BXF9X1OnYJ2+lEoHHzHT667W/t61mhH2huf1htRzf+7oC8GI2IOedqftxyunIzlwIgsCTCCsoVSlnJorx6o/zfQSCdRh4q359y2d/9s5v39jWcMzZnRUH4ygp3OOAszeVhWuUEu6yf53OWLmtFWC13ACAYnc2mVpXPZadZNmRWzqV+3GAdVNNvEZL6SC7nH1NcU2/21g/n/4MFCCV2uIF1p2+R7URO8KWSfrtBeE+J13d+Ma2ljxCBmnoWh0zOtTimvocXWxb+NG+nJOubgy2LwHAk7u0KUT/5MRq81jPC4EMC8Dr0hlTDwrgwRM31x5ksPNSEmtO3mHk5kum0+uRVbotOUGTKfsoNVDXKjt/J4Wjzh5UEQOZo5bSAfIZDmGycQ4Al7ViOAWZrc4BjJHHscUxkHLibd6TjnI3Ic7US+q+9ARpWT6T9detcVUiY6ozTm5rHmuafQbVhDizKUEFQ4MgUSzMWPljHpELDZHWniEkGYwyv5X1WrtsjfC1Z6r8AZfV4hQVHlFsWhFTy6qxdJx4lxWEUoEJ74W2tL2YzblqJ+3Ss6iG9bGttqzvsewkaw0mYjnRyjiKdX77TGbCvdSskExrsIVzfNacvIOsamw6cw/nkwSKGvpcsqLy1kNrSWWCqx1XXJ8B8LLtDvmK6mPkGudwE8S9rOngxovxS8z9+q05y++OYfzu/MlkuYEOHN5NzeLDWQeJzkY0POYKdMz7xch0mtlDYIJ9Dncv689FxaHbaRBUJugv7954WL+f/s45ADmFAOPgA20nkxyzWfqwlZEBBXta4Hn9XNrGc0Iyu5x9aeUOOMz5Saf6yJ16WZIScOIH25fyl7O/+Tk56Q6xV6xBsr9cb9flBzzK8IQwFrwZjylxZZ7ZUdJcLivmd4XTTfIzkLLbtA2HyEcaR509aLTtdc4b7EN/LqSmeBmboJplNUTkgnJNAYgSPJbntJttEw/sRcxOUX7r6vuOaXJLZsgBB3qc/TeuODvqZdFGMLT9wn06Stv5QDrA/Mef0EHazlrnMHrYAuX0A2zLeX11ef529uaA8xtiUo8ga4HvKy484PStVGbFXmfw+gtsPHSETVGRHDe6qma3EsJ9bLJ+b4+5enLM1YPF9tEWHckVjlE0EY/iwEczSZ//W0gHGW//FYegb9dIOkV5IYEJ9tnUEOO4rj3Hhq/qcttg6AbbUkG/fqPtc9np7Ec32yYaGZ2KrqtFKCXcY6R9Ab84pnP5fjqrt+iB8yr5dQC+lDZzOD6Z3ASAmjp79bGmmPiQ738/Q5X+K1F3/oSiCWQQAUB/3xcAvJm11RRgny0345ZagOce7idueBW6SJvMZx0I2zyl7pjd1BylA9obHD9S/tJUUjO9FNrbn37iUmKd3wGQpkWSLgqcKrOGMgWXs8fxnemTVRTiaSSG92fCBeXhtPZkn5dRdp2Vbkcmt9HqXHHl5qpWlKbSYUoJd022QbelJ0K09d6atJdey/UgudOCo/Rafoqthnbn6mNG6WFmMkX//pHO13qZZTUAPW1/mv83kY5RSrjHvZQMS8n3xXvpfL3yFJWHb8eXlcZ+RQ9ySUkATeNNo8nKPkUPEqfbA2L0fosmE8UezWd1YjiuvmRZ98a1MXyYupCcPGXYhgusPHab6iN30nnhMbyyyke/HqbhhFi+WRG41n4NxdSn1mvaeMo+kL1MdMxmkWMsUX9+SnnvOa66OlJKucF42+yQc3u8+isqD99uEdj/+LfDnLmTZjaQMa+1dIJtSk0Oq+V4qOU0mRWm5fSDCAJr1Xrm4t8ckzjm6kF5IYFcSiqXDIA8J5kW8K+QkMKT7KVi2cyTkczOC/r97bpEvyYNxVMccPbmE2kHm5yDqCPq84KGADkKBaDUWqcz69QAACAASURBVF/C0FRoNNg8XntpJ4dcX7HeOYSuUkBeY9PZe1x78ATcabiTAyWsvZaf4sUft1p0l4LHGkEAUZNDxnf/kOrX8jF/Myl8ZVvHZuePJpsmP2mUFnWgOFfGdc7cTqWEkIhDUGgi6cy87BqmSw/fRFE18pJOrqBxpeBf3fh40nq+XHKCuQduEBvUCKKRpL83fpbUdfU5Zgcl6/3WQDprasIeS0hBTbfqDK3ZsM7yee6BG9QXz/CVtJa8pNNbWssKx0jLNpkROgv+eR7yhbQZAdX0TabIH7BGqUdOT6IJzFcQEmgsHjNkOHSzI1tYUtlN1iSSyEsLz08AnHB1p720k5eEWzQVD/G5tBWXAUq9X6M0GxS9qcRCx3h2Lx5Jqc0fMT6pM2ddXYjEzQBboNJgmqyLvEcKHt6XDlDMfB40miTOYpFDZzS2m3uEH/44i8tunVOzd0EMtqXym/xiEDDa7q5H2+012Ll4tF5SmKWP52VLvMCX9Uua+zwmF9uMplfBVkAI+KYf2WLp98dZJBQDNNOowUXOOL9ghG0+g+1LATg+ohWvlszLAqUxL3KbcsItagiXGXGpMXWCmgo9xyOuuD7jrOtLAG4lZ3Lg2iOuZ2t4AaB5M1E1gckf1wxZ999o/4JS/2VWXtbZFuuNdswTfK3JMmp+8+fQgY5cEXZGye25p+X9hyMJHFbLWZb4tYIa13mFUu4llsxVF28fMtAz6btVHejZ7/yWq66OgMbEHXGM3HzJQmM8FP8YAZXcPAmr43AsIcXC9gq2DM1FA8+ksOsADrm+Is71KS2SpnN9/SjKCLfZ5exL7TO66KwtX0mK5Y2kbe0yVHPP5hX3LKYZg1n27DZAXiGDxuJRizC0gEak4GGYryNve8czztcGgIpPQ8WKPZnpPCWCckWiAYGLWgx71cpMlfXszTLHaBPAyyFkkYkThySaulB1pEDGuLR7Me28P7JDeQVFE/hI2sPr4mmKCg/MLFSEnM5dt37fY/JFMczXkU1GcOVK2E0lIZ4VckNmKi1ChGXb1CpJet0ASLlcaWQJqr60baaAkMZg2xJ2O7+nqPCIr2x/ssvZ1wyi7mt5Wak0BODcxYtUHbGda7fuoGoaTrxsPptIYrwV6PBbRQOs8VdYDL37JeednzPfMY4VjlEUMcqBniW6HoGbvUZw4LfLhjOnaVjYQAD5DG0SMSofO42uWU+2DLNsE6tUpppnNr/ILSlEioWV8+rPu3hz0l5Tu+KpRzZL1UoJd7ly8RSX7z8xmX/J92+ZWk5z5Pd4qOWktniRQkIqHs1GCgFQarXyuuU8cgY5s8XFB3SQttPXtpIbD1LpuuS42XCgQIFCZhOCCehaP7Wli6x1DmOz80fLMds0tE7IbT5sQy3PTGLcy1ijvAb4BSEDD8o85T3cOPlDacD/xFQE3t7VhAX5lgSOc2kjA2zLLMdtIlr1lIoIgcAwRkikMI/xyApaEJVeLapnc58XHjPJPpOPpD0hWfdJO+LCakL4LYeSCt5MNE1jys44rj14Yt5Pr6JSakU9Dji/ZqhtESmPEhG1Z5dvbi09jOgSgWvqB7LvoAcer0tnGGpbRFHhIYV5TAlDGPojKdbcp40UC2icuJlCbjJI1yLZpVgBdL858ZKOtSGAsncCPL5OnL0tRdMDQPvGbVtgWC6qG6UoS5S3eNUdCAb945HfosiygOF+ixbCl8wMMgDeKj/tYPCqgEbVq6JV06O2dJEej0ay2TGAqfbp5vu07+Jt3hKPAxplhNsUJIVW0l5eF08xzL6YegnTuOH6hAPO3iYAGXVgNIzIz7Yzt0K6mC21j2KDQ3/egwOg2uIFpt5uxQlXd0Sje5vxh7LCLSbaZ1FTvIxXk7hFwbC/NbtdsZW1fM7htOHDxiS5DTPlFvylVDfXOQVZ13sanps9o5oxZ188/e0rzfXB1/yKWpTHWrQ5B0jGib4gPuCAWpH5xXTtipbSAXZtCbDqHuXfz4CC+flCah32fOc6JjLk3Nv09AXEo+tL51hgH2fZbrZjCnGuT/nJHqpt57ctzoF8IOmaZVk4KBjtIoUclm2+93Xlkq8Ql9Rils58HWw7AbiqFaWcGAhiE1ztmasNA2CMAa63s+3mFeEK9aVzeuAMaEFB7NSn/Tjt6oqoeo3rpG/jn4v8lqTlJoWcHFbL00A6SwXxJj/al3PW1YUags4w23Xp2VqXOrPxBhXj59JwbKBjq3+8etczmjRRp3hszhFJCTGJ9c4h/O4YxkbnIOY5JoYF0APsQI2+tpXUFC6RmObmtbG7OX9XL5mP2zod26gA4GdHMUG6RlXLskTRgeZdzr7c2TQGOSW8ttXVBxlsOpvIhXtpnDH01n7ecpkXhTtEygYgnKonLhyCwru3Jppds4I7xAL87hjOEO1XLrk+p5f0J/fiL9Jm5l42GGV+uXhKgtGl6/j25dy8qQNc65U6fOH7HtBLnxJc7cyS8crCNV170x5B+1rFmSM3Dfs7RtgXmN2QQQe1D8c/5uiNZBIeZ5J6LxCM73N+S37Swur5rV8fSIBcVwNMk63OAbS26azEdUqgo2NBIZW0LB8jN10imkxKCIm8KNzBjsxo+zwAlsqNzO13qtXQENmQXc+meWD8HfdhJWZ/8gr3W2+ybLLFOZACciLH1TKcUUvSXDpI66D5orF0zMK48cgKy47cNHVW/zp7E+eEEiSu6MXPaw+jJV1grn08CxzjKSo8YqR9ASH27jhU4xnVbC4dNcr3ornazwgCGGBfQTnhJtscP9B0bTk6TPqT1Mm1KL6wOu+IR8jNE8bYfiU3T0wABaCntJ4EVztaS7Fo7nS6nPuY084viQzS6Ml/cirBPkKMkEhvaS2lxSBQzqc/p8Gsy7a2WNrP2MFU+4zAb1JVft0XT3khgcX20cy0T0F4cJ70c1s56erGGQMk8NsxVw+G2RYC4PAEzruZ7Rig6RqR6B3olihv8Y5nNNltueNnPhD30e+PM+w9eY4baiFz3ee2rTQUT/GDTb9+AIsdY+lj/4OTrm58Z/+DWmKA8ZquRXLNaMTTzbaRQfZl/GRbyPPCI1RN4L6Wj52KUYlxcQOc+4PNzoHMcUw29QVBs4jp13KHglNnDHbpmSCW6Sj7fP5y9me64xeG2JeY5XuuiCgLi6e/Ns9yrApCAmWC/LGjQeDyUPsS9ju/pYl4lFxBCQGXwS5fdfx2SBne+btp3HscAIx+k9+ltvsXNii1OaC+zBZF9wejBDcuwcco+3xun9tnJuJsOfLRqKw+p5ctrPvafXzdzPjtWTbAtow4Z0cWOcaS4GrPp9p6cgmZ5vwF4LBLuiC/kQj6QNpPYwMMXe74mY+kPRx29uSgq7e5Tw9pHZsdA/hUCt/V+/q9R3gEB+9Vfi7s+v82++e2WP/a/zpbWnw4X9/qTSEj6PWGucU1S+TlVnImb3omcNH1ecj6ph4dmb+UqwFkhk5Wcs4XULjNh95h3DAYEcFB0aVsAq8/2FYyVm5LFG68nixeFuIpKSSyQa1LB2kHP9kXcXLmVqo9XMer4iAOq+UZZFtCwVMBYd59SkXqS+cY4vuUw2p5bmqF8OCgt7cn0xwzqOeZTB3xIhlaBDMMCqrfvrGtNcX8/BZRWJ9cyz+Xk/mG9tIkuQ2/yB8goXBZ6mRue0fLT1HhEaPs88lvoOdX1eepJ+nId4JRqjNPeZd+9tV0tO1gvtKEBK0I7wyYyfqBbRF9T/EIESGZ9D1KVb42so5dpE2sUerzvPCYK2oxcrhsPHyaixtqITNwXafUQTbuqerMzUG1Ag2lMzSU9CzSbbUADb0TySG4SdP0ezKxdWUq/9SERcrbNJUOmyKvc5TwTh6Ar/Y3tNjtIk4ryogWFVh97EtOKU2ZmxaYtIMBwzezZQYfksvsINjPvlov8ZwPLeTm9HRtoHvs13htf3GGkiRq+cjCwfvS35ZjaMXrQKoOsuQQ3FQ09HR62NYzWNaf24n2WaRqORghdzD3CxdEb1UDWYbtSnU626zlS+uVOkQ57fSXPyevkM5bkrVs7KxWAg2RnIVLIj7SaFwsEFD4mRV+0CP2ykNGbbmEgMouZ1/StUgWK2/xVItgsfIWZS7+CjY4ppZhtNyeWuJl6ogXKCykcFV9nuDeZx4c+DQJuxAKgvhBYtDZi7e0guZzIEXmJleEnbiR72DnLRi5OGR/v+UqWBQIBC75cvipOQJ9fD34UDpApOAxg9XlckALwt/B0m+tPEMoLd5jjH2uZbkqAO40GrKVBJdx7VdBVxu0lfawTalJErlNAX+/NZDOckX81NJRcIl2Eu3kEvMqic2mgKE91lI6SEvpID5NooJnPl6jDn/Lufu0rPI8uXnCC0ISZzQdUJdQ+Ma2hvb71pFyoRr76y9jys6rpmgt6C2v+xiNAzvZ/uLJkV+wGSDKz76PGWhfYTnnxPx1aF4lBgzGtj8AH/lxHdatrkNL6SCdbH/RyWZ1QoIFU0fb55GuRbFZfZVoLZ0kLQ+dfd/TS13H93Zrd6YtjgEcUsuTpkWyWalFO9serqTbqTqtBnYBfnf+RIxbz1S2k/R3tpdN1xh7qrl4QB4S1ELkEp4yT37HHI/89j/pTdjMM5KNzkG0lA4yQ25JGymWLnF6+WuiltcCLmZpDiIEvaQGoAI3uaC+wFWtKMeWreU3xx/09PYOGceDrajwiHjXJ/wu1yf3CT1gnLByKz5sJLi+o7v3aw6oFXnNeJ5syBxz9uCcWoIx8seWd8dvuTOukkwRtgUxum6ohZCRrGoOX8bCr68DkKzlIK/BUlkd0YY3gzZb9kUtWhji8U+JoKvvO3L7nnDa1dXyvQ19+9h/5wWeJRlxRyvAYy2nJTHhtwxc5KnWgmM3F1ru22ueqQg2fa7q935lvljZh+LCA46o5djsHIisidgEfbxqp1ibmwR3HPy/sbG+j/kQuBbEHl7z4jj+OKeXNt7UClOOUKDknFrCZDME230tDynk5IpalJfEO6xxDgf8vo1qgXZeEa2suDyRdvLlcHLtQYY5j25TaphM8UNqedqw17LP786fUDWB6Zm/A+XwKSr2+6fxJV4A8gACFcUAa8jpeQwuyyG4h1WrxG81gt7xL6VNLFLeppjwkExSSCNQRvyicJeetg30tG2g1dUhTLavJP+vD2nu+YV4lzWpUE68xQtqEj5NoljhghxQA8LvHZ7M4/rkLdQWPzd1mfz2gnCfm1phui08TEUhnkycJGiF9RLtK4CWChmBJFxH2w462nZwTo1ByzYo5BaemiDF9/bfYfHvnLfBNqEGl7ViRAhebhp+UnX3IVioA+yxSmV+7/k6U+e8bz6/p1zdLMfOzFOOAjaJx+SikWc8ZYXblrGhhXSQ7Up17mt5SCOKa1pROs4/igsPbpyUF6wdOP929qaGZwZ1xIvsUF9BQeI3+0TeOhdgVJUSE4lXC1NStDJbdijV+c7Xg3POzjq4JZ4BDRa7xhLO5irvmn7SDU0Huo6pLwFGBy+AvIHAv00NP5u4CFiHeUAfR/5SatDPvorx9oCOYi/begbGdsFry8noDyoyY+ZUyj/cwkt/fkvCiDdYvnIZjR06APzozFEGOp/NMjfPK1fRQJdAf+bSEQnNpsLGUL28rc4B5v+HXF9h4ArMckw1l7e1xZIYlAz/zv4HAOPtv1p+zzlXZ6qgJxIjjk0nNy+TSjRFeEysM1Q3caejL5ma06wA8Nt51xeWz2vmjuSX+GokuIIqQ8534J/sM9t2GkvHmeHpYUbMJbhLbjIoYYBSN7XCgMAl7QUquOfhxoGCZEoYTHLM5nttNam+aB6Qh288PVnvHEIz6TDNjHmwu20jKw1GaDgb7utATfEy70jHqCRcN8EQ/99ELS8+guRBNvYOOUY1IY5XxDi62zaax0wiLx96hprj6mq5AfGaHwARGOtryw9BCRO/TbDPASAihx4/NfKMZ5ezb8h2b0onzLnrovoCPmeekG1mO6aYlRUA4+1zKCikclYtye9KAwoIqRxXX8KDg88XHqeR7SzzbKBqAlKdniTuS6O37ysAMjUXj7VoM9kM8PahDlQQ8uPVJGw5C1Ard04Sxujl25vPJtJz+UlmKi35U6lHMtFMtM8mTi3KPrUSA+zLqSVepqvNKvD/mmaNEfxWINrJeUM3OHucYerVBplf/ma4uIgMLYLm0kGe4iJZi9bHjv//ZAH/V9i/TKn/MuvS4k0aeCabZUg2FIY1K8+KLq+a24x6X6dRZ2b3pIDO3j4kRpalcYVCVHjpRaq6Q2nLUpQ+qWiIDPJ1orVnCH0bvxSynd+62zay09GXC67OOMcUYZNzENMcM0hwtTOzr9Ue6pm3T6QdbHQM5AvbVqpdnwnAdLkFHX0DiHEvZ7HSmDitmN5uGtig1iXGvZzbWiFWKQ3ZrL5KX9+X4U/EsM1KTXJF6hFAlMPaGc6HDTdOGnnGU88zmc7ePiwoO5f5chMTkDqrlmCJEgg/bhoZQA8Otho00FhnH57jEVudA1CXtcImZ+KVIkLO5bRWmiuq7qz3s6829WnitKLUKpEXDZGG3snmRD7EFwDLNGCTahUCLyY+NLt91a+so/W5Iu3msfwWrxYmwXCStDCjXoRD4oxWmixc1CiRl42961HqpUq08w7kbedSemoBbaGpBh3Xb7PlpsjY0BBDhAR7GkyqWY6pvCA+4C+lBt183/C94y2+NISBzVxxyddDzgv0Sfgn2wLKCTf5UNpPZ9tWSgr3sCNTTzxLKymgtdLB258a7pn4THBW44hWjt7enrg1Oz/4uvCttztDxK+QRAEfNr3riGH+8szfDUbQp030LGcF+z1WHL3F0n0XTSHnmaa4skb1swHANqeQSS/ben6wr+SCqzMfGc57X6P8MlmLprDRIjdc9vxD7zBaeYYw3Kc7T+EyOtFkMiIo2ylF6hO/wyYi2BzE5dWBpEtqcY6oZZkhNydeLcwttQCVy7/Mwk41eK20PpFqmj5GfPFaCQAGGc+cH/AKpt+PaFGBnQaDp6v3G45rZVmpvEFJ91J6egNO0T9JsOYSMvnIFkvvbNl3f0OAYEAKoEXsOwg7BgHwOKoUFCpP2md76er9xtzGLijEuT5lmG0hCa52NBDPsOdcAruc37PeOYQosnhdPMV1Vwcz65/n8UkOXbeKT78qXgzJYEWf1DUIrmvP8avSjLLuBbznCXRakZyRlC6Yg/sV9LLXauJVMjUnuXPlDQkM/8lmOKaR4GqHPfWGwToRmKG04A+lPh97fzS1R0qJiXxi28V9LS8D5S9Isj9PB9tOC5DZQtQB/nbZOsdl4EJFpLl3BHU800gPYre09Q4KOSfl5TZM8rUCdCDKbxe1F8znZIezH11sgc6vvb29zHs5yNeJWp4ZZvMBvw20r2CBYzx9jCDlnwCpNC2gbeVnMADsdPYzGZKzHFM5FxSQ7Hb0IY+QQX3pnKVUPUMLzIHbnP2Jc31q+S4bKt++9aJlGc9V5dQH+yjjXkQtz0xmy02p4Z7BbQpbNqtcLDc1S1jZyKlE08LzE808I0kP+h1DDIbZXqWSRZgb4KZWKOQdCJx/BM0rP895tYRl+QHn1yZDr1jeSHaqrzBfeYcLWgwl3Esp51lIa88Qyz69vF/xky8QoFVy/2Yp7wSY6GtFU89IvvN24wtvHwb4OtPSKPHw2wP0sWejWpu3PWN5wzOBPgYg9Vrp/Jw1znWt8hp13IH7/Kwkib/0bpTc3rJcsxnZ+ahC3Oh4PPtuACzsVJOd3+ljd0vvCBp7xtDN9y3HtbLmOV5Si3NOjWGrUoPbqs5AEgWNpmd7sWFnLL8O/RR+a4h9Uy+zFMff+e+RlpNB9mXmtbmgvkAjz3g0RLOM5FnW376S5Y6f2e78gU+MwLJ6ylb+cAxjgj3gd/3h/IkaYhyFhRSG2QJstU3Kqyb7+SMpllSiiHTq81xwKVEpMZEVjlF6gDxHvxaJv3/PXud3DLUtYr+3DRudg9jl7EvfIK3JaZuP8vviUBZFRTHBZKkBIDy7u24T6ZiZENymhpbIVKjXgvzRTubIzSwSCMF2pWATnEYJz3XteTarr9LcM4KmnpEmg3uGYxprnMPZ6exnNoW47OpEKeGuqZPjZ4E6BR9nXV8y2zGF664ODLQtCysPsU21lssM9X3KNrUGKiLzlHcoJSay2DGWxY7wgNTL7rkkaEX4ytuLMb623DD8xG1qDbPhivbeRIgJ3wksnEWRxcFsc0iW0ZXr5ytNuX1yBwuWLOK75OE0kY4x3T4NbXQxsyQKMP1Yvx1VQ313rah+r2RVT75YfMRXPoPuB8ksUJlvvd3Zo1QO2f+fLDhB8SzTsv2v+0car4UBzP3vbKTgMRm82bVi/RZ1ex95CdUD/U9WREimXZL1Pp92daW/fSW31QJ0b1LVZKY/JQIF/Z0InqueE5IpL94kXi3CBS0m7PcEs8+y2wLlHW5pOsNng3NwyPoszcGuPg3MRFw4W+scxo/2QCndQkXXeTqhvUQ192xi3MvpJ39JoZwB5tNspSm9vF8985jOXIV45+XCXNeeZ59SkSQtNwlqITp7++DTJBPMueiw81EpjYgc9yzjvt/a2ALJgWbSYWqJl+li28J25w8sc4zmB0Nw3ImXdoLuk1Xy/EbVlwPvQ06XDQ8OanpmmssG+jojCRrFxYekEE2EyxqHBXc8TSQfHhz08vVmmvIBp7XSdPV+yz/ZGVUvBezt1WUVujYoFaL/FMyO+yeb6JhNA+ks70pHn1kl9N9u/4JS/2VWIn8UHeuX4xXPbHp7ezFfeYfGLxemdqkAOOC0SdQxPse4l9PQM5EFcmP2Ky+zV63MS4WjmdOhOulZPlLIadb8A9R2/0KEQ+LbN3XAY6nyFse0suSLsgqf+F9Uv/nrvP+TNZWOUFFMsCzbqgScgzqlwmcgZ38SEA//Pajk6V3PzyhBab0q7jlMytGXaMN5c9rDvwLXtee5rRUiT9UWCNGFmCy3Mtc1945isTGYQ6C7HUB33zcmk8RP0XTdP4FdycQn6RNUcD0zwNgg3R+/pWlRTPu4qulQv+kZTzPPSGRHTpZ21umptUrkZXeYkh6/5kx0nsB5rfzyVa7//C4LZV3kPp0oYvLp51OlWGjmItIRYNiVLawHkNEuGwfVl6ldvgTb5Sp86f2Wcu75lmuzW6nCGLkd1YrrTleboMAnmMrut+taEWzR54gsPp89uRRi3MvZZNBvNTSdlVAttNV8R9sOS2Zut/N7rro6ssQxxlx2WC3HfrUSDwnoI/kTfhvUupT1LGKV0pA/1XqIks3sBukvmQT4WW7HS+6F3DayvOTTGTbd7w1k+trdVNvZln3ObyhICmPSf2CcbQ4HnV+FBP/h7K7x3NwN6sYYfK4AJQtEcVYrxXFNL8sY5OvEHKUZnbx9OayW4xtvD0DPxPm7A73mmYLdaQWcy/Raw6omp2iujOUj7xDGy21p7h3Ju97RIIq8/lJBPq6pZybLFclJ+1ovMKhpeWrE5OGoai1Lei2IzZTpVejp+5pPvAP4K8iJVxHZrAaAcK1S6DMO8KMvlKn5g68LoGf+wgEjOb1JCB7dsdxaSc/CSkVe5i+1piULC3qWE2CRYyyjLzc2s2eHnL1Y6BgfcuwqJwcTgRsHPnLylJWOkQx/RtnSmuI/0qhsQdw4uaDFMNHXimlyS1zGu5PrDd2ZKSveJlHLS75oJ38o9enp7c1HnoBTmak52atUMj/7u974rZx4izRDz0xD5HtfNw6pFVir1me63MLcTtdNE4gvEgjuY42AYapjJvscodntJ0bJdTo5zDLv6u5Z1HVP5bBanuVyQ3yaEXSWb4nU6jduv9ydFp6fOKeVNEvAFSSDARBqx7SyNPRM4mX3XJYqb5FOVNgx739iVdxzqOyZ+583zGbFxfAiz+94R1PDPTPsOqVgRQp3W0fJAjrjVAgKxKtWqsyn9crgw8YYuR0PyYMSRutieruqVCuemw+qBQLuM1ppzmklw16vofKnnNVKUca9iNruX+jq/ZaxcluG+wJjoH8MByhWpjKSKDBTbs5o38f/4SropiHiw8YxrSwrZL2sba3yGpvU2sxX3qGhZyIfeIaRThRD5E7Uck+njHsR7bwDyd24P+e1kqxV67NTfYUVSiNOa6WZKr+PR7NZRJo1ROK0YkFZd+j8WgnmKe8yRf6AAb4vuEd+GngmUdK9FBkbjT1jmOz7kFLuJSaQqRpu6j61MuXc89mpVKW9d4AJjKjtViLlet6YO15lkK8Tx9UytPcOsMzvaeTgiqHrBtCgTAFkbDT1jqKZdxTdfd/S2BsIPEuK92l+oIWZSAGdnXrI2csE0PML6Sbjb6nyJu95R3Nd0++1P5EhRxcj8/O9HFfLcF0twlueQHlkVdEqEi1lJFJdjKNykN5gsHW06aWCfX1f0svXm16+r0jTIrELCmlaDqIMv2aM/DEx7uUsl61liySehmG5KHJBz9hnZ2t2C2q+0fv427S27eOgUp4Y93JKuJea636V3w3sNOgB8yuvYrbcjE+9P5jai9ntjlbAlFxYJL/F256xCNGFeT53BJu/b8KH4uSQfb73daVUgRzkjrQG2me1UpzXSvKbIVb/LAtmbkyRP7SMu377MhsDwm/n1BI084wkWcvBfuVlFimNTbBhdbZy0Oy2XqljyllsVOswW2kOCOz5/nVAQDaOo+V/8ZnHoGxTNEcOunq/YZdSlftaHmbKLTijlSRW0aUfpsstLM/sKucIvkwIJGeaSofNpgXZ7Yhalu+83ejgHcAS+U0+9v5oyhdolfWxRDHK1FUt29hWqAKRPfdx94UWdPL9QA33TJK03LTxDOaWatWSU7LT6oDTaikzRohXrWD+OF8bCyilCvCnYwgJrvYmm+oLb4AtFfz7/TZPedfyeahPTzY0kY5x0mDifeftxlK5kaUTJ+ilvbXc03nNM4XS7sXmQOfkAgAAIABJREFU+WvP4AyvVesR7bQRYQ+As/7/G3gm09Az0bL9dLklsT+8Zc7597S8ZkMav62WG1jm9htqIX5qUYFZ2bYLLukvKd6nVIEc1C2dz0wQZWpOarpnEM7+UOpbEtX+bt0gMO/TGjrLXhLQENmk1jaTUAeV8uY+o3ztEASBUe/rMWInXz/qeqbxuncyu9RXTOF1gKFOvfT1jWqPuEd+xvva0Nvbk6R354c9v+z2uW0bCa72XHF9RiOjMiNnrrxULhrwmV8yyvEUJN70jOMV9yz+DCqXvaflJ9plHUuy64lO/sgKsqYSTR33NA4q5enj7UaMexkfeobSzDOSGPdyWnj1v2Xf1n3ZKsVy8+2bZYhxL+NF92LKu+fzhnciY31t2a1UIca9nBj3ct7z/Mzrnom85F5oJpz/tX/L9/4rrdcbpfl1XzwbVH0QCCv+2rYqNUbp2bkbWhGGy4EMsV8cs1yRnKw7fY/uvm+4IHXmsFqORPIRYZfCdkEKto+9g5jVqjQN8qaG7ZIQbNfVIhQTHpjCqdnN38kKIMppY2GnGny2IEDzzxfl4O3y1ontrFqCSuINLmoxlPIs47SzCxF4SCWa+sULIBgIRGZQd5Cv3ijNL7utTmLjCoW59iCDJ0RS1z2V54KEzof7OhCJx2ThNHypAHuuPGSg/AV2ZEsWv4CciD1SZ6gNfLccmqZx41EmOy8lcVx9icXyW7jwmtmCeg2bYJdEShfMwYZedbl4L53+a8/RqUYxXnsxPwlj3iMt00flnx4wX25CK2kf7bwD2eQMBPFqVOC6CYKAJGB2+KoiXmdT73ooimayxrLbjm/rm04ugMuYaAVBwGWzsd2jZ9OO/tiI81PKUVBOpJtPD8TXdK/DhXvpNP3lANXds8glZHBde55B8ufk4YlJ0b+n5Uew6/Xmol3PoGXixI4BSj1XFZr/QszBJgCUEW6z3RkQiD+qvmSCMdntO293ZravxunbqabAc1gTs1ALzSfVqzuscVpRVsgN8WBnmdLIMnGTJ8b8N1jo+KgBBAbX/wOUd883S2Qn+z6knHiLmXJzHms5zefmd6UBHWw7eao56e3tRcKY97jx6ClrT97h87olqDpCD0TkIBbXHrUqe7xVKYi1bfEfSn3uaAVDhbtFkY9eLclHr5bkg5l/c/JWKhlEmjpzAO9VKsJ7laxO/rIvXqXMoBRaeYaQQ8hioWM8Ax39wA0vFYrGp6h4cHBArUi002bR9gg2pUpbKPk2c5LKMXfbEYoJDzip6cD2cuUNw+HT38nneQh2XQfssFqe1zxT2Onoyy2tIDmELJ4zMq0q4I7UA15/tquZZxTRQiZ7wlD8gy1Y1PuxFo0dhZwGY+ujMNnKM2rJkEAx0VWaee1rENNfD2p+UXTG4C+ROkAfka+YWfp7TH2JFlFOFCQTrOvo/YHFjrEcUcuyVa1JA+ksk30fMkNpQQvxINXFK3xsgJsKIp+8Wpylh63i7pPlVmYp3kgjO3y8aAcOXX9MrFqZ81oJ4iV9uR+Y+UupTmNJZ5ZEOR0hXZuCSzIHyl2wyTWIYCWaoZFTuXg+/jyjg7NNPGOIMuo04rSi5n7z5SbMkZuiGvfUhy2IrYgpWtzWO4iVhpBrb29PRtgXsE6pS04hky1KLb6xrWGe/A6tpH0c1cqSauitfeHtQ3Uxjm62gMAu6CCnXwA6u11Tn+OUWpp60jkKCylUcv9GOlEIqFxSi1uE87uUfpW29frR6LmX0eJvhT3em+UK8dv+G3xWJ4aFBxPwyirJ7mTyugLAaMFoF2t71GXSjtCmHt/4elJKvkcy0bwvHuAvtYbJXvViJ5F8JKp6EuasVsoswQQYL39EI/EkeXN+QF3gIXmYozRjQLZSUr8VzRPBnZRQHbABchdmKc0tiZUbWhFuENDUSUL/PQfVl6ntg7kdq3P2TirTgubKyXJrJsvhtauCrX6ZAkTnyMGUjEAiw880BriiFeeKogNHbb2DGGRbxnH1JeJGvkOZQVvJwkXC2/P5e/MlojWdoaSi4jC6b/Xy6Ykg/zjpCNPA4PncEYxvXYnaJfNRYsAWE2iIckg89bp43zOcca4FvKglmPsM9X1qgtPPYnqkkDPsckGUiCxehbbeQYhoeLE/s9Ql2HYqVXlCJO9LfzPI14kfbCuJFrK4pBYzAS8QeKTlIpeQifr/sXfe4VFU7d//zO4m2fTeIYSaAiGEFrpUKaGqKAIKgiiIKCgggiB2bKg8ClgQEUVAELCAoEiX3pFeQi+hJqRtdnfeP2ZndmZ3NkF/TX33e125YKecOTPnnPvc/UZQ9mgZP9ib0ZeKDSTlYasjt6iIgZnWbgwyLmeatRf+OLxWjCZKw2vyplVSZGSVfkx94RhN/c8y2LaAIsxMLhsACJwW4zTzWKbbVaMCqRETRPqZzwmmiK2v9yN5vBT68o4j/0tORjw/7ddWIL5JMG+X3c8YRwjMJ9Yc2hp2uxlBV9oaImJgq+jMk1oi+mDBR5OncYjlGSJTm3Pp8BbWOnKj1i/9GNcg5sZZ9XhwzwQlDHh82WBCKMSInTE+C5nlCA91RaVwd295j+jzNYgiK59frhh8PuhTj18PXWHg3uc0l+aUvuaWK9IVE8oGkSGcJMVwjnsskzV8jZwOwcw+yc/G4YVos3tQSjkwo199Fuw4y+0SK9lrJeX+17b2PG/4hkctz5IsXOIzWxfmDs7mo9lf8IzpW7ba05hr7aB4VIZQyJe+b1DPcJLepZPYLqYyy343vsgemAL+jvxFomBgaOnTrLZn8ZOtMWvt9SjCzBDLM3zqKyk8cx1eKT/asulq3MpX1nbMsd1NtHBT2StB8op5wdqS16z9CKCUJOEKeYQCgkTzHJqxDpa3+c1vtMbbe4+9mlKoZpOtNiOiAokK9uP8zWJap0Qzom0N7p2xmduGEG7ag0kumYcfFmKEG0zs34lK4QHsv+9r0r7ZrhiDNtgzKBD9eaBzOyYul8KDP7Hm8IbPZ0wuG8gog4GbBNO29B1+85PysM22dWJI2bOcNPfndvNxBAGZlcKYfrwDC22tHSHOAveUTgagu/F3xVBXXkRJQpg/viYD+17sSMf313PmehH7xWpklnxCEWbe5BPOijF8asthAiCLmDItlTHOOoQ19iyOiwmcDTqMH6dIDJfe9yOb5Ek6Ldj5ZXuVvsQSvxeZbe3IdTGYZ30WccIez8WQurS4rVWg77FX47fRrTVVetX87HEVP9K99BW+95vIt7a7cDXjy4ospQ9ZlcisFMYjX2zntCOf1QWi6FvmlK12ik6Dkq/RwH/6ZtGxtnMf65IRx3u/HtXwPTNs3Zlhc8rCam+5Bcau5FsCOSwm4YeFSsJVbhDE+z4fESkU8HTkQOrs+5QhdYfwb4dXKfUvRIjZh7apMUoJSx+DO2MW6q9VRMSFmLmU7ywjDpJHzxsrDlOIv4aR8PMxKEmb78lKZFjr6gSZtVOpCDOEJEC1TD5L+4JNe/9gp70mg00/s8lWmyuE0dqwlyNiZSWkxUwph82Shv+e0sl84/sqY8qGKtb8sAAf7mtQidYpzsSzG8a2Idhs0hAmgL6WCYSrYoqblH6I4Nhlaic4mcdasU6C5PpNANqnxVA1KpA3fz7MeaI5L0aTEhvMgGbJjNemXuGjfvU5mVdI1/9sZJJ1oEYpBZBgcCoQJuRI1obkcT8pFmmAV639KcWHZ/ycnmd1K4VRt1IY3eslYDY5iX5ogA+5U3I4fKkldd/f4NZ3S0wdt2Mvlg3kB78XWFllNB393Jf/4euHSQlPQRAEasZqibVaudkhPZbvdp/ny0GNiQk281WTL5m2+hiDmlelT+PKCIJAncRQxnVOZcqKwyrvI4EbhNCoZDpNDQfZL1bDB0kp1bJmNIN7NGHJufWsyEU3+b0Yncb9eRNZ6CeFuNxveZFgiuhn/FVJFNy05D9cdOT0yEgMpW1qjKKUqltZ64nUNjWGDZe+x24+ygnLUlqndGHtkTyet2qJf/XoQEVZW4offnLChHLQsGQGRZg5ZK/MAXtVPrDdi5xruVpUIFwtpH5SGLvOVKdH6cscFxMZ211Khlw1KpBn75Y2vq514/lxn8SMv9s7k2e/dVahuUI458VIpULgV1YprNSko4iWoS5C92pP9zmihizs7RBTQYQV9x7m6Srh3H+rhOTIAGZvylWuXTOmNQ1f/VW3HdHoC2ndGJIi8v7q4+wqc45DrdhQjlx2rtXzRNO19FWOOZiKc2IMdUs/w45AICW0NuzhHZ+PqV8tkcRLY3mUxQqNu0ooV8VQPrbmuOUAABhpeYL3fSXm+bg9gcpCHt1LX6WzcZsShuOKMWWPcTm+DRfPn6UYXzY6KnGOzpEsat8/2RyTwUCXadIaVK+Txy3PMNi0nCnWB+njEiq8wZ7BNGtP5lo7cJ0QBCQLuxUTi+2tWGxvxac2iSmdWPYIG3LS3ZRSDZKjqZn7JWUYAYHDr3Ri5roTTLM5Q2pbl76rycPxeNkoRoqLKTSGMb5LGuOXlJ9DyD9Rm08iJc5JPzs1TGXT8WtwsxgRA8klX+MqwH3xSCOC/EzcKi7j5R8PcvpaEafEeGVPqV4yl2ThEifERL4v1Yay/GKR1sN3dm1F0F/tDfjV3oCABg+ybNsRzotR5BGGDSPpwml6G9cy3voomcIJTonxdDRuZ1zZEE6J8ZisVgIoUfIgihjobJlCZ8NW1toz8cdCme11tqwdyf4B+5WsRYLLe2VXi2Tr+HbcLCrji99zKTIc564FT/FMg2d4pM4jmmt9HHPCIEg56LpkxLF8/yX2OHKbfWC71+P3b1otks0nr1EtOpCn29XkvV+OkntN8vbsWqQVFluUfkB7w07yxDA22vcjIIUURwb66iqlQGv0ccWAplU05cmvFVponx5L+/RYutSN574Zm92Umq1quVfdk2E0CGwb355q45drjvfNTqJepTCuFVpYuOMsp64Wck6MYWjZKPZM6oCvyUCQn4nbpVa6ZMTTtW4CHRzRvqIoKsoNk0Hg7d51GbVAopF+Pu6hZUUWK82qS15Yi4c148PfjrHmSB5ZSeFsPH6V3WJNPq72H945IYXAVS35ChEDq2wNWeE3jjBHlcyc0tf5yREKWr1kruYZjZMj2H5BUgLLBrBuWVVY4qiYdkJM5BHLGGY7vDW321OBS1irtGBKXjDjfObzpW8f1hdW5sWyAeQTxDJbc0RwhOc45+IKe2OeNCxjnr0Dk/192DBW8uJp+dYaNtvTGVP2GJnCCbdwkPtKJ2EWyvCnlIHGlfgLpdQ3HCel5AteNX1OY8Nh/hCTmWZzFj+YYu3D29b7sQnaMQ/xV/MSArvEWlw11+PT660UwTg1LpjDl7ShU+qKqB/2rU/zKb9JvKMOzzrl3gxFKfX7uLZYrHbufm89H9l68rGtKxEUcIVwXqcvgZTgL+QzzLicwaZfNEV73i67nzxCWWhrgy9ljDYt5KhYSSnakftwe3afaUCL0zd49adD6GXVqx4dxHf22jxXNoREIY95NqcXuCxs68HHaKBOYghyRjI9HkcNwaUaY/fMBHrUS+SHvU6l2/0NK7FwB2SVzCRWuKnkxKtR8iWvmj5nh38LFhWk81cge0rZPBT2iAzy44nWNbBY7SRHBTJ20T4+tnVlju1uTQhTcmQgW+zp3G95EYC37qvL2EVSJex8ArnH8jLpQi4HRMl7qhQfZA5Y7L8Y25x7mGdrR+tn5rLyLUnJOrzMsQ/fXYt3VjlzGk2wDqJlzShGHRvOuLIhisfaN9a2GqXUcUf+zmLMFGPmmqjNjylDDru0qYbiZr+VtFmym+s3b3KLIFrWjKZ6dBDzt59lVPuairFbqqYpOt7Jl7NirOJ5e71EpBgzIWYT+SVWRQ56qUo8OGZIPkHKe+bUjWf8kv2cFBMYZRlGHUMum+y1HfvuPHI7SAbFZzrUYvraE5owPtkAuMtai8nWgbrvCTCmYwpnrhUpoYj+vka+e6IZE5dK+XNXHJByaD1T9oTmvmCzD/Uqh3Fv/UQmLlPnBRVY6Qjb9cVpsP2wbxZPznPkoU1uiRidSs65hznoCC+XjZT/sd1Dalww1aIDefFAe7obfyfXHsd+sSrHxUrkOuh7/yZJNKkWScsa0Uof1dgnVifN+h7G6jN59NZJqoU6o1USwvw5+XoXNh6/yoZjEs2uFh3EujFtFIPjm/dm8Nxidz5pYLNkXuyW7rZOXWWnitAzK5F5W508jjxeDUqlvF3BIeP4bfdvZERn0CS+iW4b/xZ4w/f+pXjzXmc4iJ5Xk6/JwLxHs5XfPbOc4QVGxwITBIHdEzu43evvY1TKdKbEBVMzNpj4UH9yp+RQt5KTsPs5BNqS6DqssWeRTxDvWe9jm5hGVFI6X9g6KYS4QZVwSvDjI2t3jtgrsUusRUrpl4q3F8CeSXcr2ujPHm7IW/fWpXJEAGEOz4TnOzvDjG4TQP1Mp068BD/FIpEar1VKjWwvuVDHhpjZ++LdilBp8D/NqtOrqBETxMLHnbmb0uKD6ZudRMuaEmO7dHhzFg1tSoCvSVF4yc/abq+llEJeFR/BuQJtVTBX5BNIKb74+7oz0wG+7so3kMLrDr7ckRdy0hhfNpjRZY+TXDIPk3+Y27X7xWokl8xjc+Q9buc2nNtA7x96892x79zOATSpFkmNmCD6NK7Mm/fV5bsnmikCyG1HOeK4UD+Nom/oXdV128ojjO/tzdj4XBv6OsLGUuKCaVo9EpsotaVnnetaN4FtYhoPWcbRvfQVljzRjAICmGnrzotlA1hha0SewRni6WM0YPYxMr5LKrMGNCQxTJqndzn6nRQRoJTd8jWZ+OIRbR4J2fLyQZ8sXu9n4sLtC/TFmSR5lGUYs63OUE51dR7Z46Sz5U3GWLXJWxc45tP9DSuzZnRrLHH1pVwEdncmVfZ6erFbOvc2qOR2/rmEOTxiGUNqyWxFyHW1mKsxrU89nulQi1NvdKFTnTiP16nhF7uMoJSJdM6IJzbETL3KYYQF+Goq2qlDeJc80Yz1Y5whDvJYGgwCW8Zrwzh/HtkSVxwQqyl5497tncnEHvWwYuIWQSyzt6BmqSQEni86qrT79aPZiiX6DWs/kkvmMczyNK1K36NHqZTse6m9BSklXzC10jTaW96hrm0uickpfGbrQnrJ57xV9oBbX76ztcQUFM0xsRLnxBimW7uzpfaLJIZJz6pbKYz0hBAlJ1f9JGc47B9iMs+UPcFtg7sXhYiBpHtfp1FGGjaMLLC1cctFcFJM4AHLJPIIw89kwGA+h9E/l88ebsiCx5pwb4NEhyVOogt6454rxpNc8jU5pa/xQdZPgMD71vvYEXufJqysIsh5RZpWl5QxeyZ14K37Mtk0ri1p8U7Xf0D5NiDR2IbJEbRLi2XdmDZ0rO1UgsSFmJk/tIUS8uQJ84Zk6x5/uFcO44cO5BKRipV2gnUwtUrnssh2FxOtgxgxfioPWCYpiYatmDS5s2SssGdTjJl2DbRVZ5Vkvzq592JDzIpBxuLwtJq6070qrJzrJ9ExP908GcvBKz1r81qvOkzrk0WPeomsVa0ruZ1768sK3Gi+sHXiJ3sTjdX644caUhFc50LvBpWY3L029SqHKTkjq1e+zPzDkpIyNS6EHS+0Z/uE9vw4ooVy3+uOnJVT7snQtNcvW6Lz6j2saTWJVresEcX9jSozrHV1fhzRQrPfyvu7TGsC/UzEhTrDk0VEfBy8RqPkCGrGOPcfPU8pq0oR0qBKOLMfaUzulBwC/aTvNblbOkM6ZNGi9AOal3ygeJRcJJJ6pZ/ymGUUjUqm84eYTO2SWVQvmevmIfDu/ZlKaXtZXplyb4ZqnUjerm833UpyyTw2OJKT2xKzmWnrTqOSj5jzwuPkTslR5moBAdwmAAs+vNM7kyOvSt7D71jvJ6XkC44nS0mVK0cEUDkigGkPZgEC39paM8n6CJ9Yc2hWMo17Sicz3PIUO8RUNtoz+MXekH5lE+hteZHaJbMoxZcx1qHcZXmfJ8pGaj2FEaR3FbR7c4MqEs1rWCVcEWhjgv00CjSZPqqh3j8Sw/z5clBjlj/lvh+AlHZCRkKYP8lRgQofasWkeN6AQCH+lKa+xzsJFuqXzFRy54CkNJLD7yz48Lq1n6KQktMlZCWF82jLanSt6/QYVEOeVwtsbZhqLb9qlww5r+vEHKeCSI+mlAdZ+H1DtbZkmn+DEA6LSTxrGcp9pZOwYmKc9TF+KJbW41v31dW0pfbaal5D5pnkUDWpX0pOqQqUZ74mA/c3lJO0C277WHigLzmqbynPFxl2DIpCakKXNIwBuco5MSGLhsaFTLQOUmQKNaKD/Vj97F2MerArySXz2GTP4JUedSjDpCikVj97F9OG9WC45Sk6l77Bk5YRbqkS1HiyTQ2+fjSbQy93QsTAk5YRGt6udUoMq8feTXZ6dT59WKKtCWH+PNOhFoIgKDJXvcphSpoM5Vs55o4cdvZRv/pM6prudl5t3MqdkqMxmi+xt+QV60PK2qwR49zPXIspVYTFw5ryeq8MQv19eKJ1dd50mSdRQX7M6N+Aj/rWd7tX5v+NBoGlw5vTJUN/vcjtgDSHu9ZVVZLzD0MYvpXGTVsDON7J+e6fDWjI853TOCEm8p61N0vsLTVeUACv9syga90EQgN82KUjswJYQ44iGIv59oh7BQGDQaBVrWjFWcAVqXH6XrDP3i2N9+n800zfM93jOnHNXazmjUP9fRjcoqrrLbo4k6/vtf1vgtdT6l+K6GA/fI0GLDY7Jh2rEzirhgFEBfly6o0uTP3lKL0bVFaOhwf68u3QpvSeuVk5ZvYxMqBZMqVldgY2T9a0qdYYBzkYcT1B6d37M7nr7bXK7+n96nP/x5t5+1of3sY938j9DbVEqH26u3X38buqkxwVyONzpaSVH/TJYtke91xW0UHaDfPJNjWoERNETkY8giDgazRQbLcRmDyD0eugY3JHTU4DOX76k4cacqPIQoJKAFO/f3rJ51gxYsFEe/tmtlq/Z9nKway8T7/0pxp/RmgBSWElimgsdnobuAyZQWj/bXtSI1L5sN2HnM6XLOLHbjorGJ0tOMvv53/ngdQHSIsPUZg20ArfN4sl92p/XysZczKY2GQi96dombXRd9eioMTKxw6vpUrh/lQKD6BadBCoCuTIjJAaKbHBtKoVxYi2NeiaGU+7dyVCn+Xog2/EOuYWZjCntCM/PNmCBz/dwu1Sq8IcPNZKqxxrVSuadUfz6JmVyNeH9D0hto1vx32OeW/2MTJ8xXCCfYK5UDKBdD4nx7iFpfbmLLM3Z5atM5fECKyYeK7sMYLR90oAyQU/OthPqf4BUq6V0d/uVaxoasheT/4eFE1lmNjoCDWY/1gT6ieFO8NZVj/JunPr2D/AaeWpEhnIU+3KyWWhA9+IzbrHK4VLDFdGYiiCILDgsSZcvW1RxkWGWsEY6u/DoqFNuW/mZh5tUdXNypQUEcAHferRa/rvAIoiTmuBc0fzGlGE+vtoPEJW2CVlxhmc9KIUX1q178a045sJ8DWycGhTnp6/m2V7LjDd1p3Zto4UYyZFOMNRsRIiBkX4AXjL2oeZaQ3cnv/Vo/qKE0BhXF1Rr3IYHdJjWb7f3brnCkEQCKwqJR5uny6Fi57Ik7w2UuOCebBZCCtzV5IQJjFWau/XXlmVWLJbYELtVL5Kh/6ztmIUpHCfw69Iwu3sTbm8+fNh18fqIjZEm7PMlVzZVcyZmj4CfNS3PmU2EbsoYhAE/H2NvNS9Niv/uMTvJ66hB9fnqVE/KZz/PJjFiG92654Pd8l3WBGe71KLnxc5f8v0yGTQZ5eCHDnErHZPWUckhcyVghKqRwUxdvE+wgP0+9S4agTbTknhYa1qRdMhLYbq0UHUiNG3vFoc3pvv3p9JQpjZLfxchlqJ4wlqoV95H0ESNgCGt6lBxhxp7+uTKu3RZh8jZh8j0cF+HH+tM+dvFis0oU/jJHo3rMzczbn0aZykywdEBUt7sUWlnAj0M7kliAdJiNuWe50AXyMrTjmrGtlFOyFmH74anE3dyqEcv3JbOSev2zmDGrPuSB6fbzqlmZtqyEJfSlwIKXHBbHxjICPn7+a8Cw+xSpWwuxDt3O5ZL4FL+SVUjgigfpUQjuAUr/xMRnrUS+DQRSnR9C+jWmH2MfLRmhPOBgSY1DWdTzecVOjizyNb8vx3+9l95qZy2X0a44RAKb680FWrTO2emUCI2cTA2duxY+B1R6L4C2KUbkUnG0a399HDvEezsQq3GO4sjkxqXAhHXu2En8nI8SsFzN92lgezk2j37jrPDYFGSQdaL7vXetUhr8DpkeyjY1z18zFCiX7IOIAp8BQfD+3I9tzriKKUF3OSYx/xi12Kb8QWCg5JeSjvyUrUCPcAz3VKVbyUW9WKZv1RyZMiPsx9PX39aDZ7zt7k7ZX66QRkHjK7WiTxO81cLrr1lytrPdg4iX3nbvHNtjNu62qxi1ep7OEd5hIJsPG5ttScsJxGyRFKDlFZGSQL10pOqXJLlXhGWnwIhy7mE+Bj5KO+9dl9ejUXbpXoRm80qBLOztM36FEvgWmnZinHRUQeaV6Vqb8cdYvIAOjdoDIGg0D16CDF+0ZN81vUiKJ6dBDHr9xWQucPiVVoWTOKDce0hU1iQ/zwMRoYrSrc9FHf+gyfB0ZbHAF8rBw3GAQ+8bCv+5mMLBralFpxwVhtIuduFNH9Q6kSq6xAr5MYyonXu2A0CLSsGU3XzHgW7zxPncQQdr7QnkA/E/vP3yI2uGLa7Wqrlr1rZWRWCmXvuVu69zaoEkGDKhH0zU7SPa9+38ZVI6gU5s+uMzfIvVbEFwO1xQvUxvRhraszw1H8p1tmAulpVZi+F4+Y3L02k7vXJvdqIbEhZtImSZW35f0kp248P+3Thu9a7VbJKGFwzu2IQF9m9q/P1F+O8sMy/I12AAAgAElEQVSIFqS88HO573UnyKwcxru9M2mXFkOw2Yc6L66kuMym8OTDfh3G2YKz3FvzXmID3WVTg4rH/eShBiRFBvBKzzpMXHqACV3SCFbN63VjWvPZhlPM3SIJRS1rRrHHca7EWvJffpe/O/4RSilBECoDXwKxSGT8E1EUPxAEYTIwBJCzmI4XRXG5457ngcFIATNPiaJYsSbgX4ahd1Vj2m/HdTdzgJqxzg3YYrMjCAKd6lsRfK8BTu1+o2QtgygIEtEdoSPYvtazDl3/I3ErIY6EcmoBdcFjTciupk1W/s2QJsSGmPnwwfp0+3Ajrlg1qpXG+6Y8yIu/XWqMx2sqRWgZL5PRoNHcm4wCuOSGlBU88aFmJc+Sv68Rf19nW/vz9pMe6dS0q6sbbvFtiMD3XC3WboIvdktn2upjDGxWld9PXGXn6RtY7aLHhO7loVOdOKb+cpTiMomR0MslJkMe08tFl7lcdNnjdUNWDeH87fN0q96NAJ8Aj9c91qoa23OvU6cKcATmHpzrppR6sm1NRFHEz8fItNXHFIuqjMIyScC2iu4VX1aOcjJashfGE20kr6CudeNZV7YCX3Eltw+/jiA4mSo95gdgUPNkumXGExNsZnxOClN3/oBBkK499lpnBKR5IfdBHv+CsgKaVItgy8nrSkJ9ESnETEYpvoqXzyPNk5UQt15ZifRpVFlX4Lq3fiK1E0LcmHRwMjFqq7IaspD1nwezaFItkqvFVzFZTYSZw1h3rnyhQMaBqwcothbTKM69QlJ5eLBxZZKjAhSPB9e17eyjtu8NkyPY8nw7ooLchfNgs4mspHAGNK2izGWA8V1SeX25u9Jk84XNNE2QPCv0PM20EPGNWE9gQB3ubRRK29rSXHJ6VAiKl6M6KbKsYB/TMYVdp2+Qnmhky8UtFbpSb36+LaeuFirhQhO7pmO3i7yx4hB2UaIhgX4mnu+cyhsr9BVCCx5r4lEpI499gyrhzD09isuHLrPnoT1EBvrSNjWGqs9LYVLPdKrM8Hbx1IiKYrND8SPTSlmoGdQiGaMB9p/P14SH3AmMLutMVorm6FhOTUYDJqO0Rk/nnybZN5kBzZLp36QK3+06xxhHWIcaaqbNVZgQBIFumQl8tuGkG+Pt6p3RODmCbbnXeapdTaatPoYezC5TssyRKNijUsos5xSMYa1DDrDZbRgNTgbd7GPk+c5p2OwiebdLGdgsmW6ZCRRbbIQH+pAzTdr3Fjwmzadley7QqU6cR4/Hmf3rM/SrXdyV4hTig3UENjWknEk2nm5Xkw9WH+OxVtXon12FVm9L4TCuikVP9MYTTEYDVSK1SnWjQWBgc3cr8NePZuPvayQq0I8bhRba6uzXS4c31/Aunw5oyMm82/gYDYxd76z+KtP6Fg7P5ZTYYOJDzYy+O0VJantXrWha1oji/M0iBjRL1u3/xK7pZCWF06Sakz6/cU9dGlWNYMKSA27Xf/pwQ4Z8KeVmmzWgIZ+sP8nU++spnmATu6bR30UeeqxlNVqnRCuWd7XSBSQF1qAWVRmkspynxoUQ4UGJKSPEbPJozf/vwvR+9fn5wCWyq0VysdBdOJKVmjVignmhazrXbmvfzZUyf/VEEklhno03/bKraH4LCr1yTtRnO9Ri3HdOg8sb92RQJyGUjEqhZMyRwtgaJUco/M7xK1L4oK/JgG/EFk37r/ZyD2WvHBHA8qdaEh7oQ0SgryLg5mTE8yROJXiQn4nmNaIQPLNcHpWhfxXVHQasqlHuhiyANaNb0+adtcpveY0lRwYoxsVjr0kJwa8UlPDLwQsYfG5q2vCY6NwDto5vhyBIufT0oOfpv2x4c+pWCuVmURmbTlwlxmWvs4t2RrStwROtq2MyGpg1oCFPz9+jhA2r25w7WPJ0D1HRQpmGVFF5LI3pmMLwNjWYvekUL/1wUDn+/gNZmqJQIClDhs9D8ai/UzRUyU1qXlftvanm0WOCzQxrLRlPIx2Gc3neXrx9kW+PfsvKkQPZnnuDV348SKnVzvA21flozQniQrUyzScPNyBj8ioSw/w5f7OY1LgQZW/MrhrB1lMVV0DUg+zBeqPQwvmbxWy8sAG7aKd15dYAmE1GQswmxnVOo292ErUTQnhy3m78TAbdtWEwn3XLw5jsYT7XTwp3U0p1XdKV6yXX2dZvm+Z4pzrxdKrj2WvrThET7McVB41WRyksGd6MtUfyFK80WVl0J56PdzuifR5qUoXeDSph9jFSrMptXCUykFd61sFoEPji91zuqhXNHkc601JbxWlD/un4p4TvWYFnRVFMB5oAwwVBkKX/90RRrOf4kxVS6UAfoDbQCZguCOXUrf2X4pm7U8idkuPRnTM2xMxTbSXBXra49vmpD12+66J7PYBv1CpO5HvOQVInMZRgsxHf6BVcKZXiohtUCWfnC+3JnZKjK7TKQrqfjwHf6BXEJO7kxOtd6OwILfJkVdaDTPf0GIA3782gbWoMgqF8bbNePh7Zc8kTY/HHtT/ou7wv0/dqKzmlxYeQOyWHtWMll3SL3aI5/0jzquya2IGn29dkweNNOf56F3Kn5CjM/aXCS6zKXVVuf2VUjgjg0CudHEyKnZkH3ub4DX3L+Z3iVqm0kVVEDFPjQtgwtq1u0vS1o1uzaZxUkVAQBJ7pUIvXe2W4eY8sPrYYqNhl3OxjJHdKDsMdSqnU+ABH207GSb7T6EEhKwiCwjjJwy0rpXyMBmXNyNcIqiT8E7tqXXxdXXPVGNvRGVL63gP1yK4W6eYZJPdHTyEFzrCXNi6Cm8zoyIqYeIc3RJuFbWi5QD8EwhMe/OlBBq10r4QHzrADPQiCQLPqUW7vdOH2BQ5eczJ7ekxtXKhZlzbJTb3Uow5v3eeshOLq7aYc/8WZsNPg0o/vnmjGAw2dnp8hwfn4xa7gpW3j2Fo2jnFbBwJOgdYTJnRJ54nW1Xm8VTVmDWzE6I3DGbJqCGU2/cpGMuJD/RWFFEgecUNaVXN6kToEue71nErxOBemPLtapEdGTZ4zTatHKsrlMnsZ7dJiNWPSZWlrev0k5RuTGSfXaehnMvJYq+oMcvF+lVFeCEcXlzDQpIgAPn24oVsogBqLji2i29Ju7Lq8C5AY9N6qscJQBI4EtyGqijlzB+t7pMkePWp8NkBLYxYObUrulBy3hMOJYf7Uig0iOtiPHZd3aM7JSim1NVYNo0Egd0oOTVTCTJmHildGg8DwNjUI9DPRoEo4LWpGUTvBGfIuCAKCINAzK1GjkLpceJmTt5yJ9jvViefASx3prWKUK8pjsWtSB4682olRHWpx4KWOjOuUSlJkgBI6YhAEBreoSv8mEr35s0qpP4PmNaKonxROUmQAXz2a7VYRCSQvwipRRq4VS5q+UH8fNw9McBcEAv1MbH6+nVuos8Eg8PFDDTXrUY1gsw8PNk7SrBt/XyPt0yTLt6+L53G6Kjdlu7RYFjzeVCMgG43u68VgEDTKo+hgP97t7aRx5ZePkeAMtdJi+p7pfH1ImxdP3YPZAxvRQcfDXMaSJ5q5HZM91FvUiKJLRjzTHszCaBDuSDgKdMlZKYpowjKHrelLzpIc7l50N8uOL3O9XRcz+9dn5UingapP4yROvt6FxcOaMm9INg82TiKjkn5uIABfo9Hxr/u+o644rEZ6Qgjxof4aT0LX/U4Ob1UX4PT3MbJhbBuFPwjSyeF5J0Ksp9DlQc2rMm9ItjI/XeEaNmYyGiRedEwbt303JtgMqjxhsjJK5sXuVCkVG2L2qJAC5/5sF0Wm3p9JtahA6laSvKzDA321YV0qSCFxUp/bpcUqKQCyXQx8LWtG07JmtGZ85MgGH6OB9WPaMLhFVYY50koMaJpMZqVQwI5v9M9cLNQ3xkhj999DD/Xmnh5EUVS++9j1Y/l0/6eIvhfo36SKotioFRvMO70z+eCBepp7g80+7J10N2tGt+a1XnV4qUdt5dyCx5uqvPRtrDmzpsLwTFeEB/pSJzGU4auHM+K3Ecpxg0Fg3+SO9M1Owi7aiYu5xJCWVZnQJU23ncCqH/HQcv3Kc7MGNNTICLIxuqWKVzt/+zzFVs+KbYDPBzbkqXY1GdKyWrnX6WHF0y35ZVQrt+OpcSGa1CRylIX6O6qVoJ6+rrzHy4r2e1RpdORzsqcjQInt3+8p9Y9QSomieFEUxV2O/xcAh4DyklD0AOaLolgqiuIp4DjQuJzr/79FqEPhU1G4mOwu7hf9G+M2O/PjHLx2kIw5GWy/5KyG1752MH5R63h2gzMZXqRLyBygeEnI1gI/kwG/qHUUh3yL0SDwdu9Mvh3alOhg93s9Qd6LZCIgCx/fDm3KA42SeLyjnWbfNOO+7+9j2K/DdNv4cpCWCSizlyl99OSIcaVQSip/+Lrk7SC7ao+QlX42i/6NuDM4p/NPkzEngz1X9jDw54E8u+5ZrhZf1TCCH+/9mJW5+s5/0UF+CD43WHHmO4avHk7GnAyFWZ03JNtRlrjiPAHgVNRURPgV6DSZHBWoyTEDUmJbPe8PURSdFV/ukAmICdUqhQTBGe5jLM90qXomON9VjRn96zPlngwig50MZe2EUN6+r67CZJbZRN2Nq2ZMkEcvRRlbLm7ReM/9fv53fs7VmtdrJ4Q6BGnnJndPViJrx7Rm24R2SuJyVyukXhhkRSgqKyLfkq85prYc3ilz2nFxRx740Zmf6c/kznBVLOlBLcgBjF0neU581K8+Q1o6vQyqRwfx5n11eb1XBu89kMlH/aT7CstuKwpXgB71Elk2vDknX9dXyIcG+DC2U6rCGB+6fghwV9bW+7Iej63yXNVGhlysQS5ZHx/qz2/P3sWb92awZHgzPuhTj/ceyNTk6tFDgyrh7HihvYaZd1V8u0JmoFyFbBlZSeHkTslh1oCGGgGwPDzWSsvwiaJUDEFPEJOx94rkyy+HDbsiOOVlQqpL4YquocifPNSAF3K0jK4gCMzsr817ITN2lcL9FVoMEOgQQB9snMTnAxuyaVxbVo26iyVPpTJ89XBNG7Li0ZOnlB48KaX+Ktovak+PpT00xwJ9jYxdP5bNF6TQ2jYpMXw7tKnbHHZ6exoVwTrIz5mfsGtmPJUj/BnYLJmJXdMZc3cqiWH+itJfD39WiAHYfWV3ufTj4u2LZMzJYM0ZZ7W4Hkt70Hpha811rt/2TmnSX4VspApwMT6YywmPB/fk0Fa7lfmH57spsjXKMw+k7/kuqTSuGsHBlzvy9aNOI8HjjnUnCAIz9s5gyrYp2htVw9SiZpTHMOI2KdEahd/x1zqTOyXHo5JATffKMx59PtD5vCGtqup6CV8svMiLv0sJsPfn7Wf5yeVu18joVCeeXddXMWGjs9KcwSDQoEqERtmo16dRa0aR86PE22m3GP0k3jKuFV/T0KisJCkX0NLhzelUO45jr3VWvO/UDqMrnm5J5YgAdrzQgWd7FfPWnrFu/dLbF88WnGX2gdnKter3kvntPVf2YDBIBiH1tp9ZSavgljG9n3s+IDcYnPyCPL5/1lPKFaIo8tPJn7heInnmvNSjNpXC/YkPM3NP/Ur8Nrq1rpHOtQ1XBPmZ2Da+nVsOUD2ow8eTIgOY2DVdoX0Gg8CyJ1sQHHQNv6i1zDr6sm4bcwY15i/HWrrA077rihc2vUDmlxK/IvPf8jjI++qVskNUr5zHxksr3WSM0AAffE0G+mVX0fW4rZMYgm/kep5a89Qde9T/GXx96GseWTmA1vVu6IbQT7lH8kw8U6DNk2S1W7HZbbRLi9Uo0TvWjmXxsGZ8Oagxi4c14zsdJboe2qbG8kyHWsSGSHLkvrx9nM0/6/H6D3Z9wJ4rUsBcZJDfn0part6bVj9zl0KfZRn28Vb6ijFBENg3+W5N3re7Hbk31VEzPat7LqLwb8E/QimlhiAIyUAWsNVx6ElBEPYJgvC5IAjyrpoIqGfdOcpXYv1r8OvpX8mYk6GEQqlx4uYJjfIIJBfCZzrUqjDR2lv31uWPl9u7Hf/9gpT3ZcN5Z/W3sZ2lsL6KvAh+HNGSb4c6LWeuSoogPxMnSlZx6tYp11sRRZH3d77Prsu7KLA4K7q47m9LnmjOwsebKm6wOy9L+aaO3DjCxvPOUMGN5zcq7WRUCtXk+/ls32eOTcBGh3SJQThXcA6b3YZdtLPwyEINk7ZpXFvWj21D7pQcJfHfnxFSNp2XYs9/PPkj529L1XraLGyjEXY/3PMho9eN1r3/o371efZuqXqDzAzM3DsTkBicqlGBPLziYV7b6kzY7RpWKEMWxPSUUkeuH2H6nulcKbpCr2W9uHD7wn9ZGLParc427pAHaJuqtZ4nhPozb0g2U+/PVGLcb1tuM3z1cC7evuh2v6z80lNKxQSb6dM4yW3D792wMvsn301ORjyfD2yku3E91ym13BBKURQZsmoIj/zsrNT1+K+PM2Zd+aXCc6fkMPWBeoSYfYgJNvNit3QyEkMJDrqp5HwB3BiNP67+oSj8PCF7XjbNv3H3OJHxVxRdUDFTu/n5tnw5SGIwXcOF1XiyTQ2eblfTzQtiRa6UY6ZqVCATctKZ2b8Bi4c1U/LE9M1OoldWJTflqBqZlcMwGCTFxvoxbTjwkpQc11MuL3C3XNlEG5sv6uffUuPt3nXZMLaNhlmsFh3EA42SiA/1p0e9RHplVaJOomerv4woF4V/eQpwgEbJ4TzSPNkt8a0r2qXFUjNW30PLFa6CRe3EikOJnB5b7mtEDkUTfa6QOyVHdY3I+nPraZ8ew6M6ls9OdeIVzz7BdIsZe2cgiiIbn2urVLME6Fwnjhdy0pjYNY22qU7G11UhC04ln0n4rymlLhde9jg2sqD7Z1BYVsjPuT9rPAUbJUdgMAiM65xKPUel0YrWfEywmQ1j20q5/ZCEmfVj72L89v78fMqpIJeVX+AMsXaFxWZh7sG5bnRiX94+Hl7xsLIP6eGPa1Kun2UnnF4zV4olY8+OSzsoKpPKc7vm1fizyaL18NRvT/Hwiod1z8keP480q8qKp1vyUvfafDOkCZFBfvSsl8CzHWppri8qK6Lx1401yjWr3cp3x77jta2v8dWhr9yeIW8TrnkNZdSICWbh403dvHlGtpee3TZVv+Kh/G1ap0S7GR6XDW9Oz3oJ+Eau5ZSjmm3ulByNd32qo1x6n8aVsdltfHHgC4qtxRp+p7w9oW1qrNJmfKhn2ivvvX2X9+W5Dc8xcdNECssKsdqtmvbP5p9l0u+T+P7E9x7b8tSnX884K8OqDR9fDq6v8KF5RXkaYwVA5+8603VJV0DKMznPoRSsVzmMmQ81wGQQmPPHHC4VXqJJ1UhGtq/JzhfaK96t/r5GPjn8EuvPrdd4s4K+wuXJ1U8ydedUrpVo8+uFmE0Kb7jmrHNuyfPzmQ61CHHJGzWwWTL3NahUbgJqGYKgo5Sy/9eUUjsu72DchnHM2i/liGqTEsPG59q65a8rD57Wd0yIWbcgkIw1o1uz5fl2Hs+rkZUs7VcWDx6ADaqE8/o9tXXPuSKvKI+MORlsOOdeERvuXClV3hyfkJPG5G7pTDs4iodXPMz4jePLpa0g5ZhTexktfaI59zeVDJ2yN6on2EU7lworznupxvGbUpTGBYf3mStt69VAv8hO64WtyVnilL/yivJYfXo1giDQoEq48m99Ha/ZO8G+q/voskRruPnhxA8cvHaQUlspn+3/jIdWOL23+v3Uj9kHZvPr6V+Ze3Cua3Mcu3FM2afU+77JaGBMxxSWDW+ueCP3b1KFEzdP8Nz659x4hBCzD3asvLH1DW6U3KC+wzioNhaEm//aO/+T8I9SSgmCEAQsBkaKopgPzACqA/WAi8C7f7K9xwRB2CEIwo68vLyKb/gH4KM9HwHoVnnruaynW4iOr8nAU+1qllutCySLguiaaAkUwqsObbCKEmEvKCtQlEAy7KKd17e+zpHrR4gLNWsEUNc+lNnLeG3raxoCIaPEVsKsA7MY8PMAmn3j1JjLFS0ebeHUUOtZ59S4WnyVYb8O47n1z+mev1x0mUA/E6HpkzhqfJXzt8/T+bvOzNw3k3Vn1/HKllf4cI9k0RcQSAzz14SbQMWC4p1g15VdHs8dvn6Y3Fu5gPTOnTMkJtWTu+fuK7tZcGSB8nvarmkapk1GeZ5Sg1cNZsbeGcw/PJ/jN4+z4MiC//J7lthKdHNKlQc1cW/R6htulJ0jPtSfe+o7FRcrc1ey/tx6nl7ztNv9MsPlSSBwfYYMQRD4qF99j6FfguAUuCNDb5MxJ0OjCJW/aW5+rtu9rh44lwsvkzEnQ1ECq1E/KZwfRrTgnh+6a46rhdGD1w7S56c+fLzvY9fb/xT+qtKxIqY2PtSfVrWiWTWqFeNUVTTzLfnMPzxfYd5Hd0xhlIsQqIdOdeK4bdinEapB34vIVWjvVCeepMgAZTbIVbn08Ffn+8XCs4QG/TUFnwy1e7+nPrkm7gWJWXqxW+1yhUQZf2a8K4X7YzII/PBkC0arFEBfHfyK1WdWu13vad1tn9DeozBhCtnH8NXDlQpweqibZObboU2plr6U6Xumawo3yDAYBB5tWc1jyI4a8jfQU1p7vMfm7s3TflF7xm0Yp3v90M4lBKeN42yBZEvLmJOhW8VPjabfNPV4buhd1RWFrKdy7uXhdtltTuefZtLvk5RjauWXq3FLFEW+OPAFb29/m7e2v+VWwbXIKimUNl3Y9Kf7AvDIykd4YdMLjFg9QkND4b/HU2rN2TXsvrKbi7cv0v7b9hpLutnHyInXu/BUuxqkxYdwd10/nt3ajWM3jvF+nyy33Jqn8k9RbC1m1gFJED93+xxZc7OUft8s1ebtAagScWfKXzUOXz/M75fW0rzltxDjruiS+w645W8EKXx6yr118Yv5mWtlubr3x4SYyZ2SQ+0qpXyy/xPe3fkuM/fOVARO+O/xCiyzlylKR4Clx5fy7ZFvaTG/Bb2W9VKOuwqTMq6XXKfbkm6cuHnijvqk5jszk4KV322/bUuHRdrqXWreR08RcqHwAu/seIdRa0ZhMAiMbF+LyCA/RFF0UzrJbctKM739Q1aKqWnI149m87MHr1Wzj5FTb3RhRNsabkawyd1r846LVzFI63X9ufW8tsVpmJz/mDOf5H+Xp5T8LrJh+UbJDfr82EdZX1sublEMAVa7ldkHZrvxmnf67JM3T2qMq1WjAsF0U+GL5f70/amvm6FbKZhTjsLoVNFOj+fUOHBVyj83/4h2j5LTkQz/bRiLjy52u+9K0RVdA4I8p8HJqwT5mdxy9a05u6bc6mzTHszShL6bjIZyjaYy8i35zNo/iw6LOnD+9nn25u29IwWVvK/vz9vP1eKrCj8vrwlPSbtvld5SjPGf7f+Mtt+2ZeTakf+j+ZTGbxzPAz8+wPViyYhvFIwcvXGUP679wb6r+5i6cyqj1o7ire1vKffYRTuzD8zmnu+dlcxd17PJaCCzchhtUmPInZJDcICFnst6svzUcg5fc88huvrMauYdnsd7O99TjqmNG3/GW/ufin+MUkoQBB8khdTXoih+ByCK4mVRFG2iKNqBT3GG6J0HVMkpqOQ4poEoip+IothQFMWG0dH6lqZ/KtRadlEUeXv72xXeo95A9TZ1VwXHketHFEWJWimlJjYDfx7IurNOj42rxVf55vA3PLH6CfIt+WR9mcX6c+t1+3PbIlXRcbVcAbqeYCC5W+59qQXfX3yLGyU3dK/x1Jaa0VJD3hTtoo0jN45wpUjSiv9+4Xdul91W3qs8eGKSisqKGLxyMI/8/Ai/X/j9T3uiyH3r/UNvui3tpriZ/9kqDUuOL3FTIIKTCMrf6GrxVQatHMTyk8sptUqbhJrJrih0SMarW15lzh9z2H5pO39cdVZVm7V/lvL7TpkR9TP35u3l/V3vS8dtFmXuyN/10PVDdFzUkc/2f6bcIzNBfib9MNE/rv6h663nit/HteXhplJyVsF0gwMFUhjCrAENeaab1PbS40u5UXIDURQVQU3Gvjxnguc5f8zRnrsqnVtweIHm+LLjyzRhcp4gC7sz9s7gWvE13t/5Pnvz9rLmzJoKPRrV8HRtviWflbkrmbpzqu5cv9OxrBUbrFj0z+Sfofk3zXlt62vszdOWbSmvvcKyQo7fOM6Tvz3JmPVarzO9deGJ2Qn0MzGmYy0+HpiiOa4WnsqL8d94fqNHJrHb0m40/6a5QuP+CiZvnkzml5m8ue1NzdpVv8+ioU356anyQwDLg3q8K2IK145uzaFXOpFRKVQZw6k7p/Lm9jcZuWak2/XyGLoqe6KD/dxCpQC+eKQRA1pKnmMnb51k84XNmrEAybu0ybwmhIVeIzjAonlORVh7dq3uWqrIAq0H1zUge+H+cvoX3etXnv4J0Hozzj4w22P7fyZ87s8opVblruLHkz+6fVdXPP7L45rf5wrO8e7OdxVBTN4XZcjzyM3LSRT5bP9nXC70XGxDxoZzG1h7bq0mybncxp1iy8UtdF3Slc/2f8bk3yez8MhCzfllJ5Zxuegyi44t0hw3GgTFwLD6zGoKygr49qh7aXGpQ/qHt12SkvGevHmS1adXU39ufSUMrWum5MliqiDcW43eP/Rm5JqR7Lu6k1/P6OedbFotkpd71Oal7u5eHrEhZo0hsDxFTvel3Zm+R8qXmW/J5+XNzjCnP6uY/2ZIE17u4d4f1+9px05hWaGu0Qa03lA/nPiB3PxcZc2U16fvn2zGtAedOXhcry22FisCp+xprsa8Q/P46eRPym+ZLt6yaPnUYb8Oo9UCfUWS0ZHi1nWduPZDRvMaUW5VTNWQc9ElRwYimPKpkjlNo4xRo7CskA6LOkjK/SPOcNKoECcdlnm7ivJ7gqR0UCtTZuydoeRBdeVxVuWu4o9rfzDitxEcunaIIauGMGPPDECi3VN3TuXTfZ96fFZ56LGsB92XaA1zHRZ1oNvSbsrv9efWs//qfjea3sbhbctBa8sAACAASURBVF+ecd41X5snfLLvE93jH/TJYvuEdmw6v4nJmyfz5rY3KbOVMWnTJN7a/hbtvm1Hy/ktlRQgMnou68mRG1JFx/L24OM3j2s8jGQMWDGA/sv7Y7PbGPrLULZe3Op2jScD8Ls73qX5N82ZtnsaAIuPLqb/8v50WNShQr5RbnPJ8SW6eaPuRMn0wa4PlP+rI2JAOyfvZA9wXWsFlgJ+OPGD5l7ZO9Hf5M+9399Lnx/dK8HL2HJhi5vhqDwa+tqW1zS5XvW+ubze5G9z5PoRnlrzlHLeU17LfxP+EUopQeIGZgGHRFGcqjqu9kntBcglUr4H+giC4CcIQlWgJqBNz/8vhcz0fXnwS+VYQVmB5rfrAh6xegQTNk7QLKhuS7qx5NgS3bYBVp9erXFl9DU6LXGuxEadI0cWwqx2K0evH8UqWhXvDVfhwVVgs9ltSrJX13PqZyw8spAVp1boulq6EgJRFDXEqrCsUNHSy3AlNJ/v/1xuTIGrMunYjWOa7+yJSVp3bh3bLm1jx+UdPP7L48zYO0M5p/ZkklFUVqSxbn2671MWHXUy0F2XdOXojaOa8QZJcSTnIqhISCuwFCglTgNNkgVXVvCN2zCO7Ze289yG55TqUrLi5/MDn2ssCYuPLtZo+dVYcGQB7+x4h0ErBymhVwCzDsxShKiKPKVuld5i/IbxipJQfRxg1NpRtJjfAlEUeXXrq8r5C4UXNJudLIAZdMhhma2MPj/18ZgEXI2EMH9e7lGHU290IbPhd3x2aCp5RXm0S4tVkvWfyT9DqwWtmLlvJgNWDNDc3295P+X//9n9H91nCILA9ZLrjFg9gsuFl3lh0wscvHZQV0mr/n7q+Xf/D/cz68As+i/vz1NrntJ1Ey8qK9L1ypIVgL+e/pWRa0Yqc3zsurGMXjea2QdmO9eHCn/F0jp41WDl/67W0/KUt0//9jS9vu+le05vHXpijv649gfGiNUMXJ3D/rz9tFvYjg3nNpA9z2ltVLen7pPsfdlzmTYHgM1u08zXT/d7ZsA/3P0h4zeM1z1XaitVvFG+OvQVA38eqNunsABfTSJtGecKzjH34NwKmTn1d9fz8FDDZDS4hQjdiWJl0qZJbuf0lNutU2KoHC7RowVHFvDYL49pvGRB2pcA7vn+HoWO6Bk19CDntfHY3z8RJnbLckuzR6kZ6qM3jnLshtZ7S0mUiujGfKtxtuAsGXMyPBpyANotbMfTvz2t7JUVhe/ZRTtdvuvCwiMLeXbdszy/4XnNniiKYrkCxPpz6z16sMiQhVO3ffLmMT7Y9QHjN45XaISnOelJAfxnxmXIqiGczj/NB7s+YPGxxbyy5RXN+TtJuO1JmFhxagU2u81j/kWZRq89t5aRa0dSZi9TaG9FOT1dcaeKIEEQeLhpsm4ieVe4KiLtoh2b3eZ2XM1vwJ/3lGpaPZKHmya7HXc1Iurxb2qov/M7O94BnGNTXp9qxPppPCT1aM3+q/uZunMqr2x2zg957r6x7Q2Nx2OhRd9AuunCJo80U1bEl6eUclXo3AnGdU7lgdbXuG65oChR7KKdxUcXK4bT7459p6m4LPdRPafk9S6vSU+K7QNXD9B3eV/NPjZ9z3SeXfes9A6OuSMIAvMPz1dCc0/cOqEY+k7ln2Jv3l5FMe26J5a3R9lFO/MOzVPmTkGZZ9p5q/SWbng2uNOWswVnFYW1/Pxgn/JzC5XaSnlv53scuHZAt9++JgP+fk7699Whrzh64yhLji9R5npBWQG9f+jt8Rl/xTN715Vd7M3by5WiK2y6sIlHVz2qnCvv2566dYov/vhCc0y9n885OIc7xbnb55Q9Tlbuq/eUO3GacJX5tl5yKtfKG3cZrorIV7e8yviN4zVpLuRcoQEmz5XGey7tyUubX6LY5k7nyxsfV885vT1Vpl/LTy2n2FrMfT/cpzmvruj7b4XwVxJW/m9DEIQWwAZgP84SCOOBB5FC90QgF3hcFMWLjnsmAIOQKveNFEVxBeWgYcOG4o4dO8q75B+Bxl83VjbrxnGNEREpsZaw/6qzYl7juMYa6/SWi1Jp3EZxjdzc8hvGNtTkFXL1WJBRObgyiUFS2q4CS4GSHwIkq5Bcav625bZCtNMi0hQi0CS+CaIoKoSmSXwTiqxFivdIk/gm7Li8A6vdSlpEGoevH3ZjDuXy7EdvHOV6yXWCfYOpHSlZ5K6XXMcu2rlVeou8YmeoZnZcNgVlBZpKYfJxNdFrEt9E+U5q1Air4eZhlRiUyPnb54kwR1ArXAo1yrfkK89Ql5G/WnzV7f7kkGSP1sH4wHguFrrnRbpT+Bn9yIzOVKy2FUFAQESkamhVYgNidb9BRVC/r4w7aScuMI7kkGSP549cP8KN0hsYBIOb0kM9Xq5j6dqvk7dOcqXoColBiVQOrqy5xmKzuIVN6r2PK+Rn142uS4ApQHecPfVX7znXSq4pgmyEOYLrJdfxNfgqDHVWTBa7r+zW3K+em1VDq3r09qocXFnxpHJFSngK4eZwpW9ZMVn4Gn0Va5tMSyoazxphNYjyL7/CnSvUbaZGpBLm58y7YxftbnNY/l7lfcdbpbcUmiOjfkx9jVIdJCZcTQtjA2I1jLyMOpF1CPIN8tgn1+cfuHrATRDxNJ/k91Cfl4/J61IPGVEZBPpow4Fc25J/VzQuRWVFipdeeX2Vcav0FiaDSXm+eixc7912aZuybl3Pqb+/+tzZgrNuRgO97+OK7LhshRm+VHgJg2AgJkBbzVLvXvW6jAmIoVqo5wo+lwovudFtuW/qvay8ftcIq0GIb4hCc1zHKyEwQcnRUVFbMioaY6vd6lZxsE5kHWWfjvGPwSpa3bxGPK03kPapKiFVlN9q+qfuq5ofUNOr8tp2hSttKA8VjbGMUL9Q0iL0K0bJc9Df5E9mtBQatePSDqyiFR+DD9XDqrt5O5SHmuE1uW25zcXCi8T4x1AtrOIqUSXWEvbk7dE9V9Ea3XhMUk7IYefyu7vSweM3j1NmL6tQqatHPyuCiOjmseGJxspw3ccbxDZQPAdc6Yx633adSzJPK/+uF10Ps8ms6ZOaN5XhutfJ7Xri7dTXufZv+6Xt2EQbScFJJARpk8nL16ZHphPiq83Ndzr/NBcLLyq85dmCs/ib/DXr+0z+GS4UXsDP6EdWTJaGZjaJb8K5gnOcu+1M7yG/v3otyrTu8PXD3Cy9qeFl1XBd1+pv2CS+CRcLL3I6/zSBPoFuhrPy+Fw1smKy8DPqe7GfunXKbc7cyRi4Xnez9KayZtXXhvmF4Wf0o2poVYXf9DX4Uj/WPXH8nit73JRbrmvRlZ9MjUjVpRWe5A2ZH3N9v/KeqXeNvAZ2Xd6FxW5R+Hs11POhIujRHNfvERcYx6XCS0T7R1M9rLqbPOm6TrPjszU0om5UXQJ8nMqiy0WXFZ5WnsOeoJYt/7tQK7wWR28c1RxLi0gj1E8/D+idjFVeUR4nbp1wu07G/gH7PZ77h8GjS/A/wlNKFMWNoigKoijWFUWxnuNvuSiKD4mimOE43l1WSDnueU0UxeqiKKZUpJD6N+HB1AcBSdC02q2Iooi/Sev2a7FZKLGWKH8y9NwxrXarcp0694drbGukOVK5zsfgoyioAGpH1VbOyfclhyQrG01KeAol1hJFc+xn9KPEWqJ4riQGJVJiLaFKcBXlfPUw9/Lw8jNkxULV0KrKsWJrMcXWYoUB8DVITFSprVT5f/XQ6oo1pNRWSrCv9P+6UXV1w35SwlMI8pEE0owoKcF07cjaRPpL1RISAhOU58vPSA5J1nx7+X4ZaRFpGgZb/R0jzBGKIJUSnuK2iZQHWbmTEpGCxWYhwBSgeU6Mf4wyHnWj6yrvIv8/1DeUEmsJNcKcFZnqRknnZMYcUIRR+TqjYNS8r3rOyQyla/hObEAskeZI4gLidO+V/5JCpNLldaKkKh4JgdLYZkRlUGItIdxP2rzVYylDPV/l+6L9o92eIQvN8reS52JFf/L3NmDQjHOdyDpuYyPPEzUEBE17ssda7cjayvxOjUglLlDKUyCKItH+2hDkIJ8g5bmhvs6NUv7e8ntHmiPdxqBqqJSvwN/kr/mWoihSai1VaIFMS1wFOHkeZERlEBMQQ5BP0B19N/Wfeu6bjWbNOVeLlHqeyd9E7qP6PnmO1wiroYypXbS7PVumhTLtjA+MV+5Tw2Qw6fZJXqdhfmGadl1pcWZ0psf3lxNrq4+pPWrUiA+MV76X3pqTIf+WFQYVjYtBMCjtynSw3D+b489lDF3Hr8RaolkLnr5/oE+g5rgsfMnjoKaxJdYSxQgBEo2UUWorVa4pshZRZC1ye6Y852XEBcZpvp3rs1z/9BQjyndU7WVGwUiEOUL3WwT5BCk0R02P5Hkrzyv1e7ruKeDc3+5kjGUPEPV6k/fppOAkblluKfNRpgMxATHK/dVDnXux/H/1eTX9k2mzMscdz6kRVkO5pnakk19Qrxd5zGXaGhcYR0Jggu7c8vQn91+GPL/kcCp5L6sSUsVjGzKdrRlWUzmWHiUlsk2LTMNslIQjWYiXv4l6TDR9MAUq4xofFH9H7yG/vzzHZVqRFJxU4b2VIk3UiPVVfkeYpXxKrnTwVumtchVSBsFA47jGuvSzoj85PEwNmcZ6gqtngc1uU9qT93d5fqn3beUaB28n87QxATEaGiv3ycfgo6y31IhUxWtC3utAS2Plca0RVsNtzof4hlBidfKkAaYASqwl1I2uS4Q5wo0OqOmQr8HX7Zw8TyoHV6bEWkKBpYBia7HuNTJfLc/XtIg0DQ1VQ16L8jqQaV1ySDKR5kiP80pes+mR6ZpvKL+nvN5c9015bMC55mR+BJxrvHZkbURR9DiP5DkjXy9/b/nPbDQr31GNOpF13K4Dac2WWJ37lslgIt+ST4lV2jOz47KVd3X9S42QcmHK60lNx+Q/9byMMEcoz1VDpufqcZLXucyPqemAGrLsVN414FwDcp9l/l79p5bxaobXVN5JD3rfQ63EjPaPVuSVhCBpbrnKk679VdOIKP8oDIJB076ap/XUB4XeuNCOQJ9ADX8AaPZvWbaREe4Xrhkrs9Gs0AW1bKH3/eU/V95Pj59St5UZnanMJZCU//8/4B/hKfW/gX+Lp5QXXnjhhRdeeOGFF1544YUXXnjhxd8I/2xPKS+88MILL7zwwgsvvPDCCy+88MILL/5d8CqlvPDCCy+88MILL7zwwgsvvPDCCy+8+F+HN3zPAUEQ8oDT/9f9+G9CFHD1/7oTXrjBOy5/P3jH5O8J77j8/eAdk78nvOPy94N3TP5+8I7J3xPecfn7wTsmXvxP4qooip30TvytlFKCIJiB9YAfYAIWiaL4oiAIVYH5QCSwE3hIFEWLIAh+wJdAA+Aa8IAoirmOtp4HBgM24ClRFFeW9+xOnTqJP//88//Mi3nhhRdeeOGFF1544YUXXnjhhRde/P+Jf0xOqVKgrSiKmUA9oJMgCE2AN4H3RFGsAdxAUjbh+PeG4/h7jusQBCEd6APUBjoB0wXBUVbCA65e9SqFvfDCCy+88MILL7zwwgsvvPDCCy/+t/C3UkqJEm47fvo4/kSgLbDIcXwO0NPx/x6O3zjOtxMEQXAcny+KYqkoiqeA40Dj/4VX8MILL7zwwgsvvPDCCy+88MILL7zw4g7wt1JKAQiCYBQEYQ9wBfgFOAHcFEXR6rjkHJDo+H8icBbAcf4WUoifclznHi+88MILL7zwwgsvvPDCCy884GrxVabtmoZdtDN3y2kW7jhb8U1eeOGFF38Bpv/rDrhCFEUbUE8QhDBgCZD6P/UsQRAeAx4DSEpK+p96jBdeeOGFF1544YUXXnjhxT8GkzZNYsP5DTSJb8LEpf+PvfMOj6Ja//j37G4aHWkiqEFBsIEFy7WLvWHXn1hRrxfFctWrBhCkCtJFqoD03ksgAUISSkIKLY0EEgjphfS22Ta/P6bszOxsCSQkhPfzPDxkZ2d3z87OzDnnPd/3+xYCAN7pf30jt4ogiOZIk1NKiXAcVwogFMC/ALRjjIkBtO4AsoW/swFcDwDC823BG55L2zVeI/+MvzmO689xXP9OnTo1yPcgCIIgCIIgCIK4kjBZTQAAG2yN3BKCIJo7TSooxRjrJCikwBjzA/AMgFPgg1NvCbt9DGCb8Pd24TGE5/dzfDnB7QD+jzHmI1Tu6wUg+vJ8C4IgCIIgCIIgCIIgCMIdTS19ryuAZUKlPB2A9RzH7WSMJQFYyxgbD+A4gMXC/osBrGCMpQIoBl9xDxzHJTLG1gNIAmABMFRICyQIgiAIgiAIgiBcwIFr7CYQBHGV0KSCUhzHxQG4W2P7WWhUz+M4zgjgbSfvNQHAhPpuI0EQBEEQBEEQBEEQBHHpNKn0PYIgCIIgCIIgCKJxYWAAAN4ZhSAIouGgoBRBEARBEARBEAQhIabvWcnnnCCIBoaCUgRBEARBEARBEIQDNgpKEQTRwFBQiiAIgiAIgiAIgnDAylFUiiCIhoWCUgRBEARBEARBEIQDFit5ShEE0bBQUIogCIIgCIIgCIJwwCozOrfZKEBFEET9Q0EpgiAIgiAIgiAIwgG5UspKlfgIgmgAKChFEARBEARBEARBOGCVqaOspJQiCKIBoKAUQRAEQRAEQRAEIcGBD0DJjc7NVjI9Jwii/qGgFEEQBEEQBEEQBOGA1Wr/u6CitvEaQhBEs4WCUgRBEARBEARBEIQEAwMAWGx2dVRGUXVjNYcgiGYMBaUIgiAIgiAIgiAICTF9r8Zkl0rVWqzOdicIgrhoKChFEARBEARBEARBODBhV7L0t8lKRucEQdQ/FJQiCIIgiCuUj3d/jKBzQY3dDIIgCKKZovMqBjOUAQBMFjI6Jwii/qGgFEEQBEFcoRwrOIafDvzU2M0gCIIgmim+121Cq14TAQD7k/MbuTUEQTRHKChFEARBEARBEARBuGRXfF5jN4EgiGYIBaUIgiAI4gqE48jbgyAIgmgYLOQfRRDEZYKCUgRBEARxBWLjyNuDIAiCaBjOXahq7CYQBHGVQEEpgiAIgrgCsYGCUgRBEETDYLZaNbeTSpcgiPqGglIEQRAEcQVCEwOCIAiioWCMKR5f28YXAFBUZWqM5hAE0YyhoBRBEARBXIFQ+h5BEATRUDDV40d7dQQAfL362OVvDEEQzRoKShEEQRDEFQgFpQiCIIjLhcXGq3OzS2sauSUEQTQ3KChFEARBEARBEARB2FFJpXRCOp+VqvIRBFHPUFCKIAiCIK5A5Eop8pciCIIg6hN1+p5emDVaqb8hCKKeoaAUQRAEQVyBiNX3OI7BRnMEgiAIogHR6/hpo5UyxwmCqGeaVFCKMXY9YyyUMZbEGEtkjH0nbL+GMbaXMXZG+L+9sJ0xxmYxxlIZY3GMsXtk7/WxsP8ZxtjHjfWdCIIgCKIhkKujLDaaJRAEQRD1B1NppcRifFbqbwiCqGfcBqUYY1bG2AnGWAJjbAdjrJ3sudsZY/sZYylC8GckE+qHMsY+YYzN1ni/PoyxSMZYLWPsf6qnWwCwCu0yAPiRMXYbgNEA/IV9/AH8Jvz9AoCBstcuEz7jGmGfBwDcD+A3MZBFEARBEM0Be/oeg5WkUgRBEER9osrfExdCqL8hCKK+8UQpVcNx3F0cx90BoBjAUABgjPkB2A5gEsdxvQH0A/AQgK/cvF8xgG8BTNV4bjiAtRzH9QFwJ4B4AN0AfABgPcdxvQCsB/ChsP/XAEoB9BL26ckY6wrgOQB7OY4r5jiuBMBeAM978F0JgiAI4opA7ilFkwSCIAiiPmFQ9iuiOJe6G4Ig6pu6pu9Fgg8SAcAgAIc5jtsDABzHVYMPEgW4egOO4wo4josBYJZvZ4y1BfAYgMXCpuvAB6aiALQFIKquZgMQ1Vq3A9jK8RwBYAPQV2hjpuzts2TtJgiCIIgrHk6aMJBSiiAIgmhYxKAU9TcEQdQ3HgelGGN6AE+BV0cBfEDoqHwfjuPSALRijLW5iLb0AFAIYAlj7CSAWAC/cBxXDkDHcVyusF8e7IJSXwD5sveoBdDZ0w9kjH3BGItljMUWFhZeRJMJgiAIonGwib4eHGChSQJBEARRjzCmzN+ziel7VH2PIIh6xpOglB9j7AT4YFAX8KlwDYEBwD0A/hY+KwnAbcJzNiEtDwCuBaTlYaPQJhEfAAUAsgFcL9veXdimgOO4vzmO689xXP9OnTrV1/cgCIIgiAbHKvOUKqyobdS2EARBEM0L9VpHWz8vAICPvknVySIIohngsacUgBvBK5SGCtuTANwr35ExdhOASkHdVFeyhH9DAJwCMAJ8kAoAysCnBkL4v0zWhteEKnwPCt8nDkAwgGcZY+0Fg/NnhW0EQRAE0SyQV0D6ds3xRmwJQRAE0dywqars/fhsbwDAM7d30dqdIAjiovE41C14Rn0LviKeAcAqAI8wxp4GJOPzWQAmX0xDOI7LAx9s+hDAAAAbANzHGHtR+Kx3GWNnALwDYKXwstkA2gNIFbalcRyXy3FcMYBxAGKEf2OFbQRBEATRLLDYrMJfDIWVpJQiCIIg6g+DShHl563HDde0gI3SxQmCqGfqpL/kOO44eCXSexzH1QB4FcCvjLEU8JXyYmA3JNeEMXYtYywLwA/Ca7NkHlQfw+5TdQRAb47jdgEYDeC8sP288BgAdgHYKfxdA+ATWVv/4Tiup/BvSV2+J0FcydBggSCuDuS+HgYdpVMQBEEQ9Yefl17x2GgxwqBnMNM4kyCIesbgbgeO41qpHr8i+zsewBNOXrcUwFKN7XngPZ60XnMCQH+N7UXgTdbV2znY0wkJ4qpnTmgqpgSn4MyEF+BFOf8E0ayxcfbUCoOOudiTIAiCIC6N8UfGw6B7BlYrBaUIgqhfaNZKEM2IJYfPAQDSCisbuSUEQTQ0Fpvd6FxPQSmCIAiiHuGgDD6ll6fDoNPJ+h6CIIj6gYJSBNGM8GmZC6/2kTBZaMBAEM0daWLAAbd2bd24jSEIgiCaPV56BjMppQiCqGcoKEUQzYjya6bA99ptMFspKEUQzR2bzOj8zm7tGrUtBEEQRPNCK/Rk0OtgJU8pgiDqGQpKEUQzxGShAQNBNHfkRufyvwmCIAjiktHoVvQ6RgufBEHUOxSUIohmCA0YCKL5Y+XsnlJUdZMgCIJoSDhw8NIzWKi/IQiinqGgFEE0Q8hTqnkQk16Ml2YdhNFsdb8zcdVhlZnNklKKIAiCaGgOpxbh6PkSlFabGrspBEE0IygoRRDNEFJKNQ/G7UxCYk45EnPKGrspRBPEKqu+J3p8lNWYwVGAiiAIgrhE1NX35BzPKL2MLXEPx3E4k1/R2M0gCOIioaAUQTRDTBSUaha09jUAAIqrzI3cEqIpIgWlOD4odTq/Av3G7MGmY9mN2zCCIAiiWVNlsjR2ExQExufimRkH8NWqo43dFIKoN6pqLRizIxGx6cWN3ZQGh4JSBNEMqWu53hqTFQUVxgZqDXGxiOqX6iY2+COaBlaOT+vkwJ8rUWeLAOCqGLwQxMXCcRzOFlY2djMI4orGUsdxZkNTaeTHSbvi8xq5JQRRf1TWWrDkcDpSrgIVIAWlCKIZUtf0vVdmH8L9E0IaqDXExSIGpWpM5ClFOGKT0vQYbByHcmFQ3q6Fd+M1iiCaOEsj0jFgWjjisppW+hFBNDUcMsFlj5uad2m7Fl4AgG7t/Bq5JQRRf4jXmbe++Ydsmv83JIirkLoEpUJTCpBawK8af7mSZM9NCcYYAKC6iQWlskqqkV1a09jNuOpRGJ3bOOiE84U8pQjCOYdTeUVhTimpgwmiriwZfB8AoLaJ2USIzaH+7/KwPjYT62IyGrsZzR7RjsXb0PxDNs3/GxLEVUhtHaq17Um0S513J5DsuSmh42MMqGli1fce+SMUD0/a39jNuOqRB6VsHAeDcMJQuW6CcI5YzdTXi4bABOEKrZ7knuvbA2h6SikbxwG6Gur/LhM/b4zDL5viG7sZdcY/IBB/BCU3djM8RhQZkFKKIIgrEpPV8yCGXox8EE0OccHP2MSCUkTTwMopq+/phGvZSoPyBqGshgoONAdqLXYvNoIgXMGpHnHwMvD9TFOr8hxXEo7WvcfggjkVJVWmxm4O0QQRVXTzwtI8fs3U4BTcOTq4oZrkFjH460VBKYIgrkSmBCfD5uHEtKWPoYFb4xk1Jmu9GzQHJeQiOa+8Xt/zclIrdEbkKUVoYePsk4L1sVnSZHtpRHojtaj5sj42E/3G7MHpq8Bs9GrhQkVtYzeBIJo2GsNIUbHR1JRSZyqOAwD0vjnIKbt89gLxWWVIyC5r0M9IzitHWfXlWRQJSsjFksPn3O6nb3EGzFCOosor5z56MSq62aGpqDA2XrGhOaGpACh9jyCIKxauUT1/dpzMQVodqxuN2BKPt+ZH1lu7UwsqMGTlMTw/82C9vF9jIAWlSClFaGBP3+NXrpceTpeeK6QJd70SnlIIABSUagaIXn0/bYxr5JYQhJKItAvIKKpu7Ga4xKDXQceAjOLqyxYo8QS5ldTlTHV6ZfYhvPzXIY/2PXC6EEEJuXX+jOdnHsTbCyLq/LqLYcjKYxizI8ntfi1uXIwW/rNx7/h9V0yF6Fc8/J2aCtmlNQhOzAdAQSmCuGRsNg5/BCUjpx4CDVYbh8zi+uusk/PKG80Q0WrjLml1geM46XiM2BIPi1pGzYCUPM8mT2ZL/R+Db9Ycx1PTwuu0enRKaG99ya6nBp+ul/dpDIoqa8FxnOQN1pBBqapaCz5YFOVRiXSrjYN/QGCDtYWoGxYxKCVcwgWyQFR6UVUjtKgZI2Q5Z9RjH0Q0DpSwTjQ1rDYOlbUWDFoYhcemhDZ2czxi49Es9Bu7p8FVQs7IKa1RquuvgHzcj/6JxpCVx+r0GnGecjq/bgu9l4qrhS0xE0PnxWciJGS7z0jILatB1Nmi+mncRZLs4bxIap5PNgAAIABJREFUC0+zT+oT+dyZ0vcI4hJJyi3HvLA0fLf2+CW/158hZ/Do5NB6CUyFphTg+ZkHseFo1iW/V115d0Ekbh6+C/eO33fRgamlEem4efguPDo5FKuiMnAiU13amsPny2M9eq8zBcqb9LYT2RfVJhG5z4Cnq0eAfRXAVE8+BUw288gsrsaZ/AosuwLSmrJLa3Dv+H2YH35WUkrlldWtShTHcbjl190e5c3PD0/DodQL+H2Xe+PHxBzl4LOxBqMEj00YrLbydUzBrWxEuXlzRKxsODkopZFbQlwqHVv5AABaeOsvy+eV1ZgRkXoBd/wWrBn8N1ttjTLhaWyySqrxzyH3aUJXA2N3JOKO3xrPt8YZzs5K+ek6dkcSzl24/IsgT04Nw1vzI6XHnKy19TWOdMfl8G+s9TBNsqTKVK8K6el7nfd16jQ4T1I5X/jzIN79+8glt6uhKa4yIV3jfL5c55TiM2XH1YeUUgRRP9RHSftDZ/j0ibzySy/jHJnGR+uTcuzR/eIq02UxlI46Z1/ZudjvstFtMI3vMPYl5ePXrfEIjHMuFz545oLi8XdrT1xUm0Sqa5XH0BM12o6TOZK/h7mefArklQQfnRyKZ2YcwG/bEzUHEZnF1fWqwrsUxOMQGJ8jeQRFpBXh6HnP/baqTVaYLDaPKoz8tZ/PV/fkd2IqjcGpXN5P4K+QM1SGuREQPaV0zLErp5TP+qU5qGuScsqle8rVQlmNGXFZykUb8Rhcrt/0zXkRGLQoCpW1Fs2+u9eI3fjon+g69UGfL4v1WLVaXGVyVFM3AT5dGoOxO5NQUHHpY7orAaPZ6lSRvDo64zK3xjM4tdG5Rj8fnV6MJ6eGSd439cEFDxZs1cEaecss1sszHtkZl2P//AYaA9Wa3V+7JVUm3D1uL+6bsO+SPquq1r6Y5cpHyawqpiQWV9p4NAu74rXnG6VCqqf8My4n6sC/s4Dik1PD8MTUMIftroz9Q1MKkFpQWe+LCyaLDdBVo8WNc3Gq/HC9vndThIJSzZjNx7I8MqtrCEZvT8SC8DRJrVIfqwniSnV9XPR/HzgLgFcciYOEe8btxefLPFMXaRGaXFDnoNZLsw5dlIm1OreYORldf748FiuPZGDo6mM4llHi8HxD+E5VqXLLjW461NyyGnyz5rjUloZejVC3D+CDVo9ObhqSeYOe/zGrTVbFsVt86JzHg/diFymQxVUmzSBlSHKB2/dVn2deeh1+3hiHaXtPI/a84/lFNCwWMSilMb3+77pLCy4TSq7kIqWFFbW4aVggXpx1ECO3JjR2cy6J80VV+PuA55WTBi08goGzDyvGIOJkttpsbVCF0hfL+cBRaoE9EOGsrz6UesFpH2Sy2FBhVHr37DuV71EbzFYb7hm3F8O3XFrp9oJyY72rQspr+L7YLAQQthzPctl3Xen8d+0JDJgW7jBODErIlY7BlcJ9/u0dtk0JTpFU3fuT8/H09HA88Ps+p9dYZa0F62MzFcGcrJJqBMblov/4fS5TvbSUWfL3uVyVAeUBo4v5DUdvT8SG2EyX+3iywHT3uL11/mwtvlljz2pxFTwyWZX3I/E4/G/DSXy1yjE9UX7vyC83Nsoiprp6rjN1n7Mqu85+X47jMHhJDJ6eHo65YfUXmAX4+RDTWaBvkQEba/5+lhSUasb8sP6kR2Z19YXRbMUtI3ZjZ1wOlkakY+LuZGnwZ6uHG5AYlHIlZc0rM9Z5UHMyq1TqNA+lXnCztzahyQUYvDQGiw6edbmf1qDufxtO1umzTBYbjmcoV34dVl+Z4+do3Wh/8vCzOY5D7193Y1lEOu6bsM/l91R3ZOVG10aYalNPdZCu2mSBf0AgpgS7V/14QmNW0fAEseOrMVlh9jsKnd95AMCu+Dy8+Kdn6ZD7ZQGmVFV65pAVRzF09THNAJc7g1X1hMqgZ9LxvBwydleUVZubpBqgvhm7IwmLhZQXq42/VnQaM92mVhnpSofJjrHYX1yorPXYu68x2Z+cL6XbqPuOK433F0Xh913JOJNfIf0Oa6MzsCIyXXP/REENXS7r/8QxBMcBxnpUjq2ITMcvG+OkMcieJMfA0ZzQNGSV1E2V+/nyWNw5es9FtUn8rjtO1t1cWeR8URXu/z0Eiw+5Ht/UFb0Q6R2y4iiySqrx/bqT+HLlUel5juOwOirDpZl2YUVtvVftbSj2p/D9sjz1qarWUmePocuKk2595Mu3aW5fEsH3TZ8ujUVqQSXyy2udBlVGbInHzxvjcDKLtwEoqDDikT9CMXQ1fzwSchx9imotVvgHBOJJDSWLfJrhLkDkKihSl0C1j5d9Gu1OhSofg+cK1QGXRqS7LbhwOf0hT8qsQCpdBKXUQb+EHNdWDnKrkgHTwjF25+Wbm4qsUwX/zhdVoaDCiPgsz2wonI2pcmX2GlP3nMaYHYkX30jNz+TPR73u8qSbNyYUlLoKOJlZirJqM7adyEZmcTVsNg5zQlPdBgvqSn65ESarTeG5sVcYlF1MGU414pygstYCm43DpqNZDpPQByeG4H4N+arRbMXcsFTN1ZNqkxVHZSqiuk4yEnPKJP+mKjeqJ63PP+pEYTJuZxLenOdYbSNgk2MHtiZavdLieLy1OmFPV5NMVhtqLTb8tj0RhRW1GB94yum+6mPgbLWloMKId+ZHYn64ctVbfa6Iv8ecUM9Xx10x34XPktozSeTo+eLL5pkgmpvnlhnh3XUNWvrPk57zRNIOKJVSY3Yk4VhGCcbvTELIqXycL+a/h5a8PTnPtVmlTXW6/LDupCTv1wqMNCTDt8RL5w7Hceg3dk+jV9MKSymAf0CglB5cH3Ach9CUAino98/hcxgnDOjE61eno668oZGf3qLa8oU/D+K5mQdgstjw7ZrjSC2oRFphJY40spmrGh+DfTCrv5IlX7D3J8/MOCCtSgdsjsfIba4nAqWyCaFcqVJSj9XDRm5LxLrYTNwzbi/yXaTm/7IpDmmFlSgoNzqMYbSKwhw4zVsXiH24fNIcIwRkzl2o0kybESdSl/Kzi2OUOA8nb54iqqLjs8uQnMv381kl9u+flFuO4Vvi8aOLxbNXZx9S+Ao1JMGJeR4VBHGG+FtYhb7XYrVpjlcBfpGlMVPil0WkI0RDjSf29327t8Md3do4PL8+xlH142wMKBaNEPuxCxXKBeWc0hqH451f5jgGEvtG+dF6byHvXbQ/OR/DNivHBfnlRvQYtgv+AYGKY8xxHLJKqnHT8F0ee6vKf6Lftie6XBSXByv+NXG/R+8PAOvdKKnUyJWZ6u3usjnkz8eklzidI5hU6XvuxAD55crfbYmsUvDlYtJufmH7jbu7AeDvNc/OOIBXZvOLvUWVtYqUaHVw0tmx+HRpjOJxfX43k8WG2xgf6NUZ3ZvJX+nQSPYqYGdcDoZvjcd3a0/g0cmhCEkuwJTgFIy/iEj10fMliD7nuCpVbbLgW8GLSF6dSDRaPlt4aRP6apMFhcKE/NyFKvyw/gR+3HASS2XG1eLNVCsANjcsDZODUhykwgAwYksC3pYNap6becDjdnEch5dmHZI6RV+D60i2lkrHaLFq3tAXHzrnELCy2ThsPq7dWSoVRo7HoLLWsTPiB0k2QFeLYS/0kbarU/20BgLOUA9AnKXvLY84j+j0YoQKpdZF1Dd+T4dlm49lwT8gEGU1ZpcrXXuS8pw+99KsQ5oDqDfnReLJqWEorTbhfAOuWvkHBOJnjaBjXSitNimu0YNnLuCNuRFYdOgcPpOlp3Lgf+fu7f2kba4mUgBgVkWlTFabpMBQT3qKq0z4ft2JBvMPWB2VgUm7k1FWbZYmN1ucXBuXi9mCP9d7C484KMcyi6vhHxBY54BFyKkCDF4Sg4Ua6kRRKaX2+vKET5fGoOfwXXV+3ZXA9pM5GLSw/gxVOY7DgdN2FW2VcC8VTWVPZJZi+8kcPD09HE9NC8f/CWauqQUVKK1u2HSkcqPZrSpObpCanFdxRSsK5Yq1A2c8VzbLf4eSahM6tPQGAKyLycTto4Lww/oTGDAtDAnZZRi6+tgllzh3ZeB9OLUIT00Lx/2/hzgovx+axE9Ws0qq8ersQ4qFCFFx8o/MlkEcu7w1LwJfrTrmYEEgqjcuZdFAHLe0b+HtdJ+skmppEdJT5KbMYsqP3FJAVLu4SlvPqWMRkEvhPyuO4pkZ/Pgw+lyxolJwakElbh0Z5JEvmFg1dU9SvtOFzH5j92B+eP0q0+rCb9sT8dmyWKiHUqKPIaBdDaxEI5gmV9zUWqx4Y+5hPDY5VFJtin2l2lph8aFzGDAtXPX5jmO7UEEZrhXD+3RpLNZEZyqCLXKlouh3u+LIefQYtkvymfW0KI68zZuPZbt83eZjyvGJp55wnVrzhRmeva2L5vNqJaEYJDl3oQoTApNgs3GoqrXg6enh+HG96+wI9fn4g5P9zVblb+XON7i0RtkPXuoaZlmNGf4BgVgVdd6j/eXziu+fuQU+Bh2ySqoln6vQ5AIEJyrvX+oxlzPFmtaCdX1lDtRabBhk4APXugtn6uU9mzIUlLoK2HQsW+EhIw5sqjSCFKfzK/DRP9HSat36mEzFDfzNeRF4Z0Gkw830VG6FQvaphdoTwVPKasy4bVSwFNiaEpyCrSd4c8ELlfYb3QO/h7j97BqT9ZJy9xOyyxQDKXVE3F3Fzk+WRDtsK602455xexGRZh9gJ2nIlv8ISsZNLiaRt44Kkj1y/I7VtRYYzVZpQsJxHJJyy+HTZSda9/4NNth/nzfmRqDcaA/ufL48xuH9nOEQlHIiabY6WQWMyyqTBhBHzxcrUsr2yQa9g5dE46ZhgdK+4kD9fFEV4lxUhSuqNOHTpTH4acNJPDxpv0OFOnE1RYvnZh7A41PCnD5/KYgDufNuUujcDXrfmh+JSBeBD3HFymSx4Y25EcgqqcEjPTtCr2Nujfe11FWn8/kVbrU6aE5oKrYcz8ac0FQMXhKNgjqY+k8JTsbT08MxYku828lhv7F7kFPaOEa5hRW1igF4a1kVPHWgQLy+Nx7lfVM8PR7ib6J1XlhkQcL5H9wj/f3907cA4AdG+eVG6TcSsdo47E8uqBcFa1Pk2zXHEVGParWwlEJFcOCXTXGKQa5W35ZVUo2npx/AczMPeKRwPJFZWicT8mqTBaO2JaDv6D34fr1r/zC1B+H0vacB8P1MY5nOAvx3uH1UkOK+7g75XMa7DiWy5YsjxZUm3NGtLQBgVsgZVJms2HwsG2cLq/DyX4cQGJeLY+cvLc1xwQHPAgqfLdPuWxcfOoeTWWX4c599IiJ6MKkVS9P3pEjKd7XX1KlcfizhbBK4JzEPo7e7VpmJ9wnR71CLV/46hH97WPFXC7mXpDj+FBc6xEBEaEoB9iRqLyp5oirKKa1xm6LuDHGcYbVxsNo4vLMgEh/LxnPrYzNRY7Yi0InJs5yVRzIQGJerSPvRQq18s9o4rIo671LhnlpQ6VR97ynyY1lYqWyjPCjl7GzoMUw5Th0wLRzrYngj91O5FTiWUapYvBbvQW97oHizqOXa4NNbUwsqNH1TfYX0OrkCr8Zkfw/xdxXbJy5+y+cWrkgrUAYk1PdaAOg7OhjfrDmO9i28PHpPOWarDQuE4OSepHzNedZ/1ymrm4vH9ts1x7Hw4DncNHwX1gkKNrVFidXGSamEIvew07iV8cGeoATt89lkU/ZV207kKM4b9bmrDloZLlGxK6pHR2xJ8MiXV55C6m3QoVt7P8U5MXhpDDJVadUJOeUKpd6Hix3nb4C2EOLm4bukuVZkWhGmBisrGVbWWrA+xlEkoWb4lniILdfZmrb1SH1AQamrALUKxyhcwFqDlJn7TuPA6UI8NGk/hqw4ip83xeHFPw+6NMS22TiMD3SvunKVn+wK8eajxfzwNHAcB7PV5tSczmi2KjppTwb+WvtYrDa8/NchDJxt9/VR50VP3XMa6ReqcKGyFsO3xCtWZy5U1kr+FlqIec355Ua8OOug4nMBYKGHg1wAkqeUD0x4Wx8GPayoMVvRZ2QQ3l8UBYAf9JqtHLza8h4OVk55/PqO3oN54WmIyyrF6XxHOXCEqnNbdPAshm2O0zA654/BthPZ+CvEPsB2tpKw+NA59BkZBP+AQLw5L1Jh2Py5bNAbmlIIGwd8t5bvkMUJisliwwQX56NFmJBvOJqF7NIahwp1K46cx2dLY+AfEIiATXGK80otQa5PPL0+3KUROpNuq0nOtZ+Lft56WG0c5oSmuQweayksxFX0acJEF+BXu0Xfo8D4XISmFOL+30PcKrFE5oSmIbWgEquiMjRSUx3R8peob/LLjVh86JwseFiF+ybsw+TgFJwtrIR/QCBOyAaMapm8GAz30utwz7i9uP/3kDr5PtlsnCJAF5lWJP0eOsbw/B1dpefEyePNw3fhgd9D8OwMpfpT/rnNuWpifa1W2jgOOt8MtOozAkxfgfDThQrD8AyNQPEjf/Cm1fnlteg/3nVFpIyiarw25zB6/xokBYzcsfjgOSyP5CcOgXG5mmkzAP/7pqlSYBJzymG22vDirIP4UmVKu/1kDvwDAlFYUYuqWotLPx81YSkFTifMFyprsT4mU/IWCU0uwOSgFFSZrJi6J0Vqa4KLBQVAOW5RVwZzxaBFR2A0W2E0W1FlsuJOISjljA8WRzmdkGlxsendR846Ks/js8qkBa8VR+xKgHKjGRVGM0pU6rtZ+1PRta1d8So/7z9dGiu81rF/8Q8IxBcrjioU52o2H8uS0oW99DpYrDbN8ZGYBlkf15wYiLcXtwH+PpCGwUti8MWKo+A4zuG+5cli40OT9uOxKXUvaBKWUoA+I+2LfpuO8R6ep2R9qPi99R5IQGbsO42hq49Jx9UZ6rfaEJuJEVsSpL5Vi6enh+PNeRGYGpxy0Wbfroy1bZAFpeogd/llUzxCUwoU3kIi7mwv5Dw9XTuTwdl2Xy8+e2Hw0miECp5ecusSo9AX+gn7iYFfT89j9b1f65iXGy3YcTJH+gxnGM1Wh/M6TxW4XBaZ7vA6rQWrqlqL4vwR5yo2WQpwVa0FM/aexr8m7pc+Rw8rNvuMxm6fYWiDKrT10w6kWTTuAUWyueZXq44pBA01qnmn2cpppiqLlFabFEpENV6yAPmto4Lc+kIZZeeYl16H7u1bKCp0A3BYoK4wmh2UelrjdGfnihigfm/hEcxWVab8dUs8ft4Uh+NuxBwA0IoJQfqbHne775UOBaWaIf3G7HFZAUBMDxI7/MKKWozalgCTxYaOrXyk/YKEFalyowUPT9rvsNoukpBT5pF56sVUmYs+V4wJLvyLAGDUtkT0GrFbse2L5bFSGehftyZIK4sl1SaPPKPUqo9R2xLQU/gMd6tbny6LQf/x+7A6KgM7TtrLxQ78y7VJtRhtD1atBL41PxKBcbl1UjWIt+thhtWY4vU3HtXFS4GlKCG166Aq9cFgc/xeq6MyMHC2dhnSQYui0H/8XmliPD7wFNZEZ0pKsiWf3AfAXpXju7UnFIGLiy3Zq07NC07Mh9lqk1ao3pofieRLNB8WK9GtjcnEh4ujHJ6vr4n8yiPnsVYoBV3q4eTvo3+0V2vqinwy2rm1/brXSs8VMQvH/pOH/KUVSC0enmT3S5APmL5ZfVxrd5c0laDJ18IkIk1QbIr3gXlhaXhZuLbl/jTytJyzhZVSMYItx+1FCdZ4UAZc/PbrYjNx26hgaft7C48gOIkf9IiTAy+fMvh03gmDzvUxk08qtQIqTZEKoxnLItLrdD7URwWmoIQ8jNmRBO8OB8GYFfoW/IRwrSwIpE7L0MJVu+WTJE8XH8yq+6CztN/V0Rn4fZcy8F5jtkor1zGq632mcI9OK6zEU9PC0W+sZwbbEakX8MmSGEzdk6I4vyxWG/Ym5WPQwiP4eVMc+gseOoOXxkjBkOS8ClyorEWPYbvw8l+HsFu2yj5pd7Lkm8Rjn4wcTi2SFiW0kAfjOI4/18X7bNd2vujYynk6GgCPPermhKbWa2D8ldnaY4XyGjPuHL3Hoe8GgOva+Up//7D+BGotVge/RvkYzNNKwfJjYNAxDFoYhd6/BjndP7PYszQ+sR9/pGdHp8+JE+ik3HLFOdxj2C70GLYLt8oCRXW91gPjch0m/M4IU1kM/CwcE72OoazaDLPVJk1MdTIFSGWtBWcLK1FQYcRnSz1Xm4uYrfyCq+h1KS4A7YzLcet5NDs01WHS7SkFisU3ZeBJfh+rq9blVG65Qp0i8veBNGx1kXqfV2ZErcWK1+Zoj0VdISpyMotrMHgJ/xvIgydGsxWRaUXSYp7oq2njOFisNswPT3OtdK0tw8rWs3ED48/5/PJap369OWVGyc9ITYXRjD4jgzBFpahRz7s2H8tWBEOzSqpxViMgnl1aIwXk5Ig/358hZ3D7b8HYdjJb2J8fB/gz+znTh2WgW/sWGLY5Hok5ZRi9PRHxWWVYceQ8Nh53HLvsVqmjfpP5/ImL1V8+frO07d/LY50Gk+4au9dpRUGO4/CbSt0pLmw4Qx5o9UvdiZsN7lO/1dc9AHy6xPPrODS5QDGXlHvWitdBWY3ZIfuhoNyIhOwyaXsnxosqdFdByKZJfUPG2D+MsQLGWIJs2zWMsb2MsTPC/+2F7YwxNosxlsoYi2OM3SN7zcfC/mcYYx83xndpLKw2DmU1ZoXZuDO2n8xByKl8TNx1Cssjz2NdbCai86LQstd4gDlGqNWr7SKervanFVbBPyAQE3e5DjLJeWdBpNuUIvlKosiepHy8PjcCOaU1isp0c0LTPDLFFHPlt53Ixpcrj0or0p4g98+qqrVg87Es2GwcisrKMVB3GN4tE8H0jkGTKcEpmlV5TmSWStVIPIfvee734gelb+oPOEyAW/nwqUY+Qtrei8f+jT5MuY8rhRzAS5xXR2coPB9S8irRpY0Prm3LD5KNZqui5K1k1nqRwQZxlVJOrxG7FUEAcfA2/MU+DvvWFS1z10UHna9U1oVftyYgYDNfqlut9Ds9/gXp77rk3/9iWIN030EI9f4eeng28bi1q92wdPvJHCmdZnWU8rctrSlD61sD0L1bqoPXhIgr/4/Y88UYtjnO4wkR4Hw11rtDCAxtjzpsP3ehqkECWWIwymy14Ux+hUJ+ruWnIE/VHTj7sKSiMipKSCvvnVW1FkcVgovvckaorCi25KEHQuDd4RDyTY4pqHuT8vFHUDKKq0yKa+VS0lFP51fg540n65R2drGM2ZGE37YnSml5tRYrBkwLQ7gLJa2rSq2eMmTlUbeBu3g36h6AXwR48PcQrIvJwGdLYzA1OAWHBbWp3Hy8kyxA7Aqtq0LrvNcy3ec4TgpQyD97d3yuYoIj9r2jtyfi5b8OIresBv4Bgfh8WayDgkrcd0H4WfT+lVe6nsotx5zQNPx7eay0KOLsdH5e5uX43Vq7OnZ+eJoirUd9O9h2wr7w4x8QqPBMUa+0X6ioRVEVP8Hs0NIb3dr5wRUVRgt+WHfCbQrxnyGXx+vDVXEasT8H+GPS+9cgh1R0cVJfWWtRKH/EbcO3xOPZGeFYH5uJISuO4mxhpUIFoGMM0W4q3T0xNQz/Xh7rVLG79PA5DFlxVLo2H+7ZEV8+cbNin71CCqK7QJN8omm22jA3LBUZRdXYHZ+L80VVisId8n6p1mLF0NXH8ODEEKS7UbjdMmK3UyWZjePTx8fsSJTGM/IMx582nMSAaeGYHJQiLXQ5Q30MAD6IM2jhEbw06xDOF1VJ12pCdjm+W3sCfUbudqk+duWtefBModPKz658D+Xpe+/dfwMAYM6ge5ztrqCtn5fmmDIhu1yhiFfz+fIYZBZXK5TIrrj9Ovt4xiArAiL22fJx9sHThXhv4RFpQUm8n1htHNbFZmLS7mRJ6frF8lhMUwU/ulcl4RFzBFZ7TwDALzT1Hb0H2aU1OJNf4eDd27mNL7R4VVj8nRuWplCkf7bMMSV2TihftCmntEZTaQnwY0utBUaO4xCXVYqtQlCzWEhTfHNeJGw2Djfo7OdpL99SnMwsxZroDLw1LxJLI9LxyuxDGLk1AUtlvnY/P98bAByKTYQkFyisUwBgiOw8T8wpxyuzDyEspQAWqw3hpws9GhsWVNQ6ZC1w4H38lhw+pxADiBjNNuhgQ7rvIPhtGYz304e5/RwtotOLPRJYdGzlja0nciTDfYD3rDWarVgQnoZYIXtn8JIYPDqZV2+KSuH7fw/By38dwqOTQ6GDDR0ZP764GgraNLVvuBTA86ptAQBCOI7rBSBEeAwALwDoJfz7AsA8gA9iAfgNwAMA7gfwmxjIuho4eMb5AB0ArlXdEHkjQ77jGrk1ARncBugMldD5uO5AAUhKJJOHK1Si34A7r4WqWovHJTpdYbVxkmmoFrewTDiz0RZVZN+tPaG52rQgPM2lokRk9I4k/LD+JCYHp+BD/V7M9J4DnxtWoMWNCzT3T8j2vLrCtqEPO32OMQ462NAbfDDtFf0RdGfKc6OFtx462ODN+AF36+rzCPIJcJvWoGbUtkTcP8Hu57XpRCoqrpmGEhPf6e1PLlCsth5KvYD9yfmygZ4NXu2OwKDzbGJ7pqAS7/3taGKspdZ7/JbOAIC/3rsbT/TuhDfv6e7ht3JN1DnHQZvRbMU3QgWu1VEZyCsz4rHJoR5XYpMHpTq28lF4E0x47U7F7/K8CzP+QXr+t+ihy8dPhnVuP9cLFhhM9vNu24kcfL48FpnF1Ri+JV6hbvp+C79yFXxmDvTQvu6jnAySAH4QvyY6E6O3J3q8su3MesCn8174XbfBYfuTU8Mk/wSAn4BoTdZNFptDquKu+Fz4BwQ6pBgUVtRKadAnM0vxzIwDboPbyXkVktTbWWqmeiXzldmH8PjkMHAcJ01AtdJu7PDfSwzcMeEa0ron/3t5LOaFpeGecXs1/feizhbBPyBQUUnmdH6FywDf/LA0rI/NcqqMqLVYEZ9VphiyAEDLAAAgAElEQVRkpxZUYm5YqoPkfcfJHKyITLd/M9XnigEGMQB4vqgaZwurMNZF+eVLVUpdjLrXGR/9E428ciN+2RSPkOQCzA5NxfuLolBSZVIEWrQ8SbTQitUazTZwHGdXmriYlIoTevn7yCejcmPwpRHpSMgulzw19p3Kd1BQaSl5X/jzIGbs8ywdUe7hYrLakFpQqVAVir+lu4CzuGjBcRxWqhasPl4SjeHCIkD39i3QvX0Lt+3afDxbUW3WYrVhQXgaftuW4LTohVxxrubd/te7/UxniKl4WohpR65Iya/AgdOFmub7b8w9jNVRGTidX4mfN8YhKDHPIXVFfV/hOA4F5UbNYMHT08MRfa4YCdll8A8IxDsLIhGZVoTRO5IQlJgHo9kKpq+CQe9YmGT/qQKUVZsRk+65N1JSTjkmB6XgsSmh+HLVMTw+JQzPz+RtEGpMVsU9b36YfQz6nZNgSE5pDSqMZpfjW3FBduWRDGnhUh7kFRV+7lJSAeCX5/vgxKhn8MlD/ort4jEorTY7LOQZzTaX41C9jjktavDh4mhsPJqluJ4emhiCnzacVAUUlZ8pD0q9eW93pE96CQP6dHb11STWRmfi77rYUAj4GvR1ShUUld8mi03xe4j3KHmwevQO7RRKG8cp/PYKyo3Yk5SPv/anwj8gEDYbn0JaXMTPlbqzC5Afq4cn7cczMw5gkSrVsoW3dgqffDGgWLg+nfVfHVv5YPT2RDw0aT9OZGpfI87OiyqTFQNnH5YU7PLUySqTBdfDPve71c9+XTukdDJ7216QWQeoEdOay40WdGeFaLVrKDr4KL9XbpkRs0NT8fE/0eg72r0yV0sdm5RThrE7kzBmRxK+WeP4fI3Zisd09iBsT1u6289xxq2jgjB01TGM2pbgtD+6pUtrze19RgZhooZvrcVqw5roTEl1L9KD5cIgzNFIKXWZ4TjuAAD1lfQqgGXC38sAvCbbvpzjOQKgHWOsK4DnAOzlOK6Y47gSAHvhGOhqtsyV5cQa2pyAV3v7xOn9B27AwLuuc3iNoQ5moXIGzj6MzOJqKQ3rOlxAN7gOinnCkJVH8crsQ3VSU9SVx3UnscfnF7yhO6j5vMlqc6n4mLg7Ge8s8LwM8c64HDyhO2E3rPPhV8h7dW6l2G/IyqPSQKc1qvGi7gi0AmeLPuqPLk5WXADgrXu7oyuKoOfsnep1sMtVi6tM2HA0C7fKlFFi2zq1tK+4XgyGVsnQ+2Vh87l/AAAbjiqVTR8ujsa0PfaJilfbo/DtuhVfv6Hc7zWNcxUAVkSed2nkLaf3ta2R/t8b8Ur4y1j6Wmf89mhLtykbnrDvVAFGbOE9EvLKjCg3mrE/uQA7hApcw7fE49et8cgornbwrBKRKwxP5ZYr5PjXtvUBqu23wkEP3ICtsiBkcl6F5kr0hQojvGDFBstjAIAhhp24nblWdY02LMP/7X8Ej+qUqSqiUaXavwQAvMvSccowCO/rHb1ynHm7yVkbk4n1sZnwDwjEg7+HYNzOJCw6eBZ5ZUYHKbOOMRw4Xei25LCchJwyRKRewNLD59D71yBsV62c2QSj2jtVAyBR0ace0MmDV6KyzRm/GZZhmdckAMAdvwW73FcdlDpbWIW8ciNWHDmPvqP3ILO42kHOr0RIGVEN2GvreO+MTCvCu3+LJbT5QenepHw8O+MAZu5zrgIRJ2zOUnE/XBSNV2YfwmTZd3h6Oq8cmL7Xvm3oqmP4Zs1xaaW1pMqEHsN2KVSw4qSE4ziYLDZpYpFWWOV04qU1qLfaOBzyoGrbupgMVfGIS0PvJLp697i9iEi1389SCyqldocmFzhN09GquFhlsmDo6mNSQYzX5x7GzjhHX6SY9BJMFu5LFUYLdsblwGy1YZlMETxkpaM6V33PUabpea5O/N0DtfTT08Px/Tr7JGKikL7lrJqrmoTscqkgiojZyuGksOB1c0sTrmvrmSpNfk/adiIHE3cnY1nkefxnhaDUVH31Tx/xx0t9uyLsf084vNcfb/XFy32dT+IuFnV1K2d89E+0oliLiJZvpBp5QOGPoGT0GLYL9/8e4jSt6p0FkdIkK/pcsUI1sDcpH61uGYf1OQFo4a0cc3Rr74d+Y/e4LDqi5pyTAOHJzFLcOipIodCTB0rFSWW1yYKpwfbU04cm7Vd4e3qKmL7nHxAoBVqLPOy72nlZMSrtPbykc1x0e3XOYUVwVOSME1sNgB8r9RyxG4FxuU77ZfEevj85HzllRmw4moUqkxVtfLXHgVo+bn5OAi1qPFGUanEis1Qz7c8Z3kIV7Ft+3a3wHgKA4xklHvmPXag0KVJGf1GlRxstVoSdLkRbzr6g1xbufeWua+eHyW/2dbmP6Ef41rwIzee7tPGV+umVR5TZDU/27uS2Dc6oqrXielYIi84X6HwbHjC5qmBrP4bdgz6DD7TPcTFzpKTKhAk+y6GLW4fH9AmKffy89FJKolbgW8788DRNdZjamF5tCF9jsuJJnTIAPVBX93RQkcD4XCyPPC/dS9ugEky2UNu+Zd3mGeVCP6ymMyuFTTiFdaxJhWwahCvhG3bhOE4cVeUBEGtidgMgd/bMErY52+4AY+wLxlgsYyy2sPDSgylNAfnqs1+3tfC9dpv0uN/17XBzp5YOr7mUTJdHJ4dKcvgI329x2Pc7OFMfyfEPCNSsIsZxnOSXIM9rH/L4zfj2gTY4/kQ8dE4UGnXhRR3vE/Sw6uYo8vE/0Qr1jyu+0W/Gj4b1GNhPO4gC8PnDPXR5sMomj0sH36d5pMprzPCDEX97Tcdc71l4QnUj9YEJT+uPoV38YtzO0jU/r2fnlnheL6QPvTYPAH9zExFXeD/Q23O2bU+NAgBwlZd2LXgL6YC6IueT2QqZ+qPfjfzEwGhVDoqfue1azde6MuHU5MBkoDgN+LMf2iy4F1HvOhtA1e1CWBWVgcFLYvDgxBA8OSVMKmktsu8UP2hQm1+LnazcK+CFPw9ifaw9KHdLixpgWm/F+6knte8vOiK957drjiOntAb7EzLRgtXiHNcVtgH87xnoMwLh3v8FANzOzqEF7MFWHWw41+UYHr+hG1Z4T1K8v7iaI5+s3Nxe2WW8oVcO2j9YFIVft2pfU2rEwVSeYCA+PvAUHpwYIkmZRTKKq/HRP9G4Z9xelNWYHVJYNgz5l8N770sqwKBFUdIq6HdrT2DY5nisOHIeRrMVY3cmaa7utxNKnn+56piiSlNdzozBhmA8ro9DG4jpSpzTgERhRS3enh/hkC6xVjB3v1BZ6xC47svS8KpOXE0TW8aAg9OB9MPC6zwP4AFQTBYBPtUlSFCI/hlyBneODsaG2EyECUaxWSXVSMmrkIInzvzuxFQfrcDKnNA0aRAmr1jlHxAoTQblqdfySlyvzTksBdEAOPWQO3C6EP4BgRi/Mwk1JitySmvw4MQQfLA4ymUBjdyyGvyyyXXwEQBa9JgB326rpMdf6bdhn/f/YICjakWtUpajLpghBoQHL41RpLK54+vVx7Arnv/dbDZ7AEYLuQL469XHHe5fnvDN6uPgOA7+AYEYvsX98RK5GLWEWF3V0/u/WL67DapwLZTX1+O6k/Cb2RP9Kzzr4+VqxR9lKU8FwoRErWDp21GHOe/dDf+OLTHz3bvQW7Vq/tUTPT363LpQl6B9yCn3Snh3qE2B64rogZZnTMMTsol0r86tHLxcntAdxzSvuS7fz5kn46tufIjE325OaCpmh6ZieYS9ul1mseeBEBGtYLGWubecG1g+cGAKMOFa6MrOY473LI8/b9b+VOSU1mgu4or336Grj6HfGG0Fiqggk6dDVZsseNA3A+m+g9CFKZU4cqWUnP89ewtGvHirYtulKNPlilGLjcPHdfDSlAei0lUm4K/PjUCF0YIubTwLSIukqopFTA5KQWZxNTowe1Dqdl262/d5vd+1ePMu18oyk8WG33edUty/5YuSfwQlO/W2vffGi08MKjea0ZmVotavM3DLc+hlOeM02CRXSnml7sZTOu3+QwzIFleb0JfxXsc9/JS/ia+X3qlZuNqvUR6onv5OP6ff5dU5h/H63MOYIxiMG80WfGwQ5jtv8zqXWY9xikDSxTA7NBV6WBHn+wXO+X6AE1/egM1fPYSWHgZqRUqqTeigobBthRqphRSUamJw/Gyu3sxCOI77m+O4/hzH9e/U6eKjy00JZ5OD9f/5F96+tzvuvfEah+eOnneMOndu5XwArUa9wvZfwybcx4QbBzPBq5222mdl1Hkk55Xjr5AzsAllSeUr40NW2v1iurTxwQ/cCrQ/MhER79TtYtfiHh0fMHlTf0i46XLwRd0rq72oO4IfvTbiG8NWzEp5AgN12isbDDZ0RqnC4eeJ3p01pZ+z9qdiufck/EvPT1Re1/ODqltYJqJ9vsJm79+ANf8H333DEegzXDMYNtDfipFeq4DWXYFbeKGgPChVY7KiNarxnsEeALC15ldvx3U9jOuv8XNqyAgAT8nk2j4woSXsg7eHdbzagcuLw46vH9F8vTyd6RWh/Wq1h3xgcdf17Zy2RRsb74t2eg9gVE7M9Ktex97vH5Me331DOzyii0e67/s4+tbFVddztxJqstiwKuo8+owMwtQ9KfhsaYyDTFfO9My3Aavr98wvr4V/QCBem3MY20/m4NHJofh9G3/NvPNQb+ju+Uja90ZdAdqjHIE+I7Cv20Jp+ybv0VjXpjWK9fw1tf1r7ZTQz5bGICa9GB1MwkqOHz/wuVd3Rgq+AI7lhruhEM/pYjQHNnKzTlfIKw31G7NHYaIOaJeF1/KhWxOdgZFbEzA3NFXhERJyKl+qJCk/AyPP2r9LrYfqjNawD7ZuYXxApeeI3bDaOOh8s2FopUw1S8gpQ0x6Cf7v7yOKIGWScGwKKmpxpqAS3gYdfGDCM7pYbPcZiT+95+Jsi0/Qw4e/pnWMASFjpNe/fvd1F1V+WuTJKWHSYgPAB5F/2hiHTwSTz0f+CMVzMw9I6pgJgUkuvQUrhUm9OhD09erjeHSyY4q1OOA+mVmKqcEp2BCbKZ1bNs5+fEScLayIgaVFh85h7M5EfLo0RlrZdGVynChLo9brGG7q1BJMow/T++bDqw3/GZ1Qgp+91qGnLgdJA/MwVL9VKqsNuPfnkzMr5Az8AwKlx+8siMTMfacRsCkOdwtpc1rZLPIVZE/VGSKemFOriUwrcij/3pBkFld7VBVr0u5kyQfsb+/pOOL7jbRYAgAP6vi+9cnUiVIA8eDPT+K9+2/A+w/c4DC5FpWSauWdGAjgx10cmKEUQe+2wyMb7wbWvg+c3oPX7u6GYFl/A/AKXi0GPXCDw7alg+/DtLedT75Eyiqr8Yk+CB3gXo2irgTV2PTr3hZJY59D+qSXNKt9LfWegjf1hzBAdwzP334t3tc4Tq4Vpc5JyC5HTHoxqmr533LCrlP4YrnzNEl3zAtPdRjXuTplu6IIB3y+B/aPl7bVcgbUZarz0KT9LlP6RbSqmZVWm3HwTCGWyfpEVl2Ev43/AwDcwJQBTFtVIVB1AahVjvu/HtALnz/aQ7HtzXudjyGdISrZf33pVjd78ufN5q8ectju5SYF+uj5YrT183JQUbkKUKgDlEsj0jFqWyKuQQU4YeSw2vt3xX3GERt0i56Afu79bhfX1YH7u65vh/RJL7l8TW+WgYfKdrrcxxXPzjiAjiiDxbcDYOOvh5lec5zsrTw/vzNsdtgGQPJsK6+sQnuOvzfdpFNaouh1zGnaepiLxaM2xfFI8hksWLE4cjyjFFOCU8BxHMoq+PFVabfHgdtfA7r2A47MxdmWnyHixQs4/lFL3H8RAb3lkedxHbOPFdsteQT3WE6iuMrzqrUA7z+n5YXFB6X484uCUk2DfCEtD8L/4h0yG4A8Ob+7sM3Z9qsCZx4S91+rAytMgX8b5nDjVa8kAEDnOqwizAtLU0w6/2vYjA0+YwEAPp13w7frVuhbOcqwA+Ny8fzMg5i29zSGbY7HvybuxyiZUZ584uGl1wE6Xk58rdm+et69vd2oVA8rtnqPxACNiP1Ld9rl8r6oxbXMPnhP8f0E6b7v46TPv9FFyh7VPo43s2zF8fvVa6Xi+VneszXNpTugAl7MClNb2ak5ui3G1PzusK8BFtyn4+XlZVwL6Ya70XsMOrNS3K5T+mRMuKsE8T6f4WYmO83ThBXgnk8Bfu1RyxkQYFiNt/S8R8SgRVHoJUyaoeMHgdYutwMAuhcdwsGfB+Dlfs5TDBZ8eK/09zrvcUj0/Ux67M/sk5vbIr7TfL24qvubYRlwYCoAgKXuRSfwk+x39KG459B/0J0V4MnenbB16MN1Wnnw6bITrfuMgnn128DZMIfne0X+gmlv9UXAC33w9K1d8LVhKwCgw87BHpuD14VnZ4RjxBZeQTQnNM2l6Wl3pvHcKecDDVElYrVxaCEEVrt17gC0Ugbaj/sOAQBcVxSJgboIdEUR7tYpJye3WbXTJUKSC/D2/Ei0NgqdZtvuQP9PAQAf69UrsBa0an8cz11XhcO+32GB9wwsV6mwLoUKo0UR0GqZthM62PCq7pCmQkXNrP3K7/zZslgMWsQrJ+W+FRN3JyO3jB+Ieuqb11uWDvuJgU/dEyfRLXv8Bb/rV2C4YRWO+AwFAITLFAFahSTGB/KTZ5PFhpXdNmOh93TpOZ3NhO+4FXy7bcr2dW3nh+1OAsIirX2cp+lWmawuJ1IiYmpnSbUZ/xw+h7wyI1ZHZcA/IFCxcn/XDe2wIjJds3KkOzXC7NBU/LQxTvKS2nTUsdDBOEH55h8QiFVR2kUpTudXKhRVYhrKooNnEbApDmmFlTiVW47+4/cpzq8ne3fG9i8fwIs+fPDp6391UCg7RD432IMz3nt+xk9e67HbZxhawbVJuhZphco0kOhzxZi57wzWxmSipNqMWSFnwAD0Z8noy9Lw7QBH5Y08BdVbr8PUt/vhgwcdJ/OXQoUTr7SGYr8bs2iR+eFpmBKcghaoQnSHHFQwhttkAUKfFqcxq31beFurcZ8uBZ1b++D6a1pg4ht3YsLrd+Lfj92keL+zQpEWdZXfapNVClR5XXMIrXpNgteugfyTKYHA6reBpG3A30+iOyuUAolq5eTmrx7C3h8ewZiBfbD+P0rl5xO9O+PNe7vj2du6SNsev9OEIQMzMO61O6RtA3URGO21HGO6173KW6Mzph1apPNjllJVmpkONmRzHQAAn+iDcXvuZkx4/U4H76VL4e35kYrU1FCNqluekllcg9Hb1T53HH4xrMFPhrXwgzIYPtFrkXLXmwfAh1kwuaPyXHNHelE1Zu93bbgv+l6pg2YfLo5W3BuLUp2fQzZTJTDlZmBiN37RT4a8/5z/Hz28W6Y7vP7hnh2cvjfzLkSLlrwy6183ae/XHuXSonfASzeid1dvHBv5jGIfdbBJTZktDWeNYYo0vud00TjV5lunAQ5nXMPKwTr0BO58BwDwkM65Urz1rcPxMcsHStJxpsOPmPD6HZrZK0o43NUvAplLnwNCxrncM9gnAPecHI3TP9yCF+/UzjRwRwdWDlvLToA3364X9E7OBSYfczD01mXhEeG7i5W3Ab4QVdTZIqSeTcO+Fn6wAehuVfbhSTnlksIXAKbLqnQn5ZRpCicAoNfZ5WjBavGW/gBaoRp/e01Duu8gjDIsV+xXWFmLcZv4sUds9ztwruwc8K9v+JZba3Hd/m/Rfv2rWJ//AtJ9B+E/+h3SQvt/VH2BFj2Yynd4+atIzeb7qt3fPeqRYvCYkwr2rVk1KaWaGNsBiBX0PgawTbb9I6EK34MAyoQ0v2AAzzLG2gsG588K264KnCmlsOlzYO4DMEy6DuMMS9y+z9AnHSuBqJGXhL9emEjH2G6BFXxIpxNK8PitvJHoNa34y0qeiiLPEVd7vogw2NCbZfBqCIMQKMs7CYDDeMNifHa9Pe3jWhTjLl0a5ngppc9ebWNwf09vaQWmJ8tGa1YDvLEQSV72QZ0Ps2Cj9xjM9JqNdN/3cT87BR+Y8GVfPe7vZMaXPsEI8fkJ0T5fCa/g0AHlyLnuWaDzbUC7GwEAfTQ6NVECbXzkJ8X2RyxRdlWZgGhIHnTTCOS3uwe36jLRDhXI4FSS3xemAABar3sdrVkNPpSl4nFWYeDz/B8AY0jhroc3s2Kq1wJ0FFZSN/uM5vfR88fF5tcOuO01IC8eSNqO67KD0R72ydkTuuM48HI5TrcZCkPiRgC8mfpdOl7Gf7LVt7iR5cFXCFByAPRJW7D8Y+1V3qd0RzHYEAzUCPLwCykY6bUCnVCCyV4L0TE3DJu8R6O1+QJgNWP7N/wk+1oU4X+GdUj3HYTHdY7VY25j6fBpx3dAZnGQJATe0FtYaTqxCm+2OYUhj9+MBzoa8aDO7tWQ8FImrmvrqxjw38yyMdyw6qIDVlqBXy2e7N0JC28XBjVP25UvWPc+cGqn5gqxHD/GB6W8fIXr7JfzKB3oeL3P8p6NSN9vUKsauxlCx2Ne970OA2eRbqJZvsEHeIYfIN2ky1UEY7w7hYBduw7v1XwrbXtA57k3iCe88Kc9bbBn2FCc9f0Af3rPxWSvvy/6PfuODlZUdiytNiNgUzz8AwLxyZLDaO8/A1+20g46AwAzlOFxvd13op1MQfYvnX2S8oUhENeyEgCcUwN0ETFg8z/DOtxXtJ3f2Pl26XlO+P0MpSrfsPJch5XHZ3SxmOs1U1pAGHBrZ/RUpQbKicgNhdc1jp4q52SGrPKB1KTdyXhzXoQ0MZIrgw6nFjlU5rlYtAK60enFkq+NGPxVc/S8Mg2lqtaK+eFpGB94CmtjMvHUtHC88OdBXKisxTRhUNybZeCj4j/RamYvcBb++/Q5MQHv3+94HfbTnUWs7Rb80/FnxXax8AAgKukuXew9fe9pVNaasdFnLLb7jMTzF5Y57MNXbOUQYFiNHa974bnuJRj/2p143YUC9nLzXM+WSOk2Hvcyz1QufBlwC5jBM2+aXm33YGG7tvjzmnb4xMD7gzHYMKNbDRa24wtH3MbS8euNicDhWQofP08RgxmGFnw/mGlQKX3WfwTkHMMhn+9w4Ad7oFgefOrRoSXeDnocA9c/hS5Gu0Ji+af3S39PfsvuQ3PMMgqrzszFB0F9sWYQP1b7vNVirG/dCi9f+Afpk15CRMAA/vvqKx0UmnXlUnxqnNFRpugq1emAwB8BOKp55vvORjfGp18+po/HN9WzgdpKjKyZjHTfQVjefXu9tEet8nXGj4b1Ujq8M+TebABwLzuNLw07UNLlIGZc84203aDj8IReGMPc/jowaAPwLr/Q+U7lSsUxEumEUoU/qJypglenwUm6+I64HHy4OMqtulFSR93zMeCrVKkrlj9Wvw2Mbgtk2xeCn+zdCT8/3xs/HfgJg4MH4yv9NnykD8aULnth0DHMHXQv9LDidd1BrPD6HQc6TZECAK1unoaSa/hxReeaNBx5tQIDblFmd2xvOxUbfMbCAAu+OPAinlr/FK5p6Q1mKIN3e37cp1ZPHxauBZGWPebC77qNkneXl55hmM9G+JqK8aPBsXiKKzrpKoCWHYFXZ6OC88NS7ynY4T0c7aCdUn7cl89C0Vfl4/0eNdj3w+NY+FF/XH+NdiVQnXch0kzb8V9TOnBwKrq1kP0CumrofLIx6i0f3NDTrqz1TtqMzx7p4fhmGqgDeB1ZGdCyM/Awv6Ccyzlm1wBQKod/5u9ZK70n4sBXd+DJPp2ROuZJaZH/3b+PwK/dEXzfpRM2tW2HO2uiFJkp6mIYs2TVTNMKq/DmvEg+rV827huq34obc/jz+AtDIBZ4zcCzej5T4FOD0gsyr8yIlowf035fsAMDtw4E+r4NPDNW87sN81qDRN/P0J8l44OCKUj3HYSZXrNlogUlb94ofJfbXpO2hZneA8Dh5k6tXFYaV6d2q2mBKtToSCnVKDDG1gCIBNCbMZbFGPsMwCQAzzDGzgB4WngMALsAnAWQCmAhgK8AgOO4YgDjAMQI/8YK264KHujB30Du6GYviZri8zGQag9YfGAIwWmfD9EVzs2iu7dvgeD/PoZrWnrjDnYWXVAMX9QKpskc3n/gBiwdbB8wiZ1Y93en4a4eNyCgUwfE+A5Fu6p0AMCvL9+K0+NfcFqlw5lPxEBdBLb6DkOH8xOAWN44G2lh+EK/Ex8YQjD49FeIHXAKelil9DQ/Zh/UMK8L8L1uE/ZdmIYeHfnI/zuCWggdb0HvYYdgu/4Baf/rdYV4Tc+n4M3wnoudt4fhl9PvYn3Fx/iF8QP/TqwcL+ii0AZV8GEWlHe6F/gqEvh4BwAg0Ge4gxqti6DMYm0d1UeiaksMOPgLUffnn3gM+mtvAwCc8P0P7tClw9z9QeCzvcBvpcB9nwO+9opsA3T2ihO2ghSgTTfAh590fm/+Csk2XqXVS6dSGuh4BZKVswLPT+S3rf8QfQ5+g1+9VuEzfSDSfQdhqfcU3LBvCLxNJcDmfyPd932c9f1Aepu2lgsI9/kBdwg+V5yg1HmsVa5UMlbOAq8ZDtsG6iMR4ztUdtxKMSvnPWB8F9zMcjHiic444vsNvjbwseklbRfhJpajCBTs8hkuBcYm39SX1848Ox54dxXwzjLgMSEwuPptwGpB/5b8AI8TPJj8QoYjImAAPmyfhId1vDpio/cYfGEIxE8t67Z66Q5e6m3vsCZnf4RbUxfB2OFm4BHVwHfd+5jwSm/8/vqdTt9PVEpl2Wox/+R8cL5t0a6vTPL91RHgOnv55v7+ssl175fw/+y9d3gU1fv3/5rt6YWEFJIQWpASepdeFBAREJQmAiIgTSwg0lEQBbtSRBQQBEUpgkpVQBCQIr0HCDUJpPdsm+ePs7uzs7tRP9/n+T2/5+uX93VxsZmdOTM7c+ac+37f7/s+pO6nW+YKThmf99l+vp8zgiyBMZCr9hh6a39nh3GKS6GocTiMuW6G4XV7FNGq6BIAACAASURBVP8HM6/LRR/tARpKToNG/o9IxPxSK36U0lqj1MbZ55CO59vuYPXL4FjFa1R3UyQKp0EmIfYegTXmE14pBUt0I27qq9Jae87V1js6b7JsaPg/cxTrac/Sz+hQyvX9El74HQZ8CxPPuGTdLrOyohgvSDuJ0YOUmqz7lu7aI4zRCSeu392FvFM8s9zz+sWtwRT1k5eqo8O7e8s95k5uCXcdaXFP/wcLQfz/gS8OXP/bQspPa/fSNm8LV+RSdgU4VmqzmQnKVKtxX30kibr+OdSuU4+Bzzne2xhBxk/Vr8OfUuKk+5wxjeAL/bs+z6XBrkqF/TsYs5Vrr315Ea/6WGlzjPYHRut+xLJzAK22D2TH3pkqcmP4w4rj4mtJ+r/C39dkEfU6gimiRkAp2+K/ooGkVimOjL2GMes8G4xzeFhzhsOvd/rb85piNhFYYz6T9V+53u/ntD/RX6tOAx2t3cIwvXBaSsIS6aU9SGUp3ZVWC1CiDWKG/mt6psyEXTPgk8aQdRXsdo5M61SuGufVR5Lo11hEv50EuZ9jzrFLQIdpMNo7PTt+UYJw4he3pFnOj1Qkh0CK8T+1Apts47Y5h4QDk5nYuQa/T+lI2ySFDHLWu3OHDWi5sTkhFPJUpRjejHA4kAc/ITbUj3ZJkfjFr8QvfjVovAMN7g5pRXI4YJygqlOpDzuIX8JyVgxrpor2V4kI8Jke/FA5aYme0Gkk2muVd8jabCTk3YIlrWmSqKTQVJPu8AiCOJC1br9/RVe0F4S6uW3mN3TWCGfUPYj2fxKSLg9d4DkeqxfDeN1mKmvuMUz797bAMf8JpJoG8rLuewC+DQ5iUlQFV4rl0r4OhWPbydBvJSQ94lKoAIzUqRXSfpRy1DSGg6YJitLdB8p7l1PuFbpqtv4VYqVMrGihxwdQUZ1GJ0s+FOufd4A54TA7hBW6txmzV1HST9Z/yxv6VfTLW8H5yu8RcnYlV03P8IFhCW20Z0koOMGZmLmqdLbrUVMIWdmO6B2jGJynnjvjy8QY8qhGpFgWWYvg0nb84la79jFoJapIaQRRzMp+lam0uAbfd/QmiRYZPsaImV61Q0jUivvyqPYYa/Vzy62l5GnbR0gF4F8BdEYO2EUgM1mTyknTKL55rJwU+navif9PrEaSJLrUjuKnCW34cbwvdbMY45wB1mRZIfD9E5cQUPUTPjj3Ejn6/WRotdzRaWHvWzSOFKp7I2avlbfd8Yhb7VYtVj6roOWCSQt6P96wPEOMlE0/7V5XaYI5PUVQTOeepugfDnoxPybcEX1Wt2UMf5jGue6j3iCuITe+KVrZxsJGOeXXqyoH7tkzk/TrVd89rFXbU+6B1Z6f/k4Apd4Jkw+/KPq4ExPVAa3vjW8Qn7oBgF7ag/xhGkeqaSCL9B+yZ0AQeocy//HAC+L391sJjyuiiNTHr2Kwl2Ky5iFhp11SJAv71mNE6yoEORYSiAxyzqMymwwz+dl/tor8+rnyKZ6LESrZB6TU/2XIsjxAluUYWZb1sizHybL8hSzLWbIsd5JluYYsy52dBJNj1b2xsixXk2U5WZblY27tfCnLcnXHv7+XBf2LMO2xWux6qS0TOtZwbTNK3rmtBsnGIdN4V9Hj+lIKqaaBLiWEfVl7ap6cz/7Hi/jROJ19xpcYHrSYjwNn8Z5+KdPNH5FwbolrgE7Q3GZGRDgFQUJy+3OgmFg16UI5oLGWYND6qspRPjTYeVa3k9kR4Uws+p09/n7ciqgC+beZql/n2i/i4JvsMkxirN9KbunEi15FSqNGpD/VHalu+ZZsPh3YiDHtqzEwwCFHjaqDViOhGb6DnX0vcrWZWhpbScqixtWVPq9tieEj+jqLPAc4DMdQxcG/PqiMT6scIox8qkQEuJRSOQY3w2qKUJd8YviU4dptdHbI811S0PBqVHtqvuq8+k7TIb4ZdmSyzbnwhMj3zotuSYJGmXjk3FSIUpQ+Y/p257dGYvCNk+67JMa5TV+i0CIcoU0pmyA4FhooRNOT2v2iNtV/AbKT/Lj7J9EF5+ip+d2lPgM4LwtlGY/4liTLo9xUGrINPm3C84c7q/bRlGTxq/FVrpqewZ9SkiV1Hv4Gew4Hu86EZs9DrR6g1UPH6dBiDDLw/qfVOHtxEwBS7SeUA7e/Duv687VhPqmmgYRJ4h4977eX/wq5oseqKjAOQoVxyvg8s3WC7AyghEhrGodMRpoGWzh410d9srmRDMxZQucKYtJ6VHOEGbrVNJUu0lpzxhUNejnlaxadXMTtgttC1fTiaRi2XRiYI/fAuOPQ12No7KIoswySzTXhumNXhNroX2tTnMgvDe/ST7uXJ7WONLTwqoI8eew9qmgymK5bQwfNCaqH4GrbgMUR+fvfIKyik6FOH+jxIQCbjLOoKd1kkPYXrpqecSsK/vd4Q7eSNYb5JEreK5Y54XyXY40XWBj+MsO123mmjTDUr0rZ6KNrU8ERB1ljEO+vU8Hmjv6WzSpDvLaUymitd9T/drVv6JxQCQZtgLpPimJCNbtCaAL2piMAR9SyemdXrS8OfUrogkhGabcCMnFhfiREie9e1G3kjZAZVC7eQWPrSY4aX+CA0ek8rfc6//CHE//mrvmGr2LrcdK9vzSQ/2/in9R4inQEOvb5q6PYNU+qx+VxbRMILM3Av2J1TH4BMPp3GPIDGEXQ4LxpOAeMIvLcSXuCXYZJhOnMrBreDCNmHpJu8p5+CUeMYwn+Bys4AURkqMeHcbofvJzyyfr1FEsSsxxkxaEzq9H/OIG2mlM8rDnDzNb+rn1f6/qQ1zkkfRZNkpRxa9ngBq4U2b+q7fSlfgEXjMOYHb6L06bn2WUbTq3729lsnEl9BzHVSLpM4yMvuY5ZpP+YMBOM025is2G6Oh3dDbpAoWodqN/Jm7ovWaz/kBn6r3lbvxwjZuKlDGLJVCseHI51PekaM3SK81qc1FPdeEk2fNII3gij4ntRzKpygRGR5zFRxgf6RcQ7UtM7XX6TBRYl9V6HlfoaMffIABFJEJ2M+eWLyN3fg0iP+jj3zsOW8RwxjeWsaQTGnYq6TrpznImdk6iUexwu/gx2u6toWmPpEiFuxKXV4ah+Vt9t3guMgp3TYXkXxt+bicYgnO1YvBWG7nUcDxvHESdl8r1htmubKXoLuoAUsJbRJtZGopRGv8Zx7Hm1PSdmPuLVntMRXPNcc3a/3M5VF2iodjunjCOIIpsjxjG8bVpBBIrKUq7VQ3zIOMOH7SQGt0igpeYcg52ruzYYhDQtgxGNezA4Jkqoud3QW7ufHYbJnDCNppEkVBdOJUYY+fTU/I4R8z9K7/ZEJDnEJC7EL341H2ePdG2fpV9NqmlgucHdUAqIsIt77+kw99Qe5NSwYDpXdpAWFTxIpJEicNpKc44vnm3i2Ci7AgoAsVL5QeUgk46mif95fZwK5BFKAbFSFpmaCqDRimClG+TAijA7DyZdheE7RXAUhI0GSukIHzCkHePkL1P5MEyMi7d0Ou5rNWhyrnPMONq1n5SnKK875m0kEjHnKgEn1MXg1z1NXKBCOsWmbmaP8RXOmEZQ7+zbYC6g8Q1RS9PdRrQBPxqmsfBKd7CWQhNRhqKV9jxf6BeixYYOq2tc/cXwCtdNg2kuiTFIwsxl/zxhNwNB1ZQAN0CLX/q5bO0P3Ytyt3BkWxz6FDaNhnsXCP72SWqdeguNBG1qRAAQRTZbAt9ynEtgqfymi4TVGtVzaeeESnSNdyhhF1ThgHEil0xDOWB8kV/Gi5Q6Mf/KRJPFMO023n0k3DXnhEnZfBMSxLhc0f9O2kW/XKhfxiTdt0SRzbM763Ms5DViNB7k5osOlfiOqYJ4PyfsaqcaLVgjiFiTQwTw+PmX+TVRXf7EibaaU0zRrfVdygIwaXK5ZHC8O32U9NfMOMU/aKlRLx4STDErQ3yQ5k2Gi4D1tHQIjYfhOzlWZSh/1itfDfmY9ghVNj3Ogah3OdRkL/ev7ea74CBhmzUaQlYLR1/eNRPeimH+lZ5cNw1mSeW99IsvYFKHSIa3/IU3dMvpXE34ygnSPRpqUqhtv8xiw0eADJKFHKNiOz4gpR7gvx301iJqLImj+W9D1F+0ew1evw2z81hmVZQTvxknslj/IZv9BDHgdL5tEnB4EQGbReakSbKwOi6DXnGxPKndj9+F74g9vtBR3A7CI06zOSiQVTe+Uc7ZYBAah90q/zgR3opl6pEWNJUuMrZ9VcpzRB/VHOG0cQRv65fTSJPCHwYxgU2IiqR7kG/lQ1VNOi9VttE9XkwOQyKvsEsezWLnxJV/h6gvmjK5TSQ6SyG0flkQFACSxCN1Y6jWfQK3xv11PvkL5hdZYHkagJl6YdzKTlJKkqCrQ8i34Tl6pH3C+/oldIwsIFrKwY7EU3vHKY25qZxm6lfTYV0NUk0Daaa5SLEUICTBWh28cIhbNYdi7bkEqrTh5L2TjPllDO2+bUdmYkuYfp+Q/upoknz/IoQoaRpPNo5jZM+OFOBPQ+kKaw1iopPr9HHt8+VZhxKt1yIYd5z0pq+5vltT/3GSqyRQNuYwjPpNGN1uODP0IszMxiwZFNWGzgSB0ZB6gD7Hh/CxYRHrjW+yUr8AkImU8jgQ2BWcA22LsdBSuT9SVF3mtRzA9lqdwb0WF0BiG6j3tGrT3oDneaLiAq9eZYtt5FKDudB2ElZgRWgwg+85jKjAijDRYez+sQRPFCf1Rlt4lz+No/7jFTvWGN7ivGk4I7Q/8Z5+CRXI4wXdFvwkM0N1O2kiXaR24B7OGfScNYrIycE7bk7nEDey4vBilheN43P9e3xm+JDndNv4zvgGawzzXWm0FwpFPzbbBTGwp+AayXtHklmSidlmhojq2NxJOICIGsLYrCKK8m40zOSAcUK5hgGAuekLdC17m/mWAYAwXpyQW44V5EnN7gCM0G1jhWEhu8sGstMwCQk7l03P8rt9MM9qdxLqpyNOukdbzSkitLfRGJTzPqw5U34UfPQB6LcCmgxzbdphnMI8vejPHxkW00fzG4v0HxJBHq/qvnXVjZCwM0G70ZV+2NhRy62xm/HbQ3OIbw2KzPsrwzt8rn+XgqqrmBAVSVTEFtLOrRTtWUqg4kPoR2yj0F/02STpFpGS97U/ZDnPS44IOsAS/YfUC93COKPaULNoHY5UNXUKAgCxDcX/QdHQ+zN1pXaEDD3VNIgfy57DeP8sZq0wgBbGWlxjZaSUR5yjUOcE3Wa2GKapCUmbtdx0EQk7g7S7y10kQuufwiP6X1mlfxsJO9uNU9lmmPI3xWD/ASQrL+i+Y2z4/7f1c6KlbFKDGkHnWcrG4EqE5ZzmqPEFZduVXYAMYYmOA+sKgnC4bzVFDc0dTuiG0m5tdS6ZhvKN31RmVr/FtiADJ4wjVcRDedDmXGGbKRx5vKKQHahSC8lYZQ3vRsVx2egWDDmxmq8M7/C1YT585OYoXdvHXN0XBFKMFhvPancQWH0hl7SzAZkASnjk+9qkmIZQRUpnfh/vZc3X9gpjR9QSOmpP4ieZebbYO63wB+NMlunfY03cZtX2UKkI4/woXtV/RwPNNQZrd7PKLX3NCZ3kIMWAgbo9dNcqdcrG6jaz3/gSB00T0Es2joU8Ku6EMQgbGj4xfEorN4IgqKZDmdBynIvULpYkShxkjbThOaYXzOUN3Up6a39nv/El4qT71Er/Aenydj40iHliif5Dgh1Kgrs6HRn+IRSYC2i86RGWGW0wej88+6MrNcvVT8rDmr6w8jH4ZgC8EQZzQmF2CBuMczhoVNK/nG9Ri0tKzT758U/Eh9tHaFJ6yHVdW01TvQIN09yKSZch7CE/ycx54zBe17kFo+ZWpNfuDuw1vkLHiFxBlHlgjm4Fm3L78bjmIFVT11H9zg+MSBLE73TdGkKkYv4wjaOilEtf+05eNChjn7VCdRguqmz4fdmRuSXzWWeYxzDdDrJMCdBrMWg0/JF9mlMmh7LgoR6u+aqN7gI1HQrwjcbZpJoGctE0jNd065ii+4aPDYu4ZBpKimkISwOWUVlK/0eqxAQpg6OmsRToHX0u07tm09Ig4RQ3ly7wnH6nyzbooVWvaHq6qqI+nqVfTci6HvBJI27rtPS/uoYNlzew+vxqklcls8+Wh735GOpqUqki36K15gzfGt5kvE55Z1YZ3mGRIx27vttCMBpDBomV7lE/TmwLpJiXdN//gwL4MsdNL/CjcRqxUhYZCLvWYlOP1S6SKiACEpqLMhKjD0C7KSIwG9cUmisEU63SL9ljU8aZZ2Kj+SI0BLnta3SPj6VjglDghUvez2NroD9rgoNY076In55P5vPmwibINAaQXEWdQq0vVeYov3uKCi/8ushgkO4cY0sff5X6rESSqKFxI78bDoI+grxqrT3HCeNIThpHctg4nmrSHappRLDqW+ObDNduo27Ul0yOCuVokCD9Ww94HeoPYJNNWTBmreEtVuvfouehJ5Xz+IW6zsOpdbC4BVzfh/bIUq4ZB7Kq7ikm6r4XSiOLw3YIr+JKpVxueK9c0r48VPtc+BcHjC8yVbeWt/XLmaVfjd+i+iwOEeNS90TRzy2OPnxOTnQdP0S3iz9Mwj6PKLvFa7p16hMERrpKOriji/Y4HTV/EqkVJKoxtDK0EUX0K6Xv5hfDKzynFamH/bR7aShd4SvDO4zW/cgB40QHISnTUnOOatIdNNjxT/iCvpViRAZEcl9yEJlB2rq9YaooBfOl4V1STQPprdmPP6WEau/xQbg3Ubvy7EoGXlsLekfgKaE5b4Rc59mCjWJ8mZXLhRf2UdTHQ+1e72mi8k4Tc3YZ46MieSPYSGZJJjtv7KJ9xs+cDPFOefbfPw+WtGTVskZ8mb4NXdgRhu57mB2Gya7FN+wRNWmsuUKqaRDfh4xUHa/1pVL8l+EBKfVvw0/iZQ/J+EPZNjsPOkwFo2CJHxryEanVnwEgQsqnu/YIkt1j4mn4zD863UTdRqGwsjpy6N2K393u+DpSmFDD2AEswjj6Onw5kw63INU0iE/1H5NiGsxh41h6an6ne8h1PjN8SLBUzFPavYAb6eNEcJyYCKeX7ywPy18KhUrxOamsAPJuwsKq2O1WrvkH+zwuPiIYxh2D5/eIdLzYRjA1DWbnMbjSz2yzN2exTe3Mh1Z0I0xavKAamDtoTzHu7mtEk02x3ndutie6aY+SrY9SlleKqk38gI/QNRoIwDPbnuH3O6J+SnZpNugMwhgYrhSdlJG8nViNllOa2vTQir5xV1uJsERvxwKAiOpEd5vCxaf2Y5uZyxcWMQHmB0aItJRxR2FahoiOvHKJ5MQY0X5we6UNSRJO8wW1+qOl9jyppkHESNnkacPU+z86D3othVYTQKPhm/TfmVR6meRwiXtNhilEVMfplHZ9m+IOU12kx6SKFfgoPJQUvR5J789fwj8c81iRXuTqscYgcR+rtKVQksiLbQAjfoX6AyCmAf5PvAcI48mdTHCmLASblMLRfavLjNdu5M3qlwDZVVNpuv5rntTu57jpBVeaKAhF2sX43+hfKUakfoA6Qlm1HYz/U6ym6EAXrbI6pRMLPWoqlTpqi311XhR+7PVDLxqvEdJ6i8c771rqubdoI1mTSpyUyQHjRD7Vf8Q2wxTXvqczT3M19yqh/nouygl8ZnuctxzElIqUBC5ZC1gYGqkiC6toMjhueo4xUZHc0umYo1/FSfkpDhgn8pXhHaTqHxNQ7X1STQN5reIRvjbM54RpNF39LjBEu4OLxmfxhUtD1RHpbTYRHXzfsJTHtEc4ZnqBcbof2Gl8jbOhr/KI5jgv679nh3EKc3VfuFaFec+wlIm679FgZ5LuWwIltcqti1vqyafhIXxnc4tYJnXDEF2bwGeF6uhlt74CQHQ9aCUcy/G6zTysOcObui+x6wp4rWIEZ2OOUU+66k30aMR0bbFbXIVqnc9M8gsXToID1sTWULcvVkSfDLUL5ZYhKonUsUrah3WYW6HaaDEW1NNcV9Wnm/ZnGw6aJvCWbrmKLAknn+umwczTf8ks3Vde6SQGLPhXXs7Nyj/TTnuahfplBFJMkFTCBsMsWmrOkehXwrCaVjTY0QWdZnjD3QzTbqMS94ki25UiFkAJL+vWu8jEoMRPWFPjOJOKP+A57c94BjgknZoE1GIrtx5ETekmkeSyTP8ezaULPKE5QEvNOb4zzMbmf4PLMR6GbK3HAUHmufDtIPG/J9kQVUekzPb5XMwj0++JOn8ecCp8vw0JQyvJnDKNLNfpiJPuUV26TWbIDSbHBPJDzmnoLlICJ+nXk2oayGjtFtbo30In2UkLVFZn9aVVXq5fKBRyX/VksO4XzppGMF+3nDl6hVBapX+Hd90yS34JnkMX4znGVs0gklwCKMGfIiJ+6UnNPHUdspQmQ+gcH0umRjE3H9Eex//+SaH8m50HE056XVf/4DO0y93MZ3oxDvxuHM8i/Yeu+jMf+bmlGFftgFyhOhN0aqKrSbIjnVWj4xeN+AElbuog60M9RB2fLm9QXO8p1rcbS/PEeDrFV1K185Run+vzbsOrrs+9NPtppTlLF+2fLmN6QYUwOv82gZxSoe7YnLKZFRfWMOjCUsxJj5IzJRVePAUvniazTi9eqFyDvBajUSFlF+laLSOiK5KnUZvpiysoqj1r46GKOtK5rXpHlXrACYskcSbkZddqqBe7nGFIZAqp87tjxOxaQSxFr2dzsJ5Rup+82gDotq+nIMpmh5BqGsivlVfyvn4xz+p2kaHVsrfmFu4dewN+GANLWrGn0QE0eu9UT3d6zGq3QkILZcMl5dx+LZ7DCw0HQ8cZ4nNMfYJl3/V7XtBt5WndXtW2rra97DO+zGnTSPprf+XrEc1Z8GQ9jJiZULuYnx8rI9U0kOm61WJVPDeUaiTwC4cZmVin3WdbdF3Om66SahrIt8Y3maFdSQ/NYQIoYa5eKJHfqr+b1mUfcjBhlKudy3o946Ii+S4ogG7xlThXcIPZh2az4OgCAFaeW4kmUgT+qq7vxBrDfJ91GR/THmFd0Ee8a3uHGLKIJIeAah/wyoGRjCpeRk3pJmdNI3hRt5EP9ItVx+qxugJOVaW7rrqacVImzTUXMUYI0sfTTvBUTqHRCLVyh9dFUG/EbuimjHElmBhmeVWMfQMVJa61vVt9VWfauTtev8PUyAjeqRBGzcyd1Nn6GNnnlmEB/mwx3Ht/D+QHeacw1vu5F4+7kYXF7u9WQkuIbYS1bh8+bjOCXI2GYKmEQKkUo2ThF6O6HuxM/WoSjYJIWJB5SMzJxkDovZSXLGN43fIccgWRnjmmej4TNIqyrdN3nSC5H9TuxbSIcL4JCsQMzIoI555Wi2bbJCY6Av7fBosSHJLWCN0WuNrwvB71D3XYyY6g87qgQO5pFUJjpO4npZYZ0LpsH09oDjDhnroeYmxEGD3K5iIDa4MCKXKMnRZdAAkeK+gB0Go8uU98Qv5gRaXaTXuULw3vupRSeo0eOs1wldGopkljhv5rPtF/zEL9MjYZZ6maPGoayxr9W6wzzOMX4yS+DHsei6OMREpwRZAkztSbynV7FAHVWon0Vzc7+QPDEg4bx1Ea7HvF0feOv8eZTLXy8nqeUqPTIlt5avszTEzfLeaq6ffE/72WimcIZBrFmJxdms0r+0RtvAudXleyEer0VrVf6Oh3zv5XU3ObBfrPuS1HwKj9rrHYE1I52/9NKH/5nQf4bwlL1XZ8dvdXns1VG+Wjd43GX+/P++3fp21SJIWVP6Twre8IlErJ00h8HRzMqMdXwtG5UHYfW/3+ULWrkLTW6ALzlLzjkl4r8KvXi/SsbKIXqQd+96hKt03dqRdRDzIzkf3CoFBIRA1FSlFzZzQpWsrhY8MivALuwXEEmHRku8+LL7s5npOuCYb7yk445jBSnlgsDCLAltwPctTpOytDgvjgypesrNaWxlGN8UKEkvrIyD2ujwv6NWLpvqv8dvk+7bPfY6/xFX7zM1ExwIq98A5GrZEIvwio20fUp3AgrOwOT+vuYI9oCG5S79P3T1Nvahr8PEnUU7iuGL5RMR7KIKDYUuxKtXPi0xOfklaUxnePfyeiVg7IkUku58kdNZt3I/iQyHT9tfUE/tz7sup7u2xXJKIaDQ/VFo6q0wm2yTbePPQmnSp3olVsK3CQjk5sjRpH8c0i4JY4pnIruCzUApdjnyDuqXfx/1Dc33Stlgu660SiXm2IBgO8rhvgeJ1H6ValGzgiFo+t78S9knucefYMo6bOJksSzr992M+wR4kmSz7WTs8syaTDz2qllYsE7PkpXbb2olDO5kxcY4hz6yPdFsC2yUzQbWaCbjNjzBP4cNwclu5NYUAtPc0+OcsS/Ud0vX0U9MDt74nQN6U8HNC1IJJsBrCHt3BE/hyqLtnTgaxQDV65CLm34KeXRZ8H9trqky6H0Vp7lgxTAQVuhlaxRV1gPa9McaQ9jU2r3YpBa4DgGJ4um8G3RoVcdRKZoEQn111cR5BG3MMQPz25dV7gE91ACNoAtxXFxrAdwygI82NNxiecMo6HoFgouMuRAC37/f3QV2rGsHO7iLbaiLYJg7fU7Te8kP+h6/NS+U3Ql5/sl1S5Eq3LPqKfdh/DJ71HfKEWcn+F74Z67RtYepfPDEo9gcE6ddrBRN1Gl2F4DofSJKAC4MMYc8IYpKRiRNXmoK02XT1XrxktnHY55Reke+eFYgW45XjuaTodO4xi/Fgd9BwL3A4tsZbQ7OtmjK4/mrENxmIvR7Fnb/MKVHoYXd8v4NJ2WOfo672WkBipSNgLo2oSOlvpE7OmTWCOfhUz9av5DnUkeqDuVwbqxHNdqmtIL/m0s9wFA3R7GKDbQ6+yNxii20kPzSE0ko2GJHBHL8yMvs60TgThuc4wTzzIGzDLBMlxCXxXCmf0N5nlUKFihl/1DagkZVJTc5sJus08Y57CSZNIo7IDd0gZ3QAAIABJREFUM/RryMefQ/Y6vKVbzlpDEr8nHCX6Tjuu5HcDZI4bRxMqFTHS/BKP9BrCw/bjdNqs4XntT7yk3+C6rkc8iN7kmASwXKFrtlsh7oTmInXl4k9w1qM+VEQSF7MvklGUQbv4dmJbxVpQsRZH049y8O5BXmzxIgUJzRj+4wDe0sRQ47aidJJi6oFfLUjZpXI6rtpjqKZJY6OtNX20Yj77VB8ChHC38C40GwM/K2TJFL2iWLZVSIJ7IsL/W3AoctV+SJUaCcf/wlY6a0/QmROg88MeEIkm76aKhAFEAf9jCjmgKcuD1b2ZBEwS3DPvhYXyZGgMP926S4IhRKgnSvP46so6MrJ0/DbgC/pU703uud2Eft9XHNRwMPnmfALDKntFSP2K78LPr/Kow5eqJGVRSZvFWwjC6PlR4+Hrg5BxBh6dJwJPXwpllP2hx9FUbYcUHgmORzfVPpKdllpEdQ+HFKECskgyJD1CqbWU5usUUqRAqxGOx5Xd8LWbwgGhGgdE/ZDvhrpUx0XBSeC2qtTV3Kuuz+8fF6tmOgMCZ549A2GVWZmYzIHzf7IprhZkOIpPh1XBmn+HLgnC5tr62Bya6sKomZfOmbiBfLW/q6tdS8ep0PY1eF9JvbTYLejr9RMr7+r94Js2YC/DIoGpLFMZ8/Y7/gGXHM9wkmUkOyvvxK6x079AsTVsQHkx+qoZO6nq+PIPP9HQN8FBNLgvbJ0q5wUZcjWhL9Vufs831vZYdP70kJRixK656LldsHsO3DkOTZ+Dyq3wdwSd3FHy2Lv46RzkXKsX4fR6qNVTpOYvaycWb8lUF09mRibn3onFLEHDMqEgflu/HDl+Nrk/9eIp0xlRpdaR3TVCJ+yW9dZ2gHBSzYHR8NIFkCR0Wpjslw9+4Qxwu1fjdZvItAoV/HFDU8LDw7ktVyQtX5mLn4wTTrNnWrAKDQZBQRrsUwie4qbDuVaSRXiDSZw4so/HLk+jkeUEZMMhk3hnkx3jduT5Fexw4wLbas/wi/QKg81TWWT4iEaOlXctsha9pCaaUvR6Tsb58xAOwtANZVbfqthiSzEWu4UQY4hquy7kOH6x33G3tAmxSY/CITFOmW1u6d1jDmHLvQE/ONI4Z3uoulJ2k67V8mRCJZqXlPLHzR/U33d5Ey64kW7tpxBcZwj8MBYubBUk7cYRXtec6xfBM6Fa4m1VWD5cvH/7b+3n89s7SWvam/mndguC4/5FSiQJP1kmpcFkqp8Us7IzffZi/nW+u/wdT9UUK/B9+HRDaka3RQq1wYbnwXZJ9azvFd8T9uZTq9iyKpktQRDa+hU2XlxBSVgiC66IoNfLsfHsMrrZr/Wfxq73R7NeKbHhE72WQs9P2X77VyYVC3v/J00ga66qU9qo0xsubQNrKR8ZFpPm8Zb/NKE1ZZZWHM5uwPxfx3DZaGB2m/nozm6g9Jbob3rnIkJAkbWYNqfFAkxnZueJND4Hyhz3yvXc27+OXFZA2qndxJamqMhCgKHmSczVryBOyqS1Q91aJBsZH62IFMZcWM7Ouk/Tts8L0MdNuTzxDOe3fkRYxiFi0nYTLBUzmIP8iXLsrYJbxAep/axrudd44ge16MDZ34+lOyoEORfc0mjgyeXQ+zPur24AwJNblLlC1vtxKaoO1/otolvtQaLUikYHebfht6mQf16MWcG1YKcIRC+zPsYbeiMM+p77edcZdk69aJfWM+PjX4gHSql/GXaHhPFZkImPOitO+d5be/n97u/suqFEvwONOooG/cTumJEMSXicJWEh7NXLrmi7TbaJoou1ewrDZphiQCwsOUurb1oTHRlBaRuHeqKGWJLV09FNLxIOnPzImyJvt1onsXqUWzqWHBJHqd4t2pf8FEw4IYzal88pCg5fCKgABn+oo6x6QMNBonBkx+lYWjpytyNrCvVTXDNOVG8DwNDtQ7lf/M/rm8SG+vHGE3XZNOZhlr74FDR5jrHRFem3azhdN3Slw/oOggQIiROT6uw8kafsgKarug7JoJ8HkWEpEOlyz24R+z6xGCJrsbRmE5JXqQtaP7/reRFhccOeW3u4mO0dQbP3W+nzN0TWVdRT79xcpOoT4P38PFFqLWX95fWM2jXK5/fawAh+DnVTcbQYAy8chFm5JI38Cv/QijBAOExjoyqyKvguW69u9dmW57LFnrhXoijlGj36DDckoQiQTWoV3NT9Uzl0V110+XK2YrBKkpYGVRMZun2oOGdYZQrlcmpPNB/FFbsSRV9s+BjD3DAmHGhK5OcNuG4a7EVCuJbUffZHkXboQJocDp1mUnXc97wT5aZmcEzeNrtiKKruRWg8DPqOn1tvoFnpIoZaXmOKdSRLYuYyNDZKNWkXmn2nKNhlu9ooRP3se/bqxzprBzIeX62kiPnA822rMLZDNY5M68SCvvUZ36stksf9LzCLKHZknX3cHXMQXjpH6bhToBWTuzY4mmdio+kZF8vJOo9xW6dMvIc7iYjbXlt9rBolBWlNfcVwcL83kiRxW47kA2tfgkLCqVspRBhes/NgZjaMO4alTm8+DgtRKRAeKVMM/w3djrE7tJ/63tR21J4JihXv6WSP1e6cSO6nkJvAOpvzfVO2OZ+r1EudIuosWu5+/H3dBtU+zue5/tJ61W/3JF5V0eyaXcXCCDOzoWIt1Xg6erdQaHx94Wv23NzDKtujPF02Q9UWLceR0WejatOi+CyR/ueh0thsnEkf7QEMks1lhHpibrO+NEwU43+6VktylQROuqeXIdQs3wQFYgc6ak+6UnMAVhuUVKX6VRK4ZNCzUL+MA8YXaas9Q3t/kQbULuhHUk0DSTUNIlQSAZFlhg/o+3NDYraP4LxpuIqQ+itsT1XmP1l2zJONFbWepd0UCpqOgIAK9Nvaj3G/jvNqY/iO4Sw/IxQsh8yZXDQaWFK9EdTpTU5TN0XG4O+FU+EGZ9qIk5DyhR0NRNqWXEGdWh3kp3im97CxN7k7NBhAWd8vWFSjmaIc6rMMzUvqiLEXqnXEPi2dUh9EwVnHM0xr8JQgF4JjvYokI0mE1u0CVdpRJEmkV6zFw+se5vPTn4uCs4++JfrqrFxwS1Wwm8I5ZBNqCpvDcbLYLTB6PxdG7eZuQJhQ2jjqBWr6r4FmzyO51eD4aHBLcmr046sUJS3NOeZ5BntcqNEZXr4gUsWe/VHYJjqTsCXcFki5LUcQHKtezGPCngnltu05t629uFb548WT7BykqNR23TtO35ML2FW5AclV1Qouq90KwTEqJ941jvuHC9vNUSDc8pQ6lXKfn0k1BpbJem7FP4FdI8aHsqrtlTbHHRHK6NEHoPLDQuHWTknvPxAYTHKVBM406g+AFOOWFhqWCB2nU+3Zzzg85BpTrCM5WuMlupQp77Hzmi8FhFA2ZCNMT4dH5yHX7M7XF9eSW6peLr3Z125pnYGR8NI5ETDyCxUqtHFHkYfv4Ert8ZTJejqVLQStnv6VohkSGw0j97qUGtL8OMJyvPv9OXtlTjaaR3YnhXguG7FTNT678NoNmJZBSuOZJGnuCMIdONP4TdrWiATJQkK0bzVXudAZRIbD9Htc67GASx2n8JrRzICiEwQnVKFt32e54lDP/y0cqw5X06RxyDTeRUgBLkLKBqxO7oUF6FMpmnk5R7HZbV42oVN97YnHNj1G62+8C3VXTRS21rU8db1P9wAZwI2/WZTEuXCKk/hUodV4CHNbbS4wSpTH6P0ZB5/8lA8st+Gx97wOO955JXf1Ov4w3WLr1a0kr0omt0z0tVJTiKj7OvYPLozZT7PEeD6NScDU6Vl45RK0nYytimLPXc5RbMpeDStRKyYY/MKQB5W/mp9TTQkgO8ZKW6VGYqxJ6qoipNKLhS+hqf04vH4HBqvnZBU0GtAZWHRikWtTbmAFNnXaw0fW3nzVZCN0nEFKx9e5OloJvJvd+vauG7vwN+gICzBQLAtbMTu+GSQ/hdR9IWWO8g/upJTTLnGiSanDxmk1gZI4EZwtszlITY0Wqds7xE5SyKiiDkog9JI9gdZlH3FHFj5p6cOTaVGm/B6AknL6Ilo9tXu9Sszz30FzQVZ50jlP/6gOSltsFo5lHFNts9qtnLovFGXlBQBvF5Vff7Tv1r5MPvYO6cUZQsGlM4qgpWPukCo1glbjYHYepVOzaD28P3229KG0Smu+0Xr/tv8JSqkHpNS/DM4X3l0hMf7X8T73jUpqQudRC6meKFbEc598vIobukmrv7v8HQUWMcGaOrwmiBSHkbr75m7VcS4HW7aJQtPPbIQxB+Glsy7iRnrpHKZpqQqR8+TnokhydDLXcq9xp1CdxiDLMveK7zHv8DzyzeXUmek4DdpOYtdNJ+migUqNYMQu8FfSXJx1lG4X3CZ5VTK7b+z20ZgaYQEGHooO9jnJnc30WI5c7yecwen3oXJLr/2LLEXqfRsOgrGHWXZFTGTuz+T0/dOeh6vamXd4nutvWav3vWN0PZGi1tLbaQK3CcMDzueYZ/7rugT9W/mj9butXLtWJ1JY3A25mt1ILF3LZaO4xks5IpS9/tJ6klclu0gMZz0k1zX8xYA8ql01khxLqxZZiii2Kv2/wFLAyF0jyyW57NixyXaOZxxn3+19Xt8XmAtIyVGMuC7mhfQom+uSRrsjVadjdXAQDP1ZvfpSp1lQpQ0M3sAg8+sks56d3X6iSdPG7M45zxp/RbTqJC3cjT+rD5KsRcu2hEUpapZ5o70VZuU5W/W/qu/13WenP3N9HtS8MrUmzKbz2Wnc6L9K9N9JVz2bwd+gY9KjD2F0EElltjLX2OOp9MqwHWHw3vFcK0jFFJEIPdVRoBKNxDPFZ+jmljrTvHUXbFNuk9FzDUxOhfZTYcpNbsQojvf036er2ulSO4olg0SR/Vv5t3h136vcLbzLqayzEFGDPU0H8nloCB80Fc9vvHkcl+V4vgkdyZhqT1EceITOE5dz/bmz7Ko9H3n0ASzNBQl7MecSpZIkHD6fUPfRrfaWjDJPFOOdA65nGduAu8O20qJGHZ4OmsPmOiLCSGAUQyo3ZE5CHVaEqgm+w2nCgMsuzSZ5VbLLYPJ8N9wJTbGD5FLgXci64Np8PktETt8+8jYT9kxg45hWvDlxFIxViFX7I28SVa8Tr0Uu5g+7myJDkuC1VDJGneHpshmctFd1+40a5tj6u/5eGvYq35ti2Nf7S769fwSrJBLJfmsjDMZNQYGufa8PPsycJsOZFxHOnjqKKmRzv1W83dijDhpwtFY3r20gVrpyx3fWtj73e9b8GiMrfs2C2A/ZZmtK09JF/GpvxLnYXj7390pfASZzj1aZO1VjjCzLXs40CGJfNc72W0lwfQ+Sp8EA7NOzOFjjVW6ZavJ74jgh7Qeyui+jeulXrl03pWyiwFzAo72GiPl0/FHGhS9jm60pf7b9kiu56jo4mY7aK5uvbGapNZ0vn5gHr1wWAShAfvEUt6M6UTJaqdXEk19Ajw8ZEKKl/tpmNDWfxfLYe9iR6Fn2JomlazFVFQRscb2nVIWbneOAavwd+C0tEuPptVWkNey4sYNjcfVYHx4p+qokweSrgvydehfNlOuUDvqBxNK12A3iuVrsFpAknto5nEc3CIUUbScpK8i6QUbm4eoRfDFUrVp1qkBKreU4NyDItf5fi/H7yc9hyi1hSwTFUBD6EL/7d+LQ04vYcct3gWenk+sO57zunFfTPBwb97H/T0d9HPc5yPP6Pdvee2uviwB1bY9IEgGi7u9y0aBnXHRFHk+qi7n7Qui3ivEt+lO51s+u/UueUhbCGHt8Aa8fniPStIb9LFYB7TDVZbPNShDj8Te3HPZW5EMi9X1GliCJ2k4CrY4WVSuQ+vZjvNW3ER2bKmOJVbby+enP6bu1r8qOOZ99nrePvM3Mg+WvEgqI+qAeaY5SQgtqPDWXJ5OGom+oDr5lhMTSNecA17q4zR3xzWHAN8jj/ySxdC2PmeeT2Hkkozsoc81Pqdu9gjmAIMP0Ju7UUEiiydFJhFTNoHZsMI902M6HF17wPu6fQGfkiXOf0vf6Wk5kivG+2FrMqF2j6JNzAHlWLoc6b+B7W1s+srrZJKN+E2q+Lm9CvxVsr/02l90CakXtZovnEt8cHn2LTe3GsKDwT9b2+xjZ0S/fP/6+V02p8pBZotR0cn/Xq0YoY/vGKwqR4npnHbhfogSIV59frQ4YD96A3MRb6eSCJCm1Sd1hCGDUnwuEnd90hCBSnbWcgIQIhapwvi/Od9HdfjmbK2zUz0zQbWM3UcOx4zRsf1F4usRawuaUzZRYfS+oYbPbaPutMic553BJksRYM1C9mqrKVzAGCiXkfwAJid5tGvHi3JUM6dGJH2Jr0PvHvvT66WlRC7dmd8zPK2PYy+5ZFI5bsSf3PMW2UgoCKlDaQMzvBrdVMT3nxgNvPo359Qzo8gZlBqEU87Tr0erhqa9g7BEC2k1gWbvDPKZdyjNdW/HD2NYc77Of9gGbMXSayol5atWqz3fRHRoNdHsbmjzHi1HqMjBOP8OJRmsacST9iGrb4pOLXYG78sQRvsZ3T8w5pCwi5Jm94ITJoGPZufe5knOFL85+4fN8/xMKnT9I3/uXwlfKUnnwShPC26nx5RTbZTsajYaz8fWZ/ZPvlCunxLrI/M9WFPJE7y29vbZtvLKR2YdmAxBkCGJCownlHr/irPfii76cigvZwlHbenUrnSsrKzhsT91O3Qp1iQuK8zrGF8Xh875rtN6Fth0ojwRyoshcRKgp9C/3AZj/x3x+uKpImstVGWl1MOGUGKxXea/05WuQl2XZ1Z57ZMcXNFqln5QXUQP44/WOdFaX/3Dtf6/4HkGGoL+9N17X6XgiQ7cP9fn9zIMzOXnvJFt6ef9uJ+4Ve9cpG71rNKczT3NqyCnOZ52nXf0siooqY+4zCkO/FVCaBzumQcNnGLH3BTJkCz1j6goZ+6spgmw0OgwznZFZL44lItBIu+8b8+4lGFN/jOp8zkl7c4pyg6x2qyoiBRAeYGDHS23582YON7N8T3ROQ8bXO+7pCJ26d0r1t7M/LT+znM0pm9nUc5PPc8iyTEZxBtEB0fT/sT8pucJ5OpJ+hFkH1fUB7pfc54nNT4j0FZ0jgv8XRu+7x95lUtNJNE/KwqrTomsvovPu7/CWq1uY+/BcPjnxCR0TOvL5kCbsubmHfHMAc/+Yy8G7B9mRKtQzvz39myvnv9i/AszM5vV8M0/fL6Jpla7M+7oB+48dpmuVR6gSH0+VePFsLG4rIZ6+f5qX9qprjTjh+f6/378Gqy/8gSUoyrWtwFxAAQVYbBZ2FV6nyFpAozZldKjShOU/g6QzckJzhxMebVvtVqYemKratuWq6MtepJSPMQ6EQdT/p/4+vwNolOBUPimEjjOtc+7oAVhsT2PTAmuEem75meWcyzxHhbqDGXomjnn6L9hsa80uexMaV5UBUfuuz7BJdNq0Hk7OdrVb8vJ5Cm5shxvg13Q0XBTFVqtUr4UmzQSZUNBwAHT9GIqzmLFdRDar9l8Gf8x1taN7qDsZxQFEXVlHn7LZWPxPgOPu9Yt8iBn516gXXI3X0vozK1LLnobtiWo8gplvTOWcPZHjck1+7deOKhEBtFuYyOuda6CNjKe/D7WT834sOLqAJlFNXNucwRh3A3XOoTlsuLKBDvEd+LijQsBO/326qz864Wus1Oh0tBo0A5hBPLD68Ej0GolOtaKwspsv7D2A/aQXpTPvj3m83UZRnrw1sg9XMh6hUeUwrq+arWrXU12XUZQBbv1TCksk7gV1FH5y9hH+SP9D1DB0IL9ubw7ou3H6mxO8NdDI0SxRx6/cQJHj3JIkuYrKujtaw3aIhQqcKTCeKrwOD1Xk5Mwu9NgynxLbP3BI3HCrQFnApEVMCxe56yR1ynMcfeHTM8uoVaEWnRI6ETTxDx4GGq/2UQbgL1BsKcagNfgMtGSWZHI8w7teoPv1OuFL2WyxWVyByBHJI1xjv8VuESvyRtXhRsUE2PcqOWW5fCTlManOSA4dUysk3Yk6p7M2v42a8LtXfI8/0v5wBSlVcKS9W2wWVp5byaBag/B31HoMNOoY17EK2zYp5/r4hHhH3NUKzmecVeK90pzZZlY5xGabma1Xt9Krei9VmssN6w48F9377c5v3Cm8wzJ7Fm8/5yCs4oX6ypGQBUCAUe0ifXLiEz458Qmbn9hMtVA34tXRr2tVCmOUeSIv6Layza+UbQdn0LtGLw6l/e59f/43UGQpctXBKbYWU6dJO6Yd1tGqeijkOerBxtQX/xzo0nc0F1sPhHPvUSjb+LNGY9rGCVLk+8vfM+eQUGdmlSr3etOVTeg0/7mb6O4v/H5X/HZZlr3sAXe4q7oXHF3gqq8FQPXOlAVHQJrvOmee8GX/ltnKMHZwzJ8nhCKn1O4dtPN8x/5qbChvDDLbzC41X3lEQk7ZX9vSXoElxHti0vlQiv0DOK+j0FzIopOLXLYDIGrhtngBc5a6Jqev803ZP4U9t/bweFVRHsSgUauc3WHSa3FqlJz3ypMMAsBt0Z2RHWoxskMt5h6ey6ZbVma3mk3P+iKTQOMxXhZbi0krTCMmUKkhNfm3yeg1eobUHsL+O/sZkTwCerwPHpknvrD/troeomcmiROLTy5GI2kYWmcoP137+z6ZV5ZHqbWUQ3cPuRS0IGq91ousR9NodbBk6amlPFzpYc9m/kcUOn9ASv3L4Mx/Lc+hzyvL8+rYv9wU7HhKTopLgjru13Es6rSIRhUb8dvt37hRcMOrrfvF9wnQB3hF5NzhZHszijPKTSX6K/hii7deU9K9CswFXu36Os/VvKtsvbqVDvEdVI5Dma2MQnOhywAz282u48tsZUzaNwmtpKV2hdpMbjqZ6qHVVcd6Iq8sj7UX1pJelM7IeiO9vvdEZknmX96XjOIMdBqdl1rME+7SYRBGy3/lfueU5mDSqieh1RdWuwwVZzom+L7P7tEunaQr9xokvW8SBeBi9kUm/TaJkcnq+1dsLfbZnnPb30X0nCTPjfwbnM0663MfZ39wosBcwOlMoVBLK0pjgJN81cO0A/uZ1XKWIBy7vc39kvtkyOIaJu6ZyLC6w6gaUpVQyQ/c2owNk7CjGPye74+vdMy8sjyfRgpAUrSepOgQn/cmoziDi9kXXYoYd9wpUPcpzz7jNCKc981TBem8V+suruPjEx+z4tEVLkIK+MvJutBcSIlFGHt/pb776vxXDKs7jMc3P07nhM68+bDDmPRQNqQVpfH5mc9ZeW4l3z/+PRP2TKBVbCuvd9Q9MllmK6PQWkKwPzSobMJsV/pkan6qUrMEtSG168auch1vz/5zOO8LUszb2JWqqCTfOfKOKx1sXINxruOc41J5/fjkPe9i0E7YZBuF5kKXQe3+LC9mXySrNIuHYx9WOecgyEr337Lk5BIG1x6scpazS7MJ1CvR7vulyu/76M+PADg44A321w/j96vVsOWWsrVLEnbdPQY7Fp/zN3kHNe7JFhfJbdQphm2hudD13EqtpRQaA8AY4Pr+TTdCCqDMbiag37vk2xfy5xs7aVPFDMWClLoYWMyUmKas77GeWpte5GbpVTpfucqhJiP4Sm4HEpyd0851z36eKIzDl/b6XqoahNJs7cW1rD6/2us7p+oTYMMVkRq459YeVZ9wJ6QsNguF5kJXKovFbil3zOzdqIK4TnMJaEqpHBPKVYdPdDP/puo4jQZqxuh9tuXso05CI7s0W7Xf/ZL7bL++nYG1FNXHtlTvVQTvFt6lQ+3KfDgcZhxSSNq0ojSOph9l2/VtTGw80TWOLDu9jNmHZjOn1RxaxLRQteU+r+SW5pbrCOt0itOYb85XBUn+am44df+U63O4SVE55pvzKTQXqsi2v2pPRnYpSg8NUFLCvaL/f4Os0ix0Gp3P4zqs7+DzmPNZ572u871j77Gg7QLVNueiFiCCbK77VZbv+k0ZRRmufa7kXPH5W33dkys5VziSfoTzWed5vdnrjNk9RtXnnTDbFDtqc8pmPj7xMX/e+5Mnazzpeva3C5SUXPdxyf0dcL4X7naZE3cK72CxW4jyj0IraVlxbgXLTi9DRqZrYlc84T6GO0mLrJIsCqMcRbbd2pe0BZhiNnI2K5YaoTXwxMhdI9nYUyFus0uz2XVjF6XWUgYPH0GvFXUIQsxV/xU7rDz7zXk/3FVJ6UXpRPlHsWVCEwrMBfzgyEj29R5VjtBS2G4yUw9MZc8vY9nQcwOxAbEqJYc70VJgKVDNg0781W8qMBf4tI3/SlFSaC5UkWG+vn/niPcCEe7fu5NJJdYSr2tML0qngkmMoTqNDqvdSmpequt75/HOfm+xWziSdoTndj5H54TOqrYKzYUUWgpVgb1ii2KffnNJqel3Jcd7xUaAvlv6qv52qvud745KGeVASm4KicGJPtvzvD7nb3Bvv9BcyNJTS1lzQT2/Ja9KZvuT272Czp+d/oxm0c24Xai8q85Flpx+oyRJKp/J8xqccNp594vv/6N34ttLQin2apNX/3K/hccW8kYrZXXkbdfFXLXrxi5KrCX0qNrDK6Bb3jV6Bm9T81NVfzvJ8SWnRFriopPqdEJ3uN+LM5lnaPp1U9rHt1ftk12azfAdw11zifvzct5nd/wnYpP/rpD+rm7L/xQ0adJEPnbs2N/v+P84ntzypBdB8QAP8AAP8AAP8AAP8AAP8AAP8AAP8AD/vbCp5yaqh1X/+x3/30e57NoDpdS/DBMbTWR76naSwpLILcvFYrMQ6R9JsbWYYEOwzxoEWSVZXM27SlJYErIsk1mSiYxMtdBqaCUteWV5FFmK0EgaAvQBaCUtOWU5VApU8tOdRJiEhFFrxE/nR745n2qh1cgtyyXU+PcpaL5gsVsw28zUqVCHSzmXsMk2/HX+rvMlhSn5/jmlOdhkm1gBz+23Xcm9gsVuISksiSh/kaZw8O4Ah7Z3AAAgAElEQVRBggxBJEcoks7LOZdV7YFgymMDYrmad5Va4R5FWxHRn+zSbIINwaQVpZEckUyhpRCb3ea1CgmISNf9kvtUDq5Mal4qNcK8o3AgoiVpRWlUDhar2xWYCzh1/xQV/SuSW5ZLobmQSH+RIx1uCqdSYCWOph+lon9FNJLGa1WJ8u7t7YLbpBWlEWoMJcgQVO5x94vvu57njfwbxATEqKTz7riZf5OWsS3/Vt2VVpSGXqN3RaZqhNYgJTeFGmE1XNL82wW3CfcL53bBba9nk1eWR5mtjIr+FV3bruRcITYwlpzSHFrEtOBQ2iGsditxQXFISBRbizFqjdwpvIPZZuZO4R3ax7fnVsEtCs2F1I2o69V2ma2MtKI0EoMTKbOVYbPbuFt0l8TgRFUkMq0ojSJLETfzb9IhvgMZxRlU8KtQbpTmTuEdMooyaBTViMs5lwkxhpCal0rzmObklOZwv+Q+ZpuZmuE1y23DE3lleeSU5aCVtHRN7Mq5rHPkleUhI+qwxQfFc6/4Hha7heqh1bmZf5MKfhW4VXCLh8If8mrP+U5klmQS4RdBZkkmF7MvotVoaRmjqH8uZV+iZnhNruddp8xWRoA+gCBDECm5KUT5R1FqLUVGJtwUjkbSuNQKzvZvF9wWEXLHu1M9rDo38m4QFRBFhF+EK0Lofr+Pph8lITiBMGMYBq2B63nXiQuKQ6/RcznnMjVCayBJEpdzLpMQlEB6cTpmmxkJCbtsp2Z4Ta/fm1GcQWZxJnUi6vi8FyDGnD8z/iQ6IJqM4gyCDcGuvuI+9njeG4vdwrXca9QMr8nV3KsEGgKJ8o9SjTspuSlUDalKZkkmBq0Bk9bEtbxr5JXl0bpSayRJ4rfbvxEfFI9G0rgi/u7pxZ7jWF5ZHvnmfNe7fTX3KnqNngJzAUnhSeg1etKL0skpy0FCcvUDWZbJLcslzKROowIRyddr9JTZyigwFxAbGOu1D6AaKzKKMzBpTfjr/THbzATohfoppzSHMFOY1/vs+Tu0khabbON63nVCjCGYbWbyzfle4wKI2n5BhiCCDEEqZcz+2/tpGt0Uk85EZmEZsgyRQd7L1YOIYkpIZJdmUyWkiksFmBSWxOWcy1Twq0B6YTpxQXGEGENcv6PQUkjB/2LvvMPjqK7//c5WuWMbY4MN2PQSamghfJPQSSAhISEQWiD5QUJLIYQYQgu9dzAYjA3GgMEYbCP33uXeJEu2JKtZvZfVasvc3x+zszurYkm2pF1rz/s8frw7O5q9O+Xec8/9nHN8dTg0B5tLN3PxURfjtDnxBryUekoZ0W9EWOVhbfvuqt1tjgdtkV+Xjy/oiwolao5ds6NQYQWm9TsrvZVR5weM676zcienDD3FCDsIeunr6Eu9vx6bZiOvNo9hfYdxzKBjjNBuFNvLt9PP2Y/B7sEMThpMQA+QXZMd/q5dVbsYM2gM64vXc+SAIxmcNJhqbzVDkoawt34vxw8+ntSKVAa7B7d5L5kEVZDc2lyOGWTkMKv319PX0bfNMBlzu1V1feKQE8mtyY0Km8yqzsKv+xkzaEzYzmiNgroCBicNDt+/5rGX5i/lzMPODFewHZI0JKzIKG8sp7qpmqL6IkYPGh01zpZ6SsmqzuK4Q47DaXdS6inFYXMwyD0IGzbKGsuoaarhxCEnhu0Mt91NUX0RA90Dw8fyBryUNZbRFGxieN/h5NXlcerQU1ucLxNzjDGvUXljOcUNxRze/3DqfHWMHjgaT8BDfm0+xxxyDC6bC4XCF/ShULjt7vDzeNwhx5Ffl88xg44htSK1xTO5q2oXw/sOj+qHwOib6nx1jBowitzaXOr99Zwy5JQoRYC1H6j0VpJZnclxhxzHkKQh7KnZw+iBo8P7m32tlVpfLR6/hxH9RkTZiObz2hbplenhvtC8h9Ir07FpNsYMGoNds9MYaERDI8mRRIW3goAeCNuYhfWFDHIPop+zHzbNhl/3U1RfxJA+Q9hZsROF4oxhZ7CnZk+4z/MH/dht9hbPZJW3ioAeoDHQSFAFGTNoDH7dj8fvaWFnegIe7Jodt731fg2MZ3x39e7wefUEPFQ0VtAYaAzPA9Iq0sLjYHVTNYNcg6jwVrQ6xgHhvsL8/cUNxbjsrvA5P2HwCRTWF5LkSKLWV4sv6GOQexBJ9qTwb3DanGTXZFPeWM7RA482zltoDuPX/azcu5JjBh2D2+6m1lfLIe5DcNvdDHIPQilFVk0WSqmofrQx0Eh5Y3kL29Z8NosbihmcNBiXzRW2P633nHkf7K3fi12z09fZl4GugeGQzYK6AgobCjlvxHlRx7faC9VN1VR5q/AEPEa/oDlw2V2kVaYxst9IhvQZQn9n/xZjXmF9IVVNVRzR7wgcNgcDXNF5EpuCTWwp3YJCMaLfCA5xHxI+X+Z1zqzO5OShJ0fN/Sq8FQxxDyG9Kp2R/UdSVF8U9dwUNRRRVF/E2cPPDp+f3Nrc8O8x29na3G5jyUaOO+S4FvelhsbwfsOjVLH7osJbAQqG9hkatd0X9KErnXXF6xjRb0SLvqaisQI0GOgaSEFdAWMGGQnwC+oK0DSN/Lp8BrsHM3rQaNx2N96Al/XF6xneb3j4t9X76hnRbwQuu4u99Xs567Cz0NDCaRFya3Op8lZx0pCTqPXV0hRsoqC+gPNHnB9lJ/iCPtYXr+fcEeeytmgtF428iMzqTArrCxnWdxjljeVccPgFUc9qemU6RQ1FXHzkxVR5qyhqKKIx0MjFR168z3G+tyBKqRC9RSklCIIgCIIgCIIgCIIQR7SplOr9qdwFQRAEQRAEQRAEQRCEuEOcUoIgCIIgCIIgCIIgCEKPI+F7ITRNKwNalpg7ODkUKG93L6GnkesSf8g1iU/kusQfck3iE7ku8Ydck/hDrkl8Itcl/pBrInQn5UqpliVSEadUmKuuukrNnTs31s0QBEEQBEEQBEEQBEHoTUhOqfYoLxensCAIgiAIgiAIgiAIQk8hTilBEARBEARBEARBEAShxxGnVALxffb3nPbJaXj8nlg3RRAEQRAEQRAEQeglPPj1Vi59dWmsmyEchIhTKoEYv208AMUNxTFuiSD0DJlVmVQ0VsS6GYIgCIIgCILQq5m2sYCssoZYN0M4CBGnlCAIvZbfzPwNv/zul7FuhiAIgiAIgiAIgtAK4pQSBKFXU+eri3UTBEEQBEEQBEEQhFYQp5QgCIIgCIIgCIIgCILQ44hTShAEQRAEQRAEQRAEQehxxCklCIIgCIIgCIIgCIIg9DjilBIEQRAEQRAEQRAEQRB6HHFKJSAKFesmCIIgCIIgCIIgCIKQ4IhTShAEQRAEQUgYthfUcP8XmwkE9Vg3RRAEodeh6yKAEDqHOKUSEA0t1k0QBEEQBEGICdd/sJpZWwvZW90Y66YIgiD0Ovy6OPyFziFOqQSk0R+IdRMEQRAEQRBigtNmmL9ldU0xbokgCELvIxAUpZTQOcQplUCYCqlfvr2SpkAwxq0RBEEQYsns7UWMHpvMlvzqWDdFEHqUgX2cAFQ2+GLcEkEQhN6HOKWEziJOqQTCmuD8u817Y9gSQehZ6ptEHSgIVvIrPdwzZRMAi3eWxLg1ghAbgpL3RBAEocuZm1oU6yYIBxnilEogIsaX5JQSEovHZ+yIdRMEIa6wKkSG9HPFsCWC0PNoITPIL04pQRCELuc/32yPdROEgwxxSiUQvoCZdE5ht8mlFxKHtMLaWDdBEOKKrQUSsickJvVNAQqqjATnQUnGKwiCIAgxRzwTCYS16p7DJmopIXHQNLnfBcHK4zNSw69FLCIkErkVDeHXkvdEEASha/AGvPQd/Q62pLxYN0U4CBGnVAKhq4jxZRenlJBAKCUTD0FoC19Q1CJC4uCwKMUD4pEVBEHoEnZV7cLep4CkETNj3RThIEScUgmE1SklSilBEAQBoMkvTikhcbAuyolTShAEoWvQJGexcACIUyqBsJpeNnFKAfDV+nwpCZ0AiFBKEKK5/JTh4dcev1SnFBIH66JcQFSCgiAIghBzxCmVQFhDmCScCVILa3jom208Ml0qRPR2mgLBWDchIfH6g5YCC0I80cdpD78urxPHvJA4WFMMBkUpJQiCIAgxxxHrBgg9h9UPJZJ1KK7xAtDoF4dFb2dAkjPWTUhITnpsLgA5L1wd45YIzQlYqo6V1nlj2BJB6Fms5o9fEp0LgiAIQswRpVSCIquDUBEK2xvazxXjlgjdjVccjzFlc15VrJsgNMMXiIwBHp88H0LiYM2vGdRFySkIgtAVKGRuKew/4pRKKCKa9fTiuhi2Iz6oqDecUkPEKdXrkUl3z2MNEc6r9MSwJUJrBHSdM0YN4uITh+GXvDpCAqFbFuVemb8rhi0RBEHoPegieBAOAHFKJRBWD/a4pVkxbEl8UO0xnFJ9XPZ29hQOdkQp1fPUN0WSZ4syM/7wB3UcdhtOu03yfgkJhXRHgiAIXY/YesKBIE4pIWExc0lITonejyileh6rcRKQZyzu8AcVTruG02ETpZSQUOhS6EUQBKHLsZp6Pz1hWOwaIhyUSKLzBEJrf5eEwjRMpSR070dWb3oeXQorxDV7nC/g0vpxuP0hccwLCYU59rsdNgb1kSIYgiAIXYHV1u6fJC4GoXPEpVJK0zS7pmmbNU37PvR+jKZpKZqmZWqaNlXTNFdouzv0PjP0+WjLMR4Obc/QNO3K2PyS+EKmHdGYhqmoBHo/QVkZ73GsxokkE44/vPZsam3bcdo16QOFhMIcDoYNcEv1XUEQhC7CmlNKid0tdJK4dEoBfwd2Wt6/CLyulDoOqAL+HNr+Z6AqtP310H5omnYKcCNwKnAV8J6maZI4yMJhA9yxbkLMMSfNPlEJ9HqCupIBsoexnm9R4sQvTruE7wmJhbkg1d/twOMLytggxDV5FR6+WJcX62YIQrsEoyqbSr8qdI64c0ppmjYKuBr4KPReAy4BpoV2+QT4dej1taH3hD6/NLT/tcCXSqkmpdQeIBM4r2d+Qfxz+pGDGD4wKdbNiDlmfykTssRABsiexXq65dzHL5LoXEg0zO5oYJKToK5okvtfiGPu+2ITD0/fTlldU6ybIgj7JNrui107hIOTuHNKAW8ADwHm7TwUqFZKmaWcCoCRodcjgXyA0Oc1of3D21v5mzCapt2ladoGTdM2lJWVdfXviFtcMgkBIjJTcUolBpLXqGexrpjJuY9fXA6bKNmEhCKslArlPGmwVAoVhHjDphkZYXMqGmLcEqE5d0xcxznPLIx1M+IGq6m3cGdJ7BoiHJTElVNK07RrgFKl1Mae+D6l1Hil1DlKqXOGDUucKgEuu4ZPHDHhSbM4pRIDUev0LHpU9T15xuIVySklJBpBPYB7xLfYXOWAVGcV4pv+bsN5Kvdp/LEko4zyelGwmUgotHAgtOuU0jQtqGnaFk3TdmiaNkvTtEMsn52qadriUDLx3ZqmPRYKn0PTtNs1TXunleOdpGnaGk3TmjRNe7DZx/8A7tQ0zQfMwQjbexMYYiY6ByYChaH9C4FJZqJzYDBQAewFjrQcd1RoW2IT6iucDrsopYislvoC0okmAqLW6Vmstomc+/jFabcR0FWUE1EQejNZtRm4BqeQoY8HoMEnSikhfnE7jKlaozilhIMMcVIJnaEjSqlGpdSZSqkfAJXAvQCapvUBZgIvKKVOBM4ALgTuaed4lcDfgFesGzVNGwkcCwxUSrmAtcAupdTNQAOwNpTQ/HAMx5N5rMND29cC9cp4AmYCN4aq840BjgfWdeC39mrMrsHlEKUURJQcAakMlhCIUqpnCeg6NlcpIOc+nnHaDTPAL/2gkCA0BbwAuGxOABqaZLIvxC9JTqNOk1cqRQpxTnMflCxICp2hs+F7a4jkZroJWKWUmg+glPIA9wFj93UApVSpUmo94G/lYwfQR9M0B5AEeEPKq37Aj0JKqWKMvFGE/i8Obf8R0F/TNE0plQp8BaQBc4F7lVLSm4dw2jVRSgFmGhUJXemdNF+hEedjz7KoIJl+x76Gvd8ucXjEMS7TKSV5pYQEoSnoA8BpM6oQN8lkX4hjwkopuU+FOEdvbneLXSF0AkdHd9Q0zQ5cCkwIbToViMr9pJTK0jStv6ZpAzvbEKXUXk3TXgHygEZgvlLqZk3TDgUqlVLnhdpxJEZoHxiqqauUUgWhz7IwHFXlSqlngWc7245EQHKIGJidp1/C93olzVdsRK3Ts2TV7ALA5iolKIZJ3OK0G0l0/QEd3DFujCD0AH7dyAHjsrsA8AZksi/EL+6QUkrC9+IL68KnUopQ9hoBCK11hRaD7TFti3Dw0BGlVB9N07ZgKJSGAwu6oyGapg0GrgXGAEcA/TRNu6U7vivRkep7Bmb4noQy9k6au0FkxaaniRho4gSPX5wOUykl10hIDJqChlPKbU8CwOuXe1+IX0yllDhP44smyzyqSeZUQGQx2Lxnxe4WOkOHc0oBR2PMMu4NbU8DfmjdUdO0YzDyOtXuR1suA/YopcqUUn5gOkaOqgrgkFBIH0QnLQ8nNA99PohIvimhDVwOTRLbElHOyGSsd6I3Cxn7brPUOogJmpKwgzjGzCklznkhUTCdUkl2QxoouXqEeMZhM9WsiW2zxxseXxDHwM1g89Ikjm0gshhsqsYkdYPQGTqcUyqUM+pvwL9CDqApwEWapl0G4cTnbwEv7Wdb8oALNE3rG8ojdSmwM5S4fAnwu9B+fwRmhF7PDL0n9PliJan+28Q8MQ6H0Vkk+iSkQRWiucrEKdVL0ZtppT5etSdGLUlMrD1xg4QdxC2SU0pINILKqLbnchhrnaKUEuIZm+mUEls1rkgt30mfkVNJOvxrar2tpUlORAw7wtTJi1JK6AydSnSulNoMbAP+oJRqxAi3e1TTtAxgO7AeeGdfx9A0bYSmaQXAA6G/LdA0baBSKgWYBmwKHcsGjA/92X+AB0IJzYcSyWs1ARga2v4A7SRZFwycNnFKAWzjv/Q/9lUJZeylNHdPH9LXFZuGJChaeHhRNDRJyfV4JayUkn5QSDActlBYlCilhDhGUk3EJ95QFU+bo46ZWwtj3Jr4wAzAMdNrSS5XoTO0m+hcKdW/2ftfWl5vB37Wxt9NAia1sr0YIwSvtb95Aniile3ZwHmtbPcC1++j+UIrmIltZRJi4BEVR69EV9H39xWnDI9RSxIdhUdKrsctMh4IiYYZUeII3fuSq0eIZ8xpvfTR8YV14fPleRnce/FxsWtMnKDCTilR9wmdp1NKKeEgJ9RZmPHpkpjPoKZRZLe9EWtp2gFuh6wy9jDm2bfZoMEnSqm2qPX6Y6okO2poXwB2ldTFrA2C0JOoUO9k2kJdFb533+eb+NOk9V1yLEEwMW0ZsWHiC6uNeesFR8ewJfGDmUHHVEoFRCkldIJ2lVJCb8LoHFyhqghNIlkHDOec1x8kySllS3sXkcGwj8su5ZR7GmVYJW6HTdSI++D0J+dz3ughfPXXH8Xk+0cNNpxSlQ2+mHy/IPQ04RATbLgdti6zhb7fVtQlxxEEK6bvwy8LyXGFNYWxGQaf6ISVUohSSug88hQlIC5H164O9gbqvKLk6G1YpdV9XHapANfjmE4pTXJKtYFp1K7LqYxZG1xSfU9INCyr+UlOu+SUEuIac5yQCX58YdUABaXKHADmWZCcUsL+IE6pBMLsGpwhpZTkUYggRmnvwyqt7uO0i1qnxzGsEpcopdokHmrFmjmlRDkrJArhsuUY40RupSeWzREOgKCuSMmuiHUzupVwTilxSsUVyuKWkjC1aDRMR6qcF6HjiFMqATEnIeKIiSCT5t6H1SnVV8L3ehzz7LsdGg2+QJTUXTDQ4+CcaJpmhDDJhEdIEKwVouq8AZZmlMW2QcJ+88HyLG4Yv5bVmeWxbkq3Ec4pFYj9eCFEsA7foggyMAsMhXNKiV0hdAJxSiUgZrhGk4TvhZHQrt6H3jynlFzjHkVTEaWUUhIu3BrxYse6HDYZD4SEwVQ4aMCh/V2xbYxwQOwqNgo0FNV4Y9yS7sN0fohSKr6wOqVEKWUQSXRu2H9yXoTOIE6pBESUUi0RFU3vQ0WF7zlEDdfDmKffzGHnkQp8LVDEh8HmdthlwiMkDuH4PY2f/+BwBvd1dunhRR3Qc1guZa+lSfdgS9oric7jDF2UUi3Q9YjDH+LPKTVjy17eWLgr1s0Q2kCcUgmI26y+JwNcmEa/TJh7G1FOKZedRnGK9Cjm2TerfYpTsCVxEL0HGGOCT8YDIUEww6E0wGHXCHRx3hOvPEtCF7K+8VX6jXkbX9Af66YIFiSnVEvMCIV4Dd/7+5dbeGPh7lg3Q2gDcUolIE6HKKWaIxOy3oc1X4/LbpOEiz2MFhpeQj4pCZ9shXjIKQWGU0rGAyFRiKhrNJx2G/4urpxV1eDr0uMJ7dObK9NVBQ1lh6hZ44vonFJybQBUOKeUMc8Uu1voDOKUSihCOV5COaVkEhJBVGO9D6vB4HJoYtD1MJHwPVFKtUW8LK4OSHJQ6xUloZAYRPKegMPW9Uqp0rqmLj2e0DbOkD1b39T7x5ftBdXh8Cgh9phJvYEu70MOVsJFJELvA+KsEzqBOKUSCNMQM3O8iMQ8gnjzex9WabXTbuvVK6nxjNNu/C85pVoSLxUJB/ZxUtMooSFCYmCd1zvsNgK6OuBn0eosqJVnqcfoExpgGpoSYHzRFBtyq2LdCiGEVN9ria6iw/fkvAidQZxSCYhTlFItEIdF78MaGuW02yRJaA+jQmtlZn8jxQRaoitwj5iOvU92TNsxqI9TJtJCwqAsq/nm2J9V1nBAxwxaxhtRXvccttDktyEhFj0USU6ZtsUjfnG+ABYVauh9PC34Wx3XO/bWxLAlQltI75aAaJoRwicl2iM8PH17rJsgdDGqmVPK4w+K9L0naVF9T5xSzdF1HdfgdfQdPT6mqqlBopQSEggVTsarsW5PJQCPfbfjgI5pVQRIqHjPYZ72hFBKEVnkEWKPdeEz3hJ6x4rmSql4Oi91lhQFk9fkxrAlQltI75aAKBRupyS2FXo30U4pDaXg8ZkHNvEQOoNhlThC4XuilGpJ0JKTIpYyd9MpFS/hhILQnVhX8wckOQDYnH9gYVHWCaoUTuk5fHoTmr2O2sYEcEppSsKh4gjrpRB1pIHV4Q+QvL0ols2Jwprfyiz4JcQX4pRKUAa4HdQnyMqSkJjolpxS5grJZ2vzYtWchKN5+J7klGqJtWJPLGXug/o4CeqKBnEcCglAZDVfCzuQvH6dJRml+31Mq7OgKSDPUU+R4nmZ/ic8S3GtN9ZN6UZU+P+AOKXiDptNo14KhQAtw/dW7C6PXWOaYe2jRw/tF8OWCG0hTqkEIjysKUX/JId0okKvxmq7ldYZBqsmiyM9hikcMJVSHlFmtsCahyaWIT+D+jgBJIRPSAjMqlka0QqntMLa/T5mVPieqCZ6jIpgKgClvdopZaKiFjKE2GI6YOyajTqvjJ0Q6U9ttvgztq0OXXHuxifilEogzC5CoegvSimhl6MsoVEltUaJbrNSj9BzOGyGM1DC91qiq8g56cliC83D9MJOKY8Y1kLvx7z7NU3jpd+e0SXHjFZK9bzjoNEX5JJXlrI2u6LHvzse6N3hUxHrPRBHiaMTHfORt9u0qHxFiYwZvheHPqmoPvqFOekxbInQFuKUSiCsQ1n/JCd14pQS4oSVu8vJKK7r0mNa591/+vEYAEYN7tOl3yG0jVKGVaJp0Ndpl0TnrWA1knrSKdV8kdB0Si3JKO22xQqlFCUJoWYQ4p3IgoXiqKF9Ldv3f8JvVT1WeXz7fZz9JausnuzyBm4cv7bHvzseSAR1miY5peIKs79w2jXqmgIJl6d3fU4lo8cmk1VWH96mx3FeSnHoxj/ilOrFFFY3sqvEOtGPPJAD3A7qRW4KwM3nHwVAXoUnxi1JTJakl3LLhBSufGM5X67rupxP1sHx6tMP5+c/GEEcj5cxY/b2IkaPTe4GlYzhlFIo+rgc4pRqhaBFKdWTkyp/MPpaDAw5pV6el8F9n2/qlu+cl1rC+c8tYnF6SbccXxA6SvMKUSYHMj5Yo6o+WJa9/wfaT5ISXAVs7T/zKz2szoyfXDZdh+SUiifMK+FyGFPpvdWNsWtMDPhu816AqGctYnfHn1TKbNuQfi5GDEyKcWuE1hCnVC/mH19u4YrXl0dKcob6CqWM8L3KBp/kECGSiPknLy+J2r4qs5yvNuTHokkJRVFNRD0xaXVOlx1XJ3qSPzDJKRLrVnhu9k4AMi2rXV1CqL/RgPL6Jr7oQodjbyEQlei855xSPksiZqVUWCkFsDSjrFu+01wg2ZBzYFXOBOFACec9aWYCv7pg134fM9jMo9XTpdATPV+iz+Jov/iVpdz0UUoMW9NdiFIqnogopYx+pDrBwt9b63PiuYKvN+Cjz5ETGDSomMoGX1y31UpOeQPfbyuMdTN6BHFK9WLW5VQC1lj7iHJhQJKDKo+fM/43P0atix/cjtYfg5s/SuGhadt6uDWJh7Io+LpSLfLWwugJxoAkB9WNB89A1FOYeba6OlFsJEAmcr7l3EejW/Keef096JSyTOAUikF9nfvYu2vo6zLus578nYLQGsrsnbrQkaOHnAUnHz4QoNUw2HcW7ya9eP+Tqe+LRHdW+ILB8PhyMKuJ9lY38umanNY/1HqPUur3H6zhiteXxboZB4Q5fttC3pnuqjC8fFdZu4nUs8vqY1b1U0W9jlSK/MtPjwmryOKB3LosHP130zDwC3xBnYqGng+z3h9+8dYK7vt8c6yb0SPEz90idBvNJ/oKFQ7XEMCd4LL3WFNZHxkYujLEK3lHcdT744f3x+vXmbaxgGeT0w4KB0lPtNFc5evyXEIqkpz1wmOHAtAgIXxR6Bal1DVvr2RrfnWPfK9fj1xrXen0dzmiPu8O49o0Tr0xMpwFwURZVJwAJ8T5bbgAACAASURBVAzvDxi5YfYXU+l4aH8XALWNgRafvzJ/F796e1W3VOpK9HwpSh1cDpu2xvbbJqTw+IxUxjyc3Orn3VV9r6EpwC0fpbCqh8Ie1+2pZFdJF6uzexhTHWkPZfVuaOr6sS2ztI7bPl7HY9/taHOfygYfl7y6jCdnph7Qd9V6/dw4fg0TVu7Z7/xYuuUZdNi0qPddTWmtlwVpHU8HYDruzUfvga+2dllbtuRXd1vkkTkv6mn1bSyIK6eUpmlHapq2RNO0NE3TUjVN+3to+xBN0xZomrY79P/g0HZN07S3NE3L1DRtm6ZpZ1uO9cfQ/rs1TftjrH5TPLA2u4KCKg81FkPopBEDYtii+GJgkqP9nbqC6jzIXd3h3eu8fn7//hpyyhu6sVGxx7pa0dhsINxVUsfzc3Z22jmzJKO0xSL4qMFGQtt/T9vGhyv2xH31ycXpJYx5eDaZpZ0z3PIqPNz16YZOV7trfu67Cg349VkjAag6SFameoqAijYyPlmT0yPf6wtE7n2lVIvyzRX1XX+dTOP0YEoGW1zj5dM1OVz5+vJuWwXvTpRSjB6bzOsLdnHzR2v548fr2tzXH9S7TcUTb5gKBy2kcJjy/y4A4IxRh+z3Mf0hp9DQfoZT6u4pG1stZOAL6pz25Pwuz+FnDQUurUvEggKqha3UnRPiA2H88izGPDy71b6wsNq4dq2bPCpcSbirOevpBazMLOdPk9Z3y/G7i4r6JgpjlMvJ7EdMp1R3jBGm/ffdlkLyK1vPe1tWZ9wTBxoaP3tbEWuzK3n3+7U8Oql1p6gVrRWpqTWjlN1mI6Crbltc/ctnG7nz0w0dzgdsOnTdDkOI0FX3jT+o8+t3V3HHxLbH1wNlIPU0HoQ2SGeJK6cUEAD+pZQ6BbgAuFfTtFOAscAipdTxwKLQe4CfA8eH/t0FjAPDiQU8AZwPnAc8YTqyEpG7p2zijYW7w++VUhw6wB3DFsUXplIEoKimGwe3KdfDxJ+TuXtnh3ZftLOUdTmVB5Tn4mAgyinVzJFy80cpfLAsm8p9ODMmr81ldVb06t4dE9cTLSpuGaYZ7/nUvt9aBMCm3M4ZGk99n8r8tBKW7+5cbqCuTkQeng9oiiF9jYnavq5jIqI3W/UuqOoZ49oavtc89xp0j4PSVDF0pnS7rquYTSwziuu44PlFPD4jlYySOp5N7li/HU+Y5/rNRbtZlVnBsl1t9wlPzkzlqjdWUFzT+x0akWS8xv/DBrj52YnDOnVvNscf1EHzMzjU16UW1pJT0WD5PPo+rm7s2r7QqhL67biOL371GjTFx6tyojb54kxZUFDlIausnudmG+XoX56XEfX56oy9/F6fzUAMR4RSCq8/GHW/PnGAapi2MCMq+rgikQOT1+bygyfmxZWqfHVWOSt3G/ZeeX0TP3xmIRe+sLjTx9lZVEtF/YE5+PRmSqn2bMqqBh9phbVklna80rT1Ft7chpLaXGDt6z6wBfbDBhrzwhXuv/PK3ls7/HfW28Pji5wDR+i8dNcQvjnPOB8dnbeZfeQhoT66q5Kdm3btprzuUbrfYl/AWvf9qK1fdsvx44m4ckoppYqUUptCr+uAncBI4Frgk9BunwC/Dr2+FvhUGawFDtE07XDgSmCBUqpSKVUFLACu6sGfEhf0OXICfY95DYjk8wAjfK+/pfOKZ0ngJa8sZfTYZDbmVjF6bHKbKwUHwqjBkY7JXKWysqWdkJrHvtvB8n0Y+2HKDEPktYmfd6hdZhLB7jYISmu9MVUBNFgUS1Yj8st1eeEVoH3Joh/7bgc3fdh+UtPmse3xkJTy6w357GlDCWcaOs0T6LaH6VD4y+SNbAjlldsX5tFNQ+9AUUrxzuLd1FoMtMEh9UBlB0uld30lwPjh8Rk7+GmoqEKwmVJq3Z72r1dX4A9Gh+81pzuqCJmqkaZOOLx+9spSLnh+UZe3pSMUN8uxNiXlwBL1K6U6lLdtSUZpVJ94ILTmZEnJrmh1X9Nh1V2KyXgiXH3PstLvdtgOKKdhZWMNA056jHT/p+Ft1rG7uZ3VvLDB1PV5zNy6/8lsg7rCMXAz2BrJr2zslhDB7sAX0Jm9vahdO2fH3hoKqqLtv+i/UZw2clDU5wfiZOwOLnpxCZe+GsmjNGHlnvDrpkCQ5E9f4X/OT3jNOQ6Auz/bxNPfp0UOoOm4HbZutdmTHJG5wmPf7aC+KdDCoXqgHIhNe9OHKdwywbD3OhKullvR0Koi5udvruAXb63Y73aAJdG5TePQ/m527N230vSspxfwi7dWcNlryzv8HVYFpKeNccF0SvV3H1gqEl2Hw6iin2bY3Qs2pBHUFfNTizt8zT5YHqk8atqwAV2nxuOn/ACdgG3R0fvTXOBKqsnizpMDZJR03Dm4L7rrdwGg6zzi+Jy+WhOTc4d03/fECXHllLKiadpo4CwgBRiulCoKfVQMDA+9HglYy6MVhLa1tb35d9yladoGTdM2lJV1T8WhWOLovxu7uxSIlO4EQEE/i1OqvQd6dVZ5mxPn7iY79L23hCqp7GultzO8aVGO/eSEofvc99fvrmrzM11XTF6by237CIsAIBDptH5gyzHyS8zLaNNw/GZjAX//cgsQcRrUNPopq2uitjPGZn0Z1Bbtc5fznlvEKY/PY/TYZOZa8jC9vyyL345b3e1OsdYcYs8mpzF2+vbw+1qvnzqvn93NBpHW2tZWwle3I3rA7tR57AaCuuLf07Zx3Xut3F9N9byc+hNykm5i08q5zE8tbrlPG3j9OidqeQyjmm+tz30bmMkxV2aWd0nYx66Sel6ZvyusXlPo4ZCWtxft5tvNBfv8+1lbCznjqflsK2h/1Wn02OR95lqIRz5dk0tuSG7eXflB2qOpWfhec+6YuL7LJz7mKmVnnB55lR5K67rR4NsH/fdn1dnngabWDd2p6/M577lF7Nhb0+afV3t83DFxPac+Ma9LqjG2lvj2hvFro96/Mi+DuTuKw0rJREiYrWj5G10O+wEpa6qbDEXrzoYF4W31ocWUtxbt5pq3V0bt39zJ+Z9vtvO3LzZHlVfvDDm1mfQZOZWkw6cB3VdFs6t5aW4690zZREo7Dvlr3l7JZa8ZDh2lFI/P2MGYh2dHdtBUi2pgsbJbO4OuK56YsYOHpm3jdM2Y0F9m38xpWjZzU4vZbQnf/+FRh9AU0PnJS0vaOtwBk+Q0poVphREHy0crs/k6VIlaKcWbC3eHFy4CQZ3RY5P5vINO+wVpJdHXrRnJ24p4Y2HHogM64nT86ctLufCFxa2mMzjQUMhwGDCKkYP7dEvYrNVR3lbKCVOh1c91YEopf1DnKntkLrM7dQMTV+3hrskb+X5by3mEpsFRWgknb34K3Wf+9kjfajqldB0uemkx5zyzsO0k/p3Eard0dKwM5wALePh11aRw+GxuRUPU/d5Z6r0BhlGNnSAfrcju2jlTxW76ak086P8LJ5x2btcdN06JS6eUpmn9gW+Afyilou4UZVztLrniSqnxSqlzlFLnDBs2rCsOGbfUeqM7s34W5ZTZ6Y0em8zoscktVD83fZjCxa8sbf9Ltn0NFVkH3NbWMCcy7VVyuOqN5TxscWa0xbJF34dfWw3U345b3eEOLq2wlvqOKox8EePoXFs6s7YW8s6STF6am9Hq7o/NiEy0zQ7ujP/N59xnF3L6k/PJr/SQUdyOl3/nLHjlONRrJ0c5xdriKK2EyUu2hN+/MCedjblV3R5S1OjX+eHRkehaf1DnwxV7ovbJKqvnhg/Wcvnry6PCeawTXHNgjkzEoruJIZnTud8+Pfy+tXwOF724mA8tKz3diWlgVDVTBSmlWDn15fD7syrncNfkjS3+/pnv05i+qaWD56z65cxzj2WZ+58W2T8szSglt6Klke61GGvt3lMhimu83PnphlaNpPB51SLffeSQvgxwO9iUV80/p+47uaTpeE4v6lhbJq/N7dB+3cFvx61m/PLoPu9341Yzemxyh0r4tqZS6ixef5CLXlzMwrQSfvj0AuZs37cTGsCvR655UBmv1/33UsbdHE7LSJ23a9WTwXBOqfhSL7SFrZM5r73+IHnvXA3Pj4LdC1p8vjLkbMgqaztHnLU/a+/+r/X6w2N2W7namto416bDVynFO0sy+etnG8PP7WWvLesyo1opxZL00ihHl9cfJHsf58Dkk9U5+zxXB8LwOsNG0Ooiz2hKdgV7yhv2W2HkDRh/Z71tbvkohdFjk3ltwS6KmoVFTlyVww0frGHaxug+fH9X7xsDxvFtTsNk7nOQFHCp27OBz53P4K8vZ8femlbH5bqaSn5jW0HAb9znL83L4NM1zft91SLU/d9fd10i4+6irL6JT9bksnbLDi62b6FcGdUbZ7kfBaLTDpghn4XdGGKbE1oweX5OJFz5pbkZ/DtUiTqjpI7XF+7i2neMxTTTBrDuvy/eWrR7n5/f+7mRbqQjyu29nbBNzVxZ9U2BsHPzQDHtq36lG7kuOJeqfSjB9zeXolU08EwbIeQ1oe9t7pTtLL6gzuW2jdQrI3pkcMOecPRISSsq36351fzL8TXnlX3DzjnvRn0WVCocvhfQdeq8Af7hmMav516A0g9cjWsNV+7oYoIe6iM14MSaFdR5A2zKq+KnLy89INVcoLGG9Un3kJV0K+lz3yf1ABxcLdi7CYCdtuO5/JTh7ex88BN3TilN05wYDqkpSilzBlkSCssj9H9paPte4EjLn48KbWtru0CoBLil+p4vqEetqO6XJzsYgOn/D96OTGrmbC/qcLJlpVSHpPPN8wJZ8Qd1qotzmL0urc19jLb6me5+Mvy2+cSwIzk1lu8q4xdvreChr7eFtxVWN7YdBuczjOsiNYRzbbtI/eZ5wIhFTsmuaNHhWyvptDY/+L+XlnDlG8t55NtoB5xSio25VczeXkRd8mOAsYrDt39pcSB/UA/HQl9nW85y9z95rGIst05I4e7PIk6Qlc1WbveUN3Dpq0vDoXUHSmOTn9NdkcnB+lZCzv7+5RbSioyO3hq3b61wdMb/5pNeXBueiI0gOkxl6LKH+ZdzGidoxopfoy/6unv9QQqqGnl2dsdzxzQPJ+gMpjHXfPK7taCGE7M+tmwxrluNx8+TM1PDIV4frdzTavWQ6xqNlfK+WhO1eyJlZG+fuJ5LXl1GamFN1Gp8wNfIn4/IATrmiKjx+Ln8tWUsSCvhB0/MY0Wz3FXNDQQj4aXG0Yf2jdpeVNPI6LHJLYxPcwJrb8crYA1xemFOervt7moCQZ2NuVXh/CAmG0ITo7ZK+P7GtoKXHB+glGoRvgfsU0nTGvmVHgqqGrn3sxR+3LiUe6ZsYO6OfTum/NacUkqHgI/DqGH0of3C27u6EIBpRO6taoxZ6WowFhMmrdrT7n6tVfIynUBmWGx+pSccDrdhTwVH1RoGJFN+1+JvwynW9jFz8Aci39neBOMji+O+rRDzts7zr0ITyromq2Iu8vl141a3mEQFdcXJj83tsIoBjFDEOyatZ7zF0f/Gwt1c8uqyfSan9Qd1npiZyu/ayI20vaAmFFakt5lzbH1OZZvOuqGeUHuyI5PTpPo8DqOKa/ehjAYj8fDoscmsbRYG6QuGnFKaxvf3XwS0/wyl7KnkwZDjxHQi7W8VveYKt7omoz2mg/HjlXt6pLLajr01HS9ooRRPVj7EhfY0Zk79iGveXsl/v41ekBu/PAvPgud43TWON5zvsSC1mHFLW1v81Pl6Y0GUzdmdKktfQOePH6/rkKJ3X3i8TXzifIFJrpc4TKvmr75/hD+zE4xSeLsckU6hOwtG1Hj8HDmkb4vto8cmc9UbxuS9vL6JS15ZytcbDKeq3aZx3+ebGD02uU2VbZ3X36bdWFHfxC8tasI57Yxhe6sbwzZhW1j7hjWh5/W7zXujiscciGLeOnf4Y+Vb+Cty27wur3ei37QSaKambm2e9NgMI4xxXmpJp5J3T9tYELWw6Q8qjtZKWKifTa3qyxGNu8L2qd5s/pBf6WFE4UKutRt9dLBgM6/My8Ac6WyaFl5UMFVW/3BMZ6DWSMb2DR1uY1tY+8mO2H8eXwBndiQVgEP5GUkZ45cd+CJ0n5JN4devOD+gdvfKfezdOXxVxvX5wSmnd9kx45m4ckpphrU2AdiplHrN8tFMwKyg90dghmX7baEqfBcANaEwv3nAFZqmDQ4lOL8itC2h0UKdhUKhaRr/+9WpAORXeViSXhreb1AfV/i1dcX06e/TuOqNNmKhPREDLXvm84wem8zdUzbxxMyOhdZMWp3DCY/OaTc21zTolVL8Z9o2UrIrmL6pAF9Ap6GhnrVJ9/OK84N9f1lZdAemJz/AM786Kfx+XmpxixW2oK5YnVXO5DU5rNxdHp6UFKat4pc2o1O+7IXZPDa9jZU5n2GAvxf4FQCPOT8jJ+km9L0buWH8Ws5/bhGL0yOlTQf2cfJ3+ze863yDlZnl4dXbn9i2Ms31JG4Mo+/zlLwoI+ycZxby23GruWfKRqgrZnrQMI5J/RYKoquq/GfaNv727GtkuW/mNdf7AByvclixu5w5ljC+h6dvZ/TYZN5ZvJup6/OYsDKbrLIGZrelyNB1+Ohy0ueMo9brJ6/Cw58mrW81T8p7s1ZyV9WrPJH/Z66wGe27Z4rRwR9KTfh3WrHeI80NivzKRryBIE4CzEx6NPLBpGuw+Q2V0Hz3f/iRLZV7P98UnhjN35jB/Keu5kjNuAatVdEorfVy16cbeG9pJmCEtV704pL9zgOyM7Sa4rBFd8O28l0M04zPlgbP4CLbDkBx/QermbQ6h99/sGafxx2ml7NFPwaAwyrXQ21ReMIS1BVXv7WSmz5K4d0lxu94IDiRxyof4Uwtk3cWZ7bb7kcmz+fawBxM48MMEfzn1C08832a5X6M9DcAhw/qE3Ucs1LMF+sisv/6pkD4eP/6eiseXwClFGuyKgg2q+Lyy3ciA//7y7pHobkv3mxjxfdkLZef2Zo5pJSCKb+HJwfxumscv3csY822nS0MTqDNPGB5aWvhyUHGv21f4du1iP+88SHbQ06sHc7becv1DlOcz/Gvz/Y9sY4K39OD8PXt8OoJHJkxMbz9lgkp/CiUz6mgyhN2yHREAdYaZqhica23x8qOt8Yv3lrBk7PS2p04B4IKzVHFSK2EYVSF+iLj/puxxTgH17+/hhvGr8XrD7JxZ/Skw//pb6HQuA+qPT4WpBp9S9jIb6UqkTUBfXtY/9ZarMNKe6q0thZgNudVk1oY7RyduGoPjf5gVNGU9jDz9pmO1itfXx5+Vvc1oTQnds0V3mA4rH75zkr+NGk9x/93Do+3YmMopbj+/TXcOH4tQV1x92fR+fWCWmii7/cYK9ETrmC5+5/McD9Gdtm+Q75MNY45GTcxnykNjR80y23UHrO2FuKwGzfG1A357ewdoaK+KZynzFVv9JvH9DfO+eMzUvnl2ysZ8/BsSmq9PPV9Gjd/1H7uxY5S3xTg6w35Ufdhdlk917y9kj98uHYff2kQ1BVfTJ1CH2VMosc6vuAcLZ1NeRG1U2phLc/NTidjq3G8a+xrOX7mr7DTynMSUuZe+cZyjh5qOFR0XeEP6mwvqAmPd/uDeQ9tzK3i1Rcfp3DCzWQXlrBsV1nYqdga+ZWedpWrs6eO46f2bZxsM8bBDeoknvXfBMArzvejFmIfu/oUhlHFYGrZWVRLfqWnWyra/vCZBfy4aRXfuh5nIG0/D9nlDeFFvGqPP+x8WBd61hamlbAqszx8j/7s5aXhXH39aIw69sytheGxDIw+be6OYq5+a0WrIcVLM0qj3psOqLk7ikPOEahu9PNzWwovOMYz8hDD/ji0vwtQ3GJfwOFURPL8+Rth7iPQ0PGxqbmj5gL/Or4KPb+BoM5D07aG1ekFVY0Mo5orbOs5TcsO583cl6MOWjqh2lroH4mxOLh8VxlzdxR3KOLjwa+38sBXW8Pnzh8IMkyrYczoY9moH88JTTvClXnNwzU0GeqijblVjHO+ET5WdXEO7yzJDEtF+zjtbMo1HLaLdpZijVxYO+ezdtvWHr6gzqHUcL99OnvLq9vMQ6rriq/W53Pq43MYkzvV2Db4WAB+71jGEst99N9vt++XSthVbYxp//L9FYBDs2dGfb4mq4LRY5NbJGSfuj6vXeVgWWUVutK46szRnW7XwUhcOaWAHwO3ApdomrYl9O8XwAvA5Zqm7QYuC70HmA1kA5nAh8A9AEqpSuBpYH3o31OhbQnLiVoex2uG0aJMmXmo87juvdX89bOIp9dpj6zGWEOLJqzcQ3pb4T31EYfKMZte4C77LIB2DTwT08i3hhc1d2L8yraakzc/DcD/ZqUxdUM+d45fxANfbeWdJZn4a402XG7fuM+OpSgvuhMIbvmcW9LvY4nrn5yq7eGZ5J183UxSf9lry7jpwxQem5HKLRNSeCs0ef/Y9TJvu97hbedbpCX9idNTXwr/zcythWEDS28yftdedSh/8P03vM84z4Ph13+aFFk9uNCxk386v+Fq+zqGNBVw4/i1/NPxNZ+6XuQc2y4ykm4nJ+km/mBfFBXHblayG0wdA7RGUvWjmRK4NHSS74VJ10DA2GfG1kI+cz2PPWTMNSg3dk1xh31Oq+ftlfm7+M8328ODkzkgvzbfyElirtAEM+ZAwTpOShnL9ePW8PL8DBanl7IgrSTqeJml9Vy4/m/8zm44Om861FixqPb4Weh6kA1Jd5ORdHsLx9SX6/PD6oTmJc4HJDlYn1PFL2zNjOKcaGnuF65n6YOXaRvzCeqKQ2fcxK/sa1jh/idHUM6SjLIoQ0gFmrj8uRmsTcsKh1ya4TV/+2LzfiUm/n+fGte7eSLzplpjkEzRTyJZP5+jbGVcbUthV4mx6tQfD/4141t12KEHGaKqWaGfTpZ+OE84J8NrJ+FJmdhi15fnZaAHdS7XjInKTfZFpBXVtpsX4eWiO3jGOZGcpJuxE8QVmhB/u3kvH63cQ0NTgEOp4a+hPsC2cyZ4azliUKSgwPJdZeH7x6qsap4Da095A3N2FPOHD9dy7COzufPTDczYspfRY5PJLqtnEJEVz815VRzzcHJ45XprfnW3JaBUSjGxWaUngJrKUua4H2aS62V+bTOcZvNTi9m7/BPYHb0usuHrF1mb3TEDOHXm6xz11ZWRDdPvxPX5dbxY/SAPfLWVQ6nBqRnG6oX2NP5gN6oR7SyqZVdJHY2+YJQx69ctic5fPhYyjPLP/Zc+zkd/OAWA3AoPRTVelmSUctGLkRwmpgLs1fkZoTx07YcLQrTyyNrXpWRXdHseo/TiWl6elx41Ltw9pWVILMCZT83n719uJqduN/2Pf5F7hj3G+qR7yUi6nXedbwLGROHad1aGJ1iT1+SyeK1xvNf8hkrKmb0Qxv+M+oYGHvhqa/g+N3/qMY/M5l8WpWNRTSPl9ZFnurlSasXusihlrFKGkuJorZiv1mS0qory11fwnvMNfmrbyslayzDXFRaVYvM8Sy57dPhXW5Wf9kWDL8iJWh455Ya6yBqa1lo4yIfLs3lpbnrYmWa3nIT8Sg9frc8PF1AwFaOfrTUm8x+v3BNWrpq5ZjJK6pj6+G8Yl3kJD3zwXfhYjqBlcrD6Lcg3+sDDtZZm4t5mCuhBfQ2VeXWzUJ1I+J6CL2/mcFpPKP/wz09qkYbg/i824wvojNJKKS2NHid//MJiXm+jAu9Vz3zN+c8toKEpQPEqY6LXz2dc0zpvIDzJz7IoQ1oL4e4ITYEgOy2OxP/NTOXf07bxyeocdpfUMT+1mEtCSbzbtBMtbMqr4uS0V6lTfVgePI2hWh3T3E8xSNUaN3dVLrpSjKCCC22pLA6eSa5+GKObMshKupWcpJu4z/5t+HjmomtepSdcGKWuKUBFvY/fvr+al+dl7Hci+5wKYxy65aMU/tX4Jkfkf8+Yj8/Ahr7PHHnPjJ/Mji8f508fr+Xezze1us+9Fc9Hvkcfztt/OIuSU/8MwElaXpQib/gAG+uT7mVz0l+5673Z/N9LSzjr6QWtPksmHy7P5tYJLZ2RSqk2w/U13c/V6f/hLFsmq93384nzhahz3R6vzt+FL6Dz6uRvuPejhZz33CIafcGwfaqh87XrKbYl3Un9/OdA1zm0Zgdfup7mPM1wcs3eXsQ9UzaSWlgbXpS1KpysijqA77cXsT6nkr9+ttFwjgBldU2Mc73JjY6lHFlvpKawN1aSk3QzzzgnMt71KsU1ho3QOOVmWPsuvHwslHSswqHZZ+p2Nzj7cqVzC3mFxvO7Ob+arzYUcNOHKZzw6BwGp37K+qR7GO96nVnuR3nwmecAuOL15Zz77MJWj79jbw3PJO/Ehs6dpxj3WUOzaIxAUOcq2zpWJf2dSc4XOev7n3PVtBP5cGbH846NnW5EfGQWFNJH83HcMceS3fd0Dvfl0C9g9PumvXb5a8u47r3VBH1ebJYUDSM1o98xHY0q6OP8Y4zE3CMGuRlJZKy5zL4RFj65z7Qiy3eVsTSjlPTi2lbVsP6gzlPOifzLOY3/Z0/m83V5YQeU9Tk/5pHZPPTNNgZTzyDNaJvmHgDA3x3TGctEtrn/zJ/tyVy46QHW7Mjk7KcXcFfIPmfPCnhyEOqz37bZ1uqyQoJKY7p+EXOC53JC3pfkLx4fbvdnKcbYay7EgjF+/eeb7bzWrG/fmFsZ5aT0N9bjwc1hg7qmUmC8E1dOKaXUSqWUppQ6XSl1ZujfbKVUhVLqUqXU8Uqpy0wHU6jq3r1KqWOVUqcppTZYjvWxUuq40L+WM7JezLzU4qgqdbfYF/CkI1IRhi9vhOl/4ZrTRoQ39cHLY47JDKUGp03RWLCVf07dwtlPR3JjXGjbwefOZygsK+e52TtJK6yNGML1xkR6UfAsAB5xfsH52k4yc/NaXSmasHJPVJiWWR3QWpbeTPD4f7ZtpLjv4S3XOxyf8znFe1KZtDqHle6/sS3py39DFAAAIABJREFUTq61raS8qprsrEh+pknL0nh1XjrzNxse7N0ldWFVja88OnRD1zTIW80YWwnJ7v/ye7vRmZ+uZeHEGACsCTOvty/lO9ejuPFxaEjR8ku74QT5o30ueI1tf/tiM9e9Z6iofF5j8G/EzRr9VP7huyd8PHOFwySvwsN9nnHh9xfYdpJaWMvfHS2NguedE/jtKzNabD/TZvzun/30Ev4b+JOxsXyX4ZxJM/Y/12445yrUAB7w/ZXTmz5ip34UTzgn85jD+Nda+jZT2WJOJN9abOQkMcvyNmyMlC0dUbYyvLL89NRl+PdEVD67srPD7QT4P20zoBijFXGcLaLGuNIWLfWdsHIPN4RWwM08HWZyzhvHr2VPWQMn2/IIaM2SPtqc8LfN+E+5DoCHHV/w8eJtXPPo+5xti6yi/sFh/I4zH5nGdwuWsDqrnOCrp7I16S62Jd3FQBp4ePr2qPCyeZ1IRN6coK54d0kmM7bsJWV7OvPnGw6Cx/23MzN4IWVqIDfZI7Ljexwzcc77NzeG7tMox4unErumKFODeC1wfXjz5tlGOOCPbdt51/kGOUk38SvbKjxrP2KoVkdQc/Jr+0pO1XJ49PkXKMmK5Bbbml/N6LHJ7CyqpXD3FvoS+b5xzjeoqSpn9Njk8LYHp6xiQ9LdDLYZz4HyVsKuuRxxSEQpddvH6/ggJJtekFYSVjG0FrFkLdu8cGcpb4ccwr+wpbA16S4edEzlItt2fvPeanRlhCaV1TVx7bur2gz/aQt/UN9nvptqjw+lFNM2FrQamlO8K3KvvuF6D19jA3dN3kjZorda7Psn+1x8rUxomj9xK9PyOHXTk2226R77DK60R6sgz7Rlwd5N3P7mDK54fTmn/28eP3omGRqrKFj+Ce6Mb8L7hs23UUYSzR/veTOqFXdMjD62iXkdnp+TzuQ1OW0/A8pMcF7PqKFzcFmcqasyy7lh/Fo+XGHcC3VeP0FdkVpYEw4tBlAN5fDpr9k74WYmrsym0RfkiQ8+57YXP+WT1TlRX7envIHlu8qiQkj+8eUW3l2SRX5lxBmxuyRynXVdhSc81R4/M7YUUtRgrHhvTIoYg1fb13GGlsnUDflsLYis6k9em8vPbFvRlcYXwUui27N1RdRk/m9fbA4nCZ5uccL+6PlF3Dw+onBrvq5y64R1fJ6SFzZ07cFGspJuZZn7AW7OfIDps1uKwavSV/AL+zo+cb3IHPfD3GCPnqiYYX+HDXC3UFWZhQpMki2Jbr/bvBdfQI8yntOLI/bA/V9s5usN+QwsWss891hOL/2O5uwpb2BRWjEseALSZrI6s5y1cz/jqtU3UrLLuOesItLfvb+ah77Z1mrelr3VjTz1fRp3fmo4BqdvMs7rdbbl3OQwfvNy9z9RSlGWm84Af2h13O6GtOhV7cHUMnpscthe+PELi7l1QmTxw2HT+IGWzWH1Oymo8oSVgwVVoQlP0A/p37Mm6X4ykm5nANFhir6Azsd/bJmwtimgs9L9D2a5/stbi3aTV+Hhf7NS2Vvd2LoqsyKL9Un3ssD1EF8vWcflIaWxLdDAzfboSe57lnA3s4BKc75an8/9X7Qecgxw2qOzuO7NBWFljvl8PjkrjctfX94i7+HcHUWc9Ngc7p2yiayyenwBPcoJ4m4o5ExbNh8Hr+KdwK/D2y8NLGfFzI/hzdM5cv6drE26H4em827gWq7yvRD1HQ86vw6/HtQn4kStq69jdJJx3pfvKgt3Z9Z7pz1FRGphDf6gTq3Xz6WvLmMkZfj9kfvdTRN32pPDaQCCIVWWeez3l2XxeOOL/Nv5Fb7MpeRuX8Vt9nmco6VzopbHxTbD3vErO3v04fy86Xl+7XuKa04/nGvOGEVy8DxO0Ao42mMJZyyKOLHPsNhOzdMIVNQ3hRdEn529kxW7y8MKnqZAkO827+W9pVlc+cZyduytCdty19pWcgTl/NAWmSj317z81L6NB51fk5N0E9fY1mAnyDFaIX+xz8JBZBwcSg0zkv7H6PwZnPLoLOa4H2ZL0l/Y5v4z3z5zA/3xMEor42XneE6xGRP1/qtfRGUv4ZfrbuEC206+cj/NqdoeLvPM5oiQbWymbKjy+NDQw4tRQ6hlftJY7rF/x9++2Mz170fsyx+/sJgr31iOR7kB+BkbKatrYkBZxDl4mi3HWFiozqNPjqXK67gLW013sTi9hJJab/jeMcP3lD0JhhzLhWzll3ueRhVtI3mWkX1mb3UjvoDOk45Poo73oes1qM5vkWvOyjVvr8SBj68H3sl/s2/lBcd4PL4g+ZUeVmWWM3dHMd6Azk9shlPpZ/atnGgzFtT75Rq/JyW7os0QZ5OvNhRQWN3Ikg3GvaYNGM7WkNr+Z9sewk4w/JvNfGaTFhh94tPcxfjA1YzUyrET5HTzvizL4HHHJ9jQGdLPzQ/sOQDs0YczqiEVVr4Oa98DImHx1tDH2z5ex+0T13PVGyt4ZX5Gi4WrRl+Q0aHIhoecX1FRXcOsbYXoM+5j1SRj4d/6jA/XqsK2js1mZ+5hhuP3Dsc8BmqNPOacwtX2dVz4zTmM8z+KN30+n63NZedXjxvnJHMh/5640BgHlaJ8zRds27gSlKKiYBcNJPHNPRexXR8DwJHL/8205GQmrNwTXsCwWRZZmkc8pGRXMH3FFjZ/eA9/fi8Z6orZUVDN6vQ8PCRxSF8XicCBpeoX4o4aj5/7Jqcw1N4AJxjbnnGGfHLaEUBofN72JYPzUzhb+yOpajQ7kwzHxUAayN9wGH22TuN14CfOH9OoXEwM/pwXHR9ypK0M3j2WfyknM1ZfyHNHP8LkP5+Lf/U4XMCTgdt4JnALS9z/YqrbUDUdP+VTdj9zFSv21HLWUYPZVVIXLnOb88LVAKzOMlaDahsDBBrrqKz3MnV9Eedo6Ux2RRsiS2ZN4XlHGqNCnvk3Xe9Rmvo5ydvO5/zQHX3H0gvD+9+z4RtmZzXRz2Xn+nOO5Kh16/iDPfKAN187e8bxMX1p4kmn4cj7h+8e9qgRXGdfwVm2TE63GU6tjKTbAcjTh3GUzeJYeuFIFl6fQR+8nGPbBb6L8dUUkwTcePHZPHD82Vz/PmxtOpZ5roe42zGTRwNGB/nJ6hz02iLusO3lJf8N/NMxjTO0TEY5jON7lJsnAn9kp34UZ9kyedo5icnO5/DknMAp70dWWM+zpdOkHJQdchaQztzguVwVmrgW7FzDqGEn8qXd6Gz/47+LhfoPAXgqcCtfuJ7lzw5DLeXHwQuBP/An+xzS1ZFk64dTjFGt0BfUySyNGJlHaSWQvQytKpe9aigjtQpecY7jvOrTOFIr41vXEzg/qYUbpsDJ13BUjjExntZnOHlDT+aBgqXMdj1CkTJWV7ZeOpkzFt3KW653SPaeT5DolftjH4lUcHnv5rPD6ot3F6ayxL0GbdAoMA2mn/wbLjHC+Ry/ehNfxjxuYwG3ORbwReBiAB4b/BKPVz7M/Y7v+It9Fi4tCKvg9iX/5kJX5PrOcY/lx+ve5rYfHR3eNm5pFpedMpyBSU4Wp5ewIaeKh646CY8vQN82KqKM0sr4hW0t44PX8PK8DIZTSUrSfZzvBK9ykq2O4MSRQ5hW8lPudsxigN/Dvx1Tuc1hOIovs21kg34C5zyzgJwXrjGuV20JTqDPISNIrjiDa4Jr+Ll9PT+xbyfHflPU97/lepfSFWMo0Q+n6jefc+aCG0jWHjGO8+lb7L4nl6825IfLHC/NKOOUrC85wnKMK+wbKcl5lzTtFwzAww51DHfY5wIRt4Zuc8L0OznjR+OASFiLNXxnTVYF54we0kId0ugLYm8W3lgUmtD/zGYY6Pc5ZnAfMzjWOzl8j5z/nDEpy6nwUFrrZUt+NVecOoK22JJfTUV9Eyl7Khm/PJtVYy8Jy/0J+qGhjEV77fz5kw18fuf5vDRnJ9+5HuVMWzZXNL0YOc7m9ZwI+JQdlxak/KWzcfASp2vZ7NSPZL5+Dv9n2846/ST+6viewTWRnHQ/sqXylvMd9LWj4NwF4OpHVlk9n302gYtC3dXp3g8JOPrwD77gFC2Hi+ypPOScGj7GKd6Ped75ERfY0uDDi0lJgsuaXiIzOIp3bC/Ai7cyCvA5HTAqNB5c8xqcfhN4KuG1k+izZSJvHjuEv2f9sM3zZc1bkVvhCee0MPvzuTuKGFqzg3PPPgfePgd+8FsyqrKoOWwXXwS+4gF9EmCE+zgIkFPegC+gc/GTX/PIYauprSxh/uCbOJw6bOjUfHUPh+QuYSSwKutEjhp0B/8rups61YczZn7IbT86OhzabRblcDtspDxyKYf0dYWVKdZwctOpOHNrIa/O3s6Yug386LLr6I+Hevry3tJM+oxq+dtnuB/nVO8EGog4WfMqPZznTGe7GkMZh3Cj71GO1kp43vERGQsmUNt4A+84P6QfjTzo/yvPW/LW5Vd6yK/y8Ijjc35vX8pPm16nhv6WxPBB5ltUpnVNAQb1cTKqNuJAON+Wzvmb/gC/KCWgOdGVURTEWxUdavmi80NGa8W8HfgNKdkVzAqFHlc0+OhHIz+1bWWBfg7DqKZ4/usE/MNxnHM7L66NVtf8Y+oWZm8vYsHOErY/eSW1jX6uemMFwwe6SXnkMmZtLWTW1kImn2g4QO62z2Rm8EKGaLVUqEH0pYlJq3P+P3vvGVbF2bV//2Z2pfdmAwQLKmLB3rCLvdfYu7FGo0Zj12g0iT2WRGNiS+y99xh7QUXFjhUbCgrILjPz/zCwN1swyfP+3/d4j+c+7vMT7Jm59uwp17XWudY6F5dPH6KuQS0BWWz+in6ag+r6urMJrvxMmsWZ8VuvMaNVpE0fyP3AF/xlOMwmqRaPFT/OyBF8/u1yIJybSe8YtfEKmy4+YbBmqwNpAbBwQg+GareheGbNQ67+8FIlU++12EHY9uZcNg7glFSCG1d9qRStkkcXcwhoW0wZ7DJ8Da+h2vdanlo9OH0vmQ1XH+IcAoJid6wMmNlc9CD971TkgRJIlHAP75RMijmbAHdy0vAjtOq5Bosv+eHg7VwR9Odv3lF59p8s7VKWRpH5bNld4eIzks6MA4N93xm6lbjygWVSM8BRFzLucQrNFp5k44AqSLKCXiui04iM3qzORQs6lrG9SxZJZuL26wysFcZG/RSixPs8ykzCy0WPQff3Me3s7Pvd15Io+GAD1bxSGPm4OueMn0PrnziwO47SwAEpmutKKKGZa9ivH0OZjNPEn39ODS14PTpgG++yUgQZke7mMXTX7Ccqsgw+N1bZtk9qHsGIdYnqb9AtoiEXqC7Mt/0uULPzDt98SZEAV9otPc3v/SrjatAy4o84JjYrQXSwN8dvvyTc340mC9RM12HVfOih2WezBwG2StWoIV5jtPZ3tlrVOS/bHins68LSruVZv+8YAwyqXdtTs48q4g2cBcfMkO7mMegEifXWOtxUgmkfXQBBEAjzd2W5HEUTzTm2GCZThkJIgLJtoO3YdprjHJHLIiNizqFFZ5XU7nzpZonb02MpILxikGYbKzc3pHlUP+Yeum0LCAF8uy+BGkV88fTdTXtpMwPT/Tgtl8Ck6Ghg/pYY8Qpj9BtwziqzXKRf6PAbvtKtB+CDokdEwYCF7/W3+J6ltn3chQ90Fg7S2WgPcsfJhXHGRFHxKS+3jCGnhPNug72aYLalPafuReKk15Bhllimm0sDzUUiMldyyaiWS43WPeK4HMV1JRQXPpCOE09TPqDFassoLyveVUmPLBkHSRHQCAofXtzh3V8TcMcRSb/1JKhQMag8EJw82Rf/3EbazmodyfVn71gffwengqBoDVCmE+y/RlTan7CsBpOBarpy7JIq8x5ntILMAak8IyyD+E0/i/LiHQ6unAiombXpJqtDV/RsBHvvpEeAH8uTXtAx8xhfHbrK+qv2+eiXnhUIE3OX1EeYrjL450NUSlzCZb0P/b5ehlmSMWZp1+25loQzmXTVHORnqTFVZx2hiqiOK7oHcinNDAaIsl7lgH400+79xMvogpQTbtNRc5Tf02uDAbrUr8zM3fH00+7mnrErC4UIsmk/7fnl1DEEcP6BH5WFRKyKyF65EoPErEDAocnEBfe0nXPxCfuIn9Iwl97gj8fu8TbDzMzWpW3XqsbsI9ww2ANhmvPLaXxtKzptJjw5RsqrIWy9bX/fAoS3WLPmNVEQqdVnDt9MyWBc1vObE5XEBCrpE1i46xYRWjuJOedhG+49CEI5H4zv4zP4Al9t6c1M3amse+XMLZdoMG8AoP3FLmQqOu5au3GK2jxNUX+Xoii0EE/SWnOSqdauXH70lt7LjxBv7ANaCEx7A9/3ZIOlO+VEExmKAb8cOtD/yRD+v273/r8F0dHRyoUL//fia/9/Y+Cai9ROmEJ77XEiQwsBcO2BmtnSsnR17r1/xOLnL6n5QWW7nyi+NnLn75CqOPMe51z7TrN8Rmf9n4QpatSjcOYaZAS26ycQJToKyHU3j+G4HOXw2YOZjREEwZZpMa1FSRrtq4E7GXQxj2OTYaptX5Oi5aXihVaQbGn22eRHNm7JBWyRgpyYZOnOGqkeEiI79F9jRkfPMPUaHG1/FF9ZQJGtdJm5inX6b/7xeuTEYPMQDPlK0qB6FRpuU3/fOmttW4SWkBq8LVAHr5NT2NbgL1pWLUXpyft5l2llkW4+TTVnaWqazh2lACb0NBbP8KN+AS1MU+mmPUAbjV07Z7KlG6ukRgDosHLH2M22LdY0k5uKSpR8r1tCJfEmGYPiOHbrJbP23ECDzHb9BF4qnsRo7BG3YpmrMKF6vSu6RzP5t938aRhh2z7b0sHB8R1l6c9WqTptNCf4UruBU3JJm9hhNtZba/Nc8WaEbjMfQ/Ypgvj5Oc7+0I4C7y/TqLAqrnzt6Vsw20muzGE3Mc6PsP2/R6rIUMtg6oqXeI8zp+RSuJPGZp/leIVXJPpsNUBgiGYLI3WbeF57DPUT1QXnWrvj4OxtP4lXt/lj8Xg6YDd6L7Y8xi8bNucyuvJCb/NIDsu5nXbnLMMJFDa0cKP99vdMa1GKMDkRXzGNsIqxXHiYwrtMKxF/VKWA8JpNUk2+tPSjjniZFfrvATgqRdHTMoZb0xsh3zuG0/rWnzyX0Za+DBk5lYLezryJP4j3prYcrLCCJ57lmbHzKndzPCN5YZixJi06jqXO86uwb6zt88jMn2kgXuCEXJpXeAJwWD8SC1pizTOZrV1OO62jxtwWqTqts57XSJce4H+EVk6FmHpD/SzG9D2JSpBtfzXqmU6PeuWoFxHA1SepDiVKzUt6Y725h66aQ6yQYjkql8GfFPyEFHYYJvBGccVbUKOmm6XqjLP0sT3LHyN+SkM0goCTXpNrW/b80yLoLePfjGdFkR9ZFq92pPPf0wdu7uQz81eUFe5wJbQ30v0TrNXbyy6elhlB/ri5ADyU/Yk1z+JGFtHf2zySFfrvGW/pxVqpHqBmY1w2DmAiTdgaqv7e7Hka4HKRIZSt15kbSakc2bSEAZqdFDetwvpRHCmbyAR4oXhSyfQj7TVHma37Kc9rkI27Oh2tCqj34VDbQwS4ZLkEcethm2roz7a056oSRpwcxkjtRlpq/mKLVINp1s+Y2qIUE7OIqFjxLEv083mmeJNv+FFO3k1Gv3MgFUXHzqI9ggpw0SiyLOklVTMzeeFZjoAU1eA76dOGJdqurH3Rkn+D5MDq+Dy3z4tlM5dy8ZuOiKLgkLVXs6gf4xtH0DCHFqIzmcSIcZyWS7BuWBOazD/OdO0K+3wNvFVcOekiMi7Ak5hMWNj/GjN2xTPofEO8hDTi5RCamh3XifOGgRyVyjDa2t/22WLdPJpozvFc8SJQUA3+OLkwfc2jbO9UNhKNKmlsUrREmlYwoE4EL0+uojWHKSwk0ds8imeKL6/wJCLInREex2iQ+B1NTdNVkgQ4XWcjX+9NJFVxpX1MOWremETldypJTKk2EL/Z9h2/SLHMsnZCpY8FftTNo3FWO/DrcjAlRXu5X3XTPJ4o/ozS/oEzJqZZP0PJSrTfNKAKFx++ZebeBDbqJxNdPJQTN5OopbGTAXnhshxOWfHTOj/zrK2ZZ1UdtsMja/HZD1uZpV3+yXEnW7pxTI6itPAAL+E9U3RqZsIJKZIp1m4cNnxpvy+eHiz18qC9X0UmnFMbQzwb/pxz37em5Udr2QjzQPbJFTg0pCIZWk9eXd5N1TPqPT4pleQzi+pAD3Sbx5oCz3GWZc6W+QreP4cj0xzGumLQE2qx4C4rfG3pSZCQzDprXTpojzJUa88mG2gehr+QQoTwkPHW3jQSz7NYv4BXijtOmHEVVNtFVgSS8Ca/kMxVg54u+QIppXFj/V313dwuVWWcpbcDgapC4fdaKQw9Di/x4sHMxoR+tQdQmNikBD3D33Mm/g7WkFp0XXGOCkICG3PYYrj4scG9OycffqCkmMgeqRKPFX/m6RZzRo4gTHzGSmtjmmpOs02qxn7DWD5G9juR0/6YoF1tC4hl/z5RUKiUuYgXeDscnzizMZem16R7ITXb72DpUWgPzue31LJ8oVPvqUnRUtM0j1/0c7ihBPOHc2cupLrant2cKOjtRIVgb7ZcfkpxfycSX6ZgQUucoR9ugqMWzBRLV5IVdxboF7NeqsstOT+Tdb/xhzWGSdbu7OxXmiK/fZrU/xhfWvrRZcB4IvN72DKwo8eu44JRJaHKhhTEKghsfpJEUYtdUiNODmOetQ3+ZZuw4eJTxsYWJynlA7/m6EyYTc4mK26kDrpOiyVn8mxo4hah3qMz918Qr4TihInm5hms61uJkv7O1J+xhZ/03+ey6z9GpuiMUbaTCj3NX1JPvEQX7WGH/RqaZnFLKcQPuh9tNkM/8whkRH7OsoOy0do0GV8hFVc3ZwJcFjMg5R0eWRqF75yDcc9Qf69J0WIQrMy3tuKcXBxP0m3vjZ/wjnufnSP58k4qXp/G26Yr8drVy+F7ymYuRYekEqfZCIyEUm1ZIzRh5a5jfK7dztniY9lwLZVgt+O8KbCXUsb8rG+3m52TGtuqJvLCMPMgtsuqzusc7VIH+2mbUJf7VWaSmJzBg9fptC4TSOCBAZwOuMdWN1dGG0rQNUGdy0My1wIC7qRx2PAlfkIqSYo36YqR/pYR9NPspoP2mMN33zMUp1nqaE5OaMa5B28YuuYMt42qVPOXln5slGLobjzOFJbBsKv8cMGEeHwmw7VqxtcbxZUqpkW2YPwv1ob01O7nWbu9HHzjR/fD0QAcdXZiaIAf4RaJrU+eslDswuqMqnyj+5lybu84Evktbc/aG4HslSqwQYrhqFz2k9ctG72qhbLyrwfElgqkx+1BVBITeCz7qckSn8DXlp6skerTXnOUNm6/0ScogNJ+pVnbeC0hY3dTRrjLLaUAGmSChDcUFZ5QV3PJ9kwCzLJ0ZKzu909+B8AmqSatp+xg5MYrWK5sytOPCMtczfB6xXl980+mJH9h+7y6aR4epDuQsdl4ovjyWPan8tRTf9sk5X8ZPvlD/ktKZeE/hZSasWY34++qxm02KbWk6lGS0038kvg591LvsajsKGq9TISkOLh3xH5w160oq1sjoHBCisRZMBEt3uaRfx0KvVT3OySVpZ4m7xTvoebBJPg1yNK+UdAhsUz3A3U09nTxwplrCBeeIiHyUAmwOVmhQhJWRGZpf6aaRjWozsnFbI5N1cwFFAwtSrGnm5gq/gzASmsjplpVh/tn3RzqaS6zV6rAFTnsHyeQ9UJjvglRo+aH2x3G39kfUJ3T84aB+AmppClGm/GXE7VN35OsuHHV2A+AFx32EhBRlZtJ75i44CdH4y0Lf1hjaK45xdE2V2hcOh/vMi2cvf+GnWvms0Dv2Ep1u1SVqtoLHG18lDVbjrDDoHbROyWVYIBlOO9wte3brYiZqY972P7/3RrDBGsvVujm4C6kU2bqZX756wFTdqqZafN0ixyM7uHmQWyTq7OmdyX83Q0UDXBj/blHbD92FmfrDoYJ+4gy/c+FNL+ztOMnqYltAQN4pnhzSi5l05ACOCiV44twlei81mQL1xZ1IpI7mLyKYhh2Hl7fhUV5G3d35PwUEfNuqnlLDMdj+Dbqb22sjt39Wq59yk49QE/zWpszcLvvPRosPEuUcJff9LPYL1WgvVbVyDghRTLQMpzpnrtolamWURbLXEUXzWEm6lbbnDZQU+Dn69W05B1SFb629OKqsa/te2NNM/ER3rEmB6lxSirBRaUoQ7LOZb61NS4NJ9CnRmFQFKTpgWgk9Vl85FScDe8iHbIAKmT+yPkeXpy+9Zgql0fzZ4NdXLfkY9beBDx5T5yxf9a4rZhrbUtl8Sa/66cD9nniWsdTWFe3ZdtjZ9oK9nnhrFycDuaJ+JHCWcPnzLO2Iab/d7T58SSLdQtsjmxO/GJtSEJMFfY8XUnLkFimHV3mMN4+qQLrpTqs0H1HNc11vjUOZ0lKRWoU8eXPO6+pIl5nunYlYaJj6e9LxRN/wa5t84OlLeeVYqzXz7B9VsM0l8dKAE5kYsTM26wY6LKu5em/+gJrmrlTLroKRkECrYG2M9dy6b0XAMt139NAo5ahRGb+zB+tPCixtx05ESeH2cpOb8v5KfrRM/iDpS1bPbpQOXUvc3TLOS2VoIrmBv3NI9gvq5kXU5qXJGJfe3wN92iRlbF07cEjLspFKC86lup8UPQ8V7yobZ6b6zoDhAlPqSbGc0IuTaIShDvptuct5xyajXXW2uzRhXIlRM0m+6PpH5TwKWHfYW37XPpXOTHD0pmfpKa4k85k3a8OxluGWwjO7xPzPK5PoD9nnYwse/6Sqh9yz6vZ2WWfQmvTZIeuqTlxQw6mwLiLuBt1/DC+N1/oNrHU2pRF1pYE+vtTP3kdY/JYE/qbR9BNc8C25uTEPhdnvvT3pbbiwoIeWY6GLMNUL9s+T70rs6PQGFaeSeK8cRC/uvUhuOnUY8bwAAAgAElEQVQYlh2/z+n7yRQQXnHSMMy2/wM5gFBRzXpqZZrCZ9pDeJJG3Y/W1LNycWZYutjm/o/POUaMo7bzfQymZMqalnHT0BMnwXGenm9tTQ/dQeIMFag1cBEYPVDWtUd4aC8RPCsXx5dUwsQkHmm1JGtEyn5ivu9vHs4yvZrVNNPSiRLiQ45LpdEJEmHCM/ppd+d53DPFm3x5aDVl47BUloNyeWbp1HX9K0tvZupWICsCfSwjCRLeMEO38pPH/x02STUZZVFJ1mzSD2ChpwfLvdRsqWvP0yDmK6jUjx8O3ibf8S/p+JFDl41pls8Yr/8dUbE79X3MI+miOYTB9Rb9A/1xkWXOtNgJ3oXhxXXMu0ajf3wSK1A2tBBldN6svp13Cd05JcKmqfNv8F5x4jtre6bofmW1rjizC2RQyqck6y846kJaFZERlkEcksvxAQN1xUu2AMh5uSgWz8J4pNx0ICIBWpimMl+3mBDRUefq/02EZK6z/R1IMmeMQwB1fW9hnoaITBrOVAv3YUrzUnRcfpqyhbz4qVs0MXOOkuw/FIADj54SlKNRgEXR2HT2cuKyHE4r8xR0SFjQIiAzWLONkVlE1neWdrky7D5GxczFvMSLJbq5xH5UOr3aWo8GRdwIeLCVc3Ixplq62kljoSxVFPVdzxm4nOI+hUlfDHcYZ9Dai+y59pySwgOeFVuKVRDY9DSJIgHRJD+6bmuGkhNn5Aj+sMZwTI4iBZV8y7aNQSVFLipFeaL440wmGRgoJ9xBROZW8VWAPTiyytqAydYetuzXIwkveJ1mZsamU6TiQk3xKqfkkvTT7KZ2YAYVknfyQeOGPDqRMWtO8PnDoYy19OWKEg6QVa4IhYUkfpdq24jSKuJ1ftHN5roSQgfzBKxoGa7dhKyIHJOjHObA7a4ufO3nQ7t375mY/JaHsj/HG+yh26Hov71fUy1dmahbzcbAEURzk9Dn+3jzeQLOi6MwZskRZNvCIjL3jZ/97XgAxTN/oab7Bk7nv04pj+Ksb7mREmM3s0E/lVJiYp7HzIzYwuAWNYmcfIAI4SF7DV85bJcVgTtKfs7KEZyVI1isX8BEX2+2urkyqfxo2m4abNs3Tg7jleJJfY1dy3CB1BofFz2lP5zlF/2cPM/hkFSWKOdkyEzFT7CXoK+wxhJgtFJPOolxwlMyJTVzSUDmD/20XHZENp72vET+4DBivvqZodqt6NwvMc7flxD3EHZecQxamkq05VjJGfRffQE/UjlvtMuYzLe2YqU1ltQc/k1ODNFsoZj4hK8sffARUjlmGAnAGEtfYsVzxGiucFYuTprihK+Q6kCe7pQq00xzhlNGI/2D/G2kVNSUAw7dvHPiM81BumkOkIGBbuaxvMMVP1IYot1KN+1BYkzf284BYG7F44xoXIb4p6k0XXiSQJIZoN3JE8WPr3Vrgdw2zj05KJeNu8zahP4fraXjlFY06NODmIIxeZ7r/0L8l5T6J/ynkFJHlwyl9gs1QmhzNrMc8pbbWqqkVJ1F1CpYC2SZ51MKo8OKdcQtAjxdyLRIVJywmXfYW4OfG1kR/8XqwjLW0oeNUi30WOiuOWAjfyIzf+Y9zgytW4ShdcIJH68aRQIyx/RfECw6dsr4t5BFHW19t3PpUQqbB1bBy6Bwe3EHkhX3LK0k9dkuJdxnl+FreplHcUQuZzs+H6/pq91NT62jk7UpZDJTBNXQPdj2IIEuamnPxYdvGbDiKE2Ke7Lm6ntGVnYj7t5TSr89wM/WxlwYVZGw79TufUt1cykpJGIYeQV/Dxc+mCUiJu6jpJDIboNaBvVOccI9K8r2VPHhVqfT1CluT1SuPuswI9Ln0kbjKMSdfe/e35xFU/E0pcX7pNWcRPMy+Ziw7Tqn7yezf3hNLj16y+QtFzlnGISH4JjyukOqQvNp+9h//Tn9s/QeBmm227KebsoFaWKeiYxoMzyykW6yUvl3NXJx7cEjLKIBGs2i7laYrVtOZdHRcB5kHspBOZoVujnU1Fyjk3k8s0cNJn5uc2I15xll6c8mqRYiMt/rltBKozpGMy2dWFdU/fta92sMXn2GkISfGTJsDAb/IgDU//4o1d5scUif/ye8GvYISf+B+pvq28b+GOWmHURJf81l4wAOSuUpM3ovicnpdPnprE2UOFY8S2EhiT+cOjC5eQlcnp2m9pleucbKvgaPFX+W63/IUzA3L8S51KBMuv3en5JKMNHag4KhxVjZt5YtMnL+xl3Or5tCglyImRMnISsKE6ZNZl4W+fUxng+4zt57FhsZGUgyL/FCzhEh3qUfRykxMdc8sePYXzQ/1thhvJtyQSJEVZOirmkOh2f24+CNFwz+7RQLdQtZI9WjkXieztojWdHAaozvnMSCywtoEdaC6VWnIu8Yghj3911XPij6XM71x9+fjQHm4RyUyyOhIR+vOWUc+rdjA3mSPv9P0dU8lstyOF9p19NFe5g/pVIApDdbipNnIN1XnuOA/ksbadXGNImLSjHqlwjgh/ZRzJs2nE7Of9gylq49eERJ00pqCXH8qHfUoJIVgcIm1bD5tk0kbzMsebZBbh9dAC9nPb+euEkmekCgnHCbRfoF5BPeUMf0HfeVfIiGp7gUViN5hT0Ks71lDl06yUrGrHCcLW8dxn7qXYn8bz7dvSsnWbfY2px2mhNskmpyWy7APP2PNlKqltSFRY9UQna3VJFNUi2aas7Y5sD6ptncUQpQU7yCN++Zp//RlgXmwgdGajfSSHOOFdZYLGiZqvv1k+f0P8ExKYoYzRWWWpuRIBekgscWZgXqqeYVzdLmdlnKl0mP8V9WKs8xpvv/wNeDeqMoClsvP+XVexNFEtdR58F3fG3pyQYpxhadzgs/WNrasjz+DTZL1RlpGYSAzINPOFKT8vVneLev8DKqZFrvOavp+O4XmzOTjY8zq9MVA+3Mk6gs3mSibvW/PqdsNDB9S1XDn2x3daeyV1tS710gWXFnnHadLdvprFycweahvMGN5bof0GGlp2U0oUIShwyj8xx3hHkg2+VqyIj01uxhgi7vOWWOpT2LpZZUKeyDv7uB8vEz6KY9yEGpPF94FgNflUy91u2qTVX+TbqZxvP/5Pm7TD7XbKOt5riNRPwYP1kb01drLyE/4WTk80B/XEQdZz67aBtTkhU+W76YXh6X+MJ8Ho2gIS6gCZxelGvMz4VxPMs0sNUwKc/vXGhtaQtcZCgGhlk+x1SwJlFP1rBeH4YpZD2lfEqxrsk6Kn61jhX6OTa5gf9bzLe24oBUwWbb/E/R3DSNZprTJMiF6KY9QJR4n0mW7lii+/IwOZ2/7ibze7/KbF8xg5m6FbZ5oFPFgoxqUAw3oy6XQPyNZ+/ocLAaAPsePyV/DrH/EfnWMubpYAKFtyy2NudzraN2GMBGa01WSrG5yIG8kD0/1DL9wENFtRerivF/m1mfndEiIuPNe8qVKMq75CTOvgA3PrDXMJYkxYfvg75j/cBauY5XFIV3HyzU2hiNhMLGBr9QPCia/kt2k/b4Gr/pZtka1XyMJ4ov/c1fsE0/gUeKv4Pzu1mq7pCBD7nf/05uq5jZvQEhvnZfYMP5x7ZyyELezuwYXI315x7TtUowrtI7cPICQcBslRm/9VquhkF5wdWgtZVSlwhydyjr/3N0bTLmVbBVP2xxdWGSnw9iSmmckhoypV0VHmdoWLT7nC3w1t88nBjxCtHibYqIT7ksh/O+8y5C19VwyKhJHf2Siwu6UCfzoEMGE8Af+qlUEhNY59KVzumfnvsOOTsxIsCP0r5lWNtktS1LV0C2ZeMZMOPNe5LwZlHncjQtnY/tcU8Z9nscPTV71WY0f4PPfYI54a4wucpktq26nUvOBGCWSxEyI6bRuGQlHrxOY9zmOA7rR/ECL7qYxyGicEA/+l+Ry+c8G1NxuFphYM86Vkg0dgHggFSe/MJrSooPeST74f91Aka9lu4rz3HqdhLGCJWAze+an33XHHWTMlv8hKFMO3ZfS+Lak1RenVxl6/xt+y2WjmyVqtsywP8OE3S16N/vO/xuHcRwaBxDzIPZKavSLXXES/yom49RsJNOSw3FWJzvg42U6rXqPEcSXjK1RUlb5vc/QyGAt7zAGw0S6/QziJdDORY6gtW9K3103VR4885WapqNXVJlJlh6cMIwwiETMyJzJTeNvRxkYUoXCkfRmPP0Y/6X4pOk1H81pf7D4CTKXJeD6WYeC8zMcx9blx1RpL/fGq48SSHBRRVzNeo0uHj48C5LzO7KpAaIgpqpNFa3nt1SZSQ0fEDDGqkeDTQXWC/V4T1qC96UDDNajUi9iAAO3XyBgkgt8zyMmFioW0h9Td4dSLJxSipBZ8vXfKNdzgefizTFiy2Dqtm2v04zMcAyItdx8UphhzTwbDzDlynW7kyxdkOHxC1Dd24owcS0GciULSoplS1WCFA+2IvzU1uzLz6JP94M5ciHMqRra7Lf2pE5bUuj8S1I6QJJXH2SyueWoUiIXDOo3+mk1zC5WQkm71SjKJkYEJD5XT+dSmICmYoebxeDw/ntHV6TKTt92XF5N7/qVW2aE1IkoEYwRjUoyntTYcpFBFCmoCdajcj6fpVtx6dkmDGhp4ppEdt8l1A0zR61i5PDaQ7UjwjgwIiaNJh7ggNyeUajklKxZvX7JjbNkSWRBYfa9smpZFczP9qym47mCTiRia+QSoZixE9IJUFRDZpulrGEWZ9h8SpCQW9nTsQuI3xHvC0jTkZkpGUgx6UoSoqJXPFrBvxluw+zO0Tz+n1pDFktnQE2DaxO1NQM1kr1iBXP8ljxJ14J5aRhKAFCCmdaLyHAtxptFpxiqHYLO6SqbPHyYFX833eLCfIwcj3d3Rapveusw8/NmwMjavLdgVvsuprEXlldZBK/VsuutkqVaGOaxGbDlFzj5SQSbsoFmWrt5pDB08c8kp6afbasjK1SNXb5TaJ3kUtUjVMdsBVSLHeVAnzbsLRDqq7F4Mlsa0cAFhjV523UlxNoMjt/rpTfd4oLgQH5+cxPIcjDiQFrLvIcHyqFetM0Kh8TtsVTIcSLHoljqKO5BDgStm5BRZhvbc0w7RbWW2vTSXvURgj9bI3lnpIfgPolAjChp59FjRadkEszxdoNE3qig72QlaxunyggiojNFzL+vJ664iWH7MmR5gF8n2WYKKKFcT4+jHzzloYZiykkvOAdzjxQguikOcJ03S9s9ezJhXxdiPTzItbLiWG/x/EMX0Iy1+UuM/kI/4aQ6mUexWLdAgdyrFjmKvRYqSFetd3nk5p8GII2M/5ZN2ZaO5GWNQfeKV8Sk1WmRJA7f7yszQRRdZrLlSjKr+0b4mrQoigKG6VaBMk3IEdXmoZlwthy2UhYZgV0WBmvXUtX7SHGWvuwZVBVHian06qsKnSUTUp9Ub8oPxy8jbeLnhmtIjmf+IZlJ+xRwktKUaqaFjkYyuRwZN5kfkSgarRox9zn2O1nxJQowIt3mbgbdeTXa0i6cpigrblLSRPlAAZbhtqyguZYOzIn63kFcLNkIKAaaq91QYRmrqGE8JDrSgggcFQuyw25EDeUEO4o6u87kVXqvS3TPv+n48RUazdbhizAIyWAVXp719NPIV0xcFKOJEx4xnDLINyFDGZoVxAqvqC9aQJ3lfx0V/az1NqMDxjZZXXHiXVgcFQb8Q8qCJNT4c19WOBYchBeRnUsBUGgdbksQapaE+DDEOo/ttBYIzD5+inqnO9PTY3dwFxqbcYOqQo3lBBcxBT6aQ4hANukqoy19CW/8Nqh/CwbG6UY1vWpROefz1LH9B2Bwhv8SKGm5hptNH9iBbYY9nLzYCIbmqk6F5FlK9H3kDdD5S18odvEmTKzWHwuBVDnwRel+hIQ/xOjLAO4oYRwQwqmt3aPrUx+lKU/3+mW8VzxwplMnip+hAlPbRHgWNNMHioBZGDkSdALNMarfN3ma0wfKlHn++NMdJ9KUnIqrnzgTQ4ll94W9ffVKurH+UQ9UyxdbQ7bO8WZudY2/Co1REZk04AqnLmfTJWwKlRYUpVk3InM586i1715jhftzRMpF+zDytphVAr1wWSVKRfXk4nWHoCAnv12CaYc86y3i57felekwdwTLJZaslhqyVTtL3TTHmSupQ1uQgZFhSdMsPbET2+hL3ZSarLUGTiEoDE4jKkRBeKdlvFFTq69dAdMcRtJK9YGn0Zfce2VxK5zN7lyN5MnH+wOSlfzWEoKiXgKafxobcGQxtEU3dMKLRIZqDZb/5BAFj5sjUa4R/aqKQgCr/CkvXkiDcQLOAsmxmh/x0uwi/tfl4NZJTUkSrhHLfEqBcVX/GJtyC9SI2RE+mp20T1Lv7CtaSIXlOIAdDBNIF4JoZ92FzukqiQqgeypfJPtV5Lwr9KFdqU9KTUvgfxCMpmKnljNWdZK9ZARuWpVW7EfMpejhPiQVVNHYtBqyDBbybTIeLvosfT4ipAVdW3n2bNaKD6ujnZTNkrksz8/cqulULI9pD7h/t0EppeKYdzaFSTeieeKEs4Ca2uGaLcyWGsn4NtpT9hKqO7K+fAR3tmu0RxLe6qJ8VxWwplj7UC5Au5MenoHrW8Yx7pXwNNZR5mpqmbfE8UPC1qai6eYq1eb1HQ0f00RfzfuvExDRmR+nwZEFvBAK5Zhz72DrLv4kGrxamCgtvHj8kr7fdz/eBtSdpc3vXqHp3apS8N5OsIy1tJds5/mmlPclAsRILy12dgFhNc2AnGWpZMqrJ2FbELKrGg4K0dQXWPX2rv52SUO3stgbf1SiKKj79iwVCBbLz9lfJMIwvxccdJrGBgTlrXVXl6p14rMaRdlI6WyM6BB1frzdzfYmk54OOlspNSuIdURRYGICfv4YJEo4OVEa0tflut/YI21Htekt8BdapUoRNvYWGoW9WP16URScCNau9nW9GW/XNHhvG8U9qOxZSyzdD9TWbxJX6UHC7RavkhpS1uNP7vlynzZsBhz9qvZQB3Mqt4qmTCOWBbpFtBUc4YEuSDjLL35QbeEEPGFTTdT89F1ylkeOrN9Bb7I6rIa5KHe57oRATSLysfxJ21YVrw9C/56iRNmftTPw5M0WyDrlFSCQ3Jx9KgJE9F12rLz+DGHEsE4uTBr/U2QPJrJodeoGOrNmM3XiPkos7qHZTS1xTheKF54C+8pKjyh65fzWbpxJwOfjAFgozGQ5c4FyFb+WtE9mgPXX2CWZIpc/o2q4nX+VCKpXcQbr3vbKRJdj/5Zmqm/9qpIcpqJmM0qKWWRLdDoW9g3hhjT95gUPSci2yAIAk1L5yO2VBBhJ2qyO7OyQ0XFWN3v/1jpko1tBR5w4khfjrc7So89KRyXS9u2HZHLEWP6gX5ORzhrCiZCfERUz25wbChCFicyv2MZHiZnEO7vaiOlyhT0pGvlYEZuvJLnd4LAC7xpXTY/Wy4/tT0rNXPM+W4GLe9zNMJ5gzvhmb/RTDzN26wMxnNyMT5gJNK0Am/e0V17gI1STfWzzJ/RIFFbjKOu5hKKRiWUFUX5TyrhyxP/JaX+wyA2mEqTZacAAbePtmU/zDlJmA0DqnD3ZZpN/A7grzF1KJwl2ujhpEOWFZ7hy1DLEIfxKhYPoXWCowPYu7raeWBm60iqXvHh230JmKwymRjoaxmFp+U9PbX7OS2XoJxwh4LCS36SmnBfyecwznRdbTTe97ngFcmSHJ97fCT2dvqrOlx5nMqANRcxoWdVzwqkfrDk0WFGwIKWIqbfkBGof9qeVSEpuVO865cIRHsxgQRzAm1CW3Ij6R2VQlWB7x2Dq9Ns4Um13bKYyamkYzQMVTNywv3Vq56ZZfIqiHQzj2WM9nceB7dmUkFHHRE3ow4fVz2b5CgbOeLlrANUR39wnSK5zi0nKoaqhkAGRnwG7Obi63RubZyES/pDRo5X03dFUSDcT02JvasUYLalAylZKbJRBT357WlP3l1syfDyw/P+khzoUTWEVacSmd+1mq3bTrJiF68eXq8o8w4JtA5Wo/IfJCGXDo6MyDa5Otvk6hSW7FG47Xe306pIKwr52Pefd3Eekb6R7B9ek1WnHnDithtPUz5wd0Ys4eO1eAVvwXp5Jm2LtKNcRCxi0TkM8jVR+tfSuVqcf4yVPSpw4vYrvtykRv60GtWQCPF1YVHnclx+dISnKR/YMsgumq8VRS4qxSiZuYLluh/wF1IoOPI4xrnhDmNvl6pxWi7JQZdm1E/fyUDzMA7J5Tkkl8dgMVNfvMjRgERC3acTUmsdU85f47XiwWG5HKfG1nHoVAdg+qgzFkABL2c6tmhGhW2etNT8xW2lIB00R1niXocW8SvoE9mHRqUCuT09lgM3ntO4VBCiKBBVwAMnnYb6c9+yQaqN20ekVKC7kZ7WtqywxlK7TBFOXo2kveYYIyyDeIM7K3vYU+VvTW+EVhSzRF4FTOgZ1MjA+sefE5Whkhe2bFxRpETz4Uw+fp/jhV2YEq++M5vlmmzPrEpj8RzxHq945Xaao9ZoXmd48DrHs7VGqs/0UcNp5RlMqxwLc4sy+Tlw/TlOeg2v06Kot8GVkkIi5+QIKok38Q0swO/P/CkgvGaW7iduyMHcVArhjIkvtJtYI9WjhPAQUZCZYOnJbaUgEaZVCMhM0/7CRqkWJvSY0LNHrkwfs45zcnGMBf9A63obS8p9nMXSpGUJMes0qnDwnmE1aL1YYH5SBsO0W8AtiLPPj7M+YT0/NfiJy9+04/C9cDiVlTnTcx/Tg0qx5fJTJDRIaJhg7cWErO6Zswt5Ua6QvXRsTKPirDv3kKF1i9CtSrCtO4tPDuJ7WstSTNimOhw5DWVBtDu+OdeDbOi1IjElVFIlwN3I1jtbMUtmOkR1QEmbhnBwApJLIPF1VzFn03HuyPl5gTdDzIM5I0fkGm+NVI8g+TrwgnB/V85cF7muhDrss0Jqkuu4rLP9xOcwu21pRm9S9Umqidd5rnihx8o2uTrevKOw8IxNhqnMsnRkqdTc8WAFW0lko5KBvLn+nLnWdrm+46/nR1ifsJ5OxTs5bvAuDJNSQFF4+PtIPPIXoUOVsFzHA+DkSa2sxiNF/N2oceoLKkoJnJBLc2dGYy6sucSNmy8wGjJZVPg2p5Ir4fG6Ajuyor73lPy29UFAxoVM6omXOCNHsCprrr2v5LOtozvkquixsEtfADhHwht7Vp2ta6rUmi9mrKAy4BKdSufD6vgBrWbR/kVTzj3OFjcXqGZaSITwECdMzB7Rl1Eby7PtsdFhbncnnfL5DNx8Zv8swFPgdab6jGXPaQNqhXHuwRu2Xn6KKKgOnUWyz9X9axXm114VCRkr8YsUm+fljA7xJjpEXfvOftMZURTotvIcNZ7NI/t52TzQPm/bXwl1m1EnfHJ1KOLvSlRBT65kdSacbO3Od9Z2DmXzns463L2cafdsIiIKZ5XiuIX+c7aNegYCBJXGMOa2jRiLLAiRBauy+1u1bDokcy3evOcN7vyJ6mi56DX0rh7KjD03MWO3g67ZukA6vsd7h9Ugdv6fDB8xjsJ+rpSb1ojM9HfEiHGUFBNZbm1KKq5sJCbP85xk7clia0skRJJzNKg4q6jvd853pVjLMYzOIQd3YnR+asxWS9PcagxEztH9DyAVV+44l8OgVe1OZ72W7OZSNYr4kTirCRVmHOLVexPuxn8n8CsXVANIeBSgcHl17prfqy6LjhTiyoHbmNDznbUDS6zNScfJobT2rpyPeuY5fDzXLJbsP+qnHpVw1ldz0CTsWjmY1Vn8wPnx9agwQ8PWzBq27QlDqvPoTQbuRh2BOVq6TzmnBqHmtN3Dl5uu4vsJ0g1g+pnptr+z19IAdyOXJ9TnVZqJijPgV6khAC58wMf6jnxCMnO0yygovmK9tTbBVdux27UuWw8coYF4gfba41zWRNEpfTiZGGhVKhAyewAQER5GRDikmdM4+ewkjUIa2b7fw0nnEBT9J8RNrE/C8/dE5vdgys7rZJglvmtfglV/PWDWXjVw0rJsPhYfvUfrcvkRRYFzSee4MKEGRq0zgiDQtV1bKmxQ7WCdfB4jd/Fw1lKzqB8A7SsU5HWamQG1wjBZJcpMPZjrPJz1WhKVIDqaJ6B1j8Mp/+9ceHmGFNz4OWvdaVk2P3P236JiiDfnEh0DNYMtQxlssfsM9cxzcOUDiu4GsNVGckxvWYqvt8U7HOvtoqegtxMp6RbKZtn/rgYtCzupAY1HyRnM/Oso6TjR3mzPkAwimWTcEVBJVEEQGFavCHUvjeJE6gG2SDWyGrtIuJFbi+hjJCpB/CKpWdmC7jXGoAe0dvIgybcaw+6rZZ2poT8A+zjyKJY6hepQNyKAuhEBWCSZKoV9GL1Zi5ezjhW9qmGRqqD9iIzLSR6bJTNU6k+pbT62gF22jQ12Is+EntKZP9FWc4Jkxc0mfXFLLkBcxBd0uKVqLxXOXIMeCwO1Oxmm3cJRqTSQogbVRJFjchlA7cSd3Un2OT6I9SZx8OB+ThY4yHSzOqdn3y83o45S+dW5bV2fShQPcsfbRe/Q+Tf7fn3cbXlqy1I5uufKBATFY5HLohN1HB5Vi682X+Nwgr1CyIqWrXINhzEmNC1BsLczfX67wNws/cTVvSsyZecNiga4svWaG1vlGrih6r1ZZAt6Td6aqf8p+C8p9R8GlaTIbcR/c/Yb7qaooqImKUdbW62Gkvk8HPb9ODoiigKdKxXiTZqZquE+NkZ5ZY8K9nRVAR7MtDsVfm4GelUPpVuVYBKev6fpQjUyk4Ibq42deZ1m5gy5M3SyYRI0OAMn315j+dXl9Cut6jfpNCLXpzSk/bLTfFG/KEEeTrboA0BMMX8URflk22MJDYs7l2PsZXsKel4lrDkjH+MaR9AuugCFcmTvrOpZgfLTD2EM2syoE9co7rOLYPdgIvN7oNeKrOgeTZXCPszef4uyBT15+b4sI6MDGHBwACPKj6CYd/ey4KgAACAASURBVDEuPL9AuYBy9K4eauuGki38HvkvK1LsrLmV7y5NZVDZAZT/MrfAnigKJM5qwudrL/HjtRbM71iGmlqRyoV9qLExmRXxK/4VKTWpWQmG1S2Cl4ueX3pUYMSGOL5uUoIX7zLpVS0Ug1bESaehWVS+j84vN6a1KEmVMB9aZclfPM+wd9KQZAlREFkRvwJQS8smNS/K+8xQJEmHViMyu6uRaRdUPaPbKbdY212NWPQ50OcfCSlQDbt20QXZfOkJZ+7nLrf7a2ydXJ9llw+k40QXyxgaVrvJXGcXm8P4WZQHmQ8vsClTNaLqjFxN1LSDpMoWqhT24fT9ZEzo2SVXwc1zOw/fQz4vF1oMmE7LxX8xvnGEzXm7/vo6H6wfiA6Mplq4L25GLY0rpJNqSsXDoL6zXSsH4+OiZ9Ba1TE9Lkfh5j+W+ZegT2Qf2zk3LW0nfUsXUA2jJV3KUa2IL9X+cBShDcoynt/hwrdtSlM87hm7ZbshWi3c1/Z3tlNxbFQMMVldz+5k7MEqWzn1TNUuk3M4S10qBdOlUjBv0s2M5gQbLqiRVCtadshV0XEaI+Djn485TSrx2Qq1XKxfXQPH4nXgFYJZMnMv5R4RPnbyI7uz3tGEl9xVCnA3K9tmm1ydYpIbabwnQSlES7Oj8HB2d6q8oCDaumLmxCG5PA1LBnD+g4gFaFMuP1Mb1OblO1OufTtULMSYzW2Za23Llx4eDD/WA1DnYKPWSEHvHORjcBWcsRO/OVE9xzXPxsCYMFuUOv7tOcrqyuKic8HLRXXivJx1dK0cTJifC8N+j+PVe/v56Tzs8+O/eVcmnlLfrQ7FOyBUGwrlu6MxehAFnNxgf3eyU+dzQZPBexe1dKBhCX8+i4rixO1XfLNHJUsqhnpz7oE6zue1w1h8VHVi53aIolXZAiSnmbj7Mo0Oyx1FZBuWDGT0pqvcUgpxSyrksO0N7rxR3B00awAE3Rt+61WJvivv2YzX8U0i2Hf9ucN+Lgat7cn9Me5HOhXvhFW2IisyCgrfnP2GwWUG4+fsR3DnvPW+8oKfm4Exzcry192CJHQuh04j8nP3aB4mp2MRX9BqB1xwtZD+Mve1bFQykLMPknmboRL7ov4F+hyG/pIu5Ri49hIKIkMsQ3ELzy0wnXO5u/jiIgaNgcgCOcoRNVrqlCrIuccJDK0TTsNSgYzccIWbz4NpWjqIcH9Xvvu8Az2epvI05YOtNHxZ37pUCVMDN4/fZHDs9ivWPFHPzSpbMeo0xE2uhk6j43lWJvYf/auQlmml56rzBLobef4uk8K+KvnzU7do+v6mZghkz52gZmjKiowoqGNn2yv9axbmxG213MElj2YGOeFm1JJbkUeFIAhsG1SVKTtvsOpUIjKiAyGljq/F20XP8azsoZzIlD7d4h3Aqlh59O4Rhdwdn9dbb24xol5RRm68wv7htfB11dNg7gkEQeB1mgm9Vsxlm3k566gY6q12L/6ojCsiyN2hLF8jCmRgZI9cmT1y3sSCv5vB1uUQVBH0nPB1NdiyUQTNe3Rep4lybZ9rnILezvzWqyJpJiuNI4O49yqN/ddfUCLInfFNIujy81n83D5NxAA0iQxi1anEXIFIgPjX8bjp3Qh2t3fAzYtcBzWw1z66II/fZtBmyWnmdKnG8hP3iXsMZTKXocfKKzxoUSY/1cJ9GZ0VpDr0RS16rTrPozcZrO5dMc9srWktS7H6jKrD9XEDjeH1imDUaSgaYA8P30y+SYbVLrPQsmx+7r5KY1Atx6BWTuScn3P+LQgC/m5GTo2tgygIfLbiLHdfQrrixCMlgBrm+ZT007G8dw3auhnQaUQ+35fKIbk8E6zdGffZe35xqYKb3pkQXy2HPkpOmXhqIgcfHqSoZ1EKexb+5PmV+a0MnYp3YkzFMbm2eTrrqVxYnRNmt1UzXyuurYiCQsK0Mxh1GlacVMtLXQ1aktKS6H2gN7EhscyupWa/xhTzt43XpXIhNj9y/A6DVsOI+irj//E90Hmdwhi4A4vcgB+7lGPQ2ktonNSs7/updwH7uprf08n2viiKQpefz9q6gmcj+/2woiUFN7Q4ObQQ+KxysI2UWt+3MitOPqB6uC9/jlZtyUfvHuGkdcLP2c92zMfPd98aofz05wOSsrpcf/zU/ditMg3n5SBNxNyi9S3K5GN73DPalCtA1TCfXFk/Bv99aF3uc/LZScY2rsfRwkPZvu6SLZHhRvIN6hSy2786jUijyEBGb75KZJb9qNM4ltJ+jHRLOgiCjZCC3P7AsLpFePnexJO3GRx504avm5Qgs8h0rDf3Uii0OsXcPOF1TbCamJroxtfb4plrbcNmqQbPcMcJe8XC0s/Kce9VOm3KFaDyTFVUv3igG92rhrA/+SLxb99z7rnqL2SvHTlRNYeN5e2iZ0idcBYeUX3m41/G4ONq4PGbDGrMPkp+TydcDVruzIilyPi9lC51jn0vt1H8ukLvyN74uxmZ3LykAymVDY0o4KzT8N5kzdOuq1HEj0NfqBnXpSbtdyDDTJLpP56U+vun6r/4j8H6BHvbywxLxt/sqaJ12fyMqFfU9v83rSJZ2rU83aqEEDexPse/jHHYf3DtvBdVrUakVH4P4ibWp0ulQnStHMzZcfU49EVNh/1E42PaVrJP77Gl7O3bF152JFlcDFp2D61B3YgA8oIgCDZnLTrYixtTG3JwRE3OjavLkDrhDmND3plSOYkqvVbMRdz5uBo4+1UdnDxUpyr7mno467g9PZYaRfzQakTGNY4gNjKI7lVDuJOSwF/P/mLK6Sn89fQveu7vydqba/F3M5IwrRGXJtRHEAS23vn7sjOAVfGrOPpIjUTuG16DDjUkdj3YwZTTucvKcmJxl3IkzmpCizL5aVQqCDejfRE/9vgYH6wf/uZo9dp6ueiRZInaxf2Jm9iAtuUL8HntcJz0GkRRoFf1Qvx+bwkpmSl0qVSI/rUKs3todY6OinEYq2PF/Jx5bU+l93eyGx9lVpdh0ilHXY2YDTE039HAFnGcdiEHiZbDHjdZc5MDf4d1fSpz75vGpGSmsOHWhjxJymzULuZPp4oFOfNVXaZ3e8+pN2tZl7COBiUCWNKlHNM7VWf2aDX6WrqAB6nmt7zLVGvaF3YuS/yUhsQU82NIHfv7si9xH2UKerJ3WA26VlGN7AvPL9Bxd0d67u+JVbai14qcGleVPa8n8eVxxzKexpFB5AWLbK+lf5nxki57unA/xV7WFRsZlGcUOqeRZNRp6FM9lHblC3B3RiyJs5rwJvMlt986tisP8XVh99DqROb3wNNFXTSzDei8rqe3i57ZbaPYPbQ66/pU4tKE+nzXLgoU1WipFOpD+awMkCqRT1n/bAQjW6nO3uzzs2m/qz1JaUlcT75O8odkLLKFVfGrqBzmxvKu5RH0r9A4q6V6OcnkpZ/9c0ekfDki2p/Cj13KUyErS7F5mfwYdRoK+ThTyMfZwTnqUKEQVyY14Lt2UfSraTfs0yxqiYhMbkdqUrMSTG9ZykZYDakTzm+9KubaLxvP0p4x8NBAJvylCsJ6O+vxcNLxdROV9K8a5kvRALtTXTXMByVHhuK/4KRyw+jBywzV4Do3ri5Tmpe0bQp0V69fTrKkT1O7JyEhUTzQnX41w1jXpxIzW0eyoX8V2/YvGxZnTe9KdK8SzHNhJ3Ev4/BxNSA7nKdCyfxOeZIPer99DGqSRnTW8yManxAYsRSy2rG7hs9m0Ik2nPiyNqe/qsPJMbUp6O1s+w2B7kY2DajC+Ca5CYce+3pQfk15jjw6wpY7W6izsQ7fnf/uHy9XqimVhDcJbL+rznc9q4Xyc/cKDhnKwT4uKKhrkb+7gauTGxCaQ88lcVYTlnYtz+WJDdQMRbd4XMLmcvTxEZZ1Lc+Zr+oSGxnEr70qsmtIdT4FOet91Pscpce+HnTa7ZgBpigKPaqGZJGe4ZTM54GzXoOgSadzVfs6+H/YO+8wq6qrD7/71mnA0EFAVFBERY1i7yV2k2jUqDFRP5OoSdRYYu+9xsTeEWxgAxVQRHqRLr3NAFOYYXqfO7fv749zbpt7p8GdAqz3eeaZ0/e+p+zy22utfdigHpx76AD+fe4I0g74D0+vjkztPaRXGn86PiIYhAbCTplwChdPvJh/njmcz/56PMfs14vTR/Tlg+tGM/+eM9j4xHnh8v2IIUZaN502jM/+djyjBvUAAhx80EqOGHcES4tiA0yfNLwPG58wrDpGDGhsJ06MNUq/KEEkUfmklOLu80YAxDyDEPecfzD79kqL2w7QzR6fdmMemB9r2TAjdwaXfXcZpbbJ5Dx7ISMGdKN3hpO5d5/B/HvO4C8n7x+OV/Lh9ccw+ZaTOaBvOi9cdkS47dUzs+kZqABGRIkjk/5xEg9eGG/RWOP2xViYAUwwLWOOGNyDqbedzKd/NfLhHDgRZ9+Z1PZ9guXFhjB52oTTuGeuIU6celDfcN10i2nxrRSGdYWlgYH9IjGOtNYsLFhIIBhpiz144UhWPPRrsqrX4QtE6rKt1Vu5aspVXDTxImbkzYi5RogpW6cwb3skVmO/7ikcPbQXOc9eyAWjBvLFTUZ5U23TlFhS0Vg48+B+XDF6CFufvoDv7hjGxrrZzPn36cy/5wxOOTAiIjTm3EP7c84h/clw2jhkoOFOeMXowfzLbD/Xemv5y49/Ia8mjysmX8F1P1wXPtdutXDf+SPpkWbH5XOxuXIzs/Jm8d2W7xKmlUh42yczlQE9Uphya+w3/9hvDmXKnecwKDM1LCDccuZwsLiwDXuFF5e/xM/ln3HYoB7k1eXGXXd7rTFgNHf7XMatG0eDv4Hi+mI2lG/g6I+O5vtt36O1JqADfLzhY26beRvnfXVe3HUa0+BvwO13h8u+I03roXMOGRAW7NZXrA8f3yvdwe+O3IcUu4VDo9w115Wt46rJV1FUHzuYEI2z/2QAajw1XDBqIMcfEDuDYyJRAIzv/9O/Rg/E9ebD649h+u2nMe/uM8Lb/32e8e1ZLZFy/Kc7TmPhvWdywrDevHft6LB1kMvn4sKJF3LmF7GDnRkpsbYhFx+xD2//6WgevHAk15+fjyMzNtbxiAHdYupbpeIDdb98xZG8ctWveO73o/i9aTUIkXsd4rklz7Gu4hcuPDy2DZlooKp7ip0Jfzuef5zrpLi+mFJXKaPGjuLbLZFYbW5/RJAPtT+n3npK3LVC3P7rg3jm0lG8+scRPP1HJ2cf0h+tvFTtfyQ53h2MXTeWH+u2wYDDuOb4oWx84jz6dUshT/fH30iEP++wgfzjjOEM6JHC2SP7gcXNScctwB1w08tsk9b7DOvfVHtid9lorjx2Xw4e0I1F950VFqQH90zltrMOZLxZJtqtFtY/fi7bAkacv7KGSCiGIb3SuPo4Y+Dhq5tPJOfZC3nggpF8+8+T8Jgxa3tnOIjW9mbfexTZlZEZaWfddTp/OTliUR5tULKnIpZSeyDz7zkDreECs17bURcb3T/0YTbHf/5gmEL+XPgzqbZUjux3ZHhfZpoj7CoS4q+nHhDuJJ6575nML5jPKYNOCSvjmWkOHvvtSNaUreHFZc9zy69uYeMT5+HyBki1Wzn2syOZVgNLHlhKWa2XKr2WOT+1/jdPueVktlVERuzvOe9g7jkv0ql4Y/3DnD7kdKrSl1Hkujnm3EQVfXSHHowGz+qy1RzeJxLrZ17xFPzaOM4bbHmGulA6td5aCuoMs883Vr7B80ufZ94f5tEr3agwQlYJ0WRVZnH33Ls5ZfAp3HH0Hby03Jg5Z821axjRvxsjh9YwtQwW71jMoh2LOH5g60yso0ftbpkZcc+87tDrwsvegJclRUs4eZDR6FlYuJAbp9/Ilxd/yZBuQ7AoCym2SEd+Zv5Mxqwdw9IdSxlz3hjuOz/S+N32zAXhkcV7593Lj7k/RtIx76E3YPyfmB0rzjX33kZXovX+lt/vaEKjzw8vfJhZ+bMY2n0oxw08LpymN+Al05nJ32f8nRMGnsAzl/6ZzZWbyanJCV/jnT+PjrnekgfOYk7BVE6bcDNnH/4U01dZ6Z3uQCnFh9cbAsOHpjXcsqJlnLffeYw0G7STt06OqZhumHYDN4y6gcEZRuMiqyo+LtLVx+3Lp4vzmHLryVxpWq+7fK6wRdVZXxgxOl5c9iK3H307PVN60ie1D7PzZ4ev4Qv6sFvsKKXole7gnEP64/a7ufms/qwvX4/NaiGnOoeLJxnWRY2DLqamlfPQZQ6eX2rkPdRJaM4SJ1rsvezowXyf14clNcY5qQ4rc/59OhNz3mftWrhrzl3k1uSGO0BVniqunHwlgzIG8ddRf+Wl5S+xoWIDz536HBnDjO/j07PmM7RPGoc/arxnIwd24+lLRrFvrzQmrSzgzycM5TevRWYjs3VfyfVnHc/yTQMY2ieN+84fSTCosVgUa0rX8MPm1SzJyyGozwmfE11+fLLhE55d8iy3/OoW/nb436jx1nDuxHN46bSXWFYcCdRe562jT2qfJjvE1xw/lMuOHszrs7K5+fRhbKo0xO+RvUfiC/p4dcWrXHPINZQ2RDqiIUtYm9XCqkeM/FW5q1BK8dzvD+fk5wwR+9WrfsVba2cw3pxMJ5Ew1hSjxo5i5uUzya3J5fpp1/Of0//Dr4f+mmtP3I9rT9wPgKJqN1e8/TNv/PGosIVs9Ai2PxgZ+TtxeB9CXeBp/zoVl9fYd/KBfRi1r52Tx7/BB2s/YOk1Sxm9X0/+MHoIfzphKN/lfMqn2W9Q748N1gvg7DObj7bOZvVNqxmzIIf3t4yhhhyGH7SU+47/F/8yJ4vs1z1WfLzy2CEU1bgJZH7DrNIVjFsfmVhBo9Fas6rUGHGOdocbu34sdx1zF8X1xWQ4Mki3GyJGWUMZb616i+XFy8PPBuDsoWfjCXiYvGUyQ7oNoaCugGsOuYYTPj2B3qnG6Hi600b3FDuz7jo9bI38zup3eG/Neyy+ejFOmxVLSiEAmys3c/ORkRg8p5luLYcM7E7ojdNoRo0dxTOnPEPQnA0ro/88fObrF/0eeoNeUuzOcP1ZUFeAq9/TZKTnceMc+DD1Q47ufzSFdYU0+Bv4++nDeCuvhJymTI+ALVVb+DHH+AZLG0qxWy1hqyqlFGeM6MfHGz6moK6ANFsatx51K2lOPwvuPZOB5nP67paT+c+y/zBmnRF0fsrWKawoXsFBPQ/izjl38sG5HzA8czgPXeZgSsHLzN0e4Ii+R4TLwC9uOoFZG0s4qH83FlZuINucq8Ov/dhVvDif5rCR8+yFaK3Z/75I7KjJt5zMYYN6kO6w8tGiXI4Y3IPhh/zIj+bNDk2a0hyhbyAQDPDU4qcobzAsMl5f+To3HREJiFsfqODz9Z9z3wU3hzu+IcuRmXeeTn5tPp5gA9NvP5VLfzCs4hJ9z2+vepuSzK/54LpxnDGiH0opMlPtPDklMmGJNS2L3x+zH0cP7Rm2GKl2+eiRZufzG0/goP4ZZKY56NfNeB7KYnRAC+oK+Mu0vzDvynlUuCuYum0qz536XEz6Iwd256pjh/CXUw7ggD7pHHrkRJY2rMblu4j82nxeW/kas/Nnc9fou7j2UMOd2Wa1cN/CW1hYuJBrRl4TtsS5anJERF28IzLxQnQ5fO884140FRjYbrXw1c0nct3sU0llH0o23IrXb5xvsSiuNmdcvXD/C0lJcXHh15fz8hkvc1BPQ2iat30eb6x8g3EXjOPtP0Xq/qG901i/o4ajD3Awauwonj3lWYI6yOIdi7lwYmL3ZLffzSnjT4mzsLt4WLwVb1PWYBCxWga45dwMctU4bv5pB/87439h64o7zxnBnPI32eY12spVHsOdqbnBzFBbc1b+LJYVL2Nkr5F4g17unns3wzMjg2sz8w3X06L6ooTfQKmrlCsmx1vVHT20JxseP49Uh5W1ZYbAFF1HAPz3SsPVLXrA9uUVL7O2fC2fb/qcW4+KuNY9eclwemZohvcexGXTjPtV56ujd2pv4xmbRZ1C8f51o5m+vhh/oPmRmUMGdmdg30ombp3KtYdey8w7T2NK9gxmFBqzNHZ3RMSy4f0Szx53+XfxruFgWM7ceuZwXD4/49aNpXe3Ezh8sHH/Ro2NzMwdXUb/+YShnH/YADLTHGwoy+KaRpPlWiyK3xwRsY6/7OjBfLl8O7eeNZz/+3AZfTKcVGPUUf837f9Yc+0apv3rVC5LMOluiauEJxc9yRMnPcHo/TI58qPT6WbvRq2vFjAE9sP7HM7Q7kN5feXrcecfsk93Hrn4EBZkl8XtC3HbrNtYUbKCBVct4KTPTorbv2Y/4ztOsVsZ1DOV0oYSMg5MHDMZ4L1rj+Hl5fP5YO2nDO+5X9hdLzQYmGZLPKAQzaDMVH74V6zxhFIqbJUXItXetFXuwxcdwsnD+zBqcDrTc6fzl1PONtp3xw1l7IqZuHU5GWl2fn/UYP5+xjCumHImDf4Gvrj4Cw7udTCZaRb8vT4H02BPRClht2NZ0TLya2NnqbpgYuxMWitKVtDN0fJoHkQEksdPjMSO2lixkVn5s/jjyD/Sb58CKup9zMj3xokpPZ09ufGIG8MFwLtr3g3nrai+iFMHx37wAAuKvg+nEU1j66FiVzFTt03logMuom9qX6ZsncLiosXMq7wgTpDxaz8/5f3ET3mGyjUpe1LM/um501ldujpmW3QDYWLWRFaWruTrrK/JdGZyx9GGj/MnGz4JH/NT7k8xViiJ+CHnBwByanL4pcSYHjdUSI5dP5Z9u+0b1+gI/e7Qvc2uymb/7hHlfNy6cSwpWsKc7XPC2/7641+59Ve30ic18ShQNLXe2oTbP1z3YXj57zP+zuIdi7nx8BsZlDGITzca7jBvr36b6bmGAhL9fqwsNVyD1pav5bofruMPI/4Qc+1uZrZ+XPhjzPZlRctIsaaELTCiiX7+iSzJ1pStCW/PqowXbVpjfTYr3+i0/+XHv3DvsfeSZksL3/cbD7+R+QXzmV8wn63VW/kq66vweZsrNie8/gfr3gVgwJBlPH344eH3bmL2xHDnFmBV6arw+Z6Ah6cWPxVznRUlK1gxY0U4tkNZQxmPLnyUr7K+Cufz6EPh8IODPLQsYq0wKXtSTGMJYFPlJi799lIsysKjJzzK2HURP9EvN39JitXocDx0JSwtmsUxn0RGbB86/iHeXfNueP3O2XeGhUqIF1ND4mB+TX6r7j9A3z47oMb4/idmTaTEVcL7ayNpvvrLq9iUUW39Z7kRuLWgriDcIJ66bWrM95/VMIPsfMUB+2WRV9nA8nIvqb2gFDjpSNjSsJU/nl1JUU09x+zXg9fXjOeVDePD7/PErEg5FP37Hv3ZFRYa5m6fS3lDOevK1zFh04RwPjdWbGRItyHU++q5bdZtMQ2K55Y+R6otldyayAh1ont0wP4wLXd9TDmcXZXNuPXj+CrrK2q8NQzKMALPb6vexq0zb6WHswcWZUGhwu/p4yc+znXnVrF4x0LGbtrEpsrI9M71vvpWPx+AsevGhsvxMWvHUOetizvm9ksgyzUTWw+jXF1XFrGUWli4sMlyByDH/HxDabgD7nD+jj8Cslxb+DTbiDvx6cZPOf8EQ0SdsDQfpSLl56TsSfTsD5btxeCBYstkylRkcOXLzV9iVbENyoOGwcML42dzq/ZU86fv/xRe/2DtBzH7v876OmzZGXp33l79dnjwIZoxa8cwddvUmHo6oAPU+erC9UFuTW74Nz9ylQ+rBV5YYVgMT9g0AafVyX5DctjRAKvLVjMxayJ+7aesoYzuju6UNZQxbFQ2+bFNAe6bdx/HdbsZW49SfDoyIDF+U8R35+usr8PlAMCYdWMoqI88v082fEJeTV7CtkH0e7SlaguF9YZwFhIJQry35j16p/QOr9d4a3hxWcTiLFTO/GbYbxjdP9Lpj667526fGyPK3j///ph7+o8Z/wCMWaCuGXmN4dra3/j2Ddcd8/du/rpFl4ibLqzlvfnb+PUh/clyzSQrC7DBHZe4GNzTyyM/R353paeyxe9pa/VWXv3lVd5Z/U7cvuhz31r1FoX1hQR1EIfVwbbqbRwz4Bisyopf+3n8Z+PeX33w1eFz1pevj7mGX/t5baUx01+FZR6TsiPv/AvXB3lg4lr6ZDip7fYJ35bA6KxI53dd+Tpya3I5ZsAxFPgj1kJ9B27A5SyJSeOEzyLWjol+/7GjYHXVFlZXQV6DUS6M3zSel5dHXF9fXPYiZQ1lHNDDsCoNuYB/vOFjiuqLOKjnQTEDaStLIm7IP+X9xJqyWBGqcT40mrKGMvqmRn5LA4XsO3Qd3tQGJmbFWqV8vulzVpSsIK82jztn38n/HWbE9wu9+x+t/4iezoiLY75vG7YetSwqM+r3hxc8zEXDLoq7FyG+2vwVlZ7KhC6fN/10E/t2i3XxnLN9Dtuqm55N8YzRhczLKuPDvMgMng8vfJhRfUaF2+E6ZQuYY6ihenZ9ecQyKXTPogfdAJYVG/dmQ0VEyIxuB4W4Y/YdXH5QvAAzbv24GEuSxs9mTdkavt9mtP8L6goSvkOhAalJ2ZPCg3TvrnkXl9/FiJ6GZeNzG+PLpclbJ7NP+j5UWLKwpBpl8qrSVUY/KDWUn7jk+O3JpUxZs4NldTMY/53R1i1yFTGi5wje2RxpD5Q3lDf7zXsDXvJqI2XoxKyJaDS5Nbm4fC4O2u8gsiuzcfb/nrvm5XPFiCvi+gIrSlYkdDuLbpc0lYeTjjT+NlbPxNZjM0F7IUQ5iDQ+b1XpKsZvHI8/6OerrK/Irsrm0YWPhvstIUEqxCu/vEJZQ1l4f+PrZvaDC/vBxKzEszGuKDGC8z+2MLE4Gp2/S07xUbNuAiWexPtDhN7XxTsWh9tqofqhxFXSpjZP47yWN5Tz66G/xhf0Ue6OuHg2LnsBSIFbZv7AwsKFXHvItQzLHMaBw92kVbzN+V+/QO4QtgAAIABJREFUDRjv6uqqrWFPlcu/u5zHT3yc3JrcmG9sY8XGcHtvT0U156qyNzF69Gi9bNmylg/s4tw37z4mb53c2dkQBEEQujBH9Tsq3BgUBEEQBEEQuiZ3HH0H1x92fcsHdn2aDDYsopTJniJKVborw2qrQqGUIqiDpNhSsGBBo1uMGxSNRVnQWse54ChUQrcch9WIN6TRWJQlzgw3pPQ3HgWwKEvcNquy0jOlJxXuisQzRFkdYVcvAJvFFvZxT/Q7QqONoWNSban4gr6YazROP/paFmXBqqwxrn2hkfZEaTZGochwZIStBELXb5yOVVnD9zb0uxWKFFsKbr8bjcaqrFgt1nDebRYbdos9HIQ3EAy0Kk+N8wGER409AU/42Td+PqH1pt6D0G9oztwcINWWGn4W1Z7qmO3egBerxRr+LRZlwWF1hP3WFQqbxYbNYot7p9Pt6dT76sl0ZoZN1FtzH0LnNX7uQR0k1ZaKRuP2u2O2Nfc9JXqvIfLuhtJLdE6qLTW8HEoj9A40Xo5GobAoS9xvCH2PjfOUbk/HG/DGuaxG5yX6nKaerUVZsFls+IN+FCr8XNtS3oSuH513u8Ueftej86CUwm6x4wv68Af9dHN0o85bF34fG1+nJZoqm6JJs6XhDrhj8hGdRoYjA5uyxbxz0fcu+h0KlUVBHWwxnyHz89Bva/xcQuWBP+iPK1eiy+/oMrNPah+COmjMXtMCobok9FwT/fZEhNoXSimcVica3WR5m4jm3p+mvq1E9UD0Oxt6T5vKR/S9Dd330LUsyoLT6sQT8GBRFtJsadR4a5rMj0VZSLGmYLfaqfXWxpRfoW8ylNfQdZu7r433hc6JTi/0jBxWB76Aj+7O7tT76mPy6gsESbHZjfpaB/AGvOH6o6n6M3S90P7o9oVC4bA64twLQu2BUPkd+g1NlTXRU143dZxVWXFYHTT4G8JlYHR9FHpPQ8+tqTqqu6N7XFm/s4TS7Z3SO8Z6K/q3hY6JfjctyoLdYscT8MSVX9Hnht6rxm2e6N9ttVhxWp0J3dyjy/+mSNTWs1lsWJSl2TaSzWLDE/CE2yitLe+j3+Xo97YxoTIg+rdnOjOp9dYS0IGwy3nj+5Ko3RraF7qfTZUhifLXmjZrU+eH2lZp9jTqffXYLLaYNppVWQnqIHar8Q06LA5cfle4fgu1h9pan4XuWaK2NcS2WxO1RULlZuh/qL5y2pzhssBmsaFQ4Xw29/xTbCl4A96YcjCEQtHd2R1PwJOwXRMiVA5pNL1SelHnq4t7P6O/C6fNGXe9trYNQvmLvlboe3Zana16563Kit1qx+P3xNTj0d9l43fKbrGH/0dbCEYTavv7g/6E5WVTpNvTCehA3L1Jt6fj9ruxWqzYLfZwmy70boTeSYuykGHPwBv0xtRpKdYUUu2pYZfk1hL9DXgD3nD/rKkyy2l14rA6mrW6bvwN7mybtDlC7W2lVIvla+NnG8pb9PZEZXzoXqTaUsPhAXZzRJRqiT1FlBIEQRAEQRAEQRAEQehCNClKyex7giAIgiAIgiAIgiAIQocjllImSqlSIH5e1N2TPkDTUx0InYU8l66HPJOuiTyXroc8k66JPJeuhzyTroc8k66JPJeuhzwToT0p01qfl2iHiFIm5513nv7hhx86OxuCIAiCIAiCIAiCIAh7EuK+1xJlZSIKC4IgCIIgCIIgCIIgdBS7jSillLpdKbVOKbVWKfWZUipFKbW/UmqxUipbKTVBKeUwj3Wa69nm/v06N/eCIAiCIAiCIAiCIAhCNLuFKKWUGgTcCozWWh8GWIErgeeAl7XWw4FK4AbzlBuASnP7y+ZxgrDXsaF8A5UuD7nl8dNEC4IgCIIgCIIgCEJnsluIUiY2IFUpZQPSgB3AmcCX5v6xwO/M5d+a65j7z1JKNenDKAh7IqtLV3PF5Cs4d8yjnPbC7M7OjiAIgiAIgiAIgiDEsFuIUlrrAuBFIA9DjKoGlgNVWmu/edh2YJC5PAjIN8/1m8f37sg8C0Jns6N+BwA1wT1lUklBEARBEARBEARhT2K3EKWUUj0xrJ/2B/YB0oGE0wm28bp/U0otU0otKy0t3dXLCUKXRmbaFARBEARBEARBELoSu4UoBZwNbNNal2qtfcDXwElApunOBzAYKDCXC4AhAOb+HkB544tqrd/RWo/WWo/u27dve/8GQehUvIFgZ2dBEARBEARBEARBEMLsLqJUHnC8UirNjA11FrAemAVcZh5zLfCNufytuY65f6YWMxFhL8ftE1FKEARBEARBEARB6DrsFqKU1noxRsDyFcAajHy/A9wD3KGUysaIGfW+ecr7QG9z+x3AvR2eaUHoMhh6rNsX6OR8CIIgCIIgCIIgCEIEW8uHdA201o8AjzTavBU4NsGxbuDyjsiXIHRVFLETTjZ4RZQSBEEQBEEQBEEQug67haWUIAhtRxPrseoPivueIAiCIAiCIAiC0HUQUUoQ9ngMiylfQMKqCYIgCIIgCIIgCF0HEaUEYY/HEKP8IkoJgiAIgiAIgiAIXQgRpQRhDyUUUyoUWcobEPc9QRAEQRAEQRAEoesgopQg7KGEY0qZqpRfRClBEARBEARBEAShCyGilCDs4YQspSSmlCAIgiAIgiAIgtCVEFFKEPZQQu57QVOL8snse4IgCIIgCIIgCEIXQkQpQdhLkEDngiAIgiAIgiAIQldCRClB2EvwSUwpQRAEQRAEQRAEoQshopQg7KE0dtcTUUoQBEEQBEEQBEHoSogoJQgdyFfLt1Pn8XdIWpt21Masi/ueIAiCIAiCIAiC0JUQUUoQOohf8iq584tVPDRpbYekl+60xayLpZQgCIIgCIIgCILQlRBRShA6iAZvAIAd1Q0dkp7Noswlw0LKFxRLKUEQBEEQBEEQBKHrIKKUIHQUpkakO0gbCjZKyC+WUoIgCIIgCIIgCEIXQkQpQeggLMpQpTrKXiliGGWkK+57giAIgiAIgiAIQldCRClB6GB0B5lKNU7GJ4HOBUEQBEEQBEEQhC6EiFKC0EEETNOljnLf02GbLDOmlFhKCYIgCIIgCIIgdH0CfnBVdHYuOgQRpQShg/CaolCHue8FG8eUEkspQRAEQRAEQRCELs/Hl8Dz+3d2LjoEEaUEoYPw+U1RqoNMpRrbRfmCYiklCIIgCIIgCILQ5dk21/gf8HVuPjoAEaUEoYMIWUoFO8p9L0qDclgt+PxiKSUIgiAIgiAIgrDb4K7u7By0OyJKCUIHoLVm/LbnsaTmdpj7XnQ6KXYLfrGUEgRBEARBEARB2H0QUUoQhGRQ461hVdUM0oaM6bBI50EzncMHZ+K0W2X2PUEQBEEQBEEQhN0Jd1Vn56DdEVFKEDqYDgt0bopSGU6b4b7XxOx7dR4/93y5mlr3nu+vLAiCIAiCIAiCsLugG8RSShCEJBPsIEupUDIKsFkV/iZEqTHztzFhWT7vztvWIfkSBEEQBEEQBEEQWmbxhq2dnYV2R0QpQehAnPjoHugYE8yaBr+xoMButTTpvuc3I6+rDsmVIAiCIAiCEEf2DCjf0tm5EAShi+DXhlTjravo5Jy0P7skSimlAkqplUqptUqp75RSmVH7DlVKzVRKbVJKZSmlHlJKKXPfdUqp1xJc749KqdVKqTVKqYVKqSOi9p1nXitbKXVv1Pb9lVKLze0TlFIOc7vTXM829++3K79VEJJBCl5urn+zQ9L6dEkuYIhN2SV1TFmzI6G1lDZNqixKZClBEARBEIRO4eNL4dWjOjsXgiB0EWpIA8C57zGdnJP2Z1ctpRq01kdqrQ8DKoB/ACilUoFvgWe11iOAI4ATgb+3cL1twGla61HAE8A75vWswOvA+cAhwFVKqUPMc54DXtZaDwcqgRvM7TcAleb2l83jBKFT0FEue07t6dC0VZTYVOfxx+03DaWwiCYlCIIgCIIgCILQ+Sgr44Nnc+yJp3d2TtqdZLrv/QwMMpevBhZorX8E0Fq7gH8C9zZxLuZxC7XWlebqImCwuXwskAM8D6wGBgK3KKV6Ab8DnlBKTQe+Bn5nWmTdA1yklFoNbAHOUkpMQYTOweOPWCi5cXRaPgLBeBe+QMhSSlSpZtFaszRnzzefFQRBEAShg/F37IClIAhdHytBBvbqxt4gYSRFlDItmc7CsI4COBRYHn2M1noLkKGU6t7Ky94AfG8uDwKGAD9orQ8G7gaswGNAjdb6QGAGhkA1CMOiqhdwPPA34DWgGui9M79PEHYVfzAiSlXRrUPTji7GvAnc90KB1/eC8m6X+GRxHpe/9TPT1hV1dlYEQRAEQdiT8NR2dg4EQehiXDG4O091X9/Z2egQdlWUSlVKrQSKgP7A9F3PEiilzsAQpe4xN6VhWEe9b64HAC+G+BQqxccC55rLvwWqALTWi4BMDBFLEDqFkCilAHuwY0fDbFWRoJk+f7ylVMiz0CqqVLNsKa0DIL/C1e5prcyvwutPPFuiICTE74VlYyAY6OycCIIgCG0lWpQSgUoQBKDQbmWHtaGzs9EhJCWmFDAUo7/9D3P7euDo6AOVUgcAdVrrmuYuqJQ6HHgP+K3WujxqVxAYo5T6BbgVKAH6AN2UUjYMYawfUIBhLVWIYV2FuS0TiL4eSqm/KaWWKaWWlZaWtumHC7s/Mz99kTnj/9MhaQWD0TGl3B2S5kiVB4CjYhPdMQSVsvp4QSyUNwl03jXIKq7ld68v4PkfNnZ2VoTdidlPw+R/wYbvOjsngiAIQlvxRXU8a8UiWxCEvYukuO+ZMaNuBe40BaJPgJOVUmdDOPD5KxgxoZpEKbUvRlyoP2mtN0ft2gR0ByYBxwH7YVhOAcwCLtNGJGkH8I25fT5wrbncD1iqo6NNG/l+R2s9Wms9um/fvm3+3cLuzZmbn+C0jY/FNgTaiUCU+54Db7unB5BO5Hddbp0LwPVjlsYdF9LLRJNqnjELcjokneIaQzhcv6NZ/V4QYlk3yfhvc3ZuPgRBEIS2449qi9YUdl4+BEHYOfxJ7t/peO+WPZmkBTrXWv+CEYT8Kq11A4YL3YNKqU3AGmApRmyn5ngYI+7TG0qplUqpZeb2XAzLqOeBDcBEYF+gGHgRuEMptQ3Dpe99DMuoVUBvpVQ2MAx4MFm/VdjDmHJXuyfh1xFRqsNn3wMuHmI0dqobfHH7IzGlRJXqCvhMAbPS5aOsrusFPp21sYTNxeJa0OWoF2vfzmZLaR1/fG8Rte74clYQBKFZfFFW9FKeC53EvV+t5uJX53d2NnY/SjfBk32Ta60e6Bgjhq7CLolSWuuMRusXa60/MpfXaK1P11qP0FoP11o/FrJU0lp/qLX+Z4Lr/UVr3VNrfaT5N9rcXgRsBi7WWg/DcM1bjxFY/Qyt9bHA28CbWmuPuf0q4ArgGmCN1nrxrvxWYc8i2p2O/EXtnl5o1jtFx4lSfdNtAGigj7fpUTefGfzcbhVRqivgM2NJbdhRw+gnf+rk3MRz/YdLOefluZ2djd0KXyDI2IU5lLeryGh+v/6OcQ8W4rnv6zUsyC5nRV5VZ2dFaAGX10+Va/dt8Gut+Wr5dtw+iSG3xxBlte+tEVFqd8Gf8zO6vqyzs5E0ti+fyv47pnZ2NtqFWreP0tr2aYdV5qwCoGrRR8m7qLc+edfaDUiapVQHcAvwiVJqNXAk8DTwLPBrpVQWcLa5DjAV2ApkA+8Cf+/47Apdmalrd4SX/b72F4lC7nsacNIxolSfQEl4ubd3OwAOW/wnHxKlYoQ6oUmSaVFW7/HHbUs0Q6KwezN2YQ6PfLuOr1Zsb7c0dOi99Iko1VmsLzRcbjOcMq9KV+ecl+dy5ONJmZunU1i0tYI7v1jFE5P3jlmZ9gqi3Pf8dSJK7RZoje3D89jx6rktH7ub8LHjGV5xvN7Z2WgXLn/rZ455qn0Ge1eXGm33stKSFo5sAx0QXqYrsduIUlrrlWb8p8O11r/TWldqrcu11mdprQ/UWp+tta4wj9Va639orYdprUdprZe1dH1h78LljogBxbZB7Z5edEyplA4SpQYHzQ5wnwNJrS/Ehh+vP0iDN3Zk9YtleZxrWYry7t0uWf4WxKBuI+/F2f/bpKW3Mr+KQx+ZxvT1xTHb6z1+FEGsyAj4nsLWsvYf7ar3GaKy3ssaMV2JOlNk9gVE4O/qbK/cvb+TkNt9aFZYYfensiYSR1LJ7Hu7BdprfH/7uLM7OSdJomB5eFEnOz5SF2BjkfFd1bSDi701aNyv3r6C5F10L2vP7TailCAkk/6ereHlEufQdk8vECV4pOJFd0DwugxtdoTt6aADDFKGefH0DbEiyHGWjbzteBk944l2z1NnsbW0LuxCmYiFW8o47oHxrN7evNuNo9fCpOVpRW4lAPOzYkdE6zwBPrY/w2bnn43j8irbfO2D7p/MR+++mPygi8JOEfrcvf72s4LzmBqm3+tqtzSE5jlQbecq64yw9anQNcnpAJG4vUl3Gu75te54a1th98TnjpTd2i0TnewOBN2GKOXXrexOuyrA3/VihYZZNT68OH3Fpk7MSPtgw8++qrhdyk1rwBCQevpKoCwrORf17V3tORGlhL2SDF95eNkSaH93F78ZrE5hWEr5W+Mq5/dC0dqdTtOqzULXkQ7AUGWIUY3d9PbBEKsGqXL2RCrrvZz50hz+NWElG4sSN/SKVs9iecrNbJ/esslystwcQyPdVktsMVzn9nOSdR1WpRlEKZe+sZBV+a2PUaO15jHLe/yp4Any5o5LSl6FXSMkQrenKBU0Y0r5PXvXyFpX4hvHQzxjf5+AT8Tgrsy28t1flAqVKS6vWNTuKWhzQKFU9wBPdSfnRmgNAVM89GFr+WCt4fn94Yvr2jdTu0KUCFJf0/YB0a7Ov20TmOu8HW9FkkMp5C3mhF/ujqzXJcmFby+LESqilLBXoqIqfKe//Ruowag4L6l4WzeSPv0heOskqMzZqTRtmGnYUgDor4wKJhhlpaW15mSrIXw14GBGIyuqneWqdxZx4Svzdu0i+Uth6Xu7nJfQiMi0Vblc/t9paK2pcfti4jnt6zNMrw8sm9Hi9Sye5FTUIcsta6NS2FabF15ekHIbAL99fUGrg/LWlhZwlW0WAJMW73kjXSHO++o87ph9R2dno1VU+rajHKV4OsCCxu9p48jaio/grVPaJzN7GWnKGAFX9ckpR4X2oc7t5+/Wb5jmuLtrWy00Q6ge94dCA7gqoFjiS+3OBL3GgEKJzhT3vd2EYIPRl/DRijiCoWDom7pwEPGo8jDTuucJIsdbNgAQqEqyKLX03dh1f5IGB2X2PUHY87F4jNGN/GBfUv3tPxqgA0ZBr1HYVYB6VysK++1mKLTanevgLE41P2+rMYKTZsayirbS8jbUcKnVmPrVRoD/zUiOyenPW8tZV7iL5ufvnw1T7tzlvDSYsxONtT/HAuctFFY1cPijP3Lc0xEBKt1juNAVuRIHMY+2jupWnZzYAQGzU2GxxKbZrXZrzPoIZYhUN3+8olXXra+NvM/9VPvNAlbtat4nf11hdbvOblVQV8D03C4aqLiRe+5Czz1kDHsJn7/93HYdGCJrwNvGxtC3/4Si1RAUl7NkcfjC2zo7CwKQX+Fiv3unMGdzrIu0PxjkbvsERli2E6xrv1mzqlxePl2cx47qhqS7dAbd9YyzP8NgXz4AZW+cC2+eEFf27BHU7IDaos7ORbvTfdsUAMp0DxGldhOCFUZ7rUT3bPng2h0tH9PJrM+L6m+0xoXUW29YfkXFourK1GtjkD5Qn2TPEN2ofE/WYIeIUsKeypJtFWzbA2IpJIOQpdQ2PYChNcshb3G7phcIW0oZn1xdXSsKe5vTPHnnCrfJ3VPNJA1RKh0jD54oFyJ/ecQq5wLrEo6wRdb3FEJTZp9gXU931cCtH8wEIkGJARrqjPdBN1GRRN+zSStykhITLCR0WRvN5pfiixVJpznvBSCvonUWMD5P5BvPJLkNW601x6iNjLM/w1uzm7fCuvCV+Vz21s9JTX+3YMI18P45CXd5A+3namM3A+MHvDs5urmXmYm3FX8gSHmdh0veWEB+C99iz0oR+boCawqqOUTlcO0Hi2PK7Gg32q+Xtl+A4ru+WMX9E9dwwjMzeXDizrviJyKtZAWnWtdwt/9NAPrUbQYilht7FP85GF4a0dm5aHfSy1YDUE06yrsHx5Sa+wKs/bqzc5EUVI0hlpbRo+WDPV3/mRZXVBPQRptUt0YYLdkI6ybCx79v+dic+fDqaGhov8HSlqjH7BclW+SOE6WS1J4KJD8ge1dGRKk9HVcFFK8D4Iq3f+bOl96RxjJg9dbg1xa26QHGhg8SdyJbw+uzslme27y1lfaZllKmAFFXU9HyhUOi1E4o7jr6GSsLWGz88ajeAPiiGuS3fhQbuPsm9/ttTqtd2B416rKLAlBIlApxSMV0bMQGOcwuMEbSU1TiUQl3Q6QT6sBPYfWuVzj+oGaU2oq1kXGWw5e44dJcoPZoUifdEF7uoVsnSvkDwVbFygpqeN3xCqda19DN27KFQXbJXjgz1IbvYPsSCMQH0rS0Y6PUgdF48bh3cuBhLwuo2VZGPfojRz/5E7/kVfHmnC1x+xsL1S98PaejspZ01hZU89h36zpkQo72ZFDdWqY67+d52zsxsZc8UXXCjrJW1MU7SUmtUXc/Y3uXX617Bsrj35udxWs1OlcDtRG7xKsN9yHvgj1zKve9iV7U4Kzelry4NMlk+3KY9x+Y8Tg82mPn2mczn4Qvr09+3jqBoDk7WlAntrKPYTcIXu/EFxHYWtNecZkWRw2t8Dj54jooz4KSDTudv12itojDLNsAaChPrvtesPGAoy85olRgL5usSESpPRgdDBhB9d48EYBj1Qa+dj5K7rdPdnLOOh+rt5Za0sixDwtvW5hdRkFV2/2AX5i2id+/2fysbMFwMHWj4hr1+UnNX9RbD1sMix53/qo256my8UiEI53+TqOT7I1yI6itjRUtPCq1zWm1CzVRU6ruyohDZS4+VxU9iIgjT9g/5GbrtzGHXWEzOpCj1LaEwaj9JRvDy3b8MZ2anWXf8oV853yQI0smxWxPMUWpR31/jtkebGXjr683Utmm+ls3aj78ge+5dfwvLR7nDwZJx/hGLs19vEvEMCmp6UIWPtHPyBsvCPapbyerjGAAmzLe28Wbd3I6YhGlmqWhhW9+ZaPJCGYvX5e0SRE6mivfWcSYBTnUenZuhqIZG4rjBgM6A4vbeCZX2OZQ0xBp3O+bHyn/U2m/Rn+ozL7KNosr9VR49ShDtE4GZr04AKNTuEYfAIBtyRvJuX5XIbpTthdMj16pM1gaPNhY6Yqxh947E2Y8BvNeMtbbOtDS2PKjvmy3djkNxYt1qFaUle1tKVWyEQpbbsc1Rw97gEpTlPI3tEaUaoP7c73pRp0s19SCFW3zchn3OwYqYxAiUF2YnDyYrC1oJMolyVJqTV5pywftQYgotQdTFzVzwttztnCQxeis1v3yVWdlKbnsQkXWUFNBLWl49zsjvO3q9xbzm1fnJyNncSRyC/NVNdN5rMoPL6bMfYJZi5bx6LfrWnQbCXHHtOciaWsNjgwsfuPcaNHletsPALgdvQCos7XCBLkFjI5Y65/NwuwyDntkGmV1UffIG2VhsysN0f8dzslfHsWqlL/FbL7T/iV201rK5490nlKVl7qSbXGX8TZE8uPA37rZE1uge4PxjHu7YoUKR6COWp3Kh4Fz+TZwgpmmLzzq3lo82o7T17yZ9Lr1a5nz0ClkUsvk1S3HOwgENelmMOcBlcvxfXo1lfXxnbqO7Iw//M26DkurJbQ3ykrJE28l1tLz2GmiypcM2vC9bJgcXgy2NUC6EMOa3FirhqGqGG9zZXwXJuRR3NgjoTWsyKvkhrHLeGZqJ42GRxEdx2nRxohrenp9bni5f2o7WY5vncPT1fexwhlb91CeJGE6aiTe7QtQpTMAKOgxOjnX7wgqc1u2mpjxWGS5E91+OgK/LY2vAqfwSuASXNq5e8TpcbUxNk+09Vf5FnhhGCx5t+njuzg/bzL6VZm0wiq8Oso6J9gOov0bx8E7p+/SJTwWDzq9HwBDt3/bwtGEg7e7tb31lrUNSbJOffcMw8ulvnXCmI4qe9M8yRV7XC6j/VSj08wNyYlZ5aTzB3c6EhGl9mSiOkgTfvqZJ+1jAOjWlk7LrrD4bcht3oKoNXz0cw773TuFqnoPH0ydx6Kt5VC6CR7LNMyHdwLtKsfvyCS197584T+VOp3CPbbPsLZx1qTWulRpUzWPDh+0/b0/Nn1CXay/8+Cpf+bDhTlc+c6iVqXnCzR6xvY0LD4XFhURpU5+bibnW5cCUHS6MerlsmS06vrNMW32bOY6/sVFltbFE7r6vcXUefy8NTvKtSF6JKUN7ouz82dTUFdAfYOHL8a83Oyxh6staK1xuWNHNFxl8XG1vFEd9pTWzp7YAqFZk/yB2HfIFnTjxgEolgUPAmAfZVS6G3Y0P3Llj8pXPU56quYbSoEfH+E062rOsS7jAFUYOyqdMM+xebVXb+Ol119JeNzl1tkMV9vhpYNh1jPNXndX8Hchd+Svv58WWUkwGuj0tVO8l6hgmL+2roDqVogh5VtgQqQMCiQQ0YQIVgIcbzEsAxO1vV+bYpSlb/h/Y/x3vELKK4fuFi4bjbGYFZV3J8q5ijrjXcyv7HyrFosr0vH48tuIRWq0q8UAlzm5x6I3DZEkGQQDMO43HO5fQ6/GZXBoApNdJWokvs7jxxmy+PLtRnFD/3c4vHF888f8/Fpkub5ruLO5PD58DUkORK41Vr+bBpxoLCwJHgxZPyU3jXbAX93G4N0FUe9/jjkIvKEV4kcSqXH7OPOl2awt2PX6uKjcuMZwS6HRL2kGHT2TdhsF1o4Y6Pu58GeuHRJkaapR/o/wb44NBdKYhkpjlnCMSZw8CbwMonFrOwBEeTJAAAAgAElEQVS1FUmO57S2dYYWwYG/iixXF/Dp4uTF0PUpBwCv+C8xNsx6KmEIh7YSlJhSwp6CY07ETe9+x2fh5cGUwI7V7ZJmVnEtl7+10JiZ6/u7Ycz5u3zNL5Ybowue7x/k/5ZcxD/emYYuigoa2sZO6brcYjI9O3Cn9MVqURTTkwzl5mbbdzxl/6BNcTRaK04Ew8JKRJWqcjdzbqMgfP2VYfVW02AUUFtz8/AvG9vk6d0ckWWlFDjSwVuPw2bBGwjyyeJctkd1Grr32QeA44vH4/HtWiHYffss9rWUcp/90zadFxPv2x1pLARdrZ8d8ZaZt/Cbry/h56/+x+W5j8bs8w0czeKQWTwwQFUSCGoa6mMbl8Hi+JFbf5Qo9ZLjrTghaWeoDDSQb7PGublYAz601cGCe8+kZ1/juXzteMTIRwvpegPBcGyDmcGjjN+4dlKTx3f3GZ22cyzLmOm8K0akSMQv2fEmz0+6nohzeQwGA7xgf4fvHfcZM87MebbZ6+4K27tA5zfEcasfDi/7E4gRKR0gSgHhOILNcdvHsaJxsGbPn91qp5j3Erx1CjdZv2O840kutizEGowXynsqoxzJCg6K2e5PsptARxCaEHRnRKnwrKKq6ZlMXd4mGuvBIHiTZ7F35IoHwsuv2l8NL1v99VSbI9opLnNmtx/ubbH8azVbZzW9b+PkpLgrqShRqryyghRl1NvB3VFcfm7/1t2Tt0+lpLbz3bXHPnE99ucGJ7SG3Sm2zIT8xSiCuMzZwX4JDofawqTFpmkLgaDm9gkrWV9YYwx05f4M2YkFskD+0rZdfN3EyPJ35iylHdzxXpZTwdbSel78sXkRqTWkRLv/fnlD0wcCFdsj6eUWtD6m0dh5myl/bCju+e0bL25VqREqZKM9ahKg+qbbLK5ZL4WXU5UXbwt9h6ApOdRXJVlcdnZr1WF+R3c2BIdQojM51JLLlNnzkpaFgLKzXffhvcAFrAnuZ2ys2vVBjoAvSbP47SaIKLUH41z3eXg51EB8zf9bLErD26dAVXJnWrvls1/49ctzWZpTyUPfJGemme2VLlZvr6YP1fRf+w5gCDQrciKFWlFpCYVtiAV16JiDGGbZQb2zHw6bheKoqVz3VcUtqv3R+AJBrrFO51CV0/yBZqcxaE3hC/+pAGRZDmj6eFOU8pnBS0NBjC0WRUmNm7z3rsE2+VYoy0p8frBRo9/qgKxp/NH6E15/kAcmrsVqmoU2aAfWwUexLdgfgPryXZu2NtVriEiZ1DU/ymJyhMrmcuvs2EZp1IjSxlULKG2D65pXN+D0xJoH15OC/cYZ/MH7MGd5XgCM98gf1DS4jJHl74bcRanugb0wvpHla9RRSka8lKcdU7hgyKC4a1m0F5+yMygzlb9eex0QkTIdtuaLbK8/yAa9Lz8FfkV20BC0rF9e2+TxShtpn2014xBk/Qilm5s8fu78xJ2t+yeuiXEt9buMUUC7an/T42vK/tsp1iiByjwqPrsxxros1zY0vPzA+Hgr0dbG+Gozja0J64qpK81rdvac/KJG5uulGxMfuBejtTYC+hatZj9llMmvOl7j5NIJccf+zWa4QgbSB1Cqu4e3ZxcY1rcTf9nO5NW7h0B1BJt50f4WPm/bO4uhQR1rE0XV45PXc8jD0xLG7uP7u+HpgTw8cVVSrFGj6aXqIt+q34MXBzt0L6z++oiFQzJmrvPUtTwT1WOZsOB/AHy4YBvXfrCk7en4I22eBz+aGY71F3R3oCi16Qf46dFWCUr3fb2aTxY30UlrqGgyCLw7PVbk/d1rC9qay6Rzs82MC1a0JjkX/OgS+OBcAAp1LwZlplKEEVIhHIenA8kpqeKStf+k5q1zuPrB/8CY84x3OpEl9fY2uhim9opaMd+bnfETBsOyceJNbRbuLMBZluV087UhHlITOFVUGdmCOFJdsp1abcRtvX3MzFance2MY+irqkn56f7WnbCLwbG1xcqKg+8CoK6q6Xv0ft5GCmzW8Hpz1oOBQIA0M/RDsD7Jk0u0UtSsrqqgmgyWBw8E4CDi+8DvzN3Cu3O3tjkLqbip1umA4mX/ZcZGd/PWcNUuH/Oymv++JdC5sMcQSOsTXk6xreKFzL58E4gKsJ3kyu67VZEGd3BNcuJWvWm6dP3XHjHhHm3ZRKAu4q/75at3c+KzrS/gQ5RkjODSowbHiFLpyo2/sPVWZD5/kCftY5jivD8u0G00QVOUUkrxb/9NlOhM0oPNNB7LNuO2Z7JSG4HYHWb8I6tFsW5HDf2UkVZVTeJGtIoyG9VaG7OBAQ/xXnj0O+QDf5ftQmr8ZawfaYxa+euNeztzY7Fh8dZGHB7j/HTlQT3ek+qG5q/xjfNhXrC/wwnFn4S3eSry2RgcAsB3c5dxzFM/sb6w9cKDz+KIWa8IGo0Fp83CFr0POcH+nG9djC8QxNNgiFKpaRls1QNx1MQ3nAOeWNHz6neS1zBu7BJX73LhNc2cbRl9KdGZ9FR1/M4ynyaMD8J4/UEyaGDwgAGmC2AsHy3K5aooF9CaugTv4OvHsCk/sTB5hDOxNc2M5et5+MX/8L+fDJE0WLfrjb3Wco1thuEq3MHkjL2RXpvGk/9LxGXPRUp4ubY63sLvNNf0XXYRWrKlhKcfvYPqyqjyu7Gl1Lf/JOP1UVS+emaT1+muDBHx376/sSU4EOecJ9j26sW7lLc9jc+WRGL7XW6bG14eVR0vzv7earii3H/ZiZzjeZ5P/GcBUFhifAu3T1jFPz9tXRBarz/IuJ9zWu0e3izF69tsfXRr8GMus87FUth2V7NQlqetK45xJw4xYalxTxNaYS01YsucueIWZm9smyt9ItZnnMDq4P6RDaaIoP0efBYHLu3E6qvHnW0824Zu+9Lg3TUh3TP3vzHrV3of5CT3/9gUHByz3TvjaQAe/W49cza3si0WNchj80TaG/3rNjDSYtxXR9CNx5+8wYDfvb6AtxLMNgnAZ3+A+S+32PkC41t6YOLapq3kmogz4w5a2RIcGF4/oHapcR/Kt8Cm71tMtz0I52dH6yeh+WZlAfOzWq4Xt+u+HDGkB1U63djQmlnNkoyjNo9TrWs43rKBz51PhLeXvHtp/MFmqAmtNQc+MJWKF0cbs6w15UKeKEao1b5zGf3+Hlj1GWyd3abTMurzeN/xEn+ueLXlg1sgnQbWBvejXHfDl9a32WMdeCnShiiX2UJohV1i+ZhdOl0rG4EexgBbQ3XT7+w7qZu4Yp8B4XWfq+k2+qb8SHmukhFvKTomlzkxUp3Hz23jf6G8LvEgdnV5MRW6G0/4/gSAq6Y8blD46akbeaqN8RD9gSDH+ZbQVxn9sVB8v+qKWIuw/AoXeeWRuvhvHy3jT+8vodbtQ2vNfvdOYdQj02LOCYooJewpeAZFBKgbB2YyrmdquEAEYlykludWtjqIdiK2VeXSbeS9XNntfXJSruY1x64X9gCDUn3cYJ3KydaIO8qNtsmklkUssYYpQwzz+oMUVbupSBB4ORHFGSPZv0863Q47n1u9/2SC/3QGqzIyxpzOvMWtm9FBRwWivPT1pk1BA75QTCnjkyvSPenmacZdpmg1eakHo00bGYvSvG7/L7q+jOvHLOUQi9GxLatqIn5EY0upiyNxf4Jeo1EQcjeZu+9yLp98KT16GcENl67fwrayev7vw2X887MVTefR5Ie1O2IKdn+jkdrWBrw9oDpyz9fnFFKiMwG4xz4egK1lO1+Jl2OIUq9ffRSgmB48mkNVLv6AJmDeD0dKOjU6LWHFWlAe2+gOzeCRDHTUKKHHH8AS8FLnN5673WoJC5D/dbyB39u8xZg3ECRDNWBL6x4jtoZ4aNJaft4aaRCkkFgwrErU+AQOCOYaAVgb8Z7jJcY4XuDdn1YC8MC7X8cdMz+rjG9Wtk/gZ6+n4+Oo1LqMb9oVNUOZI+Ci3rw/Z1hWxp2Tqauof+vsxFYiLVFXCnmLOfajA7mf9+nxv+GwzSxzTFHqdTOeUYhedZubHEU822KUXcuDB4Xrhf3L5+J1S8DzEIWlib/zQe6sJl137Ok9qaQ7nwdOM9YrmrBmbYb35m/l4W/WMX5pC9bMyz6A985uemTc1wBvngAfXgC/fNxqd6MCZXQ0bCVtt3iOFtJq3PEChDatIwIhV+T6sjgX/NOtq+i2fU6b025MZXUNHiIdXh00vgXl9+BXDlykYg24mLzYiBW2JLeGy9/etTiY9a7I93OgexyLgodQQF8u8T4ec9xG/8D4ODHPD4u4NEX/jnovW7PWweM9YeMUAOyeiFhxhXV2eDlNuZm6ZtesnaNZmV/Fs9+bVpQ5841yqDFtiI+zNMdwm8fV6NtKZNXpqaObu5Ctep/wpo8dz8D7Z8Nro+GzK1udbjLZV5mdzZrWu2DdNn4l17yfoF3ZqHzO1/1Yvb2aKm1a3bRldrNk0YSFe7/i+Dauri6Awl/wB4L4AppedVmGi97LhyS2ovLVh624QwSUbSczan4/jQdlWiDFDHJ9oHfXZw/uphqo1Wlk6cHk5sZPkhNNmsVPkdku+7N1epvTCthaOTv2rgqZFisq1cjn2i3ND6LVWK0sCY4AwN+MpVRdbaS/aXEnQWj97KrIsjnY8PnSfL5ZWcjJzyW26O+rqijVPagw+wO9qCXP7Pc2eAN8tGjnBgwnLTXq+JArZ6V5/UnzY9uApzw/i1NfiOQtu8Soj73+YDgfjWe8FVFK2HPwVJMb7BezqZZIoRYojIzy/P7NhZzyfDNxEFpgUaFhiePosWvTkTbmsOpZPGT/OGabjQA9SpcxNXAsALU6jXQaqHd7WfDi7/nfM3cDxsjNvKzSJgMEFjuNEdS6gJVvgycy1BJR8p+btIRvV7XsatH7s0jMrJftTU/FHIoppYEB3VPYqgdygGUH2SWJC3FdXcjqmm5hUQrgQusSLrXOZ38VaXAOWPRYotMhGGnozMyfSeUhFxsufIDNa4guR6iIiWq9rx5tmlXPXbSIM16cDcDW0uY7+2u2V3PTxyt49NuIaFheVUODjljptLYDHgoUCJCGm/ooq5PWEP2ca6tiG7xO09IsZJVUqbuRpjz4PPXhGdPsKel4cFBfH99x+3ljTsx6m2Y4a4FMf0QkcnkCOPDhNTtSVkusadSmZT+xPLfpCj1kKRW0d+OH4DFMDFlGFiXuXGZYEwsWx1kSN9aqclaRpQdR5RwYs/1oi1Ep91Y15JbXM9CfH7N/u+7DNe8v5rbx8UJNMqh3dXxcqVDn2x5Vi9q1JyymXm6bm9CtJd1TwkEPfk9RdRtcDnashheHGzPNRDP2IiMNn9GgWR48iK8DJ8cek5W48XuNbQZgjMyHGmkAnmQH8G2G9YU1/HXcsqS7aiWLDF8z1jpZkRHN6DiEKb0G8ffTh1GDYelwyuZnwu/KJZZ5kNfyZBUjtn7IkSqbmoYWAqVOvh22L4VPL0+8v8LsJBX+At/8A9fTB/DB/PiO0+uzsmOC/lYrYwKRou1b22R1s66wOmaUOpGbc+hW+YJBAuXb4IVhfPH6/XGuXU2NpvsCQd6du7XFesUXCOJUPhzONO72/RUA10/PwmdXoQIeAspBg0rFXVeNxawT05SbtQW75grsM+MP3uj9Fz4ine1oy9VS3Z1eqhaXLwBoUvAYN8ZVBss/jLvmha/M4/ExZmzAOc8b/10V4fiB0e2EdNzcPqH1FjzNERNfc+Vn8OGFRuiHxrTCUuoIlc04+zP85YOFPDVlQ3gmsvH+0wHYUZpA7Korxqr9bNBDYrcXLI+4fLXHLGbNoMuyI27pprBWUe9lW9lODow0EhBK6YHLG2CrNi1QProkKTHI2oLy1TEjLZUaS/Om2TU6jZT6AnjndAJb59B41uXqD68wJiOKijvlcdXhwsmDvusj13HvZEypkLtcMzEUA0EdF9DcYYZ3CGBNdEqb6EYDtaRSojPJ8Jj1xdL3E86caNdeSjDEntOtrfxGTVHCp61Y/Q0JywfAGHQIsbMzVpvvmbbYIM3I52krbkto9RZdNrzlNyysA+6m2w7Rse4c3iSIUlH1L5umElz0FhctuQaAhkThNYJBMlU9lXQjaE3Bq60MVUXhtscz32/goUk7F3YmUG0YGDzuNyyw8nVfvNpKL1fzIqUyXR8CWuP2Ja7PghJTSthTUO5qcnX/xlvDS1ULxyYtFovfDHCXsOrcSaVXa83c1bFm49t1H/qrKvqrSgp1b0p0JlfY5rAu5QbqV3zO763zecxmmK5OW1fMn95fwocLc+KuvS44FJ/Z8a8yXdSGqIip5WTngzw/PlLoldd5uPGjZbinPY5+ZjBTp0+PC4j+W+vCxKOIgI5y37NZFVuD+zBYleFbkEDICgZQDeUU+LtREzLhDu1CheNLAWSUJPbntwZiO7xfZ0+E370JhEQpzUuOt2KOCY2MPGd/l75UcbJlDQUtxOoKFf5bSiMVTgpeNuuIq0I3ZzMVf/aM8GK6vzpcKaYrNy5S+Mx/BsVmJ1/RfAMpeha28nLjOXwVMBrQB1kNIe+EYb05qH8GI4cZpsnOXz5Am1ZsjpQ03DhiYwSY/Noa68aSnkRR6mB/JJaPyxfAofxh9z2AOh0R5xYsW8Hv31zIsPunsrk4vgHg97pxKj/amYHGwkf+Xxs7cg13w7MsyxlrfzYca8iJlx3R1pMmG4NDuG38L3FBZXupOkp0JgvP/5Hh7nFc7nk4Zn8fqqn3BOijYssVr256JHT0k9O54m0j6HaNacbcVho8HT+aFMqnpdZosOWVu3AGGyimVyTYdUV8bIJ67SQzaoSuVSTqCIZwV7M13xDQa3UaswNHxu4vbN7a0YvdjIVg4KnvuPhcd32xiunri9lUFPUue2qhdtddt9rCg5PW8FKCoLcZnqbdDBZtKSOruJYf1xURCGpyg/2YGDiJ9LQ0hvXNYJuOuDX8NHsmOSlX87LjzXDsmMZEiyxn5b3KJOfDBFv7LTThvhKsibWYSVOeuNFgrz/IC9M2cdGr88MiUqjTXbhtPU9+13prggtfmc+j363jYstCUnHjauQKN21dUThmYyCoKVpl1LGpJb/wwMTYDkFT8dDGL8njqakbeHde83E/ahd+wGjLZvr27M7cwOEApOfNgk1TsQY9BKwO3CoFq9/FpabrZToeBlEaUy+1Cr8n/K37PQ2U6u5MCx4bc0gQC2d7nmek+wO+C5zIYFWG/bMreM3+KhtTrocvomL/7VjFyvwqimvc3Pf1Ggqr/5+99w6votza/z8zu6ZDQmihhN67BTx2ioCeYz0q2MVesKCCCDZUUFREVFAUURAEAZEmRXqTHjoBQg01CenJbjPz++OZPWXvHY7nnPf9Xdfr13VdXGTPzJ499XnWute97uVDRn8+dNmFsvIyTpMGQJJeiluYfileKYiMyoGz//17bAuU5j4h/i+NwcLy/QstrlXv84vnda527KaJdJpJ64/y7XKRwNyqCZbF7A0xGNX6M7DHWoJZxTb/W6ZpGrO35RrgbMhngk+FeWLs7zVmjZHIq8rqS+dIJxq8W77Nft4aMj88cjl5VOeErPtR/z+X8J0rOcnztdJ5Jb3GRbc7a2FjK5UlUcm6lJDO8vqmB3x+OQD5x3ZTrCXYQNrqZzfY2FmHz5cxeX3sgH7lgmlceLM+Wslp8n0ihFX2Vt3MZeKqA+wZfz97d5u+skMHoSOlE/4Tq+4QoNR+tSG11XNU5B2HhS/CxOjSeTdB8jRLx/A/Aqj6xbGGAW5twYvR25Tnwy9Pm59D/5k4vhaW/ZCcaHo8kCj5BOstwqzXLixbcDFQStNBqSItAVfgf15bU148mJole4wupMcLIkBi/ZpUah6euKYJbknhbucqZL0bZEFVFTaaBivesQGrViv3h/D6xJh8XqtG3RQvIZwUkUT8v9AQDesuBkKqjUVpTexof3Xf+8v+LCb7S4xsbdg+/GcHOviEYHha5VFY/f4f3t+yfedo/tqvlPujs7ehiyHz/2H9sD+kkoA5uL4fvJvxenmKRwpRjpdCvXYXoN6KZ42/KwMKL05dz7XyDt5esNfURNA0FE1iudrJcPjDfv9dgdcJaCaA8oxjLs2HzKWsvIyv1h5hyd5zeDd+hOQvpe/6O1hzKB9fzQ4AfBTUhe3GtIl5LlYKpsshM1/tBkCrne9FZ8ECYvAu0eIYGnzYtuoN1xSWeIYYn3O1GjFZBg4lxv2IE+DOrsPHSSY6IFa9poOxxfsUU90jcRK6qHPrcuitw/VAY+2hPLxSgBItnmkhMSlf678IA2+qWSZWt3wvnBFMmgR8lGleKvASjxigrXpKF8oDBvU1bFZQKokKTmupvBR8nB1qU/JvEOBfSpyLpS9cg7NZDwCOrZlulBt64xLwaS68BFi8x+54d5YP2z73d674H2N3VNeKDOC2MhDCTZCMdNNxeTrufT4MCiZEKuJeKKrG7O3RpQMhvfRQcyfx+NWN2a41o0hLoOykoDcPdv7INY5dSCPrQd5B3FqAX5XLyNeFmSta3sFPoavJkPKZn5XLB4vtgbqHAH7c3NC+PiGcbNFaoGjmjWkUV05JWRmPOUWJSUfflyxQutJYPmsGVRGWXxZg89ELnCvx0f7NpXxZlchk9uIqM4Dr9p+Mufx/08JZ1syNr5E5ZAFXj16JS/VRoXkYGRLUcqWi0MYWOaDWJ0Hyk+V9HEfof6hM7vx+NN1xLSWeoogxvyrtwHLNw8RQXwDKrAzawj9ekvLfWpRGmqbByHrwUXOUE1sgUM7qvcer1KULKup/rbvkCypM/f04/tVjCJTkse90icFic/tEoqKv/z26+caR6ZtGO9/XAKzZvJWeY9bw2JRthFSNRKmSoFPMR7d1zuDX5642fqP2UXs560s/2bPk83eepvmwX8WY9geBqEgWUmEMp3rrgWgtILdmv5YjFuzjZnkd/5A3GJnieKd4V29ybKLB0WhR94tZT3kb49yf8YRzPkNm76L/RJMZ9sUq83gCIZU9q0UnruNazaj9OPTAZdvxCzYWbLkOdJVcTKtQVUldPggQZdkv3XEdIc10d+OCRSiSG58cT7Jmzm+t5eOs9z4HU29jbfYZofHx5pJ/qYtYPu0B+LQThAKE/BX4Y+j5ARzW6lGJlz16dybPseXc5NCvz75fzA2/vJpbPl/P5e8tZ/pmUcIZpwdbvjIdoAj5Kde8hDSZJB0MkFMEGP6O8xt6f/IfdJYqOQMbPzdKysoDIdZ7nuUNZ4xOv5bnNJh/pEqhcgBWvWf8eYks5pTf94lxPlutj19z0ULNiQaYdF+olHgGBwfETnr+L4NSS/aeZc+cUcyYvwhyVqLtNd/l4pMCUMrXg8iV2ecpqogd3K71vMAmz9NRy+cvWWz7HOdy0KpOMv0ua8A47hIL/0hTIlXh0G+TOL3oAyj/7zR7fLpeWZYzzVgWTl5tUEyAYp5yhfG3smgwe7yPVL3TvAMQrCSD82xWWyJF3s2dZrfm275Yz4VF76BNuJpIu27rk6RSgu/cIQ6eEnObI/9AdDmobqEj67jbuYqaq181F+qJSIf2L5iof8AStAriEquzX2sAQNYvn8beUNPwEMSPm1eDepe+kggG0ukdcCKixFM/LyM5q8UAsiJB4f+QKeXXWTmSw4mUVOei21qbYIQlHdTARdiC+rozWhqe0P9e4issm/Dw5AgQSQel/Lh4+vqmxuLqe78Xf+iP4/Xydu5wrIaPWsHpLJh5H6wZDd/0QIsAEXPyymjzxhKWbBLz+XmtOuP6dwZEMtmp/Asfz3kBV/WNXPn+Slszp/cWmYlq7d8sTf2/bn+BUn9ikwMllOhtj8PmCyoUk0iJ3gGCQNkfDq4/WprNZdpOCrIWRq1TA7pmkmXZL+EJq+w/y3r7Qyq1JDND9I3ShwJLV6MKzcuHoTsNQVmrZZ88zePOBUx2j+ZaeaepiaAEcEgaPs1jnPdbNwsgKVdLp29gpLGPu52ryPI8RuLoDN0Bs0+iodLzKIrKSqUDpejXWYlNtTSFzmUcssRRzRzw5285yKFzEUwBoJw48qjOFb5PeSzwQsz91pPyCR6MzurKqt2JLvAVgFdMailSuXFdAwlmbX9+IJrNkkYJM7fk8tPW2EF/+Ir4QyprDuax94chdJEP4cNNc1kEty3OzuPqD1aSOWQhuYWxB+mvQ6IMcuFv4lziEUypcjw6MKlxrKDcoMj3GrOaHh/bNUeCijlh1JUKKNXi0ZC5NfA2aiu7gHNCrcbsVBvTQTpE/Q2Pc239DM5STG3pAjWkEsbOWU2ZBXwNRETPtzvWUhZDL+U/tVOnxbWqCCikUI47wQQIm7a9jM+UW6jU3Nzs2MCVsgCYHDFUz5Uw89GTTMs6SYDEQa0eh/aKLKHDCgyt/0QHmVy49PLG67KuZa3aniSpks7SwaixIcERojjdzdmKcGmrZAO+/xlaQNrUHsbnIpLoIwsn6wvX2ItfA52V9+ueGFpr+YeFqG4MvRWABEV3ylQ1Kqh/d+E+Hv2+asHm/1QU2CeZDLb3nRO5Sd5IMhVU4jaYR+MWbqXt8AXGdhWYelxdfrAD2BWBEJ+vPHzR8XhV/acYGexnX/htbzS9a1ipFmeIbAKcctQVWdRIC1aSIPkp1HVLyjQTlKo1+5Yqfz9smqbx6qwsHvz23+sa9uKMLO4Yb2r2hB9hTUNkjUeZ3Qsdk3qgjWpArRk30uGtpTH31+y1X7n1i/+u6cAz03ZwmXSAoa7pLBvdn76frqXryOUoqkbtU6INeq5WgzM6K6WUeHLUOnSSc4jXkyZBRZTNNm9QVz8viVZ1klkUdxMA1cvtWf9Z2yzAn6aRufQhrpV30OPj1VT4zIBCVTUDbGr3xhJb6Z2v0j6WfrbSDpwDKDG6HFWPYGvM2pbLWPcXfOr+jPwTIshOdpvvUAf/NlZln+fAmSL4dQicj60RqKoabaRjTHR/DEBb6RhbjxeyIccMkKObgTgAACAASURBVP0WIO1IfjkNNRGU3ef4zchwh83ry2dV9nluH7/Rxu6SJWginSLBdxFNRktnOrfbRd3qcSgWd/egp4gdXnBIGhmSOD5/BJtz/fdvcrO8jlJf0AasRdqeU8UkHNEFt/0lKEEffu3iws17tIswf2LYi86ZvOQU4KBXrYCy87Sq3I7TE0clHpIlMS9WNr0RgP7OlUZ33arMH1J4dc4uzhSb1yq07XtYMpQtv4gkTnlFORlSAQ85l0TvwMLecS16AcZ1/kPn8o7rW+LwkSkJvzBXq8Hvait6ls8XgLRVz0hnV5RrXtZn7KR9owZR+9P+oH85ffMJVmX/+63oEw7+zBuuKdy9awBMuQX3RiFkn6U2pq5kH1sf+nYLA76req6RpWhY7Tmn2RSoQvPw42NdAaifGsfaikyxYv7AqK64vqBiA+T3/vIxzda9QN3N78K8Z/6tc4y0sKRBpeahkW8qPfwfkK03npmk9OHBwCu08X3DV8pNbKomfLfki2mk6hYqFdf/PNWpTcTYtPVb+H2CAET9JbzomoV0dqfQpzIOzDzfUwUluDSLv10SW24jXRG/aQMU9PHBWnWAEvr3m5BoGvFU4E2qzg61KaVaHFfkfm2sLt5kKanTJTz8motjOotWWfiy8PfD3XO/uja6RF9vAPBBSOinBVrcHH0cEaBUcekfBGpDAZt/EAiIMVh2uHA5ZE7HYNEb2/pNYKlGdRFbKH7LnPRmivgXvu46wHxaS8Ol+qM7Bv8P2QT3J3SUDhsVMGFT9WYfPtx4nA4eDQjGWe1jc43nSkJlkvtDPnR9CaWnYd3HsH++sY+9K2fA1DtgjwCmb/tC+DJ9HcLHPa9VIyVOzCOVeKgWPA/rx3Lut0/5brVgHP9N3g1rxRxZmfYF3tq/gCyeR5chM6Ky4sA54Zv+pSn1l/1ZzBEopoQEZls0Rq5qJui4hujmtslUVFQQj4+PXF9El59pGsFNEwmWFdBEOcpU90ga/Hp/1G+FxaKtU244++lbOZpASCWkqIz69UCVmaRI8wcVGuqOSx//SAK4jCAKoBwvy9RLeC00gCy1se27FWdzaKdrJrWRjpkrdO2VStxG9rNVHRPoKrLsHzBamHY6P5d57mG2dYklOYQqSygnjv1JXc0VMajsWsgs34tz2cvZ3p2ziZ5jzM5OYUcsHCiepgZL1Uuj9mkc44w7eHqavURHihA6n7JvigFKJVPObPebAJy60sxgtqqbQqZvmu17m7zPMGX9IV6eFd2RsLA8wFNTxe/6zx3EPfXvPMEs8dmSKdY0zShVmrklNrgVZsD1yBkFIT8eKUR6airlWhyypJGAjw8WZxsU+fyyiGeo9Cz7z5jX/W+OvabQtxRi0NrH2ZVnnkOD1HgDOFgRH0+B08HCC6vp4RAlBVf6V9P2jSWGE9vf0mEEYJfayAZagWgWEMne+qN2YJrQQfOXFVESV8gcrzmhvtCzOZdmplJAMm3k40x1j+QN53d4YoiUhyrENZDjkg3f/rCaQaZ6An9IsYEi/vIiXITwaW6cegBTjpffVBFczPK8TTACsPFofkalHKP37N6Mv0dsZwW+L5cP0Ey2Z/8cuiPe2xFNf46lwxGzSFPv8MPxjVGrDqoZ1JYKxb6m3goj7B1wJq49yrJ9sQOXzUcv0GLYYjbk/AEx2fMHBCimhCD/MNeETDDkLucqPnOPI1M+hzc+iWIdqMs5cdJg+gFMV6ruhjdxzVFGL8k2Oo4aZnHEBx9qzZfK37nR/y7vWcCp9EMzAbhAEkXonV+0eHKDyXBggaHfYpiefS3Ut7UypYCqO2TptnHNEkbuuYbigxuqBNFmb8uluCJIbmGF0Xxizo5TbI2hiaahiTIFv33slNQQLfWuYlV1RduV+1+UAvhK+Ppod6PDVIJ+rzwEeGnGdtL0JgORjOOtagt6Oraxz/sw18vbCflF2WzIlWjbbmPctQA0uGAHzmpZAjItUEa78t+Z7B7NJdIBfvrdFEZfkX2eTiOWse5QPqX+EG8vMEvpAqUm2LNfrR/zvUkKid95MvAcDwVeBuDpivG2TrHWEsGOhQJ8cFsAjcv8G3j82/U8OHYebBpP0Vd/5+kfoktCA4rKcNcU43N3xw4cKHSWDqLoz4g7UMjDjl+RUDlVWGk020iWKnhFB13y9MRTfCDPGE/PnDlllnYH8lnueZmbjr4LiHkoskmLFqykSJZ5L7U6mr8Ql8Pu6g6tk8i7qUV0V9YZy94P2cHeIa4fGev+gsulAxSdzqlSC8w6hq3ZnUPO6fyYnU+rxZtA1TN9L4+5L6slUIkDhaccvzDQOZdGFs1LPmxGvFaBS9JQHF6DKaXWbGtsstrzAkyouux3Y9Zedm5Zy1vz9Geq5AzO1cIfOLR9FQCBC7EbU2ihQEwGfFX6naEMeyljX3kzr7qmA1BIspHAAtiw6HtzQz2QbZ1Zl+IEMRfbyp8A3++TYv5mpL06ZzcPfhu7BOdipp4SzItit90HyNOq45YUg3UTtpg+gBXsmN7fxupxSQp5Wgr9Aq/Rwz+aFrWFD1o93s1ZHQjnzE6zPKvwGEzvR6fhc3l1junT7M4yEwT55/67hiKa7idrSGjIHNbq8VboflYqHdigtmGV2pFy4gjg4smz0SDJ04GBAAwPPmi8zwC5uYLxVaAlM0O5jgtaIpvUlmLlqa2weDBM78cuj4Vx9dODphi8BcjIOnIWj+o3AODQEYsPbbFqqphv/E7L2KzfM6sPFfrmBhjbHq3k32gSEKxgdlI82S4/xSSyWu1gW53yq4UZp4M4lbjZrwpw1XFosQBiJ99U9W/o79lJLZ39an0CwRjxU0TMkXJoDpReHCRcuf8cvJMOo5uYpxMGpZxOnA6JkcH+5hciALtgpQlKvdBXSAY4c3T9Sus7oScxNL0ZzWlNf6b/jeYIF7OwnpXV5npep3Vgt23ZkTMFVEgSC5svZfHRxYafC8Bb1eh14DWOeu+178jKXgXarn0SDi9DWzUKgOLKADfL67hJB6UKScQhi7mmjXycDtoBWPY6tdYN54GVojrmB/dIWP4Wgd1zcUvha6CRQCWHvPdzzNufrccKeXjyVj5YnG2WVP4/Yn+BUn9W2z8fWRFlVIOCTxmL66eK4CNHyzCWKYdX0M+xnNsd69jxw1C7pkv+QVy/vsSeT/9Jt5BJK/UFFXaeLOKKkctZczAPVR+EdquNaeGbzM3+t/k8JDLu3kML+OeEDSzdd44Jq3N4Z6El05q7FT7tDPnRHYr8IZVM+SxzlCvZr4kMeoFFkNfaBcyHvSNY9rZVRle+y+QDpFPIV2tyjG5K+S4Fpyua4mrdv9V6H3uf9rI9271s9Rp85cWUaV7Uao0Y7NLL6vJFxvqjpdnc87XuyKrmZJqsI+nhiTvcmt0wvdwmHFzGsreD9/FkwGSNLNxln0iLyqou30uRyo3fVF1msNWqTjKH3+3DEdXufD3kEFng/WfslNtv1h3lbImPVEpY6RlEV9m8r0Ec5OgdVnYXSNSgmIbSWT5dcdgsjctZYWwfFlr2SEHU/YJZ4o5P4ZQmQNRPXJ/zonMmk13vk1diTngVpYWoaz+Bj1ow4ZvxtuObrVyF5CogqeUwdhfs4O2NZvejlDgXm8POkG6y7ORQVzHZDHb+SCIVhhN70mVm0Vfomj0lviAztpzgmB6U3D5+QxR764/a2TKVjTkF1JtzM/fWrc34kFk2l+hxMqRPS+pZsrIPOZdwyZnpUfsJlItJzpOQYoik52rpVJfK2P/t07augRVHxLPZskFNHg0OYqnShXK8hj4AQNfC+VjNbWEz9GlXh5va1yFUhVjotND1pCW46R8YaizrLJnZ3j2nim06HBctw9KfCRwuQU23TNS7tcZ0kQ/xxox1QltHDfLj5hO8MutfC4n+rnci3Ghhc/y6+4ytba9h856FbZPJzlqH9mV0WYFhrnjO6I5XhpRPnAWU8l76AAMDpqOqWVgBYdbQx8sOctqq5WYJhsPB7l6tEevUdsbylAIBplbiNcBWByppermnrVMNoOgZ6wthplQEKDXwzfeoDCiGXhKItsfhv1MPChCso3w4ZtnYwXOlDPppJ4N+2smd7//EpSMW0/y16PbtcVoFLzh/wlN4EN7PjFpvtVavL+a2CFbU9fJ2LpEOVNktKmy+0kJKpj8S7QgvtOtzXCJnU4Nisr0PUnPPROKVMrbFXUEkVLrWcu2HOKcT0lkjiss+f2w7Y7824Xt/vcNsCOIrMwOKWZ63KV7+sfF5xwlxvLFKqIOldiA1sikCqkrbw18S0Bz8ql5uCPBfpW1j2BdTCOlA0e2tzWPO0McYWQ1wVDX1KB93LEDWU07OYCkLY3R3CyiqbQ4AuFH+nTmeN1n8rRh7x1UM4XXXFDpLh1i1JYtaknk/BjjF8/F04DnWKm2J8+cTUFQSqGTI7r7wVjXQNJqdE9s1KBPv90Ojp3L9B3Yx/9DhFXySWo3pKUksjXMQrEIUfXKcqeM0WbmBNUq7qG1meEaIkj6LFpjVR3JUmmPH1Yt7kYDP1vEPoE6K13iC1rx8HZmNGrFM6WKsL9CSuMX/Njf4RxnL9noH8I5zEq+4qi6fTA+dISR7jeSZ0236QfWkfDgbnUwCKD6Tw7ULrmKRZygpfp1h8rE5H7aXRUIvENH0YHTwTgAq80/Azuj550xh7LIcxZ1se57CepY+HVBQrULt202ty7AOTUYtM9Hwq2IHuHyVMUqGrIGcpsGumQYL4d+1rHPiHS53VrMtD9/jnNwztJKOc4MsfIWYOnBfXWv+nb1QlGkBpYFSXqzjZb7cgo1qG87J6XicIizz6h00jE51Ht0fXDoMshex3/swdbM+MXarSmY4Fyz77zr2STqrJHxfJAmOanV4KDjY5h9IkgBZIm2h2pVM3zSmKL24zG/qpn73s6iyKNCSOU91Ovu/4sHAK/YvH47RmCMMiATNeTnRGaJ26CQ7tKb4NBcXTscu+6+mCJ/HmGtVlSZ7RYmdRwoZTBTnacFw23rg4lp1NvOV8E6NVL5wb+SWjnUJxvCFwtp4v0wVTPEDWgOKSGK9YmFK516EcRxOIGlJlJBAzokYgGMsTbfjF+8i+tE8S4JPB19CIQHSOZwu3A6Z+apZnqlm2+dvKyjl9Aqfo8np+cJH2PyluaHO9JJD4j0t8+jjgK9IvKfzBgrQ9d8x/Z7tUJsyKtSP3Xo5tNXaq/vFe6Zr/ZWXl3LeIe7PuB3j0CLgj5sdf7zr6tFyN+dLfXzkmsBYt/l8a8g0SI3nHx3qxvyeVYu2fP8yG1OvpmUudJeJRNzR/PJ/u7Pk/3X7C5T6s9oMgfhGijarmsq0R+xZuoqTuxnu+gGAnSeLqBjdFpa8BqqCpg92jfwHCEqmo/XW/H2c++o2ni8fy/2TNnMgV0yCeVoKftzs1Jra2DIJp9cbGhB+q4P4dXe4kCPa+0aYv7KMDKmA4xZn5oIl61JoAZCs3d5KtHia5S2loSwCr2scu9jifZr3Fh3g3vECCFnVaB071NeiflNDZr7SNWZJYKQNYyK1pCLKiaNl7WT2lIljKzt/BFSVcSsOs/6wcFjDYnWSBO0yqhnXCmCpZzBDnBYHTxellmvZxQV7WxzWSUofW8YwgzybjoAcywHziu1TMJ041Wkv73Q6ZH7uOpPvQj251v8RAEP1jOaH87bYKORdTk/lmLc/271PRP2UisQbIeHw52h12Op9ktUeEQCOXqIDLlNuBeDT0C22CeKjH4XGQn7AyXa1GQA9HdsZ6JzLtY6d9H1vlrHtidFXIS9/A4DxbtNBA/hH35twJsUW6U3wOPlCuZmxoVvNhbKTZr2fFNdBUlnsGcLTjrnsOGZ38C6QTJpUQl6pn8Gzd3P7+D8+mcWycs1DJW5e/no+dQLHYm7jkGVmK1dRbgFi45ToACCga0p5E1O4oU1t+l1W32DtdDw1nRpSCblaDRYql1Fd0Z8XZxy7XR15LDjIuA85qigvbeyzd7WJLLH58J8dTEZahI0L3YqqaWxSWxnL5njeNJorRJZyPvb9Vh51LKB30Y9kDlnI0j1nWL7/HM8NfRU26YDjhRx4tzaMMLUutqrNAehZNs9YNmTOLmZujdZGKvUFOXy+FE3T+Ghptk2gH4CDS+kyqyu3fxrDMdYdx1lzZiAFzXfoN6WTbbNqUpkovdVSaCSdJUEyQdQRt7Rlnvo3grp2ne+0mc2rLRUywTWGVEpsDQbUStPhtDIw9mkNDU2osDWqkUAJ8SxSLuPR4CAzE3zBAqjvnIHj62sBDObpcqUTJ9V0RgTvAeAt12RWz/yEx6Zs5Std4+vOYWP57MPhAMQHxLNTrCVwIQbzNaw76Cs+xwbvQMa5xuFRyljhfpGvXaPRPhfM0sfLv+I558+0mN0zah9Wm+T6gMcc85lzvi++/Yv5ZcEvvPThF0xyf8gsz9uwZGjsL4YCUHyKRZNGkJz9E6H14+zHWWB/RhIln9Hw4lXXdBopR/E5kritcwa925hgfZ5mBqjN5VPIutB4ZaK9vMgK9uWodYx3YaTrG2P58dN2gKejFK3NEw5Urabo4/1OtTHNpdzo8eC8eHfdumi59ZgXeIZR6RPPZYdKM9l0h2MNVFxAUoO2znGJUiVeKaD/HSGiO+cx+OFOAoFo5ma4c+6NuWPIO7KThggApJF8Fvm0KCmOfH9OU4PzVCMhkI+qarb5ioUvEhcUzrtTC1C6bzlzeYG7HSts+3D9/KhRqBxocxtdG6cRi4M5qchsCnDovZt4OPhy1DZW0zSNiWuO0OjVRQYYW/28nb15hWMffos/MvvJbvzy9N+MzwkeB/FuJwODTxvaMnvURmRpTcmO6DLXz3nxjshxajmK0wQJHC43+7t9aN8oe3GUoPLq7940/n40dyh9X/3ctr6VdBz8pVElorv1ssP4CV1g7UdRx6MWnyUYUsjJKyNzyELm6x2Mc8/lG13HrHZj4D2+uq8Lu7wmEzxPMsd2v878TUo2n92u6SbIv1+tb2hCGnZ2t5gfwkmvdWNgzqMMcCyK+v1ICylqVPItUS/RzSy3B84H9HK2Y6fPMNv9Jl+6x5BAZRRb7HhBuRGYG6aDKytOrGB/nMyyVPGMK6pmdOQK232BV0F2im5u858n5Dfnhuedcwz9oASLTmid0H/IlNo7V5TBWZhSPz7WlQMjenPXJfWjNtc0kQh5M2hWT4TnY2Mbi2/3hibm8QJMP74SL6VyMhe1Ar002QJK9d43hJrKObrK+ykikcIzR1m9Y79IUMx5DHQQJUkHpeRw85/Ie5GfLRJOuuUVXaT0TdNszaE0Swlbs1pJTAt1p0hLoF/gNRYoYo7LyhLj3M1nPxOnoscwF6pIgAP2JEvlBb5PTqIw8RSlWpwh0m4z/TjuDliqOSJYPpHWVLUwn2aK+6eG4xTZGcUulRcP5ti2pZzeJ8Y7xaLl5owzzyX3QhksszTA0a+XpJeEytX052jjZ7DhU9j+HSyKPe76Q0psJrbOoJynCPZRONZcpnSht38UuVoN2sjH9HLI3gCE/BV4dMC4LCi+H9mo549a48rd1PyoFrc7TN2+onAyUJb4tF8nZjYbHfW9MNgPUH2fWdr5vHM2Kz2DjM8rnQOpxQVys7dVKQnzZ7W/QKk/uV2IKEfTNI0rmtZgzF0mzbTmLhPpbS7lklCRKwaMuU/hOysAhGQqKC4Rg0tAc1CwbQ69HNu407maRe5XkfR67rSU2Oyeae73OK5T7I0pd/+CmNsax6pnR6xdjAot7CFrx6iwXsRpLZVTWg0bqyRsTaRTfO82gZ0LvthikM8GBzJV6RFzHcAzgWdtn3t0bEK7jBQDJEqc94i9kw4Y9GMJiUG9mvNpv04c0Uw0/QnnfNg+BXbPgrO7yVHrUOxINQKh61vW5IBmD3iu72QG++u9z8HoxuScEhR/ZyxRaYeLcs1jY2ZJcvQQEJDcvBF6iGMW3asxrs8ZdOoF+PxS+PEeLqyewN+OT4j6btjcTic+PJRrHppKZq1/LS5wLqL1s4bEo1eZGhudZcGa8ySn0bBxC271v2Xb3npvw6U9Yj+mlZJAXK2mWM3q7LmdMioyKywBkeTy2ravJ+Xzsmsmk74aY1ueryWTIRWQdUinopcHbJlzTdP4fOVho2TJamX+kE3DA6CYBDrJh2ksxdZEAHDKEoOCT9DBP9F2vh8vzWbeTvN7IT17FZ9YnTi3g5G3tbe9JwALlK5stzqOLi9KRHb30aCYIH2yhUFTfCrqufK6HLwYfJJFymW8FRTtcO8ODKOFbzJnSGPKgMu574om3Oh/1/jO+zOX89yPO3DIMi5C1KSQmhRSv/IAr7mm8UTwe455+9NrVku+n/KNLRMVy8IlcfdVmpO8tWQORAmvenYf936zmR4fryGvzM+4FYf5Jct+zbXFg6kpFVEjYHfqNUvZwHNOU+j2Nv+bPBJ8mR7+D4xl9SsEEHpUq01r+ZiNKRW2W/TyaWmv6Thm5q2gt2MLzztn2wKbc3kmDd/OwJB4N3Qvmb4f6O4fzaW+L3j0qsZoyDwVfJ6NahtqSDqgFdB1KzaM49T8J9nkFeBm2DEuJJmrAmP5RhGaNBlSAb0Pv82V8h6DtTXH8ybPVYwDTaNB3ipAAGmxGl+E2QJpiN/v69jMTY6NNJbP0sOxAylPZDF7+H+L+i5gNOMI2/WOLAMc9864i5u33s+HZRbh2l1VsElm3AtjWnOyQDjQSoQ+w/my6JLAOx2rbJ/9rhQ+vrMjE+4zmS17tYasUjoYgtVpS5+lc2Z9ns1/jxJL0FBu6Zx5UqvJOWtgrj9Tr06zs7+udphA5UHPfQxwLKLMH32ca3aJuXme0g2HpLFl40pDcBkwWGHhMk9rIAgwa+1OAiGV1hcEABsGJEP5Ocg6KBXWWXIRwksVGdtdM+DQEuTsaK3JdMkEVNO/N9mFH7q+NK7z0KBdHPmsVp08rTop/jMUL/+YxrIFtNs6CbdighA7Z4v5/Fp5J2yeyJwtx9h3QsyB4ZnN4Y5DrqK1fZ6WgqpJ/K62wiFLfDvgCq7yj7Exlqw2c8sJvv/9GACdRiyDQDndtkcHVFbGRJeGqdRM9nJlM8H28bgcJHqcVOJlutKdfoHXeCY4UN9aYlTw7pi/HbaFFqZQUPbY7ovT7aVVz4c54LIktKbfRcV4e5LN2t2pKSdY5LGDug5JY9zkqQR8pq9wUk03mMtWK7Ho0dX//jJGvPEC3T8SjOF5O0+jqBpa2Xku6Gwwq+Vp1fC6HExKfpLe/lGsVdrSQ1kn2CGl5zifL3y0atXM9+Z8ovB7JoRuohIP6ad+g5Cf00s/RR3ZAPL0pNfyEfr/wn+IYqTHsNFLs+kzdi0HzpYYc3rjZPvc2C/wGn2SZrNBFUyX6sX7DaZahpRvCPEDoIT4x+gFUUANgQqYciua3hnVCgAbX9Wn2jOkQbNegg2z7VucR+xjZuGclwBIJQJMOWdPKP1LCwWE3/rd342kS0b1eLo2TsPjdPD+He2pHh9bK22y0pue/g94OPASdwTejFq/JeL8r+7Qyvb5WMgEIn0WPbYuPgFiqfl6MjQQfQ8rNA+1pUJaFPzGNb90hbz9YkxaLCoXkkKCxWp0pPbbQR1t7lOw3SwZbXRyjvDDv7oOSk6z/UQhP+/IFZ2Id8+CUfWNaxtmpoPw0bZoLenon8hGtY2RMCrNO8mz001mbFhCodQie6DKbrsWZvYiASQvegVObWd0WnUc9X+khARSpBjMwJMisbDHyhhyWqpHDi4xtJEqAiH2nCqmhRpdneLwifORHE5ceiLkpeDjxvrM+f+k7szeUHQS1W+Owy5PAnN0mZjSz66x71S/3k5dPL88WZda2f698W5qVQiktxi2mJs/i6EZqW8fTvpcIovno4R4DmgNyFbr09ehs8/KzpE5ZCFzt+Sg6tNAaaCURQOvYo+WGbXrcEIWQI1LY3HNR7nF/3aU5qDVXg0O4HK/Hdh3VYtmS013vxu1DOCBGJp9m7zPsNQzmCvKzATp2tz/oHnF/zH7C5T6s1leNmUzxSCyQWlNtWuetK1W9aCyaXqS0XELJcTPiQkUy5KdWbXrR/yHhHMhS5rh/Lglha9cZolBa/k4VweFNkPDdLvj+7YeqAIM2nSV2RJXVSlb+o6xTml4JZGm6m3BrRk2a9alefMWxt/hzjRfKLdRT8ojU9dfeDjwkjHJLfe8HBOsslqdFBFEHNCis0Jhu71rc7MOHohPTKFbkzR75mP/PI55+zPSqYMIqr37Xu82tcmPCBKY9wzMHoAaFC1mNWBsv45sfPV6vnkgmknm86ZHLWsysTm/LV9qaARFWgkJtsxzes2MqG2sc+Ovishg3upYT2tZz6wcWEDqysG2Uq6whTNmktPDrCe6UUwCdSQT/NvkfYZtnidFF0RZTJpn0q/i4SsbGUFRd7205dre/+Sz/p3YoTWz/UZ8ZKY+fNyWvw86mlIzJT7mdlZLSUk2usCEA5fGvqm2bca5P7N9bt5G1KKnnzS75lhbn/ccs4bRS7J56aednCio4MMl2YxeIoT2h42dSK+RC2waRsVaAl3kQ3zvrroTpijNkQjhZJ8qSlm3HbvApysOM3D6DoKKiq+kgOv2iuAiPtl8ZyLLQHO1dFuw6HS6qVvNDCwua5TKEa0uh9W6+IvOmpnjC7G7K4159EaeCj7Pt0ofMn3T6Hdnf4KSyFy1zUjhzX+0sTEAHNkL+T1rD0llRznkvZ/N3qfZ7H2az13RXWv+7ojWkIq26ICzpSQAw0pfgM7SQRZ6hiJP6MbOk4XUk85zviR29slXId6NK2R7e/oTB80seZgp0sv/Pts14Wwf1uqxS29bXqR4ODbqRtIo4VjSedLrTSTS9uqMg+zTBRZAU/x/v3OZ7VkOawetU9rEPFeQyNEyyKMaTod9/dBwlx+Ad2rC0mH0rVeXR+oI9uk3T97Akff60vOvOAAAIABJREFU8sldHYll8fhoWroJzprXo7LIFAt+xTWDSl8QDi41B46y8zj0blGtQyZT0coOAuwlLRbL15IpvkjpciwrTutAcWXQppUEwCHh7MXpbAetolBkTvfNgz2zaVQSXTYRyU5xySYQu+BZMU+VEc+DwcE2kDCog97js8wy4nuvNsGBl4JPABIF4UTR4eVsmvclP3veqPK83JLCcNdUmu8bxwjnJJ52zDWelz2HxXgcTlakUcL6w5b5rUL8vUoV93bk7XZG0uzVW2n9+mLKSorZ62jFBlXoEcmTeuFUfVTioVdAgK19HZvo44hRYhIoN+bXvN8+iV5/EbvekYVfc3Ge6tzuN69BCKfR6es11zSmukfavucNmPe4W0iUTHV37IBFL7F97ies+UowcuXw8yiJ+zdbidZX6tOpCVf6x/KYLnrbsX41Tmq1OKjVi3nMa3fn4HLIvO/8imzPA6iVscvVFqpdo5aNvqM9ywddQ6LHSVqiyaTaqLYxG6UAXyt9o74btkGBJ3g6+DyZvh+YpFzHnZnt2VzP1KnzeLwgO5jQxA7kx+ftsH2O6nwWYT7NRYPceXRbY/pv45V/kKtF+xz9AsO40z/c+Py26zujTGXZvnMMnrWTelIeJ7WaZGlNbUm9EuJpVSeZ7Dw/B7QGLFV1P+eDRvBRcxrsEiVP1RJMcHdbg4fo7h/NqFB/mks603HpMOpuGI7sLza78Z226575tOgys0jbdkwAGL0/WcvIRfvAV0JqyK5HWKLFk1epGWL1qYXm3HCV3oQk62QRh8+XseDNvqz1PE9t6YKta51WWSiYXJvF3BCMEfAqVrZMfFrU+rC5joigNUUrMccWgPFXVPENUaKeOWShPaEQvm4FOUbQH9lLJVwi3KF+NYbfZGfyH9LqscKq02OxzxMzyPKI6x/SZLp3sGvAHtfEfHRv4FVa+b/l5eBj3OAfRQEpXNAS8Z87KOYXf/T7dmPgPfuCcLJbB/0Tg2GmlN92nhfCDUGK7TqnrU7OgNkDxPOz9Vue+WIeP//0Pb3GrIFjOihwVOhXhTU8ARK99nt4Sn9XXEVH6b3PLFF86zbxjJdY3nlZDcAYUw+OGfeQvWONKIPbN9dYnK+lUFsuji5X3yEqXcrxmmypQDmsGkXwg2Yw7U6RoKm4wLSJH3L7uBUkBCMYY0qImicFu0xyenHp93qWco2NoQ/AJ22Rzps+gdsps1wR974tdj9R0TW6qpcdJEetQ2VaW5Yp9uekNIYwezh5u+9MjDFWZ0rVTE3l4Dt9jMXhxiMbVfuzKaNy8vwFoxw1qAZpXTeZSrxc7vuM9j7TR7s18DYLlMv5rcmrNC0cyxMnriNLa8oK1T5/hu0K36dMV7pHdVyNq27GVjND10R+zWbWu2l0co9hZ8r/Db2z/6P2Fyj1J7O83z4hcd+PAGxSW+F22TMbqiYe/3b1Uih4UABJR50Kr6enMaxGGl1kO3ruP2NqRDzhXECpZtceiTTZZV9failfcGoBWsnHkTQV5g8ksdDct+P4Olsb07xSP6VF+bxYswbdrvAy8/FuDOrZnJdvaEGmbxptfN/QrrXIVD3XvRnfKb3I05KR6nUhSTL3U6LF85o1MKvCvh3Qkm8fa8A3DwgQxiE7+JtvLKODd/Jc4Cnbtskp1fitixl4yHEp1Ej0EIqR7ernXImWdxAiuuG5HAJkiGVqoAIfHv7RoS4ep4M6KXEGy6erbxzd/YIWGnAlcX9gcNT3S7NXGYNzpJVJiQZ7YnONW0mqFQ2+WQVZA8TOjFVlvyqX8YtyBVM8d3NJpmCtNY1gAHmkIBQeIyvUgLVKWzI7Xkuy18UkpY9tu6RqqcS7xTUttHQUayWd4GnHXFa7n7dtbx3Yuyg7aVoziQFXmgyscDB3svQkM7NnsmN4T756wvzN8N1oXNOufxFp198lOiHec24018pZxOOjp0VLKix0uuLAea4evZLPVh7m85U5kHeQTyqG8IrzR/pPNEtmKiP00GJZgtt8ts7eIt7vx5wL2e0ZQDJl5Jf5KV/4GgrQrlEDxmWbwNqTvU0H4J7Aq/ygdGdKyGQCJqvFTB1glvROGSAy8ee1atSSihj46XR+WrcbxV/BaWe0ZkKkhkZKnIsdw3ux8VUzWOrWzGQ7vuT6iXmeYdQ69KPte/XliCYL6OVEuv3T/3rM5x1gfITY5RT3SBwobP3uZVEyqNvbzsms8zzPtvEDyJTOsNT9Ms0l3SkNVBDnEwFIQ8nepcmZJ8CVLNUUBT0YAVzfo5f+LPEKttE6tS1Da9ZgW6LdgezWWAQYF7REgkc3sDlH/Kanwgx+VFUvE1j/KZIu8v5AUGR+P+tvOkeLBtoD7R6tatnKzOpf97BNEB1AtUQatetkIMsSt3TKMAAXq3WXd/BAzoswwSw/OpZjL4mtk/UJTPsnhTOf5tPFu+DDZnT8+RrSKKZJ8DAnnQ4KYjAyq7JL/BPw1v2Rq6pfT3f/aDr6vjR03KqylNyVnB/ZgZyv7uF4fim/ZJ0ic4jJ3KmHuLbeXVPgxEbR5nnWw8b6fC3ZliG1WpJqZoTbZqTY9CJWxjguxdKyu9/fWvJQ4GWu9H9CkSxKkAxWzI/9uHz7K1Hfj2Xdz3/Lfc7feNk1E1UJgapwfS0xzx3VjztdKuK5H7NgdFP48R6jjfwZLY3NQ7tz56X1WZBssnAWeIbxD1aTIpVT7kjmb+1FokVGpWNwJ8myn+M6S7mWVMSzTjM48hDg7L4N8F5dvHoiq4VfBCl71Ya2ZFSkPR4wx+1wEmyb1oL9agPjPi9RopMwYWt4bhmH1AxUTTKaKITtHde3NJGE456jCmAp7PMMDz1EJ5+d3atIRZymhiFk79HHNw2Z7v7RTKw13Lb9ZydvJej3c5dzFR4pSFG+ObeNCd5u/F2oJbLzjV7sfN3spOV1OWiSLuYxl0Nm2qOxxc5DOFmttLft68HAK3TyTWC2GmabSYxKacxh7RxTvWZg7IkT+x9xS1syfdOYr5jgWOjkVhbvOcux/PKLglJb1eb8pnbmZscGjricPFErnT6Bt5imB14VEQGqhyA7tSa2ZXPcbzDcKUTvV23fh1cKGiyrBWo3Mn3TyPRN48CIPqQneSjRO9nujaENA1Aj0fxNFYehiRpOEChhdhTAAotfcNScPyIZJsWVQT5bcchkpaoqd5x6n7bSETpKhxm65QoYVZ8OATugV0I8L9/QwvCNMg99Z6xrpoNk50t8nFs9kZscm0iWKqgn5ZOHWYIYPLwKMH2OWFpEYZkHgM0F3qj1YUv0n2Nv1u+kUcxqtYPhHxqmquzbm2XTTRy7XPj5YZH+iWuOcOpceP7RkEKCkSRH+KhhUGr8PZ1tvtW/sm21crhPbxbjlFTSkuzP0PDggxR2GchGtTUaMj8p15Ktg+25WjpK4UlyR7QWch8RdkyrxYMBC1txlQ5SSeKaJgTFeTsVMV4GdYmDySFR1hUGqRYn3RZ94CEfG7wD+d79Plf7VoFHgH7+40J/KmQpre/Z2u4z5pPCMbUW3Q5/xI0WQP+qNg0Ze3dHErEz5imxl5K3mB/dBfeEVhOXFsA34yFzYUEOampjTqjpaMj8rrZmh9oUreQ0rBqJq8Liy3zQiEfyRpLtfZBUpYDjak2TmbntW2NU0Fzx1Ez28uE/RUVNuPOf1RL2mU2R3E7ZVtECcH9gMLlaDSpO7ITyfKqVHea8Vp30ZC9PBe2+e6xOfFENX3K3moL3J8X1VN2JuJ0yI7UHAUjVG2csU7vYvnrEey+JVEal6u/r2pBzpFJCArf636Kd72tKSOCZ4HM8srcdqgUiCTdjsto2tRmnqcF1LaLB+oS0OqxT2jAgMIh3Q/fY1oXH93BSK8zgylHr2GRpIs0hxdZv/TPZX6DUn8yOlpkgQiGJUVoU1jKjZg3FoO/XJ5oCh/nAr1UEal+rdA97VbNNd5UUft1khxk8Z1SLY6Fizxh+736fAadfhx1ml55zutbFyYn9mP3dJ2i+Yl4e+SGdNj3HsoR4vi74issapfJs92a01DuTlBNHu4wU1r5yHc9e35Sl6qVc6p9Ax0vtAsQVeKPKFmLZ0C33MnBtf1rXTWb8PZ3Z8Or1nCKdz5VbWK52tjGjqqVUQ3bFGeV6clIt4txVDxbBymKkCFAqDDItVzqRq9UwRGgBnCc3omoSCZ5okOssaYZDJkvEpNP7/f4q2URlUgIdZVGfnxvfxnDYrXZrpwzSEtyMvqM9SVyc8l6heegXENpcy5QunCOV54LPkC+JTHeulm5Q26324Ic/4CGIHxdOWcLrcthYcGuUdiS4nYbY527VdICGuX7gZddMQzMMYHKoF/cGhhifd8gCsAwz32y//euDjPh9BAle8FarzZtBUWrp1bsiznvmbxyuIlMOgCXAnuz+gAmuMZwu9hGPj3TMzmJ3OFYzx/068fiQUdHyBAhbVyowyppAlC+GLTJ4X3dqHRXBChqkxdOilnj2r2zfkqO6GH2SVMmzzrnklfopVtwE9OdqarYJ+PytrShjVDWJ9Wo7NGROYU6iRxv3o3aK19i/x+ngiiZpnKcaNSlkmecVOiy9i7LyMm6oH82siwSlNA1S4l3USTEB6e8ftovT1pKKaHTo26h9VWWrlfZs0VqyRm0fte7YqBvZoYpzDAtJJ0h+crz30bDQ3jHrfqfIKj/gXMYqzyCay6dY6hlMjfJDVMwyWaW3OdaaDLHds8hYKZoKaFUAybLnFLQcRVPna/R5WLwPKbdGawoATNdbfqdKZVwiH2Ttt8P44rd9pJaYYE9RRQCWvgbLhpN27FfKNC8KDva/3Zub2pugSOu69rEt2etkwn1dmP/Mlex56wY8TpmvlNidfXaqjfFYkha1kqPflbucq6KWJZbbu/DUzxbdr6rv/4GW601n8xnnXOqGculbP4PrGojnZkBgkO27P4S608I32WBaHFLFdq6ULIqqHSZHy6CIJB4OvmIw0aqyZvIpbnes46mPvufrGXN40TnTWNdX3lTl916oWYNb6zSge+AjslXzvQ8zgI6oNW3bj7mro/E8f6HEaM9tMY9TZqXaiVytJpdkVqdP29rsiugUG7aBgWcMIWmAEcF7Y27H3Kfg7VSalW3msLMpr/cT4O9w1w84UESjjAMLCF04QZGWQCnxOHV9kB+TH6aJz5x7P3ZPoLV8HJ8jkRZNMm0/05zjuGNoWQG84fyO0VNja5YMCz7MJKW38dnKjFmldGCJeplRzvOqJWHUJzDK0HS68C/m7H1aQ2QpNrDS0yE0XDbr+l2aHmopOCgkmSeTTebrBVVnsN4otnU7ZW7rJJ7BHC2DrJTobpkdXGbwWG2aSGosUC5nrHK7IUp9RksjJc5FShXlTgBXNImeu8P2YPAVvuggyoSLtQRWqR0pjLgmnnQxlqmeZG7yj6CZ8zXjXJO8Ljo1qGYLFLfPn8ATU7fx0EfTeUAfB9v7JtLCN5kRwXu5zPc529RmTEp8lCx9PB2VVp318XGUxpsJgxGhew1h9nlKN/ZojfDj5rHAC8Y2LeRcBjh/pY10jBecQgMyN8JXSfI4jTnXOEatOWeIvi5tM0z9TCu75/uQ0KJzHF1tK/sy7DszWZEuFYljqbgAvzzN3Knj+HDpQdYcEudWePYodztXscAzjLme2FozPs3Fz0P7c9elDRh2Y6soYfx6Uh6POhbgC4b42943besKtGQa+6bi11y4D9tFo9NTEqhXPY7db5ogZuu6yfS7TCQ+HjjYjU9CMUAT3drMvYEMKZ8LUio5WgYbw6wsTYNV79H6p2sY/LX5voavuz+kUFge4N1F+xk+08JK1hPEkUypwb2FH5ya8K9ZZ1VZUHNQPd7+/UKSyWr+LEoMcK5Ui0f1lVJPNQFga/OUtEQvJ7QYScSSXCjOxa0I4C3NdwI0jd+yhP8b9p0lNUR+tfY8kXe7oQtk7uM0Q2uk8W5adT51f05xjmBmHtkr5pOQpXyvZlL0/HksAqgBcHsTubljhq1Zxh+1cJzgzZ4rnuOTm2FcZ+QLOeyzlKIFcSBFMAUj7Rp5J/mkcFZnpbLoJWOd5BHX4Y4uYj60NmUIW0g24xO3U2aflskCxQTay7Q4zmipaGXn4Ns+pFaeoExKICXORRCnvVGV38e9X5tzdE5eGUeP5VA93KglZ6UAJJe/JZK+80ViJ94hYKbFCFag1P6fABzXapPpm2bT2Kov5RngT9he7m1W2+zQmtkYq5G2S2vCpFBv7vQP54XAk5Ro8TyoJ0k71K8WtX1aUjz3Bl9judqFYhK51Pc5K5UOXOH71KgcCDcJCjO4UqRyAjHIDWGTpT8/ZPPnP8P/x0zTJ5PJoV7MVa7EGaGlYAUhZFnicwv6u8+iWTRDuc742yrW6pJMrHm/Gs2ysXYAWj/kelunjrC1LzPbMO9X6xti1vXPr+T2o2/g/6gDk90fEIoR/1nj33i3A5enhAqLxkS822Gr/S3UkmjRVDhYiibxU+hq3vaYg69xjkFzH33a1SHdkpm78ZIWNBi0ygiKasQ7cDtlvvU2pl2jBpx0iwO9qX0dQ/zSyqhYvGkPx8t0sT/LLH9ti3QeCQ7iKv8ndto1Qiy1qlbrYZMliRytLo8EBjEtdB1/94tyyFuKp+CoIhNaJiWQKolzTWjVIyYoVScljm3De9I2I4WhwQG8EHgyqg2zcW0C77FRbUNH35e8GHwSpADutJXGfh2ehJjfu9fxG23lY0K3JKQaz034Gh/XauGQJSRJYsGzV/JC8ClGRrTsDlu2Wo/PQzezEzPY+6CaKAeRLCBC+NoX+gVwFD7Gjo3sDk2828lIHmZw8NEqmYHnepnlEWENmJeqvc1v8c+QQR6L3YP50PUlneXD7PM+zBHvvZSvEcFQN3kf27wmAJJRL9P4+6DbdKxPlpzkyd+eZPh6EbAvHHglWa/3xO2UyZDMIOFR5yL27t7OCX+iIW9vm7y8YsLM0rPZWa/3tFHvLwTExPjTk91Y87J478ff24VCLYkGOnupuXyKmRujNQgAwolmyRm+rtHPniRJzOj4XdTyi9md/uEU67oLM5Vrw3syuxFZrM7ld3Cj/13mqVfYgqMGvgN/6Lce2HkP8QdNJkii5OPQ1t+E0zfbDJy/0MfLSIFMR5wIVB2J2dSrLo755s6Zf+i3X3L9ROKq10nwmUypvnNaUZYjnLSEipOUEM/VzdMvCn4DBvjQrl4KiR6nnpSQeCAGw+x+C4gLQoD5j1h9HaALM7DcqgmA99IBARAAXi1duF/T3721ans+CN5lbLNEvQQ/bjZrrbjS/wm3Buz6cT890c34++bACB4MvMK9gVdt24RF48O20DOU+Z5hDLQwey5mvyXEUxRXwr1dG1A33pzfegU+4GbnQ8xIbWvb3iFLBPRmHSqyjfkTaR6X3cUaf28XPAnRY+nEUF/mqVfwvcuk7kfqQRq/v0eAbY0ChyhzpNCjrQkU3yKb+hvObV9TTWeHhEfBfpc1QMHBU4GBWO20txm92kbP5x5HbBexv3Mlg1wzY64T5dYS00LXMz70dxao3ZgZuoZ5SjceD4p3M1xeEQ3QSax95ToCuHgl+Cib1JbsVjN5Kfg4g4OPGlu9GbyfkGYem7WjZdhU3eFXdJHvbcN6sHlod349n2r+mv5ceizgyHM9zHJxlyzxWtBk1AF0KDY1fcIlQb8ogkkYLtuLFYzGslUvXWv73Dhdny+dJdTOzODL0I08ouv73dYpgyubxgayDiSW460/hWn7TfbClAGX833oBmPMuuz8T7SUTjDOZYr9l5CAHzffKH1FGWXgLRz1L426L+c085pNV7rTxT+BLK0pA4PPGoyhpeqlNoYXiHfxHudyAPZFsKA6NYzdIONB+b2Yy8NWHjBBqXAzFcBg7FVlfeVNQg9wwQuwYyoPnHqLa+SdyPozIFkSpZEWLvV6Mfik8azc0ikjSnv0SsdeXnNNo2hvtFbe72orVGTKYvjEySnVWTf4epK8dmCtXNeSq8TLJ6Gqy3rCVqupYNEagEfITzBbAJCTXaY8QDjZ5wuqBPVSsMSAWfqbVpQFYFybsN3WuR7HRt1ogFp3XlIPl0Piqmb257Jn61pc0zzdSCJbbWzoNlvC9ZrmIkH2kN7pONI6yodJzttmW7bNolHlcTpiJmcBGNPG/nnnjwYz6jRmSeTuAlG54I5sEJT9K/OTEvgxWZxHynkxJ7eST+KrLMd1yC6eHxcBstawyCQYpicerSVml/os5bZ3TIp9LmDXlf2gEXxjNghpYqlIuEw2mYNZamMjLrFaklRJgZZs63wZNofD/hyejgEUu4tMJlOYyT/EMkaf1NLJ11LwFmZD/kEKZZkzCfnGvT9raZCTQhkbDp8ncHYf5G7l5Y8nMqXwfnZ4nxBA8hTBGtu7ZSWLPzUrV84miGRCAdVo7vuOCy3v4dioG1k+SJTLWTtsN5LORJ1rstfF8z3s8iAXs7dD97NZa8XP6lW0939tA7GmPXq5zV+pkWgHXvOozkPBwZymBh+G7qR/YKihhawCZZLEOKUPNXWJm9wWD3Glf6xtHw75L6bUX/Z/zDxKGae0NN4MPUgJCZRFiNBaSwsARofu5hG/cHoCuA0kPtxlBaCDy15zHc58Ph60t9MGAXSFnT8QGg3X+j/iu1BPvgj9gzLNPiHv0xryvdLLtswbFMFtKNyO1jKQXGmZ/OqkxNFzVk9umWvSXLs2TuNTS0Zp3qu3M/j+2zippvNaaAAvh55gUnHsunerWcEjWRa/NSz4MLvURiQ37MDpIh8/xItgYJ8s2GMPXJHJjYH3uMP/OrcERjAtJAL8HVnbmFRXTIR+C0312euboSGjIUe1ZAdswJjV5j9zJde3rEmfdrUBid/ULgwNPcpuTTiSXvwccMfOZJXpWi0lWhy9unaMCUqFLTXBzVnS+Fm9iq5+M7v8brA/V/vHMCjwBEd1MfQikiglHk/6Ujw1l9C7qyih6HqjSTOu0DzMV7pSosXRQ9eN6uPYYiuHCTv3IUvGrFaylwJSKOpoTkajgnezXBcpfz90N3lUt5UkfPLgxWu4wQSlbukUzf45K9VghnIda6rIZqVeZqcz93CtYkwdlZdq1mC99zmbAHvYEs8KynEkc6z2PV+yO+kqhgQf4Y2g6WSXBAWQeazkGCAAh2p6hnGLJALln0KCGbhy7Rr8FaWGro0NlIpP5cDVn7Osw1jG39OZavFuY8Lc4PVyslLci2SviwZpYpJNiXOZndt0ezQ/tvivqmk4EveT2Ox9HIn7UKuoDLnz5pt5N9gfiGaBfB3qw3a1KWNDt/FB8E6u8X/MZq0Vh3VWoLXBwY8WwDxs/+hYV9dpktiitohab7WsKpgqYTupCif5H9sesjl9/QKvsUy9hEzfNLZoLSO+ZZ50mJ0a2UUp0sLXAgSDy+vPs/FQE4tNx7JES+C9W01wZPvwnmwa+q87hIaDikiNBSBKtyne7WTg9U1p7vuOEcF7bcB6LNuvNbzo+oedi0mTTK2In0JXE8DFV7qYOsAa1Wy4kavVpCwiU3lpphkMa8isUjuyTm1nE85fpMYug4o0axY3lr1zSzuSFDOIkNA4Un85+/gsatt29UxgaYdatVMb73ZyW2fxDLfT2R4VgVBUs4zJoRu4vXM9Pu/fmdeCD/Ng4BXOIs59m9qMnv4PosSCAVLVQpwOmSd0YOwjd3TziVZ1ko2S7JrJYk5ZHqH9sltqQUq8i5+wB9lup8zHFo2LXxRTp6auFKFJgtAgdKWuIb7hF6xvPZz39UTCO86nGRh81tDdWF1nALm3/WJoq1mtfmo8qQluZirXcVfgdf4eeI9ZyjUs1O/fMqUzhSTTxj+JHLUO65U2zFP/xk1+U6Py/2PvvMOjqLow/t5taZveSQIhhE4g9BZ6L4qCBZGOIgqKgCiooFKkCSqffIioiAoKCigiiiAoFgQjVWqo0lsSSCBbZ74/pt0pu5v4qUS9v+fhYTMzO3tn5s4t557znrGuEQAv1P05uXNwrPAYYu1BSNB4A3bPSkLPusm4k+oDKsWGoX8zYfJnMZuwzNsR6Q7F2POgRZ/FzQEbbqtXAa94eiPL8abfFXcarQ7NqhEt8NLd9WCvOhOzDgxGSI8XcZRPxXvDmmBmn7oY0UZ4J6X/AeEdJyahTzlcoLQZ9iALriBSFXrzme0Z1DGd9Fum7cevyu+21KpVSYhA38ZpqCvXe+O2TTI6GnFerM/SAhS9YEqHDp/1qr0OtAsARWKo372N0sDDpNbN88FlPgIWUVsMRxQtyKW2WXJ7Hb77TZ/fXxE+CANdT2E911QO8YwKsaJQNFadsliwxqbUoZRru3TnOCYmtqHbRAk+zNio0jQjxnA7Hb1A44gW2ghZNsNVjAv5wiQ3w6QkzAi2mlGZnAd/7Qyi3u2A0eZVmM0pWRvFVydgHzb7rnrIm95dlr2QyE6LwtKhTfDl4+rIhSaOBVjg7YWwILNsgNVmedMSphkvnbRY4LYV4nNvEzzuegRnC0vghA3pjuVo73wJW2tPU0U2AJT8w4aJsrwH7bknjb+l7MK3O6diB1cdcBsLcANA8KwKiDitzvq5frQ6nF47Flnf8iP583WE4Qwfh/Hu4biMKBxMFDya09/3LedQYq+oDlWkoA1g0kLJFm89jHCNQVeXYpDMcrwJr/iAz/DxKvkIp+htqDVGAoJRlYaeOZhNBEend0NmirLAexnRuMJHwiYuAo9KjMecJC8KSsS5ECUNEkQ8OB7cH7bXmwNvdlBJLtCJZeJdZzDKInj8fctlIzROMLYRCFIj0rtZJd6Ovc93VoXf9TFvNVTaHd2hNEYpHsRSgDcG6D3GAKEOt6gSpxqv0N6EM3qr5xEuWGUNRwDo634GzdPTsLrqNqznGuPVyBh4W/RBjepqoyoL3ytnEELMhJBdhJB14t+VCSHbCSFHCSErCBHUdQkhQeLfR8X96bfl3uQUAAAgAElEQVSy3H8leRHN8a5HMfJcKnKiEbUixWu8GObcVRdXoAywB7omoDDjNmyZMgAv1ViBXK4afmi2SB6Mfu5tImsC/MYn4iofjtNcPKaIk0yriagGf/2bVcJJPhnPeYZgtqcv2juVNMKX+QjMdPfDNq42jnB6w4CH6I1StLu3ZHG/XKJ4jUSH2fB98iDc5ZyMWe6+CA8NhslixaiEd/ChmKVr1cOKNftYoSZumWLdoznITLDjkbaCp9WjA+7F580/AAmy48jFIjk9u+SdkBQhhNjkihPWpz0P4BwfgxYmJQuKk0rv2bBSNMZ2EgYRWrflhQmT0LVOEnZf2i2v9AKAxb4fY7b1waIB2bKBgkbKvrE3WN+xcTyHerwQIhRBSkAIURmlil3q1Mp0OI8XZtzpfAG3O6disbcnfuMTsYprjWe618TUOyhPAnFwXCVB+H0+SWmMs51v4FH3Y7LhSSKv+CccLRBcqqNEL67wKCW8LD48CIemdsXYztUwzDUOTt6CD7ztMcz9BO5yTqYECJW6bRSKpK37Hl4Y3BKDAba0ZZz7YfR2Pq/bb9VoKz0XJIg4/2YpmwYXAPChMfgwYwY+9LbHMSi6Ntry0oxwPIp2zrmYKU760skFdLn6rrFRCkCN9v3xVJ8cdMsSzh8RbMUY18N4KDkB6y6pMyJJyKKzAYgJtcEcLGSrMweflSffWgghcDV+BJ2ds/CWtzsqO97Hw67RWFL/I5xq9Cx6u6bgZc9dSL19kqxlM9k9GLlcNTmcBBCEgHOcalHlhpViECsOAgoQofMMesXTW84KSHsxdHfqV+Wf9wzUbTvIVTQ07GhplhEbcCAPAC0zY7FYE1Y3OzoIDStXNDz+OkJhE9sZN+dGRIjJsI5rcYneli5YcbtzKh5zjZL3zeytN7iO6VQNYaGheMvbHXe4pshprQHgSWoVFACOc8nYE8DAR/OkZzgAGGrv+aNKvN7bcj9fGZ2cszHJPRhPuocbespokQwiM919MUQc2MvJPiTaK+7+dEi1lsSIYORN74ZZfbJQCDu+DfH9LObdk41PRrbEk2Loi8PNYR3XDNUd7yDdsQzpjuVYNbEv5t5TD/ZgC5Z5O+JEdAsUJTXDWNcI9HdNRB6fisc0hqxn4mIwIklY7c/1Y4idc1dduU6miV58TtiwxSsYBPP5EKy/LkzGLFRI3KXblwnprb290TZ0NV4JGYkn3cMxxqVOnrKfq4TBrvHYw2VglPsxBCeuhzn0NyQahLMQaz7MISexbHhLpNZtK2+njSy+KEYoejmnYLR7FJ7tURNO2NDBNRf3u4Vw2V/5DHRyzkZlx/tYzbUGPbx9+1dj74OIYCte69cAdk2ofO0KkQA4mAkvT57ptsLDm3CWVzwtQuHAS3fXBQ9TQIPUpZuX5L42JtQmh8gAgNVikv++6bmBgc3TcWRaN7SqGg+bxYScqnE4ObMHJnRTJt0xYVbcniXcv0KnRuhfZImni3B+ytN9szfbcJKVFhOKIoTiS69iaJjUsxZm9qmLtaP0unM0DgRhqaeT4b72NeKx97lOmN9X6K9pr/o6KZE4Ol0IhZSNt4SgetQ9+Jmkq84jLbR2ri1MgJd7BeP8/OhI/BIkjDtoozWg8dLyqKUNPG4XXB4OB7iKOM4l4SCXhvN8DJo4FsANoNBkwne2VqIBnYh6oMK4TxLo7plWAZNTzPKia7UiIWx8nbcphrnG4Q1PD9kotVPsy3Kcr8ojFl9hOf2aVMQXlKFDCqO6z/UMujpnYrBrPE5yidjkrY+p7v7wJghjMWmB7ujWD5DkVsJNL+3ZCBxYi2hSgi1B45DzWRvYLv+KMdZVKmkOqZb46spuum+iwKFIFWjDfLURGvLvIxo8TAiymNFF1D7USoxoKdEI1N+WVgFhVeZhpPtxfMKp6+NxvgIG/pKBiZqMnvdJYVwlBYjgBONNt6ZZsgeR5LHS3/00PvS0xV4+Qwlr00CHiWqXdCvHhcn1GAAW2gajjXMehrnG4UX3ffAk0F63BDnO+fhI9ALfWO157B12AgBBO+dc9DAYm1wucuIQZzxGoD1rN3BNkO5YjiHup3BB9Air5liK9s6XUIRQWYvvG64eNlELFJInltHj6+uahHTHMswQPaR5zTEWswlvD1XGC3VSImCm7tABq2AYrJYkvCOPuR/FZm82Bmg8tv2RQJT2rY1pNzJEjT43x8ESvg9uan+42KY3dCzEOT4GZsLrygz4N7w+0VmYn1mjf4S96ixUTC5ESpTegWBIy3QUOgpx4KoiwWChjK33NErDh8P1yS+k3/6NSiBxwhyBN2PsePiXGbqsscwoVf4YDeAg9fcsAC/zPJ8JoACAtGQyDECBuP1l8bh/BfujO2CRV4ijT44MxkNtquDjh5XVTU7TjN7dSO3WeYiviMgB78FktWHMPV1wtvcnaNO+B9w17wQAvKxxIW7oXIRWrlflgZj2JdKmkKUNYI2dr8vij8PcQkjdfzyC19N8zx3o4BQfm6bRGN+lOl6803c89py762FXsA3vV/sR111XMS93Hl7pn4ZX+2bjxIzuaFhJ6Ww+PvKxz/PUSYnEprFtkBYjXFunWomY2E1YLXi6u7JqIF1zkk6/iOBLbxN0Miux3S5OrckVKobj0JO/Ke4BcFa7HbkXczHgiwHygDozwY6gpLW4ePMirjquooKBXtJRXh/aJMHxHCJ59SodTxlytHUDEFaSJXbxVbFXI2jaoFIUBjSrhENTuxpmCDTb47Cbq4KH3WNlN/+PvIoX0xUSg9FbRuPOtUL9+kFcPQitqxauDraakRgRjMxWd6O6813Ry4OIBkBpWU9vxOF9hDECUBn7tEidhQNBcoY1LXWptPVE839Z4MErK9DUpEHr1UhThFCc4JNxFRFw8hbcYxaE1t1iAQLFnkeEWLCG02ejovmGy0Zdx2KMcD0ue2QZUS8tCn0aCBOp0R2ryu/BikMrcDj/sOrYEg8nC4TzMGHGs89iSK/OmHpHHWwa2wYHp3RFv6bKoGs/Xxl3uZ7XhAETnOHVOj8A8PljrbDsgabYNLYNvqU8cACgXv9Z+ImrBSdsqvpH6zDc53oGOc5XDAd9d7imwOjpju5QVZxQi5kbDQwoRtArahKrIoQB1hMa4w8guONLhv4G7zVA77W+9UVoLl5XJmB7+SpYyyl9wb2N9S79hBDMHxKKtm0+BsBjlPsxWZR4pbcdeokp3Yv4EJxFPAa4JqKP8znkOF9RaT5d1hp7oM6cmuN8Fd2cM3THGPH1uLaqiZlEHp+K97yd4YQNP/kxGA5wTcAsd19Zw+IYXwFbuPro7nwRjZwL1Qc3Hylfb8VEtXjpvNx5WLRnkfy31WzCvY0rwh4WhlFJSn38+YI+DCU7LUr2CBDqN8G47nUBEKRGhyApMhglnhK5P7CZTVj9SA5Wc61RItb984jFk+4HMd4tGPfWhttx2iKEfF5BJGZTelR1HILXx2U+ApEhSh+cFBmMhfc3QLVEO4a4n0Ib5zzkxOfAk7YAN9w38DOUSVNC3c5y+OFbQ5piU2g3OGHTGWd7uqbjG64+ermmqRZXxnfRG8rsmbMRmv66TkuINrIAvtvRPXwmbiLYUG8RADyx1eV6xhvNQADZuOuPpIhghFV9EVsdj8tGlAN8uiyGbyEclkhCyQB2ctUQZDEjqRSG4g4fdZDfX5OJ4KW768lGOaMJui9dLwlCCO7ITgcAuLzGmp8ve/qo/n7D0wMtJm1C62p6gd43BjREnwapGOEeg+/FcDyjhRtA0A3tWFPdFmt19w5yFXG7eyJ+Jg9g7YmVaF4lFhHBFjzcVj2WsJhNaFU1DtuOC8LUi8PjYYv+CbbYrarjJGNGdU1o2OKoSAyukIjFnu44yFdS6T1N9gw2LD8A2K4eQN4XryHLux8/czXQzTULzZ2v4RKiMSIhBa0qpaoMjfQk9iJiVIb+Os63UMLbkFYihI2/4B6Er7mGeNFzPwCCHye0xxDXk+jonK3KZOjLiEMIQc1kpS0d5X4UnZyzcR1hyAstwTdcPbR1vYwH3OPxlrc7YuxiWyEaTON3zIKVCklLWHMXsHIALh5Ray1q8aWdKNFnbR+0XuF7TEC/37QnPI0U5m81639r8cBGmCxKDLTWLEBp0QqMA+rEOCs9bXBY1Ai9ajIh8sQiXDGb8MG1oZhiE/rDWFG7aBtXGxM8w5ERb8dBH95o9BzIaIRmMZuwaEBDYTHAYsMpPglfcw3xhvc22VAC6J/5vI1HcPsCQdfrBJ+M/Xw6Ojpn6zwFJQ9aiS3eenjdcxsGaMLatbhgxXHN/GAbVxs1k6PQ2PFf5DhfkRd4911VPP3oRXyAYJG4mGYU9keHLy5/sJnKw90jGhfT44Q6msenYqj7SXzH1TWUFwjEPc5JyIgTxlvZFe0ISV2GV/crmpXSe3oVkfjQIzgkbA/gRQ+o2+Cs1Ci0qx6PuplCm3S66LROVuWOdgdw/uYp9P+iP+5ddy+MMJuIPDbsVCsR0+6ogzh7ELUYosxT7EGS3psTQVYzshyKByfTlCpHEEJSAfQA8Kb4NwHQHoBkVVgKQIrj6iX+DXF/B1Ka5et/ALR3xdYn2+msuv7CtaQBsXSrzCaCXtkpKHTlo/vd/ZHheF8nAP1q32wxGxTR/T4gGFLo/zmYMMQ1XpUCGgBO84lIdyzHXM896Ot6FgtCK+NauBACpXUlHdkuUzVx1RIVYoU1RtDWWH10NZbsX4LxW8ehV3YKCCF+PVBKS/Mq+hS9VrMJJ2f2UIlVrvPqreM00uD6fW9HZDneRLpjOd72dkN4sBUXbgju1nmFgpbPqodbIIHKWkIIwSrK4AgIT8GXKYPjOVyscpdum4TRfZl7dzY2jfUdCicJVgZbzehQM1E3QLBaLLjDNRVfE0Xo+pzoNv0bF4+5lZRJ4baJ7RFXpwPSHctwNULtKlziEVyue9dX17+PRjTHyHbS4Nb/c9U2Af6MPqVpLN4Y3tHnvh+8tXXbhrqeELwivOrVPS/vxT2NJDdkykjo512lS3oZUcg0CXoC44ig9xNoRUUrNOqL6wjDl1wTjPeMQFOHPoxJoqJouKXr0LTt03DXZ+r6NrJdpupvWiMpM8Eu//3mwEY+V1Cfv83YAJEUGYyWmXHITLBj4f0N8KxbCB193PUIqiYqg6MfuCy0cc6TsxT1cL6IDs452MbVxhk+AWcp/YSzfCwqO96XvWzWPZqD0R2qIjVaaFcjQqzihFpd9/Id+Shy6cM0JAY0q4RWVeMwIXY+1mg8Bz/mcvCwazTe9XTShTtLnLh2Qv4sTVoX3q8PS+7TIBU2iwkNDfRbtPVrx/kd2HpmKyb+MAG/XMoFzJrsQPBiYj/BC+KqaHS6jjD8wlfHGT5BlVGnr/dx1CPPysYRLWf4eF34n5G2w86LOzFj+wzVxMyIS4hGbcdbSHcsx6OuUchxvoqHXI+jt/N5fMfVxULv7ZjjuRcz3PfJoWuCQVL/po9oUwUZ8WHYMEY96Vqyfwle261/B758XG0wO1p41G9Zp/Wqg0NTu2J46yqY3acuPhrRHJ8f/xxNljXBeVFE3svzhsaIld52+NjbGm951JlKX7k3W9a3uckHoRghqOt4A22dL6uyqQKCZqKUofEUnwRzuGA4dngc+DaoLRyE4JrJBFhseGdIE4xsVwUZcWGwiFooFxCrCmcTPB+EfbQhymLh5PekrMOvlpR20ozeWXhzYCPUSVHqQMNK0Trj0vQ768Crih1W9tNGlR+prKC+Fi3a1UiAyVKMYu9VlRfVMx5h3XObtxYOUPXXESSU10hPzwhtau+nulZH3vRuAUOZ5HJrfidQX3EddlUW4VCrCcE2K4KtZux4uoMqIUisPQjta0iGJj9Z+p7tiPWjW+nGZ5JG6DjXCPzorYUBron41SLcnzVH1yAmzIa9z3dBg4r6NkkKv8lyvIlF3u4AgCbp6uP6Nk7DoaldZe0+bSmne/qDgwkLxAXOIa7xOMUnoarjXUMdVPLlBNT+RdBt1IYo7QgTdcl4E0xBFxCStkRl+Fs8sJHK0A8QnKREt29o9KNCbWZcg10eR0sZveh33ehZSkZbJ2zI41Nhth9EaMUlePROdWbjWHsQstOisJFriI3ehvIi5E5O3e++bTVOwjHI9RQmuQfDG+B1PVN8xu9+2jhBewKqEB+ats6bQ06gYlIxhuZUxofDm+EyouTQ5QUGGdCMFoIKEI43PD3Q1TkTT3oeAg8TJrsHoVtaBfRMq4BfbcI4+mqScP9M4GEJ34PwmhMA4kSYzYI9vLEX8PtiOG9Dx0LUc+rDpQHBcHp3ozSdMZc2plsoY1xEsLGR/SifqpIKEIzI6nNu4Bpjpuc+XLP5zhitZZDrKYxzjYAbFrzYOwuXEaVa6NtzZSfOFQv3pmGlGHwl9oU96iYjPTYM1R3vYI9B4hF6zBZms+Blz11429MV3Z0vghO1H40M599y9TDcNQZDXWq935WeNqjm0GuRVna8jx18TdlT6uV7BeP5xZvqdnXVwy1gjfwZb2fuwmT3QMwwyCIICNp+eyZ3xn/vb4DXKe/R2DAblgxpIo9vAcWY+NmoHPw6pQ2+vvAuhnw5BKeun9KdlyYhPBgfjWiOGb2z0L9ZJeQ+21H2t7i3iRIp9Pljyvxgcs9auLulMpdgnlLli1cAPAnFYzIWQCHP89IywBkA0pNNAXAaAMT918TjVRBChhNCcgkhuZcv69OR/x255DyGkLQlALywmk1YtGcRjhcel/f7M8hUibcbGiDarWyHvp/3VcXnSvTKTlFlg9JSKTYM345vi6e7Kw3rFq4+fuF9W6x/4mrBlrIKwcmCUK2vVTpf0BNd6XrdVPY7f8aIP4LwYCvCxU5mN5/p99gKstGQqFbjVMYnKTNDiFXl8g4I2VMAIDU6BBHBFsz13I0TnN6LBBCuO+N+QThPcgOnB0BuTi8UGmIzywZFLb3rpyA9LhT/3f1f5DsEfREpdfORgiNweV3YfXmHeA3KitgVROI25zR0ds3GU/coE4TkyBCxkyHyitLkHyYja2kWmixrguOFx1E9KRxbx7fDd0+2w57nOqNxegzGd6mB9Y+1Qp+WvuP/aeRsTH48pTqKxrUlgxurwxMpmmXE4nbnVPGcynM5x8fgWY8ijtve+RKaOBZgszgZftr9ANo7Kf0GnlcmbUR5HgO/0IeRaclKiZR1EADgZ5cwAAz0zmTE27F4oP/wvIfaaMRuYezOXhYqxYaJRmyAWK6j0bJsQ8+SjrUS8f1T+sxX0r5AdKyViPe9nZDuWI5PuBykRoeq2rZTfJKcxXI/ny5/FlDu3X2uZ1UePnVSIjGmUzVsHNMGj7Stgvt9GMfbrGiDjh/5NlrG2oPw3rCmSKjeDGPcI1HZ8b68761B9fEF1xSTPUOwJHUqDnOpGB6+wOe59kzujINTusqhmTR1UiJxZFo32ZONRjv5GfbVMIz8WgmDq63J7Bde8xnMPfEcCnOew4Z6iliyZPSgwwcuVv4YXPq7Ko2o1Y+0wBOdq6lWi2kGNk/HJyNbYkovZRA26MtBWH5oud9+6/1hgtYQbxPaqU0pB1Gj2QVs4JqovByvIwyLvLcZ9mM0E7rVwOZxbf0eQ1NaA6+EScw2CgCpKafx6cml2HJ6CwCgiD+NqFArJoihfrRQsDQx5WHCVM8A1TnvqJ+C67Aj3bEctZxLABBchx03EKILTQOAUe31BkAP50FGfBg6J9VETqVUDN0wFFXi7RjeNhlHC4/qjEAPusaio3M2AGBitxpokr0HPeori2AOj0M2bhiVQcvDbaugmmg8nn1XXXkiEBtmQ8daiSojRkZcGMZ2Vnuw3t+0kvw7wn1T3mPa+BTnQ6vRF1ZqovUTVxMvuAfgEfdjOM4p79vbQ4RQtyriJMkWch5ur3/hbRpCSKkNUoASeq79W/uebHi8tWys/pTLkT0SdpmVdywhIhiz71ILlKdEGyf4oImzByEyxIomldX9wlquJdo652IV1xr93M+K3vHiomWAhSNJgLsIoXKYb41kvVi21tPuPY++r9jO10R9x+vYwtVHiNUMNywqwfaTnNCPNDIdkbflUu1Fz7rK8/XyLgQnrYHFfhi/XvlV3m41E8CkDgcsoNrBEqjbBm2iimOiJqc0rrt44yLqvVsPa/LWqI57qHUGBrYxg9iEeYrJKoSgFXkVnSiYbiIihMegFpUAEKz1Kh4u33rrYbDrSWz0CnXBlyj8t1w9vOftjIfdQiIEAoKl+5di6IahhsfTvHR3PdxerwLqpETIoZWAb4Op5FGtrWuh6Ytw12eCQbFZhjBtu9v1PKo43sMcA6OCzWwy8KQleNFzv0oYfJO3IUpEw/o1sV8KF71Io0JMqF1bEDG/o3EIumclq95vAHjBPQBdnTNxQ9SfuopI3CSlb/uDKyxH7pWv5L/bVVfG6dcdHqOv6JDe75qOt1Hd8Q56O5+XNTZf69cAJ2f20H1Hkgih+Zarh1Vca5hNRBfNItFlVRf5c7XEcOx9vjNeu68+eAjG0eE+NIV7OKejs3MWzCYCDyyY4hkoLACJRimH1zgz+FdcY2zmGsgG1GaO/+BJz0NwwSp7L7dyvozWzpflMZmkjRoWrLT1dLvbsFI0wlM/BzG58S7Xzmdmu/S4MESGWtE9KxlRlGexdgwEKAbkYKtJbs/oa6Lb4E9GtsR0Sgu0cXqMYf/zQE667vyAIF0ymVqEZULn5QRCSE8Al3ie/yXgwWWA5/k3eJ5vxPN8o/h4vRvz35FdjtdhsR/GuyPSUeQqwmu7X1N1KIYdhBj2ZDYRnwYIemUeACwRu9GqwWHdcUYropViw1QhBFqk7Btarx8JN+cO6N3Utrry/LQZMABlkn6s8Bj+u/u/uv1/NNLqUKAJUOuqcVh4fwPUr6jWLzHybKCRDGsOt/B/lXg7bBYzfuMT0dFtHK3K8zxgMuPK46fR4Im1yjbpnH6MNEZ0rp2IXy7+goV7FmLKNrUu0QeHPsDsn2dj1JYRMAWdw/gu1dGdmjTv4zPgNQfrdLFGtcvEi3dmyS7fa44qg7MjBcLgsWJsKNJiQlV1KiqiGBsuzfdb3kCry/SAeVafuvjuyXZoVyMBA5r5FnTey1dBR6eSKfIKItHC+Rq+mDIE7oe3A4/tQsVq9XAJ0aieGI6vxrSGEzaVGzVtJA0pY6blR9tnwh0kDLS7RrdEWIbg6l6aFRUjt3eaid1q4svHWwWsi1pcXhdW5632uV9aaTKHnAQg1JWyIKzM+28PrGYTrGYCYilEUNIauDm3z7bNiJaOV9HA8bpxqmkIk4snu9aQJ0ej2umNzzc9NwP+jjQRpQ1fDdKVgVBIjY7o4pqNMxZ9HeR4Dm6vGyE2M0JsZvT7vB9u/0S/kgwI3gX3NFIbpnwZ56X35NW+9XT7DhUcQlTHsRjYqzUG3vYzdkxqgfbi4PomJZhKLMW67zaoGI1R7atiDDVIfrVvNmpXiIA1ZiuKPBeQnRaFgc3Tdd/1cL4H7S0zY/HpyJbIfbYjfnm2Iyz2PGwvXObzeF/8Xg/ashgTtDy08SEs2K0YHG1mE3ZP7ozOoifT+seUyVZwgDAuOqMmADm0wahPNvLC8vAe9GtSEQXBwrOTjMWDvxyM3mt7I1STnXEj10j2+OAtV3HQ+QGe+l6ZqJR4SjCpZy38MKG9z/7/y8dbYeOY1sh35CM/dAnWjBIM5cFWM2qJ3nFur/Bc6JB5i9mEh1pnYJq4YDBOrFNPd6+J9jUSsOrhFngwJ7BOVWlQhxcRLPF2Q7E5EgUQjA83CcHuq0L49Ov9G2LWvakISn8VL+W+ZHC2PwatwUvqu7VGn+pJ4Spj9W5bQ9R1LMY2cxPVca2qxmPXpE6y4Lg8US1FXPqwnMrYNJb2KuTQsL7xgkegdyzUILuoWVN/jcawk73GCzgFEOrQnWKygSfcIzDI9RTSHcvR1vWyKqMjIHjsS7zWT/E8vRE3R9QZU99jl4cDMavbunWcYgxa/mAL9MpW+vogi/b61NcmeVt8dvwz9VGEYM2l8bBXmavaTnuphVefgim5j8sZ+36jPF9csOIbLhs/cnoP7vMG2kkXqcxoL+W+ZLhwpOWuhqmYf199rHu0lWpcFxZk3G4NbJ6O1/s39O1JpUGruyoRGWIN6EkLqDPIveAW6gtvFj2mIhXDwch2mYgIseACYtHGOU/evsTbDYf4inhTtZhXGm92AWvkXiw8oGidzbsnG4BiiC0NkidmCYLhhE1cdBHqgCSsrX2H/M29Njze2lCb1oiIYKuoQyulWza+9v18ZVmiQY1wnb5CjCUGuiagnXOurIVFc5pPVI3JpL5NGh84vU40eL8BzhaflY+RwySJF8RHmWkkj+DMBLth31knJRIhFRdh6/n1GLBeWByiF4HpBYPstCjc39R/QhhALZ0iXYvUztDvHgvfKz+0BHA7IeQkgA8hhO29CiCKECKZPlMBSDXxLIA0ABD3RwK4+lcW+FYhif0mRgTJnbfKimswmRvcIvBLQ/PpyJYISfkQu0uWlPo7RqvJKVEh6J6VhKVDm+DglK5+J7/rjq/ze/4lgxvjxAzB3dtiNqGtOFEqcqtDaIZuGIrF+xb7PE/pQqYCI4UR1EuLQgfnHJivCROGVinqFR1CCLplJcs6CRJSilVfSA1XVopgzHqwVYZikffR8EqT0LioCMRGSuGUVGPIB16tibMH4ej0bni9f0N0qZ0kD45vuvUTcElE/oMRdfFAqwydm7/ZRPDTebW2gc1iQr+mFXXaZIG44SdLihapA/EndG6zmGQtMX+8M6QxjvKpGCmKEEdFRmDNIy0QbDXDmlgDiMnAwvsbYuOY1lj7aEtUS9Sv+kp1buekTph8mzarmzHz7qmHBf0aoHPtJOwNETxFzkYpGf9Mpj+maa+RFEGFcgSGEIIFuxfguR+f83lM51pJeKhNBib1rKyXlzwAACAASURBVOnzGEAYTNnMJsy9ux4+eLCZPPAkBHi6e2BtAJ4HgpNXwxa9HTvOCx579Oo3AJyY0R0HpnTRffcs4pEP9UB3aMvK+PnCz/K5ChwFch1PNhC/LA0WA4MGPWiTBoyECJ4n113X5X3jvx2PBu8rE6d9V/bJiwcczyGvIE/eZzIRPHdbbdWz/PDQh7jmNEhZLWKnVh8HNlf3EavzVmPN0VV4YutoDGyRLm4lmOwepBEdN+pv0rFpbGucnNkDvbJT8NqAqghOXI/HtjyqO1aC9uJcQE0Ww4MtIISgXloUQm0WxFKrkDsndcLbg/17A34yUgmd9Gf4ulXQ7eC1EqV8RtFw2sndusdysOMZ3xkaJ2uMWB7OY+htJ4UjSivIRpMoXlzYooVeHR4HrGYTUqJC0K6GetFP8japkRSBqonheH3P61h/Yj0+OfqJfIz0HSk8J9hqxpePt8J/Rc8fQoiQSGVmDzwqZlDKqRqHtwc3RliQBR8dfR9/BEb9Q0acHU7YcJ6PwYCYupj/62Qczj+MyFAraqcJk8K9l/f+Ib9vtFhEJ0wBlL69yFWEKyVXdMcPbpGO4OSV4FJewnWEGU62osNsqCOKjIcGGH/QEEJkDzEACK/5NH51vYn3hzXFRk0IbImnBFlLs3yO54wmyL8Vn8CuS4rGjZH2Ja3FeHJmDxye1lX2YiXmInhCBTmHK4hU6Q2uEEWmAUHInliugZiLYY8+pDr9Ne9Z+Z7QhrUSt/7ZmEUBhSNcCuLDbXjl3mzDa/2/4PVJgABg9+Vd6Fk3GVGhVuzhq+CU6DXvlT3VlONbOl5FXccb6CR6O6oQ3+fj147r95WSDw59gC2/bUFWqn7MAwjjv651klQemEaePr6yo301pjUea5+JQWL/07tBimzI1nJfE7VH8zUIbQpnCUMP53SsT3hQvpcEitfiKSopSnaaMNbuUDNBjvwIZOSQXrOUaKVfunTzEgBhYeuprjXw6Uj/yQNoOD8/FyYuGux/oQsOTe2KYTlCeF29tCh1hIXpJohZmBelxYT4DB0MXAblPRi9eTQ+O/aZ4fHy0aKnlNPrxPIHm2LlQ81V+6X7WyzqpZYFbd+97/I++bP8XIkXpTEiWgw0zmhm31UXlrATeGXPNBy7pk+U5W8ccc15zXDMRc87td+nnUpY+F45gef5iTzPp/I8nw6gL4DNPM/fD2ALAEm0ZBCAT8XPa8W/Ie7fzP8RQkJ/A+gVUGkgTxsM6NXxSzcvocBRgG5ZykRFiiN2eV2qCRAAbB3fDqsfaYF6ab6zEhnd5g4rO+C9o3Mxq0+WauD8/VPt8N/7hTAyrVuzlqe/f1oOESvxlODBrx5UTboIIaqBljSAeO/Ae6rzSNpEvihLaB/x460xpmM1DG6RjhXDm+EYn4ISThi0BVuMNWKGt8rAjxMUF/RA90NquOLDg3ByZg/kVI1Dl9pJaJweLTa+eowMbvS20nhKrXs0BxazCV3rJJVZJ6SdxrhhMZnw4Fd6UWcJf5o8fwTa1eXvz35fZm+JeDHM8pAYOWwxmVBfo5URYjOjamK4vEqq1UOTnkFMmA3WUo4PejdIRQ/RwPJhxBBVOCAABJv19ezijYuGxsNAeLzG94TjOV0HyvM8Lt/0HwptMhFM7FYTiQZC/TQ2iwlHpndDn4apaF4lFm8NEsRPkyNDMDRHr2egRfCsEMouPWN68gQI7UZphI+J9Sruz7Fj6IahGPaVoCtz92d3445P71Add7roNKb9NM3oFIYYadNJ7XZ4zQn4+ooQJlcrOQL3r78fLT9QjChfnfpK912Jt399G73X9sahfGVyFRZkwduDlYxac3+Zi5wPfQ+I3ZwbJ2f2wMmZPTCllzqEVaqzuy7tQnZaFF7vLxgK3vV2wVqO1sjStykmE0FmgjJRkVbStdk/tWWRDGpSvTfbD+CrJ4Swo7m5c9FmhTr0PCbMhvY1EjEsp7IqHJqmQqxiAHR4Hci9kGvYBmjDacrKlZIr6L22t2oFt7RIk+vCEqWsnxlkQaONRbsnd0KozYIS/iKylmbhSMERfHniS3x54kv5GO07FMgo16OusEK9+uGWODmzB/ZM7iw/CyPovnZsp+rYRmk53ff5ffLnm+6bht6S9zRKQ+6zHVVeEDWSIlQet77geC5gX6/ls2OfYeJ3erHgsCB9XxxsNeHVvtlo7nwNBy1C+STPSGkMYSImfH78c2QtzfJr/PXH6aLTyH4vG58f/1y1XettID27/Vf3o93KdrrzDGqRDmvUTsAmhHsFWrPQelsE6hcJIfhsVA62PNEWAHDO+y1yqsahqrwII9yTizcEYf4Fu4zDkYsc+rCy7899owplp8csnz+Wg+UPNsUzPdQhSkEWM1we4bjg1GX44sICNGy2DA/30uq+ELzhEQwhefZrsFedAXu1aSBJ7/jsK3WhoJoEKyEQDIZbuboIspgVjVb7Aey+tFt3trJiZLihJ9tRoTbsntwZZpMJa8TsdNdEwemPvG2w1ZuFzs5ZOIt4XIcdxQjFMNc43OOcZHg+LYUO4wyPEscLj+NKyRW8uP1FPLblMdXzmtSzFpYOVXvpGS3M0LSqGme4vVpiOMZ2ri4bkObdk431oxWjNc2zPdQLYKlRktad4Nnj4s3yc+XBw+nRX//SoU2w/rFWIITI3jR3N9JLlxwrPCbPo/o2FtrudY8qUSAdPlIWCh5uWwXVk8LxruaeqFHqSN8mggfSjqc7qOYLgBLSSogQHv5sj5rYNrE9stOi8DUlXWCv+iLs1QSPLbp+lhalLVDKtfn0Zjz9/dO6Y3Of7ahk8hMNqQ6vAy2qxKnCfndO6oQ1j7TA/PvEzJyhx2GJ2Kk9Hd4Z0lgl/7B472LwPO+375Kuz15tOuzx+nNqkTyr6DaPfucDebZpy/KfXf/Bt6cFT9qcD3NUYy7JYKaah/mZgzJPqfLPUwDGEkKOQtCMekvc/haAWHH7WAClzzn5D0LyYlFlWKMqf4ePOqD1itbytn1X9qHLqi7YdWkXhm8crpoAAULYlJE4JQCE+HlRL5VcwsdHPsa9jSvibsooZdQYfvdkO3w8orluOwA5Be2ui7vw0/mfMGOHkr3pt+u/Yeq2qWUOQdPi5bzId+TjfPF55BXkYfv57ar9q/NW4429b6i2GQ04o8NseP722gi2mrF5fDNExR/QHUNjMhFKX0qYkPvrLHw1wjaLyaenVCCjlD9PqT4NUtGtTpKsAzBzx0zctuY2PLTpIdVxdF3Tlv/2ehXw6wtd5M400IpEv8/7+d1fVrSNvfZ+XLp5CVvPqDP9BEIaEJlNpR9cvnhnlmpgqdI7+x311+GFLqtKQqjeu6njxx0xZMOQMp/f42N5bvjG4aj/njBA+D1pB8uqFVchSjFGlcZ4ODSnspxdSvqtke0yMe+eeuhRN1ke7AYaFAOAPXMO7lirngxcvHlRd9z289ux4vCKgOeTyE6LwpFp3bB5XBs5WxhdH76/sB4fPNgMU++oI4evajG6F3su7QEAnC8+r9sXCK1LfCB4nvfZL8CHgZxG666uXQwBhHvyxoCGODRVyXgWmvYu+n4uaIy8s/8dedFCy6SetbDjmY5KhkuKnmt6yp9X563GkA1D8NGRj3THzftlnm5bWVh3bB3yCvKweK+xly7dFm09s1W1mDJdbC9aV/UvMUAbVyWPk42nNsq/P37reIzfOl71nawU5Z4Eet451aJxZFo3HCj+CgevHkRkqFUOEYwM1r9DtFHIbCLI9xh7XWjLJEEIKbP+k4TWk8gfm05tQtbSLDz9/dOGHjyhNgsOTumq8thomRkH5bUTPmgnGIQQOXOuNEktTbtFHyO98xO+m4AzRYq4tNYoFWgxrXKcWgxa67WsRZFA4HXn/2RkS3nySJOVGom0GB/PSxyTSGMMX9ookue3P+h3pXaFSLSoEofbs/Vh1pJhwSSG1x25tg/vH1ESqzzclcAUfBovevqhiuM9mEJOq76vNWpK7eLQDUPRf31/AEI9SIumr5nDSm9bbPZmY5GnJyxmHlO3TYXJdhGhae9iwBeKFhyx5sMS7n9cWBqsZgIQ/bs7oWsNLPTcjhnu+/CxV/BYu4EQDPSMw4moM6ANT19zDbGDpw03+nq67/I+zNg+A61W6DOhzt85H8sOCiHTvT7thS4fK97H9LhyWE5lWa5DQhoHmojaw0WirEaTTrUSMaBZJTTPiMW6R3OwcUxrXbbO52+vLZ5bLCO18ObhPCg20HgKtnGoJWoMSWMiN1ECcKQ2545P75D1mB7rkCkkMLD499Chs2A+3LYKKsXSXvrKd3tlp+DkzB5IiAhWzRdur1dBl/mTEILkSOEY+vqJSbg2egzauRQ6nRLynTLIdq0lzh5ERYHow/cy4sOQEB6EmDAbCCHoKS44hFZ6AyEpK5FDJbwIsZrRtnoCeojHBFf4EPN3zceRgiO6vstIHxcAuLDcgGUOVN18nVtCW5Y39r6BUZtH6Y5ze93ymMefpxQN85Qqh/A8/w3P8z3Fz8d5nm/C83wmz/N38zzvFLc7xL8zxf2/3wf1b8qsn2fhcIFe88loUKSdCB8tPIpfLgryXYEGqtL56JV0N+dGg/caGK4uN83QewbQpMWEopFBunSjstPlnvjdRKw8shK5F/03OoEmwl7eizYr2qDzqs7ovbY3HvjqAeReyEXPNT1x030Tz/34HP6z6z+q78z7ZZ7flfQ3D8zFTU+x4TVo8SWcPPG7iaoBsy8D0qt968PXKpfRwPW7M98p5/TzrOfeUw8L+ytZKZYdXIaT10/6PB4wvlZ7kEVeifCVBlki0PlpAnUUgH6iYhS+d6nkUql/E1AG90lRQmjL73HIdHqUcv0eEX6XwapeZJB+Ag6ow2tKi5HYIwC1wZa67NIOIo3CTEqLYQhHKbBZTOjdIBUL+jXAe6JANs3EbjV07+DUXnodDjpc9P91wrVZTMiIt8vaKW7OLSdKAIDL+EEn7EujfW93X9qNb85883+Vyei8vnBxLiREBGPnpE66fdIAGNCHgizcvRBZS7N0E+xPj34KLR7OA4vZRN0H4T3RGqL8eSLR4QJvDmyEdY/mqCaekgaQURadshpQTxedVnlaSO/EqrxVhsfT93rk1yMx++fZOoNiuxoJGNIyHQAQa9eHORFCMKJNFawY7j/jK82H1LGBnrebc8NmMeGFbS/gnnX3AAAe61AVSwY3Rp1UvV6bdlLfd51epPjU9VNlXgjwcl6syVvjt7yBdEto3tr3lupvI4NWiM2sMuSM61xdk+lP8E5cf3w9Dl49CECYQEjnkoww/hZ+8grycOr6KZ8SAt1WKxkXXZzGKFXGxQwTIdj822ZkLc0y9HzRhs/T589Oi5I1H7X4uu9a721fK/59G6dhx9OCJ4kvOQej+2PU//sLOx/RpgreP/UUwiovAEAM9Yqe+f4Z1d90G7Dn8h75c+0KisFvTKcq+OqZOzDU/SQuIxqXSs5g5ZGVSK62Unf+qMzXYNUYpQIJwSuFUbx6+jRIBTHp7/uDrTNQp1IiFnlvQ2KkUMYgiwlBCRsQnPQpUlJO+EziYmRw6Le+H5YfWq7aJvV9i/ctxswdM+XtdP3k/MWcAbCKXkcmIvyGFuk3GlSM0hlDfzz3I7KWZuFqiWIcsppNmHpHHXwwvBnqpERS3nrUOcX7bJIXYDhF1oHzyPqTdPbyGduVRXCP+O5vuqZ4l437ZpzudwghMBEe35/9XrV9zJYxPr0nn+xSHcO6n8Gu50SnAD/Gny9Gt8LUXrUx/776fhfXAiWaeLF3VgBvLQVJU8pXpMjEbjVU4t5S1EdatPAcaDmZzePaYsczSkIYbbszplM1pMeGomnlGHRrk4ux34wFIQQTutVA5UTh2BPXT+jaVbo9KGvfLUFfHX2OQH2Ll/fiXPE5n4tkgBDa3uD9BnI0CN2mFToLdb8pwYTOGX9bfr7wMx7drNfoMOrQ/U2EtS/WN6e/waZTm+S/JZd1ujO97rwON+f2KfS54fHWeJ0ycJQWueEhmr+pzw989QAu3Lig/apMoE7f6F7MyZ2DU9dPYdCXg1Tb6dWNj/M+9nnO34p+K/XvT6e8aPJLlHu/7vg6VWiBrwG54E7uX8CYhtbX+n+9zAB1QypNQrV1TopvL4vwtHhymRWHVmD05tHy36UxSkmdiXSsL3HYsiDdU1MpVo18QXfSv0fXZnyXGqrBE6Dv0MrybD868hF+u67U2a51kvHt+LZIjw2ssVUW6EFsWSmtIaisBqMbYZ/ipE1drrsb6UU7aYNDabTYSoM0UXN73fh8tOKlqp0cadFOon889+P/VQ7pntF10V8mMYdHqL9GYU4tqyrG0QW7FuCm+6bsCfXfPULCidKEWel+32Rcnkk/TDLcDqgzdnWslSjr5/wZdF/dHSM2jSj18VojAwB0XtVZ9yyf6V4T3zzRVl4BB6Dq7yZ0q6Fa+Ak0IKdX0AO1oS6vS9eWW80mtKuRYDhQl+oF4LtdC/Tst57ZiuUH1RPh1UdXY/KPk+Xt7+5/F098q04lXhZPKa0R3Vd4knyYqQQFzqtKchWx7d9yegue+u4p2YPbREzyPZAWHvy1773X9kbPNT1V7Yk2wYxEWT2laExBF1BsXyl7cX1+4nP0WdsHX5/6GllLs2SPrGe610RWirAgQT/3Y4XH8NTWp+T6wvEc5u+cj4s3LvqesGnGJL5W/E0mgoSIYOx/oYsqeU2gazW6r3fUT8GW8U1hClIvfhye1hVPdFYSU/haQ/nh3A/qS/BxYLRduZYHW6cjITwYMDkQXnMC3j7wOgAgJkwRm5aySnqgDg+8fPMyntr6lHFhKPZd3gdCZfybfmcWNow1NkRLC39S2zeyXSZSY4VnGVHhC/T3sQha2rDC0oxX6OdV6ChE//X9cbpI8UqTPKWaZaoXvyTtRqkkJkJ0xtB3978LoOyLbVK5pWfq9vLyONDNudGpViK+eaItfqBC5A7mH5Q/39UgVZec6Nsz36r+/vGsYDCbkztH5w266bdNupBlSTsv92Iu5uTOxqzcmWiWEeNXt6pmcgQGaBKDbDq1CdN/mq7aFijkLM4ehNbV4kuVtEMaUmXEG48HH2pTRSXuLXtd8qUTOqdpWCka34xvhxUPNcfGsytkz98RbapAijAe/+14zN6h1kWjf6O0RimHx4FPj36KQEPGQOX3cB50WdUFbVa0UdVLWj+32K2WKqDb1wnf+Q7sYp5SjH8cRh4G/gY0kiifxKObH8WYb8bIf0s6INI5Lt28pHrhjAa61ZPC0bWOWtj7SskVv5oiADXIFRsNukOkP2v1F8qC0eRdalhofRYASKTcZY30B1YcWoGp26aqtpVlkjwndw4AJQQjUDklejdMMtxu9Jzp8vwRQr/0b0jPS1sHYu1BeGtQIyzqrxch5nke/9n1H0NvBXqcNG37NGw+vVm+D6Xp6C7evKjKCid1BP+PuL1XMkqZlJANjueweO9ivyslNPTk7fd4SjWvEqsaPAH6ayrtJM3pdWLKtikY8qU6zK9SbBjeG2a8kjZrxyzkFeYZ7isN+Y58w5Atf5Tmmbm9bmw7vw1A4PsaG2bD/U0rYsn+Jdh7ZS+6UokHjLyU6Mn0/iv7MfWnqbpjylpuSW+u2F2MOLvSNQcaVDm9TuP3Bf+fwZV+b5ceWOrzOOnd02eWAqbeqdZ6uW3NbbqwcGll8HLJZZ8ep25e3YYsfUBJCEDXnUDaPZN61sKyB/QecoH4PfeRFmemmbF9hq799niFtldbT7V9jsVsQromFGvQF+rFEhqp3Ev2B05KEtBTyutWtVWqfQb9PP2O+MpEadSP0b8x8uuRqjB9QAnjl9rXOblzsOHkBnn/+eLzpdbuMnofr7mM61AfUXrAXmUO2q1sR4nqG9cNEzHJ7a7D68Dh/MMqTS9f0Pfk1Z2vGh7jS+i8NIRWWgRHyHfyPZq/UwiBeeYHwfgt1dsHW2cgPFgwptCGsonfTcT6E+txOF/wxP/1yq9YvG8xJv0wyWc/kxGvXjQ5WnjUb9bVsCCLTyMQPWbheA5FriKfBtUbvH6BMshiVo1RFX02/++4FIKpLUev+krok3SfTEFCaPfm05ugZc0jLeQshzQzdszAVUfgfEz91vdDUIJQ3wkIzCYCnhi/l9ItTKu6ETHpK9GnYarsgXam+AxOXD8hG0O+GN0KI9tVEQxZpQi7BoT3nn5fDSMxqLq54eQG7Lm8RzaIAoJh+6sxrTGjj1rQfNhXw+Dm3OBEryRCoDJmlZXFVNY8aSFQcszxeJV2QKpL2naWJiEiGGseaelzPwBZ2sLI89eItaNysOPpDvI7VOAowIfDm+PXFzqX6vsSY74Zgw8Pf6jaJr1L/jQAAWB46wzV30bP8+3BjXFfkzQs6Fc6AX9JJsFuE9pLX32IEfuv7ve5j65XWgOyaj5QSkep13a9hmd/eBY7r4jGI/HSi13F2HlJ0KLycJ6AizedPlY8xun2m9bP1c4X6X5IiiAwitpgmlKMfxyBOg1APQky0k2hkcJYpPNuO78NL25/Ud5Phyb5o93KdrI+iC/Dzbrj6/DKL6/IjTY9eAtk0DJaiTbi9xgFfH1v2vZpWHlE7bb9eyY3Ro2gvwnEiDbGItB0w7dwjxA6c+6GMtAq7bX7m1jTnYHsmWTgZdGhZiIiQ/Wpas8UncEbe98wdIU2qovjvh3n8zeMoLPCSQNI+nrK6lkjeSx0rq2s6u68uBPzd83XrVb5gvaU+qOyP2q9d0or+itN+Iw6xIgw4zr3/sH3ZcPpor2L8PVvX6v268Vd1dt+ufiLX8F7w3I6C3zu23lxJ+b8PEcVHujLaMnxHL49/S1+frYDpt+ZJW9f2L8BDk3tiv0v6DPzAerwvZd/ebnU5b7u1Bvf3vn1HRwpOIJQq7DyeM15TVUnAuHm3Fi4R9FKoduY0hia5+Ua6yXR35UEio3QltUcooTpaQegRvVKqnMAMPnHyYa/oX2/F+x/Qf5856d3yp996W5JDMupjJaZxsK5Ev+PIc8XtLFs+aHlOg8YqY33t0rqC7oN/38I5PHn4lw645LT68TYb8bK2fRo6HfUl2i09nzzd85H42WN/S4y0OOTbee2yZ+ltrPzqs4qYWx/GL0fvgybKVEhODq9G4hFKXOrqnE6UXCJUGuoPFYZ9fUo3PXZXT7rN/2bZ4rPGB5Dox0TaI17/iZOxCz0BVL76G9spPUqppHunXTMDc8Nw3Ptea4zJnTTZ1Cjx4llQRqnrM5bjd6f9kaLD1roFk+1ZdRCG7LrpERi45hWqFDBv8qH1tApSUXwlJ7T+uPrcaXkit8kOLH2IEMvTX8ZhAONC+h3jR4L28SFgp2Fa+EO2YmUqBCVZ5jD48CHDzbDogENUTM5Ah2yb2Lpw0kITXvX7+9JeHiPavHNyChZmjFNtcRw8ERfd645r4l6aBxqZ/6G7qu7K79NPVttm+3hPFh3fJ2qPJ0o3STJwChrSnG8Knzv92I0fixtf2IPsiAhIli+X0Yey2VB22cfmtoV8/sq4Y9GZaUTZfn67TopkZjRu26pjT1d6yRjxzMdEB0qLLoZte0rD6+U9RZpg23fdX3xw9kfdMf7Oo+8j2qHSpMwied5HL0mZJk1mYT2sbO4MPnk1iflOu7hPGXy9PJlgNO+677mXpLhX+Lf4ClF/iVJ6QLSqFEjPjc3sAhaeefOT++UUzj7olVKK/BQ4pxrxtRUuaZmRmXK50ixp8idcauUVvju7Heqc9VPqA+71Y7zN84b/m6z5Gay22KrFL1AooR0Xm3ZjNCWV0uKPQVXSq7oOkij8kcHRaNOXB15e9Okpth+QS1ubkRCaAKKXEWqyb72+rS/BQAxwTGoHavXqDHC6PsSWXFZiAoyFgW94b4hW/ZpGic1lrOyGZ27bnxdRNoCh7RwPKdbmQCM7y8gPK+4EOOJIH18q5RWKHYX+/QwkI4x+l6+I1+1qiIdd6b4jM8QiHrx9RBhi8C54nNyatfMqEwkh+lXk7S/p6XAUYBfrwoTszqxdeTPpanz9LM8XXTaUEvL33mMyqitZ06vEzsu7NCdi37vAGGSKOnJaX+zxFMSULPNiKSwJFSNUk9Kvj/7vW6w1iqlFQqdhYiwRQRcEfL3PKR9FcMryqGzNWJqID5EHw6y+9JuFLmLEGIJQaPERvJ3W1ZoqSqDtl7Xi6+n0hUpLfQ7CBi/S1WjqyImKEbVDvl6twCgUWIj5BXmyRPbxNBE2YBbPbq6TvTe6DxG568bV1fWJvvp/E/y5LNVSivVe9UwsSFCLYJB7YejV8CFKG1zdnw2dl/WGyXp36P7GwBIj0jXvQNSP+PvGox+IxBG55H6BF/7jc7rqzy++rPs+GyE28IDXkeKPQUZkRmG+wK1SYCgy6f1LvD1vtSJrYPo4GjVeXNScuSyN0hoAIvJompHrruu+3wPKoZXRKUIIYzDqO1oUaEFrjuvy20lTZOkJijxlGDflX1yOaRJ47HCYzh34xxigmNUE2LpnTW6p8HmYDROUjJP+qp7AFArthZig2N1baP2u0Z9EU1cSJxf3Tz6vPuv7i+VZ630nUJnoXxvTMSEShGVVP1ciwotdBOY0rwzAFAtuhoSQxNV36HbEW2/Rfd9DRMbGvYfVx1XDUOs/L2jx68dN/R4a5rcFDaTTXU9lSMry9dPn5MuG/2b9BipVUorHCk4EnABVotUT4x+w+qpBLfF2HvVV70JMgepxqz0dXDgDCfnUr2m72+jxEYIsQiLZXmXinGm4CYsdmFy26JCC1VIMN3GG5UpEM2Sm8Hldcn3snlyc9k7WaJxUmP8fOFnAEBGZAaOXzsu97c0RuNW6Vr2Xt6r82BsmtxUpWtJ369t57fJBpWmyU1x8cZFpISnGN5DT3F1RIVYUWwWnmHt2NqICVZ0bUsz1pBomdLSpxFFi9G4CBCMxdL8plVKK7g5kbujlwAAIABJREFUd6nmUKUpL72fblMljhYexfkbipahdhxEYzRW91e+nZd24ob7BtIj0pEWrpZE8NemSn2gttz+6mqliEqoGF4RXt7rU86Avv68wjw5DL56dHVEB8XBYjaBaMpSLboawm3hchv3e9GOH6tEVpHnIDS1Y2ur5jUre65EzdiauuP+hvg0aZYyATnj70Kz5GbyICvVnoozxWdgt9pld+Ugc5Bu8CM1OtJkIMgcJA/WooKicLb4LBJCEpDvyEeoJRQ3PTeRHJaM8zfOw+V1Id+bjyCzkoFE+t0KYRVkK7XVZA046CIgfo+xmCzwcB65vFIZrSYrKoZXlF/qyKBIRAVFqV7mypGVke/Il8stkRSWhHxHPoLNwXB4HSh2FyMtPA3FrmLYbXaf7sLRQdGICY6RwyuqR1fXld1MzPDyXtXANzksudRhXdpBSpg1DNFB0ThTfAYcz5X6PABgIRbcdN/UrVhXiqgkh/5ImQfLgomYwPEcMqMyke/IVxkMpes2EZPP80p1M8QSojom1Z6KfEe+aiWdrkMhlhCUeEp03wOAqKAoeZs0WQagm8R4OGGVTwqbAozfD+m33ZwblSIq+b1HaeFpsrGlSmQVv8dKRhP6WYZZ9S7j6RHppXouEbYIXHddh8Vk8VnPwqxhhtu12+JD4v3+ZoglBG7OLQ/8KoRVkD02aGMQoL/vAFA9proqNEkq7zXnNXh5b8CQterR1XG44LBh3ZJ+jxaFNBOz4fWkhqfiYP5B+R5biAUe3iOHlPmCXkGsFl3Np4dOuC1ctVJn9A5KZU4MTcTB/IOwmWyq8BKpjbKZbKoVwKigKBQ6C1HiKUGqPVU2SsWGxMoTLIvJorvuMGuYbqWOPkZ6ll5eaQ8yozJxMP+gfB/p98rhccgrglWTCQ5Tt4722KDvU74jH9FB0ShwFqj6Dql8WqR+RkJruJLqvoTNZCvVO0NPZiWk+01DL84YndeojkcGRfosg5tzq/rTGjE1cCj/EILNwSCEyO+Wv3OkhafhdNFppNhTfB4TbtOL/GqPld5XHjzyHfly2woIk3qpnjm9Trk/CreGq85D9yPVo6vjt6LfEG4L91muhJAEQ4+khNAEXLp5SVc/aW+6qOAonLtxDomhifDyXvk8/t7Z9EjjNjTIHCRPlKX+SjsO8XUN0nbthEIaSySGJiLCFqET+Aeg67cSQxMNf0e69/7KkhmVCatJ7XXsL4y1dmxtHC44jErhlXDs2jFUja6KvII8uU2l+1lpH92OSO+MdgySEZkhtwPaeiu159r3zd87GhkUaWiUMvKKl9ojo3EYjfbZSu863WZK49cUewpuum/69Mr1NV5NDE1EdFAYDlFfo98P6Tt0mxEXEof4kHjV2Km07Ve+I1/VX5Z4SuT3Nzqch5d4cVnsNgqdhaq2jG7jy4I0tqX7tuSwZLkNlsbqBETu70IsIbKxLNA4SnstKeEpuHZVXaeLXcXyO6ttfzOjMuXxxXXndZy/cR5h1jC5XNI7WjWqGs7DhaRIEzy80qcYlU261zRSHwYIz9NIj05q27UY9RkAVPMber+vMYwWun/3dzzdpkpEB0er5keBxkGAch3+2ntAeOYHrh7wOQalyyvVL0A9nqfLTbclBAQ8eHlBzm61+/yNyKBIxIfEq66fHs9ZTBYUuQsBcehCzxmtJquh91NSWBIcHofufkntpxatB5rNrCQu0baRUp21mWyoGOFLA+6fA/OUEvmneEoxGAwGg8FgMBgMBoPBYJQjfK46M00pBoPBYDAYDAaDwWAwGAzGXw4zSjEYDAaDwWAwGAwGg8FgMP5yWPieCCHkMgBjZcK/H3EAfCtsMm4V7LmUP9gzKZ+w51L+YM+kfMKeS/mDPZPyB3sm5RP2XMof7Jkw/kyu8Dzf1WgHM0qJdO3alf/yyy9vdTEYDAaDwWAwGAwGg8FgMP5JME2pQFy5wozCDAaDwWAwGAwGg8FgMBh/FcwoxWAwGAwGg8FgMBgMBoPB+MthRikGg8Eop6zZdQa5J/NvdTEYDAaDwWAwGIwy4/Q68erOV+HwOG51URjlGGaUYjAYjHLKmBV7cNfr2251MRgMBoPBYDAYjDKz7OAyvLnvTSzdv/RWF4VRjmFGKQaDwWAwGAwGg8FgMBh/KE6vEwDg4ly3uCSM8gwzSjEYDAaDwWAwGAwGg8H4UyC+E68xGMwoxWAwGAwGg8FgMBgMBoPB+OthRikGg8FgMBgMBoPBYDAYfyz8rS4A4+8AM0oxGAwGg8FgMBgMBoPB+FMghIXvMXzDjFIMBoPBYDAYDAaDwWAwGIy/HGaUYjAYjHLI1WLnrS4Cg8FgMBgMBoPBYPypMKMUg8FglENmfnHoVheBwWAwGAwGg8H43fBMVIpRCphRisFgMABcKnLc6iKo8PKsE2cwGAwGg8Fg/P0hYJpSDN+UK6MUISSNELKFEHKAELKfEDJa3B5DCNlICMkT/48WtxNCyHxCyFFCyF5CSAPqXIPE4/MIIYNu1TUxGIzyzye7zqLJ9K/xy6n8W10UGRMThGQwGAwGg8FgMBj/cMqVUQqAB8A4nudrAWgGYCQhpBaACQC+5nm+KoCvxb8BoBuAquK/4QAWAoIRC8BzAJoCaALgOcmQxWAwGFp2nBSMUQfOF93ikihYTMwoxWAwGAwGg8FgMP7ZlCujFM/z53me3yl+LgJwEEAKgF4AloqHLQVwh/i5F4B3eYGfAEQRQpIBdAGwkef5fJ7nCwBsBND1L7wUBoPxN0K2/5SjkLmE8CD5M8eVn3IxGAwGg8FgMP5ZuDk3brhv3OpiMP6llCujFA0hJB1AfQDbASTyPH9e3HUBQKL4OQXAaeprZ8RtvrZrf2M4ISSXEJJ7+fLlP7T8DAbj74MU516ebD/RYTb5s8vL3cKSMBgMBoPBYDD+yYz6ehSaLW/2h5+XCZ0zSkO5NEoRQuwAVgF4nOf56/Q+nud54I+p3TzPv8HzfCOe5xvFx8f/EadkMBh/QyRPKb4ceUp5vEpZnB5mlGIwGAwGg8Fg/Dn8eO7HP+W80tiaCZ0z/FHujFKEECsEg9QynudXi5svimF5EP+/JG4/CyCN+nqquM3XdgaDwdBBSPnzlHJziiHK6fHewpIwGAwGg8FgMBgMxp9DuTJKEWFm+BaAgzzPz6N2rQUgZdAbBOBTavtAMQtfMwDXxDC/DQA6E0KiRYHzzuI2BoPB0CEluuPKqaeUi3lKMRgMBoPBYDD+rjBHKYYfLLe6ABpaAhgAYB8hZLe47WkAMwGsJIQMA3AKwD3ivvUAugM4CuAmgCEAwPN8PiFkKoCfxeOm8DxffnK9MxiMckV5dCn2eGlPKWaUYjAYDAaDwWAwGP88ypVRiuf57+HbjtrB4HgewEgf53obwNt/XOkYDMY/FUVT6taWg8ZNxRI63cwoxWAwGAwGg8H4e8GEzhmloVyF7zEYDMat4KOr/WGL+bZche+VuBQdKZZ9j8FgMBgMBoPxd6U8RiUwyg/MKMVgMP71cHAjKPGLciN07vZyeOfHk/LfTjcTOmcwGAwGg8Fg/LlcvO641UVg/AthRikGg/Gvhqe8o8qLi/FHuWdUfzNPKQaDwWAwGAzGn80TH+251UVg/AthRikGg/GvxssrXkjlJXqvROMZxTSlGAwGg8FgMBh/Niy5DuNWwIxSDAbjX43aKFU+rFLaqHs385RiMBgMBoPBYPzJmP5g6afyMrZmlG+YUYrBYPyr8XKKUao8aEqVeEpwuPgbgAolZOF7DAaDwWAwGIw/mz9LkJwJnTP8wYxSDAbjXw3HCwYfniflIvve3Ny5WH9xHsyhx+Vtbu+tLxeDwWAwGAwG45+NiVkHGLcAVu0YDMa/GiV8zwRPOTD+XLxxUfhgcsrbWPgeg8FgMBgMBuPPxkSYRxPjr4cZpRgMxr8a2SjFk3IbJseMUgwGg8FgMBgMBuOfCDNKMRiMfzVS+B5A4CoHGUd46L21ykO5GAwGg8FgMBj/bL7Lu/KHnk8a1xLmgcXwAzNKMRiMfzUeziN84AmcHq//g28RTFOKwWAwGAwGg/FXcLnIGfigMsKEzhn+YEYpBoPxr4b2lHKWA48kutNuUDEKAAvfYzAYDAaDwWD8NbBxJ+OvJqBRihDiJYTsJoT8Sgj5jBASRe2rTQjZTAg5TAjJI4RMIqJvHiFkMCHkNYPz3U8I2UsI2UcI+ZEQUk/c/j/2zjs8iqoL479JD70KWOiIqChYULGhgB+KBXvF3kXBiooC0gWRIiC9iVTpvffeewklQICQ3rN17vfHnd2Z2d2EAAmJOO/z5MnundmZu7Mz957znvece4OiKCsVRTmgKMp+RVHaGj5TTlGUpdo5liqKUlZrVxRFGagoylHtmHfkx0WxYMHCfwduVS90XhRIKWP63p9v3EmQAi7LOLBgwYIFCxYsWLBwBWBl2lm40siLUipbCNFACHErkAR8BqAoSiQwB+glhKgL3A40Bj69wPFOAA8LIeoDXYHhWrsL+FoIcTNwL/CZoig3a9u+B5YLIeoAy7X3AI8DdbS/D4E/8/B9LFiwUICIz4pn5N6RCPHvSDnzFDoXQsFdxNLkUhznCQ0uGmSZBQsWLFiwYMGChasf+Zlq5/EH9p1JzbdjWrj6cLHpexuB67TXrwHrhRBLAIQQWUAbdMIoIIQQG4QQydrbTcD1Wvs5oI2iKHHaeQ4C1ymK0hn4EnhDUZRdwGmglfb5TkBD4BBQGiijKEoVRVFaaOqto4qi5NofCxYs5C++W/MdA3YM4HDy4cLuSp5gTN9TixCRFlZmCy/Mf5LIkmfIdhbNWlcWLFiwYMGCBQsWri7kpz3sSQVcuC82345p4epDnkkpRVGCgaZIdRTALcB24z5CiGNACUVRSuXxsO8BCw3vxwItgFAk2bRZa3cJIW4VQjQAJgKVNBVVPeBV7TNDgBjgBmAwUkV1M/CqQXFlwYKFAkamMxPQFUhFHS6hFTonqEiQUp70veBi0QCERSSSYXfl8gkLFixYsGDBggULFvIDAreaf/awKx+PZeHqRV5IqUhNoRQLVAKW5seJFUV5BElKtfe0CSHWADagKtBOCJHm+zkhNYACeAY4AziFECeAo0ApJFl2VAhxXAjhACZr+1qwYMGCH7xKKaEUsYlT9iUsJIgs+7+D4LNgwYIFCxYsWLDw70Z+klLGoulWAXULOSHPNaWAaoCCVlMKOADcadxRUZSaQEYgMslnv9uAkcAzQohEQ3sosi5UihBihuEjIVoB9NGKotwExCHTCM8hlVEgVVLXAsHIFD8M7ddhwYKFKwLPNJac6SjUfuQVuqJLwVXEakoBhIcEk+mwlFIWLFiwYMGCBQsWChoCdwGk7wFkOawgq4XAyHP6nlYz6gvga0VRQoC/gQcURWkG3sLnA4HeuR1HUZSqwAygtRDiiKFdAUYBx4BEw0f+BAYAfyFJqL+A2dq2HcCb2mcrAllASl6/k6IoHyqKsk1RlG3x8fF5/ZgFCxZyQVq2E4BR604Uck/yBmNBdpeacwSn39IjVP9+foEXcNePL4tMhoUEcT7NhlqkVFwWLFiwYMGCBQsWrkYkpNvz7VhGUspm1Ui1kAMuqtC5EGInsAd4VQiRjUyL+0lRlMPAXmArMOgCh+kIlAeGKIqyS1GUbVr7/UBr4D6glrbtCSHEeaAn0AxZXL0e0AuZupcIHEem7j0C9NDabzCc73qtLdD3GS6EuEsIcVfFihUv4kpYsGDhQiiKqqNA0Aud5y5XHrA8CpDk1JWEw6Vy5HwG/Zdd2fNasGDBggULFixY+K9B8PLwTfl2NN22Vvht8WHu6rYs345t4erBBUkpIUQJn/dPCSH+0l7vFUI0EULUFULUFkL8otV8QggxVgjRJsDx3hdClBVCNND+7tLa1wkhFGSB8mPatgWKolQRQiQKIZoilVjzhBBJyILrrwBfIQmreGA8khiroyhKDUVRwrR95vj2w4IFCwWL9ccSCrsLeYLLra++l5eaUldOASb7kpotU/eWHYy7Que1YMGCBQsWLPxXkZBhp9nvqzkal17YXbFwFcCYYDBtewwJGXZWHrJsWgtmXJRSqqChKMokYCNQV1GUGEVR3gN6K4qyV1GUPUg11JcAQoj9wFRkbatFwGdCCLcQwgW0ARYDB4Gp2r4WLFiw4Advyp7Im7ors4Dz4QXmPjhcsn9lioUW6HktWLBgwYIFC1cWx+MzOJ9mK+xumDBr5xmOxmUwbsPJwu6KhUJB/mY6+Nq1AO+M3Zqv57Dw70dIYXfACCHEqwGaR+Wyf3ege4D2BcCCfOyaBQsW8gilsDtwkXAb0vfyuvre5uOJ3FOzfIH0J80mlVFKsMzn9+TilwjP23CtqrJAZWhwkYo5WLBgwYIFCxYMEELwaN/VlC8exvafmxd2d7zYkjgfJbgiZYuHFXZXLBQGFPKVl7Jqol4a3KqbDGcGpcNLF3ZXrggsr8WCBQv/aRjrSB08l0a6zXnBz7w8fFOBFWtMzPCJmGrdCwvJ23Ddbsou6nRYmM+9smDBggULFizkJ3ackmszJRah1YpPp59mY+pwIq+fYCpQbcHCpULNZ+XVfwX9tvfjgckPkDH1TbBnFHZ3ChwWKWXBgoX/DOIDrCZirCkFEJ2QladjOQrIWIsMNSuiPGfJKyk1Z/fZfO6RBQsWLFiwkL84FJtGQkb+rfD1b0Si9v0rlgwv5J7ocKpaYC44y1s+wMJ/Dfmcvuc5nPi35VIULhZFLwIg4/A8ODSvkHtT8LBIKQsWLOQviuicM2f3We7uvoztJ5NM7cb0PQC7K28KKLuzYIw1IczGgFvrzoGzabmuDghmibRlTFqwYMGChaKKFv3X0vz31YXdjUKFXZung4qS3WQwM0atO2GppXLB1titzD8+v7C7UWDIS+ZAXiByMF3jilgttaIKAWRkX/0EvkVKWbBgIZ9RlKwrHeui4gGIOm+WwPqSUslZeZuEC0oplZPM+VBsOr0XHco1bdDYp4Pn0nhp2EZWHbZWOLFg4Upgb0wqqdn5Y8RbsPBfQHKWk9+XHinsbhQaHF5SqujYTb5Fqf/ZHlNIPSn6eHfxu3y/9vvC7kYBQN4Dx+Iz8+doObBSRSlttShCMYwL22KvftvCIqUsWLBQYMhpIioMeCKS4aHmYc+TvlcyIlTbL29KqQJTIvlcsgfqVPC+HrbmOA/1XpnjR+2GPj0zeD1bTiTx9hhrhRMLFq4Enhq0jtajNhd2NyxY+Fdh4PKowu5CocETSCpKpJQO2aesAl5x2ELRRX7VTrVqSl0aPC7UTlGL5GotCrczVwAWKWXBwlWKsynZ9Fp46MqvemEgopzuojMRedLtIkKCTe1urb8em/BCKXIeFBQp5Tt5v3xXVdP7uAB1sTxoM3FHwPbVR+Ivv2MWLFjIEZ5xY09MaiH3xIKFoo+iFLAqTBxP30twsWOF3Q0TfH+bkCKVW2jhykDeA7mRUlHn07m7+zKWHzx/4aMJ41Et5BUeu+KcKM+t1179K/BZpJQFC1cp2k3exdDVx9h75so6ScZJJ7/y0fMDNk0BFRpsHvbcqiSXFC0q6MqBSKtVsbjp/eeTAhNAlw2f0wfl0SBUVZV1J44H3DZp86nL7ZUFCxZygUu16q5YKBwIIeiw5G+OxacXdlfyDJe1RDwAk2O+p1i1EZxJySbL4Srs7gD+6XvqZRCIR+MymLHj6k//S8m6OtPQciOl9sSkEp9uZ96ecxc8Tk4kdF6DwP9VeJ6986IMdSqVLOTeFDwsUsqChasUHhLmSg/5xrnn4T6rrvDZc0aGTRp8vsawl5S6SKXUkfMFszxrXuy/QH38Ze0QStTpgRKa4Ldt4/HE/Oga5zJimXlwTb4cy4KFfxOcbpXfFh/mTEp2wO2WcW2hsDDr6BzmnOvFs3/9WthdyTOs4tn+WHawaNR/VD0Eu7ZSWrrt0smyZr+v5qupuzkWf3UvZ//G1Za2rdnDtlwW9MnSCKu8qB49ezSsWsbUXlC1Wa8aaNc2U0QUckeuDCxSyoKFK4QdK6ajdipD7NnTV+R836b14lD4W1fkXEYYp6cMe9GI/IFuWPkawy5fpVQOzqX9Cq1m53t2JUDh+MRM/xS+PYkbAQgK9VfG5Vfx5admtqLjls/YFp104Z0tWLiKsHh/LINWHuX+XisCbi9KqcoW/luIz5Lp2XaSC7kneYdv+ruVzgdfTNrJgHlbiEsq3BRgo60TGRp8yYr3TIP9dyzu6ial9p1JK+wu5CtGvnknANm5KKV+nrUPyFvg2/N4FwsLMbU7r/Qq0bsmwol/T2DVMy4+Ur9GIffkysAipSxYuEzk1Zi6Y827BCmC4/s2FXCPJB50rCVCcdJgVDWIP3xFzikhfP4XDXgIMl9Syl8pFXiS9DWiq5Uvls89lPCTyqv+BmFcmj8p5RKa8SCC/bblF+yqXIllt1U3x8J/DBcidi2llIXCgvCa8v8e1YHDpYLixGMnWIoJAEHbbc2JHfFCofZCJ6UUSkWGkJZ9acFFYymElDyuanw1oPeiQ7w/blthd+OycFNxaevlpdB5XlwgIQI/3+uO+iv7CwwuO8z6BMY9deXOebnQrlvFcld/PSmwSCkL+Yg0m5M0Q0TlVGLWlS+ynVfY0mD6B5Bx+XLpGj8s4KdZe3PfyVj8O/0KDsIakpf+dsXOpX/VovXbe4xe35pR3kLn2vtASqm5e06RXmYoxaqO9radTMwyRQLzC771HMj0v19+mbvfr82tyr6ECjetgtZRkNf/XA4pTIGwLTqJ2FRbgfXFgoUrgSx77sa5y61SjjTK8O+p6/OfhSMTtoyAq6UOmPDMXkVrzs0NMelnKXnTz4SWkWlPV0qJXJRRGalAvi17S6GS3DaXbteUjAgl3W4mlFRV5Mm2dxqeL/t/iHQcsuoYyw6eZ82/eIGZkpNaEo4jR6XUxfp2Of36f6w4epE9uwwkn9RfH5p/5c57OdD8k6Dw4hfY8eqARUpZyDfc1nkJLw+TKqATCZk81Gclg1ZewQHnYnBkEeydCr/VuazDrDosSa0Jmy5QSNqhS5dLJu27rHPmBb6qnnMZV25J36JqFrs0o8g3IutW5bVRNKlUIGOw8/YPCClxmODiR0ztJxIy872fvlEnZWF7fGudb41OJjHDrJZSNaXUi8Fr6R82hLGhvfO9bx4kZua9qOcLQzfyWL/VBdYXCxYKEjanm+RMhyngEgguVbAq/CsWh7fnZGL+jwsW8hFr+8KCb2Dpz4Xdk3yBd85Qiurs649T6bKMQUipPQD0XHDoP19nqkZQrPd1XNyFVzQrKBjVMaUi/JVSNX9cQM0fF1xQReNyC0JK7kEJTvfW9PwvYdvJf086rR9syVRWknKsKeWxoyuSDCLvaqoS4eb0vevKRF5ePy8Cy7fs0t9sHHLFzntZ0C5ccIRFSlmwcNE4eE7mVcen2yDIzu9Lj7DhSsoz84qQcP111qXXx+k0x1+xEhB2PXouTm8ucKclNdOsTLn57HTIyCFq47LDmj7gzLv6JVcUUQPZo4DyT9/TlFJKzjWlHEFnAx5zewEYHb7poApQpfSFJ26XkEZfKSF/xybBu6muyFVRwkPyd6i3uy6O5Ez7DxqkRuw6nUL17+dz9iIUZn7IToEzO/KmlbeQb3h5+CYadl1KQoZ/yqwRqi2dUkoWlZQUvp609Qr1rohDCHBkFXYv/GHXgkQbBxVuP/INetRi+8l/R70/zzRcJ+g0LwWvZNKWU7QavP7iDnK1KN2AupVKcr2i22hBu/4qtL7oZJMilVI5EPIXCsol21KJvH4ikVXH8OuiQ37BUgv5DLdLH9suGwo3KPEMXB4VcKvTrVKRZLZGfEbvqCfBmbsa3pMBUK9KKT5/tLa3/f7a5fPcowmbTjJ9+6Wv5Nh06wf6m5Pr8nf8WN0bzu2GYyvAlY8rMWrpe5ZSyoKFi4Cvo782dg4l63ZCCU3kzdFbCqlXOUAIWN5Vf3/q0ms8hSgwNLQf7wUvyH1HbaLIFOFUVeKYtq1gl8i1pQdYbS0x8OTCrr9hRTdYPyBfzu2ZfJrXq+gXFSlMeHx535Q7T6HzII2UygvRVK54GHARpORFIBDl8LUYe8H9XFr6XssQ/X6eGtmL1vdWo1hY/taZWrA3Nk+1Bojdy43KlSnsX2RgTwebuebW0YWDWRn2Jc4p70DqJT77fWrDiEfo0bsbyw4UXhT9v4asmH1cr8Sx94z8TcOCA5tNB/bv9L4OPbsFopZCdgFHyoWAzcNh95SCPc+lYsMf0KNKzoGfpBMwpXU+OlJ5hDGyb7tCBYoLkEz2mF9vhixm0qI1PDNoXYGdK7+w7uwyAMoq6fQOHUEQKvvPXsRvkX4eupSFHYVH3uQnHlJ20Cd0uPd9uhqey94FC0/Q6YayxSgZEUK6zUVMchbroswB5q0XWPDEpjnnSogcO02pYLF7IWY7JB679I7O+AhW9brgbr8tPsyH4wu2xlPxfLaxLgkzP4Ke112WT2NEh5AJgJ5lYITDpdIseAcAESIb9v2T67E86X6R+6fw0i0lvO0Xk7b706x9fD1tt94Qd4joBf3yVIjf+B2WhjeXL2LyFjw6k5KdeyA25RSs7A7DHoK/noUlP+XpuHmDFjQPu3KKssKERUpZyBfYXSr3Bh3ggaC9ON0q2+OlURQUVgRVUuf3mwmaya9CWmAlzIXwUaVDtAjeys+hE3Lf0SGVUsfEtZQnjVIhBZtOZ8+QxsI4V3Met/eUjennAu+saJNp0ol8ObfH9K7tOEhpR2yBrKqTnNf0sbM74fgqTpxL8EbpfltiTsFTfWpKLT1w/gJ9Fnz/+E0X2eO8I9C5n7PP9mvzTTN0a46WaoiaX6PGExnkIjnL6WdQXi7eHLUl94n6wGwY+gBLwtvTLGh7vp67yOLcHuh5PfSqCqp+bV4425saQeepdm4hrP394o7GnQyaAAAgAElEQVQpBPSu5S14/2P2b/T+Z5W/k5sRB8u75K1OnhAwsrn8jUBG9hz/0pSzmO0FqphYGv4d68Lb8UlcFyqRhMOtBnxGt62Y6X09Kaw7/P0CrOheYP0CZF2Mhd/CzA8vS/FbYNg/Q/6POxh4+5TWcHAOnLnC44ORiEqMks/D9rGQlsMcebn4+0X4pYxUJRcI5JgvAOfJzf+KhSiWnZkF6PPVjLBOdA4Zm/cDpGglE7aNyueeXQCHF+Wz0ynRIaWT6X1I3AXqlBYgPAGnkGCFUpGhpNmcNP99DW+M2mzar+Ps3INyTreuuJLvDeP00Adg5KPwxx2XRky5nbBnMqzqecFdB608ypICDuRUDQtQS/BKq5o9xNDo/132oURoJPWCThOESlIAe9vpFjweZBAcrOuf6/FUTfETEn+QG2LmMeqtuwCYvevSfK8shwuG3EP1LZ2ZP6LjBfc3ro77W1pTABzJOQRM538N6wfKfZxudvRtxfAxuYwzvr5T9NoL9ievUDz3UKhFSl1xKIoyWlGUOEVR9hnayimKslRRlCjtf1mtXVEUZaCiKEcVRdmjKModhs+8pe0fpSjKW4XxXf71uEjjye50MzmsGxPCenI2OQvhcYwVv7LNecbSA+d5sPeKvEt+VRXmfC5TXHJDZgCnbf7XF99BoPEZw0CVHJ2jbNOZJY3gtWp9ghSB4+AFlFVCwML2sOiHwNtjtsH4Z3KMMDs1UmqV2oAzooLev+MBavt4osaZ+VOU0buEacwg1od/gT0j5dIOlJkg5cg+WHMknoZdl+ZOsgghf9PhTWD8M9QYVovHxHruVg4RHfEacUOf9sqNXd7V9xQqkwiIXJd3X/9TQ+69UXBfzfKU1xRTIA25lKzLk+2mZjn9Vt/zUExVy5lX+/NNM3Rr6XsuFP5wtfK235U0D8DPoASk1Lhz6ZydxhzQSDnI/THD+Cc3KbVh2d2RYX2LptOcz3BFLdPf5PR9j6+EzcPyftDkaMgy3+tL1A/h95tNacGMeFTWyvmtTsDnxgR7GsRsgalvwqnN0K0i9Lg2730qKCRHw9Fl/u3psbBvutnIn/UZrOwhHZt1fS/vvI5MGPe0HFdN7XrqWcvgLWyOaMNrwcsDrhRWRUkiTRRjoutRQ78LiOQAeS2mvK6/T86foEK+omQV+T/+UODt8dq448znFD/P/Bm9XkauV/o4rvZ0CNGM/Jht0OM6mNsWfs+HYMPZXfBrDUg9I5/D8/shaoncdm7P5R8/AIRW6FwFOoROJAxnQHXDFYWqwsG5FySMVUUhm3AaBB3j7ZAleU990ZTBF0obyndMelkqAAuICO/nfJ59anVKXIHaozkhWyt0firjKCUjQkjI0AteX0yQ0e4pmC4CkFJGnNsduD0XJG0cf9GfKUgsdL3P4j3m2rIZxsUxhCA1M5vktcNhawEQqb6+QLpGwiUeg4SLr+0r7nwXgFZB62jUYzmnk8xjtMOlcp2SwHz1XhIoI+efXO4NofkZCkDcQZrWq+TddikLYq3YrPt5ryQOgTM7UJf+gnv9HwH9IodNBt16O18mVpST5905EU5ugHhzoJqtI731BrO3jOWp4E18fuZbSMmBxDIo41e6b4eEI7LcQj5AwSKlChNjgRY+bd8Dy4UQdYDl2nuAx4E62t+HwJ8gSSygE3AP0Ajo5CGy/vOI3SujCxeCPQO6XeNvyOX2EQNx9GnfcV4jCVTcqqDez4susrPw86x9nE7KDljLY/r2GG7puMg8ydlSYMd4GPFI7gfWWO3H7T2Z475Ptp3dmcsHcoDbRaXs4/r7AbdzYsDj+mRggC1TDlqL3I2wiVDaJHTFfnw99pM5yEczzsPmobBpSOBaTyObwvFVMvUuUNcyZfpeqihOGhqZsbwLjH8a4nwcBA/Ln5W/ShrPNGNLiL74DzsyoU+tgIVoD8VKgm/5oVwiX/GH5MRiwKCwP5gW3gWAa2JXQ/dK4HahasZlaHYcmyI+56XgVWan8/gq03FaTG9By5ktufW6UmQ5dKPj2SEbaNBlad6/o8suHRgNJxMzuafLXJJSA6/eVcEtydSaylmiI14j2Oee9RqLiiBFFGee+x4AHovuQ5OgXQTEX8/K/0PuvSjSaGp4V9qGzCQjPYd0C1uqrsLxwOOYFWXEH4E5X1yY1MkBcacNxl+aTthlB5ckRWg1AZKOw8LvAjs1Kach0yf19pz+233nNNRESD8r025VVd5LqQaD6cCswB0UQpL2xhUdRz/mfXnmdDQbjxnOnxEHsz8zk18FiT/vhwnP+xu36wfCP+/qZJ7TBrsmwOpfARAnL5CuIETuNfPO7YETq+W5jQgQ8ewROgpnmj+BX1lJ4rwoy0+ud/XGQ/Mk6ZEcLYmPszk8h54+ZsSbFHa5wjeIkBwdeL+zu+TvdylR++VdJLFwqfAY0p50ksRjZhIhKFT+zwqQbp4bXHZ5XyZEybTzGR+Zx5vMBDl/jn1CEu+rfVJ87GlQuT4Ehchn0WlQCfrOjxeLdf0gOwn63Qxdy8OfjfVto5rB/pl8/vdWlh/MP+WG0MYSFYVrlBTWhLfLNbByRbBlGEx5Q1fL5QBneBkigvSxUA2kVht8j1SbxRqIGo8j6MqnWpgXi4yL/P3mtoVfyuW6y4P2fgxwP89xUYUKaQcC2pJXAnan7ic8cPxLKpDKnvD3GB3a+6LSrTxKqWDNGswxwHxs+UX3ce5KQ4rqBeanYaG/szTsW3PjxiH5lubmwdS58xFCEBSSBoqD0etP8OUUbcyf/Dql+1Sm7PJvYf5XOHZPu/ABT22GXRNh0N2wbUzu9fl6Xmd+P+dz+f+PO2DQnRf9XcS9HwN68f2lPkozh8tNZSWJ9NAKDHY/K0niUxtzPF6w2zDGxu6B+CMEaWvyOS+S4I1JzuLJ5c1NbdkHFxO0/neCl/4kxwofuDOlfZtMCVKRtlhE9HIY8zgMvhv+ek4qZY2lF2yplFz+vf6+/61wbKW2LU234Ww6ATXI1UpeixXdZIOqwoAGMNkQQLoYaAozwiMu7fP/MhQpUkoIsQbw9YyeAcZpr8cBrQzt44XEJqCMoihVgP8BS4UQSUKIZGAp/kTXfw/bx0m5bNcKcPoCebSxWjRvdS+IPywN9gvI6x3ZOjM9P/xHb2TEw/LmtKxobtBK/ASusTNtN5kON+nGAsqGaOufq45JBnz/TP8Pn9tFkijBQVGVL5xtUIUiI9prftMl4XlBZjyhipsBrue8TTXSt0HfG/0iE84sOdClUYwIRU744eOfIHxMs8DHNkaWF/+ov3ZkwujH9S7EBY6Oq1mylokcfBUywyroG42DbvwR3dE7fyBfip17fB/P72bPTJH30eIO/o74ibUw6TXpVBiJAI9ybZP/ChnlistaCzmm8AnB6Sny88ITqc8JMz/C7VndQnNMeoeOwO5wSefQniEVaQFQPDyEbKfbm0bnKfKfZ8z6FIY/7CUI4pLTOBTxDg2CzPeO0lgaFzPsHzIzrCMrwr+R598zxrSfhwh2o5BFBG1DnmJg2dIAjA3rDYjco5zr+uW5656jFEs6EHiHuW29TvO3zg9ximA4eZFFbC8Et0uqZ04FUIBdKmZ/CjvGXVLklkMLqHJ0kv7eY4SoKhHuDMa5HyMLg2ERvQY/9L9VOrNGJEniu7fzJaa6m/CK4ydaoD0Xm4fKuirdroHgcLj3M5mOO/09qYA7vNB8rKilkrQf9lDAr3BmxEu8NmKDfJNySjr8OyfIlMT8giNTjgOqWxIGxnvSs0rphj/Mal2PA7iovfzvo3ZNio3O/Zw7xkH3ylK9EgiJR83n9x74uP++QNYZ/7SVGmFpxIqy3FOzIs/Yu5B8o2YYj2wqVV2ODPm8H1/lH5kF2DAQfqsN09/P/bt4kCa/yxeOz+T7f9713+fwQnnOntfL9DFHpqynuHUkHFl84XOs7SuJhUuFp37a3qmw82/pIA1vom8PLyn/z/4s74qXzcPl/b5zAsz6BJZ2lGk8U9/Uj5Fw2P9znUvLJcHnfSnHolJVoFwt//1OXN5KoWpCgN/WiGlvc+vBfrw3TlPlObLyFizMBUEeUk+zmSoryYRMeyP/UnJTY+T9ZbSPYvfC7DZwYI5878w2z+8eMnP6e3L+z0nVHVEORdW//74dGtngIeeXd5H2UNQSGHq/TDveM1UqlkCSsYHuHSEu+7oGRLCmjt4zOW/7T3kDpn8g00OFO8fr8Ii9L6eFVI9sU2+UjYHGn4Sj8poUWCooBKdGe1+XS93GtohPKKVk82jwLiK6l6M0GXwZ8g+lyL0WnFu7LyspKbwXvCCwUqriTfJZ9qTwZSbqtfjcLn8y/dxuWNMHYbyOC3wIJyMSj/G/4G3UCTqjE/6pMbD4B3Oa2+zP5Bjhq5a9CDxZ/hw2p0rxOj0oVk3a1TN3anPO4fmmfdcsn+/7cX+MfkyOcQlHYF4789hphMFuXx+mkeBRi82Biow4mPEhLMnbiqMiNBJbeAUqEljx48pOo7hiJyv8Gta66snGraPkbxa9XpI387/xPptlMuTvq5asIv3JwXfzRrAM4roukkD/ZZo/mRi0e6L+5tQGv+fMpZFSKaIExoUhvDi2XCplJ7ygty3uQPo1PoTeX60gahn0ukEGzTPivQTg3bYhbBd12atWh60j5HPat65UkR2aJ1N/Pfd2zDboe5Mcy+Z8kaPv5fGhFU8A5ypHkSKlckAlIYQndBILeDR/1wFGLV2M1pZTux8URflQUZRtiqJsi4/Pn9SlIoWUU7IIZMJRmPuFt1kd2zJ3VYQxAjS4EQx7UEsN+V0SCAGg+kRpg7UaSij6JHSxtYU8haenbDkljZ0lP5vk708FbUA9MFc6pllJpihC/0V7JAM+7W3/A8fuY79aHTkwKRwWmsO1oiv0ry8NmdQY6FlVGtIgIzG+xJzmwBxTq/C5o41pU8xJ6eT0WHCQX+bux5UtCYtMEcmT9m7m4xxd7m88zTYc79gK/fXBeXLA1VB8+58BI+AiS04kjzaU6QjDMx829Fv7bSY8LyMEbjvc31bWrOlTR37XoxcZucqIh01DITuFIM3A9PSq0j+t5H20cZDZyIo/AuOelJP1nsnmKMtug3NvuFfj0m0cjZPX3RlA8vvZxB107NKBGxIlAZL+2V4+crTzbu/pfJXzooz+gX3/EJQtDSfjYoHFZr8LXcr5R58MKB4mi7hnOcyqmvEbo5m108f5DRQJOqgZ89o1uSZOGuOhipnAFdd6M5NpaCCsgjLj5L2hGVqeRFlVgSwRTrHqwxlRprR3/1uUaJzxZsLLFVrS+9pxKu8rhnm+TesDH+qNxjotmtOddfMrTHM3kd9px3jYMiLP58CWJh3ITUMDqzz2z5CO0ujHzMv72lIvXTrtmfiNz7rbeeHjuRww+VUUobLC3UC2pWlGsD0VBUGqKEExDM7T+Gdgg1z96+C5NPas0upBuGzm82fEkyEiGOJuBShsUm/mLBWgTDVzH9x2qHafuYjzpFekoT2kMYx9EiZqRIkv+fKmVJk0CjrMiYg3ZLpc//rm1clU1aywMvSPaW9LlZOvw5V6Bhb9KInD1Bi5X49rJZG2optU6u2b7n/MpT+bCWm3wQE7vsqvbpbLYdi+e7L8zicN48l+TTmmKatMsKdL4xGkckYI+f07l4ZF35MuImlq70M7x6fsbD4VgBLLv5dOuQdCcC1xpIdW5NNHarFb1OZY49769pOGqP74Z+S466ts8hTsvYCyxIt0GcGOFpX1Nt95fdIr5vc9roW1v0nSf+JLUmnkgS0NThtqhARSrGwbA0fyoHg8vVXOIcbvOPtT+T/+oB6AMJARxO6V+w9s6J8mkREv5+NTm2G9oXaJb6HalVoNL4+KtHJ98/YBt8G20QAMPF4Fe8Vb9W3PDofQ4nB6s3QYhj6Ys1p8ywjoVc37GxgRn5jMAVV/NneXaUaMqMA8973eto9C5stU8UMLZCH4rhXk8zn1TZ0Qj9luVk1mJvqrTx1ZoLoJ1iL1O9Wa3k2hUQvk761d60OxaWYVZG7Y+bdcTerIYhms2j9TPqdr+sjtQkhie+dfMLW1JEi6V5bPdfdrYdKr5iDE4EZyLp3bTqYdG8hyNTgMd90nAUgXkWTtXyxrfPapKZ9B36BDzBaY8YG5bVlnSWoMe1javUeXkz39E3ldA41ZgeDIlORZbnA5oJRmE2wfl/u+JzfIuf3gXEnKenBwrnTWF/1oUkWeEHo607FwLTCR7fM8q6pUvazt6x9wyEeEpwUm4z3YHfEhbUNmsCfiQ1nXzoc8a/LrEl764Tfqzn0KgCABP4dOwGnTbHQPifhIByin3bN/3AEjm8nf/dfqUiHUtbz/mP3Pu7CiGw2DjhLnseV2T8o5NdZoV3rsaq1ekBfpsZIYAxjZlNSZ3+a8WnUOUFF4NnYAynxpbwZHnqE8qVyvxJnsl4a2oexXq9Esbab0qcY/k/dgeMLhwLaIJ6B4x5u8m/Yhp9SK8v0Mg322pg/smSKDHx54yjd4vnuUrvQXCLJK1eTmoJNEYqP34kN6mp1njgSckdeQIDQ7c98/8jxjn5DkzdYRkhzLiKdihpaqXe1+7zk6hcpFCt4Ze2Hb0+g/xp/XVeit7F3YGnEf4ek+13DTn6a3qjY3piCLrHuDOb6IMcyBO/+idOxGlrjv1JXuAH9riuqNg2QgydMv5P242H23bFjb1xxAm/SyvLfHPyPH+vRzcizbMU7O//GHOdK3Odl9bvGOW56aUiIAj3Y14t9ASnkh5F2Zb5pkIcRwIcRdQoi7KlasmF+HLTqY9yXMaQPLzAUUg9x2xLwvc/5cTisGLf9FEgjR6/1Z3eRTxBtWJaqU4Hmw9Z8rw2fVs5xwNvowG//pj6KAgsrBVZOx/3azHEzHPw3AQ0G7+SNsEBXmvysnqUmvmiT4hyPe1g/oW4skM57z6DLqD5w+9aSilkrnyZ6qG9KTX5PEXIzmLArhLY6eQSRz1cbUtY31HiIpRirMhq85zpj10biy07V9I9gnanJIvUE/34TnpDzXAOGZeO58WxrqjkxZP2Xmh/ghQN0SxSZ/w/ebNwTMxa9xZEqjwFi75fZXtW3p8npOeC5nddyaPrDKx1CY/alUMUx+jeJOafhG3f6d/2ePLZfRAiH8izGOe9K7zRlhUHb1riHluMdX0bjnCoaulhEXl1uV0RiDIzZ/zzmauKQx/LXjY7IdbhaL2+noeo23HO15t31/HrL3Z1J5nfQrmeSviok8euEoVnFtZcFMu5lE6jh7P+2mGNJ0nNnSWO9cWkZhojVjvZRWw2f/LEg9Q9Ul7zOjRHGyFZ/ZJzgM2pmLnsaL0hQ/vUo69Su6gRDeW1wFSpXSibf1t0qHe354B8KG3CXVaZ1Lw9FlJDmCmeh6hHGu5oTFbJQKlX63SvVBLnjbYYhMRi2TZGmvG6QhLoSX+Pw1WDoPU10aKbrgG7Mi6/hqmPmxPJ/HCXZmS2N98mvSgVzUXqo8PASxB0ZFwmKt9lrcQVlkfOiDOXf+8CIzgXZovq4eLas5k0s76vfVvHbyHtw+ThI1qWeksWc0xA/LGnHRISG0rZ3Ei2GS/Nm4ZAruTPkspojiPG3vyj9ug0ppSQeY+QnF/7yD21a9p7ePeFT+RifWQGa8bvRpiAwLZvB1/qsOJZS7A264x/87x+0PmIr2qqMDa8MewHF9Y1O762wAA/+32jKldr5U6mHPkE7rb7Wl03p+n0w1nPiyVFiNflyqvjYNls/2yh5m5eo6reD79PcgOsBqYZuGSkXPmCfMaTvjn9GdYyBarUQpt8F5m/mRfvwTa6Ujadd+7x3j/M+1uINuOLps8l7rW9e7WUXhmLiOWeoDFLvuFgCKpRyRyuPOpWX686pelHInEx1el4hQuXBEttMNr001n6u8bsAy4HadZBACgjVCNLSYrnBx2uTrQKSs5hTEiTJ85NDmcx+FnyhX0/dTZqzQVqFV3TLNbFRzPSAxzVCOUwhJbsxrpxObOUFVZZrahOdkgKtigDpNXcvL/Ywk5qhmUk2SdFw6pEbsGCvn49GPeRViJtzxpvwfs02OKZ5C1B+thS/91Zw71Tr0S3mAPeGy2C71X4LbX4aKdaW9MLKpVIyv7uVP9KWdk+OYLUVP0QCZarWwPZXc59ig3szz9k7sf2wS02v8wgP2gbR3foCr0Sfe3V8PWS4XWfEgeq28Hya/LsfhkY/CGIPI/7fa0pFZrd37B+ZIQqtLOSrtkzVqzojyfO5og10YoupJsqbMS/0X8uqIXNKVhJDE18yP5Xy+srskLv+8T7+e0evkfut+19NKQDq7HjgzveOhH7aPkb+fgSwVwcEEvfwXNW0T2KPWpErmAV25CF5C1/X8WP/jvaLdJ5v/lKTGuV1yjJ7wHJH7ZGArc98C+Oe9C9fzWtlDkmcexU5WEgy+F/YZSOJuFfXabcknzDZSymkY95S8P1JOyaDowIb+5zm2XDrrmwbLumceGIJRZcprBJUnVQjkfd3FUIkkUO29S4FRjXRwLqTHEmTXfQBbXZni38mZQ3neya/J73lksbRDBjViVfaLTA3vistTWlbbtd7oGyEjnvOb5f3y9eJEJqbdrh/LSDLP0p6VVT3N45/me9wedJx0Ecneulqa2rAHZTretLe9drpwO6UCyoPdk+R8sNugcju3xzTeA5TePVw+b51LS9/CYy/EbDOvdGpYIClI83Uiduu1rrZHfMK68HZyXAUGuJ4jmVKMdmnZDst/kUGWifrzcOhsMqfPntOJIl8Mude/zZMWfu9n2Anje5dG2p7WCN1K9fXADMgxJOGoXr5h9mdyzPE5Z3rFO7gt6AQHI97lUPAr2Mc+K6/JL2WouEMGB+6qfzMplDQc28cuWSj9Au8vWF6fk4JRqUwiW04k0b1/f9r/tZKckJydSXjlGRCUjVvLPHnf8TW7RG2iMgLUW1rZTf62K3vC9rEIbRxP1cilOer93GgbR8YrM6H+S8ws9z4/OA022D0fe19uUW/iXvsgnrF3CWxfaX3xYJC7lWnbXrW6eefjq/znsfX9YXAjbkzfQmRmjOHZ10ip/KM+ijT+DaTUeS0tD+2/h3Y8Axg8e67X2nJq/+/BE6U8NM/b9LxdElTKgVnsWvmPqahkYoad9tN2I+Z9lftxxz4B3SvjGPecrE+ysD3RZ5byaNXraRAuJxIPu/tBLX1yS8nKm5S6wtj7uW9fJ65J2c2JiDcYEfY74Vmaw5qdjDs7jfFhPqRIZnzO+db/vGue7DITSBL6IBojfAjJya+a9089oxdtHqk5i4MbeQmyTCEHRDthNLbJKMRtOzvCsAd5PXgZtZQziMwEskQ4PV+WRnALx6/UsY3nqKoRE8knOHr0sPc7Ko50ujlfJzqkBgBiZS9TxOjc9S10RYYnd9wAxZZChoggMlKmC61W9Yl/0tp9cFYrEhhWkm1N/mL66ZLwvx6yzVP758hiU7FqQDpgK7rBqh6SXFHd8np4PnNyPWFa7rjjmvpEqT5Ko4XfyWjB9Pe9UcB17lv0iNeklxF/3EmoLYGfnW/rn4taAiu6EarqZGioM11GY3rXkBH+I4tpW6oPYSUO8ZerGdPVh+g8Zz8lb+rEjFobWa3eToUS4dgJ44czjeF1qUy5PloqNUSwwZDPA4qHS+cz03EBstWo6ji6VD4/a37Tn89Ng2HKG2yNCKdTxfLsiTAvBS0QUKaq930ze2/edhiM2XW/w+w2lHFKhaMKdH1JnzgzS99o7s84GZVmwvOUJpN0ijHBreXnL/lJ1iZaPyDXpbbXiVvIElo//35eL7h8fr8kElJOsV+txritsk8/ugyT/bLOMkp8Zod8hnZPkueb2lo+a90ry/vDl0SZ/amuODu700RMAAyZt1FX9qSegnlf+RfNTY+V958n1WnC89KoHtVMHvu8lpblytZX9dk/Wzpgc7+Qzsb8r6UTNrChvPd7VvU68PvDZWrH/hKZ2EUoxTf0Zt5mecwUSrBH1OIb58f0dBqc0d0TqRqkRWUf+BIiDXVHxj0F+/6hnGKumVEqIpQ+2wW/OFub2u/qt4tND14ggn/rC3BfG7Y/Po+N6i20TvuUGzsuZXGj0d5dQiYFIB48KUJbR0hVS8/rpNNqxPZxcGSRJPUMik7cjpwdVYCxLf0XqMiIldf65HrpAN7fVt92RNYo/MLRhr/czYhUM3W1hAdRS+S93q2i2Xkc21KSlp1Ly78d2vV636BINaC0os8rkSUClKcc2MBriGeHlyNSI6U6z9mPvUZT724pxWpg/3gz9scNpOzUN2Xke990qfCrcrtMQ/c47b2qSrXLpFelisMQJVe1ejOJlGajWg+3UPxqialuN8vdDXnO3pnTr62GW5+Hhw1jx4HZ0omOWqLXJJvwnJxLjXWe9k03X0PfdClHlvyLXu91wDwQTfTFOro5DXU1upSVSqnbXtbbPPWcVvWQc8+cL+RvZCR/AB7vTWaJ6vr7Zr/Aza3kPafNywDP/rmBR0ZEMemJvboK8sFveNbxC4IgXtxUlfS3lsPzI2Qk3tgXD3rXkKsoeohCT6BKCZJOnEamq7smyXRapHptu6hLyznCG7TIJJKE+zuT+oW8Rz8P0X6r4j72R+ppnQRKOALDH5HXwEMCrewmVUpT9Wff4/RnE8ZctTF32IfiLqYdd3AjGHQnO8I/5peQMZKo9cCjCOxcGnrXlCoVo0rZF0nHJWnrURZ6EMAG4dnh0OE8tAigTjQgNFhBCQpCJYg16m1Uc0RJB9kHbfdWg/vawNO6ejP5hua4Grfz29eI4gs/lwqOhQGCZB7snqLPHVPekHNf7xpS1ffPO/BL2cD1nUY8KlU3jky5CuCJNfK/UXEIUPk2+b9mE9hrqCW01aAcNpBSaqkbOBxUW273zGFrfRZz2PmXJLYD1VPKTs5bUf2MOEkQL/hGBmemvAFjniDEodvtyuyq/+UAACAASURBVP1fUN02kXHu/9HEnsuCEhNfgl/KoBhSZ13anZkVblBzbhpMpWUyc2Opeic/nqjP3Crm+8d5zW3mYy/5SY4vLodpXFqr1uft3YZ099H/k4GPkY/C+f3Yk82un4goJW0He6o+nwzTA1hzbjLbFICct6Zr9svIpvpKp1tHmcalfUqdwNcFvP5EspAqnenqQyY1JXH7of9tsKI79qGPcsPwm8xkWsPWRD+uEUbp56SK0YikY4h6T6FWkOTaTrW2eXuNB82KnZXdYIgPubLkJ7/UxbPVnja9jzylk0aOU/OpX6Mqx0IyuKtaWUaV/DTwd08/BzFbdEolojR0ToVX5DizKeJzGikH6ZDSiVejDL6nEHJ8jdkG9gwmHpxCWNkthFdYSSlFjsUegikdnZQ6qV6jH2PYg3JuntuWKoskUZei/QYADkK5dWw2M2t2om92Sya5m5JYTwtwPNYdGrzOvju7Mcr9ODbC2S1qw00t9eMHSxv4C0cblqnGND+F6raJ8Oww5t4xitcdHfjljgCBt0d/ggav4w4K9982433oX58QVarAVWMQ4CrGv4GUmgN4KPq3gNmG9je1VfjuBVK1NL/FwGOKopTVCpw/prX9t6C6pdNbXR9w5zZbyXZRl3SNRGmw+j1YoLG7zmyUgbfz6/6HvDmsnrz2Pk4fx0ND2Inlsj7J5qGkn5KpSLZiZ3nE3td7Y9U//RePXS8n24Ck1NldZE55X5fzC0EYcr9xvsSTBuGJhAObVJnLbM9OD1w/ygNPzvniDuDKNpFSoDDyjpnY38uhlsSGgf5tBpWGp2geINNqDOgeOpo/QgehZJxncomydNzTEiVUkjFOQvSV8YB1U6WzEntSGuanxTX8niQLsSsb9T68YO/IfUff5EunNgkcXSaNSsNEFWJPIYUSFAsN5p37q7NH1OKVSnNJF5G4Tu/w5pWvengKLywK5utpu6GCOVrE6l+lU3xuj3Q2spOlA+bB2CdkipsH9eQEFqKtAhcWotDOqU2sH683yXa9S9cCnzs/5wm7niahJEmjfY67MTfZDHWTYrayO/wDXgxexe+hQ7gtw5AeMKo5THyJ0dcl8knla1inyrSMhfukmkAJ0gpuBukqpKhSMuIkNGWSq+R1jLxzDmdEeaLVSsxv6WNY+sCTvpeZgwJQpJySE6uhCKIXHoVC2ery/9kdZCmBh2NvhKRYeQB+eKkJ+0U1siMNht6uCV4iWFUUiNSdZ0eJnOtqhStOdqh1iPKksAInI7T6AHPaQM8bAkZkBQqN7IP9D7jgG/kH/ODUa+O4CKFViQmIulqEcNNg/wUJYrbq9ZRySmEa+4S81wPUVvhw6xPmSN+2UZKQ2DBI/g4LvpVRdJDk4KnN5u+2ZZheT69qY9gyXCp0fFPdjvikTdj1Gm368g7BTHE34bagE9y9VwYCUg3y72HuJ8msYzb4AHi0o1TXXHeXqbmUkkVQxCmqVpUS+CgthXWM+3H4IQaadqTXXdLo6bwgirQ3V5D0+hJE47Z87fiYtW75PIgaTdh6Swf23fodz88010AbdSrAfXJ/W3q6AhToHPqA+f1P8fKe2+ujDKr+oD4HaQrcQ9e/KCOOvtDS17o6X5fH80WNh+SfAXPVezkgqss36/pJtYSvk2/4Ll7EBnDYrr8TWvaFB74k4fZPWHDbQJxB4fQ31AyMDA9hmitwPS4Ad2hJr1LqWHwmdX9eDK//w5bKr9AgqRuL9p+nwbxr6eo01Gn6tZru9Dw1QP4/sUbe5560xSMLJbnwazXZvvB7tu47SJIogZMQ0ijBYVFVKo361IbtY4nduZDg1JPsUWuyQ9zIfkcleGE0PPIjaR/vYIiiEV/7ppuVAyAdVKNaZfp7iLEGY3zR91IlsHOCdGR7VJF/Y5+AM2bHpsUEXck7xR1gEZLyteEWLWJvXFRi3FM6YeiDU2Xv4cXED9lUqgX8nAjFysF95nSMAa7n2HkqhRMJmfwwY6+eKni98dlS2C9q8NXUXdTruIgxCT5zoAdresPoFnK8OLYCwkvB2wsAAX/cCWNa4lj9m3f3Deot3tfTd+ipJinZDhyhJUkVhpVUPzGkFz3yEyLUkCYCegDJCB9FnGfmaFxHOmSZRHLiDbMqKkRReStkqSRqt46UyqABhvncJ1Xsa7Utt9mGe9+vc9/ChdDU0Y/hFX6QTuftL0NoBNz1Lrz8N7SPhqcGwodmO8vjbEX3asmeG7SxxmdRjKGup5i/5xxxjX+GOzQy7pbnaNh1Kb/uNqgkclMGntoYePVhl92sQI87IOc+I4RqVqi8a+jf0p9l6rJHAZxyyvs8i5BIePAbGQD7eB07awcg7zwwkFLlSoST4ZEZdasIU9/SVxs0IjkaBjWSqT7GBRJGt5AOuactIy5w3a3xmqJj60gZnAFIOkbtRJ2gDw/R7ZJoUYWbbGPo6HyLGrYJ/GhUlvggTRRjkFum77mVMB6ya9dHu07H1CqkabbzwPRH2PzIJHj6D7qHfk6dU99D51TEp9o9vHGQHF+6VZRq1tteoaW9B7+43iSR0n7nBmSAJFGmJ7/u+IHdak0UW6q+sEc98/w7p9oPtNtVhb9dTXnV0UESoB5ELdEXBAJJWM7/yrTQ0JvZX/O0vauZbPLBWVHe+/pFR0fecPygK9BSTsKa3twepCuwJ7uawNdHoOXvNJkZpD+DK7vLOfjwQhksSDzKojOR1PxRBn6yieBBez+o1RTenAM3B6iL6rmfbjSoMQ2LswghSClWk0ftv/Gr0ycNHNiuBU+XpW2iUqkIRsbXM20/9sYWqK0HKDyklDcNr7puQ0wNl/Zwg6DjUqmvqbGY/ZkkAnteR7BGptcPOsL4UGkrJGi//W5Vrw34sKM/r4QORK0WWC2fTAm/ti+n7CYmWQa826S8gvgpDoJDoNUQoqs9jzBQJT+cuZ+kh7rCDzEse34vjW0DmaM29jsmQHLt59is1iWN4riFgmj8BbGldIFAx7iH+eeGH6mVNYZn7b+Q/MZyqtsm6gtwpZwiSJjLc1ztKFKklKIok4CNQF1FUWIURXkP6AU0VxQlCmimvQdYABwHjgIjgE8BhBBJQFdgq/bXRWv7byArST7QXcqB6sJR71nW3j8O541PMjtKRlzq2w3Lke4YL1OKDs2nnEM3Hie7mvCB4yvecXzLYIMU8YSq570bEeJd+UvlhKjCIW1gVoE/suXqBaMWbmDvjo2kxZ1i6pqdiPTzOCa1pvjBaeya9LM0GDx1doCSijZIOORE/pdLFgUPOSIH3m+dH/KK42cGuJ4jPDsOto4gu8QN3Gn7k3Gu5gx3GYzoc7tIXtTLGw1LoiQfPawbMN02ZFN3sI+gzuNMadHPnBAlzGqgNx3tOazqTv7NQSe59vQ8NpaQxldQmO5weQtaAg+5pXE6et4qAE6Ja5izN4FZbn3Auy9kCtuETIdIpQR/lzEYUyu7e6OgIY400ihBSHAQXzWX59h0Mp1t6o20DlkGZ7axX63G23N1wuRIyUZ85dAlq14Me1A6G79W19uCfZj9j9dDK3NR8vBQhf2iOrOeOQCVb4XWs6BpJ30pbqSsNZlSJFCavRHmgoKplMBGOG87vmWuVo8jTHHTJ3Q4zwWv48OkAFEtDavUBn5tv714u+l9835r2KXW9A71ihJCk3vu4H77HzRx9GNbrIufnW9LAyUAKmZK8vC1EeaaF6G4iI54DaV/fZkS45FmPzVAGugeKEEcbqw7MqtCfRx9Dd5J/K150ORHgiLLAAr1kvvyDL/rh9P+u8FESoniFWjn+JS7bH9S2zYe+6NdvCk1u9RarFVlVDIhSDrzn6Ya1Df2NKkmWt0Huukk2KzP7iMDg2MVAHuEuYjwroQgptbuDVXvy/VzJry/XHP+NPis7mIXIbxklwRriJJDJGlJB2ngbBkuFTseGFadA6SjDbL4sceBHXo/OWaMN/ZxMCqbo7sex/RamyRZU0zGkEJ0E10N8IB9AA1swxi69gTccDd8sBzqyPRWFYUvHG0oXmMIycUDOOnhJeHBr1FCpBLkUGw6tw2P5Y5RCdy8tjHT1Ydo7fyR6raJOF6fwYvjDvLkH/5Ruy3RybR1mKOdomlnhrlackzVCKsHzGnfmZXvYd1TayAkzD/tu/1J0l6ZiXhrLhvcGtnY5Ef6hX/MblGb6raJpkUiiJKxo4Xue+TxPlorlT0aftkRyVuuDt6x53fnCwiC2KfWMJ83Mx4aBCjOXf9FSXYZjumFhxS5+31o1pm7Nj/Ip1sq0OuOVfR36YVPi4cH85PrXRrZBtO+wh/wwhgopgcWgsMiiQwLNh06ocpDvBT9NKDQc8Ehsp1uRrmfQBidAYA6j8G1Dc1Ogqffvtj8J3cmzCFO6M+5N/UgMx7mtqXybDnujHQ/AYBbhWyHmyPn09mZVore2ZpTtqSDV2G1vKV2X8yQhPJORVchKKpTd062j4Hf60mn4QKr8x0X17Lilp5suPZt0inGrbaRnL9Tj4jH3/gKO6/R7gNXtp+z6MFL9p+Z1mwdfHucjBI1OSCq86P4BIJDGLr6GL8fKgM33Cs///4KBrqeNX1+b+MB0OB1squblVw/z9rHjB1nsDlVflmXxf5nFkri5ON1zHc30neM3aOvzvi/HnoahzMTTq4jwiUVK4fUGzgurg34HVKynDjdKvfbB9LH+RINmQglKvJ+xcksDGkKd7/HzHum0MTel5V1fOad8FLwlXllwBNPSKfYWwxXgWGt5TxqE6Hwcw71lOZ/LYNOOaxcd7ZJX2Y47iaNEnKJc2CSuylTHzGk11S8iZ7OV/WajUowx9RK9IipzxsjN/PKcG2sDgmDek/KOenOt6Qa0FMsHHOtmI3RaSR6AobX6CRYb5dUsDXqvlzWcOxwHp6Xq+suSJTzkrtWc06+ukqmYrYaSgMMaVYejH9apoQbV67NrY5U5frwxU4yarXUSbuWfaHqPXCPnorpTekDUyrjmCYbibq1HZSsBJXrs92h24pJz01lxxP6s1O9nL4IhgAGGsfGA7NMNbqy7zOUnEg/K9OqB9yuk1CehXLmfSn9gd/q6GnNIIM0hxZIhU4AmMo9+FQTsBHMtOtOoUTEMMXdhN7Ol70ZGABxVR6hlu0vbrOPZJ4qn5EykWGcEmbf4RWHXnA7KsHGywsFR657lhHp0j6Yuu00n83LYfXBB9qxX1T3kgWvO34gq6EWBHvgS7juTtgyjIhJcuyOERXpaFTeA1xTDxrJa5ImirGj/FOoBNHB9R4b1VvYUOtL6JjE0oZa8G2gv01pRBKl2CNq8YSjh7etlzZezo54hpb27iY1TSaRrFPrM8XdJMdjdnW1Ztlp+Gq6TEF+w/mjTgTG7pWK2hGPArAtMcz02dOiEhkvTaXX4UpUH5JI6ncJVLf9Tb/y+nU/XOYhqu8xq609EAgcbpXj4lpGu1uYiPSt6o2U0OpL2YSDUpEhnDOURGnt+J6mI4/yRNzHMsU2KISTxW/1HheAiFLsbBAgOGVcRdiA8idlvavbgqMI1grAntayXBao9/JlaCcetkt7eFN6Bb4p1o0GtmEcjbjVfJyyZbmrWgDFs4aNJ1KITtEJYF8xxaQd57ljSS0IL0nnuftNQoRPmtTip5Y6Odew61ImbJK1rnbHpBJz1w/cG9eeTiU68YmjLeO3xfPNNBlg2Cnq0GiMVLN94fycjfWkWtYztl9sTeZ/K4oUKSWEeFUIUUUIESqEuF4IMUoIkSiEaCqEqCOEaOYhmLRV9z4TQtQSQtQXQmwzHGe0EKK29jcm5zNehfApANk7qgqtl4dSZ89rLDusy15NS4sfXeqN7GSKcAa6WvG960OSKcVKVebEe5yKv936anHbVSlXVSPLc/RmzVnRHMMoITMohQLhmWeIjniN/mdeof6cFpQaUp+XVjRB6XsjYVpxugZHh0iDYaqUTi4wGIPz1Hv5zPEFXVxvssMgS52mDeZTXE28bcmucBIpTSfXO/RwvcZCT8E5oOwmXY2TLEqSYfOPPN1qG8mJqs9je3kq7tfMS7Y2s/c2RfgnVvmBpvY+fPmYOUKwRr2d/zl6U9020UukyWvjpT8AaHFLZYa4n6GJvS+TXU2o6Y6GYQ9RyyYNBc+A287Zhvq2kdzomqRHzzR0iG3CIJchCjLuSehcmjopa8lS5CRSMiKUZxtKYyjDIHP1Kq00PNZ/LTPUh3jb8R22agEi2h483hue12Tn19wCX+xkl/N6DiSaB82SEVJJdD5Ni9CFhMGDX5H6xiK4613cJa+jl0tPY1qS7uNcalilNqStsw1DXU/6bduj1uBtx7c0tfehhk1XydgJ89v3hTslUXj7DXq9pdaOH1kbodU7UqD2NbqCbvWReP5yP8ZGNXCE+Pb5T/N+8Hw+cU/goz8Xedv7hBpIzLgD0mgEqFgP7nhLOjOf72D8Yzv533Q7J6q0ZKdam4XZAWqvYJjEK90MTdqT5r1vFXbbKssoNHLVPbk/phSw0CDBLPUBEiiNixDqLqhNXOtV8FM8rRxdvSvCvRvem8X3T2a/qG6KkANS7m1wYG6sJK/T3bYhHH59CylfnoJW+vc2EcIGTNxyGp4daopot6u7Ehr510qb+fReftwazoykavDOIr/tR9TreNjejy3iJn5yvuMlTr5yfMzRj06Q9G08tMl91VAA143mvj6c3IHsFj4rEbbsK3+/TwwpaY91k4qA707Aw9/D2/M4V01/Flf6EKOpwhyhm7snli7O1rzu+IEYUZEUStJr4SE2HdfG6denQudUBj+41RSJa9/CfJ/YnG6+mbZbrjjqA99VT6PO575a0mz1AT1F49GfScmW99pcVToKaZXvxfloZ7m9bktuiW7LG9O06KqxftI3R9mbqHBb5yWMWneCNs4vaO34Hpq0x7gA0wDXc3xa2qy4S6GENMCq3CaVPS+MYVK1LozZkcLqqEQOfXCUAQ9sY6BbOm3pFONxg9ISgBt9CEeQRGxIGNW3Pc/wBv/Ai+M4f30Lutabg+vZUczedYZ9Z1JNHzEuYX5PjXJEhARjJ4w4yjIlpjxLg+4no+1h4m5+B4Dg0HAiQsxm1akkPf0vNk1XKyy4sRtvGdNwX5bj1+5btDSjG1vI++v5kfDcCGipE9AgSdj9ojrlisuxbreoTfSnp7xpESBJ50xtzP9s4g7qdVzEY/3W8PemkwCm4MmXjk94b/opsqvoaR07nVVNSrHx7ub8GpF7ulQ7vkV8fQT7p9v5s/oAnIQQX/1JNlaX800GxWi+/iYILcaHji+5e8BeXllouE9vaATfGAqwd0phyhN72CLqMWJrEhQv702ZztJS43otPMTA5VHw3mJ4+S/slRvgxkwOnrn2f6hPD2bnabNy1aM69MBV4Wa4tgFUrs9nznY0tfsHP/Zd85RU2H5sJnffcXxLC0fO6Wrtp+/B6VbJoBiD3a1ItsGTf6xl2WmVTzLe486+25l5MoxoUYV39t7Cq2GDZE2st+bB96dYeS6Y9a9qhMNNT/LU/FCesPcwmBaCKqXleP7O2K24lRBoH01aq3F0cr5lIg+8qPe0vM++Pc7G2l/zmP1Xoq59xuvwf+P8mEnVujBfvZf5x1zQrDMAd51uyzD3UyxWG/Ge2gFHe11lse5oApuOJ1H9+/k88KuuurE53VT/YQHjm+jXTcUcTPhEI7n+KfsOac378lPlP1ENrsqR8xlSgRUkf98zVIR3F9PO1YaH+67D1WoYNHgVNwodnO/iEkHcbTMEzOZ9KZW2nUvLVWI9ZRGqP2hKDQTks1SuJrfuf53pbhk0OmcL5Y2Rm0l5uIu8bg0NBLiBbPvU8QVd5h2geb81bItOYsz6Eyw/ksqttpHcbBvNHRNdPDdDT70b+NpthIUE8e3/6pJld5lKLvjizaMB1Jqpp2UwerGBzDQqDQ/MkvVS087JguKeemZP9oeP1kiiVVs849fyOTvtQeHxhBQ/RkSV6bgJZoj7GbaLutS0TaBTg7UsrN9ff/Y0fyA02PwsnijewFsU2ojH+unlIr77Zw8LjmTyqeMLv/1iQs1qpPVqfZ6MekqSlY92BJ9Vl8+KCuwWtfXae0D1jqs4WlES1JvVmzhtGKcBJmw+iV2FDzbmfC0uhKHup6lnG82XKS+yX9Qw3cce2Ainum2i6e8x+6/cYRtKJpG8P34bM/7P3ncGRHV23a4zjWHoHQQBRcGGiCIoNhQQBXuJJbZYYtTYe42JGo1RE00xtiTWqIm9994Qe8EuVlARpMO0c3+cOf1MQXPvd9/3c/1RZs6c+pzn2XvttfdmGucQ2GCIB1rNo1JBOVhjEK95T98WMzVYJ2y5BoDA4hfVEVy6AUODdiMp6wsABHR9KfuKG4AlSRK1/CklUhlUiChbiajSpQgvXYlpuv5QKk3fGYrhpFYCIKjASNUknDFlKtx+XQZUS8HLEc/xWCZWkGWFfIJtBjaDIp1baxcAhqUCkRRppjSRMjpTZsNxQwS+as++I9sKwvCE0/Rj65UXeAcnJLybgriyhRih/RJDnJbg9MQW+GeItLKJxukH2bibRb2b07bflNxm7t50Rl0FAL7OakxsVQ0Dm1RGp7riBknXnr1jfKHD+jrYZxTXptJxuhBmV/uU9zz+t6TvKf6nT+Aj/mW4sY79Jn0cVt6UZlc3G5rDAwWYqOTL9muWSXN4PXXT4K7LRy4cMU1JOcGzdL3xk/InLMrrAkelybilJcimVgHGZpOBPba1IKWxQd8cU/QDsRrfYb+xPgACe4yUUqaT9hsMle/AdZJ1al/CEz/U+Bujb3dlCuCZTgZDdKMxidyALxS7ece4RwZAUSSoNwPKYD5SdRpmr04HcBRrgvrg8YtMzNT3ZYy0pmU/oJRU4fVjNziGfoWTeZcBUDLlLUNi0Xkp67g+JtnFschUg2dW+3CUFYQgKsgd+29lIYP0o1q9K44DmdfQDdeYc6FRAA2gJ6HVi4m0BfpuWKDvho1BO9HgFfs8NQR7fT7OlKF61BCJtnJKEi1UeNE4bqyDiLs1sD2mAarnnmBrw7hVAgafwPVsEmkZueg/k7rX/f+8iKN3qLSiq+7BgKnDmEYlh6OdApl5pVhx8hHm7E3H6v7R6Pv7C3zVdgSWa9sg08g6aT8ZOiIXTpjiehhTc/kElBEyzNP3RAXiLdrJz6FL2QzMVK7BYn0nHDdKFBO1gDkdajFKkQJosLkgHPbOt/C88Alvu0dvrLfTpt+F1My7OADK4K9FZIg3VLtS0VUAGEBJ/2fs2AOAwJ++U7D68RPIVbcltUfCCEl+CT9y89vr6ug1+S1ermkBGXJh0LgDdiwBYqcUG0KXn+YhwI1fHPLGOzsMPkItfPlwpDrjOPrwOnfSoBfIN3DFw1JnJM09ja/bNUTflIU49NYT3x5n63MpZATWD4xBt+XnEeLpgD9ukwiL+wuxW2MwUTcIhVojUKcnZTA3GgG4BAKV4zB6KqWc2XDhKVz7RaG5R1UQb+8DSXNRe4cHdY4mrDMkYp0hEeHeKtx4rcXWxVSUfkhcCGi3f5GuCyqpC9Ah3AtE7a7A63TMOvQUm67Xxc1ho4FVCciSeeNJsRoZ8iBUn5lH1Vw5+xPeVO2OXzIbop88GEPLvkXtOvUxDxThWqqzg3290Vh36il+fVAR9qbXqgwqVC1dg1kBF/E08zXaN4pAbrGOMTApY7G16N52X34eGfNYokwraKPdpV4AvtvPKiYevinEP5eewxZIKaSEyCD9MLHWKXzXtDZevqTe8cX6ThjVpwdq/65FvaAYbJmaRdXoucbJjA9NAnpspAhRRy/cuEUFHL7dmw4jnHHHgQoQcMezETLsfeWGUKzGIPkevCQ9UAw1yvRGJg2uNKw9Jq9jSckOv5xBqY5/T9LJILwZ+xpemceBE/Pxd05lRPVJg4MhD4v3XsbkaAUc5UoYTNHdb89r0TUxGTFrlQAKEVn9FUZupIrFcu99QakOIHSwVyiwabBY4TdoTRoC3TXIzGmOeKUn3F3CRUqpK0+lOzcuPvUS94wR6EzOx5bxHQGFHTLzStD+ryx0Dd+L73tSxvqxO69x8klNkCRQq81NdHn7G6P4/V3ZAxemxKPqVCqlNG7Raer8Bx3FH0u/w7dSqZcADt6mFAjttbPQS34YnRvXxrYTlEPQ+VkX7FVcwCjtUOwzRqMMKjw0VsDAzwahaNUtHFPHY+L4aVh1+jFm7buPR+pPmSK/MwwDsF0XifYvCHz2511UdA8EUILsQi2MnOeeD0csiDqOg8eoFMEyqLBOH4/udTxQXGcQui1PxebAFnBq9DlAEJi4lXIMnueWoMWC48w9FqZOZxeWwdPRDlsvi8uIfrHuMpRyAj/1sLxeLD/1CJ0i/RFfnVJ2PCT9saRJGpqe6486ib1x0asjuv5MqVYy5qVQxASAz9ek4dhtM8oOE568LUZaBl9RePMFm0b7tkiLU/dZddO5fHeUOfjCzoWaVD77g6pNkzH1LqB2BTH7BJu+CgAgUcWbmhffFJRhyLpLSHuSi8ZVgrDTQCkvk8u+RSlUSAl1xNg29QAPk6LVwQPjXzTGc7IEfX9nU9ffwgVpDjUBPMeJe2/wouNgrH7VANkX2QSEI9qaeFMq3R7qeW4Jfjn2AA0qu6PzUmpenrHnAZxMsTyhs5VKVked0mV4d80JA50qYV3GY973D18XYuvl51hzjrNeBzbA8QxqLnpdUIYKrvYASQVRmUBq310UCcVtUHHpT/b/vbYCIKm6go1GAs6U7bbjKjWWJuo+R+du/dFpmz0yi7Kx5fILDGhciSKy2v4EyGRUitwcatxcMLLByruvCvD1LrrgvrTC2M1RjnuzqfVg4UEJ9VavrRh7yQO7rzyG6nUZMCObmgcOz+Rvd+5n8W9prO8i/iyiO6C0pxRsDYcBb+7i0V7+dmsHRCOvRIcvN7AKM39Xe3CoYxghw9+XX0KtZN8Bj9+ATQAAIABJREFUgtJtQyajbJA6pcvw+6AmWJf2BnhrW6nfvcYGCC5tgLNt8lDh8BD0045Hz5f5ou0eZRcBSjUMRhKvG30Dv9fp0Nm54tunNaAzuboZJrXWDzpK8dhySynWVRmIKQ8i8eYOv6Or0QgUmAKAUaVLkaY2KeO6/kmp/jyq4OCCPgCEqeb88VwCNcqLe2RFi9/fDe4FY9CnuLPnZ3R8/h1m6T5lrpGLqdvZBjlnHvA7b+bqWButwy491N57cekpW7KcBIkQL0c8npuMHw7fx5Ij95l0ubtkIFLr/wg8mgCtsQzOpgD0X4Z47L6ngBHsvPzgdSESFp2AnV8xVK78NDSlXIZhuiE4b6yB3YYGKII9MoZ5USmeYa2Ro6mEYa96Yc6Aybj7YD/w9EfoCALr9fH4Xv8J/gnxwNjEUCw8xGl6I4EM0g8ZpJ/4UZnBdBMR1buB+VTMZSf5HSdflbzAoSeHkBiUiMx3EqmyALr8Rs1/eqlu3AJsuPAU54w14UD6QIacj6TUR/yHImUBgk/FIYh4xatXJIWlhnZoW9sHVUJrQrXjc6Y+kznkwBkA0L7sG+TDAY9JPzTRUjUw3G/cBzwBH2cVKFPBREq58ifXRbouaClPQy1ZBkpJJdSEDsll36K78008LVbgsp6qfwEAfXWT4GSnwMJONamaRyb8ahDnR+fb+wMpizB4q3gyWKTvyiOlqur+gg5lCNaVibYFgNl70pn/93nSSvQ9V4ZMyMuQnn8GNClVTyALPW6MwAxQBaNvE5UBZCDEywkxtSvhTha7sF4mQzFQOxYrVZRKga77VR50f9IOGfOWocakLfhb9TV2OLQDnXzh60wRYnuMDfADloIEwcuTFqIMKqzUtcbC/pPY4pJKNS6/NqLTrxRJ1S82GDIZgaOcxbxN7ijIPf4AkAsjaYSTWoE/z2Yw39PGLmugcUFgM5JQN34ctm0Wd8QDgBG6LzFCR6VNteHIpMsDOvrDgk/6zGpfE9N3SMvaeUhZRNUVABAtu4tB8t3oJT+MINlrbNC3wHrvMdhu9xWUmZdQVqU1+iw7h6kp1VE7gB8hXH3uidTeOWfHP78Okf6885u37w5O3mNXW7I1P1Lv5iCe5h+8LsAX61gV0cDGlbDyNN/4RzOTYoMmpTouA65SLde50e3H2RR5t/HiM/QdORBPTz8GwD7fmhWcEVPZA+4OKmy98oIhZVb1TsemtVfQ1GAEKkRB9+VljNp0FSPjqyJUzj/n/n+mYVH7tejkcg+o1hb5O6TbYd/L4TupS48/xJ/4HbtHtcCSH88CRUDD5vHwdVEDleOwajvVZTHNEIKosXfRZ+VdoLgQTANEJ18gaQ66LzyOh2+K8Dy3BLfJYOQ+oqJoMd9SncoIgsqIUDizx+5U1x/pmQXYqkxBqiEH0900eJgttoqUrqnQF1UGqWPn68IyPW69yIO/mz3K9HxjxNORrwKcspXfmfFDIHdMB2nQ4FC6Cj4H7zKqQhIyPPdqDOAYLj3JBalQ8xoiTfjnGjanPcenMYGY0bYGSI5Ci+4i7WsixnOKxcEALZS8NPFX+aUI8nDAu2It6nxziLetkJBi9mEwAqFJeOHdFOPncYuW+yNYVx199AaGlAL43WC5ztaSI6yrtf3qSzhVnw5XpTcS/1mMEZEjIBSYU0ooBQ7bk7DP74npBL+99W0JBwowKT4AXCoLAOngBZ3eiFf51Jp08aUWPVecR2ZeKfN+0Uj5+ms0OVYTTkQxHpOuUMr551OiNcDevx5WOAyGLk/aOKZRCjusNKRgJafUzm29P2ZGn8V2zry9yxiLrqaaaCqFDJArITelizYs/QnbB9SCX9VIbJ95ANDpsfMapQ59lkNFkr8/IHayfz72gPf3NP0ApLROxNkHb5GeVYDhLpPxW+V6PJeuWGugnE8TirR6/MLZz2d/XMSu4Y0pMlECOgOJ3depMgU7hjVC+1/OiLbZcz0Te65nYtPnbA2hRYfuYREmYR4RDt0r9vjFWj00ptqCMmHXVDPg2jK2IHbuUaRNS0C3ZWyNqByZO9yVKupZlAEnfPoAJFXjij4fgCUf6ecBgCGxMtQVAC9+E4xSgbKSRomOfVeO3nmN5RfFFTHSMsxXyZB6/jT0ErWSaNf42nMxobvi1CPcyRIX93Z1UKKgTI/XBWU4cCsLBQLCMs+nIZT9DkPz7CTVoU0IhWlebc3vHkYrUPVQALXaI3MdtWY8elMIkiRBEASmbr+J7VdeYFRCKOgchFxOR7Kp26TVFlzojOyYHd6iKjZdfIZqBX9gV+wDnLdvhvxnHthy5S4AFcrK9Pjz/HP0q/cZQ0olls3HppCDcH8u0ZWv0SiqTuO7p8xHZOxIpHu2RPL0o1jSIxJhPk4oLNPDTuEr+nmTqpRqnztPqhRi+7FYa0CxljOGTEopmWnOfAcndFpxFb7OagR5aPDkrZnmRBKYeDcEV0pXohAaHF8rrYAetuEywnycsOjQPZyacBoyGYE/OGvBXTIQ3ZzX4cJr6nyMkKHngxaS+7r67B3OPKAI4my4AGPSgbcPoA9sjKIyA1w0SnyuGwsnTOL/0FwZgX8RST/SirIIvG52GKtOSJPh3IBIqI8jLnP+VnOClbfMrFEAQBAExiSG4taLPBzh2Pr5pdQ6ToBkOlEDEL13CYtOMNsB/KCUq0YJI2S8WoM73vqjXqtV8HOxR11TjawN15xh0FArQW5IG0x9RhHsKrkcw+OrWiWlAECueQRCXgRAWsUvhbXnLdvmXLhU+RFjjutwo+8N5ErYOFzQ67wlXHqSa3Wb/0b8f5W+9xEfDqORBEDgCelLLaJWkHwlBmsK62NO4AoM135pdXuAShPgKoAAoMy0nlbxtsfQuBCQNClFGoExdzDN/w8El27AEkMntNF+i+DSDahe9geCS9fjNhmMGXltsFLXiiGkaCzpGYnO9QKwok8UIgL4ZMKXzdlUvuIyA4K3+AqihhS0UKKX4wpoSTkW6LpCZyDhVG0Gnql+xKkJFtLU/gU8IitgnT4e03X9UGak7onMVNBa6EwcNtZDQtl8PDL6IkX7LVMbwhwSqovre73KL0Ux1EjRzsURRTPmc1+TpF8LJUZov0TTskWi3wpB29h6QgGjoy9OPdczkVoAojQIAHhOeqPApGAhSRJ6o7RSzxy0BiPGmCGkTGdl875a1fSFlxNb++pp/lM8yZdaZNhzJEkqOmQT6g9AQtl8HDZQkfepyg0IklGLthfxDrde5mPUE0rtMOhyIC48zsHIjVdxN6sAOUVaeDpKdNyQOjuBUoqSSvNx9mE2ZCpqETMo+JE5VwlSasFBdhEfkxiKqGB30TbNFxxH8KQ9eDo0A9lDbuG2VzLvnL5pT6U1vimgFtj0zHzM3ZeOnCL+gru8D1VYOEegTJQpqPM6ee8Ntl5+jvTMfOy5nokxm6+KzgUAxux4RKX1yiyQqXqxQVgCNd5xTklnMCIzrwTPc1mDuMtv57A3g2QIFEIwzh6aVHOH0ynjTziupdL9RyeEwslOgVzTdavkhETKMAm131Y4BPPrse2+9hLdlp/H52su4VHROTiGsWpTgiB4NRGuPeennNmKznXZ1K2LUyk1gabiajgEL0VOkRZLjj7AgNVs0erG37H1ZHZcfYnlp9hI4eY0Sqm1/sJThE3bj2rT91O1XzjQGYyYufOWWeUQF82+P46CUh1+O/HI6rY0/jGdw5n74jo6MhmB8JkHkbKEVYoJFWg0FkkYuO90r5FVlIU5F+bgz8/qQykXz0N23hRRmq/lPw9uoWtzqDR5L0Kn7UMHE0nytkiLsw/figgpAJi9Nx3ZcBGtwTQ+WXYOPZafx0srhJQlcAMJNGjVAL1u0ef2Cu5ouOol0jJymNRiKdLAFvx24iEy3lL7PX73DS/1SwpGkk943HiRhydvi/Dt3jtmf0OTUrSiiMbMtjV4f3dbzi8UDgCTtt7gBQRqzDiAA7eoZhrcaaldBFtTysNBheVW1nJLeFukxaA1aUjlkD5/ns3A3H3peGuaW7a9MBVHN+Xxze5QS7QfIYyCOWzXtZfILpR2prgOktYgvabTSsPygktK7R3BL058MUPsmEmNLe61lGgNkkGviG8OIvHXa1T9uNG3KfWySyAMVVpiqPdaXHqSI1qjjt99bXYsr7/wlFFrrb/wFEVaA+bsTccY7Re4GjZKMlXLErj3QaWQYV7ncJTCDtOzmmD6kWwRsTdz123A3hVo/T0KZE54QFZA3QefYW/NhcCwi1RaecoiYNRNIH4GlV7vyNqMR1w6IXkzNVeN+OsKkn48ic5Lz6LNT6dBkJzAB+dx94sNZv5PWCBh6web1iealCJkmNcpnPk+K78UT94W48r0RJFi2xxO3c+2Wsdyz/VMJv19x9UXSFjIsu3zO1M1H2lCyhqy8kt5Y/pElhIXiVqoMnUfIr45iGUnxOnyFNgbdnd2K1TydBBtIQwsfQjeGBwgtItp5RIX3FQzADh210bZkAmhvhTJSs+b2YWm/RHgBXusgQSJ4UeH49jTY6hTUZzCOXLjVTT+7hhCprC1RFeefoy156h11AiW9JTKAjAHTdBy2AewhekvTUvA5NbSJTPKgz8+q4+MeSkwgCWV+zQM5m3TqIoHygvWPuH40v8L8JGU+i/D4HXWa6gIce15Hlbcc8AbsI7O500tdDGRABO9JowYnxSGHvUp2aOBNADOfpg1sCP2j+IbHJRSxzLJQDvkiTV8ROWGh3FIqU1p0sXxaLyW+yC0bC1+NrDFT9/o01HRXYMR8RZaudqINf2jsfPLRpLfTdMPwFpDS8ZgpB1elVz8+j0gA9BCuwjNG0QjqaY4YsVFZKB4QqeVG0LU8HOBgynlYacxFs9IMaElBAEqPaXK1H1o+/Np9F6VijxO6ljnpWfx5G0RU8OCBr1AGWFkCIt/E4QyBwrny6LjCmEgSfw1iI12p2xLQZttVFpgzQocSQvBjiwjaUSDyrYvIA/IAAzUUZ0dl7s4Y4kmBHsN0fhOTxW43GNsgMNd7+Ikpz5E0o8nUXfWIWQX2nZvbOm6QUWA2Gvgwk2jwM89I3FpWoLwZ9T3Dip4OYmNJNrpPHzvHZKWpyN5CdtK3Ega0b1+IJRygufALjvxSGTYmyPfnnAc7p3XXjLObn6J3mzEfuj6y0w6RXkwYDVLpjaZfwwN5x7lkSz0vukUoxWnHuGfS8+x4+oL0fUAFBEXPGmPxJGodzuhujcqumvgYCdnatYo5TJeTSEK1LMiFPyI8SST+ul2Zj6uFK0HIeMrP/4ZEos9I6QL49uCA6OaYkabGjg5vjl2ftmo3Eby4fRXTBTZHITkTkGpXpLsMIfwmQeZehi24IfD9/AspxiZEmTM7Zf50OqNPJKnCyfN2lY4q5wRF+aN9G/EClqCoDt8yvH3Fw1FDnZ5UCBR75DG+gtPRZ8t5DRxuPEiD+cevRVt86G4/JQiCC49yUXq4xyRwpNOTQAogloK3CKwUlh28hHP+c4u1Jp5z8yj2ffHrW4TX82bF90HgMZVzXRttILBay8heNIe7L2RxXzWpKonUqfEI21aAi5OTUDLmr68zq+2oklVSj15OJ2fWrTkyH0s4xG2JO9fuoakJey5kYmWP5zAmQfZ6PdHKob/dQVUmwzx2ONG9mftllI5vz8MJDvX1+Cuy+VA5Sl7GVWeubUDAF68K8Gvxx8ALv7ApCfA6Bu422IV9j6Vo/PSc6g76xAevWFrjPX7g696zBWsBV/tvMVLpQaArcam6HAtGuWFUDHWohplo9FpzFIwGknstm+D9g7rGHt6VXYNSgGncYeu7md4p/LBosMPcLS0CjDuHuAcAIBAeqGYLKGhKGHrIXLtD24gw9JwbhbqhftzWuPnntS8RBAEukcHirZzc1ChfR3ppgC2oGYFZ1GK1dmH1Ny34OA9Xk3FT+pbTomzhr6/p6IrZ46bu88M8c1RStkp5Lw1hyYnKtsa+LQBN16Ig1IDGov9t9fltMWFwVD6ebtpqKDo3puZzOclWvPvHGePzP+OPzuOEcdGQCGXoU9D8ylyUuCmBtI+1K+f1mU+G9hYujatEB6OdhjcjG3Gc3iMdFddQl4I+8BlIBTSa5qHg9h26hFdkbf+L/rEcpF8W/CRlPqI/0hILRQDG1dCxrwUjGhBkTj7RzXhGYe7ONJuGlOS2e+9OWoTV41YpQGAceyNpAEEQTBqIHpiIwgC1XydqRx8K5A7psM+aCkAI0+K3rVeAG87Ye0OLnYP5zts9ywU+KW7030ImoZ6idKyhKBPl44wCZVSXEipkLiY2bYGBlsgDmV2L+HgzaoCAj00uCXhSAFA/0aVeHVUaBAEcMgk/zcn7232/XGRE6ij86XLIZKKC+M7BIHuGlz7qiV+61WXoxgjEdcgFY5V5sPefzN2DWcJJ6mFLTncVxQNp/H3Fw2ROiVe9LmBNEAmIxhSdnDTyowiSAqNq1BOQ3TpL/jJ3RUrfHQYqhuFByQ7VgdypOZSygdrkCKltg01X6hRuHgZSSPa1K4ADzPkkIeDCh4O7HdCgkJrMDIRee45qRQyeEnsc9e1TN7f5pyxmZxotp+LGq0XU6TX05xiDFsv0QbdBGFEftvQWPz9heWOfsIOKuZA1xH759JzjPv7GkZuvIq6sw5Z+RUX1LMymOY9bnRSKZehTW2BAc4xYAc3rSw5P5pzssyRfVx1oDmE+TrBRaNEoIcGtQNcLUa9pbD7eiav9o0UigWG6ot30p2+PhRtOaqUJvOP4YfDYqWTlFop18YxwYWzinKaFVJzt4wylg1GA+oHuyPAXVoBEF1JrEp8X9BR+IrulhUE/wZWcdJ7P1l2zsKW5lHecfahiKnkjsNjmopSjX7uSTkxLWtQjn+4vwu8nW1TrtJoUNn8c9SoFPB2VsPT0Q4y0/znpmHnVeEcmxIuVr0p5QRzftbBJ6WEhJs53HtViE9XXsBxk2pCE/wbnExdn2yBrQ6gJRiMtji0lAPapra0OpCLg7ezLH4/f/9dlOoM+PHwPQRP2oOLgrTDJznFKCjV4dR9sZIkUmItkGow8T6QSmMEwDwbKSw/9QhfbrjCq3956Uku/kp9Cp3BiElbbqDON4ew5OgD9P8zDWcfZuPv+huAiY8tqtiLdex6zyUNwwNcQI8xs+mqhB6XCtegWF8AO5O7ILPgaraLkCZQpdQ+XPSLDcaGQQ3gaGU7gG1u00XgQ0hBSr1jC8YnhaFpqBeENaW4oAPNrvZm/CiwpI+teCoo0J4xLwUjE/iBdmv3UgpCuzOxBnXuHSPpe0ir4Aj0aRiMTnX9EepjgWwz+YjCcf51O/P2NR/U8QwkX1EI8P1SLvloi7ji2Lg4nJvcAnIzCnylayoUDo+hdKPWPJqEWt67HqalVEe4oByIkTSCIAgewe7jrMaKPlFMCYP3gS3B6f8GfCSl/sugELxYF6bEY6JJojg6MRQ3ZrZENV9n+Ltal8z+1qsuDo9pihPjm6NPwyBcmZ6IqzMkuhqBLWhIMgsWnbPNn6AdbTCW7P03QKF5gnldqiGGY8BLRYykSIedXzZCLX8XuFiY+IX49dO6GJVQXsWU9OJzfFwcjo+LA0Cl8NDwc6UmJJqoM1po8Tm/C7+9/LiWfOKsX6NKUMhlDCkihH3FP/HYuAl5ZdZTeyYnS0tYLeWZ2wIDacDVGYmY0aaG2W2UcgInxsfhz8/4kcXcYi1c7JVoVcsPSTV9ce2rltg6MhSX8rYy26hV7P0TdiS7M6sVZ/EUg3YaKLD7oRdMBxMZqpTLRFJcLlb2jUKP6EC8xvt3aLEGqVawkYFuqMob++w2XCNS+PdYCQLWTaPiERlnJvFrLMyTiAjSxJeUXVtYZl7lYQ7CSNsRQdFRS6gd4IpIjiHJjeb+T0EjQZgrFTJMSArDnVmt2HmLQ0pNTq5uVUnChY8ZAyd1SjxW9zcfqY8NoaK1xbpiFOtYg1aYvvR/G2YDHDYiwM0eO79shEoeH07IbBkSizAfJ6vb+TpYUK8SJlLK9L7ZSdRcuTGzJTYPbmhTcMYqCB1cnKk5OrqSu+Tzi6/mjeB/4f58CIbGsdFoqffi30CMGaLvp56RqOLthOtf8e0WOqC1rHc9jE8Kw9JedeEskRZtCRNamU/90NiJr3PtgGg0qeqJy9MTRersyEBXnJ7ILyXgpFZaVMlwQRB8Uup9IbenFOe0QssS1g+Msaj+qu5nm+optywXJXrrhPW9Oa1567w5e+2vVMuqeYBSmv14mKod99VOfv3Iz/64iPCZB9F7VarUT/+vwRwpJcRIztiRWpsBYPLWG+j061kRGd9zxQWM3/McO++VYPGR+5K/BcA2LIL5VvTmCGaF8xWk5W7HL1d/YeZC2h/gKjrp1KkwXyesH8jvRJYxLwU1Kwhrf/Ixs11NuNgrIbeB6O7fKJg6N854NUf+bPy8AaIlyhlYw9C4EKzpH43V/aN4n9OqxUvTEhBoCh64S6hraFyR8LG6m4iWFAlSlhsUNje/HjP5IwCwboC465sUhCRInYquyJiXgmZ0ANlku5Ag4aJRYtEndXBwNFsyRGz3m7rnGfnBIIIgMD4pzPoJmeY4kpO+R5NSsSHsfGVvmjM9HVWYklwdj+cmwxIqeTrAz8UelTwdML9zbRwfF4ctQxpKlkcBgLUDYvBLz7poWdMXA5tUFr0H5kj2xBo++L4r36+zZZ6l8fDdQ+RrP8wn+0/AR1LqvwxCosPHWc0ocgiCYOrRVLCBlGpVyw9VvJ1gr5Ljm/a14GZhImUmDFoZZUpj0Rv1vEWN7jpAOyR9GwZhQVfp1rfJtX14C7WdhIG2e3hj1PLnGz+0Yunk+OYWJca8Y4X7YVRCKGPc+rmoRbJg2iBi6kMQ0pNPsKcDgj0dcOvrJIyIr4JmodQkTgfX6YXa11mNFtW8AQA/9+R3BBI6SH1igyXVMT90q4PxSWGi1EEvRyqC/rzAcj2T2BAPZnx8GsOXV5eHlIoMdEVCdepa6M6LBtIAV40KsRbyqXUGEkEe1Lnu+pJWtxlQUMYutM8KnsHFXgl3DX/8lRrYbRzsFFjRhzUGbDXmTSfM/I9+NvQ6Yy06oVbKMZdTK4HGUo6c2BLsFDKRMyI+O+lz4L3rHHJDSEpx378vOA4ijUkXu2LymTFoVMUDno52sFNYv3f0PsN8LTvyZyY3xI4HOwDwC2sKsf2qWK1Jo4MFeX/HSH/IZQQOPzuIxX184KRWYFLraiLlHyEvgsyu/Gl/7wu5yQj/oRsl21Y4X8Gv94aBIKgxs/PLRrg+syVmtOUbYx+iJDk/OR6r+kaBIAg0C/XCLz3riuaMDQNj8Hs/qgtezIYYxG2OY75TmXnu5ZXXS4GpMcLB2v62Gcfm4GKvRO0AV3zW6MMJnnpBboixoHyh4WonjqLT6wRhegdpo1QqPZtef6UCEluGWFb7CaGusBkP7aZCa6BUDf0aVYITJyIut89ATIgGq0zPO9Bdg5HxVXFkbDOA0EEdsAYT2/Dn5uEtqvD+3vllI14tmPfB2JZhmNOxFlb3j+adHxeVJequSIEblebWt9k0uCGGNRfPbbQ6SbgeZBZSak6CIDCseRUEuJWfuPNzUUvWCpHZvcDjsoPM3yX6EmTkZaC6nzPWDoiBu4MKfRoG4/xkVqlLkkCAmwbNOYphBzt5OdcxgOQEymgV062vk8q1DwBY/Vk0WgnKB7jYK3F5eiLzt4+zWkRKRQa6opppTRA6XP1ig/HXoAaCYAqF0cdHiz7bPLghMualoF9sMOqaShXQQc0mVT0xKiHUbAozoXoDuWM6vhcE92j8+i+pm6whzUzKPA1CztarsoWUqubrhKES41wKUmldNOg6aOZPjD0XoT1B2xoEIBncJmSsyoq+Jnpd61wvgFGvtOSML+6yR3fHHNMyFH4uaqzswyd5ksN9eSp3mQ1GPh0o4yqIhsaxc923HcPxRbMQ3JvdGmqlHL9/Vt/i/r5oJn4GtJ1W059vEy3oGoHb3yTBw9EOzUK9MLNtDUxrUwO3vzH/Xs7qUAs/94xE6tR4ZMxLwZyO4Tg1oTk+ibKcgsjNLOGCq5IP9XW0Oi4B82QkrRSSKlwOAL0aBKJtRAX0b1yJp2JWylifUIhhzasgY16KKPjOBzXu9CRLaikknn1Fdw2W9IjEkTFx1HmWw6b6pH5FBHs6oF6QO4bEhaBTpL+I/A71cZQkB2noOUqulX2ieA0zmghSxMVNl1gs6RGJLUNY+23OhTnY+2iv2e3/W/CRlPovQ2OTIdC6lq9kgT0aERIS1YTq3jg1obnZ2khCcCOwX7ejWHF6YpbLKGNq/sX5WHSJLapNO7xVTDnV1f2c4SOQzdOy4J+v/Iy66+oy0XwpKbtaKcdLM+03XTRKrCmn40OnxCz8JEIky6wX5IaMeSloWdMXx8bFYUZby2l/DnYKEATB5LXT8ycTPZIR+L1ffTz8NhltaldgJr/Kng7MRErL/DVKOSIDxY6dl5MdhjWvgtoBrrjGiQY72lHXUWawnEfOra1ka5774GZiSWyJ1oBfP+UXc6UjIkL1HiBtKIcHuGBUQlXYB66CUzUqhWD/4/1I3pqMsy/OihYXYXQ10eZUBz64e6Udyk9jAtGwsgf6xgbz1CTmIKzvVbuiq0nKLY22ERXw9xcNcWh0M6sOkTnjoBFXJcchSO/k3OGdM9eolEoZzSl7g2PPjmH9wAY2GSsAq5Ra3L0OL3JL4/d+UciYl4JFV+Zg2plpuP32Ns8JswUy9XPI7J/gx+6UkapwvorDY2Owb2QTnJvcAtuHNcKcjlRB3/EnxmPaxc9wY2YSo/oa1KQS4yBpgn+BQ+WfynV8LjTBv6BO9EakTo1niGQh3B1UWNKdTy7X8ndBbIgH1BU240XxA+SUUqkiGpUCzmol2tcRK2+sSby544FOrf65ZyR8XdRMG3uAiqpGBrrh1tdJWNM/Ghn/DU8hAAAgAElEQVTzUhBbxZPn6HLfIQeOumNkfFUmUji8Bft8NwwSz6eWor4AVZOhfsRNCFUc4QEu/4o6y81BxTxnGlJpGlLKJYDqkghI1+iDjP/u0xF/LoQpArRRyp2vNCo5NnKMU6kOgvWC3PFN+5oI9tCYVZfSEWWZ3Qsonam6Y9zIM1OLitBBE/wb1j0bizLTsTQqOUYnhiLEyxELejtA6XQb10r/5Knz+nKInkB3KrXTWm1DIZb1rocBjSth0+cNsGVILOQyAh4+6bhetBEtqnmL5unF3eswxJklXJ2RiF3DGzOOi1AVMD6Jr1xa2SeKN9+lTqXmH7nmPlpuaYkDGQdEx1jTPxo9JGrfSEFOEKLiwZsHN4RD5Z/wwxW2A+q4E+PQdntbnjP28N1DONrr0c3kZNJ2E3dOn5pcHU1DvRDm44RtQ2NFJQn4oIOBLKamVMeDOa1tTuXjQiYj0MIUZKKVB34uasG7TjKkFE0adaobgP2jmuLUhOYY1zIM6wbEMGmOoxNC0TDEQ7LMwbmXbDpo6tR4nJvcgklzndmuJrYOpWxSNwcV1vSPZtIva1ZwwcHR4lowjiELoam4Gl2jKkqWJvhQdLNCDgBUuQlhinXPmEBGqTq/S21M7MR+ZwspFRfmDTuFHL/1ev/C+QBw7qHlmnMEx54Q17JhuoFgw6AYbBgYgz+5JI6J0FLJVMw1yQn2XZ2SXB2XpiXw/BNa7RQV5MYQGfWD3XFucjyahXmhS70AjE8Kw7nJLfDrp/U4Knd+yRL63eUGWBXOV/DSREK72rPjt2sUu0a4O6gwqXU1RnnjaKfA/TmtcWBUU/SI5j9rlVwmSa7T90n4HOUygiGLCIJAv0aV4GingEalEGVz0PZ+7wZBaFO7Aryd1Mw+KrprEBvigZ4xgRidEIprM1qiU11/JNX0Yd6x1f3Z5yAM9tOErrNaKZn6L9c8hG/4HOZvc8FQtVKOGW1qYEbbapLbze4QzhCLS7rXYZ5PfA1qPhEqpbiwSDCayFCdQYctQ6gghDnCqV1EBbhwlHBCWzwjLwNFOsulNOoFuWFRtzqiVH3u3ytvrMSFzAu877lKqYQaPoixUKM23N8Fl6Yl4OqMRPg6qzG7Qy0MjQtBn4ZBaBdRQdTNXSX/9wrk//+Kj6TUfxl6RgfixsyWWNqrHk+yaQtW9q2PiiZD1BKuzkjEsXFxODC6KTYPbohTE5rD3ZGa8OiJmdu9as3tNcz/BzWpjJHxVbF+UAw2DIpBt/oVRew+7Tz8decvAGAki2qlHH1NUftVA4OZYx0Y1RTeTnaIqOiKTpH+yCvLYxy3xlU9cUFUO8i8+mV2h1oYmxiKBpU8mJzgfrHBCHCz5xE4lTwd0C5S2jkVYlpKddSp6Aq1SrqLAm3YdYz0h6OdAiv7spGhLUNi8V3ncGYivDQtQZReRYNZ4Ag9Sk3OpnABoIm95mFemJJcDSM56YVdowKQVNMHF6cmSHaXosHtLAQAMvVTlCnT2bodJtWczkAdO8DNHk2qemJup3DM71wbJ8c3ZwxlocptVEIoFA5sAddDT6gaDjllOaL7Vqp//+5SNEa0qMIrdE47lB6Odvjr8wbwdlLjpyvWyQyh/FwpJzBMoEqa1b4mY3A1qeoJX/ciFICq03JleiJ++ERaMWjOOJjOc1zZe7M+fT3GnBjDfmOmQKKldCVzaaHCc3LVqDA6MZRn5Pi5qNGimg8MRgMOPqEUA6X6UrhqVDg4uim+71Ib/5hqQFlKsXWo9DMcgpcCAFYM9IO9/0YsT5+P6n7O8HOxR52KrtCoFNj3eJ/k76em1GBUQTIVRQaZi3AJVZFCdYjc/hkeFlyFt5M4cgsAhDIbSnt+AerskmyQJImCUj1IPTXOs4r4EWpRFBrA8j6sw1HDz1lkQHKf59Fxcbg8PVFcq4oDBzuFRYKURlvOPkYnhmJZ73q4ODWBV8iTVjVy0S6iAtYPjGGepaOdAqcmNEfGvBRc+6olGjc8jLX3fkLrSCM2D+argfo1qsSQlT7Odrg3uzXuz2nNi4Rzo60XpsSLVKUAeB0zawe4MCqN+V1qM/Pr1+1qYopEqjJdhLRDHX9sML3H7g4qbPy8ASKj/+FtK/W8hGTXnkfiwtzt61TgNVBoX6cCNCo5o0ahCbE+DYNxfHxz9G9ciSF7aQMfAIY0CwFkxTyClZ5nAU49FIL6LFf3AoEeGhAEv3YiXT/pzIsz6Gly4PrFBsPT0Q7TUqpjVd8obB/GEgE0uGquZtU1iGqwCbM6V8Sw5iE4MT4O/3zREEk1fTG9TQ3EVPZgjOrxJ8Zj+fXl0KgoReuBUSyR0L6OvygwJQWaTE021V/qYKWYNwmKdL2YRRWr9nK0Q4/oiujdjBqnN7Nvin7TNNQLczuF48T4OOz8shGvgC7/XGRw1ahE9RSDPcUBhjMvqI6KtKINADrs6IAhh4egWZgXZKpX8HGj1uvPGlXCxakJyJiXgla1/OBir8SB0U0RGehmpUuZSbXAWcsIgpCufQagopl6ZzRySnOw6F5XzO3hzKQC08G12R2rwr7i79ARb5l3q3EVTxwbF8fMoxXdNVApZGhc1ROr+0fj8JhmjJP4TfuaIhUVn2hXw8/F/Pk1DfXirRtVOO9+34ZBZtVR/yaCPR1wZ5Z0jU4a9U2kGrdepr+rPZb3icLX7Wqia70A3nVKOetHxjbjvSv0XNOqVvmIYiGkmndwz1UhZ9cYof0wrwtbAyjIwwGxVTwRF+aNjHkpWN67Hgg5FQhVyVUc5TnfnhTWt6zp7wJvZwX6NhWnfCrlMizoGoFhzatIjgua0Po0JpAJJLPzoB72/puw580MAHy1NreLMT1Pbb67Gfdz7zPHDfN1wtxOtXk2t71KLlmjibaJrBWk1hl0CF8djmXXlmH/qCZMBsacjrWs+mxKuQzfdgzHyISqTMrcst5R2Ph5Q1HKY5d6AXg8N5lJX9syJBbjk8KYeZSregQAO88jKNLb1jW1f+NK8HaxTpAQBMHYLyo5ddwyvflAuVQq5icMecim/9ULchcFIdYNiDGrNp4gSA9su70tPj/4udXz56J7/YoiO3/x5cUYeHAg7zMpG4GLFX2iMD4pDLu+bIzkcD94ONrBVaPC+Snx6NUgCBNaVcM37dnuqdwgpVL2YSUP/hPwkZT6LwM3RU+Ih+8eInx1OE49pwoKm0ubswZXjQqVPB1gp5AjupI7KrprmBeRNi6kIsoANaGPTgyFnUKO2BBPEATB66LWIzrQotxycnJ1rP2iEkad6Y4V11cAoNRCqVMTsGNYI4xs7YbGGxszhBbAr71CpVSYXzTcHFQYHl8VMhmBWv4u+P0LZ7Ssl4fTE1uIIo7WVEg0age4YvuwRjCa7pG5RSvIwwE3v07iKZaCPBzQrT4b9fFwtLNaD0wT/BNeFVMFyoWGzvI+UbgxsyVW9InC501DeDW+nNVKLOsdBS8nO17EaaFgnNDRGxoOlX5FtuPPovOgj61WyrF2QAx6RAfik/oVEWhS2G0fHo5BrcwXoAfYe6WUKUURqH+DlBrTMgyJNVhyUSof3JY8biGxqpLLRMqzMF9nJm1HrZQjeVsyuu/ujmf5z/DbzYU8pQoX5pRSSrkMO79shIGNK2F0Ip8AS81k62EIx9vYxFCs6huFv4c0xJFx0gqFdQMtKwyF+zw1gU1BpOsmrE9fDyFCfZzQNaoiU9NFSn4tBQ8Tf8YldTLyMpCRl4EJJyeY/V0FV3vM4hSq/6lHHabmFJ1GMrl1NczqUIvXUa17dCBGxFeVrIEnkxFMSi4NxyoLUOz1I3tu+Rlovrk51qWvw2eNgpmUVq2R7wxIjTcqJS0YAPBtp3DROXDvvaOdwqpSCQBmnZuFr85+ZXEbYZRSLiPg5WTH+5w79zSo7I4jY5thakp1NKriiT0jGmNy62o4O7kFU3jbxV4JPah3fFh8ZdQPdkNMJXdeequHowqB7hrMal8LKoUMSrkM3s5qJFT3QbCHhkcQ+jirUYg7IOT8eePbTuFMI4zsgjK0r+OPtGkJ+CSqItMNNNTXCb4mp2aSRCtogiAQW8UTpyY0x9GxzdCgsgcy8vlF09Oy0kS/E6oPl11fxvz/5Pjm2DKkoYBABhpU9sDtb1rhx+51sKJPFLYNFauTRyeG4vHcZB4pJ5MR6NuIT6xy5/htQ2Px6NtkEDJ2rnS0U+Dx3BReugwvpR7FyJiXgpmmgrMDm1RGfHUf3rhKnRqPi1MTUC/IHV+aut7KnS/ibt4VvMJBjE+qhiAPB0TZWIslzNcJpyY0x76RVIcijUrBq7/IhUz9HE7VJyG7lFI7VPZyRMa8FIT6OGHT5w14TQ4ez01mlIwr701D9Ppo9D/QHy8LX4IgCMztVBtBNtTYCvJwQO0AV4YAA8CQdABwc2YSVAqZSDHjwFFvrbyxkvcd/Zzof6++uYrkcD84hPyAaZd7AGDfOSkIU/nslXKcmtCcmres1JTaMawRr4bOqQktmCDShFZhuDI9Ed91Zt+ztKw0FOmKkJqzlSm1QNf9c/O6D4XjPfx++xdGvR1R0dWsMt9OIefV/nSwU2CtjXVtaFx9fRXvSqWbv3Dnp6/b1zKrZP034OlohwmtwtC/cTDneZAIDjkPQsE/P/r7Pz+LZhS9R3Jno8fejugbGyyyc6WUUiFejgjzdWLeObPFxT8AXCJkqqnBkULBzinCtT7Ey/z707KmLxIjqOtwsXNh1jdz/gANRzsF2jZPxZS0HjbVQeWCtiU8TKTz/lFN2LnOpNrK11FNOQiCwKTW1bBtKKXgzJiXgox5Kcw7N+v8LHTe2Vl0DH9Xe8bGUSlkzLONrcLOd/Scao2UKNZT6tvVt1bDz8UeQ+JCcO2rlmhWQ46H+bcs/tYWlOpLGQKcIAhmnIX5OvE6lrs7qBAR4IKFXSPwS8+64gLvVsrTGY1sTSlL2DS4IWZ1qMWkaNLXL4WOkf4I8XLAH/3qI3VqPA6Maor5XSJwZ1YrzGxLjU36PTGSRrwtYRV/jat6ItiblPSvuGly9HO6nn3d8gUK4Olox89O4IDrC1pTPCbW8MGw5lVMTQOsQ6Ni522l/CMp9RH/gSjQFkhGXa6+prpWHX56GADFpO8b2QR/DWrAOGSP8h5h6umpFiWWUqAnAiYyAtsXzwqu9jg0uinuzW4tWZ+HGwlWK+WQq6jFn46AcvEkn2pTvfvRbt7nAW72CPbQYFG3CFT2sr0DwsgTQzH48GDJ77iRT1tAT1bWus002NAAU09PlfzOYDRYXLRTp8RDrn7F/M29dzSc1EqzEVQadK2gFtW80TaiAjrV9WeiolyjWVLGTprPHefi67SRmHZ2gtkip+denmMWvFJ9KR68e8D7vtRQCic7hWSNivKAG8m0ZlDYCqVcJnIuoiu5o9Rk2NtzHIzxJ8djw50NuJMrXbTU0qJfO8AV09rUQKtw84a4cJEeHl8V8dV94KxWosOe8qXUmTsne5Wc6aJC+7svCs3XcKKvXy4j3rswedvtbdF2e1ur2/XmFKrXG/VY+EkEMual4PuuEfB0VDGFSO1VcvzEyeMfkxiKm18nSZLAq/tH49bXSaJaOLQBSNdyO/PyDDrVDUBFd2o74ZzBrT/AxaTW1bC6f7RkJyBzv+GiUFvIS+HcfG8ztt7fauEXlhHm48Q8X7obppGknCaalAlw02BwsxCLBaMJgsCiTwNxX/c3s8Yo5TKcnNCcR5oAVBOBY+PikFF4l019Nhow58pI2Aeugov7I7wqouY6F3sl5nYKh5NagbEtqagoHaH9sVsddKrrj7qBbmhb2w9LP62LQU2olDsnCdKxorsGrqZaRELH8WURW/ts6ad18UO3CFFnNy4CPTSoF+RuttaHWim3mHbMHF9WBrmGUpB+3oxfQ4u7VhMEAZmMQExlywYv9/2VmqcvZl3E8WfHoTfq8br4Nbyd1Mx81rwaNV9W9rKtDhQXK66vYM63oruGVwx7eIsqODOpBUNUb/y8AZqGeqF+OEUMnn15VrS/mMoeqM8hwgiCwJTk6ogOdsftvPPM59ZSNaxBrnmIC2+3AQBkdlmIXBeBi1kXMbNdTaRNS0CYjxOGxIVAqWDv6+LLi3n7oN99W4IpOqMOj/Ie8T6jVTKVvRxwfFwc0me1wjvDQ/x4ZT7oQBthZq2IqOgqKqBMv8+fxgTBzUFltl4N3SmsRKILaLNQL6ROieelDb8PLAUiSZJE7329MeDgALPbVPV2ZGqMcYOHUg5qvSA3Zk6Xenfp9Dop2ClkGBpXhVd3kVDm4q1qO+wD1qJekBsTZOUqKHvUD8T6gTG4X3AJGfkZ7G85160jy2dzl6dIcqe6/hjURLr2Hq06kxGAn6s9ZATg6mielKLtV3M2fpmRctBJkmTmFkvd92icfkF1iy7UmQ9Uvi5+LbKfezUIwuBmlfFFs8pMl2/6mghCPLd90SxEshQGfa7WSBaVXGYqf2LEfbuxzOf0fZp22nL3SinfysVeidZbW6P3vt4Wf2sL6q+vj7bbrNtFALDjy8boXC8AKbX9oBakQ1u7D0IhgjlU8nRA7wZBzHZC34wLb2c1joyNQ/Nq3vB2UjN+iFopB83N0Pdv2fVliNscx9gAmYWZiNsch99v/g4A2Pd4H1PPlAthYPB9wb3u5C1sMfV/y4egwU3Z+6iU+oj/SMT+FYu6a+ti7e21Vret7ueMhiEeTLRh8qnJ2PlwJ+68lXaQzYFeKOiJubztK6v6OJk17m1RFwhxI/sG7+/j4+JwdGwc2tSugF0jbKuZZQ1cB/Ni1kU02dgEBVpp+avWoGWMTGuTVpGuCDsf7pT8bvHlxWi8sTGyirIkFwNvQT2a8pKLNHpGB2LLkFjEV/eBSiHDok/q4NK0BOwdQUW2U6fEY9/IJvhOSipPsDJbS6Ad9/i/pYmRv+/9zfz/m3PfiBQxJfoSXJ/Zkqkp8b7XyoWt7amtgXbUuwpq29DFlLlRZWtkpbVFn7sPKZgbb9au9YduEVjQNUKyW4uUsU/X9bHl3afvj0JGYOEnEbg6IxFJNX3wzxcNsenzBvilp/lC8UW6Il6ETAp3c+7i6NOjos+572ydiq5Im5bIe2faSuTxm+tk52CnwNFxcbzuLqL5T3ArhOpKc8/NTiEXqbGEx7CEhn81RMyGGCy+vNim8WMNB0Y3ZeoNRZnujzDl0Rzoe0Gfx9jjY7Hixgo8ekfNh4/ePcLdnLuSv916fyu67+6OXwc64PL0RIbAlqszccOwAN33dGecfIVchhszk9BZ8M51iPRnUvQIgkDrcD/IZQS+6+4Dl2pzRCmVvHOXuHf0Z63D/dAxMsA0li3f4+ySbCatb17qPMw+P9vi9lxcfX0VjWJ3QRO0HNkl2SJiU2rem9fZcq0u7nVJpVP0P9Afw48Ox/cXv0f83/G8da1ekDsez02Goz11XK5jXagtxO23t80ed8mVJdh2f5vkdzIZAX9Xe5yY0BybPm+ABpU9sKZ/NJOSQjsb1lDF2xGbv+CncViak+acnyOp6uRCE7QCP19bhPrBbpBrqODI4SeHIZdR6SkHRjfFxFbVLHaRo+0YWxTWP1z6Ae23t+eNTYIgcPPrJBwa3QzBpvWj7/6+2HBnAwiZzup1jj0+FpUif8RWU/ODHtGBeDw3mePAS5MMVNodyZAtNBmxP2M/1qevZ+bPvLI8hK8Ox8Y7G61eX3lA3697uffMbnNoTDNG6cdVlAnfjWszWmJlnyj81M8TfdpcxJ1ZSfiuM1VWIGNeCk5NaI7V/aOxpEckzk+Ox+ExTSF3uA+HkO/gpCbNdCqm5uMAD6rDIq0K45ZAkMkI+HmyimupYKGlNZx+rjm6R8guoVQ/q/rWx5mJzTH9EwNqBzigY6Q/KnCyDuLCvOCgkqOCixrfdgzH1BT+nNCoigeOj4uDi70Stfyd8eun9eBop8CjuSnQgw1oCNcba0ERem7RGrXMttaUUtxrpBU4QrwpfoP4v+Px67VfAVAkxLP8Z1Ar5ZjcurqI+D82Lg6LulFjQmfUSRaJJkkSv9/8HTmlOVaDzF5OdlArZZicXA2hPk44Nr4RSo3svEif/+XXly3uR+r9P/7suMXfAMCmO5uw+tZqq9sB/ODJ+8JWUspWCDuxlxf0OKTf6WNPjwEA8z5kFlFKWvpeTjg5AdPOUAQhN5Bva4aLNXD90tclbLdoW32ISacmYcnlJWa/3/FgB1bfWg07ORvc/khKfcR/HLgLm60TGBe0wWFpQnqc9xhnX/CjlsIJyhbHyVYIF4s8bfnkvQDlsNAyb1tb71oDd3JbmLYQ78reYceDHdj1cBfzOd19kEsQfgiTvucx5dgk/pMoaaQLnaj3JWoIghA5564aFVNny9tZLdnymVv02tZjF2gLsOrGKtHnOqOOZ+AIUaovBUEQyCvLQ1ZRlsVcdUvgjlUpg8sWp567TVyjoygzUpH52R1r8bYb2LgyzkxqwUtnsHRswDaSx9JCaO78ud0LpdAxMgBd6gWgfiVxVFFqn3WD3NC5bgAmtwkQpTkJx4KzyRFqb1IpuWpUWNY7ClHB7oip7CGq/cR9Z7rt7sbrGieFLru6YOSxkaLP3ydKJvWsuOA6c/RYEkZ7aaNcOJe9Dwm6+PJis4ZVgbYALwtZg3TljZVMcXWASn9ceWOlzZFUKXg42iFjXgpqV9Jh/+P9Vrenxy89Bt6UvAFAPaOrr6+i/Y726LKri6Q69G4uRValv7uC1DdHRWM2uyQb9dfzU1CNpNGmFJCHZQeRp81F4j+JjGELUAq/X6/+SkX6Jd5J4b1XKWTYNsxyOlLzzc0x6dQkvC15i/Xp67Hp7iYAwIXMC7z0YL1RjxlnZjAOuNagRe99vXH9LfU+lehLRGPoTo44gMQd53dy7ojeV66DYMlIP/yEUlUXavnj+e97f2PVTfGcPfLYSHTb3c3i3G+JuAEAZ40eD8sOiM6Zq7zMK8vDsmvLmPdn18NdDMkpBe750Peb3v/GuxsxL3We2d9yO8ytHRCDsWY6RGkNWosEJ/3cLF0/SZIIXx3O2AvCuleOdgre+dDXMLSFP+9vKRx8chDZpVmoy1GJmCOiuPOtnUKOhCankOn+pWi75deXY8+jPcgqysLzQirI9M+9f0TbAVSgYMqpKeV2Cj8kTZ++5+1NHVxdNEq4Oagw4vhQbHu4BXlleehWnyorAFDqPaVchnYRFeDrokYVbyeEhB2GTJWLLSNDRbX7jo2Lw+IelLqfLmi9sGsEekRX5N1nAGi/oz3z/w13NgDgq40sklKmx7r19Th02kFVR1cpZHhSchU/3piK6rX3waXidhwa0xjLetfDnVmt8Odn0bj1TSucnRzPEHX7RjbBxakJuDu7Fdb0j0GwpwPkMgK7hzdh6lSRJMkjoYW2vDXbnr4OrUFrc/oeF8nbkvGs4BkAasxce3MNAEs+nHh2AgDQcktLJG9Llt4JqMBf3WC2bub0M9NF21zPvo4fLv2AmWdnWrWH1Eo57sxqzYwBJw3/Ptga/GHGP+fVO/H8hNXfzb4wGwvSFpj9PrMwk7lXUtAb9fh0z6c4+fykTedp7XrK6+N9qE9IZ0pIEbrWwCW039dPEMIciWmLkh2gak+uuLEC195cw5pba0TfTzszDQvSFvCIqI+Fzj/iPw5CmfqJZyewMG2h1d8ZSSPmXpiLW2+pnGah4UBHwXY93IV229uJUtroCed9lVKWIJyIGYfjPdPr34eUuvHmBuZfnM+bqLmTEp02+N3F7zDl9BTka/NBkiQi10ZizoU5PCLNSBpBkiSOPD3CkFa33t4CSZIYeniozee097E48iOMJpY3xXDvo70W066sYXRiKGqZItvluc9LrizB3Zy7POdBZ9BZHEe0EdHi7xZI/CcRTwqeWD2Og1KccsI9RnlIAl5dFs61Xso5yDidtMyfrstBqwG4oHPs/7j5h/RxbHiXLC2E5khQa84hDTuFHKlT49GaU1xVysBQymVY+EkEpl4YjM8OfMbbho5Y0XCxV+LajJYY3zJMuBsRinXFzDgmSZJ516SgM+osOjHlfR/KC9GYN81RtJEtIqXeg6D+685fPMdPb9Rj8qnJuPbmGmL/ikXSFn5nSy5BlvhPIhZfXsxLIaFrtZgzGnc82IHc0lzR5912d8P4k+OZ3119fRVvit+ItqPfE2ZN4QxnLoFvTh0KUCqZ8SfGS3ZME+K3a7+h8cbGVokprkPIHVPjT4zH0mtL8fCddNt4qfemqo/5On9cR4GbUlmgLcDAgwMx9jibApKRl4FtD7Zh4smJAMT17Er0JaK1edyJcSKlGddw77qrK/Y83oO8sjzmnnC/p/dH2w5cEpO+RcJrpskqIVKzqFp2uaW5FgkaS5h/cT7mps6VTM+nu7QturQIP1/9GSefn4SRNGLK6SmStWBocB0RutaTcF6lyxsIsYNTS0ouM0p2syNJEj339ESXXV14n3+Xynbho999c07RzeybIvtt9PHRktsKQf/uQ9UINISk4oVsytYQzm8l+hJMOjUJgw8NZsY2N7JfoC1Awt8JOP3iNFbfWo1dj3YxCgdbYes6JYW++/tSKdtdI3BjJpu+SM9ZtqR1Otgpeb/hopKnAyp781N9vZ3VCA45h+772pl17BekLcDiy4sx5fQU5jNr9pImiFII5ZaxczH9ru59vBdb7m/BrZxrSKrpy1OLGUkjNqRvQKG2ENX9nOHlZAc7hZxHbnJRpCvirUvm0vfMgZ5PCnWFTN0eIfl5IfMCNt3ZZHYfNPHWZVcX9NrbS3QethCV2SXZvBTaik7i9FT6ncwryys3WSHsykzPJ5VcqDTJGh7SalXGBuAMDVvJSUtI3pbM3Csp5JTm4Hr2dd6Ys4R/K32P2d8HKrZpm1o4N9EBGHO2lHD7D5lPuDBHrpc30Nhrby98n/a92fvDtdX+Nyilyt8r9n8IBEFkACgAYACgJ8yQOtAAABkgSURBVEkyiiAIdwCbAAQDyADwCUmSuQQ1Ay4GkAygGEA/kiQtayr/S/CujC22aCSN+PIoFd0aEjGEeTm33t+KKTH8ielgxkEmegNQExj3paMNa24nvSJdERQyBfN/gJoYygxlPKPXSBp5+7ry+gq+OvMV1iavxekXp/HL1V+wtd1WqBVqZnsuUrNSka/NZ4wdOnXHYDSIJgaukWFu0uAW2rM1atf/QH+UGkrRuEJjXHx1EYNrD+YdS1i8r9FfjTAofBAAdjKlUaovxaEnhzD2xFgMqzMMvg6+mH5mOqbGTMWpF6csnhv33tzLvYdCbSGv+J0tTow5lOhKMPHURPg5+GFXR8pZ/OPmH6jtWRv1fK23IKaVS/Q4K9WXWjw291qMpBFddnVBj2o9eOdOjy8pFGgLqLFmOt6We1uY78wdV2/Ui77jjlWp+2UuglaiL4FcRhl/QiOJe+1Le9VGdT8n5u8dD3YgxJUtTE4TFuagM+isPsMSHX+h5d7bHQ92YHjd4aLfCJ12S8dw0RDo1CQHp4+z25rbno6Yvy1lU+yyirJE26vtAB2ppWZ0C4jZEIMFzShi2hqJU3ctP+0vryyPmVcAYN3tdZL3QgokSeJl0Us8yGVrmT3Oe4wKjuY73QmdHL1Rz3sni/RFzH04//I8Mz8DwK3sW6jiVgVCSDlD9NgHgPu597H70W6ztRqspTo22dQE1d2r4/ckVnlJ7/tZ/jNMOzMNsRVisaQFX2pOX+ub4jdwtnNG73294a3xxt5OfLKcNsKLdNS1cx1nIZlqLb3RnKKlQFvARBHp2lk3sm/A096TcRIAas2I2RCDwbUH88ZSsa6YOTZNwJl7L/PK8qBR8ov9CpVx3OvgOgrcd4JON7j+5jqz/etiKg2AXjMzTa3MuceWUiE9LXiKYJdg6hglb5n90LiVfYupdXLh0ws8x7ZAW4ADGQcw7sQ49KvZj0fQ0QZ2TmkOKugroFBXCEelI29OpOfU10XsMSedmoSLWRdxotsJUSBAag7mgr4v+dp8lBnKeETuhjsbUNenLnJKKGe8UFfIKCj0pPn9ct8XGvdz72POebYFeu99vZHWi6/wLDOUwceNPf5XZ7+CrwNFztO2DgDsf7yfUfVxsS59HfP/Yj01xp4WsF06uQ5Sjz09sLODmJi1dK/oMUzPMdbuLX1Ma8qVp/nUOQrvaXZJNu9v+vwf5z1mglkquQozzszAgYwDWBi3EK+KX2HI4SFwV1Op6wefHERcxTje8YQ2Ihfc+bO8Kqv7uffxNP8p/J38oVKyv6fn1Ls5d+GlsdyZlL7HuaW5ksfPL6POj7ZHtQYtfr5KNX5ZcWMF+tbsK7lfYSH8En0JckpzMOLoCAytMxT1fFibS09qIdew44Y+D1HzF4PY5rqQeQFzU+fibu5dnt2fWZiJ79O+x/QG0+GmZlVdtJKVOZaRv9YX6FgVldT9oMcENyWWBMnblu5Y1r5Ke4aw4s7HpYZSjD8xnvk7qygLaa/SmO2464C5MTH7/GwceXqE+Vsuk4u2pYklA2ngXdeV11fMkko0hPYTba86KU1lDEhS8txo1Sl3/uBe+6EnhxBbIZZnt3BRZihDobYQb0vfIsg5CKmZqXhZ+FI0FoTHpp+r0Sj9rgnJFK1Ba/F9o+dl7nVYghTZ9j6pdDojZQ/T73BeWR7KDGWMuk/oF2YVZvHsMq6PbMvx6fsinFvNEdpcH+La62u4l3sPXcO6Wj3O29K3cFKJO2Jzg0T/G0gp4t+oN/H/AiZSKookyWzOZ/MB5JAkOY8giEkA3EiSnEgQRDKA4aBIqRgAi0mStKivj4qKItPSxJ11/tMw8OBAXMi88D99Gh/xER/xER/xER/xER/xER/xER/xER/xAdjSbgtC3aTTx//DYDbP6T9GKWUG7QHEmf6/GsBxABNNn68hKcbtPEEQrgRB+P2f9u49OM6rvOP499HVulh3WVblOJKC7dhxLkBubQIJl0AINDCFoekECCmUSUoakv4BpMzAFMoMFHohMExKgRJoAqRASJpJwIGmKTD4RuIktuSLbCuObUm2Vnd5dX/6x3t2vbraBmm1ln+fmR29e/bs6t33ec959z3vOed197YZP2UJed/697GiYAV9I31cXHUxw+PDdJzoSF4t/u3R37K2fC2VBdPvMLKrcxdmRnVB9YxXj8YnxsnOymZgZICuoS5Wl6ye9HqWZU26qh+Lx+ga6qK+pH7arSx3du5kY9VGuoe6aRtsm3RVYnRilM1HN+M4pXmlLM9bTmNZ45z/K9X2ju2sXr6aFYWz35Hslf5XKM8vpzhv7vliEsNRyvLLONh3kIbSBvZ170uub+KqSP9odLX5ipVX0DvcS1FuESsKV9AZ76Qkr4QjA0eoK65jaGyIkvxoLqZdnbu4qOqiSct7u/fS2tvKtXXXTrsaD1EMWnpaWFG4gu6h7mnbBaKrPLVFteRm5c4Y57ns697H+SXnJ3sdtPS0UFtUO+Owt4TEFcTEFWSAbMs+Za+W0YlR9nTtiebRqL6YplgT6yvWEx+Ls619G9eddx0Q7Ufly8ppjjUzOjHKZSsuIxaPTfpuhuE4fSN9FGQXTNrfYvEY/SP9XFV7Fcfjx2fcbzrjnQyNDbFq+cx3ghsYGeD2jbfz1ee/Sm5WLqMTo5O+L8DRgaMU5RZxZODInFfZ9vfsp6awBsfZcWwHGyo3EBuKJa8kXVx1MRdXXcxzx54jLyvvtMeov9z3MrVFtWzv2M4VNVeQZVnsOL5j0hXXqfpG+uiKd1GWX0bZsul3epuqKdZEfUn9jPtmwujEKPHROCX5JWw+upnu4W7etPpNZzwePhaPsb1jO2vK1tBY1khzrJn1ldFtgQdHBznQc4D+0X6qCqqoXFaZ3EdWFq2kIKeACZ9Ilu+R8RGePfwsN5x/wxmtw77ufawpX8Pmo5vJsiyurJ150vPe4V4GRgeoK66jKdbEyqKVtA20Jcv3y30vU5BTMK1Oah+MruKV5ZcxNjFGTdH0u1hN+AT7uvcxPD5MWX4ZA6MD0/av5lgzF1ZcyNb2rdQW1ZKXnUduVi5mRsWyimRPoAmfoONEBzWFNRzuP0zfSB9XrLyCQ/2HWFu+lvbBdvKz8yddOW+KNXFhxYXTelcMjQ1xdOBosg462HuQmsKaGfeN7qHuSZ8Zi8foONER7fvxGK/0v0J9Sf2M+2Di/29q3cQN59/ALw79gnXl6+gd7qVueR3xsfikoRkTPsGerj2sWr6KwdHBaeV0b/de6kvqycvOS07Knbo93Z3dXbtZX7k+uY3qiuu4qvYqDvYenPXqam5WLvt79lNXXJfsQQnR1dhnDj1DQ2kD6yrW0RnvxN2pLqxmT9ceLii7YFKP0GMnjiX3k9HxUZq7mllXsY7W3lbWVaxLbpP9Pfu5oOwCKpZVTPqObQNtFOQU4DgleSXs6d7DhsoNyd5Tic9uH2ynb6Qv+SM3cYW+OLeY3xz9DY2ljVQXVNPS05L8v+6e7NmQm5XLC8dfSG67w/2Hyc3KpX+0n/qSelp6WriwIpoYemBkgC1tW6gtrj1lD4TE90vN96vDvyI/O39S+UvNc7D3YLLcp25Hw4gNxZLrAVGd98KxF7im7hqaY81UFVTRNtjGyqKV0/aVkfERhsaGyLIsuoa66Bnu4ZLqS6atH0TH8JqiGrriXXSc6KCuuI7ivGLK88tp7WtlTfma5LZI/f0UH4uzv2c/jaWNk8rO6R5DW3ujz556TJyqZ6iHwbFB6orrZs3TN9xH70gvy3OXc3TwaPI7xsfitA+2J39HNsWaKM0vpa64jr3de2kobSA3K5fOeCdVBVX0j/QTi8eoL62nKdbEhE+wsWoju7t2U7mskurCasYmxuiMdzIwOsD5y8+f83bn+3v2s2r5qklDA+dyYvQEh/oPkZOVw6vKpvc+HZsYY1fnLqoKq+bcHjC5PpjN7q7drC1fm6wjd3ftprW3lRsbbkzmaR9s58XjL1KcV8yq4lUU5xWzpW0Lt110G9mWnewhuKtzF41ljZP2ZXfYfKiFgoIB1pSvmfR7LLEvptYbU6X+1kz14vEXuaR6+s1qCnIKOG/5eTzW8tiM3zsR59msLFpJ+2D7jOUEojLYO9w7rd7e172PtsE2yvPLGRwbZGPVRoyo931RbhG/PPRLbmqI5pHa1r4tWf/NpinWRG5WLo2ljZPq5Kl5UuuR7qFuLq2+dNb8qXqGesiyLHKzcyfFq7aoNhnPmezt3ktjaeOken9r21Z6hntYU76GVcWrppWHWDzGuI+zonBF8mYvq0tW0zvcS89wD5XLKuka6iIvO4+87LwZt8verr00ljXOOgJhV+cuCnMLWVu+9rTmhD1VnTOTnZ07MYy1FWvPqOdP30gf4xPjVBZUJqdAmVouU2M5OjHKidETlOZH04k81/EcdcV11BTV0DfcR0FOwZx1TqrZ9uNEj7XxiXEcJ8uyJvXMHhwdpH2wfdLIiIS2gTaW5SwjPzt/0jl6Qu9wLzs7d3JN3TXE4jEaShtmrMuWmrOpp9RBoJtoJO6/ufs3zKzH3cvC6wZ0u3uZmT0BfMHdfx1e+yXwCXeftSvUUukpJSIiIiIiIiKSQZZET6lr3f2Ima0AnjazSbeccXc3szNqYTOzjwAfAVi9evUpcouIiIiIiIiIyHw5a+6+5+5Hwt9jwKPAlUCHmdUChL+JmTaPAKm3WlgV0qZ+5jfc/XJ3v7y6eu7JDkVEREREREREZP6cFcP3zKwIyHL3/rD8NPBZ4E1ALGWi8wp3/7iZvR24i5MTnd/v7jNPBnLyfxwHTn1P+bNDFdB5ylySbopL5lFMMpPiknkUk8ykuGQexSTzKCaZSXHJPIqJLKROd79xphfOluF7NcCjYYLNHOBhd/+ZmW0DHjGzDxE1KL035H+SqEGqBTgB3H6qf+DuS6arlJltd/fLF3s9ZDLFJfMoJplJcck8iklmUlwyj2KSeRSTzKS4ZB7FRBbLWdEo5e4HgEtnSI8R9Zaamu7AR9OwaiIiIiIiIiIi8ns4a+aUEhERERERERGRpUONUkvTNxZ7BWRGikvmUUwyk+KSeRSTzKS4ZB7FJPMoJplJcck8ioksirNionMREREREREREVla1FNKRERERERERETSTo1SS4yZ3Whme8ysxcw+udjrc64xs2wze97MngjPv2NmB81sR3hcFtLNzO4PcXrRzF6zuGu+NJnZx8xsp5ntMrN7QlqFmT1tZvvC3/KQrpgsEDP7tpkdM7OdKWmfC9t5h5ltMrM/CunXm1lvSpn5dMp7VL/No1nicpmZbQ7bfruZXRnSZy0fZnZbKE/7zOy2xfguS4WZnWdmz5hZU6i3PhbSv2Rmu8O2f9TMykJ6vZnFU8rLAymf9VozeynE7H4LtzCWMzNHTH6Yst1bzWxHynvuC9t9j5m9NSVdddg8MbNlZrbVzF4Icfn7kH5X2L5uZlUp+XVsWWBzxMTM7PNmttfMms3s7pR0HVfSwKafnzSY2Zaw7X9oZnkh/YNmdjylnHw45TMUE1k47q7HEnkA2cB+oBHIA14ANiz2ep1LD+BvgYeBJ8Lz7wDvmSHfTcBTgAFXA1sWe92X2gPYCOwEConuNPoL4FXAPwKfDHk+CXxRMVnwWLweeA2wMyWtJGX5buCBsHx9ovxM+QzVb+mJyybgbWH5JuB/U5anlQ+gAjgQ/paH5fLF/m5n6wOoBV4TlpcDe4ENwFuAnJD+xZR6qz41flM+a2uIlYXYvW2xv9/Z+JgtJlPy/BPw6bC8IdRP+UBDqLeyVYfNe1wMKA7LucCWsL+/OpSLVqAqJb+OLYsXk9uB7wJZ4bUV4a+OK+mLzdTzk0eAW8LyA8CdYfmDwNdmeL9ioseCPtRTamm5Emhx9wPuPgL8AHjnIq/TOcPMVgFvB755GtnfCXzXI5uBMjOrXdAVPPesJ/qBc8Ldx4BngT8j2vYPhjwPAu8Ky4rJAnH3/wO6pqT1pTwtAk41waHqt3k2U1yI4lASlkuBo2F5tvLxVuBpd+9y927gaeDGhV/7pcnd29z9ubDcDzQDde6+KdRjAJuBVXN9TohNibtvdncnOiF811zvkZnNFpPE66EH2nuB74ekdwI/cPdhdz8ItBDVX6rD5lGoiwbC09zwcHd/3t1bz+CjFJd5MltMgDuBz7r7RMh3LOTRcSUNpp6fhDrrjcCPQpbU38KzUUxkQalRammpA15JeX6YlB9OsuD+Ffg4MDEl/fOhW/K/mFl+SFOsFt5O4HVmVmlmhURX5M4Daty9LeRpB2rCsmKSZqE7/yvArcCnU17649D9/ykzuyikKT7pcQ/wpRCXLwP3hfTZtr/iskDMrJ6o18eWKS/9JVHvgoSGMCzjWTN7XUirI4pFguIyD2aJyeuADnffF56rrKRJGJK0AzhGdMI8taxMpWPLApslJhcAf27RkPCnzGxNyK6ykh5Tz08qgZ6UCx1Tt++7w3nLj8zsvJCmmMiCUqOUyDwws3cAx9z9d1Neug+4ELiCqMvrJ9K9bucqd28mGuayCfgZsAMYn5LHOXUPHVkg7v4pdz8PeAi4KyQ/B5zv7pcCXwV+uljrd466E7g3xOVe4FuLvD7nJDMrBn4M3JPaq9DMPgWMEZUZgDZgtbu/mjA8w8xKpn6e/OFmiwnwF5zsJSVp5O7j7n4ZUc/BK81s4xzZdWxJg1likg8MufvlwL8D317MdTyXzHF+Mpv/Burd/RKi3lAPniK/yLxQo9TScoSoJ0jCqpAmC+8a4GYzayXq+v1GM/vP0O3f3X0Y+A+ibuKgWKWFu3/L3V/r7q8HuonmAulIDMsLfxPdyBWTxfMQ8G6IhvUluv+7+5NAbpisVvFJj9uAn4Tl/+LUdZbiMs/MLJeo8eMhd/9JSvoHgXcAt4YGdcIQsVhY/h3R3DhriWKQOsRPcfkDzBGTHKJh4T9Mya6ykmbu3gM8wxzDiXRsSa8pMTnMyePKo8AlYVllZeFNOz8BvkI0VDIn5EluX3ePhXMWiIb7vTYsKyayoNQotbRsA9aEOyrkAbcAjy/yOp0T3P0+d1/l7vVE2/1/3P19KY0fRjReO3GXq8eBD4Q7j1wN9KYMKZN5YmYrwt/VRCcODxNt+8RdQ24DHgvLikkapXTfh2heid0hfWUoL1h057csIIbqt3Q5ClwXlt8IJIYkzVY+fg68xczKLbqT5VtCmvwewr7/LaDZ3f85Jf1GouEXN7v7iZT0ajPLDsuNwBrgQIhNn5ldHT7zA5ys6+QMzBaT4M3AbndPHSr5OHCLmeWbWQNRTLaiOmxehX0/cRfKAuAGwnFklvw6tiywOWLyU+ANIdt1RBcIQceVBTfL+cmtRA2G7wnZkr+FbfJcqjcTzaEHiokssJxTZ5GzhbuPmdldRJVENvBtd9+1yKt1rnvIzKqJ7iyyA7gjpD9JNMdRC3CC6M4kMv9+bGaVwCjwUXfvMbMvAI+Y2YeAl4kmqAXFZMGY2feJ7nxUZWaHgc8AN5nZOqI5Dl7mZNl4D3CnmY0BcaK7wzig+m2ezRKXvwK+Eq6gDgEfCdlnLB/u3mVmnyM6sYNoMtupk6fL6bsGeD/wUpiXBeDvgPuJhsA8Hc6rN7v7HUR3UPysmY0SlaU7Urb/XxPdAbaAaA6q1Hmo5PTNGJPQ2+YWpgzdc/ddZvYI0EQ01PKj7j4OoDpsXtUCD4ZG2SzgEXd/wszuJmrAXQm8aGZPuvuH0bElHWaLya+Jfg/fCwwAHw75dVxZPJ8AfmBm/wA8z8mh+neb2c1EdVcX0d34FBNZcBZ6gIuIiIiIiIiIiKSNhu+JiIiIiIiIiEjaqVFKRERERERERETSTo1SIiIiIiIiIiKSdmqUEhERERERERGRtFOjlIiIiIiIiIiIpJ0apUREREQWkZndbWbNZvbQYq+LiIiISDqZuy/2OoiIiIics8xsN/Bmdz+ckpbj7mOLuFoiIiIiC049pUREREQWiZk9ADQCT5lZr5l9z8x+A3zPzOrN7Fdm9lx4/El4z/Vm9qyZPWZmB8zsC2Z2q5ltNbOXzOyCkK/azH5sZtvC45pF/KoiIiIi06inlIiIiMgiMrNW4HLgLuBPgWvdPW5mhcCEuw+Z2Rrg++5+uZldD/wUWA90AQeAb7r7Z8zsY0CDu99jZg8DX3f3X5vZauDn7r4+/d9QREREZGY5i70CIiIiIpL0uLvHw3Iu8DUzuwwYB9am5Nvm7m0AZrYf2BTSXwLeEJbfDGwws8R7Ssys2N0HFvILiIiIiJwuNUqJiIiIZI7BlOV7gQ7gUqIpF4ZSXhtOWZ5IeT7Byd93WcDV7p76PhEREZGMoTmlRERERDJTKdDm7hPA+4HsM3z/JuBvEk9CjysRERGRjKFGKREREZHM9HXgNjN7AbiQyb2oTsfdwOVm9qKZNQF3zPcKioiIiPwhNNG5iIiIiIiIiIiknXpKiYiIiIiIiIhI2qlRSkRERERERERE0k6NUiIiIiIiIiIiknZqlBIRERERERERkbRTo5SIiIiIiIiIiKSdGqVERERERERERCTt1CglIiIiIiIiIiJpp0YpERERERERERFJu/8HITR4L4R50a0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light", - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=[20,20])\n", - "plt.suptitle(\"Fluorescence and Deconvolved Traces for Different ROIs\", y=0.92);\n", - "rois = np.arange(len(f_cells))[::200]\n", - "for i, roi in enumerate(rois):\n", - " plt.subplot(len(rois), 1, i+1, )\n", - " f = f_cells[roi]\n", - " f_neu = f_neuropils[roi]\n", - " sp = spks[roi]\n", - " # Adjust spks range to match range of fluroescence traces\n", - " fmax = np.maximum(f.max(), f_neu.max())\n", - " fmin = np.minimum(f.min(), f_neu.min())\n", - " frange = fmax - fmin \n", - " sp /= sp.max()\n", - " sp *= frange\n", - " plt.plot(f, label=\"Cell Fluorescence\")\n", - " plt.plot(f_neu, label=\"Neuropil Fluorescence\")\n", - " plt.plot(sp + fmin, label=\"Deconvolved\")\n", - " plt.xticks(np.arange(0, f_cells.shape[1], f_cells.shape[1]/10))\n", - " plt.ylabel(f\"ROI {roi}\", rotation=0)\n", - " plt.xlabel(\"frame\")\n", - " if i == 0:\n", - " plt.legend(bbox_to_anchor=(0.93, 2))" - ] - } - ], - "metadata": { - "colab": { - "collapsed_sections": [], - "include_colab_link": true, - "name": "run_suite2p_colab_2021.ipynb", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.13" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "0c068199e7e44f5c8f1b641ca42974bf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "10144440b3a44ecda553473165abd44f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "SliderStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "SliderStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "", - "handle_color": null - } - }, - "176eeae0790249d5a4b9b209cb9d518c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4bfbd46ab67f47a1b1444c9b7cd8ae7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "VBoxModel", - "state": { - "_dom_classes": [ - "widget-interact" - ], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "VBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "VBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_804014183dc64cdf8f2f043ca16f50d9", - "IPY_MODEL_6da4e0b2217c4aa18bec3d1c6f563d81" - ], - "layout": "IPY_MODEL_0c068199e7e44f5c8f1b641ca42974bf" - } - }, - "6da4e0b2217c4aa18bec3d1c6f563d81": { - "model_module": "@jupyter-widgets/output", - "model_module_version": "1.0.0", - "model_name": "OutputModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/output", - "_model_module_version": "1.0.0", - "_model_name": "OutputModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/output", - "_view_module_version": "1.0.0", - "_view_name": "OutputView", - "layout": "IPY_MODEL_176eeae0790249d5a4b9b209cb9d518c", - "msg_id": "", - "outputs": [ - { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAAJtCAYAAACG4iOvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9zY4ty5Im9Jl7xMrc5+9WQVE/3bRQDxgwR/AESMyQGAEP0CMegGfpASMGPEFL8Ao9BgnUYgDVQgLdqrr3nnN25ooINwZmn7m5R6zc+7TqVh+kZVIqM9eK8H83N/vsx0VV8aQnPelJT3rSk570pCc96UlPetKTnvRLqPzbbsCTnvSkJz3pSU960pOe9KQnPelJT/r/Hz0BhSc96UlPetKTnvSkJz3pSU960pOe9IvpCSg86UlPetKTnvSkJz3pSU960pOe9KRfTE9A4UlPetKTnvSkJz3pSU960pOe9KQn/WJ6AgpPetKTnvSkJz3pSU960pOe9KQnPekX0xNQeNKTnvSkJz3pSU960pOe9KQnPelJv5j+aICCiPznIvK/ici/EpH/7o9Vz5Oe9KQnPelJT3rSk570pCc96UlP+ocnUdW//0JFKoD/HcB/BuCvAfxLAP+1qv6vf++VPelJT3rSk570pCc96UlPetKTnvSkf3D6Y3ko/CcA/pWq/h+qegfwPwL4L/5IdT3pSU960pOe9KQnPelJT3rSk570pH9gWv5I5f5jAP9X+v+vAfynjx7+9775p/of/+V/af/sB7Dv0KMB2gBxzEMbQG+KUiFLhbYGHId9JgWyVKAUwH/rUiGHv/f5DbrvQK0QEUAEUO2flQIsC1ALsO1W5rrYcwCw7dBtg6yrlQ9Yufthz/A5VeA4rG1Osng51fvSFNg26Lb5u8X6B1j5pUT77PleFlRBrxIpBagVqAX69g7cN8jLzT5rrZfDuvfDxqt4Ozh2gJV5HFZnU3ue7VK18lMbAEBeXoBaon/amr2rqb0+N0FF+hhcURH7rghEBLptVncpNm+cEylAO+w7VehxQGq1vvuY6b5DRCC3W4wZx0VuK7As1vbW0H78qZfffA45HiK9fo4VuyYCFIFue382jREAK6cpxNuu+97fPfW/DO/EeM1jlj8/DlvDy2JlH8dpzGVZertas/01lSXez6EPvvZizeU252fZDsDmgGustWEs8vyc+u1jLssCqRV6v1+M9YM6wSbreVzLBW7aWn+W338wH1d1DTS/y33GtbMsfU3lsQFs3WJcV1akl5n2DN/PfVS2y8s9919i7fQ++x4qiXeR50YDLvZt/F/735k3iwD7bvXlvaptLD+1J9pcBFhv5zW/7/09KZ2PJv504ieZz8xt5164b+d3OJa5HZmn8Zypqf/OJ/Ro9t1tvV5LqjYGtUDXBbIfxpN5nrzfx3NDxPZpO+zMq6XvW22259fVxqNWqM9lnHk792PpY0Q+f7XmvRy0Fu2Mc4htXxfo683O1yqQw7/jmcn5PBq0pvMnjYFk3tOatXNd+vN8rnX+A5Fzu+Zzl2UdR3weMgLXXlonl/wFOI+N8yYbo8S/8j4sYuvqak1qg7y+Auua1kE6e72NsixdBhHpY7pU6LoALzdg223deLt1TSJcHtvZ81QE+rL2fnk5ulRbM/vER8kXXJ5SEUg+Q48G4ZmX59PLY7m5bcPfqn2c8xy83aH3u+15PwODR9Ri41ir1VOrrZli61s+v9tZvC62dlT7mloXaCmQ1qClQF+NN7WlQI4GaQrZG7A3lJ/frO73ex+D2wpdF+iry2etAQ3dJNcAfbH2yNYgxwF532OOZNshP/7sZ0CD1H42hHxWCvS2jmM0z61Y/1Ak9iBKwdtffgutwKe//hHy8zvwt787y3I+hu3P/hT7n7zib/+jT1h/Unz7f9+x/vZnlL/5g/UzzZ34GMQ4cx+qQt7uXeapBfpyS3vGf3Nd3VagNZujbYdSVqWs7v2Bqq0rEnlZkuljDR+HrZe3N+j73ddLg7y+GG98fbXxppwNxJk3yORxxvieSn9DkuwE2Npblz62vndDpnMZTN/vNse19vNmPkf8HFNVk+UBa2veT5mWZTwDSO2IvRJnLnUoH5NLuSjTLCNR7mNdLo+zvZey6MwjkWS2B3Jkl8s7r+T7IvKwLspMUZf3cyiTbajO4263OAMG2T73P43XpY5SxMrjuVSryarHMexXzWuY7/A7H6do17r4Od/lKFlsj+t8Vma5MgpMshf78JU09PORHsA6OC4A/ufP/8PlYvpjAQpfJBH5ZwD+GQC81u+MeXOTrytEdmhLAh0Htk6HUJ6oZpMiACDNDkBnSKpqmzgf6vBJdQBA9h1oaWPliVp9M68LUCvaNy9AAcrbbhO97cbwt902/iCMahd+UruFSjgAWV5OoERWSLjY8maJ/u6+2cnQuTBbSxvODiO4Aj0wmVrtoAUCbIl2yWLPfbd0wIHMy9uqfvhZWQJI7cw5gx9whklFZmIUAUxsW3+3VDsg8oHQF5Ep6S0xhrwpk7IYCks+HHabK5RihxvLb7v1eVL0rpS5mGOuE35PZrBt/UBKGz0z2oEBkhEVeajQxGf8nu18f7fvOb6sx+fpBCRw3K+Yauq3SGKIqb2S11dqxyAwz4dZfoZjlmhQ8Gu1vTwLx8fha6JAP38e5krGwqa+jnMjAUb6OgK6AMsDg7+nw4f7Btr6YZCrfn2x1452sV5SmRxPjrHPmx6tr7es4/MZcQAm9Z10CmM7NA6oQVjTZvyOW6oIgC6wycvLWSBj2XtapzNxvXOt5nLV9/3qym9vtO8fuQYlWV6R/iwVtwsAzficAtIG4W0Yp9r3SswRz4dMiaedxpY8FYAsSTiqE78n/yc/OpoJx+vSAYBSbDyScGftqnEWyEu5XNdKgX4pwOaC9du9K9lXoJ6ksVzSGuI8UNBPyrspVc6nxfohR1dk9dXGT1Uh73tXOjnecGUVMKXP69ZJoZL7BoWVHeDAbQ3lXppGeTzzeO4P45MF1QnEmp9RFpcEU+EYJQGSYx48IPFhOz99vlxB8sKsjGykyGcjf9ifPCci1t/7ZmP0euvlUr7gGKf5km0fAZls/CgF6nsQgIENM4ATZ33r65KKnwg0j00pXTnjZ+xD0w5YqEI/vUCXAtmOqDNkJwIJNjBQTeA7DQY0HLmSrVybn156Hdx/CXwSAiGA7REA9Y5xb8DWqQDA68vpnJJDoaCSBQMVqkBfE4CyuKJPFrYUKBbg04vtlwSgybQ3ZduNLyy1K9Nev1IezAYtKdC14g//ZMH9e8E3f/IbvPy+4Zv/8wWymcLdfvgGx7c3bN8tOD4V/PiXFdt3grc/V6x/KNg+veDbbxd8ell9TnzfAdDlUxoXGXhTyKVcD36Giira6xL7UxSQ+w7h0bMuBryGvFwhTWw9JrBJlwopLqsuXf4IoHHbTebhWcQ1Ign4cIWvDzDXP5WvtK85x1QY+VleAzXt0+pzoAvkrZcvy9J5AZLSls/Bpt1oCiBWgBTj4dmYyvMp2lfGcputA1Qkuct512RIGuSYmNiLM22Wp5IRRESMVyb5XUSgCQgYiDyF51v6rMuF/GY8p1nXQ8NP5lc8W1N9A7m8dNn3rISTtz+Qr6y9Se9UHfkgxjkSrkWe4bO8lmVyX296HMCBcW5cNx7kxytKAM4lUJTlCwCDgPnguS4PP6jT6Y8FKPxrAP8k/f/v+2dBqvrPAfxzAPjN7c81DivAN1+BUIDLylWyqslY3qhkZcZx2KQq9GP0Zp68/Bk32W2F3ha8//kn6CJYfjpQ33bUv/mpK7YJNbdDp42gSBETrEsJRfvU/6yg8CA5Dgj7Gs2cBNdZUctId96QPr5WX9rcRM34LpU6BxxCCQcGphlzAF+kuRyW1RKT5Dh8NAfxHIW4hJJyLKUApXVpkP3JwMsVOtsmRhLPN0cUE6p/xYhObTwrLB99rqrB+AKJ9T5etlOmcq48F/IzJ++G1vfSI6aQ1pHO48d/ZiX/alzyWLtV6IR4si4q0xRQZ7rak5khs/x5vz4ow8Z9amsp5/FK5SOXn8vJFk8/hGbEvQM6bSwvl08BP7VNXIAcLKAXVviBC051XipOs4dQcVCBVuxMed1nQYQKv5Trcb8AtIa2FLE9Pa9hbYMyEc8Cxi+v1sc0HtGvvCeu5hUYvdXmPsw0AaMjwPQVZWTBJ/+GK9rqHkyzojgLM9l7Lc2N0BpFPksA+SRQTPvWFS7NFtOoi/1z4aia0KhLGcvKz5L8HNRWAmyQpl3hvQJa8vyyPXyH7SgCNBdo8znIMzOPSwzwuP+t7Yn3XrDoS36fFajcZxFASgcG2KfsSUEvieBhU6WSRLF4/0KQfbTW8pjm7/L6nmnmx1SQ83vzvr2qt9bz/M+ebtNvKqxDO1ineEPyEGVg66r9V/KPTO+4Mq5X79HboFjbVWydBdETNAOFIsAi8ZlKKpOyH2zfiMt7CpOP6AWg1T1x8nvxvtjTM2iUwBHcFqsfgCjQFsH+Kti/f4EooPINtu9X7N8U7K+C4ybYfhDsn4DjU4McBfu3gv2bguOl2jAf0pWMPD4iA6hgxpxmimSV7gHCKVCgLZSDCyBuic+8p+m4Z4Dhfy0CQTmP0WzRzetw6R4cp3X81Xsh8fnsWTzzlzwvSU6SzEdjLhPxrKJH03y2z2fovBej7NZ/05gE2Lmei2swQGqSPcwLLsnA8xnA8yS905VV6cDFl2jm7/N3mWbjzFWbrsriGF3J3FTScxmz0nzRLmG5CVA5tXv2tgXc2KRd9mU5+XfuH3x+ZprAA8qF8d3An9PnH/VrNgTO6+IBfU2+xT8WoPAvAfyHIvJPYUDCfwXgv3n8+INDzxUNqEKTZfm0wIiateP0/nwIKZHytFkDjKhyHmzAmNdSoUtFe1nRvlnx4z9asX8SvP5dxe33C7793WfzcnCXu4wwGzLbkoWgJLfdq4PShXxSdgVNrjXBaLIHA4U3Irp5E1HIyUJDXiQT+o/WOhreCmTf7TBzBHZYwDzggI4oTiEjNu4d6Qq3P72w/Pkzg/UQsMOCBwrH5gBEurIcjDO1z5SzyU0bCFe1buX0chJiDQCibXBH/ogGpZVod1bUaRHD1D+OSSonKCtL89rlYTIraMcRqPH87oCAAwgL2RXIAcR4SnKxVbouzsLxbOW9Umz4/7admRv7npl+FjYuypZaEWE7/Dy1PYc3hAcC382K8tTGSwbubQpQq7UItyH4FG5t7kGj2z6Wl0GKvE5Zb/X1mi31pzVQJ6UugWzabA3m+QZ8PSr0uCO8Hy70Fqh2108CEVKAYx/Xm5cH7bxNZuV0FliyVwAPUzjP23cLo5r44yU4kr12wkWb7bc2Sra8O5/hfIfbqzjfvwCbB/C2FOsv3SuTtZrCL4DRpZ/9jnMntTUK9nWZrK4oSZBLfJqWOuFZkoXqt2S1n8v2OZHd285QheqWRCo4pYSFNayUVJgKXZ9dkCwANoxCnM+xlgIUtdBE/1ya/QQgAe2u1DQSsJ9rdSVvGicRGxtNrtFU2D3cgXMcvBFAeB5dzPEsEJ/X2llAG97JIZMZZHArK5Zq4Yjo7R1CFbhXdJpzt+7Pwp5WgewXCrk1Pu0z31tXoSdUuGghj++PLidkQCAL8dO5pO7hOChtsydpVpTncDuChc5PBIDuAPTo40zvhNwG7rkZTIgx9XVYxcIZ4OtqfjbLQ4CNuyoFGauHvGUCKNrtgnkSMAmQolhRBO9K328AoKWPTXgrRaiCWAPdC8j2i7eZnoS1QA5AdkArcLwI7n96w3ET7J8E27f2uy32/f03ivai0G8P7ADuP1SsfxC8fLP4WCnK/Uht0pChtBbbvyLAvpg3wi0BSru4l4MPrBhfk9oMCCR4Gp67ansk7a/gCRwvad2TI525EWLLdeQhRxFqkHlt9vYARmCVa49Er6hZwaZ+ka21lDln2TdbgR/It1Ipi5ThfD4p6Fl/ybwte1/xN/cI2VzwI+0yLAEhetaBcmnrMspHyiONOIDpTF/yDEiy1jB+fHbSYU7A7RXfmdt3pawHGDa16yMAZD6X4TKce4TC5czBUDLz7S/VdaX4Z+NQlulmuRb97BlGQJIewXdmwAEY2n7Zplkn/IX0RwEUVHUXkf8WwP8EE1f/e1X9Xx6+wAMorCp+yCTBW+bns0uSD5zkg7NMA7OukBUWn9f6ZgzXHXXuPwAVE9NZqjFzVdRNoRUg5KyrH4Rs39zeUmy0xeILI8YvC4iZljrWzx9Xnk7l+0KI7+aFMQsUQApr4EJuwCEd/QXSeNh4i6ox7iyou+IxuGJlpQ1wr40OEEWcK5lRanNH7FLb+PtIgFArncmTsc+be0aU87vA6PI2jFVm8gVQ6Sg5lasiEf4RCpC3IceqMzSlI54pbIBMSwRYe2zWI7fc4e9Ky/4FGpnd64bPUv8nsGZQnn2OTuEQeQxc8R2spleUEVDfSwQmFObCpdm6ynAgKunTgRqKN/o86wyc9Rf6uKd+wuPecujC0L/5eWBE+AkiAKOFrogp6SmEIlMOMzp5C/Ag4GdlslzMYTD87Krd9NyZ16wLxucYxDYqQxw7YLSm5pAhXz9mLU57YqZ5baRnBqHQy5daevgbYKBTfmbI8yDJXTLR0Xz51+t1eSV4TMqKfZQ+4x6oH5eptXSBOYUzoIzx3cPYqAbPV2AEJTg3SciNOialL+cu0LX297wu9fNSKs+/cezMwmhzqcu4DkStLYoed44CKIoLrB6HLuIPo597R+ueADwn5jh7Tseg+Jbx/FMK8f4+29YkzrgQkEmPPLJy+FWbQs+uSJK7KvdTZRhVV4BC0a1p/GvtIQJeVh7bvj+XcQx4nCelfrDuZ+BN1c5vf5bKW5z9uX1c33lv52dFwiMlPBldKY//4QKxrwH73M8vB41kb2bZh1mz6fKvlN8KeatADoRMIDV5swA9v0SSO0LxJHkoDFQjDAJVugIMmCu+SF+/h0JcoQ+wAbDPXYmO8KU0L5LXSuZn0nOYiKqF7WraC6WPs4rEOUGPA53WklJRoPIp0gEQ9xbSIrj9qCg7Qst4/6Fg/yS4/0bQVhiYUAAehHIIcC+QjR8YC7cxV2PnmvpU4OCIWB2q0NXqPl4XyKEo2+HybbE1uqsBCTHHnrtK6e7va5qGp9YchEmy2axEJnlOhJ5VHs7n4asxJ+TTiWcEzcDrzCNm2Tmfy1mm3NmPmBR/rqWi9Fx+8rJWKMIb9krZIyARIVuTpT3Lqs6TL/tGb5B4lzK+dA+GaG+Xcy7HATgDB4/o6rmswH70faarM3v+fH5e9VzW1yjMZZqPKQRzUMwpz6HLVZr3/COgJRuzgG6cyd4l7gFCvnMCBPKczF6sVyDWo7FiWXOZMz3y9nT6o+VQUNV/AeBffNXDAhvsO62VSQi6sublRV6LKUeOHl0pzgACEZZtsw1MKxvBhC8sMi3pYFKgbECpnemaFQg41ezChTQ+Y+hpoNKxyI6Lzdo6+JEQxCGGzus45ZigsMlD6ErxIMKax3SKJYr2sxz3YsigCBkeExxKLj9b/HNbB3QuKbF5/nL/ZmtnroPeBpkRpvGPscsIbgaSpCDCKpp5KljyG/R3mgIl1U0UnHMnaR6BDnjVarF+qoP7lMztnJHaea7iuc40hgR7E52U8EfPTEhqtqAPyVkoBM0MLVtprw6h4QBLa5hWargMtJ0T5IWFPR+YR9oLufwrz4Qr4b01gMl5tHQlvU3zN7UFwAO3QQGuAJ20HpT7PFD9Ou6J1vMRSBuVoQF4atrBD/K73I5tmmcpUb9ITW1tyApRT1hXxv4kr4MoMlsufUwD1Coyuno+IFpAAnmPfZ+sS7meDX3+KViFC/QsLByJp48H42X+A5YJnM+WAVyeLBD5byqQw7mj/b3WLClZ6bx/zGWR1mlNgsOBzgOoLDd1xcBjS3Va76p97OjeXXs7BQD2w8FwxcBzObareyvwtdaftb3fk9jpUkyGPvjTOlDpSqlgBBzDa8qXItAV5rAEc7qrK5pZKA9grZz7UMopx88wh7O3AZ//WgrQLe2VLIiFkiPjGqZnR/YImPiTLqYgh9JKcDl7L7RJmaWwWa08YZ+Pab362ORnkZQIyW0JcLRA1xJLOeYIppwJyxMBiinPkSvJgQhbo97fHQGWyd76Okh9MWWo9P6z/JysEuhJ/LInBKcx9cU8ZQrUBbW2mlFIDwNmitDSLd1z5lAInH8UH6OZrekYojeAYHm/oPMdDeBT+vomiLGRx0taR95XjGF98ffiiVgLsPzcUHbB/iJoi+B4BbbvBe9/qiBYMFAD5C4oe+pDcQCjygAcxNwQ4GB/HMxotwLZCSYy70gLr4pAEgvQboslrIxKNeRq2bTv/ay082/3urSyuMdq9xwjMEFZhd4Q9OaizMf+ABgS1qY2PXQbT2dWKPnUH2a9YwAhsmKeQMhsIHtAJ8+qfAbm0D5N53gADNwfk7zJdmUjE4HKC8v2F5X2X/LdIyX7o3H/Wro6s6/oK7yNH8nWH9abZcVHckUuP/4hb3ukyPd+ZW/bU7lcEx/1L+tbV5+Tv3wN8DLRv7WkjCealZvMWMg8SBlkEDFhDev1IuXBDi9rWSByGHIcmzJJMBT+0vt0yTKGeaCo4vW3mzHSBpR7M8GnwYR6APSQiGRVRYB6zsgcCYWYwGZWIrnBkiViVuZPihPQGeWRQAPAxnVnltEueJpnQmLWLK+1LlCm74aY1ZebHRBHG613/E0XMrad7aSAN7c9v5vbA4xMPPppcyl1LCc2Xs423wfWxmJ5CeHXhCVcMxG61MXB1pIiplC1GyXMi6N1tpAyutLFLMIsSByzFLMuWRFAYk4TIMSwiYGodFxQ9v7gQUVkf3CTInjUX4z+aPpsyF5rDe39zOXFOJYYg0fARCjP8Y500JBt4TrkvvB4TN33UYi+Ujh4owrraXtSsPv8xdqJ/lJgT4BPU1CSHcCWdNhHPg7Ob5nGdgAGTBBT37s9Z4gnaOR6Z4iPSF+HeR0kAYIWrlj/UsbEiRUAOsgTfct9YbGTkMy48UhklQWt0mJviQh0WUL4ywrMkP9GUv1cwzJm2s6Zp4MCHKRSUqPs7AWkM2/iHPN/3hKQrddUaDx5YLglk6cx6zrQrWpc+0uNtuTy9NNL5yXkPa64SFYGXdjO4RRyaPJCWPo5M+zdMlpcmylx4PqbBGh5u/fQh0MtoVv6PredFpPB4k6lLStl6qCDW3n1lpI5urLCzPrDOTaRVh9/txpfPWdAfemJCD3zeQ5LymOR+872D0AEMIFzzusInK3pJo+S5oJeE0kpzCEBjCEfXO+zAlkKsLfBI0FX422ywxRcIJ6JcBRahSWta47VnOPAwQQAg3IIoM9ftEegTbvhhP31dkSbHeyIc4dDXGAABMSAKiSRmWO/VnOTP9L+DSXUz4vsPaUeOsPlTd5eq7nH8zMAqHaTA4qtu+NTDeW67Ip2mHt/2VoHcoop8aiJBzbrS9/HPkcuR4qva0uOWi13yJbkUfFndcofQT6alealuLLu/MD3UOYL6rxBFJCtod6tgXIz0LHsAiig1Y4LytPiEyAAyl0gOyCHDXd7EZRD7Dhrff2hIoCn8EIQYP9uRVu9jUVQtmIF783aJmn8glcKcBRobbEnejK/tLfJ00KG9Gfdo40eVkKvlVK6x1Pw7Nr5KsvMgB7g61aHegc+yn2U5mu4XW4AXEqXJZFk1VhULRXjHjBZrivi8ks5n23TeumeTxKyY5yhcwhsev+U0+iR9xbHBjgr6QRweqH9uVnRzTLeFVhwZVh79LxO64mfzfOZy3mkV2RDGTDe5HEhT2c6jWH2NLgYawDjeM31ZANIqvMyTCaVOXgUp7qH9+b5mHXjTF8B5nwpX8avB1D4EuUFRKIrVWST1etns+DjA0z0PNPJjYULlUpFCPmK+nag+MEge2I+pJlJQR6joanNuU3hxhnWOOl9pgU3M5jc96uJnz/LHh0zU5jbd+USFgdg7c88QrVmZkAXtEfP5/HP8wfgdE1dvFNMIUvJFA1MqWcm4e6VpzwUXyIRgB4ug3Lvh763Q7IEdoVEs75HGzijhZiUoa+h2SU+l/uIifMgzYfG/OzgHTS57f+i9rnSnj0ccMGwmgKLj/nU3hPCWy7mb1J6oszwTLhoc7bil9rXW4wlw5G61SDAk9lrIKRX//tQnKzqg/Bga2cor0ivim1D2k/zDSBXZc83q+Skh63/HeuMdUo/LMPSlgGAGDMZlTJtGEJuRMYbDNL+ttmdDnrgPDcTwDF44eT1MfOLiU7Aj1z0I9eXnysljSFd2y8OaY5RyhMTn7sgEC7ijfVe9FU62DwMRUuZ7FXdi2wS3qkgUYG88t4COrA7K53B+9M7xc884JxEVZIFsygiS3UBUIpZh9PwyNEsbKulOkJpy4I6yz26tTaAkYv++BzFtWn8Lq2JU/btBzRYg3I98zoRWwd9XhFgApYC3W0e7IaAZA2nourtVkHy8EPfQtyDnNMqLlZIGiOkfZbGJocOqI5OWFdC+iTHxFE2tYGfWQoEn7Pp3Bqec2ApPtrTM2XaU/F54gcPQKc5fIOhAd17QqCLldtq32dHEZTNEhNqm/hH0VEYm5cI19Ph6zuDRX629JAB2N985wvnpHKsSh83mfdnSf1u6jetaFxyUna1sAb1Z4tCYGuGpcghKDsiVGIOfzr11wY3/lfeZiEYeKKddQWKFmPBfkXIhUrfyye+p2NdHDPyVLWwrJwE9ZQnZJZr4W2cQItTCENuR5K3B35z5f00X8EMl9keWZyvKGSotPEfeVCLYAAp3BtxkG1IPMuvvJSHIn+BjPkl770vydNX33/h3P6QrvSBK/Ai6xWDon0xnldeHRf0oZJ9NeZZJgPQvZo16sw5LYZ6pvK+mBAzDMll7P8j+mDOvib55q8HUJgFcjLUTRFXKGr6O+52TdeyxZ23HZEMxkAkktbhde3ugftu7u3NDnwB+iG9LmivNxfK+oSUvdkhpEDZG+RtvHM4EuaUlNwqC5FwBPo4+hVi7Eft32WLlzgDDBeuTKX0uNpMc3Ik/q06JAbqYz6ho/HdxKCvBPLFFdB8PVWun6hzGt+BuIww9q4AACAASURBVNh98Z9c7o+ju0jnO2/pCrcuQLlZIrZS7Eoh9U26+9i93OKqyGEsckb7wfJf+0bPltFjVkxY3sSgirsp54NmWUbGnf7m3bTcD3OuhYdKMOlLaCrLbNrzH5CJzIwmM7Rs7Uo0XItI5YbW9Nva54ZtmJBSPtuH4sIqn8dnUio7kuvlZhCkXCcY0n03RPq2dus+AF4BKSL9GtGWFeRpfNM+EQKGs3Uhr0+40EugYk4im8v10A4m+IzEQG0CplgH0PfEsiCktLk9ETrS/Hpbs57Z1Zc65i1hHoNl6fd0+1iEF0pzS13KyWDv11OMevBh/yzCpICB51qdPo+XCQ53Gz/PID4k35uTkKY+zV4VwZu2HcN1YCIjfxEJYVR2DAKoNFii3yxwl2IKiUjwdZnupUZl7hPPE9L8qjaOlZejE99VntjkpfvRr1xkG9bFQwVSIqcZ4HAlyEIUentPlCyzs3t8xIiz3xw77bkUdK3Q29KVD7aH1hT3pJD3w6zU3g+RMfwh3OaLRry+ue8DkXTvbne4630zS1+6m3xcQtp5fG4752bioaqKQmGOyhHXPWBJaJlYrgpaqfabCftEbGjpwScMIwQibtwHWzi+Sekx7xN0+agKGmPvB28WQVtLhBQI0PdPVsiuhMalX7kYniClQJbRCwIOTklrkPveP/fPdEtgPuByifQ1l5Vq9t3Xotbia9ct1vN5lMZF2WeWWwpardaOtO7bUtDWgnaje74ptQS+zPvUypCtAQq0F/P6KffrBL9o6B4mvm9lO2wclmLrvXpugaYo73sK1ZvKS+ATILGGDHxKz4mDUyWNaQLIy25tDwUfQKuC7XvB9r2ivQCNgLsakLD8JFh+Erz+VrH+pCh3NeNYQ3gQWUHo+SR8H9tNE5a3wcKf6FHggMgqgFRs3y3RJtkV6x82aC1o7lEjR+v7gETwfVZ+AlSp4ZmgnpMhANZ0do7vpv9FjOdnfSLPyRReM3hDi7eBXs00XkWYUwrt3c3zsctgzlvaAahcQw2sM992RCPCrDTPMsmVFXw2IFjhwyNZxhySRs/eAayDnpIt7UXgMTCbQMtBHn1kVMuhoZlmWfsKkLgyNpFn5/Kzoh3tbB1IyAbAB0BMlkXnq8OH671nzxRM81fGOb8K3R7688hYmECG7LnQjUQJVJgpy3AZIJp58Bc8GH49gALQhbeZHrmvhIvPxcHD34MCfKEM0B3/ETrrB5a2dJWiOEgQQmuLuLbZapMV/MGDgsJVc2vjbMnic7k8Hp65bwQ+ggHq2O+r/kRZSakmE88CbD78U9v7PeKuQIY77rz48thftGP+GawqZUrAeNWXJBzTrTi7k0vBYO6hQDODLA/caIMe5NjIDOUy3n/uexmfH0p8FPqRLMG/2EsBXUE/oYtX6z0DOld0qXDwBo2r73QYC0Ps+9+Aj0FruLzr96odD9Hd1gGEDEgNzZdg1pHTIlvoAcRtITNJWo9X/UxzO+xjrs/51eHKyak+ChDp8I0bSmbPANZBZYFrkDQINIkvnjxXHvCLC5e6+brIGMv8TuZdXFNsJ8GVE2/jIT99PtPVHomvvK8FjwWA+d3M4yiQflQ/P59BwfRseBXQe2u/OKeAnvAsuzsyOWNRU7DWnnxNNjtrZHMANCcy9r6EApfayhuI7Kzgd+kWJfJFnk3B29I5Q2BBSlIKMSp+qS9xFk7nopyHId6N5FMZfJjPoAJTtibFLK7ObNdAwi+iDBZGP7KSoX2cahm9SHjOSPIaCI8febymTm3of855E6KNjWN98f5cl4MJNEgowW6u+Yo+n4MyBoQHQSZfe8K/tbuiD3yqAeHyLwmwyFMUa6x0oBDj/KLJMA55fdl4ODiaPaOKeG4ARFLCIfdB6WWJ4lqRz/9G3eP/M4nCwg34RIEBYfBrFbN8lekqwSzbt6QcGHO7dkVBQ9l6uct7wfJZ0Fa74cGSgsPmeBfUN8HyGVjeLMm4NL2ce8n7juMnVieKAd7lSAKNIHKOHa8FzZO71nft7a5ioipKv4FDpAOfV3JONi7k9dI84Wvh/xNfvvJCyP8TqOO6uPJ24O9aILv4+VLGnEKznjIZQ+wzOcuyX/AcGOTJKRTwIRgaXhTJ4v6ALuUkKp+/UN78kB7JlV/hav+wjCxjXD5/sZ+mMh5a3h/IRCcj30cU8uWFzPNB2V89Hg/ooez790Ef9OHXASiwn4xlpaCkk6LdEsoSca4FOKaYdMZJqQKrx+2zLD46IPuLsf0c08/v+CdjUJ0hyn3vh19DWOUjprsUyH2zg5Ex/PthwkdKvlQA6NJjKmmlkvuUpA7oaGy6EULXxcaN1rxZMT1aWN/CWqYUPB3NI9LIDOQA9PXmcXvmJSHvd+v70hV35btUBvNNFfO1U9kK7Yz/lPSkVhdq2gkwOQlHGTTgbQf58KCFHHAFhgL+Mh46jHk9ml2LqZ5g8SMm3xQRe87nltQ2ItHZSwE9/pbx5fOBoKrdEveABje6C6E3Eo5ybLLVmejtHE+V0efo44SQ5uy1+aARAcMXwmrLZ9/fc8P736X0MKIhCaiPFxXOZXqGYFEuK8cytgasS/cWYNUBUjmQw37eN/NSuC2IJHL0ZAL6OAYA1T0YUMTjuhtUd6uTCkceR95mEtedHj1JZ6z/yaqOdKjPpK3HuEbyQgcg8jjiC4cKw4Dy4cg15AkyZVm6lVf7mpvj+KKfvKqLbchusCK213htIQEGzl/s1dyPgm5J79ZCma8lBbrAFLxojzbIzDtItNYeh0n/ye062kPPOJ4p/B7oPDfzOo7h62qWd79yDdtunib70XMPZIV74WcF7WUJq932m1dsP1TcvzXB/PZjQ31XrD/ukL2Zd9x2mIWf7rxuwYwrHgHPVdCvfIuEb1mI51DyT1f6IjmgexMcrzVcrOvnzby/vD8GbCsQWf218zXHzsMq6XXIe4ucC+oeB8wJIHe/QYi5GACzkorlFpCmKJ83szi+323t0vqYPR4/SryY9zsTg5K4TmcgUxsgFbitkTsh5jVZ3WMu9vGaVM6vuIU0QCARv0K1K89yOOCz2v4y624bAXyu9eb1i4ScYfUp5P091iJKMZADMMPAYYH0oWz73huAICp+mS8dh8kGWV4rxWQVrrOGSNiHDdbn5nIRQaoKCMGztYb8NsgoyhtQNOL0ld4pBNIgQNFY++1WItzBxhJAVb+NAZ5M0NZX2Q4DVlYP8yDIwlAK8ZueSgJLtNiZETwBnhurGPBWgbbW2GMKa5dWC2+pnzfzJvE51vWC5/tebUzCyHXmAAia5zw5BOs+7mM5Kt7+nYL7bwT7N4K2KMomKHfg0/+rWH9WvPzu8LFoNhbNb3lw+S9ADHqvOkhDDw5pvS1sX7tVtFvB259UtJuN+/qz4vYH5ztF/PYXdJmcx5h77Y6eAZSzXCbIHmX0drwtYdwIj+IZMM4/2esygwgyht2Ie0to9ZDWl1sHL32dD96rgMuISRaggUMV6mfvEG57HA5uTbLADCbw/I/GpfNWBMjyX0u3jVEk8VxLw5XSE/UcRSXaHobUbHlnwmmei5R1SNkizjkawKok538JAE5GqytP1/l91XTzWtygkWTydL0wx8rKe+AdcRH+EO97iPMpYXe03WW82aMknynaxvZ8RI+MP1fPPJIp5yTmPJfyM+wLz//ZcHRBvw5AgTQM5iy8pYWbP59RR36XB4qKsCrkWMbn5vjUtPgHIshRulvQcL/sUs8M69HicMYSyiOFkKs6qYxnZreMfVVJ12pSACbxgJ9CD6DawYMUtvAomV+UkecjCabDmEYSxN7/IakS+1FLZ/zpuYgFzldTkjmHAjAp+uIMumBEij9CLlt/N8rPc5zd4Xmo5r6eYrwLIjFc9j+oFcBxzQiulE/gzJgeMSuwSRdtYT9JX0KCL6z8wUxyOx6VMeeJuMrBkNw0h//ZZnrKDBauWUlN3xEkeLRvGVt40Yau6Hg+lUmxuqIrTw8eKicmnm8m4Oee60E+Oj/p1pnLyGPBBIwh1F5bEi4Rad5mcuU9FPtmOuDo8TFfMZcphKNU7rxfWO+VN0qmpiYN873gsWNS2wAaMsiRD0Z/b04kCaDz3rzfchkBhuipr+SX0prnAOg3LwCIMyWSIDYY/0QLgCEULPKsNI5UNiAVx6eC7ZviygCw/tzbb0qpdqWf63dvEJibN4V/qQWytLAuRl0ODMd5ldty2BlRtrQG1d2rj3R+UNmVrmxYqJ+AC50AxDDW015SEUtoV4snPFaT/za3Zi9lVHCpVO9JAWE7H/CDh1YaWpKCr6QzpJTY330PlA6g5X74uqdngskc6HkVBKMg2WDPZwUmwpAwJGcM4CET13uEVfLaTNjtGuRrBH2yXDLwWI31mMGNoNbrQvX496X2JNSkWh14WrxfDrxn4BywqxoJJlCWWuDu9Oi5JfnaAOZpBzsInKCDH4VghCLc8UG3e88zoP53vTezrnsd2UIu6nMgeh735J0KoK9NLhta+wGEV0SWs6bi4t3MYgmKLOd1LEiyTT7jk0xZtob1Z/NQsJvJLIdE2YB6V9z+oKge5nDyGiqWjDO8IUoHKAOc4Ts+JzEfwj4DxfOLlU1Rdgcc/AgfQisawJxac9LbkNMn+Z6JWKPrHi6iflWwbOj8OwNSTXsi8qkehg2H507074Iyf8nPznoKZfg2neVfQ3Mi8fwZb3WI/7mfaxitTsABZdRHbbj09itn2XFWsPn9rPfMcuu/iefYpRzzgRwbdfl4zDLUI7rw7oxyshx5MshNRpC5rslT9zQf/DPLT3zvqn30bv3o2fxO9nJu0xk4zVcOjZ4pZKxHZyh+TYDCJBCG62kW+DKixc+Afqhf3VLAHyqnZFZuWVL/PN/pHai4CymR8Gbb+93H7pYXqP1a3Qp0+DuT0JQOc12Ko8EJ+Zs9C0RA90S9ldEKlpM7VhcaaKjNbQ8hpPTNnhcDFdj11j+7EjqA7mVRiwlw+9GzmyewR5fqHhNnQRzACBIA0OoH79Es7s77ntss7tkBdEUgbkpg8rdSehxrVkSOlIdgOACSsMUxBUxopNK87/ZDq/is/Jc+PnO/svBg6285jUe4+ddqLsmzgO0HhPD6ScDyCrDfWQBGasuFe5sSKEllC9uWx4tW/pZABLW8CCIJoc4Wd69Pgb4npUAWV0xzBnoYY+L8DV4IRUzhzR4cZOT8u+39XTJgeoDkMeAc8HfT+I7xf8qcHIAL3MmiyfoEo8KeDx16BtDbIvZ6O8f+s3+1wsJzpkOG79HLgbG9czZpYGwjMOaByGMwly/JRTMpKfZOV6ilFkS8Z7h1J0svgdSmY+xoXu9i+WcA9MzarJMeVR+BN1wziefryxptl908PSC+pqncBchSzboGRcTLp5wV5kI8HX85n0eMe8oDAQzX1SlBWXUlpcAEbmbcbymXTNyk42fD292UPxGzcocbs73f1oLjpeD9h4r3HwT7t+Zm++m34iEPHid/mIcCUo4G2XZAK/T7F6jH1aMpRGuAAPx9rJ3vGRDgSl2FxVQfivrOM9CYQvm891uGAKAA7XUNRVAF0LWg3N17IlztM3BcoGsGwm3dHJ8WHC8V+6eCsiuWWlDfdmPVq3lYlPfd2vPmZ+22m9dP4j1DyFwW6K/WXOnr3v4vsTeCx9ATKM6CMp7viah8MaQAnp8kzjWBl2/8PZRNVUC7slk++5x64r+WrdcEgjifngtDl2LbRdXKdxll8ES5UpC4P7kOVweDG8abIMQUXCkNehSIuteRA/T6skJrhb76jR5x9aFTU3Pdp+wkYsq4DVxP4se8EeiAVN4jYTwQsWSfACC+rvdmRgk/g0trOF5s7Mq9KxdlayjvyVJHhZbrtDW7GrM5X06hQLGP3HOGHqYBhhymqFuohbc7eTFa6BJ5ils4s2IrJlO2tWD/ZLkT6lvryu4xWgsDKJS+jsr7gXVrKJvi9oeC/dXmo+ym3K+/PwL4aLU4/wLQHNQpPid+U0aEXREs8fEKnujHIVRjDS9vCr0rls/W7rbaFZPl8P4H//Sw4aMNOW1CDmxyNoCVfhOGVebeQKut9YI0n5T1DrFQsiKQkkBIroFSwJCp8EyYFVHOUwYjMthBOSrrH+l7gclf3cI9yXDZWJCpyDl0EhhlQRoMAjVLcgvLz4DEFTEElXwxh5elck6x/jn3wSxr5++vaAYIslckx7LWEyA85Ae4agf7nNueKHQDygJXc82iKROleizXXWpn8qSgh/ApgTtlyEF2L8iRWifQZ6i359YaKM9xBhw4l5Src3vj+4vxy2foV4Zg/DoABUFiHB7jV/r/4ZpKQZYbkVRGpHJALen2OSu35XqzhxCQlaxwqSshtJqLGrqrux+e5j5o7+mc9LA6iu1MN8oHeiKifHWVC10UXojEDwdxFuKZKGUqGxRYmKwmmIMf4Pyslq4I7UcPA+E4zZuNh8p8NzA34TFuPhvfySshDsBu8cJxQJofDKFY+DjtO8Ld20lYb1Mgu3p4X+YELTneNcJHvAwpLx10ygJkprBOXCiv+Q5gVbiJoyufVMKHcWznDVtKB5l8TDSvjZkhsQ1kYB/EzEVoiFzU6/2ar56JMAa/ljEOd1W/rjMpq01xffIhBHTJ4lAkCpzHxedTpmdb60kK52R8M/MGEOEp8wEaoS95XBMjJpAwj3mAEFOivUwXmflDKdFmwmkIrh8o1qSMcofHBh4oBzb/kfwzgT4dlLzw/uHr7JdQ8N/7wUuBmoJcrT051lKHcC7AlZF3S5Y3JCYU8Tha9+zKyXgJ+GagYkD1pZ8PGWTNwtkCP9z3fm5kt0Mp4/wN7UrnCa90dfAivi/GG1RaT4zn8yTbMbZFNVxx1f/PbR4SrBVTVsrRgDuwfjaeWTb7rr43U9QTmCD02OJ4xDwg4sfF+T+F4/idLa9q1nSQNewOpMcZ5Ul/560dc+39FwCuTGGtwHaYfMtwi2xx1QJdgP2HF+yfKn78qwXHJ8H2LVB2YP2xYv1xxevfHahvFuKhe4nz5OQxpBo8YqCWrmijoHy1d3xehWuPcgLvuydwTMUvyxHcYupz7u0p6VrMsjvgMlnVqQSK/waVNir5BdOtCD5/S/H58v3pwmQYSCiXwMIQhNeiwurIZ6S2Ygr0knnFWZ4QB7rb62rXIadrMfVldUCs9me5TBj+kxWtTL7P6XFpZY77vq0FUgU4Svf2EPRzJ4OgCaSp99Yt5oCFAe7akQ7Vft2jsq+l95myxWRwoVV8AHt2C+kxRRsxzwyZEJd1eDtDyD8uH7Htx2vF8WrAInMXSFPb/xXj+8NYyvCZHPbOethYie/rnHRSisZYRz5EuxfC1tOhEG0GimT5Fbbe3fYfgATnZflsVvL6dvQQHk/gKPR02o4OJqiO10DWvhZ1zuNBY1qs1ZEsMW3fY8J3CFBT36AsQ35cbL9wXZyu+eQPEB6tg/zQeObKJBN7mW6cAdA/I9CArgwG2ED+SzmSZyH58NWtUczXkr+aLeUXivbg1dfSd5NyO4AJuW9JVpzLvPSyveLBfBZADlvL1nOhEacpsjfi8G5uK5AU8KPLoLMMT0U8ZHYg9v3YKec5mSdP85Dk8FMIxuz9UmWsI+sRbBvLjCZ8IURi9kADqySIfTEfM5CT6aO6nH4dgAKz2y7V46l65mr5/B4ZxrNw3LPwo2erZ0Kg+bDnwPKQzchiDFKP1wtFgoyIg0wLmJdhIQ9elyQGQCLQQabjQviQqIUTzbDge9qkFF5DMOh5FiKuDZhAAuAyfGIYbi8vW9VLUvaPxCzY1vzsxFQpUA9X98ygRtSDnuCSbcllAj3ZExHk4T5iJjdZUp878wfBltwGut5fzrtnVg3Lc7X8FfcN4T5G+kDxG5PB+STkOLsi8Tm9DOSEoJZrJt36zQynO4anNmhBP2h+iWtdqvPyACBTv987A+cYiiCu66yI+LSBwm0uHYoJve2Iqyu/RHepNOdDM8Ce0pXyZUHEFxbPdQCxz8ILgu8nIZrrnUNAtJ8MPiPMa1pzTaG6o7uppZweQ7+lf+7eL9rSQUbUmH/X6T32N7u5ZWBhxi2ykFDdSj+Hv2RFnPNIqyCVecDzwyhUjxgLva3I13VhqdB1gX7zEha1HhJg71TVkxV9WDsiyOFUsh/9phjyzYm3ahFzuQ6lK8UX2wNd0fdY9b43/REqU9kyHbcgeD+cd0i+uYZKGuPDjtaBWYKsLCvGFzYP0mPj6eYc2dvJt1VN5mkN9bPgBqDe7TwzpboL5LIdfb78vNDFLKY9GZ2tNwFCCaNL/uBeTmWUbGZPMflw8EEfxFF6P5nUTnxM2lpQmikjHLfjdTEFZW+23mvF+5+seP9NwU//WLB/q9h/OCC7YP19we3vCtoqeP3bA+uPNl8BbMxnXbJ6fjHEq05nmo9hgAm1xDPCG0+GEC3pazSvZ1q0AxxooKXfkmNyDgSuRXQwARiUTKCDDznBs/r7yjW2AR0Qcp62JDABJoR3T4WkHBOcUYWuzTxpSFyXXNfVxlhrgd7MC01Wzocr5e7tEnkIYm5szQawNAmokfDPvR2iHwXBA8zzw0FsH1+CY4W5OXxdxzQpumcCx9hDlYSyGRChBQTRLM9CCxd8aak/wafh+62k/QvjCZXjMN3ytE9gAsss5B02DsdLwf6p4Lh12aIclEnRb1doiu56GLX0+pqibIC8280k4uEvvH3K8rf4uxwmzp+Pn+zNwccOsgxyloxrhmEPy88HZGuofgtaW6sBbLvxZIYsDTIlwYR1GcocZMRc/0ziYAjDzNgnCCI3Ccujx0LE+gssl4gO50cQ92DaNycDoaZExcfR5Y8sk/L/LxHlJso8GVSZE4BTXsrfzXV+ZLyY+5bzlE2K7EnZnK/LTmWekkKzX18g8uFLN/yQgY+hjtzG03sJmIicVyXJVRf9MW/aBwpV3gePaDZwXVwv2o09SOOs43eprHyl5JCL69FVl195/WXQHNKRPPa+FLLy6wAUghl2pmLMTocNOm8GcWuCKW7JKkGXpiaAND90TcCjx0JYpgN86Iwy8i0Q6Xf3VBtQANCk2JLBJ6WAgx+okh0UkaAo5wDIQgTbQxoE5BSTlxDWHJspgH1W3EW9IdqttQIvqyWC/PHzkNgxFKcKsyTmpI8UsJlQMq6Fw2iZy8IWFYeswKe+MMSBz+jLDXjp8y97Grcs9OT25usVCbxw/LMwqWqAlIhd76UeunJbh5CXAIm23a5iy/XRkpmtlgdGlJHteb/7Z65cU9GgZ4WmzZqt6kdfUyfUsxSXOw+cwhxILV2DBlw/A/SQCbhCpRMzzsLBcBBR+bJ+Smb0oXhZ/wIRznMCuEVAXYEewZTuWlxHpZhjCwSYKLfVk2vKGFogxUORWs82DvSQAB4cPOCVLuvtxFtiHJYKc5VP7tOePDSuJ8teLMljIhST44A2M01qdsP2A21I9Mjv+NwUOqHpf6F/OcMoMhgT4yV2BeY0l+ruvGGB31uvM4X/2POuVcwA5rqg/eZbtNcF2w+37qq9dW8jAfp1c0vtHkcELwjSzCFpmbKwB5wsSubJZQneZHNvE74zK4qiY7gN+RZ5iAtlQ/Izjgnn+GinbOTWpuz+m3gDyN+tXVot8ZxZ5RTi7qm6VuPje4uEeQEkfDZlqf5s7v4QiQR2sh093M4T7ln2dXP7LcfRFb4luTZDox7ujcFjQRAKERPrRegDx837H3kWYEtxvmJyzEjfovyf/+oTfvqLgp//Crj/RqEvfq7uAtnE4r4X4P6DoOxJsS5isfKsg3tGHbCdQwgrc5IkITPzugxO52Sn5BkMc0lJAruXR+1JlR08k711LwE3JGiq/3Qb1Bwi5fMbijxgoIy/K4d5EFKBby9LjHO5HzEmcqTyFs9VwNxFwb9LPBPjsNt+b7cFUtPVfqrmCq4KFb+O8dOC5acNZd97on8O81K65wr732Aymivc7VbdYr777QjiCl9B5HVYq1uc20mAp0dBXK9ZXBEAOogmfQxsvH18FObuf2F5H6h0j4jhSkWxPhwvNcC7+t5CyafHyQksann8AV5Fuf/wgv3Vc6d8svwHcth6a4sLeS/F9yZQ39X4rXtFlHRjQlyP2RSltQAS+jx3eVJ29StL7f+y+Vx7uAzBZUnXFhMwCY8WheeosDAp3QT1897DewHUvZc7K+ExnlV8r8m4JtOzwUMIQPCZppZcM4uLtfNa+1/6+wSld6vb5OAOFMdcsa5YdJ0nWL3+/Z54D5/je1leyJQ9M0P5G8HOuBp5PpMur3fxcq6AhOxNMX03AwVxuxQ9HqJLMt5QdgpXuNhD7hEQcnUKD3gUt39KSp0V2uPAKQQhUZZp4xay3HfKoZTTUzuxLJb4OQMrV0l9LwDrQbkHwDBaAUYP1S9RyKtk/r2eyOGX90V+lv0ArsM+xI0Lc0LzK7nrKhTiA/p1AApAV7zmTj1k8GlDZyUSsE3H/Au1uLUkHZpzOUlQHNHWvtAFpSdukw5I6Op1ZgsW0OOupvbPSQjjmct+y8VnqQ8FydrfDycFE0eiC+JE0md07KKN8fHVs3n/zO/JxRxG/Ynxzu8wNCQywE8b5ar/MzoegqP02yZo6QBGIT8rLRSK3RoRXgUnBdOE/i6AFgzhDFdoOWPw29HBhFwurUuZV/nauHJnijnNlNHVjxjVozGli2iu/yqebXbdK3JO8DLTdLXjkFE3QtNTP/M1oK3vw/F2AgFgh5zIRXxj8gQJ0iOQXWm5Xc3rSkj1TEUQAaXZHW7oX+pv8n744j7LXiuqUxgIhZhpTmf0OOr2NiYFUQsCADrtzaZd6ndlLMb4Klzm1FezFrbXBcenBfs3FNQBoKHeFWHMcgWXwrdQ+CIwyv1/xQfT55IFu0EBLBH+ZYLiRRl5vCKkQ8Z1TSH7ah3MIFtSPsYwuQfznse9wj1gvL5J6aZl18AFRXGXZTnMfT6Dz20pk1AdWgAAIABJREFUKVbYf7O+BndZRo9XFnWe5ArH3NcksAZILeb6zGv1LEGihEux9SudvVQY+bcrYmBZamVrLXj/vuDzXwje/2LD8v2GYy8W0nCvKHsv/3gBjtWvwKtiQEgp6ObHD/jQleCavdrSfAmBpbSXupCYz3f0/6uER5M2QeHcSeu3bcDGQC7k0plCRxBPUNxalxtExlDEw2+8oBIO9NCUVB7joC+v+M1gJj9qDbostkY8L0PZrvYn0JYLPsx+VLF4f8EwfjaGTKwn45Z13p/XnyVrvEiAmqtt6XftZYnLRKxzvhpRxUCFkpUpV8iNR0usV/My0SEhIT0ytNpYSBOUHRiAhKw8A8P7/gVQCvbXiv3bYre6rIBWoL6xoxr2LNYXngpNRm8QSX3gmDT3vLi4mnIASRQetmFrTkqJGz+DZzdLookC24+KASwpm4WYBNiZ+OZJBk5nwfwz5EgAQA+DkIOyLMwlwfoINJRe79x3M/KJgbrDgEz8/oq/xBp0Pg500O0BEHICMOcE41wfIStRAb/g0zmMdqYMhFzQLF/+4isFc0gCabaafyWdQhYmnnxFlOXmUMxHcnP3jG3jPpn5ltBDrZyNVVcJvqOcC5mJ7wHjmTKHM3zF1Z7xvcupPWRGzvL80ObEX/5N6EtefhP9OgAFCnbJ9Wm4eUA1YnZ1SwJ7uGIAgyCXrUNZmD5aIJKRyINMp0pC0J1p+v8Ct2SnKwajzH1aYK7ESrODx/53QYCKKplO86uTcgbbcAVP9bh1LBJAEmV/73FpJ1pqLwewNm1HbBbF0jeux4rKcQBLRbuto5KpHVGW9/0MiGTmOCsvFEBlOliTkGbuuS4YN4kxjWt6No1FHQoSLZrJcqivN0Oj3+/dRTlf8ZSE5XCrnkEav5qTYTZ9Pfl4UtkFDMmk+zeVHk/WFtb06gmncAQvGq7e0a5sa0KuZUZrZ4R0PixCOQWussAO12qWKfaY7l30OmBSnlqjLN13i/273Xrba5Ln2B4p5o6a28H2Xdw8IZnR5uuUgGgvrzG0d9MzIuZtEPtM+wHdtHsxALaXqEgS4ImrDmX0OAG6F0NuP9vM3AQEovh/0+hj5CGgx0VW+B1ciusP7zLOl0gHtvL8FoGUBTNw4IPVn2UyQNQkkCQgohSI3xSj2xbjzbWsU26BWNOgwlUtQeJtRXupJgS/FheggbLYdW2mAHsMOa/NKykZ39G6l4Hzu0jgmLwP4FfXDq799EAjj9ydt9GThs/ekqXBxyvG/ZSUse+54B8kTzyX+Ve0vdbI3Rg8j4D25AEQyWWzV8Fi78tGgAumiN3c62JPcddb543DeiFg2sSvqGwoN8ul0G61C9JUNNK6MgtrWt8HY71hHhS05vr4tFdPtqkabuKFTmmueMjnHfDkkgZ8dMuuHA3t04LPf7bip38kePsP3rG8HKjLgf0PK+St4uVvC2QD6h0OQAHlgK2ndMMEASlpDdjdsxAYXWUz0RJzBSok0FlqsfXBuGpeD8czKwlZBOqDfxdTauR9s/2/IhIPtqV0pindNV+XxdzrW5d9GEZTVYE9WXWb+jWV1h85gOOTzUk5LKTgqIL67gD9Ws1aTzZKj56lDsADAFs764L2YntEmoc3VDGlsmlcL1gPm38mGOzXpCrarUYfxNd/Wyuw1n5tKMd6dz6fgJdWC7Bi8Nxg+IEUuzozLNgOxrbXxfYJ81uVHlaiPu759gV6R/A7JrfmXmFIgFBGWQTYmsssfb+0WzVQpaLP7QwmENTzfcx9UXQzkKnYWO7fFLz9puD93zXPHC3Ay9+4J4J7bu6vVOBNTiibA47akys2Xqm66QlA6a78Ct5Sw+tcrb3oeQ0A6AJISzJqBtgAlMPeL/cj1gflvuLXvg4Kuss6EUrsgDJDYQa+yytkAyQwcEj9Wl96tAyJTe9J/uS+RkNOtJjD+nIIkDSN3A3hzZzPHV83MhsfKcNnnnOlFGeAgnlHZu8kJAU/AwNxQ0NN54rLkCHPJFkoK605kfR0+8NQf4SmOvDoYaSn8MD5edIEKoQ8OXlc8Nm4QSInRM7jwzpman5VuX+n/n7Ik8ClHDyWoQY8UgfK5MbNuEb8yljn+ueQM6Kk9ZD7qgqgpbDbK70t8ffZcyLyLyxdfo06EyDBXGFxYxrr92dmPKRM7cyfTd4kJ5Dtgn4dgALgbkg4MxRSXriDlfBBJ+cyZqQxD9D8/vTsyVKf2/gRAwll+uJ9ILKCn2LnH6FJUx/ngwIiHaVPyCyfNd3VmaDf1mBjIX2B0tIhtAiMzDTef0Qzujc/Kw82HHnGR9bB6Nc4/8P1PlducqQP5vjDtvK5S4+NpBB9hUvQRxTJUgh2sQ0XKOwlXbmzRfMvPs+MOnsdXDfuY6RyyO1Q+wHHds3oaz4kcxnNBCJTDvUMSgC4tP7PivWF58IYVjCDYuX82RVJQtN5EAWA1no5cWhmRu3CKXTsN9ftiUfZGJwSJPEdAHg0JfN4z/OfYzPzZ0AIAvme7BD+Mt91flP8KjaoK6GCsJ6Z0nMWagdlex6nuY/8m1bZmbj35DyGWkuECAy8/4pmcFGn964+O/UD4/MzICXSefEFP1da4KiZNEBEgXlpZmWpih0mew3lDdIFYfGEccZbADqsKpNSCSwJbh6WPMzJMMM6I99COQMUYAy66hAzb3vE2qfi3gYrUG8NpXpb94JyF5S7gRQlYYk9gZ6NHS3gBMKCf/o1vV/0oIq+ShdGCaQy7KGUfj1dXvsXVt6hvMSj+vXSD96Js9rO/p7FHmcBcOAnAK3xAXQ1/xxu4c+GMJHI38DbdNRvgqAyNRgBfG5NObe2RA4GAFBLMtnA9eXKqP/QAQfA6MEgZTxjBh7EMU7/T7zhyss7EgnyjPR9GblCSp8L+8OfiwamwiS3wRT9SIro63hIuFjge8JfI+BFNiISey7XYePqcf7K9llZrQLNPQB0MZ0xhl0QV5HKgfFK1sXHjF0gmKH8O3lXAL6PbE7zFZ1jni/0NQH0M8fXNMOpGHbBMcjzmhMjhtcAk0DSWJgAuRijJYUZpQSUkdSU20ro0TLLiq5bPJLZ87Nc+4MSnzyM8v5/ZP3/SDa+oPN13+T7H/CtKwWZ1zwzBxQpzp92lgkmOnkKXLXj9H9mMI91g0uvhQSqfBV9jXz9UR+z9+jVq7n/ATzPcpP0hJdAlyUm/nZd/1f2M5cXXrGpHuV58WgNXsz//Dcw6dTp74/a+YU+/CoABRXp6LY6ek7399nCRoo4xyTctczxyGBrRxQ9dleL9IQv++EZsAFa9OW+daUuMxQghAn17ORDvoG0yGLY1XMEAGMyGB5ocXMDej+y9SkvAiYQOqZJTeWFF0Sgs878jt1Yrcj5Ojc+HzGSagoBcFYkPHGmLriM+0S1hGCSQgkGgTNlty53u+4LN49lZgZqWhlZL6+Zu5oTEZ/jEvGr58yl3r9971Ynvsv5W5c+BgDyrQW6bSag07JJAbF5e5YKfH4zFJfW3XSoDy5NjJlvsGeLC8D04EhKZAaZwjOjFMi2jUlJ0/gOieeaBqJ8hYIPeSZa87FJzU7XM8rri3247d4+T0jIHAGqdk0kYOUcB3Tfu5BOOo5+d3kRf7ZF3g0rZxkF0HydYnzmZcStHxkcqd2qnr103KoRZQ3AgDNq7jfejJB5AxFf3nTBGPxlAe53F0Zm9Bi9zvjM9/5GPhP+ub1vtdjL+96VggD9/P+cWyLXRS8Ots/HFU37Zw76yeZWVB4o9KbKVwkN3i+Jt7SG5XefUT8vkOMlYmrbatY6Ws7K2+YW+S4Vay09pwI9FXLZ/mMWzgom+xxDfDR4Qc5hwGsKITJaYOn1US7mP//m36yfHiYfCX9sk3uoBXEPL513QDV4cdz8498JCBAoyvtuAnVOJFl7TDrcnV5XQF8XlFvttz8cah5srqhrLcFbGEefXev13tCqeZbYZ4jYc1qZtbGdiLjoUFKpgMa5Kq5gKFQXdy12pcXzC4R1vlnZKkD5LFh+Fiw/G5hQ74pWXSmg8sO612r9+uS8071UdOc66QnZLsHSDCRIMY8zeiasS/ceTArMsFYI9HoS4+FmhaVA64qhusM1bYJBCZwflE4m82PCvZzJnx6WnlPAACqgft7D9d6y7LPfSMpmGV3FfQ/LoZaEGOY9othRSkGrq11ZfaTkf23sszKf6FKARSD3w553firNEnMe3y2eVwJobt2vd/N0iHj2LPOkvcU1Yx4FSyiQ2U0/X8/YbgxDQOQM6Uq3GJBW4YkR+3eRm4XrsjAJJD12Ooh1vDgAz+sskfide2y0W+lhBwKL01cMZ1tbC6AFxa2ML3+74bjdsH0v2AG01X5UBLVYe8sGlF3Neyd768DKH8ZPMXg20fvAQJFiQAY9AJgAE+h5b1w+4PsQseMY7om4+20RzRPEFk8KS+B0utlFgQ44uszDBLKZwrPK57EcxuPl3gCBecBwKZMv+z4xnkTPrNKv8d1bl2dz7gMg/e97IJ9D9FzKchbQ9/wMlMdDSZ4HAHoF+7vZ+s1zORI2pyuOH4IU2RuT5Hwvu+irKuBzM4QGuJHiZKiacg7MSQAf0tTOIbk3afZoyJ9zrKMvk+dD1kNyG2HzEXLwfDsC9zVBjdkwk/LCAUlWnvNQuBwUHglXIMKV0TH6oOdnZoPaTAEup3nigRu8vOcEi3qYoJzzlyg8Uim/52TjqtD7No797MXwAWj2qwAU4HGevIc3XMVcYRvQUik4WSivBMIoWsffJAqB4R6UnpvLuWISIThMn2dlPjaUPa/wz5p0S3ogom0ol4c9VIcEhpbE62LRZuH2atOn/kXWYbaTwnxSyuKZnLwyJ2tT6UoAvydTIKLNEBM/0MN64NekaSuQfVRUOOe5XHNBW5PSk8YrXKMB7H2swiJBy27D4MJ6WjM5Vi3PBZN0ZaYtLmATHHqEnGrrlsjkNnVOppIY4aCMXjDf7KVDRlmmMvk9cGImJ2LSmdRmvi/oBwoToUUYBIXUnJyU6DiFzln4HhjqpGDTQjNbGICu2Me7Vt5VotZZgR6IgByrIBCRMyITqLlCmXP71V0Vi0AIasw8heNJcCqa6Ei4js+cSEoHm+ZDcvBwyO3P7W3hQRH5N674W6bsGXPl+RNCkO013gJQXcEx91SLea6fj56QK3ksDfll+DMASH3eIrEsANEyWscOM71lgXoUrrXzUArZs2vj0PepDerhbj7e2c3VboDoQugQdjP1IYp0vpEPb+uXuqs1Bv5PgGZu4ynvQVSAnhZDxJQ6IFzpT6BI7C8FVFCUgopb+47JmikSAvcJ/GHb+XwVSzGjFORzH6zs5U1x+x2w/T8v2L5pQFWsm+UZUGczkZdvM2s4r/0b3Dn5v3v7SVUXzMvoNop0ltGrgYCnSPJQSF4Jxe+2500csCEaYuJdUFVYfcfrAlRz2y9buuKTyrECqIhQywy4j94egLrC15N/u/wQcsS0BjjHx/R/nu8U5mnJQN3O0VrPBTWv32nd0PtBil8YqP18p/VMAPda8HPKwz5o0W+HXc4n+dYbziXsGRSDWdTzEQ1XPidZJ65p9Pfo9q8eihBJQg9Xyh3IkCJ2RWtDBxJqPyPU+WbM20e802WrcMsvtoebhxWUlKG/uALPNjcHlWVX1Lti+cn2ZDvgoQ3wdgPLu+2FevcbXyaZL8IheOVrGqOree0JKrWDhkh9Tb8po2cvEfMOkb5XCECm/DQMjQIAKS1CRwCft8TnMpBzcuqR6W/te6aoBv+JEAikPhdvU96/EwV41FK+BZaTjTJc00UApLAIX/sDZRkvyZ6RC2JOeFgAXLnh5PIy0eiR25q+u/I6HfJZRbnJWj1/d5VX6xfQhzkVyG/mOq7yRCUvykt6pJQj6QKzPN9STo4reTLrdrnMWYa9atPEz0/lf+0NDLmNM9Bx1Va+85H8P6zJfrjF9bWP6viAfiWAgm/wSmUAPdM/mRIVl6VeLzRgtFJSMaR3AhlAdl2kQqH9ZoNIFAQM8YzRsIi98rgvWXoMVrKMAejXKcIZGVFf3zxaBeXz1q/OAYDb2nM63JtbEJKC6+UNCv6goI7PIgl/PHh0MddYcctgvju+3HePF4Zb/Pc+bgB09bwBHD8KlaXHkMYtDq0BPfueH1gAlgXH62IyqFsn7Boxj1tibGfz9t1WHL95xfFasfy0Qd4P1N/9ZHO1MospugUyC2jFFREmx+LhyjHlZ/OtF4mYvyOITI2xX6qBcmpLQuvRgGPrGzcrpDMdR8+TMK/vhBCPnxMEKT0B31U22lxnU5w8C1jnHHO3LMD7uytlDhZ4ZmFpdpMIjsO8F5bFLPdz3D+R8sO/y2ho1CX2PpkaY8Ruiwvq/dYQ8Wf17X2sLzNHtjVf/6raPSaWxQ7g4wCq57mIA7mvZ46X7Z8E9jBJ42E3eugF4BTrZd+B9Qa8vtgaS14fAeqpIhJ85vEvAoAmwMliEUBotkY4sf+S1pskqIb7MyuELDeXPyi3xiNwHMNVatgPu8Zv2/0KyWQ5vVuGb2x+7W+g7b0c5jEJj6YstGVeDUTcLFoLXjGMSe4f566l515uVjc90Ni/Iucy4k50GKjwukJL6x4OtXR+t/vNLqXzurBewc8UXxNakgboV6d1sGUBRCNzertV8BpfKgNxNqh24boBAk/YeN9D8NebeXaJZz2PpGS+7ui+bW0v0PuBElf6AcorQPOyB+LKShwKrDKemV5eu1XLFL+ZdTMUzgLozazVr7/dUA7Fy+8qPv/Zgv1b+LWHloSxLQAgqG+K9SfF8tY8VtyHy12saZEcPaEagCPNiZ8zSOTggSxL99Kpni/J/7fY+RI5AQioyN3XLa8phkJgXhPb9yuO14L7dwW3nxpuv9st2/396HmQ6tIVLUV4bAxHeS0B1MjRzIq9N9itIOpXofZcBVRgy6Y9T0GsR4BXzjFRJN3JtQrKbbH1876drq0MZRqwc74IBA3y3mxY1ZW0tIfMI9SAzMPluraYAaZ75MBzQ/gZtBHM4kKTSMBIa38ATE1tbSnihhG7stbAB10K2otEIs/tW0GrsDwcG3D7Q0O921jhDkvIKL2dAciLK5nq+7mk9rviabde9HFq7jXUVhvb/ZMpdfVuSoEWwfrTgfp+2BwLAqCpbzvW3+/4tlXcvyvYXz03gwLLG1A2xe0PnqB1a6hbs9wrWclXoL4dEe4Q5HM6GO54DgaA2ucwFBRxOYt8wdscMrUDRVjNvTGunOS75CVU/O8HqnadmeUxZwVzvrRFAtQMDxlvV4SF5Q2tDnb6UTiEZwGg9wREgPvejSKU/wiK4MLzoGmXNSa+CTHQKzzjCs7gQ77FbakumJoxYpA2hWGRiZIxysq7OPekQES73BB7TGBo9cVNB8PQaT/bWk9iLzLm2wpvhTw2cZPAtXL84bWRp5DqB+95u04eBrPx6sobIc4Fep16PGZ0qiUAdjLUFOn7I9o+tbWYTCoifnPaNA65nHLR13md8Xeex3b0vfwRsKHHWQdIusMAxMRa6QYvVTHUMq/XPFcfhT3jVwIoDBlvExMc7hrPSj2F26EQ73hCI00rlnFQQtEmA5Goa57oyCac62cbZip+0i21J/QgMnYoAN6DDhMixTeHuFXvPS+SqU+h1Oi5PbHgssKTnsv9eVm7dQLoyl0DiEwNSaty+RRCZ4UR4uABINkC5GEbyvL5/t4A7KgiEZ4g1BeLQBiP6cgqlTM5Gspdwn0zBFi64mXPAgpCDyx5w2HB/i21J+4T6cAVlV2OcabsJp7qtXJtsof491BceOL5e8fINGPjzoybSZJOVgZTIPUqA+0FIqoqKa73A/oSepqBpRzqQcXv/d2/n5T+eT/5eNBCqO9JKHCwhmE7erRw4waASCi6rhi8Etw9LUtUwUzpUVBs7apufGB49jQ+qS4AUF4ROoxJPSv7QFdQkeaPh09i7FY5+iH3pZhAghFAX6eMd6fFrGk/VNnHk3eR79NhDUsoKyC4mNc6f45mV7ECpuySdbzvo2LSXOIm2Jjrv8qPw/h1PjfPRwY+rvamaM/nkhNN5rNEXbLNIFASXHP/T0Dj3J7sSUZlyJXUiLkP9+7ezrCELelvKkqaBGlauAEPi+iKKClCv1ShzNQu4hbxNJaNlfBFF9zvR/e+EIUUjaR55W3v4LkDGwj+1ttoYRilpw9aPUFiElLkaCjvwPp7U+rKVk15WpIS19TDHkwZK3dLMmf9tLlXNWVQ/cwRgkCtAZrCni6uB5PVEy3SK+HmXnBLB8WYcJFrl8q2cp2nNaz+UzbTrtcCVAdBaN0O128CAH6E6lKMPe70HsSgLGkx8EEEAK3IIuYNUdCTgHJsUKCifm7aOlJOdkEAA7TG680TOararQx0kU8eIbHco57Sz/UIY8NAbUlrH6bk0aoe1ytOeyuURfVrTpOnToAbaetxzxCI08WU0WMVbN8UHC/A+59K3JhQ34D6npVRAyLo/RJzL1ZfOdKa8z6wzpY+b4ughVHF23p4MkVxQKWYXHncSpRvZQKAQlcLaSrvips2rD8bEGJ7xpLc1jfLD1KOdg5/9fELQ01T4PyI1UkDV0tDIb2PAGzuSjklEwXQDWYMn8qKJ8N5+OxuvKTnuGBb4WuTH6DnfcjiTPBqKx0thQgFD/PyWKfqeZ0k3j/k9WES82EgpcuABTZxBC1YpifXNHkfJr/mfD5ZluYVzbleSef+BYXHQr4ZIHScBJYWwXgQjLKoZFezBCpcAgRXFF4ak3yQ28l/LhTY09WQV+DDI4WVn39Bmc3tvPR0pdGKsmG7kJezYScnsswhBvkg8fkjoC3YTSnPHqrxLIG4GXDwtXLlpZXfC0phta2f4UKvHn5OT+KT54dgph4e3M77YA49+YB+FYACAGMqSRgCMCi/IsewCdWBhmwFCtCJQlRCg8IzIRRjorrTwsuMIAueiTkOQjIS83X0U4j2DfXBhC5ajLy+9mI3KhTvR8tMme6bbG9mRql96gKa7MclMBJjdlvMasVYsrXHdMU96eFZgD5uaY6G6zGXGnWbIuxjSFfRpXRwSHyL3zfI4RYNgiBHv8ZtTAyWDqTtQGWsagZMaOHM3iRcFzMokpnmoEzxYNWObOYM8IwLdkvrkJFW+zua10xs7DZaznKmfyDqPLXLmbwenr2eyLH29+KVpuZG+EgB/QgYmJH4/M5HbnfFQyLY7+2ArGbpk9vN2n7frJxNEYnOQuHHuE4d5TVAbh+UfinFPD+Ow0GA0g9RHsjraoKo3wgRyQ/zmHJOtgR+HAd01/G2iUfEZ15ffO1NN4E07Xk3YCBPV7TSWpyZd2kAag+LEIHevb/r7botnLdsvZhvLWC9VGpnXsffwTPGdZDzlMh+2LjNe4l7YbN8IHLUADeF+yXX63lsTpQ9hkTO/LopL03r7SawLNIBRb5TexmCHUOiqiJ20ObDsXqK9ukmiWh7vmo29yUGa9rD3LPr0kNBDrWcFbmfIh1IYNsLzxCNWPUumLsQL3WMdKECVNA9+/0MiqvXSgneHxncEx+Luqp5iDWBCe7bAdkays/vMX66mjcKgYkssKrAlV8ZQn3K+x7J+gy82FG2A+vvgfXHFcdasH9nGfPb0tdM2dQBhRbWaJMBpCvSDKNbAGiJW0SwmYeY8ecuKEo1ntHD+IrlOqrJ6001gItwC/e8EXbW+/5l2AJj6Xd1izZQ3w+U9z3GhTkzhqR+lQqqCf4nILzYPFhIjF3hSEvw9p3t+fXnDpjFFZI8D953D5XUC3kHnvekBGBl3g02ruHFmDxV4G1lfyM+nQAA15TnvghAzutjzoJy7148UTZ5vu8nXkkZU9cQ+QxCGec+ZQ6XankUjptg/wbYvhW8/6lCF8X6+wKtwPGzRHlagFJLeCFwbrSI5Qgg0ODtjzHmOiSu7rkbGFZR783kw119TbOt5oGjtaDcM0gIHDBAob43rD+bQkBPIVrszfsAHyqBw80NNGY07fi69098M+qRZNl8NosBWXpL/NOBtABaKiLEh7fRBOjFI2T3uhnuXVMImWPq3fMD8ACimPvwSgECbIoxaAzRasN5E7d9oO+9Pj4YFXsC0Mq263hu8oyZdQPXUehhp+LQSAZQNf2W6YwBzjLH1bwWsf2cvwsZ0xXe7J0wl5GNWZoMU/Sy9f9lllf5Lo0+YnoakjftYPXO43+lh8x9nJ+ZQIUsG5+8E2aiN8IJGCpxBkS5WdbJISk0epS+18NT9AFIMNwIpPQcQweyef6EwaKcyvBNleYpzReQPAj8AIWOZXjf47rf4zCHDOn6xTB+sycL5ch53WRdK8brsT7x6wEUAESME5VPv1ILmERd39TBYCicFSDAAgquDhzIUtNVWwJl1ymYyhKCcHye3VZZL2ALPl3pGIxYXNASgay1C3/+GQBTjlZgjuNSTzwovhCGSSylx7QEeEGBrkUWcyY6G6hRuBV3U93iwNCViSVbT4LpQnCMwTzuWZGlEEVgIrmNAS5oUKnwUA5xJFg88YfMgjr7kefg3VyntYzWjuEdHoJXzNTbHu6peRPxEPE1M9z/GwdJauOMagO2iRkycXWFzP/H3LstybHkymKOiKzqJtee0cWkZ/3/f+lV2kdnz5DdVRkBPQAOIKKyyXWkF6YZjd1dWZlxRQAOwEGBPAaAYXwQXcxb2QQimapQCdq4HhXlnRR+4YGHgQlfXRSGvKb6M7eoAfa3hoiVUMHfGtu8B7B0BGNas2fdehjaBGDCGC8h4Pr5AD4BfH7a4fZmh6gy5MwFIIkbARhxpE7o47GMzy+jL9g/EhMCUWIyFIPdWBff802hPz8cCJs5hq0Hmz5UI01GpyxrSud2kHQkUFGUFGvPRb5/rI/9QMq+L7+LryMt6+oKWOB41FfV0omqa4rVDkhQCXiemY6wKGuSCmwAQet60t6yzGMom1lKUjTBBm2w3GvuR+a8uwK9yBD3OjPigYb9q/o6AAAgAElEQVR2VOio/b6VI1EkSQb3/NIKioQCW4DYo4XxaN9/HWPzpmZ5shfZKpQHLULYgxzQ92J75hzNmxPikpTx53Qj6UyAt54pboRD3SMtlramtxal2pJEscznhMnSapwUry6Qyv8SIn51+XpsP0+0T0H/nGFgq1ifaEw0ksbxvX7ujb9ukEdHp4wfM9KJ5J5kmOGR5Jn+/T1AcbY1nhtTSzlghk8YXGw7dRFVzJuRybZPs87ao4FlF1+8u27wtWZpgOqVUpZUFtcbX0Lay7WDDwFETRp2/nnPEokMKSdRJgAHcIwIsJ0GLjAdgu+x1BXE9yJVsjs54QUwTgLRdvKsdcDF55LpQPa7xNqdhyviNIyrzcLIx017bed6DtJb1wZw+7f19/hpEQrNgYL2qHsu58eIR2uYvX0+3jvmzdIYoMZnYOkH6rwJbqwKMrLrVDRFiXThGMA4NjTfr16Gs40ZkUGiEyqwCM3pZK2tpq1IElsKgr/BhrtwkJEMkeAbo78mcBmR5/NoVWmoR3KhpaFv4LEaLk7w19dOTbvQJhi35lwSbvgU0Stn6vWRzqBApFf4mhaRqCwSlWzAPaUIcsnW1rSf0hbjufBUPUbqTDE5F4CfrQX7zI263cB6Ojn1GCWSbC7n13JW8vMa6TfVAMrKmRV2BxcHn1n0kWoEVjlwBSbQiC3ggX2WZ4K4/n9JOnjlVXcwYSlx+fLe4qSD23c7RxnHZAcntiuifflsJzmv43WVzrE/Y7HxdmCjrO/l+s1zqw0RVwEpSKIuBKPRk5ST80OZxzGd9TuH743pHErVmeHOq6t0Zzr+eC0lNd2eikjp1GeFZ53q6kAF1p+3688CFGiUExhQzVyetm3muiGpFNZoBS2LhbnSM/PH9sVkwo8nuIRgi3fUhVeNzA1RUgFkI1EKJZDEhL1beoCTVuksSu2uqDZ5UfTtPVub4/5k2LU2pyFGgERvhxlGRzMhqswHHdC75QYHkRIN+ABACuhCYILCuIbchwA30ECZXiHeXoIJleStKvd8Lhe0qkVr0Miqhk79fRmkTXDsxlS9h0L+ytjaPKpLSb0XAy8ZYxXIzUeEGUC6FstnDJMKw+y5HvBXAm0zQn4XOmdtKoJ3Q21fnvtCBHgt7F+e4UZ+fE6yM+bBzfkahTkV8CiEABA4X5d5aZLA3hyRqhIHbdvmMdZCQWZrGDTBBIYlPp7r+zgmrDQAvM4hkWHVMKIFiJ/j4KeyEmSohWWY33OPSeTkVbCgIsn7GqgX01u+QpTZrjpOy5ysHp/6/54zHwY8PR6j7KXMacs90zI8b8lxvXX3zM/8jIf13r66r+sYb2CFEvRdQIbSHp4t/l2timNRupdzo54Jxcv/22tvIxV7159fuDjYDRVTJOKc8cgwRpY1ANIxb811opmesnNYGsCJ5DEgANDFeQvYXwmQoz1neJ5fZKcrN9E2fs59dzUUjAzZLzWDJKr0uEKf3AW8D4seZc8Exq2hTySnBd81FXpLpS6Mfz939HbYeqPR7LXuF6B/YAUxCFzXi8Cdrx0atnrO4sSIobJ3TeuQnOoyiGc2QCApDDb1zrf2MrCRAsgzH0hvLkEF8XSMm62P8d4RpQ6HrUeLJPAONkV7tJiDGJepDlbw5eK57s7474BOzZ+38fFmqyZZIHUxn7DUM4yvgAY8hlpoO6NAJO+fJE/0/sqQ6D9TScxLD7SH/d4ecI4JONGhphHRLKpNOA1Tg9iQbZ03j3x4F5uSAQtCoxwU7jHnxICDCILCtcD3a0RcADDQh0tl+PypelUFXy/DI1wDiHR9t+qfnBuoiRvk2rB5yQovrC5CMCVEdTX6PHLlBdBqJpMYxRJrpIj7Zbm63FEFxCMa6LW11JJhxo/vA5uHfGmsK1Uby1miFJD/B8ntBvwtpSx9juz3opfGy7Yzr3FwVxlInTHA5Hou1POzGmGMPq3nxX4WA6lf8Lwn55WIGdJhCBa9e67y5uqqVRuWPi79vXjG3Npb+/Ora496KKBCBSS+4kfYIxaEulu9ftPn5dp1yeqE0Quj/Cv9ig607cwA1n69XIVrTovssUcasMQoh7Azin2LPbXZ7bKIwItxEyyRmXufOCUVZIkU3GkbqPKsWceun+fXHwEoaBeMv+4WZulKRP/skKeHCw4til1RPuHeeSfIkpHlHhUIb/iy+IsBDKRCvOQPM7wEWAVQVSZ5ecijKR0T7cfmzREBkKHClZxRp5MgTTUP2tED3ZRz+IGx5utUbw9TJ4zRuyCNVCIB37j+Tnrh1RDgiKBoDXIgN3YhNpTCxmtj1yEtBTQ9rlKF6KfnXxYDTD4e66bvTJcogp1GBhXt2+HEhxP67R6lgsQVSxkjwteXlIcAWzQVas5lFfy2kLJNJWzJ5tWF/FXotoflh9Cg4B8DKs3W3nGkkVDJA3eBxtCoqjuPYT9z+i+Eti554aUfey1iwKMcCrq9gwnKag4cYL/v5vfxXXxPePkBPG0cxMdf3pzP4OcHIEaGuKQH1IsGMUGIqUbyWEs/cs5m2XsBNJXPqCQTwBgjzwdBmYOLFBTA9iP3wP3mB38zo36OwqVBzoK3kEeyH8rNn8vonTETOHB5pFQ0Jd9fD9plvYXBXlKO4rNUAoiAG2O7prFD3geP5IjykVSoOKa86rhXQOZ2mFyi5949MSRvjb/x3pbKFiMetPCTLCV6VSEfCeRIJVnleymXSOhIAMPD1/XuefFeShbuvdNSsjLGn22rZFu89kiEBRjUVJ4BaOwXCSVTHk/7zrsF75JI7yVNYk60D4InLo8Py8lcSi0C4cGkAmsGCde/nQdNNTgQLAKtAfcjoxE8Na1GzaEjSvdqF+M/OBpkeM7+mIB06PceMvUlWizmRYMfoA0jjAuZ5n+XqWaI+HgtJIAsn0bAigaqGy5LzvmtZ6T8rQH/vJt39+nklAQvdp2KUQxvFuU330wetE+vSvLM80JaM6OmhLjH+3uH3DQNhznNWKUBPtSe/26Eh+DctDzHqwecHlq4ocy+znemYAByAu1xgmVA5d+pPDJ1oXkNT3E5xciE5z9u7l1vzlOBABYI7h0f6uUcj+AiOH7CCKKHrzd1IOHWA5zVzk7QyPQ2CRzEMNCM0QhW9pNzbLJbD1ujo6yrhT+EQJMTgc43AxX6Q83PMXxsG4xj4KkWmfChOP7twzTgJRcV/dOIDee9OUDhotXlchiZigCJ5sMiJS06yu5tp/NBaLMKJbRNDnFgwt/9YJQMvMqEBk+KlSKXAIOiQoMPKwC7dzqIePjfJyBCIxvoT4vOmbfm1Sv8Oe4FVySYEBEdblwmqWPqzFqrkPhZoYfEO2xMZ6TxcM9z7syBBo8ccvnQBaN3A4QcrCNwZrwpjIxiKlXdc94uEVO5AFtrNU2X4BrBUEbxRj99P7NfY+a5Ux2EJeW62gcLeFLPRsqwAIj6MpZfkhb2NLC1koNXna7qGTx7+a5qQO4Eg7vDoYK6e9Qdf65h8RzTqmvyu62Ukdx1uxqNSd2yt9gL2jahzHuwtnfnYAjQgbr+ABaHS3WGbaBDOGeqLk85zHV15aD5qqoC+RaG63KXYIj8HuzYv1v7zijKcKx8sT5UV56o+v76O69Kjk775KqdIhmxAqxr5eL6IwAFAJmjJ3YgjDcLIbYQuM3zfXEtCJFuGwhYlcWLfR15+S0Xu8i1ALjy1gBIocVwJw97jlyufkGGV4wkFUlD4qo/XPy65UI2rKFt+3fCa7RvFM2x2D+rh0j5TLa/1SgS3r+kMZQwMPETq3oKK/niUoGjSaLCQDBTG2Kvnnb0i7GqfXjpcxGk+3f359XvFKKZGpIU7Q2il4lAAiryvSCh1+s4AA2246o9/1+ur3gUrlDqelU0eCqixnH9nIcUwbV4dvl5D9fzz4PrgOPXEWDC8pzZ8ILMxrPmq9GAPIR2QRlARYnS4L1G+tgSFHghIUXsmSRMKvIg8odbrOkkAd3GmofXPscBUm59rof3AmB8IeT3Oa0gUt3f+7x9pSRscmj5+5coftmjbHft/66Q1Sih2rYdRPlqvV7wRZjyKQEEvFw14urls03pml88A1iJZNl+ZcgwUrEv8pgeZlMWajtsn1UPXNCQVSM8Xu4K7jk9pNKeo4XAz0ACWy6Va8d4GCS9q0Cexd3b0FwUu5eacxJGiK/lpSLAxfjYO92rtytqUp4ZBh0STCiRbALKYPeqCjCPFsEEbTYI5uU60QMROUSQA1rOX84HwVWWZ7x6VkQJfn0t3mFUT/vrPrJwb98WJEz09klEl/kcTjUASYBaPcSe7wCvwiJObg3jjWSFiOcGKWQDoDCj2qMVJlNPeJ+fxxnlCdSu1/cq2mUfaxQFZz5C3JvPQUfuhXIOxru8vZEW5ABC8pDYbW3AOjVK0p/a35lewrWjHUkCOM0jN28uN8q4m9Fr90akwVAzqk94BSwJsEZmfp3giPFUaDkXytg44BCygmNQryqnvA9LeVeOkWTudulFXpQh7nOKiANIEl1WwsW2P9/nscyDTon0A1XYXEb//P5ZSjLyWf5/7RfgOnWVMWWsApRD6UNt4g4mMFKLIOGV7nd5HgO7B5rgK39eriarg7J8J+wCByFf+AeoI+1pp/Hccvbvdg6dWnGeFcfS3ylP+JWxGE6b+fU9X+na9dp0hMvo2Lnl/Jd7f0sifnVVg/rvlmisoMJXeg2vaNPEVxxmL/3c9Te+p8lqn9iX8zt7//9OVMYVWLFHG38xLlE+cnO4/Cot5c8AFFzARtjHBJ7/7DjfG/46J46h5vW+IsYSSbIwLsSieLwooucIT2pc/lx9v2Epfah9ncg9HBUIRVD4+UvZPIk8K20HMNQ8DEGUZcInQ1D7IlchspQ05HvEozJCKeyOhj+HATAeZjS/v6VgPcWQQx8Ty4OdSVLHNnvosYoTclEYsz1MY6BHuiCmptSWkHUinsxtrjnJrRm3Aud1MwTiIHAFup2z5O1ZW/TtbiH0e/6S+Lv4XP754wE9h0UQABFKpJ+P1Yjl3Gq2oYYBiitPgSA6eqjPByyk0L3nYyZHB5CbV8SVci9b+PmwtXO/2Vp5PO15tczgJmjlOBDlfvaLhrIb8gbCSH6nri/mrvVu955n/h73NT+gNA+qgmRLh0cilPsroaBahQaffB9rGzt5u2971MsMEoRoHfAUIfu6GzS9B5dCLe2jqpay4FEP8tdfth7GsD693d3DvSG6buCoTmOAP0/ox8c6Viw7BGR/5rC+FAInPXr+3AEcPXhD8nES/YjfGaXg68rAD/FShz7+Tn4Zba4h1TUPzuc6Q/IkcvFSprnRxXUKrPmfwMo1oJ4adbXXOUa8hskO9WgPK807ISPHR99uITclPAsFXKypFDV6CYCApLK3lPdBFOvP+5x5BmycLUIQjO0/J/BWMg65jvy5/JuljBE8LH2uSmbIDgXmWJ9JBnYvjazvXl2gmWIsz7F6xF0OQ9Xy2x2kjudxPX2cZji89ZTvQy188u0G3LpFee08NAMgM7WMCfk50ZpEHvTzm+1jS0mY6B9O8jcH5vd7pPTJVLR/P8zI9dSJ8f1IT7sTLbazpQdWmnu3AXrZtUlGo017j3glIQDAYcZle7pcm2pe8Lfm0WEtjINIyRFxA1CBU5a5ap/DDM3neE3J4Pj1w41qPhfmVUaewfPuPCwH5YJmn0QAGLldBTHac1okQBccD6A9Rqks4d+9Uy/yth2vSmvyBeQ4zVsH3oDzvUMPwfOvloACAAjQP4HmpIH8W01BYBURvTUM3EDSRuUeVQ95RwMORAnB4EgQi0i5/fuMEHdtgvFW9SwzohmvP1uzMo6qwRUw3nyNDcW8N8y7RMpAe9r36TG3NWZzH0vL7+FYkUBxHlZWctwE7VOT30GAeQdYcWQ2pmAC/TFx/5eNzfHvgTYs2qDDPOvnNws1JNjQP2ZEHehhnn0SU66KvT2bUT6NZJejyLDWoD4WjRVZuL4EmN3TWQIkg+lyHhlEuSGUSwrInJjiUUlq5yfLPM5Dgm+jeUSFTI2oEu4R6kQGdAJyDgs89T1DYKKR1JSRTGVPtcrL4vtx3oHk4EHoWnLOBEa5nINHgvqYR9R4hCnXrd3rX6ppcFUPbcmPtUS4EvS7Hfld1ddovi5rBB2QJLDDdN90YhrAENGYrXA5LWkYLZExOlK6rAbi6c/x6EqhrCi582EobhETL/pv0SsX43Iz9Fn9ilfo4tTxaaMQQGlbXv++D/arGPhLFG1D6tPVWUcH1G7nZaOxRG+4zruM03K/IXIZMTtC38+I3e09HiGxRBnEHLl+u9uyY+RsBwlmWXt1PMi7tb8TiOjccOI99bVcu7j+4hEuCz+Fk/+iTQdqCW4Vjrkvrj8DUAAiDJ8bVk4s7LovzMdU1je0FsASklSZ/wHkIquEahv6k4dcUZJ3I4ybL1ILNA1tKsNTgSoQZj47uBPKZyks/LCu3s6KTNZnhlDydg3AaIvdU9fFQ59L2+t3ZwnddaGwpFXQmOZ7ytiQIXkZF3zxO8f96h4iulef8545gVMgWwmqNTqjvW48SGlv/ayML5BeaY51zSHsaUzEtfMteK5RCKoQavq68YN5OUNGzVibKVRcIF9t4EpyY20szy9o41eIboATL2FnFd2WawQ0vKsEFWobJl+cP5cUCSkMwyhg2AtIuAvbiqBOV1RVl9Qc79i6z48jDFQeIi/cFyjjxD7Ito5q+aB9TJZ9CUROfA1z5Nqr8qQJwpLi9+uBviPSsZ42NJl9wsV8izifVTFud5lWDPFlHL/aixW0BbymthZC1jz8v9rvoQTWNrksl6cTAJV2LhUfShv2NgGwPQO88J7UZy1zQXmy318BUX5OwHvMNR2Ofd3DC786fPdxoYJUzgeF762OzG8GwpiM9BzO45WTobRP2T73OEd4vb86SMgUJZLC+89hR/Hgu9w14EDSWDuSG2MegvlWKjVFOy/kUhjdcE/mxXnfqA/4u2povJoxaFEW1h/hEIgbLhRJvGl5vrVdRIHHXN5nAGEpyeX6g8DuyXKMBAp8HNt2lqpe9TyI5kJ/oW5zyDp2BGHKvMHPAnGC39Ch1MQL9R+WojRyS57zOc612oKl1vicqvdLAdyswkTj3Gim4/C7y7xNWHrk9Pd6nu8SXenzAyAMbjPmUxZyPiOqojiernL2K+FjlLA9Cw+AAu0JB7VguqYYuNNOI0PUQzyKgXtSwvBRNYCCRKGZ+lQiPiTiiTKFYfpYnDlGdY5jnhsQlQviWNXQD4PckUbAVEtnEIm2MngzxqUu9wZP47GHRxg5248Kgm2XH+3si82ztfllz3J9KDDfJNIiXvLNHYTASE6E0JOnE0ISdPIUFEY6CIAgM68GEYruKmUP7GcIz87mlWHOTaeo99b/689XtskXutfynKu/7frFV+H2V23b2z1n6k5V9/o7VzHgAdMZozRkfdff8ZL/5iJYEY6y/dl0Zo1sk7CNVwDA76IKXhpwMTZXeh7bWr8Xds3WjuqMo4OozNXKn0G9oZX5nvnMHfzRrd9V5yptNUcutu8V/f2ri+ki27j/Lt0B+FMABQVIEsFa2Ld/Af3DBSfJ+YpwgDPcBtHb0CRSc2ZnrUYhoxDu1uUoabYZ9dL0hYjKcuamNZQCqOSyQjVrtA9HAI9WkElDh6KGNytPAKFQWyoEEKzJZKdG/o3XEkIZh0333NnuJ+1tyROTOhZcFxU4cdAmliUVc6Ks8XKfk+JFrQaRGXplg2lZjCJpLLjHUbtAPFA1ojZcIEdVBjc05DksL1gkDAETRBOKjshTLuMWRsEY+Y+f0RjqArS7jTM9yc9hedtHjzx4+Xy+GhreRyVHAKsFsI1ENYFANvXxgPQO+X7LMendxuzzEzqGRSgAGf0h5nWlB1rhOWkiiWJXIbFFLQjBonJA5BpyA4lfaS5MjmP1ghP1jUgcL7no3BMS9bNci2iuxUvLmu9hyBlfiOUMFn4Jfr8KtY3kkXmC9XATcgTU/r3fX7lXlkGRhWnXxqSt7WTtYmCpVMF32d+cE2BMKz3HdTWmcYfMEvUhArzdbZ3Jc1Fs7G9iMunxtEgazjHnwskng7RRNfehl8iL/hOp5n6r4ftV+SD3wBaGGaW9RiLZPgEJnHBvfDzC8I8qD20zwrrtL9xviAo8NQqCsnG6Z6n3uJ9M8nDemUV2lbmVn58poyvXAyM7RJJPgaCgy4csYzYDYNC3m/398bS10ZtFuT3PNaKqiVVYOCeWyAWeWbG2kWcX2zzUQd8ZbaVhoc2rU9zM8zu/WX/aTyurGl45aKYhkH+A+J5XbhhvHQxVPj5G5vUfDed3K7sqU4FnLed3rZxpN2+7sd4bgaN0AZrvQxGM947nXw3jbsbg/b8m+mOm0VcUn0gDoEFRuXvgBuUau2eVADiGp6I/T8x7D6+qechbfJ/52TsISKN7vDe0x8BRIwh9HuetR/h/GxN4wPZ38wiL5jnlAgAtx7Eh9BszXn1ea9TBBPo5kkDxaNBDcDp3Qvfyiu2cmepC8Mnnv/vZON4PsMIDq04QO+kPIwHrDwSHAkPV24klveb81tCeVgWhGvHQTLdJ/odq4K6GWlScGIpJVvFbMX6BKP9poEjD7BLlQyt5oTZElACjTQgi0dCXaXwG897s+HDAgWM4u8lNfKYeJacCAvQfp3vJp+3lm+V8y6kBDgxfh1FJhU4v12XmzdeDwNIoJsybTseNeuSBe/3PbyV6gPeKQMTLJvaG/u9PB1tc3jgHl83DzDVMoLDDx9jf40ABwY/Zm0WT9I72tHFjNFIANxTbijAomvOT0LgPThNPs9KDclcifUROq9oy3nqQaMowng5GJ4hHZbRH6gERwdGMR6Hyp8Se5x57juTwaR41BCQIXPh0ApQ7813au0V1nZKElmV9Lus6hIb6GTZi7ce652fR0Gpj6HrmMQq1ROeZIdeWqMsXo3Gv7kDHKNJAj/c1Sf1psoJVddLM1PnicnJsXr2vRjD1hCtjvHLIlSurXSkugYgKINTfAWB6FCx1Bkab7k6YF4JKmEym/gosYxHvKRG3e3TuC39ETbPd0nND/zxKJLam3gagROrauyX4mQA9ASjnfdp5urUnyBwLyIEuyRc2V90/+tok1+UVx0TR/ZZxwe8jE3j9GYACdMmpgyPufQjaYyRJkn9mX3FB7sq1ktW6fPZylY22sKozHPcoISdAGEbhsamgxkR6MIBgEo+wqSKE4q5q1FeUEzAllbWmSz93lHj3AFgf+Fm5sdk4yKOQ4SkV8jPbs6OuBHaeNCI2ZKwABPTERnikpnGsR8/wLhrgVan2PioBkKs81NpXGmP8F4o67JDggVJROGfeDgNPxIgSqyAi6LAjvRUs2RWl5YCYCa4ArxtPCgOzCzv59u6/zxBGkY9PVJEHCIX9Vwg2yr1fRCrYrxqgQiUGrOMcQjAiLCj43TAtQiyZav09EfLXMjJguNB1zxQPa7vfIzpOuody/JTuPfb1SDEVhIsc02epxlDBhLrHYu9Oy2V3g3Ip4Ti38EKMPLQpqY++GulAQcttngyMKvuLKSs1ImaM9C6z3apZ9YQkhhfVXaKrk4pnUfQZJjmmefsr+EAQgetol0W17FUMtqRcI3Eqx51zU8Ibhft8UcQAdYUQY4ZyR4/r/r5aslZvx1rWz+eStd5DYayGvbhSzP4WMDlBIpcHz23P1/cUHo1QLvd7KjDDcOJN6coxlzAGLIS4RoQ4kMMIq+7nlP+L6IF4V3kFgWnP8Vc3SK2f7tmoOONbw7yJl/FDieKDeS0FBngwmkHSIG1FcTZDY3opR01vMY2lJhjvgsd/0HAu3eXeiXBjth1Lnnk9R6OdnHvkvUtU8DnRVS68lXZTVMGgkVzkdZzXtxI5VOYwUu28zXqYxz55AVZuI3pR49mqobhm6cXSVjQoCY9naY/AjMAbIGLEj3DCP9xyHc2j5Zx1pIHr5IrJjml9aQP2d7exzfDP/oWH3sFEA0wkDEZtReeYxufANsyjIVI6mpoxIHDnEDL9xLod7Z4OtmmzNBARhUwnXhQ4+KFeqcH/xSJwQzvWjP+5rg83hiOaYqQSTTCBZVH7p+/LUnUGQEQV1GgRriNGPKCX929zol2WtVt1OpacnPfmKUZG7En5G15+qkwF0KyXgRhwu2cat8GYL2OhYusmolX8/StfAdYSmtulb1aSfR6M/hIrg1orPQ21pkru3/UhZd8XsnGei1X/WsAOwNYPZXqVvyTaOzw9+GgGfjiQXKOF4elhIXOAlO+9276cG9BaU+hCNm86df2fhmnlrXL5HboHdTjqR7wIOFAnq3rmGLYYPA3yxTCsBnwT62fhccgI3KLD1XYCuIp+tFTK+eqsqbol90UF1S+ulUuCBn8BFlwPDR3yJZJDsx1fRZL+IgohdK1dN2bb+jbmASpw3DcQpT7j5bPUrV/sBUa48R27vbHoFEBU8hJPj10IzKuiMLEQtf+O64H3E7D0NfU7Hos/AlBYSr/AxlM8d1E+ziRl5EKarkzeOqLWOydQdQ2/Bdb0hi031YzeYd95npEfVQ8Mec4lV4tCqBJehXeen1fvm5R2xDtTsNlnliMu3Pw01Aszt2wCMxQYAhx4DYOVkchYACfPTbDVcbu7YP98vngZqRQp83eYJx7PsQ2mR4feb9C37sAEYtwNHCqHcFGu5XEiUj+2vU+PEf+XgVTeJiDPM+eo5m25Ei+q5mUk8zyVtUiPmaG8AjBDpnpctQrlMm4P/x5Z81nnd5r3agl9Yg75+7uN44+fUBDg6Lgqp6hsW03P2EEmghH1+h0ZTzGMdAws7MFTy3fNa66eR4ZZAAB1raYKrybGT6ENen4kSjwNVRUHA/SZHBGyVTOJXDX2lcKcQJBHkgCuIxcD/6U6AkGZSN0ZWZ2j5sAxn6yV/QjY5/z5fs/1Xr3YPjSYE/rzY3239wdv9wQ2zgHMJwmTEFYAACAASURBVPD+Zs8KDhN/JtHsclAF0FLHnOPC9UGwY5qCEdVGCMAQoVbNiAmPfBDy0BTDnP+iHnE1qisQcY6UuV3X51AWugIGIA3dst+UBjFlCgB9s7J+IUMqOMmxlLZ8h21Xj/Baorlc/io5ATagIYAKIJ/p62whnvVohkjFCIWxeJQ2Q4MXwYRguOfWmYAhiSlj9DAlPcrDuTK+pm7BgADkvPHZVvIP5RwCxnvD+S7onxat0B4zvNhs6by11Vjkmavlb5oe94a51pAXgb5Zab3nPwX9Q9GI+9HI8rGoc8Y+xrpQZDWLcy5VHaAZnRGh7PTQPjTyxiMM/pw+ngJIM/6KDfyJChIEZKZGrm8lSwTwkv4QDasCnM8UiXxuuZnCP7vJNZmAtAKYwBX+YUYz+Qy0AaM1dNiZEKkM5D5wIIfeZwAYXr1gvG1pRgCap5Ra9IG3dcKMaCl7Qc0L38aMCIzQB4YZQlLmSd+PSHVJYznDhFUkvNzBVdB79HPezPCedoS48Y2S/mpjbNU0HDiIPUcdCYsBW6+sGmFtbs+ZvoxzopZC7R8JDAv5DKbGvuTaq+2yfiFTLaaDQR61MG8G6PXPmakPNkQ2L2Ni3BrGvfm4J6Bg6WC+PhmtwqikYmQaoOIVFxzk4xzZ1XOdcg0FuIJwUHG+AoSZuX4iDUpg0TvkhiCwysgY100twgYGLu+26b4PPe2tcrNUGV299QSxVTQ5E9h+lUXezntH6wIMO390As2j3chRE/qCqkUSdgH6YX16nmBlueC1YIRjTf3D67oL54k0yFsBLHfiZ95/VWGJYMHU0sfpFcF6pkzTwdXEnFZX+uJuS4i8AA+14kJENQSAlTJyNzIzwrHn2QPgOppBr39mVEWkm0rqMdXDf2Xg0ul0FdERbdn0aM7FbuBXwAVAcDm5A09q5HWN8Kz8GhW8Kf1booTrVauw7eDJuOgTdWs6bad/9hJVU8azXg5QvoAwBLVoB1Yd7ovrjwAUeAVZzTkjHBPAq4HQTCkgkrws8rpR2Hcq0sM99nWTFvZokrZkKa4Z4f2ihddAxCIKgDX3mLwF3FC7oksisu6LRdtrH4kSw6siiDPidjfqqEi58JImwBQj6mltza1tCkxJQblf9d0iForsB0jUbi+Kk9XsdsLG1jC/HaHsYijaeRgyTuKdcsAx9PSlv0M9/8/OqIUR3b2D9YALIMdBHagUMMAVIRfqOnyc52Hh6Ec3xaesrRgr5jgxlLl4OF/yrjm3lVjHjavwHHsIfhhSqk4E2ROpdt4E/fxElBQ8Dghz+GV+Kaz3aydtDIDBgQXxsNxl7n2dR8QC91aNMNAt75dgEsOhxhmCR0hweQ5UgAGtm5F76kv4mLw5cWMQGxYUdI8a8BQAHEfMMcGB6L+DBIt3f3oJowog8GolN5ApMyJGKEmB3WqZphkKwB5BsEc8xD08rPe0g1oiShV4nGsKhl4Q9zBaw6Mt4h0VdPJ7AmQdzkvA5u2HgiuTiyzbFQi/FnBgD/XcwJwIvSdYcXfywTPBmDhoj6Jk+f+mCPYAlxlFESHY39/zO0rjh8BGQfcd4GL6lnw+l/fg6BG++nI5SBAktChGSQwKZVnm3/Lc0Js9X+9HhN2SaI5yXby8Z/tApsVRwW9u4KnlZPdPj65pzEeWZOK/tSS8c0NQjgn5tHD4eTODeh6Cxz872rPh+DEcpEjF3oy0uj7cSPH3znsPrzVBAL2LGXqPEQSJUOD4obj9W9EfwPHTQ6Y5bIo05lQhJyx8WWFrpJW55W0irjhL/D4jQg4GAuw6k7gRJv7Olu0VVbQPEl+lgSTDIh4ZYVAjNph7n1UHaE1mXzhHAHwvl+jIqTg+RnBDESQyYwnhYGlPG4NJYV71X6a6WLFyD7X3tAs31tvwNMoPGxymOMzD3+vlDtvTIlaiLYqlP3VdaBec323+STaIc7oe4tEBmiHvlYBQzmlRLvW5CvSP0z34AtGGqQ39YWuyDTPQ28P62x6u/Hp0B+MTwvCBRHRHf2hUqojomU2JD1JAYIkMUinySwXAcH2srLUy3yQrbENwfjuQVSgYhbKtGb+4HyJC5FS0ppZK6GfRPCzcu5JxsvqKzXsLsIfz30r0VQByWvovPlZQrAa7fRggI+1a6tWKJBD3ceO7owy5IAFK6nYeZVQdRd3BRwIe1icnpWR0acj10v7dTnI5LzqSzwTZTq7dds71Oc3/p3Ogl1LlvCZW/bOeeaoJcgcZde55G4iy3m+31WitZycjQV/OlmaNaHBdF1i8x1NfjXvdSPbqRb2EOg+KHkOZXhLvUxcrD9s9+H17fwyFpDFejfLoFxCcUHu/qYu6U2u5p+qxVT9pCH13cXJJARg2jrFMN9icAwEscq0UUGABKnTRpamzhn66gBhut+xcBA4qLakQBAloD4YjfaSOGG3w9bAhdZmS29Z7oz0t/9+mx9o1E8CgfvkbHoU/ClBQL6sYwsvJdUBBHmABBYiakcKwvxpif2WoUzBtSkrcX/+hCI9FELuy6l5FlSMEjsxihDLsthod4t4+T9Gwklf+fHprIr8XCMnZs0Y4ICkU58yx4dVgERu7IaKbZ2uWd9J4PzpqLtYSleHjq/fD6lrfOs5vpqRGWOSn53y3kWvbla1AumcZT1X3yrcMf0UqMKwXHBwWnEO2eZ8/+AEYAIPkmANgnvviSTwApm9kreLVU4ow0DNXlIaIjp45eeyfcyfUNBnb3MU7PzU9ym5kK3kUWllvFCx1HnxTRwpFmX+CA1HTnsRQe/j8TLCC7crnC6K+b4TAOohA4KM8m89LRv7i3efzTheG7pURck0ch1dzcBCogAlXhES2+xOUCCFcyfU6AIaPV7BnzKWMVYwXwaSaWcXqCjsIQcHvbedaeykjGodZT6CTazjmdvVCLEDMbFsKRpkHPp9VKRr5WApAtB+CNHavDoSqIHG8rmQk36HqVSeKjCXTc/1eWcNosBQGkWUvZ07fJmPduFpZvH29o0UUVMjPjYk7q6tIyBE5RxIqFvQ/UzCw7gPKmwIq/+qSSaNNsg3EFekxbzwDJDzmTfxc8jxIyreQl1VuO7+PehWECiaMWwvDUhQWNv0EupPdKb2+DTjfBO0A2um58l7poHp7o1/8hVNFMjdQmXcjVQE8zeM53uz3/gkcH2pRCo9p/ANXY6fe55HeYFsz3k/JUOf0tsPG8WbgBfOjFfJiuJEor46ZTIVOoPs4q4eYWp6+GS7R917PEazGKVAMzTJwZe1WgkAoIE9P0az8UGAoPUOrTUdo8CiSAqI0yg6PvGAOv5U/FDAqzMgQE7A3EAtmpA81LohmRjvUOAm4DuKZPsdC3fnuUQMPG1jxPZYeN98LAswuaNPSIaJSE2U1gSsH4aeTaDVMNFYEeRgwQsM7uDbgvhKCfK63ZKoMDFBrkmvDAZGrq5bsng4+hWMIHq0hJP1MGcmqU8adora53m0tabdGKkt4XoT6t5HjzdLLYXxzrXEVztJHeCWVm0VLzENivmQi07kATw/zvcHodpGyr1/bZfOOJTqh6nTURQ2sk3wPsOy94DlhmpJHpZgh7z270FWXv01k+6/0PuF6N10zQIAAGgxYi6o3qhHFle/w84Kg0rWYyvdy3OrZ6WPzkpIAhLMIQBqHxRB90anoTabjRjew+8oD/dLMX3++t/EFDOD1CzAhv9CAq7LedP5SFnJd3uR63al+6TT725f6gmV/uOc5lvw52lhAngIkXJWvtM8KUHH5/vLu6kCig+aK5B0wvTl0oH196rov9kgPT33Y+YGWahZ8zkv/Zf3sq4tpvb+Ynz8HUHDk0XIvD/Qfz7WMDMMBabBvBwMNdYQXYL6EH8lUI7vblUaRJE6cuiBFC7EX26EljPduHvMw4EhSNqYJreXwcaP6Uby0UhRaejA3ZV4+VrJJKvMMu9LerBTlyDDFF2CFfVX10HGEUhUh41XBp8Jdxk+Phvl+YHw7MN46zm92aBrhDzJV5a176KLg/t8eaD8tbcUE+ghjHICFmg013f/Ty6m835b3hwHC++GKpmpwPehSFoWflUiAMTN1oQJPUtdUCREvKTRLnpyvKzmHzcPzXDyb6XEvY38cCBZvEtzRmAY8FLsY45WMp15sF8uC+nsW0GAPwQJS2JSr5t/TuH8pRVNRZXq9uRbU+mBr8pYEo7yac5uQR4CRBbXKw1QDV0QQKQ/1GUyzqM+kQF6iPvx2AHocybMAJHAiLTgiAhCgx2CfL0e0xTrMAcuQO31Y25k2sI0rgCCM1OcTtbxlBZbquolxCqPc1wRTMfh7kLU64i5IAGE/qCpgwXXhoZnyeGbfq+GPuRywUg1+yqb6rjD+3RjbQUjKlYmUa4wUqADMfomgfZxoH2eCdUy/qnv9TEIugrgaa5kKuJpwItdDuRcTEJlLpNrSb/ZhT6MTWeQvWoN+e4v+GojRbLxjT9JYyVD1RiODRi6AIAp2I0OYq0kvedkUZPenB7adatEB4t5qNzqGy+RxF4w34PYvddI9I0psH4ZkLPO3rYGIDrk1B4E5Pogw5/Ovw7gT/mroT8Xth3pkgsYcXUZ4DM9H9vBlqdExYhF41Zi0sHcvm3fzfPOpUe5uvNk6OD5G6BXa7Ayjx5YlAtVD0qOaRsgBZPrD0BK47x+rGQBBCsj2Osng4jEqBAyi5ok2kMC+O+8txl9vzZjtSTzsulGAZ01w/uMOlp4EYOdts+iTph6t597h5uCFHgZy90caf8x557qfh5cH/LRUAIJeBKognhYxkWkIh0cT3ZuTHpZBcsdZ+3mmse8etxcv/8fpfW+4OXmlPGYAayQCDaLHe0lr4TqkAcx3M0XIdUaW6JxvllJwfIwEG2SdMrZrkQsuI62stq+nxwhAELBx0a4A6CBDnGvtOYEhIbuTr2GYiHo7vLymxPyS1DFSI1zOzrsRhbLkJ/dVADCus8y7kQ42gh6+ts+3jjYU/dOXZtE5SKA4ASPsdMOfRn1E+lSg75CIjGHEQWRi+dyLn73kEOHcirpu59ECImJ6sq8Xcb1JRg+5k0CJE3oQLCBYUY0uL9FbAT+lTr7Nt51vSMddyOgWct1kfzEcA2yUPK8ZuVl1acAIl0vE5OLsuSCfxg4sb/Izvk99YosGsFRsa9disFcdcbt0j9bbgYQaETkVtfrUl4b4AlLo2lcCgxAsjqh8KF5Alc1OWp59YetH+izbWO9z/UavxsP19iWCgDpdndvQt9r6XX5WeZ1eG+f/3H6l/kL9ljqQiOmPLGtOm4L9jue1NSqZ6zL0l9JGfm8HSsSqHtUR/h0Xxh8BKFRbJ5SGXyial+VsgET760M3tNCEbuYgAq7k4GIRlHdekoD4/wJgIQhjeCwXiaYwXoz2xhA74LK8x67cFq/54ikHTLGuKRR8Z+R5F+WspmVU5e2rhc7F6N+dnfWJEeGmgW42MSXrMKVu3rsdbp6jFl4C9i8OFbkw8AtAAuShNzXJqGIsixD6Cmn7FWJbhGwdnzCIdmDGx7yS5yy5U7UNfN75KhCFRlgN7frFtZStifYUQKJejMj41dVSeCSosR2S5d0v7anEPQXWp+EvcP0uUOqe/WiwyIUG27v7IdMLyNDSg2QvK1EfQEGCNwGv2zzU9u2H5NUBVfu8ywFGj/zq4Kzr86v1xzXN0LWIHEoF8Cq64leC/UVRKPsKwKp07P2qMiba522pHDQElbhfi4zh99LTtioHL/JrV8wI3nl0AFRzX+6pUDxop65ytz63toUG1xcOhpdxq/s/AG687A+r7OPpGQXECY9mJErXL5UfPeR3eTd/VFj4/a64FjCIjOwsv8eIiNHVgV8xA2XCc+jN+JGzeI7jXKhjZ4q4jJJu0pAGTu1OORNkwtj1hxt2NPZmnl9SognMCHFjoIBdS5WBOmbq4fU0Un2MaxvDE+s6hTYgyAaLIXl59pU5eDE0L+/1Zu1rjx9tsiPn0m6oZZul41rPETtf563FOMflz7FoDJ/DOrYOrEVKyzTPOXkQWJ5RS2cj9bAa7hNuNCZJoPEH5LuXS5FGPYEx5H0kkw2CNxrQwJKeCMCcJvTi09D7YuoqAEUHVFZjEMsI7c2iPbg+yrl9CTDUsVwALtNhxNnFjVyR613jOVHmMealRGlQF9yPE4IJyDGOfVHmF0Cml9R+cC8stSRhf1OJuZVNPYn3xMMzIkMnP6/3SwB7L5fv/SBfd920kq8uHBaMvp3ISK0yzvyZEUn72XrFN7ac79Tb6zVdjjR9/TvgqbBYF/i+R6sn+eq8V00wQU0YklRvGaur98fHRd9sUvgCBhaHzxfXC6gQfS8gQW0HZaBI0fMvPOi/uxYdOh1iEcXwu7KWi0H8C92nXiLr967aVNMbNn3lMjqBpbovyCe/vKpt82Vb/4ZCEmTNAgxJ/frlPsFCwvj/56p62m+uPwJQAErEQRyGjh52sf4w97KGp/qlou51IjPuSGNCxPJw50zFjoZtQ0yQ3mT1WgMZhj88v/voWUaxGPIpqPxd1Xiogmw3KIESYjVekUwgIwj4rt6sNB0jMNif5wk8YZ76JtlW996JqpVfux1GShYKOxIFY173GKsXEAgFmgcy50kUuP1roJ2K499GjDjdSzQ7oizS/fMJDASZXqKu0x7egPnXu4UmO89FhNZ6DejlYCEBD5V3GvMiboilkJCPx8WS8749T+v37UCUz2P7+P9Pn3O2/VZy6rWnAeHkijY35pmO0pOtRanSiGKoAlvVIh7ckx8EnlUIU5AUI8K+39JL7B75EHg04gsKKccBud9TsRtex5l9ZxkjIN/3+WmCq1RciIiJPbes2cEjnrsv7++rce/9EhEjPtoPP3pEWQoS09H117w05WGxoLP2s55OUHgcFslwf89x2w9LL5to6SgD+ukHx16WaCJSHbREQNneLWtmTFuH3fLzdXzGWCpwudc5P3iMlwMwcuEqB0Xry3qIihdeUskiT1oqHUASQJb9vZALViVsD7PbPQb1InHZ1Ew1YLWAdyvJGlwFmgR0YVieJOJynhYSCooGd8L8/pbGeGuZ6tZSdgd/Su1PATwExSvjMkNbg3RX9HauFy9xKVVeFdKuOOB7W9dUA8y4NYCIkVjSG+Bl6MKQ9e/p0TCboDMKq/sYHi28lDMqEADoLbyTMS0FHFKPQiP7ensq3v/TKozc/nVCljJwaqkkTSOMun0ON9xS8ddmOfQ0msilIBPurbf89/f/NtA/nfMBAPkV4v7yPCs5q5G3rgeiRN68MXoPaF46eAGdVNF/5J4YTSAty9LNewE8aQBNXTmaeDUfry7oLnNegK7i4YWmoQgBZsvQ8zYUR+GLAJApdSi6xTJ5eDWOBQVogEU/AB41IPj8p62H28+JNOgFraURylKLAOfLtpVxVXh1hlLBYbaGJxn7A6RDRFj2z5me4KIHLJeDFSjVAea9B6cCgCSUBAzUepqnX5w7wr7k/zsPAtdTVARpMINSYH3wZ0Vli61dBloZ6BVb/RCoukup6UKCat7pafwFFeDjOvAUERrTOhDlDwlYsqLKvJFocQYAFtELrWV6CRA6akQnTMV8K3pHo6FNgIiTjYtqM7aQkhPC9GdGDY17izYu66Q45VidAgK0j4H+GBb5cAgmS7ET6CHZZPMorrLfOT9oVsGNZU9FFfLDCI2tnX3tB88eRiQw7bOCd74WlioSZf9WXi+bV9chvd0Kr77U17mOZ1B/G0V2VPK9qeY1Dn4hP+tCdsy4Z5kc1UzD4/+8pxqZruckGOCGOEtKl+gIC57w8Ra/r+TE6xjFGcMxru8i0DDzGUD+7O+qRH1S0mFtSDT2z+8825FmC2Cp8lBBhqmwPL0ekakx1kyz3RzI8bzxIgoAKVUROHZMOyhlJPfvxDtivP1faxCqx342LWkkXFs74SbnqZCRv1xX5wV1752fYjbbyw05LtVWWJ6RaybXQYI90R7qKDGn19cfAihcNLCJEbpMF5BUUr0G71XVg9fHlsHYlOO9ZFQYpYsCvW6qeNYirDelI1DcC6G2Gz5UplXX+5dn6RLyDyDR1hK6/xKqKmXR2x9NULMmr3tq4n4gw79+gUaFZ0DNwwVRL+NExRR5wNWQ9as2NV/1sUHhAluhmMZJEQfvxTxXlDCQSLyuiSuEzQ2apVZxrTihZb283VbU/WLOv7wWI+PvI4ZSjTx+H1iFP9d12xDu+pyKKgOIGsdlvdQDIq6KBO9CqKLJlUOA144Is+9XpHd8v4gBBwOr8GxetlBMWfslil2jGKJP/tnV+rmSHzGmeFXul3fZAZ2ElgkARTrIbGb0e0h9HcuoCAN4beUU/BTaLzWBv4piKYoD0zu+vLYDYlecvvQu7euca9MjvpbDlSklIq9ytgmqh4ce4wA1Cpli1DNn2a6rbtX5Bl4JVKvCKe6h3qLRqFRe9rFelFfAeibw9lJ2LL1a5VkNQfybjy8Kr/88yY/A9AiBe5L5LG96/C9p4AHIcGrzzrcT4bkEgFoGLnKhZ4kAAZZ18Gos5vvrCAWXDoD2BNpjhnGX3k4sqQMsP8mUjt27HZUGFAUU3eS5rs+rzQ2biLnbWkLtvT0pB+q5BFROiSWaxfsS5536HtC+vN889xpfqSR36ikOuT7zXftZx8oZfAY8IsCqCegyCQR5FuCgpNXERSPKDS2SF+oBM67Dc5jPtT7m+c5IEFtDCmiZv10ZX2QAgF+IcfIqWZ13vOzLXPf8ApbQexyc1/pQ/07jfsGid2nzNKQpCSaEgEaCQbQFVFYwl/pLaetLNYOoatEgzcYL57SlRMJPgmdntj9ANnKMnYgIAQMmJdcPI3Xqka9+P9cVfTBnrs1IGfJ+Z3qK7739LAw5J8s8xGc+bi+eaze8Fv2jGKUvz/+VniWyHoehL12c67/S0faLdoY/r3J/kU/ny+dG3+fr377y4nOvUa79yqbZv/eLoNbLiFLqCH8nohdI3eZX19+5h+391e9fRSlwfKohXz+7iuqrXFO/ev5eovKLdfJLPor62eJg2951dWZd3Xf17K9086ux5+fzYj3VzzieOn69Bv4H9s4fASjEoee6ZrDXOsIpBZXTW+ZAMowe8EOikn0FguzVGLzUVyiW9MbWcBf/R6bw+Q8vL/Z55oafM5nEgWAwp+ddWzPPbN20vP8w0qEaqWCcABnlEOXI3AseyqdHJ0AkKhEo87zntPtf2EPFIhYAa+Pb3Ss1+Lsq4y0XDRV+GkA1hHhOtM8T7dagDiIY8dYIkiqZCnkM4Jvnajvwo60Bx2okRVlMJxqL9jyeEJHgS2D7ASSw5CXEpIYZn8NKfO4pC1dGgodxigzo0TG/3az80T2R7/AO/Mebefg+Tmvr52PlY+jNogvGAPSI50dfuuX96dvN1uDjmfdU7z5LAooAb2/WXEdN9WFlPF9ZdLM/FDDL9g+DPCN8QPJHCtMamdCMW2BFtwXq/crqFYamLmh8NGwHILbDsvRBxzS0+f3NSn8CHvpZBOX9ZooNngjime1gkJqr7utWRoM6N4OqQj49UqVwMKhHEpDjIEGPreqA6kuO4lLJw//P3LwOHM7ToMbdQn6OKJnJe2vN6QIeLiHP6mF2oi8HqqrnYh5e4hMzyxnFfUXOBa+FRdAEQEl+jxJhEAbQYfdGJMB0bwejIjhWFTh6E/d6I98tYs8p6Qx6eGRQjT7wCAXFhN59LyzyYFMaA4TqNpasLOFREXKO5Dq4l7zEhfW7RBkwGmkv/+vcLZTvAeRWr9V+iWC+H9EH4bNoAHiuu4XUWn78PCyvvj0m+uc0CgoqCD6WNBTEQ3STjT/JfuNvZzlbqGt141bIIXUP43N6CoQbvcXokmHRDfNupe2WSxEpFKxGIVNx3m6YNxrBuVdIBChqRlZwQSjQONckZq7jVdfTF1cY3m689s8BplrMW5b9A88vN8L0lukVregXQdhHT75vxYyIBNpbx0RDd8A9oisUEDUjmZGWergXvEnoMy958hyzc8aa0UOssrJ7lBmFYiHrFoVC8Kh/zkx57A3Pf9CTbOPQHhPjvWPcG8a3htntHXyOGYqSXBMUP15qUXvyK8ihAWAs8yLkdrC91ViCu6VBuwCZXg1C77ZXY57ieUhjmYSkBKJ8XrTBSCefM0Eq/2zeXZ8atk4r4MW9EIa2t6t9nLZvC/8RIwomo0duJrPM+Jcwrm1fi++NifFm4811cfywPiv3sEcvAT6vXfD0qhFGagqI88CgAbOZfG3kE/A1FLwnioVkNMYQis5ooZIWOd+O4EJgVBHX3QqwVZ3K/mkT6DP7WsGASGV6WvqVVa4Qi0Lzc1BZepFXMeT1/bbKZ/j5uK8P1Yxm3eUDU6Kr6rDoiabLzW83i7qgakUOsA8nIq7cbEt1onoeMSq0jEPwR62ANmaxVxYk6Nox8CVHQf1eL+9zHYNGebBGMAKp6h68nHxvAR/KO1mOMtqwe8mv2tckIgLkBaHa2l9/bhMLseNUaDhgijHMiI39WUxfaM30VkZ/sJIZYOuI0byA60Kuu/zK2KZeuPU13jE1KpNF9biQdSN1UHfAvIwZ19pOjFl5rnxfqJclXRy2A6AzY7k2wDcqQnDMNCNTomT23wCN/ghAAQBwTquJfYgpKjdTso6P4bWu7dIXL3/lIdiEBbBO9KUCyuek8AtFsUZBBEvtaoRH6KKqE3vNMG5xK8Y4kAh0NawqOln6xXsZTq+FfC6Ahe6nJ6sH8PlsT1VAqyHv3vkgg+R3GhDafx0PHggkvDwn2mNb+F0wepJjWWksU1oiXYUHU50LVVOo67Oq932aUsRQaF61tA8JOPe5uer7AhxNN5SCYM4VW9i8MxpGHtMPPDfOh4MZpTTTSzQL+xB9ybzQ7KePKUPWCrPvzvq7bGxe9V0Aojzg1VX/zlSRagwBYA7/Qj5zUHiZkGFZTHRPI6pENPE8E8ZmKWyCcI+2oZC1TibRDceVwroi8ppZ9AAAIABJREFUtZ5KsAjfvVIFD66yZkJw16gKLT8DmdLBSAL2d19DV230MbF81c2A58/wuWSFjwbHE/dIks04n9P3q81RRCxU7gt+NUAjKd7WIl8qWEOAtVnJthdDXVPpVCbZFkUxy1iWfcdw1D1tiiDlFoECV5xDzlDm+AEbe533MOy/tpN7v+daqiS9yr8Bq9zTkv62r1UAGOf6e71chmCe8Xu8I/geXJZH+SXrx7w5SRqmGU1+BtSc6ChP2IQ2QK4h3iuIUFHd8urNuEOWGJQMXRamBdVuqY95E4CEd/7c8Hz6M4xDR5xYPb3+KsjSgCLx/PDWFpCDRgZ/1iPTG6qzgM+yedBFXgRw4O+M8fP2NqTxSNDAxqNh12nju04GzbKcAIL5nxE32iXD4XuL8TSAQVcFruokPFOGE+Vuil3wEnBu6+VGeI+QcqB/SHjX17KPKGs7jeg6FzUHn/nts9lzIwVV8aJUR6pObZ9efBbvyectPJWMJOJ+bwBuDROHGei95fdqmG0jcJDgj5H6GQ/IBHkW7PxkBQgDXWjwapBKkv+hAgnp8TcdTGYxPqLCB+WJrV3uP1t7ubciJWTaOC6kn406m8QeIwjxEiXhz+X3poMX2sRVPXXnDGAlxrHyee0Gtst1qboesALZNQ2jXC+ROIKMlhEEEBTrmb8fXrHk1qBnNx374TrwtDbYWVPOK5efirmcuwLvUj2LuddESuRTK9FbwEL4GrKo5XnRfK93nmNmX8hzQGdzhwflUTo+vwzpJ+E0DfyqP8Q9+3dLOsJGXriUg2So+leRmwUwkAnTC3ZnTDkX979dXXxe5WLYf16eUb3i9fpVdEREPF70a0+D+LsX9byFeByup5foVtWIVN7btFbQWvcN3/H6Wrfj2N4rIHxufFxX4+/tF35ebcsKWv2KO2Fb99jn6gLEqsDS7ypw/BmAgg94//HA+H7H/KthvFmOIMSQWYZ70XNstq9AtJdnlMlqgiBv2QeBxlmDDdIYS14LjfdApKl41nKDBBPoAXtaLWV5Gm+BnOb51tbsQGNX6THePVrlPdZ+AM9Z2MUTkYp8O4ZlVbCAoELlayj3iGowMevNPLXyOBH1lzEB6ZDCYGt1xtM4aI/h7NgSB452wXg3xbM9p6dBDPSPM0s+eT7xMlc03GnkTDEj0PsgzxP4fEDe7mmgFCRPRew+ev1psLSW+eJ1Eznww3FEPwJlNubk5gqlGwMQHD9PU8xqGBzn8MWoL0YT3zWnK5kb6CD27qgAUZ8VkQuJwC41ZXVC6RwWCRZaAVa0+EWJmDbP52m8AVKMVq5TVhsAYHTHrvhOu1e757AN35PU78l5cJ6AjjIG48XgX0ovioDlOuPwBaBPV+hKmUiiynK7mTF7Fg4MIDlO+E4COqp2b82l454jgi9tiToIBt3jQJT45DyVudQxbSyPjuCreGQliGg3rYxKVjkVaBchZ/QQ7HMnYoj9V7GOoRRtMo/yZjeMx4xxIu8AuT5yzK3PUlM/CWiGolYO+W7GqL7dQxELGeme6Ojv0U1+uGyYd8/PH9OWurpMVcV8uwFHw/nXzZjRP86ypy0/P8jSPGLFQEFJsEcVrJQgn5kPGyUhpfLECMT3WKRScDz4Hsra+rduMj6UVHIoACG351u3s+0JM0YOSeBVzYDqzHd1nCcMERoCrWEWBeC8N4tqeDI014yXdroS3+3zeRSAo+5JNWN0HH6+cF/PHhwMvOatmbeXpIhcFgNQbQk+8TwaCGNX2J5bD4WO+diAG80/3DhoPicC82oVECGMezcYRRERW5F29/Cfn1nKWFVsuir/BM8VVQ83N3kfQ/5u67R5ykqUnuyCJhJkfjZOzKHf9Y40tJobv2P3sJa2RHQiEL+3c1h1Cy8VeXMP+/P7EXNk3FAJMNAwMl6JNFL1MLkeqSoiNh8imDeEUW0BUGXP8syXMr+8HEDLVAmN8oZWQUvBqJFascn4Ibx8861Uzoj5TH2GAMrs3n5608c00kaPCFjInn0ctbmz48eI9sZ6GWUP20JJ3g6e9ZsuqWJ9O99ZFhZonxNtOFlgBXS5RhU5Bw2Y8Khbhuofa2SGfZZrmlEQ8yYBKKjYMzrfBXHgo8U+CVJUynlG/56+LphWZtvasqaqE8fgGTSegWo6tB6+VghsttQLWab9/M5UUte1xOWKiAE2e2n4ZU15e0/Nqits00BGgdABuF01HUWmz2V1BNIz7QBWlOIlX4l2tNPkldgf8tkkSv9VOL8bohrl3n2cW4cpzHg19I7D9Y0RoEA4R3ZDXMtz975Tt1O1Z1KPA0yPKN9Z+KK+MNSXaAaC9QVg2D+LqIEdGNj/FsZ50V0uwYStXXtlgvr7hRc+2gQayjaWERVLmcvogXq2iekREZWyO2jq/YvT28Ewck0UR8flRXtv63foo9wn1Mv38dHXiIl8to/71r74DLgc979byvPPABTEhcHnQLsNtPPAj/+94/N/FRz/i6B/At/+r+GKEtAeHhrZTDFoTngV5DBeojDyVf0g0KObsjwtbH3xltUweSrfe+nFYpyEIPH2h7G7gQQiMw36wxfehrbbO0sYlSOyYfDUhVPR3uE5b289hemciFIzXJhEqDncWvJtHSwIgEW6hdBGma8WHjUqBhZ1MHxx+kFzYvGutXNCHtNLFc1A6LT7kgs2X++He3ZjDNj+srlqaB4Nh/Q+ZH8i1Iz9Y5kfKgRe2jOMXQAsGG/nXVuU+/ntANnTBaVdfB9vrFc1VJf7ECH8AXgUYRTs5vVgcUPYDD8izA1yL4KcIEfvkNuRUQZ7GFuthUyhG/Vrq0DhuzRD4QEEw633zcADHpLN3v/tm/XnPNMIvwrHArL04ihClIafG/m1BORSGvEsgFFVRiiwuR9m2c8V+a6VWTzi4TUCw+dlIVLK8URrDsyUNtCjV6IJAjipJUH38qDhiS9pGlHqcqxAAZUSzIzWqGAC20OAhc+OSKeyzhwsUCcmjcig57muYV5VzjGai+Uoq0f06cAUw66r8sXvn8P2cAMwnd2AhoQ6wDkFmIL5/ebh6oIGBwuGk3fdjmRor6ChygJe2rj7/3dP7amlMesYaz4vZE8FnAkkPAuYyXk91DhgnuvYCYnnPkdEXuhfN4x7g34jkG2yhqHmYRC70addMO43k8tV4VeY0V/WlDbBfCNo47ny0T9YCcDtajQC3fM43ppHTCCMIotEs2cYB4Y/0sXTvPcwTNg2GofkiOB6MaN3YvqapNGEjjQg3GiP6AaX60net3qta+g3qxowTF/GRBvDANlWDHcCHzT4RJJfQ7vJ/gmITgOCaPS6QbOkj5yeCuHtMe91C64hlvEV9yiH53oqIPazOAlegCSnnadSyCn11jG1oT8maFRPTzMiMKaHG3cuMyY9xB2ZMz9tkkjyyfvbKSASox5JuAA6qmifWblpNoF2rhVEhQ+uxYjo7ID2W46XagBIjA61fcd1ZXM9PT2olg1vPtf2IAO7CBK2p5PFehsaSQCngxZTHETJta1+xuutYc6O9rPl+VflFtt9WnoJuRxIumhZDGXN3kxfao+58isIMN4NtOufZsTPY9XZEtmyn1WytKQ6TU+Ae1skCiubca3tJdet3z7+RRxUjpQlunL6vdzbJxyIy3XCsRAa84CtD29rRk3BzxCYrgw/J44OfbstMjvSYuF6aXMd0OcgZDyJ3Gfua6twUeawnru+j3A0B7cMZJvcG+W+IA7mM1w3V4/ODb0h2USxen9daNZ5jbMcuc5Cb2yIEDTqT1NXMIDPqMY00yjZTzEvs9SznKkRe9nBJqEfij+nki/aPb8wiH/1GbCOBwkAqxE72O9fXHQ88VmVYFInMIk0lYvzVfQrAGuUrPdzKR9ZbK/4f1s/8WMAKUidvuiGL1wMvn6W0t+FG6/2T8bwIEXNKBvaTvv+7FLSboCXkptAjnkFcGrEayFnzCHc1sF2/RmAgl/yPCHnATknzr8EH/+bon8I2gM4fhp7dH+YZrCE3D9NaFBRiRDZKzAAMG8ZzLOpQHi0F8ViIgwRKslhmAJYvNA0zvzZcRUlPkJNvyg5w/C/hf053p2/m0eGoaETuHVrV/OF9tgmuwIldY+6UgjAhGlsFrVhOiXy9JT5gveO8dZwmwp55qFs3jIBPktI7XMa5wD750i1Ai8HF9yIU2xChJuMG7imOZxUPGjEbd9dEGLL95en2qFx9DAGAnSKsTWBXZmrx81quvafZ3plcHEVA8RO1IsDrPlGlxmGSOTSlzmiIJJGHgDLCTcmWD9Ubp4qcZ5x2IlXmghvbQ1j68U45/jWi4fVVAtMqCh+fUY13scsfAA3E6isQvJ4WsjleWZ0Bf8vQJoyzYPrkRUSVGGaWRoVgnIc+wH+Mv6AvYeM/5XnYboR4u1GOxAgiYiHiNaDYeYccQwARNUPApUV/LOX+u9sT+FtCAVAc7xjDkruIrlRpK194/PZF87lDibwuiKRYj7p0Dy83u+mDLqHHZ+PBGM411QQCeh6SCkjtVQ2+TfLe3ewjM+dpmRY9NbwNpjX0rggJnCYwaZOuKbTjcM2bP92B0L5zsp3sSlWYcgfLd5dP48x2mRUytGe62vMzAt1RTMihUCuCInzx4DiEVUtwGixQ3B+M4Pj+DndgJ9mRO7h/5Dw6New9eb559VrYeHGJTWgwY1/NxhHmaPAE11Rac6U78aBeXfF14ukwailEkCzyIZoW4MZGuRI6mIv0sz1h4P/YUArgr9h3nucx8KlQ/HaaQynQs7ogSAl3D3PzfO2yUsAADcCqwjyPXUAHTMBFHWZbpEAE1GFo2UaiIXVWynCNpxcsBuYMG92/suEedI5BlX+I9/F/4NnwYG+qHDk/W0A9DbTCG+a0dXco/BxU7gBZEAR/27cC3ByQPtjO23Oqzfd1gLlMdBOoD8npjbMw98nRgYa6Y9a2lKM2el7wkAw6hPW3kZvnp/F6lEzw8ksyeeRwJGtAZt/AGq6RnvCUhkI2DBgTMSOseYdAZL/wWXcvLVIo2B0Fg1rIxCWAIDaVtGj3gsH6ObNOGnamQb8vGW0gfE++H4tVc9s7RddkUvF25/RIpo8Cls7KqhKUtrF3iq8A/XvVxU8arRUAFWcA5/naG5bn6V+7kRlxtiv+bv9rZteGm2e5nj1M930RcmIXD/LRNWAGz4LAEtyKufX56SelQQUWCkkxn4Zb7a1lSjX8oxeygnSMXF18exezkrNz/ZKQ8vg8/wtQMMeTaAz9Qee/YweHaXiQsgFeX0GdTTaoTVVlUBRvWpUwi+ulzSIeP72/lbGppYz53gz6oPALCtvLVUNis5N/W9LZXhJZ62cZv7dy3kUP6jCidTWMfC/LxXgqlOK91Z+JoIJBAKqPimS97rMWdaHzuv1Eg6o7e9XnGc61zHaq2zU8fni+jMABSIurpD1j4FxB57/04D+H0ak9q/zO+7/XfH+n2r2/2k5qPQEyDmNoI+bm0ouw1gIDtKY46DUqgcfT0tVqIhUa8shqJEbz41B4eyC7eiuaPt9DA2bEuRNAMrCzQlTLqbeAt3VJtambcMqESiiqZ6H2wyahah5RIOs8hyA3PxwdBJEes/mdAHuHpRzeshaC+4EhkUGuHLrXgZsxGHVPk4L57138wzUvkVKgCbPhIckL6XVlNwF4qGxNyOO88iSmN8NJa6HTzUgwlvqhre+3aIUHFSNDK43iKdn3P4rFejze4cewPFjpjBTQZT6bB7SV0Po6PWugqocbMyjRG/Qf/wFOQfk49PI3sIY9barWimee/OoBh/P81yAKyvLODLigWUDm+Tf7rcUlB7yJN+/AccB/XxgKbvD6AQgjXseMLdbppQcVppQn0/z4NOb7cacvN3XCKDew1AnAhweeArP44B0OwhZllF//vSOWjSAvN1zrEiG+VkMwjKGADKNgWDIcQB6dyUkEXgBohwRns8w/ANECa4NP0QeT9sbjH5ZeAmaW0CuPFQSxkCGu4Mb5smU+3sCMHzfVKh66VeS+/A5XNu3W8q6MNJnAgCMiKnjUgCOGs0gY67RPOzz0RcgDrejGCpqaV4El5j+sR/WBUB4ebeXZtTWQ0YG+a5/r38O6CP/LkXG6K0bEOT3y+gONAjmzQkfCRg/Ts+r92cvILHf86xRORJpHPE7gSTK/QCPD8h7X/vl+x2qkR5hKVSmNDPq4uqSYR5pvR+m3D8nBDQmYdEaTyNupAcyCI0pRyDhBW/AEmlgY8R3eSTGrRnZmzepE+A4rRxZcxmnLT3A/QNh+FXASKZERYnwLh5umcK86U018uXDgHGj0bgarD/904z09MCaIRM57c3b9sx1Hv2b8LOpxRS2B1NV6Hm3e620qBsx3Z0Ow8orto+njRPTDo5mkZEqaGeOGcEGUUAe1ClajsXwMZ12DoYhU4xFTECamuEtCE8obqAlHOu1fY4AP+aw6IYAK2BjOd56ts8NwfbUAF4ggvu/phupQBtwckZLgTjfk2C1jTwXa459e5qyG5UHnMxRexowtUpDm7B93cQADgIgAgfFEe2HIsqBVp2MwIWBg74mXF+ZXaDvpivqKGVMu8/pcPDI13KASUNwnGo6ztNTLxklVsBbk0GapV3PmSkcNZpMWnI2iKUVgfvnqZa+0ATPv45c13U9+PcYcWLAlaVFkSgzyFDPifY4M9S/AoYioLdS4GvM0xjpWKIMkWmlwDn+TKOK0G1PPe4EoWwrhR4p5DSrstfBuPY5PHXW72vNiBcJujasQDiJt5naNqdFYt66AVwiaD8eJl9LVBPmdBLzDmH6JqPwOMRdIs0kgKpz2PSJGaMEGiupbJwdqr4+5hp1WMAFu7/YHSTgBlaDl59Vh3JzIkVG4z7PAAwE3bjaNseExJnV4nd+R21CITXiAQiniUzYxqy5+KG/b+mx4s6HPYy+3uP32Wb3NUayajpx9AzDPapchUOr6J8iYQAnAbaUPVnGjuPJiAem3ZaxjhYzytP/RQnH6tAdE2hJkJvOGV9P1Wm9X6qZdtnWcZU6vt31rEh/9nfUdPs6rkCCD0tUi//IMQ29OPWUBTiJL1QE8BUk/d31ZwAKgC0uLv5p4ZSigm/fP3G0iY/37xgfhphHKN+QzDsrE2nEUgCRLHuouHeGHAYXISCeey0oyiOQymAo8flZjWrIcmCSwsz7Zvm7sho6Vai1skABE6gFIVwiFeIBRaEXZAhma4CzLsfndaFvLLgyADSn/1NHeQuYkGGruqLQmoKWoaDmIVn7vjBzx1hnmCTZmqP31RDnvM0ZYT7LWNEoqXNEI2PfeP5M7eVd/iwZCjwH2meLAwaCIDlbyCtjYxeUuCKvFG71fpHX9IfDGOklPJWS47W12cKgJA+sYAzuJvzqoTQ1CUGL4DetejeU6J2r6/1i3OKzhkDjAaAroppCY1jdzHuHLCkFrzwSso5nbUv0ieM4YDGTGTorHN+tAkOQyLEdNuD5e10rNJAcwAFg6Rpb5EC010Nydc7M2ayVGmrbAZjHQNbnqa7jzAOPxmn38aT3u8oGKor1d+4LGAC5INzFUA7A6+oiiLDLi3LQ2n2KhcIhFPq5RmiJLMZGkZqvz75a9xWAaG5cAwHMRvhmQ8oQyifPBTdZuNZ47+dMebJ7AmIstjNll88AGOEWFTVUDSisBLobwCn7+FC+ukIexGv+/sqav0bI+fc7LELvnGFAymHrMz1sVfZn/67LwbFtiHVC7yurA1RyOfMS+5ktgOoMY4ptT088Ii1BuP4VeZ4vhomErF5C91XCEFpIiKN/6RFnPxSmD0SIeBMH7R3EEj/Hm3g5Po0xQo2CUDiArIXbiGeDxP0RKt7E7vX90QguVXBvM7gyDIP/72uO52E5I4HFA91OgJ47Gva2fvB6TViFAACK5GBYoiL4nNAvXJkvYMVChgkAfZ0Xi870dVPuj3H2NcNnZSTg+pysdGK6mKUt5JgloaJPYxNLWxPJ7evjHp57usvd0WKh9GrpL88iSwnQctxFkCUu1eaaDiQaLpwzRfJO+Xhos+hbH3xbqwcsOpRjAoRs4M+pk8AAKnXy6zE92mdEpaxFZh0e9XV59uKFnwCo8spBNkY0UeazOknRfxY9tSEjKAAfd8TaqmSbjLwN8sUqKv28jvbUM6o+f/mbBPeEtvX+yxLE/pnoLGuffZ65x+o5zrGkg4pgy35WxP26/rwb3X/DiKth57X8dHwGhDEu++N41s2JXxL4TQVaVhVbDNPQhYguChyhu+7T/nPVdcbM/fe7q4AJL4Zw3LJJjNqe+n1g1XHmKymiAOta5njtkQhAvmP8pi/sN7+7nV+hZ1DPDN3I50K29/6di/1+iUqYiGjTq+urv//i3X8GoEAk6D9uYWT+4/8cOH40/Nf/8z9jvin++hdwfFjKQ3OytiDnefdyfHtHiRzphL7foL2jfT6hbaaR8TzDoONhr+9HGh1sH7B6nun5dSJCPJ72nOo5p1H5zJB0UwgacPCw92eHZ9Sfy2iL5mXORCKEm7mecTiohpfH2gkojFgxohAYhVH6FALc22GC19vG958z1/CQLMvIjRYGvdl7RLgt7LgcFvTAU/k6PMTs3oNgqj2srfPeI9x3OThaQ7KnuxYeIIML0KYR1liJd7Qnf0CAICfJlux3mRPdozXgjOPMe5WpaJ9neqe6QL+/ucL8jPzwiHC5HZBPAH1amcDzBJoZ/+HB/3BEfYw8mFiS8Ni4JpYSMx5B0CwlAu9vCbZwrAguEIn8/ESkWxyShjffH8ZnotbqpQWlZa4r50M+rM30pkfZRsAiHrhfCnoaZU5lDSNbyA8deKl5YXK/2+/naVELP34unATxfSAM5oVkpxKU8h4HD8kBIf2WBy3Hfwzo85lAWzV+OcYOuvEAys8mIGpETPXgnTwUinD3EqG8xMEEG6pyYNX8NgHC48FQuigRW+QbvRqVJIntq4Z0hOkjlaY9/aqSD46R4e/V2O7N9oC/M8IrRTzFwOfeT2rKGXl4+V1fl+3jDKDS2gu0n85VUDzUS/UZhT0HCALHmtfONka1FnXDoQBMEa22EVCKp8KETK8eA15sBz+r3hO+XwR6O6BvB/R+RJpeeyqOf42IAIgcfK84YAotMO8H9Gg4v3UHTRDRY3ENhXQzpCOXmfJ9OyOjkoMA0gTiZHfBoQCYZzWM0qzwgAlMD5uPM/lgWedXg5K5/Nr8hQDGtwb9x63cZ6/Sv7LcMYnfhljaAN9lcy4QJ9qrYMJu4C6Ras3aM/7yMOAS5kwDLc4IIICcJcqizF9EVxwlQkHhkRUMy1dbU7sTgVEHmtwjsU4qwST7FkZqGdcAFSZY3UKe00oAuhdch6cLtBwLGt6YivnmUZFDPU1gxBow43yiP2xc571FKoOF8ks8t3/O3EecB4L2z4n2GMbf0MS5FjiP8HKUvuYYiUJyP7D6BccEUcHBiFUBvVsfgs+gC/qnlZIOuU0OBZd9WsDGNka2B4iIyZgTyomQgS4zb4A2i/BMnaacbwQUzunOGy62uMXXqWJKQxsTx8+B8y9LMbXIIUBOiTnnOm9PS4kiJ4s8zFMu5M4h8CUC/f7u+oev4dvhKaAsd+nOFLbV14alX41Y4wQV5GG687z3BG0dFLLSmIjxYxWS/jG9zTPAtgCeD/cKD0mQrergvJc6NAD5HNAbLDq5AsBCcs4C8I4ZJMBx8T3nNB1a1cZyjADajL9mA8vVgYZ6BlSZz9+ro4HRnkDqWWwL27gTLNbSj3BOqeqs49rEavj/Kg8+Lj5zu7K95Tud+uZulM/rtIWvOBD8nUreIUbLVsfDnhZb52sP7T8O++7JqA3uT9e7otJee31GnatGvaToRAQVYpwv+qSa6xh4cRoG8HqO5Nqq7V8AGskUbCk6OlPvfY+ko2WmTbmTdJcoDql/q1Ewy9otf18iUzYwQsv6u7j+DEDBr4oyHj8m3pvg8X9bxYfjh6I9EHmXFsFAYWWDulR5iImaS0jkcm3okrE2l43ORceJqznlYTisRnqgbmWyiHSaICubpG8NmlT6iiLt95qAbLlQ2R8V7CQ89vO+aOFeK13atghXRi6E0HblzQ9BnVycE5U9Occxx0H8Xy0DVy+WEpr3HgrGfHju/829s59jyS8NMKFuwlKa7orhd7lc+dCdxZ59qAojYPWHifSqpndKFYBHOlQjU/Oz5aqeCiDb7of+sun30o91rqqghB8eW95algACIgcqjLqWZf6ibeshCUyIHPH9NGhz7aVnf6RRzTGMZ831/fV7e8iXenQMD+06N8WwNuDLDjAFPC+yHCL2EkTJyv2qnpk5l/KYO9If66y2nd6lfe3swOPfvbYDLd5L4Afw/TrzniW6wO/Z18sin4oBssyPvv7Mw/QlDK58b4+yUDW5UhU6j9zQw9s2gagI0YwgS+qz67/gdmD3y/r3fP3VsyBg7jCqF8qNxsXr5noXWchx5vya166eHZIyuBp7VebV9SFlbpY1mfsnvA/k7PHf22kUXt2VbKYeRKWCMgdhmDuYUNn2g7ZliarCaozVJSBAeHk57+pbpyqTun6nGroELSIyxPu+AByCCGOPdzJCAiardk8aUwC0I0AM8xoK5o0GlkYqRoM9o6YcRChDzA/7IBBPg4iqBByvepU5DeMo7pFyTvo0q0JALzs7BwcRvT3Rvu3sV4Snd+cSizVfxozvrpEzihZRgjauvv7PdXDD6yb+c1kvBC7aSFq5Xd9C+btVTFn1iCxbiVxfW1/psQ9ybd+b1BtY5jPKdUqunwDQVJKIFTBdzLkbImoiOAWKHNx0q7Vtm3wRyUhCYD1DCNYuOkr2N9vskRb7GHFMp61hEIwrnnsWPyBAEpEXNPQJNjm3xguZW4l2W/rWm1dZkXDoRLi/qlWeUHdSjW1z7leNImoIjhYzulNWRFRIPZNUUpfluNK2bhIAmbYG6en8WnS+OaFn+b7Iek6UcWca3Cqz6G1fAAAgAElEQVTf1AnvOgSMXANY6SyqvdW5r9cuNxipVM9g5qfvHvw6V008PF++9hyr60/uQFr4f76MPLzWS2r0wW9JF/nsykHAaKv9vbsD5ao9tfrEVQWI/4HrRR/b2/zV84rsfNHjr56993PRQ+Zy/xczsV77OvJnyr7fqp5RU2jiY0YFlbkJx5Eayew+xn9HV6XNwHUZf/96fv4cQIEhku4Bvv8ncPuvhv55C6+EkdZMtKfn0/qYjfcDEOD23x82UA0WSnpYbnymICBZz12x07cbIpzpdmSuP42bOSGfT+jbDXo7EqnkwmG5Qv+OfNA7VQypyLF3sg1JTxhrqrcfToD2eJq3l5UIyqKbb/8vde+2JEmSY4kdqJq5R2ZVT+/IvpE/wP//K1I4lN3proxwNzMFH4ADQNU9anqFL0UTqcoID3MzvUJxOTjY80Dkd2WJLPL+8wrnAC/LQatj3lLAqkfE3PAYNzts+j8e9mimCVymbCTvQkJ4hGRbXnUDY0BvNysZVeW356lev+14/tuO88MOpI9u+bbXj4b2GLh/ncDTDdd9y/YC4REftw3t60T79ZjmIV+mQeSD1mx8f30iSgr62kPrPn9P5wYYwD/N8aC/fVj/vo68n2tq38y4/fVl7bztDpXyNeL58YDxDUzlBkskP7gKes9504UVNoyUdCpEjqA6GRzTC67LhAzn+35PwsTjhD6PZCJmxNwrMWj3NIzbZlwCYxhvQWv2LkcmBPrHo/DCMW6SzgTnTdDzAsblB/+VHmHm2qvDBZ/P7G9bDswgq7G2aj3MIhpcPLOVEAewNugwMszJ8UiuAt+7rUce/KREV48xFWHVZPlHOZi8DQnpo/EveZgO51RxvgqRjNDLvls+3XFMCBLmHgJ44SmIco9nOax5+GzdFcZoaMoLOodkn9MwKLcqNwMN7fXw5b5UNW4J1eB20K2nAnspZFzpaPTvsHSsoRhsjVOZDPkSkd4rolQiwyD/dDaWNaFNImc+jGZVyNmdOC+7iguzHG3FKcWxP06b630zRfvmkfVaspbjz/OFcuu2p9LMfgLAUPTPE12BRm4HlvHlPVT4S/RTLoAQaW0SvAnWb2t6/zJFuD1PjPuG68dm6IKW8O9xK3nxT2B7jjD0aCxHmWFBjG1/GocFI8hMi2ibhFMkhvbnFsz7HKd2KfrXCbknGscab/05/m4kf+ddwvCVIfZ3L1N3/5/GLN8fgnEVokRvt7qzBsVQJpQ8jLwBNLgDXwvE3zmEatvkyr0lAPSmwWgPIPgDrg+WKz2dA8OVTWnmPKdzQeG8FDOp37g5NJ1Exl2cvyFhM+NHIiPosEmCR0DUzvBxa0lgXQ3zZoz7/F57Wt/7w2H/l6IPwRgtykRTFraHpEOjC7CJVZaovAYMaFWdWWA6maoRJLMve3Xaa+bVA7FmM5CCjBw7rwX3Xf8y0mQGmPqQqIqRbZDgT4A7q+LdNMgdNTVuW6ZSHZvpki7b9MfNvufpV+1xBhcDfcC6F6MXMNSCln5Cg4NBhmLsdk50pi8MG0eSm0INrdAfIx0JRNupOxVo2DiXl4i4/E2IuX7s0L3j+v02O9MuL3k6FLj1WHvKIETZHzx3dPOSmVshcGV7Id4XoH/5On9aW02f9Co+VecWIn183Xsql34IFFvu5c9nnhOHQqjolHSzqCQxIQFsnTbqANpiXKSPRLqqAs+S7jIc9SF17beshLRcWtEI/rMep59Zi8zjmgMQ0WA6Fbh0qxyiTsPP1soN5bMoG1kJAB05yL99Z1q+pG04wjYQoWroC+NckO8dGpUDge15vkk5n95VznKOCfd61QnXYB0/G7a/X50/9Tkt9Yaql1MfioFoqYvWe1/6qakT16oTDFTH80qbiu2B4eeLnmnv0KlGHizqJvViOnHlcQuU7zWPUZRlH9neOm4A0Hy+Vt6KQMt872D86zgULodr+YHYxEoQbZ8D4+nkNQoYI7GXTmquzDyvUIyrIgNgijIJ/x0ll00WqPI7rxFcEamLjEp2UawnYVvL202R9YTns2Qi+z9tGCrza16be7V1yExyRcU7jC+x6FFRBFbBFwpAKCID0Jb5x9VIqGsoPKLe1/p9tr/D8uqrgRLefMSiHH4Qjc1ImWTTzGd1Z4WQOInGdkyKK2a9bKZ6NQHgRh8Vht4AbDknU9Sa4zSsbCYNGR5MMcYSyt7Egs/n1DHatjzoK/SukK5Ia8ZO6xtcU0edhRjzM9erCtgYF4drUdgAuWZjbP7kUk0Y2burriWSLXqdY/ExVMLbgwBQQiiJbLnOVz4TOg0WRt40FnvC/D31A8/DnXXuxHDW3xiP6HN/eUd46OnwaxKpIFMOIcc1PMKIv2mdfyolwGskcqzz1PKw4Zwxx7A3I5ir/eTB4e9RTzGYZMeWymNclE98f8gVfZVX9V+O6TQ35dnVe16uiOhp3s90hDCsPcIZSprvwVCWzzGnq/C+IMls0/snFNewfdsflxnEm601g+9qGhqUYUA4eaf3hVPW06ZGGu4vez6cjMuYqIbMJsR47N2NmGGyrt7vjiwt6VzMV26HERnKriWv3f4LRMLAq5zkVFfofJO8v0QOyWcwtvdKoiEBuR5gaWbTDa4Me3vaOSatVcZIzodT0aJ0mBsjmxvnKjPNiPfpdFSEfTb3NfqmhMnzHm/u3qL9QTJcmy9zRH3+2VO7RNJ4dALjGDdBBD7iqrLi9MZMqK5l/Kik+8/xb1mr4sYUUMgsxdvYECU2ay5+pEO4HSVXbm2OEVGeNIolag8CgeGiQcVylOp/dwfFu6uWCVRIrJmpKocilVyX3bZ2mo2RwNM8EeknwW3BMx5iW5ayjugQ38fhyGtJBBrrwB0JTM+cUlKIanJdK55DZ4GfrdFPlsDlbUs/E9WKCDK1YwR3BdQcJ3rqW+6LilqJOdka5PQXevqb3hEIAHmcRZ7NF1E7RI/V8pnxTsqI1gKBM3wf1Goi0cfBNZbynM6dmg4xN8T1NFHM+ffZDqZnxeerHK762jRo4s+f3/eiO79p00sb3dGTEPtcs/m+YoQBYchPsPIw0jyH+bs21GuNvH/DuxA6SQTO2txG/r7yWsH1nZeIvMkbf/jrC7kW33G1vDNM1/589x0GqKTc+w3q4l++FmdxjfobGvZNO7m+vkNyyDIvL+/8E52b64I/k+xz/El/1+d9Nya1csh3f/PypOoyND6v6K5/4fprOBRUzfM7Rig1o/8A9o7tH6ZRs37w2I1Ntz3OVEL9kuOaFal6GK8/c/HQwGUuMBdxFVLMnXMPoxmldTEi2m2HTTelvubZcmO0FpArGcMi8EAaBVGr3QxQ3XuSBRXUAyFuetsw7ps5VXgfAL25NxfXDBWe+uUC9rjSyCUbbsOkOM/1a70ftS1+EGiHRwj6FLEIiNlwhfJhLMTXzf4bG/D8vaEfiv6lnqvZTXypQu97zD3zZdkWVp2Iq3JDwIWjcyXovhlLdhwu/nlZL/T6W1SxZQQyHAwXOZQMCVIREDQ6yelBpAngBolGBDdy/WlwDyAg/fSKbputiVr+jooEjerK91GdB2MkF0OtNSySHAHfHAyqvibcSfByFUEk+z6lnsTY0qO/OWKiMiCzugOj+/TkikCHM2qTlZdjrwNEeqh7yJmXpmWODF2xZwUIpq3QyRAHa485i/212d/08UT1Zqs0yE5ZsFl/zisqLwg9wrXN4vN7XXMpzOpIKA6IgDH2lsgAv4RroImt4VvhtSAXCI2d224cB3AFMog8NftTCf7Yjmu8wlsp9ygH6RzjWq9kotWwK/Nmyv0JOazKit53J/Ma0G2b0AphKDxP47cpDgXbj+LOlZbfK+8PhMcYEI+6yn3DhR552e152jsez9ijujXovYVBpTTQ+ewmABxxwDXOXOTiEAqHDseOcv28IFvHYFWHezem8+MyqLobi9oBDEGU1u0wY8DPNjP6Gq77LQysGHOPxrfTZRrh4ls6QdqlVrOdOsNGmUdF3s7Y0QXjLpkX73pFu9TKU5JkEQry+cTVULhn7Izr7pGO6kLu9IgV7gaw9ga9BHuzsbg8Xz9q3IsAf2+zETrcQIkovZ9JAK6PHv1jvr8IrHTf0JTTYvPIvPxoDwRBtNjFUILdEXxqeonVuBfoDsvb/7rS6dIE0BbOm+YGFasyGZv+YixRiaPTZ7h8IoGnOzKsVLZVmIg119yg9r3UjmEkfm6oCgAcGsEZVhfgmVINf3NAxYb2DxINY6UO3bjysbV5Kv1pEmuGJSG5loKA0Ssk9EGdDLEP2+OCSLaJfBOivifoMIg2IlMmXE4ZakBy3N3AZonLdphs1pvtbSJE6n32Q7YrjOuq1J8Dcp2Qw9bD+Niyv1sLpIWgBJ+4ZY5r0jtFE7XCyD+vQKEMOgeRJXA3i7Lrh8m0sZGDYaCTF4Ry6lJ7paNcRm8mH9zYF3iqUU3BOkdW5qLu1cWdSZicCBiIag/tYRUdyJM1O1AVVY7LcQGe3kGCzprqY6SZs64RKYnUO9aLXCNXMZCK4fatgaw539bwRc9SfQ28VJ6EIFq20uPxXMy6V6aB+HOJxnxnJBKdwL4fmpH8b64atIg0rgFzVksJiFTUbjW6h9oWoB7DNJAyVhF8qd9xHVN69+cpppKXNWjEPpHXzLkUgjugts9tjkpa/aLLeptREb3lXVEavD6HumJvxgk3fC1WPa3aQsFjwPaNeVyIbFiDY2zrQKZ51utcnH8rKoH7pTq1alnKeD73RrbHPm9gtZf8ip+xF0uLjnxGvf7yKQ8OCaUg4AHXzjHxKgBIJcBzZl+YbIE3kcnmzvxUpkPx12Uj1zZ5mQ/ls6rXrr5XFKo9iHDkkvTpVGXbPdH2Fb/Dy62FoloX1hiQw/szNDfVOWyjMBJ6DT8UGnAU5nl6rcXqUgc8jsbAVRZdXfTnZQdArwZID6NLm0E3g+WX5EXXgGgPD7ZKCw6EiBS5QqUfO66PjvPDSlIx926ooHWFquD8bTPwwWntbo8R5EEsnRbP87JqaJIpF+FEKsIfLhhiw/laoTHmSil8nb0R56YUeCnPPAiK55aGRDW4/DsvRpc7qAS7GdkUlKqzEKuKwCp8yhrW8zLjpRp6gMOfFgFBtMC2QVVmY1JaCqGh+TdXruS3n8DzSIcAkI4XEjTuZU/p8ox1z06QMt+b7oSQfUdlFY/2bVuWWCQk7DynuVXVNAxb+378lry08IrzMKLSHX2wnE4AYbBPEEG2lwScvSFqJvMAuub1EAdIQQtEBYHqqKjjWY3WerG/5DGoClC9h2iG6Xt+b+nrlOaz8mm4MRwXlajVOctnuvxiWlo4UGHDDdjfcL8BN32V5yFPXbnkZwNGjMbzjgbM0Am2bdBmTSNsDOASiGg4Ot4qmK6sBkLiHfRvUpSLoVeeEfnyZWxJiCdE2ZU+ypl71xBHQH8MLx/XnDvADRWKfgXEyyLKOSB7N6O6kqf5c7JtiDm1btg9192N+kOTm6kLavQ1o+A2DzwBrV9eztKhzOLpJHFMUYH0hsuJKCXIEpcxnqLoBzCGviAxONcVtcAygXSWGKReo68krFSIE+lJHBMT58SPzdAUHshAuafyGFRjWJ1kLgyJIpesmkJJPSmpE/FhWTpr9Qmm/OitwGLVDbC9u4HfMrivMLg5eNamHsM2Cw1TAEytZOoLUYR02gAIss52Dcg1O0Y47tWBIM7lEakTpxGQDQxHTQjIp6AfW/AsQUu5x4r8WM5wIgmm8p/IvRbz1HLeBvfQJsBTQlfRrVnZaHec9MewSgpEEDCKPix9T3uL4Eesq4qWHZrVNIqMkCbmULzs3GpP17d8rTbnqyJqCAJc9w7Z1dAIcuV7m7oeJBjkodoaZFyJCLgshRdnh+wdYbVzzHxdRxtoUJdAjojrdJ4KZZ+7o+7QSEs2Z0JWNiGJ50s1H47FyvVRVYQSLPsWch363qIr0HYAXoN89RoK8iYAwJTeN0GsJMaEZ3Y8qQuiotNqU9BJ4EbnCzE1kMgkKW3wtn2bnx+BvxyX6iAwvaoYvP48Q5O63IK813Wrrjjq2dqANibwYjgtFv0yPpMi51eHBeDyveWZvhJXVr0j0BVlL4kjR3t5rixjQzuMestyzofeHcb665BU7i1hkKW0gfwZtWLEtGZrujUQKcvVgfCnaRd8Ju1aAJGqsV5E5XIc3zmoAjUsMQb2zLoP3q6Ol+uv4VAQsQgnI2EAgtl62fQBlXQItRmRS2cZdfAIVrIg54QF2ysNjqU9JsB7RgeE0FOL4hlxoN8/xAhjhuVzgeWotsVpwQ1QjUrWr/1xt0OIyiyjhQX+F98ZVqoocvQutTxEjzqypJQK3KA1Jc2M7Sw/KfW51avoXuI4EN1DqGPYc25+UD1OQy7QkcJI/9YQgzMdJGr93Tqu+47rQ3B95MExNhsb7WKcj00gZ7dcW3cS6O8ONeXcXeZkGHsLCKNxAg3/u75Pa+HPEaEqn5V/jd29CDV4uy5DWST8vKzTazgfgQDaJ56AlwgwBUMlatSCCKnG3dYd5bAYPJXIcFzGkfDjI0ogRo48hSmAtbavUDGuV+UsKCkahpzZTFH4eoQw1MPSDmT7Yftl64n2oHG9empjGCTGQtyhhMfD2ri/uZ8G+nWZ48qj8kHO9OKhlURyVMQJHWyTM6EcVqMI8pqPGOOTgvzFoUCHhjsEYr8R9bF4uvUaU7UMqOZ4rcqPfyfYvPnacpBqZ5WF94dBlJmsKTjsX90rawS+HHw05GdSrXI/76ltplOy9zAiZAATwW2w5ksobqHAReQB6Shm8/u8V+F7tdV1MVw+c06uAWnuxBvjtSqIlLVzXqm4qCbXwLuLBhGKsqxMf/BfJQ2MIFZbnZI+bgAgtw24zGAbTL/QlOnz2XIh67cr+jlw/dyhW6LH2i+vMx85vFRqNX4fZH6/UObZjTIqIQ3JUYD816LpPu9OwGbvToMr0scAl2WC9tB07vpZoGLogXbQmVDawh+r8jMQyEYAwAk00UgNCcI7kguWeSTXBJA2V2safARyjUR+lEoLTNkxo9T6qTDjMDhBBiDjMllHmH2QliLXMn9Wfdn+NJ5HMeq4d8YmuD66VV8QOLFypj8wdaH2l04Y8hlAfOxOBbyqx/VhlUX6l0ed+UySNo669tyJtLdETU7y0cZdoGjSwsAXl1t0lJhOpMDnkY42YBqzIDDcJdMl3QFD3pU0RJA8Er6urpvk2iX9TBMcvzlP0wbQcYe6VhsseNQ8/eMSI3qNPhq8XiNyrlirbGhjiqDLvuHVkFhNAS3snqtZu8dujZctUTZEkhhHB9yZUNZV1WkeB7ANtHOPqg6ZorScFaPsa9e7LRVGQGe7xFibLtoO47NozyuDVls5E6q8LmM1O445xikbQ/7z/jcOAfvXZWVFDfst4hxQNE7flvityD03GFMWyXwvr+okAlIeTwa02yQX8BLJ9nYnh4PrZ9URQIQJjfuKAP7G4IvUhe+MwhK5Z3rTK+k025poT9Nfyj3/BULC0JmlvauzoH5WyoZP6brVCH/n8OdV+QuqUyPWzuK40npfz2dUnehFALsT88JbfgRZv6c5tkL9j7JpTaWnrvmmKoiSA6HJq91a+1vHtwZ86t/f6ZRlTCZ9tqJa/mTs/xIOhSDSoeFF2MmlLhz9xgE3dM1owm0H9oSLS0DJy2AOJ7ip+bZVgavkIGTf5j3dvcdAkmQ5qUw6NPxw3nt6QEnm+DxAZ4kWCPOkGANpNDbYYbLmDgP2zq9jErD18Gpn8wPOjbsTngvnCnTAYJdcaZF0rjREqTJ5XEDzKINDPOUq3AGKiNSJ5zmSJM+cPgfk68zF7CkJet+ge8e4bzh+NDz/JjG/7VQYK7ApfAEr5OHREeiBjODZ3lCYkhelucohGkRKW/eDMcs8piLr8MlqrNMocwOUKJIoF8QoUSvoAz+E9P4znhclJUkSeNvT6XCerwKF/67GDdnx35UrEoHcbqgOtIkDYNvMszpOg+jTcK3KBkvwVEfEbRF+TycW4qH9cQfuN3MwHN6X05JzyfAMcTJBHgrh/U1je4rkblleMsoPAkYONdTSG0L5JC+FpxUQYgcUbgef69UTHKkmvqYZFef3h2tTRAc4tDEQD06yKU2y/KbDztb6zbiKcUgj/AUG57wTwy30Vu4PB4k9M+aY/Rtu7DqaacrzL6lS6xX7a+Fb4LzVNQ64PGkycyhUg5pyrba5wChlqKWKmCX3kkqlDtE1Xpa69pF7gW3xUqRw7oPK+SIe/STUOcbc28McYK2KSii/PRW7WgaKpL1lDRkpXeFGWS5rH0LWjI8928Nh9gj+NIZe+i3OjXp2AMDwCGAx1sbegFtD/7rM+JbNZNUDdpZ5mkB7DnPAirVLhpq8B8xguXeM3nDtXhIQCLnM7wfU2SHzhlYjtFkTRVfmT45rjq7VNUl50uwckWHOg8H7uvVhCA2FVKjGzZAMcvm63wB1DoXhhkzN7w6D8maou+btYMQ8CQ7hjgAFUwAmTobTItaqbd6um7wYz2NvYDqJOCEl2zP25igQP/OUJfuQ0Hs3Eumghzul+tcJ7Q3H71sYq2MXXJ5+EIa+IlEJRO14GkhsEZ9TDE8xGX7vpWhjmP3SrBRjJbFsx4jymZEzX4yX0VugIljGUgZCxjOFQps5Q9rZnONkWLrEOYKQMsoL7iWlknrAOVLp5nj5WE3rsJnjoKkZbiyDeu0GSxd30PWnTTRLUbbDUQo16s5ItLpu0gCmpjCCT6LGdpBMNvWO9jjNYXXvznvhelJ3PeocGNiM9uk5JkcX52tsDQ3pVLD9OoAh6Cw/yzOrtUTcxjnkAZKyNdWXnFyObvC+qZ+F2T8x5IsArUuMUZSFBICGJN4cRDsssh3U98X4boYbuIFccucs+brqfzxveIWMLk7cGpxjsK7qZNHxdBrUUuBxRvK8I8cSZT7fVYMwfB7gn71JxeB8Vb2L97dRPkudKN5HJAQROKsRCKShT8PyWj6vbaee56hsKYdSPHs54+LzoZ6e5z83AWSzc8zTI/Q60vimTrWWMnwxe4ou9m7cFidDjeBr5Az6eGJkkFbNZoGXMlfeM5zDrJ77Q6GY9wffB4xpWmslvrwHaXPWfRc8YC3sDqU9QNJzXs2dSPD1yrRovjMHJMdz6OuaGleu4Wu5H4veWok/Y42d384F8BdxKABI446KPYBAKCg91SM8jISj2+dAZbidPF8UIvQO8gphVL2iCMP63RWRbn4frmewzeKez5XQzSOFRBTEpnznZXVjYa3QYN+7YDDflnk3bL763/jO6pEme7FHJF+EwurFgm8oTSdMKjalTc2iL4HciJJvI9tAJ01EYpydmmSMO4J06IVvsNo4HHtVJw1RrFeF1nEsTZsrc6xupNccdS2OizCCSsSK47XzHWUD1rVWhce+meG0erFd4QAAS3EvxhyjFe9IdFpDTZl5ezVJAakOkaNw5+eOVIkouUiiIvjeaqx2q+Msj2PeM3QWlChzFYyxNt3YCwO+CtxiaL1Exf3ZUox9AYy88nRnYt2P764iUyIS9C6qoBoHXMCH1/H3MY0Dh0I53jHyHiAPg/4nLazvr8oRIyjfXWWdWnt9XVG5EIsGT86iOrZuRL573nRvy7F7aTOvNcpQ91E9lN/2lc4TkyHJyuxK41naXB0j0nKsKDuqceH/ClKHe1sSMPrgBkmVuUFYi5DJsQ7pmKpnFp9ZESJVrrrzYSIuY1NejJ7cZxMB6Dr2asgzy+8HhhsYzde6lRGEOYbZzipDypxEeiGNMCCMPOfDA6Hz1lZBIAcawvCmMyEqCtXxOef3rsECmwvE+KiPjXoqx4i1a38QP6JM/vjvfsTVkn3aEHn6Cem2exVicHc6sbr1k2dpc7Z9K9lnspQlL424UG392LabURuSTg+IGcu2fAVyZuQebN/BcxOzbkDRKFbtAWMYnF98XPyeSnCsHcCJQGMQZRHOOEUgKbA4FWIeQ5fwNXI5sobEnjw3B6sOoHw3xzl5PHy9FNRnchkg1tPYECXC23FNARbZOoZIcFCowLgBqvEjMAi3wPAhsXcl15pqGODSPc2liXGCqN1L3g4g+2RBi5H6AuBomRFzFvucelMXqKM5uIMDJcr1tafjnuuHc23yUnKMt+IUI5LLq1ZklN7QH1CJobE1nM5dqNo5oak3Rdpo9G05GyTXSoAIrhFIEuOuUH+2htykUwXg2aCve99l9uC6Lw6J0P9q2eGCQHi53hl1PDP4s7LDyDOmyPWsDjdSJrO9Ky8SL555oW/Pc1Kvtw6AP+uHpxnE9Q0qgU7A/6/X20h0Jfj77v28mL6g4sGs4pBZ+1XHsdpuTV6dCotels+RSW7O3BAyOytcPxb/Xpyz362pUdZrEwQHgTsVoh/LNc3xmnr6bnyJTBhzhTch6RFKiqrSGfa9rsg1rIG4/ebG5X3Rz6qr/1fzjb+IQ8HyPUv08DmcrK5FVFF2i07Ko5SVc+9XY8k+GqvM93+nKNecedUgjiOxVrBxQ9HOLAcmqsBxmeJ7cyNpAHKcvthblNSbhA1gEOs+coKKsaAfHlXeu+fdXQmNFrE0hocRVk7ogmXypZDNBKJAYZGiXVJBHoCcRpATUFsAUdZtyX1nu/ofR47pOeyw87ZEKU0AEwx7GJmieW23JBhToH1d6E9FfwqOvwHXTd37rnFwRn3vYqgy8jhd/vk0z3BFc2u2ltguj6JHGouXKQx+iDGSCJFz4IIqSgQVPoMg9YK1U0lOSLLGStq4b1OkNwz+KC+E2ZAUCcN5UsxvrmF+fuV9wOTND7jUv//dfida5vL+VcP+PLPkJAB9PKP8JDAbP3GxPvV5Qj4V+Hpa/+57pjn88cucAix1OEbyK/D68L5wzVQyRjohfB+g7ZCvB/Rguc35YJGtA/e/RanCgPI/D1vjW/G4lnVi4+IK65d9rrUcrC6knN3RFrUyghOxRsrigv8AACAASURBVN8fXm6VvAn1UOF3SOZU1oD14ZZRFKbOfNyzOZybqrCoH3iqC3lsGadq7HM91GgL+1cVcK57omK8nFHIiG8ORS1zKQtCC4DtC3rbmzjkPCHkcsD4ZWoanPddt93kGGwf6+m5nGWPRJrEGweSthb7PT5XRZRU47qvMq4+hzma3BeFtDJK6bby3OJAabWEXY3khoGlPq8tSWHLmr1+u2Xd+K3h+uhpxMFkK6Pd/dMjIKMYHn4GyakQ8WghEXXiebRibd9/DVOyBJAT2H5Z28+fG8atYdzEyw0aF4M4P0aQxjmSMKtHtNzLVOK86sWqE7EsG1M65FTg7jnvCsvRdv4HlgYNhwfwMiaDVQVoLA1g3O357bSUgnZc0EuSVEzVIu83CYdVGNzHQGXrF4UZjZJzOct6Qz0Egd22m8HsvAaVc4CpSOyXBHkezElwXJFzD1VI79jdSX/de1ZbUB8HN6ArbwKrUQxPLWhgFS1HNcQ86sxN4GuDTh5tgvHDUDftaaR7orCUBXeuTE4OAXQY8kQuSaP0GE7+ac/tfzyjfKqVNHRZMYzs8PnfbsEpcPvPw9Ihd6ZOIJAZ5GDg3yIlx7k5rBy5orH8ZjEs+qc5jw1dItANGHcrnde/ilOReokTrsa7qIeI+PxZGkO7NDkzFkemNkB3I1PE1wU5fP6HoRv6EA92IBw0172lA9ZTeojujfUkPXhUggA69BpzYNvabL423CEQpI5XVvmowZaR+3DijJAib7hnhpc+LWlvQR5djSc6UQYSJVyN/aaIHKt36WmUIR+3RAsTOcx7qN/x+869FOcxMKcfMoLMdq7IUl5bknC/M8CU544/dzXiXhwMkxNkZIAIKOcCzys39ptA1sh/1Y8X7gIlMbzvc2lbOABk0TOMsE+n7+eDRka9hwK4XsfAg0pBFh5j4gaVahrmLKsd51KzOeFzisPtnXNmssF4NbHxaj35qVzPtFRyt1sqo0SbSRmJYLKNwjHztVx1H+sctHVrN9cTdTEg7UFPecV5WnnRZV0o54JekUAfKBSFjFGac6L5uvHnC9tSbQXVXFPleqnw0bv1509iXLz+Eg6FSekCMhefBj8HohrS68YbagiAd9GB7965LnaP3ki9x9/1EsUPoTHy9/CGuSfxwvQ35vu/3E8l+F173wmY+hn34eTxS6804GPBCHDNp17fp698A1N+LxVFGIfDy3NCcR5hgERFhJIfxr5aDXHgugFQ8ZxMTJGOd8asLGOnFzwtRVLRV0VoK9UgXz2Eo8zjOh68l/nTVQism65EJqcxafKCCAmlxhUz+2UW8vGctd1r+75b4xScRYGHyAzJ4hzXdVg+i3VQ53V1iKk7lKr3dW1rbWdVtNco+bv+1avOOzB7qbkvVsjZu2h/7X8QkZ752SgHkZT9uraprvvieJrZpN4oCetVywV9R6DIv78ZJ6IqyO0xfb+192snnpPr6+WuOp9D45BMEjh9nfN3ikYc2m2O9Kz3rAfWN/J+4nbhOr0AoJRz4/crTDWMv1e593Kormvtu+vdPbUfVY9TjRzsibmcyjP7xLFoRM1k1Rpd1/d6TQgt/9cJFCcyuKGICHIzQ83aiFD+pfhyZHgksll7AgXAiKMqJlavBkNnFidWyGj2k4SgI8cs8r9pvDYAI+VkOCsUQXKHUxNBp0QPlLOjLcaOzmuAToaJhNH7E2kA/8q1nsv+LsK3E01QYOtvnk00RKZXLHJyYHaGNdi+b1ZZQ0dBtSDlLMcoIvhu4IPvcS4JYHmn8LucH6Ru80bWK8pY1iNtYEbbxNpi5ZCSSnC4M34v68Xlo24N4y7G7SGwSgai9nttc8giib+xuoV2CaeC6WZwklOEDhGpNWX8SPhotkT7l2RERakweixFJ2C53MBeU6UUFOcWHK0Da1s80MdcbBKn2XCnHPd+A6BN0Q74Z8h0Bi7OghILeVGeG2PALmk67iZZPZ3Tdk7QmRH3D05Iud7I3Zfg4Hh/X+33i+7GZy+lhus7J+e+6oykUZ3TG4gGrI7lOga87237vrHMxgh9xPSqMj5vDL+pvyHryvkxilOhOiL+V65Vx12QD5Nus76jovD8HHvRcVfZVq8iv190ovLvC3L0u6vq5GtgqRj29tmi/82ddmQ6nTeL3vavXv+L90dJx+pgkjbvu9o+ns0TF8S/4BX47vr/C0IhLpHIT5evJyK/GZjzh0SyNGNzSDYQUbmXaNJkVLnn7cuinBMpC/C6wF1Y696h9/Twtq8zo891QukRKgtMVZ28sJQzdIUn3u8exMkT6/+x7BGNBd1LJGwAIiPZ0r3dgfgYiNrnQvhgdYZQsQNePcySkORwJpCvQlhZoryTeeTkLFC1n5uYd23frC1ihGj7HwM//0/g4/8Rz1kE2qmeg6fYfh3pUXeSTDKes7pDkpgA+vOGsXevCgEI7F9yHygA+XrYWjkOvEB8esdL1RARKPPqq+fQ1x3hngH951jQeXTbDVUTxJUoKRQ7pGckd4pG8h5C52o6Akv20Et7XRmRPoelWtxvNq/HmVwbvQHtlmPGsooUFBtLjRZLwvkQIlL+48PeSeRQsz6yLRUpIh8fufeWKwwNf46epyEZPu6Zu8jxHgqcl6EGxmVC8bqCs8PaeZrX2XMYY93WHLJ3hJg3I6mTz8dcdqfkp5G1mSUqIzrxLM/xKDxTNMIDT+LG44i0k7clhERm7gpfY9M8xOssfSqQS/sWZVNZBopOPd1bpo5ocTZcl1XJ2DdIG/McVYfR1qE/bpCvA/JwNfYa1p4m0J8f0/jKeQGbZqoKjeDgz1Cbh94yVapOiSvU2iVkaPCd8J5fX/bZbY9+cq3obz8Wg37k3mJ6BY0L+Gen75+tZ630qqDxOe8+U80SnspUjRJhA4pxqWifl5eo3MKwo1ymPNWdecpi8rKnEmHRWlfQx5WcNmGQS0L74dHV293WL2WSIMq3jbutm/a0/rXDK/wcIyKt8d4BMz5PdycH1J3nlZqhMnwtDwDbSBl5XZDhqX89y34GKrChRMORY9D90ceAnBLlP2notccVxLxsqxwJwyfZX/RhMZbHbmtMP+x874d3dPjfuhgR4fBSfj5OtrbzjCZ3QqIW3Cl+2nkGAM0jwONmef7jllwWzdusXaAQa8elES2moZ2EvQ3X3+4ZhXauAzpVoj0OL7/2Zk4ERrilBUy9P66I8tORYnsPIOlkdfbYsrA2tWtg+BicP209sXpI7LWSJsGLY9U/vaTgMbJq1POAXAPjZmU6sd2Dx+r8bcPzt2ZzI0A7uiNlLEjRHhfGveP6YHS9oDNOr1pxM+dLe1wgIWfwitjs2z4SQbvMaWEISpurcTNkEKt+XD9YpQuQ57DxkVzHQHFwDK7PEdWp2vME0Qrj1kHVXOmEhc8nUwcumzdtLo/E5gnkIei2t88fW6CM+pd4mVO75/qxGTKEqIErKzeEB0EMIaCbBipq4o9QoiFML7V1Kda/yUGFdCbQiTMGJud7dVADiaqlXlEDVX6Wv0vH075FoE2uK503juyLksmMJFdnAZDozkFOls11kHMy7MPoB6yMdWtzkGSoVaniud4E3yVp6vUm8BF/HPE+O3NYueGNAe8y2PQJ04vfOhWqsV/W2Ntrysv3ymdsQ5M0UisiYn1fLxwQYtVv0g5R0+uiD9R9L0R6ARFitKU415OTx9Kq4j1Mo6h9a2KO+lF4EaqeVRxKdS3W9IhK2h1cAy+OVc6lz91wTr2KiiCaJdKazEEgi34Y8177EH8c0KdTA9zvaSsw+LPqvBFwHS+fvTiHcKXDwr8TjqFvrr+OQ8ENW3Vl+G20vhraAMgYHZBa3kYliN+pz9o6oA14GIy5CgAl+2z1ooPK1DDDzJUSFYv26r6lMR3Gv8KZobIdSz+C2O80diChZ7E4JQy63SBnD9LB2q6XqNbq8fODBUDkiAIwY3jpoykPbSpRZuNnNxosVXMxjfLdAt96jf7ZRsd1GYFVgx0iakrMLggYKJEJrBGuItBbw9j3ODhY/q3/eoKswwLY2r80SvlRSX2bO90bcOC9EI37OQ/LWHOsCB0eGkZdnQMt63R6LgWK6mzg8l0vqJkBtPUQHPNeKPCxQMfU91en0NRHf3Vl7oUA2HKc/F08AEKo8m9uKGpvmdpR1hSAwhHhCv8oArK3JDTcthzT8K4uhwF6HjhcW4AdEoxCq6aiUg+GYOov4zOcyBOYUy0cAh7e3ipDK5kjf69RlCr8qfzTWfVm/GMeghxwvP6xGOghN9Z31v3v68mqEGj2n+NJWH9dSy8N4liU39f2/1cIn4U0ie1Qcmu4LLCIpIBEsJNMI+xybWs4YgQ62qyk1nHwUrPB++Ey3gyjN3u0/lw9+itPA/s3rfNcTxMfzyjnSGHwU8AOaVYVWs7qjIou87NGWJjzvyrbbtS8m15IRm5xa5BTU8wVMTh2WzfdSSDlUgw0NIfTBxpAgeBMARApTidMeRtl/K6inDgRHtxprmi2lJs3oDa5OmqmgdJ0bjAQ4Jw+6gaXQgwWXKsyKMKRrnvzPHK/P3Lh67s10+VYfrOVnwWIylDFgE5eBRt3lqrkPEQpx+/0encIyTkSdYMkkawpjfkdGAFhy/fHcHkfrexjWc/qZ2eJdLLaAtE/gTC7fO4ViWph5a06toKXQHQ2BLl2uK+2BqiVCta9h1Mt0mD8CGiHP3sgERaK5ITwsa4RTnJ+xHiXOWTkv/Yn1s1QtDPbSqRD6IgkVvWxM33UnSgy9xcAakWXyciMdTy+XQvhYOS4evlOAEWucLzK2uvi6BWuO7gTz8lrAznRss3U6dTndm0TnSZdwtlkH0vpbMrjFRkCVQQRehjeb84MOnR5htUKOOXMZnuD3NidAnQe62aQe7MzBHL2Ak9/J1hQjEx/XmlT6MNhGFJHL/aIurFGA3s1wH28+NyXQJcb9CEv/b3CtjUBlCWyB1DrzdIgb9/0DXC9h7phcZzz3XyGjjSmC5piurde6zsj4DYKwqkEypR9yXGQgbn8+PB0hMWofrm+0bG+vV6M9oXMEMi/rwb1u7H4s3d8h2wqnBPTx3B9u6KYJ/THMh5MX628FOzP6kxYr8lBR1tvsRfeKhN2/aUcCrpnlNOUPScaBFJ5pJLvEBftDeOnRZDbp+c6hzcLCc31qNj4Yfm37ThTmfb3x2R7xIVRPzlOM1yPyw3rBtZRx22z7/16oDpFpOWzg5+BxEI0qC7PO22SBin/3QyBkGPSgF9f00LM8mtFcXQioRB0zhZsHnBXNG/7rOiO4TDCDe06Mqc2POMdevuIwzeiy1yXu2l/4geDPI/ZwBhX8g+w7XtH/+PA9s/MVR+3HjA8Vv44ft9w/K3j2k0Z2H8N9IfitjW0x4n+j68kgXyexu0QubM8CMvhJTbW8vWYhT8F9RiJLql8HEG84uvRHT54Hna4ERFQL647Vh/4cUdUNDgvyB+f9k7VVCkorMO4vOz+3u05zgGR5Wea5QrSkGia/CMieViOeQzSyC7e1eLMIgJIvp7xzuhWE6B5ZLsw0WsvqBt1pMPpJIr7nuNDp0iT7Nd5Ave7OSY88p6Lxfc8uRgA4yjw/qJ1Qw9wvOCHEaPi/gzyKuj5SGQF++bt4z01CohwWrkS44gVPJ6TpSZUdEobjD+lQe7JgRDzJ4vw3kyW6HGEMyOcdeeZbR5enpYGzjuS1+o8qs6IehaOYe1bEACxT1akiEg6Mri+hsuwxzPXaRPbwCsMkMpjQTax1rn8+sqc4/sN+uOGIIXcN5NjT+NymMhS6XRdnXR0zjlEWm9brH/xSgS6NTde+V3NsQijfFWSkEbdvqXTgA6DcwB6mhzfc1zlmuVfjazR2TE+tjReaRzH+kAqXWLR8DXaLs6IL0+Pmv52KwRqTJfI71ik3PKch7+vHQ3teaGdFnUeXXD87tHY/2lRUTkHelPoZlwMNIIAeHQ1XglpVvYOJ6Cb9+u8ABikHfsGxRYy2nxMw87XveOaUlgwGWdJ9EbDynP4r4Hr95tB4ekskIQvj96iekVzRIKKYNwQxiWjwXyfNkCHoDsygZUJIBbtrtUSgggxDHWkc6enIS9QQ9a5Q2Kob8+hgdThWpbD9ZvnYfux90Q3ymwkStUZB7ytWJRFYGyCzRn5TabD8ulFEp3iWxnN+SvEFk7jsT1szUt3wknvHx07ckk4NLSX9JGqC1weufaI9tg68LGFE8MqGdjP9i+wPdKJRUJQzuN1T7TglKoBBCJk3Lgvc+6sHKkGwoeklQIAh8lrGvqZxmB70iLyhhgip8R0rYbA5YjH0N3KGXw58oHr3HmsuI6HO0IgwPZ5WdUVVhbZ0oFw3RquW4v1ODYxVMpJXQCOzOhow2QHPO1kUPd1B6JcFtFt4SxNGUaH6Kh79fT2VA4CwOQxnDSYwYq9h5zOTmvKVJKKjwHd7+YkcxSsDLjTyVGGY0C7V5Op7xQ7s/S2W0W2w7nKgkPhivP0Zc4cmRDEgtG+kXoRjcT4fnIS2e2ukw4A9w1RpaEgREXEkA58XpOSbmtOgSjbN1WNsrMunBaMLDMa3zCjKzomWSC7Oe+sskDDC5N/nHGWWhRODRr8dBysJa4j5dv/HgIOzvMkJYjjhyj7xkAdHSf1OdX2eGPcfksmCeuDkf6UAA8wG+HSHJnq8zkud2TYuMmqE7BN1FNFjDx8cRjVd7GdImJ6XwSlZHYcSP7OZ6ypOWjFjB8K1bKWOec3fw6RILU9K/JyrQxRS5i+K3darr+OQwEIAhhtpohoL8agQ5XC4Abc2EMqg7HZJQXUQDoO6OEHQsESh7smLFeSUbguTEKtsBkMcDIGJNtVhHoo4syLKn0VVlBwRs8pmsf3nhkRmjxa5wXpCkWH6GXazuVC1Mt1sTxZGv9pVJiQRijDY/d7D/su9g04ThPCIQhNAMZ8DMRhOM3foKFdFp6IGy6msEtrE/Qt7hmaj9sajt82HL93PH93T3sDRE25kGtDD9KqrFEszyQim0q/FANLrhElEvVwzWjrAHrJu5WIomX/ykbzWu5JtkeFoTgeeAD1BugGViYJeLmIpUTU9n3nBaXAqiUoSSRYI9pOXhjGIL/r6R+2zsLK8Hf6PPBwVVf69y3aExD+44Rs3Q5mOi4ARNnNeJ/3oSvAyhIlijBB7Huz9AhCBpsAaJmCcNsRkEM3UmXfgR1GgMP5G152J57bp6j8C2M1I33s2zVyvOr4B8St5feqwe6ETmGMMnVkDCjnt8oLwv+YqvVsk9d6QjIQ1bHNCJhMhZG5T4CnXmisGaF8Aeb1JWX+S53wF/JXGqCbO9eITKntrApOyNsr21vgrcEsXttMR4k7ZORxpBxmxZlR1lU4/Dxqs73Om4grjKP0u16Ektf9R8WSY72Uplsrz6QMHDFWcg3ojnyGj2s4ultLY5jv8ii9ohhd7IeaElfh04my4LwBUMGQhjaat7U4KgUeieS82n7YPq+IrDOaqnvDtVkpQ5aalBNpiFSD2/WzjEr7sy+W1xsRZZbDyIoDwVGdKuse8TEam3PrHK6MNkxnBgn/mCbRN+cREAYdyjtouO/NyxNaf5LTBRGZVnIMuOjk2FiqgkQZSHuwjQ2Jiit3g9W5BOhMCOPVo+nN9RGmH4CojzBs/ZmnOZNJ9Mspb1+nkfjBYN6jN8jha5AoOlVEBSgux0vRnkB/mgF5OVy9nxJ9CEM+0AE+RqxYwIDD3oLbIyoZsO98dzk6o2KCO7GIgGiw8eX8aC+VFhxZMG4S320PS0GJ1JAC29UuGF4ew5wzGmkztvdsP123Fu2IVBref2muczrN3MmCg2k8vi5J/sjtqPiWeyPQGk0SqcWlRHQL9xqv3qCjQZrm99/ZTT6WTNURJfEkXDZpyAEiiwLRxD24GGkq2T/qly9RylHWPWVM+b74PXmWlNS86lABQtbWKigsx43NDT0ig6ljHZpBuuOcEMs26CnjrfoYz40+6/k1yBT9GWHgRvuAWS9w/f2tMbte1cBeL573jEiv32llflYnVXUY1vtWePvanJXja9vSwF6fqeRrKm2jzjb09fnViVHvn74LYA3YYb2/9LGe199d1fbo1u5veSSo44qE02AiaXSDXer+oA4HzG0p6RDsdC1lGcSNrh+ptERVb9u8pWuwIFJGKc+NK2cy+L+7KipmvWrlkBUtEmPYctwv4M/QLn8Nh4ILIDuUmC9IBdu9Od02//h5W76rAX3P3PQOElhJHwnPHiOrBHDi6d2vUV0UODHgTgavC+45ykbg4/mEQKAZAADi3q9wKCzKN/sKzJDjVu6hoA+Ybiq+cnqEEwC0hVElNApZsUEV8jjTw7tvYH1juHdMW8P42Kw805d5zMetWy7mYjjV8k02bVsKCo5FjQqPNDL08CoR98L474eGzYcmDFSAsTU8/9Zx/CY4fpeEnCvQDkBGw3gKgBva0/IA5XEYdJrj5Gkt5FAI44tQ3N4AOhSYr71LHlI0njh/U0SohdIbpVlEIvWFnuUgyXPjXJgeQWHduyEmKgqgGtzF4DHoXmnD18PeUZxZcZB6pDhSiCjk2vJczhMF3DXs922b89uZ78XxqrnzjJpVg9cNU6FDzfeZcWK4Act7W7MqBuW7q+EAqKFH2Ja7VUeRr0f2t7IKUwBOzLhFRtDgZflMGuBHcUjUa+IzOHMOSh6mjOHe5ub7sE9ol+mQa2JGNICX6DoQikmQaBKpRbmlA0CRYzFOXJ+IzBAAk9E0XcVREoR/3C+PZ+wF3b3yCZXPXuZPnWX5PAFNOaju9AjuF46Lj38YfM0iR3RWmNybq/msYxdrjWgxauXcHqrQExA9I8oVSmuDBXHCuSKh7AYXw23PVInh9zIljldPg4BOkslpVZ2R3HfNvpel5NzwoAOgwZnWBdBk2g+yNMpBLuMSGW9oZog4VwUNBVEE+zyOEcYEFOifZ4GSuwHpueTDc+6F6WQesaWRZVD7HG+43hfOBHca6y2DANJaEC7zijOAqQgNwTg/bg3yNRCpBr4PSA6oXXB9dGPgd4O9P4iiy+VI1NvYvWTxbrJIUPaGVwshQ/7YJHLzqempIxMs8mtz1mjMnvPcj90MQFWfd38m5UYbA/IcaO6QWStUtONK+Xg6T8hxGlrJx7M9DujVYv7oWGvHMMSfO0UE3gca/e6wYFt1szmncY7L9pJVjLKoOFMjmF6QVStaOGtWEmUiSY1QMB1XNT2FzrWx23xf947zh6297Y9ESnL82mkOru3L+D4YzSf/RlPjIaCijqHGRa2IqhpyKa57w/XR0L9sDoOXg/tjWCR9dIlyiERXNXcmWPWDbpwMqmmcqpqzz46uHI8GTMR2DZMzGU0BRwG9yHX1Raw5D6tToTrNDCli/7HfHMcgVuTa5Rp9dzVD9bTnGf3Fkh4sLr84tuE4EPs+DsoITf1JXL9955zgvXwOg3LdzkLhWcTzAkh0YPOUon0xb4R8LSP5x4iQ5BlQjc6Kyqz2wDQ2dAD0vI+6Y7UzeDESHX0tFQqa5NpYosRRhctz7FUVTIVQ1azKVc/J74zIapQT0YDSd8rqd9B4T4+QisKEz391GqxjRaP3xZkwEJUhato65R6/mw3I/k3PV1vvkqkjdl/L+SQPWPxt+dnHdK3oEPNYHQMci3eVPoD3KIbVCXOePmc9dOQ4H4ciDvmK5CiIFTlPQKyC0PTcardWYs53fW7Ie9o6NuU5NaV4fCco/ioOBWhArSZDhz/X/zhYFDrFMOVlpbAUengktxInMjd6chg4F0I4aOR1QzgcOvJcKehu3Q6gp4Ie4OhV98VJErJ9w1RKqwhNOU7LAw5yu8s94+WwqUYjx4NG1vK89uUcEY/LFK+PvRhEVxgSZgzDFGeWO/MxiXeGkNFwwrwoy60cJDQiHQUQz6GQvIa1i69yAcwUj+PvH7g+Gq5biRIBGaEQ5nhqKLqTAC/jH+2/hjlXat9UkziQQrSulXoAMhJ5KeR5mLJCAwKwORUpxGc+VyRuLMaifD5yTFQzRaR6ims5pGtY+gC5CgBAhsH8WzNiPBLT1TmjELzEOEOGG2peFtOg5A3yz093smyGfDmJANhyrXifgoSPcH86Ueh4AUz40DgDzPgH0rnSyzpuze57HsD9ZmUnH0emIZT5qoI+5oa/03lXoGFT9J5ODEJhaWwBr4c8EErBlDpBAiceovuexIGqRoYJmMCl0yjK3G45Lx6JjD1USaO8vxMZKp0N7nhLZ4hza3DtFCeUXCPHlIqVKowHRQz1cV4pN+l0knR0cC3ZOnFY6t3RIiS7cnhiLQMVjile7mwSKo+L/AhnDJD12Dkusa+l7CkequxrjhMVz4mHZwzglBI59fdyj8UhXWQbnRusytAcOkzL1JW/QIixnepOVzolS+pZjo+i/zqT5mMzZYqlfM0xq+UdZkfrls+wsTfZSRi9NsG4i5UkHA7DpmFSuHAUKavbOUK+yqVGaIvSLn8uvNt0DIYBuRiFdJaLR07kuIJAV2+bpUmQX4hrJFKKEGlzNNp2zSjqBIkGMHy99+eAHkDrgu3XZSRzHKe7BRcY8TYnBPsnpkvduW8QOf9meOe7atUh9egvo7IcayNsLGuIBpYq1K3qroCRYlYnifEGBXrgLEb0AOQ4phSsCa3kKDpLd3OjZm84A3Fk/UqiRTfKThQ56e9sBlsfH06uyPXJZefPsdKdzdIwAddXHMUShqTLWXeeDSejnLgUVKffa/WfWmFBYg8I+sMILolcCGSpO8y5dswhM3DdzJHWjmFOAMruS52DwZ/lc9+4X+hEBNCkcDE5R8S4G1Ff/1RzhHXBQEeruqOvIyAJDW2NXKZrdYl0hlbJsn1scBZCwatDbhuAgdZyXGJ+LoV04Pzomd5z2d5o5zCSVa/4EPLP9VU5U06QEDZQNfRp+FmrHSHLRIeXqpTgahB1BATHj5XXjysdh+60pNyM9IMLS5AJf35RQ6SkCAAAIABJREFUZvMiimE1/Oo952XoYF40/v1MrjD+FzK8Kcd+blzlVYh3M/j4zrgEwCi2AIvRjGJ4KyZEQ3Mn/TfkjlNwRIsOuT5fWv798hSJQM42dxjRAVAMS84L0YZ8bPOzrxAovq1MUZEW0Y6BSAFxR4hsb8YsymYi7kveMXtGdFlH2hurk4U6YEEmBKfUQrD4mppadEuOWUFkxjO3dKKHvlbQLLJ1qG4I0kNVe9Ztd9TqEWd2OBImB5WGTjqlQqxXQUqUTuGFS2FCw2joeOGUwJVy4x3Kw6+/hkNB4caOLZaJLGtRPAMZo2pe+5qrH0qdK4OLlxNALsjJiyV4Ib2qVxjyRRk+hynnjES7sRkKhX8vI+v+3rG8p3g0DWaYnwlapB0EvLBG59ifYnww6kclLngW6JGt75LcaCqw/Ed/TsxBbN6yOWh8q0dfqgAp4zUZGXVTFAMCgBnjV36XEaSxuYwZrgSKOfMMRpqKQRUYU7nQ1XjxagpTtHYr0fPvoouc/9bcgKBBWBSUShI0eQjLXHNtVhTDGLMziPexckNZz4GiaE4y5DnruhdETHlXKFflsIvolh++SugWOSGuERwM2ts8ljWH/+sZbcG7febvCz6G4RFLCr9AEDSr/V5zB3nRicF2VFkwlnmiY241Vuu96zUug5jWzwIBUMpIBWFR+axCCjlHOhKy6kZ5OB8K6STWsFIYIXQo+P/4LvbvXd/XvtZnXovBDPfeu1EuAHC02ZnFvqzzRGW9d4PnX1euS37Pr0C5kAgo1kc+K+d5OaxJzNv8L9UxIYRfc10uTpc1SgLMkQYgFOD4XhnDQExMioDaM7dmt1/L+VSv6oxwZV1FX+ZJVIHjMrnZGgah6e+DHa5sSBj2JMKzObVxZYRZu+ByQ387dYkOptFGMju9ZHpPrSigblwH6snnhYz/E3eUCAxfJvN5XPh4plzp8p4pqjIs2qb+9/6YhyHy4cvZShi7KoxDwZ3oECNONi2HMrys02afX55PbxH4TEuYIsuxxpgmw8+RkW3qIz4eTIEwWaxGvMwof1Qpkhj30H2IHlB7V3B28H4shpO3g82NFJaqK9Xl1ARCmRbvtAEee8N1Fzz/ZmmJ/YAb+Pa8IKSkw8vXVZR8jOXga6T34GIwbgd9aU/5Uq6BCwDoxPE/DydGdGeBIVAWPbGsyyn1ZL1cB2JlDUst9bVaqrSImJMh1jptlL0lQqMYWmNrkcYSehXXXhc765q4PHF0h8BLX3+jG55mNLRzGBkqUzMuBVN9rFEIngs5bD23p/WHnCiKouf4vIW+ebn+2Urb1+OqprnWM99Texw3G+sp9c104A8/02OMuf65dygDJg6eN2tm1TmqnOU5U5C98Z2ayvpiH3je/kA6G95d1VnM35eLqINXVKCmURZpC202Oquxt+ov/1XpvzCyl3fyb+/0ozZgh26R9RHJG6/vrJUfqoGp/px31zsDtok7klzPauV5L7Zfy/bSqcVzYOVr4Gv8XHr5rOhxUwWHSccc2a4xMvAUTgXXnYi8XHXD1R7gVdJY1XXK6f0ilh5enVNhg7ruQ9uingHAS1+/1Q8rsiLW4Ju1TnTkn62fcv01HAoiFtHjOmzl83oNRft6pgIyxmxo32/IUod+j5dUk2OJohYjUe+bwTLdMw2H3wb8ksa4JuSN5RPb1zk7N1aCNC66gTn6zSug9lsIPnEol+6bGSbPw4yVQu64GnJxMFAI+76ehTKiTSoC/XFz3gprs27N+kOoZTEYpgoTNDA2E/ok4mr8G/PvgYQQF+4LAGn8qua4DC+V5Lf1QyHO28CSTY0K9TDlXk7z2J6/37D942GRH0bVw5FgP7P8oynoPUvvAfE75BYQfjpdLB3B0zm8VKiV0/KSpSI2R0CWkKtoAf+XuenR3+N0Iz83t5DYbjV6arrGbQdLj/JSEeC+m6H/9bAUgq3nu3oD+g3y48Pe+zyCv4GkjhASoaZQ1p8fUXK05rDrz4+MInwdk4ElHIuaa+9rLtYpx8nv1d9/2r2TYEauvcmxIcDjaTDA33/muF7D+uZoonDEDVMUyXMizFttu3mVzwtBVrNlvpy0ZqgGN84D1eDlakOoNy8T66SKULV+SXGqsQ1lPmNuVq6P4gCKlIzW40BBb5Y6VMY2B19sLft4EC3DKAnlpVxqY72UQp1QHYTiUgkbOnnKFYBEFANxMBmh0ci1zOcx7eMqcnL/CAJaWzPsO2Zn6QVLIVEvmdutn1RELfrdirMw4Z/MdW7kZaAT8ecdQY4GRFpdhakGr0ETAJIO1iEZMR/WNv1bN8JHjpEjVpKIDrMjdTeofn+Ue3xuLOp9pS+rWZR9++NMOLwUJ7cq+qEREQTgRG1WjQEww/u6d4zdSfUEWefe1864GyljzYduRBj0ZgaJeHSXazn6Z2s6CfloqIzJwWLExv5KkjPWNQckioni0+W+DmD82DK3HcDVGWn1aOt1QVuRocOMqwGHDbvTo51m0OxHOZM114yoOR10E5wfHe1U9E9LIexfHvk9jUBP3kS25eGou9sG8k7EenEHnToPEMt9tjHieWHY1rNd3fHgcln3HtFvOpzCeG+YEABRkpK2gmrweQBmJP/zf9tw/CZ4/Hdg/0/Bx38obv9kfzVSHVgJQk51KLxGP6IyRLdoZUTBPZ2gzj9LOHKtyVD0xwiCRSKE4h7uDzoChqWnoLeZFNDbEqk56+XPNlQF3HkD0NnKe9KJuRoIjkq4b9buwncVhJ1ct8flHDWeVqQN+uFpIpukgTRMZjfAEQdFjusBaQ19axi6ufxmWWD3vgqwfdrasxKr3A+u34XjwclbPw9EygWvZrKIa5XrMFOFc4/wX927k2e2OHOtXWJEosUwyjKiyUHBVFopARHdOtBu9pzNiJrtPpn3REVybuWM5Bm1Gwok9hNlTa1IJWLn/xrFj9Tdkb+PkUGCN06Et2cydV+mSjKSPxlnWozrMfOt9QbpS8QbCHTgdInAUguIxpXZgQGA1YhenBbXcAVb5u9Wtn/KepY634vzIoJEPR05l79nuqfNToNaZYJoCcDPgIUgsVYu8O8bCaL/rXBoiZMdCmDfv2zstZY2l0RfxlXsqukzPnvbXIbPNpLpe9Rjrum74TQgr5Sn+QrnoyIwmzvCS0BtqiQ2RpCSAkgkryP9dCz65ItjplQqAQKRE3NEZEef+6KqVo7+TxxafxGHAtII5uWDF5FjXu5MCGWcBy1QlCsaYDlJYYi8vDsPjfDA83Jha6kLOiGIAL+XxHjvFuEiACpJlNJzuUaxl+9rL37reJ6zvVb0QnjTSh+rs7C+w5XjcDbUzc4F+93F6HVzD/KWBGNREmvKhfKNQMI6CoZ37wjniMMnB8Jx0C7Y+Cv/03ldTOPzqiCa168XKLLkZq3jvRvLf831DkdTK8Ypeq6r9V3rz2sb60ZXRXBNiAuOGn0K8r3ZMUTuDgCZC1vGMK4FgmflJwV0QmmbPe3adY6TUPg58zrfPSFXejNWZypRtaJHjNebcaDyUSPW7wR53efcr+oHSBnPEMRCo1LDGfAyJ3U864FHByV0eta/RLZUnEdxcNRSWCLz/cvcTLKgGhADr1DO1Ynwbh1ybdO7DhRv9OLg4N8aHQT1wDGG7xcZGmtD5+dwLVeFLBQtgOXSXsYDwFQx4V+9iuEwGQ/8+RwZAeAQuZNFMMwIjzPCiQgdIfJabg+QLsbZEOOm+f1Ngaun0xuIOU1CS5nfx2XIz9e+cz27wTU52FwUmbNO0zDi84As92di39+tYDQ3SeLK3+vrnVPAFCikAeYG6nrZscvUjeJwmvaxK3gj+xzP4x5fHz3UdBkBVnQEUHLBl7bMlU0wO6SHRmWkeC7TNy432OqzOBfMufdoMfdpzDH7uyciLs7jhohMj4oCA9tTUlUq+o5OLSDSAwfTUsihsIwZCfHoAIiqBw2BeiF3xvXR8Ph3wfkBnB+K/unkfQPpsCHUnjqNahj9APJc+OYyB52vV+FYmA7CdjKdRwATQw0pjkZZr4owltZ9yrVcCRknhA73yeSUBwTfOCCw7BVva117AJJTwh0ppTgookpJzzHXZogFi39YZ7VZ1QxcYvsDqeOpyjL+1gf1+GQ73Jl1anCZoMlCCE69cQCaSJ9AYkoZgxq8aw2TdrAe6w0ZKaZzK15aZR7Ho6BVKPfWc8HXR45h0VWv8j3qZOtFGdtssITPqE6R0El1+arvtZUH4c2VpSHLWQvghZDw9YvlhW1yZr/0g/fQEKHDvI5Xjfy/izivxmC9JxwdmOdqLG1cDaG1jfH+hkid4MKoBH/RnoF5sWB2PLiuOyMRFHH48f5znkPlGl+v73SLOmYrKaVIpjO8//ask638G+v7a8CzBrl5ce3VtO2BPBMmXZYyTebn1DUuQFbJeL+Ww1FWn0u59u59b66/iEOBBr1HMs4RUWLdtyhhR2FHHoJXb6RDKpuhBQI2+FkIviJhtCjWQOSxyfMMY1J//2EG8+5QcAyHao6Mvpx1Q5ZnV+Xb2Y5DYSQjfSPUZQSpHQmOxPPbc3wWg4JOFV6VkObyA2SRHZPw9t/1gkP6THhMda6bTHndvMbHhnHbClrDNnIcqrcNJMq08m+teKZ93L7Unt0atGWZGjkH9v98ol07zh+7KbB0ED8BEg11MhcLINfA9jQH07jvXjrSFLI4iPcNet+iH5Eq43Mhxwltu8815/ZKZMsqFLxkXBxQe0aiBZ5rHmiG7uRuI2CVEEMGyBeAry/jcth3+16NDNMR08pBoR5V5fOOM9ASEDGkjpPKRdtXR5cI8PkF+QT0337PqhWHAJXjgXn23BOlFF7sW09rIE+H/Ocvc5J4JQp5PI1HoUarV7QOD+Pa1hDuZ44BeQNut7JmrkAEYDeGYvm0EqtRYglI4kjPPdPjKIow96p5/fU8gfvNPLJweYzhf7sAXCaH6DRgCgAJKL++7Hu3Pce7Ki91j/34yOg4nSBUrD/tOdg+Ml+YThwSJhLB0D215I9Pu2/fbGyOM8qamsNMIb/8ubc95SsPKlbs4HwQIkponzjapjXoR7Y51uJtt3772tPjMHjfz49EOoUzcwBPr+6wdYz7blHrR0HKsKJIMVYCmdD7xI3x1qnoCrWleZRSj1zDXpYyUylMealGCtEeunfguHLfc0+4oa8iwG3LnORQylDa0zBuG67fdlwfPR3ZFM9k/ue5E9Dl4kR1GSHHiNJ65thVtM8zjI6xd5y/eYTcDeJIV2ge3XHDzl7qRlfpUzhkAGDzSPAuGCIJv/Z2DZKtNkD2jnZskK8z+DkANyAhADZzYG4N8jihMqAfu5cHzPMm2tAl+B8aYA71xn4v5xvPHB+XsZtjoz9HRMxjOjjeHlUfZP4fJVffxzZIBY/h4+NGkXPrTEaR77fxYzOOhceF8WOzspU/0oFqjg2gEZVSdJDY65wBlwHXj92rKlmbWJEj89dp+CPQllZOEV4BoNva87/983/vePw3wR//xwO4BNt/7OgP4P6fF/rncO4C38/dCCnb87LUz0uh90RLcB3FomkAYPwMUZJTMPFNiSJy/a1Kh3/uDmfZG+SpuUx3d0rRaVZ13GIUt6cjB3wex91LoD6utGG4L5xfpKIR5BxWSeNji70DIAz3eo2tBWlnpJAqHC3Cds7OBO0SCv/YBPrRja/4GsZR0XTOwVeiTBpwQ8qMK0tdhgPFr2trGPceiBo5smxu6NTu5BuONuB+2fic1sJZYjoMMk3xcJ3EEWiRygRg3LY3aF9vH+0b19uJbNStB7IYdJS2NlVX05vzc1W+mmEPzbQcS+vTjVwuRWfiPmVZ6+u1zGOgC59PG3fqEdQh6vnwxkhVkjWTdy1uLr+sTgwiEv1venpw5jyzGlX9XpMF0VqDFMh7akpAfT8Nd8Dth2Kkk1RUFv2XOs/aft5DlEETf9ZlG7Q4R2NsRaxaQXw/+xKBSZ/PQCJcRF8s72R/PAIv12UpVvU5bHPVFyKYoxFoSRJMCZRoIG9roCbGY5nTlayR6I5JDyzfd3lVq65Mev9ZOasGJm6H4CZrALZEhUzzU5xQK0fFFFAbuUbcWTpd+qZv5fprOBQAazyrNQRZlkNR6mQ1AOM1sjx5vUzbKN8pi5mHffXqqM6kOFzAY9i8jJYRiZeNJaF052c+GQH1zMOH3njeG/nwY7lXJBSWiN6IloWHjIJO49BS+RmSuUYVxk5EB4VzfUa9AgLT4mCYPWsSsMRMuQAUzjUwkIpdKM2KiLgSBr9188b739vzgm4N29dmPAod6E+fKidpbE9XChUB/4vnv7v8vVKMJAAOcc4Df7rqhqZQh/VpKsepmoz9hO2tOemc23dtpHBeveZTOyjw8p4pUqmvxkZtX7SjvrN6P/meclgaEVq3g3kqGVAUQcoWfndtfwj8xZCkx1U1OTKAArXWfN5q9POiM7DJ64FObysPhPr5tGcKpA6IOTZSnZbt7q58h49vOcjdSRHj8A4myN+JDtgW8UvD/CzPYXWNd2PLsam/U+AHGoUHyzAitkoguF6cExGwRGu8oyIbeK9USxTL5+XqPdY4S7bVAxSAOWtOM0LtO22W26V/lS0cVH7Xy8/CyH9uEgo0KqIHiLSGiLBxv7LvInNkju1g5Yg3kaAXDprNUTXdjDm9u7Jcp84NEGOk1zAO6IQSIJVxtrHuxfU78TlMsfKRFv+s6gpxBnBKOURNMJGo1jND2E+k8UjDQTxX3OdIlc+QhObTodFchh9+xnreeh1rPjtySIfP6VAQWUDHQdPuRpdB8g1MsoyTIhwsY8uKDdY3zjviXVG+sZzdZgRazrxwnidHljuvCT0f/iyHypoj0J0hpxnSdGBH2cd6OecNiETwc0t9HSn8dzfguzuhEvpvzoTrPu8XbcDxm+C6AzgbcAi2X4Lt00oz9mdJv6B4ZtMaJkdfHWOFyZNMGUA6s6TA6jnuk4PL+zWu2Vk0vN/kuijEoCzrqEiDVZbyi1GxoyjL6UCQV1nLPnJf1AoN8dB01k3j6tMU/Zz2pO8BJ5zMttve0b1DmUY7pSQszrZRkDnunJraHo0pP483f/fvGC+WhpxJtJGPZzDPY17vte/VodGQspO6KazfVunGRUdFeUmOl17+t9LG6T7qOhUVEO0YsDSswrW26lgrgTC/196cKX921f63QsYY5b2X9nHNVd3gzdqraF/7bG2rviIg1rl1I/Ll/RVNUs+woZhKOU7Prjonddzl2aqwiev4Lhpu3/vG7vjumfWdb+93Q7iN4PCwLb2s0Sqvqn7/bk94tbRYa3RcfRelH6/7wSRN0c0raqLM92QfLOk2yXWikepiapSEvkdbNtAh3yFJgLn99bY19eNd//5ka/wlHArBgPt8Ri6V7ptFPIFJcJHFW66exhIPWl4iCLbtgPGWFAkA2rdUEi4FPo/XCP7zhJyt5II6JDOMZIkc69WrpGIerYhIAyn8aJSHAwBGJMVFzZyZMYDDkQjMj3GPpOLK2tzhZWvB3E/olW7NBOrzzHbTU/ZGEahQegAg6cj1224kTZ9ePeIaDvuF5dheZaFxbEQCRifHORkCUS2jNTDuIJ/PiOpvzNv1zdycLXx87K6IwfKiPRIYiJQCE5Vlc8txZnlGKjH/9puT8Ki384rDJyL+Pg7yqzghVA1F45F2/XGDtob2x5fd67WQdevhGZ9yYRsSYULD8jwh55zPpVWYXVaHXKuHlOtlPdxVM0e+5OIH0/7WMX7/Cb33qLhhKSxqXAz87o+7GT9A8IYAiGgdyFXSyvvpSS0CSY/DyOF++2l72yPl+PU1OwyBV+G+zQ6XQJ2U1JUw/Fj1gOPKvQTMfAFclzerZiH+fP3naeP08WHKxtcX5G58FCAtxu4lBfct93f1EktJ+xnLmjlPa/fwfDRGmk8PUz4P6OMJ+bgb2qJUXJhkiYg5sfYtyjsq7wFsXEhwyOdrlvbUuyEIxD3fUdubSAlVKJ1jm6YDzfePcAzpnOT8r8q4iKFJuEapaMU9bgw8zni3bg3j5y32cyqEhDan/LzuHdfPDf1XRuVjHZzDOFJum0UP3SnaPo80xunAFieqo6H++cy9um/QbY9DeCLNEwF0Wb+qIH8NDUAjTZSJ9b5dA/3r8hzwUorwUxMt5zK0iTlG5vQ/oPIIyZGM7gA8imvnWyM8n1+9ddd0cp7I09AfA4QHqwjGjz37VYzDmPc63/6dgNfzXU1ClqUx2l3N8hzn0ZKv5kgtR+mEcQMSTtSnOxFitt4vohFu/jxFlBRsRwv0gbURwTtw3U3+7/9gCWFxBVAgh0audziounFNsCygqAIPWIlqVwzJbyCXov+RCEmbg4bWFGMDrh/NESgX5POAfD1ir5HEVgHbF7fN9g5TFSSdA/0xTOx/ANfN5vH+PxTbMTBuWdbxujc8/p6pD2MXjB14/LtCd2D/vzdsvwQ//i/Fj/8Y2P9xOG8C+VgQjjftYoaxO4lnRI9CoBiOSLg+GjJab++mY6kd6ka3/z5K6ovzOZljBOkogOL80TH2ZuiJa0CePE+brREg9APqDSyfOKWPFD4OC1Zck4Np3LdAjjaWjySnA4mGKRtOjSDrdfM9LwjUSB0fDEUnioQInOFr+N4dLarpfDwu6G7yLitS+DNrtJP7ceS7iCSargGwXDf1WzkNjUZkDtFdAphu9Lgwfhr3lh4WNKrcNaE8LoaRBYO8dO3pk+hOQUP/tuA9ijPRddYI2pU2R7pub3kWXWNy4PNcqxXV1vRp8ie9wNKr0cdzAm7A8X1FT5vSDlxHl+O0+SdSk8Ypvy8teYZKKWo7ew9EhD/01Rr5N0NZ6NBeHTxDZ4O/oB5SZ2r5zhqEXVMf+D37IxjRZhWMON95vkR1gDcGKceTFwM1td1bjzGcOMbaMsYi+T2OVVSNKA4I8lUsTqdviTnzhpznyWFmushUCnzdh9TbGECifljXzcrRURHnYbNc+Qy/N0mvnXOOiFly7LVmARr1eV3nYQ36VCcMLx2zw4mkqdeV6+TN9ZdwKMTVmgmLLY2qiCq5wVqNmpiQZWGEgVTq0NJgILxldR5EdEqWwUYxsmt+FNtAB8VHVfw14WD1HfV3HkLuSQvjhPnnTTNKoblYRSWF6b7lYi0KeyjtnZtBy+IFSCZiecJp5OrW8nApi1A3DaFDAka2PZRrRpQakqSHnnQiT4CELvv8UQmZOCh8jNvzWjbWQD+NhXf8MDKkQCa4QiNsG1wRU0sPoMHF9yaTsW+6KqyqcKFgFEkhwTZVr+G7+V2fVeedv/cG0UK4Qy++CxdDr5xQlulTzTQIf4bWtIhVOLLaQCXF5ByrOrGTj/fjQJDv8TovyEMgX54G8fPuny+R4tYyXaY3oJXSg4RBxu8jjT8KN3poafTXg3sV5oBBAR2ab/XXCzHjaekMUQKIe7EgTOwdxbCN8e/5fGCG9rEiBuc/SBXLARaOhZ6HQD0sgSSFpKLC99PJQcOa+5v94vP9mSyxN80X310dYRXxUC8pSK+qmLC95BxRjei0ydHt9ftxgOd6mNq07Ae5lrHZt2T+rtdAKkrVGQmTGe0clh4BNzxd5kiRC/ZHBCw4nkulFgCrVozb5k5iP2uIMovykUVODX8w20UnWVHQnewmSM10N7nYaGAMRVOFXmKH8cDkOLLKGuIy2dve4OkvEsblxB/AqJcbbIyO08jmNUG7PXLby16VZU0bVD3Hc7rH5WgaiSOMOfX0uNrfcOi6kWrnVYcQXstgAOBlblsSjLIdFBHkeAjGf0wGIZ0l/C/GqhpYXMsNhiig8eF9kqPIu+Hz1JywUwSyNejlkUlHdUXFobKm2/OylMyroTVBOzva4zIiRs4595SXqdYfuznEukx5/ysqSxReCpEfAGOC19t329PQCtoA7KYfbp8CfAL9y9CA/QuQy/UvRv54Mapecvknfo6lXXQwcf5Nf+H3kakPRDGUSgJjT2STLTvKAElyR/F9Us7wcNwBaCcirUcVGc2fZIGNFZy7QN0hQUdYrDk6jODOgpuvX0E4DRrTYYbO+s3I9+olERSZxinaKVHKO9YDOTNsIF7W7ySDgdCzLNJf0nPceBQduX6Lo4+8GCsfSTz7Mv003kHIuLcr1ugA+BBDmQz/SDGhGHxcwunO6xq27ymPeV763puuOv+uQ612AYBch35/EAhX49Sf8a5iwLfIhao/Bqlgn4Nz1aGwtv3Nvpme13wPRh+X57yLHK/kh/X51L1qG0imqCVQ866fIw1Q5ThdyPHa3yAvpRmSojcEnH7VEdgmRyq9vLf+/OLoWPq9Nt0dKYEspd7FsVgdSPWazrhlkF/mofTHvpw63frdqvet9mhtd7H/ct5eETl6niDi9qWN1c6lM+mFhPTNu5fPo6zqN9dfw6GgQBiEWzFYAURUvSEMoJr/zrxXMkDLGJazvXWLcl3LYnFCwaoIvUD+62JtSGeDQxaroMbpOW334lD49ZxzINdrIuHQ2MxENdiYqB8+bw6KUGA3u38Mj6L16J/lpSEVLW1p2Hukr5Z+032b0RY0lnw+ooa39FA+I5JyXFlZwZ1B49Yxbh3902tok4yswPWCt6Eq4cX7L15PvDob5HE4SuM3+5uXXzMkxjJ/NMieJSLpUPDMRV8MVx52DimalNJbidQFH0LOSVXw3kXuUI2vcC40Y8rlO3hPoBf82Y8Kp5d0IAEmIMmU7yznYQh+3MCc7SBjitr09vP1bzfbQ//jn3N7mwSiQ5xXQX//4X24IsKtH14t5I+vSJOo6341HuUaQXAT86BqzoTjSIOYSkJVDIh+YG5hnRs3nvU4oM/DPOccyzGcM6FBKPWq155Rja1b284TaN0QDECu7bJGwhlXU4+iVGNPbgU6MGId+HOGohqkoZj53jYn4zU5EaLW8VB3TKyHkYJoJYjkXi5VZKLPHP86DnSIAIkMcQioyYge+zC+X/YnrpRFcpUL7mnDAAAgAElEQVR5W9fD4gjVD5+rqziM65jVtm/+ToeIt6EYN0c2bOKG1fw9EpRNhGZXbbfaOP284fq52TRcw9AMgDlMRSwvmk4IGoCXAptD55sZzPIcvh4Ra1CaQMcGvdr/y9zb7FrWJFlCy9z3PufeG1/kH1Vk0lWCpsRfwwgESEgMGokZA2bMkBj1K9AvgMQrwAyJCS8ACAmpRzBhBE2BoGlVUmp1VdZvZn4Rcc/Z290YmC1zcz8nvqxWN9K3pVBE3HvO3r7912zZsmVzLjE1Co7UXxk8KIJyawZK+F7er95vOtT2s9Ec3aZqga3l/Ytavnt/ZTWeWbgynAuPpJqIoBtqgqBax9lZbD/vezEw4XZ6HniHvhqQIjcDRQsjyQB0hzlJVaCokLuONdUl5nG/1Iiy972kaLWxL0InQ9KY60groBPaN2NphQ6SHZDOWBBbPkkXgs+t51ircSZ3Mbuu2NiXXpHL7kFk0NY5Hu+nO6r2GX13NgW1epjiKYJ+3aHXivuPrhHVL8coBTg7lNY8i8AXMKzcL8U0E4qnliiw3RS92pneXs002D7bmnn58+6aHkiimwVZJyPAmuQkx1pb5pC66aEbIHf/rgB9E+y3HqAC572K2QhRNSJXwfA+t7LSBVox9Ar8M3w+94LK7SSAN1hKBG0YVXu/Ys/SIiiFASQDqvo+QIOwezqgTB/hmjgV5TDQSI4GPTmvhs1DYC/mpTs6fXfGEIE5hdkCVwxmD8eDaQ7+DlMZ22dOadfEaHBwUBD9iR3j5fya2A95bIEABAL02YYDF3u7AwBkXdM2KmcfIATtkWCELkAu20pRdIVX5VAoAyIyxjXmXQ6uLYDe9D50LlUxlcfJNPj8s2zLM60h5r5/JzvwBWAU2X5HpuUC0BXf57KfwufH/YZtYPdIOfR0DBsctKiIKg+Svk/xQ77Xg+NZAekpsFqGjRNsh839CduAJQv9sb1R2YrfS+9R6yNYwGf5ofe09Lf/XNPn4mIbfTwljX3W0AJq2Mpo4jbkeq+5AsLT+fM1f5H/Zlvy95JmxAOwk7+b509+fj5D3G/R3FZWuKgVU2un8QcIDltpZuABVAAQ7BPeIttjfa5Asl7fD0CBRvVW7AAGQmyrv5iIVnWaqhliEsZPLuXIXE3Zt1HGBhbVj8VDmi9LLxajHVnUy9vBSJlTTeRog37LQawSuWHqeW3FDQOtYoJu/OwqQJcZBTldAhjikzTmxaIj4ZDzcqeD1ObJMQDCye5eMqf00zdlGVoQOR+6pPtW5oANg277dLhBNjahcm8z0geEoUFRKP4Joz0+1wf63meji+/KCGwcyOHIqYENBHuAaY+ZBNxUrIRia+YEcfNyMCq+k8QGNQksEqwZDiMdhRbCoBCBfL4NBy47V3lD4ju+eJQ/lwskqs6LzAKfi4x8hTChSLSrv10DbOO7GNugxbuUz7f54ArHr0Tp0yG41Ee7dFBvAQwmSnMhUReEzAZNpHIQwInIw5hPYTDcD5+7+6C6LbRE9DM0N+DlOoN+lZ02Oor7Dvng7eEYObXO9onN36ul+4y0ChEBLpdhWLhgUzhcjA5TGNCRYetomQ/EDJgAowwk51I2xvnvWgerIDvr3p9C/Qum6vj+srJA4OkxIvuIzOR7TTnZAvlyHyk1vjdFPjeGUfj0gM1//DNR9aNjiE6qM9Ai8p/mivhelthNIh24n2PdJQfW1pvv0dW8JZZBXBX5pbXH0r58z8z06p4yUMSikHui4TrAmKONANwZbNjuZzhZwtSrNht2dAQjfY6Gp39Gxfcf1SiJq0WgfYBZocIuEs5fgAkiAMsTusPEtZ3FI2PonEoea/0gMwqjHzmOahF5CuV1piCIoN4SI4/ToxQo0zhOnw97jcDlqKjgY180gE9Je4TcT1RV9NcdXYvRxHk54CJNsd3TISAehd+HINoctbSXFAUKGQ7+jqPqg8RYszQhwZV4jDoVXxD9O9pmZ43uJdImSjuHgHLq55gjYsEJ3Q2Qby8V7z+pkVWzf1Ls8OnfTN/A5qBR5ttm5S3LqcFMCD3Hu4YGkTRAK3D5FbB9AljNYbu5k1odvHAhP3MgkQxU9o+NTwGgXU0sssqUAlqaon4ZZSdVADl9ztAfcbAHVdBLQX13AE3ozNsYl6OhF7LRYIDSOdaTbgXnh4q+CfouqO/GGCCjQop6NBWJsWQDXA5HXBThe0m3dIFey7CpipWxVLG5A8CdfMxpDfcTIq46UEbgKvbi1o0RFaCwgz6ngUb2jMHGAjAHvzT/HJNDkm0uQR9pO4DtD3UAHVPQrSlE2wB0dks16rXY9CRjOO31o7SuT4ukRzYBHfl8SKADP0+7TVEGI1g1gMnMdAWZFdUAOM1nG23hFHAY4IWOtng6m2Sb5DyHcww8Opf+vQen2McYJbEQ6FCvegA17RP0D4AEZKR9LEeJabu6cPQENmQxRmD4MN7mcCCLLkCR388eNp/tZCPkV400CSDAB392RK9z6cf16pr0BLr1vep4lvawtTSCq/YcfXJPY5jIsKV70hYQIc6ant8R0f3F5gIwRDC1Q+lnrk5/2MIpkETbXPpst62XAxxhT67tKHUOQDGtIs2JKT3kSf8Cbcw9wMZiYvSk0pkZLOoLACNeHGBz9rxICI1+7fqeAAoAxXsCDamSyiKlAWLJLuZ+0VERiU3VwARXg8+bSpHh3B+nRYz2DQ85sJw07bRNj1TuxbAHMCipRMrP7vRMGRtingB05GuiROYNhBvdd4nC8F2qQF3dPVgbfgXFcxNIN6NVXdcg0jGyYb28e6SakOrsuciZYcD8ZgCI9I1ogA7nlO+YF04YEsUVs+fvhtXp6uuAH56eq2XsiuR45H6miBgX+xWQGxAotKSUEN9wc015Kd4nnmagO8bGAYyoL2vxsn+ywRpR2BSNI1DCfgh6vMzGrvdLzENV6C6xaUWpNgpb7tYn5d5j7sf92ebjtGdc9piHoW/R2gANRObDatlM40An2HKekLYjchX57vzMBiAp94YTR32RFN3XACaGxkXemDVpHci2RUrLA12NVQuol7E5IJRLJ3ZE7qLSuRVDfQ1Q2OeNvOtoazLcRhszCv7E2JgMAL8HWT3PUlXye+XfudMdTif3lFWglf1f0l6U2RC8V1CHC+TL8qwEeETpyNy+/Lxn/cKPhjEk87OBMW+474gMETff40aObzKa6nD2o9ScwBgEDw1wY5JsD/ar73uRCw6AaVwmKogBOhLAWM/SrgZ6dDxnpcWzBttDREyAEDUE2+IqFn0NGnhyQuB6OHa/0d5nAM+kot8V2L16wWnzMNhVqhAwYpkcIgchpvHsMJo/gY+thJjqOMvSGSQIZ0k6jDberd8VAK292LfpUKgC3Z2K1kLhWvYKKTLAGp5x1xrOZqRCiEyaCba/4ekVv1Pvz+w8+zuHfbF95Vx2AINpJgACyEGRuTJId22PZPDH3s7KEJeKfilo14Ljwxifegd6lbGVnMNRCno92RW1xjtHCocKLMPWXnh7H2MlXVHu9u5dKPxMdo+G+GmUV/SuRkt2wOuOSEGIiQATdvTIfjlNYDpYNQGqDZDqYRnzPVwcG7D2Cn/mtmG/FJyvxk7om7W1bgX1fZ6bFOY0bSp7r8IU0/QZhdjzOM/J1Kz2/uVUBKtlvZoCUEuHAeZUpMPBzReZ01rh67B1tOtmjJ82FZ+MTp0AZAKpnH/iaSmqngud1iUw7EyeM+7cMz9cuJb26kEdAVCTKGra/zPDT4EpcERHpi//9v6dbGpeEQH39ceqLDnQEfdP+/MabV6uOCvZT4CNvZ9bcjbrm/ME8ERXgffJtqCkMSXA4ZcxXEvYfJP4owMerEbwVFSyyGRjBkshMJVlL8rgQ/dI/jpHFibK9L1nZ2fYgTL9394HiLKQOdKtvpGu1SyKjM+p7UXq9xKRATSAZ0ACqe0m8389dUKAATZoAgysoUsbHl/x4XNsX2tzIGWyHxe7c1t+x+88mUMUPZ0CinGRvZrm+rM2Z8BgunkPNv2oBNEw9UlJ90j309gLks3CUvZq9sp3VXgAvk+AApIBVMRzEDE6Wz1SmmnwbljodXeanDlo3fUMWM4p6kQj3Y85110D3YzyOVFlIkfGXWjvso8oL5AMRc+N259tDHQY+vg/AJbS0q2OfOwMnrDNdIxeroGqqjva0lrcJ8AU0voBy8+kenQ4dbYZrDmYFMeUnhxAGilnB2CRovg5I1BEpKlPkSmcPf0OgLwfZlC6cVy65466wa4F0/uLP2s6UBhpB2a2RXJYSJ20iF8xY3RPtH+W+NoGIshypUE7pcZDT5sbxygO07TwO6zcGi9GZemw1mWzyKDBs2s1OD3iKb1M70mjtYsEit9/8OZGtR/KcfAhcsQBWNSWfeFzQNxZfWgDYKkP/kyKAkrXSImAiM3PIpGrJmezzzqzwqISnvf+w48P852sioheE4hxsVY49T6EwgCwyoJR8b3tXn5qzGPfGLOmwPWCiIaqAu/vUCnj2T6vJOtncF9RNTDv7Q04Duh5DpEl35j1bPaz15fxjln7JQOHa+QcsLHJjvRln5ksgLNZ9sFqymvBRQ5ZOlfJjqGjdz8hd7bFUg+UbA6WsmUfcu24MRlOP9kqARb2kV7EaByFr+j8EGS47Oil+Frl3Oio533s+f7+oza6/Z97AwCUdgAFEN/7y22wBewHGH2SzhQ6u9yryvsdetTYx43FQudQDKxjqsPF56kzO0ARy4kpVofD4M50fvYDMNNH/rLRoxvQFLob2wxOjWbEFt1SxNq1ot6aCTN+PgaNmBUlVEfZyZ6igqmUn9x7tJO51tq96k4VdNnQa8X5MhxV+yzCIa+Hl6bj9uFOnwqMaQfEujUgVMOJF0U4rYVA1mH7pXSbqyX2PXgaxnCqw5lSoL3WSH8ZxiysJGER9Jca3yueTjZKGycBQjpk3EcJNimgFZHmko9Sq3pkaWrspsl5KgX6ep2NTc7LOkqA9t3SFaxMMrB/7tg+d2zvzfP3ZyCI9P9+MWCm3Drkhkh5QAF0A85rwfkqOF+B/RNQb4rtZkwvcX2E4uU1dS/ezLEGzzcXmxSfo2TRHQ312/sM1LduTIu3zeaFMwAEwPnBxQWd3WIOsI0XATSmx0wMK84nzjEXdOy7AQnUMygHUA8DSeqtjbETDGbT2S3VgWcngLYXS2G6FIQiIRDAE537KOeaWD8BiEod6VFuo8yijLav2DyWGMPtS/N5icE+8rXBMW6XAlwKIFscdXOlCxhITLbvxspfiL4D4KVhu6citQESeDpMgGgCZ2jYPC7sSwJMXCs8s/JZviW257oWaLsBtiauPL9gaaAEKclQAx4Bax3MBlGZAePMDnQ7ewpsAJYaGWdEgVz2cGsZeAvNngyYcyz3EaxYBRvNLk9rnM44z3xPMZ6CB9k2UMVT0KA46yoc2wbqGsypF9XtWTwFM+ZACBDlBrtaVNrtYs3tcG2pnF4ET4sSqlaToeCaLVPbg51AO6oZGECwwX829XEObpXZv9LsEzAV1n25kf7gvgdt/ZUZyjZPz6xgGoGWOkpIhj/gYpEc07MBVecgUR7TXJabbV9BSAL9MRbpswTRs+DkBCDp470gj0AVgQwCCM+uAOkcKPoNIEK+vheAQiCpNLoy6hedBzAaZV8aA2tIMgIFHZUgum/kaeDoeFc3WBilaYy8JJpLXsxElXiF0WV5YmWt1ZqeF0h+fi9gRKjz7xYDk1F+bUwFKRFZDm0HIPQIBt0foCo1zj4jxPmdcr/QyM+pAPmQ6BiRCJEh0MiL33enTVKqRwhJThun0evYn0/7Iv+hYZhBA37OUfJ4TsFE14UWYxr07geZCzWWYhOwD8dIL/tTxyP6pBZEtYSlL+ngjjn0ZKyjv9LhsY5HHpf8DNXEbCgjWlIL9HVD/XJCvvSoCW7CYjpQyThQkUqB6aNj87U2nc2emzdY0niZrsPfBSLOfpMZZCZQQif/axvcmutHR3natMXGMBscS7pBMJY00dA53wkSAH6o9uf3WQ//AHs6Igc6PZOfi3SSta/ZBt53ZSaRxeEg1ySiCHhu9Wwk5d8/zGGun2dteSYclO+R77PO5bwvL+slbsNn9o4oHXkxgyRYNw1xDsh6z/V56fcU6+WBHHPb9/SnoN3CgpGusc8GAMF29A5IncXA8rhlZD/P8cLNeOnLfN7VcS8BHSdENFZaM8AFw9CP26mii3jU2s6uVQgw9nCCCU/GJwTh8s8qWV6Dmm7S+el1/FwefQo36OZ7RbqEarDKp5KTRbwE5GyUj3f1vnq2Ribj0G6e0zimdvSUMlIBaf6z7Dmm+wrTGml/NAVEPSK2viT/tnZM/TztB/L43a4I/SM/v3o1w8EABcX2xUpLWlULxJrhnXMpx74Jyg3e3zKcdG8nHVlrJwaYQOfV0z5iXqxnQwQA0v4JuGPq53CxZ4dPtbw2AZByysP8Y4A6GCz8m7fS8b4h2Oj3z6KLcmKkIrjWSYzHdBalZ9OZXp6HzgAHJiefGgX2K43z2IA2HaDZan89uTJoQhAiwEWyUAqMYdKZ8uTne0/zfWUYcn2lK+zSh0bIw9/U35j2UqZxxBJNtkR6Ntle47ncp3qA33FfEQDdzoECqwjxjP3B93afQFdb/dm/aTMBs47a+u4Eyr3sIfeAKVWh0AawFAeCCREV5v61pgTzSnvbRH9f2/KMNQDEMy0A5+uxPwEfWOXgmZJenH99+pmq2tiswn9ZJ2GyYcr4+7vKRP6TurID3Zex7rY/Mz0xyOc5CDndy3+2jlMR4Gt+NM/8XEGCzw5g4ivjPt0n+6VlAA7xd5/fi/9e3zv3RVnHZNkHcoUOtnNNtXlm262AxVeu7wWgANWIoDF6DdgBVz1nIwvNUSBMGJHc6sjtrgLZuSHD9A/e7xZ5S9Fji3wotLiB+/kdeHsxRwwjks3IhbQKlJTLy3SGuxsOOYrok5dsAYGp6Wa6pLwfI+LqhkSI3xW1CCyRMJ+8zKHnoR3dV5z+u42DvRwGJJRP75ErHQwQLyUoX24uXnl1tsOTjZjO+Tai1nK33PnyzavTXgUQQ02F4mYZee1qUdQizhhpX9/MazHGiWooo0/Rm6yPEBuyb67M90t5iXJ2lPfDInV7sdKF2oYOARB54rG49g39uqN8vo1INRBRd3292PiQzaI6qGkUsXTwRLLzz8sj7llIcFCuexiXAX4txgH1P3TfoJcN5zc73n9S8e3vFPzg5x0f//639jmP6knTYF7kyidMO9CXizllX24xZrpvwPViJQnPBiKjelpeqBBYYB/0Dq376IPeId9+8fG0skKRq9n6qDqRHVQaLu/3qYySfngdKO9xQr79DH17ge4byq8/2Tp2Ub+4bxzqMgsI9pG/bM+vA1nmz9XKNsm+Wx94biVLTNm9C6T6XsTSoNrD8adBEqUh2U9JdyMECffN+vPLe9z7gYUQOXoSApxWXaWNA5YR8n0DUx3k/UD5fA7W1XHGvhJ9QBDIyw+VDDaUkgRnJb4X0R4/aAKEA0aqUOG9ZaS3AP4dXxf3A3IW6McXe4KX2jKHygSg5CjmWN/u8z5BJgV/BgwgwbU9siDatA59zdKAZ4lXti+qOkgCmfN9YGvLqqAMho9939eKqrF9xNc69y3V2L9pDGsVlHfvH2fbsbINuu259RC0DxdLMxCAQogAIvqpRdC8zGN/GYygcjehRNBxC5acjUUJZ1mgV8sTb68bhnibDjA720GJTQHA0jWqWGoCbRh3SMWF3uR+ovRUtYBXDiD4vMHbNfqS99BLiTkvwn1Z0IuYlkBT1PdmRjT7yJ1TTuMoQdl1lMiT0Y6p/Cpgzpsq5HbYWdOrsS+SGGb0rd+7X2o4suJAdpS3ztOy2Riw1GS/VrRrwflmH3r984Zy2Dux9OM0HelcL3vG+U3SGlB4WohiQ0c5Bdu74PJtj1KKJmZKNkhHRJ3DGLXx3n99xHv2q5UALu+HzdeUnqhSXCxVJvHFkRpiP2jXOgAOb+ekR9AVJe1XrKTQriaCqXT2XZtkd02FkgUfYe0laBJjoM5suFYQU6LuhHSBVqBdSqQ24L2htKHbwLKkiPNeAbXUPepNlXam1APvg50pLiU0QCJo5u0z8c2U1qZAuQDHViEN6CjY3o2VFPtfsLmSBhcFPJ2xKS58GwzZZDsy/W1ivjgQrQ5uEKyJrvVzoLpwbD7PQWe5+7ogqwFA6a7PUWy+dN8zsgaDfVjHvu1R7gmcn9KfkdIA/f08BXLW1lLLkadNwDkhYuf+ts12wtccT6ZTHgeYf05WVlzJqYtKEQl0MPFKd1C576iCotCsaJWBC5vPFeK0/Al8CNaCO4KlI9C3eC7m87iY3YHiAIrqsHfyO/DzrNaw2im8eD/0GRQJu47M0Tyuuc8KcBnncfSN9Bk4ORdWIJkO3aOtHdaPeQwDZBsBlNBOyCkdDiBN7ATAxL3ZxoU1yXSGh0oLsYbVNTtcz46vKzKlRVJngf1iGhg9AVqCYGvk+ZtBhRhTsbFu/QkrYgETABMzV/usUict64asgEO6vh+AwrMrj8fXkB4a710tctS7beZZvfvZdzvGAOfOSZ+lETnlAnKDPNPCdyRscjyrofMQgSTrS0mDInK7LkY/lObIFyegjJzx5gu62WY8iRMSeXd6Wmgg6NwnQ3yvxu812Ax9OBqk/mbUOSZvB6jknseL0eLcd4yMTkh0up6gylHSUak2nRZ1FhTiZ9UtAmDkeZIx4Aey3c8R22mT7NMh9bRigzuoTI2JfEJGpoEJSXwo5xfP64998ZVFOmkrcEz83nlmny+CL/+04vIrwcsPr9g+HVE+dbp8j+f98v1DABIY77NsIpPIEje4TpCNol/+u+MwC4ifBwYoyPtkYRskI5I/q9UjM2n+djVHjgemaogYTvmovhYmqvy65vP7MVeMB3I8L1Wl8M/FAVCW7y/3DSHN8pUxXp+//o4/J3WeF9/RNUU436b5wuixpoMyU+qAAD9j7ufrCRo+CTvmtqefTWPIPe1rKDe/15bfce2LBCgbtEFGG76SujU9mxFfwIAjdwwfnsfv5Kb5/hd7Z0mfq8AIo+a+SgdzXtf5XVQxe9LjeQAiim/fK/FcTeMqjNgD4QRpEaNZK/vVP6fW1L4PAEaTAcK3zsJvjB6j+B5KGjTGGqWgIXPjrY/9PnSu+e75Pf08i9QZwTijvH/7ViBqTMJwyqN9o71sPVMELAjcw/GZtHgILMQ2/GQOlHR+p4siw9NF9hd/nLZ3u5ePRfEBeJINCQBaAXEBUN0NTOhejlC6OZblMCe6SzGAgPePe4x+sPbCRA4FcxlMFUsnUSCcd29eZghE39KZLJgcfBEMPYEy7IS8J5hIove7jjOYrBazrzBYN4KpLwkUQQqElUH8PeTokH2kJOblJO7sB5sytSvOjIdBGO8cmi5qHcN5N61LwXBO/T1MRDrNaY5PFTdNZKb5uy0Zmkq5rbRD3FYd6xYBbpC1EBWpMLaVVUzQ3o02CsYeWL19SegcwAAQviY8Ap870EmoO2wj7t/+/N940SZdP7/2S95L8vm22GsMyD+1seNeOj7/jDaebJCHs279TG6v8G8/p5ii9102L4CJxuG2JoT6Ak+uiXn9FXbCd11kFEzaAIllsEbQcznJr4kurj9fWQu5csR32UPPGBIl/e5ZVQ3Vx5+v38/R/2dtyA75ep/Vn1wBHtgYT5J82T5Iz32abvAbNECevg+AYKistMDum23DSGd5dmUmxLMxYbuf6Xws1/cHUNhSY/l+jigDcCNucXJYKlHdwbgfsQABgIre4SiF8q2XlizFIpvZ2E2Hh27pe4woq1qUj0gwFcI96o/WINs2aNCMClcZeZi30yZD3ccELTJtkBbRc6fsegnHCr2F0yRdR7nADnPqDh68XiHhw3VoGngkOZyHTCk9O0oSwOrO1uhv1sb6+Rh94WMgR/M8yxr3CB2K4iRS6iP4d9SrX3B8LXKb1Nc9gkX0PjQBXk35mk5yv3ru/nEfBpzTg2Wvpjq8CdBgkczeIV+OMNqin4rMOeB0Vpk/5qyEgfo5oimmNWDv2wPtjbKfBGX8O3EfYCDDxawSvZRkQHhUjRFgOlG9W/78Xq2iRDftDG1maN4/Cn78N/4UfyE/gfQLfvT3FPsXWw+6CSAXRLkmp2GyDGakBPn/e3JsYr2R2ZBUZ/U4BkIMmM5AEYTeyO1uuhFxWGv0s75ebazfb+Ysv1ysXzyybH/qWG8H0hiIMYryJvfl3dZILu3p81xfrzZfycDYkiaAR6aluFMuYujwvRkbAzD0+jwhLy/Adgkdgyxgh61CcBmRNxoT1wGomOFS5rkkKRrK/aV1629qcACDJdB1MGqcsSNpP7LxNlBVIqc/nXBrzmYHInTGefn6Mhxy1TmHLoM1qtZOVWMaZKAxPdd0APr4uQhQ6kiNAVDefT8m3TjvTZ7KpA5ORWWfUmwdH6l9bLdrR7TXPSLsVmPe2W4O1GgZYFQ2TixlqMT+V+5lOKhs49YhZ7GzJPdTGv8oURv3LcNnojBbN2E45hDznFJ+PkpMeiqBKsqXsYdoEbQXc0D1FNR2QjpszwZMmf5acXysEdFkWTiraAFjENEJ97YyCtleyLpyEOEcjozc/V7JGImILxAMCfDXRew9u2kz9Ivvx9qHHSuAvgwGWbk31PdzCNPRaT5sn27bhnYpOL6p2N4F5SaWi06Wh1gkHRvQUppeaRoRUvgy0CroLyUcQka0t2+PKB2qZTBfMmjM9k25/tXnWR2OO8c+X1qB/rKjXSvuP6hWoeDmjAKO2e2EtIpSy3DU3fGmbgL3pXKYk6lFjHXQRnS5tI5Gkc6enHpF6FDw73J2nB929EuJcpXldMZlh5VwpIjqyxaMFfUKE536AEwJUDUtjQBEBWdE5gDqKLA0aKFAqcLH0wSZWVVEyALBeH45GuIAACAASURBVIdgWdCe8PuFzcJ5zu3o7KbNoSmyzH4FUA5YaszZIx2pb2ZnFgeqNEVhI8gRYIqvhSJWUvJ2RkrJ5jaT7sV1iQrUtRwIDHJ99d3etb73mGdyWBpMOPUOohRg7PV8V1VPqeqxDyqq6zGol5Hzz7uouXq7WZ0jfBZ1O60D5WULQE8E6MUZcgJjcLgNpyhj3jOwUSTYc8WZm98lSK7JqRGZ9x2bTyXW0wpMGBPA5lyUqNw6cGKAFRlU4LMWgewpXTA7gWEPdAO61yh1BiZ4Xvg5JK7NE4EL1FF9Ygk2PESZpw5KYEBmHgADCMiOZa1zmUc6oG6vAbB9sOaoJV9BHyPiz8C6STAx95U+B1nXMQ2gI6fFJluCz5CHJi7tEHsm9Q96GyAaARhfK5MGg7cpmAkAZBmTuGp1Rk5+1+GwRxWF/I5SLOUugRerUKXpT6UgUGqDpQoCofvgz9DWwdLdX9VLyIybDOb0ZM+4nT1KVH7lXvi+AArh1DqtB7AyWV0H8rvXQR0EBl0rRXyygSoOMoRhD4xNID8z0aKo6G1pDxiRKT7rsiekOC1YlQAEVFMKxOZO4nECvcT9s+haOLEZoSVAAQxKFT8LeDkxN0zVENCRt4V0eAwjJ96Z6DHbKTJTzMQjXf7eAZyEEjonvjuW6Ag2Ap+90KntndxSIBreGqg3HZ+N8XGnF/ZPhW/+bQgBmSL3MAr4WbafEanAdlVDZGeaBzni+mRsTKBrRF9y3XXW67X+4kFWRhSEm1vvHm1z5zpDmNyEPfUh+oLU/ZxKQ10Kfw7fqb43vP5Zx5/83z/B658U1JvOzu568XCNHFw3RkkhP/sMJvAd+V69W0mfnoTo0hV57G+vno7Eg7PM6w4IUCMYB4WO3jjAxfeFSA04x0Ec17aFxkAY9Ll0ki7jzL5po561tavZ2k4ovGwbsLsYK9dFBt357wnZLjFGXOMPjBWukzS/7P9lGC7ZiFn6MCqxtDrYS8Cg6183r3ne4+CI1BoCGyllJbqFrKaW9s+l76LqQwBhT+bbahjwHbOh5e2wtYGxPzHy6doTEii8G4WlWES62/4TYDHcGPD0J8ANfIKW4eyP+Z7LALKMpu7Vy+7OIHYWg5Pm++mH1wFoExjlezIFyPcOE/NLaUwNAwzm2GTmmffjmtrBuaYioWgv6uu0VY/Q8iwc3d2rQMQcEwFiz5zGh3aOO0+DIj7O1pU1wHZyTqpY2T7dJCLG5ZCh+cHyZcv84DNRzUhiKcB+deBK3bH0o4f9RKDDGAFkKi0RpG7O5pQCUcbvzGEUdE9BiRxz9XH38417JNyRJDskumETOxMjMgI/j0ZfjxQROxO6O/h9t+iqAQnGTJAjVVEgKyITuzaM9VIQuhD1Zg8vB5/l64R2MY8ilUgXKBTm5PFI0U5xYEmNZs+5pw7Eqc8TpRAyGS7+/kNw288HhX+WQSOdosTC9on/h+OpqZpFN3Ak5gGPdzr36vH1SH1I87aP8bPKBD3eaXqGbyty9gFAAZbWoxqaGkAZ8y4tuCnFgmvJnZZclUqvJnQqrpEhOthmwc7M84y33AsamRwdo0Sp73NhNyeNLy0FIu6qsAJQd5u6Y6xPGfbtqMTjz14AGSvZju+8QouGY0PbF4gAmpWWTULKy5nJsdFrBU6ZmMHr3jhVwHFb1dggaU/IwuHr+bwGMBd/YDoXRaKEpX007W0ZIHl2JvLKug4ZfHim97BG/T1abqBQR4gi8gp79Mm75iuLKQYg4azY1O6vC/rRnlVMRlL+fGYRrGBDdlpzG78WXU+i+HOZxNHW8I2etJmV19KHx78T8yeewXbnzz4bTwp60ibzPpx0EtazN4PTBXhgtLDqAtOPs0/z5Hpa2jQHe1ZGBPeMHPxZgZHfsMi/H4ACfCNvLZw08fSFQM/3ag76DSOavbnx59Q80fQ6jJJe9tBbwDp5gMh918sekaf+Yvcp7xbpwdmg1wv0dZ/SDqT3yAu1aGNCdnqHUNX+bNBerIYvMOX1Wo3nlMMPmENzv1tE9HqZjfkASjpE/f5Cih2NZR10tnzRUaFxzJ8zr5vR8HBidFSHyOAAo9yuQM4Fq64azJwbOwzLoyMFHWyELuFEFNcjiGEk3bf6fDgU7ZsLUCWUhjNNN5zfmnLQJR38zr7AkRdx2mAr2STuSC5R1cjByxdRwujjCpVuEfXYgJDGUAYbh2NaxJgXt7tFqWtFfzEmh3x6j76Q+wEcJ/TtxQ5dj8DVT3d8/ENBvV0g2iyb4/RD7hyG0nhnf2/x3MmC0J6wuuPzZkKHy4SZTEcBt5ttkMfQJ2DUksi7fvNmjJ37ETn24SAep4F4rxeLGqUqEbonhk9UPynWN8zFdwAhAI3Lbu287NCDlUMcYCD7ZDqsBpILwAEDGSh0RqdfrraHfLkZI2MFAjgPJgqyR6aTECF0HNAA5vrTAdr47ZyNxHvL2aKkXBiZHtEvruYd9/OqGv3N+/ZoVl2Fa5/rxKtgyJdbVM+J9yoCfLmBmiJYWBABkuVoja7rHMmBF3PCtm1O39gqonrCcsBqZYlU27ciaqqnfWcv0O7aMGeqMlFgJfP4jLOj3H3cuM69+kGAq95PYB67534zX71vEmUSy2GORWkCNEW/vEJaR/n2bmyR+xGgjF63KaoG9dzyawUrFpTjmJlePPs2Yw3I0VP6gRn1eg7jWauEkr/pBzlg0Cz3u9x7gBlRReEww0SSsbuK78lplOaIAG/z75i3voLRrBrRXgrOl2KO8V2hRzcWwOYG8kmnKU2bphDt5o9XV+3fBH2rkbfOfVl0UEflVNSbev+yrWUyaqUr5NYnwJkOrTSfIwwqXI0lwFNyEtlTo6qr0/F1rwZuefSViviFAET39yz2O4vS25roLxXtWnG+FWMUCFAPhdyA7ZNVaCr3NpzQHEUVX18okd6QUxmqszRsrQvOtx1FFOLslgyC1E8W6a7vVHF3h7+WYDq0V/93JehhfdCroHQ6sCNdhvnwQmC+CNCNMYHecV6v5idTwwJpPpwGePWLrbkAaRIgKF2BY9xXtAPVtQsENgD3bnOYYJSndMrpwsXO/DSmjo2bduvbYJN0xJlKMEQ224twmv6ISje7cRMoHXBnhUQFBvD5QFRVaA1Sq2nIqLF2QHvO7RjqIXDtB5gggn4tg7HaFFAvoepz2aqQeNCHa+viATMyQF1jQbKtIyakqI7WyWn2pAGWZLz42uD5s1Q4s/Xi9qg796GLVcaZEYzZ47RccUbms63Ffcmjpf1lN7bH+zF9Ruk7+HyazqGUsiSsd+t6PzMzgQ5vCkTy79OZi/tun1vO8KmseWbZrffJ7/Ts37QR85m7XhnIyGBKX0ABAENAEMP5XvUL/GeybXauy/yZp841huM60o79XgQ38ueXqL7UApYJDi2AAM0WkGG9pKRKFCt7gRUeZIxjpHkWoDh41hsCLc7ghqrdJ+s1RBnLGr7iU0aNKvSuyCCHenujL/J4SH4m4hkG9o4xEBGzT04AzXQ1JjHSaOd3O/3WFylYlIEC2sQZSPgOxtB6fS8ABa2C9vGK7XYfBq8b4QKMKA5gRteBoJYLEEIy3KRYpzpHnmKDCnpcGR2qavdzlkJEWNmpDlxM9woI39GiWiC9OEqZBNTSQEWqQ0Y2MwU5o1lkJuTNJw86+8kdeNmqUcq4CEkd5+eBcIhDHI+bUN6QtgqgRpRQEp1YTgcLNj+Iqy8aRozdOUUWaAOgZWwSxigZFGu5d2N+bHWIonkqwaCi0lEw4R+KaU0RUx2lu6pT/ad3lyUbkP3PsWCpQzp3khB0HfNKUSDShyCeRx/DaWV0ct/GHFvHmlF5toMihUl4r9yYYkKDKc2P0wRbgqrdFVUEr8lALJ8PyP0cDij7M97LUP5+2fDlZy9uPPs87cDl1w37X95QP90H0MF+2dwgOc9B316R1gJn5lg/EaHNOfgWlXBD9PU6AJ/egRPQl92MFH7PU5rwckVEghn9ZVTjOINiP/QLEhrLQ59o23rgEwHuCly2GKvoawce4j15rSKaCawwwzeBGg5+5CooNLYo8vjgnMfYmxEvKFBnSkz6Jvx8WeY894J2jue1DhV/L6ZmpDHUF0u14hwKA4rrhs9ckWvuTXSq1Zxc5Oopad8T2N6tfeyroooiZpxHjjRp9k0BNBT/v/o+HpHFlZJe/IxQQUQzhf9O5wSBmnTlOvPaNCjcAKZSatIFwAVyqygEjQiyiow9zPtdHNTUrUAvG1RHO6KCTNrD+P50WsvdBRa3gnrr2D9JRKbLPQklckpwDa2Aerwoo6vjmf1iRg3F7VjpZ7Rp5E8r9/4Op3rTEdPw6Xu1EovdI66FOcwE04CIxqrnx5fot+GYoQgUJZxXk6TREBcE4Hn9AjnNuew7o3zuWB0dmc4KRaSWlHsLZ5L0ebIIJrvf+1hatynljMpw+tyJshsNMAFK+4NtBdou0Vfl7qJ/GajZymzPRCNsrZe7zfO+SayRYJicDejF0kB8zypNoZ56ID6/8xrWWtBeNxwfTQDQUgkeDVUDPBAMhLZlgUUFUNBhegfsj/ayAQUB1tV7H5R5j26WtF7Gw5iKJKFfNOsdMOo+vtJfKjpqzB9znrMtgrFWA0DwPcgZHxPNn+179zXFPV4E5Wgu2WGfEc6RL8dgu2abguMHDHFHsjX4AlxfxYCSYF35+3QXAA2Q5/SJl8Qx4znV7hxzj2DPvQ9RYu+LAoRIKIErOcc7MYAjbqMT2FOyBJ1FFJoKe+7z2Xaj3feVnWm2fbtCige6llSreF/28ZJ6B9WwF+L/vJ7ti2sE1+eaULuNZ9y6r9Kv4HMYtKAzHYZqOuezAGR+XuwfBSHU97VoPc/AAneEDWADz18yB2jfVH8GxrOlFmDfIXLaebxG5fn98EEMEAgdkMwUyIwBrsmS+qSXRzFKPqPIPD7+rOme7Jds2/F3XWefLfcx5wNFDctgsgW40U7YppfakMY5mOi24P190xwVZ+PRffqa5gT7hCkd+XoC2sTnw7db5kKsdwdN+H1qDQHD93OhxalaWp6bUxsJhqzAx3x9bwCF/lJHo8Ow0odJpVsxQKE50tkFkDo2ODp1nPBfM6Cy0etUcgUgG8YhRRQ2nMwxd0IEIxacOy4EE5bD3w6i0zbzDYujmjZBfj4DCmvKRgIDBvU4bdSMAPcyUDogcpGFTsWC4FnekDw4MDEG7KdSgB3wnQtyO92J2sYY8T1QR7sD1JHhUDpAAR2bdETqVGd6YhdXPqdTsoypOwiSo60Fo/8WI53GKZgYwfkiy5zhnKomqqkEoRwIMNE4YIqAemUD6++UQ74CHGzHluY/MDQ51IzDyZj06ByZJQKgfAb2cKhggETrlntPo0Rg7+cUSN0r+kvFp58WtFeBpG57/TOjKpd7g9wlQDth27leWHM49xUwDioyCvi+a/+TSbCVYZj4z0mflqNBzxasBpRqeeu9A5szE9wJD8V9zrdaoM3TdWLNp3xE0vvp8Mfm7nPustvvXGV5mkOS1i2NUhpHORWk98HkAAC5zJTGPMdkmX/rZ5hvT/pmWgNTLvF6rXOf84j4Ag0trv0AxeoAMCrTXvqIoGTthPQszX1F0CcbuSfAesjg/pXfU9UorTrabGvM290BlvoFYKBBFwdSgFF3XePZLK+WxQ/DwH7W3/4Miyh3oAiKDkeQed6iQ+unANCW+rJQWV3HPcsYK4iEWOKDgBgw8r35fzK7qKgvxtbaqDekGDTwxWlhHvTD/obhIJjujDmZxgwQi/J2zLnvvEiHvxbrH2dDRHu7D4HfTzFo293THqSnOevj3X1M8ruMqhEy8qDhv1vEOdtekMuRarFni7qzfnaEwK7vm1pN/FPeTxQ/BzM9H6ntAJzNZX3OM/xrInYPlSZSSoA5i0A9Rvssiu+/9zKEpnmgMT7xXg68dIgDjMOxIjtAugLvs9NswJO1P8aczfcxvX8o2N4V9a4xv+IV/b1J07efmwOq7rwWNcO+a/H+svuSeWLpJINlIycMKMzgVfQhoiqCFrG0j8YXHnZbvBNsjfYqka5Q38Uda2dEcd15P8Z8cqDWtOGc5agIcJP6AUMUGhDpM4FRbZ4xFSqYKsDDvi73VP2H+58HTiZ2EedQskN1MyAJCt8HUrrJwg7NYpFRytjZvBGEEhn7QbIzA1T05+b2c85kUHJiR4bwphgQnn0n6gT1dP7xPiW9g46/bU7nw2/YrJFCymBMvngWxNmDx7OR/z4XJz87W5LGsS7fLxyY1PcL8PFw37xXl/IQMIvPrn2x3i98htmOWYGLqVQlbbis2wVYwKgvTm5mHCQ7Y9D5nwADX0spABCshBUoyCCNP8sqHTy+9ndeydaZ7B53+MNRr9QvaqZbwPaszyOrIN978d041rHdPwMTmJax2npxz/74vemzCVzJcyGzT54BMBls9HUmHQNUyGe394muaRVP7Ade3wtAwcrvuMHuNF69bNCtoLyTqgrAkVtZkEPS8uWenAlSdVuHnPfR6blcXfpbt2pI/nFaZIw0eyA+J5OaP4YjSJo/F2NCJyPiKoPKHaKAjEgWbtR9BiRUbVO7MDfcjEmlQ+ltkyLDGUkUfoEvdHfyg7LPBcAJ5Fwm8V9lp94OzjFhGQkO5kLXcEaCKp8nON//so8DW8T+D1jJREZK9w1RbkvhAkqOnlPY0vu+v7r6f+8j/SQQQ/9cHhPVoKMNcMNBoDgoCvrrbqkupOm/XEaOufeXaB2I6tkg0geY4O8vt7vNqVojUq9XF+0j8yb1h3okOMqRqoEsWnpQtPF+G/TAvJmlMpwSxkIdFES1aGPMYze0v/1n3/DppwXH3/wlfvdHv8R1O9FV8OXc8f/+4ifQf/CKn/zdC37w8xfsf/luc8GBlf6Tj1b69Mtl9A1ZGUxzac3zyC8ITQFS0TPNkXN1q0OYUEZuLR12vV7c8LlPpUmlK/DlBt0q+tuLGQtk0pRiqTStT8yQACGc0aAuLii3ux80Ps/vI6UD92OOJFz2sY5Yeq0tQEEWViKY5AizfvNq65T71jlYRVO6DTDKMvoepF4yysAmQdTI7gbgyA2o3L7yfIn5NufamoOro28AA25UIRT3zEBFMq606HA2CXp0azPFjfKl4pEQ7vcynEMDDL2ZaLYGssFWFHL39zxuVlYrGBRjTQUQQLpx7Isw3YW0BxShE+2HsXqZOp5FZYAOubIAI3YhAne0yHeP/ZZOZrG29UsdjpinF1l6RfF9z2nPeawWKnFc3VKrtqNh+/YeZXOnyi0Cp7tXHB8qti+Wl29Aq0WFLfpMsV9bp+bcKSoFGBndFZsfujsI6w5VvXV3UpvRrHv1dItBgacDKX12zqZLCNy7AxMCe2N+aV4jHrmVrpZCsRH4svtHnzobqlAELzEEepQnsw5TVoQogKoMMMTTS6g1YHRyidQcrg/qEOTqCeLOdLYLdK+4/2DztCXY2Nztz0MwRXUuIci+chq8NLUtJl4Ko9/cdiqfj0FT3wpKjvhvXir0h7uNsQh0g4EJNy+tmZxqX6Ce816CZXK+Wl/Um9lsxaPox8eCchSvOAHrG29j/WLMTWk1QBqmiGyfjZF4vnhq07t9p5x9gHS+Jk2PAqNtoAMN4JjZcSyhmJ0WvTp4yrO0q52n/p7ct21NF2eEXBApFDxfKVZNwCuc9GQf6eNYTmVuu9lecgja2yU0jKJyhiLAunJXbt0hnEmtlu5pU8r1lPYXdd2FSUeKbXNAvBxDwDjmZDrfQheMZ1wVtL1Y8BsOuvUO3bYAxuQA5FhK7QJzxJ79JGIBkWAb+Br7klL4XIA39nCeLWdDLHJJYxdiiN7nFOWmDbf6fxno4Hg+E0Yskt6h27N57uf286t57GFjJLThs+PP35/D/kKpj6KPHDtxVmARBDWg+4Tx/ptEBc9zvJvbZOvYxD0zcNCAqGAD4CFavqaEPnNww2eSdF868+kcVDId/TnZIacNz2fwK3Efe+8I0nofC1Nn2ee8injZ0I5gc8Tv0udYKt6DZtqfzIlJ32Kew3HFfjrOpLEvpffpS1tWgc2pLHeLPlVVSBByx1wzgUibL0ybUc5Vamx1tZQs/vwZkJWu7wWgwNy2KY9WaIjIABEkTSpe3U6nEBFklI73UR3UYhFolFTPRr8AkBEVJg33GaoINxD8HtQwsM/p1PaHyB2vvDnlv/mH1PuvIUNdoVCIeJQqi8wkJ2G0Vx7fww+0bKwHXTiLhvlnsd5jQh+XzxLcWGlLwIi6sN9i4STwpogrl9oz5dk7uOFpn9cB8EzI5rJJ5E2TCyb3a34GQRCmwOT+8j4OavvqsOX+pRhSPjxiY8HYIAr/P/ooDkECQesYpvlgIYw+ABVXqc+pIHCjQosAlw3vPxZ8+Zni3/2dn+Pf+MHP8U/Vb3HXil+2D/ifX38P/+vLX8OnP/8hLp92K0N5N8PP8s93M3qOE5afmeaMSIiDBZDAjX8ROgqApPeH38X7ZMOhNXNel75m3rlpqrjS7iKGFCXV1rxEdpAzjKi/EAdNGYBePhRiNPI8azK/R773uiFTiyS3Y/2Toyh8FRpDjW1P+4aKA3R9GE7LupnHaDHg8t/8N40YpHZmKmTHiHatTpBmgbPEKOA+6Y7bMLwwX6o2v+rys2YiplprMHDyu2bBr7E3LO/JK8AETaw0Y36JiusqIO4lpEFyaDrTGLzPnx26PM/InDjMwTW2UY1hjMgjzyvh3peeRXuV4HDOf9YCvSyGHOweffNzkU6l75/TOaV2X/WfB0i7jCXbxLSGOHtPi9KGiK8W9IvTP/kOKcKeUzKgmujlCEo7U/RGhSEda1OLGUtsn3dkOM5kJjDv27WFpr0qHAXvlGKGnZ1R9qNe/Vyi4Rtjijgvu2tMlCSKK2D6B8+PFIHzflIxx9uEK3UR8ktzLc+rOP8wMUJCrHhZy5MgnkgItw5RaQMF2rXMudK8rSDGLINAudLEPMYYY1clIuhFMTEshCBPFZSTAp4dWqozLyzHWd8IGnZQYHFijHpfTv2Qrgm4kgwayVhrBIXcUQ9GBr/rIFyuaKfFmX1cj+Lf7/yB/yxHrTWNL53VSK8tA1ANRlF6N7U1bFFFibVEhg7X7Ng3xCKuMlhUrAQheEw/mOjmHqwBMAGyAdzSXvH9Ymxi7AtMrKHoLyxXtlef2DhhK/Jz2casGXBOZ+Vqu9Ompi9AB4rs0kQgjD7I5zfvl+3iJaJropipnyebvuDBkUzvOD0LGH5OT9oF67my2i/JDpko/Hx/0upLDSfX+mBQ/wE8+h35WlkIT9+HAQmZf5ZZE/w9He7iAu1M1Vi1FySd5w9tWtrztH2ZNSiznbH+P9qrE0PBUnafPJsgUu63Z6wEnh3P5mf+PdL4McjzzKZ4qJqBhz7K8+irF8cBnpr8j6CZsF7fC0CBBtn5oxc7YJyyzvxXO7VtI5ATYzPhILY2o8+SKNmMZPLvrTpLYMNEhwdAkZwwMqh63zsgNUoVBpoNQ0q1FCsndzutDB4QBxRg7bcIluWcU0gkO1iKDUFlLyYOGLYVo6mkYDlCF0wFOltkWQCDDXHxyOvRxuGRc7fFRCh1r4FmWz/3kfpBKhQ3csAO1useEZu4TheYdNRY3JGKCGTkk3mbNekJnNbGAljE5HUz6mmMj427AJZzmA7DQWPrbmAnA+o4rT+uF3uXJo8Ag6qxUwKlLkObw1UiOxXMq4koRrm49SrFhBM9L9EEPwvk/Q7cNdHivaRpKdbfTY1CTqoeWTa9e6mpJXL5zYv983YMAzkxZEQtBUAAE310g+f4ySu+/NaOP/+3Dvzr/9LP8R//9v+E39t/hTfvjw7g3//wf+CPf/YN/rMf/gf4e7/3M/zuf/uGt3+AEdlToAZjxI2k2zFQevbDZYe+XuLQL59uQ+dAJMquSu/WP+931+goKJ99Lrt4YL9sJiR1vVjZyKxLQEfyaNDLhva2DwfPDY9spE86FGcLAEK/eUMwKEibfLk4q+icjSEaHi/XBwP+oUTo1ctiNr9nThX4mqHQ1VIlRKb8VlQrg1fPDmgbhif3stOARgN9DJSJvYRlchOowog2gddgKzjrQ18vo13qBn/8342St2s4yOHQeJSL1DmoWqnVvTrtVYcRHo68jwNZXL3PEaMEtsU6Srm07ZsrVGBl5fgM/5vgxfnxzYxd36t43hjo5IDqXsMRBDABxOLRWoo6sjxh+Xwb83GvnmLmjqgbTrqViLrzbJOjWWk4jlECaWO9Rd9rnBPaxareFBiF26Pzx0cra1rvZE507J9OlKPYz1LZyH6xtXZ+dHqjCErrM0sCmPKmc0WB7WbCgQOwt8Eq92ZjGJ4jUN/JYnCRSTp13qdWUWekiExggo/xFCVVBUQj+xCAvdfZcb7tpv/AChN3i9iQkSHdyvBpFa/8AJwfNshllLyEwh1sich1uXXXlNDRL/5+XLf9UlFat5KazkQk4BNVMLwk9fa5ByhhqRVizo1qtGswMtQrj9ShU6E2Fu1qGhr13of+gK8T6ipRiLS9bii3hnI7be6rCYLKpaK8VUtXKILzRXC8GXtCOrB/6qh3rxqh7sh6/3Ke7782W2z71jy0drV1VE4JPRKtxm5heoZ1mo51Ree+OPARDBDgkM3e8T4+w/knaQ2hSqTNZGeBlSWMEVSs3Gof69z62QGersE+0ipo14pSDNAg0CZcQ297zNkiAj2T7lba302HyvfX3pPmEp+9OrDwkpIprSpnz7m9tn3pwzYtQ1g8wDuCnl2HQK3IHGnP5w6xkHzuiE240OLKX20N9VcNeq2QyxYaCvH72wEKHYduRbbR8hmXdQ6AOY2Z16qz1VMVH38HlurW64aoqkF7nrYk7eqs3/ZdFH2ODVkE+fcs7c4+5PiTIZtBpHxvt/nzk0JsMCFjcrmMwES+RCJ6LVsdDu6ziLIIQhCQaaxV0++cAT2BlH2kGlQPBwR0HAAAIABJREFUYK4OahY1pO6UjACwOBtYz3M8OzvE7J/eQFZAsDMe0iYSKHuej8726swTPAHCHjK2hwmiRlpu7vutQO8YLAQMGyoQRfcRY3zzGJcnfTS1MdnJfJcE1qgu8y6Ysd5v+VlsE+3RbYvfi1g/RtpC1kIoTIkvA1jO90zvMqVFfMf1vQAUAHwlMpX+TwMiRR6A+SCYvguMBdXT4uL/L8OhDKNmGwM8IavLpmJ0PR0bI53MpmPACBj4RmkHbnLM17YGksja5aQlp2gpF9e6YHj4EAn1++SIHTJkT82EXHsqOzc6DqrcR9EL2Rnn79wQkCq22W9l0NDy4UDDvjoIsNX5sFAFsqPBQ4PtmNI2gKzcO57Rp7kC2DzR5WfTZ9aDI79fioBO0aB8ILijByAosKIOHGXRy/ye+flkQcTfOgRUmAObxnSiNWemBduYHW0l5XtEPLUK9g8H/vkPf4bfrp/ww1LxJkOYb8cNL/Ir/O6Hv8Qf/vBHuH/8BpdvLqYCrqOPKY41oeuxNoFQps/9VAwNjUOPbS8YBlbqX0ttWdYJ50aOJvD3vUO6rZ0pWrAcPDmPfZ0vOZfUdAT8oK5PDvOcPsD9pTyZV2k9St6Tlvd9mBvu5GfW1UhvGCDb1P9kd4kATBtZ7vkUDMvX+nuyxMiaYXvJUvBDkiXKCFDoshdZ9Nvv3wUoigc2RZ4XHSALaZpr05hrCFAJJKJwbJPuo//14uXqikCa17lnqVTv40mIzUX8Rj+Q0QAIdES+0x4eQ+5nRbRNWYWgDMM9KeEDvrZi3nQw336U8s17eXovpxRT+0C6oBw+FY+OrY8zlffgvKJadDhKnCYy/paSWRYaUegcqQuxPO5f6fiJKjDRL4AUnfdUHz/LY01lozfrCvNC/fPN11m3CFeo+4vY38Xn/lfmeTDx/JkzW4f7g91LK2yupnFlex8uWc9LuGCyprFy0PfscW5En3uFCj5ek6Bh30tU9GA7QwAzABeOmdhNk3BmVEBa9xruS81vWBXSZXYa1Z4XNli6jTl9Dugk0WfpJrBozAvr085qBX6PqGAiQMo89r5LZ0DsH5gj4PqYOhM2f7TZf17GWum+TsppKRNk/+SxjfdnO5Hv43OkiulbJGaJOJMxgjLRiXb+majbbEdN49F16NR0+F6DWT9DRluj6oL3YwCgdCwWBx/ACFBFu57YNmyWDNbPxJZMZ5KlGgJlnVucl2iQVh4d3fiMny+08bItne8nyaaI8zA19gmrL1/DZ9AAhOP6LhbB136XLrJGor35TCupbc/uX+tX2QFCuynb+CsjgamPTMnIDmBf2qQdQX1I40UthElf4GuCgtxHpjKQyXn3PfDB4V/p/LRtFmZBgAkr4yH1YWg3PBvruN+SMkj9DNqfvh7jmVMjlmd/xxVCjOsY8/2+C2CY2k0bkuPSl3GjPffdzv1f6forvNc/yvW9ARRE1dT5eTVS/9wwpKhW745YWY6LoseijdQG5szw33TuAadoq0VNhWI7jorvFuWR+zk22+oq3CIW5WBuLg3Wly2iBhAvfeilaJSL2ydtf7ta3vP7MTaoFBXUIhZBlEHFUtWRI3a4sbaqwAPjkN83kJaeld6Zhxt0aQDyfnoUu0GqO61JBBHAvHGfNM4k0CrpGP2vCr1sOD/WACTq0YAjaQaoegpDMeR9ryifbyOPXcQOJqMpxLNzric4Ft1z36qrEXMvpqMVIo/O0ni/D0Os04AatY9Dx6C1KdrRr15G9N7sd3fvh5RLF1UGyDrJ84nCTUVGKg0wIk9JgDEfFpIcxtzGiB7cTkxiTynPGzd35l4vPnY9fmc5qIptb/jZ9Zf4SWn4Rt5Q08GxS0GVjh/uX/Dx7YZvf+cjgAt+/Ps3y188PUfreoHKMR0iRKhVvRReKcaUOJqxWq476mFrTI7T3ut6GX3g66Y7/bN8fgdz3uR2Ds2BWD8y0N7jhBwnyrfvj05zNkz4t0iwQKAa2hf6crWokUgwVfRqFR4CsArapZcKdbYDSHunOCfnKTCDSxz3zdYsLjsiH/A4jcVAxokbtyq299TPd9OwuB++ppNxEKk6yTjp3j6PfmZwZwIr6OyEc6JRag3NKrLgNVWE8Oir3O5RWheMyiLludah4RLq6McJuew2fmeLvRbd8sh1d5aTR/VW+mwYk2cPEJPRyvL5Bt039Lcd7cOO8y0ZFeFgVFO7vxSULyfK+wGmfMUjzg6gY/OKKf1SLercFIXR9PtpTpRrdsCjoCzTJgB0s37oanvq+TaYWfXLiXI0jyR2lM/3eD8tZRb9YoSF+zgdaTr7m+D4UNErnAbdIZ89an129Nct0e47ys0Nz6B6Jzo2zMGzaPhwVPom2D57hPtm766vxlYjJVyckt6rOc0CjAh0GEpWQlOrQJsgSgoCUT0CRdC2At32ADvq++l6Fb6mOqAvBhS1vUS1AHGHPEA/HVH/3F90vrYvKUrlKRKQHe1aRzrDUaCJjmt0/RKpC/F9d5D6XqB1G3uOszIIytRbD6o923W+2llXTu/Dq5hD2RDsAUb7bULBSkRqerbavTr3Rc9tjzKGZH/4HGtXW2vbl2bpMbsxHsrpz1Zg++z5+d36tV0KVNTW9NGtarWLhvbLFv0NBfbsBLzU8b7OtiLrxZgKiLEmK9DmKcEFG3OybMrd5kG/MCrfARc6DQF7BwF1N0ClXQx40yrA4UwE3xeieoTbMKV1E7hmKgCA9mI2jp7WxvOtBOBR360E5/b5NCAyAdZaBdh2yOG5+3lPy0Ev2hcQ1PcT5XCNCCAq/QTrU53dAeB8dTq7C49mplawY/ZqgrdcP6X4fCyzOG92NgpMFBsY58RewZQHVr0SX49hY6azQ3ox04XAsN8r7HZWUioCwPUscp8A9tlSYl7bGOt81sX+4m1g6XPOv5LYeM/EGVdR9wCLc3+U6Z75PFW2cwWSaLMwxSADxyvIx+ohKcgZaRMpZz/Srfd9ZnYQ2BJnCUxRbdqfOgKWOZ3Tv69QPDicTEkIe6GMz5TFnaSPkECQyU4UTToHbWgWsCpE2DT2jGBtFAwbi/4HNaR+k5PN9+zOHj7bqFYHDEYItRKoZQeYnca+7b4p5nnnulaoMqpX8Ltrs0S+G2DobbzbMm6s9vEAfvBSfbw3+9+rkjw8ObMRMM+haV6sNthyfW8ABVC0qLoznXO2MG9AcXExZUO4fCVHixejQLfDIx/e0fmevJLxL6pQz1OLjQiAtgpBtzrMqpaqQGeDF0ULXUQNwNhAuEgkvZ8IohoCDVxuVlUjjSCcrwkFTd+nc56uKEmZ+sYUxsugHecrXoMGkUcnS/pdnftYt+KOBkabVidONfoSGM61PdPGfaow0QhEMMpu+0zUsY/8dx+Dkg8F72OCTymCGK1u3eYD+13cwMYo8Ua0d0LrOWbPSnqx/0hHe4acP/S3d5ofWE9Ln/K++eIcyE50OqBiHjgYs32qeP/jD/jvf/Sv4Z+7/Cn+lcsf41/YCnap2KXiz/uJ//P+Y/zi/SO+3Hd3Zge4Iu8SUQQTqkttyIcGEIr0evFxn7QtUhRiW+ayGx4RUXOHZ4riOICjLxewusnUt75GJv2E5iGfhWkDIMQPWSI01KVgDq6UAnzxtCa211MjABg4QSMg90Oec0Tys1GSmRZ09Lc6wAaCfA5ihXgTjQ8aoL4PifQZZKCzS+Akypya4TNFy7if+r9Z5SFAQ6/hDsAicTTc/HcEGbgfcx8lTX9s6v4ckWE4kd7O9JIEbMSYsq99HklX6OZRcQKBqdSvOJ36IbLXdd6jAswDJIfzwpj18oCk3x/NBXF1RJ/5DmU4GPk+haVcSffnRzieHdGO2PezoSmS8rdZZYI6KfY5RoOtmkEyLjZGuODU/+IihYg0sYmy6/2iUiDMwy4euSZrytsTzKd0/hK4fFa9AsBIFwDMYamCUSbUnV4FsMEiwKeioHt6QBmiZGlPZCnH4gCUpPcIx0CeMc3U9ykZOgnd0kMqgPO1xFipIMpQtmr9KU2t/CGnQC3AdQuwICvkj2oC8H50QKUQsKnxnNAnEEAvGHNB4AGAr2g1pX0zmBh5rvr8Ypk/kDWgMNaNVy6pN4xB4jroCgg8LQAzS9DHTFM7pHWvtGO/L7XYVs6qH9uyFrhtqcYarkeP+QWxVBQKgbKSStgZC3t1EvXMz1F40AoBtEQaVh/306Qdw3uWM+8PmMZ31piA07t16FYAESCLYEeyF3U9l07TchHfQ+XsUC1TxTrk/cf7ThSDeRXzHr6O8XA+RUoTHen150tO+aT1xDOO4CTbtNoifh/t4gDNsrcBFlx6sndm5mm2a78KNPPM1PRO+TN8rqcUR/rpPQVMntl2me23sih45cDBejFokG32te3RV2XYhMs94swh0JC/m8b8IbCSn8d+iv8vz+rLuz+0I805zm0GdEPXZzwjmAD5+9+ZGlAQKRoyGBRrfwc7AHXYQ/EOGgzBh3vTFmPqOR31ADwAQ6x1eU76bPZ9on0JwFnBohWIyVf3c4bVNXKbn4Ela/91RV6kT7UX+PrRpgGQ/5Wu70h7+McCFETkDwD8GvYGp6r+myLyEwD/DYC/DuAPAPxHqvoX33kj1Sitg30DrnsgnnFlYzv/DGlg6sgdeVhEfNRxQE4/hPcNeL16LpbO95cR5Y9NzNFYdAxmQbXIeHEEWF82W0ip7URyLSc4be7M0QcGQEFnnW1J1OswuumI0Amjw7RuRG70ApgmtkUExPQCSLHn99YxzpNHZCiqE6xQNceLi0yAvglqW8CMjLBZiM2pxktuj4+rqNGMA8Bxyj6uqZ2lWFSC+ZaqpkXBQ/rLzfqFlTgAsGJCHEKeliBfbj4PLrZhVEWUjTvuvinlShnLRsLoyD2V5KTGBSPx+eCNfqFz64eMVxXQ182p2j6fpjKECHojUAZLopTBdshlKFVHxYtSUD/dce2KH/7+N/jDX/8O/uv938G//eM/wH/yo/8FP3KU+e8fP8Df+fXfwM9//WN8+XTBh8OMl+PjjnopqKRsAyi+seYyjwAiT1juJ/rbxfL+f/k+Kifw0PW+Mr2FPSK+4fRyvmUwgcbF9eLVHS7m4DEXEojP6GWg93o4w4EARa4hLGJaAADk8w1SFVo3m8cN6C8WVd4cUAhj8BhjznKhUU6RxjvLWnZFVLrYNzv8IpohMV/1ukNcF8Xa8w4CA6YJY4aXRX5Mu0K9QkbWsqCRpC/OWjgaoozp2byyhK/pVKUjrs3TPTyFQ26u8eFOMVwVX0SAs1mZOI4N+3yvYVDbGMp4Hh3cuoGaHzhO0wVRhbTExsoOe04ZAYCzAJvvo6VYDrEbkXJ0bKQKq0cpRYKFRH0A6jbYvrYYiiImOHg7wsimzgDTNaIs5tmtgi7XdGwSapo7RwP6PgAXWJcwN9/0G2ScA35PrvG4nBEAp5W3YnNoc+2R7b1FZQDdnMlAAcHXzbbjm51JoZqf93s/7/jE0OoAIoJvrISKkaY33kfOjpqqWExjGM6XK/TXAinqWQ06dBmaAi8b2qWg9ma6EdXHb0/AnZ+Hpipv5Svhji/oiPqZIw6WRQTbQWQ5uvUPQdNmrEm9F5RvNhcW9Hz6VIp3+9JsLrjD1l5M46BfttBH4DhkICsi+JweAmNSXKtRjn2paLEz9byO83m7wVMSFNIE5dCRhgnY2DqY0C+pdKliOIKloL3tQdeHAqV3c6C7ojYF7pjaZ7oJ5qgV9AFC+bsXhZ97buh6IMAEJ5unqVg0/Lhs0A1oyWmRZoYux59VOuon29P6XtFeK87X4kKWsPklvh4yYNlGdYr0FuCMlg6Uu4ZeVLk3UDiTbBxA0lxF6BQU9V/5+i0UCvZ5Tx0LA2wWp5fgKipCBPjz+9Dt2Tfby2GvIt3On+rnqhDQvQwmqDFk/TiLcWYEPs0vVkTRdPbWtNclG1Bdy4ZgjTTLr89r1+7rQS+vxEVW2ZyaZbaHOuvQ0uL8uXednZmzPeydoYXmkeGJ5Zv6NV8BQAhZd2X6f5whzj4kQ7Uo00cWUID2MjUYgOHMB5LY/czbnqbemt1fp7ZNTj9tuikVdHHqH/ygEnucnMOmjzx5TSmj8X2z31IV5HE5IGDtWpzHnP4gBVOUPICcFmf8qMzgf9PPoZ5GcTFGAnQEEB7SuvsIFvBe4dO43enPV/5ORx+qJrYL21rFKj8kO5n2Q2ZX6AlAWwANAszvRZYHn+vsh9HGbTBoUypDFs6cQAzaSPk9F6d/TgehD2V7ri4BF/tdmb4/QCgCNooMPkxp6qmdv+n6J8FQ+PdU9U/T//82gP9RVf9zEfnb/v//9DfexQ3MdfEoywUSWc8LTcTQ36ghvxhw+UrRPAXMEAeAl4tNkKQkrpdtMoRHBGpsDpM6fTM6PVjajW1wB1RrNWXw3p0OS+oMnBIOyGcz7KSYgWXUWUSd+Hh3VXM2vMQlBRwBzEgYc237aAv7rby7Q0dHKIubAY4OcwNIGx+V3n3zM+PRHbNuhnURwfal2uF8tLHBccy4mAh0ZCp0oseZoIgt+lw2zSiVdh/tauvJwZ6IpPZuKfoZtaUD4zRqvJ9j8wDCcQsKNyMamvrQgQ1NKnH6kmjqOvpMvtzBMlCyb/6OvslSKPO0dzHnJqGqHvG2XPN0QHgfmoGxbK4E5Zb5L0cb78+5ImYcfPMPG7YvBf/X7ffwd3/01/Hf/cv/Kn779RP+xY+/wP/+y38G/88vfgvHL15x+YuCD3/Ucf3Lhu3bA+XeUD4frn7vke860oCyYSKniS3KZuX5hjjZPKZCAcuzDgpjFpKh4cADNg6vDjl0pGHc7kMohwYh1wT7eEubO40LNiYLewHTvlN8zyEbYur/mBCaAJ7UZv4u5kn6XQIxpavR8HraZ4BR7pZXZixEX3t/hQhUj/Sl/naF7gXl/T4ADPZRMkjsnR1kpLCtz9e8DxhQpmOfAUbqERlmAey44UmHOxuuS5UZfbkYSLv2GS8RA5HYz2SHOPChly3eIzvsOfqu6V5RoYHOtKrty4w89zxGthcYbbkMphLPLAcANIyHMZeEzpSfO+X9gF429L3O+c0E5rzfpCdqJ5/xBGiwuWLe4ub07VVY0drkThF98aNFqtvjXjv6PvLxmSoQ50lqN/0v3od92w0cDmO++L4OoNdieg+euy/8+ebpfd4xIxXC+tdAhzrGS7xPmjnp5bC5Ye9jjmfObbbzO6UBsl9VLY0D8NKfdtZsn5s5zCcF+txZ3y3yHjnr/v50vKfShLyKwPhyBXJJbAQXEuyb3Vc3BCMPIOAEd2ztZ+fVdA6kF3OeeQ4ujD/x70/rIInqMqUjACuerzrWDqtuaZSJ9DhM2s5YAau8n9Y/nmLTdxO7JOPMAB5ASJxLS1wL0C8DsEEf802aCTJWX45Mzxpf9rYKTPOD8yIBTtCO7R3RDuo+jHKL6V6K6f5MNSpOo+9bcTCJc1Oiz6b9nzRp71twblPbiKxKt+nCJut9jImIg8lGqxatwUAosPcpnsLTN4Gcfub7Xsa0UcvTyOtx7MuT0CHgqWuY2TUdSLvo2OdCeFuHjkayPx9YBznwls+hWoDLjv52AatxbL9ykN5tHDlOnxMpJSAzIwiYZ+ZZPktWNmreAzYrkxfrJAlHxzhEKpGfv5mRzLkSqYPJflv/n9uV7Mzpd/ks7JjtfPad98mkDZDHJgKyJUoEPtiKteBBDDC3w26YftbNUU/tiwh9gQkfru/AqzVQqPipkGEuSxkNTOspwBdvR3/S7ihN6eAJ+uycs38kzwEHE2g79MTAze+4XrmfJ80GZ4CW8rysZNxWH4EdYPQH36VitH8FXaQAxZjhj9UQE+iBARJMX0/AAUGOvwqIkK//P1Ie/kMAf9P//V8B+Dv4TYCCwg4wRr91TDBGwgTNUg5oDDPyVgVyd+N3fRtNi4sTgbktwJQfI0hr/jJq5kI977J3O/xWZIqI5fvNtQo2R/58glY3ntQGjMYWa5CzbvbUXtDgMkcNwLw5e2Qvot6ZxeD3kMbv9AekNXLvzxbiUNlhkPUdV7CG6yJqJvdgZYgDFgEmZEcZAIpHWJk7v5VggpjR3WORS2vQunn+q7e9KQTqNcAx2D08HDeB3NPGz9852t4vhkLX+2lqyzTOE1MkDOkMpgCxUeb0G90d1X4/p7khx2lRBgIYzMN3g8wMlcMBEHWDlH00DiLdNBlJng7UjscNglR+GcYXVAdoRDCH+d294/WP3vHyJwU/+HnB8bHiT//0Z/ijH3f8/l/7KY6/fMH1FxUf/0Kwf6t4++MD26/vUTlB3m+Wq78ZGKSoxuRw5y6e37oZAjcHC3P02vtUVSF3j7a3EUGPiiXXYfgLAQCuBb7f/bA+v98h+z6zHzLIRoaAM0MsIl8H8jvR9AzgY4UY8bEJQOj9SS3t9f/5+fx9Nh7yIcm5E9VcNM3rxcnmd6jozLUqKQKS1x5zblllgmBL7ifuhXw+94/YU/TJZ/vSzgIRtS22A9SoARCMFe3JaJVEP68WgSwFkL6NvSD3aS2Rn21gkgPETrXtl3SGcD9gdPiJgGsAezTWvL1ZUwLwuecOJ0hj51TJY8g+oDgdbRoCe2rzieeYFBnMCT7Lfybaxx6a9mlFGoM2xteACXGWRZoPGSQI483Hh2DK6aX6PDprH7EzL96PDiUBATqFCfAgdb3vrmfR+Ew6JPN9qGFgv4RR46vdR1WjRGc5NCobdO+f8l69OkYfwFFzlkIGUumI5TH3uakY7DYCEtIsLSXSAWA6F7xsjgF9F7SLQJqlhRQC+Nl5hTWv7yXaD6HXDXSl4+wgQuXfQI+UFusbEzVMYyj2fAAop323HGos5SpRijK+7+sgcmPZZ2p9ypSLqPTkoELpaqkzG+y9L2OOWH91cw7SOpD7AewV/QcVvXp1Df66DaAiX5kB03dz+IJhQKepU+8gzWPaAB2RugASm9wGM9sIkJvZD0pgo5YBeq3tYT+knw/QVSHafRkVlFsDUNEILHXf78T3Du9HshoKI+2Hgx8bK8Ykm4w23xqh9rQw3T34wXlWnWWzF6tAs5FB5IwLppb4krH+k6CDx76SbcVIkbMSvbItbcG4V4hw0x4kAyA77D3ZT+mMjzOuFOh1s0pNV7PX+m4ATgHsvG8daCdEnT3HfXW1ZbkvVYRO0AAJCASks5n7L1NnObGyPVVkOPXA49jke62OdKzbJ47lExq//bwPBmGcs2XYc/n7zxzW7AATTNg8OLE6/MV0lzQ7qmtFgaQvFM8lKy1/LjOStWOqaMDfF4Ut1NTuIraeSd1nbnNJ/Sk+kRJ4MTFckv/48Eztg4HBz7Y29BG8X8OGEgX6E826pY8D4C8FEAcg+N61BuMh0jfWsSupD3mJjD7M4GQDHpgj/ExPG+LKhHZwcmI3FAGOASDMr6Xju+v9vnL94wIKCuB/EAsj/Beq+l8C+Kmq/kP//R8B+OmzL4rI3wLwtwDgZftBHMRydosyZgG62JA00CPmoJlj7nSozcXCWppsXnIOxzk26wZDyJpFT8MJu16i7JWh+mNTJACQXiBNEgU2Or4ah1CnHgQj78cJ6QVRu3cbglr95TIoOROoUtKCdyegFGAX6A+/GW2BG0jOGoiKExzhHDEkwJKinlHPne1nWcZLKusIYIqUxbv2yF9X9fh9PpgISAABJPQffYjoj9zaYCw8ccBEYUJlCYTA5qKa3iZRHQJb+ZkU1UyR0DCisxO2vicPD6d/xkXHnQ5VMtYf2l5T+TvSgwGUz8eIBgC+WbqSOUvuZMGkWq19BVMKCj9D55AU+8gBBIZxwndn+dDWh7bBXlHfK37rfwPOa8Hx4YMbrsD1lye2Tw37L2/xHkLR0fthglXXLYCViarYAX3Z0d+uYx0zhYOIPoEFpg/cUvrA63X0eQeknyPf8X7YumcU4IuV7DMwYaQGRQSrjSgbLrs5dUyP4GFFAIRX78DdI+DdSyVuQKi9M+8OyTjmu3NtEZjIwE4G6vLa5n5CICBt5OLsrQBTvJyRVs/5dKEm1DqeTdA1RzRq8feo4dyy3UJjLZg0xr6ZQIPVsODcupQh+iUYOi9ArD3+PvrJ90EAVtb08CgqUzL83ZGMbTM4PTJ37+gvl7Fvxbi5UJvI/8fcuyTJkuxYYgeqZu4RNzNf9WM1P8VNcMYRZxThEjjtQe+EI66hF8ABJy3kqEW4BG6AIwo5aCGruouU9zLvjXB3UwUHwAGg5n4zX9cTiqSJZEbccHMz/UKBA+AAc2YEAInnAGQIdgV2Omwf1jQYBwXCaO6uNJe8ynN5uDBmGwIkJwGW3IsXSd1b1VoateVSESN1BXJsyQvh/YsoOsBBRcSYi4qXxytgVIxRtldFrMxlK4YiEB7ciPiQFvJ49IZxbWm0kqzYgRvutfllx9n1EgbWfQTZ3biaZ/7jb7fwEMsE2mFGZXuYUduGGgEhyxMT6MKwEH2PmAnSSh+zSAeqstyN84jQAEKn4Bohmea4Ju9FcCJMhRTPWL+5nN9S/sX5Ncybd7x1N9xtHY6LRRa0+8y29tXYT0UaT2NpXApAGwa6NDdQ0WBEplOBdVmtJUq7Gb39NkEve84TrM+jGIONxJYSbWE5bXHFWAHMd0vpiZQAEkEqYq0wP/uJ20Rh+9s97dglAKoAdkaZS5c53BtB6Fl1c65Jf0eCix7NwjFxUMVAcliE6Jw5D3x2F0vVYWUR2HrIVAfBeDMyz/Emnl7BcQL6zThBuposUVgIuM4twQSu4eije4P9DJFblgKXu0U2NBGPsp6hAwZA+HF43/17lz10EKaf6vvFSRsdtOFcjRL+7Wd5pH9yOTmYsMjiIu9JFBl/2zcjzvW01blbxNy8ZATMvFhVk9vfvqHfL9j/UdLxxDOO59L5jDob3ch9FedWcX4Y0evIdGaWtq7ns8v1Jc1gaugCS8WIApwsZ72W9tX21u8g3xHjRSLGOq7dHcTLAAAgAElEQVTVccl0SD9T+I4lIrACE5WfYdE3is57NqRDt/Nx0AF9laJQdQ7ZsHjVdQI6bP8TXKnj0nsKBT7rfMWc+5lHoCHSTzT/dvbos3+MVvf9JmWsBTXF2PWYcxRKO6V0FGAg3sd/lrKPwdcQUa7TsZOW/+bzxkigoJU5J6hQuRh8PLTO5fkazk+iDdKRMlgkUnFpx0Xf2XYng/y1668FFP4rVf23IvKfAPhfROR/qx+qqsrCbrV89q8A/CsA+Ju3/0xROmCe8x61eddNVjbQoU/h4MvC9L/p1oMdNp4xAExPG9j6UqyohilaziNyE/KZ9CjHJjgpy2EoAPBazUGI5sKYSgWJe3QiBW7x+MhJGFWG7wg5LigkREzwVAFGAVCv2ubwYOpitNbwWxuPYggvm4nK3YTS0KuIVpkTFQlyPwAQjPR+8oBakF0zsshoL96O5VoMCv9Jw6gYMiQqehKUBUzJhlHAzFXo1806Miz36XtcJwGG+cfcoDR8eTCKRPpKgAUck3NaRW2HswZHDt1UYJjBwaiYFDozQ8VvAKuQ9MfAu6dZaBfMa8d4a9j/9DBW9c8j10UNxx8zU27ElGGyuVPpmF92RPhzIfFjzrUwn5PryFMcguvidLhZaksZa8DQ9hCKLcZjkQeqgDgYWcvPVWXkdOgvufpsSzGETdhLeD+iYoJHo4hHQtS1ER7bs5yqMoW5huoK3VLr2OewvzAUvZ9moDpQuvU4Y/Ndp7QEginTO0f5UsGWkzFW5UkQo8L/XqPtuR/oKetGBhhKw4mlewFWW9m/HBMq1gDgBjPZ5YOlPfK813ZoE7RI6TidHXw2+/edvi4EvUCC0Of9CSCi6DxqQw4XcMPWkQyNVOLsv+Y4OkdFBROiXK6TIQrcACGwevIiLcZp/LEq3bo+3+99StlpMDBtmvFpBWsk26woQK0CXpbvfDFEPvK9xf49N8Hji2Du/vkE2t34AjYA3c/R9phrmohaRJ7SM6oaAEl0d7N9WtMW7QOsc82x4ZxrITdkZAX3kiIMREtx4B4pSjKfN1K3VJeTNMrtnMby3OgXRRc41zjJJ/6nT0Z9rVqw9u1s9NiesH3lfy/pAhad42MyYaSNyJB+Y+O3+U/dpESeAAjeCEYKqZpCyz5T56IBqxYdYSVn4Xukod3W9WScB8V4aSgy6zSnp3FgukUNZ9cnJal8f6if46VvPkZcVlmmGJG6chBQ6EA7LIrEKh7MTOWApVJKzXXmuX++xAwikXUeZQzo6GgyMcnHUu2bByMHyjydxofrW/i3009G9cRYU37Mss6q/jVOzxgzge7NzuL5vkX1DVbgiKgt/9u82OebpyMvzj225RRhsnihq0FdroVgu0TEVf6j8xnB35d0G3keSxsLXf/9yvCs74i2n8CE+t2a539qz6Lz13bF/mj4rrF5vn6zYkI9p4Yt8Pqdauwu+kAxnBewofT1FYniq3ZxLF2GxvUShJjL7+p7hu1RGvuFwPx5nk7gBNvAz84kljXy4Lw++azo56lf9Xf6LaXBmSLzGXU8z+DU0/qZuQZEENUsSlv/muuvAhRU9d/6z38QkX8N4L8E8Pci8neq+n+JyN8B+Ie/6GHT885VLfTJw58YSj6vuymRgeqUBefGVpSW5FW9s00ShS5hOfp42Dq8eJm1Lnj8+AbdBP3bYazWXYBD4IxBAACZmyFMRJtoHDpwoZcXAgGIzW4G9DQv2bEaPYy60PcLxvtuJeKK8hts6cJDfnr0g0IvX5x4x5G7F5tSrxcsKQYcw43RBmpIdTfDX46J/sstBZpHj9QqDYsxfBTkj90m38O7eavbt0eGzQIRDh05vqoeVTIzwqNs8PbL3RRalsfcNsj9MEOFXAIkfSuGojgLPdFpEmPOtw3yGEaatjUrw+PfM4b7F4dLc4PxPnMcndRO+wXzbYsc0ualngBgfrl4P6crIcC87pYKMUokzJxo3z5zP7hyFyF4rfx0MCfG6PawCBw3KOcXi94hsBVePCD2Xb/vYVjo3rGRpO6YSfZIY//9avPzeXePspdbHSWV5svVUyyKrPf3V+KzarwbIaYb/X5wjj9+sbn55WbvvKutpbdLehOulxwL51Kg5yAicaZ5tWt5WcGxHsDVyO7dvOGeThH7c04smloc0hp7ezoQFGUEr5uVebzdM5rgHBVTgCiG4C1lluapisUYtobI3cIKEN8+PTJnz3KKzpsiN98bjHBwDhAVMY6LwsMhj8O9dQ5K7Lnno8rDw6M8ygHbPq0kqDKaiOvWvzevHbjByMs+H1HVwdbD6YAr6Vpye0CboH+lgW0gS7uPAM0ifLnsIY5fV0WnDFDNSAKPZNMSzkvFm6CLAu6V7O6Jn6d0IqQR2lpWutjtwDejJ+WMjGlj/RBgbhnRMZGlcJkOdi2yiPne0w0Qykoq9Kpon6Pcn56qKo/nxfKpjx9dLnj+eAADqkmySk4Qzfzw/jnQ7hPj6iUTKZfJw1MqC7THTHJIQeTgHz8Y2eJ48zOguaBwY6x5ZY52AP1zot+tnOiinBfZvmwlJ5Azrg8HVreG471HukNE5Hre+9w7pBkINb7sGO9bRpXdfV1BDURpivbV+ho8AwS1xIwfVoIIEHICbSimwMPLTYzMTSC7VS1oY+J49MVg1S7AhWNq3+kP6+P7v69KsoslVbSHt8mNRCOApCx3z2s4NAjs2rzWNW2RQS8U+wm0x4j0FxsHDZBkRKnlifD6V3CjC8Z7Sw+vgx/wuSDgwnmaDk4dP2xGeLkL+oetCaYYsC8EFQxgN8+4GaawVIMALRgpkXte4DLV+YECCKdDiKSmXuqSaUMkkYwSot4vA+YsfWN2wfY50e+2D2YXzD9cLOrm6yMNfj+bgnNl6wZ0bLCfe1Hbub092ooyrX86+EWCxMnIQk3CWt9DBmo2yGbPs/V8AlsLLw/2fSFZDR6YG6OmGvDA4piK6mquG8y3DeN9x7x2S4eBRfgEMOaEmt3TVwc5NUiGWvl4OJcf90yJrgZcEtQkWTX1hmVNu25A/cAjMFhuPIiVa1RfSdkAECk0S1QCL0ZDeMSlkYjqauBXfic6RAh09G78QrwIcnlbo7oc5SF1wYnUURidrBniHr/znnoGB3DPSA5/fvWKn1M5elvBhGjrAK5Xk8XGWoyFc4ARB3Xd8Z4x1vHkvQzdX8Ae35iq5liLFPee3+O4b1vq06Wt+vBS6FU3jJSCcvF58d0TSDDLPT53sSKYciJmM8i2FeBhPj93NmCy/Hhf330GE3z86nqJyAWCp6dzU+p99QqQ87eBqH8yoCAiPwBoqvqz//7fAPjvAPzPAP4FgP/ef/5Pf+ED82cIhNyUUjeJ+CahckvPXoOVoynP0n5abAAiLIYLvlv93SDsq7cTsS0HMIBEkuNvZULrRiJBDe+tit0wlHkhwhGBnaBlY9UxonLuxoroQJSXPBu95z7zOudBgSBF/ruWEMq65cX4q++YpX9a8o/ZZkuKzucCCCb1XhBiKvCc86nWp7OQBNKoawVc4Zqp4wUU49mN6aqIepvC60kFo8zHE2Jf19OZUbXwWYSXuo6p3yNB4Z3jGKGYrphEiD4PitNarvXcz9dSe5hKw3kf5M0gGaC9owfgFaAp56WGsvHdhfdi2XMEL2bJUz2Noe4N8qAxUdcMjONCdPVI8/IyiEFwdPbknO+vB9H0MLKaG8mvEdQ4f/e8Hhk2x+dQDtVInplr++w1tsNbnw/dX9u7dXwilWNaJFcoBPq8TouxmethLvLMuF5a5g56e0h2au3A6mngO04y7dyPpWKBVqMVKcfPz6w/60duEJA53cB6RZS9nEX5B+Lv2hGG1MsUjrNhWscMSGO/yuUqC6ljuixKLhtfw7VvldPm5BWId3qIMZqGYz2uBgSgVdYbzv9NH+QJLORW9TkuFtkfOea63s5z7s8VVuqZLWVlaVaUxQxjURePt7qRWcP77QHwVAeNdAdGAawRNrB0EF8L8U60jNIQCWeOjBnAgbXT9maQBML4LBQN82KAy7i0GJ+zSLAxRwnfBxjSX5cz175UDonopxk0zUPBDXiZ6Ew1kdx7bQDTkAh797R3d69mQaMs5Ko8j2sStgFonoKjCCBARWKZKBSYEu2OuQdM3+BaIQdUyBwsaTIkHs4qUGL2Q9xnjRX4OhFTC+bmh+5hP+cmwGZpSwRi2kMwh6BP6ogIhwQBGwI9eg7J1hyLxUPta0KOllhkASXj6z2fn8/zX1tZ3wRkuI4GzC/lW1O7eCaVRJRoRqlSTpGp31/usjQcaJRbJfWK+zjJU7kuiryuC5WcXd8bmwJAxFVlGOVs1WXP9/peo3dd92Z7rAE1MoelPG39WFuaA1VnroGqXy1tr7Kbcnqu5HrkVIoyzkvaxFzLQqOlXhA6qL4ej1fXb312HudXY9hO81P6Ec/gfy94N3g/DcYMay/VHuK5nADaORJgaRjr9e/87qt+VtAh+mxAQdXrjCTz9Pzzc+Lm3zZuF/CgtpMXIzBLP1+OyW89/5VdcH4X/9bkue0ERX7r+h4ZY3letL/Ov/c9bNhqIxWw4DcJGD2q9dfu+2siFP5TAP/aF8QG4H9Q1X8jIv8rgP9RRP4lgP8TwH/7m08SSdSVxt3jMA/Z9bIYwPq2Z4js4bnchV0cQgFxQnJ56LjnWZvni+w79Msbxk9vmO+bsfYeE7gXJc4P9lBOBZjYiiFsHpg1b0ggd6+l7uSJ+n4p/fNSgiO9J+BPVQvLfQy0zyMqJeg1q2AweqDdYArCly1CrI04rwgdDy9bFOkyJvZAXRRoUX3e05EnlqkikV828Yz0iVibKex46KkaoV1vWPKWvn0GEgtVm9/ZgpBOe44TkXgaCYGIewRFjCWw8AaEUX5n+bv3VXi74Yshuaa8OXIrJD0nFDq8eJd9IUKqJGHingtjn1fvB4DjMPZ9hrMBwPWC6UqxMOqiuYFKBN0JQCM9YuvB9GupDvQiH5B//LNxV/z4lkRvl90NyQ6NsOcOfd/Dy9IeE3oAzXlK5g9v1t9vt0Dn4/3vF/9ugzwm2s/fII8epG+h6Lv3XbeG46cr2n2g/1KFMdIrpla6DYxSIZv/1asJ1L7T898EeLvmMqxehAZfB1tEOAQHC5UMpgrMmeUZ7w/g6spLITvUfYO+X/zvSNDmcZhien+Eh9/ek+szCKZEIrIj8iS5L5q7JC+7yTVyKewb2rdPYPg6roZvLRl6DEitS1zLVzIqzPPLjQC3W7um88vsm+3hiaUklVR55T8jB9X7RBmiux3cKkauJT/fQikOoNjz9xbeHO5Jtv26h2dBJoB5pBJ0SjmTm5dfdQVW6Fmoe8yrgVSSx1gzlIWMnLibUYpjeNRHD4VSa/QKwR6OE6MVaj6/CEDeERLOqkLuDi5f9oyAcDAtIkPooXNAJVJFCIJWpcajHLA1BJFb4bnAhFXjGTNL9B4T+r5bBIMbTcFT4kp/eJSnon9aFIsWg3aJWBgEVQSPH9OrS4NSJrB9TIyLfa8/AD2A7dPy0YM/wRW0WgbR5glotxFjGGulu3fxPn2cXA5TrHCYxLzddpkGOfc9GPujv4KMKnBjPwCFY03BYMi+/QMIIksA48288v2TXmOLCugfjxI9Zh7gee1p/9+BTaeBDx55KApsXxnBaeSH481I7OYG9IdADmD7NsJbHt74Ycpwux3A9KghwbNxipRp7TZD3+KaAXx/+1iMNxJaC0i+qB12lpVxqxf5DdpDMd7MyFRP52kNmB24/9gw3oDHT4LtF+D654k27L39c5jOdtiarNwKwQXwtsU8iIiB1YCd7cN0B7l5BRyPjOsXRuw1qzrgFWSCP0JdJqi/q0msz7kJHj/aOt0/mKpjXBkRBcKx4+9NoG+7nZ33A/Lt4bLYonYpQyBipIVvm6Uj3o8oWx2lmp0fKUALETTd1hSEkREs6AJcXFZpAWVL1KP25BHhM5JY1XUNRlBRRyR4GrqhOe7m1nC8dRxfGvpdcx8pIM7ZMbvxZpiMsnb3r3cwUpKRlOqVGkLHoxwfGVHM1E62KXiHKLOdw6k6vxbgZRowFmurRpLw3iarUf6qmkJNWeA91cir595U82IzvWG39cezLdoVIEjV+f05JSVcqR/HZ6nHBCA0pjlcRFCjDKLimqoZ/TXsvjpmVBGpD8cJYJCGpboDkFG0wtRgQFlKV11gTTpPzt4MZNrwmKZTLyRAM8diKlDLKzaxVEH20/8uHIPjCJ0lxqGmNrA/9VrsqurYbKbzUj+Nig3fSVmNNjcwJYF8CzZGPiZlPCL6oBXSxdpGVoeo72ye4jHVbICjRD8AwONR2tPyO69bDOCvABRU9X8H8F+8+Ps/Aviv/wkP9I618JYBeFaSKhrU2hpaX43liuBSya7GM79HY1ZhgnwivalOpDfeNhNqftiKAqzcYMaAQJyIKTzwZ+SS6ND5s+laWiUsA8IzLdz0FaxQDeEmLry1HDZ+U44D318V+LpB6yITsY3pqGyE+50FI7tWFZAXRsDy7zC+NVFVVh2oaGAVihSmBDrokSrteSI4ZJ+pjVXklu2lojCL0R88Dt6XCdgNks+pBxQQAntZhxybMe3Af4z0nLIPYgc9o0tkTkSO8vIQiWepA2ZLP4I0y4xWZdge61vHepnZBo7bXEtgMpdU3WCrLTEeEiSQM/39blxxPlIpZk1vf4CTWAWRE5DgWBPMtz3WmjzysIez1gPwA9Xkg5WmGh72b8awulFWq7c8rUMRByXW/bYoD/X++t9pTpb1XKNozvOnmmkW58P3xX6UrYa0FhS9roeqgBAEqcAdkEDKaR5NFp36wneJKwz1ome+8tXUMQOy5CwPnHJfRiRMROUD/x73QMhjGt4i2cdQEPlvdubF/MRzyzgDAUScxxGgAfhCZo25pmCUkNEaOhjPq4BqXSN1XU2JdAoykDP6YWmPr1NWCcI9eWZoAKi7asWNAG0O8O7IdVnaQLlJo06hedYxd1jVFc/iKT2PTTkzVW1+VeGGuyEbNMbDIw2E59je7XLbjfR2qEe32Pw38iXcHVh4EOjVMDi0tkMQ5wSNKANDJAHKqQHknvuB0h45NFKy44z1UpwanBCV28jX24m0q/YP8K4NeyZD9eXws6dUGiE4oU0MhHalsAHBQ7BUdxMBI37a4e1pEu9qdze4GZ3HNUGjcrOykbpZeUcaHUaCmWdGe6QBwsgGKNJIBcIbr6XPgAFL6suJRtnsxtlAbz28f+0oKWPLIYTYJ+rphlHFgu8uMpUE8TXCpgJPUa5aR6QX4DhCOSc4KEB6tpmWU7eEAHMrINc00IepDfw3w/hjjIpcDy+5KqJ86/vVZMB2Mjy8b9UREufqaW3bQGtWqEHO18Kh488Jffm854t3PCLDGszJxjmYqY/VtlbdNcCpY3oZ0/KOLlA/Hxaerrr2Cphvqahl31QgiTK0ree8MEKx7oNXZ/YLY++JeLmO8zlalH0uuqvp8VjbRD00InpKGt45Gs7P+eW847xwnH+z7CNvJzigIAfBQjp4Slmgw0JCd3DQIM7dAjJUUkGuyVcRAm54q5bzv7XTs9R+J6Bc9Yrz2L+yE3nViFK29/wZo1N1IvkQ1M/ohqd0hldD/Soy4XvXYi/ZOHw3suE711N1humVHKb36yVh5rnSgwNNPA+5Nsr9S3t/5fr/o2zkP+0aM0rt6dVzixkaJXl4V8UVFTCYmrmxXBhbg3odXeYTL7nggA3qMPbtfodveldM7gfmlwuO/+iKDTA0Pw4jwcIi756X8CQpwpMQJDSeIw96g3pb8nCXkPTWUqE9M/UXQjO5H4ZYigAbc5sllMElBK3BDEg+h97d3iOPEh6mLfcD0JFnFj/jIVTCHJdUkGokIQ/5UMzdgynHsNxCkr8BYbQuoFBvUaUjjGJ1w7QYHSGQKqBz8ACtRoFrL+R7mNO8Fa5cMX8fnXwL6RUMZNw/D2K7QmQZczg935c5feWAEX/OfN88d0ptXigcaLhNSQJCGjAEmmaGqYpzWujb5oRz9wRiKIiPw57NUqMi5r3Wo6wr474QVqa4P6BvVytBdb0A24B8/Yj1qaygshiVnuevHinkqUQ2NghWcYa3tseEboLjp4t5mm4H5BfjZgiv/O0edampPLRP8yYFp8Cbf1YJdWIvnZSxyx7jyP+CHOtshLshHeSIwPO97tUSElQWhSYiJ+4PH4sNrBoRHgIRQ+6PAbnsETEQsugMfKjaPKqG/LKP5Kndy+UAUHiuTxcrxEBLbulM/oxgvQ7Zl3tc7kfmHXu0UBh8BKGOmpuMNJwbgj08ShyKGEt9iaqKMqL0mNeDdhwJSJNfw0GBUMYI/lXOCdWF4T3Gmt4EenViTAdwOGjC1Bcp65xGmsz07gFuCBn4GzJyukylV68oj9q8PKmHlLdvM6JesDXMfQ9FtN0OL+tmhsgUW2Pt85HrpTXLdS7vEBqvnpZXz9gmw4FKk8Hp0Ud6mWlcQNLLfDuMtf2SIcI0nJgPPbunFzigol3Qb/beDQCa5cvLNO8zn11LXAIIfhYSd0apShr5TYC92TnwOO0Fn28NY9zGoPlZpd3KPLKaQLv72htWmUl6AvoJ5p+226ER3j/da88yiNavaUz9s/DmqAI3AG2gz2nz6WRrWgx33c2ZYmST8DB9Bz9mg0wHFI7p+fkjow5cV7EIwAmdDeO943jLcW+HYvuYaD8bz1NEH00A19JJTeBK/cyUKTb/4pFLQ5fKEtQFohJISUWRY6K5tcy0B7XhAO4AvloqjDZADlh1CoZUV2DOARIDr86goM+7E7padZDDwITHI8/MMQzc3XfjMeF6oT5a1nYAV8dEVwvR7/fpVR5s/ixCYaDdfY+Uy4hlFXI7fC134H1HEMzS6w84t0qWf7YSkiUqjboc5wcCnTS60wiMtRvyeIbzwxrlk9K9VO8wDg6lzQdj429OBC3kBij62xOY4NFS7dtA+2FHu7DN8FLgL4wnVdsnw4i57U8dkAk5OAal3eHsSdnM55hM11UnqAY69XK2/0VbanrnmqqMPBOAtA/YB+oLNRydRjTvO8YJ2PKzuPesyERPMvP/z887Ax6aaQ7ST+d+VEkoyNvZsKTHXZqlmTkKaDb/LOCDgwyRMknEHOtY0Vgv92rvK0BA4KRGFPI6228EgAgWAasRXr30/M75szoWfC+sqoFgcycr7YmxOnjP4/nqikiW+j5df6/RC9HXonuc0lgIfOrp70slBxEDDMQ2rYiv/crFwWk/l/Z8tU5/4/r9AArnSwRo5bD+HOkl6y0Ek04XiEAonyHkichXA/ieQjIMVpEkKiJkzs08vKQTTNkNA1ntoGPY5oKO+8X8Lhqg0TXms3cxgUhFTunRyMMgntebKVLVM8PFdHUFubbj8EW/F2HqRkAoMDRWiI6+Il9y5Ra9Q1rJ41vQtezXgvgWD14IVieP5LtlqB34FNBFICoPgseRB4YrIYvx5N75uKoRACzoqO4WatzuZiSxrBvXG8lyaopIjAtBCAJG7OvmyvFElpWqhw6Nlt6Nzfm0HsIbez7YYM/TIV7f1pWZkuv3JNK2Dn27pNHq4yY8fKrQnmUefWwglqrD/ooqcMvonDDGGPFDI3prBmyNIvhoeDvgZak95DzRGFvtguZpEhGNsHUDFiWjGhal2wVclPvk397f3Oir4Y7bysjsoAS2FlwMMfY+X0aM14MQk4d6kC75HlvqbXve+1Kq83qBcv1yDjkv9UDp/o6aJ4kyP2MYQFlBgqpEnUGHMv7L3mLbns49NU+d32ckXT3lA9NAes/nlmfoGfgAFg9aKJqUUUyBIaDwtq3zCAIcPUotKsNSfZz00nIMGgHCIv/l9DMM+fVwzkgeMe98HUcRgJw2QB7EBPdcGaRyvwAl/DuQqQl1rQXwkAaZPdvPKzbRI3CYGqeMWhFEvjoB9koGxz5TxkrVy0IONPtMJaomBZfM3gFtmC+0BPIhmMKrnsoBzOsWXCItQNoME69l6tq03P/JufEUK+NeccOWYfVi5y+usBQHnsNrlr+D5pxv/6922737Avj4p1FYjd56fwWu5DGM2A8okQ1IsBQI+UDvq9L7v5mRyQg1iEcgoFkZaI4NZbvz2DDlQrxPAQq5DM8IEUCgIAcAIwjIFRGgSgE8ub8fPzQ83gXHu6ANxfaN6SgCJall7w6QFKNFzaAM7zwdeeW9MixsPdac730zTgXiBIeRGkKQh2f9NG9/O4D2sPXdBpy008Ymyul2a1NESDgZqpb1DvF1OaelHNa9vW1psLGGfMyre8pFMKSnXgk/w5ut21hP9wkZlhIgAzYG6uNHUck15MSJUUFCuK+BNjl/MB1Fmb5j8jT2fi/RfPw+264ael8A/C7Al2o39dzpkuSFjG4c09ehRzypBtAUOkzVERmBW9MB/Pzr3x6RMsGrVl2oBI3CMtFMs6zrt3ryq6G3FWOWn1N3ok7Hs6D2n+cPo0YKkB4RFfXsBjIFjp8x7a/eG8Z5GWOOB9t+em548NnOV+f8+R21n3GrgQOLR5uG+KtUgtiHL2wCT9GQ3jxShZvtBOgs5DrP/Yr31Cv0mQZGKdToCL5fFt3mhaHbJCOTqpe+9stC0PBUgaK+d04sAMjSh1Ofpr5uS23Tq4sAVy1xSRAnIiu+/9wg1zzzIyzPn9EnmcjD6wX/wrI+ou0NT5ELL67fJaDwKl0gIguA8LDJAQBpFMrheej8zsiNG4c1n0v0cPfcFpaPbC3XiRuC3Q/iuTW0OTLcmyE9E6lMuiGp5aChN9se4s+lZ74ooqYRrJswiOCmK5+afWH4sPaSGxf1gwegDbikok5kW76ZEh6h6i7EtYbABUrn19a8Bm5LkIdtZApDNW4oVPnvrdth9HlHMO/H95EKAIW2G4wL+jzdiOMzefDuG1S29PxVhl0RoGfuru4d821zQME2aqRcaG5M3Tv0xrlWn1MHrsYAxDWrdv4AACAASURBVND54HSgh5U5jNMPx96Mr+EYbrx6HmIVLrGGUA6CNKqE0QA1jLsKDipSQq/MDr179ZJxNyGyOf9GfW99Ho3IOc2b7sALGemZbiDOEaEXq6oh327A2273fnh+I3NPyTDtfBm2Zhy0YGTH580E2NZRD8EgSfW8TQxXXMLr6eirlj40MTDl4wY9bgbCNF9rNUWFFQ5EEoysta0DkHPAwQ/h2C/Mv2QuZCExtFQhaz+amGfH5ZeWNjBfLbkSys+qFBAni8iJNPpxHLYnGY0CGkcSHAk0MilrnmqHIw2YCCfeu6/lUyoU95p7uhc5XWVCvU5KiUzj5Iioh61D0Y01XRXt40CWMbRc6u7gX1TFYL92B2EemlVQzhEmJ+MHY0K6y1R+Vj5fZAujuZpYZJVzLpjXZEbqTKSyVQ9yMTYAAORfoUduqnFblLFhyoI0suVLGs0EEmpkiZ8z6mmClMsBJsYcTyyVasqYWFi4RxOIRoqdTF8vGwD0Mlb+SM8vbQRd1dbevDYzBo8ZofysnjAvNG7cWHhM385eTlQA5uJ3T29o94G5NeDSMHY7e7YJiEyrJtIUuhWgl4YdVj0iDN6hCUGErPF2Maqvgv+MfORcHBlmX0EEqEY+vEUm+vPFXj43wbgK+ieBAjtz7Gy0FgVvzX2kR3q4HuN7lkCskdRpArM8av08bRh5xnCNnxjpqRepCB7vgsdPgsePQDtsIvqDxq3f61wTyYFAmVE4X4b6OnI5w9z4zyP6S1krzc9UGtF7AyCZJqBwMMtLLSoS/IODTQGKpyGI0rzYh/7R3DKNk+misW97g4wCAsaZmU4CuZvskYuV4o0qVQ6CBGgmQDscBH7vsR/oEIn15WswqqNwLLpEGoXcvc2qwIAZ8nOiMbKylbVDcHJz+XlpYIlaDFsDBG8F1K/K+cX1UcfS92JEaPlYRR8YucL+1OdEtANvdn3ucaB9u2BrViVCtwI6oqbzmg4ujyOj8mpb61WBfFl1rMXhV78bRmM9c3kWF6M1fpZzg/oxI/YaTA9k5OE4PfcMWgRw6NF81RY8gSCKmUTw5+vVmCz6oQNHBVSwPxRFoEYT+L0Lt8P5Hn52jvQAAPLT0QANnh9dz0TeW7//BJh8x4A9V5GIvuoKKkVKx1y98rzGqQ8u6+LMHxZJLR3plDwb5a/SOf6Sa4mikARBRtln3wMhfo2Uclpf5bSHKxmnOFnlU8oEElhYnC7RvpPtcbp+P4CCK5BQzRB+8ZyqjiQGo1eeCDMPexowIqa8NbESXadw0vBouhHDewLZpTFHI6fBlFy/1MGMeTESo3afUVovSF4OC88ysjsJRG3ishyIi+D1f0cpMze4FXDyNivD9pRagZZRRS8E1oJYd9uHQmFYytjodctUE/ghobMYIHMVeGy3iAk7NGD4vHUByXGCrPD9+mTAkhAtHjenESsxDL9Wl6BngcZvNS4cEAnQ4XzYUGg0MbKjykvhBiAesEP8yyWIl4ykTl6OZZQEZH++g9yF4SsSJKLmmWnQq4c5LmvPn++eACvBNz1CpYTVl7B1mVRqfG5ZulSMdFTYV4IiDbYm71ber/KV6LZBvcSkASU2jwGMhV3rvAV//NHW/8fD2uXRCvQCGAnjZdmDomogQxPMv/ni84j8jJwTh625uVvJWPU2AsB8253c7HCFY0S/guAw5t9TEkiOum8hqJeonO6cLNoyb5XeiX2zNrmnXLoC0yMYLjvk4wZ83nIt+JzLg2XInDDzZukoTwCPp0Q9XVx7VDBO3oQ4+E/haVp5aFSXspcLERTBIobr856JIHfMlBXJ/fDxSFnMq6mDGwhQDnBDrTkRLkHX3hxY9AgRhrQ7gWqwdzdkNAeBhOuebTl8fxHcLWPPOaVyp1/eFuUwyBhPnulKfKokji0kn+S7IeDyigUeABgFoyIGxIkYmah/FqCah+HK9AiX1pzAlQBUrtGUFQbWNS+/SfkUYcyMplFEOgTbZ4SM3ItAcp4UQO3hhJejQ65GtDeuPbzfBLuNdV/iXGJZxyAqPAw00CYWsSD09BlYMESgl2qkYgG85mZG0fFm5eW0W5i7DAQwa0R4HeO9YVw9VN6Vvu0bS/p1Oz7o7Z3q8+dGelHuIupDjD8p1qMq+jeJaAkVa8PsXhaQ5e88QkOOGUCP8SYgDP95aZHGYX/QSLOY8DaNFsZ16P2brYuaYx6pF4JQbqOizkSCpS6/2EemjIoqfvj7A+NPDfcfrF3bp2L7ZHQE0yHV226gWvO1yfMMjI4AFu4R8RKqII9FROPZ3qLXnGVGIUhuhHC0cHKw/q6MOMk2BmA1hwNx5BlBGnFL9KQAstkZIZIcNltGqOmeqXvcQzTi+Xt7IMpDW7ROz7ZyzH0dhff9c4acMcMn722uu/avtyBZrB78xRHgxnfIcbUoBhs+TflYvfYFWIuoyTMwQHDlUaM2vKyzAxwxzyRBDNkrqQNS/+aZ1I0Ysf+saC5P58XPiwgtV3P8VGciryi5J0vo/1ItKsDfYtC67heGVAUOgNWAmwny8D5VXXUGPpeOxC2N6SenXD2T6jjV87lGHZY2LUYfDWOe0w0reFHaHrqBR2FEpJx6Wvhs+bxq3PMZ9JRzrTHq+3xVGcqIE9djYxx05lm7kAP6uVT1aBrXzZ1yQjB65uciJWJQYdwYE8F9wPvqPUDqMP00R2fjnZEr03jFXkYJLIDKfA0sMPrg1XsYPcF2OJgQ0QIQn/9+ep5AcLgIPL2TzqVX88S0Ke9PJXA0OpICGJTva7dyyy/5Vcr1+wEUgFRm6B1sEuHlNCgVprCSuTlCrCvhVBEU2rBsoqj8MGd6d4AlhzQUL3qeHjPQde0mFKdvmsaQyOoVfxzGkLnvHpozzKC4lJDdCdRSXhYhkEK+KoDiNaWzHGMeBC+rMdSrGowcgxDunlM7TJhNGqgvBUY5ZBxwCQXGUIonpCu8pPGHupE0c+p+tQNYQ804tzwYD+S6OYMJJ4QOzY36AyHU43CYTmpWPYBLZIlA9Fify1tfIcvnv4kkuKJq4eSHhNdg8VADoXwtIAYNyrdLREa8HDtVLOzKnO9qvJKbgeNGMrwu4S22SEVThuMt9DKpYvZuOajHRBsDeknSRAxFOw4jYtyapXpUW3gMIDzT6aGZAstjPpDRKM1yQIXrX5xJe3ejypVTAPYuEllRKFO5vT9M+bi2NIKYM1cPe64XCldXouTTD/u+eSRKs8oZ1x3tcawehBDSeRhjTKtvfL1iSdPhHPb+/b3gc30+JJYIB7icqAStmus7OAZUgd2V78OASuY6EwiKFBcaEy3z1QH4mNMo9fXF+oaS68xfnoovhkdWOUv31ophk7Ka4b8xP5yThlz7XI+8Znk3kPnOETXWU4kgQKaIyCQAabxXOdkEaP3JGFtYvOUUsl7bUKIHwiiZalwTzOmdE3SjC+vNbwi5W7lZrJ3yBIZE+lhE3zToVLQSefbE2UWjs6aruRGgYvuP5KrqqV0i4lwtsFx+plnAog7CoHVuBjQ3Mh8eGr95eHoNtZ4lTWOWORcEaBAlJtkHrvtulRrG1cL2x0Ug6mHmQwFp9nOaXAkdjhEdc2QEqGBdQ90Y8qNqgZeVjjZ5yDb/DcB4CAToIw3OqBZRnsv1EftHkEY11w7XCm0PaVYxAVhBGM30j+C3cIApHB1Fpgl6BHdhKvY/P7B9NLT7BvIxsGRntLOUvpQ4r1xeVDCK8pvTpBqARm2H0uAYajxCYWABLB3YTms2CDirYV3mzZyu7Cesfa2kCZ7XF9dRh+0bIOQ4owK1e6QcDYxqDALINAWNcxO+Xus8aXNCUupSUzO9sLU44xQmS2TMqBBlVZlayjvNeaHhbgZtW/ZzVB+hjOrr95erOm14VtP7SoOqGuy/prc9gasmp6R+7tGQ8rBnNnUnEUkjXZeO6kjlSoMr274QLQdQMLEQXfMMdX1aaNjW9lKOM5qknrHzdK7yKzx3O9cO3KmhOY6lrfGeakRTv/PPRARR7rSO+UmPjvX8ij+K/yZpbI22gatNwZx6+l5tV7xLraTsK895SS14KvPNK4z61x8/8VsAa2TBLOMhJQy/pgq0anOUM7oa7/79RSkl6MavljM9dEHgNbBQrlpxAYDZLrVNEfF3iqYkGeT5qtEY1HF6T1DtP+Q6g1WvojbO+5qypaYGfef6fQAKpwlYrmn5nRS8QejlTPDBiloVu/dLCn/ABO7HA5jTPKIiaH/+MCWHvAg0LsolVPJkRiRAux/AJyBz91zRmUqoG7qqakACc77Ew9brgctyZCSwY7rF3q3Pt2NVWM/tKiHXMnnoyVM+nBwDKjv0bfMQSh/Dy1ZIfcS9S0nQx2iP9vXTDlUHQ2Q4YRhtoSb4+Lt3zA1oxw/Yfz5w/b+/ZjgvBQhz2jemDXj777IKxVA+FPJ5j0NCm23MMIoruaCql1UsSv5ZwZ8z+RsAzP0N6AL5+umHQcuIAB+7paybaKY8VKFO5cDX0Lx0yANo989F+YiSd0CW2/S1qX1PI4nGnHvo5dunGXyX3cgXm82FdkH7eMQYi1gJsHMNa3WCP/m8R6ghPgeaE49FP0gA+rZbzufdyzUCGRlDodIlCN668yuEp7nBQ5wncFMAboxusGfQkzkVmIeVgZJUxpnuolsLkCOIyzyqASLY3evKUp7zx4uBCz/beM2//cn2+O2eMoYKUfMQ8utupK0z80rb1xtIEBuEjG+XTNPh3to3PP747uvB/tS2YizynbPs994g7+95OARJk/f9/nBPVUN4EysgAETZ20V5qAZQIPdt5QcBohRvEIs2gb5fw1gCPYkMLSWvwwMW3bQ1W+dK8lcDlGQq2scDZP8OA5hGhu9R8TmYbz3r1/t4MW2K8t34vjTnzccwSmr2VJ5DYaoKWvH2B4Gve0mXyIka8uv7INKsuPYJ5uwmZ2NtlP1g31XbG61ENrFkrMtz/eECqAMysP2geylbOdWAtA1GeraZARmRSqUqDgYgY2RqEOXRbaSi3TMSI/K0J3JvkXeoSwArzFUWBzo7gHbZIPNqHvRamWcqEm2Eh5S7d1jEyQsnmOstzda7ikC/WGpUv3lpuFLWsRpI8pjoIug379IHSylbusPtn+043hvuP1q5RO32EwLcf9rQ74r3/6eh3yb650mhUjuLovSln0MsfUhvcwBCJGM8JrRbiUbur36fqRA3Azh4tVGMNEF4lJkyYoa2p1t2M92D7E5tXAl2t6FWWlEE7W4C1ZRf9kkz6vLM1eIyw8LqrdRrOyb6Lzdoa+gfl9O5SeMOIYP6pz69xwzuYmyTj6joVTzzrRQ4DRx/l6e36EzCSyggznlFsk0b96JgaxLqgipfSaWIvvu5Oi8dIgrjOmjp0FAH+YFI7Yh0yC5OhNosHeXwcpvN98LeMF3/UhKD3pnaAsiwSIV5tXsm19BQXB4mc+fWYo82n6N+G1kWe98selJ8zxWSxlzLTPnhuPl88OwmmOkAUETDTk3DzN+9bGr+zceVfAx07sXYMwKN8r/BdFog20rnCdcXx7k3S5ms72O3eoNoL2DqXA1WyntGFNBp6OeY1FQJnkU8L0rqbehqPIP5juKIgZQzjUAOYNEtjORknzbvP7//ysimTkLghHI82lmN6WLQ1nPf9QHlftISfUG7qsoBEXOskID0yYBU6Dzw0rj3cooLIkAQNEo4Dq961rB47aWZI+PFWEhrlq4Yz8cKIgWA6X8fE2i6rlLev3xvFrnr7Rn+eyVa5PW422fdUpqlSVa/qFFN6vuPpWQ0nYXhxfeIHQXsrCYnS+07ARC2iU3lfuTnUnRPfW537IcTQLCUE48xact9S3WPcu9SUYNR3b+S7gD8XgAFIAerrYMdoXw0SOlV50Y4I3xAHgRUYv0zsjfXd9QyevGMEwpYS/KEEjo6oMlObAq4h4IR6aZx3F2olPYZcnpazIAdCBM5cUQ83Sum7mETIHO1pkaExhMAUX+nsN9LyCSVcW9SVQrs8PLNUVmJG5KcDsDxZl4h83hsuP47f+YDTwIpDn9eNTJknuaSKGolXKyCkuNDowKwZ2ylfxzTEMAa64K5evEeNwDgc2d8BLKssVD8h5hiouvzlnHnmts64KFLNgblIGCf+LNZpArzmuOJDbA/MNdQVsFCUKO8d3lXy3ELQ1UkDzSOnVJZKcBUTVWJ/EL3VkZNXvJwvDg0Y64kvVll/q0sz+l79cDk2gSwVDQ4ivdZZBkrKsyLN4DKQGnXy2icuh5ZlpJj6O0I7zr7sDnoFkR7aSgs/70IqbS6zRr72rgsTt+jYlDXyosrOFf8niC0JNB5qjpSPd9S3mfeGU3ljYe3j1cYtfRgxfvL/kFJleD6IBggWHLwl3ln5NbiJUMAYEGKWnKfl/E4y0CX3eQoyfBwxZO3kt+PA5oeHfhBLMCQlDl89ov3Rdk6fZ4zFTghX4fItP6oP4859lWmuYyZ9Z1VneLeqmuG8y8w2dQE8tDnVJXzRWWoNWuopz+0+4apDdJW7/DTHhLkPGqOzSIjpQzLyBDweD/PIv97G6msx5ntRvbcBWNPECFy2Rsw3mDG/UUANKuEwOZO7jcb69mNBVuOV+sBGb0giPmoZQhJIDmBVLIZeXHm12BXBRbWWnSOIOVzb9QCeAkyz17ghHbNHFevZBm/xkiDCDnvqScBASjLrWckWO0/f/KcaeWzoh8t88fBOMs9ru0AH3wcyjgtfZlI3oPHgPYZulAacD6E6mPv4yS+5+NqTJ1rmY7iUVDBeeRtrFwaT+M5JqBelYBzPO0ZzYFBklUKAexuXBpzFzRGVvayEaK/mtGd5XyrAGyOfZmX8v2zDlvn5okAGimj678l5kpXMkTvn4g8nffnKF8zcGVt48lQ1ZOO+KSDn9df1X/qmqvfPz+LbUExvuqzx1zXNM/I833UjQMUkaKDn9pHGR1jwbPkZJSdnr38fpqnp7Pq/AyO7UnPWd7txuRTSHzIX7dNTrwKT1dEBbT1nRwDPZ3t53bFM3r+HikLv3JF1IwiQpdPfXnFDQAAT8SHr57Z1n7/JhnhUprx1w3uX71O0QlPoNn53rP9+CJqJNIY+IzTuf+8Bp7BhPNnv3b9PgAFRYZV9p4s/McDuM/IydMmVjaGm51KHTcdGXm9VOSiIDuRWgAK7m1kSHmydOvCyzAvG8YfPAd8KPrtAfl8oLVWCPi8DGK3vPjwdn67mdfteglFUa8dxx929M8jw93mjHBcqUbONESf/Ro/XKJMVHsM9J8lWfyrkigSZJNhCKkjahExgfAsjB+v6XURRgRYmPpySeaPzreO/qGAAo8vRuj0+c8Vj7/veP+HK/pXbtA0OA3F3POw9rlTL1XJ0nsGEvgh1jL8GiIxlvLN3VXM2RYvCeolXWqJRL14BMB+BVhm83aH3FzpQDOlmWXi/F2t/A5VC88rAAQAz5lrUf2gfT5M4d26p74cbmi3XJ+AKUleAgmAGXytReTK/PEKSId+eQulyfJ2XYkIQAAhpBm5IiQZpYHaG/TtGntBr7tFOXjeqriXhEJr+/OnI+xuqNGLK+LeUM+DptHiRh7z3xfixMOibfT94mvmBjyOJPzr2XaGv6t7NEXNUzjedzMqtmae8G+f9s6tRxvb3Tzv449fzMvz+fC8V48iGDZ/NriK9sunteP9ml4KIIEArs3HA3K9pED3aB3dzBNFXXBcO+TSrVTfA8lKzQiJms4QufEsS4Tc7ywZWdszp6H3bUIuF2vbZbeynlyLlF8cy9NhOt8uwNvFxglI2TXU2N+ZDuHotTYNmRbpJFT6gSAHjLBqtr8qsxPAJphfnHDxnlEV5ul7ZOnat/1JgQxOEBHzEH55j/eEceElFFlGNFPaXMFj2pJHV4gq5ONm+4JcGtzfx4C+X4zs8Va4HFTBclQ2bhZNNi8WuVN5egh0kESLxJKyvfnceKm89y3mqH8ysoj8OT3AI7kfETm21JoXRmj02MftflgkBA3SqPADoNlZ1vWwM/WYy1hXAmMaier7RcYANitJ23zPzbfd0pUqv4PmOX38sKPdhq+3shabl8TjWLjCPfcO7N1KFA6NhRapEUAC3/6cz//4zdMcbIwthx1ow8r1zQ34/FuBbsDtD4LtQ9wTruj3mWlW1yLTjonu6SRyKMaZ/KslOIMJ9I+xcjAIoO+bha+7DKtXTY3AQOSNA9093ZbOZcawRU/uvxwxFmPvON7T68noonafaIftMYLnxgFkETXqIJ1edswvhSup7mcamzz267nTM/y6lTS8uVukiREkzpQH1L1IRty7lZt8UM+azlHQMMjZox6izyXjhht1EztLHiHvdPfvXy4BHlgId7ad3Czw9iuN+y+7R4nMLIm5NShaphnyPR4hFSVJ4Xt8TnuNWDQBSQX5TF8O6J+Ked2M3+MiOK4N281S9ebeDZd18MH2tM8jCRZj/CU5mEQMwIbLSbYxKp21EsXl6WTkJuL8uMzX9z31CoqFrVmqz9WImds3BcnLo/xuN06aiAAoBr7ItD1SHRN8h+/fMMwve8q2CcjnLdZDRJ2yGhqvzT22lQCRnDaMLqMjqrxLgCjzHO9Qdc+4n39bAT7iKuALIxX5XyFlpvxbIqSj75LrkdeY5njjvSQXZtUSRiMfHsnsbZXWCkkxMpow9BSmBKeNke8c+ZPrwP6wggq17RWUYV+Yjthd3942aJ2T+ix65s98BiQHhPXRvOXuxKhnOYCFRJLzcRxYUgKqg6MJqtc/LpaYrFfrgBhZtmEUNhZLxIGfi+L2SZAzljQ1RkXi8VjnoV51/hfQytvq6ajLHNTxGvZvLWXHjaut5zM51odFZev9/gwyfe/yaM4AZai7+t9+7fp9AAoiycTeAJYQksL8vjAW25eW79sAtjRSVD2MhAvNDY/HCMIlAVIJL4Mdho2TLx5v3cMTFe2xBepe2XGX8HEay1s3z2sc1gMYDKEv9xSmeu3diPB1S2PiasbfZL6qKHRIIupNEkyoaBTHJkKKn43Q5dIc6xBODB3k/c4dIYcf8gAuX+1d4yrYPnTd0HQdMHXhjLpNLMYsNy0wvUzm6n0ML1c19LkamPtLfal637nRewd2PY1TUYqnZm4pw8QYcs08UFYDcGVHG565LMqajBA6Hj57z3fGgQYj+vNxC2UiFCOY9le8JkGMVA+2ejCprtUh4ILqfNjRi8r5UFeW3LOgvafBMRQiCuklrJYhzb73In+zekJovC7C+bSH6/DV9eAhwCREBUkpO9cKLPWhT+CyhfJZ00jqPMaBV9t2UiJDnizkQebRI9EXfErC0K5jupvBGGRLL/oIyqCYUF3TuHiYzZkgWStrn9FahZBqKXF3TKDrIl8ALN6o4Jxxw07rQc6Smu4JttDTssZ8vQBu2FAjLPNv5VQdkGiSodNnOeW59tXL8eTtYnublTqElsoHrcX3GZFUQ7f1KEBtvHOYfK650bycX2HBVF3mZ+lgj8gphKPBeo/2zMwt3H/iYAvC2/zSm6Jq40Jl+fwZ1/QELIwbL70U+azSjtNYmJHr4za6GS69mYLn61CO4bZaGjZS1xQAev3rZ/FO+XWvbyih5+/BgQXPh65cHnHbtOlvh5UXtPMa2L/afe0B9IeBCSwdaQaaRng9z41oI/f1VPsHAaZWgCbKRQftq7c18pNLd544LAqXAvkTDHRA6Al0IhCMsijF9R3aLWIsPp8CiJV6Zn6iheRnmtLCjTPTU79MSfWKd0F4/k96Zex/cZDVCf6EZ+XWFj7FOrfxTz+K7QzvGd7/Sqep5+I8PZjTV/SQ0BoZqXFuR5UxEdVX0otEUla2speW9iuC/2EUToiOOP/aQ9G6Qg54eh/nrOUzajtoJEws6THRHkXOBd8nguQUczJUytyTPHvZB14Nq2yqOhD/XZ79VLJXBZUINPZ3jRCmYeayVGYSeVv77Tu25nj2afalhv9XnTD0SKzRWOXvy/rjc86e9ldrrl5hwBeA5HxffU75ToAG53lQzb+fv1ufwbHkefKqBGSV9bW956vK01+rIFDfDSC8+t31kTnN0K12GIoO9SIq+/z37/IvfK8PL6IaXj7je2djjGHL7323nXOVFQQVZF3Xsca+F5Vyfsf32lavElnx0rCvESP9NJ+eRvsfci2E369Ki764fheAgnbnPeA1Yej61rIMIj3xRACpEDdJNnKSh+3MtypJi1/eAFXLkRZDd/U4scE7Gjq/XDC3hvHWMS8Njx+aKSxDrZb054bt55tFGHBxFWKzeXHD532PvFpjQ3aGdxphIpjv7tn+dodOwfzBS/oMzyu9Hxg/XjHetqjXy7zCYOWn9y0OjdMBzPEDQJIhNBgZDq/K1tyRea9ve8wRJBHvdjssh39O/PR/NMxrx+3f79i+Dsu9jzArOzX1kh451kNOo6kckjQSR+bwRnoFFVuViDBBmb8oLwmkoeHrKcbr2g11p1eRXusFsPJ2ft4NAS25YXHPZvG16mz11rZUDrE1CLzPjD643fOw60BUbjiGaReHcy20Fmsr8tsfh0VBOOAGEejbBh1q3tmSH2+fGY9I5E/zeV5Gypj3ZzLWd7iSY4AJjbn547uNmc9Zuz2gj2bEiffDeA1g7Zk/Gtlg+2be4uAE2Flt5bFWqigKUKQPuNHGaJ4M7814mca97t+TY6L/vz/b3v/ylh6IdrWc1g/js9B341mQP38iwDwgORNUbdyAUH7l7eqe7Baeorn3UFojDHpM867S6/njGzAn+v3xAg2notnTKORePY5VePvfWRUixk083WOIg0bd1hlge+AYkK8fwPViOfok/2uWTjPdgIxcfO7x5hVsfN9F/9S8XBEiHHXQbZ/rdQcew+u6a3grMdQiCLeGce1o9xG13EESK45/k5WnhOBdIa8UiOcbe/sYcTY3qz7AtVgjMOZMZTwUoSL7u5dl3b2S0JHRXm2U/NsK9ngbxeceTZLfT/fidwAAIABJREFU55imYBxiIBflmqoBDFwj+4ZxaWj3loDH9P09rUTdUkGiAMHhpWRp1o/Dw6J7egGBAAgxNDJJdO/Jl+Hrb1793JnqBojtf2HUhANbcph8a5+IfQqYXK1KY38B0M29+br9ngINi5bSTI2JMn9HjQpzcIsG2sH5MEBBBrzMoGL/pmF49Y+Jy5/umNeOwXJ6DWifww079/j25CNoNA4ZEdDEAW3uGw2gP/sDoAtGVHIoyjJ/9TFgaUDjleBYYZEv49rRHhNyN/B6dgNHZDig4N/TDVBtsYQAWKSEG+eMZJme5y9zhGyNqJoqehxIDNClGZgf1bi8Cg8NKatMYJGN87p5373SgutzqsVAvmfkBdcA19S8WPSB3Maafsd2kWvF94LMnDPqC+0+rCRhb4DYemifh3+/5boDVnCeQEIhjGYEi8k9cZb0nDdWZZDHtHPxMQDyCvma758Dzdcs4r0C7KZnQoF2G0Z+qeoRUCXq8YO6Stk7HnFA8LwSazNiImQxcYAKZHNvEzifw3XYbTW86VmvBNJT7X7KxDGTrJOy4MQTFPqVSBo4rrcI/+Z8Q2g2j0rdkFGNBDZa6ly2LtgH/xsBcerfw8nRRQA5cSfspd2MiigRqWgtdIMlnXGWNVNTLMt6jXMmSry4btw7VEoVjAoe8LxmhIGmEVkBHjhHVQiWM4BQDUlVB4hn+X6ZG54xp3z+uK86Cs/pDHxXeZ9s2/puLf3x0pJAj3UUfWN7liiGluP36qogyNk4X0CuogPws2YRhyBP2qt0gjKuehS7D6krLmixr6NIl/hOiiEjIATd9HGOO9sQ+2Y+Awnn9IVIBy73cB3x/legwitwgs/u3RwLfyEY8bsAFBYeAiL//p/upiSTxGph3QRM0DBElPwGXNBDE2Rw70YgsEWhikPFQ/COH3aMt4b7j8aErL5fh9qhMt66hak+igHrAlmpMLmXFNOqBwAwhbUh8gHPBr+Ecrwiwe0xARnQQUAhwzWXsfDxANJAX5jkqYw6Ghz/pgEJKvIJWPCZphRRiLrh6QdJ+3aHPDquVKZ97CsRTJALtefPnq4Q8lsqoH5gBRkj+1rY/HWylJGj4gx/GgyF3mKOAoDpp1JMr9DpeH6OufBeKUALw6AF0H4By4IFeDG6h6/NHOeqxBR+iQgB9BQA6ezbsNz0pgnKNDPag4W1jGu7PfJ57qGS4eUit2b54HXoW6K0VjqzYW4tFVRG7zQxYbPNXPfDx9qBnYjaoeLhY0l+A/P0e7voXadytCEU1nYbZe0iQSUg55Hh5SKm1AwYCWHwFDiQNrHkyYbCUue+eg2o5DBVSAWNWrev08lQ7SX0fTUkDISyMmQLh0V5hz7UDmFPV4LPd9zDiAkt39+2ABNy0t1b39pS8iyAJSCV8VDWWoCyNm8I3heGdJM0LIxIetB4BroRKOiLohcEjCFvLL2NcxKEtUB6bCHBFM+2RfeKsRocHrPMXxkHFY01brKpzGsBsfI7QIA18RKXMw7+xbr2dlePGjrCiIi1o5rrFdMMDcAqJdxh4Ozdw66ZekI5tSiakh5xprpoURIIOJT9i168lJQ7WmSHP0JoPNFA3Er0C69QoifC69TKeLK9lTCOa0sELPNXjR2ZiFJ77ANT4HTAyF35nDq96oYZJvaP1AvCS+wARb858MJjMOQ93IClcSKLvspXyVE8r63oH3wX3zsV5G+QY2JKx7i6V1WRFRMOBSsYxNU9dcDHhGH7Muy57TGtHY+B/tlTVioiYtCCkIzwbzqxLtTauH0t5UTFO9e4v31ej7msec6ZtcmAvIjKKuSZ2s2ZsIJhgJxkKCNg6jxNzrcAAgnDStQJGofaXo912iy6T2RxEnCy2nGa6+bjyS2hZf58nU+ST4uXhpuyAHdcayHLPdoh5s/TCaDINolFQ8YZzvuG3dQZaRL7FFaxiHNUcw84rqo5th7Npc2M52Vf8Hef+4jmLEanXjbonJbSCX8eLFqLJUbFAdBGWcGrAgZcL9Upxzbznnou1b/7OPF8Ua8ExHPS1kwBNOp3oq+SYLyDDIts5vhriSDjWRMyv+xf+JqpdkE5GwJ08oiA1DFxAhTX78XfeE2NdvGdmTb4rHdmd0/nG3Xiv+DSSEc8gQnn5/1WBEENp5/qAlye7z2Nh9Zn83sD6ayLkpXVAKbsbysgVdt4Tml4FV3B+89ee8CACgzosX6F4f6RwlAjE+r8cg2Wi2kCqicAAIiU7AUcaF6OdHqfB57n4cW8LOALEIBCEka+ACHY/nyIP7/u8dOYfm9NvLh+F4DCctEAZS7YdTeh/xhJWDbGwvJPNv7+SGMmhZmUcDyNSh1W8YCs1zTMrtDLhvsfNjy+CG5/YwKE7NIqRkDYDuD6jx1NJKsLXIrH1b0aZNGl12heGH3g75ywfK0inJmbHug/YHm0bqCJIhXDs4Cp/3bUWS9boNjLrRVAqDwSrhDG8/hMAgXFi03COvnFPB3tm0VgMD978bTeH77RWhr5AFhhYdmsXArkuZgaeWQC5CbqHfNtTy9cMxRziTqZ0/LYr5cwmCxk13Ok9s1CWGu5npNHJNYHkcnKxOtEnOTA0EvD2BuOH6xuqwzF/vVA+zigD0PHa86hMV+7x74g8CgKnR3u7lF5uPHMw1/VcylbrJU44OeEfHhEzh++eL55R787o/BxYpwtxhwjPObVI2PckNDLJXIzLfJwi7BQ8yaNzIuPCIAy163sWYbTCzz8z/LWjTG7od9uaMcRwMrcW7DmhyIvLifoHdgaIsxyHlahgGPLdVk9L77XwrvB/VEOds6RIfNphMrnw5573a3f3NdAgImxpsewnMfrBXpmneaaAAwAuF6ykkDdEyIZbUD5t3VPF0vyNnWjXqeHDl+7e/WB7rJjCf+n0cf20Fvq3ooAQIunS6+MCvOvqd+vbsRrtmcSUKBOS9kkAvFQ6Agtjj0HoKtHIvTF+Of816o2yr29kN/BgJRjJpBZlNrwtDIsm2Ms8hzOv7WsktJ2zwt3+eiOw4XjwJ8lH26o1YNbBLh0K803hlVnIbcLAFVLU5LW1sN8wkPYi4EziuyOfvlPhnJKjlvI7pJ2Ir3sDX+WsBJNWSdyf6TizvteKPqiunI5uDFD4CWq5mzNgLj7YVWHCDw0BW4z5R7n0oEuhuu3+0AbPudMFaCBqfYeudm+nbuBCLrZeLCkpbgOoMBC/GiGqK2DdhgLPwRAqQQRa9CNPv7e7uaVH9f0Xm+fE/0BdCeFDOBDFcdu1SLY/nZYSLxFEZjMb4d53PvnsQAyR/doKR4Re8P9Dx33H2koAV/+ndizFLGeCOoSCCX/TVQ1iCgw2NhO76/AKvRwj3VzsMgxvUSnr0OmAUmuRXunJOcOARSv5FHz+9stPbMJeMJITFVXziiuz9uAdMEUpni0ZV0ul2rwKgATU5rpNg5w5FpGRm+gxToQ7kdR58vI8yIqppTKIJgOjhzi5IxWzQJAAEqRLujIDCOLltSvpsZ5oy33Xyk/Hhej0er4ucwYbxY90j6LHkIiUnIkdAelqxxsApk01oueRK/zti3OKDvri9yukahtldU11TTO4ifwgDIUuYalZYTE9Oimy76c90vlM+qf9fzVQmQMPOt/qrl2PZov1hD3y+kKUmz2cyqA9ZkvQYdZ9Ib6jjIWdGwJUwvqPbVf9aolBis4UK9XYe2vjElp6dE/53C9Air4nOr5pz61RD0QqDiw8BPUZ1dQhGurlb7PtoIKy++ytMNAA3VgQ/N+2oRM9x5FZwTy7PR7ntIkCLxOmF1RnXTVvjpd/OwJOKqggDvPgtvgRfpQVtkozyEo8r01x/cD6/spZ1999uL6fQAKqp4vjzQOgVgkrUYTVGWcnaSS6wpJhHKyjj0vkSAkkmFkM/g2beF6OJcc1JDtP0VuUlFgu7lnxENc5bEaw0sOmgs6oeHkoYeTB/ljRNk7pm0kKZWY940s6660oMFDB8vCfAHKUemLQ7qmBlCpjX5JKNJxD6Mr9kSY68Gm++YejQIInA+ASkRHcODTSOpoAOqljN/tjqiKoOkZMmOzAdhyA/FQq+RiIs8VIdTKQeplX/pinlEPqwfscPeDlyRNcVARQKAS5F5k3bfw/o73PXPrm1gY7oSTVVl/9X2P1IEIwVOFHGXcWE4UWDwyWhR+M5hRDmcjUZH7YcZXBbcoyEgUej98r/RMbahhelSSqeireoi/GXZMhen+HBmFBKwLtHUzjLhX4/0bJkuXAlH6Upspu+1nkmwC7Q6ou4BqFYL2kWRXROZ132yrukKi3Yy/p5zzOQ3wAoyIMQAxHybuD8qXCkoRCCtgmQw1b/ViiML5MWBjMObKwXB+bixGzxFlekVv0OEeU1Z5iWidGaH3JAQNIjWCm9vFKrmQNHAoGoUEQYKPe0SJwMNwaYg2DwU3bw7A/HBbxx3YYUAekESLNHIpW3xvV2Z+uY+QKXrZFg9phORSDrkxqbuEF5Nh1J2h0ky9IHEtHXsEwgSLTLKSfx4JVNLCIqKA/XCDxca9RJ55WoQBTHdArh5h09K4mYDozBQHl5kEbMTziuu4Wds6sBVBPory5Qe6zAk9kCmA8LlhlA/Pv2MC+gwix8WcWwekItICiHPY5rlEt01vB0lJA0zxiIM9wULsHSrX9Szk+iDQAaR+XeaI5WifuCtotEmGdbOsbeecR9WHVP7aw/UKD62NCEJOv+eIi8IrQMw8d9wgI1leyCtMtA8HSRXJbURd+Ycdt3+245f/vGHugG7A+z80XP+k6B8zcuzRgMF0iTJU7WEGHkPo28cRKUCsJKHxTuuTzZ+G3gJQV7ExaIf32fV2SxVFEsJRp+B8TOcBWZRLzci8evn6Hhsgc4ccasDNUPSbgZnz2nPMu2CKoImsa2QCCwEwQUZhZJ1CHNSPiCpBerLpVb8dsc60dd8TljohjwFtRoAZa5AgxzRwIPSEqZA5bE/0vgAN4516pBYHhz1nXjbIrpl+MNTmZvj6uk3gywUTnl4miDSIAGEaAAeUNIwHxD4c7zvGlw3T11L/eFg5S37fuxZADhCRZmGY1bmsuh1Lek61aD93AC1efBF7A+evFS+yG2RC4LitaygiJV4BPtT7AmwpQDdMJ5Kmy1rVrquePydwwOSXauhU8TxPNbV2S667GjFa3+kpjxEN+WLs2OYA/Kn7jzLmJcXyrB/FGG4AkOsvUwR4vswg4Iyr6Ejx80wGWN/TBWtKg9tLNdyelQvOoMNJx1/kQbTV/81SlrNEHURfOXZsc8t1SYLJWGf1og6sANzbf07R4OffA0xeeu3n02dGmP2C38ijD6wfrdgHZdzLmouIheNYjXrXk15dYdyXc1BEgMslQY8xrO9hEzkxLW07VmqqfY/xyQcv5SErKFXAC/2Vttbr9wEoACvizBDm2jkgkaPTYjBFxRXZTUzpImP/KARdHUn2M5qlrPAhr9BBAFkayuRgeyj6PZWMCJ+uz4n2zlAqlYqJk8mpt8uIGmd4vBZyuPJMi7K2pMnphDsCJIL96jtTbZ+wb7HxaVwQ4fPvkHGf948TqRiVY3qC78VopfBdBKSs4dHTPbHdDb7uuZDe/vB8LAu6v9x4cRgR6QwEuwhbGmMuzNWJogCTPwpJ5YHKydYs8gSww5SXiIWjuxKuWw/2at07xltfPaQTli958KCGK7oNDQei5CTbHYaXrRkzYABFT+8jm0JPI8e+AUHedtnM8OKSCNDBlWZWYqBRVQ74GEsCB48D0iWVlI5cb69SVrbLSwUlDBEa26oRWq9i98r94VwUnuLB6S4gYxJAng7+MkfxX0mFiX6OIwyiyNdE6XsBKrUg+lIMTqvEMVJWqBvfKkDT5AD4uAffC8nKrC3LCbHMEWqd4hMgFKRR3JsEghwYgjrAwdTQnkr4kiLiiqA8DqiaFyd5MwgMep/E5fBOY1gjr5p8LriXuXYFSrcCCtBocE+rzb1zY+wOag2k0doRKTAIcjnbI/NiYcGdYwZE6pXY5PhwljbA5qbm9lIptblY93hcVCoYdcCDeutRMQjHsD1aQpsDdGXoNJWkiIrhevOwRILEDWVPFsCXYFbt7/lMdKMr97kbL5V9vRX+jdO6YvQIhs+xZCpSGJdDoXBy4DfnZSnpF3F5SLgRhPFMRQEIXNFrxZg8nRkKgbSVR4Qpd5HbDphHmulIWzeugMsGmT1SFMw4BRpDzMXacq5ywbEUr5IjHBcaUVyTHL4xUy4RjJ5237h2HO+Cxx8U4wqMN8X2tWH7lmvEoiIkDKeoUABrn0UpaPDWELDFMW2qGH1SrnNll/aAVRM4COYg+B+St8GVUJJyVieFrLpFeF3ra0IuAhADSGQD5lae1S0Vg1UvyFFhS/PEqUF9xR4XZUY1UkHV0jwcwNVa+UMk9xWdOICtg8lUkwmMBHEY9h9E4PSs+zxRftlzcu/MCyMlhgOX8HXr/UO5x5nZ7dw0vhi5bJab7CA4OT+q991kmq7922x/WXWLFhwf/YOyQZY9wu/FnDlwQiCq/qzzmedrA7nLnq7zGbwYIzS41Ne2YDknpj5FBT555mvqGC8fWyEJH8/x8u5wpgHLenp5hf6EpX3xWfnvSfbWZ5T2Lel+1aYImUu5ovnv0MWrnlv09Dq27m22KiOy6gUcO17Rl5OdUmXHYNu+M05ng5pzeZ6b09hYmsM4ATonoIPPqaUqQwc621bz9FVNj34rnzH6YHpb+Rx34OV9BQCgnK/jyL+fgQm4vAYQaQdT7T1lPII7ocrq+vzen+3NV1UheHlUGdwWXPgX+Pn5mmUNvbiewITyvaUCmd3w63sJvxdAQahc+qSS3MoFMBFpMwKKQlSQOblPIwZTzfxNEpUxhE8kw1ubBDu4XpqFIzvR0/51oB0tCJ20GQlS/1T024A8JvrXh3mY+U4vYbaQinlZl/HTNQ4wy2N+IaCp9FeZKgJcyxRN+x+F6ZLbxkgEV0CtvOLpcOCY9ZPw4mfx4nIvhUGUO1Tg4sZKJYFrLbx50R6PRoj54nNeefXmjPAw+XTywjEg14tFFzhZITzsNoQsDcdIc2nPm+hqZDpyG1m7/Gqlpua1ZwjmNCVOmxHX6Zc34LIHkhwpGASA9o7HH99wfCFrNiztZvpw0RPFKbp6lMBHCWe/7NY/klGeDAoaHTJnlCs0oxsWcj/VuBl8bDW4BPxPd1jubfFIz7ctyBpp6AGIXPe5NfTPA+0b3CAd4f1hdMtS5o/LxpXj+Ycvpvh++8y5eRymF/m67z/fTPG6WOk5kn9C3MN6qKc3KeR2y7XzsNBwkk7Kp6V0zJ/e7bsl53Z+sRKA/c+fy6E2rxvaeKCVaCe921qVt6s957KjcicAgHz7RP84GaCMXPCQ2DAo9w3aZpJ+7lt4dhj5EgZeGK/+u79Tt24pK9Pz5WkUdi/DxnvpXQHME/fzh6WKvV1cgU7DgMSSURGnKpCA82b0VH51hEIbhJRNbM0oQlbMSzduiRdecSrqfGZ7HBh/8255wwJIU7SjG5hQPMFBxgq4sgFAgPm2Q8a0kN36OewM0C7Gu8FpOorX01PAVBp0MxLGdj8c4OoZvqosdVmUIQfiLIVGUyYWfog6lhHRUjxKWhV9ByICoKpnAoFL8l/cHpljzecONWOTYBvlIt+/lTUCytgWIe1L2x0w0bfNPejJ1XKew8WwfNusKoSnJJrxIksKxaKIe2RZ8gR5f4dCNEsOMmJFanKrr3PywsQ5wT4e3dIDm8m4IO1UGPFik/CcV8C1RjQk277LPj9jjcfFz9wmkb4IAHppmN1ANm2Cxw8NYxeTFZrG9tyA8W77bvuwfvV7zvn0spH9zigGRku0BI3Y5kvHuNLpgsUo7zfFRYHrnwa2j8MjHGClbbtgGpqeRqRXswLcGCtKcuSlOyeD3WTjNK4OLnaAlSmGcwhFmzwCbfsYSEzTjLgWkXq+FgisTVn5B1SjRO/8sicQ4uCPDgnARdwApgyZezMg8m5AjDzE9zXTSciJggU8QQNmkPxteTY7kNpvvt/YT6aUsMkC40jx3wVI/pqi+PfbTDDSy37OzXTS46cLtFtJSjnUShKLGEG3r5N2JL+GHBPzbQsjW3T1rsb4ezv1WpwVLJ1Z0wEARCnvGuHaDAhZqmCdjQ0CuAzPp9Hj50VEkp5BBpf7QYx4NmbPoIW6Ll0dZnzevXj3a1i8n89xbwW0qi5MgJZpqbOcmXI6n8r3tTXgupuuwnZRfwRMJ+D4AQ4q6+JYynGk862vhnlroROE406Tq0C6xvjrnKsxLm01lMmHwNSZybF3h2kZV/XIznrK09EWPAnVsN02++9MNs35AxB56NG3XkAXZNuVz+4AhvG6kAMrgAX7T3AaR52Z1lzGcEklqHPvequ2Zs+S9tz+mnJQbS2Oi48h51V6e05FOH2Hz5XTuxZjX2cCH6qZVgHvv75oa7WJTiDG0zW/Ux7yN8AE4HcCKJjR7twIDa87LXZgVU9b5G5PrB5GXvRKMNoBriSIeWHi/t4WYdP8kO83+KEkaPeJ7eth4cMeZitDLfdtiik+E8CO9GYxJ90NvHYYCmehZ6dBcE/TUjaoIqRAenteTexcvyNlfMLLRwNI2C6OCYo373QoVLKYZdJegBDn/rxESgV6EpxhhPE+L+unozDgUmHg2nDhEaG6Iw/mpZkcgzJGACIUMIiwqJghFegIveKhwVKMAEj6o5tANxi7Pd+h6muiNESwhv5JyVPn+mwwT+riTfZ73PNAz615vcu68DYt3oyTYgDVBNEc6Qc8fUyTrVz3hjk75NjWfciDUU4K33nMN08zqdU5imHDNgtaRsuc19KS6jPXfVCHlakONM6Osrc4XvW5QOYwV2Wgrm8qC+c1XRmu/Z4FEJDixeDhxlfTCyHrGojcwUDqyz44G/wVGOTerKGaZWxxjAQTfu0A0bXfcG+1FlLEKIHmOeKqWAyS6v2qnnqFrfFK9BqkgGcRVkCL6mmtSlu8j+W2XnWHcr7wbETZUF+7JIHU3iCiKWfdaLN96ZEbWtYn54dGe1UuRUp0AiJq1Z5b5ofteyXDa35vk2Czn3tDfzjTMvffZmz60SZG42EmGF/bHYoP57m0j/MV603XewHvA6MZzutaLYybcyvyzI01/XlnBb4hSBgxkMS37ENdu6XSj91TFM0qY2QayWS8w5RTRYs1TWPQOn9qa91b7FMQN7r831uk1JAjZHLv+Lnab/Zs3WD5+ernTi9VI+o5OBSNnvQKzNVc/Bh3e3aSUJZjYyq6pzpU8EQUz/NC8cNHs101ggTIdSGMDLCIIQIJ53bx4RapYGtUFnkgPscwYEABkskqgYV6hSFKQZF9EgUU57ZiWafwuWKqDsGaqF4hUgwYBZyEUrcSxVifXbz8jF6NNSWwvlJ01M9PfTIuD3+uAxwigE6C+4L2EHvA9IdRxg5NUtETPwzcyEIZF0bS5Bny/zH3Nk2yHLuSmAORWdV9SN6n92w00l/QVkv9/43+ghbayUwaad6be0me7qrMCGgBOAKRXYe8s2Oa0ZqnuyozMj4Bh8MxU0aUVVSqLQZ8TQNgu0f5bD3TfrAvLxftUDLrrk55BQCAlUFxPct+4ORkPjmwnNl5VtP2PX/Q3mo70G6ooo/XPuHFfauAErn/1vSNF3NhKc8CzL6Mtnyxfi6peunQL7oB/8R4XK8KJtSI+RWYWHyF4rMVLYFMhxXBwji4ggWvrj96D9H173T+B9Z1/2fPiO/+d/VTphC9upctn/khSMTn/tEzXq2lKwCSzx1zfuVHDS81D8pYZRWKy/d+eP0JGPGXABSggvG2+VoioCCCzOGXmQpApdXFUWQ5rxTratO4C/Rdjsi1PbrPRaJAMRAsjwQA26+PfKapepnBR/eSeRElTjGwpr5OaJidY4pLdaSDKQNeskgknDqvtMBNnOrh42ePKsrR05AYtxCp+/URVHTEJqPpNGCLUnDchIE0dlz4aqKrVWmZqsjS+xTSqlQzGs+M1DZNNPyaDy41mgc4S+Iy8Zn3vRj7QWNPuv9wFBTn6RtpC+YHUWuVyHVXz5M7xqKtkZv+TWducaGweupKgEa/O1o87htYAxsAbA+Aa0iKt+HsPle+3fOe+hzYIn+OwnSmnsfromtjiV7BLEpW6eI81ZKD/vwtqN8ebevvUYbrHNDTjXhr9xlh3bTog4ygWCKNKGE0fCCcUF8XyQq5AD7nzzuOX3Yvy9ZHsmrsW5TkepwweP/K8/R5n1oL4Rj+/A59npDvnxPlj+jD+Hab69qKAV0P6ucR47gXCv3dGSchWmh3Z0ok3XNvEER08/NEq1FswJkS//GbU/6fz9xwM3VpGDC6Mx/ikM5UF47NbZ9GgnmVk4xEX1JCauWOLNl6yQv1dTAmOFCjGt/eol3FeRoDclycVJEEPNi+uh4tdDWoi8F1rb99RgTSqezODov7vvtnMk1mYAoi7jOn2HOTY91wX+3mZU1V0H6f5VKpRSBHx/abZX9N8NOyIgHz4tMhCiCWJSAJXOHEwniSbpDvj5lmUwxTKNBvOyjuN0WiIip/x0yVUoVFRNlUvBJDiPxBdNlXXCOiRtNfONXAyirj2GwK022ygA6POIxbMBQ2zmsEE6BEKGrkMJTa0/HOtXZfwYE698yi7OTT91mKpe7NdSjK/M00l9g/pY8oy8f0mtApIe0cQBWs5zxNLYTbFiB7zP3uECfHyUYYpKyuQc0Q7vXpOKpXaHrb/Qzr3d9HBPZ+C0aaC8YxymvBsknGlYgLjSKcaeobleVrIrDYMxnRB4D+ph5YCGeSwopv/46gtAO3Xwe2z5Hg/fnN79NvEoCo4PZrx/a9ZxWFESmVStDipmlPeNWI2C8kgAqBz83Tp8H53iB3RX+6QLA+u6dkZDlLuDioyoy4x/vnmonoff5/tHU0Qb/rfN/DoE8LWwgYIX7Z3zTWWitnnVcYSCBjbxgqQf00rDvyAAAgAElEQVT3vUG/BwO0rt+oKKHPMcU8w/YRwdRhKVRmffQoVeuTsP/ylnOe75psqOh3Aqhjj3P83pKZWp1LAHEm+XvoMVKQc1lr1Hlh9DYcyhRGBGYp16cz+awp2ndDE1mEM2EaqWNuv1EIGWRYLevbZnqkWbDTGsZ7RMqDbZMpT2PM0tuLs3I5a3gWcY0HA/QLOC2TiZAAcDAo/awsAtrp/LfJVqzX4faDPAtgH9/j+VVL+i5Bqz6ifyIQE+2Il8uobizfaT8WW1pSc8k1vvJZBTiQPlwAnICJugaQ6JgBBfoM5f4+R9zeXVIfEii+pB5XsIK2Ru8zaMT8erKlRYB9n3Y1D6bzOsYD2DbIvk8b/UUJ63WMNSpNub3szBUKqvpzcdtjX49nV1B5uzBFbACjI4MsbBsvRv3RgaGQFn9nVYUea6Taa3kWXVBKznPuFxogylhTXqnXMEULmWIwwl4szKMKKJAJQgbGWB38RVS2rrliOCwpCQPAOOMdL2MRDKq0C64s7bJe8vcinmKR8yyYjPT7+JOshx8xF8r11wAU6MiVCJHQEOEGQTE0iU4jogeUgYgBz79bOk8ULmMkJOk9peNsrKWT0M2Nt1KO8IrKEsFdaIk0WMQdvyyzlEa1D5q8quWafRLvXZx/jxxWZ9/7SIaXqVpQwkCfZ1SvpGKUPko0lX094Av6Fd0somZVzR5AppHYdcHWaDsNU+bpAzOae42w8ioIrRucU9zFxYpsit5cr8sCIl1bKHbG+zAfl1UseCs6uX2sGxHfM8bR1bMlld6z6U0iIOcGB8Lwq5FZsmXWSEocRgEm2L3NnPUTTgmnyJPGBGA04hwzb53K/LzndWzCIDGIi+dxOJV9C2cq3AQ2BFsYZOkAIL7fo++O0w34emjzUVtbmCbePltzcflZMpUKsJCRuSVqpwFQFJo6xzGeM0tFib9Y3bRjDtgytIIvCCyVlDmfaLAqDzbM32OKx2beO/tqBOOmUtI5NvzfC+U9UyD4K+Zdsm9onIVx+nLNpnM56et176AxlvtDGRd3lNc2ogCYApkAyisWySg5eARAMWCYaQ1iDqwuV+xLNgb0xOwDRlvJ1EqHsuyRFZDivs73XZ6Bue9wH+U6QlU2b1Pvoz67trWzX8YXYKOeU4uobbYdmYbg/SEBFsrXSEs8z0GH+f9zbsb84Bw08/Krw/scOtdfnpW1Gknte5QzBvMc8i/N8fXPo5y35cwp7+jOxQRnWH0iz/qSw+z7SPN88aBtGzDLyZV1vLBzBibgTOctmBs+TqEF0dw4mxoW5qwVfsdi7gTAs4CJZHFts8+r8N1kCbiTberAEh1usuEY2ef+w5S5hfXT/LuZo68hvDim7ZF7eOgSsN89dckHa+wyy1YKXHQ1gHVnUCjsDC0TxBlVUx9yv5G8NzUwrroN1GpwpxjZN4OAuyGBPAkQJPVO4h1dVNcdPJYET82HZBbCHQCMZI8s0eGB2H9W29Abua4tC6eaYoTUvBrbfEetEWLDBNrYlmpvkBnAfaX3dS/I35f9qqTyTpsPxQ6Ze+IChNZ34vMvc3b5mBmS3dFHOF/Fjqp27qvLXjyb1zV1AJhAQplDX9p9ccy/PO/LS1zsJabQ1rTfeu+4z8v+rvdJu1q/PCMZiwRE+b7XCg95Vo3luwAmmzbAnpdjRNvi1e9/YDfkv1tze0UBlg5MJziCrF96848YJWFjfNG2IJBAHydTVFqkypXPcr6oQpqFbz2Aa0vSJtH5XbbvWqkBY/39i2j+Hzm+r6Ly84/qQMEP1s98wMhnJhOgtmEYUtfhT1g7S2lKtsFiTwubd6kSAazz5NV8YbD5v+diG17dr7b1D/r2LwEoeD7s4fmvcXCAh1tExM5f7nMxDy/BI59nlrIC4Is4nc+RqB0jPkaHQQr1NXLBvQSZ34a5l40MhU3DGaAB3VPESL8//TNvWx4YRrpqd9S7/f7M3GRWe5BH5NETkIhFmYwDpkU0ZMQ5KxNw8VWEMvouo3e3EN95OGPC7lHVok9DqtYKXyKkZh7lTKfIMto33nYvc/ZZkEtGkvdtXdxjGrApyFcH/vQSgy/LBCEWKsIhPc6pYi/TQLTIUXeDLu5RxX6GG83jvuH4ZUN7jMyfdOV4F67b/9tnskdY5YFVJ8Yv7xEZ6xGN06QxyuMEPi3ZJ+f/8AYKbw5xh6R9di89FiJN/u7DmQU0XGlIhEgl6c7Hz3v25dh9I0+lb8FkuDwP6PdPjJ/fYN9u0N8O4Dhh77dpzCdghAADHKA7fo5I8sNVxPXRgVuDbfDSZ6po30/oMOjfv/v9vt2B4aXC5PPpjIHQllj0NoLRgc/DxzAQT/n9EyKC8dMbsloI88V/H3N8eVidA/J4TsRUPdrPnFphdOe3T99H7vt0/qjJwnlKuiXnaigaE13PSh7n6SyZy7yVMSKi/9Oci+eIKEowqX5+98+GujiOMw3VZOKQNUKjPas0tLkffP/099iCOXCeId6o/p63zSs2jO5rNp6ZTKDjnCUpVWceZ7C/bG/pzOrnATkP155gOlDD9HoAV7c/Q4tExDUGaIQ2nfMYiBKnmI7kpg7ODovouybzRaIaSoqVcu8fPXUVkklzcVqFez8w11JUdRlvWzoi+jgz7/pr+d1wZp9njrWps36YL667/ydn0KU/zymqmw58cx2CzEkmgDlyb8qzgEJ/hf5OXzbT9YBJZ+Zez0iiyNw7m3pp3ivofXr7ZGu5p3h1HJusNGCCUQTGWGJrhPNsgD5HOroEEvT0HPYZRb3cj8YS9TcECwhmAQCkBgTf6937ncwHeWwJbgjFb8fwc/njMfUb3mJNcF4OQNChxzTYEjx+nPOsy4ClTWG+0HWa7C3gfN+SUUDqvjXfi1kmUs+wSZ+GsQNdJAV6o6BS7Kv+j/YcaB/Dlf7B9RLPGAY84t0C7BAUVs8AsAHnO0EsuPyHAmOT0DVQSAe+dQfA23fmMnkU3hl6LfUM9BzQjwPjfUe/NeijBwPN25XClCciXy7mrwrap1fOGbvbVP3N2zBuCj0tmS3J5GyKc9cAYHy/GM0rQug5cP68xz7jkf+xCWQIbLRMh2JZablEIlMbqNrHZHRU5s0+K4PI6c+CCM53f5aeBntOEAfDgr1TnU4AB/e9vqaLFDuP7DJpoT9VRTAVyRJLxqPZZDgEeKmf5wRAFICVlF4yyJgaQsCytIWVnij2KU0mEM/oZmXE0cnODrOln/N3FcylL1MrG1TbjMAqo/1A7mVfWFy8Z9Npk9Y/R9lbXxOTOZBC4LRhzyP3nTyvEjzwAbCwY2tJYqifvcbxr+9JsKEGv2wyjlNgUN1mJ+uKLCgGBeS89HEAZCncd009VZl92hRg0DQCo6lzwPa/uqpTLmwrA3+xligUTXDiOJ1xcNvTFmMVjHRgH1M7zfqASNgs+w6R0wMIyQDQBCd8bZZ5F+0zpjyKAMNZ1MZqaPsWbQfExmRhsO3A3A+uIIEqshKCshSjAhY2RUT8J2AQdtuLruRnFof/ImPAZyzCjwRijPYT+0JXIGV92HxGvCf1IygWmQATP/8HIMACVl3XdNgtWakCWPe2y/WXABRgfsjbLfLs6EzTUAfAMkuMoORPggd5r5KTpb7Q7Tjd2Q1FfgBf811ppDK3zkLIq/bQsKSVWooyhXMXgykjaKdjIqIJALAee7QTA15mpgycbwCIRRrOy8HBxnS8R3Qc4HSjWIBXca6lBu8IA1zEo1XP8jf2G9MPRFzsCPHMtgUIMZYo8HJIMDp3k2mIXQ+ZUd4F5X0Kmiwa9LNtm7XY4/1s13w3ANOwrsh3Sc9Aa7OcWhWAMjrjHMaRz83xIbpMdFCkHABRgqpsUmJujPmzfO5RYVuGJRCQqRFRdUKOQu0sAIw1V3EG/CAbQwEJIGSjAGBULThHUPOCRpkAzzQ2MlLIvgoaIKIfKGI157O5jggjGIXxYKHazdSD5cCrdEI+mwKeWuYUAP3+wJoviSh3qMBW8uA5JiMO/l0itQk+10hhfb/7XH4c893DMba3fYIpTT2VoXePgsahklTBIpgosenP58cr0PApEZ00OFitJfu+rPvcewINlnj2KxX+EAIF1yz7kiVLVd1ZrGApBadYUzzHReYciHUxbhv0cFpwTTsRk7kWyhi4oevOGXVaFt0XUm8jCpf9LQEW1PsVZy0Bgo7CXMISVcnnNPHP9f71cBsANsEIR8QRSc81JlDskT5bQaIcE+5PIdR6juL0G5Z86UbWRfw7oroZZRUBTld+p2hB7kUW7J5uM8qVzC1/DiTy/sX7amHocG+6lsmtPxfjhkaSO9hLKoJOB4Q53SZwwLMrbMSZeUTKVx1rjj9Za2YJPtfSfktkUuFnqCLywC/GcpxvEpE2jvkiLhoGjqQDoHn+mMBL5wKlDKYgVCWnrgiN9tpXQM6BrCHvQ+HH6jEit728zhEsFYl+68hzRUkrjv2VegN6GHAa9CBQFt9XajFI6DPV79boKIKlFmd6tT0NDvQakm3rtolN3YDY27SPeR6IAOLlDkU2L/fYBLLHXO6ROx/vkFoI4mVnnQURa1Y1zxA541w6HDhcqhDYlZnha3YyhGSCWDLfj+NlzVNgpM+UQduAWlECQ3I++pyEz9dcJwiAzZb0qnZwT49zSUv/h3OfpRQFi+7FoqdTnFCmtH2JFldhV44R35XrpeqCEHylP1jtWS3R+BxXSYA97bfUptGiTzLfL9ce7Wy2j04yz6/6nOwAy30nn1/TEK7fqTbwc6zfqe/A/+c5PGyWkazsVS3jIQLYWNMU+P6lz5f2cD3lO9M+GcnIBSztw8Tcr05rAjNhd1efJe6z6AHV92SQrLI88r4Xu9oun8m/mU/gV9FqFQAUZLz0NzAdaYJVYTeUD/ieQOo/279tWGj7Y4pK531SrLCifeWizzTmQfVDTQC+Sy/fjefM98Tsj3qRmZmpFNdmSIIKX5zyF9H8ZBK8biX+LGUg25hlLCdokO0JP+RPryu7pN4v7rmUCr4CFXGPpc1/8ty/CKBgEeHc/bCqizryJfXwXMgUzxmYC/PLIgrDOtBPeZxu+KliMIp39DQslnKVY0xBLzqmhrlo03FxhM5RxjjYRtyTp/s5Iucqoqm3ghjFgTeiprcEauwAh8De2oxyMWf0tvt7yPq+VHyvn83FdJwQ9TQFz9XV1F54mS/HfCzeQyWAmDi0Hj2jZJzkzNlOEbH75ig/+7i87wKc0Pim8w+A+VDp4CVCGws6KndkW8+nG/+Y9Y4ZJbP7DaLmeb7iRpweIyOMEMEwS6DBiC6xP66LJw0SP9DkeXoUi4scHj3AMOg9SjodYwUxysbkTJVeItNw9FYRavrIfEkMQ1PL/nK1cjfOpO2urRBzWL6fmTtcD2Hm4VLIabSIzBiNQERe75bRJA3FcWUuJoGjpp6/+XjO+cDlTOOIgJT53AO1R8ZIloD89j2iundQbG5wHKn4HpFkGgowc4f43vx+kb9um6L/dIN+P6C/fXcNj3DSXURsS/0HOSdoIGZT9Zl7x233vMyqgXA1QJ5HRDschEitDbPJ2gEdkzKPinFpYrNPQ3Nk5ucqrJX8VAJ9wcBIxf8R+X+fXg3D3nbfOz6eX41KiYjx5mPf3zfo37trDsR651oQliCrAY5Wo0gskabpRIBpOmQEcHw4D1qJ6MS8noJm/jlX1y9pV3RcwvAZe4Mi9Az4bhVYb4LjbzdIN4+YBmDSf7p5pPQRFQkYMaqGfzEAfQ4OSJ83nyC2lXODv7ei2SKwZpCgrYPPi3eXo0ODwUBa92qMWvq/7kiWdLw428jSWURtq9F9nMgUJvizlOyYt1LiVQOUJCME7rvJZ2jsvIWhHpWMRij5G0UkAW8fDXh1zQI/D3QGB6rDFQy/dARHmaOk05ulZWYqDtYGQJBitp6b5f+/qRv+KujcP0NgmRFfswB2D4s+r8aS5HzMlJw+MtdYzOeTpztE6VN1Z1TNPHJOB0HCOT4RoDKSLQAAt3+c0+oUZMpCFTs832WOf/SFdE97IHDZd2dMTMd27jUsiSjBCvKzj86qj62cKP2JBHpG7C+2aRANvQIB+J4m6MbIbLDbHj1ZNxbsCOn+/mS/kXVmxVHSDAAh38H/x3IcLHQNyFJiRQDOS9fHciBdsPle3XuAwYrxvmPsDf3dHahGJyX2fzlmn+Y8ecQ4Vqc25gdTr/TZc37OqCN8Ptc0vwImLJo+8fkVLLAErgiI599jr3GdnmIHEkyIzyxOwTYDAGIGPPu61/W+Rt4HNVos94McF4lIbrWZ+1y3IOrT570rWJ59WYDbdLK5hx1nguYpKL4XRshARpDzu1W+K0Aqo+aVKsTOVW+GgGz1HYodmufZMk6aaQSemiZz307gUy9AQdnzkiHVc37i6hxWfaXcnzmuxQ62Mn4l2OEVD2ZqcO0TM8MiZngBSxKgBRaAhu/udk443ldHtZw7ss1crqwKESkAWYK7RuNnB8U9SkDqR/4r+6xUUcjADPuKgEWdczoZDwCmfXct18jUB2CC5X9yLYDHq1SRykp46ewbfpQmUe8tBAKqzR1zfumb5d4TlAEC+GBqcbUZCpC4pADHPP0hoBPXXwNQiA1jRs9C2bugttUwdWd4+MazlLMZ0+FibrBZMRhHCvCoOd0bLNuk7pgL2wPk4k5niptFOO/WgPNvb/PQOd3ws4E4oC4GbxoFM9eaYnJ5GFB9lmBCpAWgRwRaFbPYvLlI5J1ON3wxV7S5GpuRrsFN0O673/9ZBACCRgo7Jjq5mZfBAZaoHum7ctkYPRLRp0jZKLTRaHcCH8NgamBd9y+oH5FkOhcU0uQBXdotNucLzNMAbAzop9coF6PxEQYspsFaLxclQxHMHJNSCEC2YgATHHjbcqzFgP0fzy/3/aK8DnjfknJb9xfzyI5+lrHh92ITOH/a3biIEmTjtgWdcRoYdteZ36uMngKAutjiw0pO6nSi9HQBpBSLZPrAFlFxCh39/A3y+wfw+fB7t+nkyDMEirYWfT2dcIopkkXhDodTk0fqWvRJ7d0bbP+WoFlGRcPAHPc9naeqCJ1CQeJ063HfcP58w/6PB9rzAJX1SdtLYAEIR8tTJ3KukcUjAtxvjr4/ECKaOinmtS7yBZX+kuJTDQU6i3WTL/fIPF+K6KnOQ3efc7CmN+R10pH2ZykA0+5R0Z/eUsDL9x0aS7Ye+k0AW5kJU6sCDpIRAMrSfzZzr2N+gYK0OddX47vuW17yseyn/F3RY0nHFh044EAY90B10V+YOZgwprEkdHTN1ueXeybFm6BOt4XWbLfNz5nDARQ6XjU1o5blc8Bqg93KnGBnRKoD00Ckd8jTMqK60vPZJu8L4XnId2B6jDqlnIAhEPOjSUaKX5adZGTpkDlfLwYF+yTTZ77dpuaERBsDTNVg7YS/nf2RVWFKf3FOJEOL40Mgoa6PvQD1dX6UNlY19+VsAlJjgsLPHsWNvb62pwNyBPhbmQvi7TBxEEMPf6f+7s65NXEH9hRsH76XsKypCy5LUvkBeLqACvTEBAK6ZV/YRnuB4AOQ1QUIwpQtpz1879bnyDltLc4FOvFcR2XLcIZaD1B5AkY+V1vmq7tQMPUpJqhCMIFihZMN6BPAy9c60C0jqmvp3C+wuehxAgccgzP2C87dMaadJDJF9MZwcLO1ZIm6WKQz8bRH+chjJHtwvl/0W/QDAP/+rSXAn6kbMtk/Ly/u67tXTRKd9sS15GzqUw1Mp7We+w1ZnSn3GGDamJyrXM/D4DknMve5i5i233vMMpCX8yo/Q+X/y3st6vJ5TnY/G+mUcO8fRR+mjywLj9YmA4TADVMe85wE5Oosx2ddyO9iY4btyDQ377+wfTnfL+zmBchmQIbjwX2WYAx/qs60jXpOVxAp5m62WSXLyidFn++SZ9pYUzOu9jwA6kcs5ZNzzxr4IQMA+PK3BBOYNlDPkDHHiZ9J/+BaopB9YIYUYcRAVjMBkKUqr8AH2837MIiSNgbnYflsj3exMR3gPPsHUpehXnSw+d60c3LNXEG/FwBA6Ter71y/c3keP7+ydcp9x+U+BORwARVEVt2F+p0rkLH87WLPJUtWlnm1ACO8T+9/yo74iwAK4cSJpABRGrN8sXPk/GcEKyPsZcMVOnp88Rr5GTNn06MrY3WQ3cIu7ZrOPXoYWwQUYiMcb35YJcoeBqoJ5mBGG1KMqOa5dov8H5v0bB4IfL9gDQjZAuUAMhH0e4M+AcFXZ7xGdckUsJumk+YG46yQAG4C5fyX6LsJisQByU03N9EyVmRLVCcCmIfGdfMHkNR5jllFG7e2quvWDYZIcNP1fuGQkn6ubBsBpuIULW0JKnNSYzlPxKONjJIs47Bp5rjq0aEf57wP87rHpZ+GhVG0IcElES/ZR6OFSuPVkA+atP3tBoN4GisQgo0RdRpwdgZBhDA4kgauYZiZ58Y6VXsa3xoq5/o8l0M2yzNGhNbeG/TxnIeLuJGI02YeodV1Q0MncttLPWrpUeEDvkanwCHp+Q36IdCiDJ19xhzYS1TID+TQHlE3wJ//skH7QPv34jTv21LpZSKzCpzIiL2DBoyguKGWYnysOkAnr27StX8i93AaX+UQvBpo1ysMHBpbEiCINVn2LlZTyHnDNd4l6bYCQEmvftvQCG4ep4MVwyMWBkxHV2TRm1mMaHUwSD/P6XDX9y+flzhEmfaTBloBbeue43tQPfB5b52GQKwNCSeHJekyT78PJCOiXvWeV6e5nB3ebsx9ikbk+z6NRQIyvG/cgznbngsuWaI1z4WyD9muAYr0mT8d7bKIvLshZ57a04NtRqVw3ucM0DZ1M1AAd5mgwsCsosS84wJyyTlmKssPLuojJHASZ80CooeTv8xuGvcUc63cfZ6z9QoHfVlbpl8MbepkJDhZ00UYjKAxzn3kLOPO9rOv4/7y6EAbTtrh+Z0aHzHG3TDUxR9NPT1CT2cWsFqAFpCazAQEwO1ReWQaAdPm9NkTgOB3WU3BnUXkOFMjCOJ7sZ5WxljLM+N1eS7kL8KRJngW+gZAfCzTQSJiH6w3F42GrweL9w1QIQUrFe4UB/vASyPC1ybib+I/5Ry553AcWSZRpNhZ3OtFIMyjX3RV/B0J1jjbMoY39HfSpolqH3pE+msfzu7bFNjFj6TPc6Yv8Fz80UWgbvPzwmIe+9S9OONk+likOwEFUMFcuyNsXTW31Sow0c0j8gS/zSBj2sFpi13BAe5rbAuF566R3uuVjlG1IX1PNS3OCYAZOZ5tqQyQ5fPZt+VZZ3G+y+dy7772e20Tv3cNWNX25xlcbB1Ge1jlo4KMI5it8bt8HzrhmH2RNkENKBA0WN4nzr0+Yj/fvvYxMO3k65n1z14qq7O+7Kkxfn3avv4jPl/G1nhWXO85yrvD5xGd4hzXl4DC5XeRTr4463QGUxxxClBWJ1rwB/2yfO5ylXbl+9SUjWsbf3AlSFOd/1xPK5Cw3LOCAoUN/odXBVNezQe+E31CtvESxP0CJtR7k6nyg+uvASgA08qgAxQbnL1HGCdokW5QWeRUBqhw21cksww+Bc6oBt8+DhcLet9d4T+coyw5BKzo8cCMnhk3/AGLKOn2j8c07tK5CXG57/F5M3eweGipTsOaRny9+KytAWhzw+nF6N43F0/bikBgpDWk8pMZ8IifVbBL3hN9tb15qgkNpta8TY/nrAnOqNUZ775vwL4lzVAOL++ogL/v4/i6KXCSa3PnrJaoBOZG20tf0PEqBjl/LuwEtbkxX4GKmEvJ+KiHBoDt70ETT5r+i3bn+/t887ni9xk/vTn1nmkT4vNFv396P92DtgfMPq/3F1kFE5W/E2e5HCFC01yYUo7T6e5o2H4/Zu68usPdnq5pQKZM+35kNNmaoJWcZv04stwjxSGzhNbRp2gkx5rMmvgdwom1b3fY233+LfrT7ruPCVMDrDABikMtZKf04WDB3/xdjn999zX29wdwDDQKjlIQK9aSWJSD01lqD+c26YvHGSj1DR//acf//b8B//J/vON//o8PSIhFshwsPs+MRFS6ZAod8t3pjEkD3oBU7eZcvmoXNAfEsG8u9vkcU/iU36lzjj+vJfI490c4kfWQruKoW5s0dgpDAlk1ZNy3wtiZRpKDBWE8UL+GRmwr83QLVe2jz3XXmkcqjxBbjfJfXsJvLACbdSwshi9rlgcC9z6dY40+ReUAAKP0T+/AYdh+e85ygWHUsNxtVmGgEc1ntm32Q0lDkOFUd4igf9t8S2oN+rsLZur352x7n84JEIaEWgqhyeMARgtwWBfvmmXcBt93o0gvprNTwMUaPc+IEjApna1Bti3FOqtRPd72LEmJbmi/o9yTVSG4147QCPCzSi1S9fYYJ7UJmBx+RunRU3iTqUy+z2FWbOIeTucVhhGphGOfgsbL3m4GuQcLItZs/7kleEFgV4OF5vXoUfL5C7U6InFcG/IR50sxpDz1SWYgIvZK6hnIiJS6TWI9BSCLge0791Nk2oMMplRo6C0MMLfFU/GA81uID3bvHKXtUxw6F+glGIUp1BupHdIN4+bza/s+kqHhzv/AQDwz3n3cQwjx4fN83BRyWFL6WcIVgtRb2T4CHNvUx/zp+5EDJjpZSWKgqCoCzKRtBYm+ibFLR9v8PSbwUsZEBbJpmk3W2qILkYGY3gG7p/3AqjU8q8n84JrIwMEDnqq02QQgd7JI5r6VFQUSKLZM/3KhyyjrHOKHKboc+h41KJEgJJCMB+qsuJ0kGM37P9N/+ih7d9zneSKrU8UZYTFXsgT75zNthLStaG9X55CXiIvwMarLIIuua8X3Jd+LkjbNkstXJ3wBO/LNfb2EDhI/K4fbIUJ7kfs2rwRreIbFs/ZtMrf472wD3Kl6BQTxrKFtzjOP709K/44ZsUexSYMdSGbx0s54Pvs9V3QFGIblfufpFTbv8yMwpIIYFufEWNnWZDAAACAASURBVMfGR8dmPj73d94uABxRhWkDBRD5rIXSbwNLejAAjA6c8yxY/kZbjOfiNe2nXpwvydxw59vLJhpQNBu+OPZ03Mt8lmRu6vK5L8BAAdEsmAHU6BHadPH3K4i4MHcKuEImhjNldY6v/sH7s/3XdwJW36GeYzWN4sryXr4zsh+EgpsViHjVluu///oMBVl/8v+ZFylF+ZXotrTMx7kaATRA+f81SuzK3jwEMDfBUQy0eE6KfFTUlheNR+otcNNBOFOk/pXNNB3OLyEyrPflwqGIYyvVH/gx1YwK5QZbDMbcEDXADm7gScEKJzWi/3wfC+qPnG3d7AqgwneUk45897zKPRzDcIJfomR/hqZe/3ZFlNNQn/+uIjnLJntFnmskMACoBHkYASlz4IuSfF14xSD2v8fv7MV45MLHmo+uwVoQimpV4+ZF34w5hsJypPxsXeP1eWEkOaglnmLBKGRJHxACG5uuBwLXzfHinQaNxeaH6/li7ICVkaN7HP4vXpBG4DmAPYxqu4yhRKQ0HHoZAMJITA0MglNsw3nEeAJjA+xvB86f7g76kd5f2jvfz/y96vsIHcH1cPpyCLyah2FUSh2j8veMFpf5mowOnRHtZS7H2vaUqz7bZyvAmmkvGXnhvmBgVCwjlleDwAyQ5nOXBg7bXdgCWcWi7kNSWEAZVdSMrC37bo2AEXCqY6JIlexlTpQ+TEGuKphqmJRttrPe90oDjDHNUnzDnTpr7lSlBgTvcaUQv7oGMupPkdZ03H+0HVbA5HqGX+fai0hP5jpzfy+GjjVNZ1DEzxo3wIpoL+flDxNZ3XYVSFaCcGYA5wQuGhwBCodjVhRwc65QOPNLqbUxacvWumvmxN97VAlgXr0TFiTPxhmlsi/9lpTk6Gd3bFGcxHgHnWBrOr0xRrZFWcRogwxz7YRnMDu6JJAwgxbRhvIdLSyD5eJWSZuFz40jTwzQzjnNMwlIHQeeSXHeZFoY2zoMuLktkcyGeo4RPGVqHPuuD1/LDWlfEBTLvosUg3pGLtEw2juG2a8ikIYoj7xMnbSBFqHPJu486YtzswJxwARgKDDJ1xFZl6G9YMe8uhI0oWNnWQbXGWSAHTrbSTCKexHv0zHbGfvc12ch52UKcdo6pzNlgnO77o9sa7wf970vJe9eUeW5l1RbuICb+Zn834hA/8jeu+5f9SWLPYrRp91T9qEqjkkGsDvRl3O3+AGvn/cHv+PveabxTP/BOy1aG1q+DywBFGrtfOm7L/bHZf5d0vteXSl4aH19ZrnHlwj0Kwf2UqLgi+P+KpWijMnrxv34HPn62dL2a3C+ggk16Il4f2A6vrzP5XxfqiJcQIUvAowi0fav+0H2ZWVMaPkd54LJ3LsIor1i/FyZCVfn/Ud9y3f/EwbB5QvzO6/s8XykfZ0zP7j+EoCC0+9o9Phmcf68Y+x3tA+PIGzfoyMj1cBEUgwwc55YQvD9lgZc5hjT+D5OoDtTAd3W0n1HoL6M8l8vFYAlevjfQBpfYsOjsex0xczNFPHoCxAO5AAOyxy/ZEowt3NrSUulOCGju/btnqrFEuUH9eOYDoUWIINVEN5ugUxP+iy2ELUSiVSAMlm3lmkG/HxGkrcOOeSLMY8jaICsF15EbzJ3+O7VIhaQAlgndHVoeB/+m0r4qWVxhl7GHjnE8Mg4kWyzlTFBozUikEkZPmzS2Mk2oSO8N9gQaElZoCGqn09HH++7R06CFmfvMUa3DakSH0Ylqbj9fcuoWYvIuAW9rv32nHOZ/XTbixhb6f+I+On3Y5aNUl2UtHGMyFN2ocUUrRoG9Kf3YbsBqujfQlCtadKuc5MKYVDOb4hk7v3zP/+MsQlu//UT+jwhH485P350oIvMyH2sY33Eexgwc23bco/+tsE2wUZhu/ibPt2RtPsO1v/2/EYX5nv//0786/9+w9t/DPRvN2/748gylvbt7mfCR3e18Eh1qsyKul7zNYav/YV+yYiKBM32OCGPp5c0fC/aER+uPyEvKkkkCCiyRMT8/QLcS8M6DtVhsLPPPUDV1x2f1zvkN0+lsdbckeG+1dT1KPhONPh35HxYKP0qqGWp5HOyWmZ1EV0iHQsoOcJ4ZtSkl/l7859ZmlKjusd7iE7+/jnv2Vo6ygCclSECOTTTFBycbnM9BaDh+2Swr7jfVeDZLMvvSp9CoLZvHpk4CmMimCGMlMsRkcBNYdC5v1DQFcjPjp92MEo8o+jItSdNge6R2dQRIvuEc27bIPVU37dSkQh51lHsbuxeH7yfDdIVGqWSAWRa3/mvb0iNFzoqEoBytHPs3q5x87QhfQRgW9Y6AavFuYz9eACzHGToKpgKxs836PenR3lZMlOCZvvtBkZv5XRRQI30xCwXmo57OFAj5t1tD3thOrjGagYcw+i3vIcIjl82wID2HKjVDvS01AkQM+jT0H6LdLK9ef+0CVzr40SKP57ie3I8a/99BJga7d0utoiFQ0UH0yzT1wCgf9twvms6zP2tQYZiRBvb7wfE+qJbwipaBAD1WaomCFJnh4A5bRXZ2wRRmCYIYMTc6m+ug7DROR9Ihgf/LbC5DgOAGk09EzDmQX93MeH91yPBmRE6ECYSlWqO3BNhupYw7s4aaVHu2jaJFAgFsEF2gz59f7TCuOB60WMyWQC4wC9Bh9g/KNqcYEGy8vy88BS5YKiQDVH2elHFYOWiGkPpw0Hz2PvHrqFZUdhl3GtptyDOBd2m1hXT0HimcG/H1KXCeS4OiVPet0yl+iLWR8ef+zujslsI/PH9+JkCaKS9WdJYZd8wfn5Pe502XupjVF2geFfxJbECCUDuy4sdOi425RhfgBc7KVJZtFk49vQ3znU+ZH8zvSxYejjO6Z8kKDadYGu2jkk+r+ecoEDlDAqWtpjN82eEKKOVe10YBi/TUOJeUmj10hSGLedc7R8BMqBnffi51ASmOzLKz3dYWAHlXjbWecv3BtyeYEpk2CvXK8GEP3Jw670vzIZMO4iY7NJn1++eJxYxy/xImfP8SVbIC12E+e/wS2lHvQpIxVhW3Si+t9AWtjJfxphpEZX1fbUnI3VJIiiH1lb2BDDvwzlIMDF+/pEw418CUACAWdvac9Tc0TKk8nBS5MrLKOZiJWJeUeplQqFE/oBEHYO6ZYio/sX5qcJeKYzCe18QJquLkm1Vm8yCuoC4MRHwyJvQcJ5aCZ7PHBMmcrWZO5i5qZFH6+8vkwJWUFXjAftqogEZtUw0Gpg/i/OflLU6oVFAAz6jHB7L7yMidf1+brql/5dUlqWPZE1P4PO4afH+P3peBbzruFxBEmAe2tcNEPB+V8088y+XhVccfzdgGmrqBloeaN1cB6MYV1mWzr8Bgmko/5EtkhtvObwy8lIMzz9F6MOgsU1hx4DSYTObAJ1qRlScihZGJ1kOXSalsuby1/lXqe0AMtfODCIDejgYI4y+vTKsu831PuDrmVF4CYeiUB23z473f9+w/1bLjE3q3tQJKPOO7WQuK4Gfy7qtYn9c20ueamWgkH0FAIeu96maCi+iEVV4No153pd/V13nPN+lFwPGFBRoXP5j9ORZD0W8NmiWPXZkeagaFUTpXzojC32f0XAzWA1HxGey9Bt1SlSiHOMEDf35a19RDZ7vTPuw9sFLDZVwqpxuXA/5mG/8PgHj3Ctlrs/SBvbNl71jAF76rbQ/zinXCRpfDYo2x3HZk+qeW5wLp9aX5waQwM8IGRNWzkfOo+2y98ZZfM21z7bz3oA754alf1OcU4EhGoGbuF947UuJWwgGFLK3Ul553ffIIFn6Gsh8fuGaDU0F/4enISxlggNI4PgZ2YHpABqgNqPC3rylDzw3P2xJueTl8thnH5OdNsxt7m6Zp2/NfRk5eDZguVwDpYyhIewZ5PrKkoZ2aW8IIebwRSpHggkCv3ftq1KtwwKAmQ4x1tLUeWNb5paDfcE44+O5P9Q+VW9nMhDJOBEHoWraB0tpwgRmOvWlijNf5zkMUZUr9vMNcx8amDZmfQfA07PgDjHn0IhUnmlcl/MjJ0R5p2CYCXyskwFb7MGqqZFgk4iXGK1zuzjAC7OCa79UGsg/mZVUkLKPq/oD6YzWPTQd3KKM/6OoahXE/vL31U6rItFLudOyrjEEYn2uy1c2S7Wl2bZ65lWHn337ghlgJfUnr3quEOwYUZXpzy6ynq72dbWBrqzbnCtlDlY7HFjAosWB/PIcor9xjx8xA64O+dUGLmMtlz4TAIv2gkYFDAWy1GON2iN8J7kwAF7Z1BfH/aVewR9E1L3t870ywp7nbKyNKuz4hcmh87sE3f57Lxt5rn25rkGjenHPqn7QtQ+uIAR9sIv9sX6n3HfZu8o9a3sqMJFN+8G94/prAAoapcA+XU1OT0C+PyHnwPm3Nz/Q7pHDxXVCh2tvHu1h9IJOZmuew0vjrC7GMLiNNEoAcgLjfUe/NY80UFWZG0PbXEUfWFHHIhBle4uKC+F0VAXtPqCfZ5ZWZAnHWtUB5Z3OX+4edTk6WH2CUXWWz6RQk3x/pChX9su3t3UTNIP95H0pn65G7oerJoKep/iwKZYXVSPkeczFP0qZHh5UgHuW+wbcbhdBIJusARrjF+NvoShJMXp5QPLK/OBp7LJShB/YM8orIbxlbxHlJy0zovPpsDUvm+YOt6OHtrd5CPPdcyOiYxPU/eMEEFofNBSCrSHdcrx7MFQaox0qkMdAI7MgWCvL+7W5aS/0cUwH3pob5/o9HHiW8aRDNnyeyhnR8Lcb7P3mpQL7uaYMjYH2EboNuwJBMhg/370ZD58z58+3WIeAigA60oE7frlhawL9f/8b8HaHfbvnO+ThTPrzHsJbnyVXOtojn6ezxj4PyNYw2pTF16PDzkhZ6WMaHRSQDBYBmqD/208wEbTvT7R/GH46nc2hv373Sg1kgeSEFOA+n+X6KwAVpuU4Ath7m2vgGuV4v2MRvTNnDbhqr49N/8lL9zWuqW4+/mZRRrd7TedCAV/AAxpDR4ngby00ZXwf0c8T6OdkFVRRUyLdEZGhsTRu/vtWlPD1eQIPb1fqqLQAkAaC+dUjZ3eD7BtMHBAa7zso7pagz6YwoUaFTU2MzcuR6uczCCqTTdSjkooe3UGr99taVreOX+xf8nnmmhEWTOH716gTsDKhThfBZdtsn8ZbMjcCXBv7fYI0QkFDpPOQFUmA6UTpTGOTyDfHsxzcZ2jRcGxummcHAB9XOhUtoli3fabJDWTu9rJniGa6g6mgffd9imeejNBUUcnKKfrh0fSxF5AOmCAEgHYMjKEYN79vj5Ku2pHOqT68T49fbgHuNGhoDjQAGOFUt2L83SUYFQp9RlnV2KPpgNMpycoF5vNVjoHxvsW/p+ikVUOJ66a5rgRFk+loa1QVEvg5df+vA2NXnN+27IPBdIA334O2z+6Aajji/c65MwHd/raB5XgTtHhT9LeGx780jE3w7b+cLsxIHQNfEIAI+pt/Rk/L77Pt+hzYgKzOwDQNRvT7+54ARL+3yYAYBukBUsb5ZCo4v20Yd0X79D1qDIM0AQ7E2i/AV/SpPjvw7Gjf3W7pd2dJSFSD0HN4yUuJPgbAig/9pjN1MIaqRYUKr7Lg4EA6prdga367z9TQ0HeqzDXEegQA0e76KrF/OVju45jpKelIwhkCQIKhdn/ztXAOT6kpbJVMIUsHMsCvXZ0FOwKoEIHd2nTcEhjzZ499CwYFchyTFcH9ZNPQXIkp8s3PMokqImlrsZrX2WGfD9RykItDy+sKLBzPCCrIKhA3hp9rAJIZWx19isSGloLVVMQAF/1cRZypcSapAaZZvjl1mOpeTcCnadpwVR8nbYNLMA4iU6CU408br/ZDBSYiHVMAZHnk0m9ydrBUpfQxz6TqdNe2VyCJWgqKmU7Hi07gcbqu2XlC9n0J9FkERZFV6gzGo7uUgqwCl9PJLs5sBb+vV9XC4BznvNu2AELid3tzHQ0cSN03MwAD9oiGhR3kEXPOpcsZyesolc609F29mJpllkHdZDHU6gRxdlvY/1PTobAF2Fdm8R5xJXA1G7gKjlqCE9m/Mn/3pZ+vV73XK5ZAef9M7eCYiMy5ohtSB+LazsI0IPuD/ZT9dn2/YFf/M0KUfw1AoRgmNFhyEZi/yNgVMJ2MgULZymG4ICos6eO0tZb0DtSFVKKXiaqzTF48y6mwYbyJOMWnIkFhMIqYi5lgRaborAI+WBlBjDZm+btKs+fFRTskn5nKx4Kk6qajAPgEIM0r0yCo5C8OHJrMaPOX8SioYV/7Yrny99GXTEGJheiicbpsoHngFqX+K1p53XCzHWwXNwcJkT+zpfqDXFDBFHPjvxFOYkTTl0skDYBs64+oUPXfoyCyOd+C5pqCZBwfN1ZZE5y0SjHJg95YRrWOSRPYti3IpMQmNump07hwRwb5TBdRu8Num1dMOPd1I+rmoNAdwDDoR0+ALn+OATuRAlx5qFqU5AsFc3l04P3N34OfISAjgolCx7ymiBEdPYJY8MPUgOmcZdfLTF2pBzfbCXXdIBFkJRnFnMel7UxjAAoA08MQY/pR6EgsWgYELDk390hxIVBZB5HsoRijLFVW5z/bxTkUBtbMD1+fnfMpvi89hIi4BijkCQTQMkHDFAW8HIqpyB7763IR7OM41b5vLVJt4mcY4ykUVsa/7iQ1BzlF8yJlp9Znn+BvGAXxPanvxDZS+O8aPeWzRGbaFJld3Fc4fmRrMZ95rOdUpQi6SOC+nh8RmDFEmgyQ0dClckPMh8zZJrjEKhIXxpdx3kfpTQoOEwjI+udx7xr1TzAgmTQ+FoyeUi+BzCmz2u8AUwzmvud7mAKQZr7OBDOaayiaEeXZJsgygFch3FFKJNp83xGpDdZszluBO8S1Dr0gz4fUuaEgrrA/ARUHUcis6Pcod3vOc9EOrBFg+DtpLUMZvxyVQSUzss73cYG5vp4nw0XMRnPRPxOgPQ16lptXh4+OLq8ABlxcMwb58jlXopevuciAs0UY1OCa51mvBLHhANUZ4o4xJthbMmnYRoJptb9szH3bRaSHN+1i9wHFbOK+GsYsMOck+0VKn3yZQ1zLiM+dl79XBgf7i88etFEmSJK6CFyrBhjWeW0S9qGqC09zDkMSTJKzlOA0A0yz+tM6MAEOKWIcdLZVfCwNba4D7tWV4MUzl7Zy9hf3GcMXavaFgfCVGj8drkxT49jW88guz3zxfouDJrHnR9AJLYRB9yj9Hs4ghSUBzFTMAARrBarqZMkRpckBZIryMu9+0MZakv7VGKUtU97lCiJcxeLr/9d0i2rPAV/GYZ5tugTe/DHlnrQFtm0dW3623vPV2Lyi2F/fi/bn8i6X+6lGW32v9/bGv+s8o7hj+jlWgIVIibyyKCo9vz6v9sWVwVz9lPLvZKWXq+orYNtg1+9ePveH2hCv2A9fb/THf39126vNmPdSXBkeCwvlUi0i3636jrT1+X6t+Vn6T7zLXwdQKGq7TtMkpS7y5e6RB0YaHTfmQkGyyP3Nl34e4Qw02Jsb+vodE+UVL5fGaL2EmrI8S8SrbspAGGDT+aj0WTcgotRaQ6LU1E6QR4ftrkRPI2b71XPw05kaA+jbl8VpkU8IRPvC4GalBUSJMAR6WXP50sBu0xi0hhJ1Qyl3F99hRPQReeGvKGERcc2atFFLOGtCP57At/fF4WHufuZ9AWVziXcmSp0bWAAGvacyvkc01Y2azwP4LErrZVMxldCKCCNWBOhhfO+McJlrUAATAGg6n8tLLu3k7xrLDY7Z1/dA5NXFM1OICUi17PboSIEe8zHWT1/c4+fI04+oroyB8b5j3De035+hCO4GkR7n3PAU64HO3NjQcjDWid8IamzpAMnHExIqhPo8Xb2eSDwdveOEiKCZJVBCUKz99vC2fj4AVfR//Wl20zGyosQ6tt7n2HZvzwPA48OReDqg5mtMQq2eURdT9bU1Qj+Cc2c4wCZR4muOEw+26Ke9sFLue6SOjDj0xDfmHowHSAJhRr0HINkVxugKo27fPz1Cxs8WsNP7XqG/R4WREiXL+RvzjxEb6T7eNYUiRereXclcPh7exsfhDuIz1u95hrO4zao5pN3SgS7rWj4OZ4ZcD2RgGkjhEC8U7tYmsyfGVkYwqNKxm33kxkH8PhxQasiwUs7YPF8Yxhx1c6YXWQOxdnLuM1KxU+ugRIrC4OS+J6f4+n48nVERY2WqnrcbYJ8AQNflPiaS2g5s6/lt9xz1jwNirqlDFkbN6ddnVFBp0f+koJ+uRZJsu+P0/W6nJgP1e+DnVuh7jFvzaGt0Q/t97mW5Z/H/CR6eBkhEfDUqIQyDShgX58gjjtG8FO4kY0aQKXfyeQY4ewuRwgk0yekgI0tlymkQuO4Ancql4oPBqw0AGV3PCHfsacwzNxX0m6JhwJ7waLExAIEEQ8Z96iFYLdnJv2+K/j6dcVYCkKcudGgCzY1aIYJMdZL3rQQwkPR4GQh9h+Frq+zLCKbF+dMWInbA9vtMz2BaB9kg1/Q7loscm0I0ziAtzjYARsQ9k8Ep+YyCWxOMWxG3DYDIQQgAm9tcerhGRdpNmzOG9Nl9fXLvyIpYLc8/lQE7PEI/4tzmPbn2U/wyLiXYTn/EMMG6JhiqSyUPCmr6+oSnu2yxJ5R2VSaibJpzb6m4EN2YZa+bpzVluhHBUsPCFGAliSEKGQLp046UYZDQn8noOM/VmAcpNBlpfHoM2HA2CwRQ6j80iYmCCbYcNlNhctzHUrr7ChxnNYaao35xOGRjwO1F1LoCnWNMkBTwkrXhOKaWTz3f8gEzdY/7r7N7N/RvOyiyuv3uFYT6nfpcEnOy6NckGFZALV7xtwyyLNUXyvfL56sg8pdLS5/aCyE/ICvMVQHJGYQYq5NaP0OnOd9nOrSSadITaFtSH4J1KHeyctfIe32mnR0pwKnyJb1ORGB9eJqTecQ9q3fUMYxnMC2GGj6uw4Bs44yql4BrspNa2FoyWS2s7rCtbmqWcHzRXn9Xme8agFP5MqyHvhRBqlfjG6xUb64B5pX9lmddwYQXqRpynYeq3qbKyL6OzQugZ62wcQEBslFafpb05/JsCaAp34XzrPTl0o+tAUoG+/Cx+QNQ4S8BKJCexLxFuymGbIvzLcNmbhrgL2sCGDIlYBrtNj9D1DIEaZK2TGeFuTKk45dNMZ3xcGJzwbXyd4Wj13ubUai4T6YoBA1T4j3ao4cB4JTtmdcnISQknsow3PAYb9sUyBul5OLZJjOBCyyMvS9iPTTEomauG6OxUTDdgn3WVtYGI69f0NcoTydBM18AndYc3LCgZAdrKSltzFet+byhgeHRN2SEOr9HoUiNFAUeLMAsDQTMxcYFS2e4OD+cJimiGDlgWbVD1d+plhqKvpbTgY0sx6aYImxhZMjR0+HRc8B6OEk8h8Kg83ejISszPYMRVoosBkCkH+d05GmYEGUViYO0bA6kVUfqRf8W9znPLH2VDJ6f3vKgTvDjbUvnzLpB9hbOTgdIR4+I63hzUKCVtWWkK4sAOBNQGG9Oy8o5HeUNp7CQOahQohgsoelrTHwuP7z/0Rw88Eh42SDVHR/vJx8f/TjXdQ6kCF+mBoQxnAI4/F1l2zzP6fSXuScicy3QCWwOZEk4AVbBks8oK7ZvbriOARwTRPCN3PeITGkiS4DAXm0jo9SkFbKsLrBEwVmlI9cXP8O1xLV+NbTyQDE/mNJpjbE4pwEy+8AWx0yCckinV8I5qM+S54n2uBxeI9oul3Br3ZeABIiFYJtZMAmKJkllqdGg7GN1cIOdsiq5xyPDsB83BwtYtz7ZU02cDcT1PQzaa5rdQCBqMf4Nbj07SGd8vs40uej2yUiK9TUrCwFya0tVpFcGMZ04ZW11AFDx83YYRMfcozLi7IwCRD55Un+3Mp7i9x67QA9Ah6PVFIHMCKLK1H4ZBgl6PtkmYpafx8CkxcvMYwfc2CPt3/agfwuc7j/ceRBDCmAxQEYRSY6bl3l0poqxvZu6LUKxMYGnKpi5iKK5M59iu8/h/hXBM5357frB/dbtD63A104tlPjsMcKucbsBMf9MLae9p0vM77DMpNrc7wiezjOAgplngu16eORJTp+b7bdH2g522zKgq4IZcRcfH304mFBp/kyTyTnDOTkMOC11M/zcnmteTrh9F1HMfmO0mX/3/9rn6emxN0SqRQFZ+M5sp+qMSPNv3D/jfG0fZ47fl9xjCiBTPDX2cVOZ8+DhwR2mA4kh9mBEegamE3mOKH/uARph/+gsyemDacEinayGBG+rMV/smLwiwJVVPKoeD1PuovzdH1KY6fBQHK8PCOnpwyY7IwBGf3ZPm0vIOsh5GPv8iD2f9pW6HWzD5l4bDMpZeQvo7xsGQZ9Yn2IGfC9AUrznAroBX4UcRcpZx9TXMdua+2UBWtj3ZDcQOKtsgTK/si11L6jOJW2utFWlROdt9qmI/1vEWQdl3FNvIffvEri7OImLXkL4CtIUFgZpdVat7MPZLlL/mUJRAJgZLQ9wggBDXZPDpi4Kq1CMeFa20daftbQinXfzFCMLduQEWkrqEO9R3remNsgyxsjPZD9c2SFsdmvTsc90jeiLSO24rqmXAEx9Pj9/BQjGWL672KH8Xh1fnf2ez61zkX1AlgGfRXAjviMDE6CK1GFqVRlLqP6BjshfAlDAGA4o7Hc3RlqIKUUpIyAcPyCdeS+L5AaxkDXAK5HmQotlvXQOXMfc+LY2HTTmY5fITiJYQcX6MrCKpJ0CfoDLOTwqnJ+PwY2/aRhMmQPMCg7MkX1OCn+/39DvDdsw6OeY9ea3kjoAIHOoudDGzAtkf+AsGy6NAd4vQIKMOpfL9i0jtIlCM3oa303nEj3y/aaewVLSTmSpHsHN03Dmfb5QlWt1g4j6Q8VLkPVAt/mewapIJ4oLjVSrC8jifYepfaAK2wNkIJDSB2AFnWsKeyupaHn/GgAAIABJREFULKFrkYbC2WeO+hiQgQTHgNh7z3nYIJSlGUHJspwxNyzSdfQcGD/d3SD7jGjumzoYwfcaSKcnad2PA7Ab8M2rAyx5r9GnnYbtY24y47ZhvDXoZ4fo8IjxMdIJHpuiHR1QjwLaJtDP+Q5j03RStFtR7d4yV9ejYyMj7nmdjAIqpAXaPLytoi6aJ9aB7utPzFIsTPrAoOHIOdx8jde64BLzgDWnsyLLbfM8YZviqKiHLDCjP3WOjNgP9isQEQCIcT7YzPN/PH3+vu0RYdKMEGaU5AxWkrqxISCybMuanIZNrLl9m2uNRiUwDSsejoVFIY/HPIyuICLZWgRWCnDjETKkUZciiCESVgXVJPKcLcDL3JO47ahNkOkakQF8/KsxVYwqpoWlDgVZUTc6V5ewAUFfID6P6XjU/Z6RrPx35FPfaJwWR3B4CpOr+zN3vKy7nC+hUr4pcN8D42mAUmdFPSLLqj4Ema4MEwknWeFl6orjPer3MA1yANCS/0yRO3dgNM6H6G/zaDHMIBYgxhaGPRQuloBcVw4Uz3nDEnIsd2eIPQ5wwODoybzzFAedn7fhivubTqM0viewPKsGQQCd8yl964xmjzmEHN+np2o1+B4xbupVChrQd4Wq+di2qDbASP6JJapHJo2wUsa9ZaqPPo5F60OecT7JPXUFfB47GOJngS6MBzCkIohUovElFcrM52CKhhoyfcRZF9GXu4NregwHXZ6u16S/fS6GqGzB1jFbRTqHhb4EphM3RlSt0owcc12xTCqgsJv3+4CXLHVwBsEcFYgaxruXDW4Pm6DCMMjn6Uf1VtbUNd0hByQeOb6CBQQblEwTghfVmdBVtwRmyTbsbw7ObFLSaOhAcv4HXd9Bc0ydpBDQdtBmRwrPcr9twYqp6YbhyCdAIT4XamDCPzvHJP/juXqeIaY9XkcZuZ/XiGmO90hwYf6M+9MBqeWXaw54ZcGxrdQzUI9ii07G49hD44WsTgP6vQBMAEwBPUpaagWV6PxHX9q+zT2Xf+c7hnaCpK1cnMTa3pw4sa9w/FhiliLo18tWVmH+mgwpjg/t9OvZBEzgQMscqVeNdl+v+rtXoMK1rWZwsKmKHo/ZRoJI4cCmWCerNrg6dzzvRX/kPAifKOdYX76zRPer844AvKu44+KsTxAs03I4Fy3aVsXLo1/kwsx5eakgIeLKTKgimNd7AytYAe49ZT7y/4stlQKp7K+LbsmXFIwxXDPhBROlAioEPaq+Qr5GD70+zjOCCSHI7qKbDV9pF/P6awAKROqfpyvKYy44zSgq3OjpBSxgNPvz8I2UxiQnGkUKywZQB8YCBU6qaQxgOq23lodYUghLLl5GHjGd9QWlDEYAo5rGHHjxKIQcsZhUw3A2d1LjkiNSMY4BVQmhKe6o0U9NIbLPMoXx/vKI6H5rSUVecoDNII9n9r8zG1oCJnS2Et3dPHqWB3MBAnDwfrN8DeCAAwEP++YCdkupOzozVf/BDPr37/7ZoMFRAA7iglK2hdG3ucHedsW2z5J21pobjt8/F/Ci0rHpQM7D2TftdEQ1RLXGdFYTHKgRxqDXsea0Gzh9ztExDR4axaQZExAZm6J9nCHAGc5IlI6ztzvs3kLQ0aPeRoXpY2ocuEHSMgo29tucmz023z7Q/vFY8ln9neCWSRhHvj/6vNSni/Dpw43hHmCG3fb8/rhtUFX0uxsE+j5LGkp3Ro5+ntDHgeNvN5xvbebDRv/azw362TxNJtIFUliRezPBv+qsl/E0VeA9ImSkz4lkFFY+T0CB/re3zP1N4Tsa7unEWK7xFPqiI82DNtauCwmeMx1CnKFgEk4mHT+yg5hGlPXJAwQkQyrBt6pFMA0xWABNBALKfudGSgB5BBersVFBkauRTfCFaSPes8tnqiDhktvPNKRy1iQoWIEXgoL83gAAm+VyOQ5ARtgcpCiGVAA4eikH62sj3p2AbBVgpfI5xVrf73MORXukghAA9NfiIMQ+Od5uLrb3823pQyrhp7DoAj4ITIMhEZVh9Hl66eDN915GKeVw7R+JuW7hxPBc8kBQee4m7kyLD9fY1KO/T383UtLpeK7ATvxNvCyfPkamMVQqaIpa8XvHQOsjSyLi5iLALK+ntXIJ79EczNDuTiweSOFhpnbZLmkPmNAJjnlQtDKy4oMKNAR5rUkyE9qn63aMPWi3pllSUo6BZsioMoEstzM8KqwYkC5J//fnAu1jrGdo2Ca1DCK4Pw3fY/RxuOgs2TJh2Mu+ZXWgeo90lNhvJSBA1kXScc8BaYJzaxgKjNA1kAG0zw6Bp7WwvaaC8+ebn0ObgzsyDNv3J+TjCXz/8M9uWwrdjm/7FG7s0bfcO3MdjwKolv5h9Q6mXRBUEMBukfpQyqQ642SgPdRLcT4ccFbeu0nOM/08VkYZRfk2P49tb7Pscc7b7mlYJXIvwQKSzeZ+n/O12AhKG07B1ByyB1TJfC3AC4+oTR34hu9P9nbLUstkMbbPM21EOX39OUA/53wVFgUdLtp0VxbmGRpWhUFm54kaSU0Ke42UV5A45iYAF3qj+B59kQRFY7ypobUAz9SO0dkuEZgGkKpwQCVSw+qe6aVQHVDwfU3cP7DYF8q6zPeOeUBgDyDIUpzPwu7LgNzieBsAm2y2yiJgX15TGWr1hQpcxJzmZaSRR98upQFLkOHLc9TW89YshdJdM8lmAEtkTSXg1ftkfS6O9nRmBXEW5L5Y7I506pFtlKalAshkCSysBTM4RZfGJcdrTOf5R6Bgjkd8n/14Offzc7U0ZHlvghLSAAOZ1NOBf3lx3vCiL3ScADxdSCI1NRk/1BXh+L1w3POZffXl8vcSQVoCN2xrAANLikYFIswyFTV/T+DnAkgkgFL7L7/DFJrY5HiFTbKi+uv1lwAUHCwIhoBWmhCmtsFti0NporQuQhU3IZUKmJsLNwwedtUJeBWp5oKtyPRCyanWMkWsLo7NxRExhgloKNOgO6bjCfFcXiv39uch0Ozh6RG1jFgaqh6RGW9b1kZORXVOhsqSKFcak6zAcI3GdUxGgUbKR53MFVyom1IqSysSzeJGeXKTtxSsYsQ2Uf7HgZm/I56fKOIHz00xmmY0buwCMUW3UPOmOObA1IVgGxWwURxElqurVwFqrA2PvoUGg2wNGIwSFUO0bghxyOccjOhIGoM0hvk4uURBo++TIcLcTJbMi4PVy0qFk5pjxgO2vnMIRNVDiJ8v/cp3v5bRozZEHs52mVMKQKOed6HiGcJxghvAEk7aCIV5Ocp94EaXnQNyvqKuYR6wqsuGmp+Mdo1d0Y4LWh+gj4SmgWu0WIKXnLuLQjX/llGuaVAspTjbTPsAgPHzHeO2ob/71to+zkk/5X3p/LfYF0i5B3y9M3eeaVAEMrh/8R4XZx/1/sDq9F9pfNdDifNe9etdRb6sk6UKS01bijmf903tB1nAhCmQiZWyGm9lqIciDWibz+We/urduK+UfljyhC/7ePZrU+Bp86wA0iAXAFQhl9vm4ECsycwFbxJ6BHEv0Jiq/R5rY5CFVPbb+hoRtUwgIZzxLLMY50qlakt5ZbvO/2vkrXYXbe1OFkUAlbss+8OXcpgnz2BnFMgwyMc5c/Cv4IVFjjc1EMJ5XFPuKLA21+Eyp0SiwZisifou4XglmCVtUu4DwBIZwBHMRi4DLe81zEUe25zPtDlSSJUX5079VX1nsvN69wgx85YZ/aljEN9lKcT5R8w5NIqDokidD+ovWAMq+CaGpS8dYA8Aqk3gwgMXpzudwHQook1918Ccea6NyR6iUV3eI8eqvl+MgWsWiFeXk9LnEQGVE9DncLZbYVROUB/pdM82zLlKMGHcvF1a901mUYbjl0ywFj+12CZt7bdcP3ytUdp1FnvABS8SAFvKS6r6WjHLanrsf++vBpRoO8smr3uk5HrIgNkS8bSZo19ttnDiKi275sXnxQiq6nQA6ZCJhEBkWQfJdisOL/eNga/7TrXPx9ccdi8F6/24rH32B9Nc6lKsNhUjwtwDxnzeavMPrBuIfLnXArBUYF5k9auu4EFdc9c9QudcqADBl36Kv6Vfw88G4y/vT6CNnyH4XX2FMjeWz2abyudfUf6vYEJtowow5t+X+VTXttm6dq7XDxz8pP6Pf+Lz1/7n74afZxjOikodhsuVzAimgpphSVeobcr0mRfvc2FUvrzquFwvtu3Fs5e//yitpf4OWHU26n3r56/gB5kq1Y76k+svAShAPHdTgVkScdhCBczyOREV9nJokTf5tkPu+6zbHdHUaqzL4zk3EDMvbcjFSmfg254GEoBiaIqX+6l0/9ueaHmqdgcQwUkmnxSK0xQWorEgR/eI/tayUgGAVXBMAWwN7ddPtEJ/ydz9wnwAndaH08+Pf/uWxhUBE+l9VS6ONIFK6cua7Vtx/KIPDLqIN6ZT0NTL5jwPZNpFpE6Az+SmXsQnhSr2pOUTAQz2QEZ7q1GrEnS3EYYiYAqc7y7ag0OcKTIwmQlRclQeHiGSPoC329RiAFIsy769uYDnpuht95z7zyONjHQ6i1NkwCy1dw5QFd42zbJlYpaCTAr4oX8MaGPkQzHumxusJT8vS01+PzyvcFOfC8BM6TDkPOQ46uMAnpHf3RrwXmjg9YBrkuX4tl8fOf554G7F0zHLNAt/PtOT3Ircfj3cQXjO1BVG6EwVdqcehRsNY1ccf7unkJ03okF++ga83b1MEjf0+E/GAA4kGHf+208wFbQPFyIc9+bsn7L5jXuMQWym+v3wclt7g+wNS5UUUr46ogzsDqhHubgm5eium3Lb0X+54/Gf7ji+Kc53wX/8L8D5ryfko6F9CH76v+54+/eBv/2fH7EefM7nOirGhL1FpYugGOdakmIgUN+ARoWZl75sOkUmH1N7xBkVxcGOQ9DutzCEO7IiC5Bq2in4GGs51+EYEOkT7CPFl1VMSjTQWosSUoV1lWwzgKwNGzLHi4bmaROg5MF8nJ5vSyemalfQ6PjtA7UGvb3d8t8EV+QMCh+rO7BvyWSoIpq1zOY2ozpyjhTm03NM2nNEm/2nU7+XnN4KQCYAawBiXxDJdAbS0plCMEvIzQg8zuE5+LdJRWSljEHRuWA+DbI38jNIEFfTAZd4LvLcslL2ELFX0WkZwVAwRTh1u7MOnowKSaYz6eP0Pao4ahRE9rWmUcZQUz8gK01shvHm5QcJpLSPSLXaoz2nO/yMGgO+VtUwbQMgy8np6fvbeNsWVhKMrIg5vQgksAQkK1ikbk44uJmuwc90C9aLV19x8eQx51GMT/sQyL1FScoGoHmZRouUgGiXhk3E+ea0cWD/7WskzLVw3Gsl6MP11JhuV0AF/2PM+zLPNcDk/t4KMAhIsNTstk06/xjQAyEkOHVg5PCSe0xza5xHxWYxqGtLdEP73dmTefarz0WKaGdEUwTj5/sE3SNlhYwPffpc6PdgX77v0KOj/fpwuvvzmYESAcVMI0IbqbDMXZduwOaHl3Y6Hr5/J1MCgJ3Id10cQsD75zHb7mu/pMkUoWx9eOlTjhurVS3poJwadKItwAwKmNYodEQeBVgAnHrJvmGhc9/2SAueGloZ3STN/zxndDwnn6bz7+kfcQYwzes4YQgRxpjPep5TMHdYzjsA2D4EvSuOXxpkCLaPnmdUAlKhyUD9qVeggTyDHbhE5/0dJCpzLcCBzbFKtm59z94nYI65n+YnSgAgGVbBkKv3TQY1712jzrc97VT+TUpfTqBLphAkn1vZv0AJ1JUxTgCIZ//0c6izkMDTcC2EmupVy1GyTxYAw8YEHAhENXU/KD5TRS0zuk97Ja4vqQKlr/JvQOgN0J4oIEkBG1x72NZn8V7wNcLSkpOZ0/OzXh7zq2BpTS3ItjBlI1KNFhDvCipUW4+MBLNgTfYZzOS9yXIrfUWth7w3bZt6VYChgheqyJKyNTB5vyFZRn9w/TUABSAMsBVVSsMQSCQ+KVeBbmJEfinBvY6IJE/jORE7GunceGjUEnVnRMUmC0IYBasbzAU1qobIl8lO55kHj0nkyxdwIzaCafAXJ0KsbBxtAhzxjC9CQvH7cQtP1yL30HqmJkxnkijX5V0CWGBkuNbbzQ04PstySgsyfW1T3Rgo3mXmB1VF0rM9EcHhRlPea97Tu0aOMXOHw/BOUaLSR+nAlYMmVWc5l2rfcA4ELd/nB8DI0RLZL+0yDdChUs3L4e+OYum/zt/JpLfH58leyLrYQPr2ueupTACijh8dxL2tc4TvWA4h24p6+pjz3fZZ1zlLb9IhLcAfBNnvy0FYxwEA8+xfpWAtqRtbpJhsW2FErA4kyzz2u7OU2qfEQTEPjTmW8SOELWU48urtVt8vTo5x+Z5ECgjbyPmuLtZ2/nLD828bvv+PDf0uGDfg/NuJ7ecDZzOcu+L52wY9or96aEGowppNg2iYR+9+RPsLY2SqmOuyzha2QI0y5B4i2QnV+Mm96Yw0C6apXIzM3CtzXl8MFGACUfXi/rFJOmkv9yuO+8C6TuN5Sfnmh/mOBAxlzr0reODfL/cT8b6vh2WAM7nXsw286r7GPcqmk4RR7Bfoko5AEckEFXoZn/pzxH9a9l06XRKO2DnHkE6V71s6QcWyd6Sqv+q6h8c7cW7bAORLqal4xyKFvEafo+2KyTwAHdSyfhhtF1KE6zmCuZdsqyHP9A1G2MfmFQLcmBUY7zOQedakxX8tUVloxYqkbEucQ8kcrNPX4u9a2hN98OUq50qqyNPou9oLKgCaq23TYeVnOcZtni3Zfo4vHxnzIt+z7h2Cr3u+8Q/I88z7Kfb3zQFJuVCueW+R4eU0sx+mPpUJAGppjBgU1PtwT9bJFkm23txXXZzcxyoDH5ECaLtc5qLN9Zg2XTB6BCvrbzmDMLVCLjbaLPW7lfQaLGzGZOzFubzYFnXM+Vgz3xw4R4ZgYUZe5o7Fz5lCa8kGXOzMCkwCP7QD0/7gmc+J/KMIqujKhst+kwXEWX7/wt7LNF9d/4TrvASmfcz/52vmOTz/n3tW3QN/6OTUPb72Xf3J9jJtwJp7RfWMrTbtD86vl9fVTwhwxeeNre27tvHLXl3mFu3RP3pedSaXj8icC7zG+qyvt5X8abg8N9h/FXD4AmAU9sIyr/6sLy9tX8CEP/tsPc9eMSt+dI9o3w8FS5e+WlCUf+oRfyiE+k8wAP5QLyPvE4DJlZn56l4/uuhnMjUmgltyBagu118HUCC1GQhUPnLfCJj/+nAxnJ/ubiBtGlH3E7g1j95GpFV/vqF9P6H/8duMdpcqAewsI/0s0goYdaHScdauZl57jaZTIK5u2GaTddAAiqnIo+TUi+fm1/xiEcH45c1R6d8+IKrowdhwNNIjFq4mjoVlIEcHHpEjsyFLIfY377ix72gPF5ySR1/ye5nGoN8/ZySSJcvi/vbmeXGpF1AnVO/Tv20KsEJBH5kqIsfp5TvDWbbjcOOy5GmzxNAX44uO/9Fd7EkFCSSEkUQWi9zc2Bm35uP3+ZyOSO+raA8dr8MgDx8jPI+54at6f3166ULmZsoIVgTBBNJz6VjD58xQrzzhERJGbjAFkxLNlmkQS8y/oP9aa7B7w6CwlyEFi5hbyJSHRPIDSMjcyehPoYEQYlBWBEBdNE4mqBQG/njf0d+3LHc2vkW+6+8Prxbx8w1yDGy/PtC/3UJEyxFVaUGdDs0Cu21T+Oo0NPR0Anl/RLSQegQQyRx3VtUY3zi/DD20GI6fG2QA+28H5BzYPs/ZfxHp1NBAcRZJlAgVccdvU4y2w9WV5trKmtbDPPoYlUqkKc5//YbHv93wX/7XDc9/GcB//oT9/YbtH4rt7w349R16M5gaPv8nF7L5/H9uuP1DsQG5/uXXj0SPxSzXO277LDdJRkIg0VnporIXeKkA0GlkU39k08yxtXqI9BB4PSO38tkWFDqZRtR1MfM8WbIjBlLwSn//mHssr4haUYsGFN3LfPPpaNvdK8LgeXpkuA9g3zDumjmwdg9DkhoIIrD75vOrF6cRmFU22G6jARqADgGS0CmQI9B/sjM+Pt24f7vPvma6TXeAlownAMDWML7dJrUeYfzSAIz1uJQgfLth3Pe5L8T6o/BbBfra7wc20qLNJgsocqypNwAA/d1LEG4fPfdExJlKFsX5FmvjCBr/czKPfGwAGT0cT86vGNP7/Jicfm6rARC4Or8ppDnboL8rYG3m9HcyDwcEA/22+x4XZXAdZJNkMw3AndWbYtwVYxdsv3W0YCKIOVtjtntgEaWtjpfM/NMsA8jzvQlGgNj67Jn+YfdIkSIb7HTUiwDfDDzMyLF8Hh4t5b63tTiDFPjl57k27xvOX+4zdebZsT0OyAidpcc0Bhnlp0iui9QJ2qNHhYY+QSSVSOcIlszTz+mBODuLjhH3u/7THfK2o4UNkKlx3SAfhxdwif28RuMR9/R+jP4ZcMZZWessAWu7ov1+ODuvAuFAcerCERoGsWmrQD0gQ1vEdTamCZvaQgMAQhQ2HM/2eXp/RJnoBCNCbBpnh4WmlJizJcf7zW2yYNihOQNxAunidgmwAjrBhhFqao1gx/R4vxEsINVpmww3bJZKEMcJ7QND392+K45mptKEc5gOeWXhVnsn5jxEUphxcW7ozFDZnXvYefr70VFk9LoyElh94EqnrtdZbJScOPE5lugNu4TMp/OXPZlUPdY+oq/bb0/Xmfp8IIHu6F876xmkpYTwcKeoOr0j3unpDEcGmnxvbWH7Ym17AYMyKIDLZ/5/6t5lSZJkxxI7gJq5R2RW1WU3R0gRzoJcjQiFS37K/BN/k7MYEc6wZbq7HpkR7maq4AI4UKhFZHU3uSmayL2RFeFuDzVVKHBwcHABLPi9BAipDXT9DINa+unxuyksDsjjObUftDBRyI4oQu0W6wg2AsTcZmn3/ND6XLHHLHR/xjk1YcY1JJIlXcsYZRvD1edw37l5JpxJQyayUIJuzvVtw4f2plewsGrjUVg5MvwLmxKYCdEfBeVmwHGsgXtJbmaXhwpUdLhNqs+vvg/mODDJXYGea9LRymdo0+tRmJwsz0hGAscw2EcC8fe/lLNc3v3CJuFnmsdnt911vNgBTOSTMqH1+GsAClyYiXj7/9QCuWaghFByF6D2Cc02WvtEeKzJFImJawBY66vaBDE8YHQaunyGejIzd0XggIsBtQ+/WyhEiEX+GRqpyNY5iVpq9G5WTKeGmT6FAx1DstZewjMlXbM9x6oinRNuHf8PVKIrGkj08c+OilBykbQG3MtY7PvM3vN36nX+2LbVSMU5fTNWDwafPVHevFc6dHRSgAUJzvep7oSxG0N+Xy0ClDD2ZjNA6WMGw2wVlllF11hg3sQExcEnWDAp06TiWn02vv9uuJiOGEu4kxgilKYCjQyOxN/H6+7U3rfj43urBgNI45CZnABpAKSgnaUzKuV7ocb8DJFPKRuLrbXFmcUrAp9st+UBOlx8Ld6TCaBjhO6FRqu8Ysh3Z0skhVtmprvfJLOYAiyUe4qirpRemUJ3ocKdbI8LmOUCShJt+PZUev/271/w/d8p3v/9Af1y4vXLE9++edNzpzkD+vTsjKtAA8+fFO2h2H+d89FZHWs2KMsvGJhX8RxS/UvWfkH8S62o33vJplc7wzWlAgtKq0SQkxmHutYL+2BhjAAgaye7y/xZ9oERDVlNkQX3v10zDBdnN9amSTBMmoJCstnJxvQDyyMziLwnstOAOI8Umu1YnGIBZtaySwQOUdo2Pj4nO1vUGvp8TjpLxbY5nZqbPTOUcHFW8xaIs3WozeAXAmCLMqI2GSoxnmQ0scwufzcMYg6K6k39WqSkZ0vAdQ3UgNyKY+TsrcFB9odUuJAeSxwOr4PP8RCOBcLBizlf7m9smrYiu1FYvH6Jfw84mEVtm6y1dhs6mURlDpQ91rTBbtOJ8/p++HkCvPXni0BKbH2nhrxf7j0YY861uj+YZZCGG+Ya26LNdNxbiswFsF7blFIQXQIwoG6NCTJDO/cURADuzKCFWdEkdBqm851zi6ahCSAl6ODc5RjSpw/QxpMXW967jjPWkX9IiqMhat5likv0R47pQK55BvJIccKRn0ltESCSQlF+B8AsGCc6Ac3KjEgKOQFKvjcGmK10uqK9jE5Kopiio4v/pgujLf9Olg6B4PTt4OBCg/tw9fmuGXLFFFZLX0bnvK6lWfx+LWvgvpBq/aWWnO8ngkChfzYGqJuQ7AbuQ/X9VYbcxe5L9bMw/bL0Dz8wioYDBULNsHVqtKd5K+EKFF6ODL4/u68Ak1NbLZnCAxlQ1HG8vsv6s362MDuXPfn6vQsYMW1j/CQYUAUYyca4nu+61+ZeWt57DkrYSoIVfKec7wCo5r8+cthI2oDPrhvjmr+ruhvD/L9Jo7dRbEgBE350iPzLn6lHZchGKYTU/bGOSRmjFDv8hAXxIx2Feq4/ZTTowMJm+OxZCMpcWQo/Om8BX6o+y2f3lofqArx86ntd/K70V8gu/NHaiOMvASjI8Nrs8bovIlQmkmJucyPxxTJettxU9dmhh2HYNrUKVNB/eVmdHxqhMYC3w1/EwMyMUgCyomUEORoANKSgH7AGhxpBfAZkRSG2hyEJ7YNEpOPZ/bngz3ybyr7uTGm24+Pnltq8uL+xe/a6hYPYHh4UtO+hG0AVYC6iYW4/YzwEcMEoGg52Z+DzVeSbh85Nfqqxl0lqnmU2Ecj7wwP8r68fDKAgnPnbPrOcZjM7GywFjOEtCgGwhWf/cvMyF4lnLt0tcDw8aGAmd3OWh+3qugjnmCrKsmoMZAZgjKzJk7fHrAcc8R7PM+9HFJ5F53w4ijgY0UlVQPwz+bfisOSYRDmP9oG+K8YXbnbIGmV2jXj+/Qu2Pw60f/zjw2KX96fPlbujjdS2MLJ8Sg1t/7pnAJIZuLjvcd8zM1MzYWOPMoKKHhPUuc26y3FrPu6PDjlydKv/AAAgAElEQVQMtvn57Ebti9MzeOr3atvuWViui715G7Vusxe7AceXEqihz4Cv0XYgnThqmIx9z1pbUpu9bEbQX/x8+rT47HTKb7+esE3x3/43xeN/PPG//6//J55jwz98/4pv7dUzGdxLD5/ZIyzs+78T7N91nROli8Pc4Afs/ZHK42QIkRaa+ilACm9Z0R6RQvvOQIp6BKT1I9b6vmH8cst7YvcMeXvCZGZKlNnr6sjQ9kmUNLRb2tdFHX0MQLe4p5jjzR3ihNCsOEwD83sW4mXBFJMYBwOCvbAnI2tEi+GN5wobnm4A7eUQjJ98/en3J6w19JfNff1w8lw7JDKXUbuIFpmr0LwRovYcF4Kwrc3yFGACb2QJMaBQwO672+xnjFvYBDl8XacuUO8JgHGeIvRL+l2hPQC9AQezIrOdfdzJCGAGfSCZClUY0cQz2xOgwmR90OEKbEei49AYgDQv98EQtDO6PDx71kH31y31H7JsEZg/8/4H7GVz4LT5njv22YnA1d3h2gDDcPy8x1ob8QwEX5ipwdQ54h6szpwYt+b7RVkvcpYghXY41kZqAjAIOpE+BTPSXgamADtREcim/cUeOiwxB0L/QE6b92GYwTrLLbZwai6ANDvlEIhhiZ41Qb85S9FtWLDLDq9/dtZP7CNnZPCjVbC1BtwE/RaskWOklkbqMRX/c9w3HL9szpKI55CnTdsr856VftXVIeXaVM22v9yjyATM1sMB6ns5SgSoZEOeBP+CvbB56afdG/bfHpMivyn6lw2yK3RT6Js6Q/F5eGLDzBNYZDm2BiIu1NfJBE08k7NdsSS1pl2PhEl00aolZLYpstwp5owJmRQtyjhDG+KVLLo5R9nZSt8eGZBYlAcauH49aLTzLPcEwC615BpsRma7R/iwNRtdD4IFBLkrK6zPcaz7m+AS0NQAMD6vZ4f0fYJmIugxZ7e3Hp1cxjxvnVMDU+CSLLYAp0QF2aaYbR/P8yMtnP9NseT0yQBcS8Ni/rKtojP2sIIImfy6ABFnjwx2AT24Rto2geLujKEUOuc1+ZMMkdpCvoq6FjA0uzyUADlZw+WRZvlCAbhqwPpZgE3dFbKRr/GGjewI4bHR5f3TrtXYC5hB/o/o/lI0HniumplPkMPXggusB2j6PMBuDVlS1aODQ+znCUzwuq35s3Asa3KHz7PvOY4OivUFdPgABFyD+ivo8NnYxzNeRTA/BTdi3IRCsRFbXXUkPO7oANoUC2/6kfn8g+MvASjUGucUOeIRThxOAEELrI5P1uSFM5gTVSeabMO8F3NBt9NYANOhtQiWwrGeKPaYm2gYqpz8nLAdc9AfAtksgqQS0BYUM4MAviBmhe9bTtBsi2l0YHxgxt0ddLbBghn07fQNP7QPNJBg7+U+JlW6Di3borSaES4GBJjZyStyXjLIvNf1nQYCu0eZRhgPqeMo8cwvEWCTks+Ni++IAdXA3MRiMTUgFJ3bFLqM6+cYL/fUMyMEzM2HonLytDkfIkBjeywj0HH2FN62uzuI8naA6tP+LBE83NTHX4Zv8iLpvH/QduD3gKQpt+8n8LKlU5ht1MbMSnlbRPg4hkMPBoR5XjeK7ATi6soelLAdFTM5+phiZ3I6/ZGOnL6fIcSlM+vDg/+OUoORYm5YfwJob2cKhZkI7PUGti0dd99MWzivtrtDeb5uYJ2xHgPtreP2rZQqWGSehAGJZnBnIu5EdsP27XDNAiCBOO6/++8dWY/N244Wa3oaBgb234Hjb4r/8NP/jd/OVzzODf91H6ya8O80wDZD/2nAfm14+QcX8nIm1Lm08yLzwEUsu4udRQaeQm9os+a9zmdYZNjqJhN02Q8ZHGYnEnUezmrh56JW2PbQriCgV8ucWC5Fp7RorQC0wwBg5b4jqK4OIOcDAxQtgUreD4O9Me8DmOdoUxCvyjok7TlqlZNhFIBHbTWXlPlqm5vOjOQY672bU0qNzkZkHfk8cg6ozMBr6QvPZyNAVplo9aC+yzn8s9u++If+zE5z12hL6qyra7Zv2hKxcPZiTN2AFQeH76oEcYKIzSlIO6JrUXSWoSAghEAjcoISqE3mmM0AO1XrWZJm7v+KBjipXGsCuwE6DPqYzAvu9+3RQ19BAES51bCFUZOg1YgLjQE9ZQKnEgGpIQJqTYFotvpj4AZgbQObzBkNxf4JFmU9PDsR0A4zaA52BdvRVqE9F7utuX2kPc5OP9H1Y9yiJE7hYCvjDAP09E4CDsCUc/G1awAV4qKFYg1LZiuAqyyB5HzZ5p1JH2jvI885tX7ow8z5NK/v7yfLy7JLDpMe5Xvxe28JgVKbr1O0lABe6l24TR+3yeTK4KxVZoff53jdgfuONsxLPcr9836X/+bezaCLHcE2B+kofs2yBn9HnrCgaGAyRwaABliwb3H0CTbszX3RSHgNMlSLseN8txD6nV1wYi5RjwhI6vgqCleYkVc9BNq2aqOqaCH9x6o9c/0ZZb+zzLbQ/gfAiVOZW+gBknw/5t6iwGjqICC7wtDH/FAjH8BN1Z5QH+MsN1WZrJDyXl2E0Fyk8Sjihdfn4vhdMsqT8XNZR/WzV4ZyeX75xGflnnRdQ8s1egVuyvqMf2epY++TaeZ/iHP1ZN0J9+sWe5BFqST3wnqN3MMvAXAFeciW7PwCZqvJBIJmfJGtFuvzFWCbLMpPD/7tOlYYk21IML01YA/wM8ZExMtls6MdyxaAaRs/A5V4b4UBsIANCJc87nHpmHeNueoapIBmHV/VdQ1fx+ffcHzKvDhOmLb0K63L1Nk6z/nuPjn+GoBCOKIZSPJQhAMDsFQu0cfIPNYBrBQ1mDpVGrEp2rl2OKhgQSjt5t1EFiFrT99iEcRklg0LbXZZFBGwWu+TSicRGIczn5sKM0jFaMzfzSDd6zMjUFTF8fPNnYQSDOj707MTEcArMNHa43SEc4/e0pkZiucivZpGehRF9Fi42QoyRZCmQNGiR0Knu9baVCNcKXBNIdAIJsVryrlJU8E6PivvffaIr9l+M+B+g4pE1uycm9Mn9B6fP/Pe5HECzVkgV+E0ZoDlEWBMaGh4JsMXo2lkGd9iLmSm1bM9tqsnA04ktVpZ//yyuSgjjS9BL+GcNc+iCiBfWtY7a1W5Bhyxj2DahXNOSBf30ktrUuybAyBHd8dYPLssbww8NOpNDUPcqZWbul19c8VpZw0o8LJlcEAdCY354z3OFefLpOvrMyjQ8Tn5/vRs4dcbIMhsre2KHi0o9XAHd9w39Lvi/KLQwyDNgwl9dtx+9zplDTYDs+wW3SusUYVfcPzU0B6G/Z/egE2hw5kSg1TV4WBDgkLRlWO87g7iiQcut98MjzfBf3j9L/iH82f8l/efofvwunyaghfDuA/c/u4dx/GK7V0ng+EMJk20sORct1somD+PZC/Icbqj2PbpXF2BAgYsXA/MRr27k33NSCDUtX0uP9NZ8XkYnUEicHZ2U6nJ5NxMO+VdGrwV2gQ4Acw6W2aaxgwWUngsgvzFhoxiT0V8rtpc83bbsywnqfwsuaHJsEJ7Z0Az4nkCMON4JWBI56Fu9o+ias2x5zu5w/cZZmYi4Bb0JahdslRx2hSR+2z/j2f1rPeW2dlV/NdBLznG1FqJLD6PbN24K3o42HpEScJpGdj5u6KjiAzS1Myz7WM6eBNUQDpcfLeCuYdn4DAG9OnBLo/sikH7HsGgxb+1D1fKVwUgkA60R5RmxFiy+4Ftgn7fvDykGfRQiHZn5eRYYvk3WQdjd1ZLghB9gstGACSYfbkPRscMu8dz02fpMtenSOpx5Hl5RFbSgo2Wz1TnS4zNwEgAxRMdmkB0MjhuFJqNwJCnCGDGGSjM6Ic/VOaIr2fke9PQQKg6C/oci8NauxZINweH6bsw0MmA0ufJIMDEQNIsWj4KwGCaw1Qy+DIckHMxW/pIAHbMkocx545fVya7jIBC09zzcnw4JrsD2Po4Jqu0HhmorXaUCQGyTdImkel426KbkPq0COHRUQEZI6ji72rpFkE/NIAkU8Q6mXZDnzHftyK+TFtJHyhp9C0p624fLe3RhyCpBtCXYJrlbcJA7Xmu7AWR3F8SaFadYEdukmM5H7PZMgx2nFBS93NaBPjXY00TmKjlAGHH/Z2XUjYRYCtAkAbCnN8rwVxoTPj8tCw/TH98zPmdvyO7tP6PY1fHrdiSD0KFqumLc19LrZ9S7rJoQMS7NsYeZCsk+LelnTf65L1ozqR+QgTiEiUhBEzJwD3DZ+UcqtdIBoFNEGqM/G8HUQ3QALMuZbiL9kAIPNZgeym7iJ9pXyt4wiD7GiQnXX/4c4oC6m17a/mXH653Y8zoiyBbZo7TATlIxiCeICpfr0CGlvc2DE4f1A/3XR7gw3nYJcKWj7kt4nWt+vj/loPzqgBC1KqQcya9BJgtj0P34kfHXwNQoDN3TNEodza2dAL44lmvKOfw7C8Fx3LznhuVRuDrqJWtzjgXfZkMtpcMqSCD/OPnHe05oO/d3/NZXlzdBDcU5LewEIjO7quImnTzoDLuS4/unRgkspHBskgmAgCIO1wOwEhqJZBeLj025jFLFnKB0nDXxVxABADI3uG8zyviKoKFacDfAVPwUiTFYJJeT0SYG/M12L+ixYWeXYObPCKrC2ZTH8dKr+OmxiOEphJUoXElAMJFEhSnD9SecDRzQw76j5pBVSHf3vyeayeClxsGHCxBNfRmkSA0n2/7lpuEBfjUI0DQd2e5bO89qbEUIO13p7m294+L3G4ucifHGVmUADNCkNBaS8eQTAITOB30NRwssiFIZTXDuO+RkVFvpRpzzJqgb1tmEoAIAqjfEesp2xFGlwZm//T3d8iLt0eS3deLRls+3AE9Dbdfz9SR4Fjuv53TqRCBiUKeJ/R5QvqLj2Nk7vbfxTO6ImlHNEqDGGCZunPIVnbjdYc8OtpvD6AJdFP8/J8b9m8N/4f9Rxx/3/F3/9OvGM8GuRvGa3dK/1Mhh2D8p6/4+g+Cn//zE/tvT2gAKfbTK8ZPL77Oi/6EbQp8ecH4ye+9fTuCPuzBXLY6rPZljAzeJoPHgOMZwETMSRV3OFQmm4o/gSyLqern0mMtMENCoI+BzYumDbXbhv717mNfwF22XV0nqOUzffh9UHa5VozAFRlLm2c0KXhau0dIcW5Ew96fAmgAkmYJnKSzhAA5+CCqsA2eVWSJCR3eCB78WqHpYIWmfA6A1PBqiwAfu/u+lCIw2ZhaDmaeGeP4Hz3bG049gWjfymeP8RmZIZ3OHAy+b8VzZhu/yugpe6JEFolCe9gme4v7yyLKt/mc0BBDrS0vk2L+Iu5MUqehMSguzuDwIL+x5eOXDdoN7TECjJzX5PVHtHh2QDWc8BALzbkVgSPL1aSwSjI5wWc7B6Czw8BIMHgNWDIoZXYWgJc8uuM6S41GghS5L77sUxdACLr4PsDSJDkNqsOFFw1o0TZyMJgXt2PyhLfOjH3EVNC/zv2HzLVaesHyEQJLnPLn14axCaR72939N59Dnkjw/Trp+HvLv7nfMnyMskRDp5/BsU0gaK43vN7WdR+BntXxum0TfIq5z/MMpSDimOMIBPukYbZvhYM0dy9vcpbS8A4oZFUNuECqqoveUWxvIIBii5NYvm+uaWw695nTRZwTYGjOoFHQZmI52IZUQxTc56EH6vbl5qVCMRbjFnanl3HcHABO8ItstaZr4uV+m+McAbH89OWjncrniwfcL3sNsAT5PgY1aCq+ItdLWwWE+c7m+WaiChjTvwxAFCK+b9b76x5Af2DP8adIAglpV6NM1kIU3MYI/S4AEmCyKqSZA34cr8+O9ONm4FufpzIxPoALV9+3AladdsXthoRuhXEs63ci+MvyhHpcGcUS7AsfvAQPsqtHjAEBACYDZNtSxNNvIe6h9wXkyM84wTOuXZiJARxCuy+oo7S2Xu47QJTaOSKHysGYD5oK5gnczNxfg/UKlvHfkQjx+/QSBh/T1R+x3gOY1fK7+Zka3NfWlQBSmqtqSiRL4QfBv+zR5p2J0yurnPNEFNBRWBP2CZBSkreVtTFsBTRoIyozpHcvheHnR897+rNOFX8NQAFA0uIxXDQpHLek8yUq3n2REUFvU4U1wYYng6boJqCXASgBcgogUbdh0xAzimBrE1eqFoGcBus6s2oFlVsCdx51YwyKHkEMfp+twZhhzU4QdB4xHe9cKAPp8GXrLzo555EBq49rADQMQog4lUmxIJ6QdWJWMIHPZLYKu5S/zfrABhF+powFP0dFWm6in01SZoW4MeZmR0OgExA4yt+5oV4N8NkDlSzOzvUzQdG7igklgqyYWYwzjF5T4PH0Deos2bumkNuWwnHX1m6u31EzYlSuDgeKdPfhQSeFGMe9oe+K/uqgQ3s7ZwDAg8BG98mSzns3YJPMMANlbfmUy3rnzIrGnIWZZ1xYmiTze1myExRkiWBAjtB6iPrvHAMGVRHcCINWCaYDgSsitami3jBu8971cc5z5rzxrLPcd++oEPWNXidMIM43Jz3UGfcRBDqYGIZ/d8X97f2EPJ4BRDXc/vmJ7a1hf9vx2/+84devX2DvLYTPDHIbwKNBn4L7Pwpe/pvh9k8PZxQdZ2iFaPZGbzbBK/Yi75F1bo8ezlBPEMxr4GXO8y4wNchhaxZtGCLSiv8ua4LrKd/vgOybn+da1zpmsJD2jOs6aN9yDoyNOherjczAUqdd9ecY63vjPYcd/tCKkoBGeQaqdyctsXQ3gckEFjrms1AIs6xxAUrm3b9rTXP+XeuHvSzCPt4/kPW5GSCVsohJw437qXo8zdf6fEf+f8LvYQr4MXOez3RKUqlTlBERbEXgWN/rQje/2sK4boL78Xs9PROmF6eJgYt0W8En7lvcJznHmfGpQ8p9gOUVpzMeqPGAKP9IMBDI7zNIXrSJOPcIsvXuYAnZd2qTGUgAIL8Tv899hveILAuhVhMZWj7fwunmGFeHjkmFS5a67jPcmz1Artl1BsWRpRagvQe4Qz9IZvCa4xFAqVSn0wCJoCWBzHhWsh4kxTLjmUnRH/NaaGvAJACyXSYTOQNukxommFACclKvF/0URfoL3v4xNlzxFZqCmRf/hb4fzyObeskHTV6M3dg8SNNaHmTxf1vs70cIEGewWvbVK3DPZ22SJUfGoDHAEYu/zRvmNTEp+L3ovZSgv85B/lvPeS4C4LMjjJSAYUQyTjwjy/c1POFWAWm+NwryzjICmcmo5cGLvai+He1RDaD5v0wEhG2tPlaMk1TEZYwSUJeyvrhOsmDTn7LJtCr3aAzkhGMh83kRQVpb77Vcqbw3mdeqeyevHe+Tuhsm4+M96vR9gbk1fxhbgjNt2omlLITvrV77z44Idp0dVcEPQWbgORbc87S8t88qDGoNPwPyej8fSlE+P+z6vUxu1mvN331IQvhJQA2jH3ZvuH6+lDoAyLFdtBgk1tOVyADMcYrgPsGCegzDIsqo4g9xfYblXEUkDMAPSyz+Px6pnVD+m89O8CbnYgVy/v8AKNRMS27o4RNCJUWHTCRrVH3TsmjdEyJCrFkEVkPFlmFE/mSfm/CXW7bI83MY7CZ4/3sXqdOn/dB5zFYt1ChgG6I+PEscQosAnC5OhzCMjCZgQpSXOhAyAznONTNYh6uAi6C/7h5QPVdKZS0HkOd7bPCc0PBMSClJoMFdJjn/HZuOUy43jNvm4MfZZ9Be0GvpHXhOIyrh7Nv9BuwD8vv3Wee/b45cnx2wcxUBoSPMDQG6bBCoGhQ8tubtBV93sA0XTm+L+UH8J+aHvYSwF1uPicDuN9gr5oYTNXvZ0vG+Qx4x1md3p/nsvvBJFauB05MU6X0FnEJMrr/EZo+G84uDaa//17foROLOrj6cVjp21xIYuzvWes4OCw5GSFIrTcSF3Vi2sTmzgZuqnAONgboAY/e2jHoMnK9+L7ffOrZCH5b307UAtotDAKQWQZZmhPAls/22q9vXEzMgombEz6+ZuSPIhtvLvG44ke39RHv3a45oLWdm0BEZorcDaIL+d18dsQ5GhwciHhj3LzfPDsc7r2rt+nbmWsMx0PrT507MN7HQK3mc2P/xDa//9Y5f/tM9ApKBx9929BvQHrFexfDyzz0EAAXj5y+5IbZHD4ZCny1BmwBR463n8MzMcU6HjuuuBaLcO3C/RRAW2dDo3GBAiAe2qUdCkO5xIMt4uLFcHRZm6s2S2TNed2fIRAamfZ9lV/LonmGuuisRhGFTZ8JEYLuUF9XgoA8YNmB36iFCPNJuK8MrQQXxc6d9p1NIkOTsk1JLJscj7jnG0vbNS0vM3GaXz8/szepM1varGTyG3XNnXDJgkWEuygZkFrs65MzIsr1w6rl0g8kUnTQV13vosecxMGXAxCCXIN2jBPnlvmEG+/IymQc0jaoYL1tkSwlEhACyCEYEL2xdLKdrcKTIpJTymvpOHx3SWFMeDqqZi/fFc47QSWHZhj7OMgYSTK6gf0YpE4Pn9n5OAcFYox7kt+l8FgotWENbDmsCu4VY59s5QfAYH9tdN8ZuzKDDW94m0Gk590a0WRWyNCoAE1opx0+h5/L9RHapog0YrmPTkuruz9rvgvag+GFkw6PUYNwi6Of7D+0KSSAPCdKo2RyvGJbbP/kz9mjhaU0w4GUvK/MFaUfH3ibAFfuqC1OKt40EEiD3oCTWA9kxUQI4W4ATPEVkj4H+pezlBO83gkbwZ8gAhqAdAEEy41Ino7u/NXbF8+9uaG/dWWO8n03doadmF/oSeC4MSNoEzP/Wo0O/PSaQoHDw4gxgJ/fzMvGCJTOok/C6JyDTQ6BUwmRsbzPBMkJss9+8xehNAX04oybtb713M6e6Rx10LUdbOgpY2KoalNNGUSsi9m0viSrnyUTN9HFmsBiOLPcbo79ffE4CbvfbDBDjefOgDed5g4lZBftSPPYcAShFsMzgqJ6vMtAIPl7LBhBABH3VUVgRtK1sK5xdtLwGPUX5zGYrVp7b1udKMBOY9qlmw7F9LAtvDfL6Mu+9gO3LT4JcFgw9tmIEnLVY9kz0Psdgc0ZP3ukVVMnzK2CRVRcPoDNAvZQ4eBKulnAE6PwjAOKSqb+WQOQzc/3z7y3WM0sdAFAYUnjOAqZg2GQf8DlznvZ57/X6n92zWbI3qijjDw8tgo9xj1cRy+XZWWqebMyyx0kRqOSc5r9znNwW59pMX6fNZPMYKVjpYxPX+JF2RRx/GUABQDo2gCNCxAlt2GpUKrpowIgNXojyf4acAhNpY7ALeD2auiqyHKNkF2IzQjFEcb1FpDANxACidi9pUAVpz00kjAs7V8yJXe51ABQp88W8Pod0m10feL/xk44gyygWJd5eBMbqd69gSblW1qEBMyt5/Uy+C/uwEZjGPWzq9cXBAFiuFffg5Smy/g1Y7i+zfRdKJZ8xs0UsF8nAxj7Oh+U5ynkI8DBzz+D3iioWg5J1sYVi5ugmMsua9V2f3EdlxPg//N3k+BN4Esz6yQIm+DnCbo5JjTWDz8cYm9rWksEN0e9JU0dsgpiofpNwFAowg3k/JjOLhqyRhBu/rN2b3+HTZ91yoQFXUVKqoOd4j3m/DEyWunEzDG1BA13fVwrHbeUGGFCN+f0cH7OsxfZaOW76ETQ/TmznwNdn1FU3hR47xk2gT7cf54uiPcL4b06FxdO/j7OInfXyHHzOpweDKVRa1+j1iAxWAm9qE0xYBLEkP1+PdFQutgF/MmevB9se5viJrMg+58bVmboeHI9ql4rd+kBpzDEQoNQ3TvEvB3b8u7Ps5oP9qA6kyKwjrfdQ77H+e9gsR8HqBKfNujqDHJbrpv2ZjYr/kRnEIM+2aU8XOymSQsQLY8Iu40r7NJDvymIvpbYQRRNt8/1z3DYozllOMKI7gBbH78ouscnGY6vaRfMhQIPM5h6IdTmAvUVmP8DGwiCkuJ8HjGt5gSv2SmYF852E/5B7BX9HgKVf5oMiAiYXsZ3GK/ZD1k+H/zGzyhLlU/O6+fz5XRSWQXxnWDAVir00QIZMsIjXCwB2RKCa1P8cVywlYrSfzoIYQLRC1HNELCirr3U5JOytMRt8madLHX9+BymC+/GETBggGQ6V/UQRyukM+0O5uHGkBFXcR/zRbadN8n+bCp4/KW4AtrfQFDIkcGVt2sll7GhLrsuY6ycZMiGqOqI0pFLfqevCoIQsxABiJEBC28p+He9Uii+Bwihhi2d2NBAM37eqXbva3GLT0p4qIOfndp7aKb53x9rKrKrke8tv0s5cAtDlM9frFD9u+c4PzL3rD7XweScLd7nvq31fmCKX9V8DLpGFwfapTf7MZ67gBdZ94NM9r3xuec7cdz55j7xO7E+2tWRp/7D04dp+umaa672reveCEvP4n8rzf7YP0q//JEj/8Nw/yNLXbgP/0vGBhXABE9YP/2ACkT3AcgYyAT5hQLATBACUGfz5uUsMagQkPvOdKkOG18gLjvRj6mf/Xx8/8t2uZeQl8WpX8KDGMT84/hKAArsZpCI24IZXJBS8Z+uwDIiKsA1FnhaDBMzs0TEyQLxSkCQ2MdaqyfBAwU7F/kdkGgZRJngQ8DzT2Iwvnp2UuCe77z7gNpF7rTW1ccjzcPE1GqufXucLVXWgY5917v6lWYMnfUwqqBnk/XC6GmvmqwMFzJYfAOzLS2Y4s16rXIMosjXByAx+/DlEqdD2SZuNDJadI+qn+2RFiCyOtL3cL0ZRQAqcD2gYUQD2cvO2h9/fvA1L6XXPgI/CiYguBmgtGQEfRA7BTUjXILd5VknOAfn+ALbbp86lvD382mRH8N+tFaR8XWzZScNsdibZJxtFn/7MdCD0MI+JvuzA2DIDZJzj8JpaO4Dbr0/ALMXFAHgbqbcn7GfPQFLFn+1IMzA1hD5D91aXAmzfzsg8KbZvJ/bfDedrw/FzEWCksvvwPQFkHpR56uranjERM+Dp4pLyfnGHvFEAACAASURBVHp2cVMXh+wG/d5htaRQgBR4y5pRBxDOrxva9xP6Puaa4rsJ4cxkQrw06AOp4SA20H5/eKmB3r0G+Yh6viaTfk/n6N6AR4c+Dh+7u0LezRkpdOZffA3oP/0B3G8Ytw33UJ12AUpgf90gz7A/Iu78PM8QStVcAyLi9xPO5Pbbu7cyI4X/iPHdS/aEYMFxQg54KYVZZt6l6BBkXarOgEbO7jaI7AvqW9A2UvG8OI7yfnqWPBzg2YVmZFlLDWZkGNrvj5zvSb3n+qvZMSCYPuYlJryPYBSwjdP4+XWOAc8nZW2NAf39otZuNm0HwtFr5X23YqfMfF4DgN0ms43U39CdmP3rabtijCv48Xr3kqe9IitYKLbJQuF83rdpSzZd9rrn392zNnt2PLFsI4vTRRqxwbO8T880uFBnh3x9hb3esAjADSRDA4CLPO4tGUb6fmDcNjz/u+jGY8D2TdH0dEG2GpyEQnaWCCXryNvejaYYu+R5JIA0BqpjEyCShtIN+gTGy47z67Z8VoahvffMtEsow1trXkZGcVb1wFkQQa0Z7PXmTBu2zSXDK/ZM7ySFBDAY9Kb2RUlw+B5tYBeNCaoiWlGPOb/U7ZKpYAuR2/btkUEdyxxhnhHk9bZ3f087NW368LHcozyT99YN7ZjshXFv2Z0Ghmy3qe9Hrhtq4njJQPfOOhzj7vufygiGQ6zZU7z8ugI0Meer7hEGnDGG2J62Uq4U402GhQyDhh/Gzj8OJPiYssWvzxvLsRYBRtg5tiolAM33KbBFFPJ8Vfz2vyhuvyp+bsD+Ww9hyXhvtyKiDc5F9zOs+CD+++7jQZBH5/dkb2Ab16nRJKtAJX2V4opbE/TXlu1TEZmt9t49uaRsC+rvtoXgsZ5jBbj6mDaK74l7gojbhH1D//merWMzMKx2cwxIzEE/vUxgowYqzRMYGOI6FGSHxfh5S/DZ3cRL7MIfIWsVSLaD3bYUFQeQvlzaw2DMyTlS9HWCszNGWLpClLmKpqk15ftLGadSTmtMXBxnYRBQJ6F0SeI98l4u7Lsczwv4wN9L6Lyl38wAk6wSAFJq+asumm2IkkekD0ods2VcEjT5GND7nHHWo0WiM8erfo8/M86JNov7Pm3fGF6DH5n2BBnIGFhKmDXLiBc9iALMyvX6PH4UKP/oEIWEyHHc6Br/1DHhGheZgIyKPycisO7xbgbbZOr8vK1ac0sgrqV7BDUTjmCcBphQGQQfARSZwpTlXqQ1fGAV+Afid9e52vMaH1gtV50F4E87PAB/EUBhyd7zsLIQauDANn+XQDsPxezgYObGzSxFcoTBJAPXyAiwh3IaA4m2VHFuPRiY1Ekhfr0hKdZXhRJzByyiThKGnoY6f/84ZrAnku1jTEtrpLrBheOR2SVmopK+PdZJVAzNWmv2iYHrIynWS70iLx/Mi2XTyU1e1nq7yr5oiBq/+WeCH/7Z1ViwZ3m+3fKeGQBmVjbuwwN4SdDBN6BSP8iAKzYNlpFk1qDcQ/ZtXxzmyPYjnCTSnofPI2Orun2bQSozpzLpePMhLSmkKewVwJEAiwAa+4yzzzzbT+Iem88wn2usLS9GeESpA+nYAECF7BFg3eyCglxrLSiXwgfmvdu8T9IvU1hy8wxPgj2fbJzZl56BFmNWw3Tm6bhca9iaeHcMIINUOkru2MWlSNHmkiVAxLmgmEFgzu1Yf6W2vYKDAOZ64nrft3mvR4/78r1TnuHoxb1mjWhdO/HOBQCO+Q4/ZEZEvK1sDyq/TDsiw6bwVV3P1YGP7PyiwUCUvKDhaTv6WAL+tLmjvP9q74wZvOK01fdemSaXLFT+vGy6fr0+7wdwQKaCEKpJSfR1OIMJBoN5TX5HLhntepjNLOnG7he2fl+j3rfcb9qZy7tLyuhnmU2jZo6ufcTj+hS0Na49BloI+9jgznSxGelQbgpY871Eih3lPXdzADZslJVnsxKU5y2NeR2ypRDMHQL+IgNmQbsUAbvVSJa/cOwAgwXIbzOINY7ZZayWTB+yNFIs7gWzZn1hBm7qiSdrucYXhstACYwnQO3vnOMMN98dud9mAFky4wk4VNFKvieOW7gd2eKzMEPyWtQJyf0aubZ8jC6fh4PMXgI38txe+oAc2zyK8yhjePkzuzyQ8cbAJ4PfWGfVF6gsSWCWs/AaOTCWJa3VLkxNIa5JlHNj6g8AzkBAeVcA2JLWT1Z/VqcZy9/Tn+sIn4/zLt5FvJulWw3v+WLP6r+TFdra1F3h+idrJEGIMZ//8jvE+5XQOjJFYT1pjrM1n49eXhjzliKgVz+az06xwhKoJCvoLJ+t6yMCRxfKG5NVF2OZezBQtDBK0o5+YZQC8KhMi0zaZHZUJvirAYx/omllzNArnJVhweat75z29fruauCKMq/i+bMM+MP+YPkOEP5pbQu8AGrlHtbzXva9y0G2QvVZK+0+r1sB8OqbXOfqZ0cBGz49bADDxxZmc07z+rxuBQEI9NCvzmvZygT4k2f/4e1YyfJffYvqs38GMFS2RGWHAUslQpYJ5H2P9fs8R7nW9SlWJofmBSqY8PEzH5/j+rvPyixSgNJK2UgkXT5jWfzpwe99dh8897/i+EsACgDciY7MZ7b8apiLg479m2c+7L6HkTCvkSYyLILzl5fMNIAb5j3qfo9oS8KM0HA1+W1TR7jpZJpg++NISqFGy7xE6Vt0L9ijD/QDYBArF5qS1DorokLMBtIA/f5tThRVryO77cAAxt929HvD9n22tOO5OZnkOFc9gffH/ExrZbfGvDedgTGFZNCjG0LTQJpXNdYswQAdVsvaX0TGB/fbpGrvkZHOTGa85MIUsf2eHTYW4z3GVDzXYkxU5rO25hlus8nCoAP304tnzEQcrS3K9vbTq/+tewCYWQ/WmhOxLyrCronhyLnPqz3vO8GHc2DcNvRfbtC3E+2PRwpxLYKLhqjhdydwAIApWnHsxQz6x8OR+LimDGD7/sx1ghARlSNYAETRn05JZt3j8UtkF0/LrBbMoCroX1xJe//DsnzB+8YPbL/6PBq3VlgkyBKVcVP0FxdK3P/wThTHq7qzQ+X3WCs5ThLdTfZwckZ0OGFwfW8rNdrCoSSbJGqtbRj03e3GuHmmQv54g9w2yIh5h3CSw0EUC6dbBHbbPDscbRodKPL5KU/Oh6iDJtoe8xIIp/+2YYQmgxzd66+N6vluW1wzoK9ldLXTyMVWyHHCvr6mvkcGqPuG8fUOeXPmgrzPLD5EgPu+rp+Yz8ZOKGbAt7fYWL02Gfc9gNRpk5aDYM7WZr/4VtZLi/F6DM+QdIOxS0gIiSYY0EMPgXW4gDNLWK/Pe6ao3xYMre8B+kT2RALwtH1zVsbePCN2nMC55VgZEB1/yrkiSMrWbsB0zAgGJLik3h6QASY41GFfCgvMtubv6+jeUaB2kxkdsjdnnbUQJo3ORHKOYA5tEwxgMK7IlpC22EW4jokiadHWDXZGRjaCwvG6eZZUgv3yPCKDW2rBCUKx5ChKd/rufe9Zzw94pnw0TbV5KD/v6vlXUDJr+d8OSPe9UxXoEtTpip8MnzvKsqKgoTu4N9AeMR5xjarqb01hLy5kqs8+FfNV0DeFWJvZIJYUdINEcbqy3j8y9QnUKjxAbILhkx5yBGhJlk4Vt40kQPvj6b/g30lf570LRWFtgkT8CXj3CtbaR9CdsXmASIj791Isw/7b80OAoABU1hIRqLPx9P0E3jw7LufA+csLoOL7Ddf2ffeuCKeDoq5VhWy7OkIIcM7h6YiOW8t79izzEYEiXJqgxx6lCuz+rjyhEkFZAO89SkykxzNXrKApXDje7buxrFMxfSmC3DlXPat//yfD7XfD9q1P7awAFfT9maAtExJMREhrHuwRsK+AQBNY2+ZYk5FFJmf4S1o0ptjtqOr4iHbfl2/+7N7+Eug3ZyKawtsffxto793ZCd+fvmbCX7P7Pu3uFnv3bZ+2Be7PpN+F8kzbtM8LmNIHhH4lAPtyh4k6e8HmM9VkVupg3be5VuqeR6B3FD85bKvJ5oBgk2hXXYPIsAcUcjQpgFcBH0Tc34CmRof7d/Pfuf+pTp0rERg37CJwnUBy3scKnH2gkBe7bS/ugxlBy7r/814JztRrdLfdFnoG2DYHze/eHSyZhLx+7zOuYHa/BpkBUMyOB5bXXgQJrc+4geV/VzBhjMzQJ+C+UOcJMhnMzs8Dfo7PBeT57O8fvn0FE4IZwGtCB6DR4WRwfvm6KgOc4yXFhhmwvs9gWth5IhkXcc8r+4BAU/k9NT4Av8f4e97n5dr5PByXUhosEL9+EJPNP7x0rSqDtv5nZWMQQBnrPBDqa3Au8b1UpskPjr8GoFA2MIwxM/oVSaSjF4ZdgRnAk54a39Gjz5clAqhlgGIthMH4cs2cpv97sB/GmFnTczgFnffSbYoe7tuS9U9BPLOoZb84onHfeU9NAdsgOBf0KSdgdBAAADn2KZC7vMxAR6NX7swe2ESJ86O+UZCClln6ivo1jZKJkXoL7OVurUE0UMdqdBAgg0wqv+2WWT3bW7Z+yoweN+t4nkReD3xkPwBuQFlCwTomfv+m05BeFo8rcHMjlylUR+eg1ijJ8HOz/SapdjQEMT7GLFh11Ek1Y0aFU2tTLycgs8XMjUG02HKxs/JeRVy8ycakIJb5Pl62mTU0c7tZFKR9/WDSs5tMGnqMhx6eQcz+9CH8VecW25J6xm86BjJsdvc0BGg3sA+Dvc2sfnsb0NPQv978ewwqec5GQ1zesUgKeuk5IOeZWZ+pGRGOWVPAohSKa5Xnj42zfYtOL4IU5Mo5dW0D1yI41ZgzQ7zEIUpmsu1nig3GuzIDTpvvicewrI2VwM/8AcI5qgKC1yPXfATapWuBmWcKpLumwtLCCZjnZMCb/b0RmRuZglfhQEi1ST9S8i4OoPTuY7S3tH/XlpAM+BZWhwqg7HgyM50EO6yWV2xt0lrjnXpseZ9OMh2XuKf876W7iUxKaAUrVb3v+/2GFBMD3DGsm3oESzNTEd9FsI+O0zM41EcYmBmiMYAu6ST7czLQACgWyLa6zpCa4+9lEpqtERmAkgHS7/HszEQPi3UzMhhOsCNtWrof62uu8zCeuV0dJMDLK8ZFTLWWcliItUawnyLJMebOBvPuLzC3M3LGZ7nPXwJBBjneyg0QWDIFM2AdPif0KIG6mdsoMQ/CarcAXa+Vfet314FYOpgAyVDwB477Gm5Hgbne8rm5H0aZwwc2ZQS8Y1OI7JmpHze31ZPq7lOya3O9nEfZMw3AOdCeMtcaMLU1mAk1A7UFU9d4RNZ2Y5mGB1WGIro3/LlzDpXnZ8LHWwnHe9cJXPjzR9vjI+xgBt42471zeNlRi0xfk9xncIQwZIzHuAVYZmOWnNCu8iffc4ATWRaUGWFAon3p9uas1LEL9FDYxjEci/+UjMStzcRLzHUAmSwZ9w3JBGGAAASAYuFDKcTE99QYY4n3w6U/299Gl6QhoO5DPqMC23uACU8HFBZWAvB5SVnMSTnX9U6w/drtJP3rq+9a5zLPQVvbR3aXyXOwJIcBc71XnqPJ9E35p2BbLGyGGoTR3lIrZvny5T4bYNrm+YzzouxRBENKULvoMpTnze/WceR9aR1v/eCX5typLLcC2vh46LrXsd1zHe/rtetRstg57rU0T+RjcBmfN1LwE/RRpIhn3mefrSL/jOlQsvTzUp98/s8y6sVWz/OW57s884ejtoQciqxDqGs137Hmd5KBQGCC5+oAMBII+/BsvdgcjnstW8j3eBm7H9x/sv3ifO4LfRyTtUOHzkQUn3W90Xl/l98voBIZiAofuz8BE4C/DKDgP/rLlswCOfpKT66GZQzI2+lGfqdaqeRn5DzcSaBTGij92BQtxOUMgfaNATwP7wQQxs+zlXDENxxHnxThIPbu2WrVCU7uUzzP2x0FZar2s621vttU1EyHGMjf2XFk5lwf4ZQ2XYWQBEGDH+50E22V4UFuPVRgLzevS/seWYh9K5sx0S9M0GQwCJcQVcQM0GqrJ3OnYDA4bYJm5u2XbpszSMxS7yFZGuLlChZshnmv3MSJ6GlmLV2kKACFYmA/rVcbAwKv3XXnAJ4BY71e/Y65wrup9yeX5xElJMNBCy3lCuEc2N5cYfz94Ur7DZFx8Hu0puiv6jXntY5vwIOFr1vSmSm4pO99ggnX8XrZ3IGPjidpDCOr2V82tHNAnpER01CH30pAcrqTYpvgfGkp6iaGKFWwFLvyrJq/g/Z2AKN7xkt8PrkyNyDfPcjsX3ZYc/0FiOD86QY9ho/R4Wt67CVLWwJVi9pS2xX6z6drFwQoMl49Uy/H8HG7qXcTMHPmBu8PEbidA/J4nxt7lpSE8NXRVwCobXP9nkcGpxaMEOoyZGtSth1kaQm7MGhxHs4ofSjMGjqfcj6nU/DJpgQRzybz3ceakJi3uRbYo/x5rOUlDMoLE4CBjG33ACpijWfXiFbE5IrjMWxZVwm07a5joDXgzs+UALzal73lO81TBhquJfC2vXkW9enzhqr8dvN3KWGrs8POaWlTyaLQKCGz/TaZT2WuAQIL/Zt5/9MRBAC2H+WYsOOCn0tnpp8aFGNMMFZ94ycLwrNjnDfIMoEUfxUHsejg267oX/d0xvUZXRUeI1qOTsaRnOFUU1PnHmDnOQJ8aGhjQN4uc4z/K8GzZ2jPtHFU8wcAPbz1okVAYjGnKZxqAoxdoX1A33rY0dPBkcj+K8Ys3TqogdDnuKIGVSNLHLFr2sgFqOJ7wvAlvYAqBj2nbclnHeKladxL4+fYFNIAxLryvS7ADt5TxJxL0BUZqWxdyM8r7bCssUcBFSzEoPUY6PeG/jKFCKWHloIq8N7Rvk8mgIS2VNrRcFytSQBRivbmjDEHUy2BkywT2aa9cgc4OuIYJi3/6EvJJUF4F+1EzhnTqQ3g/gLmfsP5NvzDix9n4hoU8KBaQtuGuij9dcNoDeeLQLuXV+kzRCXpCl3AryGCbN/H+cKgxLyd5PbmHR8IWlC41UtESkBAexr+1bQNHlD43uAsIonuWQKf37Q5KWh40ykv04cHBdxTZJb+ifn52wPQJyC9zXkkPtbtveyr5xzTK+BRNXMs2ESiPa+FgexyQfYIeP8aa8Nk2Xd+dNheWvZVZoiW79WyYQZKBC0IKBCYY2Kw/q0AAAQVP3QaoQZGvU5hSHrr22L3M7C0CVrENQU6M8AqmN3XSrBGH6MG+gQTqk9wAefXwbP1Z5YdRnnrbV/32cX+jXl/cZ0PmgOZOIv4xgyLnkEp08lAmm0VWV7B5+zds/QEFD7LWmuxt9G+2W/7MhZxbx+y4JwHPPhvToPPAvSrQKKWtcpz6FjuJ9kMKgGccI+OxaAf78WMncA+8d2YKFh/+4F9AGCySGL8BfLxfBVE47yzSOyWzoAck/W75d1fgYU/BXAuf1ONJGWZVz84/hqAgiDRaYhTmjUMcTqNzwNoivGTO7ISASrFmJLeDeQApiItppMybg0q4iwGBBAQDIfMHFJxN2D6rI9TtkujcZ7BlYlvuPrswN4whMH4mJOJwMHWZsBfkb5rP1gGoG9PtHNgfLlN6mQ4njmBX4PW88fbmo0F/HoVYdxClITZS16TlDPqAlxRUJHFoZL3I8EMqLeFSwf44bQe/f6EPAT955fIAIWRHdOhI9qbAj7H6X2Ze2RQKOQYG4eJeDaeYwpMjYkaIJzqjs3RE2CyvQGd5QNl8cbY6OPwYDBKJyxaUVZBKXeUTuA9go1o24cBCHoi9N7mUV0cMOaaiXigZO4YZX/xcBje/4c7TAW3X88IxncvtXmfLYdI6R33LTMgHmQobLtDvu44fo5uA4cDGGxZ1V+3pErracARJRAC9HuUpdyb0yiTmhnOJ6KtmMGFy4IeTWXrmolgFtVrAZ02LEUkcny5ldpQn8vt6EAIOTLrY2w3CGDW5yBBF413l/Xau2RglW0Ha2aBm/6jJwUfqpB+Lp9xg+0OhIxZAgHaCdoUrmfAN8bWgB1ZR22sUafoXbcEAGwP1sMjKNLcAEhRFZkMBTJ0AvTK8hGCia1NqupxAidmB4n4fq5jHq05DZPlHgTMYo7jefj76+EoP/p0XszcuQrEIJkidaxpn4pmiR4H0AfGT/dsQVvLuFywEZ5tPscM3tLBVYz//pcAEmYA76BD2JeYi2lLdJvlLWcH7uy/HhfVWJsF6HKKbfx9GNBPCLa1jpx2vVB1uYflsW/TqUbMC9Wp88P5y7Vk0blFXSxQ4m+ZKY5rbm8955OeY7acvE/dA7b1a2+H2837rQQ0c//jmu1fdzx/3qfI23ufQSTHAQArR8WAoeKlHPTtIkCyKA1b9QocoKvOPxDrKP7Nlr+ArzOlplHRRsnP7s333KN7qZJ+dNY5rhZiobUrDtglgNOAQIQ/JCACPfssgQAmABWAjZzPXI8EixCUfQoMjqZoD4pGSoK3uVeWLKgMt61imP6FuP09f7rlPejB+W/zPWYwGWDEFvMuSgWyFObWIH2OMSLwx6beGhRA9kJfBtPfPEuxxByEYSvNqTtD2wiM+wZpY/prR7HHXNPw5xsv4TM8BHh3e6nPgSaCcfMEjQmgfaC9Hb4/aLluPDxLRbT3Kb4bwU0DoEcJBFSmoCmz52xnXQAuF7hdg0OLxMG8dLCFIshfgFgL5iz9Ur63bZ4juwqJudDj5oCH/hHvrYiztkf3UiLavwIg+IfHCooA6Z8s/y0DNjTBnywFKAAAgBCfVmS3o/K3DGYL0JfZd+6R1yC6rCd2qFh0rnzgl7FdAvjQGRGCzmWfl2fY4xpo795afoLKUwgwD9rpYJDkHDDLQFpGGZvyHOmP1t8XQODDGBC0qu/tOlYD01+uASn3En6/lhrw+0wK8hlrIH/SpxBkhF7BlXwGXYPI6luLzoSt1UVQPsdWkggggcDFZ2xiEdiHMJzPW4Lq8Hc+tGwkOAKApQb5Gf6epQbaAPT5bvj9+vwqPv/6zNgvDPJ6b8AkPdRziEB4zdbmM1ConddPYOCT57+WU8QYzOfTOaa5rsdiB5bnuh5XEOIzcGLMcUWTj98px18EUPCFxLps2wR4xkKlAYsBY49nILKSvWeGYgSKrCdmoH+lpDT1feySRfBBOgIp58IuLwhtoe7lAg564QeRLvHzCC6BeXlegAstJpgavCiwfH5Y9rPFy+YTvwbiw8/H+vx2RSb5jGWDrHVfpO+7cxJtz/RyD36j8/bDcZLTF2UV8xp0lPiMTx9T/PyS9fkfUC5uIhLvtncHbTjG2f93zOvvU5yO73XJHvCcFNqMIFp4vsNmsMRxCkNMZgKBkkVpPTZ9br5234JKF87IAERtOqoxDzk+VbBuBh8RMEJwfFX0XaBng8YaUAFaZBtTuNEsQQjFyHVzaoPcG56/NPSb4PaHl+20IQ6uR5YDAsjTFdKHOFPBaZcMF9SzWxHQMQtnezhjD4uMrSDFdsKJ5DwYu0CGwnQAoTmgv797/f9tmxtS1C37ZSPg2siumB0kaLSTltljzWg4piJT2dkM2SK2bojF6MrjiPkvE8X2RwdbtaX9CUBmmbN0hJiFMAMV7fN5mswWXp2lAOG41fIjPiDLkhjkh+MxWQltCWBkIB2K7OfOzTuEQmdAXjbmeJ/QLcc7AYXh9yJPzmHx8ao0SIIzPWxIcXYrCl6zyUJ20HECw7sVZLu18l3pTo3PaywUVEV/3UN8bmoCGDUSeL+8DwKugnTw5NR8Jg/mAxC9NVBF3wPf4nDEHiR146aN+4Q6mv9Z7S6QQVQVuMy2q+oL0wJgYWZZmBUDkN1cHj0zc2QCjLszhMhYShbRo2f5U4pRseyW3ZOaM5aevyi2N0F7F9yeA3Liwx66CPV+9nuz3P8gU6w154LYWmZRfZewtRO0KcFGHeN4Pgse/yIChghUIFkyNQig1n1srHMrM/nVeY+1rxX8AOb8Obuv/y7rdxB2MDQn9Nldlya2htEkfYfRBBKtbGUYWlDYx64uzGcey5L2n1nkwp4Ysf/z2X1eBWARDrycI8AV923W3udWxhUfXfsBB1cVk8Z9+r7Td4V2m6Kritxjxq7ZpWsmbEqZmm8NYOvuGBwHl6McRvuAnvOdyOlzWlgOFDYiNRgsyk75Lsio4P68GbZ4P2TvUdOE+ypkBs/JeGkTvFhaaAOg1s+HUh8gS/wkxquW23pwjKI14/uZiMBOQExyL5Fk0QVg/jzWgJjgdi3zKH9LbTL6HxZlRMzW058y8zkSgAMA35diDAyhnXENCq+BYvFz67GUVvBzywfmHvPpOcgW5VhUdp5IAhvVN1zo4PSZVdKn8GuWa/FcIulPUlPjmu1NwHixaTJ9yfDx7II5XMdqafu8MAp0loOU61fNCSYcJMetBJU8OEbm2m2fZc3969NHkB+8w0UYsOMjqPCj45r9/rNMuV7G81oe8FnLRgbg9N/jdwDcz+O++K+83Xr8qTDh9f7q75nM1biXeo/AvM9/5fU+/X0FECp4Q7CBf/sRGFCALPc5x2Sy/BuOvwagAISD3yFtwLqLNuHu2Vl3dO9Ak2wRaS0cwGgTBhEcP+2ACtpbRyKAjQJQpdZXBeO+J1AhJmAPWAotAvBs6hiwLy+ZMc2MqPp5s/bd/J7611s+UiLVQNJ2MSwFCxEok2kD+nM6CpEJkNggshYavmnVzSdrmlsYnvttioGxrQ5rzE4PIJMSVmvJzw55f8J+esV4uXmmnlnUeJZa++tOaBiwyNrtvz4y8HTBwTB6Z0f79R1QeGnJGL4pbM2BAY5FCmVGgFg3na0BYOBuy99SA+DVxR3lj7cpTjjcqNt9x9BbUEb3aOlkwDU7PMbUamBbIzoI4ez2r7d1UzEk9dtFrRrwukOPDn2cOS94n15vOTdTE3ekx67Yvw9shSLLDhDjdfca200hu06nZXPWAIahvc/3uX8TbA/g9s/+Ho6fS6DQQwAAIABJREFU2IISEyfbFRIZno1zQ6dI4/l1gz4HtA9YOMyjCUQFeN2TpcNgsodY2/beoYdP1u3txPbr26R2x3tn4K9vzghZkPzbDoDBXcf2Rw/nb5bUjFuDbBrCYEjGxAhVfuWcjSDS+38rqJyPL3eMX179+s8jWSYyQrehqQMsO7JWWELocnxxHQL9/pygVdDtMyOb4FZx1Lm8w8FJRk1tBdlHsmPSbtBRpK3pHfJg9qU42tHONqn470/PnLT53dzUzmIj4c63vd7d8Q8BLLJsyH7ycpEQW/1yz/IRaYIRgSMp7MkcANwmAQkE2tYgR8f2O9FweNaz2JfsCpBrH3kOtqFMp5QBUzcXfwN8TIszpM+ebLRs+zsGcNuTCeN2nDXaYWeC1oyX3e3t88ySqWSR0B5VB4//212MLJlVX+6eCd5DBNgGcIxZJlIOzeBGUl+kgpHMhnJ+JfjCZ/4eY0HhRgoIW2EIhSNLnZXb7yNo/pi/DxvlbBt4+VY6tSFqe0RAluBtoXCTqcJkyQt1LuL5NrbJ9MyrPXvulbVlpmf0NdmFWe9MQIzlABG8cWKLOaPDVJKantT9miXs5q0b1fVpaqs/6wj72QN82nwd0mEbcx7m2Bhcj+bAZFSZwXoIXvZggQFuTwYcoOW4mbnY7hMzeCPbIMaZJZbZKUjEAW9Sw62AVzFm8vC5OG7N7f8ogHGTuO6Ye9O9ZSvhqrZPP6nF/OWYTwFJgN1Dxt68TK1fgEfaMJH0Y/qr20M9hzPqNi91yO/EO5GjoxW2Swq7DkBYIgDMvccsbRPvwgTZdnTOz/B5nmeADR2yhahqLaOVANgRAB/ZPAXYnkAabX3zwPISqGXHBJTvx2fIxJptO9ea9Hx/wLS5nyWEzGaHBjKtBjLLn/pZwCxBPXy/svstmHbenju1gAjSHj7/bd+ilHb4sxBMrrpospY6LHb8euS8L0DuMEg/ohS2rd1ruKfRHtOXYwliTSiUucz9YklMlc9+mpigLR5ljY3wBW5bCubN1s8sfyvXTZs9VkZHaw4K1NbEOfc1bmMN+KqwcbIVKXBaxohJTNMCbi1/s5kE45hS44jXWkByT4iauA2aCRbaxWIbf0DPn6UQ+jGZyetVvR5+biPb0OI+Qvixten3oPiWVxAi21mWdwEs91Cfdem2UI/8XgnsVbEwH4KZYJGYyXORuf6jlo+qsx1k2ol5rUW8cbmn4QyJfYMd548BAu7VJTFiXJeXchQzmTHgJ8dfB1AAJmJKHQIBKAqBhrmAEShbgAUaAsLudAG6BT0OALMv2RZI4TV+RFoX2otgaU+XAet0WLApMGZwlB+VeY6kzXabTlNQp1Okp16TaJvV7JdO1DNQyisymjVv4ayJIjKksZg2dcrhOaBPgFQuGnRmXTKDSkNZM7HcP7lxs+aak5iZztisU0CkUm16bFYqazYvnz+cstqfts7ZEnznf5csUH4sHGep1K+8h3BoG2Zt2xiQsU3KtFl4GPFsl3aKVsaIdNVkC3Qs7ZQyOzgMtiHrOTlXOIcBf2dj8//JCRcey3vHfE6+F8MUmypzqWYl9HSnWJ9E1ef3gAmgZSqqONB6jBDDcgd3QKF8IcH68UCnjLvMuQKEMzys1PB6HWki7jrXCZ2AOkawOQakiecmx/EQrmPADsyabgyYRYapbsTmz8764XHfHMTkO4t6UTrzpO0yI0fnZzCznvMqJlalw1+eYUH52Zmk95khmV+aawAAsM25yWfgtet5eS8LeEF2w7wfZksWx6tsYnJiZfhwbPTyDOU9m0UQUUscaoaF84JaBxyn05baeeg6n6HwjNrleix/W1hYI26CTlW08sz7tlJDLjId/LLOMmOdgY7k/dumXgLXw3Hr0w4m7bp8j1krK+9HAGdNSxnLMaZTR8YEx8cCAGxA0g0jSMy1X2uSl3eMBfxNmxbXzi4qipznLtoa1zUg9Qb4Csi2+TAHkMA2qG0zkHts7k98Pq5ri45B9f2z5p62rq7f6miafaCV55+q08XPjmBUqTqDbGDan3p9+FgLqfMcwgx6bM5nljSye8HA3M/4mVHm1RhAF4iEbWSAy2cT81LI9AHiRy33GOV9q+u85Dssz0sdBC9Lafme5jOErVTJLWC26UXsCzavC+R88M/OX0sw9q5Z8dT5IRgslwAmqNzcP2a7Xx8P172YY5DnRIzzQDjuc6zrGGSARt9RxIMOtSxjEcTcPQmgzOBiAmHDn1tanmthKHC+VHBqsZVzXpElkfeUAZbbOrnaWfo6tQ6cmebMil/8yc+ChsshZQ26D2kfWbaA71G8j88CVL5z/v2za199sWKXDbIwbVB/fnYs+6AB16z/Z886XB8DFXSr9xY/06dIeyDz+T67lcpw+PTCl72L77DOkTpuNXDlu7gAT9d7Xs73g+tW8GMJmnnULPbyNclg0hAsn3rtZd+h/64zCDWDB6E253E9/oyd8NnxyXNlML3Ursn6E4DHV2HQa/vKD+f/87WzlD3UMgtgDei1aDyUksFlLApws3y/xk5lLsrA4sP8KWNi8WH0h+94ea4f/THAhE+f83L8dQAFVfQv+6xBCwaA6yJobgAZQA7z2r0Q1KECNkq2pR4jAiDPuIbxBLyuiiDStiWbAWPMbGOpCycqP25Ot/PMqAv/UbU6VeXjBY4vN2AY2h/Rcof0sa0Ver0CbYfcguFgltk81vCPqP1t356ejQ3GRGYFu2fiWaOXFPvmKsa+IcRmOQbweE76tUoyGyYrRNd6Vy6M2FA9YzOSyrUo2yOc8NaAvHbZWM1cuMxiUWkD3p/AecLO7iI0dCaJ8MY88WtFPWLN7vInN9sAMdjuUXqHbd4q6Xxxiuh221wc7H22ofTrIDUfbJsOsRzds2j3aOWoMrMcY2D8/IJxazh+3r3+832i0vrmdaHjNlEr2xtGU/QX10C4/7NrJ/SbrvTKXb1eune03x8eVH198QzJZ84rsIAt7eFzs72dGfCwG8r58y30Fzbo4S3IZDSYNIxNgF1gD2TWEoIES+S0qBWWpLyOKIvQpzMezl9eoO8n9HlmC022FZM3BW7qGeoIwFIBn/dPRzdarnnWbMPYGTixJMBBGdw2nCrYm0IfoVMwhrecjTFnJmJ82SEsoxLJd61/PCdNPA4GTNSBQLJghgt6Nm+7Jsc5Mx10qPctKaH9b6+esfuDrb5m+8es+6uiTBGM1i4ObHmataMMtFVhX15y3syuLbE+bs7iksiMJkV+DG9DWZ2aoOtL7zB1BoZQuPR55j3JKZN6yraOgDMeVL01ZA8G1MsNeLnPMimCdu+nO/bZctHniYN2wY6K55W3h9vGLy9u27BNOxE2Iqn8nDuYTrT3NgfwHMDzQPt1fNCQ8PfeZsAnUVa2KTSCOvsSjKini66KGbK8bItuFr37deIc+u7n7i3EXx8n7L4tTvp42WIPIcDgc8Iz72E7mT1lsGHm+1RrWWutZ+iRlOzsuG+wfQIdpuI16b8fwWIoWjEEmjknQtyuZoLt7npB23fLchZTcfu8b+nwi1m2rdRHzLOt+T7PEsMaYJmGYF5L5kVt7ZfAksV1b/vi4GZGlHoZERzXrgUsSaz+Qq2BT/bHlX1wxjpts1zGr7Vn+U+WbvKc1QcbIajXDfJ2+N5+a9CztPoVIDtTlIPzgnuPREmI3cozPKNen2ueZWCRnZfQ3LHCFvC9psPOltfWYyQ7j+ywFDoMsGDR2AASOKDuR/t+TP2hAD5mq8I9WSO8hyo86ILUridRgRcyGQgo2RY+D2K9bBrAS/HTzjFZHecAjuea2QayraI8jtSQSeC1DwgOjJ9eFtZMgjRki57OAE3ByyHzvmjX4v0CWLW8msDaZC9WhsQSdN72FHRli8uFhVaDt8Weh0/3PHPdZLJqa26HwlYzm+lsuZEdr+hjZ0ZCBcBHZp70+M492nNnoihKNW8uMG2beunyybKUMfdVs7mPhlaTlLGwfUv/tDLG0t4xvBkj2QKATjCjdpWowWqCPG1qFxDECXtr9933IIJIFE8cllJPlc0DYG3rXhklBKeBeR60+a655liOwjK6prMcowJNnNN1zkSCy84TVWvA6VvB/o3yZFM48Kf6eSvC65hRb6U7Wmb8jo1skckjg9GlnPBfCOKjZEBqBj+eMbPnZ4jl9w7RbdUsGG7bZk1YAAHDAA2AgUv60pXjg1YDkLp8PDcZB/79sGXXchICKx9AFYMhOvrVZyvlEA7kKKBjBbBYovUZAMnYKZ7RmfAaLImPwMK/2Hnjqqfxg+OvAyhgDYbcIExULamfpDQSQCgOAtV8ZcA3pQWgijKCUQIQom5xPSA2CNIzK91UC7WV94q56bMX8oJsA7mJimLJPGUWhyjbtmXddAYNibQha0H9mjLRaTrPRL6BRFbFMFvtsb76ysigYeK/eV81q3hZxKlknE6g5efdcBP0CcegLi6i0wNY6GU8N8em/vcySS5/K5M++yjn4p5jxPHKMpWwpekcF8VrhNOaBzUn+nRmEbXWJrPTxwdEmoa+/DedMTptnpmxNBRjF5iUzEOlXgWSL2EUJIIY1vxWtWNn05SbCUYD7xmQnJfZZeWm6XDK6W21us6AhpvnzJb5mLsvMd+xCzHC2RFABkPuwGzJJDEA+rrnehMCXXmi+HHRLkiVcq7JeHaDZKY8wZgEDtU7wlCkrc5JbrqXwNO1WSikxbUo01EXZ3oIn33ADTYdBM5PK0wJ0rSBOeceALVC7DidPkqxSzIzVD/SWHmQAlkcisygVYeIB53bXFs213KMGQO+SVlEOHHOfEqgkecva5VjWwP0tDOY6wAAcF6eyebYLu8CWOmt/GxxNvMdksp/tRW8lXqNCtqwdax4mzqAQVh5hjp26bzHZVhmQXHZGuzzlnlfMp8xjwHPnnZ2QsDKmCvPvXQ64HnC1s0MNlYGAJB1/ZkhT5YDwjkyr9tvzkxKW2fl3WTw4HNDubZj7svgfB2Lo5TAFVyslWKugigvEvk4JipO3COrpj43Hab8NzJYqGMFRLAqxR43wRAHu5NRyLme82Ks16rjH/bmMxYND3a+yPNxTXLPNJvsgpoNHfRLypoNO5zzIvybCpzxOes9wix9gLk+uW+v92v1PuP8wvd2DlgFwsV9KlAxnXtrmdsU/132ZEUCLoDPx1XwMny0C1BRWz/muw6g2G7hK5b1wr3Vz4v0yVJg9uzrOxXxunI+3NXn4bjEZyeTqiQbepkzAV4s7BGCP3W6xL6X9fUVvCv3ttxD+mqX+0NhN9V7L9dKlmqd2/TfOA9Nix94WZMZpJR7RRkbne9VrrpW9X7MkAzHYF8KWfX0fYzMIl6zjMP1f/xeAWYNmGWF+XdZP8d7vI7ZKGOdJQbBeqljwnHiV2unCivga3329Jl5jkvweTk8OVjHpvyb90amFK/DZ2BwubBnwgG/+hNM1iVd32OTT8USr3vPh79fA+cfZ8d/eFzHSGUN5vkZc1Dm06C43kfOIcZmMj9D1gLtVf833C8D9ThWbZoC3nz4nqyfrxoH15//Wo2KH7yPT8EMHn+irVD1NP41x18HUBjDM3/cHBt8QYbadv/lHllIeM3pw+sR2a/Ymi5oNkXdADfYw3yfaJEltqYYRL5KPWqCARIoaqgYyzG8fSPn4pu3tTv/5q3Hsu99k6kwn9mXcCRfd89kPQvq1xTAVvqlK7BvGPcd+jg8qweA7YRM4NkJ7uU3d/A1Mnw+lnQCB/R7x3jZ0F/3qGGM64o4wrqjUJD7x4l8hpXfGoAISG0aKtuaI68da90ywQsNEag4spNDoOqWgpCBtpk5S0NLjbnZ1JGotWE02NUhO2a3BwsFf1colqj98znU3k5nDUSnhvHllmOnjxPST+AU2IbsMb2xZp7lEge1M8SdJPMsmoqgPTr00aHv53SqymEtVK0NWRYgw/D4m4/P/VdHVLP/9jFcEf/RU4NDvr/DmmJj9qZs1qaCYX5+MDvHDRoIEcaWNH4xF1HUU+LZgGYGazs661EFLmwGRGazo317wI4Nuk1GBdu/tj8e0QJwnyJS4Tz0u6+N87Vhe+/Yfn8C756tdx0QhT7PCO5KxpYOmLqI1/bO7LV72np69r29HSnqyOxH32857skkinFlB44MdqNGV76HDkHpYpCgB/u4E9RgHerjObNdZA2EsKgcJ/T7EaUwCiAQ6K2h/3SHfo92hKpenvNyWx2ea6Atrq/h9i+ySszkWmTr6hoL+2o/7/F8oXsCmSAlAKhgvNyCNfD0Zz6A/tMd49awfTumkBnXOh21yM6nUGMopBtbX7EeUwT6/vSg4ssdKSLJ57QZRJoEm6Q3NLZyDGFLdtbIuUE7DCDVy6lLUQM3vpPnMcGCsDNjf/Eh+e6ZTNYvjk2hrzvs3qI96XCGiao/A+fI45gtJ2O9UFQTzPa2UI+PfUKfPr/ZJhjdgkEXTrpISqbO4LDNICo6Nsxsbsl0xzFuzduuvnsGOwHnGC89B44vG87XcC47cPvVtYQo6te/bAky6PfD7dL398kuawpEzfXS6/wKZjMwHB2CBpMArERSmZ+AoJea2Kr7I25LyPiTYBWaSpQmIrs6yPOEDsXABrsp+q7oLw0Q4PbPR3S1OJNhkGN8dZwZ1I1ALzSc8zHXJNvNZsvFUnfP/2VC4ralNoQDvNEpykqy4xz+bl+DQZkZVme1AYAeFgzJyWxx/aCxBsOqa4Y9s/w69/zCbExBzcNcBFGQgfFQgR4Op6YwNdeWAhjitn9E55JIoFB4cxE1jEOfZIe4belfCmMTWEp8yL6SI9hAI8rqNuTYbG+uYyTsJkNGKNt/jwHZotNPvKNkPdK3IYOzjOPMuJd5THt1eFlFdlwpDI2rQn8mGc5gxBKz8UH1QDGCHTm7B9d1PAjSnd5dyr7cQusl/KeatZawc+xW4JcAS/ayRBBuV0RtjkWdv3FkadFnwWWLPYB7ap82ycUhYwykfPcK8oSfKWOkDk9SxeE+pNXv7FMLB2aQ9wiqyeCgHg7p31JaUhcgjkDVAuCMAXmfZXMA/H7Dt+Rn7WX3eVbaji+2o47ldcw+A4ISjEX6syx/m23Vg604jvSjya7x1oR92fcc6CETVyfzkWBIFZgFPgaTPK+W8J7z+7PAmXaxztna1e5fKC1ZBBZrt7phwHDGRe4zV1AhMvvr+QJYEC1ARNjbbUOWb1wfI0CGZC0EoOrdZ2T9W7AgltaQlyPtO7UNljJRxcKOYLlEPVd8xsraWsABmd+9alhkl4g6xrxuOT9qTAms5fCfHH8JQCEFn8oipgibApfFJWmk5/c92ElbyxZKgqw1zRpwBvcqiR7LkOJsr4iRdMCIXkWm2ueff5+1g0n391YLScP7oLMQfYvTGWcmk4ukIGOmGgI3CB2EuWhMBfa6uQBTNegWaH0ISSHqvdujUCDL51O5t8MzDnVMAUjNZP4/zL3bkiQ5ri22QNIjIjO752JbFzP9hP7/X2SmR5mkM9qzp7syM8KdhB6ABYIeUT06emo3K6uqzAh3Oq/AwsICD78BgGUeM9rLiNNhfZcp2ucFRYo6lOyTCmnuXKXcZEQSpRvVpG9SeDJvdoHM+rO2VLbMD+9yDAPeMyWU/QBYdG73xex/zMCbh0tUn6B2wHkzVJ0lum5tZaycgAU6+eVQ1G8fV5+j8VF2XSmWPuLvJRSHo0OUGBmk984IEUJjYFyqCTmyDYPCXoaEH3+5gqXHyu5pPDwU4iBMbesKwRTlKlUmwl+sEoRulrpD4cL22afTp5YGUrpCeg2DlVoqRYaJVl6bGYffO8q9owFueDqNUjztogj6+zbnTC0OoiQjtsBAME9rCAaUr23mdKoLPxkFvtt+4MyCKbg6jUzd2tTw4HiLLBEhpm+E4cJxYKoA9QEykJCnlx/e4lQfIZ2Xhm2aZ2Yo6eIIWTlb/0ytkaawPGlYedM4iLwdhaX2wqhPBh3Xa9o/7X3E+pSHE5kPYSxpomc74EhaLg1vEZRHme3h/bvMqCLg+x+8fPDsr4iU5z2QTkA2lF1cM6Jn2wRptGDqzvhaElGg1/UebvQG0yMGzoAXBSCpXJzdP+39TPfwdCbpw3RxBC5CKnZcOUspbs+5UVP5SwWoDbAwNgQG7G3N0xB67GOVJShzRBCYLIWU1heVP7ysnFRj56gDauHA9DHfrxRE2dSSzo+u1tZqwEdUE/C5FYwq7sNIjlpy6LNTG+wmpta4SGIdcObh/Dz3gbFV8+t4z7wGeeac13jRyVTgVu+Garwbz+1KQTwCvTChS+9jOmqsgiLVz+ioYoCYk9IM1C6P7udIsh+2GuKYfI+cNhrPOjkvoS9RXLjxGDbPefYP+7JUiXmwVL84rbMM0kZ7uOZFLF2O3/Fzi0AlRbijXWEYw/cb34t9rzFn1eZn3TGDEhmHyud1/neAFhQdnVFsVt4xqn6xKhQDEE2lRvn+0Q6Ae6/tSb7/ijxrn3SFaDe7ctlHMOf7Ek33z+T1k88kSfMs3nU6t6/YoVFNrScw6xS5nCnHY7LustPM/f/MXCs8M3u0y/YrtzvzOBQPzuw6HbvWYYtVXgJRPGOtzK7/bGvOSvYKWcGkEQsQiMxSnMkTYtpX+9zXih0/qYoQ75nPgCfHVtZzL58/+cr9TX/grJ92akeI8fIaOp1U/i5Er9N36ZwDcx5lX+TfXUONvZCd77DH7V2FFX0I+EUayKkvX0XAEzshhBZfXZJEC4cDFT8DONwxl4EAGhY9gtFPc/En7WL7xUBAAVbAhJHb7Jz/O5ZGKTPFIbU3XjO383zx3bMv+IJ18JrF8ZMx971KT0zpP2LU/CkABTtUCuS7zw1vM6dnpTUjBNmG15U2NB7RIeqHICP49fBD9sCMXInlN0YeqbjNJeLMCD8UXlEFBwBIIMnFNxx5mLqotmKK/NcaG0ami9KZK0kVmffBMVA+77NfqkCLO6Tp8yoCXF2HgTTOMtvNfrC8GXsP+UyR8p7eR5wmZ/kJ3s9OcmIO+VjbuuREMR+Zm9/hiCgnJ1kLjoqfjWzmc6J5nnlxYKekDaRIGKN68SgNP8tNk2AHNSH42SoW1R8AMCAPRd1lHtY0UP05Y/Pc0cecH1Tz1xSlJm3/JbLaFfXeMS4Vx3tD/TpQUgWGqC0uElTeeu9GkW2w0pt13afDaa4NViGgA58WjZKvuysLe14f26l+OHqKBwCMraJfC463EjS69m1OYjnM0bj/fUN5KOp3R/s8TCfEo6rMSeX9QwnWdU4whpUp83k1WInh1pza6eVNf3/EHB9bRX8zx0ZHijJ4lEoBYCvYf23YVC0q+nVMwUkg8qClD4xrxXFrqA8DQ7g/9Dc3ZqmCDiTKcPS0gcteJlLE1sC4NCvdKTavbK5ZBDryeY9uOY8iU/eDEdMMKI0BHMbwWFK8yCyo1Z0td9jPYlIe6VKni7MqQ0STYl/zedKHGTMiHqFz4AZw3RTXJshtlLnmfKjNIbvvqHcEuyXYBimHNwCPY65ZiJqWgFf4CM0Ff/fYY53FIF9pHzw7PHQcCYKcjSzhPo3phBZx5tiYDlVycONRl2aMpHQOoatF4eEVQK7u7IJGywROlmpCNCLZ70CkUJSamC78fO/L2I2b67uQQePsHgUg1atEfK/q2xZdNuOqfk4mCCPLZCMxony8V5Rdcfk64pwqXwfKvWN4mUn7ud+qKzC6rT2C4oCxeIaa4V8cUOBwEHRgbi37hawNpuONYUcHKsaHRw6P6QiLR71Dh8VF+5gjj9jndaYrpnlhJTa9okaBCc5ucw/v1wrdvGqOB4uVjirTGTk+1EkQTBpuiDrOfTFAP3eQ1UUIPdctmEOlJ/C3uPPpKUOqXhay2fcGvMpPEajrZNSvPZ7LlMjhwFjZh0Xio6yj75niJSXptPpcpHFMdkUB7FwnkNH92d0BmmOYlgNmf8QaAKJ/WYUjtBccMJYmoP5PIdBK5sQxgqEd6TcMVnipWIKm7D8y+tTXO1MF8z4TF4Wg6UwBUWUn9tNSgOvFmJ7vDaMW1M8d4t+N/OTsSHPe094qOlPjKAgbH+Q+jXheFnyezugL5ybP8QwoeMBF60zzCcCarKitTWaqjz1LHXK/Xxih/FkGjAbvP227qPzk50U4xdQL8LOHAphPTIdW53kZLJIKbUjBqwxiYP7sACDGGhiXamAc+5CX2xxIvoK1B0CRKLn99n9ZdZh6PPy9kkNLf7KvcyqqV6TxiWfXansEtRRegA6RvkrgYZzOflgfBIhFUOJ8ryhJ7ZoJxxHOL8isygCVGDsvzkTqNXBN8D2yY/xiHsd7kj2QL7IhfnKxtCcj7ksEvwhQ6vrMxcltDlJm4GTMwFG+aFPqZAGENoGPjao6k6Pgia2QK0OkiH1OJw9ww/VIYo/4GahAIJLAiT8zWBGhsXGyhfKVmQrni+1xdsYTOyF974m9kD//b9Jz/hyAApBy5CzqIXsxdvS3UdUYPdCWaL2k9ue8R/GNmJvEVnB8bOEw1FSeK4s5Rm61ONrfnc6qHTU2Pv+eYioQK8LpiGto5E8yehBiSIow7sZ1lvHqtUIu1ai0WRRSxNIkSFkGgItT9BzBl3248z8nrLIe8QE/HMmKSM5+6I3xxSQmnWzVPsbcwABVUvSUNeW54DOFmOkFqXZvRIvo+LuQjoyElHJT5eHMA485VPtz+R9ejCJENCYZaOd80TkJEjvBI3UqMCrc+cAiyk46btVgxYxmUTdxA0g9elPvfpBXAR5u8N6c5soKCp2AmaI8FNLhxts0qEdSwxcRq8stAu0K+b5b2xxMIM2/7h1l95KL7pBo8wNPrRwZFCi7zdXxXgJYWNgN3jc2joj8YW0F/derO4cEXGZJSDmGRZjufaFWm1jgNLJZpxxwgIp5606NHU4Lrt8j7rOUFRRZ8DTZB6rMyJuBIAgWRv0+ECrojIA7PZwlPasPAS4cl2Masy4Qa2Krln7GHxOFAAAgAElEQVQFYBpNwCIeRbVmRidDgySl9Fi7exiyUYKP+2Iy6EQnGDTnZmIAuAEnfoDL0ae+gu+TkoHLUmZqBdsOrDoT+4Fy3+f632wM5PvhVNIGUhmFgCINV2pFXLYVwIM7oqldtt+MFYwp636gFOBLAANLw4UafC5DCgMGmO4TB2c+JLNzm+YSqzssed5HAiOBYNdZyVg/uGud6RgARKdxZUDMMQFn/sKj+uoVegzgtPKo0hX1mOVEo/TrL9fpbIm4Rsqc+xZxL+GsqVPU6Vw2goKFENvcD22Pxqwy4GuuhAECsCa9+pzQ7Rpz3Zx3r8W+H9B9jwidjObnZnMnMDkswCyjSbtJYKlPm++F1bQg2J8DQMmBh9gLOkJ/IGsIdaB8d2ujR/HKo9t+OibDLDMfYs4UTDHRsEHSOeRnJxXzhdVNrtSk8AACHWTO5eJlgb09YRO50TuqoGixqHhUbuAe1+yeofkxUA7vh6fIk64aGul81ovvU9u6RqJsLkELEWBzJowz0sJxTxeBgSmepyu4Ks4qGw7a5bSW5DRRLyjsAbI7abMAzxHMImCVkojicm5y3gEJTDgZzaqLYyd7R/08zJf4ekwgAjrLLOZ2S5sgkzijae+r2Ccj59nREE9zIAMxO5TsM5GpO1KTAx5/z700MxtCR4kOEzC1bTLNP1fRSZ+Je3McuN+JO3y1LCke0X8EMxhgOgbq58PTPHxPu2yzDRy/5qCHnwHBDjwx52aQI/kRJ4ZHpK10DbHY8uixl4yLiWN//7XgeBfUhwU3CpkKIforU8z96LOfVa3cOts7aId6/zNVlik0PPPSnFlKSpKh7LZ0pPKK61MQTGBqS+433s/TeTSL6mW7NoMtGXTjfMnzLl1SCzQOITv3GbVnIDPmVTzKxuSnpReBAOjiynNwJPo952N2+LMROPra5pwy4PddUgry3qFJ/DCBCdOpPrWb4AWwpvjlc+MMvDgz9Kktsq6zl2yFBEzkqhHRr3hxcT5pukfqiycG+WkfD5Dh37As/hyAQjYOuZ54QHnum6GYNCAQyDNFz7IRVdJL980V7H0SlD4PalYpABCsBzIijDK+e3sOMxpbHgSZNHFB5GzKMONLVWfkwiP8Yex6dGM0N+7UDm5bC6bXQPo7isz39wNI3fnhoSSqGL7psK51vG8yLMueDgFg3Ug89xn5AEUSX0sUdkYZy+/fhiA7dUpLgciYqQ55bOkUDHfifFONDYYHBh0O3o/RreKGNqO4/o6y67Ip6NZm3d9lYzrNueSMBtrsBo+NzawegtSH0rHQ12dfwsGRAahRk4KKzkedhJaMRZI3dP+M2zYsDTnFt2yeFFUMKZC6+TMIcEzmRNl5CHYXWAPg6vI2b+Fgmkew3GBl+sW/qZ4TgENvDeW7o+gBikmOi4F+xceeKSMhSJcOfzkGSIFmbqDcbQ6N63XJQTagT/3g0AQSuTPlWg9C58AP1rFJCJqJej4vx82NYPVxGJs7SIdHF2k807Fwh1JawXGtKA+gaIq85nKEeV/jJOGmTgPUjTzFsNzFZo4xo0VLRIbPAFZQjYZJztdL8zr6GQhnnLoBBOGizKJ/3/aa+Ww6hcI8Tr+v7jsEBN+mEQu1lKhJsRYDIU59wpz5xbFaJprMiglc0yKrEaU6nbyeHCW4fVEwIzLAahwzqsYc8rxn+HwV9iXnG+nJfu6w3GhUHQAsTcZBjqdrJAEt78dog98vSrG6eGndH0vFiaDsXsns4fmpbt8kR8YZSjI6pNuL8AysjB47WJiNXIoUrmLEvqfQESDV3/edcUvg/VDIw+alHoelZtlMMFp6q56ecdpLgYURF+rtBVAxwz/2RFWUw/tp+L6lqS+62wc0btN+Xh7HTL0DIn1qYBr2MSfDEE/noP8uSmayHy+nsR3w9BU7TwU6z7EMRAgmC1LEwH/+3FNAdXgKQF7fw76nasJ2BC0UYy3TGO+DFQRx20NlMtDG5gCMYu45ZA+o7dMhYJacoUg7JchwzDUqKK4vQefSKv3oYGCkrxHftBYls7mSA8dxXj5/PvvPl3g6AIDMfszvEmARx797X95308dgjjr30+z4/+z5/F2OUJMVuqS6ujO3H/5ciTk3n1EC2LGUAUw7LW6U+rLwLDPwQwYiD35xNHiVZFOfnVBqhpyrT9Titqms+14eTw8+kZEhQzHerzGfIqAQn5cYrwA6RmpT7utzn6vO9mcnWzW8LtpbUtyeuQqOD8H+AexvBWX384TRZgAY4mmDMs9GdeYXtXoq5zrmfsG9Jo3n0n9AnN0B5peUTkdmztYWdt8yDud53OpMCzxHlwlo+XUu+7rc5/xdnouwfSZEDbmXipg9SD9dBwQC7WV1eDOokp3VpAPwVH4xvuv9ORKokK/znE73f6reEAwAB0bKSA682M/wCjSkLZTKY/5RO3I/usZctIXMDh3P73q+XjEFTuNpj07rn2y7PK6v2vsH1x+WqsSfBVBwQ1sv64uW72MijJxfjxFpBhYV8Rk7EBtgGM+lQB4DTehcwBxud1DD+WErnGqnxcW31CJfLPsYZYiaYH83YcTLPx+OWJp4I4oJzY1rQfvRUfaBcdssWv3b3aMABC6A9mOH7B3Hr1f7XRGgFfTbHBppxXMqDVbVjZHbis//5Yav/xC8/UOx/dZx+SeiRFLxVAxLaUiHRhICA+ARYTvohCJE/FzkIKYIJwXynE4d9Owj9S0w82QTNVE+3ehO7IPIV6ezci7nUyv2/+EX7L80vP0fP4D7buI3dLrSBmwl7syBKV+79elWZ+SjSQjVqSAo+KYj4VobQ401QGfdHTujqwLSbvF+dDSLG2X9Lzen1jqNvPcpBJQN5j7Qvg4XBbT0CGwuMghMeqr3gZV5HCjd6cZ0rAGMX25rpByYEbSvh0W0t2qAWXN9hX0a8eVhRmq7G/15+6/d5s69Y7w19I/NhLQo3LYPtN/uGLcNx0czIOKtYfvNypn+3//rO/qb2Uq3/6b46/9+n+DKKRdrfGzot4b912b0wi/OV2DcNozNHAg5jFlwfGwYf79apMjbSGHJ0Soef7uC5Syj+xSAAsdbQWmC8mjGnvg+zIgdAypemnUzHZT6wyKh+t7w+T9dcP9rwcf/2bH9fmD7z29gDLTfHzannJGTHVXSZeXo5li/XcK5kIeJJ+nHLQyo7EwzHcDSNy4Gsjxkgn06571R+X3ct0TV9z1TdqzGRjhn6UByI5dVMHC9zMORa53z8HqZVNkxIB/v0FZNRNY1F1iKUr4fEBqlAIJyx++OU5tawfjlFxfA3a1NfUCbG3RednCpuENg7nu38pSZ1SQeyVEz7sZ1A8U2WaUF8HPibnsf9yvpjOzA19YRxjeN4Tiv1Bg2/T9+tbH83p/zbT0FIEADIPYXE+abkTrTj6iuaWN9NC4NwigVYJRdJKdfEeyfKCHo0c/iYorHr9dw2AJUCyAyRWWzsF/6o7l9Ph/48/5hoBLL5AI8V8xpkVKsD1gFRQf0x4DIx2Sc8Pl0etlHCgN4fTFLl3i3pRTuZvuEKkJA2Rx5mZHhxx46GbrVyfxSNXDFgRUZFsxY1hMMoFfIZKR1dfAI4QiRmRhA3n5ARrMyjXRqnI1kgrPGQDQx4NnvIbrmjnn7OoKxBhhoMFNRjKkoX49w7KKEWRJmjEoOBZMBmYzr8uie9tHCZtIqkFtF/SyTBcF9w+971tmZET6NdxEHMZiKWHyulBQkiMv3nsJ/01HLhvDQVTgw9hkOwDxrlIY720ynPiLofTqsHHNSofmd4WxQ7i9cA7SPSl1sJtNRkAgyAMcEyiJS72B7OJApik3QtNS5R7vjoeJMTU9RoLOb9RwyEJjPgIV5NnRGfv35ZL+dAa/oy1onaOYBPWN5EWTEZNT6Pq8MAojMPiSwN8bC5jIb0J0XiinyvOI2ldM1CAoXBhzVqpPxjGSZdgar4O1z1tJoBaMKxkWwv1nQqH0C2+dA++H7Bm1jSc+SFranJAcfQDADcfSpWcTfx75pZ1VmZ4do56vUAM4rlt19BVpFsCvZBLSpfU0tdsPw/mZaJkEfGXNdZMAjzycHRYyhxrmkLnUhVsq3d6gMm2MsRwoYc+IsWvgCtIi28cpMFO2AvugDHUAONKbIvtS5L4bznt+L3yejYQwrQ/n0DH7eAYjEUlhEJHOQ4gULgAFV2y/7E5OCLKKX4o7JrlL3uxawIPdpBq5V1/32Z6yDU3pElOj8g+tPAij4vMj5Z6REI22S6kZgplxSiZjCU8Npr9zY+kB5pE10pIOvpJ8rVqdHgMhhLI7wORth1BI1ponuM09Xmynz94sJzwHwz5YlZwywjW+hwAXqhYnwDkTuLIUgA+EU4LgJ7n8TbD+A9iURqWB/PV1Euj3P0vpR7UFkfPBPnwfwUromDlguVATQ8ITO17IccguKGgtiOsdLhCAdOqSjRb5dcQSYG3M9gRDcDFCgV/8sMMeAxveZvgQEvTdKQQVK69+pCFAr3mlYBMNouKbVYPR419ZIlS6IsMuhwVyRVqxkmz+fApymDZDmP5+raorWzqYgkq5j3p9lv+aLJWOX91P7vACQA8ZcGHQqOgCqkEsylBGOicZasfupFBzvwPEOjE3RPu27Rv9N+3+BGeab1YEnmEZATQ/M/8PXylCYMJ2gbCazWrtvwCKu12AGQRkzHWXmtGMayAcCiJgGtqeERC6r3fO4FewfYoDEXtHCYB4rRTNfPAhUvWpLi37F7hv0Ro2YYbcYac7zvlxbpVjn52hEKTMy5fP+qaIID5hkyNDIysaPjR3XhrflrJxMg7uVcCq0uRFdMNemWDQ5Ik1LRC5FvPN7uvK0uqCg9gLxiiPBXAlD/bRmRdKZcNr7hu1tRsOsoS2DwucDrCiE3iN/XKo4eFgSTbukqHA+kO0eY6soqmu5tDwucCfOx9TGmpE3CU0W4T3ztBKYUzbSXMb6GbIM4m+eW8O0WQIQINjmfSQd0DJvRGZWiJvJjGBzfMmiYOqHuqbRok3Dz8b8tYNS1dOHcDzn1A4ALG0H2NoYiDFXsN8QEc5ymGirSnFNGrtPqP4D4eAvBn3s6wDF8HKZR9P3kQn2ZENP5/5yvnJZ3XimpzkFSMDocAyeguK2M+3G285kFE8NeHK+g1E5bSMBoKMufbmcw2xfm2Nr/a0u9Dz36lHFhpC2BUu9xtAlCrrPkZTIE/sKXC8onsf94JVjlNgIZMmEo5sdMNUJxFGTIYSz/f4Z6OD3lmed5uCr9rBNtEE5j/LemI358z00sTX89zyHlufWMvfE3E4Rd3RgexftM34298nP2n9+77Nz+Op3OUrLf2+YTum5xGb01crOXO5LICBerU/wIF/eH0v5Yf68iTMAUr/zMxS4feWkvuoH2jduapVDIR2od2dr5j5ONvCT5hD/nd9zcVT1eb7Aj4Chz9/lv88/H26ElRdzLZ+rZ8adprHMTqfI8579/+cKlsDUGot5MgCIixizDfA0xFc+AcGK6Nc0jmHfJ/sofldmO07Or/j5g9acHYBnfQW+yuJwK16Wb3757qfrVV++2H+0lKRL8mLenvcojnFqKzUonj6TGKXL/V6tjfh9+uyLlIifXX8OQEHglKbkzGSHDbBIoEgoYI9rCaG4aSzAkXrmIptCcfncnw5TATDeNxxvFr0uXSFfnivtkanjrzdbt1+H07GcNs0IqJjDZ6KMA6iIXM2aUg9oCKiXqKnfRrUMGiMNtEKxSQ0HEQUmvJQn9VBALN//8vvA7f8pqHd7f90Khm+uvZkwU+RkOksgxIvI5GgFIINBdRqNutKpIuqQQZ10H/n8tp/RmSJ1bwzgPkXqpiFQp3gXD1Pen8/2+7TfHtOQKCWiZHq7LGwLUvFkqJUUupjIlrSC6saFCe7VGAuozjmTS3zREHm/ztx/GgZZMEk86inDaP4UlaLA0WWzDePi/UFq7dWXn7MLKtNngCg5VwYrDLhtWOcuqC7MWVJ7FkqrOp2weMROK0oVHB8Vx1vB5beO8j1ziKszFfZfN0AuxlrwPOPL78YsYZv7+4b+1tBvgus/DrTfLCe/iODv/9thRqgC5eFj5hFhdaG3cbH76FZQ+sDlnyP+f/ziJaKKASv1v2b6htw3lG/LbdRWcDhz4v73BunA9tthaRx9zGgewRXXhiAriOVltTXsf72hXwvuf6koh6J9OcOgK97+24HL7wYQ1oeDCAXQ6watBiSdy0yR7q6/3NBvDY+/bmifHe33B4puQPccXkVEQk3nxJ0PpmUdw5xBiqMyUvJ9B27XWffa5xGkYrw7eLF3L5laQiQyIuTdDfGkJ7C8Q1GECFgAGOn/pPf7+i2/fc91w72W6zgLLJJiy9zTRBEVEZTPb+jWoNeGoHgy7aVOh1pbStMoMAZBPiQvm/XjTlp70uYgkJCcVohYDm+fbZLSl/tFlMv3DgrEls/dKgfk/fRsYKbDW7eK42NDeQwHvGdKEJqg/+LlJ3me+bpZAFA6+WRreAoShRcZvc657vW7OzBbTb9nKNq/jD1Uv3Zj6Fxq7INMuWPKRP3yErteplS3Gm0n80/unpO8NQOHLg3Fc8F5BcWz+f6Xc4odmMyllcU1hMa1uQNsfVC/Z/oeU5nKwwF6j3oXHPN9WgE+btF/8T5kKToonI3J8bbN9LfDSlSja7ANY++nSKDIUi6Ugn7TQUvrADB7I8+TBHKR0h76TJ7CsTgf+eLa83VsKvwlrWnEM2L/uzQDcMnw859fH92AXor6AsHgzJUW1spcBXrzlAnv0/LoAU6IM32KOy9RHaL5udgnqBmO/5JukyLd57O3D8j9YeN3u7gmzgRo41y/+74z0p6WK5IAM3KcdRHCGVvTa6EKtGrnLNvpP+eaBdNQ8vvsB+SQSM9kxSzNThR/RrZbilIuyv5cT7mPSplgr39Gzk42/+/ld0OLQRXYi68bZwhs1c9fL/1cNDQesDtDaAzIaIDWuSYum8FhT3oLMh1ePQWsOEZ9GBOjqkWcfUy0CPR2nevL30G47HR+FiWnhcjUcvi4GBPHAxr9ZoDo5beB4umg1//nbrY/+50Vz3huUcsDmGXNXTcsdMTeWrwny5zGucjm5sAJxzQzYAgenNkCWcw3R6I1/TyX/Yu0jTaZONkep7+V0g2g7vDv+7wPz6A+AD2JAotrN2VndXDeD2TxZnuWWGq4p7LkkvQhigg8gxX+3afgSRU7+3LKAj+7eTn64ulx/XhmK6TvSC1rGckz48EaBjireQY1To66r2kFYv4w2q8Fzng0UE3qPItQiqXQ8Hv/7lp0IBTau+0lWdeBv6aOV61P31tARLYFfm6/SuFM158DUDhfL9C9OMw1oV6akL288DgHeTAhbehxQwnk2z4LRxkAiFq+Dzc7VSur6N8vqqjMcy2Wu73kIvncNKCAPwRGREtmOyJiNvzAlhG53qGi75/Ll+UrCurXwOU3Qfser3PfBRbVKbBojegKwrAv0oEZEyyhYMvCZS4YJ94repZqHAgGOqSIZjoYYkM7I6mMtogNjOzDRLTcyFpFkNQ2nvQ+zyXP0lxSLy1VMJXK+bljfZeoDMIc7kwjzEYg3/kUhQgKmxLIKeEMhPq150NHmdGhc1NiTqIRH+Z9Roqwsa0UMdxKLIelT4FwEEZFyplPTAWfZ7EeFDOvlcaZswhGk8RemG2pXwMlgW8xRMcwMR/IpJuPEsYkithU8LmpKfIUgMmwlKfugIW9mjEGyqEmuuq5v6Qkj2b9URzI4aEbkTMCRQrLjx2YkdciDjYOAxP2tB5U3cH0fSnvL54PSuOVDIugNFfMaK5H4GOcxvoMlvNcrrPDynGUZCw7MKBwp+bp8xwYOnInpyb1T/zcAbPlOhn4SxvzvluT0cM/sXY8V7TaPIgqFGW936KxEvP31Cfnf3sbLWL2k5BE3N8nPvcmcB9/cW9nPcUe/YqOeNor8rIM5lrztgliH4g5o5jvyogg3ycNQ1SA4LlYNPbKaIcCcqiXuCfbyjYWUe5zMsHSSDSWuV7orLgWy8J4AiLnmU5kRPxpHBYF4EZlqHef5mRJf6d5HnsUgwuazruh0RAVMcYX+yY7i9zH87CfNH9sj/DvnY1Sbqxkv6X3y6B2jAsZQ9T2yPMhz2H27QIs6HKsLdd5fmUngO+hOudkPv+6zn3nfD6y7WP40csxx1O/xTV0KeO9tKPI1PfwfooUAHeqlPsg/18lxD7h+foZSIs/Zyc9HK3xei8CFubYkgaaP3P+//letUDRXn83tWOOPYw5+zO7gXaCs9WenpkBhrMdyys5hjIAagL99J3y8//oenWPTO9f5tWAFteayCy0F3sx7810gVmOEqdzQdd79W6shFQRZ7HJXr0XzyyRaVOePmJMJyBEqQ8HJ/vJsT8/41UfqjoDqTzP1ZizsL3wVd+c3yV9JujqT2dyf/5c3r/O7VwYdqc9gvciuJo/qwOhl3Dui5+9y8+i96oIwKDYQSKaylcvrISy3uf8rOU7dOzT/PjZFf1zAhPS/vWk0cB/v6oAweuPov/xGd8n9DQWL9IU/t31xPJ6lar0s/UeAGP/6fdessheXH8OQEGZ5ylPwnVBee09kC+WSyv7ARwD45eL51hOyiJRZDo/oTZ898j21Upytc+O4WkK8VnWhE7GUnkcFpXzDaK8X6Fbwf6XiwnkeXTXVPMHpJuwEaQsea5TaE9gIAPrgB/TQWJOKx2QIsHgABA5ruXHgbfvA9d/TIRpiUCqb/LVDUBWlVN4brQ/0NM3pKuh7VsztP/owP1hTIKPtzCoSAGVz/uSvxdoOFHY47BcKY5jKcD7zYxTYCK6kfeVDPU+IuoDEZTPO8rn3SKXBQvaq7fL1NJgO7QEKh7pCccIsEm6HfQs06lvrtj/nYTVblvk2rLf52EAaKmQ+44ofQmEZsW4NDNqr1b2Ux4H+t/fY56VY6D98xvj2pbc5hhHH+/hpVO1CtphOf/j4vXb3aC2yGTFECtrdbx5WdKuaF895pFpgxiVe1bcwBo99JxkrRZlKg+vFEEmDQBUwf5Lw9gMmDjeKiBXy2UeivbdESKPnPNe/s5yQAvqj8eyBUSaSVL5Pv7jzVN9HHxg3WQ3+hVAOQYKOurd3pNRx5iHAyhvm9NLj6BzQzznWq1t9cceWhIyFGW3snn9vaA+Buq9o9z74sxEznQpQHUD9fCopzM56j8/IfeOCyySXX58G+NlqyhfpqWw1Jk+OuT7YdUPovxSnxE7saiR4BL5/nH5mig/PDp23YBDIEWx/+0GrYLLP75mKsIYVspxawBqALCxBpzdYBUcUk5ojpBmYa+sup6FSwHvbxdMvT+eDRW/j9SrPWfcbd6T3eP3gIi313+0H2uEJhtbKfIDwDQYgJm/nL9DIOey2VznmmfE/W0L1hwdhfL5CAaFtSVFKMLQSw4CI33ddUt47vDc0/WMsAoFJYBCbS66N1wDwZlN430znZMEbEs3BhsrNbA/ytcOdEX/sPfsHxsCNPSr9iOePdwoFdVgRFGQOPoYCCCmf1zCGA8Qplq01HJqi0VHagG2zTQ5Ls0YCUeHbGIij35FWdfioPJjuF6NYLxvgNPoBQJ0S33AliLuPHu7iYJRRFJ0lrAtLK9JUTg1XRWKNjNlkmwBEx7uASiNj2vslfCgQG6/VhNaxt5DXFCvzbQXWCnBnR6CDjrEdcA0dJ3UK38oEN+Ru1F39eI2D0vukQGkEpTxmGPMb08gQgbSI/iyA1mbAz7Os5yb731MCcnAyfDUhmpBjHIMZ72U0FrhXiH3qVVha7PYvZlLpwrZp3Ot0k0DaAyLXPPnb9ewFaHFmBc8y5lGQi2HxwGmykWkmfs6wW5GnQnyq4ZArN4uNkdYLSc5isE4DbvBnZxhayFsnpGEHBlo+X7YXMuVbGh33S5mt1FQl+wknZUEglGa9pzQaUi6PsvlQSRt1VIw+NlajMHC92NwYD+AR7JXEnNNjr46LieWR65cEmUmtzb3LdVZtpN6OCwjOHRq43w/1vvwPXj+qE72HoEWB5q0CMrjwEBDBVC6YuyCencdk2FrsTySuHd29LMzT/HW6sLKfE7vU79gARJ00RIgALT0V37WGG4HrEOWnX/1kpCRaiczkPp0iUx7nYA5faxFS6POKD+FpslOUAccpEBas+efQRCPuFNnzZ5NR1kR4Aznf4qSm+DpPFfz3ONnRcTuf5wYXkslCN6TqZsGhtg4DeTUiEW3wM+4BewgiJJ1HzyVcvZZmXOV7Lusx0A2jTNanxx8MhYy0yH22rru2fw98DzW/pkzCJD/r9H/kxGlr9r0dOs//v2fAlCgM9E/rkZbvE9ULTblfe0c5ocvJZboHFGFOzFtw1nh5uJGdf0UyLUtzrzc3RHxNjxpHMAHfcgsQ5kMOeoriNrAUfSPOeQiEkbj0gdx2DO9wg9DTnB3IEH6FgB4ab5Qw3VjPxzGvNlj0mRVCoofsuNSo9/iKgVanYKTkHLNxsMr9FvTQtb6/Jnz5Ya89LGUtqMKc5Spi88CpJvnw5W/O0eAMDSE+yLK746m5MOK1FPme8E/KwNgOXc6kOdcvxOqHPd1ZwAyUoRdg3pPA5GlS6FTLC0ceJ4r1fP73cAJwSjozFclW6ACylrz9+GshhIGftkV2w9jtAj7FIjylQt1WmQaYVATJRVxIxSomGtvKW/Fvugmpig7+xxuAOWNWJwxUuaGOjBzvUUQGimB+GOCA1yj50OXY713W1NbRdDA4fPIczBDbXwfHuGxOdW+u1HT9z6jxZsbfxRtK7AyUjLMeBxjrrtaEFUpqswUn57ejXuLO8ua9xoaXa+MBH4nrU8evtLV39v6sn4fNj48rLLhMoYBD8kBfHpOKaYD4gBfGIqMLopMcCFTaYNlNJ27xdBItEZJ7xNziaJPQ2Z00cHi5eDl+jsfeOecQv7N9wZA0bNQjpdnYJvVHjj3QbX/JBiWNSWdSLsAACAASURBVH9i775ty/iwEgv7I9Ln6PTysYPCw4CoO3EqcWZYJZWCUixNYUR0fIISwYBqBQtwSOcSY+afDw0NkdGKpVqJG/jeF1EqmWOpiLO3OFDPEsaDosJDzSkpLlx2FEh1cJmCvVxPZPT4uIUeEo1kGlRqEROWyAztCW/Scv6psa402AR1nSMKrzYwAQatxVIlPJIvHjnj/SyNZJZ3lsO5h6yAkOZNfL/3+Ts/Y6SYWWe2jO9xnee9P46/43zpad5yf+tzH+TaC8cuQAaxL+TPDPXUq3T2cw9N+7MBsG6kcv+MNT0go7ueD5xx4Ocupn1GuwdJq2O58p73wmhePse+PX+ezt3wqieZbegsi0h1On0/yisCaxpZfF/AyR9ihdlJTOdo7rdZjSu1M9OjnaWzpFHweQxgpNLbuU8WVf7cF3FG6soezWczbQJgAqyS7IpXZ0uyJUEHKTn+oXGTnpkB3WAH+r7+ZEPmPjq/U/TLc+Q3WMZVTk7oWPuC7fH9vew9Kl2UaoFEpnBFv2cw4FXbTmdl6Gtklm/q86f/p/tpYWoG1rFOgIkAc+6wHe5gh2MuMh1tPoegO53aMzhSBEjig7OCw2lOZh8oAIzECtABJS6hY31H/gzAwj4AbL/IqdKZBcH9cJTn7726MmuArL6geo157xcMg6WiRBl4YmPkd83POLMgzmBFHrOcQgBMJ/3EQs86GELf65y+cPavFrumrM+Nj6S2jgF9sabY9vhOOfXNT64/BaBgOUkd+68N9atj2z0i1wf044rRikUeeZi7EaH7jCLQMbOD0g9ZV/2O8oNpI5f7Dhwdde8ojw39nTXAS+S/44H1sAkauriAUkd10bnhdc5JdaKWAnUWLPUAZhSq5X+Kl+uLaE9Xa9dWITniXkiDRbAuaNzKY4c8dnNUajE1eLGImtWTJk0OgJHN0S8e/X7YYdZvzXLVs8hgq9M54CUyawwDU2shJrXOfGX+Lox4WRdMOvAk8qnV3vVKXYSUb3Vqx/i4zqhKTeUtedDxUqsNrKU4U+UA9gOFh0VygpiXvdCbu6IQgX3shuS/55QQnyO5dvYwary+X9HfNoueH27AeZ4vREJHgIwTGWq56Krof3uPOT3aNPSFOa0FDiRIsA/U1YohQL+4I/YlkGFUcR7u7WtEedEsTBjOwKVGlGlsBdIE9feHGUjXqS5fugIPmBOeDRSbCjZ194H6r5lfr6QKc36T9kVNkSKox4CghzBlGDsi5pS7o6OQAArly6utXF1NX8T1LIY5/s4a0SZLWVmbz2Yol2Og3idAaGDII0rXMnecAovtazfRtuoRtVJtDR3TcAkFf8D2iCIzzzvm2EjOZgMuzaocHB0oNSLiqjChQs49IOY1gFkn2yN3wsgDgPqfR6wVG+tpcCho7HnZL45NdpA8MsdLXAU67pOBQIo8Ph7GLLvdEiDqBvhxQPcD8nZbD+Qyc7ap/M1ocQB5VaaKNwEJlorN9PUiU3Wd+/7QiDBEniupxPsB3Dw1xHPwJyUdIS7KCG9OYbJ3m3OUm3r/uEIvHqHmOezrVw4HEe6MXGOmdLlBK35+Fde8YMT7+EgOu6c6EAyLkssOEoxrNVDsmONU9g4cM9fd9pDqGj72rqwWJHsPLQZbhwY+ZsZWJdtmP6AfN+x/vUbOfQAG3seR7rY1jOtm68mjreW/Pq0tt4t/3s92GlQFU7OnGBthXJv142Nq7lAsVjpZiwas9OuM+tRvYxzptWKIWPUl8e85SBmK8ZklVQBtG/A4II9hLLW7z93zGakKPPq0KRhJVqYjuB6HYAKGBdHP9kxbH9SSCP0TICqh2NmUHIajzzP4si3R7FyyFq1C0Ob68fNTLxtM3HACCXGWh2gkLPhydEiDgQrFwJ7imkTwYAdBrSeHasx5ynVEEMkYIQKMKS4a+15mddFGy++YAZy8JqlzEnsE5ryE6X7obUNU4+EZTztyELDBDIScAMi49zGCWRbpku7MxTt7BSx2aLwX5w/3LpFgGEzdFLc162rvxDv7/ryUXASMXQAgKihk4Vn1Kg88vzKwdHI8yODQm7G38HWfzquPQ46ax9xr9Zn9MXRJjw/QgbYJz4cz2JPnExlg8SzM905MFtPwcSCQ+g9+zmQ7U/KayGdL7m/q6eQxUZ1svQyUpTNusT0JQLBtXP8BfozFuVzAApHJAmbbMisi9xPZDmrrWuIWEvvEkj4S7536O2sOiADNqm1oBzA47qmCCs/yhZ2Adazp6IvPiePwPkj+1lCc0xVDl4D3z2kLJfkbbHPvIPvJfl4W0HGJ4KszR0oCQBg0pt5DZpqcL4Jc7PfMouT9ucZPzw0GRPlJEOkJDGLfjnnvszZCtCuBfdyXEmPFhIxfAAYjVfL4WZoH/iyAAmDG+1dH9TxnrRW4mUgh8z0ZlQrqcysY2IICLvuejJx5eAYFMW1MgareLcJdwhCAlYn0g00eB/D57cZL883bJyUHduh0CvuAarXyVR4xHldgRFoBJjXW39tK3hVIFYxizvRI4oA0EIszJRjJiStvHARX9j7FltwYLg+jKx9vdYpUhSPjhplX1whRJdKiIgI2zLh1YyTQfC7ujOxS7CdTljMFjjTp/XiNevEwL5iCV/sB7JjOTRJmo/P1VM+6jxlVANZ2nxyiENeiU0WDEogDWHq3iHRzBxd1OnUU2LtsFs3fCkb3vGU/JPa/XFH6QP08QjchnEw/kMr3HhtGuTaUY5saAK5iHayarQADlp7QSInXcGAIQABAvRutfzTxcUSsrfp9mNN7E1BrBg0YpaAOG/v6w8TbRNtMaxga4BhE0Le0cQqiTNgCPvm4Lqk9KkCiO4tTDkNI9LpFBDGAEDe8xQ2zcWszWqnVWQF24BamPbHkbLHxFcx9JkextAqO2wXlu6I8DlurZLRoMhyBCSY6OEYhV/uspzR5OsdSRlHE0m2AoNfrK4OAfca56nMRBfNQpGgU97+UdjDLDbooXXPjiCW1AIui9m6lKv3/cyD93XlPpp+1Omm3zUVWH7uJR4oxofT+sCjp7eoOzMVADF9TtrfWZ2YEH821RaOdQBNFy6pAtE6Dr/iY8929/cGyIOCxZUOsBmWa9HsAkMtmB++R2AMx6N5v9z2cBSu9SSfB50dPZRo5Z/ekY1PF0qcOi+6wrKjsLhq1tagIMlqJeaWCue+oO/n7eKLQMxVpUtAxQZtwGOw+Bjw4my/O0GG4yVHC0TiLJpvD6P1YCkoqYSs9fbZVDJ/vfHdzuPz/LuLGM7h87UsKSjicsadrmtvJOeNr8d4+DvUxpu5LMVaOdrctvM10EMPJyGNNILCYw6zXbV2ndMIGAiQC/Ly6lLmGiljaJiOiBO/c0FRxxtDpfpOJYOtbvh8Gbh12LoqIGaQ6zNFwqqxQ4yWfgxyDU/ttzPpco64zpC6ITV2GQuf+YqmBaCXuRQdrss3GPKe5P/H5fK5IpBgG88z/1lohmaVWMIX/kOYzx3w4BZ3R/BwsydeAO8WXuRfkfZYGt6rR2nMJ6C7hOC76GaEjsr5DgLl9npVR3vnMgmWghYKlqs8ikT6WQiAiX71PcIXvQgeZ9zwzvEZyhM/znWdiqxb44XvAz+kEfJgj053ho+EgL+c/52HWhHkYFZQClXksF10hSe/L36tOcC2DDnTcX52n7KddIdifdDqCrZGA+eWi0x//xsrucEAnQPLMflU1x5nnuIPm0c5SjClZ13n9FKE+O/8EKPge/rtIM+OZKLKCFFn3guKPvHhGl2J9O07PBCYTgMAdI/wEBUJDh/Ob84qgAaISW1yDuhDU2pnuqp7fEZhggcoEtcrp98AEjc6MgPSzSEMJgGLgia3wKrIvL+754rNLRYa0DmWMNaCZbcwMoLxiIeS9PTFDz+2QMVbGwdM9uZelsU2Mxz9iifxpAAWoWsSAAmxVoM0R4/Oigs9ZF1tTV3ovn5gbYzLaDaBIiCEw/+0IZRExgbhSMN4N0S/3w5yu+33mxBSLgEaE1B0SRq3sb0CK57pjRl61AAUaFPqIFA2PfkoxemZxR5UR2+8+jTL1PJtXm6OIo4QINFmqGwLVkE7ZO7TePI++uFNnDpUMOgcS9bsX5pFHq+C6CXq7TiPCD0dz5sfcmKj2nZ0ojmMx5ykQZXkeZ4IKuvkC/O5uqGzzQPZrXAwoqT0ZAcOjjBkEcQV+67I0J/zg0trcQFaPjkxjGHDjpBTzfUuxUl9Bg4cbmjUYA1IFSoaGCI73irIL6r8e9jvSG++pksU3VXUH6r4teesqav90i2+0aloC3wb2jNjwvWMKMHwMyjEwasHYxMqx8cAfZhgUVVOAj8NCwji38X9Aq1WLsPVXo/wlfB2qA3P1MYLxEFVcyNTw+crUnsh15hygkRX5d23m8vLd2SeuCaHV6spH+oLaXKaeQfncgzad1y8A1xjxOQE1lkErON6rbZIC1B+PSW/Oy86dodBp6QPlcUwQxSNa0rvtN3Rkh+1zjLCW7zugFdjktIcBQRXmWmMkojjrRjXyXc14HkGZNbDDD2cad9UYQHq1/MxAqsmwEkAi91CDEh2q5G/XNB/p/Bbotdp7HhLOPR67TdWIhDgoN9xQqTWqRUSkJ01fRn6lW+613PcJXgRQlQ5QSWkpia4doCQBTwKasbar7W2spAFEisoyZ0Xmu2RDFgg6fESr+d2z+GsYxhIGpwEmGgri+nhALhdfflefo2Vxnkz13l5RDlvfNmc0ouvC/PXN6dXFqwnF/FWzBNzxI8g9y65aylCkFcLnQzLyczlMgnc8v1ihxdpbTGdhuAO/OBgIZfx+S5VKLs1TPHwuf02dm9jjSzoL8pmVxs0MfDWmBWB7Zy2oTvkn0C+8hzvy6BrnnKToq962BbiKtAGmbiTWGvUDhMb6AIBhyvRMD4pGe2SKNstWPa0hfYZMD2cB0e7RFKWzMpqYkWDA1ncSXQun4GygO8NBC4wFeXTgdoG2aYhST8T0WupkJyXnaxEp3hLLKRm8Mwfe9/Brm3oUBGWqRGofgQ1xUCXG9hRdXcQJn3QD0h4rsuiyxEXFfnecbcwvNhfGgPDemS1RdDJpmIb3Kic6nFb/7CO1hY4B/6CsAAAvnt14Mc/P7wtMgIL3JODByLxqBGVo8sQczlow2dn3NLEsBKwU3vTPoOt0nsjQYcSTl05gMACFBJrE89nXKQ1W4XvW0QH0leVB0OUEKtAejeh/93x4P1cXgCbrAeUz5sy4TX8b09n7u8EAPXGHmwLlY0zWR7wrn5PO+9RH+f+LWF44kmV+l98ZBjCaePVcL/G9PC9Vp6aCV2UQEat24Fo4AKZNsTCH2WcDkaIAIPQICApwDwVW0GHo2vbEAMjn7aK/dHZua51MBN6TY1kw3wswwsMZKApWxDxH4+/Tz14JFUpiBSypDvmcywFWXguwM4HQ+N2rtApg/ex5f/iZj0jg4jTu8yPcl5+//hKESdefA1DoA/LbJ+rb6qyrwKP+mJE7YKK66qrrVz+U3KExLYZu0Q032uR7NyeYOczjtEEBYB3ofrVkwPZbjyiRqgKPh21EtSRkcW0bHaHITW8Fl39hRnN1bv5RiYCoZgHKt0WQI7+eQIBT68xYLu5MuuH86y0h+vZe/eMSThwUKPeO7uKVx0fFqEC/XCKFon4NlN1Lc206UXHO0UYxExopMo2IhFhqKcDNx9Hby5QRyxfuczP2TTzE5ejoXFwE7jvROPMmqGq/4yJrFePWIm0Aw2mItUI3mSWPvu7TsSF6znmwefksSUI6Il7vuExjsU5nJaJLgAM1guNvb9bfHsFrPw4zXFvB8ctmshJurI+3Zsb23dkkHzdzArOBuc0SieXbxNL6398wLhXbb48JmAlBIUX9Gi7+CPTbzBkuh0cgxRSNix+Uj/94s1f7NGHQmEvDmBBQH/9RID8eDkwZvb9+e035MdCrRRXrd8cUEHX2gpekM+BOUfcH4PTxOOyLAxLbdIyjrCKA8p2cdJEJKqp69BSI+umXguHzg9Ueyn2fzylwp9wcxHI/gDss9Qm279RPe7+gGcOAC0sJwYxAfe0hDhjCTx4tDf0ONeM3Vz5hGkFhSVVGsB7zXjQ6QiWca8QPBfl6INNoF3S5zPeLeXqfFE/2MZ1kdbp/+XyYIf357SDBxdqTSlmR+l2+H/OQ7MNE/yiY6pENBVZWlRsoUmswmDjmEbnoHfJtBtN4v0ESY4ulzCLamQxPMsToxI2rQI4K6W1SxhcnVheFet0acG3AJ2K8lXmMLiwan6UA7vUywY+0Nwn8LKsyUxrISmkTaEK1yEz51+caYegd+vUFfBeUViHjAunN2WQ+fgl0GptR+ut3n8AC+2GrC/jKcn4LEFIkUqsgCH2HcAq7GnjXikVFYeCRgYmAoqB/uMjwI52B3lfsr7xvQhN7wy8rAelGt5fmjLQung9MK6Dxr2SR2JjWPuL8Hc1KZeb7y1AcN1uj+18qyq64/HO3dn/t7iT7fUUjCptThWZpvexQ2pwRFOjuc/RsHIrMyHornori93bAMRwagguZ9pydHTKRfN0s4mLDWQZ1ADr3TZAiXWQ1ZIHYg0KPgPtekelcb22mCVAn6W7PkceBXKGDwPyT2DZTkWoxkVoasdu08UScQaoKbbNsq+nD7KtGS3pWdv6ErDE6u9xn9j7tMAK8fs0ynb7nfnmqytYCEOpvmwP0zrbpyTHfMO0EwLS8CtwOkcU5kL3Pz3aFHI+5l3O+5PmgDjjy9+Fo+7lGh+9M3ednVZ/KZL6q0sXURtyxAKE2Ns7U9H1eyCp0MAGtTmc3V/d6esgLtgYAlhCcLyDJKVwBVQBL+kcGj54YHclOFaZn8P75HJEB6SfAjX0whjvtMgEIPz/zveSPWLcEAMkCyo4g16GnNYh/J5xoHZBti98twoSABRdG9mk492f/xdhn2xeIQCEeewS/7B0TO+ycAl0LoNUZTScQ5GfOp5z2r2r3EpYuZR+lzzFFI/eDiUJ6CoezsnCsv1/aE22q8ZlcpnL5jBAonuBHpCJkRkHaN0LMke8V9/OykRlg+NnFvfgFWBHvMkZof0gaxwy0aAkTfN73/Ix8T2/n8hV/VxOUTHvWz9qGPwugoHZACPPu4nCe0ar88zCQGYXhbRxZ1UsxH/37CJBBYBuPXk5oznnwVAFxp4SGOml+wxevJmOudRu9bbbN1JkReZLlbjmjsq0DtlwFgWbnci+Rn8dD2vuFZQ+XeuDHMFEXkagnTuRYuqJvBf2tWlUL0/QCYCBHIY2W1CxVF4pKbeTBXQWR71QEsz6X2sEJU5wNsEEVwIxW+c2m4RJiLGaATSOLjqM8tQFOpbQrIdrZcMlotvhh36ZzNw+Q9BweagNe89wXUAVYeiiiicmYsfk49Qe0uzPs1QIgXmGhIURHA2RRTbnX6uWsjnlvRjtVU31i7++BYAcM78e1zwHqdnCgwrgjUHs1B7vsfpD3FJ1URVSSKGXm3XXftIEZvVb35um00eGLsZt2Lft+cXwEKf+ZlENF3dm/rr8gNjbwPGnNWycBAxqfgOVhE6QRMZAp7yWyGmCWAgIHtdKeJOZchgPjwBTrCK8Otx/I2VBZjJa5ny1RPAIPJ2NkEXTjXKFmDCn8ADDSYVFk6QtzaN3Q2VJ/cTrRAP70Otr7Dn4wUjoy2g/Mw4w6BMc01GkYPtWlJnjC7+WDuCMZf8n5XzqDe0Dqmxc0TMvBZvS/mL7FMh9P8wawfmV7OU75M2mMRQRRMYVjubtR1v0zpZhjkkXz6LQNzBx9wJzJ3s3hi6ihO3YH93fbV0LYUVPbL+60Z2aJcD0BSzUJshBIaa7F0lOEjDof4mb7cd5XCT4YqyWNi+/dwYzx+UnwSjcz5HLK3zIeeYh9DyFgGGwkvkc6mKiBEoCyKsq3gXSjmsPHaIv1l/8pwNgE/SqQTdF+WIS9qE6AyPelJyE+BwUifaoJ5kE4+4PnSqRrEiDwe8fv2Rfd0gQNJPb7dfbnSUBL5x4cQEI2WIfauXeORnG9/Wxt5b/5rsm5WvY0ZzSJlTfwqLxORyu0oOaZszB8JOl4KFZ7Ir177k8omaBjRrrl9D65/bTdEh38zGaIM5x7JdyOyf0Re04C4chWIFuiT92TuQ/3uacUHxPMvlS1tSGsEpDbVhIbLY9vZliEHaKvxzRpyITTn/sr2zG8Yp6lvST/Luyt8Xo+EUg+R2iT857tFAA/TXnL7ZlivdNGfroyO4JXeqYWzCj51p4/B6x2pK/70B3IDB/A59XJjzi37bTPKdfP8NQcv3iHhSXw4vvBggJS1QEYW0PVzpDTtcxlpijwXjwzY0+ZqczL+fyT/Tr64QwE/ezzT58tMa+YKpkM/Nm2pU+8nXmtRyqFTq2EHGgBgMKUnLVJWVfCnKvTB54YQrYfm5/0Yt2xTf6+MrDu36/uCbxew+D7P1dimHv/qa/PQMkfte9nVylLms2/Kx/55wAUxDql/P4Nfbta/iTMabHIgAbSP27Nor9fKd9xqEVbYXtq+TIKKh16cbr5UkYGdj+91EnXHPanfh7JcC/hSCkcGToOo9wXR2m3Bv31zaiZ1wYtl9V4c2OI4IAwakoD150DOqABnGwnVNdBhYgqVjr00xget4vdz+9Z7oeJUd0a+lvF/l6mcZXBmnwVmEMP4PjLFVCgfu7TkGV0c++QHTNCQwcr5wN2j+xwqmWjpJSJfonMfMv792zL0Y16zUj99TKdw1YxPq6hQ0DlckX1XCrfdB9HaCUYffGIAz6i4W7w4ZEiHq4abIbwMHHGx4HKKKUIxs1YGlb2cwJculUDffizY6B9WYnS4g5Ef6sRcZHHYUwFGlAhJOPGy6WgywVybahfO+rXjnEzTQGm9PRrMS2AagJtITDoa0mLYP91Q/txoP3+QL+1iAjJQFRV0K3Y8HWPUKqrqd8a9Pqr0f6/9kgzoCEUz6KTcyggQP/F86Efw9IOUm6xPI6gYw+PYrYfBi4yCsRSnFRjlzHQN2u7PKzKic25AlzSvC5mgBitGJ6/veH7f35H++zY/vNr5gU7nfz4sBQAYybYWhsfV/T3FiBE/TY9BDMCYXOreiqNz3sqfNMZW6IQnhNveegd8vunteHtmoxksUNtKCyNKRlmR0f5GtCrld2T3z9tnez2jvp+i/ci8KYEtd63uc/QuGYa0/vV9q2HR//e3yaLioYrKau5XFopk2nAPZPRXFHAnbq5rsoEcGhEkD2SDen3m70jGWk5V7d3lGRQq5foYrSxfD6AW8NxvQKbQDegHGY88lAc1y3WJqOLEc3jO9ER9HJqEInInHZnYLx5/nVOMdkPA58vm4EKdO55T4/0jkszlsfRbfzVomfqNFVSRRmVE1XoMVCPAd2s7CPLnNXvjvp1TLo4y722baYWHSO0eOaC9bNEgfLokWZIhpDNpZMR44BxEcvr7LfmLKRi/pi4gz1g+/fw1KM09jMS7E5FBUChZRdzHLeZUmVn5mxDeRzQXUJMeAkuBAAoYcxFahXP4JvtJ30rkGrAqonGeNrS9yyHphfXI8Ajxg9jmF5IK+Z8EmBh6TJvg+kzOHPHo8MRKefc859Jplv/G+Mt/z4iYBkEU3PyzQY6AQ6uQyX3B/CQ2APhVW/02kBGDSuVUCvEbBtbD7IfkPvDmJ+tGmthKBSua5XKC8pjTHFFILSKxps/ywGh4tpVxgzr0W4heH70WTZ6qEUpZTKJ7N012GJWScHbQFA5A5lDFxZD+UYA/NoK9K+/IMQYfe426voQZPDorvQBZbrI5vOya4yBnfN7OLQGSmzY/3ZDeQxs3zsUPdIqbaKXCUJqAneqTJCL8yBX32FfH4e1qdXJTuFnOb8jJdjnwNnREHuWHAaOqKeyAQCuFLJ1ht5+zP2YjODs9J3/uHMeFd3cjsOAnZWXBFZk1kFmB6TgY6RAcY0N7u8dGHXZQxbmwfnyyH8ui6icTxmoAiDXy2wjg3IBQhEceNWnbgu1hsirfwUm0Ckuk3G6AM/xPup1v471Udd0Bp9TQgiu9G5tuN2mk5rp+fk7ub+8T2wf87QrpjjQfomP+rpSB3L2tZ32uv7u3AfPmg7+ngCgNYMLqQ/U7NZFt4FAZyEwCNOVqMUCgA5WGg1vjm30xSvne7iOSPPSp1zXGejL45DBmaFTL4v3z3Mg9b86WBnMn+wbUterlmjrotGQPhPfz3P4BFYu9zj39ws2U77+HIACEnUjT1TVMMYzshNlGAEHATQ2CUYrAKxCcGekxhdWpoFGPlofWCiC/EopUC6OoC72ZYGa8NXMDZ+bc5qMQ2fEhfceCtYDV6cAGQ82NdkNFnOgNSZVABOqKXLo/dDVokzVIuTDq0SJurN1XiPFQRpH0DVFDOzzaZIdDvZwLHyslohhDJr//ykXzzcdjlVeiGfU3A9Ry0UlqOKHY85fFW871aEjZ9oNZy4mTewAton/j35cjVRhO/hs3yAClGI78gEUN3Anva99ExGwJRpDg3jOUab1hAiezDabI+M35BrwW81KDnOM+b6jCs6BtRh/gmz8vWBJO2KFAT0Q0TcCHD+7ggZNNgYjkZfpMC2gk6+TJSp2vh8QKQZnWdwouUql8VLmZ/L6U/i69OkjMhlzQgfFP9tP7UhiR/EhMo3Y3zQEi2sX1DqrBRyHHUjLwTXnVhglbPOrgy1e2Nvm4CP7SE/vy3vZWPdkWE2jaFFS5/dlMkfyz9iuGDPVlX6bjUdNFUFo2J8NC3d4NM3v5R3zv7mXpvaGfgFV5vMa51Vge0TBakT7XgEALBEpNHC9XwSYhv65Ta+uc5tfGZd812ZAlboRKQRq+F3uT+doLh1m/pfzjXuJeOUT5TznXqfLnm3gxWwPnasl7zie4e3ytUfmQ7yWprK2uR849879wFx5AnK+F0keG96KY5ydKu+rKIEa7QSoAxHsq6GQw8RpeSYKx37Hc9nB83gtD1jf+ennG3myhQAAIABJREFUgylkafyAGdGnMVfSPM3gQL5fHmdxsEclGHTL5bbGUt+c9z/P3TQ252s5+wZmG3hujQH0tC+c9qBoCxBrKzRxxvoclp9c2jPSGXm2E3Pf/NEVNtKLqF3uAyW92n9Hobn8mf2AjAlyT5tg9qkkW0AAV8Kf82F1rDH3nXGyfbJDlOfEq/mRr4W1RUdJ8TTePpZaxYM/gPY/6Eu+26t5znEHnm231L/n+y0/yw64lLA55PyMYnuceJ/ZHE8VQ1p63zOgscxTnU5cduby9bNzl47s4YzSWuOcmO/z3OchsMdzcxnvAqM4l3l/ggnlNC+ozXWyuZbUpwy0ZaAj7U0LMEVw4MUZtQQDfmbn/US0b3nHf8cAyO+ex+vMBBhrv9p+OKYtfL7yvc5t4/fpj+T70yf52R6TWR1/cBkLYo6FDJzN7/V6YkXo9JVS2zMIcGYwnPeIqO7w/+F6ute/uf4cgAIXIgXLGKlWjYmdhfTG1aLt7ceB8m3RWsB1AxqMRl3rIqwiYhHwXGrQRMm2yI0d180V7GEGTZU50ajwT2f0ejHD+u6lBD1/rzy67Vll5ofHJnepnl96QLeK3oqVFBymXxCR99pcYFAwarG9RHWq3otRCSlexMoC4XiIQLbqueMdOsyoHA4slMOMquNqBkC7kzEAjOr094dHcQIJNEdskO6tQL27yF23xS9fj2mocLNj/zGqd0w0DSVt+h6xg8RymwgzrwHLawUsF1w11MZl7xhvVoKMB3TxSDJzwVEr9OOG/nFB++eXRZeYJ/5+BXP4c19aKUt/fisYfJ9WFmGz8WGR3/pjn4a65+9aHjtC9K/9sCjXAmYN2NilfE7dKva/mSq/UKi0Co6rCZeVPiCHov6422Z/aZCx4XifSryFucQABK5vAKC/bZH+QtZMvqg9UjDsbPOKEPDSoMffbrZGh1pzO5zRIaZ1UAT93SpT1K89FNgZbQ6m0X/+DsEF+Lg4U4M5l4zOOG32sPmlHt0v+zCHa1iFlOPvptDPyhXh/CgrqBTLwx+K6z/uJvz2vsVny5eN2xWIqCbTich+4Voma4rjrJc2o/yM4LM8WSmIUpxkvLxtGK2gfJsehZJCmQxoqpSPj5v16Vc2zgq02btLt9KH2OZak/tuVRx0RjCkMa2lx/yNKFwpEUUX9eoHGbmmQdZq0G/VQTtUah+kHHAft/H3X037419fU6DqsNx6/cvHZFMBVsbV00a0uUhjHyg/vme/JIBCazGFfXcw9HpJefWI/mz/+p5OZqas+5qyee7ClAQIRByEHIgKQTsQ+i7XzcoM+vqvv98XR0UdELDPWzlf7L5Hs5+Zr1psncMZKwAwbh9zzWtyQlPb+zv1So4lRWgajmoVT4qnfTggZv0wnXCh00eHzQUcB9MkqHNCuzyqGZkROm7bZOF0NbbAOf2kVE9jW42jSFEIMNj2JVSBPAaYVsEqR2T8RDWGN6uwIN+Hvc/RjS2yVagD35wr/VZRDmMyqhp4YBUtNPa/9vtulXQYHQ8BOzwZkkFDjyiaPgEcnF+ovnaAGbGrzZ77dU8d4uN4FqHmecC89fs0bqVVqIOAAt+iu7e71sRclsl6E7G1c5nrZwJVFEDVuXcAtg4YgT4HfYqEGOO5nCMymJRLJMo8C6pr45AZM6o5SFLKLP2bSvjNlKo6U1iB16BrAKXJeS8617kDBVEaXARRhUM9UFB93XA/7MOYHSKA3Nb9qRSfNymdyFkRwnNla5M6PwbkfmD7130CQqy8kx0+qDHHZLKcCFRMmyul450dESlmexHo/knKCystFOCZns1neWpWODG5DOkZZOW/OXe8fF4WXjTWyGxv1j6gcHiwfTkP2A9bnQAMEKmZaNWYzsdA+bx7u1y3IwduGCBrFSEieAKfF+FuuENGsNbHUaljMFxosTXAg3JTx0BmOwgyJSd+cRIZbe6Y7AV+Jo9ftYpbOS0jUrMBAyGIoJ5TXQD77L77s7pH2stcQ5xHzaoMhZ7S1wCGvXcABdlecMYD+zHKh5LdrMZkUPWUUQALs6EIQuvgeLzoIzUnnu/pApLG2ujznfmO/AxBPTIQCG5yLvM7h1dGykK4sf4TA62ktKgMekQ1oBK/C9ZCLStgksejeLr4K0DnvO+eQIV4DwLI+d5shxcheGKYpM+Ip1VQp+G/5/qTAAqYyKDOqKX9jg69RH61IduICC0j+vz/8CguRcoo5gRg1ssWWekmbiCqO+Kkx+hWIbm8GI3Gq1MXgWfE2w/SrJQNIIyicdvmwUi01T+oVy8RJjAjT/wdWoG2yzRU2qweca4PHM+jAejnOqPWoUo/EH9YPnB+2aPNXoZM+ohqGtJhAiw0gNg3pLcx+lzKGnlUN6ZErDza0QM9DfCnwEqHSc6/nA5iGL6kAGcRQ51gAgGSyNfk8zm/2CQyFggmZCZMNWNiMgIkwIWoduTGugFCuoAJZB6oR/ssfUBn5KshGZwF0A35Cgq+IpgNmXlAqq7s2xzTY6A8bEMeFcYoET9o2S/q70SqcRofM7T7ZPnw17RW/StcYzjghxqWSHAWLcxrzNZQQkhZYi+hpsG4iY3aosxju9qaopgRASu1dAoKnwZDaBD46hZxKa6l4nRq3Yrlc3ejnpFqjeL07K1iFMHYKsaloH4OTx0xwTBNNdbVQbzIl77vsRZmSlU2tNMVAolrvqoMCXZWRHMdiNKtmuCj90X0V+5vIIwD21OnoamHnWlQp2qntRwHkUc+wogjLZAAKT/HMeIfkZn6lCKvAkwDk33Ctkceatr7i92He6XVLk+pazltgqJ/oTejsWYUpDPqEj1b9jte7LtTlD6DRWGwJ+doOZRFEPmY/C7/zf6IOuzrGZT/1gpQGC6Azq4QJEG5WlamEqbxjeLlZQ+NknsAJqtIFeyQCTCcQianLop0mfT/abAhqcKnta/q7f75RfZdOQa0e/UjnuljzgEDN50m7JpJkud8TrnzPi+lGIjOCkxDo1pLMAl9T1SBOSk+pkGtB2afvzKyMiiTBPqE8zobiK/m3dIZJ6P/vH8C0ymi8X7+fnHDvBbIZZv/PzlH8fnUX0/RK3f+5SjLmrF87fVsnbpFst572FwTlRVIj7lRoMUBrliDWKPy1F1RtZSLc7dFP5zmXm6f98NkONr6MxA5OcMZ2BGJ4L6oLEyoJ0HD/LycfiDizp3bBprWg+oUszyPZ3bq4p0IGmTj8gwoFlucPe2n4VA5iujnrmlLYY4Z9/p4vrUhKk0FaH4sz+fvlrKPIe55cpC8vVkL5cmJ9bPmlEq/9MUC/NVTBJ+pDj6+QiHQ/Az2VQacCKbnsyo77AwApJSHuf8kocX8HQBLqUbAmAAppedJuyf3VxJGtOfoU3nMtfqB22HnuVrLfPfMnIjb6LKfskSsxNl/AmT4rBNtfhkn3jfvHec9xtOzfGNP7Xtxv5/tn0On/VDTXM6soCIgmKC+90S7T37UOe0jov9nIIH3Rn9mi7y477+9zvt5TkXIZ88f9UV+9gJYyPJuLyvs+c+V++9/x/UnARTEIrOP3XOw+sxtTnRvM6SfVV5Zo5uHgNZiZfQe3SLuW0G/1pmH6s4xy1IB5nCNa3OVbERKgEUF3pYDSUVMBVdkqo+ndTA3NE2HlRn1eil4fDS0z476uc9IZ4c5Te+XeTCoouyeD3apOH4xh7N+WWSLInwAUm4opsM2huW5vW0GBAxY/r47jvVhny/+N8W7AECbQA4CMP4Q/r7AItKlAFWDgkPlcYtweD7k/TFLY0WfTERS/CAQj0pqqRjXGuNIgIBX/Xws1M7Iq44a3b75KebGQuEdVcj9sOovNC42L0foIE7Mi66mh9EE7XfP7z7RaKHAcasYW8H1H3djnrjB0L3qRNmHOQYFzkbRUHYeZbIR+tsGudTQGNBaMbaK779Zn5bDxqveXRtBYWCDAGO7ot4H2m/3AAP2XzeMjboSQL8ZO6beGZUbsDKh5rgoXItkH9MgV8V4t8ogMc/6gJaKfikoXY3BoIIhLgrJLuJmnfej4kBEon7q2yXAjnjG3r1mtgsC3g+M9yse/+Mbtn89UP/ry1ODxCmngvbbHePa8PjrBf2tYH8X1Lui7mrl9MaY2iFdgc3aUg93Vr1yijyOyT4xDxj9UmweuLbDuDXTdPPI2tgq9OZGtzMZ2mMt5WgPnobCosLtRoR+fa9IMwB5v/nEdxBuP6BvG/a/3tA+d8vzpro9+92d38xAKJ93M14IXoQznpz3J4e2GgPisU+HyA8fIVvBjTSrcjHmOi8F8vun0fXJNCpiAJLroZgGTZ8Gdy1QresBzKhsAj2wiT3zYeUjWeVltIL2u1e9GA5GDBfyrJhAFVMIOB+O1Bc0YnxfmOCI59NWQfn2+elObajLs+8clFEcs18SGKFbg162CWp5xP91WoZXPLo0aBHU376BXVEuhwFdrF6gSHntSR9DJJg8MtTBsWpMvD4guwNg/E6fc2mKCaZ3G8P0M7z9pgGAmLe5IkQ41cewc0LnnORysHeE6a10RfndKym5Rg50A4GgqChBPRzd1kiuiIMN/hnVmO/1vkWQoTy66UuwCsO3BHihtWBcJiOpfNt+FBofgO89c8xDgM+dCPH18ir1KxxXXmnMF5Aup1GlNEETGIXlxY8xo5/pWVG6rDVIa6bNQUeF4ymyghKwuRNMGjorIgFg2r6lk+1z2La9VFLYyIqpc+24aG2IoJWri1jCxnV3UHSz/aBkJ5j7DqP2VaZGie+jmh1hOsh0/BjV5DumiLkB4ZNVoVtbQMIAFIbPLVUrm9lnOteT81tmOzIQi1at1G0zllNEdQnkfT3mO9BBizmkc18XgZSxjhkwGTMEhjdfqwAwClCG6UPpmIJ9rnWju7HzFuuG64jjS2ZBLUBx3Snul4lGr7U4y5gOP+dncgwDfKjQBeisrkWR9+OpMTLn/7y38hl9QH/1Mq5+Hsq9T8e+FCtpfH+YxgPBAALdpRgYsO8I2nwEEv37h4vmUocrlQi0ueC2repkCp3OhZgzJY1XqvqQHUA6sJEPn7QcYo9wJkAAHfmSMud/2N/rGf30+aE2H2JP0wgCMro+Ux5Ozv75+fnnIrPaU/RVAhuQ1k92/FWxlIC0b7x+jt0MKNWAFL83jsSoyQBCBjVin2mAulYe12YCSGVgAlethe8RTAY9AQ1+b2V/s08JPrDN+bPsI58bS/rKeQ6dgRnAAZOyprmdxzrAcTwD/a/SfoJNUf6QtfDnABRKwXi/mbpyMjatakMyeBUo9w4pA6V7vXnSysOJFfRi4EH/YInI9XGisE2nj1my72qfLV3NMVZY1LlIUKdk73ZQ1nn4M791vCWqurMo+ruXFvpyZfWU788oezgy9x0YNE4RB6U2wVTedqPHS3PJYdHKUcWFKNMzKNz4y5sJf+0DZS/G/P8+o9vpn91o42Pz6Hyit2JYJHgezgJFDeBlXKsL+Y0J1jhYpDevPe51YrUPi5xsbSLau1FXWYtcxcbDSjK6cF4pEO1zY+DcKG0CGU7zN4M2Hf6cX9cKHKshCm5qZHQMCjClhej9yxJs42KRr3J0i6gNYLw1Nxph4ynww2/29Xjf5qJ0VkP0cYGJSsL6vt1pxAJl1yU3rDwYgXe1cfaRwOm8s3+o0aGCEG4cF3O0LFJghszYiqf9mJFKoUTx0m5U+y/OXJmK3QhhVPaTOdhmvJdSrAAB1bnTxi4qqMfDjXoJCjgdGjqk9dNpaJdmAqitRJWI4aBivQ8YtbugfY/JCgEma8kBknIME9P8PoBbmwawEKX37tsH0L1tzgxiqSpBsbHfOb7uNJLJJI4juJCn9WUPAU6txQST+liiGqQeqs9bgmN6s2hjyeuyYOapD2oiKETGbAAphAReHfwIYS3AgL0qa6oRjRkeSDkHE1jEzFhVIqKhbPv5UFOyhI7pyGaxrQxeZIM/UfKin7ppd5TvYyktCSA5pgCkPufiDsxoTBVobRPgTbowACzFLQnt2loYIcYXYEDFTJXjz8iqCECkxTmy6v3UcO61FYy3zfcHRL65CcQiHJzyGJOh4PONZU2nYzP3wyLO4HPQNdJ23k3sVg6vRDAISs9hUYHtzb9Y2dpwMsesqsC5YCB/hSF3fgNupdkIIljAlCH2kzuQbE/spyk9Jxwm9mtOeWmXGGMAqD+sFJrScWeZPmcNAmr0erhD4E600iCngVnWOYajGzNpAOVx2P99TcU6IrDB1BcCOEwRyO8QKUVpDhOQ4nvXCjQHbFyYjeCC0NGhUS3/L3Pv72tLtqQJfbFWZu5zzr23Xr3uYVqtAamF1B4+LhIOICS8kbAAIY0DPni4uFhIYyDA4YcHBt5ICAsHxB8wSDTMaGa61dPvVdU9Z++duVZgRHyxYuXet+rRg/FSunXrnrN3Zq7fEV988cVIn+Jzgvn31BjV4YDTBuM6ELNHbJxl/s5ZSLJbnwodtwyWpRKiEDUbzwMIBhYAQmeC19EG2yPq2Hdv3+n9ex82xuIlqSmqyvblPe5M02c/kXlH/RQ+QgR4u0Q7pTXI9e52xikiCAwwkdF2PsMZWJESCwRzYuhS9Md3y4yFxN6JNDTOpbR3S/FAXHd2REpzkTSXz7R4ye8BzDTqzLCFO+ciQ7iNAMDZN3HmTHw3O7vABGYBiBQUgqL5bIj5xc8RXCfQQDuOfczUOmfI6ems4bgIxyA5T1P1ATqqeV5XAav72LiP1NO5A9L400ElqMDxc00l4X14ttLBVLV9RgcD4kG74MTWeHj+aJgD4E9+XlMAt/cJWGWf5PtrbhtS+/lu4Xj3+fv8GYNNOdJ/jvonwcQI4mZwRzuY8jY/PxvPZQYVCOT4GhFxG+7sWJ8ZAkX8YCyPfcDP8CKwxZ+ddUqejdX0a5mBgYd3s1Limpz+AKS+cc+HK31uYilE2dFvgwnA7wmgoNXVx++759nViHpzEtC5YFRQew3jQL1udr2acSXuMLVLNWX53EmxEbnje9+hywWNdb27GptBzJFQAY5PK8qtoapFMuMwVIXuPSLS/D5zVdvF3utya069hR9Aw1DTxZyG5V1BD4bOjLoB1DcDDUjhb6vpICyHVQ1AMbV72fs4CDwX9vhs6rNykO0ALB8tQI1eC9oLjQH7Xjm6lRIkS8CpipY/3hINXkb5vmLtLYfn0TqwYEaIsw/gB1LvozoG1aFFTM/gEODzC0AjOQETjPSjnzabZPhYegYPlMcDyqKCdRhnbV7wgphyHm0bbZXejH5era3tpWL9ehjI5c9qL4v1Y1dA1I0gxOajRdA/We4+a7VL06H2TSq4gzLLBycKPD3F5oaosw26ojCnOFXbqDcbp/ZiczkOdU+FgBQrY1l9UJQgGY1GxPyAwI280aflGPMcBEqpnq4eVaVQ29GB0syfcDAhmEHer2HM1Ir+tkYp1EwNrVc7wPtlQX9d0GuB/HQ3h8tzacudB5YBLQFycDyBYFzIvVv+9e0OdQZT4QHNc0gVNR1mQ+AOYQxJH8597F0FEdGxaiiuuF+rsQX2YzjK2zoOa8DyEtclqVTDHFVS+6utZwNFdYx7fNjnG41AGhYeSdfiWgD3w7QLeMAt1QBCdzgKq5lk2iQdVzdyp1rfPPDCgE4glP8+qkYcLfLew2jlXuFAQQAK1CEgRXdPBmB34Ox+AIf1z/Tso0X+czAOvJrJWaQuqhmcDFYtVl0oQEr2Fw1anyfWLxUExh6Etly3B0uJsQh2BmBlanu3CkaLAbTZARHFABQAj6K3kX9ezKjtodXTElPA12XpHnRL7axijKrYazFS5bgWfD/uS4F+2uxMWoszmuyMHfu9BMsnV2KJPiNIUDFAHVfuZ5WQoMX37qC9j2sF0AsiF5rzs4xzOaeclbvN7/r17lUjltiHyWYIdsXegvnSP70GgwRahk5RHc+Q/YhyngCMYbkfwO1uDsFlRJB0XQyoJT2bTID8xwHzLFCsCsjhe04ViFZP93JH3M8x2Q+PivZgJsSlmYFogKG09N5cu2leAwgAy/Y3Y81x3Xgm3ZhHjF5nIIR7UHZy3V7rFDPsiLHTRaCHC4dm1pXPg5HK1IczWjDmweIOjIMJ6C3AvCkthvsM20qwBpjAL3XNnQeBtwJLWy1ie/vV568wvc3O0Qlk5lxWtwPdjsmlEwlSx3eos4J5LANIyP/O7eOa8DNdaoFRtMxtDFp+fLYO50rWmYnJn0/l+Ib9OwFQZI7m0sXulEwpKt5P4mD4AFUchOfYJOAwxiWcsRPg5Hu+ZD0ir7qBo3lQRcIhF1a7uN/n+wJj32abzvs0MPqDgCPBg2LOVzjKS4m0gTGEmtIKYSNxju4TcJF1BvEJdGgfUXF3IEN3gcyL3I4893me8B0IaJwvBzaC7awKvd/nc41/J2AjaypYhYzRbw8VE2oNcGGABpnNJIAsGOlPDg7lNhSBVb8gACfjs6mfvylY+AAqANAkmFgEE1hDrYcYqzrm7wm4UVbO4P1/DtjJP89z7fy+5+9mkKGUWZvj9P/TdQYHvgVQ8PY9je83rt8PQMGdhPJi0YzCUnKpo4of6FGzuKk5Ih026hlJPDqkWTSp3Jrf74K2+UHGCCMAWYwC2l4sT1qLl9xzo9VyRke5IC7uQD0vNQQLpRllnEZYuUu8K78r3YTxzAEZEydK5tAo8/uJdvTNnMy+mqNXr93o5q2jLdUc+bsfmnsL50YOd8JoVOLFae72Pn1JjjjZB3BnISKZAqB4ve2ZQRGGRzHjrbrIVaFznA7H7oBLqIxftuEwuKMUSDydBJEQX+tMdcmbpCRqpQNOygib3yfmWDLkbb6VwTRRzieNcbXoHaZ8/vb5EuyT0hTl6xHRhfbJSyMykq9mwLXXJVIMLGoMdKftFdZjVw06b7+4KJk7AesPR2gC6OIGgpjDbg6CYP/OSwEenrLQUwUIv/pCRXWx2uuboN7Vcoub7fn379foCxNQBNYfrBQdHewYx3sDq05wXMrNDvDjyyXmVXtZ0P/oM+rXHeV2TO/0LMIgrUNcCHH/soHaDboI2mZR9Xrvo/+KoIugOYioRVDvHeuPu7N3SqSacI8oRw8n7PjDV2h5i3bT2SA4Jg7ahMinKtTH/Pj+BdQXkZuBBlns0OYlXGD1xcugpcN9M0G79rZ5KVxzSJi3LfuB/uklKPXSFPjYAaZvudE76Yj4egsjIrML2OeqUI/O0mHXbY0Isuzu7Dvo1/7wSwifyvXukdBxv0itWhaL/LU2Mw6CKlseI7BuHAjXAqmKRYDLJUq2hmMtgv528XHoEdnmHsLovLhwnb5sAThae/vQtODl/RX9SCfXHSJRBaidR8PGvzfdy+9TPlKE2o3js9Be1iGw/V0ix5/GZP26h+MUQLiDq23dYj731c6A6nog0X+AR36rGbrdjS2CnECcscVZYCzhBwC+y4SQp3bqyAhk76jdx01hrKE62B3hzH8coEhmJ1BF4/96jHWyLgEmADDR3TxEGThOjn04rQ/litLFOXrI2M+7982yjrVC5iAAaQ3leqC9ri4SuMUaGPuW/7ndIXee48vQEsrvf7vbHFqMqSBXc2SG80QjPL0z34d9wooQ/J6WNHfbcJKWJejs9sU5v34SOPRzXF8voz+dhSZkSLEN7BsHXqJfb3czqrneUMd4TIbvcDQjLfHoKLfdnKM+3idAJj7HncJ89tuYGoACApXe3oiQNqagDBvswUF0tgPZprQjeF5pLSjOtKPOEtk5ZNwhR3IJ0moeq0HRL/s4BzUHO6Q/gJxBdWdfigAtOXNss4MVKEZ1fuZwy+urtZ97c9Z4cIcwAFIiAJOAYQIP8r1DANDPKTJiHHQba1QGZZ7aJPx8Hj9epzka84C/I9jBEqgtUcs1pVuk9Y46BHOnqHeAenX0exvPCke9N0x5/aTpt2ZOZgbyuN74s+jb0zzhO4uYTZDZSGRYsO8J/vQy3sMj+EqhQlUA1f7dkuirgwyybYkhoiN9yh3lyKs/DrPT0zwTsjby3OOalbS2gEeQIjv5AYilvnTAUg+3f9YFD6yLZxdTCNgX5/uKB8VKm8HBWqH5fYHHOQh4SclhP8bzMkvrfHGfm96zT7+bfn5OX0j//8BM4L5yBobSXIrnJtbEBAS4PRLtP79Takd865ulM8b1ewEoAMCoad+Am+eK5UNJLZqqizvE2XFuBZosRLIEzMGzg0AOhaw07DzqXopHnJ0CvpqzWO9AlJdycID0bgBgaTxRmEbDkgbKD0UTrBuUd6YriMIPIXc6AYRoHo3mGPwe7QqqpiLU/Wk8WqRZhvBZvEu3KgVtOKxldwqkgxbqDhsdamPvjN+Z4KLGIT2VjeHYEWQJx/kUlQDciRgGLFaMXPli7R9UVtsDuGDYtqlcCgGFRHVieURjsAzQCK4UTEMXQAhMmqPtznjrPriW7xXGgrexXWo4uGS4wJ3HTmAiUiYUWCyFoKil4hhFOs+VfDB5m9z4JkBS9gZtlhrTmfriQxICiZtRRQsw2k1UNs8xCFDUyoc6y0UOXy9FcFysDfUOtM0+s/w0BOBirOFACyPewuiZzel2cQepqQEBSzEWxbtahFFkiAy202bu4ApaifUo3eb48VZQ7x1AcZaNRzoFAQT0zdZvvTUcXtkgnGiOkXYA1o+HA4nUloj5VsWcbuX66AHycC30S/WoLlDJUPB+DyFYrrNajLSQhKxIq+4vFXoUY+8R4PM8bEbzzKkbfWNjzwOuj9rscoq+PbtoOOpYH4xExu8c3NFN0F/WiPSaM6njcBE3ZvYdUg3osD0n5YPyPVN0FwBG6cMS6zmX/VIHCMqdC8SftzAVxA9tN+rUjX9rg7c1O6GMYDw7PE8OZRii3I9c7ImK+vEuab1a1LqNakXVKLJZyC4chlPEK+/dFulApMkAGKkWkfttU4Brr6+eftVTTjnPq+og5IHpmfb+GmOIyr0cEQFX5m8DFmVMeivjsRZ1AAAgAElEQVQgy49z0RkW4dDtPSoaBRNKxpoOwdGIyi8JyJmNUdnV0hJzpQJPiZQEpE19zfO7w961uNNEIG1JaVMn5yuYcW+rnxXJqachzv3Kc9sptKnrMtJt/H50bljJ6MFJA8/ax7kS0dyzA3T+O5yied09lH+dzp0egY0panwkx5596Hvp5FCqq4GrQkrx9fuNfYfjowpRQeTHe+WXwvM/O4v53z21s0i849NHFR5+OpzZ/PtubM0BosDPSx9TWB9EsCPGqoQdIZAxF/KlOp2Z4xkDMNA1qemfHTR+J+jUJ0cjzZkJBOJZ12HpD+drXcY+Q10EjmE4zP1xfp77+NReTSwfRumNEYNHYIP3PDvK/Pn5c/wZ52l2AP295fz5ad6c7kmnHHiM0JYSoAz7IKK7KTqegxPxO57bPocn7YO8rvP+n9/bQUB1wDEDZwpMTEArOenvdXa42WYegJnFxfwAf47Z8d9eQ/H8VJEDC5/r6zj0FDSAjYn6/ww40Cc/45X7ldT9J+/3qFOgj9/P9zz/Ps8LOv8ij/MlXnnYFCON4Mkzz+96mtsZtJsYC9mpz/9/TrE7X35uP1zJ78osvG+mTJzZCef7nN/3G9cvAgoi8l8A+DcB/Lmq/kv+sz8A8N8B+BMA/xeAv62qfyX21v8ZgH8DwDuAf1dV//dffEYzQbkQXfJDzQSwvNzgWg1R8ih/KLUvSzjx3XO/gyUAmANQPM9Z1RgOApR9bPD1Y0c5Oo7PFgmvtzlHP3JqWYqSIn4Ajk+LRWNyrrYLUelmyHm7GGWn1xJOq/ulw9gtDnIQJLkdI98fq+e625dC3N4PunqfBaBUBNgsH7jcdjPaLusAHQ5jPhQUsNxV8c29v5gwJUEU6iGY813QLgXLh0aun7pjBQXWv7raCxRYxOoikNs+KP2pPyPXzCssQAT9iwvQMWp2HwdeRH4ZFdpWsEwh3EikM9cvHkX3KFD7fIk507cS9HhpitWj70RemSff14Ly493AqKboryve/2hFacD2QzMmQJNwZI7XJPrZFazIICliWO4KgaJTZ+LWBlXawRGq8St1Gi7V+p0iiGmsTVdjXkvtpeJ4rc5U8O48FMt1n9NbFOGwB4HmUPQquP3K0iF6BcqxoG8F6w/7YNrAjVQF5N7RXxd7v1sxo91zw+uHlbSTzdZN+3KJzbe870AzxzlT3iECvN8g1x0b52u3XOPlvboWSEN5v0OOjuP7V3PW7x1SBKUZaNAuVhJTKZCZAAUKb5Z7Q82K4+LzwBCA4ZAUQa/V5yONbIxxWAvU01eK5xi2X736fHLHpjGa7tEsEStzupQAMtqlGt5y9AAFnirK+0Eu18OAh3UBthIRjxAqE7HfX2+DJbCtwzigI/BxQ73tI4q5rb73LAbYBS2Xa7YA15sdjptXnlmMmUAGA1RDH0VfLr4uzHko92vcq396tb0KGEam7xTy9YrlR41IP9MOyvt9dIWIl7kEBA31wx0C5llPlPYRFcOSNABy5Pd1M3DFxSIpxshDPsrdwg/qDpBxIWku0TnsLxZ55/mjyxCIDeCwq6WSkaaaDGLdrISwaeQM+qR87KZ3sVmK1QLbLymsGiB29f2uI6U5wDRT4HulSIDiBHQ617cq9ChhMEZlId/Dyu2Yq+YQ8HEB5V7XUdq3eoTOjdAQIC5iujHOeBDv9yg1WsY5YUKhLBnsBu+LibH1yxKaPzF+15Tz22cNDByeqsHghD9LXy/huNT3HeVu+82UU+0RcM0pPtxGSLumkGAB0JYx5gQWaJD34YBoTVofcKDCS+OJr33TnBjVJwCMctsUAeXza7FSmnQAjj7Er8OwFVu3GYhiVP22B1PARAtdb6p3E+cUV89PLAGh6F0p0Jd19O1+eIqfO9OJKTE5J/y37/vS1ZlP3aKmtYYjFQY6u8L3r+kSGY5VREmbreVcXjyNj+2PlhYTVUVEJu2eSF0NdknxtIsOYDjKESlPYpHi2gj9V59sX2FVoMTmkvtu31mNRaP7PubXunrJ82MG5X2vktaCLaNIQEkb7xHChF5yj8LYxopo8a4oZe7TBKbR0Z8E4HZrO8tkApLa3kcKqgPXrJgWewPXDy86pnT2nbUxVVxw29AAAZ7LlsY1fSaLnXZ3DBPgAyCAltCCoOPLVAM15taUKiDLI8iw1qHVoZYucNYCkHWNsRwOpQ4QCw5OZZYG11zd4n0VPcQHH5gAtQaDyJgXfYBKqknzosx7QK3GXrwsOL57cb260cbl/UD9erc91vtBfI1q74O5kq8AV3TuYyDOz0gd4vsDfgYUhEF1YmcMALp6oCJ52d8QizynAlDAMYMVQhZDbkIt078jBSPA9JPjze/naD+vpzoNT0CEDDZwrZD5wt8lIdUs7slnxF45gQoaPsRZEBy0N/Kz8dhv06t/8zfj+i8B/Gunn/3HAP6eqv4pgL/n/waAfx3An/qfvwPgP/8d7g8Ak7MyfpjQJAfTpiiEO7SSjfs8CBSHYzpBH85A3BMwZ/d+mN7C3tNzMA8qMCLcgogW894YtvC02Q5jfLzf9J4cBZEEMLghkueaGvDIagbsN1P3xpjMLhwY+cRUIo8JZp81Q88j89w7ff9nnzJCe46exPgUvrMdKEG7c7FMOsbik3lyoP0A5r2zqGD0IQ0od9Kjn1y4k23W6oZs9UogqxmffL4JEvUE+mhoJJBRIicQKZ7F9yuIP2OM4W3z73BenAU4Mb5DnYqJNguMHHHfNFTMsA8Gio9NrsYxzT3OS9Ka0+85ztRhsD+IeQTA2AoKK73Ipcdo/VLmAzNHMmHvlcVKI3rJdVkFug1xUbiewDn31vqsQw6jHJfbYX/fmzlMdE5YLgqIyBKFJKMvS+ozIYsHk/NkrB3rn9Cn6CZMOgE3TA9KO2YIpZbU3/4OZABFOc+0xth/uZrLmGuIZ6krmk+MoNxPvUfkItZnXqMZOAhnPe09blCHMeZ71ZSy4eORD0Wuu6meOYFBfobvwujzmV3EPwXDKaMj5e8h7oRM+0Dsq6d1k9dkNkD5ef4/5s9F6tnpc1FCNreFfenjF9GqmHtz3rfG3jHGI84UP7vO4o/BCstjyPGYUkXcGOT58+z8jLUI62fO+9z/GGcaP6tyWjdk2+RLx9x+6FtgADRpXYQoKvcq7tfncyWDV4mqH+yfLOqX+oh9R1bgtN6erY3U5qk/8lx128Ac9QE8hXNCVgKZFnmOAwgtFb5zmkMRBOD+EI50Hwyibxlv5zFkP6V2nZX/H668Z2hiVub+4f7DSg2h2p/uU/xsSAwD6c/f3ZibDi44UCGntTq9R27bs4jys3ad2wfM+zP/Tv0//fGf80zhGT7N03BwnzzrW1deQ3kv4f2AcRaez9pqbR356Xl/LXP7vA3BVMz7V+7nh7l6mr95/j37XWa5RTv6AJTZL+cr31d1WgfR/9mBfjaX8r+zn5AZstF/5XHtn+f56V4j1z+NUeynHZDyy+Od50S+H//k+/4u8yeDHk+AzPExHWfTNwISQ/STQbsnTq2IVyRacHxesX9esH83/hxvC/rr6kBjndvK/u0697UUPE1j6HN/GLB+eqf8Pd6HPsh5vM6MiGm+fOP5/clYA2Pd/S7Xmf3I5/5CZP/p9Wzvp03yjGV5fka2RfK9vK0T++bZlYGS3wFMAH4HhoKq/i8i8ienH/9bAP4V////CsD/DOA/8p//12pP/V9F5HsR+WNV/Ue/+BwfNC3F0LfcYUVGpKjYgU8F7LL3USbGDZ/2Znnr5d7QLqaPEAJ21xbUbG9gqKVWEche0d7WoMOXQ1E/aAjpeFeyh1w3oF4Pc6C3Atw9EgIXP9y7la78bhtCRn7RiaFQ3Mi1vVie+EHjA6Za32AaDH5gdI+2AjCdATdY28Ui2rUOg5AOSlsLpAPrD5ZfZawNRoOBsnsu/qGprKZHdQ/vh2TAwdtgG1DF8WkNw7pVK9dVf/CydYA5+q49QU0GAJFXyXQLKSWqa1Q62UuxqFp25rIjC4SoJrqV++xbRf04Ql2/ADGW/XWBNrHymKooB4JK2bcKbJeo7rF9JZILlKNj+elu+fG1YPu4AkWwf15jDMvdIlyWQ18iVWb5zXXQ/d2A0jcHXpy1oA5O9NWih7rASjN6oEBUsbw3lN00OeAMEmJQARQB5qx0hdwV635HvVQTLKXeQiEtXwAU1PuYn6YlAhyvFXIpWL76OhSqN2sAKjGnvVJIuTc0Z7XQ+VjezYhsb56rXT2veR9GJg2C8sM7ojRh7yjM+0rikwYOIgw7pl7YOvWxutl6Od5s3jheCDmMnUQBS+tX+3v94R7zq12soofoBrl3K10K4P4ri4DUa6pEUGtQ0KivEEa552zL1+6OMmLTDyO62N5Wrj5ff7R51V+syoC+bWPf2A/TLnjZRqWaRDk0g7dYmcWjAb0F5V9rtej2pwvkfgx6vQj0xaKn5WOHwMvr+RW6ADSOvdSXXO8e9V8GvZvpB65rolUgWDwFxw0BF7HUbbG95mZRHAPnZESUWh8ikcAwiBw0RDL65XzoEXR8dWV2Ahcf9/EMLxOIr1dIKehfXowZgMsYo/sB+bhBX03bIeuroHeU9zuibJoDnFlg1+ZnGVoans5SbxYF1QupuLDqEX6Ql/twostP92EglaR5oJrAOow5okC5WdpB3yxCwueLsrKB9UkPR93XkbPuyPBhhR/x85Z7tC5wcDCt//c9RA15tsv1GA52sbK4ZPOZTlGzaBej25cVWl+C2cL7H9+9AAWmMcF0vt1Fk3nWlQJBt+g8EP1NVkqMG+DCabB5y/x4WL6tXG8j51sE+iJAGcKl+T5aLBWn3Dyy3A5A1mDE2Zx7H1HlBJZwjouI7YOMHi4V4gyeiNpVDF0Ap7HH3JKkCbE6w0h16CgRVHQWktz3EUHPV9ZI2A+L3HlUPe9ZsZ480i+ZIaFqWhi1hBAkxSxD80XEdBey0ws8ACRmXghwkeEQ0bDmXsT3OVJE+uyYZw2bDOoCQxR3ofBpn8aWKX6RIsPKF7UCqztvBIdSJHHSj7nvtleqOqNrn6saLHW0jz/jHLlsKWJbpr6T632MFa+z0+2gWKQoUPeiy6iGwWc7KDAJCMY89XtEakC3SckKXr1bNa/shOV3YR8FayQBaBk8mIJpGvt9vJcIcLmMPqKDfLBtKyg0/QBaZKCE7fsWpdvXuKxepjYDQcHg8z7YVmcAHOOdk8aAktVAp5ZAPEE5MrRP4A//jrHr/jzVwQagGCmG4yd1GQAKfQuyO/jeAf6kubLYeLZfvWD/vOCnP17QN4SOGxR4uViq3QVAeffzlLbr5NB3YLlMWhJ6HIAUYyVon0EyL9sZ3/VylpA+QN1tTcDAKeUG3r9M58tAcGKYiZeqZNUMiMxitqXPoEwGSeIzPtdag04+a3lwxIMd8K114X0zXfx8Zkj6O2h+BvdNjvs3AIxvgghk1NB+6t3Saro+Vv/4meuvq6HwRwkk+McA/sj//28B+H/S5/6B/+wBUBCRvwNjMeBl+5UZlfByHXWwEMzh9NzUHMkXVwPmgLEigdM1Czp0x+PgCUyBfpFhTE3qxGYQ+S5qP8tqyB45RDOnLusGiJpAHCRFnrjx+nqYoqiFi/OEgMdBBPQyRChNQG9EUgOFPtTvgRBrAzByioFB5RYx1fqWDH065T6ZJEVsR1krf2WKp0V/jWhu5BaGAcNNHPZOpzrkWZOBzpQCg5ruX5s213BEZoSOkcAsftY36/fi+eDmBHfTtvCoMkXFpsiOjDkR/w+Y4ygIPQ3LDc5RVaAcant0wSifyf7muiywlA+nTse4c348uYJm3DRFYxH9POdp+zwv4yAtR4/oN9tI5gIYpAYgVQNEkG7j3jfPeT7EVNsJrClis+U7iMDmA+fk0a2UY3437z+hoj7cgaGCuZf4yiCRNI0Sr30p6NtilO9l1jApZBp0HwtFRAaFjpcAWQ0fahTGAFX6SKFhfw12jDsOAkth6RqOpZYSoJlFdxHpFdZGc9akWBkvS7NJ1LxgBPl4UteAxkDMkz47szRumTf87DDJfelrST0nnoBTqMyfot1RB5yDnp2xnKOZDWh+Ju0T3Key8SB8j1DT9gNcijueEsZ4ROcJAvDSlG7GM6H4hD7R+5jWJLkN5+hDfsepI1I+Kb8XQEkSnuQzDzeGnOESKQQCCKPzi0QZ29h/j3n8DBz1MXHnF33e684R3RCUBRBMHf+dCRN3ZECLLDPbpzE0WsB9lGeCzQdLbRD7uhowMqrbkKnm5ynnm5fK7BtLDfOBfj51GQaWzydJBvm5/PM0Lun8NmcTs66SpPMp2Gg63cNSBOaxDeX9vC/3eYyUzeC5y8h572Pddk/FYFtOOgdsM7/L/T6ffVOlAo6rpyEA1m5N2iYsexl7Eu/TTedgul84FTI/I0A9HhI6V3bx95juUdI64flwcigBjBKh/LNUr+Di6yYcJ8Q+Pd5Jxn6R+5HzJDGebMwy4i3z+MZEpxMThuZgk4i4cN14TqzV071t/aW9MLeTaREERDJ44GM42TtPxnzqRz8bHsoz5nlVCrQqJFUIHv1YvYSi/0mA/kM0MjnhAoRzH3T6Z1ceo/xez+YD9zAKJp73aPYX8Pg8Ah0EQGKu+xjg1I/xbgkU49/utCs60D1EIwaaxVOTMztVxThfeTwfvgtzdiuBjJL6Is37dN5F26ZnnPQVnvWRl1IURqYDBIkvzuu4a2jqmG8F9CpoG8K2uR8CSEXZVywiWK4+wboihBAlrZkz3T7WeQIQ8pWd+TTvJ90MXmQMnq+0Jz08FwBK91f8mTEE5nfMz+kaP3+oIpHnK+cZQbG4b3pu2kcmEcW8DqZn9/F7/850fQsgA77dX6f3+P96/TOLMqqqijxTgPnF7/1dAH8XAL77/LeUNOjuqHG5N8jeIxpd3u+IXNXiE61bHrp6LnII7W3Fyty5M0AngxH97PAXj0j0zUVKDsvR1m559FYp4gh6JnUE6q0DDaj7EerPdBj6UlB0sYhWU7A+MMUUQ3gMCJTfhK1sIWqBR5yrvUO3EoE5fz5YFr4xFH/W8cUqERQKNm4miFff96D+l9sRkR14ji4rCNRri1xcANFffNey99BTKIf317X5s7x05r2HGGZEk4u1K+ctWzqCWMpG13i/KBkGM3RLFRfWdPBIZDiRbfRH20z8Sw5F6cD+uaLcFetf3Ewrgs++H+ifLJ+//uQsjctYClZjvXg+r0bkYfvNzRgwrrK/f9mMBdDUUHH1Eo5ih1jxeVEA6DIOlVBdH8lLNpeT8nvkwDdFXwvaKqjXjuWjWUnP4ikrzmLpBD+6bbaW6yY2b7zNcHZHX1N1j9a9ogagrwukWalKlhm9/cGC/dXYLtIA6dVYO7cW4JrNzwZWoogymqoo1x2brx+mphDEmspHEqlfK8AoJQXMGKn9erWqBy8L2qcVwGoaJgW+Noy9Q5ZO9Xm5f1mhBVidXdEJSnzZUD+OqfqEOYUeWRMrDVruHXW3PFoto2LJ9htjKgRotBQTi/UDQNcyKlPsPSLIUS60K+D7Btez7A1yP9A+X9C2iuXoEOmTw1bulr8sDgJg92ojr5vPIzwaHXVofPAzYZwczRTIl4sxRjgPE4AR92M0k1H++z4cbX42O9WFgIeprYfTjeRodXhk043ZdUN/e5kdUe7ZHQbGdZghDETlAwJY8e5RYrNPVG1+L8DJUiBCgMYM/tifU3lTXQqwXMYa5VmylGEAFIQTV+4H+rKhFwevVFHerWpLc8YAq9cEuHd43j/ZG4vvJbvp+nDusepOzD+KI/r8BmCVWKqguW6G+B7bt+Hk1Y9jtK1ggC2HAbFaBPunEkB73TvKraO/LKbvcrGHsuzy8mH7jKx1iNo6o+H49Ya2FhyfqjHt7t1BNAd++xEMPmMvKOTjNgzydYF26syMOT6lP3BdOeBBY6xn8OWuUR0EqtAXy1/ur07/oj1F55rl+zKg5/owFtUygSPdHKh+McOSpZutBHWzPYV7w2UbRp3fJ6cHWoTI9qVYj2c6dynony8D1N47yvU+Uv38nKpfO4SCpB7FFZgbHQBHZhsgtV/EKsCsy2Af+JqfIut9aPYw5z6n/UWkNkfT3l5Gu2oxlhL7m6+QGQ/AiGKWMnLd6bB38cCB6T3oyyW0VOR2n8Aq3dbBJDhp+EjpI2DRTc9DdYUoGUTpdx9mP1hQxgQ8ZTeHeJQFXsbeVIuNvfeDNHfw6Jz3YePhPDaRDjFAOD3P+fP4EbyqZWjssA2ZMu/grdx36J16DonqzTVIDQQZ4qJycmymsoJsQ5wP7qwGLTU5NmShrutId6Mz3eZnxJWc6XCU67AZHkClCXhKwElibdDhE+aed+8H16QQwPryOGzdO5gxpWqc3o1ttb7R+I4ePo+AOKMDxAzA2s4kOVowAsPpby20HSJV57xW2N7WoBHkOwNsI32IDntUkgqnHsZSWIC+KY43wXUX9Lrh5a8qlt9+GMOQc6eU0T9doW0fznTWQAAQUa10hRBiYnilX+IBVShiFRng4MhD/5fRT6tYMKc3hHgr36cPcMq6p3pfuo9wHAhmAwwziXa0MQaxrn1sw77JwGhq63Q5MyDWKhlDeY2fvzP1RdorAsxIAA3byp97GdIHHYXcJ8A8b55cf11A4Z8wlUFE/hjAn/vP/yGAfyF97p/3n/3iRfEoE4Q65Q53Bcv+9UUgXVDSAW8RAuZIi4tSwWpId6QI4lhgQdtklHN1ETb0cNRqkYnW17cazlh7KZBmRpuJUG2g4OGISLm6tUcpwkFlexePUiqmCJIoTCE7OgcR8VEMqrkZahJaCTzvYq9WfYhgmyp9CyfiaS4Or27OqhbxvkxpDsXoTqw0EO/o34uDNMbX+oAASRw+O/u7R2oAr3DMiFjTqZBhwIY2wN4tYl2K5cSrAq9mJPe1okgHdg1aEudaKcXngTMlWof0YvtVjkQVCXCFAn9aBV1MiLA7uGN1piX6PICKhAYy4hsl53zjBQA4rZuGaET3vY8pilMS44GpLgSR7LlewaIpgIJCkce1+Lj6Z1crragFIAW0r0w/MhBhufG+wPUPKuodePlLLw9675Gq0t6WkW/N5qbITF+IWstIt0hoLce/AqM0WUkGWXGhN59DjBBJjoLpmCdTbi4jRgRe6NwfBV0XhCjnIuGwavG0pzsg99NG6u2IuQ0/qC7VAPDWUW461kXzQ5pGnoNq1P2wDvDI72bvU68aVNCSS+x5v5oTX6PknnhpXX3dQghNK6aDR10kasqj5724J2RwIEcGo+3pIPSqOxkkjWiHG1ih80ARtPV07PjcM9RnCYAltEvWZGgVhaKa+OcZSffPonkaG2DgCtMQGH2jsRYOeY9+sHY72wvJwQZAOjwF/ybDgIZ1x2C3+JiUw9McyBToliLHEr6htVABqKB/vqQxLnN0JhmLY95YWh18z+Dn6Wgb406NVRfzgE6JwmNxMIzHwb6iBgyrYvux+Ds3W/MJyKQBVfhMj5RKqgEewJCfi9QBqu/HYHadwVQHoNGdQrwfYDUIivFqr2NfdeZJpqOL9jh3Yn+nMCqd1sx0ibPQzgocDUgOlixjr5quzv71c6fbnBIHgWQZLKaYL1M0ELYGmlqaBh2PbDiGA2/v0H0/Pz5vVgHnU/XB/QSK9W6/OQxgdeYS76kU3qsOhGVnzZmWmvQQ5mi3DGPl2cX93u9zTu0Ix5fOKQFjAnIhnOoG8UmMLmYwHareo8pGgD/HATlqcrZSG/h+1G6is6jDaY19jMxGVQM2jmb7iIN9kp1W76+HcaadF+VKH/fTif7/MEfS+s8O5rm/+d3sRHobHsYnGFRtOOy9Q+D7RQYa6HjnksT8+bPoO9wRPA7gDMDk9p3nFT/HM4L9ws/yTx/7CtQFBbmPi4wz8lu57CnNgveZFPDP7wQYDb6UAZrDZ2EROzN7N0f9zGg7P/t8kdlBUEU6UBff38pgPqNgEt9mP/AMWhZE6kKAUQngmICF5w6tOZSYPkPdJ1FLBe7NjH0tti1bHNnscXmYt/aeAbbwvYPBeRqfbv4N3z1y95MA66iyQfCkPYyXzd1yuu+TceH3zyDMOWrPNBrL73u8DxLwcWJR8PtSa4xBdtQnNgn7h4z7Z2kGJ+Du4efnn53XQHq/p8DB+d/P+i0Ldz65/rqAwv8I4N8B8J/63/9D+vl/KCL/LYB/GcBvfxf9BABAsbJ8FIGrezctAvoCXkKsX4o7kWmRuHOQc9dRLFJTvGZ9OAAFYfQRqOgeLQKjf+5E1rRZahVX3PfykmKG0/KTO2FOny67U8vXao4O11w3pgMvreK1wwGKRwL2bpY362hilKnDMDoBoFM5vExACS86MfXGiCKG8XLfPY9Rhwpt12FtinmvogBuDbIUHJvnyHpaCccEQNDbh5iR9T0IyDCS6sCENkVxpLowf1Y1GCaSDDNWxxDvQ+YjH6/27HrtkC5YgkUyV/mIqg2AGZsOILXVDvqlOm2XZ/bRIWtyVvO7vboz1qmEbhR/0hvlcMdP1Oi2RdC3ZUTsY/B90a51pCG4o1s915VGQzgeCp97ZAvQyMKIUDlIgAr0VazywmFOGLUe+mr9W+49mB7HmwFf9WrzpK2mESJegnJ5V/RN0FbBxx8WLFfF+qMxMMr9CPZI36pF6aqBfnmuUyiStmhxZX2mUMjR0bZq2goK1I8d8vVqDtZlsX3An9FXQdltrZTDjPm+lgGeuV6IHnDnBpj2Zx87ixR7uUYH1vtSEISramUo5auPa0E4eZrWpBaxX3VFrxZlk1uz8yc9N9ZvxwAUVKPKgZXZLOhLNf0C/h6wiiWlWIRauZ68nQRcfvDPfHmzuXtNBwgPKgrUUo+AedFSIg9Xi+elMqJFENQdvTDeATP+ZAipTaCCurH/cTWj5+0lKtdE1PJkzGl8l06UsWqMPeXvvPhB3Ea+H5+pi7EN5IVtWtwAACAASURBVN2d/tahby/2THf4c030cEI0pXdNhyqiVKQuxk6q3Vk9gAEcgkk1G6qQzaOVd3eaFwf0Xr3qwfWwCgOtor0sAYZjLTjWS6RJTY4Qxjmmwj1DHFBtDo4PdkVfnRVxJEPE99b25vnF3iclQE7rc3TXlekdG1NgnLZPFl8XTMwI6rhIccfq5Ox0F0WVrqh30y+hwKquQ5yXfW1rZrPSk54+EAKpRYDV1xFtBCEzAIllY+eWLhJnplBgcFvBEp3wlAgAEBSIHgZi3HfgdrOc3WTVP1RfUWf8dZ4F3ZhDpQC9PDq2wDCORYDCsq1kcCXWjEeFo4+q4PiyoW2m7XK8CK5/UNA2QXsZt//+/4TZUdUd5l7GOvH9K9LM7jpYGD4vgr1QknBubgP/P+8HnEMe9ZL9MEcsVwk4OavhODJ3n457zFmCP0m3IjtVx+ywsIQtWGIcdkYGwOwaMuIUf4InonsELmwMxx5CMFKaly69YDhsBHvSXmLvm4SHCzAD3Dr/m9oH7E/uRbTtCCbkf5/mH9sWnwOSAyfxTqHuf9/dAVvdLu6jnwN0mKvcTGyB4xhOI7JTpNDu/bVtp0ioDkc4O/4BvrgODwATtHryPc4ztTlmFcOK7VvPAmR5P8/gBNs67bGn+VUcjObf/i7qIJTt+75enoARjC4/E7OLVJP8bmn8VRrkg9px6T17HxU6AMhS7YwiKKEKdVvQ0p2q2RhdYTpKbbb94/kpot/amNNqdlY5GIwBWAa4i6eQKh7mpZI5kYEOqM2HvH8GQ8XX6mmspZYoTRt6B2wXU59Gp/6swzu1LwOj+TunKLw287PORPyHFIfz/e1D9netgDAdpwfQYdVCzPdUjn+enwyA5uewosYz4Iw//6VrSu1RhE5Fvk9Nz/Y9/aHCxen6XcpG/jcwAca/ISL/AMB/AgMS/nsR+fcB/BmAv+0f/59gJSP/Pqxs5L/3yy1zZ/u6GyNgs9J2QX33RvbNnK/1tx4tUHNU8LKEIVjOUUQg8jQjVcDZC8VpsnoZVQAsXWJEK9vLMlIe/ECq14aym1jjYAIgHHc5PFJUTsYWYAeLwAanep6rR+gZyR4CiwPVIpsipx8AGJReRTgfxSNXxn5QyAfpa27kUK+AoMF+YP3xjvay4Pi0eEWBivt3l+F8NsXy7jmgi4x2u1Mbpb8YFc75pf679mqO4vLT3cdlTExxp77sHdpyZBl2ShWniTd3tKkr0YGyK/oiuP3BBax+0F4tclV2e9H982L0WiCAg3K48eH9VO42H9rbZkb4rZlg4ycx8S+OTccQpyqA7BbtL/dmYEfk4FrbQ6OCEVZxB9ABBFa26FtxEdAO7CNiN1WL8HsybYZ9Smpy24qnxjRIY1kyd1Q9+s75Evob3i6tgvuXkuazCSjy6rugrAXruznz1OsIOvpqDnJtRs9XAfrbNp7jUbzih4t4DmkIqKqVpawfPs7uKGlxnYvic1htzJlqEn3qf463NdICRhm9RPcXoFdLCSrXhnJrAwQkEFEFx68ugADrD4cBQqrQUofGAoAuEnOn7O7UxQFif5e9oW8Vx9uCem1Yf3s1wGitMQ+oq6KLgSLlOIYzeTocCtezjHlBVksYfDwYIs94usVwwkWM7u1RCHXqdkQL3NBWOGBwO0YpyG2N+0tLbAEeiHSCqhldpG3q64rj02pA2a0ZUOIOt020Hs9lhZ7iVHG5tdEuYDgHa402TDnNaqW6hpBRNmTlJO6ZDFWROG/E53dPlYJsvteh28CfMeWE+18q0Wb5XhprsX+5xLhHVHtPA+WOI7Vh+uYMPTKzdh+/KrZPOcOv1xLsHzKH5oiU/7//1T67aGG386EQAMnvcdj6s7XeQ9QxA7fl6FAt0Iugq6U8UCGfOkjVS9lSeyjAOZ5Vvcf8lesx099JQ1ZEOVhxJgnXIfcNEDxSZ4z1jvp+2J70shorTQZDzKLHEvMrntu7GbPbCvn0NuZlLEZ33lyEM8oVv7u432V71D3IVzGQw+b2Hk475yuFqK1yUcXxecPtb2y4fRlzsd41ghztFbh9rzg+d+hbA7Dh7fMLvvzfguXrHiBilLIUOv4atHil88T+OdPEgbFWswNEICicx576JgEZjLwCBmCyHxgBLgKpTD9tM/X4TGF+FrErbh/0biKLjF7vOr7TB4MpU8sZuImyu/7OoceQHXU+l6DI9T6lIAHw6LWOfbgIQvyV73yeHwksfvaZqEpzandoNfjPJ52LvMclwcXRZz4PchoCgQRN/Xbu97h9cnTVndaS5khP/VzK4zqigyhi5tnt7mCOzs8/gxfA7ECGFoSDL2TPHYmpwrYvS5wD8V7NGEnxTmxXYkpPQBt/lvsgAxWp//MprnoaP45N7iee0f65c6UlE+5uYNRcyHb1FAMDpNvoG7Y7Oe2RMpnHIb/P0SyV9aNg+SiAApffAG0T1A+zA+sdePntYbZiHlMHFCMdg+NEWzAHQUv6PPuSqSflZ5x27QMUOLMS/G8LPHCM5vtocxCoCL7FPmB/z99r8897R2hPZTsoX6l9fK95VmDYJ2l9xbPymTyBMUkTg98p3ofPmAt48rvM8AEG6+eswfA7ADW/S5WHf/sbv/pXn3xWAfwHv/jUxy9arrlHWcLmKaPLLcJgkcscpVA3/ACMHPsqMI/O/6Lh687NiO7KcCIEHhXxyS+mxWCGSgkUrjQT3avXIxxIFY9++/1jXSqmCRZ0cHc0WaIuHOhk2E6CWw4CiFMZ4UZmTg+AL5ygn1dxiucxDJekHp2NBLntrrY6BDHvXwraBUAX1DtQbubQirpD5QYoDTx/U0vDcMc+2i1Ae7FI0PpXyTj154egEI1rRRjbMdlJVy0lbcjwfNuC480PjwarhKB2Ty1AvwiAgnJ4NMoNXc4xkFnCHFbXf+hva2hQsJpAToMgS6UwbSPmw8kRjKiPPTOck0Sz76sBCn0pKHyGeJqFO0pSB71cVHFsxlyQq0X/+lqs6gg/Q5EzRUT3KKgjQDgy1idAu1h76k1DJ2FUP7C5Vm919B3ndHIeTE1dwwmT1iH3YagzMk1tEatM0eOQxAmEs3Z0Y3ykdUwwgWMhnoveV0G9a6yZZ6KVhgYk0GFvpt1QUsWLF6uCUW992leoTzJyETXABJv7PucZ+fDv9q1g+WgoH3uIpYUuAtscIF8bNHgAwarqFvUMYS83NCVoHzbvJgGzb13h8FeIGN1RMhjBtdeRDIxjGK0OZhr1R01DxN+V4GaoHl/YJxIaNGUvkNIiJSLopDnC4QyMcvW+DepkjhTDD3aPVDGKzja0NiLF/E6ixUZ5SB9Lvmfkj3K/3orvr753Fg3mQtx3rdEP4SA/cRh0qeissoIe6TBkYBkYCWchIMBANAPDUAT1UETFI5iD3JnGRbBN8fPzQGSkjjUD+yaxwgBMbP0FMFpsLasDDXCHXj1aJTxzGyBwsVIHEUprQ/sHGCB77xgq2E4xd8dIlzqE7dwxs3MQJrBcHFDwdW6U/yGQavtSC5ajdkXQsSdnjcZb6jcq4TNNoJ0ctVqC9RYaPeF4F1NlP/nBE6MwOQ+R4pd/Ht8xPZfr9xUf/5ygXoGyA5cfbE70BWgb0F4V8us7/vDXX/Gbv/xDlEPw9ufVgNPT2AcoyQCDyNCtYd+cI2ZPzrYHtkaaO4yCmvaVHT4hOEmGweJVUUII2fRWcKTIblczlJ/kpc+AGWYAkftXpl0Dw+H29TjdS53CnNvIOZgdO14ESLrM/er6CHI87m3xLidnIH5Fm+gZIPXMUWBlNH4+pzqk1Kjpfmdma55vPTl3+Xd0eDKY9EsXv5PPrdyEiRLfrUICdS3sJZ7ccu6TSbchAReK7kFEBStQoCvkUqbPG/hwAi0SUDKnKD131E4v9Pjvn9uLY6/VON4mYDcDDfk7fExiDlrFAcGgM2P+Xk/j/+y9xUGJw9in5V5Rb/as/i4od0XZxYJONws2llub51yO8ncdrxI/55rwszuEUYfNj1xxIWlETH37rC1npgNvQe0R+QWQ4sklz9bJz4Bs0y3V0u+m93rymafzI+zMBMr80mf4zCfr5mfZC7SDWlp3peBbFSOeXf/Mooz/v1yqkNuBEvQnhAAhD18KTUEXpwVLdO7y1cqelasLhG2eh7QYpbovgnoAUOB4M+rd8j4kby2dwcpfSS9YfrRSSstXmONxPdBfFuhquftagcLSkO74q1qZKrk34GJCh1YOLIEFS4m8ThEAq6tjL2kzOIYjFFFCIIERiEMyQJUiqKoQ6fH55UcTs9LLEvnUvA8wOx3qrIz1hx3tdUF7ESxXdQRSh8DjaoJey7sLMYrRZaKNAFgBoW+WRsKqEPunOtB6YCC7aqJrtM1NnbyNe3k0mAdQ32qIIgIaEfesNcAIzP5JAtCoRSG6QKsBIPWmXoHA5gWOPZwximwuP91dxIx6DRa56G9WFnP9eliUO+X/yq1bisinFeXWsPw4xDCZ496+sxzpemsmuLgVtBfL19+/rKj3GoKC6mkj9etuUcBaHHwwhfi2CPbPhh6XpjheLW2o3Dq2m4McBTicFl9uJhTWXgTi5VDL3iFasFZjdaw/mVBbe0mU0WL9/PJP7b36Qtr1Ep85Xl0E7G7infXjSHNjNkL7VjxaZWt8/7KN338YHVxfNlsT9wPYFrQX+wwd+Aw8LD/dhzPom2ZfK+Brtldv76HYfnP3NKUC9GqsCc9f5hyCGgi2f6lYfipRmjNrkSxfd09dqm6bjXzxHGEVVSxeyrR9vriWSh9pFNmhrV4Sl0YXnd/eTWj2noxCltmkI+JlEcliYDqELgXl/Z7K/Qng5fSGzkqfI0IA5LqH7gFUjUr8+pKMwiFQScYXxzeq8ohA4bTzakJ964+7ATlHh76sUKxgRFS/ewlgNgREi7G0yruDKkzFOBw9zKDtthj48J4NZ4+8tjbSD3KKGScS999bB942Y8lc99DvmUoNtwFSnSuB5HxpRmPbp4utWc//BwxkUqlYf7wbgOlpScMh8ftBY+yOZTUAu9pcq+9H6Bnclw26uoNXizn8InMKWhWgOb3fiAPODDpGBR+fE/kS8Tm2VjRnIBmQ0G3v8fcjK0xXAwa6ANXTovC6mo3ycdg4NrWzj4KQqFAy4zuCXUAwjeLJ9aOhcs7B2ibN+8jnAUu0sioP07IqmYmlWBnSoxktvxZg8fKFFaHlgdfLsClErCQkMPQcKDYrPi8c1BDuWwQGX7eoNpPbh4V7YC6Z6wGNT6++15gI5vG54voHgo+/qVg+gLILjk8Grty/V/QV0Kp4+3THn/76L/C//ckLfvz8is//sKJeq4Es3YA5RQ2bPlcloJM4tEP6mAvPHGIRA10oqpo/U4qJEXuUWLcVuKyQj7vhZi7uF5oq+xF2iV5vBmAWZ2oWCtrJKJO3GDVePZoeTmWOPp/eV29mF0lKqZCWUgmSU25AA50bB1+53xJYSOwLG9eOKKF5mP2nFLHkfpHZmbsbpuw7B65CmC87aYtHDO/7cCBzKkprEY3X+91A1G2dAQSMqGNQpvO+z73nRMVXAsp8bx/3eLaIpZjsxyjxyTnCq3cT7at1ZtL5/aPyTi8DtFgSw4XvwGgvwRhPLRG2kbY0BQKXCuxHKpeZgJ/DovgEsMa7uv39rUvGcwK0AsY41gSC8t0zjf8MgPBMDzBLx7tzvh37GIspYl3m+cd7ZiZfBuKqp2OTRXJ40DE78K1ZlbXffoXcnd21VSxfba+2tFOzp9bf3FCuu/U3U6mjioIa0M/UlHhnt6l5TmWRRimmIeFtV0+tydeUhpDBE7f9p6u1Kdqu3mcxh4vM/UNmA/UTcjAirRNxFkoGoLJ2AsfGGAEJTMjpECe2Aa9gCwRriOf3SceHYNczUDLNE8lVb8hqOF/fAg5y3/0cKIbfF0ABiAVnOZU0xkbEMK6UR2nRAMRBHvc5TMhEig1HjvZn8bmHVygAD5BwZpsZSlHbvrhTXudB7GtBUQpsATkS/HA5VXNsWtyM4IJk3YCHLgAGSCA9dD/DoJv+pIslIeEMCkYHclvjgE4sgPh+U1SPVpNaqhi3eFbeMAzu1P78PE2bcH6WLvD+RCibPq0bIk7bX4ZQWuhmHOpObm6jBNqr/j59YQRSfVP193UDe+TrARQ+IwOjMr+VOg+ZvljGBsrxB+DIsjsKpYRuAQDozmgaN37YZr3IEDnzKhh0/FScMk1WiLfJonDwKL0xFaD2faPzA+iWqqPsGxGI57SZErkdEHIodHUBzcNoyoOJY+0z1kcS2exq1ScqPNcuR6FsP4z5k8AwUUUvqfQjEepSwgCeDCJN7AMdee+WtuCGsRugUUqU3ctI5tGBtXqJ1zGftSGqmNh8KUGvRp1psOaodADeFq5pj85HWgH3NXfWQoiVjAMdc3S6NyP/YSg8roUx0RPIwH/TyJDTXqfqCs7lkY5NRgJ/zmfQSMuVIsIA9Hn7DPn2+S6s5+79Ohhop5N/KZFmJl7mNNrKtcrxTSDmtP/RgZPxzpNY0ukAD+p7+pmxdjTYJgAe0gCCnQGMPYc5ktFvCEcldER4P5/3xpbpxmTZEmUZ6dyL+XTaFB1IoK6BpPcZlZAcPJCx9ri5qoMNZJtN8+cb1zQm8ffYM0sbpYilKJBYHEF1b83mf2s293nTdE6jwk6CJhBxhgTPVF/7ZHEJSyAShD/NXfUI/AAxnhidp7ZbH5Yh6ujsgyykG79jV7jNchY8BRCpHQFIuraQHBiOzvmaQC/f2zegv3YcKCirAj5P2kWjL1sruLZlDGOyX2Is1E9ashefPf88D7Ljk39/tqX4Of5/QYASVmLVL+5RzOeNs9cNeTpn3VlCqpNxTtZCVHvIInc5+s5x4LufGVxq/fj0OttXIp5ak9qX28xo7MP9n9zzW88DBkMhfz//7cBFfI19kiP73kcAhm0DBED8zfcDJudjGs+us2gj35k/qwXSvuGJP9tf0v9HOcDfJSIa49jdsEtjy7Gh6DhfhyyX89nZ9KGN0Qf552yr/21j5PtfpodnBz8DD+crp2jofN94XD6P1UUoAWv3eZ5/6xJBVDgAfvk7ky/VINc76s10fUobwvnlsD243I5RNefMIOLzpvcp8fOnDurPUOst55/v2d1GhI15Oa3FqU1pvXxr3zqfr2cQY9rTyjcdebv3YENM3+9jfYaY4+lS1QEcpHeQ877xsK+UAF4fS4P+HDr2pI3jocOe5Pz+VpvxewIoaC2mTL43oFiOUrkeVnbrO1MZCqFFV6RXAdaPhvo+SjG1zxdAgerReXHwobsAn+QcFgpywaMr7xpq+dQDMKfEFP+N3k7KK3C8VJTFIpd9Lbh/v6B+FKxuXEeJLo+uAUhCU+JUIuD4vEZ5Sl3twC2HaTXYZ1o4HPXHKyCC/devnhvvwiIqk/OSnwXAq1AUNzoH6q0vYqiyusNYSzgI9W59s3y0cACMseBVNDpCWK99WqFSIqdWFEaxvLaIiFrlBYyIUaLVEKwYoklmBA6tB28DTBStr2IK+jKQ0vp+oH2/Yf9UsP3QUJoDDA4Y1LuX3txtfJlnDAetju9ebN59eGS5Ct7/+BX3zwXLtaM04GieCnDtYX/Qoe2vS+gbsJa7VkF/24z1sRUcXyz81jZ3wi++AXTF8lOP/rH7irdvgEksjdpeTFyx3NVFHAVyuDPsjtfxVgf4BRq7CCBCkoF3/84cxfVrAwTYvywmwrgVrD/Z2uvrOOjI8qD4Y9ltrNrFjNvNWQ8DIOzoWMwhdcX+3C4ay3J0lEPRXoyFst12oAP9ZTMxTx+3cj1inrdXi26Xu0XE+2Zl5cr1iKoRy9UogMZsAeQosxNA5XpVXP7xgb4tpqHg68gYER261XDMpAja6+o0fgFBo8UjoVqKpVFc7DNWws/WV45CEwC1BYZYE8EaaG3OJXexP60VwnKFN+8PApTFxBvb62r6Dh/H0E9xh1s82kWnLAAG0YiAtV99sojmdbdSZ5uX83q/hlBVmLRMNUgMgvarV++/FvuebgXHS0W91xBz5X7Q14r79wvKzVgyxiDao+ygOXYFWhfXqqlo373g+LRGmk/96W7O+ndvFpV+pwjl7jnaDkTvnvdcC+SyOcBFA88dwGpMIOmK8nEEmN1eFugiWH68uxPrTqVHU3vaeqWtw8FWTLnNJYVs1DVzxN/NHNAa9H04s4AsAjI8KPRrEfekAcD7Uk+nq5cr9V/4/lJvbUSgeX6IrW3qo5CuzNS+8rEHgKC+Bgzos31Yq2tOuBHcLwtkW4xByG3fDR7bh9oQC2WKEMtjikJVDFwrQ6RZMIyr2GtURxSs+/9Q4+Vi6SiiR5x1pvHSUX5C2ALS1KJs6+KpSTIBSEJQgHnxLYEIvgbkw8oLR+lE5t+LWJlbV/2ve0f94W6pJruXoazLSDvI40JfZwH0taFduvmOWwUU6JvRkJcfBfuffcL/8ef/Ir78/YrXv+j4/GdfUb/e5wisl0rTtVofsaQlU024D02OuNsYEyVW3VETCCr0YvsxjgaWguT+gA7TqfBIOhlVIWTIfY4Rya7Q2x1Rsk9kqOkXYxyBQsSSKmPQtstVCJaKELYraUz8/J0EEtk2wJgJ2zL2Y8z796T8z3bshwUrCMDGnnOM1IkzqEEHwlPRbB/y3+eSlyLAus7gSJUQ2tOrlbGMiiSJVRCMgnUZY/2ti+8Y04VghAzRxmARJP2brlNE9+y4Wlm/08+9Ykbo8FDAM4t18spaAKSRExVlWT6ypFr3yGxyMD3yLjcbl4ndwouOJtdh7iefYzEHis6/i8+I61UkkIF9dBw2hpdtmh/xOf6sd+C2D90LYAgU0nnMoAdTOoB0PwfUq49nTyyic+nGM3W+SqzF8sMHykkYlqnBcjVmgl6vPh+WeXzyFVoKbRi7FG4/BT50T3oWfE/1feZULjR8oTrmbQQLnjnJbG/pQC8B1ExpnwnsVKa7iaSqDcW+T1s6aStMpTv5rBwcA2Iuni9J80jIGqHuj57u4+8lZJISyNj3YDcEyxt4CtYF04JinWp9MvVXFhb9GcDn9wJQADAOk+IldqrRaYMi2mF/Kka0ChgGEBDCiYxSUM2+1hHRHrWSASBFtBUWnRWMwdJx0JhR7wNUPLIL9+eLKeDL4VGIhZHsYptdQtRDE0BhjoTaz3Pkh1FoIbDRbROmoxIlJNdxmMXFvmA+J6m5QZ2Wsbkx0uJt4OFadhPYin7xfoj8chGrj97t0JsQVQUeVolglCmsBUB/QF7hKrVBya5izIUMPrAP+wAh7J0G8CA8X5rRb7ViyrENNJN7BqlIrt2Ro7a5HF6Hoqht3CbShzEvEsPAIk8CXb0NqQoHF3jkSqc+C7Gy1GeZnTPUnb1tOt693P3zFMxMY8D+pGCmKNAdCJAuKAcccfZn8L0UBhQ4iKLV59wyxtocBx/f3dsApKofY4yDYVEUgExOD3Qeh2D2uEFrdHxJhoRisD3opEt8nkBeRAN3RqIlniMKyzUHQjcDOvK9y94H0MHvMAIKjEgp0vAzCs2oiDsRUUbOATKtYpVLWoeoRF6werQjM6KmKgZ0LoGZucG+ylRaOjqdwIQj45oMkOh//wx/TkdiKWac8Xd0Lo9m0VsgodaYxke6Rc+zzAD3UOp85MscX4980EiLcS0DcPT3JQjCthrAJahC5x42Z5Y6WET5T766V22oaV7xjOGYOJsEQVv3/gDnN2IvR4cDHxzj0c855zP0RFjWGNUZHX4fRs5gey4fF/OTDo7PN4sgdQPdq6D0w1NU03M53g58BtPnlLYRWgS1BB0+IvCpakQXP3fJcCA7sOrDHAugghHpXIrOz3bN7Z3mPgb7b5o4Ooz8HIShpkeO6ogMbZMYD4z9nqDb4eBfykHO/TIBfxVTSoAKQlQvyp76ujJmFaxKhuvNTOuYBiz3zJLXs+m51FuFXBm9AqRZ39XD9vLlXVCvAv3BSvu+/JUFJSIyltqe03aCnUQ6PKP/k6NVhp2W+z/moQxQM7cd8GoXlm4RgYJgmqQ0guOYFOztEe4wSLH+dsZC5F/TSckU/OywZweX1R24xvnecNtQ0s8SywtF8TD5TuM15kS6fwZkor9O+1COUJ/3pmcXKy2QwZHLK/Iwyg4s/53ebXr3/Fyup9ChSeDRNE8liW+fGA8xBikq/OzK3ynFQSiZn+WO8gxsKSZn2OcCGQ45yqqcX62N70iZ5m3+rLX51CdsEz+XUzAmJ0tmW58/z/tNps9zjmUnNn8+BdiCVfKEFh+MPV75HcScQ/FALPQ0jlJgAkp8R9+PJN2fYJiDthGUYEUWAjnf6r8zWNB1TmPJP3/mrOaf04mfNvvc7lnEULjnU8PjGftFx1nKanTS8dTZn9uU9im2nzZSnvc9Vad4prsQ/tjp/dLZZv98tFueXqefy6lPfzZtocgA5U+f+1ntCb9+LwAF6WpIlyOxpQDHr15xfKJSvVr5IwBUaW9bwZKprO5QqQrKasJxctux3A8sPzo4UTyS6Qa91VM1enjxvG/QWPOFY4vJojiyKIDFo8MwW9JFxvZPBVoU5VjSQLgStTsfZXc0SzTQvXJfANRBKfcqFEGXrcWiC/sxJle3trZXo/sUV8yHAxEUmpSuqO97iFHZBjiczH5xMb2D3xMDYPb2EEkuHxbxxbpE5F+2MiJGaUOT1oe+g5ixu3zY4mNdde0sGTlKKkYk03Onj9eK5aNh+SlF9Q4F0H3jRRgvfSvx+7LbeC6AO2+e1++VGETVq2hgiCkeycnxcV9/bCiH4v7Zx8cN6vWvPsJxZBRLDoVox/Lbq+X6fv9i/Xcp4XyangAGgl4QP+PvyfrYv78Em2NycBRYf9ghalUeLM+7YX9bcPu+YvupY3k31ox2n6MVobOw/tRxvC64fy7YBNBdHUwAjhcXmWyKclMs1yNKXtarvcP9+w2ACbO1DdjfBMuH+VmmneBVDxhVVWN7xgAAIABJREFU7jAjnakAsnh7HZxaipW9uymOTwv214J6tfGL+ulXi4iacryP98uCvox0lAyutZcF7cVFEO/d1k/vKNc6DL2GyJ3Vl9Wirq1DPxsjqv50Q1mrrU+uGzKNXKCvvO+gcJ9phtSHSKuth2YsAjcWjl+/ob1UL2nbUe8jKkgnU7fF6XwmUKUvaxiCsjfgfh/GiM9ZRgPltkPuikpGkhtl0hW6ufGccsnlvs8RfACMulsu+D72nv2AHgeksmTW6YApYorqvZtug5d9zJVoqir0ssbeAvGSwVuJFCbpXuq0mNAmAGcY+XiqWv75rWG5Ndz+5qtVSvlaUaSP+9wc+HCHDq1Dq+XKR3TR91YRsUoNSwk2QiF7heKfe3OAEU7fdmaAcn2bo9jfVhyflihDzCg290tjvDUrL+rnnn662D6j3Ms6enZ8CAoeHeXrDVpKMAQC+Lp39F/5PFAAfs4ERd/Hq1xHtRBdCo631dIVCIL4Xq21mP5I87LHuYoG4KWcLSpU9ubliLtpNcDb6ZohcaZsFeXeUO8HWCIRnEtLGSljTVHe7/Y9Z3DoaqWgs8MYjIOV4C1Cg4laK3LYmdQva2hOxNnDuUENg/2wdbVWCLh/+9kUWk7GctTV2qJe3QmLAvUyf9bXrDT1M8lZOwRnchSzevlWVReCtDVfbgcuf3nD2z9ZrMz1yvMDBiR8BUoDyt30FdaPjte/uKN+9fKz/ZRmqAosmIn+RQZw6++dnTtqHQQAkNYVneeoTEGmAp/ntoXcxrzjvMftjqDosqxdTDDfcwGIJEcEgGzzMyJSngFEr0rDMtmyLCOKRzCNAFDOOXfnOyKcItAKyE77xp+1Ljbfb65rULxaRXbG7kOvy9JWM1MkAV/Z6eCfJ0CFRSU7lPMViEimZOeEDizBncs69ndViLqj1cazYhxoWzuQI9tqUcrWIesJjDgBvahlLp85gVKpj9k+Onzq4sAEl7wEKKg6z/fhM2u1aHiKAitOTmlrpmHB+Ul9jTNoV4pF4/lZwNqQ+x0Y/3/f53VAB5KlXo8WTJOo3sJ2iUeTybopJWOXA0gl26+WwSrhWBGUK2OPQa2eyqTBWIF266NlgxyHBwH895cLJv2Bb129W3sB4ONmbSGodZ6nBDFUZ2ZHAIQNoeXx9Flqr5NBmOgY8TQwltTt4ayHo9vGvJJtdfaLjs8S2HRQLFJITloJBvIlBz+nKpxLqYqMeXlO4ySY4KDLlM6Q752+y8+HxkP+TPRz0kFw8Ff4HN4jC0w+ea9op/dtAAZZ/JHvTGA4r+Un1+8FoBARBgrSeG4685kjHxoI56zeujmd313CwBCPDgF2gGFZThPdUxGAYDpEVNE3UlEdInx7s1xWF00cdH2NqBOjRcuHRpoAF4Oo04BFArxgicD6fsQyDvEtB0vMAErq8bFpuaHrTrJFVvuUT8zIeV/NyAvaJhCQG3PLAQMt6GRMSvhq0fxcGozOWM6DBoDl2gb1s/X4Y+PgkTqmUzhQop5HVfc2R/GSAR3VE6gH4Q44gymjrBrb7tY6MKJvgOtHnOacR7xCCZ1t27wywTHmEwkNhSrv7KKEJAt8w/LxiWoVXS3yCiTdAwkHxCJaYiyzKmivLt73Yv2lIuZg73ynHj+X3Qz37n1bGoJVQZYPI0Hl8Lm9FkgDlpu1wypL+HwQnyTKeYQ4DMvtMKmJWzfNhi5orFLQMRgoRdDeFuh90OmjIoA7L+qOgfq6KA2mBi8YbJJDPZrV4xC3sqGCviRDm8/1A9v2DQe89g6WkpNkWAVLiBE6cUBiMafEUn4QewKvMMjv7mg7FU5dsK/cvWxkLYgyhjyE1mVE7vzZcnRzwnL+uh/SIpY7HkJlx+nQz2rs59JPpNi2FsZ1CNyqDsOGlMmIspRhDHaNkrZxX+Y1M+Jd5r6nIaVLBeo6IrO7RzZYVpNaCumdWeJzrUC92r5XlHu2z28KOfIeNR18PnU7ywAvguKRc9nbAGTZ9jSedChy1KTc7F3L3UQPg/LeRxWVEFpiKlsdhzTB4YhsL86yKN3B5eb6JD3mpb1PGf0JDCBa07NERrlWNl/Hvj7KoIo5A5zCGTCVAehBPAWsdatWBEzR1XLrwVKzdqaSme6cx3cudTJegk2HMs6Ue5tLZPJzqtDD9sHo28saYF2/1JGydQwjkmdSVJEB/JmCkoAHObpV0CH743SuReQ8O4Qu9BjMuQWxtiE+l1iBZKLjjHUeUb+C6bwxvR0zzrWPuRcRUEa63T4pHzte/mlDrxXtBQ54WSpbvdkeXO+K5aNj+WgGJlwPK8NH4z87Ifk6R83hjnM26HkxpSA7zZFCN5zecQ6qgeg5tYHrMDuxPe0vD+/n7MzWQbaAAmEES+y7yRkDDMzmeGSNjnN0L7czgxZkJvEz5/7odFR8vMPREwMZ8neCvSUDdPiGgR4pGAwW5fd00G6iU9OhIUsjjCTMDnECgmIupL6T43Aj1+acBkW9D0eS40GbuSbHqBTrL6dIBxMx2GQpGj69axnMFwdKlI6qdgA1nGa7kRr4lsbqHLS29ABgdIQ5WuJ/AxiAmp+5uizDEeOZwHHqtj9nBk7spXyP4vv4Yu0L4CnPG+6tXS114DynuB5UZwAm62MUnmWP4Js1rAw2NzULznON1PbM3KAOCT/PdztOaR96YkyIwFKK+oPdNLU7s+Winae1KOmdcwWI3E8pnWJKBcifI2Mh23CcQ5nhNIEGT8aC/fEthgN/F/1wdt7HM6a+ffb96dG01drT50a7k/M/npnaISXW5jfFGJ/97ltt/Znr9wNQgBs2dYsIHXOOTehtOMCkipZd0V4L9s8rtt8eHgnS2Tlk2ToHAORIkStVdBHPAfc91A/G45M5dQsXdaBE5uiUe8qbbIoiiu0HX9g6Hy7SujtPFuk4XiqOTxYdDpEqfq5YlDEiK/fDorNAGJG61hCK64u/e6b3dUNAqcsgWejLF/CUA+h9QJHIoJur/aew9ruDLxQAjINT1QyXow9DuLOMXrPcawpSLYMZwjxSqNNvkVgNFEG8dauUsbfQUIia4VIRgorehyzrSMc0qPRPFlGAKn7gi0qosNcbAAwjWpqzTA7fL8Mx9WcrTIwPcADHHco29AOsrBtpxBZVCiHJRcJouX+p6AtGJLMINgHWd0BuRl9tnzbXE2jQLugv1R0JMy6lW0oEGnVB3PFWeKqDYnlX9M3Gvi/Wj4x4SUP0GaPIloPbUbeK4vT0dvF7N3t2X3m/iroKyq0CnhIRzo9HU4/XOtb0bk4ngbcoSbq3KTpvefZrVJ9gXrihPQbKlPvhToNFDuHAilI80cc9pzIpRg15XYvPR8QYEtBkGVg6yGgKrAaOyN5R790roVRUhVEEb92cG3e0qAZPLYigDXIeutGgdKapmlxpkHVzsl42hMgc5yIdLGfM4GgjipJzLQGngCZDE0CoZbtBRxV8iIya8K0PB4nrqADabXxkP9A/v0Ev1SOjsEg8oxzbir4OQAgOvNWrswQYzd+HkKWsZtSWq0c/fT/plxzWsb3neK3RB3U1A6F+WDRpgFXeJ4z+eF5zZpfE3nTdgVqsv2HtYWR5VEDxyDg1e6oYm+LaYu4fLwRQAdx7ABVQDQeWwGpfBqjAFCoanc33qMhNBxzQ1AEOUG+IlSkoAEjHpww6NtdSdZ0NITvNDWHx/rNzzTe8ZRgf5bC5yhS/7qVskfZOsufE1byDuQTYvC0ACL5UBUUCtQra24p+qThenCW2uCOd9QUC2PWxax3tbTUfhOkkpdg8zEy6BCiYseisnXVJIKaXsKuew8owANNkVMc64RryihDxudth92S6TMcAe0qzc405662PyCWBM5Yyfr/h9R8VbL9ZsX+3Wonc2wC3TN/nsH3ltodzLdf7iMDxz9mgZVQvG6IOAgZAIL5HpzKLkU40UYYHgGznex8VaRgRb80i7PGsPvaX3keeMr1EGtXMlfb3UxE7I8rIN9bjGIb7cZjT5PnqwjkTrBAPMlUZbchMB36ecybrRwBj3OmAk4IPJMffx/04hlPM6DX7Od8nv2Nrw/EGzEa733G+9DhsPi0JaCaowCg5nxX7liC51Pb4IoPhwc9zn84pJQfHQoGWIqt0zHlOhAP3BMRa5n1G9t32kvs+zpiuYBl3a1NiApCh4O8RbAO+u1d+0AOIVJzWIphlfYDRPiQQQvv0fjybbd/jGZPAhgnYcAeS43yqDCLUSeC7Spp7fJdnqSZHqlQBpOh6Apc47iX1V/5dlGlkP/UxzxfP/adGR452c6z5Tuk9AjytBariugszGGkBxQJV16zI4pJnJ56lelVt7XqwbiqLSN8p7bPni5Ug4h0ymJB+lp8+OdVngAKYQIUQEc19sM7n8oOTzr13Yvic9pRzG07XSHUx0fIA1ttjHyDN9Yc+IvMxQIsnYAPfg/vAL1y/F4CCFiuVJrfm6HOJaBrLAWbnm0Ybc7/bVsIoDaMJjBi6gU3j1r1AORTVF1a9+wSpZQjOJYd7gBD/L3NvsiU5sisJCqCkmbtHZN7hDae6elj0//9Mf0HXonrRXW/IvBnhbmakKnoBCBSkW+S9tUueE5kR7mYkdQYEAgFm/mq89/7zetiTLQw63cNwKOwKmDvJnusaTAhOxN2Nr+W7i39tP1+w/g1Ohz4cMm44oHe0OwoirlOQBYgFCGTU/BK1qHsWIpn59Yv4vjZcRRoSZf0EEQGZztfy3jP6TpV+U8nSl8b80EpJTcMj3qO7oa5BQyWLgVcKGyqc9iyXdOqqUjqCqeIq124YLx8haBn9YuI2KkXdvGyWG16VkSEfG3RtSaXHeklHfI2UCw3WQv/pmsboCHq0izmGA865E84lq03QmO0vITB4d4Brf3HhR9ld82GsPq91B66/DReB5PxcjotehmH9bXMqcDhYPUoU+roxd7BNZ1qQ+thtbw4AtAAi1u/eN5724gKVh8No0SjDqlGe0iNj7T7QPgb2F0+HWW7DwYug9ettSyPTzBH+5b3PfjFk1ZblVlJP6PTvw/U01hXUILXVIypLpA2ASs9lboxFD9FOH0Sf27INtD0OKpmspDxrmZdu8GoQwbwA4MJzw3PF0S1pxbIP4O3ic4JOU41mxPPT+aQwpUVKwdKyzFqunStL2fk9c+0WmqE8tgka2AlAy7m4pLOTRqVZirDlPkRgYxjw/WMadecrHHK5Pw7ts3WBbA6UGNOKImVljkGshaCRMx3CVCEXLy2pj33qUXC/pZN924GXBfa6YH9pGFcJsG8yxz7pBjRNIMH3GncuaBTaoikE6OPvgGQb8LG6ttQ4YKScexFZBO27g7/aNMGi8XYJZhqdDICMGCvpUDBLwES4lwYrQs3ms4L1069+drDKSgIcw7yKATCZA3RMGxLg8L4JdgGp9zEP+pcVW8x16r0oUx1U0UtlFwdN4QLITJGIudBuXs4550say0iWjKv2I9+TgGx/83O1si5A4L+XM2kY9L5l+gHTNdpt0lId/J+Af66L0zox0te33efiXgy97v2eqULB0hCWDA7Hw2hsA5mLSjBhpq5JAjy15HJduwfdo7K+XJA27KDYExgMUAYhihbEdPRLNDgcWBsjymO2o4Ff+4kG9GNLdX8r7Kh0CM9pEOy7ykrg/fJnxWm04XR6Gv1AAiI5BqkLYN6OSn+nIyMnlfOwUbDtszqBGbCVNC72C+fBEgGBx1ZYOcWprQyIapsBwYgrcy32dXfISxSzfE/YnoEZCR6lv/hsphN9cpwFkBIJ59lTn3MGf8TTtY4VBT7v8wcGWz+BHqJzP1Gdnw1Hyzqe9xmvKKk8HxZ7stXn0JFc5pifgZOgtqdTlKKe4WwRvK7zCgBLGZKFMTUDZj8RNMyxslmpxffjPsdZCtNpBJPOAjwwOe45ecZLWQNljtRoOIEl7g2fnFQ5tul8DRc4FAk2FE6lOHukIRgNFt5X55jXOZAsEZnvaaUCRfS18NkVWKh9DCA1EcZsm+x7shuzfQBSO+XcdgAJHJCFlW0fuW94xD/mUrQ7tQ3q59lezpnzvA09i3xKgG2f9i6c9t+6z+feVe5NZukzcOQ85uVdpAomsk8IxPH7z0Cnev0OmPCPAAm8/hCAAtRVodvWWTQwHUxGHKoCPlYFVp2iQYopSMdDpJtTERc3cGTAO57U1XBClohsA0gdAQr08XJKs2VOuvbpiO+vEXl6uOElcLDAqzPIYXKTAaGdxpMDIRRhc4VpQ39d0V+9dnTjYgjDS3Qe1qw4kZRP9gcwGRfmtLXRAkp5MjFHlCaEBT1fnBniKQqWBpx0QytRhczr10D51Pv5k1MT4wgKf9Hgiw1pXBqoYp6U0BHjsACmy2GfS6GnGMexKvoaqQH7LKU2FvXuSMMaGaGQLYw+LuLI95LVDdOsQtANyz4OEbURUT105nkDsnk1kEyX6YbRdLI/OF5AjIVlH7LcpZrnQrloorevfYxZH56Hd+3XbpB7h+1uBPWrpp4EgGQmyGM4q2BhygzQry6q2O4+fwmE6T4g1JwoF3O1xyLoV5/bbTO0u7lavCyeZ8pz8OLRfhcTBcR44Mb6k6l9kdFjQ1ZcyKuPQ9oEP1+BvizbWBzjVMgXrgNfJ2NVtEqDCyfT1NNI3Dlno2ngA52R8nt3Yww+L+S2Zx12WVvYQUdDifcAkJFspkpk/5bKLMx79vrnPFAxAUSmSYVzcDhISWFbl+xXtGAJUaw12B+fImO8xgBu93monvcNUvhCXyH1FxiR6ebq8ZjOxiG3mBEOGr/dPG2IBu/eXc1Z4oAdcJZHhzt8zMe/CrY3DTBs9ruEcGumB53bJ1Lo2ZIsgxRQjfNEbw6KpGhkaOaQjQM4O6cJsPzCeeuOHfYOvKyf+zee7UyA0F/pA/h2DyM2+hEtHWIH2RUUBiVI0S9ehUShkEdU1eFjMt1Ccu9g6cgUhqVwZzDMrDlYsb/53JRhWG7qWr4BgI5Lm+ltm9P9TVumEBEobIj7cw3VrJ00UEesvxYgW0tm4gTbR6bf1VQTRpfl3oEVcz0RQBhIxuNBKZ6OSr00jOPN5hysFFg6YQGCuwI69zY6Acd+hwWrg8yocobxPT+JcNGQVc6To/OJ3VOBmG7FahNCYIj5+jRae9kX9Hgv6aGpQrvhDGzEPJ2idvFu1C7Id5WjYT4G0OVwrlbH1h/BfrYEE9C7R5xbw6fIZXUKcg8pTsiYRvPBaRluJ8q++wRcJ4sBEuKhSyvAgeT8SAe8tpUOc9GNYLv4eTlFCtOWPdCQP+9HOSfJJjmBSYe0hvpv7tEi05muP88XKX3OUof83JPzKkFqph+wz7XMp/qdAORqVYIcN7JG6rPOUe/qwAI4RNPV0/OM4oqt6Ge0FimFMlN7CuCeDu456AZEdN8APblCZAvx79Up7uXsqHuLiDON2M91TTA971BLPcaiyWlscPysmbN59DjvZ9eL6yZUgO48Pr07cLgs4QhHhYtw+A/lC3XaF1bvx71XTnPFKDpYQAKKpdKpLikhGFbAw/nMg54By1zWfP6zE5zPguNpo7DogM9AQP1O34+A5TmtKBgmDsDgAEwc7n125HNdl730BLw8fT8CoRU4rde5qkXdF+p17qs6V+rardfvgAn/s9cfAlCQfWD59WMaFUTxRaBVeAbuiNjukUHdnNq/fNsiL/NIP5N9wIZChx7pu2FYiwF41EH1/+Tiij2e0Q5HzQRobkyauNig54UOQJDOIcvcweDCiAD62wqKILqRKrP8VzhvnjO/4/ofPsjbX15TyZ7f218a2n1g+XZL+m8eiJE2QME32bqXFuwz4jJe2qTlPgYuvzr1fqxuKNtFZwQ+gAh9jNz0bFWM5mJ66JZlxMbL6hGqL9ejcQQkaEC6Kx2qShV2RXFLqrOpU9VFDT0E2yhMtv5tzzaPGI92w2SPCFJ0kmkbDspYHtKZQwzNBa/3HXh0qAjGWxGOiz2yr4rt58X77u5sDNkRAonw6HcwTUz938t7j9KL3r6Xf3fhH1s0Uw5sAWwD1u/uoLMc40K2BdNMwhmkcqtXQWkYa/OSZKf9oodwZrt3YAdUpsYARNAvASws4qlDCSbsuZ4s1kwa+N3zdHV3IMHTZhTX/9zn8wN4GBcX5WO+uzM4gPbh0RbmyVsYA1nXeI9DKA4iWxu2ryt0NyzvOx5/uWB/UbSH6zXoPcrV8T1pixgP7BBkjRRRmOuM6D6Ae3e2gvj3mSZlq5evZOWQ9ZvTiHN+rgqsLhDZvgPy7ikWh9rDJ5VrCzBA4HuLCVwIkIBijWCMEe8bzAIxj3CbzVxUOsYUbgI8khUUfvl4fDrIkhEWfZyOCbe9Td3IermmE2P7PqNnImHgRO74skSZsXgOS1sGoGCv12QzZEQzROrSaYvIh0TqCd/fmmSZUBuuj9D/+gXjpWH72tBuhsuvj1nytzqhFEFlikCkZBycHHFnSPuA3pszCi7NFzwdt2XB9pNTzPeXuXeQDff+LwrdG/a3huW94/Kf9xAl3X0u91neUbYBVtdxwcQ5H21dHDwJkKcyJthfGhFyvXuZQY19dTDdoMde0c1BjW5YxsC4rhhva6aQ9bcVFClORyfEe2U3rN8Hbn/x/m8fDY3UcJGDuK1rFVB8LBzua8P+1UU225c1P9u+b5M5to8QE6YBBJi6OKQtkpVAJESKhU6zBZPDbKZ9hINf05jkVuj1IrCXFVkSMsC1BIkXzX0VTWEv1wkw9KDqF+BMugFkAmz7pDBv7MdKk+5ZhhLLjDpK7/n9dBoDlOtfLlmuFvuAvt8mMMB3TyfT56h8POac5rvv/UiHrhT+dXHNKgCMxmOMyT5gm8LIlb0do/QH8CAcT9VkS7GaxkEroLteUmqxiOTefIB4qoK/BQ37evWfnyP4AOR68b/se5yrS/5eLuuRds7/14hin/NEuiQrwN5ect/yuW9zTo3Yw9XvYS+XKHnZ3arWsh/HuGR51VGAlrNDUp18jiXHbY3xooYF+7/chw5zltAMp/cQaSeock6DMEtavgUwJdQ14zsuOlNTcrh6/H6dP6ODSUeIJfJqBJfjfKC4F0ceY36mdy8ZyhTEA0CxHPusgjz132w/mQ5mwf7QIxOD+gPsj0hhxbYB5vMl2S5MBaSTt+9zLYwStee9SsRf9u6vXh1RVkGp7BsRHwcyAZLBUUC2pkBb/ZyuoAyj1edUnWcXK2U8CqMwQIe8mDLA8cg0pPLOVbtOBYLQc7PfKVPKa4zYB0Y68UJdi7rmOXdZVtFiXVathx9pxQwHpawAZtDYZwh47LunXYlCxI4Vrc4MIaa3lPl5YIoQoDiv2bPuAgM3B1At9gyuD6AAprHmK4B5Bg2eAQjlEu7BAJ6mZ5R34Lv/XqWHPwSgkHmGb20ayIffY6L7AxCxyN10J1vve6Y0AHBjeCAGcZbnmihgfK6ijua51LVsoEdyQhRQXdkeJsEMIuBB1kF8hvuFMu/aMhr76YpTlEr+UgZNHwjVeE1jWWW+F2S2r17M75/CYQDzV1MhP+ipCEFH3QyuuzDfK/uiAKVynkcDGd3KSwUjgBQAE60nUETgjhsyhRUtnpvpE3CnV8W1Li6aEcEDmlr7kmPKRRXt+NGVFRTEI366AbDIxwOAsRxybrN9DZBFILtkBG6EGnqyWxi5KZFuzrH2iFSHt6IjwNvv0REwaNC4UxhSSvQl2mjxHIJBaejzsTxQDM6e2eFRXwDtIQAUnQUELMa0j+ncRl9MdXPvf4IJ7X33FItVJ3CzeOqQRdoMwYTUtqhtLpsjgTUJejWdcQrXeeoS89vja96E7IuprO7t9dBq7O/RHn3we5LjgtBwmP0wwMFLnc/YR7J/w1+tteZTRKcYMilOOOAdrA1WI7dKBtQ4Tgdu5Gejs/zeGBUpYyTWjhGuepk52V+CvaGWedpTbC4cgdBFgByd/rxGURcu45jK/YxeNBfxzHk7MPfnmq+LOd+tAByHqIs44ElgSrfh4BSW2NdO7S17igQDQej4keEyzNkmm0H2BbJ4xZ58fHNGTr8EM4dDsQfT50Xc7vwpxvE3nedVN4iUeTNGOOD4rO/SxPPp0WNfmmtFYp/KMQxtEOkR/a5yEsNm6koYsvlvVn0I47++A/fBWTa15Z6W7A3DZMhxn2vIz+R9chwU1LLRm6N81tSBxHY2qCL9TiVFcTOVw2zOT86b/E7M+wBTUD9zjizxeSI+9+noYaYzMNUgS3jWKyJ00jHnLm2KjDgVSjA1ASwigTQKmZYwSnlGnSwiU3FdieoEF0fJ+5/7kKVGCCPV+e5yWkeo74l5n9MaS1Ak/p3CpU+ubAOfwT8c19Nl9fd5kxKNrveO8y3zs1P7YBy/S8e7MljYlnQ8bQI6z35eBAVh5iDUKHso+6juyfa8jfnsp/8+9VH93e85fHp6Z/bvs2jpk30//6rlHih7AP+QBSCndtV21giozbPy/Mynudd1fKJPn3398/uPw3NT/6C0L3Uyar+cAYXzVc7UdJYoZEdHkW2popIBkhEIYYWJp+vufI4Dvi90SZvdAa3YU87MwWdjzUcMy4CPnxOFDZDv4L7C71Lfyeip65Dje74nx2PonDO0uz85ppLaKCnOmWMy5nN437pnjwCVzqkTkOP8fLJ/HAI79Z3OEXmCCbyPPvHXzoKMNdXDgkVJZtVn2YO/e/0jaQWfyjb+iIFBlv758z96Jvv6rNfw7Oz8O+/6xwAUeod8/wB+fgWrOgBIOjsWPR7ENqMUZ4MsJwJps+qOXlUv9aj17tGu18Uj/5FWgd01Cj7VuwZS10GKH798d0Rs5vD3cH69kgNFqUyQ+a+kzrKUkjVB/3oF2QyT9u9sBj3lRbVbdyXvtWFcF/SXBe1jh25ero+Rd1OBva1grquF8066rKcEBGU0ulHvzrjoLxFxIrU6KYGef7587CdjVKZTd3B6dPYdMBXLOcZMPYixGavi/tcwdrtlGFgqAAAgAElEQVR5Sc5XQb+6kfr2PzqWB7D9vEA6QoBMPDWA9H6DR3buUeKNNG+DL/Z9QEOBefzlbT57UYisM9LVpzo9AIzLgvZueNktwY40+oe5DxHR6yxj+XBhxBFRN4/KeVv2V3eKlpsbqKQKA0gwYX9pU8dCgC5LRhUrPXt/a/j4q3/Wqz0gjQ6P6s9IpAbjQXcq/3tUiqXWbNGZ/v/95iUF1waYoL1HvnKkM7jOxgD2kewAvXcHE8L51Ci1hxTmFEj3mmX7a0uGjz6cKu4GdaS5DEBu7gSt3yZavv5tw/pd0N4jet0UiH7W3dM3+ktRhe8G2Rv0tkN//TYN+Jf1UC1FIsqq324ejbyt6H96cfZHCDa29weydN/aYF8uvm9dL553ey9VTtZlCoHFPLfXyyxzSaBpUYwvwVQIGrf0wrrid1uIkZYDbry++P7SByjChT2iliKwt5c5Fu8lksn36ga5Gezq+dT2FhohFN5qGrmt4yT6pe54UHQrUwjgQOz7MSJhQQfV22MaSAE+9J+vsV5Ke/eIrIWD4wJEHo2X3XD5Zff9ZLiooIo4U0h9/xsBCkjzaJF+eIQ8S9oV8buDOOagwCEwrgv2Lyve/7klSDAWHPY4fbg9ffsnAdBw+aVBr76HObNEfI6KwnQ6asyhJx2e5TUBBFgwEtwalwX2Es7uQDByJjtted/8TNwHxpuLXtp19SqAi5e2bH+7ezsJNqczhXRk+1VD3NX1aHRHALkK3dXZS/c9+82uHrneXz1yJSEE62vO191y6w4Q8AxnutOrRz9Z9tFUnEk1CiswNFCYWmBNPBoM4JBCEHuQnEAqj/YFK4WO8bZDRuxPrayF4mQB4Wi3AGxerzEn+9HBj9ztKnSX6Q3CSCUFh3Vqn0R+PteE7B3jsvp+wtchC4LR00wFqosq5ivLygXdO/ccggy8aEz34ft6rC3XeYj0KY33ClFXggmZL27+e3u7+rhYiWjWd+Uai2el07Qsbm7UyOawGSGsNOfl5DgAwLLMiC3bCTjjghFIjuc52neI3sae9dgczI0xlW/vHvkkIExtjR+lLIyRpT4PuekEL1JkNGyhplleNcUiuR4vmuOcAEJtfgWx+B7UDwAgl0tGWZPxUGyyrHyVTJFxiOpapEz4fXQ6zXsHYpzl9dXF56i/wz69T7FIVkxI56POwdw72+HzzFe3On5VOwGABEtjVvaItDDOL8DHoI8jW+N8Uf+BIOjecaDs0zEmuBR/N/6+CooC87s45coPZ8Vh70fWR+wB0A55zLMoGXt05iroen7mmP+2IVnJSioYaAQsNYICj5kew64gA+CxIYUu6zgNm0N1Bkr6jgOjCMixsmRyRJT/R8DbmP2bIA6QzmxG4CuTgH3OuWuz31LQlfvGE2FDAKViyQQrUo/ALNJrPjvk+fx1gW3BlOHnu7+31HFjX/0IAEAAHvue+/cPgdhhbgMw/ae0o5aRTJCOexb3BF7JDDwH7+34+wTVTmDKD64/BqBgyMnkdZ/D+ODmZ+7Af4qQ83qGwsfPU0ClMSIXxg5L2sV3/OCmcWluW6gbUtWppgPpNdOB9TdMJ4B6D0PSaHORnnidyH81kD4awESLiNswaGyG/G5ubKeDxYXp2jRsmUJQjKPMlwU88lWNLHYZN1Xxv3ukkuUPMRkXNfIXzi5VgseFzp+5AVByvhFh3FpiEUCK8eX4h2Pl/R59vwi2V8H2VbLutqulDyw3TMO440DZrnPCSz5aCldl9I6Ro30Aq5cky1xmGj4Gj3jRu46+00fPKDzvJyawYUV9PH63S4IPh7KdKmA5Sggiv9ijoBBPR5HOcTzyLLKkI5kcpa0pWjb876MVQxeRGvIYU9gMQNt4wwCxaKCtzQ+nT30yZulEg1PfSl9z7Gfq0HQYMMwjxS0YC6SBEvAhWk+nuZSw8sovTI0BwGoMNEQx5xRLm87yrg58SBqGMQcWp9E7TXE+354Zc/B5UBlUphSo4w8KfRTlZ8y5LZeLmoofJH32fVaQGZgbPI0jc5ZLlsIEEijM6hNPLp/zmBE+CqypTv2HnWiWzu/wakE9JHiQ/XNUEPd3lWmAcO/iH2AeitF/qJo1bLvMexyaZM4G42fpNDngNllAh4gVRWIRY0eF9QRG4p35/Ei9QYDbqRnC/qejkXtCNGvhvlbmZTd30Jjywzz/QYCzH4Hw0s6DoryePlMjRTwrx0hBJ2e8DQhk9h/byb1aSz9zD+H+JdEOi72jebpXAzD6MsHjiwZoGwY6xSox93GPlkeJxGrkyGQtJdOIqV1kJUnQrYPpYSjnS6wRVjupZVLTGSwO+2Ey9RE52YBwAJ9FEUUiFcRNJa334bgM3+PTWQvmIEtZ5njyO9wjfnBxLh8im7mHaFln5X2r4QpMB7Ve3OPqwnpm6JpN0KT+jH+Y/9ztyLKoYMyYQqJ8P+6pIjWSWpyRYTiACQA+R8mfrIVT2w+0XzoqpxzpjCoywso9ib87zYWck3xe7h1P3uVZvz/7/YgzQY9RYTEp4OyMhJ5z+dPxeLYv1PY/c6hLvx2o1Olol/uqIsOuZ1Dl9+5/eNScB9nH5fnPFPPpWB6i7vxZZQoMO5zd2d8pJxLPksk4op2SUdyzmGGZ04foNfD5s6fvpSYCgT1G55+xPjinamWRuqZ/by79Ixft/+pQlvPX7ym+DhCgCt/z7FwCn/ebw7N+0D8qgHkq+e9FzD+/eomwlz3qqPlw1BY4vEuCRU+eSY2Gk311AL7O1zOGzln3I5kVT555ZjnU6xnL6Nm/gbl3Pb2PHf9eQaEfPfcHqSHnCij/yPXHABQANxTfH4HuCJLeGAd41nGnER0HfW5qZjMvd2cuJCPd3aM1i6ZaNfP+9dGg9x36/ggnsYEibYyemnjkTD82jFe/z/u/eHm/yy9O9U5mwT4gKm6j0WiM9sm2ZxuoQG+rYqhErrth7A169whUqjlrOGRxQI9VgQYvm2beTyOEKulganeRrbH4QtY+gNBVWG690FO9hJ8FY6K/OI03nbi7Hxjb2+Jik5vnvcs+sP/lxd+7uyO9fPOIR7+2NJjbu9c23yJdYf0thL0oXoMQuYuSZbI2mFzRL8D2Jnj8LHj8yaDd00neVbDcGr7+Px3LY6C9bxivC/pVM72EDhZVsBnRTyVzjsUY0PcN46vg9tcrlveB19/uWfe83fZUn6fxKN2rH9jq2gC52Fo4rfeiiWEGdHMthsvUBxkro3ED+4tifxHo7k7V4ycBBPj634N2rBQx9ENTMB2N/hLlTW/dWQgfo1S58Nfqr+449VeP3veLYP0uWDmvRLB86wlE6NYhtx32umL/srqv83JxvQCVKKlnaN8fk+pPHY+tT+V8wFNpAPSXJfUvNMoZ7m8tQSvd4CX2zGbKwgDGVX1+r80ZFd/vnuP+ZQX1EXpUtiDoqBSffGlo24DcXWgU3aDfPBfZKdU9tQZkUfS3S4J3sih0XGHNq34YS6WGKNy4+l40muc5t1D0r1HQPMQDIEywNCKVY22zskXoVSzv99wrzs6NvPc0lgQtoohFSNDg/c/IoNnMHd6m8SWhI2O6esR3dZVgeQzg4+6HeOTYpuAio5yvL5kTzfxrRoQzJxgAXi4ZTQbo7IuLuTGCHHsPK0Esv86KErYusJfF+6gxaj3btfx6j7KRS95HAjTkvtbuI9aai7W279G3lxX9i4+1fmyg3oADE54DLo/NmQOLj9NYFfsXwAV5Be3DoBscZFA6zjFOw/cAOgH6fgdUsP3rV/RIX+M+ijugZlkJxnVORqbgyG2DvV3R35YnDrfFXoCc/3mUkv66+Zpqd8RcXmMOjzQ0uIfxnstHR7+6dsgg9V9ZEnYJmYDLnJcjGHvN+36/Su4lI8QgR/dzSbaRZ1rO80i/8ehcgH4sGasK8P169z4OvRgAaN/v/tnbY96PEb51gS0N46cXv+/7vQALAS4hDKb7EYTwhkXbQ/ugf1l9f789EnRKqjJz0h+b783vt3ScM7qPmCdXZ/QkuMhoqkqyglqwkg7CqWTQEBDb9jjrTg4lkMJ01EMgmGKX1dfW1Zla8nH3dbth7hmxNmXv3oerl+VLKraZ55Lv+xGYT2euGNoBvsnSpuPcpjK+AFEJgM4inl+kTMe4pCMa+dvy+uq/ezww8/bjvGV72skR6t0jfFVkuoo6VruSrJTeQ5BSc75wrwSdnGqAkx0QgoEzFTPOhaG+rzYFRSwRtqdUAKb2u0jmqNveIdRr4FWZCWPMM+6QU8A93dlzUrRx5OU6o+LRLgyDXNYo51i0dH4kEolw7liiUWUy25L5UqqXdTqx0V5+ljnlY3hUHzjqUpyeiZdr9JlvyBLME/Tu+hOX9RPD46mDO/pxrK7XCUTsuwcy6rsDhz4zinMyurvv/hw6uXTinkWhN7IYLvP5ZV2CoA9FD6sQY83NZ7+scebuO4DS1jMwoO54J7O1l8h/vbao/LU8cR3ZB0yJq/tSCwM55k72e01Hr071GMC6+NlSx5iAuZ3aewbVqiNdne9cb+U+dd5WDQacQA22ifPdxhFkpN4DMFNhmCbKKP8zUKGCJud5wfZmqtcRBJy3sB+DBj+4Ekj89D50HuDrt6TJeFWmHwNqfwxAQcWpX2sRd+pBQ+GGGtchqvQj5KRQnWjAuzOOKLMlMJYsXAR4FPS0gsl2/L/f251EDfSzv3gevN7gh3/5qBscNh0sicP3sUOxYAQKaCrY3yIqGGiabsyFDAdNkA4po/u1ykOqdgfAgAEHHaLEl6lHl7A7ZfjAEIAbeRqaM6kcXfefJhiKAALiZ7HhjavAIv3AUzvivSLCl7nziiy99+yi476+D4ylYfsq6K9AfwEGo+67ONNLUJwk89KK3ZIGXI3vVP7eJmWTmxjFvtrdjXyLnNx0WNaWUUlbHCnXMUt2TacOM8IOJJggZcNhmguZKWNx47s9kHNZRvx+EQyEMJdgVkMIw1z2ke/rJVQB7QhtA24+QI8yjSPnjkxabgWjDB5BXZsHMBcHipKmSYp+UFMHlgmqxNWYhqRhhFAE9KJJ72YEVHfzgAvnRxNYl0REhU4On60GDH8/U4lKHsUxbQI08ZJ25o6dbA7s2CaHsZn00nUKXEW/SPf1yBQkVnfJeWQ02AU6xlSVBg4HFZ/Dg8CulzT0PEe9Z1DcFvUKB52HIG8gBwN4HrptOjMEFABQ4IwCcge6JPszD/KI0Ko7myANE5gHfNBuM4+4/Mk1oTrps3zWtkN6MbBe/N5ZuYLOG9XyuV7Yh7G369ZhNLSLwZBpIOuRyZYlRanAH3vauDTYn14dLOsTtLJI+cLmCthFUyxFCzmOy3dgXIB+5X6LfCY3/XkmLGik6V9JZYWzl2JtzGoIAdIBKaKY5eH6ALYF+ojyswBqdQV/aJknYQweKgyV8zIdeZHJyFuD/jpGiHI7eIsNrhEBRLlcpMhlsrCATGUYq6cWplaGzX7Ji3oMkTqk91hTIYbo/enzQmJPzCBBtE82F8z1eVrmDTDZJxlRlKnvw/2aBhEdFc7HYmDX6h+cm/roBwYVy7CeQYj8bl1vBcA5CK+GEVqd73k+Ya6V8YM9Rcvn4x6zNKAl4HAoyTyGAwjVEC7nIdubpeRYAaGABxlNJovhUEpOD/MuNS82F6uTnfNR5zNyn/ocAZyU+TCkaftXZzbGXMZIthxzxtEkBfeOlSU4b8bxucOyGtVhDK30AffWAjwc0j+XuaZyHo3oJ74/9zTSvPlvBszIHvJBm22tF4HepkD1g4a5U8yxOc3RyS6NcVjL3s85VT5Pppb37zPamP/7kGJwdm7oLFH0kWCNyNFpNZvATn0O5+tBgO4EBJIRwDnN4CDvU1Oh2M8EILO9WiYZjnNDotJESVsDtXbOgORwXR5qp6QWwYjz7RwZPr0X75HjePpcvHy+14FFUMoIHrZglaDky/Fds3mn+5y/C8z5m2KT4xgJF52ijFJ/7vb/D/P6Ofcr5f8APJfPAcXmOqZH5M/rPsD7plbAQE2RONz35NzbM/ZB1XSwozbOj9grErbSwRk/O+Y/YJ9YXZv/M7+v8/p3mAoHnZNkqwAHtsr5WT+4/iCAQoN9eYVd10lpLsJwZuZ5/sATumOfqscDvqnsnkRugNPZX5Z0QLOk3nDDsq/qEUkOeKXCGmY+fRgTMlwQcn0f6FfB9tXF8C4BBBxKBokbOePKSS/Qm0eeIOIMhW5AA+4Rmda9hZG5TC2FABbokI7mtPV22zGuLUqHATpGGllOOfQa7bAQi1SBNPN0DQ3j1LwvdPPIs6mLmwHhlIXzZQvQowxiOqXxuf3FnTjdXDW/3Xb0l8UrXiwCWLz3Khh/XqEPj4TxotigBYvh8suG/UVx/4uhvxr6FxevQRe0hwMK6TyEKv/6W8/+6VdHgpdvs460jOF5q2fRmzEyP5/K/tY0KhR4ZLBFJRCmpVg42zCLEnLqkffhaSzCSHccYgRm+jUqcARI0C8C7V4phPRg3QBTj36qOtjAvmO6Tbs7oNCCKbF9neUB272jfWxgFQ3A7zcWmZHUcIKqAJ5F+8Rct4HlHqGC0Vx00UTQeEBfvKrE9rXF+xjaxzbrtIuhba6r0F8U7WOg3afV094Nuiq25mtzhAaJBVgiw0u+WlP0lyUAtAG7KPpF0b5v0Bsj6B5BHE3RXxv04Swc/dhdK6M4GDTi7LK6kw94HwiihJ/3x+PPFywfHevfHhAdQKj+A5hlPGkUpTYK6dnz97LtsMvqkVIe8luHxvw39XmmOqbzU+0MrsWPkQ6DmblzJphClAJ3DrtBP+4zL5oAAIEPos3FGLNrVIRgVP3bzQ3RiJZ4lOaSFRpy3Ug4pBtgt7sbQ8sCsfje3gFGibv5vpdGt2a++AG4TAcXkL5Du/n+nYe5O9wCQIsORYIrFAcUd3b10bH9fMHjJy8t2e7OmEKsdYivf1ub90Osse3nC0zh2iPd8PofAx9/VTz+BGyLwRqwvPu+agsgO3D9xR3u/UtLlhIrnDAVjmlzWd1mbWjfH75uCCRsO6gILiKzgumiWR5QGZXXKeRHcEU/ttQ3QDzrUBqSjrbILHMLzHsD/v+Luk5N7AVtcyCD7DkAockAWDD3xrUlwJpCugF2E8juLw3tMXB5uDOlLL2oQH9dYRBoOIF6j4oOqv6s0HeoIsYzPSk0UdbmpVwDvE8QQBW4BHNj787AqXnJ++7zV9ZIUyvg1vs2UxaWNm2Esl7Tcb14NScLtXQXTFSImoMnxXn0NRDGdlY9mY54nlc1j7iUFUz2gdhc4wWIELMJZg7Ldn/SAyDDKCLI9nj4nGBkzcwjrfF84z4XBrQAmQ5FsD2d6s3ZEJkqRe2V3ddx1SvI9cyfnYAPKZ8hkyCZGN0ZWnYvTVsWj2rf7tNBo3MnBdBUmSCFktla+p5ACiPry/UoHl5Bh8WDYwl8BpggoduUANDSDhVnbGkOQPLdCT6RQXIGBuIeRtCnRngZFe/U3DhWQpCBmVp6Xed8oLgewZDLEVjNn9eLwMUjqlfRoc+JgZyP+YwoDWg4zUOjEy1HZ46VIB6P+GgATJwTCWKMI2vAJkNAak48K2bE/bKag8oR0AeQeeQs/1mcKgcrChiXvxge4eU6YKQXwUaqc7s6ktQBiT41sn+iDz71eTjwrOph56oMOQ4noOTwrjZBAQKCLENJZ/IElhBZmFFuf4ZrJrTogjHXXKbS9MlKYNsrGFBAhafO6wm4Sb0EvhdFNLU4/aWPU6ugXqd19QnEOn//GauCKXqYc/PpFUDqJ9aDnvr59JkzwFrTlD5Vfyi/r894CjzEuB9AhRafHTpBhVH3uuegCfCHARQkKdOuLM4c/lk1wemABox9lreKOvBMXzDm98YhM96uiTanMjUHJhzpFgJqGdWOZxnBBAQoYOGwwzf69VvHcpvAw/Z1cfGpoC8yTx7ANOjKRmfhLHmEG1jfzY1g1n9d1Wmvw53hnAJNoFpQ5hC9QoADnssqQcuC084HZvQ9wIR6ZbWDVcCSgEeqhUHvvk8QZDAFGp0iCYp0GMvePjfMB9XVm/dru1tUnDgulrGol0QDgD48/eD/a+gvLl7olFqPFC4f/F44ottA6w4sjYuihcAeYowRm0Aa6gUFldvDjfD7BWR7GEtoXtwY37566kuWSrztDl6sITK4elthgrGuaLeBS6TQYG3Yv67YX1uADiMPrfaw7E/p3s+XAErW785A0H1gmBs+OhycsEXQmx+IYxFsbwrdgXZzh6G/LJnCAkNUjkCmGJjCo4l1YxFE2kjMwQbImOkZ4+JGYrvPDdcdNkunY6zNgTneNtqm91m9Idk28f12Ox5yYp4iYi3Sk2K9JRPnMbBSPLI1T7cIRpM+uleavIfTo8C4rpMy2i3KK808TIocyvD9hWlFl1+3rDbhEXqbLItHMDECZ4BqOimk21H4j2kFyeSwcNhkQH+7+dx/ucz1MIYb9NeL711cK4sflLZKyaP2jvSUC0snyr68Hg+7MFadBlzQ5mDXSGXS8B0A2E9fDuwDiShjfp807d5nZGUMYL24E61zj8MCDH1xscnb3dfnPjy9DfD+4mG9SKbRmC+rOk2nc7H1mXaTH3DnbPuyQLeB5buPvXbEem54+bdtUuqjH1hthroB+hgJurbHwOXXjnY3vPwS5VAXYH9BaJ/4/L/8ZljfnS0lFuBIWWMm7lTLcOCPZX3lviWF/RxJS4csgJb+uvq8DrFdfczyc9bkSG0eANQ8JzvAH5+nI6NFBzAnDV0LcHIctXMGAO4PFUwzAzb181HivGQqnPi+MzCZDkrwtgXTo5uf5SYhKhxAVYC957EFilFfjbHh+76It88Q+iCwI5uAa+NHBusYwJAIThQjrHxfhq/JrEYSwQyY+fxGnIdNPT2IkV86hqp+TmZaiUD2fWo7BRBx+E4A4UKHlO/L9wPCqZ9Oa5aUBYC+p1NoazjanHe8F6n9OeZlX+C+vxTn1HQ6TYDfL0rbokUZOkb1x/C5l6JvT5wVluCjsBttrkqxruPI8RKZ66Y6RvWPhl10qm8vFJal0V3bz/uruvNS9Bgo+AngCC6AZxbfM4Chfa5V6rjwu3a9wK4tUu/cHmvvXg4dW6SXkAHH0oSt6IOoANCZi7+0CTDV9gMJosmzSHVhMXE8aqULWZaD/VTHbKZztGTUZXlFOoosOWk2HdxwuNMBTbZbzN0iqJ7Dck5PAY79W8ZdgoGR97ejEPhhrM9jb90FD80AlBTX+L4L4umxdF/9PjDBkOJuWaZ5KIA+34frPMAE7LszIoIh4l8eJ9BguBYM/31iKxzeeZgb/OdguAog00bx9j2JmJ+d0WyqeXDXRvZ3gglZ9SrWTTjeuY7oJH9+2rxiDpFF8VTgkaApcBiPsxN+/I4e97jyrKeAz+9dFPDkPYC0NQ8pGuWdPl3PgAaCmbUdBQjIcWin358u7/ff7eXjZxXIPLQzi+cH1x8CUHCaaosc4DDShLWiSTV2Q8sd9gW2FFT1sXkU4OvbdOSXdqzjbZiIP/x+0gEdezhpGuwEvtQ0Wlj2zMIYhBnWb3tWaxirYn+NKP2NiwegIndGhEPgz1TTcbVwQNaPEYKQ8figfKXSdzgi1osjKDPylH15bU5/D5BAuoMJ+hjY31rQ7MPZ5uYVvkk6ZnSsMI153YZvrGPSfZ123yMVoETflsliYMoF+5SVBM7jn20yN2aXW8frvzfsV8H+Kp72sAqWd6DdLfuoXxTNANx7AgHtY0/hxDn+YSzt+1SfpbEOQB+hmk6hS/XnjcXzgrUb2i0c5NsO+3LxnOjFnfQRi32EMOYlnUnF/tKwvyqu/7lD+3BWDJAUac4N3WeayYFdIWTGeN+MKMfoTryiX3xM28MNeteACBbKANABhTnF3iTH+ry1cKx0WNiKHEPJ9Ix6sbycBr3clfXlwNKR3Zz+3cma4XcBQzgtAR6mnuPr4kDU922ylODrRMMBc4V2SQBNtg4xgXzAGQAUzlzD0BwCsYh8FAEkUXXht0zP8Drz7f1xyK03jXQN5nfT8Vsa7DKNJTrtPo8IOulkRhlCvDUcj2FQsqK4x+0d9oqoRd/TeHPnOdbtQO71VPeXxwY0xXi7Qh8eFUz/MgxYissRTCHDB92O4oAisNeL//z+mHnEzabDMwKR78W4HKy4sWRaRuo8LIo2ALnBjaMhmeY0Li3m+OY4YLAuGHnK1IYALAGEs9k+AaSmIaIoCryHITwip79F/9+7V03ABFYgSGDW9UsQwIVh3QYuv/peS42V9/+yxt7g65dggt59foxSwjQZCbEm9dHTuZfbY4JRleZe50OIRPbXWblEH8NL3keFAweOFFPU0510E0vGUtt6ROocpPU+xQS/uef0SBcaelj7ed9R9lQzB5SGQMUFdLHqdKokAOUAetu9ZyqfxD2tw8EPsqJWheyYzETFEVk6bEQynd0xPIAiPtZ4nDctyfYdnKdqbAZgYNQvMJtsn0pfV3HnmP1N5y50SkBnPvWCMAV0S0oKNZLSoef+ZHP/ycgpP6M234V7rsz7eJCkTSCFjj2/f1lhlyXW/inaZnONPwVdqBKf951ONqJKgEfz5RCXwBie9w9k4Mfvx72jOCjF+XtqwFanNUVaw7HN9yugQnFoDznW/PxatDrSRtzycaIFmGGfmKVGQbYno6WxJ+Z6mVUHfMrR9vP5Mb5eMK7N2YZhP1Ko2IFZS4ZMaidQVyAdV53pFmazakfdO0WAfZvvVx3yeq8EFMZslwqgzdMr6CRaofR7R+EguMm+j/97FYkytsAEmMIBNYp+BjPwABpk38cBWKP2deyYMiGxRvfQfmC6EHZ8EgAd4WhXtoZoOvWS0c3yHQYnUBzWcVw3zLs/fMZGMhaAsPcJErGdFVyhSFeuyzPQ5xWQDs8E5pyrzItMvSjtIBA0DD9kMgCntXj6XDImOCf6ZLzEO2ZZxuzK8g7PnFVKy0MAACAASURBVHu+m2pWjHAgSY/ACv+t4nOA8zP3To5NsVWePZd/53zt/QA+iRTmDO9f2QQMvpxB07q3ntv5RDPh0PbWJsDKeXFmDeA0//J+R7Dhhykt5/4ADkGmQ8WI37n+EICCd5pAvnk5MVk8V8v6PAwB+GRpFGQq5c/WZUYrRYDFI3Tttzv6T1fsXxas37bIwS8DG4YQKy3QsNy/LElNT9p/vSIaal2iMoClCjgNdN0iOiFwob6IDEj+MTeu9g7cgXaXdJBTqX5Rd1TTWAqjJETm2r27Q/myZL1u/8yk/QJu7LIM11gtDXDtltR2a5IijwCdyYhaD2ct6GYOmMRlF0VfXJQSQIqLuVaFYH8RLABkBzQMu3Fx563dIvJg/rOhk5pLhf6X/+he/z1KR47VnfC2GZb3iOAHo6O/LB75u7kziW6wix8q+v3hztX9AVIezXxzylJRVAm/78C4QEbD8t1h349/uWSfWRP0N0dgl28bMBaMi9P6mR4hw7D//JKG6XLr0O7pER3UtBCMi3if3kfSiscaJUaDJkxQRDfqQdjUbLgPT33ZWpbMfPxpweOroj0cgFiin3sIHK7vDi61+8D9ryv2F8H1P7sDPUbAZI6xAgemwv5lyVxqN3oQDo6gBWPItGXbuV587rUs66fBoPF0HS/7B8BFECXAhfj+uDZPnbiql4ostMv2HvRuVklhxQQLkdc+MN6usFXRv168faQvlz9TcNFF+PB2cbHWoOm7Q+pCqgO+2RJYEIopajmkJZx/9bbovbvmROwPwlSMoiCPDZBmsEGAg2WE/HB2pk+s9d3BgyxFB4SIWkP/sgJLRIzzIDVALAEOWy9+vgcYYCtmn/BAYfRZwwsuRp1HXd0YJi0zqbG3hwvTXZxpsvx6i9z5oOVfL97mEKXkPuD7Q/xcptNNOry1EEn8y5uL5H67+Uk3AqB5GK7BPOhvS+TpewS23ScV//Yvr3F/3z/q2LRbT+A6RS6izRTvbQEAtdvVwYVFQC0LpsPUkq5jVXz7r6szjz4M67cQ8nwEa+rstJ1o3h719XKq3//Lii0EIi/fDF//eziUAgT3Be23W6RahfBnCUdZE+AyI20sMzzF9GSWZn7AU/LE+25/a2h3cZaJUpl9CRBpOpi6D+C2e9+oRbqVYo99rH3foGaw5vvFuCzOtIi+E1UHNoI5c45G5bM4Hwm4SUTxukEej6MzXsbRWvMykEyBG4H6tyk2meNHR78yHEawSnaCm9Mxs3UJ4T6ZEVsg5/AIoej2mwMP+j3efVHIfZ+ABB3/ehFoqDbRynS3EfsY2VNOBbfh4B7THXK97R0IdostDWLr3GtsphbY7e7GMVMsaERHX2JpsNfrBCvi+Sy/JlFK8GAIL9cZbScwmwDMZYo9sq11/Ajs8Pm9Z7oG6fCVGZAgQjXURV30zmw6H3T8xaPONQoodAAepRQhHZPqMIjAkTKbQAXHpM+5nXoXe8f4eoW9rnj/X17dZrrOto5V0N4WXAXOuLttwRgYmdLGANdBnLMAQbYuPtZjziuL1IRklalkilXOq+slwIeeAGJebAOZCgn8/B1nRUJwMVgOB9Bo9FxDcr3MsQUcYIg1xbEwhDPKdAT+/bTWD/0h6iBjnvvd20XQgU46nS85ukdGTSGd59ZhviW9P4CX8++5foAZzGG/jwUULTzQ8kUBjWpbNnUqnInU8DTdIvrM/1L8HaY18OI7lvKTDhotsy31Eo0ze8z3LA66A0HmwpIBhhzSbsgcAsp3/LyeOfzHvpXw76agpR3vPRyckDMTgO/F9CwgQYYs6Rhj9om5UNa0FMDqE6sg5uKntIMfAQS1vyqgyt89e4dnlwoyHaFeVfvgdJnJ4f1zHmr5e/qZT0Cdf/D6YwAKcWVptb02+IQKE/i0YsTQ4AwthSHwXM/bHWKXzKsVPAEHgDQGWUmBJbBIdXpaim0Mp5ICEJ3MgrEqWug/mBoEkg5JpYrCCvMCcONSJfULvO0BClhhFQCpau6HWAuqq2QJQsT/s1ylWdR0H959rBMeZRJ1Hxiin/qG5cISnTMHIByAcXFHNKDt04hmicTMz2N5ngqG2DQ+Z+QGMwIbz/JqBRrpAJKaA4x2O0BkMfaFrXEerzwU+0R9VUBUN3vcbLIumjgwAUD/vIJlwUwcONFtRN8ZgOEOuzh4ggBJSKOHAbqNFBSUAFfYPwS6cn7kAYSZQ59R2jm+/DcdfFM3QvpL+H8DGRFz+rb3l27OLBgN6KtHHzXuIftIJyONaVQRPk9pyNQc8fnhdG7ftES9TUZF+gAfPBrn63TAD3+P3A+0jzLnOWc5LzRo5hfBuCuUZSM5rxWeL17Hn47Y3oG3KzLqaQaMJXLa5+dlDHfIbPb7oTxkRI1MQvsECkE4n48NSS9mlMMsHdIsv0cbuRdnIcBUd37g38nIH/e8MPg4U8NItVGiN0EDtLjfTAUYR0OCrBNGsnssxyZOm6RxejLqvVRnmZ8svdgEkAas5Rm3hyveh8Frj20arxJ09prSVvYBakNAxB3DfTjTFGEMCmaJ3brGzR1Q3XeYiNsunM8EqKLt+1evYLAYAHhVnlwngsN+cDj0B8IAdMps+xvQmmC8rqH10SYTJ1hOFnv6/upzp22TpZMGRra/OAScGxz/uN/+Auyvvmb3DXM9ljZUx0J6ITkafMy0GA3mZ5TVOcL5Z9HeeOFkmjSJgJN38lFIDP6zqHYkIZYKxJrqMc97fLYO4rD8/kHQ9tklMvdG6NReehgkHEnpA/bSSntm2UnXZAihy3N/16gez6rsQzuOW0SOK6hAkcBZzrecR3WczCD33R36AGYOTlDtl8JoqL/P59ao6KBR7WebtWJ31HZUpz0N4XAeW/NoctFrQHVAK7uDmhJjuOhiec5TKrg+6dPa/9VBqxF3tjeudPTpfKay/WVutmMgKyjUiwwHwAHR01o/0INrFDIcYBvmlSPq3KctR+FB3o9gT9qq5Zxozs7a3pwJ2C8AxX/3XQDTZG9JYavxj2Egq0uU9zgIL9b3O0dG9TinPuVj55wq3+OY7E/AUEzH5CmzhPdlxB4DB6FKIBzd4ghjHL+rehwvgk7x80M+eH13OmIYx7USopPppEmZ53kPHuDTwUz9htJvh/v96OJ7igJqh0B/pkJwfels20H4uLanMgqSDVz7r/yckfx8F8FZ3DbnfgUuK5vjdwgMZrT5xsG5t2DFSbDPRapIqoPG6fOdHfczk+QTO6PMudrm7JOyF7Q2x/d3tAAyLeN8qYBBjPkznUyMtR0/f9jHi6DtM/DtGTvhR5dKjkOyCvX3gYBPoMcY+ASSnD93fubfYSn8MQAFs0kjhjhSvUUEh4g0876AcEw0D217deEYF8ByQ0PvTu2Ue8flP70UYH+7oH17uPMQzp2FHgMFpMYiEQ0O8btQ1dbNBZ4o3pUU6dBeWN47+qvi9s8rLn9Tp6yH00P2AFHs8XLxTaUP3P9yxbi6GBydNhkGDfo6bFZwoIBZu7nRPK4enfDfCaQBPVIe0jHSUL5/dXEw6DRw2IYsvbcFylycehd0nO+TJSarDbk6etyvng7h+beG5WOPyLdhe1vyvhbUXX0MyKND7z3yyucEtvBT2t2j5+2hE2wReLQshCkPyrXN84yTnk+DQzyXjrl3pGfJ1y+wtxfsf7q6s33bMq+conEv/xZCQMMivaUBb8GUublY2bh7/+id80IyKsXqG+6wB/3fANxoDPi9detY3sM4DhHEfnXBR33MQ9DHzVMpIJLR/u1nX87rN8Nys2Q1eEqFzL/Hels+/LBePnZIjJOpazDw2r8sGKskCJFgzjaCOSDpbO+X2SfUKGHJUtk8ot8WwTDg8fOCfhHc/iJY3xteVbB8RPlVOi0ECGPc9R6AzusS5TktWUljnbRifXTXOVBPeWAetkZe/vbzGu3wd3NH1AG39Zeb3+/FQQdbmwuMXmO+9lnWTt5vrnewFWrsuk4K7ALgjkjN8JzW9hHfralXwRBy3QUHQeyy5B4lBo+IJphUIqcWRu0AZH9AtmAsnJyY8eXqfRRz+/I/vuev+5cr9q8L1l9vk2IOTNrg0oDlgvEmkLuzJlJ74u6U3/Hz60wH+ekNeHtJ41/umx+km2S7ABxF6LYejpkAl8WxGFYFUHUG2zDfL6Ikq13XZJWNyzKRgAC+YAYpqRPOfDJcftnnPIlqIXwXMt36q4vTZsUUCPrPF+x/ujoLYTgDTjbXj5AWEcitQ+9+TozVKefaDT//NxeYXL7vUzuBAOL9Ads2j5qiHOgA7Ocv2P/8msyZ1/8YePkltG5unpbAuasBju1/eQMALP/2DRgd8gh18tX3VayabAYCRc4E8blOIJvilQSS9d5neuAwiNfpdIesB9Cs8PUUc7zdO/TqZ0Z/8XP2/i9v8b5+T73tIZy8Hp2bGq0qtpLcvXSZfbkW26FEigF3iDPH20E/LwF5KQ60OChSnxNOY1ZTWN2mkI/HjMKLwF6vOddk70dxvcy5L87v3v3Px+MICoTjf3DCX69uYN/LM3kRHF+X6Vg2xXi95F6Cx+b7BdMZWM2mVnIBvE8ISPQ+o6VkIywnNkDuC8XBM3OmRk2bYCRQwmChAVuBgtGPDinFH4cdn8e1DL+HXVawVC2WOMsTnC2OAh2NLYQ3+TOKuEXqYwoAimYUnNFhMhXssSHp24tHS/Oz0X+H1II8p2vk99T/kXJjGjpMi4OOj59dmFk319XSEJaV2+7jOgysWCLbnvNBCGKVdBm5lxKPfIfWIFH+d7AvY/wOugS1DDC/yzFn2gDHi89QcefWYu6cq1JwfhSWxicgDIBHI9hP0YdZSrIYnlzH/Fmcu7UMZp6Ry+J9RI2QZ47o+arOkwpE15zHFqVTjTR/MhOK1keyURgxr5eIl1Pd4WmEoYPwydlfFr9PXTvnfhWZcz81C+Lfre5tXLfVeLfZTpZ05BhXrRHOC8CBkCeO5QShxqnvNMfeAD83NIRBzzehww7M/dMK6MTAZGXTyHy3fP9nEX5q7D0RRcx/ke12nhdnsLZ8FkAw6Z59fhz3vvr7Z4BBXWcVMC2XlJQzByieMElO11MdiZJ6UdOWhKVZy+8qo+H3rj8GoAB8RpU+oVQFjczG6SzxAyQTgRF0C2qnbAO4MJJvc5OBTEV/6hkAYHWHzIvkJKIxQdQQfl7awKEnTZEUbPRp55KWiUUDiHBKbF8l5pGDA7pjRhLFo8fSDQrPD606Cwfnf9q+5aHeL1TzzvY92UiZ146MGkpGusUMQzXZDYedIIx1r2Hr/6egYIpaBbjBkpL9GguxM7dzTtZaog+B6Ek3aDivtngUPscrDcQJrFigrqLiRmHQl6S+ukjU5m4YTaHgYSf5vjSQs7/TacFkZPQ4A6MPbPHIO/UVsl+izz3igKQrZiWNoK7KiL9H3j5TWbKyBud4rIN296jn/hJgFJ8lyCgeUyJmhQ6PULcNyVTJaimc56wkoOGIxLpy8HpOsIz8cXoFyOV9bV7+cpSO5/mm8KjMagc9ETHAuiXtmHNTujmTYsQzlrn5+tqG9w1LhXGqXtsn0azDu4pHTkmhlIggJCgVrCXPVQconEhNjoOQEw+PiIw5Eo8Dw4jPpRaJ578313tQTeMw9yiZaxAU9uS8B+Z+Ft9JITuuixN6z1Kps99ODKpn/cR7pbjj6dlARtxMZ27r3EPhSLpZAqP5zlqeyXXLHwWYkH3KfqjtGUgmVYoIDhw1P+o995HsBQAxNwLc41zn6wSrJQVnBVkN5HMnWaayYbHQv/Gyo2sAYHpzYEiK45v11ks+Ln9nwXxh1Gb57sCl9AIYnl+D++R1ASm9BNpTY6h8zyQABy1MpCZRxnWOy2QliQe6gDTmss8iAJhjKQ7W2YjUh1Xx+EnRNsHyrUM3mfvHea6O0/8510jB5pnH+QwU3ZPphIK53ICPTZ1vBZzLvnyyVxzKw3ItHIABwzGKVgx1ne3KUrcFEJRKuy1n2dN3I2uiPgduC/meb59+Ry2NvH/ty9+7KqW/fqeyFsym48z1THDg0IHT+Wbf0CFNx2Ecx4U20Ixqu71nDL6EBkd6G2kPBIiYUdpxHCORY3+f37OebQDMToBFBi+Ko3Ceu9mH4nO0MkyszJWq38IH5v4YtlCPNNkzuHRYDxEsqgKbZpOmTwelqQPXsa8aFMKDaHRQk0ZqDnptWzlnsm/P/ZfjpxNsOGgDjDkGZ1r9DyL7h9J848m7iBzBiTJvD9/l75i6ws/QgQ676XejsZxLZCPUdI/zHlCfV9fjszbTgQ8tgHSUY82dI8dWxxoxB569swgOLIbzmLGt+V1DggLVbahjTkDgR9T8+vtTe41n9mGvH5+BknqdwJ2nLIl/IIJ+vOfAU+DhBz+3ugaA496hJfWU94if/937P/N9z8z8/BXnGc+F8Q/KLJ6+X66/Vwry/P3f+/wfB1AYcGMegKkj8FVUzy4vAJDiFBCBXRvGtXlO5jYwXhffhDu8hNyfr1jed4960oCNZ8m9A6/qQoUXF1Vc3j23n87XaJ6H7FQzgBRfV7H2fOD27YFxWbD90wrZgcvfOsYiePxpgT4mwgwJhe5wRMelBcXNjbed0SMB2sMd7/1Nsb+I58N3pG5ANY5p5CJABy8N5hUK3LF3Z+3xunjpvofn0APw/jVLZW3IBC/GpTnz8TZFFMcq2N+8/NrysU96+phGKNkVKYwXAIo11yFYPzr2t4aPf2pY3xVr88g0xc7EDPp9m3T0faSAHMusjdVFDgF4mTKZqRZAOMjifTSgsJ9f0N411JAVskzDsf/0ktFNtmGsbQInAMarMzIoWrl8dPSLwi6RHqOed0xHvq+K7//qEdxki3AeK9CvgnY3vP2P4dUc7t31J14a1l896mlRslIjFUDMS9mx4gQBCt0Ml3//8NzcP685js62AUZzQcnLL7tH578oIN6+9hhYPqI0G4DHTyt0M6y/3jCuC8a6uAP/APqLTkdmt+wPVhDRPgGPfvWDrd0HRhP0F2f/6B5RUUGIMYYwXPQTRU6lG9Qs9BbmmGqUlNSto7+uzuyJvGvX5jCIDNhlwbiG1oAB9396wVjESwCOiBIHSMOxpuNrV5YMc8NHdi99ub8p2k2cbXHbPLq3bTOytyzFMB7OsBpehlUGoiJBm1Up1sXR+mHQ7x+wlwv2lzfg2tBXhd42rzTAKjUPF9JK8TWVjLaxHNn46dXH49s7bF1g11k9Qr/foaroXy5z7YuzQPTm2gByP1Gc6XxK5KYPYLxdvJoHK2DQqXj4/Bqva8516QbbB9o7ivEbxnLcj6Ualfv/1oENnqYQ7znW5vviez84jwRHAECuDgzuIVS2fH9Mh7MCEkCW6nMFfvWKEGQBIdbV3TUr7v98gezA+n33NLpHR1YqCfaERalEnks8Y7xSigN87fuWwKRsXunC3q6wt1dPDel9Gmcl2o0Q5mQFHL3NMopkvvCz3M+5j21/fZtnQrCeRgALrAzE9uxfV18/j+EVt1ZNZp2F7otGCcYRpXWNpLMhHiWhA9x8o0tB348tdD8u2H6+4Lf/Y8Xy3fCn/2YwiTHdBjB6GmUWjCOyESAyKxIw171UBcIY0PcYG9VkFvh4xM/27muNDCKVyEVvoPhogmZFE0A2eEk8M2cGAIeoW5YVfHmZ84yOd3n+IdWB7aCAYwUaxphgo4i3hU4MAQZqOFgQ81klZe8JVCcY+3E/OsDxJ/uKIEAFG3oHXl8w3l6S8XRgZEWkG3t3nQUys9g/t/sEDBg9Xz1q7WyOAGOHuXYFNQjinQ4pJEDag7bOoIDPzTCSRWb5PEazVZz9UyPoEUGWWFtAm5F2fodihynupgmgzmeV/hIC9IKqNZMMrbA7rH4n7Nh+behXP9O9UpOzE9rdWYbtNqC33XVpHqWMLy+21wLIpJPZPBKLfXcQIXRD7LLCYo+WR0FF63wd6iCKKORanLzQPcg+OANwFPXj+lApoFGkTdFxfzxwEGZkRQe+Szrsbf68amHYKT0jUljM7DOzJtdhuZYShe29vIdk1Q+7P/zn7dgHfpaV9yZgQ0cwxCETmCFonKU86Wx+Bh+cUXfw4r3PYhxZJtL7IzTBtj2ecWwiaCNwTM7O9uiAhhaDDOCxeeS/spTWxX/fy17LsRYPI3mpyjHZP5/SKko6AwHQqlsS5x7TIo7vaEedhZgPwp/zXVubQIzpMchT9kI8ccC9QonOuVCd/TpvYuwtyjkncHpOCavAQim7m22POZn6DH9Ps+CcXlFsGX9Hrpsn9ynMkvw+++EM0OmprZjjld/9QZoErz8EoFCjUTxILCjPmRPN8krL3HQ8b+94r5lHikS4a2kn5kD7ZzEjwH0ap4yek+6auczAvJ8glOfDMDEEWMAPusPVVaBfosRftIn54D2EC8fiTibp8cuHQXo4HgPebinoq0jSS6n54O84sq2shOCbH1MqohvoQFEsb5l97rmv3ie6I0oiSgEPEM6+zRuKR9NZVsyj64yGlbFRj9zvb4rbX/1+azCvJyMkbkuHjpQ8dTV+dIMotQvmeIwmU6QxnO0ZncOs4kH6Z6oXT0c5c2GBpP+bYObxrx6ZGw/JeSFx8NW+3V8U+9tM/9Ad0M4yc/4+4yJ4/BT5zPsCCiK6UWDHhSuMUnuZxhTbHJgMkB9cGnnyZDUES9n7ZHDeludopHpE6U+Ou4XT37hPk4ofqQPPYNKMhrL/Fl9TGqAEDJ4edPMUGU8psBllqW0IACAdyFGcU+Dw3QN4KCGUZ66JQaAqp64OqHlUX3ZPcTgbbJ7yE4BGzR32GxwjnjyIh2uoHBsSoFQ16hVARGdZyUCGH3C2ykwP2IfnAo/Zfr+/JNvBPzOOz+MCjNQQ0vtlD+DlsgTzQoArIL19FoM7DOpkbgHwShBAAgT5fuYGq4OCJV2tvBtEgPs8D3N/p7NGhyj2hYy6tdL3XOfxbgQFcvjMnNUBTH2JOBdYLtff/8jQyHS4xdd835v7yTwL6rqJf2cEcXGQYSzqc/S8OJoA10v0f3PxzL3OubVoiMiMrB6iNEgHiKm9xshseFwTjKv9gdxjZFgy12Qv62uYpwJRi8OXj5c+FUlR4AMDRCRBGmr2zCizuqUR83T9zdDuyDFOYVG1OV+tjAerRZR5B8DBBosIeTj2UqKfn5T5uXf0MKY0HI9y9udn6/+BKYhIGwXsf5204ljTU0PjB9G70mdsl+x9glI8m3jVSOTZUVoogOvg54FefY7W1v6TsC3UMj0o36n0QwZwRmkf6ez8d32n8n8hg5TruIcxn+/Vpn1QQczaN/z7eezr+/LMrn1b7JtYwLMdlfXAfHZwrj0xymOBHZ3GMe9jwc8juKRzHnzq9zqG4Jk+XCx583SH9vDz8PK3He3dUx0OzvR5Xokc52ppG53QQ2SRTC/Ol6o9kfc4RUjpSI8Q9f69qKaVexI0SAeyH/cxOp82cDAWAZ9jFah/dkWwiSKg2X72SaVt18hwWa/JEOO7crzUwZWcM3Z6bzrw0Sc5qrR7eJ1p5UyPAKm05TqvJV501LW066AlEJt0ZRaM0iamCtikr+f36vPq2Zt9VT6T2iRzTESY3lvecSigwzXkPgEZ4zA2hzSYcs9jtYLQWYj0h88pCX/HKTc7MqeYqnACOg7veP5+fbdzOssTx/u8Tj9F938EJFSg5UnawXkP+T1mxlPn/wfPzc8+ARNy/fyd6w8BKPBAzNJMgaha08kOEJkVDcaM+qfYH+mc4QDm1YpRPsLYY13uyG+13Tdw6W5wPb567vzrvWgfAGlMjEVmGsDqjpfuTunsl6mwv79qRGgDUIj0hn51AGFcpnP3+FNsSjuwfvecvuVmWCJvPJ3eYahiX+PibASgQfZJ+V1/cS2A/S2EwjoPg1kCcPkWn/mypNOqPSLEka7AqgMjgYqRueRKHYnr4nM8zgQHOFwsL4Xb4G3YvjZ8/FXx/X8bkKF4/XfJsZE9NvI9KH6b08rlsTmyToCJVTSiLZb9HiXbCLgA6aR4ScgF4+dX7F9WZ62MWdpNHz0BD76LXZhi4GO0X8XBgU1TV4IABtMf9jfF46vi8WegfQCX31zZvd2jysPi9+oL8P4quPxNYbri+suO9bc9cqs9SktjGw2w1XP4L4+B/uLpOx6xt+n8x/z3BeHjoY9wHAgOxLuO1T+jsXaAWDfMH1+dVUCgzL/vVSJSI4msmHDqcpxpOy0+R5PSqYD+5jnmsnUslwVir5B9OEtl6x6pDGeJ2iFUzk8QUSU+izy4l/v0mmTrU++kNbT3HQ0e3aXhTdFCzmG9PcKQv05BQ66JR8f6HfneXl89aksrADgy79GRVg6aYrgGCm5RmQFqUy16cWo79zoxd/So7zJL0oWxypxtopetwdQ8EnkyquzqB19/8+oZ67+9+3fHAC6L/3wfoZ/iUc72t7vPwUrrZN92AxDgiyq2P79At4H22y2dUTqD+tsHsO2pvi6bQB4Ncn84sLe0pEvbm+eNgxUvquNTK/NwH15OZYVDR6Dtj2RFofbbGLCXS7LDIAgnKdbJbqFN43Oqvy7oFy/JCgCjKdYGLIbUXnBxXPYL2Qt+//6yoF/VWTEhNiwAENos/e0Cu2juP9TmAAC7hl5EROBnupPrIPBiyWLu7f3aIh3D1+RgGhD8XDPDnO8hOLv95QrdDevfHtl2Vrjobx7lbx8daILt65r76vLh+kRTZZ7OlkzAQsSr94QmCxlsP/33HQkcKzw9sPvcsouPm35skyVQgICMZJtBvn8U47qUr7Mxnd7IdWcFoZwTA25vAM7+qQ4fRfSKc2mXou8ATGdSPAorwGQAPGLTZLnIeG8vm0sHO4zCKFeIbc9SkrYenfqnjqRZiglmxYZhE9SqkbYKqjDaGWsLLRzlZ07btruzXcsiLi3BlSnUWiLCZNcE4GDX1d9p20MkV6bDTTX/bN/J+JVzP5z64HybuQAAIABJREFURP1QsXVxQTI6kawHfwYHWE0ABcgozzYyJgjEqeuD+LkQ4EiNKo76jiU3n2ALrWuW+azlQONyPRjg9f+d5ZPbrUPfN+h98z57vx0jrtWBSYCjT6eDz1d15kiZ217JKgAZihZvHv2Wr2/OLNn7dOLPJfHqOJwdnOKQ27lMoz2O8wOYFTseJWUGOIA+ssQafqZ9MOZanYHE4xqpP8t1ynMXmGCUiDMIeNZE6iNkVgIxYK4XDUCAbd5D/yzy9KW8g2VK0Mi1fhAHrH2ZXzsDCi3KJpZ5emY6sGxmtlMSwMlSh9wTVI5aC/WqYEL4G/w71xR1EI5t0LkvtjD4jBt9tJ9pc2U+P6s+kH1wSiMwPrteY5T3ks+/q+viSQoGP3f4e9U9qKAaMINGtM+f3e8H6RsJKpzsqk/v8UTfIMWUCzsu5wlBnATneGkBzAbOYEHasBHEAsrYnEAKexY1PF1/DEBB3OmXPsDyjS4eCDDf1PbhJdsuOktzCQ5opG4D1mOQFE6lDdEndy7EIycAsBTnSwQW57qJZPS7XyLFYXl1I23r870E08iLaPxYXJhwLE4zH8XBGovg/nNEy1Xw8a/A45+YvgHYZQDLwHLteP/3K9ZvzQGFd5YU9NJ6UjYRVUG3BaYtRa4Aj77SYJTOuumaoAvLMo7QldjfGnRzKr/eXeSLuYvt1pHq9maea55Rutgcwpl1Zx/QoJiN65JCfszDl+Hlzn76vxXXX91h7FeFtTVEwIqBuSsqhTANV9UUWNPN0BkFf7I+YRG1VMH46SWdCVsbbFiADQHMNAcnWFbRo46WJRMl9sZkjSzu3Ok2vFqBCfTuIFC7C9oDRe/C6YzSDbsJti/Ax3/teHzzNATToF1/7EgF49iYx9pCk6O0K5xtqI9jvzbsrzxUqyEWXdgdyLAGF1gMpsNY3FHISg/ALF25WzrVSwhIZgqMEVCo4+Pv1R6OiLdtQCvwtQYD5t6n4OCwqT+hcRDRiRjw8nSJR0mkRiwppud9K9j+fEXbBpZfbj5PAkzAojOapfAI6AKk/kqNHmXfAmTHSKTctHff4Ctbybs63nlZfO+iWBrgYoWvIQB53yCPHboPp46PAXu9ZAQ4hfHWhtFC1fu+JzhzqEFfIwhVK4IvFQBFXTcs7erz6Yr+8wUjwdEAaZIdERM2BNVIpc80kBGgjQiW35DzkjoLWeFgXfwApOFyib7hwa6xvo17q3luJN87lP4z7SOi3oNMqq0nWMgqFaTlJyNpFU8fai42as33Z54ZLubrv3v8yQVIRxMs9wHpAaBZAHOGqEoCqJRoPJCsGOk+dxzwxmTWjDIHlaCYp6ARiBkpVun7r72uDhpEVRl3miXnPM8eB0eQui1L7zif/VxDWc1iUcCQqQ+y9WkIWlBZL4oBRX9tM32h+zmrj0jDSGZX2aNFXPgx8sOT/QX/+/rbnnpHoynG14uDNH3ex+0BT6XxdL6OrFaAWJ80zERm6hEdmvsjwBGnHGclikqt37vPPzr7JeIM4KhfkOKFT4xH9fSP7OuXiPQWocLJXmnzPtUpPKUjZBsZ0NAQQubPcDKeS0lIiMzSlfUz3KtJkQcyxeCwDzZNZ6+mVmHD3HsAd0YJUFQnhO+gc04cABsrP4/+O7xnAQbS3hEBWg/2S599Wu8f4rjVyJ4RSBog8e9C3afB7mBwea/oYzJSjE5mZb7QWRyzDKLUs4CAT/SXpwS1fIbcdjTuWaqwVR24/nik6KI9NsCGgwN6Gi9GhpWs0wI8kCWTJTxDoJJz8Ox8xf2kzTFO55jMnz4SbPjk9NLhJ83/AMCFg1UAUX8H/RxhTbCOoMY4OoaA93HvMa425yXZEMUhkwrk1D4qa32uPRfkk/ozYL7LsM+OFRkwirz3Jzo5PyfRB89ACdFcC6xWUas2WDBN8/0TgCtpDTyMz87+mdWSny+A0ROmQAoixr0k0y0i4KBuWwtkjlvZI/KqZR5P66uu/6cR/PM8q206OfuZNsgqLiXd4ln+/9wrdLZ//vL4HvOlc90ddCIS6Cz3+FFUvzDYKriSjzizBGrqwrN0hPziE4DoH7k4l6Q8pxXw45mg55PrDwEoWGymidDX2p+xCUjvsFEMYCA+G1RuhJFLira4oJTc+8wVGzIHqtbm1ojAm0eqdAvH6iIYENdX+PBcYBP/HNMb3NmMfzfXRBAGUsJeAdyRe/wcE9uA+7/s+Ov//gtGUIeGCa7rjv/zz/+O/2v9X/9/5t5lWZItyRJaqnubufuJiHvzUVl0N1BUD0AQKWAMPwC/wF8yQYQZ4wZhTCMgPPpBF1VkVmbeiDjH3cz2Vgb62LrteERmC5NrIiERcY672X6b6tKlS3H8y0+4/F4duOXzFoZVXIzB4rgo04KOjtJcDV3poGUjQNYQxHKgBSKWeqE6DUtXVkK5H6D7EcZseVUl6H4t8KiSayaElo/lFNOBoJTLUjS6egwDyA3s9bNg/ckO+y7GstDqBBo5KmkOk6HSMQQtfRj2rpH0b1wk9pnK6B+WoDtLJaBTRNGPFw4GyfoFydB3EMgXizo2ToeuIkNIkUgrTzzYciE13cFTJupDILuthU+E2z/5grcvF/R1xfKVsH4uqAtr7XDfFw54FC21E2khef8Ym6CtDqzQSP2IKIoEq6U81OlvF6tsshZQA+pXdYLaxVkqouWRQahv6kyXtxTdsjUTZVnNWCRLDaCt2zta2UWqQWGK6zdjnDjDIRxRMsfV1lla8kIY497V+XSa9f5DRX/rWH7r+eLqtLruhS4WizjYSzPyxIMaS+FwBYV4P8BvFvFa1FAcatR+8BbL8S2jwgNgyvYKqpW3HdQbqO1hnLXbEu3jvYFfj9g35etuwAOQmaCzcrgzaOxlL6YafjWHIb3Lcu59v1W8/uUKbkB5s+h5IUu1EQPscu697mPxMXHjFAAfxtjwPespBQC4FkizfHQWgC/GPlODPEf4cTTNw/coDJvK/X5oTXRPU7JKNdhVywIvF2UVqQqrpUcRBAu8QoQsema4lkfsC1g5Uqv/3i5AsxS022819Wz93EK/o69s+iAUk+J6C9p5e1d1gI3qTabmPkcUdYz4MSpCeIpFzCMRZGXLsWaUN6DsPQxoMZBT0w90H/RF/8h9Ph8mwTffSwaQarWUHuVXkQx02rX043FTEJa3HtUeeGtDwwDQMSkY70YXmys0wE9775Q3e6fc6ugf67vX3+cNRcGLu2pI4I5wRqI6yKEAf6S+YDg0sh+Tc0PLMjuOZMr8RANkAAWAEPoCKbLnKUPaXwPeHAxIEX65LOrwvj4GK8Ij3beL3veJiv4kQAgMECL9mfQRktNG+zEcoDh/rJ8+Fn75GWYOpBR+V5FA1mX+vDsKxvLUse2jWoKf/8nYBiXaP/DeQchRvBOYEn1P7SIHgfL9HOwRGVoJ0DXhEd0R0cttSTR1N5iLVQA5TnPjeejuqDooCgS4MUWhfW5qGYCXf7bY2NhmpMc2QAdmBaO2XdlmHnHeN13j7oiW1J/oI2bHOjt2Dp46U2zRtM9pjvM85NzwiGjziHybRgF5xNNBCx/LboZiSaCSsz7K2Id5rlS4RYZT6lde/8AAFXLqgoOJvh/PoIEDaL5GAtzVvR+6G6mdIkP3AWcFwJ7ufaqYMIQS01rPwAkAZzROjlukknLc26y2dC9z7vNeDuAHT8Z0ADXfFOPLKS8+x653ISdGgjO+UonWAJiI389bnEc2hKdUhwwmUCkzsJHvk/9v6/NdickTKELZlvN5dPbcM8c/9T8/812KiO2JwQQSkBiY6Ffv89l26kNOZZ7mMs3fBFrltRK3lPGd0x473+t8nYGIqT3ADHj2Hm3RUrnfvC2Anwmg4HRoL3PER0P/dFWxmo1Bh76kz5UKwBphxYtGAV1h2ktWaUTZnBUX91pPj947ioMEQKh/CxOOTzqwZdcDkLeGZiUTy96BDrRbQVsZjx90cZbNo/GEug+Bx7Yqzfz4KNh/7PjNf/B7/Of/zv+FR9cp+KHewSToQvg3P/yIf/OXH3H5g+Z98+umtDdHiddFHRij5IsbfdcycvF9mKo6o+fxFlAwGsqmvz+uJpC2mio+K/DSC+P44CwGy1ttPQTVPNe+rYx6b1i+bqro3gvah0UFAB+WVjKlXejY8O4vDZ9TBZdIFFygvaL9cNHSfY9xmGuqyBLlPp12265azhCAjb8a4MdNI9vcLIqWlxPpeNQ3SyMwY4hEfxZ6G2Jr7+hgWMm6lFITivAMdVQgwNXbomDC228Ij7/o+OsfP+NvhXD/aUG7KlOhflpRliHy5jTIto459HKmUU1h7yhvhAsR7r8s2H4grJ8RDBfX8wCps6MlqoqycphQvzYT4uRgkQAYkdx8+dIyAO24LAFikMhIrxFDPdILrxegvegG1Gj9eHnmmtn+fb7v6vhnR6sL6CCl2D8O9JcL5FKw/vHQPlgJWanKZKJHG9Ugjtno4K1FFNwvDvCxx6HspbjkpgYnfTUWxKcPw0H0Mop3LdkmtYCkKEC3t9mot/Qdf5Y76Z7SUz8/4sWnfXZ9heEkRGSxI9Jy3qULeF+t79Q7XNF7/ckZTMoAaZeC0gQkZCAHQqMmAFk7X+EOl78ozTDQkomjhKYbFXRZVaTq9RW0mD7Ato8XGTP6Dy/DOPBnYR0vfQcTAPCXxzAyew9QC6Wgl+twvjx4SLp/eBfwQ1OGBntAF7PuW8LyWWL97y+Mx4+aevbhbzcVZH01xharQKdXHBEmyOUa4BAAnfdwKH1tHwDqqFednajDKOyPpob7HaBbBe9lpIP5+8wNpi5olvbGm2AxjRIAliJIaL9aIq3DtRIKYI4U6f64Dtq6pz6ICdMuX4843/sCkJRIySCj2mOpEBT0j5qiQ5uWjIw9BzNcCCGKSYegwACb1nUvHoAHCiY2UKKHSgEIKnJH7uj1jsjP9kjfKToUbCIT9vK0mzA8bT3J2dm3taz9GutbagGWYbQHffptmyPoPtYA6Mvb+CwnPQYHCyCxxz0lY6xnYw6CQFIQIGeKXAUwEHuL1El1J641BQNTBDNYZkQ2hupkODsiWFdpz/m9tRxfHY7g2Vj2dJJnkbr8eYvYjfeAgRELDWDBHVUThgxNA7H3r9H7h35GovqGg3m2hYxWD08ToFg7UQ5YBPDKNSJDIC9fTMZeWMbvfP5rMjRy7nXrQ//jsalTyxQ/C8PfnF1nSEg1Nm9vMyBkDjMRDXFM6zcxK+jhgIeUIT6Z5y7SdE6OWgZ8gtXC8+93W1euTZK1K+C3S858GrvIyXegzin+iaZO5++LV5jxF5M9Y9IRoklvY6QpIp4X4omAruXzuVGHgyViZ2acxZiv4xh9i3OBxly4o40yOZ3RNy/d6E53sRTtLqOilN8/2AL2blyrBlSzk+mXP+ucauCOvINDzkZKPsRUDvJd2sl4L0/Osf+/p8/qzRQQOA1bROnP95huJ+++9+RD+jcTCAMYAQDsnrLTn74f4nKg4/z7lO4kzENfxt83Z0HH87nnTAxvz7f66mwV74eDF+k7MQ40zokpXcQAJhGZ9EUGy8HmBfIesMhzZQwl1Wjt79fV6fp5AAoA3uXHAXAVbRTLdT/lnHg+tacRAIakPWQoiQPhdKsTlF6iUKOSW4dYPraQR0owUiog4aiTofpZlEoKhq5CEsnT/9u/BVD1fQAfD/zFy1f89fV3MNMRv6mfAQB/t/+IX11f8a9+PHBcvS5yG8I86WXhhqyr+sczuzoIQPr5ae2688eEMEClEnqzwy6vL4viBTPBx93/EMKBls02TBMwdezrgr4yylsLQz3yCX3dBqqtQIeWBDRggaDOqKshH4M+LKQpJqOsodFoF3YbA50IvCkoIgyNXnaEUFoIB0Lnih99GquowS5ieeYWFbRDXvO1bW24irsDyoQoHQkCZFen+vgo6C8Nt7qjWP36XnRt9IVHzjTpvAVYAr0PHgh6sIA0+Nu6plQIp7Vg4odd0KKMn7XF9oyQAjokgv1Kk4idOi72TMcH/GUCNc49oggm0DbAhPN686svDForykPz9NkZJxZpHYtO76XUVJ8LAF0UbHocGsG+VGAHyt2jchx0cOxWts/mwpd0zqfOAoPawBSBnA5WisoIMQbrghCLNSTenQl0AhqF2GPc18DNoQdiea2mCxD/T8g72d/RFtOYIQcc/L7fQo+9zR5JbA313kJzo/scWj+8DGCY9g7A8XxP/V23s5LA7kD45RHUYiyF/Rh5pnHGF01BSUwL77fS70vQuaM0no9PfoEmZ9XTR8LxtjPSNUecLRPnJ6BnkWDo31zVed4+UTDYyq5aE+LfJxejJRMt1OoXEQkXzGCC/zutuQyisLM//Pci4M2dpvMBDjio52kc5W4VfAgxX30hHDfVfoFP4aH9YbuNEA2dIZF0rtsc75pu6KBm/l04qUUdjEhxaMZ62FvsEbL1Nwlh7loKdhJSdWT57Mz4urC1TswQdBOdTZFaAJHfmiNn+W/fR6HFAXPIT8/LDsjZQMx0axlG/AQe5nkTCSeVbte5Td7v3hFIdxZ/PBrQDmXw5TQFZwPELY7TPRE0YOLzmXYa4+gjkhZDB3Ef4qDJSYAxyvxeU5nfrOVwfoZf6d0boHJuB7Sv+r5vY5yteoG40xlOhNt2Ztg7oyHPRUlrLxvq3p80V9FX6ergklGAfY/G93jk5j/LvT73254f6+lQJgLhALU6p9VkZzuP27P/mx01My9kzLWNobRRnefddd4r6b31dD/63zk1JZfX/MY1OT9mY0+OVH5OAnmmNp8BKb+mUpQlOfGjH7NIpahxkd9Xp/mNsfiOwzsJFsZ7pSMOpUhXxthD57nMbWJtC7UWTAUx25p8nJOgpZb+LfA0wtF+G6dzutZpft6V18Q8T9G+HP32/xfM5wIwf256bprjZ2kNWUfg/8+VgZHEPHgHTJzX1HfvyQPAzufXN67JkadvrOM/2Y8nAHmsez6lOdkZ2Hu8tyZGUPahQ2uhzO+Cp20Y59DPv8pDs7zipcYBy69K83djVkVkOi7/8LAvQSn+yUiL3O60WTXKYhGVraGv9nPPj3R6tQBwx7ELpBGuv9foS9k7aDPjf+soTaxcIVBeD/Cm0a+3v6j4/FeMy+8F6xdjKlQt94gvwO3vCctnwv77C/4X/GMAwH/5l/8z/nr9LX53fAQA/HvrP+C/+BXw8jcb/tn+H2H5esWv9ob62OIlKS8XVQi/6fTxlmjn1vd24TDSpBKOlYMt4Yr4AIbBLerQal3wDtrHIlQjXBfR8aKJ+CRAuauzVDY1OMpDx759vATd1cX9eBsRbFCiQjLQPCfP9Ba4qfOu2heM9rJGaok73OXeNNh0pzCqhYH9k0d1YG0QFaYUjey3lSEhliZoL0plrW89HHDVfehot4rjUrRkIjQlQExnwZ9BrC+o+lWRo+Pjgl4Jlz8I2moU6gVawvET0BfB8VFZA//8X/8j4P+94OO/Zlz+QctEabQao2ylq6VDHSKvPe8CZ8KE/ePYxuuXHkrRWt5R29uuZGkNPcCx7tVKKqGzVt/gQ7DeD41GXig+Ux760o089os5VE20eVkpvShcI8xGkT6w/EQod1PUroMir+KDVi6SSMGCLkAjiIFiZKwUBXdU08CdSnrbQIdWK9AbjvXVq+XWF9PcuGidu4kN0fUFXb9s6gDFoapGpFTWKOzR4KUA4WJidkk6pOWyKlhmUc6+VlDp6rztzYSw+jh7woCwM4YHWABJaQdrBdgipF0QZfqY4ZUL9KUjU8SxVzYnbtVz9vMd1Drq7xHryqsNRAUIS7Vw/YJ+WfUsview4Izes4I5hDWYQp4HLNs+aMTuELjxZuJd/FMFlor+4aLsnxjzrmNaDIhhRvvlzdYDgoFV7oeNlRt/QL8wHr+6RPoO7cpmuP72wPFhwe/+RhkF1z/YOdcVv2hMOG7qL5aHVbvxyj9NAcZyNOwfVZMhKkswQSz1CdXSPt6UGSJLQWeGvGhU0MURnT6eAUkFV8qYOx7pZXndtQvj/suC+pBISVJwmeNM512wfNUUrnLvoQvUakFvgutnpUH3S9W1c/TB6BGZQIXrb+9jvv1cqmUYrL1j+ekx1q2l3/CblTwtpCUoWUEq2tsAqhwMXssAH2SMk58XDlaTR+PFovTrAny4WV6/AvATBd9SkaRa2cL9UFFQYABPtr4onE7MIFqHPifOOdVpcfG8ADtulzE2+6F7lglu9Ec/zgZcBie81J/tfXrsEbmm1ow14BF4DHq99dENTToaCPsIuGTb6FTGMEAAbwufdACsD1NKgDuo18soXQnAI/CZChxj7UY2kJwOA0eNfUlvD0uDwjgzAAVkUhqBpDZnxXal43M4EJG/bo4a2TkteT7dhnSWRzhnAzg553w7MIVi5XjTOGeNHxemJNNaCOaS6ytcL3o/CxwNKjkB12U4VyI6Nn61Fowvj16H2K/PjQfRjIkh+664091L6/bkTJ9AXSJtz8PK8TiDoqRxcid9WeL/crQRUQfUAJJuehsMcVYLgBAoPJVi/O4Vc8TQdInU5sjvt/VwOHuEQ+diYimY4x4AxWF7OZeftEvT0YwRIWKfTe0OEJCBnt550mbAAQ3y6KOvLiQaDyIgR9gNJKHCkP3QDDJ7toNR02niQBiggRorqzhSRhIg4Ws6i/ExzRUavCyj2TU579+j4HFPH7Ms5sxeirXFPR2ci/6egMFz2o2fBXIcU9qDrvNUyhEYLJWztoGnK3hahAcnvD8nMGna785cihKaDlymAIlfoRkx1mE+x6Jt/ow0Xq6TNAGe536cwe18z+8BMc440EUxgFX7rjzrO1sVJtNUeKrdYNfPAlAAgIhA+aZufRan6zJeQG5kGQigGxazgI8fqBatjOiPHSYqqIWhSyAICisAEFIZOxeAY0SeuKvmF4uClkcPR69dCHuDaig0hEG7vFoJwR14/HbB//Hya/ztL36B39TPKNTB6PjAD/xF/Yz/8OPf4599+qfYPl2xf1xQPtwiB6+7WJdF3aeLxt8iiNx+YUSagbSs/j00I1xUb7pXivp4FA8MdFYAwX+ekU0pVtmBRnsiVcA/b+/p8Rx7FnQuHQxSwUEeApf+FZFI23Dx3L5QRMhym4TT+rFx8MtLhHokH8DEdgjRM5iTTzaODcFyiDXn9yY15HXcZaQvMMBEKF+1KkN/MC5/ZCxfVMjRKdpZYJKcAVIA2hRUmBg3dHKQD6DKSLU5jxnvibZk4+7j1s1+QhqnYEoYC8PzvMPR8FQjADln3ynZZJSqcKDt3k6njjXgbU16DPEMYDjYInM0xP5/FseTbuPIPJ7Bo11xmZ0plWNN6XPS55gRpSGjX+nK5zoDcI2Xbx28IkBP9zl/jqFpDsBQz/cr02fDGRAnkcBLeYrZI2Rj4QK3/nzdI8MYZ29HjOMTZwdI0QeK81XRaxubJM4XNMqoD03jPPfIaqNwWFzcKHJzM5Jv3/Nywt5vAJPwITUDQ/YWNdR9TOI6vNIHABB6kXifyGlv8JH2RB4L0fu+GyZr4xxxx7ymkqGhhqHEd6d5BYZOQsdgxdnz83kaoLif4aRnP0RQ7IznR1MmBRQszCKEoVd3frY7UZDQTAiA3/Yomb6Az8kkgsrzfiGBpsPlselQsMz6IEjnt9sAMe5PWEW+pgrrkLA9LwvG+mfyv9N9CRipRc+iQefSktGfeY6ntsTYPbk8Kvot2q1H/VIbQgQ0pyhkAODcNktZAKX0kXdnTdrPeUzS2E2VrvJ1Mi4nvYRoNuX/zP3z8QoQQm04qfLeYI7PuIFe4v/nMT6XsTzT3KOqRcpXj8cwUjSR1PmT5AScjfU4l0aEbyoXGY7I+NkkJumX0+r/VGqIOyXu5HTb/BmEeNbGZ20/r10gWGzTuZsvnzerfDB9Znpfmi19os+P0ocG+Pj6yxHQM6jR5nfB0xJ2pzmf2ttFmUznn3/nmqL15zE4l2uc2pHazmTaAeeXhPcdurY8hcJBALLf+b4LBu9p/ibnVMbcEc3tIn7e31PJyGndR1/a/Fkbm/y9SAHo0Hk/l//Um3/bHjp/xv/+EwyF95UwTms/2Kans/zP2QfPrtOae7cO+5Mx+t59zsCJN/EbZ+30ffv8u9KO33rffOvyQFQCep+mzGTmw88eUBBRZ3nleBlraTTN3yPyiIXRo32970kFuCOckH6tVvawQxZCv6ScWSv7dvxiBXWgNs3x472rum4XtNsCMFSwqllJtUIjCgqEar1WJxDULzvqW0V9BR6/Ar7+u8Av/ldCsbJ95d5w+/sOT6u4/qHi8b99xH/T/zP8i3//V/iv//J/xC/4FXdZ8Jv6E35dv+C//eXf4PWXV/z0T1fcf/1LVKs84N5DRKDd8BCgTwtTIn2DBFqBohD4ot+9msjW+nsT6xEMPYQPJZxJMEwYrGP944btxxXHi6YSFD9zRSN32p6ZNRCsCBMz9EgzdyBKGhYK6j2g2hT336yaClBV0NBLIFLTEoxaFlFz5PW80+dR12fm9BPVmTA1bl8LTfD4pKDMVQDeCdg6+q1EDq8yMRSEaldde0JAcbqutbndipYIvRBAQH0I1q8dvIlVsQAO01JYvuqc3H9URkB9COq9gx9ijI4xx4DOyf6BUe4qmrl/Wq1qx5h3z+tW8MqNQLtBoRAbLXsPIbTjaqJ0rjcRrBWgrYztA6PsCnR0q4wgf3G1EnttpDdsOgY91xw3p1UKoZUae9b7dHxadX0+VMegwKLhi4ppTcapiRZRt1J9tQBU9VaGmIdKvekAgAn9VlVY9O0I1hERrIrIaB9IdTDIKwa0Dv6y6cHeBP1lRb9cLcfd2iOIF1/oLgARmSMrFVY8OvtmDKN1iaisrNoHZwR4X0EEWdUh6bZf+G0HiNB+uIYoHT20xCh51GCpcBV0F7iNEngezbW88b5W8HZo6b1jiYoJ8aIgKyiBAAAgAElEQVQijUSFUdWBEF90RykZXF4BBwD4y11zgt0I9HSbZYGLlanAZdFopDFt0Dv4dRuGlBk41DtgAB1BKwxQFy0DaqVlPd+c//hlIP/3C65dS3D2i4pdysLhp11/p4Ku+8dR/70tdoYcY8nyLqozYsaOC3bWz4jzHEXnStlgC+rXQyvk5PFBQ9kOY33UYHGROejBKrgfIOkojx3HD1fVfukARLB83vXsFGAxNpcDoHwoy4WO5AiSVUZ6NPDboaUxK+P1H98gVVPjYk0XUraY9XNUOVKGWflq7wlgAp/OAJ3wqApBAj2fs3iovU/bhxUu7KrsoA6WfXKWc8lQ2lusZ8DAH4+IuQ3he8wiTVP6gYFVsi6QD7cElFvQwFiAcl1iXcV55tT5nBJVNdocYqyucXSxcpTBrqgaDd73MMZo36NqAlmbfa1Em1qDVjvSc09eLsB9H4BKjlZte8y3tvWIsZKrab94RLq1OZ2CCFgIws7+6poPfxzatmwAu0Hu45IdkDP11tkrPl5ZywB4L37oc74fI0rsU7TruqBl0chxLSMqvyzmvCWg2TQQXIAw2BcO9hgzIcQsARXT9DOzqChslAUG5rKDvjaMRTAJaCbtBGGCXBegmT6CO8cnwz+YIETAwSAyEd2zFoexPgjQcei6d8TH63qZnYFw2DlAWvLIexaNbG1UvvB7OzjBA/iW1pVxpgOiw+25/MlZIyJlISRgjGoFboumq+z7cKzzEiis8+nrNEd6MxMg51Q6yFHVV5Au6ti6GKNpXohH3gunCLZHavuc/tJNj8L3pq3fKareZf6O34/IotY+uand+UrRer88+k2lAEUgDvrLaJ8LGEqqYiAiwLaBVmXzRbt8DtJe87QJbW+f9rc+d/RJDrM1Ig3LUjAyo8HmSkrR99ThZTFPIE+ySeMctLEVn2+fB4/6Z1DnWbqAnYMOhsTcOgvSxzmfXXkc0pk+AQR5HM4ANrxJlNqdfu8gmq01H9vMAAjwxn+X+5c+G+lb58vvdXL+oz0+3jn1hvhpRYn5vk/AgtMafwp42PXzABT8cPPIHM0HYlbydCE/wM6UmBTRl69IsBEAKIJtNHvNoecRQYcMpfk0kGd1eQoRDgMEOvQ7zlgAzFFWimx9I1BXGn25KyChUTKKqM36uYF6wR//1Qf8T/2v8Kk+8E+uf8Bfrb/DLgX/cHzE5y83XF6V0RBGt6RnxmIZTrQj8eowA+jQEoEwBXgy5/JIkR5/oSanz3UR3Kpmz3W1SCC3caYHddvmRiN3ZGNvE0VprmQ4r+rcGxjE0AgxU+R1Z8BkmiN3og1g0vEFOBgOY/6ijF21Z+9D+wDWz+NGqASUzX5WMDvmlmIQecusf3frk4JLGFFC0XEvjx6/r9b3+qb5TZfURq+Q4YCOCgXB6L0OXCCclgwmBNvDh9cBk57Wg62FMSg2ZtM617/7RUEWbjp/UTFCdFxEfAxc2dteCCXtVZu7SEHy6Q4jGxapQHJaTZzNqc/eNiLd327HeC59/I4iyhlChPYzN7KjUhkT2sJgEvBxGACfohF+SPu9DRiJaiVNIlqpGhcyGYiyFBVH9J91i9S4IVusreYgar+tnzm6b/syzjJ/EbmDxQywOhxBx/X7eaWEZOhGhQobP2drOK1Nq4kko4EFwqbVUoqmWHibicYc2AueWhtRTjdSEqodl9OMlwqv7CMeDWXSZ5kuQcyD0VsZds6aYR5OX+8BqmDfhzL1UhUccgdbMOaTFfBrC4EPZRw5eOaaEPqdkTrk7wk9Ozy6IGne7Czsnn5newKkKWRmyBGNc1TZYs5mIoSQsM+339P+rfoyHOuEnJ1CCujy0Ydeiq0VdodZlK4rrO+ADoqSoO1iZRqTNpA/V7UnhrMWDIUcjOr57z5o1/AzOhk9i72D/fxIe488YHdheFUf3ZME1BSBEQEOzAan2RFSBuClRlkymu1ysdNnl8/h02hVBtLs3pKrCRCN92F2Yk9XRHmccuvGn9/To8T2O9UKoPf3s/ELXSG2FwERSPZxBro+g4+DgZ4iMgzW89nnPz9T/POzAT0Tww6j+TM+XnE2FT0PGLPB7s/xe7zLDS4jcp6BHf9+Th/zvctpjz65MoPjndHeJapXhDbGuV/nvoYNlNZHFxWDy2fCu4aQgV3jPNWvy3zvyS7meMfJM22B85XO6qlSgolcxtyXNM/OfngWYQcQDvJ5/PLcPEtdONmd+X7BDMj9yWCCfT6ECvP3p2e60UgJOOzj5+9YBmWaN3+uarSkd3AO1PiVz4Q8ht+63OH06hb5Ch9dhuhfHgcmvI/ME6YKcOfvnMdn+u5pn+XvpWuKfvvzcr8BTEwFmEN/HqsAH+1+zoLIoOWfo53wLuXy9L3zXkH+1WkMeTjafzLKf0pTiHslEGHq55P2fpu19o29n68MTHyPZdPTenTgPf//GQvB2+3fzQyKP/P62QAKslYzcM07MgPLa8kHLTI7r8yDcgsAvWn06LEPo7drDrdGp0qACb2SitBeC8pdy3d5W7z85HDYU6TEAI/61tA3o8kScNxUp+HyR8H6kwAEvPz9bhoLCR20KN+ydyx/3PGP/ocLHj/c8N//P/8p8JsH/qv/+J/jp/2K//2Pv4b8ixd8+L+75sVvEnnrvFmlhEWj+uWRX6bmDDozYlNAozwa7rgCHxj1tYdAmRCitjqAcJ7kNioNUFd1c9705VJMsyEMXct39c9CAO7dRB7NETYjjx0ZPiRKAHrFjP1THawGaMRQSyZqVJC9lCMABw36yvayRuQytwvHS0Tzcn0tqTPPj24AAMNTOO6/YKxfBMuXFqABHU3bBkAOW5Nl3LddKMQN26ptuvzkhoFqNpS3A5AKaoTy0PH0ftTXhnYtOF54MC9uHKkGfAjKpgDI+lnTb/q1RHk4nWM1+J3KHG3fAG4dzUuHWTQTDoY1MaAKAUawMTq2j645oRVOyKpTOEjQF2DikIo5Ph7BByz1h8Fbx/KljSjqpgf38aFiSlMKJ1HQXlSHor4eoYXAu75gpeg+xt4sr4vDmZZOEQ31vFVqwwlTOi1j/1RRX5uW9tyOyPcGIxyRQdu26gVZX8EMMPLya+48F0b7dEVfWSt87W1QjWsJp52611O3l5Oh0J1LRL9BBEGfyj2SaKlEuS5oL6uWhAVUX8HOLSHXW7D9KAJsHe2XL8rW+KoRTikMqgo0yG1Fe1kQ4E4fqWJ+rpRXgdbaViNUFo0gUK76kg1sL5uWxgsWHe4/3PTsJoC3EREXY4HpvBkDw3PQLd2LSgHE2CL3bZxRj02jd48tolpUzUk+dhNV1eir3FZwZ1z/DvbMgcB7+o+zkXhzBhIDb0B925TxULXijDJz9PtRqaAZqN0E/arsHAaAJuB2QI4OfttDrLN/uEDWEqKcWQiNWldQ0l9xawk2WJzX5txHKcfL0CGgowOvAi8z3NeijIWtg3djJVTG/rFMVW6oK5sJDwRzz9ehLAwykNrbGfa7iKUhtnDy2wfVwCmviggeH9f4rKd5hRPRRAUgq0aLHdCl1nVvAyFWy1/ugw69VMhlCcaR2JiQawm8PQbo0Lvms1vbZalDLBQYeggY59NUjaEZIigyctiJggnglQ0iCPA0wmSGfusQ6qAqw0jv1jbbT1ILourCyckcDM0+jGo7a9RuadEfL6tItYZ2CXkksZ6ce4/KAnHGDgBh9D0ESF2Rv9T5s/5vjxgWhubPpbPC2i61jKoH/nufh+vFQKTDItzD8A9dBRuzEYEf5QLfAU/xbN0bziybABCLXlNOM/P2Lqc++NjlspZHA6gPx/BsxLsjLqI2q/cvt00cBGK1g4vpcOS1fE49SGtkyjP3Kg/2WVlqsFkiT7/OEeossqsR3T4YGGvRttTkRiSnSFNNSjxTREBeZrS1qGoxSiF2oPOIpk8ObBp/kdGuSBEghDYCPxHa7NY//0yyO+KeBu6d+ynZcesttCqmKHysGzeo7GdZD8Ln37U5tAHj+V3CYUTv57iYgg8+DrZn3CknD+qcLx/LYD6ozZIdZ2dzxRzl9Qo8Pb+IpoRfBLPA2g0xcXF775NXj3Cw+3zDtD+jXdO4fsd5Nh2Dycn/njPMqkkkDmrZWPhZJilQPF3ne+W+tPY+rWrqnj5jEqQOEKrjHSCX2MX/Vldeq743zj+LNcTTeUQxf6e+vwOwvg34/DwABUAbXRkCQ01XKy/mA3qO3nUAJLAsbY0aLXxydEaOL4V6OgBwlALMF5mGAlWlR0nVQ1xcbEgEfdEISETZxdrm4PphRl4HIGqwHp8u8FJaUrWWeTGHfvmi+e6f/s+K7Xc3/HeP/0RBizvj498Tltce5Ra7eG/1GdVE+txJ9/zddx0DImrttb47sYL65pRTRDKgLwEgDFfXJNAOkoqS3dVxHpFiddxkYavGYOXL7OeaLyzYL0pxLg+r625gBreRvqFlJO1xu6AyTIwQ8Cgp72NTeuRRDX2K0yqie4cNyaH3yboLy2tHOwjyARZ9RIABPqZqMCIYE54ioBVBAD4sCioIZkh5qHPXXqr2MVByXaLCqgvRL4S2EgCGl+tjEXSvCLRq+cP6dkSqQlCjt66AQuvoliagDr0OXq8GtowfqQ6EaP+kFB1viwoeFz1oy5b6SwSiobMxVRLIthSgjoa3q1mKxaaRZP8ob+pc1nuNOdK9ld7DR0dpyZlgKPj08aovJ9NtENi40oi00nbEYX58XFV5f+txFvSVcdwIoAJqC+obK5hoYIuYpobbcPofe8HsbTKYAFgaQDpGw5FgjahGBRUz9hlabhWI1AWPBHkkX1XndW67lfOj7VD2VlKml9Wrvdg4iBma/v0Q/itKoy8jGh5RF8vddaBHJ4As4jFeoJ5q4mkgcHqwGyjPXjI5V5jI6LjKCENLgmuApn1UhtwWAJbyYlUepJUol6bpErYIOYm7+nvB6rzn2uIuXBnsgV3TbJi1JFdmsVC3CL5H5w2kfO/Ej/OBtxZnn9qJGvGXD0uwGhw8CP0Hn2dwVCbRBwLt0zX2BACU+6EiwEwTaAFPL7O/+aFbsl1NTNT2TwhA+vo8BPJioOVuzrntV7ZKFllzQp3pPgyovSPSB8y5OT6qM80GomXBRQcsdY/CdFzsfcE0Kp50wMU3Y07zO8aXp4zfxX47TJRrKRN7hnx/JceKOiDeH6ZEczVwq6X7+rycnbWJXm8ORkqRiLa2PqVpAEjGYhnOrwVIIjof456mjgf7YaLBi6S9xso+yM92qnt2pn2/LnUwLERATkH36HV2yM+RNTf+GQMsOAMJDhCcvjddxhpFsQh1Zg0EQMmjj88uJqV7P7vcWfR++c/se8FoCJbTEc4lFXOYjyPKNj6NxntbzSGXwiGgO4kXwpwqTy3J4yHm6AG2NjDOdJEBdCXnV7+v4GcwOOx8hTv7Udms6XlH9I5SHs5/0K/fgxPxLBOLpey0+bsg2Z6jVKB/TiP+4eiQ0fVd5DAL6lmaxbtIbJSITPd2hp4z8zKrIpx4QtbdmCsRCATHBExMVz8BNjni63+H4KKodpH3i9O9Svps3ifRDnP4PVCRr2fRZBsfSiDR5DD6s57cS/UObN3jVDryvD+RHOQAEa0Pzxx2//k5HeR715Nnfvf32Rm33w92BPCOhQAMAOYb91aQ5OTkZ3D0zLjMZyJbpZcn4/FU6yG341vsnm/87rwnshjt0/X7vauLgltTahuNd8WzOf7ZAwp2CMqNQdANoc4ODXqxL/69z9/Tn6rBspQpgkHJ0WYzIlU5vqN+PVT9/jIWvTqfPVIjFMXVvFKtRNECEGAvX9gEoGEQsjnb6uxJRESpC5YvB9rCOD4U0BegbAeWnzbUL4RfvXYcN8br3y2QAvRCuP2uY/3pCKOZLkOEUZ3MFjoSyrxg0OUbk+2gygGt2ECDgdEXz7HHoFoC5hj3Mf6MyDEvpocQDh2pQ3lcC/ZPBfWVQK8tHHDeABSKSgLUtH76cSM1YrYOqea4eKQ7NgZH1CzK/bljmYzlTKXV9pszwAOI0UoJyp6QTli+EMpF14GmCFCAAkExTmCyFKAtQ9SSfa7NAO+LGsfl7cDxsmD/WMw5p5GGUHUejxdlI7RVBRF51VQY3gS4skVKSdkNrweOa8Fx40hFcCFQiBgdvATzRHUblMESURhzqMujgR/NqlcY/blA771rpYheKfQmhIHypnPiFS9izMnGlhClU3mDgUbKaqHdDHsxZ64L+M2iE0HBFdMwMJq/zzUcrCg4XgrK24HyarnOCWzsS7Ec8pGDL7+44ngpWH0vLjre+4tVr0CNdcbt0GizVYTQA1XXNrkTl3O47cANx96U5yHaF3WG2cqb8WgvaVtBAL8dw6nuCI0RqazMhKOhfbpCmFAPRdPEjG+tdlKGmCIQ1PJgdFjuNZYCen2ogfaiauJeaUIpjwJqxwzOkAKH44Wp99eqGi2iweQgiZe8zAZJgL8dqFUjuPbicjDFQRG6bwpSGFg7tUMWzd291MFQ6TZHHsHzqBcZeFC1aoQD1X0pelaaYU5EENvz5OARM7o56vRqa9BBZpHQAXCgppvj6++FY7V0DQDtpeK4MZbPDeXRQtCw3yxXuo37eUlkB3v2H2qAv+X1AL/teq6tZHvJHPbCIKtyEUKzonoubSXQYWear19/j7Qe2in1FQH+8dbtT7P723q9VAiXAYwcYz+jA1II+w8LhAnLV616wdlgJjKw2xiD1vZ+sSoswiHcKKZjAhjQkcGQtNaD4m5/tLpDB7ACC8JuCIf69H0df4swOhBwjtKL6AHIJyP/7KA6DdYd43Ba+3D2/czIjCzPz/a16zaHV19Ijm6u4oKouIB3Rh+xl5Yb4OfETDhFVGVJ+yQBE1GuMTuyuSqE993vlSpLoPUhMmhlMp+BETEl7tQzY0RuMcbd1w4QaW+TY2AMCbkpi4E8eu3tb20eAwdkskPg66B3rWgAjDxqrz6277Mz4OPlNpONR3+5GoDZgX5oLr4DnN4X14lYl3ldROQ+ryMZ85gdT9+DTxyA0I+4XsLWU8bSESBDzK+d2VFVwteaeIR5dlDIWQzZqTs5SeFEZQdH+ihJ7U6+P6+zzk3vkGMDhEYKXjyYBzCQBQj957afPX023gexnlJbnDnhgpuHOcDnYFx20FNK4HRZ+4FUktDHJ9/PqypkYMzeufEsP5NaH2DAN8CEkW+fHN4uyIjClLPvQIiLJAcYo6CEV2TJ2gxTH2HvEmPFzPdOYOL5yqlHBXh3FrDZSqc2P+3v6d/BtPB17+32tAxf37k/iTkxtbH352OdQYXcn2f//5YT7swHB1qyA38Cq78nejjpifjadqA/zYn+4Ikv+ORnZ3HJmM/zM5HOnW9cPxtAgR6blYDsKiq2LhF1BKBOpwj4vkXn5ObidOYEOAXfHIFeGd2iupd/eID3Hb0sUWqM947Ll3vUy6b7Qw/6r0a/u62QpahIo+9Zc+A9l/b4UAf9XwgoMhgK5A464vvqcFmqwbUMfYVDUxfWz4K+AMcNoVngVOTyZrnExwBZ5Obl8mwcRf99Vs/XSDsiii0OwjAi/78vXstcokqA02nj5ROGIgJQ8coDbVFnt751gID9U7GIdw/xQv6DAQO7R+ssJaEUeOUEdfaBciiTwctiekUGEsFx0fyscm9wQTQXdxz9YjM2e5SiBDAiY0TGdGDUN9WFkEojall17pZXzbUvd6UJl7e0+Xx8K086Bj5GvjYCgCKgXS0P2UHtAlRntjT9uzwEwhLlP3tlBRCaRLWJ48Voyl93wMqZtpeK9nEAMFIV7OmLijj2qqkavJUoBaopFgDvurb6om1W8cghdKniosrscVDExSOpA7KSMiukhEMEAbiylqlq5ojagS8e1QD0ReM/A4yRpAd8u1Vlc7gTfVQFAgupU+5RWBH06zqik82qrzQFkfB2gPaOl1XnlS3nnFqHCy2WLw9lj7wo5TfSlTIqb5FEMfbS8WFBuR9KD78nkUgA/bIEndsd9LJbysRjlJqL/On7bmCZLo7ydTPdBQfQGpgNFHrd1fFbVH/Gn1n2Zo5fG7nX/qKz58lqTsQ+oi8O0Og56lU2/OAz0OC2QlwU8sAoewYMx97PiFPKg5c7IwAelZSX1UDAD2pcGVPp+LCgvO5KkTVjIMAHT3dZqjpfXUYU7vc/KbU3OVTRN3duLysm9omJ3wEN3O1ln53m2M4MIVEHuw7n3tND2o0hD6AeBqbtCiySM1uQgBxbG83Pb1FggiCobxgpbR6x7xLOfrwTBZZG0cAPmPikMcA2na9OQGMGPxSABmw5NIBJIlWPDk+JMpaWsUD0swaubIemTXy6xJh41Q0/4xRc7QPMgqC8bhobdHq33UfXo57n1PtIA+oAVvt9AhSotUgHij0JjDKJnlZUGSQ6py5UKsngpaS7IcaEUhuijjknCqE8BcSKgV0CqQDRZaz3dZT18ypS+fvEPQVETCwx07r9DFyqlYMchm/0r3d1lANQ6aNtPhYBKthadyPQndOLRfATAEfbHo5EMHXMORMycdkTAyva/s1UjmwnzHM13cfPxU4Aa2wwxucUIc/lLuMWie4vDWN8MiMg2CdGibbyfFPbM/BkBn8AAElUjZZlAAD7Yc6v2qq4mNBs1RRdIVJm61KB20WN9qMN1ok7wDkK2oHQEdj34VzanxA/fOKswBlwvn5bh5RUKQ2wvjj1sY/vZufmPCZjsIcD6uPy2HQODKQgWyciomuuaInK4aSVAcTl52TAwscZTxwrF1A8X+b0u+jidG90kKfYGDPES0e+uxyAWBcFB7FbOkYeqxnIimoMBh5msb3Ydw7MfEsQL/bKDMrEGLjegIEAVBUUkNbHz/2syKKOPGzMSZxvGtPxbJ+/d9HvxMggGmfp0FTg8dnUhnMFAgBDQNq/bxoSORXjXUqA//vkrE/r413awOm86Kk6gQMMk/jkLBAbTnZOL8r7q6cSnGHD8fzMPIY5deHZuZnumdO3JrCOR/lG8BPX3X7/LPViAn/OY3f6/zSvAZz/ifbb9TMBFNRokcc25Wo62gjYBDexWr72mUsFuEZ+NqXOi0Wc2spoV6eJS9C43SHmL/d4CdJ90zaUtNj6qsq08GdIRNeUhsvhcOkGSOJdTDPg2QFiU+YuhFYItQskhPc66p3QhNEWNfqyU+/5/LT3ePH3otUmitHfbbBAGFF03RDu+dofc7pdAHDQ6Afw4OXIgOcvdDcIVaF7GEF0CPqqBnF5GCAh1kejn2s7ZOgrMCJf2cW6IqWiQ6somLYABAoueJfc2fS1Yo6uFABdI/B0KK1bdTTyGlDgpliahUbZ00vYxsA1DlxjwsdCa74jgIygHgK21vTM1P7o/z2amMtEagrNGBM9VNJYE4x9oPfvpr7eYUAEBCKEvRD2F8by1UGv4Zw4u0I1RCSWRC86Zhx6F0DdlAHRrpaKYfvP56ezDOff5tIBlL76flDjtlcG9w50svFPwEGM1dxXfXnYGl80PcQrh/Sq5USlkqrae5SalHauc6b7nfchdsUP1Q9YfqpjzlyEzo2A+w6qBe3Dos0IxyjtpcLGFCjoizKW6ODhyHt6lbESpJkjyTa/hxr08XL19AEzgOm+RfSFtmOOVPU+AFCv8FBZ0yGyMJkbyInSOxnjLg6ZXw7+b1MMzxEKsRxeWUhTOR7m1DsjwV+EGXU/RUOzloI6YfqSnKLSXULjhsP4RogJAtDKIOK6EmrU9au+yspPZbzs3Uj3Pnib6ihz6Os6xpcMQGstzq2xVu1jVcHT6mw5tr24EKgxhFoAxco0SZGmZLhL0fcTZzHErtEiBQ3nsYEBuMGWwDinSQTtWqOk7TBK7KzsgOSqE5avLxVAo2DU6XganyvRhv38kwVaNcmuvg4wX/vRAzTx1UN3m6/FUyZ0bLkQzsZXiFbaeyozXujo6sidI0IOJng6Yr5n5RE1dCc2rUMF/um9A0ykzuF+vP85G6PigDm/Kf8/38cM/QBOSceVuE+MBAB6pni1iDDuJH7nug+xr9wAzTn7nr5xjrI6Q6q6WCdSRHwupxfsiMTMc9aFV8wIACJHajOI4P8/X35GkL1fw2GVsV7y9zIIer6YxzwCAPr4v6cDpHXi9PyokDA5IzLAhOwUZkaGR+39nlamUXPq7WzydDQiuGYJCpStcPQ5M9nBzUhHwLxmxFJ4PPccALjMjnB2kqZhHvt2jB/Na8cBg2dj644y1LkQmx+9hTuYNMY6VcqIy1Jg6KBwvP5k9DR/N4O5TMpscHr2NI4p6s+ia/+pGGByysRAv87j+zF4fYy7VWo6V6KYzgsHWnJbgdkRtPQ+Ad6P9/fo6b4u30XECUBJNjmrkZnfY9Nnv3FlcU1nfnQJJ38S9HPQwkAK8bH09eD38ef7fvJggJ9X+fHMIFBaC09SSnNKUf5ucpDj30jOcP7u+f/nufrW8Dio4MCftyNpTATr4Bko96Tdf+p5E5hwvk8CR5/e15klGXBJ51Vuz/SZbz3TrqfpI9+4fh6AAivNj7ZdSzrdDEkXAdxoIzXacL3oBr1v4dz50HKO+Nn3eV/R3qpGdoisjJsajPSwsmmGWgay5gbRtlvUQMsNSkKZqJuBYMbU8tM+BM2KR5DrKJPYATDAm0atHr+8YPuhAH+kyNOFaBRcgQR1bNu1oL4dCrhYznhQRx8HpCz6/0OppM1ybV0sslsOPnU3oN2RFS2j6O8qi4xL1ci3gyT1VcWgBEZbrYTy1pS2yuZEe0SGNFrVVzVq6z5AjrZqpB2LGazm6NbXjkgJcIYJxGi4pnPhUX5oPjEA4GNFXwnHraJsYpUTaELnhsK1jkNf1yF4aG3zz6umhjm3FslXRoJFi4k0micKulhDY0xdA+J4YQgLykUNgbIZyEGEdtMvlLu1aSEFEg4tM+nMh7Yy7r8aophSAOrLlM7QF8L6hyPYIXCDvxCOK2H5qvOpQpcK2n0ubAwAACAASURBVHg1jF6BfmFU0+bYX9QAKnftjBTCcQP6Usd4ihr0nl5DXYCF0XkISvrbYr8RuBHWTdMqjpcLlq8F5WuKVtC4ZxiTbmQRjNavkffyaMDC2K8VclfniVtHxygHJksJkEjn0Y1nG//C6C96rtQvWzhq1CSeBwBkZ0+xMo2Rrw/E973knywDsAQqUAjly6bRUVEjg396s/6+d1pce0EZBirWyiLA2wMoGq3sL6uu18cBqRX9h2s4eLKUuX1e1tYMWNqb/qwy6G3XM+++Kz3YARhHz4mC9VF3N8zdKTfwtNH8QjKleABautGE2RwKk1c9W6eIn0dha1FAxvQDyJ1RKylY7goctY8XPbt7Evz0l+QC0P0AHpsCVkQaXaolaOzUGvAAihsHgOpsiAxKbTaw2QSuXJ8izVe36He3HOJIGbMzt77q/kQh0GZCv7aGJDnhAABmlPsxzjNAQQQA/LqDLep/vBQ8fvmiYrJ7h6wKDvj52y8lAAU6OqqdN9S11KgsJUq0Zr2J9Y9bnGnOMpBjnCHCpG0Twf6rGyBqLAinlDT/P0GZGEcfc+VCp1n7yMayX1dQa+CvDxsbFRkFIe7tJSp9n8pSwERgGqkwEeF2XQEH3xjB/pFV96WwiqvSYwP2A7JtVoKwjFScyui1ov94C6CJv0I/b+ktlPPYiSJ6n6PPlJx8qUaZt4h2UO29TKSvW2ds2OfinCAa6SoRKTNnXwSRVmHGvhj9H7mUXyww2/POmspROTaneLEycylwo/1puqc8AurpGs52OBrQtpmy7WPQu4rorYuOeQgz2/M96u9j6iU4HRT1Png0vTUtXZhz24mHoKGPp4MzffQ1Ioo+Ry4WmZkCfk8Tgp3ApG2PNtG6APWq37+sFlxiPWe3YYCLmH3j45UjwD3pdODkwHvKx/nydjK7JNjc/pxisO3KHoiGiLIGgGACBAAzrRW7x0XPjil1paU+lAKs0PF/bGP8XKTT2iSZ7VCKrQMrVRmA6SkaK6eUi+y4hs5KckC9hPRLtd+n89331ERzT/dzh9kFfcXSaACgHwl0KJh0HFygNeYmAVcOUD9zZJ3VcPoeLK0lHLiz85tTMLIDSAwqGKlZLhoa/bfndQmwJ9IqWhtADNN8/zSHo512BjwDE/JlbKB4z3KaZ5+TwgHKnMs4jnlK987MALdFYgxOjq+kNZqfHfeS1H4a+wmYqz5kkDJdZJovE2B9Btb83rk9vs5PwAnR8F/O7I/3t3z/nMHu1XNvAuPPn092nIJr8vxzdpZO6RQ/+5QHIL0IOCiUMUEZpS4EL08WUSZXSzfnJCJXRwOVAvYcN6KIjtBjM3pdU5Q/aHzWju6bME16AhTc0HThPzfo6OgaxbEDLwcLPN98ErwiwNkSXtIRJCieBrgQ5E7x4hAiLekmCp7mMpo5khr55+ZgTS+tZia/YAj2GQLtrIpRqtEM2CyauBHwkIkOGKUUw8mWiIJNfT2Pi4zPj/ZBx6GLVtuws3sS1/Kvs3vJ3hkaQEH0J4EYziQ4Xx0gK2/psTVlangb03gyhkHt94rn6+97irgGs4JGf4PN4HMlw7hQxoVHShUM6IVAx9CCAABugxqvD05r1drv4opI4+3z24u/FMZ4xeeZICXdL7dXBDhEX2AC3Ytl/F4ZGBJ99v470JYPWEqUZjnl1/lc5XKhkRbRAQ76DEUay7Q+3IAiZcCIvcipqdPSgfi3WB89cq+OFQZVWRAOgywczIks2jY93xxUOtrIf87Gqv/Mv0snNtP5snOte5nb/QggIM7HVPIrgALbk2oD2QK0cXcNBLE5HO2geYu4+jnGOTqNsf+dxyLno3cZbQ2nyBw/ERtvi5D3jiiz6SVSG1m6ga1pnttLbuSSrTGmMOYcaIODJIwAqV3v4Az0+P+nCkK2PoCxX0F+5vl7yBy/jhAODOc33zscpD695yhYB91KE3eAqgKANTamnhNHuqed8TlNTatgaCWJkktcelfsHOBV518KgnkX1FtfV3FmefvGc7jR0J35XrTt3HdA52wpsXYiPdBZDozID7Wuv2cL2e9cL0HXE41oczcg/k9cASYzjVREEvAzAzHG4GQfeJuyk5MQ7vkc4+n7k3aRv7t5fFaYhuM1Nfw7Y54d4XP06dkezr924ONsoJ+M+bj33oZWwNk5z86MO/DZYH66N56M7bP+iWBS0j/f08/BniJ84XinPp7n2Z/tehA+d+5wJiq0psuM7499ZPvFHLQ4qzA/b2J/+nhmmz2cdwPost5CnofsfBZGRM69r4lxFH2cHGx+v1bYnOdn6vT+nnDx23Dax5qOOyXn+ZvCeOFknsBX6XP/vI/AcH6flUa0qO6zUoBB/Z4cynS/83POP8ufy88OZrOxILIzn/v6rWftCUxw4MqcOk3jS2PwTGMCwFSK8ixi6c9xALOnhpzH2H9GjNCaeHZlMMHZotnRRhrv3LeJ4dS/66jal588m97/7nuARP7MM9HI8xg4K+Y7jv2fG72fzrxnz8I39oa39899jrMZ/hx2RGZcnJ/3byOqadfPA1Cwgeqfbuoo3I8QrJIKAwBSp0lRdlk0Z5JftxB7y5Qj2nbQpQJSLQoo4C876LFDfvqsNmGtCJQO0L3lVDUAaJbD7/NsdG2y39c3BSLarYIfTcUKCXBqEDdBN0e8r5rnzyuj3puKKmZH2vKWS2/gjbD/UPD4gUGtoKTIrkCV97tRYOtb0+jWqtRwEqB+2S0XWfN9myNSR0e1Cgblri/ibmKJjx8YZRfw4dR44OtfFnDTcpiAGW+HoNyVraDlE5XR0G4aLdP8f1j+vra7vqqx50yF+mjYXyqOl1HGsl21JNr6uweC6WHABJlDcv+LFV5lg7pg/dLHy9ee5RUatk8lHP9I/xD9o/R5WMUHc3j87BAxVoB/GeO+btcLwHtXNkclZXLsPapotAuH5sD+6wX7jfDh7zSKd//1EgyQqSgJa7m6XhHOQTFdA0874L1h+WJGfND5xwuc947163Au6lcVVzteWO+3CfYPjLZCqx3A9leHptl0QhEThLtLpErsHyvophUT+BCN8pPO8f6xRIUIBRC0LceNUHZlj+j3OrZfXtAXwvLToYBIKvGKZRkiqaQCkpE2RIhKE/2i4pM4dL93ImUDmUNWtg6+twCR3OHySDhvGhlh0agmHV3Tms55tcQmAOjOis29AWVaztQrtVh03apFKPNJjVGyCh5nAK5fNULkopX89Rj00f3QKG5Gs1cAWNT5bsqCELI0D+YAS/jrA55K4CAnmDW6bX1TZ9POKRt/JgTjQUqBXFnX9H5AloJ+WyKlA5UHq8SMVQdx+8cXyKWgWKRzMsoOTdOQlytAC8pPd0TE8Awqi6CTiVhWY2WIMnp0/7J+5VLAb/tET5fLaqCORcw3AK7Lkx2zrmtQbhf0j6tGuZuAqKs2S6mx/3nvIIucgwj7L6/ohVHuTddGJXgFBiFArvaOYhMF7mLCqU2f48aDaVbw/ZgdZoGWXX01R3e16CfMgd476uPQykMrW/qBVoIgJgXStx31b1+VOWLRcqmsLBuvDLN3ZSNYqo62f1SkWH7/pmO66HnqVR7QgeJ9rQxZiwrgdkVCg6HQ1LBUjY82NDReLtpfEQNGjc1nYAUOCaYDP46olIF7SnusRcuQPqDv+4dF0i1CRz+9Wtvr2HvXVfOF3YF/7EBpEF4Brjhu+r711BpqHdjG2grHxwMRHgHLrAOnBx/mgCanMQs3etqTs+A8/VDnRRkX/YcL6LDqFW8PZVe4Iet2S62IqhHnyHbsK4tcvT30bCoF2HdtX62WN25t8XPIo6nerwwYJENUTBdCAG3HusZztaRvAaSrlo5HQrNgoJ8VaV/q4qvjjPGrVtBCkE1LxNIpGh7fFxlikRlgAJ7n8ntENcCEpuPp1St8vfgYiLZZ04QY6KznxrbrvDt7ZTMxx+sa2hUALEqcnEQmZQT4Wdg74OzVUkz7xUCK+6bCi97+5KRotZMlgSJtZqMYs0M2feazNRPpMT4nSx2MkQyquGhl68C2TUMaoFtrypRgUnHe1pXNYsCbGIMihDNtPuSwygvhsPb4dzhetUL2XfUEDESJSLezUByQyECYz9/hrGZzvK1caoBj0RkeoECAiX20L/ah21RN7ZO8znwtn1MyugwAaLFxa36G6bxQrVp5To5wFr2/8/v1MPDMDN3qn0ngQa3KELExmNgjqdqGrp2uP+Oxb96lrvjv9uM7LAMDJrZtgA2tYSrv+E2Ai2PdTb8DIu1KXBslC6eenfN8b19fqdzkBPIloOCsf0EnRlMIGqYz8QxiTelhPhbRFn1fRB8mFkUfbfB7vZuDeV1HtZN8FvoYPrlfXouT1kI+3w0YmxjgT66fB6AAvJtssNJ56dGnCZNFS5zQYUZHaBpkBA5wFoNHv8bvUk4qEBvgGYoZiPzegEXrd0dzI/fN0V77q5wQXhgy7RMl42eOUk4lySARyadDjWePBqnxhaEVsKR+sD7bxfCcIklpWOJlZE5oYe2HrEMxnxqibKMUoJn+ltLY7XcRRQBU29E8LW+biPaE5/YCw1EGFGwpmwCMoPsC6jBmmqczC1yM0PugAob2b/G5NCTUHUlAI1sG7pD9zvOVJd/PfhbgQqaaAlEdQoVAoYa8sw+eXURR/pEEaBfS/PzVQJaHjbOcvibWL0FUxCATlaRHA1slCy+d6XOXNQ0yk0IEllst0S9uhLFmEawFX0cKCAnOrAopyhjRSgXmoO+ipZ9J+RN8YOgSSNIxADSKSxi51j7epo+QWUCj5CIB0T77t78vmug7rQk6gH5h9GbOlI+lsSBUc2WMk6Zw+ADZ/S9VgZdXo2+6o2x04nmibI427Qu7wOEpGu/5tWGQVYA8XYMs7/mkWh/RLatlrvflkWtPFAJ0zqaKcnuW4+1GqTqINCL7T5Bu6jZHrYe4I8ypjxdns/PWWQTAHPnyF5vjFrUMsUYAHon2yNmoFCDj9+ls9rQnFwWcwGIZZ5m262TAON3Z2RXG/PFxU/0IDO0Xf5ETAQWWQoOYU2W32Dy57W4MqtA+cJozQZ11SeeLjymndeFCaodV0jE2g3SYwWLvBktRy2BDRP+MGRVVZCCgzdaigTdhWHsUXFyjQEZusqe3TEZ0Ghv/m8jATTsYRDQP1ve33UtBhMQOyOsuGC/pOV0/H4CV74PWQRV4p/ieDSwbv/h53kNxnxSFAwZYbSAPLK1CiFQI+NE0fcPLHp71CzzVSlIUztlIORJsegEKII8xkkC653dHsNTYtDBEBpCSo1TmOIpFh8NBYB7zfD6DfI2ne0wASRobOueNT42kmDMA+jzf11Ei8BRV9nM+3SPKVRJBoCDYOzE1v86MBQdCz5+l1HdgNtDPec4ZHMmOi59JPr/+7N7ftyvuY/2gE7srr0sXpz07kz6GdPqT2xxzN34XDv2zM/3JGR+OojvR5yu/d85shlzu1seHntzD+9IFU8nEvD4yg8eeIZE+AKAmUMfnWQSR429tmBw2svs/Y/Hk/k1tBKaSm6Eh8A17Lsa6z/fJzlde7zJrXMQ5YefBqB725HmRJkBjTxlLSby/fn2vzQDODAo6ry2fr1P6lK4F+3kSw/QAROx7f8wzIOF82TPp3X578j1fi/4896H8LGTGn2QH/BlR+j+HYfBN5sA3nnH+/FkUcarS4BoYwhMg4Z//k1UvvqXfkNv3RCjzW9d3dSj+xPXzABRkoPG+QPta0G8Vy+umiG/XEkftx6sa77JbdKkPQxUYL0VmwBSeNf9YXxz9toAqg9+uiqjv+4x8ZREcqJFQvjxw/OKG/UPVsoOH5rZKAfghKFtHefW83Jn+FnRzQRKIA46PBccLY/nSUB4d5bGHsS6LisKVu0aL6r2pI8b6XZjxedxU0VtFEBUUWD4fqhbetEoAgHAkuzlk5E7DwZAPCx4/eu11YHnVUpUANALbFhw3wv1XhOWr4Po2XohKU6bIq+91NmB6NbHIBitNqbm2akwTykNLqj1+saBdlKkAAG+/WcG74PK7DV7B4XgpWp1gl1SFYoAn2ibVFugnJ9/ryodWRbq8cgTvmpdPx0g7cGezr2xO5o4uBXLT8o3HjVA2dfrdYWsGOnmFBS1HKSgP4O1XBVKhDIQdWL+6qItTtDGADXFn1cU6G+rnB/jzG6hdIaWAH7vS4D9d4JThAQYQOmmJTjCwfSCUjbC8HuCDUO9WQeMQPH5QwctmZSLbog6KFLZxwQAf2KpyVNV04EfD0gT1lbD9oPTs9avE2lemQwsK7fJZoxgeCVb9FC292CujmyMGgUYIC2les5XXpAZNubEyhfw4QJuCfu1lxf6DAgLdAZgm4LvqprSXRQGFRSPvZE4XkvFy/80FvAlur5vSxdtuApA8G4qk4Aq2jvJlAz92YNvRf3xBXyro5TrubfoItO3KXLisGql2AzU5w3Q0jTytltedS7btpCJ/DN3/H1e0a8Hyxw18dLS1gAyYc4eRXw89P/1Mikit71MeegjbAdoJ/EWjuuFT1GJMh8d0xk5RoKWq/s11QbDMbitEBPz5bTijS4VcVh2L+6aClGWc+9lxpO1QocvXh+7Djzf9uZd/dMfOc9NtfSobYyiiSym6XhwIWU5GOBOwK2NGbiv6paooZxcsf/uTfi7lpKpApLE3DMzmo4NfN/TbgvZhCaaKn5P8Rceuf7rqOKxaqaRfSgjVOiDEWwIxxBxmS1dxQax+KaqbY58T1tKyfD+0ROh+AG/32ZBZfGDJqlgkoMOqnKAT3mUIhLCTANVEVgHVCnGjz0Q6yVNLDhOIYkKU+nTQYj+Aw+bBSnry3oBdhVOHAr1VYiCydSIg8Dtn1NdHOEHeXl8jXUbU19eqMRSEoUyJpWD/tIK3hvW3r9oPW6NoDXTYmsmVH3Jkigl4bMG+iOebHYKjqdPspYxTJYJRErJPAHYAeV9eR2Tb16yL3pn+QDAwxPrq+f/AiDbnKhE+fj2BMTY2gO1DF33Njn76TBbjo1rD0RER1TgA9LutmbNCALoJaNYUVXNQQfdKsJUmZ/wYzn+a+znSN4MoAIbuw8UYE/cH3kXX/ToQYxJXl4iOioiey4VnsU473x3IpVYGwZw0/YtaV2YIp7Z5333NeJ+dku739zF+vY/1BGg0vRTT0GppvXcdf2cf+HpxrQovP8meLtZGFNNt8OzoTcBQT86yadT4OvW2BnCRIqmL6g9RYdUoy6kvh2oUyLaPveTDx6wRdetbaGccamvTsozxrHVKC8q54ZPAXrRTAzwx/r0jBEN9PaX1SbViilYT63oAIJsxfTLL5nx1eX+2xl43oCUAHN/PKaLMFsTJqagOAiRR9Kn8ZJSuda2QlIpo/Q6RytBy60C3wIC3idJYdJtrv19vY588c1iD2dSDES6JdSCu5WBsh7lcpdkzRMpG8T3eGqS1IYjow+HzDADL8t4hz+v4PAf+e+ub2uQ9GGjvWGH5u773Tu2O3zkzAMAI8xuwslQou0lm4VYH2uKeNFemSMBnBmjkDBpnpkeuAtLfi7qewYRZ4FWBpe+BKz8PQAGpsw0AkRpVZujFy7c1KxPX5/JRQDLMPaLIatw6amy0UtqbUnP2fX5JwhZjFihpSZRHMHIbizq22KE1xp9ELiP32nKxYaKGIGgEzByksrL1t1gkghRMccVgT7GA6M8WqINrIIWW++qQgyzvNm8eRF6vRmndoR3qrO1asH+09Ix9tD30BqB7ypkSUb7x4wKvBsEPM1rNifFBGDnoos6iswn6MLYBc8iLO6HjmSADE6yues7VHbXg1ckk0jbrXLjxrT8L8UOmiMD7mvG93YmADSjbAVSPwgnQKc27G/wdvBB4H1F/T3EIR+4QNG+vMTukaPScDu2f5kUb+8DKRmJ1PQAfbwC7zqOr+NLjALG9yL0/NByBLIQc5TEbNJ1lV6DJS0b658lfSqJzXXZljyhDApHrXuylM7QygG7gkedUe9lUT/kINkITrRJgBrQfoLIUNFPpd2cq5sfXQ7R/CGUOMUhr49FVSNOFGKtSNOSywCN91F1DwcTn1oup/sOE6CxtxdMF9qYpMLu9YInATr3fzcG7lDlSKaP92ilf06Jlxm5mzJ5Vtt35qzVKjhEwjD0aKu5+prkWQicVXw2D1NouzKDLqlUQHOVvAn59aMSwMrBLjE+0219AoudmnKNO9XYnw2nePk9GUZdCoPs+jAx3AoGoE5+doIiKnEX8gOHkWDqMUqhNvNbAiIhg+Ivb90OO4Nk6Fy5G0y+gwlOevJRU5aZjOJDpM7Q3EBrahyUEe8EEeth+3sfabC8KlMmlwrUhosqJvVekEgDSPZ4NAesrmz8GwqiqIAAVj1BAwdC9jRKV1mbyey1VUz4sTVDpPBhrvyhjhtA1HWLhYImxz4dpeMz7E8MBav6dPo95lLdxQ69ODhR7Wo6vv3OkuhvQ4GwBXzde/nFiJ+qeD7ApO9A+x+bQBijVO3CozcGbV2rpY9xc6MyZAx1jPz6j009ODYWx6dVmclRasnga2Uv9bJQ7yFCtDKU/Izl61HpouEgtmr6Qnde8hlsfjs25/Ql4CXDj3J5nP8MwRrO4mI5HCScznM7sONq4jPHpc7u7DAOdUh9bjeoN0z1j7c17CTIi39JVaPZZ1JpsDUn8TNtDU5s8mm5z8jjsLGJlBn3jbJ+cyrMjkz/jv/dIenZkTmfE9G8/t7mP9iYnWth0c6DrUBhjDH3cOwCcnhEsJwYVrShFtc5t+F5f3gnvyQh6J7HAiX7uGhBnRkWydUK3gQkBchgwQu5gefqCj+EZcATwTphSZDi6NmfhXHl6RHnSd7/OIFz0k9/dd3L8z5/36hXPAsXP1hQTIhLwzLnPQNCzHPloV1dfrBtLJ6d7+HXWdMiMA04pkX+CJaDihml/5c/3PtIi8nNaG5/PlH6MeXo6O9nBfjY+eoP369rAqGBFPfvc96L5ec+mzwkQzKzvsgeeMFD8nH1XbefU5qfXk7a+G/8+zhA9z8sALr5x/TwABTM23dAEADCrofFQhoIjRvzlbX5xnw4BN+jkuqLfNB+KBMBDBaro65sipxlB98sQGUV1VazRJyuXFxOCRl0PzZ1+3h8KJy3ngTvQ0C6EdiHsndVx22o4BFopwaLtC0HugKYFKO3//ssCPgTr5x45rQXJePFmyKAMB+27sxrBi37+eGE8fkEoD2D5IqM8H1MIMyI5T71Cc/CdLbALFiuRFlUaulUiKARa1GHdb2yGukbkyn04xBp19g1nDrFon9vKVjkhObHdQAgm9IuNdUdQ2JWNq868FEIz57nvyozoBhh4W3VOCRVAfbW87UrKHIDASwu64172DrnPG7xdFVCobz1SFLipeJqzWiaBQlYmQNmVxcGHOu8HOcNi+HIF6mg7RZxe79rmjzd4rnykJkh2aBWQkKLaCWUTlLc2ylbaOCtIY2PYx2frvSME5mx/sWmZuLo8DN3uC1sKiq4Jde5bOL3uMMhFIypYBC5s19eK46Wg3hv4bdCzu+WfO/Wb7zA68mE6Asmwa5qDvnzlAO68zCS46u+tHWTMBykF7YcVx7VENZP69bB1o4ACHhtoU8dMbsoaoN4he0c1jRAvoxcHcj4TwnF0Q6qZan0Ff32bD33vy7po1HSt4C6zsdMEYI2w0dHV11n1bKzG/uirphrQdijzY12w/biiL6xsqPuh56iBljislJqXhTPDWIwFQtIGPf9hET/zGOS6ztGJbdfcaGbQ/THls7vaPd03yMsVcqlD+8bPTebh6LnzXfT7Mc5NoAKTDRGh9Oh3RLmgDvBiVW48cg5fF4x21TXMtxrOc4BOVpq3X6ulGyVjftvVgasfcVxVV0CYUL6qo67rU8dEPi4q3nlRhXcHrmThSFNwkGB57EF5j7Xj6U42Fu0jhYYMH+pwOFOIHi3aBpEpyilLRb9pRSAprFVMRNBqtb2mJd7KA2hX3Y9ls6oVgmDfAZgBM2dGLdr3ujfNk6c+HC9/LxuTTT5cB+Bj+yWAkHifS/ybjmasBl17/de/0KoPX96GE+oOk9kEqhPQhtFXk2G1VMhtCaHO0FEpFAEHPYOsTCowbBM34jyl5p2jowZXOPNEEUUKkCNy6AuwJvsFGHoCfj9AI4AemX7ndAxQhGB7tpZhhPt69TPtnBqUmAoANMKabapseNs9A1SJ9j0BF/LzveLCCZgfAMfQxIjxydUisjHubI5SIFcaeg/AGHtjBKBbX5JQXvyd8+ozEFEIgAM3cxWMYWineffUmcemv/fyob3rWQQM0DUcQL/naR7zvUWG/gOagvFe4lPqe+f3NCfBTPA2+poENJJ/HJBjA1BGOkPaq+f5l30frI5iqWzOeEh7Y7oPgHNJRndSo69lOFNkZ5HeS3PBw/mONZiYG3lO8xzbu0quq9oJRIiKEoAFLt9TwMMBduDJmBMgAxSbvW9yesQzJ/Bb6QddALTx+5xK4P3MYyW2Tk2o8Z1mQgZrevq5a344SP9svPH/Ufd2TXIku5KYIyIyq7qbnDnnrtZs9SLT//9XMpmktdXePWeGZHdVZUZAD4AjkNlFnivTyyjNaCS7qzIj4xNwOBxPUrz5aAZ288+efbArgFmlI1ITckWEciotGX2Rx7Qcwbr8b2DeLzuyBIsIHpxZRXzG2aF2jQHl789XZupkAC/AvZ84/fQd8xrIbeV1dvhxnINPLwakuE+n+8lhf3P/MYMtv7ieVlDJAPMZWCinffvJ9dcAFByVDxGbYdQh2fZALmOBHAZE8YxCRMdavC58UJuDelMgry+OXppBK6KR7iDX6xykxQQdx2I156cquR4NzdTJw41GUrfrbcR7RSrAXbFimPPFeVst2k4AQnZFdVr4aMVF6QbavSRH2N+ZBwkdp8cOvTRsX01ULOs41I/heZzw9iHAAoueGfNCRYCvFVQyl6FoNxqYWa50YwAAIABJREFUCKetv7bZH+5A4kvDfjUNARl00NVK7AnMKQ/Hz8CSHGmirkTp5miPNg1QlsMcTbC9FrSbon3sk1lR/LPq4EPWQhgGXpBZQmMemNH34lT5mFvVhP/61dIX+PuSSkONdbYNAiv/N+ZzR4OxEAR4fBF/3kzXMCZFceBGvb+sbGe7dXPGSzFhJ48W6MVE5qilAABlLRidDAQXP7xbm2T3Z+waqTYyNAQb201DeyEAigJ790syMGBjBgXk6iVGVSdQ8WFU8BBXi4MDJp4HHIxEzsvRCvR1iTVG7QTqPtQ7BQZlHng0ci+2PodXkmB/ogAdxR0wG/fqooJjreYE3Xrkyve3JQCn9t6xANOZ9naXd3cY38sUYN361BZQnakKjKYOWFT0t6+Go9AIqxXj9Wqsq4+77VF9WMQL/h06LyKHXNayGV2whIGiYTgyjcSM3Q313nwtTNACQJRQPOSeOpigzVkkvYCldk0scnzKXT44Ko8N6AXjb1/iGTF3aoVeEI6M3B62Dy/NI7bFqO/dWQgDRr8uivJh9GvT2qgheBglDrcO2XkIwjYp2lx0Fng+AOaEcz17dF8XK6NIpkxUDnJnU+7OrqgF5d7RgNjbADds+pzb7U8TyBxrBVBnaobvfQBQP5zlxmWSWDrD20PxV6ZF1ZuDdveB+v6wlAoaFLWEoaG1AOuCsfo5drFSnbwPWXBjLSZ865VVWKKW2g6x06mt69EK0GCpHtsIfRFj/SwY63WeRR+bpS7Q+KMm0dIcwOnpfGfkt85+4h5CoUXVAAO0CNAMrLG+TU4Wo9C5qkB0rBu0SX9DHrvNGzIS8mfdsT1EUMnWETFw7mIOFtlTVjFmzPWR90I62ec1lJ6FdZljKR6Vz3YMcLSJxJlXwx3uxUpmiroQHueG90/YXDndgs55LpdIkWoKSPKZJTn8pC6TshxpMua8RZRYxCJytWJwDyJIcwApTsY+9z8RAN32Ihq/scf6GDGanivNeEUvABHFNS0uF9VUme9MVkAuvZmZD0i/4xWpLJipbpx3ZyZEYpxNp2n2YzwzUn983bRqtO8s/sm5c7aN3YkOUK9WCON1OXWG/8+OCfsM8HNBIJEvBRx0OvLZ0WU+jxcFCLmuWfKxzvM0AIr8MyRH69B3/ego6z6dbFVAuzGlgJl+EMBVhxKA9vYQeMlOnfaBWZI0OerpEj+LlYyjIqYlcyif2OdnD4HLtAeIf6fCjZbTGLZmwEboxDmDmm2LRidQIc8jshUCeB+w8nBu6OWAB+2qcwQ6p3edndmS39kc2YOw8KHTkpPO+yTmEjUYPtP6pxMdEXP6cc9AgWQPsfzj8X2eOPDP3jn/XBX6s3QWX99syyHN8JkTns+A/H+u2Sdt/FfMgHyf+Cwrs6SULd47UimYHvOz65w+8qw/0/UXART8cuBARaeYVJ7w6s5XwfzZAA4UsoRwiTvWNIIPmyRrlY+BqIXKBX5ZY5Joq25cS+gACMWocuS/mPMyUW8gSmtR+Movq+WtaBTJo3NepnMFICj0VNOv94Hiqv8Hcca0WRWPBMs+gItR8Vl2rOxGnyXAwYVXs5iYzPYJjg6mpUXMzwLmWPbVxOKWd+tnq5EOjIXvBDeW3bHuM/2D6vtRivHwZ4IUqGygPZdMirEI9OGslLUiSuURsWeky/uRVOT2boyV/rbM9BTXQrDo9zTm7T0F/SqQPjd95k8be6Fan4gP/EAwAAj6SFfbs1d71/rw9/Q5rBxzt4tlN2dXHp7n6tFaRn/o/GRnTjxFYSwIDQPpMz/bSlEq2mZVCbKuUtnhzAkJ0TAyVfpKZ4Y5d3MsqGMR/TjwOQ0I3gePPR2oZQoJwuYo2qxQEZcDCsHgERdq4rQvcJ0D8coicANcXNfDb7PZfK4/LCLbL9VozncHHUXQ14KxSmhr1HcCimXSoT2SJneL2hzK3A44GOagDzMCPOKked9h/16qpbVERwzPX7Zce5USToS2MtcFmQWxD8w9iKACHWXZx6Su+9zBmPtXRHhF7Hd1Ot5SrLpApvLGPpwjarHv2uHV//YKFEH9jskg8OhORFD3DmwbpFrecURR6Qx2AEWhMCffnF8HSavvy1Vs3+tqzor3t3KPTAd2poEb68cj1A4WqBiYzHGWfSQBXY86uvp22bqv+TpTzfidYkZieX/YvHp9s9QjApu+9wFA3SxCPhZGq7yvxkARQW9eqecygbHyGM5M2FE+NsuzX5rNL84TACAzoRkzoS/F2UQ10mW0eMUSgjXDU50cENdgNKmj5TrnhwsGhrilgyfb1wX1MaD7QNu6ORsjOYvqpRCzU5XmJ+di/J5gmWvbSO9zz2nV8t/3nualG/rPynbSbtDZzwBmcABIDotOZ42f5f0Ytcx56nSy/QoGBQETGmjP2JX82yne+uJVELxfUYun+sy19qnf9u7Cw3M8QhyPYBbXGNM6WgW6QGVMYdEna0ZGmf2Qr5wHjXqM1ImY07Xv0GIpRpM+f3qF4mADv4PkQOhMKQsWw2pClBGIYiWwPvxsqTOQkACPuGhYq87UFdLYCSqQEXG+8vhlhwuY/2eFiGfOxNlJZYUJr2wgjDIf7NY6bdc8X87jkdZUgDz6hFItAuiAdgcr8lrMoAffNwNJGSThv584kpH+kv2QIhAhyNUnWJOrOUR/nRzG7CjrgG67VWzJgo1kcnDcMuDOe3s/a7W5Koe1OI5sBDl/PwFFezfwgW2vqV8i6JHeTX2dSEGwLZimIADGyWkNodOUz96pYXDqbIIKQLKx0vsT2KE+AvvII9B5dhzKPOZoPS9G/5NgZAAiKf3g0P+8XwYN8jroOsEqVvPQ8ZwdwWecnvVUWP9Zu8/3Audqmfu1/XDu+7x+4YA/ZRtwrvAeeW9mm/7VPf4V4HH+OW1kuyEObATg07p6ymhIzwgmxLkvTtdfA1AQMTQ+O+WPakAAWQoZFYUcBlq2o2Mte7eNOKG2LJEVCLwrO8uyWImdvAmvixn/1R3UcPxZNkM84oQZcXKFaIg78ZcC0sVNhRqR97x82yIi1V9aCAmKAtiAggHcgbEW9IXChjop3GEoI/J9GbGvVSAoePztDVoEy48ezne/mm7D/lLdybSD5uW/ex52M0f09m8V/cX7S8zRbO/qEXWEk9+vHg1dAahFQvACMHK0vCvuv9szlx+KspnDOpq3wZ37+tFRP2B9BgRVPhyUAbQPy+NiVYfiDId6dwOretWDh0K/LAAsf19l3jfSK7qa8b5YtE6reDlL6h3QaLMxs9KJNkaP3wve/0vDy39TvP3XPRzz4oKUZbMSifX7A/htxd7q1BTYB1QL1u+p/Ir4H03/hxuETbG9NtQ2kreJqR/x0sxJYe68WgS63gDREvNN+sDy58Mcipdq0UR3ZFUMQOirYMsVKVTsHgl0EjVgYSyC7U1Qb8D6fTh7wVNgGNUUMeZo8VJyO6sIKATdaO+tYnyxeVrvI4Algjgc4/21oOwSEXbZFfvX1R1JdXaEzX+mCtm6UWdj7IAC+5sZAmOtGGtFvzgdfp+Odbt1jE1QHi6G6uu70LEogv3vr4AC9WOLXHgrt+hR1TFQtgbZu7EOxKKL4RSsJg4p32+Qvc/ocpRqOxoFKp73Wi0NxEDDfear81pgAZvdo7ViaR1KgaGhxtpQRX9ZQsCP7cJj89SOLwa8/HkPJodFonePepYQT5SbiQ2qG7mkVkME9ZvrNDw5IOnw68vFWDdOMyzu3GPv0Nfm+fxeccHHyAA/T13x9Vs+TMxPLyzVtgNLneJ9Je0nW/dUMQd91kkhFlVL6+DFyK07sFgXYwbVivLjjvID9n93LILFcFmgpWJcV9ub7pbqsv1mKRD9KmgfpvnRX0xI1MCLAn1p5uR7ukZ5DNSPMcFc7z/ZB+q3m733y2WOI8f+xUrsEvCSfTdGxa6o754a4XNt+TZfef+yWBrQrcc5E5c6K0/tWfe/X6BVonQmGVfrn5uDrR6pvywTHBA7U8vHfqwsUQTj9SXACtkG5PtHPJdGUnampCuQmD1gWcrLCnkpIb4oj22yDACUFG0Kth8Bs22HXlcTD7156kTW+/B5gSJmOzB3ns7wxVHEUuyeFEOkcS6unXBZsf39xUDN2wbspqtyAFE8cIE+gJ3Oqx/8se4bxpsLlpI1MZguKkdnMBvKSzO2kW6zD14u/jzaUAOyLh5YcQc9p6YCLobHPnR7bZ97GXVLUCwKKS4CWL5b6l6kKTEtgmlPwCGCGUyBBOraWvf2EMjx/gtxyuxMP7ajMV2Npaa+prCnOUomwJ6d3uRgwkEQwCzptHcHvV4ddCL4RCc9VZ85GPq1hhChzSF3rlS9TGm3lEeRadNyPqpGGdC4CNoB06EEkqOKAC9YjjT6he/KZ4ej9ZydwXdVB8QDRCtic4Rn5TBdg7mWFGa8pLlZJEolQlMaUhZNH77uGLlPTrtSByXuY/1N3YdwsEj/r4ltoPocTCAjeih0dHvm9kCwqJ+xEAgsFTlGn8uw7/I53j86JK2f4ukbudIFZupDFm6MVKqfRJAJio8yxSv9zNK9z3lRqzn7PCsdKAzzlEAD9zvOX/7B0TGP6hsEacJJTSALo+fZ4S4j5qhUB8ZGAhfyPsx5kX/+s0uPrAVhac7oR/3spP+kFGSABJn5zt9zrWcGRroXgAmqZEYGWRcBCP5kPLmPeAqHNT8BLNzzfgYAZAHM2JP6Z5Amg4pMFfr/A6Cg50hCftEyP/cMBY2DF2njrXpY4E8jprxnRrNVA0ygCNh8DmZ+v8Cj4VPU6vBREUjxKFk8C85YGHPxqUI0pWkM/05srgb8CezviMr6HgwAU93fI/8VUYZRdnURuYLOkorNbkzhv/ow4Ujp7jA2wX5B5NUXOH29p2end4r2cU37ArWIt2AsCMfZ6mzz/+ZJMyVBXSCMgEV+V2oSAABTCczQ/zyeTNGw/j2OCRvPEpTRpwKo5SqA5TeDlsy/FRgN2N80UhzIIiGTJJrh9Hd1EMPGFsA+UB+mL8H+nw1kf2YhSBuPUr20pyA2EAqkqYqdp0OBYYCJemSXJVTLozs274Yd55On4Fi6i/fXnuYVbf2BcA5GsxSIALm8/8qmx+AC14DTL0RHtCc+Q+r7PpzOz/HLY5rmjwgg5hgb1XxAkeZ/Oc0xIETy8FrnexWZCzMZ2uUxIA7uRSlXtXGDr6+xOiCXjA1Nh6twT3HK/uEScSG8tDdt+zTW/Luzg5JT5oc419uhVB6NaNVZvlI19k7xfEcwd5/gax9JCNX6IfRFth2KBlyTM9VcsZ/P4zzlmZwMb9l2i0znfGrgaHgllXX1eRBsDzeao7KjTDq5pbLt06js6QAEzAj1tJuISIsaLTUftMwtzpFcwOep/3uMqBIwAQqYKram6CYwDVJfixRZnUw2cWFc36sVGATQfN8cDgJYGpj/rg9nu3Lc3NEMyn09RkMd5JoCkDPSzu9KVxdnwxGY0mXuQ0hrumDudd6vFBcWLbHP1cc4OOx2RqqNVXpMKMR7ewEEQBRaAtlATOv08Dv298GRKlN8cQzg/jiMu+zpmYyGA2YwbQYIxXOGTpAjO08i0wbIc5pGd/Xxy05J+oxW19JQAPfdjElgagBkWycBDDPPXCaIEewWTFaOgxHPKMia1n9ebyheli7T5fXJOPD5p/H7JMiYPzP0uPZpLFMz4dQ/0Sa+56l/5z0/vd6xz7JRzprvdA5EEUr6dH4IEmRgZwBmLHFDnQyuZ0DDv7ziXf3d6IABE5xKc8/e1Y39X6yBp3nRT58/4l3t6xrOtb2STFAhzQNVsnpOY5nnZ94Dc9T8/P7RX7+wzZ0pEs40zxdN7QQQIo9FUp90mDGc1iz799QPmtt7buezvjtfv+prvku+zv13/gzfh88Kxi0O4/apaed+Od+/uP1Yc7+MOV6ZLcK+/DXL/fPlbQ3QIbftMO7pOjupfP9o+oy2f/o8NQ/OPz+PXV4/sW+lNo4CjP0zoJCuA1OKzz4AISdbx9ue03S598QelBgkB5bEs7afnh2AzbPrF47/JzAhv8uZ/VD+A+U5/fpLAApaBOO6eJm3bvnDpDR+UkHG8YDLk/OxGbXudjMU7pKiNkSqnUZoxq5F+vTyAn27YpQyGQmAU2oLxqUiK8DPMoUWzQHsMCqPjvqxoQEeBXewIeegAoCrf/e1hPCVwKo1lPuOsVT0qxvsO6BNsC8TjTbdBcspH6uVVKQz2b2UZP3oQIHllLsTYtFcREWB9jGiaoN0RVVF3Yz++vhiQogv/+hgdQeoOQ7jWqKCgwqw/BhThFAANET6AgX/6FzffxMsPwTX/7EjMy0AhG7DWA11Lu6wijsuGWQgiAKB6xl03P/tgsfXubj6RcLRLy4WaI68lX3UAlz/fYPcOnCzNA+WGNVaXF9Botxk2Tx/eCm4/FNnxYMi2F9YNrOg3gmQWKS7dNeD2Myhbj/GdJLHBCUAYPjmsny33YeaBwCwv1q7GQmsN3vOvtiYF2eyyDagLxaBH8uCsinWf6g77hqpAEyHefxmaQ3rHxbRb3dFgGf5jKtH8KFfBI8v8/dlc8YAHXg3usZSUJkfPGzNjt/fwnHFsE1a3PB7/G3FuEzHafnWg+Y9loL+1ixl5D6sDCmA7Tdbh2V3odABK+15FZS3dkijoLgfK1AYUm9zsf5xA1qxEpMAxtosD7wPi7IBNo5uyEpX4OEGcSuWBtHV2U0zZQZAaLEwLclyonHMK3RwM8rCuXp4//0lDnitxcrfkuafDzRVlB+zvKP6nia75z/vI9KQQo2fDpDrGHAPaY8t8lCld2OUvK4Ya0X9YWU1dWm2V98eFr1/uUxj7/1m7b1QYEQtmnpZAoUfL4kd1jXU/K0ihqVPycecO0LAmH1aiulnvC6zUgH/nEFkynckoDhSPGD3HleryiBq87L900poEnCWPoxSKxJVhBjpycKPBrbYOIMMChG83HbsX1bI31csP3bUHxv624K+FjzeKqQDl388AJ3ioCwJaaUeafx5X2RAxrU++svV9nxPVUBXE+cMUUVfmwKMi7EjKucMYOeYA26jFtTN9moaPqY9YsB4e3fdCvE9YbWzstwsHcTKzJrOSr0vB2coGApj+DqxlCiRyQDEukxjlywRziWCKa26U1mPjp46EIAkRthqMBCjgtT9MaOqfsntEeOaHXh9uRyeL3sPEdNc7vJg5MZNxSKPAGSztrZvj6nzxLm0NBNNdiFPvN8j1cgYQnU6nA7KRLpGgbFiWkH5cTfxaTrBBE5GEv4ks4MRtXXBp4vMjSymSOCT/w6bzDVwshYA4GUfxQ7jxcodRn+1BFhy/bgzS7YHtUtQ/Ll1ne3LJRZVnVmBIzBLZ9GrMgTLwmnz/J6IAC/X6Uzz2rajRgSjvHRQWKbTx10WHzsVE64FjKWz7fPZHsFk5YVoO9vLKP6e2lEK9Hrx/WY/OvCAReCfUbYBL5FYZ0Q6iQIGEOQMDi0XO/pHPaRdHCpCnP0VppWMtC7z7zhWQwGmv4hAvVpNRL/7sPfwSiwHkTlnusR8KsmFifXA6LkHT7i2h6eUZL2fPgCM41xJbZ5O9smJz/O0Ys6VXMEBsAi4zxWWHAyBxWWdzryXQTyAGlFqFXPe8j2HItIjTqCDZtDROtbmIzAdSJE5XgeB+nqk9MeYjvm+xfUihkL7NsU081h4BnCAE9vD206b2fSZshhgBkFCFDNeQSwt8qz/kefjsz33V1fWN+AeSMC5VgRrYpzKK/r5+akk5bP9PqeGxBr3OdBdp84RWIILAjmyyvz55xKZGJZaKZxvP/tsTllxAI2A4eE9CSI+e58Myv4i5eMvASgwH1Y8CvNUkId/+wZ50EQgVSmoM5ooQMd7HDQYzhsE80KJ3qsZnPu1onRzIKOcmN+PuaoEGSjUWIBwxPtFIhddpcwDXQDSQkkH58ZUumIw4ioSxhmrTUj6ntHp3eH2d2MJSinqc8icPe3TgWXahTQ6kJ5PVuz56puZOZb+GWe7hsZBXmfi/cqfiXgKAVC6fad4BCWzAkq3HOlIKxk43HcKq2GOGXN8BZHTP1ZGyxDpGkwLUaF+g/W5fQ/Rl5oOXq2WX0/BxpKqWJSHYnlHCCpGrfmBQJCzwUadBS2YkRSCCamfGBmYUe85L6mhQXaAuLNfqXFR7XvCKFrql0C1GdkeVsVCK6P5lqqgngpSOmapSH8PRvsP2Ozwvjuh1xHB9/lp6yitDTcaGXHPmiGZVcKKEVaiDSGyqC3RoTnG4qkdClBFWgZQFknO8wSA2L8zuu59x7k5pjOaqezcM0LYSdincDbSdNQ+lZTy9473LTDwQEkBPjm//E6rM9XJAaF8UTQvjIQ9OdKsNLNriEQK54mzDPS6JmOIaRQawE8wr0qZp4XO9wkjZF2gS/McfM7Bo1HDv2e5PoBVKwDYIZjyn0OA0ve8vM8fHMkBYJFY0wAOxuyByQFAmQMrYnu+IPQDztFcXerULGFN+6z9kcFu/6Oe56yJiaKri3+xLCWBaUWs9dFs72VZSO5J4udNVHnpegBVUIsBK5Hi4U1Kc2W4w3AQqC06mQA5cqMnpzPty3EOce/eB6CwvbI4oEf2RJG0zma/xv7MMTkc99Yh4loJcTHCk3O7s4P7q+gXP8NIsEdmxO2EA9UZAOu92/yeEeFo77PrACRpaNAAPLcLPq0H1SkE+ezegxWDxvF7YYTbWgMwQUX1cc0OZWJVPGVqZkf+2ftl8ID/z3/nyyPK4ZAz3z/GqhyjYvxO/n/Kc455mByPQ3vH3D8O7/OzNno+umQH8lmO+Pl+h//6SThoXHA/U0yDQI7f8zmHlGYU4JfI53Zy7p2diDNTI49zfp8xnn/u0A+nH3HvChtJp8Ak4M7kkyim3/8w51ilIfqFjy2AzLPyYANImte8MkU+R/VLxWemQHpHMleeMinSeUumxs8ugglxz/N8Ot/73Cb+avZDRJWLwNgbT76Tn5vnsqZ2H9519p3EAfA5op2Dsr+KOk/xQ3f8s+ZB6CaMCL5GOw7t57OO70eH1xhZEkBIsGUyMOvtDhBGywQ/jzc9rJVPKSK08Z9dyck/9E0G5vL1Cx2GQ7v/1XVKL7B0h9NnYt9IAG3eq3MayC+uAAwp3PmE7fDTdo80Hr8ScMRfBlDwlIe9JK/MOiDnPhK9D0R4349CO0T3/KV1s9xFQ9C8I3uHDLEoxSB9tgOeSzxeFoyrfb/9eYeWhsfvFesfHev/eJiRSAprkSifV6gUPwbKXYFHR2kFY6nYvl6s/OHF8rrpTJbHmNFrV3XvV8trbH/esf3tiv5l5uAbBRZYvvVw0Oq2oykiL/jx9wtGEYvcCszxE9uMLSJregsAzCkLAMO0AB6/r6F/AFhEH9WGhRUXDoAIYEZmEyjE+1OhUjAq0G7wEoT2DnpzsGR1amtF5AfTCa336XRRH+GgHzE0BNUwFOPSsL817BexVAQFpAsuf0ztCdOOsIoQ9W7AgAQwZc9SFIyL4PG3Bfffarzf8m5Od70N1MfAy79rtJeLu35YVK962UOtLrx537C/NoxLCbYEWQasEqE+3+17/gOfI6KAtoJ9tXSUmSYx0yK269yIxmr9ZNF7ay8NflLFcTE6NRxgeP2/7T59deHOu7Ff6r0bsOLlSoXzdodX1jANBb6ERVSB+9+togD7q96spJ3ctxSBWQA5AhK6mEFTtgEZgvZuebiPywJ1sUQ+p92shOX+ZYGKaR+wNOQ82FbIXtB+7DZfNhP164yKO6CCVqDqkR3PnyeAIADKbbfykV2hS0X3vEY6ZQEe+O+xcj8aFplWc1ykK9TnI0QwrqsxsrbdOpCgw1AoDLnrv78YY+lSDNS8pWjRbYf0jv63V2ha0+X9bk7mUiG3bUbFuuffrgv6v32xaPzXi7EAto5yf1hFiD8fQBWM16utvaVO7Gu3spNkLuilQWvFuL5NQVgZ1kSyFeiQV3M2IpKvOvOf6Xj0Dr1eLbec1Rc4QSiuu3fTLWAVi95N1LIUT00Bxps9W3bLpw2wwteaFjGNhWZldB23snfY1IEOoH9xYTwxBlV5fxhLYymzPGQGl0uBtGrnyKWFM/j4+xJGMdk1GIjKQWX3yiwKryZje0C9dTsbVMGSmoqB8r5FdFlfr9CvC/qXFX0pWP94uA7FsHG8NLfxq7OYkjMABIuAl6jtr2P1PbCIra2tB3uLzJv6/YHWFdvfrgZO+jligJ8ZnOVhQAfTTw5VP3oC1JKjKI+5hlixgOwVrMVZAXSm3fh7bDMa6IBSVOkgs8CdXBN37NDH42is1Wr2gmueKFMH79vUZgIOhmYIsGYmQBHXDyl+nzad+xQYKd9vlpqxLjP1iWeyV0AhyBZpAWRm6AQbFDMnXbYyK8OUMiPZBDxz5Jh9dwY7coSeYp9nUJTG7dl5bSXEQdGqlVKktoeDpNm5yekin6phbLvR3Kk9UWR+hnMmg2tqUWhZFp/f6XfhoJVDlQYZ2xQA9Vrzh4gz8+85BhnMirYkJzszJvyd1DW7tNUjZTo5eAdHgfsm+5F97QA355sAZiTQQaAOD/UosjPARzLn+gx48N2bQrvrHNwfxpTzNaHrYrpAGbTh2Do7gDoFYD64GNtMWrOSwnsPxtwzsbsQSt1dj0EVUQkBbs+udl5rHns65s+EHAl+c685VLQYOOarcu2eHPneEYKGBAU07Qe0O8Z01i3NleycND9qsfOqAECdoCYc4MgAXH4G28uAR35OrXP/27bPAEhK/TgAPbkvuA7oyIawaHJA2Z4OAxvO5UAJlLQKjD5ZDienPd4PMHAit1MTM0U1ovwiGvpN4fAzKp8/m4EVZ5EIQSm+hu8V9i593jP/jdM6OV1MUSC7QDP4q3OMhJ+tFYdqEJkV5/f66ZiQgeE6Bp/SW8iOyqA7r2VxEDTNJfeJ2U+af5f2mcMef2KSnK+/BqDgRnTUgz6gPf5yrPOEUXiOAAAgAElEQVTrxvmBXnXYDEqKbNnC03338jDTCAmxLeZwk2L72A0kEFipLQq/0YkeM5dfgRnJrALVMsuW8b1UD05QdeE6vpvsmkQbrYmqMzLIKLAZnfZQCkP6aWL+MDcIMiWGAQIqBQUDg+FxOun5EkQUQIY79P4RlgskmyG+og42iAECANBfLJQtsOeXbuwDqEW+AUT0jQ4tKfFaTARPYQCGCdCVmQvPZxdYznxxp6BaSU11Bka9iUfIMKOA3TvNHegooamICHZOoVDhmCMihXTkrSa8jd2oFrXlO2HXJIZHh3Ua3/xc2Z1RsRhroq8uINjnZ/q1gGkHZBJE348073jmpYOFWhZ5QxleEk5cPKq4bobNMevj4akqokC/lCjxyfeuQ7EUG7voI7II9LgWgnUDGPWa56MbAKZ9UI50Qb9HeZhTWLYREV3bI+b8oxhipEsw/UTEdAK8lF/76EbPpxNbitklxdXu9+RgDUw6fOw1Pl/yIQakA5HtcL2EDgRACncyh3djoMv2HaOqzXeKAyih+9IVUpPOSHV2xr2HI1bfH9CH72P7CAMq6hYnmqDuu/mI7w8DP64LolqNG6LiVN0og0lQrxRzBvuYzAlPFyi3SV9nX4aq/OrOgIiBDR3Qa3Nnp5+MU6sAUW+zGsh4WWzfbQ4Y7N2ez8PTWWG2MMS0BkCjW2Ypt7Pj5Hum7EemlRklyanwuafibQE87cV/7Y5+rgACNbCD+xTnQ0kCvzF/YPN+/WbpZe3dwZo6q3TQ0IgKJ63axrAgyilGZRle1CNwZ97EZifbJuZZQaT4iM95MrICdMNsS+2KfqmW/18t4mhlfcWAHT9HwxluBYzkRllhkRAFpuNjaUVy6BeuQwr5mTCUAyukTC80INN6xHEdHqL8sVangX8Qo2M++7ZbCcaTE2fjlaYL2+zjoEyz5CU0ZHUyZ3LklxdTAvjzzJwYesgpnlFxa4ikn2lD6OAcPktgIuf5NqeQ+7kVJRf5HX+G7Kd7sX358r4/6Elk55+f8fvMvkzvMsZU6Y89F3MeUuNBvT9zO55E7+g8SQZRAKAsaUypn5Xuw79rwUEDgPMrC0CeARi+Pz/Dyhts1/leuU8dvIt/5/lMrQ7ul+yLkZhGMTb+rKxTwsvz5w8Cp2cHhFT83Fa2P7dpDES5SLaZa6iIzcMsapeZDfz+qX3BANm2+exTQDXaMvrxZ9kBP/w8re+82Z/FF/kza9xxbM7PyX+zWgXs/uLOczAQOz6zG3QCD8CT3wOI9JHzs8sEFc6X5rFgWcw4l7k+nvTRGTjgPUY5glCjfO73Q5vV29fDJ7F2J4HQaKwDKBy3NIeffvbQtjLZCs8YRvldUjsOApC/AAv4DDmnPOQm5Z9nAC/awHWTfv4TNsAhVeGcwuHrjqAEgNmunLqR/5/tqv/Ildt1tm8dzP5UAvV0/TUABcCMFWcJRBkgHjp9QG53BwbsxZQMBYIFYRwJZF0dvdwNHbzv0MvFvntZjwdnAi9kM6O4XE2Je1wrRjU1bpbei0inU1jpoDLKJV6ODQMIWvhARLjLZtEfMh3KfYdsI9RcaeQNAFDMaD0wFwQ1GXQyBRqM8WBOsIYImB0aQBleySEiwBoAxmiemoDiTmIPgGMsVqKNoEYWSqSjvHyz/ODtywVUi7BUB76z5b4bdd1YCaPNSTmrBIzQnrBKAjW0GSj4F06/i8sZiGFX3UyHon4M/84IZ3gsirKXeLYQnPG+ZDWH7tH+9qGhb/H4m1XiMOMXqB5lHos408JYI8XztilKNcKgP1Kp610xGrB9KdheBY/fBOsf6qwQ75PF02xuCopZRprGUE89cWck2VZ8XwAHvYmxeFsaUO7maM+yi142bthcgSr2t4rH18noWP/cQ7fDSipWm8ubTiCA1VacSVI2a3tfCkpEdCzKJ/vFq0DMzZC06rL1yaYYZGIICjTmD1kxBFfKbY9obL9W7C8V6x8b6seG8s/vptz+YnmhcoPlCr8s5pizekEr6LmW/O4bfBVoXZJgoD9fpm0i+5i5iCLA68XApLVFtHtuNEyV8Cgu50bvx4iUiEf8HTAUA8/abUd5v8VeUf74MZ0F3xfC2Mw5uwDw2GzPHANyWSH9ZRpNpZjzz/97ZLN010pYF8st7x39337zKiGCsnWUHx/JaDsai+PSIjqPYaBC/7Jif2lR0SVT4Mujo/55s5KZS8X2uljZ3A/Tdsjl/eShkNFNxwKYFTR2zAoVuh+jvw7qUKgyBBMTyDOuM09d+oiIfX9bUH9sEJ9vWkrUI5f78LndIfsCrIiSw2QelfSsuAYgUFz+/W7O+I+7iQJfm4Hs9x1wJgiZVLJ6ZYlGsVbxNehOFJklDm7KMEZPeRhzQS8VLPU4ajnuo7fhZ4ntd6Zpg0g7ke2Bsbxiv9RIPeovzur74SyS+2NG9JfmQrMG/kS+uUyQjppGM6+6TsNld42Obfd+Nn0DebnaO76szsaoOOgs+NwTxWRFDJ3aCW6ECqs8ZQduc1YSo600zpaZuhJrnWv6sjjzoT1xEs1ZHq8XA0u/JZV7OkwUcAxHPjnaCXiamz1mdL7qBGYYpcuXqjloZYVeWoyligNJD2e8sOICc3jHmFHv7FTGApRDOkQwEwhi+l4a70BwpZzaNmzOMMdd4ewj9j+fxRKhhSDJjDJSPyCAVI7xUOC6TINZpiYKjWQtAvnxMR0vYDIActoL35UBrrMQKisv5PHbNgexxvFdch/mf+fPpFSkqFiyG9OOz1ZHt0wA2udDazPoVk5RZ5GZk59BB1LOz04u01RGSr+pdea4c6zpcKTytUcgT21+1eqlSscxeJjmVlSBKMYYYkR9ijAa8IQs/kpg9WHO/Uy5YDDN556M49o76SPMkok8s36SklhyHn1KCegdUTGA2hEAZF0OTm6UWvX3BFN70ll40ITgVQugAu3pXOd3TyKYspgGjT42kC3wVNSxyPwsAZ0xJosisUfMr9LnoAR8/vSZFnSYT9RyyABH8b17U9eRSIwDXmNEiiiQxsj3y6dRcwIkSYshwITMlgBmwOjQJyXWzK9ABWoZpId8/n3+vzvokttA367Abc6pbQLAQM/8vQQqHMD3c5rGGVR49g7nuX1mDZ1Trn6RIvSXARRQfCNaKnRtRo++T5GMKDvDjqwFimY0ltasrNpuC1+9lBlLlaiqfS53ThycLnS0TMOh3DbIRmPURC+YK8qoR782r3k/o92opI56yoXAqVPwKDA9QisjJqSHqnpZGzpXiPxnRmnpvDD/Vhsj3HJgUURE3i+KyYVjWwW7U4Xbe5+RXnikLuUjqkjkncuu4QhRD2K/mHPfX9zIKsCAAIxsAxgX8bJz5gxubyUc7nZ3Cjdgxra3u6/Foiyacoz57o9ZgpMpHdQkMOeWOeAzBzj0DLYB3YHiwpMQuKClG8KstpEuO6RndJw5rf2lYawF25sJG2qxqP/i3+9rCdaDNgIpJrrWPoyKUO/ueO8I1gojmPH8Zs5Rvdn8MMonJnChxhBhBLJfypyX4tH1oVjed4xWsL9UjIsJ71nJzdnP7TbCcSDLw0Cl6ZQA1lYKcUpKg+Hvl+/2DuXRfe4PYwncNxPoS0YzhU8PVVKKHdJ6baF2z/HeXyx1SAZQP6wt4pR2hRk95d6xDDVq/sNVe1s1J0LdqLlvKI9lGn9FYl5CyWqZRocp3ttmXd8f0FIwrs0mYBVgSXtL8XucD5oBc36BOKwY3Y5oQnbKPYIvvUdpQ9PMEIwvV4Q6f9aTyYZSNXBWSgE+brY/RjmyMkEDZ2sZqFInpfBiKRmkU8tj83J3Lry2TUrieLsaELmP0HQgNVlcjDScDmdZtLGHeGJE94cbxarmJIpg+fZwR80PXdrb3AeWWRbTUgLMQWPJxHFtKHqJiOHUYxgQFZSxW/tK8ei830d9LqKAIomyc74g6PoKH4fdoiV6XdG/XLC/NXPMd0X78TmCUrZuQBgQ4AAAOwMvC7avK+pHRRVx4b7H/PLeIc3EDsUPB702A/vKEiwDAJNdRqZEFfTXFWMtePxuqWL3312D5gK8/lfFy7/vuPyPO2Tr2L0kIb5eUO47qovgLt+2MEasTKSteQI0MR+33TWFvO+87Gi8s0yQP+j4BOWzo7paicYQ0fMzOwAmChAnA6n+SH2W+5ig4RgzvYFR3tDoSGKBUY2mp3l8iuruDug7q8lAgjEFBQFL28gOKBkU7DOyFPJFuvkyBfcO6RfhKKb9KqeDAPb7i5VnlfsxBeLQP8H6aBDd5me8bGT0wdlo9e/L3ifzhe3MUa88bmQw1VOZSM+/z22LsrTvt0MaAiQJzmUHvKeUWJbVG/OdhZ/3dn2as93LfeaoPzBZV9w/egeWZWrRiACDYor7wUFTL9PJ6KPWEuBrTkMRYDJYsr5OYtcG+DX6nJOqx3KTTPlwW4FOYk73sNfVCUSksoGkZItrwhzGWhOtP4+TB/+E5VQzeAGk8eF+P6bjFmDB0cHJEfcDZX4kgcNaAxhUti/Sk8x2Muf/yIiL1Bg6YwRh+D1epPFH+9w4ou+BGcDTiOaWuV8B05GPOZXWb35vslDyd0qdwAYB5IPDrTbvAgCaazAu+k/8XhaQVDmwGKjpxT6QNEYE4MjGyP0UNH6OQ7pCADDa7PYR2ZeJSSlMPcvjnwGlw43FgIrsCOc+JlM9hAmTE5/BNuAzwMV2/gRMoE/6OZXj5MRv25zn5+8D0/bM38n2o4MScvzygVH3KW0jASLx8/w7gqtch+fL700NCruHz/2fXH8ZQIFq27pYjfh6347RBj/M4vCpNWhkEWHY+xGFAyZqTwO7ltjsbTCblfZaajgR5bYnquiAdon8fgBAKV7vvswoqnr0dE3ImdsGFI+LEoVq+ahy26ehPeSYpiQEIjREw5h/W7aBIQXDKwuMJqhNIHuJKLndRM1JBqZzWyQYAfU+J1HQyrdpfBrtXKNChFYYfZ1OzSImAnzxHH4xoKEXgCKFfZFpPAiwX2noALhZxJs7TwAlrhXwSZhRXbtAnUrsIIsCgNj3DbjwryRhPGF+Pefa1Yzx/WqsjOXPYU5+mU6bjbUEO2O2YaC/wMtrmhEOAGURlN3BpGp9PpogyhhCTJTyh3qpTkHZBO0O/9yMuIeYW7EUkrKpyQ40gkYIA7jex3Qa2GcOsvDd622HrJaL31vB9lKwAg4qiL+XrRczig3c0GKBsyhJ6vdr73NTKfs4CMCVbZ/zaR/m1D82c15fLrbWXIxMfU32y6xeYeesiaFynnHc9otgewOWD0HZzDiWro6IGzgnjwE8eqRQhSjaZtVj9HYH6gbZtrkhd0fj+Rp0aLgW6wQP5bZ5nnyLiJS2MmuRA7a2YY5nFqcMJfGqbsikSc7ontrvdKmQj8fRGPO2sCoOqZSSSnEGPboUYBFoU8jHDdSXyQdoGPx9AB5hpSaEwiLiNIKlD6iPH+cB4Gydl4byEEjfzKCqEmNsdHVSwX1f3UdE08OgZ8UKggMyjEL/mBoCqAL1FAhz9ByU2QuChjkQRpe6loQSIPLDk0wuK1Pb7T6N61zDKWT6jhnBHqGjHRgGmMTvyErp14r9tWB1zYJyNydgLDWis7L1GF8BMH578TbbGbi/VQeVkxZGcgQVMCArwDmZ5YKbrUv0lKIn4k6JoL9U9LXg/rVgfwVu/0mwvyr2rwPlUbG8F1y7Qu49AGQtzYh0t81SH/YRpSnL9wei8kQSF6ZTGbPcnVOklDA0xPlJB0tuBgSE0y6C8eWCsTbUd68wEpocVgll5p8i5pF83M34Xd3ZEHGWY3EdJsyouggUw85A76c5z9yhimgun1XCOZopQsNEPotHYVlpoZQZyGBf0FgL1kYyblN/qWsRBIU8OaYop8j4M6MbOLwDPxvvnp/H3P1tn5HCUmYfclxHWlOx9xhIdwCGskp8AhQOqQp0VjDX7jSIBdSC0I8bqJUll4vPl9SffIYq9D4rl3wScsuGf3qHiDg7gHoWsjtEVtUjqYy4cw71HrbkIafao/wYCl1kOrIcm9jn1Qwk9i+ZNOxTP6sUc2+OPswstXjX4f6vOweRkuHvM9QMqd5tjFOakQrPnDqjnz9xrghw6OizQkQzOqH0k8eU+5JtLxJ766HtLiQncspRJ4OmtfnHz+hIh462PWmvaw6EtkWUbx7Hdzw75nw2XylTxX0Oa6lgnpwwSh9BE0WkQD1LM8jP4POf9U0OfvEZXWHVE3L1C7atnPohOdpaJqgExBn8VLTy4IDDxsfXwsFpZd9gOs6H9gATfCDQdI6OA8d2nS8ChARCfZyU+1M5fZZpTufx5Do8V6f5f3M9ee/QO2AaV95PMjs+M6N4ljxhHGjax8iqmIDLfLdgaZ2YF2fmRwBAfF7+DMGEWhEgwplxcrr+GoCCmkExLi0E9sp9h7zfLRInAvlxMyrp+82+E8iKIdEHIRwa1OtiJXdoEHCjHGobyRgGLGwnWke1mtrtz5uXjWxRPpIRqu6ignWHUeVfarxLvZvTWW+GKPZhlPn91WnsHxu0FhNEo2PlpSnZF7INjLXO1IChM/+2D4tqb7RMgQwHkkUQu8dQK8n4sP6RUQ0kePRAGlkTG+7Q7W8NWoFyN+Nof6nQZgAB0yxkKOpAOHzD99C6GRBRdvUKF9YULSbmB5izWu9GrbWouqdieDQvO5IAQnvAtBdmpYzRSPX1son7wPbVHKN668FwsPHYzeBeLE2hX4xhIENR9jUi/2UbkJtRnMcieHw1Z7d+DEgVdJYdfAyU3doQmhPXDGLgUFnAUgVg31f1Eocd5d7RXyy6OFi3fij6Irj/raDegeXqc4O3E+v38gDaD4uAaS2QixnW5eElTtU21X4xATp4P0aVCljUH2Lgwmjm3I+KGQ0X4PG1oOzFSo36z8vu86oIxmWm0ozVwLn67toFj83XnBtNngcv1Z0wd2A7xSI5j52Zw/fVIujr7OPyGC6MNyLyWG4sAaYQp12HU5JFXP2QDFGe6wqCiRbddgGgUkJLpYpYVP79Dmw76p93n5vqKUzFGAje52YIADpkjlvz/NU99QeASPVybQBjNrnBoQ6yjGHNdrmA8bpgvC6oAwaWMPpBp2fbg3Eg10sg/ihipccYxXIjcbyuUzxvuCAiD7rLir62+V4nBL6+bzauniIylopSzMk3UMf6c7SKfm2o79shdcGMVkyjSRVye8y0NyDyqoUaOQNHGj3BAhHAwQpxoFhFJpPFxxNOHRzXljQNZuSsbBplXCkAWW67gd6XemBMWISFwPZAuXcDef2+5b674SRAB8pwUOBlDUOgX5sBMZv9f/3nZkDgbXcnsp+MuZKEKRXtx2ZpDUkvhH1pXTzTr5Y/H1gArN8q9peG5UfD46uYAPE32x9GKyiXasyuIWHgspQfAIysDeFzhmkfnO8xr1mNBJgpH6X4HiOQfa6H8fb10HYA+PG/vOH2e8GX/3NB+7GjfmwGRG2wZ6pCL4sx4u5WsQQv5ecOEKfe3Rx+dYfZ1ow5e4zGh8hjnywUOOWakfYR6TYdTHlELZZqxYhsgIKzMoew3/i+TOu8OIOKhiIBzRCiLhOA4f3JwrEB90EaEY2zPWmOCZ+pvK//Xz7uE2TlPZhW5aU8Nb17rD8HOOThz9zIBK3ToM+MKmACZfxM7zOSunsJcb5XMDHKMbLt4CH4HovYZ+ngnOw7vVK0Ne1BjCxHw5KTHvu0p4jc7gDMIdXLYuPoaW8Hmn+KgEaaDcHZUiZlf4wJ0GQnQsRsVR87pWNdJFLSYt70MendzmqRVj3NzWj4rPIV3ykFspYplMnn5zELp8P/ve84sBNSv+luwYOgogdrL80jCv3xCq0dm1dRdlQTCyLuQ5Av9bEzkQ/AVC1QOsMcAz6L8wtwFkmdVTuAmWIRQI7//37HgWXg7JSIDhMUDQdPY14d3NP8fcAApDPtnG2P9ME0BgQhQmPE/B3h9+LZSXQw9cXhWcUNc/ZF+t0c42RTcEyoeSDufHCfyr4WfH74M39aOUF16mXwOn8POK7jZxF1D8hNtoCDUbzSd8QDM4f7ldmnASyevwN8TgPAXAea0isAnzu9f8azyhQ3VM7HbL+c3zf3Fc+DdI9PbXnGTshgwul7B4FIZ8HMNTNZUvorcAd/GUDBDKLh+aaM1jJKh1Ig7975+26bS6JtHcReeHHjTegVgE8ofhykORclNtEBGabGynrgRmeGOx32HC1ikXhMx1d3hNiZrh494VgyssPKFhhTZBAwQ8SBBX5JTmuQAlzSAXHmEQUFRTCZHKQBD6AoDeup2M/7qgCjigF6AhuDBhRmjzT7PcsWAjCRSMznsp2RejHUot8J7SAoUpxNYIeagw4FFlHbnG7sTqTlH9v3LMrEZ9oYyIC9Z5+opLbZlhj3YdUDTNR3MgdUBH0tDoIAzHU2hW+PzsE/qzI3hwErs+gOHsUdg3EBcwQjWr9kEASWvrENlI89GBdjmcAUAPTV+q/sVmlCdvaL/6kIFgvKTBGRTnq2j82S5pfOcWA5TQAozmLprJQxEONiwNbUh9AGaLfPheNPu8vTfLiOck7zYSPjHFHEOmIKT9Yn4HoNgc50C3N+0/xzB1PcaGPund0mteOE7ochwtSJijhAXaIXURLR2yR04kVmZMAp84dSjkjsJj5P0x+2iVHWVC7xE1I+MMUPi1UbqM0mQkRs+d0wgmF0W6LWHoEk8+IAalCzRuTQ5gAc4//TkTFBUs/ddmOXjqtFagtCP0XyPEx9cpoX8XsKmlUrK6zAFJAEIu3g0I+AG+0551fM8fR3MeBZfK8gkGp7kaiBAmEoAZ5qxMO8zv06XuF4+IemCI8lZ3MwHYulG8daIZufRdTVGfx+D1BnlnpMBkaZrCZADcgYSRMin+7ZkS8CuXegGyAo28D6YhuKVrGKPN3nfWHke76mzbPY5NK4wcbrHDV1dlOsiQDIEPOCYIelWaWqE+k51Jvp/ygoW0W9dz9wJcaPaS66FYi6yO+Yc1nO6y5TkJ+tR2ezBJOA83txJ4GCc0VM0FVmCkaUTi1e9oxzgXsG2UDnFId4foXKOO4d57ansZ3j4JtiGJM6/+b0YfoLc53TujyUJU2AI6n2Vu7t9DwapCJzzjMyl9MXgvKuMTc+rd3zOZH6+alDwbbn7zgwhB1zzn363ck4fmZsZ9ZI2t/CwSXzhA70SYQyp+nGz3sHRVsD7MvVLc5ME0ZfCW4yNUfHBIv8/podEvYXUx8AfMp7jzVanDnW53mYrzHbGs7HqZqF3SudXb9izJzAzsN9kt6SnD//yc6f94ncf7IpJDm1vMgqYWWHvO4JiI1xjNGJnGN20Y/xTL5vwWdw4NnczCkFdHozG4BB0dMVz8v9lX3OfC/gyNb+F9eR/eH/zlFrJBsKwCcBzGRHWPMkBW9O6Qb5+tmY5n4MZtATIOHwXUGImg4FxSufRtXPzvozB94/J/l3Tz+T1kAG2wjYPHPEww4q87zMbJefte38Ls/6L9kKuYTm0/b/rE/Lcd1q2q9+dv0lAAUZivL+AF6WyCkcLw0yXuYm+rICS5uHtAgE6/PBpXDStgGlApdLIN24pvJR63JAj9VzNKNm+7ANuuwdMi5AuaBfjSo6FqYPeP1tT6kK0CCvu11Rx0D5xwbZLEI2WnF6apviQOp7XPN8e7UoPoUI91fzbBcXBbTIOiZ9UWBiYqpoPxToQH3sTsd2RXtV9Ndmz36x/iyPYQyKNxPaY248a8Nm8b+yK9ZvA8u3zdpZJPQCgAJWiRjN9BJM5BGoN2cdNNNTWL477bKKpSoMjcg/jUPpnn6QwKB6s4VJ5kZxB7u7iFpx49x0B8zRCOM03ceqEAguf5qxXryc52hivuTWUdxhuPwxTDPC+6d9WNvbrWOsgrIL2o8xqcUEDSgM6Rd/vl8FZQeWb0Dl733zaR+MRgEyCtq7V8hQuIaG9W1O67j/28XGS22urX/s4cSbwrxgfy0BWlgfWL9pTXNVgbIplnc4eKFRhpK/t4oOinqDMQS2gV6rl78DpCQqbCnQBXOT7APD13j5Dk8f2CGtmChkV7R3xY//uWF/EVz/YRoPlg5hKRnm7BhTxspTaqLOTwdXVVFEZsSIhlYrwOUl+pzGdP96nWlPXL/unNX9MZ0gwPYJXi5+J14y0RykEqKtkWebtQpeLs4WSbm7dJ6HAqOE8xV/EywYXpJRqtHOB1OtWkTay62Yg+/PLbcBva4Y64Io0bftYZjo6wX9ZUF57Kgf3cDOIuhvqwFeuwsnbsNTDGSW1v3m6/HLGmlew9lWulSgFdz+yxtkKJZ/3iF9oH1/2Bgt1SPaCun70QCtBVpXMwZe7N7l+4eN77ePiCBHtM/zfIeXBJWbgRjSB8Z1Qb9W1KVG6UMCraGGrg4ELRVDgOqARMkCkL4vKoHJaiBxed9sXV6p8u9706NbOlAS5STDobs+iBZBe98OOdzaBNgRzrWIl/AsCGHGKGua95fF5s34zcUyvbSuVQcxsJ7vu39ZEVVviqDeBq67YnkXrN866vtueEorkbJHgEa2HsBWX8isM2BH3m/TQHEquNwe9g7lantCgM8KbB31sUf1EF0XSBXXDhko3+8YXy7Yv16MNXhLJXu9z8Z1nVH+gUNfipdjZmqCPLbpGPG8Z8oCgRCKNpLBkxyd8eXV1oBrmggMBNal4vv/+oZRBW//RzMx2D8/5n05LxgxX5qlVnRGZMc04LbU5tpMyDEDZ9nh5ruQbbAu9o7bbpHPIsf8dzq4Q6e+TOxTJr4aulCMqNNZ9rZFZQ46lvm+4eQIUBuEZb4zqBwT9gQskLGVnXjacnSie3J4ySQ53/OcAkAjeKjZgXs3wc2IuCeWq0gwcCY4MAzccVq8pZr1cLICrGL6mKfWnbUKcLtPx5dz7NxuTVH5ZZlzENPOOwAPuwuVumaBEEXcE3sB8Ii9xFiHw5HvT10OjgEEssTpPE4AACAASURBVPu4knLPaPxO7ZcCqfMMk1qgL9cZfU2R58xmOFSf8LayksAc3zafd0o1AWD6Bec+zhed/uzL+RxSAMLyoUHrBg5CkWmeR1Q+XsadaaaFcM22ixlJdM6LmA9yalNUhODvCXB8AtIGQgOAc2TfcSwtmfaC9NlZxWPMv3t6L38PoQFYa3z/QJUvZkcpkJ5Z5juozrZ/cnYVQJ9tfwYunSP+dJ7PmgC/uA5gCL+TUwLOYIHvw7HWchWvs09Z66fUAXumsdWEQFqZ6S2TZZBAlkPQJAk1ZvDmV8Dpk3c49LY/Q7he5QRkPEvJeMrAILBxHEtxgP1XoMJfAlDgRWGu0CNoaYMpLtTnVDV+DpoOS/XNiwu0m4EvJR0qPPzO6D4nHdJBAnikRsxA3zrgJSUt2ua3GAAjJeHo+WcCvVT/If9y45tR3QxAhP4CxEQSFcgzR/JAczEDgfaHWJ7XIhdgRgXTNdaE7jpoAX8VBXCsGFCmMCT7wnOsS7GqBQZweN68FJvTUSYNkc/LcoMQWOlFPvcsujY0Iv/2g9QPpADKbHeADzoPefYz+5wONp3rej9Fj3lxcSoj/cbYmMId1qdm3MLo/opw9qfehszxVo7dBGhCmMyRbeZ2DweMKPJlKQrsF583RaCiEZ1RB6WQnkFBRS1kZNgcUQBFk6CoIEqEsu8tXcPWnZ720+McdMdEfFzU37sKINVAi80jza2Yk3KpsaZkHy4COed6iNQIYi1otd/XVE3CgBuZ82mt04lqxdJ7VC3q7AdXAAKn6Iit13lvQXEtj7zf6Jx3VPmP6FQ33YEnkYUw/Bm9b8Wc02b7ExlZeV9iZN/aU8ye2TivNEXM/SvZUAA+HQiHi44UD4hAF+Y7UkfFnPvj/hGUdQc7+rXNfZGAVxW7nUehx6WBIow6FALvB9EAXNKAgHT4YBS06gwFczaDXnp2sgBkEcgAm7Ih7m2P6I74+uBaLS60lfZ5tOK6CuWw/zOt5dhBCDZCBqOQnsG9aLRizfXPWQTU2WQ1nYPAZInkAO0pcjAW26vL5ntfSeeRelqSs4Ao4WEOOlAVs9wu5+zAFOvV47Md3Zr/j/nkP8vVR3zfOvZTGr9Eg5b8HN8T212h3+FVKPps31LMUCZw8+SsC2M3G7WLgTosXarsS7Yr7bNxj2C3uLNSPHWhmNCvktmUwOuwJeh3JYZOaIbE8560Pfr2yTzn3kRQ7Qw2sM/Teo3+HtPwiP2c+wLvczCCdUZgVadT2cexLGOOyEYe8BNnIr/r+Vnn//OqTklkCsSYrLnDlceRbef/+xQyjKh8NtSfOXVpnz9EIP3eBy2aE3sCp/Vp33ni4Bx+n/aq6nvCKVUEgDk0eb2dnLrMEPnpzMr7Ynbc8xV7ZcEs85fOjSfPhsh0rGH7UHyccyzPgbNTSBAjtzPu7Q6cHKOvB7Zy2IDAmZnxuSThqd3uFBor1fvmvDaflVj8/3LRMf1J9YS4GHnPAMTp7J/sgNNewe/rSCCKt50AwUlocaY3cMzFf296TBoO9TG6/ky08+l1ou5HieSfOa5P1s0nXYCffSc772dnPf+cffMkreCnIoZ+HUorPgNS7SbzHuf1+yRI/qnqxbM+/cV3D9cZ2CED48n1Hx5Dv/4SgAIV08ttd5Xo5nnZ1aoh0PG6LNj+7dXyU79ZiUkpSajKRXjk9QrsHXq7HRDYwwaXF9sYFh0kypjpbL5QBRa10qV6Hj/AqA0jt1T7P5Tp0wI6waMJilj0MAzlSBs45YsL0F8q9qvg8kc3aqo74uW2QZdqjAW4TSAChYnlla2j/uMdFF/SizMxKIjmh9X9by0cRYu8G1uhbgN6NbS+3L3E5W9HKj6KlUw0xxembzAA+L/rbQvGBaqgL3YAtHfLHy+Pjn5t6C+mVyH7wPKnRYK3341FIo8B2cXTJoC+lgAdWOGiX+xnUV5TEGKTBEy0iJWQU9OG2F9mrn71XM/+YuwPcfZHf/XIiFilC62CjmJt3wb2l4r+Uq2/H8P6ohnLA+r3LUCvxXQkqpcffSikG3OjPAYgwP5lQRZXNEO/mAijWlTu5b89sL9W9GuJ97v/Zht68ZQHbYLd2TP1YdH9/WrzvD5GpDeQdr68uxZHN72Gj//sJTPfbQzXW4exvgsGZoqIjZf1d79UlD5QHmqRaReGk91SY7TZ2DPnuV+bp9NYCdb237+jvD+wAhGFW/9T83xYeF96mc1XQfuwecq0iLFYmxfXx9i+LqZtce8QjyIGBdLzhsfbZYIZHk2SrVtpxmHzdVyaOTJ9br71j1vk+0opGNfrdBw2j86+vVgUmWVbszO5Wq7teFns/Uai5AMW0SegtNajI+mU/7rNyI489ogqogDiQpkBNDDf+7LY/qYsxVUwrqbfIn/+sGoOwWhxJhPbUwrG6xrOvZXONIcOYmPdrw33v7cArNrd9QeWirIPLD929KXg9j+tqI9hDuHdWA+6Wj8vWXwSsGi1Vzswh2/YeywVeL9/dpyyc+j7KfuifPi5crNymbp4JNKri4jaPBpNAuzsV+YBIfYQlrMt9zFBUTXtH9kHym2LQ52R/2Cf+SE+2gSNtNiZgNeG4XokAkW/etS/CoaYZkRxvQB987QIHhUKqGtDMLee7Dn55toqSwEj9/Vujs/+ZfGSyJvZpWfAqBYUgjytwJRZndmlBtYNf09hrXQaNAQH9g7dNivv6EKMkWZzAsPG2wWjFdQf90lZrQK9Ls6uU7z9b999zXqUulWMtaG/LlZyOI9p6dZmd3SN0Vd83C3i1N9W6FJt3Nzxlns/VKRQ5pbTWer2vrL3qEoFmGO7fjc9mdCOKWUqc5OZUGy/ihzzD5vLNt4e4feoPKOecqLmh1ZAdjq9xKVe1/ks5t4H8OJ6G9s+wYdToCXKk1FIsq4zau22lK5WMUfvj0O7CPp9ui/Bh2WZ4tp8X9VZGaJMzYq42Af+eb0skyXh/SLPKOWq07k/G8uq0I8b5HoxkWCRQzWKgwYCdQlqmYBB71YxA/hcjYHPegaQ8H0prJZBrmSjSjdhwxB0uyTR8SJTa2DMYMIBbIgUlzHt3Bxhzc/lq3p1g0hPSWwJ4dxh+9Sfy/KIbD8jrBxrplqEc5rmxjMKeNbbiFQSjyI/AxM89Vn8rKPjr4Pt4nf6HB/AWA18xr4DXSabJANu1fRNgmWRzxs6jOzXiHBTa2JMwOFnAEEnrTndO0f9oz0CiAcsctCBAJ+Dg7rvNn5LQ5ShjNQYnX0EdxAJfjKindkemQniXRg/x/xdVIQqSRjxlIKogK3tc5UH4KljftAWAI4lHc80/HiXOtubqtxhJOZLAmui8kbYPf4Rggkl6V7V1JeAzRkCD8O1UELkH5MdoOO55sAZkPC1I60d5u1PgYufOfc5PWUAKON4jwyiRNCIvm49rskDkDyrcfyr6y8BKBj1ugSNv9165NsC8AVsf5uY1whkP3JbgbSoT6hQHpQQY/FNkAbDIkexoDxxM4KrKU/dnWcwGiowxerhZfd4pnpUo24D6N7mfaAqo98OSggwZDpKVpPUjdlaXHMAIRIX3ccUAUWUygvF2jB8bCPKeb+Pr3aP9qHzXYCIosLBAAii7CPfp1+bGwESizGoqKnfSJ8mQyGi2XWWj4xoptO6I4e+etSnSdw7KmPtalo2Taceg4gLFc5KF5L72N8tNDrgBr3rJLBcRL8WdC1B7w9gxOfUIeVVj3+bQKOlU0h3h8aYuAl8UgTLAbNCiBTFcK2OfnXnZbexIatiRpItUh9RryrYr7NP+ZnSZ+OMSeEVMop/VyfA0FcHhx6zikawPwoCQDOtCDjbQNA+gDKGPYb0aPbLQKTOjLX6vGeevbMFGPWDObvtphhNZ1oGo4RsT+r/4roZ5oBLrIfibCeWFVS4mB8dY/Ubd0HUf39ycX8RZzvBRa7OUSctBbisJvh3dmyrWLlMZzT0q5UclV2tKkufG74uEkKAMd+KAWelSzjyWg1Ikr1PpkSx/sbo85B1MTyi/sXV8yOqHVoIk/FAjYLIeS/F9W08kt7V6PXFUndYkSUAq83GUteCITBmkqgBansuN+o51uxG7sfc+59FEQYO0QbJxnPPE0Ojn4xmD0upAw5jZzTqgaIG9M39XScAwDm1mddJvZpJQfY54OkIZ7DDqpCYcR/6D01jPzadkpTypQjQNdoCP0fU+9qZXcOBJtlTdH/XWE4Agnkz+wqod0vpkq2bzsVezNaS+Tmr+DGBALJxWDlFa7F1Noadpwl8O+SQ+x/ZB1AVSgrwKdLEdDvrNu//iznFUV1jIM5h9UoRZRuHiK6QWVJK2ogwwQQ68yldhGsAwFR8d3FJrRpRHUGf80f1YKPU25gMFyAA/WBtkBEQDt3JQDs7TtRtiDKWKaVg71aRYsx9M+6RnQTPjY/vq0bfHuYpATg6zbxX/nuoDYAfMmGon9/B22djLMdodDzHKx1ADloGVtWoxPnM6lZxD7I0OLY5upeYXsZA+IkjN8ZRtPLc7/G+YzpaIkfbJj3z0/d+1id01P/V5+PXnlKx7fO7KieASeZ8OtiuvlZVj23M453bxfH5yRWMDgIYIkb112EpF9yjenLkRWaqBVOOf8UEyf3CuUan0p0uzcKBAYrQcdLpVGanP48bf0ZQN/blfYI8vDJ76Nx3fAavnFrDZ5ZhjnhOBUq/n7oqfX7mV6xCcD+lwc19ZuDg/B+YRHyHJ2uBnzsDcsDnz+fqIWTe5X3Cf/YJ/PnJHJ/lEp/sIfFewIG1+az98HWS2ivc+w/vKcd3Ims97cMhZpjubQ8YYCWLX7X9wCI4AFpPLto25zknxYCenPpwZjw9uxdw+JzZOWXO4Z/tV79gWhxENHOK0s/WLf5KgMJSbXF3RfvnDf1tRb82F5ez2uayD9Q/3wHgSEPkbZblsMlEDs1IG5N/VrfNEKGlecSiWKkq5k5mw6j3lIdoPyu7Ue3qB/P0AcCcQPHos/jmqotrC/z5AJo5FOVuUTNdKkIlvJlDOBZT+wcsOqsFGGtB+7CKEP11AgqRO+/9VP54h9wfkf+o+w68vZhhxn5yw+njP1sZw+V/V2cVdI/6TxZG99z4elOj13sEeriIoUVxzNBdfuxzbKohk1bBwXJ0qSmQGRwh6ufK8FCn41YrH2llMeEsjTn52/uYDmQ3ev7+UjFWMgHG1Jm422ExvLqDRfDsPttbOdicaDB9i4aI3rePMQGAAnOm/N5MW+E1GuzQV6B6u0QLStUYK7JSxuKVEViiTlhNwypLAK4ZMNR+zggfzIlZvjvaKtbPj68F9e7pEd3mVHt3bY3VjIv2AWj1vOmHG+mrASr9BaZ38fA+IsumIOZbvQ+zAa8V/aXg8VZwdf8IQKRsRGS2q4mBFoFeLLcYqth/uxh74eslpacYK2H5tqPeC+6/W5WTnsbLwDX/uCIqe+xvbRqhu6J8bOGYjpfm0eK03dFZ3pmDf3JgOdVEUB4bysdmOgWXivLYzCilGCYAvTboy2JOYRW0f5/RcG0F4830HqQrti8t9EXKrrju81Ab14r9paJ9GPOFa2X/Yvod5Vaha8F+rbhsHXJ/OGtqouh1DHNul2ptXgr2Lwu0CC7/XWaUVzUiT7JZmU3sfZZLoyaAIJ7Z3gEpttYMUCC93rQ9xiLQu/pcbpBlYPm+AY+O9mOLtJhIdXm3vGIsDVqbVbvxUqIlyn7aWBEMwWK5tXKf+fChP0Hnqds6Has5pCq2b44qWL5tpm3g+g1lm6X8qGsgTnPe3xrgIHdRRf2hGC/NUrUScAWfZ7HHEuTtOqtfUDRWF8haHTj2faQV7FcDIdc/N6v+8r5N4Hy1aLioC9Y6Q2x/qWCp2fphfdpuZKqMEM+0l/O/C+ws8nEP5gAPR+8LlrgcDv4O38uzYxVziSAbnWCuozbPV9wfbrRdjymNIpCPVBbTjXNtBf2lmVbLjWyLGkxCMk3K++b7wXyuLsWYDTkSK+KVn4xhUG4P6FaDZRDCov4Z3TbThcgOQUR2xCslFN9DFMufD7DCkogc5yf/puPxjL6eWAwTQFDIYwumxFjtmeXdz3jaKypgDm8ESOgAXtaZNkSjl4Z0iirK0GPlgDyOfIcxDWosnjpW5Ki3UATYtmlgszyft+dQ8QLJlvOfTc0enSkO98d0gsX7PgGKWsQjs64/s5l+jIgzVThni5hzwPfqqbrCOQCVq1qwPeG0+z6Rx5YXjfYAQ9w5yJFWjvPZqcjRXbhRf5vlL0MM0vuZtHybOzpt16UenYnsBLBdtJFZwSS/Yy7ZN4at71IM4OHv6VD2VBa2D7M518Xutyy2Z+2ukQIr1SylTCea7ckK+Uyn4XtdjfFgUfrUNwQYMpBAIcKzk8/IcZ5vfQdFY8GymtTS4LM5d2r6PgEP9rnrkuRSlczrFykHG3GyBjwHvmOKSZ59tTNQEu+R1nA/aRSUMdvxJEJ+dHrLZ62PDNgQAPTPGGDk5WTJUPHvPC0bOR96dMA5v6j5wH2WYwScwCcO+ul57CYXkmbqxqHaA2BnbzjVyWf09RMsCNoBhxKaHqkhw4xBGJmaE/HunAe8zukZBxDqSVpFjO2YjICSRHAjhYzn0GeA4GmawmIs9WjnWashg50EW1LJS/bZLzVL8FcBFAYs8uZRNlWP4H/s7kSRViRBI51Gjc5NkJNh2w4HiIhEZEpPZYKiBNbQCSxkypv/TC+rCUOKOZm6pYkBb7810SjXj1mLWLYZhVOxduTIE4pFwhjJn9UR5iuao23oFSPs2hg9tYiUlOptFKNfiwl0zJJXI2hy9S54+7/cMX0fM2XAI2YEACYjYARbYbbLnaCFG3Kzso+3Po3n9A6s+w41YKFsAIqBFpneLUMxLoLb75a/PxrQbgX1Y47L/tU3X4UZ84ze7UbDlxRZtH9MVoIMRNlE6dafjy8W8VOx52kFrv+0VAqyOliastws/WQsZmDvFI7ysWEUsVR7dtkGsJnTP4p4ZQagjGHOXnIgGXSxahMmFkkgZixlnksy/QOKZdaHszU680p9s+R9HAjra8FYEayIsikagOu/23xoH15pQxhBlZi7+1t1Z8DfVey9yVjg+8owqnlEbHVSxAGg/Xk/GogUf+sa+dF1c6FHD4oNL8OnFVGRwwAPB8AUIWK6f72Y07gbGMSIeKxBX3Plao7aWE0DoG7dmpgNTD8MdfFKCrfmBpCVEaXDqy4sybWiKGD1BxNEtfu2D3u//aVMNg4QAoDLPgEZKwNo41i6ojx2aC9oZBT45i/dQDQAcXBzvWmRSK8xY7zOcoN0iNMhpZfV9s17N6RoqZBtxGGhzpYa1UuO+mWCrYrlh1Pruf4Ss4hReRmwvnGqsdYaFExjIrmYofeferujVKSI7d3ZUeCexAN1A2rsWy6YtHjaFCOdFdAD1dNK2dp+pp4igIMmSoxpilyddRGMJdV9r1dzdvowsBdAWRvaLW2mMhf0/tJQWkGtxcqiPnb019V1NzjGEmlS9gOOjWD3dLU2EM/PmgjmrPqafCi0w9gieW8vgrEYEFe2YQHPAUCA/aVOZtC1QZYKfVstFcYdXUZVKZYJES9Vikh7GL6etBWUVlC2FjoI49IwVkvrawAKq0UngyxEGJnaUwXBiOgWHSRwFnuNO4mM2ouqAWm8+BkRyLpO44vpA5h7go3ndpwfIiCbMpeF1XWZ/x9zjmbdA9lcMJBOfjLMpQ/o/YHCtQIgSl2OASFK7er7urQJrqmdc7r4fVcHQcY+ncKlTaeQQEU2kmlwsn+zzcU/p+jzMeI35viRbcDIezZ8EygkTwzzSInIz/azRaUDRY9OfrTh5Bzye9tu7cgR6tN7zRQTWAlQguVk5Zwv7qUE0vbszLtDwPnUT++ergBjsqGfPzcAyDBxT19TB+DLnXtxMGe2bzoqUJ36NarJCT62K6qrnSs7AEdnj9T3Z1ctsy18Nt8DmPN9nNpAlgvcSTxHfosAqBPQelbVgD9jycWcmtBhqRO1BPBlrAUHaw6grH+eOhIEF3K5Rp1OXXyH1ReK2P06jlT+c5sJijyLzofI43CgoppjzvnC6wCG2PkqmbWhw9vmPtF+6tdUajJEDxNgkqn9n9tYjm15dqUofoAJ6XdHYcPEeEpXsAXOoF6tBj5l5zq/e2a2ABPY+3+Ye5ddSZIkS+yIqJqZ33sjMrOqp7oaTcyWC3I+hR/APcEt9+SKH0CAG64Jgh9BgAB3/IrZEeBiONNdnY+Ie93dzFSFC3momLlHVPUuDYiMyHvdzdT0KXLkyJHzffLvvnfF+mkPe954p/O8Pd0z5slpn8rfDbZbH4Du6Tlj3Rzv7wCvPHvPb703ED50fI6ezEm7fheAgh/q7dXy0kgddL6vakjNPOjuZF5kRv5Pxl4gnUQ6QF4aLU9M29RkrqbQvg3DJ9VXdgqdXCa0V1MQt3xNfabe0p0VAKF+75ERciXnZ3NSBIBFg92YbgAVwRmtdLEzT0loC4E3gAUBRvSXSX04jxjRiAR5/jOKOqZv/0Ejc6qSj3hfYcL0rmrGfSkm5gUAMtIXgEgFCEbBVDSa/74Hrd8FHtWxwDjIrS3UOvA6W2qWLf6mLIX1BwpAYfmFMPFwLp1ZUD/UEBavMrBrpBTmYAbrMa0XrRbRLY0DRkMHerH3dxHCn5WG2y4GKHwoUFSumyn7M7YfZ7QLgXZYac3UNxZpUVqwVulw7QZAjaA+jWoYfHdVdpszHSFyybsALAjtN7dtrY9VRNHmjrfFHHA0Qr21wRAhGPXXQIVdUJrg8rPeTx1XQS5N6df25kwdMc2QMR+98gbt0LPublFF5tAqgNV6J8uDl8ukBnKFGYYNvBKkC3itCrywlductH97JZS7RFQcwCj7uRpI83nC9HUH96RT4LoGLlJZCJ2HinhceX+29yOryiJMYKsG4SUmiXRcxBxATWvSn9PWlBKaDMfysYN3xv4yWyqJieXtppEAdajifgAqaWSP7g1UHktiUhetIEAEebE68W04LE4LVwCD1ano/r0NfHP9GBpgw11rdDs7DALLUaeg/6+Lz3EF38q96/utbew72bY6AHtdHZfkbIjNLbKovkbkbR8rRcUBVwMUpjEXA2hwh4MZ2DdwouoWkYhq6wNtP01gZvmwiHtlCBh8P+Wv+/63D2MoxEiha75ZOkt2bGSy3PTfNEpP66Rs6maaCVXZCWIgDU/KTKlMKE3QLwVtKahfN4tC6zwttzZS1AxEbBcFR2lndfy9Coq1laBgWhYbFaeB+9UAvKguhlcHItbzYH+rkK2jrF1ZDBMsJUdQO0a6j6ew+Lgb40VzMp2FVtAWRimadpG1WfrM2F71Z9XWSD73dX6aJkAtoHlClM/tto5zxQQfDy6jZGLvw7H1igTNcvqXSVmLIiNy5Je9h7fBf0YMaEQcQ68IgLwuCr7cm7IeruvoI7/f3iDrGo4bZQe+a4lh7MaWXBRgCkEt3w/2pmDCVIOVQKu30QAcO//RKNINZLFAxN710DyXYj1He70vM6AQRq+M93Ljdd+HYe7rfa9hX8WY5vKJ/uwMOvi7WhT8cL9Gw0GIPcPBgH5sP5kj2PeolICenBii5FzqPYREdXAA0Pv1yDLJ35Ok9J6dPO+vrBHg/ZXaprTxDhQDodrx3qryb/fxANlUD/pYESl2B8cZtqdnZa2EQ4RdON7JmQDCxcDR6bmjSwxISwCDHPvFqyrk+ZPLT+bnW/8fHJkM3rgTm0pDegrGNynymaHQ9R4R2fZn5qohZAyUWhGlMmO8cXKAfd6Nc2H0sShrwPvFae1ZZ+F8+XeeKTx7kLQBGVRQWuwRdDrQ8A3QkWZrPM4wBVfOkW0RARWoD9Uz6HoqTRptTuNDR2BJfH/yaPwZhMjMhFwJ48RE8PTZw/dyf3cZ6V5P5Av8vWLO/63Xd1IDTjd/rg/iV94nH54x/NNoWwYnJK3tuN0Ilh8+/wyIsPSRkB539lHeqw+v8g0A5Dv99rsAFPxiExwLGnHlZOhCD+mXWRdCRqpdROPj9jiY3QRuAsG1TmXWBebGTy0hQpaRKqkcZR4zg6BkQ9M242BO+KbNmhqwv9WY+OqsddUgeJuirOBmIoDTlw1l19x5pRBr+oNHHXsFPv5eHZrpQ9kFvKqBKXCHmKMkVn+ZwvDuLzVyPklUwDHaTzSohu5opk1DqrIA+kyo7w3l1tQQNlE8YDigfS4otx1821FmVhFCM2rbpSo74bapUKI5L7z3AGXoqs98nbXE4v5CqHc1Et1Ynn8b/R/sD6M216syCHJaiFc6QEfoCLSZLHItWH4x4cUJ8MoHZdVxnL6oM+X569tPl0jTaIv2S2nqzC9fRqTPn7uZEKFrGISKuhubFuFHUD0xSlAWNUz7ggCneFMnYLfSfV52s/q/Q2/CQBx2FoiW7ewzR5Q/6soTQqNDHRsKoUreBbCymu3CaBONyLTvLUTa701Ux6MNmna7aKoD3fYRLU6OlkwF7aUCRhkvV6W612tT0U8ZjpoyW8b7RUUU67tmVHyNqKozpakbrKVod0F5X8c6sbXAVxM4tFQIZUwp88addx9/j+pn59TZP14GTiarLnHfdLxvG2SerFa9juX8i+5tvKlmzP550b67bkrjtj0PDBPDM6e7AYQeEbLYI90pvI6tqYgMLQQAtO4KoNXZ+qehvUzYf1jAtzaAUU/psH1P0yrGgaOpJoL5V+3rblH58rGruODWIDa/+Tqo37rvmtHNDLwsiFxlsfLBbtBURr9oaUn2KLIblqLR9XgvPw8sHeXsPBBgDIVq5eYUONGSsXaIE+nZkvosQJop5aJ3Mc0FA4wZgPia6iF+GMJ8jDAC5O1FjaqtgZhVx+BdHdZI4Uq5/V4C0XVhyk2dQ+kl5n7oqFSdr9OXNrRjGNp2wWDMpXOqvy2H/T+EJLuETg0IyhwywDPWHBPKtuv4bEb1ZBgYM+vf9eSI+roBTEy3HK6ueQAAIABJREFUqY6I9Zv3e7nt4E2rtPDW0ZcKxj7O62eXyJgHHpE6lxU0cT3aZJSH9uCBU+gl/QGOOdD3NRw0ImWbxe+sCgiJKPPlsijt3vqIiBBq2meqamtaStLELNVxHGBb2CU+j3sHqMT95GVRZgjG+oGdy9m4pN3OBAfdWA7ASIgTJieTyslJy2vMnPZIo4g/us/LMh1TkYhGWsWmInIy8xiHM03f2z5ZysRUh3h2M3DBnWY2wcsUNArWR+5romMpTdQB3gCj5GLvANXBLPHzhhHjfwhssZeWLPouGRzJ45iNfb9fH+0jA09DF8Yds4PGF4/0IqiNoMwUUuaMlw31Mo25D7xf6/idguNdx01kaAu4HTjP47lWrpOW+RF4Eg5HREyo7kg9TxFcL70ZTpOxBux9cxtGKqKdI9nJ96ChC1k6aEBqKx60NKRrJN7v4/uEGKhqAPShr/IYe4qDVTl4midvTtuzn8e+1Pk5mMBpvuefdX7EFhxgzSw9f/fW1G4IgEHHVkECBqiYU9mHA5+cTgDjHRwkSRH+LPwXz/ac/QyUWZso75MAQrQwgDeO58iZjp9fWdTGivmQgEax75CPTXon1SMx8CExYL4JKvh9z+kIqe0HX/NbDIbMKDg7+wkYkPScBzHG8//7OWBrnkyQMoQmvd22PxxSUYyhQ16O/MyoyOBNHq9vsS5O1+8HUDBD/UBbJBNLaaK5ikDQ/aJEWk8q5+leB7RcuqHNPDYoR59jU9cDyUvdZUChW75rfF6QNlHgEP1OA+JCZn02sSACZDVKbbVIljl9kqjyasxDF32xQ5v1WW0mrD8AZSVVvzdnMJdx88NCDXKP2ozUAs/lLreU7wU5RhKTgQsg7uF0Za3SUBDiZKAYgKyYqgJhadOj8TsBj022I1ILIAq8TFf1prSygAx1YQKqAToRFTcbRp1BzY/uc3L4RFQAsRtV3o1xAdAUmFHavEX1mjncGMa8psWQqbAjjGrXVnDAIACZpr9vizrh1VgRuUSil58TpjGGGHPK26lReaXNs2mN0FIO7+bOv+oy9BhnsSobUT7Sc6YN4GrV5pck54RhkWidnw5wNJujWiYUlpqB0U+7RtEBBZactuxCpZECsbP+m83ZN+qzEDSlRBQMKJ004m+/qx8N5bYf0hZ0Tqd562uyG4vAFI/bxGCS47nsY2V91QOkURBJXxZwlXwhNdhC8OxkvAdQQnYgGxpP225lD8fTvaoH7V21VSYGb2QCl6IlIotGynNkyUGFMFZPKvCEkwGdaNL6rPFdEnU499eiOhhsTAj4XqgGkM8bd0aVXQTUm6UbgYeonmsGiK7rcCDceCw8BAxrATAM9qOAmwG83Zwc30PsnXIFDo9cyv3+xMgyo2ZVTQKRCSQFMunYkgE6VAbQ5UKOZFFLiXIPMsCjbvt9gxnjiuqyjD7w9wyb1g3F1pWqvw/TU5qOM98tXSA54xq5pQCsVHRSQpxR55ynq7UBsoLibHHwQWweeHULBRF1bqvmQj+mFfrW3TuwKzvFRWK9hLDrwKi4LnT+VBfXo/EONPY5ZUYAtEkw+jKbDgKUK/TcqQSs6VwPwxwD6ElzQ9cdPVYd8H87Oy45wYfywT4X/Tvn+z+JHIaz6dThyuoIrD5fc7plAlosfUS1h6o5o+qoDadeRqDDf+blE9nYO/6Z1L/HBvpcGgBanDjPNBTOV/RdohL7rd1x2IczP/ZI61tywIqHc3wag8OzTs9Wp5khnZXxFftMMrjF9iAPkLjTeaZfZ3vpPCaNDm1RsWgXOEzfP7VRnHXgxndOG0n9/+zdlOmajPkcDfRnZXaB/4yBSN/yn3uaRaYqZ1G1c9rCIUUuoRtdRhrFuUqEP8fvne+TKy7ICQBMzlUAAt5nYSOaw+aO4bm/7B3iOQQMhoU8Ls0c+fbPnSPk/t3QAUkOos/7DB5kMOB8r+/97m+96DgHIxLvTLi0DwTTgcaYxzeTow63w10vigxQPGBNhAemgL93BhX8Sj8LOr3vLw46+Hic2QTny53f7wAK+rljnx5AgcTa/Ob90z0emBaniP1D5YZvXM8YGyK2H5+dcD6tGwPMHgQqU1uflo30MS921iUGT4wj9zjzj22w70gCMs79kNua3+k71+8CUIjcTXMi0IH2eUG/FNTfOggd/VKHsQWY6Jh9r6vDKcusKP+tKEXrvtpEsNeUDtx3PXwvC8RZCbZBhiJ4sc5ljWCXr3fN6Xyp6rhVrbowlL6hCuHmcMuloF8Ktk9VRbeabnptIpTCIKkRaQYAj6YKqbNKFg0q1x3lCvRbQa9sJRIZl7/oQnXBvrawiv/tEjmj/XW2/FR1utrM2D5pCUN3AnmvQasv9476rpFhKoz1R80pn3/ZLTpK4yyzyG+7FOyvHI4RiEbFBUD7zMqxUfNNSg/o9jbDxRu3t4q2MK5/p31fPxAsAUDf06tMTF+tPZYvziviPrwiKNzogLxpaTSwGsEe9QrKdrec9MLYflrUgCWP4GFQs509IYJWGfsLR/tUsFFw+2ONsnO8C6YPK9M4EbZXZVpQV3Bgv6gDXO5dGQ6T/Zl1jKUAtOMANkmB/U7TNAYrA7j/NMVz5q8d9b1b2UiJCGfZOqQpiCVijsdd+wSY0GbG/afhIJdNQhAU4kJasGoawPRhn7mJaYbYvYwe3V4nfP23LyNtgglzAEKkgn/Q94icest39/KT5W5GddUIK0j7Yv80RTS9fRrlFXlT3RV3kNyB6UuJKikkgv3TbIKOTQUAK2H7cdH91RgRkTsfzqNu+npAsgnG6QY0asAD5WMD9q5p1JWx/vmT6g98Mc0Im1d9YtSv64hyS8P0xVIk2GuLC7BuuuF/mlUsdNaIrTINihpW5gTIxXPqoFHRddOIHipoW60vJoD1/Xpl7G9TiLB6mdXieedApDJFhYFdHery61UP6PJJMaLfUgk51om5/6DlX+eP+8hVniqEJhArCNZfNAWGP9ZjBA4Euq6gj2SQW9SObquCM5d5PNMjD9crsO0qAlaKRtHMEJCbJeL/8Sdo9NJ0brYd8vmC/YcF5X0Dry3KO+5LDQCF9z6E+4AY//J+BwmBJkvNqUX9jm2cTVnk06OqdO3KXHldLIXKnaxkFHd15KWrM9U+zbEH+5V1aZyR0A1coG5pEXZmeclP1fUREyfFofwhryrQKSZM6U5NexvPpvuwUqSUcLb6UpWxcFuDTdDnCpTB7GGRYC6RazFULR/Ma0pZaaOv0Y3tsyWNAateIksJIItMuC0MV3PqYo0mA8nLKAagcK5uAEQVqBC3/PSq9zBRQBVF5APbMej1njq5N/23M2QYRw0TAxPInQNfeyl6KHs3qrsFRa6qkYRltvbIeCdj4NB1Pajz02Z7b64W4e/v8yWVyKOXC+RlgaxbVJPxi9zwF2U1SD05fkbBR2Fd96sJZ/oaAMKgptXsLyvniVq0nGZrY08gc46dxdDl6Lz7uzjw4Lo2U9UIngMl4Zz3Y3sLD62pFGiSqepY5ahoBkByWgqASDNoXdMjmKJiyAhepc+7fkF28nM08OyMuHPvQLKPgaeOnADWhyt/Jpe8FGUlkKW+xBrIuh+WGkKuDVEM8K1Fn2Vz51BxwYGnaYKIDE2HDJh4P/oa87SHLuY0SfQPWYANtYy+9rXu8w2IdRL38bb4543xMioVdKC3YfdLcj79HkwAF33/APvS8+NzXQOWoTvgvzf2xDNQw51VWycjGp7GwvUfzldOMXGBTN87igH2bjD2BhGbG9ua3otASDoGTAhdiodntYMDnAkgwa6BN0mAddU1WAqC0ZDefYhr5vP/eM8AUk579NOyjCl14CB8WlRrQhzQalYNK+8h+d/OegDM8ZZHYCHPsfyznlNNivZVsGxOIOh53QIH0Nbvr1lIac8KsVf9/oGR4L9n3S8o9R+RwA2Mo07JeG9vdwY1/pbrdwEouHFA6x5Rn4PIURwScoxSAEcEKDYT27Bd5CKvQUfqwoiQyLuMqhAp6gNAja5YaMeme0muXMZx0LDV2CvbABR6Ubo4r2YANgxjExoxYjciiMKpdCeXd0G9ISLtANArUFbbM5iAPiK3zSoy9JmwvTL2F+j3m35PBf3UWShXyw/ugAsUKl03I2P2x/tBJKjy0qF/M0VZOcn95u+RHEshjeBvr5raoPn6AmoKfKiDnh6/m+DfPjYWp6+78GOUEfWhPgyYMTHsHmT6BqotwJFOoEyJ0ae5pKWSAWjkIBtgFFUgMttAYJoIx403+hHj5zmPP7QUuubnU3eD0z4X1FwK6r8LF0olSLPP27wMgUVrv9PnI5Kf7hEaGd6GtN6oaayWi72TWApHznm3Z3XTcegV6MvIZ4WkdgHohZO2hAEMHl1KRjfb+oiqIBhVKLwEpjMNgmLuaS95XsSDEH0YKTH2rr0wGLY+Yz857kmxR5xR+9TfbWZNl2Tbh8IRsjHwNjUM+qid2T4Gwr6nUIAecfAVRF96JRfVSTkZrnFwIJxEH1ctiYih9QLrlw44PTr2hTisejhh1ET3blvPg6WRDqtnUabox/H7Ac74/p2V3FPbgLH3O1MhPyM7DFkBPF/MEHTQhnC6tMJEj/3v8B2RoEZnNlGu9uHAtHQ2o0KrMjggSw2xR4ejm4QjAQR1PsZLrF2+7559DJvHsVfz+LnvUUIKnKFRiDuKAZz+7oc+8mc8i0hISu2zNgrG/CRO8yCvmRgbxJ5ziEyzO4z6IaU6jzGP8pv5nI+1IWrnlTi09DPtOH5x+bMOHXmyLXzN5fXtDBt3cJOxe1g7uXqAjzNRYual57ox53M57uOGZ2pT0f8EHdznvojl5TvVFwPMKAyyCSqFR06+7XfUj/aLv6cYcEq72V7ZsXEA71mf4XiWxeWG9LmMXjqn4qxlZfg9XOcxfLav+OfMWRASXeOpfYfP+K+cJWJ7q3jKzPm+di7H2CTRV7igmts4p3457FMxf3j0Y6ZFP4tu+u8yEODrkdL7PFu3z/pI5CD+CUDf+bw2zvfL69r3+/NniIE2jLdD5PxZ+8JRe+5Y/k1XdvZi70j3c7q+f+YbUfOn4o++1lMU/pvXt9p/oOOf1/U37hOAie0zlKj653X2MAYnv6WbfSEt9cU31pCvZbcT/EwGYp7mtrhz+kC1z/tZZg4G8+GASIx/n1Iw/tZrlOP8/nUAE8772HlPc9DPAaPDjVh/lpkcT54VoEK2X/z+Z2A0X89YHblPwYfvPNW3CKZKt4BVP973e8wRb+vfACr8LgAFjxDOf1ELVroqjNeoC23GUCcrGwUtl7ao8BDB6VN0LH0DKNKzS6BcXu5EbncVLrzeDXEt6K8XyALN/WYyrYOC7U8X8NqH5gCAaoJzzXQJCDKonObU1K/62fmXO/pU0KcF2wvj9kdGvQrKnfHyTyYcJoBUKP2cGOUGtEtFu2hkNRCqLnj5yx7P2l8Z2wspW2HvGlmrrDTmS8H6Y0GbCG0Grn8mbJ8Fr/+BtAxkMiKmRaNMvClbgc1I9rxpL5EoBE3VeJlQrw3lhkidkInRloL7H47MB01B6PAqDHrD4ZzffmKsP6mwITVgeyOjUwuoU4gaAubQ7hqhpb2PnNbCkY8fUfbbHuBGL4zt86RR6ibAzGiFUCziWL9u4Kr5nA4I8aqLbv88hXHgY+BaA+pAaGWEXiXKbfaZwKtG71/+U7M0ATUgOOWWlLuAW4NXm2BnFpjRoqVFGbxyOPchDrh1pWR/6aivFdRVP2D9xHi599AP6EWZL32mmCv1w0oSetpEA+p9sB9UDNL+7kP8sH40i1br/dbPBZe76Qt0Ne77pUIqY/oQ3H8grD8R6o1RPwrmf7mB1l1TcaaC9ccJbWHVybhqiU5hQQeDZo3a8m3TdIm9oX++YP88qzDcueqI/btXQ/LNoSrvmsMvhSOlKIxlgYqPWjm8+Vct/dbepmE4wudqQa4R7KyiGAujzmMppsqfjEcG+ly1/KKVAO3vDO6uhWDpGdXSAWA6IE4bdoFP03bolxpMjv1Vy2tKUWClXM0hZsL864b65R7pC7ncru5Rqz67tcHWCqO5A5vTzrUNvVq0tqogWPlyV6f/PvKqnSlW7k0BkEWFN8mjmGmtasS/D/r1ugGXGX2ZLMovQzTRwQWLJkpl0PuqAmkm9ilAoPJZxVz2HfT6AloWxZFINSto73HOeCWMPnuZUUH57a7n9TINw3lSxpiXtaTrHVimYMIoK4yAl6LpB12AxdbzbQe6afhsO7BvoNsdtBX0H15UpPBSVfz1XXVm2mJpd0yoH9sRwIA6jrR3EzBWkVWSPubKUvQce2OURUUOp68GKjiw60ApaxUMbhIlN7XvT1VbiAbg0qHlPomsQov9v7VPgwGkpex8HXZB/TXNyzqcdJIO8jPF0j7I1r+Ppxth1KGVPAzkkapzi9YduZqHABa5LwMIzqUOySLk/nOfR35l57NZrvVUIS/zYJZksM3eO0CTVctiCqDrwIGpQrHX476qKKOrd1uUUVYrtVer/s7KWh4MvKmiz8qiLF/v4C/Xx88AQ38gO0c2hyAyyjsuVqZva6YvVUf/+1rMUVTvpqmmPjSdFCKNCPs6zLTyZ8Zvt/1mqiA33hNQ4WzI+Fk5vgOl+RHgpKXHnEXrjkJ/am+4/pSntMVc8rFsfTAL/Ku1GMg2oo90346OU9KRiHa9XrTtOT3CwQpnYGSQwOdh71H6nLxiBNEop3lfB6hu84imKfZfNP3+owZCmse+1vx3NgcDPMnsAGcLOIOmDC2FQ668R68tOiy5AoUDc9NF7fZtG6CRv4v3v/dTZnaIqKPs98tlKGOI5aGtDyzmZ1gB8aFaxpGaTwnkgdrqbTs6dpze3fskl0rMn0t9e6C6eyUKE2wVdtYGDwCk5zbVUe4xAKimZ6pIMEpAc/qMAOj6vQwyerS+AVRUADdYFu6neVur7QHBlmjp3na1NG+8i43FIJmtYPc4O8kx5zNwoY0Ip3n0aRKCPDAJ+DgmPi8ywJdYBDGfTRsp0goKA3s/zolTdZaHdAV/3zzmwCH4GWDNQ5rJWAtaLSvtYem8zuMZV9MzT1raVzJbKKdX5DPPGR4+Z75x/S4ABXRo2arKUHq1qFNsUWEAY9ISdEMz40CNFegEFjXWHg6p3o3iNGgrnqMmlleLGRY9sLJ4ByRbQY/9rYbhPn1hsOedMtCmEpFdF1p0B9Dz7HkVsBeyaFDRP8AWP8IJOOfGeq67tHEvjy7zLijbcHx8IahRCbRZhQb7DFXJr8D+gsj3pKZObQjcWR44uQjf/HjoHxkBOETB4709mu7AgaS+EGMEdIHshLIpIyGigv4cQkT8AXtni2B4ffE4tJmBphU7ZDagyeeMg8LeN17SMh2ctGmd+Q5ohM2iP16Wc6QZmK6AjDYSyOj09hnByCdPTIMSDigiyu7zS18Qw8AHhgYC0SPiasACdUExkKRsgjYBXnGB5nJiGXg/YuTCi5XG3AWTzUHXFZBi57M3T0a7vRoJ2/4izuIx4Env2zFdCf03BStUg4IB0bUi3creEdAM2BjilBLPzJHPY3THPiawqiFDj6Cb0yI4RhLFqGjUBbSOHDaedL2RCcPyvY1xyQ42EI63q9/H70Q1AgSeIkKoXdciyObsriCTAzQZcPA8/RDTTL9n02/wfiMIQAVtZrTZUlg2A4GsSooU3bf67CJhx1xm2IFDzXLgp7FGdCysPVtTsELMUCSooGH+rDtPSSzXtQA8TUDmCVGJobLqB2yql4FtDwdP52YfjhtSX7jh5Icd89DDIQK9vOh+/3Edht48geYJtCwHurenA7W3WdsfTAc8XsnoVqHcokKRIpDLPCpOwPcEHPYD1/zRUq0WNe1GszbF/gCNXP9EvOoFDuyRXFXCqd9Sbe16ZNqe3UlTHVQPwvsRxnTwdWGOmhhYK4LMQIs5CSCE/orue+5oSWcQxr6a2UDK1DutQx9PZgMAT/1t4+7zVTvGDojkTMbVu20H5RjtM+eJWh+Gqc8hb0Ma48M56o5fjizl/SfG28AwNyCT4N9BdM77s/WhpWFsjeGIpnlt5eUeLv+90c1zJQO2lNFYj9kYPRue53adI2Pe1hAjPfWBtUUsLSSXqQxHtLUhUAgc+8Ivp+x2Gar7IgPkyK++9wAbzpHN6AeRkT7h718Mbc2GcnbQMztw18o8ThWWrPFyjuTlnOszw+RAH8foN3837zvg0PaDnkJizUVbSzonssH/8E48aM89gRN2j6Cnu3Md75Te8ewIMY1+z2BCStuISHWMyVHg++FKY0z+fue5eNCleOL058+f0wLS/xMZyBWR5hNb5pn+AZ3Xb3vcP7L2xKHd33hv4mPZyNFAtX/2072YoMAMDS0WZzILDec+XyIjRcDbnh3wb2gURIrBdzQDzp8PJzTP9VIOEnMPIojn/YTTvMksEAczcpTcA3zneWLz/ruCi/65Z7//nm6Dr6m/5foewJGfk/YI8b0jgyy5b7/Xxiyc6WkpuS3fanfeu+z/6RufP7AsvnH9LgAF3jvKbyv6q0WBBNrBlcwIRjioAMxhmEL0zQ3w4sZ9RACsY0OAhIAy6b+XWQ+9+wdUpEuAy5IMefvLSu3trwXrJ8b2CWgL4fU/MqZrR7mqkOT2SQ8d3g3c3gXlqsZxXzRv0qO766eC6aNj+RfLOTOBqxDoK2RK/BS59m4kSrGyYKKOA64dvBk9kBDGHG+7pRIAfSK0BWiLQCbB9hloLwR0TX+YvgBeskwbBFX0FgGkWh61H2LWhmWkB7SlHICDzOTwagrlA7qZWa4wXTcVn2sd858X7BfC9tno65YeoPn1QJu0CiTt5kQzWfRyh3z5gkAJDUGXf/MjwJ77hzCOldrdwVuLqFJEq24bqDBo1uh6n4qW+BIx1kCicvNIH3DHTasrAEVMOHHzWvbDGHexwT5ppYV9NgV4IP7uVsWim/0z8RAMBHAAuvYXE9i0lJP60SFvBX1S5kqfCMu/bBq9XDzySAGSeKpCuWre/ywSVU22H2ZlmjRzYO35+0ux9AHTj7CDdX+tsU69AsD0ZUe9Niy/MFyEslndetWzaOBfdvDrbIKYiNQDYqdV20ZeaYAwAhtb0jVgwATtXStJvPiEQQAv7kSr8FgD33ctXWmUuuLP3VTxmm+rVndZaswTz5HePy+a1vnlBrrvypbyUm0VIDDK+xprUSprbnkI2PUYR2GKvGKxMcp5+rFHfqzmOFpJwt6xf57Rl1Guc/5lC22QfilY56qAICZM/3IF3bbIr4blBWu+uc0rc+54HcAJtabvWAzwnUzg8m1WLYXfbuG0CzAAABHw+304S7VAPl2A6wZeb9o3tQwgYTtGJWhVDQis2zAsllnvt22gWtDtuXBlfADy4xvQOzjSIRrgueAesWWlntffbmhvM+5/uqBcO+rXVZkAXibT+sDfRyOAjPZSsb8U1cXowPbHVzUCm2hZS1Ckszh7IO5X2QRUBRBVit9/ekGfORhRzqiJSGdD5PdL5WFwC4DiZ0YNh9gr6vg51i66uZT7ABp0L0FiJigIWt63YZS5E+jrrdCY000PCtfsIUvp8XSjqMZABMwlUpS8TR4Z9L0whG+trylFgGWeIJdJaftJ0JOaaNpGAVw3BJNtpm7PuR7Jqvu7wPrS82hrGe+ZQOZwSD2ibe0Tp5XXMoxEhoKIFkjobxZ19ihsurc+W9Bn1TJRdlLTco8iIze9MAiLRuvu98NeABFlEGRgxUATB0S9wgR6P1a+AAYIYWvkLE4ZfWEGlwAKjLsOgTN/uuh+MGlOfIhSdnNKuumdtAbZm653LxuYALqjZgABO0Z1huxsdNE8/rcXZYbctgPDxMt+iu0Lfa5Dz4IIUf3An+/j7YCIf/Z60z256p6OCx3BFdAAtzIQI5KivnR8N/+cz70EroUOgQOO+ykvPzuF5LoQMrQLHEBhHmPk/eblRxkB+kR5yWmKFK6HcfCfpQoXsHkQAIJHv62aQzBrzgCBtQMiz1kD/n4OALujvabIrrcnayE800kAoh0SNbwHkANYHn1zPaTUEC9B6RotOdU3t3XfR1vTd0QI4B2RP5+d8jOwwDQe7qUu87u3roBHO80Dn9/+//FeGA6l/xsA2jreTU5RdLdBzuM1JdZIBjvtO87yDgZF4ce0CWLQVHTd0x4Ob6RD5JQRn69doksiPSY7ry6u6v6cNvAITDgbgEcQThzY9Vudnej87wxIOFvh/LkDEDvArUNKz/nzz5zwzFDwEo6ZIeBdeWZR2HcPgqv5srkVoqUY61Dyu5ei8/ac3jRND+0d8/n7oMrvAlDwi9KLufqzItKJmn0XNSQJQyipAxDB+oeLOmE/a6kxelmUjvqhlFhihqyrfsEn4LLoQTdPmkIxpcoLhDBceBPUW7dIlsA1EXjTgSr3vOlDy93ZvfaohqC/nt51crdlqNN7/jdgjIdZqw0420EReHUe9Hu2QJJD2iuBzfZwOvf0Duyvgj4Tyt0c3EbGTMD4PCvw0Fd11qn1Q443UUevmj6hTg9hf1Xn16sPiDY/aqpH+TGBpS0M/QPKgkvWZ2J/uKkR64KWqkHgEYujgx15TW5wA1Z+rCdjSwy80P7qk4mmdUGfTajM+9jABCnqPKCnqFt3CroCLG0Z70n2nl5H/aihIHowkC7o9qIADK99ONDBZLD3IByACWc1gMyBJARLoM8D0Y/SnVUdje1TDUOdd8H0rmPQJ460Bo2aQg9Qc2I0xadbh3o+tLbH26DtNSdDtJ9ViJIHW0AIFO8nRpknFNPH67OXiuyhbQHA+tJBglR2cLK1ZJ91tomn5PTXaRhMFuWNMck6J8ygdHDSvVn5v2TohgNg35lrsARi/6gF0pPA00GlPjlINgcC/S1Q47+PZ4bj6XROIA53zR9vGrlwWndTUUzfN/lu0UDrb7ayim1mVAPyQni2KltLl6wxFAw4UTE16AFyBwggMEa1AAAgAElEQVReXs8o+1ZxgwQh8ghmyOclGEgAUD40ncLZZr0ySrXoohkQEb30QzEJdomXZlu3ZDBg9OnW1JnjEmtUyw4W9D9+1jPg/RqCcfIyHyIFnmLSJwLtxuTo+o6jxKJGF/plCnCA7w2TMwMWGGtE99y2FGyfGPXdyp5ORZ0upHZ3WxtEkCIDTHZwyYFQB8h9czWQFYDOA+v3bg47QMP5E9GUGKYEJEiAnL0yZEIIcZL7OVNJbAQ1UHuilMc8BBTMMAX8oQ/im/jQgfBz2nVvHOBzkJrvTe/FhN4LmAj99WIpN8ZyyceriO7lIo4ZWnuS85Y/61H/HMEFBhvMQYVtt3QcBwc55gFsDw6nrHK8ozN88ryCR38BkFTAU4J8f7vdx97jVH1nHZigoY4ogJeL3TgZ7c4IyFFiIBxsymBBfCc7VtpfUSbSnWszNCVHic/GcPq+PlPX8CGK1o/rmtxpj3YMw9TZgNi1lKpM1g9FhpNUjHnibIathT2B3nQss2HdLR3QS4x7FYvsTDko4K/laQsLHd6dbkNw9hD1JBqimIcot72bO4BTPTIMczRwbwA7IIBDydhR8tTGx8DvAN4yK8HHxfs9O0iuWVFO7WQzcPN1Xid7G45EAjmfXgYiBVuhMNCPzttgKfGI9Ec1AQUl4zz0OZPy6KNcJJfTs5MxnEEIYDif6XWp2LMdOHMBQ9ZyzwFaAEda/LMrR9aN7n8YFzqtu9P3AAXaDmUDmR5ZGHn9nlkkec8GHp3MfDOn4zsD8fzcaK/ZEmeBhxRVf6pV0LrO6R14YE3491DGWjqDBjius4cIvX8us2X8svOaOo73z+e+gxpnhhbR0XnPLIn0mdwuNFE76jzWGUh84oR/k7HjDIHcBr9vegad2/Hsnj4+Z6bWASA5zSO/TynH+36LaXO6fheAgu/pga4zaektGzAw0D6ZovrWB+Xev9eVkn7/oyGk5qyV26SRqnUDzbNucKupiXfRA/WyWInFog7DVBC5097BXR2pyeiWWnZQHd42a6Rec78povwa1deDc3/jEGekBsxfNde6vRSjz1ukvBHcGu8Lga5Kj1ZUUu8plbBbpQbeBlrpqRD+/m4Ezu8KguyvCiDQ7s6oVVMwqr6wpkZ4ujIJNFLqBpBNqF6tHSQmomjlDJtYqoCCIRoxtjrmca8+okN7S5GR0W4FPKBjPsMqN8CcX8vbTJEk1KqIca7B2rtFhimxW9R56S8V7aWEg9SXAhKLxjGHPoFXFhB3TKEGcTcF9V4J+4VRbx5BlJgnYDXYQyTQNTCsNKIDQvW9qWihRejYqnt4NBOA5QQzWi3BimiL9vNkDn+fzLk3looKIgpQCPTGBh7peJS9o5lIJ24Yh6wLmZnxzltD/dC29SRsWO6qp9BfjJFguheR6gB1UnjrKB+7AgY+Bk3QL7q+FRMhrUHeoRVGsqNu+wFtDfRxi/6g18WMeHuegwlmeLbXaVTlgLbLo6iw2rvumGaautPXh7Oh7fI9CUTmuPlBYZ+pAPVyMOIiyiRiRhXCOaW9j3KFxoAZZfSG8as/MCeYCHxbw1GUMqvzu3fV7th0rvFNK6Do78SqiOj86V5FwPYmd2IZGMaTv/s0yuRyPnBEwPcNWFXLRgopgEMACmF7repM38RSfnS9N6vkQF0dfprqABMtuiBNq8tE9BRQx2pypzABhEBEG8W0ODwy3icrl/t5RrnuqF6uk8g0BlgrHHQBdmMcTATa1TGvX1dN1QhjBEDVlBxegbJp2VLcjTETlQJ0PrRFNUx4E+CmoLECkAq0xDq3SI+zckJTxg/x9LcIQmfD56izTfpcgwEQ5+hOEGj1HGqia8tADJmKaha9VvRZ2WNaMchKQVYOQ9vtcE9H4hVgF7EMJhEjUA4DvR20GIvWxX4NnLM9ts8MvjetqvFSVQi1Ap1VlJX2Dv7A6I9sICYHh8Chn+DzNNbhiSKbq2N422CRJfrYAJ41uOAaH/ctUpYAKJjAPPYOIqvmMeZnAHdzVbo8kabmJU2DiAxnUMDygiOH32wQwmXkIbuBaUwNQhvAXHYAn0WRnFmQjVz/jq9DEcvrHp8N0CE7mzTo+pS1Ffyyn0nXyhsHZgIZGOOpIR5h3PehheIpG3YmyZS+L6I2XU/rwQU7iXTfcBB/2wfbIRv9ZYxn3JfLWIMiypByoMnenSQ5HIV1rNKci34GLJLNOp8KHdO3xCoeAMF2CTZFcuxG6kqar34Lj4Bnh9XOj0O/p8hisPT8XgyowWLnl/V/Tl2Dl1/N13m886+65+AbCCQCGOvtoWRlvhel8fXPOpPGr1oT4KmK/epIpc94RDixAw5ABgDZyQB6ZRTIvquUAJdxFvbRjoOzJh2gUxl6D0DU4VI9Cjv2cd+cGpD1GVobaQLP0ig8cJHTMYgBL88ZaRBydKTPAMLBcR5+zkN6hwsOfoMN8jQ1orXh1J332/TMYDWQsgEeUhSS43vI6/cUgpbmygnMPETi088O5RShvsTQ+pDRL2LlFn3O5BSGU/sOYMIZpDmBUYeqCg99wmOcMiDov7M+Iv/+GUy2tP6j2OdRpyFSfp6t3zhbHAhPc8z65K9dvwtAAQCCwlg9Sqx50JwQW6Xba2d4LeyInnTB/OsOqYT7Hyp4E0xfGPO6g98nczr10EClAVaIqDNFZBTgjqhqQG4kmpp81eeUVZXr/bnUZAh6FcL+VtBmwtTViNzNidovqpswvXfNK2VC/bDyd0sxpuaIVkdZSX//JhoUtXKRqrKvzrOnSOxvNaL721vBx9+rs1FuooZmQaQU8KYpGvWmjmL9GOKB7VLNATDnw2jVZZVw5soqYUyGMduA6b0Frd7pt/c/v+q5dG2Kd/rmsO3qkLpzykBfAHSgrJaS8WGRsbSI9h9fwOuEsu2aE3ERPfS8RIsMNoGzXFThWseqzxrpLrcW6L8MPEdTHT60TFl/neC5jLSr2FkxlkD9aDr2IsMh7qSMiIORQRHFJxM65LUBKDqvBOZwGN37alGRWtAvM+THBZhZ055Fnf5B69V+LzcFKM5q+MIIEEPWMaauwYBVX1xKgZZtrGhLQbtwAFWNvNRlM+aEjm9Zx/pkc3p4VxDr/qfX0MCYvgrqfUe7HHMWlR0hIdbpIpoAUFyIzce9qxhn/djMcRxgmoSoqNJ+o/ycGZtCmlKgc9QOAhMYHMYrRmTaQYgOmxQCqgywoLNFDz0y2cVASb9/U2MUQL+8IBgG1h5PBQj67VlJPAMSH3c4fdjng/efAgWaAsFNBThj/raOchW0ZUZbCO1FNyyPvvN1H05aplV2Ae9qQLdFU8rk33xSYczrpo6W0dvDgRIAW0e9DcENIWiah1WcUIeP0JYF+HFRR3Lv4K+TlrjMJfxIAQu6bVr6spag3lIXNZI95zilJghV8NaAraF8lZFeAtu33wG5lWBYaFRTMH01OjvbnJCqZQxFwB8raO+YvqhYpzuSQi4WqyVSSUQFE20eTV9tX5i0DCxMd6RsKpbK110r4RR1qmEAjjBh++mifXMf1GcXmy1Xm1eviwk2Fp0HVYFd3roxAIDp3asmIfrUq6QEY44IIGcWAb3WAMa9ikv9UIFQF3lsr5Ous9aDoaDj0CFL1bLK82A6KHPGUv/I0op2S9Vz0HDrkXYUc8reG0TBBFCAxx22U2qQgwNE5mhDgeu9hW6BvCzAfdU5Z3MDUwVKhfzwKc4lBW6Lsgy7hPioR+LdYBWCpQGNvQN7A4mW+NX9ifW5U9V9wR0/c5Q9tUssdcD3gxDYIwJ60fdYZk138H3mntJjgGT056hfMk4z2JCNVmNB0LoZmNFjHwlDOUXWcxRYhbKPIoWhXeHfNSFVZGPW7zE588v2+I/baHMwEk5U+QQ8BzhppWI15cbSPdYt0qGi7fk7uV8SUBUVMgygOIBZAIZafgJnSlG6sI+B6xmuI40oX+FcpLMgwFRvxxPnIPSd7jvk04vq2dy2AQj0Alxv6mzvu+2XRyAi7uuUdu8bf69jQweLp8tIX3jmADrrwOytSME4X60p1bqntBbXCMgClVmXI86rE5Xbz8PMtPErO245Sk2DQQSRwVZ0ZoA7/XQCI9zpJD4KT3rf5nb5890BP6d2AAN4sXbEOxjYo+kXticEQCII5of1Wwg55rHIQ5gd21wy8yxUmPUpmIYT6T9/BhA4mzGYM74u2xFsyJ/JP8ttzuvanfPz8857vn8229zbdozux1ctXQMJCHD6vwO84v2bUh58fR/azsd+lrSWjBVAlNJagAFgNIH/yscyAz0P5TAzwydS+IcDEEDJ6VkBBqWxoWAy9vEcB1uAA0uEzrbpqT/P1+8EUHCEbwxOr4w2s9HnJRwuL6mmCtVJgEk0ytmXgttPBYVVZV8mM0bvbZRayojuE/pW5Mr7VGYMYamuxmlEbY2erwJaltNNCKMNALyEXghjmTErBeZIC6jaRtTd2U/iWA5wCCL9gkQCzKAm6A6UV0InLcG4vRLWz0C9AtNXhNHMGwx90/Z7ZYf6vqsuxaTGv5i6mGsGqGgXxTt4ucgwegkjTcP6REXXgO3TqEzAmXqXNgd2Brg52LRrSUpeTdQtHYTd0kjY8wlhBljJJdcsCiuiEQtnLGxdqwQwoXzswzCO8depSK2p4SmTft9+56wDmtR55q0dFqzSwcd7ObWWLG+Pk34BsdKtQ7jNUgWCZlkLmBm8aZQDLnCZ2hpzY+/aXw5EESIFQkUqdbyljDnYC6NYZDHmaio1mlZFOB46702PYu8R7YaDSLcd/VI1JSZ9Hd1SY7zJZD83ICaXEtW1cBLlMwq0pidQRFwiItphFTP6cDYcVEi0SWwIh1gBBYKQOcmWQsGenmAipRAVRQXrmvTgWYA2noawGchg5dqOCrrWFfdtGF7AiHqZQxkG1N6GvkKoldv8Fh8/QnUhtklpas7YYNGJ0qtGyHkbbSGLFh9KPMaBou9Jog5omxlT68B1M1bGcKY89cHncrH5o8750Yj2Mpp9IZRJWTlTk2HsugNgxh7JqtHBqUZVCUCORmbvoB1aWaSwVRuxXPKcG957jE0vUxiP1AX11kZakbGAVOsAYDfs7xswK9AwXmiwu5zNwkSYmCL9hNidd9urdwO9mtH8KwJ07a5PcWH0nVBDPBYBVrnjJZPOt754hQ/XRumAVaphFx21PckZBCEIerr8TGrTSGnipoCCv2snBfyk6z4jlRWgvxq13da3sLIkvFwrbQ1yUS0hXn0tw8ZEAQZhDuc8HHsDr0LJH20Ad6JaDnFO+j5GZGemne/u6MyTlaemiGZ7pRaQMgMObBhL0yER8JVBmxxslBDHLKRMBDQDV1qssWj/pEBWzEXPx2cV6ATTyOX3s8OqY4yolNLnZa5aptVTCoxt6XvIQxT04PRQShWVMOCdARAVGM7f+5YR6Ub4hqQxcPpOcrhlqkcnk22tA4Mpkfd8B1C/RbOPwZDhLJiGlgvAyr6PdBK/zvdrAiqjktZwaI9sjUPkOveR7d10fn8HjzJ1/5kjkrUg/I+dP/n+h+94ao2BrwDU8d8xbDIcQbdI28yXO0zfGuNMg7e97vDu6T6HaK2//zlHO6K9PcD4w//bu4mntJTjd0MHgHicHcyPgo30ZC6mfieyc9/WcUSV83fo2C/k9knqwwMlP627cT+fO24AeDRynOmxTzn4kNkJzgIIsBDDObdA16GSxul6oKy74ypyyIQInQF3QqPP5fCZh3v7dQYM3KEtRZ1mGfPjKeXf5/SZXfVsP/LP5c9GGo31Rb5XWnMP7IXcR9Hv1rdtzOcYT9NWeKqZkPqJQEeAwrUy/J4xfml9xJ792EafK9FWu+fTvjwDNye2QTAV8n6f2n64T15/573rdP0+AAUG+lLVALboWXupWrt+V0Np+VmT/fuikcA2aWRnum5RcqpYJOT1PyJovX0q4NeLHRKrivoA42CQriVQCqO/TlHJAUCUayzXrn5cGQum1iGo1yvh9ndzROnrrePydUO9qmHBq1HlZzXUtjdGL3o/3gvayiE2V6xsIAQBqPi+4g6eUszV4ZZKJrymwICmYRCuf6f3nL/AosmIfCevntAnIBI1RY3Bct1RPzTXHYXQPXKfLmdXlLs6v8XSULSSBKHXosDI3iGsSEe56QNc4LF/WsA3BXu81GK5q1mmFHkEjV8qYb8UsAvGiUWcCytCb+MpzBFhFwLK+2aUQh5os+UBFx5OtAMPrnLu1/6HF/TCmH5Vkab9h0X7vwuuf5rw/g+MH/8fwuWfekTnAYAqo71WeOrM/mlCuxCWf17Ba8P8F3WaNIIrmH5box0ohP4yAa8/hYEsgdAjxlmKCi/qmKmjvn32vu5w5fY26z3uP6rex/JbR1kF5dYhBBVso1mp0b/eR7phV0aLg3kOqLnAW+43IAEoFmEFAcvPW0SmlcGj92P0iOoOfYNx3+m3uzoaN3Mo930YjLcVLALalkE7NoOdmqih7WN+XSN3VgoDfY7P+ybKewd2BTBdCFbZDAVotnl6WUc3jnwdTUUdCYaWGqysQn37DvnhzSjxFll3x+m2jr3HN+YdcLGsuNxZsHxqd4ZkrjGPR6URgkyE9Uelg9avzZxBTXlokwM0A/xwTQB2kCBFhyVy23fQRqBdBUqxNxUthdHg/TubRsZL1/Xj5RNVzFSf4Y7L/nnBWow1sRSUe9HSmYA6V59eTXjQHKx5GuBKlPPTQ5rWzSLM5tC71gCROl1eyskE2lBVdLIvBkZa++pv9zDYXUMFtqf0pUafKdilcyZSEAqBnfEyaRRv+tWEaYiARcenmFCpV77or/NBYDXWP5T1FDoxtj+Hk1PUAZOpYH+r+PhTVXCQVFunXjvKvQUgHZomBmj1STUj+uTPSg5Hs73kUtBnOzfMAZGlYP80wUUfFcjwcpbAZCkKOqd5CC3uNvfXHeVD92xlUGhaTbkC9FVFuwjtGIkuVl60mFBmFz24chSrKHAhlnvfZ52X5auAxNaPMYogouUUt32sLaZRUcKBhEkd9uJglwMOzMp82HbwuwSI6OADrTKo4i7GiR5ni25uNp98Xm/70P/gPpywfFnqTwCQ13U4t/bsg/Nqc69/foMsBfz1rvvgZhH8qY6IpovMmfEd+iZeJrIn6ntmOgDK/PL9y+njPB1AEXdyopzk7W7sAYF8frW9TEGRQe9PzlN+dnZW8+VOijsYCaxBLUcwGQBaDyHB0BdIFHQxJg1eL0kHwt55b3p+7ErrJhszAYYejDvgGeTxdjIDs50r53fKIGkW3LPfHYAO/86uayv6wBkZvQFsZR5P2gnjHHAg5zTXUhpICJamVNUDUORD4O/tDvHeRmTfhUZ71zLfgDpG0wRUGeKOWdASGGdkqP3r+6tw4HQYf9lN+C/3Z6LoO7DiJTQztR2laEp0nmsFEbUWjw6bDfLgbMuoIEPGpDs49waUuPidB8CADukE2rajMF4YYawabzZPZd+PLIRTNYyYz5wkEs8pCZk90Mcazc52gAqdEcKLDsBT0fd90ExJe1YwKRyQK4gIps0jAXQO9JMD68DWGVRwwOUbLJ+4h63nBxfbRQ/Pugh6k8d+8nfKzvPZ2ff29m4MFx7sGS93WdIebY4U2b2lNQS7gGnYOt3YsGJ7SwJaDuCQA3CncqR5XNXnawME8YAIa8BATJjRRTu1fRl8etLf39EU+X0ACm7MFSvraA41zJEBhiOf0VXqFvlgHzDdAHnXvNO20EDAawH1aoN4OrBjgyWjjNskNfDSabW50oRID5V/AOgFYXCiw6itGp0vm0amSdi0CsiccoSxDyBy8eMZbJEii8I4S8Dzxrl1NNYI0WBxqHPeJwo2QryL9alSYNP7573A1aILR7lFtdPTl8Ta2s3ZJDrex9YOMWlXC4ZxbO8lhdHnOth1fdyedwcTrFwmEZwlcmBsMKJOuaO9UZHCzzwRdDO4vZxbRK3ze+fIg/2+Fw7RMkABHhJ1RFSgy9qcjEAv9aa0W5tX3tduiJkIGaycH23dDGOE8dAjz7hEeoSPvT4HIy+7SURWXTwxGDBkNnix87ZYSkQyynulSKUM1kD0C8wh9w4d4xy08bAvtI/7rAdRuVmEvY316/PAI5h82LDtPnsfRtKBEifDyNn2Y3Td5hBZecWzjpDe3z+XDKI8bh3KfpLxLJ2XNHJB+/jOIa+V7P9t7ogBDFFulE7PZFskkuac386Ns7xxh1NDh3Hx8oJ+ia0BMNDtMGBjjuhzMfYpc5JcNHFUEkGwDlAI1MzQzwaERWq8HGBEi6F7BxvqcmA+eLub7SU+D0w7ASIjwpze2fvngQ6cjFst+XsyCE5XryqmF/u79YHuMdquLEZHggDNDlT8Lsc0ESBApkh7Yme+6HvSlvLc0/2iv0FJA0Eezyjvc7YzjRUU2D6RAQQAdQLvhHLHcT7ZPA52V6UYY97Hz1h0v+1NK9ZoKk0CFRhxLvu60H1wtOtZedtox65gXGgd+Fh71EaevPf0ZCE/i8jkR57m6UMU8JkTZ/tKMCGaqFPmpTV7YjwB4TBJgVagsTOGfF3bd4DTUWsVKgAXHD615dn7hbHMRycUODjv8Vl3oB3wcKV+Y3RpX7THZ/h3/0r/5s9G5YvEdhjvMhwRZTEYeJKZQ0RhuB/o/dkJf/a3a0w8PBNhlAdwzBiOyP7EmThfvi+6GXFOXzz3Q25X/t1p7/N/ux0X45nb8Sxf+9wXp3mSBUEfHOpn7xefeXTe5HvfcQfr4MA86ZcnbdF3pmO/hNZBOh+ePTunMeR+AiIaPc7rk81waI6vabMXzYkMqrvPSya1A/L+4N9/uOlpwztT770f8udyG401HGAIJ6DD25YBlmdteJaGEADZkzPxe2N2+FxinPj9rG8OzwlGxTcuj6YjpYt9j3GU6ffelCefObQrr4EzGHFOBTn/PrfzO23y61H80Bzyok459SftzYyTXNbRtR2gczG0MNLncordeA95Pu52ybM52/vjfP3XXmcWyun6fQAKZkiuf1hUfM8O2vnXHfc/TmgzIqKpUa2G8r4ppbNJiGy5On+7lKEJMjHodVLDeO+gr2Ug2F0s14YM1dXvTCZi5YZkuxTU647ydUO71FDV9mfwLph/61oK8IUjV16sTFXzvFXRzWN/QdBreddcy/mL5qmSOYdt0dPMwQRnL6AD01cT2WoaJeNkmKh4oyF/Fdg/6Q+pA+Wmugfzb/qd/TJorU7d1QPU76PRNz8MBOqY1o+RHiEMtLeCKBdJCJAFQOTPclNNjHZRV6O9abSrNf17ugrWzwrQaCUIwfLb48p0gUMy5oYLYIWQYtF8YrAKB8KdAo8++/lvjkVtu+Y031ZIKeivky5ukYMD706+Om+Ml7/sePkLgiUSYJg7A+5gdmD+dYXTlvtcVJth71pa0J165mDaADoW7aXg408V01Vw+UuaA5L6Aqpr0O3d9xfGvqiT4VWMAKigWlO5CerqJGrKgt6XRNBeZ3VEy9Hh0c1LARIVnfRymYTmGhsM1KsayUqXJgBNo6Ufq0bwJwZvDdJI2RT2rtw0ktmshFz52JUV8HrRvpwqaG+g+xoCqhFx23YDrl71s+umEaky/riT3ZdigonKUmFX2vezt3VltexdKwu4E/8yQ+aq+fTS0C81vAR11LVKSBcE1d4FHNkYEy5iSHMFfViULukhAObweQm514u+98dN6fZdgMsMeZ01Qr411Heg3CgqStSvm86DmSNlbP5tx/KzpAoQ6oDU324Ac5RJFCbU26oArTlxdF014gLdC+TTon1338CF0IXRXytEDMTouu+pww3dhwth/eMcjjWvWv2AV43Ct5eKfZrhWif8sRr4afuZRxqZIIum/WilHe0D1/2g2w7eNmX3dIA/NOedNqWG87qhXz5DKqF+aH+21wkogkYq5BkVHiQBaACIWcEZgaUtSTjDUuhgzCgQWNAuxSrIWBrQfR8aQPau7rx6esXQ4PAFjnhme9V3Z2PPtYlx/6Hg/R8J93/c8Of/7Gd8+b//HtO/lwB5PEWMfxsq9fg8oVfT4dkV9HO9AOmwedAQFV266BwmAr9NQ0vBRHZ5GRFNfTd1GNjOZBIoKFoIdG/gfQc1nWP9YgJ8k+WvZgfEmT0G5jORasvsHTItupa8ZGUTEDqwArRVq86DcAwJAO59OBxEQK0aNbfSpQ8Oy94GgJDPAX9PK78agHVlyMsE6SXWo1cYCIq/COTzWxinYrR8maqWQTRQJVgPMtLfAnSrqhXiAn6aata1akS8WwkGBG2azkNTHSKIMbHJdIcs150Z/e1F3/u+jqi0VX1wLRe53XWPvSyxbyqAUUe5TSuZGSCFj2vYGJbW58BLBvS9bUSHSKpOBB7sA9MKCnFI72dniaS0s1H5x0CeyzKe4WwBB2eagUdu209Vz5Ukzpg/e0jzyCDBVIaD7k6rM60M3CFq43c80uacjkxmfwEGyPkYuX7GGeT1cTf9jRAg74ORQ7ctnimFlaG7K8Mkqk7Y3hGClDka7n8nxzlSPQpB/EBNIPShdGmwZCwKbp8N59k+Qw5uiYxyk8s83tnnZ7ffn6tF5MvnkJ+xBvzRNI20luhGDULChBLpXOoy39sF7M6gVhcI0jNzH2X2DawPnDnBJTng5hC2Dsg2PnO+ckRa7H4ecQ52RDOxVWMnpUh2lIrM98u/AwYAE585AUvep7mvAQ3EhA3NIzKeQANyW80/52yBrHUgxpTQRh21JU7786GPuzw693aPB/CnC2Ait/4+xKd+SfcOVknvKhZalU3nwpqP7SmIFILEIhlaDrbhpLUm+2nu+OVgT+8hmB9tiv20H+d2aKR8A8A7CHL20R//iuv3ASgAB52EiKbZ5U59TBqBRnVPSJvSs5RqqYKNasRKZXSe9Blm+IYA0E0PX1lUHMnV8CEmmiFu6Nsfi8qoEQN0z/dvAjEdBGGoUWMh8D7ZBidmmPv56r/aKj8AACAASURBVIwH/wOEM6yRf2j7h4yGXg52WYQSu0f2EFGn6V3QdmB7sz7we5G1r/u7QcUQnXZ5pulZO7V8IQfg4++p5RPtsP6wz/r+IRJsiF555HLbfXthXWOWs+vRdrK2qWMqoVOBLsF8iCh5oTAYxIQ8A9BxwzLPJYIdEoqWRoTXF7p/xgwQ2iUE0djnxS6HPu1Fa+46zRXAiDI+QYO1kkhP0XTftJMjb23yedCmcRgdyiAKTEcAKf3A5pO1D1AwwedfLwAXUZV7f2cQWHrMIVi/S4GmDUU1EkC6qK33wtheOdgqbCVH+0QR+Yxa9xYdjrkebR0MFO/TPjG4l9BlYNgBZAYJnTdNoTAiwyACTC19OH6ut0CeuiTO7LBQFClVHnwqt5ZAB6/3Dk4Rfduwc7pMfDUxbKKUpt/ThQYTTVlpuqN/wpizORHv3juwp6hPB9A7WERTLF0Lwmj9ufxdfB5dUxpsXvicCoq26Us8qMNbVNH3Bdrdaegjj5+HgFibOcaWdnM2UwUZ3x+UMsrhCGKCpq7otj6qTzApGyEbgd4+HwIzGL1kpIMSvZBquLBVXRFSbSMByA90EXj0jjZTTC/jneM5lWKNDmPbzoNuf+z/HTToi55jZCK+2udHAzjKw5KlU2xjbeToO++C6Suw/1Lxz2+f8HZD6OTEuO0CKj1Sdsq9ofq+mvYOT4lT1l8C3PxdWezMtTYacHLM6057UGL9CRVQZ5TmomPpjD9EUGzOGbiqc3pEckLJf+867/Pljr+nFrlzXlk7zufwwRmwso9nTYFz1JhIo/ARrWN4FRjY3BhVkfoQdM2VjOx7QZsWGSkWwDinRELDJF7tYKj34WhRWqs99afviw60FAfSzfZJ0cFgZJgzTucx8SvbA66HELnvogBydqjy9/Je5vsZ0Xi2N+cc1c1j4t/Pjk++r/99dnqzblZycM/OX7xH6wixvjQfyctTy6k9nOZ7fvcY47GeY8yyjZVYI+LgBmBOpX4+9knX/XBn4+CY4nHcUl/Hj55E+6WagKqUsEEOn/PrwakRu82x/4cav6233C8ZJDjd5wDU5N85Hd8dx/M9o7/csE2XO8/fi6CHHfFk3j+7njmihZ5/1vPm+3eef/58fo/OCFbFWUDxdB1SLP7a5aJ+37lfXDzm+cPn6Umf5+95e06fe4jy/7X2EB2/00U/L/T4nTPT4Dzfntz727978n5Zh8ABU0Xj07uk/vJo0+H7A5ChnNIDjPl9Phv/2pX2sbhc6+GgH5POFhlpEee0j7Mmx1OGzun6fQAKHSpsB2jKglV2cBoqJsL9x2IGlOaHekRZ8+P1NipC1YYo3OdJqaFLUT0CJvTlBVr1oKOsHfXrpor2rxXTL3fMX+/oL5NRsvX5ZRtl6KRqpHr6qmJ+ZCW1aJeoq90WQ5/N4VC1fAAE7ItGystdtAzZKsP5YkJ70ZJj5do1mm/Gn8AEISGqH0GCYmrZ1AX7PCklv6tY1uf/d8X+WvD+DwVt0QoT2lBEOgSgh3lZuzkeApkZrdRgRajx11HuO3iu4E2nTJ8L2ovee31jlE0w/wpgF5R1N6O0oX1a0JeC7VMJQKGwCn31WUuH3T8z9hfC9KFObNnUKF4/M8pdtMqDsRZkYtNM0PZr5FdTE1xzor5rv6iOgUbh4N8h9ZjLdYOXmtP71NBakGLjt+kc2axk6fRlg0eN9k8z9k9lCFMSlBpuxiTfdwRd2ijlPq/bDzNo7aj//EXrbqMOMTMDhvjWUe5dS0MC2D+VMNbLXWlV2xsf01dInQx3ZnrB0APZXLlcfyer06QRqRNTG+k01ASlCT7+Ycb2xnj7/3aUe7eoHIAmWD8xvvxbxvwrML1rxRDZxOa/YLLxaUldnq1KRBgjfeR5d6uc0V4GC4i6oH5lNdbnSXNwr/cxbt2AodVUru9rKG1rFLQGQyXSk4hVPFUk8rM13YOw/TCZroU5fl5qL8R1etQK92h+v2h1gSgxWYv1kTr+BH1fum+g611L1E51iMDdvg7jMgsQeoWDZKCF6KBTsjeo3oNFymnvKK4j4cCpyKjOkLMotgb+eotn9kvVvhPdb6TOoSnA9z2qo0hhZUmszea55sWz5ZBrCgSi3KDvN1rlBfEOMf4GGCtTara939ZNtTnTh5iYl5/UUo7JgWtDN0CmonT55Dho1QrGbvdx4UHxbtl7bCx91rbXj9X1Pke/mcPauapztbVY68qcsLHaxrxSZhvj/mNBvXcsP29xU68iVD80P3u/FNON0bK0rncSa90Ai+XnHX/3tWP7XHD/9y+4/NzAd+ubov3FW1d8amug+476yx31y4rth0X1dl4U5PMzQMs47lHSFICyPgDwdVfntDK2H2bsr6z6QvZdII3RpnOlGYsNgIpVGgsFYmynZoCF59ZOqkjf51EejmzP9RKALGJR+FFqTRsq4PttlBBmgvyoWiZYpmOEiTkcPSnV2uEDYgKOc6o84uvJclFlKuD7puyBrQ5Kf+vKbsoRIlvvUanEBUMdUBAZlQAA0G4aCe48W5lV2vaIeMsyD3FUZECtj3YAuq5f53CCtB8TYOL7iwMfVp0mnFh3eG0PAwBcFt3DXhfdczxf2BdI78eyufm7RCEAKZfFUgTXx9KT/j6eVz9NwFTRXy8qlLxukJOzfAQJ+hFAqIJIvXDHNX/O51B2mtm0ORbVLKE+gd5vSctlvItXw5DC4128QlEGEKrnuro9aU68BxnMbojzAAiWFTY74xzI8XPBz5kz4GGBlgNLwDUJErgjFsUk3sfnHcjzZ3l/WQTWc+sBDO0KX4tnR4gxfu/6EcaIUXZwH2sFGGwEHJ2YqHbkKUXmzFHxKHRTB9z7L5d/TABd/J54jP1ZmDIDKpLe1dowKkoEgm1jvpuTmZ7PluYUFROeOGYOOrSO42nT4ZoF37oOgoLOSPD2BisiObke3d8Sc80j1/30rmemai7v6HO7AVFxAMkRjeoCcnonPDr95+tc/hIY84N5OML9yB4ZwpInEEtfaOyROWoPPAJO39IJMCZW6A0kIVHZ93EfByBzCU1vAykgO+a7zhVZ1wAAvBIHkWoo5GoMx/YcAYDDe6a0ENeqeLhPFlItBeQCwX7Ps97EX7n+KqBARP8rgP8KwH8SkX9nP/sfAfy3AP7JPvY/iMj/Yb/77wH8N9Bp9t+JyP/5N7Wke46p9r/TcLODCQK2TzoIfBvUJ6eKczIcnT6qToouduqCcs2HFsw4ZxV09MjZvYFc6dsPcCbAoktlHYfVYE2ogVSvFDnruQIEhHSva4L6rpTTejc67C4m4KiOHjXRWueYjrm2FQAocv+dQt+9fjgGJd4j/uWuzmT9gGoTuHCgAPXq9eJTHraJ5p3zePuiVFLxqFxXEKUAqFUO99UIJYz6WxUYmYwmb32jSuoGMKxi30M4s0IKgnit5V4JZSIVDUvOBTaEs+jCl7yJ7q+mRxEK6ez08DQFcj1xi7yCBrUqon3AyHX2iLbdEwD2VxUFLB8c91VNDs+lRuROspVa7J9eNKK1m6JxIzVeXBiwJtryKuizam5oyoLOoWD02HxWzQwBwKBKUf2jbECD50ITelUAIKKKhCgjyZtGT8WV3jeJNAF/FxJ9/vKzoN50jXpKjo8xCmkKSBcrRVowm0HrZUBj7GYO3YwB0Oi87BPr8JyVfU8KuDJVkNFzwYz+UtFeatynbEMgzXUNXGiRNqOKO6hioIcLYmbGgkcWnbnitFSZSwjLBuszz69eACyjzR45vKjBLxcbrA7gYhFyU3OPEneJBRGRqg4TkVJdCje4pLKmadzUeCOozkCo4ssAMLLo4CgpBpA0sP1/v1SbB48l3HJES/UoOsptB28caUl9ZhUM3Xug8Gz77v5a4SK6cb9zQMwi+QLoPnU3SmRl9LdF50PYd7YOicIJDhq+gUkFCDaOinOaEWO54fF9G/MQr6yTtsGckf46JUfaxYF75OQTQdlSG1BvZGBgjX2oXTiYQiAKoLDcBXxXJ1/HZ6xVbRM0PQEA74zpa0O5GvhizxSytUUIg1F1YBq4qdit68Lw1hVMCPA8GdhEWg7SRS0BKzt8Hvs0H+K7SJod7jxhAEEMeEUD18IIdoTNr2AHGkVfnTc6RtwLQzojV03xuSCzr+NjpRpAEiNH760AsAYrcvnYobPTAzyUZaRuyaLCbnGWnp3dQ5sIYIvynx1B+xzdh3J/BmABCdEvn5tugB6EXZ2Ca+taacU46AgF+HJycg5aIlnzwH/HHKyXeK8cVXMgwkTi9Hd97Nk5ap60ReJ354icPZ/OOhip7VFm05x7AMOpszGM5+RnuRNdy+g/GxMClCFk439w2i3YEm1we9DYUe780raPeZufmd6RNgOKHSjJrDB3dK2c76Gv8rx4Nu/iAdaelqoBOKhraSTC03COmADQsLX8HIx1LaP9rolydpRzO09jNc7wx3HUf8pwcr2NlgZyeEdjy1ApQOPjd7NOSIyLOYCtAywQL1tpEXIiCuFGcWDDKkpQBsdO9w+nLDtgsX+dnGlvS9ZLOIAT6UqO7mPufgI/zj8/aAqYtg0xIqUi7p1KcPrje7f0iBOY8L0rgRnfbV/YFnK8v797/lkpIBO8BDCAMP9KBhuSLoPY3vSvupxFEQKS8gCcAdZHT8fJ5xB9vw+k6Z54ZthRsmvzde6DeNzjGifbU0KjQo59/aDtcNaxcBsnqlCk3z+zuZ9cfwtD4X8D8L8A+N9PP/+fReR/OrwQ0X8B4L8G8F8C+EcA/xcR/eci8n2YwxwU2npoAGhtbc1BLXd1SHolrJ812l/WJaiZHmHs5qBsnww17qMKQv1oKZIC7C8lIh/cd4hHl/emZQaZFUCw6FsI5GVD1hauG1F8b6iiVHBNA3Cq8aD/8ia43AT1vWmU3lgN9csKVw13UTqN3BqYQRgVF3xuToz9VaP/9drVwDOwo1mt6nrt4P2Ye79+LgAByy+b0ZUBF0X09A42Q0osD7BdapSTpF0P17J2yKYOpKcpeARfa54X7K8F+ytH2UwXYmszR0WKehfQVTUdAHVOeyXsb1o5os1qiJc74eWmUchuB17kx0+MdtH78ap96mOdAQEAVj/e+7AE7d3FDzVao86Nj702jGBZAXFPj6rvFwLvwPyLPtujoW0ZDoBUy1t+V92O/acF5X1DuV1BOweA0SeCzOpkdGOz1GvDOqUKJA2Yfx1aHzrhJWj1QhNoIWyvw/h3enOv+gzcZBwiBLSFwJuCEi7yyE1Q7xgRfd/HBKjvHW899atFZntRNUidtyoe2ifG/sqY3iko4RAJMGF/UYX6eu1xfy+np+lDpKkWWzLMAMuTpcgx7h5V7MD+WrF9rph/21WfZO22thVsU1q1aZC4CKQ7B4HuWvdk6nITda7mEgCaV3mgLiDyeXes3EBMoFRaMp7xdtGo8uusTId7U2CpMOovXd+xWcR4MjCDKPKolUbthv5gxbSFMW9NNRu6gwnDIFPQp0a09v9n7u2ZLNmWLKHle++IczKzbt3X3a+ZmebDMMzQkZDnH2CIKAgIgwAaPwBhbERQMRsMFTBEjF+AAoYhAhJjIDQM3cz0e/dWVeY5J2JvR3Bfvj0is+7t6UF4YXZvVWWeE7Fjf7ovX778IHjLiO0GCDrG84J+bWg/3VEeu4OtBRSiFEaa+e9dUbtFahffD/ZPq2knbP5+RSxaLYL+1JxB4+yRbc6D2O8cYBtLQb11tN/f0J8WY6Bdbc9ffrrNM8GN4LFWjLWi3nbIa5/OwSMBI96nLO/HPPgQ+90HsFjVm/Fk5SOX39+Arti8BK2ootwNlCqP/aDxMNTW0DoU+1PF44cawPD2LLGHqgD3HwuWV8X6+91Ambcd48kA3bEIUJJGwWNgvXfgJ5hOwz5Tqcan1fbglwZZCnQbcWbWm1ebcGX9cu8om7H7AMQcyhTk4VUU9icXir07s+1kbFIsuQyFjBnpCTHe62Lz4OsNrFgRc45pAlmcU9WZAWLzlWCCp9kwj11LMa2ALNjFcb0asIg85r7XCwGKpdm59TTNorIbw0hOBpoM00DRyxIlavXJgKaSAEfqKETerQhQYCkbnG/7OOgshNP4dnMANYGQke8vB5BTr6v15aXOtUvH2SONynRAjwpT3BYJkIjnZ6Bj2425wIoBVJI/aR9Q2wTABCq5H3e1Kh57P2o5qE7Ng4i0ymSsJJAyqgwkJ5plHtXZAnL6TDgG2eErBSG2SUe1WB9amtBMn1MCFDH2MyJp756AiXgH33vusxqHsE8ymFEwHY3HZgyC290qMyR9nUgN8XnN9z6wMTgWBFKz88t+DZaDuq0wAhgNLZrH7ik3vE8CwPqAYsTZ/c6x+kj87gR8RF+1Mvsyf0f1CAiQBcZKEI9tPpc6C9TVoJaGn5eaUwUYLXcHUXoHOia44nM6KmoRdAAQVSFqObaNpSuB+RyCEIfKCjj2g0cApFVjOmTv6OyMupMeDiQd1oiUKw43iOeO488qLI03MVbMf8F0Ems9OM/vrkN5wzKfxTbR+SbbJAOM+TYBaKk712keZNp9LYCa1kAwNEjhD/ZJAvQywyyzEv4611CgmlOuKlO/4cS4sQCSgy1klVQE4BTslLPfTZYJmUQZ1PFASbARCNxVmX2Q+zafb/mq1dY1q0OwhGYpEKkIYfHvXdwro0+Oa/hDccjT9auAgqr+9yLyr/7a5/z6twD816p6B/B/iMj/DuDfBPA//OK3BBjNBMyETvPwjbPOEleiwPKqqA9zooragT8AO+A2E+Gpj2mM9pyfnhZ1e52RGKOw2n/WiX5Ydq+n7mh91PV2JwLAVKwGwiENNWz/fb/YZ5ZXz019DK/8MMVEjAap5p3rdDbIYACM6m7pGkZ9zCJejAqP1UN4adMQHVFSkn0JhQkgcrKUeYgAft76JoHiQEI3EMF+jqimsP7ETRTRLqp+15uLr12tVGZfzXiOqJxa1D2cbgHun70U2RdTG2939XJonr4wFGCte6/CUB8D42KgU9nNoQlxzmjXHCeC7FoJ0vCgcIp6B8pQlE1Qeg2BTqa8QK1NE2isdj/XbSh9oNeC7cXSNspuqQBYgfowsKdfasylsTZLN7laGc16t1KQo2mAZH21firdnHemuOT5Ppp42Sv7zPplRP+UzUAZ9k9xAb32Zl8vmzn+9z9a4n42v3weVddGkDn2lhJEh9K+sH4d8R1dZ8m39jos7eBaY7xLV4incAAI8C8U14vXgheFbIJxWSDUUwCA+8OaSWONTJlhwqFcO4e0KjGAbHtpWH5+QN726RxzLVMfAQQN3TBbGsazpVSEHkJx8cUbzDCtEhHqQ9pBo9YHRcQMWJCU7qUiwFIO/6YhGca9nPMJBwQF4vTgMA53j05+egr9gfI4RuwsRUBtkbhBVW7bBAfcsZM+0L5t5hy7cyZjAJu6wTTCedKn1Zyp+zbZM7sLXqp9Xhw4CabCPoCHOcXq2g2ya6qUMtlgdJoxPBXtBISoeOnYJuiLA8Lcv7paPw0CSrb/65KcnwCCaeR4VF5NR6BgT1RSE/HNpQF1LVC1KDxLaz7+eJ0pFhWxjgBYqpCDzVBjjtU79SnMWS3bMECN89mvSEEaGqk5Uswh70/NxjOfNQ4kDXGg8WFzsL5tM8KToreHChRqn1+8b6jvooLYgwKAJVDrcy4iqHSodhrKA+LnuVaBoE4H1JXPtRWj7fO70U5zsoLZ4+vcXswddl/XXGNaip31FEzsTl8WAZ5WyBgob3us2UhPyFRRRrO9LSx7SJE8vXD/TGPFknGAGfHJGYyoewyq9xUd+MtqhuF+EvtSjbKYuULOjJ7vfqY1cxaeiwdsahTrkTEBI9CxAmZ5QBHTolnagY1pmz+dcljpwTGFRtFODkWVWZKQDjt/R4G+vSMWBUEDF36M/tvT/tU7hPjokGBbRIlKFz88OBVpTZPREakA8H0mdbHQeeQzgSmaRvDgNNZMG4gyw7yC/m39Y3Nxm23lmBeZz2MfZ4CE7dJh4EwpwKly07trqLe7QVgn0oVHybLLa+sAVtUCOKX/nbaC6izBGT9yZgfXDFMUgCPQldMvgFme0QMrk+Z3eiYQKTo61COz9fjuIhZthgEHBwp9+nM2ephzCE3O4mmvpcMVGitlAmC5ZCWvs8PH3Hl3mJXvT5AhO5pZx4PpBLTH+Xe3WWcJxx4O+UHEL1ItBFPkcT5PmAfp+8IBOMjACFkcI/XFCVQSEY8r6lHM8pRSEEDhL1HqcztTn4RuwRiWCvUBSyGc4bwm+Htf+wcb6szISEBp/n5858yw8M9RPyR0wUJ0dALXx9SSAfGcwAPjQh1oSvPhsKYy8MIxSH0501JSFRMAAkvXUIrQRtNlfucAnr//3C9d/zwaCv+hiPy7AP5nAP+Rqv4OwL8I4H9Mn/lz/9mvX0JjMG9WcHo8IgJujlHaXIc5L1A34hVQit35PY5l1exe5bFPmr5HRuZk1IhMAZjGbaaoubMQqGb8nAAAqw/AlfVhQILnqZ7bRgN5IsJ+P0VQtiVRdkcrVptaMVMgxKsksJnuTENh4oJriTxyCoXFJqXH97A9bFhJNbjB2xXlNietNLMm66s5Mv1liUOWjjpLZpqRaRR8E95LB1A1cKP6uO5XOJ1XUR8GpLRvHfXWJ6jjFyNsJgYHhLCYGsshRAergw0LS8PBldW9P3aN+8yxNIXs4u/fr82p+4J6g+sB6ExPYMRPnCVQnDGxGROgX2xOdQdBRhNLS7i0SF3J+hbMlbbKIAbIUFfEUgbc+M9LhukDHjFevs0Nv4yB5asrWA+EXoOOEfNLq2B79lSHHSHCqVWsZrILgFLwNOb1NiK9o33r0RZ7DZuT9WH375WpBd7vxdZW6CgoWS4msmkl7eCofCrHB5ggmrcvO+9QRX19oGzVnEtBAAN0XvangvbNmERUVg/Kv6O8B8fSQUnm11dSwwXBchgXryjzjio9AFkwVs/drmLf1wEqjEdlGY/0xTqm0QIcjSsay75W5e4H+AKgW/t0qehPS4yFbOOwH+b7RYlDj3Bq8T7xPsa+Q9eGsVRzQNVBBaej0/FSMRCovmEawGrAEdMG6KjpdYn9FUNRXjfoxSsA+Do+lDJTzKo2A6BS+EGYTmwNjMWYL9yHY2/1MRm1GZtk8+8sxfUdeF84+8UrvOwOYGxJtFNk7ufu1PdLhVSFUKS3mnhpgJ2KcISiks9gKobp6lSKaar34T5mSpCvLeV66B4BLdNwgDM5AFuf4k56DDupxM5GC4f7A4MhqqDQ0d9nu2JtEVzzZ+YxI2OBz7d89DGjpkDoBdg6PkW/lxpMMohANkSkXf33h6h8NvSyo+1zGRsijcgceoD56gQRhEwAsoAYQPBc5NhvCKQOT4MoJTQnAnD0+x6cxKDWy3FN5/53Cr6xGGZqlTBi5ak82ek8PJNaCtEfi519VexQKclhjf7yv2fKMPP8TyUXw2gGzCjO78AATnKKKZAZ6UDcd5ZmDA1GWs+GPpCcqRONPT+TkcmlOSAypvOfAS3/fKbyHxx/jlceN7IUgmUw3u/L0Yd0HMrcF/O97MVAIb8Q2gWO7LvzfbNxzzNFLUKvpLUDx/fiZ9mehul47DuABrRjSl88y78nwBzLc78DvucXqwhEJ5fz4uSQBIDg6QtKhtCvXe/OLAIASb/jI2cnO4BIjlNyQg0AkemYUYch7uF2cnb+M5jANg195zi/a1MuH5g1HsicgDuK4cR6e1IJx4NTm4CSgygj25EddpZ3JXODF9cYxyEv84/SHpyZPQX9PrjGpOmbFsNsU3Zez8J/hyvpQbwrI+mgAtklmufVL9HymTZTTmN8aLumd50gxC/OU97r/PzvpUAAsRbSb/lyDhIpAAc6uI+dUyWCZaLz3gfg169gkyhYwjN+5ZoaBHeYMvGLY/Od628KKPxnAP4+zJX5+wD+EwD/3j/LDUTk7wH4ewBwXX88lKKqjx39xYV/GOUIh9Ej/HcTZwzHym467+/Gz/Kq0DcJJwoAUAT9aQm6cnnbjmXcJDnXu+UCa7UoFasVtNeZqypqkbW4igAoAVrWhy28EL56m58dxYUj1zZzs2mI9YF66+jXit4KWnZ21Zz7pg46uJFH8KE8hkeLzCnUJhirRJQb7uCWHahvFgErWw8goHgEiRGnemdZSzd09wGUizmBl5liElFEn/yWhgIznFVR74i8fDIm6l3RdDIx2j0DNO5Ut4J+9WhXXp+p2kd77UbtFxgt+kG03XOKq0f++zgI8QGALmJD7+yKKPlHMESs3NxoBaCIYhXIQ1HGQNmKgWH+HK3VU3PsUO4rsHyzPqz3EY4by6oZhdfmlVbB25+YKNn6dRjYA1ilhl09vWWE0Oj+XMPRmpoLM+qvzZxnQCCXgnofqG/9kFKgRdCfm7MerN3tbcSaA4w90D+7k+Ljt3uFD2NTWF/W3YX2Lqb1UJI6fH+u0GalRxWK/mTUWraVYImtyx2FDIWuVlJwsbSGAA9rxRRcMmcvjIfdnN32auJDJrZqa7hsA9e/ehh75nmNzThooGuDvG0o396MTuzRayrlR/CkOMDgDA46PoVgwuiex18hjx3t7WEMkuLlLEuBPps4Wfk6RZJIveef1rgTjdoNVPFcXfV1GAJsnpoAX7+kZrOrpHcTlXt5CqFFCltGNLsBkBk1NlYAQtuB+12UgWomVldu7wWfdLFoWjhB+wRyyusWbSu33UqNPq8Y1yXAOktPGwZgqh4M8vHUDqwtOszloWi33Sj9b7s7fQZyxVWLjQ3p8KoRoR0/XH3OVasuU04gEwwwYIoQACu12wS9NEtD6APtpuirrRGFne/t1UpoVhfxNcff9/NhqRpQoOwF42opNf2JKUy2ppjeMS5UZgfa62YMHQeIArges+QjhdL6y+psDkv5K7eUzgKuWRMPLW/OHllLnAW2JhBjkffjDHyNS3MmxYh0pCkFVQAAIABJREFUH3252Nn7drf1p+UAaGitUNemYWpMvu+7UpO1AsOj+Julg1FXKcAGrqVqYrgGBHiFgz7brUuFPk3mQ0T+Uy6pqEbKgAzFSEKJ6Gr9vPeDgKAwir4a+M57yO1hlPuUDqDVjURnMUQkne1QjbNNcj73Yqywsns0de+QUrB9apYWSfHYoNQmhzmnFPjzdF0M3PAynwdAM7N5GHVmoEfEDGCCptyvzukdTMfwdApLPxyR6gWRKVDJn1NPoBQrsUtHIRvRvMLYnmCCjZ8b+6WYWGBP6Tu+P2cw6TCvCbJcV+vf+0zbEAco4/O5koYDxnk/zaBLfO8MJIhAPz3PsXEQzAS7jwygnAoC9QDKmIw/wTodWab7+OcDtMvP5nhmLQ06TX62AbDARCnGKtl9jEl95zvviO+f2QIHJh7fh1oh0fcZpBvh/CrBSaYn5M9KAS4tIsSiCt22CWgEyHQCPjKYldtF1sAose9F+kN2Os8RZDoEBEOK9x9LtwKW7gI4PT6lbIzZ5+rzE/s+x+ddhH064zktQH6pIgPfN0pO5jmY2oEEamCO37zXKaIdTvXsUzlX3oh3VEYzI80hUlJqiTGOGUqQIjnu5/YEEJBTKQgIBYvGxkQpAut9IgOzX879xbHL/THSnGM6XmafsG8zGPXRlYVuM1OB905pJjHOXWd/J4BdS3lX+vRDcCQEZv3ZMR9sv9RfA1XwNwQUVPUvomEi/zmA/87/+X8B+JfTR/8l/9lH9/iHAP4hAHx++TMNqnKI+6VJIRJ570Lng5uRRx2i9rY7y3YPWNmsoM1i0jTbRHy0Oboq0ygEMOmSXaFFoS4OSEHBqLueD0exgbac2zKrM7hjamXPZhsB/3cVaOZcR5TaneEiRqffNTYocQcHjhTOEogOlBSYKBr3E56p3B+L/SPuQYYIS6QpJsqYGRpnMHspEeGO9p4RRXfeLfLtTqOnPBRG6FybQXa4Y46DQxuLikYs+2lItL9g2Bi5Yx0OKmysMgOBNGWmM7B2OynXZ7RRukXTyz4BCq3z2TltwyoUwJwvb78ZcxMEmwcZkr6Dlf2zCgwC5pBnUA3uOJRdoRWR+mBz4njmxruSLVCAQl9PfYCHtyGc6vSfR0bHIpHjzlKefRHsT4L6sMokSO8z76cYKgGeaEX0N0s1ChAbY66pSwdJRKfuBQ1QUjDhEYYcmcv3ULX8XxHgaZnRVgox1hNSzUPJm2fMpWTgca0EX13CSNQcHS2nRe4RTQzPcW9wI8DfaXdggM9wvY75TmXmtQNOk8ZpH6wz93yX6C/bE0cAltEv+b2KeF51orVyLynpc8P/dzB6fW7Rwb+7I8BonjuvAZb6nwc2ZUSMYHvctgNYQRHRw5zgWCe2VfQB5zDXCBAgbnGdDE1507H/k6XGg/ojx4TOAOZZFP1L0HRYWoI25vlzTakBgmmtszRjLiUMYDIAuF8XuABvmcyuIcFYMJFVCdFd7udlnylZdOYjX78ISJMmsyGXND3k/QoMgHFAZdRiOgFjjgvZbhQ7JcNDxsC4lHCiBGXmpzq7T9Ic/qjPoSMYFIefH8AH/0th3yTHh1Hi7CjRySniVHvMz0YfeDrcwZjz/Z45IJzPBcjH93evM9jCefThu01AHDmKzc/wr3ktMiqe+/JgS/mPxFKptHkbgPfPAE57RJlspfPFOTNOY6ip7fndw3lI7xvnwmk/LojzfN5Wj2PJSB3vf/4vgwnJjuDPTFcn2XH8bPrM4V2BAIneve9HfZPHKGy2cfz9R/fJ90+6FioT6Jjld0/7Hx/vbJb5/m77YhzmiqaxiPX6UXnWuPGMONuvFKFnMOY6//Adz87qR9Hi4cZPft65n4ZabniK1k+qepk/o8PM/nzXd2V+7kzDz84bncGPLh2AfOBSnYGF+Llg5t77PWs9rsHzdzJw99Fzzn3wvevXyj3mLviICXGOhh9eK82HX3o+nxXMDhOIzOKQwSSgM150tu1QnrEEEBEpGWxLflZ8VqL/D4BPLu8p856/ePFeZzHEX3r3j/o+gXe83glmHth38vE4ZxYM73cGcD4sh5nOFNpq5/YRjPnO9TcCFETk76jqP/Z//tsA/hf/+38L4L8Ukf8UJsr4rwP4n371fgrXPxBbL04jpIMsHVh+nqWQGBU0UTQro4gioXAd2giOzmoTUDwxyvswXWAo+tOC/fMFlREse0n0p2U6iwoXsrIoruXaee4pMMX9lmLRsFvHtl6cogiMBrz+rQVla1heFyu3de+Ri65FgrbKdxiXYiX0vOTe228XyACe/tLEfrQW7E8N/SqAuDq/O4cWpoeXGLS+bFVQ+jTiipesNBq05/Q7lXY40i1btwBwOuD2Hy8hzCVqdPyyKy7/7xaRyEOFAkWIS1IHArBFUiLNTlDU2l9oYO7mRDMHGF2Dsl32gb4U3H+zRBR8im6aCOT+VGzufN1nFKUKRq3GdHDgAsVz/SnuZ91pY9OcBi2C/WU5RCJVgMePFhltr30qntNQZpnTh6WOsNzgdAonAARPIxAHnZZXDfBlNEDU6NLlYdoQQxXr7x42h58aikf0x1MLQcgoXVoQdGsT6XQjjaWO1Jyg8hCUB7ykpzkvddimZakU4sKZgr4o3n5b8Pp3FJ//UYmSkiYq2YKVsl8L9qvND3u+jWe/WLWK8hjO2vBnFrHUnLIE4FEeVqVg/83V5qdIlNpbvuxG2Sal+eL0fuGaV8iw8qEGLnXk01JlIHL6Pf8eVdCfV+i1QfXFnPHb5g6IlVEEEM+tXbH9sGJ/rmhvNt6jFXPwdLd+WZtrJ6yhL1JuuzMqYGN0WcCShPLYIbejASa1hOK41gpxNWJ1Svj248UrvhgzhJVrCvsmAFJfz0WglzX2Lh4fep0RLBk70J1xQ6p6V3++WBlMNCvL5+1kNIqMBKaIcM6bU2u0cumbjecPlitd9gFdFbgs6E+LA1g4sJ/G8+KAEMddUb8OVHGhzKEov78BrTgTzVk43VN2WG5wDIyrVwLZdaY07FaWGN1LHJYCuff4bOm2t5atxzmFrpbCslulhP3zNcQbRRHzX5J2gunYlAAE+kuDDJiIqN9Xi2BcF/SnGoyuQ/WgAt8PHUwg6wN19rtqpEygwBwTZ6E0H6fhZx33YlLttYiluRWJ8rkAHDCV2Od7lE+2va48BsptgzwGpJ2dVI8KdmuPLs3YKGtD/XKPKL54qUT07kJrBJJ8HT5fZ4R/F0gxEUxtHrWOOWcOrXi0Hksz9uN1cSMwOXt0NGgHNE+FGHTcLVKja4NXOJ176Ma0yRKpWRHBfMcsGM72sOg/LkuwCYKlwJSMbZ+GYy0Hcb93Io8udie3BA64oXv5J2+xt6iznwIYIchGx5fiibUYMJiijgzG2Psi9kxGq9+lVDGq5X9GeVUyN9aZKnmI1NM59bkQbVuaVcbxfmHJzXCCWVaY4nyqkO7vlwUhRaZApDh7ZIzp4H4g7DY1C/xn98dkMFBr47J+HyQgkECNoFqhRSGP9H7fAyVKmlNdZ4WOfHHvpU5FYt0AJ/BhZVWhAZY3DYYKU5AIxktyqpcGsOSxznYI51q8rp+3pQAPm48hasiLDnyH09YZfe2zysIYkHU1Z/LsQJFRQad86BRZ9XQ46D6ZLg4qSE1i2+zfLLDYO6LEcn5mFhscetRTAIw1cAbF/Kxk+wJI4Fwi0HkAAbd537Pjl6j+zIcXgqNMjyBbx+cN2T9obQIEOQgzdLJ+3jEzPgApWBaxwiLaqpPCT/03Ag8OFgB4D9aozDGnL+CfiUoT0edjzsFD9ZjvO/BzDsoRLLBf4h17oCWXWAcOKQZcbwSwGETI+8MB9C322aj5jBOowfn2HkiIK7NSAEALJFdf8q49gDwRHD0BCPlif8eY9ncgERkKwXLhnP8FkOWvUzbyvwLwdwH8VkT+HMB/DODvisi/4e/5fwL49/3B/6uI/DcA/jcYuek/+NUKD/Axa2WW7cpIie8DjDgxqslIO6PeUDpJ3rHuqAU12Q2Dcpp8PAwtR7YeosYTcXdD6xz5HIgoxlhqRCjIlqABeAZ5ef8QDKQh7BErQ6AlDE0TekttbvZFFUlsADe2ST3FdFqpjG4ROXge7zRwD6wN9ld1Q2Xzdta52ZKhUd5GYhzMdydF+djR/tpumIkCVqIy/X4g0jcAzDrbDt7kMSO9eb8W1Iei7MwpnuvXouw6wYTU9/A+s+gcI4QyRc58M7bU0Gn0ZwZLvt+M7Fqfl40OtoRD9C6aAUyAorD6gW1ukSvtkfyY/wC0wQ4nsVxj6kpEnjHfEQjGAu/XLwI9UM2SkcHXYRTEwY1DwMjnoTEvgLLNfuyXxAxJ76wVwI5D1DWqgnxwUYci6NPJkMqCcdEvEYHJv+MG4c5v0RmBPEf3fJ5A1RwBrgORYJrkK0d+rQ812EJT/M7WEPOpmXNtfy/xM4HlrukQbyOmIVBlUoWBAEWOg+V7XScAKweKaACsoR/hYqjFacUwA7dsY7Kt4kWTEVmBA7OqWUpXpIml6K6WYoEajtv5oIq9uvjaKxOk6zD2R6obPplYyXkBAoh5FwH07+gYkwHAigWiE9DZdD6n2P7HW4ajGe+Q+jzScnx+cXha8XLj0+HguXNg3vHzznDaXsqs3rLrZBtw/cDHwKO/rP4izvxhFJ2fH7FvIhytAjplxZTaubeROeIsBV2c5ZKjuLRTCLghrZeOiY8IDBDlucu+c2NHiwUMSqr8YCUd3bEXvHNGDyJ8bE92zOI+4g5jifQN2gDhjAGw8p8yz7MElHN+hJPgqUSifga7toOoxtYVmisDsTaipCTnaas2dkO9DTqddd63lONa5/tz/fE6nSHBVDpfeb7SEOTeEhMWsXfFR2Nf8Ge506M5YkWgNjkknEcRQSQ4lZ2L3N/R/un8Htr7gTN/YA5wvDD77CAamRznQ4+d+891Kaw/RkrNkPmc7zn5Y6b9xJWN+PM75TYQVMp6C3kunj9/cDaPY/a9KwsoBkO2pn49v9sHgMa7ihKJkfdOd+Gs75Cvc+Q2V174sPFpTPj5cXKukx3zUTRcuHd6m86sFgGOduo5ihvv9ZEBf/pddr5zKoS488/nJd863o9zwNv5/kWKOXF6ctTDSU7rle+bc/8JlsQzTkBCOb33gZH5AZjwveu0toJtkBzQQwnGsz3strKmfx/a/YvPTXsY5x/nY4Aa/MB4Dy6cL019yjZ/hxHwTmvgsF/7+PzK4969Y/loHpb3fXZ+7rmNecwJTrEv5DQZPwLrhh7W7i/qZuCvV+Xh3/ngx//FL3z+HwD4B79238N3quVytr/82Q6vyJeD18eeThJrYEdeKCNDw3JOdSkWPe9qNbr9oO/PxlRobgDw8DGxPhMr1JeMTinatz2iyFpN5Gt4CTsKJO4vFhHtV6N91zfLgR/FyjlSp0CGYvlmgpL1NiLqrrB9YvtxQdkUl//nq23Yi72LNovGjmrq3zKs7Bj7AGUepCpAf6pOazcV//rWsf9Qcf+xom7qz+8RRYqJslg5sLJZhCkqUzwGIMD+afEodvd+EKy/61bW7DH7zWjxNVgddCDLrnMfU1gkS3FwaGlUt7duef8U/1sEeANK75b2Uax++v5ccP9RcPkZWH8+akZIV6xftpnmUI5ABwXLxloipcRYCcY2qG+7laRbCnYvCzcuAgIyBD/Kw16CTJBgZdx39GvD/mIVFwzUcafBnYtRBePiJRO/DZuv3mflyRy/7cWj+y5YOVYHmdQYJeUB1LcN/WnB7bfrBHcGklNubd2fC15/W7G8KZZX0s+NxRLpRC6WSCdDq5hNPmBpDhf7e/mquPx+oN4Fy5uiXwS33xgzZPlmApvLV4VU9bKlinYbxiwQwfJt9peWqdUBAP3JPnP5qzukjygJCE+TmbmtVpFA9oH+strYMD8YZmzLPkw7AUB52yzlIpcyc0aAOT4Fu0fKaYwJBQdDcGqgfLVybuPaop/KvWPZbdxNYNLKpm5/fDFmxrfdjG3u2QKLng9F+/3uUauZXqFPq+VBv21HwTBG0DyKpK1AbhsEO5o7zv3abH09urUnsa7oWOtTAR47ZNshbw9jYJyMI12agRxBCUfcpztQUmp1LYbN2rNU6KVAE/UzQJCUpkH2Qn9uGIxCDlft9rQgCty+0ywg6PM0DcL6uh0YbLp4VYbHbuX8lhKRVfsTpgOxD8tGIePN+zCcwmubhnixign1m2tEeBRAmpU47s8W/Sl9iXb1qwt4upgt9zj+rl8F3/52xX4FXv6xAbT9qUDvGilWGMbsKrtia1a+d3+p8wxUxCEvoi6WC6/aInj82NC+CtbNyr5BqkVRAYxPazDrdCmml7Czko8aVnQx1kf76mw8HseKAJIoyEpxW/i5WtREPI3hVH3eN+vHt832X2eRlI1VTWTO8cdkBsFTTcIhe7v7GJnGSX9avJKKoP10n6xHCLBcrK33Cr00AxlZ7QEAapnVS1h1ZfdyesVsFCk2Z3SMmW4DGNOIa0Q9Yl6Ks6VqMEZUBOW+GXb+vM49Dd3SfLgG6IDQWf0gbzWcubvPwyfft7ZZscREWr1U4yLQSwV68fxaQIaLT6pGSgieVqinHmJdMJ6WEIzmHlDuticFM6C53ksO7mx79AEcuJL7NrUGcBrHIlGdwdZoBaRNvQX/fKQZ0KklmMn9hfctAjOOTo7a2endu5UabRV4bKYDIHKMREdkTqbGTgjDjgkIZMCD31Gd+fgEZ2qx99p7zO2wefMYkzERaQSzAtXB+Pd3sf0zvd8ZIGim0RHVbQigAM4ScCYQ5hkblTRCuK9aW4scU2TEQbq9A/dtMhHE2naI3EZ0tE8nCIBVZXAgwB1xCsTR8Q3NA7aH300lHAM4EGciEMDMLAXOA2oVBDtCj/elM56vnEbRmrWTufKsOpRp9hHxHzPjWAd099+79sSBMi8MahBQkZnTzig/mQacg9lZz5H2zJhglQoq/QNTkJK6Dh8ilOk6Ayy1gqUKo4t87lhFGZk/S2mdttez9Jr3kx0RR4Doo5SRc8pCBj68DwN4aUe/DpsiHOlazb/IgND3wDpvX1zDD95RYp4fUm/Y9jxusS/kdznPL409JaePHICkD/pkOvt+frU2+3Gkdy4DKKsb8hJ2p551FsZpHKjJ8HHvAPjnq/Lw/98l5thxY9WnxYV5NPLEjVpZsD9Xo7g/3Ali9JPOkA4UjzIzsh0K2h8gXbnsYzaUIlqsCKFCpmIE7YwOM+CU2bl5R2Tao5+lG5BgzxSr7+7AhhSJ3Hi9LMEWGEsxITxX/t+fABmMoCPSQaLqRZFpXIYTa+9ndHzE53QgaKrW3vnedEAp1GdRtIqyKWgPs6zhAT33RT68f8SN2hhHZ0jEsHs6A51JjsVY3dH8gOnQXxZzxL38pHQHUtbzosQcD2esyENdiMoXqUhE8WY03RTiATOESh/GPhFEqkhQxn2uADhEMRUzJcfG2ufG4myWQppwyg8vBnIUT4somzqzAKiPgfo20J+KO+Q2vv1avA/svcrD5mZ/8vKOigCfQmNhJHDg6u2GazCozdnuwMpo1rBI5QBQ7z4OFxP4HItpKWTwqF/svmW3/i2uyq4yU16oPE9GTWiTeH8QxLONFQHgKHhvm6hK+vPqYoXbHBsK0wij1C6WOdZqqTxO2bUOd4eTjoKnCYy1xbjK3Q1w4b3K4XANoLKrKfwPDaG9qcLNl5hrDZKMs1KMUkow46OreEcD0zBWNcAk57JTSC4MXBNqhHgKRikQp0+bMzAOBqjcH9OYbR79dWcjSnD6/fX5EvTrSKGgU0rDeszPSzcGgWzDgi/J0aZ+hfQEJueoHO+3wyPSDiBEVB1RmhOwvj+U5U5RX0v9OpLoQjxQWf5JaOVM5hAdxcyaYb/HjTDT7yiay2o6AuDWUfaCy+8E7SJoN52pESOlQ3EMgdhDKew6PL3lnDMNGGAxmrg2zexXAEFRZ8Sy3F2Qd6GhlqaYSPo7QmNGW9JdUJ5zYzI4wjDy82Awsu2RXWrbIFU0ab6n3ZMj2ceMHJPG7PT12D/V0+DIiIjB13CeIeIldbmP+/2458TYsg8kUheEIot0VsjWKH4uUHQOMlMSToZijipHv40kanhaf1m5n+/C/c7mQepjviv/JAjAPWUMAz5+JbqtIkapZeoI0xtUECXe2D6ykyqrCrH09mxHuduepKvEZ+HMqHhXsktyykV+nzRPc18E4PJuvCdINPvD01GoH+KOh+5WqjwEPgcFDek00jG0dmlmZOHUznxx3g9MsEFsbkRZS8AceBmHvgxQuRiD7QD05v2cf6f9os7oIchzZrfE/gmQIWZzOe1/uZpFvuLc8zHqqZ8lrZdaAPXUONFw5g5WnKqzJB2Yyw77OV3A14SmZ2rxdh9SFmY/fVcwUNUdf50CkNF+AgwOLDAy/j0wgV9tvp8Y6mJlDIEJDnx0ZSfY2WystBXjWU0bikDjAXjJaRDCM/wXQuBDP46QvwPgZj/ZOwhmJJ9pCN43HzEWUnT8kIP/0WcPa3bYwcJARh6zYGKkNqEevw/YPFMF0CGodo8zM+F7bclXDt78EjMl2q4ABlSzPs9pPn8Y+TcW7uGq9WN2BeBMjw/akwUagSPwAEytr3MbRgKlfq1PEtsl/v2d6w8CUIgczFqgl2rR8BSlAmD1xNdikfa7YnWDPwxFVTswq6D5PbXNQ6JuY55jksT4qgRtMRsndHa1CvaL5ajLY0BWQw6NNmsfl6For75RufMQTo+4ofWwKKUuBorUOywS0pze7S+ypzzV7nnsYzHDcb9K5OOaUyhot4F697SGKpNSK2Z8Dne025vGzyzFxPPQCx1MDSc0xkWA+29aPNsqFpgzyPcNgUoAukv8WytcWwCRJy9uAPOS3fJsta02vs0MVxWLCmUBQF6PH03Dgs+unmpGhkjx8nN0FFSA/rygPLpFxK4tarCLl82y8pamVWC6FBV4qli+7gaIsFsETvMfk2bsTIzhaSiF0e7VnP9+KV59oht7pFrli7EIthdjr5TNS1y6oyXDysYxdaO+7mg/33D/F16wPc9IyPZSUC4lwK/ldcf9jxY8PhUsXqFhf7LPLt9GvCcdltGKp0AAMiR0D/I8Gg0o3atjDODyZaCvgscnaiogjB+m4+7PDpChoN4VyxuBNKD9PGZdehHAx304c0ErYh6OLDYJMyi02OfrfUS++BCbK6WI6ZyEEzFC4RxazAm8VPRrRVWFpJKaulRj3jiQybKf+rzEWq94GGDhVO7stJrj7E7SGBYJxEB7w0wnAmYEj9/JTsZjgz5fLVK6dXP+eTDGh+TwJytioHd7VxHIdU0OqFPAvSqDGfjTGR4eQYSIMRayo/N2tyjl5+fonwJAd6uMY3uERT77p9XAgW04O6MEmCis4EDwQcw5IVMHjO6frqjkwVfmnMGISLKVxLTnSZslHPvFjY4Cd3Cn8SQZaBkD8tZRdqscokuNdYhxTG0JIKIKtFg5TnhUHoC9j8LBMAfTqM3A6jQPBBhVtw7pA+3baqBqm2M6OfW2Vs3RR5xRy5cd2gTbpxZnlY03IHdLg9j+iOwIB3U8MmilOA0802btL68PA5la0lLgGefgAsWPtdkZxj2XpWNNw8H6OqpFEPBxFo/swyoiESwZdCYBMvOgZZZABaxcKSOAqkCpZnBfmCohNsaPHbJWDI47EPuAvN2NyfB8dfHRPp3Mc9qOr5mRQCq5b/Ydrtd9GJuFaRYDYYtIKQE2fOjsD2urTdQZsYvygT7HjAEDAEmQ8KQD8M4UZAR3YOpO0OH8djs6fjkYkIAfhQAXZxsRLBCdlV38s7qs8VjZ9glIsp2qkG9vgOu0cHwli2ACDl7UWe5xzPUZNhnZC1lLgZ+9rFM/oQ9jbazLZDwAkTqjj4e/rkwlfddEUNXp5Lmxr9SQYAnOVs2hfWwO+CTnPjoj9ylgh4cxE/TSMK4LqioUD8jN9LAkgyZ0KmQGWQ5AifedVauqxzlGDY62mnPxOAE0Pj8Uvta2owOOfbcUFJ4hBLt1TEX7xMbB0FnxwisVWGlK75cMlHC+e067SDs4hppBnDJivzo4vuFwJUeJQYAc5c/tyw7TMEBJS53OKurxsxXW3qwlcKguobM9rbqegOebJyAmWCh5TYzTfcTn4r6b2X65zLPdfxaaDqUBpdo7ZAZEu8w2qgN6S+qf/OcHIo8R2Q5tAElgSj/2Hx33sxaCDQAivWFoOJ5HgMDbnR3UoTEu7+4n1AOAr0vA8woPnwsABvYe8u49MJ3oj653AoXfAU3O3yGrg9VI3MF/J0yZny0yU2KAw1wm0yO+F+M8ASTuv/GMUQF0HEr95rKmUoDtcZoLzkrI9ifvl8tHRhsnqPBLpST/IAAF5uONS2YmmOhWUJE/NTx+KPjpXytYvgIvTbC8Di+BBzvMWaPeDZixFCu1rBYJq/ukVitITe+x8XenxZKevn02GjVpiOr0VZY3zBFVNHcWNnOey+ZCdh6VLn0KCfa1oNaCSqOOjqnAnRq+A7z04aS9azFHsj4U65f+YT6LGX38B1AeiuXbPvP1gWBcyI4p3LiPiLjJrihDbbEqsH6bJQTLpmG4U4VdBVBnM5jxYz+zyHNxLQlzGGXIzK0WsX6vgsdne/fldUT/SgeKqkXnrwWyA60Pt6QUq2oALyYIKFi+mfO5vyzRpzTi+4VpK2n+5WBDxYz40Zb5+QEtnA/TOB8+rubYegnHazU2yt1TX7o6e6LFs5iWsX7VYLBwrKgSX3RMB0IEejFBznZTaE0OPDCdt+RUlE1R7zZ+WjhX7RnGeKkB7lDvgMKZxkwQA99ck+LycwlH31gxmGwNAGNFpHQsX9XbBUiXmINl86iqi6kyqonm5UNvivq1T7YC/xNnaWwjSmz2a4WMYkwlOjuKEOWTrsAd09hTDU2OejNAY1xZvhFRyjAiw+GwG3qu6o5GhVesxrchAAAgAElEQVQLKFMvYpulTJlCgb5BWsH2m6uvEVhpMsDEY501AVYZAKDrEgKLpt6PGfHL+g8OCMjWJ9W6lGlcioTDGNEkN4iD9ZEPnwGgaJSjVApuDQ3RMlLWdSnmrPxsgI48thnNc+et7sMDVelAUk8/qBVg+cig9+ihPdoKei0Btsi9G5vlOo8r03WRAA4ngOLjpg7CPlUTa733GGMD6nyfo64Cy5G6U8Jn8R0CaCmuUeDGPnVbxNkobEPBsNx4ZyYEc+RuEbBxLeHzcq+P8qpc164lgn2Y0GpLgHGBA9l9sgU471UhcI2I4fNdFeNSUbsC+479N9cQakUD9s/XSFPgM0N0cqlTJ8j3v7IrlNV6dIJ/IY5KJ793P5dLjEukGt03M8CX5p/xDukaYoxwGqa0CmVJWAL5983WAtwYGgX16x3lZnPU1pGxkLSy/zcDFinM6ewuBhFUYHO8K+q+xXkZWgV0Kpc6WQ6+Xwjpx3ufx0urNueBua9wXfp8ijVIQ83ZeiJLOIEqs7xlOI45Op8FHB8+r/PeUGRGr92RCn2D1A5LCzMml4Es1KepkLdHAl3qod+iYgaNVqaI9XEUY4Ttc6gF8jbCOQldCl9/ARAw8pYZKrwyQ4yfFQGul3A+A6QRMWp2jngXgdQlwAdhP6oe91OCG162LsRCRaCeOnSoEML2+J/A6Xfsi2ywH+jw3gdLOzAWDukfvMQ+o+pAHJBAAJ1nxjkCPQQibu9d1pn+sC6Q6nO2uu5IGUcH8Hz5vJIM+BB8a8kpz1cCAmI8eHn6xbvvcPyzo0/HtsL2W+DktPIZySHLbeDvAvypE0wIB4ypiAOH0pBS5jxR//vFAN4Q8PO+ODIljka7ZkCKaRnqbIoxvy8f9Unug3i/9Lnon4pc9jHa5p/h2pysBJ+3H31naKRL5Eu4fzMIlM7/w+fHnCN6dlJzhYJcUWCog391Ak18hoPA4u9xCMKoAp1jMd470cARdDiXJc1XgBQfrIO8Fw+3NbkOCKItLVJkAEAlgeR5fi0JQP7e5Uyq+SJl9v9HF8Eevj/TYFVtX8y22gH7SHvHGST54PqDABQwzDHTS02GiBknVmfbKNaPT4K3P9vRf1exfBWIlogOkT5NBzf+XgXaxcv1DYvYZ3CIdNdiRtAoGgbedjGaP6NBfaVjPw1HE1vzieY+aKi/1xIggoxplPrePwUVBX6gWn78WCTEBg1QGB7tH9AKPH4ogJoafzgrJ3RvVIn3rHdFZQ3xIlbLXCTaVG97GKPmNIjVUlcaU2RgeFdtFnEz584dsjpz+yelW93JnOKUBii4Q+ArgmO1PUtExPkZprSRTdFeRxix0h3Y+Lxge64oZX4PMMpvlHRzcCcLZYoi0lDsRd3YcsSWKRHty93mBpXMyWbxaGd59DnfmmkOtN1o79IxdSUGDSQHsx5Okfb5Q6aMjYVHyN2BZmnO8hgxPwkIKA9Tno8OWBioYZ/rqwNXap/f1jk/zImGrxs4oMA+NBCo3u38b3d3KLo58NKB7mDCcFCt3cwwf3yWyZLaBuqt25gkQTmupdEEbe9o3zb054aOKejGkqNBQy/izocA57av1e855lh5NJRideXuxqBH4KIErO8jcMci0gboQFanoN6GVQjxs+8gfhVpFh3QZabueJtHY2ULTKFYshfUcru5r8gAKHAW4mEUSCOgcBZQC6cEoQUgHs3CGK7YLpG6AbBvYY7Q3qHPFwwRq2Pv64FsLuod1FejuzMKU5LxKvtm33m+hENGJ8iiYzXyxPm7g2ippH11qJUoJMXc14i9ozuJsX6OhrMW07YxVteAqoEYJtiozhwlSFNSf6mluvBWOtc89RTmmNpZU7aB9nDnXooxATAdIgIZZQyoz23tYkY7x/vuxkWcYzbHxffWsRLkQrAoyr1jEGxIwCiUbAENMGWsJbI39ueKsQrW3++2tz3X2DeNuCVTzHOosxIWS2l4jGCOEVyPKj4SblEwdoAl+tHGeniu9cO6OMqmSWL4GFim6vTkWt1BTvt11Lov04HcdgiA8enJ1i0NdEbM7zvwVDCys0ineNvAUq6sIBLU3UB/6DAXKJkOnMuMANPZ78OAYP6Oczbfh3O+irGf+BmRYFiKiKX38HuDgMuwiizcG71P5z1n5NgGyfdELdCqNixjOvoYCuybgTcra5KPmO8l/Rt5vSI7rv6TpSLYH6EvkPquAHKTCY4UnU4FHazcb8yLZpUu3wt5BfBQHOzIYAJZFfzPjXypxSKu1aLMB+dZ0v3zu3Zn1zkTQC/sJ3++SDh+ZnjLMcWE07fgOG/8vQ/VLDg/NL0H10bSAQgRXPal99cxSnt8lqiLyfpZEuKqvG+rAXrY+XC0L+Oi0wS4IWLnH9kGkgDAA7h/uIVOGxoI8CgqFXD88zM53upR3aigkPotNAkIeKtF4TO4w8gx+6cKoioDdDrUUU3BB88jwFapw9drseov2Dpkp3M5JhPmBCodHFD/U/uYwNxBG2A4cPqBU3veS4ogO8/COfTRlVghBxHF1L+HyDTb9VE6B4FD1VlVguCC6LxXfjbHqNboU/v8HIf5eZtLNjaYe8SZmZJBViDmp2bg5XydUxPOQAr7oitk9fd6lw7jIMx5bLzqhiwt3it+F6KaPqcXsT3pMPc5vuX4nCT+HEDQWXCzHn+vus89xN+ptJQy85GGBMexvO+T8/WHASgAM7oilq8HwAXEzALa3bFZfq5o38whGxUmlDcU2OfBBxhAgb0HhXx/XiKCKl1N+E+A/rKYge8GhLscJmb1yZz65Zs71RR5VA0q7r4u1sZ92DyWuZEQCW5vPQ4l2d05h1Hx9yen9zudp1/sz7IbmFBvA+UOi4x5lP/lL3bUt4Hl97fIUxrPS5QLhCiWb4Zg0RHfn5epZ+BRXbIMaMAPRtoYzStAc1p42cYBTBmXFqUJtTkLY9MAF5jyECkW3melG8CxfN2j7eyyy092kBM42Z8cAFmR0lESQ0QsRWR/KuiroLxan5HS375uQc81AcUBhF4AwlGI6gM+D5k6YWX3ehiU9W0Pp0LEWQRVMC7NQLF7x3rv3sc9HCUKeParlVOkQBswz79BB2LgQM/WJrbGi0VP631AN1sTFKEci9Ouh6LeFOvXEUBbVKYQBzF2A+eCUaPA45PNufpQSJGZelKMLl12AxLIkikbUPrA2x8XvP5twfLVPrfc7X77xZ3nRcxwFWB/qfbfkwmMri5Qymv5YhR4lroru0K8FCWF7RhRrI8R7zXWchhHYyqITQ4aO7uNef2CMOTU84TLfQdeFftvLhhLQX3dY21S1NCEEXV+t1Z3Vmy+dxcuK1s3ccgiIepX7x26SYyV7D52l4q3P10MSPnjBfU2sP7ugbIP1G+PtC6rTc37wxyBy2qHqpd+Q10hX2+I/GA6VrtTlR8bZNuhT5dI+eAeGM4UEPsaAItELg39j54jtUCrAartZqUox3XBuDQUf/e8TmRzw2EMCMpM3eB67x26tii/GWvBqfJwoEL9Gf2Tl9/tvn+9bdClmlinP7PcLX3g/kdXm8tvw+dvEkvVCUiFIT0QKQrsF9mHUb6LhFZE6Kg4IDsWQbm7uO5uACwcuMqpkeVhVMTxvKQfygQ6fc8fi2D5eUPZh4OHQNuNkUOR23L3fYr7lQejigPvtp/Mh9t+qyiP3SKYMEevsxqM30eG2rwn4y6DEgQFekXxEpgQQLaBlkCWshG8sPUznty0cKfF9tU+qy+0Cv384pFQmQwhN2j0aiKKEZXtA3JZrcQgDUN3VIVR9FrifsY+EtS7p+asLg5IwGDP4+XniZc+la5T2PC2m4PYgandYeyK6aAqZKQUCrZ5DC8DzMMl/emOmqi6xkCDJNaRULDPxwElRcPTu8d6vz1mJJMCgA5OhiMZQBzi3XnpSXBMbjOFgQKqNHIjlcIBAzKqwun1eailYPz47OPnTK5tD2eVkV2pDj48trkHnUpVBruC+hSAR/g0yozqZUVUKqGd9nZ3wzoZ+Q7AzJfXABG0VUifLI64mHvPOUDGzc3nQQjLHgMU2YkWtf24AMbsop5Dmeebtnr8PpkniaERooPO7onUBVUT5/T1ku8TzDS+SxGYd+xsIQf5QrcjzgUHV9ZlAs50+rq3sR73cXukmAO2uzjnvk9n1CnqoP4A9yxGrLeHOdbJAWRUNBxMlhaU5Fzr8CpBfhEY4O+ZypDzzqmZ0CzyzYoMAKaTVgGoQJLDG+9JEKA563IniIo09mP+O7f3wBoRD1C4jxGOu783yyTyYilE4OhY1jLBlcJSwZKc++lISpQNPTnOee6cnfDMtsiOJ8EGpDEiQKMKlDbHZbgAIJlbDAT4WpCW7pPAYAIl2hHzW/du7yli93wQFE7rN8qJ1nj3d4BIsXPBQOrkOEd0vng6QpmfPXRaBgIHgj5QPHjrqQra5x55YM20MvcoghWCOU8zS6an7/AZNjgTVGBb+/D2+DudtGEOs5mfySAOz48CAyT64z3gkK4/CEAhG7QUKlMB4IaPpkO53izvPCjqNFJVZ8SfgE6fB4C6A8LoNoY7Tx45EsCRZ8uNzFGiyKmN9plDKu63QDDLZWVEmI6OU6LpWJMaGyUhC/+c8zAEHenwwpTjRc0ZL3czajj0ulgOubozWDZ757GoO5+C0hHsDwChBWDq294/XqqP6Rz1MRACkHQcIt9cDlR62RVoEn2i/m4R7XUENKJmXjmDGgXVKyaUbYDQzqT9+zN0jv18BvvMqyHo/Dc8lYRzZFZimHPE5hH/7X2fBDaRnA0A7pyYQWZl7DBF10h/J8OmSBj842KTgOktmg4Ifffv46JWnNIjAIgMj54jDCDTX3AwwVkq6v1kgp46I5k+rox8hgAeQSCx/qhUnB+ISFC9K4CCflXUh6A8xMQnB4KBk9eoNmvPfnV2xc3Xx1IO45aFOCO6mxB4Cn1qqTYZOG6+f3APCOaHf8/0Ljow5Kh94PRrspr4G+47+TPQElR7lhclA8E0KFzJvoop1XOfgQEwAwUUcUMxwKwvBvC0VVAeDe3bjvqmtoGXAhMDK4HOB5sA6pG+EvPZ+suNzoZpiHaLBJCRYXM5GQpjGsJaxKJw1XLIpVjpRSslyDnDcbJnl90/w0M2QFX/XwLI7NlJ7JB76WDKhadR3B9mpK22T45aUHkgdrXoap1nQwEd/+ngAuZQH8QtI2rn/St6PB/PETTOoYWpcK750cQcfCCAWg/5He41FfIXP2SOBql1iP0XOhPqIMFjD6Mh5rM7KcHWqD5+J5XtMPDU9wxx59YBYHGwWwNoNAZHWAScf2J7qMiYLBKur12hq+/3ZFYRZDiVZbQ0IE1G9QQRor0pgqpLgzAqd5o/8TnmvjNaTT0DD0QcSrvyfVqJOTRFPt2ZZEpHtzaaKF6aAxms6SYWjVICBDlEmIPWa8yBELMTnvWpf4QVMVKOehh+01D/UOCL99j3aeizf9kvH8054AA+BQvDI31Mf4p8+XJ6rgMLKmIpTAQswjm0PcfKcdv+EMwT5tq7o6BwxyeLPjJlIr9jOBjJUchACauB+Jmsaj+TLu+M5IPjqKd5WU999r2onIMZIc6bP1e4T2POV4JMrKaQ09g4XrmsI8GZw319/jrVPgTCOybln+/Etlc5gDMBpOV82eREZi2xuES+O49yWkZmBsSnOe4cK0b52U/8JJkdDiZ8SK0me0cVBzp2ND4za9Maivc4gQKMvALHOZGvc+m/dxHoNO8prujv+vE7/MIzYh2dHV6Zz/2lSLu9CGzjL4iSkPzZ+ZnFjfNzRP7kcB80Ac7O+LnP2Na8ZvMzZdiaPH8+AzmH+5XJSgBm39Bx7v5m3cE2HTigo/k5gAeHjojAQYPh3K7c9jPQCLzfH1SP83OU4/6ZASYAARygHkA3wPqdgcbjM/zdUT8+F84pHOe5eB6zA4hS3o9xMGY+GP90/UEACjyI5eFoZhVsf/KE7VONNdBuw4x2oSK/OaDLlz0omboY6t9eN4ylYn9paG87ylu3PHh3mgGYUdUHlp9uczN3w7bcuxnI/xQIwb1U0rB4LvdYCvqTD9zdDDabHC1oMaTQZgMqqjCIRdC0Cm5/bEOxfDPnszxGOAmMcBPUaL+/mdH9ejOEejURy1J6OB2iisEyOkWgi2BsirqnKBJLYComNf66GDvAqcLPf/7qqSIW8enPS6Q3WJUBCQ2G8ugYsLJxo4mp//t7hmjhrgBKsElGUhUPgUzXROiLfZ5CghQ4Q9wPUU4t+s2FMIdT0bRZ+kjzSOVogv3Zq3YMYP0yHQ4TlYNT0ge2zwu0CdbfPRLDwBZ43TwvmyyNxejr8NQE2WlYS1QyoHEfzysURrTSkabY3lAfU1m8fdmsb3xuDxcntdKgtsC7gztjXS3S/dPu4pWuHA/F4wdLuymbvffyOsIxGsEo8SoRK1AfQH1TtLuibkDdNPQSpAPtbcf6pWL9qeDxo+Ltbymuf1mwfAPaN0V9AOsXA1n6akDCWAHZYWVU3ffaPplwY9u7sWmSaGd987VaLY2kPzfIY6D9fId4ibhII3JgxfQkOuqXu43/yxO2P33BqAXtdTsY5ypioouyoK/W5/tLszl3MwNorA1w+m957HbmX2oACRzX/aVhLAsiBeJavVyksxuGQH+oePxQ0d68PODFRDMfPwClC17/9IJP/3fDD/9omxu3aw3I0jxKT6Raoe1i8+LFhOZwfxycvihRphYBjPKRgH2+CnRtKK8PE617vlqpyi9vjvzDjDMvCQe1NKKRKqroxcvlFjHhwcduzmCrBgoAh1r2kg0wVdSvd6fWW9TMxCILUE3TYKwV5W1HVUTllHFxlfTdxQoLLPdfETozTAEwEcAemiZaS5RFlJs57CyBSYo/GGmn8+4Vdx4/Ntx/rLj+rmP5YvN1rMD60yxZaSDmrG1vpSk79PN1Pktc18B1dZaf9wmkOUDD50ofqPeObV2CiSQQ9Gs6rzZnjtGGsIGz8sAEaVzbYlwbBgyYn3o3fg2FbLbPjcXTtHbF8rOVZ+xPUwCSexu1HYbv1WRGabX5YGWGK8ioUNRgApiOj89Loehni7mqpQDr1bBPEVt/e4f+uNi55SwBE5MsofGhRVBu3cpJi0xthn3YPWgHDCAqeXi6lJ2zVmpVukLuDzv/Pl3N0NqnMWWVPlwLYxcrJcq0ItVJP99NI8BAPQdkSLt/bMDuIn0O+slWgS6Rjy33uzkR94dT9EtEzOGaU+G0PmbE3LSfEhhC8Tw6649tpgU8X+P5GHIAVSIfvFZjeoggmBixbsYEefyaQQi37R6bgRDr4qy5Zs71YwsAIi7uXffJWoA4w6g5AyNSy46OS1SycZBJ12V+jtfizNJaJzjCNJiI3I7JxKjVbC0v5RgsjW3DocxkLd5HZQIml3rYzwOs0vl3vV5wSIMAjho5gKW3AJC+QJ8u6J+vwQwJttXrPQHJrkFy0mIgWENBSIxhbWafDrX9n+BAin5rWWxMogQjnUDY3sm93gNrAZxsfvaSao39nQOvu7d3247Oz3AKfSkWVc9VDtJnDiKovB8/15pVZEiCjYcc9GGieodc8gOQV2YuPgUEVYDb3SLfBKEoXJnBNYIF3fboKX6X3iG18/D85FxGlBpwlorNO1kWsEzjAZCQAlA4leB9kJJlRp9dywnonp5h8zT6IqcibPsEQ5nWUj9wailYCJ3PYTtQgeXkAPu5CUbT4X4M9ztNYpCZvULmi1+RalHqdID5XDrpLc1pmWBGQC5Sgs0irUE5d+OdUh8CZkd1IAQxARxEGgEEi+AjzQR0AC40rH32Q0kgSkm54sFUGLNPolHlOIc6jmvlAx0UJQOPv88aFwAEqY+5J3zn+sMAFABA8U41HQpQeV4GUDerVmCq9jAnM0efFBBoRPzPl3BBufMKwDUaOLkwHezhDluZlHEtgG4D2lMU3gG+iLJ1PaJJPimsJFcJQIRR90MUBdPhLGRXdI37SnFDeMyForUc6VatmMhdNQfVDFt3xn0i04gc54i4R3WUqJj6uw2LmFEQb94XUziN78+N2seI3UoecHHWBQBzgpek5E/gpcx+yWNtNc7t3jSgzGgCxHP8TLgMEYmkM688uP0/RtzfzRE/CIIGKw4WjAl40BmV1H+DIpM+hmUkA/+EaEZeOcefU5hzitTjoTNntSsZivPKGzXndPp39JGzLjiesywqXCzUbbIBnysyUxtYkjWVZrVKGgYytFdgfxH06C+EvkVNKTD2M7tf8VSBmG/OaBiLVZ0ou4MX3jcZhInIss+94gb+kMlAgs9DiIMGBKxyf3EsBED16hw+r1To8J4nhzkewaBw0Aie3kORO4U7uR7tijKwdepcAA7uLAj2kjYf+8oqGQjHOyuWR1vAvUdjLczoaDl+nl8LByr1BZ+RI2UpGhzaE6mEVQibml9mDBXhPwA3d2YbVGfEivNyH4hUC4+aUZxOKcpIQFUVcACUVH/pA9KMZWaHOkHXd68d95cPf4l4Fstexv7q0fZ+sbSqfoGzfdJe5OwKRq2DgcE1yDPFo+KK6cgrhe24F9GIGACQIv28CqhHmxqPw3lnufcO8HDdDPufnSPOSOgT4DmX57V1ALMQ+HfvD5Yizn3HfWJG8ZDmqK8JBktaQT5rw5pR2NxlX3DteuRch4uXLkn/AGm/fBd1MSddGBlWN1rbTHXhXq/wkr3niGNaDypiWiHp/qELkT4/KbrJmBZ5dw6c25rz2hHPxHHd5P/41WKGt+z7++h6+m787rTug0kB2AFNMOS83zBXXKbC+LvPsu0pRSAE//K75hSJ5DQDCIM29rN3fa5xNgaYUAsOIpO8Yv1ko3vuf5mt+O7KEbt3kfAP9pFy6ltG38X7g7/LKY38zglM4B4tavPewCPblxSYzLR+akeyDT+88tyItNzv9DEwHeV/huvA0o3/GKVN+eP8j2t5JADgu+0vH//9Fz8/5nw9R1+zY5nf4QRoHKLigL0Ho/A9vPQThVyTI/ZBmDk74el5kS5CIONwzxGfOVxD01h+0IcZiHi315/alt+d6Sx0iEu3k314paCPotVkAdJhzmDP99g+p/djOzTvrWybjo+j8memw3kdcKyzc5wv7l38jOT9kvbBd+bnB9UzbF5zrScQ7DAnfuEaCjN05Puf/bX+5OX73Dl16MMKHIf7Oyiv7+fpR9cfBqDg/bz95mo5xK872rcd7a3j9tvV8uM7UPrAdZtK1+1bD4o+gMj9335YghpNhefhUcXli6GyY4XNkZULZdJBAcx89WbK/eMi2F3foDa36gTBImhv3SJhX+/Bshhrw2DkxEUd62Ogfd1cSKtGWkB9KKhvULoZ0WUfU10ciLx8AJaH+HyFPq0YT4spoW8duFqlhcfnFqyDdlPU20B9201lHABF27gDMjWhbAPyACDWtn6pKFUst3kxw5pXexu2sVBAjQa2GHuk3tXFMDV0FkRh71Qs2nn/sWB5tb5ur5aCsb9UZwGkmuyuKXFIZyDoVC1iN1x13SLA00iuD9uU9msNHY31i0Uth7crGwxSBTqcedEV26c2o6vD+shE0loosw9nZYzFnPH1JweBdMT4E9w4iye2N1YzweH9Qh3ev6MOghQZMZ+0mg0YS6kJcCmWquB6EirGfAHMmSczoT4UclOUfY6NOfjm0BcHD+Jem7EDUAq2z8aGePkLQHpB+6FYiVBnMpTd5kdfC3q157PcqRaj+wNMnbAx314KtmfB9XcDzbU6ZCiWrz2Md10LtqcW7W0/WURGf7gCaiAIy/8xmlhfN6gLpJrAZZ0GqxvI7YvlWvfnFvOYTmZ5dGAfGM9ehabPqii61EPJQ0Y79yfmojaLbn8uWF6NPcLr6Z90rBdB6T7Gu/WzOUzDIuU3K/czni8W8XMavK25AbkPyOt9RsxUgX2fqQ6B0JfJNCiAthkJhoixChjhWEwcEsOc07E2lMfA8vMj9orbn15M6LNa6dr2Dd6nJjoYBkQycmQz9oKuvl+V7ukjbTr8PMAuK2TraIzSqaK0Eg5+2bqVOvzNE/RaMbyuc7v1YKIFaLUUDG0otw3SFf1lNTFMnhtbB8UA+yfT0mhf/Zx4WrA/Ndz+qGK/Sryz7X/GWCmeZy/3HdK8WoTY2h1PC9BblEqMlLG1OTibQHQXdMzMl9iT9gGRgv3F5srld/ucoz4m/PfumiOX2340+AYgm7EW5FV9vi/BNsgXgVrmXQoMVO6Xisenhvo20G7G1sM2dWGiihIFY6XNFEMf23GZQrPLF6C+bdEuznd9WqfGAHws1wZdNPbE8eJVmNxBK49u88D38rFUwM/5+rY5tV4moEaAzNMSyustyhdqK9BLmTnAgK0Psm6obeJjCqY1ABYRHma4K6PgwNHhZA6w5/2bdk6HuDCjprz0iMjzs3RQM+jxebVKLmxf/l78IEdf/XvVgD653ecY8WrOSFiaR/v9cd0BiCx6WMkGKId3nBoUfbaJzAbqPrgYpjCir8YMeVcC0IED2X1PYCnIp4uxJ1wfBt2+Z5VyPLLtzAIyH3LeP7UY3gEtLn6o1yX2BwNDUh8ti+s2uOYD2SN9hG4Hbbj8PWNoskNPz2W01Kst5GoQ1GEAEOlUBDAlMTa01QiyxMX5SdYAWQgpdzsCKtSsyBU6vudUhAipfUdK8aDSBI0kixcOtxtVT6l3dNrKTOU90/vP1RqivztQ/BzenV0WY+x/5rkUfUL9Cn/P7JTH2Zmiy2x3M8ZusAx4bwbHqutGqCIqE/jvKbwYFYZYzUEHUOpcpud2kJ14cIw97aiPaN+8ks5CqhalWWDRA7a57UeRxDr1LhzMYl8EC+YcMCNAnkEF9vv+mM86pxSctQvyXkkmAn9fq7HG+5jaGBxHHQZOBdCT1hkBCWnIopExD1qLfg22g4vGqtuvAc6U1Gfsfz5v0Bnyq6R5ldNuMjCsDmJUTLuJ7LAzoCjLayUAACAASURBVJkBiqwJAkRlpPgd2VMA5MToAGB6NalN+tgOwGSIoyaG1feuPwxAQRCRuS4F+rJExKdsao6795GIb3rDGQoUY6zuHHuks+wa5dnoSKAVp8bqfG4ut9UQxhDLKsLZDtKBdneAQoAy3NAp00EEcGBZkCrbnxLdNxBJhNMr7ghFznnxtmIiSaQPAsC4LMFIYOkyTSXVpDsY4krxIZZYTDE8niGngwKYbItdDRhT+8y4Nk/zkBAtZHS33sfs59XetQwvn+mlBs+4FktImjGrQWtnOgO1EaaiPwKsINsAAsBZC+KleVUmACGCYJLw3cpm4MKoAnVaOjUcIhLuUU7TGyDNWFMkeW6CFuFI88n7eTRjMJQ+nBot0RdT9Mw/u86SaYzu0yHSHA0ccIMDMT9Fgd1ZGUwFYhWIDE7Uh0VPA9Twd5Xu9yxeJaEKxuIgzEAATZbzNvPwZ8qJlb8sHcGEKF1j3hgl23/m4BvnJMeDfWfAxexXRudIPx8uhCjFS5oGa2EK9kXkd6lJtMYdDOZWN7H5QoMKbuzl6Ks4vfvRrSKAekS6p/KcBKNcL6MUlidNzA7lenTg5IkDbakgo0mkodSHMUFGKyiJZYFCcCMZ72NGl8PATpGSOADikPFSdgQUKh0Y74N1mWDDdTWjro/QhjhUOSBjocP6htFpkVCHh6oBByk6ScExAguhUs4DqgLBrFAFxbRYsk+2PsdUNfburPMSfXs1UK3476Y4nbdFfD05sCpqoEJ5mOFF+vztT9bYj7hu+irYPjVPKfDqRKNALgsOEXZvp6gaJRIwer7vXTIUkkpe2gFuBvUhPU8mYEmWUeSm330OKNe9mHiwTkdGLzXAmmDb5bOmyoGhUPqwvFQHKaK0amEFIkHZPGL/MMOyvJmoY79coq9U7LzRrqZX9GTgxfaJJXSdHUigC0DoNqQrotnxb+9MdyAJ8hmgONdA3quNdVIO89PWiEwNgDsNdT/kxef6wEzVcTo8y7IG4JsYEzw4NZtX6vsVo2Bn8T0+dzgbKQEZ8ZnMVsm59tHXxbUnkuPnjIwQTO16KGl3qJhCZlZMhDLp8ZkW6+8QLCIAIRzG94p9tU/w4QOHXbk/qEKz4yaCd9F2GrOMzgMz8p8Nbq5BTawo/36wNPLngw4pnrLg81MsbSL2B56/+cqsj3zPzDrwz2lZjkBQBjHyHMvvW04/554/PJXEyxRL7tfzRbvT15lwINN8Mls0tS07Dw7AKbw0HzUwOOfzuQO3iQLc7sf3dLBAyRqISK7b2iru6I00Buld6IgGC8IdsPxv32wPZTlTX7ByjIgYIATMCGyOHnM4iyCE8Dx7iwCYYrbT3h3zfqG9IPM+7G8CHtn5A3Cm1cf1UcnI9E5xnR1Pjs34jp7DL12ep68dEGFQJx1uHK+g9TMIhHhm/DwLR47U1xXIkfuoEJHLRe77rJTxPQbLWdfio75SPX42AzYf6FIE4OVAx2Rlsb3l+O/44ji2Jz/re22yRMT3v89AAftH5GOmxHdZG9m+mO/2rs3+fO5739VK+IV59AcDKIy1mpO3FmyrYP1pR33dPUp83KjNeVXU245y27H/YFGl8jBxtX4VyKta5MNR3ApgMFJeAGEe6FJMM+G2AxdDB/fngoOjqEB5WKSU1HbxnNVwhNUMm3FdQjehXwr61SKvoqZkH1VtNDm9ENSosS1WoWcpkFFAYUkZajXERdA/NaDrjLAXQX9uGFVMsPHRsegs9Rb/LWXaupIi5i5ymVM32m1uRBCrEkHar5Wh7Nh+MOP48ld3i5wCZuQJrJrFt30CHo6E2ryVELDM5Q/pQfYVk6YesuLmQHWPzkaZNNizKr0Dqq8zl9eNYEbJqjdz+9wwKnD5qc/So93mlDVF7JAXj5B788ZaLUroDozuAKPc7FetiuEsAd2B/aVgvwrWr8fKBqL27pn1QSBtuKHdmfqgFiGUTWM8681LSD7DATZzFI1G7Ru7Oxv1bmyBcTVAiOwPQ1JsTWzPBiZsL4L1C1A2C/ZYwwpGV8i+GHPl6rnzbx1Pm4buRqZwm9MKtAcdGYAaA8s3Rns8R71ZpLu6MORYzWmRbVgkuhVgudhauFv1hWDviDNoxoDcd4znC/qnJajQ9W6HIVlKYyloY3cqvTnwMgx97xdP6akV9T6wfLG5V9zAlQFTza+C/nSZ8+ZuzKL7byzXff3Zy84NoO72++2zMXIIirE8p5WHBZav3YgJzy3WfDg0VMdnlKzqNE63fapoF4G4kcRIFkqBPDZo7waEFjFUerf8Zf30jP6yxn63/XgBFFh+ugWldlwbxqViv9ZIySAoVb2M4FgK9FKtv/cBvbiuwU+v1o6lzShqqwbwuEGpwZ5wcOju7IUilgs/TJ9B9mIK/iKWiz8U9ZtVfYjUkqXg8ami3VyfoJaZDiSTvi8OWoylGoBz7yjf7igAbn/2A7bPDT//KxXSgevvfOw34PEi2J4rnv4pXAPHdWUWQXvtxuLxM8HSOOy7ulTsn9bY+8t9N80Jr0wQfTFMgLdfa+yb27OtkeVtQDrQr4JyL1i+blGhaP98hTbB8lc3my8F0FrRX5bQa8gpWzx3I13Kx7+9dpS33VK9qoHw1ILZrwX3z4KyF9S3jvq2WRWU+wNYF4zfPsU+pgXopaC4o7q/rBiL4O1PDMi9/DwsNc+1C6AagHzspx6BldATkaj8oHrxCgkeAdxcI2HboU+rM3lsvfWLAUT9Ug0IuncLuA+gf1oBtXkkW7doPUsuEjC4mb5T/7TE3h2aHH2e3RiKctts0JZ6FDccIyob6PPF54jGPhgq+lfXh7n/f8y9S48kS48ldmhm7hGZWXXre7RGo5EALbTQTv//pwiQFkIDLUjTPf3dW4/MiHA3oxbkodE9s2qkjXAdKFRVZoS7uT3Jw8PDPhkD7ugGG+LSZn8wuODlD2OfcJCRAEWUtKPWSjIY1YGSsLRETOvgskDeHrPaBjBLVS7Njg/mvgOQrQTLA0Mt356gAY1bAgh7B0a3vQuAyB5RSzUq3jTiw2l3NkCr0DJZB+B5nbViErAS7BEKeVJhPiLSavdsBfsnyzuvd99TajFtu8QWtXtNcCPo3AXJgUyBh1asLzfbx7DtNtYLwbUxNTUIDCxtjifnCtz533bX7uiIEpF04CUBVqc2QAR4zPGNKHMWEyQQxXnQMqgiMe8AGBtwODjAfHeCQXu3aCfg2gfTuSEAEhUrAIQifnWwKVUMibaoJ9M1L8EnMr14OvVk8jIyW2SuBUaSE7NEdlsTUeqS78Co9e57NMEP1y0Itgwj+sAEO9VTf8cEHAMw45X6Y5an5KHBzxSg7we9hXcpOgSvCHpkNsR+YqlxLuR+P5cKpDMp4myPAs25/9lJPTwvAQtDLbJdPAjEQMDZ4U2sj2hnzCOLwuv9VHkBmM7KOeIfa34cn/GzEo9uN6mDUVKdXTPg84XMzxF701yPRyDNxqpPwIvtOTMv8j4YfZ4+y3ty/pTUR70baykPKacVv7PpB8DSeN+HvDimrHhCUJrCqBTs1hOD7YPrzwEoKFC2gX51VFDNYRltOWgd2GcZkTZAYFwbZB+oQT3SKGEFRnnENoOyD3QaCPvwSesG81pnmUo+qjDC6tT9XS0NTGa0jkb4/lKDli8Czye1w57pDBFBVXOCy7AI4Iy6wyj5A1GeMXLQiwCXGpoGELGyaR7FJ93eqKYzwtUvdH7dcUoTjQ7X/uJ9PIAiI8oCgkZonUZ45MqqhsaEOGXY7mHvp83K/Ykj79QTYf6+pUUMrN8RtPr9ydpTdgMStGBqLjhAMlw8j5FuPlMe6mMvJnjmUcaIVo45z4o7eCVoR5hiYoU0VUFfmLpS7N6d1ULMUcZgesYETDifLRLgUXmP3nfWan8b87lD0d4IEmCW5pQJqsQ9i0AvNZTsjQKvuPyR5km3/u0XF7zUApbK6xfBfhEsXVEeBhSRCQAA7abo3UAF6YiUjNi8vC/5vbEAQImyne2uKPcRazhy7st8h9Bv2EeAV6pGw6s3G5vtUwuxztEK+m/X0LKAsx/G2iDLZO2YgJ2v+UtKMSkC7QLAUkQiGsJ2ObOmvyzQxaPaUGC3PjpEh7jFPJlxVLaZQtEvBcMBN2pCCGAAlZDe3W3s6dQ6i4SiprINzOoyVjGiEHThoqUQ5T4PM322dA+j9dIg7EEthVo1GKH6tsiMHD3MGay+t2opkM+r7x/OnCmT+kqWztvfbW2t38Zcj56mhd0iZyHYRf0HVVAkDduOEgrygvG8AkvFfmko3Wveu6DbwdhRTzVZm6WahMbMFFocS8Wylph/AQx7lRqOSeiqNIH2EvXYOZ8CBG3A/bfia9P+3yvcMa64fO2heWHaJ4D4Ri3uEOOxQUaD7JaORxCAlXMg1gfqTjCBuULGY0cwuuCUr7J5mc3kaMhQ6/fh+/IA6k2i71g5iXOnPGychu8T3L+zM04dk/a6+3HZsP6xY/n6QHl9TOdIxMSPvXoPzyNROzuNMVhMKHZnet84Mvwioit2pgz/mZd7tN/RODWANXQNqD8yZmS1JCFS3UtU75l6Mw7scEzoHKQUEBWx0rA+94ItBZjT7GM5o/J+loj3eZGpgTLG/COCqDYxhgEyT6ufu7PUqj6tFjH6iCLfiulTCCnvA1F5YamzPbvvA++cYneIk8OtRWbak/e3anJsfe8IUILjkyPRBDvVRRSfLl7Gexyj9HBnK5xLa4u0enSm6XxF/wne7Qtbn6wu2ByOfYf7otqcksIxEnuWO6URVBCJdWmi2E4VXxq0pHKmtG2KxnzUVu0dWC53uPMmJvaJbZ+MDTq8+ZzhvOrjKJXi32Eqiy517uXdgRuW1UyfA8uIdnfC8tirvtPrschxMWeQgqLA9HNVQ9tJXbjuMA7BGkkRXK6r4gffrxyTj5yeWicFXebafOcIA1OU7txuAKFL4H0k/Xy+eFlCMmDy5akLkmnf+T35bD9/BTGtzDHLJTPPpTYpzhegVA1ATbVAzq7aOwdb5rP5/5qEP1MEXlozQIbpLBQBrBWiXlnn0MdjspMYya7Vo/r6frxYXYJrKsDh5Ojy37UCsEDKoU/o8LPfHKAIAcisR8CvHRzyBDIg/T73V6QDqAOeOoGTaMPpvXLb5f26NadfESVGWcbzIJ5FJtY+75dZUnx2ZsuUEXtjfp+oajHKBCXifI/J9zGwRIZotFlgaTIfwwJynrMfXH8SQIGb0FyA/VKgV3jZLxyirUxRYNS9vlrt8nFt5ow/NDkzZhQbTXluMEZHHpNmvyZDC/ZR9VTmqDBACjA/7w4cc8KjVJkY1Z33q7cR1OcQLqSjTUN0KRhS0Fe7T7nNKgFKjENNfJGOR1/mohnLVOwv7rCbM2z0bnQXUtPjotImxqAY1r5liBkfpP/vCQFUBFgj4TDqdCBE5vsVAxRMzRxRQjHEvcTuteyTtbG9mO5DfSQxP44/h261d2xvcyFHv1KM2nUidCkY1Zw8ihBKd0N9mwrYKj7PPJJh1Sdc1JKGpQJ4jClI6WNnrA1EKdMTWzeM9NIlqNP15vOrSBjWYy0YKuFgFG8XUx5UJMp0jsUjjO5U1NfNmRPN56miX4yBgdWcaRWj2Pcr0G5WDrRfymHNtZsZR/0CUOuA8386uYh0FYixabbngn4FlreBep/qybzHQcCTBhadn64AbP61N9MgGeuLjUMBxlKwvyxgukvB8HJ1BUMEhWPdCtDUmEgugBi6Hcy5jgocc/7LMGdg++vVgCdVyIaZEkIHK62bfrW88PrjARUHL1ipY8EEGxWWruGU8XqbzuPcZxTlttt4ut7KuLRwjnR30DO+UwFsFsmiYvjVoz83U9+Wm+eNUOXb2RdhBEiBdDPWtQ/PZWZ0oAL6jNBYAWZ0b3DtCh5fjGFRNgO9yl7RhkLeetBwtZtxZArkxh4xuvdiFWqyIn21VJp+KdANxsDivpIvd+rGBdifTNuhbANl2yP6J62gPbVDzq+Np0V35SZBV9fqYpkumguPTuQyrqMBYwHaq7GzhgO/2ydfH1sJxk+I7LqjAafry8OUy8s+wlkI54LAystlAhxcMzEPzTCxFC4JoC8U7VuJdcVygdI3z7nGdDIWHM65EDEV32uZVpdKL1obhlVt8Oo2ZCYwD96cph3tj5ulNrQ1xrNs1oZ62x1QqAHqMn0oLtpLIohSWwWnSKuNkbiDRC2TsRYz9r1aDYBg9tBekMXWl1Lg0wEFdAfkaAQ66JeZHKKKdjN2Eko9jKMxQryNew9nIC6m+7wZe0UHgJLAhL1DXxaMa0P9erO0BGcBjIvna4sBbeYI2XspI15FAT9n89xGEat4s3fIdnJaubZZchOIucNKHPazAmmYe/cjsQ6ERrMbwOE8pKh5rRjPq+1zj810IsbAOwrwGB6drDNKmaOigEXxyzik6ARIQPV9RtALEKlhGCBbKL7DiHa1MzI0Cci2dGxcCEBVjzI7Jf/gjKrO1DPul4/N1qO/h/jckAQGz3fXw72iDzNAwnvXJVgDvI/cbQ/XyzqBl1o9tcw/xtShANTFgJn8TJ4DzhaIygEUN43+HpMF0erH7S+nMQJ8ng2PXKe9ncBKx3tnGQgnXFKKwkFgkOCMyMepDv6duFeZ85S6DbNvzEHThESIn8/vcsjP//ZKGewj4XPz+5xBkUM/uXPYZDIwqGfAa3T7TJRsKPM+HC86f+pGaV73rUE4T1QB3RClDUcxeymvzaHzWTyXRN7LG5MJUIvtRfLBPDhX6KBzzbWbn0kHmWyHAEtOcyfYHae5Te0Kfvekv2FsBLHvbo9jZD/3af7/Rxcj+9F27m3cK9z5SG0TEbNzCAoM2DgVINhOB/ZFcuZjLiUmVhnHz2RdBR3BQpr97vM9zXt1cExOay/2ysMa+fj6UwAKEySA5UZDo354MACeKwBBeXOD5tsdodTbyhQqK5hOACbwQ0opSybaL3UKcqli/3LBvpixMxoOVPSDSnzx3xUXJuRzCsyo8XxD0vnLZu1hTjrLDzJCbd+XcLIZ4SiZSuxsCBqY6u/Nn9XbQBVXEw9mxUD7PhfJ8ENR3OksfUBGQQ2HW+N33YW9VjfW7l8q6qaobxaR3J8qqrM2xvMC0cVzfWuALPaOFWOoCWh2d5ybpbYQBKl3Mkqsq0N3oSAOsb4a2PL694qxAJevLjb5oEaBRbjr3ReOg66yK5bvAxTp5DsOWC5ffdvNYLxUjFKAiohuby/W1svvBnowFcYcZrF0BBiYUO82h7qnV1BMkirSMhSUGhrLpIwbOGUGR72ZMRjly2C5zqF34U5m2WyTNcHLWbJzUQQQUm8D5UHnxLr28ang9T8yXaSZmKMDZ6N6mc6uuP5D3eCfa5DaAmVXjAW4fa4GaLiyPXxuj2agj3TF+nUP9kzZbL4Nj3pyTltb7Hn9WtEvz+Z836dzFnnaSYV9XBqwuAgYr2F9168V/amGRsHwSF0JwTNg/VZw2RVwUdbSTaguoovNIlP1tts9XxYI2+FOoTL9aSjaq7EP5Etz5gZmvjrPpN0iyvY9LyFYxMsgwmu1W6rWWGrcexp7HoV7bEYlpjPANIgfb4fNXpYFeHqyz5HSSRrhbQfLIoEaNJ4zXe49nh3U1mAl2SH16V9sTta7rad6N5o8wRGKhEUuMxlme4fsD+B2h26btdEdpHID1j8KstBeaNIU5u9W9N8u6NeGfhFjeHVzgOlDkF2gxfaMeh/+TkZxtdKUEkZddafW1t2cT6bDo5DFqjv0FRh/NVBtVGD9iqlNojbHtRX031aLhA+Pnu9iX65lMutWbwculjLge4Hl3ShK7yibMcz2Ty1K8BpLwhlWmzE1Ij9eFfCSxsJ3dGdLF4JVVuaxvdp+HIKG3ueH+Tb8TLsu0FLjx/XeLSWFWhiMvoszBPaB9u2B8mgYbyXKHgPWxuq6D5khZay1lGJAttE1RRsHIvVhVrvQ+GNRU4FW0z+BTlHjWZllQOqItkKK5YarzTU6+LG21c4i7j0HoMIvvVhqwFx7i+tx7KkvvR08xz3CHc4l3EniuY4WRp4oDLR3MO0s1MzUC5RizC21fUIrBTL95KFgo0ikTIRDRWr6cKB9eAqFf1d5nhZ1angFRQjVU6pkm7bVQZtB1ea4O6bzQ+5cemQULtwXJe2iWoaPM8XZEKaC9VsOQdPHcmc6QMQQN3Mnok/gSLxMazAvWKGipzGLNs8nay3B0hCml7EkZx/pPr73cL6KhC0Z6TvunIc+QaC3J2dQxNK7/A/FPG3vTu2LNWHG2EF0lVUr/Duqelr3s432fn06H1m7w8dJn6/2ne4MFLJWRMxxpUPyE0dc2VaPspvj3wGuMabypJQB+ehefp9IXeBcKwLoCWhwPyM0DLLTrwqjKcznhcgkS1HWOh1+9mluj6+tKOcIRBTcIj1+32AR/iKyfr7ioJOfO7p0cluzcdESzr6slq7xc02GtJ6oUXH+yL5jimGe2hGgFEEbOrxwoMNYCQBm/wdbAbNd/HtplqLJdz/3kXzQX3TiRzkyHwJ4EAum1GJAoTL/1AEAluj8QFvB7lMmiy21e5aQ/WBcAiRwMMYZJZLfNWle2LvL8ecfXex/zoufffSDORp6CcBkGiVGSAYC82d/dv0pAAUANhgexQbciXAD25w4zzXzzU+23Q4FF82ZxrvE5wJM8Og64IbqwJwMHrmyWspes5XO/6/WtZiRUh99RuTXAl0Q0YQzZ4ol24JGXDwircfPZC2D8ujWDlK61SPp+ZBRODtC0z3MEKq7Tvq3R74Ek+lRtoF6d49T4ewDO+DIEginsJtBqxSjuvvE8/znEH7sah0kOuvBJ3AIMKd66jvo7AOFsTaURqU5gNqsv43Kj8kKAIKJUabAdUTDKdrGChrx+0HQxinpVIgWH3d/d5ahlKGzIgQA0tWj/50RM57nuIcgpM+nOQkx54bYYUVhPkac5DGNmdkmv/cwRx4OJtmcEDNimq0Jskd2z7fi+/arol8tF7rdk6MHYDRAhom6RZlOCixWTQCYCTiKAgPiwMJ8n1Fh4ImPYYGDOfuAXCTmlFZ4mUjrv76aoyAEYyhCx73Bx4p9zioEAI4pK81L/K0UkbN2tVf7u1+AshcsCYyIFKTNDsiBag7+YwfWilELalEorFrEwTgeCJChXgsAGpoa7T2Ud+xuBDMaLcUj+iMAwkKHJ12i3KuOaDPVx9Wdk0MO6NJM8XvbI3Jq0Y0xDQ4abM1YV5FrD9r8dNocFEHB5fc98vGl63Qag9qKSIM6XG6UaUa6aYCLhADnZHl4ipEMOyiLg39LWhewdigKtGlE4EPQ9TH3XnFQlUAPnXAa+OEwDnPc2w3oqiHUO5rbg2J7bnnA9z6NM6MvBRVGf7bzCUarFrE+8TU+qJzvkW4QZGa39QFc7PvheA8c9tMsEBuOQKPzUmPtUFX+HevK52Y4VXTcw1GfgNhoLtTJMp4ekTP9BU5GAzHksXu6zntrlOl8sX+m8zmYGSm1QPqw/W2MwxhZoxy48u/oUj39aX8//3wPlqFQB8tMyNfbjGL54BRklCSkHOJHc35wDg2yHcjOE0GRAd2SI3qOUvY+10u6xPcVY4cdncoQDE4OG/eTYHYUmFAx921FvAv1U2hMWvWW3Yznd04lwpGw9D244Y1wpMiMMiZhB3Y5rL08H7DtR4NWde5FuZxgKtVGMD471Jpz/f3+H0XUwvClY082wXpsQ9wrAQBn415yFJ9tC1FNjeccSiwmoCscLJ1nVHwucu7ne+exPVzFgSNJ8xMIZuU7czU/W1L6yNkZc3FBgnhMoz300z6MGZQZAf63ljJTSJDmLfDecT2BI+/+z78jQlym4/6RE5kcHgATICvv2/muasi5Pec25dz7kX5GDRA/Y61iwpgAWL7n+OA52X4/z908N87fY8T5fOXyjIfvDYh46hLnJ9kR4obp+d3f8w6O/X4AXY5717uKDfnz/LudZinbnisxIN079oMTiJCds0MpUTmNrfWBfUXeO9ycF9TrcABGdbzvi9y/xdH2/Lwip3a9W5F28awvFYHWFrwHEz569glsktw3SZD03cV2ftCmWVLV58WjB8hnz6ZNN3Xrfnb9KQAF9Y1y+b6hX5vlUDeBdCuzmK++FsheUa4LqLQ8Ls0cCxpCYg60rBalUTFq9HQEgOHRCFL1IWKUzK7YPy8YQIjotR97UBupcr/+/gCjihaZtyijqOVpilrUktoIKFZ+MtT4h7MwyFAodjBHRG1z52YYiwDd2RS+WcrQKNWV8+zbDy9/d22QPlC/39FfLui/LeFYtpuxMnSxMM/lHw9QrI7aCbwvUfinf92c3muTX934Z4k+K91YUbpi/ccjmAXjUl14y5XCmzETtpeCejfBQzoPjPIfgAd3PstmDt/zv4k74KZNAcArBpjw2VgKMJpH3xQyuuXGPwbqt/tU/2fEzOfE8o8RB+d4Xr3/NEAFQKysZTWVcxr1jyfTJZBhYMd/+V8E9U3w5X8XrD9MFC6r/DNn3lgeJ7TPGTZQoDhos32yfmqvJiQGxRSxLJOxoAXoT83v303/oVl1CagJgj79ewf+12rR+O6OURUsrxaVun+xsW5vwyndJmxXNp0pNZ8MYLn+PkJbZCzm9LRXW6vbS0OvwP1vC+ptYOH6UQ2GSr0PYIOBAlWwvVRz1pqJV0pX7M9MhRBAC3TUEPkM59bZGkGdbgX7S4s0DGOM2OH/9h8QTCIz2Bcs30dobpDWzTrr5bZDXu/G/CFAgAnuRJWBtw3j0jCu1Sj4Lkgac6wPlNsGJfX3bYPcd5R1h26SnPLu4FidTh6NR0bU3WDK4k+onq71T3+xHyUqrmw75HXzElYD0i7AuqD/7ZM5Fc1K6o61BIhbb/tcgxtQxobxtBj76DFQHlswBwjAUI9gvEyxufJqCN/4dIWqorzB2RCeD5sjmnu3ggI3wf7bFY+/Duo7ugAAIABJREFUrrYPcv9XRfuGcBTarWP5ugUwG065H4711qFN470iQjqAsm/W3mcTSatvW3xvXJudRfsABFi+GePl7e8V9WF6J8OZLxSPXX+4Me57e92G9dPWnZrc5tlEXQ/xc8DBM4hg+21N1VOsTGd7s/zS8TfB3rzCQqNxAGDUcHpjbfA4qAVa1EB6Bcp9gt9ls7SUsdaJizrARZ2BfjUjor76fPD9W1vB/pdLpOcFE0t1ljt2FkN5ffj5YCwfVDuLpXuqjzMn9Fq8XTOIwP0NpVo1Ebc1x1qj/2QocAdYtlPXFuCwdJ3RzxTVl8duefIpCDGj+h4BJrjjfYHiQYOnJTnf05kjM4MG5WgF5dosZXC3CDZL+gGI9J8QQ+xTT2OsFVgr6o+HOWcPT5si62T3SFGBsSq6r7VTGoK8bRZQZkWKp7k2ySAyKn8DZLFINdOSioPtP6K8lgEIpZjgpYhXztAjcLNMsUh7L6YZPSajym00iUgro2v+e0bvc0oBI98Z9PCx1cs6na1kCEepyDGdfUsBSEY1U0tEZmrXukwQhHMmaUJkw1zdMZAkzmjMhmS805Hju8cCTZ85OOgGpAabgr9nJPGxx1yRmzFDaEOHw8x2kL0GzHMinPEJ0E9R1HaoQKLe98L0tCKelqDz3kyHIUiWS3ISIKS+T+7H4ilKFH+LzraouFwv82fuuEfaQnxWppMcZRpTukCREF6Ma4zpvIUz5cCFlimAGHMq+SDn8XtsDt4mgN6fH5UJoi3s9lNlB3+/HFnMDIyodJEdzTPooH06jQlQiXdxkUMpxUQmt21+P0eiAbyLrmeAhp/nvceAoJqDzQi3p/cRZAnGETABLjIBNPV1dmw/oO9LKV4VJkfOT5/T09jBq5eQAZHsOFeGt3fI6TsAsG0wPY10bnwEEIjtrVHl4+y4Z2aBbca+lynCOw9wNLWfWhG83wFM8/GpOM3N07/JtpQy9Q+8X/J6izU1dALTwBHsHuMjqOnd9acAFBixtTI42ZlNUQLOAUb1lhqGds5bheeLgzlvvkGHEQeAkV6FR6wOqBLvhSnGuPWgZMZz3JjIk+fsDIcRFoeC3Tc7JucpGu+qSZn4J0gXjcNwsKKTTkPvDlA4ReN4DzssPT+Tk4u5mGSM9DkG6Bosh3eCNyEy5UySWlAwQuCQ5SAZtWfkngZpvmalhzkm7W0gSizSqIN+SPMJ4SBGWNhnfGd/X+lGk5MxLKe5eR4Z6oxyYq7/YJDkNC5PGdg/d6hYWsY4tHNSexmhz8KLw+9Ph4JVEgxYs+dF9McjdGMtkN3Eo0wEzVksAzHfoy+GOSmXr3MMRnOjeZjBUXaY+FthhNj+He+hbvs5U4X0a2BAvbwmgKS54PdyA1eLhg7EIcooCDAh0oSU31WP+MKiioxcjzkfDaTz6KUauDIWAxPGgsjzZ1UFajv0RdDE53qsjeF9kYwz5panaEhOZ4jpKY7gDk9NIOrNMakI4NCAR1tjGBLpDGFcu7I9HQdRSc+Xg3Eaec8sd/bY413sB27guFGrLug1xzkxArjXDDiLK9Gslzpp8mEo+j6xVqddexuHRhutj2ZEDa1C+3SEAxTgenRn2ZhQvrcpoi8iLWDrlhoiCLp+7Ff7sG26JkcjjRNT46iuH3v4xr3cu86rrqxXQbkr2lu3edoKHr9VjOrinb7Xc08872Xx/64QUYvopTMt+oDdIHOdl24gVXF2wRCY6K0zYbRPpz6LCTKHnA+SPqBd0nxFnF+h11PE2ubCZMd0BNuoZPg6bhKBKpvTYuCFCCrpyn24iNmYzlLMj9lUnuugrUhBSBEoDBRRGmPpOwDsDB/zjNd8Tp+v89qCd/lHnwUOc/enl07G3/nnZEGYsGFydhnRXGZqAysLkeaqfK+BOSHjDFLoSHObav+dlSQcdBxiaWEy30FS+w79AswouwhCTC+9ez5LCSaIO/qxD+U5qCkkmJ3JfOWoaTaiz20EpmGdbS+mXfCATs+JMcn355X3hYjapv7Iuh3+zLAbeC+CGhnI47w8R/OKTHuJGhN5rub35n0y4JCdskGqNM+l43enIGJyoGp6T+Wegffvff7/R1F2+H5SxJjCqa8P7Aa2IznUHzLXzhfLNr7T2eAzcHTweCb+ihqerzzu54vO6Pm9Dw4v/+8b4FBknQEtFUGbPzENf/rsPIdUP3Zg2R95LM4Of/nge+nnB02HdxUe0nj/6vp/8xmCCnRmf6VD8FE/Acc+yu3+1XVaR/PHdpb89MpzVQSQApHT52PsnVWRwSv+HOeFj9O7nwAqjl8RHLQx8vu8a6uP00EoEsf+yQyb3O4yg8bvykcGo+T0Dgkg+tX15wAUeLn4U72Zg8S8UFLzcxRfXjxRecApbdMIHavRqK0sGaax5XnJoDNSBP1lsQjMY8f+abVqDR2WCnAzVkO57xiXhv6yhjDV44spci9fH4B4/XrBcUCHO7triVQAy3/t6BdThrfIugtGKdC+d3PeRSwP/FqiDOJATQeBGWd2HxPporEHiqGhoH++Wo4+gPrWUbaO/XkBBMFwGO4oVM/v1iIWYRVg++w5zjS+BaasTQfL8zct793YBtsnZ0N4xEp2BRZ4P5nTdfndUU6BRUYVuP3NtCUaa8W7Mz+ahMJ6e7Mc7e1zikK5oc0IK3UxTJwKXn5NpoOns58YBdalAhvbbFHL7//jE+5fBM//2fqfjAIyPUQtYll2c077FUBVi4w222RKn9Hz/cmqFzw+WRpCuxs4sl8EZbfx357EHRON/rE2Kx6/WeTdqoYAj98qSre8874W7M9zsde7RgRPdqA8OuQO1FePClbB40uzqgQ+vpc/bPzuX5wqPWDU8sUqU7DMXjaeyRaxyLW95+Xf3eHxebc/V7CKxaj2fvtTi/GzaO8EDrXCUil8Dtz+vqDdB9bfJVI8QqxyAFJ9PjqA0a8F2yfTc9Biee5WOcXAmfWbPadfLCLayFwBLEKnaV5cL647MkK1ezyvgBToIkB6T1Z9ELXScSzxhlIsuudzb/i/y+uG8nD1cBdTFDpdNHZzJEwkEHS9rtMg9qh/f15tHb89LCLz2IB1gV5WyKOaE+Uq4OX7w9bHUj0PuyR6t73XaAVFrcRZ4f7sSuo8b8rtAb0s6L9dYq/OzhcBiCj95yCwLJ7776kA4dz5+lv+2KxsYbEUDNnnmNfb/s6wKA8TxuufLapVv948gmplGnVtvicYC0FUUf94m+/L9t53Kz366QIUK0VcHs5iAI6fHReM6mwb2JwPVhOMCVXv3cuSbdMJqAWyVIumL1amTgummKwf/vvzEvtAex0oD8XrfzCx1VFt7W+fK+pNnWWDADYAGGCO5FTRoBRP8RpAfdsMNHxmpNxZBq4fAjHGjImjVpT7QPNyzpH+5s8bTbD/VtFe/SxZYGe4R1NNULZEGly9G6On3p3JMfzMDgCTbZcQMea6QQG2L9fYM6QVyNqMNUSGhIMacy+VGfhSDbYhbUZtnNS+x7kexXDHMURWMf17FVi5yQTenRkPKAXj2SPUu1cM8AjtcA2XOI9UXQhZrAS1Ivad8vqI8neMuJJ1kMs6noWz9LIY42Cb/WDPyQ6T32+Z61EcBMpOplUW8j3ydYSTrVm5fiD6Q5tXbChiOi7bFiX/1IFJ8ajugTJ+AgHh9wgn+nYP4UZ1PRL135XbHv0UgmNMORrHPrK0IW8fWSyeGsaSjigABQ1VXAyT5R6pk0BQUgR69aocXnJO7sYA1bVN4UemoC1t2iaqiQ5dgnH1Ln2EIM9jjnNE4AkQLhJpEOoVk/Rptfs+mP+e5ixZEWMAO6xdHHMCJH1AsR+ZNh0TkGU/52goz68s0gnY2aQzUvrOeY4oP0BROYI6dlUDGg/lQOe9FQrBDqBBmL8f9y7HNaI6yy7zitSGEY7j4WoN0hr0dgM2nVUU4n1mCVTvRKAnvYDDu+DkkMLeNzmsFp33fg92xcm5+5kzy2uopVqeGQnRL9Xel9o73g5zVrkWTk4vA3QfBBbt34ymJxaJB9iizQRkMoDG9vDad+vjc6WBM+AUfeFgDz8zvGpT/n3oDnCtTkdelgVah+kfHe6JeJ+fiX/aM3WCEoe9cQSjcoJDFm2SZQkmaTAM6vt5YWUkE9gZZXePgJQ/0H5X07ziHpKBrVI+ZM4cGEGlzPv85PpzAQrApIx6FJGUwyg7CvjBgDgQIvJexKI1HtGN/GuiMUVsIjvay+gpqfg0xMYikFpikRRurB6lj0izMrKeQAtGxDCdrrKNaWTE+yREV/J37P/9akYcyz+qIpD/6WTOf89cc3e4Ik829ZE7XPO50zCaoIhHpfxdTWjMHEERO0DqEIuOlNQemf1p+czeOJZu8rawGkKhCFlaBKVbn5bNjOL9yogTQKbCpFJyrFyATTyaX5OB5mNe733meEc1B7H+oKgZy8SViyuGt2BS4NTfNl9mlF26Ag6U1K/V1eCtDX11g3V42gBFVry9zGlmqvFY7Hfbc5nOdQP2awXUnGOKVhZQOG+uH7ICSlePHPjPlzLtTWpgsClDJ9tC1AyLfOVzb3jbF0FRtfrcXGOD89qcA+pfjHTwHdqniLUTueHDABbLUbfflR2Q3b43ms0vAhNMMYgnFEF5KJbviv1JgpVAcEq8T8V1G+x3aY5SVIuK2hQFzM6956OjwNJ5lpmSUzaPHpH10OoR1VVz8wCYQ5/DtJzb3EvOuYHZIGabuOGricAF4FLExJcAF2jygzMLawHONgJEp24C0YKYB4xodS+r14eJ/qXflUePfSaovx/YLHYfWDvWSY3mO8AdLYrCso0f5ZpGJFARazge49R86tSgq5UTDWPueK/sNGmOOKRxP1/1raNUmSV+H2k/dUc3KuCwzRRS2we0WdWg0gcGVQa538H+DS/xEyySWLN+Vt51VnzwdUgB1dCR4fnn+7rkKNcpapuBzJinfg/ZPU3PhSUNCHOQpE+QuzxsLokzJMZlsbER2Nroc8y0CcZgyUqZmigUHhbrH/anKEAl7MxcDHbR4PmOAAIBzJQhBxW0OFunGuuBVZhsaiQjdaTc9HRm85yEn/km7Mgz3AMcagNK9WxWnFGVg6gjgGAHhdPEZw0k1t+YYAKdQdLyD5oqHqDwCLKouVcETc3eGJNdQEeVdhUUon3+jKkKeU0QiNMUnc9OCsECOhas3KDqlThSv44Bjx7N7+dovvd3/E0AIkXbY8+Kfk/f8z3lXeRSZDoZ5/0lR9TFWYpSESKMCUA69J+/uxzu4+vRK45E37EUb2aT5SvmAWz++HbO8T30CfdOtofssMw4GbA+pgZAcuDo7FOUk0BYlOhk+gUdd6bXnPYQ6SPme7yD//wwjn5vOfWRRUGzQXOKoMf6M0ffSo3i+JkP+jCflZm5N3/mfxd5z3LI7eFZGO9RgQVmd+bqFIfvpChxZj78jEmQLsnjeY5c8/uZbRClAsfxb/47OaKHd8ptHT/J5T+vH//ZIaUhtVupLxFrlVH901w//+yj85bf/6i9+T0/SntQBZDevU52Qd47Ds9qbe6NwJHVcb6yNse5vQc2CwyIAABRlzvwMfvonQ7P4O9PqRAftEnP87yUCdicLzJIPmAknKuoSB6Dn1x/PkBh66j7sEBCGPCC0bkBAkTFyzYmqgxYfibg6vdexcDLPTKXP84PlpAbnnt6WcBSfNuLOZdLE7Q311ZQHCpESFcvz2gDW73++b7UdFA644IpE775jmY6CyXnTHGP2Qb6U8Xjs+kRWH68RXDVHVAyEpZvHUZZx6zr/WqlwvYvFzP0txH6SlrEylK97RZlXGYu6lhM58CcQkSea3vdMFrB/vcVgDMhiqAUo7eGOJVHnwKkKGIUdYogubFrkUoc0kFI4y0PRv2NoaLPmDR/EaCYU84qCipApw6BIvLzy1YDvKmPgeUfN+t7F+DE3oGXK3Sp2J9qMghaRNZplNe7375Y+7SZjsdoxkpYXoc5vMMU8D/9c0G9Ka6/O1vDqyHYnDMjtOzWZ6xC0BdYOcZE+dqfLJreXinkKVi/daxfd3Om6Vyrn61ubI/iopVDzIZyVsn2MkVN6ZhT9MryoDHv598BHRCC0WLfH8X0H1ZfgzRGcs13FAndhb4A7a6uxWBra/0+bI9fBcXzBphC8e1/qNifBZ/+ZaA+vFqE2P36U8F+LeiLGYOXbwP1NtC+sY2C5fuOT9vA7e8N24uloqiX/hsNkC5Yvhu7BICvCYuYjKfFWC5vdygaQPV2dQE8sYgt04HGajoX7ccwavqbsZ2Ymzs8D/RQwnAf834NppgvHhEjcnxZI9oKYJZefPUJKRKRIovuD5Q/XmMsdF0wXhbIj5uVqrusocgf4kScDx1mJC7VHLhXj8aXAqbPQHWWORwKpYaNA4bt6y3SBywPN4EFNaWGOFijT6uxBoazF1LN9n6pxkq5Da80sqM8drAMXqRCVYoEdgMLUt5lf7m4A18AZy/sf7lgf6pY/9g8qlqnmFj1lBAKr7oxItzbLg0YxoRhKl77dp/RQlVjtzQDI2MZPKYYptaK/berAZzfb8GCKQCk2BnF/TAuRYCRfbX35v7X3gaWr9v0wwiiXox2Xh8aEW4tBVIF0lMUQmRWE0mGItl8GgChAjrQftj+XR7dNEPWgvZ9MzBJbX+or8l4ppD3Xy7YrzVYDeWtO7vOSiWjFmNE7B2P62Ig8MOMc20WOTXgcIRzqIIAzwvzyR87BoFtOlIECTzyfnx35qiXyUACHPwwo624fsFoLCnLtVoDWAyNCo8+l7f94NyRWQMgGAmVUX4XlmapW4jbG9tktWSHKCLbfI1bUiIGXARvRCTfqpUpIAXjWuMsIfNGh+3xwRDi/uN7UjAAKApNRxII1sCZTRDA4D4AkKG1RrQ18pR3d3q3zX6u7ZhyUTDvy58tcqwsoikli8/tJ0Pan6mlWHlF3i//nR2lE8AIwPaGxd9txyx5myqcxNohM2Lx8r9MQXm7A3l+1jIFdjmmrR7bFI74sLMo9/XSbC/luHG+VatmIwTGCfASRPKKFMHASGcT544FVEzoWhvs2ZKYZDsmC4R9LRJBBbt3YgKc309kRm1jPvQZ+e3dGCy5kgDwsUPzKwAgAx/ZeQzRTgrQmWMnIsYMoFN9dvZOl4H2ZEsPY+B8BG5kgCyECOXY9+58BzOD8zDAmQRYSEkR/MxO4bPcsU4pYtYvp8h03CvpPgAfgwnxt4NEaT7E84HQgzj0Gp1rb5vuu0fuaYh84IoSpBKB/kwhP0CVDNr4u4tMtgVBBSmzmgF8byTImd5VL8tk1Li/SY0OOuw6mM4nE1RwMENaS36FxNhGH6riUK4zM1nKR/OHa8X30Fq90ka3MyT3BffpDCy4foSe1rqqg9UHcO0ELtRqVTbO5U4/uP5UgALzGlk1IPLARUCVfhkS5RTNGPUDKyE2UXYwDOcZsaGjaOwHo4DzYqRpcXp2OFLuOOeydaIw1f+VtUxlRk6GiXJRxKo8PLVgNedS1HJQx2qUWKNf28RkpQTmqEvHjNBzzvWUv+7R/OJROIuWTEMq0j624eJAfi94ewcOzn4wAiqjJbYo2aeMOIwqxlSQme4hu9oZQgPK00+0MmUCToufIAQdbFE3sry/VSwaH5oLMIeXxlu9dTv4mGoigNb52WNUz0TIomwWEItHl+n4jMXGhPdob57S4KU8yzZcVd3mYWiqFKB6NF0rUB9A1JUdEoACo/v14d6/UtzRAICxqoMFQF/t8/UByKYmjugidVI4r22TqPfuUbyKskwhRl5jETxeCuqmWL/16FNx8GgCPBJgAwGwUS0HuI457tTCYH8xMj0AX6dcONUZRxLsg3r3+epiilprfN8il4p68/HxMSRQBbHUi/Y6sH2qVkrP3+/23z4bOPIYc/xuDpRUj9i5WreNp/dBcgRC5Xo4hbeZCOTZQKj37iKkDeUxsP4+vDThHjn3pLCW2yMcEAGM2ePg1kEAh9fSZgrE2z6pzXKNjT/qnbNdraeJDwSllsb50szAS/XQFcZSGZcW6QLGXgCUFU/U9pPxvEaU39qjoQWgZASpRbaMoQW7X7Ck3HFIjpr6QR/sgVQucPu84Md/Klj/EKzfFfVuKVmHfdSNo6gE5K8eFQhc8R9YIqosDrpCXdeBe6WPuWxOJ2ce+DBnHK0AFypFvx8yLcWNdafYe3TvkHe/G4OjvnkqDNP0ikK84kf39LJ66z7v3UB3p68+gOWHrdn2OtBuPebiSKWT2ZeFTnkSz2NFI12bn3EDKgWjzooQQeevZlxH/3Hvv7ZgEoy1BttJhppwLC9WuNitzGXoYijTAjDZcz6Xlx97AEYAZqCtFdtfyCZQTJHi3fbl/vQEMleCtch51hXcFBndjfOckXq1+RylSoFkFMLPUQcUHAiiRAXn3EHhPhujAwHGWsf5d0YHSkfdXJySY5XuIQ5ORlrBzyJ4/Aodbv6fQGgrtp49zUOHGvMLKRLnrJM43Mjqw5hMiWyU5osOW2pLVFjYMA3Vc2ULLx17Lkl4SAWggezivmEYuxN7aEPq+/j/3iHV/13c4aYjT2P/FEUPkKKbaFtUVKnpTKCzkMcnRxDP/QME+/bQ3iRGOR2QEo56sAlKema+rztElnJQgGJnjeTPnDUschrCqa0EOw+siqBf+9j4fcMpIXOEz+M5pBrvRhD4Xf/Iqc84JjX3S3Ze0/zM56hIKhdJwzGNaz2ur3c55PneP7tE7J0zBd/vLe5YKstLEqzoOKYqBANxzP6FHtJF5OCoavw88rYI5p3bTof6/D4dxz7kXGJKwEEPgu/qPkPMGfvMu1SVoTOdzD/zvk/nvipkCdB+8D49poz7fs3TnaKK0X6Z38uAUMGxDxJwIrVEKc3DO4ke9y0yLSEHzajcLvtgnq9HsAKAPYtzmWutpzUFGFhQJNgLmseVop7nK++hnEutAaOHVF8G2j6c5yGYOcG1/FkCFyHoyDn6i+tPBSigq9XF9chSCA4Cnmc/IHdMB9iRaW1wVBOAeBTJjRIKwDHSMi5UiVfIfaD8uEdNX9kHKhHW4rnRpIp4JCzEj7YOWSq2y7MZU4mSyjz+fjWEGm+7O9f2jHIf4bjVm31eXzzPvxgAEDnwfUZ1eTqU3aLljAzR+WK7LeLkfeqHsuWDAmCpEwcuBNZfZhh5zl1NB5jfUzoCVAmnstt9SONvr84sSKVh9qcS5QjLDiwenVck41w1cnZVgMdfL25Yjxg/rXAWhB3Iy3cuRo1KEBQCjFO0uPFY3WH48WaLbmmBTI5kgPeLYHsuUR5z+d5RHiOEEo05oVCpkB0Qj3iz0kLZ7Nk55WaKd1q7BTa2fHfdHeNRoKsAFzM6hwMKo9k9LC+5o9z3GOPhee/lttnmsHsVhYdpKqiDR6MJ7n8RtFdg/QYQnCKzgk6EFkSKhQygdO93ANIlDKEp1qimA+JgVBGJKgEAINqAnvQ3FGi3Aag7OwKMYT+vpEwLsLxpaErk+QW1ahUWDX/G/lwtbWQR3P5aUTbF5Q/XKulqffaGOdd7mSCW57rTSTDHdswoeq1BmwdgDhDLOr5tEAcU6r2bXoKjwjOK5/mzkSd7RYhinQ1zXu50j+uC+vsGeb15dKYYQhzOyIA+DBwTEcheQRX6QzTIo2i6Lg4oyIzCwoy7/tRsXb9tlkMux1r2ln7QIqKJhxvbakKmZHBY2W47nMrrA3hs1mYRiwIlBsBYSrDLaLCOxUv2ysDjt4rX/6heWtYqLZTHgHy72UccJLWPawhGqvhYbjvkdjf191YCXBUy33xfDAehFMg9KZkDASBg2yFoh3P0nUBfK8CmUalCNjF6csr3NCCmo3zHNLZJJx7WBoKjyx/dq+F4tQ81AFkHsH7vwACW77tVanjbgKcFcHDPUqgQoI6oOf1WttX0IWTb3cmsBgqprbH60MlOAkK4k31cXQSzX5sBn0BU77E8c2C99zgzzXG36H/tA/uzzWF1YI8petnBqD/MAelPrt1TNEDrogqyCXh+05EflxXbb4uD8GoOLDDHk0zGAkCqtdfV8g8OVYGzgVJ6Q77cAZVWoDuiHLy9zzhUk6CdgjLBBnEwgykMkiKIBZfQa5iTTY3t5NE8Ap0HgzI7mOrsocsSTBvqetCmGouDwJ0A4wn8Eq8sFTT4YS/p4osHQ/x80eiUuVeB0T2CIf3Udgc/DumYBEPDsLb76GYMTOnDS5aWw7vnvjgIMg4DjZnypdcGPBywLcmoTqkcjI7LfYNeVzvPPCoblQ3ye7D0rgM4ct+O76p6bBufAUzwl/cCpu7DQSjzY5Ai+sGZGHDW2iGdiWwIAtNZt4EXK8XsfhYypYZtK7B7EiRWtfz2UiGLRDtjXrPSxmWdLIYzGJIjuGxKKZ6a6mvxNM5RHY9K/fmedOoIEuW5x3dhRYgY8/LeaQynuJwccR8fro2IUvsc6H0GD9wOYMUAETHR1QCx0nsMBUZDCE5mkDADLcDJeUZyToGo+MD7Iv0eZKxkcEYRHXoGA7IzmaseJIG+Q5WA/C4fXQTFhq3DA/hzzuHP6S6spIIx50O++nC84oMozTl1lIyYNDbxPY4L/8096HzmU+dNZUb4c1rY7mVyuYYDWPKS2bmfCUTRgWf/qk7dDKZGfPRuPrel1cPZGiNAQJb9zIvVtrjnnvcX7iMlzaXMcvjg+nMACmrGXlANFRHpYKUDK+cGjIsZwNidzXApk6bqV33dZ9RGGAnnAafupBSMdUbG0BVSxiEiU5yeT0eftMkchRhrAj4UqHejrvZrNfBCBAsNCIG1R6Zzznri5W6bv0VYXbxwt7QNtp80daPMw0AKf6+yeQTBI3RWMrBi+211p8dznPc9ojgWfRYrrwm4KGPBLJUItB+2Ocowtf3tpaHeOtrNhCVpWBZXXafT1S9mIG9PJlbYXm2gxzrBCQMIBO3NHGUzbjzvsmACR4pwkLeXYqCTO4MuQ1wAAAAgAElEQVSRYtHtPzYW5ok+PhUfvycsa0XbdhOpW+ahX3aFev54KSWo+axYEPTjItg+tbkhep+MpaCvEqkR25M53ma0YbIMsrKxqlP5O8ZasD9VdB8D6gbUmwEwl98Vy5un7oy0cQ/F8vUOdEW5G82uAHYAV8H2t6coU1q2juu/G4DAtJ6yI0Ca/lQD8CibYummX3H/bBHidnMBNp+DlnYDW39V0N6Mmq5jQNeK7ctin6tWCnTx0mMUfwTcIRUHKSrQ22SGLN8HVvU1AcyccG58a0PZh80pB0Lq3dkQb8ZQUO4JAvSr3bs5SFceGu/OtRK50vfHNHIHvLRdNWGr4qydxRwSlqINyu0YRkHe+zRYaGDcH3bPBZ4CULC7gGD7x9t0Mt8eqLcN8uMNer+b4VDVvs8DjobusgCtQZ+vZuQ+Nmg+MIFp4NEp8NxauW2oWw+BO10qxnWBNrG0jThk5lyPaJWPZUSwfE6r50Ero0SPLZB+Hwrrg+tqUe5rs4j51oOyq0vF5Y+OL/9bs5SHB7C87gakOXghO8vdVaPs02EeCn1aoJeKQifBHXdqTGgvcaaEM+n0VpbwQ4EJZxax1E7PRw/wthyFJ+ms6tPFI+Y91mSOkM5oWwHAEqglIkXLd0tFq282juXubL2lxLlV7p5T7etHL9XOuQJf1wYQHPYbHx9jRKR0gCp4/OWCsRb0S0G/FshLAzVN2KdZg0irpyqs3PcmWAjAUwMQZ5zA9h+oYnEmwQgGDIJ5MqL0cAsGgkIxakXoSogA0ND6sQfOVKt26yYO62vRDG2fVy5CaVFFFxzdC1AVGH4++3zNZhtBMNoR4/PVASD/wBgHTZJDFQS4Q85AhCE3QCOYdXSSBiul2IKDbH7WvTz5vMxOvzs1V18TdwMdtJlAa6TteBvF7W2WgRZVjFZQdzOoBbYfjtVKLpez0Thge1mFgW0DMz0ilaoMZg6pxkzjSiUgc4Wl2c/+Xc/PP4pM0vl2ij2DAvyOg6XRJyI2zmSwJEf+LFgJOq2tBLgn94fvM+5wDAOGY88D5rs66+MgKMd1H06erfvYXwj6qh736lOfGLOsTgDa7zU+Xec0INXbn0m7hqWPuf/bueAAJn9OZyKVUAwQln2Vo/sOTmHbQ4RSSgGWxeYGxyQcKJ2OUno3LSbKm8ENBq1yBDcclzzv2RYApPQr3HZs7egwnXUb8phnBkFc1WyQWt9Hw/loslDY9uys8XwVsRz8fYcOBXSPEovUEuHYKOAaR8XWFpkJWcRv73ZGlXoAVsIxzc7pOAEjfI8ynUHBab4C8x6peoHNk+L95Gvp5Jge8uyzjgE1EfhM9nP0q4/xGPP70ZZTCssw4zSq2vA+HJPeI/Bsjy8eSDiWI43n9OTYe3tDiyM9L4ACjjXFG+Md5X3bqcHF0nB5L+D+F0BQme3ivE/aI+9KqWZGBoGQvIem+fArRoLm/RBIgIHbS/wdNTDYJ8DHJU/z6//yt/9/XeoOJtFbnVRYLDTIHN2P89bp56UcAANRhdx2MxLEozXuRDH/lGJ3jJoJJzzHfPhnuZE7CIBq+ZyKEqACKepDmaYwsF+trvvMmXdmQhIMYlSX7AIT0dNQXDcarTpNVY0BQcMKCMEq6krobu9Z6JhsCizVqypYLXZsXlYKZUaQFFF7fEZXHKiRaUgPAaTZO9UbINuAPrVZt9wnMg0yKwPmmgMX8dJqzA82kMBU/308ffOnyKXl7yKiWCqwfFvxeU9F9TKps4cpVcwplgHUraBsDe2yWm7gpYaRPEWjPLLtoocHMS+/N6tlRHS0sy2IPCb1YKYJD8LnBCJ9hsJiZRuoPx7AWFA8YgQl2GLAQtkMTCj3U7RM1Zzdh6P/2w7WnOZBVZ5X1DLHd3lloxHrZMicA9ThsJKQnMM+GzzdhX0fTAY1VkXZxLU+ABSrYkFNBBmKcvMc8lh/ekg1ATBZCLB0lupVI3L5vCwuh64oGAH8cF2XbRhLJs2F4XtAfQyUTYNJ09fi7yVuzALFI2y6ensIdPqaM1/QQTQ6LjQqdtMYMEViAwiNCm9pCqE5IClVKBrpYzzMiNX7fVZp6DADm4h3Mi4RJSCLfQaYhmI2nsOY81xwb6uoQp+vkb8/arH0Fgf16NwdnGPg6FABZohjTJHJIpb2NVwoj4fgUJRSMJ7agcmUDct663j5v5OB8BjHtIjHDsikfWoTwAHVca22R7NqR+yxaX8jpfBEdc/jHIZ5pr/TKW9A8hrjLNC1RdoEtt1qWUdUNkWNaOAnMAEirlvj7DcAugn0aUEvYq9bMNOTYG1QllcEQnzPqPzeZNtu4/cAZmWNVrB/qgH+UYSTDB9L60oGSzisEgKzTFeLBcdUOf5I53ku+4D2CSiEqGLXqAKk/v3y8P7imZcMRnVKt807M5BUxKpTPPaZvhMD5ClHZA/5fc3pdRDM060i9YUGP+1CmfehzhBBCynz9yg6qeZkG+Q/fAca5EuJe9m5L5glMGWm30R/ce2n9hBQEAlAObRGOFUHTKtlUUib8/B8kVWi2WAfwwbSnXZ11o88cnskbLH4DOyc4BoL7Zjs3CPN51omuypHloFjH4oEmIDqgR6yKtkWFmXJY+7n5rur2Ht7EkucpQfBS4IKdLS8HDX30ygtnZ9x7hvq4OSUkhwBPDv3zpAT7Tan1JkmXrEmouOZNeJtmoPHvQYxp3NlHStfq8GC0EuNtIS814QdJDrTWNh+YLJF+D6ZeXECcPhustv/Nb8/MB29j66zAJ46UE5n7APw4N3/CSLTkecYUW0/gBhvz8Gxk7AX3oEKh/SHgqiGkB1xIERJIRRMRcwB+fD+YwJp/B2AyNn/aaUDm8/BCGC5wDM74QycFEHQ8OHfpZPq4xeOab7I5uazmRoRNoIzC6pY5J3fqacxO9+L7czjxX6mc+zgh6oaRT+Jfr4rwZmd/DT3dB6lR7vpJ310ZpFEm0QApPOe45/ssQAV8sW+KudffNA3uf/y+vnVfPj/ch32EJvHHMs/P0OhmANWXx+HwwgA5OGRmIUblZqRsdSIapRHR0kLNnJI94HeWpT2ysr/oRlwqdP5GAYI9NVmFsvgaTNxmvL6SLTdJUpbYky6//bcsD8X9Itg+WGicgQT6tse4k/9eUG/VjfIRpQWZARh+b6hXxv2l4Z268bY0Db1HEjtBAAB9hf73SpAue8oX9/QGMnj660VzGPSpeDxpUG64roNjEsBsrK6L4bx1NIBCbS3EWUtzXCdSs7bbya8RGX19tpRbw3DgQUD/sxpNYeY0WJB/7Sa4+Djhu6pGJeK/bmGENn6zerAP760AFfqZjm69WERTVZOyNf+XKH//edghBiTw19VFarmcLZbx6iWthHgjY9zv5jDv/zoYG4zACyrASYQ4EaUWxDgAFkcVvptYPm+gSrmZetYfh8ojwXrpWB/ruirYL/CUls2gi8yNysCYLvRu/F283U010379x+o3yxyMy4Nj8/PkaoQKQueXgS4fePGu3qFk8vvxqTg72Uo1u+WArJ3sTKeN1ZkEWyfGyKXugP1zTro8ZfV1eGzQY1wTILZw3Fzx3J/snGvpDYPY9HI22bl3FpBdQOUkfD9uTowNJwyL2hvtsaC8VCNCdS+b7En7J8vQAHq0zI3/cceIogFiMOLqUyjFWfruLO/FqfelRmFa9Woq6uLGIpA3h4oe08sjWSYAOGIaO+QB8xQeb4eDy+PbmmrJrwIGK10DEuVOB+AbjCyLOWhioRaFLXedogLpYkqxMXlyjCDU0sBni+gSrzsI0Ve0/7qzxoeWS1/fLefX9cwutofLpTqkUi9GnpVbltExTcvk7r4vkQ9C+5SUR5wuKDeUGRlZqumMMUe9XnFWCra11tE2XRpGM+X6ZC4IxZ6Dc9GHacWTrkbi2usLuS3iQtGCvqni+29e4c+X4HyZIyVBDrJt1cz6JcGdI+EMaffx58pJxbJHKj8OWqI0LZXny6XGsAzHWVWB1Dq5xBMqgJd19gT+rXi9b+pGM33mofpjoxV0L0Py+Zgc7fqSwQK9WEg7361s3L5YU7naCVA4JjLDtZR44HBg9EKyrD9lVV3WC2EF7VdLPpq95LHSO9UsP22uj6GpYNI99SvpQbo0p+MxVJuJc6ozc+Q9mO3Mwfu/HYDEbUVjOfFgGSFi7VuMRcDJBllGqwiADE/qbY/9wlQCKOvdPap+aGKAmPQhHPBObP3AA5l18l2kZzjPoCdhmoC27ifi6c1aTWB0bPBDFgQZmiU+bR7YGp+0OkUi7Sbgzxz1mc1C4nzLfqEf5/THXwPkA3A7TEdB14n8FSuF+hltRKIJ70Klj2U1z4BlyYA02R4vz5C6waApwGR/ux92Qf0sZkDtLgY4tiNVlznHhlgZf4390QHPLLGl+zDgGJeDlAEMLTNPZ5tPJbhVWNe+LuoGNUZWWs1A1dZA6hYX+RLRQAyJ3h/DGNorS3KKMcYdtvz9fGYDhXz4PtwW9r7pw87+9Il7rhZ25zx+9gcwNk8kt8P9wUQVHtq90lzW3ZZDIDwiLPktnKP4PhQ6FETWLSm/jhXEWgsDZrmY3WNik4wZ8yf+7kIIM5fqQV6uUCGg8w5palN/YCISDNd4wBilGA66tCpXzgcHPDqKYd1c3a8qxl3kvr0UBYTAJh2WGSyPTYrwWnBkbnGUSvkIwq8aysdBBUJelm5kmMf6zAwl98vboQWHG0YD/TA03h0PzE5zikraeyx79PHK55SUOvUO8h9x/njTM4IhGRghBeZKrmK1kanIjv5aQ8DjoGeoVO7It5jHIBFADPFQ2QCTLMh0ZcM2rxrK7slvydtpbAF01wuH5SI/BXQ59efA1AA/JBPEZt04AkQRrBFchGR+Q9R9jJF5WyzpyPLQ0UsJzyjoyK26PNhv5sBFWXluqGQVEq2DQQzHw5wcMTWhHSYI8Xn7/Mgy2BALgNJ49fy2vUQna2PMdvGDYvpAYzuMM+SB1go9kt8JlNUgenwnqllKrA8fdHpiDNy79HvTK0NmnmBaQyEsCQ3DxwMXEbrKUQpNIb32Z/R1+yzYU496eyHcNjJh2L1g2A0DHtG2WCCbL6/HejLXSFFQy088omLVQugcZ/LtJXNjeyKABMiqs+xHwZQ1S0pUlMwbJtChsNTO8puDjt8TjD336jEnCdH1DOLqsj9EWhnEYma8R/1FfuSaS5kEhiY4UYL8ntbH9ZtViEJUUxx52R3vY21YH8qlhaRGQY0pArfB8gaDSEMSZZQXmcltRvAMd95rg9RsfOBaUWeKmTMAK4xpH73eeZ7TFE1aibLDzLa7cJmYzH9iEMUe2/WAs4pj0bE3pYNT0ZCz8Y9DwUlXXDE+gXvnSIZZCYMBwwm1Tb9Ox36lmaSDqihEBnQ3ajOBzX3QVZTi6jKgdbN6GOmNMPvn0E9piDQoMoCYSV9dsO830jrTNXXMGafZUOe78ic9Zjc+h5cyd8B5pkDhPZOzLsLgNgL5OMIZx5v3j+X2ktAIFLNaGVflXoYX3WQDfuIOWMg3cAuaa5J2ocx1wn8zInPcF4AoWHBikGjcd3bd0NstRmYACCqGSmdGx8PUTlq1igm40nn2oo+5mWBwGAfWUqRrTFWdxCPvEi1KGqc/S54OkVk/XdRJsmbwj2piO/xc2zVWS1T7DW1Uec80DLTGZl6F2KqeR5wzp0jVkVnhJbndneabwqazCgY7D04nckaOc9hnuWcU1wT/q7nS2uxPYRrJjv1Y44HdaYOaWlDYh/gsyWzbbydvFdEw53xoVUiuv5u3R0aOc+woEHTQStzr6LoYKRV+R5gucO0rToU1VJLUiqEne1l3jfvGzxTs0P6URvPY0x2klAXQ2O9zjLfMr/vczeXbOS7xd8x3nqMhEYfHfvQ+kKOcyT380g2V/o9z/bDNQZmuWDM+ZvPkeyox/d8Dejpz7u8b52gwomdEeJ6ACAlxhdwuyq/X5oT9h6n9RT/TG2lM5YBlpM2gnw0JmdWRP5d/v9H5y1/rhLvGv0mMtOlen8fRT/rpAAIzYjDswvMK6fD6ntUERwqTZ6AlkNpyczU+NVVyrGdDPICH0fXHYj4r933Hb2fzIrz5Uxo02WqwQ486l+MCQjwO5HO4Ztdvs7r+Vfrn++U9z+OZx6venrGR/eJ/yewM5e3BD5YP2xnusdHj8rpGb+4IgXmZ9d/pUzk+frTAApjqdj+40vQJ+vbjnLbI3o33Giv3x9m0C+e9+15mZYCABCVZgnFetunoJgbaKbk7Kjx4iWbmmD5qiiPLaiY7evN7uul5FCL0WIZneiK9Q87HMbqNO9No1xX2bysngtPWRQNgFqe7GWwXKNHmfaB9rtHm6vAFAjtv6KK+oPlfmq8q/Rh4pK1AHBjsS7Q9sm/yEMN5uirmhq9As//pzEAHr81i+5TBFHmnkUlfDPizMAZraC/1Aku0DjyyanDgZQ+0G4TkWYKQDiz/hzqBpRHD2d7PC24//2CKV45IlKvFVherf/t53bPWTbSKKzLq73P46VgeVMsP6wigmzjoBVBEcrSjbA9PGK2P1spr+XHcP0G+3x7G7bX7YgouxagXwp+/CdBewO+/B+u1F6B9Ws3tsbrIxxQdSe1bAOybZDdEEE65dd/MEXGxnAUQFZnatw2yG2z6KeqRab3Dr1Z5JV5TrIvkcP6/M+C8dSMReLX/lzQF4Sj/XgpKF2xvGpKNbDf9atH9Z4slaM5+4AVHyBw2jRw+ccjhMAeXwp+/HcVz/9ZYqwEQKc44maf25+KrZ37sMogUnD91ztkqAkHdpu3Y63Qq5UxK51RyQFspFHO3bU8fJz8Ndr3h0Udq5WmG08tyqP2i+WRh2BrV4y/rBjri6fAKC7/5WYl+IQOiVGM++UZ9WEso1oFsnlkJ+efAtMJWRcTSswGS6ihb9BtszEkjTJFTizaKB75WKGXNst/VQdlPz977n1Fue2mC5EMsMiP3F3boVbo8JK6IsEa4KVeGk3uD6CbgNC4WpWAcn9M567NKI3sHaAAJMGEZNDkvGfT8Vjcabb10a8N7a1j+b6j/fEG2Qf60ycznt+y7kMzpohXTzCHTZz2rcCQKGEpjx31sWO8XABcolSlATvmxOhic7q4oFoR8dKY1dgH983BjxbR5fFs0dL69W6CkNt+jEKKGGNBFfLtR+hriEeax/Wz9afr8fTV14KX92WpRmwDS5EJAAMzLa86k0C9dKkq+vMS0fn2fUP7MbD/tWH71CyNrNheNRbFfrV53y+C298E2yfg8z8XyHcDsQ0glAADubcRtDXRZBPhrXdvO0VMQy2/Q5oJgRL0358qxpdmugwVePm/FPVNUb5biT1LAbT5I3cbY10sgqKLnZvtbQ9GG0rBeFoCMKNwcX2dY/34+zMeXxraa0e7W+pZ1gcBYMCLC5bWm6ei+Nw0x9vtjrWZSOvWrXKGCLIeyLjamq1vW5STtWipvcNYWzhFxjqbbRjXJYAkOh66VBMgLXw/L6n729MU8qTRTWMx9nKzl+qPxwQGY+7Y5lRoULdijn1PIASjxBR7LWJ58/4OZJnEvhHOt7rGkf9hZPbua4T7lz9bKGgmgijByL2D0fBtshDgQGjcfzfnbEhFf1ow1mp24Gb2n3QNRoL0YQKWSw3HWx9WxjLYTuGsCPS6TgBZdWpXLNVSYVWBuhxiG+H0dJ06EHVxcU2dfcb2b7v1TehKJECBQAqvKI/qwG5ipbKMb7SVzAnahPXErCkC3PYJ3MtM6UDfA1xG81z++8Mj/lu0yTSJMEGrDMB8BNikfxPsUXXg57LG9+WxTV2i/H0Ht4QsC84ZX8s5HzyczH23OSfO7mDbTu2JKzuKOcILRHqG1HRvXpqi96miQTiDIhFwCGDBhTPVxUIl913c9gQI8F7ULeHvRkFoILBSgQhmuUlMZ1uHMUPUQRZfd8EYAd6DA26XSIVH2r2vloaDDgM/W2SKOuZLh+171JZoBZPmhZj79l1PIfH9SFktIt8ODoD6u828/wHRYuBT8fP+NE/U0ySyLs6h3w8pBmOyY84fJihK5grXL1kysDmjDr7Ge7I/2LfrLEnqjTgAetH2XDmkiIOqOLEhPgCospYEf5XBkAPY5ADuL5gKfw5AQXFYMFOABkETJupr9HR+EIm14JFCP7+0CcazUdXEhQ0FJYyTeI5HwCzPnZtyRkIxnXdS14A4gEUQWgXR/g4U5l+JGPpP9c2EMksfkCbQjBAdNgXFuXSlRUkYsZzOeekDePjfwIxAxjtIvO9wx5TU8Hqn4YADo+Gg11As7WS/1uj34tQ2RrQrU0Q8ajbTM5LOgRugsxSmO/TdDZTIvZztP1D4KqYjTrBWJfqBP4sImiIiZSwhmSNnpZt6ujbYpugGu4EEglCTU6DeMZXQMUGXKHnIeTT4LBwuq10+NySWLVOWmvLxLgWuOeGlSstM4cjiM8FQyJtCkSl8w8O3uOaHWv+RocAxYLoDAYxDSSufExxTsLsTWyjmw+5MDM8FH5eG+lArFamm2s/oR2Z/2A9s3YiLa0raokdz9srTcbtiFEiQoiiqiZ3EAxTToHW2CNfC/W8X7M8Fb3+zcptlKzNyWmxeLN8MjFq+N1QyjHY1sUTvn4jseX+zDniABlzXH52nFHulwbfvdthRhTevZaXIYfU68I745TWSnHcVF8DqaX5I+lNPSukx7oyy+UG1m1BaMC1iEMgyORqLSh0HzkfOV6SoVAzwnFd0/ksfU5vFn8OSjzJcq4F9eWq75aWW2Rfw8eZe6s+S/F11p6cZOqbFRDpZzUK6G7tMteP5EucS99eT8abHsTnk2fpnDs6kKGreh09nY5S4dfDuwBATHKMN6bu2f1f0xYAzXBBsILLpRJE0beY6z+LBwlv6vspzg3u/rNy/BRHKZynExQIHu6ewlNCx8b0TEmfNeEoOgverMWdSX/L8zuKRNLJotJ1yvalNVB8jgMKIsNFR43m5j0MENX7HQ8HPSAktBolnsH2WFjfm2sgOlt/PhkpmJJmONdcUnZ4BBPuGzjQQ+8xkB3i6YCs+ULZGx2U5pFfF/E9rwICmYlGvgSMomgz8Q4Rd9f2+oHOuSPpeqJ4DkToQ9h338czsSXT8QzvV9EIOa4tnQHonAjIHFikwWRf5Z+k5IRyY351/Mksl/fwdC+C859J5POf6ezDJ9qhxYHsd+jOlC/zy4jxKduS5D8OOODzH51zWEXn3mdNVZGoC8C4cg1P7815oNpK+v7ecqew+Fud1c2hDmi9FDkxNu0WyzblO6ICdnbNzm8//zusgpzdkxh3HOkeIyVL46Eq2yxQA/MU7U0vgg3E9tC8DDnHul+N3Co4R8WiS7w/5HtmZ5j0BOL0p9dHpfud0hI/e3++vBUeHlu3sPTE9kIAdAc4VEE6MxHfCiV7GM7NaYl0NP9joY7F9yb5+d7+P3uVXV2Ky2HwswCHl4YP7n+ZpgDv5ykCVFIjF3I9AQgYjP2JjxBmY7Yjx8Wc+uP4kgMKkfEc03HNC+9NiedA/tkPHiOrMo361aMh4ttdpbx39WnH/p4ble8fybXMGgcwDXKijMIye72rTUA3l87Ea3XlcGkrpZr8WgGrsUEXBBb0Vy22lUzQU5QZAvMxhx3SkRMJQpeAbUwoAoD+vphy/mYJ8e3OFfAq4DYXce+TbUrinvO2o7kOheJ63YEZTq1dTGAOPv1h09PpvN5SblR8jYEAjfdBZLx59b6YNcftSzUl0pfyyw9bzPtC+PWJD7U8L+nOz8ouv5szKULSosV6sPOIinhJRIGp6DSyTKbva/ujlDQGEo79+NcG+/aWCddrLbgyEfqlJJMmi4AA8Cu5RCQcuKvvXWSb7k+Up75cJPGgFZAee/9U0MJg+EOW3vIqDqODyu/XhfpVIeeH77i+Ws2uq9R3l6xv0aUV/WQ9ttajY8HQKExkcTw6WJUNSdxcAvN0RNXBbg1BFvVuOuC7No2kF23OJqOJYLMrYHBBZYA5FX2fby6buyHkqhqevjEVcOHKgVxPrXL92tDcr6wjY3Fm+CT51y8vePtWgsAOIVAdzSLx0qFc5oSAg6cn9WrCVhvZma0J2MxLHUoEFViXEN0HpA+W2exS9AHtKmygOurmD9I//ecG3/6lD/nJDbR2lKJal458+/UAfBbe94V//+a94+peG9fuKq+ff1j5QWELRgR/ZeqTo6HV1A98Oj8LSlBiR0kPBtf68WD+0Anm9B7os3XKGs0MuA9BWfVyrlQT0fSsOHUZR793ZXCvKj5tpBjDSKeIq4i2cGDoFoTq87RCt0HWB7A/gdgcuqzFB6Ly16nm1mwF4wIy4eKRUny4WNbzdDcAIx8YdCRGMYayR/myR//r9MY+HtUEB1G83e273KEIH0MusLw+EpoMAwNIwnhbrh31GWbCPoy5VK85u6NBegeLVIlS9pKiiDJtP4+XJWE3NUnlEFZd/e7iYJ+bm2axUpzyM6SDbfnSQ1Fkazv4ot306JvuArs32BdeqUNcL4l7O1LV261B4zrqnnEmv06lEid/1TxfsLxXbk+Dx2fPLfT3WuzlJ2oD68H0dwGjA+oety3LvYeCXpWB0CS2f+mYaFsMFAfeX5qwdCTYWhYofn4uVEP5ujJJ6H8Z+8PXbrw2PL2swH+ptR/3xmPniFP/zNLhCQcJ0vpd7B4XrtBT036apU7aB9XeLYBWyFlECzGLEXl630H2gw2LswOO6ZtlpAhMa54IxEuO8B4JNJGMkzQGACvq6uxgeqdkiGFdjaAXDEbCo+kdiZn5myH1D0easBUuDZPnX9u0++8bfR3xOMrqPVu3fvmdoFoMlKECnvXu6Xy3Tce+2sdPojWo6ARDBom86nTEV36cDNBGMzy+2J709Yt3AQRqWuwznecz2kSlSX7e5Jmk+jmHrMu7n7aEzxxKdqX1W8cFKSNrkbdMYJ2BBI5x7kO85ujSgGZtKqkxWgUr7q1YAACAASURBVP3WPnv7f5h7lx05lmVLbJm7R2RWFcl9XmihcSGgIUGQ9AH6G31va6KRNNSkBUHqe8/p89jcZFVmRLhbD8yWuUVWcR8NdwAEyarMCA9/mi1btuyeNqS0lxO4588hp8oQEeDifktg4wNQIvQMEkh3ckTTJW/3OefJMOPnGP1libtcGo+2CX9G52kkUIftYpvF+0RT+0p6Nv9/yv/PegH+mcWZTz5Ws3qCnD4rrcW9dNuR0yAy2CAPbITTxblC8IKaErwIKDB169FxzLpJLkCaKx5Efj8Aq9CQnt2HGcWcc3zHqKAwzlol7GtxFiy1E1zFPyLvD+CBUqWejKd86QCkxT0+vIJ9M0Cxy3DcOXwn8H0YuMHxzOk2PtcUSIDKmM+I5ZSj8MX6hML+fIcoFYnpwKevqc+HALZ8jE+CmUCwEGJc9YN+shvG5wMwyz55EQA2dtJcVynPuTHeV1dgxR2+A989ykhamwTHO1AhxotMkt5NrysA1GwcJSBl4CTW+9H12wAUihkd9XacjIAo1zXmZqVLCaNLxGjq5vTWSJeQPlAOq6sNYSkqBVMkrL79jCpGzjAPHe5rY9gYMSqpOheC5w7JfUcF0F4XUPCOufIApgYAEIbQ1BrwzUN9UXQg1Pp3O9iLbxqR2+sXDZ+ztoTaRu5RJS0y1eoBRCR5t44i2BDtcxDHDChr32gCKFxUz0S7QheC4opdI9pkjbPxqXcAw5XBPVjSo1KCRj4+YO06nlqwHewdESkFoQiu8BKG3n98PbF79wudHTidHsEWYG7+uLSU9+lAxbV5zuq8H8GhUV174eBcw4nqb2No47d+tRtYyodF7tg3bMtxrahFIPvFI54JKU3thRvhgIFkEwDjXH3YwN6JB1WMT5dQJgdM98AANAVQjCFTrNOlK0qShVextAg8l5jb1DygvsJYJcZ/rIK9NpTNxPj6pcbnxf2puhm41C9lak6An5EAnhQ+N2WWMC07HXdPWVkk5uzxeUVUlAAwVqPNj2aCrOjJiQyGiWB/Aeof7vif/+Vf8cfLd/z1/oJjFAwVdB4c1479U0W/yJn54zTzsns0cPVDgdEO1ZkeF+Vp/UCi0c1DKqPg6+I6BMMEl4qYkZojfMUp/HufDg8jZwVW0WXbraycG7E6hte0d6feDRpLv+QhiWBK6GUB80d1aRB5mnTlLaVFiKU7cD81kb0KcO9RhcBAkNBhYETTmVvltpvY4aVx+sVFOnqAGMHmUS+VNAXywoi/LHZ458oO3tfi+zyp+LIdUy+iVnMw6URdpnCTLpZS1a/V012s/dqKDefLiuJ0fFM9lyngFYb0g9HJ+VjSOXR4qd61zmglnbBDI6iURWWtP/y+KRorfaDeeuiv1LtidXGs0aYNb/1s6/CAoq8e1SZwqgghW+kD9e7guwMK4mWeQ0vGneqydWCz6NK2rIDa+VM6QPZT6Za3TWYKAIzxgZFaYOks7nST2aOthX4QGYmnqiMsvcm0COrBcD6JIPK/6cRUjwCpR+1ZYeTQaZAR7Fkt7aaoAwgeEBGWLRxjson4HtXSFsZCcc8ekeUYT7IF1gIVhcpidsE+y/Dm/PxymMBZpsdahSgD7wS+t3qZUUWdaUdaYfpED45IdgB17lfqKScx/wrOLIDEyAqhS2lAc7spRXN1afYZCuWl54Q+QhZJUwXZZwGEZJ0HNfbYR+F8dTYJ96sAEFoxQbW8p5HdVEronYB9mKN03Lv7/P0pou37OwVkP7q4b50cc+6VtFVaSpPhucmSxYexAlWTc//uIe6Ysy+3EeNtTuX8HsEHVntQ97gsVck3H7dfJ0iWtCEyaFJgVcceKNfWXnfKuc/xu4CtL77HA0ByKjeYHDYKc1ppvBLvFhUx8pXbE3aU+l4gnm2aAJfkSEaJvvT9EC986P93ZRWpg5DXFtIZ7OcH75uZ0fadh3b7+g5HW8oE5R4c3EeF/gATTj8cZ6cysytODIcynWyuo3njeV8fY334roEaZf7/MTLPvch9s2DhJod5rhU5v4eqLdihQKn+LJntemQ0aLp3vjiXhp6FEQG8Y6EQKCBokM6JnFZwEjNVsu71PC/y3ExzGdTT0jS+Mvc9K++Z2piZCkhzMV9kvMbzEtiSn/sRK+Lh+k0ACuZ0F5Tvr/MAflqhtQVzAQAs4m8HcLntqJ4v1p/XU636cMY92tk9P1sOjdx+itiIwg2UmS8YOuLuGBdJEcBAyL1Jb3fg6Gi/LBiXin6tVvbuNiPf/cVVkT3HcVxNrTmQZ7Pv3Nh1Q2TbLZ9xo0PuectiauBKHQl3PgOgc2Ohvh4YrUCfajjpZigB9W3mmFntb6s2Ue4dusqJrm9lJwG4HsT6TT1NgcagRbBnyUl7n7IdwC7AtUEXRXfRu34t4WjrwEzpEOB4MaCl3TRWQL8I+kXAN1xerfQf83itj90QfjLwYf1leD6+Qquir0zTgJULvBDM0DgEx+ogTyDV8/36avWxzT4RoJmhfUo/cJG/619HRBLl0KACAw5mNMFoE0RQorZ+Lys1KqhFoFD0paLeB5ZvKUJDhXremHReVUPVHX1Gqzg+X1yDwqLn9WYOsBnWDbJ6egcE7dWMbZb3HE2wPQvGigCE2htQPao4FqtJ314tgnn7Q/PKEStkIPQs6jaM8QADBTAUx5NFK/vKtBhLKWHOuPVXmbRr78uy2Tw8VivN2r7t0ALcf9fQbgPXb7sxOq7N8rNXA4nKAYCMAtd30Fawf1b8y5/+gf/13/9v+O+Xv+A/vv4P+M/bT/g/fv4XaBcstWN93rH9ruK4uAPgc2RUqzIhe4deLTe93bqXr+sBXBowZ4dvkRE58IV7hMDEEA87LHRdIG5wMb9Yb3czLNxRznsPvrzYfFOnAZcC6Qfk7W5aDV6b3vRWNjN+Ls9m2O/9lK6IgWnYP3u986NbtP/5Ensgqxfo0yUQdhV36N3ZUGfKlNsBxYBcpn4H9R7E686zgo6VSdMEsgByc3YaRbz4u6Mbi4N9tx+hpK3V2j4BhRlpDkCOIMLN1xYPeQDjs0V390/W/3UbsSaOJ9uTym7jNpoB2vpUUfeBcp3HagAd9/294ZYB5e79Pjy1BEDZqN7tgIM4UKyCwQgbz4yugTDk9BNhnvhibL72dqDeBOVuaRv7swF7fbW12m5qgqMONowFvoYEtQrgABrUgHMCnOVuefXl3qwE6QXmwFNBXwTi+i2WNuZLo6tVbRDv/2GGoBBkzVus2Pkltx0EvAarMSxWeaPeOsqWnL4CYxm2YmVm7+/P8cgTd8c4Iu0E6QDfvBKoxX1qjAlQlwLAgwEx5jbP9LoCywS1QkeHbIbXPp8DzPndKnq7gGmI9dsANjqrmEayz5PQEhBBRPIP/7r74cGyEIAiySoVMsoEQdgGZeqTTMq9iPUpAzXeD3JM0WiymOQ4gumAWqbOQIqO66UCOxxQTu0H7L5kPGXQgO0TmfoByenUUaYDqIpZcaHaXlSrUe49eKVVrNJEvph+ieiqCbZSp2CH60v4+GUwYV3AyjEmtL1NgIEgsAemgkFFp4UlRBMFeVy9QgvZtgDK6w5RB5kciAynPjs1QDA3QHYP+2Z40C47KoxWHnfrW0wtB4LqYb86k0Pzu3O/dZDslF7CdvVuQMO+I0QTq1cu8moS+Oi77uCFA9/7jOqqhrMvtZwd6Pzvj9JdupXGE+blqwtSL8t08jnHkk6D3Zvrt52BgvIwBmy7PKS2sP0PzqZRScspUs55Fu/GsRQDxqR62Wx18PTRUf+1aHq+CCSovtd/4LxmpYN0ds7P9emsE+RIju6jEOQpdSb26ATe6JjskjEA1HP+fxHrq9Hn86NdzpCgDkNupw6ol+WW1gIoiTKZkULzgzSU7ICTBptYpTqGaWtwvyOrg38SW0XJvuSt8zwC7P0eQQWOJedHsFYI0tS5Vj9Kp5BiQXQyPvL4Rj+VABV+7fpNAAomrndgXFdz7J3iOZaK4tGpOAQ1bWSHH5aria/V2+G5vt3+v1XsL0bVX751VEaYUaKGfJRH8mgEVFFuc+M3Zz0J29CgcEQ4UHanSS6/GNhRbiaWJAURMSn3HeOnJxNBvHu0lRHy6mwLP/z0aZ1G8nIBWonSVkFz6xaBEQlbMi6t6SDDdNTESzGyWoCoR5nUabGLGWf1buOwuGAf4AbkqwaDIVSyH8aSwlnaxKImCuyfWjiYzEGvhwJ3mLMv5qwCiMoBh5dIY9UA03zQoOtjAO2bRb9GFTOGDxq6inExZHf92sP5HQsA1MgJLrvR5MhsaG/dhSlLoHEUIGQlg8Foc373MUEKHAq5acwpag3UtaC0CUQcT54CcPhCLlZ+UouxLZj6UHYXWiIA5nPRRHQSUs+NpAhkXZ2qbsbT/mVBaFbIVDeXBOpMrQiFFkXxfuhDcP+ds28Om+/3Yqkvy7du/T2sdFxfrS8JYvWLYCsFy+tAvU2wgPnX7Wb3ZIoH5x8EKN9tEz4+afQxRUdNAHWgu67C9a9mDfbrjN60tw68GRtiNKckV2PCjCYYq+D40vGnp29YpeO7rvi/3v4d/nz/jH/cnrD1itvesN89FadJgBhQoMrwiHyNdJ7I53bjqjhIICzfNWBRFJFJAc7Rh+FOOSM1PDC/fDKDdj+MmfHwHXQ7YORQyH4zw6fN1AeWq0Ot0CKov9zPxjsjYVUCtDi+XFEOc/ahKZJ/MhpNaVm2CXiRep4ZAFqKiRc+PDNKoDlIVr/6VByelhSVISSiXlGpBiNYGgQcWH5SssHo98bqrAWWKeOhzBrmyamUPgDxOeT7ZxcDdvvFQAVcAemC0muwfkre/0jpbQUmIJDPG50OEgXCPD2CGhrgfZ5mmT9WJzAGlaV4qcAEHekk0jGPPasE6EBNH6ae2X5m52p1EPbydWB5m5tbXw0E1SJe9hZz36fi/mpO9biaRsL+yYBQfJtsFAOeNcA2qwgzIPfurBY74+zn89wBMMEBd/Ijiq8mBhZVlLyf+oul9ZXNwQymFF6blUfde9zTcvkRoo+VYyRizm4GtyjemKi6ZESS4UjRyFifDgy+S1EYGqWSx6cJtlFclCXXxJ9FLSdLR0hChMB03DyNMhgbReacA2YKAvvVy3EHK3BtnkqSgigeKTYh1RJtrFxDIsHEtOi5zT+mboKOXXeQhc4zywZ6+3RdnC1QJ1NiuFPF/TDAHEahJcACisfG/f0ZSg0hXnQOWXKYQplHP+1P71T36ZB7fxtYVX3++X6T6dO9Gzjvcyn2slImeMj9lECCM8KYesK5rUUgl8UAY5n9WzYXgL1vISgn3Ce9XHFmSAlgjKF0RkW+eC0pNcz3k4f0lgz26FIR5YQBz5mEz5UaqWRZaDRXr8C2nxxCMgnI0qXT/k4LwYGYxyhwlM7k3seUDD6DWlMOQIi4mGPvUN0BeCnEh2oJp3KUSVQv2hK0ebXUhXJOJdAx/YfZDx+U3uQZ5G3NugqcC2zXI9PAxkyiH4NGfwI9hvnSdEAZyPqQpj9wEgvM9ykClJTqwDF6vI/bAaHRECkQiA2IUX91IEhO4EUCb/L1ERgEnx+teGWaHuN4YlFktkWs1+LMRL7nCHzo/Fw1MHLf5xrw89ranIOqD6H8vJfwPv6ZR7ZLiJLOboqf2w+9E/sxxynNiShkQYAj5kO6V3e/oZznewB7bHP8LqXY/Mr12wAUhhmG42kBDh+oQFfsohN2qlGdDhcIzPDlQB4C8brZfQWa0+Op00aRp4hgJeQzJrBTj3FMI5kbcGx6/C7pz/cjcnaliIFkVLneD4heTRTLTySmYGiVCTiJWA3gboYvD2vSIoPNoNYeRVog/v3ZX7OvIu/c0xzozNab58Z6bjCjESXSNmBCjocBP7EeP63m3OSLB7OLctHwJ72dzlbOY2fFBS7IcmiUT+SYF8+xp+HTL8Ud0W6Ox1osW8W1FCgKCQXaq2lq9IsDAuIlGbuDIsWi9JVtO8hugBnuh/oYIYxwe9f03hGFGGHc8ucEoepW0VGAZmM0VgMQcg8yXaNfLc+YoJMJ8T08M6c8EC3mfPT8bKYB9UsJwMDYvSV2q+IHfpRHO4zBo11RWUqymh6IMRCAvli1h3pnbqQBQVDg/pMEWDGaoF+Augna0U/tlwGUPlA2RXvtkZtOw5sAmknvm12pTTBKsWodQ3FcLdXp8vOb5bW/+Gedbi1D0a+XoGEPryhh7AgAS8daOjateB0X/Pn+GX+9veB1W7AdDbfbAt2Lszam81VoBBd3xFUNTMjODhkAD2iyUY0xo1cFD5TGZCi7irU+rTY3bhvQkkPu80BkRh1Chd3zniUQfp37wts95ac6mh0TwgxuXU3nRO62t2E/zlHA6k7egK35HI3Jjl83Z38s7rjRGQMsKjiQqNYTmBAs7/YXKsdr9b3NVbGjPjidjtROOTpw3+ztSjEtiGy40GjJjqNav5pugI/V4vtHtRKyxtICjjevyrAhtHl08fXke5C2AnSZZ0ERA7/7gFJ3znN/9eiQ2n3vb5MW73taLtkreweWik7FaAAgi8YBtOFgdLmPWH6ye8rgbmPCVLJC5tzNnjWaYH/hGBQ04MTS0WHThhoPYykYF8FxtWoVKmJ540CcJ9UrOOhSIwCAyhQSaxfLIZ9ETQnwtzKjRz6vje2AYBT0pcw0BQIPIr73Iu5voFgJZ4v0cbQaoJDW4utdEcwWVcDTKZg+M8V6K5SRRcDnppz3AbifvNv5NS417FERA+Jj/iqs/jz7oxRz+FNayCPAMstHw4HuBKD5HGe/ZqadLtX2ErKUuD7oUJfJMJB9gBUOLC3A9+9mtpd6GotwjxnzzAcw96du5ws8NVJErNJCZkrkiF7aXwFAV3Ogx2qMCQECrGNqhmy+/6X5JOr76xgAmYTZUcnAhDvOJ5BhwH/2YEOyP91RF74rI/xiaVeyH8n5fQCXfZ5ZGeAB0XO0XbqvG7IVj24BBhHbpEr5gCqv8734//zz9O9Io+MeScfzBCi0CfIBwThTB4PVq6Gd+obPYbracQClzj7T8xrL+f7WjgdHi/Pq0fHM7A72Jz/T3YmqMgGTqCCQvsOcfmfmzNKnyaFlAEecaXqoLbicbsOI+SniqwaotDap9GSrcO9mX7D/+L0fXWlu5goG832Svfgo2JjX2g/uOb9XT2f9Ow2GqErlxkFJ7WY/cEwf9sTp6NqerHl+prac1kK2OVqDHIexZfhuWYMKOGtZ8DMnyr/C8kB53zyWzoyJfusT9Exr4XSvj67sZ+a+45zzs+kdmPKYjvIBuGSAhNuWDja800XwvTFX0fwQpOJ75nv9yvWbABQQSDwP5InuH5/XULQ2mqU56lIkDkxOSl3ca1WjO5bNyvVpnY5ZoR4C0xtcTCnXMxWPkEcOXe++OZdY5CY6Y2j8SZCpFaf514nGMXrgE3v5pc/81+HOD+z9xtUrU3jbRJeo0V08B288GY25e1krdIWqq90DEygpRnHX6lRtf0a9j8iJl4FQhLaovNHPRxNAyhTiagIdMxXC8mnMGDieqom3LcUo6X6QlLfdwAkRPP+/OqMmStrsebMYa516EADKUWaawCcBtOD698PYBy7OWFeLwprYorWP5f+Y315vxvmsmxviAy4iJThgLIHl62GLq2v0vzh1NualmDElw8d0KG5/bNifBHWziP3Lv7rRtHM+ubFdzHAvu2UjCozFYGKNFfU2ZpUMkWR0CeDAgvqcLx6hQJsRI9QKWRbobuWVdGmm6t0HygbUOymLAAShSyBDzdGogtd/t6AciuvfEcDK+rMblrLguE7nQrpifxLI71o4IvtLxaiw9AKxyKYBOrae9i/NABRPmSCQM1bgEO+D74e9MxCRuqf//AbqiPRnKzEno0TakLjDpm6IhxL+Slq4L0NfR6IGGLVX4Mv/ueJ//8v/hH/7Xz7jf/zpzzhGwf1o+PufPwNbQX0rkKtCl4HjySKv0hfUzUrxiUea9eKlLI8j5j6S48z9QVShTJ0YZuD2paAUwfG7Z9TXDfh+m3vjcpmgFJ123xsp9kXDTu6zrJZ6pG88LSYqy1K332+eR+3RpVqnM3JLkfs+0H6+x9o0UcVtzrf9sP3EqZl6WcxxP2yPUjq7AManixnWvicxEp0Npv67T86m8NQAz6mWbZ95voCxxTxSJPsBvV6gz5e5zzLy93qbkchSgKfrTIloFsnUfT8beqqQ15uBLdvV0jx8Lx+X6uMAtLuN5fFkTvf+LJAh0xn39VHQHQBRE4cjsEPH4mmN1AVRBa6rRUuBcDAYCdbVgAWmSl3+fo97GRtIg2l0uIArmUNk/uyfGsp9OGDrZ9HXAyjAqOYIjja1A4oqyuYOshtL/SIYyxJ7v6UgGXARFRqqgXX9qaB/WoM5WO4pR14Vstve2J+SwJ2vFaORA8XXiAHaY2oAiMw0x64QBw8pALl8m4wlgjxleCrS3k3/ZSmhLxM2ATDBhKVaOgP3ozIw6iXsBQM/nUHQncGD6YxZmpGLfTqIyGuW0lRjL6V5aLoxBWirnW1vuwEfTAOhXdHV5rsqosQgS6mm8pHijryBmA6COJDD9Iy46FBeGiDG8iArYzyvtn/uniJ62+NdtAECA17UnbAMrp6chhT11lKMBeKgR9a10AJ3BBOQQPpxFoDkvQk0DT+nd99Dkj6DLDNdQEsxIbIcCfYAR/SFR8ODIbO7o8/PULCRrLLseDPCvqmdzbUC0GCghehjvgjYENRtFdLTeXhY8I3ngTg7gXRlZfoH2RC5VCTFIjPLrJvgmzA6HmwPOtppDKkJw4vz3Nl3J02SDGTEpBcgclmdgcFSgTBnUgvsnTKY0BPVnaU2IwWOEdRh+3mAFnKOEvN+h4M4tZjNzP5imkBOEj/8+ZkNQbo6nV13DE9OKp8FePvJNhCc2Az+e1WxMYy2pjbU6ik/1UFR+50Aaa6NGMvQf4h0gjrvmZ3YeI6/TxWPys/AhH0f50vKe6f58YoUB3GAZsz7OHgky3IGTNJ76AGLnPPnACJaTpArRfW1IPrIWJ0FLAt5mou8D9ulKb2LAMk7QKVMocTjsDGnQOLAe6AoVw/hfOFc1TMD4DRHuF9UT88+evQBU4FmKcjUbv/56cqBHaZjPTALgpGR0lTOJVZpNDvDiHNsab86/r8JQMEE6Pw/InbwpsMVRQyhV0Q0lKhJdkAtCqRTFI20sHuJqLVtxGMaziK2CPucSIHYM/qG1DYAROu5mRrt9/x9kSmsJ077p8PPfFw6N6fSX00s8sBKBDoHN9N4c5koc5BNuClHNab4XF6U3j/D/p/bfQqVF2dM8OB3R3RONHe6hzmpWmAifMK8XT+gdR6GWgqU5cCcHprLGxEoYplCOSawNrIxxjkgyeHuIyi/ZBGUA0Gt53csd1dPzrX6FDj1Bc5gAvh52D14gJpwJDCaj4NHJGYET2LTmXR/jiemtsXDIiVrIIymx42riBs1OQpWIL1Aix+8bqgaKwQAzu/NyKRrtBkWV+EMDJn9BkuDAKYTZX1s4m2ivjf7d5kWAe+H0v18b37P1M2j2riruFioakIAbJ6UVzuQtFrUXGiwuhP1UR/GGuaPFKZdwKXtJeOe/stA6QX/z3/4PYYKiii+3VfIa0W9FdQ3Qe+KfsUElppgqDN5SCEE55I80GfNCDuV8QKsrcOEIo3+Lb4nPETBqFiuOg+A2PgfHIwiZg+4c3E6TEuK/hWEAwLPiw+Duo8psnV3R+YjNfn0DqfoIeAMrh5R0ZFzbhWer+d7ru8Byrr3j/2TjV8+K2ixXJvlnfGY/+bckM0P7ebUI+ZM57VFpsIYIItNUxUJY24pqsDAsEZtFV8X+YwYsP6lgTHO46/VdCYoLinV6dOkIIN7vkCX9F1NYE19f4Sb0C4ALZ6Coa4zICi7QNRZb4LpuHeFasHws0yYBicyq9pU3+8cdJACyCHQohjJ8qRgrzHbCuQok57vYCzZfpbTXwKgte+fgRl7nxIOMpk9AU5vln4oh1eIqcWBJUB4Jg2dUd1g/ZWz/eB7t7qjCz9fI5WkTKE25ZnbirNZ8jwFpiiaz690fsX8UO9j1WAhAD5nxNdxmgsA+y3N9+hX9T1y2gXvygfyfSg4WQBWY3jvOMgEHwCAfftwBkUbhg08GYknLYH8vmOul3h/2mBcwmOeH6d3H/y+24bFD7Jkowj/n/vmUWgy+sLYYiIj+jk0IvI75nSb1Bb7e0znIc6gh31e9X2bHp3uPEaPf/iuDlCLykyXOqWgCaZSvr4bg5PA60dtoOOT+74AOeX8Q6fr8eK9GID7lc/LY18D57z4xzOTbfro94+OMN8HQIjeDa63h/5hFYEPqO6PZSx53thI/+DdErgQzxxwJ7Ge19HQs5PI74fAYn53mSy84jS9YHL6vfP3/9k1FFEFg1Fo/vuj60c//2cXAQGCM0wHBBx4e1ij43Hcy+nZYcdkG+CfAR0ftQlp3f3oerx3BiHiM+9t+Lku/fu9u9ZFWkM/0rNgKkOed7w/wZcHDYr5Xmncdcy5lz9bvE8f199HTJp3FVV+PK9+E4ACADM8PUJNPQIZivXP3y0q/2KCYOV188NDZkknfv/iJbgYCRFBeTuwbiMcKHnbEVUkXNn5VN+aKK1Mqjopu0HfE+/4VtBfLDpWdjdA9+7RpBrRozg/qxto947+bHnc7c3YBPXbAbSC+x8uMchl84iKMw7U6ZX2uwNlOzDWBl0Ltk8LtAnWv2+WN+qb6aAwWh8WuW8t6LOMIAwXh7IImEWNl6+GgvdrjdxNRqAYFZZtoBa7R79UvP2xYnk1OrpWMdTQI4Y2HEb107Xh+LTau209ojWBKd12yMWQsH4pKFdX2C8wqvs+0F6NAdLXgjo65K4YVxN9rHcFdjIiLNpj7UaUJuyuI9HeLJd4+51Fz5dvHslg2lsrOJ7NGVMB6qZYvx5hZDLfmNoQs4qHOwSqkFebc/3LKz4pDAAAIABJREFUFQM12CHwyFe9W0rI/tLiO+3VtAnqL7cw7oL1AJgyNoXZaBT3Dn15AhYrOadLtXJrfUDGMg1j+FrwTW04rfzpb6Y1cf+pukCbRySbWET/NvD8FxNS3D7T0IE5WLeOehUMnak47WZ9xmoYCmA5DATYPrti/krHyT8jiDXdvpkTKF+/xwZcbs+orya4pwIURivdcbDKEAlQSFd/So7tsH5/+i8HLl8LjucX/H8/PeN4UkgXXH4RtDdg+UWxvALtJrj8bTMmxqdmQMrL4oCll1YjKODRnShf5VUVQgSwFZQxhUyXY7JPZi6uv9fVEeHNIuvjeZ1gHTUKQsyxzcPKf16+31G+YxrdL1f73UYBQAW23aL962IaBDSYbpu1yXOn9fk6nfTffbK+3FwMzEWN9OkCud0h398sb7xViGsnlLfd90GJfUzuXn7XIw65tKSVbkvGs+pMNfNnWcRqQN62CYZcVvTPzxbx9PK+2WDXy5rmwUNJpstqJTmfLxFVMEd0oB4m11vvZJhUjAaUDtcDUSzf/V4J2EbxseH54EAC925x0dLx6fIxRbgPyGZivO27GZhU2I/P+j6g1daUVkFfCMJXTysyDQOundg71PtiH2hqWkSha+AO5VhklkbOTqHQQZ3n5/L1wOVvdnbsnywVomwV9XWHiCKo+mJ75WgmpsiIOQZMg8hLNhtzwt47cm7F09662pmegF91YE16N4bd8FLQwMzvXjxVqSDYMuN5iTSEwGlfD/PTyIDi7xgBBoztsdZgAhDsmUKPHzjHXq5yrA3jqWH/vJgGyzbCbmA5Sysf6iUqvbpNufm5urSTLRTsH2pEOWgXTDlxgCQxYEyryaODZCwdh5fhQ8zD+t3XUq5I4H0uqsYS3o6ZOgKE05udWdnVzzR3ztYW97MUGWtb7KUDwSrR3JcsIerpNlaFRBHVqpZk3q7nMptkl+hSUW57sOEeHVjr07TW6jl33Kq8uFbBcLYCFfoXL1t8WV0kL4E/oXPge8zeZzQRsHuoznKVwxkNaQ5Fmhgd3hytpvOZn9uT0+plMWU/rLSr27kmSuesFBlnG/gETEkwcmR3e4dij73PVL+H6gwhrslxINuDtrXq3I+lmNOcwZwEBPBzZ60LOuIfOIi+FoUgHzp08z3lslob4FHoiBYLsCwzJYUgzkeXFKv0FFUrJuh9TpWx8ZfWLEo9upWvfNT5gAHzWq6RrpfhKhMZ9OfyWaRy24OMjZfefQZr6NdozN1IBaGwIPszwKfyHqg49T334Dqf4UCJXNazc1yrPftAMHk+Ag7squc+dNBf8v0ehyLPl1T+M4scijRjfJzeKc1XVUOYup85HNPcvloAeXCjx4NgaGuuZVLOazwzJYrYfaLfJ9gSezIQ46Pd7MjT85nyxHHaPhCCJmDg4pMnlgvFGTNoUNSAjf+fQNJvAlCgAwLADThErr1QoGafkwJqtBE9ENFeiAAXIJceK56jKvvwGtOYn6XTV2AbZ9r0SFHXxeiM5Q1TsKwVCNp0DkhrDpR+OpKn7Hh3wuE/P1EsBWCJytkIj8Amx09ZezTnhgFgzq8qZhuHRX+iNB3gxhZc2yExFahYTFpW+mx07zFz5WOT7BY9k2EAUN3IBKHRKpMaGDls1m8l7kfFZJlGclcDHV5a5K6JG6EEdUgXt9rpBWPVd06kMQaAcakWneZ+y/cpppo+loLuTvVoMsdTJCLrTA9hKbVIwdknhT9YEENP8ynmHIe2YDIFaMxjjjOZAzYOJQxGy7nOxpzOcfPPnmiA7NtiaLAIgAMOegCqMpFLRZSkE6/sMSNJ8+96N7Sz+2dkOCChDjylz5pSurU1BCt9DUx2xhyT2UGzz7SKUc6ODuy7Cact1Ry0muY5AJYJ0rVgeLqFdEx2kveTlU2Fa5nY/y9/U5S7YP9kbW2vcAdRsX4baN+6lYId5jwybURGikqzzcmYFXwAbvAePt7mwJSJci/N17qAdeqZD8s8YQwNQzg/2+ZXccfJDcNMx2VZouhr3x/y3ElGm/QBLWN+f+B8uGQjE5jMgd49kuLzNqJW4tHreeBLH1BW0hnqh9hIDAzzrqJcHinTAIIF9eC8Bc2bXUMjPrU17ptqfqtrj5zeLeauzx+/TbsLBunIHFNgOi4DEAxkcasAffIlmJpBpUC2h2M59lBrRwzf8Lx6ICqHAIjqNtmBClFezrm0xhg5dj6l7bHN26P8LhBsJp17YTDCigZIXfeB+soqR17RiPs9nT2evRwbP++j8kKo6HcA1auB2H5OQLvwvll0sKuVDOT/T1oEOueJn8EYOiN8rRhLIEeD2Ddx/+5OJM4GWXz2wYE6RZbG/L87SSyHXI757hg6HQc/g4T97PMkKOl+zwAL3GELdl2aw9SnAMa0uR6d6Mcr2yR0OpgaQEDAI9ECnAX48pVAPc0lBdkHvNyfOYkfxu+Krc1H9kNiQv7oXR61BAR28KjPuWmLyWSE5TbxqmJC2JkhEho0sHnxMGciuOD3j8XH/ufl+7Di4X0e5uPj31kF/9RX/F5uj+p0jqM98i7aTpD6nbgcMM+pnNLn9z71WwKCM0U95kH6O/rmo+vXnJkTuCknCnc8N9vLUoAy5juoo21I91DFybEuvzK36BTmdvK7P2q72kb245x1D3zEGjjP9w/1EfK9c5u5P/FeBJ7Kw7gW75dHB9QemHQIyrvfBVsg+Q6zPYJ37Cdg7gd08jNT4oPrXXUFjmkWv81/Z0D+Yb5h6Fm3gu+UtTHy+g0w9AFUA/AOAHnoP85tC/rNdziNH538rMfxWBo0peQHy6M89HdWyGd7Uzt4MaVxBhcfz6xyvuc7e+8HgBp+I4CCIbHu/A9GoRCUWdRiaKh4XiJRb1VE7VwR4Nm0BbafLqjbwPKPu+kO3O7Q68WNJECloD8tEc0oe0dxtNhKhS0Ya8HxVKwU3Z8tp1kF0KtFMcrPr8DeLQLcPOesWVkkIs7m/PrmTOXkywJ9cpEsT33AMpVymUdvue09IjVaBON5OYEiYymmHXAMtO+HR6WKvafYRkK2QOQF5jXrxt3wEk/t+wEVQ9VHtbYzL1i81KDc+zSGhsJSmgXNBRJDzJFRkeZq27ct0Dl5G6i33XMErRTeWCs62RRPC/YvDV//24blO3D9R5/CgVUwAsXz17gKjufF6pvvGtRH8bKi998vQXFXMePb/t9R7ge0LFZysgFlr6G9oM02w77ahrC8Wo7f/rmhvQ20b3sSGtuCfYExQtkeHmWxdALPU3b9h9Cw2JNxrPO9rOToGpHH9m2D3BKgQCS8d4vAXC+g6nrZOnQoxtVKV5XDxlAOxfZlwf5Sw6iUYRVGll86dIdX2bC5Ih2o0BDBW74ZO6PenM3SBPfPBf0KLN8UNZXeKi5mOqBoby6g6XmXy7eOsRRsL6aQXzcDZdqtB0VeBcBSMT4/Wb7u7Q65byiq6H/6gnGpqK8HRK1yCR2N45Pg9jvTtCi7Yv3qed7qudTOMrj9sWL5rmhvA1/+0wYUwe33JmS5fO8+DxTt1aq29JcV2gTLLztQBftzi7Qldd+Za2x8WiF9MQCE+gcOFnDPC2Pvtlt5uKVEtHOstjZKzg133ZSxFvSr4PpvBe1v36deS3JYht+jfdtmVD+lsOTUJeowBLPi29sp1UCO7vRymcrsm+Vuy91ZB62aw08xN4JYR0fJmhC+nxMsCSCCueAO5sm2u85DnZ+/m3GozxbJl9tmz3s0uo+O8vO3U3+b89NMiZz9z/VJCikAfblC14by/W5pZ9fF0nbuM29Su+2xxZklx/MswzcWO1vK1lF6h3zz8poXYwx1slredpQyMMJJBLoDZM3ZJ3LbbVw8LWIK7yVHeQeQyhWXbWD9u2lfbD+tHomFOfUZUKAjE+DUEeDj8bJg/+IRc4Jx2d5QtbK5VYxsoHC9AMXyeqC8HShf37DsHfXWZu63Ry3H0zKdY0Wcc7L3YA+OizHp6i836NoglxaaSeVu7Ln6fbM5fbtPZ3Pvll7hc5BRVLQCPcbUqFCNag6WKlGizOnJsPU+k+Owf3uus4hrYJTFqqjsPaqHMGWFOia6VC8FPaLaA6Pe0jvq2x7VLVDEmDw6NQu4blg5aVATSRXlzd6Pmhg2PnIybGPevBpwaVF/t7H2xHTIjhfTlLi2KoC7l38kmwjwijB25uV8fX1yFtCe5hnX6NImUA6cgRZxNh7bR8cWcDtrmXPJHUa5H7ZHkknF90gOSJRmDYfAbLTyuk1h18s69S8Uti+jWfpQmWOAplbFqRNYQdh/ZI+paysY8+ewdrldpqVYmVXOxegTgIKNStbXcNaVyFkkUjXOntAFiLHDdEBqQQhPUouG92NfrEuUnAzwcksHufi+Tz+CbF3umUw1vh9Tl2cMoABCtmzWCOBFEKS7yRMR57ODHiJ98Z30rrkagbNHyFwIoCIHYSgW7iDyLL2Yzjt3kEVagDwAzmKW0TUS+8XJSeR5+UMKeZ9jQAc3bPTk0DEdILPoCADFPifWh6qW8gPgJHTp0fjoMkbac18DLqw6HBTk/EklDgFo38GyinE2azPfJoMWqa3qFVniM6XM+UXWDIN4GObg02lO93kXSOW7AxMYZQCVZTf5jI++I2ScO9slswfYV2w3/821Sm0FAiLAeQ3myP+ypHeQWWnkgekhtQQbRm44VxPx/VOKscxtr/R+YloPn0e2yiBYc76PBXorbNLImXFT/b348eHgWtwzzcMPrt8GoABYVFqM1kna46SMpknPdIU11Xul8+rOVET/iy/2WmOzBo1mj65DXSzsGECoOptxSOeOJfBo2A8RFBqhYwBdoBefLH5vGb7RFhidsCjgedeRNpAjG37glaw2PDx3lQraqdwj6eEATFRRAKDMvWvMdAber2wDGHJyWoley2HpFfX+/jAO7QmiiDLTUuyzfn//jAogVSyXPx/u1ZwBGgFhRAwTDlSWVORYARgLsH0y5kMhc2UfAMGHXYFtRsdYIWEw5UIQDh8q+93fq0rUEF9/GV7dYXiesBniBjjZPaycooEagfr7uwMwQ3jxigAEkfYOfWkGljC/lXNZabDN//MiUEHDkaCUtTtFmf9JRIb9GWwUWB/WXUPwshyKAYmIfY6oM3LJvGwlHZdgwzCqtwxBu2toVPA+MhTtDQEIGTvAqngAwPJKFo79rrwdgR6fmBfc6C4r9OmCfjEHHJc6+9GdpnqrwaTI/Vw3jbQEa5eBCfU26bTF5xDLWJY9q7cTgDS1/OL7jBwW+avJYWd5Ph7SonMdWLktmVVbYt+ahnXZuuUth8NtxkzZq6eZuC5DLUF3zlosEaE8xnTOyT5QW0OWbz6psnQeIhpfXCl+Xcz4vW9Q9ZrcnUDHQ44fKX40Qmk0qTMRqKivCg5QRCzVKb6niawTNPC0itPv4oV9X707dTTVJtdaQEGv6CfVSUPOe12irBvgXMKZiHZ798hukS45CgQGPpU+Yj7zHlBGorMh/PDvDhSYExV13puzVAZmxJ5rgnPS9QfqrUepX4LZ5VCoDi93KejXivZ2WIrFuZcttQYANQoiLYXvPGxNzO6mTgPOjEKWQi62r5N9My4FuLiIcU1swWoOsi7ulNA2W4rp6Tx7Cg4ZXY9RzIIQiprVVrzcpjjK19XK6wGW1rOYgPDUp/H7JBZhAF0842mPPMw/Y16cGY6nvTmplmfqKvu7HPN+BEyikgKsfwk2GPtgzpOY2+myakQu4ixido3MCLCGEwOnprvTCriw2bQXzLHFnP8xWdI5JMnmyeAegVM6atxLfpTr7H0Z5yPbmR29FB2NkoS0o7i+2N8ELt2Oms5FivTxPby9UcaXl+8XM2d1nqFkX6ozlOJ3uc005Enp9jTbAGl8H43PuqMY75JBUv4891ecj+4cfHR9YCcQBDnpM9EJk2mfAskWoOPMvZw/Y1vy/lZgLI68t/p4nkpAMjrMsopkatZzRQv73QPTwEELzf3L5zzkeJ/K7T3m6n90SXJmsz5POI4fRH59z5u5/QU+IeZ9qXmQRRSB6ayVOQazLSWeE2J+j/Mqmj0BhHcOOYUMH/uVopHc7+Rso862l3mf+fITZGE/ZYZs/lz+Nz+Xo+6P9edPX9f4njzeO6+/x+thnE7VIPIVzrnOdvhcseJZj3PRbRdWXgk/LrMKEjgERHolyOCk3Z9SKFg2NdbJI+jzA1v/BGo8fI6lh6M/+O69v+/zPLb5PsHi+MEek67fBqDAjhRMZ5MvwxxBYG5arVgOPpHqiIZ7nv3mYlo03oEwDIfn65XtMJAQ8NzNA+N58RrfgijLxTniUaOxmDAca8+jD0eNXEW/ikWNhjlNo0nkyAboUcVyh2iE8b3Ucz25ZvwQHpdqUcmL5fJPCjcA5p5ybngOe9m9zjgjt91yvcvm0YzsxO4D9W5ofRVAuinpm8CTfZQl/DLtMgwwwAwfj3LpUi3KLPN34v2//eEJZetY/v52Li2k3ZgVSRdDhrED+kXQXs1hpa7E/tmYIu3tMPbE3XO4BTien9Av5vUG0AAYHfHwCICDP+NqDsbTn7eg3vbnZroJTIV8NSO53iw9Yn9JeccRCbCDOCLlx4B0qxE9fv+M/fMSIEH0fRzas584z8tm0fzxVFEOoG6H02015nRsB49GEy8a2YLQX1CBR90Hti81VXsAjqcM3DlrwqNE/akZ4L4U/9t0I8rNov9W8m3OKa3A/ixou7ManJHBGvTUM7j8o0OblZkr27CoI19rqQEAoFbIZcV4vqJ/ueB4MdV7zp966xH51VawLq7PIGmd7ebQ7p8bZADrzwfaG1kqvleoAQX1NoXeiOpadNDKi0aKyD5m7XpxHRjSkgdOuiuRonOxz9TN6p9HeTt3vrQaa0q6on82jRbZDsjBEnfOLhkKlkWzcba2Srd85oJuEdW3G/D5BawzLkc3tse6WLSKP9uS8SkzN3g8ryj/OKDfXyF4toPnzasoXD9NB2jb58HdquX8AjNqu+3TaaFxRKfksrrzdp9G61ADY+5eueR293xPvLvCsXp7C4NLAHvW0qCXZmydVqLiAnN2gz0CWJR5gzsTNdY1CgGgEQuWaVN18/3h+35ybAFMByob3KT2h6NEZ0fnvK8lrSeFlgSGDM+trcZCkaFozgywqgIKVNPqMY0CY7P11XRB6tus5qFrw2jFGF59QLYRLKpw8oo9d7n7mRJ79ExlIgOs7A58luLA/oHjyxXjUr10LQUS7U+/FD8nG3IKWL0NSBNz/A+dUf9Hu1ME47pGP8Ed/PG0BJhejgH88mosLq960i/VwcJhpbiT4xVCkAIDC3JaUXLgpStAxf13hjqZlmbs6fPF2GtvuwXhrqalM/oE86m/I4d/j476fQ9jT1SmEyuIvcOcOvtbl4LRKiBmF0jvJg6cU2DIKNgPSyVz+nrk6YuYQa2HaY5Ebu10WlhlBgW+f6Q8cDKZDuo+tHeAngCIMph7t9Kunu5FgUx035uYAtWHgUKXOlk63C+CSeV7CvvyBAjQGZtrT68rdG1zH6atw+pMGYShU0YB3d36JOYAHZ8+wmGMCl+1WLUP0QAkoqIBn0Oxusf9Q9KeQjDB92lp1YCfD6LOfMczqGKaDNEnSGP7kTPpTkleIwZmkRmX+lb5Hn5r6gLVpC2QmAfK7w+FoWV1ggWP4ow5Ck6th+LVGY5jMhmcun9KGfA5S5bKycHM/ZD7m89/BLnz5yMq7M7osqSod2q/j9PJCX2MnA+FXO3MjOh0xQlUADCBhNDbYO79jHoLHfvs5It4mU53EKOqgqmfR2SawEve03g+5hSD3q0fW2JycA7zO8cEOgJMAmbf+jrXRw0Qfp/vqbTh2/l+POs/Yi94O5VzLoM1eS8AfE7WyRxw8BboCfjguw8P7idw6N3+7zoPWcOCDIgQ4CRjY2pOhH5IBovUqztkVikBCeDMZOB30+cF4sHgGmOgvU98oJBxwtcb8zmA95meQdgfXL8NQMGN4vJmwoTHH15QbkdEFQBAvfwTVM2pb8VKk4mY4+bRfQnqDBACTaSiHQqs9vNx9ZJ6N4qJrRAF6u2IEn39UlD3EWWSWM5K+wQq5O4CfeqOlEc4ATM4isKN/RKO73o/3GhIojcs6aMKXFYcP13B/NWydTd+JkMhK2H3lxUUTjTnB+jX5s50yqcUmxR0bM2BsXfp12Y0aS+tV++2oUTpvSrhmDFSfTp6hO8p8XkasxRtImsCIhjPa7w/BYmaC0/2TxfUrWD9xrKRwPp9oH23dg/XiLDv+s8u56k8y3Kq090xWSakqLHNgDmVrVhZQo+e19vsY+kGZrDygRw2D3mNtZzud1wr6n2g3C/YPzWM1bUmFOG0lt3KX/aLOb6jVUt56cD+eXXDukfUyR5k0TAaYlgkInSyH6YWnzd9MXoxWHJMEZR5GYp2B0abTBAZVhav3dhvGhF9iDEatMIYIIfNxd4E/eppFR3OFADWr93TUKgQDs9BNWdc4EZwt/J00hXjieWEEMaKeLlU0sYhNj/LoVYir7mDLcaakWNg/brjeGqzDJ4DIyybGuJyYgCb0agH1p9dTLU5w2apYayXe3eRdVvvyy+bMwAIZhnDKhtlrNwQNN7QTpkOEsHP0HUZbswuCNBuaiqY8Vqd6qxXT7EZiEN9uHZCefO0oi+fplAYbC7J09XeY9DxmdRa2azkpcBogMXLk6kUcxqqGXuiaswFAia1QK4XO3S8fKQtHhqBLqJGtoQDHFANw/oUVaARUA4zMq+XKPkIEeh1dbChA03j/YVGBJXO+fOhJgLrbI9IT1IK9dWYawS5NbRm6EjN8quRilYNNCoOPOS90fbNObb17gZKAcZSp2M7pmjleLJIfn9ZThF7Y9AMkLEw1oL9pcYaWxSobwaIMrIow1LZxloxjrOwawAanaV1xcBy/25/bgZmszzjMFYTge2sEDaaOAOMOSWXANsgtvZKtS9Y+WN3pO8Gvh1PfvacdB9gIOBigEfMIxfgY+oDwZX+ZGd6VH0BzLmuAvn9p/nafESBjU0BFOKix9PxEoK3pQRQ8c7IltkJGUCL/h10dgeAI2i/9fs+DT5nElVnhzDlE4ut1XH19EyxeQchwxLQxd51LJaqx32B7ymZbh1zeUwhVQBRJszvq6Rfl3rel54v0DFQfnmb96RtMVzc1A3yKDHroALE71sqWI1KXFtFDyB0GXx8bc8EcG2ncrdkMOVKOo8sDXt3mY5wcgj0uc3xEBdsfmQm+NhmnY8TmMCxB2YZQ6ZNqPoeUSZgycvTCpQORHpmgCGcNw6I2N714OwfHUpBce5VaznfU+e+x1SQSGMLRztFiNP9cyWNd/c8pqNjjqEkMIQg0pjr2Pf7qd3iAJsqxPtIGbl/1CsYOgU66TjS7mG7RKwEIZ1aIBwqfUQfk4MU4pPhfJXzWGWHmX3T2skRjr7Ljqh/dwIC50h19HPB3IjITpAHZoaXzIzI+UeChaykwXbwq4enVbimgrjw4iminvoZRQ10zPcVzHd/AF9OTJPMHqHjHH3uoEV6rhZMQUXAgaZfAW0INgATKGHZ0Q+A3HjWKeVDzvM4MwF4FQGWdX4vUgqSI13SOHzEdsl9+xGQWYrPI303lhngUskBWQcuPBXkNNaPIMxjf/A9/gm7QOlP1vSuJ00Wf+Y7wbPz9ZsAFNQ3z3I70JcVx0tDAyLaIqroqWpCjhrBDfCIJNQSDpe6CqYoDJnzeylcf8AHOozJY0DuA4Lu9K42HV64E0/ggLTUHL2I3/tmeAwIxRz9I7J3yOus7x40Qf8+th0UhERXA0r2eZBRlIpgw2gF/cJa8ggVb0au6u2YUa3i9/TQlx0wBXr16PoyJ3R77bOyBDBpcF0tD7nAEd85wdgnVPwdazHnXIDihoFxxd2J2wDs7rzsh7EtimkqlG2gvSnGYiyF9jqsAoNvnmSPsI1jrTPy4WhxlBV0J670ROfFBBRkuOHaCvq1BEBUXDfCOtT6S3w8tEnQ9gFYHnWB6w8YSGAVJyr61ZyOkjcmv7/pVbjwXgWkW3FRpiKs3/epgZE2REn9Har8991pueq5pPacDHSIIlIdZo16+//+SazU5jBNAxoGZuQCqGpijkLmg6+nhhC1FIFR/12TYzotNpfJjim7IkckGRUalxaRPdu7fG4wIkbWzDEgXTC+WI5rOYr3qaucOxjZnTHCqI7ogOa0IhETL/xuzn57PULrwt4dEYVt33fgGBjPCwCvOMNIX3Hjh+th+Bg8eYpAAeDpHlFSi5evzUGauY8pQbwcEZv0YnO0xmpArIwxHdyloh4D8MoNuCwTvPRB0ksSN4sD2B2J2zaNY0xadOT/eUqB1jprqmemwd3zkrk3tgaWqdRWZ752lTBy5YP81HfG9GWdhp84qLsfZ7o5P+v1velMTCaURsTJ5rCXbVwqxnWxaPU2+yVyrzHTZYKi6GwzdcHU6fQl44XRuvZwXvi9xuJA40ipFldLw+qXcgYUBNAdBjZcCvpFsD8X1M0qqrRXa0+/NgeFLRJSXRBR9FzeOLpMAdk6xlIxag07l8CqUoS/2752XG0/YBqTgZTiLCdb32MV1LeB9jrT+3huEVSJlDlVAFcL4FzckPV9oRwDx6WiP6Wce60otQQoX7qaY726hhEQ63Dw/P20OIMiRTmRwAWRCcJkw7MUjAqrQpLzTdNYM5+cWiY6ajjulk7p77tPY7vc9vM8cRA1om+8ZzHWU07FIGtwGuhi1Y7gDnq2L+kkalrr+zGj/sD7KDifQ60HYtkuiCiv93OaQY6+dUdv9wKMOlMfuA4dYLM162u/p7aE81Yi3VP6QLvtUBhbQQ5MR8DHKP6dnXgRZBqziqU42prawWorsQ6SgKf1C+K+0X8OdAeDojjqvR/BWNSLp1fxu2QqHN1to6zaLuFwiJqYavQB91SeH773Cd+1M/qs70GH/Zhzs1UA1ZzMNGZ38PJ2AAAgAElEQVQBQsd4l/P+8AiIsJ0+9qwWEu/iOeXG+GrTRtQyx6g/5P97X5yc/wDkGFX44DoBHj5/Xdsj2vqjS7w9Zb57CA6n71JrQKXY2U5qvuoET/zzmpx9c2idbUGb77G9mWaXo+fZmVNNjiSmg/lYieGjPmGkW4ezQxIz4tER5jOy04wEJnwU/X98pwwqRIT7A4ebz7IHPPyOa4L/9YCx+xPWthL27nmtlgmYcD+pxcAU2s5prZ2Ah/zODLw4aDGBtf6+v/P1bq0MZIDnBGaV4gdc2vsf++LUt8XmE9I9Oa8emSTj/Tu9u07MjId34r58+r+/n7gx/Ctr6zcBKMRCoYiNR4Aix4wXN8ExSwyOViAs9zQUMroBBwXA4fTsVlBGgYii/nK3SOLyAUrs4lH7H55D8NB49SbuJG93SDWHL8R8AEiZhkpE8hWhO1A8Kibfbw8HeTJQjiMmuNw31K9bRDRzzjXRMgNJBko21mhgcJMXGAV/Hyj7NJ6s6kHBWFbPOe8WwaZas8Ki7+6gaDPhsbINc7g8Wkb1URmG9O+/v4SRbHXLERF5ea4oRzH1bzFnXPZuOeu1QMsC7L6o33Ysu5X8GpeK48kj9wUG+CjQCKDsBBSKMQgORbnb36SFZ0ZH2WxBbL9f0ddiOfQRlbS2lsOi34yk9WvzlVK8v6xcZ7+WqPJAej3FBo/nYnqhHt0vhwbNnxHyfp1pLHVHiBLKoRDXThhrDaNE1zaph6RsA3aQdwEWhV6WCY4dA+37jrFWbF8Wj2o6WHIYkEBApW6Ky8+IVAcA6CzXWQXtdaDeHCQoQPdo4nG1dWSiihpOq7FkasyHshurIzQZFo+033t83oQIzRGSQ4HdAKbx+Rrrv78s2F8aU9jw9T9Y6b4v/7dg+Qa0b171oVo0th2WRiRjoD+vYURwzRzPJsBa7sssdaVqxr/P//p2oL5u4QTDHZ2TICANum0/awXcC0z8Q8K5yEYshUsxZrqGrs32G1X0TxeLEI/F54E6uFLCEeQ+ZnoOh6X/iJheyeGU6VS2zQY3OfL7Ad13gCUjnZo5Kz4MoDaLctAovV5ODoi4QaG1GEX6Asgv343JsC7TWesDOO7uqA8HFxwsUjWWDTUPYOvX6NLWbhkKeb3NY8P7P6KtBLAohMSfERhm+2lkNMFoqzNFUi585LfqFN3l7Xysy96BuwFNKgilfVSxtAn/bjbaKbZpgGrH5W93Y7h070OxkoDjeUG/1mBEFU+rGE7F516lYuu13phmZftTOKQiViK3eaSezDrqSBBoPFL/atoHaOwPYHk90JeC8mLpC31lyoOzrHSmh5W7nvYRrWICqtwfqgsjO2DJ+VE32xuL9z9ZYGVTkCoe4+BG/nFt0yD0NverlZvknlPuxsbrT1YBalYpEOhWToGC/uJswp1rRCMNU9cFaMU0EHwPKc6ws5zu5GDRcExGGcE5OXrMIywN42I0/rFU9CcvafzaA1QJJpGn9ZHFUHCgFEH7vk+xwqEALBhSWFJWMHPa18UpxmMCebwyaM0yngROmF4qNgEtFaNMO2hZJlPo6QpNaU+cizyXAohNzzWBR7E96xhmw5ECfmnG0FxSAIilHrMjmR0gpvUsJfbTcvPyoQTvepnVk/ieLOVIuyAHfZzNEeCs/y4Alnw9OAlxJuS9in8cmBWtsY8SFMDzZZ49vO8xgtUg4vtnEbOh094l3dPoWok9N3Rq2D7vL2NvJuecdoeP37v5kqP13M8JoFAc00EHHVbyEK2Zs3scp31RkBx4Okp9mN3V2mTasO3bHro4AYZYo6wco6aUhiyyWpcJ1uR3yKKH8U4OBPE84pmkU49Asy3PMfX3nNH9H4Ac6YwLhy0HnUSAy+UMApC1gWLgE3CO1JMqn3UZ8hg5wHBOG/CfMx3C2RDKIHnOvfd7ZeE+Ouen2e59EyVBYSZFBMqTXzc1LrITrWcwJ49LLe5kJ+fW2SSn1J5azXlv7dyv+RnOXvhQs4N92xoiLQGYYyHu6OcSoyyBm5/F/nvow3fXO0Amjftj3wCI1InMgslpGKm9+rhmoxli6Q9q7LAQnczPIijFkpofBCV4/TYABV6BAtMpEd9k5wuEsZ5BlFYMqN77NMxUTLE05/NAI6IlupwpbXz+YFSW7cFEo4lQ8wB4pPoAFsnlv9XYEDzo5fagdMt0hzHmxqQ0HuzwFh9o6wfMCCif4UBCoOtEsYdH1IjwwW0bsffRAhe+UrS3Pm0ed8K1CljWz6IkAmgJwadgiHBfEInc274WUPXeIt4uLqlA9T6P7wMhGhKR5P0AuqDtHeN5PUcg+ThWRPB7RRlGuCGcUk9ieEWMZu/iT3mMT/cOWrq/V0H0B3Q+z3QYFCak9fgseBRLUYfNi7Hkh2A6B/7uWdysdLaRlH1XAV+KGQVRS0znoe3GSERNVC1y2uxkIJOgdLUoj4M+pdt7sZyia5VaaksAQzqNwSJGxy0JoOgaFUFoKI8GqFOkoQ5+eR/OvvYydT4XRrXc0gJjIChgxq8/fzQrCWntB/YXvhfQsuFARg2mIFswnHgNneNQi6ceYG7e/Ku7ob6KredsCH50cf1hxF4UL/0Deq6IONNhRlhDXVgEaAhGDt8FFOossHaRodN1AhOHG2aMLMHXHg2//B7x3hJGmgGMejbauM8A81CnUcTvJ3Q8HKd8qB08iEuK5PC7DmoMb3sYZgKVcTbI87MCmU9OPA3j9O88Tmxf7K0/GFOmuTzm2kcUuvyAOk0H0N/N9AcslavcYY4Oa9BHmoK3UwBSY0s3kE1rDQNf1Neys6aCVrz3acxWd2TYLO69QyGY0XW2m8Ar9yKOKzVIKoCxFYymlm4liP1P0pnMs2YsxdM13Ndkn9cSKXHhwPnZY397NxPwoHq3pL0ZmEzEiBr7me3vWdTGpxwj0kYopBr6Aw/XqMVYD+L7cV4jTOXzyHmkkGRgDT7WtBtOE4n2jeexi8T5R/C+r6bfU7cB7BP8lO57SilhGxgzIDnIA+nzI60RHxDg1C6t6XOc55LWUzKGZTy8TXYoi5zTkZo7e2Q45j3zI6M0AwHgu2FqZ7Buvdq+1i8VtVjlDtvfx8k2EsAY3y21uScx0jFtORlj7v3FjQq2wdO9YvhsEtjzHlkav3KdUgjYp/k7tCXT/YROlSqyMOxpXokHsQgElAd9gKEfB/nTnh/7fDi23Iemjalynif55zGe78b44Zl5r6YTetJJSDZwPpNyhDmfWfyTQDB+R/jdxyvfL+3lpzz08sG6DVssnWt00AGQjn5KBeCcTufOSSAS48fzRhUoNaLZ+gFjPYsMSr438KtOX1RoABDClgA+YkMEUJDvnaPaH7IQZirBO62KRz2Ih5//U9HMk41R4vnvUjmY5kDWJe/98FyOU7TwI19DJEApe85DW4fagUcheMB8z2jLBwuQ8zbNwVNaxEf9ymflZ0cjy/nfj2UnP3r+owjjsIIHpz2SwJS/34cMl3T9JgAF6SNKJckx0N66GQUeyWN3WKThsJz/VlywyCJ+NJIBzPI8rp0Q+cSJ8iWvt0kbf76YWGOxg7z9fLdoOA1GV40ef/oyRdccJS73HRR/FOZTe2rF8dM1aLEoxQWHigmLbbsZxkT3mX9ZCvT5ivG8oj81y8X33P2yWb8wj5L5lrPagoQQVX1NqLqDLFoKpMAialWMmQAA6joNLuKlbeos6FMJKj+AqAQAp1ZLii6V+wC0oC9mvFjk20T7+losGrguHlEz51C8hBiKoNwsWlC+vdrBse+ob0+Q7QnjYhoP/Xnx97PI+87oNefHMSA3pkYUSwl5NgG/fhGUzZTyLZ3BDTipaBEJG1HCcf+yhMMs3SJGYy24/ekJdbOIvbrgWTnMiH39b3wc1aJq7W0E2NHezHk+ru7giznzy6ulUtAIRsMsnVhsLLIALcd6On4CDIFQSI0RabFSo0zNkI5I+ziugv1JoA24/Gxr4ngplmJyEVz/rlh/OVA8klZ2M/SPl4btp4af/7uK9gpc/jGwfre+sIgezKip4qKJ6b2KoDdzsJqXGDU1egfcekPZK/bPDftSsX61vj+eKqiFodXGkKkr0m090JnRMPQntXmW65JwPKAaazOoxUvBTiaHMyjKpjbnikSlDaHxui7nPacUYHmyQ/RtQwCP1RTe+5cL9s8L1p83lLfdSmECFs3vGukDlotuznT7+2vsZfE+pZih7o7ycOHaXF2Dc6Qw+gY75GQ/rM94DYU+X41VgOQwe4pDpjbL0aGfngyoeNuC3YDhmgqjnZ0vHk7H3GdAY4aHPQ9b7s1jANWEIOW+B40YIhhfnuy23+p0drgc+jDnOZxy//1+2D77erdoKUEW1ThzcHQTn7waMwT7YWMrEuNdyrCo4N4j/eRUNg2IEn62QYk5Piwtuvs7rAUE4CCIaKut2x7jK0Ox/GIit4OR9r0DV69qch8o94HlqwGoofvztKD9/Oa6EtV1ARZoLSjFWW59ihZLFVBwlMZ+fT3QFC5MKBad554zjElVumL5LgY6iuD6ahH9+nqgPzXcf29OX18F13901Lfh9yuovQdAWaRgFA3Gw/Fka/753/aouGKMMZzS62LMi6WT2Q8Q+hVMY4uqE8dwv8oYPHLvoQ3A6LT4PlqPEVoMZC3qujgYU+LZrA4VAntkKXoZvdJ7aBWoG3B6WWMtZYCt3F2MWQG52vpgpQvOZykS4FBRdzI4R71k37gsQNcQt82itnpxh7Ur4JWLoN4HXKMUD2SpS1aCSGyiWMturIdNcxJbdeDm9R6OZMz1h0hcaMhUgoYPzrYI+qfFUzCMLbk/F7T7QLkrrn95g9yO0IKR/QhgREY9OaJy26y9TJ9jhFImyylKVWbwY98t4vr5xfQLjhSNJ4BCp7ykVIPkXMX+l/VsAEgXQ9uKBBhq6aUGNJZvN2N7PPncyevR26DSp8NeppA5+1m2EX0wS4hnR09mUOSh780mqR8AAP7sBydMXTwz9mDO925RcCWYTPslwLqUfsJzggyEpBN1AhGGAv2wNLUH1oD4mXb6vLhTdOxxbtlZ0qfj1WxusD3qekJyF0S6n7MpgslWAYxEr390IkVc1wBnh4zzXhW2oB+Y09xvnNmhfQYfT+X9dM6XGVH2d+FYEZh7B3oLMAr0OCCi1oZB8UbqmhSEFgNtzwzgBNtiTIDjYT5JmmMnTQMAMwWgzjF5AB9OwIS/u4jYeGS2U9YoeXTaU78H84SfGcPTguhPGUgUopMEHg5nq/n+qKoQli9dYMyImtqQ2TW9m9ZMnpP5qtXdO++rLc0VBk0zMBL78bD2SrEppIIszhiQiYu+BtBTBIJHYOEDAMLLl6rvsT+6fhOAQjj/3hzJaGGdm+ZJD8I3euEBScTZ7xcbxwkxHXPT5yTtZhREFJPGPKOByTgea40DlRoppKJNVeIZ0RAiOwBY4QG1htNDow+jzHw5V0SOCDhzxgUTSaYxWj3/VqfDhtw+GOgRfcJrWIRbisQzc545DsxIraqhstl4Vg12ADzKAkao+LpuDNJ5IWNhtGKif6/dDew69ShcpIlIveoc35OwZJ4GboQVN0pGK6iJ+REaCtXfg/2mNof6paDABRYZqeScLFNrAFCnbQKjAfVu4EN/Mqe5bm7QrzQA55+g6iog0GTs6PysWn+F8BYw/+Z/uX+TKRBzOPUJDSAacTKdLIopEszg35wrQXV2xoKNlxtdh9gUEubW2vctao4AE6aAnfU5/Ht02jleUNh6LTYHwDSagnAu6q04Ddn7hGUhuwFUMoB2s3ayzTa/PZpXvb1rC5qwqkBXj/DBPieCucF727jmOA4nEdJHFJtrw9cBRmI0+T4k6DM/lfvPAw0v1nA6qBlhyqAhqk4aqs51EcxKNlx15ic/Ri8eHYPmqHjnu2bEW2Z7073P6PrcX+MZkQubflaQkPg0wfO+PLh2H+55PBxkj9Gf3D5M411bPTNDcv/SKOb/HeQIACco+mKsIDpxp/tw7waoMxPVEOhcCPcFW+dlHwFQMbVGKvsFMYchMGfaI/cWvZZgA/E+FNg9jU23tChjXwxA5/6m2XkLxhm8rXaP2Ivy3PE9WXbfbxeJ+WnMLtdrsMcZS8nbMKqlHY4xtQFoYL5jeFWxilqPFE2uTUU4bkhDTrZOTAGP1s9+QUT3I/o2YJHpoVM7zc+HYCR6hNi+5/fmflcFmiixWitEhmum5JdSn4dyAtmkD2hxJkUZqNvAGDNdI/548yOYEE7HeW0GqPfgMM4+5LmajMO41wfrW8Qp7BIODvPnw0F2fReCAvYZhRzvjeap5yNznvGZbD/b2u0+wUT0s0eLnWXSMDVjegkHj+y00DQhQO/9Qjo+x/lUwYB/p3ZFXvwYbszMiL7W4mmHIyKTkeLB/ns8M9K42NpnEKzGM6PUMG1X2pbJGX/XXjqy5WG/f9jzTu/Knz84ibEms8bGu8E8szkBnIJ7P7w+iFS/K3OY2b+ns2bMv8nqOFHeB/BRvnt27mLa0yaR2Hffv2PS4xkJQIm/Bz6mgeR7eLvy93gO85wHMCMjtvefWNDA2WbguRfv/dD2zBL8yCnnRfs9AKmPx/kd5YTjksGE020NLPrhs/MaS3PXbEWcxuIdAHF6zwL8SHQw93X+/K84xfN7AyeA54P+hNiZ9k5QNO870QafOxwvDusP3kt8b/gh2+TD9ZhYE/G5cv49Wc8fXUXwQwbCr7BeeP0mAIXRCvY/PqOw9JvngIYQjcgse+cq78Up7yoCedsNsXcmwCieE0m1ZGCWRuMiXFz8rXfI9zfU1xvGTy8YT4tVfjiG5WmVgvF8wbg29GszPQSPYGAA49MaRhmAUy5eedtnJEvEchfXhv68mHDdtlt0sM0Ne5aAk9A3qF6Kq18rZADr396MpXFJAlrPS3J+Abh6eH3d7B2Seqf1pVknugj2l2asgTd7t7J39BdjDtT7NBT7tWH/XEyRfx9pjOyR2fBpbwP1zRzuvho7oC+C++8El58VT/9q+gj7p3V+v1sUaXx5NirwUHcGBLIdqNtE5nX1PDmvllDvVkqyXxuWrx1l62jfNshhkQtdKsq1RQm14shfXz3H3/PyxWnwoVKsniZQ4KkIZiy37x3rX19x+/efMK6Cy18tmirHAtKAwxhVc1TNIEJQrClMOJqg3tS0FfKzAadhuhG9W7S5/PJmUVTA8xPH+cCnI5XeQav1//ZJUDer5FB2O78sF1qxvNq7EdA7ngv2J2MtrN+MpVBvZvBe/yJY3hTrLwPL9wP17bDqK1VQxoAOiWiGqFVjOJ5KsG1ohBxPFcdLxf2nivY2sLwO3H5fcFwFQEMl5XezSKVsBv6V5xV9L/jyn8wgqHe1e+829nLfrRzYIti/WAWX9S/foUvF/nkx5szWUV8HWh+xBtevu6vatxjvACpUA2yMQ8IFRbVW6JUieh4p68YKQu+Q1x11KC5R5rZYFQf4vzEM1Q6Hlp8x0Sp5vSPSFqqXeHIjvny/hwMJESs95awkuW02VxhdpNEf+ggPxkkVV3O3vUwfQVmP+Afo65Ej7G8A6rxvFRO/HDrFy0ox0dmjW/So1QmuMYWsD8h9Q1GdDC6PUtU//z2eyZKWsu3A7e6aDmU+X9WjesaoGEtFfd2MgeCpJePLk0WHh0YJ2/G0ANcWVWPq1zu0FeyfFkvrudfT/s9rLAXbT6vpoHzbMJ4aOnUu6NQOWz8BYPv7jp+ebT937ZuovsNqBs68UgFuf7So//JdUTfF8h1o9/4QkXaqLM+7Y1K9dSnQ6xIAAmCOPgUgA7hVROnEqpighacXmljyQNntPoPgyWK6D5d/7IAsLjppc4uVcPBkWincD+rN0zagzpbyPb4osMPTJpwllearFhMMHJVpXC5USoFYdaBzjHBIqT8y0E4gAc8vBVyDaEyAm2tUnOGhYoyVYWfgeFpm+oSDMuXe0TZD5hldPe3R4SQOoLqj+F+Ze7smSZIcOVABM/eIyKrqnpldLoUUCu9E7v//Iz6TIrucme76yIwIdzPcA6Awc8+sGd7LSbtId1VlRrib2yegUCjCEVv/2sZajHWI2FbkZUFfK0w9vcA1EhT902WkSWnkr8f78ZJn5PvvsS88nsPuuF3AsowAbafYw1jycRnRzRQK5r2D9cIAQQpT0/7Zed/QBUq2zOQIdaRgpIWIq+u5FKBViLjgpD4M694TSOqXEPqVYJvckewpiX2gv1xcC2urx7597kM4U/3gnkUQZW8h6B0R7NYhEutKXUDayqTpQDZH67BPV8e4OM68ZoB3AgIOLIR9clzJYuX+SG0FjTXHvlJBX2vamwkshe076yyA+yvvwxKgbGudIrdCtm9EdNkXjCrPGhZFITYBI/xzTumiZhZwdFLWelwjKqDYZzJoZq0xCiXufUR900nH6N/WUhjYWM50Su8QIKLToe1g/X2KQWvHzFgyGprPm4xip8M4AQEWrIkpdcZ/HFHiUpDU8rgflfmNwYlZBPJAv7fRlg+rDoQ/0oDURWD/MsAaekMJihKsFBlsgX0/BgMA/11UW3hXJYPPCFbKYO3UY9vn5/F7y+Lrdpv6q5Rha7Dt/8zB5Th8JAIZY5KA35lRQoe/NWBdD+KyfO/UL1iX7K+cbxzXWYeKv5sDSznW47mGPu7HihDvUhxkgBh5Pkz35ufPjJSGw73mVJ/UqmDKxEf9+0+AmD8EoJAXnanum73/14fTSsQGbuCYCnDxmrUIAajMqYy8yaQiFwV2GfdYqkcFThQuhHEpAOQ1BGl63OvZMqcy69PPpVpUXFhofqUZqY6JlYaKMKe25OdmWrs0QzHLKBkdXgvauOfNItMcaBACPPBPC+WEdvlB747s/D0olfGRjl+/RBWD56D1SVJvfLzKtgNwsULPhwakMXqvfj+bNg4DtBm6SIy9O6/KA2ytA1zhwc8+6h2yO3WeDBUHQ8Io52tyY4wDVnd4Gbzo7+W1Zzu8A6a+iaaWp+sD0GjWLRzNEBW0MqWCxNXroOMTSPBoP8Day1l+ToB+8UNYgmmTFS1iXC2qleTomY1Df95kSUONTbJdo+xbnP8+T11zoK0YCu5dsH7zsS1PL2dJQx2Rn8+IKKBYf9jBwE8HRZBsDH06Pbwzh5u/0wGaWOg70InoVbxk5Y6MRvo7mkc4L84w6GFM+PNdy0GapCYDKHJWNQE5FzS0LNOXB8A5Ur47aEJ2R653zkuKdbFsmbohqw855mUHsIMmQPHP6n0fAGIENuYI9kxRRkc4cOaH1rYD+zPohD6JBDjmlaoOargE+8hKGlIHKiwwqIOka88gYQMO6tfsnxlk4LO1ALUeqL8iAoM5jVA999tooE9iTWmUisCukXpBgKF3kAVlrDXO9LAUxIqI4Zl+m+PWoJNxPCKow+709TP6La9wPFi+dc5nP/cJBVW9P7szpRLUs5GKwzMhwPJ5zzcRYCk57xgpbJcAVZ4ARV493cUdZFvKKG2Ybddk0DG62aumlgB1dBIAJZsr9v79UnwfMwxRNJ4rgEfQWwd2QM9zZAfKW8fKM6PZSKMTQTcFri4y2T/JAbjLdIgUpGzQJsnay4pGsVeWg6CSn5NnxoPf1w1Z6ljwyrlhAajaWOt+z6nCBH+WWibjnTnWXuK5D2DHbDipgK+n6+rO4XOq9pA5/uFAzuAD2/qMyC5ZfQQoS6zbLG862sWzI5/NNTs7PWemQtFhBE/jmn25T3timdLBIn3nUDpVBFIH0Ceh+zAzSrnviJUAWRx0GMJ+ZNHQVoivdiRjT1pLJhej/qnlwHfkmdowxBh9EgwH06KEHjutRJvmeTbZomNw4j6019LQ/8AwP+3DR3YVRiCKe3o+Q97nPk/3nEve+o2m8zlsyQyszVFS7rOTo53tPINg2Uib7nPqCzu+s9XiqR0l2jenDfDifEx7xu+fJYqB8Z08d6c5yrMrndk2OY6RziLHfj7MaVVgWcYZ0qfxP3TzdE6G/Z+RZz5jHjOJeUv7m/oFM5MiqercV2Iuzk6qnfQx5ivSFn7KLgidoiy7OI8vI/YffJf6AcYNdWYFnoIRx/fVsZZMj2PE+8r0PvMcO93v3e+B4x5mJ4f7o/Kac9uAAHFsONz8jwCEch0MUOgwb4Sf0cM+nekoRaf1EQAj2z63LebGQSRzbmd+fpqDfZpb8xgQeJj3mzL1R3f713/o4EMKUoaWhs9dv4cFOJ3MFZYo/aOnPHhUpo8NuigEEyUUgN0ih04loyX9ZUW/MtePgwVX0DZA7hvsyxXtWiFvxY36cLj6bYn7T1BkB6R1Ly1UFfp3Og4LYJvT6qKcUQppXZdMy7ClYJ9KPOkz2lUE1sIY3b1+dkbQigsXZZ3dsKtYGo9iUhDx+wGh/I/Uk+gXCqwMo22vvoF0ak00MjhoeCAoxQ3Ls2U9ZlsUXV1fwVXHAVsUz18r9GFYvu8ZMaKTxkoG5e+vkJdLRqI6tRiecB2Fi+L+Z3duKY7lKv8FvUTlhyqw7toH2+eCcu+orxHtCWVfCXCIuhIEHcrdDVONyCiNQKYzmAjKfXenbqHyuNcDt6LDeY15xGv5tkO6l4YEgHrvobreUX44M+H+LytMvbwlUx+YPkAByP0WTjpLe06r73nTdKbL03D99+dw8pbideSrep4v4PP2sh7olh7ZKZljb1WxffGyivXNq3Fo8+f21XUU+gL0FZAdASggtAq83eVpqN2ymkV99fzUpHsKnWBN4MC1IXxs+6KZq0yhR8CBA0RKiYmgBD24L4LLbx652j47iMVSl7hoiJYJ6j0qeXS/5/OTYjW4psq1Yr+tOQ/X30JJv3dgl6hUEalEKoGJ8VDwdVFed9fsuPo812dzZXcA+v3hyHyonNu6ANsOvT/Rv9wyT9jEYGvNfFv07hUKgpVE4TFb2WlxeC8jcp9Gigr0IZAfb75rkwJ7orOauDFpGvvUungK1cSCQu+Zc21LgdHD6/sAACAASURBVNw3yJtrDEgtMB4cefhOTvFjS+cfgJd9FYFcVo/WXdY0Ft0Y6rDHE5m/2VocVP5uQzzQIxD2+ebPeL17RYx9H6BDlKpkebIUZ4wKEZ7vTSNQp7zdegBZfBDfG8CHVLgEyryOff16DydCwXLGMzAkj4b6aCOy+bZDmp9RXC/So/+4prWEg05AOKoysBLB3lOvoV0KrADLtzivBJ5PflOgV8geefPMlQa8NGhEMQUAokxtuxawlOzzF08dWr+NigKyu3Hy/C+rl4g0X/+M/JtKMI0E+tiGwGGkBfq7dqy/dyzfNQGI+u2R/dZuC/aXNbVcLt8c2Cb9uGzeDn0SWALa5xX9psAOT1faHOSxDSnySPZTu2i+o0yIjXRDvxRnj3Tv827OOqnfn2mY2uqaPeBZG0BQL56uqG+br9NaxzqOuaX3zQHjZUrpCK0BfXqli371OXkAM6hJQocvHZEAnoqf5eVNgmWi0LuzDPqNUUY9nF2c6zQWxfpg/nDf4FpSdUCPbIwT5TzTroAUK7RaIEsdBn5VAGUEOQC3yZbqQOzWoKccYk8N0gHWkBXBtJzF7+cCwc4onFMRNWyq1K2JdW7rklU5DmmsfKdt93dYl2BLed+xVLlZ7BPr4ntq0IU5Fr72DaKkaB8dydQ6yB9wr5v6lV0697UIUBkdnqK3fK8Aow4pZQy0xTxNMdv58RxzRspj74LG3NubAzBnZxi0FXtWo+A4zZ9JJy320qStRxQ3gYGdeeRjrwIAK32w2fheEdG1vg/ggg4TmQfA0Ynk3k1WQ28+dvsOwXXQ0M/OUeiHkLlsIbzJqPqhv0sZgIwd/QhjFYV0ID1AaQQNQo8g3+VY53UCtjUZIQeNgDK9p03jPOk+YN/H72kzz87z3M8zqHAGhzj+ZGAw5em5vQOD3glSMliBCQgioBHvLvs+2sG0lbynDQDt4PD7vEj2xGkeoep74CjfU47vNAflCHShH4MoOTbj/UwBaB0ADdse1UIMNfQWol9nZkKCOREUyzkcDKt53vDvM6jFZ3HOncCEAxCQry4DlO0EAaP/JvaE8Vl9mtNLHWNw2tLO1x8CUAAwGa3vfyVmXtPcFBYOe0b5DT6g1VI0y6nuvvnLffdIEeCRrURn4R1EYTWmAwR1Ugx+qAHeuYXGHyMlwWKIaATg7ehVnYa4dzcaLuKCV6HGDvUIkQtDjcNf39zQbF8uA1gJgygdtzxwafxyEXBjQyDM0ZWKAFw8RaRXj1axTGLPzaen85mI/9Y8NaKqB0De+qg7Ho53X4uX9wrhS9l26F2w/l1x/7cr3v6lpuDg87OiV3hqBY1+HUYYEADEDtSvD0iUZaRWQ/t0ga41hdTSeHx7uiNyraH/EG3hZt+B8ubCmQo4DTwVvgXMH7Y6ImApyP/ont5h3pdW4ZGNBhdj/HQJ0TP2t2B/ccCEIo1tGQZQC42gsvGekg64hYOb+gK8GK2LSEWCHtPhnQdoLbDr4mBZGBa6G5rSADOs3zva6k55UYN0p0/LjtTAcL2BGKuILiY7JpxeB7g6yn2koTBdhOXm+uIORrtogBGWegidGgghdAlxQKUtglIk9BF65kjrZqjfXYhTN83Sks0A3Tw1p9z7IULBsp9oloYpNAyGcOBJRU8l/HB09dkGfXo+wFWGQXJy+iGSueQpOEYDjxH4pTpleVFo2xxMDSeD0aE58qVv+4g2NRdQzHlBka2ZnhoGm9gQJkXRYWzP+Y58TnznUC5oPsC3Mcb5rjzMg9ZnlwVZX53GrroRI5c1qasAPLWjVsi6jjaQYv3Y3OkOo1dmA/3zJ//LbFxlR4WBP+cOT5EDd5gknKbF5wHXTThn2fdBx04lfYt9phZgKcPYCMYL5lKMDQFsuIGusx4DgH5dxz3p5FSFIcBfA/TugEu7hHO+G+yGpP0zCt8XYLtp/NupkYVzLt6f1PR+UfRfLt5Vz+7zOvYbE2C/KkpUUFD03A9cC8HHffnuRirPt6xG0QERp2rqM/azogmKSJfct6wK9s8rWIrW125oQsSeQ7FWplK4hoTv2+UNRxDNQpByAVqR1DPS3feido3yiY8993rZDWVyAJjSR5FX778dapMRF/3Js76/rNm/LH9s8zzAdF7nc/qg+JsBRdD+/BLryUsayn07rqFw+BAsKLusI4UCDnzk3tbNBWMBkP10iPYCyd5CLc6SOL2fV1OI7zUZ79z6cKKpScK1OQMgoTFgi6KLs2fYnhL7ohnC+R7tc1aA7xm2LrFXI4Uvde/ocPvFhZU9fUg3T5ElY5SpGrPzgzZFZGmrRTpH7mkEBvrE4urRb7FvUt8p+yHugx3QO3I+5jzYmLrCiPTsLPVDJDFLQFL7J57PUrI5dgpYqQ5qbkcnNgNF6WDEfzXA2scTWS0lxvug2cOfsZ/4uxOg8eHf490TzDALW6mndtg7NoAIrEy2d47FB95cvPtBOFHHe6TDjMnZZXRZSzqd9ngO4US2GUDqdRlB7w70GL/9gwjyTC3/KKo8n5O86nS+MipdBDZT1PbprD1f6cAHWFfUvzunDoTjb3MbZ1YLx4ht4/hOdiQIBn3g3AvBQBWI1GGLAkOIMN9lOMcsdTn6hDbUGf2cLjIqaN+wHWThiDMgP7zOtgqBvENAYQqy8Dt1pAzlRfsoA97lyAQEhoM/VSqxBohMHjiZBvPc6TpSJFSP/dFDBFGDeTRrmZghUxOENqr3aY5DAmwBFHwEYKmEozh+xjQcIyghfK4e184H1x8GUEhxJYXTKxuOE5p5oEugJ70PJLl4p+jWwqF85Ndk2yGPZxzEJai00+FKhe02Jp808cNkqQPNAdLgdNVbhe0I0TM3Imwp3u9RCqx9WtBJG+X9y6jEoB1Iuu796ff+5TomTYx1GmPlOJCp1m4GUh2zVKU5GNGqem5hN6fGamh6hnAY4N3eF8X2SZ1ubnKg56oZ6v39wu+LAyuVOdWtQd46dG/o//WG+1+c7l42w/1f3ai8/N2yYsThXaK9ZoC+PsPIW0GmQb9VtFvF+tyjfJovAn1E7nAY30AfjIzqKMtZLd6NpQqoDeE0ZfRDk9KcTuulDHTPDNqdOoyXKfKJASDoDqzfm4sLLhMTIJgcCRpwfDnG2Reci+xoN/BtgauyM4c+DKhDvefVtT5qGG8eLfS2625Y3hrkUwErL0gzrN8n0MAsHQ1Xjx+sl1wDAXDp1j3H/FqjjJoNIxDw1ITVnfJy7yiPjv2l+LwJw7C87ZBeEnTxEo6A7fCqIQGG6DNy09eCfqlQ5t8C/kyK3E2bXXk03zfigKCBzzFwhfc4YHWkHLm6u/cdGRRj0ltstD03fx+DmB+Rl5rq38xX7WFo1pKpGPrYgVCifyeqFIeGPrasFOEVYC6+Lh/PYbxRYZ2Of3e2Ch5P4HqByeI5072PPESZ3otGhh3bYAHsyGM7IPvshzQIQs+Az85oP5AIvkmDPV3PRWr1vM1zvWNG8DdXAp+NREjkeQPO8jgZAmnk04DpY3/LSBcKIOZngWCwbNbRjlTRj/lFTQB5e4zKD9F3WZ54znKjE/jcfAyo9B6gQr/W0AJhzm+8e0FWB6g/nujXir5UB/TiXXqVXJeyd+BS0C6AdIH04gDoFIHNfUGAdit4filYvzWvACQFTSXB0raGcOIeQItEukGkbcGA8sM1KObyx5lfTwdi3/1sZLWVZC94v/WqWbWlvu2wu6CqxFkiwfwa69rC4HbmVDvmfBoCLGrhKHOuIDWX9k81AxCcK9I8nSJTN6K6BmoYd9vu1PvJUZjBAqvqQIUhAZZkQHEOBjPk0FbOxRh3u7g2Bw2/5Tc4C3LSvhjzKuZW2DGj/8vIo5fBsnG2y8n4M9+fDQGMzYAb91JWvqBRnSCBTftoGWvOLKvTMJUvweQiaKrIsqa7omw0yvHOqQPBq6UMtoK1CAIYJDpRNx+/+u0Z1R2Cvssz/vF0522RYGOc9gcCDzi1oTurKs+JOa2pKIA69AomQIt09DyDw7nn2ZLjlQ63jVSrjBj20D/1deQCrydnVR046NfqgY42CVpy3MQBG9mR72lL9fX4PAEEs1DtfKkEAMzP2nBOPvrsTLtOUJv92yG7wK5y/A5LQQPvHNtMbZudvx6Ty9rRsZmBI0a+Z62CcNypyA/A01lqPYIErQ1mHseToKOI/47XgVFwsmVnCvz8XkDmqJ9p7QfK/ExXn/t8znu3wewTIFlQmWpRA/yik6jT3J9YFu/EJedrdnr5GZOj+56aTxwnneZ497NgHiORIyP88LyTQ8v+4TMOtscHgNN8kdXFCgytvdcS4OfOP6OOCF3jeR4QEJrbwz6lPXRIA3EtscN7iSTzxT8Xgp/jQ2PPjd976uk/AF4AfJjm0Q2pqyABXhAAs1N/lzLmAwGiQz/pWLfywXxh9/3jVv7/c2UU8uEo7f6yOH0dsWlOhm4a6pdlygWNTSOMvDR4pgVjF4+K4OpGYfvkViBLUUobSFIL+iCprUeky0txPf9yg5hHTbEzlBMUzTBS9enfr6SgVvUo0ubiUdvtmowIDWOZ7fU80HAeQwSsfosoCzemQlEecYqnCpbIg/coTxhkVdCCri3d0D57ZIIlzGhE1zd3HnWjoxB9vneU708XDgsmQHk0kB6ujz1Kaw7qTrl3rF89wq0N0S7g9rcGfVqClWMOeBeiG/rnK0zgBudpwe+/3sDojpQOvXiUU2LujLxXG6kwkQ4wU/20dzeEVz9smywOZCkgm4+RPL3fHUdQwAqoCZFVCqJ99bVDn4Lts2ZUsfTu1SD2gv0qePwJ6Cpob67LUO/Rv2bYXhT7xYGHXRT7Lxfoo6G8bln3nOUVASDpqRKHf9DXmSrjoJU6s+TRM1eaY17vLsoIAdavLSKekmOaKua7G/jb50ideHUDQszvtf/5Fsamp4SYCqr63ADc+KvwqKjPY811rbslYNAu3o9lswTK2rW4M7QSTLu541EF5U09MpmK4RhrDIA+du+DZY4muYHl7IMQrXx2dygu5XCQsWRtvfdwyJYcK1SFoR6NSn7vxVkr7mAgDUsDcsOnGrqtNSn1KaK4NZSvLiKaiukzRXbvCRR5h+mg9e7DAAIBj70NNF3VjW3V4Zxv7vTal5cBkLCcpcpwbmhc2nguJO7TzR1oArVRqQa3i7f126v3222wKzISw3djG59RPnim3rJk2NtjvAcP8jBWqOo+G7USFGQ3qCvk8XSAWRVSg55vCMAkqicE2OkMBRuHO9+dgBGQfa13HPRqxAz2cnFxYDpjW6TbxRpFaBtkNQhBnh3bn7yfXGTUjQ/dPOJG4E93Q3kYlh+G5bVj/bo7W2jvuQ8cdAK2jvrmrWbKXHl03P49ziaNKRPAnO4dt//Y/Ez5+shIsQMVkpFg6R14CuyXlzG2IlkiMssKiwDPBn3uuP5v34/atUKb709iGpotDshYFXRVoAK2+HilRsHbnmBF2gVx9hK80GdoXpifo/1a0s6QpgkwiAG4YIp8KkBhvACUhrhtjGPvKOIMvX4tgKzQSG1Kp5sgfpzXPcoxy14PDItyD3sh0hH7ZYGQffd6R4rkWeSS796H/erpLBlYmUHfAGIQAOmcEunv/d4hys/T+d2aA1LLFAmOtdc+hc7JFkw4ApkqCS67jkSUDhYX3+VzysQomNuRmgEET9geifHcWn5XtgZ5fQwNCmCkXfC9pr6T2EMILNi6HJ6djp9I7tvJLCKziUKO3AcAB3hiP8+2c11HX1oEKbBzX+qjfGaMH7YAoBiRNN4vnAIRoNAu7YcxA+BA39yfXPutB2ONB/IJDIn9MS8JgOAMNtDpuGCkkqUjKcfI59wOstKeMjm1dvzMRNNP555pA9xrI5XGAGQqAM/Gif3mgNbkjHUXIsxxPF9sU+uAkR0QzlOtyCjw/J78DDB5Xfgp6MJ05rOTfgAPpp9DBXIZ/oDN8/Pw+dj7RGAWWhEypROlgGYfAMLs0E997Pv61Eb6VMmAiPNnjqLPYMLUnuzXc3vjM54a0AYD4fQuYHoFARmyA+bnkvZPB7nW7L/ZjssWzLoPczvJOp3sKYhkIMDn+WSjcL7Mn+nRL70kmy/faRrjZH3MgBWrnQSY9a5/Z9ZHzKMsbckykdN48b1zzh36Pr4TY3kGVAbTXgAtXiJ0nju0h/4BtvGHABQo1ia706P6qtCmsE7xCBnihoYwWI6oVQpsdTvWPecjzBWCs8xjUvF8MweAFH6kUJy6toEAx8VBxwzwCCtr79Hgj7xXd+ybOxci6Lokkr5fnApeHt1VccmUMIuyVz7RM//VMCpdXP1lD0J4ASwkogwMg0oAm+iy6VzWcHBiY9DdnTxtLkiHMiK4svWMulCYMtXuOXenya/bqBoAM9Q7IM2rIySNluMiCEOPjmoYQLsN4ygu5sWLwRkedfTbQXgq2sVSP2gNtm256CQO7zSgzoskDIfsQ+O/6WxPm5KG4x0Gv7bJYTYkk8PLWsJTP1oYePzsCkiwGIBgRcCdDDodmYsfhtGImoXxlQ4NQI2AdLrVkgHgomcAK4Los6fw4yzEmevNMAlKcqHFz4obj9jNnYAqaF1jLnVny4SAHNtmhkFtrpIsEWC0CQBYEcPF4wTtqslukOlclOkQRJQ4FQOsxjvx7Cczpnd4tJrP7EDjvLIA4VjC1vvBqq9nM5+P4vLyx0MjjMi+qFcpYD/CozTnA7ZX9XP3acjawQQLFLC5njLfdX7eHJ0qk4DT/LukTcfBtTcv5zkb4VRwJwU/D99B8R79Nl0ZHXLwLQ3zoq5TE4rj8j0Mw1ojl3KKHJzbCoyDdDbyRRxsEDmmqU3OXv5JQ2BOTTmIIwYFcB3sNEOPUpk2+sWYlmDDcOL953bvDWLq5UjjM6bqrKm7gYKIhrlqAAaYkHPfjbq+xj4S61KijXPqEYHosqlTwAnYmTlZjedB3JdCjgBgoW3jYDpp2WHQhNPpmgL+ef391d95XYZRAcQ8HH3DvHtneykUAbxGGoKDn543q6jYXxDsvtB3AXLv9uj6tPfHmczUtXmPpxEndHLCmUczb2poNpDpJ9KhEuu5I4yHsDEAIBT7wbKDsxPGZ5PaT8AA8EpTDeMsMQOYVhfVhUTirKJzyXRF9l+sZTODbnUwKs/zm82mg7t3MKXS+jTfYywS6Cgy9tgPHAB3mo8RdIt0T65Hns98TdLyXSvI31d2iy22R/QcwdTUBJjOtOE5xcjSqB4pWvO7yhZMmW07UsnPa5OGO1O/ejBT6AwAA4g4O20irmWgSK0ree4eJI/fO3gnCRz7S8hh/XlEYpo7iHGq6sxD9J+zBeYxT5vpOGb5DuxPOjv8bu94t2/Nf091d3mvizDvwTxf/1E7f/az+b7/J44nkIBLOsfA8R3P35vnE9ttcdYDw/k6O/IAMv/czMFLYDyz4Xifd+38B33y0XVo2/Szwz1PQDvPuo/KYc63pk7FaU0kmDA5jQcWyGlcDlULyBhnu342Xv9fLtL9z68zz8cE1QLhk9Pajnfj+xzECuf78TPcR7kf8OJZMn9H5GM2xflzQLxD9AvthU4flPNVhx1B26XTiRnzMm0EsgROfW29I0EU/mqef9wjJNJBCACc97b8vA7wCBMYRQCH/UfNk39y/SEABVOgXRXlHoepAPu1QBbF8t2dtf0W5QXDsNJ7RCm2YTABwCHHuY3Okdc79KFeyqfWdAolHK72aR3z1WwsoMrowtBHqN921G9wgyBVhTUijLt7QmVUgJDXhx+g/MzeoUtBkdAzCMqmmKF8e6BfK/YvF6fd7y0iWuPQclFBRf+0gGrX9R73COeyXVxoavn6RL8U7Nfiiv57UMHNoItiv1X8+K8L6t08Uh3RjoOQI3xytYtT06UBYoL95vdcowyjXloeXPX7E5/ve4hRiQsa2ojI0GhmNKpdFMt/PCGto92ivOPqgEv9sSdgQoDFNQEGEAPAIxiMXkTut7QeQlee/zuXzbFa8Pp//TIEFDcv09luBY8/h/7Dbg5iKKAPr+7gwiaAwLJN+2c3LK5/28d8jI1q+QqUu+Hxq2BXwdt/DgHJzSPg9a3D3gQwF1ljaoULtC1wIa4tU2kYBQcwhEV7h/aOjjXFNQd1FWgEwMiu8IkOE8H2pebvXEgywDc6MWZYvjl6X4LtsH1ReFUFc8f34s8wBWTxzb/cG/pFsX8q0KcDVu3ioEBfHZhoi4MWKQQZAIKog0+eS67haLnGQlsFgELDMdI9HI9Ghzu2gsf+7vCRNqLFQiG52zI2zi36AECra4BuEeUIJLvSgbnWwa6KCBorgRDYeycUthQvGbgr2kuFNUH5/W0ynDxi1F/WIWy2T9HY7san1cvkWIQzsC7OqopSkfbcPNJfKzJNjP/mwS1yAOyEjlkLRs+6OHshykWC1ReeDjCyVrKxhOO2Z2qAktYPZFTBD1TxaBTgqQ+luDbEdJBTvDAjFHMfXtcoL/cAS7QdDGSVIdRIxtq2+3OuxQGAbfeqNNUpxKl7MQMYZsl285JrOu4LjDXIkp40KHavKmFknrAd8AohFN5EH1F1E2dZiQK6OjPHqjjYFIwgF7P1P2EOENRXBx32W4Euztop3+5AB/qfb74/wbdw2S3ncS8SoOroN300lO+PA5iSpXtFMvXGlhWwh5dLvV2S6dXXgv1TBava4I6o/OPzq129VON+HWCek/7cwRZYChBnmsWjTZpB0dTNmRGsqJQpDzpVYxDxNBKy+CZAqK+KFmC5NMPyNYCYOEuU1QuWON8fmwuO6mQnWFSfCFbJWN8yDLweKXU1dBuC3cLzUAwob3MevKBrGWlXzYCtZYUoWaqXwl1d4FBtsCpH3j8rv7jukFV1TSnaR7QJJ+c92y5DOwR0TOg0RwlUBhq8veGgV0+1cwe5O8Nptj0ZIY73SLA+97TJdgtHO+/3aIO+LQHsWjgPRQGrx9KEFACMdCl5jPScAxhTJADTCdTcG2DOYPJ5juMV3xeyG3WA+gdndu/BtozXos5Q7wEkhgPBs8gsWVgEdlPrIKMZBBMs9MTsCDSwbQwuAFkpJ8UYP8p/Jvga51W+x5xSMIG0yU6IdK/cb4GRCz7d28hEMzs4R+64T+cQAJBAyp8Dw/GjjXd2Jps7O4eKEQenT8efBWO+nctAlgJUgcyMhAN9ffr37ITxd6T3zxFlBnjIANk97YI0+KGwb0ALh43Mizivs0Th/NwAOJlfn23rvnYNGEHQqd8cGCzvKz0chACp7eAMmneVRuZ1PNlaqTN37v8Qusw2UqNgiTRNsihmXaS0A0YfeJvPCxIDcIy2ExTCvo95lLbdFs2zQynOfOY5aEA76COQkn/OaS0aTAWZlB3ICiALokXqTR9rPgU+LQJz8/hF298JUFI7QXSk8rAds4ZCpgrFPAgtC5sidwdh7Blsy36INu/jvPnZ9YcAFACAeeUe4R2TO0uqqR+aamGgKcBof0bRZ+OVxuFPLjoeB+ojYo/cehptHNSMqLfpIJwnGssi5QIHsE6Tlc5dXLp3GB13gxuZBxQOoG4JJrTJTq8ksalKR6gNS+g0CJSoWYAOs+iKtO41oxUeNS9IpkAebDoOrJlanuUpBWmsWRX0HhUlUoOhZ/SUBp0GC4WMEjreFMaSfZTrO5T+sqDCy+RAkVbIg4WGS/e+zK6K3B+ZFj4jFlYQwmXx0U2SIud9OfKLc/zYT8kOgTML5rNOBKLmiH74UPoEtAL2AliB6yrskkwRbcgo4hzBP4hvzhFjPocHlk6Ib8yHtmgKIea8nNp5EKCJcZXdnGoMyfml4uMtrcfZMvKVOat79XHT5pE6zqekHM5HeIwjVWfVDBbvmaBCj7lazAHeZRp3DfEqpkuWaMhHIOqkX5K58+mMI51iRHlMi/nfV81UDDXJue9zd6yJLC/JNc59ZeeBTwN8ct7T2QRIMaPBbKW8S/XJ0rPUU+AhwHfPZx/MpGOkYzY+aTjW6UCWWAcqENOP8w65fsj86R0sSZXPyUbbcPb7VDaJRoTZ+3sTDJ4jdimk24+GzWwEMMoQYA6dnXdRBgIF3WBoR3S/AynqOO/v7MdTFDHF1vDBdf4+fzY3JaPoNu37k9Ed+yo3QoIKAAb9f5/GnPtmONpZEjL2rsF+g5+twGDqAcA2vQmdEzMECnt8FxGfO2S3xNWr5DPzv2YQGvPTukkdGUEClzJHdsF5b3l+5T4skxYRo/PTO5Ke/p6dEmfkPBTie12WSp0ZQLPRHPaIBxI+GF/EvjCn/pCtwfTJjwKMNrHr8r2R0W/d9jGfcv6eQLQp1e/dvTcHB84ike9sGO7TamDVinnUM7ABHAEJrj3O58nZnXUIkkE5G/Fze9OxHZ+R+b1FDtFEq+VYFSBTAfT4jH+Uf8z3Pkcp+btzfwHIShqqIaRqzjKNs+QQkDp992xPJnOHKSfBfrMAH4DJbpzbx37/KPo4j+tH0fhzu2Zb+WfPAsYZ8u4z8r7v3rXV3IYlG+vcXt5pnh985j9r/0d/B/Aumk+698mujAeD2gzWEBHmE7Ag/f09f9YW3nP+E8iz88AAAJCCfXQS2dfzOUmWxPycmT033S+d5sPrT8yLEhHzj84p3isCZ9nu+T3ns/j8+3nM5vckgM1zPuwu6ae+OK/dvaW/d54rB/0I4OgzZNskfOppTeReNxvDH5xxs60y9S0AB7XD0ReW2T30nWEGgayfN4XTNdlvqZNhp1SVj8Zq/m45jzq8DXayt9i+s4bDnP4RzzXacf9sL8EfBFCQDtS35mr8RaBbycNYmTP8dKX7uZQeIzypks668JfF0dQthJJadw2Fdcl8VSCco8j/x7bDXi7AUlB+ewNROSLZXooQIQAUDdc49ENbQLcCLZLlLvulRoWHW1KpgUFfr98emXubNP9l6AC0RWG3iP637sJ3OujpdP6khRq+CrbPNQUWPZq+uKDda8uNVJ+ONG2fK9rFI+UabJSP+AAAIABJREFUVM39WiBRogwA1t+2yJcN8akfu0dl9h4ig3o0zlQcoY//bBOIAkuMG5rBruwDj+quv/smo287iKloMyCFhyYncNq4+qJ4/rpmqch2KbAqqN83b2NQR308+kDQRTLv/PLXDe1W8PavFb04ilsehvX3iCaJG0JdAI1SVSJwloZSRND/6wW4/8vi+c1vPSNZ25eC/SK4fO1YvwOm3r/3vyjqm6GtkW7SgOWHa1jUb08fz19WtxmeOjRCftx9M726Gvb2r5+H8RYAjz52iAGv//cLepWstgE4k6AvVFY3rxPfLapa+LzcP6/oLwvK3fNW220B1CPx1g31h+Z7a0T63m4VbQV0F0gZzgqFHfXZvVz6xmoVBt1HKoVTWh3AaRdBfW1eEuy1R+Q/clIDwJHujAnZO/qlOMV6PvdCsEyjfNf+eY127GBZRd3ha/W2OCi2ukbK/qlg+1Tw+FWwfjMs34H19y3vBRVfj1wX4XyloOiPN0AV+7/94us6WBG9unisK9ZHZZdfb+54XJzFQ12S8tZSvK+/rMCjQV/vEREepc764hHt8nr3/a8WiBWILcMRZqCITIV995rbt0sAtOwDzUpYUEAeO+Tb6wAxaIgA48A/GYeyR8SY4MAUQZJaPTpBMCJAC2H0loJvt0tGnPXbj9RWwL6nFopd4v1qcQ2H1v17PIhbOFJL9WhA0KTJmuIhzP2aWhYAnG1hBrteMnKKYD1lWsqnS4hrLjnfWObN5546yGvmKSHi4rIurNiTccRzhhFlllQFgH2psM/wfZ6RTwDbS4VuzkBLHSHzdfT1//mEtvia193V8LOCgvl23Ys7UvvtmNojMTcd2JWjwckyYMFC6S+XXGOydd8X+5IaO7KFSOSO3MNNBaVopkc5mFqwfH26eG7xaPj+ZQ29FEV5Yw5993SVoJ+3W831Rxo8gjXEikbtEpoVsT9qC6YAnTFgpJzEWXqoxjCLNcPbzXnOtLM8H+9bsvqy1O9a0K4abIYozSjAMhltrgnQM/deYn/ZPy0JQlA3IO2aec1VF6oVwxDDUziL02yUKq3B8uxEfJBGOhkBfSmZYoM42l2Xqrl4qcHTZLoDFfrcveRsW1KMMPeGjrFe9uZ6A9dlONOREoXdx5WVvHzi92Ai+Pv0q88ruU9aAZcV/Spp50k/Aa0tyiDWkvoyBBvSjiQ4wJ/RaShTnwarFFsILK6Se64V9T7SSLPZZWg3TSABup/dVvUAwPGM7Jeael4mgBRBe3G2Yf32CO0cQJLuHH3IFASVOBjH3mwqH1Y0yPHh/Hts43cU/51zCo2AXj8GNM7Ofp10hd6VAOT9ooRhHQyyYZDHn3NFiNmhMkvwWvg+0QYp4bAd2C6zI08g4+jy2EZahA4R4H0fUWRMDiSqx1FYTWJyANn+BAo+crD5DhNTlk6xrNfhVPfuefK9jTx7UuX3SVfswIaQEY1m/wMTC2QKDpBx1vf373FO32BAZE4XYN8D4z11+swZGODZ+REAe2YX8t60H4AUs8x7T/MuQRKyQVihYy5ROQMRfE+Wn04gQsYcZzsWZ9uxVLbNpTgBL88Yz7IedswSFaRsrP8sR2oG2/2sOKR8zuya+eLc73ZkB1BDJDQwrAGBiA5g4aM0nG4+3+d+jncwBrXmzz4e4zNkfvwTgO+PASiYH5g8tD1KFBtNTjZ4xDSiSKSoHpR4z5OfE5NljoDszDTQtimviAYEJ7mqb+IUwptQ+cxXJ8MhGQrq5QWFxipGNEE8F7EvxWlwPDTFBii3TYCBSG4+XRT10Qbdcu8e/GbOazi/0gqkWDh5YUSe5wDb3t2JrXc3VHsNnYVu0ffIqMQc3fBcUGSaQJaOjLHqS/Eyh/xZ8zGzAhe7UwdoXLRyiipwARq87zjvq0Lis9b8MNHnKVI/5/hHH+VmsUx1gUlVvC2DUt4mgcRgvOhuMPFNgWyMoZ/gfdIF2V5pBjUgSy+SagxJ3QHaSst3g1V49Ls7mMPIt2srxL8786ZHZE6mDe3dBswpzoOQc8oCADF/D/7OIgLiXrykjUkhLGHOtcqIdl6jPjgP6AB8rEapNq5RELhQNCo8m8+dZExYrEMFOvU8aV8IMt1AmqVwY1uBvgDyBgdCzAZjhlMijCkLx8W1WICM4E4q4ia+P7PGuUKnWudAL56WoVdBuyuAGiKuBmUYajIq3Ki2VK9Ouqv5Oua6mPsu1cufYx9KinIehPDxPZVrE+nQJyMb0wGuY+9zYVc3lFLAySxTtMyizXcH/3K/a8g144axuvE+XQc6PDByN80O5eSybFStA2g43Cj6ZAunK0AO0emdYmyTwhu0QXd6aMgGK2QWqIyxeGe48KLWxUzxPBjhkvoADoo6k6OvrpfRb8sYHynJXIC6wS85L+B6I/MzkkGCZJiIjTZFgyMdyRI88AhpnHWTUWTB1Mk9I/YSrsncT9r47Lw/efUcAMXcgGZ0QmUwMjTECqMqBc/gIeKKZPkNRs5op25Uvx4OkJUpJfDp6VKyKLppRtc9FQeHfY5AvcSGljn8TJFYYg51y73ZdULs6F/FmXOMzkxGIe2G1gcrUocxPvbc6CfxNrg4pCWF3agnwSvOk2SPkAXB84bzdV7f5zkaIMjhmhkE8/vk+8bvNDbAfIbbWRb2jLPiAmwDa8aH9ghFwuaybufIa8xxW4aDcGgDMECOsHe8r+IgmIAfmB3fiZfGXDo7zlOfGTUT0mmzCF5YzEU7GOOpyWRxrrRwAIJJqhLaRDO15LxnC8dSvMsQzvrEkBFG7Q9jatH3Pc/rdxcd6TnNBzik9hw7+4Of/2QPxqmPc2+lkzfbyx/d/xChnpzc2Wk/z2X+fZ47fEcZew///dNrLhfJa3b6JyFLAMiSksBw8ggqze1Q9c/NZRqBUblhZglQc2Van7CJtp5tPfX/9H0pQZufWMWjzfPH5dhWpmzMzz8/j05zOIsJasxrmM/8yDHlZ0Q+/v3BDpl+f45wJ0BwGvfzn/M5eTgzJ5YE+7w4a8lmMsD8HODYpnM/TX2QYzozNYAxv6xPQM5P+oDP4DuSsdAx+ndOsZlTWJJZ1//xWLANtPlmlsH5c2yDP+S4FudnM7Vi+q703LZ+ev0hAAVYHLx7T3q0R4LHJOvrVJauGbBtCSqkcRMHkOxPZO3kS5QnO+UA6WP3CNHbY+TbNQPQhvHJQzM0B1zQJw6uyEmXt+fYVELNmSuekUh5MocOsLqg3aLs3Y8tJ4DyeffNjWQBpBf0rmjXgq7A8nXKuRNnbxxqgStQIuJU4f1Uf+yZ98iDpzNyHCKMtRv6RbG96Ihah6AgxLUM2jWisVtHVwcvyqNDHjSCvW19rdg/VVSB150OVWzsAkjB9tkj+FQOl62FYrU4o0NJ3aZKNmCrpoiYj7mXHINK6lu0S5TPEoxqCKoO/FQFxA27fllgF2+HVfVIWjNc/rYNqv1kkKMZ2ubOtOx08JHVBqTBS1i98ZD14d+v/h067tKRWg2f/n1Huyje/sXLdNbXHmKDyD6GGQQxxs+YQ3SSWIpw2yHbAn1Z03nO8okxH7X5YVOenkpCYIDRTIIwupsDHUWwf/Zo0PLd505fC9otIqefC1IYbvf77reCvgrqm0GsexUPgUf5b4LnF8H1N8EKuLBiGc+8/m0PIcoA78xBKn+uoi/OXmpXxeMXdUBhFdz+FqybOOP10RJUsMVBAzJWOunv8MdQpdz/7QPUQzStr962tvh/LgYZ694q6r3j8tfmbIG35hor1+qOjngE2lSwflXguUH/+jVo4TWjRRkVo73IfOUe6/QDim7mM1/W3DPk/gT2hrKFVgnTF0qIyYp4hYN1Cf2D2FsB2L47YNWDNVAU8v3V1yprfHfztr9cR0Na93zPYBfYdfF1TObE7RKpS20YlnPNcPV2SovcyBTbikMsclHlLLQmMvQLHk+P4Ow75LJ6VID9xL9su/fDxRX7qcqe+hbT4ZxCnEsZwqe15HsYAKwVdjJU9081gKerMwFeN9hK5kusQw1HcVmAvUO/voEVWXxvrc4KiP0T3aCMgvM8V3ipx96xf7lkCpnN6XESivoKr6yzO+DmpV87Mu3h2SPtzO/RVy9rvH8qow/Y7dGtLMdKUNmM1Q8U9bc34Lm5NhHiTAhHui8lWTzeDwAMzkTUYCJW38N7VeBaUb49gL2hPndfw598b2vXGlVihgFY7nuyEaQosFqKsJZXn3+6qtt9UT0i55NNQDttSKYfxmekNXSWmw7Ggj5bOtomAikyGA0irm1EFsrbnqwXu5QQbC0BgLijrsxHdzGJAYKKZIUdpjGiC1jWPCN7gezrW5x1M+X15LCkCCKdvm3PMpTnNJS+htjutvne0Rr0Hm35FNHU6ANcWTIWKZadNk+N9K0EcCXX3E+p0c8N0ks6CQYdfTznWiebg4e2f1/2OPtPVRoAHEsKdgPQj+CtGRKJZ9WOPGv9nUTVAxs6KishGEIIXSjpHV1KanCJeWpTrzrSsQiiNnN2HZCpoOiA3rfs5+wz4JBGhqUeI9WTo55lccnKmIEAAr4ECU54FOfdAaiagS2LaGc3yKwbYnJUmA8qf+bt12m/58UccFa4iDYeyiMy0v4zUJj37JbZmHM0mVfSuwn6AYCpPzvp3cFOmEHo0C7ydk9gdV2BeTw/Arsem0e3+X5xXh0ZHOEck1HIM5KOHfWHEI9neUoCEK1NdP9gWRzAxCPjZO53OuEDbJveu53eZ75m8OTs/E9tI/t0OPbTmJgN4CFZYVPAjL8/AxjdjsANAcP4t5BhE++SFSFYqYK/y3kUjJ4EfnWsoWjLDLz42JUEJnOs5+sEjLluF2BWc0ztBAQPwVxPRTisk49ABc5hBjBzHca8iWpcBzBDJPQSPgCeLHSWGsaco92zyPvxO11/DEAByAH0NALmv0YEQlx8DcDI7ffwvB+wpC+/bWkMWi2j5BGRYkU6agjU8135oC5j0+MkXjWE/aZ67HWUEQIwMSZCI6CoG4pkQBSFXWs44m0AA4w4EhVdF4+KGwIxHYcc70cRL8TzZWsZFeGBXd+aO8Bb87zULmkssVY5BaGkm59RIsE4OBki5iwIbQa9Nzc8KcA0G2E6gAouxBS8iw1TaLAsxddhGKekqAJIgS4qUgsVeMmUUIRhh5zB0syN+8WNZD0tFO+zBf1aYRE59xJW/nuvfjAW9Ls8W8NBJd03O2RErkZ0mU76wqoHi1AQPPuJIoP1zZkR5dmd+i8+brqRguQsAd0a5D4Mu7yiHB7FOPVpOTY0Qh0kc2HDjFxGpC6F3iRSO0QGC2N347ldQpBrtxSktWk9mQp+/OeKx18E17/6+ywpVAqUDbj87i/+/KWgPA1lM7TF58H+4kKf+0UT4BoMBx+TFg6/CVCeXvKyPDwNyGKtoIdxu/jaA2KObJLq9+ynLLGmQL9UTzUIg1CaoV0Ez8+K7bPg+SfAvgvqDwdJYEC/FIiKT3dGnJYCK7FOzPczWVwM0YrCbhOIwSsQZUbGZd9D+2Mc6BmZYTRwXY6RS85VGoa8ztED1ZFqAAyHnd9THdUT9halcGPdPpn21IcoIw2ye+y5y8RMmNvAxcPDsHevtjHnG572wLzP2TjbBtsDKg5URCobHSxGS7Oay+7lZAkqM20ohcU0qjOYuQAc0+TMch4B8PcsesifdjCSGjH8IPxwbzRAoh2N6s36IWBkIujXJZhWBF/mDzDdz/9ZHu5g9bUkVZ6Ci+XhfashskqmEVkNdHCSnQCgvvUQbRT0T8sU6QSWb08k7Rs4aBz0a4UsLmyZDsh034y0Jhjvzipiz+lFXcxVgN7dQBvlq8aepZsHDtpc3Skdajm2L9XBgTKVHrbiaUUaFUk0wKPO8n6kr1uwcS7L0CxiYCNo8HSaUjCVwQ7OWXVwUbcRUJC9A0GV7+oVH4zANfxs172jfV49oh+pkXQwk40pkuAh+0ruT9+e6DyfqwYQEGLa1X13cyj7xvdNWwPY3VnpqQC3WJtbO96T84D9bzb2DZGIyvv+RlFHAAO0m9smOASQDuML+Nok8MJnyrQeabfN+0Y6MMgA0MG242dot81sKBmCjVmth/ts/IwVwCT68VBmPOwzZ42GnfRoKGVie072Sa7RYEJIpAKcNbPeRW+7QaQPx0PGmJgc+2LoBMUYLfP4Tawv2snzu3Bs+F8LHYBzzvYZxMq58IEeDy+mP5z3+/liIO8MitBZnKPPM4DdFWelfYPl+XB2NgdLdmgQDGDjtKbO7Z3P4IlZkGUf5/OYDmqwFlLdX8KnSMZDBMTm9RyfS50EAiFk14i48HyfQBnaE2bjOWzzOW0BGE4+nflZ02Fux5wGwzbqBBrlvtCO32elBdopnCds0//pNa/jwziU/PlIVaANN+Yw2ZLzWc3vZQrEdE9hOgqQcyZTMtiWWSSx2/h9n+YhtarYT+eLfTWNa36X32ntWHqUtoaIBz/UjnOWlTXKcR6ey2IKwu4sZ2AQxxSqD64/BqAg4gPdOhBq0eXRIJF3JaDTHIdeAdAVit1RchoZzJO7LsNQn8WQ5oWlHl1ghC2jvr2/ywU0VejegmIcB2QdWgcJJnQ3KDwX2duciHgtWf+bivDSeuo6ZLsuY+N1hNnS8QPbuZR05rhYnfrmBpsYoPeWuaVQRJ3Unug5MIBcTFQspi9k6UzA0fLQKShvm+eZG8b9AVBPwiP5Iwe13Rb0RVHe6AzEH+sotdWjKgF/r3vjKY1zBY8s19nMFwxKRnd7FafZrwr0kg6gblF6cWVeq6Kvk7EfRiXfkUyHaEKMhb+v6eyce7/Ibp4PD7iSOXwM2qUAXV1PoPjnTYO9gAAU3vpB6bvc3aHpK3ObI9f68RyRCc7LJRSuxQ0SfX16dYCFkXlnAXQA+01DFd5TYaQi0yBSXJCBnjDq5ek5yX1RT4WBK6R7+op3kBXB278JXv97g/QC+w2ob0jGqm6G9WvH/c8F22fB7X8b9DGEF7cX13PYboL6AMpz0JWzrKloCDIC5WGob5EXvjuzxiAou7cvI6xmqe1AHQI6rXLfcoNstwXbS016q+wGXOBgwi/A80++CcsuOeb7tUCrz4FMo4j7lR+br/uIzMlzA0oJWjxztG20B3BwMkAPGpK8KMzmjJvYH5ql4GN+MgDSQ+RPxvxOAbMtjJHLkgem1TIOdzOfa2YhSNQh2J0VwPy7UhyQUBnMhMuahvn8bI7FOGxPhgkBX5Z/5V5E54HtADLfVSTSDxS+f95W4LGPiB3XxhbrJqoQZCrPqyu/y96czVID/H1u/nnme9djn1gtrrSPAoh5BHop2D7XdNYRhknaOeFE68Pn4EEYbzJaASSj5mAcT0wpOsxAgMFK5xxgdSRgsASYPpcG6JR+Jc/utgbPi1dqWHgFgv3Gs80BcH0i9CcEkJKRwH6pMU/dEaXGCN870xmp7yJyqEDDii8+/gCwjhS62Put+57UL86m0Ob7g0xnD3YMoJB0fTNI7Mu2FLRS0ViSc7NQ4+8hBKnRPneCyejTzeejxJzutxrOfXewYAoaeCWQGFqC3wC0awQehvE3C/+y5KtrQXW0T0uOKaBApE0c0njCMTbsHpF/bsN4X5bM/+VnWZGgV2cbVkHuKQTPWMnKAZwYr0XRCdDe98FyAAYwpsgIJLU3LGwUAhlWIo2JdgPfg3+qHaOUQflNRkNommSKpIofYnQAFfA6wcN5maPrZpGmOqUjpZh3RAslxEctHO2cX3RACL4QPAAGQAuMvW0WzVVJJqbcH2BlHE9Fk7Q1R+DIhuZT0QQrDtcJUMZ5z6djO/dFnwBSvsckyCu9TyAycEjlmJ97YNTIAIJnJ3i++JnZIT47UMyVn5jB/tWTk8n5RuCq9+FIT6CB8DzrHZDIW59p6mYgAjy+784m09pmAT+Zlfrn9p/z3lUm/YfpHJud8PmdUlvAbQxTOIjlkYoEIbwf/L4HVsPc/miPiJ9//h3//EGMEEhxzGSN6NwmhOEm4xwtOiqmsf+BIzjAcZwBCNgAG8I5PgAfQFaESmDh1KWHfjs5/B/+nOOAaay6OWDWw4CDZjAhhWDL8RYJJvA5KtEvCtikOSJImwiAa1ycxsQacEjTUTk69vN5P+sqwI5z7AwOUDshx68cn3O2waK9CUSdWPuz7odEIOwA1PSwxU59NV9/DECBVxiDdALkuaNfV6//20b0n8JzzBO05saNXZdE8l2tHDC4AJ4+Nh+k2+rz4u4CgC7wBCQiHcjrELuJDg0akt0uLk405dQB4aRMBz0MbqjK6pRokUzrcJEPG0b03oHH0x2Pl3U4QaqQ0lFjAe5/vgFm7rTsjnhD4WKSMSn00dK58Wh1HSkABypapAmQaWHhWBcvl0SWQbsoJCI9gNPFGd03wajZKziIylFsMtM+AiFv13Bsf+ywVbHdrkN7IRkK0f5FgT0WVRh7ScmcHHeLNITyYF64z5V+C4GuywAdxBw0wIt6jnx1Yb7lO8X2EJuaoN00SyECwOPPUaazIXOR7bwZiWQ+frso2lXTQTYa8H20V0MtXAOEMYHXQSe6ScN5ipzi5ealBb9cnVZ8KSk016sm9RkajJPNsHyLtIE/xRgZN013+lmfu4UonN4q9NOC568V+zXGugPrtzDois+vHpVM9C5Yvhquv/cAHxxYsALsL5rgAEM6+gyjwXyO0RlqCyB9sAW0AeXe0bpCL56GsF8EphX1rTgTp1um8SStOwTvhOAYc01FgBCzdAEyYPm2jehfgHSf/5fgdVfsXwT1DizBUGgXny9mGAdsUS/r+dgOBtyIkPla3X+9YPtccfnrA+V1lJPUH4+cO+/EQ198vWk4vfrtHiJsC6R5FEIC7ByRsZiwexi9e3Mmy7UMeqaIrytSeck6KApcgk0RoIeFYStAUkMpEmR7g+w6oiBE/YHBKIg+suvFDfdt96jBc4usKoHcT4caozetDborD941mB+9u6MxG51h1KfOAkGkYPn436PtwU7T74/JcAhkP+5hFz9T0vjem6c/rNVTtIqvMQlgVAyZfvOuag7PjA4Hy8M4txc/U/ri55pOBndfIpWpX6DPJdb2KDvoTKIO3Rr2l8VL7b5t4Qi70eRCo3HvhzOg5OGOtobj57o97qiVN08notPv+3bNtAMX+wMsnPysANQNtjuQQPqoklG3DAdbnh2oiv2TO4Dl3nMPyn160uRxAVSNkrOKLfac5eueIPDhTOiGThp+tN8WBwCX77ufSVvL9KRc+wReFnXBQeawC0bbmT5Cx7aqd1yk1lmc81YNnQcDKfmI75m4Zo8gHPbYi4Ld8fzzirYK6luI5FJ0eWY52bifVSTNn06NTU6tXZYcI326yG6C1OHslbfNBVm3KUgSlzyHiKWpjipXxYGYvhbgxQUfPc1jOOAj6NJTGyLHZSn5LGk2xAHNhg4F50CkO9mCd6kdtDXaiweH9HUbJW557c3z0pPxhRwbC8G07NfQcUEwzBIomI3r2bmd/5ycfHnuY1/sGM4mg0B9cqDC7kiBydCLgghkDSHLiVmVmh1m8PKXM9AyOVm1RD8cAZZDm+d3mr87OX9zMC6d+zmFhmcrndkzI+GQqkLnfNrTD82ycY+kw/dgzoXDdq7eA2S7jcAaFfrncouxJg9pGfngDtsxnE9esy4QMMCariHgSEdzet8ZTGB7yYBgfx36L74j8dlJPyIvpibMNH6+9zuQhmtrcuQZQJvLcs6gFNsN5LrA4mecADBpnqLY2khXfAcU9eM8anZ0slVGeyXsBeo80ZamnUs2ZM4vHXOSIFopvoYYlJ2Dbod54RE9CVbj4d3j/WdQ71A5ZkoNyT+jn7IM9/maAS7qhsyMg/PF+Umwz7bhwB+Aw/CH5tQbBHgb7Ju8n9QhUMl3iDGwifWQOhxkuyXwqIC1kQKUzzoBONP1xwAUpsOHtOScHLFOBw2/I8WX4rtiLrBkpUCkuxMKHJEnTsDILZbnliWvkmbcEJ8Zaq0GmZD2klUdSGO0mEyyu6LwIUdQFYYRbdb7qChxyCej8Yo4EHrQMYsfFhriUM+/XIHugIIvgAYrbtxSoFL2iLhk9MPzw4TsBLMUhqKieL84pb08QjgxKjBkTmR3w9BzYoN+XjWMDjpVbvTREHQRMwzBSObsLg5eOEXd2QR6FvCKiIOpeOlFxF49bQBJdQcyCqdbhwnbgIwcW1D/dVJKztKTxTc9jVrmVl2Z3QUEXZhPOgCB0/KboUx0tvS0eOBGu9vFWRAELDIXFkhmg+4eEU9hzb17WozK0HCYqGZ5gNQCu7iBb9VFBHNTqIP6DCC1JxxoWtDWGs8Fcu/ZBg3OxeZ8nOTizIH9KhFFAZa38b3UnGiAbm4kl3sf990NrTgIQLYIL4Is1EzQlSKIIe7YAQ3HQneDhdDoHuKM+01hakOsLtHeGI5ZcLWuI8oTRnFfCvq1QB8N5dmTaWOLVzlYf9uxvazQh0CfQAkAhOwVI3OI63drHq0/X8lKaOir4vGrYvleUN5kHF50isNozhzgMkquWhFgF+jjCZPL2JOKhpNqg94/7SteZtKAi6uwu2E/GcHM4+vNa0Q3BW7XQV+n8ajqB2dzICQNsh5q0nTgabiI5JylAWNLHZE8ANRMyGkhclSlZhvPF9sUNdFl24cwHNfLtiMpmzTgn9sxilg9j5CVH9IQOiPzNEgm46YTiBW44wm4sbj1kZ432ytJb4yFQKBpb+hBQyd7YJ47WCQESYdGDBDrvAOFlQkeDXKtuQ8ypc4CpMgSrQDm9ABPRzjuq+WtHdgQtkb5w0VRHsjykgQbeh25p/MYifm6slrBijAuUBgaDgWQPdb/sw0gOu7NNIncx9W/0wJQqFWH0Jkg93l0g10k09YsmG367A72xDlgReOdwmDishDxgPneQ3NGMiUu9YJsvCcj7EwDy76ltpIAySWy2NMiYNAWzXNRuju2+9X/XZ40vuFBtVnNRI86AAAgAElEQVSYLjQhhHM16caTbRRzN1PggvEhdwcRpfWx9qjH1Gg0j3uQYWJXOiL93f376ufQuhsQQC77MkUpIwUi9WLYd3NZtslJyhS8uE9WTQjGgz7D4Yhz3CttudiziwxPc5L7FR2t6b6HEn4BBtv8jh/sQUx3lfM+kZFJi/xzG8/jWPI922C+GHSkdLAdzOc2G/umTcCAGVzUezj7ZEGOwTs5jNPPEpQ4zZd3kc2Yf++uOXVrBhvyzJCj8zc/n9FW3mJ2soKdkk4pwe/WHIg+Ax3nd+1RRWF+1/lMATCzcvO7ZkcHSqOdFDqc226eX37QfWDEm/2RZ+v0nHlOzu8dLIi08QiqzJ+d33EGePJ303jMlRGmSHvek+lB88Wx4qU84ziedjx7sz9mhxdjTKONNp33rLJhiHSMad5kCchMWRvASX7uo/l0vk7aAKO8ZBkg1Ud9OO8/p7+bWTr8h1SfeZ7/7JrXxBkIS3bN1K7UdjAcKi+witkZS2MqQyovz/oaApZCNjMv38zvhyJ5ghCREXAQowyDgxUeZF5DH1x/DEBBnGrZXlYgDQeFrmEgRZlCF67yzVx7AdWf04mPSdbXCrsU7C8Lyn2Hvu3udC9loOu9A5t5rj0Xzt7cMJ6R3KUmiIBy8edsw+CyFWEcBZp3O+Vddhypd0sBlhv6taIvBfXrHfIcBnH58XQDJkAIL93WII+OC0t5RbqFRY6nH67+Xvrwknj9l3UYkmXJNBJsLUvjmTpYUX8LQULSSVtLA47ie0yvkGZAZW6g/7u9hBDk9yhPpZKsCLt4NYV2qy7ueHG2SZa0Is1Ogf3T4toCP3Y3NFvz1Je3DRb9hci3pcHSLz6m+my+/zeDrYpWNbUYAGT0vtw9OlXuvvMxsl1/a3FOqOfVL4L66mUOhyHJQUSI9RWwFJmnszjDY/tS8P2/FI9sv1qKCeru/63fXPuDolup3r4OQIqX3ncvaWoGWVdgqWi/3Dy1giBC8f7rcGaCFUH9sXvJxXtQrVVRRfDpf2IY9zRuYsNtFwFLMe43xfOzax5cf+8J6Dw/qesi/G1LQOrT/+q4/CZYfziY0K5uGJe3Dmk+h5YfhvW7Ow9WBG9/cap2vRt6BfbbcJYu345ClfuLM0Xa4uBMfXTslygteVdovo9rK9iq6La4ajyj/dwfTDKdZwacjsaGq8zf/mOH7hShBOqPjvLoHuHrA5gD4PekAKAZ5PvriLREFPT5S8H3/6YQW3G5Fdz+53fXxnhEfj6rKSzVy9zGflW2Bv39NanNAkBJ2VuqP6f1/B2em+9pFFM0j/4JtmEshWHmh4we84/f7n54LnTuFca0DzLDeGB9+YwEf8NQcR2YYDUQ7ReBPJ7+DmQulOICVUThzWDPLfP0PBdQYPe7H5Is4SgSjIzJUJojYHyPvQPtGWMwIrao0+HN/qHhNxt8It7WpaL9egPL8okZyusT5TWmy2WIWBIcZApcf/GUtv2LR0XIJtC3DXZdU//A52eAjpOBX18blt+3kfZ181K/j199bdY336v7zUvw6Rb7cZRNcUeLwnFAW1dIX1Bf18wbT4eQmi9RsUV2Fw3UEMAFKnpR9F8uqQPEdAiIr7+kxee+EpZ9rFGDAKGhUF9bOtgEfLtGW+doVsyj+tYgr4bLb1yn3L+QQpBZWUjl4CjVV4uzUGDmAYTytqG8wfduft4s1zfnQF8Ub//JdSXW7w368HKdLtrZXZh5b+gvV6DIGP9pXHml5kGcs+XVbbYSNk9fFGXzs6Y8up/ZcLthfxl6T6nD9BpG91LHHsAI4uKlZbVb6ErFnC/O8LKlTiyQaB91EjZ+LlI767SuArjT+w7cd+j3J9ovF2ewbFEu9DExh6Ifs7LVFk4hU1PePAXJrius0NaKfZXjSeAgwE0HWzuE1PAJVKK4qkQQKIHGPolYB6ByAARm5ygDBOr6C/HuttYBJqgBrMzTA9ShbUZth+hTgwBSIGg4CN0xtWMpgIUjwLK7bBuBBPYbmU37PmjrbDM1wSab81CaDzjqb9AGm+b7h3o2MxBy/sw8zhptINX8fDGqnSm4x7PIn+c0cdjmAPfMhmDViADUqQV0KC3ZItgXrICMuO5TudVz2+Zo7NxWkXS0huM8g00eiPSI7zQXAGTZR95/XQawwfbyvgQztB6BBPZLN0ix8VmRgxhx+jSzfgTvrZMQITDOvwxWfeCc04F8uLhxprqkoz99Jxkb03e5Jg9AUgQlRCBlmsM42gmYgxO8eh8/p+0zP+v5/h1sP3neOvaB7Jv5T2DYAJkKoQBin+RecgZ5eG/AbZrWQAFnKaf1WSsEUUZ7Fojl77m2SsEhzQZAlgUtBT9NSaI9GkAXQj/CyFSJvpMZMKNwIyuezGvgDIi19h7QmK4/BqAQ10ydTOE+qgXz6n6IGO3/aeM+bJoiwAfjnhM972cAOsQiIjdP1vx8/H1Gu2ckqyPZDnQsWSEBamlQZL56RKSczqqQXQdyHgrcWE6UMRtpEH3RRPD9Sx+8ZhjjGUEPgw59RCwozOXvIkn/dNAg+pA0VPapDceaufYZ5jD+j/2EADwkI+ezJoI0R8wMllGyucQl85ikdzcstI+FEO+dWhiTWIizIwzHMlnwQz2cB20G24OR0WQc/tEfWbZRZbAIpvtZLZMuAo1Xyfrq7SIjlUAi8h+AH8s3tluBPTuklQNN1N8BEeFrI1IcTmdfJuNwHnsZ7yDNDnW1AY+4lYdH3Xo4AACy6o2/g0HaGEZtwVxROOjA/FKCLH1E76VxTPwFGIUkcJVRqwK0i//Zl48mr48BU0fIFDGFl9VsSI2Gjy6P+IXo5y7HNTx31wwSzT83A5oLZHp7BVbdwNcnq0kcRfv8i8MIpBHAOT+YSxhU+PM1RwiKJD2S4qfO2FKQ9WBJLdQwqOV4GE7GRzrfFC/kYUsHnZQ8YFBGDzm2dojqzArcH15hzM+pH2fDNtvIg/uwL08RxRbggcrxO3O5u3N0Ie6Rgli9D/aDjKh9tt6OEyEdEQLOS4F18zkVdeYJYFPPIfVp+DszSAtnlQ5SCDay+ozvyTbA2pgHucfujFRGn8bcGSVhDRnd6YCiZxoWGQQEEzwaG5+vPm/oZPc6WAAQT9dQAuLdDlu7VYFtQ1BKcs3HWRHvYtEGZ6RhnBPR37JN+zPnJd/zvLYMQ8+A9O7CMCTeRdfk5LRJpOLYxHxhcIEaCjL9/MA+Ssfp2CQ6uPm93mFTKHdmMWT5ZZFk8B3OHKZpChxMNwd0KPZ4PutddFdHFKlMgqNp9Ntg8PQOVk7IFLAyrZs826fgh8UcQqyxOQ1F/Kxg/7hoMwHyaZ0Hu5KaRAcHflqb6UzUWBfT/KYznqwsOd2He+t0xhx+VxRME7A5JYr23rwHTY5cNvO8T8yMHtXBPpifqaNd+acev/vh3jnvYee2cP9ln5E2zr0ynXw53sc+6JOPnnl+XjpUcYVW2NAJON3r/By+Q77/eU2Ps+GsDZC6AjiBPipusFgb+3+cRTZ/F0BOunzcYIS8o22fAYaZ/cDfnZp/eMf5c3nWBnhf/Aw4MGFmR/v87h9d5/k1/3m+8hkfjNFH1zyW02fdbunH8zt/qe+//9P79/F59v0hPaQ7o+gf2RPsz3ktzBH9j9YLn832cr0k8xJHG4nfPbzPB2vlH1D+ByjwkzV2+Nk8B2TYVD+7OPcJqPH6GTtino9zO7iGec9D+/U9gKYSfo7+0zb+MQCFbpCtO9340aDfnyMizQMk6I2yjclgcqT3uU4AIL25tkhoA6Cql2jc9uOEVYVdqkcJ3x4DvbqsYURGObUo6wWzgTzHgtWvb0AtaF+u6LeK/VYjCtUDKZfBimgGiFOtGSVtLyv6pXruYWuQxw5Bga1j0yBin+XFGNFOeihyIrfbghQCKoIW6sqyjeoTMFIfPb91+2XkTNdnd2GtbaRFuHMXIEakOtR7S3HJ+t0pw7aOWd6rQi8F/VIj99Xbevm7R84twJS+aFIgl2+MXErqIkDV88V7h9zD4QlDnJG1Jgq5jT2KOfH5uYldQTpwed0hrWD74iUP9y+XpEtKpJw8vyzoi2D9OvQVWDmjrxHlDgoDmQ7bpxJgAlCeQLkbVjW0DXh+EWe0iGD/JPj23xX1O3D7W8cS0W+CF/qYcu/i8LHqZfoQ1Oj95noIlf0idNw9CirNsP9yBRSe8hAgglVBuwr0gWBXSGpiAO6c6G5Yv3kudXl29KQs+3u2K50ReGSzCtrK9A53MLbPBftFsL8A9U1C48I3774Ktk/A/d861r8p/vQ/eoAPzpToS0VbnN789m+C8vSyqbxuf29eFi+U7PXZwhGJMqefFNIrpAPL16c7I093tvriJdHIBqLooZhlSUltDXrfsfy952c4B7Y/eeR/+fpMRwEtIkjUI6h1HHS1wG4Lrn/dUB6Gy9+e0Ndg89zWg5FBgbCzGrldV1DZNy86EfEnc37l7THYVh+p8vbuh4YIkmoX6DkA4PlEsh5E/AB+brDXt0MuXtL4ZyGmfc/n2ucXdBHotx/IiDPgJbGMTmrsq1FhQvbdwY7HE3K9OCuBfTpHDVQglxVYF4+0MnpHQ8rckJNagS3KdhFMqMX7l3mXZyNeFf1Pn3xv4l6rzCMFUjwzQBlN1edheBHg1NcnrBTotbqzSIcnFPz1GWWPAZStw/bYq7jP3Cr2L0umF7WL7zuX30MUcLfc97jmWwj7yt6hxSLNzPep5fuOct/RXip6VWyfSzqxAFCevub13lxo1ixLRPYqycTIa2b5mIvw0sGUEO0tb5vvHcG647/7OiLkmYVDen6cCxIldHVj6tAASplLP6vmM8XDWYQYhlcHBF5NR++7s4IYpX5M1UOKehQ6znl9dOABfA6mQJbQLIJ2cdbd/0vdu+RIkixbYkdU1czdIzKrbl++7iYIEOCEE26Aa2gugOPeAwfsJXDaIwIccsY1EFwCew1EA00Q/fq9e6sqM8LdzVSFA5EjKmYRWe9yVjQgkZkR7mZq+hU5cuTIUoDyZqK5AqB/udiZ66Uvx6V5ad0yK2/4fBjV9uzy6FYeeilYvu3BXoPCmEqqpmMkBBM8MLAYjTfEnOUl9Kfwdrd1+3QRUhdrxO2C8bKa+CP7xkHLInbe2P9hDh1tcrICX2yPVEZkYc5Hed8tnSKzwjZLy+wvSzhVwqoaBEAySDgGZINVzREE8LG/moisbGNqQgFhB6gI2m+zFHWIZLogpVBH4P6IqDg1WujsSHNKdKsWtIo5jojKydtj5ue3iv2nq/UbWbS9I/JsozpECftxdlhaS32g3J9uB6cqM+syS+VSQ4COVCmQNUXuE8sr9DS4Z3o1qNBe8HZoq/ZZrmdGovlvkSi7SwAmwGZgVmcIgd0E8DI1gSBuBhMY9eQYMMAUwp10hg1EVn9WODJFoo91M9HjWYXBndci8zsJdIjAXeTIp1TS4n3Iz/Ds7c8AOGYw6wykJMc1gwnsy5QLr3sKkuo47qfD8+BTBQEyjaYzfQJYeEazLfnfZ+CHn83gQGI7xmd8bRxLzWrYCZLm23nOTPbJMaA1GQLzRzGmac+YoootQITQAvB2SNZBKAX63MJxtjLYrjeBYnOku25TNZaEtDbnZowh5vNUD3MEwEcWRE02WgRmrA8O6UtM/SS76gPAV+Z6KNWYKARPNt+fKILdKpBF21RnGhDfQzBBhADD0l7B96qf6D+c03O41oRpV79DT8AfBVBQzLxDCvh5RNoGCcDmEzGX3eKhpUjG4OyQmTc/Ubag8QIeJUjUGSA2xYNGQ87H5b5IhAuk4QkyBVMTKn9eRCAtlnQ9Rdqkc03o04ZAGos7x5LeVYuYkcp9w42RiuGlB0cIegkj9b5w3Nb8/HLgxvQckkFc3IGvvpgSxZR08HFpFgmDO+JqUXKLxpTIjyV9kNU4Zr6xt80phoc+9Pxlsllo5GmFV4zw+eT9yzk2WoGIK8sqEOVqm8RhoEtWu+Z4wyIlDVAxY0d2QJuBJ3Q4+2rjXh9WHjEUsyFobwgqa18r9he79XMTQO151aNAFBWMsa9uOFLHgmOpGkwUq8ZA8MHnMSslFDn836L8vjl3wEAR/yzBy31GSiOXP70n+9dABf+Mcu6JgamC2f8eeVUoylNRq6DeBXUzIEHdWFZJa4gBRbE5Z2CWVYoo2/A2JoQ5XUJDmdVI3BEMwcbHbgd1ldAhKM8pRkddkhgDn3e5brlAMIQGfj1G53xviTKWj451WFqSjDGjmyndIJ7dR5SInag3EImG/AwP9NwHNAxVj7XGD52T+isb9Rmx5iGf36kmUZ4cbeE+GlED77+IOijO1Mqg60rSzeHFZ2SqZbQr7efnP9FP6YAf9Uh3ZZ/x0I+IhZzux3lkBh6FgWdflGNkPNNIqZHj7eE6pXL/EHG2g0baAboehmVWdzAxOqhE6dqyufjpYNQNDgDPlB7pCG2b6LpLAUqbqToOToowXcPfWxBg8lhrAMpkJXEtD1+ngD//aqwUEUHxdRF7N7uf53ZOBRTvT7clTdvGDc6zAcYr9EWKdxaBHDoMdu7GHglEOsLs5I/7RpyNKQrHfcBKdwpUzkxEb4PPIz0w+7iXEZTVOJeKz69DYEStbyOt0ivKMFqfGU/ge+bml2LpnXQ8+YulQa8r+k9XY0hyT6hAJetDPNUogzW8faYPElSLOe1D0KaIMds31or9ZumBdetewvrEdsiMy1hP1o85DTDYd32yPOZ8UnPiOa/yvsl7nJgsHyKtvU8KN/cTSawIAobePpYePQ6ALQw6Yx/KxCbHYx6wPleKzBzy89yMeSbH/+fPsr1noUnVA1vs0FYH0mKfzu9+ev6BOq/Hth+EfUc5RpTPVwYOUvSe5sIBuDycVXNuzNQCnTntLJcHzLMn78s/yr0/VWwIMCHmaAITzpfI6TMu2lfTfRkdz9d5Ln52//OaiPby3TEDnPz5eezOjuQHMARzreSf53MxKPI880/vQBviNNWjX350HfaxH7yzn7/x78++/9lzRCZgpWO28Tz/899/y8X+zaUvh2/mZ3sgl/SU0/wLHZG0dj99noMpI/mfB72Fj2fA+Z0+aIgU+fi8vN4Oe6Qga+p8qG6Srj8EoCCqKKyS4C9i1FFYfqoImquim27AsSNYwSBKxnH9PPdZsmpoRLvhkXGWFJRTbkwIdDlCJNsOvV6s5vb5oFnqpK32gXaH5ZmuBfUNByorEXkKMmkqr8iJNm5TnTqE+uhUeP6K9AU6hgs3SpSwHExZoCM0pviWIbSL5+nDQIVxpHbSWM2VNEIMrAL1PtC+b+HA5trVfGfZB+rQiLaYKCAiL5XGE9XBKVpIai0GTKCqiKWkOZBi7zEnPI2h+t7DUOvXasKJe0XZipVW67OSguwD+5cV/VYsv39Yzv2ogn6rGF1RPMI9VsHyq+UIj7VMp70Ixos7//ceVRD6OsGcsgPXvw7Up419ex/AO3D9BxdIvHf06xXb12HfvUiIxlw3BR5qOfPdSvqx5J9eF4zrgv2lRnUFVYF4/nO/moNetgGtSzgGAKy/xcW/1On720whGUOw3Wat8LLTaDOgol8tUkSBRRNKNaelLy6U+LR9p93nOEONqdEe6noJVlLv+peB8ZugvZuB3FcHg6r1n6j5gVqBspkt2xfB9TFw/ftHRCVtPgL7V6veIgMGDOyK9r5DngP1m0XsdV2MvfTrGyInbzX0P3Kbt93avab8RIqaAkApqN8dLY61CdNooWErMh15btweqZVtP+QzG7OghnEs+zBW1GOzyi+vt5naIAL1WshUH5YnHWMN0FMvK+S5Qd/v7th3yPV6iHJIM+0FouIYwzQ66FD0Ad2fiFzwYWCmrKsBW5tXqqGxqooQPOLPstghANwfIQAp16sxwbjnP+xZ6s9BacZUSHmQwvSYbQtDT+gwMb9yaUejm06VRy1QPVrpVE7ZO/TxtDOAub8YkOceQsAWKZ/tCOYWx5tOplfi4FzT23I4mK2cHlMLgOW7oL5hVot4WhRVl2JdKDBtmOdR9yYYDN3PEjcq+8tqFVOCeWEAwvZa/D0Q/77+w2Zipw76USCx3Q1QG2uNUr79UiMVoSSWl2wdeGkYTVC3gVELnj83qyrzfcdQi6xT+X+sM60v0uX8Gtdl7rMwgFeKmDYQEM+PSAlgqV/V2mpgyDzDBwAZxhDBgKUQDkA0gYSLAysihxQEE2xMQQUyVPaB8v60OeSAUGZW+OKPvqbwIJlyowlkN8A0V0MYazPWogABKsLZGQX2fjQ7hh5S+VjGMyoEOUqhNWkkuIOpX27Yv17w/i9XqzD0HNFeKyecHODFmFy6OtClCJ2RALqeu6WQSAUF2/qLgfUGzFq/bF8XPH+uzrxLAti0pRLwFuU11Q4vXerUctoGyt0r8jgDM6eYhLAkAU4GZ9yBV1XI0++d88pdPC9Uzksxy9gDI7q49kEoompE9kv5qOEl+7B35Non25Tzo3oKFefMgGlOFNi+V8bUhMngSKsTTPWodwRxWLmG+fEsWzzmPhf7MtLlrDLIYmuE96cDFI6/78vUCfKIKlSnMKGzNnRdApBnNJ5aBwSodd8DcJC2TmeHjqx1aDjpEclmKflqeltkjuQqBiH4maOvdO54jmcgI/ezO88Big2dYPzvOZ1kSVQ7SymCOtMvXBfCn2nnZnLMPgD+ZQYxc/syeEM/JFVeoLaQXK/zbFWPYpOxly+C3yKxzuK96TAPhO6CiUDbGX64N4Hts+ihzD00+prtyp/LKctMlaQ9sO84gC16CoAMTAFc2iHZKaZT311Augi0tUhVOwQsCGzV5BMyxSfAFPv8IYWGIMsZvEltPpQvBcLGjPmQWZwcA8lzz6qQSGavBhOjRpvsnZEAAtvPPwUsDnP0BC5lsKU1SClQ6R/vka4/BKCgRaCXZZZPA+bA+sRidD7QcBc1mgdmjUhgGP/u8GPBUSyRm3BGaw90L0dZd8+Xfm6QUlCKzA13MVokDywZCnl24NmB1wXdnQZVTMYBrxTFs9+JbehnsKIUoOo0Xl8utng2Rh3ds1P1wUbUAR8XnwAFATCYAZre36PZ9VEt/9GNN1G1qCtghqsodCShxbVF6gQAc9rH/K4dZBZFO1RiADBameyCrmj7iMh38YVa7wSVXP071b9mmkQ4yus01gAY5d8ZGbNO+QR/IIhoWZQ2GwpV0+XYXylYZJ9hdE+LaR5w7mlzav3FqP7apr3BihXbiwAvBfVp1Qiw+e+8Fvr1P1aUDWjvissvaoJf3mf6erXAPit47AP7n67YXr1iyFNBON+qZAggBdqAfTF9Bzr90aZiYE3ZzeEuj6ltUAADQIYBR/z5aKZjQEZD2TSEH82IB9ZvA/UpqM9Z5tGMdIUW9RQKOLgwfAlMXQSOZa8STAVe0oF6t7Yt313PYSlRYjTGh2sssweeTrcuxZzRVlxQ153QMtcaryi75ZVYpnCZR1x6nywGBzJZhcWET4vpNiSBxUibYvrK7k6qeM12gogEP3MUnM66gwbC+ex5wdZJyRlKxqMUy0GNDv1MfEnkWPrIgRCpBcryWd0iT3K7TYcpR2T9uWH0bm4sJqG40DPglWmy6f+ZtXCIcJ1Rc4416aN0JGiY8IAmhZhGSzn2m9Zi9Em+R5vpAhgIwFhrAzUSrMxvSktxIzjTlYHkBKfzRjFTF+qj2Na0m0grmVYExHWpPm8GZJhjVzY6CL63Fi/JKNRFyIsHRweXPwMM8B22vrUC262gLZZnb8KQ1kaux9KB5dukmR8BDoRTVR+sNkQNlAJx/QleFj0dB5DGFPs9Tc31HMzohDEFBJbf3xEgAAAHdndEBN+BX8DXMudpusyR+ySaFXuI/2hzCvuAVThI8yPuJRNMkKc5WPFebQoI18eYjClFaHII7RqR6agTMKAz7PM5xlyV/nbqU1a4GFBUE052cdR4PzEmUHszZpdVRZqVFOy9vM8T65DivVqLRV27aU6RsUk2h/pcBhAO/6heSnU7BywwK2X5faJKl6oJI69l6hfdPdVhP+2NHlhRAfRSoaMCt+UQsDu8H53yk+EveR+LSSkndsOYDlcpMUfF+z8DDtYHfT7f7bnD3O167H+3JyWBFNNJpvNYwhkLsJbOK4GUlAqXq9zEvcJuS04pf56diD4gZweC+2q6IlUkP499y35OpZDZ3+pCiDmN4nBGRCrDR0coKgfQ4UqpKx/KPH7GSoi9pCAiwNRk4BUpC8440FNfxHfdWaW6PmCO+xiAltlWv6fp3Zzm2fmiA37WCgACJD8zA+180fkeGaRQ/diXeZyY4lIwgd7s8BNoz99Ldon1Qzn+LL9LVG/i2T7mfCOI5POHQGukJDE6f+j39L3kSOc++1BeNIMdMR6nuXEGQ0JwUo/9Bfczc/CCAAtttnz9gKVBEMr0d8aBVab11H6/dO9AGUeAJt0vQJWT0PjHG405f/Nnarpv/t0Paezz+mMAClXQXxrKX7/bD9xQi1xIisHAETJG3XZD5PTlYk6GI/lE9iGm7I8i2G9mAC2/eX1PhRnoPU0SThxHtmmY67Yd82Z7h/70xdR/02SSh5UmG2uFXi3CM0SgxcvBZVGjQaPTDu7RbLzK22aOTilAUSjq1D5YXfX9L99tMnmExcoa2mKX73dr020x4T0B5GHtlodAmobhVJ47dBTU5kyC980O5ShBhaDQMw9fHh2yVHPo/N2Z718H6bsSzmc4//7eY/Wc3aGhWdBfLDWCqtkUokIpKO8b5NubofHN+9QdckbP1fP3DcTwfNvNo3fiqRfFqL/qzyarpOxuEIyBfrNoXrtb9IbR9NIVKILHT8WqNHzrVnXgIs5OAEg59skQ+f/7TXD9qxlg9W6f62tF2RVf/70ZdvWpWL511PvcPPavF6AK9lRJ4vGnBduL4PoXq1Khzd/h0SHdDLftS8X2YmDGaF7vnPt/BfpFUO+K5V1RK7kOZkoAACAASURBVJ+9eyqBAQfLb1vM6fF18bGx+9TH8HcooFBlfUqMhaiaejtgImB+UYPBcqFpWArKbvoafbV+NKBA3ZE252p5U7R3xe0/We71fq3TafC66aOK+7czglbuO+T9acyOYqkN6IY+B7WXyHZEI20fkPsTelmA6wIq3gUb4LGBLATZAJEd4+sV49JQv/v9PE9/vKzmCNy36Ww6MCG+1/SfvRzscz/m3sU+MSICL0O9CkSF9AKtKdIbh6wDATQyJBkfBOa417n6tK6Lay/sMzd287zEfQcuq30mIl3HPD5ShalncDAS397tc2R9iHiEagTaHgZBazPndEsGVZHIIY62R91wBzN9TMIY2Hfo/eE5kynCsvfpKBR7/zAGGOHbuwE+i/1/rM5i2cU0d57OkkhRC7k/J4BQEA7ZPCPgBmXBfhW0d5a/s/XXXyY7zc4uQe0D8himig3fj8eAPDrQCvrLYueDA3+a9loKMh7sAHdE9xdfN4sxf7avgv7d9jemLz1+MkZT2RTtDqy/7LFuR3OhMd8XuH4MjHRmXa3OiCozNU2RAO1kLKntI+O2YMAFb7lvFWdW7WpsmSRIy8oScRuKHjsbgkLE2cBjdDjOfvZXRIwdyH7uNqZjYJQXhKBhdvaqYKBAitj6dSAqlPs96lfv3XRsnNEU2kEbIu2EZXQ5F4cD4AHeBr0YkOLpHbSHPQIbbBkUK0GsNX3GHP7lt8mOiDnh/TztIZu7o4qd6zr7xypjJe2KCOqUAyvUbBc7o9p9MkOoeVApuE1x0lIsAjcG9ltFv1Vrax+ob0+E2KmDI2QzyNYd0PXypIsDEbuDDSn1SpdmTvJ9n+lbxfOSzykB2QE7ORWaHaNagFLNIeiY4C/3yqftK3JZJ2Oiq7U9Ge/qgTEU9TQ8xcHhSQ4EwQTTifBg2JBgJliwyUSc5bnNfT1H23Muf74+c2IzSJvWDESCaab53rm9wIzm0uHkPqkSkeP4Hkuxu7P1AbRWd2CBiM7bOACQMkFpigzTmY73oyM6Jlgw1KO42Qn3c6UsgKgB7DEv0ruS7u4l7VGrMeUoAIp9nll8vt0YB+SLz8xl/4Af560n5mK0i3ZMZgYCx2og54ufzQ4kxyb6bBz/H+1N+6qqa4gcL2H6X2bU0PGnLogqUKeWGzUc4MwhEUVUJQiQbRyeH33A36WARMylchrj83fzPHERdNOS0smWPIMOhesZofXAVgl1PJgWmNp7SMkhsJjTQLmvZltQR8xd9bVxqPaRnnsA99JaP7AYPgsyxRyoAPx55dj2H11/CEAhROi8ROO4tAMlUkUgboyWx+4ofjfDwFMYAFiJJU7qDRDdgduCfltMsX3sqN8fgJgIH8TRQxdhCuFFSZs5xWhg5U3CEHaKLqlmUAcirt7OXbHfXITq3t3R7WEQRNmbzconkqYqmxu7xZ3emjYJwA7yi5UbYz+he13rVBFAHt0Oq8MC8ShMioABMHG6jJKzwoRHJqxcmm2IeplR+v3FNojizhzLjZUH6d7+XMWMrkg/OPfGqjDq9rhUYKmob08Dku73Yzk4HrqCMLQgBiLU947h4o9jEUBqRBPG4iXRLsU++zRxTwoEqsDm0LC20rArnk+838wwag+LkC+/7uh/t2J7kTB8h1OR27t9r91dL6DYn/1SUB7+7F1Rd8XL+8D+WvH42aIdbSkzgiU+1l7/vLx3tLcOUftsv5UwAOu9R2qNGZ7ibATg/SeCRzRWgfqAgS+76zuojWf73s3ZeG1RQo5AiRQEa4NrluARKdyhRxGsDon5ExUVhgNBK9esHcL7RdDeDTgwpoMCb2rp7zemhNj34/xMjgw8WGCsFhfX7B6VIRi42cGvtxXy9jDhP59XcTD4oacvV6fHM61hRrbGdZ1ODfeMInO/qiUYTLncll5W6KV6+bQOXU0PJgS97iaCZ2kLFLLwAzht/LLtZiTKyWF9PGMNBy1vM/E5xQVIImoHqtve7dCnwUYH+/Fw48iED7E02w8dVA00PgyfYe0ioOH3k9eXMBKUdOc+AN2h2o5UTAITLtyIcTSsmDIx38FKMFlKh4szAQYgqCKU8H2shBTWFH1QwCnM3n7A91irDW/dlIBdXCH7ahHWPhwArzM1hUy5RweY2sXcfk37A4FNcW9SAV0Ez69OhVT7fSXdfpsRRUbMy7ObON7mmgVApKBpk3C6yZYYDV7RAWDqEgpQH2r729O0PUaDpxppfK5TdLcA+7W4YG33NczJCWehOTtO537QL8YCG1XQ7ibGWqhvwgDAUqFN0L53Y0k9B6oMlKf43lKBiw+nG10hNJyqM1DfZ1yXtD7nGWznrI8THdtukSI7e56Hsl72eY17i3YDl2Tm0Ud56exI8awrMvsb5lTL0BizqFDAfZx6HYyE+7uXrRtTY/MzjA7uOZefTpsI0KaRLd3K3ka5aa9Y8oGwsQ/gUu3M9LTBcndqs4Me1FdgSlClUGIp0FudfQ6YyG2ukCOYNhefpz3ut3zbUF0YlKU5g2EAhAYNU0KyKLR4oKI8CPCM6QxIYo2R1s1raYnVcgITADuPKZKYQSUgysnOgdcDu0P6gO7dBLeb2UbS1RitbqdIq9OxHoh9lnZMzHOvpqHi9mdPwa/cNn/fcFoye4tX2rOMOVSPke2UwnZgNNBB88/wHBKeDyfBRQAuNqgzKhtgd9rPgdC7USCYycfJefp/AAze7ppAavZdwRFUABBieDoC8AhhyDyOfI8cCSbo3f3zO0tVpsix0/E/RMr57CJACHief39sa6SVsO9Pji8rQEl2dlVnKiDgdsUywcQtAUpjWNUdjnWAHmkN8H68eB77+8i64iASSTAqQBc9yLAc5mbMlXEA7uxj3L/UumvMdIMDMyHfi32s/Th/MiCheky1Ofc/QUi3JUI/KQd9aoUdoL73sF/8nbWPKIMdv49xY6qXARJKOzU/n+/GVJrh48qUhjLbfpi3ef/ns86Bqh8BBDH23hYKQjrb7/eAhT8EoECHk6rF4+ZVD1JZqXC4eUD0AVyWqWswNOXQwUGFHXBl6fJwIbb75hGw66x2yFJFWXgpTyDSozQZy6z5nhS+VS5QV0CWrhg3ag/YR4Kup+ZparVnWZt9QvYODBp8FXoqq2d5uHUCCvtA0X2CG44uS+9BfWT7rCNswdFYla6zT0RMZCsMEDcoFWY08fswB0dLs1x+SQ4kBuq75x7mDViBUHBuBUhCYbJ1CIDtdgUaTHuiq0VMeaWAqLUj3XsfqPfuIIWBJgOApCjVWIpF1fduKRFu3Iyl2prbjVYs8c46AYnVIjV0wOt9h+iCvsI/7+1TBzc2o+hrAWqzfhjNnVkB6u5CmW8bxvpi1RE2WM6vlAkoiIM0rnBePeeVteK1yLQDExgSE7sA2xdrR3sz9kF92n3hjg1FUKHqfVgxXgT7tUTpy9I5trTWbXwYOWQktPpcCSFIASwbmKwBziGPOHagbD3SFyw1ZD6j6oAsnjqSzwQHJoJqTdDDnTLZOuR9C4Q3NubeAXWGi0g4n9BhKG8YSA16mRR3+JqLPD1n8WgTj5r5cw902GJRpozgLxXjugRTKZwPqoOTFnrOgU0pEBFh33bXC5iGu3r+ZLyHU/513yFL+2QRYR6QyVDgARqREkbD6AAwX5PGGGt997kXxvOrAxRjmKo+jUgCAZXGhs9k7q8e8QrAR3WCCcn4Ur7fZbX3o2HH/eGQg8gJJMc/gw4nZsTkekFEEv3QNkBBoNIMyKOAMNu+2phrKeGY6lKAOtcEKdz1OWb/xLw2cKNfxdMMxM+yispzz9s8muWyhlOZovCjLCgY2JnipYj1Qz2c4cQb8X1Ddph2SRJiLbtNp0HiBKMszZhO2800UAKsBAIIHYyqKwJw7Bfbt3b/u7436LPPrTwBlJYioPPcAUzLwZkY1l8wodwKFO4tZB0SbGsAq0GVbUxx1q5QSc4sEHYD9Uv08ZjaG7sDCpXUYgMbC9cvAYUqAXSEqGJ6L87D0cRTICSYXlMkd8TPdAzIUnw9SJTBpZ1DYJPlSg8OI8En9teY74hWzMAnoENhYR4oUaHAz3EHDbIYYqST7NP20maO1iAg2ilKnOyfobZXF4RAY4A8vleXd08zfe4B9BlDsYUuANdyrEtng1hqpumgHJhdRVIt+Qbd9nkvOg6ub8D5kPsiAA061+k6OAK8SoFKchKcAn8YIzp8ZMaxL3xfDpZDAlM4ttKdrUVWBMdJLbVqNu6032WH8fz7HNXM75OdqZO6/aHEq6pp3JABEPsv+6Ac9rwQM8/tGW7EFAFBpk9BBN+744/q0WM707xzvzNN5FxlQWQ6qvzsZwwB9hVBzTj7aAye2vFZn2I6y5F6Ef3i/UZG3mf3jTNOTiBQ6oRTVSgszc9RptGltXSOVuc+/yQ1INpFJ/3EivjgsP6OIxrz7sQa+3DlOQXMsXOG06fMGrJQgAl48DNZK+EAtKXPnQGcBBiEfcI0EwqC9h6pLYegC5/D+XNoj9p+mtdY7h/OtTPYlO9//EWsUTBF7TBPP+nXIjN9KH0/i7H+8ctGAtZZ+7C8kYEkOOUL/jzARIRoVOWDYamGAA9FeWx2H7/06qJB70alK3cv7bTWoGTRiLf0ioLIleoAltWQ5C9GgYxyZUSAAXfygeaMgPZ9s0MbwFnxVy8VinoUj6x2YBslcrhRyk0fGLc2D4/uVMIsplNgkRlYBAuqls+8D8j+TJux3VOviz1/2yHqtCN3rIO9IHSeRhgp5aVBa7VSWApPE9E42KN8WrGoVdkU9Zd3oBYUz3OMuu2qaPVpk/fRo9xVoHN++LdvT5TNynAZrQ8Yl4L9Sw3Htr0baPD+L1bMcoh2tXeLJI/Vvt8Xi8AsfzHUZ/tSD2kTMhTtm9E7R7M+H2tFeShu/8g0FliKAbUcHBEoHbj+Y7cIe7WoW2WUZ1hfLr888TVFEGNTo2Ha4ekEJnKpFdbf3dFeMUYB855lAMu7bQ77w4z4fgH2L4p6FyzfEYYS1eXrX+6QrrMc4i8bysMop/XdIoXPn6zMWXUxMS2WR93HNOb2m22sQY1uHmVQOgAaDktUmQBQtoH1twkaRETG3//612ElJ127IpdMbXczchsFUN2wHy+IfaE7yNdSJZkQGRQB6mKb6L5DN6eqhsBUm+VHXTk9DOsuAWBFfi/3kG03zYx06OulYvu62L7DvUoE42UBRkOpdRqSnUwr72/Ph9a1WSmhp5e6fb/PAw6wA+zxNAc/C2GFZkGdrAexfUTHAO4PK9GY9ATkegnjWR7PiN7jsk5mFo3crAgNpxXvu1UxIEp/vZgAJh34fYf89NUM+aenopGW6IeqrktEO6RVS3GgAJkqZGkWGekD2h2AzAZVMsSMIdIs2pmiN7J3c0qul4gI6nUxYMC1L8o7MK7N2spbXxu0V5S3B1BLlNOzud8iv55MLIhARIOhFMaBj3l5e0IeFVcxfZb9VlAfA/Vti7lMZ4e59/11wf7asH2x9AIV4Pb3G+pm5R/JztqvBdurYHlTrN8Vj58KRgWWdzqOiBx3c+YlgIjnlwLThbF1Wx6KtQ/fS4GxFANI1PqeYKitNUV1HYL1Fxv37UubFH4RX192TpTnCAeQW0ekAVSn4D88ek+gRCQi7tzcymYsRQOl0jnpbIgoTwlMB5JtWSrksgDbZea8ZwotgUU/39Uj2xSxLA+P+ner6BIVlihoBkS0mYAJ9Q2m1oVMx9020Xk+uGaLReumYRjVYYAAG0zodtolqMAIo9tZBp4uQDYL2ZnlfcfaM2PC9ybxlIqaxsYWpJW9LimliO/iLMaYu7yqoC9t9kOtJprNilVV5r4KTPuD7Ih9BOuUtlUwTZcKfb0YG+TRJ+jCK5dlTE62smzg6F5+9PmRQs49CKlqGNMPnLnCe6oLxerF7CUrAa4c2Oi7HNXVmqLRbN8JzAhWXAbO9w6gQ/bELACOqQ7sf4rQBniBD85VnrMfrjI/G1pn236MYBaKEE6nSbOtSoG9Ns8luGCjpjJ9FuUtRyBAyvSxgwbfA1SW7GTTgcuOZoHZ9EUgbQGkRHqMcP2pOmPC7ftPKgmE04rkbHEsx5igBdvMM2QolLoMAXTUGdE+zcvQaYBXLPLIcYBJrUYqTswLOqZ5/rK9TA/cT4BJ9rN4nR1cd2L1HPFXpg3KdLZzRD8BgQFQZR2CQzt8fPPcdec9NBl0O34nGInOevTxyyySWJcYJr5YZK4JPgOIwGv8n+0Vrs28Jw+QDcs5IYCxcoany9CJp9Ao93KuoVanCOWeHH8pEElsEpaR5OXzIuy6AGf6nO/ndBfXJQoWgsq8Z6k4aysofN//PVAIfyRAAfh9BMt/rzS6/RKdB8hEWQFoElTL6BrzTghCDDc4izk/ktFQIl7VQ8tDLfViaZZ3XGmoy4xKwg/l0TH6VCv9INLB8S1TuCmXvAyjXtXOnT6gJVVoOF+xsRUcEONz/zr4EYaSH/bmBPlnUnfR+Qp1eRerk+ERFtWI6ocR6DXWSffDIQphug0HxIs50IzQnDeecFSsPdKGUfP8TB7Fqg9YexAK6Jbr60bpwKQfDo82+rurzp8XzwnO/Vq6YmBA/DBhfXpLX7A+GK1CmloVBH6122fGUjFAw2y+mzaLdtVHN4py0TDIGXknYDFLicJZAxah0ipG9Sw56mWfaQDqu32vXwEM/+4+nXZ7IXv/UJD3fhikum6WG6o1G5yWz1yK9d+oRmkeVbD8Ju40cnyt3cEi4Fj7+FHAk6BIzD9f2/VJIEIhKofhsbx0QGSCECgAnFKsKOHc5HKQNrRyOMiCmpgNqvwZd1ysfS5M1soxGpSM6wPy7M4jDfxM92WFQ1SBdm+XGyFBT/TvRE54HGRuQBF0dRqvAhb9L4IYCFLk8ruTesqIEDD3yyxIxAM3V8QhkHq+wmBh7qilOYWBUTANNhp6HDckY6pISkVLba124Nle7ftz7oPPmBiRP3k0mA9j5n1laUrmaMlTzehER9kLdHftEK4Xfv9keDBSH12iblwAAazBX9f6fO6D5WHGRFlm7nzMlRQRtNK8Fd3ZRLtXi7lcjGlV947SB8qzoCzWh9KtZKulc3mFHdj6jbPP9xiK1wZNVRD7A/bJSLLG4BgZ1XQ2U/jVNW2YqhbLhvtwEdS9g1oTHBMdTJfyfdwj+NMBNA0DgjZaMJ1QshA+yUc/lJvma4gYq1FSVEbV0qX8e3GdgFmmdhAoifsPB2gwZkrbmO1yPd2PV2E79XBeg/OzYGoeAGb0MUWozvWlqZ/zZSmI83w1/Q37hRQgyjxzHCQ5uf6zoOvnfa/PlBLbjxXCEtnntQeAqSDi7zznB1kmBdhnSd5ILSpqDAcCxVZnNAkawgMBBWW4HYJj2qnC9tP4Pvudf9OGiU7Wz/+A8z/1tXL/lcl8OJ05AOZZqWTOyGwDkPa1T67T3hOA1T9lS7ONBQaykW6ec+nzWPE9+EzvscOVae4AguEGfHRG6GD753IVAHWnESM5UTl1rQg4VNHHac+P9IAfaQbk9yeIfXaY8zUUKAMQOlypH2qxczo74aHHNmZViXyfaGhyYnmdzqgP46gDqskDyBH689ziGHoaj6b1evhMbmMGHf6WK89LRth5ne+Rn5XSMj+NyPPe47AQEEKd9LXyvDoDIQWAlzCS3idABOCD0GNuXynTVjp859R3manD9/+9K9qZ/k/AJV6Re0oGeUbYcFHNJLed4oonuycqcJ2fAcy9m8HyvLeLGgB40lj5/42GQlzJIR/XxUpGulFC4SX11ATps1ygcUoTyrVbBHr/8y3U/tsv75YXSRVzItN7By7LzEUuaqUb1SnPvU/EUATjtkLXhu45rI17wnV2ZXnfgOeGJl4D3B2JUAnfuolPpfcbV6PR5iinlmKOkYt26Q1TVLCIlZurBeNqk0F6iz6sv92BUjBui4nJec41RLD9ixf0pXjuq03qsvWZz7kPz++WcCik6GRBqE1EcwJh6QNuBI5LxfbVSoeVVDWi/LYbBZGR4XQQW4TKqds0wpYG/PlnO6CJ8nuUmBFqCpDJAEoX1Pdh0Svvw+W3Po0T7+d2NzHPAkC7GyNV8Py7l/kdAbQJ9sUMy/I0Jf/SLeL3/FMzp/2hYRi392HsgbWg7CaySABhAaw05aVgLCuW354Ya8X979bIrW3fO9q9Y7Rj7nO9TzDKtAHgIowerVTF8k2t2sULqzsYsFAfip/+fcdYBG//vKA+FC9/340d4IrxpSv6q7FZ1A2s8WWxMpSXMqOWd+bHzrx9GYr2tkV07h//mwX7C3D51ecWMMEmryxBm6Q+zDFp3zfPMW42Ns7IGYwGqDNOHIgpYxyMaBOysTFgWkt9DtS36fDVt+1wGIhXQsHLDXh7N9FAPk+SQcXv7MMYK8yVblYxxsr8wcsqpkNNZIpjeSlB+f7uudY2t/RSLS1jDNS7eDQzoe0UIEyq8qJqQN3WQ0NBmlMY0YPKGBELT4uQZQW2Z+gTANXQaAcgQTX4p1G9xUFU5gtHhErEPpOrLzxhew730zFmRKFbKhPWdRpZezcdGgcA9PubvcPrbR6u/kxdZl8IS3yuizEn+pjUWq9GoXRmAEPZbXAg6wq9rraPuaAiSsH4sh6Mwg+UT77PUIgWyHZH+QZjreRoKK+UkkDAelwsX3v59RkAJqvXRJ8OzAokToOUbmKp6F5u0aPoz3/mwm5qR9R+LQEANLU1fP9nFeVrxcv/Y8+5/sc3jOuC9dcW4qjtXaHFHXUFFk816hcJwMGi/hIsgeJlcMumfjwKlrfdWGkCd2Jtb2lJYDb0kHg2vW3QpWK/VQMl9pk+RQFHeUwWVHl0lMfTKgKJGFOkyCzrmc7MflvsO09Pmbj7mvLggC6250fZyzOg4Ge7XGw+M1USzYXnlmpr9e41cnsBPO2rr6Yr8f53DTLsTKgP17hJ+g5QKx1s6YslKPtTX4Dr3fYV2Qf00tBdy0cuJk6svgcDOOgvENwofbi+ko3FWI36G6VGgXi+kNkAeDqXn/8BTAByqSB7FLCzoCSwK9YMCJQo1MVM5bFB12YphrQp3J5gKorZPxvwZoK40QbfR3WHMaXEgEYKpsr3x9wjgMN7SK1eJs4qbhWfL7Jt5pSKsx1KmQC4O/VWzUohZEMw/SwcIY19GO7YyJbs0MxmaiVpg00HJSLJ3K+e23TCt5myEcBGZ1DH1srBiaQ9C8zIanZQ+ZkAnlMUks8YnnPO+yw/cBFU7Sxg3j7Py1ICGMoO8ayi4c/s3di+1CwgMxcAI9PxbBcO5nM09xcQYIR6GctIUT63OaXpBVAOPsLv3QdU+/w9UwiLHECPeIe8fyRH95gWmECZ6L9pe+d3mZF3P3tIP8+I475PcI8AUKe95QubEe51mbogqsdKRM/N2vjcQHFSafhQMjvactorD33n7WIFq3jvYHW5HcN7Ewzed08dp0hqirQPixCGTkOtbpvUxPIY8525PuppXbCaF8chO/77DssBHDG3Iui0LjP9E2kO50BzoZaZ7wt9vvOhlCkAlDaD0qd5FGuA5VSBw9rR32XJfARGwi4SD8DlzxBsCz0ETwlhm1h1IrFZp6Box+8BJ38MQCEMl08mK6MR+SoIVJkCP7F5DrX6xK24gSIwkbpyzDOKRe4LLZVkClpcFUtHuKygci4prOEMX5s7/x5NSuJIUctaP0amLUrpkVw3LD4IvgpA6pCo51OGIesTTmBRvNJxqO28dxvdjN4tLRSWox/hFPJRporzPtBPdbUPgh6MsDKifx7LMv/QYIVX5JjvllBWjwbG71xJO4s+8WekjoZarBukrY8pxueLs3qlBk2LmjXkB9W6/SCl0Wwq+kxv8PaLOdrBwCgWaS+uI6DikRwRqHjlCDIdBKCQoHoFAxOk8rrk/kwAxlKo6b0GZm6wtz36OPdBHyg7TLhMBFo0tA3qc6DsgvU3Cd2DyNctpjVRd84HiXznoAOXY//xYkmvmRsJlKeD/U+rXmHvjijlKaphFFtayaQC8x4yFNoVBQO6zzZ4eNvGryDYMYqkU5CMNasm4s4bXMgVw85ELTPiRmOBhxVwyKs7aCA4OyBov3EocO6T2jvzkan9QrpqfYy5v3iqDz4RDrODcrI84lDb3ahNh6xRVxvE9QUUOBzMMz/uZEjxAM4iZHkP/uzfNGK4HzijIxTiEwviQDEFPkawdMz2ZpZSHs+iIZiobmBKzmEinZT1mFMu4EEci+fDJ++lS50OQ+xxMt/Vo6asKmQOpk7jkaUmOx1rpFxomx5RzrAmJ9EB7AMji+OicG0KhONoqU8SgALZA6wCA1g7++J7QBPL0d8HymNHg+kQjEUAp6xnPZV8RarBgDGaPrEhTIi3QIpOp1O9TQk8lP14hnPvKXuJNWCOFmItHcRGD8/8mCMebeWaE0yHOuWEH9qz9eNcPD0rmIAiQYFnOcVQ405GIdsFuH5E0VR5yOwQ7epGqOIzIcTzFTZHRQA14nNq5H2w0zH1PTGMYu+XcmpnZjVwb1UgR8LJuuB5ACDO6NL9bKTNNIDQtcoOqrc1+tfXYKRBf5KaHnvS7gBHPbb9MF7nMUuihRmEpY0Vqulyil5/9jNeYWsmpyTvoXSEs4PA9vHqZrfN/ppnQAg35s/HM077ZWLtxOfKtCMPfc+/Bz5GWiMK+klbaf/yuUn3yADoenxGprOfr+ToHsACzD2aTLYfXmQUpzaKz/0fOjZsSy4lyXc4X0U+/jyPL79/asPhOYf+no7ph4v3YoSZUWjacfkM/uz74dzhOEcCxBifv6O3TboDFL5Osw4S16KOaefmZ2hy2s9jYW0rk935WQrF2b4oAPTEeDr/zXtm3YRzekS2R3Kb82eK+JRz0Cgvc7e1DkwSPue0xx/m/LkNbAfPnN5B9sQhdan+YHyAaUvHbdNnyW4hRfYzShv9E+iHe334XDn9n+/I98t7RbYjYiL4owAAIABJREFU/wkWxh8EUDCRqeLaAQgDQ1F+fTej8/Vqi5plkShG5JFac9zh+YAW2RiLlYYSgTn+Hi0E4BOrWORHXSsgI4q1YHy5Qi8F+7WFs1U8slHfbeJsP12Mlv2+Q57d8nOLAOuC/WXBWATt1/ts99rQv1xmLriPz/a1ef79alT5x1SrPzAHCqK+NTAP/vLwRXO/B+qt/h2LgFXsP10xrtVzeIcZKx5ZsZs1i8g8d8gyHVaoRlTXotEmLodhFR2iPFmRo9PbPPKnMKZHUpxldB06xawIDunLCq3FdBKACUoA0W9jYaRP0d531N8eds82N5d67yhNQvE8NA5uzUoPFlgU0J3eYItUwX4raG8sf+ZOQLZnhs6SmgDKvcMqTrjT09WN++LUX0SpzcjJL7ASjt929EvF/lIixaE8RqicU6yM/d+9eogJt1nEsLztqL8+w3h4/vmKfjGnv/SB1/eOfqt4/3PF8jaw7uZ4QIC62Rxh9HKsEukawHRiyDbQWrC9Nit56RoGAPD1P3SMCqx/eUKGot+aPf+xRxTu/l+s2G+Cyy8DdbO5F6rhVaD7dEybsxUef1rC6KWBWz1aWu8+v9Xeo7137LeK7WuFDEuLaW8VZRter16hK8BKMUJhrotF0aMcmJdk5eGkIsZkElhpV8C0D2iAMz3gskCXEet9LBXSPIrTFes/vAc4FtECEWcu7bEfRqTexzxOQdWjUFctwIvvjc/NDvPvbxFxMMR7By4XiwalUpDMK5TbDaRFYi3HA/lseJJ6Ovxw9pK6LLUYxiEP5FJmTqwfrlJKMI+itNa3t7m4mqWURQ6gsyIkG7Nj2Lu40nR5fQFas58BJrKZDDPZO8a6QJeK4tVw5LnPvczH0SpwjBkdvdl9xlpR7hvKN2tPuSvGi1WWGNSDcXFZRj6ZzgYxgIvifNVz+YXpMs66YepZeXaMS8OW9j/TqTGQYLAs7w5c/roHeFmuBWP1vFaxM0WroH7fIM8d7X1DuS1eSWFqn9gzuE9b9Z6xFrS3bvom3/AR7B8KCPD4U3OBVWvP+uvu6ViK4s6rPDZnvbm5McZ06j2Npzw7yiaxr1kJ6On8xnkx3JHNa7OWmXnh7LWxCIY6IJ1EDrHZGS1vd+jtMvPSgQmoP3sAjurihflS18uYAowAdmdhOaCsFdhezXkqW7HxwUD39yoJrLS0EL/3yRDWJugXP7PvntPfhwlUVkH99WlVDR5e9cX3G31OzYLuAon10R3YH3FOkF1W3mwvUhSg2c/GUhx88mFz5hxFM9d/7M6Y2o+RTxHTPvE1ESC+l3iWpx4iYiqIIBCFuMWjfPJMfc99STxAxL2Jz3TBW/XIOVO25NHN/ibw2QoG2gTy2I5cuWdgAr4iRoLtsH06K+dXBj/qsY1kd7r+DLYdNear2PsNjfmviQkgzy3YCbrvCB0pPjO9O8tHRnqAO0+HvkFxYMT/zwgqtW0uU/sFz2N1BlH1yHG1M7G6blhmarC6UB4ngvLPp9l1aP4s29e1jlnaLl7c+yxHQUudFXt0RqvFq8hQkFFB5zfPFwcUPovqsq/KLFUYQpIcm2XqY9hHpjMd0WM60d52O1+9HawEoTJBHZa1FIXSUWbUOgc9I7hQwjkUMYFY5fhtm/XPWnBgS+QAwRgzZa37ub/3Yx8Hu8+DGB976sBKVJ+P57KH0Y/OeJilGssHDZKDjREAQrrfj64ADtI7AnN9xHic3qJIlMM+6CKwLRw3kbA/KNKKvR9AlgBsAS81KhPM1LROuT7IqDg77of30mOQiH3Bn3FOwud0UeDMIOCYhr5I7u8jCHEAkziuZxHV0IXItuDvgwp/DEDBAYQwtEOoCL5BkmEgByYAaxfTAQnxoW556aT8iSIMREkHeTaWrURjPRihpn0gs1OHxCHAz8QzeFiPAVQ35B7JSKLY0LXZAc9bLnag7FcJyr94JKRWc6DLs6MQAGG7A4GH0WtZ4YKT2xcmI2HMRaaDB8DouL721A/bsbYQswlWRavor9c4gKO+tnqkiOwS9omX/QsjWeAT3iN8AMpjizGl3oIuNSJdEU1Sc2L7WqYIVoFFs9zBhfh3F2NZ1DdzREopltYg5iDIWiInWatAG2I+lbvVCLfSZt63ZGAweieAMJ3BS0paG0npnfmqAoSBHmJUvvjHWkPvgE4yn1efIyIqWgT9xdNihjkTUe1Eff4UgewVUrLQH4Ka3L5PEUUUQbsX1yQwY0LFABcRZ1z4s6aFbuNoqTtWFYPVQQyUm+Iy9X3ASRj2Pi5qKel27WH/X77P1AWmy3Ad5ufLbuCaVoQjxXKcUEbPuOEhdjSWsBR1tkYzkUkzzPcowXd2Ks5GxDykEYezlaMs870E4bAYsFaMugugvttBJVuPFCbWID/khYYRPg708Eh5yAeH8KBKhzT1TZjWkKMhmr7PQ6imvEKfeyHoRKHZZMBOx5N9fYpKcW/YPUWMkRMCFXOUZjuo8SCT0ifJMI9IKg2WHDVjVQxgKvHXAtlnfx4uB2xE1csTI/Z6GlFhFIyB8r6B1RosOmWfHy8XlPsTuu2waDiNoGlk6HAHJBwLoH3fbL1emrGott1AmaSlEe32thdqlajNY7JzAAPUytNAZzrQMoDyUCywPb+6eKtF1it0caepSIAJY51nClkKVlVmAoU27pN5VfqAJ43ZXpKCIduXivIsaNIdcB2emldnqdWR5rzMPswlYEczJEYUEN/3ymapA+NiKQ9Roeazy7rd93Jz7JmbLY9u86xO3SOm0wGYRjXPtSY4MBjdKeT4svRmlMcdiHGy1DFbg6JWaSJXr+A4zCgz5kJxoIF9ntmaZHSETsXu6149Es5biEDWCgqDirMuz9doBaLiKXclggyy66xQwa519pyJSNoa1qUdAYUT65BAEC8DmP3sfHQHd/sEGhzEZSqp/Q4W9eN9B47jX1hVIWkVdIVoR5SfpQAn9WoA2xsAwJllZ8aQksZfYQ4dMNPACEIzbSrel8Z3ipyyMo8w+jmdiANtm2wP2PtGelpKqQo7Nf/JAbEQ4XVblSBDTC1zQOJdzvtl+pztgS3/cL7X+Xt0uPh/np0/ipyfL3dU1en+EoDJ+KT9ikMk9gAmeF8wqnt+fHZieb/4XbHv+X7Bz0lrx/Ekg1D1qLcS7To5xtmhCx/kFG2O7+un3zNxYg8oZUbCGZjhvfL9ep9gQp+AwqxQ4Wuvf+LQn/dZMnNyikf+jPeNeN8d2sS/DynUYnOUTCC+xyfz6/Buee7n62zDHdo+Pvp6FCkka4bfHzrTGQarqvSp5ecAoyY7DoADCNN+OLSF7f2Rbkfur0KfM99jmO2Ajh8L8ODIWBGZa+VH7IaaPpN/TuDub7j+GIDCgOXjL9UcsG3MKDwjPYvlzPVLRb3vFm2s1ZgN9x1FFf3mEQZnEch9g95WjGvz2tgCaQOMRMs+IPcdLPVFh5S5jJZ7aBM8SnKt/kwKAT0Hyu4RAs/j03WB1or67TEnLMGEa7N2DjtPnj9V9FUiPcByV20D7Gs1UbznMo0Zd95MadkPdUYdVKcjkgUpa42+LeiRV8rcwbiqpxRIM6cr1dd+/IubATWsf82Ijyh6bd5+M4qWtz0OsH6tEXnD3qHPzYwHEeCyQusSrJFxaTPSW2c6gOwKfTHWwPCfL9/7TDERz6t13Yf67RGMCnGjQi8V0CWce22wnNcqqJspRffXC/rPC5TaO7t6RQXm7nqk+5enRTaX7PyYFRnGjpeHy4Jm3Dj7tYKq6ow6AuYn1nernd1fF/SlYH+tzsLoGJ6jWygJQFzrVgO4CqCpm7p6++1hRvi1QRRYm2tC7JYHTb0I9BkFxTCga7gehAzFXoFRCuSlHtgLcIdA4Dnf/Bm88gGVwVWgECy/dbQiWH+xqEa/TcDE5m2xGuuMDnUDRagRQaPbQAJEJEireLTXNt+yObhWCNqZWn3dgOt/AiAdZQwr8yoXlF/egDEwLqyO4iUOh0zg0iOtkU4EBPDDiKteG4YIyrZbJOu5WZt7B64XjOXi0SnMiBgAFavgUB4b0J+zhFmt9IccWVerHtFNU4CGvPQBvVulEllNG0BpKLY2D/jGPEUHD7JxykhCBhRowDMyA46VgXaR79vHrD+uZaYgABNY4HM8MqZo88B8PGb6RhzmbljnShJhGO1W9m1drWRkjsoAEZ2MyjlQyP0BlILx86sBVw93UrbuTi/s89tuUUK2vRabK5cF+88rFl/vByc5OSEhHEnAAUD563f7+/Xq+fupCoiDIZApFAsgnE+bK3Ym0HBZvnVbX8+Bfmvo12JVZHaFPvyzAk89YoR4tkmdrbW/TPBYN0vJKY+O8uyz+gKHkdVl+vApaSwGYxQYO+LxU0XdzAip74J6V6uYwbNcFeIG6xQbxMFp1WJ7JIE6Xss3WwqsatPed9dT+owO7/tQaOiInW+12LttdkYHkCDGQpGtG+C+VKAYyBb+COdThWn+hH3ie6CzIQ30NKCBFTaoW7N8TxU7SjlWiPB9b6ayaYAPsutkVw4HGXimZIPa7ZqsRs6qUOHENw2gioa8ASQOqDeeMxaY2WtN+gIIdl6MjWtT5GBQlKH0cTaH2vaJsTYP4AiwK+r93Wyn52b7GUHdKlahpwD129NsCgcG4p4BenLdCObmTFbKdMSzLoMAziyxfUaXNhn5BAd9Lca9L80qKHgEWfN+inFw3OWZotVQSH/amDvraQIZybkiA4Lj2VpKqUoBI146U8ICaKVTTxAiO7v5b+Zqb1aiMwfK4qJDQVDZ26r7Ho7tkXbvzipz3b1DD+fM6TJbVg959jKGMR/CsSKoQFB5vv+PLgNDYEDQZyJ8ZAvwrPSf2efl4PAZsGNOIkXWFQm4yWAD++28JwFhr0Tb81knEtXgAizPGhO8lsVvmRiN+W/eO80rZW4+WRhDg+mQ2629Q/onju45BU0HID73qV0REfg0RqXgAxjFz44xGTiSwImRnlNScCT6dgBdZj/pSavjB+lyH9qQPhOBDF8HUz/O99K9B8gVgF0p0Y7QM/F7RHAiqjWk/YpszU9TrLztwRRwTRPqHARDIIEJ5+Hi78kkBU7YFhdF+jzTXj4D/jjH/wZQ4Y8BKFRBvxrd3oxjL3e1WvkmQ69HRGWhMAdRLAUBwMxR5cGRjASCCYwo0EkFYI62o7Cae724gdEtWjVuC/ptcWpmn3nQCfjQdcF4vWLmrJ02D3eAy0MisrFfBfsNWL4j6OvMgx3NjIv91fPOHxY1qu8b8NxR35MBK5brKfRgCywfyg9mSwWxOt4Y5liPizMCGOUvBigYNb9hrIplM2FDOpAmVmSTkVFeOs7RDhHPI8aM4HhlDAHm5sHJm+i32gT7SwMV8SnuyBKCWc1f2O9iz+kOCJUvF5S1Icpc8hIJTQXpcHGxYhUQ5Gbvee+YQoIjDDQTRnGwyZ1IRuqtCoO9j0UEJRgIodDegVLMsCgPp8Ov5eBMA7B3r4J+tblY310Qch8+94mkIp6hYzoaACZrADBhqUVNRLSKpQgAwQSoTzMap1Eptiu4sWo0Vzc0C1Coct9hczkMesTBlBkW6iKAdBisZCTXxPx3qMF7v5sTbsASHMBbvqkLn5XDu9p8cBDl3m2utxJj//jTAq3A9S/d+9go3dV1IGQo8PVqxvxSYi7FM9yxKnQWNttb+qWCAnvnd9aXixkH2w5dq9HiCT50K2G2f7VUg/J05zyiljxYNfZ9RiHlbiXScLtORtZuhoK4oRElrKrOdUajk443HW5eY0C+v09gAZhRONUJXvDiIXO9xPeZ7yjLZZYkI6iR86thxt7ByKNTzUOWEdcfiYKJCa4hsRPgIKX9XoLiiesFertAHp468TADWhMgCBoirQCjBRCkSFFBNUdKk9Gru4FgUqgr43vGc4ds1FVIok3f7zZe94e/RjGWTJFIwymPDeOyYKzWtzIULLtWn7ZX99V0Xkot6FffP1uB6giWVHFnSYtVg9hvzQVmTSPnUDnGNU/6tXgVmxYGhLg2D/PttdZgi9V3n/vbgL6boOMHgND3h8k6GNHtfP5wdlgI2SZwcjjQvV8r5FLtfAKCWQUMS/MoiN+Vh9kLTKlqwwIVizumeltD54TrrmRD053R0WD7yY0izRaQKM8poKtMjxAE+woCrMXOMHWAs25JmDFP5eFReg9kUBiWgD4oWkhAoRjziUAm16d1SrqxR6gyOKQEVyTNDU9FoAhntGk3XaJlaKQNEoDWZvZZodPKoUyRSKuEUkIL4vDOCmcm+H6zkNVQgskV2iEK1znRmU4EBOuOJSGDUcmJ5WeasbF8LnsAIspR8v9JQBEOrkz21oh+DUA5vac5HTKdyLM2R6Tr2B5Q7qdy6EBa/wkYyOAon8X2ZEeU90mOpSQdoPhuBgw4z2LgThMzM+LcCYoKIh7dPjiD+Z1Jc+d9hjnFAphjm68ECIWTNmSeG5lOfwZGRBCChjoOehsYvjdkBy1spEk/P1C/qaOkyYkvMoUAawXExpAMj2OfFciyeBS7fNK/dt59pv+gI5UoTA7yh+uQFuE/272MZEqL0aenNjJl4nQ/VgA4gEHUf9j3WaaTl4NiB6bjDy5p7dh+RspFpshoEiJkkoU0HMf7DEBl1kM/9X16LwPYTmsiszQoQHtmNfCZwBEI4DnIFJ3Pxub8swAweWYcAYzD5cEXRUtj9UnbeAXrII2PRMcgDIChkZIR4BjfRZztOApQdNph5z2J8zTA4x+8g19/CEBBBeiXgno3pyAM61bcwPeNfFNT3IUDAfuYjr078bnmt64WmVfWNAYQ0QsuqFagTBeI9tDRdRritgO3BeNSLVrw2D+dIHqpBjowMsvneVSDEXfmWGoTjBXoV8H6mwvrOTsvhCorsN8MMWtuyEA9WsG68CKQ1VWRZ104myheky7AgiZArzOnH4goutHfPW9TzLirDh7Irh+iWwDCALQbqImIhZM3UwC0mXMQwkh1bhz2ngWsM769TIp1TfmrjPzYd2CaNowCCsIw6ldjOhjd3JZqRJLYdjeizeBzZspuRl95dJT7bsJ+ftADehQ+AuacgjuBblAq35elMz1qwX6qdzsAZKRN2e+7v67oa0FfTcWc1SJC5wHDovX+ziGAyX4WHNBI1vNmTnJ9GNOhL5N9INSCcGQ25oU7AVoEfbFxrYuDMfC5tU8jLpdyk2IGP4G8UIvv7CDE/LFnw9M0+sxdHQMMjZnj7wbweup7X+907nWpENGZ1lAXL2e5Q5vg/ufF011qsDWAJYA1AyTnA2b0tBnAyH2mFQM6k5YGQbFxaZaGMix3fP96iegux3tcJnunbECINJ2N8iFx+Ov9YVULXq5zD2NfMWJE5xgwdlKrkPGYv6OhlqMKQ43hEJoK5XDoS3buk9EelSAe2zTCaHz1lJcInAxQ3oNzT+YByQhAXa3t/aNBFGkbBCF4gEe6lp8hLoiml8WYBx3W1lYnnZrgMh2qViBPxJo9OEndDVf1SNXwcr5Drfkqh/xim04SEUTZH8bieDzD4JHL6tX6bBzl/eFz7BprysT2DNi1NSCQLtBKAVbfB4IOPoE5rSZC269iteY3xJmAeK7vjavtjaIapSND8LEgxBDJWpE+POIv7rxOJxWwPaBEfm9ar5hr1tKSjOFQ/EhrzmAarQCX6u9pEfaye3sLAIjR+D1tILQwnP21famQbmdE2QfKtwfUK0iFc+8RNgb88njz/zzvSrd3xD7M3nXHVwvCAGvvBjpINxHafimWRrKleZydoqERGIlfcS709PfuUSctwNPXEtsYmlI615yafRQMQDJUAMg+57sWeEohAgQPMd0+fL/vGJeKUQs6gYWl2Lw/9RcAHEQnC+Z+k97f9CDIUvE9iTpDZEUNNW0milmma6zGMCkA0I1B9sEOFwcqRp/rS8TsJA9eUcfg8Hmm13pKa7AWsn5NvtIedbATuCf5Xm4A0Z6cmZQHzT7UU9oAnes8Z+DzLVeJyPT3D6wwOgoyHdEy+9jEYsch0st/K/c9nitsR+8w4dhjpDWXUAzHxe9zcEwS9Vz47qeyzQdQJAb+E6cnp/j1bnOuA+fodmgg0KlPjmnWqpAxoMxJbw50tRoaH0i2jv3fHXMy88h8OJ9bLO8XYsJzv9bssJ8duAMN/ghUhBZG2Ezqe9pnDnP5AGYc+5bImRwj3yG+XT7OV17J5jgIHPv5Qn08OvUf2pfVEmOuydGxBSYYgjTXgPkZai/l1IVsK+lw32F+Nxg6+b3Odgc/wz46AxJ5X8hjlfv7PJcl9RncBGSVkc8u2lc4tv93758ExzWxhQRcB2x/2pPOz/wbrz8EoAC40aIWMdZmUaZ63yfl01HrcXXa82allACEwSXdo7nfH3afy2IHHksSqVpUgc7AbuWM7ECZ+ZO5UgNFkOTRjY7upaaCUn9boLWgv65Gg1+rRSwf29RNeLX8/u2lob13LH+9Y//5gn5pdlg/7WDvmHTH+lBsL4L9xRzssgNf/m8zyrblhvIcqL/dIQ+j51p5E4HeFmQRQR0DLANlKQ9uCAAmxtdnPqf1uU22qKmdo5QdECjU0cl+8ejPby5Sd61mSJFiWBDMhv66Wl/RCL1v6bAHRBTbawsNAy1wATJL/Yj0AQUsQkeKY4scYqphAxWyu9jXNlDeNoylRtQ5UkuKvQNg/69DLIXl2xPl+7sZ9YWGTpkGErukCNAAdU5sRKl2RXvswWIYrv/Qvm3m5HYFikL6XPwECNpbR3kMNDcQRxPodTIEVIDlbdh7vWsY//1S8f6fX7H8umP5NYkkFXMQlt+eDqaUML6VoOXqaQxvu+3fjGY1AVAwKrC8GQqwfPfohEfnnreG8jDnff3lGcaruiOArqhPA2c0Rf25jsujR18yVam74BnLnelSzGZ6mgFansOisvyOa3WUzZyb7uAOldrXX+0+5bEDm+D6DwDFHUuAF6Sxu/Hn/5dh7A6l848C+f70dvSIcuZ5AfVnqaL/fAMAtG/P6AP1OvfLX++HnN3Yd2hQqVoZR7+tDLVSl4CteZYtWppFpJiqMAZQqv28D6PekrrX2jyIToeWXC7A5TKjnXc/fNz4OpRIoxOWqbqlAK9WfhXbPo1Bj0rlPFNhlRKWoQSA0g+CUIKnsy/6oV/CSGvNmBovV8jb3QADHz+9P0zLwoEX+fbuc8kp1dx3xhTQLFVmOcFS3PGy/R/PHVpMLJaGoHjOUf31bqDktVn7u6eubPscE67FrkBrrvswxy+cmtbs3FoqSh8OOrdwwpdfrS+N9g8DAOAO9LBxCq2DZzcw4WL0fJaDlD4cbBOPOsKA2NX+mD4D9w/g8dXO2foYKE9Li9AK0zW5uCByjkB30ymJcXRgg9o9XCvZmSvbwGg1ysuy3DI1HupzYH+p2K+C4ukD62/+LhQG9nYQwOxLxX4rkAG0N2MtjpcL9GLpamYXTDviUOVp2EKu72Yf7K+LMwJ8XRY/Rx67pXAk8JxMStN9sHQFpmDZ76czTXbe8DMOw5+Z8uV19XmFxZgv+4BWY5wxoBKMtAIHsgf0usw1KBLpDBr24hLVgPpi7LH2NtIZW6BliaDBCCE82F7rwLu8PSzCf47eqUD6jrE2jAv7YljZSpEJtFP7idWdRKZmQhGMWrH9vEA60L7vsd8O3+f7YmO8bi4qAcx0HYJmY1h6A/VrxJ+7d4viwc55lvqN+QCY8a1jggkAxtcbqEuF3YQXQ0Wfl5fCtuf7OO0dEC8HzD4DYp8IABWYzj3vGVHGiABF+8LoX9OYZwAEmI44BfWSA0dRPkZIQ2+k1ckA8+obAJDp1NlpPlQq4LNyvnh2KEUP8yXus83yyZLfW9Wi3zK8zGACLAh6c82oToA9t8vPv6gclLYki27vsx2M8DP9AM+UVpKBcIn3inFqTEU00MW8N/9OLrvch0eIzdGdFabS3M1tT8BBUPD7sKDDns6ak6bBdLxPWgfZQeY1RqRDfKhsgQ4DwdKPyIwg+4TjnctP0p4h+N+TjUrQp6Y9JINP3s+5LWd2g2lczH4PxmQGCj5hJBzA0DGObQY8sFHnfLaHzXcBEMKJIpM9wjnjqR2fCjJ+xrIoggCcct/oACtjxMV7nthfsz8x56X3wwcIwhnXFiQ5gVnxXO4z5fztD9c/CSiIyH8J4H8F8C9hR83/oqr/VkT+DOB/A/BfAfi/APz3qvoXsRH6twD+OwBvAP61qv67332I7/ERyRLfzIm2A2A5KFZzEP9cIC3gIeSRoZ7UODXRB3lopQmaDxEAkyrvhx4p5MXV8O1LaZMm3TQdHnboV48mVRfUM+NNUsqEdBxKdpnIi79fhVEu26ROZnZAIUuD7fAoE9F8Vbt/sAHUqaeM4jFX/eGILp0bAMbVSZRdNnFoMAVGk4MDMKoLgylsoQ/LrQcQ+ZtWfo0U4NM0qAYgxP8FsNxIMhPYNoDR+XFJ1Ru4Hprv0e4Qi9PYiXROsbH5HZ6txi7pdsDDx+FqNchJlwwRsUQZjrOZaGqOdjPa4ZvLuexZINViBmsdCvVcWrJK+nrcCmjkzTQTYL8IWk1lf0QwfEwNCCuWK27dggGBFEFRaieM44bj6KrIBIZY2WIUc+JHFUvlODupKVoTQop5n3L6dDAaAFsTXd3BKaa2TwMzob9l10xemHOCjvnJUa7vvrn7nlIelsaji4XrVMQU6TVmGKKU3dYha52/cIdDxgCeFpVQr89+uHyODQJ5+4hImzq1XjZLr6FGQhyi2RDIdDmPdlGvIIwp/1vosA6PgnwWOVQF8iifI0HZGOXFQ55pCPn3cfiPeXjzZ+5865ioeL4sCpaiYgNg7WQAlrKlSX070/aKGCjh1UOC0ZLXX8GMOO19ClxyTg0H93Y7cAk8z1JpBUHfGmleeZQ4aKrbDmkVoyzxe91KMBOYJjUnpAMJZFfUSa+GyKx641HFg0AttXv2EZoxUXKR/appzcFRhia0AAAgAElEQVT2VUv1i46nTxXTYTQJRpx1vv8lxk4CgPq0z9panMCkMFUKiPQnSY4H05fCMeJZxKpF4kB0jkK5oU7NnKmTICTdTdtqzN2UZsTwiPug7Uvbged0sZ+BQATv0+0uMda7AhiQi+tlxBzwM9TnmubprbYWFXP/izXhfZpXAlOl5v28ulCyVWweiFVnghmXYcOoHparkKZJkIr+J4H6hWcYwBLBIU4u/sc7kmepjYmPp88dY004KFMS4B4v5vvxGMf9uecJ5ustRbmjukeax2OxFMeodsT2n84KSeMTKU2Asw7y2Y+5r6Zx+N1SnsX7kmuU9kTYguPkXKTnnPsl7UNA2pEPjssPvs+9Nt1nttGd/FqO1SjyJfLRkVRF0K25dwqmA8hn0FESmc7cZ/c+O6JpfztqDeR/c06Mg0N9nNy+7ydhVwHiHMw/+wBAAxMAYDtLtp91Mhfo0FFcMfLIk6OXGDO5AkQ8Z+R/2575KWsgP4/ve3YSz4wTnnHZD8HsP+V5yO/+f7hm2Vlf18AnwAI+jMvh5zLZgvTHrC3eLwSkMjDD6xQRPzz7bNP4XBGO5zmV89zOfI1P+vn3vpc3+PyZ3KZk99ozEsvhdL/PgLiYy+M0V3K51fPP/ylH/2zLsV3n62z3fXj+P339LQyFHcD/oKr/TkS+Avg/ReR/B/CvAfwfqvo/ici/AfBvAPyPAP4VgP/a//y3AP5n//uHlwDBHiguimRGVSqx4tTC+m4K7WQAUKxRi0A9z3GszVMTNqP31xHRv5JEecZazRlwh688hxv5jtKWAlwqxssXi/S9b/PAYVk5b7u6w9m2Dnl6WZ3KXEP70vKbtX3cDPVffttxXa10XtnMkdqvVvFh+yJxykQuvkdneYD1L+boFvDA9AMuFK3hVHdM4CM5wqY2zvJdMKN66y4uOTcTRijL1k1PYrWI7eM/uxg938sYUkCwPlL+EeyZpbuI4pvrB1Dt/LljvKwYXtqq7LBSiQK04hoFfS5QlrFq7wN9LXj75zUMoLoZdbzeh1GD3VAeP60oHoGnqF+/NaAB7XsPh6w8B8rb00X3mLwu0NdrRCNUzBHtF6eyOmW+uqO9vTafT83GvpkuQ3UdCHPIrFrC/nUxpsl9h65GSy7P4Q4rzCBp9k5NBtrbQH3vHr1zwKSUMBCNuaBBf6WQZJwzBKQuBc8vJgYKAb78hydkV6MB+zzjtlK3AWywMmXiOcldUd876pti/UuiVjcTnIqI78PZDHSKBKYDQsV04EjR7ibMVd9KsBNEBPK2YTQrI1p8DdRqlO/ti41T+95BcVXZB+r3LdJQ6t3u1S81oooDFaiK/dZcgMyjCXU6MvW+Q7wihJaO+r6508mIuuXMy7c9Dvv+02rOzGJVFBipVRGUtw31l3eMLxdbQ1+cifW2W17/9+cUNny9GVrOyNW62MH8dp8GUe9HcTI6rh6lkm236HdbbU33Af3+BtkF+uXFHY95ILIMI54+9z9ExtJh05odgs8ZTTog9HQUur9P/L5adJ6HcGsQGdF/oQORD7Yoh5QP5AqszSo3/DamRgQsmiavt3DaZe/x/vZeI6Jn6B3y/rCykrhOIMTbN64ugMXz47FjXBrGRaK6TvUKHlksjdo8YdDy2esCim0ezhl+1SO42gpwXaAU3wtjGZPa7w4h9WDGItBLRf1Hd/KqQNdiJVR3AwVNPLEEgNAvng7H7W74H2f9aAWKg96Xf9gC0CZDQbpCnsMcXWd7aK1TCFCA6mcqy0aGkK7v+aJeOaIL+q2gA1hge8P+UiC7AZmXv2y4/r0emV9FIr++bAP76zJZbuJsi54c+93rUwzbg4fvgdRFAFNXdgdB7g9IH2iqzkC0COf+ugQjKhhf3Hc9ACEpUGDCisPSDlagvy5AlYius9Sm6Q6VQ8rVXF8IJ1kdTGNJyPIgpd+N+RwgaSWATQZkcplkANheK0alcK1i/bUHu8IeAGOzqIMnDraiCsaXa2pjeq4ak1PuG9p9m/oI1eazPFNEde9RXSaYYqWgfDdR4fp1Rg45/mUbKOP/Ze5tWi3bljahJ2LMudbeOzPPve9bQlGWgoW/wLYdwR9QPXtSiFCdsmHbX2DLH1BgQ0EQQUEbtm3Y0J5gozqCiCX1/d57Tmbuvdaac4ywEfHEiDn3znNvCcKZcE5m7r3WnGOOz4gnnnjCIG89Um/m/Vw0eQZ5HJyY+5iDbbG2t+7ACLoHYKn4l84bInV2nUCZyAx6MfDFsnx0LpcGQCagRBCBaQN7B57b8Vl0SFRnfn8w2nIPaOU7OcGKU8Ofq85ydXXvjDS1mtsue7DDSJUfBUw9PavqC/ivJPd2LJFiF7o+5+oMeY2egJgl4yLA0pq6BxzvUZkO5+sEEFVn2xBO+wncltXPVXtsfs7c99mXEZl+xxQhqMH0Co43nVoAFK5MfYNse0tb/FyCsl4fCvbxnVjNqZZ+BGa7Qz/ClI62HNalAOGIy/tns3/Kvw96ZwQ/9h2GBYJ9pq2UNI8sr8o2c84snvudfh2BcEbRz8BFBYQKC4XacJm6EOKldlkBsnzOYFWc9+D7mx1ZQsAs1wl4W8gK4fge7JIxv1uBQLPUGcnPMZWHaTHnOV1AiUy3AZA6HSfNCusjSo22Kdy57/OZBJ/Idtq2OQe47vqY9+d65vjW+9RqFNv+4Xzl9ScBBTP7RwD+Ufz9q4j8AwB/E8DfBvDvxMf+CwD/ExxQ+NsA/kvzp/4vIvJ7EfkbcZ8fPWSieYH+HjYwRhEsIqR7RLcvhRnAKB/gzhmAdj89o3REKjSf2kHao1cwGGkoTsQJYC4+gEgriAhJiQxnDeRAEoVtNzuU7tIHKagW+g+ektE3RFvilh1JGcxLmDuq6Uz5u1UwgjeIPypaCOBA165h5EApM1e2HnYWxlYYmoxcOFAz0zZy7EQOhgyjDFxgNbqlxchJA4vjMgwMSzPqrDtFNQOM6FGyMhbI1BYoqHVBGB3IsRDv4iIqEUQp/WtzzrAfqQnA95SINHtlPwdUwH6JccfW0zGgiN9oIbL24JgZYE7DHuJ9R8Mgy0C2yc7w1Bk7RPn8xTm+9m6+Z8nNaIuwwkib75nrkocgwY6YLgAmI4bzjkZvbPrv2qIyxbA4znXt0BE7RK0wU154OMWkdkHQ+GBZl34flLrrixsWwsi35VjNuQ0YIooW0SczpkCE8UhDQOQwVz1vMz7HPPs0JuB2qhn6ywX7p+lcafPD2PeZU6SCfcJ+ORz25gdCHgTTaH33ffZjpQAyihF1j1k5JhkAazHiz0aflFJm8ftD6Sz+mWOFudfU9pDCmlEpj5wdy3jFPPooYjB8/U715TEP93z+OBosY0BQqN/cn073NhoA9X1SB0MxgboJCGT6zHns6sX9BLHntLnHwAxys5OBAhz2XsA1RYJ1QMDV16XM6HWw1iT2xUPucZ4PgEmZV+xiQbLiWILWQRVxIKcjWD3+BY/Qn9Y6z9jyX62MkOuIXWWYOgZN3p0jyDQOgfUAxi3O8iYY2hIoYV+1B1K/IAGlEdo2la1YmFQHttGp/WwL2W8Y5oGJxgpJfO/YH2Jcljfvn9QG0Ngfk1GDdDzPDIYsJ8nfB2sDpf/n3ApmRFSZSFae2RSFVFYTAWTzsVKWQeYZBp6ZdmwHPDBbwZLaT4eSjsxlrm38yGkgs8psCszC35dq6PogM8eCyovCfDnZRWxS6lidfqECS/sgqhHVvanusyIzEl33ATKFRtHfonMe35v2A2afqhydEDvd+9ClcmLhnfbE2n/8WV1rCgjLh+XcN7xjYZzHoz4v88VlOndpC8efRX/C+8Tm3nsY+/Kc8zPPdkt93w/a92HE/PiBozNa2Bcp7PeRk5jfpxM5I/RnFkKelx9ddCiT7SHzO4ojqPHR9z8CFGgXMmXkoz4DYj198LPDvRzYExvzHVIUs6wlghLpjFb7ZMAsmH7n9v4ISAKQ4FMvtsuvRcB/9J7xXsdz5/TZd4EIIKP8dex5j5qGQFvptP//Wdco6zrsmdRSyqYWIOrPuTdZMRQcrTZCfea7z5c1ACCFQfneVuyCOncIRJ32Gnm/1eb1L6WhICL/BoB/C8D/CuCvF5DgH8NTIgAHG/7v8rV/GD/7FUAhDOt9oF8b9k9XrF836NvuuctaDv17RMSaoH9asX1eoHePEi83r/W9/f4KFYHeWqLzjSUQ6YSTilzEkCjyyHrIToltUBqVQUN1uumSuX4CJFDgOasLcPWqFbIPLOFoUQneBbIaxlVdxf/h0U/A2RW2KPaXlkAJo/Lrtw2ydYzLMg3XYZHfXSJkAlce3wba94dH1IK9gW5oQedPAbM239tUnRYfBi5LIyrp/iFyaU2wfN89yhVlEJ0KC1cJj4W6R9nIBQ6IkMYJC6OxLd43uzM2oB5J1m1g+eaR6VlNwTLHvX1/eCR7Gzl/cDJCaSCSWUARvFrCbAmBRIoPjqcFsolHU1jeKq5xjRKHfThT5jaBgcfvL4AAlz96FFu37iVCX5Zw+lvO4cvPyCiPLYJdfS6MVbB+2z3XODYZgkojIi7QiKaboQfd25obRevr7voVfG+q55rNKilR2WC5D+gvFgCPRwUvb1vMvXVqiQC5cYlFDmvMr35pIeblxunl5z2ihEu8X8wJc+NO9uFCWoiIWi+iY9ReuC7JOOovUcIxgLj2dlKIFmejJLAzkEwmAKmBkOroz74JT30Q87J3JU1Eby7slRT6oB8LAaNFZ94lHUHm0prnP2tGIgvLRQWqAhXBL3/rCW//iuDTPx5YX53BgkuDvlyBuwvoMKqe/R8Itz1fZ67uY3NH/nI5GOU1MsN/y2PzqMnnF59XpMPSeI68zzyclwXjd5/dYH67Z76xBQqeomE8kIKF4I7ANCaMh9Uwj6xoycc1A56f/JmvbzmsNoYzH1qg+derv/v9gXcUyRIVsJpDWkGRfQ/hKpv5nmyXLsF083knDze+UzMj5/BcD/pL9OXzJVJnZk6p7F4ViPRne1rdKNlLWgavRTHEKwjYqtg++x59/cPdz6mLTkdzBPBMHQIDdFPAorTwPqCbz9HR1FOZbs4Guv7h4VoMTJcxwNT7Ydm8ksv9MtParLm2TL96315+6a6fsA+MEPVa7h3ymCwIF7kD5NIyT97W5gB5gv6S7+3PkTzbATjz6DU0Ij57qcl2cwcgq1g8PG8/50oAq/3asgQm4N+TfWD9uYcY48Od+LVFdQEXb2UFCV/7rDIVQPqisHaFwTWA2M6xKvpzw+gGvahH91dnFlLnpl+B+18IlhuwfDc8/bFFqU/fq9qtQzDZXZ5OOWbAAmFkhiYUjbpxXf1s78NZJ8EGI1hjTYFFMDQYmOp7tm4dy7cH7NogX67YPi/YXhSXb8PH9tu0g0zgqWwABqKqj1nu2QAmYBupLBZ2y7h4MEhvm5eJfGxp0NqTr4FBQGnRBG8EcIYCK7NQdyUES9efb0dnP+woaNhgRfcqWWpRCQOYYAjFIjNlgWDlmAGZd8BnrH299dQkSKvgDJbUiCbLX5o5gDGGM1truWkKfA8CFDb3bWod1Jx77tX5zCOYUNO6fI0FC0tk6inwXBkBEALIco/AdLiGwvbuTiSjn7ViAEEZVkjIe/cP2lzAZlW4PoNrx8i2TZp3dqvFmUcbdYLBWZIy2s2UOKMgYvzOyJ6rqRxUwa8lL8eY5wrHjGKTJ2f1IJaJ+qv4ObULWKKxd0AjeMD0gTpf2D+cA/wZWSQVnNm295Fovt9B8V9+7PgRHNDSp7uzHeyB2QYRH5taxhl4D1REv2QJUraZIBbT+uwIrHCNJBhXRRQ5p8kyYBrkB6DDgcnRB0SKXRP20SHazj9rCVE+2+zweblogoQJECLsgV766dcAOQYATsAV54iJzqqaTefazDaeBlHD1liWqW/S3Qe1qruwLF5xZCsaVfnwMd9fdGqRVKHMCDLlfsM+XH4dMvizAQUR+QzgvwXwH5vZLyeBDBMR++GXP77f3wXwdwHg6fo73gisgpCfY2RlDeq2xMZP4ZwQo0qjz9wwYa63f8gNEmFEKBzryTqoGx9ioth0fikatHpZRrNCKdzLd4FEvaECRDm4LPkXNFWEEeOVLcbMOTVzIUAzLN8NrJvdbkBGKGRGRbOONJ8XTqpHZS0MRxdOpFBi1fTwaIbmextcWGwwhxeYFSuiD+gQzj6bzrw+UHJdMdvISHgr/aYR8a/7YpbgwiE1g+r4B8HMGEeN1Ab2FcWkAGC58eCEv5/4vZQRfoRTz7NOXABN1nbYsF18r7Q1WAUEfBjF8xQTjf3TIsUEmcvMseF7Mj+YlFvZUYwiiZKWLdXNAUEnuNJnRE03Z7hQ4DAjMOxX9XQgj6yF8XwP2qe4A2GiEzzi2ilrfP7Mf04djvYY3j5DgDKkMbNvBbZGOhFFsRQuyrgr2muUcWueIiD7gF0lQSsAsD3u1+eabveR6vNJ3Y3DTNmHMSe0zscClDghx2C7lEMnIjqP/m4vz1Ks2a96dBLpdA5AGImMn/N3sg+srwP9qwajhmsGQd1GOuQp6FOjWLzncMMsR2jYFEWylkac9AHDng680MiqjAazg3igjQHZ9ynmmEaCTKpiMa4yCtR7bNFxAJ8Pcw1ByGrQkuHAPY3fYfSizEOn9snxgGQEaAlhSqYq3R9IMTEsbmhU46MaAs0NG7mPCXSwQks4dU7X1DwHyMIh4GAS83WP84JGSY/Sk01CNyXuwfmR4xlnmSFBU6ZUvKsug1gL3HfM965cB3Wvij6yKP3KMq+py7APKBTLzdLSPTDPYt/uF4VePcVwRClGBXLP1cecswniDaCVZ51ZINnmYal9MEtDGzT2d0b7dfN35hlkaxGY5X6+czxiXHn+sL8HQkfB+9lFgkOYeB94F/Fnf8f8P7xD3Husgu0l0kbKFFtu3h5ToK+APinwFikXZNDIebAQDIJ4LjDXKOLdIorEcsSA2yoCT7v0d3ew3cH4WGPXFuxPn5cuvjkSlOf9c6xsnr0E0oGYn53U6LI3dZvnRAAjbpiW+WsRqDGZ+2vVpuC9wqE5MBqszF016D7P9Lo3klXGz2d7EG0iK9I4iDjYVeky1jalNk1c4+N1eaBHH8ZUkLTlOAMP7wt8fL96sU/4HYvFIpJ70/nMOdxXo88TEKhOnDv5fr4XoOEw38exfeeoN5+bOgOlvXLq0/rdoIBbOXA9ZaS4J7xXOTPo4HuUepnvwnmwhJPYgXhxHBzTaKvxjGMbP4qW/2hcslxfOQcZcW8oDukRBPHPjWP/ZNRej/3Ecyg0rkwbDmhBL8+p7WqI+TgrcRxYFtG/grBrGLSINkjtj6opwf6hdkF5rrM2RulLBoN/0IfpNxHEqOeyHtuZvo6W1AU7/smzt9iD5woVTJfIyz5Yd0YwI+xBFPuzAmX1++P0M+AAtPyQVZOfZbAk7DrFQTT0w+8FcGdmc1wKa8NZcQ0nf33aZaw68u7eA4l0nBkOv7JH/VmAgoiscDDhvzKz/y5+/E+YyiAifwPAP42f/z8A/vXy9X8tfnZsr9nfB/D3AeCnL3/T9/CIYuojNmtF5LaV7y2en9yfPEq/vEb+f0xY6Ybl+zaNY47vGgfbmEYPAFRaPRHrzIW8LOkIMG+eByzRKqrEW1lYVMDXVy/9h8fuh9iqkUcoGFfB9ixYv8l0RMwAcZVxNYO1hhbibRjD1b8Z7Svv5n+nQTUOB6+tHmForxvG04IqfmSLGybGA109t3N7WbJPn/7ZW9ZrtqcF/WV1deeHswlMJPPsD+Mr4obmNlDrW9OhdbYHDukX/drccR6ALcC4Nq+6UEoJemkogz2tHjW5bRhPK/ZksgDbJ9+cGFXzueBGfHstGh1yfL6X+2ueY7yKV1x4DOB1c1dg0YyqERDimLe7L7b9U4N0xQqk003jON9zpbJ3pCrsCOryFHDzfF3F46clD6y+AgjDuvWp2L58exwiRWNthYboBmAyXsSdhfbWnVmyeIUMWDj5m2s6eBm3lgCc3jxH12uvu1PR7h1669AoQ9mf3FhdvvdMERiLYH9WLMPQ9nAeDNh+Wp0pQYX8a4N865DbA/b5ihHsBwAxhrmvAwCWr3fADON5DdBCE8RgX4zPV2elxPymc5FRXhGn/CLmp6qza4ZBX+fmbodDzyCPYDpdm+9PnGN9uAo7Qc+4ZNshtzuYRvP8Tx5YXh3g0d08MqpwXZFqFAc7ACx9WKLx3gklJ9PMI/iAAwnr6lGOvR+AAbvd4l2i5OKyeAR/3w8RMesd+PmrAwjVsKNRtMU6VJQDx5xZcL1M488iStMa5OnJ7/3YMjpit/vx0Fc3XrwWdjnoCAywbTF+dP5x9RKTdlkdHIjfZ1nLELI8Go4y01Yem/cTU0/ujzDUi7BbjOt4cuZS+74dUlRYVtiZGDP6I0MwXi45v/xmnBzxRx8OIsP3IdkM+rb7Prvtnh8aQDqp9DaCYZRGW3GgKojWB8ayYP+kaHfz1CaCtQOpa0LNF9L0dfPx3Z8VsgqANRhpvpfKrukYtVtP6rlsHXLbIOL5yOPpks7/RA2msyPBXEsQOZ1883VO0GZtvv88B4PpEnNI4DhNn+Bqf2KVGjjAemHeuIU+05I59np3FoNs3t5DyiXbGaxFew5GXfS97ob9SfD4QqMZ2X+XPxoorEy9GukCPABdBDCyVqI/A7Vm5J1z20KrhUBcTYmQrRfbI85IwNOIoqIVS/71zxdQ5LY9HJBtbz2rXcw0MZuAgBb7YyUTMhykB20vgtw7cI85HH1oz1ffB1j1pY8jSCLBgqTBnY5UjO3SDpF+MD1hCAC/V5YZ51ou75DCq/D3sWU9pMTwd9YkQTBImzYl+3kc13WK5fK9gNQPOIK+vIEkAC29w6iUT+BjnNbt2fmoDnZ8x/bd92fm+lfB3DHe55EzNSty8DNNrTqETQFpzkwA0hExvm9Vva8K9HTiwkFPnZxkzUqekfW+bncqyFTIzxIMrs5hfP7guI8eZ90a+fn1vpxvu4MKDfOMi8v2Ptu/lHz003jUcpqHYYnzIe9jNs9WKXoP9Syp/cRxWQrYMAbQZX6n4htjHM/F3mG2IcuGZhoK3OF/ugaYpXNOZB9PEMrz9qM/63143z77wn9enP/zHMoxlbx/Tfs5duAJPCg/s6VBtOwXtV2lpPVhXGKOJksEKFoh5f55PofmyZjz0vU2bIou7/24HtkPhWmZGhyF5Xl23OnYH9I5aR/xYqULslk438/pDCx9eb4IXMrsewHcJos1KH1Mtmfc+5BaFcyjQxt/Degs159T5UEA/OcA/oGZ/WflV/8DgL8D4D+NP//78vP/SET+a7gY48+/qp8AuHFlwHhZ3cFZfOMTOvh0jOmAhFMukdc5rg1YMEsxAUilZFv8jODGtLZ58BBMiM++Q1Pj7+msD48EjGtz0CIiGqkOHMCAArBxyocG0khwen+H3kPAsB7kmPeRfQD32Q55faQjY82BFQob2mVJZw8IR1llOuWclOI/Nz+Pk+VgkRoyI9geoRuXiMbFd6Zaa+T9r27NHYxZRUbQ+U4puhilzA6VI8z/54eqpGifiYSd5AezQVKg6PGXz3m/cW2pgcCa4daA7acGfaiDTuFIu1HhxqaJ+HnF3wGpJdB2c2e5iHTiIcDaMJ5XNw4tjBlDRM+Ado9NbwAiHkU5Ow/5yuLASQ8NBJigPy8ukBiRwH5lioYb+LpNA6hfNQA0CbDMjaK29ZwP2xd3uNtjhHErYE6t14yPAUtD2CCPHTr0IJ7Iq+0hGMf9O8QkZ1qK94Wn93i/Lm/BJmiehEHgR2IsiGKPlxX25FFs3Vx4MSu7LMCwaGcfOQYJ7L3txzQNDWDgMfJ9p8Eoc81yaCKS/Pj9k/f159XBws33l7Eq2q3P8m/Dqe3uPD1y3doIgzOMG2MN68uadFfpI8AqAi9uYDJqKdt+PPwZfa0G4iEiQYAhkHwKDW0TOKEhJusK0ibNipHIgzGMuYwGmMEej6m9EIaCYE2j9nzlAV1pciy/JeI0yjBokxrLQ4yGG43n3t1Y5EW6LI0wggS9rNP4HIXdhOUb2T46KNt+pC7TKC/nAPUR7BoCbhYMrESqo727p0EJWUKNwpw251ew1WaU9NRxrMDCfbQFEIHLuz72m8IBikFmg2T6DktI+vsybc1SY2bUvaiA0cuGd/oF1FkZV85DRLrgmOxAnBw6APZ8QY91CglmgZR9Zhu+F7CcaoClMMuSxglMBaBti2b6VjKyCCokIIEMskofkxLP9x0AxMGTsUYkX8TLR9IAJrBRWGMyHOSR6E+mcbWHod1x2OvJtNAd0C0CD8PHgMyqflXc/2KBbr5HttuYYrSGKEkZ800khaArUytZlKG/kdF1Bljq/j0A0XJO78hUUxaGsLVNhkl18OF7re9nsY833yvsssw+5jrjumkCSFDRk8I85vuw3aoYL0+Q6zrTCjLoMyCR5iIjdK0q22ida9EguZaTbUKmWwH0DlpDZ8CYqSdVawpAig5Wp51jQ/CjRpfZb9ciNLuNo0DsmelAJ3JpOFSNAFKXC/sJKDi05QOvjXsh35t/5+8/PFPi1vX5dPQJJvBckqMbcVDcr8/g3hAOnxCc+KC9/p3SJ/GeScuuoALbfr7K98luO7DnssEO1H54Dzph4QgmsMCzMBl8RTyP/cj0l3O1jZomeb7YHwTcq34bL55fADAKGFf7kuyHpSXQJB9Fuyvw3HRypT4YluyrcFrfPbO+Q7aPrIqZMuBOLd73d44l0ulP8LSAUTCbrBb2e1mHYOpLlJC0Nsc65ybbJ3J8j95TcPOQTmGnNZrPivP3epltqGBGrZRwdtwDkDuITs6GzvYB83vnucA+PIEANoanElUgrNzzcI1IA7JfWUv12R9VKonrz2Eo/NsA/n0A/7uI/G/xs/8EDiT8NyLyHwL4vwD8e/G7/xFeMvL/gJeN/NQaUSsAACAASURBVA/+5BPCSNsj8kPau+r8+1jVo8CkB4cDr/vAeGqTdh5okkQersSE4eIdF3HneMR4xkHoytNWjL1JV8/82OGRj3FRLF/vfugy4s6NpzAEDmUv813dyGmvHpE6CLuV+zD/SvbuzojIzIVrV3foFwHuBrltjn7LNB6lu4puXxVtANioSjww6oKPi7oOBCRaKDwzIjEi977dQzegiTvlTVzcLoCAeIlwlIbnq44Ba0/RLjcGOwXI6MQALrik0+DKiNZAUlbpwD5+73oG63cJwzAEygbScX58UrTV66ZXwIMiiBB4TrAhUxa8IsWAbMNrbG/T2ZKon00FccQ9kxbayz5MY25M44XCjemMB3KbzvhwzQmyFMbq9cG9tBdwCbVzHy9nOOgWhjN7Pqp0MJq5f3InZbkFcFWoXrzXQUhrTDDrUHIs8sT1tk+tkNWZCRYUYt0dLMuUAhVgdzYF2SyeyiHZ16wVnoCCRnWFrUMzBSac/wAVDerzoBhJGulFXEPMo62god52f2YwOFyNHWkQCBTb5+b05N7c0L8NzydfBVcOrQC6C/Tb3Z1VMgNEIINRU0mDylQh6+L5z9eWjKH2zdkHHoWwOdd7KJ7zkCgGLCKKXquQ5NbBiMPFjXLbNnfMl+a1egBH0GuUv+bNbf48ahYA8DSKxwZbFmfA8TBmjucZUPgI2Q5wwPbdo0nVWCaYUKl3B3roe3RcQlshRSwHMnorkbeZxn1T4GHeF4zmBdgjr2Rr6PyTfZuVICYrQfcBPPZgf5U2DZ9f7TUApmEYjfTykWMnQFbPsTXOn+K0kbbuxovvF+PSMC7NqwAkSIvUtBktQNfQQjFBlniVmB+pEbCV/Soc8Nw4AkglQFsrs9BZ76u/TntMYILshnFpEdkq3fK0YPtp9edGagDfV7cADWJPIGtLKZ5oAgouagBUJr536H2EyGKfkfQwmPrz6iD68P2ce1nu3ZG3L6wctcTeIsgqFIh+Y9oERmn3Y8x0shg33Qzt7myj1KFQpFhu24rRvs+0gHFRvP01Z41cVsHaxFOO90h3ibPT70enJ86TEUBQTZ0pjhdgh8j8tCtQmAgxjyJSzVK61i3KU853pHOTwQBBOKr+c2dq9hm5X4enUy7upJsGUFGcq5F2jUUa6AoZi6dOPPYAHP0/siwAZD/wYpodCmiUwBb3YvhYZjrRsAm4CSDBYASp3wNHgDIcfWNAilHkMZmtqRhfaddCpl+czWZH9ft0nsd0ogiEFv2JbAM/C+AQLed+Vc+MMm6eBz0iUjzPpvxuvZ8qnLr6gePwDkwozhidtRFtIbhCezb2QUZcvULND0CF2u90yplPXxlt574pQbn8j9H52saSq/6Oin522s73HuZzcGnAY8xouCiwyOGcsaWAabxK5P7gKANzXIqOgYmdQMQ2fx8+Qn6n2gsSDL14B1swAdKzXxLtOYAKbGv9TCvjTz+irLVDf5GhMwYyal7vVR3wOmYMrjBlBXGucw5xTMtaO6QUsG9VAETFkZrWUvdKairV9cCACPs4x33M79T3VCDFCwto9l4QcqCmXbxjBbDySX12dteJ2XAem5oaE/fLyibR1gSnzvcZcV7U65z2wzV3Xhun68+p8vA/Y5od5+vf/eDzBuDv/an7ni+WROxXxbgqJOpuUt19/baHsehOyvpty9w5j7QK+perG0uP3cVoMlrfwyGKKPZw483M3DgN53dcpkMN+IGv28Dy9RHlvAbWfczUiOuklrDkJWw4+lYiZvKISNhDM2WDFP505uJAGJcG2QSCSJNYMDfVelDsLmAluzskFApJO3cM6MOwAAcHUUTc+dJC9x0D7c2p7v3JBcJcgMnbZ2OWvgTg6R8tGCMUReRiVaS2AGxSM1sI/vWXC2xxES19DLR79xSDJrO838vM3RmrAhGZcpqtH7ztPpxO/6LpmLeHG6pPf3Cq/fbJQZfH7xa0u0eFsUd0jA5lRNMphDgiguzz7oTOi6TjwMVcAQLOA4psjWWW9YJ5eo4OL92m+0yT8N8jgTLvH8Vo4SzvjGwFWBJaIHq3ZAMIxURjc3RqpUe9Ms9YkOupRl/WXzZAgD1SXfQ1WCK3fYr5XdfcMGVTNBHooqm3Qbo0QSZG6Go6EVMu2G92AW5//TmdHFdKF+wvbnwur+6cEcCxJtCI6IzmzsDybfM+eOzuqD2vURu9Y6xriLDtuVdIjAVC2DLBw0gVaQ8Xt2u3OTbt7j9jvjHFVo8b2OkQJXPil1ffKy4r9L7BWKKVh09Tj0KboX17RAlXzdxjWwgQMuLgqDtIyacDLDqd/Gr4MA9wCSHXECj0vPKglTJUTibSPWhRon7I7TvEnO3l/dcmswDwPfTpOg9S0vXILKjML7PUN5Dr8T5oDbhekt6dgkI0oGgYLJHG8P0tdRpSoOgspJXDI/P3jKLS6KoH8xpR8GLwyBhYfn7LCKvsA7K6o2+ron1/xJzyvueYUST0ADZv+xTn+pBRIQdxYO7n49ownsRZSn0Atx1qhssv0+G33dfZAXyAoW0dTQX2vbzn84KxAtuXCR60hzmL86mhX11k0PdYBNAPsETl+l2xvhouv/i6sCWi1rJC+gJdm1PZxYFPAKGHYJ5+tZiX4Yt2agDw46KQIdAQYLUlzpo4A2DwM3Jt8MMRh/7Vx472tjkbQsUFMrnO1+aiu7EXXP7o85yskhHsqLHqFIl+vszUNc4lgq4B/iw3d9T61QEeD3YALPecArXDwW29uxDs+nXH7/5Pyz2xvfl5qI+elWlMNUEaZ1jRIQqg4amkA/AMoFhsYY75HjKfRfvRwSbvVwoMW/PgQruHsGGkjvj+MaJqSKwFC6f62rA/LdDYy5INlowxJHCMyyXT3FwHycWdyT60VWBbpPVcghn0mGmsXC9cw3nuETxQBFNDcn1zHU09CMu1fCjbCrhQ4vnsj32B4IRdlmPUHQhjm06Hlv0jwJ19HKOs9c/6Pp1Ot/dxph+whPDu9htFDfNZud+XPqIQa3XGKiBW96D6MxU/NxgBrpfgXUT08C6A79UfgMEfXWS5/VDx/gAOBEjLZlko6O8ftPMD9lyWOGREOdkZ7pxW5gLZGVmqMEpMZlrCjpnqEE52pgiuS0nxCuf23M957ulxfHium+WY+7vL0TEnMMZrDKAtOZdcsJaA1XmMbQaXVI5sHAJTVbyPF98zbOHDsz9ieLOdKdY5jnYCQZB6n22HVF0rsyynfdBBAkr5yYFc5DX1J99JZxvPIEbtn2qLnN7h/XeKg93mmIDrVwUU5Dw8A8C7NAY6/vsePkWZT9GfAhQQorJRuLnJvBdBH44f+7TOJabLymmdDn2/tvOx7ce/w79klYf/X69YHE7dxKTnhLOqhbYoZkAK0PGQCGeuBeoOAHRAWaGgCnEoADhTwUX2JCP0XKRjFZAbKjQIuzlV+7Igaat0lD5C67jJA4AMCJaZE2kGOZxkBUUi4nTORZLZHsRBWtMcUthmAFDL/EhHwN1JyfJ7UqPo/m6q4kDXPttn1J6ISUcHnhTawzBGG0UNZgEshAMrYhgvGmktTsGionSt5LCzL8XXBtkQrjyt+X4ykErk4HuE6KLsgu3FI+f7VRyVZ1MJgNR/hyPHHPYsg6bl4GTfBxvBoxLqxksY5ckWSAMNsRMU1gbnFA09tmOYK6brZCaIAdrd2M8+bgCGa1dMYUKbUYr4NwVOR90bPzjgldG7LyuMuXs8BLbdc94riqsKPBowNLQ+1Ou6L8t0bsC5MudFhSXFDEPdadHuDvxYoxzbAshwDQtfb6Ukpc5+tXC+0qAEHNgzS00PCrwdDE62IdaLqHoVjkWdzm1u+Du4o74/8/DmPlABhQ8c2IPzvCzOGmCkrTq9BCP3AaXWAZCRNH4uGVixLxhF+cwcSKBDynGrbeKYE+Wu0R3hAp2Gkz02/8yyzMNqxPxabBq1wNybyDqoz6uHMt/FSjShKn/HPWxpHiU0g3SfV++MTN6Hxpw/7Nj9I1gE5d0zCpOikMWoynUf7JYaau92TGuRAEqfljmfqrHR3EFxAT1Wi+BajznE6Csjk/C1buF8yHBQzPYGiei9Lc4Gs+gf7AaVPhlTJi4G2u2wp0iMHSu6pN6Czeo2BP90U4yLZNWCsQL7i6eQjeZ7kT5C+6W7Qyp9itxiVaAZhq7JjKARJOaU9LGQGRS28xZOulmm3GWkP+bYqOdem+c2x4x7qT465L4Fnj3PYyvRdMDZd/q2HdJLPAXN2XjNDNZ9bWY5yLi0W/zeIu3NBQ77hSlaiJSTMh9jH082GxQyOi737qDJVb3tW0/NghkBM6RYqzRvP/cJPsDKnEHzs5apK2FX8cyz01ryvaU4UhrBlM49s3y8Vnko70aAd8Tz2j5mu3U+y4MkOg17tfleZkdqNMelvGP+lcsWMp3oWo6a7SbDje0uRjxTVrDA2RSIPur9wCqsfZXPD5Hvd/vswFE3AJjruZ69H50Z5T4pRn76+axIEI4lU7Sq0B8/yz3vIyDhcNvSJ2dHDHjfDgmHJb57eBMCFGdl+XruFvvgcH/Oi/q+ImlDZztrObyoOvPuefW9wp5OwIJnKzCZex9debZEm6jpwPeswoA8B8Net9MZ/87BZaT4BFbm+NXgAD971og4XxUMqWCG/+TjdyzA+Q8vFRxKCeZDDO9ABeCUelGMbMBBAdoAOb44MWZm2mA+x+yoOfH/5dKP1it9sx/YcD+6aG/Xf3Ou1luUFKiD3hQw51dlA5AtoIag6X/QrLIP/SnAjuNFAOe8Tji29V0Z8KpinAQnalD7g+s3ASg4Fd+R5mbOOKBAXZaUYr7y292Nzusl8gYFsrv30D+58MQIwUa/uTt9Xit6KsczVxPwyOz2ZXYFy98t30lljwlNCvjA+0XIcT1MoIh0Efxg/h2Q5Rep+zA+T5qxLYrx+cmZDY8d48nfVb/e3JBYl6DNNq/KsIQxUgRXxnNLY6HddhdM0pJjaCW1oAkMbkTrbYO+bs6iWDTKd0mmQEgfaH14KejINUrxKzg4MC4K2yVV/VX6LB3GPbYsBEbq+TPdzEUZmxu0gDMwnFJq+Uxr3u+M/vBd+tWrIqyvzmJ4fFG0LYzOAC9Ipe+fPQIyrlOAcP+0oD8Jrn/Y0F5dnyLZB93zXPvziv68+CahcyPR7rR/3QdsEyjFyIB0tvXNRSFZUtOpwLF/hMhavwpg/g5Mi2zBSOhPOh1MAP15RROB3LYZOegGQUd76+6/PubGUMumOtjkE7jd/d3ktrko3e0+kdYoK2V79xz4p0sCONI7bBvQa4tyZZrv61oQkm2nGjywTE2OcGjUfOz14WVguUYlIqD92tBDsXiwXOXiTqetT5k/nftKH155JJz//SfXR4BI5lYn/hYimP5FzDkd7z9rzzff77c+KyaUQ96eLknVQx/AZYVdVoyXK1jFIg/Iq68tve1O/dz2Sc8LgCAjFDxYgvor10sak3ZZcaieUC5j+cmq0MtDrR7cNQ1qWebnLyv05dmjSGQ3mM3IFRF4sgpqebGP1LKJunM+kb77dM0DX/oA7o9ZBrLSnVvzPjaD0OgCXNxx26b+w0kH4nCFRoX/fPWzJIwLeWwuohn9Lm/30KupkQZvn4pk7joj4N7eeTaMS0s9FN0GLrcdLDVJgJopOCO0ScbFxR15f4+Im5eCjHUhW0/dG90HZO8Yz6Gjc/H7yPDIc+rZDMP+ZUW/aIgoeu5+BalNgL66YHB/FvQLsD/7miCDUui7NCSwl6CJOMPo8VPD5WvH+nXPvXn7svqeDeQe1x7Dj9LNZlvNUtug/XJ30JZMKJEZMKjzXDBBuGHoz6v3z9OStgSAjP5XsT72v4wACYItofsAXnc0FezPHpmR3WCL4PFlRXsMtLeO9duO9RsAuaBfFH31Phkr0B6e8uDgu+8rNlqmaEm3sE1W6KNP9hMB0CZFUDIEEu8zIi8UfF5CVyCYmLUkp5rPWYkABVPOgDl2UrYO7YYW45YiykAAAYi0M8Tgz3njYo9ME/SzdgTbUAywyBmTR2jExJlE9igDKmRxVtHEQ1Q2QZn4FQUz2wos6mfz1Ut7uu7QSMZllgnn/fYo+810V0QfwdeUQA+CoclseNjcV0SOjhbvHXuI1jS1dfG95P7wvb7q5NAhjXGhcy/B0mCwSci0KqwG/y4cuB7mjlv0p58plvn0mZbCs4TVBczmnntwMKQAFmVvZ0ofHXa2p7U8B1K0sDieIqGjc2ZHfHTRAc0yoj6J7AFkZNXGUQ2fY8G2msFp9JhpDxWsszmWCXacmRmNDLj492MD9n3m2xfA+nDmqE4NjTrn9u7BBgYY6u/N/P61rTzrVWbakMh0iKlLsXegGcRiPVXEpLTpKPQ4HXZS70nZl08vyQisQFFG2FkytIInfA7nTNGaSA0MUcxS83IYgwn2FMCmAmVn/RBg6kbxfWDvAoGH/k1bJuyP0/3egWzlZ3IWhQY8/encptNzJXzRvMJXPOiUtLmGDn0R95EqkP0RA4ff4aNraghLrDLlgmNYxu8dQNFxStf5kbiGX78JQCEvFVBjIMtlLWXTpNHXfSEZiFQCzC3MUld1QxyYg1pRy7iSan31qPD6XbyGch8zAl8mD9MmHPbnyGHmXMKBB7Hu0aTcvAIFHwO2LDPSxfuHsZRVETTEx8JxSmSVSsnD0xFQ79ED3QqEvjravGdS0T9AdVNROwzcLMdVSktlv9GQ5L8rcqbiyP+i7rOR7mje99JD88Dm2BJV1R71zhf/91gRlRAsGRAU8qQo2FmLyLUQvMGjuZG8v3jNduYhCywN3HHRNLy9lvik2U8KoQMvJgPJPghnOEtf7fEu0ccawmNzjDBFRePdvaykHJB+jbKf2m2+5z7psiPAFBhyrHR5v9hZVYFGuI+XphjWh8A1x6NGrdgJ+z6R+obD+HNsrYgpct6NBYCJC5cxUgdEdBOwVabRT+ZLQbctRNTIIMjnicyqLPVAB8Bcae8ImWMV/86/cm8xzPnQjmPmn8MU5av6KASUPjIoqqMucmAnzTEauUdliSWOwweH53yfKbbF39ccuVSsPpdZrJcN37hGsDWyrad9pX5+fGAAhebLsZzTe8cvLbKIUtRa43WPT8M2abynseXzaXSLwGrUjPRG9mGOsU3j64S0J6sBmOMQKTZ2KW0kbssziF2Tc+r9ospSuNVBU4WIed56Abt5r3T0e6Q5bEhdEAtau2vYFEO5XFmWFnOd7s+K/UlBUUXug3mprwEHdBEaL0i2lA1M1lX0k4XQq/8bySI6jCkNFpEsSVmBVu87y8+gKbeY8kIWhJqR5xTvL6qwJd5jIVAbfDaVYIOcKMIcimUyEFgp5ixGmyKN58iqEZT1FDTAGWhj8e9IADCeJlDW55jlmCU2neNYfWCg1+ujKJH6AFQR6fPnrdw6f2UTcJKwMQ6gTbEhMGZ7yHSZQpR1Tzz1nyAN/HdRcNXsX/9wmQf5GZmBHCBtvg+3mA/6i+zAyUjBYU8Q+BmcYpbnfZLP5Po/vOsHexNOn6nvpGHoyzgEI969hsZglXPFlKmymroIqS+R7z2SmvxuDojMNDqUPRa+b+a/22n+1WjlMAD9fXT9DER8cH2Y1lD7oFLn457vhCF/BEKU+XVwjIZ5n1fg53yW/ilgAzjYcdI0nciDfV/W3sE2qu/Mc77S/c+AVO2HPxEVPrxnPwFmPxqT+r513GvUXKMN55SaD/oqz1Mr4/jR38t1Ljn5Ybv4fZR+Lj/Li33/0bv+qO+quOepnz7SLHhfoaFUYFA5tI+fleMNjn/S0a+/rykl/Nmfmptpf3LdVABA379/Xd9Fu6oKOL6rRFHtwd96ygOrOFDhPssYnVMVwoiGOQVVEAZNRLf0bXMHtLAR6LiR+ty+74me0+l2ijnwy98SbL8bWO4Lnv65o9kmgCwKi/KVlbLqgEYc1CqwSwMk8nsN0FdA0GHXCyj2iBHRJdWjbcwUA0aenlawIgF1DYAnF6v75c1peY8NbVtdGZk2vjklFsONUL1FKbTL4oJVlwkotNd9ijKFk2SrR9T6p7WIeQ3PaWVbIv0gBRxZqUL8jGz3gX5xLQwvQ4Y0XrUP4GHOmBAfU0YbHr939PnyVzfIouiXy1TippNp3nZWbvDSjfHuIxgRIT7Wr1TyBu6/86jS878YePoX25xbGjmvA7nI9DGwvEUuK41QkVmZYfVFSsNYJFIvbKqUM8q4fOWhDS83t2iyYdp9AA+4OGewN7xUouHy85jvBwAGrN82tJ/f0G5X1y64UD/Cq3nsv3vKPshNmOATN4stjN9iRJLilJTgdXGEvKL0rIJBQMEso0F5iHZ3r7YvLZwQSQO2P0VKkXpUsopZeknWxfUL7p4DzFQmsYjyXhSPnxrWbwPtvjvTQUOLo3sJP9cgWWBdXCMn1mgtA0d9C+ossK8WM4zrgvtfvnhqzTINZd09wthu3Rk8b9tBqdsuazILZI+SRYtHkWgU6+sddl1c4+EtouB3F40lG2g8PUWevUcvpFQmSJEfIBkFtobg4v3h0b6MMAx3qp4/eRnO231GirAl4mxm/qx4jqyLO+VZnszBg9Qy4FzB8BKQAOyxwSzyGzvLPaofQCHglPXA4z4sT5UlyDBCTHdEms0WEbYACO53YG/OYhCZ/VLB4Zdnn+f3h79/RfjDKBXsQJcJVtScWGAKQTFKSKCEFRuYA33Id57RP1TnHuE8DD/PFlauoSjgPnxPDkaBaQgsDmB53aLCiuW6a989HY1zbjy5Psi4RnS9hY6BhkaOCLbPi+/z3UvE7s+Kt79U7J/8TFzejiwvAgX7k2D7FL9TYKzOGOsXQ3s40MGqBv3q58D61ftw+9wgHXj6qz2i+eo0ePG15zo3oXl01QkqR/+PNo1+2WflnmrEyD1KK7/efOz2nhHg8btP2H//7MKSTdA1ysn2qYsg5swka8EMif2c4ED77jnqY1XY6iyQ7XMDBFhe/Xy4/PHh+11hE1x+2cBKLePavILDbtAH2V+hvxJixQAOYEaWro1qV/Lw9ur3+zTol+bVKMKhttbm/q2uPyBbzz6CSOrDsNKSp28yyj+Ajkz/0NctP3NIrzSDkpJuNm0UC6BELEFVtwt03o8siz6ZDBLaNd7/UyfG/4PvzWPqG5i63gKjg9J7gid2XXMMZB9o3zfoo6PdWo4R00jy3C/luPMQZ3Ci5P7nngAkqyWjqrGj5jvTocmzJfbZoj+Un2kKswZH5YsGAM/tgQkYh6p/6kM8X3xMLw36ukHvpWY3BaQZxaYzx4COKuw5qsZESVp5vc2KO8leC7BDfd57CfcdVqgA8pHzQ5ZZsDxyXPjedHDChsjSlxWb+CgKToemguMStl865/PeAriY8JD5LtT0MTtWI6l/nh3yIrYnsc8Y9XqucnS0eW/OG/6b4BzvGelM9nzNz+R41XQB9tPpssJokC6HCHKWOjwHl6rzymfx/MwSjJEqqW2OR2GdZHoSUw+awEo+VI3gn4MFqUPRiDjHPSmAHAEJC3D4oHlA4UT2HddRdZbTSS9OVWsT9AwG5eESBWsvWh8p9sw1mndKwKUEXPhz2jJkwLBcajB0bJ96a15O9ATw8L1am+yDM4gwSonRMv8PFRzO6ULUA6mBldI/OT7co0IvC4i9FvB1R70t9TWYwt8/uH4TgALCqE40tSByNaKYf9JI5MtR6JB5hzRIeMBJ+b4FwtsBwCDNHZz2UKzf4cBEiGHlZKRxByRKb2ubYMVgZFuQ2gxA5NcDovFdbrQLJgBQnD8AcYDq1FKQeIbF9wuo4kaEJljhKL8vuGroMJc0nc1GB7BudARJpugGnb6k2MZekDRJlhUMMCFZGrmZ8j9LKquJRBroZCRwArOe+P7lMnUTFo/2MNJD8a/sQONzXXnaJAApdTQ/VY3h91A6sgkyISPCyRgYOM5FIvgC5xGovHunfP+IKtjieb+1wsgs63bsE/a1iQuYmbroJI01r7Ix8/J8njn91j0DnVGLEMUQzE0k503Ofxw1AIK1kkKc4kaUXGa5Ouari66QYNd42TCZ7x9rZo6797fXs/fPkHExjRQAHBdG+YEwmL0PWS/+0F8DE+wJirIA3ifDYFFWyCuMtKJvEWNgAvRYz1JzE33sOSdy/yn7e5ZY5P5D5fO9H9kodf5ERNKiTaAzHweX5+3Djdxtn33B/yzGOhxaC8DC5854X5rq3IY0HgYoZJWHc6YHBEBKw4LGDaOqZCc0mQeViv+M1EHeh6BC7Q89GUvLTFlIEIBaDJXZ0dqxXjq/Uw/eauRX4aUU3ZIZgYvvMo+z7oPGuvKXNVPWai7+NHJm6TphginnJ8FW1QDFZM4LikjBDSbdzCveBEBJTRChiFvaCNPwnbnhc366PgGQWj4BDhDQkGCVaMes9jCs3MD/I6jR7sEGa8DCPXiHVzfpsc2UteHMunnutvtMJ8r9mYDwbq6TUvR3EgwGkgXBvZWpTWQtSgD6BBNs3zM6Jo8dGg6qA9/udIzFqd3j0tBuApXiOFi8hGHuKZav5lPwbiBg7j/wcyirBMU8ku7vqo+B9dtIAFMoBswbLtOhphBnViGKduvEDeKZ8Z2YQ2n7iO8B7sQhHWMTzbSYGVyJtEd+n+8ZIoNy7+6sMxUgByhosnRYzKC0Q7pBaXvFf6lBRFCgjHNey5zLnoLGtYo5d3Q+n6WREYAISw87FVzzewQdFEiWaers1D0yzxrfW3M6k53E3wcob9A478LZGTLBhxnoKww6m/ePdh5+Xttx3sto+/UBkzgnmhZWru/FeZYkEBBOQck/T4cqQOgR2i8qAmG1AqZ5JSOsOG4WkdgKHlS2Ca/6fj88i+i4j6ODdnKG8p0YRa525eF+xSauemNxT6bISh1rlHMhgQ4aCB88o47L+d0K4whAOr/Jlmb/016oF5mepZ/zKn5M/hvH9ZMCfU3hERzDnXxzMgAAIABJREFUIepf7Yczw6deaYO07NPDu1cQnX0d56AABzDF7MQoCbvA+vG+h/McyHk7x2nMfq3VJGobSr9kGwKIezdXfsUJ5vo8MBvP6xGYwAbTNw7tkffvpOx39nmH2ZigQ/ZjEbk8V5CooMGPrjr/6xyNfe2gP1LfmZe5z/AhYz2fUfr0VzQsfhOAgjXPUVzenBFgi7jKr5wW1LlT1dHbEToC3NEZ+fRSVS0jnvOBZB+4U9HeGi6/CD7/Q8/rXL+FY7WGYv/NFdVpJNoq6J88/3n5ek8HdKxtpgkIgGuDsPoDHy0Kk0lxZJk/AKDiOysaWJeghQ8/HHNih2PZJCIUUU2gCSSME9azZl6vdK9kIJugv4Ry8uYG67gsLqK07ZDLghHOqsDQXh+h+H8HovQjWR3Ld2c49KfpYHL8MDAN5AEs3zeYANtPFwAC1emIjqgMwL+//asX10zYkJRbjXI3VNIW8/svr8N910j7FpU0Zt2IU7SHBkvC0N6Gj304/lS+ToM2NBASjNIfL2YHm8z3ns+L04RXN2D7VadzyrUbf2+37gZoRNkZ1RIYthdFvwjazXOIdTfsq+LxWbF+bWiqWUpu+fbwFMB9ZNlP3UnCnsYtANd/CLAEwbahCvgIEGD5ep+b57rAPr/Mg+ztnpHvdPzUSzemjgT7xSxEVQ3t5lVSpoaGr8URBnUTX6ftrYN1y6nCztSQ/Tmig2+Rh6xFyd5oNHZgSLB+XUelhe6K519zzcBLOYmgBRsoI9JNg3XiavrWEKkYcH9DcER7L2uuQTfC29Gxzz3LjWXbdh8bshkYWQrl/9RMuD88F7a1Y3SrD8i2w9Yl1c8BzKj+2Tg7GT9mkYt6TrloGjWz4zB7u/kh9/QUjILIUe7DwUDWLA6D0BSea6cCoHlFibPxJDKZCmYQjfe7P3zh0kl/ujgI1xktORmKPCjPBkONPgTIgx7IPp2hkr/J9ZjOaHyHCu/2Fz85a0Q9l5v7tJfxdQfGnuL4vGF+ZtGMHtoiXrnjPjCe/bxI0cHFRQFZznCM2J8DSJDh+zHXGcudjgJm5kWHaXXgjHsQ/UZ9+DzXi1dm0A1Y3kayfDzf3//soXfS7gDEjeJ293Uz1rLGOzAWOFNhM9eaEUA+e1S+fXskyD2UpfYCyNgHYDwDYso+ulfGubRMo2DpR4oWLhbfHRE5eWyhEbL73hLsGN07NERW+5cnjIti/7QEy0KxflWvGhVMyEwHi3PAafGxV66umXL52deqg5vA/lyYiAEYLF99jxxPK6QPXL89wCpKuQeF89BfGHV2e6W9bTmmo/n7WuByGThIVqXk3/u1zTEeEUWKdV/nIW0Sg8wIuyIriWxfHDy+/PPvwL1Dvn6fEbAo9WrABG42+FpRSfAWfWB8vvo8XYIZEtoamdoYmjvel2ueCbIZ9PstbZt3zlXsbaa+R8pjm2fQyzX7gwxQ2QfwCCO9UsGpZfDRXslLdTprZr7nDmda9ZcnX0uPeMbd57Ln3oezXy/jsxtsFZCddMhLPr8nqwhsASps0c/XC0SG71OxjoQsg6qL0BT26TkZDbg7WGDXBXZdwwYDWmE41uoiMkboMY2s8pTni0pEqxveObxnEPfQDeHsLnFGVibAOdJMR6umvbEcY70qM4HU/OqIVfCiOp6M3qI4tmdAo2OeE8BsL0svHj7b51op/cHAUbJGuJeznSIAlWlrP1o537hW63ux7USwVEPIeuCds7eUz7DKwvmKc18aAbDymdDiODAlRNxeoCbHts+UR7OoxnDy17aHj2OwbUCnOt7JxpjjG33pbNiI3HN9ViCB8zGYkd52c30OnX7PoR+rbfbRVefvmQ1BAOjEwPDS3KXazjvQ0g6VTKxG+lt7z4Q4pfxMbYiT3Vb3MO5rI87FPoDRU9Q4RaGpe/JOFNU8mII4A1XANCe31wRZYeSD9c3rNwEouAKyoV+dNmKLYt0GcNtAYSnP+db5oiKwi9d1z0j34o6RnsUqRDDLaMVlkTcn7rit33an1lNcQ4D23UURUzhlAIBHnNwZj0kdgnEA0kEdwV6QiJogDMJs0lbU6WsUfIl82qgHbc0PRME4fIaCeIAzB/ThPx+XBrD8pfl7TMFIyUivRyaj/QKnz+HJkev77pTacKBsFdjvXmYNZjrKdMIfHdbUozVNMpjKdzNFloIkM6BfXByqX3TqGgAOPtzGdOYNkA3umL45n9hayd00i0gBUrCMTBHtA7gDl69eQaBfPNo9SE9UZE1wajHUi++/X6eYpn+2RFyCpbF+39NoroKJFUzIezZxHYH6sIj0r28D7RH12Blpak4t7tcotQV/NwsGDJFvCmeCqQzAMRe2bkZmnsYzcDyoB2aJrvhPhk3HNoyCcVlSRI6iqplLm5TliMqXw4jGreshWIAuE/wQgc99UY+WARl5Wt5cfVtCp4IsIhOFRA15soYmndXm+/L9+siqMcYIX6xVF6mDi8VxDgZgSCG1FF00yxQtf4jkf8ZDOg4ke7qAIGDOnw80L+Y4mD+Y0a1c+9xn+oxu8NALBN323fsUiFSEPtsTgot2pnz2enjOe/n6iugBx7F3j2Zw37IxUxRUJnUQeG+8rasbVlkGKkCIeGe5b0eNg7OxxXfiAUpDph66wGRv1OjodTJuPrxoeLaWURlxIQ4X91sbbF9BNX3swQpTuFbOcHEwAbz6SY85PAbk4qliGY0NdX9br+lEZwSJIrnh+BCISKDAxM+4HuDksBQthIa+ilBEFBhXL2Gmu1Pvq34No8L6kEivUmcwDEunlsBudywYpg7uLTebwERc7dZdWJYsAXHqfsNIJoinObXQjvA10Z8XjOtkexFY1NgDG0tDPy/ep60YV6SKVtAJmFFuIFOwuG/4enYAJ6skxT4msV6yasqwQ/qfNcHASFaVbFF+kHOHzkCUpgaF/VQgDz/zeR+oHM+dMSItEAlujIuX84XG2aWSQMBRGwd5jhpTQ3txeJP+W9IAgn3ZYi/PCN/z01EToV7J+tFkhhFI1bcNdu+Qq/df/xRpERHkkCJYSnFgDyisAF5mqqsZMi0l3t3tiWAFFqaQmOsEmXrEnSKWqcNzNoB7OOIfvRvw3inguyq1TsI542cI9oYtkuVtRY5MAdpdJ/ACgLNWOV7A0Tk5ACAymVEBTKRdy71bvA2iAlYps8XB6X5tU1tlAAKbAFQTT6MTgTyvLpL+h1izezAzWgDGHwExdLhEpmBcPQc5d87vX8GEeEc/hFs48nEWVNr+j8asrv+4T5YULtchBSPG9Gz/ZeS4AttJcT/czIUt+Q4i03HX8m71XccAHmNqqtQ2v9PN8D8zLeLALI5r2PvoNv9uNkGnsm7egQvs33M/VCec8znanfod8X6CaY+m7kaAQmYBJop65bCmcIGzPqPp3BvM8E5biUEGtjX2CH8Un2mzfaO/BzYSsFFIC+YsQYizvcFx4p/99DtG7eucO0f5LeyjuI8BkH2HYYFIL/NqzP6pY1hBjV+7xgi272n8Rsek2QI1RQXACWyI+cM/1f0Uv4/bo7bjfTCnXL8JQAHhJOyfHU0fq2D5FgZWN08zo4EYE9fWBXZ1x4YO5Fh9wTci4mGcQAF5xOQ/rSFHvDva1rFeFDKmIaTf7/NwQEzayGnVbSQbwRgd7haieQU46DaR/MtSIjK7K4ivSyxSy83DQjdANl+smetenBVB90gCWjgebky4kragUR18TCON+anLd99cSJ0n2NHXyMm77aF8rcE4mPmX3jmYIMAYbnAOm/Wqi+FGqu/2Evm8FBVcFfuzYH9WrK/DI2Lm/62vI8qWRY5tNyy3jhb5nWkY8Z1Ecg7pY3iuvgDL3Y3by1fB9rlhe4lI3Opgi5ihkWY5fJ5k2sqAG/Yq2D4tvsfvBSQwUnQV2D0KD8A1BQDofljHM8VCJRm2FVFg/vDyrafBmwra6iXc+pNiXLwfjY66ekRLu6tmCxF9XmEwJiBSgebevbziwjkiEPMoOOdiRj6en6dwlsh0BmQ63F6xAe5U0dgdOGxA1N7IUnJhEE2DXLBfGsYiaK+hgRDj3W59AhzpeCgAwbhSiRhZeu1gwCVgZVmezdf2AqwSjoRHWsUAvYdBJDOKKlv0JVk/myP+snffj9YSmafuS6zhg4NFajPC8P2ohjYPhktMlHSemr8LNRyqcU8j4bG5gQQ4Mt7HPPwua+bOHUSqejl4SrqBhTGSKtc8/EehtFf2gizH3EjViG75XMXSYC9PkO9vsMeYBhsP5cdJr6EYyVQst717NEUVrDwCnRu7VIOuGpKXFaly7i83DbQDMENHMnRyFs4vX4/67eFVUFrz1CKNDYPR1zGAXSFNCjjnrKsR+7lsHeNlRX9Zk4pedWwk2AHev0jHm+uNa0d3ONhQBHQraEe2FCPpZAYkgLuNPCe0N0CW0I8ZePzkZ8kaqTn96m0YzQGFdusBUBwBBaAYlQD05kyhObej/dcGUWdI7c8BTpaUKNF5hum9oz8vXqHi2mCMhlUKab2KUcUobIoREwyMfcLaBRl06PxZO5RjppZNe3PwE9IgWzjJ3BdCA4HPRIM7YYLJzoqURAc8xRkQPNstzvFt+HTmGRqAdla1aeI2zj4mmFnSDwB4Tm03iPXQK/DjhiCFMrIdTkqLKhHMvzZGu4IVVR251AZgn1dnZe8OXmxe2WZ/bsEO5Lw/gq/WxLWWVvief+toN9e5ErU8g3Ms9gGzltHYTEcaAqx+ttp1iWj7fnTWqpNeUzSAud+U9+N+YOp7QjJHmxzvS2eHqZVhM9qlsMuA4pycAADAo39MXct1wr5apjMq4mO7j2mbVoejAqscsjgbxiXsuPDz0pmlJI0I+tOSTKR2H7OyGFAc9GUyDfh8to9906fjBmA6WqP02RlI4DPiZ6IaFSRODm58LkEG3p8MoDPIQaAj+1zn3xkpVp0bK/hrKb+LsepjRu15H1bdyHEr82vMcU5mAh3xqpF0rvSgmpoX+WxWBanz99jgo7NXABYhK6RS+vn9EwAzv26zHzLYEH2MUz/zu6rHM7cjwYSs6kTgYcgEnuyUmgJMW4rfpc6ByFwbbFdlMfDnBBzIcGTfcJgrO4A6JUw1P7MUaj8JU0RwnIME5swO73FOi7F9Dw2KAHBKaqkpnGlHADPZKMfr8Ay2tWqPHARUbQIfo4z1CLuFAasEFMr7iAtHu54CkEUQfnD9NgAFhHG0DVhYUePS0L9ccxLQwB8/PbuT/thhsqSTYxLl96hvACSFUUoZSjf4gHH1EkMj0hpkH9Bbd2ZEKPtTLI157I4S+sEpbxta5sqWRagCvXcs38cU57ndAREoD0AaBl+e5/sjDmjOXcH7BR/6B/vvr177+tsj34HfY2S13fY0gJkXWmuQA8i0DVOPbmtE0+gsm7hQHYCM/NsS0fM+PJ2E0XtBKuM72CKZymAKLN99sj9+4v0M63fD+jqmiOLFnQ7pgA7D5dHTWYVhRvLC8HRtgQAHWFJS4MJ+cKN2XBT33/szL199JWyfFzeE4zveIPa7QBBVGiLtY5GgE3C/iuenwwqgB/2ZNcb7lVUjMI13QUbyGbHxMWk+njvnGbA/tXymKbDcXIuA80HoZA6gFZr9uDb01cvC6T7LZWGZ5bj0tkPeHrCnFfbUkiJaDUeKQWWZwHpZROVo3N47dOuRxuDgmphBvnv/YbhK/mjqAM6tJ5Bsa4MNF4mk8bY/N4yroG0u5MWyommcdhcJrdEcfd3SGXDAkQ6BhgM/34MHtSxRmizK9wGx71qME8vN0s82wELUy+dND7bGGoavejkxUkZ5iLTmjgPgTuraALRkKDGaCLNIx7iCVF25P2LtF0M8Skhl+cMKJvSe+5Ft0QaVCQCQ1hZGllVggREB8b9nOsCXz5giP+bOO/Mt93K/s3BWlFoU3jPKPMq3V3dUliUBD+6geYAyDaOwOJJ+awNmJbKrMnMwn5/ngahRsqsc6FmWc8y1+84ADVo19h75xYLl7XGMRqh6ex6YEcTqTMbawPMlxjUc0pv3lz05HZ1OlO4xL0IUl7oEnBftbUO77b7PUDxVPTLLdrV7B+5wQLWJl0yNNK6xqp+PtAXpYHeNue9rYHnruQbJYFi+u6bHQoMdiHKYkmcnSFmtZxYBvnB8M8+9pBntzw2Pn9TFGvdAEgxJ6VYyE54cTMhyiK1BX57nmonxTKM95hRT/5ZXyb7QR7Qn0gXZXgcFmgP/Gu0I4Hr5HiBr7GP9SbEYILc9GCVFJwNACgxyHrJbmiAFzsycbVEdhMUZkxZMt7yfmbPaRp9A75iAQlYPUXga3taByxKVC4KJVqJfJh65tREaA7fNAwGdAOgy86PDhrCn1fs9fi57TyPcWpTIpv1wf0AjhQwEm83bZyUnWvfh50ScZclgiBLX4zrLC1dWBdgGBljMILd9ghx0uLnvEDx5bPOdlsWZY5d1Cvem81+cCs6PfWD59vBg0+1xdFLrPiIcY4IgJ20d7uF8DmINE9wMGn0ViMtm8Gx7WmBy9cDU1jNV63BV8J07rLl9NRmhNs9M2suZvnZ8JwFmsOzA5mKKxj7bq6xQRkc7UvTW5egM1jYHqJclLItjxOitlfExLXO6tukjAKmC1sA8NynYGKkQGXzI5xcbkSWgauk+ssgWUuwH0rgpqQ0JKJaxObSlAOdcU/zdgcVQzrZ3aYDpQMsEJJgeliB9AT64n/cy55sCi4tFum3UD+NlS/N3zEDEcY0AmOKCPSj3JULPMU/bgmDMsmRq1Tv9lhzLAUgJbOT5r/MM5pyqaS58R/ZxOccSoOFeEWm2As1/H/YEPs8Km6DMYc7PFBTt3cHvMXUMpJdUhAqOVEaMRZpEaqLMMti0ww5pC+xnYNph9ecjzl7BEXQCkCKc774fYEMeXgOQ5f39y/WbARQAIIXWOtyuiBwvMQNuYcg8eb1mecwI4sEZ1HIQB/JSad8pfve0JOLvDnJ8bkfSG4nYs4yg38CRIek98qxWWLMJbopAtx1y26ehQNR5o3hUC8pnoRVXxLa+V1kUFFran5rn129OKxyrJvWeTjCrDQBAzbEVlthrUakhDDQ9OcgYntrh9DhzZobAU0SGgz/7tSUrhPdMsS+4Y0zlcGW/R0663MNgZPUGeITCMKNSsyQkN2jB9Dz8GSnWVyn3jABHisN+FbSHYX11tfKxCHQTpMjT6SL13g8YpGo65xSjzFI2Laa8tLdax9lCrIuHQdyDIEO3ib6bTSd7kYgy+uEPALrN95rvH+/L/pegRl/DcY9SZfXwsjRcOiCXGR0NI0bKpmmLJjptRNvJqusdztOcRokE+8IWwKyMVbTNNMZ965kaMq7LTAsIFN8WQV9DmAxjqsJf1J0j54XMMbcZWZS3u1dVKZUdss/ZZcFCsbq2EuUtbaYCPJBglcSapJq/aaShcLPPSNxe+vyEYDPlJlI9MveNBvq6BGuhpzGQjraId/BaxpGHKT9XjYx6eAzzww2AtIsDAxsN1wKMVjHGRZ3VsO3JlvHD6bRuSlTCan/S0VY3uuSxuUYEjQmmTDAcXw3paoTR2K6GBPgImUcrwZYwflysN4yj+2Pe52zMzhfJvvRUM0yDI+6drLLHNg12nWkuObdkRlbpoOo+glrcEoymaBwdM1Lth+jUHXh41FYXhRkjzr7HZD+EAJ0t4tGfs73BZxnm9wVxTgYNehvO/KN+0E6BRTpxgIyB/cvVgTQg6dNzA+Oegw9p84fywgvQLzIZXTpBWHeCB0xbniNzTsHHAfCIOsd1TsJ0zqRLAMjBKIg9g0BAGuIA0LxKVPZdfFbDiO7PHsGl5gTb46We517h2i505iZgNtqCKVLpqVf5fGoJmbPtMkWSzl80isyNZHDGnEv22anPeQZkhQMuKdWMcsm2Z7DBCoh3GLfmaSrvIsHcv2krELDbe4L2h/LbUtgie9krUPZZnjuxVzNVxO2SD87BcBok+iLFCrkfxGeM1Yt6B67XqGwjE+yCQHb1xtXnDJ/kco+xrCljp7N42p+Sjp70MP+rQ0cnyWwOHh0uiwhkK/tHjkOU9I4UKBWZTJXaL/W/+JnEPDjoOu3Dj3JqM6jASioEAVRUB0pLv5Iqn1V7MPft6sjHGS8W71UrUZS+SeC6XozecixYgSgxcDnOhdoPNSrP9vPPsGtY+hX13IrzMx3B832izVbPHEx7LOc611PeZ9rYh7HCCXyg7XtmoXygTwTF3AuAeQ8CDTUgcQa3Tn6HEfgnM/p8ZT+e+pvvQ7aA0GA6XWG3OBDoTmqCT6oeuam2S23Duf95y8r+qH1V5/95TvLetKOqEDS1LQ7PKukI6Vu9t0dmo2bgIgEGAOksblLWy9GmmhVO2Lc2GRG8d+3Pw1XG2gJI4pb+o3SFZCyUe3uNZmTqSgU/f3D9NgAFAfrzgu1Lgz4sKZcsoQjgFJG2dIxZCgqYmy5FEL3m9QD2kQehrQ3jacEv/+YzdAeuf4wIwQMgTSznXeTm9ucV+tg9P3BtGNcVenNEWO4bdB9Y+whnSCGPHXJ/zJynSn1rmkAGc9AhAjxNkTV3rDxNwMEDm5EgCeff4N9vc5EYbB7qZSGRTmtAGhayAZfu5Q0fv5vldGrUJvURVLIMl+tMDFj3KIenFviGN64ecdtCHLC9eb+QTg4Bnv8Zc9NdWC/LVw3zPlSZ71SuWpM9p415bq2EdgL7ATwMIwViuXuU+/LVS2PJsGQ7SDF8kxobLAhGPvRtn/0tmIc86VFm2D+50auRVtPuHaO5tsaybf7vqFYwrg0yJJ2RdK7DoBwFTFheO9pDsLy5hoTEPPO+GNkOCpe5YnhQ99+20NJg/w8vL7c22JcXgGkx3WZkis4ukfcWC/TkFMt9Rxu+1lIEKz6zfj0aPwhgrhUwgakhBI9gnivcnxrWbzsuv1imcNBh031kakiWho2Se9tPn9HuA+tfUfhIMu2hf7mCAo8AYItH2bKUmJFppAkMAYCtDt61+4BsRy0IATxXN+blCAexDaK6MU/XJamysg3Ifc9ybgcAQRXMy/Uc8wV4vkK+v/l9GAF+uqYBk+v8/sBZJMiVlgsQBvh4P13nwXAyFmRdZ7rCMNjj4RHMt1sM/QcHZ3Gqcn6w/76/ufEekQ/pIfJIsSUgylmWPafSJe8PZ1BcLzPa00r1EQI0ZqVcUweaOd3YDPr1zbV21gXSqAFDg4URmmIUDF8naVy+3WYExMwdiWtENDWq+JTosmwdeH34OGmb4CZB6j0qjqg7AS0dQnWWjVmCzf1pAcRgarCXJ5h6eVTdtnRWbQ1DZHj5PXuWFJVlCpqDojPa7w5tDBsd0zwrHBRtb8VBph7JgLfr8xX9xR3rLAV72z316w9v3h97h71cPaXjusLWkcAO00LaPvD0GLj8sZU9d85XOj/t3rH8MjxavWiwk7qvrej3d050RGz1bYOV9KfqeCWw0QS2CvaXNZ93cE7GtAXG2qBqnpqqSH2KTJeD999YFBa6QRjOTJHHDlkNoym2LyvEgOXblsEMCx0dMlM0ghIMnlCYsVZNyKDDMvfnDFbEs1OrKZx+OoAH7Zc8I6ZRbpcF9nKJXH3vD314lL+WVjyUWVwXQNdMEWi3/eBgj7W5AOU+AERJyaiYlXt0U2BzdqLe96mJE46tBSJWS20D+DgnvAAmeGzA/Y4aKcRjA9YF0gSmU7NExjiCwkvD9GinU2g0GOk8VlCH1XoKPf1delst1WjmjK9lOeZ0879Yj/q2QS6LV4fhtvVyyb5wYdd+fObeoW8XP28jkJUijGQPNe9vvfs6F6asEazmvinlnfifBqOtiukGaO4NNLAUdILdSQHvYOqSsQ/YN9nhMoFsFfftbHigS5vbjPz8wTEs/dz7+5+nmN8ENWQBYDrf90fsEl48Q/hPFaBVp5znQ0l73DEj7bwvwQlgzr06p2uAsfyZaXwiYJk/VpnIlLtDPxoOVUdWpova8b6LRuDoV5xQIFi38xzLPjGbzikBqbOdQMCB+hQ8e2Pfnc/SOa5NARTQgoyt2i/1fcl4qayI68X3KoInjyiX+0H66bS3yz3rf5FaVedLVtzRfbaJ9qcVELWmEljolBCIrO9TGUMVaPgAXDmAOa05mEBQuoKrivfBIZaKPLMVRD2I9SvsBOA3Aih45NrFeWQHsnxT/Hn8cPz5Ab1So2oB4N/Tgn5aOPK4tKjG4AfnLAtnM5JlyJSDGk2ZA1V+Nsz1DHqgOUBQPPtcVKQflc3X/177ABN04MU2LAhwjCBKoWGVqDGApA7mgoy823dOupkfJm2q2HtbEWWl4jBi/wcgkAYo21c/A0wnlASSrHft95UtaIqLpIBgls6MKF7eLQysKsKYhqEB1snEwMEgZgSIG7ruQafNyJe9AyayHwU4R/bo8HrZSpbn9Gfw+YygkSUjw5H+IdGmMaOwGf270wiRKBU2GSOkJbp6vEH6jEJIfdcYS2OfxHOdKjcwovay7AGmWBx4kcrzoQjP0qIdxYAqIJVrJZC5MmId1bbbYW77S0c/ErDhrSkiGXMHKpCggOcYtdjfOo4HqsS4hYPGVAY7rVECXz+8aDTGLbkWXe9BYBvSyJ4dIu//Xn9//vtA6W85rvUWjAcaIByDJWijMqaaNRBAlGUE9oB+RzrAbNv5gAKYxx2e7XvEmYePeHQmy0BxD/vRmZKGIo3O/t5gtnlvv+cPbsb3YgSvUhgJOpzH42xI8nnnqGa9uB/X75B2PEr9Z12n0cnvxRlyMHwCEIJNQqKVc4ROI52s1IJZtG7j83ackzq/c7h4H4q0imQkO0FYO54XTumM+2t8njRonrtmGCtiP5zz1FOnON9jCrXynKCUezWMNT/DWvPmD/X1RYbGPtwhPu29BFpJdRd+/jSWud4ZUDmP9cCkyRdD7KAtA8zzVoDsoXrOigULJIBY7hWlHf8vc2/XY0uyZAktc4+IvTPznFPV996IzaNhAAAgAElEQVS+PfQgQHxIPABCvPEyv4C/yo/ghQckJCSQRgKNpqFn1N/33qpzMvfeEeFuPJgtc4vIPNWIpwqpKvPkjh3h4eEfZsuWLQuwytdCKKx/09opxfdZ35+RrpPbfmZ3UNNDNBm9HTjkmH80zhnxrQXoo5/ezR9gjLHeAdcHyWWuD8dH656v4Sx/zbSRweaA78t8H+64qBy23dApYkWZ83Pxnccc1w/bEe3rJuQY5XITmGhVcooHU9QB4fI+n/qjPs6ORf5M5AC0jP46Xe8DyjiA0T5NQDbv4ftI2FYf2aXZ4WAaytYMVM407nyUAdKQOTUuxz72dLPzu/je+vrOfteP3yfv8c9dL+7JCfRL56Q9Jgv9Zp2JaGcCT/h5iAan/eqj25wcvMww4OeawYB80NFO6RHHcSDv+zDbNrR5gMGmy+frsW3v9npvb2ZYx3jK7fA17dCG770j2lMfzdl3zy/Drji393S8K8so6bv8TvhcXMd+YRwVgW2+ephv/2yb4/vl+Kw5UMNS7jLstl88CPKgA/3/w/kftevQN7Tr3HjOQOcvPRMw5lVXmCryyUb8hT79VQAKVkaOtEGMCD4QlEBSrqefHkFLNNqoWBSrWYlDlIL2PEHWjvL1EWrS+8uEfimQ3R75+e8MPa4PF7PbBnpGo6+9GKJb1t0MscUjIkSAibhVy4cta0P5+mYl9rYNeH4a4kalWA7ibEKS8ehri3xtYwB4rvXu0ffN2BVBV+2OLHOzmSs6XGhHCsrDc+edTdGeL37uFJEPrQK4Kjk2yw8tj92Ux59mp3yOxbBsHeWnu72Ty2nIODgAmKOsAiu9V4F2NTYDch12MWOs3Dz3WhF0Xq3FygMxYu+5qvtzwfy1YXqzXP1co11XiiWViALtP17Ra8H0tqE8GuafzdndPnvbFZi/7S6gOdrF8qX13lDuPUCM3O5e7DpaYSKKN0vbmG79ONH66DuKf+EyQeeC7VOBNLIYTOdhfy5os2B6dNeXsP5pS/Fyl6aJEQrfCRWWpihVoLeC9rxgf/a50RT9ycTkytvDhXA69DqjXSum183KI3pqg7xtUacaxYXePGf48nffjDIOALWif76OR51n6FSwfbI0oultpE5Eaoiagbx9snOnb9sYp8Xom7J3TK9qkdqtBYrel+VguJvAXIv8YxXB9JqMJG7eLmpT1j3YB8wLt6hrMtrFDaiHl/FbKtrTBY8vBc+P7pokdl6fTUCrbA26TGjXycbe6z6Ut9fNxsO6WWT8MkcerzLirmbk9ydjPMnDSqEpWQ0euZNaoFdTQMdjBUUVmWMnL89WMvCxWgm92x0yT0bpJbJ/MA66CxlWlGsZJYa2bVy/VsinF1MkftwsaibTMX8UgE6TPee+j/Zoh/akGFwx9BCY33idDgKRUT4yGdjy8gz9/AK83kyIkVE7sgU4xnr3spfF+hYw7QlJdFOPQLw3PAr06RLMDPn5FXp/jAekwTZVSBOE5aWDkh4aAm9jjKjrHOjsEU9nl7Xr5OCA6dbASyVa6oHNqXatvs57tKl18xkFNi5Id4YZlFzz631H2SzSHgK5zg6j0C/7jGK065cZ0hXzT5vvX3fPI7X0Iou8F2AqWH9YQoNg2ndMr0BfBvMHqtbvnppSmDLoUfH9hwvaXLB9nrBfBY8fBfMrML/2AH2nVysfWVbTZNl+vGD6tmF6kB3ofb41yP1uoNdcLU3jUlHfduC2OX1WjEXk5wernJUDGITxHPJyt/1g/+QMGEFo0BRPRSg3sxu0SoCe4nTQgrGfEXguezc2o4vjytsKqYLZBXXF9Q64JklrVjq6lmAd9MvkWlC7MZzWLejiel1Gvj6dRgJYZC1sSW9mqoDOlo6w7c5uO0FZqpA736OaTXBxbYfdGENBSyd4RLqyuIFOzM8rChyc01KASYN1qjUZrA4ksHyhldcExAFweWwJNNZDhYmDgF043x3ZUQhRN8CcTBHI2800H5oJKerTbIGA58Xeybofc8mBeF6dp2OaBzAi2FEO3EQudZltP3i8j4KGM0mAP5cfTqVjAd+ztmbspt4PfXtgj2QnbTctLzII+uT7obNcu1eJqU0tteq2HSPPXRFsM6/mFddm33Jv+AhoojBiqP73yJ8P/ZPNo8Szscu01HFPVTDqIyLAZT7e4yMHN4vLed9gKkMw+CMxxfQ9ySAEgQa+G46zXG1JxJ5H5QhwqaVv6blfuI/5/hIVYrpC6+lZkIAL+ilTDdY1YF1LZvQ78DkDFnHBBEzUMvQLEjMHGRTTFPBgf+378R3w+bJOkRQTbKZuk38utRjbkLbBtg/gF8ChelMpZi/wPsF0AYBjX4e+BA8GYs6AW+t238nFD1UHQyGdG3+LZ+++xxdIF3tv2zYqXSU2JZY5qp6F1khqk7WFDnyxZ0Efa9ipOomxMY3VGWuwtjj3nZBoMyqdkkVxZnFRXyEethzBOoIKTAU9Vzg5Hb8OQIHGUrXodp998/CI8CEHBDBDgQtIQ8pdROSXlQ4Xf/JNvtvmXVypX+txk4tNuGCgcR6tKHlhZeTBaaYf5vTUAuhkE56U3vNk5nOr0ws7kSD7e9nUEWi1jbOknKaU53WmWx40BlpCzbx/I1JazLDKIo3HHEz/lRGvjN7laJmOKI/sfeSllvEuRDxVBbCI/p6aKQCKKYnmPCh4eku7FKuNPhf0mWkfGjXgmdetzD8NY2P0SdnVAjKu8VASa2L/ZOUxJ1cnZ/4rgHdMBkb42S+HnD5gGE7FDW3xvqpl5Fer/WcpLAoRHawJNWZCRPOBAJFy9PBYvQBD46Ip5NIhzVMrliRUk42sfiob5k4do7IU5ATM+a57fve+YDY+s5peQUlt1hQRjc0GBy0BAoaRutQV0rlRwynlGIayP2cHbJ50prX0IR7GdwSjxRqTxGnnrQ12vquyW94hjkeKJsuumG/2nvLcLe5AcuMsTgkOynDk7fZ31z5E1XxTk0c7quD7ObIPQabY1DwVRbCDArZ2nRabgMzTKO3FPg+dBbapJcaB2ETkOCF6s++h3QDVY8SBxmF0ipem42ei76mhJ+PkEFnLVDtuyuzHZT6mQpzH1plmmc47RIc0raH8nq9/1NtCLUeng230dSbEmtJhrCTfpxKIwfx/MrvYDqPy2zi08oEe9c/GIiNHgFWaKCeWTdPYi2zdHJR502fxVyoO9BZgKP0DrGoToGlNYwHwHHQTWdXZo8gcCslYY+UgrUlQCnA175FCRcBxe6l4+/OC7RPw+K3i8k+C578rWL712JsB36tylNTXdfW9P+7ljnfejwAc1fL9iPSTipifktYx8Woo2WhmOVlb+3187UnDADiwOuxLEt+NseYlfgd42c1+yHtvVBFgGbs+ruMilWhtlFwFXEhXDYgU2iy0Y/rYS9I4Pgjv5rmT2j6egeJ04xytPg/QEWwrXoPrTB6L3oeHFBMYG4BlqEFgRqivYG1mSptsHYVaFKojQs5xQKCR7TivMzCHwiKGfTjGkqLSqu5ETkP0mPfIa1l2sNI6HseZkRVrTx+Aam47gKgg8FG7u0KlR2rVwTGNMehAdgYieDjAJ7sDKFtDUUWXoXcQLE1nNsaz5TaKrUbvRHHjuVOUP383M9tONnf8HQJpyXlM+9mh330dPVnSx2fODJTkYMkyH0twnt9BsP5Oz/XRvfI1ioz3cN7XzjY/hp10eP5gRbTDOYeS2wXHNTjfg/bM+b4fgTvfO87PfWb9dEWwoT4CJrIvVMpwRNHsZ1cAbdgJpOQfbNN+BBF4/fJBX+a+/uhg3+qpL+J52D6kqlRH++HDn+9H31hLTvuQ+HylTfGOtRHrP7+XwAX6omeWipfXFPog70pBnuyufPD63+s37eOcIniX4nC2+07HrwNQAAA1cSYV2MzxBa27c8ijV4nyjLJbzeb2NKNf5qgrvz9VlEkg+xwaCtPbNkSHxMSVwul0g4gT0SZzR588MpA0GfqLRULKfTvkUR+oypFjb+hXe7YoUPm2DqcdONIbm92TtMni5biEGhBpzZOtRY5tlDLi53wWr2pRb64bMXt+VkVypi0SM6oiWASxrKNd/TKFUJRFi+tIRRBEigEUqA83aquXOJwF+7MJXK1fCqDA9Y8NRTrKJsPxp9HJZ4ABEevngnaxkonSbBehfsP2ZYZ0y0HtS42yXsVzcVkVQppa9NgR+PnbjvpqSs39OuHrv7Qp8Pnfw8bTw504kcGEIKW3852oIa6wc+rW0S41BHn6VLB+mQy42BX9OpDnsvVgNVg5tYKyVQATZMcox+ngxZQMhIispyMbNNIaylxRa7FI3sVKmwkwVKxFLGK/AuVttegVjdLuiv/rbu0pgvq6GrIvYpEWV6031o4ZMWWu2C8V09vRmIk5oQimA4EBq9hg771szUrxuSHTfngyPY5qEc7pm9Ootwa5zJb5oDYfC8GQiIAooJPrrUxAEUx/fAP2ZlUjVEO9X+c6Uo043l2bAWJ5z09/Y+hXCJ92Rfl2j3tJV9SUi2zXFJQc0arV9DisK6INnIf1j1/tPDqH1XPx2+aovTn2Mk3QT88O+sxeiWCHrushf1SuL8PAZrrR9WLXvfu5zCeEb3rZYS9Gk9PXt7GpONsiIii7a8iwnOTi1RQY1Qka59hkg4Wg7hhtYjmMjNRQ+GcpkKcni+hNFTo/W1+/3YfBdzbcAHPszkyEZqV1LR/UDXrmzV4vcU60caqQ56dxjW04blaqeB46I35/vVQXQC7BtikP09zp7giLj9G+WJpUfVtDe6S7fkfZbJ0Xd6LaxeZLaX2slb7XTK+27vUnW1elj7Fctg5sxnTok6Bf2D+2vhQ6NB2od/u91wKZC2SZohwqmYLNWU71bhHtDJa2xefKxQzGQi0Q1zhony4ecRN8+8sJ998IXv/LBz7/2Rv+1b/4a/xP/+a/gP4fTyh/LZjevNuLz101PQLZu5WHTmC+pW1VL9nM8qu+bvYeucPqFViyQLLMVgmnPPpxvWoubJzAW46DWO84ZzYXtiti9nKOXnNdAby/cBwzcY8eeeo6V7SnMiK/3TGf3SpKWbUoW4ujhjsAfbtbpE/VqhU8LeFwlsc2KsFoElv0MrDB5uGaSEARBCX8Wffu6aMAK2GgqAErASJ65afnpN8ARJUN2z/chlqGIwtVKwft67tWj5p7X28vznp7HZWBzCl1h6sUiLOA9DrZGn1zJh1T/5guNU0DtMxaBa6xwkoFsiYgnva3V+qJlAD2l6/zshkLjoKqAdzQlnAdA2z7iMSLAJdl3AsYa2d2zJoz8fjvy5ScUYV2gbCKBcUiM4vL2WOyJV2EeUIRsoLdNnFxWLKpeB31aLLmtKHcxrPTyj5woAuS8vz5LhhFTmBORKB9H8kBrHCo2joYOal/VHXkh/t4RPPrV3vecM4JlnSfEymaKwSHKF78oRPKZ057D9lAGdCZqa9yAsO5b9RyZElkZmMG+1MfH5gHGVQAHGR24JLrA9zejzK7pz2Tn3MenwD5eOYMeJT0/jKIwJ/+/kXExh6DBBGw7BD4c5N9Q/CcWlFnEO/0/NKdocl3NA8NusN3JI2dnAbhtpvC1iTU6uV1JeaupYLr0d5I183AkEyuAxTjNM2PJLwoZLW00X57HiCXvg5tBQAR7InX0oONECCp204H4caPDu79OXDDg2wgHlOq6ODMItp93zt+NYACGQNlV9R7H6kIHpkJetxl9gE6qHTZAbMJA5+wgi4WwaCoYHnYxhRGGtyAuUxmiHUzXozuuL+jj7GqAtXDhzqwH2lxtZQCtWoMAlODB4wqPY1JBJjBQdqZqkBEx2X7MV+TzmFZm5WXqqMNhbWpqV6cjZi9OYujRPRHq1iKiEdASOPsc3Lya8H+43MAO1okWCRgVEkQJRxZxrG6VSRqtFbAn8EN4xCk5AT3d60EKBzYUBFULy1JUUVjXCDeaxgb4qJkqXqCvTfX6VgKpE2R8798s76tDqr0ECrsDjKNviLIUB8dpQkK6f17DwKNAQ5i0TZ2za5hWGkV1LsBYWSfqJqSOsXU7B4txh1plzqVqEGdwSgtVteXG6J0BbzEJBe9/ryAavLsU27moZaeowt7H+NvGmBE9KfIiICrPV+/VHOoxN65lSHVMIa0IBZ1VhUJfY2n2TaT3RZG2RWFLIAcieFGIIAQBEyMAHnsnmaEIXSWqlVABPp8OZZQZcpRWof7UmM+MB7Gc7XWd+MrI+zCn5ybNBIz7VgECqcL1mlcq5QjTddpjTRYoxJHdxClzG7UukPu94aPh3fiWAk5DyM7R6MAMwLaeFcArA0Ue5QO0bQZ8TwaGDwC8a/j816sXFvrEOxR/xmFY8wNlc3K2Glu17vIW4tUh/g8UxbZnt4Hzbjre60FzncaCcq8ZYHsNr6ipjwj06Km+K5kwji9XtOYZtrQNPqkOEgc85DaAcAoF/lw2npJhgRTJ/xdqVi7p9uOAxFGNcRfgbGnUqOIpRcPewr3WK2QPkOWaRiRjDA3o/vrpRqg4M59cfaSFgfTZgPxxNMm0BXrny1YP1f84b9S1D+/4b//j/9v/MunP+G/fv5r/NVf/Ab/9h//EvNrQXFAlWth7LvOwisO6FGl3lIDZKz/meFAoTF30A+sht59b6fxZ5uWcOFy5mH3PNjcvyF4KGJK+D52mEJli2Y70JfJVIi+Lr4HN0W9j/U07uHON1DQi3EBsIpXTWhHBg2/Q/oz10Qff+I05sNBUOTguAoy48LGXVrTVAYrLZeodMX+/vmKvkzYCQDc20jn6JaugVJszeYeMjNq6Yen1lj1Kw8QrN01FsZ5BIfGexgOje1LnKd6zG8HhgjsPNs6dElCtN73Sjr93iHSgdXL2DWEw3jUhUipVdx/45lklBTMf+9q44cONtkLcFABOK5TvUN2QKtC9hIiiuyPMx3++B5h66pf38rvtli7KD5t62QCzjj33OE6rL/iqXLOTDscdML4OzAYdtmByfYG/61q44o08nDK6OjZmhLMuZPoI9d7AJG6B+CdrkE8RlcT1qz1PXstPxcBovRM0Udcq/1dMMAT18nXoA2S28Pz2W/UWfJ0kIPeDi91juo72JeZptkJD0HBrq5XI4PZ7W2VbHeIeJCgH9tnZ4btaEJ9cnzmQwdLvAMDH2nr9DGmWrPUAaaPZAAjv9vs5GfA5wC8JFZDXtvykVkEe4PUk42R51MeLxlE4bnpMwEwHJHT51IGCHzuojOTMx9d33+jwGy0Uo/P1p0JksVMzzZTgCrlfb/QhgxAq8T8Vk/jkdretT8fvw5AwZ3M0syJnG7NosqPFoZ+WS0qv32ZR0Sejs/W057vG3YxY40Pvz97hLqrlSry8ooqdOYnlG01lsOzOej12+OQq24bB42yApl0IJNBIxxig0FBXglqGIJe7hu0zMPQVK86MJdRpm4368TM2h6AiQqgi+khlMcObQU5B5H59VmnAbDFoqyGpveXCyh0qJNg+1QhDZ7DuqOgea4vUO9WnWB/9soNb7up7M+C6tEuUlHbpQyHe8Mw8BSYbnbe/lQPjhvgG6KDGAIJR6/ejb4vagBTWQdFlYBEu5YweIcDP94Fz7WItaDtxpigDXL50x7Or6nzVssh9NxmnYeCrGz2ni2f3tvN/m6D5iyZqivWHnlstnF3oN7l3YJVHg217eGMy80jrQVWI/z1Bnx5QX+ZDKja05icK7DhIMpTPNrG8b0/WbnV+W0NerIZnADEAZZLjTxVoSpy8XQNGqqRAwZDRn0zKWvD/jyhL8ZMKZvngIv1WRZtBOCgjCtM14L+XA8VP8qa9C1acnhVx/st/gzqOhCbb0bNHb3djbDZImrysKoX++cLmCYkXjI2zx8AaBcTyZNHc3REIvppDJ0x76M9IkNDgQYUHRvW6IY7JbW6vohHUX0ehDYL3NhxsIdTJiitpDlP1dBxANjWmFPqkXhxw1kaRQ41ombZkA4wg/fBbmKUdjHItACXBbJu0B3AvCDyYVMUQHKeJFkQs41Tkcn6Ts140K1Z1QlxSiAMbMDuUTz1VA9u5DnS0FyI1I35mE9e8UJmVxQUsajgY7V71GrvJAtz9Q50MY2EbNzyXqVAn1ztfvVKDBDLV20O3s4T2qWGLggAFzC0Nb0SNN1M00MeO/QyHSuFOIhV+X1fV2MfE5jT1xERv/JtNwbaVMKW2S8GKJStB5sPsAoqWiVKSoqqaagIAoQI0KL79xwQlK4o9xUdC/AyR5pZfTP9hjYXYDGdIDTTx7CSzA3331S8/gcF/81/+2/wr377f+F/+Py/47MonkvF//P7/xN/+9Nn3H/6gvoQLF+tpG99WPSmu/ErpUAeDaX3UZHlmXoUAjREigBE7B3zdxvE8W9GYRkMyAKBtgYA/Wl2Zp4MI9FBo86qLQ3+Tps5YgfHtVs6SMxbcxLb0xw2BMETguxp8sV6CQV0EhQB6rp7nvN+dJxEgq1hqRJ+HU8tCCYSnZMEGh/yjbOByXWi+N4KDWBCa6pI5Wll2w9XrD9M2J5tX77+UVAeHZOq6z7sFgGsQ1y45/fjtpVpTA3ntT66lTLNziCdl2U6gHX2DAhwOZygnGJArRVnRnFvo06ICkx3qHtAaR1OXjCcCPTDNIasTSUAn2N7SuwBug1WWET8ti3+lunQh7KRXPf6YCrIPEHrdAQT+Yz5PdK5IDjZGnD3KPBmgK5clrFvktFCtkWihAuSa9PVHBiVw74Rn40H8XYY+HAoL5xAz9h/AvhPLIlwEgH0DypAxHHMNz84x+ybs4PVu73Hwr0xgSkEu5mmQqYPAR9gpOkGGDL22EMK79k5zQ5vAqkysMTzrH3n5xnfP6Tl9pT2ImIsJD5TakNOd1J/xvhe67Z+X+Z4bmnr4X0qHc7kiItuw7bgM7p9Fr9TZ4PBDu7brUW1D+0eaI0yhjpSZQgmhg1UBvCWQJLoPrbn3Pf8dfdS28keeAcmlNTfvAft0PxO0jw4sA9EUkphGQzJ+MzHbQ4KZWYAP2Of58og7CMpQNsBNLPPeJwBvwzQRWMHABcVcGDrCDW4AsTdXQ/jO8evAlDok+DxxRxWlo8ydNlUjQEk5MjWsL5Ut/MlSgBy4F3+MGivUZKpyBCQmmAbhV9PenOH2GjijLQbAm5MCbtWszJPWx/54ivLGXBSJiSPg/PtYci4RzC0VvTLZOkAIpHaIHvHvOugYRcz9CwQYKKTIoL9U0WXgrIXp1TWyLM3Z2XQNcNB7Rr58mVrUB0laqikzdKLrF6gVQbd353ssnfgYREhq3Cg6FdHsrpda3+qYC12UvjlbpFbuZRBFe0arAk6pXR+6UzWe8N0s5+yNZS7odazv6e2mAp1fxqL26EcFgBdJPQT2M8HtFckxL6KMxHIZuhVUB+wSeeRmtJ39KuL8QFgPnqfCrYfrkYznrnQAvPXM9qN4YA1o3yGcNnnBX0STK+ervG2BmUPYo4UCAb0MS5RYLR2sXfZ3QmZfr77Pa/mVM7VxsG2jeY4hbLcvMQQRYdEgM3EqvrnJxurTofsT7M52K1Br4uVwlSLKJXdnrU9VRszfp+ymzYDxw5BLp3URLCcnTEQd3MW+vNs5953ZzW0yBPuTNu5bbFgU1gyi1hpdQNtGmO+LQXTbrm7sY4rgNYtwsbStSwxWiXWoyjnlpx7K12VjCPVUbZp24Peh5vN41jTXATwHIHQmpwGblrZMCAbgvmKvlnrunpfjAhXqEFPsE2CdEwxumy0T8QZCn0AA4AxBrxtESGl2I+j70FtnGU8X56H2waUaueyxnGwNibb0O73oAOWeR6AxznaJuMeYcSrGnjC/iHNGLD1lxs+HQ0asEuiS7pBJXTmvbRUv0wo2CEPjWhh6LXUApZgBRCOnaUL2NgpK9c5749abIyve4gfhmFN4CqNmfayhEinzXkz0NsyJ+0WA9qnt9Qf3v8E80a5SBvrfUoK38Wc1zCXKejoe2Z/MWaPifsC2iT0QzD7nHpeEFVX3PF++33B7feK315e8aneA0x4lgU/1Bterit+VkFZFVHdZk8lhNX2Mb0a+yHAjwIw/aGgx1rRr5OBNk2jbG5Z+c45D5LxR5Yh32eBCa9W0vkdtGXalQAfWlVkJU3G1GrXyd/NSFnhYkiwtzlNP4SWOyz4MJUQJDxo98xTRC4B2Nylc+BOMCTl2QMRIY81hEZ3V4SAWI70npwu9ZK45ebPeLfUJystaPOhPhqmW7G1X4HlD6vZXW7L6GVGCAjSaOU+nR0irzzFQygCRiYIz/WUtT7XGPcm7GvzmkLISoecOcwE+a7zIY00HLBJcP/tYtThtmD+uuPyD2rPnPfF6Bz/HiPckuw/ri+ZNUWmV1cQDSBd/1D5pqR3xHfXmgUOpsnGZQ4acR8CjpHiktZKOquJvh5R+biHt2ke40L2obEkBGV8n8j3V19XD8JwbErvI1XhIweH56Q2yOUy+jtK85XDOYeUgDPjITnsAhzmRBwtrQsZsMpHrNdl7LnertDGSY62dBxZc9lJ9b/lAAkAEwO91BGAIJsk7MTkvJ77sHdotflQercthsKKnnJx0N2IfX4ADzbmNI1nb7+nYCrbkpgPB3sEiPEX1VFEotpbaG/x4Lz0MRmME9j4jvMJfPpzWhBkguw7xqKoAVgdmJZ5PvFg36bghJjxiQDwS9oTPwKBCP7wvlk8kqd+oGOgnnIX9yW4wpSYAhyCNABYHlXdVz2kReQKXhl4kHROdzDqJO4Y3zmPdWCsQ119oxrj0RitZxRzHL8KQEELsF+B+dX/nQf/4cQxKa26g6D3EsKEVrlAUW5W7aHPFiGRraGsJo5F2qFdC2CZSOmKdp2snGSkA7jRx0nTLcoZOdMYm6KJRx7bHIJq225GqmsqqJfe6nNBuyjKLpi82kPkVFJ5dxYvsYiRO0hDp44NUkipL3KI5jGvJ0pNUpdBZAiRwS4bm73ADXUNQIF6AFb2qiL7inAAACAASURBVKOsY7HLNEszxoY+Avs3IvpcA9y+OtAAm0KE6RYIum55NHMmXQUbIqH7QApvn+156PjFRlaAHtQuXzf6iHJLMSfTUiEMfGK/de9fbB3hTTWFle2ysVJICXJjZf1cfYPxMaCn/gEGfZMbdlMAFSpqIpQOutRHA240gJ0BEXn56RkJVEXt8R5OF3Noy30ChTLLpqHwfUBWmQ+a0HXL029Af7I55sq4fa4oahEcra4YvSuKM4C0mI4G4Eaev+twSklHZa6jIgybYKEoIGqOv2w2D6WbA0PnnlVRGBWmOnqnwyAy8jb5ORCsmmHgD8NK4CJgVO/XIXgWoj0Nx9QE1JF6ojo2pZQvJ4A5257nGu+Uea/ZwE/sj1BozxtNGJAcx2UIIq4PM0yyEncy8myDORqso0ZzQZRr5NEa0Og816PYIyNPbDP6AA04zpm/ue3GVuC9JRmHNB7Wzb6X82LPoAoPrsvZgKahklSNZaqR2jH6DqCIVUQcsmGtCsD7y4013TpKV3MGkuikhiE72sVKDH1K9NZDTUQ3fhogzY2/rFbPnHlnoZSpWLMXY3hJV68Q46Dd1owCKaZJMiJkOPUZBkNMhw6Orf0S4o0AUOnMk7lwmTzVAubAdwlnl+t6v9g+2+cSZXD3F6B9bniZHrjKiiqC6ivBLDuW6mmIO0YKkve/9Z2tG2R7tEtxAMYfw9c1VEFPLAtIR5SxTftyrMf8G5lsTF3xPXSICNq9ZYevj8NZOFDxs9NQxZyyzn71aydjTdTsGGkIrSTpHdoKSq8GKAAHh5cizyOSNN4PAHOiWW422uLtaCeHmONfGBE89lP0l6djmpOuFgnTYmK8tCm2hvooKJuNmfr6sDl2NedT52pBHM4BvmekPY3vJOfwE3Q9RQO53/K9s/S4FIW0MkqG05CmTXWdbQxdPQ1BMVIN1ebU+lLQJ47pCcufqoHHfj0bUyejOoFbh4g7MJywcNzcEWgYkUdvY/xkRZxDBHcf424mYH56Zx85xWRmbSn4RYDiTOPnQYc5lz/n389invs+9owGA4vducusC9v/puN+lNemYJS0wZ7LTmtrY4/J4ygzMs6gQQBlxkB7V/2g20ZwTo151xf8yf0oXSdABT9Hi9kt7J+4dmYenO/lADQcACXTUaUfwQTgg2dQ21edufVuj8z9nNYgQdpvlKkVMsAAYLzn2UCwsFXOx2mMUHctwH2OmQPYY2ue9p6i7rRJP3hPHDcJ3Il+FYlg20HAUY7v/AAUcJzl75SRInNgfvzSwTZkEOEda8fncq6SEPf09yFiqaZw+x0wezPiAwQVJD63NBLOef9eS+NTEHNE0lzSgrH+pCPABL++3TODpIJfKmv5qwAUADMO6maGfV+K0c6AEV33Y7qPUntoaiWZeKRourJqAIzeOH1bofeC9jSbMZKAgIOaf5GRw1mMBt7mYgJ6bw/IA5BJPQe7QJ+XiFygitHQDp0/FhJpnn/i9yx7crBpxLA9e0fdO+p9RGS23z2b5oGLdVE/QItYybDb5lRN13mYjC1AaiWZDGHcTLb5Lz/tTj/XYHKcUwsA2HtZFoRyM4UfHx19KdheKtoi2J5N86DswPQG1LWbKJ9HhcvWUW+eC1xMv0Inc+IABFOC9ddDJ6FPkT9rxp+/9kdHvTmNfm0RDexLtbVs203kz0tSSlc0p+3W226lOWn8zhPqo6E8jC6s2qNSRZmHcQIYa8L6hQKZgvm122QVAzvaYuk20i6WKhEpAxSn8gXM01bmr7sBax0jN9cjCaSsk6bZn+YhnsWNKwNJVbD/9tMQ9kqbml6Xo9EG2Ga/N6B5+UJGlQAXC/KShtT68NKUsjVMrxil6rYelOisog51cEeA9YcZ0hSLjzFGPiXNZ9lh5cW6G6WXCjTblMrrw4So3EiW1SNzLjQWGhT+flAEsqk5bytQakF9WKnXqHQBjDJzXB8WKwnLKiXSHGzs3XN1ERubBL3U3qUCwCaQYk6tzkYFl9vjiGrTOA0wIRlyGS1WtbKO2bAJ4KyE8619Mqe+lEDFZfaqM2S6eISC5RXlejHRxX23Uk6A5Rl76kSABK1D9/VoABQxZ5YgxL4b7Y7AAQ1hXw913wcwwYPrZK2g2jseDwM6rtdwsqOfgOEsZOPMjfkwUpo7lUD0ZYx9OisHQKKCZd6iJBcjnmopKPq0RJpBVHDweaiOPZatG/DwaTJWCEFMrr3uoGFvHnV2YbXWgfvqQFsLJ5Kldeu6mzYDBXmLzbuOKcAx7iVRjhJAWTuu/9DQLiU0EGw8O/h3EVQyA2Zz2Per9e/2yfaQ6dvqqXu8EcGIjvnn5lFiB/geljbXnoqtzd8Kdq2464L/+f4XWLXiD/sn/I9/89/h3//V7/D5K97lMIsC9bY7/d+AhO6AqxagPmxNKc7qa/PQEFiXC6SboGtctxab372PqFcaglE6OpVs5ZoWbJ5u59XXbZR6dAeDBjnnWEmVg6I8dAaXVYfIrt+3J+bD9LqNVLGTFocuxjCSl8vRkHeQ2qo72L31Mg+QZe/GiOIaInr8PQGrep3RPl0CeNV98jQ5D7SQAeJrZrBA0nQMBidsbLBELoF0YwfOOFTPAg6lNuP7vk/wWSWVTow+1MFCRHJ+9GqpX+uXGSxQYXZRih6LaVdRW2B7EpTdSr2WG+ncfTiLgI+rkwNHirz4fC/TcLjcuQqWQT4yAJLBBBGLyp6cPNmapWCRidWTUB2Bi+yQ83CAN0rIkXmQri9M0cu2ATDGR9sHkJCZCtM0Iq9wmzeDHOmdBGssO6M8b98t0JDBa6ZoaoHmKCwwHCjVAR730zlIvgTTYrZ2PG9Kuh50RumA892e0lrOegjvWAVxcxn9x7byYLnP7AzznHxPEdf3KiGQqNzTU/Up9bQ+zSyWCF7hMK+Gv0JgAcNZnz0dqFaIdGhPoEDePwkaZPBlnlzMdIBWodFxBrLOFRIYZGC7cgoi/5bHJ+eJ6mA8RcCMYiMCQE+BoPfHAQDK7eDBoEwRSN8wUkn7GPvp+SI9I6fkxc0GMHD+2+Gg3Q64oCUv7yBF9+CJ6JirgAdWHAjlvckopaB2sBX6GJsppeggNnken6fj1wEoKEKQySIiMGPtMhnDoCHyJtE0BNEMbBgvacQ/ed2xiIsvHHKZbOwpvpvLH8q+iU6lNIDrqAcMmGMruf5cdtLyJg0Yks9IoqcQsE74IUfYP4/O8TxSUvBJ97TImp1CxJ/VF7RahL0vvhjuJWqXF2crhBp0MwPE2Bu/8JoEadL7H+nACtAuBiasPwjmb8D86n2/u/jPaSCagBICFCHVkXvFiOQjohCgvcJ+qOZ4ltyfEWksAUidUxy0CPokqOc2ZQPTHYUQE/RFzVTZZbQJMIZEoTaCtytFp/pcUB7HheNQEqjSkaTQm71bikzFuR1BL2Z+cQw/fb8W6VTQBag3jM0sIbY5NzWXtyHKLHnhbj1SBlhlQdkXXYHOsWaLcOhaMKgAQMQF3JK+BRkxFv3rwzAu/nm3z0ftcbufNEe4vY0jD1aORkI24FNKBYCICh7mfBl5vrlv4mA70+ekyb+7Z/6dVOuSRJI+OLSWI6CQx4y+W+Xe3QNnsR4vyRhrjz+PeLvzJhHXL2JGBJ89jKYemxcAY36zxJGmTdNu8n7zOUceTsZJIOCV7U4bmzqdNjMJzqDYu848Geacx0WGkZauE2u+09YZ2eR4Fy/Pl8UMv7fBZl2XeHY6awSO+FmOnBzYFZ7KFvTkAkwKs6zHPDTBj2MfR/ogzNmzKg0ztCqiYoS3UVQQAIE3WycZufwpWmPCtWN9NjHLFiwC2887+mIXqitQH4K/v3/CX02/wz/Wz/jWLvh39x/x1//0I+Y/VdSb2QCZ7RB9WMe8jL1PEGt/vGoyDATxfKGxUGx94LiP/e/sc3yQyRD7HtdWJf2+HaPrFICbUmUPHkxj0RQh9ECErVtyZLLpAKB08mh0ivAxpSTEB3W0U8AoKixizH6BMbzONO3DIbavMbjBMQC3KWycuF3j5XRDFDMcVM610/VLibVfUEwMj0AKARMdQZYMgHOuaM7b7va/81ptYtFeJrGkc1VjTynqVQ0SaEHxb3EswLS4ZLzP7ITkdUf1OI5ytLvjYHvkfhZP88r9c7gGj+zQ5PWyn3Qd+L1fWmOTDsChRF0GRXg92gvn6LKma+R2Zmfyl460Zx7+/dF5Z1DgxBAwwbjvjOMP9s935/A+2SHOwCznHTCkt5KI39DisLVEHquny3ywR32vHwgSiBz3TM227PE6NoejRX5ucgjTc8fY5XfPIMdHXdPNsdDp6Ct82P6P+jPsETF7JDvxpxSHOA8nx/r02eEeDOac52MGGbrN94OA6vfG2kfjJIAFjaDdu3ud59qpHw5gwhn8SMb6YQyTaZAd/O8dPV3/oyOnQgBwUT5vJu0E2BrgJXWVtmxoK+Tv/zJk8KsAFOqmeP77HXXtRhGtJhSodcL8rZlAHsUK3QAqqxu2xdgMWmn4mRq1KDyK0EZOVhdnEgwlekbFAaD+vGJSxf0vjAkw3YypULaGfp3Qnz55WTnB9HUdgm4RERi5ZlD1Um0CIfrojpJsBdPq6typ9rQoUF5d/MSjGVm4UZraWBWgL4L1uWL5uWP5aYvnaM+TiYBR1dzXnD4Lvv3ljPWL4NPfdMyvFoWHO9YR7b/3qIQBwDZgmLFZukI2i9j3WVAfNqH2p4rtc8XX/6jg/jvF8p/9hPu//oI/+9fGTqi3LXQuZh+Y3SnyaF6LnYahiNEWu6U6dKcOs2a7IaiCjdTFiwnqmIFn5dhYoivySd0goHCkVj6zYH8homgTs5BV6CrcpbWg8TbXWUAVbM8T9peC6dXatb9YqgM1PqjZsHzzSExxY3t3xXlnGNi4dFHOSTB99fOrXWP/7ZM9+22kfPQ6e/RRYqxI89Jmxca2CUeaOKfQkCoWTZLHBnm7Q+cpQLK8Affnq716phGk+s2yE7Tp6E9zlB41TYHurAo3WvcSwAf1K6avq4FX5QrpMAE6MgTobC2zlVF7MWX9g5I6YN+/TF7Gz8o8ktEET1th/qxOY66jw0Rc/dlZAtOMCRsn+6cFomrz+76jvN0hn5+AvriGQ0P5enu3ySvnKIXLQKZDEjqiHoAj/oE6P1mUMUoTPi3AfbN/s995fZaC3HfgspggYS5hBgzVYDrg82yf53zruXqqiQKPzZgAl4tFztbVnBQvGYZ9N+OXqs8AZPHSirc7Dnl92aDNLAbA/j5NkHmGbtvQevC2vovE5Q3en0VVAW8fABMUmyfgdrdnmGeLZPlPIvh6u0Gensy44Xr9drdzrstoAx/jMht45lTGPhXHxSZzJLcGTCYc2i+M3iGcSK7pJiQraNeKsgqmP968L+CMtjn2KFNfT4ZHEY/UtcgN1c8vbtzbulHvzRgKng5gaWym11Mf1hYDM5uxlJ6nwU7oJsoIVitwp7RsHViBx59ZWtfsaxxLNG6fJ0xvDdNbD+YOnUqKqlJPqOwF1z90yF7wv/0v/zn+15f/FNOXFft9wvz3My5/EFz/UXH9Y8P8dY8ykdn4ErV9plIkkmmOQAhGMr2i3humbQCE7Wpix2SIlHUfIImveeK6PP3z1QBY33Pro0GdJt0vlq5Y4U7nw3VrZgee6hizmf0BVvQ4MQwCAM3fSUBuOPEEo1URQpDuSObUvVyqMcaXFtOsaXQOHCDLESyCG7eH3evHl+iDwx48UX/KgzrAKIUp4uLYGufFnCAI5Hv4Id1yngMEaU8THr9hqWXg0hW192O1jwD5rN2yNatmxH4laENxxG0fAPljhfQJ809bpAuWrQ0BVX8e1YrLT5a+ARRM95TWUouxuIAQd5RNgV2Asr937rkOp72NTog+XQYTIH8HGHnZpGMzzaK6rflYbb14eFsYZQTG8+YUL5ZQbd2imec1N0d9cxvYdq3AkoCc/ExAANjBcsggiYPSBxYJ7819MR8iVs6XfdnaKJP6S0BFYrjxCHA8gA/r00OKmzMax9wb+iQU7w2wYNvNnOZaXAse/+EP2J+NmTvdO65/+2Zj6itLLh/3MOsTgjPl4GTL/kG/ZFDkIwe2q6UusMtbG76GWoq25H7P7eDfqfGQPyM4UQtQNMA9cR2RCHCJAKe0GzvH5iGZfgF+tRY2RQZhAYQA4LtgjAORNuf3EQQhWMG+yeBe9KN6H2H0Xe7P6Xg/OYNckTKT2sPvkLmxJDsyA2/R3/2YhuBgTYDXvRwBh54+479jrpZxzc3sIM1trRXIbFGuDRyLZILUOtJKHUTWLtYWuOhlKlEvrFp0Dladjl8FoEDjiBGSkePpzlkZuZ7AMCLoKMVlHLWKnEPbE8JhMqQO7xcxjOuOhQ+BDkaKADdHQUQoIqLNKOwJCdSeBi8Qg1xIp9FqGxJ1wTgxajY4AIpTkaIqO1BXDdFDOP2V94goSOSZCtoFaE+pfwEf3BLnWLs/6Be+ozYGu53vQE9XlBUoK/B4zJhXsZSBYloQ/L6szdMqKsQN2VDzj5xvhJOMySJihf3ixow4U6XsZhRnocUoi7m5LoW4MbmNygcjyqGRQzyiXwLU9/0QxtJS0K4FbRazZdIEE28fdrXcWDImeLhRNpTCz52d3k9yrHQuY1Hv1jca7BP/XmgoeD/poHOzzOkBxeYimJ7v8LweoWUVBbvXUNyWNtBrFfFSmB2soDC0UN73Q7BkWBJs07QoYzhcMsTuYlGvTrEnWFSTAcwKKx323h0AA3zd0HSfvY/1g/PFx3r83lr05egYPeb9U8Qvb2rhFLpTyj4jxbJ3ZNHEMByX2QUAMfIqgTA6Dyrimvo0bzYEHXIKRm67qqmuP7aoUR4GXDIIbYNRsESY7MOIZI72iAAmA/OjKJlvRuL5wbLvTsHjBulgCNfKnNt4Xq/76V1E5KCEcQYKO52Nk3O/IRkRQKK2J5AT5iyNDR+x9guGAUpwOc/pupnOTwjyncYbHcuz0cfIhmL0pcCNNa/wEILFXrVhfBnvDxoNzlqg+KEBBbZGS1NUX3elqa/fGBFcT1cqrqVj/YhgW7Ct4m1ifnp9KOZXxdPfGgC8P1dcH4LlJ2D+pli+KaZbR3Ug8rDudth+U8TAQjGBVUZapCO0W1SLCVy2BI6kdcbGhtsI1CMCAjQCEKwradb3wXAAkFnWrPQRYEJ+dzKi2War+LvKDANnF5D2H2NBrJ/zHl0cPDhH5LSICVXm15wZWGfDNmtJ0KYRsfWaZRPLsJOk23pVAMufDjbEaY1Tsi+s06WPZ+F4DJ2CZBzHvg97l9QbkarQpUDXGnt4RIGrHO+dn/28Ruu4l82X3Vg632GhWfqaz2V1+2rTwc7husR1lUa+JubbRzT3/Dd3eKw9H7yjwwPJe7r1945afE9K62YaA5kancEvSMEh3SE7Z7kvP8r/P0eVE0j+3qk62RznnPP8zKfnjrXxwODwKGoGLLLwHB2l/Gz5s/6dMZQZAblN4Nrex3sH/RNr5Dttg+8duS8O9/C/HRgufexjHzFP6ECf9zkfk4p99MFHgEyyEd+15XCPo7BkRP2/MxcP7T848JOvhx8c5/HAfeWX2AXfeaYPz83zOL+D83g/Hwf9hnp8V8CYe7lNXhLTBMTpHP7CwXPOYyOnSZQk3AocwQTAnP4oV1zGd89gAp/Jr3FYD/Ke+P/j+HUACnTwxMs4iik+F6r6KiIdorQeziYNt7I2aOlolwWAWMm9yfNMs+IoYBEDYKDaeYMWGXm9HSi33SL4jEx3v/8GlLfVIn6fnoKOaAam50Y7pdbu5ch60lII1dxtHxT3WtE/X2OzpdFm4l7UerCGyAO4/JGCOc5McJp5be6kF4pLCnSxlIR2AUpjSUa1hbCN6hqRb8p34s8dEREOQHFxLNjmO906Pv87q2jwdn/G898q5m/dHO9lwfKn1bQN1h16mY2h0C3So08CTMVKjwHGDHE6O54n7C+Ww1tWsRz4DZi/uSN5L4dygzpXtGfTR5h/7hDtkLcVshpro10nYyn4o013K/tYNtOY2D7PEQFpZDqQ/XExIOHxZQh8UqCJVMnpZuUt69uW1N6Hc61FsL9YZCZSO9ivDREFYllU2WzsMuJTYMwBue/Y/vwZKmJ51VWwP0+oGxkmalGjbgrA7dOC8thRfnqMTSo5XFF/u1s1hb5YpYQDv15hUfruc3BrKDdEvnG5b5C9o325WsTUFeTLaqXlopypGINCRbB/WlBWy4WV1aPyzxc3qm1M6iRAN7E5vVTXNKCuhhnk7VqsTNnbFoalvHokZxnvVIkwq90Pcyo91i1nO9aFvVk06PMLokxsbCwmlCnbDr3fIfJk190st5Tq/Nan/mye66q3O7Q14Dc/mnN9e0Cniv7pivZywf55RllnT4UC0IzvII8deGxjg6OewjKPSLsIdJntfm/3tMYOg0S2HfrHN6iDCTTM1PNww6jJStrbCn08BroNgIrLaB26bulW2bgpA0y4XlydfQrlcLl4m9eBtouXdlTvQ/GIXBw5GgZ4NYQJMsHKsAHDIJVirI4k8hXCUp4vq69voSxt5dgE8nq3KOz1YuOJY2UxhgL2ZiBSsTlBkMbGkUZETR4T6lSwf7I1qT8vkeMdjuSlQlFReM3N6sRHbrIU66dagbcbZN1QvGReOPmcopMMwMXXKKgJ3bZPFxOxLYLpbbeKLI8d7WXG/TcV85tVN2HJ5ulSUJYSxnJfbA9a/jR0CaIEoK+VOovpqriRVh8Ny8+C+a3j8197qdjVojXtMtbR6dZGpQOOVyVg6eUQm6LsO2QvAY6Is+YyOyTE8RSoP1kFlf5sOgJFBOVthdzXBBSY5lJUq6jDiG1XA36nt2YAuLMO0LtF2C/DiZFHi6ZHUINsxXCgPY3ENaBGvi6clWaCgX0Sy+/fO+rPa6znPAjKb19mQKyyR1k7yu0xnAwAwUyD2R2D/XFKEXsuA0zpCnnbBxNHxrkA3le3AUaQpCPYXgKYreT7RbT9Ug+Ogng1iD75c1XBdPf97rYBtaA/L7Fnk+0W4DNwBBCQ/sZ1wsu9Vo+a6tMSzxX7mec52BwBlq8d02sLtqcus+vUVNcswAA4nBkR6ykw9Gqy48FI+mN17Y0EAvvaYQ9eDqkGAVKm54sUSzggNNWjcyg6hF6DJdFtUDB3m4KNqc1ay4gEx3c5t7y9tY50H9oRk/cLtRV8zIXOgqQUL5H3Tos7QwS3MBHEOoEZXWPPwjK7vZzaTMCezzWNOWoRfHzgACbnmKWbLwuYyie9m0gu+2OZgWKMKBRB3yUCW1B9n6aSQXbOebJQstbFGZDK4pds6xkYZ3nvifMKHrhwG4fX8fGUdSGgehTrZClqVcQicgZgCJZmgDIfqc32/px56WPU7Np9MC2jj/oAXU8gSAA5/NlxZBzwGtmG4fv3a5vuVXmvsXEOsOUxU7ySVVezIxPgFsGd8zsCEMEN/j2DQRkgcbvMNE9mu1fWJPHzBQ4UpFSII5hQgHkZAtTbBs3itqcqD8oqb6oD3PkIBCSQx3v/M8evAlCQjhC4q0TtXQOAmzOjoVSM1yrQZs6xVkBUUJ3qSNQ+KIeccCII8bWsgO60puJ17Oujx2KtQNJS8HZ4JQbUGoJveDTr75SDftBP8PIrcU9gTH4i1nmh2BKy1xEMDgCe+6fDAGuKVmdjui4puiFmafZZsF8F000hXTC9dafiOsCxa5RJFFcMHxGGGuwQnQv2S42ofvFNTrtFuWQBprti+cnv5YAFABNlFAzqZl6ghMYhQqgRyhxv0nLNaK1bwVCytD4xenFFEbFIyk4hwf0YAdrNgJZWRqlRf685EhWCet4HfZK4ZdksjcHyK+H9ONpIQc949QWIaiLejrJ6v6eFjJoOKl5+cXfjzOlkVHdVKmv7R8xthUiUXW1PlnNbXDncFNH7iPzNk7Eb8iZVMHJbxVOHvPzkAWiK83WMUzJVSjGHwjfo7rXWsSL0DwhUiYNtI0XiiM6OUng2BiDmFCAZoaJi+hwOOhSmCTXvbxrSnrtsrJg0r4KSqkAxI0Wjrq9vKpdlILjen8oyg15OKdBoClnN83BSYpzScVBzXinKRTDRRTD7pVrJ0S7OWrYUoDAIpgps7nh/FEkQGWNtmaHXxQTcuDH3Dqw78HazSHeZx/P2lhwRrmEu4ONG+WFTSe9MaCzzuwCCZopqi1zvwI7B/Eg0v6jVDAzjyDcyS82xcyXGn4xoYRsbZxYEQxEHk0o8jwGA3rZa3Lb+gMHR/b0UjLrY7ONSgPlklAGDBVQo0ghn2WCk1jm4raSOO+AXxpzqSNegWnrsA8kI9rmhFAtl5LjhFN1WiKc+aLE1ArA5h26R+3apWD8JpNueW2qB1O77kjPA0prD9ZsgM4AAsW3t9v3MwY7p3kKvQboLKRM09X76SMlckKLY6X4GViA5k4jPyCKjXpB2p3x6O/tcIXMF9jqYizCnW13UkRoMce1dY78MR1nH8x5EnX3cWUQfEfU2tmIyLJ1FAbF1qV9qsB87QZxNYl6owrQR0vgsew9BytBOmpKAKOdEdkLnGiKKxv7qg00BoNwQ4EWw2ah3U9P1ciRXBKiIcTwqWRzvHUcHIIMlJK2j3hsuf6pQBxVsXR9sEezdlp40VzUbySKmLdLh63jStEl7r0WZZWjvZBuZ+/OmFrR43VHunipEu7G4RoWXhabdwu8fxBB5ZJuwD4dH3al5l+KVHRH+zH3uY4z2I3C0JQ7XClu0OLO0xBoZooz5XB3BmXfgDIAQis1HcrLiuc6Hf4dlhj/MmT9fWwQ2AU9/EzVQh/fMoE2yRd45nHwOsvdyX+WSZ1zjw3Hm38TX3bHm1tsW/oo0B5XpH3zPocxH2AYfROc/+h0YgcmOMS6SrxG2WnaaE1ghzpo+pHec7q31PWvuAIxkZ/P0voeWmB7HTQxWGfN4x/uo/+m/w3Pma3YAHsz6azqBdQAAIABJREFUsDJFSikLu4h9Qro/z0vrg2n19Tg3bBPaHb0f+5Zty8eJ7fuhFsJkZZAPNsv3vhPVagTUmJKsm+B22vGZS3xHEuihGbQ6j7Pi62dolZxYEf/M8asAFNCsCkNfjBpfVbF9mm1j7WZ3FsBz+nYrp3itwOqLsxg/vb5ZpLY9zYbs31xDIdXzpiq8zmMAMtJsqJNFl4My72rKPIrnARr9bkJ7ng353mzCaEUMPkk5KGawGKpLRXouhCo66sYCEf3VS42IAbbR3jDmVs833ZsZQ1PB9mSRW+bPqpiC9/ZJjFr6jx3zz5uh7vswJvplQnuZjUWw2WIrImi12G1FsF8rHj9OmF976EtEvlYT7E8F8w0o/9AtUk/mA0wxXOaCic/AVI2CcObpaFvJGZvE0hXTzTdzV98+I9tarXpE9UW9PJqJed5cj+L5YvdszXQGVK1CgtexPqdcsM0h7kWDrpsq9PKnNVgjrMNe70m/IzbjJObUxxijvgF1MvrskbpJrCKEKuafgYIOOO1c9hblu6p/l/R8Gl3l0dCeJ+xPFXX2ahqv28i17R1UrtdlGvR7IJwtACaOqU6Ll8lLpvUD9V89QlHW3fKX3TA2I5njrgDoJnwpGpHDPMZLjmwT4GoK9RQWVcSG3T4vro/gJR3XMf6YF2sGf7fSlVMBVCxHGoC+LEAXyF2ijrmVQtvDQJNQdy/oy4RyvQyxMD9Xr3M4hQXukBJZfrqGroE5IHUYMYycuPYB1z7ME/Qyoz1PaNdqVVwaYBVGzAG2NlRg88jQww39Ug5Gf2x0tUCnC7bfPWP97Fodqpi/7ahvO+rPrwiWCqNIj4dda5nHBuWRfYEbg2WsW2NRFESOUNrktFHTwenUVCAXGZsajcisbl7LUal4mZHFKHMFBrmtFoUJY+LkRFyGPkJEZhLt2uZ9ogm7QX0sqXqMkEVqEQVU3THUxSIfmhwpOrisOkJROpWC0kwXRWcDbXWuoE6EOcgJ/Fq3g8FtINkQjISznAjmWfsM8Ju+Pmx9f57NCV0RlXDa84T9uWD9AZAuuF4K+q6QVhxUBOavto62SwWqWNWjDWNd8X1TJVHwAxioqK8b0HRUbvKIZ2yrpJ/TKS9IoC6j6z2YYMWdZ5YtjHLESiZAiYoP1Y3N8hipdmWfnEY/qkJoEdNi4tqfwAIrXWzrep8NuKaxZQKq+0ifEjId8S7FKouDRRWlKtg/zXj8OAHxHPAgi9kZffaIYRmOPvurvu2uZeD39tQVPFbTQIEcoss6WaWrsCFuPfZ7ALFWHg6CY2fgrXcAvn9K1rXA0djmO+W8ULUMp+LA8dYwNWOzUFMhAJZlAraG8nCdC2oCEWhxJorNLQP00GAslneOpgyQc90gywzFGEPdwaR6byhNMf/TG+SxQ9bNwUVGeHF0QBjpyUGj5CBlzQoC57b+9RiztLcOaQPetgPLIF+bRv/ZCTuc42tY6RCZxlqbwaCDU0/gs0c7zuKLv6hn4M6aVQU4nRPX6QMQ4T4Tn/d3l8zPE85jZh10r7yh6T3ImNeHyzj7QPcEaPt8PgA7Ne3bRQZoTXq7j6Py883WA75DDyocdBryOOynd3WqDDXun+baCbDJzm7+7jsWQQZNzuKfIpCz+5eZC+UoPn8GDdguPieAj8EJf+cGTvSYC2YjIQIlwVpUHToleSzyODFlIlVLEujN/spzsXdQM0rXbcy9Um1uTGnfSmMfqsM+CN+lHd/D+V2c51Qwg04HHX1WFsnpyBG882dIjMsBpKc2ihhAQTsm5ryMzwCAzITQaMnjzBdpB0mVYELYVN+Zm+n4VQAKlmvZQ83eItHmkDaKwaQIw0DKbWPu1zJE6tjvrZtDSXpbTGgZL7wpymMzg06nyDEcKtducKhF+SkMWTh5Sb0DzPkgxYTrY01MCSAMxP68hGBcfTPQQ30CKCNSnKRNgd4gJan6A2Y0vTiN/a1HX5TVBf04+FUx3TukF0xvHXV1Z6y7AdQAWXcz0iYThlQCL6phcEmz786vFk0oLiyoxQS/oJamAiimN3/+MgQfQ8thkmBcaBFDGKeUbwlLLRC+d7XoUJ9NdKxsZrz0SzUq+LfVSw5WtIs5YwvZHct82GB1KtDFc09dZ4EijaJuwFQDO8o+tB3qrR0jAArI1lEpGAWj8I8BfdzEQoUd1g8s4ahVoKiQyQxeaYp66whWhwjklG1GAUdGziAU26LTaaAX6Fzwe62Hww1VawMNBo9g1zej01vpOAMdsoOWVd0xFaiOSGtpezgy5babkKrTdus3B3aKRTIBRBSNGzQFCTFfLC2iiqUyuYFp76QPynE+SqI9Z8fkdJQHqbrJEEa1Mq50iIotoBSeBOyaRZqnKjXIW3fwwctsJgEse4YppQsUW2XnCdg8xWAfInsoBf1psShl0kGxKi4Sjk1fKgqdat+gdGvAtllZRSBYGTpV7D884f77C97+vOLxo49rBa7/MGH51vEZMOr3T9+MUcG2JsPBHFtz/pQbq4+FMDJZG3yaAIpD5dQF4MhGcHYGdMMxlH4yxF38iWrzKDXYOeHE3jcDE9YtNn29zMO462pgMscwI9KfXFDSN3E+u7o2AVQN9BEZESdv2yEqOp8Mc9i6rJcS5W1j/Hy729p/mQ9aPWdQUxZAP18iIk8nTGNuucDaYqkZhaJ8ea67bkAIFy9OY/Zzreyus2s6MH1r+OHfFky3jvnnPYRXy9pP4OrIrz/o0KgOgT7VaHO/GH2faWE6e4BgSc5z75DVmQVzij7TOfX3FKKq3nfCKBKf3VmKZXeV6l4DvBkXtbVRBcDFU5Ly5562JmJ6MADGPs9pIUC7TuhfljF0N9vzQ7uHzA2CTw5AhSDhNEoh97ng9ruK178sVq1oB6ab6xHtdbBDdpuLxkKxfVYKUO9jPyPoQhV8lrYOgCnsEI0+7pcJMleIC84SnNOzMS51iEVeFzvXRY8pSP1OPT47Qh0Gnpca9lHxgJA8XCxWNZio6F6adamQyUriUo+CY07WHnpKnEsHhzo7lu7IMHAjrUM3s3vosBefxya27eK7nsoQ4sV+7QAJhKDGCWxJzno4ekwHCIG2GhFfWZbh0O3NUre4rp0dbXdmDoKOZzE5JAeSzjIdDtqWaf6+O5JTbeXOvZ28Dh3rk2Mc6v3dK4mQhZJZEZq+pw1KVXtv00EniE7WVGNMKingGUA59w/3Ah5pXlhpYoWqHEEE7kHLfGDIcSzReZU6+muI8J4i9R/NBTqiAXwcaegffo9/436bx5ZHuG0MlcGWyXu4M0ICBEqp10OgeRpjSPpIk8iADO9b0rzO7RUBQJ+lx7yJd+PgQTBH43oJnOLPHI3nPObzZ3ZAslfkYG+NsZI1W2inhbjpGSxI+/jBxlFnr3JP4Djk52wrfL+iiGrHESgCECkL2ZFnydfMJqmn/s1tOx+cq/ycc47PlcexThDs0N3vn0Va2SZnMwmfiyKPH60Tp+NXASgACAOQEX7ZugktlRl9ciNIZAjzpO/RGOHgL27MybajM+/Vo7EHlWD1vCgs5kTnl9cRedxGwy/oi6A1Om0WCSUCqVXQUWJTAjCMleJGkCtl98uEfqlonpNaYC+PugfKiGM2jLscaDQUOxRfTACbPKyUQfDDKmKYw1of3SJTpNMXxEYnpaCs3OkBMFBBgGQ3Q7Xe/Tp7R+fEaTaxymY02fpo4dyTwljZT8Wd5I7otyhL50cPAUIDluTRgNlrrvvE6LWg9I5y20Lgar9W9GUsgtnAYORKHcDg31iTPdsDNUTH7MVUr4ltH3q/+xhj+8tOxFMiReRwCGIshVGDycZGU5Te4h6hKp7XD6cSA4OKXR6M7moyqhVlw/G7NOgAW9TJ2uHHF9MYkLdtLJBzjXQHZGMe473xJuVukVbTXBBTUm+Ceq+oj4by9vDcvBIdc8i/bL75XBerfBFOpRmModLOSBrHrn9fIfE+5Aw2eHstetCGMUnnO977PjZM4GCgxDXpKGzGYIr6w1MybvicKdIJqcBM51y9LCBp7oga8xQli1QWceNJ+c7TRqxqAIU6RV7EUhncaNxfJrz+RcXbvxCsv+nGyOqAlop2LZi/XXH5o2D6+XUYFty4Ux7iqLGstrF0Ggk6fma7qGswE8gy0G034BIAhSilFFvneET6SYpKFHdAa41osq01prUh6+Z5yy02cvvPnkO3PdJdrD02FvrVcmPl0UaOLw0RdQrrbOUh5dt6clKODpJKGdoJQmZLSr8iTf9uoJrMBoTKulk1Ewc0dS42RcVAzhDFcyZXu1gVmSVREWNsupPKg2WAyZCLCkmK8SzJUKz3hpe/ceZP0jGQJmAp2MPBbVLGMhMCwg4m2F4rQ2enOxgh6gKQQ1wWezdgORy2ZKArAlQdlFW7kaVnwUouwp2D7qkaDlhH9Rd+P5gBQ38iRFi7guldISJLYCcZU30uWL9MKJuLWhYZVQ+AYK0N26RamsfeDbxUtT16KdifCx4/Ftx+31FWQV0F/WdLGWyv1rt9s72O72uwHmzOB0UVGDoG/Ns0QBPRNHfJFpstzaZuzd41K8UInTGzfViqG0VMA2FDgLCWitqH81ckWDy0q6iFcdCu2gdIC6ZeeIWGMld0MhXgy/3ek06JP2sWk430GG96KckWmIa90/tgkLlTLl3DoK831xm6PxBaACJezaHEWnFwhLKxfza86QBtWzjUwRYQtxfnwY4JPSj0Q6rkuJyPAbJak0Ofz+ExhG7LcGzPx8ExxPGeIqPN1KIhMw5AKPczEqs2j+LfATjDnJkGII9FqNlBIpZetrexPjE94aTGz1Rhu8YYdxkwiTTns1NGoAcYzmt6bp0n08vIDh7PVUUWP2e0+vCGVJEFXN8DA/3oSPP4TvpBOPvncUWWhoznOvQL+6/oCFTSN/ExH4KsbhcddJPE03vYdrYnXSezruI8zkvurfFsphGEBMjEmMz9dJ5X8U7dPs79nd+t22/Uo4M6+5vj/cCEKWM8hM2HAFyOwJfvQM6wDGc8H7XAaWlxXS2AeL8rcHTYT/2lZPbwiHMIoKgvgj6fmPqQwQmCS3mcZMZEgDM1PTOvyw7AuJYIIuVV5Wjzfef4dQAKHhXd/uzJBNp+XkMJvzwayjoGLHUN4FE7FaOzl7WHUcV81f7pOhC57Ii44aFiJfJ0rib2Btuk2ssclElp7kS7Y12o5fCw1IDq6Q+ZipfLPoVBVAr6tYSQFunzwDBEAN+ki12PR6Ejxetyk+vmaPTnJcoOUsCybMz58zZvqQrCVGyRqQWlWN/3q6c83HaLlt8fkNYxq6UHPH57tb5g6UZxJB/u+BAR9IldHyaypTc3stY2HCUXnqKdXx8dcu8BChVnGPRLgXSgdIuaFZRh7HnUuz8vQDdthMs/9mB+9KUG/ZblRNEU+6cZ+1OJdAFWYqi3YYgyRSGMTU5QlvhkCbACdDdKlaU2CQB5tKhsQ7Rx+7KgXSrKD0+DCucpMBH9n6vntpuB1C41tdX6ts92T4ovqo+byOWrcoqqGXjGRddAudno4runuJA+zwWxnXKdnY0ipNzekoG7+wZSFitdV8Yi3ecCfHlKC76juz6fdK6QfYYss6eMOGMowDhErnHk07KNHTFHy8+vwzDza/fnxdhO91SKring6U7iQpwWRXSg0Mu5xlx+WkbpNzrZ18WMlXny6E1ip6wpskRH3ZAnKyM7T8P4f7iT+TAl9akWoLRB6+yAdCtHVn+6QR4b9OsrlNSzy8XGicgQZrouWH//Ca9/ueDrfwJsv92w/OjCdK3g8Woiso8fK8o2o15mq/aQjOfzxia1WISqNxxKhAEjYu/lDZXloOBAAq9XvFIEVmhCxWlXCtYRLRF7/v7pYgKrXFv2DohCpjIMAh40qjMFWATqJVBt/qa0tw2Q+8Pa9XK1a2+7RRfmaZTbIqXSo1rltg2a/DSZUy2e8jMXn2saBlpEqp+vBmrOFVgk9ECCSbaPNX163YdT7WsMWVx9LoCWYBoZ28xBsiYo8BKzzZlGpMO6496frdwuq+KUzdhI27WipPQM2Rr2z5PpoLD6wtYNGJiMPVTWFn1jOghqrEAHbsvaMH+VWBPIpth+MMZg2Sz9q9z2JCA79keu3UAJFp+IoDg40z9dzZZeW2hB1KDwFwtMrN1B3BbzWrnWJWG2AFtEDnpGuhT0Uo3t4etwve94Ij0fCNFe2T0CqhZJtzK/aqLHIsaKSMEGahu1BSOFm/axiO893F+NoVgciDyUpgQCdIWKOWeeMtinEqLS02bBhMnHMOeulfzdnW3F69P4dXtj2yHbZGNt81QfggYHB20ASyiKgzYO56lfV68TtFW3kzUc3bi3zwstgv15thQ+9jN6ACahX8F1O/03xBvL2G8TDT10bwCP+LtD5CCFUX6HDUnRRQkRRXMO30VEWzeGJM/xe8plGY4gwdvkWAZ4ldbYs7MvLPl2Fm9LR6RP5DQVHs4uGGBxokafKiXY+V6dh+ec9E5QLN9eexvnKrUUPPUhxtMc4sbqe8ZoVw1QEAzQuDNFzaUISsX6wFx/HSWWmzOrchoD2TsAghKeU4Guy7DdRAZYpXp0RPkewlEe7zb+7ffL7yy+n8Dg+CynGuT78PkyqJRBkfQ7dZgAGJDNz6aUdk3QLt+HbElN417VmYRpLNBuqx+Mp/xsdH79+ci2Dum/fbfUA2CAU/kaJ2c4qi4lBkLuj0OVK7+GgRzp7wdQwo8pPQ/XAs59BlSotRS+vX9/Ts64OiOucb+YQxss+kJkpBwkhkLWbjIbIgEDPMjsTuLZqDD7h8Gd5izMx/heZlcAAHUE7fw2fnYdZCaKyEb6R/fnQ/p3er8fHL8OQMGPvpSgGqvSCYQtFpErN/wJIuxDNXVcS6uY+BCdwzPCBoRDQ0dWpmICmrUE3TgiRYwWNTp3Ht0qgKCMAQ8MMEHMI6XhwVzZkU/YR3Q+TwhNUXaBIePuxOfqCyOfnYumWiRBEaKOOsmIPOWB6k4fn3OguX4dV6S3XMwyImCP9H0uXH4covLq9FEfvHTU9FKhRT0Vwq95b06zLx7tV1N8Fo8g8dppkshuE70vU5R2ktZQdMf+5Rp00hAt7FZyrM+mKSHdNqXarb9YCs3ykEcfx5gpSfwqM2T8+qT+R7Qrv89Ew2eutHo0zNgEdEBcYJQ+KGCORAcoWInmRvERE7d7NkPMFAjq6OGd5E2I/wbAsmZKo5Cn9+5r3zAmoozcnjYnAhXeb5Fj7uM1tCZ4TqH4I4IFVFSBzcGNLoCMjSaY8XMFpA/GQBn3j9xF5vvDqcBzGYhyU9NXUIs+R+qDtzuXpQ2HlH2S14+oQwxzXLJB6FGjcLSzgeuU6Dh/TUZtwQAB0/WK66TI7WFVHbYVo3KCHDYl+4KX5rsC7VlRXnZ8ebmjK7C1itfrFf1uKRCsSw/gaJxyLTsbD12B6SjwYz89okaHvoxN2k7TSPdSuBHA8ka+W+kOoyImA4OR+6EGz/FwjLbEulZKGJMhqsj8RL47IBwP2ZuJiFIgMd5RGQye/K4bzEhFQdbwsnvDxwt8vzl+TMZDTrfiMXLArc/K1kJXBl3cgFAD9ci+8L0pBCN9j+LaT0dOVNHFWGEjxxTvDqZ7Zaol29CrBIvu+CXFO2E70op9PsneIZOgx37m91GxaVHNKQTTmYpfl/0nHzT2HIVpakyfuUDXAimMfiLWnQNzqQsg+n6/csdfnAqtVdD5zpzCGhUBEjMxjDbfOw/tFDdSnYEx1hhb07nnls3YCZbq4EGAALhTO2Xs1wAGTZaf+dyIPUwQLCfqpUTOOX0eOsDAMOJz+lMYpQqgx55+sKXykeYZ12j94LyImlKnhH13dq7UllmdJJUvTqegfwgmxPfpKJzbwPOY7uSi3KH1QjbC6Xt5PYt+I0sNeG9w5+iyU+dD+8fDyUMg+tSn2RE608NPAofjK8mJOjvDehqffKaCcP7eOV+8d+63j9IKuR854CFsZ34Wf9UQZ6kB79gVR9HKo41BsPnsTAdIROc6tzV/P1+T/ZnYfwch5UPufrrnoa1+HmkL4Yu04z34XLkvMjiQ97Kezjn3YfTjqV/zkVIFLLrsz0xWJQ86mRkc8X7nuxuVcE7tzvc9j5VoI/ukR3sJYslHYyy3HxiaRzw+cmRppxE0z3/nGlnSmPmojW4Lmm3r/ba7g1++08bcpj7KYIpOY31gOwAcWAkfpbqk57ameR/ke5TigUEaGQhQw8SYZawH6e+QcmA7nUVTg4VFZvw7psN5HnR87/h1AAqlYP/hiscPFfXZDOLpzSIXVPZtz5OJM26er+8bTY4+9CfLFd2fiby7wM598xXz/2XubZckx3VkQQdJKSKzqvvMOXvX1mzf/432JXbHZu45XR+ZEZJI7A/AQUiZ1TP3z7WWWVtXZkbog6QIwOFwzE2hv7hQGSk7LjYFGGW/Prix+C16qYC1rmLGUtG/OkOC9YRpEyDVtO3GYti/WvDbfmyn7FRsiC5UZ4rz9jzdswvSXb26wGg0WXyQ96OK428vQLEWfgBmcBelCdOwxvWXChwDy78elrV+btAfPw3VbdW7IzjrI9W5Mptff+4QHRjulOcNPe6PL7vTPsfiQoJdje4rlk2qGBj3aqJf3doNarXPaxVUd1KjZre4k3FvlmWhmrp7wAHmVGsD2W+C0YD6VGMnHJalyxoIeqvoSwmHzlgC3hO7mC5EeztQf24Yt+a1nv5MzqAZa50AhTtO9dFtr0+1v8eXBf12s7ZfEVC7gXK6sXXUoNME1G/PmX3MarLMAm5zjmU77P35shqoslvrTtk79PWGUe+RSWMwOG7LdJxhG621YBWoC3e2Px4e8NUZoCks8+HzMhZr1RniqEfH+HqDokQ2155PQbqZ3szAzQBUok3k8VrR3nroZkAE9ccT6Irxb18jcBhrg94qCoE0vo93Z3sM65Aizx1FEvotgnG3No/1bQOG6bhMSmWquVbPxjrAII8N8Iw3AMiPN3N+lk+2WBpq0m2PDnlUE0TLzsJQ6K1ZoPP+sKDxfjcDkJ0wOgEOTrRHR30uKA8LLL6sG/5x/4lDK/6f//c3aBFrifbuYrVLg4zbzBjx/c1iiqoza1artR06Duj7u9+CTmPDTNNn2TGWnT2fJwdL1tXGhHtOayg/npC9o3+9heisMXOcergYK0zG8BZfBaS8xx5XKwS29gLs+fKCaBGsai2A6fQf3SO95DSpWitiZ6XYc9i7JcBknOzdAwbfl2AlX1cHXYbVf3PueJ3j62Ln/Wl7JERcXNiZNHW26q0PYxUdr810Sh4Hys8NFHqFSOxNxwvb7hZb2+8mbDzWYiwuAap3q5Hds4Pd2AMyCA7CWl96oFrF9t3yfkRrQQDRhtW0IUqAxACwv9rYGRvM3kGt1lKzPGknRugYAAC7WQBAtED0FrqDJQaq6PeG7feGuhbUbTGbtLt2BbOZLyuOryvq+z5L5UQmOHp0c8AdJBER3/PLLBvp6kyRirJ3lPdjfp4lJmudjnphcsIdPdddat931KeVXLVnwe2fguVnR3tXK9sTawVZt4H6fgTDZAbNNua077HPcT02hOYS2x72e4OsFcWFjaWrsZO6d66pcsLBZDuMFeUiqFzv80IOnC5zXw1Aqp7nz5h3Es47utraC7Haz4M1XYz90t47tAm2v62+ltmxyQA+iAIHfYxZtoMMeKnOvZ7XHAP64ro3w/ZVlkFFRje19vuQ4eVYOZAZLfdUZ0nCBaxlx5rTHsPyMMByRqdgdoI91ABAL1P3hp8hAJLvLfQa0sG2iMAMDoaPYc6g895ok65igFkjR8R0EjiHub6fgJXq+T6rg/9uN+RyXdNrmMmMDCqExkGztazXewPOASj/xvvhtaiNUDwY4/occ61oHgeOtc6MdrT6O11vxPNF0JpZHqS4cwwJXIvM9wSYWfMAQy7z4/fD/St8C85/I4uSzz5tW4B87CbEshQR05FYpoaWlQ+m8gFglmHGGuTY8gO+Bw5n3AIz+8/D12es0MT24byFJgMBmNwVYTf9ldDUcKBO0rzF97POiJd4yuGAwzH9RIgA95snVWcL1BOAwnlS99WZTOF79aRumD8L3wVgApU+dwSFA0RQnR1Y1OeM4EgfECnnsn8eV8YSy4DsonNvLwKWnhpz5+xLxlpOJSvCkg5PHv3q+EsACqwVLh2QA4mJYCqc1kLS6vh0THRH3ChOdNp+bzX4NjGluTH3PtPipQ4zEwOjBtYSQRs3C9anmgie/S4EDVPW6ypQFfd3QoVn8BRlG58tCplAgzkfvA6fUSaQkjaZcI54PaK1V/Saradg2RtmiYUGOVO9eK4xoiVhDtIBCbSZ7a4IuJByL12jnnSOC6x92QktzuMFy6h1IEoP/LrDlfW5bgBHMltxZWfboIJlkj9T/NwdKN3uwdgnmIwQR4jLcb5fOFCigpk5Otw5ALxEAR9RUgIsmjL47pjEOZKmQxhVGhR2w+D+IphrVBVXtBERnPtG0K0W08ZYZlZo6OwakbuRxEZpZRLWgrFDerFJqskYlRKdEiJ7qzYXBv6NszHQlCksEmwFFbKDUqYpHaLzvSl9dn8A5roaaz2j0ENDEZ3vRpyXINSo5nx74Ka+xoTvczYkBbYIk0Nw6gbAg0r8DCgI4F0yPOeM6TCNEtkjQxhUvmSIAJiT0rvV7qfrRlZKDWhc3gbWbxVv3xf8x8sXvO0L+hCUt4L6Lgao7ZfA+XpcDcdw4ILAAwO1/B5f20rGI6cM+eX3HDeBaTToEKeMG5WvvB/APkvQbL0lB6PWcDAjUD85gB/r4GPchoazBCASTeFMct324ewKB0RSZjrO5ftEaG34Ozb30vThHFD4/eb3nIEnM+xl69Ay0L1rBW2INIAtX40O6k4l9XjS/kdhRulqLfZC/RVzjyVjgE5O7Cc+jsB5r74cfJ/ivF3NtgR4aOCoHNPHDQ/rAAAgAElEQVS+KmZWcdLp6fDDxz+JzF4c6qldwDmctjZnkEnN/3StA9P5OgWgXss+kl0GxysFAIA5W+LP0i+q8cE4UQjcyT38PewD5RDUh7VzNgFEPyXtRdRC6GTT4CKGGfcmsd+p+loRmdPNf54CLHz0YejcN9snP2TdeLlfrIUYS39fQvB2zO99YNDx/PybqrHy9g6gxucJ0th7+9Hm2mdm6cxJgf60X801EeKK3GO7Zy0/o6n/6sh+U74XOuZXICEDyL86cheavKaumc7Pgs14f5MdOWXKU8ATn09/pygkF881y56P/HPca/aB0+ccXLP7/UTTAZjBah6fP1trDPL5Y9HP5yuP+WegN6/D/4p8XPMfWFJ9fo/XyNe7/g5uE9OcRUtSpD3sM6ANmOCdfhxflsaGffQyAeVQX8+nwwAl3mM9l63+WQAJYIIOSZjy9L7lvWU+/PSNBtzJu4xZ9hfGZf382ZHnjtfJ8yXn9SQDH8tbgr1Sp84Sz83/l5pAsfO7F21r+d0M5mg5v6sX3yOd5L8e+3z82WeptcD3soithcLASs/rAMk3ux5/sl/9JQAF3uD9PzfLKjydHi9iispLQb9bdgov1QK6Y2D5MSxzFIJdw+nnRqeU7ij9S7PA3DO0p6BdFKMWjLWgfu8oz2PS6h6HZVq+LtMB8trIUAx3x2LcmrfBs44MWmoozzOAaI9uDhNFqHy/DVEjwLJKHgyXzbKx/WXx/tKuakxD6w6odMXz//qC40vF+q8d0k0HgnTVXLYBb8/E2n3Uiv51tb8tivb2BI7DhN4Au8Z+WFvPW8PxhT2sAXqioxXoWvD+PxrqU3H/zx2lDxPr40vNTEUzWvL6r6d9bzlvoOb8z03JSgTmBrf/vkC6Yvmxz/toJSi1BbDWe/dJlabDPJqgdEV5U3PkDs9Aq2VvtFld6/LHjuU/3tF/s5aB5c2udfzt5noLhwlFjhEChFkTIYIC6i3UglGcOSOC9mOHbAPlbUcBTKfi3jDWZplIz+7LUCzft3CeggLWWNbQrR5t4ATeUIiOtH7hhlF8nQ4N/YCxVtSfmJu7i04WVciOUJKuzNQ5swfefqy/Nix/uDIws0Fq72h57nOdFplZLgdvdak4fr/buVbXS8lMETc25W1HeQDtR7Ha9seOshhjggrh46UBA6hiWcXyfWYm8bJaUHAgsmVjrdAvS4Az7dsDpds8AOawChzkSAKp5nhaHb68Pz1QcLS7VuhzA3RAvn5BCPy0Gl0DAKD88QO6ba7sXU76A1JK1MhCNYJq8H0MJyFt6nQ43RjWP97xFUB73PHtXw2P//Nv+HEAMoC//4di+TGwfNusqweVwoVU6QLrla7QY4O0BrmtzlLowPsDQ3W2+qJiNijmNh1dvWRtNDmO4gKKYax7j7iW5RMGGHdrcQlAX7z967vXXYlYsHNfvdWlRHZyCpx5Nm4/THzU6/1jLMcI9gHEGCVay8ww3BYwkym9A48N+vevGC+Ldck4zDHQIYCvsZKcGcuwJlCB60g1HL8IiJ9pfPaO9vaEOsug/HwCfbh9kOhWEOKDt2pzoi18ePFrtPduNvRW0Bzgs7aQDpoU73azFOjNwIiS2AXF62wJ1oS94p5eW9Sq55aaBCr7lxVDCtrDdHRkcyYCtQfEAEG9FdzedtN6+LLGHNbHYQwgB/a0WrZbfJ773fa09X9uoW9RNmdiHR3aKsaXm/kCDPD8PTZnl6KqqSsCwYQQ+lMINOkjeaJhtZKaHChS9yHmvCv05hoPzw5lYqIPNLdjogiWG++vvxSMxYPQTUyYkfs7xROviYQBY5XBkgRcY6c6bAflcpeAAJ5pu9xW6/oS/lV536cmQR6/9C7BS9jiM17qMdYZ/NZjwASxj7mf5T2W60t3FHY3eR7QfaANagAZKmJ+Ube16NlP6yhirAPl73Jbbt6vyKwbBuzzNY1V3xBlK/Fi/tqZjnZyzMLGvjwBikjYXEQGT2K0zHbyVr++WlCYRRhLAdZySgBpT2WIVy0Eno6BzBhTByJ9LsTo+EwAQoDxCoYACMZEHh+WzIjMQI1AO5kL+Zy8dmas5fNT74BBD20V1xyBhByAiiA6usED3Hjf57hHNpwlKLW4WOhMHMaYUu/iYn/DbjIAdAAibCE//6uAbwxAmidoUkCraoLDBxAoXLYlZJ8E6IOPwXP1RJADjBncyB05ZiZbztobFJ3M3Sw4nnmsa5mtnvswMGdMDaG4L74H1BFQnff/iZ7CSSjyCgRl0CH2kZn5P80bk1rUbYhkg92XbluMg5RijMdqfl28Y/ndqG5va4G2BpEyGScEEnhfHGPaWxF79sqynlmiB/8bfTB73mrn5xFsGjjQz+87c5NrL/uIrdk1k36LrdnuQAPBi+SDBIiZQb1flGvwMn/61/9dh2LW+BOtYR9ibzvIz4VI0VpCtGq2SPTA2YNEy5B6MMssVVeg6IkiWLZuWRMaJo5Ko3MBsDd2bCik6gwFFW2jPnJoMhDMrpgjxYxTFqHK5Q8o83lNYNDPrzPQtmCHn7efrc2c/82zKaz3jyw3MB0h9fqqNgNdFaC+38xhd0ViqUnMBjb20jV0n9THZdYAInQZdCkhWlg9KI/aYHcOY7wGMNhei0BCm/WroYDvx8gtokZyrNcp6NdXd0YOYzu096ksnnUxVGy9xVHFKPPHsHlyZenybOEIk94amXoGMCL2zsWGpebjJ82IUBDPx4BnUc0QFvX1NBxZ9Ezd9ZBhdGcKd4ka1TqyZqRjq9oeTqfXWyUWEW8r54GhkCIGZw7YWgkQjkHEFU0WmUDGgnBIMQA5yQ5zIdk8sCPIcW9oDhSGA9SmccBI/6fTmjbNyEz7uU8sm8NBFRFXkXZDHBGsjZPCAx2Fia5GYCgA2RCqZnCyI9N7ZMCFBjw5O4AHGQOekZB5DhpwVWDb7R7yuOasFJ+nlPn9/Mx0fvcD5W3D7T8Fv1Vg+Vljb1zeTIC0bN3GhVopFPnKa8yd26DfySfZpHQfvyxzyEfsQx6IX518vuN9QMXqcDWU5znn5XSfwfjiOehwi9kTOjUU2ztlcIA5/n+CyGtjRx0P2thadUnOlypQ4aCMi6Qu3gnnoLDhzGQZ2Jj2nWRDXKUzObDmgNt5JAJb7qWRxdb5jofuQmTsgQw2qCL26GCX0WYqZlvaaiyCyeLwPYUK1MquGGazMlgQz5V+1rVAR0EpHRTRNfCDts2CRPGxh7MK9VZP9lLXWU4RegCesea+HNkzmifF1F6K7gcEVhhcZDaNzUVoJuQx9X2wbD0YJQBCv4a6RGR3hJBlsD+m8J50Z6qNOYfWRtLo/bKn7kzA52JmIqfWm3GdEC2cjqvwXSsUHWUQOP2EEM6ttMPFfCOKqvFSwTrzLkoOuKIrynHMdtQs/WAZGcfX/RStNUrt8trh/QCw7lKuE2S1hepjmd7fBOjFd7k/BhCagBhniJ00brI/9mdHtoMEE3wsPuzbpEeffnfecyIxkYJEsqNO18lB5Rixj8566BSA8hn53Ww3ynm90N7Hnp+/79eJ+vcMVACJwp/GhBnQHFhfn4HjmANb/i7PxWWOZdDf1WlL0z2bT4jz+YALA/AyPllwMsoo7O+Rdc52Lo8ln5fzd23ld53rYGCk5FcE6j2SMMZkKHMNf3YkEC90Kvh7Mhn6eYyC4UrWqs9PlEx8wurLfuu0BzrBjSvwxMPn6ARYqWvlEXzj2s1dSNLeFuehzcuMiMxY/K+OfM4MePlcazM//8O7nxkD9PELBUnP+9R8P9Oz8DOqAOzZT/M51OZO+/n3nEN+97NnzPNyBRMyC4lJLtX5PFdNhOyTZP/zv3H8JQAFGWpZ4EqjVdBdP4DU0dAy6Cbo1+8F461Y9wUe7uDXJ2s0p9Mfvctd4TsyrqvVWofSPZ2GCE69f3e1Nk8Ynr0d5jQV10eIQEjVHZJUVzosSKhvc4Mqm9Xtjt9frJyjppeEj1MFo3hdkyJE2/q6OMBnwSeKdzYIwy8W2BdYUO6lE3SC+jo7LIylYP9aTKxwFbT3O9Yf78C2AaNDNwQNn+dmu6z+wmy6GhOCe/JKoy04Xhq0ADd3qE8OrAf0Ze+Qodj+7QYV4PbPJ1ALDoJKldc2B0shOF69LvhpwZzVzleML0s8W7/NtdE2Y0XIMWYwIAmIIKAwYJmsryvaH0/TlPDe3JUor/8MpwdH1wfAnKsiYbRi7SzTkYi2YmmeSc+VzR30ZOileOyr+OgodUX59g69L1ZrLgJpkx7MAEa6esDhRmBtDowM9K/WRs/GUoN2DF9TEJktF1UBd/z57lJLgfW4kGVSrIcC7FKS33nXVCjf3qF/f8X+dYJJ0TbLQaOyWZBg9cyA1jaDKDek9fvT9g9vy8dMlV/MDPNt8VpDPQErbCcKZTDUUX684VQzrzozejyGAjLsufdjOlSlTEARMCRaBDIsU27ZpWVmwV9f7LvPp43tUMi6nK4vz20aE6LskUU5AwsCQP74ifLHT7R/b/i6WJabWcXQndnsvvU47N/OFmAtZbAGGIi4cyiQMFIitlYDTMgGlc6+72nh9GZ6aKL7RY9zGvjjOIlF6mFtMeW3L9N5z8CNyBwLiqTlkpthDIIPLhnHMtcgXgGzpc2aTGc17H9/MXV9B2zL1oOtRSZad+2R+uiQrZvuhhv28bKgv7TowFP2NJ9imh90qFmDXh4HUF0DKAN74nPfGaz6mAHRhjcCS4IqgOnKrMYArO/D9E5oc7vZmOOLsWPKs8/ywM2TfQ68Ha/NO1EYe6LuW5R2lcNLp7xE6Pl/WHeGspUApK2zhOmfSDf2FgFOFMQzD/oEAI67AWXUCIAggBsDZEoCZOZ8cr/mc8ZfyExIJWC2v7A8i5kfDYCbbBHTxTBGTvHrBlsDFghjty4hsb9XQWEg0BWyqJWw+MTVbZgGjevE5Lr6U+AOOAArGPcWQHgAZ/xu6i9vvdqnrsEUGk5BWYCh3mXkKOZvNDr+w9kOxhLTpWG82N5ff5gWgbw9THxvaabZc7ea7vCX+CxLxbgvYcuDDaoIsJy6JWX4fk0A7ldgQraT6V1mmRqz0BbAdOhtTRlQOQda10DhipH7fqTbbnt3XnPHDPg/ABA5yMvnr2UGCc7Wis+dgt4E+F5F2PJ+6OfOgnunmn7+jhnovFZ4Hf6fGjmXwFHHOHeD4DriZ0/ny6CGIFrgjeL12vOeTHAPc6/n+HCMc4CYAk1218rnmWPt/jDtRC7LDCaJs936sADfSw3j+hyHq62o1Ri+vMdsp/KYkK2R11hKVGh1P6God5QaYAt6AJ+DC+E3Jk2A/Pus2yByXgspc5+TiFw7pyPNqRwdISD8q88P15oYl/vqOU4yP+/T9/byO+q6xPeO5FN4qda1zFEZ/+XzsuXphZkTftYleRGAHXBihtrPSQBTfb24vyeXa8a9XoP12M8dOCnr3Id4/SsIcP2ZrIJ8cK3m63Rf41fgJOslfCL6+mfHXwJQ0Crof7sbqEAw5dmnfgAQ1HTpCqFAUhKmI4oOAPX9mBuIWjDaHoeL9h2x6FAL6t7NoN1bBEHhYbhDJNuI2tJcL6hFQOV/ti/SBrAMYaw+GTqF67QUYBVgM2eFTkmvzbKILvwHkXAMxkuLLBeAMGbRIcId1jDQ7tjJANrPHtRQqGU99EZgYABimXxRYHmbATpKMZp1nYJMVSTAEwNuACpIyxDUzebopF0g9pnjt3WyAtQzbQpAgOPVNlat9kyP/2Gt3uhQagXKpqhJUyL3Xbc1VJzCX2Y2qtu6uf3riJZlzE6FoBfBgvfDvv9qDmt5JtohMz2Ppzmh245QBgaAw4SpUCQcnbIPCy5uzVgagAlJZXbDrUbWOgQys8iizEwkSJM9koI7HcbiwIKL1Zkz62vL12V2ksdaMW7NhCiPYQKE/j7F9+l0Z/BDxAETANVEyaS7ONYxrIVn2oCpaxCCPEUsACHt0kVSy+PAy79vKZPswV/+2cEMLTXAi8Ia7Ci1MKdeugFUIdwUa8SdUjcqkWn18pxMB7UxqCGKCAY3qpPaihEOjKyLU2a5NyUQZQzIz8d0eBoZQu7MRNmBO1O517c7H/rlxd5Ld96nw5qcr8WD8SQIJG5s5VmmfoY/M/YD+rQSJ+0DcltRHEw49XoGwmjReRVGrKTzxiAnhyd+5UZYDBQU0uauqDodzaCOXpyaZbXxeW5R6iCkNHsrQX1YOQQNvi4tOn/w/qKtmDtSurQTnZisEwB2P0kFPDvC9XFg9Br73XD6e3mfwISQHePrz4SuAK1W0y+h4zLHrX+5nQGAGFeYjpDCWRli3Q24dxRxWzjXNURO2kCFgGp1p0MRAXF9jrkv09np1jY5dHO6GvVerNStOlhgY+d7OAPbvQPc70RCWDNKHxycBBCijNHNqcDLSBCZb5Z19ZsFuNtXB5X3YZo77oTr4sGiDMi62Djv3XyIYxjTYan2zrvQoYp4FxlnWPEo057EVHDeihrjiZRzfp+Zbq6BEHbFbC+d9gbaAIoMjmZMqrLb3qvrFOwjQABg+iIi0HsNWxzlOQGmqJVArAtOQN8YzmYDUBxg97Uivc9SO5lr7ORcLy542iUAEoorcixwLDNYGWOWTTBoY1ADoHzCbpL3PXQ74nd7t5LDksbXxzKo7cCHjCwdp+iwwECCxxgAipVW9TEDkkzrvgY7h7Na+TzOqEGtKZtZZzaa7YQ5D9zHMz38GnCPmP1zEM/xa9Xp6xUfgszEIOPeTT6XVJ225nrQNuWg2un1H4JoZwKJ26zPgrnTPIyBCBwDhNA5yZdyjRObIAffGUCol7VDO/vhPGfw4cP9XY6gpBNkjQ1LbGwIgDs1HcMZjFdtpXycdJb8PtoZnGESMlov53PlTPcAkBigFEoU/j0DbXw3ahpH1eRPzLLa6F5Df4HnSON5utdsq+izZLAn/lbn+F2f5bMA++pPcMz4uwxWpXHKJSu295QJyl2BiitLIDOMgVjzOrz0QNN5OHbUcCKrk6KcBAbyms6gwTW9EWyCBBIO21s/1arSMctaYl/QOb7pOQioaJ6TDBYQiOC5+f8MWFyBosvxlwEU9q8NN+9MAMBLEnrUzmsXBxQGqDzNTERQ8pZiDtBP01Xorw2BDhzudBJ5TXRSrXeMdYkSihN9srsg1gKr0x98iWeQhGRwBSVQxnAshprvljocFGWNpi2W4RmT9jxiQYgr8o97c2N9cbAF4TyyC8VY69RN6Ir2c8dYyMSwBRmlClx/i4lDtTen99MgAvHCiAerhaDKSAtSBFLMIQ1GQRVg5z0Cuzt/yw9Xiw0EGuj3irFIsAX2L4ZIt8dcvGXvwTxRAbr3gLdz2BywJSTFuUq3Xuft+xaZDhRrBRbI9jBV8RLnqUFNjk2SdHbStrY9Aj/Lqg5IXyzYpVPnc91v1ZgiAlRSXp21YKizAnty0lqZZQdlrgtmwNi1wSZubqqiCjyOYEzYZudGYkwQw96XBf1WUHZjm8jbnpyfYiUQxbQUateZoQZOZQ3MJIkL9I37C8ZS0H6yw4hlWXKJS/XnteCegN2B5T8PjNviIIsbqGPeMwMi9UCmvamVCNxviLrI7gh0FmLzgDfWSVHIpgZIVQl6s7w/zRCwd7gbC6O0u1HzEg6umemwUxk+GatMcRzDzr8udn5ff1ZCMiCPp62vDCbUOjMo4oFo7xZAp+tCNOiGbEemm9ebc31GsulsrPUwloJSr2FZrHaQvalFZnZGx3RuuHUUqjfXeE5gAghBgQy03QyuFkwjdUXSP6MI+rlY/6fbbk7bQpV4BY7drv982pobaj3fbwugHmSmWkr6YASNoJ5ptQcAs3kBLi0pS0bgYTuMMfe6xL4nm9uLlsQ1ufeITPA7lXdFptxr9sc9g5qX8qgxEDX/kJPYHlX62S63bIgAdOrujDiHFF4fkIezk3Ig42ugPI8oJ2MZFksVTEgMcX6txczjWmZNdzf7R2C8PDpC1FBtfILSn1vOsuWg20c4ED2+NvSb2Ym6Aesf/pWuGDe7r6JqtnZtzia0Djry2DDwYnsmEwwelA23DzkYjAQD/TiCY30g2k+6MHQAClkoUW1w2HJS12akwm0yxzjW8rAuCuV1sa5Hh83baMXfb/8dyzNDsNm0caaNgic3EoureEeGrgYCALb3ANZ1xzuoCOfssDWiqwMF19iIAUOwk+B2aK4DiASgA2odjD7taQS4vjeVHhoYcZnNdXhc64C6ObLttiemQF/ynHH9ci1xv+TvGWwkn4ptZNnlSLZ91l+TLpzPyb1gfFRq/xDk8Pq0EQy4M1sigwls6Zevc22vCESWlAFfiMrmoDuXxyVbznc3/OCS7iM9RwTVpZ0V6vld6onlEi3WnNfzZ80/ugR0zPRewRr+/RT8pOe6/peDzOt5hgPVPN9V9yHP2zWodf8m7NoYLsJdwRKQmPcqn2a27f5tLPTwbimJLcByvNNzD+4xl7Wb1l38PpI2Bt6FmDBt2ji/C9omy+QEvOSxS6AD2+Z+GlBmRoeI+RDAxDm4Z9InzWuSiYkMsnz2DuUx8UTJqcXn9f75HqkCbXFf7/L+0DfSgQ+0/+tYlOJgSAfg5SyZXVKruUHZh2D2v1b7bgZR8jUzOHD1h+LR9ewz0be6iqoS9BL59FxRcnJlNWQmwhXs4fNcv/PJ8dcAFMSMZfRpVg1nJQw5UXUF0IdRLr3es3+1Nn91N+evf6GgoJ2LKvFaxJz2oXPiAchtcTo+LJtMEK0PaKkhHjiWgrIVyxy4g8PWTLkdkXRzXsravHVWhQ41NsQxzNkJB8Tus74dp83cMi0+Pg6Y7P94BQTot4qyDQMf/KBIly7FWu01AZqg3+/uzALtzRyZutnmVZ+Wyb3/S1AfivZjn6J4TgUSbcAiQb2ubxasqJhTrHSQBaiPgX4vkTmKbgmaHE53Co7Xivre0d47jhcDFN7/YS/A638Mrx1Vr+vVCR4Vo9xuv3mgXhcHQ2yzqE93KgSoDzX9BL4XUQ4i8bKM+zLXlVp9OQCnFJfQupD9mLT244B6Sxy5rdY20LN89mVFee6WdTrGdNYIDPRuiM4wx022A1ibARKeEYI4wPRjm+v0sI1A1zKp+qxBPoyuzM9J6cAokYmMNpCuCdEcsMIYGF9ugKoJGbpxKBsik6NLdTovYu5lN+ojXhZg47lSaRHM+QWBs9Uzmu7cU1hrlGTMCjyoccORuqDoUqDVhE/bH+/Atlu7xbeHOZAeXMpmbc50aRivK8bapjOsbrgpuhp1yeNMoYOtM5C5kJ2aoVHjp57xk+cWmZkPYE+wDOw68pwtCvVuhjeyQQz2nmYQhDXYNP5DZ3aLZTcExo4RgoayELRIjmSM8fn+VNWYEkVMAEqfs8yARhMJwPXvwMUO9XHJRPE4GSNH2WWcDKMOtS4p4sHn6T6TQXQDp5u/C63ZWL49krPp43y72Rg4MCRvj4/3xuffD6/f9DFtdc5hfZ3aDL2jfN/nOiizTCao12Gf9NQysd8s89sexuKIdsWaxOW87Z0uCEaSwMbJmFcCWaozaawFa6mCsQBYi2W0m6CPMksABmapwz4cVC6otaDsHWOpLkJL7QQPlgcsEG8FZTsCpAYwW/je6mRFLOa8Hl9a0mrQ0EwwAVRvOev7YL9Px4XvO7thlNxiOAIFeLtos43traLsYgB4V7SfR7RyrgzsyCpysE/UhBH1tkwtGH+3tFYHH2qUrkSmazvifrQK+uvqAIe4jeqWRd926MsKLSVaSBMcjvIKldlqlGURkSGqwQ7guxb0/932wjFqgMwFFjiXrU8AGnCmRcGoSzzDiKBFQ+/AWGKYmXjcEkPTSzpVLcGw2VyM1ZkdrgNRHnNseBhwg7gO55UlVrIftm8ubTJBCDDwu/weQUMGB0UAMcAZh+urtGrjXgWyNrNx20xMRekbgYG8L+dSKSCAVHlZz3sa96yKCL5OIo/MCJN9kMvHTmBC8dKqPv+OOU98J+Y1U8AYAyxGg+f+yoxoBkZEbI/kXkYNmqppvc3xwdETYFOmjgNgtkcV2D4BEjIAUgSyz73x9Lf8bDXt6dfYJAfNedzjpZgBXATBfN8JDvn+DOAUKEfG2uciujPleXbAQofp1MThLATa108DU967pGdkGR2DZDLH+Ln4rsQ9Bhjm2WvxcVE+62k80zMMTF8gP1NO/GVGIH07JjFOwe4lUPc1p0AwvE8MzPw5Ail5Tfs+iytwEfPr5+B65Xf9eTXAP2OESD7HSH53AsZinK/3eB17HmSaeLCgTKrUOteVg3FC5jZBrKHBThX4WuE641joAOBMhyKIEh9g/p+szMwSUIVpKnBuhs/XbOk5wawaZapx3l8AFKdrcv5z21DAmExXAOFX5+Mw/ulf/3cdgknfp/FO6NhJZEoV0gFxurSKBZhjKRY8eiulcI6ATxZT2ox53nQv9h2/B6e/jOodE6qYKJDY2ovgZPh53QHKL2a0ouOzfOBQuuHm/VaOCaIOVEUwVn9hjDE962Tj3IjgXeHBtwsTRmtE8dp+mMNSANR360BRSfv+gOwqor7U6bI526lOdSzHQB8lShcAmEZCnEvBbgtjEZRtbuhagP7CjRUGIjiYEA6eAwpagLEIRrNyDRWgPgUUFRvNGRo6gZa8ptg2S5SOLNypQWhiqGs8FMA2U5EpFpM23zmm0xkkBdLGyGo+PxjLfJ5ED4xMpvgizOfNDhABnWLaHuWycVJccLRi7JjiLeUGg/bpuA/2EY95ApiFp0p3jNfJ+bHz193HgO9cbKIajrH6OzP/nhTV83ENTnm9gqnovR/ToLnjq6yF5PcJtqxT8Mg0Vea+EuJgOZOS+xHnn/P48vmqO2tunD/NMuTnIMVt382ZzGrDCQCI7AKvdaVqMoNFASw6nxRLO4nq/LkBsM+IgxrDWFQZUODfNTk+A+HghNOcjyvt9r95xHNfHeyYiwNgu0wHBEJfHHkAACAASURBVGaGwPdhlr/QsckCT8wQxn36mB0zWA2HZmmmpcOAJAHQ8ZmSWAjpmVnmNSo1SNJDhtPHz5ohEcEEHrPt8rIlRO9Gfw+7Qtp0pEIkUIH6tM8MnzdxEHdUsTbKw+yl+n56nS+K6p7uGXAGBYIBB4UxfYad2wBB+32mKWub3QuozB9lafY1p9gixjKyZ/EBjokH8aNE6V22nSdRV8SQge1wo4zLz831Ev5GEl+FyKmbBcRBmMouPDM4l6PbnLBTQqxL23sDiGVZGUvScoklzK+hgC5tOQU004cSNXna69BPKp6h5HyG42nrLAR6j/HBYdRmIDp1k6KsDgBuEzTCQJSynE9AH83LXOioqzMSWG7gazLEiHPgOBRZ22HWzwNS0vz4OQfFHkUgMoBd4l4i0GTgzeBXZ8ZZuBDpD1JU8/psnx1hn8qpDJLAqULtevyM6rwPHeHEx7mu9uCze/C1HOs8+8ecn0xrZ/AucgpmA4TINg3uW/JPLF/gPP7qoI3KQMP18yPtC58deS+iTaM/nSjcSmCif1ImkoPbz0ChrKuSP/MJRTwOSe+o+LyFhtDle7nUIY9BBh1KuuZn78/158/G/VdrMwfpvzp8riO5dtKs0Mk4OK2JZF9DwPDsc364TGY1fAaMqc693T+TkzIGUHEsCSpoxAEAzvOfn0kEwSy9vh/53RaJuTQndwb5IRiZ9or5HZnnTMwY+qFTFLXO+8/fv5Y6/GrOLokZE8pPQNnpOT5ZT58d1zXCGCafS3Xe82cxyy+OvwagAICdEniw5p1U7f662Hy7eGMZBeO+YKzF2is1wdjFmGlbCtC8FGLcm/kW42kT//IaGc3x9Yb99xVUt24/rJ47Wh0pIK2EEwUB+qtR7s2h8tZ/ixnchcEVA/CXKeiFTD8HUJyJUd68bUmzmtwCTCN6DNShqA9vk/XaUHpqYVXEsn1qJQ5Rz1sF4+mOo4tHYahlLARWt7p3LN80MjyWdXuFPBYL2kgJfezQW0P/skY2vzwPlE3QD6fdDSt7WH4W1Ee3GvtjAALLahXBcfdr74r+UnB8uRubAsDyXcESCS2Cug+r/00HGQ6cl7IDdVPr4d3d+YNnBb2Wme0R+62gbtbrW11Ru/702utWYLWmQL/ZmrL107H97StKV6z/X52b0WH0c/Xssvz0TKhT2lkrPW9cAyzrv92hraDfG6qItVcEgDFQHxqOlBbB8bcX1MeB8u19bpxe99t+Wr24LtXGma0ba4EJI9pa1VIwvvp90lka6iwMd2xVIV/ukTklS4AMiLwJ6lIxXpcAkQLEePYpLsq9yTN+0keIWupSoy5YtiPua7yu0VoNR9rMw8D4e7M0REtMZnG/3Ob7Rc0IZrZpFAXTsR+pzjgH9twR8+bqbAj+PMsWbM0E8p6dIDo3R59zws+EmvmYTgX/TycYmIF+ERN+ZDbpOKD7bm0n6Qxk2mgS0MpiPPE7wFD2IibAqB4wkxUQTJse57NOI9V0F8IJK+GgitM/T87GldIHM4BGy60wUNgdtCjP2KOcIlozecsjLCZQFDWAY0DW1dpB0vlmN4bsyLEM5kLNZdAUzsiS59FvuFX7/H2dQM662GedvXRyIAc8u2trv/q2UN5TC11fg9UDMraKZXlE++Y2ym2DVkF5anSbUe9CM5wJIcOZVXSy2FHBGQ/UlSndhIqptaJFgOcwYHCxrLc0nYLI3a4ZejNeS1yfc09WZ0cYcGiAbHl2lPfd6P1rRXRJAAAxBgVb4/J5CLzIqCgiUzUbQL9bu+LiehP1526tPomxiFhbRurF9DQWLiTZ77M9IPWS2o/N9qbdyiutfCvtH/th2e97s3adze2XH2MRAA3ly83aNwIIAcRwOFOQVAXKrgoOJgTDr4qN2zEgh6IOA7uPW8VozmQqLgDpLaxFgf51xfBOTaOZsHI5nJnnoER7dx/qPrtitLeO9raHdoy1fnVx4rUG0J5LYGTvKDr37AieCRD4/62DhPs/26QA620BbgsoBqmlGEDQfYyOPjOZBLWdbh7v837MDLoHEOV9n9cHAugNFkHKYEo1NpSOY66HxBATEZSf78H+E7QZ6O6HMSjKZGxK1Dr7PV6vGS9KCjxCnwBGfxcB7je3++XcyhIIOxeZ8QSSqrcclmWxciqCwX3Y3lUckMmBEe11u5SM5PZ6HnyF3g3LDXIQmQELIOZwjvs4Z+7zWDBozb/L4C8wARhgdhJpFaIFWsYEini/+XwJMPggzpdZIK7DdLLPtO21eklQArqSHYrrkJlyDepqMWc22weOJYNn3u5upc7RjpmljjlAjrFOY3myPWp+Qsng9yeAhQN4BJrDv+PelbpWabN5mEndxAi4gh30i7iOS7GyhHQPH8qScsnGpdxGW4UcMKYmv9/qBOGuwJX7TtqKrX2bbGMshR4KTuOL2wpZde4xZPs4y0lhPovk/eUKYI0xy1PzGItAsLq/1id74DMAJjMy42c5gyE8AlhJfp2qd5twfyr2oDHPx+/qsDJXlqsBIEvUTniOuU7Xl8t9Xo6/BqDgQWTUeQKfDnpkGZw+RqfknBU8G0GI1ZXqUs3/CLpym5ts9UzTodY+ktRDD4yCzuoZ6RHUTli5StASDckMVeILWmRUVv5Apz0xMPj7IRF82nXM2FvHgBLARyD5PMjgcGcWCpTu9bz+O/lkXEPxPqGIsmjcL18Wre5ouPPIFyvEbvxcVqKAMxXzpQVwwHkydgn8HIL6BKJeVREAgTizQRW2YsXZCN7OryTV/jzmIQrDLKEDK6euHBzzrhBRSPXx86qEcPgU0XWAgVQEVn1usgQ8lP3us4HxlnPcLAj0kDqds2dcf0ZJLiguamX06mGLzLOm0bJweF0ZN0evlWb7TfPm1bocjB7GJJTRwfGxjOiHWkfftCzIl3Pg9tnBTVj1JLD6AcEnij0GRF1DISPknqCNlmLJ6JvBKqG1YpvdAA5zfuSwebW1CRcQdXaGvz+5n3qIfpK1MabRmMbvkumWy7/zmGRkPq/RKD3Qj0Yfc42Ac00A4jreVwcPvi6HBj2SqtzRuxuYNMLT9S4GLRuzMoDBex647m3x+2uJxeU4If1FMMWo572fGApXx/x6z6eMhADqnQOys/b07+V3Md1HUE2zU2M3lRwk1qIz0C8hKqi+twTolvbFEBQdl7ljdlaHBaN+X1EfzzWtvtcL/D5sXxm+L9FxKF0nfhP2CvH9MhRsnxzPz9sZYiVJWdhJ1QOnelnfCABhMgANIBa+54qwnWQlCTRYCNFWuMCYfd1qklmal9XYuUdpsz04svZ9sqVY/hWigMDMYFGsmXaSY8TnS3Msmsrj+GitYCwV/WZleQES0/fyPVxKiU44OQiSKxuRY0ZyEfWfBHMNDBfcLPMzMR4ikJw56go0oN8EfREcd9OVqPsEeYZn7EeTKNcwoLdYouSYY8593QLR6aCfRKE5NmHX5piyXXU8NX2xzwIbHvm9Sedl56MPgct1D3RdmQjGrsHr5ZBaoL+gA6sH1sF6u96fKqAyywfyXnHd23i9/w5LLN83A9xf2dc/sbny2bN/kv38sMcWnIPz+P3l+TKL4DMbkOfqv/vcv36Yec5gE7t9D7/TD7LoLt87ZbA/O65jlN8D2mnaylS/fqKZZ7tyHZMr6AJM8Ptqi3ifCSz78JnPxjx+98l8Z+CjAPGynph6mPMMnMf1Ok6A62Ak/+Wzd2ycW3aeQIh83+UydhffSava3qoKzYmJoWcW3TUWymOa7zGvo5N/7jEfr5X9oTzX+Wee/8/2pus8fzp/5Qwg/FcMk3RkoUbF+PV3/xfO+WFP+1/47l8CUFAxYxcK9gxEGGyJLyARHL/d4uUYjaUHCjlgWfFjTMQ6FPML9t9XjCZYXlcPwMx5K2W2kKrvhyH2BUArVhcq5rwU7zDQX42+uf6xmyrzbvcs7xt0XaB3o4ZZ7agLq9H+3yqwwwyz10ezFd64r/YcXnuPIUEJZ9um8rRAcIwKtvcDAC2muI+upmAtEhkMsg7GyhpNb09W3HA3Y3DQiJetW9lAXWDw5A0oVgvM/tvl4dn5Wz07Gg7K1M3vay2QdwtW96/22du/dsu8v7hC94FwTtvbdKjKNjyrhxnAiLEztADLD7Za03BCjXYrURZxfDWEc/nhveKGfa7fCtbHAXn2c42nWolDG4r20+6x3yvaj911ANLrMgbkkGglqC83aLXMvXo9Lu+rbAZSlR2AqGXNFgW+WAbv+P2OfuO6YtbMM1BiGTpdXo1R8uwoP97PAnKHZU3HlxfL6Bw9nmf8fpuZQHdO62OgqmLcLKt1+7m7yNdw9kE71/C+H/Z3zyqILpC+zOAHiLZ2EH+PHQypDOSopu6bvjxDKRChQr531N1a60nnmPrHurfcI3ByW5B7qDOjxoyx3ptlYt92yNcV7Goi+zwPAOh9sUxqM2pn+/4ev8fWIT/e5wZbvcae2YgUJOrSDKE+UlAhAn29G+L/8306H0THcz0v55EHldwfT6jqFC5rzTP3qYY0OhI4+0AEOqyDg7UwK8Dq2ajdBTjfk7bA0lyXwJ0m1sCSmeCCkNb2Kd1zehd0207GjUfoJADWDcB+OY0of+VAAp04yVRg9Zd32wOQkHWBrPd5HylDpK3g+J2dYoD644ny/X3WPz+36WQQyGJZE0EYzyLNZ/TAtaXs4eZChrC/9dcVBT1AEhVB2UzVPqj7LAG4NZTHDjzHWQD2GJC3J7A0SBWUw8oLtFjbRArtse1ufY4I/AI8YKvYFBhQYDja3C6zXIMZbrOJFcuPA+vPJ46vK7Q11PfuYDTQ14rnvy2oT2N61Yd1TwjtHddfOH672f58TCcnsvyeTdcKtLeBeqgBXAIrpxBBeSL0Goa3IbbrHRY3uF+greBwxh7bOOOYAFFmJhC4rI8eoA1FMgGEHbOfXVfhvqDfKx7/8Pafm2n71MQyVAcmZNtt37otwX4Eg2t2bfF9YbQVKmaLuE7nWtMAq1C8taTY3llSqRpE0L49MF5X/Pi/VxwvwP6blRLWTdHe/H6PEmuhL4LtdwG0oD5cM0JsnGxtWYJTAJTtQHnb0P/2YqLOYsyRcvCd8/st8O493bSAuLflLHTqhhHvqou38QjNEgL+Y0xRxl+ItclQYHeW4bpY4mOpBkwfzm7I7WD9/ZXbmgJnu5Zy/913Y8j11NaPfhwZWA5A6b7bXsVn4d+4VwMzCOd1EpgbIofuvJtvOJkEwUwYetbaUZ0ZxVziFotSEXo/ebxygJOF8DJWREADOLfI5t8yXfsUCI35GY7ZhWF6Asav7AUKUWbGIPUmfA7Fn1dY7kaWTBGzM+m8sd4oZJxo8iZKrqmMtThzza/PjhmumRVjqi7K18pHZgKfL49BuwKySf+BTJpsM38BJsgV6E7/DzHN63wAM2HB50tAlbB0VPbzfCkF5ZP9S+MEYLbTBoy5Q20Qro0yWdo2t+M0NsaOuABOyR6bD7dAus/DtgPHw7rqHNbpKs6f1x5gAKmXoZ3aQVMsMyeJOE+0z57Ik9U7luUk6xUUZSDvY6nAtMM5YZPnjQmvKs6OKbYX+VrW45j3e9UfGQXB6jzY7asgupDwqMV84yaTnXk9Ty5nBfBLscWhk0UV5/g1wPCXABSYkR4vLRwCBq8WmJnStBQAKlaXNgShF3B9vtig1NpqFYm6/f5igk7l0U8ZmMigMiPiRkCYBbuID0V2lzR7z0IpaUOqBlYwQ6JwSuXlZmsCDtQMTARIQLwwckyHh63GwABaMAMzEfcGZGZzh2UXT/WQQDAfbJzOm9hYZkDM+wQwWQ4FQbnNbclCWI8OrM+HlSbR8TUaJgNc+zx8g/CvMGvu40laVtkHgBIZFGoeBPshZ3zVwaZwtEc4j1Y/izi/dHWET1AOvy+ts1SFC00N/PhggAEPGHycuCb83zOYFtMyAGb/dPj3CuYzqznZZRszA+RUXDn6NJLp+lH3GYKEllljUG4BgxnTcavoawlgjqroNsZ9jqU/l14Er8o2HZVMmbPJtaDCUGU4YDeMGXHJ6EZby95tLXJjzcObRdpaDSYNhUE/6DCQ9cMODl6KIQ66xbkY9FczyCyfsJPrdAj85xNVMhmJEKEaA0FJpKYD6YPZueT3w7G6OAp0QPO7mo0b752lDZwrrj03kMJSAXVjHk75LwzCtWaOzASYoyUVUxwqAwusq7we/p3Pfj8zJxenotBRq/OczKD5s+WSC2vnW6cehzuU0TFhLShLPWls6GKAWXT8uWbS1BlWGNCynDMZAxY4cR/gePVz+Q+6Orjg8xilQMlRLAVoxmIIlXjV6fj453P2umzpc/4+B/DHNUOn1J3HMpjRGxhiY3Z4m8EoX/BzmdDxmCKzHVMjQjV0bWLP7mqlbe6c9aWc3xOCGWK2l514QtfG5yhYd9Xse+wp4s8oiMxRrGC3JaT283yiDF4ZRLi/wLl1IchRMWvE8/JUCVsAwIEReJAHZNaAFkAfYnvn0oyKXdxppEI79zSCC4CVDwCo3s5Vi5fa3VwLivOqODEk2eXhdAxF3Wy99w1R7hDMw2r329eC0RB+U7a3PFhWYi2d01oFQntorj9fawEUTps3B3OudfWx5++DVcggxgOaAK/zPkT7mynSvGanX+SU4lo/ZzZEOSD3CZmaDqXYXpcdc77jBR+zdL9iYmUmEsfn8t0o+xrl4/cJLCRgU4YHO6kjSO6kE87+lfKf/50DqWDHjfP/f6XZkM+XwRVg7s1MHOTPcAwyu++Ds56OnLnP53Jbpvne/fgQlGL6rNFloH7yXCPtlxwDT6lPf6Z5koxgOi/gNjHd36fjlHyMuK/898SmEi2f2iEAH0o2+P3YZ32v/3TmSvqsiLMVCbTI5R253Puv1kKM4dyX7FrJb8lxDsG0fO8ELD7TVkh6JApLcEj1JEOtpzEMEdE8Zspyr8uekZ8rP1v49T5XnwF0wAn4s//GBA76gOD4dJ1pWgN2H+6TXZIqn43tDPQv96TcmHhvMn3Az87LtZfb2fI8w/32chkX6ryMYYzM2Gd+/Q7/JQAFM9iK7d9W1MdA+7F5DZvg+LpABbg/DoCBjgd4BqyWRJeUUFVmC7khzRWujRKopaJugtv7YZmeuzmaZTOAYazVsxqIRZmVt2mIx5oFuRBUcHZ4wNHDqdVq9Gmq6hvabIvTsjYlgt8xMBWn9z6zLkDUI5anZUqDAcGgCGUCDEBkOuj0XUERDEVRhaq1UmQrQRVE9nrcDL1ujx61m4Bt5MeX5ordxgRonskqLmQV6tgClN2CS3QrKyne/jBoS0NR3vYplOhzaa0zd+D1hlFhLJKnYP9tMdHF52GgU6vWZ1zNDgAIx5f3UodgqAuEOWpb3p9Ryy4W0ZvzcgjKzXvMN4+A1VTPreOBB6MnWiSc4g9U77cdHQ1KQf/imXKYk1y/babvsXq2TWTW78Ic2/q2xVzLc0f5+Q68P1ycxTc41q4Na0uma8PzH7fQFuF6aA/F8vNAv1VsX/zZBGg3q9O37iEdyz/fPYtJFLOgf/EuHz88iPj+ABoV3C3rWb89IWNg//2Lz50LQ96YQexTnfu+mLbDav3qZTPBPZaVBKV5YBqjpWG8LKY98XO399tb9okzIGw/8TliEPbYZrbBz8M1pw5+VLI02B3AVeDHl5epd+DgQDg2S7O1UsSe67lD76b0jtU0SOTHmzEbXm4IgbDIuvg8U2l5aQihv/0AleiFc8yDzibR7DCArM+G/e7FjYcO79iSDH+O/zk2OVBRF1wcsGdsze7z8fA6PR9rrntvz6maTkxdBM+sKRkUVE4GEP2V/ZDmWcFqRld3b7GlydAfhyHwS3O1eO+2kJzW+vOJ8bri+fsCORYL4L6/A/uB8fevUADlf+6ngO90DKOrs+TJ1NJ93/LMDueaFGk8EeeSvUOec5yiBMofBYDtQ62g/nza/uxBp76sQbWfwLUFGfXb0+zE3daKdR6y94edVsbvL27Hpg5CdD2o1u1h/2rnZlmGdSwYqM/u2jgHyrOFECqBzrJ3tLcS5WjlcQTLjmwBGQaWRimgL83n3yr6jYEGUDrQb8BoFe3Nug8NEdP+uU39onIMlKfvt0sx0F6B4ms2RHvdwTRWWAf2MfGqU7bNnaRltfHbJQJaSwAZ8CliY142YPnZzR6uxqwYS4E2YDRBfbpux8syQfvuvkHWoBHx7DQgb09ILVj2jv6yoL82bH9r2F8Et28GJC/fjP1YCB4xIL84qNIH1u/dmANawLJLmrLh5SXP33w/3OFix8MZJB5cHQa6h8NMwBZIQACiFEy8/pyaNOf3ZwIHJ7FCzkXqBEC2Xex7zIr7u2xzNuf4FBCoetclDeFgNAcjPwv6uYdkbQa/HxnDAhiemxnzXLbCwDyxwRiwCZlJ7ohn8bRTFpWtjK8U7RyEUnTXfQzxoAVjTGYCwYQ0Fh9KxgiccPMZwzUqNACG+M5w4Psa+Kb/tFqJDDASaCNznvkdBmjsZnF9Ph6x/8p5zfD6tYBhivgz8zO5u9Nn59TLlj6DTQ3NgjmvmHu12xOWMYkLbOvxScBIe+3rM7pH5MBTLuPzSeZaV9M0okZIgIY52C1pHsp5Xmz/uiQhL0mJaIPNkupyhF3JIHCcO8/JZ8yHMSbYEXtS8rMyWMOD3UecsUWGsL12/hy3Fn+Tw8dnaee1zjFYXJ9ul8SSGPMefY74/B+O6/236zub90K/9072wxaaBfo0llSwDfy5NXecyYcUL3u7gF0ZSBjp3SQz4fQZBfJ+VT8BE8Lncy2u1TvYtArdd7OFfEdb0n1L7+6fgoCX4y8CKADFEfaxeL/rbkH+8s0dV4r7yFSTH9pQGry2UU4vqIkCFTOYz47jqJBm9nY0CaEpqwfFzLB7YI3iVHk4aDHoXAike+CXGQdLC20Hs+RpQ64C7ZhGN23YzP7kesQp9njJnvA76veq8E0MtgCOYWUVYhucZVxnLb/eXHdiTYE8M2sFIQBGMCcrb4djWAQKsWoIwDLOFdAG7F8ryqZYfliQPxaJ2tqoj12K1Q0fM3DH5T0PJkYggb5BKuwFKHZem78ShplMEGbx4hzizt1mhkFkxIZI5I110WgFFPYr7wdkI1oE3+QAqIsg9mGGoErKfANko0xqldgq2rpn55Mz6ABMe3SMXWe7rdsEjWLOuQaWBVKnU4NqbRL1tsS89nvB/lqCuVE3RV+B/csEy8aCkyGpz1kqYZoSOXBs+IB6DguwhrewGV+N9lneTeAvVMerYLwuJozKtpLXOea8u6I6QUEA0aJVfVzr++5iXUD942Gfz84ba8W57r1HcNSxu0CfLg2yHWgOtln/9XPJQtS/FjHVYVVElJI6QERbqt3oYSEExFY8jy2cSqXwEVkLvHcKoHKeswHP+wBptwBOGf4wOCmLV8TmLhacZ0/ZYqh3yNIsA4RfCIoVMaPZ8eFvZ02EckLAw7HNQEL+3smhu6ytbgi+3G/T+V/kfF74/QzEfhL7mpgzVLYR60qL1VnLc9qSU4aGDmEKcvL7G/t3BK5mJ9C8jWKZpWNC5tnABJPJdPhFcpOicDaNsxTPhPN8/3Mm28l+gIDFdChl72ZmfHzmM8IEIZ9q9alqe0H9OR1ZrQ5+rg5whKaKzVl99smaqAKog6IuXBzAHi+5WxnI7Y9uWfJFph2uAlSgboLRXahRcGatwZ57VNPHKDL3Scn346UHsZYKztlYEYylWuwAmD0PENL3ew+Utc12vNIVtQmkF9MRqkC/m99QDmdhUfBTAITWDsCuOtb2VlxTYQZzAqAy4AJQHyWAALIMKaKZGn3Mw9fT8v0wejAQ5SSjCfoC1N1jPoshsLwNa6+sauOdI68CAxvpYxDklhFJiShXKxNsU39Orr8ADEg7Bhwk7eaYM5BnEJcCxRwwzeA1BVS8BpMzrc2AVdX2WqS5P+2jFyZVBPBpH+A+dQ1SyWggqMCD+8WlvODECjvtWZcNID9TDiCj3M9tiwMnIWL7iT5PBF0R1KTnyrpErcTzCEFpBr35+8s5OAnhxitgJCm5wnu2NmhnfSsy+EZ61mAQ6Ec7wPNf5yIfzpgIGn4Ohq/fy+PLa/vfZKi1C9ztd2TiWha8/GKehifyLnPBgN7XwImdwHuWy3NdM+0c0yuAdh2Dy5qjBkroZgGxDkMsPn3n1ErU7dicE/rKitO+xUA8CeDOubpk07NvRnCR/kxnTPPJc/V0PSbwvKzpZLNFbM/d+xSvznY9+1DXPSTNYy5Jm/eR3h2+t9mP+1W23kE802tRfGAjpRKDEzuRjAEpQBmQK+8kMzv/bE0Al/U0ANTZxpTnuN7TYLJVAFTT64nY9PL/T46/CKBgtaD7bxU6LDvRfrpGwc8rAoZgHwCwTM2FDqICKx3wRVCeCukLyNlj5wdgvkyC2Zqp382pWf/pE80M6DCQIwSLEjLK0gkaWJFxEnxC0Umvq2XW1KpnY1sSMyrmPNWiHxcJDy6WChdqQtBOreyAaLiEozMWq0fttxIbTtktSxH3Q8eM4oXuKIgbdN5nsKOGRlnHcRMsMoDvin4r2L8WtId/1+1FX8uJ6SDASXQKwDTMuR4tHAh78UofTnkvGF4vq8OuY3XFyfl3sKlQ+V8cqBk2PioeuBdznssG4DiCMTFelgBbBGXW9auaAvhSUd+2uJ7R+8fcvMewtffcIcU6jgR91Ndy7YpSZ6ZnrJYdtBKdYcCGr1dpRJk9q9mqdeB4WYIm228F+6u11rQ5tNE+pIBtOUm1tRMj+s7HPe9zw5V2cTwBsKe2+Jrff1vtvfmPN/vzqwEMoxbozdvW7d47/vs2WSzcWw+jTuvrDdoKynFMxpG/JzhMWyPaBH63a+nXl4lqhzGR6TwBwEYnazhKXixTuO3Ql9wlYsyOGVT5L5MyfwpSsuOQaW+OWON+A44OfXs7v7s6gEs/Y30+Y5MX1gO78yOYcHO7LwAAIABJREFUdcCnYDw7W+EkWDCOoZP9QLS5iBsNtTV50MFkv/cOih1QhHA6Yp+UNWQjK15mkUsxAMvs1IrSmrEUwqFLjvUoTK76sxlbRJq3b8yUChq8dI3Q8rgtDo7aONZ9TEq+PdRUISd19zNnlYBUfn81jXmRCFhV6PzNbMvc922+ZDvsfao+9vlV4uf7gL2I5iyMtaC+WR17Do7YhhBAMGngwbmKlSxJHyZyS+eR9wXYHuklfyxJyPvXuLVg4PHz9llnNDx2Y9Z560O4JkTuvhMBjrqt3gbWfz6DOdFvBdtvFpwPp+NjwBgAAmspDC89cXszFt+DNYkdOngivPd7M5aDr9nc0thYLJZMKIDZdCAYIOXHO6JF6NcXaFmtvAWAtGItwm+uEXETtKdaYO520Ww7zJao6fFYt4gRwIyVv5FuPbxri2vHPDvaraK/NFCoUQAr2fI5pHjvae2Pgfpjgxzmzo21oK9mj8eKYF7IsH1/+TGi3I7JAzIPVMSWbg68vZtJeRyh4q+1QF88y7hUSwwkAJpjCj3mvtm7dcwh+HYFE/x+AMR61+olFCEwm5IsDApPXXYU2J7eicWzmkWnT8F9PYMN1Da4Br65rDBnhPPB81DrISYlveAZ0Lgen9Hcc7BNv6cPyyjyfEAwv7gHf9rCN50jAhdm1SMgqTOI/Cz4BSaocc3oci5pZ/yayu9wbq7BXMG5/PBXfm5+3j87iiBa9PG52cYy18pfx4Xnp+7C0YE9rQ1grpcoHzT9CmbUMcYM/OkPhL/KfTDt2+6bmMC5X2r43p/vT8QSldU1G+hTjsv6P+0FGiBH6ABlkNWTZXGf1zFmfOJg+al0gOOjGixLe//a2c/KTIBr0oDry8GIU6tC2mPatnSvMSxLg97bFC/3cRq3hlLc52EyJ9ZBnnP5nKkQ82UJythnigSjzdqfY87vFZzkcyXbz45ep04hV70CJgVwftYPAT/XXy77yGPMsnQRYzFdtRWGlXXPskr3E+lbDfXfkeINWCaO/uXlHf7k+EsACoBNUrQA5f32WXc+nSFGpi6G2AeWHybUVJ+Gnsqzu6BSiyBamal9egCfjNioAizF+xlL3I8uxTIEKZibBji111toQC27MX5rQLkjWlA9TdQv97oXL78gpTsyJV2BYsAFqayZLhvj4/c/Fq+7fBZTdu7WP7W/WEmA9IHRZqY7ak6hlskoBVpNoKg+Bvrq9bUxXh1QYP/dz+edMHAoxMUc5QBQFc26GEY5wvotCVc526F4kDruDdGacKkhomWf9QCSbbzcGdQiqJ7p1aXac7kWwLjJFJbsu9UdAtAm2F8b2qPPdml07hRQX2yiwHDwIYJ9Bxso7FWebHFIZ6xi3KzFWlBH927nZZZKS1D97UU1x0xFQkAzB0fHb7cYd+1jZgxvFbIvqF2Bd2srh5e7gQmvt9ABsHERtPcBGYL9xbKct28DWoHjVlA9kF9+2ty27097Z3gwA3P0QKrzPUOGlYrEepQQDON7K2Ogfn9Cb9XWzY8ezxLPW+DIMDBui9PJ1ddkmaVLj2OWHfDYdtvYlxb1eMqscAMgS7wzZF0EtZZlDU8Xb70Iamktlv1pdWY9EnNB9mPSHGlcaUTYRWbfATE6PIpAvn6Z4/V4TkpraDakTTo5AnK/mSHYvGwjBKISOv5yNyfx4XOSqLR6HCYyxuNiBIWlFEeigDrLQPXwuXQxxGE0Xql1AgOkBbtTJtX0L+RiGE/aB2M4cp+UtP3dPTnFqkEfVr53Uiwj2ZqzcoyZg6eXGPUOhYmjSh9o/3oEmyi0RzI1l2CmeK2st63T13sYz2AuqdHtKeTHlnvw/fSc9TGHLD7DtbsfkKVBpXlJW59dI5jJVYUe1n5Rq5jAJMvuXGyX41P2gX5v6C/VwAe2QUMCWYTBg86SNNraKl5CscRea+t8LklrNzxiX5BjoPb9RHWXpUKGQJ3qHwKoUdrmJVvHMF2LQ7G8jQAUrIxwlmdpM9vafu7BmgMQbTJnZxibxwDERyoLGBaMoyDsB9Sf33WaAIQdonaLwARKZe8x18ZeGsYEGA37aw0xabNpCBYA36OxVmBNQQ4w22GOxfyAt4ftS48NZVuARwPw4iKxBPIBpR4DExAUq04Ot/SB9tYxDoUcBtCNRbD8HNF5qewD9f0IfSqWvUWnpO6UcC9xCTvMYFw1ibsBupptqgCwXdYeWwgWCsJVYIWXj40oEw0n/CSsio8BYL9QrJmBZRCes4h9QKRHsHu6Fo9UugCRc8b/SksHzpnV02f9npwlJDW9L/y7yAy4PwMYcsDN/ZvgDYV0AaBUSyhk24F6AmpQCvS+xpqwcjYXkfQ9W8YM6k4U9ebBbzvfq4FSc1/GGFaGx7nl/PE7Y0AXBAAh0k9/Ox1ZNDEF/llp39gtY/qIFDnl/gyc7X1mJzDzPJJQXwgZy0wa8Nn6J/oKcFvZO9QDlRD+8xLHmfhKLA6Occru6qktqAPWWRxSnNXrndVsjFIL1XzktZSeN4A53rsnkK4lMgBmq3ORACyEdo0+jt+HNl9T6Of1zGslMPdUisISBzKP6Avy3c9HV8sRJ8BHC5y1Nqz0PcVLKjAGtdP3PzAUrkcuH6FIJfcdtqBempVbcr3Q98vAZH5nr2N7OcL/YUIHmF1pgHgvp0/ifvK2n3w9JRD0GUsgi9x8+JvCEPsygQtvOZv1WIz5QJ/0ksSRNstYf3H8NQAFNSeKoALbQoVoIFHmfCQ0UDZ/cO8SYQ6/ofwMuNXiIA+I9eS/k549bmypBLAjgAw4s4CAggQYYaUH9nsTUxLrDOj6A/UBFDhVcOiJqsMg7CTshflvOjmWgRrh3eUWmczcnNqnqAfHq7WKLMPrxNfigltEJu0l1SroZCo8BzQF55wTABiLK0IPBfp0nIRZLk2P0gSyOY3faaqcr+IZ9KDRwoNHOnwF6EtxeqbV4JYyJojiG7V0NZE4gQWk1Aqgc5nGaKxirbPcCQ2xKv/86cigoM+R1cDCaqTpxBYYaLWUlDmTifpWKw2hQ3Y6DmsVN1gWkFo3sjtEfXrt3lCbjyZBw6XCreYactoIAUYt3llisjPqc1hp0B2xduVpbAF5uuPnG5yW5ID5OODorlXSzk6BpHV50egwZ9I2zvLYIc/DtBMSMh9j3ooFIyyBSRtm1jCIetfNs0q3dTJ+fDNWFIim7NLoUX8amZjrz3RKI/tTpsHJTuxQoPj7yZrW45g9vYFUkuDfk3Kmg1I87L+TmRFGKTDDcsn+AzBk/iokRNEfCuvQSLAujwrBbkSCSns9hqHy4UReBRPnTbhBLRNw4Pcuxi86OhBpT4I/J+NGZkIEYToRdGZSqgGLdTuPpQWkgDz2eR/ZkUzObwg7jQFD5GftODMN3KtFJLRrTNkeEVRrtOTCtF10FhlodXe0AXtfju704/JhzZdjBCAepUvuq7EkgM/a14L6FCQiy3Qmr4FS0rdh/fNYC2SHAZaA75HTUaSYaxyHgeBkl1n2xvfJnKHTqYljjj5AccEiVrtbioHb4FLntqMMDnzshsy2lLFOPNjG/M4pY6cKHVbu55PkfsOYJYqxp5sxibKVMTDEA5eh5mvt3dotDq6PeZ3TNWXu7SE83NVEG6sFlwz2onOJg5NyX1FY4hKAFaZt4jrNVOPi43WM+Jg+BOMAlu99im06SD9uzeyPAwo4fF0oAkw4MeyOHor46lovcVxFcYHzfun7V4jPRcDl64N6QGgJYL0EGgnQOtklfhY4gQMzkJsgxelvfs55bZyAzQ8Hf+9lKB+uze+3Ot/Ba7DH+8hU9Bx0DcwsL5+5p0wwv5t1DsJe1RSQlNBJmEFiuk+yr/zayjkmYJIDvetYX8dE5MP4qoMn8U4ML6/KZRIXf9d+n4DlXzFCcjAVc5LuJYNL/AznLNbkOM/Lda0xqE4s19PzRrZfP9rBfJ8ZkEgtLQkSmGD4OK+B61r1ctrwgfK95mCYPu11bHSWY0oSidVs/1LbYu04+34eA2iUvri46mn8L2N3fTdGstn5b5yr0KhDjEtcXhzoI1hBIDI/H2AgGQWwr6Uuvzry+hk+ntSx8rbhU8MgrdnwB30fvp4zszoTeBY+DtJcX/c0wH0o+uICdJg/RdaWTttv95/Hn8HJJwd9UsBICWlPoO92OhefId7F8l+2wP2LAAqK+mYqqlEj/b4ZdeW+4lSbehzQpaJ/fTWHbjvQv9yAIlNl26kz5Xl4OYX3seZgqS3avhQcX6uh94daWz8F+ipAK9i/NqMIftumc+A0cVGYw9gQJQejCfptMcGjw16UIRXFW7b11wVsVzleGvpSIjMwlWkVstkYmGjknKKxOursbR9RC8omaArUt81aV35dA9CIGtauWL7vwZgYW4na9qCTVkG/12ASsK3kqILSFev3PZykUQtQYardTbB+cwt6K5EFYZvP0gewA8VbL3LD0SoY1er5I1PCjBHHRCYtTxRAVwxH3vurtaeqTqEvuwawAYFlTR4mOmM6DgBaQXk/UH94JpcvZfOaYbHfGeW3GjuDOhkFUSMMsBWnUa+a62lEd4YqHuT7BrKYcSdLpHqLNTlGtD/jumxvNs79bkr05c3mjWMKAHpboTdAX5ag9BIUK4fRWcdSgmILOEBxFKx02NXap9XI4LUwzMYMKNZqkM7uAeDoKN+8jSJLLTzDXR5HZPP63+7AMGE86Yr6x2y9aOJxEsJb+rJCUaHLnOvyOKDPbu39RDC+eAvA08a7Gg30xUVwWH7g4nTy2IK5EMaWbAMXyqHQlXYxlL6Vj3WwR59ZsVKCDhdoNQ1eZjSIWJtIVTuvel1vclpiYw5Wh4MeazXhHL92fP71xYP7t+kgMoO+78ZCWBd3ppihOTybb+dTVWtTCJldJy6GLIMKImIGNlPsOI/327zvYa2F9Oookkaas3U8L/9dawIPYFkg0gK71d5jaZBS572p0X/l+5uz8sRaf/otiQLtX48AuFi7HXO4LpMOynm0G7N1tKvPKfd6maCgKuo718/8XVAtXc/ExHkRIlvjtxebK3eMTLDwsDUOe8ZxXxEt+PaO+r5BvtyBLwvKkRgK3d4tvqtlG2jFSvH6vRmz7RjWlpIOnoMvJrjYU4bb9t/t98VLocYpyy4DziDzPWZdjJHlAWq/Wxvf4iKqJuw70N5gpYIpsFDfT9o/36Frw/77zRxqYHaVSEd0N+gK6Udk2KzDDLy0AME4MAFcmy8DhUwzAUBk84trMamDOJbUESsdXOpkK4iz95YkTstl3Qde/32PYLy+dysz2YczLeb7otXaD/N5FgBl77PN5v3mzJkjMkbl+9uks58GJO1zFPF04c6xNrMT2wHsgvoQtO9IYzsCOJHh2UFxBmJ3p55tuA+xtpgdAcLbmKVxcCFS6d3adHuAcGJTlmJMH74jGSyEOdITyPSsoDOEAoB7NxHUYHzld44Cbw6oRNlWMALKZK/RCefeQ9ZWkWAWnJzp7kAxs888CKgywMst6YBzcJBo8PHZ+FsCT/g8/D4wnX0RyN3HMAevww151jzIezo1YHJgQ3+qpL38tIc5yDNK2DY+Q9DU3aadShzSmPF+Ti0DeR+Z0l3T2JA+Ty2GDCrlZ1CNpIKU2QlKwNbyF/ZBYs4FILbtxizgOqC+D/2RvAbIMkj2yW5nsu3InJO3B6jLZM+XkhZ8Fl8HUU40MMecRw7kjw68b/PnBCio7+ehs3FlcDKeCPZHmc/Hfy/cJ31/oo0j6CAEitM41HJ+pgx+BOjlPleDf6/MttoJbBZxli7LuDbMdrHD7IXeCvrvN2Nsv++Q9yfwdkxm6tLs85snxbzNdpR7Orh1CvTTM8a/C6DrguMfX6beTCso72KstSP5QM4OChFJv55qhyyJqdLHXGsZsLqyC2q10rtgIeU1ONcDgJkIAvAhAeSs19hTHfAKUIR7Xb6PukwAafA/7mkJYFUF+gEd/fwsl+MvAShQbK8+jnAMzDg5AgcLvAD7pxZXZj8sWAUQmerIZqi6Q2ndFsawbhD95gav4/9n7u16JElyLbFDM/OIyKzqnrmz92qvHiRB0AJ6ECD9f0D/Qy8CtLtYrfZrZvqrMiPc3Yx6IA+N7hE1cx/bgequyozwD3MzI3l4eIgQcQLr/AUFahlngYkNdkyRQq+V1CJQr4N0fCxKJLSKt8fTMKykv4aKtFjdvzbqPFhAD9hmVaqLNFLhm0J9XPjbcQM61BnJpI3avxGb0YEeqTC1bK8zExFj4oj9sT69PkYD9rk4n7+KZjX6VJSO7E/OVJNCScE9AChqiyJaVXKcbCGy/EOrUWhziYfAnJ7Y+LvdEzNAGZyhoCTbcNl78vmVNhNVikb6z4o/qKo7TQOsHyYdTAdRZhjiKAIUPWXLZuCnyfGxDL36d3FEZ/2ddM9UWIbN0f1cKyUyBRsHs8G2Ics+5qOwHrArCgZ0l7h2UH/5zAm4i8wGA0EaeZZ7BNXL37kHYhhH9BtKxlCalEImh87r7zKzCN4JYpZI4ODY2v26o8hav0NmVg+B1BkkeBW4RGsfTd/F6ZpnY5QzOc3LdjKzIRuD7OQAc2MPKqQ5tMLvfjdrEYPx8h5ZcgB4QMCsjxuVw5PzvkRwQNqzYcviP1LwpKPg4kHxmTOd9dXxd1BuOCo/r+HGkMJGNKS713S7iF6sojGmiO/5mQL0OBn58+HBF8sZ8nFwlrMD6LouBzFZzLVyyNwx8Mh1tcy0+SuW3bIuZTdtoQMQ0zXuS7aO0o7Pwkx9KHiL2Cv2kjpDSiTo7cF2KJ5NV7epAqPfj/ks2gSq4qCi28MxQLacqgdyvv9i15lhFmcqlBHthsXLCw6ths8K+DrtCMs+xjIDj+iAUCy7FeWJsbEmw+X/DiHHoRB45lAGKBRGplSUMvDwvXSo2TB2ysjMhAAUfAwBuL5SeiZYkB4OHYPoV1k2DyIYVKh0e48LRdtO80I1bEpmG4TjyHvj7bgvpMVOy/ER+lRPe5/M+zuv+YHjHsKfpWf5XhLtcI1zUOrjNAOG7+zNDCD4p4jZpYJj9hUwwCAH2cDce5nJz9fOAXMRvNQtOD/H+d6RfIPz850PMuhO953PaZ+TY9Drel0Hkdq/t+++Oi/vN7ucBBNypj5977A/pv2Me0vMZeA4dxKb5XAff2+Mzrb77zzL08GgXkwj63A/tAM8SrFsuK8VO62X46nOREGstXHc48/+MY/TPDn8+VsHk0AoxzJDnirmdZoH+ZqvqPNAxB8x986fO5/n/LO4P3maHxOoSe8lr1cC/EzkkcnLdefvSwBo8/npZVTRASVn6vmcJwZSMNB5D0DEAfTptVrCaJZ6MI4rkxXEAP4wgP5svVu5Xwrko/SIz3L2BQEcmJo9j3F6H2d/iEfaV/R8jfyZDE4IEGzQOF+ay5HkSffw4vhdAAoATBDu50cgaPp+tSzxr3cTNbtdLMC+WhnDuFo2oW7dBJcSpSiQut3q+0V3iNPFP/75aln1X23Slt0y2PXeoU1nhl5g9EoRbD82UHtgd+X85Zv9vq4jnCYRAZp/XxWyupPhjs8UP6Q4nYntiSr0fbEShAKMazVwwh2Fercsab8aHT47OCYarZb98c3MaOwzIAm6ZdIE0AKn63q9q6r5IZVAgT2HFoFeBOu7aR7Uh7eb2qz+tV8F+9cK6QDLLQAaTITDqq1YfR5bIjJYrGIaFaoAGkIEuwm2HxrqfWApmArfrPX0dzQuDjBUMW2AjbWZcIoncLlvM/M0YAvchdnYoo2bh/r9sOWjbB2NqtaO+Fkt8BWiV+xfL5GRCsdYMb+/7p5FqhG09/cGDMtUxVjlQz0LGmUvEiCSLjU22n614KQ9dmAb0W8eA1G7y0DA1kiBNH9/j90YPNEG1LurDLWMk2/64+sV49og/N2vd7sGRRHJCvKxKUNRvMZW2Q+8d0RLLaeUja83m5e/fLP3lWs2SYX1Gk2+B/l82M+WhvF+MXE1F5Ikm4EqwFqu6D/cMK4Ny5+/Tc0FH9+nDMtQoO9T3T+/DjqRFPOry0TdT++N4IVeL/buPh84KALrBrlebfzqbPsqrE3zes6g+dG5/fR2jY/HNDwMuuPf3RgJP3yxTMznJzA6lACk6jS4fQUpteIJsKif05R1GzqzcFmUyltoyeWCXOag+z6NJ8EnBy6ixheY71g9mHXHQ+8P+z5bcqZyjaAm1yXOwSyOdO9q42Vlsu3298sCVQ/aNtcz+LxDWsP44w+T1nhgoUxARwi4BCAgGF4PKp8bstjjQZ+B2amLtUeNjEwr1s7wvvk8vs592oFOvTRAOuTuYMHn1MDoX42NZ0J4A/LxMBv42ANcm6AJDsEtW/JGCYLvU0UV1z8jWGsM6vt7Q6/GOpABtE+bB/WzO8OsuG6R7TNsz6zVgMyiajZ465Zl9o44lgm3PY0UfHuf0z5oIbNAYn0XEdNq4L4pzZ6BbTGjfKQGA4MdIEKQ8WYMmBDcgv1uCIBbC4ef5WYh6OifLWvHWCr6pc6Awu0PYGyB/auztnzdlZWgDmawzfKBLzcDVXfvfkCh2N3GDKqRKZ/snbn/hqCx297Q6+l90nfpjOasNWBtPtu0nwTmgRH2WlGDMUPR53GzMjuyYYrPC+pMCPeVkVrQtQpoiawnAy0rDfKgzFvEnku6uFceqMejA6OCImq+0YD1z3G0Gt1SDuyBV10N2IVi79Op1nJ0sqszZi8eWLrdObSby8ERcNzrzj/n/nFu15ifKcCZMoMQnofAfDkFh3uf91SKdWvgtbgHL+Yry55sHu+D+yGDO44T9Ruy0j7jC9qsNM/06ow9wPdEt73sjDNkgjweFKLp8X1lMPjq4x8JmtcBsZCpB1gppQMsuCzz3LTLOtllRrFN84zPziOxAPKVrT2gAcAhmqx+7rc3wFt/KkZ0cwoGC7USqsz1S3CFzJlSoqZ/llx7AqvCmZNtdhfjmKUW2U8Hg+zDz2AbmtsJlqeaX5vm3nm+A3N+ZeCSIMp9Pc4r+nnbDhklbA51eaR7ImppNi6pLfhBIyEH+cW6OKkzgaI0wzPzeqXfkPxAuP3ZTKer/eJ7JsvROccy+kpATOtcI8l/sxi0z/uTMoGlPGfcBklrwVIIH437DZMQ8aXh7KaKQ5B/KGs9AQOcQzk5VGB+W9YieawAuiUGS5r/ienw9xJGvxtAQTMaBoRwng0GEUCvR6TadEYeB2wiYECyQamCUWo4MgCOdZrdyh1MNNEYB2V3B2+3Rd1LieA7khw04J5VifvxQNdEGn1DY11cfFdDpyGEuIZ/ERNUsLr6OR4xNq1gvxasP1a0uxrlMjMAPJhGZEu8tRUzGXQgCmwyeqmHZVrE5h2zVMlpio3f35d0oK4w0MY/DwD9VqN7BDMD832U9LyYm9VQA1IqL4R4D8O1CowJ4VktdXaI+iPtGkJTZe0zgzAMNVZRyzxdbEzqb2May+9lTLKj4ZugpE2SP9MCb/MJc3BUIR3m4C8V47ZAlxqijnQudZcYiwCIWKutMAS3A2yhOu9V0/d8w/b/68WESFkCAdhYRVeN7k5JMUovqgYCz84X7GZBYYyDBkTWG2he9tF7oO6atU6q2Hjk4HjxZxhzLh0YHOIin2en8py1GsNq5E8qwOAc9aAh7p1zgGuP6yl/l38XOdJ7XyDwKgK9NVv7NLYZaa+ODrrwowDmTOzzM2RyZCrjdBT7dF7CidZpGM7Iv99/zpY8ZT3oSJVy7MYQc5pUTJ6XDtk4CAi9PJyi/VL0CThk8Sy7U47GiUwHbhaxJm0ux3lz3Xs6gj20JecTmA4HHYAxHesDGMD7zQ4sx8KDdAuYfM3LKRMHTPuVAhdS623+K0TTWjnNq7ATp7HL/459QJP9Y1mOO1+RBQtA2bsMEFjoamvB71WGDT2SPpA9jzlow+tnu4P4ZR8GKCwF8jBG1aglOsvU1URhD8+Rbft1ObLoMNfxfCa3X5wHDGD67Lc+1dTTdQgMezeinteAA9NW/oXZolfE9WF4MwiNH7IYyYqQfaCIYKjaXFKNEhGWmQXg77bpoGbP+0wAqrFrgGB7ZQV1CrFF0HZ0DGUflhzw9062m4wJHkpeL3R6i6SAH5EAKOswu3veWxhoAGArzPB3gKMdAg777WH/FKGLFI7sWZg13i0wnfKhk2HAMcl2mHsbcNxXtn06/ud7yQGVj7UBv8nW5kM9OcLuW3lPAuY98eB9EJzk3nUYV4Kk6efZ1r2yb7Qv3Ffyu+I9t1O5B3UfznvWOajMoAbHmtoKHLMxjlotfv+ZaTnfC2YmWk77S75nvpvvAART/O7UhcLXhvSjvQwzQvAwBZ9xTQe0bE2052dvFCJMyRk+09m2EhDPGfKzLfFzKFJwmQM8/psaGGmOsvw3+0mH7/FWhOKiaV6M0/uOv5djXBEA3wigkjZJfe+Xh4t/ZmDjzEA4Hxk4i/3P22m7npSIAemMm1Q6ZN2MpXffj7b2VQnmmL8TwOZ8Xm957Rcfk7yGfX7IY59rK40TgKklhTQX/qVH3t/CHzzvseVY1gTg0OY7gDUXuS5AdOxiu8fTIQem7LCH57yUYczHvPZUZqJNBEjgRvhtf+P4XQAK6pPJap3GIUs4Lg1SJcS1pFVod8VS74uMotH+CbWi19Rx4W2xQNUdg/pQQDSyByhWk1nuO/rlYpnujz3AAzIWKFA4FjPoZfce59s4/F6GCUyJo2romIGDT8IcoEUGeXPhwSrorWJ/L2jfNOrtIQgHYFwKPv+x4S//m+DtPwt++H8NBGl0yjo/i+i7HVZcJGg9fREPVj2TspuxjK5mAn9ec5Cke5AvcJaGszycZYGu2L803P/UcPlVsPym0Mtx0xnXGjoR9tzddQI68NVrvZ2K1D5MC2B/t/ZiKlQQB2RTSLF3ZAJ5du1+q7j+RSHDN7xarFXlMOBofzORs5szRA6bc7pPZgFVBPWXb4Zmv12Pm4jaQGnuto8QAAAgAElEQVQr6NWMdu0KijHo0qBlwfbDgnEVvP0nr/MNmruPTZpDvGfL3ErKzq/QN2NDsHaLtcTR6rErth8uuP9pQfsYR/bM3Vk6bjRjXuxzHZXPzQQ8b8ukF3dXomct8mJAF/YN43LF/scrysNEv+hElPtuAce1QYq3aPu4T+ekTYYIdQf0NutUdSw2n7bdwQbf4AgU9tkpI2qDWTJAw9M7yq93lMhqlzAcenZGT8G31oLx5RaIfHQjyWDKRbD9eEV9dNSfewJM2uxhn4QbZdutPSWd6lQnHBmdKNVR4LGaTsCXd98XbSyITh9aA+Wjd+jH3Sczjek4ZEwAQG5X67nN77EDRp7fLBsYA6hXu/a22meiRZgbu9YsKAPAej31d5zFF2OdiUS9nxl/AVAhWRiotQlEiEwlbY7RwRD6WG9eC/v13RzJx90yE5fFxnzo8Zn5Pkj137sZ2lz/7HY4Miq4gKBWONqqoSeSS2wI8NVfH7bHPWZtMrs56NWyBN07otRv65EWy+dURfnpm/2InUlKsezaugFvV5sb94e978Vryn0dsVWbJIqkrf0BGY/5jtyJLXcby/5uujyPP5k+UP2Et370e9oU+7vZrM9/Klh+Uyy/CqqIAQCtgI6MFmsvGy2Yq6/bbQ3mAQDI3dkezu7S6wJZd5R1t64XRUwLh4JlgNcwm0hnX2wN9psB3+1bx1gE/a1AflKU+zY7cNwupqNzPdaXjhBPA8pnn9l3ALL5PlwQbIb9rT2VYRBUsCF3kL4WjPdLsiVug/YB2TZb++v2DBrWOpMsDOA/HpBWMYrPh1aAYQK34cjTmfVgZVwX0zdaB/q1ABAUF+itn/tk8/HuOJcdVCv3FVq9s8NwG+GdVKIO/rZ4soB7iILt6KT3KfwLQNttAil5fY+R2tMZGKvJOQ7w1MEXC+b6rFEXZ5WJTNsRgGxSnHcld9277adcL8tlfofrcRjrMZT6c3AzXHchBykAdN3MsV+WGbSeS9oy+6CYPtFTWQTtJ7UmLosx7zKrjtl7v7+DKCPPk0AfmzMsJz793v+uzmBggCakS/u+pK4TFCXHmhlf+zHQ4djQF+Z9idhaZ3lYQWihmCjuKZDmQaA2s2HSeCpG7HHRWekAGpiWRezdnA9j2M8Y4Pv8srWQbC6BPXGafLbHeTzTmBLgBTBLC8IvKOY/jmWCCcFCcpZPZqLxHniNAii8I0fBMWnmrNFYz1WO52iuDaHzuqbHVrC/md9++cl0yArbr4oAI3UyUp3gWC3GTBtjdpFKjMzo9uJaKv0Pb+jvDa0VlPtu7M69o+T26LVYFx6Oe5QnjbnOl3ZsdtA9e8t5xjH3Z43ym95N+6q6Rgc7U1ybrV3u/2wRGwkalqpOvREycoM5FPNS4n4jSZP3gQDtPGasZjujCwSZda05e9JhCbpW9PF4jiJe6uggbAbVXNdFg61V55+Yv0m4Vor7ad8/fheAgqhOZ6IKtLRJ+XKhN/uguINWpiAT4BoHJTbOQxnWMIewhOCIgzAPz7I4sxZAKE9bZl0PGSO2lmQwOKotQOmOXimBgeRIeBDPrPsQ77Swz8wHMFK9qsQ9l9WfIxmmfJQdWH4VtE+dkxceEMsEMSjmR7Gokcaz7LYJjcXKCUj5H4ugPmy8tvdJ7WwA9H4aW44pxNZDV7Q7EXGAIFxfijtpVu5RPdMlj27CLMU39CJYv7oj1zWy0Fa6olPE0jNQvEYZllnRVaMGtXsZCQB7dzdAvZyjf1mmFkErUVKhrQAu7lZWYzuU3y5mBG5X20BaDTopM/iRkVKAmSKyPupqEcloviDpmyyWctEiKI9ujBjYXOhfFkhXLJ2tnhpkmNBaBBvF6arRNcHO0T4H6sMAk1ELsBT0H64T9Opjtk07GWjZhwE82blJyK6iGFXSf1Y/rSd5FsG0h7OxoHK5fdhaXI5bQ/3lfmy3SFo4qcs0TO4QSdfofx5ierbwDvevrUDuLsBUfOzo/Pl5Ze/TQTkLZ/nfg3UAzCyQj58u5mAuv65Gt74/Zo0575etjYaDOuJGoKTsA++fm7QIqNERLAKnbh5ouL1DWX4gglwScKBbZuNBlPmyAFLsfICNzakdVQTx7eSEp77GB8bC0PlzcackZ2XpCDO4YTZHU/1xOEXDDWF6zpKc1PN+6M+rbQJtAKZ2wO0yHXiqQGeHn3OAjB3ej1O2Abcv0o4CbX0+83TIx7PD2xUF3Q2VZxPI7KETOABghC0haFjGsKyNt6ANwOP8/A62WParhxMe4+rBFLusjGVS+w+io+GUelByuwJNQshQejtko0RtP+0O5NV14PZnA+1zt5v+fnVW2Gqfu++2Z2ctm1KgCyazwudrUG7XPfZVo/oigvbQKHJHqOwDuheoEgQ8vhIC6+NmpWe5JDG3kBxt+hTsAR8CYqTEBjPL9/t9OKjsz1LgeknuaA5PZqT1b+9hghXhVALHYKz36aCy1Aw47FvznCOc25gnXBs673lcjIEi3cbUssw2Jw9CjjkY3XY7f2bD5DkUgzyva+2sq+keiJhfxynsIqbcr4KS7sKI6D0CksOese9WGnMCVfPrntdLugr8nSddQFFMjv2hrR8O4rixpyfWIoAZXMT7K7EvyOG7OOqD5Hft/46SgDGO487PZ9sBRLAVwW+ZZU0B2gNAS+2R+zFxZ+c57V1+rSeNCE3vO//O1+STv8p7ljRGng0N3aH8OafGK/D9TDDnVU4OlHr8/fm8+aDYZB63c6ad+znHpRbocJo4DzLgDu/Hr5uTuUORNQPEASypxcfh9HxkR4jvM3gxDnlu+BqN8t1LeR4ffo0gU4A7sHsjQJRsu1D0nCLvtC1Je+TQlhVyaIspsH1Ei5eTAIgSAGD6ct264elq70Hdpj11QCheSstSlcw+yeuc96PqyZgyEwi8bmakcM2evwvY+LxiJDKwJ3DLe6LbJQKUo18yO/akMUD6fE3lrnl99bRueH9k6gHT7+N5XKPuwFIpp3MMnXOV/z4fXkZy6ABxXkvp+F0AClCNWvNQLm7TuQJg2a9aXN0fCWTARJq9q8PBWKv9v6x9BgaCEPLS0sIxKau36mMd5zInp7aCfpVQdtYmGFKO5ROqU40/L+AizhawZ6p3YIgLfqjR8iFTQEcGLLu8q5d48AII61Q3xfWviuVjBtl2MfuPLuaIlZT16UtBf6tW4jG8M4LAdAgsUeEtEH3tq2K/Oegy7E+rEhTPaJvpToh6R4jlmwUeWqY+wnhfor0iPyePjvLYsP/xDf2tRTB6/4OP06pYPhXLb97lYDcHTcU1HpymWsd04Cr1DxTobwYAlU29A8dcCPvXJTo5aDy3t5hsBny0h6CsBe2XC7AP66qgCtnqRInV2pCSYZBBFjqY5eElHZzL7hiPS8Fwem6jAwoAIti+umbBOjsttF/uKL/dw9DJUoPaKO43yz6wfNuT5oKBJWNx9fXfNqv9vj+gX9+eFMzRB8rnI66pb9cpiApMR9DFQssv93h/lRm/g6OVHJdWsX+9WEnMbyvE28bBBUplHbN3uSq0XSfFitlhrdajvJ+cALXNMTJf225ZYAB68UxNtBVyQR+23FxqqK4rM5CsjY1AV4/BVO+Qn1YDOT7vFnzzelTJzk5GOWbF4p7zWLnR03U1MGFZpqEKNXHPDPX9uba4WZCqj9U/c2wxKTTSBAf8Oza++/wMMEEEak3knsWuDWAgzW7BH8GGItYnmtkgmLE7d3oIxJ31gPx5HxBRGKyuAMbRMZwPk5B0B75KSUHQAGqDvl2cUePzau/A9XKg3mr1cUjvuvy6RSAhWqFvMHBD5Cn4izUULU+TQ8ZOFeL7qnoW/a2FfoDVvQJFjL00rg3S5vqdwrw+F9ZtagDQKV4Wo6NmVW+lVogrYT9WjK9X9LfF1mpaD+Z49ciwSq02ToBrqgBlu4BCvTz61Taeeh+onwPvXuoQwfRSjaHVBG/3Hdg66odneLrOWt0qgFhweNCU8Yy2rHtkzShcG/tlqvc10GUE+0FPwduhneOJOl1dO0acVVFGCUed+gG6VAzPpLJUzWjGiH+X+3yG0QpAXaJFUDaBqkA3zMTHSMrvcasvgri9m1aJ/ztEwg5B5pjBbbCIcuDBPcd8mP0m6BfrCgFnH6oYQM91c3AkGYgyCPOxO+z7XK4JTLC9W6Gj2LxiwFvcz0odUfis6D36sOtKHaPhekTF7coeLWqjY0weNth8lbzPpjExMGd2kch91smeAhkGIhPszIAC93GOL8ucXCMnAgTW6efP5yxlBtdagfQ6Oxm8cvbDbyzePlnmHPfW21HeJYLxbgzcEDb9ObFHznaJz3UOsvI+fppXIuNoj33sw7elsCzPR/vdjj4IhfCwd6gkjRV7kGcwwcEnIZASgbEz+QjMpIDQ9FxKdJ6xlsDjwByxpAQZATJtTn5GMh8y5T4+dwqG+XeWwKjO7gc5p+7vj3vkobvVCcB5Fgh2Aflq7z/YGfE+7Hu51MHYxfZ90/sq8fPyoN9xtr1l+kdFHfzxuXG9TOBXFbJTH6CEPxLdD5JGkaw7SvH4osCYhbTbvF9qovC5dv5/D1+GOnzhR7oPJY9ytJnRIiPNyXPZSz48fowYsxTbxIsA1IHLQM0ZLDwDQvnn/CwD/AzQnoGH4b4TGU8+9pqAVanFxoNlXM4AjecFcCz94JrOcyUxF/K7/xvH7wNQGOpUUmDcXOxnH4dg2AwQEmDgxm8pk/LUiu2Bq01AvVrQqK1A92E0INg5yt0pOwpDC5kF2kY4Y/XXO/TS0K9XC9Q22+zoTMTkwlyg3LDL1kN8qv1mgiRW2w7sXxZvu+XfTRmMsRRvndkxLkY1agLIrugXd4IKUDbFl/88UO8D7dOFkbwHNSmfgIEYpVtpxlg8G1EBQ0WthGP7UlB2Y22UTSEPdYHIgroq6gq0B0s+vHxgSHJs1GlW/lqSY9LfOIkNkBgkIqzOEHlbjhvYOvD2F6On7jcvy3gvaL8p6m5lCwKNd8ne2VNQCgjtBAIQ1Cba7XlHNed+LIKxuLCX1xjKDqABowE7CkpTPP75q2lCrLahFDeQQZN+0YtYdsuO6eIlHvceAAiqATA2zg6wuDAmgYr6sCDD5qYzAB4L1AXOAAS9NwxuFVsz+wgmivj7qPdUd1pgtDD/7DkLEvoBRJndAYHY++LPCGyUzx0XL3mI8gQPvEyTocS6a78+UD+nInHU+oYxqygPC6zl82GO0NebnffLG4IGSId0n88OVRQX0NT329Qn+XxMkKFIiD2aQ4MAF6Fy1DOIzcczCtdlOlMESiigNAbQZYpCnp3XHNjzeUPAZxzGXy6XCSLwepn+TKdd3Rn2n4XjCpgxuMgxOAMQwooUcGwtHPK4XQ+ChSrGZWayhBml4fMohIB0BjOAGfRsiAKh90xCzuZbatT2UzeEshiN9lCCkcUePQMYjBVehuJXNLT3DewvPS5WSiMfd9uz3Km0d2BlUtGb3ZkNrCuV+2bXc8aAYooDjls7MFNCRDEBjOPHN6utd52S8ultVh1Ehyr2rxeEGLB6IPvYgQcm2P5+s7VLwIqONNwBY3BApwOwUpulYXx9x+d//wX3P1VcfjMA4M2fTX77sDl0u8Y9KwOBizEG20cHBQurA5Wh4zIAlMlE01awV4Fca4DU6z9cg4UlQ61Uat0hueXsj1cDKH592PN/bhEMMnBmB49xYYs2u95oBXWzUgba2pi3ajpCo1lwT+XwnEmz9r5mqCZbxbNlqbVaEYFutHc23mb/zA7qpRh5qHvSwjtwsEwyt5gMHYdaHaTyILPLMYjI9cAOGsU+3WqspxDtfSWe5YFAaFB0xeXXEQLNtGkRaMGEyoIxFoGgXzeLPHI/TTbDWuSNOUYOTkZ99tuL1rV+PU1tNA8deGJdjclEiM5DxfVxZoA8HetjsHgMIkrsN/E7IDKLWvyZ+YwAsDsolu0dxdNcuJD7u4HZAlS//rqFuGDUTOf3RaZespH2c97fZGHyUN9LmLQgvVl8XLBYhzNtxdYd50i8n8TgUDXAmuOey2zOmVLOy/zux+yG8TQfEtsjNB7cnj2VeaVAOhg36Rpx/7W4aLsDSiy1y4G+B7rBviL7kTEGn5Vsjt6j9IGAw6vOM3MM3Nd4VWOeARn+3xluAljQjXaoTxcGdhxzMh2BmYWv6Z3wGl0hMBsDTLvBsRACBEVAkdRD+QQQIKxCTG+md2vDHO8Fx/XD7xGkaRaTBUCYyk3DV47xbjG/5LGj7gPjy9Xm8u0ymZ6nORZHgFu5hWx5ZvgA/i7nfo/kJ8RY51bdaewPwGFeq74Px3zcO0CWoCY2Vfaxzr5hSr4w6RRdCv15pKpJXKmVZakOSzrB5iyixK34aRWy70eBx/MhMuc0Ga1Z3FHSz+I7L+Z3On4fgALcYfdFOS4uAEJ0TqY4iNCRHVOwidR9tmW0xQ+n8osHt4aORlmEi2+UKjPz4UG++gITryFFESuHWLs5LyKYBYD2P5l/AUXwqJpNIS3plqXubwWyw2r4fULTeRtNUIeBEno11eyxiTNm7XkZyF5/s0x0WXv0mtYBYz0w4FUAK8yAFBhQkCb0WATbm6A9DDhglr/frFVK2dX1DIazLATItQw+ECbIbhuk9Cn2NA6tstIrd1qTXlroVBjiOrD81tFvBfutYjRgKwVlZftHMkCSoaJzqBoOK5yZoA3oDGg7gMXGYDTx7mleF/qwOSSO3moRjGbPsf5QUdeCyy8b0IGBEtcsW5/GXwwQYqmDlbxJlLmEsyZOfX048MVFPex+ea/RIQPMcBWU5FiO5ohrR5TMkGEjdYEK1Wp93DINnSUG5+wEf59Fnw5B9jI3VfoW6w6s7uDbRPW16ht6ZEsF8rkiWiOynoxGqhUbs16M/r3ePfi82dzNOgueBZr0XTeamwfhS4Nij+xYbNzNS1UYcKpt1NGS9dB/khfTCZYQHR86s2j5OTh+dPYZVAYdLjtK9fi9nozv8B7GOZDgdbLjx0AemFl2fhYpm/K9g+h0RtL3s8MOG2ui1QxYc/DK7g9nAMMdl4NQ4SukPpzlMuv49G9kZ3KQdcgCuBgcDfrePWPne40I6oezfBhciZgD5w6ksYlMSBWtAFtH+XxMKuhJvHA4BV4Bo7vnwMXtV6zV4rooj+57tDsAUqJjTcsUbpb6eEZdL1560e/HuQOEHbNhTM7P3k1D4taw/lhw/5PdT7sKrn9djC3mY2r0cwYZPqQO3pWHM/j6ALYCcTCTJXvaipWWCQI4HUWiDfP2ZQJMZVMsgJUZbA9jCooHRALUT08CsJ49vfvoTPPGgA1hazFgWS312tLz/Pe1o6dzGthQDuWDfNex9t2u2xwph+/amrVxZ5tNGTJ/r/aHjJTQZxkOXlQftJwJza1mUwBhQEWdwJ5fG9XegbQC9FMmNT07yM5Q79wxDPiP5yg2FmWfVOaZrZXQkpllFZiBBIc5aeoc9qzk7wz//KH0hfu0//mbyuIEFggc1+EAoDvW1cexlln3fJ4LuX743NoXANlsMf4EGZit5O/I9HLg4UDlhwF+UouBJYMdX+rc35KgYF7XB3HKDOqc7A1FUsfF/I+y9vANjNVZnK0oKKv9bLbHnOMVrfT4c7cp2uqRKeDjRJ8mgJM8tiX9PAfn/BOgBGIdP71fTH/Xvn8KaFiCmsEeHmcAiSBPBqEZQKo6QC0QTb97Zau+cxy6GJ0DX+B5PfrfGfscvhG23feJdC8ChPbMQRtDyApAMOiMsenjNvpkBDhVwbQfCvAkNDrjBOkKrM565Dhnlgqv3+oBiD0wNArjBsw1nkAC08TbTfvli5XIYSkGNK3zmrMExE9VXEC86tN8zO/lsI+UMsurNN0Tf3+wqfpddlOc6wDunPaQBITOdrfl+PPubA3UYFccDn8nVtKa9ovD3C7G8kq+WWh6jPwO8nnzHBrz3mmmw4eZ9y8Ea79z/D4ABSnR7sv+DbvpVoDPDhndWlABnvkVR9Dt0JIMcXLOy9ohu9EYSeWJGkHAF7MZB3Zd4M8BRL33aN6dtoudd8ze3pmKRicKQGSHkQRYoHZPS0J583lkVROE5PvvpqUwrsX8hU9zRPqloK4D9dtmrf8+1zDW6nVyUZbQFaWbLsTyy472Idi+2jMBBhjcfh6od8XybT/oEsgOVNXIrIxFLOvpoAOFHrcfrG3k9S9rvI9gX7Ti5R0WJF9+MsG+x7+62jN89qCpUjnavtsArfj1fyr4+Dcr3v/vC97/v4av/3FD+7aj/fqw81OE69YMoKHqflcsnnkutxagUl1tzLcvBf0iuPxqC7O/eRvS+3CQYVgmy/dBK5mwcpH6cIDIkXgyICKoZ7nHPgBnqoxLxXDRr/brGlQ224CLg1k96L+ye+2aU/GLM0NUBHjzuvC8x7lDF60oHx0FwH/739/Qb8DllwuuPyu+/ltv08jyH+AYlGYDQWOVNtRQ3M31lzQkpC7n/sJdURjQqwYNNDYvbpbuQFppjQNtrP32cVJvGTdRaw3qW6EQXXHHQetkEOw7ovZ23014xzdhXSxAO3aMYSBTpiOlhq4rEIEnWrXMyGVxgcQxMzlnWiidqkQhlo8sSAIHcDzyKMWyxXwPpdo72vdpCDJwcaCsjqAwxkHggIcHSNZa8uQ0eUCfqb/x//0IuEhrgA4TYCxlMhgA+5mDEYdsXBrnyCpm1qs7PYGu83k3F+YNMMW+GC1Z/d5lDMivH7YfUi/AhUXVf8Z3YTRXOWQioka+YGaQ367uzAyMZZldeNQdLgX2twq8N0Bvk53mWiHFKftjKZHtZqA+rizN8j11AHop2K4303BZTdjRGF3NdFK8hVgAg5+PKE8aN6NClnudDJ4iqUUs8Mv/DMgoWD5uWL4sqD9evdXtMJbPamUO1hECttboe9OZFWMdaDP2AoDQhQGsHGK/CrYvVm72+a8V/QLoorj+ueJP/5d9cPncvFxxDYdEvhlgEtlOB7RUERlu8TbM0gpGEey3ClmtplW2bm2ELzW6Lize5rl+7Kif2wRfuu+rzcdyHxjXhnFt6G/VQHGYPV5+WaFF0N9atN/N7pWVn1mwDgDl0dG+bei3FmBzgB+tYbzbmg/mpbqzmUq/QogrgyFLc2pzKqNzm09GhV4XAwZ8v5RuLJjPf77aPtsV178M1M8tgPnDnlGN8WDq8g4klmIsNbWSxTg8KJz/9kABiK4V4nXxnP/12wNB2w7mkpq+y7o5U4pO7szg5f0DwFHczIFQcSdKVxN81igZm/taHAdRRyCyzTnAos0ju8OBFN33IzNBZg26kC1HB9zp8of963wvnPMHO+zBA4MvZkR57tj3mcCRSNKUXoPFKUNRh5ro63076kawlIrZbwot+p9gFsi8Xlx7m21DDyWFALDprK9XW8tCtggP7v+RLdUJ8hD0Zctf2iLW7ac2wcHcPAVsVkZdDnZCHvsM1LmmXKfLviPQL28GRl8nOykAbAZ09FEY8GeAgnOVY0qfi2MYJUNjBrO052cwI7PwcsBcBCguXLt4u/nq7bTJnh04sow4Nu6jSwNCx8HZ1aMVq8FvrhuxzvkZ7ESWmrAF7uLj560vD3OGmXfpx+DdjxCsp55MFWw/XiyZudQojyYwlVmeJuDpa46JaV6zmY8Sna/Y8pTPwjbfFB7lvMtlLhnw4/vicwHH7nfUusqlqIe5OOf4U2JF5Il5dFijIpBlMTCTe2MqbQvgBECULkSXIEFoiUYCyf3EzEIoknSiOqITIMfmb4AJwO8FUABiwVE4LtC4vLF2jU0vqNXA3LxcOGO2nvLJSTRMPAg5v0fV2T4j3Y+y9Q4QWRA6j/ZDPS76jJ4N3s/pOXWWVbDWKTs20RaseBa7K7oHrY0AgTj1n9mOvTv90Td6N8ySGRuAB+2AvFWv+fRLqWs/bCOyF3xOft/GhpSz+W4Ukx1w0A8AJiUUHvyKX7PA6kl3+96r98Frjwtw/fpAvy0Yl+lMHr8gARgIGPzahimiUc8rUM/mC/Z3c0J5fS2YrICukC6BxrFlKFtnHpB0R3ODYkajWEuUChDwClr0Pg4bqhn7EcCKoZGIbLbsLjhZBHpr83yhKF6iXAYApFgZgjFigH4B+mKMizlevG89Zs+RHKCS5nOULUwjMrO0bqhVLRhyBz6Oc4aJGyev5d+LbE3cX3YUMddbJ7KeMiyx4SenhE4M1yj3jN1r8rR6S1E5OAIykgHRdA9OIQ2D5s8Sbd/ieXUGuDmDwPMgzeGMmmdQI4sLFXOa2dVxjqMZhicHmRoJvSNAhCp4or5lICl/PTsrZ7Ahv8tScChziGcXUEn9TA+MwDCf8+8YqcO5+SzAcVzj/D5Xhm80+btjDocWmQ69ngKpeDdzTkY712D5wHVqFOUxbNpyr5VJqY+Ml9sDwPcpzju/FxUCCryPdI4EmI9WbF9i4JKceD4jrxHtX5dmDqeY+rTsBipoVfSLoFwLAA+QsRtDSNt0vt0+oiL2MbsIfN+RCLozG41MsH4V7O/A+q8G9H1Hu3bcyw37/yNo14J2raaTsLl+ke8lZ0ExzXtC/Hu+s9gXi483hu3j/v6l2L5T1t11MBDOXmTq8lEQ79BElc2ZN/aaRCVQ2DmxQENcewHqwsOrddgpSAFLBgfEAGy2Yg6wc5SknyQHGnn0iOexq91g9Xcw/L6LA2S+J+lSrAtVV1Tuqd3EqNWf77AOiukrSdwDmY8yKfzpCNp2g9nf6nXUp+xf2MFc7sU/w5kJSQPmqXSLGVgCxdxr/P/BVNABTQb7IAKb59Lp/Ida/7yPpe9PTyg9f7Ahp41ntwItXoIxPABgcHm8sD/f2WZgZkMdzIjPxz3BmUywssphJZSlJN+MPsaLMs1D8oB/IqM9r3fopgAgmI7ZH85/l/PnNda36co4GJb23cN3C0ARxwNIgOQz5ICP2eJ8bbKAXj1zDJ7O8gFfN1oo+I6IH6wsKgGJ3XYAACAASURBVM0j2F4agr/5yM+efUVmos+sje/cX/ha5/PzZ62E3g6z3Arb4+T8Ls7PHsCVQGRY568iOAgr52vxePXOn8YV8/75Hgi25EA7n7/YOhoXSzaMrRrz74EJAr26Zr72q/efk1j5+wcNjOT7nJ+Tn88+29CZQMvH8Da3L97XYa85M5DiGkffNbfWtfK9YgBokVlmE3uSHs99/nsZCC0Y4OjDeUtKAC78PePRf8nx+wAUVEN5XdYd7afHcRGUgv7Vajvb/QGt1VTw3ZDXj81QNWctRAaTRykmWPWpTwIwYeDoXMp03Fj/KMMWxP5eUT+thEEXcwgDAEiblWV6OuTBoKl4nWcabmdFrP90w/5W8PZfV3N2Hntke2UdaLtCy4LhQTNUTZMBiKw0rkvUnxvtfNLWoif3KCFMWe8NMkoExuFkLyVKO8oqQPW6O4HpNzQBxZw6itfhadT7PwkiCbzrxcDeTL9h/2LoevscaN+YKbLnGFeju6oI+s1u6vZfgMf+A778R8XbXzrap73b/Y83oDtbYGiIPwKwWmTAWnEWQb/axlTWbjVhW7ef3SxjaMrjsySgdAUeA9VR2fZt9o7nu6Zyt2WXYK1tgOjVXtWo9BT7VHb38HdPp9BueP67fvOL/si2hbA18bPi8d+94fHHN7SHAUPbF8t4tfvwOQr064K+AD/8+wfqbyt+/LcdWoDbn7dolcq6aKsfHJCPFdg2E2S7XoE/fHUwrU7WgWfRys8ftqET2GM7LhFjLwBRPlBWzxqwjq4U60HvwmLRgmeYYBzaKdscwIYLs/38QNDk9g7Z0v7wr//oAZ8zGJhNavCyATHhqjEsc0RDAhMXFGZAuCcEcNEjGyEUBntwYjRIXyH31YK2pU0Hgc7kmSbKMfOyDGttuBpC/nm3jAfbJWbRSQpM4RKnOnRa4H0D9l52+Bh4FH1WSa/GeJh0uzTeWasAJ4Aho+BAnJOfH92E41CrsRcSpU55z95iEkOnojrHqXd77tYsc5KeLYTZknMa7+3sKOVSCNc+iOwJg3BnixxawHm2yIA9nVliXqMU6yIwTEOAoFzZh4kN7sP6Z79dpt6C/wHLnIrV+3M/j7a9D2oDWFZx2Rn4DnSWTOgpKF2aB18WJJTN6t612VobFYBrPKAIrj/taI+C219qMKvGIqh3gAJ5vaaOSUMtIC58XrMnslpgvnwU9M2ZFx6Ai++JgAEX21dg+1HxD//jX/E//Pgz/o8//gf8n3/6X/Hrf/hn9OuCsRRc/9wsY02g5f1qDu1jjaxS/+GKcavmH/SO8eWK0KUpiM5EupQo8ZJ9i7KReI90Zpu3I740Z65UAyC6gf61rygP80v6zVkl/vxaxPQiRosyPHEtp/qxxzyUzQQla97v0zwtn6xpxgykchYOcJq27xsOqPd30x6qv63ua6yQpaEv15gb5XObn00lo2//xZk+BNNDF0kPQa4KoLdmLDnfa2Uf1q6T849g7tJMqPrWDgmS+rHOzJnv3VYyts93EnvJCN2EWe7ge4cDlQddFh4sG/I9XXwdW4zq+x8zhm3aq7gmfI+7cB9IGWAKvvHwdRQdHPosw7N/j5kNZnAeFHEPCq6X+D11MCSdP4M6RumuxyC+lsmo4ueqsSDvfzJGTdmNWdruirFbwqi4/lQAAMsS83DarJS99T3xiYZNW873vFkXIsn7s48FSwzGl2t8Fus+M8a0MUOmrSMDIACZee0os7m63kk3H0ITe014jqG+95cAzo7PkIDtBMyafa6zFImHJ30Ognn+R+jnnMGWNB7xrp3BimKlz3wfipOvwCOVBgBIJZzjoOtj5WL2mX6zjjxlABhmFw4tZ/l+UsbcSkbVylJv5qdFSen1MplEQJR7HkoxHtuBMRPszgTGsfW6cO/IHVSWBq0F+49X7O8V69eKuinKWlC2eZ8BnvM8/LmvHTJgQqOq+VzJfsIp0A9fKq/7AIB8XuS9wueDvQ8NlpOVM9QDWHTowHB4rxLzVFWnEHg+ItCftsvYS/SX4Ptc8l+KGGBQgXCm1w1R9qHFdPSGz6takXVn4n5ZLuG+4tM9vTh+H4BCkSkoBUyaDjBf2tAwsEGLZ/YmzmP/C0XZLADCgxO4d/sMN0Y6MgUz0GZWa3hg7sgw6ax2L34JT4gxoySsiVRFrhGbys7zGnREgvajrpraB9CBslWonIw+eC3vmerBH8eEe3AwKtIYMLBk0C4dCLVqHSA7QF3HAq7tAMDbWSooumhZHzt/fr74/1CnX/uz7sa6MFFKBrhJ68KzP6zlqw/F8pug3b0rBcdbxIDGcF6mZkWwBDYEy8MYHW7ExQyubhq1pMU7X0SLQjqq6SBLwTRXjs8Vn+l+vU7mQ5k11zRyPtcYZEhxZ8gdUKjO0gV19kzhhgns12N3kX5x8cUx5+5YCsq1BhWZ9c9x+DgIjZW26URwrrAt2D6dzDmJZiaGQWmIK53R9kxJdbDsIJDjNP+4H59PMc/PaDM3esgEK3gMRCA0AclkdOJFiZUqNAtWtHfLJJ2R/ExhJLVvpCAcCIPzJCJ1CkTPR3wmxvQUFJ8zAPzMOD2Hntqpxfs7Od+edTARqHTvpDMHm8GdjphM+i9GqJ+MLYBXLAhjMBDEZTR1GgM67y9qd59OlxkvfIY8HsNAz6e5eb4W5wDHKGcmU6AFIEqs4hrs/iA2zthH7P3xbN3OWbj3pH1GT2OseWjU/l8wooMLgINzG/Np7w7sDXPmGUwqrAuOU/y1GuBr7CdY16LimUPSYXXie9O2SHRdAuBZMHvN7HQwxYphNrMAj23BT483/PvPP+GXzxvqBmcJ4EDf5ztWzHVm7IoB2VyDYrjwMe+lCypGaDpkVl68f99TlBlPcGwNAFHeM7UYhgVAk2WGWBels7uPzvuLzNBpvnJvlDm3+Hd2/LE5kvYrggsM6pYGvc1g+KmDBS810v3kuc5r+xyKw99XzOOKOZ88C3w4H+Z9UZcqftaZpTWgO7O45h4jz/W/6ZxPR5TiDXOAZd572IXkIx72+pG+ew6UuY++uub5Z/GdFHTkNX3ej8/HiVlw2Pdf7UWnn2t9cV3+O639YKAmZixLTVHMt4uAmPduJ5o/G754aFdetNuc95eCsxgPz+ifs6OcX/n6YHBt83IKVKbzcg6nMXtixMZwpPsYf2d8zwffDabdmHoE8Ln9wnbQT0lMovhzWi9hP9K6pQbAIRAXMlmS/5DHP5VSMC4B3NfP1FDFZGy/mpfw8e/jONb0QwfMVwPMh+0Ittd3h5H766ufyxyjKFnJ67mWg6B16dMnj7Hl9fPaT2N9YMpoeT1u/5I5EZ+hv1nArhUvP0sfLPsmLEcEjDXwxBDl/QxnTlv8dvAt2T5Zpz6J+drl8PvjeV9cKzNOwid1H/zMhop1mPe1dL2/4Qv+LgAFbQX7H99n2yZS4UhvAVB/Tc7GtqP9/In+9YrxvtgC3S1As/6lzcTyPoYpjW671cAuDeXjbgPGzMfegfcbxrUGnc9uCigfW7TdY/A6FhcrdAFH61cPYzRcStTZA0DBbg78dZkLv48pHAjLfte7txZ0VXyIB+duJGotKA+JPtniIkZ6qVHnqFfXiGiWPR+X4hkCCyQJIqAU1I8VpRZsP7xZjZJnSfS0kUIkamjHpaA8FJffNoxLMcZCtZrWdg+YDAoGc3Ye88EEZTcn4/LTatoCRNsW0xYY3udWxYEOAepq+di6GbBgN+f35fXLFMAq27A61ebZMlU0z1KVB1V/1dVjK4o71v1mNXj1zqyCrTOoZe4IcEih4q1lI0d3kUF/VpZi1Hu3DiWfW7SH6zfL3tRHt/nA2ukLFykmwHLfTROASvF79+yPPVPZgfWrGb/3/2pr4/7HauDLOrMS+3tFvxVc//KYXQwKu1KkmnIp1j1h2FpRwNYee7p/bvbz25IMYplK894ODKtA//DF6P+us2CUa0Od5eHnWSrGrdl5T7oNspuTGKj23mc2plXoe9ZNYTBjjkb53CJLe1CAZkayiGVQ+LvLAn27YlwX6FKMUZJE+SBi9/vxadlylj7RkakS9Zt8T8J3VUvUfOpu2V3crtPoUQnY2RkoxbL5Z2cR8BaQw5gjBA/33VuQXSzjttlzhSFnNu/9Dfp4zHZlRV44eh24XLzns98fe2BvzuQY5HYXqHrtaS45Y9CTASkaprPB4vv28z0JQvJnqhM9z1kOZgfdidPF5iLuq4Mji++N5fnd6Aloys4y/9CRy06sSAh/qZAKK2i/+NoiM069S4sr7RdvhXzuMS5btxrmpWFcGsTtTn9PHVQAY1WsA0W8DeE+ojYWRQzAIFsGCEedrdKKWMZ4XC+25teO+m1DG77fuWM7aokWu1oMNC5dXUxR0D6ONdvcF2WZQW19dLB1LwDfG9McGcDHf/yKf9e+4N/JP2H5c8O/+m8Dy8cwZoHfK+v9tVTIhhn8FbPH9dtq2iNjoKzeqamZHZd1g14vM5Pv757Zfmuv12ZnDRdHlLtpB1XqMy11ttZzu8A9dCwVMrrZU2emhOAmg+oEMkCmfR6t+DilAAswwP5S7Zzbc/Cq14bxfsH2dQlwnJ0jUOz7ZPrI1mdmNYMScNCHwkf+u7KPQxtURYm5hqYzuCswYJv3JGLstR0QcbCmd5QPPB1aBahtBmS+R+vVM+S+J0fL0xdK4joUUsYs+8rMp+zsMjMXQIU56+cWs3EOiLEhyNQq5ZiBPpdsvVKah49zcU2eBD5HBwIA0fUilehxPAOk4TzKQWiA6P7MCahhTXn57QHZOi4/LOYDtgQAiW3D5dGNbULwm88haY/OnYVEZntggszp+nHvMTYuerg0ryWfY1g+Hh6o7tO2L4mNMcbM8quavSeTI+/dvB7H0cfJEiOv2ceHI2wkIkmpRUIzIn/D9JpwBDX4Hgi48n4TpT86DGUAwp/pAKBxziSafXRAKRUsueN6ltVZhksDWkF/865F3q2rricmTdpnQqPuFSCSWQKc893AaP1ymx3wRM2XANxOfgc4OR9DAbG9NtiAS0MWotQi1m5yqQbU3xFJQNnd1oughG0+JYsziEM/piQGBm04wZ98jsP8KHPNcz6lhNVBJPowjH4+6kVxHJprOGGH5hIvAFEqke+jGUM19KNirXvpma9bCd8zJ9MInqfzpfeRS021d0BPwN85gxqMm3SNVwyxdPwuAIVo3ViJ1mEiYx4MztqjEhOH2X24cZOt26BxU86bMfBch9c7sNpAFzqDBSFqxVqefrUAl4FrZLzTyyj7wCgyqfdFosetqV5Tk8FEpKLtpLez1GLPAFcWD9X55HhQ6ZbOjbWIGnMRiaIv1YNPBPMhsvqBZnqANeC6DcMpnxMhjZKOze6v79UckupMC2Y2vnOEGvhQYBQsv9h7zAJR0XFCEJu0qDm0rnQClYK+2EbbL6bCLctkQ5RtALvaHtEmkyKmliDeQ4ybAy/sthBdKYqBMaHj4doPVtIwGRWR8aPzONQXnY/1mKCBDNfF6HTCLBAYl4rHPzRjYHzbQ9BxXJqpdDP4hM2HcbHxr4+BcqvoC7wHvKJuXnbhQJV1CrF7yRm26Evt/cVzL3tu8gHk9Q7sLmLaamT6ZibYjACDT4gHOEA4n+HQpoyIrLv1OOe6JlrtDqZeGvDhJU80wIesE7z+1oPdpQVQF2DAmGsQtUWWxRzWZPy9nlpHGm+KNLEcoQjYpsc+kAJgCizSwegdoGBWJYDT52djs5h7EksfYgzDoNNgjvmzGAN3pHcvMdlJHU4CjcA8R2RjNYmbCYBqLSpjfOlInxz6V4h0/tnQY+vJMMQOTKgLHhEgaO2Iokc2if/uQPdsRULsg5ZIMULOm3NNpc69+ZDdU+8EREfPHbqnjhw+z+zdusq52wajjGKydjyIi+uCr0JMX8bFFEPvgEELQULeW5Eo0Ypg2O9hLC+MeM6I8dndWdPbJeyD1uLspLn3hhaE75nRvUcxmVq72uPBRH3ZFtKAYkGUXrAs1XVq9i8UUrV9dflQ3P4C7J+C9s1LDAS4/AIs37ox3jyzXfZjNo57D4DZd9yBz6Dbcv3w560aY4G6Lt5vXHOZ2cCkXPsYiuqxtbTb2kyvpdZAzBX/f9kxtX2a60mQUdkxBYdLnluc8tTaKF6Oq1BZXKumI8DzraNuXLtzGujie6SPfxbHpTOtPill65MOHvNoHDKYdJhluPZAqcYUQTmMmcDdCo5xrLtjxpA3QN9jXkuPeyI/n8TQIhOnw0qkbMBsD475nwYji9XytH0Yvbd3RKeOc+BDW+HjMc8nM7j+3iExEnNPyc/OAJzgUhGj92fgMn03+6jBDojzJjvIa6dASrpi+dWSYErm0ymJMEVaT9naIs/BgsgEYMJewc6hCnQ5zKUDw4o2KwCABPQDszPDCZAwjYIRzMHceSduayjU16FWr/nOpcx5XqX7kcSKzO9KBsyGJI2Sw3Mc2qOmOTGoDzLHk4H7U6ljPieBrAOgQ9sHGwPXfAtdF00/e1uiLTg6ogVolNSer6v6PN/yGGQWXvp/iIB/7ygFusgse3j12QzC0U8LMJDd4I5jXh6mp1PcZzVm2pjBfF5j1PjIc4nPNsZknSagId9/1mIBgEMLeH7ntKecrwEg+TB63EN8z3l6/xlYyoE797MiBo46Mzn8bNeCeKnDAODYuluen/vv7mfJvz0HeARsf+8MBQZdljHVqMMeraDSWAK2mdF5cLpp1FRVCUX8cWszEK8FGsWiY27oMGODx2r14A9vZycC/cc/WObLHZD9S0HZrM6+PsahVWBsovuwpa8a9qXfTNiKdZL9Ol+G9aP2jdKz1lphzlCxjIXV4Q8EjMdNY92AdkW/VpQVpmY9FDI6xuXiNbEOfPQ5wei4hLDS8A4OHxvGrQEXZjas9ZUK0H61LFB1pdtxKe4skfIJUHDRDKK/0z4gjw6pjqg5espAGxwrMceRAIGoaTJY0Gj6EftNMaobLKdTjgaUDrRvQBFFUXX2iDu7jMdqwf6lTeCEDh/fgyurq7dl3N9K6Dv0W501wbuaqnUrGO81aohjM/TNPKiGy0RDq7MN9h+ujkYX7O8V3/51xe2ngeUbF4LNXQAozPIXRIcI2RXtW8fu2cTtXSBdsHyYhkLZFP0qJrS2K8qwe5YxIAmgku71jgQHvr6Zs+XdJeTbZ9BZdanQ1iDf7rNLQS0wIUYvtfEMoGUYioECohEEBAJeCuTb56TbF8/euIOg1wX9ywVtH4hsdzY2DAT2Dvm4WyD9hx8s0KTDQuPBVnlLs/7IBcB9Oxh7a1PUIQ/Ma1B74f02HUHv52uaAArxLDg2z/x7JwFllq1hdhdgu7KNLWiLOTXp2dRVdYXCQTvs2ZIDz/o9qy/2Nb2a7kUYjAXuiFtdfVY2D3Bh8WyZDlvrNRkxR8W1nALsdAiD62z40E0ULn0m2rXRwJbiugjNanf33UAnPmNqOynwYHJZphNHw0zWR2tHhW34s3MObLszHMrzPOLBLNliuidPtc9cxxlQkCkoGnbnczs6DQNmPxwIDLp8R9gUMo4oYgrAbGAV7F8WB6+tfl+XMhlMDGBSdo6HLjYm/YerfU/MtlLFnx2SINbu1rrPWM17X8SAyd1Ky0ofKBxWaq+Ysq39jHtisIwAvRQ8/mCAGtlSl1862l3iGix/aHfF5ed9ns+D5uF6D8XFGcd1MXVvZzhhDNPSGN3XqgDX2Q1FnDJLkcVoZZuOcneGT9bZ4DzqAtnTFwjYd4XA2zKfy1lEgSEB4JiYmGsp7LvrvXR7VeHLzFSpvYdCLcUYz+bAL7YdxfeOcamT2QYYY6IIKpkJrQRjYryVAM3LNlDuxxr3fEQC424aHNh7ABOCYn7Zus+AAIj5p0uZgE/BdPazYysJeOZ4M1A7lxKUGo7zyyODu/kg+MhAoecStRLfMfrxBjnvCdxr991+tyzPY5WD+XRdkHX5KuhhYN2qTf7CPdG//6oEgnM4s+BeDUXx8fLrtJ/uAXySbWO/845RBMyTsG3sK+cyMdia0MWBOCZQ1NoxK4AngUIGsGQFBSDodmqMqSN02pdpM1mGp604sIanMZglrtUSYaVMJoPqc5kcnynPzTTm0V74Oudp+C+bt/dmF49WbJ9wZo5KYjo0T/IdMtHPQVyUKPN5VrtnKVbiausOoMiwOCMWUrB/WVzA1Xx+Y3f06CoS8wIIO6y1GqB5DoCzRgjB9VfA0qs5yPKE9M7P39Pka89kTzofgYDiCbcxUD7WeV2eitl9rtHsm5TJnIrEHjCBpQzKHdbtBBSi00upcx8JQCzN7/O+dBqX6BTjwOfL0JvrtcjzHkcwFfDSPNfTcqYD1MsusuB27ugQA0YAaZzGiT6KnedQKkswgToz/D7PPdRyVmdgJh2/C0CB2fto0eW0dYr1CUZQnFkoLmJod9lMnRi1hCgj6y8xpjgha62zarLUAoW3Pfv4DOe63FfoaEH1qQ8LnLU6Tb24k6UAhV2EHRs8Q66AiVgBwMUmUN2OC24sZQITVJJeZoYnnoVlF10hdUDcCSx9HJ5HBU7lF7Rve+gi6MUdWM6bbVKNRNWCWCLZm5dHqDlr6z/cwgkdi2B/K1i+dbSPPlkaDqLM+tUxe21HGYsbsh/fI3s23OHubybYCGGNqwW21e+FDqmVgTiiXOkoeR2qj2Vs0WSAwBw7bcVaQ+6Kug1s7w72rD4GoQlg2br1jwswEFl/ZbAf6J1fhgFDOmS42BbnMZ01z4D1q4nd3P46cP25o/3ymAg3T9VMfEV2e8fFKcUAcG0F7SbY3vw7fGix0pB2H2gfPcTeYkONdeZBcJtz7OB0O23LylEsk9o2M7jIRp/nLWVmUwCwXv1ASwRsnl9eO2nSB0aUFBXI/ozsnsXoslK+jYNt/gLMoL7VQyYVIpOCSscjgRf6fvO1ZM6BvL1B1xXCzhDiBrA16HWZ66/VaTz6gCipgSk4p7EeR+PIsVSK4aEbuCAShlNIpbtcLBjfpvNwqH8tOP6ODnoY1eSMByPBSxNofPZ9ZhHOhzObDiyIoS/e6QDEqOdymeexOb0f5sRLg+eOjqySWFgOBNEW5NalboiDCTDKMWuhGhn88XYxJ40BKX+f/2SNnaVgvCVTyVt3B49Zb3vfcgzs/Nzi+i9kIpliP9J7gdc4A/Xewa5CABxYtGxtGWpjShDLW9yhFux/+oL9S8P9Hxq0Au2TLL4r6r2jfezTeaew4MWC2X41dteogroqZC/BQititml/qwkASE4WbA8Ke8cgGw5oPAAVY5txjyob2Xk+9g6iH7oMxLMX4LrYpfM7BwJYizmwbvY5Ap/lCuhRb2BcGsSZIwS7TSvoCIBZe+rbBA74+r2dGgEh7p3D240SbIl1fVtmyRmdwoEASMsgsK0e3KSglHXFvF+dwDgAa1u5DcjdRHJHXSy4kRL3utP/eKveArp7V6cEoPG9+fylg26O/DFzzn1mBph53aR17ft0aOu4r3MoaWOg5nOFwYX5ZgsEG1ST4/2iHCICFjr8wHMQx9KHwr0qZfy8zpnvOP/9kJFOQWUA2PzsxTuCibPbqobtC9+H45LB8sGMLe8z/Q446C3EODF4zcGc2zIB3NYZWxf3/aARJqGPk/xGCtnx+hyXDBTkd52BGL5P/7tWnT4B9ZkAB+fHc9AJHH0EIBgIktgUihSQ+ndEqfHhonIs1fNxZZnTISMc7xW2L5Q0HmSv2VmsnPOsc8TDNV+ivEUT0yE/T7aLEaAWiAwDaHOJN+/d96rQlBIvQfY9iczY8ulrf3cw/izSzIPzIt9TK5ZMAZJP6/PknEFX9TIxnZlyYM4rWKterDMeoR7CfHbXyjgDD5y/3QNbTZoQuSSWewb9svjeid6fmTdrAvrpP/F5z76pzPjo8N4yk40AJcsR8pHZBfnIAGFr0Jp0FlQNWFqSD9R7aPnEveY5RH9LFbFpZPBKSsSxBnTumM4vAkh4YlEUmd/L16cYuNAPe7F+0/G7ABQoxsde3SpO2fIJa1xvOi4WOCrvfB+Agw9xFEPVrUbF+x+fUTfS30Sga4euq2VQvf5ZPPgK58BiFRMMlGLmqKf7EnMmRrqP6DhHFeUEKJCWBrjv5WPQL9Y9oXz6BpM6Cth4mN4ABuy+aL/FnrvsCuzW/UAFkQ3rVwck1IeFVHwGmQxevaay7ANoBfs/XaBFUD8HxmJZ8boKQmTRdR7oXFEJNpyHdWaW4HXiWq0WdVws4O6XYoyDzQZCqz2QlTRYgLzfZscNY2PYPZQ+wBZp1CKg0CLHtqzdg1VB3d3p8XcJANEHGeb0jKu9h+WbdeogRVIvp6ApnqWEw8XOHzLMYIR4lsBAgaHQtwYocPl1YPl1R/lYTam3lciaRJs6n2dWNuFGvQjKakDGiHpRu37ZjEVT77t3ccBT0C2tAD0Zhvx7d+jY/1n9PemSAuanzdqNa6LtPYnf8e/eySF+n+tV/f60FTNcZ0rswamvRwGc/DsK/jTPcmQHvTiDwkGPAMT4HMtlgivUitBjbWVkNi+LGZfebT7SOWFZSabTe7mBLm2qYftzheNTK2LzZ2/h3iM4o4POwETP4zvOBtb2pKDPCRD1ddV/1hmgaaDrQuf7bCBzr2IGkvwONRQATBoos2wG2sY9Srp33jPZR7yOjsn4yOUeIhOkyfW+BE3450yBBKZAKoFnBoWpBOJIVZ33aSVHOufMmHRNrdWyVekazBIH88qD52jNVyT0bmy/4HgMq9utpskTd1LNACnFXl2nIRgjVbD9sGD9seLzH43tdv2rhujf8nHau/zejJlFnRiEnSvVQAPb4+33+/sEXcvj5FhUOVTKsL0wnx0KjKvdQ/voUY4XJWdVZsszvudYs7AShtoh/fROVSdNtcO0F0pBBFSXxXwFzhmx0j6y9QCYdgJGsNqipKaU6FpwuFe3q1FyyblM5p/X/MKBb9CfOQRherS5e3b0JwAAIABJREFUq8zA++H2cmmxB0c7Zw+qVGy+l9XZD9S/0QZ6xmT+7W9kPQrKqsaIU6CmEpi8RsiMszF1qnh+zjGTOrGH8yDo5wGOJlAt/p/3fR5i80e4Z9QKtj00W4rpJMe1UhCa1nwIeTIDyX3n3C6NBz/3ig5Me0xggYDCGHa/XnKbW3rCx092f14vjZOe5vSrAPcM4OYxe/r5aT3z51lE2N8DHFif4p+vn/FwLT7z+XfJTsf50xibf+K18onxMMHy03Nyz81rnteKWnYHx7wN4gShKQY9fD+dILKVMJ2yvzLXmN2HvVM5jxvHLmv3nIfakzCyncCVF9eMvw4FoM/7QM6ks3SKywYy2bb+LkKs/bHjIHKZ320eRwaDPFxUPhg6LE08Ay/pPqN8iok3+lLNx4+sy+wp5XOIj+u2H/R4DvfZze+Mp8jlZgQ26vSRn8AJJN/P52S0VlQ9aia532aX1rmvcG6S1amJ6Rk2uh/ncDH//lUS5sAAqPUIVjqgo6UCkpNM+ZlqPpk9D1uC55g2B/rsaMP5zuQRn/WVDkTWszrvq2SHAs4W+j6o8PsAFNQCJjPWNnGsNZdau8d9AFpnfeAwOj+6iVXpqMfNQonOF8twAY7s+KAuDeMff4Tcd5Q//wSUCrnNdkukP8lSUbDj8hPCAURyhABgJEcFXVG3fdaw+dIod7vPQbq/o/t122P9SbHs7LgI5IFAoXWx7L1WQVP7eVnNAetOjx/X6eySDjk2Czi7dwQom1oAX4H1D/a95ZdZhlDWgfaxWezijlFoMfiz1sfA9ed5LqszdSAIwHi/WB39fUynwRFFff8SgnzmUNO5hgfAQPvsM2sFhANVP4cBOQ4KyADaB5FZQBcJnQsA1gJSFeNqLIT95jX03R1oMVHG+kA489Ymzt7j+uOCvqgBDlpMNEzdudmNiiyPjrLu6G+Lt+W0a49LQb8V7F8X1EdH/dwxSsXwTCeGi2AO2Hn2MYOD3medGLPvTvuTdWBcmol33TeUjw3LL+4oXq3evzxmCcZoJkBWXdF93JZwYIl8R9aO8Zr3uNfb1RDwxwbpPVqeafUWYiLQ9yu0VqNju1PLIxwHL0966vHNemcxur9sO7CvKL89cGGt52CgrsC9Qy8L9MsNwGQuKAD5XCPTlYNzvV0w3qydavlY3XHvlkHZqRFhjjj6cIEwpwVuw1pB8rgswO1y7H88FPLXX+zv5ehMAjDwrHi2aigAMwK5PaW+32w8PKsaNNB0aBhVc26CivfqyGUDzMxUD7DooBA/CDrbCEMSGgW5beQ4AhdCFDsHF/k7/EzoJyiwrfMz7AvPko5agdLAVnE2nmYEhfXxB/poAm44Fq5d4Re0uZG1PeggOpBDUdvxtnh9+x7ivTE2fJbeIfeKJWetndoONQc65jtp8e6kDpmireI6BFYjP8AWjVJG2AAGX2fFb+r3AEB/a5Zo3WxvG7WgfWyovz6M1r4VLN+sRCwYBsPsxfZjCwZU+7AxffxYUTrw5T+5cK0CuzPGLs5yqvcd6x8u+Ol/qQ7QAm//VXD7SzGR3fsOFKAsNWxYv3im+wK0T2OaXX7aXWSLDrCVBfZrCe2G+mmfGc31cvj5dYN8Pkyk9PEwzQ46hGkJCAAd3Ww6kwNoqXSFZVwpwH9fHPD3UsZSML5e0N987Y5wKRz8KFGCJiXNzU4gDcfAV1y/JulExR439CkLRWG/yFZ65yLTmrEESf1MyYkqs3X0UgMsMQYfcP3rDhlA/dynCKO312WbXooABwBQHAQb+wH0jQBSZO4Lpz2LnxFV4OMRPsCBaeSACUoxMTYGgR7oRGhCoTPuUW0y5A4AljrwQaYf740gQVDs/d9Dp8iZfeGZftw7sPseyuCYe0Q6v+myZFTmBJ4EpdztVAYfDhodfZa25T3I99MIpHxfUe9qcgj0rxcQHI+sMGC2LoAvH4Oe5xDf+3IMKk5aI4d3HPuevc8oFfEywJhLTDAAEdRFqTJp3yONWXeG3mPzpEAKnBw40vdl7u19zCQg50QONnWOeWYrahVrR68wsdutz9KdPH9oP3arXZe9Q5bmpcMFskz2SbBRXol3MhHhPxeWNLm/FzXv6vvIacxtrNVai3c1Qd4TKPcUKJ7tINemP0+Ul5zKCuccbof4NvxTB48kt3MEjmzdF+yO2fYzMVVdz0uvqcUyAPncwLKSKJfx9ya8ZmaAAqk9sD63ns7AWAI7DiNc5fA5zWxKHrmUIJI1Dlaegu1Ier3QeAjfjveUu9GkQ8eAbJuBCdxLzsmeg/aCWlnXiTn93aPIEVDhNXRAtdlcoVjkuj09Yz5+F4BCiMUBc0F1n7RE4BbSmdyfrVNci7WhUorV5eaMnp+T7UyoUN/fFm/TWSDVEbj0cq0dnjmIBd7DVT3AVgag0+mTopAd8XMKHIrCjLg7+aSyhmCiH+qbrm1SOp3MMCL+weEBEabzqcVsFdtWxs/rLCUp7NawCHZmiqo5Ogd1eN5PNUNZdjfyHhM1MifErmdZT7+2GzIrY5K5eXpWOJwdPotnbdgehsrZkbF1pWLrrFAwGjMnBvrktl0cK3X2TghIVpm6CgORlWOdMLONJZ2nbBWl04M8TdYXSQzl63Gk0pTQAdldHBE+dQbniT0jNT/M0I0QIKKBEWZ4snEsArn3SZOrJQAR+VxDARgOXkUrVKeqU6ciDqLKYXv9/XU4dd8DNIp/xTiUEA/VVEJjJ3nhaJ7Rc67zfC/d6wB9zMJ53fuhhRkc4IjXQwORr1XS858dIS85YL9iij6peOQwdNbgF2c/PdEuZwZEqh7RYjq2ce3keB3epTsR93XuWd87slHN5SbjuAa+e4RhOxmxoQhV9KgzfmGITtki+1lae4c5VZ5+/3w+Gn2/7qtawkxRHBpO4aEt2fnZz3Mv/55/p04GXGU+7QNPBxkYn2uUrFjm1faTl99hvKx4Pi/nPG0ygR9M8MDmrZ1HihowzfW52HgMGGOrX4vpHXwkTZxNQycIiph+xq7z6/q0VCfFtG/TcRptMcZCnxl0UWAsx3OxRay4YjSEHRsKOtlcgqkR4a1rSW0fXoan1ZkXQFDsc31xOOq9A6MHmHBgucT76ibgJwJVcWB+OBAAiIq1JK8z0xbZVrcf4syysRjQLjjNKUybj5HG1O81d0Y4qLgD8XnJzmROhvj3lKJtOdPkz/rUvk7EgQHvQlLmuWTMtsnRRYuCk334vioJpMx7gD6DCef19ApMyPv77j5Xzs7n565zfBQyS7tEEFoKXhZw0Ecgc+FfsPfNQLzMbj2vAIBXR77n8vzZYI2koP7wmUPg7QAqz/W962Q2FwBVBy9DpLgcx7qfbAKft2DuM9nu5D08gQ8WoDHwcV9suEbA98Yo7tuAXWXdOO/j/L1MSUfaQ9N5lGAUy0FOIsHqjMh4hOy3v7rP7907A3/1zHdXREcjIJXP+Q9YRsG/wwFmiJXYHajn8rQ2wh8O2z1mrCECQMCWvgEowucKwRDgWZuKaz4/2pj72tN9nG2nKgCfBy/iEhCc5r6T5x1wnE/5et9LfKTxMQCRMYUnDX3vr1Vm1xmMA7DxdK1s789zOeu+5IN7ySvgJwYg7Vd/K0DnPb7yfc9M2ld269WRyg9M9+WYAJrnP91XZDeT//QdOZrDffG7WXdBp64VxEvR/sa5fheAAgGEcP4HIPs+f7akYHSpGJcKvC1gCz95bJCu6N5WrnysvsjmItel2R9HwUwhv6G8XQ1xzEquLnom6xaIqi5W42lsiansTcekPFyYzh2mskqIMrI9Vd1XjFvDdl1Qh0C7hDGtj45RnHrqIjgRdApMSFDVs4729/ZtiwwPaf4HNVzVaG9ZtgH92tAvxQSzulq7x/H/M/f+vpYsy5rQF5lVa63d3efce0cPgQZGYGGAhYMzfwQu1hggxkIICQsspHFBCAvp4SEh4YCFkBD4M0gDDgbOSCMh0Ai9p/fuPad777VWVWZgRHwRUbV3n3sHnFPSOd2991r1IyszMuKLL75we+CZFzNWClztOuvX/ZAlM6HEDFL10tFui9Hyd9OzGJ+vmQlxenEEpOrB/kfzwFHP/cvF0c+ssV1/2rG8Ch6/WzE7MK8N2BTLY1hN6LD2XSxjYAkEAGMmdGD/1Lx2V9GGKclaH2BA3jaoU1z7Y0L+sGNczOENtSwF5tKwfVnQHu48N2NYaBdj1OyAkOo7gXldsN8sc9e+7cCu0WpU1x4tu+TtYQKhbE/HuUjj05pnSzUpsUT7WQM8UxixM6h18bB+94CBDIDnZih7MXaNn6kgzXVNEbmykci2Q3ozsUcHHOT1AbaSPAjp7cMQ6fVobmQq8O3Nvn+7WIB/f4ZxI31NnxtkWhs82ov5+SU0To5zaCLaT3YJ0ElbM6FFCjq6MJT4dyxDjaxzJRBGzQhmQ5tAPOMhn19yYy2fAWAo7yzOFVs3Lh3wTjDyeKZDByT1cV1SyV4kxBNVFXq/p7jhPjLTHy9RIL1k48YwlJ1CQPuOymTAGJDLCrleUwiSjsKS7RDZWs0c8ZlsBm7KVKQPqqAkgu+ieVKyPWavJGv0Zk9QxTNyupuoHVtqKpXB1yXtx+MJeaSTJg4W6Iu36aw195cV2pq3Dp5o3x5HZ1Y1hDzPquHyes8SmGsH0C2rVYDlqLVfmjGY5gbWlI8fbQxYuy5vz8h6BmvL9wJhzevBlvP9LlFWtX9Zcf9dNzaBU/CXbwPbp4YpiihfGGplCluej/oq67eG7iwE2qL+GK790lwwsKO/DfzZ/76DIrqXn3b01z0YVvNq76g/snyjP6wdMvV7qNbdXh8+Tzv6q2ApDBp5jAQpgLIfz/i39O6ljyzfyVclq2VS2GbV6qC9JIB6BP0l2jQGsysAHsF4sS4ky9fNRBBXA210whMZE8vXJyioPD6v5hu400222/hysRbOKxMICCZme2xWGnNdgxFYmV4qgvllNYfb/Ypot1xttIP5oI32w75nn5lrMyB7LM7CKO35Hk+zsc44Y4bOEjfGiGLWj0LVdNAPQZ3bDQLXh9aGDMJ40KYCtl+8uR0sPzewdUKuF79esTMnIOHQtx0wu8HsY3fdGoIJLCWjlo2ypricj1o3tHFTPeNefubU7WAIVPZa+LHHeXu8yVNwBgQlWnfbj4Ke3FqCKctyDMr5nwNstl/4vkUNA9/34yBzVCT0OQ5AU+2swPOzo1H440iNgeGZ8tplg9oAvE8G77TTVQDX/wuBYe6Hfl2WbZAiL6SrNyZcej7XoWStHCUJYZ+1MekuABhAZqf2A4P+Ms5bEeEGAlSI99tdAN7/fhQlLYCa32uwFT1xo9OBcgfT+S5NVwBp5zheLmh9ACYIuvNRzwE3ypgXf8pAjQ80VQD3Tx1YduHHQznMSX/jncZHb0cbXuaEjXM3+0DglbfFLnmA+bilfehBL4v3WkEoyTUgbM9NYIE+l0ralUP5QPo7x0QHAT3/O78yNVk2Ubqp9nu+iFoOGza8jFsBWd+JYs7y2WVJn4njzb9z/ejwtXj2jfVoj0IbpgIezb/rvt5zs/8ua3bn+oXj1wEo8DjRTZix/zBj1i1vMKWhP3BAfVjnKOIGghsBx42o/dSCGLfcLCq6+hG66TRI4BjA2w/yezJdTKVLAlg+maNNJK83JzCd+jk8ILYUkJ1WkRs9DR3MeWkMos9I5XQQgPczLHvVn9Oy5FTvVglwBrDLsr738HxEkw2u8uf1IKsEgfPWgac40O0/d1qNGU7A2mkpWitjLPDMjP1JrYekE7oOhAMTtnjg9D973xUrteeGM1is3KNtyLaf+zyi8w3BaKBCej3URQMte9eg7HJhryJomlY3zHpC2NiKhohlBAc+xxP5tTmAEKdMI2PlEjPbPnGu8VQi5ggxI3ZAQvFegGvpWQd42vjD+DVEgJ4XKhuSMyNsA8bxqJnv2iLqvOGf11fdzAiskApYWEyy7UWvY2YGrzhbVt9qyPYhcxEOXIOOItxKR4fXPB2H+eAOUnRR+chO1LHsR4YHqZOHHsccm0LbPTvLAHID+yMCOdHHWEvQ+9F36tief/7RQVS/lTGPHsy+nvj++WynZ4+MIZ0O1hHWa3Ij5SYrp3mN8k7inMUZnadsC2BrPECieZzP52ePOZXPSs0YBobn6363zZYCka0XsSx6rAUXe+Wt8xwevNbMsGwz9g+yveYiGLdmpV7c10ibUiRrwXGeGDuF7QXDgNJqr2WfmNce14FaVwbawLbPnK+RbXLbN6xTT3NB2XMHnBhLVfN9dEQGJfaqbSKSAvVdkfo+yzjVd/VO90MtUBAqZxto3p58Bj28R1WU7KA9y6GVn0hKfQAJ+HFcG+L9RGs3OqGqyRATiZK2eu50qpOVEO9/IinHMUcQwRL32NByKEwGZUA3zacSbYc5H2U8ZW7E8zAgcAaE8J1XDRKONY+atWQQKDlvAYkkTrAYgtJs5U4hTNs9QxbgaDuUN3z3oD0iA0j1I+UB/6xkQPDReSsAQAaM7+3f9RN5D5WRdp6zTcyvol0jEFy/z/vj9yobgQffyylIjz339FkAtv8Js8SSTEsUu1qC51o6cB4XjQCJ2j8TSpZfve7hOf08CyyojrUkx+/UI+5HyyQtR33uGkzXcY+xPfk+/CyB4bJ2BDi+ixgfPV6ntveTci+8Z7/uARgs8QL9Fq3XOz8/wQtq9/wSE+AEDpCFcDhf+WwtabLHc4bceX7zPk7vJ57BwdePPhP2HMgNKXw8pF/O8Wd8cZ7z5f6zXecHc4frlnFTL++v3tO7eV197VbW5mnOnA+yCJRtRYutok84+ZnzNdoBLDj8zsdJWks9BvoFc343SRvHB2yfP+kgm652lvjO8asBFHRpVtPKDKoY/TBRMAZoZoSV3+mC/roB6uj+hGVfW4N262uv1zUdlceAYGQwfXXxGPa9rUDCVuoHPTA3RkTWo/V7ZvCj5t3RTrYBo9YBAMv6iClmaxNX47f7bs8d17/awG4SdD7ZXnKuLdprZUZ6oN075ovV1w+WM3xDLGxuWOvPG9afjQ1BRFq71eC3baC9PjGvK+Ztwbi6+KPbbfG2mDJd16FnqYIJltkmMm8dj9+upovw6EZz5WeGon99eh2xRKvQce1WEuAaAywrUQH6Po098LKaLbhPtC7WdnNPVgR6g+iE7n4eZBZOxLI0cxXI14nl583aMrKHrX9oXhbsX1YTKVsFlz/sdv8K6CLYfuiFjoYsJxCUFppmSFoJnNefnuZQnahUwgwng1hmTeY0RNCdNb12zNuK/vUBeT6z7RIP1nY7+2YuKfQm6tf4+ojn1JcL5g8vPqcBef2KaPG0dMzralm9faJ9vZsj9/klEf7zJrTtwFOj3jHLJBYH9JjpgQEBJ0Q7zkEQgSj71er3GtvYlF7R8vU1KaQMFnozJoSj/7rtEC0sBgoCOa1Ww2ktRv3uHTeoqL2PBOnOzsr1YteYMzOcdeNYOuanm43Hc0uRJ24o+25U4Kt3nZj+DnqHvN2tLeRSOotwc9h36KMIGXIusDWXKKBF/8BrJpmps/s0gSsFrC5uDBdNdWR76ntF/XJQeDGBRK8zXpZEynlMr+mLL/tgOetCANOwUYV+ezWHi5kBVetaMSbw+SXfI7MHuwUZcrl4lpZMjJHjzWDKndb5ozFL2u+/HWnDHCvOZyBbhV0vQbtvP70a9e92jYDwEAzOCaqAM0tAnRk4iKeXxZT5tx2Q25GeKvByho7+ulvbR7f5Mkxxe/vxYvozT8VcgPvvOl7+ElieVi8v04CGPrw9o9vUCHL9WL4NQIDnb20Oitr+0J4T+806C3QxtsHlL75hvqzYfrwaON6bZ7vdL+zibRUn1t8/rSXl0uL+1bsgzE/eZaOwELLtoDuyj80cyXXxtWxt/qQ3qJquhvg8PARsx0maQBcQAXd7fWZrMp+7kWgcADC8RK+ZkvpU28P5bpp37/FyQ2PRIXyA8eLMDi8b6c8Z49/upgllAECLPZ174bz2WDtCv8O1dmoZ1rz0aOt4aAfdjeVY2x0TyBq3bsmHJsagibUrGF9MfLndh/k4BKA5J3uCI7osMd9NZyHrzkNwzW1a1Glvu3fCOa5RZgdlUjMoSzcwXduCa5gMqtYg3moXgAWu9fB9IRgJIjAhNa6vY9AR/wr9CP+zgt/7iPuwMSgA50eBK5DB5f7B7/j51qw81v1O2XbXAXH9Dp1HMFo1NYMKY+CsIcMSXwCeFEhfh20WOQcN7BKzVSc6c4Dm25bMsJp4I5hArQVXqZf7w2zbZQ1mEEqwSl8j9sKpkHsZR/5ZNCbEbc7BR+f6n2X+0f9gnT7HljbYAbiwO/xZFxPIi33A91Dur/W5TyXS8f0qOM3XTGYR7d2U3Jsq2MN3C/d/FwBiWg01UaTic78B2BOYOwBbHEP6VQvinQtg++apVOFwTwF2uXFvzTrnBWN7iXuIEowK0BM8c/8vWx4j5rnOFv4DRN4L1LJjEuc52TalBI3vkfcTIB+fY4xge+pwZqUW3zk0S8paVxc/VMWhvIDMAWolVObAIdlUvrPv1nadfh/nTcxtByhcvJfsKKEgpM+10CYhQ7N0VZPn5mzVYRs/13C9P97ad0pW7Vnx/YMJLPqI3zl+HYACB+YjtJe/48T2lmrW/cDql6K9Sv0OUenFOgqQLigF1YxMvxvlqGP0oDD71ds1ZdVsh0g03Z0Mu09H85xGT/At1L1d5LA/XGSQCqlAOKNtm1YKsTADpbl+mPHxxS0qqCl5UUV7qoswmrDkXJrVgKqxMlAN7pIbYogwNjtPfwzI3nKSlXU8u0TJgQwrHyAzRHZnQHiAPdnXl0eDaQnMCUxD4kIltq5pEWBtmEMPIHfb2EJHXBND4tlZd0ohLbIplG2znhqUMr12YJQsjWT5iQw17YMzSDiANifaY0b7LTPw/o6bABcfh+cE2RtxEA3vYgCZZ87qRh0OGduHupBcay03pjMdgGM4YfTFop1BFXhSPC0Q0wSkXIRMiZzSwZg5L2Qg5wn7GVcKZAh+lLE8ZHXL74k6nwP2gj4H4PCQ3Jx47qlgbXIYaMAdUwMU5Lmns7rpQd1XiR/0Zg7kaCa8xY0tBAln/PuQBa9INgWA6AjPdrRf6tTtqenQ+YYgtX6vrMF4FiLk1RHm8wMJJnxU11e6MZgsRDtuAk0g6+0oODTVgICPNgsXUwzc5UzJA9Ix+B7ltN5bgDLNHLYGEx0KwLiIoLGEAjAnqMlRSVtcqK06eyjjVQEgIB1FLdTJ7u1Fx0x18jGP7/pEXT447PD9aeS1aL/F74GZMF3dzg23Q3TQmjhDzO/JGVzBTFu7AewOYBpDy2xa2mhbG8vbRNstsGxDMVxAt9F3rsLCQ30fsv3FGHI2hv3h7QmbPc+8LZhrR5SBlfUvxV6S+t/26UQ6jeuiUG7Frx097us08YxTaFisGUDSlunTyg5ChRswG7quRYSvOLFjmigryr0TIJ7iFFUviWsTs4A8Qmaev1uKH8e+5+AvxNgnWucO4PJLgvGyhuZNMBV7gy6a/oK/F2ZK9bKYDkQBguZt8bEr+grweeF72bw0uxd+z0tItRWWhY9Be5i/QJbigR7OfYfjOc0WyFMP76juoTEf/eeH9flRRrXsPzYfOzDE9aTMT5LeUzAsvud7G98p2Yof2Ki4f/qKrNc/237eZ4jEEmDQ8C3fZULPddf0Les16vk9cGVQF8FYZQY0oO71oS0QgQ0Qi+68D7h/9YudkmIc8O5dJUuq2dyDB/PFNhrAyndfMrfnceBz1cAZiNLiQ8BWff/YW1sGUNWenwEafq2KXvI84zSHL+7vL/rutuPwd3AQ7uTPgVIeJLFW4TGJPV+ygytbjiCgzHKPMTfLHO39uA4P7xueFEF2xDrveadnoaCw/VOODL16D0Cx7Wa3c+4ZM0JvS8xx6t1VbaNDecs5rpNS/lLu7fAeCPCqAts87L+H9xvjVcaIYALLdupnPzrO60IV0Q3rewf9s+8ddfyZ3Q+Qxcdl99KUgaMvR5+XiaDz+f5pDiaV4O/8nJwC3M9sCP0Qf653TIlYw99/7l8HoADYgDFYL0YjaH/7hOiEPF1tv5eygZ4Tku1B1F/evBjqr5vR1GXMFIEcZizUxeX4fdZmM3ssr3ebr2QfUCXewYQQdQqOqQRVW4sR1G4bdn/dvTZTM5vrNertae0esUkIQ3FWkaJp91oMERAO5vpqrWTa22bZ/0+mGC2P6UwIU7TXLsms8HHUizlhMtQyY0C2P/NWlSrAvDRsn1yL4akH9ej22LF+zdf6/GHFvFjbyf6cXhfPQM+cUBP+kcNmog2YS/cMSz5jfwzoJth+WMxeOY1TxrS9t8HYJwrPujeMqzEo1q/mMJtD6AH7ngZ6OgLaH+lUowuwu+Hcjcq7/uEeaGpFj7U3tItRafvbFmAW3xNp+vPiiOW0dqZ67aZFMJO6r6zD/v3PjuZOy3Lv48hOAHLj2gfk4rWGnkGTbbry/BLaCdbdgIyemRluzRIj66gCyJZOni7N6YnqgJkEAFXbFwXyzXdKlBzIDefmAcKDDrXrd+wDGMYMkueWzijRe4JPzHzAnbHnBlwkxVZ9rKCWYdCWaHi8s6VBtuYbYTuCF/cHjIp+zMbkBNWigZCsCnl7ZLYfsG4RrEtdF+hlBcRbP96f6VSSFbGPUJO2jA4z22UjIJjQHSg4tzGqn3EmwmHjbR365VMqIm+7Cd35WpPLJc/lAQ97m6eq8nwPbqgrfZda5cPRfC155srol3Zdpe7Gegmmg94uoSchu+t+MCDheJ06Y4TKNuc0mUGci0NNYJHnWVbMH25ge7zQenE9gei+wg4qNdvt+5MMZ4w5yKad2eMGNA84ty3XxCz7x7qYje+S3XHccTd7rbGPsc4enn3uz9SYYamBNsH6k9e5ekve/XM3INZZXaZqXt4fpgnIPib616cxnbrB6uwtAAAgAElEQVR1jwCA528upifzwxUhokjxYxF7xlrWwGzhNtAd2GapQVUJBxDCrgayIPdw7xAjrqmiL9cIuoLe2prNtzIXZV2B29XmjkiyWR5Pt10jMj01SymqmM1a39qz7Mak84CcAMC4LdZC86WhPRXLNkOLIVtKrgb2l8OywcYSELXORdkyE5jiwOXU1MQBoGvH/psrSAVmYmR8WjBuLX0PB4mX+8CEddqAWBLExjT3ukN7OLf3/ae7/c5ZJZVV2R/DQFcuY/pFb48sKSXACxxsZZQ3cP0xEOVaoFaBl5yGL+brJHyypZvdcF2V0OkBEH3UGcA4APrhseReZ/ZhOEje8j6Y0WS7x3iJ6nXEsMkqBggGQM3PPH2/ZtbeQQ7aa4nnLXOENdgeOMmypHAkn2XfozwhbBqvQ1CV4zw1O2VwrOt8rIENs/QEn1t+nm07yYBQ+jGVvQs4mHMCVepRyxUrKwyI7kbBXInEh/kmwXAoz3Y4JN99dCtobnPoNwzbV7lXZ4mQB8T7+/ly+D7nNAHgCiL4PVS2EJqzHyhYTRYF5wFQgKoZgXLEA961hR28hPsRYPuLWLKw+b8FFghzbBn/1PHRbudrrUH7THtMu+oJCN6bklXCbiJirFG9rti/rOZb+r4pPgeUz1X9parJIXJ4R2bPyx7AVxpAzMxS7ApMtgJ68T34Xh3+Ag/6iWdAi3NGS2kp51ew54ovG4kl22+UZTo8KmBxSswotaBaaf/rTAQ9gwm83rLknDnrT3wEGn1w1DaRChyYXfH7oRD5AHjo3Vjf/BzgfssHSSc/fh2AgtomqtfVJt6jZP5ua4ik6EAaBa/5swC325wikv7cIL1jrlfrHKAwAS3PiJiDtnj7vxLEXrtlJdQm37yuFuh5i5gIwIDMlNZjOgWfGWLArr1Nzxj0QIPbY0d7yjErgQQnDNEcWFx8a64N0CVrZKcZEy7o9tyhowWIoZclAAzxkgkLFrsHboL5o1FP+9sWaGMIebQWrIrIOnSE47rcFeNqpQFtMyHD5Q9v9izL9LKIBEPCEaU6/2IOUH/bMHUxpXxYrMjMPx7TmBZuoGp5Q/c+6PPS/H21oPO2JkH1BLxNI3DI5ARQ1TQMGdtstWEaE6S1imfg1q97qp4/d3N2mdG8rjYf1N7h/uXiTl5mohoDy4uLIRLYWXtQhzn+Udt3WT1jaYGRXorjxqEt9Xjy2LCUzfzgxJNOx0CS32Gm1jf2cVvMiXzzdo1uhFhuE+euQAKBCZFouahSjHrZIMKJae0dOBKlIa3lRk4qtAeX+ngaSObZfp5f9mGlLJuVe+hlPW4m65ICe/tAq44CA0UGMgUECYeFpQG+Pg7XphBRbKLeSYB01suaDiAA2TQYDrYZ+8ZGUUvfcN5R6iqYQHEemwSRqU3BRHfyqpjTVEA8UBvDMmUrrKa/bpjAx6CAn1dZTsRrVfEi3p+ezkemy2UtG7XbiNWfcd8RqubdO2sEW4TzvtzXR5oXIjFv5XbJbAUd2GCvebbmvpevOsB87dDZomztECzRYblvdo90btYlMkcYiqYplhpCdkszTRKZ3r7Q6OsmxmtMuvYc0EUx0cMJIoNMHgPYhjGo3K6YgyYHOwbA2lYOtRaRkSnyAO3Eout3K+2atyUz5w5az7VBu91DG85e22bag5IAmEuzYFpcLPax29wCCojQfUz91b1tAejUIEPo1PJw+yHsGDDLPL26UClFNblmV8/u0yGaGhpuIGPCM5fn7jdkWal4ORkTF8hWmAHMzCzVTHFGA3oISAiQLLiSrSQJUfbiuHeEryBcayOTGe0xUHU5bK/PvQwA9pvZiuV1enY954c2SWC7tK+TMS3jWY7wqxgTtgZZcKSUAzGONZg4lLfR/jA4XHAILA2MXQ/sjAiJRw1IzGalffaJNIstkCXEXOHAU6Xc58M1D/h97EsmnZpEB4HWGnicwRGuAwZ4HowBerDXh+9XgcSGWJB6tp3ioCPBhNCH6AHGHO8x78XmGQ5BiemX6FHDiUcN7GSG+n5oaIzFp95etA96KdPMExyYBbRlBFRok/lz+hnb7h2Vyo3Q365ggosZvhP8888LxuF3cS/uTwbopxaIKrL0iUCpzsoyc3D0zBBp/vtpP5PprK/NgeOqNYOyJviz3g4ihhXwi+4KZU1Qe6ZRc6gLoDa/VNKG1GvynQfbsrqQ9d17IknXJcXwRY7vQtXsnurRZtbzca3rcW6ZTW1WzlqvyXuiuZCiCUL/r4DA8d4opgkEEBB2gu97Tm/PXIL1uFX6RJr/rmDkd1o5ojcIw+cz84EBOe8JKImYkqx0+yKLxu8CICRbh2sHSFCKdudUevTuaK6N0loptzl+7kONLn6udAT77udOx68GUGB21YK1LY0MJ54v8Pg56wc7M/mwevvh9Tk00HOi3S3gNsPi/Zq7QIc70RPhDOlqhgATgDuVLHV4h2JOOmh+i2N6b2dHVbmAdytPqLVVrIuMBasago2k7okrguOLtfHCFEiXrKX1nl/ymBAdUZspjcwGSfHB4YanA/K2x/O2fRqbQcQp4P5KGoAmwZAIB8id1LapqYmvQH+xxbIOtfvZHQWuYBgdH1I8iZBurmS/GvOCWgwHQTUq7g6159cJfRodd1wYMMI6YQhsnETQfPz76+5Ol4MjJzXZA71qAmzryCy/Cgz8eOygOjC2HXi7Q+bFjW8HtKWzdusmTLYNA1YICoQTLFBJZoOKAQ4pK6nOlsm+21Fz6PfKeVONt9Vlj7L556Ya4znGUT9it3egrp4+Lx7YqLEpsDQrIxhqQTXgGcRiwIEIrA4bcM0cTc2sxj7M+lxKxojoOrP9pJGruS+6dAv09x3qwjdBjYev9eeepQi+ITLo0cviFLrNugfsw4Ob3NB1PdW78W00UqOnd2xopijPewcS3VevwWszhTIJVPD5xzRtALix7skyyb7lDgjoxDuBRmlFnGfPVj5e+nHoS3w+xoQ+nuX3p+zPGGmH6lF/RpBqWeL+Dp+rpQr1/fZm2Tf+O67RbQBrn+PnlgJwQGbleD6WtRQtDX4uSn9ggIHcH7kZTzonDigUJoyqjQNbV0XG5+Lvb5+pNr3tJup5vRwc7sh6edAd6771aAPLjX5eLOM9vaOCqpqitiqkSTAQKLRHh0Q4R6ixclmOAaOYLRQF2p1BT32XsHJB30/6fbf9z+2pijjwAcxVAlCQNwOo28ZA1BXKmwNXTcy/WTv6fY+SLSADiajddpBenkVzg3Pmunib3QJMAQGI8RARq1FdV2MlMOPNLKK4UxVgRPluZUt4UAC3qyGe7OM4Lwmsy1C0txGZwzj2GcxvtmtU3/faNKB6zmO2TJtRpIVEtlI2Q++abaft9yNFQemHNi9vONBY7b3NLugPoGK7texP3maw5cw27dDRD7YmggYGZmu3dm4VDD7Rp8/tI8/CtZHFnbR5A8CI/czAYBwylXSwhfa6zgFVYz8Bdt5lAdYCKI/h9OJxCLQP8yraOs60NQ4EBBNknp9pxnzL//z7qABHy7LcGE93Hhk42MNEsH0oDwMSIKGfWIGIE1AR56pswR1532wFySDl9H7qIUvHXLMbiW493xvvYenQTzeQjRfaGbyHmjH2/ZAsB3YnCDr+PD53PNfQ43MCgCcP+PkA9UUOIFloNtTD/T3uxzaP5HjdqpQ/54djdBDnnSOA2GA71fdxfj/1PyD9kMqq88C9FoWFL+Ln0S4QdGAr7SKbG5963e+952KPLMmwREc96miIwmy+6iGxlGPJ9YcE7/x3B5FPgjIEEDh/VY9Axyjn9tJ2sv+CQViSQuFbVX+hNyudklOp5OHep713IJ+h2lJOm/B9/CZrOcrp4L6lzlgPe1oBTbKB+IyqwNO6K4TfQ7/GQQGlLy9irLHDPJn5Z3zPy17jMm6ffwEgiM/M737ku8evA1Bg7btTUWtWQhwkAJALodnEH9eG8dJM2JDtlroAt6s5rqV2hzoL8tx9MVzs5y9O7x2shcws7LyaMI68esB97Zlx8nts9x3oEtR2Mhn6PrH95grtgtXpkrMLpNki7ffd2lWRCVARLTrajjy2x8CiSOfFHRsVF0Z8btDbWlgRCisloAM8QxRLW4q7dM/cz5e1bHKI5wiKbReMNRdP3ybkdQd0hS7ifc+B/bcvIGrYNnO49s+Wfet3BBDS7jv6H75F5q5tu23azkY5qGwzqHQAaV46mAXCpmhidUi6NCz3ERkjClolKFI2m6HoblyqzgWmiSlqd7ZDARPaNiyTRuNFoTCnSyqzST5XCYzIPk27AgDFP6fTSSl+1VzYM8QQqwpvFVsaE9i3MNBBgasZOc+uazeKv7zeC31LPAD0dXG9mGPnoIXcH+jPzVqaeSvVtq+He4i2fCviPiJQ8Hk1f3ix9cTA3tkLk2IzDLAokujOLOmCUZvpxld//JwB5NItgNs2K414PBHtGMVLDviszy1bMwF5P+uaiLdnNCODybGpLcymlw1UyqK0vHYFfXyMBXuuZ8wQztFty17r/nt9PBHqvTyaAG2JOdxaSzBjWYy6NqcLNBrbwIC5BbheY8OwDWiE86v+/iJrHAugQShw9HweN9SzAyJirftUY27JsviGNw7O+Ycbl4hR05sEKKDwTMDFz8V2cQxIW7MMGJBCYf5uKKBUs3/9D9+OVNnrBbq6beA5SV/txugKemnsBerBLpACBA48rMsx0+TzwwLKdJpkqFOpbb5Zttf3CTVbuHoGhvuVUgAQiJIzUKvGg91WBMZmbxifFrSnrSPuRf1tD0+CrQcplKgEl0c6e+25Q169DeTaHYQHbn/5hC6C/WaBhK4Ng4D5sHFo9w0YHpcvbj9vCyZejgEPpwAz3iLBTMRMzIOCaCE45u8doeY9M8tJwPKxAcuMWt6DOFpdWwxegm2Y85LAiF5N3HZ8WjC7WCnhg3ZXj0CCf3f8cAWaYP+UAB0ZfWS9SXNfZDewYa7NY0pjqEwggIIoa2QpqLcArvs8y76Wb1uxnxP9CfRnub8GjEszVgWDFgH0s/k/2j7Zx7gnvSUQFLaYNtKf9wAICuf3SFt4CL7LeFEfw7WDQnSx7jNjWEDBkhXaicIQrTorlrUtJQZjQnrecwCYXtbJsiK5Xt4FePribW4LSGJaNKx9r/Po1J7RSw0wRlLdef5qR1lTTWCQgZCDBtHhgnbNg/YILs7nZEDNMVw0PxeJGTtnlHsyoP5ITO/E+BI17SphAOilLuIMDl16apktON433zmDzBLwHuvh/VHWHsKB8R6ApMrzXQGRlY/xY3A1Z+nYlHst20IGoEXfiODyOVAuYxDthGsnin1mEsXHVAdM+J1gAvcZjnEBOvjuhM/Hf3v7b3vuBn1hqQUsblBnWNDnZFlBjJW/W2rD8T3SdjFxW79zKh+0klyWJiITNkD656rJ2CsAR/xZbTAQpbLC5FkdS87HxWIi20xMsyFATd9bmqr5LlpYnbwmGTBxzpLIqSAbLLBWdpsCUjz6NP/PGlT87uEzlTkEuC0opY5jHMqTYq3Sbx8z2E0HQNP9qdB2UL/ns24UOxb6tRNGwGFdAEh2LTtNxPfSTiuBzXomLTSSD45fB6DA90L0+FyLp6eBKX+vQWL8jNTTejRYxsOpzMLazqK90PZplE1SZlhjxgDXF3S02OHGpy0Uk23iGDABwLLmnukg/dGoo816rwMp7AhE9iCexY1A2/Klp4Goz9cS2QYyoCYA4mMkZTIchKHg2TDMw3wRB7wOFJ5hWg/L3coaOD7j5p0cHBRhIK0NiG4Rw2lgpI+7MUUfEVRFay5S05hdEI6XO8LMGvtACIUSy3xRIChlRj3Vo4BYNeIFLa+twILaXxHOMY8ZWB86O095l0AG/qybLNfEhBl3ahTMnFvJsimvmgaUGxMdDZ8vdL6iFu+5mRGi44XTQQPImkXSCDmGQfEv87scwUBgVjCesVCYuaa9jlha80y0OlvC75nqtbpn5mQxpBxDU9gwHJViH6IeMeskK50yb1iP2R1/16o+zh4QB8PoJJZFJgcAEyqqtqrSV+v1JuxeWf+7rkcH24UXdUlznEJhdCaNOWFt09JxYq9kHcNqh8UYAO8ooKFK7PaAtXC1jjdQbWM+/eJB5JuOI7MhNRN6HoszYNJ70p3pcPXu73yBjGcKmtWs1Xl8nZZ4qPN7WjkChmvGLA0Qb7NVvs+SI+uQ060F8RyRkcmWrkBm4dNp/vCQrLE1BoBfK/aGAlShBFT8DnVXpoLMrmAqAJlNL2MZZWmKsBmNnYwEwZ6TtR+0Zlm3TyBY7psHNBLgeX/bDGAgPV/EPQe/sSbA65ZBrwhw9fK2NR3waCvJMomhAMWJd9hNl8As3nk4TEvucbF+e/6eJT9ciwS8es/So9jHC/vh3K879IVc+Nn1gxpVyN2JD/t8mEtF10D9HbptiTHnM9GJ9a2G7L1YE0HNng5qeoveU8mbBSAmHD18XcqA604B4+qle03D/0CZnyopMqnPiSaS4LnPU4LHAJzKn+visDfw2RgslW4t8ZmYt37NKIHo5b35GBBcpoDsibIbjjfnwhiADrd38xhMxguQ43c5jBwXB4gVQO0UUz9HlhNcnyeElsVEtUXNRpjYWRmLc8AWwMsMYKSOTbDl6twlqPERUHG2j3HTxXckILUlI+RsT96dQ9UArtLK2u4Fto/UOen7vR5rJ1Ap7e/utzIpwo9oh3kXrbTj/ZX7rDaBbMwxs5ygjlNDBoVnIKLOsXNQybVHW+2Pznbw0UkONgUD3KIN9PVy6IbA+1INoMrKzRx4UQ0QMa4BjuORZVI7eQTA1MuzxXs8sZLOZUDh6yP8a6ENI8jjLOoEP+Zx3OQ05nV+lVhEK1MorucfExt3ETE/wBlfIY4rpSzie3vxR78/jdHhPRM8sYfMP0+MqMN56vos3Rcsy/rBWqz3Eb4T97iyDoqdzjFS/zeRvV84vtciPO6vHZ/3fBSGybuffef4lQAK/iJoPAtDQSuCVY7+zRSel7eO/m0zDYHqkHlWRF0cq71ukDnS2FRH2O+B9Hu9LbbJuwiSPL0eWvNliwvHoVtw0H56Qm8rxueLtZraBta/umOloBOAtg2Mm7UmHNeOsTbb/NXLGxQHQUjTHPBXRJqiICbFvJojjN/eogNEc+Xl2tpSu7UTlMcwhxGwgMADWABOm+yQzTYxZsnn1TMgX7f4XHsOy/K/7rYWloZ57bj/bkV3TYq2eXA6YLWdACjAKLtTrtUDzm0DWjeRu94hl9UQ75dLbEBkqshmjAkGAXNtrsVgzuRwFsmx9tg2+/bIyHy8LFZ2dh9xTwb4sINIi+St+lhZkDNCKExeXqA/frYMm9e2iq5Wy//6NPGaH65+Eg1RzfasjAHJjgzbwHwxzYT+7VkWvxtEz6oogYNijIW0UQ86M9Cd4WyFMBY38Dmd3WLid/qbL7nACp1Mtt3bGTaM3/1g7/e5B23NxId2zC9XaxP308OFtKzrgl597o3CInpxjYm3Rzo7fOcApO2x0UXWgA7onJDr1dY3xdfoePDvRYAJYOBUwAHaYmbAGIx69vqAHnt5glwuwTKRqcZQAAwcqYZWU3n+IKC1eF2vfwZsh8i+xb7GIxAvdDZ9ewOkQW43AxDu95MT2AxUcHsWbAb+m44DwZAxDZ+T79cByprMpRSJtJIMLUAAAOjbvThdYs/j2Ta9PxDiZmegqgIjvA+uMdWk+QIJeJEFEUFKln/UdxBBzW6/a2TrcFy3HViveP7uZoEu9wUF5G3L63BIAMsWEZzgmDqwNC8L5ovZ9/6WrDk0y54bwAYvh8gOG/rpmoAAEKVr82VBewy0t90CVZZsScP8YvRieQzIY2D9/cPsyj6hL6vZLma0r8ZKwG3FuHWMS8P6ulvpwiN1HhgsU+vGQDa7r7ZPLK976DUoBAd00ss1AATjbl67AQoNiO4CqmiP0iqRNonXDwDPwRACg/uAqO9dTkEX1mwTuAS8ZWlx8C4rorxl6WaznB2Smf8RNkOvK+bnq707b+vLMrm5dnR2QRArGZhrj7aYHYDuDaFt4KBMvM/VRdcU3mpZQwvI1OQzcCJoQV8APvdijqi939j3neW2bAPjkwm/UlvBcB+NvdTauJnPoc3KLdhiud9tPszrGuxA7huxEqomiUiArwAyUUA7R6qu7/FoGRRFeZC3mIwA4SMgmM/dfZ6NAUhPAMDXJ7bt2PXj7ADTlrDFWvUtr+speJ/xDg38K6VxV9sL5ssaQX57DhObdt2O8DVr9rQGMx58QhS6HW1NjF31hxnEBguk2MAqyAiE7pf2njpK/D673NyTcRksi2DIIgN7uP/FCeTBY2S2WR5GML814EYgx2+9MlamGjAbfkiZ75xlS4Mut5h3VnLJ5ISEcKe25mWONVByoOPqNbfn7hETGZz6cQhO+Y69EwRFW4Nev88ASrXlu1GKAk6k5kA3plaM0T6TdVUZbg3HMh4v09CLddbRizGVo7ViGc+YDwQR3mXXE1SQR9F18LV71vWglpf0Fu115bEfQf1m4J2VoI5j2aG0tAvnORv3a+25Zc+2mFHGwNiM9wSAGjsNgE4Nn5yAXmV3HgCkwsA7lLwUACQ0QAjYiCc3+Cy1ZEHE2JPVbhTQpLZzxBTIXuYe9X2q3sn5HYVgsN+Pj22KvE7b39rpu/4cqv4uZoosRgIJiPMHm8H/i8+2hkjuDI8nim9GYcnvHb8OQOF0HJC4d7/MjVH2aZkUTkLA1KdZuz/UEFWu+TNKpoqoMXJDZi2fOoDUKjigu37E30SOLAAgHCjSn2IRkvJfMkfsXU3Wgz2H5PUcCQzKmdtc7YCpg9p5mjRTS3dVd9GTserNRGoAkH57GItoJSGZtXQ2grWhTEFE0kkze6hFgApWz6lqC2oqhH9yzKtQU9zDhO7+jqoSaYOJ5dT3F4tdcsOvtaei6fCKIFSuVQ+OsJTxLN1E7byLPxdvVWBtu5TBoTmo8/MV42XF8vPj+Dw1g9BsxuiUAAPq9Ziheoei0gBzzE6Zg+g1zmC5ZHH0lAp4Z6A/aDobQc08/ta6gHjnlMWAiMjO1VpRnjk2Hmsxqf7ua1bPlIqnO5gSYAnHVoGkLBZ6ewKB7miFQNK0V4OWaxsITQvldeyJYixknOr/ST+fZa5x/CqVrr6jGKjv2Kxzlim+38w+NQdR+Py8Rgm2PLrL74/37zfbgJXfVcZT2ajfZddZplDR6wC04ME03meYmKlwsOJdiUNsarnItPwsaXs8cTe7Arwfs3iuMj7nI8bHgQNnHR0AjPpZSeZStMZVPTrAtMPw5+/H70OSXQCgsBrcOenIbHME74VJtc/DfZmA2jm4cEfasSez2A3oDuzU4MLtMtshkokGKGS02H9oG2vwamC5Hs9X1hLg+1XT0GAIGj4Vv30/YAace9xh3KvTO5Hz6iDmeVpbE4fvRbcHBhMfOTrVEZSyt50PLe/Mr2UOrCUT5qWHg2r3Wd55ddgJlDQx7RkfSxM4Fr9XvyQk92n3E1IzoAQ5v3AcmCv+HDKTbamnz7K9MQU685d+Gy9e5rm5TgMGsiwq96R3YwfEPqQMlIH4d9qWfvws2nFufPRODg9cbC7p9r4vyjjZ14/scdibX7Ad9bM8x/l3rdS5ixz9B37eA1uptoN7OEGTyrg533OxvxGgAVlKcW7XXL9Dn67BAcCTv3f2WYH3Nofz8XwN/rruk/w+O7/EeH3w/t6xHdNuvben7r/VPbH64ef7IlPuPA8+2JcEcow1TueKThB+b1LOQ3/8eG2U7PbR3p1jmqr78G58AOgHpizu8WCn5mG/r+KO1V/k9eU8n0WOviJ9IjLi+bPSIttY3fQ7FaztD7/sNG/tO6XEQ2zeKKYldLTbOilM6mDCVEBqzNgrY+a05h0uPtDH4F8r27SOM/3Xuv4ODLhSVsBna+19aQj99Hme+zj8/VCCebpHxjIx6p6Y0TmNDcV1du6wUNb7WceKDFKCunmpeu/z45//fzx+HYCCaqJ/vhHDW8iJtjKJka3a1sUQwSp6EqCCTUDZBnR2C2jYoaE1p2kVJ5UTglm36wpgRq2SBTkN87ZEKYFuxXnmO55w561BX0p3hA3uiIrpB3x7WCbEM+wmfOW9lieg1Azw4J4CUG0bmWW4LebkAE5r7NCbix+7oF60w1lXjE/e5mVOzM9XK+1gYOuLQZ4DczXUvb9trmKd9FRpCJE7Cw4XoFmLStkGLr83TYv731hw+Umwjs3YAw9rGdmeJ5GaZUFkY5VZ3Yb56WaZi31i3haMl9WcG6+bZWcPXRvmahtIvyPqn2hUOabtkSwEOHWsP+y52sPqhNVrWU2h1/Q5lm/Dnx+2uC8LdHGUdDXWx9d/8ROeXxp+84+B/pr1ZXo1mn60YWtpMLRbhru/bt6OsVumsOgphJPGFl37SLHCyBBpBnMUbKEwy67292UJI6SqwP1u4z6atVdjOy4gM35FxJGZvfHjzbIwb7sZd9KYqTwNRDeRqOfbB/AA+rdc6rJ0QBv0agJ4cr2EISStT68rcF1TSJU1egQYlgX6cjUV/zCi5vCzBCCyxwCoOq+u+C9kFsS6PzlkVD0niCACrGuixtRpqJvNthszJILMlucDoKTgU++hOb1VLiZmBbzvGa4K3B+JEAMHdkAczNCRxbRtCIbAJGLNjElPtgCA2m85Mnv+XLoNu8/LmvV/fo74fvfyiOb94NclMpEoXSeU76YVkbx6zbgfm7e678bGcDFLzML6uF3Tfu8CgpGY037Hg47OGMbE+XQDlkuMs16sy8pyH5HJaBTLdUclPtu9peDjWWjO9h876uja0Z4D/esjx9TLLSZsLcu3u6+LZzgBsu2QpZsQ3eJZfdh6UnHG3MVp67ut+fZwW3NhJto1MKYegkwZA+3+DBvSbxdvRfiCeWlozwY8p2WWHcyT547+zC4nkUEKZ1fhXRFh/mUAACAASURBVPOwf16iI0HbBtrPltVvbxvG5wvG5zXmZthSf8+15abZwaz3jew474trsZUs8W1Nh7OqeCOfP4DYGpzSwacIpj1UtHquWUDZ/H7ePJhTozCPKxXpp+3hazMbvk90r6tO8V/BeFlMQLiA1OJK/NEukvvxtOuMF7tG4zhtw+9zpvCzsypZF2/3ZO068eliYpIX8zHaw+byvDS0YezLsSyY3fbRuTZ8/ZsdbQduv5+4/GHH+ld3oFsZX2RZS8a9iu5CNW2DBzv6fOY6XJAMrTkhr3dj9rj9CxCvHt8DA1VNF+V2yQBLxOyRZ6R13xEZxiqOC1hXKQYpNQjjuUUOtfyx99IenOuf3SeqwV4w3yJDPiP7KLolqNGascF8XGLP0MKi7R36yVl5nuVmDfy7BM2cwKYQWaEXLykKBU/3hUfRGKhBJdc5f6d72IUKoIbeAYXSS2ATibSGY0lFE2BZg3VstyvhU1NMel6WBOoAoCPnN8uQH8PAuFN2HkC0pA69M9cNOgRzDFobABVjL/PduZ9GH9Nar2p2Q3OmrGw4sqILMBoAq493mzNAymgnyqO3zOYzWFUTupV9RqVI6MnRb6nP3nvpYmH2OrrSxLxO//OQZGW3Keog7M5o6R14+n16qbheS7LPr627sUdCKBswhgOQ+yT/HuPvYpoPZy+GrkVzTTJJEIGJJGolkQnjfraiQ8aS74ZjwnXBEqaqM1HBZ7YMB3yOLpnQKIf5Dx3zdsFZUFL2GWUZce0AdfLdhv4NYKWQ9bqFAQ9qkkyNfelcmhDijQHE+HxgKcNqbR+hfo45zUeLcpV5ZCfwd2OgCjlWhkZ8/zvHrwNQAOymN3c6T8qouShOhitaYSCNSd0UqF7fWhH18JVUaXVn9IoHJycHs2aW3RCFgb2sTqVEnpNU/3rqknEHnSzxjDivWYNfIFpkdqdeBXJa3mt7GoLanDo3Ly6WxdtUM57aksqPJnb+Urt92FQ16ZY2tu7QdQBSgkpH+qiV0B9qr8qDdAxEx4qoQeV7qCi/B7h65e8MXWMbHu3WlSIyLYpkkQCRNbJWoTQsdk9VrMQMHfL6DYm0iznt1qFhZvkEA/eJqDuFKvpdsXRNx5aibmXc5M2MCxVzzXggqcWXBn02c17p4HLeVGGoMbO+rjguZtBH0udRnnffEcrnfL+ODh/QajoRJYgO0LcE3QcF5ulihSPHO/bJivguvSjy8/5sLFFE14TPTGPNzxMdZhRzrvEkIMm/i5jTdqJPY285bvDrkD5d7QEdqGrs/d3G+NRn1JxbWJzF0Iqx9lIBrYF8+X446PX63BSXBSLDAmaYkxnvON71B+mM8zw4H7xG/T3T3/UzH9XTns/ZO+SCAqJMYLpeBtc2AKPj+UbFzzrDJJX4fUMMz4yBgmSWqlBys0Vbed7CwJLlgy2OwbaDR+2NtffIDHSDKdl3s0F67cAGiJ7YUjEmiLKeCpqaoJRkwMFxdZ2LQ0vXpQNDovNJZQQc7p1zXABq4Kg7HNLyGXTtwC4Jcnd33EMLwM/hnYHeOQqRufG5sk/osmB8WnIOqLr+gd0nxQ7ZMrfds/SuOsOVFpz6RJJU4UGWyMxghGBCI7BafITIupcxBqKLCy7rAaiN3/O6QABF5vgWO1zGnx2iUhRUi30ozr54VrihXNMDjWksRSGIsE/rLOXzat4Y5Pt8bwIZPcsYfV9mwuCgeQMcdRYUUXIok69SQz9K4l7Md1nebH6z8wiFod/Vw/M+fD+0/aJBZAWUzv2MOSTYc82X4J1MDjiAFPNDPeN3Fh4DQtRWnTUnNUATMUATMDvkwQqW5f385jiVAK0q5ItKguPAsbSDzvxTEALE8QLKc/gzCn3UMu9iHAmE8LuziE/GHDuek4KG8UR83yddiNAriXPl/Wk/vY+y92PT0/cUleTw4REBOSL7G2yz2JdPJ+Fjln2GzCq4sOBBT0rzZ4fsfH3/7kOQ+ZtB7EzxRV4jBqrsuf798OEUxyTOAQzIvQZA6pzA72HKMRaoTNoK0njgre6PHgRZfTgNCNLwt0L7jMDeR+9qAlUjholZ3ivnm3zkJ5T4qAIV73wvBrPwa41Am44+1ESuQbcpwQCol+W75udVjmPu1xV+ljHInBD3MeKa9Tl8nJV/h88j0fRL3fa7SFL5nmTJnI/rYZ5y3hAULe0r4yCLQzJ+qH58zGUxmxvX1Raln4qiJSPenaK+Jz43vzttIA8M1tORiXHaAfdffbxCxyU+831D8OsAFLig5jRKoCqC8uGdCSwgLgOnaj2udTsqmdKYbbCsFHzAfLCnI2ztNbNIkf10tVr7ICI7oldz/tp9BjLGgIt9Ual9cAApyCgoiKz2Br1ZsENFZaha7bw/A3+uHkjvn61tZH99AtDIjs+F9FRg+fq0rJWzGx5/drGfe4cK2X1yLy0yWHQqxq0b+zycJH/+fWad+PUCbe7kLKdODN76kKKM199vmGvDfuto20TfZtSZBqJ8WXMhrZZtGX/jSwqScQzdAZ4vi7Eqfn66cTfqbr8n7W56nWp7eq3ZUoyGzzMGDRTCHDejePZvT3eIBe1hHTgONEY1VLyi0bJPXP/6ifVrMyBHFe11OzjLACyjve2QHz9bTdylh0Mwrx3bpyVbhNZloYVqBuSGxuCX83rfI0P+8frao6ZVlsVBu3JebrKPzebn9RIId3vb7N5dR4S91nXxTN5bycaqApBDXaReF8xPF2Ox3K2+VnYTEBTVw/exJPCRrSjFg4HS6rIGPw46yOs9HCJdvR89mQ3PLR0bfscdD70tltEo94beDI3eR3YEIOACeOBxAiGmgzndamutr7W/G5YTtOPcjj/f7ghBwWU5AjAvN2i7QL69mZNZW0pummKMMR4MAtQzM9wgWm5Y9ajAQxP7t+bGcnDIquMAIJD33iGXi2UA9t0dvwHAqYzsLLJtORbrkpoS/j5lauotUNuBTqCIde/hc/Ee1wV6K+NT51KzLh6y7SkCCmTtL7P29+3ozMUcc5+od8zbCqEOzTZSXyGCyQF5LR1GVAPQNQe9aCZQYZ7z5/5AZCNXxfRMZAbMakJvsL0BUzPYFAv8rJPO8NINsw3j0+IitLZvUaQS+0B/fbr2jQVatschaq2tdni3+eA2uT02zE8rHr91WvwELn/YjQHmS3+8rHaPjw3tvlsNLse79Jk3++daR6V8QJ4lSGAW1edYZPE4H0qGNdbgaU/BxRkit9Xex9sWe0ywHl0TguJ61HrgHlnryaeXBEQXBDqHQLbQFHMyrVQN8XttCEZdexqI0F+3VFx3J3D7sxeMl16c/A4ZQH8M09R4DmuFeliL6bgag6IHUN4LqKMiySZm2+inB7G94ZMA49bw+LFjWQ0EbyIGTDHojwsVG+bAMTuMUA9DerMM//1+oA/XdzkvHTIka/sLiK7rYqAe7bD7DnpZbc62dlhbaBKMKh0I+6LXNdcl95bFOkvJfbPxZ5vay5p0/uFsomWBFOCWPqM8tgwG2gdiwDWgOP+9AhS1XI1sq2p357Q69grw0hd1dl7YQ/plc1rnNB4cfwY6LC3191db37YK/tPPGKdn0uNciHa1qmCL3Oh64GC7XpbQi5IaQFWwj3v1lAQWL4uVCJF1wH2ftsVLwvjcBpaWYJ3viIGaB6Sh1ULwgc813JfzpI8MizfiPJ6kMb02vkcNoCmSdO2YXIqxPpcce/a6ai0EUDUE8pRM3JAl47GMAgfwzgcEmFaaFq3guVeLr2PqR539gjNgwLnTWnYHqFlxdnfyPUxbj04w0lq2jz+XWtfAGngHVkTcJ+Jr4gPbA7Pjc+3eWc5Lsc9lRLM8R7VDjDuFTEQf/xrwO/uDzIQoWxwJagSbgkACAcYCiNLG6PVSyqCKj7+PWN/qWgYhAvpyNVYS4H7+CcgJME8QDNF6ENQMkGXGzwMgcMa4Yj+W7lB34U84/iigICJ/C8B/BeCftafAn6vqfy4i/zGAfwfAX/hH/yNV/R/8O/8hgH8bdlv/nqr+j794EQ6myDvxpFoXfMjw0OFzxycmHo2KagjJxTWADO7Zb97FT2IBTLVyiy6YP9zM4aAQ4NLS6Tqhd1beIAixmmkLXgVRNiDDHE9QjApc5GKOaoO19WJWYCmicooQorFgOTP1VhsFN+pG/13eRpzf2p/NdJAcMQ36JtvTOTLL/yJzExvxDPFCqEb5gL0XL2vYJvrbDpXVMu/TgJR5Xcwhvyw2nq+PdxtTbA7xzKVsg0zmJsC0tmnmGLpzKLbQW1ko77Q46t8FR1TXr4dtmgAa60/V7suySSORY4I/jx3tmRvuQeioBmNuJGq2UXuDbBPrz9tRqBEIWmLtfBK0y9d7shIYYAGIHtq+6UWQQvVraVD1NOayeLZynKscnfINyz4tDVivsQ7PwJkuPal3QyHizqV3C6GQprVrNVE39YAbszj+bCsFhIGNeXCvApWIwEHO6uwcv2bvT6ZTmklfLyyUcOimi64SpVcHbJ7bEbWvc2cMRF/3aaCB+rizBaRNDgseEDWiA7qXNVUAoEOfYncoAQCPp20i23a8h3JvRu2V7AvPsbqssVlYp5SWTmTQiH2D/Qh1bsYaEAqdTc0SmlIqEbWzzceUKD5bv/l4y+2Wz1Ud6GpPSa/7yGnluFWNFX72YgFjtOii87JY9weZM3prg0JJdDrkaAcAYN7MMe+vT6ulp5htFy9h+2BuXNbDfauqOSFdIFsyXmS3+aWX1caLlEx3UttzN/uzJoWV5U3z2ovNLcMwUZ7bgFN5Uj9CbT+7rplZ8eBh/7RAJrA+vF5+pFMcztHbM/aA/u2J218mMNYfto55vrk26JhmlZ+7JQg4L5l1IoA52ToMEXzHO63BzHmc4+IMFDxIHDPmshbqMNkSBLQFsLZ63t4zHFsyIZnIEIkWZu2xZwA0S3AFteDL31+UOVagwZ3QzraTLsxLJh0agqYN2N7ddo09alxb6FJEG2iWAa1LlGPS92AwrBw+zju1/wk7EjAA7HCAY+Dy18B8WWJv3H68oN8NxGiP3ez79LK1XvYCriPGJlHC2oBVIMvn3MMiqHdat/q8qDaNfpszH8Nh57odA7K3zEySxqxqXm1r1jZyOTnDrUHF9j3ZB3BHUv9JzSZDDzPtPPdaApUERETs+qwCqXsIx6WfPt/EAJEA7fSYJZYPbGA8u68jro0KErTCAOBnD/tWCbLqZ+uh7heSJUW2lVPeD4E/P1/ZvRUU4PbWcmzluYcv+eHaVg0fi91NMBzUnJKMnALaZNeSUycE794kmnbCPofiS/hQFkDmcAyF6DiKKQLQVVIYUlCA27KPfzC21XeKji58/0ymxjzRo5Cgr50DG6++h1hTksDGWU+iwXyS2i2DNrC2KPefx9rgOPPfdc+WlkkN0u3LOaNLl5dTHK5xWJvlPifSR+T69jmlZYwiCeexkpVH78nMq9dsLYPuUtYbY1BfVR13v1a0ao7z5XMGmLDtCWov3ZJztL/shlHiCBnT1hZ/Tn99eT9Oui4uCyfQaEfJ8ZsAfI5T94YtIX3umx8EHECE87jznB0mQh4DMvN3/z9LHnYA/4Gq/m8i8gOA/1VE/if/3X+mqv/J4V5E/hUA/yaAfxXA3wTwP4vIv6yqpwqQcijSuWvNaYU9qXAemFRKSEVT5fH0rIfXmdLoUXWUxyzB/9XpoKoA6KSl8RQs2H9zgYyJ5blDpUWnhHeGHYiMNzxzKXNiXFYXYppB0aLCtyzd6e7m+LS7ZcjhyrKkVobRnxrZAnnbfLEo3kWDaoFve93M0bh0cywfWyLa7gy1537UWFMFUJDdc4cNV4aO7M3S7JnnhHjWpT2tw4HcFszVhJJUzBHmu26PgYXq2a2Fgu+73t7wcxdKI0EOGhIJ9Rg5lD+chZ5qKUo8NDeXmb9jqcmsFDxumNTYcEdJl2aZIgdmMGd2LWC9L53e3gKosVacCqyW8e+nVpcE2II54/ROsOf111cLSPb9EKBJdxAketZq1vGqAuoGmhRnXqcad9+sxWtL5+1iXRqcbUO0HnteF0LjPD3B7TRTdlV5DDOazw1gVwbW5Hlv53lbkopNA8uyA2bvzoJtfMYKNtCBWxowPMt3Rld5Lj7vqdMDVH29fCewfW4IuuycXpvnYzvI6Cm1/Kx/I/gA3xQ4n2r5DzcWToXHI4Elr++LtcA//fMBKLjKetTlAtDNEGqWABzYLL0fOzo4eMB71H1DtJ28rMZyeSI3GSD1EZYlAAWeR7Hbzz3g1l761VMjggBFVYev79nfW/Qir4CAP0OsE75f8eySmtAjmV2yFQbI+ZgAmpqydhf0N3Ni22aZbTraMecYXDJg94M2ct4MIG7FjreH1T/rukBvC2T3d9Ldhr0+7J69tC32JgD7F8uessQt2t86zVXtfwA1d7xka7ZubAQ/2mb2d//S0TbF+pPP0epo+fjIgwFXB14fuOwzwf5m72r0btozLw1ztz2muz3VlfurM7ykhYMZQrk1U1jfR7HjJrCK+BwYPAwPykZhGR5YDDMDcQdQw4b3ZEpwr43WegswnYEYekow+x1sKcDAxzGhn1+OAEUJ/GSf6A8GHhqdkhh065K2rd03tLsFtrpmJyO2NUbphqGrlQjun1c/r9sx9TlRAQX6P/73EKz1+8O2o7890R5XrKsxDp8/dqwCLOLBJWa2HXRfQoIJVYI5n0PKjBlFfbtY1jxq1mcEsbGuVO071eYfAEgHwsW0EWhLQh9heMA0JZktPH+0ptzTtzgFVqiBlXgpFu+RADgZtK6togzoarBLYVie2+9PRaAvqzFE7t3YTW9PB05KkALkntDKMzAooI0Ty0SrpL+YdP189+9KHEqCI9knbkc8GSbN2QQ4HXXPraASp7xnig/gh6r5esif0ebVcx5q4CMTbsmKQ109TmACY4LSFcUSizZmbJt6Dh6zG5rE+zp0d9g8KC3znGs2WsSe2TslPqgtJd/5K3xuT6gKx8WZD8rETAUaPvJJ6rsemTgku6xeM/wzHz8rW2rBIDuMCXCIuw56BgRoAvxzG+DjE2UCa09xV36f8/EcuNfrs/tOrKe0FalpMn3O2LOEXoyMAE2FvuYl92B2T4jrMnbkfZUSlEggO8sxz7fms4/ir5PBIoX550BQAJkBaE3rTEMfyLW1ZO+HuUKGFW33wXc5l4lOrmMN0End1trzwPKwBAZoA/hnbw5EFb+Z/u1HJbDl+KOAgqr+EwD/xP/+s4j8HwD++V/4yr8B4L9R1QeAfywi/wjAvw7g7//CVY7O/FAA/mLcIbIAQdAemwnBAIgabt+s9MoNRSNYzHoc+zNaQHYx+vnL6gIrIzLIXEzdW6bo2jFeVoyXBb0J2tYSKfV7bqSCh66AUe/xTGMTGQ4XGpO3Z7ZxhL3Idt8toF08K7HNEEYRzwTNH40S27cZiwaAbW7UKJhWXzNX24ja3gvDIA2oDMXlr5N2bkI0gvGyQi4dCzPl4Uylcy8P22jsZ4rlq4/XdcW4NszF5q1MHCjs2k1EygQXF/S3HW0bmRUSmxIhwngR9PuOft/DaM/bapoKz+PCqoyE5ZuJFrW3LTbe+WnF/OLt2J5bzC+o+hyyRdSeA/O6QBeBzp6sDJGoo6KzPLkpcqMfbgznlhsB3w0ACtbgDCSIWCBbN1KRAKmwG1ih94cFmjXbS9oZ14UDQqoWxOJunxMX6tNt2qbCjccDPdv0Pdjpiwm6vWqIxIQzSful6sbu4qURam114GMxFTK2qIcVtuuq4ODoluWjg//llkNyEJ7MDEC0KyIVtmamtx2NJUzrArxcM0gqTizGgCBVwmMsmzOYnB6etYNppw4MEWd/2I25Q8fNG7Dg/uUFbP/D9pPyeFqgG1mAgrlqrjlrVbnkzzk25+A79ALcWdgKTdhRZ60lGDz23YRrmc3z5wrQgdoKHQhxRCUYkluI8juqXufc7V377wJUJUDEownQlhy3+i4Kw0zr5s2Smrhnt3sUUGNGjBm21ozafN/S0WlrDhedNgAKwf2fuWBcBLdLQ38bWH662/mYEVmXmBvq4nmxJ3AuNy+F2n1dw2w06v7UBMrsMrv/vJhw4rwuERySccVsfH/bQ9vF2Awtss1Wu9wChJi3I5CQ7RIFl9/vofkiNcBtQETvdDS5ptialwwDTEAWQIHlmzPjHMzmmIknBiJwX2BiWs5e4p6pzsCALuYY1zEtjrSMkfWsvUFltWDvsmYiAoDg6LAqWUn7cHG8ns57cbBi6T3MD9ElAeLRG+blc+rl0P6+mOBcloWlQ2aixzPLEh1cDj2lGjDAfG/tDWxffcikLQ1zvQINLmAnARBEppplT3znMD/GBIc7ZDfthEbfpwsEi9nw+4brX7xifLqg3z0IbhKlIgSYdHVAKRgPM0pAIdfIdcS6dyp6ZEOdNbT/cIFsE4sqZGvQWsLgR3TpYWD9eGbQQVFhvjv6V/HlEsCxDK62cvxISwCw+QRARsnUwf0SZvuXEmBV8BPIhFbdZ308sk0bYCLFxmQaVy9/HNbiuwpgnoMvBjss0xNVgFVX3F8J7q7HoJvjIkCyVtUD0YnwIYSggLO7oq059TvmdCZnGYP6PmifOTZVeLipASgVzAeO4ImU+6UPwOcKe5/7hTETPQiPpFOW94adCRHuadvuPgBZbJzi/bkd6N2o+5xLMQ8UqCk5vkvGHD7esk+bgs5WrALb9A3jvD4+H3UZCsaaXOK5amJFF8Q7kDEduJ8JmiJv15KX1hpWPUAO/YfFQBlq2IR2lH48xwUwNXjO95pMc9BRm2mFNTIG5nAts5lBannnAXpogiNCcI1rW8TKFtXAa+6Z0X6XQtIBxBVghOCO2/zKSgofkXO4tE8P35z3IgKRMgd40ObR/yCIQUYmD7bUjVJQ2+4JWsT90gelTWqndTOpr6YW/PO7FDGlT0Q/tYIJZB3w/Q1/N9CDv2nXcbDiO8c/lYaCiPxLAP41AP8LgL8N4N8Vkb8D4B/CWAx/DQMb/kH52v+FDwAIEfm7AP4uANyWH9LZ9/+MalaQGOkI8QsOBIN032Sjtn2k2v4BIQWCwmQqyV57A1j21dX42zZzMsAdoGZ149qbzcM5U9RFPZjsdh6bAJpZXN6zUzLZpqyqtJKiySyvexu2YQw6z2as2MMaHqjLbi0dZWnQraWhARCtE8umn2i9a0O8jjQ6Xptrz+p1cN+bDzXoBSDP3euNnV3hhr4G+db32p2ia8d4sQyiOcz5rozC6v4H3EkrmbFwblgmIc4MUeR1+R0azN6g/YqxNutWQJFI+He614zu5d17kFqprBxLC3KSws+sV7TSmdOCearGUiR0zgOIcaDg7ePjGkzfqHX3/0oNd4ib1c2OxoFZ4n23n/UGE2rJwCe/VK7FY/NShdu1IJflPwYgSzPwYQxz6sMxKwE8P1+dLwfwFLAgraeDby2CZjpLsc4yYGDQLKWVD+lxSlZIZHKy5hIAQuxKfDyAQwYiNvSPVoCzDYJK1oF3dLCK/Hr/4dBoWDrE16rqeP++KbBJ8Ip03MriYUYASwb9PLQ4X+U8xw2W11QkbI3cbENoSfL87IMMf94KDBTnJkog0I91ftTvKOyxQ4/ng2MpCXCU40MB3XIPQeXmNQGbA85EUbJkDpRfdyxVgSnYr4L9JlivLQHqAAtg9bzEW2hvduQc9YDR9pvCviqAdTiKXqbAsie9LKEHw0CfQCvb3JJ9EI/dHfARFFCWcxkJPFO3B4B0A2oDsCtrsr7XsLWapQ1WzqIQEFSAa75MDz6dXbG0tLMi3rbXHXt3tglUiCom6eH+nq0t8QQGg4YMFAAko8GzSboas1Gems5onQe+T1jf9BZrpO49h2O34I6dPJikmGtDG8Y+7JsFG9P9hAAUol4VQUemTkD0r+cU9OVXBZNpdiogz3HTtXQO4j07KKZs5wk57r2LmNhjFzRPTshd8910QDaY7/Ptjq62hufFvqPMivO+fd5bJngEUBZ7Go/h2h5wm9Ak/CRtDePS0ERKsNqO85EHHeuqpF7tFIMZt98Ht5e2huy3GnB/lHn7CNSMgdQAt4X/rrav3ivXUjvNQw/gbV+ytahrt25c+0TbO9rE++fnOerf617K56p2j/PG9cgiyCh6K3FPQIIKTPRNe8cECS2xZateJ8x/83fBeR5+bbXtvAaTSwCYtT5oJlXw0MfunYiir91kKBRmrfsdB40G/ul/V2dz9mf6KFUX7N3nRSGz4x34cdqKDiVPZEw094Frp43hwTvnBt91zCMPaINZ4vt/y44dOicwC+ijkuK0dW5MsYCf9iHmNkx4+GTzLJhHxBd1zh46inB8mFQIVmACC9QXSKBR3s9d7pfng+PC8WywspAxD2OJkUlSIYOWQfw8jQX38bAt7+fG4fNk7DG5VPwnY2Bpzuk6L3jU8eJ71QIoEgTWwnKSmR3D/N6kN2PakKUc/tyMe7eZPHMTob8mcrRzPGIeSAjdHo4KJvg9/rHjTwYUROQLgP8WwL+vqj+JyH8B4O/B7MLfA/CfAvi3/tTzqeqfA/hzAPjN7Z/TgxIukNQRKi+vPTa7GuyDDofqIRNtLRin0ZVULevjzg0Ar+m2No5h/GZLdJ/O8lDIY6DvXkd7Wnwh1EfHX/19dl/4qpaJEXeKdmvjZc5Wf3e+2Ay7OZiyzUA74yMMrBc/xyWR67a2ABkAoH/bvHayLBg/VzhmqoB0d0jdcXUVar0s0Au8DzeCCg8ggY74t9NbLw3j1rC9CNZvgtkF82a00rkYw0NFsP2w4PGbhssi6HfTYAAQRrHTYaAjK93qOwnKDIVs6vHQcLZAou/z0g28wMXQSkfO5+plNWWcrP63Y9w6sAnEsz7tObztW0f7dLX5QNRRy/cZ4L5cs57q/jxQy2W3UoTm2TH9fMvx9z/1erH5fXe2x6ebOUFvdwuePTNeGQhR3gAgatC5gYriYAAAIABJREFUIbkh5j3qtpf2fi2y8ZFFIfVtH5D7433JgOTGLZhJPZ0tM8OngMlqH4eJ8l0vR0opaf9jQpuxJuTxeO808eB3SHk7r0duwKtnfe/bAbiL74tkLXf9PRH+ihA72yQR+G5jeLvaM93vCDCBgjgUweRzkOmwLiby9W2ks0djT7GdQI8d1GjIDYh6GOCG3mD0XX4fiOA/nOREptnC0cphfNAuq5U8ENEns4ClM08Ccj3PXWqcg8YoAqypIxBvZl2PQNu+exDY0xnxjZ5aEQeKJzMOzG7RBglrPD3j03p8Zn6y2sV235NqLV5mUlD8Q12nrxEB8MP/ebf2eg+vHf92h14vxkYoIC+2gf5zERb1Oaqgs+gB3tVbnBbGhM17u8dgNXQLVrWX8j1knfLyzQE0tiZsNuf7fXd6vttPxTHwdhYDHjAHzwPkeA6OteuwxJoQA0ATrFPgsYXoHmYDmpVxaGfrY4VORXvb0e5PY2fM6W1eO8bnnvo4PoeixJH3220tmRZAgzBzBCTAUbI/HCOh+Cbvo6ddC5FHzeumnoOLsBUn95ABBMJfCBBZkXtTNyAacJ+gT0hfs1SzOMZx77SlHi+wzIbnZWvQVkDEuTZo68FIoT7T7M1iit3Pr4rnDyvmRdAfxh7RJmi7Yv3qrT2fu7EMZ94LW3HSQW+vG2R0tO76GEvHvH1yX0DjPFGLvruzX7cMtuCswnEOuERQ3axNZuf43L0l4ixzhJoGvQHLNdZaMrT6kUZdbHoI2XUPoF56ghZTIyBGb9ntCEB0T6rgAJCZzSZH8WrVsk8syaqqDrmqd4Qp+1oNXteG4eWQMroBoV46FtcAUouHPqPIUUSYAUzs1wvQPcAEgp0pc497NF8AaI+T6GhzW/W2RwJk/8FYMrK7JshPb4iWzae1E6UY4lllF8DUMo7xLFULqLxHAeL+DqwFSdaB7bHdNFLYrh2IRBTLrAKU9udrw3yj5veqZHPw9QykHQGSrUHQouq7leB1Lg1NXZiy+kXl3n2DB4GGg+8D941UQcpvlKnwA3WOR6Bq7G1t3qloFz+/JvvhVAtPIJDJyncBMv05zrfi93MdxvqTHG9sE7itqYdH0KGOgUqCgfVoYk9a2RqV3cHn32ze9W042MpYriR5erlma8aSI4Omm38Sz0IbQCYAr1NLmKbrXuySdsIBFr2ulhy7LqGZhOHdW85tQ5sAs1lSKt7nOHbDmnfIujpjyu0oxcYJBkTHK66bAn7N8ucfKVuwW1DUhJRWZsYvHH8SoCAiKwxM+K9V9b/zC/4/5ff/JYD/3v/5fwP4W+Xr/4L/7JevUZEkIDYgXYFD6yX/7JST4F797hkBO38u9mdFSh7bPnj4pDtzACIbEwYWcMM0AHUlUzcgAXptRMFhThGdap77jIo5omeAhCQyy7Zd7stbzSkgqAiwGZp5tcC/v27uVM5DBrxmD6KVTXFq1B3Spig1kBJOKkI9NwbpIG7ImswY6tWCzf3mNFp3HtqumKt917QWKM7kE17h2adyj903njqnmbGIGzi9xJYqs4fWTn7OgzgmfA4Ix97+PbnpLe7YEtmfZBg0QCaUWerFW0DuXhNFRJEbxpw2Z6gyfp6j3JTO89g3veMjSNTi13Z99fdRC8/N4jQGhyyMeOZwigl5no6zNkU6LuV+PQiOn6s7arq8n/P8fG2pwbVf2ypxHGjk+W9SOpnVrHV9Z8fmfD8FeHlvI2aCLPHwp3dE2m4N3on2xroszgMssLXMQgEUPjpIX+P4zHJtdedUBYcUyRlBJuBQzwWfM2XNVnVrVY0NLtYWg11VRIV7nNcBW2bsfmmjKu8hhBJrlgZmB94BSJWe99E6iTHzdVjtkUg6kzLfjcV5fjHT0O6bMUjY7pasl+89V72Xj8aAAmG7O3m8bglgw07799ugGKyzbQRBa4/SPGdxwXkCBLOB45JSxbug9vBOhDRTeZd1q2P1bv3zV4p0QACEiO0ZzAMdVs2ADkCWJ5a95TwPvnNPVnVx9BvqtSKoq3aWNbIHjZl8F1KDTfjYMRulxW4DWZetmtR/tAATDuAB75kBhDr4VBlwk++dFPST81mDjWp3OVTNmQirYLiOkQVE9d3MQ0Bbu1kYu9JZonPE+Daee3UfR2CU9daAbntagIEqx3Oex9/uxB5pm7FnG6nmZPP9Tzn7TvH3MmHrWIi82wOEJRdNIGhH9lN7f5+ZefzAXzsMus+Fatf48/l+QSUTtdxrnSt1Pogc9/TqK0spVawXKCyQeo8S9qL4HXXdqjMBOG4OwIQa/gSqtpaVQQJzNrQm5tcc7uODIPHdYJSxbZkQrOMaR7Qo9TXYssQgtKnqec/Czb72qm08+EQsyzl9x1r0tiy/qscH9lKG73Hhs6Tvor0d7ToB+Q+y3Id9mnsnx4d2qrK7OWbnPamCBB/N6SZpg3iteRq7GNNSzgDE5w5lHKc1b0lQPZZPBysFeZ7+QVwXg/HBz3kuBwSzW9LJ/+Izvpsf7eiHqZ5shpxsxOmz5+/weq0AGbwWffHzM7iPYmyd/5e5t2eyZUm2hJZHZO5ddc7tfm+YsTEGM8xQ0BDQ+RUjIiAj8A/QR51/gIqAiMAvQELCjAFUQACbsXlvXnffU1V7Z0Y4gvty98iqc+cBhtlNs+46t2rv/IiI9HBfvny5pv9sg+I/WoJ1dc55/TkTMAFQxRg/HfX8dZ4C3Cnfo3ZWfPdnzoEdf58uDwLgvwLwv6rqPy+//yeurwAA/xTAv/B//7cA/msR+ecwUcb/EMD/8JsXUaRzUTNPFHFrhTY51eqcWOdThW/i5UWpi+L55lK7GPWce482YDo7ZHqrPJ5LxHqQE9CcM6lUE5aF3jfo9xvm64bT20phqnVaILVQYXVbY0KOLameAKI+yjNpbPvEgF9cLEdUo8ZJTmvFyFYzc2vA3vD+jyxD+O3/sgxHo9K61/RiwyfntwqN6d4w7g3bjwPyGFF/21hjOyf0vlmGhNPnBi5RZqA/Jm6/Ao8/GqXxfKXzAPSHgQmA/XvcjGK8v1NYEWgy0T9QwAW/XQV0uLI2YFoTHYBaG0nqYWDa3KKLtfraG5obq/3ttMyOMz0sOLS56W9nUPtChVsAdicA4OCSjdf4vuP8vuH2b8xAsg1leze0W8ZMISffNKKt4W61yHjOdFDJzKl1WwyctVChWkvNBPdMdCqkGagQB3UUdAIojBh/b6ITCh0EzxZG/+pwwFcqqwzPzJE+DmTw4P+Oex8T+odvmN/vaH96S2BH1TL8vUfLSHsfvWTp1c5NXQk9T2tPuG/G4BgD+su36AojcwLvpXVfE3gKd3WcwkkzyjLO05gTXwEIdNi3nq0H9z03i9Ysw8/vMTtVA5c5oc8jwQYAJlTm792PtxjjYDhQp4CbxPHMjZvnLuJUaM2Cfc/6R3cPwK4/fAy1AdJsHL0kR89zaSMqN2uPpO0OYXnNxSkU0hspSHlYGYPWOj1/JvF7WDY8B5HI4JF+t/X4/RWhfFwplLWudkvbHAEk23j5O9renkmBJ5ApSY+HSAjfzvurscGep7UPnTP2G3l/5nswZqiUR+lNb8mGIEOOWjCRgadjKMCLZCnASdC8GyU1AnugHQPt12eAIc9/cMd4bdj/MqzVX/PWgb++25raupW71b3NhdUAs9+odpHBxe5jARPWhTagObDk7UZDtNDff3anCUE7Ouke0sgxQjMiumzwHZJkBYaNKQdp/O05XEPISyvGCLHm5nOw0Gh9zjL7WgIi1SWwMJ2F7oKZLR3bKmB2eumC07cJElA/onlnGJzDWVe+PodC3j4grVk85zZ9frvb/v8sdnXCMrW76QlRvZ6tJLHleNvA2u20Y0A+MojQ3tBu/hwCnN86zu/eVlpN16INxbgZaD9vLf3szRlL/otoV+cMOTSBPItdbCnUe37bnbUgkM30QtrbM+vAe8N8uVv28PgcZJANcPub9wwK6acRFHseqxPLLGCTsDdSzinDNWncQTbxtbleV0zMMQIKMklZqkcKftEv0H1L3RRlSe56kPmlcwBthiJ7MCYY/LstC4aNH/KEtTV1H28RPvaxB2D2kOJu9EcX+r+/s0ykkE3Ee/d7ifbOBYRjxjPYYF7vn2UNOReblrp1/zfue1L9Bc50dbs5GVxW30KMPexd3aCawufVn2DWe6/7q987YD6u1+WHvWdXtrJ/BbuSLUpZgkQ/iMwxZxVZq1hL0rUGb/E67WdOvP2cgDCQ8/LWaBvfrBMLNVf0eUDeH8a6LrEGW1IvQHsFX/26opoigRVom+uayqA/AYlYi7dtGZf5spmf/zw/tczWGnTzvfH1RtHS7IAiOe5cM48n2rU8iacjyMd5raBHCZorqyQBwvI5xiEEXLjGw+edmaxyX8uEFSVamn8qaWHp8nQdguJvLXYFsL9t25JoCf2JfbN9sDfg3cfBtTlYeq7PA5iuzUX6qK/laLm7aL+YoGuIe6uWlvAFCGiCSADx+wPuM0myIc6VAWUnbW7Lylz/Bqjw92Eo/CcA/jMA/5OI/I/+u/8SwH8qIv8xDA743wD853Yv+j+LyH8D4H+BdYj4L36zwwNgAdvWY/CjJ2ygJRnMhnpzmdhAc2uNlf8NdlNhSDXqfmcutIqoTbYy0s+o/RfjqKyNHjPr6gXRZ1RUMV2tvj0u56gLns9B5yzOVe7B1cSNPjbLc9vvZxe0E+ao94sRmNM6SLDGCB4UChKZggXFjcyFglhemRXXLKCiKA03mAE+4fWfQHdhyfYE+hN5DQDq67g9idLadc5vG/ox0SgCJalncN7NOeqP4fG0WEAddcMamhjaDDCY2Fy91w1LcUpDBMvrZEU1MjFmINUV4wH0CXXmgQzF9pEicRX5RmtWr801O6bVXLHnsIiBY/vNnEg64UBmGOohpd4tQK3ikESGZUZQV3UV4iDVnJ+vwBuAa2tMGnjraVyMp2+4qzhQQTmvG0TNiG3egYE9bsU3zupklUAODEoAUOAxDDXnEBbcs8uD8F3AtjhNACw4rIE/772OV6XZMUCnI8wx8PviOIfzUiiZ1lLSgB5TbVYHyvieVdR7ItvntRUddueiXm9BzK9Mj+X6l99zTq5HeWbZXABo275eR7xfwOfx8/qLv13GMNex5k+x9RD2n/dd7XM4UJc1wqN+FkihKTEboEDaU28JSOV8OWeCOpfz6a1lYMDMEK8Vn8ke8PF1tYwf617t/u15oxRtGU8NQLoe7VToU/Ox3WGW+20RWrPyIwMOqtP7iQXFg6VRLH2o64p778EsNXJPaDAdANqoEiTDA5zY33o39tZUO8kpAeYbOJvuAe1/FcE1ZsBPMp3FmV+c0Go7ehFcxBpYAMB0IKGWFsR3gZxjjgHHub7nQLATPt2fOluj8byaGaJiv+zz5ZlOywi3eg+X8wJIJqIU7QqB05tt7chQNFe5P186NgA6NNfKInTtweWVWuw238oHgXY40OTvUnRGmjluc+9o9L2aQHweI2hyOyg+LrEOa/B6ffbwl8r91f2ntF9Tzjht/5U9EHObcxCZ4podnu6s1wCOn/V7smcEIst47SDhDC4VzfejBigAoNP0TbV8r7AH4zlbg/ZC0XafcWl3x+/wWWfpvMFnJ3hSn7M4Hp9aa9cyIsDm7HD/Z/pidEatoHy3ZFS5DgJc8XcrfNPuDJ8NuQ64P9QA0+3Npw4hkz5qSzvF+68lXij+i89B+oOXuZcLmHFdj4C9Q6HD44CrXSSCbABrfDPXpABBluX8EQRPrLPBSbrY9brm+Kvqh9WvisReFtnvuhdcbe4X+1XsPQ48x5xc2Qj1+u0n51o0rsoeCyxrW66Bf826z2nl5QW8i3cfWHRnLAjH51IdngfAUjYMrImny2fJcJGWYIMlRHJOzAa03D/o66v7HyoB1sQ74zY0Osd8Mcdmn8q7Sz9rKhD7b/lbsFzxaV3Yhz7HGP+fGQqq+t8DX67j/+43vvPPAPyzf9u542gN+nI3xM2F1NRFmjBKCysRC9AAVybu0ZJqWcisL903p13OdCy4eY/1kVjfIwrovWOKoHYbMFZdecHYbeD7C0S9DtY39OmbugxzUufNA8/Sxsue253Q2n5G7eVrjxGGftZ6V4H1pd5y85NzYtw7xq3h9mert5s3N5RvEteczTZ4kWnOkyukUjRFb9b9QE714HoNaFRgz7gZeBE+cs+APOmqQP+Y2HajW/Y/udbBMAenP2acsz+mtTEr5z9fOj7+8Y79x8T9bwEG69MZFD/+yYb+VHz/P9VLIeyyIoLmc3R+twxdOw04mb/s2H6cTmdmrfUdDGb11nC+btH+8vyj1aC2p2Uk5s0Aiq4aWcb+dkD+PMKpt1ZDyIzaa7bjo97C+HaLcRqvG45fOl7/paK/PXz9e1ZvFkNI3YDes8MAh3oqpHerjx8TOkbWY/nndGoGNdsG+fZi91syF2RShHr8vi19snFidZi5AXtbpVCx9Y1Ib3swjeQ40T4kN6D7DZUSSNVv+Xj4+ygQb9UWddHM6M/pQF7H/H6PTIhlZUvwKnY/et89S3LkZjlc04EHa2Arw4DPQl0AF37ku43H055lc10Ebwm5MA0qXS6cdwrqeB2/t2wkU0CP01kCku9fKNr794ZvFv6ZpcMCVfnnTN2NKhipE/ooLbDq0cSYINsGfb1Dzs21Rs7UA7lSg1uHvOzJdBApG1vPrh/T1rBsPR3M8bTPnifQdu8msln8+PbITHdsumooe3GsQ7cjHG3fqJkZwwa9edcBFxWDiLGJzon+lwfk8FaO314ig2/vigvM3rzjAgMq1ciqqZgzPL/vppz/HAmCK2tWJb5vwoISnQMiUFMHo88Z+xCP/naif8gi2jdeXCHfwToG4d2p0/JhrBY5znTemVVy8CMDOI1MZ5SfuPZBZCs5vvuG+csd82UPqmk8c2grzHiX9NX37B8foDikvuw4/3BH/zgh73Q6p2k8lOVItW8VzRpcP7JFsM1J9vme6/uLDXgpgRZLCf15xqvrnfz6jD1NvB0i29oS7A+9gb2bNlJxVuP6tBHF4Q2GJe2dlzmM0moUU9ECJNCwSQKAeg/WqeESSM+J/j4x7xuOb96q2vff9pwpvKkd49uG51/Z89xOBT5OtOeZrBUycvyaSyu5x9Pt3hljP28b9N4x7s39mB2h4zEV/ePS+cT1eoLVSMeedca8FvcksuhoMwgIVBCWnyUz4hzQ1zv09WZ+4j4hv77nGuZPHz8yVpZ1AySA7J9f9rcCGEM1gdI5jaGgE5FGc/0cy0YqRHuW6FHbIVpezgzYm5cf0L8FgClmf5wdpexawfskcOGMmtDJ0QQfxI2IAqtv7SD/Um7Ic7q91iam80RNBFXI25HsSu1rIEp/l2NKJmLXdf+ZcJ/TH9X9eBPWRsyvnD3tQAG/7FprcC6bMTUGmQFjQs4zW9mScalqQb8zhA1QQNqCxwD2hvF9NzH13fVS3G5zjISJg+HJi/G0EOLltrLzAJu/rQPP0uWJGlJcD1PTrzpdeX8miyL2Do5X0ZYK0I5BPMGYGoRzb3IGWLTJrCBHAQRqF5wYbyATZL4m2seZDNV6H/Xa14CYc8nf8d28aDJwzSnZOXVvclFYD9uihDwEG4OZUGzH09Yu97pPATOvWYJ7VP/F7x3cT8IGOctW1fy7a7mWM6wWsDbOb76t6Y0UfRPPJghZ5nGPfD8JiMzPAAHjgHLP8f4Dy9+WhFUdj68Apsvx/6jLw/9fh4qVFUQ2qV02zLoJMJu6FXQcwJLNXTLrxWiphgJzuTiIdioSsAEQ15djmuN475FBjeCswTQNvP2ctfRKOpUMa88UE9cFs2WZRaBprNn3NmOd97mlE2gfEBMvdBsh54QcFpDPLugfAyrA8dc75i5o796G6HmW2kluigJIs/7pDMg9UzfvRr1S74HdauZ45tABCKBDt5yLNtRKNgTY2NVCEYaalPmlRmzYQ819M6rmh6IdaudVqz0StfHc34xJkb22JTpTwDM044XIaXlpCFo43WuwpOM5MLeG87Vhnwo8cxm05/TnmVmz6vc9vu0A9iyPaBLZTt2LYW+Ct3//O2YXvP6rZ4BN7ZzWhhTIXt2g8eOclFrkGKwWQRuZCWEQ/HpmGOxvbSuGdPr5mBmkk0bWBtd9zQ7woFghqaJD8bONIhwdBpSusg8gA/hLxkgKLS7OGptibmTiWQR5HFjq9j3olHpfBBq5qVfhqpjktv7sDRgCPY6VgQF4bTGdmJHIcLynPjeVlyVttUtAUtWCEtt8I2kBHqFsKFWsUTybH9RgPpeDGMrzRXDg98Yx4OZAJoHOLJWoJR2AAVXYSrlAyw2HwAmRdyCpfNdNqWZ3dFpWgAHLvlnpmAtdsZY4GWnqG7mkdgXHhJkeHyer675sqJrvrfp4WFcYTaq736s8NbJRwRqrQHAXaM+tU0bad6ETHE6u7y3dn58/fTysi03eowBYstSVgadrWYHNhcZ7E/oKLG1TiVreGAM6Xdxf6poUSXBmMtvZM1MTDpk4sDJjj4v+8pyzmimtmX8fewxFfz/AEozx/Ya5NwMYSieKzOIBIqsKewSjFUTg9RlJscMPQRURA2y3ZnvcToYVQsG+HRPztkFqtpI+aNjGi83j2LUs0Ym1TPulMwNhZxrq1pBJC59L70y0aP6I2LOcG2TrBRDKcZI+bb/s6mWANtbqZUeWaQXGTQybbQgfKqjg/t4qg/b63FvPZyOArgYmyWhQL6sIMEVhJUVbQ3u5l/n3ta85dpG1rbb2Yncje8fjCgDEwqj7vZ+3ZvmvTvHlOpEJrTaMw1Cz5T87mmApO5zDHR+J+12y6txPgfR/ucYo5jslArY4j/+7lu1E8HVds5XRED6J6y2V9Kv9k/51Yc3SZlwEbCu1XU5rXR22/zJ2KM8WuifqIoktRRXZ2Uu9/atMSeZi0TJjkBljOTVjBwaxznoRTcCV476sAgJcHFYkqGDCggimLHwZLt/30rQ47zJOCmHZJeejsp/aF+vxtw7asVivyMBaSlkNz1XH54tzL1oa/u9FHHKJlz77egsoGMBS+muf6v6/CkrrmuZ1Iraz9fKl/tf1e/D318X8AcRzBZhA8JAgcH3WVt6xy3N+DuL93xTKVvWkkbNiAUSXhTrP3A/o+159e87r8ruJSAr5HEUL8K/EF+NUFx/sAsp/xTxdvnO1r1dg7HL8LgAF0h/ZEi3EoYAIQBisR3YyJgklu5MbY57bX2bAXmzPzAU9pzqKQEy6qAs/As6G2DDvhhq1cxptDYhrzQ4z7KdpF7D2E80C0nz5zZHp6oHThBsbN0bP0l/89YbxugfNH2qgQ3uW5xmu1nzs6E3QPg5obzi+W7/p7cfudHozrhH4qoIZ5um6D3TkAlDwntXtmOhvmUWLZ3FntD1nOgVT0YZGlr89OZ5+y7eyeXl5AS1zcyd3vJrzs/2wbP8sTm871ZWqi3BV5xwI2K5SBThfjDHRToWc9hM9a5i1twAdZJozdL4I+kOwKdyxNwYF2QXMIvI4v22Ye8P+lyM2rjCqW/N7sev96T/YMG/A/e8a+tt0h3w6g+JCqXOnJjapiryLU7DmahyyPq1F28hsp+O0daeE6vNIQ7RtC+1PPLNfSyHsZhzJZZaC91WyF9GpRdUC3K0HUyEAhqmrGjXPPcvYsZMFN18a5DGd9iVW0vD+zMyXz0844+448Ty6ec9kfa7Bdb2PUoca1NXrhlvQez1PZ1Z1z7573/bDNpbo/csMVdl8lOra1LZoAjTvTkGHjhsGNM/HThDbFp+DL9e4T3sjEEwBf964vzFyg5pqa2bzbKwDQOGkUD24lWwqh+0LZeaoC6zvwpU+zXvdurFuCqAgB4DT9Qj23KIs+BJgbNHdgQ6k7Q3DnIaBNcijY+mAR2RSXDTXHFlYLeX70xzj/dVYYaBzXxhBe08dAdXo9NM8CJBjpJM1cgwDoKhrzu93LRsqQbMHZGv7qwxA46OKRSdImV1t+tlhrKU63eeUwPiUzLTfrB6aTCEFMmMzJzCKttHT5+t+A3WAQoeCLW6LgypjQH49ofcN82XH8487xmvDy98o2tQoPwhm3jmgbVsBMbbvrf29qePB7g187uO0zPBubD+r/e4GYrw7W831Eahzoyxl1HRm1fd/HNnxKRxXBnweiNka8fsfyV4IMMFZgGx3HEEk7RdtJDORqpBj86Dx1cV/R4Bt0pzpt+U6CwBdkAy5GzA3Wai/qSVUsvLVkZbC0vFAbrruUDuNjq2nl1uQXutghu4N89seTJqYlxL4Sgm4F3q0aFDOPzndsyRHCDjXQN0DV4Wth08lbsu5yu9ZvvVVIFXZUQEQaL5XAKIDE4Fmt7UW0I/1fMyKU9elioQ6+4DzJLJ/FkXl9xy9rln2uPUuEPR8h6ttLPvvUpZA9tVtC/Zp62JaGPF5Bttn6N7EVRlg+b5DZrFR/yWSafye9obm7BuW7ATAJXWenXlBkcMuIVou7kMv1HuycWtgXdfHJVg0fxLL75jBb4CV9tx6gDwA2b/FkZ3IfYfXoo3inBeQfckIX2ORKOHN95UMJRM6dBCGvhh9F4JiVa+KYIGvdZ0ANom9IZigdT0QVGX8xfeWa6eAjuzmEgkhMjmvgO8XQWz8/mp7ylr7KYhX57CJgQmFUbiUTrIcduTawxhrt6nr9S/lB8u/q+Avn70mf6Z1Z4mzSdoFnYUpd2UUzMtatV9CxO+THblqicinYbmsqwu7+NPx9wAd5Gff9eN3ASjIOdH/9oc99L5BXxtIdZOC9EVbOhFHlywIXlBUD8ojwCULYCvBmgdv7A1LrDJadXkg0dlSkiUJJaCe3qqx/3Baogh085p8BnGO4LL9Uxpha5GEb3u2ffJFbvfRod+sPrW/HyYeNe3v6puODEV/e8YG3T9Op2EBIorXf+0vtTs2C12UL4vTqBiYM2s1/WW+d8JhAAAgAElEQVSUU9G1tDdqgAr7ETejM9I4dWDezPmdG7D/mNh/zQ2SSs5Lvd5Qa894kmbHVlglYNsa5iZeFjFC0Gv7lbRxm5+5J7JIAGb7mJibgIrU7GAxb6QqiwlnusPYnxO3v0iUY7Rj2iYF+34+qwEVDKAZmACIjB12c5TPb85eaMDxHRgvBly0h8TauLmmg82Jixh9PMPpJ5Ip+24ZYRGn15vxilaAA0GV+s1apwhw95XWCUSGTVgS1HtuDKqZjfYWmCZOU+rPgAjy9MXo2PJ4JiJL8aMaQAHJXKhHBEJm8PXbiwEaTzjYMYHXe4gv2dwIBC6CSREq0kq5yV76JkME+PBWlfwbRgAXcBuilzEN4cPXvgbRQJZTFC0BJUhj/5GbBkGGWh7h687mVpKpgBZBqAFCGWwsjjGP0C8wgEQLrZi6DkI2xJzAkyKHBtKI9wlXzkOdGxHg5eXn8xZaExcnn0DVvnsAavcmxxnZ5sXuc82VrLUJairsJWprRxBmIvxaAvuY2SIxe1z31lhnRsVXueH8wz1qej9pGtC5u9szsb0vBdXmbYssLA4LeuU0xpHe9swaO5MpSiPc/lJMMQQmWcIHZIs+32f6jyf0tmG8bNAxVzt+36Dd16kfMkaCsNfgJNZMK58vjkihv9vYFrCKLKQtgXFriS3Wxg2APGzs5usemc3zH7zi4x/ecN4NJH2ZiH3OHtjbBU4PzGelwjfzYJoHAsyqlyBJX+8Z3HqJJAOu9hgBfAOATAdxuY5UQziTwXisiWNkBhdI1op4FwTfUwzcEYj2pG7TbiJ9A3Y3UIExEIC046oJHvP9cYAk2QLmb/S3J3S743xtLt4Ge7dUcf5yw/m94/wmGG8JdGPvOP54B8TiCzkm2uPwYL9FkEdfhQFWL86q3Xsy3MKX2a/7CyKTKS5uvLQvBfdVC9Zo52OlFqeeQskc52VtVjqxK+pdw5Gg+/M7i/Nt98rx/dReNT5XgozoDX/JVo4JYEJ0Ql2ATbYtbZVIMmkmgewZALyoZIlEHcsv9tyk7BsFv7aOZZlEZERJkQ92HsKfDPt1Tuug7j5iiJPrjCA5srylHZ61mRuRrJCzWyZ9lPFiYFoDzSiRsGe1xFyWYEwvEZIY43KvV3CM7K3HAZbZ2DURQBzbUFY6PUXQUbpwcTyVjOZR7hVIQJA2keWRwlKIrwJEzktfmEYAlmROCEYy6/6VL8+/XQPiAEVmrqn6+3IvwXSpfk6AFN334XJtAhH874uuwVddK+K/6WMUH0yOz583EPJMHQLeN8sMWJ4newIu3Zi+loTTtEUs0+GeRr9ONQDOGJvKguTxKZAu7/8ka7YBrXxPuUDLmDcBGXQBJhTg0QfIPh/Cjw6WX99/tvZG2ecr4yWYm8XOAeafBpundHKpn+Uc/BYwcTl+F4ACxoS8fSTlm/dbkTEajFhQ/tKrArIvtWJ8GYUaAAQRWssX1zMy1kbnM6BQ+3gryw7qu8RJI6VVKMpjRqhuTmFkJky4cGrUHW5qDiMEuRAaMG+bOY81O+4lAbptEJ0BnISzPfKa268HdG84Xzra01HrhngJA+zjgo4X1D+rHuSpLMJDRNFJa2zHjGBeGzB24HwVyGhoTwWDecDYGxYE+Li0pOrK0Gi5WamfE7DswjnRPk6r8RwjlYr3DToamuZSNrCnmV6DekcJXrYJpJRakD1imSLrzEGxymxjCUOj50S0NfM1w7XCI8Q0vU+xtc309bUDc/fAxh1RyyqO2ARljtycq0EWsc25Z618BLxuPBehFwaBuBiEahS3baE4V4eJTl3Q58aRmwvXjf/v0ybE96B3YJ6JzquuVOiYMEVQ1K8b0HTlacAyD5tnPB1N5wYrYywOA6QnCh331pOxUOsB3ZnRMa1nMxDBc4zdRfCGJQwBKtROBMGouDxn7WkOIGhsnLM613EdtytB72/AVeNWC8pdO0MAiJKE2PgKc6JcI+o5PdMro2U/cM4R74/XCYFbLOttmUfxwGC6gza8W8e+BzXe7PIRa/q6ngSk5nINC0L8yrNTkZWhrfcuCjVrGO9DKMlLnJPv7dx3y6jeXSXftQmqYB/b5lJHhro3OE7IvkH7lvtD81azUfrQElCYavojAWjMmBcKxAqF6jpcUNaz6bu3HmP9e0PJigCARhCSa0GsN7vMdK4uSvPLZzmPZf8EEEA5mX9VOJg1q0v7u1pGJM7EYpD7uuHxB5tf8X1zBbCLgJmWLJyPrY2VPZO46C4BBiCdSK6JeduCEUAgmIwS8T14KcObGTzYWvS1E7R3Abt4BNC8NweRNN9t0QDObMz8/F5OOfduQRpcFHr30hx1xX3WQA9/R87hpaKp1A4AUrSXYv+C3d+4N5x3CYYCQXG4LhEa0D+6fe+Raz07HDmjku/mofEZNAMH5MPn7jQQXd130y5esii2QCfyHZe+BvTV/lGErAZcbuuEtdseCC0CgvXfhQEQh2p2NvH/Xo4rqFDLFL46vgLnaCc9IaBjxjsDstXoR7CcCFjABNpqmYpP9OSy/9aAK8A4sncqcFG/6/doIPxlDMK/MR9QJf++6IaMuVDlYx/iPjNM60x4n/X95VwWv56tcGOtk3nknZyymwoy2Ec+t/ngbqf8mQjmsoQJQCYbejPGw44AQAkASNnAoxziZ2ug+EMBUNBmHki7VX0mwNdpy3ehMLMjgcrnc9882G/1+rWcRIs2yfWa9D9kLfEwNkQr3X7WvTzEOK9BJ/ct/o5r5Oov8KglrlwDreXeRD/hq7Hlv8HYRANoYkv6iNMaYn0sz0LWk2v/5D3OEmCXWFPndaQ/H/X813Kn+pwAWCZmX/vCX6raU/V3sd+U51D3uRi7ERy4xvuatkNqXHCZiyVOqAfji8scfHX8PgCF6eJhr3dAFc3FpKAK3G9WekDqDp3GeDESuWf2BarAvmH84b62iwQgfzHHtalaZuf7DRE8A569adCmaLM6dw2zNzRY4B5Zoy6rHVbkgvE6R9aG8fxyTMiuTg9P5wJ0SsXFrlqDvhQHx43vvJnh6HDDtVlLmrk1nL/shsCeio9/uOFv/iPB67/a8cf/44aXv3mi//kZDtr84+uSCWPWSJ4aDrdluRrGL7dwpE2ACVkv6WUO939zYrs1nN8a+tMccQ6NCoBNMDZrh9kfAzgVTTPoEzWjOVyMrPmc9EfS1oQUJcAMCWCO5O5BfBkrOqkv/+oB3RrOb05pPdWdNwS40n99Wius7zvGi21ewW6YiiaKznrhUj87YE5rCGi6JgMpmvuvZxjUf/gvBuYm9ruhmK9bDBCfT7tl7xoR0nNksOTihrjtZuKOA6qa7SOb06lGbk4sfYg2NcwynmeIDVIoi6isibnZtaUGwLHIJcuOmoQATrAMGFC8P0DQp353cRwrZeyrmtjqZH08sg0YjeLzADyzKLBYe6GP12tF/aYYhbrWoFXRQgdvwmkKcMBpo6SssQ6dgQ7ZHvX+z9NLIe6ZIeN173cDPUvLRltUE6pFTBHIkorbDowGJVAAJMDknTtk343B8ngaoFOdyWAZcNwnoC3FhFqzTLSkKJ+BDBcGBY8ibCkiwO2GALt8HBZmB53Nl3sIvqVgZnFMxrD1uTEzIqF1EPoKXIe3HeOPL5hbQ38/nCLvzLVfXi3LNoa1dXxPqjrenuk4uBMvt83s/NOy4qeL+VnW2YHPncGXa6C8Hbbhvt7s3eV5gRDRm6+vwS6Lv4mDm/CuQi98N6cBobA5NlExV2jfjbnGcgvt3YLXpzsdW2ZiF1FAghebt0GrILEHT2TsYcJBzZlrr6WIXmQyCOQ0mOCiqtkbih97VtBU4KmPZGtAhgHi7TnRn4r9faI9fF8IJw8GsAKZDBgeXBBcYeDRcFFoHwAk6c9kBBzWHtTE+gwEHK827u3jtGfxPWjeejAR25i2b/368JIFK0ec957+pu/9tSuRUXB7ZjhrUANEpxGIAeF670C3dbT/7ZsBp87a0eNYwJVrAG5sEGNevPxrCgcL3v69F4y74PkHiVaS6vv4cCq6vVeagsXMPJJoNTVr6Ksd6N0YFa5LQRCPJW0yFPPbDccvu2dxAZm7M0mz7A8HUufG5xezZD8/idohs9vNRDs/g9ET89sNc++YNxvn/jHQnsOYpef4nIFkWZ0as41gdjy37x9R8kfG1/U8YwSjp11YXKumySxJAayltNzneD9siTzT/tVnhWqI+sX+fZw2PgVQqWxC3S5BF/fj4T4SmRNROlZs+dZDtNRsY4L9OsXe89se4IkS2Ha9AQGWPVfcpw4dp25BLlyLKgQUgbCDy17rti8AL/ohT39vDi+NrOws6jHx+wLzf+s+7n639o552zBeNxP6PHX5OwDgZY9yDSt9np+C2gjO6RepZtkIr+VrorZ2jGdiAEkGBc+hWtqa0nY3QJyhTAYgP/88bL+v/l0Fexik08e5MMdQ549r5qqXUA+RtWTNReHjGkw8BfCcItyZuPD5r5oo9TMTUb599SfjXa2+pkjaGAbYTAipromXKAEtfuSY5mupemKsY4noHZzR44hy0xhP2u2GDAI5PtGZZDhAMcxXizI49/Ur+8WfVVvpBufJRYIFqY/A+GgGWCW9QaQnS9cFRtWFtn8TUPXj9wEo8Ajn7oK6dImNLXqJX4McAFjmUWJDj8ElUscXg4uZwYn/nLwPOq2lCwOvb3Q9XV52u2bxL3jv5b8FWXce2fkSeAc1C8j6R9Ld4jnys0QsLSNsDoNulvAdu+D8rjhfBeddMHszEEJy/AgSWE02kVK9oJeIIN9uxG+jCVQ0QJRkMtg7ZTVevokpsNQWqSLag3Hu+XvaiN7Mkav1V0BmWKvx8zGYt14CDjtf+zih9452Ol21bIrZXUO9Xt3GZ3odqgEukuyP+KI5suLZqMqA4L2QKk2w4P63J7QhdCxqRmWCAbm4pl8Dhp+D2Up/TqGDcEUO495mBqIMpK+Uui+Mg1FzJTeE8pyB3NYNINYDDWNhEzGo3C4bYpmvT+P5W0fN2tTvcyP1tRWIvActn87LzzJoJRvktiNoTgyUeO7rsxKF1swiKebnLA+AoLyJ10pWyuA1a8R7r+8IjVoFT3kPcOeU16y2jtdm60letl4/hkTX2rg6tpFFLNevrYnKuyTBZnGhygCD8v7yXPUaZYMHbFMcE7K5XZ7pPC1CY3499fchstHudCkadOeaLg76Vub5sgeEPeThWXJzkHzMu9nY/g5EdwSumVp+4gCC9ubsK8m/oT6H/0rWoEnGxOxW599oL0WwtDAubW7rPS/jzvOpus6MZcwpRMyssU5J5hfHB/jMKorzIww43826j0E8a80yFrF6Z+GyVmO49aeif1zABL/fRVzu2s6WTAmfa2wlO1vmFEAyzpSMgxndIzjfbPEJ39Pgtt/24YaGZHZwvTFAjxKHWcadY61OWwftdvEJ6p7o9z17sxa9fA7P9IYTGF8uz0eqe3NWy3laMkAFcxeMm/0PAsjIfZeaB+3hIscswSlHjG+wl+b6vtSeajEGBRxkED59rEWgKuhNDUwjU2Ra/boygAWSsVPf2av9+GpPm3Yf5hM0nK8EhpwhKqbT9YnF89XhdvDTflLBncoC87/FPHEPDP/zUjpW7Vr1o66f4UvPgOdnujT+maUNXr3v+t9fPQ+wsBC+3A+ALCPeN/fVnTm62fqDFL/hcm25Xpf/vOy5wTrwYHFpuXr5vl7vnX/29wbOMok/8XmmpC2L4FkD3IjA031T7YKpZg9sSvz+uVeI3/do61xe5qKWIcu4qO77/C6fibnlfnoZBzJ7/VyfwIEv5sGC6J6f+8rfEVnf55/4f5/+/dW7Wv8GFDbnZ18+/SDeg67nLUfMMe+xBtqzjNcXbNpPvuj1Xvnf1/fIf/9JA2EpCxnL5z6VvwDpF/J7JVkE9bkLJhVtwE/u8//NwXXAvSn8tgbTIJRP5WI/O34fgIKIicbxJdo72l/egfcPrw3KAQ4nY/fA8RxGD5wSbAER007of2E2oWTgn4dN/m6tZCigKM/Talf3jvnNsg7tNNrR8Qe2A7Os1/y2W1aqZso9O66bU9u4SajafUxN5L1ZNqQdA/JhIoz6/WZZ9H/0i50zAm6FOhMADwAKbG+Grpx/fMnMlVM19x9n0Bu3D8Uv/3vD7c+K7cMdyHuPzgbbjwOiE9Pvfe4dcutxbR6zN3z8Oxvaodh/TECBdiTVnxmZ8Wpjevu7ZzpYfnxy1NXGbXr9uzQxzYKhAEykZ94sWG8P/+/XHfLYl3oy3XtoKBx/MGGv/m6UVqO3+xQdA9sPhMaBCav5RtQkslT9w9rMAQ3j1TeHzTaQ3gTTgwRTtrb6aW0WPKmDP3NvGK9W4tGfE+3PJ9r7gZ2boRvNSdHGzZxvdQq1TkU/PHDohpjK88jNZttSSXmag6JjOJV8y5r8OS1j2CSQ6sx4S2Zc3t7tfN9fc362DshmGYpAfxX68TAhwN1rQR9eS9w8o63qbZK2AEBMrJTocxFNU436Sz0Oa5XoGfhPIlvFVhiF1TNrNxOqau9v9tnCkli+A0DwtGt9PFBb7Khqdp14eTFnlrVp1fkTR3GpWP48XBfhBFSSKVK7K3gLIKhaNo+Zmnrel/uajROxtkhanmUqgAF9FLCIzxAMlW6thR5veR/A4uzKt1c7P5+3lnF4tkLfP+yzbF/Uu91j78Dbu7HJXPNBzxMsIVG1Obe2pgmEyMtLghWFNinPIx36SwmGkH7oa89qW+2+WE4zf/kW71P7ONAegvbrI8smdmtpp61B7w3tcdh6ZqeS2x7vlu4b9H7DfHU9As94DxeR7c909MbdgrP9zyNq92VOo3l3wdxdmLCR4ZUAY387F+YiAMy9u6Pq4+I1++1xYnzbcX7v2FW9BtveDWnmB9cSiv5+pA6DSKihz73DUt4uRLg19PcTUGDeTZC3PRRomsKMKAJ8LI/guXt3uqRCPnwtuFgd28fVDgUB2h6ni7Rusd76r098f5xLK0TTKRghnphG3IRa2Sq6vT0yM3u/Ydy6ZQTHWMoMsRmwxO47dAwXdXLgAl6YsLBurIO2zz//QWabZcKCcA/4qLk071uyDsVaLLfnWLR2JgF6L6kR6oYMRa/CfF85sYAHuBI6CPNuYq6tdhjxco39x0Q7PfAX8033txlaRdZi0tvGOTuB984kQ3ue2Vot6PirZoL4fXENQwxEkOeJ/e8eCYJ2zwQfxoCLeXSQVxz009vumiNYnH69bZi3nmyK6b7G83AKfoqi2rsAzJvP9V+86xZblN/2HOMxUxekNWspzWnkPkgm1/jw8ekFiPW1xQ4wfAdq4O/PFhlclnSggHb+DsUcxE3UANHHkh1VyrvDoJJrICje13OX1pCVUQTAym0JbugEtOiAMaHh9mG+bDYHe7fx2zow9xWAoWBjd72bXoMmtzOlo05eCwZCVoYqs/f1fQU+AW0a7MxkG+J5uNB62aN6Q4uSQrHPnN6tAkgNH1W0vUf3srk1a7OuiFbxWgL3eevxPFzrMX8V/Cjzqy97lh378y2tfev8XdmdBL3mzMxzXEe8S0zah0hMhZ/mLCoX5V7AEDK4AyTwkgw0Z3YIxFuBU0wUJ3K/r+9YBaaihAJe1tKspTht4ES808HsqGAan8dBoOUafF8CQLggMGSVVj+z6j5d7S79rEv5VYqkf2GneW6W/xRGrFB3qNr41hNMha9hwPzIMZLdej0/gNBPu4Kb8dFa+lyST7Uki343O5UFGFOSJb9x/E4ABfiLNzILysMzCfa5Aiqwr3dFNKvgCz+n6wsZBxchnQl3UqCKRgbDNCcr2j7S8C3RNlBbgQXCPxEoZ51c3rt1dpDye39s4b0B8ADWbrDcOlHQcEDPFA4bCnGmwvaYePlbwfauJjSoyI0WSMpUca7Ysicu6E6iiZP5vVaAryUVpg1HbOkgEX0U8daPaUDrZqDe0pDDFDRTb6vIumFR2MLecgMMBsS0DMv0bg4EWYIlwefr1ut4vhq1me2tIBpj2MaEHsB4cToqh4KgCINkBml+LYIPRmFC1lbTSWY9IgFhd0SX9T7L5o+yrurvmnuFrcOgSu9ewLKG3qJ9H8WB7CQtjRV/x8wXyhpnvRaN1Rj5+eIExOdVlzVh4+LPXevR6vEFShvXqii9FMPHGnMRLBTOKxJdx64a3MjYzOVa19ox/dn5/G9XOlkwAGiIgUT9efjcLOPAca6MkOsY8Rm4YTXA6jrKRhXnIxpeJ6OACnSAp6aQ53R6XFAhpQAUa5BvAFep7RPPtnmAnwwKQ7bje9zkqmhUOAHFyeLRL/dcPm9/3/yaUs7j80pHKLKpX6yJ6tyUbIaK2YvQhXGbYtf3Hw1rIAkYeIAGYTaCw6D+b0HU4n/KPgJRVlTVxdWB9XBSfQyq5oGIaa5E94sIxosT4OePlmlDM/sNLPtG2OPeDVxgkM9x/Cq44Tn436zZ7vk7KvgvpXuAA6g2DwuzCQhdiGjpOTVtf1/PE6UVHG+1krwYS9r+JgAFh0c641nPnM9le5ePYUPqGLmDJ85ms3sr98L7YnAnSKDZ90VMDbr0Evi52KEyuBR/Z66CfFLGk37NF44eu0WxfIdsu7nBWAoMxLlfcw4cxI7Dny+6+NTnrI734luU8XVwTMt+/el9rwEA1wSwZGhzD5fwGVx4I/6unVT65hlj/xM1MA4HDa4BTbULvIfLfMbnVXMfquydCorqZR/nub8KVK4ZU2DNJv99jrLOl/n6rfP4PVpZh9XPk3KtWwOGALvZUimB6Kf9nLfv90BdISXdepTxdhAKDA7L+uY92fPnuaNTS/j7/o6K+UG6+fsQbFjJc0wfy3GZ1/qTvgDjxFpWKcZwCwDF95dkLkn4yOw7r8XGGxvY/+caKupj9YmlUceVNr7oSSylnPzO5fvaW/pSsR7Stn+1/yr9qu5+JZ8VGkD432c9RgeP8I9n2KlPdf1A+gPuH3A91HUso3QHU3UtrQKk1DlcbkbT7yDDIZ6rff3O1fGs5778Xq++eP33lY05fRHGnsX9uwTnoZdWfCH9QjMFcN/K96KJeMcorLh8poIBfu9Sn7va1npc76+JxYS9rc/+xfE7ARQ8cPh4upPntaS33fpHzwktfYxjkfHgC12ROxq3oVbnyxolbmrctI6B+bpjvO7GGDgn+p89e7c1yHOgvZ8m1HUrGz0Pd0K0W01nez+K8dtyIdPg0UC6Q2GdDTwLcJQFNBTjlxvO7xu299My4p4lmXfLrs+9Yfv1sA1bBvSci3O3vQ28/MsHqoigdgnnaN6t/rZHf90vjJU7JPc/5XiLU/wnmRP+u/52WtZ9a9GRgb22ibS1D2uDpJ75k6mB7rZtQgU4/rihf0y8/Ms3E5n6eKy1ufsec2H0Wcu2bIDV5H5YNqE7SBQZIzH647g1PP+qY27A/U8zdBH6c1rm7pjoQ3H+QsE4b7fZSgkEGkYX14KY0JuYCOZrB1tNtqd1ppi3Dty6te+cM2qUopd8OdrzTAAs5gurweSaagKgx2YlgAEIrUM2Nzqvr58NHY34xyPVmFnqoP6+6Ga1i+fpGelp2fnN9BaWWrnpQWWz9Y2H15B7LT62nvWq3d9XbhIlyNTjAH4cxgDYNstOqVqrNFXvdLDZM952C55qRq2WwaiGzoO8fWRAX1Bm9fpSkUKx1Ql2y6hqvHwX1nfDs2GPh9WKcl57y1o4Zzro42n27FZQ6XEmMFrPDyDFEy8b+XH6vZXPx88Tn45dvL0kNS9aCXg1x0M1W4n6eCpSH8GcSsvoyb5FuyV1nQe535Lx0gRoyVCJAOvlZtnr2mkiOj5sa8nMVwAUP3tvuW5YclA3QP+8jAk8z3XOag/qj0eUvEg3Zf32dqB9HBi/3KF7AwVa0SzTPG/WBWZ706Bqz1s3wOA9AdQQyb1b1qUXRpplzFOIrn240v8vd0TLtFvD8bph3FvETDLVGG2sk5zT5sHbZI3XHbpt1v1nOjCrivbO7hmKrgp9eomIGLODmhPRzvDeMZvg+deWKbr/zcM7WRDYZZcIe/90NqBZRlJ/dXZMk2hDGnXi+93sVAg2EiwA2sNq2vXVmHrzW7ZLDiCmiV0LKCBAM+0JEc+ONsy9ZuY8iJvWmWl827D9paFHoAJbIy33d3FQV46J0W8wvYzUOREF2uM0Zl9pg8zxlnNCbz1o9iyfkE3QPgwoF9fdkOcJ7R36sjlD4LTuIa2tegtzQs4tMnKsXY8M/b34JgxyvCvG7U8m+Lf/atoQj7/qtj+5LgSmLsy9DJA0ug7RVlsJkflOVEeX4a28uScxAPGsnLyfkDfruKF3t+lRg+3Mw6MECVq0CbwrSnazaFHiyc4YVt+JsP/GMC1rYALbu+3z/cfTNDTOYaAZx4x+DJMDQAShCRwa0BZAQvcadwJBd/NLyJIBkPuks/BsLnVtt3sFTWinGYzVYLrsQUp2BJ+1YZ07v+fIsNd9cnqQPr08bCMTjYwXdlPYbY39+Ij7CCDA9/7QGOLzFA0VeZ7Q44S8f9hecfr+tW0Q6uhsPd7zhXUgq0j1AsaWdproN2OtOIDXWtkLxNchgY2vjjEh45nAQp0LH1+2nMWEizz2KDdTha8BS+Yx8URB37B1XI/neh8qYqxPAMFUPPQzoH75d4zVZKmnrwV+hnumqiU4WoPed2cPjGTbAK5FtFkJmJfaagFba/vmmkgKkKV5HNNREgJZmmsJKyS4w/Hg3wvr2NadBlOELYnDrs1S0sEEwpXR01r6FM33G7JqzwEcLvb9VVDtdis7pxTbNAaq4GisZcZ405ilwhbbLCMnEBFZf82OW65PpWNCdh+32tZdbK8Fx5eLzksKA4ig3WVJbgeoFRdg1lfJoutRu000AcSZqq15bPAF0OHH7wNQ8KBQT6P/hwGvlBwaLFVEmogbwTTn/NPRkLUmXmv7qZWZo2gU3WpwwEIVyqyEb6Dtma3l2+wAACAASURBVOhYZJf9OlaT5z1OfaHH5+J5utNf/XsTrqcwM4tD0GEMtMdpbWCdITG35nWZ9tJYW0MDJaZT+NtzLJtjUCAnXPCpJTHCDZ6V0CpkjshkkYYbopFfZNbaMymP6H6OsumFgFcrtWT+wrfTa3ZFsmTDDXE7LOOtvUE6QSA37MMNgbMO5t7RTl8SpwEBnO8QAOLzuoFsNP4ewMjwTKQi6K2kAW8o64OniY0h53beTMSxnTyfG5EmYAaIayTWMc/HQOo6xCzpiHWf15Op5rCz5+9AgAlGZ9oymBexF4EbpI+F/btsoEGF3MJYp9gMEDVgQNI5gXD4FqMeTu0EuFlv6bDH8/UUcxQpWbc5rd2kajhiqY8wU9CHwpG8n1pziHqPLcfcs+yfssXSViFE/q5m/GcLIEUpgLRttqnsu4GfjqTHWHiQLZd5XzQGSu2acGMCMhhrCRzFfc3T7u1n2YPIPo9sQ8fj/MJecgO7ZJKX4J5Bff095yycgWxlVH+P04HgmqXjmh4DQnDlCibw2NZ3wYLabi8/AxEg6265d1SaNu/bbfqX2Q3ASplox5pYia0A/YEQdgvHsAJ2qgEmiBpYW+0BWH7nwS87DwAIu6NNfL4M5JzTy8HOFPiSyuTx64ao4GN4cOECsXtzBkV+nHZ66fLAIBRG991/nMHagIgJGLudbszy0qZwv4sSlp7OfLlHG08DtWr9uupm43HbfA/0YHV66chutORW5pBAQi2LiCylszIKCdBsuu9Z2FqKhUqWq9nhIDODkNa8C0OOExlpNv8wZ/qcEJiOj24tGGpyGusNw+bI5g4BCIkI1EWQtRk4ZG1Rp3eV8E2Y9rwGCy31FpZ9GARUYGUHANQFibcPYyxKlDwQfJhrtpkaTS4aagBeAc1K0BsH3+3CFs12dOodNTa7sVoL3po9WxWnowOvfI+93PCcwAfyc827wFTwl2tcxH2DnAMAFsheMqLCtQmkLa7rrWZauS8yc+zlEkLWjYgF8yKQ4ePFvauV96PaQX+XlHsV13R1/rmnLg9agvCJtIUMpLl2+Fk+HwM8KX/nKdlu0i+l3+62fq52x8dIp+ATK83vPXyeuq9yb+Je71ljC5A4JxwT8d9d/B9nCizz7bGEMYfdp9w308tAdkWLMSIbgcmBshcIENnfZZw5l9xC3WcE/B0Tt0PFZ6tiiBXsDFDgLPsR8Ck5AiATJ9f9qkuIUS9ddRg8c7z5DDzq2iNT73IEaFP2XiUDsK6baXZq8f9ZjuP7g7U1Hjmn9fv+DsW7NOfajpT7jNL2zNjfzTyU5/Jz/5QdG9MmOb9XxpLHLYuPRn9YBNk5pi0lCsvYljgw7st1CRZGAmDnMWNtwBs/y0SJFt96uc5PQLJ/21Gf9xNb6ydgw28ACTx+H4ACEPUhep7Aw+tumeFsLdSaTQkWIQCmXSBvpv7+GbH1dj9uVJTOB+D9vM3RtBq7NBr9YTVEjYhpF+sMMBQqviFcX75mNfFNN+AYmVUuGz87PsxbD+eu//pIx1QEKhvYP7gBlgXzDXd+7yECZfoPzFb0YC2E+KFvLFEX+Tww8Q36mi9YGMHebJN2NXRM+qMJ6CwdKdSMV3tkXZO680RgwjZ6WMaodkHYmmd/SuvHpzkK43UDVCyzf7rOgWfG6YTK48yyib1DXxsm7fzztFaT3242F9E5oXkmU4FjoinQzg7AnT2fW6P1AlSr3X89MQ7TcjAgiNkbZPtLLt+7fWZ7s0CjnRNst0W1X9vgWpaVDAV2pykfbvy5Z7gzN142yNbQRVJlmwEHDe0YjnBX+iUzKKmkD/GsRnVK6FhoUaJltvl5lAz2BKbTIj2glq17Z4G26iTUwO8chmq+3KH79llYkcBPvEc9O1XUjHkTa5fqzyzHCZwCCivqh9XXYyuZ8cNR9tvNjD+Vx7ctsRs6SG5E1YGJYBJ0IFpGdgfZ+JwPrwu+7ZD73X4yExMbUnNHtYiKXejd9mJogg69uy4DQQWkbkbbE/Ge9oypDHxx7Jvf93MA3VF9PksBOT+JOba+jHvtpENUXW673ycdlhlrjo5hlIfUGvprmUE4iGVTuzoBF3oxbb211XKnZ3o2aJqjoEDsA1JZEVdQbWam1a7vH/s4DUuSu4EAXdAORRsD258ekPenZdOpRF6D8pKBam/eVWdruf94Gdd0PZtxt+e7/82Hjcve3cZO6Am0pySAEYHMJdMwFO3jsThf8u0WQrV0rqOW3wPIOKeIrbMx7L3CwP72jHvWe8fxx1uO8/uJ9u4gqc85RKwzB9ciA4arE0R9iVvaKwKL/F2w5oDouNCeY3Fk5zfvPHRZ96LqILyPJa9/TnQHkEnpXubdz6PiIKcz06YYo26KATu2Fp2dN+Flbk6NnoiOArYWCCq5LsbHM98ZD2gsQ+klLr1F7XXXE3q648sSJT8YKOhenl183xA65/5rggrTnmd7c1CMbBkBoqzlJNvMwYTds/L+vlIt3ycta6TpvDM4iRcgnX6oemvVbsviMOBLm5ebbg1yln1DjcmgACIL0+x7/XHkXumMpbkZ8CGPkYmcZn5Mfz+tq4Tfm77s4T9G2SeDQP/vT6rmDF6cwaLqTAPqX3CdUSBz35xNxKSRAnD9BO6RZH/wWkVny9Yz8t8EGp7FjvaW2gMwm1HBhKplQ7YC21gvKv71mDbGIVJ+2zB+uTlT01m41KHhOlZN4MkPdrGxddI/+8zuhyjp2bRpvVuphts2ZW04bZ+qJRCvIIgzO6Pdu4Pweu/WRcTHcAno8Vw6ZmV9fEsmM/cq7k1cAyi2gyVMwqXqfjp1W74Qk1zmmfNZfaPqI8zyDlYgRQz4EzUQm+3KOR7y8UVGmeuN8zE8RipxSPz0/+l9R4hU0lbEefzZUTL3ZAj4/cjTtZaekoDa9fCyE2OqD0vY1KM5o4ClNECWHC2lB229968SLnV8KSJtN2Hv9P2W52HSjoxcZutrx4rL2o6k0tXPW57Xv9MbahcxnGewHpjUDtbAT2L9T2NQjy+Swbmu5s/vr36WbNky318dvw9AQWADCJsIOtyBMDVB9L721jK6swWgZxHGtAxtLxkfVbBFTYilP9yxLLW7MqaJEnnQSYR5vtCBnZ/q/7TDMgM+Gc2FpeZ9Q2f25pKJa88TExvgzhHbXikpsP4im+Hao1wgDOVQY9wRiUVBEAH7nRt3C7ztXCLTM+4mJDlf9gQRgKTx9+5BmoZjTCPS4J9pBri0Z2b85tacxpurXY4ZyJ1RIkstLD9DQ7s1YJpTJV1MIKzL0llCvBzFWhz65nEM9LdnZlcAFy2baCdwfidtj4NlzhW8vCFZIcjSC6cYy9QACeAAzvYxIMc0CvExLLh1x2f7vnuA0NEOy6KwHpuOTeh1kBo7J3AATWTJYE5xsEQQjq5udH62oC8b8j7TaFXDcLM5lrePxalfSoUuRnChqJOi2Xtk4AFkZvtm9DEcVsYh182PWSfW148J0SOdabav5LEE107F23dAuokEXT/L/5EOyUCmIt4iRuNUtc2WWVT8xhEBmtPZqAcwS8Zg6440e7DtJUs4Tqe1OauitqLMQXb9AikCO3RGLxoLlXZ2ns7gaRnsV3ZCoPGXaz4PqJ6pdUDmw1Sjn1/R9amI0okIEhxM4ke1ZA3qnJwntABtAY5c6XVlE2MJzULvrIcHITHuzOABaG9Hlg8wK9VgivSvxWERCSc+WAvqgNgQW5PPw2wcqdueie3usPWPAqp0gf5yz3eK2bxqv7nvuNMup6G089aBraH1LMnbPiyoNHvn990lu9ycXnaxNczb3RzVd7aPcsdxDLvvEpDIY0A2b8M71DsMFUdiooi45TsldLpJJ90MkGV2X5wtsTg3/h3hnHmwE0CQiNObM9vfP0xAOLQGdqcR0yw5sN4dxIUi9v2YWlXgSI2IuZvoZAOiPEJ7M0CgGzi8vZ8Ghouy7NnONRwEDoaf15cfADRrVGMueoNuEiWA0S7Sa7oZlCrreJtAb0VQd8y0h4D5Nw3mG/gcR5Z9a9Dv92x5eQlAheUemzgVu0MKABOJBjVQBVOznfVUkJasL3cEe6Ku7ZhjDVX/KuoX4B3fryt1HABV68frDu2CzsDgcbHvMR6X/WlOyEex/QQEeHteLmhlIGYje2vGxHBGSZQalcCSJT7N9RXa8UwmRj183gIcASKrHMzVOa2ERcQ7s2h8V+83RNZYnBFzN2Bj8VmXayJLX3wfi32a9zcBFJaK8J3TZv5BBaIIZnPOnGoeh/slUebiwaaMLddiF8hsmVHnGtsQAYeoQqR0U9soGOdGw/Wdou0kEHtAlN2w5KQwiRjUKPdjakRV4DIy9PSVycDxQJxi3ApnFQNyv1kcUVifeU0HRK6ikUAAtVp9VRfrbsfM1rY8F3yueG+8FNcKSy2/2gv5UWcEyuMZgTvXjSXFTGgdHVlydi0ZqXNxPSrIxXE959q8gHoJSqfaz1nLplliXpgruvWlrIjlE8mQct/pGrTWZEtlbxA0uPqTBdyMxCnjtVLCxedlyYlW5oUULQg4E5WJk8s1Yg4BrANVukAEC9XZpmQi8FybJ3KQvrjsViL2KYQvAFwkZWLNrKyURYuhAgkxtr+BUgSzZUZ+67eO3weg4IIPwJZ1vXWggXyJve5l9g0yzswWcuE3C2xFAbBPvAjAFi+uRl0NctTIl0Ad8M3HMxqGpPvnFWBHCb5UclhN13xpaFLq3oD8eZyQQnmVx+FZCetvC4HTWg0JZ8sxeCmCkF4HpNMFggplOKdGfS8NngBWk3SIqfH6WNpnqJjrz0ehuKG2ITUpRsMdnvcjam4J/sy6uYvYOByugtvcyX2ui1uOE4oNohJGn6Joeu+YswHTQRrVEOuS05ytcDDGhN43BxRsksg66e9jofsaWKJh51Tg5RmWXSLwMDfx5zXGRHtYVqf96QeCRu2Uqf4YQBec3zroaTMrlQ4B10SPNS2YaDiXbAs7XLD8AuKgk6/XdgyIzKRU0jkthoOdFPRpaK/crZNAMHbCGNbNsTALRmaIrFMB120pLXAaGzPZgR6rZmaF15rmrEVQT0fA186yffKegjZ9yWz4HNoYjtyIw1Z4PVplSkwGwe2yATZQ5MZ+RWdDLdvDYCCyEb4RS7lmq2PmQKJxL9dAv2yC5YwJwORN+KZUvs9xdx0IPc7s4HEBE2IeAGNLcBOcZfMv7SwXO8X7Z+1cjLeBCtzwlrIO/+/U0yhOUXV8VRewQ7m+yDYrf4s6Tc4xx4Xj7yUxCuuoUHVH0C1wWxxwIGt/41wtgiw9TWdAVMPp4XyLiHXY8aBJXzYLipkFJpjZXRzVBQ1ri8DQrXFdhgmAYo1mB2AsM8kSsLlbNjGyqs30YKCKvrwTBnQyYK9lcwpY55661oqzbtktdUaMLpT2VQjNwfupCSbzFsT3bzo+zMa2FrRX67TRIwiUUyHP0xgEzuRi2VuIRs4MaJtqZPC5H9L2WZ06kpHQzaoC7mA3A2vmJhgvDTK7gzS5p0GRAHsVFBz+znjHJwYkBBPmJlaKUcpH5O6ZUcjiTxAYpk1bbR5iWyC7Ilg1nukbL5uBK+dMO+vgUdhy/28FgCcy2HTwilnV6C6kcCaOOevs+oGHjSeTCub/NA8cWXbRsCRNgLCNcpxrssPXmu7dSzSbMyZg9etcR3ymes5qP2rp0i4Ix4fjQpbF8A4SH0/IGBjf7yCDYwnaJ5Ito7bOIltcr801ft2Krp+7Ou/FjlhJnc1HtJe++dy+WuAQWh3cP4EoP42Sp9hzvgg6HVCVnu/3T/UD6C/3noyOCQC6gAUyhjEu/ZIBDJBFMpx+Psq8sT4/wIKW9017vGVwyHc5Oru4/odU374G2bz3qjPi1762jxQm+FRzHfPvPC+BbwaUFVSgbeL3is/EMqO52bPRR5fHDHZwMBF+tkbqT7Jxy/1/Ej5lAHmQCVnGxUsPsNOnddbO8xr0lu/U7xdfMgNxt61sm0xgp2m2Gvbfiz9D7DMl4I6ycLk8M++b/nRoMX3BYuDak8I8YEno9TjO1Y8guHAFKwrTgPtWnJ/rg+8bAQ1gPQ+vETFU+pFZ3uCgWhf7fcS4Lb9bfKy4t5iTicWmxPlnfFbd5/nNg6UbvM9S9qHOqLWTl/sYQJRq/MbxOwEUYIPx7SXpYzx8Umls5utL2tEn7LPdBVP2LVtE+kE6WHsfmekislleVqPfSSKqNE69Yb644KILKUEV469eTWzr1wcoDNbPaZ95PG1Dvd8yAwBYazKvrZwvW9IN+ZxhjK2Vkr7s6RhXA+BMivYc3gu7oT3yZbH6Mgtkx8tmWTbVaKs0XneMlx5ZH8BAgsgYdaOXL1GPGgp/vnYTPnwcSQGDGdk+NQSTIOY892MY1ZTCY4KgJoeglr8EUQN8TvTD6LkUvjru1tLQWktOwIUXg5YdFEJ4qziJtlhU+zWQx9ZDf04DQHwT6O+GFk6quptlhDY41XmGkFmAUtWp983YhBg16phZI63dgBzxDU6bYPz1y1I3DZFohXW+vli96AFv9elCWscI5kpz6pnum83tj3d/3gb51dooUoRFmQ3XmaI9pFXxGfg8cxqD4PtrOlcfDwsAiZg+jcotpcwokGO+Vx+PeLe5adc65NBJAGL+RMZK7/Vzyda9FCMzJzn0CrDkob77x0wK7+UwGvoG7RcjSWHF0DDg5ub3z/kHsiyC70fQ/nt+rzgmerY1+8CNpiDaSrEkL6WI+902e06KIO5b2Yh6Agk+N/X8wntqxVGadq6oCZRm56nOfAUoKLD38TBQat99vkp5B+1mBaXOYnP5jm5bbt7rpGRG5TzSefhm7z7LXPS+R/AkHw+0HzNqovVmNnZ82yDHNCHUbmJUS6syltQAVl7nQpp0UlJ/QcMZJC0bMFsSgXU4HR5Eiq9lhQGvDkgLGvrbke+vi/DNm3WtaM/pgOoIXZzoJMMgkyVwQAbREzZuBUywZzBHiUyOSaC9shFEMgjzwCOAHgYiPz4gvUNOX+8slRgzM+QVqPcWnHQS5+segLllqaxEDs4clHO6mK+P8fRr0Lnn8vAgAzAzbufxYB4OgKt+WVYqXtvcH2Z7z9dupW7njBJHOT0b62w4tBZBwfnXr8Y84JYyJiZM10G7GGDuc2L7MyA6gybO/SFaTTcTOMTr3TLau7fifB82j83fccDHzsteHiOFOFuDvmzB8rCfBmLQX6IWEWD77twbzm+23rQJtvcTeHr20fdubWJLbDToVspi+BlnBEUHJb67QNrmMSADS3mH7dMuUPpAtvh01mgo6fv4oLUQ7YvWhGNkaYb7bVFiVP05/vx4AkdD6/Z+kN0nzyOcfhkDrfek+VftFTrehU2yBBqVpcHrD3UKegHkJvKcfL5uAMvcO+bNmahuO1OXAFaeW4GZrSHA4PhlCZy6ta6NZ3VgkZ+7duqIoH3quj8DsXfL08pjgiG2wZJTrHdXTfCiBHHcX4xZWgPfMs5wO3YOYz4Q9HW/LQH6cl8M8gi8RNCI1CjhmDgQJWNCsduapQ0MZmtPkK93AHvOde/OjkMAFLY/2LqQAbTDtbpEkjVdwZAyRwujjWCKC1AzISbPY51TrsF6OGAb7F+4nTuPBDAaAG0pSMjSiYYcg+eRDFSuCQb30xMHDjQrAfba3SRKHvzozcd4pm5S9Q34LNWHrmMkPrZX4VKWURDQrOv/q0M8gOE7zHXZJIPuCsjUsht1oIz3VJk9UU5UmGLXQJuipOHPmK+ljFfqM9dxvCZseO+3HSGC3RBJH4Hk3KkJX5pQtvlOUXIaHbgsFkwti7bGMQR0cAEr6rl+4/h9AAoCR//NYVdgfcj4HMUTEYImgnT+ai1ZHAX55zkAFKR6lsXTVj0KrxthBlUYwAIrNZKbqBvWte1MA8CARBaHPXutFsPRmHEekLND92JIVWGMCGRmSxTSdEXe6hh003aQvVu9pqqji7IkT3BIZPPmsnDUbDk/LG5kg9ZbNwkYrVZTeCYOUmRdFFIqw6OiwTOfVQ6FbA2zCYZ3lNgEJo5JNFQVwDr3BDU+BSz1UIRzTfFKOlJKNoUDJDa2yBKEel4aukDF8QW1zObejJNkdtCpxFDfoBqd5plgj9g6md0EH3Egx7ZR06AI/nEMzmHONz9bDGUKkuZa+HSEsfF7ZQaTQTS/W2vheC035OqB8aKkWxBmu6+ZQXYxcJEF4QZQx/IrBHahKRaHBNPQ1a+EZmg/ltujfZAS8Ev+TSRrBIkeF1uVtOgG6MjxU3tXA+UWic0jsv+8niqiSwKPbgHHpyd3hsKCiFfQgAyGK5DBg/O4jN3leej89haB5ic72wSArDbIN1zheEUd9GUO9fK+lCNsDbB2h+DHKcjpbIBQgG/lnQDSSeU16nVYSlEF7+q9Dc2shP9OGPSybvU6HjyHg80Kz9xO9WAaIPtN1NsbExBmprtJ7HXMFkPUgAtfD1V/56uDGSJ1xzKAHAY58IBiphMswzVa6ChO1w6iDZ+IoLE62hVc0b1bqYBYYK7LGkOW2TEAV6xrm0uwzpVqiA1So8DmVoD59fPzWtPLEBJsMb0D6VIAEjO6orZurCSlAIKysicaJlRNsDPfr9yvo1tEVXUv1zffxanU7uDHWkHxD+gLzjJ3/P3VyVPOeRk/vz+F+UpzN4ede7lcmAQAim9Dm4HwpaI14HWoawA3y3qIZ/f7Pi1ws25dM+0JgQAg37eqEdDM/1GB3XPYsTIm13cXMA2VkUEN13vc9wMm/lz1Bur3Z3kuIUhT9mAP3GxfnwUM+GKvEteT4LoWiUhseS89oFDSyqHJRuR53H9YhSPNjzCtFvG69nV+qQOxjNNXmUeRDPrd19TK7qvBVJfPc1DXKsueyJ5qRZywUuzDb64+geR6uthzs53uKBFEqGDCV88Ua+mL3/v+sfgo3oUiPqpI+1D8buG+M1xjgPMY68EZT2SBUTSy2Tyv78pc56iOq99vloQXMN/HMMq0RZJVItQAqfPurNX63tY1EYAMPDbxc3LM6n3VOQN8/Wd8BWBhf8U1qn9Xx6D6ir4OrqwnG6sv5vkrn/bqZ9C3jPvNsV+AxOs64riFSCb34IuPWX1oXo++3vVeC5jAZwpmSCTsHJywhZXX45iO+L98DiaeeI3m9qsADiH6WmxigAnxjpO98JN91o/fB6DQGvT15rVvxZjQwIhYtr41p30hUDa9l9qZiXDa5JwhBKIimK879PvNGASqhuyrhmiKPB5GmWf/XMDq5Z8+QZ6R0ddb6B1YZrlB4JnWc1h7OBerk8fTBAe3DrTN6IQKF+kbKx3+gaCFWi1ij6wDM2HdlaAnSzHmBA5Fm9NaI7KOa6iVCABoDwuUz7+6o7l2Q//zEx22oevecf7h/gn9DBS1oHft6QumAecf7r7R2zhhCsa9oR8T258ejry3yErI8wRUoLsBHPPe0R7DskMO7LBVWHtkDTfVruf3Dee3Zm3bPib6XwAcBt7ovmF+u633r8B5t3rb7S9PO5cjuXQwtQv2vxxW7/bD7xkAvP97O6YxBFoCFPpspRVaA+63aBdFdXJtgvF991o6ZwZMMUFOGvih2P70iLKR2BRPo7ruf/thzIRXb3npY03xsqgjnghGDN8ltBbMA7mZiJ/+yHZubCMYiGkdNCDaPMrHI40ikIZXvFaWWevDxVSPwwLOl7tdRydwlvY4TSC/fF9bEIk59EFljSx/g373zPSPd3u3fn1LIUgeNHj3+7qxuIiiiDg7Y8T3rn2ERSSRZj4fNRli45s5Do4UB8DQWrTEisCSFLW4BumdLUEDwNbL02ohheceA8YFFuB+d+Evvo8dmKbVILccC1W1dp3qasrbBtw3RIsjF6u0ntPITUgVFBnSgk6HejHnx1ssam1lBJi9c8phrIkA0brZGDosbtNj7HIS3NmaUPVs5b55MDYA15jQ13tZizYvOhtEkyXDuvDt7x6rU0kgaMCYH70ZI05krSFmpv7jac9dKbtbB3TPsi2uo62l888gyZ1nfdmsPvvD5nO82B4gzxm0/eZtHvVlcwfQHe1zliyuMbJkN+FaeTzAemyy86zFH4KZEBlX1awtD1DJnG55f+T7x2OqgQov93SmA2hr1rYT7swzm+42Uc5hyQGyJV5sbNtzRFYvXjWCh8eAHC3A3KpjlBT5BC7bYfXA26/ULDCHWnv3awvah625uXec3zf8+Hc39Ifi5d8MY5E9h9nj3rAxU+fnWYJAf24ThFRrEznN0TRa87QuGr2FlhCALA0BvFTD5rW/PR2gEgQ8ojk3fN4Ivhhgsl1hl2Au2Pr4yECy5x5XgzJzihuOP96ctWDroQ3FuDWcLx23P1mpIZmE6QA7wHUwMyaxnuJdOc5gEgSjjS0Sd28LWGrl28PbEMe+kGPGawfjyMeCtehx3drWzcFMMh2W5+c0vj3Wz+8baqaxasIIy1+DsZdBj9aafV5q75ivW8lM+7vR4CU9ua74PobI9DFCb0nGRPv1kde+mb5CvMMcL2bM+Zz+U3vH4x+/eqmstbfd//w03OkyHgqswor081rRQinr34LiaWLj8yLKx/tQte/vWwIDBBJqacJmCZJPnUX4WR8bNE+o+fuxlLVxDpziL5e2wUHL52cpCsk9yOdFXOAy/CdV22Od7RZ2r/g+FPyOlq11rfCYgBynvRveZQIDueZ8HdZSAgDAMTMJ0er7q5/WnXX18hKyY9oe4XMp54RgluST2L7BEtU5lzbROjXsCoC17IffF2oK6Moi93GxOCc1MKAOPPqeEMBCAefY2hFlzX3JXGS5Ypn3T6BYvZdOULatITA/11uU6UHVBcA122ADeT0HIz9pFTQxBmYIJvra4XUC/KJPOBIQiCRaSbKgf/qMurYgE3fi2ijaNVmwX40XH3dMiOiCM4DPhgIclLFRskormBGgQwGAvjh+H4ACj1pvxokJZK1lNpXoH//Og8DPF8ikSXkmwQAAIABJREFUcqG3w2mp5Xsc1IKcrmg7so7VDUp8r8E2/q37y+IwfiDoF6M6Fe3QRC/d+Zy3bc0U1nuXIvA0ANl01QSYCEf0+jJWJoXVqkpkY6xeaKUeG23Lh1ZhLWJabgihJ+EBbh17q4tEtM2yuliFdJgBpmPbFFBzBAM/0h6U19pO7Iri83faO1lpgR7zWYP+Wb6mHsjT0V1KYyoS6t/7VM8NHxdS4PhCvlgPZI6baN283QA5MBaKtA48sJ98jDUdWfGN5pTQehCd0aayilACSEbM9ShOwpequvUzwKpD4GBDKLj3i6O67wVsKpsg6x5rppoZGY6bbwpBvwvGRNls6mbR3Fh/erd8rKQsWNBIfoEWXw8/X3Qj4OfosDllNJ57OV2O02/W0S7X01yQ3ExaMdqAb/xp7EUtC/rlwezIwnTwZ2lWjqInsHBcIxvAwLw8yxXpr2tBy3UWm8vP2H0KxSyrfR6WIY/e7Hyn+fdia4W2jDbg6kTV9fLFOLMk4Jrti/Xm47pkQ+p5uPds3YKn6wbK61eniI4GENdbysEUAXbz82y7WDNq6vdi/77MuTuEcb/VsS4ghHW5sD0luuHQ1pXANM5D1l0dkyXjrah0yfgd32m97B+X7O6iUs85ckZCai0g9Chqi98aiIgzmZJ9JqHHku38yjwLcgzV9huK7bZRamnF9g9Rife4tl/TcvO2/17WXH22lnsMXBxNfc9Y63H92QTQl22157GXw+dQ0q5x7xHJ/ZvlV619snnmM/n5uuk9cPzbaQACtTo0fIPV78nxs33Hbqes/bpOguHyORBJIGuuwYpe1mM951c2+6u/cS8uJRMRfPIdHPbeGrUdDqj6Z/19XvwOXuNqY673+MX9RMbdfx8Beq05v7w/8lRLWtXvjqKz8bM95eL/zr1h7ub4tKPY2Ko3wPmk+1/tfLXLwOILywBc/SWTXvw755hMY7//KBnj+9ku524m9rsALeySITDITfN9qQDHp3G4+upwYOKrObwGo/UZ6nr1+wSw2rLqh5VrfrpO/Fz9SW0+Pv1iWytb2X9vrIfVHwoNjutefF2b9I3RVz2B5T6nJR5Yavmz9c15C3t7eUaOa7VlwKI5oBiLO/KptSP9rxrMLve6vrPLtS9rd73fdUy/OjT2VQNgA2Sk/xNADz6f62dBNn3/8G3/b+a+rkmSHEfOQUZEZlVPz+5JLzKT/v+vkpme9aC7vZnuqsyMIKEHwEEwMmv27p46zHanqyozPhgkCDgcDo5NiXcj01xzX5dHVyj6zPJ9dZwZDufnitsd19RXayjfNw/GKF/5ien4NQAFVUPXVAOJ6tdliCJy3lRBv1RjDvSOoHKlOg8qZw8jJGAtuy6s/xvXRUY9ixu5lNmB6sjeiFgWoA7xFc3IWSmQ4xjBV76v1bLN9TaEWnStkE+rd27/8gZUCaXoGJcouyA7Q60TA++dqs4nx840FBYc7wsKFbobKVensoSWnG2v51tc8RirGa/jfTH26j6UsMvDHDMTpyroFxM3am/XcODUh2JTV779eIQoZLsuePxtBXQ1DYZHB4EGPjvrQsWBmHp30cb3FegLRL2d0e3A8f2C471i/24Mg+2PBkDHRuqiicd78fpZeLtNzy75tXq1TbkcmkTIAHWhxP5+DXX57tkpdoMoDtaUY7AICvUjagEWmHp7CrhIkyvMXBXPQO3NWCmYndzoDsKs9mMfqDfnHDd1Osm/fRuoNMzIROsbrpU3Z6r4+SJDXYplvAHLPC0L9PdvpttwewxDSVrb7Q7TV1ji+9hW0xChQbvdDbm+3YBSIZfBMAmE9LFGxkP8mYaQnv9vWWaAQRVyHFBtiM4EZypaplCy3mxdRxaa19wP4P6IzWTQ/+t8nxSlXNeR5a8MANN6ZiZscRoas5mZcYFiWojUvGCwF8i3v0+RON/ThrEuxrC4Xlx3INfv0TbZfci6JqS7x5jGs7JuDz6OLCW4bBbw+ObPlkra23Aw2cHBM4p6HHFfnPthW8lQcUBCWC+Zaj9jrvE70bKuxHuo//gBXSr637+ZFs3tPgNVfF/AqO187J7p4Tytlp1qivLz09YGszes3U5ZJAZagKZnL0779yzuYx9MCPWM9OGZMXZmyA5SF+hWohRAEtg4porVmGu+VhslEwzI27fNtGceFF70MhRmqzI4kWvCfdzEA9IAP48eQZntJ228E8/gRuu+bm18Kb4IWHBX9o7y6XoStZqNnAT3FtefqfbZ++EJgdEGk90vdC3GdvswtpkeHf3NMl9y2L7y9q/N9o/P0cKRJW1kHJY/hw6LXi/WjcA7ULBFcr03L9cokZmObgHFKMV9M2B9AhsINDGIEgPe9+9rUKiXj2bsvJLOdwpqo6Xk5w7sDeWjTTYfGDoz4mPYfrt4oGnva7k1lM/D9Hra5orwgu6MLrYGnMTkyFoDgh2g2xqlB1aCmXSNaD8Y/PjaEWcVTgEc1yYDLGb0e4egBPBi83aUN/H73VkwwuD2aMN2ZpYVbQbXGOe8f8fmeSrPYcCf23x2BXqbqNcUBjXWiumikGFgdPOTj9ll+Kq7AfBjH9Vhi1iawTrvlEFW+rZ1+A+mcWVrtbCN4dGdHbMYA3TxbLazVAJcyEkmYLAERKwlorMZ5HC28NVayUpTwH3Y0IS4LCgfFvSFFoBn083WeYC9FGMqHK7b0lyPhCKymmwNx446TPvJJ1/KaAuaQTaWLyTAC1LHO3FthWEvs86OWsItBXParYNYaHdkfYA8p3y+xNzPLBcPcBU99oo4mDBNAE18n+8miVna3+yaUT4lEi0g+9vodCaqxjRkUF5Tt6nWoJ+fo204gfVI8pahKwSMNcJ12skwVBNK55HiOZSC8vEwXyHr2fGI4NxtwHmtcp7m4xSbReliHp+zIGXc94vAmPoB+XfUzqKYYk58Sxn+XDqi1JMtKclk4FFeIO08Z1mGT9YboBKJ3Tjyve+uhfUKpO19+lmB8OeFbFiOCxm9p5/P130CItLxawAKItDL4rROR4g6BiIkiOxElI94YEyDqyJo77Z46scezhRRy7I7rYcLrVbLWFBMik5eH+hntK85325yJpn9kbVYMuD+MHEvUm26xsKwoJ4bG7Mv5lxPGepqDqyyb3AIclEUqIz7A2bwBL5/vq0T4j4lOalf4GOki1HxWXNc7s3KRY6ODg/YchAGQ4tN5MudMtaDCdA5qwSQwxHZWqCLgxjdHEQLppGynLaBBFU0Mg7irI4+gRiAQL22rwCDmusOmhaYCreDIt3/Kw1gJ8LjWlGaon7CDZaiGFXFUVDMOhFFrLREEpOhYHQJ8eewrISOzRDwd29iigDQvm1R02p917v3oNfYBKPVZEZxGRQgUclzK5v8rrgZUgOBKGbzz5I6CiRKJQM01uL3oFiGoXzstnZyQHvO8GRgjf/j7x67aSzkZzodoWLs55ipZsnZyjRCjgWDfM6xVOto1+tjbebNwO1PiBIxaKZzAgw14ryxAJExtTaSZ45ZOn/rMwodDyxfb3TUwyAQsYxyBkn3EOfhffL9vKjRw3G4Xk36m9jc0YIQLZxpeT4H+O6+qL+LexKJspsAgJITP8a0T+fwEyEynnmT5Byn8xCO6hAHjNZxdJ76KQPpwUMGLvkc4jolARjTsTvVU7LFJAXjoiUx7WG01hqBUyF1FzB/wkW1orY4BR4AvNa+oBfPZLs9ID2VASfFA5GCtSgTjP3K6dOiCM2BaoCPHsdwnOtgBURQm4JLlQKs1fB8Uryph8AhFkEvddbZ8fvIzAkTJCxWugLMpRdAtPKLPVol7DJLAfXB3431yK5DXP9zRsuGgLX8ERxyv3GQoV3rvK7c7wh2gxooraszAFYXWVaE7k68S/XEyOKlRcW0kMregzkRXUP4jts8F2w+DMfe9u5qNHQ66LSZuVRFNdiBJbM7YYFR6RrAiLhP07dlzrRPL8X3i9Q2eTryfkQWytFmcEHGvBjPedoLmN3m83tiCJqCYb8f02Wy1mZSnJqdhePO+8y5fTLBM5/z+XvRkq7ItL7ifMdQ9Jd0LgDDz+NerqypT/sZhq/zJLyXx5aBsYMfaLDMMwB3WbDcFFoV5aGWvDqSDdwNZA+fbRWf0z7f0AerJwck8U4JEJXx/gqAY3lmrSwF0Aplu0IGPF1svsLWzaRjoMaCmDVH+tM8DHHcHMATSM0igJxvTJrEOLmODeMvBs9R1qbBDiHLIZgY3cfkVfnFaY7lLgnjHfp7e2KBpZ+51ySf74mlwLHxsjEDJsY5XumYEcwE4GCblyQm9qkSNOO90h6+ysAX88EHI6EbcyxuQuK63BPtc/o0NiFi+VfHeS0ACLpDlMu8uE/uAblMJ/uMT58v87XSeWxOJPvEzwP+bukzl/S5hq/YA/ZY87VCR5DXKIC1gTr5r8lXnL5zfqbMTj7ZnelwxnTW42LXiPhd+8Kv9eOXABS0Cvr7Zh0BmjkQwiyfB24sM5DudFFmd1qDXi/QS8X++2ZO26dnhDdnM7QD+NxDCIiGRjADCvbyjkBTqXkQm7JPyMicF0G7zjWm8rGGArO0DopSAUD93MPAE8kNAcBHt9ZYbiz1fQ0Qpdx2yP2wgI9GYTFHlrSrXKqgi+DwTTBKI2qijEVgBvS1ol0sEyatoH4cdp8fd8skqVonE/+a+aJ0oCSukQEL0it7BbYflqnvq4MqxTYMue1eN7iiXZcoxShHR/1xh5ZiLIRSoQDq3bL17KN8vJmzJ84iCAceQGkKVbu/IrCWYVXQLwYm1McI0o93yyaJszjKbUfvBjKEQVzH3FMB+tVU5oX6HiKo96HmDpGo+c113NTrKI+GvlXc//sV0Y5UgHobG42uxbJru43FhGKr62d0zFmYRIXLKr1Q7+2bHTV2e5AS3QH1/jCa/Lc3iCRNA744/672BvnxgUkAMNfcc4PcVtdXaC5qqtCrr+nPT7uPi+stvNhMyHSYAslsDNPY6mO3679dgV0RYpCljE4D2aiHM+D3nQPjjpQFr9Dr5jXqnp0OvYcGFNcfOJpdZ1sN+T8OTC0Y47JErtOD8u9s7ci2ufwfMDL3BBOSdkU8pzte2lwwSB8zWJDe/2CB7AOFXlNXGgeNUCvkehnj7MAUEXN5u87P4cGWwjI7WscGFc5JLVbvvO/2vkTmTAMPOpP827bOji1bEi5e7wpAH8aYkHvqZZ0Cj2hpBUSnH80btWs2RHbLM+6052H7azHNnbWivW+2rn/eEG2/+OxNrc85QeWPR7K/lqGz7I2g/nkLkceYL7yWWFcedhWaVO/pSO8py18L+rerZ/LpdI3uKSy1szFR4PMIsFe87t3A9DLYCR7EUpW+rwX11hxMXSzI30fA1a4L2vuC+nE4Y2te47pZ+012PoK00BRQBgn3fQAtxUThCN6Wn/fE4CkJnLFx1aVEFYCByDqCUwfopWno74Q4VTH23PFbte91RduWCCjqo2P5uY9yqK1YS8qL2fHlw8rTRnA65nRfijndvq6XTwMFp04QBNI+7jbfcmbaW0jqaqCOXjZAdvMNDgve9O1in2GWWQE0Y2pMwIo4kwTN2pEuPt+kQIp3lSCrJR++huzd9ABveU4sZdhzF+/Uo0G21fYX6hDktXl2clOiyM5j70437wUvo/sE2YV4NFC4MRgUXBOJeRPBC/eT1ocdrSXKrgxYWkw3y3288vM+gxGHtXC2zgIjYJGuNgeLsWyeGQHpuUWS/kQCN+lrsmyFIox9Bw6kANd9hgNY/zS7TlaPpA4R9XiAbW/N/6y+ZrnXjK5jZM1Eu0EvZYDrhGgdpb81gSoxT/0zRU2cWY42aP7d/ReRkUDpA0gomjQmEnNCRazMVcS6kHGMeO39sL2ZjE3AkgFhwx0kduAi/BQff5ZbyOMY3wfQpYIdfOJ+CHLEu5rn71PbeF6Htir/7eTDzSeS8b9pfYyYRQC3CdV1dAZwRf8jhNDXZTBu3JeO2Cc6gfnvMxP0fE8xX9zXTAzV0L+pw55OpdfZJ+4YfuY5cZDHjT9zfhH0ZnkL13cep7TPPpXTMsGWxtwYSomVcU7sEJgKQMKTKudy4oxWvSpFjvs7JbJc92v2cTvQywBOeP58b5mhewIEwvfiPWbfUmX4oZGc60OvQSR8/AFw/DXo80sACujeMnA/kNvzRHa2DFp5BKYxIUlzAtY/vQ0YJ97egSpG+bwfQFOrd/fyASuVkYQwlZMQ0Li+CUCWyMRPKB4QmfNR/oCo9cRjhxxlOCB0llq3l9oF5XaYsUstmXQxp6F9vwLfgfrzMW20DFBxdNRS0LuiXZfwX6Qb24BZ8MKMAIMDWBZquTXLzD/ac6bQDfbyYc6K7M3PU9DevA/3wzb742pZFxqJ4uwEa1dl46xeXy1ottkuxRzERzIWzFy5FgIdImamoIrl5xGZKGZ/ysMBiZs5djkDUgTQuyGVkU2qBj5Ig9WXaoH05bw3BPPCxhTDIBejh2JHlCFYv9YCYUvQhXPN51K1NqRDhwPD2UjGH/yZAWjvo7f9tkBXz0pyPtFZ8uyyXp2S/nEbaHQ2fgw+VaNsgGUH580wMtLFs81+TeF3mQWP7gVpU8ibAanfAHC9juCG95XYDhP1Kgf7/GwpANbRwpObVXImRlbkFFjyyBn31CqHLSUJxAhgY0gAczpnH4re2xrBdIAJgNkXb/vD/uD5+/GZ033F+OWWP60DuoNih/k5474yC4WbDx0Wsc1JsIACjnE/vQFsicN7BkY2jWNPMIFAQHJcplZPtM1586slghql08N3TEcr7tXPs5Vw7s+H5u/lgwyKYDnpqO/tpP4nO8cstTMigg3H3y/FSpHO+i49AcV0QksxOno4H0C/rJ6p7RYYJ3oqWx3qthjjam8QFRRxanWRuK4uvhfVYq9qKUAZdG10jTVWHofvVX2652h923tQfOX9HdSHCQE92jlnQ2k1inOB0YTL3YOuRaxtcVNzxgEbl2Z7CoOT8dI0wJCiig63uWsNurOJIFL4LDm5IhDPzsh9j9+fS0YMVCbdG65zVGz73IBeVhMtBSI7XB1MlN5R7g3rnyY0zBJHG39BQ0E5ajwn95l668E6CGYb/YXqy1IQWWDTkUhlMgCizp5lYpxnkxNu/o51IvJ3S4G2dYl206ZlZCV8AKIcLzQsRECmVNkbtJfB/BOBLmp+C+nhmWmSM/EMbAE8MbO4L53XNNcmAchy+hv/Swalg2yFFHgGmCKjrWK+D58HQX8miMF9JTErZOHeWOZASMa6s/c/bJW1QcT4m4+HnBkMPHzMAlTgnM6BUHXAL42TVkAvfLceMDYXPXQACb04KOc+HINBDoP7o3FPTVGkQ3eJOWifm8cusv7AyGKTZYAyOp7k4+gDEIDZZ6k6wC5muDpGORjHJGsKcPzD/1EXNjS/7Xkvx/y9kubbKXDkfU6sisafywhsnQ4uS0GUV6sOkPufBbxxb2UG3GLe/0Vwlsp+4P62Li+em9ft3TS32FbV97byaOP9n/2yAgACgbes5J4OjH3Pz8+SmngWjgVjiVqGLeKY8B1080sz0yzsNpkX4SudfJ98ZHCFjIT+DJJy7j5pc8XY+r1lBi5twTr8W/pTU1ILtr8rhh2Kslm+i+k90mYWRJ3zuQT3zB7N5zhrl+WDXbTCxqZEBOdEbpV9vmYeH/73DGjRzvOc/+T4JQAFU70+nHHQZyfeHUx5Xy3IrIKOAvRqjAZO7KOj/nwMRNsXfl9XYxq4Wnbu0DC15CiOThVEhkjuLVDxCOb83OZkAdRMKrsbRlJEAZCOHUrldJZJPT26Z569GwAQmXpDllfoChxvlhHaAKfV6Vg0ZHM8BEVryvY7ff9+oF9XCzIlqfdy7Luh0OV2oHzcRz0vj27XKfdjCGm1bmhncUBh984GG2mcBiaUA7HB6+LtKHP2opiDXG7W9SK6MLizPfpnuwOkCNS13A8DJN5Sx4Bj1DICsOcOIMDmSL8saJcCbObwlV1Dn6ADEPWAJ4s6CYZIFtRb8tj9FdbSEbUGLCPpddVKQCFuEui1jKwc7aADTL2O+uCpmwO4KSKc7toUIfQGRG2etI7+boh1vT1ssyzFjEsOyh67M4E8o3pZ7bP3R2xIwUKgNkhk8dLGJBLMn/Gc8mwAewfuvmYvm60fdpKIIFRfG0AePu6BKjutX3wD1sc+gl17AP/vKbAt8zV1YLBGjxOJ51bYvNPbLZgC0wbSmtUe1mrX7y0C9SGQuAxntitMYMScwfPzGSUobT5FEIE+O2fEGLtORDipp80zNqvyfK4GAH1GsrXH50SWcb/U71Ad48MxUl7DxyWE4whsEIBLjnoK/rLjHn+XlNGgjU62KZxBt2vnNoPhAOW55Rko7JicmnG9MlrRxhjSsRdATu8dHtDt6sC2Dnpr75DdnSYRyyirB26QAJyzrkBfK6R0lNuDk9DuV4s54nSEZOjCqLpsoCrCq+b9H6ZjkPuAqwdPBEVZtsE2UpHlXwrk4VpB3YDvAXYjhOXa22olEAyY6DR2DwRuCEX16d0RLBBBKRb49yITG0z2U+DnwQz3+wATXWcDWtJnx3+1CNriwMJi/oNIYrV1AyB6Wyxg3Z0x8AH0dUNfgeI4aN8AqKCtZdJ2IqAt3Jf93VFEki0XgTEG2tRAp67hR8DHVSGWveX77AkYYpDVED4SQSC9rKHt0y7VBBeriajVP44pUx5ilKrGVFgUx7raLRYYwFDFAhWCkrQRDABzgAB4Rx0dAELo3vRnoJBzuaUgIdsHGYwY3Twhc3B9IYLknBl/OjwAomJ/6F+JgFlRXeosepbtFI+e9uLia4FfkQ65OdWeLWzz4dt0BCATvftUlpHHgPu6r5++WCeU8Cv3A5Bu5UKyBnsnyk/zPuD2DfC5d3SUswh43ne9zDaC/NxxxBwlpC3Tn1PH/PfEnbdumT4Tz9et3OepjGRLYpH8O2BOGNcC59v5OfNY5pJf3+/DBpFRku+pwwAx2hCKSh415k68QwLPuayG58qBL8f17A8Vf558fT6P/124vhOgPO2bedxdBFa8G108w+5M7y4BkIeoIq9FnaL8DEACNfwaZMtwfDmX83rme0n3TFsn+dxI53n1+6/+JsP/Cz0anPbeaf/2r3V9Og9erJHs20X50tmvpR8EINicDNw5p7IOC2DvO/t6U8lLig/oa4XfddrTRcKnm0CDfM4zs+JVsorf5/viOJAJe/Ldn7Qjvjh+CUABXY2+uy6Q0kftG5HJo6H++yfqUq22jwPZkerbMAwaEIusPNqo12GZgQD1p1PuH6nu9ftbiHFRfVovK+7/7WKqyEEZRKiJMyCNDFVxpC4yGj5BSRFiayenlxVmt7wGkswLiLhjYPT78tms9OFITlvr1jLxukWtar0NtF6OHsF6ufk1LxWN5SONtZXdgRQXwnS0W5mVVrXn9SCfQoXlUdyJA6BWv2elE4r68BKCw8aL5Qq2KS5x/eXfR3u3zEgBMEQo+wiuox7x82HU8rWEkCSFs0gbNXQW5hz3URpholl2jxQ3Evh8uTV/RyUpXgMQWLYqlLL7AB46x6YOJ2iryQgbos9nKgx2+A6a0xOTfsSEoMfmAKD3yI5FzTQpndtq1P+9ofz5OQxmFqlJjtQ5ky+f9whEeFjbVd8oCCrkAA4aWXsLMtLfnF4l397men7VcOBk28YzlgLZ3PhlBsX9DkgxdkTro6UfjT0dVgDQDpHFRBZ5Xga2EwjiwTWDXRrl4zC7MmX6m7dVWoFtizHTnbR6heqerlMhG0Yw3xV6v4ehVmWNpzulTp2TZTEgojPLq8D+QAj/FIGsVwM59n08A9s/8edliJQZo6EPgUzeu2sxCDP42bkSu/bQnmhcAnbeM4rt4xegVWT40mbYnVa8LO7c9IGST6Jlp3PTMRQxBls14Cs2Q7FAKwLst83Wzs9Po9kCo/yHonK1DCZaN+cyyop09X/7fLhbiUJJbU1ZYhetFz0r23+7njKJzcBoKm13tW4+ANizXkFgUSHtGNka75YS2Qc65z4mUiSAeO51egoQ9ELdhVFOEuVhzPBc1shgUaNhdMExxkTxa2TRQpaalKPbMmO7QyDGhUGYZSIPYwQUH3cUZwt6ScdmLRyLazL0zcp7hO9INboHlU+OUweFSWVzvQjfZ7RpMOUEMLFjkRD4RYe1Dhaf7lXQ/rZ560QHW8RK7couIJhdHgkUARB6TgDqxz4c1+IiiAQUHPgi7RrHqCMOBged95MooJ1c0Nd1UK05xqcAgyBJsPPU4zBODWcZRoLE53+0ZdQl7lMJYJEXSwAnM9G8nMEn+LBBLtqaM63R3pR2kuJ52dZMTrHtrwWDOTnaWXOSa+w3k6CgsxyH/oLvN/sIGGM/3FZ0Jnn68MXsPjxB0doo2RFB4b3yfZM9lwJMltSEtkLoZ1k5BoolPQAYgzavY+5p3e8ZDUWdNScymIkwX4QtHXUxIUujhY5xUUWw8ITJsDbsQgTbZFb67/WyhE9D/YEAcuibsYyXY+iip6jOxCoK7O4PNbfVBIcLhtYYAOojSRXrUFQwyg0BL9UaAVNJa0DoC+VD0lqqnBcCwP18au6wtaHP14lpkgQpJ/AsB3ucS2c2wikw4/wcmf3qYy5jzjB+YLBaFmemMRGZ5nCcVCcNibF2AXbYkDzvM6svwGSM+Ry2yufS0aw0bqkwprGMsh3OlSQ6PIEBHpep2vMKMNbCGXzJ95SebTB6bL4Ek2epQBMoEzST8KH7DSFwqDO4k0sVsh3N95/nzuQjSbBz48jnf9VVjf4ggSpvhz38pJTEYzLh/F3+G5h8ZOF51AGorLfBUgoAQCqrTcdgpnjJRAZH8vFXyT78KoACxiSKQCvqfDzTtx+msJpffHlW5H2eiB1oEkbwSbQjn89RO1IqiUr2rQDoKA/E4mANe9RzsoTCHdwJucsiSqxF5W3Q4eN9HCljLAD7RpOqGAHZGsiWAAAgAElEQVRsokwxqwPAnRQ3sFR7Pjw7/74NESwRu/c+HGIUgF0sLHuRMj6qUCQ6oDtSpL2JuuCTwgCQXQNssffoG74/E0sByt5mhxawbIRvPsPZ1snpimDBLulI9Xg/ESSL2COcEEqKMloLL/+d+ua8uEJ4Ucy17oBpMxQUBwum1mzMKJznmMhAdoEot+H4k+UQTIYc1Odsh6qh85I+l51KzreuQEvZuzLfW9St8ejuJBDZZnBeBxgWpQjA8/VOz4oIRDVlVU/GMIxmGeDGK0S6qwX5qWYSrYUmhGzb6yA0AxtFECKUrw4+m8hAnZGcLVVAHbRhHd1UFtQdfW4OEggsW9+d5uf/TZ0d4r6AcZ8vUGFTi+9xfyEaxT7vfn1r8QkAji4TSYfdejgNwQ7itc22BSp+vrfzkbMRwLDPPH924PK/kxP1dGRAIwcKbO+bswlnauTpnDnrCmAKAgCEMx4ZeQoUesAHsbKNAC79HCFWpYkdgnkuk1nVlxJdiJQgLO+DDK3Dnu+pHCCPSXIKpPp9AkNokcG6f94U8eX1+XjaE/U2gJgqAFoIpkV9bW6jPDlrFqUaE4tAL6zbRHPROfWAnXtVB8ioiiwq7DVHWZnbppxRtJIQje4O+OQ9jiyLZLvS1fcFHfvHkSi7TvmfkqzF2ydKGbR6wPZOUrs7ULrrFYXA2BiSzCizrJm4IOTznhDle9yX+M7opwhGxjDWMxwAODm/pwB5EvDtau+JH0nzLeZl8/2d7yhvOcnf5Rw2Mb8cMPQY97Bvvr5CbNCd7Agozs/9xRGtsrUHQKVpLPLnMvhCP2c+V34uCQCctfPmngwRUwAOdPShu8Bnc4aInJ3ubGOpF5DfUykAGUq1Dr2UxxwkZjYp9U60JX8qMs2cmz6hOwBvMzdR+jPoQio3afy+HqVYyQWvrDkwoi3o89yawLAqZtcKbbUA1Z/lFKCxQwXPm19mACDJJx/7sI51kd/5q/l02ouULCkhG81jg5PYobzaY17N07M/QX8m/S2zsjL7QLuPCVlS/NzDr3USAI7vQey9nX24GAd+b9xbTrK+un/qvDCJGgyr8xicGR30szh+IeZ98vXi+1y3L/zkcwD71XifYziOedrvpz0uH5xP9eQfTn+nf1TGWE72N+3J4sm2XIKTAIKnLH/B8LfI6PSY6PlZHRzgfTEx9cU7PH9vEmnMnxX3U6e4xp/1zD7+Lxy/BKCgtUK/XVH++Egb6xBOnIwFJzYdh05HDjEgLBtA68C2hOgVYPWu8IWj1RTc6WjI7sKHzN6I0+MOjRaCpAzKw8oz1qidT7NzqUMQSA251bWiv6+Wjf7cY7LZIk6Tmyhf92x1kUnI0dS1VxObvD0iM1QeDWgKvYzewFoL+vtmqOdtB1swsuf04301lsBnQb0dVuKRDYe/Gzrb/bLg8fuKeu9RG1sc6DANAqA+FMvPZn8n2i4ysw0UPq7dsqvvF2+hafXv5b7bJr8OY8gWXvVzh2iHXjf7TO8oHx3lY7dMmqPJhhSuppPA7MvRsfx4oNxrtIAsuzmIxzevp12rt5asuPxjdxVuv+ebZe/amxuMNtgH+9+v0CrY/vVmbIN/fFhLt+sytCAARFtMYHS6YFlENl55fbCNHWDzgDWxTS3QcHE5+fERa0PvD6A3yPpbzKcwKKUY2uznA9eYI7naOuSyQa+brYnW7Xza53tblnFtYBiiLJR2NOjHLbWgtI1Df356xn0dz7nv7qj1cX7A7lkG2qzJsbPARcPxkWWxDP7HzZhOtRroAEAfDz9dGe0deRyHsRJI+cpMBJ+3/H60XmRQSQCiAdgEQLVrawkKcGTn6+ZsjdRGqDVAChSpy0YDhDR3KSaMCIQQY1xTxZkPdi3L9nldvL9L9AZlba2zJITaF9ARMbgREnZOaC6kBSsA18MF+zJwkMYnBw6x0YtA369jDvp3xRWmh3L57vY7lRWUgiFyCODN3wnLvPYjGBERaDgwopyXXdG/vVnLNF83yx83L6+zoKdfLPNLzQGCvhAxNkJM0OQ4N7XShNaDJVduD2itAXrrOtpBBlg4OWhALn3oa4W0juqCw7IfkWkiWMHSwMhUNwZafaxD/vvHB1jGgFoHWw4YddmLZV7KzQTc5PaA3kt8L/eZ1/fLWC8MbB8HymHMNyuBKygwDQLqEVjW1t+3FrR3piVt+UhX68yEEbT2zVJRupRp/OVwEIWCoV7GZbZ2jVIyZnmil72fW+4a4IV1XbKyveGEwpgSMGFFlivU2xHzd2K9Hd2YE3xPBdi/b85mGOCDiQf3sJHsXlHuewR0ellNI8rfEfGXYHp4S8KYF0B0W9G3S2hDFRGL5bqVUtTdAWz3EWIsKSq8VqiL3ZW9QY9h45kZNdE6WxP928V0mwh6c28ADPwtAv28WWuybYVeN7TrNoAKZnrpr3FNZ2ZA0mKR7iWgtDFnECW3OuX+6SwbA+0H0MNywZgjZBC4PxcMhSK2rlkC5HNZbg9jK+RMOO1fFveFvzdn38YzMSt52B5Bfy3E9JqXFJU29lECnXyu6wJtPvdzy1ZNpTCdHScsWGdJ4OSrNh3Px4CJnwmNp+QncD3TV03gUbBClh4tFcNO+VjYfKpxTXsPKezhfHC/O4Tzsm+dQZLsO/UWLMhoJc17W7zUMz1TZhHHZ9w/Ue7d7xcb94cJe1IUPQe1AbJxr8tMspgHmAGUmIC+N1CfQ/VZm8F/J0cb4pK1GsjJ9qRNY68c8z8xBXPcxGEsMmj6fh2zH4md2nUkoFKJqQIODoq1mKaYfmLrBCs8g7hIgGskNBIYeQZu2AVKBHpdjYHrSVnuf9pnto4y4ZLmHN/xUxIiB87OgBo6VIMBGnM4l/7Q36waz6CnMY7rxj8FEAflGp5YApNvzaTU+TMp8Jd4f+ckVYX5hmXYuKksogI4MEQoeyqbOE3eVCaFLAz5xfFLAAoABh0w164DI4uUUNFp4jWjT2sDsKSsBxCfM5EtBiQ6o4V+DV0XN8ZpwwWgR7cAmtl8ZpJbnyhWk6jQC3SNhpOB9GTAgclA0nEaX/bFkrI6oj42pDeKMSu060SVCepTABUAPbR2EZQGFyuUkR3Jhsl/96pl6riIPVehboODCUaHPb0TfkVkZLubItrovTLK7kQoP686MQJCjyK1+gMMbDCVcj63l4GomihXgdeYlQCMsuYC6bj5Ga1VZHKIeYvsonF6Z3zW2BymL415HRnTSieqPG0AIaTFg/XVkWk6odr5s2eg4gVwEUc2tLHehtF8ajuThfjy2jyjwKw9K/BypjKNQaCqX9GtpmdzBNfpsrGpfPVc+buvUN7z78hEeDLoybC+QtHTNSyocSeSn/+r+8i2IB/T+0gMg+xEF2DSQejUVuhjLB1hn8Yrrn1y2nwdCZCQ9XR8cY9KZy3YLWluZKf2ZPeeNrJXB+mobJfZFVrG+QSAnmqStcoo1cqOy+nvoJ0630a2pQpEDX8/jStgWgpFQ7ICgNnAPMxyMh3qWb6uJjrGKVGSHa6088XLTV5kr7LTSBt5NKAkQU1N643R6jnL2Fo4DwoEEKh0ZOPd8fMK0Qa02U7afbutJJbC13Lef+P3GBlyQQDfOVOpUPs7HWi400rgKcYDc0aaavLqN8IgvpA5aN+J8e/+TvydTeOcfZHTtajTYOz/NJ/oh2DoJwUoVgoENTFf8LVt4Vzncj3bu1hfdmNkYTwxYToMsAxbTUYk19h4tjg8w0sWUCR8yABLR8y5FOBPwRRvl7ZLxbRNyJbjs/Q01l/ZDv4vl/AxYUEwgfYs3q8FxsE2JQiXMv6W7aT9+nrvfhp7jsGTr9ojey9tJKymiRrvR5/mADP38Xu2TizjnmOt5a4T2eKcfYB07vwOp3p0YPjl/F2HrXt+vxTTLeR5+dwJ7Mhzdcqa025lP191BhLymnuVQc3rgHujJyVj3sY5/DvcmumnnDLb0Wni+WppnObvkMk7B4fJfnGP6fKc1Pkrf4J/9+8rxEpggSF2+WLOTD9/5VfxYAzW5yc2tu4/GXNei2uI75Xz3eduBqifnpv/ndifMhIT62ixLDeN8z75VXn+vTrOc4gMun/iz03nz0dhrIGppWRoTaVzBMOA/msS3P5PH2cwgc+S/5t/7/5f9vWE8darc/wXjl8CULAafcsMKmDqzWKDlbMqACYHP9TovUxAF8uEUSQPAOS2o972aP1jhhajhSRgiOnbCu1eF0ul1P1AORoujyPq2uTjbkilGzzdd8v2/fY+HPGWBE5EQrir/rgbevtxi5Zq8WyrZbLb+2YCifsN+raZuvHFFyL7UyusS8Dban8nbUq9Htdr9KXYRtCvC/Q3b212PyC9oqHi8d0C6eVHc+fNVLZ1LdA9ZbMIMqhi/XEM6m+1Xt/Lo1uZwx8JUPDPMFPVfr+geyYRHmhpM9RdbnfIXQyBXCvaN+820BW4N5THYT7mvQ3hwyTco70bxdiNGctgZG8wyu4SyLrVi7rjtHgruJ0CO6Z9sNwalo+Gdik4vi1YPo9RciIVO2tvk5Epjx47j24L2m+X2YHNjkYCzdQKE10LogRyX38gauJC2FJ8z+X4e2uwogplNoDACTPaDC7eLjYvOXd93nMMY+4Ckc2Qz7vV/p9a30T5g/9XrxdgqZA/fo4WjdQ2WGWuuSeQtJxMj6Pv4ZDQkVP1jLwHLeLUTIoncaHlMo3iWgycv7f7ZERHjVodBpZ6BqxB47XD4RZEGcNjRwjiFNchYADtAnXac1Zq3CZFGwEEMyHug5msvPETCO3nTcBZCHzG2IzVsrfMQOyH9QJfFwMFmmsy+PuRBaPlpb8TvT/s3NfrdO8xzq0NgHJPwQPHywNT/fYW7S0ZUGE/jOlBkcrrxTN7rG1PGR+3sQIAWqz0rCmkmSdFEdFo59kVYBJdFVgXY2g1Rf15h9z2gcYv1Zhrfu9kf1F5fDB6EojbDY1lRolK7wy0TeCQDiMg3ZhhUEX/fjWtAGbmIiOpcV8lK9HXauJkvH5u1da72ULO4+Zgw+4quHm5tma10rVCyDwALMu9eBtSjld0WLIsKhkk/dvbaBfnZWqxz0m3vXc1gbX6aewyfVujnV/52IOdEB0T3KkL0UL/d8QTqwUDvYoL/Hrd/1LQvl1QtiWJUSLej3r9eHRQgu2V+99WQJ2VYK8vOjj0zYCceicbzb5fHkcE2tZdqgyNG3EgIgLUYdNt/graW3WNHEXpPOdgy2E/jEWyrZYN3xZgqyG8PIn5qjuEtUAzuLeuI5jp9sxaCmRhYMP9AiM7yHp4tt9WRft+QV8r9u+mu7H+OMxXuLlYtIMC4XzmoJ6MLQr81gq8XR3oqfEdFdg6f2gw8oRrLwcGritkh2sxLNXn/e57dw0tKtolubsmw85svs33mHPq682ZBpFs0fHuInhyOxoM0qz83/qzeCLBmdQB6mVw1xEUbTka5L5HG3BVCdA9gjFeA/BMNULA2sbNhWSpMUCfNtlEdkgLKjZvx681tQZNZQEBfOXxoV2gLwHY3F2X0DuJ9dBT1wtmtPnsWcsit24XKzlju9EADv2+KNwO2DhSmyo6eVSPGcjMImjsz0NbPvRz/LqTiJ77ir6ezsHp1P6QNjs9i2gd2jml2BiWUarTL4szV9yn3fcxn7jvxTxKMUICdgFAaptbWVP4XXUqA4DvO9TtEWftKADkEhaCMOsJJAB8HYvFKdWYNTxCL+eRWjUnBofGeQiGPLeSjiPFd2xtLa0A1wva+4ruTLh197XweR/vJPmMvPZ0/lxeq+m50/sV+qWJTfkEJpAFcfKL7bMJmMjXAELPKsZHFgyhbAxftGEABX8FcnRFdI5I5RC53WPsR4cxElBafDYEwzuGPwsMG5+BnX561i+OXwJQCKSpWFCslzUZah9sGvn0gqP2J1Nt8uRkb18aRpRApQFzBPW9DqSXhwdl4VRqgTQ4HaZPk0nYE95riUJgiKg8jQODpcOMcdCwSJlyZ4mCgHrdQj+h1wGTRjaL11c11Xd3OnkEFSt2D9ckaEbRhMCEJg8YdV6B3LPajEedhb7UzmvOsKLsFUAJHYloCZfHEeO8GYiPFpscg95DNC2Ak66DbuRzJFp40gmtZehqcE6cQKgQffT3GW0/c61s17B5rI00BeKeHN1R9qJV0C9GHy+HM1iAcV06zOsISMq9gS3pBPD5VYFkwLuLEoa5ztQ6bvRJBAkAdFvsfElgNIvPaC3PQj40tBnNPQEL/Jweh2cqSwTBQYvnuV4ZvqCP6bgnbuBs09hchLWe12C6h7NqNutwUefWicDMKMj1rEAy0jkV49kprp1azUHmOGREl6UXtRobCLBxWdLGwM/zv9GSVsb1/tmREXSi0HmjPY31U11d3qA4DnkMMt0w/z6DJ18h5jHODrywZMXf6RP4kFjMWsxZlFyzd2Z25XnJ3zFgym2ngAGeZbV5tot0x2fYcgwHu/hesafgkE69d3OIkgIGPXQuqKtCJ1TE2zzaOQ3oMURB4evk1drwe5qEsngvVeYx8LEUOsC9T3YxTlndUespQJjokGk9dKdWtzSWItYqNJzSGsBr7AMFoyaa9uJoBlYA9u9V0F9MHz7XpJ8AILr3IM0/P8THSH0vlZbGjA4i39PRgcUDJcN+RglBTzZdYOK6xf7dqz17u1SUQ6GfggU41dLbPdneOdiU4uvgrFsgfu+lWenE8F38flm6kMtV/N8TYCzc83vU0k9O7gn0sjHrwB2jdTHLzDzA6Vt1cK/ZeGSTeeicjc6mV51Sf4cnXfp8H9VLzJbFwDWuW9VR/99PDnrY2fE+J90TZ1yGNgq/0xwYnJwKzhGvo1Z1Ebdh24ZwI23KyKAHG5Gs2AAROoLG7c84HdkmZRAgB2rnZ2ZJLzVINpYONteMSJ+PEgUGCJ6YKYOFMQAZH4PU2QXNBHMpKB0M0JIo0f7ZzNJSkSF62PpMqffgM67B+cmfi2AyAnF/p3EAXna2CNaL6siu8vcd83l4uurgSg7CeV7+U3VaK3ndDr2v8Ty5Y1skN/O5CXTkDDfHA96BIM09hYSZA8ea7D6COK8OZvp7H2uINiX7cOfvu3hutCQmc6WNeT+tYf6Ot9jHM0l3f62UmU01ARKn++Z6bF7XfxIOjiQC908dDNisBQXY/m/+FgbgwySYj/WTL5H8B7NRZfZH8xjGTclIeGUw8XykuT//rNMeFqUQzqyM80Y3LQcAimDq8MV7ydfmWKS9ZiSTEiDwAgAITa7/7PHkX55f8jh+DUABGCyDbTXnnpTAPBlkTO7INNUC3B62Cd0PhNBUFSjre9geLy0eLVb3eXy/WMeCz+H5jlq25ogdYkOJVjIc5Ms26oROlCMGfMX7ZWs29LWiv62RadJtQV8sS93rmOyyN2Cd9SSoCcDgUpoJVvWlBKhRvCWXdRsAysFMfAN+29AXwfrTxRMf3R0Oz9irZV96se+LWvcDAhKskStrtWu5QnFPfb2lt8hwDWEtDNqx6w/ot4uh9Luh9dgPa2cUwe08TbIehhYXzOw6QIVSRuYiiRyG2rlnEeVxGHGAGcO9oYigyWL1aR0GEhTLcGkRLHtz1XOFLoLH9xXLZ4M+OurHA+iw7hAKlMeB9rbiuDooI8DmgAKqQBvGO5KxDI+rgT0r53hkFH0slzJq+rwrx/HbhvopqD8/R/BNR5O15K5WP4EAee0lw6v7PhT7WzMBwOqp39YN7diuMwCxp7nv5QJ6u49NYXFxyMduIIB3JtDWgW0dLAaRUcfGIztwzFiQ0fB5i7UV91ecxXCkaFaMSaB0utjqjpmQZXGmgd8HtRqOAwEQbKvdy7Z60GCZdrmM2nJ1BoixKnrcs3U3SEHTedMoeKINs7uDiIxnIVVOFUAd1NRpo1qQQZvpIDAUN+wbmWtPQLv9Oyu5vwhe7XfF9BGYneBn2PXj8+7ZkSUyRuE0sd4V7rgmUBGrjODX56VWGeyB7PDk7/HndUH7/W0EmXSYPRAkA6HcHiDgJtuKXhZn/Yh3EmiW9awFeknrKokIA0D5uKX7tJZ90i1Y6GUZoKVyUx8Z2qi9BqKlsaZMn6jf+91BhD2DBSdHqFbo6lm8VBoTuhZLNYCHddfF9pdwiJeKHqV/I4CIwJZzbCkupyL2jlub6t8tI0rFd51AE12s/V0Efw7QUhFf12rthYGx31bbh+rdat0j4F4cQNkPt2EHhBlt13vRi9nfYB8cHe3q7RSLWBVIFRwXwf1fBOUBbH8WXBbBpu7EKrzEDmhRkmYaBRa8Vn9uC+zL4SyHR489Mwc5cvjaOI7IwlrG0vYgzqX9u7VwZGvn2nZnH9QRZDqYEF1HOgH/w7KSpQyAqlgryf33FfXWsXwAFNCk1kf9nNkRUeYCjI4i92OsudYQwGl1TRzXkLL1mDLnxO+yqCTS3rYtwejRE4jMrGwwmY7d1iVSLf5SQ5+GosvqwfsZZB97W/L7hPpSZSSpgNDCAgD99mbzjnXjZLNyPTLI9nVgz+tBcJRjYviMnkQ5vtehSaWp9NaDPyF7qLi2A1u37sezngPtKwPbxDpAlWh5yay17KP7UjAUDBMdYELvye8qz8mE5joXksC1nNDr3YFB7uUj6MqdZmIO7ydfvyemoycS8xzi2CtB6nzkfSyyr/63lIRTgiIO7OmD7BGn2Z9bRAKhh6UYdf1oLDNT0wvJ5T7dfPG4rwwIcsxPbKdJmwoIEDPm2VJHJ6MczFbTB9JLRXtbjD28N5RSUlzUh5+QfLAJHElBsmDMa7tvjFK8NPend8OxPwDIMhJ8vHYzPysy+OxIlUTBoR5nANBWxh7F9bsuA3DM981/i2ljWGKuD1sQQFUKwt1nGYlqnc/H95JBmfMhMvwsggmtuXh2MeBgGcB8ME3RMZWXChdFAYr7Mj4mbE0+CXSf76ckNgiAzGKYb1eeRRx5ruTH4vS98/HrAAq51gZwel0daPnJaEpXy/6WAly32RgCyTFzg+pBZrRHas36Kx/cgJ8RxhEsHcNx5X89Qxt9aEn/ipaXI/NAJgWWikw1AWDOGWAO7u4sAkXKJMEzE6PvdTgm+wBczM8tQW9je005upURrBWLj2V3R7HeO6DA8VZdJ8JLH5JDVzKDogqkFxS/p/I4oK2EA3C8L6h7R/3xCKBDWRfX1WIhEVsjvqH1pWDxtkgABnVpvGy7F28XVOrQNZAiRiO9HSMzKWLiVkuZxBjHxtRxpiLl52PbMtbvhnhX9/eY1L2LAxXi3zGH319RN3rrknUvKIK1FKAoVNfR8/3oKEfH+sPKa/p1hXjWYr5RHYBJsZ9DUJMBa9psJsSbQSaNtY+3kDng4yMM6rnm1jUy9xQ6DANM4I3obx0biyx1GOPY5OrYlJQ0d7XN2ymyobPQZ+MX9fktgYy5fi2QWnXD7D97MK70HYsgWAonxgCNtBl9biBlUEYy0MENg+0weS1X2TUhqBfBPcscXhjn0U3Dg6LWEmUQeGJXZESb1zjTDvN1VOETfLoeAEfvZTiBi/WnDhYIb5/OYinD2X2kTc1BkPj80WwTpxhbcqToUNtmn35P55tz6Uh7gINKwRpgCYZIABtBqU4tduFU6QEqDwfCAqVm67imTBHHkA7F+X9+7/xZejcwwssZ7BxAX1efd3BgowxdBH736IC3ymMpRWT+YmzTmrKXMf5NAOD7uz/PPgI/ZhfZui+NswBgV6Kgezs4MrWRI138GOVhZT+eRfJat9IHB2J1rRYQOP2/3lvU67PDjbVITrZ9t/vprtRPOzH1Ey+eATyGPe8uwlz8vZfDdIV0HWB73Y3tYdcTlFVtanwiGBDSMJh36vuSjAw+7TU60L1tcYAjZPCxpKD5/BcZc6IWoKwmfhuimaTn++M92thzCO7TCU4ivXm+Tx1jOgD0KStVfV2VvUVLaXQDxHMtbWRyq1hWFQA6M+MwX4O2N2fDnRod3yegkc6tgZY5WMGgQN1R5h7idmbK3G4r9GgWcLIcKtu7MgcDwr1ABEMgyfeqxNZB78/09cxOi6RR2n9isBiclOHr8feA2/rZhrJkg/5olNKELhIiCSbn9U5QnePpflDYOe43xQBpawc+5gvBHQrZ5o4SYQ+4P7CN+Km7hqiasCv9Hl57cbBisfajhTZ+EsuexycECwFkvYEAHVuf/Ho+R7wftjvn75PdPV8LSHMbsLnpz0O6vwDQgUhFXDK9bx4src7vJ92jwLdsdkMTSX6Ifz+zcjTN25wsICjT1exFx5Q80rjHAToMzQjbP5kMVW9TWbzsQU77+3TkgLrD93FvMyvm51gZygsGbN7rOXQpzoq2lPYifA4m3yiEvH1/9tJn3f073irdwOWUAAFOOg5JS0N16EHkdR7v0wHQHINMgIiMcc+lAVMQL5iYoLxG9icJpnHd8Hv5XuJ3RJpeHPndZUDoxZHLdEcC7iWMMM6XQbj/wPHrAAoAQpgFGE4Xmm2w537xHJClWN0kDxqUAg/Uim9SdTAf+BLdwSCNf3y/j4UEhbDHfGQJBahbKNZGPZlvZrH4CSiwlotIXjpCXPDokN5cxEtGuQQAaQtQkwNL1ejkaEbQVS3Q1K0Ah6IcB7oA7VJQHt433OOGeveuBddqLR+bB35pYlPp2uhyYuvTFePl3iC1j9rWN0PZl/ugAHMTt40dJpwJCQ2JfqnQT4nsAIAh1ERhymTUpMrY3OBB/cM7EXjpSd/MwYNvtLmEQrsbRqe5jrnmGyufl7oUAOp9Nwak12/xXHQsozSDmzUAqmpPektKR90C1O7Oky5i7dq6OeIQQbuyX72BPuLgBTr7OA8nsnzuc+ZyygD5/TAQOQ5zyrICMI/cl/o4ohZflmWACW9XRLuqrtaZgXPw7fpMC6TDmZ4fVJb12m5rq3hAyxoaCgYQMHg+r2/agjLOl9kI+VmA12yBfHDOA6FSPpVZTLT8PoAEZpapRu3ZJFUd4MjlYr/LCuarYHJBTSAAACAASURBVLSXHPc6BffMNBwHZkYBnXEHlJBsFelv+/76OQlAlNO1+IzsUbzfbdqsDpQc7gzmTZKBgwvT6uORAKcyMoDZKeeYZQeDjk8ZAUo4kTwXKeHsr33ZvDRsZCf1amVyMddoGycQeAvRWwP953klHhxPDm76ezhVMd4A69pD2Km5cj/7ga+LZ7jK7DBUMVZarpl3JfvItpYStfYBYJfiDKo0prwnEQcjTYOmeCcN+bzHmtTT+OeSAfsZA7BxfZ5gy3FvPZqVw10qcCsGFPF+GAQ8DgALlMw5WIceY7N4GcmiobDft2p7gQeP5dP6wjM4DbZCcoCi9CKXd60FurlAHIN7kRFndwUeHVU6RKtpNGyWaVs+ucYxrufrUIutkepMvfI5ysv6VnC8VRcl7lgehzMC2+hekJlj/l9dqs1l/i4yQPaM5WG6ET3ql5mlRyjzl9sRIM90hP2dAz4yQQKoYg02g3N+dzFNkZ4yvnIkWjEDUdWR2SWwzOQQhn+T23tLCqi0d8jd731Newfr5plBdiBEPVGCHeOZaBeKsxfL4tlOHQwR+kew9aq1jrlzGGjKvWcEGj0AVZHN1kK3soQ8ziZyW8I3eAqYScXPdromQKFZ8uFs04LyHwBaGhuOfwq8w0fNwW3Smwj9sGB+eXBxqUMtn6Llvcc8AwBdEfOGRwTxu/+tDf2kvnmixAO6rEnDe49t3cVRX7XQzeXMNkfynub+kDOYOE8LdT9S8gfAmN88CDhUBv0AS/8EmAUlz4fQD+zTz08Hz9Xcr4UzUBzgIm3/qd5fddxx/rsqXO1vSqCaPz1KV1jSBlhIxVIqUYxy4b3OJcrTtf3oaewZj5QOMJkpMpIKed7xuykBGHM0XS+YbPTj+P30c+gpeWJXfG/SKtFlLPxbv45SRyfveUXG2EV8d35dTDaX2e8Dkk859NsAjPmd3x+ZgXHir+yzDp8zC0r/syOVijyxDjLQwWfK9zIxdfr8nfPfvyif+Or4tQCFyE44SqRqlJ0V3tdbQQGvUMUHYqFNNbEdiLrBy2qT9nEMJNFRTQpl9Q6jwLrqMorpGNCRHffom95jtxrI6waKjYWx4wRuj/F9TmLVce21WgtJbsYOfOha0d+WEUiqZc8Y6LbLgnJvKJ/7CL7dUQMQKL8K0N5W9M02u+N9QblUo2s+PMg+FNvnbloNOYjlsftGu0vQ44Dh0PB9lQ7UT88MuXiXZKOrEsYlZ/uopaBLQflMQblnQGa1YgwK8ttqm+PeBvXSx71vBW0rXrvqwNQmo3bQHRNNxi4ED1u3bNoBtPfF2mH6HDOqpXophNN3NwxwpQ0jqz7muhQTt3IhpRhfAll7Q7lhbHq+KYu3t4osmbcE7ZcV9W6Oau5YEiJURxsCLL4WohyH87fr1AIpBBRpdD0YVa+HHcZFRjaWoojA9Blp1tIzrpEBOhpcBqn5noCgF+LRnwNekdH6RsRr5Auk78NZ4X3xM/FVCpUxS9NHcExhnK6m0Mv5sO8pGH5h6DVtIFIwiqYdbGkN6AcUN/sMa9P5zL1Zz25gMBwyei+2+Ukt82bkJQ+TrgWP4gI7uRUn3xFPsdo7j7q9M5uhFihLODiv1nWc53qJkpYpIAkWS9qwM51y3FBkHGwchuMDYIBV/jc8UgDjgbKKxNqX0/mHSn13kdurrb/H4cHs2CwnrYL+wl4Bw2lTnW323oLK2t+5rjXWqmCsDwDol2rtCYONtFpL2pZK0ehke9AuJ2acFrGMtsjcBo7P7rWy8TMBgeyUE5gI5wOjHGypxmzbTfzWat9hoETvc+u+vVm2qFbgrQyGiosLG43Z5hXZAu3N2ibXn494v1or+ncT/yyfh5XNFaC/LXGPvQqwFhun3cUST89uAXrxDkN9ADjhJAMQTFR66ZaKqDdFuSvWnw6wbwO05vJaPkdJzSRuWAykXz7tGmXvqH/eZ8Yj2TQFQfmO0gYyKAlgZz9B/d1lEMUZbfG5AsBLFBm4B+vytHeG/eHfmDnO5S3b6gE314JG5x1ruVjnMVQDurV2CAEBtw25uxEZJxBBe19DP6C4LgRLUO3ek1sa7abH5yLZ4WtC3y4+fsZ4yMxNHaZwjAHXGYHPLfk83OeDzejOuAPgocO0pL2c7/EscMdz5qBztfatBoqkkovuGl9oQ1ScTCEvHwkGBmn29Gc6hg3jM/J6HP8cFBx5765AG7YkOl4kDYwYuqUA4uWMgLW5JcgqHUKqdvhKHixnFsthQOFoeSdAP4LZbc9pNl6cjfIU0GSfIvktYS+ubjsEwT6eGGYdEGcmwOcv9sNaz17IPMYozz0nRMrJtvBvJ3uEfE2kgI9dcPIc4Xfyv+mPETAGpsAvmDsEJVyfLQe25fYwf251tpuXlUX3IyzJb16GwKLv7aFtdy5xyaVCZ32uFFQDbkMI7kR2n7YtsVtPLA3+jWsOIgZoqs5lPDLOrcsQftfiY8Fr9tM74j0kwCpKN/jMIhYl0wYwEZZLPPJ7y75sCvbt9234YZxb2hGJHraUPXdueHUUgRSW0b4+Yo3x545R1nBmVUwM2uEL8mc9M1C+OH4dQCEZvwnJKhgvL9M+anKKaNSCqst6QjfIFQOZp8NONW74wqwy0O41Tabs5KsOlDNqA5cxyRhsUZmd98ZHZM9obgykmrPmtYtNPBdmtLVjm65QKFGMBirtxQJWjYCY1+hbQV+9DEIKugLLzcaiey/tejtMJ2Bh+0GdjIEZEIRTqdsyt218KICGcnjgSwGl7q/MW7vJOdOsANxvkvTujVKLZzbK9D58k+UiT0eUK/AoMAQ+18s5mKBpwblkzgyonDZV2ywRLA9zUk8br79jUn6pJsxe36Tu5kwRndNzfSk3AfQOhTuTzgAZtGwMw+HAm4YtSPMwr7Gjj0wknSPfoHWx7I1wntYyQLHzeHCMckZfBIi2cgRE3CCdBa3yxvxVjdZ5owUGLfZ8dJ2M6PiaBLU9Ekxi601ERv1eakc5nxPPxj5+z/O5jSqAHnR6G6iFgNyzFZiBhOkZ+vM4BfiSPiMCqz/iyy5A6VYu8RcbzXTwmdO4PdWKVhMpVNLllmpgUQYMou7x5HicNyHed1z/9PxlXPvLHt8BvuV3hJl15PPdesibXZIn/QE/rwfoyj7ZpyB93FsxJ3pv4RROoGSFZ3rnZ8z2oK8mTMlskuxeRkAnM41TOGpB3xbolj4Xn/f9qYxAMLJDFIZMGZScLbayEQcPXMPHwHd33HgvTWdntXfvluOMM7LwFgfo1wKK+JpNAnARaFKvlgboZoFq7gwEeDcLPlqxbg/R2ph2JWUtw7kkQHUdNaEqCJCB4o7j5SAEdW1PTKWWRUL3x4Q3x7uhLaRuUaEyfOsnDYtizEh2SKAwZS9jTlo/4HRPOua44imLGCy5UzvAmIvdvhiB8cmmkqEZdfmtAQwsXhyisLKRasBp3jOhAhWNBjk2PmI951XRPehhy2VrJSo+z7qVJmKJEhg+C21HoTYPS3IkvT/fi3tN5Tk+L8c+kfY8YBa25N42zQedzj8dyS+Y9lUG4Wf7x+uy5t2vhwAjRjmDjZ3pV7G0KA7avwSAjrbjxV4Q9VEYgALPQe/pGa3doIy5OgWuz1+L+c6jGGNVqtgiS+CrgarpnLRjvY2yZjX/I+trADBdjAKopORTvvf837NPIoiSXj+ZgVk8fD3H19kC3llg0XY4zjvGCqojW/5VM8n83l/9jTaOYAFji+xv8+f8bARPeG/5yPT+8/W83DDGkesIDJZtjziXSUPaYGmoRiKJydWppCD7yy98r6f7Ou1b8Zwct5iPZXzG32mUgnBvytfjmobFQLnd8JM/8tU7OvmgxpxJviOfh1l8nieV3k778wS0mH82Tn76d4MnrNP9nPy4wcjzuVDxnLSZvkB75DaIrCfg2e/k8/M69IX5vf8AU+HXABTc8ZOjh9PIjYP0pajXZmnBZXVD1CwbUsWE5wDrEqE6MvjA2ORJye5mTKpnm0wU8GHMAxEAnvk+DstWujFQ1uhetpnWK2L3d39AdZ1orlm1OAIhtUy3UO05aDmA7A31DwVcwIqtI6mQv3wekMMYBWQN9G0JgRluziYSBezfCm7/UnD9R8fys1u3gcMzCt2dpSrmTNUKWUt8pnw85hof1jN56zQAAS7UD6PIU1yMz2wfYoDlQcJaUfZmtbarC1TuV6M1fdwGDcoPZUugt2tQPWNhbCuU1NECtGtBuxRs/2b6ChTFRFfo24b2RjBCUV1QkoJVj79f7L1EyYfV9yqs5CGm7KGoh2L58bASkNNiyy2++5vV9farsTqWHw/bcO+pK4M7FH1bgm49tQ5zsKHcW4hYwkVDsW42X31tyHYO7jE2MJ+nADybWPG0GdWC9v2K9rba+rg34P6YjLGui3fkOJ4CRPm4Te+cgXsYYtVRZ3/WGDisDGIgxSWMtbIEQwTy05kyRJYDlEjzbT8MBFycCsvnzvoFZCawZGKrEFmA6+KlCmPunGnwwQRZMdD2lOm3f7hR3h/ji7T/PoYDLCgjSC/j/uK5yKpwWro2YzmIiyjKZTOA4rEDOLEe3q4WrB8HoA39/kDoPBwPu866WDCVaxeBgd6LhAiYPh5xb8KONR7sRO3+GWwAzJ7eH2Y/r0PMkgwt6yyQB3nYAcu4SrRL7cxaR5vfYd+DEv6xA1XQ31eUD98HCOxe1gFQ0PlwQK6/b/P7Vqrkw9p+0XYqhljUYgFDe1tR3lavT/fXFwGzreO6dwdfqQUxyqYGGLIgRKR8/xLWT2dldH9Hgz1m76187vMa9I46AQ4WY30Y8GnOe7kfox4fiPpqFTGWjR9B1fU2iPp+mbKn5dFiX4179IAo2gIrDNRWBDPBMrMIzZruHXBEgXa1lsZlW0wD4M+bP28dwXqKhHgOUXi7QSvTIHj+6hAFym7v+nizUkDpaqLNOjLv3PPK0dHFdJCizCG/F8+atfcNuvm+ujfIh7U7I2WXQsfhhIo4rbij3n0+ZADV52bQu1dPooj5DRSmDhZbFZvT3ds6A24bU+1xBmnImuD4OWWa96prxfH7xRh7rQfrgRR+tiXF+wZlK0svb1n+RMw3FYILgHh70al8I+sz+DoEYFl7MgjuB6R24CEjiOL7xGJAH+c090x2jthWL3VsAzhjoLCuL0AFZqtTe7mc+czBVbrfqJVnMM0/u12PoDq3e/RyKZ5H7qPUTzKoAMwCpexQQSCzWhtDAnuye/bUETKzU75XJPbsFOTRf+NeCMQ+Zp21yhi/e7O2pQ4mhS37AuCKLhp8N28FKoNtJfxMDl5zHfthJUjt24a+VbSrjdny83AwK9kgTy5NJemJeRnrtyPEJ6UWSzgwiXj43kpb/BTg9xFw5oB3SlI4yEpWJgGwPJ+SLQgNDL6T6nNYYcwYdtQ4JQOi48ljxCCcg+1tHSBVMVtMVnS5Wbt2KWUwBAicZRCN2Xq+i3yPQHxW2qn0gaDWGYzoGMkU+qZkXuRrcFy2YT/jvnqap8keBNM8n4NMW/4ujx/vLzOMGPNllgrHppfx7nn+eDbqqAy/kB2gyBTV4/gKphrgA/3AqSTX114SrmX5q9CXTOUg0/eA59glMxu6mp+ZdcL+4vglAAXL9M5Ik2V7MDlYsej4Is+I3ymwyTTWCSUt5hApCqL1ztHGoHOAj2P0aOdBBFHdATzS9YK1cBKR4X1PtUQalLCn+/dzqwGFnlHKz+wfW6stCJHYIG087XOiOCmfwrQSOMwUaXHHwXQEAEDMUT8je6XOiD83tRQAk3HwFUJL1ggzFzg6UBNiWsowWsBssOnQ8B0xqyop61bcKHZTtI3uHnxvZGL0tDH6+USrgzECsiei5syGZTwnx1AxGxw+qgAsi4Arhfc65sEEMp0cxSkDdHIcgnKbDXvM6xdOct54OaZuuE3LoQxjLbax9vcN7bcNj+8rLgrUpuasnQ8CAnk95vfe5+vNX00bY6aG5k0pl2H0cU4i1HGNV6h43ENPmRpN//YjayJo3jh8vKRgEkLk53yjsRZ1Cpxr5PJnpwd3gKFryqhr2ihO3425V6ZziMyOafxJ5Pn3HOsMUrRm4OHru3595HHjM5+ZFPH35DhmMAsOopwdsYmpkq+D9K4RGWrLuPjP3ewWvzVEZT1oh2+Qxa/LQER1IPY5K1jk67resyPaE2utI95flCXQaW8K0W43qbByLN5DwWATnMbNxLZkXtvZqU9rYejWlORcpTl/AnenXuv+ziaGBvc4H/dQ/Fc38nQKnQFiAolj/OPd56CqIhhRCvh42D0aeMHry/T96Drg7LOOisLzkLnCMRPubUDOaFttuO2LSM+peQ4rb+yfHOkZue9J03l+iExrT+nYcU6f11M237Q9+XTJvurLFPJ4/ihdQ7evMDsuChXfcxcDyqUk8I9BklOiqTEQCYQUdE3Z1NW+E3tTuheB2LrYMRIY5P7yOu78Tt/P+0keK9qOmMe+B551KkiDP/kPeT1bichpXfA4083zwfd3plGfgI8pk3n2UXmv6TxTLfp5P82gBd8Rz6HUfkmtu1MQHT8XnffcV+NS0n2F3wyADIrzUHggilKGFkX2vf3ak9bEq2D89L5DzLPoyDYDz3s4MBhjRdw/wPPcOdmCeYzKeE95HACzdTXZ1BiTtD/z/p/+e7rP81xywDFA8wO2Z0xl1gz8kj+VjxexxvTnvE59nmi1stzckj4Yt3DGdilA9fbHOUbh/tNSEH/en857wPn5X7Equj6/s1djl5/z9LnYv/R0/q9sSb7++Zr5Xl8deU3TR3/lBtLun/3M6bqncTgDUfQbeb6na5Tn35PpemK4Pdu5F3tJV6B46fF/AEjg8UsACgBGYCoy2mYl8Slu+nJNWZK9AepZgaLQbTX66M/bOPF58jVXCCZboV5HLSEVsO+PkZ1szTKjFPEB7MXd70al5c9UwefGloyeXrcIDGU/jAnRO+RRBnX47TIhfRQPk72jehDerksI3Vj2ZkEpYrGib5662djVD2uJJpcFl38A9VGx/nmgfuxo7yuwVSz/fgeq4Pj9Eo7a8W76AwBMgOqxBOCia7XuA3Qg1xJZOagG26PkDFcyllBF+XhYyYTXqgHNWBB5ERW3bHSCilPuOXYA9O0SmgFWQmAZx75VrD8P4CdQft4tAHXBNq2C4/uG/duC9ceBsne062JZqQ+79+WWMly7AwGrGV1hC7SmlvWsniWVdQQe/jddDSk/3ivWH9aFYfRAL9YqssPOs9ZQ3I7xhMcFXu+m1TM8+xjbACU+7va7ywbcH9D7fRj197+Nesj9gPz8dMGtlDV29Fu3Fcffrvj5v95w/y7Yvwv+/r+Bt9s+WpUxiPBaSFzfhzPETieXzeb3jw+rv7+aMGGuUw00lsHt3Vsw1mT0CYL496TOhi8ybMAkDjkJAZaCEEBk4ODUS7AcofCaBeyq8IRMM3Brx2jhWFJLHoIBPof1scdGG0wAz/7r/QHVY9T/d7XdvNRxHmpMvF0xtY2kfVkWC1CVG3sfY+BAhEgdP582s2BtAM4gGBuSOkVXkj0KO7ouLsZ42ASlLoULz0n3IGRJFGqykpYKvF2MjXZ3Zhbvoa7j+TqG08t5perzCtZaDh4seoZfL5alls/dguAPFwDMwogrxcn8vHfXySDA0LrVYyeGVWQ+fB6IiGVujo5+WUKDB84UsyxtH2CGZ4HK7XAGQJmeU9Rb/m5LZIEp+KfiQV/ODC1klfnYjdomBN2/2RjI7RF/C6o1QURmZP9ir5Sb66wsFSoF/d00EMrtMCYVfFm4XcnZSL1s0LcVx+8Llj/vxqoiiL/CnFgPpMIuFAnAuXmrZK1AvSnqxxHf0cVsOZkOBIhzCUy0oWyWoe3vW/yt3PZgA6hYyYXSr+bWc2h09+G9KWCZWFUvGbO1IfdmiulkPdAmuU+j4t2IHhh6GWR7BB1e5k5UANr7hhA4ZNtn2l//TN+M2SHck9a0f7G9J0WMOY8dVO/XNdZ8/cNan7bv12lPZ7cKeRxjPXrGsP5R0a8L2vuC472ibYLr/9tRb4ft6QRSOpMbbquS+K+wzC/ZeXsw/zeZTzl45vP5+Imz5/SymQ6Is4tCj+UEgrC0aRIGzEcOmnIQcgbO8//OdGAdgsVyvZqd8vtTZn0zeODfiZpy93k070HpPnStxpRyX6y4RoxeL7Z/8Z4OMl+oT1IM6+0d8jneUWTL1ctTHECyUh8d4CRZDF6iyVapqACU4pMJoDtl3M0GL6GXYW3wbJ9U+iTdkFmtBVjV3tEdEOkj+fIieFM3h9IR8xZdI4sN9RIadr2B+6cQ07ZgedLRh/Bth829LpBVokVt2CwyADh1pkQR4jMxTyL4NDus2xJtee2xEkNMJDTVdB1aXOdgWZdiTJx8/dORBUP1uqC9rbj/fUVfBPVh77ze+wAj3ZaUw0BJuN9pawojLlO1jHYG7fKL4Xstsy8wBe8cn8MZpdSAegG+cR8LEDkHvC6EPB6agAATVv5zgEOnQFk1WL4zSNBHcO7PlD8z6cLx3bqdkK8y+70ZU+bp9xbIm3i2nECkE5tM05oEhi8GQNUYdXpuCXoe1zP4A4zv5PKI/+DxSwAKRqlLNdruaM0LEAMtPv19EtsrxRDn6btuMAPJHdmoWLx5YrbmyvAvJh0w/c6YCnwIT+V0HY5s3sjPqF3+H+DIYR0IMQDqD0DdsAqs0l8QrIKx2WFkvpqa41UEUJhzFL2lmcVAgBZwnQU5gCLOWlgHNVT8nunwwQXGoq61n54lZ43O7yxP0gJEHaBI+q/MHQNUR73niSY2FraDUc2zUH4PuXYVQNIvUNMJUI1sjBw2znpaZBT1CtZCB0Q0fuZ9iHYohjNTPz3AOEzJeTBJPAiis7QkI8es5hOSKNNzpEloz3/xMgSR0SrxjLovtqFjdUGXNrKYWiugQH10bD8KSgOWj0RB9WxVABpd5+4FeY6LB/BF5vdNQ5uDF2YrQJBgmebSS52M89iEMTfxG9ajid/3FJSfxzQ7lqnGO/7Otj187jz+U4bCHCEAUTZg1Mi0RvMxIcdpA5GCqLcjI+OrY2LZ0M7Q6Urne3VMWi99lGKcP++Be9TXdR0lLLHBJap3GZ/XkpTIKdpIJ4OB7at3+UrHJAGT+bOWeUZaiHg+JzAo5ZkVxvOeP390SwoQ2HXntyTRtFDOZotKF5MNgIrD2HUOBM/r9zTWU/B0nAKbcxCSD7cdcfbTfqOuhRGgFM/H8cprLo8jWQxun6Y2frzOCYygnQuxwZocdjLh8nni3dr/lUePPa7cDaTui0f956yxYjhW4qwSMTBi0DrdxqX5yAyoBUwSjJV6765b1IPJprXYskjnjoZUEVT67Zxr3dO7GS0XMQTPkO6T3y8Fj79v6JvguBYst47LP3aUz8P2EX781dI+L6cssCgy9C38fYbWVCkjuFHWjSMCU3SOR4/xIlNICOo7QC4XCwq0uNKD4rWY6Dkwf/U4r9bL5EOU2Rf8opyF95NFSaNzQQQf9OPw+n6Y7OBx3qfy76Osr5rto9YHNQdyXTYwB8jnrG8+eO+KYf84tmRBNgy763aHf4/5mrRpRHqUSdi5kw/yMiBC+ORTokDEunWogl3UjPlEUBnDXr96rtO6ibLhw2xQ2IvcAcy/I/TNTsEiBbfP7KGJvZKPAmRNB7Nnfimto8yy6/TfuN/0jp5AqRyT8P79XfB+tPq7LOldJB/zyZ/K5wamuaMnnyM00lRB8JQgjD0LYuyodYKGqQwuB80BJnzFEj2P8Wnvjv+1ExDA53wR8HJMtMtIqhzPQEuc60z3zwDPXx206fRd8lifmSl6usaTT9PnzwM4ax/I+bzn2HMaR/cNp2ftX3+ex6syhy/GOM7xnwAVfglAAb1D7gf6bxcEDdOzwf3q6FbvIY4U4onMuiyJNpRqSadBWtImQj2GrlbPyyD5sVvQ8dgxKcHzKGLZu1yvwkPN4KkqZN+tlVZ2msURTt4XnerejXLI06zpmt0XeEsL3APVXgX9YpkZfQxgodwPr0M1i98uBdJdiNEdo3Zxx8zrz+rP3er812Jq1p9AYyus24JSOnTpQ6/hbTVdh7zfqY5aOsAQ9KUEa+GM0IoixBh1Pb0bZiXettE2bbfaa9aiC1sObqt1VPDsY/Q2bxrZm2hv1A08WQBDe1sfbZF8fsjBjBGchozIfPWVwJWCPcejj3pubwUTw6yfB9afj9i86t6BKth/v7jjNTsMspRRh5t6KYvv3FoEGm3mCrSP3ud6WdC/XYDrZtmHj7uhtezj7V0d9NtboOLlj09j5vic1N8qyuPA9f8islLy8JrzzdvytaT7sB/A7e6tAmsoyIcB8u+EI+pryJwpN9BLNee0r6N+kOfzeQXXywjjeWYgcNOopoKP47D3xs4DdBipRB/dIgqCvUD6XmIYSPXOEL0bmkxAgmAM7yEZdyHTZt0A7a4x4V0z+Axnw+8ZSutG4b9bFkzaC69KC7LeAilx5/o6itBlwCAfrAnMXTe2FVEPWC2rHSAUOw9kx6m5YCNprtfLVP+rm48pa5dFoO/WurT+eR99rHmoswXYkYB1jXSwXGQrwFT4mukySgf83tjaV2uF3O5DCZt06FJcR6IN568pyr5DS0H72xXoino8jH3wGE6LeFeaYOi4UjiWoepPoSYG4XLbJ5qr1ZJjBlAY8BR35Fob64eZoVOtZwT+ZN7x2blmmBW8mfOlb9vktD2JwaoO8FANpCh39pKHaXew9lrEnptrZ7Wa7WgDXAtwgTE6ioO+3FbVxF9NsI8dCkzLIUBozom6WqkcgRwGVL05wDPAmtFVwca3PJoxQbyTUREyE2w/FZjzWFqLtsgqCFZAeyvT8/StoDx66OcE46F47TcDAy9tDHCiDDBBGbsm7QmzQQX9uuDH/1zw+Jvg438oLv+64G//p+D6rxXbv91DHM8y03keWNAwTT3CsAAAIABJREFUleIRCNwbsFYc76slGPY2dSDSpaBdrZXc8iO1A97bYFIy0CymG4HuWlCqqDfvkvFmbZu5Nxko1kwUWZdJIR7ADGq5DX0SpeMzFk0+omdN1yUA8SwIWgLoy3uP20fPRFMT5suA5HwQoA8GBeu8+SxjDsrb/6fuXZIkSXYtsQNVM/fIrLrvSQ8oQs56wDVwGVwod9Ib6EkPWzhgC9ny7r1VGeFupooeAAeAmntWvZ4VTaQqMyPczUx/+B4cfKSdt+Xey3Fr2EvBp1Tng8+qF4Mmqqab+a5OjsoMvuhApL2P02wVomHouJZ9itESdQNkd43FiQT4AXFdJnxfXxPdO8ZtM6LT0zjP5BymeyXr9+U6LiDlFs+uwGUpwiYyrom52BTBS+aJogYgA1j+5/DsfsjP5I2J4IekjaFdMq5UEpZo5qzLcUJlZokKnfh9z3175f/YS6KkPhcjZKIlxCQ4xwG4T4O0CcteiD0hToxLjiDv5rTYUdTRY6Cd3cqpd0SpM8+rHNNs8r2ZvJ1EqkjqlWJjhG56c25SRyM+E9w25XvqHEpLiTp5lYDU/WM6Usz30PNAdNUCUof/zElWDSQEgOTqusjKRQ9eW6EXP4bvZGv5mvha3qkGCJqUc+6BhLbl5+vngHUsztt3TarpBZ0ivb98Ju/b0l6oNnt8WV4CmvJubJfrrxFQaA3zewYTajSsfZ0JTZtYM1plgSvSQNkpgS1EWAcKYH63k9r9exCBsuTheumMAIIdzjcR4zk9ee0pC9Ymu+FjDukKizIBccZ9A8nQYIfKHXciAPhNOdWgWEPR0DxxJFHDlqQjCLba/lXghadDap8zs2DM6ougfw7oJlHrDzXBqiqWMSrKWRnp9myRDCN7iuu0LE8YpUGE5g7uMYK4SwsRYbCSAxFMkOdh8MHzDAGpo9ToNTfkWtbXYlPgu5UVMMMuzYXmcybxUNk/0pDrpIq5WbmBtW7EMj6iP7Tti2Bs1ZA0zZm1gKrB9A4YEoDtjeD7JAxF12bBxeCCPSFQHrjpzQjRSkCGWVDtLUlGOVdjGvz4mfsPgMPYpz9bkiTM4X0kIw0oLGHxtx0LQQ1yH+rWk/W8XiKpABzarqfB9jM4UD5PR/wNm21AQmnsP57p4NdsLh19XgwW8D61b5UHC3TY0pgMGPFzzFUOhCBnMKz3+LztUwtcxvN7z4BkzW6EYV3mgYGKGtxUBdTLHFStRpnwtzYB2dZ71JKH3rF0Q6jEiQFH9HaV91s8T6Yp/djrRCh4ECZgiu4QmdHNvWrjlHN4WZn9TmpNYKAjigKlEcTnF6VncNgs22GLRCt/A/R+c46bDECH4mftbjUQeM9pBh5RBe3HATJfB5oIkk5NvRg8OyewuSxjXXgYkD7Q2m/+aeU/NFznrS/IB1DGA4iI09Xwuf6d7+N6izI35pNIifod6jrCcX396ajbOGYJcLfsRMF1qJkcjq8JME2OBvWCBxAALLItShW25nX3qXfa5xHyFUAhqTP5H+V45X3C6fBntIcd6rmb8zx3a+NpQYeynnM6dHouc2T6bwYKUgXAbYPuaWTG+9GhZalH0wxc993GSzJFzfdke+W5A8evwLf//e/47b/9gu1rB7BZwGVY4KXaN8JaZ16hI1LusF3jUiLi+0CGYvvn0zK9z3Pdd9UJ8pa9URrR3DaBRnlgcBA5wfGyDixnup5DdAt2gQSmLt8YeAZSTszy7pXQes4gSbXP+TMXJ24uZ8HmSjIbeb2ucqfaguoI1StJWpOEejOoT6Qf7Sb+vQQlX/gjqmNU+S3qNWGIUZGX/YqtA0OgLfVflA34XmX5EuVctBzls8u8Le9Uk3TFOW5DMzBBno6Z45JCcAjk3C17bVpASF122OcE8K4fL90Q4AGkZvYqpgfbYI5ntBiukHsPjDJQYXY8EmEEeEKqpQ3mTq+1/SwlABeejNjndS3qXn+zz6yMuUM2m78425LjVwUgffleJOwu5QRrNxYN2SiPEw3A9mO3xFSUBiFQJerfl1b2an3vYvMpiUTfcJ8YKipvsKA6yjtLb5lkqmfpmqXn/admkOcKyeI8c/zXMoves9yUV7vIohoI8mTVEmSo70K9eSlvkPoeKnkmyt5a39mTQu3NuOu71PujnOc/ukrARMo8KAML1316vd4EGN5df4mAggYL94Foo0jB/XiiTQ2W05caIRE3cDJDMe+7RdfuxgZtHRy8LvEXZ/X1qLqKNzOM1o00gJqhFcYwp8AjoADWiaUhoIS8uvHeYJkl35gCj+jzMIzDhNcv30LhhCCaA/L5hH6/Q289SP1MENthnADk3sHe2sy4c+EJyeyfh2dU3Lk7J/oxMd0p0iaY925dC75OjO+b9fzm2dma1UDWWmL/nrU8s/FEnaWI1ymPNIgJk3RIJeCGxvOEfD2zDeU048G+rxl4+XoEeqR219Ap2abFjZsKsx13Cyjd/u412JAwHs9fd8y9oT8G5EQI0ahZVTc672KIhsOzUc1aJ03PUuHm9aGnBrcFAH8O6zRZa2hCeO4tBLhAMZvD9aZCdwtUxC4vZ1vOVDDaxc7F1jB+vdsaPD0K75wf8KwsAOMxADKQNWYYhnEdJ2S0eP+oFeQ6NLH7lABRZX4P44N1aB83e06tS3MIozKbPaYFimo5QjVaajDBs/1L1DbOZEdk9KswrkSoFcrfuznMbtxIb26IaDrjmPaz88yODs2dd141Ok6lIJIZfw84MhgmvQH7zZ/nZ4OflUsQYJYaOAYySicIvSgZHcMCm3TQl0i2z3c31IY0I9DC42HQ3G0zxa8zlDuZ1Ok01tahyYp95j7wfVWDcjaPprTkeWQd+lDLNjakk8w5BJK4tMy1PGwPsnSi1sbqbue/uxGpH1tk2eRxrFlROkKXgAIDAtEnfAKNHANiGaDZtyRSZEs7OiO813ECskPEjLfgD+G7XgwX1qeLM6zPj55OD99rWx31eBbXBKkblQYQ4d3sQX4Ug/raW93JKuXraZw/W4d+GKKgfcGD+c4N4XxDUQ43SEJMOVze0x06NInuAhOwgAUAdkykg0s9rbeeJQXDxkkuDXzcgQY07yaj9x36/Yb5bYvystgznj1leV/7Og2Nd+s4v3XMXdAf8IB42YYkTea/XX/YnipOBSwAtARnXC4JiT6Z/YREUGqWoLmwBp7L2sQC+7vg+FXxf/7H/4z/9Mt/xP/99/8N7dmwfXVsvwGdGUfXs1oM0eDOIxLH7YR8ZhqRWZYx0f/+zH1BiD7HxACfo3qU5StNokQEoENmc9bI+cPghdejo6ctwPtra55dVuA8EO38RGxPxgQVO0zWkleucQRmItvN0gv/7rsE0jvYdkXW0agunRdwDkec0IFp2eHLO0gE6WQtr6UcHQiOghdH23WkcmxMnDjH2ELSyYDKk3uhxbOXYApQHDHbE3prgX7tn+ZsBmfGVgLf7jSmo1rT6P4+x7SMuyNelN3HOD5vY1jnXz/umdgCkqvqYagWOvjaWiHAnWlTcH3O6f5li6w6z74cI58ppdzBA35EcUA7VDZgSxltXWQYgPCfDYHMFudOZp6vZe/N947f0sWs6AS9iZfT+pk6sJ5BAEFoSn11RUI0Sf1WHUU++/GEPA9s32+QseH85gFst3sjaSj+bNFIHIaD7PtQW0MTsXNQgha5uLoEMxYdFsG0mTquluiWIFQYwh7A0xLosICIpC4ugZ2wp4AsMRozkZkLX4Jktp569V0QgcEMIOzXSIjFJDuyZtsivhp2HZNJ9awLu4kAQAkqVFv22s6cvIJ/0IEh9t71F/wuEH5uoq721+8z8PAnQYW/REDBDjg8Q4910/W+Rlc3M3Tn9z1hfUW4qjuXAMzJpo73g8fuBaHAWbsuYoZ1a9DHBFA2dLODW2uwqxKOqA+NXTWIdCVugczc0AHtsrr3hTdBEEpL5rR2VS5UI4vjjjcRBzxIiswanN872qHY/2mZUVHg63/9juN7w+0fw7PjJivapxvhnPap6E9ndm5u4NzcQD9ORxe0hJzSkLhtzr3QvZ2VC4rowCBJhgRgftuBb3uUKsCZ66Xf4j1a7zY1jCp6FFOBtR7TDasGRJcG/QYAgvHR0Z4T/euM/dK+nOBQzHg795spMg/KqADb54n+xcycJhKEGZ4aLVSNoMwiOL31Jw0vNBhppCIM3+5Kau7M6CfaY8kAUDgPXYRte5SWZq0ZaoCC4H5bhOLSd7saN0AgCUiumIPjXle81LpVGOVZHKBW/v0Grr90edCeZ2MamVW8I4N80rw9JveoO0e8NXkHvNQgfsZyBgAM9sn9tr6vG8giAnx+mVA/n/Z9P1sVzbBcHa/lT6V8YPldbccDrCiNGJcTVm6WyZeCaghSR5zWtrEK9yaQ5u0jnYMiAhlDndPB/wNKeYkTclJWOUzO4P0kebQ9omQQV02OhH2LfSDMHtHBvO0FrdOcNHaPFmaVRG9x7hnA6n2B9otkaRdUrfWeOzZyzHQmeUYiOKOrMqTMGtMRNyXo5PuOZ2HJMl4yg9G3+8cjzyPfVT3Ls28eiLCggzycLPfziSCU7CwZcr3lqAgMcwxkl6hhN1LMlk5KBEHm2gKW5zLmFKuRhfJvh4tHh5ACqU4UmP1cT0QgMHSuo0WUWZzpzs1UABPN4cqEfAv1COeMBj71P2B6DEDDBsA/21ivi3QyuV7nNGdKkMSbAKa3/iM6ArsF0MfdjOj+NAO18uBE6V6xQ2So6ac7jbgZzhgDB7WLE4NO1qpSYi2is4jzFM1bRxsTU7bU5/7Z7VPx8f8K/q//9H9g+7eOX/+rYPuhOD8a2lMtE0xDn0ZyS3RZOEJA6Jul7V/VLY+xGPHkWxB3ovW+Z5nBGF4qMAP5oZsFGUkODQACTSj1GOkA3LZEzHBv8cxsDSRoFXImxR5cA6qhD49zdUCaG+foBv0nP0Zr0F8+/DtjJXHrPZNKi4MhQCWIrs6diKGt4Aa73y9kFAMCRI5UNE/PeYp914vulotT6OsmMgHvOLpksRtQSdTibFWxFHrc37jbPpbnNBtzdxuTAVXqZM5t2Avr2UBrUOuzGLImAgpdzfEGzH50otgoa7mMP16Q730a0ezC+8A9Vu2YcwSBpI7y/QjGtLRDrnKxzk11zCSfw9Jj28sz77nBZC9vNGaizeq8u0ygfzLr2ZuG5p3l3ZZuHxyHX9GVZvC9akJD3iY8c7wKupftt6fboLe4X+yf58TGJFotNfHlQe2LzmFyf5fEQ3QdqVnwd3Md7zY9eeyyp7/5nKp1E+JczYu+ezd24BWpQK6uVubsYhO/oCV0tYHDjgIiUQPAAgy8vLRG2cGIMp6IBE+U6TuyLI6JgWLq/MtYawlRlO28Cya9+W7MybXEoQTrDIXV33+3XH+NgAJwEVCyCnW2TAQisj1+2Z0x2WrmdSCMjSRhKdKUmVY3DKI+Z8gawapXUVLMkuYkv1n8KmjHSBixR8IimydZh6TFkCRRVbYudChWwGy9bnQopBGSqaH8EyrZMD4atCm2H6m4nn/rePyLYP/hSqmJlU88R7RT5GfZN33e3YFnTZkb63QGGNWEahA60aigEl/WVDVqismQzkBG6LuomXbF8/RWc2crArdldHGaYjBBzy/6EjZgboJ2IoNP04xc1Ybp/ernJvaKBXrNLg/2b76gwwJHu0QPkVFxGi9sASnIgBlgsNvrPvNyjfaYHrhJOO9SSwy8RKQjI8fIciGlEu1FWL9exqvBPXvJoFRIapMIZr28e4keo655NQLGRaFQgPHvUXKgjj7ReGYEApa+vQB5S2xf+WcK0oBdIaKcYaoZgORVKIzaJACN8z0VC9tu/4mSjvHQaCpcBK38PP5tc7m046kKVqcbiLKw9sYa9G7PuDrJQAQdljn1FpPBrXBRUKHUauR8etaFhkGVx4x1N2aOWpxpnOs+YAaDyAsBHCaLNVvI8YUxXB2kFj9feAM840UDLRwW7rMa3OJcxRjyHUUNFfSyrvw+O6B4lmypK96aoZ60wEknoAHvUnccCkpgEH1wQmFBrOBT8PvH2Qdcn5nuMM6XMl8iUDHj6j1Esjgj/E75rt2fexJLuRkDlJT9oQPivGlm8MtnAEQwxcpHALbknHQUH94Ng4gTX0PUjhV+ryBOjPHmXoxMrTuX7ZyY3h2CTuTc3ZgjHLo34x/avDbYEX9L6VE3eXFtOS0QDO8o0YZm2YYT/KK7OCpOinpAOdEWvm+7Bfnn1jDR0Fz0iWbL6XYAt78r2n/ZsP1QfPz3afqs+9JWWVWuWjK5/rxwK3jgJM5h5engfpmGSNHWrETn6NlZYcywQ3Suus7uUR48UbKekqWcdAC5T6VwAGwzuxVwTzSJLldgRhLIdz8SwaRwg1gl7AsVS3bE3vYxBnnsi0zN8xJ1+pwf7sVCoCq4GPGeyYz7Ut+4TgwHM8bXoizlp04hA3k+Ngbcg3D2qpvCeZH4UZTXqK1LO4ahJImq8feKvRGyrazF1VYu3CAQjf1lug5ofOezh+yuWX0g7RY7KzODwmUOYn+IvNSsR6v1q0EJZAlCmYMXlv2qE4ALmSmyJGQp+5VAd729GOip71JJW0+XM3OinQheLbks4/L9sIFTXwa/C52/q9Ne/asIGljCoBFhBaR6Z1cU72i0cPzU+8Y4fe+Nss9rWSR/x3d5Vz5ebUnK97L+kczw87ToIiD3Ou9Vf3eRIxFI+kn5Y4wp7Id8dpTZRqJKk4CVNtR5sfHlstfqmGlrDryc1f+pKwIsFzkUv38z5/+T9/4pwbdff42AwtRsiQJ4xtoc7XDQuLA+Uf3zjDo+HGOJyC41dDRM7hswN/TfH3YQx7DygQLrBgDWA2u3OjIdI8ncgEWBvFy9ZS0xgKgz4lXrBv0e4hvUejObwbK8uxThQS4Id7S3356e0R7WMtGFURszMuuZ9R64/WN4AMbhTTXT7RdJs0iqc/6r19HOHa21QBjU1pB0IsfdShX6bw9rC/c8oB83W8s9HZ1QxDXCqEhF5gIyjI9v/g4+J9rEYK+9RbbDFDcclqvQU3CfqbDFWYF1b9DW4+f908iCxr1f5qDAqAB7v5nElBEAOGZwH6gA45eblUf8eIaB/OKEc858j8y9OXeFkzKqWDbPjWVrEdXTEPdMgPbbKjR7zm8YMcze3LLG3aBpM50swqkrmRu3oAcvouSIENRrlw0gFOOyd+UiIPnv+235mfQGPTwjxbKh4lBHTf85gOMwx7lVB3MAMN4DtoTUdrdsvaoFBrx1I+fdvmcKUH7/tHGy9eJ+IchRBREC8Hvq15crmoFAQ/jvI5hB2H4R8AEjuyo8b2MpH3eTI9uWULlpJR9K4+62B7+LtSED4LX/OmtWTwCWQbzswRnjWoI3jPZHVsfWVYA1SzfNAaJS1N4g3CdTgc+nZefZsk/c8WPbvip3RQBvW9qe3kq2tImlUR+OA52g6gQ0SVj8dd/d9nwe9y6zsUX568fN7nV4GQIhujQ2S4mBftwMYfDtZnLHIfjinCACYH7bHUExEpHRWzgoEcxTDSOudpaY3+4Y3zf01gxVd5wQmZgfH2V8JypJXexdH5dcg3nViCc6DsV5q4abiLUkE1j7sEEHxfe3t1szotgsi5NjLNwxANDY7pPBn7ecRACiXR2yzELEspCqa9uwBkA9yXBPBAMRDlqMR9MnrlM2eADMWskxMD93R/edGtw50SpYrIwOANowRFoQhHaT4YQIawP02+Y8B+7AF3+7f51Wrublb1kiB7Au5Nv/N6AdMP4exfY5MO72nP23E+3hdg/1IDkp2DXIHXkGzCyY4cEGMcI6nkMa60vQbt8w73vuD5ZA3HIPyZjoP56YfL5n3qkXgyQaZY85ZwiRBTI9oNaAxkwmyypmku+xjCT25+JklXUCAsauW7cgGeUB4fT8Lmu4eaPW0iGi80GbBDOdt6K/ZKjpJMoIIjZ333vT0EWRUGqGMoNIBvB8n2p1cPj35+E2Kjs3SdwnMr9XhFRxACNAUXUNny0TOBv6OdG2Zi1rmWzzAI8FOUmUafJO95571skc9d6tPJboPJJVN+NpaG2GXNPjTPvYz+vzX29AA9pjon8NbL89fWx+zlvD/M7SZzWerkJmOe/7yi9Rkl4k87zOgQV6JbPrx5lZZr8X2/he99zyd8/esnyX3Sk4Dwi70cZBbixRQ7DYPpkZeKHz6vIsgmBDIZWjhcgo7hll6dNMZABg6KHeEjEA13tzGsiTQY45LdDLPckxEv0WusSRh+IoJdoKrWV5kkiW8RBhR7trlH1bHV0mSLssJVcyhrUnvsZtFuTMRedfS0EKgikufo/2UaBPSoChBtLEybNHsZPq+Be7Cyuitwks4+rBg2UcmgmsLmuQmHbZNVH1tlUKX1XeBxXqVdtOXvb2QppaAzX/f0EosNVTXGw3dcpLxNTgYzNqM+t3UJTKQnrRzOPkIVyuuukAsN1c9Pl+N4k1Wg28foYC/GdrXjf/9P+oy38SoY7IqKu/IFaqz1CFEWBpgbbbZ/tjOvmefYddFuBhyWjV4/u+jog/W7IedXyiCJbuCH64sSKZeXjX+zkyROUQB8OuBxVkK4ylIs6cvNZh1pINabB6PjfkyEYe9WV8fxoBs637L4ZVeRHWfRJtt4YaeU0ETF5u499/3QzasMBEw1jy/Ur4sDaxekJ+cWLNcFzeOffMjHmMMb984TIv9VxdSVA967J893ov/nmNDr/73LvfUbhGF4XCKK25V0Kw81IFiEQII3SmQP5J5FepKOtFTgaUsbc3Y6vvO5vXAZaz3QTRdvLd+K/j7v7sn7yrBU5gMmrqa20clVXlmninHC/KyKC5b9Yi5hs2lzRePMAQ7/1ubO/mlYFMOvfqBgQ7QjQvBWO97Lv9UeX1mBAZ5iC6UWbz+CYwWxyRyOS8uQLqzXX2P4MNnut7DkhXaLcyhGtG+8UArWOpsr+VvQogDlgd5+ZdXWg/13tfDal6/3oGVVejB0gDvAYTau0q5WN9/ZBzEv3og3E+YLEKUXfcaYhFGcr7eQdSpl25kpaMqbLEwPdMJRlVRSX4DB0YSLE38lmLDgKc2BcAmo9DYCgfxFmaAPrUZPcv7x+3bU5qdiKUKZ1BGSeIOIz2i3E2i74WoDn5IsvgprYkZOSzLiUa5pAW5AjnnbwL4o7M8vKyJEGs/EBef99rFxNz3lubmM4TJYLga1qICMM54D7IvRKZfO4h5wBYOt/wPj+7YpwKym0RJjCaB92QjmXVa+/+dMcpbk9HrMpd3utnGepLkIGfXezL67qVQEa9RwQChgY5MuUnUDpj1LGp7d8lMO7P4RoGISHHMd2DZ8BullIzYUCuRXAmSEfrGICCiqd9iZSrdYy0O517g4GpuJ06mkA0bH4VDec7bJvCw2CvYS/AFppLVwfed2v2Yo6ijC4C130Q9pbPyWK/6zoWqbYUzFYBFqSCtR73M9GxBN1e/BEGVFxOKOVbhdv/7HKnt3ZOSfSz2+rHCQwvextGUB9kmFfuHp5j2gSafkaMuaCSrXzyzXv97BwXP2ohx+Q5qTr5Z9dV581XGQRgDWbMy3fxB/fne/570AR/9q6817v3f3O9dEepQYY3nw2f6RK0YUvy13dpr8+I7/zJOPBXCSj4oMf3m2fT0/gPcj83ukgOJ4dN0BRE3SxZnts/nUirTMD8uAF7NzbmUcRfM0GyoBC+fQDYzWCUc1UWVAibtyoikZNDf/U4ED3k41cevWJWKsodJIXEt72QzwDj224tFx+Hk2RJZtTgGe37Buy6OJYsP2gHOzp4dPyc2P/tC/s/WvTzVm+dJOcMYaz0Y79twM2MmsWY+baHIVS7cmgXiEetQ4GeA3J+2lp+u1vG49fNAiHPExjd3t839vTyh/YcAfnSLpgfDpXdUqjMW2Zdo1OCOwqN7cxc6ZIvgpFjdoOIMoZQTPlvOXwMUxMm+TyhrWF83zPz1Upf79Nbjrmi4vPmfYNuYgza7HzBiPvWMO8d/Su7Xtj3ffwuCNpz2PzcO0S9LvjTM5PhDMBalpJrol5UPjXjU0mNRCKLK8/Do9leGuDZ1jhTY0IeP/J77vBHRvtWamDPYZwI+26Z03ER7g6V0zEt879tWTbg2X0djhZipn4MyMeHIwWOqOkFEBwmaGJEnk0KV0F/qyfCaJ2a0LV99/aTR9TG6TmgOoDSSSIUy1ToeBoJT2vGcQBAbpZ10SkR2FjKHUJ2jBI0mdAT5ryeJ16IfHq3sROt4LKIc6BjGHdDyy4IWYpRsw+esfC1Dr6HVmTZNfOFD8v6/XB5WQ0Ol42VdwAikC/fp8/Dsg57N/JINdmrzefjeWD/f47VyNw3bys5PTMthoIoAQUcZ5CP5r6yMxK1z84RANWViFQK8oF7PQy9ZsSU9TpPa4u59XTOfB9UEks5h2VXt5ZcL04uSPmoW7exuIwOoiSi8o4T7XdAnifmx475y81QYpMs9SNkf0DBGfTg2ZRiLHurM6hCP3YEQmLC0A8kPuRFuUijFJnlNOLbnnPpcxcOju8DgWe5iTYEbP3njKx/1Btrll/JYwBdTN8Mfy4z6o4Smb/e7b3cGO9f52K8qQA4zOGY90SltaHAEyaz3aHHMDK/4F64NYxbCzncPyfaqeg/TnuvazmBKuTzDP0LETTWyQuiPOL8sDXeI3Bizoo2cU6EGftvU3MC5q3Heso50d1Jn763wkkqzjNaw/G3G+Yu2H4MJxVO4mndDQGqKosDMD9uVuN9667nC5IxzsQGdgdohfC6nS1Lmqbv9+r0MFFChNES7Cl6iONwHWmBsBJk8zMWpQoMFF7L0igbaivHGkRoDfrtnt8pqAvwLNX7ASuyaMII7kpZq5Vxbsv3amtmC6Q6cggAkV3x+94yID7O/H6dQw8moyCCABiQim0sKc/4bMoXkdIxY7gBzWBdeylNZNeWK/dGJDjmRPsagLgd6mUifeB2AAAgAElEQVS3JENtDCixNGjkXl3XSq0jWbOOYnJqltkCjmoSd/gt6EU0rbYWezZQQkAQcFfHqXlC0fasuk9g/DjWVWxEBzDadf15RrDF2qVK8NjIk3sjdaCc086ylzsFH4yIP/uI/Rct77llaFsTScOSHPJ4kJdM1dbO6/JfUGg8X0RcivNA7VsGh/i+X4/YF2zBKO7AB2LphdPB7eRTUZFxC7/P0Cw/AjL4SlsRwIKyISL1Yh8puSrkBrRLi2na61LQCJQHb7qCLRefff0Z1j2zjNv3rvRuNuIwPR9tsy9lBbq801zvx2f0lO8vwQQGuT0xu5TRTk+0kR8LyGf456TaqfW9rokejqne3+cvWmxO4LUWZ73+GgEF4HUiGdmqSZt3QWBXPoIyVk5egW7KdMZ23ouP8UWSd5sLMIP7dgsHQskMykwDo0BkYW8I2fJTvoXYZABK9BZAOLHxOVfqWg4haxBtc9OhluSO8MMcRvJEMM5adgLhBMnU4F5gXSfO6RFZM+zIk/CzzHssBQULFQ6NgRK5TRJJj44rXiN4TQp0zhVHb6hZeUZ4RREtHAEkmVTjPCPgZQvBTkPWbqqtwx+eFY5haxiln7QFbvCT/asAyH6dGYUlKygI/gbbB0XYc7zkEHEFyq4f1ns668dD6Z0j98SbsxDjKe8a5Th1vHSovP1jCMb6/daSJTYU3VzXnH8P1E7d37nmy7MbwC4Fr+tgHRLSOCzZeJZLFJLHEJCtF9mQwv2l7rVf5sbHCVBplTM61RVCkQv8+RUZQGFffycCoiekGs0oigGX4BDlTm8QbHkvnul9szEzi0Dn/Kp8fhZxvgY8KqqBwaUoVdjWms6pJcvDeuXiRLeL0uU6FWdU3WgGkJlj3qcqXb7nGK/7+qpEr+fzZxf3b9Qmj0Jsp7mHq1Fc93E5v3SqSNjF/bowYfPMTjVnP86Qz4UbEkIxxawwDfMxrVzoXX3ksv/8HWqw4VoXDiTJJrBmVV2p1ZZzi5PBNSo8LLHe9YyJWBu2Acj55p0vRlWOs8wxlyqy8jN1WdU3cRO4vkQ4yOG/Kizbf5Uzfj+yrGsTzA3oXwBORcPMzj5ugyxwfd7D9YyU4w8gOy6UOvGawa26NpGIusRDg/hxmnNLp+4PL8pWIOe5i9kuVz3sY8j3W+eVPArmKCsEMxjqX57HIF1MwEW+uJzSzQkgecYYuK9Z4Ov1bsxXHcMxV8I4IJEC13fmn1c96giNet6Nf6HM39Vhvl71/u/en+9znE5MmXYVkaxJaCixd/Vn8rw+t3zGZK3/Y2oa0OVzifBpOYd/NjZmt1GSXSKeiUcakoF8A0Qm+oMyanrXkDc21TTdqJJyKB13KxsV2nRiqLtl2/GMtcvPiAgVSzZN2tiAB1WMHPLaoedl7HxPVctrHBqoiXiOQ6iCawbIIMg7lKDfO77/br9fdfbyK02dPaclJK+tR9+NAyhrdBG+F9tikbk8M5hRnrvYf9Q9VW9exhK6syNLlDpgnHcSn6klg/Fe17mgbxe2wXz1yepnr3byO0f/ejFZVP8d43l13u1Zb3727rp+/12pwx+UP7xcobP//DtLq25VC1D8AY/CXyKgYEp9ZssgIEoTFoEmahvKD71BxQHCskgSpbfNo43P5EcgoZv3fbaHFCWxdVOqNL5C2XbI/W5O03ka6/pVOQJREyYOCRbZrM6uCh8ajy5I1lYqlglrP57xfpF99neZHxvYdkoUQbxU6zf717l0f2BP76WO1+s+s82mtdGaN2+jyN7RQ9F+t+jl+Ns9I+cw4dj83YisiOx8tyyico5Foh5Kvs6IJgeZ49LPGJZ5mQpxVIT1AjbWYLLO4pzxfOk7xn2LLP/0+0Xf8wIHlcPGNz82SMt3jmCNpF7lv3nw561jftvw/NctlNb+T8uMRdClW0mJITVGEjW2zNCNX262fuRv+GjozwZ9Dmt3B1i2LA68t6rcrVXl5mz2874Zoue3EXslkCFSiKREFuFhNZU990hltOe+37plFn+xDE77t9/XTEtho5Y5od66Rth+hkgFRrj3zTKydJZpLNDR2TaL9rI1pAD6tAy5sAXm1s14dkdGn4dn1wWKG4hewLZB7jfo4wlMtqD17g6AIQ84TmbumeUfw4iSAHuX40w2YJ1L1Hth3G2GbMgev76fnKMhWnk2d4DeBc/vd0R7THZ1oDESmQYPCBREgT4eifzYN8jHh73745FBTj+34rX3WpVJVbQ2sJyfGkwY09Am7HbT+5qNozw7TsjpWRyRRA8AliXneetZsiREBhTnNTJ/nMPy3JArniGwYUhG++ek9ZhBWg9QLd0iLvI5ghZkmD8OJ5P0PVDaZarzuOB55O+8NWC0ijw928NnAO6ApFHNwC8NJ+V59ffROSG3zcQQl+3Mumy97WvGpxpwM5nVARhqh+cG8KyE173edpOLzCxfMszkRNCtBdIqCWELFxED2T6OyoOkXQqhso97qDkIxSA1HUckm8sV7jGfa90dFt+81O6gveB63gPRLClr0xjt+6loLZ/RHt4yrpmjPzfTr/1rRtvD53+4edtHy3K2HyMNQnZTYEniXnlsDJqt3i7RmooI5s3JHR8jynzgrZPj3z4f7Tmy1WNNsHC9GwIKLVL0sweyGWQnMWgEn48ZHBjsAChzeicP14NVThSSNDlntGeMTi7PAWiPPUK9ncF1xLxUCLYFBE1XjV/vOP62Y//HYTqwucfpY9e9r+WPvDy4Vs/Z8jsOo47ntPkTIqrq54EVUepynpwj4exuHYBlYSMAwNsEP0JNJuQ5XTrWjKyFZylC+5rRLjvK/JjFDXljvvNLBjnWrPt3W5ar8V1UjSeqtWyZXTk0gEBTVsRl2FNxds1BZ+DNEAp+Dv137KpiKJyV88ycXcH+33/kOv4keBS2FNVSQQGMu3XT6Y/iN0iWzJh91oCmL8FMnk+cdk701iI4YdwQDXJDjFn8HFVZW8tKZWjIRqIo9O77pPd8P+5NImaZTGPcoQbDNk+k1PajyyDKPYuODFuG9sqG1wSOv7sSicaL8uIkv0+S9sa7bYn+4j6wn29AmyE3pNY+UMdd7ZCqj89h+1NmtiBlpw3vyCLxLj4fnlxQ1eh2BZ/zhUSRz+tlPDXQQXsNPlfS/phokUjSa7eJa6DabW/amvFsjgEAqtNeAgUWGJLl32+fET8br99zVMMLemM6clbktWtZXaN3vEfl+ksEFACsBGXAejg0o3x1M8iYaE+Eo6wfLpC7KckGc0rkmRMSvWnpYFZCigaAWeua4QojicENSeXlfAvx87pJn0cGK4Ak/Li243FnXEVSWEh5xlATgobPtA0Z84P4U1TD+FgnlxkO/3cprQA8oDPVoGbHTEdcyvePizAAFsIs7bADz/lqDbhtaSCTwZeEUNMDCb2MhU4PEDWYLC2waLEJF+tf3+BldWYsPp3Y8hjROnLuVNASjj0z+6jjK1cNJpAxnNBUQtH6c2JuxhRODoRl3eiQxI2QghbIbJgL2v41gzQyeRkK6gBAayZUa0YrylmmCzJmatnjfKplA1uDyhZEVbEHH0kkVQ0bIz48TbCoIz4Ipa7lA92MLfn2Afm4J5SVmfqrEcXn02EGEtkQmc+W2REaQFSOVIj7nsK0KgS4E87zdb2ILuo9zr166QCfpYw000BjAJFtk6aWko6zjKFlxL4YDCakWxLlVTl3VSBUIqXOXSmLwhCcHjhpOW/SHMTgwQcPfmatnM2pQF6hboBnEnK+Ym6vSqfT4fGh0CDwPc9SrsgwcF2WMU9rL9ma9fImnJ57B3kGQpGNYZn6P2JkzpfPea4ZeM63y1xrt+XPZpCqonQYiKtz0VrMcfysKlsGBgo/RP1MBEjqGOrFQEdtAxb3nmbwvvmOzXdx5DnnZ5kPnkUnPdXT95wbXkEkeVyfmXtViLYYPi/u60UGKfZjWQPAg/9+Ppq1+CT0mL+Pz7oejpacHjwGEBn5CGI70oCt3FgTHezyMTcuc7lUvK8rgIrqa8cIQuMovwSwe/CC3Y+ibryXoMW9L8YdnReF61dvDScMGPgzK9N/IBXz9dJWGbmWyhr3ejUspRhyKtoYoSei1K6LbZFTM1jjsmth2q/rClhgC7ShPFi2b9DNyRPFOjcY9v7iePBsc5zVBoqfmR7dvoaVUrDDlaSNxfZ1LygfoBjyl3NS1+SalTtJbNnz7JdzF04/E0WqazCYMqIgcxb5JJJBVzrxY66oJ/8zzmDXPOte05xIAj83Ww9ixGUeqXecFNBQRjOCCsqfvXNGqRvCOaT9C7M/HXFp5Qbr1zFhfCGa+iNQJuok3n5uovvXFUFWkGz8GRGSV3k5b96itJQ4AC4LpsazYx8rVqLKLfefQLL86t7jPAfSAauMiHPk6wPJwInZ7ZqyU9VQhF2jC1Jtl0v5xHlNH8PKSQJp6wEa8sdJuT/PU8z3VD+D9u9Yj8s8XfdMRbpkQjLfdek+QtuI9r3rAqJNoBIi4C0KgTZrOPJ93YPUgyzJEUeCd4FiuwQTyn7296OcWfZNa2lL8Pc/QyrEd/z79czwmWXugivrGkygbVcRqfH3hgW1ukDYSlDBkyDLfbGuZ77DGzuuXMp3f4fS+LP5iLV/t6B2/SUCCkmmd/kFjT4gstgtBLh6VmIEK6n2W0IJN8XsYlnsqCPDko2lgxWHhhNGwVYUaWQ/Ga2i0Xf3Os7r5tVkjJf2ze/LzCNrwXiIFXh4Juy8GJM0FofJNvEsSmTEgcV4ly+vGWTEtAtkuDHgAmbuPQ4A25S1w4WxdxKwGtvyDkfWIVKICNlbxZjAz+jR3cAat8ju+ztvvyHWT2+C8dEtGDDTKCbcSY5hjLbFUGwPO0jz1oPzgGzStVMI0DE+Eo7dHwPtcWZ/5GuGsqwbDbt565l9AYA50U5B/5zQXzrm7gZYLyzZvSWDNQ0nDyZwLBYggmdvgO33M57BgEFkCc8BUQvMyN7c+UHwUATB3RiWiSQSIBxizyzs3TOKw4yRrVktXyhZhTQTNPp8GhKnNWC6MeeBAKUTPSek34HejXm5Nchvn5Yx3Y0nI9p4eYZGhndGOE/INzsT6h0bpHTZCNhv76bJPSuj52lcDPebsf8Xw0TGsAAN2fwZMeaaYkKnrNlmcg1UA5AOeCE/hE5HRrhjc7/7x81B0wi+SGaC+s2E+/MJIhgygDAiSBHRYhGf876WXHC+KYtcGaqPQwCwLELcCMHziHtb/2BkfWJk+auj3VZCxqpEefUG2TZnN/YAihTjuHffe5a91mIgLvNbFLNlS3zdiWKIzh4MNHkQ5DyB27c8s2GsXpQrFWXUOpcAB+eaF/9e6zjFmcJrJmZMz+qn8wPAzk9bHQY5x8LHE4aLj1sf1vnCeHqwjCF0V+2kokUueKbGor3lXTjX8+JoRQGy2PieRwkWufXXDGQruyGE5BBkjbiuhkdFW3B8xbgiC3zozqIvsCXMtn+dob9DNjEw4cjD+UE+iYnmSIJ4d99TxjVgjkJ2KWjR2ch4bWyM8dbC4IIugc5ASxyK7ZyGjCi2AevDQz6fE9gF0520ubuDT74hD2hHmcun6abmzsi8lT2jGugHqYHYKDNx2cCsKAARXdveqQLSskOIO1BtKOTzyAAqOvTDHVFh4FpNJ3TaFkiD2feCitlSOmC8Aez+IwL9tttWm34mVIGxg+SNEfCmXCFPwDVgyYBN4XvQ+x5IktCHNWBXEz/vDGQ1XRuyaBSZ5LJMT7fJ9h3RqpZ6qwQTtHvAhHuHdpC/27VshpBs/UgeFjmGdXjg2i/QaDUOE6IigEREEYlFGSqS5+bI+4V83LrJLRFrK4uZSIsa7I33QOi8DHY06841Tf7oNNg/zzPtpEb5FTIZuT502j2RF8muktWOIJFnnSnLdE5HsW3prAMg4mHeGsaHjY8lvtHSPGR+yoeQN83ttoIOA2zvT3ZpYBKKe4xn/vT33LrzRQiAlHVBHut7NOx87QheNbf/zHZVsCUlnecgRe/iJSK2/mGHXrsXUH+5w1yDM9Flqp6Jy9qDPsg1WF8CHxWlA9tO+flITPo+GLCknxgiauEt4b15hut71TGpQHDGMwy1txUiUedmeB6rs1/K0ZegWUWVzwGNNuP+mZqVv2b8q06tgQTab4DZbZXluT47fI2fOOsliSV1jq+dHfyzDAoE58G8PKt8ZknU2Q3Kc8vv/yywUt/1D66/REABsLpK7d42z8nvsAHz+24Rw5sNmH2g7aCaUOoiDsE7UtD6ZXA+z0KWBZfDoND6/Q58HdluTLUgCHpEwrR1gwVeI0lz2OnfC+yUghJYo0R0ZKY5OPWgydcTNQqot6wjZCsabtJGCKkHSufesp7z2w7FvhhJfMb4vnvbRCequpnxf/s7hX7CbmN4pZ6RkDeyw+ptA24b5KsQv0xFe55mMG0S+7f5e4yPLYR9CG0X+CTOao8Bada33CLFQPtyVmyHPsoxPEOecFHVLaFlUc5QDE4gHNt+FiXMNZtO1rOZIm3PEc+vjpFMxfb7QH9M9B9ntNCUoWif5hjpN8vYi8OhZc8otjgcW+e0eSl1ccpMMnsc8x1VIzvWfjxt/MeZCvEc0M9PyLhBbnse/McTcjTIs6WDcCJqR6VE/yMYsjs5448vOztFOC9tUTmfj3R6dd8MCi8T8nADeB7A/WaBhl++Z9BsziRBpJNQYKLy8REBDvudi6uSzSbpUGTePVPGz2vXRQiaw/3MYKHvg6jrp5Hrz4pOEizF6PkdtqA0p9GcWD0toBfIAgY2qjK5dlhguYV40OJULC0xeX+BwS7HMAe3woYB43cBCrnYuGTemit6nxsa2AyeVI4JzgFhfNU4ccevZliM7K+OsRhqJDYkjL/Ae6Nd1/2WgaCasZhwjoB9cXJ4r3inbUtY4/SgEBwNUR1bOgm8D//kHiTqhmPejMxRNiu7iUBDDUQWQ0m7l9ZQl8SzTBbK/eYBvZ4GZ2ljuXDM3ApRrxPhhWFPmVyNp3B6yvng+105UErGRGpmIso0XNYK0QWyGtZXg7AadIAFA7ne5wRkWIbuYnwunQAAqOwQEfTfS1AmMmctM2EAXpB4ML3QphphcQPk4WN2fgFmGGWMbPG2d2hXyCj7RL3TE7vtMsjniJx52zA/Nkx3bGYX4AlI01QpJDtuVlYYhHlAEC1GaQCdC3L5aI7P9K3LUqI9uC8YoLjvoX9Z1kfiy0rca6UOjmKMNoZ+jgeszaPvIwYTWNNuRrSvxda9DW/Lzk4819z750A7n752gmBq7y0QiyEn4t66dndR9Xa1DsVu7oxURAC4P2ee8dgQvm5ezif4sMD44+nZShIOF3nLYOTdFz+QTEjnwp34OCfUabQfw1mewJMBwmIfFn0fc8LPAwkx782cUZFSAgkL/nnyJ87ZTL6Wev61t9Sx/swYy9WP8D20cHwAi15FbRnuiREmr6aXC6j2/H79LANetUOJlzQGeWw7U0/4uA0NRBmQe0dOCVQC278SaRzlp0cmH219JbtSUMfM2n4xp8NKelyX+BgC/fSuTIaf6W4P9LIfqA/Y3pV/r7oEWMqVQ9bxnEQALeUxRikXLEhVs0FGfMdQfn7DhQjUZcmV1LQ40kSVhC7gZ1SjRCLLltXyAWPt/LOgY+p80Q4BlrWN/alW4tC+3LfjHtiQnCgV2eD6fCFslTyz9YqyVa5BDVZWfcnf955JGSDtyAa3OfgL3wfvOAeqDi4dwN6hEBZCREfeSeFUe/kM/10RkiI5v5QhlYCbCMprqYO/U+1g9WetKP8aAQVB1GYF2ZoLqvFtwyRZoALYTEiJIBRfO3o6Nq3AKxk9q8YSr4h+9lSuPLDRTaBE/TwLyF7AmcUba3RLymJrX5VAZES4UTWDF1Qku/dz9rkAsLLQ0kADXGgIoAgI6fzYLWr8hBlRLPdoZsSMjx6C7fze0J4C/U3MALkYaCoCsIOB167NW0d/wJTy7orueSbsiciRveQ8SwBh3i0r3zheQtTOifmLvbucFs1TRQh3IZu0I1WiHSIj5Q3GvSBwBAa8C8KlXGPa/ziXSx/2od4yZwO0RenHAlcCvO52Qn6UoM30cX4+rOfv93tkK8VrFGXfLKvkrPYiEu8Te5aZKh5k7pcw5G2fy3EubNnqtdGQlWBUuFcl/1PREMRLD2O48bF1C1A8nmDf9zDW6NTz334GwjGi03UiswxjWJCDgbLerVMCsArza5SUnA7eMYFdJ/Q8U8DVCLwbB9qy97jd/8IJMJ20kg6oWunDAgmsziZLHTiPtewDDnPuzd9PocqAn3r9a0aCrzC1qPuvSjpg8S2Vz8bv+Tuz1Vf9PpEDdODZ7aIqNAYqRBLpwHm5TL/05i2qGCm/ZBT5vjSW6n/M/gAW4KNBrAptM42sgqQBAD007Tneq5SoAIj5XwIc13cqzs9L6UNOvs+Jn8MacAiv0OGk25aORpPXe5V7LnDamt3wtYjSED8bqP/mvnH0UyCqurHntzlWh+sa2Kj7vH5Gyxmo35M0viJAdFjHh1ijK4yzwTtvjCVAwz7nJmMssBGcGafDd6fr51ijmbJEBHIz+DzZ4S2T6M8OXZ6Odrw7h0V5/A2YvaEVArQIJgScvgPNyykZOAZM5pcAfpWPsca7JTnGPYPacwraCegmJqfVzpc2ge7JHWBzJZmFVITNYxnJ8r6+j5csX2fiQSJjHHr1ObwUtNgzVX/xXBD2Wm0XNV2pXhamQieg6FCe99ayxLEasFL20ZjBLyKb14+3sj947vjs+ZOzzDkX2Hf4cz63tdzvPc/nsj+ou3nfH59gRp2kdUFe52c+uLjGmbKE70q5xYAoA6F8l5afxeHI1DcBhZBL5Pjie88SaOQZO3R9PuvIi10bdlHZq7SPlvnkVd+1Or3X+a+fOydE084OG8wz9uQAIWJOyr21OYl0vUoJLm0lqCMm61wB9jwvWWWprszyd6I/fd3bGCDnFsvGjJSQ4/ezx5LWmKfyfk0AlUQf8D1o8wJRshrzGAhhvF6hdxDzFjD2autVZ56yUhXRVrrLWv5T/iNnQjqSzfyZSp4dOoBI2pZ7q64/z2XTtC2WzPjM9wEsIVIDEj9zQplwoK7kWaiZ83DoszuGbjb3QUxdSxXreLjvyxmJRE/z974ukMtFpTyqsr/++W5MVQ+FAy45juozAvnsKJe4+F+ceyDldBBqz3V+rt+pspEyrp7rEiR46Qh3uRbURE1Sv7n+GgEFV6C1ZybrmFjHTsd47g3YFK2zhl3QfxDK3KNen2R8TQw6HaR1cVDdwKcz/O1uzt85Am5WGbGDAA0w5eFKSkqrk8h23m4JnQMSvuafC+IvIBWSPycybyJG9uRZKZLwASitIFPgWFsqFwgQsORA2x4dHOy7TjTVAJUN/VnIlYrxxlaHcjjqQNXIb3Yz0VrPiKZEJN+NpdtmJIK9eV2dBNFje4wQogFTc+6D7Z9FQPg1bx3z3hMVQRK3zwOCEYEK1gzOEiDQvUOnEwE1M3jbcwCPCf3YAh4LtfpWlQ58fDdnSBElBXp35/Sc0L7h/Ohohxp/RwegDe3zdMfU3/XffoN+PTB/fKKpQqZl6KNNEA1GYKkBbF8HyLkQaBH1YBmFvo9XfhzR0s323V6cbquVjns4l4fuW0JGWVP5LqO5dcj2LRXDt4801Ih08P0aTNTB3Ovr93G3c+f8C/L7ZyIe6AgzaHAN9s0ZMHhxzgSSycm+5/vyzH182Pw/Hhml5lkqEWVIK0GRPHck8AkERhMPqjzMof24W3lGOavWy13NqX0OqD6zi0JvWBz0qiRrAIHQX5VsBQm4wkcq7sdjeeeQOwCiwwyvkQENbJLdI4AkvawkRa3b57guPnfqbSv1+TQFxLGxxKt3Qx/UjFzNXvk45LcfHthKgzpqmR1yrc9nZlJUjQyRxjAdI17+/BrwUBr1XGb/u5FYrQ6hXjMMoxjtT5aemYMQ32L5wRiGegCyBZePiRm2l8x9ff8GRB/7VlrMFRSVMtv8PNPB43cf7kTUsgggS4zOsxhjvuf2LVp22V5oydNBmRJBKD+Lvcw39RWDlEcZU8jaDdg6xt/uFlD+cgRg29e9ASCQgh6sC30oAvx42LnatyRl5O8YjC3Qf8sGlmx/OFDuoHgQNjKBmycInjMdG884kpCXbRuXGnVfY71tHiDoiSrouQeUQXxB1Hnb7wCFWCvoMdGbkcmdv2xok+hAhC5ayhtocKsCxzDnaPfSKHfgSHLZPx2xtXfAGdblcaaz3bsR/z7d+azBZt8zMifkyxGJs5f78T1KmdgohjcDbmIlaBFE9H1l5JC2fiFrukDvG5glvl6V3C9KJ6ozXuvrS5KC6xF69mpv3e8QBiPJu3O/pVN1DuDHY3WugSRC1MOdV0F0uqjByKGJOngcQB8pb8OhNIRstKB0hBJL1aJkgmUPvj6BIvJ5javoUWHXDtqgLKWRkrX1vR/n55J4qHMa+7u1hQBUUZAXnPszEQHypG2xZ3kIP0s7l6/vAb7I4APh8Bt3QL63TLeFAeu0VRx68oiEfVlg9+SBkaov+btjoP9eSoL9d815VOBt1bl2y1pyfvYGbY60JbE8edsiCAbXAzAEFNuAFjRRyJ0rxLysj3baIDC9xFKR81zK26QENiJhS3vNkzwVgbZm6Gc+t8nquKPI4qor+d4FObPwHMT9WhKOcjGBJLPnWSJ/lzpRefGnKKuXwGHoi5kBEu59lkH+7PL3irN1FlJu2rfX5ERFAwBuY7ace1UHZ/l7Amn3/cklwb3V1sA+iv1WAzPl33VML3wLvC7Jgpp0eIeYeFnHy/XXCChAw4kDAPayZaRTqz8uMEi40JHM6Bp7tEZWmYcOzZKY/p85WZwguHPdVkKqetUIjmcGAh5MB+5q9AK5yesGrJndGFRReFXRRk/ftbbtBQ7/Mp35MzraIGv24AF3Qcx6M9gcmMGGiDTbIewpz3IAACAASURBVOB7lXF5uYGtSXE0fY04HovqaqxbkE3xXhSwE1macJkfqylLow+AlQqIhHEVJJLM3gCAaMLUSpRNVDHdKY9WmU/Nf48U6DKnGVWtOP8iANt9NkFEs0u2BY+nZWcOY2kmwWGsdXWqSoaAGTalBpCyzlQG9edAEci9fNad6WqIUIlSoVT4NxC1mSDctTkkHZr7mMKRAbl3Uehq0DXuqZnZ2LLXA15ea2zP9TzJbfca0nNxXtPQb1mX241LIFFJl4AdTFC+hW6VPQLO2ZhLcHCJNMf3GlTPPNs14FsM6rhKxiyyktfPXGVEgcAFKkEvMkfK+l5lUb3ekOq81Ly3BuixfnYqsMv6blWB133ALNXQhAM3zUBsjdwvwYAKPa6fqe/RUkFf5ieeHcrVSSRrhL4ofoWaM8FsbYWL0hi57rlibL1rwSXniPPz8+xMmavrHqnGfDXCDw00UHXmFwLMd/KB71XXuNSJa1/lgEFFy/c5F/Wdr+OiLmawp8q563ktv8sARgmCvKwr900HkDrLZKhYgEIE7BRBfbFcmvI6fjNhJQr8CCHX/EFraScg9RrRIgv333WZ3fa4XkTjAROtmF+VPC7KFZF6r7LCs946uqioOUqNwYYuTuC7jt3ONSJ7HPv6J3MVjnGDtb4cl89U5ATH7M8ImXYp57N513QamwU5SOQWsquW8nCqr3rmelX0ghT5c/2OeAlTsMtST3lJJ/lIHP2xdHmoSLOrvLzu84sRHrBxBvFEsl6fhlET4Hr2+NmuWZ9fnb36LKKGLoiz5GrQi8MIRBvKazCB7/5mj0QCsL7rJLqsENMygLP3cK6iKoN7pa4ZnZ94nnMfxZzC7TMNVUGUKzm7wkYc+nou/R6LzV3GKod6EvKyBpLI0djnb8oVMpEnmGhoJ2BYdE3fA3CkKpZnSD1TtTTgZ+fTOwqF/uLvYm1KEuMyzsWnCQf7jQ3HxMw7OVHfRdUD85K6jTqDv7/aTj9zcqUgZ90Gx9BAV0j97vUesq7byinEc0o7ab6/B8dNHiquwTvdej3r13sAYNl8PP+dTQhgIWkE99o1kFCuGgAotsQLGuHfef1ZOUNwpPzB9ZcIKFgLxBktYHDvmO6wjg9HIXxNsys8ki9DMe/A+BCM71aD3H4cRfAYw7EKHCLVTHA6+Ruz8mApQWHLDWRCjWSdw1qmiQC3WyqQ3uwgPZ8W6d68xmZOa+GmqfgDelMXpnuU3SGm+u2etZ01gDDgtagUxBl1IrHLdeNZ8MBLFZyBVAWx+fuXZ/hL9sF+QcWIhX+gPY3YkMQ10+dn844ErdRFsg3o3K3dIXZXxKcCYj/vOqxP7968G4ELanEl8Rjovj8IgY2gk8MttQvGveP8dfd2mcD53db44799Bi+EKQOP+MvmUOJESbTngG6KKT3ui/sOvaVQH79YFm//xzPaeOlOvoYz20YdWaOJ1iJaLPtmddE0Shx2a4EMG3/7NJIZCiBmMCOa3wCIKWf92y8JK3UFoueAnkcaZO5QsU6fMNCaXdVvRjIojyMDB9zbUzOL6ER5unXMX+9RKrRAw3yf1/2k9/2iWC4OLX+m9kxmxm3TCTAzuKKqkKPUVwfZoEOb993Gtm9hGOI8TUFvfTVUg5jHhTwRDVR+JGI9JWCYAAyBBGQrx9tu96hBEdU1mAFXEDtRCEUwV0Mb8HpSN8C6lz49L+NtkvenHCAvAkkZx3DyIh9/KNAG/fyMOQWwdH8IokpHcwiVmgcyRMQyC2OavKtOKfeNiO11VYCoo+NM6OnVABfx+s8n2DIz36dhgQ5OkzfKf7PsrMIwq+wmWpuGBLMi+7YG4Uo70TBqKwoBYsgd7quCoKlElnockNvNzrvvpajHjncaWVpQLzqPV0e/BOnC6QEyeLEVfgfqsc9H7nX+nm0jOee33YLJtZ6eRjMzrJUo2M+/oQpmOkeuJzpM70SHIwbdG9L5GDSwp3HMHAeghnDAbfcSBIc+k0z26bpXJTMylKPnDNTXZImIoxfPX2+QczonQ6lLLggiItzm7q0cjxmIOLZqZjZ/uv0QLfK2ZtnkkUGA8X2L4ErzjhbUa3PvaGLoE8yJRn14a2gP727gGU29+9kSAAcghBZzq4w8Cxvl7ZhQbOagMnsYDr0HIKajD7Z7ZEXlGJmNdrh/toKzd5CAj1tQS/QJ3beF7ymM/4K8VJaDcW+WshhLMQMBKRcxOdWIABm59y/Bixgf5Ump7ybHg1InUyddyA6vZy/+1NzDoor5yzfM73uy/R9ntFqsPEbv2rGFTjlMRsvWod8/EgHDM8/gAYgw89IC2gzfbsZ/8ftnOmgRGPC1Ix8P141cLecAHs9MYjBIKw1ynpDbbrZGlcnFFg5y266LcylzQj6Lg0QV4yVRi+zgZxyZpbuVgcjjcC4VljbWSMjFpj0HMBv6Z0sCVs5Dy2SSTCw2GkSAUxLtMNQSlZ2oiyzpsfNX5CDtWgb1r+0zVdHZmdeDG833CQCvQVfI5zNtiK1bhym4nR6ksGsZi5a1JFcC2y6LnyHdvatUcFOZQxnINt+n6N10VZXzQNotTRZ5Ec/1UtYIkPt+X8hRQX2c9lUtOZLh9y2knIBAsJveHTPKY5Z252qdPsJuVfVW3n3dU2OaDdZ0LXmqAZmtA5MyRt8HXGrQgMh2/ld/D0QyeQmq2ALAarDz/n/o5FMOsmQVQJQ0EBUKIPmsLokk3sPf6RrkfTtGR5AtvFccCxFLYZeXOfyTQMVfIqAAICLn6BLBhNkzu2H1o+ob07+jQAS2ubeu0SPW1FVoqhYnul5XQ4oKVgQLg2f5bAh1HtIgEysLUZ6ztPO5bPZqQNpi2yCXKDtv5bBLzg0AsJZbxT8nBp0LNvbS69vgpAmzXDpsNIesdcES4fVaytYaZoFy2j2LUnPjyZxfey8KZd3hQsYNOZE8LyxzuVl7xO2cGQC5HNo0RjKI0TxyLXpZc4/IMrBktbwKObEEbUL4TbXhbGUfFEfRAhc2Z1rWS/h+fNcwpss+id/BhG/zz5X9K87tYU6WprFR1i72jKxkTaIPKJmYr9dUMCKzCG2O4Q0ULBjG+W/fo7En9TKu63W591Kfx39zbBxfb94aaKzjkDfC+d046/njv5eWPMUY49crogHIz1dnnwbFH9SQhSMerSCLQRCO8kiDbnnvmcqDmXVezOwXuJ/W973cJyPXswgIlFo8f88SmNQq716UJJb5j7njmp1jqcMEEFmW9ygWzm+J2DdBLd2Icp7rXNUxEyKsnmqLLxfDID6bBtf1dy89nbd0gqTI+ApvX++t7zMJLR1XXnE/OiIVPksdVA2+d5DRGrjifuf3OedFNtb7V+LTJXDR5P15ut4DLhcupLGQ5Pn56f3c8EcQDZb6ThrvjV0msMCVFzkhAv3mpU/sQDRtXnSzPSNA7tHCa4FuhpR6XTvRdsZ9AKga2kFa0c+XHsPszAB1ZOVkLbdGKYR9DzYOdoi5yDvWfC/7gte0/wlr1fe+Bglcb2d7vsse9Plb3rk4OvxZrGslant3sRyiZsj9Z7Gfa1CP30GDtiqL7e9mNchqeyx7HKkjiVar5GtENERJ0GU/0lboLeehOiF/YhwvZX0cN2Vjo4EDqLySWcf3UWTL8jvN9fUfBf/H9fPuBCuQQRf7RY7pOgf1u16SqOdAkPTxago9AXGY90tQwefAApeO5uE+4d7lHqzBinnpeuG/MySB2wLKzhEzOjssF228Oq90FplgijUvX5tlXzuClKjeECWLvVeeGfYyCjLa5Qmf8Ua2aZ3/qek4xwdeZVgtFXl3vSZ3PBB7sSO1tYDyR727lnHRdriWCHEs9e/8z9eVax36yGXUu9aj7FgXxKz1e2FfXWyMeJ7v6zreMveqamsdJKH6ujd8D76gt9+Nt75T1eV1nS5BhMVGaJLI8WpfVmTQ1Q69Xi+Ijfb+73V8mjrz5aq2VPnZTwMZdYxlnD/97J/JS/xFAgqGImgYHz0PusOwKukKFGgP6008b92i+5/WGikOAVyBqNrZa5K1jIJwFi3LM9F/eGhxa8A04qBo88OIoghEO0Q9mnY6yZwI9PMLAbXed+jHzTNPWIxtiFiWisaSC9Fov/Rxe9nUUYPFsgQnJOQYxzfv7jCcF2FO6+TQxEgPDxhnwGnG1aAzqCbEm4+dwRU5kxywC8tNmNVzoicn02uA8VsQXokZxI262ffGvTsCwOS9duD86AnRPN1AH6YAxkfHuDU8/kNHfyi+DU2EhHr5AftvF/ZsqGL/7UT7cXiHiV8xbi5gN7XM+25tJMWNsP7DUAbnv3xY8Oq++Zx29IcRQCpbnYlFweXJzJUbFl3SgO2SNVZAMOQLT5gUB557fJcIqlhwbJqCQMf5Lx+Qqdj+/mX75Dgto1oyK7p3y+Bt3dZta2j/aNmeFMALzFs9U8naObbCUrX7kyWYjqHIUmOp3++2pj++ECUBi+OuGV3vpSOLv7uKw0lns3PzeGYUnPf4uGcLVdWEupG4asyEvF/bPp6eGTnomE9DjKhCunEVaDljcRUIuMyZdfYbs8zGSaFjWpeI3q1lLBDP1DHR7t+t48t5QjuZoQWBXnKWYKtzdEjdNZAz1TL1zKIDiDrfW6lJP04oM/ZwxeZtLGNMUwEwg3/Ld7gaaa1ZtnjSiUcqL89gBSqiZDT042b788dX3JsBl+jgwD1CQijWTjIiX5Vq8HCMWLe4rjXI3Kfxs5EBE967QleP01AbwSreY3yxf3jdPvJec9o+7T1rGoFs/VgZqj0gGJmJ7x9mzP54pDNU54QcB7XWmUFIkeBkkK+nt87cIxAQ9xkn5Km5h5kZIjLoOBGG6L5Bv90R7T7vtyxZuwR9rsG/dCJTB0Xb48lslL2D1eX6ujADx33JOWQ2TsRkw20PjgLAgwlfK2+JzZHJuq//5QNQ4PaPIzobzL3h/OjYPr00pAFoMNnvQcHWJrRNjF9vztFkDgYRChXuzO5J7WF2QyXnEzGueNoU7TEQbeaK7lSB6RTKWSCQbTIMZr2Q+3qpRXN+J90BbA0nddPzNIeqlocw4MWAjDghXeVoeh6WGWUWq9gW9j7p6NGJBUwMiEiSARM14GsXCA7VLA/gvDiSpQaFlHpl62b8RxBshsNCFn3d4IGR80WGLIHPEkzDcSYkn2fl6nj472IPa2Y2XxwMl2/t6d2KumTAH+bcKtbgjQWues4n70v5O4br+zVDGC0g6/OPM2XLnMkz5XqF361Bb/uZ25dedonnYZ2AakCWge7jCYh3qNm21MfV0W8Ncnj3C+6hgWyzfkUjXP6+1NI32Jn9HNYCeuHzKB0XuD+Iarl5t47HAZzdWpkS4ckhDTtH2v37KMF9X4t5MySHIW8U/RiFw8D3NByZQxLYcy7l2HYjD/Y4wnZu3qnOUbsyZwYbOI+Obpj3zQliZwaKPOGotNH2tIsClTaNB4KdWKLESffg1gi+J0fvyf1ue/fjFjpldZ6RdunmqI+my7zyftHVpAYLytxW+y+CJ+yycuWM6wJgW1GuLqPgbdYjSH0NStRrQYaWoG3ZGy/6rCY/Yj1tnZR6CW5XFTsrSKGB947/1EiGRHkt5VbMZXkX8ehNvVWcUU9OXW07ju8iP2JeeWsGmOK57TXIcQ0s8B7XfQuYbfsH118ioFDKFKPGXgac8OjyYUbbVCFPV+hvIlFGMijQvVlbp92ERP8aFoAAAMFCeIXtEs3xDVcPQUSjPBLF7AHIAs7v7a4QiUbw94sa/HrQADtAdZiVmIkK/hiITE4XyEHHfIax0o4Z3AZhgPXcHFFrtqWwWpi0lyilRIvK6MN926H3bmUMPMNs5VLWgdDRRJMoMAX9UedevGvEMKOFcLEThjYYc0EDcN0xECUec28ePJnA1jCxeT2pCzWucXzXiXpKr2JVVxZEK7higO+t6Wss/sxoOdQo8FAQBRPShzlXdM7fGT0+J+JZCnsWF5/r79kuR6/UThDLnrlmIskjUK+FB6QZDJ3Ks3yWyBXl+xYnQ2bKwQjaXQwGLYd5caDmBIZk32AiSFoHyypeMposueB7uJCVyKi2Unvtn7vf8vvkidjdmQjjqxg+FLbFqfxpRkkahKRuvAr8jC0mRc43381aUA1nUlAquvN+UvZXGIje1YEEdgwObt0QKe9gcLzHFSnBn/OqvxMJo56fs3KZngzcRDY0L0/hPvBxhpNQswEw2SlAOiQxfy2VKveMl2z8eyPjJDJLbhwF2kyDlIELwj50liDbz9bb14nZ/mrk878ScPt5JgI5Hxz7WYI+5Z6iDDBKZKXCedi2eI9wukVWpzEnJGR9ll6koa7FAFsQAJOOaeENqUbkpW44UDT77bJfEYR6cUXQpPT/JjSdkOtYR+5JyfNA/cnbFSK26NQwFNvXMOd+zLdZQBXYOW4Ayw2S0wehtyr7e3ZASr1gdnh7rdP3eRCXMwKsrfZKkCXaIDMgU2Uuz4taJrc9kXvuut4eRAg9z7V8sydXe6nqoplZZ9oZcl1v59doPhdaspX1vflsOkaE3s/LXnOnYUFdqHrg4iKLynvX1q4vY3RZJN5dYSkdqmPnu/NrV4fjYpPJmFZCMdsyJxVtszyjIBSW1qxAZnPLuy/IJSBk9PXe4bjX8fJazrIHec7TYeUj6sLta3SinLOIdgHvyQx5TS5Ux21ent+IDK36Jm0enWr6n9e87JsJLFnnUsKyjAmw9W2a6lLV2y3jdT+8mSdDR/g2j7GZ87FwO1zHyjEpAGicsyDaLc8i6ecLOoaBqGOkbQu3U7fVViSnF38WCFogCSZPRKBTd+tWJV4iEd2sGjnpWiY5rvsoxtbMjqu6t87pdR/QzzlznC/7gMFV/85iG9b7us0X7XfrvNf5c9n89qoy4RxpC9e9dn325Rkv/EwVgVB/3i72WrzDND8lvm92n9R7XNFERCzQXmEgQcrPFkSny/paovDueoccu9pUV38BeA088GfvPuvXXyKgANCZhLGmC6Kn7LiT3Aqp/NU+3zyTPD0rbzBMFxYts+Tj1nD8Yq1i7sPgsdLUMi3FQNIdqCzSxog/vCa5GJdjZhbYAwnqvcejSwQPB2DZRsAPIkJRL9B2YFWoz+KUuEAL3oetAaegHwPRCss3WXsOzGktrQBkRHV3BXxMQ2yUyGMIqTM3GR1qaz8FsLxgft8w7xvmrUVmfd57HHzyEbAfOOvaWCfWvhSzC+bd1uP83nMtp/US3j6ndVE4ZrT5gqMFWF8qDludtwY8gc5xOSqiU8D2Zm3rHC7V2Pf8nKkMfN7QBAOwNqWtoz3dwPI2Ndkzuuxbj/bO+wbc7VdKQ/Q4TYEShUKCzAmEMoK+Hu4JQ4/4Wk+Sc059Y/DZWrVjQj6NA0G2zHhmbWU6PRbR79nd4fs9ib8IYxUxKCej2VO9Fr5kmTcap2k0yMhe5LVdp9U+qiF6xoD8+ksRTAP69TBugtqurXdO6Npxgay71Zkbh53Dj3sYHuLcAeQ8AGCG0zFWngIA+vVIpUGSx1gPVyh0mk7JiDV/5xwtRB/I/eYBBo/kq9jvqnKq0e0IUsr6u3B67Zk6h/EaqK+x18BDW7SKkt5TudSuFk0QhEwX42bZI0dBD3RJksvWXurzXjJq5whYZWQG6PTO0lJzkXnD0F3D1jGQFu5814z/clXlykxQNebVjafezauT5rx+ujr1nKcFLu7ynu3g7gVBVtEFQDrCdS7Ke0QQuIl1SDhPyyAx8Mf5YG97v4fSefA5tSyYz0NAUd1IYXtgzmn86cg4ZgdppHPezhJUqedu65h3Qxm0z8NQeXV8df1EMP9mXVbab84r4WcWYyQCw0u0oubXkQz67Qa27w1Wf5L2kX+Ba81hqqL/ONNZ6Q3zLmhfA/3HufIQFFnJbGY1k8bdAgrtaTqn/36sshYIHWjlDaXjEJ1nIAgUbQ0Vjd0V+H0guxQdnqEuWV3dNw9Yav6uNwA9WPOJcAzD1GvAySq+yHG/4v0Kx5HtxwZ0jeQNdEY23NZE1rVugqiRBjIYcJzp/FYnRSS6wJAvQEdm4SNZROeLaBzyrXCMQHYDgq2hcZv4568BNbH9rc/TuEw098A1oLCUClVDnT+7OLTibTBDtjEIUP7L1nR02Elk7ONpedYWuL3qBfHnNiQz07Ub0/XdcL2PIeZwPC2ryUBC0VfaEHZjDTKo6xCgJZroEvggAXr9T3nG2UaStipg9tYoMmQiZVINGtWg8IUTBkA61xG4mqZOxVGyA8FXYufc9roQocXzeWYG2qbaA+RS5heUY0Vf0Xanjae+L5wMVTSTdNZhpqwnZa8HFNsj9c9S6iWW0BK/rwouQYmiWyaA2s75tmPeb9YN6xyQh2TixRNS2poHMfXVaRRZ+UXeBiV1OUtJPD9e78M52ywh1ng2cb6WeNWEkpdKvVz0oZhw5Zq+oDzfjKs61S8lhEX/tzdJo3p2fF4iidEuNhXPMf8+1ZEiCtXLe/K9hj9HtlI2Xz5LtNOQRXcFShcwTrbLWsW5XgJibdEPtOeXEo9qo70rpfjJ9ZcIKCyZ6k0wg30X4YhmKyD/fBODIzZXJppySLs5mue3jrkL5p6lE/2Z5En5Ajl50e6lGoybOx5TViP0ZSCXA1KRCRFt1hW6y8/TeKGBWaOiDWY4sIZ5aVNlzrVuRgTFQED/ceY9Ohy6hSA41PJOLAGZ924khl7eEARWKIbdsm4wJ7zUdQeh1eEEjt92qDT0IzdkA6zt0GnlKuydjSfQm7ogLUbR1jC+kawLYEcIANh+OwLZYEpbrPWiZotJqz1V9Ec13qy8Jfqd+/q3Y1rAY28YHpTpT2/nRGd3Iki3+pdxN6hD3yqstULCY03PkU4Z6wB9jFY3bApjye7NVIIobSwr5HRuDe3eAdzN8SNU0YV0haJa1gguyDSdHmbaakSXwsYj1vL5yIwT9zAzE7HAFwFUItVGYNfyO2LGsdxuxZmW1WgjfGzbUnBfs8sMdLiiWLJNhdfEWtLd1t+FcakG/bxeTVbhzosyid0BihEZhI0Bm889EffieGvGvj5zCUoWg2J6GQJlFntOR6lDQT7w+4yYE6pcFUY1Tt3RTiSWrz0NBBqAgewoZSmcSyfwXIIP3IvDn6FlvqRl2UET58WRpSXvTxXaNdBQPzcdiizNNGrMvUMWx1wU8mJEcDy8wqnfHN2j9vd3kX+uSyk/iLPk35H67lNhUUQ3amgE0DmrZ/ei9MMo5M+qfjlbkrlWh2polDosTkqdS034b3yX9dWqaaDyXY/yrrE2YkqCwbetI1pBzmnOJu/JICmNt20DqumkajpozzkOGSkAmgWCG5DOvgjGh7eXqzXNHuQeThjcDpY1TPTSvnFZ04409IetQ3Rhmh7YlzwXSz95QtZbYauva+uyR+a0Th4BX3dZ5mvD8kLdGibldYzJbaXqFMd5cz1zmoEprv+szNNtiJ85qm5jxD2J2qmXB65CVwCBzJPTy7rKGYka6zq+up8XYxbL+VEGpy5OfNpMaYPVzGQGAIoDRD0x5yLX4rMcPwPkdAyYaWSQcHJPlrNerkDUbUXX8F2vjhDHTflTs4sleAp3CqNzTi1NUA3SXK0O7TsEWzzWAgk6vB3l7sErksleAyd81zpeVXgtYt54kceIzwn1gbYgy4v5JzqqoBHyRTX3zmn7VrdbkGwDgNDWbLaK2sUIMY+LnIRmSVx3foVr9wUA7G4SwcJahhvtHQFRCdSBEaVnmSaARJQWKH8gruiJce9yfwAeiBmJFANCR+Z4/D12sfvfdksalXtaSU3RcVF+4gGg5qjVumdqQLHei78rax82IQPSt21Bv1kZyHzVl3yX4fNbg3YXfRqOcdilF902L/uT71z9Kb6v6toRbJbv7XvKBZ5DEvZ5ksiCCWVu6vxUW/Ztq5HyfiwjZbL6zWfMzm+WhEDK8Z8GFXkxYHgtjSgyVkqJZRAxAusZvKKhf3L9ZQIKuje0zxNQLzsQNyppR/NQwg783Bv0MV83uwv5uTec30wJzw70Q9FOD06QFfoK6xExAX0lTOzdOQ5dGf/hYDQPaSymrJt7TIvaF4VnECzJ7IP/jIaUeq1UvGdsXBgEnx0yCMN/eD/qSsLG+542jnnzyNac1hP7o9uGUKB9HcFAHC1y/D7Rlqv537e6qRvaQ6xk4fMJ2b32+8i5ECDYr9vDs5CKgEy1pxsjLpS1G7u2cWz4knzZ9/tvz1TscPv3yzoPTI+MRl3b5xEMvVKzNeqKZXogoxuHx7hbDV1/TpCPQ2EtnuZm9+4Pm+8IQtUMjdfKie8FW5OExtUe3dGJxNc0ei6PaVHvlpkrlc2j1gCad7Bopa6zC/D5BJH3S112iYLH5fdhDWvNvligoJCIei15GEdV8HNP1jKEfjEwekMQpZbvS61tYrCrfo+OH51sZwa+Oq0rYdhFsXAdChcDDT1xp1jPqzXhEawGhIMNIPgESjmBGWM+z8zakYNhYfC9KIE/MvTcqVYtUFEGB6qhqMn7IOR2IENwRMAVGOeaCQBcWbRQoJHJ8mepei0gy1xqhoJtFs/TA2ObzeOcWe6zvaoZZTlQ75DiiMXVkmBKC0x2eTc65lejlj8DMtAU2QcB0R5hLLjBXjtdhNHLe9aWp83QVebcAPKoSAdZ9ratT95XNzfytvK+NHCrM17G8ZINrRcNwAJF5Dik+5/NUUMsw1Kvme9OLFUgtQsPTH1WL0HEeC9Zgp1Lhp76s7dioJa6bMCzzG+MQl48inSc6FD7M/4Hc++2JUmOawdukGbuEZlZXaePRjP6gHmZ35ifnyf9hKS1tCSdo9PqyowIdzMS8wBsEKR7ZLXe0lZXR0a4mxmNRuKyAWwUj97xbwG0O1hhdcrVlmtqcUidRQ6gcpqzWI9uTsdqNOfnLVbyxrpnOivmGIsBvpLGfTYzkCP1fnYKw4iHzoZ8OOEe8d43YNsi83LwTCiYcm3XHcLB5QAAIABJREFU8HmStDdyWj9gkf0tzXvRoW+m9zD2DJ9VcuvhVT5z7QOWiQMAGFwBq4MQPB4nHtd1tsn80CIjYs45Wh3maf2ksfIdEqDwvaDAcKLyPWnnlbFvLGMvBQd8RuOZCVTk7BA+b249nB0fzmN2RD5L5c5R1dyDnunttE+bP8/KlwBgJQJ+YJ9vzcl+O2QbQZko68n194lfa5pnPrvqFLRON0WUOG412P0DuH5Wehfjo0OtQHc9g8vg8xJg87UcmQpFrPrtTEAAZUEDyMcl5FtYgNVwCBnnVIQtNgWQtED29F7dNg9Ql1lE7CynA9hXIIJ+XB9RPdoxOoi57zAdfKbWLcsaiIwHdoagPNFkn45OEpj1b9Z7oR8xr/sE8jGYlzMhdLdsYXXZxIyxz8qwhh4ce5GZRfqsIwvHsMgUPPPOngQjwo7gPK3X3arJJfg6rmJrhXwcK6F21xmIynuKNsdnR+sgkbZkEu01W7VIvHt5kuU67MHH5x3jXEBJ2kaeYSvaZ9LxPwEQ1uOXABR4WCsi+7e6gJCeajybYrud7iAWoADt6z5SkHyBH7+Z4q03BcQj180dpCowp9c2Vn/ZES2fQsG6UM+13qhBnCJEryhUubBLUkJFgM1YqOXd0kDVNxwN0fyytNBJB1QKtNSRdhlElclgaz0QV1EF7ifqYW2yUKztk5wd5XZAve1eCChHZwsQXASGsAK9FshVUN8NcKEgbK/WlrF8nMDV0OB6M2O0vQyjvGRlSGS/jawQI6QE5G6AAM4e77p8WLSsv+5g3XH7uuP8tuP4VnBeBe0qUbe7vym+/SeNdpaMuvRvFn3rV0t1jjnbigNKZ/ARjH7fJszL7UQ5BPgOa0FG4Q9YmQVgOkeAjo7ycVh5At8lo7gkreku3GWQYYXhS4IhzzwQPSMTJBNn6WVDI6M5gNv/cUHfBK//4w45nRDoVMjhpT7XDUXEFHWq79XNIg7dsyHqbRsKMZSgAMWd2GT0RPvKVEohPRmVOmo7+6utQWHLveKEfwQjslGZ21Lt2yjFIJrt146Sh3CQ6ZRc7Xe26Xwb7RDDqWVpAw27rXoLQ0s9l5x1lB0qm4S4nv29DweZjm04cHUo4OhVmA1cAUpFJtmxZ/Dr8ffWAPg6uN0x8yogXW/sO+hgC+d9jF8hGZVUlHw0jo3ZDhkNLwDg85ZbjtKgXEkrCdCcH2kuU+SfhrMrTwMoahiwuZMIz4mZI8jhx0MJRGJbfsZoHFE3PvNK7uhzJtdLrC+2lgqQoRjTueTMGoJGdJr9HGkerSEHCBA6INaXqqcH17melEZVGp9kAiyOmZkFNAzqMLqileerZSth30K3hHH5drN3cN0Aj0LK4eV9fn5kAHhbWmZl6IvLomy30ClYjfEE6jHtFa5L5HaMqDwwAZ0BULzuqVRBgCoo72dkjPVrxce/u6DeOra3HMFTJxIeTlg44sUeq96M3LW9VEgzR4SlBQTwxUv++pfdARNbqyTxjcAHMMoUPd1Z7seQe/s+Uu99vuBdJPS6Qb9eg2wx9IMHPtpvL5H1JwprHXhYmSPLGCLrcqPObUHmq9dB5Bq2il8/yjtZzkSnjuuht0Fh4TZSlPhwnfJ6Muq7H4Cp3gdfBtO6/Z5yP0PGZyc7t5uUXALBvZD3SwY4craUnyMfqSWhy6EHFv0wsClr/RlyqU9kYPg6495kpPMyAghxbLPOm+bnibyKe/PIejjvKQBRvhTz7vaqzjLzHzlYi23PfDe5/H6fnMdpDjh26pScTt4xyp7Sc0apreoAIhxYG87NkzlJvEMAbA12K5+RW0O5tMhgLR9H8GgZ2WodPDR57ggscKwEkhaH7KGj2JNDr3tkrYoKdKfd2M0282w5yzb2ACGzrWBfs5INggPjnQtBAc4BQYUcvOJeOE5IK2NPVg/CJTBgIksO/wZjzxB45pGzpVzPTeByPtzHYrZ0v5ivsP1xoHycAWAPvpBl72adxmwX2ppr9gQQ6zFnC4b9mDjMHgIRIpj4gJiNwHlY9o62Dpa4arIXI0vBgzxhP6QgSgRPCDxGkMjHVBRAndt1B1mZ2ZzsamrvsQ85mLs+fAYkrJ9l4KEUz9TMMsV1SrJfJlnyE8DilwIUAISDZe3qxoa3yL0bCaroYqBD38jS66cLQiHbpvT3xct7K8ToK10K0K2Gb2L55cEoawEAZx2uxRRUUnwRaaBQZCS4pzTHhFxGLWR2tJPg1t3RPfYjLalEwX+PZxIBWzeR1DKewfuUT+RDOhaJz+ow/gSIdo72yCEgDJTpMc8klrKUf7tudNFw8MXKE8aCZl2U1UwyrdZrWl0RZeWonmnSLoJ2EZwvlj2gG2yse7H6vHMYV51poZu4I7Q6vh3YBdplbK7kDODAqF9jCqTA011pSFkENVJa3ZFUOq+cz4phnAKD7BDwNmVqu1DTMxfLgjD7TnwMruxEcL4UtF1w3ay/sb0rf/cOOummlkIWxHJjzUXq7NltfSZyM1tbCYoPoedjxmJM5mMVwsnQnECLbKBwTXZrJ2VcH80in1xPVDrNjXBN5+dMBwIIGXQgCi9ltMvLxl1Xyxl5lrr2zLBxp3USsLnF5DODqCsw8SX4nHKdb2kd9tQGsZfh/Gbyn3RYxpRfP5HXDSO3zzWgn2RHKHSk5vp1ASyGeY//1A1pXi3GkRzw+HuslfGM45w0Dq6xpPA+bY/E51zqBtfvD2BgSfXks40vIjgNUsRvmidXzNYGD0Ne0ZgZgxjXTPWueV7CMC/Fo6TD4Ftlkv1ehlFLUMQBD9mWZ+EzVAM1wiDmuuhmVJpDlWrle0dpo9PPMGhno0+LcanIOj8AkGuQeV++fgLmdILvyYhURe5hzuyRvpXQSRF5VzuH5LnnixEFSo7qqVoKcpJT2TaAuB7s43fqT5tDRNZbpGdzfXrWVgb4ASBa/OZn4Bw9kwvxmRnehU5jyiq07kQV5S6o7PoEOLig411hOD7SMKLcDijFO+I4OiDSJ1AoAjOcP+ptbp0MSuDJ31aZGSCsH56xFzX24QAs3+s6jH1yhTR5ft/kKE1zyjnnvsogYoFFbjU5stQha/QXGLxAcX6xTK+YKwkwIrK4svNaxvNO+/yZflnTwdN1Jg6E+D5fPv9W5msAswPwJLo6AbG5zKA75wFlKEsR1qhw/NSxtmJPJ9mRz8nvjQG4n0VDdZm3rRgQqWZDlrPbVu6M/ivkAKDFwGpNc7uaLmHrFWBb7HW/nz4phRhzyuwlew7Xbvb/p9+wqxENgt8DNLc3pJ2c7SSONTnCsa85t7Rb+/J37nPqGz5ztqVUTWZVI9OW/D6AGVTItlgqYX06Haph5/Zd0F4Lyt1BnZs8PmMGqTi+FEySjnnMy3pSZrqIGEjD2e8aujzsE/59zdLNRx5ftkG493LGYSkzP0HihZmylcI2K/MeQPr+RMb9CCrEGB6Gu+yz/53D15AyI3Q9VhDuZ9kP+EUABdbM95cd5Xaifr+h7DVaq0RkYS/oX4xgqhzd2iACEclnK5hyjM1Fxuf2soWDqQVRV19IbEhFXsTbIGIgeGGMw8gXfUNN7fCuFTj5t+qOkS8EGoG9h4Lsl4p+qdi+3y0ScfEokYMnunnNDOoUZbaWi45QJQZrGmnl43DhNJ7LUvpKEBEy3bVfRk2fNMX24xzABVsjubDd/rg5/0MSAgRnTjWH1p2k4CXYStRNRTo+AZOtQNTRyvs5LebycUBrRfu6W/vHAtSbot4VogV9B9oukBNol4LyIebUf7mgvWyR+mZRRUV9PwcZY2Qk+DMmVN6iSqe1LtsryrsRKup1g1423P/JImGXf/mAloJKkkhHdaOd1GnRTGwV6jW8BANQYGuakbKOqb6072aQ1L/f7R06z4QcPZwCS9cdhjB5K9C7cWlcCvBhxGR6NSOAZR/l7W56sSNAqP5yMUP0HMLc6pUHwVL5cbP9wHKBAI8W40gV5fuIUqtHUPR6MWI7L0sQB7r09WrtzL6/2bUviXBxq+Ywvdv15OsXL0to/gDJyNtG6yElaSoNUnKPuDMcaatSzImudbQxZHo9jXDeg6iw9uEEBxmjR9pbd5Q5OfdhyJZIQVWSjzGbwcs3cByhWMm6LZ4dYFEyz1yIxXJCT4xSBxoQTgalrdn5Ly+W3UEZ4vNrPx3dbg2qEvV5AAb5JWAtx3IZgzsnMRdUtgsoO66tE+LNz+SSanSnCNdSegEk42gBGhIYEWBP+pvfbHLip8OV+cR67pkUEwdGckpirjMoQiOkdSsziBapau0egYjuxvdzmQ4NOJZi5Gwnf8f6dfN1W+1vxx1aruNdpWeW4wxwVCM6bPsaYXS3IOMV1dFWjI4EMGrIvU7bWp05WJeya8LxYlbEZTM5z5ZstwMiYvX/qvZ5BtKz33Oas1tydl5LPVGKZSf0TVDvCijQ9gLZC0qvwVVUgMhwyEAEQdooafNSL4OKtwALureQ7iT2VdPP7VpA3qZyF9f9zgviXY/05Qr9cgXwFf3LBX2vKLcTcvTREtLlszlsBVr22akVhO6y1phtJnL8eoHWMroxNb/OpUL/cjXZfW8WiPEySHTnDiEwyz2garK4z7wGIY9ptK6lBPnfjJbT2dk3y2p5vUAv29Q9KfQx11XilYgMnyXCne8XejM7I/w9nBQHTaIG2K+TMwyC/8bXee5EkA8CDqoQElinOWDGQ+zxsBuT/cf9vDrTgI3hOKb7AQNUkdaMDJEA8UQka/Zs8OnwyLKSzsETYHrK3OL8tgZ83OJz2XeXIZe5BDe+n+wqhTn3+7B/oOldZ36xSxkp+pRJq+zPzn0xom3Za2Rfyf2MrOVotehHuZ0D5KANnMfeAfJiaMf4LtfB5h2OtI7y362gs+tT4OU2B/1iICDJ47cfh2f7mB18/OUSJav11pycUaf9Fi1cpVsQJ+2F3D4ysh05x6nsYJp3b+1rLe19zXN9thIksLpVs9VIWs2sAL4D9z2mjI6HIEU3uVsL+u87Pn63eduuBS8fhwM9af2z5JEZr1k/Zmee+0d1LqOkfqh18onEx4KLZ4rf7mbDnKeB+FnObhVAHbKVnCTcF8mOmQAP4KkzHramCEZHqQqgIVKs+f4+deQLBtfU8vfiOmsZC4CRaQRYIGUFdhkUDp/Sbf44ScczpN851z8D/n4JQAGAOdBFLF0nKZsiFm0N1udN7J2oO1aboLBWvNLJ9YlyB5i8CYWRJbjjdnbIPQk2j9yWWk2oxODmCQ1GWCAcyVgUzqCv1dCpaalwA+6jlZFdyz/npupey7/BShBUEb2/MRSpsu5fEWU3ku5l6ZkljIGpz3hG49Xmqpw9IkKBuvKKRAmBQYJItF/1kcjqz963yDTWuAdsLCypFzXBS1LNclUfk7WXFP66b+i7ZSVkI1UE4WzbOMcmUoUZAC7cbQxZiNEBVahnu3DXCaOTVAB12WiMxhR5mJupnKrYO+a4LeMDvo7NIJLeIXcNZVZvzYVNntBlggtmRL3YeigZ4V6Vdhj2jqZng5JzmITwRJLDa3ZFhLTE6xK51tZUyTwO/zdBjvwuoicw310tIwUsX4uO8sLiHkekiSUDS5IjmhHiaYz98ToEGCrva9ki0/fX1DSeuzzjg1Jwof1T0p00pnCiixuZCdlWzinvvR4B8pmzrx69s9/77DxkMGHNoJDl3UpSmiCI4YrQ/x5/A/C82PaTR1/lTEbRq8zRiPycPqdT2zQCQOs7L4Io+cCwAX4yqIe1HGDC6pjxc2ACE+M5PLPgwdDI8iV/xnvU+fOHiCiAyHKQMU4BRqSday63QsyRFq6nHBHL5+a5gMsIEaCoRRQLkGvExTkHImuOvAxFQ7fYM8KjSknXdeNFqh/Oj9TxKAfz+FSB5hqN32OWYJLR2dmgjszcEKqL3PP0XqnV5Ca/m3mHCGA4sKFsPeh6mll9fMZpPnPmA58jvytJsjgcDJnuKyjQowwbIK/TNFcTJ8EKNqz7Lv+9L+cQFIvnL545meY+y/t8r3z4Hgr+hbLMAZD+tu5fzhHwLCodRGt5j2IxvlddhWXPPhtz/jvHvN4/Ipf+2WdyntHUZ2Nazyny52L0s/s8DD3LZgz963s/ou3peGi3CAzHeF07q9xY9Tjg720+L4AMEU/lf2JTLHJoIk6kHYjBxZLX4EMLWPgYSEoNLpO8vh5lIdc6+dwKADlMnjRvUysd1vL87psiO35cs7y+ynxPYIBbuUQuzWVkHK26wkEmeTJXUAMXRpaajHW1vidON/0Rgvqte7ltd6LYPJfryXnPYvIzpjH/iW9hWcjG97S2moyyQpYcP7Orwg6a5csAEH5+/6eZn59llId8XcCgXNrKc34mG+J7ZQC4q7O/ll+lY8q0zc8eJSc6//4PHL8EoKBVcP9tR98FlyIo74ej8SfkZjVc8tsL+mVD+7JBr4JTgPZS0HfLSKhnQ/OaecAWGBmbtQqq1+dDLDJ/++cr6r3b38WAhPOrtUMst2bz6e2ayh/vEeEx5d7MeNuq1fsDg8DwsqG/bujXiu37MSuOUtBfd9z/+hIEUEZcUkaqXPOsiR93tN+u6F+Kgw6e2u5cEBAxsAHd2+CZUdwduRMnoNG92lzezjBS2eGhvZrCL0e3FOuz+5oio7Q9hzRFfT+cYKahHB3bj9NAoCpWpwoTcOSpkA6MdNKBYrKuLXqqlpExUb7fQ5ixfKIm0kbA9Ed3IKnerXWY7gX3//Mr2tW7emy8l6WOSx+1seFAemSuf7PIkypQNKV9ZwfAo3KXv90BAdrXC8r7iZLqMpmBIR8eSbxYhK5fKurHaXWipRipIxnBT3gWjuD93+84vgm+/tcGeWvBWVHVMzjePmz97Zu1RbvU0bqzAsJ0YcrDPJ5imQpmSHuarGef2IP7OVuxFL3j7hEji+ArORB6n7s7+DlhaLBWzO9jc2OR1qiBJWnPy8Xe6x9v9vfLbsj7D89GSNFq7QrtJ/DxAVyvkJfriCwVgjY6kPRtg1xLIPFTypp/Hs4xHWVvRzkItkqg2cNYJkDQIxokPvZZoOn4brrvBByIRBq+nqc5Iy/X4dwu50Yk+DjjOrJ714u9QtxxmyJNqsDtht76ACe6l3h49F323W18H2/zaLiUyC6ZxpFTbl1mWGvKlJXBseQof5E5qsCMEP9+ZF5oB9gCMz7DACAAu26RGYnvp49rHgNT/yVlqgSh0W7ttSbiTD/k5TqUMSMysabLY7kEf/J798MifGw3+XHzdzVqfx8MNDeWY4/1DtFiWrpYHfzUlo9ti1new3dMEPmym+92tsnYnMBcyrkq4SDIoSH3AEAvuxnd98NKJfis2ejgveiQ3i0bITvVfJeFXAP+vXKc0OvFiBRfLkaiRrlCJ05h7XNpnJ8d5f1E7YrLv/o4s9O/ghwAAjh/N8LhfrUMin4xQ7PcB5+L0FAvNl/l8PZtCtTjxPa9R5Zh2wtwtTXO7EFmTdJBqQDKvTkpsECvG3ILSmk+nr1YMEE17sdx9Uu1Z+fcZSOPMqOp2QQdwbHUXzboLiinZVLx+g9gwjPwSxIY/MSol+MEbncwKyj0J0GxuHY3MCeBCeXjnLsTJDsBqsEBYWt9cRzVQYackVMXUCPWXQHW7hSZH+EZIAYMp8BLRpXvNzsBXNfKIMvIOIo1yGwgctD4HFtpm8/11bIEjVF+AVkytwQwOx05HZ5j72qtIv0eD++McnT5LKKsLJfatrldLh0rdvAgJ4jbFGzZzTUN1chwxNEjKLECMtGFxuc0Z8YCfh4j7+yGxWfY3X5j6TNtxQQmBA9EkZQFNmfhWHteGcAV5afIKGWO7wK6w2Sbg32D/8yuWQ8LzvW9WHb0RVE/jM/h/Op6qMFsrK0453Ofne8CaJdpnJY96nb868XXcBtONwOca6AHyaYqZay7pXxBWofeD9OtvFatY20/Ic9+ANgA4Gwo7wcufz8AgZGo35tnTvfHvRbyJtlIueRCBGyhOznrvZu+cl4J2bdBYMljM84KAew7eZxp/0JkdN2JrME22zzxboajHoEJcloBY1/yMymINuO0bXIwpmCACuRiABCcW8u7tM/cz6rJdsrHGrzK44k1kfzT/GxxjSdgxE/KHn4NQEEQ7R3b1cocCjCRusjZUcRY2LsWqKd8q5iTqSxlqI4IikJPBUkOCwB0Rb8aaKAb0JttcKb590sx0r+tQNvgHVAy09PwKmVKlbc6JxN6IUCzrqYAuFrLo3KqR4DsM90s9SlvLgMPrLQjFL0vVkutSwu3w40IiZSfXAsaDmMp0+eMDhFgsD7nMhlk5RjKTbqXDeBAPZoRrtQy2La5MR3wCJQzDD3Ol9e5MYXJnQm9VivNAEBCThwd1f0EFTHBRE4Hr/1XccZuPid93rum+SqDUDAfrljkTO1E/Z3q5hFNV2BWG+Zzvw3iSxp3WiW6RxjzOAaY0RQKq7/mfEXKeBHs7x3SC+rd6pintbBXQF7mXsUgsAQE7wXTvZo+oLqSFa3PZU5bG4tVB2tv76PFJJXPkoY4cSmQ3d8F/kghT2OhU72mM9IXDPRdQvFExgHPYbaE0JDDUABP3nG8d9Z4+n6UWH94FLyugJTgw8INAGA4ygFOdFhBe340GqdpnhgpX+r6rWQCiPq5aY4k7inap1IOZgvoGtF5Ek2Y62+HcTie7ROyJV3mJ5cCPEHnp4h+llU5cpidcpKUdc/0oGENn8NnKP00p4Lc2jODDePeKQLAMhjVUQKTj8nJWOYp90f3cUR9Kdd6HlteAzktm9/LRt2q/Pnfum+KAKVC5OVx7Jr2SZ4f1QGIx99HpC44bUSg+zZS+BmpqnUQ2VGnZRmvOkoF+bsD7Tl6QoN3cA65TmI2GGUuxrphKzYTzPY8lL0TR4TL6OAmUh08QeL61hUESaDXunm2bBPFOE/G9VnqIN7y2DLRfOqpm7uaIirZQFYY581s3D+8v+5yldkR7ixFOYPs/m4wHCOuF+qG5ICWgynSHQ8RQp7KdZvXWwYT0vqcZf6SUu/fCaMcMOP+fgKtAnVxJoobcICBmjyyo8Hf89j4GYEQn/uplny9hsgsx3m77FCtGUM/+wxIxrwb6Dkbsg2ARPK+9Y46wvPz/Kb9MJVyJOfFuOpcTxIcpuyjvPLa8emIecLDEeArfxKsWcEW7rPVbgDA6HJwbzgITCd7Aq3yvXuPUoNpH4tMbf2ii0znzeyHcXWNTITJjmv6kLmV10YQFIYsGs/bX8xeV5JyJxuBGa5r5oWBhJbR2l8Lzi/F/MkGlJuRK27vqV0kTB5auaEDX9P1FFPUPr2fuRUggqRVvQzDOseZX2BlHgXSy9hLOfvw2TtVK+GI7+RnDYcUQVKcbTce5d6wvRUDE87utsGQz3ymXDYReyjfiyC+269zoMPXllpeoiwg5UMrxtU2yNdZOVTY5QvJlouH87W5ZLraPda5XOyuuDae2zbrGHKGaz63Yuib9fs5YymDhTGOPu/5/Pf8jDz/H8hS+CUABUDQNxi5Uiuo3y7YiveUdkMtWgq+C3Cp0JIipUwndCK+81VQ70C9waO4gHpP7ttfd0svd7nbX2qkJRn5H9CuBdLr6FvL9lbbSGPvV5u67Y+bRfZ7h+7DqZtSpy7GANu/XAAA9W3UyZ1fjBQruBR27yaxmdKpH6cLZ3g3BANcKJyFQu2w7wjbauV3zzm61shYQDciGxIw6iZodY+NH2v9xzEETlPgOFHerY5TvrwM9v9I53THVQTw1lwQmdrrMIWf71X3DtRqnQxgQohtJG0btJj3crdoW85uNHIuAdMp+2ZKd/th76FfKkqRpzVB0jpwpKgZYPNYjFNDdwyDt6kBpCJo1wq5VNQfd8jRomVnv5Cc0QCpcve61+N0RN+fm0CBr5frv9zx5dYG0ZcMZaXXHefv/s45dFXIYQq7X7w9qhZPA6aDg1gH5fAMjZQaPtXQcl6o+J3Isvs49bqP2jvO3XFanaET9ylrvRmVvlwe5juE+74I+fM0Ry13IeBzbhtEWigdPSz6CZHRTYOobyYR5JEj4+EQ+XdStwdTVg4SeMquXHboxy2i9jYA/4yCPGcxOC+DKR83pLnu3HgMXoTkeKoqcL9H7WIAHExPZE3jy2U8B4GOAlitHV/M/Pyj3j8ZE6509J7KU/Z9GLj6JLoVbTKLfRdYWi0m0KFz3ut4N73B67Ci5l9ZM0wlf54AvNdyql20Z/Z96POlfCcEr3JdbO4wkdOvMy+Cf673YwA0vNby7Jpqm+39lWE0MxoSjlTKCFgO8gwos3bOBlw8Qy1fxxW4+vPifiRekApU7zLgHUuCxR4YjhyBztRqT9gdgoAA643PHhmB/S9f0L9cjEOGzP4V1g1CEnCZAIXgKIDvzdPGIarBpRCO4169pLFZ9Ig1597JoKiivWxWSlAL6seJ8nYYaaFYEICAu9VM23sjSEr+hHAoikJU0LeK80tFvQtKLajfbxax32lUzQAGVA1QTM+cncpyNODDuuxkosH4rrPLl8MMZGlqresAAwRKQfuyD7DEHabq3Y/k6NZh6cvmXXwO9MsGfS2ozOJs5jBoArIzCTI6UI572peLox3gk2dnUJ+74T+R8K1RO2BkGjkZcciM+2F7qRWgGm+NFG8dmUt6xGqfrYYbAViErP+MTT7vLTrb2eghJw0N4X2bn7c4UL7KuHx8Bvqlz/X1ap8f53CE6NBsOlpJ5muKAk5uzA4QtBcC8Oa96VCmZw6wtCenIbeRqzAw4xmgDAw5no+9Dr3k2XoPujQDgyTBg8kns0Fb1OJPJVITIPoE0TpbZAPl1HrrmjBH3MOBJ5E058g5TDKYASBKkMe5Dqp5Sj472Nj72sD2yADQvlwsY/nskFOje8TQzQu45UCHoKCg43wt+Pingu3Dsqj3v5tte/k3J5T1tu3Rvl0U5SwBIhAUnHgMREbmgAetdPe109hVwTOFu0IOgZjXDxTj0nkgnfQcTfZbAAAgAElEQVRjys5IgCCAkSmUwWo60ts+72d2mvFW7fvtmPce1zvLLygTKH+pB/N6kc1sUH+vcruPPc4jcz64fIWkwFbs/eTId52/z+/l7Mla3DFf1m++dhpD7OGcjeAg9XTQLl0zC7hO8x5lhkPwdpX57xk8yAeBRdpOuWQZsH2wAiy1zoEw2p9/BnzglwEUbPC9Au0qOL/WiOwCmGouAYSwkQ6L9vuLKvcOOYFyyCCbbmqGSE+3UkRtfvx+dpSzRCmAbgWX1oEbIM2MJAVGelVLqVteHqAigcJJkWgDFUKZm0ERrfuirVUfHAcUpJNzpxopg+1SoFLQiwB6ot6MxBCXhIh7mpjVdnaIt37sl4pyjJaU0mG6zUEIMltH6piT2AAwwX+2Qazz9mHO0/UCxZaMZTEhfAxSLL43hLBMwsrrn6rPVadAuvVArAku5J7PWsTSyXYacva5lTrAov2nO/UpBYks5cZ27g6dOyQToQ/HSmPLSzWk63DQvb2ZtO6NOMe5rNXql83S46hjnXiQyqBdC6QlgEw1MlaCbPNoMbfWKx0gL4Kd58YkkWCm4nndmLwfo37QiUgtXbCM5zxaRBcDMWbEIBmiwsi2CPByHet0q4O5e6vQ374i0rv5bJngBxiR6Zr6lKd9PimB3i1isbb16Torg7zfs7DsHVGLyO95Kj5bfU0to6hUc8mDlKEImNKfFUX3lPDjHIQ4dD5puOSIEscPDCAjjfehXc9ppUsiTrBHhZKvsxaSZ0UQSHya4zxv67zyfJJPMspFg4LzEk7wID+LKNq22Xl9lJbE8/CaaxrsM0N/NUYzKdnKz0EnwN+/tY6sU123KdcyaUF1ICWisInAc2r3mddmXrc5ulLKiNY7me/kILlx+BA9yAZfnoc1qpSNFKZqPokA2njM8Y+xnmacROmFj0s3L/N7dyNwkwC0gzTNO+pEZ6MkR0f7wpE6muVRPIeSBNl/bzrxD5SzQ7VA2Foxg0UCB0M8cn90RLs8vsdc0gWELto+EPwQlgbbo5wBcKN6t/cmlKHd7slMOGnWZSpSeNXbi3r2WPdnZIvqDkC6QKuGEctU03JnhNSnoo3e9u3LxdpGXiuKdAg5EKizShk2UtKtk8wsgJ4I4i1mtqzrh6TQEQ3ObW8jSyW9P9b11+SgAJgi590NrQxC+/W0jbUsfp+pfSpLItkyr3fT7zKngEcZQcmcUL7WejLuw0lqw1nndWLRLA5HAvam72h6trzXc9ZJjlxmWbHuzaxT0z580IO1Ppzz7DpAH3pNB1mckSomuYtFhvN+zNxy8EiyvEpOOgDT8by+249Qf4bmz0z5pgqrVx1jnyLbORuC2Tk9cVPRPl5TtJlhFeADgnSxv+wWKLtWJz9sKG93K//Nc5vnkMGeYmurnBi2hD+n5JKLNUOrOecTLNt0+xBsH4py1wjWle6Bw0xQ2hgI8pttVh5rXcASKMO5httrezXwtSACUYD7QuhRRj0RgUqa9zQHQZRdDYB7ACezPnLgaZD9JvvWSyqmTBja3ZsaEHOc7mukvcI53py7qIvZSRGQeLLunwFeS9ky5cLI9EbaL2nPch1S1zGLaNu8E5sTF66ZP5yb7G+L2LUpK55lcuZzec6zvZ0PZlo2DFCB8xLyZ7WT/P0uckRIFD4Nxdba4OVK4IuUz5/Bj18EUDDZrBvQVHB8KSj3gnKrKGIGTTjmJTm+XVHuiCi93PtIOfJ6y0hlL6z3gad+wyP86g4uUO6Wjni+CMou2L6XaNUELZ6KOSLlURJRyjBuYpzJQSM6Dt7bBd6lWgeC1GnCFpQM0shUc8e0eaaEtktBvVmkRq8lsgEM1fRyhksxAihVtC9blJYYmZU7rWrj7buhsWBKUu8D8VOdwARNNdDiAkHU6mi1CnCY4wogHHVleYHqiCxzvOz/LQL8/mIZO92d9E0iC4RGEhqA3TgTjOwKxq1QBdtHdwFOduweznSQ+nTb8AEo+BjbyzaVKYiO51DZIGLCwXgNbkPwdkXWPCStDCOnSvQpj+4aXdGroF09koOxLvHDkFfdLfIntwZ9FaiUmEMF5w9m8DLd9UwCZTMugPIjR6motF6MS4Hv2R3/mWV8OJyZ1wBns2d/uUBuh0cbt5Fqu2/oX18s84OKqgxjMAM8QxE8iYhkGcHveB36QyobDzrvjLYHEr1Ejh3IIB8KAODtfb4OgLmGrUO2iwnbnJkAF8ZdAbTBAZBS98d19VHoT9f45LkA41tgPT1BwChLymBEUvxAGIrRD1nTnOeI43QzdxJl89aUbjR2vxdLM2io1xolP/ndjW4SDgjtW0QhmFkQfAtUxDm9lMotzVE+IkogxquQuSqMwHNcK8bGTBAaIIxS0ABgVwW+x0QyqWd7rEEVJ3/COYNFNAIvl0fAwM+PaGxyiCZHY5lPfkdaj/rjyHhYQYgJKJKQf8I6U8/OULna92t1Z7obM3+1bjosgwvZvVEOzynOzAAyPhZfj2cbTiCdUSDKB1EAQU82Xgom0CrNTiABz61Y94KP0+S588awqwNgwISBmgYgFx9jOCGwa0ixeyhgxM9kCOtqWJJnQVoEFfa5uG1xWpci6xzlxljFABVKsa3Ed6oAHEjImXt0ZnAausAuFn03fVV8TksAlQhSad3dRkgOV5TqAaM+W1IEkVw+qhZlBEbNeHLY1T4YayqvxVoAJE6a5SCpmemFGiCbGeoziD6dz8yIyDQx2aEFVlee13UGigNQTA76E6dxzHky9FdAgeU/W03zoSNTAxiAYS1ORIfZOZZhd35ae5xlW9K9Ac4x2rlGcNej69hbThKsdIxc5o0uOLN8fbyWZ5Ol8qVwuFmCmDi5xvgFwNDzw+Eu0Yab8xI/V+Blclz91fr1Rpt1BIAX8reItQMH0LeC43frEna+CvYfBfsfBfutmYzOjjFfi68zyppydMvQFAzZRYJEuExkZhLJXW+HZet2GLfbTVHfO+rdu7R4q24Apiv9mRmACyeYgTMAaiRZj/vr7JbB5La/buJ8LGrlwF2GbZfXPOec/w6wjeCYl3Xvdl8h/kLdWIbOsS4u1fUEz/c9StCx+7pgqXIKvE1ZETyqcx6czZ4761O+s/AFF1uV16kyZ3WIeEmVy8S1rCLboS76H0qPjmNkTsaUKFc7oqXk2lEmH8/22rjY49+WcgazD+H2I+0F01NBNt3TuT5+mfaZ28TBtTWfH4f7W5LP+dn48YsAClaPCGzvGg6/VkG/Vpy/7QZ6vqUoM2Bs9YdPrsBSI++nI2MGNshHsx2ZFIZFl4F6szQmOV2pijg5oRMfsu69CPpfXtFed5xfN2eTVnRxQGNBOyMdFLANWSv6lz0IhNTrI3UvaK8F/WLEKtvHbmlVt9OJmxxQ8GhQbApBgCD1ngCHuL8ZPfJxupEkESmXU012FIIKFl0qR4eeiGwJ61DRwkgSESMFDCXaUrq1DOeu9yBoFI/cGxCA5wuRqOU5P0MANcwW6B3R4rEpoj6sjvXAbBWuB/Vyi0JjpunINECd64WrQK+2zoSkmNG6yN9ltZq6ABhUvb1VCQVkwFUBnJuiJMfG7lNjbvhe6q3j8rczMmruv49SmlA+Pvb6vaFmFLPD0oKvWwBmFm1z4c3SCxXo1xcw7RbATBi1GY+H0GjP6Za8V/AY2B6Jd+5IM+o+hPTtbqQ8b7ehyGjQJgeK742RCt036MsWilfux4ysszVeSmnU+z2UXAAOKzCRFUu18g1pDork2jkqTMCcE3JC5KwEKSP9nV0LmHmUjFm5uoPmgltpkPBY6nFFBNj3Ifg7I+XJeKTjfvie5nifkfGs/yZ/gKcby26tlILFuDXoxwceUGhmHOgC4LQOE0Ium5gim+eeDkO0qfI5pkGcvityAurOf9GIEPB7WXrEnDB6FQaRZ4eUEml8UZJBIKrUQRxHgDK1iIrSibzP+PxARAWM78LH+HEzuZXrEdO+gcicpcOfNACOpEP4zvgOKN85x+c5ARNynGNP0SCKcoZtehdR7saysX0bUQ7/Tr94+1UvFdNaUESi/AgHHIww2TnJbq/r1b2iv457s21hzgrTrUSUTotAdvVAgOtJJ9aVxAcj9xPRupiOk6qn/o53JgqU2z3kd4AgO6zsz2Vll4ro2uNyvTg2QYI3jo9jGQTETFm+IEoS2VoS8Ow+DZtvEMa5nlhB35RRQYOw3BrkNPC/HJZpZ1xH1a8lg4/CCYcZHYw1lp29vdp376dnjrQoa1BvdQkH8aWagzGRJPI6TM/P63bJEBK2NaZB3JNjmvdfXvP8ft4bPJdlBW+3+e9AkOI+lB6tKdwillHH7/CeLe1tHz91mo2tOwlwH+Azy4rux7hHS9+J5+qPAHE4dEmq+VzGX1ZQEEBwdWky/jPgGA5c0gmUsU+iqpk3IVKa19KvcNDKmCcHVAfHgX+vYwAIPjZB8w0lw7ZI70jIwUG5xShyt4wluI2KAgP/ZOwhzTaFCLCXAXoCxsl2ERyvFrApd8W+GVAlhwfEMjiT3pP0jvL9wwDqvaZnwlhLcFlW3XYRQbnWkHHbHwfKvUdbbwYYRc1mZMRcKNsoS0UgpU/ZSJGdsdj7ovZMfa+W6ermjGVXdOTsiljb1Z1Evw4BM8l7To2PoH01Us7yYnxh8uEANOU3o/8K6Ia430RiXOBZ3AY+alOUrA9dbwjfRx4X6gwKck64dve0hzIowP3PQ1MQi47/MpdxfWC2gXmQ8H5LsgrAKIXV8bOlffq0pAGYX04aQ75mBPGWoA9LNT4jxfGMAuPkSrJC1c4hl4b2uWwVeAQWAJdt47qfHb8EoADYAizHeKmsi2/XYsD2qYG+GTGLojR37hMpEoABKDAFPz+/GxiMXsMRJjqTEEH9aBGdRrHOCf1a0V4L8OFGxQaoCoRjJljAaynAejky0UK9pk4tkt53AXYAOpzB3ZW4ZoOJiCXBgQ7STM3olcBTAt0RIflh8ch2t1aL7SpBZDmEGgBoGFuoBaJ9RDO4uVaUiouUhhKQHAG/f4O1XSxAgCKBMsIMr6SIgyyS4+sAtgGmTIQueQ21sXZQFUyN5fpilMNqanUoBhnzbSmUOUI2vmPOoUaPdCrjQRQEjFobQXBE+D3DuFTYWikAWkdlHa4DPZrGzbFHFLD12VGr7IWcmNsjopbArc2hfsxRemEWSBbGdK5zCmpO6eTfaBBsNaJ72SB6cKL4bp79XooZ1iU9Bw1JOn7JYY8jImPVyKp4Pz4DECnOEfWq1caaay2fCdF8r+xon64k1hY/+ZiiVGnsxfgVJBnUET1KxhzQDGxZFV3vlr5/yjwPz8awHuQPYDpxgD2u+Jz0bh7Hcv6KbiMZoEz1jfHw3wui79kMU6SEZSw01BOARZR86pKRnHcRgd7viFZYnAs6HYGyywATeOR0Th7Z6c+lDvl3uPxHAi2KyxcCX1l2BIiSjI+8nrPDBSBahjmoJfs+5mqNsALIpSYPREtLBFDOZvWoef49owpbsRR59OTcl3BgJ9Kwdc7o1GyWsddd927TlLrsdCCRckrZes11gpW9waLx8a7goGgDMwYBDACVetfBgRkAayN9mzJ/kscWpFCkiBwwOBGUctjeE9tcWyYhIGJgyES4qGrOVEHIytxCmE6ZiredbAl8V/WyD7crwhgUsNW06RAPpzm/D6qMCP76nkQAaIAJaA2iJbp2qLBMaZErq2zku173Yry/tN7E18wnIIe9V53XfbZ9suPva3cdE8uIJIPP8bzLo2ws91yu80z+r8B673MKfxj1mJ3hPG8LcPz0yKBJlst5Dyc5tToAD9dK95OOAFnt9MVhymBC7tKTZfmDHtCRxeS61zarDHuCc9YUk5zhPAFT9m2MfXXivGuJsmQrjUEAaLdN/2TVjhKA9F8k2vDdZFnq8yO8/u0AagNwiWyqZ+0vg7hQML2/cj9HaXTObPHAy9SVIpcWAKM8Ncs/ck2kvaQAygdlPwaPDDOr85HBxZo6Bk36TtJ6h3G27W6XO78NAUjyhgXga1G0YQs7EJTvEfYd1wHJJQusrXBy/JVlbDm1P6+PRZZMBKhP9v60l5mRyCPKaD+3oawUpsL6umMqAY3xUE5kXQ483/tP1tLzcff4OWUTrUSNnx1LlsMAFfTn5yZbbs5++CRDCr8IoECCxP2th6OrG3B+Y3TMf7ij3b1dIdctF1K/lPg+Sf14EJDY3xwJ9jp0UcX5dcP9Lxu2d0MTjURpGAhUcNXBhNI62rWa8XDWYSRk1K8r1CM8/WIGyfaDKeUSBJLlMIHUXq19IOAGjgBlr6Y86Pw1NSDhGJEK3SuOf/4ShlhkVnidPoV5RK9PoL2UCUyg0dQ3loTYALoYqotiPAlEJuXtBnkfTigjYXL37Aon4YrSEKZzweeyCrRukS6rewUuG+T9DiH6zYyEfBQxQ9J9Y91rZJFoAcphtWp8D9sf9xDAuhVg8zY7zJ6o1WpgDxpm8LXRhlCQkXVS//jw6FIb0TiWULgAlqNFlG6q2Spl8FEcRmTYX7d439zYl/81rFll5JEkZB45ZESOwr19uViLybe7taq8bjbvH97aMqWpAUC/7ugvmys8WMRK1d5jwTTv4unCllq4WeSv9Yh05xZ3lv6GkflBp4XGZy7f6Q4mXC/o3mqVUTiuA71egItCvr8Ng0s9cr8bEdDIBEiRElcYejWSQSHxEkEFOlVvH5DrZUScWGPc1bIQGOmpdawP1WG40DF+3SM6paeRMEaE3MGDSMVvbZBfUS7zu8eIPovXMZL4MQxBNzJ1cZYATKRao8VlcloBoHsb0fN8PJ9AAveaCAzB5mIoQ7k7IGCObplkTRw0aHIXjF68RaUDBzRcJ3ReRlaCAwlB0NhTD20CBXz/6TshM7OxrP5e+VlkncgAOM7THHgSih7HMD5qtTT7lDrMDhSSr1FkrHW2bARsv1x2PPCKcG1nIkmRyPqQ4lkxNx3Gvtg99H430tLVAVGF3A8HBZzQ1SPT5DkJzpgOyHHzvX4GKFF/3Cb5F0St317td1X0a5LRyeCXe0e5AG2z9rayCQpOwzNJsHw70erFuyuZrNt/nIjWw3RGxGX8t4vJPc8Qi1bNe0Xfy2jRe0sGTzgye2S8WX90pGwtBA5MLixyHEFsHPXtGI7B5unFnaV6BnJUl/39xWqKzy8V9UZiZXMcWJZYuH4KSzdPN97r4Hw6LRtMr5vzKkmQ7vKwZ1p4YqqglzIyQzIRZ+tGaMbz67z/whGh08PIPM8vJvO1CCS3yw1dl4AEruXi5IV5vfPfmsASArytj8g/r1nqWN/ZKeD52Wh+Bg7QIOZ917K+dR66tcmLg8TDzPpxwHpyinnfTCqXzp2yOJZnCOeGe3/NspsysT4BFELGpvTnJ+BpyES+v+z8qJoMLNUA0stl1iMTsG9cAeqAEctvYo6BFDCoSUdg6NH8rpZ1EaVSB4CXPaEBPlTf+8GzpRiAdFNc/3ZAi+D6b4Lto1mb2R93ywbxDAXlu8rrp8zvSA4vY7uMUinLijA/QlRR3s/IKIhgVQekekAJsM45zLS5nahNB0cE55ZynAHNDKYd57BTXF+Ikw7X24bi+mkqWyIQIo8lTdP8iwweFcAyTH1uistW7NV8LgYdxYNfmwVJis87x2RBPL/nzXnoyB923QPAjsxZ2kQBevk9inP16NjvD3xbU3bLyDi0LBkuGFtTk23HYMjivxHMn/ameMexch3vZXtCzMhzprWtjwDAs24TFEs67jmdg+Tc/wT8CFuNe2ajPO4P45AM2KTr2+1l+vk0eyEdvwSgAIj9r5sjawsGU/oSj9Eyz+dKEN/RKmANugIBBDD6DgDR2uYJMhPKOt9TfPM4QBERcx7VUEJN0cqpw4MMQyCIn0KRwgybroBHHvpO0j9uqpIIoyQMEyt9dNCjjnmyDgtuaIgMFDEpb0byTWhR6MMddsVDgCI2kjHmCtOHPzlySnvMCd9RjuoGKCjjXbthISheJ8cxjJ/D+PM57Arp4uUKCsDTyPqSzRAbn3PlArvged26j4vpqOU9OabwsWXlA5tX0ZE+9hRxXI+uFhUrQEVSqptnGaiagGgAYbQxn6uSRdT8zSlkI4owPx+CWG06+Jq6reeJFI0GHo0ejoXOMA0HAjK5bm6KMBEUsxIfzcqYAh4Y6HEW8pyjcChlXJeIeVeLfK4GUxhyyRjs7jRO6WGLLNDk2D87UmrbWvMfGQnhEMuIZuQoVP49zbfZbD+592f1uekaM3lPMqSAR6Xo+8IeYCm7iHebjPAnim+cP8/byonwcEgxeeTjFDcqAvjw+0V5iP3R5BIN9zUdMa/7P1GKD5FGzyqb5oprquvIeljfG++lOjlCjEw9sMzndU0m/DYMI2NzfiJ3uwE1AWzK2AuhC9doYPo3ZWW0imWNMFz3pPcIGtQcbrpXfg5pHdrLYzZZAijGufzM/90xG/ddhhELjJp0kQf5x+cZc2MyT1kWkf/O95EdPBrJgqEzFQEasGuleDvn6LIU8/1kHzIK+TDQPB6YiBb4OvLAQMPgyijyGFENR0+G8Zwdvlw/HTJIxznr8VMZE4aH/T61THQdkmX/tIc+2RvrfBTM++/P9CjBw4guPdlPPzuyPFvOGxxZ8ufjeRbpy+es11//e/Zc65xRT01/6+Ozf/QgwEoZTu6aae64IDHJ2OlnepapBCV9R+AZwi7vwkYA5jKKZ+Nf3+XPbCnej6e0jnKXGH65NytPPgf32XT8NFLrnAK5nJn2coHZZcwoSJkkRtbqNlsAKUlenkYUrDJsuYcnfBZd7kmWd5e1svDU8CCXyyTH5fl8P3uvEax4rkfNf3hybhqLEdsKooUu5XZB2IbaO2Tdh3lMeZ09kxsxV0k/rABj2H7JBnU7I7Jb12cQCaLusDuAkd1GXZ0ziFQ/d/X7uscwbJT182zTTo/7if1EmfHsvLjHAmpMnz9mHoTt+g8evwagIBjRencS1bIarS5nOYzs5BzZAx1AAc4Xyxao783YXS9liv4CvoAVkI8eDnf9aHg5u9csdvS9DoNWgF4LpAP11mMTlXv3cVtK0PHNIvxtF9S7oh5eotFtvFBFrxf7vXWUU7H9aN6RQAG1sbWXgu29Y/t+g5VblDBumkeD6seJ7PRrEZSbR5K9run4fXNyKn/eZiSM5ei4/O02jCuBbb5DUc/hOBrS6IKwwrIOKARedovq3o9I6VISALnCKB/n4BpQDYAj9yDXy2YMvB+nRc84prMZuc7Va0XdIFMaZr2jvh9Rg2u8F4p668Z/cLP2RcooE9I9twLsgvLmSLUbI1GDGoJuRC/P3y6AApd3Rzaz0dQBoI+61qMBGBkZ0RM4OcL9xdKX5fQU2FQnR4IbvmtUb91YxViKz476b2+Q44S+XICC4PGYatrup9W70SjJDNjd6+v83Vr3EB3zsWPUkTs4JszauXjruH0btclRRz+QeOTPErN+Rv5RCtrXyyjxoSD0ekRGcSO6BVgGy3EOolOm03oWQo7cW130eO7JUCTpHtvxkWAxG09J+ajIACGqRwW7t8gkQWkY6iVQX46HXAVWe99BtHuKlE1RszLLrSn1+4kR5qUUljp5TmOI61WMzASWAsAVIssYUk3dxBBOh+bwObpe57TY7tkZbG0oJSKYwTmxbZYVsG+P6ck0XFKUJD6tJVonxlhqtQg+oxZBhJQj5omtOIyL5FwBMyh2nmDGgTKKK+aoS26BGtkMzY0Cn4eVYOocmSCB9N/uYzzMbOD3PQtCv77GdeR+IDJnUEfLSj7f5TLuy8gy9wbBOxrRiZRU/Z1NKbQ20LF3Lw5SmH/r0fnh1LMMStTkTcjYUoBrHZkEimR8Cs6/voIkyoDpM+nV9VjzDAIDGdu1oIh1aipH99bKo30z5Wfx8jK26aUukvsBYLRsnsulZgfASusQpLlavfzxaJbp5WtW7gXlvkXPd8tkqFHC4H1NjfdpcV7Y1WEQ7rn+CdBInV9QADVAoPxxRs1yHquoevZavoGBlIVkmW28Y4tOJhkHJNLFkeodOi7tI9OhOkru9g3t5WJ8N/fDGeJ1RPDpADAwktO5c/YO1xwzBHofIP0KBHOPIH1OUlk+e/6ZD/KKsDyCoKoHmKY2eFleAJYl5vsnuqJkfhKXHXG4jkT3rkH3w8ptMk/PCh5v6XqUpcyOStmFD8ekkwDy+oRr6iTOkwzfNkTpWlc8BRXYjSeXeBBMyvYP55LPpct3WreOXHZR4Op6UdUcW3YJyeshHxyz22YxCyT2POBR+HQKo+NvB6bs0ON85GXKB+WxH+x20H5/jdT/yKLkXqBPGJxbGteywBiGn7YCMr0bWNryPcfcmoxm2bCvlapDjudxcr5JGMz1TsA/lxFxDHkc/D0yGu07cjshxbrZBFdFQXTFkqaWkVXcdk4cF2H/hY1gfgGfU1HHOZ61LVpH5kSsr27PxUwrANIGwGzrU+b5leV5fc08ZA5EEGjJFqBsgdvlyX6MvcTv1GLvsA19r57FKGLl5ihq95An9862XS494phjTLa3p8AQQXY+E99ldIKoYWsGn4NnME0BGfXypQxYizyXpT85fg1AARjWoxsf8KwFAGDkIlo4AUHaRM4AuOPOOkfpglzULY2pcRhIOlyhevTX/iARDRFPCwUwkYxo8XTMAnQXZs27J7QLvLbSFr0oUG/qaY3uUGqZoue53Uuu81rr4JH+znWpdfAhYK9W2ylWFhLPwzouft/vF9eJyIZnL4jMtV8FEzpLY8sihzIWHq8dzyRznTqd92QkRDaHyGg1pt7SK3W++Pi/XnH7S8Xrv56o7y24NPiuReD9gkdHhxhr8ZrTzH3G+y3oL1stBoGZO9MhB7JyJ4Lbk4Gm3n2BEUn74jRvrMkt2cklwn3AlAiVaIdxYhCd7WoEa0AQQobBfnbve23Eg1qrdVnw+ZyeHUkJAkNZO+AAJ/zKXT4ADOeFgCjgq5MAACAASURBVGZGQ3MLs3jfam2alsyIKYVTfe8uBG+fGhirE54c/9mJTgKTBvF0reT4r/eQAmgbUTkocgZCHG6YapRMPBfAbDvLuaLzPwn1fKzpcbm29mEM/l2m4rMU4M8ikVQ+NT/z4zNmssmn1+H8xz4v8z5xJz+yNNqyTh5vOMad+RzKaYayp/OZkkzPqR0PqD97U4vPuUfypRTg9WUYss/m1VMiA8BI6+yn4+a8bl62kSN3633yXsiGYpINENY0Y0QgaND0J3Xjef78WibrM6ioU+R17TBhfcy7GUobPBNvOLSSa/vbLMejJ31TCJ1uYZRsZNPlrCfyIxGEYJ/y4pw1jICabCrTXpKjGZjJNn50jpf3spIhMuMgfqd94XLadLHLxZReHyU7zY3rrM8Ak2PVxsOSCDjwYOzrSMB18W1HALx4zbi9awM80lrIYELcU/DQWjvJUXZ5sucqAzgI3WPzMmWhUd84gDZlHdLQpuPG9fNkHQa4/MyRqYusnAx9nR00YJZjWYZEP/fszD3ZzxmkyAZ46Ooyorj5GllOTd/HPMa4ZrIbJTm72el+JsvT75O+WOcmj4dp4hMYvswrI7bP9EAGFWzwfony3Cl79juPDJgs+j6yBeO9psvRVsytSvM1mdWw/j0d037IJUHkMOGz6ifzn8FdAsZiZbfn131kBzfXYVx+vM5iI01lo1HOsujW4LrBNB9j8Gn90SfR4kC6jrl5VjJIMCFdZ7Sf7zEHqx54OoaOQYLJzjgcM+1O+gSKwff17JoEZbsF2kgB88CNlvdpBqr4bxlZarTxn67XRZ/quj7pe3x2+HqQz54HcKA16WHKxBhverl5X7BLVky1YnRwSJ//hARxDFMGV0qWA8wMWteeA//ybN0tx5+VOeTj1wAUFNa1wQ9paiz9myn1QXJkNoNuguO62Tldbf4UqDczaotHS6pq1FcGa7N4vXIICEOArXTA0uz7ZbDF2k8Mj4O1jIchQPriQMLVwIR2FeAVRlACAN26V9RDsb9pgA+XPzr2H6cje3DwYNxHqxFbNW8bCGAADRsFtz1H38usABnxBbwkAImdukREWKt1eqh/P8bcZwfTjTXdLJJMUIcGpQEAJZDLaAGmnKcKeWuhhA0AGNEEOTuq8xkw2sM5AzBaRariX/+fHd//7xP/7j/ueP3Xims1TohyO2cCmuzMwua1X60VZAFcoKqxmasGf0AWVvq6o73u2M4OuZ/Y/rjFNYMzoekg/lIdPZ7dAOtbiaiT+J+D5GwvZgD6O6FwlqbRmgbFI18qwyj1o3+5xFrIJGTycUDkCq0F979e0avg5b+/2TiJLiekWt7vkPuB/vV1KF3VyFSQXh76F486ZK61Eiz5QfKTo1THCfm4GwiSWbR3i36sdcijbjqVeyTD1yKj2+D/cINVsoHJ6CkVDf/uDq3cPHOjdK9TT6BEIhg0AGq0R33gI/A9px5FVtWRdp+AAuvgsI17AGCJhQIj+p2OQItzGUmtwdEQ9+J3gYFJej1hKIKmEBciK7mhqjp4tXlVjDtQGcVO4+E9IzuBnTDux5ifkur8S6q15nff3417gZwPXR+BGBGLkCUnIIy0bbPrX/bh9JynVWYwUlgUKNvkcMh52oa5XqCXHe2vXy0V9m/fh2GRHYQMjCxyJRsPkeJIwIQtVS87sBOYdcCF2RraIeLZBrv/9NaxsZaz43NJfCTikdZIaXejJWW8GCCewQXnb7gfKdIzPov6+uMcsvS0SJy+7t4Jp3i0/rD5reItG3sYaWwXWb7fgoBLv71a1N+jWOXWXC5X1xvA9t482u3v77IBXVHfzzBQLVLn+qch/ia3O9AqLLXKD46JYILz+Mj7/RFwSWvO/u76eBPPRJQhY1Q9RVeNhb73qHc2MF09s9lABDka5Hagf3uxbMijRSZa3wr6tUawQzexblU3GBhBWzQbvR3BUWN7yoyTIHjcS8iB0cLPZQ9ruVXt3bK7Ceu6T0kyrsda1perZSUmwEyaRseFmLsM0DNCul+8xfLHLNfTPgo+kexAsTNMlgsqcxmQg8t6NfkZXDl00iCfg5fJsYoson23c+Kefdpz47w0rrxHfW5JAB2ymx+u3Ap5TGuWRa3ztbPOyWVc5HahjFnrsn8CKk+p05HN5d+jbGZ7b4IoWTZl9n2CR/yM92Agy53WCGIw00WWEqjkuIlnREYHFOqsCTRN9yPvADMbLzvYXcDs1hHE0KX0JzK/srwvBdgK3v+9dQC7/GGZxcxmBRC2Z+7Uo5t1dgt+7jcd65nv2PdLgCmeOWfOuk4AYXTT2DdoTTrZs16UDi+zWYDIKI7OOl7+mqP88Y6QAMO1vII/D2uNiyYeuByggnjWAbzDRdiDTtgdfDiqJqsJCJQCPbZ4Bw8gIFtL57I/7onbfewVeUK2DMygU/d9/llQ5NnfqBdpH7p8ecbbZAGlPymZlbR3tbuM8qwFNT0yyLERNlt06MpH72OvO2eWwDNN+XeO4VAEkWS2C3t/IDKNcfL5/qyUdjl+CUChb8DH7xWXHx31ppbGpCZQ+mZKru+mHHUT/8z0ixQBnHCxXd1B8cXXqwkSIyo0VJG9X7UWy1q+OhGdpKh8KqiJ6wGAWAlC3wTizKeMZNS7guyS0nyNOECwvzOCA/RNcHwVlFNQzurOuTloRtqEcd0O1KMHW3bUSdJ4uNgg670bUaUDJ6JAOQdnA7MRDBlkKYagMfKwFbB3d+4ooH04oOXdlW4YLiQQS8pD1RnwU2ptJrQD7PekHACYgKoDUCiHG27nILS5/F1x/W9bZHsMq8nbm217vGc6u+zGIFsHS0qiFpanpzRSpmlFuQcVGwklk/IUttHjcySSNSlpHgOsMAGhgEWpXKiqt/ypb3cbLxHco0Glon3ZUY6O2o2kiizixpUh4/oEeo5mcvDN+pbzHSiBKYI0iVWYGQlhjNFQ28poJbkIXa5PX17Tubn3dCDoVNS5lrv3IFALMCErsWzEFQPYwhDmHp4GxfP9/k64+dA+jO+VCqG1UbZQK+DRV6tZl+Fcc8lWYCK/cuNDgMgSmMCEpCxleaasBNUN1QcirTW7JPEJYPmusowB+ZTkQIl3b+mZyE2HI04yR8CMLP99askZkageCla3RZVwnnPUgYZPKanMIildX3dTDXV25HM5gztFofRpz9EwIujAOfSxagKfzm8XlHvD/n6BlBM4mFHVR5kGkjFLcILvljIScMAgOTp0lDgPdN7EnexQ+r7nkUqH8vz1sb5i/eZjSuEfjqasKaBuEEUZ27rGcl3u8rmR1PKZx/6U84k5Qn+DGX6qlq0gXsKWjpExKKEHJ+d9iubw/fr1xfavFtc7klKi+bxlkIBNzxr/TnPNy6uNSS4b9FKihILyJkp1mK7sSjbIzgAz4LJz5DI0nCsfH8kVaa9oMVCPrZ9Vxd5jx+RkkG1+AojvzWU1J1eGg5VlKtcUMGcr8GcANv4sTNXn8xDQyPuTMs4BldkR7k/XVFzbn2fSYd0NvFxSFYtmXbv62PmBz5iBF8r8Vd5wP2ZQwLNj4rykN0Y52DmPbQUPVJ9nM8njmsvnPxjwpQ49xPNXcCBHQXO2Vv4dGDI3AaUWlR/zEXNBm+AZEJNBFq4L2NxGG1I68ywrIjntItcnXpMiYYdM85+PnLrfMZz7fJ2URRnE1gQtaoFsrqO5N3nvFTzy++w/7PlYMpzHRWdfU3YtgCjNjVaf+b36O4xnb3nt9yHr8rMnnRh2T84WJcdPsnOixXkGinPWp9tlz1rDhi5eI9vi8sjtyNzqUgEbC0Ft1VGaknV6mtsRYHmy1tYxFQGYafrZd6dMHZnWXGQLleVezzIAnsgO2g+81vROiwCsH6btyOfm56oYRvPwMU0HGgdGznR94C+I7lLLuijLO+Lfky33Dx2rzZX//my+nxy/BKCgG3D7q0dEtWN7AwgaAIAWRAeHdrG+zPXDJ9fLD6QrmtdnBfvz5nXn3tfeNmwNxmTdBOdL9bRKd7aPBrlWS1tXOCDhzrlYNkDfPZuA4xfjTbAOCcYFURpweteG7d1YpXVzQOGboBwF9VCUO2DlGp5yyFIFpkeeCnlxUhjxNdhhYEjUdHX0fYuUI6jVm6rPgc2xRD1j8T7k7aWCLavYV7u0Djl9XMZwYtf78JrirtAv19FOkmmmLjgtym417tZZoaDnxbg5AcuJkQ1xNec1GMMVgxyzmiH38jed5tLm3X/uFce3DdubvWvAQYHD6jqLPx/JWrIQ7F8uQ+ikjAiCGgAGWOCR99GaJ9e1e609e/rSMMvpd1zTxzivbwXn1w3laNCbM+v2bkb4Xo0p/AMoN4kMB/GsjMx3Eelnh7MNd3gasEB3z9I4jXtCWjPEmcJmqtMSQ86Zqkwi6DRncVQMRehodCi4MnqrK3szqwbTPFPfyz1Fp8II9Z90Ll2468UzE/ox0hLz0Zcxeg37FH3Iio0R9vOMLANzSAqiPoZkNX2AW/JMsDNyzxR9GnRUbmsEys8h4KC5jdFDlKmn69fBp0AgQzzStCrflhQSx1ELgDKUvB+51n/wFBTbZD2VrGxbqscb14+WfNzTqlF3OciCErjEg6mCzEaorpS5b9J8SR3XtijraVHFjPoDQKkju8Hnb4pI+T2P3yrKvWD7bjwEws+aAHfrjhKdIFob2SxltDeV1qG3uzm2NJpzFNXnRD2Dg9cjqKnJ2JR6ndc0nX+WP2WHdj2yA8v3TRBCxM67HyMqSKOKxvtkHJURRQ656LchQNTGs8WeB4YDWwrQjAQN9wNFFW0vU1mctYSDG8Rj7UDEAwAy9MzqyABekpXmgOBEKjGzgEGKkOUIa1of9lON3fw4IV+u6OrR9aOlaFcb8q6UYfzzfWWDs/l7WwAFAKEXatYFF+Nu6rVAiloWhAxSM5EeYC1TudnSs5zd+abI/wDjbsrrPoipB6j0AMr2UV7Cjg4BUrGWOx5CRoQ0r8kw7P2crrOTzq/tqT6fOvNsULRor/3QZpX7wfWdAVbnY4Sz91n28xq5rIjRvJXotxSo6Oh4ksEE6nm25lz5gRjV74/93VES4AWXken3GGNMr9h+WdvW8rPxRv2Z3blYopB27zLuxfT+FazJMiB3msnXpy5az+fcelaYvu7oFysbldZR3jE7fJQ/eQi+niaAaHFyQwf3bnqYnBYElsUCKFEexhJTwGyQfUNkxOX1z33LLEi+S1Xsf5huJH/C1A6xAAqBaJ0DTFzPbucE2MLrMujSMYN+K6fNkzkIHcqsU5HBu+L2KQEXyzxqFtHnGs7lHRE5TQ5yrOUE7kv6HmDvtSd5sDrxUYozgOoHIny3VydZlJ341aGPjIRlvoAEpOnQTTlTlgAaYB1MeHAu0rPRXpDVDuN9isx7N66LoQ8ysDfxYWnItFyeq3HO8v6f3T+mj2sWY0/xO5+ACVPb2LRWp+NZ2e5nYMNy/BKAgqXku+9aB5mikTaVyXmXDpRTUTw6omKpgobmYzihRdCroKgvfjcoysfpzusGnMD20SLtUrm4OkyhFzFhIRr7jk5s/bD7t6sJxbbb/bcPZgAAm1rUZf/eoGJtMLcPxeu/mFN8Xguq2LMUvzCfq9cCbK5Tj476dhoZVRFrseV9t40rgULWHGHja+j2OWoAMlv3zeYCqNx7GGvqnBXWjlKslKAp2pc9alkBALsZw/I20v7kltpS+aF7RXvdAxjonglQWFtLB81JLfu1xnvf/rgPB9bBk+v/PLC9VQcNejyvHA0FwKXZBgpuip6MLzHDJgNLkU71YUoHIubEnC2IriQLVq6/ZJToviGndsVxtlFK4Y69tc5xRfkyUgPL2Y3469acQAxgGYHEXMGFsUcNwlhAXGdqe8P0NDoDwCADi/TkEkSIUcbwfo93p9wHbfBV+M2G80DiHfU2Ppd9kAoBNp8F/nsS+Pm/4xxGqbdyotOkuZOI6iC6TMR90UqJ88Z7OAgUjqXPhc2brYFM1heOI9dww4RkCzCMR6UD6N+97MBxmqP/YKDn0oMGjbaRBWv2Asc+ETDmCIpfT9hpxaNNCkTkX7LRmXlPWrNxtPuMesOVTC6vWIwsXLz9JjMLZNTBR8pfHyzNdN4VfTa6A/VPjuH1MhuawOQ0xu+8F9K+5BiP0wyl2AM9HPjpiJKMAmkdL//iLVXPPlqJeSkK1owL3ov7C7CsDqXyLinDhY5cDxAiotcEEpLjGY5H62MeREYnnQRMhNzKwMF4wKfGqNzz3Ph9s9GeHHXj4tlmmdcaoK6Hex+cKKVEam25OYHceYTxqPsGvF6jjXD39ocGdvt7DdmGGF+upQ0eG8ogggZeogjASlhEBidRlQHAtY7MjxQyO++5nCqvDvJ5OaVuCVhR9bRjz3zgXNJx4HjS2o22cPJknxdrMUm9216sxSa7VW1FoLUPwB4ILgYAIZOlIFpIty+bEVtS13QNvaJOkKuvF0Smwdr9Ix98j/5rf90t+PF2SzpIIWshLp0TOv0izsOgs4Pxfh/fr2y13G29+t/G3u8AuxRl8JUlQyIGfK4OuT8HwuhOjqSqgZTMTOL6o5OTwLfImGEHlCQLp/nLazdFaqe2sj4/0YHjYdoVD87AU5lNPZqcB5Iy8rKrU5TfM3WCv8c4ShprjnrXAmgmwZQBErtsEpg+Lm8VctR57fKIsbJ0aY7mBu8GMOv0DkjuOJSfz8utoqzHZUW/brj/bvaCdGD7vqPe2ii94PvzdodKu8EBQ2lqJa8ZVONPVfSXi/kbu4/vaANIY4Bqq5b6v5b0ZjAh21fPnLasA5g90jW6r9mgZNiCtPduc2eyKA2odS5Z+WT/T+Bdvn7+vJQhfwl+raUT7mPFuuR7ypls6Rn4Dh7H4zwzK/DCI2dVrGvoxZxoWbM08vVXLoR1fzwDIMBfF94TAE+zH5gh9OQQAkIxJF+b3Mb7ZvqYgOKzOUg2RtiY1IccT2tj3fzvlDU8AxvS8UsAChaRVlesiNT0cip0U8CzBYJPQe0n+Q2CebS7EeAvJSK4mezNHSxc3FG7K7qzRk+GrCIcp6HA7feo+1ag7xV9g0eo7Dk4xuqlG+Xew0gop+LyXdEuBX0D+gYAgnJQMQFsxaJeXlFvxsrfPbrTLwWZoLGzIUHn2EbKKBHXmAsdpRC2KZdXIU5yyd/3Am2KUscmksPqsfTK2t82GR6cM/X+tJad4ZOZOQv8XWst9mzkJnBhDMDqVBXY3k7Uj2Y8GbBozgAP2iiPKEiCBNBa0a8byu0Mwq/gzgBCOI86u2So+zqaiP78eQCYQD5Y1+/rh07POYQaSWzE66ijdzJg0aVoSdbH+nNjozRFYe2u0tD1ceDJQWHcO/Qc9wwm4Wy8Z0QfsaQGOVfPxnINRH0oxD4iGYXM6yUUTrQLyjbNKoRPA/RY/mwdGFwZLsZfKIqtDkP4TIZBUkbh3GWDLwlOXZVHJv8jeEPnvCimaFkDcg9jlApLSUo7wLMUMpiQo4W5LGJ16ON56OCvBkaukxMnahKZlUuKQAeoQSAFGACKZzJMyplKpyvYpWNi/OYY+Vz+XRvGo+Eb4FaObtGBJVp/c6enyOCf8ed7AF0yyMfsg5VMUrMjuShwH0/9fgNBtuj8oTN3xHT0bvvIn0WzItZuQpv7IdLdaYx7tk502dBHoyKMF3hkrYacmtJSsxE6ObFPjPfVuOuKB6HvoJ8mByHktbK0gfISvm+4N/2cu8RaGmR+BjhYSZoBxxBAOYcFYOtiAF7OlZ4xG9ww+aRMjWWqrsqosc5yAJhBBr7PrQInjFgRbkf4vpS1lEd9XjaJ8WgFsBW0l83K604TiGyPF6UIlO8l2RZP3rVeyD9k2Y/GiWTf7Wcxm8GJG9F78C0NPeHX8YyyXgtE+kT4S7ljxGkwx/3sUKSSh0+JScd12MkoZMbyLM/OlbNFrTczbsIZ8N+18H2WWaflOct7QxOA2cc1ZP3uOuddI9hEJ9icnMU5oR5mujydSRFE2+vscOc1y/P5HWa9cTw8J7UPfNb3/SkBcPzd3wOBhAfwwUCF+Pezy2S5kGu9y9AruVQw5DL3FkE50QEoZB19PwaImp99LYkhQJTfGcsHgMm5AjABi1ZukPYCnbEIYsCykL+M1uvQzbJ/j4LIQHayVgZlJke2d5T3I4Jfs2OvFhDLfFlpDVB2aa1TpkTYVLyNO8oxH1k3pO8MPop0zrr3OC7qtAxacZ4WHRxZGfk7+cg2Qnawab9wzjOIOI03XVvT37i20JEzeadnefbvZ2PkOLMdmNaUevBFVjs4Z+LRJuTRO9Bp4/lcPRvDOraSrv8QMPoEQMwZrTrKXifAj++NWZz5HjFmnc9bx8vW0jqy+/RnXAn87JmMenL8QoCC/bPtAnwrqDdzpLkYt3d3JHfbROGAEjVriu3HaP2mmxtkWVCJoH/Zg5hQmmUs4MuOvgnOrxvwdbMuAmeHljoceyde3N466keq02+KcgL1bj5FuVvGQU5J55GBfGuRac8OgafY2360aypOJ3nUTaCnG2vMlhAXqN2EYP1oKPcWG7W709o3z5x4b1HzqozAN7tWdwJIElWiC9rXPZxXUUR6Yt8KihhKJ+/3kYLrhnkIqZayBVhuoojICa9HvoJ6WI1alCqoDvLJs48Wvn6v8mHCKxtrrD/Lf3v/D1/wX/7fgm//+RX/4f8T1D9ukNstjM8pAgWY88R1QdDDU1vFiWD0uiEiPCRtcSXU/vkboo0ahQIBqVrN2Pu4Q687jr++2No/OvS62+b9/m5zerVo0P63WwBYutt42d4Uze7fXx2BP5NyPRtERzqZDa5D7ocbeHVE8Vd2b5I4RkcKQft2hRbB9sfN7n0/ZscO8FIjHUb1VkZNYDZKt2ItLQHoZSExFBmlJS+XcFpyNgT5H4QOrz/bg0Jgyj2BCY/USXWBvW0jjTWRMZKUzQTOE2MNDiaQY4BOYs5gEAMoRJLBmAxmS5lzJVfx4DhHBDscRhqyGONyZ9/ImDqC1Ce3MHtmLOf6PD6Pf6alzGUbAS64cmU0iRk5zjgt4nv2bEbCWMqI4PM9MLOEey9HJwgsRDlMeo9UpFEWMQNMRnrp9+S4eN1z7MOYBx+XtTrU1JrRx5BLJHwdSM5YaM3bf84gtJ4n2KbNBzbvP14z2kW5+N/32UHh6WuXk2xs+97Xy+76z8EaliGJDOLGfJ2clgsMssc03iA9o5HNOXBCQaTMIbk1oHa0367+/lxe389BtEvD08vvyOOg/v1yPyfQP7dIDPurAP1lR9+Ll+rBgPaCifBxDMxPO+x52Uo4ark99VmLQtjtYyXCW2wHGs19K2ivFeUQFBkZXuXN1xFBXy8jbF9GRlX9YLnaFt0vbA4a6s0yB9lKMtoBb8VeqTKdGfD/M1CD+rkr9r/fBrkl33UGOOgg7dVK0U7xuT8tKkvbKHOHsD10dtZYjgZMDoxevQSJ8rj4d9hasnUvh6zzvmjdsly6jrJBptgD87rPDntJciMIWcv4udXheIlnqGQjn/t+FyfO65P8FN7D5zEIZnNGYi4lIaiVxhDlZLxudqwimtrHlaRAtg1r9sCUIq0tPa/gIROhwcrT9tSG9ziGPM5lYovzEQ6DyxgAYWfyuS0jjt9Lzg3tP8/40quVk+mWunZlmZTBgMzXIWk/cw0TZ+iYspgmmUX1TJJDueB4dU6rDvRLwSmC9k927f0Ps5u3Y5G1NsmuGk1X9ipAccJt33fn1x1axLhWmkLFuQWamt237yGf+PwGUEp+7QM4beJBtDFXsRfCzvbhbRiyP88l4BlBJfbN4H4Z8jwc7TSP8dzeIpWfxz2OdJ6a7RslWZ7hN0gUfc9ETduT+eXYzhacOA97P+un/5+5t2m1ZlvWhJ4YI3POud5373POrXvVKqpExWqU2FEEwW6BbTtKFYLYEOoH+Ae0YceWHcWioBpldS5FgSiCPQsKwZYINmxpIXrKD+65H2d/vGvNmZkjbEQ8MWKMmWvt9zSEnbD3u9ZcMzNHjhwjPp6IeIJj0TRHad0Z2fd0vs9ZlD2zNqHpcyexHFzz8sa4D/UDEO8l7LScqdMUEc0Qwdiys4IZjUMINp6jWGZpzHvaWzlIEq9scu49c1WA0dbwa/eHs6FYcPV4BhU+yFr4qOvDTwIKInID8A8BXP37f19V/wMR+ecA/CGA3wfwPwL4d1T1ISJXAP8FgH8FwB8D+Guq+r9/eA9Fd7YFaIsBDBa9hq1FBaJ1HhBggvEKOPJeJCbLUrY1Ogj4w5giLS54FF3RAi4wYCzLB3opQD4UQdQYxoAgjGM6f+XQUU5LOl8NhFA+V0PPvGDpxkeH+vW6dxIOvBlqOghkZi1Amb0xjYkGMaePzwMEMknjBzR4DnShgT4OezdpY7lT3nuR+xhS/2FrW6U94jMtZhNYbtC4kA/+hVwfxxPIN9HUeCs+New3724hJEVLzkAGFDif25GQ1yTwKUAGJ40Oo4TxV7eElse4fJI59qxkfF7zM6CyljgNbUZGp78Pf1PFE3NxVhpPBnOfS0u/6edYB5R0Po85e4P/qo5gLH+m88xjMBy0G35z6cA0ZknfPT0msMPOTd7JTxwko9QzRQh01Lp1h3zIZDmLqgNDZN0c44RMp3+lJcGdMyeGSU1RDSqaWRFwj2Yj+70jl0wM11RE5g+vn5H7YUiSHI7S7533Ga/H8Z0pqI9Q87PvZY4GGyBye+BxSrQ7l5qMivyO4jmTAcbx8uAam0Gb7FTItGe4ZoZWUv69Kdo2/Dsf+e/z/GVDcT4/v0PeN//N50azzONlZwMPLpvV5VIRc9AF0JZScXlkp2P4/PwR6UQQVGTnJ5ZAkivGZLnLU9pegkGPPmWfFRqV6OVq5Dogd4XLz6GjjutAFQy6NO7l+o5gNR30mGLuGSRZrtpTqTk+wDr7eEDDlFbSO2rzGTpfPLPw0CjXiDmkDA8H0PeLOyQAwq4aSkF8mBEGNQAAIABJREFUr8ru3Wi2oxvHaZwA+jv0LIDhNYZB7LouMmH8e3OJFe2Rku3CfN+RD+DJucDJOfOY35M7qiP3gWond431M63rWQbmY86Ky9eJP0zyQzDu669pHUe5ndvmShmdILZCHs7zfZD3BsfoNvSQ9TkfP/X5yd+HFHfeZ5KTg53T0O2GEzmbMxbmMYgTk7LbWVySWUCroBwdkBCC7XMgAehyyIEFhe1nJcgmGvYigB6UcfmUs1bjWR0A1ua2n78uay+b7GN9njPxrMDhetwTBIAY7CJIkQg4PzoIIMScPb3HUW+QaD0CAtTzU7BqvvfTs03z/TTWPAcZNJh0bbQ8/+i6cZ12rqvPfIOzI9kzQfyoJ/M73PcdgXGmt78iy8HO6X6u6aETW+PsfjOWloCYp89nu3o6viZD4Q7gr6rqDyKyAvjvReS/BfDvA/hPVPUPReRvAvj3APzn/u+fqupfFpG/DuA/BvDXPryDAmVXy05wwdAqIGs3DMh8bAQ/VJAAqyFUCr7/ZxZAgetvDSGsj2atqZaX6MbQ1jQZq0I82sGshrYK6ptHFsVJ/LaG8gDW7+3erXqqlcKyIqoAn5aIyFvJggRHweDcq6XM19ejtz1kZKB2bgRd7N7LW6r39GtUL6FoK1AeVoMPsTZcsmvnklBFVS8feRw4bgt0LdGK67gt3ZgJoxbQ5lkWLIkQeIpnN3wgYpGGUqJlTkQdlgocivrjHXpdU/osInLdXrwM4e3oKWVMx4koUleGM6M4U9D2z6u1frvvRkzp70UOaxN2+3/v+PP/8AXX326oPzpHwO3SCaGAJJC9fnLzz/x5JKXVK5pF1/k+2TLwdoXWOpI5smXR/QiCulYl0i7L/UDZW2q9hpjH41vLCJC9mR2AEuSZel2htUUpRBBmZiDH35GuS+eIAKAvRjSGxNdwfLoARVCYCeBRtrLvBsAxVU975gHqpRuqfu3y9hgQXyO1SlFj9fIPICIUymwBFYt0bHtkJsiXN9+nS1esPJIiUWYWMLJN8jyYvMC2mTFHR9mJuHTbktIw9Fe9VELW1VO7k4F2NFjo0M/JtaQyiVIpbog1y0SYI9yqUa/5VNpQvHwhSmCOUFDZ2BXs4/vm8WRgFIus5ahUQr2ZrWG187UrMD4vAFUzFAKJn51s1cSzULocQI8ixlg31tlzTjFEpiJimCOsgLWGpIE/RyGDzDQbHA3qbc+GFmnN+R24vgBns18sa4c8FzyfR4qMRnvQeBliayb2fn12lGq190BDKEdfmUWTQQU+XxHvPtOCXAtrzyyQo3Xi2BStlBkwyWOJuv60nrwulxwRJjvK87npmVnyUDa2grR1rlvpjjX11t0cZBIsi+vydluiDVn97uGtFs15bS+rdVbyEre6NbCNc/XOQ1q70097IQD6+wa2V0atwFq7jONxHdu2KhBZUW11We28Pe26QMX0fnT1ettszB7lPL69GZ+Bd52q98OyDB0o1SJWx80MkKZDB57ImqN9GN0g3KnneT5OrZ5t4HvXeH7cwaQOyO/QWd/lOEYOBa6VbOC3BuyAbMXfV9p77MxUirfZ9bZ0D+1G7X7492qUZkX9tlqgYv/FzfTgDw/IsQWHgRFnj5H3UzfIu6kE4Vx+VnZQSfvIbJ6TiPScGUXgJ+s0yqic6aJqlnQrg8MTmQmUJTNAGnq6AAez3CZZSbDh2I0nOIIDBbhex7I9IJXC8Xl3RHlDEaCk7KKQy8U5aDoPTowBGAGqIl127ehyPkdhOTcJnLBOMbauglza155S/j3JPvSAi0cAcxlF2IyUMW4fyWEBqLIp6tuOl98k29yf47hyfYnt05fFumItBXLf7J3zGaKc0+VzFTQGp1Qt29j3ZA6EKHWvuixisKyhl0CEzmPw0m2wY48sgbT4noCAcOBr7dk3SXbkcpJh76b328vq0CP7XDPT/otxMBqfuHh6iUWSJ5ENnvwG6q0MLFFeqLpNB/SUlDTWyFKd95KjTsycSroezr0iO56PeFb3geZAI+89lcEMY87zIm5rxL051wkUbMd0DlGobMudgBhNMZCu+jgk7ekAWPOR7b4MOs5HlvnvHaqjjJyOnwQU1KywH/zX1f9TAH8VwL/tn/8dAP8hDFD4N/xnAPj7AP5TERH9IE+CGQrqslkOoC3oHRP2RNQU6D5izq3rgoQzeVwF9QHoZo45vPXkUJp72CJrA2KNfh/Bs/byewqSwdJ0QEaN04Hj6sIk7qkI50iO3uZQa78+xA0gVeuGsHkK6eGgw6WgqQlT6ywBy9AQb2fo1wg2BC50zwSI+Ysxq7X3SXVMfD6i5b10BK7sDf0WkV5Pl6eqNUAlUNxAMUkqlb/uf1PPCuHG1jPjL11fG8LQUxckEWlRmFP82HH7kwPL697HoNqVkZNU9trXSZhwbfA5gAHRjNZbbshpGIn+/JF+RKOWcyEdoEndJWL8uxtH2u8fwxFAqhmKMs8NlYnXQnJeI9IniVTGn43OQCDrIibLkfeVAt5GVFGcqE3jHk/os6c1atWhznvI9JhRciLqPLLyo/PiY446e02ygdecFAANqiGDAH2O+hd/AsnlkZn/qXgrFcN0vTMBXrx+rVaw9EBVo21k1CefIMFPtXXT34aocM5MyDwCrSBg6bkOjwSD2jCAKfMxRR1PBhPvN3gSSGw2K+y43mQI0HBN4MgpOznQDZynzxOjtY7Pqvve/9ZKj+JkpVnSfil9Hceh09qb5+CjI2cIzCDQR+fkCMJJFKaDEjruidkAApB7l9OJCx6D2MvTGvFxkLgVThZrMs11AaN2yO/dshl4/dAxgAENtaBWATOjQvZk/fPOERkCjdEyd9LnLS2e4SCeISc9QNEncHr2PG/aOR/iIO4WTpsHBQp6hK/BUpkLAEhvcb37fLG9niqiTWTYrdkw1VHeIhvn3QGbn/l0b2TDn/9FZo7Ljjm7KBvffP+Szo9rpzVKZyOPxR0PcbtEhue360tLOjeVLQxHvmfeq/P3uI4yf0OZvhPOnc9pBiEBBE/K/Jzh/CdZgC6r++X776r6HHks0995rZyZ1ko478HpwKwDyu4Ym0ew0z2enolgNjAmL2TdkZ5p4M44O0JWpjVzRqB3ZmOlrjbmlJ3I9DPZqBqm8xBMcVurvh0dgBMBxAKYSj9LTEc1+PZU7e2yeQ76MgeJsr2VqyhGmTOP7eg/v/ssk4wJ+fikn9/Zxyd+/7tH3iOqvfRwPmaA5+zeyWad1//T3z86J99j2oexLmYdFvq8PI9ztjPnrMj3nme+BvAcsOHhYJHqMcqFp2c6sdHfsVU+zESY5RWPnEX5lFHp1zj8fJ3svrNxvZcd+lF2qx9fxaEgIhVW1vCXAfxnAP43AH+myt5q+DWAv+g//0UA/ycAqOouIr+FlUX85t3rN0V9KF7/oFj0/qE4xCLwL79pWF4tkqtiHSDyeXIoHt+uOK4SHRK2TwVaNcgQ2yrUu6hvvSShAThe7J7FCRUZ4QpSRxcSbTVeguX1QHm0QNcMtUfPoNg1DCHWjJaHZ0y8tQALZPcWNEAnMKRTCju3bPYM9Yc75MvdH6Di+OULcKmWxZCEXkS0mxMxrlbvVdDQWhk6N/SosxkhIiZ4YxwOdBxXRun75mxLsbp77zNcVHv/VKC38hEJYc160OPTCuMNOLqTbYslSBP1uliE55sL6pcd5YcUSeahloFQ3na0Txfs36xYvrujfDF+AvYFl9eG26+/92fVHsksQFsrpHgNKg21YnXJeq2RWaBU0r7RZD+gqxh6u9SOjahaHajfR+sLdC3A3R17N1yNX6GhtOLRuEc3unwOy3evdu2Lb9HWUETQSnWkWaHegSOY0ElMWbtjWb7cHchh9kg3zMSjEuXPfvSo8BIRL3hUMOo3FVBYt44izdpaqlod52HRU325Ogh0mOHx+gZZVyddtCikvG2DExSEkD7GaHmkGpkKQbzFOszWoF6zbxHI5HTWapkHjw24rGbE0TlcrKMAHUm5rJEtYMZe5haYHD0pvWb+egGOBv3yJUWRuoyxbIckkKV0ksgiAKpNaIBNVsfW6OACwLra/Sj4qSiq1eAJpNfdcwUW6Z8fh7c+KmN9rYiDWhlxd8OlpSg30HkClqUb69npAD5Eq/v9vB5ePEqwLFZrXSvkePNo197BFfJa8CjVxvFy8/GmKAjHz/XNtbUbOBMSg0oyAUu6752gkhG36IZh95frNY2jjFlA5IjwQ5nBweyEvI5m45qZNLl/uXqtJ7PoRLymO0UhMwM6YBEsnn8WXRGZ7nFmeElfF9eLRedYIy1i70JkAOCYmSD3DXg028eiqF+2SPNlL/Zwqq+2ReR+jMDuUkyvC2WycQ/kccqmQTpoHSIwltbBZEhkg/GenEqSuS0SWVfkVRjaF3JefO4s062FE1fulnVlXE7pHlXANpFPh6p9tzkfUhHs31aUXXH94zfT2WyfK2IoBEvjVM2uSGAhy/ZiTXJcDWBXngEA4Jhmx47zF/dpQ/tYiHjnHgcWnHwZ0LCP5FDgLXXnme/FvYgjuBNYMw01EHX5ra+T+2b7IoEPRnYpPfIo0zNI/5vktZ/rn/k9ILIZbIw6vi/fP5I5FIDulEvp3WQ4R7nbxGyE5+42QAeieQ9NJXU58wAYQQTtUUkROgwNyr1cauJ9SPsWsAAS9dd7QCUzMcmDw8inanDkDMBlrV33ZEc339ffw1xPb2UApet6BqMGYki3QaOTEXW79BLk3L62+P13MfyectBtp+WHh9vjBVgLWimob94FbbXvHi8Vshfo2iBu99TXbXyne0Mh0DLvLR4JGIug2gxyFZN7UaKV5c3e7BrbqFsCcAdOMt+4ZmiHTO/F558ZaMYz0LNGsQMq2t+VvwMDZQgcEvh03dDSc3NtPAFEx7M+OuN74O9uA0crzAv5mSTJkXR94HkdZl15BtZlHUzneT5yl4j5ueIddpkI+j9P7ysdqgC5t6S4YCFIONlQOYM0AFWXDUUAHH39q2crHEk2zKAi7w08B9XIHdYw8ijM8/JTwJIfXwUoqOoB4F8SkV8B+C8B/JWvOe+jQ0T+BoC/AQDX268gB7B80W6U5/sLOrIYrM3oKYeHQjdgudsHrSrKgZ6iJLBUcwClaEpZAupdA5gI+bw3oAHHNKnSNNo0WjkD0K7Vrq12v/2lgt0qet0jehom1/VacNR1JEUBUj05ILsG6EBnRGuNiF/ZWtRaMVKP4lkBERVUjyLAuwtoj/p4SYNWAyZkZz0swnGTo2CAXVMEyO6HrsDndCO18YfQFBubcAMcliZqvBZ2H+GYpaHcj+5MloInPgM3apoziIfh42UCBmhIONF6uEHr5RDF5zktSuhtjRZcOdojR3MSMXMWBZ5KSGHJn7lhF0tD3W8VshmJo6HZDZ3oR+O7Fk1IfeYp+CLd1bIfChApr1E7SEebNXySMgFiYU1GVNQKAvrJyjVifl1IFgcpoOrt4dBTc2kkuILVUrxtlDv6TcfSg6N1ohsnk9PFyi3KY4d8/xbvYBgz54EdKQSe8q6jsk+CUnSxaH8zgy2IqeaMgnw44d+Q8VHcmQ7jzu/Bd1RqN/6zUkPtSomoc4oCw4GcEPxFABVzbLOxKgVDgRtT3vgz3/esgEjkU0r6XjJYc+ZE0w500DjObSc94mqK6egKKNKeJ6N5dsrSu4zadLZ9mrOaaIROded2uqcpn6H0+bM5tZLG32GkT0itNOMsmd5f095uNANLw9qQ7kTkd0ZDSt35ycYeDxrXJ86/FumALAm1sgGUvx/jSvsE6NH8NN/D9/K7mfvN78lBysaTah9XLW5Qpvfp8tWu7U47AKAakM3OPeqgq0iUOQx8BAI3cLqR3cfqmWxq+tZIIn0aJK0DyrCmg/HN+mgcCoGTp7kBj9rLNYz80MfhwKkKeXk47+hzTf10WcJRMBlMXcU14zZJlchOwMwZlPSa7VENnSfhvKJzGO3NstU8WtYZ5JM88HcfpYk50246wil32R0ORVoznajN7+WA8snFRpuAa5nX4bUJYLVp7/q7l2Zkr7EHyygfLGtptDuiBWtN6zjv4SF7S0YZkuQwjsP1VtfzjPBr2kvRtpn3yfN7tm95fp6r9w4phkGPJ2MgV3yKbqZ7shSN2Qhz3fnZLfPnPDeDM3P0epJjwzycOSDD/vY1n51cwOevdMBOunMe7SPTGIIcMHekoX1axvXUT6XMRGQK8f4kpB5sxNbPiUyifBQ6ZghzgUfwJPhYB1s5vjTJPc4J9+DZmqHe4H6b30t+D2G3pfWSM4znd5iuowWQTYGZWW4eEwHsXBoZuuQd2TNnYLicjp/z+Gj/aZLvpcspmefVZegTb9OchUPbbH4ub/t5et34uTnwW/rvSL/HfY/Tue3fPcwunDNOmDHaytO5T0DhO5m2p4Di1Mb63SPLtw9k1e/U5UFV/0xE/gGAfw3Ar0Rk8SyFvwTgH/vX/jGAfxrAr0VkAfBLGDnjfK2/BeBvAcC3v/xLWjbF5XvFcREcN34pfd8XnPWwlmGzsmPC8qMZGM35EkjqSDRdC6B3u06rFnVfv7CNF6LOsURrwuLGjguc3QCFfS1YmwIq2D5bH2korBPEpRtD0gzsiI4HNC4UOK7mBLeLGS/Lq2UEMH27OPNzedgCNFTRywUc2ZSHKU1zkG2xM/oSSt8d0gBXFkR2Qn1r/pw1nGxj6pdwGsvm/Ay5NQ43FpFEpv5kNn6itPcN8tjNIa0CwKMJDiZg2w1J9lRXpaG4aaSfMYqlVay2NjmZBrA4WRe/sx3WztHnLFpM4rD6zma91DMfBFse6m0NMq14F69+DgWRG9dyf0T0Nq5DVuO1ol0r9s8VZbP3Xn+8d5BCeuohWcKDRC6lfuYaugJAD7E+8K1B3Clv18UWqHNhMAMmmNM5Xy58mDFghoVaB4fVlGDZDpTvNgAN8kCP6BzX3g2C1/SaWWYmlB/eEIz+QO8PTuOnNejV+CvaywKtBfunivV7oP7J3jk4ps4NGbVmKcaQAu1GUxzuECojyJebzcuX1wAHVA08iPrSHD3j8xUzxPTx8CisK1JG8WoBUKJ2F0A42poNvMhK4Pw1j/4DrHPGskS2gpU+nBufwfBMB0PTfXi+eioxjfnjAMrSlVvu7MDxLeldRep2jawMPTzrY13snjQyHQx7cnLPgCGu+3Ux7pGzLgZuGOSn183Y30HOi8v6fN58L2YTlNL5Bdh9gg5XNnxng3/m4SBIwMyCPMLJgDbeBjdUj+7QPmW/ZIeN12Gkdqk9YtBaB7Gul+cUVZYrsV56w7D25HJJcsAzctyg022z93y178i2d7b1eCd2/ehyU9aIvoUz3VqUdmFBtEDUKljdKWcNsXx5s3ssN3eeSzjaLFs0PU+n08ZhYK4bRk0tKh/vWqDFyhiE8tm5iYZ3e7jDoR4N3A8UPvOLZVMp0O/JrLnKmukJtOEcVeC4XUBySKA7KDaO2p9RAHZyimwKyn0gaq/J91S2ZhlhKQONxpGd7++ARnJ0WEjrt7XU1Sc5hwxQZJ1eq2erpf195sj4ugwdlec573Vm2fBzXovcDgQknG9hyLSh3CPnD48k79WJ7YRjyt8t6zimHGnPYBrvRaAQ8PF49J/yYPeslsiS4jtzoJV6fdqfQr2WHcn30szniH1Ncjtnv6nLolonp1c7kCQO/mYOnyxvcgkaI675e/zO7HhxPvmvyCDLhmh3PoffT45zOMOU625zhN6Hyxm2qFVF1CvwkiJp7ydgSsU6mPE+DSwEtunOQ9ytPXtMI7u3sEuZZ0lHKZIDGPGziNmpAuMACj+AOgkGKvjz5xLjgaBV2cYxvZtkF2b+j9x+sc9niTE97cmmEDm8UYyPj0BxAHWTbsvnh+23dyc+wI/S3ydPT7IjOizQHuU1ZxAkbB3/zgxCcoQnTu4pyeMMqLgciIzCk3tnwEMvq8lDH7fMGZIDaHOMvyOtRQaSmGmQgYQo80E38jgeZpACIIfCcJwFWc6CNbNNyuyFjzgT5oyFnyh7+JouD/8EgM3BhBcA/zqMaPEfAPg3YZ0e/l0A/5Wf8l/77/+D//2/+4g/Ie7TFHUzZ7Xsnc052r2sFFTpJJ/IeleoaJQ8BBi2q3duULDlUidNBKyjRPHPmvEVlL7RxQVzlD40YKGwUjufjNNWk2WtJdkOcn1VQIHjUhyQaMFWfVyKdbM4DDzoEQ8EiBEOu0eHrTbTN2xxIboTxfU0RO9rbSQxMGOoSOcLADpxINPrHxg2vVYraVD0DUzEUCITAl0gLiUJKN9odA7TBhUUB1ZgAI6TZHWnU0chOC+b5vdSGSId9X5A/kyjrOJ8gTnwQcHgwllva98kXnrSLhVtEZRNINmOyRG63VPKPQ39KepTCuqXHTcA5XW3eYvoFg0a7YYp/3VHrreFW+x77oBJ64aClV/A+q94xoet6xrG8sBJ0NzQXpxocV2gqwFKWiXIOqNsYikoh7eaRBp7QxiseukZHVYqg2eDIylFaQ3yUHuPTXH5rZFyxjPlHtQ3NzCo0F8f/VmYfusIfjhZrblReoXcxZ27EoaVogWPCMnE+N5k0+64tQaSh8nl4sCRK4LHFg4igDGNbF6zc/vDmbchn+Np48J39US/iw4WhFGvTwpFas6qQAcf8ncdDOlrKb2rQPIblKAUz10Wm0cCbFnBsMxCF0RqcgaIsrEx7/GawKRJWefWZ3afhk6q6QYG2x/m+7ljiSIdTAjFnmTA0SBLBbR24rSBwGpSuKoDaBpkcDRq0hoOwPGxjWRx/hy2/nQkrmJrNoJ52eBh6mreW0ezlqhpDKipVnoy/gTo0crb7Xm/tjSOJJf05RoyZABs0hTRuax16+Rrrm90rWbgv3gZyaHA0nVSOcx4j9bBIkNy3Mj7g9FwznPrZWmWMbV0Zwdwgz8ZwLU7VXL3aHSBlwv288JGeOwGDizmKBt/kRnhZWMgonamb+nlG7Kr1V17GeaBgsXlu2WtWBq4XmvoYahnTiZy3G4US0RgpTUEeV7aB5Y5kQ1eHY1ud9xC75Rpr8WEJ6dOx/PPnJ649uatvOeWjgAEj/EeM/ijneQusn9m5yC/97Ofc/01YOVqqh104HWyg5N/no1tOnUiXgoxObb+N9Nvfm5zEth7f17NzsVw/dnm0XjHQ+RR83iPJwBjcFb4HGfpzDkKDHRgO+RIfyfRnYMRbTpWGXzkesp/y+8Uble3Z6eYgRXxec4ZoAQT1Fuq9vH1dxvOfdyoA3i5IxqAkCshczkNeZyTbdbJ4LtMy7JHAOPQAvo78zkeMkbZcj7AKBladytBIJ/Lgah31psEgtI4Tw8CMf7gkksDWN4wk7fy+v57yA0646Hf6/P7BYJkftRfJ2NkOcec9ZIJVDPwxHHl/ZnXdNgUCRjk5ymQMHOJPc1XOiLTeSkTAFr7dTXJPtpLM4cW7boDPTNULTCkAKIkgtdKdtzTEfo6+Q6t26V8xgAT+B0/Z+SHST9Pa8xanH/d8TUZCn8BwN9xHoUC4O+p6n8jIv8LgD8Ukf8IwP8E4G/79/82gL8rIv8rgD8B8Ne/aiQKyzQ4gLoptk8F+yJ9o9dxITF6rGKObdG+kOVAT2Fq7hhBwVaCfiEYoCCo7uQqtKcSNgThooohmeVovf1i9QhCXpMFOFZAmoMK8JTyxSLvBQVtEbSL4FgNMLEMBgyGUxzFni9nHPTPXbCx3AI2zuYIaaVvnQSl8PkbhT7Aloy8LrxERIsjrSQA2tT5FsxB0yY9ouK1amy1SIWkpYxEU6IRLRHV3qe80WDrBspTCyA+jmcyZKUn24F6dwNh3nt5o3jETJbaI++TkmIUqTkwM2zaqIMv5jC5cBqijDkF+r5Zf+PW8BxBQEdg8z2iZs3Hdlk848LHwgwSIKU4u/JzB0VrGgcj4GpCW/ajI+kJUY69oRpggpXITO/B10wWmJr6gdsznLw4OnpU4F5bLfcxwmVZLvA9VsO5lb1BtoTu0JljFoRNZHqnBXIsaS2akjaOkjSmAbnthu/QTUDENnegtCkDZzKWshF5Wgt3dqSMALCjAzMNaFA3jAogKQ+ROqHPfp1jvkfraXnB3pyM2ln58T0zY0JK5wjYDysnWSYD//AWcyId/GjvOCkxttZ5B0qxMeX65pwK27pBk/vFK2Bzdb0kY8MNjlLHDBaOM75zQHeMSjMZ0dlAjfHyOgCiQ0h0uaCR0Z6jLzGE0cjMmUsdYE01qLzvGZnccZiBTrbnCSBQZg8QFMup5e+Mb3AW/bu6VsseI8CYwSdQLjTIcaA8CrSarBKXf4x+6VpdvzZos1zuyD6IlH1jnCdLk7hcGuqX6Uwc07ibjnWy/JyOCb/KwXM6CP61DiSEQ8tsA/arFweK9hbR6fLmOmWtvcyvACqlv1+K+kWsass5aXRHZOHljA05ABRBS3KK/EZA6xw0xzECK0U6MExHjfwz7BhyAgooO+q8V8Lgc8mWdZJ1YNwjGfo7+n4F4r3y5yHytUx7NN03SKrn+ma+m+kIsDcb+AD0aoz/qK1n6/D5w+E7xvufXFtK8cTUJAPYStedvOC3cvZ2bUcH/egwcDnOTOxnLR7juWcHZdILMW+lj5fyDhgAxUHOECTM8iA7Vvy7+rtnF7O5nCAcIR8XncH898FhlXFvarFACdd8AhXM2UY47Bb19neXiEwB9KzGyVHNvAUReGveaS11JIv5TY43s6ZMXo1rdAAYomwKow2MtCY94BMElNmHTesx2kNOcroTlnI/9eurMKNK47tDC8hBVnRei+4Q4/3D36/S/Zn3StYbac3YOWkc03M+lYlk4EqcTyUDFCKpxPFkv+bvAedgRroXgNFOmJ4tfJVa+9y6LFC0SQ+5PJAMGvYAjw25JUDS91G2x+I6H4w7X482YgJZOj+YH08AR0vz/84c/A7H13R5+J8B/Msnn/8jAP/qyedvAP6t32kUahFBvlPmAAAgAElEQVSKJiZIyFWgBThuxdD8q0W31x8MsWurR7sbInsh8wjAo/5s+/j4tKAtguuf2Fvff2mtSbQA648Nl9/uQWjY6CDvinIcEH/plgHQBaM0RXlYa6n7Lyr2m+B4EdRXRdmB7UVQLoLl1VrYlK0Z2KCCevfnfvQoh4o9r6WeG3ghh7eRqt3JLluLtK3984L99wqWLw3lkVK2nDBR4HvtUGuLKd42UmHGDtKmE4myC6tVF+DhQMJjBwln9GJIXVtNgbarGYgVAFZ0QkNGB2H3gmpv3ZiAoUgrpeHztkFqQVtXS1dbcx2uPXf79tYNvAIEdwIBD3ZUEHk2jkR6uqX/fnyzxjjZQaRshz/3EYi5HAfwsHPk081T+Jf+jFR+aRMXzxbQ22rGJeCKvD0pTDmOjqimqIKljh7dUAa6s8tUvBdrf8Y5gEgHTnyMWgt0XYLwBg24/PGXrkSKOUZoQHnztpH1xe6XQR9VAGa0sl2kMKsiGxhHGwmG3HkurmTk9d5fw+btM70daRBcioxkO/N7FIFE68yeLaLXFXDyP9b6qqpFZfkOaHQ0f8eMHPH6OcPgkcZD5zF9b2hRWH0hZf4CVWB7INoOHke/vvZ1wPTUgatkdcc2QK0KNCegY/0ej7vPKY04Hy94fsnPmJQXo0a8Z3Ujx4SBDZORCfsFmqJuGVXXggBkcvaIPI7+DGHwlSD3HNIoGRGj4bgfEVG27jLJmKec8chjvItl6fXU3E9KIqMTg32KNBggXIE/98tev5tTvekg8Zr5unmPp4NAhm6bkbNxLjivJF7Mcouklcw2CEcM/nuNa8/ZK5HhkY0NkeG/wXGesg+iPn87esTXs3ViThglzfLPQfU+Tt+XtUKK2jSvlhFWtualAbZWyWFD3WD3sPWHIDA2Q7k5oaMWAT5dIJcFcl2SE9+dF+uo5HqBrVDdYG3XS8+C8DU7OumAXha064L9mzWAWCNqPiJTIYzeZnNeVL2c0m0OQe9epYrmZHHBveC2ReNnCQwpdyfAXStUajhDcm+RuWPvTTowXGzPtJc1dZVovb0fYCU2yZmM++a2dSWtEf89Ms9zHbbP+WDcsh1vBsgyoVr+XHV0ZDNwQNCKtkV2KnisawISmoEa3powHBTPpgpnmnsiPefQBYb/Ue7Tfolz1mEuTfcm/REyJUci05gHYjYHWAkQUiYF9w7lc+06LeaOz+LALND3aQDHXUbllpICIHeRiPfvcliYlZnBqNaAhwFD8TgE/Vj+Ku2ZDC4BfQyGlB8wOv9uB0RnLEb/w1axdaIeEIwSz1KG8gMG32w/+dTdx85kwRlGgEzMVooMJmbWApGZp2ufYrYCbw5YlYeX9N6T/TM58sIocZT0uv1bFDjE1spZIIK2OoEGZmEGz5SAfFi5bC9KgyZbasiunTNd/Fx+T7iPHCyO8aR3+lRm5mtCq0CK6e14j6EzW9f3aX5mmy8yNvL641h5zwGswgiUwOcl86T4+AB0+ck1DEDuDysF1JvNbeZtqB1U4Dm5PbU91zinEaKote9toAd7SrIhGGwKriq1LyaAls86dPhKfzNLnan09o412yjzHPBzP/9dMteT43fiUPj/82Bv6eg60BxxKQAg1kby6KiflUP4yQQVq6dIZkHhqJgK0CpCOGgB2gK0KlhcGJjywBMaGPVRLpzGAl/baNtn60rRqjnWJGCM1lGaFDFJmRRR7sBsAIvwa0fxXBhqEeN9UFg0TWGLtwj2a0F5KGSX4FIIEqFgrdIwaPqDyfPP3HhkTuamntO2gFBUhhrrYIxIbVbLm4+GvkiZ5cBePEcLVt7uMPs9FgEek9ByBSj35tkUPZJomz4JtIwM5+d1I80yJegspO9wXOmzABXWtacslX7N6C3M8zMqTCU4CMMEFhWYck5CIloisp1afld0GLMAba2fAwSYovy+pvH6uQaaOBiAaimykYYrwNJriWflAcCcK6aQnq2p2QAppQMEOc1bCaD5WiOw8o7iOjvGTJ4p2gKMBu18HU3CPR98/4xc5RS/j8bEd0pjTt3pWvx3Vw4kxxzmN649Kcd4NndYTtpSDgbmkLkgprS4p0Wen/enMiqadoMTQHQAGMY8zsGTo7Ef3Sh/yoBp5+8t70saVOxl70Y0U/PMSD4QqTJ57WWFn/cNjZniUQPPImKab7ul6P92INrlAmHYD2sg3+MJz5QetYS/K9Yv0yCa5FA3/NP10xqMzhWDM5b2zyy7Z0cuZHef33wPds2hzonLUDeeGX/zPEcmjg8txoDh750VfXLo/f02ASJoAIB8BxwniliJQEVwFMQ4VRE3TO8mSCHzs7XpPQCma2rxUkpY4OM+yYKvMMCCL8n3kzp4N2TFcZgLgZ2uz5S2TE5ZP9FvGSyK0o75+7Pxn95/3neabIknAGB4uCwf3pfV74IJaVxP+pjXDH2K8Tn4nHnPtQbIZOpyP32gS+I44w+I8ZfxO/PzzEfcr53K7nxEi+CcBYFJvgOIDK/hPjkK6cCw33NweOK7dZyLWX75PIeeeu+7eVzzd35qTpwPJACZrD/z97ifQfsnXachgkmBrWjPSoyyBc80zntBgGixLRC3mdOaSnZVkEMz6lzM9juuxblRGmSj/EkgzDwXTzY1ziod+yETyMA1yPImXiP5DwaySAC+kWHh4465fg9MmJ1OSdfLx3t7Sb2MtsAUjChUE+EwM/mYKXFiQ+R5O21xOX//TCaFX9Hn4if3f2sG7jSzR5+AsXx9z0yUlnj+qEM4nx+14Aa6/TF/HnPy/hzHeOfPpWeLDqUOXyP7gNEe+4hvAT8XQEGAthbr1lAEx606cRFi/soOQBXHrSRDhYYmEUVTJMs97chmynt5axAt2D/Zy2J5hax2HWstWYbIwHGzlMN6b0GsSLLH42bfaYvg7fcK/vRfVKzfFXz6fxTLXbG8OSiiivp6WGnDroDz5xHkKBsC8RS1aIe1AmzQRbBfLjGe7Rsb+/q9tci0sVrpRFslMimkaZBaGeGiRrRFGVnyuWKaF42n8mBryQW69Lp61GYC3Os8sTvnBIDy8JZVzBZwh0tva6DGTBXV6v2/HxtIVMQ2hexowNr58rZDc3sU6elSMzEkSbkUdSQjBEGb6fuw97h/e4UWQfESEKiiCDk12rCBhMRG0S2gBfkX/Fna1VJhewtPb0tWiiHVbK9Fg2ZdoMvVHPLWxjaITBVjtJDrfiXBpa/vzC0wKy8AulS028X5C/ZOvhnn2D30ulq5x1pRjn38Dsd8Wa204rEZGLD4z4xUi0DKbeZM6odqzAEjZ/19mOASz0yI3/fDjPhPt8jg4BzKfXtWsPnnIvaOmnZUOqXKx5hSupeU0gmiUmTbmMb73J4ScMENvoUkPkSaj7g+76GAIdaMAmbWbkaiOA6O2VtQ6tvdshz4H8+Hr9MiGPgamAHg93xKlc33ZBkJHeWmpuii7aVfI9W2WN2wt6PiWuFe23ZbX6vxLwRBWSlBxCm5TIB7e28IND6nRHO+2c6yFMtMcIdcAGipBjhkUjlGWAF7nw70CPkVlup1sD2ipJ9v4UQCSCneqRRiNcI2yZlFOeuA0VAgslpkqZ3YrU+ivYa3e1+D/nehIRfdGDxTAcXkwcsVsu3OHeDke5eRkE73vUdSpjRge6elrw1yRADA7Tp8TZrVhNucqmWyuczSy4pI83Vel7j8BFRYV5uG5YetZwY0NUB9SyS4IqnN4+FlfiUc3vK2+VoqIbO1VtMJYDaEy3dvr6VpaxAEzvxAUdoFdONQxKMFrlMOoNx7m2bOs+wWbWuXYp6Hmu4XbaY/1QEFT7cOZ0fE7AsnY2wOcmNJgRKxuZW3ozt6cL0qYm2vnSMnnKdLARpQX40gWd6YwTRGpKQBCs/wu14sTZ6ycwYggGeiRF7TmLFN98HX+JkhTZl2lmJL2Z2JW0XG8ieu39nIb2mclCtTy7nOYZAcKpc/sVd5/poCHfM8LCdj577e9zHjjWML7oTW9+GSshH83wFIUA0AwroBNZMrbFuXHIbhGKLMtl/D2aSjM4MTA5jgsrel6+QsJ8p8/k6dN7cHDMd8ioImO6XrQSdTXY38liSl5hO0fm6TnlngndkA9MxUBZi9I3tD2Qr2TyvaCgTpqqKvJWXQjHt5arXZvKS0mW1i5dZuz68V7VKwf1NR7p55e3dbnk5zDpCk7EFr2agwXSfj+gr7NkX9GXmu3kns22u0oS+Po2fqzu8qvYMhmh3lsW6Pp/bc0RKc+vqydtuVtibvlYm/F983XqbHso4gIF9rD1rxet5KNMaeMym4VuZgQ15XDrYE4JCvzXU5R/HzdbJTnoIP4teXx9YBD46Hc5yBxQTaaqzXNmb+EGigbChyLiPLdI62Dgjk95dLGfnzCXCQ+eMi63qaw/H+ZZzjfN2T4+cDKCyCsve9bBkKVOjwzd4/M4GAaAfJ36PFJD9z1N+Q//43EgPWB9mWu/FgGQH+3WpOewE8hRIm7MVq1bWabSMHUB7A8mogQXAjHOn6Lqxkb50NFjaOSDtjJkAVtFoc6JDBQTMgw+4DtXsPdUmcM8l1aQltpaG09FrNQGtF7KI+VrLVR3eAFI2PrIUD4yLLKKvqmJLoaVeDQeDGmrji1FpTupxFx3MLx+EZUjunLjRbN7YyUuv/5tqyiOYHUQ7Sc6UIzYSSDj+7ggiwJn0WKeMVVj5CwRsCTgxcoQFPZ4bpUPmgwM9Kem6fmI1wRl3PUNU8l0sFGdlRipONnc939A/P3AVHC8FpnQWaObPuNIuy5OAE3ZxS3Izoanoe/n1WtEAvbziLqGsyngjMHJMQzeNgxJlHRMLcyCyCiF4DT5EjO2oHGvLBNZoVRFYmMebW783vyTvKJo9zPpLR8uExlz6cnZOV3ZyhwMvQGMuEh1NLSRJNDcbNvM7mZwCeI4RE/lWBqWRrePZZ9kzyr/d15jO6IZqVKJ8rR0XnZ/c62DAu8vO4MRxrN5V0yL6bw8WDYEMYNjr+rT1/96vesWcmBb8DAUrKiHgQn89CZfqB/InnSUavyGg08RzK2r2Nzjmjyyf7Mc9XsLvXZrXGIqHfpAHBzzPrIJeP2siyj+dnShFQlj4obGwKGd+3v3+2mWZpAls357FrtlXyEmxmQ7D0IGwAn/ueCYmng1mcAAZ7IjLyWDaF/h1FcwI5WCbatveylfkgqCB9zQ9p4Vkm5X9lvC/XfMxF4ccyZnedpd3mIxzf1nXiBGp89ZHv0SaZ93Rfl+8FXR/o+I673i/973nfZtDi7PkIKuSsI+B8PzObB9pl1kdR7HytnyJ9BMbvnEU4WzO9N8tqytn8LgZZ2UawaJI3s8062FZpTQ28R3nYmoBCIPYyAxWSglHsXlaONkTybctwbuXp+aJVdsh+J9IlES/tnkMgu1gpk+/NIUMr27xfI7PPjnluPLOpXYp3AFMAx6ivZjmc31XYIs86kPNy2k5SJORtEHHne2l6/yk71bpqyek8k9/M/kZEd9IlTe2+Wd88LaKTY9ibyfnPzzX/fLpntQcPdZrf986bMzkyN8oH2UlPRwIan46PQJLf5XhHhvcxfAwmAD8TQEGLYH8R1A2QHb1bgwLH2hegNKC+NSfNs04JAIJLgRkEzT83QkNjVKaiZjlFWwR1U8s+2NUETQYTiqDeG9oqeHxbsf7QUL/s1v2gCVqzVNv9JoACn39dcP1Txbe/fuC4mBFUH3bt+sXretcKeRwod+B4WdAuJXgSRAtweGbBIjiuFW21sTNTo95d0QWIYmDF+sU4GmTv9c3KLIuroY2l+DwUG68civ3zalkSToAm6vVJa0V9s44Gx81ZsjdD2NpaQ8uW+26cBlxk1Zxqq3/dzYDZR4RTZiGXFy0R6lI8mm5RR9l6ZJREfVQQQfC1N7TrAl0K6mYKwrggEhBSav/5biBF/fLoQtRLX+rb0SM5uYY0OwU8Fu9wwIhY6QK5o7WuGN+kk7ypWjvCbQN+RFeYNL79PnrrUUamjclm0Sn1d3vGEaFX775wtQi3vG597Fm5ieD4fEmkWq3X/+XaPD9PvrwB64Lj97+1OfpyNxDkfrfaZy2Q3SLR7Rtn1N5bB02G53QkW7WzsrcWKY8U3lEz99i6U8Nr5AgRIwFcV440R1R5XSBy9PaDS4o80dgloJM7OTgyLOtqQOD9/mxgzkZCToHntYlI77vV/1OheOaEMmsnX481rDkyDUDW1AYy19FG1oc7uRl4yUZoEY9wte5sDXV6HHsB1guMY0IBaSNXGBVmOyyyn5fhi3Fv8HPJ3QZokHF/sbtD4g3B9TK28hwACu0OiYitA5J+EgTad8ucWZYxWk/FyDkm78rqZRTJ4ZY3WyvD23UAjvfW2xUByG673ZfPfLvauEO2id9rgWx15BfJmQOqtk5ryrKYFX42un3/ROtIwCI9dODWBXq7dEAhr1/uPwDaGvTmbWAfe4p6wJxX7+hCPp2+Dkw2kZtFHrsbiSlj7P4weXi92Her8yDt/j5Ve1pxMX15vHRCz+JtiY0M2Y3eQ01XudNgXQ1MD6hYkMLAgdKvTxAhG7bq+mJhK2J7F+WR61WB8rD5LUuxjhQJ7I5ytwAaWqyx5gzhsjWUxrGmDhDNnCYtCLJn2jQBXmwtWthFFDy63BTLfmSW4mH7Qx6K8uVhUcIvb/1cZqrkg2vpaAC5bShPuU940GGpnmXEdeXAuNQO1sU6yZ1WAOCuzj2zd7AhH+GAFftOJinNjhnX8QyOZfByAi/YDneYg9lgbp7Vk//GcbKtJvVizjrcd3N0t4cDsCmzayDq5boisODzReCPcozPmKdHCjQYS13GZ2DuLOtjSGMnqLKk0jEdM+Ey+P14jNd2PTxw5PC7+z7sq25flYG7SufWkpreyUCQaPPwFARQB/N4/cXGY1migDzcLg5gDSh3AQ5F804q4pmxAnRgjq/f5Yzx/lj2rnEz9PJfs8VsH5SloGyXPscpEhy2Sc4odIcctFGfHDq4vCpPf1N/Xl0rjqvNU3Rv27rcDhsqlyvx+mxLmTt5uA0v7DzA8gjaXdKDcX2iJjCBAan0OTt2DISsPDcCWjWeWdzuC+A0X6v0fTv4E9oDw6dHAvPjmDMOgEHODWsu29kzmPATpQADmMP9xz1P34ZyMB9ZVvwUmJBBk/y3D8Y2ZCdwToWZt9PztpPsiOn4eQAKYg6+KKwbw+GKdAP2q7VXhAh0B5YvEqUG5FwgVwEZRNXrE4sCBxE0J8Yom7q3RkPMUfgG4wFo6JkIvudaBY6bYPt2NZCACHYV3H9lmQbrD4r11e5bHwZ6lEfrRkXTIG5S8RT7DV3BDan9lplgxJQOphw+VrX5YqSDc6cFkKWiufFRNo9+CLy+y+YwOgKoorhRYxPjBh4Z1n0s5b7HOeqdMTLaqaWEoqdAj4PGQEYa+bxtTDulcQLAWy6hO0QZ5VsxOMVsI6peMgL2OnfBKu5IhtBmtETVepC/oUfAduuaEQYwhS2dgZzal+u9fO3ogd5y1J9x4J5gitiw+M8cha5Acu9xsqVHNo1fqtfI9rnX69oVckspcECUmUSWhsKUwNaiLGK43tFsDhlRpENVEus/DUpJ92SHC7b9WRfk9l9CwMLfRTeUC0g29xRBlbQW6Jj6M0GcqChFSXP5hzgSH6Ur2ViOVoOWTZHTXof2YDmNLvZONxifFALfZ36Gd9Dmob1PZAy0eAdPB2tqqQAn4p7h6tnoTl0dRNJz5Ovm0gs+R3WSQ3+HNGCjRR6fj8e+D2v7qdVUVv45qsXr6BghHaICXoIyZK3MhxSrh32v7nH+emQO9WeWHVNUzZ97T9GpPC4khcznkq4D7D20npGUn3noZkGDqzlB16Tgcyp3LX3/YellBg5G6PUSskdxjKmftYClb7FfjiNFjGoY2VqneZ4NsQaTHdm5L+j8NjToyBWkQIDCvM70qkpkNfgYXP/k+ujoB1/6WmBKsh6I1OfoLAFbF/F8HhCDcMym59i+WfhsfF+qvW67Ia1JAEUxsKkf9p3SDHAojw40SpLlok7arGKlnzTcFZHNULYWYHLeL5YdI4i2kZE51eV96DICU/w9G6FJr8Pfl17WDspmMLpIz+prCs3cQHzXqmZhMrrNCONsjM/HHEUEOgFufqZ8qEbJ5LsHnWYg5Hes5veifBwPMGZX+F4ZsnXS+IyYl4Rakp6/dJmessJCRmVbaUjZfn42cfuLP8cxZ109TwQGwGC4aDm9V7pp/4/rbyBlkg5+5/EMztT0/k+AAts7mr7iROFZ1k52pXg6gSwlbHctDoKm+wd/iaD7EOqAcK6wYQYRHVm2rhSzxeTQXk65wUCFhgisBSliKR1YqmUI3oSdpzouI9pul05MOZTyJse4bHbica2QY0URsTLYSZfGXOdr0M5K7yCXegn/xnHmNcnr1Wlv5vcd56Xs0+zUJwAn7Ns0ViPGLL1shDbeaVs8Tt60vhIxZYzvo6OUETydAZ2sm/M9hyEkOUPwgASfzHQtz3aWJvkxHDOYMGcs5jGorbWwQ1xG6Lznzq4xf+93PH4WgIJxKJhhWgVGMHi481yA4yJoF6A8gMt3gC72mRzw9CIjMmyLAQplM2VcHs4jICWi/MU7GOBqvweTsyrQjFywbKYg27XzJGxFcFwE198C9dVeQqvAlz+vqG+Cb/7vhuWLAQjCoNvdjId2MUVUfrwbWdR1gWwNlTWbiuhQwXrM/daFdOy9u7dbZJaBp8sdV5eegJdXAOv3Ftk01NX9oebz5Y5ued2hSwm0Vi+Ccre/k5SmeHZFGJVFOs8jFXIzAdGui40rOz80kmemf5/zzgaOEGzG++DRazq/bQ+BolWifafszni9eqp+A0j+KPcHWButznodht9+ePaDR4Dp7PqEGxJdDVfymlP9dOvC0OtUgyfBARB5JAMNGAxRyXXJT3vAlUwYf+6kbjtkXazvObMGADNCOJ8e0Y/6NADHi/Eh1DfvXvLWOQ60Xuy7m2cEOEJfvv8CsmDrulhE6bFBjob2ixe0paA4iszeybouPaqbjRRGxFoDHhv0m0/QlwtwLJaJ8OMrCE7g8G4BdMpVAUgCbCbBnRWcgz26VABuhDHlcfPfZ2G82hh02zogkpXGDuBhkW1UqwUmmKJPyrR2J1tkjM7wPcKNvylxc4go0WnKcygSBs4pep3nxNfE8N2SQCRec45cDZGzMv6OZCiUamtzXQNkY+SRwF9uw4hmXQzsHjWuqT4GcaUXzzm9Y6Vzmw++S2YfbA9rO3i0YJ8eHIMiEFlGR4AHwaicEUDw6zhg4V77jgBDVD9kBkGlnHnj14677bvN61L7dxvG0pBZgc/1m8w6oHHC9p0EVW5X6KWMTjtgUdR1Qft0tY4p+x1ydzl6WXursCodOGWmkAj0skDXLJ/7+0GBlRLQsObnb72uXtbFSF4LYBpliciazU2LLj5o2nUbEPwCcjfOBGvZpZ1zQNg5RMOpJlAAIHiHgquAtdaHAivLGkonN2xqe62wDNBLLR7OSxJOTjO+H74PghHoBnFex+Kle3pboUeJ1pK6uk2QHCPZG3BH/G48R84ncRypZaWMa0ekA7W+fjKQqvViz1grghTYAfGIrM9ddESgtwp9uVg7aGYeZIcwnLSGqLHnowffSWr9xs4Ss2F7ZsDOICkBtOPoDqskWaWW4RWXJciW7jHsIVUY2pj0Nb+T9zZgQOi6hq4C0Msxs/xuOmSmsbtKl4snnBHUETlbjvINmMY7HSUxxkcpREqnlqWD50Cv5+btJcl3EKDAoAeCGJLvm9crMpbO0PkrdQi8DIB+UyiOvh5yUCaNA4DJ3QFM9qzF7NxzTAzauN6pgNu1i0XwK21Dz/TRFkGHIdqeHVrXzcL7FEBrWnckW3SZSZ0rb4/gtLFxmm00lLytS5RePst+gJ22dC1oL0tkTtfXHWU7IsuKwcbldcdxrdg/VegiKLcFa2sm692AiCBoQexh9Q90JkPf3d4p6B0SeHD/0lEtlqEkkvQgy+kS6Getbhu0tLDp5+dmyfMASvpa09JSFlAqTc1OdP4suhFJkiEYr38GTuXjDOgCRrAhfWfW0fYhn8le7Fg6nrNrn29POTSADKXzyCkBgTkT4UxW5KyF98on5+++Ny8fHD8LQKHsiutvDxwXT1EUhBKQZnYxHoA0YPtsD18finrXQOdULJtB3PBvi6Ct1ipSl47iMeq/3wSlAnLUSCvsA/IIiNp562uP9gO2KV//YMH+Atx+IzYOL9M4btX4E5oaYqiwlPfDuQHEwAAS9z0dweQPRNvLHQOxIrs9mKFUUXb7DAJrH7l76qYgohxEYrUIjs9rz8wAeoaGR0GwN+i1QqUYkRZgKZuwcQTpoAMbNina23Y2E9jqbapC4APdGffNMhA7uWNc7taiMqO3efPLoZaK7O9KNt+fM8Lp42KUT6TX8Op1gRzVjBAaVF6+ECBAdCDwNn7esiailFq7gC2XQWBFSUbekGGEii3YxUoDsCw9TXJdu5PD/w6PTDnpGlsShoFJw/ZQ6LWiXRcDiURQXz11fyKPEtUOdJwgrbKz+4D//rqhEk0+FMvbnhwwd3Lo1FGQx/OWeG+gwZajZbH2099oQKYxUMCdIqipNZNFYvfBAR0EL9PR8+/h0IuDUA4wnbUW5PdcUeljc+dVEgmP9msDI5SQjLVwnCMFrsEMXXn6bhw5hRboynXqd5zPH+YYwBCFojFKB22uuyWYQON/P7rxnsch4tlFJ/PGtmc5svieUssOUjZa2cYS5lDr4gbzCWAQ2U1pHUVJAY3+khwC3otj4nrwn4OMKivZMzkzP0vK8gmHiEdOf+V3eC1xoko+T3yHe97Ws1zKc7Q2HGTL4CjaS4piTNwnLCPifOdokxo4PciwWb4CidF6ms9tN4M7spd8LVMORHlD58lpt6VnJLjeUEXIhiY9OyEcZi8502uN8dS3fbiXLiYzdR8G9V0AACAASURBVMXgCAsAFvnLYTXZRdUM3yLRrrh9ukClQi7M0Onvt11TxNHnJ9rWtQbZ/e/ePjgAEBFYb3V7Bs5Bb0+KrouAcY1TTnFN5vcYL4YyiBmEqbwsXwfo8jiTvzGLaF7zlKt7f7eSW7MCQNGeCs+9xfvNYAhBXTovzGiI5+T7SuOYZQnQo/y5JW3alyZvJ2I8gg0z0J+zIoc5d0d6iGCmeaexnuZM4Ets3qdSulzNB5/9LMU5f57ldJbz4vqLAHBLcq2l54/bachL+3d83+EoSXq/DWkO1lGW8hloVyXZKy1dN/TttG7zu8jvP81NyKUKywhQWKYEx3hIZJBYFpOf2wAURXnYnEW2J9toq/bMz7U8rYPeWc72rSSuK6Ut1ZrZIwRrL6sFaLIdk9/B/P4bIP6epDa7xpLKhWuaN4XZ8lUhq48jzWsANjl7VVp/J6k7RGQf8P0CI4Awj1Vox7W+1/Lzpe8FuLDUKIuOPzfzEXKnNrtOG+xgTe/r3Xr+HOyZ11X2I+ZMmZx9DIxgZNIXOe0/OKGA0SbN+5Lkq1JSqVAdgcL39nlM37Q+zmTTeIKN86NyiLPjg4yLrz1+FoCCHIr1+wP4RZ0sb7izD1QCwy/FnfyGem+or4fxJHgNDk+3nrAS3RSMjdWEWFsFx2qf16sYoYqXENjJ/V85jGdBqwTrslbB/ZeC4wa8/FECNgTG37C7c13EfHkRFHhkAzaOJtJTs/msJhXDeoy+t029S4RPwprmxudHivuorwdka9h+uY5pk0kZH9cKXBTLFxqnnOcWDLFNrA61CQCxHr5kktViglIPywwZFqsbQLpW6xbQvPaRGy/aORbI2za0G9SFHSCOccPkxd3sf2NkGhCWj1CRi6QIkhqYoM4A3zwNrgKFBp6T9Vg2xDEa98nIjkiXLxOipkoi9CB0tPcv86ZWd9hqgejiIMbiCHvr/cDzQeOcY/X1PUdGpTW0uqJdq9X/cb4azlHILFh9PfFdQNW6LUTnBcv20OtiQBbrcbPTTfQzotxJEbfJaCslaec8Lg0FJHPkN4yJScHJGAmxqFgycDk+9t4+Wo9gBY/A3o3aWsxRdW4Cu00CMkRAjgI9mjPuy3mJQSZZJBAwK4jUE1zg67ZKV0azcC9iIBSVUqpLPVU0Z2msBG8IJpRqETSi67n0IgMt0eGk147G9ZfFDNl9t7k4AxWQmLOHfd36+smfASNgIOKZRtX3y9Ijh9OaCP4POgBLHeZ+qB88Q/dpJDGqNMuXbEDtbdhLAyAkYlwOmlifi5cwsSMHMHZW4Lh4/ZwSncELgnhnx2EgTkR2GN0l2KcaJSjkM+jGk5ozWdHri3lkQwwA02aB1p1cIKJ3uKxQrb2LBvXEcdi5G8KZlrUG50w+RIE2G4mcfkbzrhUk0pXHMZZdsN7bZUXuW69rX48STofram+p25Zbimqidy0SeEo1UO+wOThsTphpB/F05d3WoTS2TvWIcHV28wbTv8Xf81ASBC/r87kvbij4uresGePmGA4CRzlSJz2YwTJR7it2XaGBncHm0A9+z2ibKmIDFBnLheaWlnx/DeGoCuCZYB7pPBoGgs0B7PJ/s0OfdSX3fN7n3FN5v+bD+RmGEraYu0lmZifcdZP4NfK6z9cGEAASqC+yjD3LngLOwQzOZVxfzr8LeNag6zNS2+j2/JzzM5dJziQZHi2z/efoKlQrkLKD+MyM3KPpGGyYQYIAsEp3+vmsM0jGz1U9Hb+PN9ZjA0QacCQbg7Yb4NFg36d+/bYWs5MTmGPOOLrjrgplllQlGFggrXT7oHWZy70UGQBZ7vG587+cjiTfSxU0IdDW90Qu+TKZV/q8SZpTznkOKO0+FpZjRIko5Vta9znbKQMD74EhJ2BCfofG9VKik41lrThnQ8MzqMBrFAEzoUMGnIEcCch7WjtnYMJguyb5lO8bc4F+jjC48ZUHiZtdhmtBz0rwYNITmTf3at7ftLVK0g85kNHGd/d0nIIwSW/PcjLP51ccPwtAYT5UBO0KU0oNWO6ecVDhXAn2nf3FuyA0gJ0iAGD/VLujvStylJ7tFi8/2u8sTyAZIwCsP3i0ZBH0FJOu5MhsWjbg+p0DG28tDBzWbkXLy60Ntd1RkySI7AC+uHYxUOXy3YHjUtAu9j0zXEzoFed4IGJn97dr1R83I7PcFgBqZRduZLVL9YyN5CATSBGgLQV1b0ATq111IaxVABJheW0q59x6/hoQEDVeMIOrbp6mebRofycsOVlKNyIiHcuEm7XEaj0aL9LLBaiYI5qRN5BPOPt2OyFhKCCPEMlxGJFaQZCi0RAr9xR5dcNS16Wn6Yl0o41otKqVRdCB4eEtJYe0vowW5/TkWiBYO9GTf9cyKdQiUDy/Wa2tRk1y/355HEOqoLUkxZNwCUNwKZ1YKAloXSrwaelr3pWivHl7vkhHV3MiFyd947sCOlKejTtez+dQ9gNYvYY0RbPkeIxtxSjIWZ6QI2n5yBkJPJj1wWyLJQlMtlsLh6uOhsy+A1Kg0JHIi85hdGqovRUg4KSOrZMeZuOPSySnrAL2c05D1QlY47GlFpDZ4ffxPCHa7CaSjzWnbzZgu59HzIsCKkYiiQND+m08k5c4iAEzbIfIdNtwoiXNGyNa2VDOac7JGNfNySrLpY8rk6wR1DlTfpy/UrpzwfGzVMXJ5KJEAxijNYABApcV7eZj4DtsLjPyfYc0RE0ON4asA4tkbcMcBDHasgzcK1ZiVYFr6Q5kkoNh9Kn6e8QEkkg3IJPRoNEetZleSPtQvC+8rg4EwOTFsSzWgvC+9fmN6HBfv37XTqpKJ+zR59W4kg6P+JlsK1vStUsxvXWpvXRBYM7vpUBbAS7OG3Q/hg44JC0DAPFW0oVzlGUdI3nXJfSEHFa+qN7itbzt/T26EZ/XgRTpbY+dnHFs4eayeF2ckNVnp5SBHJhZFjn1OgMLYXAnwzjefetAu41jirql9WTO0JRBwGvV0oHUliLJGRgAvD3tKIuNcFMwAB3a10ikRy/VgglhoE+G/7RO45gymeLffL5nZJhsO3p71tTRJhzuWnob2SGToTuikY3hurfvq2ZlP4ATp9r3c3vhyEDkvi7igFMKNkyOO4BB1wTgAbizmIIBeS6YmZAdScq3IsDey0eyjtAM7kxRyqHtXTM9GPPIkjF+nRkp/rdMTqs7gOItLx3Mj/az2+QYugwLG8Flh5XJjYCzuMgmoaJK8WCRhA0exIS1rxN2gmiL2ZyReeql1gM44mM67Ta2Lm4r3WIuh3dyaHfQYx36HvLnG8kgsw1ksqO8+l5lNsVSBqdbS0FtGmVig108OcVWqtr3rPoYDXQVAA6AOPhRVKGSypTymvLzybMQ5SgE9Ly0QdeagBrbP+WByGwjiDtkYmU5vWOUcwEwYAKYqXEQe6d/nt5JlW6/Uh8PWUbooMLZoQqgQff02Vm2OT9vBgIQkAu7kWNIGS5RekXwoU3X8u9n0sTBpqi1c2p97TFzRJzJXel+3kdZDj8fQMEslviZDj5bJYn7kvk7bbGsgfpwB9v2Q5RO1LtHKygTBbYwm7V3EVfaQ5tJ+P3USF60maAlkctxLdBFvDxAUB7q19I4r3kPaIIZUbN0hvQQTOCti6doPbyMga2kCgxFbZ0QSktnGy9bsywGFygklhQHM+TwFMRSbWFrmluObTbwW/83s6laHatvAhHzgY50DieR1wG68GGEPQuoQF7QzwnDB0+1WMHyKkxrS4tf07hO59uNrsvamb+BbkjTGMlopfhazMjlZHAYweBYJS8tKcJUD8b3PAi/nA6VUq1RSkfe8zEZd6EcWoM8Wk/1Tallw5iP1lHrnKrKozjLMveO/yzel3j8rvQoTfFIAaOdjBg5mJAJTfM8mHPZBuM2DDzWi6unFGZD8mxO8rPm8cn4zrpySsjusC75e+uOvs/N83y5AgCe02ftIfrPZymr87WG5xqvp6rGf1ErokRCdfzeHL2aI1ODAd+gh1+Pa5sGOAky9ejgQ75+zLcrSU3rPLFZ23X0+Z19dGSjlzW1Kbpuz9Xf2ylQkY8p46Tv87y50a9LRev7O4hJ89hmMrqzI0f+ZZo3TOslv69kYMS5BLyyHGw+9+k6pkfSvejwZYAW6FFBtvNipgG5dvISbXCnOq2t/OwcD8datBuXPqeS9p2y/KQJcCn9HkkfmB3gev5wXTE4BbDSvK1B9t0z9ZJMdKdiABKo93PqsMBLE21OwjEqMP4HN7CjBSL1TBOIdN0PAK2UIIIcOCaALoeYYUeduB1myOd1NduFZ4ZuXndcL7Mun531ea3mufH/MieD5FZvZ+ucwFYp0JeLEVK/7WMGXR4TQZlJ7sbaSO9uILjM18mR0gTunc4LgKdU/2xEn8gK4+TgtZLumWU798hgnKLLUJLevmeD+/XmMr4MCgS3QZzjC2Fst2PnvZetxGeauv/EOIt0UMHfdQdV2vSvngLdTwS6LekRANlLpwOfiQmHzMwiKSMF49oeorb2mc2+eCax2yHiKp/TVMbrG1l5CX/DnsFs27PkyaFUi74qM6AIXEYXlnRiyJ1kf5CjhfPtcyB5jgHfQ8fwzp5Wa9X8T0yLfXiyHt7TwdLnRCyOAt0KpE72EsskeGnXIUp3MgOZ3t0m9O7D5ChaM24clt/lOTrL0J1lD/f9mSN89nxPoEIZ38l7c3KWuRTXy3q7vA8qAGCL2ADkJnvttIzXyxbe82OG44NspQ+PLAdnLoaPznnn+FkACjQALt+RXKR0zgK1/+q9WSnRm0CrgQb7TXBcgMv3ai0gH4q2Cl7/oGB5VXz6oyRw3YkmqeD6g3VcsLaMpszUAYr9cwVQzYk8urNe33b8+Bc+4e33C9Yf2M0B3payWPbDwyLwrQrWV0u7NKbqLjDJg9DWggIjErTSjHHhiMIzC2yjby/FsjOq2X80MKQB6xd7/v2TIeXLqzmyjOwUmGFTX3fUuwS4YsK0RApVWwoKluhGoatt0vrj9qykw1D0X8kbwAwIKsIGyGMbam/l0d9LCPPt6Ebzjm6oXNYeZZhQzCH6z9IFT62NSDlba1WxKHIaR/v8ApLglMduZIHFUtn0egEuAvnxzRQfhd9ji++MC1kH4phAoT3tXp3cEd9+9vnqkbn2zc06M1AJMj0uCdtTAysbgRR+pViLtqbQ5da/x7mlcmA0KwtsOh18n5zre2LUz8+Xo57HARzJsFAFiS/5niJqljMGmrpj4ddl20jO66VnbhCsiKgZ19NcHsFyBhrHec7mQ6STTfm7xYW1pzQYXehrX4NSCzQ3jKfDGqlqBfIU6UjghD+DLIud5603g8TQLuoGZI/ey+EdHFiysO3jc9aKyI44q68HIpsh3gHr3Gu1cTR2cVCgMJKfAIKzw41QRi4jY4VtrHIrTvT5FBHLIuG1aTR6WytJ18c+7f/9ADTJpuZO2kAeplHaEmzKUiDibSzZrWFde6SQpQHJoJD7Zt15slHbGuT13tdFrcDt2tcOjzOjgISdaU0FWVOkqqZMEgcSgMn45rokoSTrp0MuJqcn0qCP/k6yIbbp6IymsYsDWfW+WeTp2xvkbR9BPgdidK1AZAds0T44nqF4PTWBS95KDdxutyWMfhQYgXEB9FJwrGWMNgqsPfLnBcvrjvK6R+mZODDMsgS2QaM8Z+tJY2zn+CYj8x0jNSKLk7Er5BIavjw5FXQWB6CjWe0390XqNsRsCyPm1ch+izlIGUec5wF8B4YMoMgaIWDlP+tu2UzhWPJ7POYMMF877Vef8fi9K97+3IJWgW//jzvqlwfq3RV9AiBzWYUcreuh1FqV42ZqNP9mOq1H2lGkz0Vxx5gZhXle6dgyayq3uOXf5s4HUtAxfxn2o33s4N4QLCiQ6yV0H4Au9zIQfxwWrDphoA85PmducJzZWc/Abth00t+Pt96O+2tq+9uSzmTgpHo2Us5M4Fzk8j1tI1cFx8vg2e7lc/kcab1MItsInO6lX0+PhmhNm2wTu0/r9of2++vFWnlatzHEPtbqbaYFncgVAEuaUeBlUs1a5XI+XGY2l2PttnRQgaDBtXjLQ3MYC/Y+J7Th7r7+ltRtoiDWDUHFYa3OIGDebzvCdgBggctE6NqDNd3fCHAwZ/kGoGpjIRDT1gJxwKdghbbe+jd4u+KlCdrL2ueJ+6WlEm3KM8rZsCMlPmepyCBL07+xn8vUpjRdP+aH+2OW234ugUyzlyc7OpdS8PC9wevLuj4DABk8G/6WA3pp707BH4ulTdecADBeQ6f50ayz8nGmtxgoSWTh/evzM9EmSeDtT4ANPwtAwbo8FJRHHywdJ2YYRLoPg3Gm8dAWAxWYzaAFePwC5qD/CWLREom0Wm6EA01+gbIZr0FR9XSpcYhaBcfLguMqaCscaLDvNoHXQyoiuOKcBxRQQqed6943V5Ajij4hj9aarGJ7ERxXwfbJNr/svAjHD+w3QVtMeJZNIV9M4EnpaGs4hIdGKmqgtPnvqnZxymtF3yQtCShJIMiZkxHOAQVKS0hw/344h3NEzFF6rYy2ndzj7J5MxeP9ZwPZv0fhqk2eU9yAboRTAHuJSTggMUaMxifHMKTndUUWEf7ZkedcA32eqWgoKHke7815e3o2dYDlK+csX+/knQajf44i8Rze8xjHOYAfZwL4RHEAMIM3MyPnccm0N/O5qkPK9uCM8p7AOZLMz95Lkzs73ztA8Jtf3W6HxuvTen8f+R0AgzzOs+94Wq3Enjp5XgcThnOm4+nzjxzkaBeqYezFfue8UJHntXx2rfxZSfcNGTQp7ffm3R20J8U6z3OWE4yaUiaV8XqyOYjZ3HHLhuB8/NR6yPssR2vPao0pP3leyPLkqDOLh/KH2Qw0fsnHkZ432nnNez+/9zx/lCnFyRIZZfIxiToQneSibCUJg/TsBGXj+6U76ZLufaRzOLZZDsBV/cmcRe0tLxMy9p3e9j+xtr7279SNUaYggo6+SzJ+OR7T1/Pe0KX0ORbp16PeyBltQADPA+kd8JzxwGvMGWfDc53ol+Fh7b09fu+KH/+pFdtnm9+2FtQy6T/xwM3a10uQO2fZOuzVJJdVAWgHlPPcfc1xliUGdEN/FkMBKKYsm0mWDZ/naCeNb99vp7pBnddpWoP63vr6qJ1j/L0gy4aYZ9Xx/A/4IeLZgbHOm+MhEC3aATUAQwvV0/G991wnP2sCE2bnMf+c7Q1NGaKNtkraj76WRWFgDnWLj7vsLYJi9shmu+b9zrIAi6TDSpTJrZIwKsM5ks2ax81leOrwvW9fvSubp8yHKIfNR/5enRc679V9AqmWodMW75AHuH3ndqAqssfCEpKn5/f18FQqEmN6Zyx5WBkcpG+SrzF8ud8zst3mkuPBjvR3l8GMk2zdJxsmbn/yTMCz3eU2mX1nCjbMthftkK893nPyZzk6jfXdrmHzuTy+wr79WQAKWgXbN8XaPTZz1Olwl92EQtmMGHH/VFE2YP3uQFtXbN8IHr8wh3P9QbF9Fnz55x9Yf7Pi0x9Z1kDZgbdfVrQL8OmPDpRNcbw4z8JuHATlfqBs5rwe12wg2UZ6/HLB268KjqsJjvqw6x5X8WwDK6NY7gWX7w4sP+5Yfvtq0cOXC/QiPVvg7UBpXjLxunX2Z8Be2lK9Zv0CXQq+/JMF999XHFfjhfj8f9m9ygNoC9BWwfaNzePtN4r1i+LabJPIvUXE21phlWD+P765QteCxy8WlIdieTtQjgZ57NCyulOgY8o+GrC1QB8lIaL5kN0jD+vSW/xkwUKnX0huk5w2Ovre9kzXCrnvkMfWMxImZ9zG52n1j20UIES+G6I2TV1Kymbtftq3Lzb9l7XXh1VTFrJ0ss+4rqei4bJ2MqkQSOlfSZ+7gaI/fOkMzHDh9NjN/mZUKlj0S3+GVJs5PNe290wBdKNaGix6CvSIZiiV8Xfj+PBrBD9FVwJRC5vZ6llDS06FlI4dhiEdlxl99ijZEwt4KdCXK9plQXmrPRrBe06Ah7DLxLYB6wr99pNFrDh/ZwZO3DPXBjrPAjM4nETPMhWoJDwCc1kttdTnSkSA+wPqrSYtc6F5lCTddzLoOrfAZCjwPvk8Ahd8HzEHzWvb2hgBY7/zplAnbLPzLNLEzwI0cH6DoZZ3naPjyWK6LH0OjsOZoz0CRtInRiczsEZ+hJh3v38mJLystg894wiHc0aw9IVcB4mQa7ge0OdiPzoBZ2lAS/XT+RDpaZB8rskpiJp1Ui1wri4rgNrXsHNc6JnDGveq45g1lfhwnhiJTftOXv0d5DZzaU+ISG8b6uAa50scQDCZXBDs/ECQOxqPAQZjXvY2ZM+peFeGh6K9rKFX5DDSXsANTvEWjM7BEBwqXnest7Vf87pahIy3cTCsvu1OFsh+6ACzB4Mk0cv7CrtCiASfaXFugvaymm1x79kLjAbquhg3xMuKsrfO3QIkh7WNsodGJQl+lwI59jGSWMUIx0SdUBLWBlO9FE3VSB+5rkS81tzOb5cFqGzHTJBYnM3+Hcfbf9YqnbAz60kAuXVcbnkHkZ7ZEs+pT+eb7vEMkssKvV7wx//CBd/9lR3rn1as34tnbcJ0436YTEsgv6VVs4Wg60bfc7mkMQ7nOQnOoi0Z7Nmhask5IPAvAl0W5OwwIU8EdUBkA3TwwJaajAY+v5+ytcgVEHwJ0xHp3i4HVWWQs0Oryvfqn6V0eccUg1mGcSycC5ERRMmZcS1lXyTODI4n+G/4zLwugfCYC+cZSQBZXKuSLHdyeBgl/eB32dHLcIsgotmZn4nnwu2X3dLoy50dXtoAOElBtz89ZT+XKMjhRK5LCdsv7wNRc7D1UiKjeP9s5N6VJPE/tNj7Q7cw2r/h6CL2Ab8bz5NlOstlMqEzx5Q6W/F6kcmzLvE+nkpac7kF4LxmdJhNPhylQBa4H1aCV6bw/Rz+HBX2nGi9opR8D95SndHznCkR955L+jIAyvmgfXmYvR1/HezGE3nIZyY5Zu5gNMvPnBWS1vDQ6Wu+fikxfi3pGhlUEJM5LDd6FwEtzqclIzFjb0vLsbNFcpqfGXzI48xlDJRjw9/TOiBmeBZUS8dHgbOfBaCwvwC//WcrfvWPDgDOeSC2MPVQlEZCDrHFrfb3simWH/vDlU1RNkC+VMhuUfuywZhSL1Ymsb0UlIs54nIYMKBFsOD/Y+/deW1btvWgr1XvY8659t7nXGxsLCwsMMjJFRIICBwTmZ/AHyAhICBxSkiKhJAIECk5GbLIkECWeBkkwMG1jA3Xr/Paa605x+i9iqC1r9VX1fuYa+3rK846R6Okc9aeY/RRvZ7t8bVXECnDsOD1Yrj9wYLP/2zB538ulLQdeL0Zys2FhMy4unsyw3ILwerMfSaa3aq7ZL7eOpMMQt2WcBmNS18vQH0CygaUN8t5lpuPxUtWuocC16atfng80/QYn5jJV1YniuUqqL+6SAIuYA3oaFfcaVFqkayjrQilvXXCmBPuDGdAEANsGKxv8htmsUWxrvCeCemTC2Z3iRPBQp8TIKIVG937zTKjdtsxWB6auiQqE9Y8DxQMdM4IwaagM9/iigVdQIcxZMd8hwhzZ0lUpKXnhcYvz0Qkx8A1kTwQsk9UODILfIsDtjz1czLNc0ZcM09ClXPRem6TVOa4H0vcKwoqc9ImnbcFeEEXdbpWK4OoDUAbzwiTdcW+dETb1yNdf806s4i5DUpieBlkSM6+98zTANJVdK5NnFPoQvYgAOTiRb/KGA7Wh1lgu0/w+azNwqg2Ky4oDKEXdfQWGJ43DBYsuOKeLrVnYRc6ZAGT+utqB4tmGnrmyZH7g+GcdDAhSk1iuv9sCpap8KXCgQpEVZK4zeE2chcGwQToeR6E/hyaAjsqYKkQNP+rrpzsJ/IhnIIaVOzUO6zuMLUYCUClwmCjJ4ExUZgkA2Pfrbn7fvzdzMZqJJp8Nta8bMhQO6U9DgDswMVLjqF6HiT1UBhins3n3lbAbjLONrnh5rrJHLmmdVRGdO19LuP9OaPd6cpbAVvLYNHDVrsnifxOLX9ZMrM10D2bgnrfi5O9ZatxF/nfyq8CRLRtH5MD5gOTcDzNbR7z868aXv54xfojsH4Ko1CTddNzvteRFws/SjCBoD6BUPUGGOYHsaZP52++y0DS4QF8BcCEtKZjnV1+o8/Mp3DWTpSm/pWuZTnSbSr677V7XgoEZfQM32sJwAjAMikyOXc1jmR+Jzn7sfbMvzCE/AFB+3nBxvveQ0VOZDqV4Sq6fDwDWwGYNQtlfYt7q+ABREka1gFAcb4/e0Pm3cvnLCuzZXiyIe5lnHe5l6gSzjTzvymZ5UDXFWzn+udal+75VdGxV8rupJvVq1EMuT1k/RoB8wBM2uphIqwOVtcIra1dJxlKbwI9CabmUthcRjCCP9wrYm+QeVIGpEfIgcdbB/jZeLZOE1wcZfK+hrXrEvHs7NV1AGaEfx9yMokM0N/R+t3kHkF/Mo1LvbKmz0/DH76Ub+FL7SQ/AkMlDmEPXwhreM+z4ZsAFF5+9oa3f/Mj9r/7AUswzrr6hS2bAbuXYWwGlCe3TtRLweVTxfrKiwLsL466vvxDBxTe/gBY3oDlCmwfPFTh+nOLZw22ee6B9cnCrd77ybAEGG7fFfzmLy349BcrLv/ij/j8yxeUjwtuPw+w4s1QdmD5DKyvDeuniuXz5nGjLBHFA8l9aC0sPDe3IJO4ptv1M7bvL4ki1guwPzV8+OOC9TOwfnYQgYkly95w/aFgv1i6J9WLK8rbh5LPLm9eUrI+rYAB+8XBmcunDXXxihl1LbDLkkKvRchGe1ojb0MIiXvt9b8vHqNmNZBMiZltwDlzU+EzFf51jPkEXECmRTCsdkPMWQqdovi+hnU5BJO0rnOd9QKxEgSTMTLOLTKOO2EdwYbBEs8WiHCjK6TkJxhKb5lJdvnFLXMvTx4as+1ozxGjScbCeJI6KwAAIABJREFUsXJ+tCYrkVPklePieZqBnD3QOmNcsXnpzL26RTliKIfnWwO+/4D25GvbirlVNlBja9YtSFyL2DsVKNvF8l5k/9yPyOrcLqtbB4BkWLZN86ytAxCRhyJjwq637tVAwZRJHsNrwZYQKKvvOQGxPJO0yKwr8HzxLO3W0AaGUUTo8t+0bYNhRSYfTOYvwuNS3Gthj0RLQwws/5vv4TirWxyAjkxPoQhjrohZUJXEPhT20sJW5V+ue7fisblRrB4Y5SkjJ6jAO/AU4JNa39g38yssozXesAHXm5fXo6VVFRCZuwvnm+eMWCNxosX4WVaSigmrQbBiCPdJPR8gCoxaP0lDmlRjqGEVtFDQln4WB4Fhsf4bxD0u7jVBTw8K9Y337nr1vA7MjG6GZNml36vDXQpvDvecsp5lPqp9ZEbzgj5WDZ1gKILSaMC9prLKSl83d/XduwDL2OcKoFoqevUHr63bwxcthXmPzXXQYAztieffWIq4oOx+F9sMLJHXMg64Gtpt93HQWkZvHQVbC8tJtgQ/rMJzv1zWo+BcCvbnJQXs8rZlpQqltel5yKpC1s84KxykZ9gQHgdkbG+1nr09Sk/a9TbGEM/Cbt716msvioave0n+0J4vfmbpTcQ+Zl6ptErf2xqw7fj5H73h5ZcrLHLoLJ/jXod3n8m4Bu+xWM++331vmlmv2LTBk8ORDgwxyDzDIhMIqHCMDd5HpZd3l3zkDLQLS2n3KvP5zIAh79lsZVRF2y2M3N/4jIoxl+IsVO3Me2Eo8SfryLLD2odWxtH5nYwzgVfmQmAry5EHnDXOi7JOjpfhF6FwakWfpmuCEaidx2wlZIp1yD9gtwZDzz1Bzyqz8JgKMbyH/yKfc29bWY+oSGYWYEIkW2cpegCeDLYBy+fNjW8x1j4mpAKfXlFMRFtKP9+L+V1XujsBKD0czPL8HdeFBpAKNHNZrFgkQwx6tDifassSeeQWtKeC2w+rV4FbMBgt0QTIZELK8BrTvbN9A27ofIB3WDw96lMYz/YaXg93crOFLG1AT2DLM6PnAei8UD9Xo8UJ4H/wxJIKZNlIYzlP8n7qK9QDhr4JngE9+WLwID27ADyh9slvF3ieLKFdpqFnaqxVo94J0HAIp+I81ENKQVTgCJio7PWF9k0ACp+vT9j/3w+pcDNDfF1NsjyHQBgIW704MMCwBWsAXl3IeP4niLhQYP9guP3MvSDa2hxQANBKw/LmTPL2gydyZFteG8oOWAXq6qDEh39QcP38A7775EDC8gZHJndX6pc34OnHisIM+4C7dgKZyXT5eHO3oQg5SCZdkRab9nzB/v0Tbj+sHeAA3PvhhnAFQ8bbW/MDsV8M+wtw+UXz6habJ1RbFvTEktc6JFVZP4d76l6BZ2B/Xh2ppIuSWE/SC4OIYpRJMqtORGJv0JoraHVSuNewLtGKzM/V8lejHKIejmoY/MZvbbRuUFga3L1FAVWhwMJqT/deMpvWnGhZEHWLBabVmcJnMIgxmWFY7l/dtRbPl5zTIXEMhZWn7uqL3fNs0ILHMpsUujKcIpSuwW2LhPLeZd/ljClhIaHfarcgFoM9jYnx2hKKqChSQJyLCKXIVkpSk0zqyNdtu3uvQIhfoPRtAj3stqWrcI75QoUokP0huZH5my6rI+q3rSft4vtrCO+y7maROwNAuprGGNIFFQC2DekaSwFtWo/s8yyjspZ3BLoLKBHq2pDnW/MQxPt7iScHJcYQhQCZZubKRqFOmRF/y7Yso+IrfTWWNEwmWZDuttsWiSFPQgd0LAylSAW9Atfa7wLPLkMaOIY9PABYOUI8ArgXvjYhBC8LzEQxi+RjRoSVKbDXFbjdkBnNZ+aJYMK08JzNSz9b5vlaZ8D0ZlFmn+e9C/uN4VNTzKUtl/5eJuDTUqqzIllrP5f08AD6moSCeChlS1pFGineQvluWYO03hnDwtDXysyV4RscsLyUqDRU03Ko+RWwIEDDmoJrW2S9zQC0BBbKdR/KJ3uixXCvf3IXVIPzO7eYFcBaL1+sayWKN8MNBmCxmGcoX0t43fV5Zihg3queXJLJhdsCGDzZaXtZUZ8W//kOB0mT5wXNifU3go5mMKteGjN4j11vQ2nI5Hvq0qreQtxPIGmcgYqWrDFDcGblTumsnsUi56Q1rD9eU+5xQOHm63/b+tmS/obEavEu5QVzbiYjL9ZxlfGZgR7z3mWyX/LK6ZnZU0vpkIIqNZKhJc3l/rVxbU54cdPzxEZvhFbd4VO9BgAMoQX3qitoH3xOaTur9IyDmf6OJI1z+AgbQ0U2hlV2D70ESc7Ajy+1ADRtDmPkGFV2AQZa5XSi52lpKOO91fMTdCYTEE46oIMG1kHDGmMKUNRBlgWlNRdFm2WeGACegLXCE3rvbZyHgpCtBT+ycS78eik+tr0kyOrVlaRP0kxtNlnb9X4ECOLC+5Pf20sFnp/CIyFC3/jz6jnhrt8XrK8NS2me3D08S71ijYMhCbByjIdzFftUxDNL561yv/4NdAMj82GRLipgyzYDA/p+lQPpHaseytrUI/DsvmrjHWAIZsopzdeSsp3KSypHcVjbkVbke2fskGDwCWhwmI+eq7PnBRwZ39Flh7vtzNNH2jcBKNib4cMfF4/DRVxyCluGFBpY9aAZPGfBtaXLP+MLVwAvvzBsz4bte8Pte+D2s4b65C759cWtjaiG5WNBuXlehP0DiTdw+Y2XnSwbYBuwfmq4fAS+/3stlfzl5v/S7alsDevnCHWIDcmSfeHWX17dkmFvkQtAstoSba0vT9i/u+D2Q8Fy9fwO7oWAGFPrmhrPgyG8GDzkYnmtmXPCNs9DQTDBbt3K2IUROApH4WwtgwtnxuTvLa1NWUZwqxhckEr0tU+XMQhQW8P1uIWLfZNDTHdgXuoT9NVf3gXCVLjP3I5JVCm85Dq7ZwWF1LZVFArZdI8Hksi0yzOGeLuMJ5Q50urCuvBKIEXoRLGekXuPs3K9OZG/LLDXNxcYw2PCzNxz4XqFfXgJICcqHaSw1fqaBNEdmYyNxDX2KYXs1teGrTEcI/q3WRgPbwZalNLiKuvCuGpsbo3Xcm4JznCfIkdEWgWpeJgBF3PwY3NFMrPCC7NtFwe48rNYJ1972RvuBxnUvqOh1+Eeypm2iqZujMsY7nIg1rNFSAVOMpl9UhwBt6ybgTkP+hd1tHYzFEHf518m4DT025qDCcsC1G38jZ6PmUdojCy9GZQhMrSjNdiyj33OYAXHQeF929yTgwCbrhW9BiZ326yuQaa/V1+HsPimgrToGHcAUieeAoYZ2nUSzCWXxmBp1PNUDIdMyhrCwnJs9IqpZZxjKLqtLINQ7j+POPoI20mhc66qse9Z4z4tvm3p49MwDCCtUd21GJ2uTvcdGBU6f398T+sNAeHm/DMtVTzfsQ+F2dxXD7lbqIfxf1ouLd6r2dNtR8/u31ovAbzVEOwNmZy4IEP32gKUMLTbzWkrs9YfLFBMmmsM22gddKJAb5ZeEcunyNQfxgHbpQRm7XwTED5RSsYm16fFAYWb0FuOyyQExsz3UM6H3fp62W1zQDvzAgXN2Lbw4OPZnYRuoPO2pL+qWcW7ny89ZG8AISdFSGk3gPLpCntVoCOA8azcMPEWKnktPDmoLMxCvN5DlQnOSsuRbqSHW3HSr0nQVOm24hZ0CcPzdapJd4xro+tFWpSg7pHu3lOyR+8b84odtaF7pMTvLMYKCBCmRpMy/vcMKugZm0sRHhTaGgCW9BNzsnVx4L21TuOCdti+93DA2nBI9ldbWuAPLcCOhuaeJzGM/j33m7Qo/k1wM4BmM6C0gc4nYBlzZUJT904YzzGrpWVYZkF4a+0pU7JfK55AtIXRqRk8keMegCXlaE5Bx1HNw7a0lK/cI08ab2i36iBiXk0Z76w00xhpd54plrlaAHiYVkWGU7fLMgB7tiO8mgFr1pO519Zl/wC2LWhPB9ZkXKSfQNC/k3vAPhOUGgHenB/ntBQM7iM5R19getQNuX91LazTh6bAAoAMV6CRgp8pcACMMsK8F4dx2RGco3dSMwEcZBxzBTCRNw6JWr9W6T8LkWVT8ORrwISvaN8EoLC8Aj//o4rlzUsx2t6wtIpyA9bXHbZFScdi2CMhSiZurCQKlm7+66sLJdaA688M+0tD/X6Hvez483/uN/jZ8xv+4Okz/v6Pf4A//jt/FuWHG37+88/45T/4GZZfLVjeDOunhudfd8BieXO0jtYQE8W6W+/FhbGUFGrsdRtjUNfFkxldFpQgkvXnH1AvBfsHT2L49OuuIH//9xuef+FeFtt3hlYaSgAs+6VXnXj6dcPlx4rlle6rhrJYz15bDO3ZLZJDzOvqRGX9FO8sThCIWHrpmyCutVuSMiGOJPZqKIIKF+B66wIR4OELIZDBzK31avGvcGYxAQLarKITe1rvtcY8kwXSqv/DB+DtBvvNpwjX2GHPTxGrT+Ei3ICtRtKwAtsJDlRPRBluqj1koVt+mAzp4M4JhEIZSRUrej9MWnlZ3fKkiRi1nE3xUjUzETuUXhIgZqjuYHYkSPA1NIZ6KDExy/h1JlxLZfy2+RrSDZsCNj08AuSZzwWASM4VhItJg1SwDkJvez+HAzp/WbtlYBuZgr3Kutc6JubktD+9It1LtclnKfBNLmDdFbQzmsGVNfoZmtkYNw6AJR3z+SqhCmcxdbOb62yBmtsZkn3C2AbPibm8JoEBzoeKPmTcZQ1PodbHsSMV4/SsyLH25ICMVx7cCLctGHqAEGHhB5ZxrAMD7vOylxc/e69vowAd5dlQaq9UQgEV6OfRrOeVyHCqvSsWdwQ2fz6EGiZOFNdoPp2u0tWFyqZAUVmcBvOON7nXChJYWK9Rei4GIO6gydymedD7TfeDd/ItPKGWSQjhvzMICLr+LgmU280Vh2ZAIY97vgAtvPJkjWHmRpu1YPv+0gXPi/OltCQGDSuvDBEpCYiU6x48OITw124Foitt8pIn82G/XLqgS/Ba6E8zy+M9lDd+u2G5UuAPRW1vKLfdx7QYgJBF9q1XuCBvyefDxfe6jfkW1PuKnl1ZflkSBLIkKJMoqiWdZ4BnBhhpEdf95Um+7/cza53PgAvXaqaX8Zl7ni2dlnPtWuu85drDiAhMDiVN+S6gj0cUsSGJM0EtBReEB2beG10LlkFEhDpJ0kV/t7j+ziBLcXDHcylVpJeDGRSUQG1o+22kzcApPWdIg+m5K/LsvscYBSDWxIZKl81nNpS85NjU40DCmgZAcXrWeDcFgGmoCcAnuEx5i+FjMZahhLIahuLfezkk2vV25MtKd80ArB3MjDWxUoHNDWeD4qyhiKUl3bAKMCHrXKJ93DcM5wqbJ1ItAYJZKVndgV6OTnf72IGg/Tt6vhRde3BM1RNyBzA85HKYWtLGvXXeWyPJuHrHkd6bjbQQcNk+wiGyxGVrwNWNjw6yrFhuDeXaDZEZMqZrvFuGl/QEmpJLoraeAy3GXmIt7Lbn2qK1UZYlT+C/xb1Ccqx7G72PgQ5c6nnUsLZYp9wXfQflDGmae2kez8Frd77nZ2Ai5Ufe9SFUSX+/u8fSPdobc2NZ9MO4ztrXggTL0kuYzx4MX/BMYPsmAIVya3j+xYb6VOBlXgBsfmncXdJrDzcql6HQJ8oFJNIIuKJVdnj8KIC2NuCpYn3a8S/87Jf48y8/4l/+8I/wfz79BfyTX3+Hf+Znn/EXf/g1fvWr7wAsAWQAT7+hFQJYXivWT+5ZoKXQ2iXqZl/Eha94zFWpFYbS43bZluIC2KWg1cUzTL+sqE/F62lXYHmrGa/1/Osdl8+GH//igrrALTLN80zUJ2B/NqwfG9ZXJwBuBUF6dGBv4uaKAL/DeokgVA0uqBUXhpKRk0ho2RdaDNQyTiFQGQcV09ZGJZNEozA7uIFZfLPx+1kwUoImB3/IbsxMy7WhXYLZkKhvzLLte9PmBC8icDXzcdrblspuxu9z7Ns+EgS15JMJc+wcN61lFAovGLMXK2FQBsM1PlM8D+szMjDjWs5EZ1BeOPf+nQl6PiK+Mi/OSYTUYQ2EgXbh0UYlRudFi32z4V5nZmLOS8NcFAyhx8o83xpWhIuEnAAjCj1buUisa0Wr4VGDZVQy59rDZ+uUjAupgGboA3AOJmi751Yqvzt1bwtlOtvcB4G4GvlOSkm6kEJfDWKynMxrigUerWh97kMM8WSNTA8ETZio49UyudbBtmEPZiWlLwpogWOvB0Ap5p3Cw0m8ZGs7Mmnb4bc2KAS6Cylkv5c4k8L3qgrEdC+L0/yuLFU/R7S8iODTQTqpiW7T+dRzqb+JzzLHQihl+SzvyqTwNVq0Yv3qWtwNWOuWly5oV/P7nAkII6laDR5VNj93mWB2yoRuMXUHMYYFP/5rNngw2VXujArxc6NADvjvKcyHUGvmCRQTpIi58VnPdh7zrjUVmkHo1UobOmYqv/rZ9ebgEs9Y7fk3On9pne4NiqPsuQqYYdnrd1DGocDaGU+qTgsPYMJeE+jPZLWxNkN1E53rvAey1wMvG56Zxsw7QW+t2tc5y37k3gZ4ocL4HGKA7mHVk+NO95/g7F7Rc+e8b5UfwR6Oqx1pRIyrDc/mF8dxzGACP5/78Uk5kDl5Sx3CKCRk4jQ53Z01sem59121a4b4cG4J4BMMoFKs/VDuWMKjMZOZiiyq1nHmdiHfoCLM+TUczxjHGHfcwMS+S8+7YBhlr2FuGCrKHFrkuzKrPRk2cNxffhby+OASXyNUOEJSNJw36RLpaJTCRGu9zGVzz6sCYH011E/FPZvD88K4bsqXdlYbKE4COL5cK6EFQH9O5HA+a/P9puJP74N7oQdncmXyqOkZ/Vf4+4Gfz7Kb5ODy9RQ5KOmmAMRz2JHu6VkIkrTTpKjz37NX4b17Nc/lKxq9M9z5p6/RT2nfBKBg1UsWvn7vMYZ1tTjEcKV7b7BbxXKrKFdLN0u7uTdDJktZgbYCt+8KtmfPjQAD1o8FG1bcbgU/XN7wl15+gX/1w9/FX7j8Ch/+lRv+6OOfxd/55Z/B8vef8d3/Y/juH1asnysuP/qN258i438JCwgtcQDs8w3tsuD6B27xrs9LEK6G7WeehGr9eBsvTAAjbSledsvcuwINWD+5wmtb38inX9YAUz5gezFcf+b5Ja4/BHhya3j6seLyI0MuWkg2DeXNhYH6tCQ4QiGpXpZEC5NZ1NrjymghNkNDzFutK+EmllbY6w2wml4IaC1dyfIi0HKsYMHMqBgrTyGMQr4SEF5mWg5S0WfSsOKl59Ylx9y+e+l7sO0+VloXmfuAlyhL3lRYlBBsjME3n3N9WlHebm61F6bTCf8kyD1dOvFbCnB58e4k4aLNysRVkohVqX87EFlZx0FAqt0Sp0zHIhEhy2EqUWc/bC1CUxQB3na019dENLNd1riX2ziHg8DSfM128zXlO5TY31on+EWEJGWWEj/nCkOFvW2e3Z17vPWkP3a5oLXz0lppMbp54jl7fup7NZSXLB0ZjrPatl4uzp6e/N7Q8sX14Xs00SGBxlD6h8zj9ABSBrI3oG5uSddwgUnwt0sH1IZ/8/kQ1pq8Y/bQ4PruQGvhlWIFKp/5M3CtbtG+dwdf5vwRtARQUd1HhQPcm+gj+2MOCbZ1RVriOff07vF3pJfSUrx0L/sFIrzLxrjJfRdPDHT6ovGQ3LcUmGLP10jcN58rrieFedLldH3s++PxxHW0wknLfmbBVMGwGFta/Zvkm+HnTFD6/QenkepBEwKUvcZ9/+5lCJVSQI+xwxau8cwbUJ+81E+5hQIQZQ+1XLF7hjExpPOyAgAVGRLgJaM7+GzqWrsY0MJ6DHThsWL0oGsNeJMxPHm41PobdI8qoOf00WS7S3HLPe/1TZTq1sQ7Y8/Qsfa89r3YG8qrx1+odbItUWIy13z1PaVFnzQb6FY3M6e5AnYekt1pY2iD5v5hP0lrq+e5eL4Eb62dD/BZ0q4p30YmMGbfqvTTEhilUyEJS3UuvkZ7zsfP0NY94FQhIg0AOn+4drqe93FI7LoPikOCvprgjUlb1XMCQGsSdhStaVgClWDAFTtVNgJ4PCj3cmfvezu5p9KQXyVp0OyZACQYUZsPhCFxHJM+p2Cwer2Ft1SWDQWclrX5bMlZagG0MkHjPMd5nLFmw5oWAK2XqzQ9b0APR5TkyUMCR96Z5knNbVvT8JEW8t0TxtpWuzdR0BDLPg1OfFsCDmmJp9xhPWzC3+20ugChD0wKcZ4HLrGFp8w+gGNMWu5ypu9Br0bhNMbLx0fbKqzufX5TFYSs7mDtWHlIAM/+A5GjFk92v3za8BxGXNsb7POth3+0sd9M5pdAgOSVoedEhgA7v5i9kbC7x/XgKcs1TC+sk3xelBG4BjT4JaBQRjrCPlM2L+Oe6ZqwP/5meo7egb6upHty9hnaop8DceZFrklP3JAVKmmZyIH3gIU4n3erzfAZnRc/q54P5uCNK3Owip5QP8/zJI+etG8CUAAQlzwYRLERLVRFKWpOI0okDomRWsNwZQxh7XcPgn01/Pr6Ab96/oB/vP2AX+7f4fN+wS9eP+DXv/mA5x8Nlx8blmtUUIgYzXwn33+ysIdKJta9KTzjdMussSh0EcKhAsRAnGJ+Fsnz1s+edHJ5Rnedq4iwjBDGYt65hhRizQC0ozUmvTwiVnV3RBKRzOVgwYcISFTCzAahycfVnxmU39qgLmjt7HxScOR3mhSMZyGYX2NMaIETbWECKdQrupcCRhv7PkuoNxMTFTAmwAXrgqwuoAzlDCmdGa6e7XsEgutGd1O1TJexn2yqaFAxSIIa368IhebkbOg6iAdA/2waL++f5mXAyRqUeCYY8zxuC4E4PYGaM3sfe+sua1yT95BYCibNrbsGQD1oZiV/nIv+SRpTx+9bnZiPWy/OxyLnV+eg7c7+pwLaJLb3K9rBHe4sJEK/zx/q4f1C0zOh1vpkUDGn2i3bY56E6Wwd+ldAQt5JweAsB8IZoDe3M1fuM6apc1IwQWngGfOOz79qr1IwQb9vbfT2Os22zGdD4FUhKgV43XsVvu60VkK5KqMFb3wnRnoRSri11q1gX5ivxu5a/G0Bdh1okYAEWUoQOB8f1xBO+z1pW7LwnpOhCS3hv/K/HEN4+bn7dBkUq+F30bJEpVr2k8+M4zs9m3P/OkZ9RmnJnefuWve4/wScz+ZyBvhbCFXxbCoxXLM6ruGhqXA6f342Xyowyk9mr6wQzM3W8fd6h+LeNn3/rGyAU5wEbcBp2EHJxsm+6G/s+F05f+e77cyyfeYF0aYx5hk70vu5/3aCFQ+vU4AH6DSRHmetjZUrpnwKoxdEB3StP3C8CzMdrbUDnK2fBXf5JzB+cvZoTW9IJT+fsaWDCffOrZx9DVGxBHPkGZX9cr7xL/POxNgHD03mJpC+GmzYzkI5SEE26yGmslgnclkMs44lJvPz1oINV89NFyGlzIWSd3uYY+30Ht374/QeJ9+U9aK8MIXnJkgwAW/u8VW7/Kr3QjwKPZljReZxm+mbnXx+r9U+1+T7TJh6j7bqvOe+eG/ulX+d+3hPtgXOZYKvbAkqhPzQ//5KunTSvg1AwfywXH69Y38u2D8U4HPFonWF/cyibNUrPtSw8pfFFe7aYHtBsYbLxwrbvQ51uQH1o3mJKQP+1t/75/G3X/4c/rvv/jJ+9ekDPv7x91h/teDl14bv/17Dyy93T3zYkISg7D1fg1032HVD/f45MqV63Ovyto9EBKEYGdLLYtl3D5l4KkHAkAevriEE7gRTXBhydNXCwuP5JJYr0YRYHnOwwSqcwCyG/cPiVp43RaPRM9E2jwO1rcI+iyUl1tu2YH5VEke2YBRXt2C171/Q1uJVKzYpO6ZhDU8XH6gq2tuOtr25grdMii4FBMYFx9/trQKtepxxKWmNsIsIX5fVkzSK+3FaTEoQKv5t1pUCoMdbUXBfLN3K0opHoSmAA7v1sbfnJ//s9QrGGGYjA6Wlh26ft21EOvV3tEAxadSte3ak5Ylx1ERlVEm7rBlO0paC+sMHP0+sKFER1kR00OyzrCUZSHpsRKzcyxPMDNZe8n20mtr15gRpzkRf0eep+71X4LN7OqT3Bt8FAD98cCbLUpXL0r1XblvfRwB46+cnQx7WBbDV3zET+HUdrdhE4BkOcb31fcv7cwQ/YMW9EvYdjYm6Aqg4tBrluKgA36KChAIS2W/Qg0jUB4QwoOeKAvKUhKdJFvgcOpWwKSeDsba4jpfPsMwm78q2jaCIovJFcywgzyDH6dnMIwyFlqnaelmy52cMVnvA90gtIJyLCn4zM+UdAfysMPac4+QzZr3UK93Oaz14M9jSrWjYNl9/LTcJdM+EHENBek2xGsaiFj7rnwEYPKzMMvHiqHSGFdXMQditAS08Qcriic2Y12SJZFv7xN4pwNWSuRMyUSWFuJgfvbGs1kP1AsDPU1ssw4dYXhhbDcNpvzfuSVi7dxuNAVdPsrhU4YVmkYQ5rK1PXvnGWDFg24EPz70SRBHBfAHs2mBN6AIVkc+3yOu1+B0gAKxna6je00Crvc/Bs9zXDx46kXkQgMgnscRntfdL1/t1SRCVXgf8N73SNERLk86SHlLYuwPwtG0bv5fcQIczwH/DHXlIaKz8m/IXBeE5SWiFr9Ehz4vcs3XN+9+qhDtplZItvPDSy7D4XigoQF5HbyoCiUAHay59zxVEyHAFJkFmE97r+f3uCO/qaTUbR2hxpBfVmZKhnhhAB0GUhlJRWYLW7sdukq9QKanSb4YoCE3Oce6pxObaT/0dKjdoY7hV/oYeHHxXKDW6npQh7sWAq/cM150eQq352aKBqC79PTkH6TfW0zjvGCOTonevJRlDlfFtAQ7omQGQ5R0vFiGa/X65Fw7QnhcPb477Yrd9MLhpSb5Gcsxk7UA3Im3T2YSL93bpe2G3vdMlObgTAAAgAElEQVRAAA1O71lqHAi6JCFHAw8hnZ9DU/nbWsFqNhblnBmyfADZmWgbGHOWUP4COpipcqTK+aQ1+h3gsjSNTux3GChpHAZdg+EHWbWEIICE/Yy/F2PT/J3wQuf7VeTaGAfDFwrdgqY2eyEQiJjLymoVLrYzAOTuOpyACvPfeudj3gfgdN9HgH6WR9VD6E77NgCFaEwEyOoJAyBsBhiwPy8pSAAIphaPVARiaQ4CbOaGktZQroZyM9xeV3yuhk+/eUb7vOLpHy9YPxqefgPPQSChBlzcZoaMQLNIqGUBaGQ2asBKZ8KZuFHpniHih/phGeLao0/PFus/MBKBoN9WG5bXChR46Uz0z3sOB2SCyCzl1CRZlTZFFM06QebfwwZZt+6YOQHF1OdEwPKnJ5boA5qpv6fVjW5vTOBDN1cVSBSpDYH7kOSlcpOsV4YQhDITUCao0TrTSc8Z6Vf7lj6SAKg3BAVLNv1cGb2682k89SwE6LvnzPMTYUoGIs2TTKK7RlOAjXixZCJ8/2y55d4GMOKCxgkBFMvpoU3EKrP0KhOJuR8Q9dp/l12oF4sS43zUOtOR954KgPFcz6QfZ0Fd/tMVvnZgB5PAPSvqc6NrGc/KvE7qbQOM3hgpQPZ9YRjAPWvULDAPJSjVCn9mWeM76WUwhzOwnQmkmoQSJ0LrvTUKAGZg9jq3s7rswHhWT2rCDzQGGGK/h+z28ptGy9KQFFNo3b351nL+zN046zYqBxrukeNux73KO9dcsZ6tQQC6e2rtwhqHI39nMm3StUGxlP50TvrfFW4pZJdl/Nf21kPohnm3pCcJMEzuxAkeVIBhXB4G5d8162FhuaeIPa7OW/Ne63M6h3VJ2n/43gwYo9HHNWgtrW4Wnl+5dkHzE6g1A5jFXWua6786DrZ7NHVurbsSt4itTr4z8zH9b8og+l1tR68TBSUihLEFTXPAxpI3tDYl3aNSeKas6PzPaNnkkTOUUh7OYdylUA6GPBFmsrauwLcpQeEXvcXYD/A+nee4/iSWP6UHzRCa9jvP1/Ox3OEJABJQ4X+ffQ+gezHckw9/Sru3r2dj0PM+K0Eqv1kFJCk4ILSdz87KmfLds/umMgdlSBpgWnM5Svnz4p4Qtnf9oe8/ckxDBYh5DVR2Tvmd93ZUvhM4Sbom9FL5LNdE/8d2T2E9428zCMT3KEhwNqeQozMfF+C6GmVNnTdlHlZdO6PD+c4TvSL6dkNHH3uGlCbQUYezDXTxLgE01T+GewhgtiDzvfoObSdlvtUjoJeXPQEIOO9/2sb7cq+v9+jEV7RvBlBgOUbbPdwAgJdrutVMvtTWgu2DW6DLFl4DaL3ufW3ABtjFQYX1rUU+BmD9DACG288L2ucFH/7vBeurl4RcPzdcPnnehHJrnjOhNDAkoa2RzOQGz0Vw8RJQrXjVCZjHbZUNKLX2xIa3CmzIkpc+qYay791j67uLeycQvFjNeULzuNIKdIEAvj7r6479UrA/rxmawSzSdDVzj4nmibFY5QFC5MJaQ6GDmfzbU8SihRLOcIGMnzVP0mdtcRTzOl12NlFkEy3lJVekSN1CW79YWZaGyCAF69rQ6t5j92sF1gvah+dOQGvtDJJEijFdl9Wtb9ebEzNhTO46VzrCu+997ACsWld+ybBY4nFWVNfF9/56g60Twn69JZFNl/SXZ6/2cNuAWnpugf3aias2Wnd9c0ZizLVszS3/ZhHrHL/bN5RNLCQRK90uUWLt463P43Zz61esdwIqWWITPfaROQEuPvb2dnXLKQUCZTpkFLTgZciIENuIc27MhE6mE8wkq3S0Bvv81teG3igKYk3KqHFNk3HvfT9qA25Xvx/rmt9lFv7Jutb2N/9s4fp2T4Uel8uzKfOP39i+j+sZyn0XWjt6agJMDe676rWjCukdt7yhvFKCFm0USNPaU4C6R2xuCN+0tF5WV5q1w8wSLoKvla5AMK4aGM51Z9wUhPzMZqnF2McEhwjkzAIS14TPxFw0TwyAXnUCncHmGCZro9fTxiis7yyJh75OGgphZRQa6aWxLLBVvDRCuOxhNSMtNSbOo+eEensQ4FGLLfdNBahl8XtUqyfBnQU1DWmitVHPao7LesUFfsa7SKEWcNCc+RouS5TkDX6yhTddhZeWvBTnla318msl3NhPXHyBeM9ty8/a0+JjCEsiwXP1BMizw35CcU6L32UF1gWVXhGaCybCPxrPIUmk7BWrOyQAo8IyrX1DnyU8yToNSm8FPQPcGwWlucdzrDS938LbhntqZmNFCeUpM+8ChnjzpNk3nuv4judtA/D8BOYv8n0Ir589ZACg0+NcfwJcjCtWIK6eA4apnAmQOn+f/10TJGz7tKbNvb0sAbnSQTBmOp9AN20JMkZug6Hiz+zFwHHt4uF16JDgsYC3yjMAVxYLOg3Qd+3yrhLAL9dSxzLQd6DHdENolsm4OyDjnk+SyFGryWibLcKzgqT8X/dE83PxuVnJjO9TJmg9zMb2GjTUczukCz7viPKJNr1/3pMmhiSCZrdYs2rIfAtX52X1w6XLxgGY5rpmf1zLcMtvpb8/39e6N2ato8eDegHHmrS1OL2i7BTh0X5/ZM0Da9G1PIAas0xQw3svlW4DMCbctL32yluzvKWfccz0TKHnoORC6bJ6Czq+wMIDajDW8dmUJSX/1FT6dLiX9AQc5ijyrJVehQFA492I8z9UbrIC4M5dlzZ4P0xt8AoCkqaNuTTQv9Omd+pL3gmcw1n7mpCJ8AjzKjB3jDjRvg1AoQF2q2iXgrI34FodQFCBriEOVPxdexhCjVKSrtx7f+XWsBpQl5b9rJ8AayvQgO/+uHk1hzfGbiIVLgoJ9SJCvgF1jVjM1iIMYWQOFuWh6lpiDH6ZKpwI16fFf199Hlmxovl7m8HnABdU2s1QjFmkEQCKr1UxL53J0Iy6GApKeiYwtswFyza6Ly8FqNaFtUl4sQ0OKqzmQkTMLQn43i9AVo/wzsEM4Kl0t5ahGFlKq0iCFRVmuY68TKU4c0wl+QSNJGo7uW1m+U5gENQsiMNgwYvfUADl2BNMSOXRwQ/j8/xXlVUKOlHeyxPUSZ1xMsa4yHl6uF8AMjFbE4JF4WFSjO/GaCuDNevC/C5MaUhUVD3mTIl7IsXL0O8gEDA85YzQ63hndFjXI9a2j8tSwGkULrmnwRQ785pibOfyd1OGcisFiBKDCAaea6F3QUEDTj09EeSzM6uKWJRZDvG0TND8L9fHi2H7HaHFXJnf4Te8T+eC3eH9gDOGUgIH2EWBXsa+SXMpbHKKDGfgZ+lZMu3z3EzGlEqrKA+iwOk8ekUNMnsK1aW7K99jjmWyjrIf8bK45/KcgB8/qHKeDt4BknCpAIOEZgGI0rvtAJ5AxsP+ZQwD2FR6OIneITb11hHLNN1YB0F6FuZyniJwkwZSgas1pzZYnAqyjBoWyVNw2z10onhSREtX6Xh1AhfCZ+ghNuxnSaG4mXkpSPQ+MomjzWXkok/11lKggIDvUno+oIJR4RYB2fY2AgkBCHjcMXJPU34hQD0rMKRtXFsLAV7HN/Mo3R/0/myqXOPPyNrN9E0VNBXU5zVTpe6eMkbDBIV2fUbPoo69oI9Hxxm8Kv+7SSb1uOvKa+c7q4lOhzbPfxiL3GNN0HvPE0Xfo3/HO8fEtuHb2ioOFulZoRu+K0hlP19SMYC092isfk/+Szqb/WDsyyfRCZ0CFWwEebFEEtl93KNhajac69PGvRdvsvhxjEHv6tSHnJlM/K3fVQhgpfOLe8cyu3s9JgenJx3HERXmhupX0/m2WxnvB8HV1uC5yOQdSlcGBXw6b3znjnyuzYalKK1LDwYjcKb39d45IcDQF6jPsfbfa56zM7k55VaVVcx6Il1NYqh3lx6BOZ6S37n3poMinT/UcV56vqqMQWiAAgS5Fl/jKaS5ss7u9UkVlMPn71V2Eq/lBD0YGiPrewgD1d8nLZd1i9/f9UB4p71bfjL4911gIto3Aii4Ir4HGrZsO+pTSZf+ofGjhlSc62KoTwXbB1/Yy8eepZTg//rqAMDlo7/j5Z/sERbRsD8X1GeLJI/eN8yVdCs9GzUuxe8qAQWzCGOIoVXPsVCwOvhwixj+4jkc6vPqz4QnAfsA4AkgV8P+YjnRpfh7lrc9qjmEYrV5n0waWdcQMkvDcnMrVhG015rHt+dyX9aRWIvg4DWwaVUyYOsJFxnHSqKbWamJeCrCTnftbQ9XudKR19aAdenW/VkRENd6o/DIgzwjZEGw0ppdTBTzEKS33d9zuwHbJnGYXdhOwrFXWAuLGi1FrO6wX/t7qaxeLt3yKmPMOElWBCgLzLZRUZ2FnDPhMccXlgXrF2BMLiiKBYXNdMtvvWSmWL/auvQxbFRgRSEMq/dwC6sQ2tayTvfAmJgka4rtx7733BDTXtsc91+sex6JhSFBBUH7D0pRMvu9J+nhd8vSLXVEyVvL+DC/20AKW4PSHxZzKUvaBehYl0V+V5sLhYfa4ej72SoGBgIReCot7CE4l3mP0cEE7vW9cAUFFQQM8rsVSl6JvUlBliEcnJsKeBrC0ytnDGEU95okwkyhXRWBE+AMZgneHBgeFRT9DStA5JhGpgugn/UFXVmZ+wXGNdd3nY1DvTM0MVkKVOxrn55HPxNZGSQ+UyGprJ7XQfo9WALpAbIs3gkFLo1LpyCWQvbJfpHuM/RoLmtZK1Cej0pRQYQF1ogrdk+29rMXeHjCLJBipIGk55NC64olaTe8QgH50t5gbe9ApHjU+TvCzXgNIHcTmqUJa9HHktUYKGi15lZUEW4z+7uZW6AVgFb+oxbDWnOPE5CXfeDqDOF1g5cIRgHazD0EdG+ADnbG80PokMm5GPod+Zjz6olmx/yTtso7hoS85IFcCx13k7XmeFsbwxlLEa+cBtDdn3TXei6SuWpKgnUq1J+ACp7sD0CpgK1H+nnSDgL+AMBWAGWw3nseFjv3uCgTjVXvqNo/97WRsSngoF4M2a/Qpzqtg3o88Fl+nuzCz2T2msAx+Z2lh+tMJw9gwszvT84SgJ6LhvxBwQY+y+Hw3sx9ocsLbbmj/Ey/8UpxSyr79MBKYElzmnAZqexSngq+15ZlTO4Y/Mz4XpVRJg+YkQ7Iuumz03ravnfPBwKw7GMGH0546gFIBGKPWvfyHEd5XEPeaeoYeX+t04Nm3QuToGDIj96d9f3mfBMMU+C9ddmUc2yeP28w7hzCE07m/6XGdyqPntucI2H6fJSHeolu777lM2fAwVx6dfrS/53uiJZbveshxHbyOwApt+T4+I4w3r6X4PXbABTMyybWp6iGsLlCbFEuMhlrNawfY6NCqXfLv4MPHgYBlJt7OGB1IbGuoew24OUXXsVg/byj3LzM4vK5dHfJwrhmuEBXG8q1b0bGnZu5rEb3mAA18P0TWJ3Bk8Is2H54QltNAJLFM1tvNQGM9dMtS2gRLPGYRGQOh/3FmU+5VrTFHGAoNvSVlS9EQGtLCBwTomXXm8edfvdyKKvj1vPSY8K2qAKxLqGc7ym00lULiHXLpIOji5ZVeJxbCiy1u+3LWRjapNA2da+nm/dSOnMx60ms3q6Dst0TNdXRC4ItXFABDDHF6Toa4QOHNgtOJIBR3osXMJXvUHZarR5KIO57mVFX3VJnwEETCOozOmauR6DrxhAPAkIW5R1L6cx0AEWCiFIxmYmIggYHYXFiOkOZqr4Hp8+yH+6RCMFDnoUk9iHcbntmph8smwSxOI59H627MTcKrraUmFMI5JlQ68gs+px8rRwZLvGsMqIdGX/PbgYF3wl2CucMmbiEIBIKu1VgSMDF37Lm+uSRMIARyzK+UxRu34awMKoMkky0dQFnLh0ZgMqhUsYuzLMUT6a9PuW7erygORhK5fmeUi/M12lOPdoP9SwxxlrAogzJYctkfksXHguAWg6hKu0s+dp8DpYCdLeCYTzZP/eKtednpbHUDlLxs9m7hPvAdSaNlHwR/Hu4J/QmWpbRGsgh8/wQbKWFaW7FImyhAW9X4FbQXkgbQ0Dc90wQlrTibQeWrnCnN4CsV6NrpSh+vRqE9+e/K0C9gXGBhXRgcSCnPl2cR4YcASahJC1m2EZFD+vjeG6y3qQ1ATq0AB2zlvu+dysuPd90LeO/DUHLNlnfGE+CpAQfaOnTJL7M1cJ9JU1bBOTh/OL8m9yzFC7Fc3C4Lyfuyge6n4pnPEZAOjPv61k+EWCBUbhto2V7AP7mNnlk5Pu43jp33o0ad3+lR5vQjAFstE4bFVicvQMP48HhbqIFCNy6lTC9kWYvPTMcch60BhAYE0XdIPNSz6YzjzDNuZLggfy26FngWgkwXkt32VfPM3pZibx3AI6rVHsotYemct+F7mQy55MEgQcra4K//dkEOlX55rzRZehBaZ6U8ywFrt7QtQa/dmCS3k5267pHgg/abwWsSlgLacz8Xh3nBD4O863N6ZwayPR9t+2YK0yMcboWw9/kP218plfogYeNoQx0IXO/sD+l3TqOOak6FdIAirU8+lB2fAY46MUwh3XtMieu29OlnwcTHqpje8/Ls8WazB4HZ037+4LxZAAs2UQ5B9BzaGkrkgx6eHcdz8oE0GUo1vSbU++DCdjQMWt/8sW7YALwrQAKQFjr4cIXmrvytNaVbgCwhnJFJyKhbDMZ0HL1RE+eDNEVyGZlYO7rJwcSbPe8AvZ2w3J1S0P9sAKX2Cy6RDWE1V6sHhyzoed3KA6KZKjD7op8K4b92QGLtvZ5Lm8NC2OxgliZGZa36n3sFfvzkiEQ6Ylg1gWsYDpMGJlAgriQZov4WX+wCxRWG+ol3HAt3Iyk3rKXnwxBsaCvi4Q6DKWiIsYOm2Sa5TsxKepkvkS2Z2FCLSqqIADIjM20ntxDfxevtZ4JwIIJ9yM1EqfM+K4Xh+DFeun9F0NK4mrV4VipEDOreMy1IRjlQOhKFyJJgFMwFFdWRXdr7QCHCog2n1EbmZpaJ1VYVpc0nfuEiOc42E4Y2MFNXPuZhMnOnEUoZeZdZVgEQRRMAPpatYrWrJ/FKRmfdyNrD3QrECDWuJ7JNgVyFVJVMNT4f67tvZbK4lEA62vUgQBTV/IlFBGOOc9yZwinVvuwXrZSegbslOfsnJHJOHK+Poj+vQqvjQqphErwNxQeawWrDwwWQgrqKbiHhqdzICijtFfv2BnAl3Nth/M7JuV0xe406SOVsn3vVRV4Dgo9p2Sd2F8f/Chwaf+6h3MjAKWAwSAMxHdqNQMOlgNNKnUA77S1BsAGHpkWoHdiyPlbT/pX0V4uAXz71I00WJRsv2MlQwU7v+q8q60FbYrTzYRZmU8hlMHWfB0jxMxuG/DiVkLntyUcFhqWG/l6jIXnaQEOiW1V8Uv6EvexwIXuJTwEJZRhAM959oDRpVoBYq7/IJjXw7onINEaDiXWtB9tZ/diPud7Pbpfp4JjwFn2cTal+7NyAbxPC+O5pvOclcLh2So0BXkHe6iQvqv5nuqdy/wI7ok1JD97p911N74zn2G8Ckyot4SWnON6i7cagCOIeK96xJwrR+nP7PWU3ooFAzignlNt7/8qvb9X4o5K2CExr+zVuk4/mfaMfPve3s8K1PBu/9dQDrL53Tb3owDb1G8mX4+8CMA+Gut4n1X+BZyFLT1HgW3TnZjnqkBdk750XPosEzVqHiw+t2K8mzpWXYMa7ysy5kl+THqOSW5nm0GLof965PexBlZxPq4A9wiw5vzmZzlnkq6lhymhLYx6H+8dMMpe/EzBx8KFOJnTML07IQU0jgAh6+m8Ow/P8IY55OtEfvff1uO/s9wNjGCtjPWr2j06f6ffe+2bABS8csGWyjngwoPt7kGAFtb+paBdPE/A8vmWHgpU+PUQeGm7CGOoodQXeNLDZv6iy4J9KR4eUMPiskVSSPOSi5m8nvsWl6HACWEFgDVKXb5V2GZeiYIE2eDCzYIOdrgMh+1DwfJaUW5Iorl87gnLSnFPi/2lYCsL2gL3wtg68bBbRdlqekyUWwW2ivLq1vkmJWra4slquFb2ForTldb+6TDHBW8A2oeLu4ZtFaVWT1BDYWKLxCrXm8eSxbtPmaASVbMRnVZXKWAQ1gZFGHBG1ZqHMbS1u6bqxdg2oC3Ady9OHNVVN0sajiCLvV4PAl+jxZy/u6zoSfhcAMyELc8lx5C/I5iiyaiATpSYmIZzHEIFYv50Y+YaqBsqCdRTXHyGeARA1OB9thWwl+fjHsdap2uuEixF2zlWAHh57kKpMEGtC86s2QRWhr3d9r6enIOU8DGz9Axp15v3E8keE0ii4lOlnCj37nKBbVvuAYCOht943kO4yiSK6Os7MzGNnaeS23z89vLi+0Nvm70eSwkCHanm+aCiqB4URe6EWndpMef6yx4NljD/cmQAtWZZudnNDnMuBM7rbk6F6jqtAHm55zy2BC24R9FXrom6JLvGF942Tl/yPMg72+570IC4C6XfJ8RdY7lFoHuStdYtHElXOEC/q6325HVjyFbx0Ky9et4bnmWec5a8zLUSISUFvQB9VKnWsZTIp1Al4eaQs8QFyENFDu5Fbb00pY4fEIUmfm/WPXHWJb27EuwNC1R9eUZ7Wd3qf60ZKmHq1aCgEAD7+Jrv6ANo3UqYz0ZlBrbbNoQ7JaisHl8WRoPV+Wp6KqyUCYSW7+4Ftv44JYqU+5wuzW+7e1LQe2Gh112/Cxqu0JbiSZeXBe1lBYrnwLHXa/dii3l7fwTcZb4aEsBna4CnxcHvoYQu15veLGcg1fx3ehPZOHfZA6UtB++rZXHDQGvA7AdEoDI3TBRj3Xt6NzAkg+tq1j3sAOEXy8jfhU41VX4TFCk4eDNlAkGhfeGllcDljgRT03NrANP3FPbSm6hyfAJipGwjd3VO/Kh5Yeb7rx5rum4zwHwGtLC/g8Ii+zJ4V9RzALPuHb9NgJ7naAI0Tj0hOj3Ku2/NaXXsRWOIqY6zTXdAvRrkHY2yE88QQc57suW8Rq3n+2qXtfM6fp/Gh1GGSaNEJGm1tYy/U4s5vSKV5tNA1lrPKRO/Zd9ZfYsyTAuFNjwjDsBc0De7tWGshzlrfqwTwNEiN00ml508OGzfx/K5VQyDevZnHqD0NRTlwVjHdualwyb82Xb0dVZ5lPIf1+UJmSx9+J+C9jy/TGSssg6EHxOsBPp5n2S1vpyt8+UF43mUuzJm3ILcM5kT/851OPl8VugVaJvoA+W8MzDh3Ovh5DN53uYwh3ee/yYABQCRF8Cz7rpVvEFDLTsRhTPgW7jVFGDZW1f4i7tGNzSguRWhAGhLi1wDbeSRJbJCt+7pAKAneQLGRCgxrra7K0sBUAsTEoVQZkgF370unD6zJKbHbElSR/PxGwKdi9+MzwaNb5AQEPScDGSYdKsn4Y2SMj5XnKPyfBYGTOeW83AQpPl9s7HSAfsY4ulL8RcO7n0TEbyHnumzcZiHGCtFUUm4lJhSyWjtaCUHujJ5hgCrIjgzQhvH765b7XjZ35vXPA4+PyO52pcKkVSm5/W3fm9mxF0Je1slgdbMmGgdU9BF51p7Pwchh0TnjNjcswTNyvtZq7ULdHPivrkffifrq8nTOniyj2fslMgKER36mOaSTKwcvwPOkWwEYee5oaBDIbFYV0QpCNBaOFmbz1zY7rVTZjK429bpv5fD42cMrPc17aUqwGbj2VDh60wwUitda3CQhAIN/G8b8zjo+A/x1ACYkb0LPzHPQ79yL9HP+rjW75xZBZzyuX0cF4WRYdqkcyK48b0CQBzvXjx/z0pHi48CYpojpEA8e5yGt5j/kBBrn5SJeAZAL0+ovPKMT9ASFP2agJ/a36AUlgJkNubpObNuSeP521uvJHHSfH5MdtzvlAFDMuHOg5z2ewI39zwbdv+Mrw3nvR2F8Pn5XXgb/zeH1KhHlb7nXuPz8zv3abzzWb5HF0VxGKx0E6/Qd51a8/g3Q5feK//KebynQKYiwnfLHT57dnZZ1vkB/R4NNKjiPXfo7rE0h8MJTzyss9zDMy+ALynN/zRtns/skdbmPbsDbnzVuyaZ5GvbTLfYF+Dn+qeuzzx2oUNpUGzT//Z6kIkP8xiU2a+bo8v5d/o5W68mHlDtznni2CpOwDaR3fj+Mj2ryq6MM7/Ttdcy4QcZNe4+9+7evk9AxFE+OLkTIScnXaGX1Z/kfM1jEbnrHpCQY2DTnFnA+T3Wd/xJ2t31I328T5e+2L5iTF8LJgDfEKCA1rB8vGbipHZZvJyUIZMdeimn6qUQP34OC0W3srTVE6q078IysFUsm5de2T9c0NbSExtWzwngpef8f7efXbB/KFg/Vdi1oXy+eX8fLAEBY16AsHz4Ow3rxwXl6taOLJMFF1BqhC2sn3evwrBV1OcFdfUwif2poDwtmT2adWptq165oVWUyJlgW0N5iwSEu0lCqgbU/ncSpbRuONPPJJCy7n5JHTE1usi+AVgb8BSZSLfurVGfL7DLAnu9udATcZ9pvatSvaBM2fLTWlgOF4Vl3LQkZNt2t8CtnowMp1ayEHb3fUxEFd/Z67WjmgEmtKdLKJxv3VrTxA2z1W6FHawGnejbVoHrzcdI5vZ2TcXaltJd/pokruNnqiDTgq/joEU0tyqE8HVJYCDXks+s6CW6AJ+7CvaX1RNlosLePIlY7s7btRNrjovTJmp96XvDHBiZa0ATAALd0q5gyVw9Qc/AGp4m29YZxrLAnp7GPTXzcpat9RwOPA+Dd4VbmNOrYhWht7V+FpclgJSae9Be3zpzoBUmzkOr7p1iT56XpN1u/Qx9ePExvWJkLmK5aPM4RcBte3UPn8ulJ6ZqrQvdCkoRbKMnAGXZOacFJqW0CkMWpfdQvmhY9MjBEK787XY7MhcKnMviAse+A6B1Dy5sp9Bees4WwO+QhpPMrfX1y7AqIONwM8lhrMVYK14sbGrZ03wuk4WBniAs+aVbiOUAACAASURBVOqJ1Vo/J9r3YOGdvFOorM4ZnRWwmgBSBTWNoSK5xqKAnI39zt9zFYwEf9k0idzHzyhvV7/ztE4RhFVQS8dOYEFi+duHZ0+cGH/bNRLs0SOD+VwYjsfvgE4bI5GrKvueVLjP0fZ9BFJr9STES3ErM9DruO/VrY5m7h2hJRpr7YCThusBnZ7G/hWgJ3UFMJSpnQU8AlP6N0FN9dzi2Kcydz2mv/Qz+x54uMtacF5nShDXV9xvE6A/47Px35kTiHxirgIU/Wb+EdTOT8zG2P3WAW96UQ05PuZGhaVJgmMChaRP64klOuddnJQp6DB7D5zE9Keng7b0BAlaRo+uFiD4YHDp3ndHK6kAFzpOIPiRACs/tWnOnYMy0EHOY8gcS+LKWP3hiX9XYEcH2PSslJ6bRs/N0ObwFWDYe7N19MYkbaTBSkJ2BoNHhK8OYxbFN+lCDe+rOSk0EOXUvfQ6S1QflGSznn9M1oBl2oeE1SUS0qryve3IsIMEuATQYlUu0kdV3mcD1RAecp5oFrV2GZb/zaOna5S0x6Tyzt5l1SHkaO8y4KB8ole3oKymCa2D152WW+Uz4u2R+a5iLElV2+KarK6PngU0MCmij6WmDJR7Pcn5XwQSYk6HcrTa38l91XArlQVyrGefa5u8F9Qj+LQdPKqmz+/95tS7/H0wAfiGAAXbqrtBLwVtA2DmLpetufJOV9iK7jJHlI1x+LvBwpKVd21v+T+IlSst74CftxbPbvBkjUzMVNCtsw1ZNioFxc27abeoGXu9hVdBCD9LRbmGkFtb93wweMIVoH+31+4iSnfJAAsIHiiKyrjK7lp1suFJSGIdrXZiMiNPZ5b2WC+rrQMXQFeqFWU8bGpc0pk/fwnlHpL4jWM6WI1PPAeGOYVHhSuX8m4h8tnfLgRHFevZy0LXroUwEEJNEkfGBlJgm1t7Z904hh3HtZqZivRl83fJsLrnQmutM6gAA0zWIIWLFDhrF3jn8dfaFbp7bRYQZ1cv9sV/Z7Dh7KyQqVBYPXsuz8fJZ2ethGDK9Ruyg9v7Z3but7VRwT9938mZ4B18D3HWuYpierDGTp4Mp8/wnThhoBQ22FgDfRbQB9AkBKt6sn7vzWPuJ995sg5nYNTJuw7eMmdJyeSuprvjbOWX9RuAC31nAjkEaCZQCydCuwp4s3vqe2egjfva52fy/TK8axacmpbG47jU2kFaMtN2/XveP6UTfO7m7s7t5G4OFQz0HWeWpjjnPvbW+Qrg3hX7NC4Zr0k+oMHF+cwzBkgvhHT1vTffmX/aF2iEPqfzUjoVXhCDp12xLifMwKzOdwYI3mkHIEDAhPz+Dt09be+57w7eMPHcXkcahon+TIDVINmo5w9pEpOpzXcjebwo/gnITGDCT2lDLgR/f2tC91JBwpFWDOuCI6jB8aZMIc9nfPafAFg4medpora5zXkZzu7NrLRyrctEg3R98gvZu3nf+o/vf56yD47jml3ClScsUz+qRKkSvEfC5xYho+xvlsFMcybU82cm+dpLm9s4xjo+n4kQ1XNU56drondwkE9P6CnQE38DdxNb0hhlm8tx7XbroW9n7+IclMfO50N+N5yL05ADOUfp/n8iq1B2o5J9j0+eyDt3S8/qO3Wusw5xr02K+cGQFO9u/QEfv+YseE9mvdN+Uu6XuZF/3wMVvtC+DUBhr7DPb1lz3krpZaOIMt6kLBngh7vIpa2h9LYF5aoWIv/H4hnPNwBPwBhARQkvhvXThuVWsXy8wbbq3ge0pNWGcvPM1bap9cIFzBLWXWx7t4AUz6C/Pq09vCG8HMpWgTfAnh19LW+bC0ZbBZ4XH98eSSkDaOABTgFKXKZsPoCMr946obbb5rkP5jKHgK/76w1Zq5u8K9bSPTNifiyto7FM+m6+n6UXtwq8jAK2MyYR/nMcEk83JVUZiU+8d117VuVS0ksCQPbTLt1LYP5f1v0G4/RCEeSlWsRLgP++9fKRLYU/dELXXFln3O0h+Vtkm2+bW1mymgGBj33P+bV2c6Q/k/8E8Iap7dXzSbCPSUgE/O7o72hlbjruZfGKIBOCbE9P47mhdW6oIzwyRU8uuLhnAMe/bccYXO4Nx8V91tAEyDlRwWSLeMDZ88FsRNS5RtO78k6VAo/hDyuqClLr6l4AROI5P4nZz/lfI7cL+2A+CQo9RXIk3PEM4F41VWjuKKMOEO2j0kbFYxLMGzD0P7ybv5Nn0iuiCbDG5KHTXqcQzPhZ/XwQeoCMmQb6WRisnLV/VhZkxmZa5xU00EoG2tRLQEEtFQhir1soYcZSWZP7dnoN7Hv3YJoFDbUsAN1CkXdh97jtpbgFWX9Pj5D4Teb9UFqZ1iCeYX2/VPDQ/aQVTq39wOj1wPvN5yUpaZ4hrjPvY8x3eBctTTmnBts24PMb7OkSfLR7u2UfFJbTcjvRA1q+9h14tn4GgQ6+F6FL/Nzk92ytK+wMbXRjgcgRrcE+v50qDAynHAGN0v+bXmNKp/hb/i9oaLtRqBdPBVpJ50SczBek+Qguq/Ou1+BF4SFxCDvkv7kvE01pzeUU0j0VIpWXAJ32zULyXsEs5ofEyjHuxrmcgdCShyS98Oh5pnsYPIGCuY9iAdAA5klQXgaEdVvyrbTS7/N7wKd6NdHKOdC1+O7WupKt765tBBqH9VLAZgqFApBJ9xZgAKU12eHZmO+BI2dWyhnAUF5UJZ/L/O7b9DtgBA/Ceyy9O7ctcsTsx71JHjvRtCybW5K/5VmclS1a+Kew5E5Pgjbs1eXQaCa8bViToCdDJYJPr363X0ZPSavuSWpmqPRgoJzfGuxWuxdkEy+Ik1whw9+kU6S/6kEr4Mdw1+b+NqH5Kl/KO/LvdfGQ79lI2Bras8t9DUG3365obc88Rgd6QXm9Tt/tuwPZa+vPhVErZb1lQXpr5F66rOCl5+WemAD1gMu+wJjoVfe2iUegem7O5xyikM88fpB1hZ+dPJ85WtgmoOjUqBZe5AcwoUrYtzZ6kd7zVvupYOk7HiJf29e3ASiQLlEB40KSYACj9VWZ6mVJpTmTM4kSYnlB+4JYA8pnTwLpSnF80QCId4GXiakob/txQSnEXG9++Uks6H4vBK7cdrTdCRzHYbUCe0OJ8dqb1JPdPPeD7Q50HJQJEsY1hCKL6gwVHdEO4WwozcWmbp4kdARAKNw2uuCLVwIF3bAWJdETd76jZTAYwTYR8L11ZsPxKpFXFJBuexkjKYJAuhYuPYlPvNPWtSuzXAsq65L4LoUdAhLmpWcycZkSEgpEuR8nAn6ubQVYIUPdAqfQgPQSELAMTxekRVSS0qVS3lp34VfvEu1HAARWmOBaj9bSEOhouaSAz7PJvee+yJ4P81XBJZX+0tF1bTNxjHUekjru0hem/6Z7K3UfustyrKrw7PvxfVOYxCDkniWgqrWX/0oUV8MQyOhrB6QwCYoc91msP8eknytgNzOgWSGd+3gPWQdEiX7HvS76G5RjKz5HzkOFSmAQuhNEmYU2AN1i+I6lsDYM0nOcU/WgaUAII8L4mICJ4yKIkefhHAxwGlSHtWpcO3pqcb0EtEvlvLDk8B0LcZWydfMzfD9cyBnAM636cGbtrA1D+MbchB/qWIb58LPdxt+0k2z8wFFpjb74u4bwdiK/AEZLzEwzQtE6G2O2be95D5orEUYvLhWY53eogM65cWn0PLLvADEGb62wrJ/limjhppyg/+BhJ+N4z+Jztnc1YshPv6tjwkUqPzOoCpzy51bQqw/lmta0Ep7Grqd3gCpv3KNuROEaGIBWFumiJe+Y6dHA3wEHuam0V3k3W5H7MNOQAy+uIy/RHCfaNHfKnAthbrOSfpAPRUk/ASGPCsfxXqdcon3K++96nZ00BbRzrPdAy7kVAyxALZP1m1vQsHcr7+S7W+cj+fv47yyti35WOd6ZpyuYqDpCKWOiVGDwikoAnp5I42IBMAxhBlTs2dfsvVQBRMJZY6na+G3PQ0Na08dpUT3G+Yy/M70SCIRoKK+uH9ecOlPqMSJDibx+oI+6fjEn5pGzCgFlDO3l2e/0LYD12w2Ua4c+07otoEKuE4EI63xl9kY+y1MyfzTRUQ1TPvAVfn6nzV46Z6BDf++JDFbulHfMZ+58R0+E44BGfq00g/z0bCw/tX0NUFAm2nNGX6f2bQAKQL9gQUDyYg3CaPV46NUztranFft3Tyivm1vpntbx0lBACSU8s0s3rxIBIIQDLzXlLkAF9bLAlobl7eYhDVtsPsMYzPyQV0N5u7liLJnEiRxmgsdrd/1MgGPwcoDHfIqQZ7fdczLcdtSntQvMBACWgqY3raJn9Af8oHOcU4Idu2393VRQA/21tP55ScI8wIGcZcwp3UaBVLQyKzLdfkkcAqnmuNJ6TuTaDN1lqXUhIZFq+HMap58XYR8YUEODRX6E9nxxT5a1dPT4Fkgn0cVcFBsIqC3NFXYKiKp4ci568Wdhleiejhnol9EK7PnpCMDQ5fjpyd/3uncBhxaam585s5dxbQfhI9aZiKfWtm+W8x/OhcYcsj/J1p05C7h36iki1hyzNUvtOYI/xSeSkQGj1Y1/s+8lEoqm5WDt77IyWp3pGUALScxBQY/T5GD77neX6zMLiuaEtCHWMMcie7sYEgEnzTkj/DMjnBjRQblv3cNk+GXtaPsA4sWYTpP9RX8D+l0rcFldF80x6nhD6L2s473kfbNpbiqw8b4UycXA9SJ4tRQP1VLhfr4rdIOkYGLosdMtwr1UAG1CWwCYNe9DgY+902qCAN2aVbvVERjPg4AK8/4ZAZIiyQBnZk1Bj/fqXlsWWKtot83Xr6K76J4pMgSxvhCaoyCFVtfhGTLgCJ62NtIOHh/mO+G8vCOn2SJ8N/Jxa90zQZOLcbxKX4HR+sb+tw3YcMxFw/UkvQa6AYEyxOtbz7cU58cm8CgG7PkzeI6UniTgO1nfBIR2GaaDMcOdq8j7NQA5PBeH/DLCQ2fQUDOg6xpxPRScDD7b+F1WN9lHIZzrVRoi0UD2PZwDDlHPxfze4D96zpLf08vpciJ+Kp3RNsTVT2ece7FPNNw/jHsZCtf8DO/9WT8zLVL6RkCWi6FCdv5uBMgVwAYwKhR3QKMm5+Ws3VNmDtnls8+TXAYCDp8CokqvKC9CeCHDWgj2zueYfQAhNxe0tvWqR7r+FoDEYgLEtNFCLXtnQIJ9qnibyZ3NkJcur9lNFDcF/Eg/qBgLqG/b3kMDuI/sr1aXs1vtHmikfTzvHI8CTOFdkWNN78J4np5fc5jBwHtDdrY2eGFqPp7h7ufvZI0ClLAKT2pPfSP0nfbhglYXLG8318GYN0qb5CZInjUpoYMn5V7Tw+PQT+y7hv80NPE0CvmOsuKQt2g63++BZTMocM+wwvWb5fx3mnoVtOm8fPFd0sd74773vuPzDbP8CeB9kDtaN6K8s47RvhlAQbPPW5bRk8tOa2xxZt6YLGuvaZ13jwIcCQXgF2cTJk+FWJQZ91hoMHHPstaAW4Vh90SFbHT/D2sxk3cNAkq4/dveErHvEyZh2zvhAlKBW37sLyvXzS81S0Dy8r91F3cqUAkA7JMFI945gDSaRIqupeyvygEqNpbKuU1u64e4uNZdLzVhixVYRh+0zqQXEuK9EyRrsj8FiXxeuLai5NBCR8Xjsvr5ePJEnJoYjIp0ltB8C+ahBCkUErraNRXa1M1fL+nsVn92UdWVG3BggPPb95HAiDI5EGVVZAXt9c23kWjNf/MzQPZaXslEkLNCK9b4Vpa+37OSSeI5rGVFq1JW6iDMWGecjB8uBk/kRy1qEgIVVFJPBSGmB4Wbn1U9+7W7E84KZNavLcEYFbzTs17dY+gdQjsk6NGEQHquzLogV8bzcM+Sddd6JWuQ5SGVvqjbqAqYJ4JLm/aMCvox/tbPBUsgch4HBif9J5gAjILOmTVehQuOad/9rJ0INofSSbso0dNedyCo9vsyK/xqPef8JsVtmNuXBAF6ggmIxF+Y6d2vPfkUgawvMHVNWDVYn3WJTmq/pwU5ech+PBNMQkkXVq7DiZI3WMXIc0/GOp6vSVGPtWoMlZJnU4DiGFtL2k9rZFrbnsVduYbMMNNqWhSXgoyJn+9VvIeeCgDSA67T1okGz/kOin9mB8+o8CLIBLHiqs+whAGgmPZV3zmXF+XzGh5w1uQ3Xv5P6fyJ8pxrGgoNeVpr52dPgLdTPnpvPOm8OJ2V2oC6vX8vBJjpQKPQdz7DY54Ka+3PcMyUC+8BgrX1weqc9b/PvMjOPAz5eSg8d0GCsz7E4DLwP32OdOekxHG2GdQt1gG1AZSxMQkzf668Rdoh2azsx4F2quFqNozE+w7hZjQEZR/Tumr1mdQJWgcg+LkCJFXAYnoEbT2cJz2FmXR2Tuyq68B7TIBBw0nF02KQWVLu2YG2o21T2MMsb5/eP+GBsX5JQyO/mtW+Ng3wJOA1ZNaXJ6ft2+bnhmGD055lqMrc3lP8z+4O17qEjDR7rVJXq+14vtNo9QV+eW+PVI/jc7NuOYXlzn0On87P3AMX3gE3BtDg5J59tbfETC/P6G/Q5Z+Sj+EbARREsa97d8lXZWgqR5UWKl7sUPwBuFWHmx4XHWFayYSKrSFDBOSSG5noHt+31sdD5TuIle1iUblculI+K3Ci5A8EC3A3TrGUtOfwBHi99lq1PESMzwIc+LhtHke5TswtUNFER8nEZuUyLXVhdWZMvwqReqmEULdJAc/3KpIfwEJanUtDT1mN098TjW1LCIUFvnezUILYu1tzRu91N/tYS4kcGAvq6ufBtta/51oWdQ3juGsQ84qDlaK1YZxYwtXT5LdfaiRAt8hUvZYx9AM4MgQKXQE+tLZlRnt+ZwQ/OC6IQjELbWSWs5AYiaCGfdM9Xb5insoEC/p+vrMkKSyktUPuCV91ZrkCOqjA9eOazUIfP+f49r1n6Y19TMtTTi/uwSK/n/o8S/BzIMG0As0KPHBQMoef3UGcT3MgYARQtB3Qa3pRTRbp08azwnlpXHX8bTwjIqy+l+nY3a1FqP8aFzyCjzHWBKAUEMr5hbVNadzp1CY+o2swr9dsDV6W0304hN5of/M4ih28Wr5ouVRvilPgMoSLtITpHnfhtBUMOWeG+6HPDoIHmSbiLkyWsphnCvVq2eRe0OtJPdVmAELnKp6Fs8fXAVQIL4VWkEmQAXSQgXutMcpSVWgA8ZbpLnFdCW5Q4WeYyNOl98NmlvkNxnnFHDQPy44oPUhQy3ofCjZw7Qdlv/R+aJHXdcs59HflvVOBWAHj2aVZFRqdn+zFwaPn1IvBkIn41KJ5dpbv0D++r981SSj8FVa3HCPHeUKfD2Na5qQGOk65j3WiBTQg3FMUcu1FyVV6MzeCGndo/dh1u9/PiWJyCgIDIChjrJxCIw7bstyJ/z7hmTQYEFwazq2s3xzOModalL4WrQldWIO3TYBNB5Eo+/G7Nt6RWQGV8Ni+Hi3ph23oubgUTJgBgux/H/vg74oNHgao03zntm1oZRlAhYPcFvPrdyV4pdz/Q1hEDb1jKa7jwPWmZl5Jz/bFaeYe92UOYaJscXY2T5T7IRwrmt7rIIxxjyqGJJ5xLk49AFT3AUag4UyB/9o2Awjv/f4L8sdpSMN7dx99Xe/JgF/V7npstK977k77NgCFusM+fnYrwm1De7seiIxFIjxajm3bYZ/smIwFXa9MRQsYgIBBubKjpeY4vmlz5Xm7hBChgk8o3FbbebIYfd/1NnkG9HdlvD/n9SpW8AAAMnlRJL6y1+sR1FhX32kNdaAg14SAxfuaCveTVZ2Iatu2sJ4UuTTCbLdtVFaIMkfylDnBmjLJVJQVHWfLxDYiyIRiYbYFgXQrk33yEJhFhYLZehTzrp8+5/uHxET628Gi2S3IWQe9iMAHjARM/76JpamEp8Hs0jpZEc76Yb4Lnp/ccYJT+vdZO0Ngg5Eko5j7mK0ZFgkRm43WaRlHMhj92ZSY0B+PuWryIpnv8NnpdAxYagcKSkkLhr9TBDuxwtLdO0eyS5LDEqVU2ecXxqCJDFMJV68WHUd8z7KYw3qTHoSyc3i3zmkSQrOyiAAqQ9JWBQtLd1NtPIeybykQK6jF3wLj/SgGw3RnVCBM617p32W+gwn8UaVDeUFraK+v43P0VmKbgRsVkimkFgcBLT7LeM7LZQJehD5d1jG+V+cd65RCWYQl4fLkQviUh8BKyVAbuzyNgrSCYhSa5nVvDSmUs0mSKH8k1nt9EsU9utHkiwhesxg8E1y8IpRde+b57KCdlyotnb+pUgR0L7E8kxXtw7MrxqR/8LW0pY7zMuvu8M15qOECsHyslozVd4Z1MMsE8zPuP8ObuK6UBe60wWV1BryWBWgb2k1+cL12nhLKki0FaMso7DZLOcB56DIqkyoc0yARfNFWjHdYSxC3CdykbFBkj5TvnAE4up8JKNWkkwBgy6WvwaxArtOe2NPIw/RZ0j8CNQqQpCvzKHulZZuJclUW07lwrgls+XiGkpxL8YTNPKchH5U3Dz9Vo8nBlV/p37yGlLMEYENr59ZZveNL0Pu5hPQMHAn4NkuuGb7Hs33COxN0eX7u8wpvmVxD+SzXIHhKvlPlCrOxLDP39kwpns7TOe1vw1zdDrWMYU4xBpfH+lp6xbNpnQHPIVV8LzJEgfMYxsNX8PsTb5TdE/RSAeyJb+vwzCADKYCKPt4hJ5AAmulmzjVSeZw8oe5ozBEuHpdN7/lsLd8RZ6EmXXTPkAkgIuBTDOXzWwcDtx3t7a3L+Pfu95eagpH6O5Vd+bl1sOUApN0zCBAsn/W3e8DC/JyG5Z79fhjiqOTPn2co6sGgIDxYedZJy75no9O98dwDVu94JhxA9J8IJgDfCqBA5fjpEoxAiOwayo1k/m87YAjifMNI6O8drBILzJr091zWFGmbGUV+dyLgkSiYWIm3zYnR0M+00UGYhngmXty9DnVaeXDSmt4qmLzI1rBI324HF1WzPZTEk4SCyqyiLy3BlC6Ck4U8hZyiF1LmRu8CXR8KQkyUpp9rG/qwPjbIxZ3vUHo1IMohGo5WoWBUs4VFBLTGuPxae/wyl2sa54Aocrzz5Z6JURC4LiS0TDiUAuyZ6zSftQ5aGOd9h4B/yYJx6o7eWk90N8ytHtaABDItTFPYxmBBUgaHzjgP4I68azgXZ5/xd3wffE1Sgeeect30d3M/M2gjY2knn2U7AxfeG/cZeHnPXZd0AOiGMa7TCWNywasDTFkZBOhzOHNDDEtd/l6ttGnFK+NdnxvvKmnEvZZ08wgoDc+Qzp69hzSUtFKZJwXRM0uijpHviefNWn/bDIjQ8kg+I/ls/PklQQJ108deUwE6c+W35l5Q6dZuckasId3uWYFG163FZxPAoRZRMFEpadrZOdN7R4GH76rBC1hlQIUmKmkz6GfWle/iCpvdNl9bVkHQ8LmS/ze0tpQxPI/vCwU7BfjZqstxKl0MRakFP03AaQbeT1qvoz6CrjaDVph4JJpHATXryZaHjk/WnPetUoCezrDc55zzZLAY3sV+Ne64NWSyND2TVGiyXHUHn6Dx5vOY1duE7d58Zvq5CmjEsVuLfIgntIZrS6ssgYAz2sq5xlhyXsovLmsm9m6LwRZPqOeW12nfGCqmdEfPugIbrWFIzB1zzydqrG2TO241gZK8V/zdvvd1IZ2Z8xTEOpvy73st1jEBmXVxWiV3mHtsN0HMOKYzb7IyKkvMNWAbOl1j3zXuMI6K2BetrXr2FHjzH/dxzZ4ObDz7k/fYmRLFKz9UmVA5iOGcZ/w+xpMyEMEE6jccb42ccaJ4AjjkuHL55Y6ip15lmctpPx1PriHnkTJul5UAoWWAgw00zpZI3C7y612FfW6zzEJ9Z6YL83NnwMjZOTkbx+ztd6aUn+kgZ7+/My89s+/mMfgTtMO9mEFKfvaOR8OhiVfzT25f8MC2P5G7xJ9yM7N/COAjgH/02x7Loz3an2L7c3ic6Uf7/WmP8/xov2/tcaYf7fetPc70o/0+tcd5/vbaP2qt/bX5w28CUAAAM/ubrbV/67c9jkd7tD+t9jjTj/b71B7n+dF+39rjTD/a71t7nOlH+31qj/P8u9Pe8U19tEd7tEd7tEd7tEd7tEd7tEd7tEd7tEc7bw9A4dEe7dEe7dEe7dEe7dEe7dEe7dEe7dF+cvuWAIX//Lc9gEd7tD/l9jjTj/b71B7n+dF+39rjTD/a71t7nOlH+31qj/P8O9K+mRwKj/Zoj/Zoj/Zoj/Zoj/Zoj/Zoj/Zoj/a7074lD4VHe7RHe7RHe7RHe7RHe7RHe7RHe7RH+x1p3wSgYGZ/zcz+DzP722b213/b43m0R/tSM7P/wsz+gZn9Lfnsz5rZf2Nm/1f8+2ficzOz/yTO9/9iZv/Gb2/kj/Zo583M/pKZ/bdm9r+b2f9mZv9BfP4414/2O9fM7MXM/gcz+5/jPP9H8flfNrP/Ps7tf2VmT/H5c/z9t+P7f+m3Of5He7R7zcwWM/sfzey/jr8fZ/rRfmebmf2Rmf2vZvY/mdnfjM8ecsfvWPutAwpmtgD4TwH8OwD+EMC/a2Z/+Nsd1aM92hfbfwlgrsP61wH8jdbaXwHwN+JvwM/2X4n//XsA/rP/n8b4aI/2U9oG4D9srf0hgL8K4N8PWvw414/2u9jeAPzbrbV/DcC/DuCvmdlfBfAfA/j/2ru/kL3HOI7j72/bRMjyYGkjiXKkOVlkBzNxwDIHSyuytHLKgRQnSu3UKIeokT+tMXZotRUnxFDUHLCIp9lT9gcpwsfB73rm7imP3UvPfV/r/aqn+7qu3+/gOvh0dz3f33X97p1JrgNOANvb/duBE218Z7tPmkaPAIdH+mZavbstydqRn4h03dGZiRcUgHXAV0mOJPkdeAPYPOE5SYtK8h5wfMHwZmBXa+8C7h0ZfzmDD4CVVXXl0sxUOjNJ9KsiBQAAAqpJREFUjib5pLV/ZliwrsZcq0Mtl7+07or2F2AjsKeNL8zzfM73ALdXVS3RdKUzUlVrgLuBF1q/MNM697ju6Mw0FBRWA9+N9L9vY1JvViU52to/AKta24yrK21r7E3Ah5hrdaptDf8MmAP2A18DJ5P80W4ZzezpPLfrp4CZpZ2x9J+eBR4H/mr9Gcy0+hbg3ao6VFUPtzHXHZ1ZPukJSOeiJKkqf0JF3amqi4A3gUeT/DT6QMtcqydJ/gTWVtVKYC9ww4SnJJ21qtoEzCU5VFUbJj0f6X+yPslsVV0B7K+qL0cvuu7owzTsUJgFrhrpr2ljUm+OzW+9ap9zbdyMqwtVtYKhmPBqkrfasLlW15KcBA4CtzBskZ1/mDKa2dN5btcvAX5c4qlKi7kVuKeqvmE4HrwReA4zrY4lmW2fcwyF33W47ujONBQUPgKub2+pPQ/YCuyb8Jyks7EP2Nba24B3RsYfbG+nvRk4NbKVS5oK7Wzti8DhJM+MXDLX6k5VXd52JlBVFwB3MLwX5CCwpd22MM/zOd8CHEjiUzFNjSRPJFmT5BqGtfKBJPdjptWpqrqwqi6ebwN3Al/guqM7NQ3fLVV1F8O5sGXAS0l2THhK0qKq6nVgA3AZcAx4Cngb2A1cDXwL3JfkePtH7XmGX4X4FXgoyceTmLf0b6pqPfA+8Dn/nM99kuE9CuZaXamqGxle5rWM4eHJ7iRPV9W1DE93LwU+BR5I8ltVnQ+8wvDukOPA1iRHJjN7aXHtyMNjSTaZafWqZXdv6y4HXkuyo6pmcN3RlakoKEiSJEmSpL5Mw5EHSZIkSZLUGQsKkiRJkiRpbBYUJEmSJEnS2CwoSJIkSZKksVlQkCRJkiRJY7OgIEmSJEmSxmZBQZIkSZIkjc2CgiRJkiRJGtvf/HcgjsYlo2AAAAAASUVORK5CYII=\n", - "metadata": { - "needs_background": "light", - "tags": [] - }, - "output_type": "display_data", - "text/plain": "
" - } - ] - } - }, - "804014183dc64cdf8f2f043ca16f50d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "IntSliderModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "IntSliderModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "IntSliderView", - "continuous_update": true, - "description": "t", - "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_dd25a5cf52e84fefa4af8c24463106e3", - "max": 4500, - "min": 0, - "orientation": "horizontal", - "readout": true, - "readout_format": "d", - "step": 1, - "style": "IPY_MODEL_10144440b3a44ecda553473165abd44f", - "value": 2250 - } - }, - "dd25a5cf52e84fefa4af8c24463106e3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - } - } - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/jupyter/run_suite2p_colab_2023.ipynb b/jupyter/run_suite2p_colab_2023.ipynb new file mode 100644 index 000000000..0eab2e49b --- /dev/null +++ b/jupyter/run_suite2p_colab_2023.ipynb @@ -0,0 +1,1098 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kMOvTOuH9Uyv", + "outputId": "038ef0d1-eaa0-4d49-d7fc-4add35bd290a", + "scrolled": true + }, + "outputs": [], + "source": [ + "!pip install \"opencv-python-headless<4.3\"\n", + "!pip install suite2p" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6cdRg0He9SRN", + "outputId": "fbde2b30-9631-4611-b8bf-3040754da2a5" + }, + "outputs": [], + "source": [ + "import os, requests\n", + "from pathlib import Path\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "import suite2p" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bH96eK729SRO", + "outputId": "be5a210d-b63f-4545-be46-42a64abc6300" + }, + "outputs": [], + "source": [ + "# Figure Style settings for notebook.\n", + "import matplotlib as mpl\n", + "mpl.rcParams.update({\n", + " 'axes.spines.left': True,\n", + " 'axes.spines.bottom': True,\n", + " 'axes.spines.top': False,\n", + " 'axes.spines.right': False,\n", + " 'legend.frameon': False,\n", + " 'figure.subplot.wspace': .01,\n", + " 'figure.subplot.hspace': .01,\n", + " 'figure.figsize': (18, 13),\n", + " 'ytick.major.left': True,\n", + "})\n", + "jet = mpl.cm.get_cmap('jet')\n", + "jet.set_bad(color='k')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xFY4fVIL9SRO" + }, + "source": [ + "# Running suite2p on example data\n", + "\n", + "This notebook will guide you through the various stages and outputs of suite2p by running it on a real-life dataset. This is data collected from a wild-type mouse injected with GCaMP6s in primary visual cortex. The recording was collected at 13Hz (there were 3 planes in the recording, 1 is included here).\n", + "\n", + "The next code cell downloads the data. You can also upload your own data to this folder on the left in the \"Files\" menu, or you can connect to your google drive (see instructions [here](https://colab.research.google.com/notebooks/io.ipynb)), which will make it easier to download the output files to your local computer.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0e-6J2maCaXZ", + "outputId": "1396e57b-05a6-44e0-b07b-d7eb40140bc8" + }, + "outputs": [], + "source": [ + "fname = \"gt1.tif\"\n", + "url = \"https://www.suite2p.org/test_data/gt1.tif\"\n", + "\n", + "if not os.path.isfile(fname):\n", + " try:\n", + " r = requests.get(url)\n", + " except requests.ConnectionError:\n", + " print(\"!!! Failed to download data !!!\")\n", + " else:\n", + " if r.status_code != requests.codes.ok:\n", + " print(\"!!! Failed to download data !!!\")\n", + " else:\n", + " with open(fname, \"wb\") as fid:\n", + " fid.write(r.content)\n", + "\n", + "from tifffile import imread\n", + "data = imread(fname)\n", + "print('imaging data of shape: ', data.shape)\n", + "n_time, Ly, Lx = data.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Uab5XBO_9SRP" + }, + "source": [ + "## Set pipeline parameters\n", + "\n", + "You can find an explanation of each op parameters [here](https://suite2p.readthedocs.io/en/latest/settings.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MT6NMQFT9SRP", + "outputId": "a12af30e-f8e5-4ee2-97c1-f4d9f0d625aa" + }, + "outputs": [], + "source": [ + "ops = suite2p.default_ops()\n", + "ops['batch_size'] = 200 # we will decrease the batch_size in case low RAM on computer\n", + "ops['threshold_scaling'] = 2.0 # we are increasing the threshold for finding ROIs to limit the number of non-cell ROIs found (sometimes useful in gcamp injections)\n", + "ops['fs'] = 13 # sampling rate of recording, determines binning for cell detection\n", + "ops['tau'] = 1.25 # timescale of gcamp to use for deconvolution\n", + "print(ops)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dQtZ2kQ69SRQ" + }, + "source": [ + "## Set Data Path\n", + "`ops` and `db` are functionally equivalent internally in suite2p, with the exception that parameters provided in `db` will overwrite parameters specified in `ops`.\n", + "\n", + "**Tip**: Since it's common to change datasets and keep the same parameters for each dataset, some might find it useful to specify data-related arguments in `db` and pipeline parameters in `ops`. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k1xgH7xO9SRQ", + "outputId": "d18ef3fa-bd02-4341-cd7b-e75ee4a0d03b" + }, + "outputs": [], + "source": [ + "db = {\n", + " 'data_path': [os.getcwd()],\n", + "}\n", + "print(db)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "upbh98g-9SRQ" + }, + "source": [ + "## Run Suite2p on Data\n", + "\n", + "The `suite2p.run_s2p` function runs the pipeline and returns a list of output dictionaries containing the pipeline parameters used and extra data calculated along the way, one for each plane." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5ogeYr309SRR", + "outputId": "c8a4476a-e107-45df-ac30-fa5811673791" + }, + "outputs": [], + "source": [ + "output_ops = suite2p.run_s2p(ops=ops, db=db)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PDHISUwi9SRR" + }, + "source": [ + "### Outputs from the Suite2p Pipeline" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t-6aRAFC9SRS" + }, + "source": [ + "#### Ops dictionaries" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IKIg1yHA9SRS" + }, + "source": [ + "The ops dictionary contains all the keys that went into the analysis, plus new keys that contain additional metrics/outputs calculated during the pipeline run." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RanSQ4OY9SRS", + "outputId": "d6b7989e-705a-4a3b-cfc0-a718b4a10605" + }, + "outputs": [], + "source": [ + "print(set(output_ops.keys()).difference(ops.keys()))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FPsOULww9SRT" + }, + "source": [ + "#### Results Files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tyvMMwMc9SRT", + "outputId": "805df983-34c1-4622-a472-a4551b89319d" + }, + "outputs": [], + "source": [ + "list(Path(output_ops['save_path']).iterdir())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kM-A76s29SRT" + }, + "source": [ + "The output parameters can also be found in the \"ops.npy\" file. This is especially useful when running the pipeline from the terminal or the graphical interface. It contains the same data that is output from the python `run_s2p()` function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J1FBq87w9SRT", + "outputId": "26cf2f3d-7f1d-4fea-9eae-44c76721042d" + }, + "outputs": [], + "source": [ + "output_ops_file = np.load(Path(output_ops['save_path']).joinpath('ops.npy'), allow_pickle=True).item()\n", + "output_ops_file.keys() == output_ops.keys()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OG-gzu4k9SRT" + }, + "source": [ + "The other files will be used for the visualizations in the section below." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zxux9jgFYsDK" + }, + "source": [ + "## Running individual Suite2P modules \n", + "While `suite2p.run_s2p` runs the entire pipeline, you may instead want to run individual modules (e.g., registration, cell detection, extraction, etc.). In this section, we'll go over the steps to run the following individual modules.\n", + "\n", + "1. Registration\n", + "2. ROI detection\n", + "3. Signal Extraction\n", + "4. Classification of ROIs\n", + "5. Spike Deconvolution\n", + "\n", + "To run `registration`, `detection`, and `extraction` separately, we must first talk about a special class in `suite2p` called a `BinaryFile`. You can think of `BinaryFile` as a class for reading/writing image data that acts like a numpy array. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SABzwikPYsDK" + }, + "source": [ + "### Running Registration \n", + "\n", + "To run registration alone (called by the `register.registration_wrapper` function in the registration module), we'll first instantiate the necessary parameters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "00s-KhXFYsDK" + }, + "outputs": [], + "source": [ + "# Read in raw tif corresponding to our example tif\n", + "f_raw = suite2p.io.BinaryFile(Ly=Ly, Lx=Lx, filename=fname)\n", + "# Create a binary file we will write our registered image to \n", + "f_reg = suite2p.io.BinaryFile(Ly=Ly, Lx=Lx, filename='registered_data.bin', n_frames = f_raw.shape[0]) # Set registered binary file to have same n_frames" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0idbURhWYsDM" + }, + "source": [ + "We'll run the registration module only on our example image which only contains data from a single channel. You can add in data for the second channel (e.g., `f_reg_chan2` and `f_raw_chan2`) using similar code to what we have above. When writing a new `BinaryFile`, please make sure to specify the number of frames your `BinaryFile` instance will have. Refer to the docs to see what the outputs refer to." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cZa_Lr-4YsDM", + "outputId": "6c21fd26-c726-4234-9789-91d9972995ec" + }, + "outputs": [], + "source": [ + "refImg, rmin, rmax, meanImg, rigid_offsets, \\\n", + "nonrigid_offsets, zest, meanImg_chan2, badframes, \\\n", + "yrange, xrange = suite2p.registration_wrapper(f_reg, f_raw=f_raw, f_reg_chan2=None, \n", + " f_raw_chan2=None, refImg=None, \n", + " align_by_chan2=False, ops=ops)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OExMXfvfYsDN" + }, + "source": [ + "### Running ROI Detection\n", + "\n", + "To run ROI detection alone (called by the `detection_wrapper` function in the detection module), we'll first instantiate the necessary parameters. You only need a `BinaryRWFile` corresponding to a registered/unregistered recording. Here, we'll pass the `f_reg` we obtained after running the registration module above.\n", + "\n", + "Suite2p provides a default classification file containing a default dataset that is used to train a classifier that will be used for your data. One could specify their own classification file if they'd like. To do so, they should save a numpy file with a dict containing the following keys: \n", + "- `'stats'`: ROI Stats\n", + "- `'keys'`: keys of ROI stats that will be used for classification\n", + "- `'iscell'`: labels specifying whether an ROI is a cell or not\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "k56CHDKYYsDN" + }, + "outputs": [], + "source": [ + "# Use default classification file provided by suite2p \n", + "classfile = suite2p.classification.builtin_classfile\n", + "np.load(classfile, allow_pickle=True)[()]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zVOPEcIWYsDN", + "outputId": "a7c90270-4239-4922-b90f-884f0c3984cd" + }, + "outputs": [], + "source": [ + "ops, stat = suite2p.detection_wrapper(f_reg=f_reg, ops=ops, classfile=classfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "No20is38YsDN" + }, + "source": [ + "### Running Fluorescence Extraction\n", + "To run extraction alone (called by the `extraction_wrapper` function in the extraction module), we can just make use of any `stat` dictionary (from previous runs of suite2p or a custom user-made one). In this case, we'll use the one output by the cell above. If you'd like to extract signal, you can pass a `binaryFile` corresponding to the recording for the second channel to the `f_reg_chan2` parameter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cQ-19MUiYsDO", + "outputId": "54549cf0-25a5-407b-9beb-72ebd49b33f3" + }, + "outputs": [], + "source": [ + "stat_after_extraction, F, Fneu, F_chan2, Fneu_chan2 = suite2p.extraction_wrapper(stat, f_reg,\n", + " f_reg_chan2 = None,ops=ops)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sFauoeukYsDO" + }, + "source": [ + "### Running Cell classification\n", + "To run cell classification(called by the `classify` function in the classification module), we just need a `stat` dictionary and `classfile`. \n", + "\n", + "**Important**: The `stat` dictionary used in the classification module should not be the same as the one used in extraction. The `stat` used for classification requires a few more keys which are added after the extraction step. \n", + "\n", + "We'll use `stat_after_extraction` from the output of the extraction cell above and the same `classfile` used above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RzWadEUoYsDP", + "outputId": "021ae691-bb82-4d3c-f42b-47353b9ec750" + }, + "outputs": [], + "source": [ + "iscell = suite2p.classify(stat=stat_after_extraction, classfile=classfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aDphsfGrYsDP" + }, + "source": [ + "### Running Spike Deconvolution\n", + "\n", + "To run spike deconvolution (called by the `oasis` function in the extraction module), we need to first run the preprocess step. To do so, we'll need `dF` which consist of the fluorescence traces for our cells after neuropil correction." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZmCu3OgZYsDQ" + }, + "outputs": [], + "source": [ + "# Correct our fluorescence traces \n", + "dF = F.copy() - ops['neucoeff']*Fneu" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "J3ryUQgWYsDQ" + }, + "outputs": [], + "source": [ + "# Apply preprocessing step for deconvolution\n", + "dF = suite2p.extraction.preprocess(\n", + " F=dF,\n", + " baseline=ops['baseline'],\n", + " win_baseline=ops['win_baseline'],\n", + " sig_baseline=ops['sig_baseline'],\n", + " fs=ops['fs'],\n", + " prctile_baseline=ops['prctile_baseline']\n", + " )\n", + "# Identify spikes\n", + "spks = suite2p.extraction.oasis(F=dF, batch_size=ops['batch_size'], tau=ops['tau'], fs=ops['fs'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OA1RBMpT9SRU" + }, + "source": [ + "\n", + "## Visualizations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "98XwDWFi9SRU" + }, + "source": [ + "### Registration\n", + "\n", + "Registration computes a reference image from a subset of frames and registers all frames to the reference. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 210 + }, + "id": "S4dULbWk9SRU", + "outputId": "b4420fad-7795-44c2-adb3-fbb69a2ef933" + }, + "outputs": [], + "source": [ + "plt.subplot(1, 4, 1)\n", + "\n", + "plt.imshow(output_ops['refImg'], cmap='gray', )\n", + "plt.title(\"Reference Image for Registration\");\n", + "\n", + "# maximum of recording over time\n", + "plt.subplot(1, 4, 2)\n", + "plt.imshow(output_ops['max_proj'], cmap='gray')\n", + "plt.title(\"Registered Image, Max Projection\");\n", + "\n", + "plt.subplot(1, 4, 3)\n", + "plt.imshow(output_ops['meanImg'], cmap='gray')\n", + "plt.title(\"Mean registered image\")\n", + "\n", + "plt.subplot(1, 4, 4)\n", + "plt.imshow(output_ops['meanImgE'], cmap='gray')\n", + "plt.title(\"High-pass filtered Mean registered image\");" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3RO29zSnbVsG" + }, + "source": [ + "The rigid offsets of the frame from the reference are saved in `output_ops['yoff']` and `output_ops['xoff']`. The nonrigid offsets are saved in `output_ops['yoff1']` and `output_ops['xoff1']`, and each column is the offsets for a block (128 x 128 pixels by default)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 497 + }, + "id": "iYLlovO8bU9K", + "outputId": "de7b89d9-e242-4ec1-b4fe-bfcd310be8cb" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(18,8))\n", + "\n", + "plt.subplot(4,1,1)\n", + "plt.plot(output_ops['yoff'][:1000])\n", + "plt.ylabel('rigid y-offsets')\n", + "\n", + "plt.subplot(4,1,2)\n", + "plt.plot(output_ops['xoff'][:1000])\n", + "plt.ylabel('rigid x-offsets')\n", + "\n", + "plt.subplot(4,1,3)\n", + "plt.plot(output_ops['yoff1'][:1000])\n", + "plt.ylabel('nonrigid y-offsets')\n", + "\n", + "plt.subplot(4,1,4)\n", + "plt.plot(output_ops['xoff1'][:1000])\n", + "plt.ylabel('nonrigid x-offsets')\n", + "plt.xlabel('frames')\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 670, + "referenced_widgets": [ + "4bfbd46ab67f47a1b1444c9b7cd8ae7f", + "0c068199e7e44f5c8f1b641ca42974bf", + "804014183dc64cdf8f2f043ca16f50d9", + "6da4e0b2217c4aa18bec3d1c6f563d81", + "10144440b3a44ecda553473165abd44f", + "dd25a5cf52e84fefa4af8c24463106e3", + "176eeae0790249d5a4b9b209cb9d518c" + ] + }, + "id": "68k4jtcP89MC", + "outputId": "3470b52c-b59f-44a4-922c-b5b26dd91074" + }, + "outputs": [], + "source": [ + "#@title Run cell to look at registered frames\n", + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "from suite2p.io import BinaryFile\n", + "\n", + "widget = widgets.IntSlider(\n", + " value=7,\n", + " min=0,\n", + " max=10,\n", + " step=1,\n", + " description='Test:',\n", + " disabled=False,\n", + " continuous_update=False,\n", + " orientation='horizontal',\n", + " readout=True,\n", + " readout_format='d'\n", + ")\n", + "\n", + "\n", + "def plot_frame(t):\n", + " with BinaryFile(Ly=output_ops['Ly'],\n", + " Lx=output_ops['Lx'],\n", + " filename=output_ops['reg_file']) as f:\n", + " plt.imshow(f[t])\n", + "\n", + "interact(plot_frame, t=(0, output_ops['nframes']- 1, 1)); # zero-indexed so have to subtract 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7JYnh7nBYxKW" + }, + "source": [ + "Here in the notebook is not the best/fastest way to play the movie, you can play it in the suite2p GUI in the \"View registered binary\" player." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a01HMnop9SRU" + }, + "source": [ + "### Detection\n", + "\n", + "ROIs are found by searching for sparse signals that are correlated spatially in the FOV. The ROIs are saved in `stat.npy` as a list of dictionaries which contain the pixels of the ROI and their weights (`stat['ypix']`, `stat['xpix']`, and `stat['lam']`). It also contains other spatial properties of the ROIs such as their aspect ratio and compactness, and properties of the signal such as the skewness of the fluorescence signal.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JZ2eiCpG9SRU", + "outputId": "a03ff9ca-5c57-476a-8f3a-f48c15b971c5" + }, + "outputs": [], + "source": [ + "stats_file = Path(output_ops['save_path']).joinpath('stat.npy')\n", + "iscell = np.load(Path(output_ops['save_path']).joinpath('iscell.npy'), allow_pickle=True)[:, 0].astype(int)\n", + "stats = np.load(stats_file, allow_pickle=True)\n", + "print(stats[0].keys())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4iOjYZSpYeAr" + }, + "source": [ + "Some ROIs are defined as \"cells\" (somatic ROIs) or \"not cells\" (all other ROIs) depending on their properties, like skewness, compactness, etc. Below we will visualize the ROIs, but please open the files in the suite2p GUI for closer inspection." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "7BuFviJR9SRV", + "outputId": "fc248f26-a0a1-40a9-960a-4bfe60b97050" + }, + "outputs": [], + "source": [ + "n_cells = len(stats)\n", + "\n", + "h = np.random.rand(n_cells)\n", + "hsvs = np.zeros((2, Ly, Lx, 3), dtype=np.float32)\n", + "\n", + "for i, stat in enumerate(stats):\n", + " ypix, xpix, lam = stat['ypix'], stat['xpix'], stat['lam']\n", + " hsvs[iscell[i], ypix, xpix, 0] = h[i]\n", + " hsvs[iscell[i], ypix, xpix, 1] = 1\n", + " hsvs[iscell[i], ypix, xpix, 2] = lam / lam.max()\n", + "\n", + "from colorsys import hsv_to_rgb\n", + "rgbs = np.array([hsv_to_rgb(*hsv) for hsv in hsvs.reshape(-1, 3)]).reshape(hsvs.shape)\n", + "\n", + "plt.figure(figsize=(18,18))\n", + "plt.subplot(3, 1, 1)\n", + "plt.imshow(output_ops['max_proj'], cmap='gray')\n", + "plt.title(\"Registered Image, Max Projection\")\n", + "\n", + "plt.subplot(3, 1, 2)\n", + "plt.imshow(rgbs[1])\n", + "plt.title(\"All Cell ROIs\")\n", + "\n", + "plt.subplot(3, 1, 3)\n", + "plt.imshow(rgbs[0])\n", + "plt.title(\"All non-Cell ROIs\");\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nAkuc_up9SRV" + }, + "source": [ + "### Traces\n", + "\n", + "We will load in the fluorescence, the neuropil and the deconvolved traces, and visualize them for a few cells." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5s7r6Ny99SRV", + "outputId": "f490a0a3-8a6e-4f4f-ec57-f588fb498772" + }, + "outputs": [], + "source": [ + "f_cells = np.load(Path(output_ops['save_path']).joinpath('F.npy'))\n", + "f_neuropils = np.load(Path(output_ops['save_path']).joinpath('Fneu.npy'))\n", + "spks = np.load(Path(output_ops['save_path']).joinpath('spks.npy'))\n", + "f_cells.shape, f_neuropils.shape, spks.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "29Wr9tUz9SRV", + "outputId": "c2ff4f26-f515-4725-f10a-02dba5ae8350" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=[20,20])\n", + "plt.suptitle(\"Fluorescence and Deconvolved Traces for Different ROIs\", y=0.92);\n", + "rois = np.arange(len(f_cells))[::200]\n", + "for i, roi in enumerate(rois):\n", + " plt.subplot(len(rois), 1, i+1, )\n", + " f = f_cells[roi]\n", + " f_neu = f_neuropils[roi]\n", + " sp = spks[roi]\n", + " # Adjust spks range to match range of fluroescence traces\n", + " fmax = np.maximum(f.max(), f_neu.max())\n", + " fmin = np.minimum(f.min(), f_neu.min())\n", + " frange = fmax - fmin \n", + " sp /= sp.max()\n", + " sp *= frange\n", + " plt.plot(f, label=\"Cell Fluorescence\")\n", + " plt.plot(f_neu, label=\"Neuropil Fluorescence\")\n", + " plt.plot(sp + fmin, label=\"Deconvolved\")\n", + " plt.xticks(np.arange(0, f_cells.shape[1], f_cells.shape[1]/10))\n", + " plt.ylabel(f\"ROI {roi}\", rotation=0)\n", + " plt.xlabel(\"frame\")\n", + " if i == 0:\n", + " plt.legend(bbox_to_anchor=(0.93, 2))" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "include_colab_link": true, + "name": "run_suite2p_colab_2021.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "0c068199e7e44f5c8f1b641ca42974bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10144440b3a44ecda553473165abd44f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "SliderStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "SliderStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "", + "handle_color": null + } + }, + "176eeae0790249d5a4b9b209cb9d518c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4bfbd46ab67f47a1b1444c9b7cd8ae7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "VBoxModel", + "state": { + "_dom_classes": [ + "widget-interact" + ], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_804014183dc64cdf8f2f043ca16f50d9", + "IPY_MODEL_6da4e0b2217c4aa18bec3d1c6f563d81" + ], + "layout": "IPY_MODEL_0c068199e7e44f5c8f1b641ca42974bf" + } + }, + "6da4e0b2217c4aa18bec3d1c6f563d81": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_176eeae0790249d5a4b9b209cb9d518c", + "msg_id": "", + "outputs": [ + { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAAJtCAYAAACG4iOvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9zY4ty5Im9Jl7xMrc5+9WQVE/3bRQDxgwR/AESMyQGAEP0CMegGfpASMGPEFL8Ao9BgnUYgDVQgLdqrr3nnN25ooINwZmn7m5R6zc+7TqVh+kZVIqM9eK8H83N/vsx0VV8aQnPelJT3rSk570pCc96UlPetKTnvRLqPzbbsCTnvSkJz3pSU960pOe9KQnPelJT/r/Hz0BhSc96UlPetKTnvSkJz3pSU960pOe9IvpCSg86UlPetKTnvSkJz3pSU960pOe9KRfTE9A4UlPetKTnvSkJz3pSU960pOe9KQn/WJ6AgpPetKTnvSkJz3pSU960pOe9KQnPekX0xNQeNKTnvSkJz3pSU960pOe9KQnPelJv5j+aICCiPznIvK/ici/EpH/7o9Vz5Oe9KQnPelJT3rSk570pCc96UlP+ocnUdW//0JFKoD/HcB/BuCvAfxLAP+1qv6vf++VPelJT3rSk570pCc96UlPetKTnvSkf3D6Y3ko/CcA/pWq/h+qegfwPwL4L/5IdT3pSU960pOe9KQnPelJT3rSk570pH9gWv5I5f5jAP9X+v+vAfynjx7+9775p/of/+V/af/sB7Dv0KMB2gBxzEMbQG+KUiFLhbYGHId9JgWyVKAUwH/rUiGHv/f5DbrvQK0QEUAEUO2flQIsC1ALsO1W5rrYcwCw7dBtg6yrlQ9Yufthz/A5VeA4rG1Osng51fvSFNg26Lb5u8X6B1j5pUT77PleFlRBrxIpBagVqAX69g7cN8jLzT5rrZfDuvfDxqt4Ozh2gJV5HFZnU3ue7VK18lMbAEBeXoBaon/amr2rqb0+N0FF+hhcURH7rghEBLptVncpNm+cEylAO+w7VehxQGq1vvuY6b5DRCC3W4wZx0VuK7As1vbW0H78qZfffA45HiK9fo4VuyYCFIFue382jREAK6cpxNuu+97fPfW/DO/EeM1jlj8/DlvDy2JlH8dpzGVZertas/01lSXez6EPvvZizeU252fZDsDmgGustWEs8vyc+u1jLssCqRV6v1+M9YM6wSbreVzLBW7aWn+W338wH1d1DTS/y33GtbMsfU3lsQFs3WJcV1akl5n2DN/PfVS2y8s9919i7fQ++x4qiXeR50YDLvZt/F/735k3iwD7bvXlvaptLD+1J9pcBFhv5zW/7/09KZ2PJv504ieZz8xt5164b+d3OJa5HZmn8Zypqf/OJ/Ro9t1tvV5LqjYGtUDXBbIfxpN5nrzfx3NDxPZpO+zMq6XvW22259fVxqNWqM9lnHk792PpY0Q+f7XmvRy0Fu2Mc4htXxfo683O1yqQw7/jmcn5PBq0pvMnjYFk3tOatXNd+vN8rnX+A5Fzu+Zzl2UdR3weMgLXXlonl/wFOI+N8yYbo8S/8j4sYuvqak1qg7y+Auua1kE6e72NsixdBhHpY7pU6LoALzdg223deLt1TSJcHtvZ81QE+rL2fnk5ulRbM/vER8kXXJ5SEUg+Q48G4ZmX59PLY7m5bcPfqn2c8xy83aH3u+15PwODR9Ri41ir1VOrrZli61s+v9tZvC62dlT7mloXaCmQ1qClQF+NN7WlQI4GaQrZG7A3lJ/frO73ex+D2wpdF+iry2etAQ3dJNcAfbH2yNYgxwF532OOZNshP/7sZ0CD1H42hHxWCvS2jmM0z61Y/1Ak9iBKwdtffgutwKe//hHy8zvwt787y3I+hu3P/hT7n7zib/+jT1h/Unz7f9+x/vZnlL/5g/UzzZ34GMQ4cx+qQt7uXeapBfpyS3vGf3Nd3VagNZujbYdSVqWs7v2Bqq0rEnlZkuljDR+HrZe3N+j73ddLg7y+GG98fbXxppwNxJk3yORxxvieSn9DkuwE2Npblz62vndDpnMZTN/vNse19vNmPkf8HFNVk+UBa2veT5mWZTwDSO2IvRJnLnUoH5NLuSjTLCNR7mNdLo+zvZey6MwjkWS2B3Jkl8s7r+T7IvKwLspMUZf3cyiTbajO4263OAMG2T73P43XpY5SxMrjuVSryarHMexXzWuY7/A7H6do17r4Od/lKFlsj+t8Vma5MgpMshf78JU09PORHsA6OC4A/ufP/8PlYvpjAQpfJBH5ZwD+GQC81u+MeXOTrytEdmhLAh0Htk6HUJ6oZpMiACDNDkBnSKpqmzgf6vBJdQBA9h1oaWPliVp9M68LUCvaNy9AAcrbbhO97cbwt902/iCMahd+UruFSjgAWV5OoERWSLjY8maJ/u6+2cnQuTBbSxvODiO4Aj0wmVrtoAUCbIl2yWLPfbd0wIHMy9uqfvhZWQJI7cw5gx9whklFZmIUAUxsW3+3VDsg8oHQF5Ep6S0xhrwpk7IYCks+HHabK5RihxvLb7v1eVL0rpS5mGOuE35PZrBt/UBKGz0z2oEBkhEVeajQxGf8nu18f7fvOb6sx+fpBCRw3K+Yauq3SGKIqb2S11dqxyAwz4dZfoZjlmhQ8Gu1vTwLx8fha6JAP38e5krGwqa+jnMjAUb6OgK6AMsDg7+nw4f7Btr6YZCrfn2x1452sV5SmRxPjrHPmx6tr7es4/MZcQAm9Z10CmM7NA6oQVjTZvyOW6oIgC6wycvLWSBj2XtapzNxvXOt5nLV9/3qym9vtO8fuQYlWV6R/iwVtwsAzficAtIG4W0Yp9r3SswRz4dMiaedxpY8FYAsSTiqE78n/yc/OpoJx+vSAYBSbDyScGftqnEWyEu5XNdKgX4pwOaC9du9K9lXoJ6ksVzSGuI8UNBPyrspVc6nxfohR1dk9dXGT1Uh73tXOjnecGUVMKXP69ZJoZL7BoWVHeDAbQ3lXppGeTzzeO4P45MF1QnEmp9RFpcEU+EYJQGSYx48IPFhOz99vlxB8sKsjGykyGcjf9ifPCci1t/7ZmP0euvlUr7gGKf5km0fAZls/CgF6nsQgIENM4ATZ33r65KKnwg0j00pXTnjZ+xD0w5YqEI/vUCXAtmOqDNkJwIJNjBQTeA7DQY0HLmSrVybn156Hdx/CXwSAiGA7REA9Y5xb8DWqQDA68vpnJJDoaCSBQMVqkBfE4CyuKJPFrYUKBbg04vtlwSgybQ3ZduNLyy1K9Nev1IezAYtKdC14g//ZMH9e8E3f/IbvPy+4Zv/8wWymcLdfvgGx7c3bN8tOD4V/PiXFdt3grc/V6x/KNg+veDbbxd8ell9TnzfAdDlUxoXGXhTyKVcD36Giira6xL7UxSQ+w7h0bMuBryGvFwhTWw9JrBJlwopLqsuXf4IoHHbTebhWcQ1Ign4cIWvDzDXP5WvtK85x1QY+VleAzXt0+pzoAvkrZcvy9J5AZLSls/Bpt1oCiBWgBTj4dmYyvMp2lfGcputA1Qkuct512RIGuSYmNiLM22Wp5IRRESMVyb5XUSgCQgYiDyF51v6rMuF/GY8p1nXQ8NP5lc8W1N9A7m8dNn3rISTtz+Qr6y9Se9UHfkgxjkSrkWe4bO8lmVyX296HMCBcW5cNx7kxytKAM4lUJTlCwCDgPnguS4PP6jT6Y8FKPxrAP8k/f/v+2dBqvrPAfxzAPjN7c81DivAN1+BUIDLylWyqslY3qhkZcZx2KQq9GP0Zp68/Bk32W2F3ha8//kn6CJYfjpQ33bUv/mpK7YJNbdDp42gSBETrEsJRfvU/6yg8CA5Dgj7Gs2cBNdZUctId96QPr5WX9rcRM34LpU6BxxCCQcGphlzAF+kuRyW1RKT5Dh8NAfxHIW4hJJyLKUApXVpkP3JwMsVOtsmRhLPN0cUE6p/xYhObTwrLB99rqrB+AKJ9T5etlOmcq48F/IzJ++G1vfSI6aQ1pHO48d/ZiX/alzyWLtV6IR4si4q0xRQZ7rak5khs/x5vz4ow8Z9amsp5/FK5SOXn8vJFk8/hGbEvQM6bSwvl08BP7VNXIAcLKAXVviBC051XipOs4dQcVCBVuxMed1nQYQKv5Trcb8AtIa2FLE9Pa9hbYMyEc8Cxi+v1sc0HtGvvCeu5hUYvdXmPsw0AaMjwPQVZWTBJ/+GK9rqHkyzojgLM9l7Lc2N0BpFPksA+SRQTPvWFS7NFtOoi/1z4aia0KhLGcvKz5L8HNRWAmyQpl3hvQJa8vyyPXyH7SgCNBdo8znIMzOPSwzwuP+t7Yn3XrDoS36fFajcZxFASgcG2KfsSUEvieBhU6WSRLF4/0KQfbTW8pjm7/L6nmnmx1SQ83vzvr2qt9bz/M+ebtNvKqxDO1ineEPyEGVg66r9V/KPTO+4Mq5X79HboFjbVWydBdETNAOFIsAi8ZlKKpOyH2zfiMt7CpOP6AWg1T1x8nvxvtjTM2iUwBHcFqsfgCjQFsH+Kti/f4EooPINtu9X7N8U7K+C4ybYfhDsn4DjU4McBfu3gv2bguOl2jAf0pWMPD4iA6hgxpxmimSV7gHCKVCgLZSDCyBuic+8p+m4Z4Dhfy0CQTmP0WzRzetw6R4cp3X81Xsh8fnsWTzzlzwvSU6SzEdjLhPxrKJH03y2z2fovBej7NZ/05gE2Lmei2swQGqSPcwLLsnA8xnA8yS905VV6cDFl2jm7/N3mWbjzFWbrsriGF3J3FTScxmz0nzRLmG5CVA5tXv2tgXc2KRd9mU5+XfuH3x+ZprAA8qF8d3An9PnH/VrNgTO6+IBfU2+xT8WoPAvAfyHIvJPYUDCfwXgv3n8+INDzxUNqEKTZfm0wIiateP0/nwIKZHytFkDjKhyHmzAmNdSoUtFe1nRvlnx4z9asX8SvP5dxe33C7793WfzcnCXu4wwGzLbkoWgJLfdq4PShXxSdgVNrjXBaLIHA4U3Irp5E1HIyUJDXiQT+o/WOhreCmTf7TBzBHZYwDzggI4oTiEjNu4d6Qq3P72w/Pkzg/UQsMOCBwrH5gBEurIcjDO1z5SzyU0bCFe1buX0chJiDQCibXBH/ogGpZVod1bUaRHD1D+OSSonKCtL89rlYTIraMcRqPH87oCAAwgL2RXIAcR4SnKxVbouzsLxbOW9Umz4/7admRv7npl+FjYuypZaEWE7/Dy1PYc3hAcC382K8tTGSwbubQpQq7UItyH4FG5t7kGj2z6Wl0GKvE5Zb/X1mi31pzVQJ6UugWzabA3m+QZ8PSr0uCO8Hy70Fqh2108CEVKAYx/Xm5cH7bxNZuV0FliyVwAPUzjP23cLo5r44yU4kr12wkWb7bc2Sra8O5/hfIfbqzjfvwCbB/C2FOsv3SuTtZrCL4DRpZ/9jnMntTUK9nWZrK4oSZBLfJqWOuFZkoXqt2S1n8v2OZHd285QheqWRCo4pYSFNayUVJgKXZ9dkCwANoxCnM+xlgIUtdBE/1ya/QQgAe2u1DQSsJ9rdSVvGicRGxtNrtFU2D3cgXMcvBFAeB5dzPEsEJ/X2llAG97JIZMZZHArK5Zq4Yjo7R1CFbhXdJpzt+7Pwp5WgewXCrk1Pu0z31tXoSdUuGghj++PLidkQCAL8dO5pO7hOChtsydpVpTncDuChc5PBIDuAPTo40zvhNwG7rkZTIgx9XVYxcIZ4OtqfjbLQ4CNuyoFGauHvGUCKNrtgnkSMAmQolhRBO9K328AoKWPTXgrRaiCWAPdC8j2i7eZnoS1QA5AdkArcLwI7n96w3ET7J8E27f2uy32/f03ivai0G8P7ADuP1SsfxC8fLP4WCnK/Uht0pChtBbbvyLAvpg3wi0BSru4l4MPrBhfk9oMCCR4Gp67ansk7a/gCRwvad2TI525EWLLdeQhRxFqkHlt9vYARmCVa49Er6hZwaZ+ka21lDln2TdbgR/It1Ipi5ThfD4p6Fl/ybwte1/xN/cI2VzwI+0yLAEhetaBcmnrMspHyiONOIDpTF/yDEiy1jB+fHbSYU7A7RXfmdt3pawHGDa16yMAZD6X4TKce4TC5czBUDLz7S/VdaX4Z+NQlulmuRb97BlGQJIewXdmwAEY2n7Zplkn/IX0RwEUVHUXkf8WwP8EE1f/e1X9Xx6+wAMorCp+yCTBW+bns0uSD5zkg7NMA7OukBUWn9f6ZgzXHXXuPwAVE9NZqjFzVdRNoRUg5KyrH4Rs39zeUmy0xeILI8YvC4iZljrWzx9Xnk7l+0KI7+aFMQsUQApr4EJuwCEd/QXSeNh4i6ox7iyou+IxuGJlpQ1wr40OEEWcK5lRanNH7FLb+PtIgFArncmTsc+be0aU87vA6PI2jFVm8gVQ6Sg5lasiEf4RCpC3IceqMzSlI54pbIBMSwRYe2zWI7fc4e9Ky/4FGpnd64bPUv8nsGZQnn2OTuEQeQxc8R2spleUEVDfSwQmFObCpdm6ynAgKunTgRqKN/o86wyc9Rf6uKd+wuPecujC0L/5eWBE+AkiAKOFrogp6SmEIlMOMzp5C/Ag4GdlslzMYTD87Krd9NyZ16wLxucYxDYqQxw7YLSm5pAhXz9mLU57YqZ5baRnBqHQy5daevgbYKBTfmbI8yDJXTLR0Xz51+t1eSV4TMqKfZQ+4x6oH5eptXSBOYUzoIzx3cPYqAbPV2AEJTg3SciNOialL+cu0LX297wu9fNSKs+/cezMwmhzqcu4DkStLYoed44CKIoLrB6HLuIPo597R+ueADwn5jh7Tseg+Jbx/FMK8f4+29YkzrgQkEmPPLJy+FWbQs+uSJK7KvdTZRhVV4BC0a1p/GvtIQJeVh7bvj+XcQx4nCelfrDuZ+BN1c5vf5bKW5z9uX1c33lv52dFwiMlPBldKY//4QKxrwH73M8vB41kb2bZh1mz6fKvlN8KeatADoRMIDV5swA9v0SSO0LxJHkoDFQjDAJVugIMmCu+SF+/h0JcoQ+wAbDPXYmO8KU0L5LXSuZn0nOYiKqF7WraC6WPs4rEOUGPA53WklJRoPIp0gEQ9xbSIrj9qCg7Qst4/6Fg/yS4/0bQVhiYUAAehHIIcC+QjR8YC7cxV2PnmvpU4OCIWB2q0NXqPl4XyKEo2+HybbE1uqsBCTHHnrtK6e7va5qGp9YchEmy2axEJnlOhJ5VHs7n4asxJ+TTiWcEzcDrzCNm2Tmfy1mm3NmPmBR/rqWi9Fx+8rJWKMIb9krZIyARIVuTpT3Lqs6TL/tGb5B4lzK+dA+GaG+Xcy7HATgDB4/o6rmswH70faarM3v+fH5e9VzW1yjMZZqPKQRzUMwpz6HLVZr3/COgJRuzgG6cyd4l7gFCvnMCBPKczF6sVyDWo7FiWXOZMz3y9nT6o+VQUNV/AeBffNXDAhvsO62VSQi6sublRV6LKUeOHl0pzgACEZZtsw1MKxvBhC8sMi3pYFKgbECpnemaFQg41ezChTQ+Y+hpoNKxyI6Lzdo6+JEQxCGGzus45ZigsMlD6ErxIMKax3SKJYr2sxz3YsigCBkeExxKLj9b/HNbB3QuKbF5/nL/ZmtnroPeBpkRpvGPscsIbgaSpCDCKpp5KljyG/R3mgIl1U0UnHMnaR6BDnjVarF+qoP7lMztnJHaea7iuc40hgR7E52U8EfPTEhqtqAPyVkoBM0MLVtprw6h4QBLa5hWargMtJ0T5IWFPR+YR9oLufwrz4Qr4b01gMl5tHQlvU3zN7UFwAO3QQGuAJ20HpT7PFD9Ou6J1vMRSBuVoQF4atrBD/K73I5tmmcpUb9ITW1tyApRT1hXxv4kr4MoMlsufUwD1Coyuno+IFpAAnmPfZ+sS7meDX3+KViFC/QsLByJp48H42X+A5YJnM+WAVyeLBD5byqQw7mj/b3WLClZ6bx/zGWR1mlNgsOBzgOoLDd1xcBjS3Va76p97OjeXXs7BQD2w8FwxcBzObareyvwtdaftb3fk9jpUkyGPvjTOlDpSqlgBBzDa8qXItAV5rAEc7qrK5pZKA9grZz7UMopx88wh7O3AZ//WgrQLe2VLIiFkiPjGqZnR/YImPiTLqYgh9JKcDl7L7RJmaWwWa08YZ+Pab362ORnkZQIyW0JcLRA1xJLOeYIppwJyxMBiinPkSvJgQhbo97fHQGWyd76Okh9MWWo9P6z/JysEuhJ/LInBKcx9cU8ZQrUBbW2mlFIDwNmitDSLd1z5lAInH8UH6OZrekYojeAYHm/oPMdDeBT+vomiLGRx0taR95XjGF98ffiiVgLsPzcUHbB/iJoi+B4BbbvBe9/qiBYMFAD5C4oe+pDcQCjygAcxNwQ4GB/HMxotwLZCSYy70gLr4pAEgvQboslrIxKNeRq2bTv/ay082/3urSyuMdq9xwjMEFZhd4Q9OaizMf+ABgS1qY2PXQbT2dWKPnUH2a9YwAhsmKeQMhsIHtAJ8+qfAbm0D5N53gADNwfk7zJdmUjE4HKC8v2F5X2X/LdIyX7o3H/Wro6s6/oK7yNH8nWH9abZcVHckUuP/4hb3ukyPd+ZW/bU7lcEx/1L+tbV5+Tv3wN8DLRv7WkjCealZvMWMg8SBlkEDFhDev1IuXBDi9rWSByGHIcmzJJMBT+0vt0yTKGeaCo4vW3mzHSBpR7M8GnwYR6APSQiGRVRYB6zsgcCYWYwGZWIrnBkiViVuZPihPQGeWRQAPAxnVnltEueJpnQmLWLK+1LlCm74aY1ZebHRBHG613/E0XMrad7aSAN7c9v5vbA4xMPPppcyl1LCc2Xs423wfWxmJ5CeHXhCVcMxG61MXB1pIiplC1GyXMi6N1tpAyutLFLMIsSByzFLMuWRFAYk4TIMSwiYGodFxQ9v7gQUVkf3CTInjUX4z+aPpsyF5rDe39zOXFOJYYg0fARCjP8Y500JBt4TrkvvB4TN33UYi+Ujh4owrraXtSsPv8xdqJ/lJgT4BPU1CSHcCWdNhHPg7Ob5nGdgAGTBBT37s9Z4gnaOR6Z4iPSF+HeR0kAYIWrlj/UsbEiRUAOsgTfct9YbGTkMy48UhklQWt0mJviQh0WUL4ywrMkP9GUv1cwzJm2s6Zp4MCHKRSUqPs7AWkM2/iHPN/3hKQrddUaDx5YLglk6cx6zrQrWpc+0uNtuTy9NNL5yXkPa64SFYGXdjO4RRyaPJCWPo5M+zdMlpcmylx4PqbBGh5u/fQh0MtoVv6PredFpPB4k6lLStl6qCDW3n1lpI5urLCzPrDOTaRVh9/txpfPWdAfemJCD3zeQ5LymOR+872D0AEMIFzzusInK3pJo+S5oJeE0kpzCEBjCEfXO+zAlkKsLfBI0FX422ywxRcIJ6JcBRahSWta47VnOPAwQQAg3IIoM9ftEegTbvhhP31dkSbHeyIc4dDXGAABMSAKiSRmWO/VnOTP9L+DSXUz4vsPaUeOsPlTd5eq7nH8zMAqHaTA4qtu+NTDeW67Ip2mHt/2VoHcoop8aiJBzbrS9/HPkcuR4qva0uOWi13yJbkUfFndcofQT6alealuLLu/MD3UOYL6rxBFJCtod6tgXIz0LHsAiig1Y4LytPiEyAAyl0gOyCHDXd7EZRD7Dhrff2hIoCn8EIQYP9uRVu9jUVQtmIF783aJmn8glcKcBRobbEnejK/tLfJ00KG9Gfdo40eVkKvlVK6x1Pw7Nr5KsvMgB7g61aHegc+yn2U5mu4XW4AXEqXJZFk1VhULRXjHjBZrivi8ks5n23TeumeTxKyY5yhcwhsev+U0+iR9xbHBjgr6QRweqH9uVnRzTLeFVhwZVh79LxO64mfzfOZy3mkV2RDGTDe5HEhT2c6jWH2NLgYawDjeM31ZANIqvMyTCaVOXgUp7qH9+b5mHXjTF8B5nwpX8avB1D4EuUFRKIrVWST1etns+DjA0z0PNPJjYULlUpFCPmK+nag+MEge2I+pJlJQR6joanNuU3hxhnWOOl9pgU3M5jc96uJnz/LHh0zU5jbd+USFgdg7c88QrVmZkAXtEfP5/HP8wfgdE1dvFNMIUvJFA1MqWcm4e6VpzwUXyIRgB4ug3Lvh763Q7IEdoVEs75HGzijhZiUoa+h2SU+l/uIifMgzYfG/OzgHTS57f+i9rnSnj0ccMGwmgKLj/nU3hPCWy7mb1J6oszwTLhoc7bil9rXW4wlw5G61SDAk9lrIKRX//tQnKzqg/Bga2cor0ivim1D2k/zDSBXZc83q+Skh63/HeuMdUo/LMPSlgGAGDMZlTJtGEJuRMYbDNL+ttmdDnrgPDcTwDF44eT1MfOLiU7Aj1z0I9eXnysljSFd2y8OaY5RyhMTn7sgEC7ijfVe9FU62DwMRUuZ7FXdi2wS3qkgUYG88t4COrA7K53B+9M7xc884JxEVZIFsygiS3UBUIpZh9PwyNEsbKulOkJpy4I6yz26tTaAkYv++BzFtWn8Lq2JU/btBzRYg3I98zoRWwd9XhFgApYC3W0e7IaAZA2nourtVkHy8EPfQtyDnNMqLlZIGiOkfZbGJocOqI5OWFdC+iTHxFE2tYGfWQoEn7Pp3Bqec2ApPtrTM2XaU/F54gcPQKc5fIOhAd17QqCLldtq32dHEZTNEhNqm/hH0VEYm5cI19Ph6zuDRX629JAB2N985wvnpHKsSh83mfdnSf1u6jetaFxyUna1sAb1Z4tCYGuGpcghKDsiVGIOfzr11wY3/lfeZiEYeKKddQWKFmPBfkXIhUrfyye+p2NdHDPyVLWwrJwE9ZQnZJZr4W2cQItTCENuR5K3B35z5f00X8EMl9keWZyvKGSotPEfeVCLYAAp3BtxkG1IPMuvvJSHIn+BjPkl770vydNX33/h3P6QrvSBK/Ai6xWDon0xnldeHRf0oZJ9NeZZJgPQvZo16sw5LYZ6pvK+mBAzDMll7P8j+mDOvib55q8HUJgFcjLUTRFXKGr6O+52TdeyxZ23HZEMxkAkktbhde3ugftu7u3NDnwB+iG9LmivNxfK+oSUvdkhpEDZG+RtvHM4EuaUlNwqC5FwBPo4+hVi7Eft32WLlzgDDBeuTKX0uNpMc3Ik/q06JAbqYz6ho/HdxKCvBPLFFdB8PVWun6hzGt+BuIww9q4AACAASURBVNh98Z9c7o+ju0jnO2/pCrcuQLlZIrZS7Eoh9U26+9i93OKqyGEsckb7wfJf+0bPltFjVkxY3sSgirsp54NmWUbGnf7m3bTcD3OuhYdKMOlLaCrLbNrzH5CJzIwmM7Rs7Uo0XItI5YbW9Nva54ZtmJBSPtuH4sIqn8dnUio7kuvlZhCkXCcY0n03RPq2dus+AF4BKSL9GtGWFeRpfNM+EQKGs3Uhr0+40EugYk4im8v10A4m+IzEQG0CplgH0PfEsiCktLk9ETrS/Hpbs57Z1Zc65i1hHoNl6fd0+1iEF0pzS13KyWDv11OMevBh/yzCpICB51qdPo+XCQ53Gz/PID4k35uTkKY+zV4VwZu2HcN1YCIjfxEJYVR2DAKoNFii3yxwl2IKiUjwdZnupUZl7hPPE9L8qjaOlZejE99VntjkpfvRr1xkG9bFQwVSIqcZ4HAlyEIUentPlCyzs3t8xIiz3xw77bkUdK3Q29KVD7aH1hT3pJD3w6zU3g+RMfwh3OaLRry+ue8DkXTvbne4630zS1+6m3xcQtp5fG4752bioaqKQmGOyhHXPWBJaJlYrgpaqfabCftEbGjpwScMIwQibtwHWzi+Sekx7xN0+agKGmPvB28WQVtLhBQI0PdPVsiuhMalX7kYniClQJbRCwIOTklrkPveP/fPdEtgPuByifQ1l5Vq9t3Xotbia9ct1vN5lMZF2WeWWwpardaOtO7bUtDWgnaje74ptQS+zPvUypCtAQq0F/P6KffrBL9o6B4mvm9lO2wclmLrvXpugaYo73sK1ZvKS+ATILGGDHxKz4mDUyWNaQLIy25tDwUfQKuC7XvB9r2ivQCNgLsakLD8JFh+Erz+VrH+pCh3NeNYQ3gQWUHo+SR8H9tNE5a3wcKf6FHggMgqgFRs3y3RJtkV6x82aC1o7lEjR+v7gETwfVZ+AlSp4ZmgnpMhANZ0do7vpv9FjOdnfSLPyRReM3hDi7eBXs00XkWYUwrt3c3zsctgzlvaAahcQw2sM992RCPCrDTPMsmVFXw2IFjhwyNZxhySRs/eAayDnpIt7UXgMTCbQMtBHn1kVMuhoZlmWfsKkLgyNpFn5/Kzoh3tbB1IyAbAB0BMlkXnq8OH671nzxRM81fGOb8K3R7688hYmECG7LnQjUQJVJgpy3AZIJp58Bc8GH49gALQhbeZHrmvhIvPxcHD34MCfKEM0B3/ETrrB5a2dJWiOEgQQmuLuLbZapMV/MGDgsJVc2vjbMnic7k8Hp65bwQ+ggHq2O+r/kRZSakmE88CbD78U9v7PeKuQIY77rz48thftGP+GawqZUrAeNWXJBzTrTi7k0vBYO6hQDODLA/caIMe5NjIDOUy3n/uexmfH0p8FPqRLMG/2EsBXUE/oYtX6z0DOld0qXDwBo2r73QYC0Ps+9+Aj0FruLzr96odD9Hd1gGEDEgNzZdg1pHTIlvoAcRtITNJWo9X/UxzO+xjrs/51eHKyak+ChDp8I0bSmbPANZBZYFrkDQINIkvnjxXHvCLC5e6+brIGMv8TuZdXFNsJ8GVE2/jIT99PtPVHomvvK8FjwWA+d3M4yiQflQ/P59BwfRseBXQe2u/OKeAnvAsuzsyOWNRU7DWnnxNNjtrZHMANCcy9r6EApfayhuI7Kzgd+kWJfJFnk3B29I5Q2BBSlIKMSp+qS9xFk7nopyHId6N5FMZfJjPoAJTtibFLK7ObNdAwi+iDBZGP7KSoX2cahm9SHjOSPIaCI8febymTm3of855E6KNjWN98f5cl4MJNEgowW6u+Yo+n4MyBoQHQSZfe8K/tbuiD3yqAeHyLwmwyFMUa6x0oBDj/KLJMA55fdl4ODiaPaOKeG4ARFLCIfdB6WWJ4lqRz/9G3eP/M4nCwg34RIEBYfBrFbN8lekqwSzbt6QcGHO7dkVBQ9l6uct7wfJZ0Fa74cGSgsPmeBfUN8HyGVjeLMm4NL2ce8n7juMnVieKAd7lSAKNIHKOHa8FzZO71nft7a5ioipKv4FDpAOfV3JONi7k9dI84Wvh/xNfvvJCyP8TqOO6uPJ24O9aILv4+VLGnEKznjIZQ+wzOcuyX/AcGOTJKRTwIRgaXhTJ4v6ALuUkKp+/UN78kB7JlV/hav+wjCxjXD5/sZ+mMh5a3h/IRCcj30cU8uWFzPNB2V89Hg/ooez790Ef9OHXASiwn4xlpaCkk6LdEsoSca4FOKaYdMZJqQKrx+2zLD46IPuLsf0c08/v+CdjUJ0hyn3vh19DWOUjprsUyH2zg5Ex/PthwkdKvlQA6NJjKmmlkvuUpA7oaGy6EULXxcaN1rxZMT1aWN/CWqYUPB3NI9LIDOQA9PXmcXvmJSHvd+v70hV35btUBvNNFfO1U9kK7Yz/lPSkVhdq2gkwOQlHGTTgbQf58KCFHHAFhgL+Mh46jHk9ml2LqZ5g8SMm3xQRe87nltQ2ItHZSwE9/pbx5fOBoKrdEveABje6C6E3Eo5ybLLVmejtHE+V0efo44SQ5uy1+aARAcMXwmrLZ9/fc8P736X0MKIhCaiPFxXOZXqGYFEuK8cytgasS/cWYNUBUjmQw37eN/NSuC2IJHL0ZAL6OAYA1T0YUMTjuhtUd6uTCkceR95mEtedHj1JZ6z/yaqOdKjPpK3HuEbyQgcg8jjiC4cKw4Dy4cg15AkyZVm6lVf7mpvj+KKfvKqLbchusCK213htIQEGzl/s1dyPgm5J79ZCma8lBbrAFLxojzbIzDtItNYeh0n/ye062kPPOJ4p/B7oPDfzOo7h62qWd79yDdtunib70XMPZIV74WcF7WUJq932m1dsP1TcvzXB/PZjQ31XrD/ukL2Zd9x2mIWf7rxuwYwrHgHPVdCvfIuEb1mI51DyT1f6IjmgexMcrzVcrOvnzby/vD8GbCsQWf218zXHzsMq6XXIe4ucC+oeB8wJIHe/QYi5GACzkorlFpCmKJ83szi+323t0vqYPR4/SryY9zsTg5K4TmcgUxsgFbitkTsh5jVZ3WMu9vGaVM6vuIU0QCARv0K1K89yOOCz2v4y624bAXyu9eb1i4ScYfUp5P091iJKMZADMMPAYYH0oWz73huAICp+mS8dh8kGWV4rxWQVrrOGSNiHDdbn5nIRQaoKCMGztYb8NsgoyhtQNOL0ld4pBNIgQNFY++1WItzBxhJAVb+NAZ5M0NZX2Q4DVlYP8yDIwlAK8ZueSgJLtNiZETwBnhurGPBWgbbW2GMKa5dWC2+pnzfzJvE51vWC5/tebUzCyHXmAAia5zw5BOs+7mM5Kt7+nYL7bwT7N4K2KMomKHfg0/+rWH9WvPzu8LFoNhbNb3lw+S9ADHqvOkhDDw5pvS1sX7tVtFvB259UtJuN+/qz4vYH5ztF/PYXdJmcx5h77Y6eAZSzXCbIHmX0drwtYdwIj+IZMM4/2esygwgyht2Ie0to9ZDWl1sHL32dD96rgMuISRaggUMV6mfvEG57HA5uTbLADCbw/I/GpfNWBMjyX0u3jVEk8VxLw5XSE/UcRSXaHobUbHlnwmmei5R1SNkizjkawKok538JAE5GqytP1/l91XTzWtygkWTydL0wx8rKe+AdcRH+EO97iPMpYXe03WW82aMknynaxvZ8RI+MP1fPPJIp5yTmPJfyM+wLz//ZcHRBvw5AgTQM5iy8pYWbP59RR36XB4qKsCrkWMbn5vjUtPgHIshRulvQcL/sUs8M69HicMYSyiOFkKs6qYxnZreMfVVJ12pSACbxgJ9CD6DawYMUtvAomV+UkecjCabDmEYSxN7/IakS+1FLZ/zpuYgFzldTkjmHAjAp+uIMumBEij9CLlt/N8rPc5zd4Xmo5r6eYrwLIjFc9j+oFcBxzQiulE/gzJgeMSuwSRdtYT9JX0KCL6z8wUxyOx6VMeeJuMrBkNw0h//ZZnrKDBauWUlN3xEkeLRvGVt40Yau6Hg+lUmxuqIrTw8eKicmnm8m4Oee60E+Oj/p1pnLyGPBBIwh1F5bEi4Rad5mcuU9FPtmOuDo8TFfMZcphKNU7rxfWO+VN0qmpiYN873gsWNS2wAaMsiRD0Z/b04kCaDz3rzfchkBhuipr+SX0prnAOg3LwCIMyWSIDYY/0QLgCEULPKsNI5UNiAVx6eC7ZviygCw/tzbb0qpdqWf63dvEJibN4V/qQWytLAuRl0ODMd5ldty2BlRtrQG1d2rj3R+UNmVrmxYqJ+AC50AxDDW015SEUtoV4snPFaT/za3Zi9lVHCpVO9JAWE7H/CDh1YaWpKCr6QzpJTY330PlA6g5X74uqdngskc6HkVBKMg2WDPZwUmwpAwJGcM4CET13uEVfLaTNjtGuRrBH2yXDLwWI31mMGNoNbrQvX496X2JNSkWh14WrxfDrxn4BywqxoJJlCWWuDu9Oi5JfnaAOZpBzsInKCDH4VghCLc8UG3e88zoP53vTezrnsd2UIu6nMgeh735J0KoK9NLhta+wGEV0SWs6bi4t3MYgmKLOd1LEiyTT7jk0xZtob1Z/NQsJvJLIdE2YB6V9z+oKge5nDyGiqWjDO8IUoHKAOc4Ts+JzEfwj4DxfOLlU1Rdgcc/AgfQisawJxac9LbkNMn+Z6JWKPrHi6iflWwbOj8OwNSTXsi8qkehg2H507074Iyf8nPznoKZfg2neVfQ3Mi8fwZb3WI/7mfaxitTsABZdRHbbj09itn2XFWsPn9rPfMcuu/iefYpRzzgRwbdfl4zDLUI7rw7oxyshx5MshNRpC5rslT9zQf/DPLT3zvqn30bv3o2fxO9nJu0xk4zVcOjZ4pZKxHZyh+TYDCJBCG62kW+DKixc+Afqhf3VLAHyqnZFZuWVL/PN/pHai4CymR8Gbb+93H7pYXqP1a3Qp0+DuT0JQOc12Ko8EJ+Zs9C0RA90S9ldEKlpM7VhcaaKjNbQ8hpPTNnhcDFdj11j+7EjqA7mVRiwlw+9GzmyewR5fqHhNnQRzACBIA0OoH79Es7s77ntss7tkBdEUgbkpg8rdSehxrVkSOlIdgOACSsMUxBUxopNK87/ZDq/is/Jc+PnO/svBg6285jUe4+ddqLsmzgO0HhPD6ScDyCrDfWQBGasuFe5sSKEllC9uWx4tW/pZABLW8CCIJoc4Wd69Pgb4npUAWV0xzBnoYY+L8DV4IRUzhzR4cZOT8u+39XTJgeoDkMeAc8HfT+I7xf8qcHIAL3MmiyfoEo8KeDx16BtDbIvZ6O8f+s3+1wsJzpkOG79HLgbG9czZpYGwjMOaByGMwly/JRTMpKfZOV6ilFkS8Z7h1J0svgdSmY+xoXu9i+WcA9MzarJMeVR+BN1wziefryxptl908PSC+pqncBchSzboGRcTLp5wV5kI8HX85n0eMe8oDAQzX1SlBWXUlpcAEbmbcbymXTNyk42fD292UPxGzcocbs73f1oLjpeD9h4r3HwT7t+Zm++m34iEPHid/mIcCUo4G2XZAK/T7F6jH1aMpRGuAAPx9rJ3vGRDgSl2FxVQfivrOM9CYQvm891uGAKAA7XUNRVAF0LWg3N17IlztM3BcoGsGwm3dHJ8WHC8V+6eCsiuWWlDfdmPVq3lYlPfd2vPmZ+22m9dP4j1DyFwW6K/WXOnr3v4vsTeCx9ATKM6CMp7viah8MaQAnp8kzjWBl2/8PZRNVUC7slk++5x64r+WrdcEgjifngtDl2LbRdXKdxll8ES5UpC4P7kOVweDG8abIMQUXCkNehSIuteRA/T6skJrhb76jR5x9aFTU3Pdp+wkYsq4DVxP4se8EeiAVN4jYTwQsWSfACC+rvdmRgk/g0trOF5s7Mq9KxdlayjvyVJHhZbrtDW7GrM5X06hQLGP3HOGHqYBhhymqFuohbc7eTFa6BJ5ils4s2IrJlO2tWD/ZLkT6lvryu4xWgsDKJS+jsr7gXVrKJvi9oeC/dXmo+ym3K+/PwL4aLU4/wLQHNQpPid+U0aEXREs8fEKnujHIVRjDS9vCr0rls/W7rbaFZPl8P4H//Sw4aMNOW1CDmxyNoCVfhOGVebeQKut9YI0n5T1DrFQsiKQkkBIroFSwJCp8EyYFVHOUwYjMthBOSrrH+l7gclf3cI9yXDZWJCpyDl0EhhlQRoMAjVLcgvLz4DEFTEElXwxh5elck6x/jn3wSxr5++vaAYIslckx7LWEyA85Ae4agf7nNueKHQDygJXc82iKROleizXXWpn8qSgh/ApgTtlyEF2L8iRWifQZ6i359YaKM9xBhw4l5Src3vj+4vxy2foV4Zg/DoABUFiHB7jV/r/4ZpKQZYbkVRGpHJALen2OSu35XqzhxCQlaxwqSshtJqLGrqrux+e5j5o7+mc9LA6iu1MN8oHeiKifHWVC10UXojEDwdxFuKZKGUqGxRYmKwmmIMf4Pyslq4I7UcPA+E4zZuNh8p8NzA34TFuPhvfySshDsBu8cJxQJofDKFY+DjtO8Ld20lYb1Mgu3p4X+YELTneNcJHvAwpLx10ygJkprBOXCiv+Q5gVbiJoyufVMKHcWznDVtKB5l8TDSvjZkhsQ1kYB/EzEVoiFzU6/2ar56JMAa/ljEOd1W/rjMpq01xffIhBHTJ4lAkCpzHxedTpmdb60kK52R8M/MGEOEp8wEaoS95XBMjJpAwj3mAEFOivUwXmflDKdFmwmkIrh8o1qSMcofHBh4oBzb/kfwzgT4dlLzw/uHr7JdQ8N/7wUuBmoJcrT051lKHcC7AlZF3S5Y3JCYU8Tha9+zKyXgJ+GagYkD1pZ8PGWTNwtkCP9z3fm5kt0Mp4/wN7UrnCa90dfAivi/GG1RaT4zn8yTbMbZFNVxx1f/PbR4SrBVTVsrRgDuwfjaeWTb7rr43U9QTmCD02OJ4xDwg4sfF+T+F4/idLa9q1nSQNewOpMcZ5Ul/560dc+39FwCuTGGtwHaYfMtwi2xx1QJdgP2HF+yfKn78qwXHJ8H2LVB2YP2xYv1xxevfHahvFuKhe4nz5OQxpBo8YqCWrmijoHy1d3xehWuPcgLvuydwTMUvyxHcYupz7u0p6VrMsjvgMlnVqQSK/waVNir5BdOtCD5/S/H58v3pwmQYSCiXwMIQhNeiwurIZ6S2Ygr0knnFWZ4QB7rb62rXIadrMfVldUCs9me5TBj+kxWtTL7P6XFpZY77vq0FUgU4Svf2EPRzJ4OgCaSp99Yt5oCFAe7akQ7Vft2jsq+l95myxWRwoVV8AHt2C+kxRRsxzwyZEJd1eDtDyD8uH7Htx2vF8WrAInMXSFPb/xXj+8NYyvCZHPbOethYie/rnHRSisZYRz5EuxfC1tOhEG0GimT5Fbbe3fYfgATnZflsVvL6dvQQHk/gKPR02o4OJqiO10DWvhZ1zuNBY1qs1ZEsMW3fY8J3CFBT36AsQ35cbL9wXZyu+eQPEB6tg/zQeObKJBN7mW6cAdA/I9CArgwG2ED+SzmSZyH58NWtUczXkr+aLeUXivbg1dfSd5NyO4AJuW9JVpzLvPSyveLBfBZADlvL1nOhEacpsjfi8G5uK5AU8KPLoLMMT0U8ZHYg9v3YKec5mSdP85Dk8FMIxuz9UmWsI+sRbBvLjCZ8IURi9kADqySIfTEfM5CT6aO6nH4dgAKz2y7V46l65mr5/B4ZxrNw3LPwo2erZ0Kg+bDnwPKQzchiDFKP1wtFgoyIg0wLmJdhIQ9elyQGQCLQQabjQviQqIUTzbDge9qkFF5DMOh5FiKuDZhAAuAyfGIYbi8vW9VLUvaPxCzY1vzsxFQpUA9X98ygRtSDnuCSbcllAj3ZExHk4T5iJjdZUp878wfBltwGut5fzrtnVg3Lc7X8FfcN4T5G+kDxG5PB+STkOLsi8Tm9DOSEoJZrJt36zQynO4anNmhBP2h+iWtdqvPyACBTv987A+cYiiCu66yI+LSBwm0uHYoJve2Iqyu/RHepNOdDM8Ce0pXyZUHEFxbPdQCxz8ILgu8nIZrrnUNAtJ8MPiPMa1pzTaG6o7uppZweQ7+lf+7eL9rSQUbUmH/X6T32N7u5ZWBhxi2ykFDdSj+Hv2RFnPNIqyCVecDzwyhUjxgLva3I13VhqdB1gX7zEha1HhJg71TVkxV9WDsiyOFUsh/9phjyzYm3ahFzuQ6lK8UX2wNd0fdY9b43/REqU9kyHbcgeD+cd0i+uYZKGuPDjtaBWYKsLCvGFzYP0mPj6eYc2dvJt1VN5mkN9bPgBqDe7TwzpboL5LIdfb78vNDFLKY9GZ2tNwFCCaNL/uBeTmWUbGZPMflw8EEfxFF6P5nUTnxM2lpQmikjHLfjdTEFZW+23mvF+5+seP9NwU//WLB/q9h/OCC7YP19we3vCtoqeP3bA+uPNl8BbMxnXbJ6fjHEq05nmo9hgAm1xDPCG0+GEC3pazSvZ1q0AxxooKXfkmNyDgSuRXQwARiUTKCDDznBs/r7yjW2AR0Qcp62JDABJoR3T4WkHBOcUYWuzTxpSFyXXNfVxlhrgd7MC01Wzocr5e7tEnkIYm5szQawNAmokfDPvR2iHwXBA8zzw0FsH1+CY4W5OXxdxzQpumcCx9hDlYSyGRChBQTRLM9CCxd8aak/wafh+62k/QvjCZXjMN3ytE9gAsss5B02DsdLwf6p4Lh12aIclEnRb1doiu56GLX0+pqibIC8280k4uEvvH3K8rf4uxwmzp+Pn+zNwccOsgxyloxrhmEPy88HZGuofgtaW6sBbLvxZIYsDTIlwYR1GcocZMRc/0ziYAjDzNgnCCI3Ccujx0LE+gssl4gO50cQ92DaNycDoaZExcfR5Y8sk/L/LxHlJso8GVSZE4BTXsrfzXV+ZLyY+5bzlE2K7EnZnK/LTmWekkKzX18g8uFLN/yQgY+hjtzG03sJmIicVyXJVRf9MW/aBwpV3gePaDZwXVwv2o09SOOs43eprHyl5JCL69FVl195/WXQHNKRPPa+FLLy6wAUghl2pmLMTocNOm8GcWuCKW7JKkGXpiaAND90TcCjx0JYpgN86Iwy8i0Q6Xf3VBtQANCk2JLBJ6WAgx+okh0UkaAo5wDIQgTbQxoE5BSTlxDWHJspgH1W3EW9IdqttQIvqyWC/PHzkNgxFKcKsyTmpI8UsJlQMq6Fw2iZy8IWFYeswKe+MMSBz+jLDXjp8y97Grcs9OT25usVCbxw/LMwqWqAlIhd76UeunJbh5CXAIm23a5iy/XRkpmtlgdGlJHteb/7Z65cU9GgZ4WmzZqt6kdfUyfUsxSXOw+cwhxILV2DBlw/A/SQCbhCpRMzzsLBcBBR+bJ+Smb0oXhZ/wIRznMCuEVAXYEewZTuWlxHpZhjCwSYKLfVk2vKGFogxUORWs82DvSQAB4cPOCVLuvtxFtiHJYKc5VP7tOePDSuJ8teLMljIhST44A2M01qdsP2A21I9Mjv+NwUOqHpf6F/OcMoMhgT4yV2BeY0l+ruvGGB31uvM4X/2POuVcwA5rqg/eZbtNcF2w+37qq9dW8jAfp1c0vtHkcELwjSzCFpmbKwB5wsSubJZQneZHNvE74zK4qiY7gN+RZ5iAtlQ/Izjgnn+GinbOTWpuz+m3gDyN+tXVot8ZxZ5RTi7qm6VuPje4uEeQEkfDZlqf5s7v4QiQR2sh093M4T7ln2dXP7LcfRFb4luTZDox7ujcFjQRAKERPrRegDx837H3kWYEtxvmJyzEjfovyf/+oTfvqLgp//Crj/RqEvfq7uAtnE4r4X4P6DoOxJsS5isfKsg3tGHbCdQwgrc5IkITPzugxO52Sn5BkMc0lJAruXR+1JlR08k711LwE3JGiq/3Qb1Bwi5fMbijxgoIy/K4d5EFKBby9LjHO5HzEmcqTyFs9VwNxFwb9LPBPjsNt+b7cFUtPVfqrmCq4KFb+O8dOC5acNZd97on8O81K65wr732Aymivc7VbdYr777QjiCl9B5HVYq1uc20mAp0dBXK9ZXBEAOogmfQxsvH18FObuf2F5H6h0j4jhSkWxPhwvNcC7+t5CyafHyQksann8AV5Fuf/wgv3Vc6d8svwHcth6a4sLeS/F9yZQ39X4rXtFlHRjQlyP2RSltQAS+jx3eVJ29StL7f+y+Vx7uAzBZUnXFhMwCY8WheeosDAp3QT1897DewHUvZc7K+ExnlV8r8m4JtOzwUMIQPCZppZcM4uLtfNa+1/6+wSld6vb5OAOFMdcsa5YdJ0nWL3+/Z54D5/je1leyJQ9M0P5G8HOuBp5PpMur3fxcq6AhOxNMX03AwVxuxQ9HqJLMt5QdgpXuNhD7hEQcnUKD3gUt39KSp0V2uPAKQQhUZZp4xay3HfKoZTTUzuxLJb4OQMrV0l9LwDrQbkHwDBaAUYP1S9RyKtk/r2eyOGX90V+lv0ArsM+xI0Lc0LzK7nrKhTiA/p1AApAV7zmTj1k8GlDZyUSsE3H/Au1uLUkHZpzOUlQHNHWvtAFpSdukw5I6Op1ZgsW0OOupvbPSQjjmct+y8VnqQ8FydrfDycFE0eiC+JE0md07KKN8fHVs3n/zO/JxRxG/Ynxzu8wNCQywE8b5ar/MzoegqP02yZo6QBGIT8rLRSK3RoRXgUnBdOE/i6AFgzhDFdoOWPw29HBhFwurUuZV/nauHJnijnNlNHVjxjVozGli2iu/yqebXbdK3JO8DLTdLXjkFE3QtNTP/M1oK3vw/F2AgFgh5zIRXxj8gQJ0iOQXWm5Xc3rSkj1TEUQAaXZHW7oX+pv8n744j7LXiuqUxgIhZhpTmf0OOr2NiYFUQsCADrtzaZd6ndlLMb4Klzm1FezFrbXBcenBfs3FNQBoKHeFWHMcgWXwrdQ+CIwyv1/xQfT55IFu0EBLBH+ZYLiRRl5vCKkQ8Z1TSH7ah3MIFtSPsYwuQfznse9wj1gvL5J6aZl18AFRXGXZTnMfT6Dz20pk1AdWgAAIABJREFUKVbYf7O+BndZRo9XFnWe5ArH3NcksAZILeb6zGv1LEGihEux9SudvVQY+bcrYmBZamVrLXj/vuDzXwje/2LD8v2GYy8W0nCvKHsv/3gBjtWvwKtiQEgp6ObHD/jQleCavdrSfAmBpbSXupCYz3f0/6uER5M2QeHcSeu3bcDGQC7k0plCRxBPUNxalxtExlDEw2+8oBIO9NCUVB7joC+v+M1gJj9qDbostkY8L0PZrvYn0JYLPsx+VLF4f8EwfjaGTKwn45Z13p/XnyVrvEiAmqtt6XftZYnLRKxzvhpRxUCFkpUpV8iNR0usV/My0SEhIT0ytNpYSBOUHRiAhKw8A8P7/gVQCvbXiv3bYre6rIBWoL6xoxr2LNYXngpNRm8QSX3gmDT3vLi4mnIASRQetmFrTkqJGz+DZzdLookC24+KASwpm4WYBNiZ+OZJBk5nwfwz5EgAQA+DkIOyLMwlwfoINJRe79x3M/KJgbrDgEz8/oq/xBp0Pg500O0BEHICMOcE41wfIStRAb/g0zmMdqYMhFzQLF/+4isFc0gCabaafyWdQhYmnnxFlOXmUMxHcnP3jG3jPpn5ltBDrZyNVVcJvqOcC5mJ7wHjmTKHM3zF1Z7xvcupPWRGzvL80ObEX/5N6EtefhP9OgAFCnbJ9Wm4eUA1YnZ1SwJ7uGIAgyCXrUNZmD5aIJKRyINMp0pC0J1p+v8Ct2SnKwajzH1aYK7ESrODx/53QYCKKplO86uTcgbbcAVP9bh1LBJAEmV/73FpJ1pqLwewNm1HbBbF0jeux4rKcQBLRbuto5KpHVGW9/0MiGTmOCsvFEBlOliTkGbuuS4YN4kxjWt6No1FHQoSLZrJcqivN0Oj3+/dRTlf8ZSE5XCrnkEav5qTYTZ9Pfl4UtkFDMmk+zeVHk/WFtb06gmncAQvGq7e0a5sa0KuZUZrZ4R0PixCOQWussAO12qWKfaY7l30OmBSnlqjLN13i/273Xrba5Ln2B4p5o6a28H2Xdw8IZnR5uuUgGgvrzG0d9MzIuZtEPtM+wHdtHsxALaXqEgS4ImrDmX0OAG6F0NuP9vM3AQEovh/0+hj5CGgx0VW+B1ciusP7zLOl0gHtvL8FoGUBTNw4IPVn2UyQNQkkCQgohSI3xSj2xbjzbWsU26BWNOgwlUtQeJtRXupJgS/FheggbLYdW2mAHsMOa/NKykZ39G6l4Hzu0jgmLwP4FfXDq799EAjj9ydt9GThs/ekqXBxyvG/ZSUse+54B8kTzyX+Ve0vdbI3Rg8j4D25AEQyWWzV8Fi78tGgAumiN3c62JPcddb543DeiFg2sSvqGwoN8ul0G61C9JUNNK6MgtrWt8HY71hHhS05vr4tFdPtqkabuKFTmmueMjnHfDkkgZ8dMuuHA3t04LPf7bip38kePsP3rG8HKjLgf0PK+St4uVvC2QD6h0OQAHlgK2ndMMEASlpDdjdsxAYXWUz0RJzBSok0FlqsfXBuGpeD8czKwlZBOqDfxdTauR9s/2/IhIPtqV0pindNV+XxdzrW5d9GEZTVYE9WXWb+jWV1h85gOOTzUk5LKTgqIL67gD9Ws1aTzZKj56lDsADAFs764L2YntEmoc3VDGlsmlcL1gPm38mGOzXpCrarUYfxNd/Wyuw1n5tKMd6dz6fgJdWC7Bi8Nxg+IEUuzozLNgOxrbXxfYJ81uVHlaiPu759gV6R/A7JrfmXmFIgFBGWQTYmsssfb+0WzVQpaLP7QwmENTzfcx9UXQzkKnYWO7fFLz9puD93zXPHC3Ay9+4J4J7bu6vVOBNTiibA47akys2Xqm66QlA6a78Ct5Sw+tcrb3oeQ0A6AJISzJqBtgAlMPeL/cj1gflvuLXvg4Kuss6EUrsgDJDYQa+yytkAyQwcEj9Wl96tAyJTe9J/uS+RkNOtJjD+nIIkDSN3A3hzZzPHV83MhsfKcNnnnOlFGeAgnlHZu8kJAU/AwNxQ0NN54rLkCHPJFkoK605kfR0+8NQf4SmOvDoYaSn8MD5edIEKoQ8OXlc8Nm4QSInRM7jwzpman5VuX+n/n7Ik8ClHDyWoQY8UgfK5MbNuEb8yljn+ueQM6Kk9ZD7qgqgpbDbK70t8ffZcyLyLyxdfo06EyDBXGFxYxrr92dmPKRM7cyfTd4kJ5Dtgn4dgALgbkg4MxRSXriDlfBBJ+cyZqQxD9D8/vTsyVKf2/gRAwll+uJ9ILKCn2LnH6FJUx/ngwIiHaVPyCyfNd3VmaDf1mBjIX2B0tIhtAiMzDTef0Qzujc/Kw82HHnGR9bB6Nc4/8P1PlducqQP5vjDtvK5S4+NpBB9hUvQRxTJUgh2sQ0XKOwlXbmzRfMvPs+MOnsdXDfuY6RyyO1Q+wHHds3oaz4kcxnNBCJTDvUMSgC4tP7PivWF58IYVjCDYuX82RVJQtN5EAWA1no5cWhmRu3CKXTsN9ftiUfZGJwSJPEdAHg0JfN4z/OfYzPzZ0AIAvme7BD+Mt91flP8KjaoK6GCsJ6Z0nMWagdlex6nuY/8m1bZmbj35DyGWkuECAy8/4pmcFGn964+O/UD4/MzICXSefEFP1da4KiZNEBEgXlpZmWpih0mew3lDdIFYfGEccZbADqsKpNSCSwJbh6WPMzJMMM6I99COQMUYAy66hAzb3vE2qfi3gYrUG8NpXpb94JyF5S7gRQlYYk9gZ6NHS3gBMKCf/o1vV/0oIq+ShdGCaQy7KGUfj1dXvsXVt6hvMSj+vXSD96Js9rO/p7FHmcBcOAnAK3xAXQ1/xxu4c+GMJHI38DbdNRvgqAyNRgBfG5NObe2RA4GAFBLMtnA9eXKqP/QAQfA6MEgZTxjBh7EMU7/T7zhyss7EgnyjPR9GblCSp8L+8OfiwamwiS3wRT9SIro63hIuFjge8JfI+BFNiISey7XYePqcf7K9llZrQLNPQB0MZ0xhl0QV5HKgfFK1sXHjF0gmKH8O3lXAL6PbE7zFZ1jni/0NQH0M8fXNMOpGHbBMcjzmhMjhtcAk0DSWJgAuRijJYUZpQSUkdSU20ro0TLLiq5bPJLZ87Nc+4MSnzyM8v5/ZP3/SDa+oPN13+T7H/CtKwWZ1zwzBxQpzp92lgkmOnkKXLXj9H9mMI91g0uvhQSqfBV9jXz9UR+z9+jVq7n/ATzPcpP0hJdAlyUm/nZd/1f2M5cXXrGpHuV58WgNXsz//Dcw6dTp74/a+YU+/CoABRXp6LY6ek7399nCRoo4xyTctczxyGBrRxQ9dleL9IQv++EZsAFa9OW+daUuMxQghAn17ORDvoG0yGLY1XMEAGMyGB5ocXMDej+y9SkvAiYQOqZJTeWFF0Sgs878jt1Yrcj5Ojc+HzGSagoBcFYkPHGmLriM+0S1hGCSQgkGgTNlty53u+4LN49lZgZqWhlZL6+Zu5oTEZ/jEvGr58yl3r9971Ynvsv5W5c+BgDyrQW6bSag07JJAbF5e5YKfH4zFJfW3XSoDy5NjJlvsGeLC8D04EhKZAaZwjOjFMi2jUlJ0/gOieeaBqJ8hYIPeSZa87FJzU7XM8rri3247d4+T0jIHAGqdk0kYOUcB3Tfu5BOOo5+d3kRf7ZF3g0rZxkF0HydYnzmZcStHxkcqd2qnr103KoRZQ3AgDNq7jfejJB5AxFf3nTBGPxlAe53F0Zm9Bi9zvjM9/5GPhP+ub1vtdjL+96VggD9/P+cWyLXRS8Ots/HFU37Zw76yeZWVB4o9KbKVwkN3i+Jt7SG5XefUT8vkOMlYmrbatY6Ws7K2+YW+S4Vay09pwI9FXLZ/mMWzgom+xxDfDR4Qc5hwGsKITJaYOn1US7mP//m36yfHiYfCX9sk3uoBXEPL513QDV4cdz8498JCBAoyvtuAnVOJFl7TDrcnV5XQF8XlFvttz8cah5srqhrLcFbGEefXev13tCqeZbYZ4jYc1qZtbGdiLjoUFKpgMa5Kq5gKFQXdy12pcXzC4R1vlnZKkD5LFh+Fiw/G5hQ74pWXSmg8sO612r9+uS8071UdOc66QnZLsHSDCRIMY8zeiasS/ceTArMsFYI9HoS4+FmhaVA64qhusM1bYJBCZwflE4m82PCvZzJnx6WnlPAACqgft7D9d6y7LPfSMpmGV3FfQ/LoZaEGOY9othRSkGrq11ZfaTkf23sszKf6FKARSD3w553firNEnMe3y2eVwJobt2vd/N0iHj2LPOkvcU1Yx4FSyiQ2U0/X8/YbgxDQOQM6Uq3GJBW4YkR+3eRm4XrsjAJJD12Ooh1vDgAz+sskfide2y0W+lhBwKL01cMZ1tbC6AFxa2ML3+74bjdsH0v2AG01X5UBLVYe8sGlF3Neyd768DKH8ZPMXg20fvAQJFiQAY9AJgAE+h5b1w+4PsQseMY7om4+20RzRPEFk8KS+B0utlFgQ44uszDBLKZwrPK57EcxuPl3gCBecBwKZMv+z4xnkTPrNKv8d1bl2dz7gMg/e97IJ9D9FzKchbQ9/wMlMdDSZ4HAHoF+7vZ+s1zORI2pyuOH4IU2RuT5Hwvu+irKuBzM4QGuJHiZKiacg7MSQAf0tTOIbk3afZoyJ9zrKMvk+dD1kNyG2HzEXLwfDsC9zVBjdkwk/LCAUlWnvNQuBwUHglXIMKV0TH6oOdnZoPaTAEup3nigRu8vOcEi3qYoJzzlyg8Uim/52TjqtD7No797MXwAWj2qwAU4HGevIc3XMVcYRvQUik4WSivBMIoWsffJAqB4R6UnpvLuWISIThMn2dlPjaUPa/wz5p0S3ogom0ol4c9VIcEhpbE62LRZuH2atOn/kXWYbaTwnxSyuKZnLwyJ2tT6UoAvydTIKLNEBM/0MN64NekaSuQfVRUOOe5XHNBW5PSk8YrXKMB7H2swiJBy27D4MJ6WjM5Vi3PBZN0ZaYtLmATHHqEnGrrlsjkNnVOppIY4aCMXjDf7KVDRlmmMvk9cGImJ2LSmdRmvi/oBwoToUUYBIXUnJyU6DiFzln4HhjqpGDTQjNbGICu2Me7Vt5VotZZgR6IgByrIBCRMyITqLlCmXP71V0Vi0AIasw8heNJcCqa6Ei4js+cSEoHm+ZDcvBwyO3P7W3hQRH5N674W6bsGXPl+RNCkO013gJQXcEx91SLea6fj56QK3ksDfll+DMASH3eIrEsANEyWscOM71lgXoUrrXzUArZs2vj0PepDerhbj7e2c3VboDoQugQdjP1IYp0vpEPb+uXuqs1Bv5PgGZu4ynvQVSAnhZDxJQ6IFzpT6BI7C8FVFCUgopb+47JmikSAvcJ/GHb+XwVSzGjFORzH6zs5U1x+x2w/T8v2L5pQFWsm+UZUGczkZdvM2s4r/0b3Dn5v3v7SVUXzMvoNop0ltGrgYCnSPJQSF4Jxe+2500csCEaYuJdUFVYfcfrAlRz2y9buuKTyrECqIhQywy4j94egLrC15N/u/wQcsS0BjjHx/R/nu8U5mnJQN3O0VrPBTWv32nd0PtBil8YqP18p/VMAPda8HPKwz5o0W+HXc4n+dYbziXsGRSDWdTzEQ1XPidZJ65p9Pfo9q8eihBJQg9Xyh3IkCJ2RWtDBxJqPyPU+WbM20e802WrcMsvtoebhxWUlKG/uALPNjcHlWVX1Lti+cn2ZDvgoQ3wdgPLu+2FevcbXyaZL8IheOVrGqOree0JKrWDhkh9Tb8po2cvEfMOkb5XCECm/DQMjQIAKS1CRwCft8TnMpBzcuqR6W/te6aoBv+JEAikPhdvU96/EwV41FK+BZaTjTJc00UApLAIX/sDZRkvyZ6RC2JOeFgAXLnh5PIy0eiR25q+u/I6HfJZRbnJWj1/d5VX6xfQhzkVyG/mOq7yRCUvykt6pJQj6QKzPN9STo4reTLrdrnMWYa9atPEz0/lf+0NDLmNM9Bx1Va+85H8P6zJfrjF9bWP6viAfiWAgm/wSmUAPdM/mRIVl6VeLzRgtFJSMaR3AhlAdl2kQqH9ZoNIFAQM8YzRsIi98rgvWXoMVrKMAejXKcIZGVFf3zxaBeXz1q/OAYDb2nM63JtbEJKC6+UNCv6goI7PIgl/PHh0MddYcctgvju+3HePF4Zb/Pc+bgB09bwBHD8KlaXHkMYtDq0BPfueH1gAlgXH62IyqFsn7Boxj1tibGfz9t1WHL95xfFasfy0Qd4P1N/9ZHO1MospugUyC2jFFREmx+LhyjHlZ/OtF4mYvyOITI2xX6qBcmpLQuvRgGPrGzcrpDMdR8+TMK/vhBCPnxMEKT0B31U22lxnU5w8C1jnHHO3LMD7uytlDhZ4ZmFpdpMIjsO8F5bFLPdz3D+R8sO/y2ho1CX2PpkaY8Ruiwvq/dYQ8Wf17X2sLzNHtjVf/6raPSaWxQ7g4wCq57mIA7mvZ46X7Z8E9jBJ42E3eugF4BTrZd+B9Qa8vtgaS14fAeqpIhJ85vEvAoAmwMliEUBotkY4sf+S1pskqIb7MyuELDeXPyi3xiNwHMNVatgPu8Zv2/0KyWQ5vVuGb2x+7W+g7b0c5jEJj6YstGVeDUTcLFoLXjGMSe4f566l515uVjc90Ni/Iucy4k50GKjwukJL6x4OtXR+t/vNLqXzurBewc8UXxNakgboV6d1sGUBRCNzertV8BpfKgNxNqh24boBAk/YeN9D8NebeXaJZz2PpGS+7ui+bW0v0PuBElf6AcorQPOyB+LKShwKrDKemV5eu1XLFL+ZdTMUzgLozazVr7/dUA7Fy+8qPv/Zgv1b+LWHloSxLQAgqG+K9SfF8tY8VtyHy12saZEcPaEagCPNiZ8zSOTggSxL99Kpni/J/7fY+RI5AQioyN3XLa8phkJgXhPb9yuO14L7dwW3nxpuv9st2/396HmQ6tIVLUV4bAxHeS0B1MjRzIq9N9itIOpXofZcBVRgy6Y9T0GsR4BXzjFRJN3JtQrKbbH1876drq0MZRqwc74IBA3y3mxY1ZW0tIfMI9SAzMPluraYAaZ75MBzQ/gZtBHM4kKTSMBIa38ATE1tbSnihhG7stbAB10K2otEIs/tW0GrsDwcG3D7Q0O921jhDkvIKL2dAciLK5nq+7mk9rviabde9HFq7jXUVhvb/ZMpdfVuSoEWwfrTgfp+2BwLAqCpbzvW3+/4tlXcvyvYXz03gwLLG1A2xe0PnqB1a6hbs9wrWclXoL4dEe4Q5HM6GO54DgaA2ucwFBRxOYt8wdscMrUDRVjNvTGunOS75CVU/O8HqnadmeUxZwVzvrRFAtQMDxlvV4SF5Q2tDnb6UTiEZwGg9wREgPvejSKU/wiK4MLzoGmXNSa+CTHQKzzjCs7gQ77FbakumJoxYpA2hWGRiZIxysq7OPekQES73BB7TGBo9cVNB8PQaT/bWk9iLzLm2wpvhTw2cZPAtXL84bWRp5DqB+95u04eBrPx6sobIc4Fep16PGZ0qiUAdjLUFOn7I9o+tbWYTCoifnPaNA65nHLR13md8Xeex3b0vfwRsKHHWQdIusMAxMRa6QYvVTHUMq/XPFcfhT3jVwIoDBlvExMc7hrPSj2F26EQ73hCI00rlnFQQtEmA5Goa57oyCac62cbZip+0i21J/QgMnYoAN6DDhMixTeHuFXvPS+SqU+h1Oi5PbHgssKTnsv9eVm7dQLoyl0DiEwNSaty+RRCZ4UR4uABINkC5GEbyvL5/t4A7KgiEZ4g1BeLQBiP6cgqlTM5Gspdwn0zBFi64mXPAgpCDyx5w2HB/i21J+4T6cAVlV2OcabsJp7qtXJtsof491BceOL5e8fINGPjzoybSZJOVgZTIPUqA+0FIqoqKa73A/oSepqBpRzqQcXv/d2/n5T+eT/5eNBCqO9JKHCwhmE7erRw4waASCi6rhi8Etw9LUtUwUzpUVBs7apufGB49jQ+qS4AUF4ROoxJPSv7QFdQkeaPh09i7FY5+iH3pZhAghFAX6eMd6fFrGk/VNnHk3eR79NhDUsoKyC4mNc6f45mV7ECpuySdbzvo2LSXOIm2Jjrv8qPw/h1PjfPRwY+rvamaM/nkhNN5rNEXbLNIFASXHP/T0Dj3J7sSUZlyJXUiLkP9+7ezrCELelvKkqaBGlauAEPi+iKKClCv1ShzNQu4hbxNJaNlfBFF9zvR/e+EIUUjaR55W3v4LkDGwj+1ttoYRilpw9aPUFiElLkaCjvwPp7U+rKVk15WpIS19TDHkwZK3dLMmf9tLlXNWVQ/cwRgkCtAZrCni6uB5PVEy3SK+HmXnBLB8WYcJFrl8q2cp2nNaz+UzbTrtcCVAdBaN0O128CAH6E6lKMPe70HsSgLGkx8EEEAK3IIuYNUdCTgHJsUKCifm7aOlJOdkEAA7TG680TOararQx0kU8eIbHco57Sz/UIY8NAbUlrH6bk0aoe1ytOeyuURfVrTpOnToAbaetxzxCI08WU0WMVbN8UHC/A+59K3JhQ34D6npVRAyLo/RJzL1ZfOdKa8z6wzpY+b4ughVHF23p4MkVxQKWYXHncSpRvZQKAQlcLaSrvips2rD8bEGJ7xpLc1jfLD1KOdg5/9fELQ01T4PyI1UkDV0tDIb2PAGzuSjklEwXQDWYMn8qKJ8N5+OxuvKTnuGBb4WuTH6DnfcjiTPBqKx0thQgFD/PyWKfqeZ0k3j/k9WES82EgpcuABTZxBC1YpifXNHkfJr/mfD5ZluYVzbleSef+BYXHQr4ZIHScBJYWwXgQjLKoZFezBCpcAgRXFF4ak3yQ28l/LhTY09WQV+DDI4WVn39Bmc3tvPR0pdGKsmG7kJezYScnsswhBvkg8fkjoC3YTSnPHqrxLIG4GXDwtXLlpZXfC0phta2f4UKvHn5OT+KT54dgph4e3M77YA49+YB+FYACAGMqSRgCMCi/IsewCdWBhmwFCtCJQlRCg8IzIRRjorrTwsuMIAueiTkOQjIS83X0U4j2DfXBhC5ajLy+9mI3KhTvR8tMme6bbG9mRql96gKa7MclMBJjdlvMasVYsrXHdMU96eFZgD5uaY6G6zGXGnWbIuxjSFfRpXRwSHyL3zfI4RYNgiBHv8ZtTAyWDqTtQGWsagZMaOHM3iRcFzMokpnmoEzxYNWObOYM8IwLdkvrkJFW+zua10xs7DZaznKmfyDqPLXLmbwenr2eyLH29+KVpuZG+EgB/QgYmJH4/M5HbnfFQyLY7+2ArGbpk9vN2n7frJxNEYnOQuHHuE4d5TVAbh+UfinFPD+Ow0GA0g9RHsjraoKo3wgRyQ/zmHJOtgR+HAd01/G2iUfEZ15ffO1NN4E07Xk3YCBPV7TSWpyZd2kAag+LEIHevb/r7botnLdsvZhvLWC9VGpnXsffwTPGdZDzlMh+2LjNe4l7YbN8IHLUADeF+yXX63lsTpQ9hkTO/LopL03r7SawLNIBRb5TexmCHUOiqiJ20ObDsXqK9ukmiWh7vmo29yUGa9rD3LPr0kNBDrWcFbmfIh1IYNsLzxCNWPUumLsQL3WMdKECVNA9+/0MiqvXSgneHxncEx+Luqp5iDWBCe7bAdkays/vMX66mjcKgYkssKrAlV8ZQn3K+x7J+gy82FG2A+vvgfXHFcdasH9nGfPb0tdM2dQBhRbWaJMBpCvSDKNbAGiJW0SwmYeY8ecuKEo1ntHD+IrlOqrJ6001gItwC/e8EXbW+/5l2AJj6Xd1izZQ3w+U9z3GhTkzhqR+lQqqCf4nILzYPFhIjF3hSEvw9p3t+fXnDpjFFZI8D953D5XUC3kHnvekBGBl3g02ruHFmDxV4G1lfyM+nQAA15TnvghAzutjzoJy7148UTZ5vu8nXkkZU9cQ+QxCGec+ZQ6XankUjptg/wbYvhW8/6lCF8X6+wKtwPGzRHlagFJLeCFwbrSI5Qgg0ODtjzHmOiSu7rkbGFZR783kw119TbOt5oGjtaDcM0gIHDBAob43rD+bQkBPIVrszfsAHyqBw80NNGY07fi69098M+qRZNl8NosBWXpL/NOBtABaKiLEh7fRBOjFI2T3uhnuXVMImWPq3fMD8ACimPvwSgECbIoxaAzRasN5E7d9oO+9Pj4YFXsC0Mq263hu8oyZdQPXUehhp+LQSAZQNf2W6YwBzjLH1bwWsf2cvwsZ0xXe7J0wl5GNWZoMU/Sy9f9lllf5Lo0+YnoakjftYPXO43+lh8x9nJ+ZQIUsG5+8E2aiN8IJGCpxBkS5WdbJISk0epS+18NT9AFIMNwIpPQcQweyef6EwaKcyvBNleYpzReQPAj8AIWOZXjf47rf4zCHDOn6xTB+sycL5ch53WRdK8brsT7x6wEUAESME5VPv1ILmERd39TBYCicFSDAAgquDhzIUtNVWwJl1ymYyhKCcHye3VZZL2ALPl3pGIxYXNASgay1C3/+GQBTjlZgjuNSTzwovhCGSSylx7QEeEGBrkUWcyY6G6hRuBV3U93iwNCViSVbT4LpQnCMwTzuWZGlEEVgIrmNAS5oUKnwUA5xJFg88YfMgjr7kefg3VyntYzWjuEdHoJXzNTbHu6peRPxEPE1M9z/GwdJauOMagO2iRkycXWFzP/H3LstybHkymKOiKzqJtee0cWkZ/3/f+lV2kdnz5DdVRkBPQAOIKKyyXWkF6YZjd1dWZlxRQAOwEGBPAaAYXwQXcxb2QQimapQCdq4HhXlnRR+4YGHgQlfXRSGvKb6M7eoAfa3hoiVUMHfGtu8B7B0BGNas2fdehjaBGDCGC8h4Pr5AD4BfH7a4fZmh6gy5MwFIIkbARhxpE7o47GMzy+jL9g/EhMCUWIyFIPdWBff802hPz8cCJs5hq0Hmz5UI01GpyxrSud2kHQkUFGUFGvPRb5/rI/9QMq+L7+LryMt6+oKWOB41FfV0omqa4rVDkhQCXiemY6wKGuSCmwAQet60t6yzGMom1lKUjTBBm2w3GvuR+a8uwK9yBD3OjPigYb9q/o6AAAgAElEQVR2VOio/b6VI1EkSQb3/NIKioQCW4DYo4XxaN9/HWPzpmZ5shfZKpQHLULYgxzQ92J75hzNmxPikpTx53Qj6UyAt54pboRD3SMtlramtxal2pJEscznhMnSapwUry6Qyv8SIn51+XpsP0+0T0H/nGFgq1ifaEw0ksbxvX7ujb9ukEdHp4wfM9KJ5J5kmOGR5Jn+/T1AcbY1nhtTSzlghk8YXGw7dRFVzJuRybZPs87ao4FlF1+8u27wtWZpgOqVUpZUFtcbX0Lay7WDDwFETRp2/nnPEokMKSdRJgAHcIwIsJ0GLjAdgu+x1BXE9yJVsjs54QUwTgLRdvKsdcDF55LpQPa7xNqdhyviNIyrzcLIx017bed6DtJb1wZw+7f19/hpEQrNgYL2qHsu58eIR2uYvX0+3jvmzdIYoMZnYOkH6rwJbqwKMrLrVDRFiXThGMA4NjTfr16Gs40ZkUGiEyqwCM3pZK2tpq1IElsKgr/BhrtwkJEMkeAbo78mcBmR5/NoVWmoR3KhpaFv4LEaLk7w19dOTbvQJhi35lwSbvgU0Stn6vWRzqBApFf4mhaRqCwSlWzAPaUIcsnW1rSf0hbjufBUPUbqTDE5F4CfrQX7zI263cB6Ojn1GCWSbC7n13JW8vMa6TfVAMrKmRV2BxcHn1n0kWoEVjlwBSbQiC3ggX2WZ4K4/n9JOnjlVXcwYSlx+fLe4qSD23c7RxnHZAcntiuifflsJzmv43WVzrE/Y7HxdmCjrO/l+s1zqw0RVwEpSKIuBKPRk5ST80OZxzGd9TuH743pHErVmeHOq6t0Zzr+eC0lNd2eikjp1GeFZ53q6kAF1p+3688CFGiUExhQzVyetm3muiGpFNZoBS2LhbnSM/PH9sVkwo8nuIRgi3fUhVeNzA1RUgFkI1EKJZDEhL1beoCTVuksSu2uqDZ5UfTtPVub4/5k2LU2pyFGgERvhxlGRzMhqswHHdC75QYHkRIN+ABACuhCYILCuIbchwA30ECZXiHeXoIJleStKvd8Lhe0qkVr0Miqhk79fRmkTXDsxlS9h0L+ytjaPKpLSb0XAy8ZYxXIzUeEGUC6FstnDJMKw+y5HvBXAm0zQn4XOmdtKoJ3Q21fnvtCBHgt7F+e4UZ+fE6yM+bBzfkahTkV8CiEABA4X5d5aZLA3hyRqhIHbdvmMdZCQWZrGDTBBIYlPp7r+zgmrDQAvM4hkWHVMKIFiJ/j4KeyEmSohWWY33OPSeTkVbCgIsn7GqgX01u+QpTZrjpOy5ysHp/6/54zHwY8PR6j7KXMacs90zI8b8lxvXX3zM/8jIf13r66r+sYb2CFEvRdQIbSHp4t/l2timNRupdzo54Jxcv/22tvIxV7159fuDjYDRVTJOKc8cgwRpY1ANIxb811opmesnNYGsCJ5DEgANDFeQvYXwmQoz1neJ5fZKcrN9E2fs59dzUUjAzZLzWDJKr0uEKf3AW8D4seZc8Exq2hTySnBd81FXpLpS6Mfz939HbYeqPR7LXuF6B/YAUxCFzXi8Cdrx0atnrO4sSIobJ3TeuQnOoyiGc2QCApDDb1zrf2MrCRAsgzH0hvLkEF8XSMm62P8d4RpQ6HrUeLJPAONkV7tJiDGJepDlbw5eK57s7474BOzZ+38fFmqyZZIHUxn7DUM4yvgAY8hlpoO6NAJO+fJE/0/sqQ6D9TScxLD7SH/d4ecI4JONGhphHRLKpNOA1Tg9iQbZ03j3x4F5uSAQtCoxwU7jHnxICDCILCtcD3a0RcADDQh0tl+PypelUFXy/DI1wDiHR9t+qfnBuoiRvk2rB5yQovrC5CMCVEdTX6PHLlBdBqJpMYxRJrpIj7Zbm63FEFxCMa6LW11JJhxo/vA5uHfGmsK1Uby1miFJD/B8ntBvwtpSx9juz3opfGy7Yzr3FwVxlInTHA5Hou1POzGmGMPq3nxX4WA6lf8Lwn55WIGdJhCBa9e67y5uqqVRuWPi79vXjG3Npb+/Ora496KKBCBSS+4kfYIxaEulu9ftPn5dp1yeqE0Quj/Cv9ig607cwA1n69XIVrTovssUcasMQoh7Azin2LPbXZ7bKIwItxEyyRmXufOCUVZIkU3GkbqPKsWceun+fXHwEoaBeMv+4WZulKRP/skKeHCw4til1RPuHeeSfIkpHlHhUIb/iy+IsBDKRCvOQPM7wEWAVQVSZ5ecijKR0T7cfmzREBkKHClZxRp5MgTTUP2tED3ZRz+IGx5utUbw9TJ4zRuyCNVCIB37j+Tnrh1RDgiKBoDXIgN3YhNpTCxmtj1yEtBTQ9rlKF6KfnXxYDTD4e66bvTJcogp1GBhXt2+HEhxP67R6lgsQVSxkjwteXlIcAWzQVas5lFfy2kLJNJWzJ5tWF/FXotoflh9Cg4B8DKs3W3nGkkVDJA3eBxtCoqjuPYT9z+i+Eti554aUfey1iwKMcCrq9gwnKag4cYL/v5vfxXXxPePkBPG0cxMdf3pzP4OcHIEaGuKQH1IsGMUGIqUbyWEs/cs5m2XsBNJXPqCQTwBgjzwdBmYOLFBTA9iP3wP3mB38zo36OwqVBzoK3kEeyH8rNn8vonTETOHB5pFQ0Jd9fD9plvYXBXlKO4rNUAoiAG2O7prFD3geP5IjykVSoOKa86rhXQOZ2mFyi5949MSRvjb/x3pbKFiMetPCTLCV6VSEfCeRIJVnleymXSOhIAMPD1/XuefFeShbuvdNSsjLGn22rZFu89kiEBRjUVJ4BaOwXCSVTHk/7zrsF75JI7yVNYk60D4InLo8Py8lcSi0C4cGkAmsGCde/nQdNNTgQLAKtAfcjoxE8Na1GzaEjSvdqF+M/OBpkeM7+mIB06PceMvUlWizmRYMfoA0jjAuZ5n+XqWaI+HgtJIAsn0bAigaqGy5LzvmtZ6T8rQH/vJt39+nklAQvdp2KUQxvFuU330wetE+vSvLM80JaM6OmhLjH+3uH3DQNhznNWKUBPtSe/26Eh+DctDzHqwecHlq4ocy+znemYAByAu1xgmVA5d+pPDJ1oXkNT3E5xciE5z9u7l1vzlOBABYI7h0f6uUcj+AiOH7CCKKHrzd1IOHWA5zVzk7QyPQ2CRzEMNCM0QhW9pNzbLJbD1ujo6yrhT+EQJMTgc43AxX6Q83PMXxsG4xj4KkWmfChOP7twzTgJRcV/dOIDee9OUDhotXlchiZigCJ5sMiJS06yu5tp/NBaLMKJbRNDnFgwt/9YJQMvMqEBk+KlSKXAIOiQoMPKwC7dzqIePjfJyBCIxvoT4vOmbfm1Sv8Oe4FVySYEBEdblwmqWPqzFqrkPhZoYfEO2xMZ6TxcM9z7syBBo8ccvnQBaN3A4QcrCNwZrwpjIxiKlXdc94uEVO5AFtrNU2X4BrBUEbxRj99P7NfY+a5Ux2EJeW62gcLeFLPRsqwAIj6MpZfkhb2NLC1koNXna7qGTx7+a5qQO4Eg7vDoYK6e9Qdf65h8RzTqmvyu62Ukdx1uxqNSd2yt9gL2jahzHuwtnfnYAjQgbr+ABaHS3WGbaBDOGeqLk85zHV15aD5qqoC+RaG63KXYIj8HuzYv1v7zijKcKx8sT5UV56o+v76O69Kjk775KqdIhmxAqxr5eL6IwAFAJmjJ3YgjDcLIbYQuM3zfXEtCJFuGwhYlcWLfR15+S0Xu8i1ALjy1gBIocVwJw97jlyufkGGV4wkFUlD4qo/XPy65UI2rKFt+3fCa7RvFM2x2D+rh0j5TLa/1SgS3r+kMZQwMPETq3oKK/niUoGjSaLCQDBTG2Kvnnb0i7GqfXjpcxGk+3f359XvFKKZGpIU7Q2il4lAAiryvSCh1+s4AA2246o9/1+ur3gUrlDqelU0eCqixnH9nIcUwbV4dvl5D9fzz4PrgOPXEWDC8pzZ8ILMxrPmq9GAPIR2QRlARYnS4L1G+tgSFHghIUXsmSRMKvIg8odbrOkkAd3GmofXPscBUm59rof3AmB8IeT3Oa0gUt3f+7x9pSRscmj5+5coftmjbHft/66Q1Sih2rYdRPlqvV7wRZjyKQEEvFw14urls03pml88A1iJZNl+ZcgwUrEv8pgeZlMWajtsn1UPXNCQVSM8Xu4K7jk9pNKeo4XAz0ACWy6Va8d4GCS9q0Cexd3b0FwUu5eacxJGiK/lpSLAxfjYO92rtytqUp4ZBh0STCiRbALKYPeqCjCPFsEEbTYI5uU60QMROUSQA1rOX84HwVWWZ7x6VkQJfn0t3mFUT/vrPrJwb98WJEz09klEl/kcTjUASYBaPcSe7wCvwiJObg3jjWSFiOcGKWQDoDCj2qMVJlNPeJ+fxxnlCdSu1/cq2mUfaxQFZz5C3JvPQUfuhXIOxru8vZEW5ABC8pDYbW3AOjVK0p/a35lewrWjHUkCOM0jN28uN8q4m9Fr90akwVAzqk94BSwJsEZmfp3giPFUaDkXytg44BCygmNQryqnvA9LeVeOkWTudulFXpQh7nOKiANIEl1WwsW2P9/nscyDTon0A1XYXEb//P5ZSjLyWf5/7RfgOnWVMWWsApRD6UNt4g4mMFKLIOGV7nd5HgO7B5rgK39eriarg7J8J+wCByFf+AeoI+1pp/Hccvbvdg6dWnGeFcfS3ylP+JWxGE6b+fU9X+na9dp0hMvo2Lnl/Jd7f0sifnVVg/rvlmisoMJXeg2vaNPEVxxmL/3c9Te+p8lqn9iX8zt7//9OVMYVWLFHG38xLlE+cnO4/Cot5c8AFFzARtjHBJ7/7DjfG/46J46h5vW+IsYSSbIwLsSieLwooucIT2pc/lx9v2Epfah9ncg9HBUIRVD4+UvZPIk8K20HMNQ8DEGUZcInQ1D7IlchspQ05HvEozJCKeyOhj+HATAeZjS/v6VgPcWQQx8Ty4OdSVLHNnvosYoTclEYsz1MY6BHuiCmptSWkHUinsxtrjnJrRm3Aud1MwTiIHAFup2z5O1ZW/TtbiH0e/6S+Lv4XP754wE9h0UQABFKpJ+P1Yjl3Gq2oYYBiitPgSA6eqjPByyk0L3nYyZHB5CbV8SVci9b+PmwtXO/2Vp5PO15tczgJmjlOBDlfvaLhrIb8gbCSH6nri/mrvVu955n/h73NT+gNA+qgmRLh0cilPsroaBahQaffB9rGzt5u2971MsMEoRoHfAUIfu6GzS9B5dCLe2jqpay4FEP8tdfth7GsD693d3DvSG6buCoTmOAP0/ox8c6Viw7BGR/5rC+FAInPXr+3AEcPXhD8nES/YjfGaXg68rAD/FShz7+Tn4Zba4h1TUPzuc6Q/IkcvFSprnRxXUKrPmfwMo1oJ4adbXXOUa8hskO9WgPK807ISPHR99uITclPAsFXKypFDV6CYCApLK3lPdBFOvP+5x5BmycLUIQjO0/J/BWMg65jvy5/JuljBE8LH2uSmbIDgXmWJ9JBnYvjazvXl2gmWIsz7F6xF0OQ9Xy2x2kjudxPX2cZji89ZTvQy188u0G3LpFee08NAMgM7WMCfk50ZpEHvTzm+1jS0mY6B9O8jcH5vd7pPTJVLR/P8zI9dSJ8f1IT7sTLbazpQdWmnu3AXrZtUlGo017j3glIQDAYcZle7pcm2pe8Lfm0WEtjINIyRFxA1CBU5a5ap/DDM3neE3J4Pj1w41qPhfmVUaewfPuPCwH5YJmn0QAGLldBTHac1okQBccD6A9Rqks4d+9Uy/yth2vSmvyBeQ4zVsH3oDzvUMPwfOvloACAAjQP4HmpIH8W01BYBURvTUM3EDSRuUeVQ95RwMORAnB4EgQi0i5/fuMEHdtgvFW9SwzohmvP1uzMo6qwRUw3nyNDcW8N8y7RMpAe9r36TG3NWZzH0vL7+FYkUBxHlZWctwE7VOT30GAeQdYcWQ2pmAC/TFx/5eNzfHvgTYs2qDDPOvnNws1JNjQP2ZEHehhnn0SU66KvT2bUT6NZJejyLDWoD4WjRVZuL4EmN3TWQIkg+lyHhlEuSGUSwrInJjiUUlq5yfLPM5Dgm+jeUSFTI2oEu4R6kQGdAJyDgs89T1DYKKR1JSRTGVPtcrL4vtx3oHk4EHoWnLOBEa5nINHgvqYR9R4hCnXrd3rX6ppcFUPbcmPtUS4EvS7Hfld1ddovi5rBB2QJLDDdN90YhrAENGYrXA5LWkYLZExOlK6rAbi6c/x6EqhrCi582EobhETL/pv0SsX43Iz9Fn9ilfo4tTxaaMQQGlbXv++D/arGPhLFG1D6tPVWUcH1G7nZaOxRG+4zruM03K/IXIZMTtC38+I3e09HiGxRBnEHLl+u9uyY+RsBwlmWXt1PMi7tb8TiOjccOI99bVcu7j+4hEuCz+Fk/+iTQdqCW4Vjrkvrj8DUAAiDJ8bVk4s7LovzMdU1je0FsASklSZ/wHkIquEahv6k4dcUZJ3I4ybL1ILNA1tKsNTgSoQZj47uBPKZyks/LCu3s6KTNZnhlDydg3AaIvdU9fFQ59L2+t3ZwnddaGwpFXQmOZ7ytiQIXkZF3zxO8f96h4iulef8545gVMgWwmqNTqjvW48SGlv/ayML5BeaY51zSHsaUzEtfMteK5RCKoQavq68YN5OUNGzVibKVRcIF9t4EpyY20szy9o41eIboATL2FnFd2WawQ0vKsEFWobJl+cP5cUCSkMwyhg2AtIuAvbiqBOV1RVl9Qc79i6z48jDFQeIi/cFyjjxD7Ito5q+aB9TJZ9CUROfA1z5Nqr8qQJwpLi9+uBviPSsZ42NJl9wsV8izifVTFud5lWDPFlHL/aixW0BbymthZC1jz8v9rvoQTWNrksl6cTAJV2LhUfShv2NgGwPQO88J7UZy1zQXmy318BUX5OwHvMNR2Ofd3DC786fPdxoYJUzgeF762OzG8GwpiM9BzO45WTobRP2T73OEd4vb86SMgUJZLC+89hR/Hgu9w14EDSWDuSG2MegvlWKjVFOy/kUhjdcE/mxXnfqA/4u2povJoxaFEW1h/hEIgbLhRJvGl5vrVdRIHHXN5nAGEpyeX6g8DuyXKMBAp8HNt2lqpe9TyI5kJ/oW5zyDp2BGHKvMHPAnGC39Ch1MQL9R+WojRyS57zOc612oKl1vicqvdLAdyswkTj3Gim4/C7y7xNWHrk9Pd6nu8SXenzAyAMbjPmUxZyPiOqojiernL2K+FjlLA9Cw+AAu0JB7VguqYYuNNOI0PUQzyKgXtSwvBRNYCCRKGZ+lQiPiTiiTKFYfpYnDlGdY5jnhsQlQviWNXQD4PckUbAVEtnEIm2MngzxqUu9wZP47GHRxg5248Kgm2XH+3si82ztfllz3J9KDDfJNIiXvLNHYTASE6E0JOnE0ISdPIUFEY6CIAgM68GEYruKmUP7GcIz87mlWHOTaeo99b/689XtskXutfynKu/7frFV+H2V23b2z1n6k5V9/o7VzHgAdMZozRkfdff8ZL/5iJYEY6y/dl0Zo1sk7CNVwDA76IKXhpwMTZXeh7bWr8Xds3WjuqMo4OozNXKn0G9oZX5nvnMHfzRrd9V5yptNUcutu8V/f2ri+ki27j/Lt0B+FMABQVIEsFa2Ld/Af3DBSfJ+YpwgDPcBtHb0CRSc2ZnrUYhoxDu1uUoabYZ9dL0hYjKcuamNZQCqOSyQjVrtA9HAI9WkElDh6KGNytPAKFQWyoEEKzJZKdG/o3XEkIZh0333NnuJ+1tyROTOhZcFxU4cdAmliUVc6Ks8XKfk+JFrQaRGXplg2lZjCJpLLjHUbtAPFA1ojZcIEdVBjc05DksL1gkDAETRBOKjshTLuMWRsEY+Y+f0RjqArS7jTM9yc9hedtHjzx4+Xy+GhreRyVHAKsFsI1ENYFANvXxgPQO+X7LMendxuzzEzqGRSgAGf0h5nWlB1rhOWkiiWJXIbFFLQjBonJA5BpyA4lfaS5MjmP1ghP1jUgcL7no3BMS9bNci2iuxUvLmu9hyBlfiOUMFn4Jfr8KtY3kkXmC9XATcgTU/r3fX7lXlkGRhWnXxqSt7WTtYmCpVMF32d+cE2BMKz3HdTWmcYfMEvUhArzdbZ3Jc1Fs7G9iMunxtEgazjHnwskng7RRNfehl8iL/hOp5n6r4ftV+SD3wBaGGaW9RiLZPgEJnHBvfDzC8I8qD20zwrrtL9xviAo8NQqCsnG6Z6n3uJ9M8nDemUV2lbmVn58poyvXAyM7RJJPgaCgy4csYzYDYNC3m/398bS10ZtFuT3PNaKqiVVYOCeWyAWeWbG2kWcX2zzUQd8ZbaVhoc2rU9zM8zu/WX/aTyurGl45aKYhkH+A+J5XbhhvHQxVPj5G5vUfDed3K7sqU4FnLed3rZxpN2+7sd4bgaN0AZrvQxGM947nXw3jbsbg/b8m+mOm0VcUn0gDoEFRuXvgBuUau2eVADiGp6I/T8x7D6+qechbfJ/52TsISKN7vDe0x8BRIwh9HuetR/h/GxN4wPZ38wiL5jnlAgAtx7Eh9BszXn1ea9TBBPo5kkDxaNBDcDp3Qvfyiu2cmepC8Mnnv/vZON4PsMIDq04QO+kPIwHrDwSHAkPV24klveb81tCeVgWhGvHQTLdJ/odq4K6GWlScGIpJVvFbMX6BKP9poEjD7BLlQyt5oTZElACjTQgi0dCXaXwG897s+HDAgWM4u8lNfKYeJacCAvQfp3vJp+3lm+V8y6kBDgxfh1FJhU4v12XmzdeDwNIoJsybTseNeuSBe/3PbyV6gPeKQMTLJvaG/u9PB1tc3jgHl83DzDVMoLDDx9jf40ABwY/Zm0WT9I72tHFjNFIANxTbijAomvOT0LgPThNPs9KDclcifUROq9oy3nqQaMowng5GJ4hHZbRH6gERwdGMR6Hyp8Se5x57juTwaR41BCQIXPh0ApQ7813au0V1nZKElmV9Lus6hIb6GTZi7ce652fR0Gpj6HrmMQq1ROeZIdeWqMsXo3Gv7kDHKNJAj/c1Sf1psoJVddLM1PnicnJsXr2vRjD1hCtjvHLIlSurXSkugYgKINTfAWB6FCx1Bkab7k6YF4JKmEym/gosYxHvKRG3e3TuC39ETbPd0nND/zxKJLam3gagROrauyX4mQA9ASjnfdp5urUnyBwLyIEuyRc2V90/+tok1+UVx0TR/ZZxwe8jE3j9GYACdMmpgyPufQjaYyRJkn9mX3FB7sq1ktW6fPZylY22sKozHPcoISdAGEbhsamgxkR6MIBgEo+wqSKE4q5q1FeUEzAllbWmSz93lHj3AFgf+Fm5sdk4yKOQ4SkV8jPbs6OuBHaeNCI2ZKwABPTERnikpnGsR8/wLhrgVan2PioBkKs81NpXGmP8F4o67JDggVJROGfeDgNPxIgSqyAi6LAjvRUs2RWl5YCYCa4ArxtPCgOzCzv59u6/zxBGkY9PVJEHCIX9Vwg2yr1fRCrYrxqgQiUGrOMcQjAiLCj43TAtQiyZav09EfLXMjJguNB1zxQPa7vfIzpOuody/JTuPfb1SDEVhIsc02epxlDBhLrHYu9Oy2V3g3Ip4Ti38EKMPLQpqY++GulAQcttngyMKvuLKSs1ImaM9C6z3apZ9YQkhhfVXaKrk4pnUfQZJjmmefsr+EAQgetol0W17FUMtqRcI3Eqx51zU8Ibhft8UcQAdYUQY4ZyR4/r/r5aslZvx1rWz+eStd5DYayGvbhSzP4WMDlBIpcHz23P1/cUHo1QLvd7KjDDcOJN6coxlzAGLIS4RoQ4kMMIq+7nlP+L6IF4V3kFgWnP8Vc3SK2f7tmoOONbw7yJl/FDieKDeS0FBngwmkHSIG1FcTZDY3opR01vMY2lJhjvgsd/0HAu3eXeiXBjth1Lnnk9R6OdnHvkvUtU8DnRVS68lXZTVMGgkVzkdZzXtxI5VOYwUu28zXqYxz55AVZuI3pR49mqobhm6cXSVjQoCY9naY/AjMAbIGLEj3DCP9xyHc2j5Zx1pIHr5IrJjml9aQP2d7exzfDP/oWH3sFEA0wkDEZtReeYxufANsyjIVI6mpoxIHDnEDL9xLod7Z4OtmmzNBARhUwnXhQ4+KFeqcH/xSJwQzvWjP+5rg83hiOaYqQSTTCBZVH7p+/LUnUGQEQV1GgRriNGPKCX929zol2WtVt1OpacnPfmKUZG7En5G15+qkwF0KyXgRhwu2cat8GYL2OhYusmolX8/StfAdYSmtulb1aSfR6M/hIrg1orPQ21pkru3/UhZd8XsnGei1X/WsAOwNYPZXqVvyTaOzw9+GgGfjiQXKOF4elhIXOAlO+9276cG9BaU+hCNm86df2fhmnlrXL5HboHdTjqR7wIOFAnq3rmGLYYPA3yxTCsBnwT62fhccgI3KLD1XYCuIp+tFTK+eqsqbol90UF1S+ulUuCBn8BFlwPDR3yJZJDsx1fRZL+IgohdK1dN2bb+jbmASpw3DcQpT7j5bPUrV/sBUa48R27vbHoFEBU8hJPj10IzKuiMLEQtf+O64H3E7D0NfU7Hos/AlBYSr/AxlM8d1E+ziRl5EKarkzeOqLWOydQdQ2/Bdb0hi031YzeYd95npEfVQ8Mec4lV4tCqBJehXeen1fvm5R2xDtTsNlnliMu3Pw01Aszt2wCMxQYAhx4DYOVkchYACfPTbDVcbu7YP98vngZqRQp83eYJx7PsQ2mR4feb9C37sAEYtwNHCqHcFGu5XEiUj+2vU+PEf+XgVTeJiDPM+eo5m25Ei+q5mUk8zyVtUiPmaG8AjBDpnpctQrlMm4P/x5Z81nnd5r3agl9Yg75+7uN44+fUBDg6Lgqp6hsW03P2EEmghH1+h0ZTzGMdAws7MFTy3fNa66eR4ZZAAB1raYKrybGT6ENen4kSjwNVRUHA/SZHBGyVTOJXDX2lcKcQJBHkgCuIxcD/6U6AkGZSN0ZWZ2j5sAxn6yV/QjY5/z5fs/1Xr3YPjSYE/rzY3239wdv9wQ2zgHMJwmTEFYAACAASURBVPD+Zs8KDhN/JtHsclAF0FLHnOPC9UGwY5qCEdVGCMAQoVbNiAmPfBDy0BTDnP+iHnE1qisQcY6UuV3X51AWugIGIA3dst+UBjFlCgB9s7J+IUMqOMmxlLZ8h21Xj/Baorlc/io5ATagIYAKIJ/p62whnvVohkjFCIWxeJQ2Q4MXwYRguOfWmYAhiSlj9DAlPcrDuTK+pm7BgADkvPHZVvIP5RwCxnvD+S7onxat0B4zvNhs6by11Vjkmavlb5oe94a51pAXgb5Zab3nPwX9Q9GI+9HI8rGoc8Y+xrpQZDWLcy5VHaAZnRGh7PTQPjTyxiMM/pw+ngJIM/6KDfyJChIEZKZGrm8lSwTwkv4QDasCnM8UiXxuuZnCP7vJNZmAtAKYwBX+YUYz+Qy0AaM1dNiZEKkM5D5wIIfeZwAYXr1gvG1pRgCap5Ra9IG3dcKMaCl7Qc0L38aMCIzQB4YZQlLmSd+PSHVJYznDhFUkvNzBVdB79HPezPCedoS48Y2S/mpjbNU0HDiIPUcdCYsBW6+sGmFtbs+ZvoxzopZC7R8JDAv5DKbGvuTaq+2yfiFTLaaDQR61MG8G6PXPmakPNkQ2L2Ni3BrGvfm4J6Bg6WC+PhmtwqikYmQaoOIVFxzk4xzZ1XOdcg0FuIJwUHG+AoSZuX4iDUpg0TvkhiCwysgY100twgYGLu+26b4PPe2tcrNUGV299QSxVTQ5E9h+lUXezntH6wIMO390As2j3chRE/qCqkUSdgH6YX16nmBlueC1YIRjTf3D67oL54k0yFsBLHfiZ95/VWGJYMHU0sfpFcF6pkzTwdXEnFZX+uJuS4i8AA+14kJENQSAlTJyNzIzwrHn2QPgOppBr39mVEWkm0rqMdXDf2Xg0ul0FdERbdn0aM7FbuBXwAVAcDm5A09q5HWN8Kz8GhW8Kf1booTrVauw7eDJuOgTdWs6bad/9hJVU8azXg5QvoAwBLVoB1Yd7ovrjwAUeAVZzTkjHBPAq4HQTCkgkrws8rpR2Hcq0sM99nWTFvZokrZkKa4Z4f2ihddAxCIKgDX3mLwF3FC7oksisu6LRdtrH4kSw6siiDPidjfqqEi58JImwBQj6mltza1tCkxJQblf9d0iForsB0jUbi+Kk9XsdsLG1jC/HaHsYijaeRgyTuKdcsAx9PSlv0M9/8/OqIUR3b2D9YALIMdBHagUMMAVIRfqOnyc52Hh6Ec3xaesrRgr5jgxlLl4OF/yrjm3lVjHjavwHHsIfhhSqk4E2ROpdt4E/fxElBQ8Dghz+GV+Kaz3aydtDIDBgQXxsNxl7n2dR8QC91aNMNAt75dgEsOhxhmCR0hweQ5UgAGtm5F76kv4mLw5cWMQGxYUdI8a8BQAHEfMMcGB6L+DBIt3f3oJowog8GolN5ApMyJGKEmB3WqZphkKwB5BsEc8xD08rPe0g1oiShV4nGsKhl4Q9zBaw6Mt4h0VdPJ7AmQdzkvA5u2HgiuTiyzbFQi/FnBgD/XcwJwIvSdYcXfywTPBmDhoj6Jk+f+mCPYAlxlFESHY39/zO0rjh8BGQfcd4GL6lnw+l/fg6BG++nI5SBAktChGSQwKZVnm3/Lc0Js9X+9HhN2SaI5yXby8Z/tApsVRwW9u4KnlZPdPj65pzEeWZOK/tSS8c0NQjgn5tHD4eTODeh6Cxz872rPh+DEcpEjF3oy0uj7cSPH3znsPrzVBAL2LGXqPEQSJUOD4obj9W9EfwPHTQ6Y5bIo05lQhJyx8WWFrpJW55W0irjhL/D4jQg4GAuw6k7gRJv7Olu0VVbQPEl+lgSTDIh4ZYVAjNph7n1UHaE1mXzhHAHwvl+jIqTg+RnBDESQyYwnhYGlPG4NJYV71X6a6WLFyD7X3tAs31tvwNMoPGxymOMzD3+vlDtvTIlaiLYqlP3VdaBec323+STaIc7oe4tEBmiHvlYBQzmlRLvW5CvSP0z34AtGGqQ39YWuyDTPQ28P62x6u/Hp0B+MTwvCBRHRHf2hUqojomU2JD1JAYIkMUinySwXAcH2srLUy3yQrbENwfjuQVSgYhbKtGb+4HyJC5FS0ppZK6GfRPCzcu5JxsvqKzXsLsIfz30r0VQByWvovPlZQrAa7fRggI+1a6tWKJBD3ceO7owy5IAFK6nYeZVQdRd3BRwIe1icnpWR0acj10v7dTnI5LzqSzwTZTq7dds71Oc3/p3Ogl1LlvCZW/bOeeaoJcgcZde55G4iy3m+31WitZycjQV/OlmaNaHBdF1i8x1NfjXvdSPbqRb2EOg+KHkOZXhLvUxcrD9s9+H17fwyFpDFejfLoFxCcUHu/qYu6U2u5p+qxVT9pCH13cXJJARg2jrFMN9icAwEscq0UUGABKnTRpamzhn66gBhut+xcBA4qLakQBAloD4YjfaSOGG3w9bAhdZmS29Z7oz0t/9+mx9o1E8CgfvkbHoU/ClBQL6sYwsvJdUBBHmABBYiakcKwvxpif2WoUzBtSkrcX/+hCI9FELuy6l5FlSMEjsxihDLsthod4t4+T9Gwklf+fHprIr8XCMnZs0Y4ICkU58yx4dVgERu7IaKbZ2uWd9J4PzpqLtYSleHjq/fD6lrfOs5vpqRGWOSn53y3kWvbla1AumcZT1X3yrcMf0UqMKwXHBwWnEO2eZ8/+AEYAIPkmANgnvviSTwApm9kreLVU4ow0DNXlIaIjp45eeyfcyfUNBnb3MU7PzU9ym5kK3kUWllvFCx1HnxTRwpFmX+CA1HTnsRQe/j8TLCC7crnC6K+b4TAOohA4KM8m89LRv7i3efzTheG7pURck0ch1dzcBCogAlXhES2+xOUCCFcyfU6AIaPV7BnzKWMVYwXwaSaWcXqCjsIQcHvbedaeykjGodZT6CTazjmdvVCLEDMbFsKRpkHPp9VKRr5WApAtB+CNHavDoSqIHG8rmQk36HqVSeKjCXTc/1eWcNosBQGkWUvZ07fJmPduFpZvH29o0UUVMjPjYk7q6tIyBE5RxIqFvQ/UzCw7gPKmwIq/+qSSaNNsg3EFekxbzwDJDzmTfxc8jxIyreQl1VuO7+PehWECiaMWwvDUhQWNv0EupPdKb2+DTjfBO0A2um58l7poHp7o1/8hVNFMjdQmXcjVQE8zeM53uz3/gkcH2pRCo9p/ANXY6fe55HeYFsz3k/JUOf0tsPG8WbgBfOjFfJiuJEor46ZTIVOoPs4q4eYWp6+GS7R917PEazGKVAMzTJwZe1WgkAoIE9P0az8UGAoPUOrTUdo8CiSAqI0yg6PvGAOv5U/FDAqzMgQE7A3EAtmpA81LohmRjvUOAm4DuKZPsdC3fnuUQMPG1jxPZYeN98LAswuaNPSIaJSE2U1gSsH4aeTaDVMNFYEeRgwQsM7uDbgvhKCfK63ZKoMDFBrkmvDAZGrq5bsng4+hWMIHq0hJP1MGcmqU8adora53m0tabdGKkt4XoT6t5HjzdLLYXxzrXEVztJHeCWVm0VLzENivmQi07kATw/zvcHodpGyr1/bZfOOJTqh6nTURQ2sk3wPsOy94DlhmpJHpZgh7z270FWXv01k+6/0PuF6N10zQIAAGgxYi6o3qhHFle/w84Kg0rWYyvdy3OrZ6WPzkpIAhLMIQBqHxRB90anoTabjRjew+8oD/dLMX3++t/EFDOD1CzAhv9CAq7LedP5SFnJd3uR63al+6TT725f6gmV/uOc5lvw52lhAngIkXJWvtM8KUHH5/vLu6kCig+aK5B0wvTl0oH196rov9kgPT33Y+YGWahZ8zkv/Zf3sq4tpvb+Ynz8HUHDk0XIvD/Qfz7WMDMMBabBvBwMNdYQXYL6EH8lUI7vblUaRJE6cuiBFC7EX26EljPduHvMw4EhSNqYJreXwcaP6Uby0UhRaejA3ZV4+VrJJKvMMu9LerBTlyDDFF2CFfVX10HGEUhUh41XBp8Jdxk+Phvl+YHw7MN46zm92aBrhDzJV5a176KLg/t8eaD8tbcUE+ghjHICFmg013f/Ty6m835b3hwHC++GKpmpwPehSFoWflUiAMTN1oQJPUtdUCREvKTRLnpyvKzmHzcPzXDyb6XEvY38cCBZvEtzRmAY8FLsY45WMp15sF8uC+nsW0GAPwQJS2JSr5t/TuH8pRVNRZXq9uRbU+mBr8pYEo7yac5uQR4CRBbXKw1QDV0QQKQ/1GUyzqM+kQF6iPvx2AHocybMAJHAiLTgiAhCgx2CfL0e0xTrMAcuQO31Y25k2sI0rgCCM1OcTtbxlBZbquolxCqPc1wRTMfh7kLU64i5IAGE/qCpgwXXhoZnyeGbfq+GPuRywUg1+yqb6rjD+3RjbQUjKlYmUa4wUqADMfomgfZxoH2eCdUy/qnv9TEIugrgaa5kKuJpwItdDuRcTEJlLpNrSb/ZhT6MTWeQvWoN+e4v+GojRbLxjT9JYyVD1RiODRi6AIAp2I0OYq0kvedkUZPenB7adatEB4t5qNzqGy+RxF4w34PYvddI9I0psH4ZkLPO3rYGIDrk1B4E5Pogw5/Ovw7gT/mroT8Xth3pkgsYcXUZ4DM9H9vBlqdExYhF41Zi0sHcvm3fzfPOpUe5uvNk6OD5G6BXa7Ayjx5YlAtVD0qOaRsgBZPrD0BK47x+rGQBBCsj2Osng4jEqBAyi5ok2kMC+O+8txl9vzZjtSTzsulGAZ01w/uMOlp4EYOdts+iTph6t597h5uCFHgZy90caf8x557qfh5cH/LRUAIJeBKognhYxkWkIh0cT3ZuTHpZBcsdZ+3mmse8etxcv/8fpfW+4OXmlPGYAayQCDaLHe0lr4TqkAcx3M0XIdUaW6JxvllJwfIwEG2SdMrZrkQsuI62stq+nxwhAELBx0a4A6CBDnGvtOYEhIbuTr2GYiHo7vLymxPyS1DFSI1zOzrsRhbLkJ/dVADCus8y7kQ42gh6+ts+3jjYU/dOXZtE5SKA4ASPsdMOfRn1E+lSg75CIjGHEQWRi+dyLn73kEOHcirpu59ECImJ6sq8Xcb1JRg+5k0CJE3oQLCBYUY0uL9FbAT+lTr7Nt51vSMddyOgWct1kfzEcA2yUPK8ZuVl1acAIl0vE5OLsuSCfxg4sb/Izvk99YosGsFRsa9disFcdcbt0j9bbgYQaETkVtfrUl4b4AlLo2lcCgxAsjqh8KF5Alc1OWp59YetH+izbWO9z/UavxsP19iWCgDpdndvQt9r6XX5WeZ1eG+f/3H6l/kL9ljqQiOmPLGtOm4L9jue1NSqZ6zL0l9JGfm8HSsSqHtUR/h0Xxh8BKFRbJ5SGXyial+VsgET760M3tNCEbuYgAq7k4GIRlHdekoD4/wJgIQhjeCwXiaYwXoz2xhA74LK8x67cFq/54ikHTLGuKRR8Z+R5F+WspmVU5e2rhc7F6N+dnfWJEeGmgW42MSXrMKVu3rsdbp6jFl4C9i8OFbkw8AtAAuShNzXJqGIsixD6Cmn7FWJbhGwdnzCIdmDGx7yS5yy5U7UNfN75KhCFRlgN7frFtZStifYUQKJejMj41dVSeCSosR2S5d0v7anEPQXWp+EvcP0uUOqe/WiwyIUG27v7IdMLyNDSg2QvK1EfQEGCNwGv2zzU9u2H5NUBVfu8ywFGj/zq4Kzr86v1xzXN0LWIHEoF8Cq64leC/UVRKPsKwKp07P2qMiba522pHDQElbhfi4zh99LTtioHL/JrV8wI3nl0AFRzX+6pUDxop65ytz63toUG1xcOhpdxq/s/AG687A+r7OPpGQXECY9mJErXL5UfPeR3eTd/VFj4/a64FjCIjOwsv8eIiNHVgV8xA2XCc+jN+JGzeI7jXKhjZ4q4jJJu0pAGTu1OORNkwtj1hxt2NPZmnl9SognMCHFjoIBdS5WBOmbq4fU0Un2MaxvDE+s6hTYgyAaLIXl59pU5eDE0L+/1Zu1rjx9tsiPn0m6oZZul41rPETtf563FOMflz7FoDJ/DOrYOrEVKyzTPOXkQWJ5RS2cj9bAa7hNuNCZJoPEH5LuXS5FGPYEx5H0kkw2CNxrQwJKeCMCcJvTi09D7YuoqAEUHVFZjEMsI7c2iPbg+yrl9CTDUsVwALtNhxNnFjVyR613jOVHmMealRGlQF9yPE4IJyDGOfVHmF0Cml9R+cC8stSRhf1OJuZVNPYn3xMMzIkMnP6/3SwB7L5fv/SBfd920kq8uHBaMvp3ISK0yzvyZEUn72XrFN7ac79Tb6zVdjjR9/TvgqbBYF/i+R6sn+eq8V00wQU0YklRvGaur98fHRd9sUvgCBhaHzxfXC6gQfS8gQW0HZaBI0fMvPOi/uxYdOh1iEcXwu7KWi0H8C92nXiLr967aVNMbNn3lMjqBpbovyCe/vKpt82Vb/4ZCEmTNAgxJ/frlPsFCwvj/56p62m+uPwJQAErEQRyGjh52sf4w97KGp/qlou51IjPuSGNCxPJw50zFjoZtQ0yQ3mT1WgMZhj88v/voWUaxGPIpqPxd1Xiogmw3KIESYjVekUwgIwj4rt6sNB0jMNif5wk8YZ76JtlW996JqpVfux1GShYKOxIFY173GKsXEAgFmgcy50kUuP1roJ2K499GjDjdSzQ7oizS/fMJDASZXqKu0x7egPnXu4UmO89FhNZ6DejlYCEBD5V3GvMiboilkJCPx8WS8749T+v37UCUz2P7+P9Pn3O2/VZy6rWnAeHkijY35pmO0pOtRanSiGKoAlvVIh7ckx8EnlUIU5AUI8K+39JL7B75EHg04gsKKccBud9TsRtex5l9ZxkjIN/3+WmCq1RciIiJPbes2cEjnrsv7++rce/9EhEjPtoPP3pEWQoS09H117w05WGxoLP2s55OUHgcFslwf89x2w9LL5to6SgD+ukHx16WaCJSHbREQNneLWtmTFuH3fLzdXzGWCpwudc5P3iMlwMwcuEqB0Xry3qIihdeUskiT1oqHUASQJb9vZALViVsD7PbPQb1InHZ1Ew1YLWAdyvJGlwFmgR0YVieJOJynhYSCooGd8L8/pbGeGuZ6tZSdgd/Su1PATwExSvjMkNbg3RX9HauFy9xKVVeFdKuOOB7W9dUA8y4NYCIkVjSG+Bl6MKQ9e/p0TCboDMKq/sYHi28lDMqEADoLbyTMS0FHFKPQiP7ensq3v/TKozc/nVCljJwaqkkTSOMun0ON9xS8ddmOfQ0msilIBPurbf89/f/NtA/nfMBAPkV4v7yPCs5q5G3rgeiRN68MXoPaF46eAGdVNF/5J4YTSAty9LNewE8aQBNXTmaeDUfry7oLnNegK7i4YWmoQgBZsvQ8zYUR+GLAJApdSi6xTJ5eDWOBQVogEU/AB41IPj8p62H28+JNOgFraURylKLAOfLtpVxVXh1hlLBYbaGJxn7A6RDRFj2z5me4KIHLJeDFSjVAea9B6cCgCSUBAzUepqnX5w7wr7k/zsPAtdTVARpMINSYH3wZ0Vli61dBloZ6BVb/RCoukup6UKCat7pafwFFeDjOvAUERrTOhDlDwlYsqLKvJFocQYAFtELrWV6CRA6akQnTMV8K3pHo6FNgIiTjYtqM7aQkhPC9GdGDY17izYu66Q45VidAgK0j4H+GBb5cAgmS7ET6CHZZPMorrLfOT9oVsGNZU9FFfLDCI2tnX3tB88eRiQw7bOCd74WlioSZf9WXi+bV9chvd0Kr77U17mOZ1B/G0V2VPK9qeY1Dn4hP+tCdsy4Z5kc1UzD4/+8pxqZruckGOCGOEtKl+gIC57w8Ra/r+TE6xjFGcMxru8i0DDzGUD+7O+qRH1S0mFtSDT2z+8825FmC2Cp8lBBhqmwPL0ekakx1kyz3RzI8bzxIgoAKVUROHZMOyhlJPfvxDtivP1faxCqx342LWkkXFs74SbnqZCRv1xX5wV1752fYjbbyw05LtVWWJ6RaybXQYI90R7qKDGn19cfAihcNLCJEbpMF5BUUr0G71XVg9fHlsHYlOO9ZFQYpYsCvW6qeNYirDelI1DcC6G2Gz5UplXX+5dn6RLyDyDR1hK6/xKqKmXR2x9NULMmr3tq4n4gw79+gUaFZ0DNwwVRL+NExRR5wNWQ9as2NV/1sUHhAluhmMZJEQfvxTxXlDCQSLyuiSuEzQ2apVZxrTihZb283VbU/WLOv7wWI+PvI4ZSjTx+H1iFP9d12xDu+pyKKgOIGsdlvdQDIq6KBO9CqKLJlUOA144Is+9XpHd8v4gBBwOr8GxetlBMWfslil2jGKJP/tnV+rmSHzGmeFXul3fZAZ2ElgkARTrIbGb0e0h9HcuoCAN4beUU/BTaLzWBv4piKYoD0zu+vLYDYlecvvQu7euca9MjvpbDlSklIq9ytgmqh4ce4wA1Cpli1DNn2a6rbtX5Bl4JVKvCKe6h3qLRqFRe9rFelFfAeibw9lJ2LL1a5VkNQfybjy8Kr/88yY/A9AiBe5L5LG96/C9p4AHIcGrzzrcT4bkEgFoGLnKhZ4kAAZZ18Gos5vvrCAWXDoD2BNpjhnGX3k4sqQMsP8mUjt27HZUGFAUU3eS5rs+rzQ2biLnbWkLtvT0pB+q5BFROiSWaxfsS5536HtC+vN889xpfqSR36ikOuT7zXftZx8oZfAY8IsCqCegyCQR5FuCgpNXERSPKDS2SF+oBM67Dc5jPtT7m+c5IEFtDCmiZv10ZX2QAgF+IcfIqWZ13vOzLXPf8ApbQexyc1/pQ/07jfsGid2nzNKQpCSaEgEaCQbQFVFYwl/pLaetLNYOoatEgzcYL57SlRMJPgmdntj9ANnKMnYgIAQMmJdcPI3Xqka9+P9cVfTBnrs1IGfJ+Z3qK7739LAw5J8s8xGc+bi+eaze8Fv2jGKUvz/+VniWyHoehL12c67/S0faLdoY/r3J/kU/ny+dG3+fr377y4nOvUa79yqbZv/eLoNbLiFLqCH8nohdI3eZX19+5h+391e9fRSlwfKohXz+7iuqrXFO/ev5eovKLdfJLPor62eJg2951dWZd3Xf17K9086ux5+fzYj3VzzieOn69Bv4H9s4fASjEoee6ZrDXOsIpBZXTW+ZAMowe8EOikn0FguzVGLzUVyiW9MbWcBf/R6bw+Q8vL/Z55oafM5nEgWAwp+ddWzPPbN20vP8w0qEaqWCcABnlEOXI3AseyqdHJ0AkKhEo87zntPtf2EPFIhYAa+Pb3Ss1+Lsq4y0XDRV+GkA1hHhOtM8T7dagDiIY8dYIkiqZCnkM4Jvnajvwo60Bx2okRVlMJxqL9jyeEJHgS2D7ASSw5CXEpIYZn8NKfO4pC1dGgodxigzo0TG/3az80T2R7/AO/Mebefg+Tmvr52PlY+jNogvGAPSI50dfuuX96dvN1uDjmfdU7z5LAooAb2/WXEdN9WFlPF9ZdLM/FDDL9g+DPCN8QPJHCtMamdCMW2BFtwXq/crqFYamLmh8NGwHILbDsvRBxzS0+f3NSn8CHvpZBOX9ZooNngjime1gkJqr7utWRoM6N4OqQj49UqVwMKhHEpDjIEGPreqA6kuO4lLJw//P3LwOHM7ToMbdQn6OKJnJe2vN6QIeLiHP6mF2oi8HqqrnYh5e4hMzyxnFfUXOBa+FRdAEQEl+jxJhEAbQYfdGJMB0bwejIjhWFTh6E/d6I98tYs8p6Qx6eGRQjT7wCAXFhN59LyzyYFMaA4TqNpasLOFREXKO5Dq4l7zEhfW7RBkwGmkv/+vcLZTvAeRWr9V+iWC+H9EH4bNoAHiuu4XUWn78PCyvvj0m+uc0CgoqCD6WNBTEQ3STjT/JfuNvZzlbqGt141bIIXUP43N6CoQbvcXokmHRDfNupe2WSxEpFKxGIVNx3m6YNxrBuVdIBChqRlZwQSjQONckZq7jVdfTF1cY3m689s8BplrMW5b9A88vN8L0lukVregXQdhHT75vxYyIBNpbx0RDd8A9oisUEDUjmZGWergXvEnoMy958hyzc8aa0UOssrJ7lBmFYiHrFoVC8Kh/zkx57A3Pf9CTbOPQHhPjvWPcG8a3htntHXyOGYqSXBMUP15qUXvyK8ihAWAs8yLkdrC91ViCu6VBuwCZXg1C77ZXY57ieUhjmYSkBKJ8XrTBSCefM0Eq/2zeXZ8atk4r4MW9EIa2t6t9nLZvC/8RIwomo0duJrPM+Jcwrm1fi++NifFm4811cfywPiv3sEcvAT6vXfD0qhFGagqI88CgAbOZfG3kE/A1FLwnioVkNMYQis5ooZIWOd+O4EJgVBHX3QqwVZ3K/mkT6DP7WsGASGV6WvqVVa4Qi0Lzc1BZepFXMeT1/bbKZ/j5uK8P1Yxm3eUDU6Kr6rDoiabLzW83i7qgakUOsA8nIq7cbEt1onoeMSq0jEPwR62ANmaxVxYk6Nox8CVHQf1eL+9zHYNGebBGMAKp6h68nHxvAR/KO1mOMtqwe8mv2tckIgLkBaHa2l9/bhMLseNUaDhgijHMiI39WUxfaM30VkZ/sJIZYOuI0byA60Kuu/zK2KZeuPU13jE1KpNF9biQdSN1UHfAvIwZ19pOjFl5rnxfqJclXRy2A6AzY7k2wDcqQnDMNCNTomT23wCN/ghAAQBwTquJfYgpKjdTso6P4bWu7dIXL3/lIdiEBbBO9KUCyuek8AtFsUZBBEvtaoRH6KKqE3vNMG5xK8Y4kAh0NawqOln6xXsZTq+FfC6Ahe6nJ6sH8PlsT1VAqyHv3vkgg+R3GhDafx0PHggkvDwn2mNb+F0wepJjWWksU1oiXYUHU50LVVOo67Oq932aUsRQaF61tA8JOPe5uer7AhxNN5SCYM4VW9i8MxpGHtMPPDfOh4MZpTTTSzQL+xB9ybzQ7KePKUPWCrPvzvq7bGxe9V0Aojzg1VX/zlSRagwBYA7/Qj5zUHiZkGFZTHRPI6pENPE8E8ZmKWyCcI+2oZC1TibRDceVwroi8ppZ9AAAIABJREFUtZ5KsAjfvVIFD66yZkJw16gKLT8DmdLBSAL2d19DV230MbF81c2A58/wuWSFjwbHE/dIks04n9P3q81RRCxU7gt+NUAjKd7WIl8qWEOAtVnJthdDXVPpVCbZFkUxy1iWfcdw1D1tiiDlFoECV5xDzlDm+AEbe533MOy/tpN7v+daqiS9yr8Bq9zTkv62r1UAGOf6e71chmCe8Xu8I/geXJZH+SXrx7w5SRqmGU1+BtSc6ChP2IQ2QK4h3iuIUFHd8urNuEOWGJQMXRamBdVuqY95E4CEd/7c8Hz6M4xDR5xYPb3+KsjSgCLx/PDWFpCDRgZ/1iPTG6qzgM+yedBFXgRw4O+M8fP2NqTxSNDAxqNh12nju04GzbKcAIL5nxE32iXD4XuL8TSAQVcFruokPFOGE+Vuil3wEnBu6+VGeI+QcqB/SHjX17KPKGs7jeg6FzUHn/nts9lzIwVV8aJUR6pObZ9efBbvyectPJWMJOJ+bwBuDROHGei95fdqmG0jcJDgj5H6GQ/IBHkW7PxkBQgDXWjwapBKkv+hAgnp8TcdTGYxPqLCB+WJrV3uP1t7ubciJWTaOC6kn406m8QeIwjxEiXhz+X3poMX2sRVPXXnDGAlxrHyee0Gtst1qboesALZNQ2jXC+ROIKMlhEEEBTrmb8fXrHk1qBnNx374TrwtDbYWVPOK5efirmcuwLvUj2LuddESuRTK9FbwEL4GrKo5XnRfK93nmNmX8hzQGdzhwflUTo+vwzpJ+E0DfyqP8Q9+3dLOsJGXriUg2So+leRmwUwkAnTC3ZnTDkX979dXXxe5WLYf16eUb3i9fpVdEREPF70a0+D+LsX9byFeByup5foVtWIVN7btFbQWvcN3/H6Wrfj2N4rIHxufFxX4+/tF35ebcsKWv2KO2Fb99jn6gLEqsDS7ypw/BmAgg94//HA+H7H/KthvFmOIMSQWYZ70XNstq9AtJdnlMlqgiBv2QeBxlmDDdIYS14LjfdApKl41nKDBBPoAXtaLWV5Gm+BnOb51tbsQGNX6THePVrlPdZ+AM9Z2MUTkYp8O4ZlVbCAoELlayj3iGowMevNPLXyOBH1lzEB6ZDCYGt1xtM4aI/h7NgSB452wXg3xbM9p6dBDPSPM0s+eT7xMlc03GnkTDEj0PsgzxP4fEDe7mmgFCRPRew+ev1psLSW+eJ1Eznww3FEPwJlNubk5gqlGwMQHD9PU8xqGBzn8MWoL0YT3zWnK5kb6CD27qgAUZ8VkQuJwC41ZXVC6RwWCRZaAVa0+EWJmDbP52m8AVKMVq5TVhsAYHTHrvhOu1e757AN35PU78l5cJ6AjjIG48XgX0ovioDlOuPwBaBPV+hKmUiiynK7mTF7Fg4MIDlO+E4COqp2b82l454jgi9tiToIBt3jQJT45DyVudQxbSyPjuCreGQliGg3rYxKVjkVaBchZ/QQ7HMnYoj9V7GOoRRtMo/yZjeMx4xxIu8AuT5yzK3PUlM/CWiGolYO+W7GqL7dQxELGeme6Ojv0U1+uGyYd8/PH9OWurpMVcV8uwFHw/nXzZjRP86ypy0/P8jSPGLFQEFJsEcVrJQgn5kPGyUhpfLECMT3WKRScDz4Hsra+rduMj6UVHIoACG351u3s+0JM0YOSeBVzYDqzHd1nCcMERoCrWEWBeC8N4tqeDI014yXdroS3+3zeRSAo+5JNWN0HH6+cF/PHhwMvOatmbeXpIhcFgNQbQk+8TwaCGNX2J5bD4WO+diAG80/3DhoPicC82oVECGMezcYRRERW5F29/Cfn1nKWFVsuir/BM8VVQ83N3kfQ/5u67R5ykqUnuyCJhJkfjZOzKHf9Y40tJobv2P3sJa2RHQiEL+3c1h1Cy8VeXMP+/P7EXNk3FAJMNAwMl6JNFL1MLkeqSoiNh8imDeEUW0BUGXP8syXMr+8HEDLVAmN8oZWQUvBqJFascn4Ibx8861Uzoj5TH2GAMrs3n5608c00kaPCFjInn0ctbmz48eI9sZ6GWUP20JJ3g6e9ZsuqWJ9O99ZFhZonxNtOFlgBXS5RhU5Bw2Y8Khbhuofa2SGfZZrmlEQ8yYBKKjYMzrfBXHgo8U+CVJUynlG/56+LphWZtvasqaqE8fgGTSegWo6tB6+VghsttQLWab9/M5UUte1xOWKiAE2e2n4ZU15e0/Nqits00BGgdABuF01HUWmz2V1BNIz7QBWlOIlX4l2tNPkldgf8tkkSv9VOL8bohrl3n2cW4cpzHg19I7D9Y0RoEA4R3ZDXMtz975Tt1O1Z1KPA0yPKN9Z+KK+MNSXaAaC9QVg2D+LqIEdGNj/FsZ50V0uwYStXXtlgvr7hRc+2gQayjaWERVLmcvogXq2iekREZWyO2jq/YvT28Ewck0UR8flRXtv63foo9wn1Mv38dHXiIl8to/71r74DLgc979byvPPABTEhcHnQLsNtPPAj/+94/N/FRz/i6B/At/+r+GKEtAeHhrZTDFoTngV5DBeojDyVf0g0KObsjwtbH3xltUweSrfe+nFYpyEIPH2h7G7gQQiMw36wxfehrbbO0sYlSOyYfDUhVPR3uE5b289hemciFIzXJhEqDncWvJtHSwIgEW6hdBGma8WHjUqBhZ1MHxx+kFzYvGutXNCHtNLFc1A6LT7kgs2X++He3ZjDNj+srlqaB4Nh/Q+ZH8i1Iz9Y5kfKgRe2jOMXQAsGG/nXVuU+/ntANnTBaVdfB9vrFc1VJf7ECH8AXgUYRTs5vVgcUPYDD8izA1yL4KcIEfvkNuRUQZ7GFuthUyhG/Vrq0DhuzRD4QEEw633zcADHpLN3v/tm/XnPNMIvwrHArL04ihClIafG/m1BORSGvEsgFFVRiiwuR9m2c8V+a6VWTzi4TUCw+dlIVLK8URrDsyUNtCjV6IJAjipJUH38qDhiS9pGlHqcqxAAZUSzIzWqGAC20OAhc+OSKeyzhwsUCcmjcig57muYV5VzjGai+Uoq0f06cAUw66r8sXvn8P2cAMwnd2AhoQ6wDkFmIL5/ebh6oIGBwuGk3fdjmRor6ChygJe2rj7/3dP7amlMesYaz4vZE8FnAkkPAuYyXk91DhgnuvYCYnnPkdEXuhfN4x7g34jkG2yhqHmYRC70addMO43k8tV4VeY0V/WlDbBfCNo47ny0T9YCcDtajQC3fM43ppHTCCMIotEs2cYB4Y/0sXTvPcwTNg2GofkiOB6MaN3YvqapNGEjjQg3GiP6AaX60net3qta+g3qxowTF/GRBvDANlWDHcCHzT4RJJfQ7vJ/gmITgOCaPS6QbOkj5yeCuHtMe91C64hlvEV9yiH53oqIPazOAlegCSnnadSyCn11jG1oT8maFRPTzMiMKaHG3cuMyY9xB2ZMz9tkkjyyfvbKSASox5JuAA6qmifWblpNoF2rhVEhQ+uxYjo7ID2W46XagBIjA61fcd1ZXM9PT2olg1vPtf2IAO7CBK2p5PFehsaSQCngxZTHETJta1+xuutYc6O9rPl+VflFtt9WnoJuRxIumhZDGXN3kxfao+58isIMN4NtOufZsTPY9XZEtmyn1WytKQ6TU+Ae1skCiubca3tJdet3z7+RRxUjpQlunL6vdzbJxyIy3XCsRAa84CtD29rRk3BzxCYrgw/J44OfbstMjvSYuF6aXMd0OcgZDyJ3Gfua6twUeawnru+j3A0B7cMZJvcG+W+IA7mM1w3V4/ODb0h2USxen9daNZ5jbMcuc5Cb2yIEDTqT1NXMIDPqMY00yjZTzEvs9SznKkRe9nBJqEfij+nki/aPb8wiH/1GbCOBwkAqxE72O9fXHQ88VmVYFInMIk0lYvzVfQrAGuUrPdzKR9ZbK/4f1s/8WMAKUidvuiGL1wMvn6W0t+FG6/2T8bwIEXNKBvaTvv+7FLSboCXkptAjnkFcGrEayFnzCHc1sF2/RmAgl/yPCHnATknzr8EH/+bon8I2gM4fhp7dH+YZrCE3D9NaFBRiRDZKzAAMG8ZzLOpQHi0F8ViIgwRKslhmAJYvNA0zvzZcRUlPkJNvyg5w/C/hf053p2/m0eGoaETuHVrV/OF9tgmuwIldY+6UgjAhGlsFrVhOiXy9JT5gveO8dZwmwp55qFs3jIBPktI7XMa5wD750i1Ai8HF9yIU2xChJuMG7imOZxUPGjEbd9dEGLL95en2qFx9DAGAnSKsTWBXZmrx81quvafZ3plcHEVA8RO1IsDrPlGlxmGSOTSlzmiIJJGHgDLCTcmWD9Ubp4qcZ5x2IlXmghvbQ1j68U45/jWi4fVVAtMqCh+fUY13scsfAA3E6isQvJ4WsjleWZ0Bf8vQJoyzYPrkRUSVGGaWRoVgnIc+wH+Mv6AvYeM/5XnYboR4u1GOxAgiYiHiNaDYeYccQwARNUPApUV/LOX+u9sT+FtCAVAc7xjDkruIrlRpK194/PZF87lDibwuiKRYj7p0Dy83u+mDLqHHZ+PBGM411QQCeh6SCkjtVQ2+TfLe3ewjM+dpmRY9NbwNpjX0rggJnCYwaZOuKbTjcM2bP92B0L5zsp3sSlWYcgfLd5dP48x2mRUytGe62vMzAt1RTMihUCuCInzx4DiEVUtwGixQ3B+M4Pj+DndgJ9mRO7h/5Dw6New9eb559VrYeHGJTWgwY1/NxhHmaPAE11Rac6U78aBeXfF14ukwailEkCzyIZoW4MZGuRI6mIv0sz1h4P/YUArgr9h3nucx8KlQ/HaaQynQs7ogSAl3D3PzfO2yUsAADcCqwjyPXUAHTMBFHWZbpEAE1GFo2UaiIXVWynCNpxcsBuYMG92/suEedI5BlX+I9/F/4NnwYG+qHDk/W0A9DbTCG+a0dXco/BxU7gBZEAR/27cC3ByQPtjO23Oqzfd1gLlMdBOoD8npjbMw98nRgYa6Y9a2lKM2el7wkAw6hPW3kZvnp/F6lEzw8ksyeeRwJGtAZt/AGq6RnvCUhkI2DBgTMSOseYdAZL/wWXcvLVIo2B0Fg1rIxCWAIDaVtGj3gsH6ObNOGnamQb8vGW0gfE++H4tVc9s7RddkUvF25/RIpo8Cls7KqhKUtrF3iq8A/XvVxU8arRUAFWcA5/naG5bn6V+7kRlxtiv+bv9rZteGm2e5nj1M930RcmIXD/LRNWAGz4LAEtyKufX56SelQQUWCkkxn4Zb7a1lSjX8oxeygnSMXF18exezkrNz/ZKQ8vg8/wtQMMeTaAz9Qee/YweHaXiQsgFeX0GdTTaoTVVlUBRvWpUwi+ulzSIeP72/lbGppYz53gz6oPALCtvLVUNis5N/W9LZXhJZ62cZv7dy3kUP6jCidTWMfC/LxXgqlOK91Z+JoIJBAKqPimS97rMWdaHzuv1Eg6o7e9XnGc61zHaq2zU8fni+jMABSIurpD1j4FxB57/04D+H0ak9q/zO+7/XfH+n2r2/2k5qPQEyDmNoI+bm0ouw1gIDtKY46DUqgcfT0tVqIhUa8shqJEbz41B4eyC7eiuaPt9DA2bEuRNAMrCzQlTLqbeAt3VJtambcMqESiiqZ6H2wyahah5RIOs8hyA3PxwdBJEes/mdAHuHpRzeshaC+4EhkUGuHLrXgZsxGHVPk4L57138wzUvkVKgCbPhIckL6XVlNwF4qGxNyOO88iSmN8NJa6HTzUgwlvqhre+3aIUHFSNDK43iKdn3P4rFejze4cewPFjpjBTQZT6bB7SV0Po6PWugqocbMyjRG/Qf/wFOQfk49PI3sIY9barWimee/OoBh/P81yAKyvLODLigWUDm+Tf7rcUlB7yJN+/AccB/XxgKbvD6AQgjXseMLdbppQcVppQn0/z4NOb7cacvN3XCKDew1AnAhweeArP44B0OwhZllF//vSOWjSAvN1zrEiG+VkMwjKGADKNgWDIcQB6dyUkEXgBohwRns8w/ANECa4NP0QeT9sbjH5ZeAmaW0CuPFQSxkCGu4Mb5smU+3sCMHzfVKh66VeS+/A5XNu3W8q6MNJnAgCMiKnjUgCOGs0gY67RPOzz0RcgDrejGCpqaV4El5j+sR/WBUB4ebeXZtTWQ0YG+a5/r38O6CP/LkXG6K0bEOT3y+gONAjmzQkfCRg/Ts+r92cvILHf86xRORJpHPE7gSTK/QCPD8h7X/vl+x2qkR5hKVSmNDPq4uqSYR5pvR+m3D8nBDQmYdEaTyNupAcyCI0pRyDhBW/AEmlgY8R3eSTGrRnZmzepE+A4rRxZcxmnLT3A/QNh+FXASKZERYnwLh5umcK86U018uXDgHGj0bgarD/904z09MCaIRM57c3b9sx1Hv2b8LOpxRS2B1NV6Hm3e620qBsx3Z0Ow8orto+njRPTDo5mkZEqaGeOGcEGUUAe1ClajsXwMZ12DoYhU4xFTECamuEtCE8obqAlHOu1fY4AP+aw6IYAK2BjOd56ts8NwfbUAF4ggvu/phupQBtwckZLgTjfk2C1jTwXa459e5qyG5UHnMxRexowtUpDm7B93cQADgIgAgfFEe2HIsqBVp2MwIWBg74mXF+ZXaDvpivqKGVMu8/pcPDI13KASUNwnGo6ztNTLxklVsBbk0GapV3PmSkcNZpMWnI2iKUVgfvnqZa+0ATPv45c13U9+PcYcWLAlaVFkSgzyFDPifY4M9S/AoYioLdS4GvM0xjpWKIMkWmlwDn+TKOK0G1PPe4EoWwrhR4p5DSrstfBuPY5PHXW72vNiBcJujasQDiJt5naNqdFYt66AVwiaD8eJl9LVBPmdBLzDmH6JqPwOMRdIs0kgKpz2PSJGaMEGiupbJwdqr4+5hp1WMAFu7/YHSTgBlaDl59Vh3JzIkVG4z7PAAwE3bjaNseExJnV4nd+R21CITXiAQiniUzYxqy5+KG/b+mx4s6HPYy+3uP32Wb3NUayajpx9AzDPapchUOr6J8iYQAnAbaUPVnGjuPJiAem3ZaxjhYzytP/RQnH6tAdE2hJkJvOGV9P1Wm9X6qZdtnWcZU6vt31rEh/9nfUdPs6rkCCD0tUi//IMQ29OPWUBTiJL1QE8BUk/d31ZwAKgC0uLv5p4ZSigm/fP3G0iY/37xgfhphHKN+QzDsrE2nEUgCRLHuouHeGHAYXISCeey0oyiOQymAo8flZjWrIcmCSwsz7Zvm7sho6Vai1skABE6gFIVwiFeIBRaEXZAhma4CzLsfndaFvLLgyADSn/1NHeQuYkGGruqLQmoKWoaDmIVn7vjBzx1hnmCTZmqP31RDnvM0ZYT7LWNEoqXNEI2PfeP5M7eVd/iwZCjwH2meLAwaCIDlbyCtjYxeUuCKvFG71fpHX9IfDGOklPJWS47W12cKgJA+sYAzuJvzqoTQ1CUGL4DetejeU6J2r6/1i3OKzhkDjAaAroppCY1jdzHuHLCkFrzwSso5nbUv0ieM4YDGTGTorHN+tAkOQyLEdNuD5e10rNJAcwAFg6Rpb5EC010Nydc7M2ayVGmrbAZjHQNbnqa7jzAOPxmn38aT3u8oGKor1d+4LGAC5INzFUA7A6+oiiLDLi3LQ2n2KhcIhFPq5RmiJLMZGkZqvz75a9xWAaG5cAwHMRvhmQ8oQyifPBTdZuNZ47+dMebJ7AmIstjNll88AGOEWFTVUDSisBLobwCn7+FC+ukIexGv+/sqav0bI+fc7LELvnGFAymHrMz1sVfZn/67LwbFtiHVC7yurA1RyOfMS+5ktgOoMY4ptT088Ii1BuP4VeZ4vhomErF5C91XCEFpIiKN/6RFnPxSmD0SIeBMH7R3EEj/Hm3g5Po0xQo2CUDiArIXbiGeDxP0RKt7E7vX90QguVXBvM7gyDIP/72uO52E5I4HFA91OgJ47Gva2fvB6TViFAACK5GBYoiL4nNAvXJkvYMVChgkAfZ0Xi870dVPuj3H2NcNnZSTg+pysdGK6mKUt5JgloaJPYxNLWxPJ7evjHp57usvd0WKh9GrpL88iSwnQctxFkCUu1eaaDiQaLpwzRfJO+Xhos+hbH3xbqwcsOpRjAoRs4M+pk8AAKnXy6zE92mdEpaxFZh0e9XV59uKFnwCo8spBNkY0UeazOknRfxY9tSEjKAAfd8TaqmSbjLwN8sUqKv28jvbUM6o+f/mbBPeEtvX+yxLE/pnoLGuffZ65x+o5zrGkg4pgy35WxP26/rwb3X/DiKth57X8dHwGhDEu++N41s2JXxL4TQVaVhVbDNPQhYguChyhu+7T/nPVdcbM/fe7q4AJL4Zw3LJJjNqe+n1g1XHmKymiAOta5njtkQhAvmP8pi/sN7+7nV+hZ1DPDN3I50K29/6di/1+iUqYiGjTq+urv//i3X8GoEAk6D9uYWT+4/8cOH40/Nf/8z9jvin++hdwfFjKQ3OytiDnefdyfHtHiRzphL7foL2jfT6hbaaR8TzDoONhr+9HGh1sH7B6nun5dSJCPJ72nOo5p1H5zJB0UwgacPCw92eHZ9Sfy2iL5mXORCKEm7mecTiohpfH2gkojFgxohAYhVH6FALc22GC19vG958z1/CQLMvIjRYGvdl7RLgt7LgcFvTAU/k6PMTs3oNgqj2srfPeI9x3OThaQ7KnuxYeIIML0KYR1liJd7Qnf0CAICfJlux3mRPdozXgjOPMe5WpaJ9neqe6QL+/ucL8jPzwiHC5HZBPAH1amcDzBJoZ/+HB/3BEfYw8mFiS8Ni4JpYSMx5B0CwlAu9vCbZwrAguEIn8/ESkWxyShjffH8ZnotbqpQWlZa4r50M+rM30pkfZRsAiHrhfCnoaZU5lDSNbyA8deKl5YXK/2+/naVELP34unATxfSAM5oVkpxKU8h4HD8kBIf2WBy3Hfwzo85lAWzV+OcYOuvEAys8mIGpETPXgnTwUinD3EqG8xMEEG6pyYNX8NgHC48FQuigRW+QbvRqVJIntq4Z0hOkjlaY9/aqSD46R4e/V2O7N9oC/M8IrRTzFwOfeT2rKGXl4+V1fl+3jDKDS2gu0n85VUDzUS/UZhT0HCALHmtfONka1FnXDoQBMEa22EVCKp8KETK8eA15sBz+r3hO+XwR6O6BvB/R+RJpeeyqOf42IAIgcfK84YAotMO8H9Gg4v3UHTRDRY3ENhXQzpCOXmfJ9OyOjkoMA0gTiZHfBoQCYZzWM0qzwgAlMD5uPM/lgWedXg5K5/Nr8hQDGtwb9x63cZ6/Sv7LcMYnfhljaAN9lcy4QJ9qrYMJu4C6Ras3aM/7yMOAS5kwDLc4IIICcJcqizF9EVxwlQkHhkRUMy1dbU7sTgVEHmtwjsU4qwST7FkZqGdcAFSZY3UKe00oAuhdch6cLtBwLGt6YivnmUZFDPU1gxBow43yiP2xc571FKoOF8ks8t3/O3EecB4L2z4n2GMbf0MS5FjiP8HKUvuYYiUJyP7D6BccEUcHBiFUBvVsfgs+gC/qnlZIOuU0OBZd9WsDGNka2B4iIyZgTyomQgS4zb4A2i/BMnaacbwQUzunOGy62uMXXqWJKQxsTx8+B8y9LMbXIIUBOiTnnOm9PS4kiJ4s8zFMu5M4h8CUC/f7u+oev4dvhKaAsd+nOFLbV14alX41Y4wQV5GG687z3BG0dFLLSmIjxYxWS/jG9zTPAtgCeD/cKD0mQrergvJc6NAD5HNAbLDq5AsBCcs4C8I4ZJMBx8T3nNB1a1cZyjADajL9mA8vVgYZ6BlSZz9+ro4HRnkDqWWwL27gTLNbSj3BOqeqs49rEavj/Kg8+Lj5zu7K95Tud+uZulM/rtIWvOBD8nUreIUbLVsfDnhZb52sP7T8O++7JqA3uT9e7otJee31GnatGvaToRAQVYpwv+qSa6xh4cRoG8HqO5Nqq7V8AGskUbCk6OlPvfY+ko2WmTbmTdJcoDql/q1Ewy9otf18iUzYwQsv6u7j+DEDBr4oyHj8m3pvg8X9bxYfjh6I9EHmXFsFAYWWDulR5iImaS0jkcm3okrE2l43ORceJqznlYTisRnqgbmWyiHSaICubpG8NmlT6iiLt95qAbLlQ2R8V7CQ89vO+aOFeK13atghXRi6E0HblzQ9BnVycE5U9Occxx0H8Xy0DVy+WEpr3HgrGfHju/829s59jyS8NMKFuwlKa7orhd7lc+dCdxZ59qAojYPWHifSqpndKFYBHOlQjU/Oz5aqeCiDb7of+sun30o91rqqghB8eW95algACIgcqjLqWZf6ibeshCUyIHPH9NGhz7aVnf6RRzTGMZ831/fV7e8iXenQMD+06N8WwNuDLDjAFPC+yHCL2EkTJyv2qnpk5l/KYO9If66y2nd6lfe3swOPfvbYDLd5L4Afw/TrzniW6wO/Z18sin4oBssyPvv7Mw/QlDK58b4+yUDW5UhU6j9zQw9s2gagI0YwgS+qz67/gdmD3y/r3fP3VsyBg7jCqF8qNxsXr5noXWchx5vya166eHZIyuBp7VebV9SFlbpY1mfsnvA/k7PHf22kUXt2VbKYeRKWCMgdhmDuYUNn2g7ZliarCaozVJSBAeHk57+pbpyqTun6nGroELSIyxPu+AByCCGOPdzJCAiardk8aUwC0I0AM8xoK5o0GlkYqRoM9o6YcRChDzA/7IBBPg4iqBByvepU5DeMo7pFyTvo0q0JALzs7BwcRvT3Rvu3sV4Snd+cSizVfxozvrpEzihZRgjauvv7PdXDD6yb+c1kvBC7aSFq5Xd9C+btVTFn1iCxbiVxfW1/psQ9ybd+b1BtY5jPKdUqunwDQVJKIFTBdzLkbImoiOAWKHNx0q7Vtm3wRyUhCYD1DCNYuOkr2N9vskRb7GHFMp61hEIwrnnsWPyBAEpEXNPQJNjm3xguZW4l2W/rWm1dZkXDoRLi/qlWeUHdSjW1z7leNImoIjhYzulNWRFRIPZNUUpfluNK2bhIAmbYG6en8WnS+OaFn+b7Iek6UcWca3Cqz6G1fAAAgAElEQVTf1AnvOgSMXANY6SyqvdW5r9cuNxipVM9g5qfvHvw6V008PF++9hyr60/uQFr4f76MPLzWS2r0wW9JF/nsykHAaKv9vbsD5ao9tfrEVQWI/4HrRR/b2/zV84rsfNHjr56993PRQ+Zy/xczsV77OvJnyr7fqp5RU2jiY0YFlbkJx5Eayew+xn9HV6XNwHUZf/96fv4cQIEhku4Bvv8ncPuvhv55C6+EkdZMtKfn0/qYjfcDEOD23x82UA0WSnpYbnymICBZz12x07cbIpzpdmSuP42bOSGfT+jbDXo7EqnkwmG5Qv+OfNA7VQypyLF3sg1JTxhrqrcfToD2eJq3l5UIyqKbb/8vde+2JEmSY4kdqJq5R2ZVT+/IvpE/wP//K1I4lN3proxwNzMFH4ADQNU9anqFL0UTqcoID3MzvUJxOTjY80Dkd2WJLPL+8wrnAC/LQatj3lLAqkfE3PAYNzts+j8e9mimCVymbCTvQkJ4hGRbXnUDY0BvNysZVeW356lev+14/tuO88MOpI9u+bbXj4b2GLh/ncDTDdd9y/YC4REftw3t60T79ZjmIV+mQeSD1mx8f30iSgr62kPrPn9P5wYYwD/N8aC/fVj/vo68n2tq38y4/fVl7bztDpXyNeL58YDxDUzlBkskP7gKes9504UVNoyUdCpEjqA6GRzTC67LhAzn+35PwsTjhD6PZCJmxNwrMWj3NIzbZlwCYxhvQWv2LkcmBPrHo/DCMW6SzgTnTdDzAsblB/+VHmHm2qvDBZ/P7G9bDswgq7G2aj3MIhpcPLOVEAewNugwMszJ8UiuAt+7rUce/KREV48xFWHVZPlHOZi8DQnpo/EveZgO51RxvgqRjNDLvls+3XFMCBLmHgJ44SmIco9nOax5+GzdFcZoaMoLOodkn9MwKLcqNwMN7fXw5b5UNW4J1eB20K2nAnspZFzpaPTvsHSsoRhsjVOZDPkSkd4rolQiwyD/dDaWNaFNImc+jGZVyNmdOC+7iguzHG3FKcWxP06b630zRfvmkfVaspbjz/OFcuu2p9LMfgLAUPTPE12BRm4HlvHlPVT4S/RTLoAQaW0SvAnWb2t6/zJFuD1PjPuG68dm6IKW8O9xK3nxT2B7jjD0aCxHmWFBjG1/GocFI8hMi2ibhFMkhvbnFsz7HKd2KfrXCbknGscab/05/m4kf+ddwvCVIfZ3L1N3/5/GLN8fgnEVokRvt7qzBsVQJpQ8jLwBNLgDXwvE3zmEatvkyr0lAPSmwWgPIPgDrg+WKz2dA8OVTWnmPKdzQeG8FDOp37g5NJ1Exl2cvyFhM+NHIiPosEmCR0DUzvBxa0lgXQ3zZoz7/F57Wt/7w2H/l6IPwRgtykRTFraHpEOjC7CJVZaovAYMaFWdWWA6maoRJLMve3Xaa+bVA7FmM5CCjBw7rwX3Xf8y0mQGmPqQqIqRbZDgT4A7q+LdNMgdNTVuW6ZSHZvpki7b9MfNvufpV+1xBhcDfcC6F6MXMNSCln5Cg4NBhmLsdk50pi8MG0eSm0INrdAfIx0JRNupOxVo2DiXl4i4/E2IuX7s0L3j+v02O9MuL3k6FLj1WHvKIETZHzx3dPOSmVshcGV7Id4XoH/5On9aW02f9Co+VecWIn183Xsql34IFFvu5c9nnhOHQqjolHSzqCQxIQFsnTbqANpiXKSPRLqqAs+S7jIc9SF17beshLRcWtEI/rMep59Zi8zjmgMQ0WA6Fbh0qxyiTsPP1soN5bMoG1kJAB05yL99Z1q+pG04wjYQoWroC+NckO8dGpUDge15vkk5n95VznKOCfd61QnXYB0/G7a/X50/9Tkt9Yaql1MfioFoqYvWe1/6qakT16oTDFTH80qbiu2B4eeLnmnv0KlGHizqJvViOnHlcQuU7zWPUZRlH9neOm4A0Hy+Vt6KQMt872D86zgULodr+YHYxEoQbZ8D4+nkNQoYI7GXTmquzDyvUIyrIgNgijIJ/x0ll00WqPI7rxFcEamLjEp2UawnYVvL202R9YTns2Qi+z9tGCrza16be7V1yExyRcU7jC+x6FFRBFbBFwpAKCID0Jb5x9VIqGsoPKLe1/p9tr/D8uqrgRLefMSiHH4Qjc1ImWTTzGd1Z4WQOInGdkyKK2a9bKZ6NQHgRh8Vht4AbDknU9Sa4zSsbCYNGR5MMcYSyt7Egs/n1DHatjzoK/SukK5Ia8ZO6xtcU0edhRjzM9erCtgYF4drUdgAuWZjbP7kUk0Y2burriWSLXqdY/ExVMLbgwBQQiiJbLnOVz4TOg0WRt40FnvC/D31A8/DnXXuxHDW3xiP6HN/eUd46OnwaxKpIFMOIcc1PMKIv2mdfyolwGskcqzz1PKw4Zwxx7A3I5ir/eTB4e9RTzGYZMeWymNclE98f8gVfZVX9V+O6TQ35dnVe16uiOhp3s90hDCsPcIZSprvwVCWzzGnq/C+IMls0/snFNewfdsflxnEm601g+9qGhqUYUA4eaf3hVPW06ZGGu4vez6cjMuYqIbMJsR47N2NmGGyrt7vjiwt6VzMV26HERnKriWv3f4LRMLAq5zkVFfofJO8v0QOyWcwtvdKoiEBuR5gaWbTDa4Me3vaOSatVcZIzodT0aJ0mBsjmxvnKjPNiPfpdFSEfTb3NfqmhMnzHm/u3qL9QTJcmy9zRH3+2VO7RNJ4dALjGDdBBD7iqrLi9MZMqK5l/Kik+8/xb1mr4sYUUMgsxdvYECU2ay5+pEO4HSVXbm2OEVGeNIolag8CgeGiQcVylOp/dwfFu6uWCVRIrJmpKocilVyX3bZ2mo2RwNM8EeknwW3BMx5iW5ayjugQ38fhyGtJBBrrwB0JTM+cUlKIanJdK55DZ4GfrdFPlsDlbUs/E9WKCDK1YwR3BdQcJ3rqW+6LilqJOdka5PQXevqb3hEIAHmcRZ7NF1E7RI/V8pnxTsqI1gKBM3wf1Goi0cfBNZbynM6dmg4xN8T1NFHM+ffZDqZnxeerHK762jRo4s+f3/eiO79p00sb3dGTEPtcs/m+YoQBYchPsPIw0jyH+bs21GuNvH/DuxA6SQTO2txG/r7yWsH1nZeIvMkbf/jrC7kW33G1vDNM1/589x0GqKTc+w3q4l++FmdxjfobGvZNO7m+vkNyyDIvL+/8E52b64I/k+xz/El/1+d9Nya1csh3f/PypOoyND6v6K5/4fprOBRUzfM7Rig1o/8A9o7tH6ZRs37w2I1Ntz3OVEL9kuOaFal6GK8/c/HQwGUuMBdxFVLMnXMPoxmldTEi2m2HTTelvubZcmO0FpArGcMi8EAaBVGr3QxQ3XuSBRXUAyFuetsw7ps5VXgfAL25NxfXDBWe+uUC9rjSyCUbbsOkOM/1a70ftS1+EGiHRwj6FLEIiNlwhfJhLMTXzf4bG/D8vaEfiv6lnqvZTXypQu97zD3zZdkWVp2Iq3JDwIWjcyXovhlLdhwu/nlZL/T6W1SxZQQyHAwXOZQMCVIREDQ6yelBpAngBolGBDdy/WlwDyAg/fSKbputiVr+jooEjerK91GdB2MkF0OtNSySHAHfHAyqvibcSfByFUEk+z6lnsTY0qO/OWKiMiCzugOj+/TkikCHM2qTlZdjrwNEeqh7yJmXpmWODF2xZwUIpq3QyRAHa485i/212d/08UT1Zqs0yE5ZsFl/zisqLwg9wrXN4vN7XXMpzOpIKA6IgDH2lsgAv4RroImt4VvhtSAXCI2d224cB3AFMog8NftTCf7Yjmu8wlsp9ygH6RzjWq9kotWwK/Nmyv0JOazKit53J/Ma0G2b0AphKDxP47cpDgXbj+LOlZbfK+8PhMcYEI+6yn3DhR552e152jsez9ijujXovYVBpTTQ+ewmABxxwDXOXOTiEAqHDseOcv28IFvHYFWHezem8+MyqLobi9oBDEGU1u0wY8DPNjP6Gq77LQysGHOPxrfTZRrh4ls6QdqlVrOdOsNGmUdF3s7Y0QXjLpkX73pFu9TKU5JkEQry+cTVULhn7Izr7pGO6kLu9IgV7gaw9ga9BHuzsbg8Xz9q3IsAf2+zETrcQIkovZ9JAK6PHv1jvr8IrHTf0JTTYvPIvPxoDwRBtNjFUILdEXxqeonVuBfoDsvb/7rS6dIE0BbOm+YGFasyGZv+YixRiaPTZ7h8IoGnOzKsVLZVmIg119yg9r3UjmEkfm6oCgAcGsEZVhfgmVINf3NAxYb2DxINY6UO3bjysbV5Kv1pEmuGJSG5loKA0Ssk9EGdDLEP2+OCSLaJfBOivifoMIg2IlMmXE4ZakBy3N3AZonLdphs1pvtbSJE6n32Q7YrjOuq1J8Dcp2Qw9bD+Niyv1sLpIWgBJ+4ZY5r0jtFE7XCyD+vQKEMOgeRJXA3i7Lrh8m0sZGDYaCTF4Ry6lJ7paNcRm8mH9zYF3iqUU3BOkdW5qLu1cWdSZicCBiIag/tYRUdyJM1O1AVVY7LcQGe3kGCzprqY6SZs64RKYnUO9aLXCNXMZCK4fatgaw539bwRc9SfQ28VJ6EIFq20uPxXMy6V6aB+HOJxnxnJBKdwL4fmpH8b64atIg0rgFzVksJiFTUbjW6h9oWoB7DNJAyVhF8qd9xHVN69+cpppKXNWjEPpHXzLkUgjugts9tjkpa/aLLeptREb3lXVEavD6HumJvxgk3fC1WPa3aQsFjwPaNeVyIbFiDY2zrQKZ51utcnH8rKoH7pTq1alnKeD73RrbHPm9gtZf8ip+xF0uLjnxGvf7yKQ8OCaUg4AHXzjHxKgBIJcBzZl+YbIE3kcnmzvxUpkPx12Uj1zZ5mQ/ls6rXrr5XFKo9iHDkkvTpVGXbPdH2Fb/Dy62FoloX1hiQw/szNDfVOWyjMBJ6DT8UGnAU5nl6rcXqUgc8jsbAVRZdXfTnZQdArwZID6NLm0E3g+WX5EXXgGgPD7ZKCw6EiBS5QqUfO66PjvPDSlIx926ooHWFquD8bTPwwWntbo8R5EEsnRbP87JqaJIpF+FEKsIfLhhiw/laoTHmSil8nb0R56YUeCnPPAiK55aGRDW4/DsvRpc7qAS7GdkUlKqzEKuKwCp8yhrW8zLjpRp6gMOfFgFBtMC2QVVmY1JaCqGh+TdXruS3n8DzSIcAkI4XEjTuZU/p8ox1z06QMt+b7oSQfUdlFY/2bVuWWCQk7DynuVXVNAxb+378lry08IrzMKLSHX2wnE4AYbBPEEG2lwScvSFqJvMAuub1EAdIQQtEBYHqqKjjWY3WerG/5DGoClC9h2iG6Xt+b+nrlOaz8mm4MRwXlajVOctnuvxiWlo4UGHDDdjfcL8BN32V5yFPXbnkZwNGjMbzjgbM0Am2bdBmTSNsDOASiGg4Ot4qmK6sBkLiHfRvUpSLoVeeEfnyZWxJiCdE2ZU+ypl71xBHQH8MLx/XnDvADRWKfgXEyyLKOSB7N6O6kqf5c7JtiDm1btg9192N+kOTm6kLavQ1o+A2DzwBrV9eztKhzOLpJHFMUYH0hsuJKCXIEpcxnqLoBzCGviAxONcVtcAygXSWGKReo68krFSIE+lJHBMT58SPzdAUHshAuafyGFRjWJ1kLgyJIpesmkJJPSmpE/FhWTpr9Qmm/OitwGLVDbC9u4HfMrivMLg5eNamHsM2Cw1TAEytZOoLUYR02gAIss52Dcg1O0Y47tWBIM7lEakTpxGQDQxHTQjIp6AfW/AsQUu5x4r8WM5wIgmm8p/IvRbz1HLeBvfQJsBTQlfRrVnZaHec9MewSgpEEDCKPix9T3uL4Eesq4qWHZrVNIqMkCbmULzs3GpP17d8rTbnqyJqCAJc9w7Z1dAIcuV7m7oeJBjkodoaZFyJCLgshRdnh+wdYbVzzHxdRxtoUJdAjojrdJ4KZZ+7o+7QSEs2Z0JWNiGJ50s1H47FyvVRVYQSLPsWch363qIr0HYAXoN89RoK8iYAwJTeN0GsJMaEZ3Y8qQuiotNqU9BJ4EbnCzE1kMgkKW3wtn2bnx+BvxyX6iAwvaoYvP48Q5O63IK813Wrrjjq2dqANibwYjgtFv0yPpMi51eHBeDyveWZvhJXVr0j0BVlL4kjR3t5rixjQzuMestyzofeHcb665BU7i1hkKW0gfwZtWLEtGZrujUQKcvVgfCnaRd8Ju1aAJGqsV5E5XIc3zmoAjUsMQb2zLoP3q6Ol+uv4VAQsQgnI2EAgtl62fQBlXQItRmRS2cZdfAIVrIg54QF2ysNjqU9JsB7RgeE0FOL4hlxoN8/xAhjhuVzgeWotsVpwQ1QjUrWr/1xt0OIyiyjhQX+F98ZVqoocvQutTxEjzqypJQK3KA1Jc2M7Sw/KfW51avoXuI4EN1DqGPYc25+UD1OQy7QkcJI/9YQgzMdJGr93Tqu+47rQ3B95MExNhsb7WKcj00gZ7dcW3cS6O8ONeXcXeZkGHsLCKNxAg3/u75Pa+HPEaEqn5V/jd29CDV4uy5DWST8vKzTazgfgQDaJ56AlwgwBUMlatSCCKnG3dYd5bAYPJXIcFzGkfDjI0ogRo48hSmAtbavUDGuV+UsKCkahpzZTFH4eoQw1MPSDmT7Yftl64n2oHG9empjGCTGQtyhhMfD2ri/uZ8G+nWZ48qj8kHO9OKhlURyVMQJHWyTM6EcVqMI8pqPGOOTgvzFoUCHhjsEYr8R9bF4uvUaU7UMqOZ4rcqPfyfYvPnacpBqZ5WF94dBlJmsKTjsX90rawS+HHw05GdSrXI/76ltplOy9zAiZAATwW2w5ksobqHAReQB6Shm8/u8V+F7tdV1MVw+c06uAWnuxBvjtSqIlLVzXqm4qCbXwLuLBhGKsqxMf/BfJQ2MIFZbnZI+bgAgtw24zGAbTL/QlOnz2XIh67cr+jlw/dyhW6LH2i+vMx85vFRqNX4fZH6/UObZjTIqIQ3JUYD816LpPu9OwGbvToMr0scAl2WC9tB07vpZoGLogXbQmVDawh+r8jMQyEYAwAk00UgNCcI7kguWeSTXBJA2V2safARyjUR+lEoLTNkxo9T6qTDjMDhBBiDjMllHmH2QliLXMn9Wfdn+NJ5HMeq4d8YmuD66VV8QOLFypj8wdaH2l04Y8hlAfOxOBbyqx/VhlUX6l0ed+UySNo669tyJtLdETU7y0cZdoGjSwsAXl1t0lJhOpMDnkY42YBqzIDDcJdMl3QFD3pU0RJA8Er6urpvk2iX9TBMcvzlP0wbQcYe6VhsseNQ8/eMSI3qNPhq8XiNyrlirbGhjiqDLvuHVkFhNAS3snqtZu8dujZctUTZEkhhHB9yZUNZV1WkeB7ANtHOPqg6ZorScFaPsa9e7LRVGQGe7xFibLtoO47NozyuDVls5E6q8LmM1O445xikbQ/7z/jcOAfvXZWVFDfst4hxQNE7flvityD03GFMWyXwvr+okAlIeTwa02yQX8BLJ9nYnh4PrZ9URQIQJjfuKAP7G4IvUhe+MwhK5Z3rTK+k025poT9Nfyj3/BULC0JmlvauzoH5WyoZP6brVCH/n8OdV+QuqUyPWzuK40npfz2dUnehFALsT88JbfgRZv6c5tkL9j7JpTaWnrvmmKoiSA6HJq91a+1vHtwZ86t/f6ZRlTCZ9tqJa/mTs/xIOhSDSoeFF2MmlLhz9xgE3dM1owm0H9oSLS0DJy2AOJ7ip+bZVgavkIGTf5j3dvcdAkmQ5qUw6NPxw3nt6QEnm+DxAZ4kWCPOkGANpNDbYYbLmDgP2zq9jErD18Gpn8wPOjbsTngvnCnTAYJdcaZF0rjREqTJ5XEDzKINDPOUq3AGKiNSJ5zmSJM+cPgfk68zF7CkJet+ge8e4bzh+NDz/JjG/7VQYK7ApfAEr5OHREeiBjODZ3lCYkhelucohGkRKW/eDMcs8piLr8MlqrNMocwOUKJIoF8QoUSvoAz+E9P4znhclJUkSeNvT6XCerwKF/67GDdnx35UrEoHcbqgOtIkDYNvMszpOg+jTcK3KBkvwVEfEbRF+TycW4qH9cQfuN3MwHN6X05JzyfAMcTJBHgrh/U1je4rkblleMsoPAkYONdTSG0L5JC+FpxUQYgcUbgef69UTHKkmvqYZFef3h2tTRAc4tDEQD06yKU2y/KbDztb6zbiKcUgj/AUG57wTwy30Vu4PB4k9M+aY/Rtu7DqaacrzL6lS6xX7a+Fb4LzVNQ64PGkycyhUg5pyrba5wChlqKWKmCX3kkqlDtE1Xpa69pF7gW3xUqRw7oPK+SIe/STUOcbc28McYK2KSii/PRW7WgaKpL1lDRkpXeFGWS5rH0LWjI8928Nh9gj+NIZe+i3OjXp2AMDwCGAx1sbegFtD/7rM+JbNZNUDdpZ5mkB7DnPAirVLhpq8B8xguXeM3nDtXhIQCLnM7wfU2SHzhlYjtFkTRVfmT45rjq7VNUl50uwckWHOg8H7uvVhCA2FVKjGzZAMcvm63wB1DoXhhkzN7w6D8maou+btYMQ8CQ7hjgAFUwAmTobTItaqbd6um7wYz2NvYDqJOCEl2zP25igQP/OUJfuQ0Hs3Eumghzul+tcJ7Q3H71sYq2MXXJ5+EIa+IlEJRO14GkhsEZ9TDE8xGX7vpWhjmP3SrBRjJbFsx4jymZEzX4yX0VugIljGUgZCxjOFQps5Q9rZnONkWLrEOYKQMsoL7iWlknrAOVLp5nj5WE3rsJnjoKkZbiyDeu0GSxd30PWnTTRLUbbDUQo16s5ItLpu0gCmpjCCT6LGdpBMNvWO9jjNYXXvznvhelJ3PeocGNiM9uk5JkcX52tsDQ3pVLD9OoAh6Cw/yzOrtUTcxjnkAZKyNdWXnFyObvC+qZ+F2T8x5IsArUuMUZSFBICGJN4cRDsssh3U98X4boYbuIFccucs+brqfzxveIWMLk7cGpxjsK7qZNHxdBrUUuBxRvK8I8cSZT7fVYMwfB7gn71JxeB8Vb2L97dRPkudKN5HJAQROKsRCKShT8PyWj6vbaee56hsKYdSPHs54+LzoZ6e5z83AWSzc8zTI/Q60vimTrWWMnwxe4ou9m7cFidDjeBr5Az6eGJkkFbNZoGXMlfeM5zDrJ77Q6GY9wffB4xpWmslvrwHaXPWfRc8YC3sDqU9QNJzXs2dSPD1yrRovjMHJMdz6OuaGleu4Wu5H4veWok/Y42d384F8BdxKABI446KPYBAKCg91SM8jISj2+dAZbidPF8UIvQO8gphVL2iCMP63RWRbn4frmewzeKez5XQzSOFRBTEpnznZXVjYa3QYN+7YDDflnk3bL763/jO6pEme7FHJF+EwurFgm8oTSdMKjalTc2iL4HciJJvI9tAJ01EYpydmmSMO4J06IVvsNo4HHtVJw1RrFeF1nEsTZsrc6xupNccdS2OizCCSsSK47XzHWUD1rVWhce+meG0erFd4QAAS3EvxhyjFe9IdFpDTZl5ezVJAakOkaNw5+eOVIkouUiiIvjeaqx2q+Msj2PeM3QWlChzFYyxNt3YCwO+CtxiaL1Exf3ZUox9AYy88nRnYt2P764iUyIS9C6qoBoHXMCH1/H3MY0Dh0I53jHyHiAPg/4nLazvr8oRIyjfXWWdWnt9XVG5EIsGT86iOrZuRL573nRvy7F7aTOvNcpQ91E9lN/2lc4TkyHJyuxK41naXB0j0nKsKDuqceH/ClKHe1sSMPrgBkmVuUFYi5DJsQ7pmKpnFp9ZESJVrrrzYSIuY1NejJ7cZxMB6Dr2asgzy+8HhhsYzde6lRGEOYbZzipDypxEeiGNMCCMPOfDA6Hz1lZBIAcawvCmMyEqCtXxOef3rsECmwvE+KiPjXoqx4i1a38QP6JM/vjvfsTVkn3aEHn6Cem2exVicHc6sbr1k2dpc7Z9K9lnspQlL424UG392LabURuSTg+IGcu2fAVyZuQebN/BcxOzbkDRKFbtAWMYnF98XPyeSnCsHcCJQGMQZRHOOEUgKbA4FWIeQ5fwNXI5sobEnjw3B6sOoHw3xzl5PHy9FNRnchkg1tPYECXC23FNARbZOoZIcFCowLgBqvEjMAi3wPAhsXcl15pqGODSPc2liXGCqN1L3g4g+2RBi5H6AuBomRFzFvucelMXqKM5uIMDJcr1tafjnuuHc23yUnKMt+IUI5LLq1ZklN7QH1CJobE1nM5dqNo5oak3Rdpo9G05GyTXSoAIrhFIEuOuUH+2htykUwXg2aCve99l9uC6Lw6J0P9q2eGCQHi53hl1PDP4s7LDyDOmyPWsDjdSJrO9Ky8SL555oW/Pc1Kvtw6AP+uHpxnE9Q0qgU7A/6/X20h0Jfj77v28mL6g4sGs4pBZ+1XHsdpuTV6dCotels+RSW7O3BAyOytcPxb/Xpyz362pUdZrEwQHgTsVoh/LNc3xmnr6bnyJTBhzhTch6RFKiqrSGfa9rsg1rIG4/ebG5X3Rz6qr/1fzjb+IQ8HyPUv08DmcrK5FVFF2i07Ko5SVc+9XY8k+GqvM93+nKNecedUgjiOxVrBxQ9HOLAcmqsBxmeJ7cyNpAHKcvthblNSbhA1gEOs+coKKsaAfHlXeu+fdXQmNFrE0hocRVk7ogmXypZDNBKJAYZGiXVJBHoCcRpATUFsAUdZtyX1nu/ofR47pOeyw87ZEKU0AEwx7GJmieW23JBhToH1d6E9FfwqOvwHXTd37rnFwRn3vYqgy8jhd/vk0z3BFc2u2ltguj6JHGouXKQx+iDGSCJFz4IIqSgQVPoMg9YK1U0lOSLLGStq4b1OkNwz+KC+E2ZAUCcN5UsxvrmF+fuV9wOTND7jUv//dfida5vL+VcP+PLPkJAB9PKP8JDAbP3GxPvV5Qj4V+Hpa/+57pjn88cucAix1OEbyK/D68L5wzVQyRjohfB+g7ZCvB/Rguc35YJGtA/e/RanCgPI/D1vjW/G4lnVi4+IK65d9rrUcrC6knN3RFrUyghOxRsrigv8AACAASURBVN8fXm6VvAn1UOF3SOZU1oD14ZZRFKbOfNyzOZybqrCoH3iqC3lsGadq7HM91GgL+1cVcK57omK8nFHIiG8ORS1zKQtCC4DtC3rbmzjkPCHkcsD4ZWoanPddt93kGGwf6+m5nGWPRJrEGweSthb7PT5XRZRU47qvMq4+hzma3BeFtDJK6bby3OJAabWEXY3khoGlPq8tSWHLmr1+u2Xd+K3h+uhpxMFkK6Pd/dMjIKMYHn4GyakQ8WghEXXiebRibd9/DVOyBJAT2H5Z28+fG8atYdzEyw0aF4M4P0aQxjmSMKtHtNzLVOK86sWqE7EsG1M65FTg7jnvCsvRdv4HlgYNhwfwMiaDVQVoLA1g3O357bSUgnZc0EuSVEzVIu83CYdVGNzHQGXrF4UZjZJzOct6Qz0Egd22m8HsvAaVc4CpSOyXBHkezElwXJFzD1VI79jdSX/de1ZbUB8HN6ArbwKrUQxPLWhgFS1HNcQ86sxN4GuDTh5tgvHDUDftaaR7orCUBXeuTE4OAXQY8kQuSaP0GE7+ac/tfzyjfKqVNHRZMYzs8PnfbsEpcPvPw9Ihd6ZOIJAZ5GDg3yIlx7k5rBy5orH8ZjEs+qc5jw1dItANGHcrnde/ilOReokTrsa7qIeI+PxZGkO7NDkzFkemNkB3I1PE1wU5fP6HoRv6EA92IBw0172lA9ZTeojujfUkPXhUggA69BpzYNvabL423CEQpI5XVvmowZaR+3DijJAib7hnhpc+LWlvQR5djSc6UQYSJVyN/aaIHKt36WmUIR+3RAsTOcx7qN/x+869FOcxMKcfMoLMdq7IUl5bknC/M8CU544/dzXiXhwMkxNkZIAIKOcCzys39ptA1sh/1Y8X7gIlMbzvc2lbOABk0TOMsE+n7+eDRka9hwK4XsfAg0pBFh5j4gaVahrmLKsd51KzOeFzisPtnXNmssF4NbHxaj35qVzPtFRyt1sqo0SbSRmJYLKNwjHztVx1H+sctHVrN9cTdTEg7UFPecV5WnnRZV0o54JekUAfKBSFjFGac6L5uvHnC9tSbQXVXFPleqnw0bv1509iXLz+Eg6FSekCMhefBj8HohrS68YbagiAd9GB7965LnaP3ki9x9/1EsUPoTHy9/CGuSfxwvQ35vu/3E8l+F173wmY+hn34eTxS6804GPBCHDNp17fp698A1N+LxVFGIfDy3NCcR5hgERFhJIfxr5aDXHgugFQ8ZxMTJGOd8asLGOnFzwtRVLRV0VoK9UgXz2Eo8zjOh68l/nTVQism65EJqcxafKCCAmlxhUz+2UW8vGctd1r+75b4xScRYGHyAzJ4hzXdVg+i3VQ53V1iKk7lKr3dW1rbWdVtNco+bv+1avOOzB7qbkvVsjZu2h/7X8QkZ752SgHkZT9uraprvvieJrZpN4oCetVywV9R6DIv78ZJ6IqyO0xfb+192snnpPr6+WuOp9D45BMEjh9nfN3ikYc2m2O9Kz3rAfWN/J+4nbhOr0AoJRz4/crTDWMv1e593Kormvtu+vdPbUfVY9TjRzsibmcyjP7xLFoRM1k1Rpd1/d6TQgt/9cJFCcyuKGICHIzQ83aiFD+pfhyZHgksll7AgXAiKMqJlavBkNnFidWyGj2k4SgI8cs8r9pvDYAI+VkOCsUQXKHUxNBp0QPlLOjLcaOzmuAToaJhNH7E2kA/8q1nsv+LsK3E01QYOtvnk00RKZXLHJyYHaGNdi+b1ZZQ0dBtSDlLMcoIvhu4IPvcS4JYHmn8LucH6Ru80bWK8pY1iNtYEbbxNpi5ZCSSnC4M34v68Xlo24N4y7G7SGwSgai9nttc8giib+xuoV2CaeC6WZwklOEDhGpNWX8SPhotkT7l2RERakweixFJ2C53MBeU6UUFOcWHK0Da1s80MdcbBKn2XCnHPd+A6BN0Q74Z8h0Bi7OghILeVGeG2PALmk67iZZPZ3Tdk7QmRH3D05Iud7I3Zfg4Hh/X+33i+7GZy+lhus7J+e+6oykUZ3TG4gGrI7lOga87237vrHMxgh9xPSqMj5vDL+pvyHryvkxilOhOiL+V65Vx12QD5Nus76jovD8HHvRcVfZVq8iv190ovLvC3L0u6vq5GtgqRj29tmi/82ddmQ6nTeL3vavXv+L90dJx+pgkjbvu9o+ns0TF8S/4BX47vr/C0IhLpHIT5evJyK/GZjzh0SyNGNzSDYQUbmXaNJkVLnn7cuinBMpC/C6wF1Y696h9/Twtq8zo891QukRKgtMVZ28sJQzdIUn3u8exMkT6/+x7BGNBd1LJGwAIiPZ0r3dgfgYiNrnQvhgdYZQsQNePcySkORwJpCvQlhZoryTeeTkLFC1n5uYd23frC1ihGj7HwM//0/g4/8Rz1kE2qmeg6fYfh3pUXeSTDKes7pDkpgA+vOGsXevCgEI7F9yHygA+XrYWjkOvEB8esdL1RARKPPqq+fQ1x3hngH951jQeXTbDVUTxJUoKRQ7pGckd4pG8h5C52o6Akv20Et7XRmRPoelWtxvNq/HmVwbvQHtlmPGsooUFBtLjRZLwvkQIlL+48PeSeRQsz6yLRUpIh8fufeWKwwNf46epyEZPu6Zu8jxHgqcl6EGxmVC8bqCs8PaeZrX2XMYY93WHLJ3hJg3I6mTz8dcdqfkp5G1mSUqIzrxLM/xKDxTNMIDT+LG44i0k7clhERm7gpfY9M8xOssfSqQS/sWZVNZBopOPd1bpo5ocTZcl1XJ2DdIG/McVYfR1qE/bpCvA/JwNfYa1p4m0J8f0/jKeQGbZqoKjeDgz1Cbh94yVapOiSvU2iVkaPCd8J5fX/bZbY9+cq3obz8Wg37k3mJ6BY0L+Gen75+tZ630qqDxOe8+U80SnspUjRJhA4pxqWifl5eo3MKwo1ymPNWdecpi8rKnEmHRWlfQx5WcNmGQS0L74dHV293WL2WSIMq3jbutm/a0/rXDK/wcIyKt8d4BMz5PdycH1J3nlZqhMnwtDwDbSBl5XZDhqX89y34GKrChRMORY9D90ceAnBLlP2notccVxLxsqxwJwyfZX/RhMZbHbmtMP+x874d3dPjfuhgR4fBSfj5OtrbzjCZ3QqIW3Cl+2nkGAM0jwONmef7jllwWzdusXaAQa8elES2moZ2EvQ3X3+4ZhXauAzpVoj0OL7/2Zk4ERrilBUy9P66I8tORYnsPIOlkdfbYsrA2tWtg+BicP209sXpI7LWSJsGLY9U/vaTgMbJq1POAXAPjZmU6sd2Dx+r8bcPzt2ZzI0A7uiNlLEjRHhfGveP6YHS9oDNOr1pxM+dLe1wgIWfwitjs2z4SQbvMaWEISpurcTNkEKt+XD9YpQuQ57DxkVzHQHFwDK7PEdWp2vME0Qrj1kHVXOmEhc8nUwcumzdtLo/E5gnkIei2t88fW6CM+pd4mVO75/qxGTKEqIErKzeEB0EMIaCbBipq4o9QoiFML7V1Kda/yUGFdCbQiTMGJud7dVADiaqlXlEDVX6Wv0vH075FoE2uK503juyLksmMJFdnAZDozkFOls11kHMy7MPoB6yMdWtzkGSoVaniud4E3yVp6vUm8BF/HPE+O3NYueGNAe8y2PQJ04vfOhWqsV/W2Ntrysv3ymdsQ5M0UisiYn1fLxwQYtVv0g5R0+uiD9R9L0R6ARFitKU415OTx9Kq4j1Mo6h9a2KO+lF4EaqeVRxKdS3W9IhK2h1cAy+OVc6lz91wTr2KiiCaJdKazEEgi34Y8177EH8c0KdTA9zvaSsw+LPqvBFwHS+fvTiHcKXDwr8TjqFvrr+OQ8ENW3Vl+G20vhraAMgYHZBa3kYliN+pz9o6oA14GIy5CgAl+2z1ooPK1DDDzJUSFYv26r6lMR3Gv8KZobIdSz+C2O80diChZ7E4JQy63SBnD9LB2q6XqNbq8fODBUDkiAIwY3jpoykPbSpRZuNnNxosVXMxjfLdAt96jf7ZRsd1GYFVgx0iakrMLggYKJEJrBGuItBbw9j3ODhY/q3/eoKswwLY2r80SvlRSX2bO90bcOC9EI37OQ/LWHOsCB0eGkZdnQMt63R6LgWK6mzg8l0vqJkBtPUQHPNeKPCxQMfU91en0NRHf3Vl7oUA2HKc/F08AEKo8m9uKGpvmdpR1hSAwhHhCv8oArK3JDTcthzT8K4uhwF6HjhcW4AdEoxCq6aiUg+GYOov4zOcyBOYUy0cAh7e3ipDK5kjf69RlCr8qfzTWfVm/GMeghxwvP6xGOghN9Z31v3v68mqEGj2n+NJWH9dSy8N4liU39f2/1cIn4U0ie1Qcmu4LLCIpIBEsJNMI+xybWs4YgQ62qyk1nHwUrPB++Ey3gyjN3u0/lw9+itPA/s3rfNcTxMfzyjnSGHwU8AOaVYVWs7qjIou87NGWJjzvyrbbtS8m15IRm5xa5BTU8wVMTh2WzfdSSDlUgw0NIfTBxpAgeBMARApTidMeRtl/K6inDgRHtxprmi2lJs3oDa5OmqmgdJ0bjAQ4Jw+6gaXQgwWXKsyKMKRrnvzPHK/P3Lh67s10+VYfrOVnwWIylDFgE5eBRt3lqrkPEQpx+/0encIyTkSdYMkkawpjfkdGAFhy/fHcHkfrexjWc/qZ2eJdLLaAtE/gTC7fO4ViWph5a06toKXQHQ2BLl2uK+2BqiVCta9h1Mt0mD8CGiHP3sgERaK5ITwsa4RTnJ+xHiXOWTkv/Yn1s1QtDPbSqRD6IgkVvWxM33UnSgy9xcAakWXyciMdTy+XQvhYOS4evlOAEWucLzK2uvi6BWuO7gTz8lrAznRss3U6dTndm0TnSZdwtlkH0vpbMrjFRkCVQQRehjeb84MOnR5htUKOOXMZnuD3NidAnQe62aQe7MzBHL2Ak9/J1hQjEx/XmlT6MNhGFJHL/aIurFGA3s1wH28+NyXQJcb9CEv/b3CtjUBlCWyB1DrzdIgb9/0DXC9h7phcZzz3XyGjjSmC5piurde6zsj4DYKwqkEypR9yXGQgbn8+PB0hMWofrm+0bG+vV6M9oXMEMi/rwb1u7H4s3d8h2wqnBPTx3B9u6KYJ/THMh5MX628FOzP6kxYr8lBR1tvsRfeKhN2/aUcCrpnlNOUPScaBFJ5pJLvEBftDeOnRZDbp+c6hzcLCc31qNj4Yfm37ThTmfb3x2R7xIVRPzlOM1yPyw3rBtZRx22z7/16oDpFpOWzg5+BxEI0qC7PO22SBin/3QyBkGPSgF9f00LM8mtFcXQioRB0zhZsHnBXNG/7rOiO4TDCDe06Mqc2POMdevuIwzeiy1yXu2l/4geDPI/ZwBhX8g+w7XtH/+PA9s/MVR+3HjA8Vv44ft9w/K3j2k0Z2H8N9IfitjW0x4n+j68kgXyexu0QubM8CMvhJTbW8vWYhT8F9RiJLql8HEG84uvRHT54Hna4ERFQL647Vh/4cUdUNDgvyB+f9k7VVCkorMO4vOz+3u05zgGR5Wea5QrSkGia/CMieViOeQzSyC7e1eLMIgJIvp7xzuhWE6B5ZLsw0WsvqBt1pMPpJIr7nuNDp0iT7Nd5Ave7OSY88p6Lxfc8uRgA4yjw/qJ1Qw9wvOCHEaPi/gzyKuj5SGQF++bt4z01CohwWrkS44gVPJ6TpSZUdEobjD+lQe7JgRDzJ4vw3kyW6HGEMyOcdeeZbR5enpYGzjuS1+o8qs6IehaOYe1bEACxT1akiEg6Mri+hsuwxzPXaRPbwCsMkMpjQTax1rn8+sqc4/sN+uOGIIXcN5NjT+NymMhS6XRdnXR0zjlEWm9brH/xSgS6NTde+V3NsQijfFWSkEbdvqXTgA6DcwB6mhzfc1zlmuVfjazR2TE+tjReaRzH+kAqXWLR8DXaLs6IL0+Pmv52KwRqTJfI71ik3PKch7+vHQ3teaGdFnUeXXD87tHY/2lRUTkHelPoZlwMNIIAeHQ1XglpVvYOJ6Cb9+u8ABikHfsGxRYy2nxMw87XveOaUlgwGWdJ9EbDynP4r4Hr95tB4ekskIQvj96iekVzRIKKYNwQxiWjwXyfNkCHoDsygZUJIBbtrtUSgggxDHWkc6enIS9QQ9a5Q2Kob8+hgdThWpbD9ZvnYfux90Q3ymwkStUZB7ytWJRFYGyCzRn5TabD8ulFEp3iWxnN+SvEFk7jsT1szUt3wknvHx07ckk4NLSX9JGqC1weufaI9tg68LGFE8MqGdjP9i+wPdKJRUJQzuN1T7TglKoBBCJk3Lgvc+6sHKkGwoeklQIAh8lrGvqZxmB70iLyhhgip8R0rYbA5YjH0N3KGXw58oHr3HmsuI6HO0IgwPZ5WdUVVhbZ0oFw3RquW4v1ODYxVMpJXQCOzOhow2QHPO1kUPd1B6JcFtFt4SxNGUaH6Kh79fT2VA4CwOQxnDSYwYq9h5zOTmvKVJKKjwHd7+YkcxSsDLjTyVGGY0C7V5Op7xQ7s/S2W0W2w7nKgkPhivP0Zc4cmRDEgtG+kXoRjcT4fnIS2e2ukw4A9w1RpaEgREXEkA58XpOSbmtOgSjbN1WNsrMunBaMLDMa3zCjKzomWSC7Oe+sskDDC5N/nHGWWhRODRr8dBysJa4j5dv/HgIOzvMkJYjjhyj7xkAdHSf1OdX2eGPcfksmCeuDkf6UAA8wG+HSHJnq8zkud2TYuMmqE7BN1FNFjDx8cRjVd7GdImJ6XwSlZHYcSP7OZ6ypOWjFjB8K1bKWOec3fw6RILU9K/JyrQxRS5i+K3darr+OQwEIAhhtpohoL8agQ5XC4Abc2EMqg7HZJQXUQDoO6OEHQsESh7smLFeSUbguTEKtsBkMcDIGJNtVhHoo4syLKn0VVlBwRs8pmsf3nhkRmjxa5wXpCkWH6GXazuVC1Mt1sTxZGv9pVJiQRijDY/d7D/su9g04ThPCIQhNAMZ8DMRhOM3foKFdFp6IGy6msEtrE/Qt7hmaj9sajt82HL93PH93T3sDRE25kGtDD9KqrFEszyQim0q/FANLrhElEvVwzWjrAHrJu5WIomX/ykbzWu5JtkeFoTgeeAD1BugGViYJeLmIpUTU9n3nBaXAqiUoSSRYI9pOXhjGIL/r6R+2zsLK8Hf6PPBwVVf69y3aExD+44Rs3Q5mOi4ARNnNeJ/3oSvAyhIlijBB7Huz9AhCBpsAaJmCcNsRkEM3UmXfgR1GgMP5G152J57bp6j8C2M1I33s2zVyvOr4B8St5feqwe6ETmGMMnVkDCjnt8oLwv+YqvVsk9d6QjIQ1bHNCJhMhZG5T4CnXmisGaF8Aeb1JWX+S53wF/JXGqCbO9eITKntrApOyNsr21vgrcEsXttMR4k7ZORxpBxmxZlR1lU4/Dxqs73Om4grjKP0u16Ektf9R8WSY72Uplsrz6QMHDFWcg3ojnyGj2s4ultLY5jv8ii9ohhd7IeaElfh04my4LwBUMGQhjaat7U4KgUeieS82n7YPq+IrDOaqnvDtVkpQ5aalBNpiFSD2/WzjEr7sy+W1xsRZZbDyIoDwVGdKuse8TEam3PrHK6MNkxnBgn/mCbRN+cREAYdyjtouO/NyxNaf5LTBRGZVnIMuOjk2FiqgkQZSHuwjQ2Jiit3g9W5BOhMCOPVo+nN9RGmH4CojzBs/ZmnOZNJ9Mspb1+nkfjBYN6jN8jha5AoOlVEBSgux0vRnkB/mgF5OVy9nxJ9CEM+0AE+RqxYwIDD3oLbIyoZsO98dzk6o2KCO7GIgGiw8eX8aC+VFhxZMG4S320PS0GJ1JAC29UuGF4ew5wzGmkztvdsP123Fu2IVBref2muczrN3MmCg2k8vi5J/sjtqPiWeyPQGk0SqcWlRHQL9xqv3qCjQZrm99/ZTT6WTNURJfEkXDZpyAEiiwLRxD24GGkq2T/qly9RylHWPWVM+b74PXmWlNS86lABQtbWKigsx43NDT0ig6ljHZpBuuOcEMs26CnjrfoYz40+6/k1yBT9GWHgRvuAWS9w/f2tMbte1cBeL573jEiv32llflYnVXUY1vtWePvanJXja9vSwF6fqeRrKm2jzjb09fnViVHvn74LYA3YYb2/9LGe199d1fbo1u5veSSo44qE02AiaXSDXer+oA4HzG0p6RDsdC1lGcSNrh+ptERVb9u8pWuwIFJGKc+NK2cy+L+7KipmvWrlkBUtEmPYctwv4M/QLn8Nh4ILIDuUmC9IBdu9Od02//h5W76rAX3P3PQOElhJHwnPHiOrBHDi6d2vUV0UODHgTgavC+45ykbg4/mEQKAZAADi3q9wKCzKN/sKzJDjVu6hoA+Ybiq+cnqEEwC0hVElNApZsUEV8jjTw7tvYH1juHdMW8P42Kw805d5zMetWy7mYjjV8k02bVsKCo5FjQqPNDL08CoR98L474eGzYcmDFSAsTU8/9Zx/CY4fpeEnCvQDkBGw3gKgBva0/IA5XEYdJrj5Gkt5FAI44tQ3N4AOhSYr71LHlI0njh/U0SohdIbpVlEIvWFnuUgyXPjXJgeQWHduyEmKgqgGtzF4DHoXmnD18PeUZxZcZB6pDhSiCjk2vJczhMF3DXs922b89uZ78XxqrnzjJpVg9cNU6FDzfeZcWK4Act7W7MqBuW7q+EAqKFH2Ja7VUeRr0f2t7IKUwBOzLhFRtDgZflMGuBHcUjUa+IzOHMOSh6mjOHe5ub7sE9ol+mQa2JGNICX6DoQikmQaBKpRbmlA0CRYzFOXJ+IzBAAk9E0XcVREoR/3C+PZ+wF3b3yCZXPXuZPnWX5PAFNOaju9AjuF46Lj38YfM0iR3RWmNybq/msYxdrjWgxauXcHqrQExA9I8oVSmuDBXHCuSKh7AYXw23PVInh9zIljldPg4BOkslpVZ2R3HfNvpel5NzwoAOgwZnWBdBk2g+yNMpBLuMSGW9oZog4VwUNBVEE+zyOEcYEFOifZ4GSuwHpueTDc+6F6WQesaWRZVD7HG+43hfOBHca6y2DANJaEC7zijOAqQgNwTg/bg3yNRCpBr4PSA6oXXB9dGPgd4O9P4iiy+VI1NvYvWTxbrJIUPaGVwshQ/7YJHLzqempIxMs8mtz1mjMnvPcj90MQFWfd38m5UYbA/IcaO6QWStUtONK+Xg6T8hxGlrJx7M9DujVYv7oWGvHMMSfO0UE3gca/e6wYFt1szmncY7L9pJVjLKoOFMjmF6QVStaOGtWEmUiSY1QMB1XNT2FzrWx23xf947zh6297Y9ESnL82mkOru3L+D4YzSf/RlPjIaCijqHGRa2IqhpyKa57w/XR0L9sDoOXg/tjWCR9dIlyiERXNXcmWPWDbpwMqmmcqpqzz46uHI8GTMR2DZMzGU0BRwG9yHX1Raw5D6tToTrNDCli/7HfHMcgVuTa5Rp9dzVD9bTnGf3Fkh4sLr84tuE4EPs+DsoITf1JXL9955zgvXwOg3LdzkLhWcTzAkh0YPOUon0xb4R8LSP5x4iQ5BlQjc6Kyqz2wDQ2dAD0vI+6Y7UzeDESHX0tFQqa5NpYosRRhctz7FUVTIVQ1azKVc/J74zIapQT0YDSd8rqd9B4T4+QisKEz391GqxjRaP3xZkwEJUhato65R6/mw3I/k3PV1vvkqkjdl/L+SQPWPxt+dnHdK3oEPNYHQMci3eVPoD3KIbVCXOePmc9dOQ4H4ciDvmK5CiIFTlPQKyC0PTcardWYs53fW7Ie9o6NuU5NaV4fCco/ioOBWhArSZDhz/X/zhYFDrFMOVlpbAUengktxInMjd6chg4F0I4aOR1QzgcOvJcKehu3Q6gp4Ie4OhV98VJErJ9w1RKqwhNOU7LAw5yu8s94+WwqUYjx4NG1vK89uUcEY/LFK+PvRhEVxgSZgzDFGeWO/MxiXeGkNFwwrwoy60cJDQiHQUQz6GQvIa1i69yAcwUj+PvH7g+Gq5biRIBGaEQ5nhqKLqTAC/jH+2/hjlXat9UkziQQrSulXoAMhJ5KeR5mLJCAwKwORUpxGc+VyRuLMaifD5yTFQzRaR6ims5pGtY+gC5CgBAhsH8WzNiPBLT1TmjELzEOEOGG2peFtOg5A3yz093smyGfDmJANhyrXifgoSPcH86Ueh4AUz40DgDzPgH0rnSyzpuze57HsD9ZmUnH0emIZT5qoI+5oa/03lXoGFT9J5ODEJhaWwBr4c8EErBlDpBAiceovuexIGqRoYJmMCl0yjK3G45Lx6JjD1USaO8vxMZKp0N7nhLZ4hza3DtFCeUXCPHlIqVKowHRQz1cV4pN+l0knR0cC3ZOnFY6t3RIiS7cnhiLQMVjile7mwSKo+L/AhnDJD12Dkusa+l7CkequxrjhMVz4mHZwzglBI59fdyj8UhXWQbnRusytAcOkzL1JW/QIixnepOVzolS+pZjo+i/zqT5mMzZYqlfM0xq+UdZkfrls+wsTfZSRi9NsG4i5UkHA7DpmFSuHAUKavbOUK+yqVGaIvSLn8uvNt0DIYBuRiFdJaLR07kuIJAV2+bpUmQX4hrJFKKEGlzNNp2zSjqBIkGMHy99+eAHkDrgu3XZSRzHKe7BRcY8TYnBPsnpkvduW8QOf9meOe7atUh9egvo7IcayNsLGuIBpYq1K3qroCRYlYnifEGBXrgLEb0AOQ4phSsCa3kKDpLd3OjZm84A3Fk/UqiRTfKThQ56e9sBlsfH06uyPXJZefPsdKdzdIwAddXHMUShqTLWXeeDSejnLgUVKffa/WfWmFBYg8I+sMILolcCGSpO8y5dswhM3DdzJHWjmFOAMruS52DwZ/lc9+4X+hEBNCkcDE5R8S4G1Ff/1RzhHXBQEeruqOvIyAJDW2NXKZrdYl0hlbJsn1scBZCwatDbhuAgdZyXGJ+LoV04Pzomd5z2d5o5zCSVa/4EPLP9VU5U06QEDZQNfRp+FmrHSHLRIeXqpTgahB1BATHj5XXjysdh+60pNyM9IMLS5AJf35RQ6SkCAAAIABJREFUZvMiimE1/Oo952XoYF40/v1MrjD+FzK8Kcd+blzlVYh3M/j4zrgEwCi2AIvRjGJ4KyZEQ3Mn/TfkjlNwRIsOuT5fWv798hSJQM42dxjRAVAMS84L0YZ8bPOzrxAovq1MUZEW0Y6BSAFxR4hsb8YsymYi7kveMXtGdFlH2hurk4U6YEEmBKfUQrD4mppadEuOWUFkxjO3dKKHvlbQLLJ1qG4I0kNVe9Ztd9TqEWd2OBImB5WGTjqlQqxXQUqUTuGFS2FCw2joeOGUwJVy4x3Kw6+/hkNB4caOLZaJLGtRPAMZo2pe+5qrH0qdK4OLlxNALsjJiyV4Ib2qVxjyRRk+hynnjES7sRkKhX8vI+v+3rG8p3g0DWaYnwlapB0EvLBG59ifYnww6kclLngW6JGt75LcaCqw/Ed/TsxBbN6yOWh8q0dfqgAp4zUZGXVTFAMCgBnjV36XEaSxuYwZrgSKOfMMRpqKQRUYU7nQ1XjxagpTtHYr0fPvoouc/9bcgKBBWBSUShI0eQjLXHNtVhTDGLMziPexckNZz4GiaE4y5DnruhdETHlXKFflsIvolh++SugWOSGuERwM2ts8ljWH/+sZbcG7febvCz6G4RFLCr9AEDSr/V5zB3nRicF2VFkwlnmiY241Vuu96zUug5jWzwIBUMpIBWFR+axCCjlHOhKy6kZ5OB8K6STWsFIYIXQo+P/4LvbvXd/XvtZnXovBDPfeu1EuAHC02ZnFvqzzRGW9d4PnX1euS37Pr0C5kAgo1kc+K+d5OaxJzNv8L9UxIYRfc10uTpc1SgLMkQYgFOD4XhnDQExMioDaM7dmt1/L+VSv6oxwZV1FX+ZJVIHjMrnZGgah6e+DHa5sSBj2JMKzObVxZYRZu+ByQ387dYkOptFGMju9ZHpPrSigblwH6snnhYz/E3eUCAxfJvN5XPh4plzp8p4pqjIs2qb+9/6YhyHy4cvZShi7KoxDwZ3oECNONi2HMrys02afX55PbxH4TEuYIsuxxpgmw8+RkW3qIz4eTIEwWaxGvMwof1Qpkhj30H2IHlB7V3B28H4shpO3g82NFJaqK9Xl1ARCmRbvtAEee8N1Fzz/ZmmJ/YAb+Pa8IKSkw8vXVZR8jOXga6T34GIwbgd9aU/5Uq6BCwDoxPE/DydGdGeBIVAWPbGsyyn1ZL1cB2JlDUst9bVaqrSImJMh1jptlL0lQqMYWmNrkcYSehXXXhc765q4PHF0h8BLX3+jG55mNLRzGBkqUzMuBVN9rFEIngs5bD23p/WHnCiKouf4vIW+ebn+2Urb1+OqprnWM99Texw3G+sp9c104A8/02OMuf65dygDJg6eN2tm1TmqnOU5U5C98Z2ayvpiH3je/kA6G95d1VnM35eLqINXVKCmURZpC202Oquxt+ov/1XpvzCyl3fyb+/0ozZgh26R9RHJG6/vrJUfqoGp/px31zsDtok7klzPauV5L7Zfy/bSqcVzYOVr4Gv8XHr5rOhxUwWHSccc2a4xMvAUTgXXnYi8XHXD1R7gVdJY1XXK6f0ilh5enVNhg7ruQ9uingHAS1+/1Q8rsiLW4Ju1TnTkn62fcv01HAoiFtHjOmzl83oNRft6pgIyxmxo32/IUod+j5dUk2OJohYjUe+bwTLdMw2H3wb8ksa4JuSN5RPb1zk7N1aCNC66gTn6zSug9lsIPnEol+6bGSbPw4yVQu64GnJxMFAI+76ehTKiTSoC/XFz3gprs27N+kOoZTEYpgoTNDA2E/ok4mr8G/PvgYQQF+4LAGn8qua4DC+V5Lf1QyHO28CSTY0K9TDlXk7z2J6/37D942GRH0bVw5FgP7P8oynoPUvvAfE75BYQfjpdLB3B0zm8VKiV0/KSpSI2R0CWkKtoAf+XuenR3+N0Iz83t5DYbjV6arrGbQdLj/JSEeC+m6H/9bAUgq3nu3oD+g3y48Pe+zyCv4GkjhASoaZQ1p8fUXK05rDrz4+MInwdk4ElHIuaa+9rLtYpx8nv1d9/2r2TYEauvcmxIcDjaTDA33/muF7D+uZoonDEDVMUyXMizFttu3mVzwtBVrNlvpy0ZqgGN84D1eDlakOoNy8T66SKULV+SXGqsQ1lPmNuVq6P4gCKlIzW40BBb5Y6VMY2B19sLft4EC3DKAnlpVxqY72UQp1QHYTiUgkbOnnKFYBEFANxMBmh0ci1zOcx7eMqcnL/CAJaWzPsO2Zn6QVLIVEvmdutn1RELfrdirMw4Z/MdW7kZaAT8ecdQY4GRFpdhakGr0ETAJIO1iEZMR/WNv1bN8JHjpEjVpKIDrMjdTeofn+Ue3xuLOp9pS+rWZR9++NMOLwUJ7cq+qEREQTgRG1WjQEww/u6d4zdSfUEWefe1864GyljzYduRBj0ZgaJeHSXazn6Z2s6CfloqIzJwWLExv5KkjPWNQckioni0+W+DmD82DK3HcDVGWn1aOt1QVuRocOMqwGHDbvTo51m0OxHOZM114yoOR10E5wfHe1U9E9LIexfHvk9jUBP3kS25eGou9sG8k7EenEHnToPEMt9tjHieWHY1rNd3fHgcln3HtFvOpzCeG+YEABRkpK2gmrweQBmJP/zf9tw/CZ4/Hdg/0/Bx38obv9kfzVSHVgJQk51KLxGP6IyRLdoZUTBPZ2gzj9LOHKtyVD0xwiCRSKE4h7uDzoChqWnoLeZFNDbEqk56+XPNlQF3HkD0NnKe9KJuRoIjkq4b9buwncVhJ1ct8flHDWeVqQN+uFpIpukgTRMZjfAEQdFjusBaQ19axi6ufxmWWD3vgqwfdrasxKr3A+u34XjwclbPw9EygWvZrKIa5XrMFOFc4/wX927k2e2OHOtXWJEosUwyjKiyUHBVFopARHdOtBu9pzNiJrtPpn3REVybuWM5Bm1Gwok9hNlTa1IJWLn/xrFj9Tdkb+PkUGCN06Et2cydV+mSjKSPxlnWozrMfOt9QbpS8QbCHTgdInAUguIxpXZgQGA1YhenBbXcAVb5u9Wtn/KepY634vzIoJEPR05l79nuqfNToNaZYJoCcDPgIUgsVYu8O8bCaL/rXBoiZMdCmDfv2zstZY2l0RfxlXsqukzPnvbXIbPNpLpe9Rjrum74TQgr5Sn+QrnoyIwmzvCS0BtqiQ2RpCSAkgkryP9dCz65ItjplQqAQKRE3NEZEef+6KqVo7+TxxafxGHAtII5uWDF5FjXu5MCGWcBy1QlCsaYDlJYYi8vDsPjfDA83Jha6kLOiGIAL+XxHjvFuEiACpJlNJzuUaxl+9rL37reJ6zvVb0QnjTSh+rs7C+w5XjcDbUzc4F+93F6HVzD/KWBGNREmvKhfKNQMI6CoZ37wjniMMnB8Jx0C7Y+Cv/03ldTOPzqiCa168XKLLkZq3jvRvLf831DkdTK8Ypeq6r9V3rz2sb60ZXRXBNiAuOGn0K8r3ZMUTuDgCZC1vGMK4FgmflJwV0QmmbPe3adY6TUPg58zrfPSFXejNWZypRtaJHjNebcaDyUSPW7wR53efcr+oHSBnPEMRCo1LDGfAyJ3U864FHByV0eta/RLZUnEdxcNRSWCLz/cvcTLKgGhADr1DO1Ynwbh1ybdO7DhRv9OLg4N8aHQT1wDGG7xcZGmtD5+dwLVeFLBQtgOXSXsYDwFQx4V+9iuEwGQ/8+RwZAeAQuZNFMMwIjzPCiQgdIfJabg+QLsbZEOOm+f1Ngaun0xuIOU1CS5nfx2XIz9e+cz27wTU52FwUmbNO0zDi84As92di39+tYDQ3SeLK3+vrnVPAFCikAeYG6nrZscvUjeJwmvaxK3gj+xzP4x5fHz3UdBkBVnQEUHLBl7bMlU0wO6SHRmWkeC7TNy432OqzOBfMufdoMfdpzDH7uyciLs7jhohMj4oCA9tTUlUq+o5OLSDSAwfTUsihsIwZCfHoAIiqBw2BeiF3xvXR8Ph3wfkBnB+K/unkfQPpsCHUnjqNahj9APJc+OYyB52vV+FYmA7CdjKdRwATQw0pjkZZr4owltZ9yrVcCRknhA73yeSUBwTfOCCw7BVva117AJJTwh0ppTgookpJzzHXZogFi39YZ7VZ1QxcYvsDqeOpyjL+1gf1+GQ73Jl1anCZoMlCCE69cQCaSJ9AYkoZgxq8aw2TdrAe6w0ZKaZzK15aZR7Ho6BVKPfWc8HXR45h0VWv8j3qZOtFGdtssITPqE6R0El1+arvtZUH4c2VpSHLWQvghZDw9YvlhW1yZr/0g/fQEKHDvI5Xjfy/izivxmC9JxwdmOdqLG1cDaG1jfH+hkid4MKoBH/RnoF5sWB2PLiuOyMRFHH48f5znkPlGl+v73SLOmYrKaVIpjO8//ask638G+v7a8CzBrl5ce3VtO2BPBMmXZYyTebn1DUuQFbJeL+Ww1FWn0u59u59b66/iEOBBr1HMs4RUWLdtyhhR2FHHoJXb6RDKpuhBQI2+FkIviJhtCjWQOSxyfMMY1J//2EG8+5QcAyHao6Mvpx1Q5ZnV+Xb2Y5DYSQjfSPUZQSpHQmOxPPbc3wWg4JOFV6VkObyA2SRHZPw9t/1gkP6THhMda6bTHndvMbHhnHbClrDNnIcqrcNJMq08m+teKZ93L7Unt0atGWZGjkH9v98ol07zh+7KbB0ED8BEg11MhcLINfA9jQH07jvXjrSFLI4iPcNet+iH5Eq43Mhxwltu8815/ZKZMsqFLxkXBxQe0aiBZ5rHmiG7uRuI2CVEEMGyBeAry/jcth3+16NDNMR08pBoR5V5fOOM9ASEDGkjpPKRdtXR5cI8PkF+QT0337PqhWHAJXjgXn23BOlFF7sW09rIE+H/Ocvc5J4JQp5PI1HoUarV7QOD+Pa1hDuZ44BeQNut7JmrkAEYDeGYvm0EqtRYglI4kjPPdPjKIow96p5/fU8gfvNPLJweYzhf7sAXCaH6DRgCgAJKL++7Hu3Pce7Ki91j/34yOg4nSBUrD/tOdg+Ml+YThwSJhLB0D215I9Pu2/fbGyOM8qamsNMIb/8ubc95SsPKlbs4HwQIkponzjapjXoR7Y51uJtt3772tPjMHjfz49EOoUzcwBPr+6wdYz7blHrR0HKsKJIMVYCmdD7xI3x1qnoCrWleZRSj1zDXpYyUylMealGCtEeunfguHLfc0+4oa8iwG3LnORQylDa0zBuG67fdlwfPR3ZFM9k/ue5E9Dl4kR1GSHHiNJ65thVtM8zjI6xd5y/eYTcDeJIV2ge3XHDzl7qRlfpUzhkAGDzSPAuGCIJv/Z2DZKtNkD2jnZskK8z+DkANyAhADZzYG4N8jihMqAfu5cHzPMm2tAl+B8aYA71xn4v5xvPHB+XsZtjoz9HRMxjOjjeHlUfZP4fJVffxzZIBY/h4+NGkXPrTEaR77fxYzOOhceF8WOzspU/0oFqjg2gEZVSdJDY65wBlwHXj92rKlmbWJEj89dp+CPQllZOEV4BoNva87/983/vePw3wR//xwO4BNt/7OgP4P6fF/rncO4C38/dCCnb87LUz0uh90RLcB3FomkAYPwMUZJTMPFNiSJy/a1Kh3/uDmfZG+SpuUx3d0rRaVZ13GIUt6cjB3wex91LoD6utGG4L5xfpKIR5BxWSeNji70DIAz3eo2tBWlnpJAqHC3Cds7OBO0SCv/YBPrRja/4GsZR0XTOwVeiTBpwQ8qMK0tdhgPFr2trGPceiBo5smxu6NTu5BuONuB+2fic1sJZYjoMMk3xcJ3EEWiRygRg3LY3aF9vH+0b19uJbNStB7IYdJS2NlVX05vzc1W+mmEPzbQcS+vTjVwuRWfiPmVZ6+u1zGOgC59PG3fqEdQh6vnwxkhVkjWTdy1uLr+sTgwiEv1venpw5jyzGlX9XpMF0VqDFMh7akpAfT8Nd8Dth2Kkk1RUFv2XOs/aft5DlEETf9ZlG7Q4R2NsRaxaQXw/+xKBSZ/PQCJcRF8s72R/PAIv12UpVvU5bHPVFyKYoxFoSRJMCZRoIG9roCbGY5nTlayR6I5JDyzfd3lVq65Mev9ZOasGJm6H4CZrALZEhUzzU5xQK0fFFFAbuUbcWTpd+qZv5fprOBQAazyrNQRZlkNR6mQ1AOM1sjx5vUzbKN8pi5mHffXqqM6kOFzAY9i8jJYRiZeNJaF052c+GQH1zMOH3njeG/nwY7lXJBSWiN6IloWHjIJO49BS+RmSuUYVxk5EB4VzfUa9AgLT4mCYPWsSsMRMuQAUzjUwkIpdKM2KiLgSBr9188b739vzgm4N29dmPAod6E+fKidpbE9XChUB/4vnv7v8vVKMJAAOcc4Df7rqhqZQh/VpKsepmoz9hO2tOemc23dtpHBeveZTOyjw8p4pUqmvxkZtX7SjvrN6P/meclgaEVq3g3kqGVAUQcoWfndtfwj8xZCkx1U1OTKAArXWfN5q9POiM7DJ64FObysPhPr5tGcKpA6IOTZSnZbt7q58h49vOcjdSRHj8A4myN+JDtgW8UvD/CzPYXWNd2PLsam/U+AHGoUHyzAitkoguF6cExGwRGu8oyIbeK9USxTL5+XqPdY4S7bVAxSAOWtOM0LtO22W26V/lS0cVH7Xy8/CyH9uEgo0KqIHiLSGiLBxv7LvInNkju1g5Yg3kaAXDprNUTXdjDm9u7Jcp84NEGOk1zAO6IQSIJVxtrHuxfU78TlMsfKRFv+s6gpxBnBKOURNMJGo1jND2E+k8UjDQTxX3OdIlc+QhObTodFchh9+xnreeh1rPjtySIfP6VAQWUDHQdPuRpdB8g1MsoyTIhwsY8uKDdY3zjviXVG+sZzdZgRazrxwnidHljuvCT0f/iyHypoj0J0hpxnSdGBH2cd6OecNiETwc0t9HSn8dzfguzuhEvpvzoTrPu8XbcDxm+C6AzgbcAi2X4Lt00oz9mdJv6B4ZtMaJkdfHWOFyZNMGUA6s6TA6jnuk4PL+zWu2Vk0vN/kuijEoCzrqEiDVZbyi1GxoyjL6UCQV1nLPnJf1AoN8dB01k3j6tMU/Zz2pO8BJ5zMttve0b1DmUY7pSQszrZRkDnunJraHo0pP483f/fvGC+WhpxJtJGPZzDPY17vte/VodGQspO6KazfVunGRUdFeUmOl17+t9LG6T7qOhUVEO0YsDSswrW26lgrgTC/196cKX921f63QsYY5b2X9nHNVd3gzdqraF/7bG2rviIg1rl1I/Ll/RVNUs+woZhKOU7Prjonddzl2aqwiev4Lhpu3/vG7vjumfWdb+93Q7iN4PCwLb2s0Sqvqn7/bk94tbRYa3RcfRelH6/7wSRN0c0raqLM92QfLOk2yXWikepiapSEvkdbNtAh3yFJgLn99bY19eNd//5ka/wlHArBgPt8Ri6V7ptFPIFJcJHFW66exhIPWl4iCLbtgPGWFAkA2rdUEi4FPo/XCP7zhJyt5II6JDOMZIkc69WrpGIerYhIAyn8aJSHAwBGJMVFzZyZMYDDkQjMj3GPpOLK2tzhZWvB3E/olW7NBOrzzHbTU/ZGEahQegAg6cj1224kTZ9ePeIaDvuF5dheZaFxbEQCRifHORkCUS2jNTDuIJ/PiOpvzNv1zdycLXx87K6IwfKiPRIYiJQCE5Vlc8txZnlGKjH/9puT8Ki384rDJyL+Pg7yqzghVA1F45F2/XGDtob2x5fd67WQdevhGZ9yYRsSYULD8jwh55zPpVWYXVaHXKuHlOtlPdxVM0e+5OIH0/7WMX7/Cb33qLhhKSxqXAz87o+7GT9A8IYAiGgdyFXSyvvpSS0CSY/DyOF++2l72yPl+PU1OwyBV+G+zQ6XQJ2U1JUw/Fj1gOPKvQTMfAFclzerZiH+fP3naeP08WHKxtcX5G58FCAtxu4lBfct93f1EktJ+xnLmjlPa/fwfDRGmk8PUz4P6OMJ+bgb2qJUXJhkiYg5sfYtyjsq7wFsXEhwyOdrlvbUuyEIxD3fUdubSAlVKJ1jm6YDzfePcAzpnOT8r8q4iKFJuEapaMU9bgw8zni3bg3j5y32cyqEhDan/LzuHdfPDf1XRuVjHZzDOFJum0UP3SnaPo80xunAFieqo6H++cy9um/QbY9DeCLNEwF0Wb+qIH8NDUAjTZSJ9b5dA/3r8hzwUorwUxMt5zK0iTlG5vQ/oPIIyZGM7gA8imvnWyM8n1+9ddd0cp7I09AfA4QHqwjGjz37VYzDmPc63/6dgNfzXU1ClqUx2l3N8hzn0ZKv5kgtR+mEcQMSTtSnOxFitt4vohFu/jxFlBRsRwv0gbURwTtw3U3+7/9gCWFxBVAgh0audziounFNsCygqAIPWIlqVwzJbyCXov+RCEmbg4bWFGMDrh/NESgX5POAfD1ir5HEVgHbF7fN9g5TFSSdA/0xTOx/ANfN5vH+PxTbMTBuWdbxujc8/p6pD2MXjB14/LtCd2D/vzdsvwQ//i/Fj/8Y2P9xOG8C+VgQjjftYoaxO4lnRI9CoBiOSLg+GjJab++mY6kd6ka3/z5K6ovzOZljBOkogOL80TH2ZuiJa0CePE+brREg9APqDSyfOKWPFD4OC1Zck4Np3LdAjjaWjySnA4mGKRtOjSDrdfM9LwjUSB0fDEUnioQInOFr+N4dLarpfDwu6G7yLitS+DNrtJP7ceS7iCSargGwXDf1WzkNjUZkDtFdAphu9Lgwfhr3lh4WNKrcNaE8LoaRBYO8dO3pk+hOQUP/tuA9ijPRddYI2pU2R7pub3kWXWNy4PNcqxXV1vRp8ie9wNKr0cdzAm7A8X1FT5vSDlxHl+O0+SdSk8Ypvy8teYZKKWo7ew9EhD/01Rr5N0NZ6NBeHTxDZ4O/oB5SZ2r5zhqEXVMf+D37IxjRZhWMON95vkR1gDcGKceTFwM1td1bjzGcOMbaMsYi+T2OVVSNKA4I8lUsTqdviTnzhpznyWFmushUCnzdh9TbGECifljXzcrRURHnYbNc+Qy/N0mvnXOOiFly7LVmARr1eV3nYQ36VCcMLx2zw4mkqdeV6+TN9ZdwKMTVmgmLLY2qiCq5wVqNmpiQZWGEgVTq0NJgILxldR5EdEqWwUYxsmt+FNtAB8VHVfw14WD1HfV3HkLuSQvjhPnnTTNKoblYRSWF6b7lYi0KeyjtnZtBy+IFSCZiecJp5OrW8nApi1A3DaFDAka2PZRrRpQakqSHnnQiT4CELvv8UQmZOCh8jNvzWjbWQD+NhXf8MDKkQCa4QiNsG1wRU0sPoMHF9yaTsW+6KqyqcKFgFEkhwTZVr+G7+V2fVeedv/cG0UK4Qy++CxdDr5xQlulTzTQIf4bWtIhVOLLaQCXF5ByrOrGTj/fjQJDv8TovyEMgX54G8fPuny+R4tYyXaY3oJXSg4RBxu8jjT8KN3poafTXg3sV5oBBAR2ab/XXCzHjaekMUQKIe7EgTOwdxbCN8e/5fGCG9rEiBuc/SBXLARaOhZ6HQD0sgSSFpKLC99PJQcOa+5v94vP9mSyxN80X310dYRXxUC8pSK+qmLC95BxRjei0ydHt9ftxgOd6mNq07Ae5lrHZt2T+rtdAKkrVGQmTGe0clh4BNzxd5kiRC/ZHBCw4nkulFgCrVozb5k5iP2uIMovykUVODX8w20UnWVHQnewmSM10N7nYaGAMRVOFXmKH8cDkOLLKGuIy2dve4OkvEsblxB/AqJcbbIyO08jmNUG7PXLby16VZU0bVD3Hc7rH5WgaiSOMOfX0uNrfcOi6kWrnVYcQXstgAOBlblsSjLIdFBHkeAjGf0wGIZ0l/C/GqhpYXMsNhiig8eF9kqPIu+Hz1JywUwSyNejlkUlHdUXFobKm2/OylMyroTVBOzva4zIiRs4595SXqdYfuznEukx5/ysqSxReCpEfAGOC19t329PQCtoA7KYfbp8CfAL9y9CA/QuQy/UvRv54Mapecvknfo6lXXQwcf5Nf+H3kakPRDGUSgJjT2STLTvKAElyR/F9Us7wcNwBaCcirUcVGc2fZIGNFZy7QN0hQUdYrDk6jODOgpuvX0E4DRrTYYbO+s3I9+olERSZxinaKVHKO9YDOTNsIF7W7ySDgdCzLNJf0nPceBQduX6Lo4+8GCsfSTz7Mv003kHIuLcr1ugA+BBDmQz/SDGhGHxcwunO6xq27ymPeV763puuOv+uQ612AYBch35/EAhX49Sf8a5iwLfIhao/Bqlgn4Nz1aGwtv3Nvpme13wPRh+X57yLHK/kh/X51L1qG0imqCVQ866fIw1Q5ThdyPHa3yAvpRmSojcEnH7VEdgmRyq9vLf+/OLoWPq9Nt0dKYEspd7FsVgdSPWazrhlkF/mofTHvpw63frdqvet9mhtd7H/ct5eETl6niDi9qWN1c6lM+mFhPTNu5fPo6zqN9dfw6GgQBiEWzFYAURUvSEMoJr/zrxXMkDLGJazvXWLcl3LYnFCwaoIvUD+62JtSGeDQxaroMbpOW334lD49ZxzINdrIuHQ2MxENdiYqB8+bw6KUGA3u38Mj6L16J/lpSEVLW1p2Hukr5Z+032b0RY0lnw+ooa39FA+I5JyXFlZwZ1B49Yxbh3902tok4yswPWCt6Eq4cX7L15PvDob5HE4SuM3+5uXXzMkxjJ/NMieJSLpUPDMRV8MVx52DimalNJbidQFH0LOSVXw3kXuUI2vcC40Y8rlO3hPoBf82Y8Kp5d0IAEmIMmU7yznYQh+3MCc7SBjitr09vP1bzfbQ//jn3N7mwSiQ5xXQX//4X24IsKtH14t5I+vSJOo6341HuUaQXAT86BqzoTjSIOYSkJVDIh+YG5hnRs3nvU4oM/DPOccyzGcM6FBKPWq155Rja1b284TaN0QDECu7bJGwhlXU4+iVGNPbgU6MGId+HOGohqkoZj53jYn4zU5EaLW8VB3TKyHkYJoJYjkXi5VZKLPHP86DnSIAIkMcQioyYge+zC+X/YnrpRFcpUL7mnDAAAgAElEQVR5W9fD4gjVD5+rqziM65jVtm/+ToeIt6EYN0c2bOKG1fw9EpRNhGZXbbfaOP284fq52TRcw9AMgDlMRSwvmk4IGoCXAptD55sZzPIcvh4Ra1CaQMcGvdr/y9zb7FrWJFlCy9z3PufeG1/kH1Vk0lWCpsRfwwgESEgMGokZA2bMkBj1K9AvgMQrwAyJCS8ACAmpRzBhBE2BoGlVUmp1VdZvZn4Rcc/Z290YmC1zcz8nvqxWN9K3pVBE3HvO3r7912zZsmVzLjE1Co7UXxk8KIJyawZK+F7er95vOtT2s9Ec3aZqga3l/Ytavnt/ZTWeWbgynAuPpJqIoBtqgqBax9lZbD/vezEw4XZ6HniHvhqQIjcDRQsjyQB0hzlJVaCokLuONdUl5nG/1Iiy972kaLWxL0InQ9KY60groBPaN2NphQ6SHZDOWBBbPkkXgs+t51ircSZ3Mbuu2NiXXpHL7kFk0NY5Hu+nO6r2GX13NgW1epjiKYJ+3aHXivuPrhHVL8coBTg7lNY8i8AXMKzcL8U0E4qnliiw3RS92pneXs002D7bmnn58+6aHkiimwVZJyPAmuQkx1pb5pC66aEbIHf/rgB9E+y3HqAC572K2QhRNSJXwfA+t7LSBVox9Ar8M3w+94LK7SSAN1hKBG0YVXu/Ys/SIiiFASQDqvo+QIOwezqgTB/hmjgV5TDQSI4GPTmvhs1DYC/mpTs6fXfGEIE5hdkCVwxmD8eDaQ7+DlMZ22dOadfEaHBwUBD9iR3j5fya2A95bIEABAL02YYDF3u7AwBkXdM2KmcfIATtkWCELkAu20pRdIVX5VAoAyIyxjXmXQ6uLYDe9D50LlUxlcfJNPj8s2zLM60h5r5/JzvwBWAU2X5HpuUC0BXf57KfwufH/YZtYPdIOfR0DBsctKiIKg+Svk/xQ77Xg+NZAekpsFqGjRNsh839CduAJQv9sb1R2YrfS+9R6yNYwGf5ofe09Lf/XNPn4mIbfTwljX3W0AJq2Mpo4jbkeq+5AsLT+fM1f5H/Zlvy95JmxAOwk7+b509+fj5D3G/R3FZWuKgVU2un8QcIDltpZuABVAAQ7BPeIttjfa5Asl7fD0CBRvVW7AAGQmyrv5iIVnWaqhliEsZPLuXIXE3Zt1HGBhbVj8VDmi9LLxajHVnUy9vBSJlTTeRog37LQawSuWHqeW3FDQOtYoJu/OwqQJcZBTldAhjikzTmxaIj4ZDzcqeD1ObJMQDCye5eMqf00zdlGVoQOR+6pPtW5oANg277dLhBNjahcm8z0geEoUFRKP4Joz0+1wf63meji+/KCGwcyOHIqYENBHuAaY+ZBNxUrIRia+YEcfNyMCq+k8QGNQksEqwZDiMdhRbCoBCBfL4NBy47V3lD4ju+eJQ/lwskqs6LzAKfi4x8hTChSLSrv10DbOO7GNugxbuUz7f54ArHr0Tp0yG41Ee7dFBvAQwmSnMhUReEzAZNpHIQwInIw5hPYTDcD5+7+6C6LbRE9DM0N+DlOoN+lZ02Oor7Dvng7eEYObXO9onN36ul+4y0ChEBLpdhWLhgUzhcjA5TGNCRYetomQ/EDJgAowwk51I2xvnvWgerIDvr3p9C/Qum6vj+srJA4OkxIvuIzOR7TTnZAvlyHyk1vjdFPjeGUfj0gM1//DNR9aNjiE6qM9Ai8p/mivhelthNIh24n2PdJQfW1pvv0dW8JZZBXBX5pbXH0r58z8z06p4yUMSikHui4TrAmKONANwZbNjuZzhZwtSrNht2dAQjfY6Gp39Gxfcf1SiJq0WgfYBZocIuEs5fgAkiAMsTusPEtZ3FI2PonEoea/0gMwqjHzmOahF5CuV1piCIoN4SI4/ToxQo0zhOnw97jcDlqKjgY180gE9Je4TcT1RV9NcdXYvRxHk54CJNsd3TISAehd+HINoctbSXFAUKGQ7+jqPqg8RYszQhwZV4jDoVXxD9O9pmZ43uJdImSjuHgHLq55gjYsEJ3Q2Qby8V7z+pkVWzf1Ls8OnfTN/A5qBR5ttm5S3LqcFMCD3Hu4YGkTRAK3D5FbB9AljNYbu5k1odvHAhP3MgkQxU9o+NTwGgXU0sssqUAlqaon4ZZSdVADl9ztAfcbAHVdBLQX13AE3ozNsYl6OhF7LRYIDSOdaTbgXnh4q+CfouqO/GGCCjQop6NBWJsWQDXA5HXBThe0m3dIFey7CpipWxVLG5A8CdfMxpDfcTIq46UEbgKvbi1o0RFaCwgz6ngUb2jMHGAjAHvzT/HJNDkm0uQR9pO4DtD3UAHVPQrSlE2wB0dks16rXY9CRjOO31o7SuT4ukRzYBHfl8SKADP0+7TVEGI1g1gMnMdAWZFdUAOM1nG23hFHAY4IWOtng6m2Sb5DyHcww8Opf+vQen2McYJbEQ6FCvegA17RP0D4AEZKR9LEeJabu6cPQENmQxRmD4MN7mcCCLLkCR388eNp/tZCPkV400CSDAB392RK9z6cf16pr0BLr1vep4lvawtTSCq/YcfXJPY5jIsKV70hYQIc6ant8R0f3F5gIwRDC1Q+lnrk5/2MIpkETbXPpst62XAxxhT67tKHUOQDGtIs2JKT3kSf8Cbcw9wMZiYvSk0pkZLOoLACNeHGBz9rxICI1+7fqeAAoAxXsCDamSyiKlAWLJLuZ+0VERiU3VwARXg8+bSpHh3B+nRYz2DQ85sJw07bRNj1TuxbAHMCipRMrP7vRMGRtingB05GuiROYNhBvdd4nC8F2qQF3dPVgbfgXFcxNIN6NVXdcg0jGyYb28e6SakOrsuciZYcD8ZgCI9I1ogA7nlO+YF04YEsUVs+fvhtXp6uuAH56eq2XsiuR45H6miBgX+xWQGxAotKSUEN9wc015Kd4nnmagO8bGAYyoL2vxsn+ywRpR2BSNI1DCfgh6vMzGrvdLzENV6C6xaUWpNgpb7tYn5d5j7sf92ebjtGdc9piHoW/R2gANRObDatlM40An2HKekLYjchX57vzMBiAp94YTR32RFN3XACaGxkXemDVpHci2RUrLA12NVQuol7E5IJRLJ3ZE7qLSuRVDfQ1Q2OeNvOtoazLcRhszCv7E2JgMAL8HWT3PUlXye+XfudMdTif3lFWglf1f0l6U2RC8V1CHC+TL8qwEeETpyNy+/Lxn/cKPhjEk87OBMW+474gMETff40aObzKa6nD2o9ScwBgEDw1wY5JsD/ar73uRCw6AaVwmKogBOhLAWM/SrgZ6dDxnpcWzBttDREyAEDUE2+IqFn0NGnhyQuB6OHa/0d5nAM+kot8V2L16wWnzMNhVqhAwYpkcIgchpvHsMJo/gY+thJjqOMvSGSQIZ0k6jDberd8VAK292LfpUKgC3Z2K1kLhWvYKKTLAGp5x1xrOZqRCiEyaCba/4ekVv1Pvz+w8+zuHfbF95Vx2AINpJgACyEGRuTJId22PZPDH3s7KEJeKfilo14Ljwxifegd6lbGVnMNRCno92RW1xjtHCocKLMPWXnh7H2MlXVHu9u5dKPxMdo+G+GmUV/SuRkt2wOuOSEGIiQATdvTIfjlNYDpYNQGqDZDqYRnzPVwcG7D2Cn/mtmG/FJyvxk7om7W1bgX1fZ6bFOY0bSp7r8IU0/QZhdjzOM/J1Kz2/uVUBKtlvZoCUEuHAeZUpMPBzReZ01rh67B1tOtmjJ82FZ+MTp0AZAKpnH/iaSmqngud1iUw7EyeM+7cMz9cuJb26kEdAVCTKGra/zPDT4EpcERHpi//9v6dbGpeEQH39ceqLDnQEfdP+/MabV6uOCvZT4CNvZ9bcjbrm/ME8ERXgffJtqCkMSXA4ZcxXEvYfJP4owMerEbwVFSyyGRjBkshMJVlL8rgQ/dI/jpHFibK9L1nZ2fYgTL9394HiLKQOdKtvpGu1SyKjM+p7UXq9xKRATSAZ0ACqe0m8389dUKAATZoAgysoUsbHl/x4XNsX2tzIGWyHxe7c1t+x+88mUMUPZ0CinGRvZrm+rM2Z8BgunkPNv2oBNEw9UlJ90j309gLks3CUvZq9sp3VXgAvk+AApIBVMRzEDE6Wz1SmmnwbljodXeanDlo3fUMWM4p6kQj3Y85110D3YzyOVFlIkfGXWjvso8oL5AMRc+N259tDHQY+vg/AJbS0q2OfOwMnrDNdIxeroGqqjva0lrcJ8AU0voBy8+kenQ4dbYZrDmYFMeUnhxAGilnB2CRovg5I1BEpKlPkSmcPf0OgLwfZlC6cVy65466wa4F0/uLP2s6UBhpB2a2RXJYSJ20iF8xY3RPtH+W+NoGIshypUE7pcZDT5sbxygO07TwO6zcGi9GZemw1mWzyKDBs2s1OD3iKb1M70mjtYsEit9/8OZGtR/KcfAhcsQBWNSWfeFzQNxZfWgDYKkP/kyKAkrXSImAiM3PIpGrJmezzzqzwqISnvf+w48P852sioheE4hxsVY49T6EwgCwyoJR8b3tXn5qzGPfGLOmwPWCiIaqAu/vUCnj2T6vJOtncF9RNTDv7Q04Duh5DpEl35j1bPaz15fxjln7JQOHa+QcsLHJjvRln5ksgLNZ9sFqymvBRQ5ZOlfJjqGjdz8hd7bFUg+UbA6WsmUfcu24MRlOP9kqARb2kV7EaByFr+j8EGS47Oil+Frl3Oio533s+f7+oza6/Z97AwCUdgAFEN/7y22wBewHGH2SzhQ6u9yryvsdetTYx43FQudQDKxjqsPF56kzO0ARy4kpVofD4M50fvYDMNNH/rLRoxvQFLob2wxOjWbEFt1SxNq1ot6aCTN+PgaNmBUlVEfZyZ6igqmUn9x7tJO51tq96k4VdNnQa8X5MhxV+yzCIa+Hl6bj9uFOnwqMaQfEujUgVMOJF0U4rYVA1mH7pXSbqyX2PXgaxnCqw5lSoL3WSH8ZxiysJGER9Jca3yueTjZKGycBQjpk3EcJNimgFZHmko9Sq3pkaWrspsl5KgX6ep2NTc7LOkqA9t3SFaxMMrB/7tg+d2zvzfP3ZyCI9P9+MWCm3Drkhkh5QAF0A85rwfkqOF+B/RNQb4rtZkwvcX2E4uU1dS/ezLEGzzcXmxSfo2TRHQ312/sM1LduTIu3zeaFMwAEwPnBxQWd3WIOsI0XATSmx0wMK84nzjEXdOy7AQnUMygHUA8DSeqtjbETDGbT2S3VgWcngLYXS2G6FIQiIRDAE537KOeaWD8BiEod6VFuo8yijLav2DyWGMPtS/N5icE+8rXBMW6XAlwKIFscdXOlCxhITLbvxspfiL4D4KVhu6citQESeDpMgGgCZ2jYPC7sSwJMXCs8s/JZviW257oWaLsBtiauPL9gaaAEKclQAx4Bax3MBlGZAePMDnQ7ewpsAJYaGWdEgVz2cGsZeAvNngyYcyz3EaxYBRvNLk9rnM44z3xPMZ6CB9k2UMVT0KA46yoc2wbqGsypF9XtWTwFM+ZACBDlBrtaVNrtYs3tcG2pnF4ET4sSqlaToeCaLVPbg51AO6oZGECwwX829XEObpXZv9LsEzAV1n25kf7gvgdt/ZUZyjZPz6xgGoGWOkpIhj/gYpEc07MBVecgUR7TXJabbV9BSAL9MRbpswTRs+DkBCDp470gj0AVgQwCCM+uAOkcKPoNIEK+vheAQiCpNLoy6hedBzAaZV8aA2tIMgIFHZUgum/kaeDoeFc3WBilaYy8JJpLXsxElXiF0WV5YmWt1ZqeF0h+fi9gRKjz7xYDk1F+bUwFKRFZDm0HIPQIBt0foCo1zj4jxPmdcr/QyM+pAPmQ6BiRCJEh0MiL33enTVKqRwhJThun0evYn0/7Iv+hYZhBA37OUfJ4TsFE14UWYxr07geZCzWWYhOwD8dIL/tTxyP6pBZEtYSlL+ngjjn0ZKyjv9LhsY5HHpf8DNXEbCgjWlIL9HVD/XJCvvSoCW7CYjpQyThQkUqB6aNj87U2nc2emzdY0niZrsPfBSLOfpMZZCZQQif/axvcmutHR3natMXGMBscS7pBMJY00dA53wkSAH6o9uf3WQ//AHs6Igc6PZOfi3SSta/ZBt53ZSaRxeEg1ySiCHhu9Wwk5d8/zGGun2dteSYclO+R77PO5bwvL+slbsNn9o4oHXkxgyRYNw1xDsh6z/V56fcU6+WBHHPb9/SnoN3CgpGusc8GAMF29A5IncXA8rhlZD/P8cLNeOnLfN7VcS8BHSdENFZaM8AFw9CP26mii3jU2s6uVQgw9nCCCU/GJwTh8s8qWV6Dmm7S+el1/FwefQo36OZ7RbqEarDKp5KTRbwE5GyUj3f1vnq2Ribj0G6e0zimdvSUMlIBaf6z7Dmm+wrTGml/NAVEPSK2viT/tnZM/TztB/L43a4I/SM/v3o1w8EABcX2xUpLWlULxJrhnXMpx74Jyg3e3zKcdG8nHVlrJwaYQOfV0z5iXqxnQwQA0v4JuGPq53CxZ4dPtbw2AZByysP8Y4A6GCz8m7fS8b4h2Oj3z6KLcmKkIrjWSYzHdBalZ9OZXp6HzgAHJiefGgX2K43z2IA2HaDZan89uTJoQhAiwEWyUAqMYdKZ8uTne0/zfWUYcn2lK+zSh0bIw9/U35j2UqZxxBJNtkR6Ntle47ncp3qA33FfEQDdzoECqwjxjP3B93afQFdb/dm/aTMBs47a+u4Eyr3sIfeAKVWh0AawFAeCCREV5v61pgTzSnvbRH9f2/KMNQDEMy0A5+uxPwEfWOXgmZJenH99+pmq2tiswn9ZJ2GyYcr4+7vKRP6TurID3Zex7rY/Mz0xyOc5CDndy3+2jlMR4Gt+NM/8XEGCzw5g4ivjPt0n+6VlAA7xd5/fi/9e3zv3RVnHZNkHcoUOtnNNtXlm262AxVeu7wWgANWIoDF6DdgBVz1nIwvNUSBMGJHc6sjtrgLZuSHD9A/e7xZ5S9Fji3wotLiB+/kdeHsxRwwjks3IhbQKlJTLy3SGuxsOOYrok5dsAYGp6Wa6pLwfI+LqhkSI3xW1CCyRMJ+8zKHnoR3dV5z+u42DvRwGJJRP75ErHQwQLyUoX24uXnl1tsOTjZjO+Tai1nK33PnyzavTXgUQQ02F4mYZee1qUdQizhhpX9/MazHGiWooo0/Rm6yPEBuyb67M90t5iXJ2lPfDInV7sdKF2oYOARB54rG49g39uqN8vo1INRBRd3292PiQzaI6qGkUsXTwRLLzz8sj7llIcFCuexiXAX4txgH1P3TfoJcN5zc73n9S8e3vFPzg5x0f//639jmP6knTYF7kyidMO9CXizllX24xZrpvwPViJQnPBiKjelpeqBBYYB/0Dq376IPeId9+8fG0skKRq9n6qDqRHVQaLu/3qYySfngdKO9xQr79DH17ge4byq8/2Tp2Ub+4bxzqMgsI9pG/bM+vA1nmz9XKNsm+Wx94biVLTNm9C6T6XsTSoNrD8adBEqUh2U9JdyMECffN+vPLe9z7gYUQOXoSApxWXaWNA5YR8n0DUx3k/UD5fA7W1XHGvhJ9QBDIyw+VDDaUkgRnJb4X0R4/aAKEA0aqUOG9ZaS3AP4dXxf3A3IW6McXe4KX2jKHygSg5CjmWN/u8z5BJgV/BgwgwbU9siDatA59zdKAZ4lXti+qOkgCmfN9YGvLqqAMho9939eKqrF9xNc69y3V2L9pDGsVlHfvH2fbsbINuu259RC0DxdLMxCAQogAIvqpRdC8zGN/GYygcjehRNBxC5acjUUJZ1mgV8sTb68bhnibDjA720GJTQHA0jWqWGoCbRh3SMWF3uR+ovRUtYBXDiD4vMHbNfqS99BLiTkvwn1Z0IuYlkBT1PdmRjT7yJ1TTuMoQdl1lMiT0Y6p/Cpgzpsq5HbYWdOrsS+SGGb0rd+7X2o4suJAdpS3ztOy2Riw1GS/VrRrwflmH3r984Zy2Dux9OM0HelcL3vG+U3SGlB4WohiQ0c5Bdu74PJtj1KKJmZKNkhHRJ3DGLXx3n99xHv2q5UALu+HzdeUnqhSXCxVJvHFkRpiP2jXOgAOb+ekR9AVJe1XrKTQriaCqXT2XZtkd02FkgUfYe0laBJjoM5suFYQU6LuhHSBVqBdSqQ24L2htKHbwLKkiPNeAbXUPepNlXam1APvg50pLiU0QCJo5u0z8c2U1qZAuQDHViEN6CjY3o2VFPtfsLmSBhcFPJ2xKS58GwzZZDsy/W1ivjgQrQ5uEKyJrvVzoLpwbD7PQWe5+7ogqwFA6a7PUWy+dN8zsgaDfVjHvu1R7gmcn9KfkdIA/f08BXLW1lLLkadNwDkhYuf+ts12wtccT6ZTHgeYf05WVlzJqYtKEQl0MPFKd1C576iCotCsaJWBC5vPFeK0/Al8CNaCO4KlI9C3eC7m87iY3YHiAIrqsHfyO/DzrNaw2im8eD/0GRQJu47M0Tyuuc8KcBnncfSN9Bk4ORdWIJkO3aOtHdaPeQwDZBsBlNBOyCkdDiBN7ATAxL3ZxoU1yXSGh0oLsYbVNTtcz46vKzKlRVJngf1iGhg9AVqCYGvk+ZtBhRhTsbFu/QkrYgETABMzV/usUict64asgEO6vh+AwrMrj8fXkB4a710tctS7beZZvfvZdzvGAOfOSZ+lETnlAnKDPNPCdyRscjyrofMQgSTrS0mDInK7LkY/lObIFyegjJzx5gu62WY8iRMSeXd6Wmgg6NwnQ3yvxu812Ax9OBqk/mbUOSZvB6jknseL0eLcd4yMTkh0up6gylHSUak2nRZ1FhTiZ9UtAmDkeZIx4Aey3c8R22mT7NMh9bRigzuoTI2JfEJGpoEJSXwo5xfP64998ZVFOmkrcEz83nlmny+CL/+04vIrwcsPr9g+HVE+dbp8j+f98v1DABIY77NsIpPIEje4TpCNol/+u+MwC4ifBwYoyPtkYRskI5I/q9UjM2n+djVHjgemaogYTvmovhYmqvy65vP7MVeMB3I8L1Wl8M/FAVCW7y/3DSHN8pUxXp+//o4/J3WeF9/RNUU436b5wuixpoMyU+qAAD9j7ufrCRo+CTvmtqefTWPIPe1rKDe/15bfce2LBCgbtEFGG76SujU9mxFfwIAjdwwfnsfv5Kb5/hd7Z0mfq8AIo+a+SgdzXtf5XVQxe9LjeQAiim/fK/FcTeMqjNgD4QRpEaNZK/vVP6fW1L4PAEaTAcK3zsJvjB6j+B5KGjTGGqWgIXPjrY/9PnSu+e75Pf08i9QZwTijvH/7ViBqTMJwyqN9o71sPVMELAjcw/GZtHgILMQ2/GQOlHR+p4siw9NF9hd/nLZ3u5ePRfEBeJINCQBaAXEBUN0NTOhejlC6OZblMCe6SzGAgPePe4x+sPbCRA4FcxlMFUsnUSCcd29eZghE39KZLJgcfBEMPYEy7IS8J5hIove7jjOYrBazrzBYN4KpLwkUQQqElUH8PeTokH2kJOblJO7sB5sytSvOjIdBGO8cmi5qHcN5N61LwXBO/T1MRDrNaY5PFTdNZKb5uy0Zmkq5rbRD3FYd6xYBbpC1EBWpMLaVVUzQ3o02CsYeWL19SegcwAAQviY8Ap870EmoO2wj7t/+/N940SZdP7/2S95L8vm22GsMyD+1seNeOj7/jDaebJCHs279TG6v8G8/p5ii9102L4CJxuG2JoT6Ak+uiXn9FXbCd11kFEzaAIllsEbQcznJr4kurj9fWQu5csR32UPPGBIl/e5ZVQ3Vx5+v38/R/2dtyA75ep/Vn1wBHtgYT5J82T5Iz32abvAbNECevg+AYKistMDum23DSGd5dmUmxLMxYbuf6Xws1/cHUNhSY/l+jigDcCNucXJYKlHdwbgfsQABgIre4SiF8q2XlizFIpvZ2E2Hh27pe4woq1qUj0gwFcI96o/WINs2aNCMClcZeZi30yZD3ccELTJtkBbRc6fsegnHCr2F0yRdR7nADnPqDh68XiHhw3VoGngkOZyHTCk9O0oSwOrO1uhv1sb6+Rh94WMgR/M8yxr3CB2K4iRS6iP4d9SrX3B8LXKb1Nc9gkX0PjQBXk35mk5yv3ru/nEfBpzTg2Wvpjq8CdBgkczeIV+OMNqin4rMOeB0Vpk/5qyEgfo5oimmNWDv2wPtjbKfBGX8O3EfYCDDxawSvZRkQHhUjRFgOlG9W/78Xq2iRDftDG1maN4/Cn78N/4UfyE/gfQLfvT3FPsXWw+6CSAXRLkmp2GyDGakBPn/e3JsYr2R2ZBUZ/U4BkIMmM5AEYTeyO1uuhFxWGv0s75ebazfb+Ysv1ysXzyybH/qWG8H0hiIMYryJvfl3dZILu3p81xfrzZfycDYkiaAR6aluFMuYujwvRkbAzD0+jwhLy/Adgkdgyxgh61CcBmRNxoT1wGomOFS5rkkKRrK/aV1629qcACDJdB1MGqcsSNpP7LxNlBVIqc/nXBrzmYHInTGefn6Mhxy1TmHLoM1qtZOVWMaZKAxPdd0APr4uQhQ6kiNAVDefT8m3TjvTZ7KpA5ORWWfUmwdH6l9bLdrR7TXPSLsVmPe2W4O1GgZYFQ2TixlqMT+V+5lOKhs49YhZ7GzJPdTGv8oURv3LcNnojBbN2E45hDznFJ+PkpMeiqBKsqXsYdoEbQXc0D1FNR2QjpszwZMmf5acXysEdFkWTiraAFjENEJ97YyCtleyLpyEOEcjozc/V7JGImILxAMCfDXRew9u2kz9Ivvx9qHHSuAvgwGWbk31PdzCNPRaT5sn27bhnYpOL6p2N4F5SaWi06Wh1gkHRvQUppeaRoRUvgy0CroLyUcQka0t2+PKB2qZTBfMmjM9k25/tXnWR2OO8c+X1qB/rKjXSvuP6hWoeDmjAKO2e2EtIpSy3DU3fGmbgL3pXKYk6lFjHXQRnS5tI5Gkc6enHpF6FDw73J2nB929EuJcpXldMZlh5VwpIjqyxaMFfUKE536AEwJUDUtjQBEBWdE5gDqKLA0aKFAqcLH0wSZWVVEyALBeH45GuIAACAASURBVIdgWdCe8PuFzcJ5zu3o7KbNoSmyzH4FUA5YaszZIx2pb2ZnFgeqNEVhI8gRYIqvhSJWUvJ2RkrJ5jaT7sV1iQrUtRwIDHJ99d3etb73mGdyWBpMOPUOohRg7PV8V1VPqeqxDyqq6zGol5Hzz7uouXq7WZ0jfBZ1O60D5WULQE8E6MUZcgJjcLgNpyhj3jOwUSTYc8WZm98lSK7JqRGZ9x2bTyXW0wpMGBPA5lyUqNw6cGKAFRlU4LMWgewpXTA7gWEPdAO61yh1BiZ4Xvg5JK7NE4EL1FF9Ygk2PESZpw5KYEBmHgADCMiOZa1zmUc6oG6vAbB9sOaoJV9BHyPiz8C6STAx95U+B1nXMQ2gI6fFJluCz5CHJi7tEHsm9Q96GyAaARhfK5MGg7cpmAkAZBmTuGp1Rk5+1+GwRxWF/I5SLOUugRerUKXpT6UgUGqDpQoCofvgz9DWwdLdX9VLyIybDOb0ZM+4nT1KVH7lXvi+AArh1DqtB7AyWV0H8rvXQR0EBl0rRXyygSoOMoRhD4xNID8z0aKo6G1pDxiRKT7rsiekOC1YlQAEVFMKxOZO4nECvcT9s+haOLEZoSVAAQxKFT8LeDkxN0zVENCRt4V0eAwjJ96Z6DHbKTJTzMQjXf7eAZyEEjonvjuW6Ag2Ap+90KntndxSIBreGqg3HZ+N8XGnF/ZPhW/+bQgBmSL3MAr4WbafEanAdlVDZGeaBzni+mRsTKBrRF9y3XXW67X+4kFWRhSEm1vvHm1z5zpDmNyEPfUh+oLU/ZxKQ10Kfw7fqb43vP5Zx5/83z/B658U1JvOzu568XCNHFw3RkkhP/sMJvAd+V69W0mfnoTo0hV57G+vno7Eg7PM6w4IUCMYB4WO3jjAxfeFSA04x0Ec17aFxkAY9Ll0ki7jzL5po561tavZ2k4ovGwbsLsYK9dFBt357wnZLjFGXOMPjBWukzS/7P9lGC7ZiFn6MCqxtDrYS8Cg6183r3ne4+CI1BoCGyllJbqFrKaW9s+l76LqQwBhT+bbahjwHbOh5e2wtYGxPzHy6doTEii8G4WlWES62/4TYDHcGPD0J8ANfIKW4eyP+Z7LALKMpu7Vy+7OIHYWg5Pm++mH1wFoExjlezIFyPcOE/NLaUwNAwzm2GTmmffjmtrBuaYioWgv6uu0VY/Q8iwc3d2rQMQcEwFiz5zGh3aOO0+DIj7O1pU1wHZyTqpY2T7dJCLG5ZCh+cHyZcv84DNRzUhiKcB+deBK3bH0o4f9RKDDGAFkKi0RpG7O5pQCUcbvzGEUdE9BiRxz9XH38417JNyRJDskumETOxMjMgI/j0ZfjxQROxO6O/h9t+iqAQnGTJAjVVEgKyITuzaM9VIQuhD1Zg8vB5/l64R2MY8ilUgXKBTm5PFI0U5xYEmNZs+5pw7Eqc8TpRAyGS7+/kNw288HhX+WQSOdosTC9on/h+OpqZpFN3Ak5gGPdzr36vH1SH1I87aP8bPKBD3eaXqGbyty9gFAAZbWoxqaGkAZ8y4tuCnFgmvJnZZclUqvJnQqrpEhOthmwc7M84y33AsamRwdo0Sp73NhNyeNLy0FIu6qsAJQd5u6Y6xPGfbtqMTjz14AGSvZju+8QouGY0PbF4gAmpWWTULKy5nJsdFrBU6ZmMHr3jhVwHFb1dggaU/IwuHr+bwGMBd/YDoXRaKEpX007W0ZIHl2JvLKug4ZfHim97BG/T1abqBQR4gi8gp79Mm75iuLKQYg4azY1O6vC/rRnlVMRlL+fGYRrGBDdlpzG78WXU+i+HOZxNHW8I2etJmV19KHx78T8yeewXbnzz4bTwp60ibzPpx0EtazN4PTBXhgtLDqAtOPs0/z5Hpa2jQHe1ZGBPeMHPxZgZHfsMi/H4ACfCNvLZw08fSFQM/3ag76DSOavbnx59Q80fQ6jJJe9tBbwDp5gMh918sekaf+Yvcp7xbpwdmg1wv0dZ/SDqT3yAu1aGNCdnqHUNX+bNBerIYvMOX1Wo3nlMMPmENzv1tE9HqZjfkASjpE/f5Cih2NZR10tnzRUaFxzJ8zr5vR8HBidFSHyOAAo9yuQM4Fq64azJwbOwzLoyMFHWyELuFEFNcjiGEk3bf6fDgU7ZsLUCWUhjNNN5zfmnLQJR38zr7AkRdx2mAr2STuSC5R1cjByxdRwujjCpVuEfXYgJDGUAYbh2NaxJgXt7tFqWtFfzEmh3x6j76Q+wEcJ/TtxQ5dj8DVT3d8/ENBvV0g2iyb4/RD7hyG0nhnf2/x3MmC0J6wuuPzZkKHy4SZTEcBt5ttkMfQJ2DUksi7fvNmjJ37ETn24SAep4F4rxeLGqUqEbonhk9UPynWN8zFdwAhAI3Lbu287NCDlUMcYCD7ZDqsBpILwAEDGSh0RqdfrraHfLkZI2MFAjgPJgqyR6aTECF0HNAA5vrTAdr47ZyNxHvL2aKkXBiZHtEvruYd9/OqGv3N+/ZoVl2Fa5/rxKtgyJdbVM+J9yoCfLmBmiJYWBABkuVoja7rHMmBF3PCtm1O39gqonrCcsBqZYlU27ciaqqnfWcv0O7aMGeqMlFgJfP4jLOj3H3cuM69+kGAq95PYB67534zX71vEmUSy2GORWkCNEW/vEJaR/n2bmyR+xGgjF63KaoG9dzyawUrFpTjmJlePPs2Yw3I0VP6gRn1eg7jWauEkr/pBzlg0Cz3u9x7gBlRReEww0SSsbuK78lplOaIAG/z75i3voLRrBrRXgrOl2KO8V2hRzcWwOYG8kmnKU2bphDt5o9XV+3fBH2rkbfOfVl0UEflVNSbev+yrWUyaqUr5NYnwJkOrTSfIwwqXI0lwFNyEtlTo6qr0/F1rwZuefSViviFAET39yz2O4vS25roLxXtWnG+FWMUCFAPhdyA7ZNVaCr3NpzQHEUVX18okd6QUxmqszRsrQvOtx1FFOLslgyC1E8W6a7vVHF3h7+WYDq0V/93JehhfdCroHQ6sCNdhvnwQmC+CNCNMYHecV6v5idTwwJpPpwGePWLrbkAaRIgKF2BY9xXtAPVtQsENgD3bnOYYJSndMrpwsXO/DSmjo2bduvbYJN0xJlKMEQ224twmv6ISje7cRMoHXBnhUQFBvD5QFRVaA1Sq2nIqLF2QHvO7RjqIXDtB5gggn4tg7HaFFAvoepz2aqQeNCHa+viATMyQF1jQbKtIyakqI7WyWn2pAGWZLz42uD5s1Q4s/Xi9qg796GLVcaZEYzZ47RccUbms63Ffcmjpf1lN7bH+zF9Ruk7+HyazqGUsiSsd+t6PzMzgQ5vCkTy79OZi/tun1vO8KmseWbZrffJ7/Ts37QR85m7XhnIyGBKX0ABAENAEMP5XvUL/GeybXauy/yZp841huM60o79XgQ38ueXqL7UApYJDi2AAM0WkGG9pKRKFCt7gRUeZIxjpHkWoDh41hsCLc7ghqrdJ+s1RBnLGr7iU0aNKvSuyCCHenujL/J4SH4m4hkG9o4xEBGzT04AzXQ1JjHSaOd3O/3WFylYlIEC2sQZSPgOxtB6fS8ABa2C9vGK7XYfBq8b4QKMKA5gRteBoJYLEEIy3KRYpzpHnmKDCnpcGR2qavdzlkJEWNmpDlxM9woI39GiWiC9OEqZBNTSQEWqQ0Y2MwU5o1lkJuTNJw86+8kdeNmqUcq4CEkd5+eBcIhDHI+bUN6QtgqgRpRQEp1YTgcLNj+Iqy8aRozdOUUWaAOgZWwSxigZFGu5d2N+bHWIonkqwaCi0lEw4R+KaU0RUx2lu6pT/ad3lyUbkP3PsWCpQzp3khB0HfNKUSDShyCeRx/DaWV0ct/GHFvHmlF5toMihUl4r9yYYkKDKc2P0wRbgqrdFVUEr8lALJ8PyP0cDij7M97LUP5+2fDlZy9uPPs87cDl1w37X95QP90H0MF+2dwgOc9B316R1gJn5lg/EaHNOfgWlXBD9PU6AJ/egRPQl92MFH7PU5rwckVEghn9ZVTjOINiP/QLEhrLQ59o23rgEwHuCly2GKvoawce4j15rSKaCawwwzeBGg5+5CooNLYo8vjgnMfYmxEvKFBnSkz6Jvx8WeY894J2jue1DhV/L6ZmpDHUF0u14hwKA4rrhs9ckWvuTXSq1Zxc5Oopad8T2N6tfeyroooiZpxHjjRp9k0BNBT/v/o+HpHFlZJe/IxQQUQzhf9O5wSBmnTlOvPaNCjcAKZSatIFwAVyqygEjQiyiow9zPtdHNTUrUAvG1RHO6KCTNrD+P50WsvdBRa3gnrr2D9JRKbLPQklckpwDa2Aerwoo6vjmf1iRg3F7VjpZ7Rp5E8r9/4Op3rTEdPw6Xu1EovdI66FOcwE04CIxqrnx5fot+GYoQgUJZxXk6TREBcE4Hn9AjnNuew7o3zuWB0dmc4KRaSWlHsLZ5L0ebIIJrvf+1hatynljMpw+tyJshsNMAFK+4NtBdou0Vfl7qJ/GajZymzPRCNsrZe7zfO+SayRYJicDejF0kB8zypNoZ56ID6/8xrWWtBeNxwfTQDQUgkeDVUDPBAMhLZlgUUFUNBhegfsj/ayAQUB1tV7H5R5j26WtF7Gw5iKJKFfNOsdMOo+vtJfKjpqzB9znrMtgrFWA0DwPcgZHxPNn+179zXFPV4E5Wgu2WGfEc6RL8dgu2abguMHDHFHsjX4AlxfxYCSYF35+3QXAA2Q5/SJl8Qx4znV7hxzj2DPvQ9RYu+LAoRIKIErOcc7MYAjbqMT2FOyBJ1FFJoKe+7z2Xaj3feVnWm2fbtCige6llSreF/28ZJ6B9WwF+L/vJ7ti2sE1+eaULuNZ9y6r9Kv4HMYtKAzHYZqOuezAGR+XuwfBSHU97VoPc/AAneEDWADz18yB2jfVH8GxrOlFmDfIXLaebxG5fn98EEMEAgdkMwUyIwBrsmS+qSXRzFKPqPIPD7+rOme7Jds2/F3XWefLfcx5wNFDctgsgW40U7YppfakMY5mOi24P190xwVZ+PRffqa5gT7hCkd+XoC2sTnw7db5kKsdwdN+H1qDQHD93OhxalaWp6bUxsJhqzAx3x9bwCF/lJHo8Ow0odJpVsxQKE50tkFkDo2ODp1nPBfM6Cy0etUcgUgG8YhRRQ2nMwxd0IEIxacOy4EE5bD3w6i0zbzDYujmjZBfj4DCmvKRgIDBvU4bdSMAPcyUDogcpGFTsWC4FnekDw4MDEG7KdSgB3wnQtyO92J2sYY8T1QR7sD1JHhUDpAAR2bdETqVGd6YhdXPqdTsoypOwiSo60Fo/8WI53GKZgYwfkiy5zhnKomqqkEoRwIMNE4YIqAemUD6++UQ74CHGzHluY/MDQ51IzDyZj06ByZJQKgfAb2cKhggETrlntPo0Rg7+cUSN0r+kvFp58WtFeBpG57/TOjKpd7g9wlQDth27leWHM49xUwDioyCvi+a/+TSbCVYZj4z0mflqNBzxasBpRqeeu9A5szE9wJD8V9zrdaoM3TdWLNp3xE0vvp8Mfm7nPustvvXGV5mkOS1i2NUhpHORWk98HkAAC5zJTGPMdkmX/rZ5hvT/pmWgNTLvF6rXOf84j4Ag0trv0AxeoAMCrTXvqIoGTthPQszX1F0CcbuSfAesjg/pXfU9UorTrabGvM290BlvoFYKBBFwdSgFF3XePZLK+WxQ/DwH7W3/4Miyh3oAiKDkeQed6iQ+unANCW+rJQWV3HPcsYK4iEWOKDgBgw8r35fzK7qKgvxtbaqDekGDTwxWlhHvTD/obhIJjujDmZxgwQi/J2zLnvvEiHvxbrH2dDRHu7D4HfTzFo293THqSnOevj3X1M8ruMqhEy8qDhv1vEOdtekMuRarFni7qzfnaEwK7vm1pN/FPeTxQ/BzM9H6ntAJzNZX3OM/xrInYPlSZSSoA5i0A9Rvssiu+/9zKEpnmgMT7xXg68dIgDjMOxIjtAugLvs9NswJO1P8aczfcxvX8o2N4V9a4xv+IV/b1J07efmwOq7rwWNcO+a/H+svuSeWLpJINlIycMKMzgVfQhoiqCFrG0j8YXHnZbvBNsjfYqka5Q38Uda2dEcd15P8Z8cqDWtOGc5agIcJP6AUMUGhDpM4FRbZ4xFSqYKsDDvi73VP2H+58HTiZ2EedQskN1MyAJCt8HUrrJwg7NYpFRytjZvBGEEhn7QbIzA1T05+b2c85kUHJiR4bwphgQnn0n6gT1dP7xPiW9g46/bU7nw2/YrJFCymBMvngWxNmDx7OR/z4XJz87W5LGsS7fLxyY1PcL8PFw37xXl/IQMIvPrn2x3i98htmOWYGLqVQlbbis2wVYwKgvTm5mHCQ7Y9D5nwADX0spABCshBUoyCCNP8sqHTy+9ndeydaZ7B53+MNRr9QvaqZbwPaszyOrIN978d041rHdPwMTmJax2npxz/74vemzCVzJcyGzT54BMBls9HUmHQNUyGe394muaRVP7Ade3wtAwcrvuMHuNF69bNCtoLyTqgrAkVtZkEPS8uWenAlSdVuHnPfR6blcXfpbt2pI/nFaZIw0eyA+J5OaP4YjSJo/F2NCJyPiKoPKHaKAjEgWbtR9BiRUbVO7MDfcjEmlQ+ltkyLDGUkUfoEvdHfyg7LPBcAJ5Fwm8V9lp94OzjFhGQkO5kLXcEaCKp8nON//so8DW8T+D1jJREZK9w1RbkvhAkqOnlPY0vu+v7r6f+8j/SQQQ/9cHhPVoKMNcMNBoDgoCvrrbqkupOm/XEaOufeXaB2I6tkg0geY4O8vt7vNqVojUq9XF+0j8yb1h3okOMqRqoEsWnpQtPF+G/TAvJmlMpwSxkIdFES1aGPMYze0v/1n3/DppwXH3/wlfvdHv8R1O9FV8OXc8f/+4ifQf/CKn/zdC37w8xfsf/luc8GBlf6Tj1b69Mtl9A1ZGUxzac3zyC8ITQFS0TPNkXN1q0OYUEZuLR12vV7c8LlPpUmlK/DlBt0q+tuLGQtk0pRiqTStT8yQACGc0aAuLii3ux80Ps/vI6UD92OOJFz2sY5Yeq0tQEEWViKY5AizfvNq65T71jlYRVO6DTDKMvoepF4yysAmQdTI7gbgyA2o3L7yfIn5NufamoOro28AA25UIRT3zEBFMq606HA2CXp0azPFjfKl4pEQ7vcynEMDDL2ZaLYGssFWFHL39zxuVlYrGBRjTQUQQLpx7Isw3YW0BxShE+2HsXqZOp5FZYAOubIAI3YhAne0yHeP/ZZOZrG29UsdjpinF1l6RfF9z2nPeawWKnFc3VKrtqNh+/YeZXOnyi0Cp7tXHB8qti+Wl29Aq0WFLfpMsV9bp+bcKSoFGBndFZsfujsI6w5VvXV3UpvRrHv1dItBgacDKX12zqZLCNy7AxMCe2N+aV4jHrmVrpZCsRH4svtHnzobqlAELzEEepQnsw5TVoQogKoMMMTTS6g1YHRyidQcrg/qEOTqCeLOdLYLdK+4/2DztCXY2Nztz0MwRXUuIci+chq8NLUtJl4Ko9/cdiqfj0FT3wpKjvhvXir0h7uNsQh0g4EJNy+tmZxqX6Ce816CZXK+Wl/Um9lsxaPox8eCchSvOAHrG29j/WLMTWk1QBqmiGyfjZF4vnhq07t9p5x9gHS+Jk2PAqNtoAMN4JjZcSyhmJ0WvTp4yrO0q52n/p7ct21NF2eEXBApFDxfKVZNwCuc9GQf6eNYTmVuu9lecgja2yU0jKJyhiLAunJXbt0hnEmtlu5pU8r1lPYXdd2FSUeKbXNAvBxDwDjmZDrfQheMZ1wVtL1Y8BsOuvUO3bYAxuQA5FhK7QJzxJ79JGIBkWAb+Br7klL4XIA39nCeLWdDLHJJYxdiiN7nFOWmDbf6fxno4Hg+E0Yskt6h27N57uf286t57GFjJLThs+PP35/D/kKpj6KPHDtxVmARBDWg+4Tx/ptEBc9zvJvbZOvYxD0zcNCAqGAD4CFavqaEPnNww2eSdF868+kcVDId/TnZIacNz2fwK3Efe+8I0nofC1Nn2ee8injZ0I5gc8Tv0udYKt6DZtqfzIlJ32Kew3HFfjrOpLEvpffpS1tWgc2pLHeLPlVVSBByx1wzgUibL0ybUc5Vamx1tZQs/vwZkJWu7wWgwNy2KY9WaIjIABEkTSpe3U6nEBFklI73UR3UYhFolFTPRr8AkBEVJg33GaoINxD8HtQwsM/p1PaHyB2vvDnlv/mH1PuvIUNdoVCIeJQqi8wkJ2G0Vx7fww+0bKwHXTiLhvlnsd5jQh+XzxLcWGlLwIi6sN9i4STwpogrl9oz5dk7uOFpn9cB8EzI5rJJ5E2TCyb3a34GQRCmwOT+8j4OavvqsOX+pRhSPjxiY8HYIAr/P/ooDkECQesYpvlgIYw+ABVXqc+pIHCjQosAlw3vPxZ8+Zni3/2dn+Pf+MHP8U/Vb3HXil+2D/ifX38P/+vLX8OnP/8hLp92K0N5N8PP8s93M3qOE5afmeaMSIiDBZDAjX8ROgqApPeH38X7ZMOhNXNel75m3rlpqrjS7iKGFCXV1rxEdpAzjKi/EAdNGYBePhRiNPI8azK/R773uiFTiyS3Y/2Toyh8FRpDjW1P+4aKA3R9GE7LupnHaDHg8t/8N40YpHZmKmTHiHatTpBmgbPEKOA+6Y7bMLwwX6o2v+rys2YiplprMHDyu2bBr7E3LO/JK8AETaw0Y36JiusqIO4lpEFyaDrTGLzPnx26PM/InDjMwTW2UY1hjMgjzyvh3peeRXuV4HDOf9YCvSyGHOweffNzkU6l75/TOaV2X/WfB0i7jCXbxLSGOHtPi9KGiK8W9IvTP/kOKcKeUzKgmujlCEo7U/RGhSEda1OLGUtsn3dkOM5kJjDv27WFpr0qHAXvlGKGnZ1R9qNe/Vyi4Rtjijgvu2tMlCSKK2D6B8+PFIHzflIxx9uEK3UR8ktzLc+rOP8wMUJCrHhZy5MgnkgItw5RaQMF2rXMudK8rSDGLINAudLEPMYYY1clIuhFMTEshCBPFZSTAp4dWqozLyzHWd8IGnZQYHFijHpfTv2Qrgm4kgwayVhrBIXcUQ9GBr/rIFyuaKfFmX1cj+Lf7/yB/yxHrTWNL53VSK8tA1ANRlF6N7U1bFFFibVEhg7X7Ng3xCKuMlhUrAQheEw/mOjmHqwBMAGyAdzSXvH9Ymxi7AtMrKHoLyxXtlef2DhhK/Jz2casGXBOZ+Vqu9Ompi9AB4rs0kQgjD7I5zfvl+3iJaJropipnyebvuDBkUzvOD0LGH5OT9oF67my2i/JDpko/Hx/0upLDSfX+mBQ/wE8+h35WlkIT9+HAQmZf5ZZE/w9He7iAu1M1Vi1FySd5w9tWtrztH2ZNSiznbH+P9qrE0PBUnafPJsgUu63Z6wEnh3P5mf+PdL4McjzzKZ4qJqBhz7K8+irF8cBnpr8j6CZsF7fC0CBBtn5oxc7YJyyzvxXO7VtI5ATYzPhILY2o8+SKNmMZPLvrTpLYMNEhwdAkZwwMqh63zsgNUoVBpoNQ0q1FCsndzutDB4QBxRg7bcIluWcU0gkO1iKDUFlLyYOGLYVo6mkYDlCF0wFOltkWQCDDXHxyOvRxuGRc7fFRCh1r4FmWz/3kfpBKhQ3csAO1useEZu4TheYdNRY3JGKCGTkk3mbNekJnNbGAljE5HUz6mmMj427AJZzmA7DQWPrbmAnA+o4rT+uF3uXJo8Ag6qxUwKlLkObw1UiOxXMq4koRrm49SrFhBM9L9EEPwvk/Q7cNdHivaRpKdbfTY1CTqoeWTa9e6mpJXL5zYv983YMAzkxZEQtBUAAE310g+f4ySu+/NaOP/+3Dvzr/9LP8R//9v+E39t/hTfvjw7g3//wf+CPf/YN/rMf/gf4e7/3M/zuf/uGt3+AEdlToAZjxI2k2zFQevbDZYe+XuLQL59uQ+dAJMquSu/WP+931+goKJ99Lrt4YL9sJiR1vVjZyKxLQEfyaNDLhva2DwfPDY9spE86FGcLAEK/eUMwKEibfLk4q+icjSEaHi/XBwP+oUTo1ctiNr9nThX4mqHQ1VIlRKb8VlQrg1fPDmgbhif3stOARgN9DJSJvYRlchOowog2gddgKzjrQ18vo13qBn/8342St2s4yOHQeJSL1DmoWqnVvTrtVYcRHo68jwNZXL3PEaMEtsU6Srm07ZsrVGBl5fgM/5vgxfnxzYxd36t43hjo5IDqXsMRBDABxOLRWoo6sjxh+Xwb83GvnmLmjqgbTrqViLrzbJOjWWk4jlECaWO9Rd9rnBPaxareFBiF26Pzx0cra1rvZE507J9OlKPYz1LZyH6xtXZ+dHqjCErrM0sCmPKmc0WB7WbCgQOwt8Eq92ZjGJ4jUN/JYnCRSTp13qdWUWekiExggo/xFCVVBUQj+xCAvdfZcb7tpv/AChN3i9iQkSHdyvBpFa/8AJwfNshllLyEwh1sich1uXXXlNDRL/5+XLf9UlFat5KazkQk4BNVMLwk9fa5ByhhqRVizo1qtGswMtQrj9ShU6E2Fu1qGhr13of+gK8T6ipRiLS9bii3hnI7be6rCYLKpaK8VUtXKILzRXC8GXtCOrB/6qh3rxqh7sh6/3Ke7782W2z71jy0drV1VE4JPRKtxm5heoZ1mo51Ree+OPARDBDgkM3e8T4+w/knaQ2hSqTNZGeBlSWMEVSs3Gof69z62QGersE+0ipo14pSDNAg0CZcQ297zNkiAj2T7lba302HyvfX3pPmEp+9OrDwkpIprSpnz7m9tn3pwzYtQ1g8wDuCnl2HQK3IHGnP5w6xkHzuiE240OLKX20N9VcNeq2QyxYaCvH72wEKHYduRbbR8hmXdQ6AOY2Z16qz1VMVH38HlurW64aoqkF7nrYk7eqs3/ZdFH2ODVkE+fcs7c4+5PiTIZtBpHxvt/nzk0JsMCFjcrmMwES+RCJ6LVsdDu6ziLIIQhCQaaxV0++cAT2BlH2kGlQPBwR0HAAAIABJREFUYK4OahY1pO6UjACwOBtYz3M8OzvE7J/eQFZAsDMe0iYSKHuej8726swTPAHCHjK2hwmiRlpu7vutQO8YLAQMGyoQRfcRY3zzGJcnfTS1MdnJfJcE1qgu8y6Ysd5v+VlsE+3RbYvfi1g/RtpC1kIoTIkvA1jO90zvMqVFfMf1vQAUAHwlMpX+TwMiRR6A+SCYvguMBdXT4uL/L8OhDKNmGwM8IavLpmJ0PR0bI53MpmPACBj4RmkHbnLM17YGksja5aQlp2gpF9e6YHj4EAn1++SIHTJkT82EXHsqOzc6DqrcR9EL2Rnn79wQkCq22W9l0NDy4UDDvjoIsNX5sFAFsqPBQ4PtmNI2gKzcO57Rp7kC2DzR5WfTZ9aDI79fioBO0aB8ILijByAosKIOHGXRy/ye+flkQcTfOgRUmAObxnSiNWemBduYHW0l5XtEPLUK9g8H/vkPf4bfrp/ww1LxJkOYb8cNL/Ir/O6Hv8Qf/vBHuH/8BpdvLqYCrqOPKY41oeuxNoFQps/9VAwNjUOPbS8YBlbqX0ttWdYJ50aOJvD3vUO6rZ0pWrAcPDmPfZ0vOZfUdAT8oK5PDvOcPsD9pTyZV2k9St6Tlvd9mBvu5GfW1UhvGCDb1P9kd4kATBtZ7vkUDMvX+nuyxMiaYXvJUvBDkiXKCFDoshdZ9Nvv3wUoigc2RZ4XHSALaZpr05hrCFAJJKJwbJPuo//14uXqikCa17lnqVTv40mIzUX8Rj+Q0QAIdES+0x4eQ+5nRbRNWYWgDMM9KeEDvrZi3nQw336U8s17eXovpxRT+0C6oBw+FY+OrY8zlffgvKJadDhKnCYy/paSWRYaUegcqQuxPO5f6fiJKjDRL4AUnfdUHz/LY01lozfrCvNC/fPN11m3CFeo+4vY38Xn/lfmeTDx/JkzW4f7g91LK2yupnFlex8uWc9LuGCyprFy0PfscW5En3uFCj5ek6Bh30tU9GA7QwAzABeOmdhNk3BmVEBa9xruS81vWBXSZXYa1Z4XNli6jTl9Dugk0WfpJrBozAvr085qBX6PqGAiQMo89r5LZ0DsH5gj4PqYOhM2f7TZf17GWum+TsppKRNk/+SxjfdnO5Hv43OkiulbJGaJOJMxgjLRiXb+majbbEdN49F16NR0+F6DWT9DRluj6oL3YwCgdCwWBx/ACFBFu57YNmyWDNbPxJZMZ5KlGgJlnVucl2iQVh4d3fiMny+08bItne8nyaaI8zA19gmrL1/DZ9AAhOP6LhbB136XLrJGor35TCupbc/uX+tX2QFCuynb+CsjgamPTMnIDmBf2qQdQX1I40UthElf4GuCgtxHpjKQyXn3PfDB4V/p/LRtFmZBgAkr4yH1YWg3PBvruN+SMkj9DNqfvh7jmVMjlmd/xxVCjOsY8/2+C2CY2k0bkuPSl3GjPffdzv1f6forvNc/yvW9ARRE1dT5eTVS/9wwpKhW745YWY6LoseijdQG5szw33TuAadoq0VNhWI7jorvFuWR+zk22+oq3CIW5WBuLg3Wly2iBhAvfeilaJSL2ydtf7ta3vP7MTaoFBXUIhZBlEHFUtWRI3a4sbaqwAPjkN83kJaeld6Zhxt0aQDyfnoUu0GqO61JBBHAvHGfNM4k0CrpGP2vCr1sOD/WACTq0YAjaQaoegpDMeR9ryifbyOPXcQOJqMpxLNzric4Ft1z36qrEXMvpqMVIo/O0ni/D0Os04AatY9Dx6C1KdrRr15G9N7sd3fvh5RLF1UGyDrJ84nCTUVGKg0wIk9JgDEfFpIcxtzGiB7cTkxiTynPGzd35l4vPnY9fmc5qIptb/jZ9Zf4SWn4Rt5Q08GxS0GVjh/uX/Dx7YZvf+cjgAt+/Ps3y188PUfreoHKMR0iRKhVvRReKcaUOJqxWq476mFrTI7T3ut6GX3g66Y7/bN8fgdz3uR2Ds2BWD8y0N7jhBwnyrfvj05zNkz4t0iwQKAa2hf6crWokUgwVfRqFR4CsArapZcKdbYDSHunOCfnKTCDSxz3zdYsLjsiH/A4jcVAxokbtyq299TPd9OwuB++ppNxEKk6yTjp3j6PfmZwZwIr6OyEc6JRag3NKrLgNVWE8Oir3O5RWheMyiLludah4RLq6McJuew2fmeLvRbd8sh1d5aTR/VW+mwYk2cPEJPRyvL5Bt039Lcd7cOO8y0ZFeFgVFO7vxSULyfK+wGmfMUjzg6gY/OKKf1SLercFIXR9PtpTpRrdsCjoCzTJgB0s37oanvq+TaYWfXLiXI0jyR2lM/3eD8tZRb9YoSF+zgdaTr7m+D4UNErnAbdIZ89an129Nct0e47ys0Nz6B6Jzo2zMGzaPhwVPom2D57hPtm766vxlYjJVyckt6rOc0CjAh0GEpWQlOrQJsgSgoCUT0CRdC2At32ADvq++l6Fb6mOqAvBhS1vUS1AHGHPEA/HVH/3F90vrYvKUrlKRKQHe1aRzrDUaCJjmt0/RKpC/F9d5D6XqB1G3uOszIIytRbD6o923W+2llXTu/Dq5hD2RDsAUb7bULBSkRqerbavTr3Rc9tjzKGZH/4HGtXW2vbl2bpMbsxHsrpz1Zg++z5+d36tV0KVNTW9NGtarWLhvbLFv0NBfbsBLzU8b7OtiLrxZgKiLEmK9DmKcEFG3OybMrd5kG/MCrfARc6DQF7BwF1N0ClXQx40yrA4UwE3xeieoTbMKV1E7hmKgCA9mI2jp7WxvOtBOBR360E5/b5NCAyAdZaBdh2yOG5+3lPy0Ev2hcQ1PcT5XCNCCAq/QTrU53dAeB8dTq7C49mplawY/ZqgrdcP6X4fCyzOG92NgpMFBsY58RewZQHVr0SX49hY6azQ3ox04XAsN8r7HZWUioCwPUscp8A9tlSYl7bGOt81sX+4m1g6XPOv5LYeM/EGVdR9wCLc3+U6Z75PFW2cwWSaLMwxSADxyvIx+ohKcgZaRMpZz/Srfd9ZnYQ2BJnCUxRbdqfOgKWOZ3Tv69QPDicTEkIe6GMz5TFnaSPkECQyU4UTToHbWgWsCpE2DT2jGBtFAwbi/4HNaR+k5PN9+zOHj7bqFYHDEYItRKoZQeYnca+7b4p5nnnulaoMqpX8Ltrs0S+G2DobbzbMm6s9vEAfvBSfbw3+9+rkjw8ObMRMM+haV6sNthyfW8ABVC0qLoznXO2MG9AcXExZUO4fCVHixejQLfDIx/e0fmevJLxL6pQz1OLjQiAtgpBtzrMqpaqQGeDF0ULXUQNwNhAuEgkvZ8IohoCDVxuVlUjjSCcrwkFTd+nc56uKEmZ+sYUxsugHecrXoMGkUcnS/pdnftYt+KOBkabVidONfoSGM61PdPGfaow0QhEMMpu+0zUsY/8dx+Dkg8F72OCTymCGK1u3eYD+13cwMYo8Ua0d0LrOWbPSnqx/0hHe4acP/S3d5ofWE9Ln/K++eIcyE50OqBiHjgYs32qeP/jD/jvf/Sv4Z+7/Cn+lcsf41/YCnap2KXiz/uJ//P+Y/zi/SO+3Hd3Zge4Iu8SUQQTqkttyIcGEIr0evFxn7QtUhRiW+ayGx4RUXOHZ4riOICjLxewusnUt75GJv2E5iGfhWkDIMQPWSI01KVgDq6UAnzxtCa211MjABg4QSMg90Oec0Tys1GSmRZ09Lc6wAaCfA5ihXgTjQ8aoL4PifQZZKCzS+Akypya4TNFy7if+r9Z5SFAQ6/hDsAicTTc/HcEGbgfcx8lTX9s6v4ckWE4kd7O9JIEbMSYsq99HklX6OZRcQKBqdSvOJ36IbLXdd6jAswDJIfzwpj18oCk3x/NBXF1RJ/5DmU4GPk+haVcSffnRzieHdGO2PezoSmS8rdZZYI6KfY5RoOtmkEyLjZGuODU/+IihYg0sYmy6/2iUiDMwy4euSZrytsTzKd0/hK4fFa9AsBIFwDMYamCUSbUnV4FsMEiwKeioHt6QBmiZGlPZCnH4gCUpPcIx0CeMc3U9ykZOgnd0kMqgPO1xFipIMpQtmr9KU2t/CGnQC3AdQuwICvkj2oC8H50QKUQsKnxnNAnEEAvGHNB4AGAr2g1pX0zmBh5rvr8Ypk/kDWgMNaNVy6pN4xB4jroCgg8LQAzS9DHTFM7pHWvtGO/L7XYVs6qH9uyFrhtqcYarkeP+QWxVBQKgbKSStgZC3t1EvXMz1F40AoBtEQaVh/306Qdw3uWM+8PmMZ31piA07t16FYAESCLYEeyF3U9l07TchHfQ+XsUC1TxTrk/cf7ThSDeRXzHr6O8XA+RUoTHen150tO+aT1xDOO4CTbtNoifh/t4gDNsrcBFlx6sndm5mm2a78KNPPM1PRO+TN8rqcUR/rpPQVMntl2me23sih45cDBejFokG32te3RV2XYhMs94swh0JC/m8b8IbCSn8d+iv8vz+rLuz+0I805zm0GdEPXZzwjmAD5+9+ZGlAQKRoyGBRrfwc7AHXYQ/EOGgzBh3vTFmPqOR31ADwAQ6x1eU76bPZ9on0JwFnBohWIyVf3c4bVNXKbn4Ela/91RV6kT7UX+PrRpgGQ/5Wu70h7+McCFETkDwD8GvYGp6r+myLyEwD/DYC/DuAPAPxHqvoX33kj1Sitg30DrnsgnnFlYzv/DGlg6sgdeVhEfNRxQE4/hPcNeL16LpbO95cR5Y9NzNFYdAxmQbXIeHEEWF82W0ip7URyLSc4be7M0QcGQEFnnW1J1OswuumI0Amjw7RuRG70ApgmtkUExPQCSLHn99YxzpNHZCiqE6xQNceLi0yAvglqW8CMjLBZiM2pxktuj4+rqNGMA8Bxyj6uqZ2lWFSC+ZaqpkXBQ/rLzfqFlTgAsGJCHEKeliBfbj4PLrZhVEWUjTvuvinlShnLRsLoyD2V5KTGBSPx+eCNfqFz64eMVxXQ182p2j6fpjKECHojUAZLopTBdshlKFVHxYtSUD/dce2KH/7+N/jDX/8O/uv938G//eM/wH/yo/8FP3KU+e8fP8Df+fXfwM9//WN8+XTBh8OMl+PjjnopqKRsAyi+seYyjwAiT1juJ/rbxfL+f/k+Kifw0PW+Mr2FPSK+4fRyvmUwgcbF9eLVHS7m4DEXEojP6GWg93o4w4EARa4hLGJaAADk8w1SFVo3m8cN6C8WVd4cUAhj8BhjznKhUU6RxjvLWnZFVLrYNzv8IpohMV/1ukNcF8Xa8w4CA6YJY4aXRX5Mu0K9QkbWsqCRpC/OWjgaoozp2byyhK/pVKUjrs3TPTyFQ26u8eFOMVwVX0SAs1mZOI4N+3yvYVDbGMp4Hh3cuoGaHzhO0wVRhbTExsoOe04ZAYCzAJvvo6VYDrEbkXJ0bKQKq0cpRYKFRH0A6jbYvrYYiiImOHg7wsimzgDTNaIs5tmtgi7XdGwSapo7RwP6PgAXWJcwN9/0G2ScA35PrvG4nBEAp5W3YnNoc+2R7b1FZQDdnMlAAcHXzbbjm51JoZqf93s/7/jE0OoAIoJvrISKkaY33kfOjpqqWExjGM6XK/TXAinqWQ06dBmaAi8b2qWg9ma6EdXHb0/AnZ+Hpipv5Svhji/oiPqZIw6WRQTbQWQ5uvUPQdNmrEm9F5RvNhcW9Hz6VIp3+9JsLrjD1l5M46BfttBH4DhkICsi+JweAmNSXKtRjn2paLEz9byO83m7wVMSFNIE5dCRhgnY2DqY0C+pdKliOIKloL3tQdeHAqV3c6C7ojYF7pjaZ7oJ5qgV9AFC+bsXhZ97buh6IMAEJ5unqVg0/Lhs0A1oyWmRZoYux59VOuon29P6XtFeK87X4kKWsPklvh4yYNlGdYr0FuCMlg6Uu4ZeVLk3UDiTbBxA0lxF6BQU9V/5+i0UCvZ5Tx0LA2wWp5fgKipCBPjz+9Dt2Tfby2GvIt3On+rnqhDQvQwmqDFk/TiLcWYEPs0vVkTRdPbWtNclG1Bdy4ZgjTTLr89r1+7rQS+vxEVW2ZyaZbaHOuvQ0uL8uXednZmzPeydoYXmkeGJ5Zv6NV8BQAhZd2X6f5whzj4kQ7Uo00cWUID2MjUYgOHMB5LY/czbnqbemt1fp7ZNTj9tuikVdHHqH/ygEnucnMOmjzx5TSmj8X2z31IV5HE5IGDtWpzHnP4gBVOUPICcFmf8qMzgf9PPoZ5GcTFGAnQEEB7SuvsIFvBe4dO43enPV/5ORx+qJrYL21rFKj8kO5n2Q2ZX6AlAWwANAszvRZYHn+vsh9HGbTBoUypDFs6cQAzaSPk9F6d/TgehD2V7ri4BF/tdmb4/QCgCNooMPkxp6qmdv+n6J8FQ+PdU9U/T//82gP9RVf9zEfnb/v//9DfexQ3MdfEoywUSWc8LTcTQ36ghvxhw+UrRPAXMEAeAl4tNkKQkrpdtMoRHBGpsDpM6fTM6PVjajW1wB1RrNWXw3p0OS+oMnBIOyGcz7KSYgWXUWUSd+Hh3VXM2vMQlBRwBzEgYc237aAv7rby7Q0dHKIubAY4OcwNIGx+V3n3zM+PRHbNuhnURwfal2uF8tLHBccy4mAh0ZCp0oseZoIgt+lw2zSiVdh/tauvJwZ6IpPZuKfoZtaUD4zRqvJ9j8wDCcQsKNyMamvrQgQ1NKnH6kmjqOvpMvtzBMlCyb/6OvslSKPO0dzHnJqGqHvG2XPN0QHgfmoGxbK4E5Zb5L0cb78+5ImYcfPMPG7YvBf/X7ffwd3/01/Hf/cv/Kn779RP+xY+/wP/+y38G/88vfgvHL15x+YuCD3/Ucf3Lhu3bA+XeUD4frn7vke860oCyYSKniS3KZuX5hjjZPKZCAcuzDgpjFpKh4cADNg6vDjl0pGHc7kMohwYh1wT7eEubO40LNiYLewHTvlN8zyEbYur/mBCaAJ7UZv4u5kn6XQIxpavR8HraZ4BR7pZXZixEX3t/hQhUj/Sl/naF7gXl/T4ADPZRMkjsnR1kpLCtz9e8DxhQpmOfAUbqERlmAey44UmHOxuuS5UZfbkYSLv2GS8RA5HYz2SHOPChly3eIzvsOfqu6V5RoYHOtKrty4w89zxGthcYbbkMphLPLAcANIyHMZeEzpSfO+X9gF429L3O+c0E5rzfpCdqJ5/xBGiwuWLe4ub07VVY0drkThF98aNFqtvjXjv6PvLxmSoQ50lqN/0v3od92w0cDmO++L4OoNdieg+euy/8+ebpfd4xIxXC+tdAhzrGS7xPmjnp5bC5Ye9jjmfObbbzO6UBsl9VLY0D8NKfdtZsn5s5zCcF+txZ3y3yHjnr/v50vKfShLyKwPhyBXJJbAQXEuyb3Vc3BCMPIOAEd2ztZ+fVdA6kF3OeeQ4ujD/x70/rIInqMqUjACuerzrWDqtuaZSJ9DhM2s5YAau8n9Y/nmLTdxO7JOPMAB5ASJxLS1wL0C8DsEEf802aCTJWX45Mzxpf9rYKTPOD8yIBTtCO7R3RDuo+jHKL6V6K6f5MNSpOo+9bcTCJc1Oiz6b9nzRp71twblPbiKxKt+nCJut9jImIg8lGqxatwUAosPcpnsLTN4Gcfub7Xsa0UcvTyOtx7MuT0CHgqWuY2TUdSLvo2OdCeFuHjkayPx9YBznwls+hWoDLjv52AatxbL9ykN5tHDlOnxMpJSAzIwiYZ+ZZPktWNmreAzYrkxfrJAlHxzhEKpGfv5mRzLkSqYPJflv/n9uV7Mzpd/ks7JjtfPad98mkDZDHJgKyJUoEPtiKteBBDDC3w26YftbNUU/tiwh9gQkfru/AqzVQqPipkGEuSxkNTOspwBdvR3/S7ihN6eAJ+uycs38kzwEHE2g79MTAze+4XrmfJ80GZ4CW8rysZNxWH4EdYPQH36VitH8FXaQAxZjhj9UQE+iBARJMX0/AAUGOvwqIkK//P1Ie/kMAf9P//V8B+Dv4TYCCwg4wRr91TDBGwgTNUg5oDDPyVgVyd+N3fRtNi4sTgbktwJQfI0hr/jJq5kI977J3O/xWZIqI5fvNtQo2R/58glY3ntQGjMYWa5CzbvbUXtDgMkcNwLw5e2Qvot6ZxeD3kMbv9AekNXLvzxbiUNlhkPUdV7CG6yJqJvdgZYgDFgEmZEcZAIpHWJk7v5VggpjR3WORS2vQunn+q7e9KQTqNcAx2D08HDeB3NPGz9852t4vhkLX+2lqyzTOE1MkDOkMpgCxUeb0G90d1X4/p7khx2lRBgIYzMN3g8wMlcMBEHWDlH00DiLdNBlJng7UjscNglR+GcYXVAdoRDCH+d294/WP3vHyJwU/+HnB8bHiT//0Z/ijH3f8/l/7KY6/fMH1FxUf/0Kwf6t4++MD26/vUTlB3m+Wq78ZGKSoxuRw5y6e37oZAjcHC3P02vtUVSF3j7a3EUGPiiXXYfgLAQCuBb7f/bA+v98h+z6zHzLIRoaAM0MsIl8H8jvR9AzgY4UY8bEJQOj9SS3t9f/5+fx9Nh7yIcm5E9VcNM3rxcnmd6jozLUqKQKS1x5zblllgmBL7ifuhXw+94/YU/TJZ/vSzgIRtS22A9SoARCMFe3JaJVEP68WgSwFkL6NvSD3aS2Rn21gkgPETrXtl3SGcD9gdPiJgGsAezTWvL1ZUwLwuecOJ0hj51TJY8g+oDgdbRoCe2rzieeYFBnMCT7Lfybaxx6a9mlFGoM2xteACXGWRZoPGSQI483Hh2DK6aX6PDprH7EzL96PDiUBATqFCfAgdb3vrmfR+Ew6JPN9qGFgv4RR46vdR1WjRGc5NCobdO+f8l69OkYfwFFzlkIGUumI5TH3uakY7DYCEtIsLSXSAWA6F7xsjgF9F7SLQJqlhRQC+Nl5hTWv7yXaD6HXDXSl4+wgQuXfQI+UFusbEzVMYyj2fAAop323HGos5SpRijK+7+sgcmPZZ2p9ypSLqPTkoELpaqkzG+y9L2OOWH91cw7SOpD7AewV/QcVvXp1Df66DaAiX5kB03dz+IJhQKepU+8gzWPaAB2RugASm9wGM9sIkJvZD0pgo5YBeq3tYT+knw/QVSHafRkVlFsDUNEILHXf78T3Du9HshoKI+2Hgx8bK8Ykm4w23xqh9rQw3T34wXlWnWWzF6tAs5FB5IwLppb4krH+k6CDx76SbcVIkbMSvbItbcG4V4hw0x4kAyA77D3ZT+mMjzOuFOh1s0pNV7PX+m4ATgHsvG8daCdEnT3HfXW1ZbkvVYRO0AAJCASks5n7L1NnObGyPVVkOPXA49jke62OdKzbJ47lExq//bwPBmGcs2XYc/n7zxzW7AATTNg8OLE6/MV0lzQ7qmtFgaQvFM8lKy1/LjOStWOqaMDfF4Ut1NTuIraeSd1nbnNJ/Sk+kRJ4MTFckv/48Eztg4HBz7Y29BG8X8OGEgX6E826pY8D4C8FEAcg+N61BuMh0jfWsSupD3mJjD7M4GQDHpgj/ExPG+LKhHZwcmI3FAGOASDMr6Xju+v9vnL94wIKCuB/EAsj/Beq+l8C+Kmq/kP//R8B+OmzL4rI3wLwtwDgZftBHMRydosyZgG62JA00CPmoJlj7nSozcXCWppsXnIOxzk26wZDyJpFT8MJu16i7JWh+mNTJACQXiBNEgU2Or4ah1CnHgQj78cJ6QVRu3cbglr95TIoOROoUtKCdyegFGAX6A+/GW2BG0jOGoiKExzhHDEkwJKinlHPne1nWcZLKusIYIqUxbv2yF9X9fh9PpgISAABJPQffYjoj9zaYCw8ccBEYUJlCYTA5qKa3iZRHQJb+ZkU1UyR0DCisxO2vicPD6d/xkXHnQ5VMtYf2l5T+TvSgwGUz8eIBgC+WbqSOUvuZMGkWq19BVMKCj9D55AU+8gBBIZxwndn+dDWh7bBXlHfK37rfwPOa8Hx4YMbrsD1lye2Tw37L2/xHkLR0fthglXXLYCViarYAX3Z0d+uYx0zhYOIPoEFpg/cUvrA63X0eQeknyPf8X7YumcU4IuV7DMwYaQGRQSrjSgbLrs5dUyP4GFFAIRX78DdI+DdSyVuQKi9M+8OyTjmu3NtEZjIwE4G6vLa5n5CICBt5OLsrQBTvJyRVs/5dKEm1DqeTdA1RzRq8feo4dyy3UJjLZg0xr6ZQIPVsODcupQh+iUYOi9ArD3+PvrJ90EAVtb08CgqUzL83ZGMbTM4PTJ37+gvl7Fvxbi5UJvI/8fcuyTJkuxYYgeqZu4RNzNf9WM1P8VNcMYRZxThEjjtQe+EI66hF8ABJy3kqEW4BG6AIwo5aCGruouU9zLvjXB3UwUHwAGg5n4zX9cTiqSJZEbccHMz/UKBA+AAc2YEAInnAGQIdgV2Omwf1jQYBwXCaO6uNJe8ynN5uDBmGwIkJwGW3IsXSd1b1VoateVSESN1BXJsyQvh/YsoOsBBRcSYi4qXxytgVIxRtldFrMxlK4YiEB7ciPiQFvJ49IZxbWm0kqzYgRvutfllx9n1EgbWfQTZ3biaZ/7jb7fwEMsE2mFGZXuYUduGGgEhyxMT6MKwEH2PmAnSSh+zSAeqstyN84jQAEKn4Bohmea4Ju9FcCJMhRTPWL+5nN9S/sX5Ncybd7x1N9xtHY6LRRa0+8y29tXYT0UaT2NpXApAGwa6NDdQ0WBEplOBdVmtJUq7Gb39NkEve84TrM+jGIONxJYSbWE5bXHFWAHMd0vpiZQAEkEqYq0wP/uJ20Rh+9s97dglAKoAdkaZS5c53BtB6Fl1c65Jf0eCix7NwjFxUMVAcliE6Jw5D3x2F0vVYWUR2HrIVAfBeDMyz/Emnl7BcQL6zThBuposUVgIuM4twQSu4eije4P9DJFblgKXu0U2NBGPsp6hAwZA+HF43/17lz10EKaf6vvFSRsdtOFcjRL+7Wd5pH9yOTmYsMjiIu9JFBl/2zcjzvW01blbxNy8ZATMvFhVk9vfvqHfL9j/UdLxxDOO59L5jDob3ch9FedWcX4Y0evIdGaWtq7ns8v1Jc1gaugCS8WIApwsZ72W9tX21u8g3xHjRSLGOq7dHcTLAAAgAElEQVTVccl0SD9T+I4lIrACE5WfYdE3is57NqRDt/Nx0AF9laJQdQ7ZsHjVdQI6bP8TXKnj0nsKBT7rfMWc+5lHoCHSTzT/dvbos3+MVvf9JmWsBTXF2PWYcxRKO6V0FGAg3sd/lrKPwdcQUa7TsZOW/+bzxkigoJU5J6hQuRh8PLTO5fkazk+iDdKRMlgkUnFpx0Xf2XYng/y1668FFP4rVf23IvKfAPhfROR/qx+qqsrCbrV89q8A/CsA+Ju3/0xROmCe8x61eddNVjbQoU/h4MvC9L/p1oMdNp4xAExPG9j6UqyohilaziNyE/KZ9CjHJjgpy2EoAPBazUGI5sKYSgWJe3QiBW7x+MhJGFWG7wg5LigkREzwVAFGAVCv2ubwYOpitNbwWxuPYggvm4nK3YTS0KuIVpkTFQlyPwAQjPR+8oBakF0zsshoL96O5VoMCv9Jw6gYMiQqehKUBUzJhlHAzFXo1806Miz36XtcJwGG+cfcoDR8eTCKRPpKgAUck3NaRW2HswZHDt1UYJjBwaiYFDozQ8VvAKuQ9MfAu6dZaBfMa8d4a9j/9DBW9c8j10UNxx8zU27ElGGyuVPpmF92RPhzIfFjzrUwn5PryFMcguvidLhZaksZa8DQ9hCKLcZjkQeqgDgYWcvPVWXkdOgvufpsSzGETdhLeD+iYoJHo4hHQtS1ER7bs5yqMoW5huoK3VLr2OewvzAUvZ9moDpQuvU4Y/Ndp7QEginTO0f5UsGWkzFW5UkQo8L/XqPtuR/oKetGBhhKw4mlewFWW9m/HBMq1gDgBjPZ5YOlPfK813ZoE7RI6TidHXw2+/edvi4EvUCC0Of9CSCi6DxqQw4XcMPWkQyNVOLsv+Y4OkdFBROiXK6TIQrcACGwevIiLcZp/LEq3bo+3+99StlpMDBtmvFpBWsk26woQK0CXpbvfDFEPvK9xf49N8Hji2Du/vkE2t34AjYA3c/R9phrmohaRJ7SM6oaAEl0d7N9WtMW7QOsc82x4ZxrITdkZAX3kiIMREtx4B4pSjKfN1K3VJeTNMrtnMby3OgXRRc41zjJJ/6nT0Z9rVqw9u1s9NiesH3lfy/pAhad42MyYaSNyJB+Y+O3+U/dpESeAAjeCEYKqZpCyz5T56IBqxYdYSVn4Xukod3W9WScB8V4aSgy6zSnp3FgukUNZ9cnJal8f6if46VvPkZcVlmmGJG6chBQ6EA7LIrEKh7MTOWApVJKzXXmuX++xAwikXUeZQzo6GgyMcnHUu2bByMHyjydxofrW/i3009G9cRYU37Mss6q/jVOzxgzge7NzuL5vkX1DVbgiKgt/9u82OebpyMvzj225RRhsnihq0FdroVgu0TEVf6j8xnB35d0G3keSxsLXf/9yvCs74i2n8CE+t2a539qz6Lz13bF/mj4rrF5vn6zYkI9p4Yt8Pqdauwu+kAxnBewofT1FYniq3ZxLF2GxvUShJjL7+p7hu1RGvuFwPx5nk7gBNvAz84kljXy4Lw++azo56lf9Xf6LaXBmSLzGXU8z+DU0/qZuQZEENUsSlv/muuvAhRU9d/6z38QkX8N4L8E8Pci8neq+n+JyN8B+Ie/6GHT885VLfTJw58YSj6vuymRgeqUBefGVpSW5FW9s00ShS5hOfp42Dq8eJm1Lnj8+AbdBP3bYazWXYBD4IxBAACZmyFMRJtoHDpwoZcXAgGIzW4G9DQv2bEaPYy60PcLxvtuJeKK8hts6cJDfnr0g0IvX5x4x5G7F5tSrxcsKQYcw43RBmpIdTfDX46J/sstBZpHj9QqDYsxfBTkj90m38O7eavbt0eGzQIRDh05vqoeVTIzwqNs8PbL3RRalsfcNsj9MEOFXAIkfSuGojgLPdFpEmPOtw3yGEaatjUrw+PfM4b7F4dLc4PxPnMcndRO+wXzbYsc0ualngBgfrl4P6crIcC87pYKMUokzJxo3z5zP7hyFyF4rfx0MCfG6PawCBw3KOcXi94hsBVePCD2Xb/vYVjo3rGRpO6YSfZIY//9avPzeXePspdbHSWV5svVUyyKrPf3V+KzarwbIaYb/X5wjj9+sbn55WbvvKutpbdLehOulxwL51Kg5yAicaZ5tWt5WcGxHsDVyO7dvOGeThH7c04smloc0hp7ezoQFGUEr5uVebzdM5rgHBVTgCiG4C1lluapisUYtobI3cIKEN8+PTJnz3KKzpsiN98bjHBwDhAVMY6LwsMhj8O9dQ5K7Lnno8rDw6M8ygHbPq0kqDKaiOvWvzevHbjByMs+H1HVwdbD6YAr6Vpye0CboH+lgW0gS7uPAM0ifLnsIY5fV0WnDFDNSAKPZNMSzkvFm6CLAu6V7O6Jn6d0IqQR2lpWutjtwDejJ+WMjGlj/RBgbhnRMZGlcJkOdi2yiPne0w0Qykoq9Kpon6Pcn56qKo/nxfKpjx9dLnj+eAADqkmySk4Qzfzw/jnQ7hPj6iUTKZfJw1MqC7THTHJIQeTgHz8Y2eJ48zOguaBwY6x5ZY52AP1zot+tnOiinBfZvmwlJ5Azrg8HVreG471HukNE5Hre+9w7pBkINb7sGO9bRpXdfV1BDURpivbV+ho8AwS1xIwfVoIIEHICbSimwMPLTYzMTSC7VS1oY+J49MVg1S7AhWNq3+kP6+P7v69KsoslVbSHt8mNRCOApCx3z2s4NAjs2rzWNW2RQS8U+wm0x4j0FxsHDZBkRKnlifD6V3CjC8Z7Sw+vgx/wuSDgwnmaDk4dP2xGeLkL+oetCaYYsC8EFQxgN8+4GaawVIMALRgpkXte4DLV+YECCKdDiKSmXuqSaUMkkYwSot4vA+YsfWN2wfY50e+2D2YXzD9cLOrm6yMNfj+bgnNl6wZ0bLCfe1Hbub092ooyrX86+EWCxMnIQk3CWt9DBmo2yGbPs/V8AlsLLw/2fSFZDR6YG6OmGvDA4piK6mquG8y3DeN9x7x2S4eBRfgEMOaEmt3TVwc5NUiGWvl4OJcf90yJrgZcEtQkWTX1hmVNu25A/cAjMFhuPIiVa1RfSdkAECk0S1QCL0ZDeMSlkYjqauBXfic6RAh09G78QrwIcnlbo7oc5SF1wYnUURidrBniHr/znnoGB3DPSA5/fvWKn1M5elvBhGjrAK5Xk8XGWoyFc4ARB3Xd8Z4x1vHkvQzdX8Ae35iq5liLFPee3+O4b1vq06Wt+vBS6FU3jJSCcvF58d0TSDDLPT53sSKYciJmM8i2FeBhPj93NmCy/Hhf330GE3z86nqJyAWCp6dzU+p99QqQ87eBqH8yoCAiPwBoqvqz//7fAPjvAPzPAP4FgP/ef/5Pf+ED82cIhNyUUjeJ+CahckvPXoOVoynP0n5abAAiLIYLvlv93SDsq7cTsS0HMIBEkuNvZULrRiJBDe+tit0wlHkhwhGBnaBlY9UxonLuxoroQJSXPBu95z7zOudBgSBF/ruWEMq65cX4q++YpX9a8o/ZZkuKzucCCCb1XhBiKvCc86nWp7OQBNKoawVc4Zqp4wUU49mN6aqIepvC60kFo8zHE2Jf19OZUbXwWYSXuo6p3yNB4Z3jGKGYrphEiD4PitNarvXcz9dSe5hKw3kf5M0gGaC9owfgFaAp56WGsvHdhfdi2XMEL2bJUz2Noe4N8qAxUdcMjONCdPVI8/IyiEFwdPbknO+vB9H0MLKaG8mvEdQ4f/e8Hhk2x+dQDtVInplr++w1tsNbnw/dX9u7dXwilWNaJFcoBPq8TouxmethLvLMuF5a5g56e0h2au3A6mngO04y7dyPpWKBVqMVKcfPz6w/60duEJA53cB6RZS9nEX5B+Lv2hGG1MsUjrNhWscMSGO/yuUqC6ljuixKLhtfw7VvldPm5BWId3qIMZqGYz2uBgSgVdYbzv9NH+QJLORW9TkuFtkfOea63s5z7s8VVuqZLWVlaVaUxQxjURePt7qRWcP77QHwVAeNdAdGAawRNrB0EF8L8U60jNIQCWeOjBnAgbXT9maQBML4LBQN82KAy7i0GJ+zSLAxRwnfBxjSX5cz175UDonopxk0zUPBDXiZ6Ew1kdx7bQDTkAh797R3d69mQaMs5Ko8j2sStgFonoKjCCBARWKZKBSYEu2OuQdM3+BaIQdUyBwsaTIkHs4qUGL2Q9xnjRX4OhFTC+bmh+5hP+cmwGZpSwRi2kMwh6BP6ogIhwQBGwI9eg7J1hyLxUPta0KOllhkASXj6z2fn8/zX1tZ3wRkuI4GzC/lW1O7eCaVRJRoRqlSTpGp31/usjQcaJRbJfWK+zjJU7kuiryuC5WcXd8bmwJAxFVlGOVs1WXP9/peo3dd92Z7rAE1MoelPG39WFuaA1VnroGqXy1tr7Kbcnqu5HrkVIoyzkvaxFzLQqOlXhA6qL4ej1fXb312HudXY9hO81P6Ec/gfy94N3g/DcYMay/VHuK5nADaORJgaRjr9e/87qt+VtAh+mxAQdXrjCTz9Pzzc+Lm3zZuF/CgtpMXIzBLP1+OyW89/5VdcH4X/9bkue0ERX7r+h4ZY3letL/Ov/c9bNhqIxWw4DcJGD2q9dfu+2siFP5TAP/aF8QG4H9Q1X8jIv8rgP9RRP4lgP8TwH/7m08SSdSVxt3jMA/Z9bIYwPq2Z4js4bnchV0cQgFxQnJ56LjnWZvni+w79Msbxk9vmO+bsfYeE7gXJc4P9lBOBZjYiiFsHpg1b0ggd6+l7uSJ+n4p/fNSgiO9J+BPVQvLfQy0zyMqJeg1q2AweqDdYArCly1CrI04rwgdDy9bFOkyJvZAXRRoUX3e05EnlqkikV828Yz0iVibKex46KkaoV1vWPKWvn0GEgtVm9/ZgpBOe44TkXgaCYGIewRFjCWw8AaEUX5n+bv3VXi74Yshuaa8OXIrJD0nFDq8eJd9IUKqJGHingtjn1fvB4DjMPZ9hrMBwPWC6UqxMOqiuYFKBN0JQCM9YuvB9GupDvQiH5B//LNxV/z4lkRvl90NyQ6NsOcOfd/Dy9IeE3oAzXlK5g9v1t9vt0Dn4/3vF/9ugzwm2s/fII8epG+h6Lv3XbeG46cr2n2g/1KFMdIrpla6DYxSIZv/1asJ1L7T898EeLvmMqxehAZfB1tEOAQHC5UMpgrMmeUZ7w/g6spLITvUfYO+X/zvSNDmcZhien+Eh9/ek+szCKZEIrIj8iS5L5q7JC+7yTVyKewb2rdPYPg6roZvLRl6DEitS1zLVzIqzPPLjQC3W7um88vsm+3hiaUklVR55T8jB9X7RBmiux3cKkauJT/fQikOoNjz9xbeHO5Jtv26h2dBJoB5pBJ0SjmTm5dfdQVW6Fmoe8yrgVSSx1gzlIWMnLibUYpjeNRHD4VSa/QKwR6OE6MVaj6/CEDeERLOqkLuDi5f9oyAcDAtIkPooXNAJVJFCIJWpcajHLA1BJFb4bnAhFXjGTNL9B4T+r5bBIMbTcFT4kp/eJSnon9aFIsWg3aJWBgEVQSPH9OrS4NSJrB9TIyLfa8/AD2A7dPy0YM/wRW0WgbR5glotxFjGGulu3fxPn2cXA5TrHCYxLzddpkGOfc9GPujv4KMKnBjPwCFY03BYMi+/QMIIksA48288v2TXmOLCugfjxI9Zh7gee1p/9+BTaeBDx55KApsXxnBaeSH481I7OYG9IdADmD7NsJbHt74Ycpwux3A9KghwbNxipRp7TZD3+KaAXx/+1iMNxJaC0i+qB12lpVxqxf5DdpDMd7MyFRP52kNmB24/9gw3oDHT4LtF+D654k27L39c5jOdtiarNwKwQXwtsU8iIiB1YCd7cN0B7l5BRyPjOsXRuw1qzrgFWSCP0JdJqi/q0msz7kJHj/aOt0/mKpjXBkRBcKx4+9NoG+7nZ33A/Lt4bLYonYpQyBipIVvm6Uj3o8oWx2lmp0fKUALETTd1hSEkREs6AJcXFZpAWVL1KP25BHhM5JY1XUNRlBRRyR4GrqhOe7m1nC8dRxfGvpdcx8pIM7ZMbvxZpiMsnb3r3cwUpKRlOqVGkLHoxwfGVHM1E62KXiHKLOdw6k6vxbgZRowFmurRpLw3iarUf6qmkJNWeA91cir595U82IzvWG39cezLdoVIEjV+f05JSVcqR/HZ6nHBCA0pjlcRFCjDKLimqoZ/TXsvjpmVBGpD8cJYJCGpboDkFG0wtRgQFlKV11gTTpPzt4MZNrwmKZTLyRAM8diKlDLKzaxVEH20/8uHIPjCJ0lxqGmNrA/9VrsqurYbKbzUj+Nig3fSVmNNjcwJYF8CzZGPiZlPCL6oBXSxdpGVoeo72ye4jHVbICjRD8AwONR2tPyO69bDOCvABRU9X8H8F+8+Ps/Aviv/wkP9I618JYBeFaSKhrU2hpaX43liuBSya7GM79HY1ZhgnwivalOpDfeNhNqftiKAqzcYMaAQJyIKTzwZ+SS6ND5s+laWiUsA8IzLdz0FaxQDeEmLry1HDZ+U44D318V+LpB6yITsY3pqGyE+50FI7tWFZAXRsDy7zC+NVFVVh2oaGAVihSmBDrokSrteSI4ZJ+pjVXklu2lojCL0R88Dt6XCdgNks+pBxQQAntZhxybMe3Af4z0nLIPYgc9o0tkTkSO8vIQiWepA2ZLP4I0y4xWZdge61vHepnZBo7bXEtgMpdU3WCrLTEeEiSQM/39blxxPlIpZk1vf4CTWAWRE5DgWBPMtz3WmjzysIez1gPwA9Xkg5WmGh72b8awulFWq7c8rUMRByXW/bYoD/X++t9pTpb1XKNozvOnmmkW58P3xX6UrYa0FhS9roeqgBAEqcAdkEDKaR5NFp36wneJKwz1ome+8tXUMQOy5CwPnHJfRiRMROUD/x73QMhjGt4i2cdQEPlvdubF/MRzyzgDAUScxxGgAfhCZo25pmCUkNEaOhjPq4BqXSN1XU2JdAoykDP6YWmPr1NWCcI9eWZoAKi7asWNAG0O8O7IdVnaQLlJo06hedYxd1jVFc/iKT2PTTkzVW1+VeGGuyEbNMbDIw2E59je7XLbjfR2qEe32Pw38iXcHVh4EOjVMDi0tkMQ5wSNKANDJAHKqQHknvuB0h45NFKy44z1UpwanBCV28jX24m0q/YP8K4NeyZD9eXws6dUGiE4oU0MhHalsAHBQ7BUdxMBI37a4e1pEu9qdze4GZ3HNUGjcrOykbpZeUcaHUaCmWdGe6QBwsgGKNJIBcIbr6XPgAFL6suJRtnsxtlAbz28f+0oKWPLIYTYJ+rphlHFgu8uMpUE8TXCpgJPUa5aR6QX4DhCOSc4KEB6tpmWU7eEAHMrINc00IepDfw3w/hjjIpcDy+5KqJ86/vVZMB2Mjy8b9UREufqaW3bQGtWqEHO18Kh488Jffm854t3PCLDGszJxjmYqY/VtlbdNcCpY3oZ0/KOLlA/Hxaerrr2Cphvqahl31QgiTK0ree8MEKx7oNXZ/YLY++JeLmO8zlalH0uuqvp8VjbRD00InpKGt45Gs7P+eW847xwnH+z7CNvJzigIAfBQjp4Slmgw0JCd3DQIM7dAjJUUkGuyVcRAm54q5bzv7XTs9R+J6Bc9Yrz2L+yE3nViFK29/wZo1N1IvkQ1M/ohqd0hldD/Soy4XvXYi/ZOHw3suE711N1humVHKb36yVh5rnSgwNNPA+5Nsr9S3t/5fr/o2zkP+0aM0rt6dVzixkaJXl4V8UVFTCYmrmxXBhbg3odXeYTL7nggA3qMPbtfodveldM7gfmlwuO/+iKDTA0Pw4jwcIi756X8CQpwpMQJDSeIw96g3pb8nCXkPTWUqE9M/UXQjO5H4ZYigAbc5sllMElBK3BDEg+h97d3iOPEh6mLfcD0JFnFj/jIVTCHJdUkGokIQ/5UMzdgynHsNxCkr8BYbQuoFBvUaUjjGJ1w7QYHSGQKqBz8ACtRoFrL+R7mNO8Fa5cMX8fnXwL6RUMZNw/D2K7QmQZczg935c5feWAEX/OfN88d0ptXigcaLhNSQJCGjAEmmaGqYpzWujb5oRz9wRiKIiPw57NUqMi5r3Wo6wr474QVqa4P6BvVytBdb0A24B8/Yj1qaygshiVnuevHinkqUQ2NghWcYa3tseEboLjp4t5mm4H5BfjZgiv/O0edampPLRP8yYFp8Cbf1YJdWIvnZSxyx7jyP+CHOtshLshHeSIwPO97tUSElQWhSYiJ+4PH4sNrBoRHgIRQ+6PAbnsETEQsugMfKjaPKqG/LKP5Kndy+UAUHiuTxcrxEBLbulM/oxgvQ7Zl3tc7kfmHXu0UBh8BKGOmpuMNJwbgj08ShyKGEt9iaqKMqL0mNeDdhwJSJNfw0GBUMYI/lXOCdWF4T3Gmt4EenViTAdwOGjC1Bcp65xGmsz07gFuCBn4GzJyukylV68oj9q8PKmHlLdvM6JesDXMfQ9FtN0OL+tmhsgUW2Pt85HrpTXLdS7vEBqvnpZXz9gmw4FKk8Hp0Ud6mWlcQNLLfDuMtf2SIcI0nJgPPbunFzigol3Qb/beDQCa5cvLNO8zn11LXAIIfhYSd0apShr5TYC92TnwOO0Fn28NY9zGoPlZpd3KPLKaQLv72htWmUl6AvoJ5p+226ER3j/da88yiNavaUz9s/DmqAI3AG2gz2nz6WRrWgx33c2ZYmST8DB9Bz9mg0wHFI7p+fkjow5cV7EIwAmdDeO943jLcW+HYvuYaD8bz1NEH00A19JJTeBK/cyUKTb/4pFLQ5fKEtQFohJISUWRY6K5tcy0B7XhAO4AvloqjDZADlh1CoZUV2DOARIDr86goM+7E7padZDDwITHI8/MMQzc3XfjMeF6oT5a1nYAV8dEVwvR7/fpVR5s/ixCYaDdfY+Uy4hlFXI7fC134H1HEMzS6w84t0qWf7YSkiUqjboc5wcCnTS60wiMtRvyeIbzwxrlk9K9VO8wDg6lzQdj429OBC3kBij62xOY4NFS7dtA+2FHu7DN8FLgL4wnVdsnw4i57U8dkAk5OAal3eHsSdnM55hM11UnqAY69XK2/0VbanrnmqqMPBOAtA/YB+oLNRydRjTvO8YJ2PKzuPesyERPMvP/z887Ax6aaQ7ST+d+VEkoyNvZsKTHXZqlmTkKaDb/LOCDgwyRMknEHOtY0Vgv92rvK0BA4KRGFPI6228EgAgWAasRXr30/M75szoWfC+sqoFgcycr7YmxOnjP4/nqikiW+j5df6/RC9HXonuc0lgIfOrp70slBxEDDMQ2rYiv/crFwWk/l/Z8tU5/4/r9AArnSwRo5bD+HOkl6y0Ek04XiEAonyHkichXA/ieQjIMVpEkKiJkzs08vKQTTNkNA1ntoGPY5oKO+8X8Lhqg0TXms3cxgUhFTunRyMMgntebKVLVM8PFdHUFubbj8EW/F2HqRkAoMDRWiI6+Il9y5Ra9Q1rJ41vQtezXgvgWD14IVieP5LtlqB34FNBFICoPgseRB4YrIYvx5N75uKoRACzoqO4WatzuZiSxrBvXG8lyaopIjAtBCAJG7OvmyvFElpWqhw6Nlt6Nzfm0HsIbez7YYM/TIV7f1pWZkuv3JNK2Dn27pNHq4yY8fKrQnmUefWwglqrD/ooqcMvonDDGGPFDI3prBmyNIvhoeDvgZak95DzRGFvtguZpEhGNsHUDFiWjGhal2wVclPvk397f3Oir4Y7bysjsoAS2FlwMMfY+X0aM14MQk4d6kC75HlvqbXve+1Kq83qBcv1yDjkv9UDp/o6aJ4kyP2MYQFlBgqpEnUGHMv7L3mLbns49NU+d32ckXT3lA9NAes/nlmfoGfgAFg9aKJqUUUyBIaDwtq3zCAIcPUotKsNSfZz00nIMGgHCIv/l9DMM+fVwzkgeMe98HUcRgJw2QB7EBPdcGaRyvwAl/DuQqQl1rQXwkAaZPdvPKzbRI3CYGqeMWhFEvjoB9koGxz5TxkrVy0IONPtMJaomBZfM3gFtmC+0BPIhmMKrnsoBzOsWXCItQNoME69l6tq03P/JufEUK+NeccOWYfVi5y+usBQHnsNrlr+D5pxv/6922737Avj4p1FYjd56fwWu5DGM2A8okQ1IsBQI+UDvq9L7v5mRyQg1iEcgoFkZaI4NZbvz2DDlQrxPAQq5DM8IEUCgIAcAIwjIFRGgSgE8ub8fPzQ83gXHu6ANxfaN6SgCJall7w6QFKNFzaAM7zwdeeW9MixsPdac730zTgXiBIeRGkKQh2f9NG9/O4D2sPXdBpy008Ymyul2a1NESDgZqpb1DvF1OaelHNa9vW1psLGGfMyre8pFMKSnXgk/w5ut21hP9wkZlhIgAzYG6uNHUck15MSJUUFCuK+BNjl/MB1Fmb5j8jT2fi/RfPw+264ael8A/C7Al2o39dzpkuSFjG4c09ehRzypBtAUOkzVERmBW9MB/Pzr3x6RMsGrVl2oBI3CMtFMs6zrt3ryq6G3FWOWn1N3ok7Hs6D2n+cPo0YKkB4RFfXsBjIFjp8x7a/eG8Z5GWOOB9t+em548NnOV+f8+R21n3GrgQOLR5uG+KtUgtiHL2wCT9GQ3jxShZvtBOgs5DrP/Yr31Cv0mQZGKdToCL5fFt3mhaHbJCOTqpe+9stC0PBUgaK+d04sAMjSh1Ofpr5uS23Tq4sAVy1xSRAnIiu+/9wg1zzzIyzPn9EnmcjD6wX/wrI+ou0NT5ELL67fJaDwKl0gIguA8LDJAQBpFMrheej8zsiNG4c1n0v0cPfcFpaPbC3XiRuC3Q/iuTW0OTLcmyE9E6lMuiGp5aChN9se4s+lZ74ooqYRrJswiOCmK5+afWH4sPaSGxf1gwegDbikok5kW76ZEh6h6i7EtYbABUrn19a8Bm5LkIdtZApDNW4oVPnvrdth9HlHMO/H95EKAIW2G4wL+jzdiOMzefDuG1S29PxVhl0RoGfuru4d821zQME2aqRcaG5M3Tv0xrlWn1MHrsYAxDWrdv4AACAASURBVND54HSgh5U5jNMPx96Mr+EYbrx6HmIVLrGGUA6CNKqE0QA1jLsKDipSQq/MDr179ZJxNyGyOf9GfW99Ho3IOc2b7sALGemZbiDOEaEXq6oh327A2273fnh+I3NPyTDtfBm2Zhy0YGTH580E2NZRD8EgSfW8TQxXXMLr6eirlj40MTDl4wY9bgbCNF9rNUWFFQ5EEoysta0DkHPAwQ/h2C/Mv2QuZCExtFQhaz+amGfH5ZeWNjBfLbkSys+qFBAni8iJNPpxHLYnGY0CGkcSHAk0MilrnmqHIw2YCCfeu6/lUyoU95p7uhc5XWVCvU5KiUzj5Iioh61D0Y01XRXt40CWMbRc6u7gX1TFYL92B2EemlVQzhEmJ+MHY0K6y1R+Vj5fZAujuZpYZJVzLpjXZEbqTKSyVQ9yMTYAAORfoUduqnFblLFhyoI0suVLGs0EEmpkiZ8z6mmClMsBJsYcTyyVasqYWFi4RxOIRoqdTF8vGwD0Mlb+SM8vbQRd1dbevDYzBo8ZofysnjAvNG7cWHhM385eTlQA5uJ3T29o94G5NeDSMHY7e7YJiEyrJtIUuhWgl4YdVj0iDN6hCUGErPF2Maqvgv+MfORcHBlmX0EEqEY+vEUm+vPFXj43wbgK+ieBAjtz7Gy0FgVvzX2kR3q4HuN7lkCskdRpArM8av08bRh5xnCNnxjpqRepCB7vgsdPgsePQDtsIvqDxq3f61wTyYFAmVE4X4b6OnI5w9z4zyP6S1krzc9UGtF7AyCZJqBwMMtLLSoS/IODTQGKpyGI0rzYh/7R3DKNk+misW97g4wCAsaZmU4CuZvskYuV4o0qVQ6CBGgmQDscBH7vsR/oEIn15WswqqNwLLpEGoXcvc2qwIAZ8nOiMbKylbVDcHJz+XlpYIlaDFsDBG8F1K/K+cX1UcfS92JEaPlYRR8YucL+1OdEtANvdn3ucaB9u2BrViVCtwI6oqbzmg4ujyOj8mpb61WBfFl1rMXhV78bRmM9c3kWF6M1fpZzg/oxI/YaTA9k5OE4PfcMWgRw6NF81RY8gSCKmUTw5+vVmCz6oQNHBVSwPxRFoEYT+L0Lt8P5Hn52jvQAAPLT0QANnh9dz0TeW7//BJh8x4A9V5GIvuoKKkVKx1y98rzGqQ8u6+LMHxZJLR3plDwb5a/SOf6Sa4mikARBRtln3wMhfo2Uclpf5bSHKxmnOFnlU8oEElhYnC7RvpPtcbp+P4CCK5BQzRB+8ZyqjiQGo1eeCDMPexowIqa8NbESXadw0vBouhHDewLZpTFHI6fBlFy/1MGMeTESo3afUVovSF4OC88ysjsJRG3ishyIi+D1f0cpMze4FXDyNivD9pRagZZRRS8E1oJYd9uHQmFYytjodctUE/ghobMYIHMVeGy3iAk7NGD4vHUByXGCrPD9+mTAkhAtHjenESsxDL9Wl6BngcZvNS4cEAnQ4XzYUGg0MbKjykvhBiAesEP8yyWIl4ykTl6OZZQEZH++g9yF4SsSJKLmmWnQq4c5LmvPn++eACvBNz1CpYTVl7B1mVRqfG5ZulSMdFTYV4IiDbYm71ber/KV6LZBvcSkASU2jwGMhV3rvAV//NHW/8fD2uXRCvQCGAnjZdmDomogQxPMv/ni84j8jJwTh625uVvJWPU2AsB8253c7HCFY0S/guAw5t9TEkiOum8hqJeonO6cLNoyb5XeiX2zNrmnXLoC0yMYLjvk4wZ83nIt+JzLg2XInDDzZukoTwCPp0Q9XVx7VDBO3oQ4+E/haVp5aFSXspcLERTBIobr856JIHfMlBXJ/fDxSFnMq6mDGwhQDnBDrTkRLkHX3hxY9AgRhrQ7gWqwdzdkNAeBhOuebTl8fxHcLWPPOaVyp1/eFuUwyBhPnulKfKokji0kn+S7IeDyigUeABgFoyIGxIkYmah/FqCah+HK9AiX1pzAlQBUrtGUFQbWNS+/SfkUYcyMplFEOgTbZ4SM3ItAcp4UQO3hhJejQ65GtDeuPbzfBLuNdV/iXGJZxyAqPAw00CYWsSD09BlYMESgl2qkYgG85mZG0fFm5eW0W5i7DAQwa0R4HeO9YVw9VN6Vvu0bS/p1Oz7o7Z3q8+dGelHuIupDjD8p1qMq+jeJaAkVa8PsXhaQ5e88QkOOGUCP8SYgDP95aZHGYX/QSLOY8DaNFsZ16P2brYuaYx6pF4JQbqOizkSCpS6/2EemjIoqfvj7A+NPDfcfrF3bp2L7ZHQE0yHV226gWvO1yfMMjI4AFu4R8RKqII9FROPZ3qLXnGVGIUhuhHC0cHKw/q6MOMk2BmA1hwNx5BlBGnFL9KQAstkZIZIcNltGqOmeqXvcQzTi+Xt7IMpDW7ROz7ZyzH0dhff9c4acMcMn722uu/avtyBZrB78xRHgxnfIcbUoBhs+TflYvfYFWIuoyTMwQHDlUaM2vKyzAxwxzyRBDNkrqQNS/+aZ1I0Ysf+saC5P58XPiwgtV3P8VGciryi5J0vo/1ItKsDfYtC67heGVAUOgNWAmwny8D5VXXUGPpeOxC2N6SenXD2T6jjV87lGHZY2LUYfDWOe0w0reFHaHrqBR2FEpJx6Wvhs+bxq3PMZ9JRzrTHq+3xVGcqIE9djYxx05lm7kAP6uVT1aBrXzZ1yQjB65uciJWJQYdwYE8F9wPvqPUDqMP00R2fjnZEr03jFXkYJLIDKfA0sMPrg1XsYPcF2OJgQ0QIQn/9+ep5AcLgIPL2TzqVX88S0Ke9PJXA0OpICGJTva7dyyy/5Vcr1+wEUgFRm6B1sEuHlNCgVprCSuTlCrCvhVBEU2rBsoqj8MGd6d4AlhzQUL3qeHjPQde0mFKdvmsaQyOoVfxzGkLnvHpozzKC4lJDdCdRSXhYhkEK+KoDiNaWzHGMeBC+rMdSrGowcgxDunlM7TJhNGqgvBUY5ZBxwCQXGUIonpCu8pPGHupE0c+p+tQNYQ804tzwYD+S6OYMJJ4QOzY36AyHU43CYTmpWPYBLZIlA9Fify1tfIcvnv4kkuKJq4eSHhNdg8VADoXwtIAYNyrdLREa8HDtVLOzKnO9qvJKbgeNGMrwu4S22SEVThuMt9DKpYvZuOajHRBsDeknSRAxFOw4jYtyapXpUW3gMIDzT6aGZAstjPpDRKM1yQIXrX5xJe3ejypVTAPYuEllRKFO5vT9M+bi2NIKYM1cPe64XCldXouTTD/u+eSRKs8oZ1x3tcawehBDSeRhjTKtvfL1iSdPhHPb+/b3gc30+JJYIB7icqAStmus7OAZUgd2V78OASuY6EwiKFBcaEy3z1QH4mNMo9fXF+oaS68xfnoovhkdWOUv31ophk7Ka4b8xP5yThlz7XI+8Znk3kPnOETXWU4kgQKaIyCQAabxXOdkEaP3JGFtYvOUUsl7bUKIHwiiZalwTzOmdE3SjC+vNbwi5W7lZrJ3yBIZE+lhE3zToVLQSefbE2UWjs6aruRGgYvuP5KrqqV0i4lwtsFx+plnAog7CoHVuBjQ3Mh8eGr95eHoNtZ4lTWOWORcEaBAlJtkHrvtulRrG1cL2x0Ug6mHmQwFp9nOaXAkdjhEdc2QEqGBdQ90Y8qNqgZeVjjZ5yDb/DcB4CAToIw3OqBZRnsv1EftHkEY11w7XCm0PaVYxAVhBGM30j+C3cIApHB1Fpgl6BHdhKvY/P7B9NLT7BvIxsGRntLOUvpQ4r1xeVDCK8pvTpBqARm2H0uAYajxCYWABLB3YTms2CDirYV3mzZyu7Cesfa2kCZ7XF9dRh+0bIOQ4owK1e6QcDYxqDALINAWNcxO+Xus8aXNCUupSUzO9sLU44xQmS2TMqBBlVZlayjvNeaHhbgZtW/ZzVB+hjOrr95erOm14VtP7SoOqGuy/prc9gasmp6R+7tGQ8rBnNnUnEUkjXZeO6kjlSoMr274QLQdQMLEQXfMMdX1aaNjW9lKOM5qknrHzdK7yKzx3O9cO3KmhOY6lrfGeakRTv/PPRARR7rSO+UmPjvX8ij+K/yZpbI22gatNwZx6+l5tV7xLraTsK895SS14KvPNK4z61x8/8VsAa2TBLOMhJQy/pgq0anOUM7oa7/79RSkl6MavljM9dEHgNbBQrlpxAYDZLrVNEfF3iqYkGeT5qtEY1HF6T1DtP+Q6g1WvojbO+5qypaYGfef6fQAKpwlYrmn5nRS8QejlTPDBiloVu/dLCn/ABO7HA5jTPKIiaH/+MCWHvAg0LsolVPJkRiRAux/AJyBz91zRmUqoG7qqakACc77Ew9brgctyZCSwY7rF3q3Pt2NVWM/tKiHXMnnoyVM+nBwDKjv0bfMQSh/Dy1ZIfcS9S0nQx2iP9vXTDlUHQ2Q4YRhtoSb4+Lt3zA1oxw/Yfz5w/b+/ZjgvBQhz2jemDXj777IKxVA+FPJ5j0NCm23MMIoruaCql1UsSv5ZwZ8z+RsAzP0N6AL5+umHQcuIAB+7paybaKY8VKFO5cDX0Lx0yANo989F+YiSd0CW2/S1qX1PI4nGnHvo5dunGXyX3cgXm82FdkH7eMQYi1gJsHMNa3WCP/m8R6ghPgeaE49FP0gA+rZbzufdyzUCGRlDodIlCN668yuEp7nBQ5wncFMAboxusGfQkzkVmIeVgZJUxpnuolsLkCOIyzyqASLY3evKUp7zx4uBCz/beM2//cn2+O2eMoYKUfMQ8utupK0z80rb1xtIEBuEjG+XTNPh3to3PP747uvB/tS2YizynbPs994g7+95OARJk/f9/nBPVUN4EysgAETZ20V5qAZQIPdt5QcBohRvEIs2gb5fw1gCPYkMLSWvwwMW3bQ1W+dK8lcDlGQq2scDZP8OA5hGhu9R8TmYbz3r1/t4MW2K8t34vjTnzccwSmr2VJ5DYaoKWvH2B4Gve0mXyIka8uv7INKsuPYJ5uwmZ2NtlP1g31XbG61ENrFkrMtz/eECqAMysP2geylbOdWAtA1GeraZARmRSqUqDgYgY2RqEOXRbaSi3TMSI/K0J3JvkXeoSwArzFUWBzo7gHbZIPNqHvRamWcqEm2Eh5S7d1jEyQsnmOstzda7ikC/WGpUv3lpuFLWsRpI8pjoIug379IHSylbusPtn+043hvuP1q5RO32EwLcf9rQ74r3/6eh3yb650mhUjuLovSln0MsfUhvcwBCJGM8JrRbiUbur36fqRA3Azh4tVGMNEF4lJkyYoa2p1t2M92D7E5tXAl2t6FWWlEE7W4C1ZRf9kkz6vLM1eIyw8LqrdRrOyb6Lzdoa+gfl9O5SeMOIYP6pz69xwzuYmyTj6joVTzzrRQ4DRx/l6e36EzCSyggznlFsk0b96JgaxLqgipfSaWIvvu5Oi8dIgrjOmjp0FAH+YFI7Yh0yC5OhNosHeXwcpvN98LeMF3/UhKD3pnaAsiwSIV5tXsm19BQXB4mc+fWYo82n6N+G1kWe98selJ8zxWSxlzLTPnhuPl88OwmmOkAUETDTk3DzN+9bGr+zceVfAx07sXYMwKN8r/BdFog20rnCdcXx7k3S5ms72O3eoNoL2DqXA1WyntGFNBp6OeY1FQJnkU8L0rqbehqPIP5juKIgZQzjUAOYNEtjORknzbvP7//ysimTkLghHI82lmN6WLQ1nPf9QHlftISfUG7qsoBEXOskID0yYBU6Dzw0rj3cooLIkAQNEo4Dq961rB47aWZI+PFWEhrlq4Yz8cKIgWA6X8fE2i6rlLev3xvFrnr7Rn+eyVa5PW422fdUpqlSVa/qFFN6vuPpWQ0nYXhxfeIHQXsrCYnS+07ARC2iU3lfuTnUnRPfW537IcTQLCUE48xact9S3WPcu9SUYNR3b+S7gD8XgAFIAerrYMdoXw0SOlV50Y4I3xAHgRUYv0zsjfXd9QyevGMEwpYS/KEEjo6oMlObAq4h4IR6aZx3F2olPYZcnpazIAdCBM5cUQ83Sum7mETIHO1pkaExhMAUX+nsN9LyCSVcW9SVQrs8PLNUVmJG5KcDsDxZl4h83hsuP47f+YDTwIpDn9eNTJknuaSKGolXKyCkuNDowKwZ2ylfxzTEMAa64K5evEeNwDgc2d8BLKssVD8h5hiouvzlnHnmts64KFLNgblIGCf+LNZpArzmuOJDbA/MNdQVsFCUKO8d3lXy3ELQ1UkDzSOnVJZKcBUTVWJ/EL3VkZNXvJwvDg0Y64kvVll/q0sz+l79cDk2gSwVDQ4ivdZZBkrKsyLN4DKQGnXy2icuh5ZlpJj6O0I7zr7sDnoFkR7aSgs/70IqbS6zRr72rgsTt+jYlDXyosrOFf8niC0JNB5qjpSPd9S3mfeGU3ljYe3j1cYtfRgxfvL/kFJleD6IBggWHLwl3ln5NbiJUMAYEGKWnKfl/E4y0CX3eQoyfBwxZO3kt+PA5oeHfhBLMCQlDl89ov3Rdk6fZ4zFTghX4fItP6oP4859lWmuYyZ9Z1VneLeqmuG8y8w2dQE8tDnVJXzRWWoNWuopz+0+4apDdJW7/DTHhLkPGqOzSIjpQzLyBDweD/PIv97G6msx5ntRvbcBWNPECFy2Rsw3mDG/UUANKuEwOZO7jcb69mNBVuOV+sBGb0giPmoZQhJIDmBVLIZeXHm12BXBRbWWnSOIOVzb9QCeAkyz17ghHbNHFevZBm/xkiDCDnvqScBASjLrWckWO0/f/KcaeWzoh8t88fBOMs9ru0AH3wcyjgtfZlI3oPHgPYZulAacD6E6mPv4yS+5+NqTJ1rmY7iUVDBeeRtrFwaT+M5JqBelYBzPO0ZzYFBklUKAexuXBpzFzRGVvayEaK/mtGd5XyrAGyOfZmX8v2zDlvn5okAGimj678l5kpXMkTvn4g8nffnKF8zcGVt48lQ1ZOO+KSDn9df1X/qmqvfPz+LbUExvuqzx1zXNM/I833UjQMUkaKDn9pHGR1jwbPkZJSdnr38fpqnp7Pq/AyO7UnPWd7txuRTSHzIX7dNTrwKT1dEBbT1nRwDPZ3t53bFM3r+HikLv3JF1IwiQpdPfXnFDQAAT8SHr57Z1n7/JhnhUprx1w3uX71O0QlPoNn53rP9+CJqJNIY+IzTuf+8Bp7BhPNnv3b9PgAFRYZV9p4s/McDuM/IydMmVjaGm51KHTcdGXm9VOSiIDuRWgAK7m1kSHmydOvCyzAvG8YfPAd8KPrtAfl8oLVWCPi8DGK3vPjwdn67mdfteglFUa8dxx929M8jw93mjHBcqUbONESf/Ro/XKJMVHsM9J8lWfyrkigSZJNhCKkjahExgfAsjB+v6XURRgRYmPpySeaPzreO/qGAAo8vRuj0+c8Vj7/veP+HK/pXbtA0OA3F3POw9rlTL1XJ0nsGEvgh1jL8GiIxlvLN3VXM2RYvCeolXWqJRL14BMB+BVhm83aH3FzpQDOlmWXi/F2t/A5VC88rAAQAz5lrUf2gfT5M4d26p74cbmi3XJ+AKUleAgmAGXytReTK/PEKSId+eQulyfJ2XYkIQAAhpBm5IiQZpYHaG/TtGntBr7tFOXjeqriXhEJr+/OnI+xuqNGLK+LeUM+DptHiRh7z3xfixMOibfT94mvmBjyOJPzr2XaGv6t7NEXNUzjedzMqtmae8G+f9s6tRxvb3Tzv449fzMvz+fC8V48iGDZ/NriK9sunteP9ml4KIIEArs3HA3K9pED3aB3dzBNFXXBcO+TSrVTfA8lKzQiJms4QufEsS4Tc7ywZWdszp6H3bUIuF2vbZbeynlyLlF8cy9NhOt8uwNvFxglI2TXU2N+ZDuHotTYNmRbpJFT6gSAHjLBqtr8qsxPAJphfnHDxnlEV5ul7ZOnat/1JgQxOEBHzEH55j/eEceElFFlGNFPaXMFj2pJHV4gq5ONm+4JcGtzfx4C+X4zs8Va4HFTBclQ2bhZNNi8WuVN5egh0kESLxJKyvfnceKm89y3mqH8ysoj8OT3AI7kfETm21JoXRmj02MftflgkBA3SqPADoNlZ1vWwM/WYy1hXAmMaier7RcYANitJ23zPzbfd0pUqv4PmOX38sKPdhq+3shabl8TjWLjCPfcO7N1KFA6NhRapEUAC3/6cz//4zdMcbIwthx1ow8r1zQ34/FuBbsDtD4LtQ9wTruj3mWlW1yLTjonu6SRyKMaZ/KslOIMJ9I+xcjAIoO+bha+7DKtXTY3AQOSNA9093ZbOZcawRU/uvxwxFmPvON7T68noonafaIftMYLnxgFkETXqIJ1edswvhSup7mcamzz267nTM/y6lTS8uVukiREkzpQH1L1IRty7lZt8UM+azlHQMMjZox6izyXjhht1EztLHiHvdPfvXy4BHlgId7ad3Czw9iuN+y+7R4nMLIm5NShaphnyPR4hFSVJ4Xt8TnuNWDQBSQX5TF8O6J+Ked2M3+MiOK4N281S9ebeDZd18MH2tM8jCRZj/CU5mEQMwIbLSbYxKp21EsXl6WTkJuL8uMzX9z31CoqFrVmqz9WImds3BcnLo/xuN06aiAAoBr7ItD1SHRN8h+/fMMwve8q2CcjnLdZDRJ2yGhqvzT22lQCRnDaMLqMjqrxLgCjzHO9Qdc+4n39bAT7iKuALIxX5XyFlpvxbIqSj75LrkdeY5njjvSQXZtUSRiMfHsnsbZXWCkkxMpow9BSmBKeNke8c+ZPrwP6wggq17RWUYV+Yjthd3942aJ2T+ix65s98BiQHhPXRvOXuxKhnOYCFRJLzcRxYUgKqg6MJqtc/LpaYrFfrgBhZtmEUNhZLxIGfi+L2SZAzljQ1RkXi8VjnoV51/hfQytvq6ajLHNTxGvZvLWXHjaut5zM51odFZev9/gwyfe/yaM4AZai7+t9+7fp9AAoiycTeAJYQksL8vjAW25eW79sAtjRSVD2MhAvNDY/HCMIlAVIJL4Mdho2TLx5v3cMTFe2xBepe2XGX8HEay1s3z2sc1gMYDKEv9xSmeu3diPB1S2PiasbfZL6qKHRIIupNEkyoaBTHJkKKn43Q5dIc6xBODB3k/c4dIYcf8gAuX+1d4yrYPnTd0HQdMHXhjLpNLMYsNy0wvUzm6n0ML1c19LkamPtLfal637nRewd2PY1TUYqnZm4pw8QYcs08UFYDcGVHG565LMqajBA6Hj57z3fGgQYj+vNxC2UiFCOY9le8JkGMVA+2ejCprtUh4ILqfNjRi8r5UFeW3LOgvafBMRQiCuklrJYhzb73In+zekJovC7C+bSH6/DV9eAhwCREBUkpO9cKLPWhT+CyhfJZ00jqPMaBV9t2UiJDnizkQebRI9EXfErC0K5jupvBGGRLL/oIyqCYUF3TuHiYzZkgWStrn9FahZBqKXF3TKDrIl8ALN6o4Jxxw07rQc6Smu4JttDTssZ8vQBu2FAjLPNv5VQdkGiSodNnOeW59tXL8eTtYnublTqElsoHrcX3GZFUQ7f1KEBtvHOYfK650bycX2HBVF3mZ+lgj8gphKPBeo/2zMwt3H/iYAvC2/zSm6Jq40Jl+fwZ1/QELIwbL70U+azSjtNYmJHr4za6GS69mYLn61CO4bZaGjZS1xQAev3rZ/FO+XWvbyih5+/BgQXPh65cHnHbtOlvh5UXtPMa2L/afe0B9IeBCSwdaQaaRng9z41oI/f1VPsHAaZWgCbKRQftq7c18pNLd544LAqXAvkTDHRA6Al0IhCMsijF9R3aLWIsPp8CiJV6Zn6iheRnmtLCjTPTU79MSfWKd0F4/k96Zex/cZDVCf6EZ+XWFj7FOrfxTz+K7QzvGd7/Sqep5+I8PZjTV/SQ0BoZqXFuR5UxEdVX0otEUla2speW9iuC/2EUToiOOP/aQ9G6Qg54eh/nrOUzajtoJEws6THRHkXOBd8nguQUczJUytyTPHvZB14Nq2yqOhD/XZ79VLJXBZUINPZ3jRCmYeayVGYSeVv77Tu25nj2afalhv9XnTD0SKzRWOXvy/rjc86e9ldrrl5hwBeA5HxffU75ToAG53lQzb+fv1ufwbHkefKqBGSV9bW956vK01+rIFDfDSC8+t31kTnN0K12GIoO9SIq+/z37/IvfK8PL6IaXj7je2djjGHL7323nXOVFQQVZF3Xsca+F5Vyfsf32lavElnx0rCvESP9NJ+eRvsfci2E369Ki764fheAgnbnPeA1Yej61rIMIj3xRACpEDdJNnKSh+3MtypJi1/eAFXLkRZDd/U4scE7Gjq/XDC3hvHWMS8Njx+aKSxDrZb054bt55tFGHBxFWKzeXHD532PvFpjQ3aGdxphIpjv7tn+dodOwfzBS/oMzyu9Hxg/XjHetqjXy7zCYOWn9y0OjdMBzPEDQJIhNBgZDq/K1tyRea9ve8wRJBHvdjssh39O/PR/NMxrx+3f79i+Dsu9jzArOzX1kh451kNOo6kckjQSR+bwRnoFFVuViDBBmb8oLwmkoeHrKcbr2g11p1eRXusFsPJ2ft4NAS25YXHPZvG16mz11rZUDrE1CLzPjD643fOw60BUbjiGaReHcy20Fmsr8tsfh0VBOOAGEejbBh1q3tmSH2+fGY9I5E/zeV5Gypj3ZzLWd7iSY4AJjbn547uNmc9Zuz2gj2bEiffDeA1g7Zk/Gtlg+2be4uAE2Flt5bFWqigKUKQPuNHGaJ4M7814mca97t+TY6L/vz/b3v/ylh6IdrWc1g/js9B341mQP38iwDwgORNUbdyAUH7l7eqe7Baeorn3UFojDHpM867S6/njGzAn+v3xAg2notnTKORePY5VePvfWRUixk083WOIg0bd1hlge+AYkK8fwPViOfok/2uWTjPdgIxcfO7x5hVsfN9F/9S8XBEiHHXQbZ/rdQcew+u6a3grMdQiCLeGce1o9xG13EESK45/k5WnhOBdIa8UiOcbe/sYcTY3qz7AtVgjMOZMZTwUoSL7u5dl3b2S0JHRXm2U/NsK9ngbxeceTZLfT/fidwAAIABJREFU55imYBxiIBflmqoBDFwj+4ZxaWj3loDH9P09rUTdUkGiAMHhpWRp1o/Dw6J7egGBAAgxNDJJdO/Jl+Hrb1793JnqBojtf2HUhANbcph8a5+IfQqYXK1KY38B0M29+br9ngINi5bSTI2JMn9HjQpzcIsG2sH5MEBBBrzMoGL/pmF49Y+Jy5/umNeOwXJ6DWifww079/j25CNoNA4ZEdDEAW3uGw2gP/sDoAtGVHIoyjJ/9TFgaUDjleBYYZEv49rRHhNyN/B6dgNHZDig4N/TDVBtsYQAWKSEG+eMZJme5y9zhGyNqJoqehxIDNClGZgf1bi8Cg8NKatMYJGN87p5373SgutzqsVAvmfkBdcA19S8WPSB3Maafsd2kWvF94LMnDPqC+0+rCRhb4DYemifh3+/5boDVnCeQEIhjGYEi8k9cZb0nDdWZZDHtHPxMQDyCvma758Dzdcs4r0C7KZnQoF2G0Z+qeoRUCXq8YO6Stk7HnFA8LwSazNiImQxcYAKZHNvEzifw3XYbTW86VmvBNJT7X7KxDGTrJOy4MQTFPqVSBo4rrcI/+Z8Q2g2j0rdkFGNBDZa6ly2LtgH/xsBcerfw8nRRQA5cSfspd2MiigRqWgtdIMlnXGWNVNTLMt6jXMmSry4btw7VEoVjAoe8LxmhIGmEVkBHjhHVQiWM4BQDUlVB4hn+X6ZG54xp3z+uK86Cs/pDHxXeZ9s2/puLf3x0pJAj3UUfWN7liiGluP36qogyNk4X0CuogPws2YRhyBP2qt0gjKuehS7D6krLmixr6NIl/hOiiEjIATd9HGOO9sQ+2Y+Awnn9IVIBy73cB3x/legwitwgs/u3RwLfyEY8bsAFBYeAiL//p/upiSTxGph3QRM0DBElPwGXNBDE2Rw70YgsEWhikPFQ/COH3aMt4b7j8aErL5fh9qhMt66hak+igHrAlmpMLmXFNOqBwAwhbUh8gHPBr+Ecrwiwe0xARnQQUAhwzWXsfDxANJAX5jkqYw6Ghz/pgEJKvIJWPCZphRRiLrh6QdJ+3aHPDquVKZ97CsRTJALtefPnq4Q8lsqoH5gBRkj+1rY/HWylJGj4gx/GgyF3mKOAoDpp1JMr9DpeH6OufBeKUALw6AF0H4By4IFeDG6h6/NHOeqxBR+iQgB9BQA6ezbsNz0pgnKNDPag4W1jGu7PfJ57qGS4eUit2b54HXoW6K0VjqzYW4tFVRG7zQxYbPNXPfDx9qBnYjaoeLhY0l+A/P0e7voXadytCEU1nYbZe0iQSUg55Hh5SKm1AwYCWHwFDiQNrHkyYbCUue+eg2o5DBVSAWNWrev08lQ7SX0fTUkDISyMmQLh0V5hz7UDmFPV4LPd9zDiAkt39+2ABNy0t1b39pS8iyAJSCV8VDWWoCyNm8I3heGdJM0LIxIetB4BroRKOiLohcEjCFvLL2NcxKEtUB6bCHBFM+2RfeKsRocHrPMXxkHFY01brKpzGsBsfI7QIA18RKXMw7+xbr2dlePGjrCiIi1o5rrFdMMDcAqJdxh4Ozdw66ZekI5tSiakh5xprpoURIIOJT9i168lJQ7WmSHP0JoPNFA3Er0C69QoifC69TKeLK9lTCOa0sELPNXjR2ZiFJ77ANT4HTAyF35nDq96oYZJvaP1AvCS+wARb858MJjMOQ93IClcSKLvspXyVE8r63oH3wX3zsV5G+QY2JKx7i6V1WRFRMOBSsYxNU9dcDHhGH7Muy57TGtHY+B/tlTVioiYtCCkIzwbzqxLtTauH0t5UTFO9e4v31ej7msec6ZtcmAvIjKKuSZ2s2ZsIJhgJxkKCNg6jxNzrcAAgnDStQJGofaXo912iy6T2RxEnCy2nGa6+bjyS2hZf58nU+ST4uXhpuyAHdcayHLPdoh5s/TCaDINolFQ8YZzvuG3dQZaRL7FFaxiHNUcw84rqo5th7Npc2M52Vf8Hef+4jmLEanXjbonJbSCX8eLFqLJUbFAdBGWcGrAgZcL9Upxzbznnou1b/7OPF8Ua8ExHPS1kwBNOp3oq+SYLyDDIts5vhriSDjWRMyv+xf+JqpdkE5GwJ08oiA1DFxAhTX78XfeE2NdvGdmTb4rHdmd0/nG3Xiv+DSSEc8gQnn5/1WBEENp5/qAlye7z2Nh9Zn83sD6ayLkpXVAKbsbysgVdt4Tml4FV3B+89ee8CACgzosX6F4f6RwlAjE+r8cg2Wi2kCqicAAIiU7AUcaF6OdHqfB57n4cW8LOALEIBCEka+ACHY/nyIP7/u8dOYfm9NvLh+F4DCctEAZS7YdTeh/xhJWDbGwvJPNv7+SGMmhZmUcDyNSh1W8YCs1zTMrtDLhvsfNjy+CG5/YwKE7NIqRkDYDuD6jx1NJKsLXIrH1b0aZNGl12heGH3g75ywfK0inJmbHug/YHm0bqCJIhXDs4Cp/3bUWS9boNjLrRVAqDwSrhDG8/hMAgXFi03COvnFPB3tm0VgMD978bTeH77RWhr5AFhhYdmsXArkuZgaeWQC5CbqHfNtTy9cMxRziTqZ0/LYr5cwmCxk13Ok9s1CWGu5npNHJNYHkcnKxOtEnOTA0EvD2BuOH6xuqwzF/vVA+zigD0PHa86hMV+7x74g8CgKnR3u7lF5uPHMw1/VcylbrJU44OeEfHhEzh++eL55R787o/BxYpwtxhwjPObVI2PckNDLJXIzLfJwi7BQ8yaNzIuPCIAy163sWYbTCzz8z/LWjTG7od9uaMcRwMrcW7DmhyIvLifoHdgaIsxyHlahgGPLdVk9L77XwrvB/VEOds6RIfNphMrnw5573a3f3NdAgImxpsewnMfrBXpmneaaAAwAuF6ykkDdEyIZbUD5t3VPF0vyNnWjXqeHDl+7e/WB7rJjCf+n0cf20Fvq3ooAQIunS6+MCvOvqd+vbsRrtmcSUKBOS9kkAvFQ6Agtjj0HoKtHIvTF+Of816o2yr29kN/BgJRjJpBZlNrwtDIsm2Ms8hzOv7WsktJ2zwt3+eiOw4XjwJ8lH26o1YNbBLh0K803hlVnIbcLAFVLU5LW1sN8wkPYi4EziuyOfvlPhnJKjlvI7pJ2Ir3sDX+WsBJNWSdyf6TizvteKPqiunI5uDFD4CWq5mzNgLj7YVWHCDw0BW4z5R7n0oEuhuu3+0AbPudMFaCBqfYeudm+nbuBCLrZeLCkpbgOoMBC/GiGqK2DdhgLPwRAqQQRa9CNPv7e7uaVH9f0Xm+fE/0BdCeFDOBDFcdu1SLY/nZYSLxFEZjMb4d53PvnsQAyR/doKR4Re8P9Dx33H2koAV/+ndizFLGeCOoSCCX/TVQ1iCgw2NhO76/AKvRwj3VzsMgxvUSnr0OmAUmuRXunJOcOARSv5FHz+9stPbMJeMJITFVXziiuz9uAdMEUpni0ZV0ul2rwKgATU5rpNg5w5FpGRm+gxToQ7kdR58vI8yIqppTKIJgOjhzi5IxWzQJAAEqRLujIDCOLltSvpsZ5oy33Xyk/Hhej0er4ucwYbxY90j6LHkIiUnIkdAelqxxsApk01oueRK/zti3OKDvri9yukahtldU11TTO4ifwgDIUuYalZYTE9Oimy76c90vlM+qf9fzVQmQMPOt/qrl2PZov1hD3y+kKUmz2cyqA9ZkvQYdZ9Ib6jjIWdGwJUwvqPbVf9aolBis4UK9XYe2vjElp6dE/53C9Air4nOr5pz61RD0QqDiw8BPUZ1dQhGurlb7PtoIKy++ytMNAA3VgQ/N+2oRM9x5FZwTy7PR7ntIkCLxOmF1RnXTVvjpd/OwJOKqggDvPgtvgRfpQVtkozyEo8r01x/cD6/spZ1999uL6fQAKqp4vjzQOgVgkrUYTVGWcnaSS6wpJhHKyjj0vkSAkkmFkM/g2beF6OJcc1JDtP0VuUlFgu7lnxENc5bEaw0sOmgs6oeHkoYeTB/ljRNk7pm0kKZWY940s6660oMFDB8vCfAHKUemLQ7qmBlCpjX5JKNJxD6Mr9kSY68Gm++YejQIInA+ASkRHcODTSOpoAOqljN/tjqiKoOkZMmOzAdhyA/FQq+RiIs8VIdTKQeplX/pinlEPqwfscPeDlyRNcVARQKAS5F5k3bfw/o73PXPrm1gY7oSTVVl/9X2P1IEIwVOFHGXcWE4UWDwyWhR+M5hRDmcjUZH7YcZXBbcoyEgUej98r/RMbahhelSSqeireoi/GXZMhen+HBmFBKwLtHUzjLhX4/0bJkuXAlH6Upspu+1nkmwC7Q6ou4BqFYL2kWRXROZ132yrukKi3Yy/p5zzOQ3wAoyIMQAxHybuD8qXCkoRCCtgmQw1b/ViiML5MWBjMObKwXB+bixGzxFlekVv0OEeU1Z5iWidGaH3JAQNIjWCm9vFKrmQNHAoGoUEQYKPe0SJwMNwaYg2DwU3bw7A/HBbxx3YYUAekESLNHIpW3xvV2Z+uY+QKXrZFg9phORSDrkxqbuEF5Nh1J2h0ky9IHEtHXsEwgSLTLKSfx4JVNLCIqKA/XCDxca9RJ55WoQBTHdArh5h09K4mYDozBQHl5kEbMTziuu4Wds6sBVBPory5Qe6zAk9kCmA8LlhlA/Pv2MC+gwix8WcWwekItICiHPY5rlEt01vB0lJA0zxiIM9wULsHSrX9Szk+iDQAaR+XeaI5WifuCtotEmGdbOsbeecR9WHVP7aw/UKD62NCEJOv+eIi8IrQMw8d9wgI1leyCtMtA8HSRXJbURd+Ycdt3+245f/vGHugG7A+z80XP+k6B8zcuzRgMF0iTJU7WEGHkPo28cRKUCsJKHxTuuTzZ+G3gJQV7ExaIf32fV2SxVFEsJRp+B8TOcBWZRLzci8evn6Hhsgc4ccasDNUPSbgZnz2nPMu2CKoImsa2QCCwEwQUZhZJ1CHNSPiCpBerLpVb8dsc60dd8TljohjwFtRoAZa5AgxzRwIPSEqZA5bE/0vgAN4516pBYHhz1nXjbIrpl+MNTmZvj6uk3gywUTnl4miDSIAGEaAAeUNIwHxD4c7zvGlw3T11L/eFg5S37fuxZADhCRZmGY1bmsuh1Lek61aD93AC1efBF7A+evFS+yG2RC4LitaygiJV4BPtT7AmwpQDdMJ5Kmy1rVrquePydwwOSXauhU8TxPNbV2S667GjFa3+kpjxEN+WLs2OYA/Kn7jzLmJcXyrB/FGG4AkOsvUwR4vswg4Iyr6Ejx80wGWN/TBWtKg9tLNdyelQvOoMNJx1/kQbTV/81SlrNEHURfOXZsc8t1SYLJWGf1og6sANzbf07R4OffA0xeeu3n02dGmP2C38ijD6wfrdgHZdzLmouIheNYjXrXk15dYdyXc1BEgMslQY8xrO9hEzkxLW07VmqqfY/xyQcv5SErKFXAC/2Vttbr9wEoACvizBDm2jkgkaPTYjBFxRXZTUzpImP/KARdHUn2M5qlrPAhr9BBAFkayuRgeyj6PZWMCJ+uz4n2zlAqlYqJk8mpt8uIGmd4vBZyuPJMi7K2pMnphDsCJIL96jtTbZ+wb7HxaVwQ4fPvkHGf948TqRiVY3qC78VopfBdBKSs4dHTPbHdDb7uuZDe/vB8LAu6v9x4cRgR6QwEuwhbGmMuzNWJogCTPwpJ5YHKydYs8gSww5SXiIWjuxKuWw/2at07xltfPaQTli958KCGK7oNDQei5CTbHYaXrRkzYABFT+8jm0JPI8e+AUHedtnM8OKSCNDBlWZWYqBRVQ74GEsCB48D0iWVlI5cb69SVrbLSwUlDBEa26oRWq9i98r94VwUnuLB6S4gYxJAng7+MkfxX0mFiX6OIwyiyNdE6XsBKrUg+lIMTqvEMVJWqBvfKkDT5AD4uAffC8nKrC3LCbHMEWqd4hMgFKRR3JsEghwYgjrAwdTQnkr4kiLiiqA8DqiaFyd5MwgMep/E5fBOY1gjr5p8LriXuXYFSrcCCtBocE+rzb1zY+wOag2k0doRKTAIcjnbI/NiYcGdYwZE6pXY5PhwljbA5qbm9lIptblY93hcVCoYdcCDeutRMQjHsD1aQpsDdGXoNJWkiIrhevOwRILEDWVPFsCXYFbt7/lMdKMr97kbL5V9vRX+jdO6YvQIhs+xZCpSGJdDoXBy4DfnZSnpF3F5SLgRhPFMRQEIXNFrxZg8nRkKgbSVR4Qpd5HbDphHmulIWzeugMsGmT1SFMw4BRpDzMXacq5ywbEUr5IjHBcaUVyTHL4xUy4RjJ5237h2HO+Cxx8U4wqMN8X2tWH7lmvEoiIkDKeoUABrn0UpaPDWELDFMW2qGH1SrnNll/aAVRM4COYg+B+St8GVUJJyVieFrLpFeF3ra0IuAhADSGQD5lae1S0Vg1UvyFFhS/PEqUF9xR4XZUY1UkHV0jwcwNVa+UMk9xWdOICtg8lUkwmMBHEY9h9E4PSs+zxRftlzcu/MCyMlhgOX8HXr/UO5x5nZ7dw0vhi5bJab7CA4OT+q991kmq7922x/WXWLFhwf/YOyQZY9wu/FnDlwQiCq/qzzmedrA7nLnq7zGbwYIzS41Ne2YDknpj5FBT555mvqGC8fWyEJH8/x8u5wpgHLenp5hf6EpX3xWfnvSfbWZ5T2Lel+1aYImUu5ovnv0MWrnlv09Dq27m22KiOy6gUcO17Rl5OdUmXHYNu+M05ng5pzeZ6b09hYmsM4ATonoIPPqaUqQwc621bz9FVNj34rnzH6YHpb+Rx34OV9BQCgnK/jyL+fgQm4vAYQaQdT7T1lPII7ocrq+vzen+3NV1UheHlUGdwWXPgX+Pn5mmUNvbiewITyvaUCmd3w63sJvxdAQahc+qSS3MoFMBFpMwKKQlSQOblPIwZTzfxNEpUxhE8kw1ubBDu4XpqFIzvR0/51oB0tCJ20GQlS/1T024A8JvrXh3mY+U4vYbaQinlZl/HTNQ4wy2N+IaCp9FeZKgJcyxRN+x+F6ZLbxkgEV0CtvOLpcOCY9ZPw4mfx4nIvhUGUO1Tg4sZKJYFrLbx50R6PRoj54nNeefXmjPAw+XTywjEg14tFFzhZITzsNoQsDcdIc2nPm+hqZDpyG1m7/Gqlpua1ZwjmNCVOmxHX6Zc34LIHkhwpGASA9o7HH99wfCFrNiztZvpw0RPFKbp6lMBHCWe/7NY/klGeDAoaHTJnlCs0oxsWcj/VuBl8bDW4BPxPd1jubfFIz7ctyBpp6AGIXPe5NfTPA+0b3CAd4f1hdMtS5o/LxpXj+Ycvpvh++8y5eRymF/m67z/fTPG6WOk5kn9C3MN6qKc3KeR2y7XzsNBwkk7Kp6V0zJ/e7bsl53Z+sRKA/c+fy6E2rxvaeKCVaCe921qVt6s957KjcicAgHz7RP84GaCMXPCQ2DAo9w3aZpJ+7lt4dhj5EgZeGK/+u79Tt24pK9Pz5WkUdi/DxnvpXQHME/fzh6WKvV1cgU7DgMSSURGnKpCA82b0VH51hEIbhJRNbM0oQlbMSzduiRdecSrqfGZ7HBh/8255wwJIU7SjG5hQPMFBxgq4sgFAgPm2Q8a0kN36OewM0C7Gu8FpOorX01PAVBp0MxLGdj8c4OoZvqosdVmUIQfiLIVGUyYWfog6lhHRUjxKWhV9ByICoKpnAoFL8l/cHpljzecONWOTYBvlIt+/lTUCytgWIe1L2x0w0bfNPejJ1XKew8WwfNusKoSnJJrxIksKxaKIe2RZ8gR5f4dCNEsOMmJFanKrr3PywsQ5wT4e3dIDm8m4IO1UGPFik/CcV8C1RjQk277LPj9jjcfFz9wmkb4IAHppmN1ANm2Cxw8NYxeTFZrG9tyA8W77bvuwfvV7zvn0spH9zigGRku0BI3Y5kvHuNLpgsUo7zfFRYHrnwa2j8MjHGClbbtgGpqeRqRXswLcGCtKcuSlOyeD3WTjNK4OLnaAlSmGcwhFmzwCbfsYSEzTjLgWkXq+FgisTVn5B1SjRO/8sicQ4uCPDgnARdwApgyZezMg8m5AjDzE9zXTSciJggU8QQNmkPxteTY7kNpvvt/YT6aUsMkC40jx3wVI/pqi+PfbTDDSy37OzXTS46cLtFtJSjnUShKLGEG3r5N2JL+GHBPzbQsjW3T1rsb4ezv1WpwVLJ1Z0wEARCnvGuHaDAhZqmCdjQ0CuAzPp9Hj50VEkp5BBpf7QYx4NmbPoIW6Ll0dZnzevXj3a1i8n89xbwW0qi5MgJZpqbOcmXI6n8r3tTXgupuuwnZRfwRMJ+D4AQ4q6+JYynGk862vhnlroROE406Tq0C6xvjrnKsxLm01lMmHwNSZybF3h2kZV/XIznrK09EWPAnVsN02++9MNs35AxB56NG3XkAXZNuVz+4AhvG6kAMrgAX7T3AaR52Z1lzGcEklqHPvequ2Zs+S9tz+mnJQbS2Oi48h51V6e05FOH2Hz5XTuxZjX2cCH6qZVgHvv75oa7WJTiDG0zW/Ux7yN8AE4HcCKJjR7twIDa87LXZgVU9b5G5PrB5GXvRKMNoBriSIeWHi/t4WYdP8kO83+KEkaPeJ7eth4cMeZitDLfdtiik+E8CO9GYxJ90NvHYYCmehZ6dBcE/TUjaoIqRAenteTexcvyNlfMLLRwNI2C6OCYo373QoVLKYZdJegBDn/rxESgV6EpxhhPE+L+unozDgUmHg2nDhEaG6Iw/mpZkcgzJGACIUMIiwqJghFegIveKhwVKMAEj6o5tANxi7Pd+h6muiNESwhv5JyVPn+mwwT+riTfZ73PNAz615vcu68DYt3oyTYgDVBNEc6Qc8fUyTrVz3hjk75NjWfciDUU4K33nMN08zqdU5imHDNgtaRsuc19KS6jPXfVCHlakONM6Osrc4XvW5QOYwV2Wgrm8qC+c1XRmu/Z4FEJDixeDhxlfTCyHrGojcwUDqyz44G/wVGOTerKGaZWxxjAQTfu0A0bXfcG+1FlLEKIHmOeKqWAyS6v2qnnqFrfFK9BqkgGcRVkCL6mmtSlu8j+W2XnWHcr7wbETZUF+7JIHU3iCiKWfdaLN96ZEbWtYn54dGe1UuRUp0AiJq1Z5b5ofteyXDa35vk2Czn3tDfzjTMvffZmz60SZG42EmGF/bHYoP57m0j/MV603XewHvA6MZzutaLYybcyvyzI01/XlnBb4hSBgxkMS37ENdu6XSj91TFM0qY2QayWS8w5RTRYs1TWPQOn9qa91b7FMQN7r831uk1JAjZHLv+Lnab/Zs3WD5+ernTi9VI+o5OBSNnvQKzNVc/Bh3e3aSUJZjYyq6pzpU8EQUz/NC8cNHs101ggTIdSGMDLCIIQIJ53bx4RapYGtUFnkgPscwYEABkskqgYV6hSFKQZF9EgUU57ZiWafwuWKqDsGaqF4hUgwYBZyEUrcSxVifXbz8jF6NNSWwvlJ01M9PfTIuD3+uAxwigE6C+4L2EHvA9IdRxg5NUtETPwzcyEIZF0bS5Bny/zH3Nk2yHLuSmAORWdV9SN6n92w00l/QVkv9/43+ghbayUwaad6be0me7qrMCGgBOAKRXYe8s2Oa0ZqnuyozMj4Bh8MxU0aUVVSqLQZ8TQNgu0f5bD3TfrAvLxftUDLrrk55BQCAlUFxPct+4ORkPjmwnNl5VtP2PX/Q3mo70G6ooo/XPuHFfauAErn/1vSNF3NhKc8CzL6Mtnyxfi6peunQL7oB/8R4XK8KJtSI+RWYWHyF4rMVLYFMhxXBwji4ggWvrj96D9H173T+B9Z1/2fPiO/+d/VTphC9upctn/khSMTn/tEzXq2lKwCSzx1zfuVHDS81D8pYZRWKy/d+eP0JGPGXABSggvG2+VoioCCCzOGXmQpApdXFUWQ5rxTratO4C/Rdjsi1PbrPRaJAMRAsjwQA26+PfKapepnBR/eSeRElTjGwpr5OaJidY4pLdaSDKQNeskgknDqvtMBNnOrh42ePKsrR05AYtxCp+/URVHTEJqPpNGCLUnDchIE0dlz4aqKrVWmZqsjS+xTSqlQzGs+M1DZNNPyaDy41mgc4S+Iy8Zn3vRj7QWNPuv9wFBTn6RtpC+YHUWuVyHVXz5M7xqKtkZv+TWducaGweupKgEa/O1o87htYAxsAbA+Aa0iKt+HsPle+3fOe+hzYIn+OwnSmnsfromtjiV7BLEpW6eI81ZKD/vwtqN8ebevvUYbrHNDTjXhr9xlh3bTog4ygWCKNKGE0fCCcUF8XyQq5AD7nzzuOX3Yvy9ZHsmrsW5TkepwweP/K8/R5n1oL4Rj+/A59npDvnxPlj+jD+Hab69qKAV0P6ucR47gXCv3dGSchWmh3Z0ok3XNvEER08/NEq1FswJkS//GbU/6fz9xwM3VpGDC6Mx/ikM5UF47NbZ9GgnmVk4xEX1JCauWOLNl6yQv1dTAmOFCjGt/eol3FeRoDclycVJEEPNi+uh4tdDWoi8F1rb99RgTSqezODov7vvtnMk1mYAoi7jOn2HOTY91wX+3mZU1V0H6f5VKpRSBHx/abZX9N8NOyIgHz4tMhCiCWJSAJXOHEwniSbpDvj5lmUwxTKNBvOyjuN0WiIip/x0yVUoVFRNlUvBJDiPxBdNlXXCOiRtNfONXAyirj2GwK022ygA6POIxbMBQ2zmsEE6BEKGrkMJTa0/HOtXZfwYE698yi7OTT91mKpe7NdSjK/M00l9g/pY8oy8f0mtApIe0cQBWs5zxNLYTbFiB7zP3uECfHyUYYpKyuQc0Q7vXpOKpXaHrb/Qzr3d9HBPZ+C0aaC8YxymvBsknGlYgLjSKcaeobleVrIrDYMxnRB4D+ph5YCGeSwopv/46gtAO3Xwe2z5Hg/fnN79NvEoCo4PZrx/a9ZxWFESmVStDipmlPeNWI2C8kgAqBz83Tp8H53iB3RX+6QLA+u6dkZDlLuDioyoy4x/vnmonoff5/tHU0Qb/rfN/DoE8LWwgYIX7Z3zTWWitnnVcYSCBjbxgqQf00rDvyAAAgAElEQVT3vUG/BwO0rt+oKKHPMcU8w/YRwdRhKVRmffQoVeuTsP/ylnOe75psqOh3Aqhjj3P83pKZWp1LAHEm+XvoMVKQc1lr1Hlh9DYcyhRGBGYp16cz+awp2ndDE1mEM2EaqWNuv1EIGWRYLevbZnqkWbDTGsZ7RMqDbZMpT2PM0tuLs3I5a3gWcY0HA/QLOC2TiZAAcDAo/awsAtrp/LfJVqzX4faDPAtgH9/j+VVL+i5Bqz6ifyIQE+2Il8uobizfaT8WW1pSc8k1vvJZBTiQPlwAnICJugaQ6JgBBfoM5f4+R9zeXVIfEii+pB5XsIK2Ru8zaMT8erKlRYB9n3Y1D6bzOsYD2DbIvk8b/UUJ63WMNSpNub3szBUKqvpzcdtjX49nV1B5uzBFbACjI4MsbBsvRv3RgaGQFn9nVYUea6Taa3kWXVBKznPuFxogylhTXqnXMEULmWIwwl4szKMKKJAJQgbGWB38RVS2rrliOCwpCQPAOOMdL2MRDKq0C64s7bJe8vcinmKR8yyYjPT7+JOshx8xF8r11wAU6MiVCJHQEOEGQTE0iU4jogeUgYgBz79bOk8ULmMkJOk9peNsrKWT0M2Nt1KO8IrKEsFdaIk0WMQdvyyzlEa1D5q8quWafRLvXZx/jxxWZ9/7SIaXqVpQwkCfZ1SvpGKUPko0lX094Av6Fd0somZVzR5AppHYdcHWaDsNU+bpAzOae42w8ioIrRucU9zFxYpsit5cr8sCIl1bKHbG+zAfl1UseCs6uX2sGxHfM8bR1bMlld6z6U0iIOcGB8Lwq5FZsmXWSEocRgEm2L3NnPUTTgmnyJPGBGA04hwzb53K/LzndWzCIDGIi+dxOJV9C2cq3AQ2BFsYZOkAIL7fo++O0w34emjzUVtbmCbePltzcflZMpUKsJCRuSVqpwFQFJo6xzGeM0tFib9Y3bRjDtgytIIvCCyVlDmfaLAqDzbM32OKx2beO/tqBOOmUtI5NvzfC+U9UyD4K+Zdsm9onIVx+nLNpnM56et176AxlvtDGRd3lNc2ogCYApkAyisWySg5eARAMWCYaQ1iDqwuV+xLNgb0xOwDRlvJ1EqHsuyRFZDivs73XZ6Bue9wH+U6QlU2b1Pvoz67trWzX8YXYKOeU4uobbYdmYbg/SEBFsrXSEs8z0GH+f9zbsb84Bw08/Krw/scOtdfnpW1Gknte5QzBvMc8i/N8fXPo5y35cwp7+jOxQRnWH0iz/qSw+z7SPN88aBtGzDLyZV1vLBzBibgTOctmBs+TqEF0dw4mxoW5qwVfsdi7gTAs4CJZHFts8+r8N1kCbiTberAEh1usuEY2ef+w5S5hfXT/LuZo68hvDim7ZF7eOgSsN89dckHa+wyy1YKXHQ1gHVnUCjsDC0TxBlVUx9yv5G8NzUwrroN1GpwpxjZN4OAuyGBPAkQJPVO4h1dVNcdPJYET82HZBbCHQCMZI8s0eGB2H9W29Abua4tC6eaYoTUvBrbfEetEWLDBNrYlmpvkBnAfaX3dS/I35f9qqTyTpsPxQ6Ze+IChNZ34vMvc3b5mBmS3dFHOF/Fjqp27qvLXjyb1zV1AJhAQplDX9p9ccy/PO/LS1zsJabQ1rTfeu+4z8v+rvdJu1q/PCMZiwRE+b7XCg95Vo3luwAmmzbAnpdjRNvi1e9/YDfkv1tze0UBlg5MJziCrF96848YJWFjfNG2IJBAHydTVFqkypXPcr6oQpqFbz2Aa0vSJtH5XbbvWqkBY/39i2j+Hzm+r6Ly84/qQMEP1s98wMhnJhOgtmEYUtfhT1g7S2lKtsFiTwubd6kSAazz5NV8YbD5v+diG17dr7b1D/r2LwEoeD7s4fmvcXCAh1tExM5f7nMxDy/BI59nlrIC4Is4nc+RqB0jPkaHQQr1NXLBvQSZ34a5l40MhU3DGaAB3VPESL8//TNvWx4YRrpqd9S7/f7M3GRWe5BH5NETkIhFmYwDpkU0ZMQ5KxNw8VWEMvouo3e3EN95OGPC7lHVok9DqtYKXyKkZh7lTKfIMto33nYvc/ZZkEtGkvdtXdxjGrApyFcH/vQSgy/LBCEWKsIhPc6pYi/TQLTIUXeDLu5RxX6GG83jvuH4ZUN7jMyfdOV4F67b/9tnskdY5YFVJ8Yv7xEZ6xGN06QxyuMEPi3ZJ+f/8AYKbw5xh6R9di89FiJN/u7DmQU0XGlIhEgl6c7Hz3v25dh9I0+lb8FkuDwP6PdPjJ/fYN9u0N8O4Dhh77dpzCdghAADHKA7fo5I8sNVxPXRgVuDbfDSZ6po30/oMOjfv/v9vt2B4aXC5PPpjIHQllj0NoLRgc/DxzAQT/n9EyKC8dMbsloI88V/H3N8eVidA/J4TsRUPdrPnFphdOe3T99H7vt0/qjJwnlKuiXnaigaE13PSh7n6SyZy7yVMSKi/9Oci+eIKEowqX5+98+GujiOMw3VZOKQNUKjPas0tLkffP/099iCOXCeId6o/p63zSs2jO5rNp6ZTKDjnCUpVWceZ7C/bG/pzOrnATkP155gOlDD9HoAV7c/Q4tExDUGaIQ2nfMYiBKnmI7kpg7ODovouybzRaIaSoqVcu8fPXUVkklzcVqFez8w11JUdRlvWzoi+jgz7/pr+d1wZp9njrWps36YL667/ydn0KU/zymqmw58cx2CzEkmgDlyb8qzgEJ/hf5OXzbT9YBJZ+Zez0iiyNw7m3pp3ivofXr7ZGu5p3h1HJusNGCCUQTGWGJrhPNsgD5HOroEEvT0HPYZRb3cj8YS9TcECwhmAQCkBgTf6937ncwHeWwJbgjFb8fwc/njMfUb3mJNcF4OQNChxzTYEjx+nPOsy4ClTWG+0HWa7C3gfN+SUUDqvjXfi1kmUs+wSZ+GsQNdJAV6o6BS7Kv+j/YcaB/Dlf7B9RLPGAY84t0C7BAUVs8AsAHnO0EsuPyHAmOT0DVQSAe+dQfA23fmMnkU3hl6LfUM9BzQjwPjfUe/NeijBwPN25XClCciXy7mrwrap1fOGbvbVP3N2zBuCj0tmS3J5GyKc9cAYHy/GM0rQug5cP68xz7jkf+xCWQIbLRMh2JZablEIlMbqNrHZHRU5s0+K4PI6c+CCM53f5aeBntOEAfDgr1TnU4AB/e9vqaLFDuP7DJpoT9VRTAVyRJLxqPZZDgEeKmf5wRAFICVlF4yyJgaQsCytIWVnij2KU0mEM/oZmXE0cnODrOln/N3FcylL1MrG1TbjMAqo/1A7mVfWFy8Z9Npk9Y/R9lbXxOTOZBC4LRhzyP3nTyvEjzwAbCwY2tJYqifvcbxr+9JsKEGv2wyjlNgUN1mJ+uKLCgGBeS89HEAZCncd009VZl92hRg0DQCo6lzwPa/uqpTLmwrA3+xligUTXDiOJ1xcNvTFmMVjHRgH1M7zfqASNgs+w6R0wMIyQDQBCd8bZZ5F+0zpjyKAMNZ1MZqaPsWbQfExmRhsO3A3A+uIIEqshKCshSjAhY2RUT8J2AQdtuLruRnFof/ImPAZyzCjwRijPYT+0JXIGV92HxGvCf1IygWmQATP/8HIMACVl3XdNgtWakCWPe2y/WXABRgfsjbLfLs6EzTUAfAMkuMoORPggd5r5KTpb7Q7Tjd2Q1FfgBf811ppDK3zkLIq/bQsKSVWooyhXMXgykjaKdjIqIJALAee7QTA15mpgycbwCIRRrOy8HBxnS8R3Qc4HSjWIBXca6lBu8IA1zEo1XP8jf2G9MPRFzsCPHMtgUIMZYo8HJIMDp3k2mIXQ+ZUd4F5X0Kmiwa9LNtm7XY4/1s13w3ANOwrsh3Sc9Aa7OcWhWAMjrjHMaRz83xIbpMdFCkHABRgqpsUmJujPmzfO5RYVuGJRCQqRFRdUKOQu0sAIw1V3EG/CAbQwEJIGSjAGBULThHUPOCRpkAzzQ2MlLIvgoaIKIfKGI157O5jggjGIXxYKHazdSD5cCrdEI+mwKeWuYUAP3+wJoviSh3qMBW8uA5JiMO/l0itQk+10hhfb/7XH4c893DMba3fYIpTT2VoXePgsahklTBIpgosenP58cr0PApEZ00OFitJfu+rPvcewINlnj2KxX+EAIF1yz7kiVLVd1ZrGApBadYUzzHReYciHUxbhv0cFpwTTsRk7kWyhi4oevOGXVaFt0XUm8jCpf9LQEW1PsVZy0Bgo7CXMISVcnnNPHP9f71cBsANsEIR8QRSc81JlDskT5bQaIcE+5PIdR6juL0G5Z86UbWRfw7oroZZRUBTld+p2hB7kUW7J5uM8qVzC1/DiTy/sX7amHocG+6lsmtPxfjhkaSO9hLKoJOB4Q53SZwwLMrbMSZeUTKVx1rjj9Za2YJPtfSfktkUuFnqCLywC/GcpxvEpE2jvkiLhoGjqQDoHn+mMBL5wKlDKYgVCWnrgiN9tpXQM6BrCHvQ+HH6jEit728zhEsFYl+68hzRUkrjv2VegN6GHAa9CBQFt9XajFI6DPV79boKIKlFmd6tT0NDvQakm3rtolN3YDY27SPeR6IAOLlDkU2L/fYBLLHXO6ROx/vkFoI4mVnnQURa1Y1zxA541w6HDhcqhDYlZnha3YyhGSCWDLfj+NlzVNgpM+UQduAWlECQ3I++pyEz9dcJwiAzZb0qnZwT49zSUv/h3OfpRQFi+7FoqdTnFCmtH2JFldhV44R35XrpeqCEHylP1jtWS3R+BxXSYA97bfUptGiTzLfL9ce7Wy2j04yz6/6nOwAy30nn1/TEK7fqTbwc6zfqe/A/+c5PGyWkazsVS3jIQLYWNMU+P6lz5f2cD3lO9M+GcnIBSztw8Tcr05rAjNhd1efJe6z6AHV92SQrLI88r4Xu9oun8m/mU/gV9FqFQAUZLz0NzAdaYJVYTeUD/ieQOo/279tWGj7Y4pK531SrLCifeWizzTmQfVDTQC+Sy/fjefM98Tsj3qRmZmpFNdmSIIKX5zyF9H8ZBK8biX+LGUg25hlLCdokO0JP+RPryu7pN4v7rmUCr4CFXGPpc1/8ty/CKBgEeHc/bCqizryJfXwXMgUzxmYC/PLIgrDOtBPeZxu+KliMIp39DQslnKVY0xBLzqmhrlo03FxhM5RxjjYRtyTp/s5Iucqoqm3ghjFgTeiprcEauwAh8De2oxyMWf0tvt7yPq+VHyvn83FdJwQ9TQFz9XV1F54mS/HfCzeQyWAmDi0Hj2jZJzkzNlOEbH75ig/+7i87wKc0Pim8w+A+VDp4CVCGws6KndkW8+nG/+Y9Y4ZJbP7DaLmeb7iRpweIyOMEMEwS6DBiC6xP66LJw0SP9DkeXoUi4scHj3AMOg9SjodYwUxysbkTJVeItNw9FYRavrIfEkMQ1PL/nK1cjfOpO2urRBzWL6fmTtcD2Hm4VLIabSIzBiNQERe75bRJA3FcWUuJoGjpp6/+XjO+cDlTOOIgJT53AO1R8ZIloD89j2iundQbG5wHKn4HpFkGgowc4f43vx+kb9um6L/dIN+P6C/fXcNj3DSXURsS/0HOSdoIGZT9Zl7x233vMyqgXA1QJ5HRDschEitDbPJ2gEdkzKPinFpYrNPQ3Nk5ucqrJX8VAJ9wcBIxf8R+X+fXg3D3nbfOz6eX41KiYjx5mPf3zfo37trDsR651oQliCrAY5Wo0gskabpRIBpOmQEcHw4D1qJ6MS8noJm/jlX1y9pV3RcwvAZe4Mi9Az4bhVYb4LjbzdIN4+YBmDSf7p5pPQRFQkYMaqGfzEAfQ4OSJ83nyC2lXODv7ei2SKwZpCgrYPPi3eXo0ODwUBa92qMWvq/7kiWdLw428jSWURtq9F9nMgUJvizlOyYt1LiVQOUJCME7rvJZ2jsvIWhHpWMRij5G0UkAW8fDXh1zQI/D3QGB6rDFQy/dARHmaOk05ulZWYqDtYGQJBitp6b5f+/qRv+KujcP0NgmRFfswB2D4s+r8aS5HzMlJw+MtdYzOeTpztE6VN1Z1TNPHJOB0HCOT4RoDKSLQAAt3+c0+oUZMpCFTs832WOf/SFdE97IHDZd2dMTMd27jUsiSjBCvKzj86qj62cKP2JBHpG7C+2aRANvQIB+J4m6MbIbLDbHj1ZNxbsCOn+/mS/kXVmxVHSDAAh38H/x3IcLHQNyFJiRQDOS9fHciBdsPle3XuAwYrxvmPsDf3dHahGJyX2fzlmn+Y8ecQ4Vqc25gdTr/TZc37OqCN8Ptc0vwImLJo+8fkVLLAErgiI599jr3GdnmIHEkyIzyxOwTYDAGIGPPu61/W+Rt4HNVos94McF4lIbrWZ+1y3IOrT570rWJ59WYDbdLK5hx1nguYpKL4XRshARpDzu1W+K0Aqo+aVKsTOVW+GgGz1HYodmufZMk6aaQSemiZz307gUy9AQdnzkiHVc37i6hxWfaXcnzmuxQ62Mn4l2OEVD2ZqcO0TM8MiZngBSxKgBRaAhu/udk443ldHtZw7ss1crqwKESkAWYK7RuNnB8U9SkDqR/4r+6xUUcjADPuKgEWdczoZDwCmfXct18jUB2CC5X9yLYDHq1SRykp46ewbfpQmUe8tBAKqzR1zfumb5d4TlAEC+GBqcbUZCpC4pADHPP0hoBPXXwNQiA1jRs9C2bugttUwdWd4+MazlLMZ0+FibrBZMRhHCvCoOd0bLNuk7pgL2wPk4k5niptFOO/WgPNvb/PQOd3ws4E4oC4GbxoFM9eaYnJ5GFB9lmBCpAWgRwRaFbPYvLlI5J1ON3wxV7S5GpuRrsFN0O673/9ZBACCRgo7Jjq5mZfBAZaoHum7ctkYPRLRp0jZKLTRaHcCH8NgamBd9y+oH5FkOhcU0uQBXdotNucLzNMAbAzop9coF6PxEQYspsFaLxclQxHMHJNSCEC2YgATHHjbcqzFgP0fzy/3/aK8DnjfknJb9xfzyI5+lrHh92ITOH/a3biIEmTjtgWdcRoYdteZ36uMngKAutjiw0pO6nSi9HQBpBSLZPrAFlFxCh39/A3y+wfw+fB7t+nkyDMEirYWfT2dcIopkkXhDodTk0fqWvRJ7d0bbP+WoFlGRcPAHPc9naeqCJ1CQeJ063HfcP58w/6PB9rzAJX1SdtLYAEIR8tTJ3KukcUjAtxvjr4/ECKaOinmtS7yBZX+kuJTDQU6i3WTL/fIPF+K6KnOQ3efc7CmN+R10pH2ZykA0+5R0Z/eUsDL9x0aS7Ye+k0AW5kJU6sCDpIRAMrSfzZzr2N+gYK0OddX47vuW17yseyn/F3RY0nHFh044EAY90B10V+YOZgwprEkdHTN1ueXeybFm6BOt4XWbLfNz5nDARQ6XjU1o5blc8Bqg93KnGBnRKoD00Ckd8jTMqK60vPZJu8L4XnId2B6jDqlnIAhEPOjSUaKX5adZGTpkDlfLwYF+yTTZ77dpuaERBsDTNVg7YS/nf2RVWFKf3FOJEOL40Mgoa6PvQD1dX6UNlY19+VsAlJjgsLPHsWNvb62pwNyBPhbmQvi7TBxEEMPf6f+7s65NXEH9hRsH76XsKypCy5LUvkBeLqACvTEBAK6ZV/YRnuB4AOQ1QUIwpQtpz1879bnyDltLc4FOvFcR2XLcIZaD1B5AkY+V1vmq7tQMPUpJqhCMIFihZMN6BPAy9c60C0jqmvp3C+wuehxAgccgzP2C87dMaadJDJF9MZwcLO1ZIm6WKQz8bRH+chjJHtwvl/0W/QDAP/+rSXAn6kbMtk/Ly/u67tXTRKd9sS15GzqUw1Mp7We+w1ZnSn3GGDamJyrXM/D4DknMve5i5i233vMMpCX8yo/Q+X/y3st6vJ5TnY/G+mUcO8fRR+mjywLj9YmA4TADVMe85wE5Oosx2ddyO9iY4btyDQ377+wfTnfL+zmBchmQIbjwX2WYAx/qs60jXpOVxAp5m62WSXLyidFn++SZ9pYUzOu9jwA6kcs5ZNzzxr4IQMA+PK3BBOYNlDPkDHHiZ9J/+BaopB9YIYUYcRAVjMBkKUqr8AH2837MIiSNgbnYflsj3exMR3gPPsHUpehXnSw+d60c3LNXEG/FwBA6Ter71y/c3keP7+ydcp9x+U+BORwARVEVt2F+p0rkLH87WLPJUtWlnm1ACO8T+9/yo74iwAK4cSJpABRGrN8sXPk/GcEKyPsZcMVOnp88Rr5GTNn06MrY3WQ3cIu7ZrOPXoYWwQUYiMcb35YJcoeBqoJ5mBGG1KMqOa5dov8H5v0bB4IfL9gDQjZAuUAMhH0e4M+AcFXZ7xGdckUsJumk+YG46yQAG4C5fyX6LsJisQByU03N9EyVmRLVCcCmIfGdfMHkNR5jllFG7e2quvWDYZIcNP1fuGQkn6ubBsBpuIULW0JKnNSYzlPxKONjJIs47Bp5rjq0aEf57wP87rHpZ+GhVG0IcElES/ZR6OFSuPVkA+atP3tBoN4GisQgo0RdRpwdgZBhDA4kgauYZiZ58Y6VXsa3xoq5/o8l0M2yzNGhNbeG/TxnIeLuJGI02YeodV1Q0MncttLPWrpUeEDvkanwCHp+Q36IdCiDJ19xhzYS1TID+TQHlE3wJ//skH7QPv34jTv21LpZSKzCpzIiL2DBoyguKGWYnysOkAnr27StX8i93AaX+UQvBpo1ysMHBpbEiCINVn2LlZTyHnDNd4l6bYCQEmvftvQCG4ep4MVwyMWBkxHV2TRm1mMaHUwSD/P6XDX9y+flzhEmfaTBloBbeue43tQPfB5b52GQKwNCSeHJekyT78PJCOiXvWeV6e5nB3ebsx9ikbk+z6NRQIyvG/cgznbngsuWaI1z4WyD9muAYr0mT8d7bKIvLshZ57a04NtRqVw3ucM0DZ1M1AAd5mgwsCsosS84wJyyTlmKssPLuojJHASZ80CooeTv8xuGvcUc63cfZ6z9QoHfVlbpl8MbepkJDhZ00UYjKAxzn3kLOPO9rOv4/7y6EAbTtrh+Z0aHzHG3TDUxR9NPT1CT2cWsFqAFpCazAQEwO1ReWQaAdPm9NkTgOB3WU3BnUXkOFMjCOJ7sZ5WxljLM+N1eS7kL8KRJngW+gZAfCzTQSJiH6w3F42GrweL9w1QIQUrFe4UB/vASyPC1ybib+I/5Ry553AcWSZRpNhZ3OtFIMyjX3RV/B0J1jjbMoY39HfSpolqH3pE+msfzu7bFNjFj6TPc6Yv8Fz80UWgbvPzwmIe+9S9OONk+likOwEFUMFcuyNsXTW31Sow0c0j8gS/zSBj2sFpi13BAe5rbAuF566R3uuVjlG1IX1PNS3OCYAZOZ5tqQyQ5fPZt+VZZ3G+y+dy7772e20Tv3cNWNX25xlcbB1Ge1jlo4KMI5it8bt8HzrhmH2RNkENKBA0WN4nzr0+Yj/fvvYxMO3k65n1z14qq7O+7Kkxfn3avv4jPl/G1nhWXO85yrvD5xGd4hzXl4DC5XeRTr4463QGUxxxClBWJ1rwB/2yfO5ylXbl+9SUjWsbf3AlSFOd/1xPK5Cw3LOCAoUN/odXBVNezQe+E31CtvESxP0CJtR7k6nyg+uvASgA08qgAxQbnL1HGCdokW5QWeRUBqhw21cksww+Bc6oBt8+DhcLet9d4T+coyw5BKzo8cCMnhk3/AGLKOn2j8c07tK5CXG57/F5M3eweGipTsOaRny9+KytAWhzw+nF6N43F0/bikBgpDWk8pMZ8IifVbBL3hN9tb15qgkNpta8TY/nrAnOqNUZ775vwL4lzVAOL++ogL/v4/i6KXCSa3PnrJaoBOZG20tf0PEqBjl/LuwEtbkxX4GKmEvJ+KiHBoDt70ETT5r+i3bn+/t887ni9xk/vTn1nmkT4vNFv396P92DtgfMPq/3F1kFE5W/E2e5HCFC01yYUo7T6e5o2H4/Zu68usPdnq5pQKZM+35kNNmaoJWcZv04stwjxSGzhNbRp2gkx5rMmvgdwom1b3fY233+LfrT7ruPCVMDrDABikMtZKf04WDB3/xdjn999zX29wdwDDQKjlIQK9aSWJSD01lqD+c26YvHGSj1DR//acf//b8B//J/vON//o8PSIhFshwsPs+MRFS6ZAod8t3pjEkD3oBU7eZcvmoXNAfEsG8u9vkcU/iU36lzjj+vJfI490c4kfWQruKoW5s0dgpDAlk1ZNy3wtiZRpKDBWE8UL+GRmwr83QLVe2jz3XXmkcqjxBbjfJfXsJvLACbdSwshi9rlgcC9z6dY40+ReUAAKP0T+/AYdh+e85ygWHUsNxtVmGgEc1ntm32Q0lDkOFUd4igf9t8S2oN+rsLZur352x7n84JEIaEWgqhyeMARgtwWBfvmmXcBt93o0gvprNTwMUaPc+IEjApna1Bti3FOqtRPd72LEmJbmi/o9yTVSG4147QCPCzSi1S9fYYJ7UJmBx+RunRU3iTqUy+z2FWbOIeTucVhhGphGOfgsbL3m4GuQcLItZs/7kleEFgV4OF5vXoUfL5C7U6InFcG/IR50sxpDz1SWYgIvZK6hnIiJS6TWI9BSCLge0791Nk2oMMplRo6C0MMLfFU/GA81uID3bvHKXtUxw6F+glGIUp1BupHdIN4+bza/s+kqHhzv/AQDwz3n3cQwjx4fN83BRyWFL6WcIVgtRb2T4CHNvUx/zp+5EDJjpZSWKgqCoCzKRtBYm+ibFLR9v8PSbwUsZEBbJpmk3W2qILkYGY3gG7p/3AqjU8q8n84JrIwMEDnqq02QQgd7JI5r6VFQUSKLZM/3KhyyjrHOKHKboc+h41KJEgJJCMB+qsuJ0kGM37P9N/+ih7d9zneSKrU8UZYTFXsgT75zNthLStaG9X55CXiIvwMarLIIuua8X3Jd+LkjbNkstXJ3wBO/LNfb2EDhI/K4fbIUJ7kfs2rwRreIbFs/ZtMrf472wD3Kl6BQTxrKFtzjOP709K/44ZsUexSYMdSGbx0s54Pvs9V3QFGIblfufpFTbv8yMwpIIYFufEWNnWZDAAACAASURBVMfGR8dmPj73d94uABxRhWkDBRD5rIXSbwNLejAAjA6c8yxY/kZbjOfiNe2nXpwvydxw59vLJhpQNBu+OPZ03Mt8lmRu6vK5L8BAAdEsmAHU6BHadPH3K4i4MHcKuEImhjNldY6v/sH7s/3XdwJW36GeYzWN4sryXr4zsh+EgpsViHjVluu///oMBVl/8v+ZFylF+ZXotrTMx7kaATRA+f81SuzK3jwEMDfBUQy0eE6KfFTUlheNR+otcNNBOFOk/pXNNB3OLyEyrPflwqGIYyvVH/gx1YwK5QZbDMbcEDXADm7gScEKJzWi/3wfC+qPnG3d7AqgwneUk45897zKPRzDcIJfomR/hqZe/3ZFlNNQn/+uIjnLJntFnmskMACoBHkYASlz4IuSfF14xSD2v8fv7MV45MLHmo+uwVoQimpV4+ZF34w5hsJypPxsXeP1eWEkOaglnmLBKGRJHxACG5uuBwLXzfHinQaNxeaH6/li7ICVkaN7HP4vXpBG4DmAPYxqu4yhRKQ0HHoZAMJITA0MglNsw3nEeAJjA+xvB86f7g76kd5f2jvfz/y96vsIHcH1cPpyCLyah2FUSh2j8veMFpf5mowOnRHtZS7H2vaUqz7bZyvAmmkvGXnhvmBgVCwjlleDwAyQ5nOXBg7bXdgCWcWi7kNSWEAZVdSMrC37bo2AEXCqY6JIlexlTpQ+TEGuKphqmJRttrPe90oDjDHNUnzDnTpr7lSlBgTvcaUQv7oGMupPkdZ03H+0HVbA5HqGX+fai0hP5jpzfy+GjjVNZ1DEzxo3wIpoL+flDxNZ3XYVSFaCcGYA5wQuGhwBCodjVhRwc65QOPNLqbUxacvWumvmxN97VAlgXr0TFiTPxhmlsi/9lpTk6Gd3bFGcxHgHnWBrOr0xRrZFWcRogwxz7YRnMDu6JJAwgxbRhvIdLSyD5eJWSZuFz40jTwzQzjnNMwlIHQeeSXHeZFoY2zoMuLktkcyGeo4RPGVqHPuuD1/LDWlfEBTLvosUg3pGLtEw2juG2a8ikIYoj7xMnbSBFqHPJu486YtzswJxwARgKDDJ1xFZl6G9YMe8uhI0oWNnWQbXGWSAHTrbSTCKexHv0zHbGfvc12ch52UKcdo6pzNlgnO77o9sa7wf970vJe9eUeW5l1RbuICb+Zn834hA/8jeu+5f9SWLPYrRp91T9qEqjkkGsDvRl3O3+AGvn/cHv+PveabxTP/BOy1aG1q+DywBFGrtfOm7L/bHZf5d0vteXSl4aH19ZrnHlwj0Kwf2UqLgi+P+KpWijMnrxv34HPn62dL2a3C+ggk16Il4f2A6vrzP5XxfqiJcQIUvAowi0fav+0H2ZWVMaPkd54LJ3LsIor1i/FyZCVfn/Ud9y3f/EwbB5QvzO6/s8XykfZ0zP7j+EoCC0+9o9Phmcf68Y+x3tA+PIGzfoyMj1cBEUgwwc55YQvD9lgZc5hjT+D5OoDtTAd3W0n1HoL6M8l8vFYAlevjfQBpfYsOjsex0xczNFPHoCxAO5AAOyxy/ZEowt3NrSUulOCGju/btnqrFEuUH9eOYDoUWIINVEN5ugUxP+iy2ELUSiVSAMlm3lmkG/HxGkrcOOeSLMY8jaICsF15EbzJ3+O7VIhaQAlgndHVoeB/+m0r4qWVxhl7GHjnE8Mg4kWyzlTFBozUikEkZPmzS2Mk2oSO8N9gQaElZoCGqn09HH++7R06CFmfvMUa3DakSH0Ylqbj9fcuoWYvIuAW9rv32nHOZ/XTbixhb6f+I+On3Y5aNUl2UtHGMyFN2ocUUrRoG9Kf3YbsBqujfQlCtadKuc5MKYVDOb4hk7v3zP/+MsQlu//UT+jwhH485P350oIvMyH2sY33Eexgwc23bco/+tsE2wUZhu/ibPt2RtPsO1v/2/EYX5nv//0786/9+w9t/DPRvN2/748gylvbt7mfCR3e18Eh1qsyKul7zNYav/YV+yYiKBM32OCGPp5c0fC/aER+uPyEvKkkkCCiyRMT8/QLcS8M6DtVhsLPPPUDV1x2f1zvkN0+lsdbckeG+1dT1KPhONPh35HxYKP0qqGWp5HOyWmZ1EV0iHQsoOcJ4ZtSkl/l7859ZmlKjusd7iE7+/jnv2Vo6ygCclSECOTTTFBycbnM9BaDh+2Swr7jfVeDZLMvvSp9CoLZvHpk4CmMimCGMlMsRkcBNYdC5v1DQFcjPjp92MEo8o+jItSdNge6R2dQRIvuEc27bIPVU37dSkQh51lHsbuxeH7yfDdIVGqWSAWRa3/mvb0iNFzoqEoBytHPs3q5x87QhfQRgW9Y6AavFuYz9eACzHGToKpgKxs836PenR3lZMlOCZvvtBkZv5XRRQI30xCwXmo57OFAj5t1tD3thOrjGagYcw+i3vIcIjl82wID2HKjVDvS01AkQM+jT0H6LdLK9ef+0CVzr40SKP57ie3I8a/99BJga7d0utoiFQ0UH0yzT1wCgf9twvms6zP2tQYZiRBvb7wfE+qJbwipaBAD1WaomCFJnh4A5bRXZ2wRRmCYIYMTc6m+ug7DROR9Ihgf/LbC5DgOAGk09EzDmQX93MeH91yPBmRE6ECYSlWqO3BNhupYw7s4aaVHu2jaJFAgFsEF2gz59f7TCuOB60WMyWQC4wC9Bh9g/KNqcYEGy8vy88BS5YKiQDVH2elHFYOWiGkPpw0Hz2PvHrqFZUdhl3GtptyDOBd2m1hXT0HimcG/H1KXCeS4OiVPet0yl+iLWR8ef+zujslsI/PH9+JkCaKS9WdJYZd8wfn5Pe502XupjVF2geFfxJbECCUDuy4sdOi425RhfgBc7KVJZtFk49vQ3znU+ZH8zvSxYejjO6Z8kKDadYGu2jkk+r+ecoEDlDAqWtpjN82eEKKOVe10YBi/TUOJeUmj10hSGLedc7R8BMqBnffi51ASmOzLKz3dYWAHlXjbWecv3BtyeYEpk2CvXK8GEP3Jw670vzIZMO4iY7NJn1++eJxYxy/xImfP8SVbIC12E+e/wS2lHvQpIxVhW3Si+t9AWtjJfxphpEZX1fbUnI3VJIiiH1lb2BDDvwzlIMDF+/pEw418CUACAWdvac9Tc0TKk8nBS5MrLKOZiJWJeUeplQqFE/oBEHYO6ZYio/sX5qcJeKYzCe18QJquLkm1Vm8yCuoC4MRHwyJvQcJ5aCZ7PHBMmcrWZO5i5qZFH6+8vkwJWUFXjAftqogEZtUw0Gpg/i/OflLU6oVFAAz6jHB7L7yMidf1+brql/5dUlqWPZE1P4PO4afH+P3peBbzruFxBEmAe2tcNEPB+V8088y+XhVccfzdgGmrqBloeaN1cB6MYV1mWzr8Bgmko/5EtkhtvObwy8lIMzz9F6MOgsU1hx4DSYTObAJ1qRlScihZGJ1kOXSalsuby1/lXqe0AMtfODCIDejgYI4y+vTKsu831PuDrmVF4CYeiUB23z473f9+w/1bLjE3q3tQJKPOO7WQuK4Gfy7qtYn9c20ueamWgkH0FAIeu96maCi+iEVV4No153pd/V13nPN+lFwPGFBRoXP5j9ORZD0W8NmiWPXZkeagaFUTpXzojC32f0XAzWA1HxGey9Bt1SlSiHOMEDf35a19RDZ7vTPuw9sFLDZVwqpxuXA/5mG/8PgHj3Ctlrs/SBvbNl71jAF76rbQ/zinXCRpfDYo2x3HZk+qeW5wLp9aX5waQwM8IGRNWzkfOo+2y98ZZfM21z7bz3oA754alf1OcU4EhGoGbuF947UuJWwgGFLK3Ul553ffIIFn6Gsh8fuGaDU0F/4enISxlggNI4PgZ2YHpABqgNqPC3rylDzw3P2xJueTl8thnH5OdNsxt7m6Zp2/NfRk5eDZguVwDpYyhIewZ5PrKkoZ2aW8IIebwRSpHggkCv3ftq1KtwwKAmQ4x1tLUeWNb5paDfcE44+O5P9Q+VW9nMhDJOBEHoWraB0tpwgRmOvWlijNf5zkMUZUr9vMNcx8amDZmfQfA07PgDjHn0IhUnmlcl/MjJ0R5p2CYCXyskwFb7MGqqZFgk4iXGK1zuzjAC7OCa79UGsg/mZVUkLKPq/oD6YzWPTQd3KKM/6OoahXE/vL31U6rItFLudOyrjEEYn2uy1c2S7Wl2bZ65lWHn337ghlgJfUnr3quEOwYUZXpzy6ynq72dbWBrqzbnCtlDlY7HFjAosWB/PIcor9xjx8xA64O+dUGLmMtlz4TAIv2gkYFDAWy1GON2iN8J7kwAF7Z1BfH/aVewR9E1L3t870ywp7nbKyNKuz4hcmh87sE3f57Lxt5rn25rkGjenHPqn7QtQ+uIAR9sIv9sX6n3HfZu8o9a3sqMJFN+8G94/prAAoapcA+XU1OT0C+PyHnwPm3Nz/Q7pHDxXVCh2tvHu1h9IJOZmuew0vjrC7GMLiNNEoAcgLjfUe/NY80UFWZG0PbXEUfWFHHIhBle4uKC+F0VAXtPqCfZ5ZWZAnHWtUB5Z3OX+4edTk6WH2CUXWWz6RQk3x/pChX9su3t3UTNIP95H0pn65G7oerJoKep/iwKZYXVSPkeczFP0qZHh5UgHuW+wbcbhdBIJusARrjF+NvoShJMXp5QPLK/OBp7LJShB/YM8orIbxlbxHlJy0zovPpsDUvm+YOt6OHtrd5CPPdcyOiYxPU/eMEEFofNBSCrSHdcrx7MFQaox0qkMdAI7MgWCvL+7W5aS/0cUwH3pob5/o9HHiW8aRDNnyeyhnR8Lcb7P3mpQL7uaYMjYH2EboNuwJBMhg/370ZD58z58+3WIeAigA60oE7frlhawL9f/8b8HaHfbvnO+ThTPrzHsJbnyVXOtojn6ezxj4PyNYw2pTF16PDzkhZ6WMaHRSQDBYBmqD/208wEbTvT7R/GH46nc2hv373Sg1kgeSEFOA+n+X6KwAVpuU4Ath7m2vgGuV4v2MRvTNnDbhqr49N/8lL9zWuqW4+/mZRRrd7TedCAV/AAxpDR4ngby00ZXwf0c8T6OdkFVRRUyLdEZGhsTRu/vtWlPD1eQIPb1fqqLQAkAaC+dUjZ3eD7BtMHBAa7zso7pagz6YwoUaFTU2MzcuR6uczCCqTTdSjkooe3UGr99taVreOX+xf8nnmmhEWTOH716gTsDKhThfBZdtsn8ZbMjcCXBv7fYI0QkFDpPOQFUmA6UTpTGOTyDfHsxzcZ2jRcGxummcHAB9XOhUtoli3fabJDWTu9rJniGa6g6mgffd9imeejNBUUcnKKfrh0fSxF5AOmCAEgHYMjKEYN79vj5Ku2pHOqT68T49fbgHuNGhoDjQAGOFUt2L83SUYFQp9RlnV2KPpgNMpycoF5vNVjoHxvsW/p+ikVUOJ66a5rgRFk+loa1QVEvg5df+vA2NXnN+27IPBdIA334O2z+6Aajji/c65MwHd/raB5XgTtHhT9LeGx780jE3w7b+cLsxIHQNfEIAI+pt/Rk/L77Pt+hzYgKzOwDQNRvT7+54ARL+3yYAYBukBUsb5ZCo4v20Yd0X79D1qDIM0AQ7E2i/AV/SpPjvw7Gjf3W7pd2dJSFSD0HN4yUuJPgbAig/9pjN1MIaqRYUKr7Lg4EA6prdga367z9TQ0HeqzDXEegQA0e76KrF/OVju45jpKelIwhkCQIKhdn/ztXAOT6kpbJVMIUsHMsCvXZ0FOwKoEIHd2nTcEhjzZ499CwYFchyTFcH9ZNPQXIkp8s3PMokqImlrsZrX2WGfD9RykItDy+sKLBzPCCrIKhA3hp9rAJIZWx19isSGloLVVMQAF/1cRZypcSapAaZZvjl1mOpeTcCnadpwVR8nbYNLMA4iU6CU408br/ZDBSYiHVMAZHnk0m9ydrBUpfQxz6TqdNe2VyCJWgqKmU7Hi07gcbqu2XlC9n0J9FkERZFV6gzGo7uUgqwCl9PJLs5sBb+vV9XC4BznvNu2AELid3tzHQ0cSN03MwAD9oiGhR3kEXPOpcsZyesolc609F29mJpllkHdZDHU6gRxdlvY/1PTobAF2Fdm8R5xJXA1G7gKjlqCE9m/Mn/3pZ+vV73XK5ZAef9M7eCYiMy5ohtSB+LazsI0IPuD/ZT9dn2/YFf/M0KUfw1AoRgmNFhyEZi/yNgVMJ2MgULZymG4ICos6eO0tZb0DtSFVKKXiaqzTF48y6mwYbyJOMWnIkFhMIqYi5lgRaborAI+WBlBjDZm+btKs+fFRTskn5nKx4Kk6qajAPgEIM0r0yCo5C8OHJrMaPOX8SioYV/7Yrny99GXTEGJheiicbpsoHngFqX+K1p53XCzHWwXNwcJkT+zpfqDXFDBFHPjvxFOYkTTl0skDYBs64+oUPXfoyCyOd+C5pqCZBwfN1ZZE5y0SjHJg95YRrWOSRPYti3IpMQmNump07hwRwb5TBdRu8Num1dMOPd1I+rmoNAdwDDoR0+ALn+OATuRAlx5qFqU5AsFc3l04P3N34OfISAjgolCx7ymiBEdPYJY8MPUgOmcZdfLTF2pBzfbCXXdIBFkJRnFnMel7UxjAAoA08MQY/pR6EgsWgYELDk390hxIVBZB5HsoRijLFVW5z/bxTkUBtbMD1+fnfMpvi89hIi4BijkCQTQMkHDFAW8HIqpyB7763IR7OM41b5vLVJt4mcY4ykUVsa/7iQ1BzlF8yJlp9Znn+BvGAXxPanvxDZS+O8aPeWzRGbaFJld3Fc4fmRrMZ95rOdUpQi6SOC+nh8RmDFEmgyQ0dClckPMh8zZJrjEKhIXxpdx3kfpTQoOEwjI+udx7xr1TzAgmTQ+FoyeUi+BzCmz2u8AUwzmvud7mAKQZr7OBDOaayiaEeXZJsgygFch3FFKJNp83xGpDdZszluBO8S1Dr0gz4fUuaEgrrA/ARUHUcis6Pcod3vOc9EOrBFg+DtpLUMZvxyVQSUzss73cYG5vp4nw0XMRnPRPxOgPQ16lptXh4+OLq8ABlxcMwb58jlXopevuciAs0UY1OCa51mvBLHhANUZ4o4xJthbMmnYRoJptb9szH3bRaSHN+1i9wHFbOK+GsYsMOck+0VKn3yZQ1zLiM+dl79XBgf7i88etFEmSJK6CFyrBhjWeW0S9qGqC09zDkMSTJKzlOA0A0yz+tM6MAEOKWIcdLZVfCwNba4D7tWV4MUzl7Zy9hf3GcMXavaFgfCVGj8drkxT49jW88guz3zxfouDJrHnR9AJLYRB9yj9Hs4ghSUBzFTMAARrBarqZMkRpckBZIryMu9+0MZakv7VGKUtU97lCiJcxeLr/9d0i2rPAV/GYZ5tugTe/DHlnrQFtm0dW3623vPV2Lyi2F/fi/bn8i6X+6lGW32v9/bGv+s8o7hj+jlWgIVIibyyKCo9vz6v9sWVwVz9lPLvZKWXq+orYNtg1+9ePveH2hCv2A9fb/THf39126vNmPdSXBkeCwvlUi0i3636jrT1+X6t+Vn6T7zLXwdQKGq7TtMkpS7y5e6RB0YaHTfmQkGyyP3Nl34e4Qw02Jsb+vodE+UVL5fGaL2EmrI8S8SrbspAGGDT+aj0WTcgotRaQ6LU1E6QR4ftrkRPI2b71XPw05kaA+jbl8VpkU8IRPvC4GalBUSJMAR6WXP50sBu0xi0hhJ1Qyl3F99hRPQReeGvKGERcc2atFFLOGtCP57At/fF4WHufuZ9AWVziXcmSp0bWAAGvacyvkc01Y2azwP4LErrZVMxldCKCCNWBOhhfO+McJlrUAATAGg6n8tLLu3k7xrLDY7Z1/dA5NXFM1OICUi17PboSIEe8zHWT1/c4+fI04+oroyB8b5j3De035+hCO4GkR7n3PAU64HO3NjQcjDWid8IamzpAMnHExIqhPo8Xb2eSDwdveOEiKCZJVBCUKz99vC2fj4AVfR//Wl20zGyosQ6tt7n2HZvzwPA48OReDqg5mtMQq2eURdT9bU1Qj+Cc2c4wCZR4muOEw+26Ke9sFLue6SOjDj0xDfmHowHSAJhRr0HINkVxugKo27fPz1Cxs8WsNP7XqG/R4WREiXL+RvzjxEb6T7eNYUiRereXclcPh7exsfhDuIz1u95hrO4zao5pN3SgS7rWj4OZ4ZcD2RgGkjhEC8U7tYmsyfGVkYwqNKxm33kxkH8PhxQasiwUs7YPF8Yxhx1c6YXWQOxdnLuM1KxU+ugRIrC4OS+J6f4+n48nVERY2WqnrcbYJ8AQNflPiaS2g5s6/lt9xz1jwNirqlDFkbN6ddnVFBp0f+koJ+uRZJsu+P0/W6nJgP1e+DnVuh7jFvzaGt0Q/t97mW5Z/H/CR6eBkhEfDUqIQyDShgX58gjjtG8FO4kY0aQKXfyeQY4ewuRwgk0yekgI0tlymkQuO4Ancql4oPBqw0AGV3PCHfsacwzNxX0m6JhwJ7waLExAIEEQ8Z96iFYLdnJv2+K/j6dcVYCkKcudGgCzY1aIYJMdZL3rQQwkPR4GQh9h+Frq+zLCKbF+dMWInbA9vtMz2BaB9kg1/Q7loscm0I0ziAtzjYARsQ9k8Ep+YyCWxOMWxG3DYDIQQgAm9tcerhGRdpNmzOG9Nl9fXLvyIpYLc8/lQE7PEI/4tzmPbn2U/wyLiXYTn/EMMG6JhiqSyUPCmr6+oSnu2yxJ5R2VSaibJpzb6m4EN2YZa+bpzVluhHBUsPCFGAliSEKGQLp046UYZDQn8noOM/VmAcpNBlpfHoM2HA2CwRQ6j80iYmCCbYcNlNhctzHUrr7ChxnNYaao35xOGRjwO1F1LoCnWNMkBTwkrXhOKaWTz3f8gEzdY/7r7N7N/RvOyiyuv3uFYT6nfpcEnOy6NckGFZALV7xtwyyLNUXyvfL56sg8pdLS5/aCyE/ICvMVQHJGYQYq5NaP0OnOd9nOrSSadITaFtSH4J1KHeyctfIe32mnR0pwKnyJb1ORGB9eJqTecQ9q3fUMYxnMC2GGj6uw4Bs44yql4BrspNa2FoyWS2s7rCtbmqWcHzRXn9Xme8agFP5MqyHvhRBqlfjG6xUb64B5pX9lmddwYQXqRpynYeq3qbKyL6OzQugZ62wcQEBslFafpb05/JsCaAp34XzrPTl0o+tAUoG+/Cx+QNQ4S8BKJCexLxFuymGbIvzLcNmbhrgL2sCGDIlYBrtNj9D1DIEaZK2TGeFuTKk45dNMZ3xcGJzwbXyd4Wj13ubUai4T6YoBA1T4j3ao4cB4JTtmdcnISQknsow3PAYb9sUyBul5OLZJjOBCyyMvS9iPTTEomauG6OxUTDdgn3WVtYGI69f0NcoTydBM18AndYc3LCgZAdrKSltzFet+byhgeHRN2SEOr9HoUiNFAUeLMAsDQTMxcYFS2e4OD+cJimiGDlgWbVD1d+plhqKvpbTgY0sx6aYImxhZMjR0+HRc8B6OEk8h8Kg83ejISszPYMRVoosBkCkH+d05GmYEGUViYO0bA6kVUfqRf8W9znPLH2VDJ6f3vKgTvDjbUvnzLpB9hbOTgdIR4+I63hzUKCVtWWkK4sAOBNQGG9Oy8o5HeUNp7CQOahQohgsoelrTHwuP7z/0Rw88Eh42SDVHR/vJx8f/TjXdQ6kCF+mBoQxnAI4/F1l2zzP6fSXuScicy3QCWwOZEk4AVbBks8oK7ZvbriOARwTRPCN3PeITGkiS4DAXm0jo9SkFbKsLrBEwVmlI9cXP8O1xLV+NbTyQDE/mNJpjbE4pwEy+8AWx0yCckinV8I5qM+S54n2uBxeI9oul3Br3ZeABIiFYJtZMAmKJkllqdGg7GN1cIOdsiq5xyPDsB83BwtYtz7ZU02cDcT1PQzaa5rdQCBqMf4Nbj07SGd8vs40uej2yUiK9TUrCwFya0tVpFcGMZ04ZW11AFDx83YYRMfcozLi7IwCRD55Un+3Mp7i9x67QA9Ah6PVFIHMCKLK1H4ZBgl6PtkmYpafx8CkxcvMYwfc2CPt3/agfwuc7j/ceRBDCmAxQEYRSY6bl3l0poqxvZu6LUKxMYGnKpi5iKK5M59iu8/h/hXBM5357frB/dbtD63A104tlPjsMcKucbsBMf9MLae9p0vM77DMpNrc7wiezjOAgplngu16eORJTp+b7bdH2g522zKgq4IZcRcfH304mFBp/kyTyTnDOTkMOC11M/zcnmteTrh9F1HMfmO0mX/3/9rn6emxN0SqRQFZ+M5sp+qMSPNv3D/jfG0fZ47fl9xjCiBTPDX2cVOZ8+DhwR2mA4kh9mBEegamE3mOKH/uARph/+gsyemDacEinayGBG+rMV/smLwiwJVVPKoeD1PuovzdH1KY6fBQHK8PCOnpwyY7IwBGf3ZPm0vIOsh5GPv8iD2f9pW6HWzD5l4bDMpZeQvo7xsGQZ9Yn2IGfC9AUrznAroBX4UcRcpZx9TXMdua+2UBWtj3ZDcQOKtsgTK/si11L6jOJW2utFWlROdt9qmI/1vEWQdl3FNvIffvEri7OImLXkL4CtIUFgZpdVat7MPZLlL/mUJRAJgZLQ9wggBDXZPDpi4Kq1CMeFa20daftbQinXfzFCMLduQEWkrqEO9R3remNsgyxsjPZD9c2SFsdmvTsc90jeiLSO24rqmXAEx9Pj9/BQjGWL672KH8Xh1fnf2ez61zkX1AlgGfRXAjviMDE6CK1GFqVRlLqP6BjshfAlDAGA4o7Hc3RlqIKUUpIyAcPyCdeS+L5AaxkDXAK5HmQotlvXQOXMfc+LY2HTTmY5fITiJYQcX6MrCKpJ0CfoDLOTwqnJ+PwY2/aRhMmQPMCg7MkX1OCn+/39DvDdsw6OeY9ea3kjoAIHOoudDGzAtkf+AsGy6NAd4vQIKMOpfL9i0jtIlCM3oa303nEj3y/aaewVLSTmSpHsHN03Dmfb5QlWt1g4j6Q8VLkPVAt/mewapIJ4oLjVSrC8jifYepfaAK2wNkIJDSB2AFnWsKeyupaHn/GgAAIABJREFULKFrkYbC2WeO+hiQgQTHgNh7z3nYIJSlGUHJspwxNyzSdfQcGD/d3SD7jGjumzoYwfcaSKcnad2PA7Ab8M2rAyx5r9GnnYbtY24y47ZhvDXoZ4fo8IjxMdIJHpuiHR1QjwLaJtDP+Q5j03RStFtR7d4yV9ejYyMj7nmdjAIqpAXaPLytoi6aJ9aB7utPzFIsTPrAoOHIOdx8jde64BLzgDWnsyLLbfM8YZviqKiHLDCjP3WOjNgP9isQEQCIcT7YzPN/PH3+vu0RYdKMEGaU5AxWkrqxISCybMuanIZNrLl9m2uNRiUwDSsejoVFIY/HPIyuICLZWgRWCnDjETKkUZciiCESVgXVJPKcLcDL3JO47ahNkOkakQF8/KsxVYwqpoWlDgVZUTc6V5ewAUFfID6P6XjU/Z6RrPx35FPfaJwWR3B4CpOr+zN3vKy7nC+hUr4pcN8D42mAUmdFPSLLqj4Ema4MEwknWeFl6orjPer3MA1yANCS/0yRO3dgNM6H6G/zaDHMIBYgxhaGPRQuloBcVw4Uz3nDEnIsd2eIPQ5wwODoybzzFAedn7fhivubTqM0viewPKsGQQCd8yl964xmjzmEHN+np2o1+B4xbupVChrQd4Wq+di2qDbASP6JJapHJo2wUsa9ZaqPPo5F60OecT7JPXUFfB47GOJngS6MBzCkIohUovElFcrM52CKhhoyfcRZF9GXu4NregwHXZ6u16S/fS6GqGzB1jFbRTqHhb4EphM3RlSt0owcc12xTCqgsJv3+4CXLHVwBsEcFYgaxruXDW4Pm6DCMMjn6Uf1VtbUNd0hByQeOb6CBQQblEwTghfVmdBVtwRmyTbsbw7ObFLSaOhAcv4HXd9Bc0ydpBDQdtBmRwrPcr9twYqp6YbhyCdAIT4XamDCPzvHJP/juXqeIaY9XkcZuZ/XiGmO90hwYf6M+9MBqeWXaw54ZcGxrdQzUI9ii07G49hD44WsTgP6vQBMAEwBPUpaagWV6PxHX9q+zT2Xf+c7hnaCpK1cnMTa3pw4sa9w/FhiliLo18tWVmH+mgwpjg/t9OvZBEzgQMscqVeNdl+v+rtXoMK1rWZwsKmKHo/ZRoJI4cCmWCerNrg6dzzvRX/kPAifKOdYX76zRPer844AvKu44+KsTxAs03I4Fy3aVsXLo1/kwsx5eakgIeLKTKgimNd7AytYAe49ZT7y/4stlQKp7K+LbsmXFIwxXDPhBROlAioEPaq+Qr5GD70+zjOCCSHI7qKbDV9pF/P6awAKROqfpyvKYy44zSgq3OjpBSxgNPvz8I2UxiQnGkUKywZQB8YCBU6qaQxgOq23lodYUghLLl5GHjGd9QWlDEYAo5rGHHjxKIQcsZhUw3A2d1LjkiNSMY4BVQmhKe6o0U9NIbLPMoXx/vKI6H5rSUVecoDNII9n9r8zG1oCJnS2Et3dPHqWB3MBAnDwfrN8DeCAAwEP++YCdkupOzozVf/BDPr37/7ZoMFRAA7iglK2hdG3ucHedsW2z5J21pobjt8/F/Ci0rHpQM7D2TftdEQ1RLXGdFYTHKgRxqDXsea0Gzh9ztExDR4axaQZExAZm6J9nCHAGc5IlI6ztzvs3kLQ0aPeRoXpY2ocuEHSMgo29tucmz023z7Q/vFY8ln9neCWSRhHvj/6vNSni/Dpw43hHmCG3fb8/rhtUFX0uxsE+j5LGkp3Ro5+ntDHgeNvN5xvbebDRv/azw362TxNJtIFUliRezPBv+qsl/E0VeA9ImSkz4lkFFY+T0CB/re3zP1N4Tsa7unEWK7xFPqiI82DNtauCwmeMx1CnKFgEk4mHT+yg5hGlPXJAwQkQyrBt6pFMA0xWABNBALKfudGSgB5BBersVFBkauRTfCFaSPes8tnqiDhktvPNKRy1iQoWIEXgoL83gAAm+VyOQ5ARtgcpCiGVAA4eikH62sj3p2AbBVgpfI5xVrf73MORXukghAA9NfiIMQ+Od5uLrb3823pQyrhp7DoAj4ITIMhEZVh9Hl66eDN915GKeVw7R+JuW7hxPBc8kBQee4m7kyLD9fY1KO/T383UtLpeK7ATvxNvCyfPkamMVQqaIpa8XvHQOsjSyLi5iLALK+ntXIJ79EczNDuTiweSOFhpnbZLmkPmNAJjnlQtDKy4oMKNAR5rUkyE9qn63aMPWi3pllSUo6BZsioMoEstzM8KqwYkC5J//fnAu1jrGdo2Ca1DCK4Pw3fY/RxuOgs2TJh2Mu+ZXWgeo90lNhvJSBA1kXScc8BaYJzaxgKjNA1kAG0zw6Bp7WwvaaC8+ebn0ObgzsyDNv3J+TjCXz/8M9uWwrdjm/7FG7s0bfcO3MdjwKolv5h9Q6mXRBUEMBukfpQyqQ642SgPdRLcT4ccFbeu0nOM/08VkYZRfk2P49tb7Pscc7b7mlYJXIvwQKSzeZ+n/O12AhKG07B1ByyB1TJfC3AC4+oTR34hu9P9nbLUstkMbbPM21EOX39OUA/53wVFgUdLtp0VxbmGRpWhUFm54kaSU0Ke42UV5A45iYAF3qj+B59kQRFY7ypobUAz9SO0dkuEZgGkKpwQCVSw+qe6aVQHVDwfU3cP7DYF8q6zPeOeUBgDyDIUpzPwu7LgNzieBsAm2y2yiJgX15TGWr1hQpcxJzmZaSRR98upQFLkOHLc9TW89YshdJdM8lmAEtkTSXg1ftkfS6O9nRmBXEW5L5Y7I506pFtlKalAshkCSysBTM4RZfGJcdrTOf5R6Bgjkd8n/14Offzc7U0ZHlvghLSAAOZ1NOBf3lx3vCiL3ScADxdSCI1NRk/1BXh+L1w3POZffXl8vcSQVoCN2xrAANLikYFIswyFTV/T+DnAkgkgFL7L7/DFJrY5HiFTbKi+uv1lwAUHCwIhoBWmhCmtsFti0NporQuQhU3IZUKmJsLNwwedtUJeBWp5oKtyPRCyanWMkWsLo7NxRExhgloKNOgO6bjCfFcXiv39uch0Ozh6RG1jFgaqh6RGW9b1kZORXVOhsqSKFcak6zAcI3GdUxGgUbKR53MFVyom1IqSysSzeJGeXKTtxSsYsQ2Uf7HgZm/I56fKOIHz00xmmY0buwCMUW3UPOmOObA1IVgGxWwURxElqurVwFqrA2PvoUGg2wNGIwSFUO0bghxyOccjOhIGoM0hvk4uURBo++TIcLcTJbMi4PVy0qFk5pjxgO2vnMIRNVDiJ8v/cp3v5bRozZEHs52mVMKQKOed6HiGcJxghvAEk7aCIV5Ocp94EaXnQNyvqKuYR6wqsuGmp+Mdo1d0Y4LWh+gj4SmgWu0WIKXnLuLQjX/llGuaVAspTjbTPsAgPHzHeO2ob/71to+zkk/5X3p/LfYF0i5B3y9M3eeaVAEMrh/8R4XZx/1/sDq9F9pfNdDifNe9etdRb6sk6UKS01bijmf903tB1nAhCmQiZWyGm9lqIciDWibz+We/urduK+UfljyhC/7ePZrU+Bp86wA0iAXAFQhl9vm4ECsycwFbxJ6BHEv0Jiq/R5rY5CFVPbb+hoRtUwgIZzxLLMY50qlakt5ZbvO/2vkrXYXbe1OFkUAlbss+8OXcpgnz2BnFMgwyMc5c/Cv4IVFjjc1EMJ5XFPuKLA21+Eyp0SiwZisifou4XglmCVtUu4DwBIZwBHMRi4DLe81zEUe25zPtDlSSJUX5079VX1nsvN69wgx85YZ/aljEN9lKcT5R8w5NIqDokidD+ovWAMq+CaGpS8dYA8Aqk3gwgMXpzudwHQook1918Ccea6NyR6iUV3eI8eqvl+MgWsWiFeXk9LnEQGVE9DncLZbYVROUB/pdM82zLlKMGHcvF1a901mUYbjl0ywFj+12CZt7bdcP3ytUdp1FnvABS8SAFvKS6r6WjHLanrsf++vBpRoO8smr3uk5HrIgNkS8bSZo19ttnDiKi275sXnxQiq6nQA6ZCJhEBkWQfJdisOL/eNga/7TrXPx9ccdi8F6/24rH32B9Nc6lKsNhUjwtwDxnzeavMPrBuIfLnXArBUYF5k9auu4EFdc9c9QudcqADBl36Kv6Vfw88G4y/vT6CNnyH4XX2FMjeWz2abyudfUf6vYEJtowow5t+X+VTXttm6dq7XDxz8pP6Pf+Lz1/7n74afZxjOikodhsuVzAimgpphSVeobcr0mRfvc2FUvrzquFwvtu3Fs5e//yitpf4OWHU26n3r56/gB5kq1Y76k+svAShAPHdTgVkScdhCBczyOREV9nJokTf5tkPu+6zbHdHUaqzL4zk3EDMvbcjFSmfg254GEoBiaIqX+6l0/9ueaHmqdgcQwUkmnxSK0xQWorEgR/eI/tayUgGAVXBMAWwN7ddPtEJ/ydz9wnwAndaH08+Pf/uWxhUBE+l9VS6ONIFK6cua7Vtx/KIPDLqIN6ZT0NTL5jwPZNpFpE6Az+SmXsQnhSr2pOUTAQz2QEZ7q1GrEnS3EYYiYAqc7y7ag0OcKTIwmQlRclQeHiGSPoC329RiAFIsy769uYDnpuht95z7zyONjHQ6i1NkwCy1dw5QFd42zbJlYpaCTAr4oX8MaGPkQzHumxusJT8vS01+PzyvcFOfC8BM6TDkPOQ46uMAnpHf3RrwXmjg9YBrkuX4tl8fOf554G7F0zHLNAt/PtOT3Ircfj3cQXjO1BVG6EwVdqcehRsNY1ccf7unkJ03okF++ga83b1MEjf0+E/GAA4kGHf+208wFbQPFyIc9+bsn7L5jXuMQWym+v3wclt7g+wNS5UUUr46ogzsDqhHubgm5eium3Lb0X+54/Gf7ji+Kc53wX/8L8D5ryfko6F9CH76v+54+/eBv/2fH7EefM7nOirGhL1FpYugGOdakmIgUN+ARoWZl75sOkUmH1N7xBkVxcGOQ9DutzCEO7IiC5Bq2in4GGs51+EYEOkT7CPFl1VMSjTQWosSUoV1lWwzgKwNGzLHi4bmaROg5MF8nJ5vSyemalfQ6PjtA7UGvb3d8t8EV+QMCh+rO7BvyWSoIpq1zOY2ozpyjhTm03NM2nNEm/2nU7+XnN4KQCYAawBiXxDJdAbS0plCMEvIzQg8zuE5+LdJRWSljEHRuWA+DbI38jNIEFfTAZd4LvLcslL2ELFX0WkZwVAwRTh1u7MOnowKSaYz6eP0Pao4ahRE9rWmUcZQUz8gK01shvHm5QcJpLSPSLXaoz2nO/yMGgO+VtUwbQMgy8np6fvbeNsWVhKMrIg5vQgksAQkK1ikbk44uJmuwc90C9aLV19x8eQx51GMT/sQyL1FScoGoHmZRouUgGiXhk3E+ea0cWD/7WskzLVw3Gsl6MP11JhuV0AF/2PM+zLPNcDk/t4KMAhIsNTstk06/xjQAyEkOHVg5PCSe0xza5xHxWYxqGtLdEP73dmTefarz0WKaGdEUwTj5/sE3SNlhYwPffpc6PdgX77v0KOj/fpwuvvzmYESAcVMI0IbqbDMXZduwOaHl3Y6Hr5/J1MCgJ3Id10cQsD75zHb7mu/pMkUoWx9eOlTjhurVS3poJwadKItwAwKmNYodEQeBVgAnHrJvmGhc9/2SAueGloZ3STN/zxndDwnn6bz7+kfcQYwzes4YQgRxpjPep5TMHdYzjsA2D4EvSuOXxpkCLaPnmdUAlKhyUD9qVeggTyDHbhE5/0dJCpzLcCBzbFKtm59z94nYI65n+YnSgAgGVbBkKv3TQY1712jzrc97VT+TUpfTqBLphAkn1vZv0AJ1JUxTgCIZ//0c6izkMDTcC2EmupVy1GyTxYAw8YEHAhENXU/KD5TRS0zuk97Ja4vqQKlr/JvQOgN0J4oIEkBG1x72NZn8V7wNcLSkpOZ0/OzXh7zq2BpTS3ItjBlI1KNFhDvCipUW4+MBLNgTfYZzOS9yXIrfUWth7w3bZt6VYChgheqyJKyNTB5vyFZRn9w/TUABSAMsBVVSsMQSCQ+KVeBbmJEfinBvY6IJE/jORE7GunceGjUEnVnRMUmC0IYBasbzAU1qobIl8lO55kHj0nkyxdwIzaCafAXJ0KsbBxtAhzxjC9CQvH7cQtP1yL30HqmJkxnkijX5V0CWGBkuNbbzQ04PstySgsyfW1T3Rgo3mXmB1VF0rM9EcHhRlPea97Tu0aOMXOHw/BOUaLSR+nAlYMmVWc5l2rfcA4ELd/nB8DI0RLZL+0yDdChUs3L4e+OYum/zt/JpLfH58leyLrYQPr2ueupTACijh8dxL2tc4TvWA4h24p6+pjz3fZZ1zlLb9IhLcAfBNnvy0FYxwEA8+xfpWAtqRtbpJhsW2FErA4kyzz2u7OU2qfEQTEPjTmW8SOELWU48urtVt8vTo5x+Z5ECgjbyPmuLtZ2/nLD828bvv+PDf0uGDfg/NuJ7ecDZzOcu+L52wY9or96aEGowppNg2iYR+9+RPsLY2SqmOuyzha2QI0y5B4i2QnV+Mm96Yw0C6apXIzM3CtzXl8MFGACUfXi/rFJOmkv9yuO+8C6TuN5Sfnmh/mOBAxlzr0reODfL/cT8b6vh2WAM7nXsw286r7GPcqmk4RR7Bfoko5AEckEFXoZn/pzxH9a9l06XRKO2DnHkE6V71s6QcWyd6Sqv+q6h8c7cW7bAORLqal4xyKFvEafo+2KyTwAHdSyfhhtF1KE6zmCuZdsqyHP9A1G2MfmFQLcmBUY7zOQedakxX8tUVloxYqkbEucQ8kcrNPX4u9a2hN98OUq50qqyNPou9oLKgCaq23TYeVnOcZtni3Zfo4vHxnzIt+z7h2Cr3u+8Q/I88z7Kfb3zQFJuVCueW+R4eU0sx+mPpUJAGppjBgU1PtwT9bJFkm23txXXZzcxyoDH5ECaLtc5qLN9Zg2XTB6BCvrbzmDMLVCLjbaLPW7lfQaLGzGZOzFubzYFnXM+Vgz3xw4R4ZgYUZe5o7Fz5lCa8kGXOzMCkwCP7QD0/7gmc+J/KMIqujKhst+kwXEWX7/wt7LNF9d/4TrvASmfcz/52vmOTz/n3tW3QN/6OTUPb72Xf3J9jJtwJp7RfWMrTbtD86vl9fVTwhwxeeNre27tvHLXl3mFu3RP3pedSaXj8icC7zG+qyvt5X8abg8N9h/FXD4AmAU9sIyr/6sLy9tX8CEP/tsPc9eMSt+dI9o3w8FS5e+WlCUf+oRfyiE+k8wAP5QLyPvE4DJlZn56l4/uuhnMjUmgltyBagu118HUCC1GQhUPnLfCJj/+nAxnJ/ubiBtGlH3E7g1j95GpFV/vqF9P6H/8duMdpcqAewsI/0s0goYdaHScdauZl57jaZTIK5u2GaTddAAiqnIo+TUi+fm1/xiEcH45c1R6d8+IKrowdhwNNIjFq4mjoVlIEcHHpEjsyFLIfY377ix72gPF5ySR1/ye5nGoN8/ZySSJcvi/vbmeXGpF1AnVO/Tv20KsEJBH5kqIsfp5TvDWbbjcOOy5GmzxNAX44uO/9Fd7EkFCSSEkUQWi9zc2Bm35uP3+ZyOSO+raA8dr8MgDx8jPI+54at6f3166ULmZsoIVgTBBNJz6VjD58xQrzzhERJGbjAFkxLNlmkQS8y/oP9aa7B7w6CwlyEFi5hbyJSHRPIDSMjcyehPoYEQYlBWBEBdNE4mqBQG/njf0d+3LHc2vkW+6+8Prxbx8w1yDGy/PtC/3UJEyxFVaUGdDs0Cu21T+Oo0NPR0Anl/RLSQegQQyRx3VtUY3zi/DD20GI6fG2QA+28H5BzYPs/ZfxHp1NBAcRZJlAgVccdvU4y2w9WV5trKmtbDPPoYlUqkKc5//YbHv93wX/7XDc9/GcB//oT9/YbtH4rt7w349R16M5gaPv8nF7L5/H9uuP1DsQG5/uXXj0SPxSzXO277LDdJRkIg0VnporIXeKkA0GlkU39k08yxtXqI9BB4PSO38tkWFDqZRtR1MfM8WbIjBlLwSn//mHssr4haUYsGFN3LfPPpaNvdK8LgeXpkuA9g3zDumjmwdg9DkhoIIrD75vOrF6cRmFU22G6jARqADgGS0CmQI9B/sjM+Pt24f7vPvma6TXeAlownAMDWML7dJrUeYfzSAIz1uJQgfLth3Pe5L8T6o/BbBfra7wc20qLNJgsocqypNwAA/d1LEG4fPfdExJlKFsX5FmvjCBr/czKPfGwAGT0cT86vGNP7/Jicfm6rARC4Or8ppDnboL8rYG3m9HcyDwcEA/22+x4XZXAdZJNkMw3AndWbYtwVYxdsv3W0YCKIOVtjtntgEaWtjpfM/NMsA8jzvQlGgNj67Jn+YfdIkSIb7HTUiwDfDDzMyLF8Hh4t5b63tTiDFPjl57k27xvOX+4zdebZsT0OyAidpcc0Bhnlp0iui9QJ2qNHhYY+QSSVSOcIlszTz+mBODuLjhH3u/7THfK2o4UNkKlx3SAfhxdwif28RuMR9/R+jP4ZcMZZWessAWu7ov1+ODuvAuFAcerCERoGsWmrQD0gQ1vEdTamCZvaQgMAQhQ2HM/2eXp/RJnoBCNCbBpnh4WmlJizJcf7zW2yYNihOQNxAunidgmwAjrBhhFqao1gx/R4vxEsINVpmww3bJZKEMcJ7QND392+K45mptKEc5gOeWXhVnsn5jxEUphxcW7ozFDZnXvYefr70VFk9LoyElh94EqnrtdZbJScOPE5lugNu4TMp/OXPZlUPdY+oq/bb0/Xmfp8IIHu6F876xmkpYTwcKeoOr0j3unpDEcGmnxvbWH7Ym17AYMyKIDLZ/5/6t5lSZJkxxI7gJq5R2RW1WU3R0gRzoJcjQiFS37K/BN/k7MYEc6wZbq7HpkR7maq4AI4UKhFZHU3uSmayL2RFeFuDzVVKHBwcHABLPi9BAipDXT9DINa+unxuyksDsjjObUftDBRyI4oQu0W6wg2AsTcZmn3/ND6XLHHLHR/xjk1YcY1JJIlXcsYZRvD1edw37l5JpxJQyayUIJuzvVtw4f2plewsGrjUVg5MvwLmxKYCdEfBeVmwHGsgXtJbmaXhwpUdLhNqs+vvg/mODDJXYGea9LRymdo0+tRmJwsz0hGAscw2EcC8fe/lLNc3v3CJuFnmsdnt911vNgBTOSTMqH1+GsAClyYiXj7/9QCuWaghFByF6D2Cc02WvtEeKzJFImJawBY66vaBDE8YHQaunyGejIzd0XggIsBtQ+/WyhEiEX+GRqpyNY5iVpq9G5WTKeGmT6FAx1DstZewjMlXbM9x6oinRNuHf8PVKIrGkj08c+OilBykbQG3MtY7PvM3vN36nX+2LbVSMU5fTNWDwafPVHevFc6dHRSgAUJzvep7oSxG0N+Xy0ClDD2ZjNA6WMGw2wVlllF11hg3sQExcEnWDAp06TiWn02vv9uuJiOGEu4kxgilKYCjQyOxN/H6+7U3rfj43urBgNI45CZnABpAKSgnaUzKuV7ocb8DJFPKRuLrbXFmcUrAp9st+UBOlx8Ld6TCaBjhO6FRqu8Ysh3Z0skhVtmprvfJLOYAiyUe4qirpRemUJ3ocKdbI8LmOUCShJt+PZUev/271/w/d8p3v/9Af1y4vXLE9++edNzpzkD+vTsjKtAA8+fFO2h2H+d89FZHWs2KMsvGJhX8RxS/UvWfkH8S62o33vJplc7wzWlAgtKq0SQkxmHutYL+2BhjAAgaye7y/xZ9oERDVlNkQX3v10zDBdnN9amSTBMmoJCstnJxvQDyyMziLwnstOAOI8Umu1YnGIBZtaySwQOUdo2Pj4nO1vUGvp8TjpLxbY5nZqbPTOUcHFW8xaIs3WozeAXAmCLMqI2GSoxnmQ0scwufzcMYg6K6k39WqSkZ0vAdQ3UgNyKY+TsrcFB9odUuJAeSxwOr4PP8RCOBcLBizlf7m9smrYiu1FYvH6Jfw84mEVtm6y1dhs6mURlDpQ91rTBbtOJ8/p++HkCvPXni0BKbH2nhrxf7j0YY861uj+YZZCGG+Ya26LNdNxbiswFsF7blFIQXQIwoG6NCTJDO/cURADuzKCFWdEkdBqm851zi6ahCSAl6ODc5RjSpw/QxpMXW967jjPWkX9IiqMhat5likv0R47pQK55BvJIccKRn0ltESCSQlF+B8AsGCc6Ac3KjEgKOQFKvjcGmK10uqK9jE5Kopiio4v/pgujLf9Olg6B4PTt4OBCg/tw9fmuGXLFFFZLX0bnvK6lWfx+LWvgvpBq/aWWnO8ngkChfzYGqJuQ7AbuQ/X9VYbcxe5L9bMw/bL0Dz8wioYDBULNsHVqtKd5K+EKFF6ODL4/u68Ak1NbLZnCAxlQ1HG8vsv6s362MDuXPfn6vQsYMW1j/CQYUAUYyca4nu+61+ZeWt57DkrYSoIVfKec7wCo5r8+cthI2oDPrhvjmr+ruhvD/L9Jo7dRbEgBE350iPzLn6lHZchGKYTU/bGOSRmjFDv8hAXxIx2Feq4/ZTTowMJm+OxZCMpcWQo/Om8BX6o+y2f3lofqArx86ntd/K70V8gu/NHaiOMvASjI8Nrs8bovIlQmkmJucyPxxTJettxU9dmhh2HYNrUKVNB/eVmdHxqhMYC3w1/EwMyMUgCyomUEORoANKSgH7AGhxpBfAZkRSG2hyEJ7YNEpOPZ/bngz3ybyr7uTGm24+Pnltq8uL+xe/a6hYPYHh4UtO+hG0AVYC6iYW4/YzwEcMEoGg52Z+DzVeSbh85Nfqqxl0lqnmU2Ecj7wwP8r68fDKAgnPnbPrOcZjM7GywFjOEtCgGwhWf/cvMyF4lnLt0tcDw8aGAmd3OWh+3qugjnmCrKsmoMZAZgjKzJk7fHrAcc8R7PM+9HFJ5F53w4ijgY0UlVQPwz+bfisOSYRDmP9oG+K8YXbnbIGmV2jXj+/Qu2Pw60f/zjw2KX96fPlbujjdS2MLJ8Sg1t/7pnAJIZuLjvcd8zM1MzYWOPMoKKHhPUuc26y3FrPu6PDjlydKv/AAAgAElEQVQMtvn57Ebti9MzeOr3atvuWViui715G7Vusxe7AceXEqihz4Cv0XYgnThqmIx9z1pbUpu9bEbQX/x8+rT47HTKb7+esE3x3/43xeN/PPG//6//J55jwz98/4pv7dUzGdxLD5/ZIyzs+78T7N91nROli8Pc4Afs/ZHK42QIkRaa+ilACm9Z0R6RQvvOQIp6BKT1I9b6vmH8cst7YvcMeXvCZGZKlNnr6sjQ9kmUNLRb2tdFHX0MQLe4p5jjzR3ihNCsOEwD83sW4mXBFJMYBwOCvbAnI2tEi+GN5wobnm4A7eUQjJ98/en3J6w19JfNff1w8lw7JDKXUbuIFpmr0LwRovYcF4Kwrc3yFGACb2QJMaBQwO672+xnjFvYBDl8XacuUO8JgHGeIvRL+l2hPQC9AQezIrOdfdzJCGAGfSCZClUY0cQz2xOgwmR90OEKbEei49AYgDQv98EQtDO6PDx71kH31y31H7JsEZg/8/4H7GVz4LT5njv22YnA1d3h2gDDcPy8x1ob8QwEX5ipwdQ54h6szpwYt+b7RVkvcpYghXY41kZqAjAIOpE+BTPSXgamADtREcim/cUeOiwxB0L/QE6b92GYwTrLLbZwai6ANDvlEIhhiZ41Qb85S9FtWLDLDq9/dtZP7CNnZPCjVbC1BtwE/RaskWOklkbqMRX/c9w3HL9szpKI55CnTdsr856VftXVIeXaVM22v9yjyATM1sMB6ns5SgSoZEOeBP+CvbB56afdG/bfHpMivyn6lw2yK3RT6Js6Q/F5eGLDzBNYZDm2BiIu1NfJBE08k7NdsSS1pl2PhEl00aolZLYpstwp5owJmRQtyjhDG+KVLLo5R9nZSt8eGZBYlAcauH49aLTzLPcEwC615BpsRma7R/iwNRtdD4IFBLkrK6zPcaz7m+AS0NQAMD6vZ4f0fYJmIugxZ7e3Hp1cxjxvnVMDU+CSLLYAp0QF2aaYbR/P8yMtnP9NseT0yQBcS8Ni/rKtojP2sIIImfy6ABFnjwx2AT24Rto2geLujKEUOuc1+ZMMkdpCvoq6FjA0uzyUADlZw+WRZvlCAbhqwPpZgE3dFbKRr/GGjewI4bHR5f3TrtXYC5hB/o/o/lI0HniumplPkMPXggusB2j6PMBuDVlS1aODQ+znCUzwuq35s3Asa3KHz7PvOY4OivUFdPgABFyD+ivo8NnYxzNeRTA/BTdi3IRCsRFbXXUkPO7oANoUC2/6kfn8g+MvASjUGucUOeIRThxOAEELrI5P1uSFM5gTVSeabMO8F3NBt9NYANOhtQiWwrGeKPaYm2gYqpz8nLAdc9AfAtksgqQS0BYUM4MAviBmhe9bTtBsi2l0YHxgxt0ddLbBghn07fQNP7QPNJBg7+U+JlW6Di3borSaES4GBJjZyStyXjLIvNf1nQYCu0eZRhgPqeMo8cwvEWCTks+Ni++IAdXA3MRiMTUgFJ3bFLqM6+cYL/fUMyMEzM2HonLytDkfIkBjeywj0HH2FN62uzuI8naA6tP+LBE83NTHX4Zv8iLpvH/QduD3gKQpt+8n8LKlU5ht1MbMSnlbRPg4hkMPBoR5XjeK7ATi6soelLAdFTM5+phiZ3I6/ZGOnL6fIcSlM+vDg/+OUoORYm5YfwJob2cKhZkI7PUGti0dd99MWzivtrtDeb5uYJ2xHgPtreP2rZQqWGSehAGJZnBnIu5EdsP27XDNAiCBOO6/++8dWY/N244Wa3oaBgb234Hjb4r/8NP/jd/OVzzODf91H6ya8O80wDZD/2nAfm14+QcX8nIm1Lm08yLzwEUsu4udRQaeQm9os+a9zmdYZNjqJhN02Q8ZHGYnEnUezmrh56JW2PbQriCgV8ucWC5Fp7RorQC0wwBg5b4jqK4OIOcDAxQtgUreD4O9Me8DmOdoUxCvyjok7TlqlZNhFIBHbTWXlPlqm5vOjOQY672bU0qNzkZkHfk8cg6ozMBr6QvPZyNAVplo9aC+yzn8s9u++If+zE5z12hL6qyra7Zv2hKxcPZiTN2AFQeH76oEcYKIzSlIO6JrUXSWoSAghEAjcoISqE3mmM0AO1XrWZJm7v+KBjipXGsCuwE6DPqYzAvu9+3RQ19BAES51bCFUZOg1YgLjQE9ZQKnEgGpIQJqTYFotvpj4AZgbQObzBkNxf4JFmU9PDsR0A4zaA52BdvRVqE9F7utuX2kPc5OP9H1Y9yiJE7hYCvjDAP09E4CDsCUc/G1awAV4qKFYg1LZiuAqyyB5HzZ5p1JH2jvI885tX7ow8z5NK/v7yfLy7JLDpMe5Xvxe28JgVKbr1O0lABe6l24TR+3yeTK4KxVZoff53jdgfuONsxLPcr9836X/+bezaCLHcE2B+kofs2yBn9HnrCgaGAyRwaABliwb3H0CTbszX3RSHgNMlSLseN8txD6nV1wYi5RjwhI6vgqCleYkVc9BNq2aqOqaCH9x6o9c/0ZZb+zzLbQ/gfAiVOZW+gBknw/5t6iwGjqICC7wtDH/FAjH8BN1Z5QH+MsN1WZrJDyXl2E0Fyk8Sjihdfn4vhdMsqT8XNZR/WzV4ZyeX75xGflnnRdQ8s1egVuyvqMf2epY++TaeZ/iHP1ZN0J9+sWe5BFqST3wnqN3MMvAXAFeciW7PwCZqvJBIJmfJGtFuvzFWCbLMpPD/7tOlYYk21IML01YA/wM8ZExMtls6MdyxaAaRs/A5V4b4UBsIANCJc87nHpmHeNueoapIBmHV/VdQ1fx+ffcHzKvDhOmLb0K63L1Nk6z/nuPjn+GoBCOKIZSPJQhAMDsFQu0cfIPNYBrBQ1mDpVGrEp2rl2OKhgQSjt5t1EFiFrT99iEcRklg0LbXZZFBGwWu+TSicRGIczn5sKM0jFaMzfzSDd6zMjUFTF8fPNnYQSDOj707MTEcArMNHa43SEc4/e0pkZiucivZpGehRF9Fi42QoyRZCmQNGiR0Knu9baVCNcKXBNIdAIJsVryrlJU8E6PivvffaIr9l+M+B+g4pE1uycm9Mn9B6fP/Pe5HECzVkgV+E0ZoDlEWBMaGh4JsMXo2lkGd9iLmSm1bM9tqsnA04ktVpZ//yyuSgjjS9BL+GcNc+iCiBfWtY7a1W5Bhyxj2DahXNOSBf30ktrUuybAyBHd8dYPLssbww8NOpNDUPcqZWbul19c8VpZw0o8LJlcEAdCY354z3OFefLpOvrMyjQ8Tn5/vRs4dcbIMhsre2KHi0o9XAHd9w39Lvi/KLQwyDNgwl9dtx+9zplDTYDs+wW3SusUYVfcPzU0B6G/Z/egE2hw5kSg1TV4WBDgkLRlWO87g7iiQcut98MjzfBf3j9L/iH82f8l/efofvwunyaghfDuA/c/u4dx/GK7V0ng+EMJk20sORct1somD+PZC/Icbqj2PbpXF2BAgYsXA/MRr27k33NSCDUtX0uP9NZ8XkYnUEicHZ2U6nJ5NxMO+VdGrwV2gQ4Acw6W2aaxgwWUngsgvzFhoxiT0V8rtpc83bbsywnqfwsuaHJsEJ7Z0Az4nkCMON4JWBI56Fu9o+ias2x5zu5w/cZZmYi4Bb0JahdslRx2hSR+2z/j2f1rPeW2dlV/NdBLznG1FqJLD6PbN24K3o42HpEScJpGdj5u6KjiAzS1Myz7WM6eBNUQDpcfLeCuYdn4DAG9OnBLo/sikH7HsGgxb+1D1fKVwUgkA60R5RmxFiy+4Ftgn7fvDykGfRQiHZn5eRYYvk3WQdjd1ZLghB9gstGACSYfbkPRscMu8dz02fpMtenSOpx5Hl5RFbSgo2Wz1TnS4zNwEgAxRMdmkB0MjhuFJqNwJCnCGDGGSjM6Ic/VOaIr2fke9PQQKg6C/oci8NauxZINweH6bsw0MmA0ufJIMDEQNIsWj4KwGCaw1Qy+DIckHMxW/pIAHbMkocx545fVya7jIBC09zzcnw4JrsD2Po4Jqu0HhmorXaUCQGyTdImkel426KbkPq0COHRUQEZI6ji72rpFkE/NIAkU8Q6mXZDnzHftyK+TFtJHyhp9C0p624fLe3RhyCpBtCXYJrlbcJA7Xmu7AWR3F8SaFadYEdukmM5H7PZMgx2nFBS93NaBPjXY00TmKjlAGHH/Z2XUjYRYCtAkAbCnN8rwVxoTPj8tCw/TH98zPmdvyO7tP6PY1fHrdiSD0KFqumLc19LrZ9S7rJoQMS7NsYeZCsk+LelnTf65L1ozqR+QgTiEiUhBEzJwD3DZ+UcqtdIBoFNEGqM/G8HUQ3QALMuZbiL9kAIPNZgeym7iJ9pXyt4wiD7GiQnXX/4c4oC6m17a/mXH653Y8zoiyBbZo7TATlIxiCeICpfr0CGlvc2DE4f1A/3XR7gw3nYJcKWj7kt4nWt+vj/loPzqgBC1KqQcya9BJgtj0P34kfHXwNQoDN3TNEodza2dAL44lmvKOfw7C8Fx3LznhuVRuDrqJWtzjgXfZkMtpcMqSCD/OPnHe05oO/d3/NZXlzdBDcU5LewEIjO7quImnTzoDLuS4/unRgkspHBskgmAgCIO1wOwEhqJZBeLj025jFLFnKB0nDXxVxABADI3uG8zyviKoKFacDfAVPwUiTFYJJeT0SYG/M12L+ixYWeXYObPCKrC2ZTH8dKr+OmxiOEphJUoXElAMJFEhSnD9SecDRzQw76j5pBVSHf3vyeayeClxsGHCxBNfRmkSA0n2/7lpuEBfjUI0DQd2e5bO89qbEUIO13p7m294+L3G4ucifHGVmUADNCkNBaS8eQTAITOB30NRwssiFIZTXDuO+RkVFvpRpzzJqgb1tmEoAIAqjfEesp2xFGlwZm//T3d8iLt0eS3deLRls+3AE9Dbdfz9SR4Fjuv53TqRCBiUKeJ/R5QvqLj2Nk7vbfxTO6ImlHNEqDGGCZunPIVnbjdYc8OtpvD6AJdFP8/J8b9m8N/4f9Rxx/3/F3/9OvGM8GuRvGa3dK/1Mhh2D8p6/4+g+Cn//zE/tvT2gAKfbTK8ZPL77Oi/6EbQp8ecH4ye+9fTuCPuzBXLY6rPZljAzeJoPHgOMZwETMSRV3OFQmm4o/gSyLqern0mMtMENCoI+BzYumDbXbhv717mNfwF22XV0nqOUzffh9UHa5VozAFRlLm2c0KXhau0dIcW5Ew96fAmgAkmYJnKSzhAA5+CCqsA2eVWSJCR3eCB78WqHpYIWmfA6A1PBqiwAfu/u+lCIw2ZhaDmaeGeP4Hz3bG049gWjfymeP8RmZIZ3OHAy+b8VzZhu/yugpe6JEFolCe9gme4v7yyLKt/mc0BBDrS0vk2L+Iu5MUqehMSguzuDwIL+x5eOXDdoN7TECjJzX5PVHtHh2QDWc8BALzbkVgSPL1aSwSjI5wWc7B6Czw8BIMHgNWDIoZXYWgJc8uuM6S41GghS5L77sUxdACLr4PsDSJDkNqsOFFw1o0TZyMJgXt2PyhLfOjH3EVNC/zv2HzLVaesHyEQJLnPLn14axCaR72939N59Dnkjw/Trp+HvLv7nfMnyMskRDp5/BsU0gaK43vN7WdR+BntXxum0TfIq5z/MMpSDimOMIBPukYbZvhYM0dy9vcpbS8A4oZFUNuECqqoveUWxvIIBii5NYvm+uaWw695nTRZwTYGjOoFHQZmI52IZUQxTc56EH6vbl5qVCMRbjFnanl3HcHABO8ItstaZr4uV+m+McAbH89OWjncrniwfcL3sNsAT5PgY1aCq+ItdLWwWE+c7m+WaiChjTvwxAFCK+b9b76x5Af2DP8adIAglpV6NM1kIU3MYI/S4AEmCyKqSZA34cr8+O9ONm4FufpzIxPoALV9+3AladdsXthoRuhXEs63ci+MvyhHpcGcUS7AsfvAQPsqtHjAEBACYDZNtSxNNvIe6h9wXkyM84wTOuXZiJARxCuy+oo7S2Xu47QJTaOSKHysGYD5oK5gnczNxfg/UKlvHfkQjx+/QSBh/T1R+x3gOY1fK7+Zka3NfWlQBSmqtqSiRL4QfBv+zR5p2J0yurnPNEFNBRWBP2CZBSkreVtTFsBTRoIyozpHcvheHnR897+rNOFX8NQAFA0uIxXDQpHLek8yUq3n2REUFvU4U1wYYng6boJqCXASgBcgogUbdh0xAzimBrE1eqFoGcBus6s2oFlVsCdx51YwyKHkEMfp+twZhhzU4QdB4xHe9cKAPp8GXrLzo555EBq49rADQMQog4lUmxIJ6QdWJWMIHPZLYKu5S/zfrABhF+powFP0dFWm6in01SZoW4MeZmR0OgExA4yt+5oV4N8NkDlSzOzvUzQdG7igklgqyYWYwzjF5T4PH0Deos2bumkNuWwnHX1m6u31EzYlSuDgeKdPfhQSeFGMe9oe+K/uqgQ3s7ZwDAg8BG98mSzns3YJPMMANlbfmUy3rnzIrGnIWZZ1xYmiTze1myExRkiWBAjtB6iPrvHAMGVRHcCINWCaYDgSsitami3jBu8971cc5z5rzxrLPcd++oEPWNXidMIM43Jz3UGfcRBDqYGIZ/d8X97f2EPJ4BRDXc/vmJ7a1hf9vx2/+84devX2DvLYTPDHIbwKNBn4L7Pwpe/pvh9k8PZxQdZ2iFaPZGbzbBK/Yi75F1bo8ezlBPEMxr4GXO8y4wNchhaxZtGCLSiv8ua4LrKd/vgOybn+da1zpmsJD2jOs6aN9yDoyNOherjczAUqdd9ecY63vjPYcd/tCKkoBGeQaqdyctsXQ3gckEFjrms1AIs6xxAUrm3b9rTXP+XeuHvSzCPt4/kPW5GSCVsohJw437qXo8zdf6fEf+f8LvYQr4MXOez3RKUqlTlBERbEXgWN/rQje/2sK4boL78Xs9PROmF6eJgYt0W8En7lvcJznHmfGpQ8p9gOUVpzMeqPGAKP9IMBDI7zNIXrSJOPcIsvXuYAnZd2qTGUgAIL8Tv899hveILAuhVhMZWj7fwunmGFeHjkmFS5a67jPcmz1Artl1BsWRpRagvQe4Qz9IZvCa4xFAqVSn0wCJoCWBzHhWsh4kxTLjmUnRH/NaaGvAJACyXSYTOQNukxommFACclKvF/0URfoL3v4xNlzxFZqCmRf/hb4fzyObeskHTV6M3dg8SNNaHmTxf1vs70cIEGewWvbVK3DPZ22SJUfGoDHAEYu/zRvmNTEp+L3ovZSgv85B/lvPeS4C4LMjjJSAYUQyTjwjy/c1POFWAWm+NwryzjICmcmo5cGLvai+He1RDaD5v0wEhG2tPlaMk1TEZYwSUJeyvrhOsmDTn7LJtCr3aAzkhGMh83kRQVpb77Vcqbw3mdeqeyevHe+Tuhsm4+M96vR9gbk1fxhbgjNt2omlLITvrV77z44Idp0dVcEPQWbgORbc87S8t88qDGoNPwPyej8fSlE+P+z6vUxu1mvN331IQvhJQA2jH3ZvuH6+lDoAyLFdtBgk1tOVyADMcYrgPsGCegzDIsqo4g9xfYblXEUkDMAPSyz+Px6pnVD+m89O8CbnYgVy/v8AKNRMS27o4RNCJUWHTCRrVH3TsmjdEyJCrFkEVkPFlmFE/mSfm/CXW7bI83MY7CZ4/3sXqdOn/dB5zFYt1ChgG6I+PEscQosAnC5OhzCMjCZgQpSXOhAyAznONTNYh6uAi6C/7h5QPVdKZS0HkOd7bPCc0PBMSClJoMFdJjn/HZuOUy43jNvm4MfZZ9Be0GvpHXhOIyrh7Nv9BuwD8vv3Wee/b45cnx2wcxUBoSPMDQG6bBCoGhQ8tubtBV93sA0XTm+L+UH8J+aHvYSwF1uPicDuN9gr5oYTNXvZ0vG+Qx4x1md3p/nsvvBJFauB05MU6X0FnEJMrr/EZo+G84uDaa//17foROLOrj6cVjp21xIYuzvWes4OCw5GSFIrTcSF3Vi2sTmzgZuqnAONgboAY/e2jHoMnK9+L7ffOrZCH5b307UAtotDAKQWQZZmhPAls/22q9vXEzMgombEz6+ZuSPIhtvLvG44ke39RHv3a45oLWdm0BEZorcDaIL+d18dsQ5GhwciHhj3LzfPDsc7r2rt+nbmWsMx0PrT507MN7HQK3mc2P/xDa//9Y5f/tM9ApKBx9929BvQHrFexfDyzz0EAAXj5y+5IbZHD4ZCny1BmwBR463n8MzMcU6HjuuuBaLcO3C/RRAW2dDo3GBAiAe2qUdCkO5xIMt4uLFcHRZm6s2S2TNed2fIRAamfZ9lV/LonmGuuisRhGFTZ8JEYLuUF9XgoA8YNmB36iFCPNJuK8MrQQXxc6d9p1NIkOTsk1JLJscj7jnG0vbNS0vM3GaXz8/szepM1varGTyG3XNnXDJgkWEuygZkFrs65MzIsr1w6rl0g8kUnTQV13vosecxMGXAxCCXIN2jBPnlvmEG+/IymQc0jaoYL1tkSwlEhACyCEYEL2xdLKdrcKTIpJTymvpOHx3SWFMeDqqZi/fFc47QSWHZhj7OMgYSTK6gf0YpE4Pn9n5OAcFYox7kt+l8FgotWENbDmsCu4VY59s5QfAYH9tdN8ZuzKDDW94m0Gk590a0WRWyNCoAE1opx0+h5/L9RHapog0YrmPTkuruz9rvgvag+GFkw6PUYNwi6Of7D+0KSSAPCdKo2RyvGJbbP/kz9mjhaU0w4GUvK/MFaUfH3ibAFfuqC1OKt40EEiD3oCTWA9kxUQI4W4ATPEVkj4H+pezlBO83gkbwZ8gAhqAdAEEy41Ino7u/NXbF8+9uaG/dWWO8n03doadmF/oSeC4MSNoEzP/Wo0O/PSaQoHDw4gxgJ/fzMvGCJTOok/C6JyDTQ6BUwmRsbzPBMkJss9+8xehNAX04oybtb713M6e6Rx10LUdbOgpY2KoalNNGUSsi9m0viSrnyUTN9HFmsBiOLPcbo79ffE4CbvfbDBDjefOgDed5g4lZBftSPPYcAShFsMzgqJ6vMtAIPl7LBhBABH3VUVgRtK1sK5xdtLwGPUX5zGYrVp7b1udKMBOY9qlmw7F9LAtvDfL6Mu+9gO3LT4JcFgw9tmIEnLVY9kz0Psdgc0ZP3ukVVMnzK2CRVRcPoDNAvZQ4eBKulnAE6PwjAOKSqb+WQOQzc/3z7y3WM0sdAFAYUnjOAqZg2GQf8DlznvZ57/X6n92zWbI3qijjDw8tgo9xj1cRy+XZWWqebMyyx0kRqOSc5r9znNwW59pMX6fNZPMYKVjpYxPX+JF2RRx/GUABQDo2gCNCxAlt2GpUKrpowIgNXojyf4acAhNpY7ALeD2auiqyHKNkF2IzQjFEcb1FpDANxACidi9pUAVpz00kjAs7V8yJXe51ABQp88W8Pod0m10feL/xk44gyygWJd5eBMbqd69gSblW1qEBMyt5/Uy+C/uwEZjGPWzq9cXBAFiuFffg5Smy/g1Y7i+zfRdKJZ8xs0UsF8nAxj7Oh+U5ynkI8DBzz+D3iioWg5J1sYVi5ugmMsua9V2f3EdlxPg//N3k+BN4Esz6yQIm+DnCbo5JjTWDz8cYm9rWksEN0e9JU0dsgpiofpNwFAowg3k/JjOLhqyRhBu/rN2b3+HTZ91yoQFXUVKqoOd4j3m/DEyWunEzDG1BA13fVwrHbeUGGFCN+f0cH7OsxfZaOW76ETQ/TmznwNdn1FU3hR47xk2gT7cf54uiPcL4b06FxdO/j7OInfXyHHzOpweDKVRa1+j1iAxWAm9qE0xYBLEkP1+PdFQutgF/MmevB9se5viJrMg+58bVmboeHI9ql4rd+kBpzDEQoNQ3TvEvB3b8u7Ps5oP9qA6kyKwjrfdQ77H+e9gsR8HqBKfNujqDHJbrpv2ZjYr/kRnEIM+2aU8XOymSQsQLY8Iu40r7NJDvymIvpbYQRRNt8/1z3DYozllOMKI7gBbH78ouscnGY6vaRfMhQIPM5h6IdTmAvUVmP8DGwiCkuJ8HjGt5gSv2SmYF852E/5B7BX9HgKVf5oMiAiYXsZ3GK/ZD1k+H/zGzyhLlU/O6+fz5XRSWQXxnWDAVir00QIZMsIjXCwB2RKCa1P8cVywlYrSfzoIYQLRC1HNELCirr3U5JOytMRt8madLHX9+BymC+/GETBggGQ6V/UQRyukM+0O5uHGkBFXcR/zRbadN8n+bCp4/KW4AtrfQFDIkcGVt2sll7GhLrsuY6ycZMiGqOqI0pFLfqevCoIQsxABiJEBC28p+He9Uii+Bwihhi2d2NBAM37eqXbva3GLT0p4qIOfndp7aKb53x9rKrKrke8tv0s5cAtDlM9frFD9u+c4PzL3rD7XweScLd7nvq31fmCKX9V8DLpGFwfapTf7MZ67gBdZ94NM9r3xuec7cdz55j7xO7E+2tWRp/7D04dp+umaa672reveCEvP4n8rzf7YP0q//JEj/8Nw/yNLXbgP/0vGBhXABE9YP/2ACkT3AcgYyAT5hQLATBACUGfz5uUsMagQkPvOdKkOG18gLjvRj6mf/Xx8/8t2uZeQl8WpX8KDGMT84/hKAArsZpCI24IZXJBS8Z+uwDIiKsA1FnhaDBMzs0TEyQLxSkCQ2MdaqyfBAwU7F/kdkGgZRJngQ8DzT2Iwvnp2UuCe77z7gNpF7rTW1ccjzcPE1GqufXucLVXWgY5917v6lWYMnfUwqqBnk/XC6GmvmqwMFzJYfAOzLS2Y4s16rXIMosjXByAx+/DlEqdD2SZuNDJadI+qn+2RFiCyOtL3cL0ZRQAqcD2gYUQD2cvO2h9/fvA1L6XXPgI/CiYguBmgtGQEfRA7BTUjXILd5VknOAfn+ALbbp86lvD382mRH8N+tFaR8XWzZScNsdibZJxtFn/7MdCD0MI+JvuzA2DIDZJzj8JpaO4Dbr0/ALMXFAHgbqbcn7GfPQFLFn+1IMzA1hD5D91aXAmzfzsg8KbZvJ/bfDedrw/FzEWCksvvwPQFkHpR56uranjERM+Dp4pLyfnGHvFEAACAASURBVHp2cVMXh+wG/d5htaRQgBR4y5pRBxDOrxva9xP6Puaa4rsJ4cxkQrw06AOp4SA20H5/eKmB3r0G+Yh6viaTfk/n6N6AR4c+Dh+7u0LezRkpdOZffA3oP/0B3G8Ytw33UJ12AUpgf90gz7A/Iu78PM8QStVcAyLi9xPO5Pbbu7cyI4X/iPHdS/aEYMFxQg54KYVZZt6l6BBkXarOgEbO7jaI7AvqW9A2UvG8OI7yfnqWPBzg2YVmZFlLDWZkGNrvj5zvSb3n+qvZMSCYPuYlJryPYBSwjdP4+XWOAc8nZW2NAf39otZuNm0HwtFr5X23YqfMfF4DgN0ms43U39CdmP3rabtijCv48Xr3kqe9IitYKLbJQuF83rdpSzZd9rrn392zNnt2PLFsI4vTRRqxwbO8T880uFBnh3x9hb3esAjADSRDA4CLPO4tGUb6fmDcNjz/u+jGY8D2TdH0dEG2GpyEQnaWCCXryNvejaYYu+R5JIA0BqpjEyCShtIN+gTGy47z67Z8VoahvffMtEsow1trXkZGcVb1wFkQQa0Z7PXmTBu2zSXDK/ZM7ySFBDAY9Kb2RUlw+B5tYBeNCaoiWlGPOb/U7ZKpYAuR2/btkUEdyxxhnhHk9bZ3f087NW368LHcozyT99YN7ZjshXFv2Z0Ghmy3qe9Hrhtq4njJQPfOOhzj7vufygiGQ6zZU7z8ugI0Meer7hEGnDGG2J62Uq4U402GhQyDhh/Gzj8OJPiYssWvzxvLsRYBRtg5tiolAM33KbBFFPJ8Vfz2vyhuvyp+bsD+Ww9hyXhvtyKiDc5F9zOs+CD+++7jQZBH5/dkb2Ab16nRJKtAJX2V4opbE/TXlu1TEZmt9t49uaRsC+rvtoXgsZ5jBbj6mDaK74l7gojbhH1D//merWMzMKx2cwxIzEE/vUxgowYqzRMYGOI6FGSHxfh5S/DZ3cRL7MIfIWsVSLaD3bYUFQeQvlzaw2DMyTlS9HWCszNGWLpClLmKpqk15ftLGadSTmtMXBxnYRBQJ6F0SeI98l4u7Lsczwv4wN9L6Lyl38wAk6wSAFJq+asumm2IkkekD0ods2VcEjT5GND7nHHWo0WiM8erfo8/M86JNov7Pm3fGF6DH5n2BBnIGFhKmDXLiBc9iALMyvX6PH4UKP/oEIWEyHHc6Br/1DHhGheZgIyKPycisO7xbgbbZOr8vK1ac0sgrqV7BDUTjmCcBphQGQQfARSZwpTlXqQ1fGAV+Afid9e52vMaH1gtV50F4E87PAB/EUBhyd7zsLIQauDANn+XQDsPxezgYObGzSxFcoTBJAPXyAiwh3IaA4m2VHFuPRiY1Ekhfr0hKdZXhRJzByyiThKGnoY6f/84ZrAnku1jTEtrpLrBheOR2SVmopK+PdZJVAzNWmv2iYHrIynWS70iLx/Mi2XTyU1e1nq7yr5oiBq/+WeCH/7Z1ViwZ3m+3fKeGQBmVjbuwwN4SdDBN6BSP8iAKzYNlpFk1qDcQ/ZtXxzmyPYjnCTSnofPI2Orun2bQSozpzLpePMhLSmkKewVwJEAiwAa+4yzzzzbT+Iem88wn2usLS9GeESpA+nYAECF7BFg3eyCglxrLSiXwgfmvdu8T9IvU1hy8wxPgj2fbJzZl56BFmNWw3Tm6bhca9iaeHcMIINUOkru2MWlSNHmkiVAxLmgmEFgzu1Yf6W2vYKDAOZ64nrft3mvR4/78r1TnuHoxb1mjWhdO/HOBQCO+Q4/ZEZEvK1sDyq/TDsiw6bwVV3P1YGP7PyiwUCUvKDhaTv6WAL+tLmjvP9q74wZvOK01fdemSaXLFT+vGy6fr0+7wdwQKaCEKpJSfR1OIMJBoN5TX5HLhntepjNLOnG7he2fl+j3rfcb9qZy7tLyuhnmU2jZo6ufcTj+hS0Na49BloI+9jgznSxGelQbgpY871Eih3lPXdzADZslJVnsxKU5y2NeR2ypRDMHQL+IgNmQbsUAbvVSJa/cOwAgwXIbzOINY7ZZayWTB+yNFIs7gWzZn1hBm7qiSdrucYXhstACYwnQO3vnOMMN98dud9mAFky4wk4VNFKvieOW7gd2eKzMEPyWtQJyf0aubZ8jC6fh4PMXgI38txe+oAc2zyK8yhjePkzuzyQ8cbAJ4PfWGfVF6gsSWCWs/AaOTCWJa3VLkxNIa5JlHNj6g8AzkBAeVcA2JLWT1Z/VqcZy9/Tn+sIn4/zLt5FvJulWw3v+WLP6r+TFdra1F3h+idrJEGIMZ//8jvE+5XQOjJFYT1pjrM1n49eXhjzliKgVz+az06xwhKoJCvoLJ+t6yMCRxfKG5NVF2OZezBQtDBK0o5+YZQC8KhMi0zaZHZUJvirAYx/omllzNArnJVhweat75z29fruauCKMq/i+bMM+MP+YPkOEP5pbQu8AGrlHtbzXva9y0G2QvVZK+0+r1sB8OqbXOfqZ0cBGz49bADDxxZmc07z+rxuBQEI9NCvzmvZygT4k2f/4e1YyfJffYvqs38GMFS2RGWHAUslQpYJ5H2P9fs8R7nW9SlWJofmBSqY8PEzH5/j+rvPyixSgNJK2UgkXT5jWfzpwe99dh8897/i+EsACgDciY7MZ7b8apiLg479m2c+7L6HkTCvkSYyLILzl5fMNIAb5j3qfo9oS8KM0HA1+W1TR7jpZJpg++NISqFGy7xE6Vt0L9ijD/QDYBArF5qS1DorokLMBtIA/f5tThRVryO77cAAxt929HvD9n22tOO5OZnkOFc9gffH/ExrZbfGvDedgTGFZNCjG0LTQJpXNdYswQAdVsvaX0TGB/fbpGrvkZHOTGa85MIUsf2eHTYW4z3GVDzXYkxU5rO25hlus8nCoAP304tnzEQcrS3K9vbTq/+tewCYWQ/WmhOxLyrCronhyLnPqz3vO8GHc2DcNvRfbtC3E+2PRwpxLYKLhqjhdydwAIApWnHsxQz6x8OR+LimDGD7/sx1ghARlSNYAETRn05JZt3j8UtkF0/LrBbMoCroX1xJe//DsnzB+8YPbL/6PBq3VlgkyBKVcVP0FxdK3P/wThTHq7qzQ+X3WCs5ThLdTfZwckZ0OGFwfW8rNdrCoSSbJGqtbRj03e3GuHmmQv54g9w2yIh5h3CSw0EUC6dbBHbbPDscbRodKPL5KU/Oh6iDJtoe8xIIp/+2YYQmgxzd66+N6vluW1wzoK9ldLXTyMVWyHHCvr6mvkcGqPuG8fUOeXPmgrzPLD5EgPu+rp+Yz8ZOKGbAt7fYWL02Gfc9gNRpk5aDYM7WZr/4VtZLi/F6DM+QdIOxS0gIiSYY0EMPgXW4gDNLWK/Pe6ao3xYMre8B+kT2RALwtH1zVsbePCN2nMC55VgZEB1/yrkiSMrWbsB0zAgGJLik3h6QASY41GFfCgvMtubv6+jeUaB2kxkdsjdnnbUQJo3ORHKOYA5tEwxgMK7IlpC22EW4jokiadHWDXZGRjaCwvG6eZZUgv3yPCKDW2rBCUKx5ChKd/rufe9Zzw94pnw0TbV5KD/v6vlXUDJr+d8OSPe9UxXoEtTpip8MnzvKsqKgoTu4N9AeMR5xjarqb01hLy5kqs8+FfNV0DeFWJvZIJYUdINEcbqy3j8y9QnUKjxAbILhkx5yBGhJlk4Vt40kQPvj6b/g30lf570LRWFtgkT8CXj3CtbaR9CdsXmASIj791Isw/7b80OAoABU1hIRqLPx9P0E3jw7LufA+csLoOL7Ddf2ffeuCKeDoq5VhWy7OkIIcM7h6YiOW8t79izzEYEiXJqgxx6lCuz+rjyhEkFZAO89SkykxzNXrKApXDje7buxrFMxfSmC3DlXPat//yfD7XfD9q1P7awAFfT9maAtExJMREhrHuwRsK+AQBNY2+ZYk5FFJmf4S1o0ptjtqOr4iHbfl2/+7N7+Eug3ZyKawtsffxto793ZCd+fvmbCX7P7Pu3uFnv3bZ+2Be7PpN+F8kzbtM8LmNIHhH4lAPtyh4k6e8HmM9VkVupg3be5VuqeR6B3FD85bKvJ5oBgk2hXXYPIsAcUcjQpgFcBH0Tc34CmRof7d/Pfuf+pTp0rERg37CJwnUBy3scKnH2gkBe7bS/ugxlBy7r/814JztRrdLfdFnoG2DYHze/eHSyZhLx+7zOuYHa/BpkBUMyOB5bXXgQJrc+4geV/VzBhjMzQJ+C+UOcJMhnMzs8Dfo7PBeT57O8fvn0FE4IZwGtCB6DR4WRwfvm6KgOc4yXFhhmwvs9gWth5IhkXcc8r+4BAU/k9NT4Av8f4e97n5dr5PByXUhosEL9+EJPNP7x0rSqDtv5nZWMQQBnrPBDqa3Au8b1UpskPjr8GoFA2MIwxM/oVSaSjF4ZdgRnAk54a39Gjz5clAqhlgGIthMH4cs2cpv97sB/GmFnTczgFnffSbYoe7tuS9U9BPLOoZb84onHfeU9NAdsgOBf0KSdgdBAAADn2KZC7vMxAR6NX7swe2ESJ86O+UZCClln6ivo1jZKJkXoL7OVurUE0UMdqdBAgg0wqv+2WWT3bW7Z+yoweN+t4nkReD3xkPwBuQFlCwTomfv+m05BeFo8rcHMjlylUR+eg1ijJ8HOz/SapdjQEMT7GLFh11Ek1Y0aFU2tTLycgs8XMjUG02HKxs/JeRVy8ycakIJb5Pl62mTU0c7tZFKR9/WDSs5tMGnqMhx6eQcz+9CH8VecW25J6xm86BjJsdvc0BGg3sA+Dvc2sfnsb0NPQv978ewwqec5GQ1zesUgKeuk5IOeZWZ+pGRGOWVPAohSKa5Xnj42zfYtOL4IU5Mo5dW0D1yI41ZgzQ7zEIUpmsu1nig3GuzIDTpvvicewrI2VwM/8AcI5qgKC1yPXfATapWuBmWcKpLumwtLCCZjnZMCb/b0RmRuZglfhQEi1ST9S8i4OoPTuY7S3tH/XlpAM+BZWhwqg7HgyM50EO6yWV2xt0lrjnXpseZ9OMh2XuKf876W7iUxKaAUrVb3v+/2GFBMD3DGsm3oESzNTEd9FsI+O0zM41EcYmBmiMYAu6ST7czLQACgWyLa6zpCa4+9lEpqtERmAkgHS7/HszEQPi3UzMhhOsCNtWrof62uu8zCeuV0dJMDLK8ZFTLWWcliItUawnyLJMebOBvPuLzC3M3LGZ7nPXwJBBjneyg0QWDIFM2AdPif0KIG6mdsoMQ/CarcAXa+Vfet314FYOpgAyVDwB477Gm5Hgbne8rm5H0aZwwc2ZQS8Y1OI7JmpHze31ZPq7lOya3O9nEfZMw3AOdCeMtcaMLU1mAk1A7UFU9d4RNZ2Y5mGB1WGIro3/LlzDpXnZ8LHWwnHe9cJXPjzR9vjI+xgBt42471zeNlRi0xfk9xncIQwZIzHuAVYZmOWnNCu8iffc4ATWRaUGWFAon3p9uas1LEL9FDYxjEci/+UjMStzcRLzHUAmSwZ9w3JBGGAAASAYuFDKcTE99QYY4n3w6U/299Gl6QhoO5DPqMC23uACU8HFBZWAvB5SVnMSTnX9U6w/drtJP3rq+9a5zLPQVvbR3aXyXOwJIcBc71XnqPJ9E35p2BbLGyGGoTR3lIrZvny5T4bYNrm+YzzouxRBENKULvoMpTnze/WceR9aR1v/eCX5typLLcC2vh46LrXsd1zHe/rtetRstg57rU0T+RjcBmfN1LwE/RRpIhn3mefrSL/jOlQsvTzUp98/s8y6sVWz/OW57s884ejtoQciqxDqGs137Hmd5KBQGCC5+oAMBII+/BsvdgcjnstW8j3eBm7H9x/sv3ifO4LfRyTtUOHzkQUn3W90Xl/l98voBIZiAofuz8BE4C/DKDgP/rLlswCOfpKT66GZQzI2+lGfqdaqeRn5DzcSaBTGij92BQtxOUMgfaNATwP7wQQxs+zlXDENxxHnxThIPbu2WrVCU7uUzzP2x0FZar2s621vttU1EyHGMjf2XFk5lwf4ZQ2XYWQBEGDH+50E22V4UFuPVRgLzevS/seWYh9K5sx0S9M0GQwCJcQVcQM0GqrJ3OnYDA4bYJm5u2XbpszSMxS7yFZGuLlChZshnmv3MSJ6GlmLV2kKACFYmA/rVcbAwKv3XXnAJ4BY71e/Y65wrup9yeX5xElJMNBCy3lCuEc2N5cYfz94Ur7DZFx8Hu0puiv6jXntY5vwIOFr1vSmSm4pO99ggnX8XrZ3IGPjidpDCOr2V82tHNAnpER01CH30pAcrqTYpvgfGkp6iaGKFWwFLvyrJq/g/Z2AKN7xkt8PrkyNyDfPcjsX3ZYc/0FiOD86QY9ho/R4Wt67CVLWwJVi9pS2xX6z6drFwQoMl49Uy/H8HG7qXcTMHPmBu8PEbidA/J4nxt7lpSE8NXRVwCobXP9nkcGpxaMEOoyZGtSth1kaQm7MGhxHs4ofSjMGjqfcj6nU/DJpgQRzybz3ceakJi3uRbYo/x5rOUlDMoLE4CBjG33ACpijWfXiFbE5IrjMWxZVwm07a5joDXgzs+UALzal73lO81TBhquJfC2vXkW9enzhqr8dvN3KWGrs8POaWlTyaLQKCGz/TaZT2WuAQIL/Zt5/9MRBAC2H+WYsOOCn0tnpp8aFGNMMFZ94ycLwrNjnDfIMoEUfxUHsejg267oX/d0xvUZXRUeI1qOTsaRnOFUU1PnHmDnOQJ8aGhjQN4uc4z/K8GzZ2jPtHFU8wcAPbz1okVAYjGnKZxqAoxdoX1A33rY0dPBkcj+K8Ys3TqogdDnuKIGVSNLHLFr2sgFqOJ7wvAlvYAqBj2nbclnHeKladxL4+fYFNIAxLryvS7ADt5TxJxL0BUZqWxdyM8r7bCssUcBFSzEoPUY6PeG/jKFCKWHloIq8N7Rvk8mgIS2VNrRcFytSQBRivbmjDEHUy2BkywT2aa9cgc4OuIYJi3/6EvJJUF4F+1EzhnTqQ3g/gLmfsP5NvzDix9n4hoU8KBaQtuGuij9dcNoDeeLQLuXV+kzRCXpCl3AryGCbN/H+cKgxLyd5PbmHR8IWlC41UtESkBAexr+1bQNHlD43uAsIonuWQKf37Q5KWh40ykv04cHBdxTZJb+ifn52wPQJyC9zXkkPtbtveyr5xzTK+BRNXMs2ESiPa+FgexyQfYIeP8aa8Nk2Xd+dNheWvZVZoiW79WyYQZKBC0IKBCYY2Kw/q0AAAQVP3QaoQZGvU5hSHrr22L3M7C0CVrENQU6M8AqmN3XSrBGH6MG+gQTqk9wAefXwbP1Z5YdRnnrbV/32cX+jXl/cZ0PmgOZOIv4xgyLnkEp08lAmm0VWV7B5+zds/QEFD7LWmuxt9G+2W/7MhZxbx+y4JwHPPhvToPPAvSrQKKWtcpz6FjuJ9kMKgGccI+OxaAf78WMncA+8d2YKFh/+4F9AGCySGL8BfLxfBVE47yzSOyWzoAck/W75d1fgYU/BXAuf1ONJGWZVz84/hqAgiDRaYhTmjUMcTqNzwNoivGTO7ISASrFmJLeDeQApiItppMybg0q4iwGBBAQDIfMHFJxN2D6rI9TtkujcZ7BlYlvuPrswN4whMH4mJOJwMHWZsBfkb5rP1gGoG9PtHNgfLlN6mQ4njmBX4PW88fbmo0F/HoVYdxClITZS16TlDPqAlxRUJHFoZL3I8EMqLeFSwf44bQe/f6EPAT955fIAIWRHdOhI9qbAj7H6X2Ze2RQKOQYG4eJeDaeYwpMjYkaIJzqjs3RE2CyvQGd5QNl8cbY6OPwYDBKJyxaUVZBKXeUTuA9go1o24cBCHoi9N7mUV0cMOaaiXigZO4YZX/xcBje/4c7TAW3X88IxncvtXmfLYdI6R33LTMgHmQobLtDvu44fo5uA4cDGGxZ1V+3pErracARJRAC9HuUpdyb0yiTmhnOJ6KtmMGFy4IeTWXrmolgFtVrAZ02LEUkcny5ldpQn8vt6EAIOTLrY2w3CGDW5yBBF413l/Xau2RglW0Ha2aBm/6jJwUfqpB+Lp9xg+0OhIxZAgHaCdoUrmfAN8bWgB1ZR22sUafoXbcEAGwP1sMjKNLcAEhRFZkMBTJ0AvTK8hGCia1NqupxAidmB4n4fq5jHq05DZPlHgTMYo7jefj76+EoP/p0XszcuQrEIJkidaxpn4pmiR4H0AfGT/dsQVvLuFywEZ5tPscM3tLBVYz//pcAEmYA76BD2JeYi2lLdJvlLWcH7uy/HhfVWJsF6HKKbfx9GNBPCLa1jpx2vVB1uYflsW/TqUbMC9Wp88P5y7Vk0blFXSxQ4m+ZKY5rbm8955OeY7acvE/dA7b1a2+H2837rQQ0c//jmu1fdzx/3qfI23ufQSTHAQArR8WAoeKlHPTtIkCyKA1b9QocoKvOPxDrKP7Nlr+ArzOlplHRRsnP7s333KN7qZJ+dNY5rhZiobUrDtglgNOAQIQ/JCACPfssgQAmABWAjZzPXI8EixCUfQoMjqZoD4pGSoK3uVeWLKgMt61imP6FuP09f7rlPejB+W/zPWYwGWDEFvMuSgWyFObWIH2OMSLwx6beGhRA9kJfBtPfPEuxxByEYSvNqTtD2wiM+wZpY/prR7HHXNPw5xsv4TM8BHh3e6nPgSaCcfMEjQmgfaC9Hb4/aLluPDxLRbT3Kb4bwU0DoEcJBFSmoCmz52xnXQAuF7hdg0OLxMG8dLCFIshfgFgL5iz9Ur63bZ4juwqJudDj5oCH/hHvrYiztkf3UiLavwIg+IfHCooA6Z8s/y0DNjTBnywFKAAAgBCfVmS3o/K3DGYL0JfZd+6R1yC6rCd2qFh0rnzgl7FdAvjQGRGCzmWfl2fY4xpo795afoLKUwgwD9rpYJDkHDDLQFpGGZvyHOmP1t8XQODDGBC0qu/tOlYD01+uASn3En6/lhrw+0wK8hlrIH/SpxBkhF7BlXwGXYPI6luLzoSt1UVQPsdWkggggcDFZ2xiEdiHMJzPW4Lq8Hc+tGwkOAKApQb5Gf6epQbaAPT5bvj9+vwqPv/6zNgvDPJ6b8AkPdRziEB4zdbmM1ConddPYOCT57+WU8QYzOfTOaa5rsdiB5bnuh5XEOIzcGLMcUWTj98px18EUPCFxLps2wR4xkKlAYsBY49nILKSvWeGYgSKrCdmoH+lpDT1feySRfBBOgIp58IuLwhtoe7lAg564QeRLvHzCC6BeXlegAstJpgavCiwfH5Y9rPFy+YTvwbiw8/H+vx2RSb5jGWDrHVfpO+7cxJtz/RyD36j8/bDcZLTF2UV8xp0lPiMTx9T/PyS9fkfUC5uIhLvtncHbTjG2f93zOvvU5yO73XJHvCcFNqMIFp4vsNmsMRxCkNMZgKBkkVpPTZ9br5234JKF87IAERtOqoxDzk+VbBuBh8RMEJwfFX0XaBng8YaUAFaZBtTuNEsQQjFyHVzaoPcG56/NPSb4PaHl+20IQ6uR5YDAsjTFdKHOFPBaZcMF9SzWxHQMQtnezhjD4uMrSDFdsKJ5DwYu0CGwnQAoTmgv797/f9tmxtS1C37ZSPg2siumB0kaLSTltljzWg4piJT2dkM2SK2bojF6MrjiPkvE8X2RwdbtaX9CUBmmbN0hJiFMAMV7fN5mswWXp2lAOG41fIjPiDLkhjkh+MxWQltCWBkIB2K7OfOzTuEQmdAXjbmeJ/QLcc7AYXh9yJPzmHx8ao0SIIzPWxIcXYrCl6zyUJ20HECw7sVZLu18l3pTo3PaywUVEV/3UN8bmoCGDUSeL+8DwKugnTw5NR8Jg/mAxC9NVBF3wPf4nDEHiR146aN+4Q6mv9Z7S6QQVQVuMy2q+oL0wJgYWZZmBUDkN1cHj0zc2QCjLszhMhYShbRo2f5U4pRseyW3ZOaM5aevyi2N0F7F9yeA3Liwx66CPV+9nuz3P8gU6w154LYWmZRfZewtRO0KcFGHeN4Pgse/yIChghUIFkyNQig1n1srHMrM/nVeY+1rxX8AOb8Obuv/y7rdxB2MDQn9Nldlya2htEkfYfRBBKtbGUYWlDYx64uzGcey5L2n1nkwp4Ysf/z2X1eBWARDrycI8AV923W3udWxhUfXfsBB1cVk8Z9+r7Td4V2m6Kritxjxq7ZpWsmbEqZmm8NYOvuGBwHl6McRvuAnvOdyOlzWlgOFDYiNRgsyk75Lsio4P68GbZ4P2TvUdOE+ypkBs/JeGkTvFhaaAOg1s+HUh8gS/wkxquW23pwjKI14/uZiMBOQExyL5Fk0QVg/jzWgJjgdi3zKH9LbTL6HxZlRMzW058y8zkSgAMA35diDAyhnXENCq+BYvFz67GUVvBzywfmHvPpOcgW5VhUdp5IAhvVN1zo4PSZVdKn8GuWa/FcIulPUlPjmu1NwHixaTJ9yfDx7II5XMdqafu8MAp0loOU61fNCSYcJMetBJU8OEbm2m2fZc3969NHkB+8w0UYsOMjqPCj45r9/rNMuV7G81oe8FnLRgbg9N/jdwDcz+O++K+83Xr8qTDh9f7q75nM1biXeo/AvM9/5fU+/X0FECp4Q7CBf/sRGFCALPc5x2Sy/BuOvwagAISD3yFtwLqLNuHu2Vl3dO9Ak2wRaS0cwGgTBhEcP+2ACtpbRyKAjQJQpdZXBeO+J1AhJmAPWAotAvBs6hiwLy+ZMc2MqPp5s/bd/J7611s+UiLVQNJ2MSwFCxEok2kD+nM6CpEJkNggshYavmnVzSdrmlsYnvttioGxrQ5rzE4PIJMSVmvJzw55f8J+esV4uXmmnlnUeJZa++tOaBiwyNrtvz4y8HTBwTB6Z0f79R1QeGnJGL4pbM2BAY5FCmVGgFg3na0BYOBuy99SA+DVxR3lj7cpTjjcqNt9x9BbUEb3aOlkwDU7PMbUamBbIzoI4ez2r7d1UzEk9dtFrRrwukOPDn2cOS94n15vOTdTE3ekx67Yvw9shSLLDhDjdfca200hu06nZXPWAIahvc/3uX8TbA/g9s/+Ho6fS6DQQwAAIABJREFU2IISEyfbFRIZno1zQ6dI4/l1gz4HtA9YOMyjCUQFeN2TpcNgsodY2/beoYdP1u3txPbr26R2x3tn4K9vzghZkPzbDoDBXcf2Rw/nb5bUjFuDbBrCYEjGxAhVfuWcjSDS+38rqJyPL3eMX179+s8jWSYyQrehqQMsO7JWWELocnxxHQL9/pygVdDtMyOb4FZx1Lm8w8FJRk1tBdlHsmPSbtBRpK3pHfJg9qU42tHONqn470/PnLT53dzUzmIj4c63vd7d8Q8BLLJsyH7ycpEQW/1yz/IRaYIRgSMp7MkcANwmAQkE2tYgR8f2O9FweNaz2JfsCpBrH3kOtqFMp5QBUzcXfwN8TIszpM+ebLRs+zsGcNuTCeN2nDXaYWeC1oyX3e3t88ySqWSR0B5VB4//212MLJlVX+6eCd5DBNgGcIxZJlIOzeBGUl+kgpHMhnJ+JfjCZ/4eY0HhRgoIW2EIhSNLnZXb7yNo/pi/DxvlbBt4+VY6tSFqe0RAluBtoXCTqcJkyQt1LuL5NrbJ9MyrPXvulbVlpmf0NdmFWe9MQIzlABG8cWKLOaPDVJKantT9miXs5q0b1fVpaqs/6wj72QN82nwd0mEbcx7m2Bhcj+bAZFSZwXoIXvZggQFuTwYcoOW4mbnY7hMzeCPbIMaZJZbZKUjEAW9Sw62AVzFm8vC5OG7N7f8ogHGTuO6Ye9O9ZSvhqrZPP6nF/OWYTwFJgN1Dxt68TK1fgEfaMJH0Y/qr20M9hzPqNi91yO/EO5GjoxW2Swq7DkBYIgDMvccsbRPvwgTZdnTOz/B5nmeADR2yhahqLaOVANgRAB/ZPAXYnkAabX3zwPISqGXHBJTvx2fIxJptO9ea9Hx/wLS5nyWEzGaHBjKtBjLLn/pZwCxBPXy/svstmHbenju1gAjSHj7/bd+ilHb4sxBMrrpospY6LHb8euS8L0DuMEg/ohS2rd1ruKfRHtOXYwliTSiUucz9YklMlc9+mpigLR5ljY3wBW5bCubN1s8sfyvXTZs9VkZHaw4K1NbEOfc1bmMN+KqwcbIVKXBaxohJTNMCbi1/s5kE45hS44jXWkByT4iauA2aCRbaxWIbf0DPn6UQ+jGZyetVvR5+biPb0OI+Qvixten3oPiWVxAi21mWdwEs91Cfdem2UI/8XgnsVbEwH4KZYJGYyXORuf6jlo+qsx1k2ol5rUW8cbmn4QyJfYMd548BAu7VJTFiXJeXchQzmTHgJ8dfB1AAJmJKHQIBKAqBhrmAEShbgAUaAsLudAG6BT0OALMv2RZI4TV+RFoX2otgaU+XAet0WLApMGZwlB+VeY6kzXabTlNQp1Okp16TaJvV7JdO1DNQyisymjVv4ayJIjKksZg2dcrhOaBPgFQuGnRmXTKDSkNZM7HcP7lxs+aak5iZztisU0CkUm16bFYqazYvnz+cstqfts7ZEnznf5csUH4sHGep1K+8h3BoG2Zt2xiQsU3KtFl4GPFsl3aKVsaIdNVkC3Qs7ZQyOzgMtiHrOTlXOIcBf2dj8//JCRcey3vHfE6+F8MUmypzqWYl9HSnWJ9E1ef3gAmgZSqqONB6jBDDcgd3QKF8IcH68UCnjLvMuQKEMzys1PB6HWki7jrXCZ2AOkawOQakiecmx/EQrmPADsyabgyYRYapbsTmz8764XHfHMTkO4t6UTrzpO0yI0fnZzCznvMqJlalw1+eYUH52Zmk95khmV+aawAAsM25yWfgtet5eS8LeEF2w7wfZksWx6tsYnJiZfhwbPTyDOU9m0UQUUscaoaF84JaBxyn05baeeg6n6HwjNrleix/W1hYI26CTlW08sz7tlJDLjId/LLOMmOdgY7k/dumXgLXw3Hr0w4m7bp8j1krK+9HAGdNSxnLMaZTR8YEx8cCAGxA0g0jSMy1X2uSl3eMBfxNmxbXzi4qipznLtoa1zUg9Qb4Csi2+TAHkMA2qG0zkHts7k98Pq5ri45B9f2z5p62rq7f6miafaCV55+q08XPjmBUqTqDbGDan3p9+FgLqfMcwgx6bM5nljSye8HA3M/4mVHm1RhAF4iEbWSAy2cT81LI9AHiRy33GOV9q+u85Dssz0sdBC9Lafme5jOErVTJLWC26UXsCzavC+R88M/OX0sw9q5Z8dT5IRgslwAmqNzcP2a7Xx8P172YY5DnRIzzQDjuc6zrGGSARt9RxIMOtSxjEcTcPQmgzOBiAmHDn1tanmthKHC+VHBqsZVzXpElkfeUAZbbOrnaWfo6tQ6cmebMil/8yc+ChsshZQ26D2kfWbaA71G8j88CVL5z/v2za199sWKXDbIwbVB/fnYs+6AB16z/Z886XB8DFXSr9xY/06dIeyDz+T67lcpw+PTCl72L77DOkTpuNXDlu7gAT9d7Xs73g+tW8GMJmnnULPbyNclg0hAsn3rtZd+h/64zCDWDB6E253E9/oyd8NnxyXNlML3Ursn6E4DHV2HQa/vKD+f/87WzlD3UMgtgDei1aDyUksFlLApws3y/xk5lLsrA4sP8KWNi8WH0h+94ea4f/THAhE+f83L8dQAFVfQv+6xBCwaA6yJobgAZQA7z2r0Q1KECNkq2pR4jAiDPuIbxBLyuiiDStiWbAWPMbGOpCycqP25Ot/PMqAv/UbU6VeXjBY4vN2AY2h/Rcof0sa0Ver0CbYfcguFgltk81vCPqP1t356ejQ3GRGYFu2fiWaOXFPvmKsa+IcRmOQbweE76tUoyGyYrRNd6Vy6M2FA9YzOSyrUo2yOc8NaAvHbZWM1cuMxiUWkD3p/AecLO7iI0dCaJ8MY88WtFPWLN7vInN9sAMdjuUXqHbd4q6Xxxiuh221wc7H22ofTrIDUfbJsOsRzds2j3aOWoMrMcY2D8/IJxazh+3r3+832i0vrmdaHjNlEr2xtGU/QX10C4/7NrJ/SbrvTKXb1eune03x8eVH198QzJZ84rsIAt7eFzs72dGfCwG8r58y30Fzbo4S3IZDSYNIxNgF1gD2TWEoIES+S0qBWWpLyOKIvQpzMezl9eoO8n9HlmC022FZM3BW7qGeoIwFIBn/dPRzdarnnWbMPYGTixJMBBGdw2nCrYm0IfoVMwhrecjTFnJmJ82SEsoxLJd61/PCdNPA4GTNSBQLJghgt6Nm+7Jsc5Mx10qPctKaH9b6+esfuDrb5m+8es+6uiTBGM1i4ObHmataMMtFVhX15y3syuLbE+bs7iksiMJkV+DG9DWZ2aoOtL7zB1BoZQuPR55j3JKZN6yraOgDMeVL01ZA8G1MsNeLnPMimCdu+nO/bZctHniYN2wY6K55W3h9vGLy9u27BNOxE2Iqn8nDuYTrT3NgfwHMDzQPt1fNCQ8PfeZsAnUVa2KTSCOvsSjKini66KGbK8bItuFr37deIc+u7n7i3EXx8n7L4tTvp42WIPIcDgc8Iz72E7mT1lsGHm+1RrWWutZ+iRlOzsuG+wfQIdpuI16b8fwWIoWjEEmjknQtyuZoLt7npB23fLchZTcfu8b+nwi1m2rdRHzLOt+T7PEsMaYJmGYF5L5kVt7ZfAksV1b/vi4GZGlHoZERzXrgUsSaz+Qq2BT/bHlX1wxjpts1zGr7Vn+U+WbvKc1QcbIajXDfJ2+N5+a9CztPoVIDtTlIPzgnuPREmI3cozPKNen2ueZWCRnZfQ3LHCFvC9psPOltfWYyQ7j+ywFDoMsGDR2AASOKDuR/t+TP2hAD5mq8I9WSO8hyo86ILUridRgRcyGQgo2RY+D2K9bBrAS/HTzjFZHecAjuea2QayraI8jtSQSeC1DwgOjJ9eFtZMgjRki57OAE3ByyHzvmjX4v0CWLW8msDaZC9WhsQSdN72FHRli8uFhVaDt8Weh0/3PHPdZLJqa26HwlYzm+lsuZEdr+hjZ0ZCBcBHZp70+M492nNnoihKNW8uMG2beunyybKUMfdVs7mPhlaTlLGwfUv/tDLG0t4xvBkj2QKATjCjdpWowWqCPG1qFxDECXtr9933IIJIFE8cllJPlc0DYG3rXhklBKeBeR60+a655liOwjK6prMcowJNnNN1zkSCy84TVWvA6VvB/o3yZFM48Kf6eSvC65hRb6U7Wmb8jo1skckjg9GlnPBfCOKjZEBqBj+eMbPnZ4jl9w7RbdUsGG7bZk1YAAHDAA2AgUv60pXjg1YDkLp8PDcZB/79sGXXchICKx9AFYMhOvrVZyvlEA7kKKBjBbBYovUZAMnYKZ7RmfAaLImPwMK/2Hnjqqfxg+OvAyhgDYbcIExULamfpDQSQCgOAtV8ZcA3pQWgijKCUQIQom5xPSA2CNIzK91UC7WV94q56bMX8oJsA7mJimLJPGUWhyjbtmXddAYNibQha0H9mjLRaTrPRL6BRFbFMFvtsb76ysigYeK/eV81q3hZxKlknE6g5efdcBP0CcegLi6i0wNY6GU8N8em/vcySS5/K5M++yjn4p5jxPHKMpWwpekcF8VrhNOaBzUn+nRmEbXWJrPTxwdEmoa+/DedMTptnpmxNBRjF5iUzEOlXgWSL2EUJIIY1vxWtWNn05SbCUYD7xmQnJfZZeWm6XDK6W21us6AhpvnzJb5mLsvMd+xCzHC2RFABkPuwGzJJDEA+rrnehMCXXmi+HHRLkiVcq7JeHaDZKY8wZgEDtU7wlCkrc5JbrqXwNO1WSikxbUo01EXZ3oIn33ADTYdBM5PK0wJ0rSBOeceALVC7DidPkqxSzIzVD/SWHmQAlkcisygVYeIB53bXFs213KMGQO+SVlEOHHOfEqgkecva5VjWwP0tDOY6wAAcF6eyebYLu8CWOmt/GxxNvMdksp/tRW8lXqNCtqwdax4mzqAQVh5hjp26bzHZVhmQXHZGuzzlnlfMp8xjwHPnnZ2QsDKmCvPvXQ64HnC1s0MNlYGAJB1/ZkhT5YDwjkyr9tvzkxKW2fl3WTw4HNDubZj7svgfB2Lo5TAFVyslWKugigvEvk4JipO3COrpj43Hab8NzJYqGMFRLAqxR43wRAHu5NRyLme82Ks16rjH/bmMxYND3a+yPNxTXLPNJvsgpoNHfRLypoNO5zzIvybCpzxOes9wix9gLk+uW+v92v1PuP8wvd2DlgFwsV9KlAxnXtrmdsU/132ZEUCLoDPx1XwMny0C1BRWz/muw6g2G7hK5b1wr3Vz4v0yVJg9uzrOxXxunI+3NXn4bjEZyeTqiQbepkzAV4s7BGCP3W6xL6X9fUVvCv3ttxD+mqX+0NhN9V7L9dKlmqd2/TfOA9Nix94WZMZpJR7RRkbne9VrrpW9X7MkAzHYF8KWfX0fYzMIl6zjMP1f/xeAWYNmGWF+XdZP8d7vI7ZKGOdJQbBeqljwnHiV2unCivga3329Jl5jkvweTk8OVjHpvyb90amFK/DZ2BwubBnwgG/+hNM1iVd32OTT8USr3vPh79fA+cfZ8d/eFzHSGUN5vkZc1Dm06C43kfOIcZmMj9D1gLtVf833C8D9ThWbZoC3nz4nqyfrxoH15//Wo2KH7yPT8EMHn+irVD1NP41x18HUBjDM3/cHBt8QYbadv/lHllIeM3pw+sR2a/Ymi5oNkXdADfYw3yfaJEltqYYRL5KPWqCARIoaqgYyzG8fSPn4pu3tTv/5q3Hsu99k6kwn9mXcCRfd89kPQvq1xTAVvqlK7BvGPcd+jg8qweA7YRM4NkJ7uU3d/A1Mnw+lnQCB/R7x3jZ0F/3qGGM64o4wrqjUJD7x4l8hpXfGoAISG0aKtuaI68da90ywQsNEag4spNDoOqWgpCBtpk5S0NLjbnZ1JGotWE02NUhO2a3BwsFf1colqj98znU3k5nDUSnhvHllmOnjxPST+AU2IbsMb2xZp7lEge1M8SdJPMsmoqgPTr00aHv53SqymEtVK0NWRYgw/D4m4/P/VdHVLP/9jFcEf/RU4NDvr/DmmJj9qZs1qaCYX5+MDvHDRoIEcaWNH4xF1HUU+LZgGYGazs661EFLmwGRGazo317wI4Nuk1GBdu/tj8e0QJwnyJS4Tz0u6+N87Vhe+/Yfn8C756tdx0QhT7PCO5KxpYOmLqI1/bO7LV72np69r29HSnqyOxH32857skkinFlB44MdqNGV76HDkHpYpCgB/u4E9RgHerjObNdZA2EsKgcJ/T7EaUwCiAQ6K2h/3SHfo92hKpenvNyWx2ea6Atrq/h9i+ySszkWmTr6hoL+2o/7/F8oXsCmSAlAKhgvNyCNfD0Zz6A/tMd49awfTumkBnXOh21yM6nUGMopBtbX7EeUwT6/vSg4ssdKSLJ57QZRJoEm6Q3NLZyDGFLdtbIuUE7DCDVy6lLUQM3vpPnMcGCsDNjf/Eh+e6ZTNYvjk2hrzvs3qI96XCGiao/A+fI45gtJ2O9UFQTzPa2UI+PfUKfPr/ZJhjdgkEXTrpISqbO4LDNICo6Nsxsbsl0xzFuzduuvnsGOwHnGC89B44vG87XcC47cPvVtYQo6te/bAky6PfD7dL398kuawpEzfXS6/wKZjMwHB2CBpMArERSmZ+AoJea2Kr7I25LyPiTYBWaSpQmIrs6yPOEDsXABrsp+q7oLw0Q4PbPR3S1OJNhkGN8dZwZ1I1ALzSc8zHXJNvNZsvFUnfP/2VC4ralNoQDvNEpykqy4xz+bl+DQZkZVme1AYAeFgzJyWxx/aCxBsOqa4Y9s/w69/zCbExBzcNcBFGQgfFQgR4Op6YwNdeWAhjitn9E55JIoFB4cxE1jEOfZIe4belfCmMTWEp8yL6SI9hAI8rqNuTYbG+uYyTsJkNGKNt/jwHZotNPvKNkPdK3IYOzjOPMuJd5THt1eFlFdlwpDI2rQn8mGc5gxBKz8UH1QDGCHTm7B9d1PAjSnd5dyr7cQusl/KeatZawc+xW4JcAS/ayRBBuV0RtjkWdv3FkadFnwWWLPYB7ap82ycUhYwykfPcK8oSfKWOkDk9SxeE+pNXv7FMLB2aQ9wiqyeCgHg7p31JaUhcgjkDVAuCMAXmfZXMA/H7Dt+Rn7WX3eVbaji+2o47ldcw+A4ISjEX6syx/m23Vg604jvSjya7x1oR92fcc6CETVyfzkWBIFZgFPgaTPK+W8J7z+7PAmXaxztna1e5fKC1ZBBZrt7phwHDGRe4zV1AhMvvr+QJYEC1ARNjbbUOWb1wfI0CGZC0EoOrdZ2T9W7AgltaQlyPtO7UNljJRxcKOYLlEPVd8xsraWsABmd+9alhkl4g6xrxuOT9qTAms5fCfHH8JQCEFn8oipgibApfFJWmk5/c92ElbyxZKgqw1zRpwBvcqiR7LkOJsr4iRdMCIXkWm2ueff5+1g0n391YLScP7oLMQfYvTGWcmk4ukIGOmGgI3CB2EuWhMBfa6uQBTNegWaH0ISSHqvdujUCDL51O5t8MzDnVMAUjNZP4/zL3bkiQ5ri22QNIjIjO752JbFzP9hP7/X2SmR5mkM9qzp7syM8KdhB6ABYIeUT06emo3K6uqzAh3Oq/AwsICD78BgGUeM9rLiNNhfZcp2ucFRYo6lOyTCmnuXKXcZEQSpRvVpG9SeDJvdoHM+rO2VLbMD+9yDAPeMyWU/QBYdG73xex/zMCbh0tUn6B2wHkzVJ0lum5tZaycgAU6+eVQ1G8fV5+j8VF2XSmWPuLvJRSHo0OUGBmk984IEUJjYFyqCTmyDYPCXoaEH3+5gqXHyu5pPDwU4iBMbesKwRTlKlUmwl+sEoRulrpD4cL22afTp5YGUrpCeg2DlVoqRYaJVl6bGYffO8q9owFueDqNUjztogj6+zbnTC0OoiQjtsBAME9rCAaUr23mdKoLPxkFvtt+4MyCKbg6jUzd2tTw4HiLLBEhpm+E4cJxYKoA9QEykJCnlx/e4lQfIZ2Xhm2aZ2Yo6eIIWTlb/0ytkaawPGlYedM4iLwdhaX2wqhPBh3Xa9o/7X3E+pSHE5kPYSxpomc74EhaLg1vEZRHme3h/bvMqCLg+x+8fPDsr4iU5z2QTkA2lF1cM6Jn2wRptGDqzvhaElGg1/UebvQG0yMGzoAXBSCpXJzdP+39TPfwdCbpw3RxBC5CKnZcOUspbs+5UVP5SwWoDbAwNgQG7G3N0xB67GOVJShzRBCYLIWU1heVP7ysnFRj56gDauHA9DHfrxRE2dSSzo+u1tZqwEdUE/C5FYwq7sNIjlpy6LNTG+wmpta4SGIdcObh/Dz3gbFV8+t4z7wGeeac13jRyVTgVu+Garwbz+1KQTwCvTChS+9jOmqsgiLVz+ioYoCYk9IM1C6P7udIsh+2GuKYfI+cNhrPOjkvoS9RXLjxGDbPefYP+7JUiXmwVL84rbMM0kZ7uOZFLF2O3/Fzi0AlRbijXWEYw/cb34t9rzFn1eZn3TGDEhmHyud1/neAFhQdnVFsVt4xqn6xKhQDEE2lRvn+0Q6Ae6/tSb7/ijxrn3SFaDe7ctlHMOf7Ek33z+T1k88kSfMs3nU6t6/YoVFNrScw6xS5nCnHY7LustPM/f/MXCs8M3u0y/YrtzvzOBQPzuw6HbvWYYtVXgJRPGOtzK7/bGvOSvYKWcGkEQsQiMxSnMkTYtpX+9zXih0/qYoQ75nPgCfHVtZzL58/+cr9TX/grJ92akeI8fIaOp1U/i5Er9N36ZwDcx5lX+TfXUONvZCd77DH7V2FFX0I+EUayKkvX0XAEzshhBZfXZJEC4cDFT8DONwxl4EAGhY9gtFPc/En7WL7xUBAAVbAhJHb7Jz/O5ZGKTPFIbU3XjO383zx3bMv+IJ18JrF8ZMx971KT0zpP2LU/CkABTtUCuS7zw1vM6dnpTUjBNmG15U2NB7RIeqHICP49fBD9sCMXInlN0YeqbjNJeLMCD8UXlEFBwBIIMnFNxx5mLqotmKK/NcaG0ami9KZK0kVmffBMVA+77NfqkCLO6Tp8yoCXF2HgTTOMtvNfrC8GXsP+UyR8p7eR5wmZ/kJ3s9OcmIO+VjbuuREMR+Zm9/hiCgnJ1kLjoqfjWzmc6J5nnlxYKekDaRIGKN68SgNP8tNk2AHNSH42SoW1R8AMCAPRd1lHtY0UP05Y/Pc0cecH1Tz1xSlJm3/JbLaFfXeMS4Vx3tD/TpQUgWGqC0uElTeeu9GkW2w0pt13afDaa4NViGgA58WjZKvuysLe14f26l+OHqKBwCMraJfC463EjS69m1OYjnM0bj/fUN5KOp3R/s8TCfEo6rMSeX9QwnWdU4whpUp83k1WInh1pza6eVNf3/EHB9bRX8zx0ZHijJ4lEoBYCvYf23YVC0q+nVMwUkg8qClD4xrxXFrqA8DQ7g/9Dc3ZqmCDiTKcPS0gcteJlLE1sC4NCvdKTavbK5ZBDryeY9uOY8iU/eDEdMMKI0BHMbwWFK8yCyo1Z0td9jPYlIe6VKni7MqQ0STYl/zedKHGTMiHqFz4AZw3RTXJshtlLnmfKjNIbvvqHcEuyXYBimHNwCPY65ZiJqWgFf4CM0Ff/fYY53FIF9pHzw7PHQcCYKcjSzhPo3phBZx5tiYDlVycONRl2aMpHQOoatF4eEVQK7u7IJGywROlmpCNCLZ70CkUJSamC78fO/L2I2b67uQQePsHgUg1atEfK/q2xZdNuOqfk4mCCPLZCMxony8V5Rdcfk64pwqXwfKvWN4mUn7ud+qKzC6rT2C4oCxeIaa4V8cUOBwEHRgbi37hawNpuONYUcHKsaHRw6P6QiLR71Dh8VF+5gjj9jndaYrpnlhJTa9okaBCc5ucw/v1wrdvGqOB4uVjirTGTk+1EkQTBpuiDrOfTFAP3eQ1UUIPdctmEOlJ/C3uPPpKUOqXhay2fcGvMpPEajrZNSvPZ7LlMjhwFjZh0Xio6yj75niJSXptPpcpHFMdkUB7FwnkNH92d0BmmOYlgNmf8QaAKJ/WYUjtBccMJYmoP5PIdBK5sQxgqEd6TcMVnipWIKm7D8y+tTXO1MF8z4TF4Wg6UwBUWUn9tNSgOvFmJ7vDaMW1M8d4t+N/OTsSHPe094qOlPjKAgbH+Q+jXheFnyezugL5ybP8QwoeMBF60zzCcCarKitTWaqjz1LHXK/Xxih/FkGjAbvP227qPzk50U4xdQL8LOHAphPTIdW53kZLJIKbUjBqwxiYP7sACDGGhiXamAc+5CX2xxIvoK1B0CRKLn99n9ZdZh6PPy9kkNLf7KvcyqqV6TxiWfXansEtRRegA6RvkrgYZzOflgfBIhFUOJ8ryhJ7ZoJxxHOL8isygCVGDsvzkTqNXBN8D2yY/xiHsd7kj2QL7IhfnKxtCcj7ksEvwhQ6vrMxcltDlJm4GTMwFG+aFPqZAGENoGPjao6k6Pgia2QK0OkiH1OJw9ww/VIYo/4GahAIJLAiT8zWBGhsXGyhfKVmQrni+1xdsYTOyF974m9kD//b9Jz/hyAApBy5CzqIXsxdvS3UdUYPdCWaL2k9ue8R/GNmJvEVnB8bOEw1FSeK4s5Rm61ONrfnc6qHTU2Pv+eYioQK8LpiGto5E8yehBiSIow7sZ1lvHqtUIu1ai0WRRSxNIkSFkGgItT9BzBl3248z8nrLIe8QE/HMmKSM5+6I3xxSQmnWzVPsbcwABVUvSUNeW54DOFmOkFqXZvRIvo+LuQjoyElHJT5eHMA485VPtz+R9ejCJENCYZaOd80TkJEjvBI3UqMCrc+cAiyk46btVgxYxmUTdxA0g9elPvfpBXAR5u8N6c5soKCp2AmaI8FNLhxts0qEdSwxcRq8stAu0K+b5b2xxMIM2/7h1l95KL7pBo8wNPrRwZFCi7zdXxXgJYWNgN3jc2joj8YW0F/derO4cEXGZJSDmGRZjufaFWm1jgNLJZpxxwgIp5606NHU4Lrt8j7rOUFRRZ8DTZB6rMyJuBIAgWRv0+ECrojIA7PZwlPasPAS4cl2Masy4Qa2Krln7GHxOFAAAgAElEQVQFYBpNwCIeRbVmRidDgySl9Fi7exiyUYKP+2Iy6EQnGDTnZmIAuAEnfoDL0ae+gu+TkoHLUmZqBdsOrDoT+4Fy3+f632wM5PvhVNIGUhmFgCINV2pFXLYVwIM7oqldtt+MFYwp636gFOBLAANLw4UafC5DCgMGmO4TB2c+JLNzm+YSqzssed5HAiOBYNdZyVg/uGud6RgARKdxZUDMMQFn/sKj+uoVegzgtPKo0hX1mOVEo/TrL9fpbIm4Rsqc+xZxL+GsqVPU6Vw2goKFENvcD22Pxqwy4GuuhAECsCa9+pzQ7Rpz3Zx3r8W+H9B9jwidjObnZnMnMDkswCyjSbtJYKlPm++F1bQg2J8DQMmBh9gLOkJ/IGsIdaB8d2ujR/HKo9t+OibDLDMfYs4UTDHRsEHSOeRnJxXzhdVNrtSk8AACHWTO5eJlgb09YRO50TuqoGixqHhUbuAe1+yeofkxUA7vh6fIk64aGul81ovvU9u6RqJsLkELEWBzJowz0sJxTxeBgSmepyu4Ks4qGw7a5bSW5DRRLyjsAbI7abMAzxHMImCVkojicm5y3gEJTDgZzaqLYyd7R/08zJf4ekwgAjrLLOZ2S5sgkzijae+r2Ccj59nREE9zIAMxO5TsM5GpO1KTAx5/z700MxtCR4kOEzC1bTLNP1fRSZ+Je3McuN+JO3y1LCke0X8EMxhgOgbq58PTPHxPu2yzDRy/5qCHnwHBDjwx52aQI/kRJ4ZHpK10DbHY8uixl4yLiWN//7XgeBfUhwU3CpkKIforU8z96LOfVa3cOts7aId6/zNVlik0PPPSnFlKSpKh7LZ0pPKK61MQTGBqS+433s/TeTSL6mW7NoMtGXTjfMnzLl1SCzQOITv3GbVnIDPmVTzKxuSnpReBAOjiynNwJPo952N2+LMROPra5pwy4PddUgry3qFJ/DCBCdOpPrWb4AWwpvjlc+MMvDgz9Kktsq6zl2yFBEzkqhHRr3hxcT5pukfqiycG+WkfD5Dh37As/hyAQjYOuZ54QHnum6GYNCAQyDNFz7IRVdJL980V7H0SlD4PalYpABCsBzIijDK+e3sOMxpbHgSZNHFB5GzKMONLVWfkwiP8Yex6dGM0N+7UDm5bC6bXQPo7isz39wNI3fnhoSSqGL7psK51vG8yLMueDgFg3Ug89xn5AEUSX0sUdkYZy+/fhiA7dUpLgciYqQ55bOkUDHfifFONDYYHBh0O3o/RreKGNqO4/o6y67Ip6NZm3d9lYzrNueSMBtrsBo+NzawegtSH0rHQ12dfwsGRAahRk4KKzkedhJaMRZI3dP+M2zYsDTnFt2yeFFUMKZC6+TMIcEzmRNl5CHYXWAPg6vI2b+Fgmkew3GBl+sW/qZ4TgENvDeW7o+gBikmOi4F+xceeKSMhSJcOfzkGSIFmbqDcbQ6N63XJQTagT/3g0AQSuTPlWg9C58AP1rFJCJqJej4vx82NYPVxGJs7SIdHF2k807Fwh1JawXGtKA+gaIq85nKEeV/jJOGmTgPUjTzFsNzFZo4xo0VLRIbPAFZQjYZJztdL8zr6GQhnnLoBBOGizKJ/3/aa+Ww6hcI8Tr+v7jsEBN+mEQu1lKhJsRYDIU59wpz5xbFaJprMiglc0yKrEaU6nbyeHCW4fVEwIzLAahwzqsYc8rxn+HwV9iXnG+nJfu6w3GhUHQAsTcZBjqdrJAEt78dog98vSrG6eGndH0vFiaDsXsns4fmpbt8kR8YZSjI6pNuL8AysjB47WJiNXIoUrmLEvqfQESDV3/edcUvg/VDIw+alHoelZtlMMFp6q56ecdpLgYURF+rtBVAxwz/2RFWUw/tp+L6lqS+62wc0btN+Xh7HTL0DIn1qYBr2MSfDEE/noP8uSmayHy+nsR3w9BU7TwU6z7EMRAgmC1LEwH/+3FNAdXgKQF7fw76nasJ2BC0UYy3TGO+DFQRx20NlMtDG5gCMYu45ZA+o7dMhYJacoUg7JchwzDUqKK4vQefSKv3oYGCkrxHftBYls7mSA8dxXj5/PvvPl3g6AIDMfszvEmARx797X95308dgjjr30+z4/+z5/F2OUJMVuqS6ujO3H/5ciTk3n1EC2LGUAUw7LW6U+rLwLDPwQwYiD35xNHiVZFOfnVBqhpyrT9Titqms+14eTw8+kZEhQzHerzGfIqAQn5cYrwA6RmpT7utzn6vO9mcnWzW8LtpbUtyeuQqOD8H+AexvBWX384TRZgAY4mmDMs9GdeYXtXoq5zrmfsG9Jo3n0n9AnN0B5peUTkdmztYWdt8yDud53OpMCzxHlwlo+XUu+7rc5/xdnouwfSZEDbmXipg9SD9dBwQC7WV1eDOokp3VpAPwVH4xvuv9ORKokK/znE73f6reEAwAB0bKSA682M/wCjSkLZTKY/5RO3I/usZctIXMDh3P73q+XjEFTuNpj07rn2y7PK6v2vsH1x+WqsSfBVBwQ1sv64uW72MijJxfjxFpBhYV8Rk7EBtgGM+lQB4DTehcwBxud1DD+WErnGqnxcW31CJfLPsYZYiaYH83YcTLPx+OWJp4I4oJzY1rQfvRUfaBcdssWv3b3aMABC6A9mOH7B3Hr1f7XRGgFfTbHBppxXMqDVbVjZHbis//5Yav/xC8/UOx/dZx+SeiRFLxVAxLaUiHRhICA+ARYTvohCJE/FzkIKYIJwXynE4d9Owj9S0w82QTNVE+3ehO7IPIV6ezci7nUyv2/+EX7L80vP0fP4D7buI3dLrSBmwl7syBKV+79elWZ+SjSQjVqSAo+KYj4VobQ401QGfdHTujqwLSbvF+dDSLG2X9Lzen1jqNvPcpBJQN5j7Qvg4XBbT0CGwuMghMeqr3gZV5HCjd6cZ0rAGMX25rpByYEbSvh0W0t2qAWXN9hX0a8eVhRmq7G/15+6/d5s69Y7w19I/NhLQo3LYPtN/uGLcNx0czIOKtYfvNypn+3//rO/qb2Uq3/6b46/9+n+DKKRdrfGzot4b912b0wi/OV2DcNozNHAg5jFlwfGwYf79apMjbSGHJ0Soef7uC5Syj+xSAAsdbQWmC8mjGnvg+zIgdAypemnUzHZT6wyKh+t7w+T9dcP9rwcf/2bH9fmD7z29gDLTfHzannJGTHVXSZeXo5li/XcK5kIeJJ+nHLQyo7EwzHcDSNy4Gsjxkgn06571R+X3ct0TV9z1TdqzGRjhn6UByI5dVMHC9zMORa53z8HqZVNkxIB/v0FZNRNY1F1iKUr4fEBqlAIJyx++OU5tawfjlFxfA3a1NfUCbG3RednCpuENg7nu38pSZ1SQeyVEz7sZ1A8U2WaUF8HPibnsf9yvpjOzA19YRxjeN4Tiv1Bg2/T9+tbH83p/zbT0FIEADIPYXE+abkTrTj6iuaWN9NC4NwigVYJRdJKdfEeyfKCHo0c/iYorHr9dw2AJUCyAyRWWzsF/6o7l9Ph/48/5hoBLL5AI8V8xpkVKsD1gFRQf0x4DIx2Sc8Pl0etlHCgN4fTFLl3i3pRTuZvuEKkJA2Rx5mZHhxx46GbrVyfxSNXDFgRUZFsxY1hMMoFfIZKR1dfAI4QiRmRhA3n5ARrMyjXRqnI1kgrPGQDQx4NnvIbrmjnn7OoKxBhhoMFNRjKkoX49w7KKEWRJmjEoOBZMBmYzr8uie9tHCZtIqkFtF/SyTBcF9w+971tmZET6NdxEHMZiKWHyulBQkiMv3nsJ/01HLhvDQVTgw9hkOwDxrlIY720ynPiLofTqsHHNSofmd4WxQ7i9cA7SPSl1sJtNRkAgyAMcEyiJS72B7OJApik3QtNS5R7vjoeJMTU9RoLOb9RwyEJjPgIV5NnRGfv35ZL+dAa/oy1onaOYBPWN5EWTEZNT6Pq8MAojMPiSwN8bC5jIb0J0XiinyvOI2ldM1CAoXBhzVqpPxjGSZdgar4O1z1tJoBaMKxkWwv1nQqH0C2+dA++H7Bm1jSc+SFranJAcfQDADcfSpWcTfx75pZ1VmZ4do56vUAM4rlt19BVpFsCvZBLSpfU0tdsPw/mZaJkEfGXNdZMAjzycHRYyhxrmkLnUhVsq3d6gMm2MsRwoYc+IsWvgCtIi28cpMFO2AvugDHUAONKbIvtS5L4bznt+L3yejYQwrQ/n0DH7eAYjEUlhEJHOQ4gULgAFV2y/7E5OCLKKX4o7JrlL3uxawIPdpBq5V1/32Z6yDU3pElOj8g+tPAij4vMj5Z6REI22S6kZgplxSiZjCU8Npr9zY+kB5pE10pIOvpJ8rVqdHgMhhLI7wORth1BI1ponuM09Xmynz94sJzwHwz5YlZwywjW+hwAXqhYnwDkTuLIUgA+EU4LgJ7n8TbD+A9iURqWB/PV1Euj3P0vpR7UFkfPBPnwfwUromDlguVATQ8ITO17IccguKGgtiOsdLhCAdOqSjRb5dcQSYG3M9gRDcDFCgV/8sMMeAxveZvgQEvTdKQQVK69+pCFAr3mlYBMNouKbVYPR419ZIlS6IsMuhwVyRVqxkmz+fApymDZDmP5+raorWzqYgkq5j3p9lv+aLJWOX91P7vACQA8ZcGHQqOgCqkEsylBGOicZasfupFBzvwPEOjE3RPu27Rv9N+3+BGeab1YEnmEZATQ/M/8PXylCYMJ2gbCazWrtvwCKu12AGQRkzHWXmtGMayAcCiJgGtqeERC6r3fO4FewfYoDEXtHCYB4rRTNfPAhUvWpLi37F7hv0Ro2YYbcYac7zvlxbpVjn52hEKTMy5fP+qaIID5hkyNDIysaPjR3XhrflrJxMg7uVcCq0uRFdMNemWDQ5Ik1LRC5FvPN7uvK0uqCg9gLxiiPBXAlD/bRmRdKZcNr7hu1tRsOsoS2DwucDrCiE3iN/XKo4eFgSTbukqHA+kO0eY6soqmu5tDwucCfOx9TGmpE3CU0W4T3ztBKYUzbSXMb6GbIM4m+eW8O0WQIQINjmfSQd0DJvRGZWiJvJjGBzfMmiYOqHuqbRok3Dz8b8tYNS1dOHcDzn1A4ALG0H2NoYiDFXsN8QEc5ymGirSnFNGrtPqP4D4eAvBn3s6wDF8HKZR9P3kQn2ZENP5/5yvnJZ3XimpzkFSMDocAyeguK2M+3G285kFE8NeHK+g1E5bSMBoKMufbmcw2xfm2Nr/a0u9Dz36lHFhpC2BUu9xtAlCrrPkZTIE/sKXC8onsf94JVjlNgIZMmEo5sdMNUJxFGTIYSz/f4Z6OD3lmed5uCr9rBNtEE5j/LemI358z00sTX89zyHlufWMvfE3E4Rd3RgexftM34298nP2n9+77Nz+Op3OUrLf2+YTum5xGb01crOXO5LICBerU/wIF/eH0v5Yf68iTMAUr/zMxS4feWkvuoH2jduapVDIR2od2dr5j5ONvCT5hD/nd9zcVT1eb7Aj4Chz9/lv88/H26ElRdzLZ+rZ8adprHMTqfI8579/+cKlsDUGot5MgCIixizDfA0xFc+AcGK6Nc0jmHfJ/sofldmO07Or/j5g9acHYBnfQW+yuJwK16Wb3757qfrVV++2H+0lKRL8mLenvcojnFqKzUonj6TGKXL/V6tjfh9+uyLlIifXX8OQEHglKbkzGSHDbBIoEgoYI9rCaG4aSzAkXrmIptCcfncnw5TATDeNxxvFr0uXSFfnivtkanjrzdbt1+H07GcNs0IqJjDZ6KMA6iIXM2aUg9oCKiXqKnfRrUMGiMNtEKxSQ0HEQUmvJQn9VBALN//8vvA7f8pqHd7f90Khm+uvZkwU+RkOksgxIvI5GgFIINBdRqNutKpIuqQQZ10H/n8tp/RmSJ1bwzgPkXqpiFQp3gXD1Pen8/2+7TfHtOQKCWiZHq7LGwLUvFkqJUUupjIlrSC6saFCe7VGAuozjmTS3zREHm/ztx/GgZZMEk86inDaP4UlaLA0WWzDePi/UFq7dWXn7MLKtNngCg5VwYrDLhtWOcuqC7MWVJ7FkqrOp2weMROK0oVHB8Vx1vB5beO8j1ziKszFfZfN0AuxlrwPOPL78YsYZv7+4b+1tBvgus/DrTfLCe/iODv/9thRqgC5eFj5hFhdaG3cbH76FZQ+sDlnyP+f/ziJaKKASv1v2b6htw3lG/LbdRWcDhz4v73BunA9tthaRx9zGgewRXXhiAriOVltTXsf72hXwvuf6koh6J9OcOgK97+24HL7wYQ1oeDCAXQ6watBiSdy0yR7q6/3NBvDY+/bmifHe33B4puQPccXkVEQk3nxJ0PpmUdw5xBiqMyUvJ9B27XWffa5xGkYrw7eLF3L5laQiQyIuTdDfGkJ7C8Q1GECFgAGOn/pPf7+i2/fc91w72W6zgLLJJiy9zTRBEVEZTPb+jWoNeGoHgy7aVOh1pbStMoMAZBPiQvm/XjTlp70uYgkJCcVohYDm+fbZLSl/tFlMv3DgrEls/dKgfk/fRsYKbDW7eK42NDeQwHvGdKEJqg/+LlJ3me+bpZAFA6+WRreAoShRcZvc657vW7OzBbTb9nKNq/jD1Uv3Zj6Fxq7INMuWPKRP3yErteplS3Gm0n80/unpO8NQOHLg3Fc8F5BcWz+f6Xc4odmMyllcU1hMa1uQNsfVC/Z/oeU5nKwwF6j3oXHPN9WgE+btF/8T5kKToonI3J8bbN9LfDSlSja7ANY++nSKDIUi6Ugn7TQUvrADB7I8+TBHKR0h76TJ7CsTgf+eLa83VsKvwlrWnEM2L/uzQDcMnw859fH92AXor6AsHgzJUW1spcBXrzlAnv0/LoAU6IM32KOy9RHaL5udgnqBmO/5JukyLd57O3D8j9YeN3u7gmzgRo41y/+74z0p6WK5IAM3KcdRHCGVvTa6EKtGrnLNvpP+eaBdNQ8vvsB+SQSM9kxSzNThR/RrZbilIuyv5cT7mPSplgr39Gzk42/+/ld0OLQRXYi68bZwhs1c9fL/1cNDQesDtDaAzIaIDWuSYum8FhT3oLMh1ePQWsOEZ9GBOjqkWcfUy0CPR2nevL30G47HR+FiWnhcjUcvi4GBPHAxr9ZoDo5beB4umg1//nbrY/+50Vz3huUcsDmGXNXTcsdMTeWrwny5zGucjm5sAJxzQzYAgenNkCWcw3R6I1/TyX/Yu0jTaZONkep7+V0g2g7vDv+7wPz6A+AD2JAotrN2VndXDeD2TxZnuWWGq4p7LkkvQhigg8gxX+3afgSRU7+3LKAj+7eTn64ulx/XhmK6TvSC1rGckz48EaBjireQY1To66r2kFYv4w2q8Fzng0UE3qPItQiqXQ8Hv/7lp0IBTau+0lWdeBv6aOV61P31tARLYFfm6/SuFM158DUDhfL9C9OMw1oV6akL288DgHeTAhbehxQwnk2z4LRxkAiFq+Dzc7VSur6N8vqqjMcy2Wu73kIvncNKCAPwRGREtmOyJiNvzAlhG53qGi75/Ll+UrCurXwOU3Qfser3PfBRbVKbBojegKwrAv0oEZEyyhYMvCZS4YJ94repZqHAgGOqSIZjoYYkM7I6mMtogNjOzDRLTcyFpFkNQ2nvQ+zyXP0lxSLy1VMJXK+bljfZeoDMIc7kwjzEYg3/kUhQgKmxLIKeEMhPq150NHmdGhc1NiTqIRH+Z9Roqwsa0UMdxKLIelT4FwEEZFyplPTAWfZ7EeFDOvlcaZswhGk8RemG2pXwMlgW8xRMcwMR/IpJuPEsYkithU8LmpKfIUgMmwlKfugIW9mjEGyqEmuuq5v6Qkj2b9URzI4aEbkTMCRQrLjx2YkdciDjYOAxP2tB5U3cH0fSnvL54PSuOVDIugNFfMaK5H4GOcxvoMlvNcrrPDynGUZCw7MKBwp+bp8xwYOnInpyb1T/zcAbPlOhn4SxvzvluT0cM/sXY8V7TaPIgqFGW936KxEvP31Cfnf3sbLWL2k5BE3N8nPvcmcB9/cW9nPcUe/YqOeNor8rIM5lrztgliH4g5o5jvyogg3ycNQ1SA4LlYNPbKaIcCcqiXuCfbyjYWUe5zMsHSSDSWuV7orLgWy8J4AiLnmU5kRPxpHBYF4EZlqHef5mRJf6d5HnsUgwuazruh0RAVMcYX+yY7i9zH87CfNH9sj/DvnY1Sbqxkv6X3y6B2jAsZQ9T2yPMhz2H27QIs6HKsLdd5fmUngO+hOudkPv+6zn3nfD6y7WP40csxx1O/xTV0KeO9tKPI1PfwfooUAHeqlPsg/18lxD7h+foZSIs/Zyc9HK3xei8CFubYkgaaP3P+//letUDRXn83tWOOPYw5+zO7gXaCs9WenpkBhrMdyys5hjIAagL99J3y8//oenWPTO9f5tWAFteayCy0F3sx7810gVmOEqdzQdd79W6shFQRZ7HJXr0XzyyRaVOePmJMJyBEqQ8HJ/vJsT8/41UfqjoDqTzP1ZizsL3wVd+c3yV9JujqT2dyf/5c3r/O7VwYdqc9gvciuJo/qwOhl3Dui5+9y8+i96oIwKDYQSKaylcvrISy3uf8rOU7dOzT/PjZFf1zAhPS/vWk0cB/v6oAweuPov/xGd8n9DQWL9IU/t31xPJ6lar0s/UeAGP/6fdessheXH8OQEGZ5ylPwnVBee09kC+WSyv7ARwD45eL51hOyiJRZDo/oTZ898j21Upytc+O4WkK8VnWhE7GUnkcFpXzDaK8X6Fbwf6XiwnkeXTXVPMHpJuwEaQsea5TaE9gIAPrgB/TQWJOKx2QIsHgABA5ruXHgbfvA9d/TIRpiUCqb/LVDUBWlVN4brQ/0NM3pKuh7VsztP/owP1hTIKPtzCoSAGVz/uSvxdoOFHY47BcKY5jKcD7zYxTYCK6kfeVDPU+IuoDEZTPO8rn3SKXBQvaq7fL1NJgO7QEKh7pCccIsEm6HfQs06lvrtj/nYTVblvk2rLf52EAaKmQ+44ofQmEZsW4NDNqr1b2Ux4H+t/fY56VY6D98xvj2pbc5hhHH+/hpVO1CtphOf/j4vXb3aC2yGTFECtrdbx5WdKuaF895pFpgxiVe1bcwBo99JxkrRZlKg+vFEEmDQBUwf5Lw9gMmDjeKiBXy2UeivbdESKPnPNe/s5yQAvqj8eyBUSaSVL5Pv7jzVN9HHxg3WQ3+hVAOQYKOurd3pNRx5iHAyhvm9NLj6BzQzznWq1t9cceWhIyFGW3snn9vaA+Buq9o9z74sxEznQpQHUD9fCopzM56j8/IfeOCyySXX58G+NlqyhfpqWw1Jk+OuT7YdUPovxSnxE7saiR4BL5/nH5mig/PDp23YBDIEWx/+0GrYLLP75mKsIYVspxawBqALCxBpzdYBUcUk5ojpBmYa+sup6FSwHvbxdMvT+eDRW/j9SrPWfcbd6T3eP3gIi313+0H2uEJhtbKfIDwDQYgJm/nL9DIOey2VznmmfE/W0L1hwdhfL5CAaFtSVFKMLQSw4CI33ddUt47vDc0/WMsAoFJYBCbS66N1wDwZlN430znZMEbEs3BhsrNbA/ytcOdEX/sPfsHxsCNPSr9iOePdwoFdVgRFGQOPoYCCCmf1zCGA8Qplq01HJqi0VHagG2zTQ5Ls0YCUeHbGIij35FWdfioPJjuF6NYLxvgNPoBQJ0S33AliLuPHu7iYJRRFJ0lrAtLK9JUTg1XRWKNjNlkmwBEx7uASiNj2vslfCgQG6/VhNaxt5DXFCvzbQXWCnBnR6CDjrEdcA0dJ3UK38oEN+Ru1F39eI2D0vukQGkEpTxmGPMb08gQgbSI/iyA1mbAz7Os5yb731MCcnAyfDUhmpBjHIMZ72U0FrhXiH3qVVha7PYvZlLpwrZp3Ot0k0DaAyLXPPnb9ewFaHFmBc8y5lGQi2HxwGmykWkmfs6wW5GnQnyq4ZArN4uNkdYLSc5isE4DbvBnZxhayFsnpGEHBlo+X7YXMuVbGh33S5mt1FQl+wknZUEglGa9pzQaUi6PsvlQSRt1VIw+NlajMHC92NwYD+AR7JXEnNNjr46LieWR65cEmUmtzb3LdVZtpN6OCwjOHRq43w/1vvwPXj+qE72HoEWB5q0CMrjwEBDBVC6YuyCencdk2FrsTySuHd29LMzT/HW6sLKfE7vU79gARJ00RIgALT0V37WGG4HrEOWnX/1kpCRaiczkPp0iUx7nYA5faxFS6POKD+FpslOUAccpEBas+efQRCPuFNnzZ5NR1kR4Aznf4qSm+DpPFfz3ONnRcTuf5wYXkslCN6TqZsGhtg4DeTUiEW3wM+4BewgiJJ1HzyVcvZZmXOV7Lusx0A2jTNanxx8MhYy0yH22rru2fw98DzW/pkzCJD/r9H/kxGlr9r0dOs//v2fAlCgM9E/rkZbvE9ULTblfe0c5ocvJZboHFGFOzFtw1nh5uJGdf0UyLUtzrzc3RHxNjxpHMAHfcgsQ5kMOeoriNrAUfSPOeQiEkbj0gdx2DO9wg9DTnB3IEH6FgB4ab5Qw3VjPxzGvNlj0mRVCoofsuNSo9/iKgVanYKTkHLNxsMr9FvTQtb6/Jnz5Ya89LGUtqMKc5Spi88CpJvnw5W/O0eAMDSE+yLK746m5MOK1FPme8E/KwNgOXc6kOdcvxOqHPd1ZwAyUoRdg3pPA5GlS6FTLC0ceJ4r1fP73cAJwSjozFclW6ACylrz9+GshhIGftkV2w9jtAj7FIjylQt1WmQaYVATJRVxIxSomGtvKW/Fvugmpig7+xxuAOWNWJwxUuaGOjBzvUUQGimB+GOCA1yj50OXY713W1NbRdDA4fPIczBDbXwfHuGxOdW+u1HT9z6jxZsbfxRtK7AyUjLMeBxjrrtaEFUpqswUn57ejXuLO8ua9xoaXa+MBH4nrU8evtLV39v6sn4fNj48rLLhMoYBD8kBfHpOKaYD4gBfGIqMLopMcCFTaYNlNJ27xdBItEZJ7xNziaJPQ2Z00cHi5eDl+jsfeOecQv7N9wZA0bNQjpdnYJvVHjj3QbX/JBiWNSWdSLsAACAASURBVH9i775ty/iwEgv7I9Ln6PTysYPCw4CoO3EqcWZYJZWCUixNYUR0fIISwYBqBQtwSOcSY+afDw0NkdGKpVqJG/jeF1EqmWOpiLO3OFDPEsaDosJDzSkpLlx2FEh1cJmCvVxPZPT4uIUeEo1kGlRqEROWyAztCW/Scv6psa402AR1nSMKrzYwAQatxVIlPJIvHjnj/SyNZJZ3lsO5h6yAkOZNfL/3+Ts/Y6SYWWe2jO9xnee9P46/43zpad5yf+tzH+TaC8cuQAaxL+TPDPXUq3T2cw9N+7MBsG6kcv+MNT0go7ueD5xx4Ocupn1GuwdJq2O58p73wmhePse+PX+ezt3wqieZbegsi0h1On0/yisCaxpZfF/AyR9ihdlJTOdo7rdZjSu1M9OjnaWzpFHweQxgpNLbuU8WVf7cF3FG6soezWczbQJgAqyS7IpXZ0uyJUEHKTn+oXGTnpkB3WAH+r7+ZEPmPjq/U/TLc+Q3WMZVTk7oWPuC7fH9vew9Kl2UaoFEpnBFv2cw4FXbTmdl6Gtklm/q86f/p/tpYWoG1rFOgIkAc+6wHe5gh2MuMh1tPoegO53aMzhSBEjig7OCw2lOZh8oAIzECtABJS6hY31H/gzAwj4AbL/IqdKZBcH9cJTn7726MmuArL6geo157xcMg6WiRBl4YmPkd83POLMgzmBFHrOcQgBMJ/3EQs86GELf65y+cPavFrumrM+Nj6S2jgF9sabY9vhOOfXNT64/BaBgOUkd+68N9atj2z0i1wf044rRikUeeZi7EaH7jCLQMbOD0g9ZV/2O8oNpI5f7Dhwdde8ojw39nTXAS+S/44H1sAkauriAUkd10bnhdc5JdaKWAnUWLPUAZhSq5X+Kl+uLaE9Xa9dWITniXkiDRbAuaNzKY4c8dnNUajE1eLGImtWTJk0OgJHN0S8e/X7YYdZvzXLVs8hgq9M54CUyawwDU2shJrXOfGX+Lox4WRdMOvAk8qnV3vVKXYSUb3Vqx/i4zqhKTeUtedDxUqsNrKU4U+UA9gOFh0VygpiXvdCbu6IQgX3shuS/55QQnyO5dvYwary+X9HfNoueH27AeZ4vREJHgIwTGWq56Krof3uPOT3aNPSFOa0FDiRIsA/U1YohQL+4I/YlkGFUcR7u7WtEedEsTBjOwKVGlGlsBdIE9feHGUjXqS5fugIPmBOeDRSbCjZ194H6r5lfr6QKc36T9kVNkSKox4CghzBlGDsi5pS7o6OQAArly6utXF1NX8T1LIY5/s4a0SZLWVmbz2Yol2Og3idAaGDII0rXMnecAovtazfRtuoRtVJtDR3TcAkFf8D2iCIzzzvm2EjOZgMuzaocHB0oNSLiqjChQs49IOY1gFkn2yN3wsgDgPqfR6wVG+tpcCho7HnZL45NdpA8MsdLXAU67pOBQIo8Ph7GLLvdEiDqBvhxQPcD8nZbD+Qyc7ap/M1ocQB5VaaKNwEJlorN9PUiU3Wd+/7QiDBEniupxPsB3Dw1xHPwJyUdIS7KCG9OYbJ3m3OUm3r/uEIvHqHmOezrVw4HEe6MXGOmdLlBK35+Fde8YMT7+EgOu6c6EAyLkssOEoxrNVDsmONU9g4cM9fd9pDqGj72rqwWJHsPLQZbhwY+ZsZWJdtmP6AfN+x/vUbOfQAG3seR7rY1jOtm68mjreW/Pq0tt4t/3s92GlQFU7OnGBthXJv142Nq7lAsVjpZiwas9OuM+tRvYxzptWKIWPUl8e85SBmK8ZklVQBtG/A4II9hLLW7z93zGakKPPq0KRhJVqYjuB6HYAKGBdHP9kxbH9SSCP0TICqh2NmUHIajzzP4si3R7FyyFq1C0Ob68fNTLxtM3HACCXGWh2gkLPhydEiDgQrFwJ7imkTwYAdBrSeHasx5ynVEEMkYIQKMKS4a+15mddFGy++YAZy8JqlzEnsE5ryE6X7obUNU4+EZTztyELDBDIScAMi49zGCWRbpku7MxTt7BSx2aLwX5w/3LpFgGEzdFLc162rvxDv7/ryUXASMXQAgKihk4Vn1Kg88vzKwdHI8yODQm7G38HWfzquPQ46ax9xr9Zn9MXRJjw/QgbYJz4cz2JPnExlg8SzM905MFtPwcSCQ+g9+zmQ7U/KayGdL7m/q6eQxUZ1svQyUpTNusT0JQLBtXP8BfozFuVzAApHJAmbbMisi9xPZDmrrWuIWEvvEkj4S7536O2sOiADNqm1oBzA47qmCCs/yhZ2Adazp6IvPiePwPkj+1lCc0xVDl4D3z2kLJfkbbHPvIPvJfl4W0HGJ4KszR0oCQBg0pt5DZpqcL4Jc7PfMouT9ucZPzw0GRPlJEOkJDGLfjnnvszZCtCuBfdyXEmPFhIxfAAYjVfL4WZoH/iyAAmDG+1dH9TxnrRW4mUgh8z0ZlQrqcysY2IICLvuejJx5eAYFMW1MgareLcJdwhCAlYn0g00eB/D57cZL883bJyUHduh0CvuAarXyVR4xHldgRFoBJjXW39tK3hVIFYxizvRI4oA0EIszJRjJiStvHARX9j7FltwYLg+jKx9vdYpUhSPjhplX1whRJdKiIgI2zLh1YyTQfC7ujOxS7CdTljMFjjTp/XiNevEwL5iCV/sB7JjOTRJmo/P1VM+6jxlVANZ2nxyiENeiU0WDEogDWHq3iHRzBxd1OnUU2LtsFs3fCkb3vGU/JPa/XFH6QP08QjchnEw/kMr3HhtGuTaUY5saAK5iHayarQADlp7QSInXcGAIQABAvRutfzTxcUSsrfp9mNN7E1BrBg0YpaAOG/v6w8TbRNtMaxga4BhE0Le0cQqiTNgCPvm4Lqk9KkCiO4tTDkNI9LpFBDGAEDe8xQ2zcWszWqnVWQF24BamPbHkbLHxFcx9JkextAqO2wXlu6I8DlurZLRoMhyBCSY6OEYhV/uspzR5OsdSRlHE0m2AoNfrK4OAfca56nMRBfNQpGgU97+UdjDLDbooXXPjiCW1AIui9m6lKv3/cyD93XlPpp+1Omm3zUVWH7uJR4oxofT+sCjp7eoOzMVADF9TtrfWZ2YEH821RaOdQBNFy6pAtE6Dr/iY8929/cGyIOCxZUOsBmWa9HsAkMtmB++R2AMx6N5v9z2cBSu9SSfB50dPZRo5Z/ekY1PF0qcOi+6wrKjsLhq1tagIMlqJeaWCue+oO/n7eKLQMxVpUtAxQZtwGOw+Bjw4my/O0GG4yVHC0TiLJpvD6P1YCkoqYSs9fbZVDJ/vfHdzuPz/LuLGM7h87UsKSjicsadrmtvJOeNr8d4+DvUxpu5LMVaOdrctvM10EMPJyGNNILCYw6zXbV2ndMIGAiQC/Ly6lLmGiljaJiOiBO/c0FRxxtDpfpOJYOtbvh8Gbh12LoqIGaQ6zNFwqqxQ4yWfgxyDU/ttzPpco64zpC6ITV2GQuf+YqmBaCXuRQdrss3GPKe5P/H5fK5IpBgG88z/1lohmaVWMIX/kOYzx3w4BZ3R/BwsydeAO8WXuRfkfZYGt6rR2nMJ6C7hOC76GaEjsr5DgLl9npVR3vnMgmWghYKlqs8ikT6WQiAiX71PcIXvQgeZ9zwzvEZyhM/znWdiqxb44XvAz+kEfJgj053ho+EgL+c/52HWhHkYFZQClXksF10hSe/L36tOcC2DDnTcX52n7KddIdifdDqCrZGA+eWi0x//xsrucEAnQPLMflU1x5nnuIPm0c5SjClZ13n9FKE+O/8EKPge/rtIM+OZKLKCFFn3guKPvHhGl2J9O07PBCYTgMAdI/wEBUJDh/Ob84qgAaISW1yDuhDU2pnuqp7fEZhggcoEtcrp98AEjc6MgPSzSEMJgGLgia3wKrIvL+754rNLRYa0DmWMNaCZbcwMoLxiIeS9PTFDz+2QMVbGwdM9uZelsU2Mxz9iifxpAAWoWsSAAmxVoM0R4/Oigs9ZF1tTV3ovn5gbYzLaDaBIiCEw/+0IZRExgbhSMN4N0S/3w5yu+33mxBSLgEaE1B0SRq3sb0CK57pjRl61AAUaFPqIFA2PfkoxemZxR5UR2+8+jTL1PJtXm6OIo4QINFmqGwLVkE7ZO7TePI++uFNnDpUMOgcS9bsX5pFHq+C6CXq7TiPCD0dz5sfcmKj2nZ0ojmMx5ykQZXkeZ4IKuvkC/O5uqGzzQPZrXAwoqT0ZAcOjjBkEcQV+67I0J/zg0trcQFaPjkxjGHDjpBTzfUuxUl9Bg4cbmjUYA1IFSoaGCI73irIL6r8e9jvSG++pksU3VXUH6r4teesqav90i2+0aloC3wb2jNjwvWMKMHwMyjEwasHYxMqx8cAfZhgUVVOAj8NCwji38X9Aq1WLsPVXo/wlfB2qA3P1MYLxEFVcyNTw+crUnsh15hygkRX5d23m8vLd2SeuCaHV6spH+oLaXKaeQfncgzad1y8A1xjxOQE1lkErON6rbZIC1B+PSW/Oy86dodBp6QPlcUwQxSNa0rvtN3Rkh+1zjLCW7zugFdjktIcBQRXmWmMkojjrRjXyXc14HkGZNbDDD2cad9UYQHq1/MxAqsmwEkAi91CDEh2q5G/XNB/p/Bbotdp7HhLOPR67TdWIhDgoN9xQqTWqRUSkJ01fRn6lW+613PcJXgRQlQ5QSWkpia4doCQBTwKasbar7W2spAFEisoyZ0Xmu2RDFgg6fESr+d2z+GsYxhIGpwEmGgri+nhALhdfflefo2Vxnkz13l5RDlvfNmc0ouvC/PXN6dXFqwnF/FWzBNzxI8g9y65aylCkFcLnQzLyczlMgnc8v1ihxdpbTGdhuAO/OBgIZfx+S5VKLs1TPHwuf02dm9jjSzoL8pmVxs0MfDWmBWB7Zy2oTvkn0C+8hzvy6BrnnKToq962BbiKtAGmbiTWGvUDhMb6AIBhyvRMD4pGe2SKNstWPa0hfYZMD2cB0e7RFKWzMpqYkWDA1ncSXQun4GygO8NBC4wFeXTgdoG2aYhST8T0WupkJyXnaxEp3hLLKRm8Mwfe9/Brm3oUBGWqRGofgQ1xUCXG9hRdXcQJn3QD0h4rsuiyxEXFfnecbcwvNhfGgPDemS1RdDJpmIb3Kic6nFb/7CO1hY4B/6CsAAAvnt14Mc/P7wtMgIL3JODByLxqBGVo8sQczlow2dn3NLEsBKwU3vTPoOt0nsjQYcSTl05gMACFBJrE89nXKQ1W4XvW0QH0leVB0OUEKtAejeh/93x4P1cXgCbrAeUz5sy4TX8b09n7u8EAPXGHmwLlY0zWR7wrn5PO+9RH+f+LWF44kmV+l98ZBjCaePVcL/G9PC9Vp6aCV2UQEat24Fo4AKZNsTCH2WcDkaIAIPQICApwDwVW0GHo2vbEAMjn7aK/dHZua51MBN6TY1kw3wswwsMZKApWxDxH4+/Tz14JFUpiBSypDvmcywFWXguwM4HQ+N2rtApg/ex5f/iZj0jg4jTu8yPcl5+//hKESdefA1DoA/LbJ+rb6qyrwKP+mJE7YKK66qrrVz+U3KExLYZu0Q032uR7NyeYOczjtEEBYB3ofrVkwPZbjyiRqgKPh21EtSRkcW0bHaHITW8Fl39hRnN1bv5RiYCoZgHKt0WQI7+eQIBT68xYLu5MuuH86y0h+vZe/eMSThwUKPeO7uKVx0fFqEC/XCKFon4NlN1Lc206UXHO0UYxExopMo2IhFhqKcDNx9Hby5QRyxfuczP2TTzE5ejoXFwE7jvROPMmqGq/4yJrFePWIm0Aw2mItUI3mSWPvu7TsSF6znmwefksSUI6Il7vuExjsU5nJaJLgAM1guNvb9bfHsFrPw4zXFvB8ctmshJurI+3Zsb23dkkHzdzArOBuc0SieXbxNL6398wLhXbb48JmAlBIUX9Gi7+CPTbzBkuh0cgxRSNix+Uj/94s1f7NGHQmEvDmBBQH/9RID8eDkwZvb9+e035MdCrRRXrd8cUEHX2gpekM+BOUfcH4PTxOOyLAxLbdIyjrCKA8p2cdJEJKqp69BSI+umXguHzg9Ueyn2fzylwp9wcxHI/gDss9Qm279RPe7+gGcOAC0sJwYxAfe0hDhjCTx4tDf0ONeM3Vz5hGkFhSVVGsB7zXjQ6QiWca8QPBfl6INNoF3S5zPeLeXqfFE/2MZ1kdbp/+XyYIf357SDBxdqTSlmR+l2+H/OQ7MNE/yiY6pENBVZWlRsoUmswmDjmEbnoHfJtBtN4v0ESY4ulzCLamQxPMsToxI2rQI4K6W1SxhcnVheFet0acG3AJ2K8lXmMLiwan6UA7vUywY+0Nwn8LKsyUxrISmkTaEK1yEz51+caYegd+vUFfBeUViHjAunN2WQ+fgl0GptR+ut3n8AC+2GrC/jKcn4LEFIkUqsgCH2HcAq7GnjXikVFYeCRgYmAoqB/uMjwI52B3lfsr7xvQhN7wy8rAelGt5fmjLQung9MK6Dxr2SR2JjWPuL8Hc1KZeb7y1AcN1uj+18qyq64/HO3dn/t7iT7fUUjCptThWZpvexQ2pwRFOjuc/RsHIrMyHornori93bAMRwagguZ9pydHTKRfN0s4mLDWQZ1ADr3TZAiXWQ1ZIHYg0KPgPtekelcb22mCVAn6W7PkceBXKGDwPyT2DZTkWoxkVoasdu08UScQaoKbbNsq+nD7KtGS3pWdv6ErDE6u9xn9j7tMAK8fs0ynb7nfnmqytYCEOpvmwP0zrbpyTHfMO0EwLS8CtwOkcU5kL3Pz3aFHI+5l3O+5PmgDjjy9+Fo+7lGh+9M3ednVZ/KZL6q0sXURtyxAKE2Ns7U9H1eyCp0MAGtTmc3V/d6esgLtgYAlhCcLyDJKVwBVQBL+kcGj54YHclOFaZn8P75HJEB6SfAjX0whjvtMgEIPz/zveSPWLcEAMkCyo4g16GnNYh/J5xoHZBti98twoSABRdG9mk492f/xdhn2xeIQCEeewS/7B0TO+ycAl0LoNUZTScQ5GfOp5z2r2r3EpYuZR+lzzFFI/eDiUJ6CoezsnCsv1/aE22q8ZlcpnL5jBAonuBHpCJkRkHaN0LMke8V9/OykRlg+NnFvfgFWBHvMkZof0gaxwy0aAkTfN73/Ix8T2/n8hV/VxOUTHvWz9qGPwugoHZACPPu4nCe0ar88zCQGYXhbRxZ1UsxH/37CJBBYBuPXk5oznnwVAFxp4SGOml+wxevJmOudRu9bbbN1JkReZLlbjmjsq0DtlwFgWbnci+Rn8dD2vuFZQ+XeuDHMFEXkagnTuRYuqJvBf2tWlUL0/QCYCBHIY2W1CxVF4pKbeTBXQWR71QEsz6X2sEJU5wNsEEVwIxW+c2m4RJiLGaATSOLjqM8tQFOpbQrIdrZcMlotvhh36ZzNw+Q9BweagNe89wXUAVYeiiiicmYsfk49Qe0uzPs1QIgXmGhIURHA2RRTbnX6uWsjnlvRjtVU31i7++BYAcM78e1zwHqdnCgwrgjUHs1B7vsfpD3FJ1URVSSKGXm3XXftIEZvVb35um00eGLsZt2Lft+cXwEKf+ZlENF3dm/rr8gNjbwPGnNWycBAxqfgOVhE6QRMZAp7yWyGmCWAgIHtdKeJOZchgPjwBTrCK8Otx/I2VBZjJa5ny1RPAIPJ2NkEXTjXKFmDCn8ADDSYVFk6QtzaN3Q2VJ/cTrRAP70Otr7Dn4wUjoy2g/Mw4w6BMc01GkYPtWlJnjC7+WDuCMZf8n5XzqDe0Dqmxc0TMvBZvS/mL7FMh9P8wawfmV7OU75M2mMRQRRMYVjubtR1v0zpZhjkkXz6LQNzBx9wJzJ3s3hi6ihO3YH93fbV0LYUVPbL+60Z2aJcD0BSzUJshBIaa7F0lOEjDof4mb7cd5XCT4YqyWNi+/dwYzx+UnwSjcz5HLK3zIeeYh9DyFgGGwkvkc6mKiBEoCyKsq3gXSjmsPHaIv1l/8pwNgE/SqQTdF+WIS9qE6AyPelJyE+BwUifaoJ5kE4+4PnSqRrEiDwe8fv2Rfd0gQNJPb7dfbnSUBL5x4cQEI2WIfauXeORnG9/Wxt5b/5rsm5WvY0ZzSJlTfwqLxORyu0oOaZszB8JOl4KFZ7Ir177k8omaBjRrrl9D65/bTdEh38zGaIM5x7JdyOyf0Re04C4chWIFuiT92TuQ/3uacUHxPMvlS1tSGsEpDbVhIbLY9vZliEHaKvxzRpyITTn/sr2zG8Yp6lvST/Luyt8Xo+EUg+R2iT857tFAA/TXnL7ZlivdNGfroyO4JXeqYWzCj51p4/B6x2pK/70B3IDB/A59XJjzi37bTPKdfP8NQcv3iHhSXw4vvBggJS1QEYW0PVzpDTtcxlpijwXjwzY0+ZqczL+fyT/Tr64QwE/ezzT58tMa+YKpkM/Nm2pU+8nXmtRyqFTq2EHGgBgMKUnLVJWVfCnKvTB54YQrYfm5/0Yt2xTf6+MrDu36/uCbxew+D7P1dimHv/qa/PQMkfte9nVylLms2/Kx/55wAUxDql/P4Nfbta/iTMabHIgAbSP27Nor9fKd9xqEVbYXtq+TIKKh16cbr5UkYGdj+91EnXHPanfh7JcC/hSCkcGToOo9wXR2m3Bv31zaiZ1wYtl9V4c2OI4IAwakoD150DOqABnGwnVNdBhYgqVjr00xget4vdz+9Z7oeJUd0a+lvF/l6mcZXBmnwVmEMP4PjLFVCgfu7TkGV0c++QHTNCQwcr5wN2j+xwqmWjpJSJfonMfMv792zL0Y16zUj99TKdw1YxPq6hQ0DlckX1XCrfdB9HaCUYffGIAz6i4W7w4ZEiHq4abIbwMHHGx4HKKKUIxs1YGlb2cwJculUDffizY6B9WYnS4g5Ef6sRcZHHYUwFGlAhJOPGy6WgywVybahfO+rXjnEzTQGm9PRrMS2AagJtITDoa0mLYP91Q/txoP3+QL+1iAjJQFRV0K3Y8HWPUKqrqd8a9Pqr0f6/9kgzoCEUz6KTcyggQP/F86Efw9IOUm6xPI6gYw+PYrYfBi4yCsRSnFRjlzHQN2u7PKzKic25AlzSvC5mgBitGJ6/veH7f35H++zY/vNr5gU7nfz4sBQAYybYWhsfV/T3FiBE/TY9BDMCYXOreiqNz3sqfNMZW6IQnhNveegd8vunteHtmoxksUNtKCyNKRlmR0f5GtCrld2T3z9tnez2jvp+i/ci8KYEtd63uc/QuGYa0/vV9q2HR//e3yaLioYrKau5XFopk2nAPZPRXFHAnbq5rsoEcGhEkD2SDen3m70jGWk5V7d3lGRQq5foYrSxfD6AW8NxvQKbQDegHGY88lAc1y3WJqOLEc3jO9ER9HJqEInInHZnYLx5/nVOMdkPA58vm4EKdO55T4/0jkszlsfRbfzVomfqNFVSRRmVE1XoMVCPAd2s7CPLnNXvjvp1TLo4y722baYWHSO0eOaC9bNEgfLokWZIhpDNpZMR44BxEcvr7LfmLKRi/pi4gz1g+/fw1KM09jMS7E5FBUChZRdzHLeZUmVn5mxDeRzQXUJMeAkuBAAoYcxFahXP4JvtJ30rkGrAqonGeNrS9yyHphfXI8Ajxg9jmF5IK+Z8EmBh6TJvg+kzOHPHo8MRKefc859Jplv/G+Mt/z4iYBkEU3PyzQY6AQ6uQyX3B/CQ2APhVW/02kBGDSuVUCvEbBtbD7IfkPvDmJ+tGmthKBSua5XKC8pjTHFFILSKxps/ywGh4tpVxgzr0W4heH70WTZ6qEUpZTKJ7N012GJWScHbQFA5A5lDFxZD+UYA/NoK9K+/IMQYfe426voQZPDorvQBZbrI5vOya4yBnfN7OLQGSmzY/3ZDeQxs3zsUPdIqbaKXCUJqAneqTJCL8yBX32FfH4e1qdXJTuFnOb8jJdjnwNnREHuWHAaOqKeyAQCuFLJ1ht5+zP2YjODs9J3/uHMeFd3cjsOAnZWXBFZk1kFmB6TgY6RAcY0N7u8dGHXZQxbmwfnyyH8ui6icTxmoAiDXy2wjg3IBQhEceNWnbgu1hsirfwUm0Ckuk3G6AM/xPup1v471Udd0Bp9TQgiu9G5tuN2mk5rp+fk7ub+8T2wf87QrpjjQfomP+rpSB3L2tZ32uv7u3AfPmg7+ngCgNYMLqQ/U7NZFt4FAZyEwCNOVqMUCgA5WGg1vjm30xSvne7iOSPPSp1zXGejL45DBmaFTL4v3z3Mg9b86WBnMn+wbUterlmjrotGQPhPfz3P4BFYu9zj39ws2U77+HIACEnUjT1TVMMYzshNlGAEHATQ2CUYrAKxCcGekxhdWpoFGPlofWCiC/EopUC6OoC72ZYGa8NXMDZ+bc5qMQ2fEhfceCtYDV6cAGQ82NdkNFnOgNSZVABOqKXLo/dDVokzVIuTDq0SJurN1XiPFQRpH0DVFDOzzaZIdDvZwLHyslohhDJr//ykXzzcdjlVeiGfU3A9Ry0UlqOKHY85fFW871aEjZ9oNZy4mTewAton/j35cjVRhO/hs3yAClGI78gEUN3Anva99ExGwJRpDg3jOUab1hAiezDabI+M35BrwW81KDnOM+b6jCs6BtRh/gmz8vWBJO2KFAT0Q0TcCHD+7ggZNNgYjkZfpMC2gk6+TJSp2vh8QKQZnWdwouUql8VLmZ/L6U/i69OkjMhlzQgfFP9tP7UhiR/EhMo3Y3zQEi2sX1DqrBRyHHUjLwTXnVhglbPOrgy1e2Nvm4CP7SE/vy3vZWPdkWE2jaFFS5/dlMkfyz9iuGDPVlX6bjUdNFUFo2J8NC3d4NM3v5R3zv7mXpvaGfgFV5vMa51Vge0TBakT7XgEALBEpNHC9XwSYhv65Ta+uc5tfGZd812ZAlboRKQRq+F3uT+doLh1m/pfzjXuJeOUT5TznXqfLnm3gxWwPnasl7zie4e3ytUfmQ7yWprK2uR849879wFx5AnK+F0keG96KY5ydKu+rKIEa7QSoAxHsq6GQw8RpeSYKx37Hc9nB83gtD1jf+ennG3myhQAAIABJREFUgylkafyAGdGnMVfSPM3gQL5fHmdxsEclGHTL5bbGUt+c9z/P3TQ252s5+wZmG3hujQH0tC+c9qBoCxBrKzRxxvoclp9c2jPSGXm2E3Pf/NEVNtKLqF3uAyW92n9Hobn8mf2AjAlyT5tg9qkkW0AAV8Kf82F1rDH3nXGyfbJDlOfEq/mRr4W1RUdJ8TTePpZaxYM/gPY/6Eu+26t5znEHnm231L/n+y0/yw64lLA55PyMYnuceJ/ZHE8VQ1p63zOgscxTnU5cduby9bNzl47s4YzSWuOcmO/z3OchsMdzcxnvAqM4l3l/ggnlNC+ozXWyuZbUpwy0ZaAj7U0LMEVw4MUZtQQDfmbn/US0b3nHf8cAyO+ex+vMBBhrv9p+OKYtfL7yvc5t4/fpj+T70yf52R6TWR1/cBkLYo6FDJzN7/V6YkXo9JVS2zMIcGYwnPeIqO7w/+F6ute/uf4cgAIXIgXLGKlWjYmdhfTG1aLt7ceB8m3RWsB1AxqMRl3rIqwiYhHwXGrQRMm2yI0d180V7GEGTZU50ajwT2f0ejHD+u6lBD1/rzy67Vll5ofHJnepnl96QLeK3oqVFBymXxCR99pcYFAwarG9RHWq3otRCSlexMoC4XiIQLbqueMdOsyoHA4slMOMquNqBkC7kzEAjOr094dHcQIJNEdskO6tQL27yF23xS9fj2mocLNj/zGqd0w0DSVt+h6xg8RymwgzrwHLawUsF1w11MZl7xhvVoKMB3TxSDJzwVEr9OOG/nFB++eXRZeYJ/5+BXP4c19aKUt/fisYfJ9WFmGz8WGR3/pjn4a65+9aHjtC9K/9sCjXAmYN2NilfE7dKva/mSq/UKi0Co6rCZeVPiCHov6422Z/aZCx4XifSryFucQABK5vAKC/bZH+QtZMvqg9UjDsbPOKEPDSoMffbrZGh1pzO5zRIaZ1UAT93SpT1K89FNgZbQ6m0X/+DsEF+Lg4U4M5l4zOOG32sPmlHt0v+zCHa1iFlOPvptDPyhXh/CgrqBTLwx+K6z/uJvz2vsVny5eN2xWIqCbTich+4Voma4rjrJc2o/yM4LM8WSmIUpxkvLxtGK2gfJsehZJCmQxoqpSPj5v16Vc2zgq02btLt9KH2OZak/tuVRx0RjCkMa2lx/yNKFwpEUUX9eoHGbmmQdZq0G/VQTtUah+kHHAft/H3X037419fU6DqsNx6/cvHZFMBVsbV00a0uUhjHyg/vme/JIBCazGFfXcw9HpJefWI/mz/+p5OZqas+5qyee7ClAQIRByEHIgKQTsQ+i7XzcoM+vqvv98XR0UdELDPWzlf7L5Hs5+Zr1psncMZKwAwbh9zzWtyQlPb+zv1So4lRWgajmoVT4qnfTggZv0wnXCh00eHzQUcB9MkqHNCuzyqGZkROm7bZOF0NbbAOf2kVE9jW42jSFEIMNj2JVSBPAaYVsEqR2T8RDWGN6uwIN+Hvc/RjS2yVagD35wr/VZRDmMyqhp4YBUtNPa/9vtulXQYHQ8BOzwZkkFDjyiaPgEcnF+ovnaAGbGrzZ77dU8d4uN4FqHmecC89fs0bqVVqIOAAt+iu7e71sRclsl6E7G1c5nrZwJVFEDVuXcAtg4YgT4HfYqEGOO5nCMymJRLJMo8C6pr45AZM6o5SFLKLP2bSvjNlKo6U1iB16BrAKXJeS8617kDBVEaXARRhUM9UFB93XA/7MOYHSKA3Nb9qRSfNymdyFkRwnNla5M6PwbkfmD7130CQqy8kx0+qDHHZLKcCFRMmyul450dESlmexHo/knKCystFOCZns1neWpWODG5DOkZZOW/OXe8fF4WXjTWyGxv1j6gcHiwfTkP2A9bnQAMEKmZaNWYzsdA+bx7u1y3IwduGCBrFSEieAKfF+FuuENGsNbHUaljMFxosTXAg3JTx0BmOwgyJSd+cRIZbe6Y7AV+Jo9ftYpbOS0jUrMBAyGIoJ5TXQD77L77s7pH2stcQ5xHzaoMhZ7S1wCGvXcABdlecMYD+zHKh5LdrMZkUPWUUQALs6EIQuvgeLzoIzUnnu/pApLG2ujznfmO/AxBPTIQCG5yLvM7h1dGykK4sf4TA62ktKgMekQ1oBK/C9ZCLStgksejeLr4K0DnvO+eQIV4DwLI+d5shxcheGKYpM+Ip1VQp+G/5/qTAAqYyKDOqKX9jg69RH61IduICC0j+vz/8CguRcoo5gRg1ssWWekmbiCqO+Kkx+hWIbm8GI3Gq1MXgWfE2w/SrJQNIIyicdvmwUi01T+oVy8RJjAjT/wdWoG2yzRU2qweca4PHM+jAejnOqPWoUo/EH9YPnB+2aPNXoZM+ohqGtJhAiw0gNg3pLcx+lzKGnlUN6ZErDza0QM9DfCnwEqHSc6/nA5iGL6kAGcRQ51gAgGSyNfk8zm/2CQyFggmZCZMNWNiMgIkwIWoduTGugFCuoAJZB6oR/ssfUBn5KshGZwF0A35Cgq+IpgNmXlAqq7s2xzTY6A8bEMeFcYoET9o2S/q70SqcRofM7T7ZPnw17RW/StcYzjghxqWSHAWLcxrzNZQQkhZYi+hpsG4iY3aosxju9qaopgRASu1dAoKnwZDaBD46hZxKa6l4nRq3Yrlc3ejnpFqjeL07K1iFMHYKsaloH4OTx0xwTBNNdbVQbzIl77vsRZmSlU2tNMVAolrvqoMCXZWRHMdiNKtmuCj90X0V+5vIIwD21OnoamHnWlQp2qntRwHkUc+wogjLZAAKT/HMeIfkZn6lCKvAkwDk33Ctkceatr7i92He6XVLk+pazltgqJ/oTejsWYUpDPqEj1b9jte7LtTlD6DRWGwJ+doOZRFEPmY/C7/zf6IOuzrGZT/1gpQGC6Azq4QJEG5WlamEqbxjeLlZQ+NknsAJqtIFeyQCTCcQianLop0mfT/abAhqcKnta/q7f75RfZdOQa0e/UjnuljzgEDN50m7JpJkud8TrnzPi+lGIjOCkxDo1pLMAl9T1SBOSk+pkGtB2afvzKyMiiTBPqE8zobiK/m3dIZJ6P/vH8C0ymi8X7+fnHDvBbIZZv/PzlH8fnUX0/RK3f+5SjLmrF87fVsnbpFst572FwTlRVIj7lRoMUBrliDWKPy1F1RtZSLc7dFP5zmXm6f98NkONr6MxA5OcMZ2BGJ4L6oLEyoJ0HD/LycfiDizp3bBprWg+oUszyPZ3bq4p0IGmTj8gwoFlucPe2n4VA5iujnrmlLYY4Z9/p4vrUhKk0FaH4sz+fvlrKPIe55cpC8vVkL5cmJ9bPmlEq/9MUC/NVTBJ+pDj6+QiHQ/Az2VQacCKbnsyo77AwApJSHuf8kocX8HQBLqUbAmAAppedJuyf3VxJGtOfoU3nMtfqB22HnuVrLfPfMnIjb6LKfskSsxNl/AmT4rBNtfhkn3jfvHec9xtOzfGNP7Xtxv5/tn0On/VDTXM6soCIgmKC+90S7T37UOe0jov9nIIH3Rn9mi7y477+9zvt5TkXIZ88f9UV+9gJYyPJuLyvs+c+V++9/x/UnARTEIrOP3XOw+sxtTnRvM6SfVV5Zo5uHgNZiZfQe3SLuW0G/1pmH6s4xy1IB5nCNa3OVbERKgEUF3pYDSUVMBVdkqo+ndTA3NE2HlRn1eil4fDS0z476uc9IZ4c5Te+XeTCoouyeD3apOH4xh7N+WWSLInwAUm4opsM2huW5vW0GBAxY/r47jvVhny/+N8W7AECbQA4CMP4Q/r7AItKlAFWDgkPlcYtweD7k/TFLY0WfTERS/CAQj0pqqRjXGuNIgIBX/Xws1M7Iq44a3b75KebGQuEdVcj9sOovNC42L0foIE7Mi66mh9EE7XfP7z7RaKHAcasYW8H1H3djnrjB0L3qRNmHOQYFzkbRUHYeZbIR+tsGudTQGNBaMbaK779Zn5bDxqveXRtBYWCDAGO7ot4H2m/3AAP2XzeMjboSQL8ZO6beGZUbsDKh5rgoXItkH9MgV8V4t8ogMc/6gJaKfikoXY3BoIIhLgrJLuJmnfej4kBEon7q2yXAjnjG3r1mtgsC3g+M9yse/+Mbtn89UP/ry1ODxCmngvbbHePa8PjrBf2tYH8X1Lui7mrl9MaY2iFdgc3aUg93Vr1yijyOyT4xDxj9UmweuLbDuDXTdPPI2tgq9OZGtzMZ2mMt5WgPnobCosLtRoR+fa9IMwB5v/nEdxBuP6BvG/a/3tA+d8vzpro9+92d38xAKJ93M14IXoQznpz3J4e2GgPisU+HyA8fIVvBjTSrcjHmOi8F8vun0fXJNCpiAJLroZgGTZ8Gdy1QresBzKhsAj2wiT3zYeUjWeVltIL2u1e9GA5GDBfyrJhAFVMIOB+O1Bc0YnxfmOCI59NWQfn2+elObajLs+8clFEcs18SGKFbg162CWp5xP91WoZXPLo0aBHU376BXVEuhwFdrF6gSHntSR9DJJg8MtTBsWpMvD4guwNg/E6fc2mKCaZ3G8P0M7z9pgGAmLe5IkQ41cewc0LnnORysHeE6a10RfndKym5Rg50A4GgqChBPRzd1kiuiIMN/hnVmO/1vkWQoTy66UuwCsO3BHihtWBcJiOpfNt+FBofgO89c8xDgM+dCPH18ir1KxxXXmnMF5Aup1GlNEETGIXlxY8xo5/pWVG6rDVIa6bNQUeF4ymyghKwuRNMGjorIgFg2r6lk+1z2La9VFLYyIqpc+24aG2IoJWri1jCxnV3UHSz/aBkJ5j7DqP2VaZGie+jmh1hOsh0/BjV5DumiLkB4ZNVoVtbQMIAFIbPLVUrm9lnOteT81tmOzIQi1at1G0zllNEdQnkfT3mO9BBizmkc18XgZSxjhkwGTMEhjdfqwAwClCG6UPpmIJ9rnWju7HzFuuG64jjS2ZBLUBx3Snul4lGr7U4y5gOP+dncgwDfKjQBeisrkWR9+OpMTLn/7y38hl9QH/1Mq5+Hsq9T8e+FCtpfH+YxgPBAALdpRgYsO8I2nwEEv37h4vmUocrlQi0ueC2repkCp3OhZgzJY1XqvqQHUA6sJEPn7QcYo9wJkAAHfmSMud/2N/rGf30+aE2H2JP0wgCMro+Ux5Ozv75+fnnIrPaU/RVAhuQ1k92/FWxlIC0b7x+jt0MKNWAFL83jsSoyQBCBjVin2mAulYe12YCSGVgAlethe8RTAY9AQ1+b2V/s08JPrDN+bPsI58bS/rKeQ6dgRnAAZOyprmdxzrAcTwD/a/SfoJNUf6QtfDnABRKwXi/mbpyMjatakMyeBUo9w4pA6V7vXnSysOJFfRi4EH/YInI9XGisE2nj1my72qfLV3NMVZY1LlIUKdk73ZQ1nn4M791vCWqurMo+ruXFvpyZfWU788oezgy9x0YNE4RB6U2wVTedqPHS3PJYdHKUcWFKNMzKNz4y5sJf+0DZS/G/P8+o9vpn91o42Pz6Hyit2JYJHgezgJFDeBlXKsL+Y0J1jhYpDevPe51YrUPi5xsbSLau1FXWYtcxcbDSjK6cF4pEO1zY+DcKG0CGU7zN4M2Hf6cX9cKHKshCm5qZHQMCjClhej9yxJs42KRr3J0i6gNYLw1Nxph4ynww2/29Xjf5qJ0VkP0cYGJSsL6vt1pxAJl1yU3rDwYgXe1cfaRwOm8s3+o0aGCEG4cF3O0LFJghszYiqf9mJFKoUTx0m5U+y/OXJmK3QhhVPaTOdhmvJdSrAAB1bnTxi4qqMfDjXoJCjgdGjqk9dNpaJdmAqitRJWI4aBivQ8YtbugfY/JCgEma8kBknIME9P8PoBbmwawEKX37tsH0L1tzgxiqSpBsbHfOb7uNJLJJI4juJCn9WUPAU6txQST+liiGqQeqs9bgmN6s2hjyeuyYOapD2oiKETGbAAphAReHfwIYS3AgL0qa6oRjRkeSDkHE1jEzFhVIqKhbPv5UFOyhI7pyGaxrQxeZIM/UfKin7ppd5TvYyktCSA5pgCkPufiDsxoTBVobRPgTbowACzFLQnt2loYIcYXYEDFTJXjz8iqCECkxTmy6v3UcO61FYy3zfcHRL65CcQiHJzyGJOh4PONZU2nYzP3wyLO4HPQNdJ23k3sVg6vRDAISs9hUYHtzb9Y2dpwMsesqsC5YCB/hSF3fgNupdkIIljAlCH2kzuQbE/spyk9Jxwm9mtOeWmXGGMAqD+sFJrScWeZPmcNAmr0erhD4E600iCngVnWOYajGzNpAOVx2P99TcU6IrDB1BcCOEwRyO8QKUVpDhOQ4nvXCjQHbFyYjeCC0NGhUS3/L3Pv72tLtqQJfbFWZu5zzr23Xr3uYVqtAamF1B4+LhIOICS8kbAAIY0DPni4uFhIYyDA4YcHBt5ICAsHxB8wSDTMaGa61dPvVdU9Z++duVZgRHyxYuXet+rRg/FSunXrnrN3Zq7fEV988cVIn+Jzgvn31BjV4YDTBuM6ELNHbJxl/s5ZSLJbnwodtwyWpRKiEDUbzwMIBhYAQmeC19EG2yPq2Hdv3+n9ex82xuIlqSmqyvblPe5M02c/kXlH/RQ+QgR4u0Q7pTXI9e52xikiCAwwkdF2PsMZWJESCwRzYuhS9Md3y4yFxN6JNDTOpbR3S/FAXHd2REpzkTSXz7R4ye8BzDTqzLCFO+ciQ7iNAMDZN3HmTHw3O7vABGYBiBQUgqL5bIj5xc8RXCfQQDuOfczUOmfI6ems4bgIxyA5T1P1ATqqeV5XAav72LiP1NO5A9L400ElqMDxc00l4X14ttLBVLV9RgcD4kG74MTWeHj+aJgD4E9+XlMAt/cJWGWf5PtrbhtS+/lu4Xj3+fv8GYNNOdJ/jvonwcQI4mZwRzuY8jY/PxvPZQYVCOT4GhFxG+7sWJ8ZAkX8YCyPfcDP8CKwxZ+ddUqejdX0a5mBgYd3s1Limpz+AKS+cc+HK31uYilE2dFvgwnA7wmgoNXVx++759nViHpzEtC5YFRQew3jQL1udr2acSXuMLVLNWX53EmxEbnje9+hywWNdb27GptBzJFQAY5PK8qtoapFMuMwVIXuPSLS/D5zVdvF3utya069hR9Aw1DTxZyG5V1BD4bOjLoB1DcDDUjhb6vpICyHVQ1AMbV72fs4CDwX9vhs6rNykO0ALB8tQI1eC9oLjQH7Xjm6lRIkS8CpipY/3hINXkb5vmLtLYfn0TqwYEaIsw/gB1LvozoG1aFFTM/gEODzC0AjOQETjPSjnzabZPhYegYPlMcDyqKCdRhnbV7wgphyHm0bbZXejH5era3tpWL9ehjI5c9qL4v1Y1dA1I0gxOajRdA/We4+a7VL06H2TSq4gzLLBycKPD3F5oaosw26ojCnOFXbqDcbp/ZiczkOdU+FgBQrY1l9UJQgGY1GxPyAwI280aflGPMcBEqpnq4eVaVQ29GB0syfcDAhmEHer2HM1Ir+tkYp1EwNrVc7wPtlQX9d0GuB/HQ3h8tzacudB5YBLQFycDyBYFzIvVv+9e0OdQZT4QHNc0gVNR1mQ+AOYQxJH8597F0FEdGxaiiuuF+rsQX2YzjK2zoOa8DyEtclqVTDHFVS+6utZwNFdYx7fNjnG41AGhYeSdfiWgD3w7QLeMAt1QBCdzgKq5lk2iQdVzdyp1rfPPDCgE4glP8+qkYcLfLew2jlXuFAQQAK1CEgRXdPBmB34Ox+AIf1z/Tso0X+czAOvJrJWaQuqhmcDFYtVl0oQEr2Fw1anyfWLxUExh6Etly3B0uJsQh2BmBlanu3CkaLAbTZARHFABQAj6K3kX9ezKjtodXTElPA12XpHnRL7axijKrYazFS5bgWfD/uS4F+2uxMWoszmuyMHfu9BMsnV2KJPiNIUDFAHVfuZ5WQoMX37qC9j2sF0AsiF5rzs4xzOaeclbvN7/r17lUjltiHyWYIdsXegvnSP70GgwRahk5RHc+Q/YhyngCMYbkfwO1uDsFlRJB0XQyoJT2bTID8xwHzLFCsCsjhe04ViFZP93JH3M8x2Q+PivZgJsSlmYFogKG09N5cu2leAwgAy/Y3Y81x3Xgm3ZhHjF5nIIR7UHZy3V7rFDPsiLHTRaCHC4dm1pXPg5HK1IczWjDmweIOjIMJ6C3AvCkthvsM20qwBpjAL3XNnQeBtwJLWy1ie/vV568wvc3O0Qlk5lxWtwPdjsmlEwlSx3eos4J5LANIyP/O7eOa8DNdaoFRtMxtDFp+fLYO50rWmYnJn0/l+Ib9OwFQZI7m0sXulEwpKt5P4mD4AFUchOfYJOAwxiWcsRPg5Hu+ZD0ir7qBo3lQRcIhF1a7uN/n+wJj32abzvs0MPqDgCPBg2LOVzjKS4m0gTGEmtIKYSNxju4TcJF1BvEJdGgfUXF3IEN3gcyL3I4893me8B0IaJwvBzaC7awKvd/nc41/J2AjaypYhYzRbw8VE2oNcGGABpnNJIAsGOlPDg7lNhSBVb8gACfjs6mfvylY+AAqANAkmFgEE1hDrYcYqzrm7wm4UVbO4P1/DtjJP89z7fy+5+9mkKGUWZvj9P/TdQYHvgVQ8PY9je83rt8PQMGdhPJi0YzCUnKpo4of6FGzuKk5Ih026hlJPDqkWTSp3Jrf74K2+UHGCCMAWYwC2l4sT1qLl9xzo9VyRke5IC7uQD0vNQQLpRllnEZYuUu8K78r3YTxzAEZEydK5tAo8/uJdvTNnMy+mqNXr93o5q2jLdUc+bsfmnsL50YOd8JoVOLFae72Pn1JjjjZB3BnISKZAqB4ve2ZQRGGRzHjrbrIVaFznA7H7oBLqIxftuEwuKMUSDydBJEQX+tMdcmbpCRqpQNOygib3yfmWDLkbb6VwTRRzieNcbXoHaZ8/vb5EuyT0hTl6xHRhfbJSyMykq9mwLXXJVIMLGoMdKftFdZjVw06b7+4KJk7AesPR2gC6OIGgpjDbg6CYP/OSwEenrLQUwUIv/pCRXWx2uuboN7Vcoub7fn379foCxNQBNYfrBQdHewYx3sDq05wXMrNDvDjyyXmVXtZ0P/oM+rXHeV2TO/0LMIgrUNcCHH/soHaDboI2mZR9Xrvo/+KoIugOYioRVDvHeuPu7N3SqSacI8oRw8n7PjDV2h5i3bT2SA4Jg7ahMinKtTH/Pj+BdQXkZuBBlns0OYlXGD1xcugpcN9M0G79rZ5KVxzSJi3LfuB/uklKPXSFPjYAaZvudE76Yj4egsjIrML2OeqUI/O0mHXbY0Isuzu7Dvo1/7wSwifyvXukdBxv0itWhaL/LU2Mw6CKlseI7BuHAjXAqmKRYDLJUq2hmMtgv528XHoEdnmHsLovLhwnb5sAThae/vQtODl/RX9SCfXHSJRBaidR8PGvzfdy+9TPlKE2o3js9Be1iGw/V0ix5/GZP26h+MUQLiDq23dYj731c6A6nog0X+AR36rGbrdjS2CnECcscVZYCzhBwC+y4SQp3bqyAhk76jdx01hrKE62B3hzH8coEhmJ1BF4/96jHWyLgEmADDR3TxEGThOjn04rQ/litLFOXrI2M+7982yjrVC5iAAaQ3leqC9ri4SuMUaGPuW/7ndIXee48vQEsrvf7vbHFqMqSBXc2SG80QjPL0z34d9wooQ/J6WNHfbcJKWJejs9sU5v34SOPRzXF8voz+dhSZkSLEN7BsHXqJfb3czqrneUMd4TIbvcDQjLfHoKLfdnKM+3idAJj7HncJ89tuYGoACApXe3oiQNqagDBvswUF0tgPZprQjeF5pLSjOtKPOEtk5ZNwhR3IJ0moeq0HRL/s4BzUHO6Q/gJxBdWdfigAtOXNss4MVKEZ1fuZwy+urtZ97c9Z4cIcwAFIiAJOAYQIP8r1DANDPKTJiHHQba1QGZZ7aJPx8Hj9epzka84C/I9jBEqgtUcs1pVuk9Y46BHOnqHeAenX0exvPCke9N0x5/aTpt2ZOZgbyuN74s+jb0zzhO4uYTZDZSGRYsO8J/vQy3sMj+EqhQlUA1f7dkuirgwyybYkhoiN9yh3lyKs/DrPT0zwTsjby3OOalbS2gEeQIjv5AYilvnTAUg+3f9YFD6yLZxdTCNgX5/uKB8VKm8HBWqH5fYHHOQh4SclhP8bzMkvrfHGfm96zT7+bfn5OX0j//8BM4L5yBobSXIrnJtbEBAS4PRLtP79Takd865ulM8b1ewEoAMCoad+Am+eK5UNJLZqqizvE2XFuBZosRLIEzMGzg0AOhaw07DzqXopHnJ0CvpqzWO9AlJdycID0bgBgaTxRmEbDkgbKD0UTrBuUd6YriMIPIXc6AYRoHo3mGPwe7QqqpiLU/Wk8WqRZhvBZvEu3KgVtOKxldwqkgxbqDhsdamPvjN+Z4KLGIT2VjeHYEWQJx/kUlQDciRgGLFaMXPli7R9UVtsDuGDYtqlcCgGFRHVieURjsAzQCK4UTEMXQAhMmqPtznjrPriW7xXGgrexXWo4uGS4wJ3HTmAiUiYUWCyFoKil4hhFOs+VfDB5m9z4JkBS9gZtlhrTmfriQxICiZtRRQsw2k1UNs8xCFDUyoc6y0UOXy9FcFysDfUOtM0+s/w0BOBirOFACyPewuiZzel2cQepqQEBSzEWxbtahFFkiAy202bu4ApaifUo3eb48VZQ7x1AcZaNRzoFAQT0zdZvvTUcXtkgnGiOkXYA1o+HA4nUloj5VsWcbuX66AHycC30S/WoLlDJUPB+DyFYrrNajLSQhKxIq+4vFXoUY+8R4PM8bEbzzKkbfWNjzwOuj9rscoq+PbtoOOpYH4xExu8c3NFN0F/WiPSaM6njcBE3ZvYdUg3osD0n5YPyPVN0FwBG6cMS6zmX/VIHCMqdC8SftzAVxA9tN+rUjX9rg7c1O6GMYDw7PE8OZRii3I9c7ImK+vEuab1a1LqNakXVKLJZyC4chlPEK+/dFulApMkAGKkWkfttU4Brr6+eftVTTjnPq+og5IHpmfb+GmOIyr0cEQFX5m8DFmVMeivjsRZ1AAAgAElEQVQgy49z0RkW4dDtPSoaBRNKxpoOwdGIyi8JyJmNUdnV0hJzpQJPiZQEpE19zfO7w961uNNEIG1JaVMn5yuYcW+rnxXJqachzv3Kc9sptKnrMtJt/H50bljJ6MFJA8/ax7kS0dyzA3T+O5yied09lH+dzp0egY0panwkx5596Hvp5FCqq4GrQkrx9fuNfYfjowpRQeTHe+WXwvM/O4v53z21s0i849NHFR5+OpzZ/PtubM0BosDPSx9TWB9EsCPGqoQdIZAxF/KlOp2Z4xkDMNA1qemfHTR+J+jUJ0cjzZkJBOJZ12HpD+drXcY+Q10EjmE4zP1xfp77+NReTSwfRumNEYNHYIP3PDvK/Pn5c/wZ52l2AP295fz5ad6c7kmnHHiM0JYSoAz7IKK7KTqegxPxO57bPocn7YO8rvP+n9/bQUB1wDEDZwpMTEArOenvdXa42WYegJnFxfwAf47Z8d9eQ/H8VJEDC5/r6zj0FDSAjYn6/ww40Cc/45X7ldT9J+/3qFOgj9/P9zz/Ps8LOv8ij/MlXnnYFCON4Mkzz+96mtsZtJsYC9mpz/9/TrE7X35uP1zJ78osvG+mTJzZCef7nN/3G9cvAgoi8l8A+DcB/Lmq/kv+sz8A8N8B+BMA/xeAv62qfyX21v8ZgH8DwDuAf1dV//dffEYzQbkQXfJDzQSwvNzgWg1R8ih/KLUvSzjx3XO/gyUAmANQPM9Z1RgOApR9bPD1Y0c5Oo7PFgmvtzlHP3JqWYqSIn4Ajk+LRWNyrrYLUelmyHm7GGWn1xJOq/ulw9gtDnIQJLkdI98fq+e625dC3N4PunqfBaBUBNgsH7jcdjPaLusAHQ5jPhQUsNxV8c29v5gwJUEU6iGY813QLgXLh0aun7pjBQXWv7raCxRYxOoikNs+KP2pPyPXzCssQAT9iwvQMWp2HwdeRH4ZFdpWsEwh3EikM9cvHkX3KFD7fIk507cS9HhpitWj70RemSff14Ly493AqKboryve/2hFacD2QzMmQJNwZI7XJPrZFazIICliWO4KgaJTZ+LWBlXawRGq8St1Gi7V+p0iiGmsTVdjXkvtpeJ4rc5U8O48FMt1n9NbFOGwB4HmUPQquP3K0iF6BcqxoG8F6w/7YNrAjVQF5N7RXxd7v1sxo91zw+uHlbSTzdZN+3KJzbe870AzxzlT3iECvN8g1x0b52u3XOPlvboWSEN5v0OOjuP7V3PW7x1SBKUZaNAuVhJTKZCZAAUKb5Z7Q82K4+LzwBCA4ZAUQa/V5yONbIxxWAvU01eK5xi2X736fHLHpjGa7tEsEStzupQAMtqlGt5y9AAFnirK+0Eu18OAh3UBthIRjxAqE7HfX2+DJbCtwzigI/BxQ73tI4q5rb73LAbYBS2Xa7YA15sdjptXnlmMmUAGA1RDH0VfLr4uzHko92vcq396tb0KGEam7xTy9YrlR41IP9MOyvt9dIWIl7kEBA31wx0C5llPlPYRFcOSNABy5Pd1M3DFxSIpxshDPsrdwg/qDpBxIWku0TnsLxZ55/mjyxCIDeCwq6WSkaaaDGLdrISwaeQM+qR87KZ3sVmK1QLbLymsGiB29f2uI6U5wDRT4HulSIDiBHQ617cq9ChhMEZlId/Dyu2Yq+YQ8HEB5V7XUdq3eoTOjdAQIC5iujHOeBDv9yg1WsY5YUKhLBnsBu+LibH1yxKaPzF+15Tz22cNDByeqsHghD9LXy/huNT3HeVu+82UU+0RcM0pPtxGSLumkGAB0JYx5gQWaJD34YBoTVofcKDCS+OJr33TnBjVJwCMctsUAeXza7FSmnQAjj7Er8OwFVu3GYhiVP22B1PARAtdb6p3E+cUV89PLAGh6F0p0Jd19O1+eIqfO9OJKTE5J/y37/vS1ZlP3aKmtYYjFQY6u8L3r+kSGY5VREmbreVcXjyNj+2PlhYTVUVEJu2eSF0NdknxtIsOYDjKESlPYpHi2gj9V59sX2FVoMTmkvtu31mNRaP7PubXunrJ82MG5X2vktaCLaNIQEkb7xHChF5yj8LYxopo8a4oZe7TBKbR0Z8E4HZrO8tkApLa3kcKqgPXrJgWewPXDy86pnT2nbUxVVxw29AAAZ7LlsY1fSaLnXZ3DBPgAyCAltCCoOPLVAM15taUKiDLI8iw1qHVoZYucNYCkHWNsRwOpQ4QCw5OZZYG11zd4n0VPcQHH5gAtQaDyJgXfYBKqknzosx7QK3GXrwsOL57cb260cbl/UD9erc91vtBfI1q74O5kq8AV3TuYyDOz0gd4vsDfgYUhEF1YmcMALp6oCJ52d8QizynAlDAMYMVQhZDbkIt078jBSPA9JPjze/naD+vpzoNT0CEDDZwrZD5wt8lIdUs7slnxF45gQoaPsRZEBy0N/Kz8dhv06t/8zfj+i8B/Gunn/3HAP6eqv4pgL/n/waAfx3An/qfvwPgP/8d7g8Ak7MyfpjQJAfTpiiEO7SSjfs8CBSHYzpBH85A3BMwZ/d+mN7C3tNzMA8qMCLcgogW894YtvC02Q5jfLzf9J4cBZEEMLghkueaGvDIagbsN1P3xpjMLhwY+cRUIo8JZp81Q88j89w7ff9nnzJCe46exPgUvrMdKEG7c7FMOsbik3lyoP0A5r2zqGD0IQ0od9Kjn1y4k23W6oZs9UogqxmffL4JEvUE+mhoJJBRIicQKZ7F9yuIP2OM4W3z73BenAU4Mb5DnYqJNguMHHHfNFTMsA8Gio9NrsYxzT3OS9Ka0+85ztRhsD+IeQTA2AoKK73Ipcdo/VLmAzNHMmHvlcVKI3rJdVkFug1xUbiewDn31vqsQw6jHJfbYX/fmzlMdE5YLgqIyBKFJKMvS+ozIYsHk/NkrB3rn9Cn6CZMOgE3TA9KO2YIpZbU3/4OZABFOc+0xth/uZrLmGuIZ6krmk+MoNxPvUfkItZnXqMZOAhnPe09blCHMeZ71ZSy4eORD0Wuu6meOYFBfobvwujzmV3EPwXDKaMj5e8h7oRM+0Dsq6d1k9dkNkD5ef4/5s9F6tnpc1FCNreFfenjF9GqmHtz3rfG3jHGI84UP7vO4o/BCstjyPGYUkXcGOT58+z8jLUI62fO+9z/GGcaP6tyWjdk2+RLx9x+6FtgADRpXYQoKvcq7tfncyWDV4mqH+yfLOqX+oh9R1bgtN6erY3U5qk/8lx128Ac9QE8hXNCVgKZFnmOAwgtFb5zmkMRBOD+EI50Hwyibxlv5zFkP6V2nZX/H668Z2hiVub+4f7DSg2h2p/uU/xsSAwD6c/f3ZibDi44UCGntTq9R27bs4jys3ad2wfM+zP/Tv0//fGf80zhGT7N03BwnzzrW1deQ3kv4f2AcRaez9pqbR356Xl/LXP7vA3BVMz7V+7nh7l6mr95/j37XWa5RTv6AJTZL+cr31d1WgfR/9mBfjaX8r+zn5AZstF/5XHtn+f56V4j1z+NUeynHZDyy+Od50S+H//k+/4u8yeDHk+AzPExHWfTNwISQ/STQbsnTq2IVyRacHxesX9esH83/hxvC/rr6kBjndvK/u0697UUPE1j6HN/GLB+eqf8Pd6HPsh5vM6MiGm+fOP5/clYA2Pd/S7Xmf3I5/5CZP/p9Wzvp03yjGV5fka2RfK9vK0T++bZlYGS3wFMAH4HhoKq/i8i8ienH/9bAP4V////CsD/DOA/8p//12pP/V9F5HsR+WNV/Ue/+BwfNC3F0LfcYUVGpKjYgU8F7LL3USbGDZ/2Znnr5d7QLqaPEAJ21xbUbG9gqKVWEche0d7WoMOXQ1E/aAjpeFeyh1w3oF4Pc6C3Atw9EgIXP9y7la78bhtCRn7RiaFQ3Mi1vVie+EHjA6Za32AaDH5gdI+2AjCdATdY28Ui2rUOg5AOSlsLpAPrD5ZfZawNRoOBsnsu/qGprKZHdQ/vh2TAwdtgG1DF8WkNw7pVK9dVf/CydYA5+q49QU0GAJFXyXQLKSWqa1Q62UuxqFp25rIjC4SoJrqV++xbRf04Ql2/ADGW/XWBNrHymKooB4JK2bcKbJeo7rF9JZILlKNj+elu+fG1YPu4AkWwf15jDMvdIlyWQ18iVWb5zXXQ/d2A0jcHXpy1oA5O9NWih7rASjN6oEBUsbw3lN00OeAMEmJQARQB5qx0hdwV635HvVQTLKXeQiEtXwAU1PuYn6YlAhyvFXIpWL76OhSqN2sAKjGnvVJIuTc0Z7XQ+VjezYhsb56rXT2veR9GJg2C8sM7ojRh7yjM+0rikwYOIgw7pl7YOvWxutl6Od5s3jheCDmMnUQBS+tX+3v94R7zq12soofoBrl3K10K4P4ri4DUa6pEUGtQ0KivEEa552zL1+6OMmLTDyO62N5Wrj5ff7R51V+syoC+bWPf2A/TLnjZRqWaRDk0g7dYmcWjAb0F5V9rtej2pwvkfgx6vQj0xaKn5WOHwMvr+RW6ADSOvdSXXO8e9V8GvZvpB65rolUgWDwFxw0BF7HUbbG95mZRHAPnZESUWh8ikcAwiBw0RDL65XzoEXR8dWV2Ahcf9/EMLxOIr1dIKehfXowZgMsYo/sB+bhBX03bIeuroHeU9zuibJoDnFlg1+ZnGVoans5SbxYF1QupuLDqEX6Ql/twostP92EglaR5oJrAOow5okC5WdpB3yxCwueLsrKB9UkPR93XkbPuyPBhhR/x85Z7tC5wcDCt//c9RA15tsv1GA52sbK4ZPOZTlGzaBej25cVWl+C2cL7H9+9AAWmMcF0vt1Fk3nWlQJBt+g8EP1NVkqMG+DCabB5y/x4WL6tXG8j51sE+iJAGcKl+T5aLBWn3Dyy3A5A1mDE2Zx7H1HlBJZwjouI7YOMHi4V4gyeiNpVDF0Ap7HH3JKkCbE6w0h16CgRVHQWktz3EUHPV9ZI2A+L3HlUPe9ZsZ480i+ZIaFqWhi1hBAkxSxD80XEdBey0ws8ACRmXghwkeEQ0bDmXsT3OVJE+uyYZw2bDOoCQxR3ofBpn8aWKX6RIsPKF7UCqztvBIdSJHHSj7nvtleqOqNrn6saLHW0jz/jHLlsKWJbpr6T632MFa+z0+2gWKQoUPeiy6iGwWc7KDAJCMY89XtEakC3SckKXr1bNa/shOV3YR8FayQBaBk8mIJpGvt9vJcIcLmMPqKDfLBtKyg0/QBaZKCE7fsWpdvXuKxepjYDQcHg8z7YVmcAHOOdk8aAktVAp5ZAPEE5MrRP4A//jrHr/jzVwQagGCmG4yd1GQAKfQuyO/jeAf6kubLYeLZfvWD/vOCnP17QN4SOGxR4uViq3QVAeffzlLbr5NB3YLlMWhJ6HIAUYyVon0EyL9sZ3/VylpA+QN1tTcDAKeUG3r9M58tAcGKYiZeqZNUMiMxitqXPoEwGSeIzPtdag04+a3lwxIMd8K114X0zXfx8Zkj6O2h+BvdNjvs3AIxvgghk1NB+6t3Saro+Vv/4meuvq6HwRwkk+McA/sj//28B+H/S5/6B/+wBUBCRvwNjMeBl+5UZlfByHXWwEMzh9NzUHMkXVwPmgLEigdM1Czp0x+PgCUyBfpFhTE3qxGYQ+S5qP8tqyB45RDOnLusGiJpAHCRFnrjx+nqYoqiFi/OEgMdBBPQyRChNQG9EUgOFPtTvgRBrAzByioFB5RYx1fqWDH065T6ZJEVsR1krf2WKp0V/jWhu5BaGAcNNHPZOpzrkWZOBzpQCg5ruX5s213BEZoSOkcAsftY36/fi+eDmBHfTtvCoMkXFpsiOjDkR/w+Y4ygIPQ3LDc5RVaAcant0wSifyf7muiywlA+nTse4c348uYJm3DRFYxH9POdp+zwv4yAtR4/oN9tI5gIYpAYgVQNEkG7j3jfPeT7EVNsJrClis+U7iMDmA+fk0a2UY3437z+hoj7cgaGCuZf4yiCRNI0Sr30p6NtilO9l1jApZBp0HwtFRAaFjpcAWQ0fahTGAFX6SKFhfw12jDsOAkth6RqOpZYSoJlFdxHpFdZGc9akWBkvS7NJ1LxgBPl4UteAxkDMkz47szRumTf87DDJfelrST0nnoBTqMyfot1RB5yDnp2xnKOZDWh+Ju0T3Key8SB8j1DT9gNcijueEsZ4ROcJAvDSlG7GM6H4hD7R+5jWJLkN5+hDfsepI1I+Kb8XQEkSnuQzDzeGnOESKQQCCKPzi0QZ29h/j3n8DBz1MXHnF33e684R3RCUBRBMHf+dCRN3ZECLLDPbpzE0WsB9lGeCzQdLbRD7uhowMqrbkKnm5ynnm5fK7BtLDfOBfj51GQaWzydJBvm5/PM0Lun8NmcTs66SpPMp2Gg63cNSBOaxDeX9vC/3eYyUzeC5y8h572Pddk/FYFtOOgdsM7/L/T6ffVOlAo6rpyEA1m5N2iYsexl7Eu/TTedgul84FTI/I0A9HhI6V3bx95juUdI64flwcigBjBKh/LNUr+Di6yYcJ8Q+Pd5Jxn6R+5HzJDGebMwy4i3z+MZEpxMThuZgk4i4cN14TqzV071t/aW9MLeTaREERDJ44GM42TtPxnzqRz8bHsoz5nlVCrQqJFUIHv1YvYSi/0mA/kM0MjnhAoRzH3T6Z1ceo/xez+YD9zAKJp73aPYX8Pg8Ah0EQGKu+xjg1I/xbgkU49/utCs60D1EIwaaxVOTMztVxThfeTwfvgtzdiuBjJL6Is37dN5F26ZnnPQVnvWRl1IURqYDBIkvzuu4a2jqmG8F9CpoG8K2uR8CSEXZVywiWK4+wboihBAlrZkz3T7WeQIQ8pWd+TTvJ90MXmQMnq+0Jz08FwBK91f8mTEE5nfMz+kaP3+oIpHnK+cZQbG4b3pu2kcmEcW8DqZn9/F7/850fQsgA77dX6f3+P96/TOLMqqqijxTgPnF7/1dAH8XAL77/LeUNOjuqHG5N8jeIxpd3u+IXNXiE61bHrp6LnII7W3Fyty5M0AngxH97PAXj0j0zUVKDsvR1m559FYp4gh6JnUE6q0DDaj7EerPdBj6UlB0sYhWU7A+MMUUQ3gMCJTfhK1sIWqBR5yrvUO3EoE5fz5YFr4xFH/W8cUqERQKNm4miFff96D+l9sRkR14ji4rCNRri1xcANFffNey99BTKIf317X5s7x05r2HGGZEk4u1K+ctWzqCWMpG13i/KBkGM3RLFRfWdPBIZDiRbfRH20z8Sw5F6cD+uaLcFetf3Ewrgs++H+ifLJ+//uQsjctYClZjvXg+r0bkYfvNzRgwrrK/f9mMBdDUUHH1Eo5ih1jxeVEA6DIOlVBdH8lLNpeT8nvkwDdFXwvaKqjXjuWjWUnP4ikrzmLpBD+6bbaW6yY2b7zNcHZHX1N1j9a9ogagrwukWalKlhm9/cGC/dXYLtIA6dVYO7cW4JrNzwZWoogymqoo1x2brx+mphDEmspHEqlfK8AoJQXMGKn9erWqBy8L2qcVwGoaJgW+Noy9Q5ZO9Xm5f1mhBVidXdEJSnzZUD+OqfqEOYUeWRMrDVruHXW3PFoto2LJ9htjKgRotBQTi/UDQNcyKlPsPSLIUS60K+D7Btez7A1yP9A+X9C2iuXoEOmTw1bulr8sDgJg92ojr5vPIzwaHXVofPAzYZwczRTIl4sxRjgPE4AR92M0k1H++z4cbX42O9WFgIeprYfTjeRodXhk043ZdUN/e5kdUe7ZHQbGdZghDETlAwJY8e5RYrNPVG1+L8DJUiBCgMYM/tifU3lTXQqwXMYa5VmylGEAFIQTV+4H+rKhFwevVFHerWpLc8YAq9cEuHd43j/ZG4vvJbvp+nDusepOzD+KI/r8BmCVWKqguW6G+B7bt+Hk1Y9jtK1ggC2HAbFaBPunEkB73TvKraO/LKbvcrGHsuzy8mH7jKx1iNo6o+H49Ya2FhyfqjHt7t1BNAd++xEMPmMvKOTjNgzydYF26syMOT6lP3BdOeBBY6xn8OWuUR0EqtAXy1/ur07/oj1F55rl+zKg5/owFtUygSPdHKh+McOSpZutBHWzPYV7w2UbRp3fJ6cHWoTI9qVYj2c6dynony8D1N47yvU+Uv38nKpfO4SCpB7FFZgbHQBHZhsgtV/EKsCsy2Af+JqfIut9aPYw5z6n/UWkNkfT3l5Gu2oxlhL7m6+QGQ/AiGKWMnLd6bB38cCB6T3oyyW0VOR2n8Aq3dbBJDhp+EjpI2DRTc9DdYUoGUTpdx9mP1hQxgQ8ZTeHeJQFXsbeVIuNvfeDNHfw6Jz3YePhPDaRDjFAOD3P+fP4EbyqZWjssA2ZMu/grdx36J16DonqzTVIDQQZ4qJycmymsoJsQ5wP7qwGLTU5NmShrutId6Mz3eZnxJWc6XCU67AZHkClCXhKwElibdDhE+aed+8H16QQwPryOGzdO5gxpWqc3o1ttb7R+I4ePo+AOKMDxAzA2s4kOVowAsPpby20HSJV57xW2N7WoBHkOwNsI32IDntUkgqnHsZSWIC+KY43wXUX9Lrh5a8qlt9+GMOQc6eU0T9doW0fznTWQAAQUa10hRBiYnilX+IBVShiFRng4MhD/5fRT6tYMKc3hHgr36cPcMq6p3pfuo9wHAhmAwwziXa0MQaxrn1sw77JwGhq63Q5MyDWKhlDeY2fvzP1RdorAsxIAA3byp97GdIHHYXcJ8A8b55cf11A4Z8wlUFE/hjAn/vP/yGAfyF97p/3n/3iRfEoE4Q65Q53Bcv+9UUgXVDSAW8RAuZIi4tSwWpId6QI4lhgQdtklHN1ETb0cNRqkYnW17cazlh7KZBmRpuJUG2g4OGISLm6tUcpwkFlexePUiqmCJIoTCE7OgcR8VEMqrkZahJaCTzvYq9WfYhgmyp9CyfiaS4Or27OqhbxvkxpDsXoTqw0EO/o34uDNMbX+oAASRw+O/u7R2oAr3DMiFjTqZBhwIY2wN4tYl2K5cSrAq9mJPe1okgHdg1aEudaKcXngTMlWof0YvtVjkQVCXCFAn9aBV1MiLA7uGN1piX6PICKhAYy4hsl53zjBQA4rZuGaET3vY8pilMS44GpLgSR7LlewaIpgIJCkce1+Lj6Z1crragFIAW0r0w/MhBhufG+wPUPKuodePlLLw9675Gq0t6WkW/N5qbITF+IWstIt0hoLce/AqM0WUkGWXGhN59DjBBJjoLpmCdTbi4jRgRe6NwfBV0XhCjnIuGwavG0pzsg99NG6u2IuQ0/qC7VAPDWUW461kXzQ5pGnoNq1P2wDvDI72bvU68aVNCSS+x5v5oTX6PknnhpXX3dQghNK6aDR10kasqj5724J2RwIEcGo+3pIPSqOxkkjWiHG1ih80ARtPV07PjcM9RnCYAltEvWZGgVhaKa+OcZSffPonkaG2DgCtMQGH2jsRYOeY9+sHY72wvJwQZAOjwF/ybDgIZ1x2C3+JiUw9McyBToliLHEr6htVABqKB/vqQxLnN0JhmLY95YWh18z+Dn6Wgb406NVRfzgE6JwmNxMIzHwb6iBgyrYvux+Ds3W/MJyKQBVfhMj5RKqgEewJCfi9QBqu/HYHadwVQHoNGdQrwfYDUIivFqr2NfdeZJpqOL9jh3Yn+nMCqd1sx0ibPQzgocDUgOlixjr5quzv71c6fbnBIHgWQZLKaYL1M0ELYGmlqaBh2PbDiGA2/v0H0/Pz5vVgHnU/XB/QSK9W6/OQxgdeYS76kU3qsOhGVnzZmWmvQQ5mi3DGPl2cX93u9zTu0Ix5fOKQFjAnIhnOoG8UmMLmYwHareo8pGgD/HATlqcrZSG/h+1G6is6jDaY19jMxGVQM2jmb7iIN9kp1W76+HcaadF+VKH/fTif7/MEfS+s8O5rm/+d3sRHobHsYnGFRtOOy9Q+D7RQYa6HjnksT8+bPoO9wRPA7gDMDk9p3nFT/HM4L9ws/yTx/7CtQFBbmPi4wz8lu57CnNgveZFPDP7wQYDb6UAZrDZ2EROzN7N0f9zGg7P/t8kdlBUEU6UBff38pgPqNgEt9mP/AMWhZE6kKAUQngmICF5w6tOZSYPkPdJ1FLBe7NjH0tti1bHNnscXmYt/aeAbbwvYPBeRqfbv4N3z1y95MA66iyQfCkPYyXzd1yuu+TceH3zyDMOWrPNBrL73u8DxLwcWJR8PtSa4xBdtQnNgn7h4z7Z2kGJ+Du4efnn53XQHq/p8DB+d/P+i0Ldz65/rqAwv8I4N8B8J/63/9D+vl/KCL/LYB/GcBvfxf9BABAsbJ8FIGrezctAvoCXkKsX4o7kWmRuHOQc9dRLFJTvGZ9OAAFYfQRqOgeLQKjf+5E1rRZahVX3PfykmKG0/KTO2FOny67U8vXao4O11w3pgMvreK1wwGKRwL2bpY362hilKnDMDoBoFM5vExACS86MfXGiCKG8XLfPY9Rhwpt12FtinmvogBuDbIUHJvnyHpaCccEQNDbh5iR9T0IyDCS6sCENkVxpLowf1Y1GCaSDDNWxxDvQ+YjH6/27HrtkC5YgkUyV/mIqg2AGZsOILXVDvqlOm2XZ/bRIWtyVvO7vboz1qmEbhR/0hvlcMdP1Oi2RdC3ZUTsY/B90a51pCG4o1s915VGQzgeCp97ZAvQyMKIUDlIgAr0VazywmFOGLUe+mr9W+49mB7HmwFf9WrzpK2mESJegnJ5V/RN0FbBxx8WLFfF+qMxMMr9CPZI36pF6aqBfnmuUyiStmhxZX2mUMjR0bZq2goK1I8d8vVqDtZlsX3An9FXQdltrZTDjPm+lgGeuV6IHnDnBpj2Zx87ixR7uUYH1vtSEISramUo5auPa0E4eZrWpBaxX3VFrxZlk1uz8yc9N9ZvxwAUVKPKgZXZLOhLNf0C/h6wiiWlWIRauZ68nQRcfvDPfHmzuXtNBwgPKgrUUo+AedFSIg9Xi+elMqJFENQdvTDeATP+ZAipTaCCurH/cTWj5+0lKtdE1PJkzGl8l06UsWqMPeXvvPhB3Ea+H5+pi7EN5IVtWtwAACAASURBVN2d/tahby/2THf4c030cEI0pXdNhyqiVKQuxk6q3Vk9gAEcgkk1G6qQzaOVd3eaFwf0Xr3qwfWwCgOtor0sAYZjLTjWS6RJTY4Qxjmmwj1DHFBtDo4PdkVfnRVxJEPE99b25vnF3iclQE7rc3TXlekdG1NgnLZPFl8XTMwI6rhIccfq5Ox0F0WVrqh30y+hwKquQ5yXfW1rZrPSk54+EAKpRYDV1xFtBCEzAIllY+eWLhJnplBgcFvBEp3wlAgAEBSIHgZi3HfgdrOc3WTVP1RfUWf8dZ4F3ZhDpQC9PDq2wDCORYDCsq1kcCXWjEeFo4+q4PiyoW2m7XK8CK5/UNA2QXsZt//+/4TZUdUd5l7GOvH9K9LM7jpYGD4vgr1QknBubgP/P+8HnEMe9ZL9MEcsVwk4OavhODJ3n457zFmCP0m3IjtVx+ywsIQtWGIcdkYGwOwaMuIUf4InonsELmwMxx5CMFKaly69YDhsBHvSXmLvm4SHCzAD3Dr/m9oH7E/uRbTtCCbkf5/mH9sWnwOSAyfxTqHuf9/dAVvdLu6jnwN0mKvcTGyB4xhOI7JTpNDu/bVtp0ioDkc4O/4BvrgODwATtHryPc4ztTlmFcOK7VvPAmR5P8/gBNs67bGn+VUcjObf/i7qIJTt+75enoARjC4/E7OLVJP8bmn8VRrkg9px6T17HxU6AMhS7YwiKKEKdVvQ0p2q2RhdYTpKbbb94/kpot/amNNqdlY5GIwBWAa4i6eQKh7mpZI5kYEOqM2HvH8GQ8XX6mmspZYoTRt6B2wXU59Gp/6swzu1LwOj+TunKLw287PORPyHFIfz/e1D9netgDAdpwfQYdVCzPdUjn+enwyA5uewosYz4Iw//6VrSu1RhE5Fvk9Nz/Y9/aHCxen6XcpG/jcwAca/ISL/AMB/AgMS/nsR+fcB/BmAv+0f/59gJSP/Pqxs5L/3yy1zZ/u6GyNgs9J2QX33RvbNnK/1tx4tUHNU8LKEIVjOUUQg8jQjVcDZC8VpsnoZVQAsXWJEK9vLMlIe/ECq14aym1jjYAIgHHc5PFJUTsYWYAeLwAanep6rR+gZyR4CiwPVIpsipx8AGJReRTgfxSNXxn5QyAfpa27kUK+AoMF+YP3xjvay4Pi0eEWBivt3l+F8NsXy7jmgi4x2u1Mbpb8YFc75pf679mqO4vLT3cdlTExxp77sHdpyZBl2ShWniTd3tKkr0YGyK/oiuP3BBax+0F4tclV2e9H982L0WiCAg3K48eH9VO42H9rbZkb4rZlg4ycx8S+OTccQpyqA7BbtL/dmYEfk4FrbQ6OCEVZxB9ABBFa26FtxEdAO7CNiN1WL8HsybYZ9Smpy24qnxjRIY1kyd1Q9+s75Evob3i6tgvuXkuazCSjy6rugrAXruznz1OsIOvpqDnJtRs9XAfrbNp7jUbzih4t4DmkIqKqVpawfPs7uKGlxnYvic1htzJlqEn3qf463NdICRhm9RPcXoFdLCSrXhnJrAwQkEFEFx68ugADrD4cBQqrQUofGAoAuEnOn7O7UxQFif5e9oW8Vx9uCem1Yf3s1wGitMQ+oq6KLgSLlOIYzeTocCtezjHlBVksYfDwYIs94usVwwkWM7u1RCHXqdkQL3NBWOGBwO0YpyG2N+0tLbAEeiHSCqhldpG3q64rj02pA2a0ZUOIOt020Hs9lhZ7iVHG5tdEuYDgHa402TDnNaqW6hpBRNmTlJO6ZDFWROG/E53dPlYJsvteh28CfMeWE+18q0Wb5XhprsX+5xLhHVHtPA+WOI7Vh+uYMPTKzdh+/KrZPOcOv1xLsHzKH5oiU/7//1T67aGG386EQAMnvcdj6s7XeQ9QxA7fl6FAt0Iugq6U8UCGfOkjVS9lSeyjAOZ5Vvcf8lesx099JQ1ZEOVhxJgnXIfcNEDxSZ4z1jvp+2J70shorTQZDzKLHEvMrntu7GbPbCvn0NuZlLEZ33lyEM8oVv7u432V71D3IVzGQw+b2Hk475yuFqK1yUcXxecPtb2y4fRlzsd41ghztFbh9rzg+d+hbA7Dh7fMLvvzfguXrHiBilLIUOv4atHil88T+OdPEgbFWswNEICicx576JgEZjLwCBmCyHxgBLgKpTD9tM/X4TGF+FrErbh/0biKLjF7vOr7TB4MpU8sZuImyu/7OoceQHXU+l6DI9T6lIAHw6LWOfbgIQvyV73yeHwksfvaZqEpzandoNfjPJ52LvMclwcXRZz4PchoCgQRN/Xbu97h9cnTVndaS5khP/VzK4zqigyhi5tnt7mCOzs8/gxfA7ECGFoSDL2TPHYmpwrYvS5wD8V7NGEnxTmxXYkpPQBt/lvsgAxWp//MprnoaP45N7iee0f65c6UlE+5uYNRcyHb1FAMDpNvoG7Y7Oe2RMpnHIb/P0SyV9aNg+SiAApffAG0T1A+zA+sdePntYbZiHlMHFCMdg+NEWzAHQUv6PPuSqSflZ5x27QMUOLMS/G8LPHCM5vtocxCoCL7FPmB/z99r8897R2hPZTsoX6l9fK95VmDYJ2l9xbPymTyBMUkTg98p3ofPmAt48rvM8AEG6+eswfA7ADW/S5WHf/sbv/pXn3xWAfwHv/jUxy9arrlHWcLmKaPLLcJgkcscpVA3/ACMHPsqMI/O/6Lh687NiO7KcCIEHhXxyS+mxWCGSgkUrjQT3avXIxxIFY9++/1jXSqmCRZ0cHc0WaIuHOhk2E6CWw4CiFMZ4UZmTg+AL5ygn1dxiucxDJekHp2NBLntrrY6BDHvXwraBUAX1DtQbubQirpD5QYoDTx/U0vDcMc+2i1Ae7FI0PpXyTj154egEI1rRRjbMdlJVy0lbcjwfNuC480PjwarhKB2Ty1AvwiAgnJ4NMoNXc4xkFnCHFbXf+hva2hQsJpAToMgS6UwbSPmw8kRjKiPPTOck0Sz76sBCn0pKHyGeJqFO0pSB71cVHFsxlyQq0X/+lqs6gg/Q5EzRUT3KKgjQDgy1idAu1h76k1DJ2FUP7C5Vm919B3ndHIeTE1dwwmT1iH3YagzMk1tEatM0eOQxAmEs3Z0Y3ykdUwwgWMhnoveV0G9a6yZZ6KVhgYk0GFvpt1QUsWLF6uCUW992leoTzJyETXABJv7PucZ+fDv9q1g+WgoH3uIpYUuAtscIF8bNHgAwarqFvUMYS83NCVoHzbvJgGzb13h8FeIGN1RMhjBtdeRDIxjGK0OZhr1R01DxN+V4GaoHl/YJxIaNGUvkNIiJSLopDnC4QyMcvW+DepkjhTDD3aPVDGKzja0NiLF/E6ixUZ5SB9Lvmfkj3K/3orvr753Fg3mQtx3rdEP4SA/cRh0qeissoIe6TBkYBkYCWchIMBANAPDUAT1UETFI5iD3JnGRbBN8fPzQGSkjjUD+yaxwgBMbP0FMFpsLasDDXCHXj1aJTxzGyBwsVIHEUprQ/sHGCB77xgq2E4xd8dIlzqE7dwxs3MQJrBcHFDwdW6U/yGQavtSC5ajdkXQsSdnjcZb6jcq4TNNoJ0ctVqC9RYaPeF4F1NlP/nBE6MwOQ+R4pd/Ht8xPZfr9xUf/5ygXoGyA5cfbE70BWgb0F4V8us7/vDXX/Gbv/xDlEPw9ufVgNPT2AcoyQCDyNCtYd+cI2ZPzrYHtkaaO4yCmvaVHT4hOEmGweJVUUII2fRWcKTIblczlJ/kpc+AGWYAkftXpl0Dw+H29TjdS53CnNvIOZgdO14ESLrM/er6CHI87m3xLidnIH5Fm+gZIPXMUWBlNH4+pzqk1Kjpfmdma55vPTl3+Xd0eDKY9EsXv5PPrdyEiRLfrUICdS3sJZ7ccu6TSbchAReK7kFEBStQoCvkUqbPG/hwAi0SUDKnKD131E4v9Pjvn9uLY6/VON4mYDcDDfk7fExiDlrFAcGgM2P+Xk/j/+y9xUGJw9in5V5Rb/as/i4od0XZxYJONws2llub51yO8ncdrxI/55rwszuEUYfNj1xxIWlETH37rC1npgNvQe0R+QWQ4sklz9bJz4Bs0y3V0u+m93rymafzI+zMBMr80mf4zCfr5mfZC7SDWlp3peBbFSOeXf/Mooz/v1yqkNuBEvQnhAAhD18KTUEXpwVLdO7y1cqelasLhG2eh7QYpbovgnoAUOB4M+rd8j4kby2dwcpfSS9YfrRSSstXmONxPdBfFuhquftagcLSkO74q1qZKrk34GJCh1YOLIEFS4m8ThEAq6tjL2kzOIYjFFFCIIERiEMyQJUiqKoQ6fH55UcTs9LLEvnUvA8wOx3qrIz1hx3tdUF7ESxXdQRSh8DjaoJey7sLMYrRZaKNAFgBoW+WRsKqEPunOtB6YCC7aqJrtM1NnbyNe3k0mAdQ32qIIgIaEfesNcAIzP5JAtCoRSG6QKsBIPWmXoHA5gWOPZwximwuP91dxIx6DRa56G9WFnP9eliUO+X/yq1bisinFeXWsPw4xDCZ496+sxzpemsmuLgVtBfL19+/rKj3GoKC6mkj9etuUcBaHHwwhfi2CPbPhh6XpjheLW2o3Dq2m4McBTicFl9uJhTWXgTi5VDL3iFasFZjdaw/mVBbe0mU0WL9/PJP7b36Qtr1Ep85Xl0E7G7infXjSHNjNkL7VjxaZWt8/7KN338YHVxfNlsT9wPYFrQX+wwd+Aw8LD/dhzPom2ZfK+Brtldv76HYfnP3NKUC9GqsCc9f5hyCGgi2f6lYfipRmjNrkSxfd09dqm6bjXzxHGEVVSxeyrR9vriWSh9pFNmhrV4Sl0YXnd/eTWj2noxCltmkI+JlEcliYDqELgXl/Z7K/Qng5fSGzkqfI0IA5LqH7gFUjUr8+pKMwiFQScYXxzeq8ohA4bTzakJ964+7ATlHh76sUKxgRFS/ewlgNgREi7G0yruDKkzFOBw9zKDtthj48J4NZ4+8tjbSD3KKGScS999bB942Y8lc99DvmUoNtwFSnSuB5HxpRmPbp4utWc//BwxkUqlYf7wbgOlpScMh8ftBY+yOZTUAu9pcq+9H6Bnclw26uoNXizn8InMKWhWgOb3fiAPODDpGBR+fE/kS8Tm2VjRnIBmQ0G3v8fcjK0xXAwa6ANXTovC6mo3ycdg4NrWzj4KQqFAy4zuCXUAwjeLJ9aOhcs7B2ibN+8jnAUu0sioP07IqmYmlWBnSoxktvxZg8fKFFaHlgdfLsClErCQkMPQcKDYrPi8c1BDuWwQGX7eoNpPbh4V7YC6Z6wGNT6++15gI5vG54voHgo+/qVg+gLILjk8Grty/V/QV0Kp4+3THn/76L/C//ckLfvz8is//sKJeq4Es3YA5RQ2bPlcloJM4tEP6mAvPHGIRA10oqpo/U4qJEXuUWLcVuKyQj7vhZi7uF5oq+xF2iV5vBmAWZ2oWCtrJKJO3GDVePZoeTmWOPp/eV29mF0lKqZCWUgmSU25AA50bB1+53xJYSOwLG9eOKKF5mP2nFLHkfpHZmbsbpuw7B65CmC87aYtHDO/7cCBzKkprEY3X+91A1G2dAQSMqGNQpvO+z73nRMVXAsp8bx/3eLaIpZjsxyjxyTnCq3cT7at1ZtL5/aPyTi8DtFgSw4XvwGgvwRhPLRG2kbY0BQKXCuxHKpeZgJ/DovgEsMa7uv39rUvGcwK0AsY41gSC8t0zjf8MgPBMDzBLx7tzvh37GIspYl3m+cd7ZiZfBuKqp2OTRXJ40DE78K1ZlbXffoXcnd21VSxfba+2tFOzp9bf3FCuu/U3U6mjioIa0M/UlHhnt6l5TmWRRimmIeFtV0+tydeUhpDBE7f9p6u1Kdqu3mcxh4vM/UNmA/UTcjAirRNxFkoGoLJ2AsfGGAEJTMjpECe2Aa9gCwRriOf3SceHYNczUDLNE8lVb8hqOF/fAg5y3/0cKIbfF0ABiAVnOZU0xkbEMK6UR2nRAMRBHvc5TMhEig1HjvZn8bmHVygAD5BwZpsZSlHbvrhTXudB7GtBUQpsATkS/HA5VXNsWtyM4IJk3YCHLgAGSCA9dD/DoJv+pIslIeEMCkYHclvjgE4sgPh+U1SPVpNaqhi3eFbeMAzu1P78PE2bcH6WLvD+RCibPq0bIk7bX4ZQWuhmHOpObm6jBNqr/j59YQRSfVP193UDe+TrARQ+IwOjMr+VOg+ZvljGBsrxB+DIsjsKpYRuAQDozmgaN37YZr3IEDnzKhh0/FScMk1WiLfJonDwKL0xFaD2faPzA+iWqqPsGxGI57SZErkdEHIodHUBzcNoyoOJY+0z1kcS2exq1ScqPNcuR6FsP4z5k8AwUUUvqfQjEepSwgCeDCJN7AMdee+WtuCGsRugUUqU3ctI5tGBtXqJ1zGftSGqmNh8KUGvRp1psOaodADeFq5pj85HWgH3NXfWQoiVjAMdc3S6NyP/YSg8roUx0RPIwH/TyJDTXqfqCs7lkY5NRgJ/zmfQSMuVIsIA9Hn7DPn2+S6s5+79Ohhop5N/KZFmJl7mNNrKtcrxTSDmtP/RgZPxzpNY0ukAD+p7+pmxdjTYJgAe0gCCnQGMPYc5ktFvCEcldER4P5/3xpbpxmTZEmUZ6dyL+XTaFB1IoK6BpPcZlZAcPJCx9ri5qoMNZJtN8+cb1zQm8ffYM0sbpYilKJBYHEF1b83mf2s293nTdE6jwk6CJhBxhgTPVF/7ZHEJSyAShD/NXfUI/AAxnhidp7ZbH5Yh6ujsgyykG79jV7jNchY8BRCpHQFIuraQHBiOzvmaQC/f2zegv3YcKCirAj5P2kWjL1sruLZlDGOyX2Is1E9ashefPf88D7Ljk39/tqX4Of5/QYASVmLVL+5RzOeNs9cNeTpn3VlCqpNxTtZCVHvIInc5+s5x4LufGVxq/fj0OttXIp5ak9qX28xo7MP9n9zzW88DBkMhfz//7cBFfI19kiP73kcAhm0DBED8zfcDJudjGs+us2gj35k/qwXSvuGJP9tf0v9HOcDfJSIa49jdsEtjy7Gh6DhfhyyX89nZ9KGN0Qf552yr/21j5PtfpodnBz8DD+crp2jofN94XD6P1UUoAWv3eZ5/6xJBVDgAfvk7ky/VINc76s10fUobwvnlsD243I5RNefMIOLzpvcp8fOnDurPUOst55/v2d1GhI15Oa3FqU1pvXxr3zqfr2cQY9rTyjcdebv3YENM3+9jfYaY4+lS1QEcpHeQ877xsK+UAF4fS4P+HDr2pI3jocOe5Pz+VpvxewIoaC2mTL43oFiOUrkeVnbrO1MZCqFFV6RXAdaPhvo+SjG1zxdAgerReXHwobsAn+QcFgpywaMr7xpq+dQDMKfEFP+N3k7KK3C8VJTFIpd9Lbh/v6B+FKxuXEeJLo+uAUhCU+JUIuD4vEZ5Sl3twC2HaTXYZ1o4HPXHKyCC/devnhvvwiIqk/OSnwXAq1AUNzoH6q0vYqiyusNYSzgI9W59s3y0cACMseBVNDpCWK99WqFSIqdWFEaxvLaIiFrlBYyIUaLVEKwYoklmBA6tB28DTBStr2IK+jKQ0vp+oH2/Yf9UsP3QUJoDDA4Y1LuX3txtfJlnDAetju9ebN59eGS5Ct7/+BX3zwXLtaM04GieCnDtYX/Qoe2vS+gbsJa7VkF/24z1sRUcXyz81jZ3wi++AXTF8lOP/rH7irdvgEksjdpeTFyx3NVFHAVyuDPsjtfxVgf4BRq7CCBCkoF3/84cxfVrAwTYvywmwrgVrD/Z2uvrOOjI8qD4Y9ltrNrFjNvNWQ8DIOzoWMwhdcX+3C4ay3J0lEPRXoyFst12oAP9ZTMxTx+3cj1inrdXi26Xu0XE+2Zl5cr1iKoRy9UogMZsAeQosxNA5XpVXP7xgb4tpqHg68gYER261XDMpAja6+o0fgFBo8UjoVqKpVFc7DNWws/WV45CEwC1BYZYE8EaaG3OJXexP60VwnKFN+8PApTFxBvb62r6Dh/H0E9xh1s82kWnLAAG0YiAtV99sojmdbdSZ5uX83q/hlBVmLRMNUgMgvarV++/FvuebgXHS0W91xBz5X7Q14r79wvKzVgyxiDao+ygOXYFWhfXqqlo373g+LRGmk/96W7O+ndvFpV+pwjl7jnaDkTvnvdcC+SyOcBFA88dwGpMIOmK8nEEmN1eFugiWH68uxPrTqVHU3vaeqWtw8FWTLnNJYVs1DVzxN/NHNAa9H04s4AsAjI8KPRrEfekAcD7Uk+nq5cr9V/4/lJvbUSgeX6IrW3qo5CuzNS+8rEHgKC+Bgzos31Yq2tOuBHcLwtkW4xByG3fDR7bh9oQC2WKEMtjikJVDFwrQ6RZMIyr2GtURxSs+/9Q4+Vi6SiiR5x1pvHSUX5C2ALS1KJs6+KpSTIBSEJQgHnxLYEIvgbkw8oLR+lE5t+LWJlbV/2ve0f94W6pJruXoazLSDvI40JfZwH0taFduvmOWwUU6JvRkJcfBfuffcL/8ef/Ir78/YrXv+j4/GdfUb/e5wisl0rTtVofsaQlU024D02OuNsYEyVW3VETCCr0YvsxjgaWguT+gA7TqfBIOhlVIWTIfY4Rya7Q2x1Rsk9kqOkXYxyBQsSSKmPQtstVCJaKELYraUz8/J0EEtk2wJgJ2zL2Y8z796T8z3bshwUrCMDGnnOM1IkzqEEHwlPRbB/y3+eSlyLAus7gSJUQ2tOrlbGMiiSJVRCMgnUZY/2ti+8Y04VghAzRxmARJP2brlNE9+y4Wlm/08+9Ykbo8FDAM4t18spaAKSRExVlWT6ypFr3yGxyMD3yLjcbl4ndwouOJtdh7iefYzEHis6/i8+I61UkkIF9dBw2hpdtmh/xOf6sd+C2D90LYAgU0nnMoAdTOoB0PwfUq49nTyyic+nGM3W+SqzF8sMHykkYlqnBcjVmgl6vPh+WeXzyFVoKbRi7FG4/BT50T3oWfE/1feZULjR8oTrmbQQLnjnJbG/pQC8B1ExpnwnsVKa7iaSqDcW+T1s6aStMpTv5rBwcA2Iuni9J80jIGqHuj57u4+8lZJISyNj3YDcEyxt4CtYF04JinWp9MvVXFhb9GcDn9wJQADAOk+IldqrRaYMi2mF/Kka0ChgGEBDCiYxSUM2+1hHRHrWSASBFtBUWnRWMwdJx0JhR7wNUPLIL9+eLKeDL4VGIhZHsYptdQtRDE0BhjoTaz3Pkh1FoIbDRbROmoxIlJNdxmMXFvmA+J6m5QZ2Wsbkx0uJt4OFadhPYin7xfoj8chGrj97t0JsQVQUeVolglCmsBUB/QF7hKrVBya5izIUMPrAP+wAh7J0G8CA8X5rRb7ViyrENNJN7BqlIrt2Ro7a5HF6Hoqht3CbShzEvEsPAIk8CXb0NqQoHF3jkSqc+C7Gy1GeZnTPUnb1tOt693P3zFMxMY8D+pGCmKNAdCJAuKAcccfZn8L0UBhQ4iKLV59wyxtocBx/f3dsApKofY4yDYVEUgExOD3Qeh2D2uEFrdHxJhoRisD3opEt8nkBeRAN3RqIlniMKyzUHQjcDOvK9y94H0MHvMAIKjEgp0vAzCs2oiDsRUUbOATKtYpVLWoeoRF6werQjM6KmKgZ0LoGZucG+ylRaOjqdwIQj45oMkOh//wx/TkdiKWac8Xd0Lo9m0VsgodaYxke6Rc+zzAD3UOp85MscX4980EiLcS0DcPT3JQjCthrAJahC5x42Z5Y6WET5T766V22oaV7xjOGYOJsEQVv3/gDnN2IvR4cDHxzj0c855zP0RFjWGNUZHX4fRs5gey4fF/OTDo7PN4sgdQPdq6D0w1NU03M53g58BtPnlLYRWgS1BB0+IvCpakQXP3fJcCA7sOrDHAugghHpXIrOz3bN7Z3mPgb7b5o4Ooz8HIShpkeO6ogMbZMYD4z9nqDb4eBfykHO/TIBfxVTSoAKQlQvyp76ujJmFaxKhuvNTOuYBiz3zJLXs+m51FuFXBm9AqRZ39XD9vLlXVCvAv3BSvu+/JUFJSIyltqe03aCnUQ6PKP/k6NVhp2W+z/moQxQM7cd8GoXlm4RgYJgmqQ0guOYFOztEe4wSLH+dsZC5F/TSckU/OywZweX1R24xvnecNtQ0s8SywtF8TD5TuM15kS6fwZkor9O+1COUJ/3pmcXKy2QwZHLK/Iwyg4s/53ebXr3/Fyup9ChSeDRNE8liW+fGA8xBikq/OzK3ynFQSiZn+WO8gxsKSZn2OcCGQ45yqqcX62N70iZ5m3+rLX51CdsEz+XUzAmJ0tmW58/z/tNps9zjmUnNn8+BdiCVfKEFh+MPV75HcScQ/FALPQ0jlJgAkp8R9+PJN2fYJiDthGUYEUWAjnf6r8zWNB1TmPJP3/mrOaf04mfNvvc7lnEULjnU8PjGftFx1nKanTS8dTZn9uU9im2nzZSnvc9Vad4prsQ/tjp/dLZZv98tFueXqefy6lPfzZtocgA5U+f+1ntCb9+LwAF6WpIlyOxpQDHr15xfKJSvVr5IwBUaW9bwZKprO5QqQrKasJxctux3A8sPzo4UTyS6Qa91VM1enjxvG/QWPOFY4vJojiyKIDFo8MwW9JFxvZPBVoU5VjSQLgStTsfZXc0SzTQvXJfANRBKfcqFEGXrcWiC/sxJle3trZXo/sUV8yHAxEUmpSuqO97iFHZBjiczH5xMb2D3xMDYPb2EEkuHxbxxbpE5F+2MiJGaUOT1oe+g5ixu3zY4mNdde0sGTlKKkYk03Onj9eK5aNh+SlF9Q4F0H3jRRgvfSvx+7LbeC6AO2+e1++VGETVq2hgiCkeycnxcV9/bCiH4v7Zx8cN6vWvPsJxZBRLDoVox/Lbq+X6fv9i/Xcp4XyangAGgl4QP+PvyfrYv78Em2NycBRYf9ghalUeLM+7YX9bcPu+YvupY3k31ox2n6MVobOw/tRxvC64fy7YBNBdHUwAjhcXmWyKclMs1yNKXtarvcP9+w2ACbO1DdjfBMuH+VmmneBVDxhVVWN7xgAAIABJREFU7jAjnakAsnh7HZxaipW9uymOTwv214J6tfGL+ulXi4iacryP98uCvox0lAyutZcF7cVFEO/d1k/vKNc6DL2GyJ3Vl9Wirq1DPxsjqv50Q1mrrU+uGzKNXKCvvO+gcJ9phtSHSKuth2YsAjcWjl+/ob1UL2nbUe8jKkgnU7fF6XwmUKUvaxiCsjfgfh/GiM9ZRgPltkPuikpGkhtl0hW6ufGccsnlvs8RfACMulsu+D72nv2AHgeksmTW6YApYorqvZtug5d9zJVoqir0ssbeAvGSwVuJFCbpXuq0mNAmAGcY+XiqWv75rWG5Ndz+5qtVSvlaUaSP+9wc+HCHDq1Dq+XKR3TR91YRsUoNSwk2QiF7heKfe3OAEU7fdmaAcn2bo9jfVhyflihDzCg290tjvDUrL+rnnn662D6j3Ms6enZ8CAoeHeXrDVpKMAQC+Lp39F/5PFAAfs4ERd/Hq1xHtRBdCo631dIVCIL4Xq21mP5I87LHuYoG4KWcLSpU9ubliLtpNcDb6ZohcaZsFeXeUO8HWCIRnEtLGSljTVHe7/Y9Z3DoaqWgs8MYjIOV4C1Cg4laK3LYmdQva2hOxNnDuUENg/2wdbVWCLh/+9kUWk7GctTV2qJe3QmLAvUyf9bXrDT1M8lZOwRnchSzevlWVReCtDVfbgcuf3nD2z9ZrMz1yvMDBiR8BUoDyt30FdaPjte/uKN+9fKz/ZRmqAosmIn+RQZw6++dnTtqHQQAkNYVneeoTEGmAp/ntoXcxrzjvMftjqDosqxdTDDfcwGIJEcEgGzzMyJSngFEr0rDMtmyLCOKRzCNAFDOOXfnOyKcItAKyE77xp+1Ljbfb65rULxaRXbG7kOvy9JWM1MkAV/Z6eCfJ0CFRSU7lPMViEimZOeEDizBncs69ndViLqj1cazYhxoWzuQI9tqUcrWIesJjDgBvahlLp85gVKpj9k+Onzq4sAEl7wEKKg6z/fhM2u1aHiKAitOTmlrpmHB+Ul9jTNoV4pF4/lZwNqQ+x0Y/3/f53VAB5KlXo8WTJOo3sJ2iUeTybopJWOXA0gl26+WwSrhWBGUK2OPQa2eyqTBWIF266NlgxyHBwH895cLJv2Bb129W3sB4ONmbSGodZ6nBDFUZ2ZHAIQNoeXx9Flqr5NBmOgY8TQwltTt4ayHo9vGvJJtdfaLjs8S2HRQLFJITloJBvIlBz+nKpxLqYqMeXlO4ySY4KDLlM6Q752+y8+HxkP+TPRz0kFw8Ff4HN4jC0w+ea9op/dtAAZZ/JHvTGA4r+Un1+8FoBARBgrSeG4685kjHxoI56zeujmd313CwBCPDgF2gGFZThPdUxGAYDpEVNE3UlEdInx7s1xWF00cdH2NqBOjRcuHRpoAF4Oo04BFArxgicD6fsQyDvEtB0vMAErq8bFpuaHrTrJFVvuUT8zIeV/NyAvaJhCQG3PLAQMt6GRMSvhq0fxcGozOWM6DBoDl2gb1s/X4Y+PgkTqmUzhQop5HVfc2R/GSAR3VE6gH4Q44gymjrBrb7tY6MKJvgOtHnOacR7xCCZ1t27wywTHmEwkNhSrv7KKEJAt8w/LxiWoVXS3yCiTdAwkHxCJaYiyzKmivLt73Yv2lIuZg73ynHj+X3Qz37n1bGoJVQZYPI0Hl8Lm9FkgDlpu1wypL+HwQnyTKeYQ4DMvtMKmJWzfNhi5orFLQMRgoRdDeFuh90OmjIoA7L+qOgfq6KA2mBi8YbJJDPZrV4xC3sqGCviRDm8/1A9v2DQe89g6WkpNkWAVLiBE6cUBiMafEUn4QewKvMMjv7mg7FU5dsK/cvWxkLYgyhjyE1mVE7vzZcnRzwnL+uh/SIpY7HkJlx+nQz2rs59JPpNi2FsZ1CNyqDsOGlMmIspRhDHaNkrZxX+Y1M+Jd5r6nIaVLBeo6IrO7RzZYVpNaCumdWeJzrUC92r5XlHu2z28KOfIeNR18PnU7ywAvguKRc9nbAGTZ9jSedChy1KTc7F3L3UQPg/LeRxWVEFpiKlsdhzTB4YhsL86yKN3B5eb6JD3mpb1PGf0JDCBa07NERrlWNl/Hvj7KoIo5A5zCGTCVAehBPAWsdatWBEzR1XLrwVKzdqaSme6cx3cudTJegk2HMs6Ue5tLZPJzqtDD9sHo28saYF2/1JGydQwjkmdSVJEB/JmCkoAHObpV0CH743SuReQ8O4Qu9BjMuQWxtiE+l1iBZKLjjHUeUb+C6bwxvR0zzrWPuRcRUEa63T4pHzte/mlDrxXtBQ54WSpbvdkeXO+K5aNj+WgGJlwPK8NH4z87Ifk6R83hjnM26HkxpSA7zZFCN5zecQ6qgeg5tYHrMDuxPe0vD+/n7MzWQbaAAmEES+y7yRkDDMzmeGSNjnN0L7czgxZkJvEz5/7odFR8vMPREwMZ8neCvSUDdPiGgR4pGAwW5fd00G6iU9OhIUsjjCTMDnECgmIupL6T43Aj1+acBkW9D0eS40GbuSbHqBTrL6dIBxMx2GQpGj69axnMFwdKlI6qdgA1nGa7kRr4lsbqHLS29ABgdIQ5WuJ/AxiAmp+5uizDEeOZwHHqtj9nBk7spXyP4vv4Yu0L4CnPG+6tXS114DynuB5UZwAm62MUnmWP4Js1rAw2NzULznON1PbM3KAOCT/PdztOaR96YkyIwFKK+oPdNLU7s+Winae1KOmdcwWI3E8pnWJKBcifI2Mh23CcQ5nhNIEGT8aC/fEthgN/F/1wdt7HM6a+ffb96dG01drT50a7k/M/npnaISXW5jfFGJ/97ltt/Znr9wNQgBs2dYsIHXOOTehtOMCkipZd0V4L9s8rtt8eHgnS2Tlk2ToHAORIkStVdBHPAfc91A/G45M5dQsXdaBE5uiUe8qbbIoiiu0HX9g6Hy7SujtPFuk4XiqOTxYdDpEqfq5YlDEiK/fDorNAGJG61hCK64u/e6b3dUNAqcsgWejLF/CUA+h9QJHIoJur/aew9ruDLxQAjINT1QyXow9DuLOMXrPcawpSLYMZwjxSqNNvkVgNFEG8dauUsbfQUIia4VIRgorehyzrSMc0qPRPFlGAKn7gi0qosNcbAAwjWpqzTA7fL8Mx9WcrTIwPcADHHco29AOsrBtpxBZVCiHJRcJouX+p6AtGJLMINgHWd0BuRl9tnzbXE2jQLugv1R0JMy6lW0oEGnVB3PFWeKqDYnlX9M3Gvi/Wj4x4SUP0GaPIloPbUbeK4vT0dvF7N3t2X3m/iroKyq0CnhIRzo9HU4/XOtb0bk4ngbcoSbq3KTpvefZrVJ9gXrihPQbKlPvhToNFDuHAilI80cc9pzIpRg15XYvPR8QYEtBkGVg6yGgKrAaOyN5R790roVRUhVEEb92cG3e0qAZPLYigDXIeutGgdKapmlxpkHVzsl42hMgc5yIdLGfM4GgjipJzLQGngCZDE0CoZbtBRxV8iIya8K0PB4nrqADabXxkP9A/v0Ev1SOjsEg8oxzbir4OQAgOvNWrswQYzd+HkKWsZtSWq0c/fT/plxzWsb3neK3RB3U1A6F+WDRpgFXeJ4z+eF5zZpfE3nTdgVqsv2HtYWR5VEDxyDg1e6oYm+LaYu4fLwRQAdx7ABVQDQeWwGpfBqjAFCoanc33qMhNBxzQ1AEOUG+IlSkoAEjHpww6NtdSdZ0NITvNDWHx/rNzzTe8ZRgf5bC5yhS/7qVskfZOsufE1byDuQTYvC0ACL5UBUUCtQra24p+qThenCW2uCOd9QUC2PWxax3tbTUfhOkkpdg8zEy6BCiYseisnXVJIKaXsKuew8owANNkVMc64RryihDxudth92S6TMcAe0qzc405662PyCWBM5Yyfr/h9R8VbL9ZsX+3Wonc2wC3TN/nsH3ltodzLdf7iMDxz9mgZVQvG6IOAgZAIL5HpzKLkU40UYYHgGznex8VaRgRb80i7PGsPvaX3keeMr1EGtXMlfb3UxE7I8rIN9bjGIb7cZjT5PnqwjkTrBAPMlUZbchMB36ecybrRwBj3OmAk4IPJMffx/04hlPM6DX7Od8nv2Nrw/EGzEa733G+9DhsPi0JaCaowCg5nxX7liC51Pb4IoPhwc9zn84pJQfHQoGWIqt0zHlOhAP3BMRa5n1G9t32kvs+zpiuYBl3a1NiApCh4O8RbAO+u1d+0AOIVJzWIphlfYDRPiQQQvv0fjybbd/jGZPAhgnYcAeS43yqDCLUSeC7Spp7fJdnqSZHqlQBpOh6Apc47iX1V/5dlGlkP/UxzxfP/adGR452c6z5Tuk9AjytBariugszGGkBxQJV16zI4pJnJ56lelVt7XqwbiqLSN8p7bPni5Ug4h0ymJB+lp8+OdVngAKYQIUQEc19sM7n8oOTzr13Yvic9pRzG07XSHUx0fIA1ttjHyDN9Yc+IvMxQIsnYAPfg/vAL1y/F4CCFiuVJrfm6HOJaBrLAWbnm0Ybc7/bVsIoDaMJjBi6gU3j1r1AORTVF1a9+wSpZQjOJYd7gBD/L3NvsiU5sisJCqCkmbtHZN7hDae6elj0//9Mf0HXonrRXW/IvBnhbmakKnoBCBSkW+S9tUueE5kR7mYkdQYEAgFm/mq89/7zetiTLQw63cNwKOwKmDvJnusaTAhOxN2Nr+W7i39tP1+w/g1Ohz4cMm44oHe0OwoirlOQBYgFCGTU/BK1qHsWIpn59Yv4vjZcRRoSZf0EEQGZztfy3jP6TpV+U8nSl8b80EpJTcMj3qO7oa5BQyWLgVcKGyqc9iyXdOqqUjqCqeIq124YLx8haBn9YuI2KkXdvGyWG16VkSEfG3RtSaXHeklHfI2UCw3WQv/pmsboCHq0izmGA865E84lq03QmO0vITB4d4Brf3HhR9ld82GsPq91B66/DReB5PxcjotehmH9bXMqcDhYPUoU+roxd7BNZ1qQ+thtbw4AtAAi1u/eN5724gKVh8No0SjDqlGe0iNj7T7QPgb2F0+HWW7DwYug9ettSyPTzBH+5b3PfjFk1ZblVlJP6PTvw/U01hXUILXVIypLpA2ASs9lboxFD9FOH0Sf27INtD0OKpmspDxrmZdu8GoQwbwA4MJzw3PF0S1pxbIP4O3ic4JOU41mxPPT+aQwpUVKwdKyzFqunStL2fk9c+0WmqE8tgka2AlAy7m4pLOTRqVZirDlPkRgYxjw/WMadecrHHK5Pw7ts3WBbA6UGNOKImVljkGshaCRMx3CVCEXLy2pj33qUXC/pZN924GXBfa6YH9pGFcJsG8yxz7pBjRNIMH3GncuaBTaoikE6OPvgGQb8LG6ttQ4YKScexFZBO27g7/aNMGi8XYJZhqdDICMGCvpUDBLwES4lwYrQs3ms4L1069+drDKSgIcw7yKATCZA3RMGxLg8L4JdgGp9zEP+pcVW8x16r0oUx1U0UtlFwdN4QLITJGIudBuXs4550say0iWjKv2I9+TgGx/83O1si5A4L+XM2kY9L5l+gHTNdpt0lId/J+Af66L0zox0te33efiXgy97v2eqULB0hCWDA7Hw2hsA5mLSjBhpq5JAjy15HJduwfdo7K+XJA27KDYExgMUAYhihbEdPRLNDgcWBsjymO2o4Ff+4kG9GNLdX8r7Kh0CM9pEOy7ykrg/fJnxWm04XR6Gv1AAiI5BqkLYN6OSn+nIyMnlfOwUbDtszqBGbCVNC72C+fBEgGBx1ZYOcWprQyIapsBwYgrcy32dXfISxSzfE/YnoEZCR6lv/hsphN9cpwFkBIJ59lTn3MGf8TTtY4VBT7v8wcGWz+BHqJzP1Gdnw1Hyzqe9xmvKKk8HxZ7stXn0JFc5pifgZOgtqdTlKKe4WwRvK7zCgBLGZKFMTUDZj8RNMyxslmpxffjPsdZCtNpBJPOAjwwOe45ecZLWQNljtRoOIEl7g2fnFQ5tul8DRc4FAk2FE6lOHukIRgNFt5X55jXOZAsEZnvaaUCRfS18NkVWKh9DCA1EcZsm+x7shuzfQBSO+XcdgAJHJCFlW0fuW94xD/mUrQ7tQ3q59lezpnzvA09i3xKgG2f9i6c9t+6z+feVe5NZukzcOQ85uVdpAomsk8IxPH7z0Cnev0OmPCPAAm8/hCAAtRVodvWWTQwHUxGHKoCPlYFVp2iQYopSMdDpJtTERc3cGTAO57U1XBClohsA0gdAQr08XJKs2VOuvbpiO+vEXl6uOElcLDAqzPIYXKTAaGdxpMDIRRhc4VpQ39d0V+9dnTjYgjDS3Qe1qw4kZRP9gcwGRfmtLXRAkp5MjFHlCaEBT1fnBniKQqWBpx0QytRhczr10D51Pv5k1MT4wgKf9Hgiw1pXBqoYp6U0BHjsACmy2GfS6GnGMexKvoaqQH7LKU2FvXuSMMaGaGQLYw+LuLI95LVDdOsQtANyz4OEbURUT105nkDsnk1kEyX6YbRdLI/OF5AjIVlH7LcpZrnQrloorevfYxZH56Hd+3XbpB7h+1uBPWrpp4EgGQmyGM4q2BhygzQry6q2O4+fwmE6T4g1JwoF3O1xyLoV5/bbTO0u7lavCyeZ8pz8OLRfhcTBcR44Mb6k6l9kdFjQ1ZcyKuPQ9oEP1+BvizbWBzjVMgXrgNfJ2NVtEqDCyfT1NNI3Dlno2ngA52R8nt3Yww+L+S2Zx12WVvYQUdDifcAkJFspkpk/5bKLMx79vrnPFAxAUSmSYVzcDhISWFbl+xXtGAJUaw12B+fImO8xgBu93monvcNUvhCXyH1FxiR6ebq8ZjOxiG3mBEOGr/dPG2IBu/eXc1Z4oAdcJZHhzt8zMe/CrY3DTBs9ruEcGumB53bJ1Lo2ZIsgxRQjfNEbw6KpGhkaOaQjQM4O6cJsPzCeeuOHfYOvKyf+zee7UyA0F/pA/h2DyM2+hEtHWIH2RUUBiVI0S9ehUShkEdU1eFjMt1Ccu9g6cgUhqVwZzDMrDlYsb/53JRhWG7qWr4BgI5Lm+ltm9P9TVumEBEobIj7cw3VrJ00UEesvxYgW0tm4gTbR6bf1VQTRpfl3oEVcz0RQBhIxuNBKZ6OSr00jOPN5hysFFg6YQGCuwI69zY6Acd+hwWrg8yocobxPT+JcNGQVc6To/OJ3VOBmG7FahNCYIj5+jRae9kX9Hgv6aGpQrvhDGzEPJ2idvFu1C7Id5WjYT4G0OVwrlbH1h/BfrYEE9C7R5xbw6fIZXUKcg8pTsiYRvPBaRluJ8q++wRcJ4sBEuKhSyvAgeT8SAe8tpUOc9GNYLv4eTlFCtOWPdCQP+9HOSfJJjmBSYe0hvpv7tEi05muP88XKX3OUof83JPzKkFqph+wz7XMp/qdAORqVYIcN7JG6rPOUe/qwAI4RNPV0/OM4oqt6Ge0FimFMlN7CuCeDu456AZEdN8APblCZAvx79Up7uXsqHuLiDON2M91TTA971BLPcaiyWlscPysmbN59DjvZ9eL6yZUgO48Pr07cLgs4QhHhYtw+A/lC3XaF1bvx71XTnPFKDpYQAKKpdKpLikhGFbAw/nMg54By1zWfP6zE5zPguNpo7DogM9AQP1O34+A5TmtKBgmDsDgAEwc7n125HNdl730BLw8fT8CoRU4rde5qkXdF+p17qs6V+rardfvgAn/s9cfAlCQfWD59WMaFUTxRaBVeAbuiNjukUHdnNq/fNsiL/NIP5N9wIZChx7pu2FYiwF41EH1/+Tiij2e0Q5HzQRobkyauNig54UOQJDOIcvcweDCiAD62wqKILqRKrP8VzhvnjO/4/ofPsjbX15TyZ7f218a2n1g+XZL+m8eiJE2QME32bqXFuwz4jJe2qTlPgYuvzr1fqxuKNtFZwQ+gAh9jNz0bFWM5mJ66JZlxMbL6hGqL9ejcQQkaEC6Kx2qShV2RXFLqrOpU9VFDT0E2yhMtv5tzzaPGI92w2SPCFJ0kmkbDspYHtKZQwzNBa/3HXh0qAjGWxGOiz2yr4rt58X77u5sDNkRAonw6HcwTUz938t7j9KL3r6Xf3fhH1s0Uw5sAWwD1u/uoLMc40K2BdNMwhmkcqtXQWkYa/OSZKf9oodwZrt3YAdUpsYARNAvASws4qlDCSbsuZ4s1kwa+N3zdHV3IMHTZhTX/9zn8wN4GBcX5WO+uzM4gPbh0RbmyVsYA1nXeI9DKA4iWxu2ryt0NyzvOx5/uWB/UbSH6zXoPcrV8T1pixgP7BBkjRRRmOuM6D6Ae3e2gvj3mSZlq5evZOWQ9ZvTiHN+rgqsLhDZvgPy7ikWh9rDJ5VrCzBA4HuLCVwIkIBijWCMEe8bzAIxj3CbzVxUOsYUbgI8khUUfvl4fDrIkhEWfZyOCbe9Td3IermmE2P7PqNnImHgRO74skSZsXgOS1sGoGCv12QzZEQzROrSaYvIh0TqCd/fmmSZUBuuj9D/+gXjpWH72tBuhsuvj1nytzqhFEFlikCkZBycHHFnSPuA3pszCi7NFzwdt2XB9pNTzPeXuXeQDff+LwrdG/a3huW94/Kf9xAl3X0u91neUbYBVtdxwcQ5H21dHDwJkKcyJthfGhFyvXuZQY19dTDdoMde0c1BjW5YxsC4rhhva6aQ9bcVFClORyfEe2U3rN8Hbn/x/m8fDY3UcJGDuK1rFVB8LBzua8P+1UU225c1P9u+b5M5to8QE6YBBJi6OKQtkpVAJESKhU6zBZPDbKZ9hINf05jkVuj1IrCXFVkSMsC1BIkXzX0VTWEv1wkw9KDqF+BMugFkAmz7pDBv7MdKk+5ZhhLLjDpK7/n9dBoDlOtfLlmuFvuAvt8mMMB3TyfT56h8POac5rvv/UiHrhT+dXHNKgCMxmOMyT5gm8LIlb0do/QH8CAcT9VkS7GaxkEroLteUmqxiOTefIB4qoK/BQ37evWfnyP4AOR68b/se5yrS/5eLuuRds7/14hin/NEuiQrwN5ect/yuW9zTo3Yw9XvYS+XKHnZ3arWsh/HuGR51VGAlrNDUp18jiXHbY3xooYF+7/chw5zltAMp/cQaSeock6DMEtavgUwJdQ14zsuOlNTcrh6/H6dP6ODSUeIJfJqBJfjfKC4F0ceY36mdy8ZyhTEA0CxHPusgjz132w/mQ5mwf7QIxOD+gPsj0hhxbYB5vMl2S5MBaSTt+9zLYwStee9SsRf9u6vXh1RVkGp7BsRHwcyAZLBUUC2pkBb/ZyuoAyj1edUnWcXK2U8CqMwQIe8mDLA8cg0pPLOVbtOBYLQc7PfKVPKa4zYB0Y68UJdi7rmOXdZVtFiXVathx9pxQwHpawAZtDYZwh47LunXYlCxI4Vrc4MIaa3lPl5YIoQoDiv2bPuAgM3B1At9gyuD6AAprHmK4B5Bg2eAQjlEu7BAJ6mZ5R34Lv/XqWHPwSgkHmGb20ayIffY6L7AxCxyN10J1vve6Y0AHBjeCAGcZbnmihgfK6ijua51LVsoEdyQhRQXdkeJsEMIuBB1kF8hvuFMu/aMhr76YpTlEr+UgZNHwjVeE1jWWW+F2S2r17M75/CYQDzV1MhP+ipCEFH3QyuuzDfK/uiAKVynkcDGd3KSwUjgBQAE60nUETgjhsyhRUtnpvpE3CnV8W1Li6aEcEDmlr7kmPKRRXt+NGVFRTEI366AbDIxwOAsRxybrN9DZBFILtkBG6EGnqyWxi5KZFuzrH2iFSHt6IjwNvv0REwaNC4UxhSSvQl2mjxHIJBaejzsTxQDM6e2eFRXwDtIQAUnQUELMa0j+ncRl9MdXPvf4IJ7X33FItVJ3CzeOqQRdoMwYTUtqhtLpsjgTUJejWdcQrXeeoS89vja96E7IuprO7t9dBq7O/RHn3we5LjgtBwmP0wwMFLnc/YR7J/w1+tteZTRKcYMilOOOAdrA1WI7dKBtQ4Tgdu5Gejs/zeGBUpYyTWjhGuepk52V+CvaGWedpTbC4cgdBFgByd/rxGURcu45jK/YxeNBfxzHk7MPfnmq+LOd+tAByHqIs44ElgSrfh4BSW2NdO7S17igQDQej4keEyzNkmm0H2BbJ4xZ58fHNGTr8EM4dDsQfT50Xc7vwpxvE3nedVN4iUeTNGOOD4rO/SxPPp0WNfmmtFYp/KMQxtEOkR/a5yEsNm6koYsvlvVn0I47++A/fBWTa15Z6W7A3DZMhxn2vIz+R9chwU1LLRm6N81tSBxHY2qCL9TiVFcTOVw2zOT86b/E7M+wBTUD9zjizxeSI+9+noYaYzMNUgS3jWKyJ00jHnLm2KjDgVSjA1ASwigTQKmZYwSnlGnSwiU3FdieoEF0fJ+5/7kKVGCCPV+e5yWkeo74l5n9MaS1Ak/p3CpU+ubAOfwT8c19Nl9fd5kxKNrveO8y3zs1P7YBy/S8e7MljYlnQ8bQI6z35eBAVh5iDUKHso+6juyfa8jfnsp/8+9VH93e85fHp6Z/bvs2jpk30//6rlHih7AP+QBSCndtV21giozbPy/Mynudd1fKJPn3398/uPw3NT/6C0L3Uyar+cAYXzVc7UdJYoZEdHkW2popIBkhEIYYWJp+vufI4Dvi90SZvdAa3YU87MwWdjzUcMy4CPnxOFDZDv4L7C71Lfyeip65Dje74nx2PonDO0uz85ppLaKCnOmWMy5nN437pnjwCVzqkTkOP8fLJ/HAI79Z3OEXmCCbyPPvHXzoKMNdXDgkVJZtVn2YO/e/0jaQWfyjb+iIFBlv758z96Jvv6rNfw7Oz8O+/6xwAUeod8/wB+fgWrOgBIOjsWPR7ENqMUZ4MsJwJps+qOXlUv9aj17tGu18Uj/5FWgd01Cj7VuwZS10GKH798d0Rs5vD3cH69kgNFqUyQ+a+kzrKUkjVB/3oF2QyT9u9sBj3lRbVbdyXvtWFcF/SXBe1jh25ero+Rd1OBva1grquF8066rKcEBGU0ulHvzrjoLxFxIrU6KYGef7587CdjVKZTd3B6dPYdMBXLOcZMPYixGavi/tcwdrtlGFgqAAAgAElEQVR5Sc5XQb+6kfr2PzqWB7D9vEA6QoBMPDWA9H6DR3buUeKNNG+DL/Z9QEOBefzlbT57UYisM9LVpzo9AIzLgvZueNktwY40+oe5DxHR6yxj+XBhxBFRN4/KeVv2V3eKlpsbqKQKA0gwYX9pU8dCgC5LRhUrPXt/a/j4q3/Wqz0gjQ6P6s9IpAbjQXcq/3tUiqXWbNGZ/v/95iUF1waYoL1HvnKkM7jOxgD2kewAvXcHE8L51Ci1hxTmFEj3mmX7a0uGjz6cKu4GdaS5DEBu7gSt3yZavv5tw/pd0N4jet0UiH7W3dM3+ktRhe8G2Rv0tkN//TYN+Jf1UC1FIsqq324ejbyt6H96cfZHCDa29weydN/aYF8uvm9dL553ey9VTtZlCoHFPLfXyyxzSaBpUYwvwVQIGrf0wrrid1uIkZYDbry++P7SByjChT2iliKwt5c5Fu8lksn36ga5Gezq+dT2FhohFN5qGrmt4yT6pe54UHQrUwjgQOz7MSJhQQfV22MaSAE+9J+vsV5Ke/eIrIWD4wJEHo2X3XD5Zff9ZLiooIo4U0h9/xsBCkjzaJF+eIQ8S9oV8buDOOagwCEwrgv2Lyve/7klSDAWHPY4fbg9ffsnAdBw+aVBr76HObNEfI6KwnQ6asyhJx2e5TUBBFgwEtwalwX2Es7uQDByJjtted/8TNwHxpuLXtp19SqAi5e2bH+7ezsJNqczhXRk+1VD3NX1aHRHALkK3dXZS/c9+82uHrneXz1yJSEE62vO191y6w4Q8AxnutOrRz9Z9tFUnEk1CiswNFCYWmBNPBoM4JBCEHuQnEAqj/YFK4WO8bZDRuxPrayF4mQB4Wi3AGxerzEn+9HBj9ztKnSX6Q3CSCUFh3Vqn0R+PteE7B3jsvp+wtchC4LR00wFqosq5ivLygXdO/ccggy8aEz34ft6rC3XeYj0KY33ClFXggmZL27+e3u7+rhYiWjWd+Uai2el07Qsbm7UyOawGSGsNOfl5DgAwLLMiC3bCTjjghFIjuc52neI3sae9dgczI0xlW/vHvkkIExtjR+lLIyRpT4PuekEL1JkNGyhplleNcUiuR4vmuOcAEJtfgWx+B7UDwAgl0tGWZPxUGyyrHyVTJFxiOpapEz4fXQ6zXsHYpzl9dXF56i/wz69T7FIVkxI56POwdw72+HzzFe3On5VOwGABEtjVvaItDDOL8DHoI8jW+N8Uf+BIOjecaDs0zEmuBR/N/6+CooC87s45coPZ8Vh70fWR+wB0A55zLMoGXt05iroen7mmP+2IVnJSioYaAQsNYICj5kew64gA+CxIYUu6zgNm0N1Bkr6jgOjCMixsmRyRJT/R8DbmP2bIA6QzmxG4CuTgH3OuWuz31LQlfvGE2FDAKViyQQrUo/ALNJrPjvk+fx1gW3BlOHnu7+31HFjX/0IAEAAHvue+/cPgdhhbgMw/ae0o5aRTJCOexb3BF7JDDwH7+34+wTVTmDKD64/BqBgyMnkdZ/D+ODmZ+7Af4qQ83qGwsfPU0ClMSIXxg5L2sV3/OCmcWluW6gbUtWppgPpNdOB9TdMJ4B6D0PSaHORnnidyH81kD4awESLiNswaGyG/G5ubKeDxYXp2jRsmUJQjKPMlwU88lWNLHYZN1Xxv3ukkuUPMRkXNfIXzi5VgseFzp+5AVByvhFh3FpiEUCK8eX4h2Pl/R59vwi2V8H2VbLutqulDyw3TMO440DZrnPCSz5aCldl9I6Ro30Aq5cky1xmGj4Gj3jRu46+00fPKDzvJyawYUV9PH63S4IPh7KdKmA5Sggiv9ijoBBPR5HOcTzyLLKkI5kcpa0pWjb876MVQxeRGvIYU9gMQNt4wwCxaKCtzQ+nT30yZulEg1PfSl9z7Gfq0HQYMMwjxS0YC6SBEvAhWk+nuZSw8sovTI0BwGoMNEQx5xRLm87yrg58SBqGMQcWp9E7TXE+354Zc/B5UBlUphSo4w8KfRTlZ8y5LZeLmoofJH32fVaQGZgbPI0jc5ZLlsIEEijM6hNPLp/zmBE+CqypTv2HnWiWzu/wakE9JHiQ/XNUEPd3lWmAcO/iH2AeitF/qJo1bLvMexyaZM4G42fpNDngNllAh4gVRWIRY0eF9QRG4p35/Ei9QYDbqRnC/qejkXtCNGvhvlbmZTd30Jjywzz/QYCzH4Hw0s6DoryePlMjRTwrx0hBJ2e8DQhk9h/byb1aSz9zD+H+JdEOi72jebpXAzD6MsHjiwZoGwY6xSox93GPlkeJxGrkyGQtJdOIqV1kJUnQrYPpYSjnS6wRVjupZVLTGSwO+2Ey9RE52YBwAJ9FEUUiFcRNJa334bgM3+PTWQvmIEtZ5njyO9wjfnBxLh8im7mHaFln5X2r4QpMB7Ve3OPqwnpm6JpN0KT+jH+Y/9ztyLKoYMyYQqJ8P+6pIjWSWpyRYTiACQA+R8mfrIVT2w+0XzoqpxzpjCoywso9ib87zYWck3xe7h1P3uVZvz/7/YgzQY9RYTEp4OyMhJ5z+dPxeLYv1PY/c6hLvx2o1Olol/uqIsOuZ1Dl9+5/eNScB9nH5fnPFPPpWB6i7vxZZQoMO5zd2d8pJxLPksk4op2SUdyzmGGZ04foNfD5s6fvpSYCgT1G55+xPjinamWRuqZ/by79Ixft/+pQlvPX7ym+DhCgCt/z7FwCn/ebw7N+0D8qgHkq+e9FzD+/eomwlz3qqPlw1BY4vEuCRU+eSY2Gk311AL7O1zOGzln3I5kVT555ZjnU6xnL6Nm/gbl3Pb2PHf9eQaEfPfcHqSHnCij/yPXHABQANxTfH4HuCJLeGAd41nGnER0HfW5qZjMvd2cuJCPd3aM1i6ZaNfP+9dGg9x36/ggnsYEibYyemnjkTD82jFe/z/u/eHm/yy9O9U5mwT4gKm6j0WiM9sm2ZxuoQG+rYqhErrth7A169whUqjlrOGRxQI9VgQYvm2beTyOEKulganeRrbH4QtY+gNBVWG690FO9hJ8FY6K/OI03nbi7Hxjb2+Jik5vnvcs+sP/lxd+7uyO9fPOIR7+2NJjbu9c23yJdYf0thL0oXoMQuYuSZbI2mFzRL8D2Jnj8LHj8yaDd00neVbDcGr7+Px3LY6C9bxivC/pVM72EDhZVsBnRTyVzjsUY0PcN46vg9tcrlveB19/uWfe83fZUn6fxKN2rH9jq2gC52Fo4rfeiiWEGdHMthsvUBxkro3ED+4tifxHo7k7V4ycBBPj634N2rBQx9ENTMB2N/hLlTW/dWQgfo1S58Nfqr+449VeP3veLYP0uWDmvRLB86wlE6NYhtx32umL/srqv83JxvQCVKKlnaN8fk+pPHY+tT+V8wFNpAPSXJfUvNMoZ7m8tQSvd4CX2zGbKwgDGVX1+r80ZFd/vnuP+ZQX1EXpUtiDoqBSffGlo24DcXWgU3aDfPBfZKdU9tQZkUfS3S4J3sih0XGHNq34YS6WGKNy4+l40muc5t1D0r1HQPMQDIEywNCKVY22zskXoVSzv99wrzs6NvPc0lgQtoohFSNDg/c/IoNnMHd6m8SWhI2O6esR3dZVgeQzg4+6HeOTYpuAio5yvL5kTzfxrRoQzJxgAXi4ZTQbo7IuLuTGCHHsPK0Esv86KErYusJfF+6gxaj3btfx6j7KRS95HAjTkvtbuI9aai7W279G3lxX9i4+1fmyg3oADE54DLo/NmQOLj9NYFfsXwAV5Be3DoBscZFA6zjFOw/cAOgH6fgdUsP3rV/RIX+M+ijugZlkJxnVORqbgyG2DvV3R35YnDrfFXoCc/3mUkv66+Zpqd8RcXmMOjzQ0uIfxnstHR7+6dsgg9V9ZEnYJmYDLnJcjGHvN+36/Su4lI8QgR/dzSbaRZ1rO80i/8ehcgH4sGasK8P169z4OvRgAaN/v/tnbY96PEb51gS0N46cXv+/7vQALAS4hDKb7EYTwhkXbQ/ugf1l9f789EnRKqjJz0h+b783vt3ScM7qPmCdXZ/QkuMhoqkqyglqwkg7CqWTQEBDb9jjrTg4lkMJ01EMgmGKX1dfW1Zla8nH3dbth7hmxNmXv3oerl+VLKraZ55Lv+xGYT2euGNoBvsnSpuPcpjK+AFEJgM4inl+kTMe4pCMa+dvy+uq/ezww8/bjvGV72skR6t0jfFVkuoo6VruSrJTeQ5BSc75wrwSdnGqAkx0QgoEzFTPOhaG+rzYFRSwRtqdUAKb2u0jmqNveIdRr4FWZCWPMM+6QU8A93dlzUrRx5OU6o+LRLgyDXNYo51i0dH4kEolw7liiUWUy25L5UqqXdTqx0V5+ljnlY3hUHzjqUpyeiZdr9JlvyBLME/Tu+hOX9RPD46mDO/pxrK7XCUTsuwcy6rsDhz4zinMyurvv/hw6uXTinkWhN7IYLvP5ZV2CoA9FD6sQY83NZ7+scebuO4DS1jMwoO54J7O1l8h/vbao/LU8cR3ZB0yJq/tSCwM55k72e01Hr071GMC6+NlSx5iAuZ3aewbVqiNdne9cb+U+dd5WDQacQA22ifPdxhFkpN4DMFNhmCbKKP8zUKGCJud5wfZmqtcRBJy3sB+DBj+4Ekj89D50HuDrt6TJeFWmHwNqfwxAQcWpX2sRd+pBQ+GGGtchqvQj5KRQnWjAuzOOKLMlMJYsXAR4FPS0gsl2/L/f251EDfSzv3gevN7gh3/5qBscNh0sicP3sUOxYAQKaCrY3yIqGGiabsyFDAdNkA4po/u1ykOqdgfAgAEHHaLEl6lHl7A7ZfjAEIAbeRqaM6kcXfefJhiKAALiZ7HhjavAIv3AUzvivSLCl7nziiy99+yi476+D4ylYfsq6K9AfwEGo+67ONNLUJwk89KK3ZIGXI3vVP7eJmWTmxjFvtrdjXyLnNx0WNaWUUlbHCnXMUt2TacOM8IOJJggZcNhmguZKWNx47s9kHNZRvx+EQyEMJdgVkMIw1z2ke/rJVQB7QhtA24+QI8yjSPnjkxabgWjDB5BXZsHMBcHipKmSYp+UFMHlgmqxNWYhqRhhFAE9KJJ72YEVHfzgAvnRxNYl0REhU4On60GDH8/U4lKHsUxbQI08ZJ25o6dbA7s2CaHsZn00nUKXEW/SPf1yBQkVnfJeWQ02AU6xlSVBg4HFZ/Dg8CulzT0PEe9Z1DcFvUKB52HIG8gBwN4HrptOjMEFABQ4IwCcge6JPszD/KI0Ko7myANE5gHfNBuM4+4/Mk1oTrps3zWtkN6MbBe/N5ZuYLOG9XyuV7Yh7G369ZhNLSLwZBpIOuRyZYlRanAH3vauDTYn14dLOsTtLJI+cLmCthFUyxFCzmOy3dgXIB+5X6LfCY3/XkmLGik6V9JZYWzl2JtzGoIAdIBKaKY5eH6ALYF+ojyswBqdQV/aJknYQweKgyV8zIdeZHJyFuD/jpGiHI7eIsNrhEBRLlcpMhlsrCATGUYq6cWplaGzX7Ji3oMkTqk91hTIYbo/enzQmJPzCBBtE82F8z1eVrmDTDZJxlRlKnvw/2aBhEdFc7HYmDX6h+cm/roBwYVy7CeQYj8bl1vBcA5CK+GEVqd73k+Ya6V8YM9Rcvn4x6zNKAl4HAoyTyGAwjVEC7nIdubpeRYAaGABxlNJovhUEpOD/MuNS82F6uTnfNR5zNyn/ocAZyU+TCkaftXZzbGXMZIthxzxtEkBfeOlSU4b8bxucOyGtVhDK30AffWAjwc0j+XuaZyHo3oJ74/9zTSvPlvBszIHvJBm22tF4HepkD1g4a5U8yxOc3RyS6NcVjL3s85VT5Pppb37zPamP/7kGJwdm7oLFH0kWCNyNFpNZvATn0O5+tBgO4EBJIRwDnN4CDvU1Oh2M8EILO9WiYZjnNDotJESVsDtXbOgORwXR5qp6QWwYjz7RwZPr0X75HjePpcvHy+14FFUMoIHrZglaDky/Fds3mn+5y/C8z5m2KT4xgJF52ijFJ/7vb/D/P6Ofcr5f8APJfPAcXmOqZH5M/rPsD7plbAQE2RONz35NzbM/ZB1XSwozbOj9grErbSwRk/O+Y/YJ9YXZv/M7+v8/p3mAoHnZNkqwAHtsr5WT+4/iCAQoN9eYVd10lpLsJwZuZ5/sATumOfqscDvqnsnkRugNPZX5Z0QLOk3nDDsq/qEUkOeKXCGmY+fRgTMlwQcn0f6FfB9tXF8C4BBBxKBokbOePKSS/Qm0eeIOIMhW5AA+4Rmda9hZG5TC2FABbokI7mtPV22zGuLUqHATpGGllOOfQa7bAQi1SBNPN0DQ3j1LwvdPPIs6mLmwHhlIXzZQvQowxiOqXxuf3FnTjdXDW/3Xb0l8UrXiwCWLz3Khh/XqEPj4TxotigBYvh8suG/UVx/4uhvxr6FxevQRe0hwMK6TyEKv/6W8/+6VdHgpdvs460jOF5q2fRmzEyP5/K/tY0KhR4ZLBFJRCmpVg42zCLEnLqkffhaSzCSHccYgRm+jUqcARI0C8C7V4phPRg3QBTj36qOtjAvmO6Tbs7oNCCKbF9neUB272jfWxgFQ3A7zcWmZHUcIKqAJ5F+8Rct4HlHqGC0Vx00UTQeEBfvKrE9rXF+xjaxzbrtIuhba6r0F8U7WOg3afV094Nuiq25mtzhAaJBVgiw0u+WlP0lyUAtAG7KPpF0b5v0Bsj6B5BHE3RXxv04Swc/dhdK6M4GDTi7LK6kw94HwiihJ/3x+PPFywfHevfHhAdQKj+A5hlPGkUpTYK6dnz97LtsMvqkVIe8luHxvw39XmmOqbzU+0MrsWPkQ6DmblzJphClAJ3DrtBP+4zL5oAAIEPos3FGLNrVIRgVP3bzQ3RiJZ4lOaSFRpy3Ug4pBtgt7sbQ8sCsfje3gFGibv5vpdGt2a++AG4TAcXkL5Du/n+nYe5O9wCQIsORYIrFAcUd3b10bH9fMHjJy8t2e7OmEKsdYivf1ub90Osse3nC0zh2iPd8PofAx9/VTz+BGyLwRqwvPu+agsgO3D9xR3u/UtLlhIrnDAVjmlzWd1mbWjfH75uCCRsO6gILiKzgumiWR5QGZXXKeRHcEU/ttQ3QDzrUBqSjrbILHMLzHsD/v+Luk5N7AVtcyCD7DkAockAWDD3xrUlwJpCugF2E8juLw3tMXB5uDOlLL2oQH9dYRBoOIF6j4oOqv6s0HeoIsYzPSk0UdbmpVwDvE8QQBW4BHNj787AqXnJ++7zV9ZIUyvg1vs2UxaWNm2Esl7Tcb14NScLtXQXTFSImoMnxXn0NRDGdlY9mY54nlc1j7iUFUz2gdhc4wWIELMJZg7Ldn/SAyDDKCLI9nj4nGBkzcwjrfF84z4XBrQAmQ5FsD2d6s3ZEJkqRe2V3ddx1SvI9cyfnYAPKZ8hkyCZGN0ZWnYvTVsWj2rf7tNBo3MnBdBUmSCFktla+p5ACiPry/UoHl5Bh8WDYwl8BpggoduUANDSDhVnbGkOQPLdCT6RQXIGBuIeRtCnRngZFe/U3DhWQpCBmVp6Xed8oLgewZDLEVjNn9eLwMUjqlfRoc+JgZyP+YwoDWg4zUOjEy1HZ46VIB6P+GgATJwTCWKMI2vAJkNAak48K2bE/bKag8oR0AeQeeQs/1mcKgcrChiXvxge4eU6YKQXwUaqc7s6ktQBiT41sn+iDz71eTjwrOph56oMOQ4noOTwrjZBAQKCLENJZ/IElhBZmFFuf4ZrJrTogjHXXKbS9MlKYNsrGFBAhafO6wm4Sb0EvhdFNLU4/aWPU6ugXqd19QnEOn//GauCKXqYc/PpFUDqJ9aDnvr59JkzwFrTlD5Vfyi/r894CjzEuB9AhRafHTpBhVH3uuegCfCHARQkKdOuLM4c/lk1wemABox9lreKOvBMXzDm98YhM96uiTanMjUHJhzpFgJqGdWOZxnBBAQoYOGwwzf69VvHcpvAw/Z1cfGpoC8yTx7ANOjKRmfhLHmEG1jfzY1g1n9d1Wmvw53hnAJNoFpQ5hC9QoADnssqQcuC084HZvQ9wIR6ZbWDVcCSgEeqhUHvvk8QZDAFGp0iCYp0GMvePjfMB9XVm/dru1tUnDgulrGol0QDgD48/eD/a+gvLl7olFqPFC4f/F44ottA6w4sjYuihcAeYowRm0Aa6gUFldvDjfD7BWR7GEtoXtwY37566kuWSrztDl6sITK4elthgrGuaLeBS6TQYG3Yv67YX1uADiMPrfaw7E/p3s+XAErW785A0H1gmBs+OhycsEXQmx+IYxFsbwrdgXZzh6G/LJnCAkNUjkCmGJjCo4l1YxFE2kjMwQbImOkZ4+JGYrvPDdcdNkunY6zNgTneNtqm91m9Idk28f12Ox5yYp4iYi3Sk2K9JRPnMbBSPLI1T7cIRpM+uleavIfTo8C4rpMy2i3KK808TIocyvD9hWlFl1+3rDbhEXqbLItHMDECZ4BqOimk21H4j2kFyeSwcNhkQH+7+dx/ucz1MIYb9NeL711cK4sflLZKyaP2jvSUC0snyr68Hg+7MFadBlzQ5mDXSGXS8B0A2E9fDuwDiShjfp807d5nZGUMYL24E61zj8MCDH1xscnb3dfnPjy9DfD+4mG9SKbRmC+rOk2nc7H1mXaTH3DnbPuyQLeB5buPvXbEem54+bdtUuqjH1hthroB+hgJurbHwOXXjnY3vPwS5VAXYH9BaJ/4/L/8ZljfnS0lFuBIWWMm7lTLcOCPZX3lviWF/RxJS4csgJb+uvq8DrFdfczyc9bkSG0eANQ8JzvAH5+nI6NFBzAnDV0LcHIctXMGAO4PFUwzAzb181HivGQqnPi+MzCZDkrwtgXTo5uf5SYhKhxAVYC957EFilFfjbHh+76It88Q+iCwI5uAa+NHBusYwJAIThQjrHxfhq/JrEYSwQyY+fxGnIdNPT2IkV86hqp+TmZaiUD2fWo7BRBx+E4A4UKHlO/L9wPCqZ9Oa5aUBYC+p1NoazjanHe8F6n9OeZlX+C+vxTn1HQ6TYDfL0rbokUZOkb1x/C5l6JvT5wVluCjsBttrkqxruPI8RKZ66Y6RvWPhl10qm8vFJal0V3bz/uruvNS9Bgo+AngCC6AZxbfM4Chfa5V6rjwu3a9wK4tUu/cHmvvXg4dW6SXkAHH0oSt6IOoANCZi7+0CTDV9gMJosmzSHVhMXE8aqULWZaD/VTHbKZztGTUZXlFOoosOWk2HdxwuNMBTbZbzN0iqJ7Dck5PAY79W8ZdgoGR97ejEPhhrM9jb90FD80AlBTX+L4L4umxdF/9PjDBkOJuWaZ5KIA+34frPMAE7LszIoIh4l8eJ9BguBYM/31iKxzeeZgb/OdguAog00bx9j2JmJ+d0WyqeXDXRvZ3gglZ9SrWTTjeuY7oJH9+2rxiDpFF8VTgkaApcBiPsxN+/I4e97jyrKeAz+9dFPDkPYC0NQ8pGuWdPl3PgAaCmbUdBQjIcWin358u7/ff7eXjZxXIPLQzi+cH1x8CUHCaaosc4DDShLWiSTV2Q8sd9gW2FFT1sXkU4OvbdOSXdqzjbZiIP/x+0gEdezhpGuwEvtQ0Wlj2zMIYhBnWb3tWaxirYn+NKP2NiwegIndGhEPgz1TTcbVwQNaPEYKQ8figfKXSdzgi1osjKDPylH15bU5/D5BAuoMJ+hjY31rQ7MPZ5uYVvkk6ZnSsMI153YZvrGPSfZ123yMVoETflsliYMoF+5SVBM7jn20yN2aXW8frvzfsV8H+Kp72sAqWd6DdLfuoXxTNANx7AgHtY0/hxDn+YSzt+1SfpbEOQB+hmk6hS/XnjcXzgrUb2i0c5NsO+3LxnOjFnfQRi32EMOYlnUnF/tKwvyqu/7lD+3BWDJAUac4N3WeayYFdIWTGeN+MKMfoTryiX3xM28MNeteACBbKANABhTnF3iTH+ry1cKx0WNiKHEPJ9Ix6sbycBr3clfXlwNKR3Zz+3cma4XcBQzgtAR6mnuPr4kDU922ylODrRMMBc4V2SQBNtg4xgXzAGQAUzlzD0BwCsYh8FAEkUXXht0zP8Drz7f1xyK03jXQN5nfT8Vsa7DKNJTrtPo8IOulkRhlCvDUcj2FQsqK4x+0d9oqoRd/TeHPnOdbtQO71VPeXxwY0xXi7Qh8eFUz/MgxYissRTCHDB92O4oAisNeL//z+mHnEzabDMwKR78W4HKy4sWRaRuo8LIo2ALnBjaMhmeY0Li3m+OY4YLAuGHnK1IYALAGEs9k+AaSmIaIoCryHITwip79F/9+7V03ABFYgSGDW9UsQwIVh3QYuv/peS42V9/+yxt7g65dggt59foxSwjQZCbEm9dHTuZfbY4JRleZe50OIRPbXWblEH8NL3keFAweOFFPU0510E0vGUtt6ROocpPU+xQS/uef0SBcaelj7ed9R9lQzB5SGQMUFdLHqdKokAOUAetu9ZyqfxD2tw8EPsqJWheyYzETFEVk6bEQynd0xPIAiPtZ4nDctyfYdnKdqbAZgYNQvMJtsn0pfV3HnmP1N5y50SkBnPvWCMAV0S0oKNZLSoef+ZHP/ycgpP6M234V7rsz7eJCkTSCFjj2/f1lhlyXW/inaZnONPwVdqBKf951ONqJKgEfz5RCXwBie9w9k4Mfvx72jOCjF+XtqwFanNUVaw7HN9yugQnFoDznW/PxatDrSRtzycaIFmGGfmKVGQbYno6WxJ+Z6mVUHfMrR9vP5Mb5eMK7N2YZhP1Ko2IFZS4ZMaidQVyAdV53pFmazakfdO0WAfZvvVx3yeq8EFMZslwqgzdMr6CRaofR7R+EguMm+j/97FYkytsAEmMIBNYp+BjPwABpk38cBWKP2deyYMiGxRvfQfmC6EHZ8EgAd4WhXtoZoOvWS0c3yHQYnUBzWcVw3zLs/fMZGMhaAsPcJErGdFVyhSFeuyzPQ5xWQDs8E5pyrzItMvSjtIBA0DD9kMgCntXj6XDImOCf6ZLzEO2ZZxuzK8g7PnFVKy0MAACAASURBVHu+m2pWjHAgSY/ACv+t4nOA8zP3To5NsVWePZd/53zt/QA+iRTmDO9f2QQMvpxB07q3ntv5RDPh0PbWJsDKeXFmDeA0//J+R7Dhhykt5/4ADkGmQ8WI37n+EICCd5pAvnk5MVk8V8v6PAwB+GRpFGQq5c/WZUYrRYDFI3Tttzv6T1fsXxas37bIwS8DG4YQKy3QsNy/LElNT9p/vSIaal2iMoClCjgNdN0iOiFwob6IDEj+MTeu9g7cgXaXdJBTqX5Rd1TTWAqjJETm2r27Q/myZL1u/8yk/QJu7LIM11gtDXDtltR2a5IijwCdyYhaD2ct6GYOmMRlF0VfXJQSQIqLuVaFYH8RLABkBzQMu3Fx563dIvJg/rOhk5pLhf6X/+he/z1KR47VnfC2GZb3iOAHo6O/LB75u7kziW6wix8q+v3hztX9AVIezXxzylJRVAm/78C4QEbD8t1h349/uWSfWRP0N0dgl28bMBaMi9P6mR4hw7D//JKG6XLr0O7pER3UtBCMi3if3kfSiscaJUaDJkxQRDfqQdjUbLgPT33ZWpbMfPxpweOroj0cgFiin3sIHK7vDi61+8D9ryv2F8H1P7sDPUbAZI6xAgemwv5lyVxqN3oQDo6gBWPItGXbuV587rUs66fBoPF0HS/7B8BFECXAhfj+uDZPnbiql4ostMv2HvRuVklhxQQLkdc+MN6usFXRv168faQvlz9TcNFF+PB2cbHWoOm7Q+pCqgO+2RJYEIopajmkJZx/9bbovbvmROwPwlSMoiCPDZBmsEGAg2WE/HB2pk+s9d3BgyxFB4SIWkP/sgJLRIzzIDVALAEOWy9+vgcYYCtmn/BAYfRZwwsuRp1HXd0YJi0zqbG3hwvTXZxpsvx6i9z5oOVfL97mEKXkPuD7Q/xcptNNOry1EEn8y5uL5H67+Uk3AqB5GK7BPOhvS+TpewS23ScV//Yvr3F/3z/q2LRbT+A6RS6izRTvbQEAtdvVwYVFQC0LpsPUkq5jVXz7r6szjz4M67cQ8nwEa+rstJ1o3h719XKq3//Lii0EIi/fDF//eziUAgT3Be23W6RahfBnCUdZE+AyI20sMzzF9GSWZn7AU/LE+25/a2h3cZaJUpl9CRBpOpi6D+C2e9+oRbqVYo99rH3foGaw5vvFuCzOtIi+E1UHNoI5c45G5bM4Hwm4SUTxukEej6MzXsbRWvMykEyBG4H6tyk2meNHR78yHEawSnaCm9Mxs3UJ4T6ZEVsg5/AIoej2mwMP+j3efVHIfZ+ABB3/ehFoqDbRynS3EfsY2VNOBbfh4B7THXK97R0IdostDWLr3GtsphbY7e7GMVMsaERHX2JpsNfrBCvi+Sy/JlFK8GAIL9cZbScwmwDMZYo9sq11/Ajs8Pm9Z7oG6fCVGZAgQjXURV30zmw6H3T8xaPONQoodAAepRQhHZPqMIjAkTKbQAXHpM+5nXoXe8f4eoW9rnj/X17dZrrOto5V0N4WXAXOuLttwRgYmdLGANdBnLMAQbYuPtZjziuL1IRklalkilXOq+slwIeeAGJebAOZCgn8/B1nRUJwMVgOB9Bo9FxDcr3MsQUcYIg1xbEwhDPKdAT+/bTWD/0h6iBjnvvd20XQgU46nS85ukdGTSGd59ZhviW9P4CX8++5foAZzGG/jwUULTzQ8kUBjWpbNnUqnInU8DTdIvrM/1L8HaY18OI7lvKTDhotsy31Eo0ze8z3LA66A0HmwpIBhhzSbsgcAsp3/LyeOfzHvpXw76agpR3vPRyckDMTgO/F9CwgQYYs6Rhj9om5UNa0FMDqE6sg5uKntIMfAQS1vyqgyt89e4dnlwoyHaFeVfvgdJnJ4f1zHmr5e/qZT0Cdf/D6YwAKcWVptb02+IQKE/i0YsTQ4AwthSHwXM/bHWKXzKsVPAEHgDQGWUmBJbBIdXpaim0Mp5ICEJ3MgrEqWug/mBoEkg5JpYrCCvMCcONSJfULvO0BClhhFQCpau6HWAuqq2QJQsT/s1ylWdR0H959rBMeZRJ1Hxiin/qG5cISnTMHIByAcXFHNKDt04hmicTMz2N5ngqG2DQ+Z+QGMwIbz/JqBRrpAJKaA4x2O0BkMfaFrXEerzwU+0R9VUBUN3vcbLIumjgwAUD/vIJlwUwcONFtRN8ZgOEOuzh4ggBJSKOHAbqNFBSUAFfYPwS6cn7kAYSZQ59R2jm+/DcdfFM3QvpL+H8DGRFz+rb3l27OLBgN6KtHHzXuIftIJyONaVQRPk9pyNQc8fnhdG7ftES9TUZF+gAfPBrn63TAD3+P3A+0jzLnOWc5LzRo5hfBuCuUZSM5rxWeL17Hn47Y3oG3KzLqaQaMJXLa5+dlDHfIbPb7oTxkRI1MQvsECkE4n48NSS9mlMMsHdIsv0cbuRdnIcBUd37g38nIH/e8MPg4U8NItVGiN0EDtLjfTAUYR0OCrBNGsnssxyZOm6RxejLqvVRnmZ8svdgEkAas5Rm3hyveh8Frj20arxJ09prSVvYBakNAxB3DfTjTFGEMCmaJ3brGzR1Q3XeYiNsunM8EqKLt+1evYLAYAHhVnlwngsN+cDj0B8IAdMps+xvQmmC8rqH10SYTJ1hOFnv6/upzp22TpZMGRra/OAScGxz/uN/+Auyvvmb3DXM9ljZUx0J6ITkafMy0GA3mZ5TVOcL5Z9HeeOFkmjSJgJN38lFIDP6zqHYkIZYKxJrqMc97fLYO4rD8/kHQ9tklMvdG6NReehgkHEnpA/bSSntm2UnXZAihy3N/16gez6rsQzuOW0SOK6hAkcBZzrecR3WczCD33R36AGYOTlDtl8JoqL/P59ao6KBR7WebtWJ31HZUpz0N4XAeW/NoctFrQHVAK7uDmhJjuOhiec5TKrg+6dPa/9VBqxF3tjeudPTpfKay/WVutmMgKyjUiwwHwAHR01o/0INrFDIcYBvmlSPq3KctR+FB3o9gT9qq5Zxozs7a3pwJ2C8AxX/3XQDTZG9JYavxj2Egq0uU9zgIL9b3O0dG9TinPuVj55wq3+OY7E/AUEzH5CmzhPdlxB4DB6FKIBzd4ghjHL+rehwvgk7x80M+eH13OmIYx7USopPppEmZ53kPHuDTwUz9htJvh/v96OJ7igJqh0B/pkJwfels20H4uLanMgqSDVz7r/yckfx8F8FZ3DbnfgUuK5vjdwgMZrT5xsG5t2DFSbDPRapIqoPG6fOdHfczk+QTO6PMudrm7JOyF7Q2x/d3tAAyLeN8qYBBjPkznUyMtR0/f9jHi6DtM/DtGTvhR5dKjkOyCvX3gYBPoMcY+ASSnD93fubfYSn8MQAFs0kjhjhSvUUEh4g0876AcEw0D217deEYF8ByQ0PvTu2Ue8flP70UYH+7oH17uPMQzp2FHgMFpMYiEQ0O8btQ1dbNBZ4o3pUU6dBeWN47+qvi9s8rLn9Tp6yH00P2AFHs8XLxTaUP3P9yxbi6GBydNhkGDfo6bFZwoIBZu7nRPK4enfDfCaQBPVIe0jHSUL5/dXEw6DRw2IYsvbcFylycehd0nO+TJSarDbk6etyvng7h+beG5WOPyLdhe1vyvhbUXX0MyKND7z3yyucEtvBT2t2j5+2hE2wReLQshCkPyrXN84yTnk+DQzyXjrl3pGfJ1y+wtxfsf7q6s33bMq+conEv/xZCQMMivaUBb8GUublY2bh7/+id80IyKsXqG+6wB/3fANxoDPi9detY3sM4DhHEfnXBR33MQ9DHzVMpIJLR/u1nX87rN8Nys2Q1eEqFzL/Hels+/LBePnZIjJOpazDw2r8sGKskCJFgzjaCOSDpbO+X2SfUKGHJUtk8ot8WwTDg8fOCfhHc/iJY3xteVbB8RPlVOi0ECGPc9R6AzusS5TktWUljnbRifXTXOVBPeWAetkZe/vbzGu3wd3NH1AG39Zeb3+/FQQdbmwuMXmO+9lnWTt5vrnewFWrsuk4K7ALgjkjN8JzW9hHfralXwRBy3QUHQeyy5B4lBo+IJphUIqcWRu0AZH9AtmAsnJyY8eXqfRRz+/I/vuev+5cr9q8L1l9vk2IOTNrg0oDlgvEmkLuzJlJ74u6U3/Hz60wH+ekNeHtJ41/umx+km2S7ABxF6LYejpkAl8WxGFYFUHUG2zDfL6Ikq13XZJWNyzKRgAC+YAYpqRPOfDJcftnnPIlqIXwXMt36q4vTZsUUCPrPF+x/ujoLYTgDTjbXj5AWEcitQ+9+TozVKefaDT//NxeYXL7vUzuBAOL9Ads2j5qiHOgA7Ocv2P/8msyZ1/8YePkltG5unpbAuasBju1/eQMALP/2DRgd8gh18tX3VayabAYCRc4E8blOIJvilQSS9d5neuAwiNfpdIesB9Cs8PUUc7zdO/TqZ0Z/8XP2/i9v8b5+T73tIZy8Hp2bGq0qtpLcvXSZfbkW26FEigF3iDPH20E/LwF5KQ60OChSnxNOY1ZTWN2mkI/HjMKLwF6vOddk70dxvcy5L87v3v3Px+MICoTjf3DCX69uYN/LM3kRHF+X6Vg2xXi95F6Cx+b7BdMZWM2mVnIBvE8ISPQ+o6VkIywnNkDuC8XBM3OmRk2bYCRQwmChAVuBgtGPDinFH4cdn8e1DL+HXVawVC2WOMsTnC2OAh2NLYQ3+TOKuEXqYwoAimYUnNFhMhXssSHp24tHS/Oz0X+H1II8p2vk99T/kXJjGjpMi4OOj59dmFk319XSEJaV2+7jOgysWCLbnvNBCGKVdBm5lxKPfIfWIFH+d7AvY/wOugS1DDC/yzFn2gDHi89QcefWYu6cq1JwfhSWxicgDIBHI9hP0YdZSrIYnlzH/Fmcu7UMZp6Ry+J9RI2QZ47o+arOkwpE15zHFqVTjTR/MhOK1keyURgxr5eIl1Pd4WmEoYPwydlfFr9PXTvnfhWZcz81C+Lfre5tXLfVeLfZTpZ05BhXrRHOC8CBkCeO5QShxqnvNMfeAD83NIRBzzehww7M/dMK6MTAZGXTyHy3fP9nEX5q7D0RRcx/ke12nhdnsLZ8FkAw6Z59fhz3vvr7Z4BBXWcVMC2XlJQzByieMElO11MdiZJ6UdOWhKVZy+8qo+H3rj8GoAB8RpU+oVQFjczG6SzxAyQTgRF0C2qnbAO4MJJvc5OBTEV/6hkAYHWHzIvkJKIxQdQQfl7awKEnTZEUbPRp55KWiUUDiHBKbF8l5pGDA7pjRhLFo8fSDQrPD606Cwfnf9q+5aHeL1TzzvY92UiZ146MGkpGusUMQzXZDYedIIx1r2Hr/6egYIpaBbjBkpL9GguxM7dzTtZaog+B6Ek3aDivtngUPscrDcQJrFigrqLiRmHQl6S+ukjU5m4YTaHgYSf5vjSQs7/TacFkZPQ4A6MPbPHIO/UVsl+izz3igKQrZiWNoK7KiL9H3j5TWbKyBud4rIN296jn/hJgFJ8lyCgeUyJmhQ6PULcNyVTJaimc56wkoOGIxLpy8HpOsIz8cXoFyOV9bV7+cpSO5/mm8KjMagc9ETHAuiXtmHNTujmTYsQzlrn5+tqG9w1LhXGqXtsn0azDu4pHTkmhlIggJCgVrCXPVQconEhNjoOQEw+PiIw5Eo8Dw4jPpRaJ578313tQTeMw9yiZaxAU9uS8B+Z+Ft9JITuuixN6z1Kps99ODKpn/cR7pbjj6dlARtxMZ27r3EPhSLpZAqP5zlqeyXXLHwWYkH3KfqjtGUgmVYoIDhw1P+o995HsBQAxNwLc41zn6wSrJQVnBVkN5HMnWaayYbHQv/Gyo2sAYHpzYEiK45v11ks+Ln9nwXxh1Gb57sCl9AIYnl+D++R1ASm9BNpTY6h8zyQABy1MpCZRxnWOy2QliQe6gDTmss8iAJhjKQ7W2YjUh1Xx+EnRNsHyrUM3mfvHea6O0/8510jB5pnH+QwU3ZPphIK53ICPTZ1vBZzLvnyyVxzKw3ItHIABwzGKVgx1ne3KUrcFEJRKuy1n2dN3I2uiPgduC/meb59+Ry2NvH/ty9+7KqW/fqeyFsym48z1THDg0IHT+Wbf0CFNx2Ecx4U20Ixqu71nDL6EBkd6G2kPBIiYUdpxHCORY3+f37OebQDMToBFBi+Ko3Ceu9mH4nO0MkyszJWq38IH5v4YtlCPNNkzuHRYDxEsqgKbZpOmTwelqQPXsa8aFMKDaHRQk0ZqDnptWzlnsm/P/ZfjpxNsOGgDjDkGZ1r9DyL7h9J848m7iBzBiTJvD9/l75i6ws/QgQ676XejsZxLZCPUdI/zHlCfV9fjszbTgQ8tgHSUY82dI8dWxxoxB569swgOLIbzmLGt+V1DggLVbahjTkDgR9T8+vtTe41n9mGvH5+BknqdwJ2nLIl/IIJ+vOfAU+DhBz+3ugaA496hJfWU94if/937P/N9z8z8/BXnGc+F8Q/KLJ6+X66/Vwry/P3f+/wfB1AYcGMegKkj8FVUzy4vAJDiFBCBXRvGtXlO5jYwXhffhDu8hNyfr1jed4960oCNZ8m9A6/qQoUXF1Vc3j23n87XaJ6H7FQzgBRfV7H2fOD27YFxWbD90wrZgcvfOsYiePxpgT4mwgwJhe5wRMelBcXNjbed0SMB2sMd7/1Nsb+I58N3pG5ANY5p5CJABy8N5hUK3LF3Z+3xunjpvofn0APw/jVLZW3IBC/GpTnz8TZFFMcq2N+8/NrysU96+phGKNkVKYwXAIo11yFYPzr2t4aPf2pY3xVr88g0xc7EDPp9m3T0faSAHMusjdVFDgF4mTKZqRZAOMjifTSgsJ9f0N411JAVskzDsf/0ktFNtmGsbQInAMarMzIoWrl8dPSLwi6RHqOed0xHvq+K7//qEdxki3AeK9CvgnY3vP2P4dUc7t31J14a1l896mlRslIjFUDMS9mx4gQBCt0Ml3//8NzcP685js62AUZzQcnLL7tH578oIN6+9hhYPqI0G4DHTyt0M6y/3jCuC8a6uAP/APqLTkdmt+wPVhDRPgGPfvWDrd0HRhP0F2f/6B5RUUGIMYYwXPQTRU6lG9Qs9BbmmGqUlNSto7+uzuyJvGvX5jCIDNhlwbiG1oAB9396wVjESwCOiBIHSMOxpuNrV5YMc8NHdi99ub8p2k2cbXHbPLq3bTOytyzFMB7OsBpehlUGoiJBm1Up1sXR+mHQ7x+wlwv2lzfg2tBXhd42rzTAKjUPF9JK8TWVjLaxHNn46dXH49s7bF1g11k9Qr/foaroXy5z7YuzQPTm2gByP1Gc6XxK5KYPYLxdvJoHK2DQqXj4/Bqva8516QbbB9o7ivEbxnLcj6Ualfv/1oENnqYQ7znW5vviez84jwRHAECuDgzuIVS2fH9Mh7MCEkCW6nMFfvWKEGQBIdbV3TUr7v98gezA+n33NLpHR1YqCfaERalEnks8Y7xSigN87fuWwKRsXunC3q6wt1dPDel9Gmcl2o0Q5mQFHL3NMopkvvCz3M+5j21/fZtnQrCeRgALrAzE9uxfV18/j+EVt1ZNZp2F7otGCcYRpXWNpLMhHiWhA9x8o0tB348tdD8u2H6+4Lf/Y8Xy3fCn/2YwiTHdBjB6GmUWjCOyESAyKxIw171UBcIY0PcYG9VkFvh4xM/27muNDCKVyEVvoPhogmZFE0A2eEk8M2cGAIeoW5YVfHmZ84yOd3n+IdWB7aCAYwUaxphgo4i3hU4MAQZqOFgQ81klZe8JVCcY+3E/OsDxJ/uKIEAFG3oHXl8w3l6S8XRgZEWkG3t3nQUys9g/t/sEDBg9Xz1q7WyOAGOHuXYFNQjinQ4pJEDag7bOoIDPzTCSRWb5PEazVZz9UyPoEUGWWFtAm5F2fodihynupgmgzmeV/hIC9IKqNZMMrbA7rH4n7Nh+behXP9O9UpOzE9rdWYbtNqC33XVpHqWMLy+21wLIpJPZPBKLfXcQIXRD7LLCYo+WR0FF63wd6iCKKORanLzQPcg+OANwFPXj+lApoFGkTdFxfzxwEGZkRQe+Szrsbf68amHYKT0jUljM7DOzJtdhuZYShe29vIdk1Q+7P/zn7dgHfpaV9yZgQ0cwxCETmCFonKU86Wx+Bh+cUXfw4r3PYhxZJtL7IzTBtj2ecWwiaCNwTM7O9uiAhhaDDOCxeeS/spTWxX/fy17LsRYPI3mpyjHZP5/SKko6AwHQqlsS5x7TIo7vaEedhZgPwp/zXVubQIzpMchT9kI8ccC9QonOuVCd/TpvYuwtyjkncHpOCavAQim7m22POZn6DH9Ps+CcXlFsGX9Hrpsn9ynMkvw+++EM0OmprZjjld/9QZoErz8EoFCjUTxILCjPmRPN8krL3HQ8b+94r5lHikS4a2kn5kD7ZzEjwH0ap4yek+6auczAvJ8glOfDMDEEWMAPusPVVaBfosRftIn54D2EC8fiTibp8cuHQXo4HgPebinoq0jSS6n54O84sq2shOCbH1MqohvoQFEsb5l97rmv3ie6I0oiSgEPEM6+zRuKR9NZVsyj64yGlbFRj9zvb4rbX/1+azCvJyMkbkuHjpQ8dTV+dIMotQvmeIwmU6QxnO0ZncOs4kH6Z6oXT0c5c2GBpP+bYObxrx6ZGw/JeSFx8NW+3V8U+9tM/9Ad0M4yc/4+4yJ4/BT5zPsCCiK6UWDHhSuMUnuZxhTbHJgMkB9cGnnyZDUES9n7ZHDeludopHpE6U+Ou4XT37hPk4ofqQPPYNKMhrL/Fl9TGqAEDJ4edPMUGU8psBllqW0IACAdyFGcU+Dw3QN4KCGUZ66JQaAqp64OqHlUX3ZPcTgbbJ7yE4BGzR32GxwjnjyIh2uoHBsSoFQ16hVARGdZyUCGH3C2ykwP2IfnAo/Zfr+/JNvBPzOOz+MCjNQQ0vtlD+DlsgTzQoArIL19FoM7DOpkbgHwShBAAgT5fuYGq4OCJV2tvBtEgPs8D3N/p7NGhyj2hYy6tdL3XOfxbgQFcvjMnNUBTH2JOBdYLtff/8jQyHS4xdd835v7yTwL6rqJf2cEcXGQYSzqc/S8OJoA10v0f3PxzL3OubVoiMiMrB6iNEgHiKm9xshseFwTjKv9gdxjZFgy12Qv62uYpwJRi8OXj5c+FUlR4AMDRCRBGmr2zCizuqUR83T9zdDuyDFOYVG1OV+tjAerRZR5B8DBBosIeTj2UqKfn5T5uXf0MKY0HI9y9udn6/+BKYhIGwXsf5204ljTU0PjB9G70mdsl+x9glI8m3jVSOTZUVoogOvg54FefY7W1v6TsC3UMj0o36n0QwZwRmkf6ez8d32n8n8hg5TruIcxn+/Vpn1QQczaN/z7eezr+/LMrn1b7JtYwLMdlfXAfHZwrj0xymOBHZ3GMe9jwc8juKRzHnzq9zqG4Jk+XCx583SH9vDz8PK3He3dUx0OzvR5Xokc52ppG53QQ2SRTC/Ol6o9kfc4RUjpSI8Q9f69qKaVexI0SAeyH/cxOp82cDAWAZ9jFah/dkWwiSKg2X72SaVt18hwWa/JEOO7crzUwZWcM3Z6bzrw0Sc5qrR7eJ1p5UyPAKm05TqvJV501LW066AlEJt0ZRaM0iamCtikr+f36vPq2Zt9VT6T2iRzTESY3lvecSigwzXkPgEZ4zA2hzSYcs9jtYLQWYj0h88pCX/HKTc7MqeYqnACOg7veP5+fbdzOssTx/u8Tj9F938EJFSg5UnawXkP+T1mxlPn/wfPzc8+ARNy/fyd6w8BKPBAzNJMgaha08kOEJkVDcaM+qfYH+mc4QDm1YpRPsLYY13uyG+13Tdw6W5wPb567vzrvWgfAGlMjEVmGsDqjpfuTunsl6mwv79qRGgDUIj0hn51AGFcpnP3+FNsSjuwfvecvuVmWCJvPJ3eYahiX+PibASgQfZJ+V1/cS2A/S2EwjoPg1kCcPkWn/mypNOqPSLEka7AqgMjgYqRueRKHYnr4nM8zgQHOFwsL4Xb4G3YvjZ8/FXx/X8bkKF4/XfJsZE9NvI9KH6b08rlsTmyToCJVTSiLZb9HiXbCLgA6aR4ScgF4+dX7F9WZ62MWdpNHz0BD76LXZhi4GO0X8XBgU1TV4IABtMf9jfF46vi8WegfQCX31zZvd2jysPi9+oL8P4quPxNYbri+suO9bc9cqs9SktjGw2w1XP4L4+B/uLpOx6xt+n8x/z3BeHjoY9wHAgOxLuO1T+jsXaAWDfMH1+dVUCgzL/vVSJSI4msmHDqcpxpOy0+R5PSqYD+5jnmsnUslwVir5B9OEtl6x6pDGeJ2iFUzk8QUSU+izy4l/v0mmTrU++kNbT3HQ0e3aXhTdFCzmG9PcKQv05BQ66JR8f6HfneXl89aksrADgy79GRVg6aYrgGCm5RmQFqUy16cWo79zoxd/So7zJL0oWxypxtopetwdQ8EnkyquzqB19/8+oZ67+9+3fHAC6L/3wfoZ/iUc72t7vPwUrrZN92AxDgiyq2P79At4H22y2dUTqD+tsHsO2pvi6bQB4Ncn84sLe0pEvbm+eNgxUvquNTK/NwH15OZYVDR6Dtj2RFofbbGLCXS7LDIAgnKdbJbqFN43Oqvy7oFy/JCgCjKdYGLIbUXnBxXPYL2Qt+//6yoF/VWTEhNiwAENos/e0Cu2juP9TmAAC7hl5EROBnupPrIPBiyWLu7f3aIh3D1+RgGhD8XDPDnO8hOLv95QrdDevfHtl2Vrjobx7lbx8daILt65r76vLh+kRTZZ7OlkzAQsSr94QmCxlsP/33HQkcKzw9sPvcsouPm35skyVQgICMZJtBvn8U47qUr7Mxnd7IdWcFoZwTA25vAM7+qQ4fRfSKc2mXou8ATGdSPAorwGQAPGLTZLnIeG8vm0sHO4zCKFeIbc9SkrYenfqnjqRZiglmxYZhE9SqkbYKqjDaGWsLLRzlZ07btruzXcsiLi3BlSnUWiLCZNcE4GDX1d9p20MkV6bDTTX/bN/J+JVzP5z64HybuQAAIABJREFURP1QsXVxQTI6kawHfwYHWE0ABcgozzYyJgjEqeuD+LkQ4EiNKo76jiU3n2ALrWuW+azlQONyPRjg9f+d5ZPbrUPfN+h98z57vx0jrtWBSYCjT6eDz1d15kiZ217JKgAZihZvHv2Wr2/OLNn7dOLPJfHqOJwdnOKQ27lMoz2O8wOYFTseJWUGOIA+ssQafqZ9MOZanYHE4xqpP8t1ynMXmGCUiDMIeNZE6iNkVgIxYK4XDUCAbd5D/yzy9KW8g2VK0Mi1fhAHrH2ZXzsDCi3KJpZ5emY6sGxmtlMSwMlSh9wTVI5aC/WqYEL4G/w71xR1EI5t0LkvtjD4jBt9tJ9pc2U+P6s+kH1wSiMwPrteY5T3ks+/q+viSQoGP3f4e9U9qKAaMINGtM+f3e8H6RsJKpzsqk/v8UTfIMWUCzsu5wlBnATneGkBzAbOYEHasBHEAsrYnEAKexY1PF1/DEBB3OmXPsDyjS4eCDDf1PbhJdsuOktzCQ5opG4D1mOQFE6lDdEndy7EIycAsBTnSwQW57qJZPS7XyLFYXl1I23r870E08iLaPxYXJhwLE4zH8XBGovg/nNEy1Xw8a/A45+YvgHYZQDLwHLteP/3K9ZvzQGFd5YU9NJ6UjYRVUG3BaYtRa4Aj77SYJTOuumaoAvLMo7QldjfGnRzKr/eXeSLuYvt1pHq9maea55Rutgcwpl1Zx/QoJiN65JCfszDl+Hlzn76vxXXX91h7FeFtTVEwIqBuSsqhTANV9UUWNPN0BkFf7I+YRG1VMH46SWdCVsbbFiADQHMNAcnWFbRo46WJRMl9sZkjSzu3Ok2vFqBCfTuIFC7C9oDRe/C6YzSDbsJti/Ax3/teHzzNATToF1/7EgF49iYx9pCk6O0K5xtqI9jvzbsrzxUqyEWXdgdyLAGF1gMpsNY3FHISg/ALF25WzrVSwhIZgqMEVCo4+Pv1R6OiLdtQCvwtQYD5t6n4OCwqT+hcRDRiRjw8nSJR0mkRiwppud9K9j+fEXbBpZfbj5PAkzAojOapfAI6AKk/kqNHmXfAmTHSKTctHff4Ctbybs63nlZfO+iWBrgYoWvIQB53yCPHboPp46PAXu9ZAQ4hfHWhtFC1fu+JzhzqEFfIwhVK4IvFQBFXTcs7erz6Yr+8wUjwdEAaZIdERM2BNVIpc80kBGgjQiW35DzkjoLWeFgXfwApOFyib7hwa6xvo17q3luJN87lP4z7SOi3oNMqq0nWMgqFaTlJyNpFU8fai42as33Z54ZLubrv3v8yQVIRxMs9wHpAaBZAHOGqEoCqJRoPJCsGOk+dxzwxmTWjDIHlaCYp6ARiBkpVun7r72uDhpEVRl3miXnPM8eB0eQui1L7zif/VxDWc1iUcCQqQ+y9WkIWlBZL4oBRX9tM32h+zmrj0jDSGZX2aNFXPgx8sOT/QX/+/rbnnpHoynG14uDNH3ex+0BT6XxdL6OrFaAWJ80zERm6hEdmvsjwBGnHGclikqt37vPPzr7JeIM4KhfkOKFT4xH9fSP7OuXiPQWocLJXmnzPtUpPKUjZBsZ0NAQQubPcDKeS0lIiMzSlfUz3KtJkQcyxeCwDzZNZ6+mVmHD3HsAd0YJUFQnhO+gc04cABsrP4/+O7xnAQbS3hEBWg/2S599Wu8f4rjVyJ4RSBog8e9C3afB7mBwea/oYzJSjE5mZb7QWRyzDKLUs4CAT/SXpwS1fIbcdjTuWaqwVR24/nik6KI9NsCGgwN6Gi9GhpWs0wI8kCWTJTxDoJJz8Ox8xf2kzTFO55jMnz4SbPjk9NLhJ83/AMCFg1UAUX8H/RxhTbCOoMY4OoaA93HvMa425yXZEMUhkwrk1D4qa32uPRfkk/ozYL7LsM+OFRkwirz3Jzo5PyfRB89ACdFcC6xWUas2WDBN8/0TgCtpDTyMz87+mdWSny+A0ROmQAoixr0k0y0i4KBuWwtkjlvZI/KqZR5P66uu/6cR/PM8q206OfuZNsgqLiXd4ln+/9wrdLZ//vL4HvOlc90ddCIS6Cz3+FFUvzDYKriSjzizBGrqwrN0hPziE4DoH7k4l6Q8pxXw45mg55PrDwEoWGymidDX2p+xCUjvsFEMYCA+G1RuhJFLira4oJTc+8wVGzIHqtbm1ojAm0eqdAvH6iIYENdX+PBcYBP/HNMb3NmMfzfXRBAGUsJeAdyRe/wcE9uA+7/s+Ov//gtGUIeGCa7rjv/zz/+O/2v9X/9/5t5lWZItyRJaqnubufuJiHvzUVl0N1BUD0AQKWAMPwC/wF8yQYQZ4wZhTCMgPPpBF1VkVmbeiDjH3cz2Vgb62LrteERmC5NrIiERcY672X6b6tKlS3H8y0+4/F4duOXzFoZVXIzB4rgo04KOjtJcDV3poGUjQNYQxHKgBSKWeqE6DUtXVkK5H6D7EcZseVUl6H4t8KiSayaElo/lFNOBoJTLUjS6egwDyA3s9bNg/ckO+y7GstDqBBo5KmkOk6HSMQQtfRj2rpH0b1wk9pnK6B+WoDtLJaBTRNGPFw4GyfoFydB3EMgXizo2ToeuIkNIkUgrTzzYciE13cFTJupDILuthU+E2z/5grcvF/R1xfKVsH4uqAtr7XDfFw54FC21E2khef8Ym6CtDqzQSP2IKIoEq6U81OlvF6tsshZQA+pXdYLaxVkqouWRQahv6kyXtxTdsjUTZVnNWCRLDaCt2zta2UWqQWGK6zdjnDjDIRxRMsfV1lla8kIY497V+XSa9f5DRX/rWH7r+eLqtLruhS4WizjYSzPyxIMaS+FwBYV4P8BvFvFa1FAcatR+8BbL8S2jwgNgyvYKqpW3HdQbqO1hnLXbEu3jvYFfj9g35etuwAOQmaCzcrgzaOxlL6YafjWHIb3Lcu59v1W8/uUKbkB5s+h5IUu1EQPscu697mPxMXHjFAAfxtjwPespBQC4FkizfHQWgC/GPlODPEf4cTTNw/coDJvK/X5oTXRPU7JKNdhVywIvF2UVqQqrpUcRBAu8QoQsema4lkfsC1g5Uqv/3i5AsxS022819Wz93EK/o69s+iAUk+J6C9p5e1d1gI3qTabmPkcUdYz4MSpCeIpFzCMRZGXLsWaUN6DsPQxoMZBT0w90H/RF/8h9Ph8mwTffSwaQarWUHuVXkQx02rX043FTEJa3HtUeeGtDwwDQMSkY70YXmys0wE9775Q3e6fc6ugf67vX3+cNRcGLu2pI4I5wRqI6yKEAf6S+YDg0sh+Tc0PLMjuOZMr8RANkAAWAEPoCKbLnKUPaXwPeHAxIEX65LOrwvj4GK8Ij3beL3veJiv4kQAgMECL9mfQRktNG+zEcoDh/rJ8+Fn75GWYOpBR+V5FA1mX+vDsKxvLUse2jWoKf/8nYBiXaP/DeQchRvBOYEn1P7SIHgfL9HOwRGVoJ0DXhEd0R0cttSTR1N5iLVQA5TnPjeejuqDooCgS4MUWhfW5qGYCXf7bY2NhmpMc2QAdmBaO2XdlmHnHeN13j7oiW1J/oI2bHOjt2Dp46U2zRtM9pjvM85NzwiGjziHybRgF5xNNBCx/LboZiSaCSsz7K2Id5rlS4RYZT6lde/8AAFXLqgoOJvh/PoIEDaL5GAtzVvR+6G6mdIkP3AWcFwJ7ufaqYMIQS01rPwAkAZzROjlukknLc26y2dC9z7vNeDuAHT8Z0ADXfFOPLKS8+x653ISdGgjO+UonWAJiI389bnEc2hKdUhwwmUCkzsJHvk/9v6/NdickTKELZlvN5dPbcM8c/9T8/812KiO2JwQQSkBiY6Ffv89l26kNOZZ7mMs3fBFrltRK3lPGd0x473+t8nYGIqT3ADHj2Hm3RUrnfvC2Anwmg4HRoL3PER0P/dFWxmo1Bh76kz5UKwBphxYtGAV1h2ktWaUTZnBUX91pPj947ioMEQKh/CxOOTzqwZdcDkLeGZiUTy96BDrRbQVsZjx90cZbNo/GEug+Bx7Yqzfz4KNh/7PjNf/B7/Of/zv+FR9cp+KHewSToQvg3P/yIf/OXH3H5g+Z98+umtDdHiddFHRij5IsbfdcycvF9mKo6o+fxFlAwGsqmvz+uJpC2mio+K/DSC+P44CwGy1ttPQTVPNe+rYx6b1i+bqro3gvah0UFAB+WVjKlXejY8O4vDZ9TBZdIFFygvaL9cNHSfY9xmGuqyBLlPp12265azhCAjb8a4MdNI9vcLIqWlxPpeNQ3SyMwY4hEfxZ6G2Jr7+hgWMm6lFITivAMdVQgwNXbomDC228Ij7/o+OsfP+NvhXD/aUG7KlOhflpRliHy5jTIto459HKmUU1h7yhvhAsR7r8s2H4grJ8RDBfX8wCps6MlqoqycphQvzYT4uRgkQAYkdx8+dIyAO24LAFikMhIrxFDPdILrxegvegG1Gj9eHnmmtn+fb7v6vhnR6sL6CCl2D8O9JcL5FKw/vHQPlgJWanKZKJHG9Ugjtno4K1FFNwvDvCxx6HspbjkpgYnfTUWxKcPw0H0Mop3LdkmtYCkKEC3t9mot/Qdf5Y76Z7SUz8/4sWnfXZ9heEkRGSxI9Jy3qULeF+t79Q7XNF7/ckZTMoAaZeC0gQkZCAHQqMmAFk7X+EOl78ozTDQkomjhKYbFXRZVaTq9RW0mD7Ato8XGTP6Dy/DOPBnYR0vfQcTAPCXxzAyew9QC6Wgl+twvjx4SLp/eBfwQ1OGBntAF7PuW8LyWWL97y+Mx4+aevbhbzcVZH01xharQKdXHBEmyOUa4BAAnfdwKH1tHwDqqFednajDKOyPpob7HaBbBe9lpIP5+8wNpi5olvbGm2AxjRIAliJIaL9aIq3DtRIKYI4U6f64Dtq6pz6ICdMuX4843/sCkJRIySCj2mOpEBT0j5qiQ5uWjIw9BzNcCCGKSYegwACb1nUvHoAHCiY2UKKHSgEIKnJH7uj1jsjP9kjfKToUbCIT9vK0mzA8bT3J2dm3taz9GutbagGWYbQHffptmyPoPtYA6Mvb+CwnPQYHCyCxxz0lY6xnYw6CQFIQIGeKXAUwEHuL1El1J641BQNTBDNYZkQ2hupkODsiWFdpz/m9tRxfHY7g2Vj2dJJnkbr8eYvYjfeAgRELDWDBHVUThgxNA7H3r9H7h35GovqGg3m2hYxWD08ToFg7UQ5YBPDKNSJDIC9fTMZeWMbvfP5rMjRy7nXrQ//jsalTyxQ/C8PfnF1nSEg1Nm9vMyBkDjMRDXFM6zcxK+jhgIeUIT6Z5y7SdE6OWgZ8gtXC8+93W1euTZK1K+C3S858GrvIyXegzin+iaZO5++LV5jxF5M9Y9IRoklvY6QpIp4X4omAruXzuVGHgyViZ2acxZiv4xh9i3OBxly4o40yOZ3RNy/d6E53sRTtLqOilN8/2AL2blyrBlSzk+mXP+ucauCOvINDzkZKPsRUDvJd2sl4L0/Osf+/p8/qzRQQOA1bROnP95huJ+++9+RD+jcTCAMYAQDsnrLTn74f4nKg4/z7lO4kzENfxt83Z0HH87nnTAxvz7f66mwV74eDF+k7MQ40zokpXcQAJhGZ9EUGy8HmBfIesMhzZQwl1Wjt79fV6fp5AAoA3uXHAXAVbRTLdT/lnHg+tacRAIakPWQoiQPhdKsTlF6iUKOSW4dYPraQR0owUiog4aiTofpZlEoKhq5CEsnT/9u/BVD1fQAfD/zFy1f89fV3MNMRv6mfAQB/t/+IX11f8a9+PHBcvS5yG8I86WXhhqyr+sczuzoIQPr5ae2688eEMEClEnqzwy6vL4viBTPBx93/EMKBls02TBMwdezrgr4yylsLQz3yCX3dBqqtQIeWBDRggaDOqKshH4M+LKQpJqOsodFoF3YbA50IvCkoIgyNXnaEUFoIB0Lnih99GquowS5ieeYWFbRDXvO1bW24irsDyoQoHQkCZFen+vgo6C8Nt7qjWP36XnRt9IVHzjTpvAVYAr0PHgh6sIA0+Nu6plQIp7Vg4odd0KKMn7XF9oyQAjokgv1Kk4idOi72TMcH/GUCNc49oggm0DbAhPN686svDForykPz9NkZJxZpHYtO76XUVJ8LAF0UbHocGsG+VGAHyt2jchx0cOxWts/mwpd0zqfOAoPawBSBnA5WisoIMQbrghCLNSTenQl0AhqF2GPc18DNoQdiea2mCxD/T8g72d/RFtOYIQcc/L7fQo+9zR5JbA313kJzo/scWj+8DGCY9g7A8XxP/V23s5LA7kD45RHUYiyF/Rh5pnHGF01BSUwL77fS70vQuaM0no9PfoEmZ9XTR8LxtjPSNUecLRPnJ6BnkWDo31zVed4+UTDYyq5aE+LfJxejJRMt1OoXEQkXzGCC/zutuQyisLM//Pci4M2dpvMBDjio52kc5W4VfAgxX30hHDfVfoFP4aH9YbuNEA2dIZF0rtsc75pu6KBm/l04qUUdjEhxaMZ62FvsEbL1Nwlh7loKdhJSdWT57Mz4urC1TswQdBOdTZFaAJHfmiNn+W/fR6HFAXPIT8/LDsjZQMx0axlG/AQe5nkTCSeVbte5Td7v3hFIdxZ/PBrQDmXw5TQFZwPELY7TPRE0YOLzmXYa4+gjkhZDB3Ef4qDJSYAxyvxeU5nfrOVwfoZf6d0boHJuB7Sv+r5vY5yteoG40xlOhNt2Ztg7oyHPRUlrLxvq3p80V9FX6ergklGAfY/G93jk5j/LvT73254f6+lQJgLhALU6p9VkZzuP27P/mx01My9kzLWNobRRnefddd4r6b31dD/63zk1JZfX/MY1OT9mY0+OVH5OAnmmNp8BKb+mUpQlOfGjH7NIpahxkd9Xp/mNsfiOwzsJFsZ7pSMOpUhXxthD57nMbWJtC7UWTAUx25p8nJOgpZb+LfA0wtF+G6dzutZpft6V18Q8T9G+HP32/xfM5wIwf256bprjZ2kNWUfg/8+VgZHEPHgHTJzX1HfvyQPAzufXN67JkadvrOM/2Y8nAHmsez6lOdkZ2Hu8tyZGUPahQ2uhzO+Cp20Y59DPv8pDs7zipcYBy69K83djVkVkOi7/8LAvQSn+yUiL3O60WTXKYhGVraGv9nPPj3R6tQBwx7ELpBGuv9foS9k7aDPjf+soTaxcIVBeD/Cm0a+3v6j4/FeMy+8F6xdjKlQt94gvwO3vCctnwv77C/4X/GMAwH/5l/8z/nr9LX53fAQA/HvrP+C/+BXw8jcb/tn+H2H5esWv9ob62OIlKS8XVQi/6fTxlmjn1vd24TDSpBKOlYMt4Yr4AIbBLerQal3wDtrHIlQjXBfR8aKJ+CRAuauzVDY1OMpDx759vATd1cX9eBsRbFCiQjLQPCfP9Ba4qfOu2heM9rJGaok73OXeNNh0pzCqhYH9k0d1YG0QFaYUjey3lSEhliZoL0plrW89HHDVfehot4rjUrRkIjQlQExnwZ9BrC+o+lWRo+Pjgl4Jlz8I2moU6gVawvET0BfB8VFZA//8X/8j4P+94OO/Zlz+QctEabQao2ylq6VDHSKvPe8CZ8KE/ePYxuuXHkrRWt5R29uuZGkNPcCx7tVKKqGzVt/gQ7DeD41GXig+Ux760o089os5VE20eVkpvShcI8xGkT6w/EQod1PUroMir+KDVi6SSMGCLkAjiIFiZKwUBXdU08CdSnrbQIdWK9AbjvXVq+XWF9PcuGidu4kN0fUFXb9s6gDFoapGpFTWKOzR4KUA4WJidkk6pOWyKlhmUc6+VlDp6rztzYSw+jh7woCwM4YHWABJaQdrBdgipF0QZfqY4ZUL9KUjU8SxVzYnbtVz9vMd1Drq7xHryqsNRAUIS7Vw/YJ+WfUsview4Izes4I5hDWYQp4HLNs+aMTuELjxZuJd/FMFlor+4aLsnxjzrmNaDIhhRvvlzdYDgoFV7oeNlRt/QL8wHr+6RPoO7cpmuP72wPFhwe/+RhkF1z/YOdcVv2hMOG7qL5aHVbvxyj9NAcZyNOwfVZMhKkswQSz1CdXSPt6UGSJLQWeGvGhU0MURnT6eAUkFV8qYOx7pZXndtQvj/suC+pBISVJwmeNM512wfNUUrnLvoQvUakFvgutnpUH3S9W1c/TB6BGZQIXrb+9jvv1cqmUYrL1j+ekx1q2l3/CblTwtpCUoWUEq2tsAqhwMXssAH2SMk58XDlaTR+PFovTrAny4WV6/AvATBd9SkaRa2cL9UFFQYABPtr4onE7MIFqHPifOOdVpcfG8ADtulzE2+6F7lglu9Ec/zgZcBie81J/tfXrsEbmm1ow14BF4DHq99dENTToaCPsIuGTb6FTGMEAAbwufdACsD1NKgDuo18soXQnAI/CZChxj7UY2kJwOA0eNfUlvD0uDwjgzAAVkUhqBpDZnxXal43M4EJG/bo4a2TkteT7dhnSWRzhnAzg553w7MIVi5XjTOGeNHxemJNNaCOaS6ytcL3o/CxwNKjkB12U4VyI6Nn61Fowvj16H2K/PjQfRjIkh+664091L6/bkTJ9AXSJtz8PK8TiDoqRxcid9WeL/crQRUQfUAJJuehsMcVYLgBAoPJVi/O4Vc8TQdInU5sjvt/VwOHuEQ+diYimY4x4AxWF7OZeftEvT0YwRIWKfTe0OEJCBnt550mbAAQ3y6KOvLiQaDyIgR9gNJKHCkP3QDDJ7toNR02niQBiggRorqzhSRhIg4Ws6i/ExzRUavCyj2TU579+j4HFPH7Ms5sxeirXFPR2ci/6egMFz2o2fBXIcU9qDrvNUyhEYLJWztoGnK3hahAcnvD8nMGna785cihKaDlymAIlfoRkx1mE+x6Jt/ow0Xq6TNAGe536cwe18z+8BMc440EUxgFX7rjzrO1sVJtNUeKrdYNfPAlAAgIhA+aZufRan6zJeQG5kGQigGxazgI8fqBatjOiPHSYqqIWhSyAICisAEFIZOxeAY0SeuKvmF4uClkcPR69dCHuDaig0hEG7vFoJwR14/HbB//Hya/ztL36B39TPKNTB6PjAD/xF/Yz/8OPf4599+qfYPl2xf1xQPtwiB6+7WJdF3aeLxt8iiNx+YUSagbSs/j00I1xUb7pXivp4FA8MdFYAwX+ekU0pVtmBRnsiVcA/b+/p8Rx7FnQuHQxSwUEeApf+FZFI23Dx3L5QRMhym4TT+rFx8MtLhHokH8DEdgjRM5iTTzaODcFyiDXn9yY15HXcZaQvMMBEKF+1KkN/MC5/ZCxfVMjRKdpZYJKcAVIA2hRUmBg3dHKQD6DKSLU5jxnvibZk4+7j1s1+QhqnYEoYC8PzvMPR8FQjADln3ynZZJSqcKDt3k6njjXgbU16DPEMYDjYInM0xP5/FseTbuPIPJ7Bo11xmZ0plWNN6XPS55gRpSGjX+nK5zoDcI2Xbx28IkBP9zl/jqFpDsBQz/cr02fDGRAnkcBLeYrZI2Rj4QK3/nzdI8MYZ29HjOMTZwdI0QeK81XRaxubJM4XNMqoD03jPPfIaqNwWFzcKHJzM5Jv3/Nywt5vAJPwITUDQ/YWNdR9TOI6vNIHABB6kXifyGlv8JH2RB4L0fu+GyZr4xxxx7ymkqGhhqHEd6d5BYZOQsdgxdnz83kaoLif4aRnP0RQ7IznR1MmBRQszCKEoVd3frY7UZDQTAiA3/Yomb6Az8kkgsrzfiGBpsPlselQsMz6IEjnt9sAMe5PWEW+pgrrkLA9LwvG+mfyv9N9CRipRc+iQefSktGfeY6ntsTYPbk8Kvot2q1H/VIbQgQ0pyhkAODcNktZAKX0kXdnTdrPeUzS2E2VrvJ1Mi4nvYRoNuX/zP3z8QoQQm04qfLeYI7PuIFe4v/nMT6XsTzT3KOqRcpXj8cwUjSR1PmT5AScjfU4l0aEbyoXGY7I+NkkJumX0+r/VGqIOyXu5HTb/BmEeNbGZ20/r10gWGzTuZsvnzerfDB9Znpfmi19os+P0ocG+Pj6yxHQM6jR5nfB0xJ2pzmf2ttFmUznn3/nmqL15zE4l2uc2pHazmTaAeeXhPcdurY8hcJBALLf+b4LBu9p/ibnVMbcEc3tIn7e31PJyGndR1/a/Fkbm/y9SAHo0Hk/l//Um3/bHjp/xv/+EwyF95UwTms/2Kans/zP2QfPrtOae7cO+5Mx+t59zsCJN/EbZ+30ffv8u9KO33rffOvyQFQCep+mzGTmw88eUBBRZ3nleBlraTTN3yPyiIXRo32970kFuCOckH6tVvawQxZCv6ScWSv7dvxiBXWgNs3x472rum4XtNsCMFSwqllJtUIjCgqEar1WJxDULzvqW0V9BR6/Ar7+u8Av/ldCsbJ95d5w+/sOT6u4/qHi8b99xH/T/zP8i3//V/iv//J/xC/4FXdZ8Jv6E35dv+C//eXf4PWXV/z0T1fcf/1LVKs84N5DRKDd8BCgTwtTIn2DBFqBohD4ot+9msjW+nsT6xEMPYQPJZxJMEwYrGP944btxxXHi6YSFD9zRSN32p6ZNRCsCBMz9EgzdyBKGhYK6j2g2hT336yaClBV0NBLIFLTEoxaFlFz5PW80+dR12fm9BPVmTA1bl8LTfD4pKDMVQDeCdg6+q1EDq8yMRSEaldde0JAcbqutbndipYIvRBAQH0I1q8dvIlVsQAO01JYvuqc3H9URkB9COq9gx9ijI4xx4DOyf6BUe4qmrl/Wq1qx5h3z+tW8MqNQLtBoRAbLXsPIbTjaqJ0rjcRrBWgrYztA6PsCnR0q4wgf3G1EnttpDdsOgY91xw3p1UKoZUae9b7dHxadX0+VMegwKLhi4ppTcapiRZRt1J9tQBU9VaGmIdKvekAgAn9VlVY9O0I1hERrIrIaB9IdTDIKwa0Dv6y6cHeBP1lRb9cLcfd2iOIF1/oLgARmSMrFVY8OvtmDKN1iaisrNoHZwR4X0EEWdUh6bZf+G0HiNB+uIYoHT20xCh51GCpcBV0F7iNEngezbW88b5W8HZo6b1jiYoJ8aIgKyiBAAAgAElEQVQijUSFUdWBEF90RykZXF4BBwD4y11zgt0I9HSbZYGLlanAZdFopDFt0Dv4dRuGlBk41DtgAB1BKwxQFy0DaqVlPd+c//hlIP/3C65dS3D2i4pdysLhp11/p4Ku+8dR/70tdoYcY8nyLqozYsaOC3bWz4jzHEXnStlgC+rXQyvk5PFBQ9kOY33UYHGROejBKrgfIOkojx3HD1fVfukARLB83vXsFGAxNpcDoHwoy4WO5AiSVUZ6NPDboaUxK+P1H98gVVPjYk0XUraY9XNUOVKGWflq7wlgAp/OAJ3wqApBAj2fs3iovU/bhxUu7KrsoA6WfXKWc8lQ2lusZ8DAH4+IuQ3he8wiTVP6gYFVsi6QD7cElFvQwFiAcl1iXcV55tT5nBJVNdocYqyucXSxcpTBrqgaDd73MMZo36NqAlmbfa1Em1qDVjvSc09eLsB9H4BKjlZte8y3tvWIsZKrab94RLq1OZ2CCFgIws7+6poPfxzatmwAu0Hu45IdkDP11tkrPl5ZywB4L37oc74fI0rsU7TruqBl0chxLSMqvyzmvCWg2TQQXIAw2BcO9hgzIcQsARXT9DOzqChslAUG5rKDvjaMRTAJaCbtBGGCXBegmT6CO8cnwz+YIETAwSAyEd2zFoexPgjQcei6d8TH63qZnYFw2DlAWvLIexaNbG1UvvB7OzjBA/iW1pVxpgOiw+25/MlZIyJlISRgjGoFboumq+z7cKzzEiis8+nrNEd6MxMg51Q6yFHVV5Au6ti6GKNpXohH3gunCLZHavuc/tJNj8L3pq3fKareZf6O34/IotY+uand+UrRer88+k2lAEUgDvrLaJ8LGEqqYiAiwLaBVmXzRbt8DtJe87QJbW+f9rc+d/RJDrM1Ig3LUjAyo8HmSkrR99ThZTFPIE+ySeMctLEVn2+fB4/6Z1DnWbqAnYMOhsTcOgvSxzmfXXkc0pk+AQR5HM4ANrxJlNqdfu8gmq01H9vMAAjwxn+X+5c+G+lb58vvdXL+oz0+3jn1hvhpRYn5vk/AgtMafwp42PXzABT8cPPIHM0HYlbydCE/wM6UmBTRl69IsBEAKIJtNHvNoecRQYcMpfk0kGd1eQoRDgMEOvQ7zlgAzFFWimx9I1BXGn25KyChUTKKqM36uYF6wR//1Qf8T/2v8Kk+8E+uf8Bfrb/DLgX/cHzE5y83XF6V0RBGt6RnxmIZTrQj8eowA+jQEoEwBXgy5/JIkR5/oSanz3UR3Kpmz3W1SCC3caYHddvmRiN3ZGNvE0VprmQ4r+rcGxjE0AgxU+R1Z8BkmiN3og1g0vEFOBgOY/6ijF21Z+9D+wDWz+NGqASUzX5WMDvmlmIQecusf3frk4JLGFFC0XEvjx6/r9b3+qb5TZfURq+Q4YCOCgXB6L0OXCCclgwmBNvDh9cBk57Wg62FMSg2ZtM617/7RUEWbjp/UTFCdFxEfAxc2dteCCXtVZu7SEHy6Q4jGxapQHJaTZzNqc/eNiLd327HeC59/I4iyhlChPYzN7KjUhkT2sJgEvBxGACfohF+SPu9DRiJaiVNIlqpGhcyGYiyFBVH9J91i9S4IVusreYgar+tnzm6b/syzjJ/EbmDxQywOhxBx/X7eaWEZOhGhQobP2drOK1Nq4kko4EFwqbVUoqmWHibicYc2AueWhtRTjdSEqodl9OMlwqv7CMeDWXSZ5kuQcyD0VsZds6aYR5OX+8BqmDfhzL1UhUccgdbMOaTFfBrC4EPZRw5eOaaEPqdkTrk7wk9Ozy6IGne7Czsnn5newKkKWRmyBGNc1TZYs5mIoSQsM+339P+rfoyHOuEnJ1CCujy0Ydeiq0VdodZlK4rrO+ADoqSoO1iZRqTNpA/V7UnhrMWDIUcjOr57z5o1/AzOhk9i72D/fxIe488YHdheFUf3ZME1BSBEQEOzAan2RFSBuClRlkymu1ysdNnl8/h02hVBtLs3pKrCRCN92F2Yk9XRHmccuvGn9/To8T2O9UKoPf3s/ELXSG2FwERSPZxBro+g4+DgZ4iMgzW89nnPz9T/POzAT0Tww6j+TM+XnE2FT0PGLPB7s/xe7zLDS4jcp6BHf9+Th/zvctpjz65MoPjndHeJapXhDbGuV/nvoYNlNZHFxWDy2fCu4aQgV3jPNWvy3zvyS7meMfJM22B85XO6qlSgolcxtyXNM/OfngWYQcQDvJ5/PLcPEtdONmd+X7BDMj9yWCCfT6ECvP3p2e60UgJOOzj5+9YBmWaN3+uarSkd3AO1PiVz4Q8ht+63OH06hb5Ch9dhuhfHgcmvI/ME6YKcOfvnMdn+u5pn+XvpWuKfvvzcr8BTEwFmEN/HqsAH+1+zoLIoOWfo53wLuXy9L3zXkH+1WkMeTjafzLKf0pTiHslEGHq55P2fpu19o29n68MTHyPZdPTenTgPf//GQvB2+3fzQyKP/P62QAKslYzcM07MgPLa8kHLTI7r8yDcgsAvWn06LEPo7drDrdGp0qACb2SitBeC8pdy3d5W7z85HDYU6TEAI/61tA3o8kScNxUp+HyR8H6kwAEvPz9bhoLCR20KN+ydyx/3PGP/ocLHj/c8N//P/8p8JsH/qv/+J/jp/2K//2Pv4b8ixd8+L+75sVvEnnrvFmlhEWj+uWRX6bmDDozYlNAozwa7rgCHxj1tYdAmRCitjqAcJ7kNioNUFd1c9705VJMsyEMXct39c9CAO7dRB7NETYjjx0ZPiRKAHrFjP1THawGaMRQSyZqVJC9lCMABw36yvayRuQytwvHS0Tzcn0tqTPPj24AAMNTOO6/YKxfBMuXFqABHU3bBkAOW5Nl3LddKMQN26ptuvzkhoFqNpS3A5AKaoTy0PH0ftTXhnYtOF54MC9uHKkGfAjKpgDI+lnTb/q1RHk4nWM1+J3KHG3fAG4dzUuHWTQTDoY1MaAKAUawMTq2j645oRVOyKpTOEjQF2DikIo5Ph7BByz1h8Fbx/KljSjqpgf38aFiSlMKJ1HQXlSHor4eoYXAu75gpeg+xt4sr4vDmZZOEQ31vFVqwwlTOi1j/1RRX5uW9tyOyPcGIxyRQdu26gVZX8EMMPLya+48F0b7dEVfWSt87W1QjWsJp52611O3l5Oh0J1LRL9BBEGfyj2SaKlEuS5oL6uWhAVUX8HOLSHXW7D9KAJsHe2XL8rW+KoRTikMqgo0yG1Fe1kQ4E4fqWJ+rpRXgdbaViNUFo0gUK76kg1sL5uWxgsWHe4/3PTsJoC3EREXY4HpvBkDw3PQLd2LSgHE2CL3bZxRj02jd48tolpUzUk+dhNV1eir3FZwZ1z/DvbMgcB7+o+zkXhzBhIDb0B925TxULXijDJz9PtRqaAZqN0E/arsHAaAJuB2QI4OfttDrLN/uEDWEqKcWQiNWldQ0l9xawk2WJzX5txHKcfL0CGgowOvAi8z3NeijIWtg3djJVTG/rFMVW6oK5sJDwRzz9ehLAwykNrbGfa7iKUhtnDy2wfVwCmviggeH9f4rKd5hRPRRAUgq0aLHdCl1nVvAyFWy1/ugw69VMhlCcaR2JiQawm8PQbo0Lvms1vbZalDLBQYeggY59NUjaEZIigyctiJggnglQ0iCPA0wmSGfusQ6qAqw0jv1jbbT1ILourCyckcDM0+jGo7a9RuadEfL6tItYZ2CXkksZ6ce4/KAnHGDgBh9D0ESF2Rv9T5s/5vjxgWhubPpbPC2i61jKoH/nufh+vFQKTDItzD8A9dBRuzEYEf5QLfAU/xbN0bziybABCLXlNOM/P2Lqc++NjlspZHA6gPx/BsxLsjLqI2q/cvt00cBGK1g4vpcOS1fE49SGtkyjP3Kg/2WVlqsFkiT7/OEeossqsR3T4YGGvRttTkRiSnSFNNSjxTREBeZrS1qGoxSiF2oPOIpk8ObBp/kdGuSBEghDYCPxHa7NY//0yyO+KeBu6d+ynZcesttCqmKHysGzeo7GdZD8Ln37U5tAHj+V3CYUTv57iYgg8+DrZn3CknD+qcLx/LYD6ozZIdZ2dzxRzl9Qo8Pb+IpoRfBLPA2g0xcXF775NXj3Cw+3zDtD+jXdO4fsd5Nh2Dycn/njPMqkkkDmrZWPhZJilQPF3ne+W+tPY+rWrqnj5jEqQOEKrjHSCX2MX/Vldeq743zj+LNcTTeUQxf6e+vwOwvg34/DwABUAbXRkCQ01XKy/mA3qO3nUAJLAsbY0aLXxydEaOL4V6OgBwlALMF5mGAlWlR0nVQ1xcbEgEfdEISETZxdrm4PphRl4HIGqwHp8u8FJaUrWWeTGHfvmi+e6f/s+K7Xc3/HeP/0RBizvj498Tltce5Ra7eG/1GdVE+txJ9/zddx0DImrttb47sYL65pRTRDKgLwEgDFfXJNAOkoqS3dVxHpFiddxkYavGYOXL7OeaLyzYL0pxLg+r625gBreRvqFlJO1xu6AyTIwQ8Cgp72NTeuRRDX2K0yqie4cNyaH3yboLy2tHOwjyARZ9RIABPqZqMCIYE54ioBVBAD4sCioIZkh5qHPXXqr2MVByXaLCqgvRL4S2EgCGl+tjEXSvCLRq+cP6dkSqQlCjt66AQuvoliagDr0OXq8GtowfqQ6EaP+kFB1viwoeFz1oy5b6SwSiobMxVRLIthSgjoa3q1mKxaaRZP8ob+pc1nuNOdK9ld7DR0dpyZlgKPj08aovJ9NtENi40oi00nbEYX58XFV5f+txFvSVcdwIoAJqC+obK5hoYIuYpobbcPofe8HsbTKYAFgaQDpGw5FgjahGBRUz9hlabhWI1AWPBHkkX1XndW67lfOj7VD2VlKml9Wrvdg4iBma/v0Q/itKoy8jGh5RF8vddaBHJ4As4jFeoJ5q4mkgcHqwGyjPXjI5V5jI6LjKCENLgmuApn1UhtwWAJbyYlUepJUol6bpErYIOYm7+nvB6rzn2uIuXBnsgV3TbJi1JFdmsVC3CL5H5w2kfO/Ej/OBtxZnn9qJGvGXD0uwGhw8CP0Hn2dwVCbRBwLt0zX2BACU+6EiwEwTaAFPL7O/+aFbsl1NTNT2TwhA+vo8BPJioOVuzrntV7ZKFllzQp3pPgyovSPSB8y5OT6qM80GomXBRQcsdY/CdFzsfcE0Kp50wMU3Y07zO8aXp4zfxX47TJRrKRN7hnx/JceKOiDeH6ZEczVwq6X7+rycnbWJXm8ORkqRiLa2PqVpAEjGYhnOrwVIIjof456mjgf7YaLBi6S9xso+yM92qnt2pn2/LnUwLERATkH36HV2yM+RNTf+GQMsOAMJDhCcvjddxhpFsQh1Zg0EQMmjj88uJqV7P7vcWfR++c/se8FoCJbTEc4lFXOYjyPKNj6NxntbzSGXwiGgO4kXwpwqTy3J4yHm6AG2NjDOdJEBdCXnV7+v4GcwOOx8hTv7Udms6XlH9I5SHs5/0K/fgxPxLBOLpey0+bsg2Z6jVKB/TiP+4eiQ0fVd5DAL6lmaxbtIbJSITPd2hp4z8zKrIpx4QtbdmCsRCATHBExMVz8BNjni63+H4KKodpH3i9O9Svps3ifRDnP4PVCRr2fRZBsfSiDR5DD6s57cS/UObN3jVDryvD+RHOQAEa0Pzxx2//k5HeR715Nnfvf32Rm33w92BPCOhQAMAOYb91aQ5OTkZ3D0zLjMZyJbpZcn4/FU6yG341vsnm/87rwnshjt0/X7vauLgltTahuNd8WzOf7ZAwp2CMqNQdANoc4ODXqxL/69z9/Tn6rBspQpgkHJ0WYzIlU5vqN+PVT9/jIWvTqfPVIjFMXVvFKtRNECEGAvX9gEoGEQsjnb6uxJRESpC5YvB9rCOD4U0BegbAeWnzbUL4RfvXYcN8br3y2QAvRCuP2uY/3pCKOZLkOEUZ3MFjoSyrxg0OUbk+2gygGt2ECDgdEXz7HHoFoC5hj3Mf6MyDEvpocQDh2pQ3lcC/ZPBfWVQK8tHHDeABSKSgLUtH76cSM1YrYOqea4eKQ7NgZH1CzK/bljmYzlTKXV9pszwAOI0UoJyp6QTli+EMpF14GmCFCAAkExTmCyFKAtQ9SSfa7NAO+LGsfl7cDxsmD/WMw5p5GGUHUejxdlI7RVBRF51VQY3gS4skVKSdkNrweOa8Fx40hFcCFQiBgdvATzRHUblMESURhzqMujgR/NqlcY/blA771rpYheKfQmhIHypnPiFS9izMnGlhClU3mDgUbKaqHdDHsxZ64L+M2iE0HBFdMwMJq/zzUcrCg4XgrK24HyarnOCWzsS7Ec8pGDL7+44ngpWH0vLjre+4tVr0CNdcbt0GizVYTQA1XXNrkTl3O47cANx96U5yHaF3WG2cqb8WgvaVtBAL8dw6nuCI0RqazMhKOhfbpCmFAPRdPEjG+tdlKGmCIQ1PJgdFjuNZYCen2ogfaiauJeaUIpjwJqxwzOkAKH44Wp99eqGi2iweQgiZe8zAZJgL8dqFUjuPbicjDFQRG6bwpSGFg7tUMWzd291MFQ6TZHHsHzqBcZeFC1aoQD1X0pelaaYU5EENvz5OARM7o56vRqa9BBZpHQAXCgppvj6++FY7V0DQDtpeK4MZbPDeXRQtCw3yxXuo37eUlkB3v2H2qAv+X1AL/teq6tZHvJHPbCIKtyEUKzonoubSXQYWear19/j7Qe2in1FQH+8dbtT7P723q9VAiXAYwcYz+jA1II+w8LhAnLV616wdlgJjKw2xiD1vZ+sSoswiHcKKZjAhjQkcGQtNaD4m5/tLpDB7ACC8JuCIf69H0df4swOhBwjtKL6AHIJyP/7KA6DdYd43Ba+3D2/czIjCzPz/a16zaHV19Ijm6u4oKouIB3Rh+xl5Yb4OfETDhFVGVJ+yQBE1GuMTuyuSqE993vlSpLoPUhMmhlMp+BETEl7tQzY0RuMcbd1w4QaW+TY2AMCbkpi4E8eu3tb20eAwdkskPg66B3rWgAjDxqrz6277Mz4OPlNpONR3+5GoDZgX5oLr4DnN4X14lYl3ldROQ+ryMZ85gdT9+DTxyA0I+4XsLWU8bSESBDzK+d2VFVwteaeIR5dlDIWQzZqTs5SeFEZQdH+ihJ7U6+P6+zzk3vkGMDhEYKXjyYBzCQBQj957afPX023gexnlJbnDnhgpuHOcDnYFx20FNK4HRZ+4FUktDHJ9/PqypkYMzeufEsP5NaH2DAN8CEkW+fHN4uyIjClLPvQIiLJAcYo6CEV2TJ2gxTH2HvEmPFzPdOYOL5yqlHBXh3FrDZSqc2P+3v6d/BtPB17+32tAxf37k/iTkxtbH352OdQYXcn2f//5YT7swHB1qyA38Cq78nejjpifjadqA/zYn+4Ikv+ORnZ3HJmM/zM5HOnW9cPxtAgR6blYDsKiq2LhF1BKBOpwj4vkXn5ObidOYEOAXfHIFeGd2iupd/eID3Hb0sUWqM947Ll3vUy6b7Qw/6r0a/u62QpahIo+9Zc+A9l/b4UAf9XwgoMhgK5A464vvqcFmqwbUMfYVDUxfWz4K+AMcNoVngVOTyZrnExwBZ5Obl8mwcRf99Vs/XSDsiii0OwjAi/78vXstcokqA02nj5ROGIgJQ8coDbVFnt751gID9U7GIdw/xQv6DAQO7R+ssJaEUeOUEdfaBciiTwctiekUGEsFx0fyscm9wQTQXdxz9YjM2e5SiBDAiY0TGdGDUN9WFkEojall17pZXzbUvd6UJl7e0+Xx8K086Bj5GvjYCgCKgXS0P2UHtAlRntjT9uzwEwhLlP3tlBRCaRLWJ48Voyl93wMqZtpeK9nEAMFIV7OmLijj2qqkavJUoBaopFgDvurb6om1W8cghdKniosrscVDExSOpA7KSMiukhEMEAbiylqlq5ojagS8e1QD0ReM/A4yRpAd8u1Vlc7gTfVQFAgupU+5RWBH06zqik82qrzQFkfB2gPaOl1XnlS3nnFqHCy2WLw9lj7wo5TfSlTIqb5FEMfbS8WFBuR9KD78nkUgA/bIEndsd9LJbysRjlJqL/On7bmCZLo7ydTPdBQfQGpgNFHrd1fFbVH/Gn1n2Zo5fG7nX/qKz58lqTsQ+oi8O0Og56lU2/OAz0OC2QlwU8sAoewYMx97PiFPKg5c7IwAelZSX1UDAD2pcGVPp+LCgvO5KkTVjIMAHT3dZqjpfXUYU7vc/KbU3OVTRN3duLysm9omJ3wEN3O1ln53m2M4MIVEHuw7n3tND2o0hD6AeBqbtCiySM1uQgBxbG83Pb1FggiCobxgpbR6x7xLOfrwTBZZG0cAPmPikMcA2na9OQGMGPxSABmw5NIBJIlWPDk+JMpaWsUD0swaubIemTXy6xJh41Q0/4xRc7QPMgqC8bhobdHq33UfXo57n1PtIA+oAVvt9AhSotUgHij0JjDKJnlZUGSQ6py5UKsngpaS7IcaEUhuijjknCqE8BcSKgV0CqQDRZaz3dZT18ypS+fvEPQVETCwx07r9DFyqlYMchm/0r3d1lANQ6aNtPhYBKthadyPQndOLRfATAEfbHo5EMHXMORMycdkTAyva/s1UjmwnzHM13cfPxU4Aa2wwxucUIc/lLuMWie4vDWN8MiMg2CdGibbyfFPbM/BkBn8AAElUjZZlAAD7Yc6v2qq4mNBs1RRdIVJm61KB20WN9qMN1ok7wDkK2oHQEdj34VzanxA/fOKswBlwvn5bh5RUKQ2wvjj1sY/vZufmPCZjsIcD6uPy2HQODKQgWyciomuuaInK4aSVAcTl52TAwscZTxwrF1A8X+b0u+jidG90kKfYGDPES0e+uxyAWBcFB7FbOkYeqxnIimoMBh5msb3Ydw7MfEsQL/bKDMrEGLjegIEAVBUUkNbHz/2syKKOPGzMSZxvGtPxbJ+/d9HvxMggGmfp0FTg8dnUhnMFAgBDQNq/bxoSORXjXUqA//vkrE/r413awOm86Kk6gQMMk/jkLBAbTnZOL8r7q6cSnGHD8fzMPIY5deHZuZnumdO3JrCOR/lG8BPX3X7/LPViAn/OY3f6/zSvAZz/ifbb9TMBFNRokcc25Wo62gjYBDexWr72mUsFuEZ+NqXOi0Wc2spoV6eJS9C43SHmL/d4CdJ90zaUtNj6qsq08GdIRNeUhsvhcOkGSOJdTDPg2QFiU+YuhFYItQskhPc66p3QhNEWNfqyU+/5/LT3ePH3otUmitHfbbBAGFF03RDu+dofc7pdAHDQ6Afw4OXIgOcvdDcIVaF7GEF0CPqqBnF5GCAh1kejn2s7ZOgrMCJf2cW6IqWiQ6somLYABAoueJfc2fS1Yo6uFABdI/B0KK1bdTTyGlDgpliahUbZ00vYxsA1DlxjwsdCa74jgIygHgK21vTM1P7o/z2amMtEagrNGBM9VNJYE4x9oPfvpr7eYUAEBCKEvRD2F8by1UGv4Zw4u0I1RCSWRC86Zhx6F0DdlAHRrpaKYfvP56ezDOff5tIBlL76flDjtlcG9w50svFPwEGM1dxXfXnYGl80PcQrh/Sq5USlkqrae5SalHauc6b7nfchdsUP1Q9YfqpjzlyEzo2A+w6qBe3Dos0IxyjtpcLGFCjoizKW6ODhyHt6lbESpJkjyTa/hxr08XL19AEzgOm+RfSFtmOOVPU+AFCv8FBZ0yGyMJkbyInSOxnjLg6ZXw7+b1MMzxEKsRxeWUhTOR7m1DsjwV+EGXU/RUOzloI6YfqSnKLSXULjhsP4RogJAtDKIOK6EmrU9au+yspPZbzs3Uj3Pnib6ihz6Os6xpcMQGstzq2xVu1jVcHT6mw5tr24EKgxhFoAxco0SZGmZLhL0fcTZzHErtEiBQ3nsYEBuMGWwDinSQTtWqOk7TBK7KzsgOSqE5avLxVAo2DU6XganyvRhv38kwVaNcmuvg4wX/vRAzTx1UN3m6/FUyZ0bLkQzsZXiFbaeyozXujo6sidI0IOJng6Yr5n5RE1dCc2rUMF/um9A0ykzuF+vP85G6PigDm/Kf8/38cM/QBOSceVuE+MBAB6pni1iDDuJH7nug+xr9wAzTn7nr5xjrI6Q6q6WCdSRHwupxfsiMTMc9aFV8wIACJHajOI4P8/X35GkL1fw2GVsV7y9zIIer6YxzwCAPr4v6cDpHXi9PyokDA5IzLAhOwUZkaGR+39nlamUXPq7WzydDQiuGYJCpStcPQ5M9nBzUhHwLxmxFJ4PPccALjMjnB2kqZhHvt2jB/Na8cBg2dj644y1LkQmx+9hTuYNMY6VcqIy1Jg6KBwvP5k9DR/N4O5TMpscHr2NI4p6s+ia/+pGGByysRAv87j+zF4fYy7VWo6V6KYzgsHWnJbgdkRtPQ+Ad6P9/fo6b4u30XECUBJNjmrkZnfY9Nnv3FlcU1nfnQJJ38S9HPQwkAK8bH09eD38ef7fvJggJ9X+fHMIFBaC09SSnNKUf5ucpDj30jOcP7u+f/nufrW8Dio4MCftyNpTATr4Bko96Tdf+p5E5hwvk8CR5/e15klGXBJ51Vuz/SZbz3TrqfpI9+4fh6AAivNj7ZdSzrdDEkXAdxoIzXacL3oBr1v4dz50HKO+Nn3eV/R3qpGdoisjJsajPSwsmmGWgay5gbRtlvUQMsNSkKZqJuBYMbU8tM+BM2KR5DrKJPYATDAm0atHr+8YPuhAH+kyNOFaBRcgQR1bNu1oL4dCrhYznhQRx8HpCz6/0OppM1ybV0sslsOPnU3oN2RFS2j6O8qi4xL1ci3gyT1VcWgBEZbrYTy1pS2yuZEe0SGNFrVVzVq6z5AjrZqpB2LGazm6NbXjkgJcIYJxGi4pnPhUX5oPjEA4GNFXwnHraJsYpUTaELnhsK1jkNf1yF4aG3zz6umhjm3FslXRoJFi4k0micKulhDY0xdA+J4YQgLykUNgbIZyEGEdtMvlLu1aSEFEg4tM+nMh7Yy7r8aophSAOrLlM7QF8L6hyPYIXCDvxCOK2H5qvOpQpcK2n0ubAwAACAASURBVHg1jF6BfmFU0+bYX9QAKnftjBTCcQP6Usd4ihr0nl5DXYCF0XkISvrbYr8RuBHWTdMqjpcLlq8F5WuKVtC4ZxiTbmQRjNavkffyaMDC2K8VclfniVtHxygHJksJkEjn0Y1nG//C6C96rtQvWzhq1CSeBwBkZ0+xMo2Rrw/E973knywDsAQqUAjly6bRUVEjg396s/6+d1pce0EZBirWyiLA2wMoGq3sL6uu18cBqRX9h2s4eLKUuX1e1tYMWNqb/qwy6G3XM+++Kz3YARhHz4mC9VF3N8zdKTfwtNH8QjKleABautGE2RwKk1c9W6eIn0dha1FAxvQDyJ1RKylY7goctY8XPbt7Evz0l+QC0P0AHpsCVkQaXaolaOzUGvAAihsHgOpsiAxKbTaw2QSuXJ8izVe36He3HOJIGbMzt77q/kQh0GZCv7aGJDnhAABmlPsxzjNAQQQA/LqDLep/vBQ8fvmiYrJ7h6wKDvj52y8lAAU6OqqdN9S11KgsJUq0Zr2J9Y9bnGnOMpBjnCHCpG0Twf6rGyBqLAinlDT/P0GZGEcfc+VCp1n7yMayX1dQa+CvDxsbFRkFIe7tJSp9n8pSwERgGqkwEeF2XQEH3xjB/pFV96WwiqvSYwP2A7JtVoKwjFScyui1ov94C6CJv0I/b+ktlPPYiSJ6n6PPlJx8qUaZt4h2UO29TKSvW2ds2OfinCAa6SoRKTNnXwSRVmHGvhj9H7mUXyww2/POmspROTaneLEycylwo/1puqc8AurpGs52OBrQtpmy7WPQu4rorYuOeQgz2/M96u9j6iU4HRT1Png0vTUtXZhz24mHoKGPp4MzffQ1Ioo+Ry4WmZkCfk8Tgp3ApG2PNtG6APWq37+sFlxiPWe3YYCLmH3j45UjwD3pdODkwHvKx/nydjK7JNjc/pxisO3KHoiGiLIGgGACBAAzrRW7x0XPjil1paU+lAKs0PF/bGP8XKTT2iSZ7VCKrQMrVRmA6SkaK6eUi+y4hs5KckC9hPRLtd+n89331ERzT/dzh9kFfcXSaACgHwl0KJh0HFygNeYmAVcOUD9zZJ3VcPoeLK0lHLiz85tTMLIDSAwqGKlZLhoa/bfndQmwJ9IqWhtADNN8/zSHo512BjwDE/JlbKB4z3KaZ5+TwgHKnMs4jnlK987MALdFYgxOjq+kNZqfHfeS1H4a+wmYqz5kkDJdZJovE2B9Btb83rk9vs5PwAnR8F/O7I/3t3z/nMHu1XNvAuPPn092nIJr8vxzdpZO6RQ/+5QHIL0IOCiUMUEZpS4EL08WUSZXSzfnJCJXRwOVAvYcN6KIjtBjM3pdU5Q/aHzWju6bME16AhTc0HThPzfo6OgaxbEDLwcLPN98ErwiwNkSXtIRJCieBrgQ5E7x4hAiLekmCp7mMpo5khr55+ZgTS+tZia/YAj2GQLtrIpRqtEM2CyauBHwkIkOGKUUw8mWiIJNfT2Pi4zPj/ZBx6GLVtuws3sS1/Kvs3vJ3hkaQEH0J4EYziQ4Xx0gK2/psTVlangb03gyhkHt94rn6+97irgGs4JGf4PN4HMlw7hQxoVHShUM6IVAx9CCAABugxqvD05r1drv4opI4+3z24u/FMZ4xeeZICXdL7dXBDhEX2AC3Ytl/F4ZGBJ99v470JYPWEqUZjnl1/lc5XKhkRbRAQ76DEUay7Q+3IAiZcCIvcipqdPSgfi3WB89cq+OFQZVWRAOgywczIks2jY93xxUOtrIf87Gqv/Mv0snNtP5snOte5nb/QggIM7HVPIrgALbk2oD2QK0cXcNBLE5HO2geYu4+jnGOTqNsf+dxyLno3cZbQ2nyBw/ERtvi5D3jiiz6SVSG1m6ga1pnttLbuSSrTGmMOYcaIODJIwAqV3v4Az0+P+nCkK2PoCxX0F+5vl7yBy/jhAODOc33zscpD695yhYB91KE3eAqgKANTamnhNHuqed8TlNTatgaCWJkktcelfsHOBV518KgnkX1FtfV3FmefvGc7jR0J35XrTt3HdA52wpsXYiPdBZDozID7Wuv2cL2e9cL0HXE41oczcg/k9cASYzjVREEvAzAzHG4GQfeJuyk5MQ7vkc4+n7k3aRv7t5fFaYhuM1Nfw7Y54d4XP06dkezr924ONsoJ+M+bj33oZWwNk5z86MO/DZYH66N56M7bP+iWBS0j/f08/BniJ84XinPp7n2Z/tehA+d+5wJiq0psuM7499ZPvFHLQ4qzA/b2J/+nhmmz2cdwPost5CnofsfBZGRM69r4lxFH2cHGx+v1bYnOdn6vT+nnDx23Dax5qOOyXn+ZvCeOFknsBX6XP/vI/AcH6flUa0qO6zUoBB/Z4cynS/83POP8ufy88OZrOxILIzn/v6rWftCUxw4MqcOk3jS2PwTGMCwFSK8ixi6c9xALOnhpzH2H9GjNCaeHZlMMHZotnRRhrv3LeJ4dS/66jal588m97/7nuARP7MM9HI8xg4K+Y7jv2fG72fzrxnz8I39oa39899jrMZ/hx2RGZcnJ/3byOqadfPA1Cwgeqfbuoo3I8QrJIKAwBSp0lRdlk0Z5JftxB7y5Qj2nbQpQJSLQoo4C876LFDfvqsNmGtCJQO0L3lVDUAaJbD7/NsdG2y39c3BSLarYIfTcUKCXBqEDdBN0e8r5rnzyuj3puKKmZH2vKWS2/gjbD/UPD4gUGtoKTIrkCV97tRYOtb0+jWqtRwEqB+2S0XWfN9myNSR0e1Cgblri/ibmKJjx8YZRfw4dR44OtfFnDTcpiAGW+HoNyVraDlE5XR0G4aLdP8f1j+vra7vqqx50yF+mjYXyqOl1HGsl21JNr6uweC6WHABJlDcv+LFV5lg7pg/dLHy9ee5RUatk8lHP9I/xD9o/R5WMUHc3j87BAxVoB/GeO+btcLwHtXNkclZXLsPapotAuH5sD+6wX7jfDh7zSKd//1EgyQqSgJa7m6XhHOQTFdA0874L1h+WJGfND5xwuc947163Au6lcVVzteWO+3CfYPjLZCqx3A9leHptl0QhEThLtLpErsHyvophUT+BCN8pPO8f6xRIUIBRC0LceNUHZlj+j3OrZfXtAXwvLToYBIKvGKZRkiqaQCkpE2RIhKE/2i4pM4dL93ImUDmUNWtg6+twCR3OHySDhvGhlh0agmHV3Tms55tcQmAOjOis29AWVaztQrtVh03apFKPNJjVGyCh5nAK5fNULkopX89Rj00f3QKG5Gs1cAWNT5bsqCELI0D+YAS/jrA55K4CAnmDW6bX1TZ9POKRt/JgTjQUqBXFnX9H5AloJ+WyKlA5UHq8SMVQdx+8cXyKWgWKRzMsoOTdOQlytAC8pPd0TE8Awqi6CTiVhWY2WIMnp0/7J+5VLAb/tET5fLaqCORcw3AK7Lkx2zrmtQbhf0j6tGuZuAqKs2S6mx/3nvIIucgwj7L6/ohVHuTddGJXgFBiFArvaOYhMF7mLCqU2f48aDaVbw/ZgdZoGWXX01R3e16CfMgd476uPQykMrW/qBVoIgJgXStx31b1+VOWLRcqmsLBuvDLN3ZSNYqo62f1SkWH7/pmO66HnqVR7QgeJ9rQxZiwrgdkVCg6HQ1LBUjY82NDReLtpfEQNGjc1nYAUOCaYDP46olIF7SnusRcuQPqDv+4dF0i1CRz+9Wtvr2HvXVfOF3YF/7EBpEF4Brjhu+r711BpqHdjG2grHxwMRHgHLrAOnBx/mgCanMQs3etqTs+A8/VDnRRkX/YcL6LDqFW8PZVe4Iet2S62IqhHnyHbsK4tcvT30bCoF2HdtX62WN25t8XPIo6nerwwYJENUTBdCAG3HusZztaRvAaSrlo5HQrNgoJ8VaV/q4qvjjPGrVtBCkE1LxNIpGh7fFxlikRlgAJ7n8ntENcCEpuPp1St8vfgYiLZZ04QY6KznxrbrvDt7ZTMxx+sa2hUALEqcnEQmZQT4Wdg74OzVUkz7xUCK+6bCi97+5KRotZMlgSJtZqMYs0M2feazNRPpMT4nSx2MkQyquGhl68C2TUMaoFtrypRgUnHe1pXNYsCbGIMihDNtPuSwygvhsPb4dzhetUL2XfUEDESJSLezUByQyECYz9/hrGZzvK1caoBj0RkeoECAiX20L/ah21RN7ZO8znwtn1MyugwAaLFxa36G6bxQrVp5To5wFr2/8/v1MPDMDN3qn0ngQa3KELExmNgjqdqGrp2uP+Oxb96lrvjv9uM7LAMDJrZtgA2tYSrv+E2Ai2PdTb8DIu1KXBslC6eenfN8b19fqdzkBPIloOCsf0EnRlMIGqYz8QxiTelhPhbRFn1fRB8mFkUfbfB7vZuDeV1HtZN8FvoYPrlfXouT1kI+3w0YmxjgT66fB6AAvJtssNJ56dGnCZNFS5zQYUZHaBpkBA5wFoNHv8bvUk4qEBvgGYoZiPzegEXrd0dzI/fN0V77q5wQXhgy7RMl42eOUk4lySARyadDjWePBqnxhaEVsKR+sD7bxfCcIklpWOJlZE5oYe2HrEMxnxqibKMUoJn+ltLY7XcRRQBU29E8LW+biPaE5/YCw1EGFGwpmwCMoPsC6jBmmqczC1yM0PugAob2b/G5NCTUHUlAI1sG7pD9zvOVJd/PfhbgQqaaAlEdQoVAoYa8sw+eXURR/pEEaBfS/PzVQJaHjbOcvibWL0FUxCATlaRHA1slCy+d6XOXNQ0yk0IEllst0S9uhLFmEawFX0cKCAnOrAopyhjRSgXmoO+ipZ9J+RN8YOgSSNIxADSKSxi51j7epo+QWUCj5CIB0T77t78vmug7rQk6gH5h9GbOlI+lsSBUc2WMk6Zw+ADZ/S9VgZdXo2+6o2x04nmibI427Qu7wOEpGu/5tWGQVYA8XYMs7/mkWh/RLatlrvflkWtPFAJ0zqaKcnuW4+1GqTqINCL7T5Bu6jZHrYe4I8ypjxdns/PWWQTAHPnyF5vjFrUMsUYAHon2yNmoFCDj9+ls9rQnFwWcwGIZZ5m262TAON3Z2RXG/PFxU/0IDO0Xf5ETAQWWQoOYU2W32Dy57W4MqtA+cJozQZ11SeeLjymndeFCaodV0jE2g3SYwWLvBktRy2BDRP+MGRVVZCCgzdaigTdhWHsUXFyjQEZusqe3TEZ0Ghv/m8jATTsYRDQP1ve33UtBhMQOyOsuGC/pOV0/H4CV74PWQRV4p/ieDSwbv/h53kNxnxSFAwZYbSAPLK1CiFQI+NE0fcPLHp71CzzVSlIUztlIORJsegEKII8xkkC653dHsNTYtDBEBpCSo1TmOIpFh8NBYB7zfD6DfI2ne0wASRobOueNT42kmDMA+jzf11Ei8BRV9nM+3SPKVRJBoCDYOzE1v86MBQdCz5+l1HdgNtDPec4ZHMmOi59JPr/+7N7ftyvuY/2gE7srr0sXpz07kz6GdPqT2xxzN34XDv2zM/3JGR+OojvR5yu/d85shlzu1seHntzD+9IFU8nEvD4yg8eeIZE+AKAmUMfnWQSR429tmBw2svs/Y/Hk/k1tBKaSm6Eh8A17Lsa6z/fJzlde7zJrXMQ5YefBqB725HmRJkBjTxlLSby/fn2vzQDODAo6ry2fr1P6lK4F+3kSw/QAROx7f8wzIOF82TPp3X578j1fi/4896H8LGTGn2QH/BlR+j+HYfBN5sA3nnH+/FkUcarS4BoYwhMg4Z//k1UvvqXfkNv3RCjzW9d3dSj+xPXzABRkoPG+QPta0G8Vy+umiG/XEkftx6sa77JbdKkPQxUYL0VmwBSeNf9YXxz9toAqg9+uiqjv+4x8ZREcqJFQvjxw/OKG/UPVsoOH5rZKAfghKFtHefW83Jn+FnRzQRKIA46PBccLY/nSUB4d5bGHsS6LisKVu0aL6r2pI8b6XZjxedxU0VtFEBUUWD4fqhbetEoAgHAkuzlk5E7DwZAPCx4/eu11YHnVUpUANALbFhw3wv1XhOWr4Po2XohKU6bIq+91NmB6NbHIBitNqbm2akwTykNLqj1+saBdlKkAAG+/WcG74PK7DV7B4XgpWp1gl1SFYoAn2ibVFugnJ9/ryodWRbq8cgTvmpdPx0g7cGezr2xO5o4uBXLT8o3HjVA2dfrdYWsGOnmFBS1HKSgP4O1XBVKhDIQdWL+6qItTtDGADXFn1cU6G+rnB/jzG6hdIaWAH7vS4D9d4JThAQYQOmmJTjCwfSCUjbC8HuCDUO9WQeMQPH5QwctmZSLbog6KFLZxwQAf2KpyVNV04EfD0gT1lbD9oPTs9avE2lemQwsK7fJZoxgeCVb9FC292CujmyMGgUYIC2les5XXpAZNubEyhfw4QJuCfu1lxf6DAgLdAZgm4LvqprSXRQGFRSPvZE4XkvFy/80FvAlur5vSxdtuApA8G4qk4Aq2jvJlAz92YNvRf3xBXyro5TrubfoItO3KXLisGql2AzU5w3Q0jTytltedS7btpCJ/DN3/H1e0a8Hyxw18dLS1gAyYc4eRXw89P/1Mikit71MeegjbAdoJ/EWjuuFT1GJMh8d0xk5RoKWq/s11QbDMbitEBPz5bTijS4VcVh2L+6aClGWc+9lxpO1QocvXh+7Djzf9uZd/dMfOc9NtfSobYyiiSym6XhwIWU5GOBOwK2NGbiv6paooZxcsf/uTfi7lpKpApLE3DMzmo4NfN/TbgvZhCaaKn5P8Rceuf7rqOKxaqaRfSgjVOiDEWwIxxBxmS1dxQax+KaqbY58T1tKyfD+0ROh+AG/32ZBZfGDJqlgkoMOqnKAT3mUIhLCTANVEVgHVCnGjz0Q6yVNLDhOIYkKU+nTQYj+Aw+bBSnry3oBdhVOHAr1VYiCydSIg8Dtn1NdHOEHeXl8jXUbU19eqMRSEoUyJpWD/tIK3hvW3r9oPW6NoDXTYmsmVH3Jkigl4bMG+iOebHYKjqdPspYxTJYJRErJPAHYAeV9eR2Tb16yL3pn+QDAwxPrq+f/AiDbnKhE+fj2BMTY2gO1DF33Njn76TBbjo1rD0RER1TgA9LutmbNCALoJaNYUVXNQQfdKsJUmZ/wYzn+a+znSN4MoAIbuw8UYE/cH3kXX/ToQYxJXl4iOioiey4VnsU473x3IpVYGwZw0/YtaV2YIp7Z5333NeJ+dku739zF+vY/1BGg0vRTT0GppvXcdf2cf+HpxrQovP8meLtZGFNNt8OzoTcBQT86yadT4OvW2BnCRIqmL6g9RYdUoy6kvh2oUyLaPveTDx6wRdetbaGccamvTsozxrHVKC8q54ZPAXrRTAzwx/r0jBEN9PaX1SbViilYT63oAIJsxfTLL5nx1eX+2xl43oCUAHN/PKaLMFsTJqagOAiRR9Kn8ZJSuda2QlIpo/Q6RytBy60C3wIC3idJYdJtrv19vY588c1iD2dSDES6JdSCu5WBsh7lcpdkzRMpG8T3eGqS1IYjow+HzDADL8t4hz+v4PAf+e+ub2uQ9GGjvWGH5u773Tu2O3zkzAMAI8xuwslQou0lm4VYH2uKeNFemSMBnBmjkDBpnpkeuAtLfi7qewYRZ4FWBpe+BKz8PQAGpsw0AkRpVZujFy7c1KxPX5/JRQDLMPaLIatw6amy0UtqbUnP2fX5JwhZjFihpSZRHMHIbizq22KE1xp9ELiP32nKxYaKGIGgEzByksrL1t1gkghRMccVgT7GA6M8WqINrIIWW++qQgyzvNm8eRF6vRmndoR3qrO1asH+09Ix9tD30BqB7ypkSUb7x4wKvBsEPM1rNifFBGDnoos6iswn6MLYBc8iLO6HjmSADE6yues7VHbXg1ckk0jbrXLjxrT8L8UOmiMD7mvG93YmADSjbAVSPwgnQKc27G/wdvBB4H1F/T3EIR+4QNG+vMTukaPScDu2f5kUb+8DKRmJ1PQAfbwC7zqOr+NLjALG9yL0/NByBLIQc5TEbNJ1lV6DJS0b658lfSqJzXXZljyhDApHrXuylM7QygG7gkedUe9lUT/kINkITrRJgBrQfoLIUNFPpd2cq5sfXQ7R/CGUOMUhr49FVSNOFGKtSNOSywCN91F1DwcTn1oup/sOE6CxtxdMF9qYpMLu9YInATr3fzcG7lDlSKaP92ilf06Jlxm5mzJ5Vtt35qzVKjhEwjD0aKu5+prkWQicVXw2D1NouzKDLqlUQHOVvAn59aMSwMrBLjE+0219AoudmnKNO9XYnw2nePk9GUZdCoPs+jAx3AoGoE5+doIiKnEX8gOHkWDqMUqhNvNbAiIhg+Ivb90OO4Nk6Fy5G0y+gwlOevJRU5aZjOJDpM7Q3EBrahyUEe8EEeth+3sfabC8KlMmlwrUhosqJvVekEgDSPZ4NAesrmz8GwqiqIAAVj1BAwdC9jRKV1mbyey1VUz4sTVDpPBhrvyhjhtA1HWLhYImxz4dpeMz7E8MBav6dPo95lLdxQ69ODhR7Wo6vv3OkuhvQ4GwBXzde/nFiJ+qeD7ApO9A+x+bQBijVO3CozcGbV2rpY9xc6MyZAx1jPz6j009ODYWx6dVmclRasnga2Uv9bJQ7yFCtDKU/Izl61HpouEgtmr6Qnde8hlsfjs25/Ql4CXDj3J5nP8MwRrO4mI5HCScznM7sONq4jPHpc7u7DAOdUh9bjeoN0z1j7c17CTIi39JVaPZZ1JpsDUn8TNtDU5s8mm5z8jjsLGJlBn3jbJ+cyrMjkz/jv/dIenZkTmfE9G8/t7mP9iYnWth0c6DrUBhjDH3cOwCcnhEsJwYVrShFtc5t+F5f3gnvyQh6J7HAiX7uGhBnRkWydUK3gQkBchgwQu5gefqCj+EZcATwTphSZDi6NmfhXHl6RHnSd7/OIFz0k9/dd3L8z5/36hXPAsXP1hQTIhLwzLnPQNCzHPloV1dfrBtLJ6d7+HXWdMiMA04pkX+CJaDihml/5c/3PtIi8nNaG5/PlH6MeXo6O9nBfjY+eoP369rAqGBFPfvc96L5ec+mzwkQzKzvsgeeMFD8nH1XbefU5qfXk7a+G/8+zhA9z8sALr5x/TwABTM23dAEADCrofFQhoIjRvzlbX5xnw4BN+jkuqLfNB+KBMBDBaro65sipxlB98sQGUV1VazRJyuXFxOCRl0PzZ1+3h8KJy3ngTvQ0C6EdiHsndVx22o4BFopwaLtC0HugKYFKO3//ssCPgTr5x45rQXJePFmyKAMB+27sxrBi37+eGE8fkEoD2D5IqM8H1MIMyI5T71Cc/CdLbALFiuRFlUaulUiKARa1GHdb2yGukbkyn04xBp19g1nDrFon9vKVjkhObHdQAgm9IuNdUdQ2JWNq868FEIz57nvyozoBhh4W3VOCRVAfbW87UrKHIDASwu64172DrnPG7xdFVCobz1SFLipeJqzWiaBQlYmQNmVxcGHOu8HOcNi+HIF6mg7RZxe79rmjzd4rnykJkh2aBWQkKLaCWUTlLc2ylbaOCtIY2PYx2frvSME5mx/sWmZuLo8DN3uC1sKiq4Jde5bOL3uMMhFIypYBC5s19eK46Wg3hv4bdCzu+WfO/Wb7zA68mE6Asmwa5qDvnzlAO68zCS46u+tHWTMBykF7YcVx7VENZP69bB1o4ACHhtoU8dMbsoaoN4he0c1jRAvoxcHcj4TwnF0Q6qZan0Ff32bD33vy7po1HSt4C6zsdMEYI2w0dHV11n1bKzG/uirphrQdijzY12w/biiL6xsqPuh56iBljislJqXhTPDWIwFQtIGPf9hET/zGOS6ztGJbdfcaGbQ/THls7vaPd03yMsVcqlD+8bPTebh6LnzXfT7Mc5NoAKTDRGh9Oh3RLmgDvBiVW48cg5fF4x21TXMtxrOc4BOVpq3X6ulGyVjftvVgasfcVxVV0CYUL6qo67rU8dEPi4q3nlRhXcHrmThSFNwkGB57EF5j7Xj6U42Fu0jhYYMH+pwOFOIHi3aBpEpyilLRb9pRSAprFVMRNBqtb2mJd7KA2hX3Y9ls6oVgmDfAZgBM2dGLdr3ujfNk6c+HC9/LxuTTT5cB+Bj+yWAkHifS/ybjmasBl17/de/0KoPX96GE+oOk9kEqhPQhtFXk2G1VMhtCaHO0FEpFAEHPYOsTCowbBM34jyl5p2jowZXOPNEEUUKkCNy6AuwJvsFGHoCfj9AI4AemX7ndAxQhGB7tpZhhPt69TPtnBqUmAoANMKabapseNs9A1SJ9j0BF/LzveLCCZgfAMfQxIjxydUisjHubI5SIFcaeg/AGHtjBKBbX5JQXvyd8+ozEFEIgAM3cxWMYWineffUmcemv/fyob3rWQQM0DUcQL/naR7zvUWG/gOagvFe4lPqe+f3NCfBTPA2+poENJJ/HJBjA1BGOkPaq+f5l30frI5iqWzOeEh7Y7oPgHNJRndSo69lOFNkZ5HeS3PBw/mONZiYG3lO8xzbu0quq9oJRIiKEoAFLt9TwMMBduDJmBMgAxSbvW9yesQzJ/Bb6QddALTx+5xK4P3MYyW2Tk2o8Z1mQgZrevq5a344SP9svPH/Ufd2TXIku5KYIyIyq7qbnDnnrtZs9SLT//9XMpmktdXePWeGZHdVZUZAD4AjkNlFnivTyyjNaCS7qzIj4xNwOBxPUrz5aAZ288+efbArgFmlI1ITckWEciotGX2Rx7Qcwbr8b2DeLzuyBIsIHpxZRXzG2aF2jQHl789XZupkAC/AvZ84/fQd8xrIbeV1dvhxnINPLwakuE+n+8lhf3P/MYMtv7ieVlDJAPMZWCinffvJ9dcAFByVDxGbYdQh2fZALmOBHAZE8YxCRMdavC58UJuDelMgry+OXppBK6KR7iDX6xykxQQdx2I156cquR4NzdTJw41GUrfrbcR7RSrAXbFimPPFeVst2k4AQnZFdVr4aMVF6QbavSRH2N+ZBwkdp8cOvTRsX01ULOs41I/heZzw9iHAAoueGfNCRYCvFVQyl6FoNxqYWa50YwAAIABJREFUCKetv7bZH+5A4kvDfjUNARl00NVK7AnMKQ/Hz8CSHGmirkTp5miPNg1QlsMcTbC9FrSbon3sk1lR/LPq4EPWQhgGXpBZQmMemNH34lT5mFvVhP/61dIX+PuSSkONdbYNAiv/N+ZzR4OxEAR4fBF/3kzXMCZFceBGvb+sbGe7dXPGSzFhJ48W6MVE5qilAABlLRidDAQXP7xbm2T3Z+waqTYyNAQb201DeyEAigJ790syMGBjBgXk6iVGVSdQ8WFU8BBXi4MDJp4HHIxEzsvRCvR1iTVG7QTqPtQ7BQZlHng0ci+2PodXkmB/ogAdxR0wG/fqooJjreYE3Xrkyve3JQCn9t6xANOZ9naXd3cY38sUYN361BZQnakKjKYOWFT0t6+Go9AIqxXj9Wqsq4+77VF9WMQL/h06LyKHXNayGV2whIGiYTgyjcSM3Q313nwtTNACQJRQPOSeOpigzVkkvYCldk0scnzKXT44Ko8N6AXjb1/iGTF3aoVeEI6M3B62Dy/NI7bFqO/dWQgDRr8uivJh9GvT2qgheBglDrcO2XkIwjYp2lx0Fng+AOaEcz17dF8XK6NIpkxUDnJnU+7OrqgF5d7RgNjbADds+pzb7U8TyBxrBVBnaobvfQBQP5zlxmWSWDrD20PxV6ZF1ZuDdveB+v6wlAoaFLWEoaG1AOuCsfo5drFSnbwPWXBjLSZ865VVWKKW2g6x06mt69EK0GCpHtsIfRFj/SwY63WeRR+bpS7Q+KMm0dIcwOnpfGfkt85+4h5CoUXVAAO0CNAMrLG+TU4Wo9C5qkB0rBu0SX9DHrvNGzIS8mfdsT1EUMnWETFw7mIOFtlTVjFmzPWR90I62ec1lJ6FdZljKR6Vz3YMcLSJxJlXwx3uxUpmiroQHueG90/YXDndgs55LpdIkWoKSPKZJTn8pC6TshxpMua8RZRYxCJytWJwDyJIcwApTsY+9z8RAN32Ihq/scf6GDGanivNeEUvABHFNS0uF9VUme9MVkAuvZmZD0i/4xWpLJipbpx3ZyZEYpxNp2n2YzwzUn983bRqtO8s/sm5c7aN3YkOUK9WCON1OXWG/8+OCfsM8HNBIJEvBRx0OvLZ0WU+jxcFCLmuWfKxzvM0AIr8MyRH69B3/ego6z6dbFVAuzGlgJl+EMBVhxKA9vYQeMlOnfaBWZI0OerpEj+LlYyjIqYlcyif2OdnD4HLtAeIf6fCjZbTGLZmwEboxDmDmm2LRidQIc8jshUCeB+w8nBu6OWAB+2qcwQ6p3edndmS39kc2YOw8KHTkpPO+yTmEjUYPtP6pxMdEXP6cc9AgWQPsfzj8X2eOPDP3jn/XBX6s3QWX99syyHN8JkTns+A/H+u2Sdt/FfMgHyf+Cwrs6SULd47UimYHvOz65w+8qw/0/UXART8cuBARaeYVJ7w6s5XwfzZAA4UsoRwiTvWNIIPmyRrlY+BqIXKBX5ZY5Joq25cS+gACMWocuS/mPMyUW8gSmtR+Movq+WtaBTJo3NepnMFICj0VNOv94Hiqv8Hcca0WRWPBMs+gItR8Vl2rOxGnyXAwYVXs5iYzPYJjg6mpUXMzwLmWPbVxOKWd+tnq5EOjIXvBDeW3bHuM/2D6vtRivHwZ4IUqGygPZdMirEI9OGslLUiSuURsWeky/uRVOT2boyV/rbM9BTXQrDo9zTm7T0F/SqQPjd95k8be6Fan4gP/EAwAAj6SFfbs1d71/rw9/Q5rBxzt4tlN2dXHp7n6tFaRn/o/GRnTjxFYSwIDQPpMz/bSlEq2mZVCbKuUtnhzAkJ0TAyVfpKZ4Y5d3MsqGMR/TjwOQ0I3gePPR2oZQoJwuYo2qxQEZcDCsHgERdq4rQvcJ0D8coicANcXNfDb7PZfK4/LCLbL9VozncHHUXQ14KxSmhr1HcCimXSoT2SJneL2hzK3A44GOagDzMCPOKked9h/16qpbVERwzPX7Zce5USToS2MtcFmQWxD8w9iKACHWXZx6Su+9zBmPtXRHhF7Hd1Ot5SrLpApvLGPpwjarHv2uHV//YKFEH9jskg8OhORFD3DmwbpFrecURR6Qx2AEWhMCffnF8HSavvy1Vs3+tqzor3t3KPTAd2poEb68cj1A4WqBiYzHGWfSQBXY86uvp22bqv+TpTzfidYkZieX/YvHp9s9QjApu+9wFA3SxCPhZGq7yvxkARQW9eqecygbHyGM5M2FE+NsuzX5rNL84TACAzoRkzoS/F2UQ10mW0eMUSgjXDU50cENdgNKmj5TrnhwsGhrilgyfb1wX1MaD7QNu6ORsjOYvqpRCzU5XmJ+di/J5gmWvbSO9zz2nV8t/3nualG/rPynbSbtDZzwBmcABIDotOZ42f5f0Ytcx56nSy/QoGBQETGmjP2JX82yne+uJVELxfUYun+sy19qnf9u7Cw3M8QhyPYBbXGNM6WgW6QGVMYdEna0ZGmf2Qr5wHjXqM1ImY07Xv0GIpRpM+f3qF4mADv4PkQOhMKQsWw2pClBGIYiWwPvxsqTOQkACPuGhYq87UFdLYCSqQEXG+8vhlhwuY/2eFiGfOxNlJZYUJr2wgjDIf7NY6bdc8X87jkdZUgDz6hFItAuiAdgcr8lrMoAffNwNJGSThv584kpH+kv2QIhAhyNUnWJOrOUR/nRzG7CjrgG67VWzJgo1kcnDcMuDOe3s/a7W5Koe1OI5sBDl/PwFFezfwgW2vqV8i6JHeTX2dSEGwLZimIADGyWkNodOUz96pYXDqbIIKQLKx0vsT2KE+AvvII9B5dhzKPOZoPS9G/5NgZAAiKf3g0P+8XwYN8jroOsEqVvPQ8ZwdwWecnvVUWP9Zu8/3Audqmfu1/XDu+7x+4YA/ZRtwrvAeeW9mm/7VPf4V4HH+OW1kuyEObATg07p6ymhIzwgmxLkvTtdfA1AQMTQ+O+WPakAAWQoZFYUcBlq2o2Mte7eNOKG2LJEVCLwrO8uyWImdvAmvixn/1R3UcPxZNkM84oQZcXKFaIg78ZcC0sVNhRqR97x82yIi1V9aCAmKAtiAggHcgbEW9IXChjop3GEoI/J9GbGvVSAoePztDVoEy48ezne/mm7D/lLdybSD5uW/ex52M0f09m8V/cX7S8zRbO/qEXWEk9+vHg1dAahFQvACMHK0vCvuv9szlx+KspnDOpq3wZ37+tFRP2B9BgRVPhyUAbQPy+NiVYfiDId6dwOretWDh0K/LAAsf19l3jfSK7qa8b5YtE6reDlL6h3QaLMxs9KJNkaP3wve/0vDy39TvP3XPRzz4oKUZbMSifX7A/htxd7q1BTYB1QL1u+p/Ir4H03/hxuETbG9NtQ2kreJqR/x0sxJYe68WgS63gDREvNN+sDy58Mcipdq0UR3ZFUMQOirYMsVKVTsHgl0EjVgYSyC7U1Qb8D6fTh7wVNgGNUUMeZo8VJyO6sIKATdaO+tYnyxeVrvI4Algjgc4/21oOwSEXbZFfvX1R1JdXaEzX+mCtm6UWdj7IAC+5sZAmOtGGtFvzgdfp+Odbt1jE1QHi6G6uu70LEogv3vr4AC9WOLXHgrt+hR1TFQtgbZu7EOxKKL4RSsJg4p32+Qvc/ocpRqOxoFKp73Wi0NxEDDfear81pgAZvdo7ViaR1KgaGhxtpQRX9ZQsCP7cJj89SOLwa8/HkPJodFonePepYQT5SbiQ2qG7mkVkME9ZvrNDw5IOnw68vFWDdOMyzu3GPv0Nfm+fxeccHHyAA/T13x9Vs+TMxPLyzVtgNLneJ9Je0nW/dUMQd91kkhFlVL6+DFyK07sFgXYwbVivLjjvID9n93LILFcFmgpWJcV9ub7pbqsv1mKRD9KmgfpvnRX0xI1MCLAn1p5uR7ukZ5DNSPMcFc7z/ZB+q3m733y2WOI8f+xUrsEvCSfTdGxa6o754a4XNt+TZfef+yWBrQrcc5E5c6K0/tWfe/X6BVonQmGVfrn5uDrR6pvywTHBA7U8vHfqwsUQTj9SXACtkG5PtHPJdGUnampCuQmD1gWcrLCnkpIb4oj22yDACUFG0Kth8Bs22HXlcTD7156kTW+/B5gSJmOzB3ns7wxVHEUuyeFEOkcS6unXBZsf39xUDN2wbspqtyAFE8cIE+gJ3Oqx/8se4bxpsLlpI1MZguKkdnMBvKSzO2kW6zD14u/jzaUAOyLh5YcQc9p6YCLobHPnR7bZ97GXVLUCwKKS4CWL5b6l6kKTEtgmlPwCGCGUyBBOraWvf2EMjx/gtxyuxMP7ajMV2Npaa+prCnOUomwJ6d3uRgwkEQwCzptHcHvV4ddCL4RCc9VZ85GPq1hhChzSF3rlS9TGm3lEeRadNyPqpGGdC4CNoB06EEkqOKAC9YjjT6he/KZ4ej9ZydwXdVB8QDRCtic4Rn5TBdg7mWFGa8pLlZJEolQlMaUhZNH77uGLlPTrtSByXuY/1N3YdwsEj/r4ltoPocTCAjeih0dHvm9kCwqJ+xEAgsFTlGn8uw7/I53j86JK2f4ukbudIFZupDFm6MVKqfRJAJio8yxSv9zNK9z3lRqzn7PCsdKAzzlEAD9zvOX/7B0TGP6hsEacJJTSALo+fZ4S4j5qhUB8ZGAhfyPsx5kX/+s0uPrAVhac7oR/3spP+kFGSABJn5zt9zrWcGRroXgAmqZEYGWRcBCP5kPLmPeAqHNT8BLNzzfgYAZAHM2JP6Z5Amg4pMFfr/A6Cg50hCftEyP/cMBY2DF2njrXpY4E8jprxnRrNVA0ygCNh8DmZ+v8Cj4VPU6vBREUjxKFk8C85YGHPxqUI0pWkM/05srgb8CezviMr6HgwAU93fI/8VUYZRdnURuYLOkorNbkzhv/ow4Ujp7jA2wX5B5NUXOH29p2end4r2cU37ArWIt2AsCMfZ6mzz/+ZJMyVBXSCMgEV+V2oSAABTCczQ/zyeTNGw/j2OCRvPEpTRpwKo5SqA5TeDlsy/FRgN2N80UhzIIiGTJJrh9Hd1EMPGFsA+UB+mL8H+nw1kf2YhSBuPUr20pyA2EAqkqYqdp0OBYYCJemSXJVTLozs274Yd55On4Fi6i/fXnuYVbf2BcA5GsxSIALm8/8qmx+AC14DTL0RHtCc+Q+r7PpzOz/HLY5rmjwgg5hgb1XxAkeZ/Oc0xIETy8FrnexWZCzMZ2uUxIA7uRSlXtXGDr6+xOiCXjA1Nh6twT3HK/uEScSG8tDdt+zTW/Luzg5JT5oc419uhVB6NaNVZvlI19k7xfEcwd5/gax9JCNX6IfRFth2KBlyTM9VcsZ/P4zzlmZwMb9l2i0znfGrgaHgllXX1eRBsDzeao7KjTDq5pbLt06js6QAEzAj1tJuISIsaLTUftMwtzpFcwOep/3uMqBIwAQqYKram6CYwDVJfixRZnUw2cWFc36sVGATQfN8cDgJYGpj/rg9nu3Lc3NEMyn09RkMd5JoCkDPSzu9KVxdnwxGY0mXuQ0hrumDudd6vFBcWLbHP1cc4OOx2RqqNVXpMKMR7ewEEQBRaAtlATOv08Dv298GRKlN8cQzg/jiMu+zpmYyGA2YwbQYIxXOGTpAjO08i0wbIc5pGd/Xxy05J+oxW19JQAPfdjElgagBkWycBDDPPXCaIEewWTFaOgxHPKMia1n9ebyheli7T5fXJOPD5p/H7JMiYPzP0uPZpLFMz4dQ/0Sa+56l/5z0/vd6xz7JRzprvdA5EEUr6dH4IEmRgZwBmLHFDnQyuZ0DDv7ziXf3d6IABE5xKc8/e1Y39X6yBp3nRT58/4l3t6xrOtb2STFAhzQNVsnpOY5nnZ94Dc9T8/P7RX7+wzZ0pEs40zxdN7QQQIo9FUp90mDGc1iz799QPmtt7buezvjtfv+prvku+zv13/gzfh88Kxi0O4/apaed+Od+/uP1Yc7+MOV6ZLcK+/DXL/fPlbQ3QIbftMO7pOjupfP9o+oy2f/o8NQ/OPz+PXV4/sW+lNo4CjP0zoJCuA1OKzz4AISdbx9ue03S598QelBgkB5bEs7afnh2AzbPrF47/JzAhv8uZ/VD+A+U5/fpLAApaBOO6eJm3bvnDpDR+UkHG8YDLk/OxGbXudjMU7pKiNkSqnUZoxq5F+vTyAn27YpQyGQmAU2oLxqUiK8DPMoUWzQHsMCqPjvqxoQEeBXewIeegAoCrf/e1hPCVwKo1lPuOsVT0qxvsO6BNsC8TjTbdBcspH6uVVKQz2b2UZP3oQIHllLsTYtFcREWB9jGiaoN0RVVF3Yz++vhiQogv/+hgdQeoOQ7jWqKCgwqw/BhThFAANET6AgX/6FzffxMsPwTX/7EjMy0AhG7DWA11Lu6wijsuGWQgiAKB6xl03P/tgsfXubj6RcLRLy4WaI68lX3UAlz/fYPcOnCzNA+WGNVaXF9Botxk2Tx/eCm4/FNnxYMi2F9YNrOg3gmQWKS7dNeD2Myhbj/GdJLHBCUAYPjmsny33YeaBwCwv1q7GQmsN3vOvtiYF2eyyDagLxaBH8uCsinWf6g77hqpAEyHefxmaQ3rHxbRb3dFgGf5jKtH8KFfBI8v8/dlc8YAHXg3usZSUJkfPGzNjt/fwnHFsE1a3PB7/G3FuEzHafnWg+Y9loL+1ixl5D6sDCmA7Tdbh2V3odABK+15FZS3dkijoLgfK1AYUm9zsf5xA1qxEpMAxtosD7wPi7IBNo5uyEpX4OEGcSuWBtHV2U0zZQZAaLEwLclyonHMK3RwM8rCuXp4//0lDnitxcrfkuafDzRVlB+zvKP6nia75z/vI9KQQo2fDpDrGHAPaY8t8lCld2OUvK4Ya0X9YWU1dWm2V98eFr1/uUxj7/1m7b1QYEQtmnpZAoUfL4kd1jXU/K0ihqVPycecO0LAmH1aiulnvC6zUgH/nEFkynckoDhSPGD3HleryiBq87L900poEnCWPoxSKxJVhBjpycKPBrbYOIMMChG83HbsX1bI31csP3bUHxv624K+FjzeKqQDl388AJ3ioCwJaaUeafx5X2RAxrU++svV9nxPVUBXE+cMUUVfmwKMi7EjKucMYOeYA26jFtTN9moaPqY9YsB4e3fdCvE9YbWzstwsHcTKzJrOSr0vB2coGApj+DqxlCiRyQDEukxjlywRziWCKa26U1mPjp46EIAkRthqMBCjgtT9MaOqfsntEeOaHXh9uRyeL3sPEdNc7vJg5MZNxSKPAGSztrZvj6nzxLm0NBNNdiFPvN8j1cgYQnU6nA7KRLpGgbFiWkH5cTfxaTrBBE5GEv4ks4MRtXXBp4vMjSymSOCT/w6bzDVwshYA4GUfxQ7jxcodRn+1BFhy/bgzS7YHtUtQ/Ll1ne3LJRZVnVmBIzBLZ9GrMgTLwmnz/J6IAC/X6Uzz2rajRgSjvHRQWKbTx10WHzsVE64FjKWz7fPZHsFk5YVoO9vLKP6e2lEK9Hrx/WY/OvCAReCfUbYBL5FYZ0Q6iQIGEOQMDi0XO/pHPaRdHCpCnP0VppWMtC7z7zhWQwGmv4hAvVpNRL/7sPfwSiwHkTlnusR8KsmFifXA6LkHT7i2h6eUZL2fPgCM41xJbZ5O9smJz/O0Ys6VXMEBsAi4zxWWHAyBxWWdzryXQTyAGlFqFXPe8j2HItIjTqCDZtDROtbmIzAdSJE5XgeB+nqk9MeYjvm+xfUihkL7NsU081h4BnCAE9vD206b2fSZshhgBkFCFDNeQSwt8qz/kefjsz33V1fWN+AeSMC5VgRrYpzKK/r5+akk5bP9PqeGxBr3OdBdp84RWIILAjmyyvz55xKZGJZaKZxvP/tsTllxAI2A4eE9CSI+e58Myv4i5eMvASgwH1Y8CvNUkId/+wZ50EQgVSmoM5ooQMd7HDQYzhsE80KJ3qsZnPu1onRzIKOcmN+PuaoEGSjUWIBwxPtFIhddpcwDXQDSQkkH58ZUumIw4ioSxhmrTUj6ntHp3eH2d2MJSinqc8icPe3TgWXahTQ6kJ5PVuz56puZOZb+GWe7hsZBXmfi/cqfiXgKAVC6fad4BCWzAkq3HOlIKxk43HcKq2GOGXN8BZHTP1ZGyxDpGkwLUaF+g/W5fQ/Rl5oOXq2WX0/BxpKqWJSHYnlHCCpGrfmBQJCzwUadBS2YkRSCCamfGBmYUe85L6mhQXaAuLNfqXFR7XvCKFrql0C1GdkeVsVCK6P5lqqgngpSOmapSH8PRvsP2Ozwvjuh1xHB9/lp6yitDTcaGXHPmiGZVcKKEVaiDSGyqC3RoTnG4qkdClBFWgZQFknO8wSA2L8zuu59x7k5pjOaqezcM0LYSdincDbSdNQ+lZTy9473LTDwQEkBPjm//E6rM9XJAaF8UTQvjIQ9OdKsNLNriEQK54mzDPS6JmOIaRQawE8wr0qZp4XO9wkjZF2gS/McfM7Bo1HDv2e5PoBVKwDYIZjyn0OA0ve8vM8fHMkBYJFY0wAOxuyByQFAmQMrYnu+IPQDztFcXerULGFN+6z9kcFu/6Oe56yJiaKri3+xLCWBaUWs9dFs72VZSO5J4udNVHnpegBVUIsBK5Hi4U1Kc2W4w3AQqC06mQA5cqMnpzPty3EOce/eB6CwvbI4oEf2RJG0zma/xv7MMTkc99Yh4loJcTHCk3O7s4P7q+gXP8NIsEdmxO2EA9UZAOu92/yeEeFo77PrACRpaNAAPLcLPq0H1SkE+ezegxWDxvF7YYTbWgMwQUX1cc0OZWJVPGVqZkf+2ftl8ID/z3/nyyPK4ZAz3z/GqhyjYvxO/n/Kc455mByPQ3vH3D8O7/OzNno+umQH8lmO+Pl+h//6SThoXHA/U0yDQI7f8zmHlGYU4JfI53Zy7p2diDNTI49zfp8xnn/u0A+nH3HvChtJp8Ak4M7kkyim3/8w51ilIfqFjy2AzLPyYANImte8MkU+R/VLxWemQHpHMleeMinSeUumxs8ugglxz/N8Ot/73Cb+avZDRJWLwNgbT76Tn5vnsqZ2H9519p3EAfA5op2Dsr+KOk/xQ3f8s+ZB6CaMCL5GOw7t57OO70eH1xhZEkBIsGUyMOvtDhBGywQ/jzc9rJVPKSK08Z9dyck/9E0G5vL1Cx2GQ7v/1XVKL7B0h9NnYt9IAG3eq3MayC+uAAwp3PmE7fDTdo80Hr8ScMRfBlDwlIe9JK/MOiDnPhK9D0R4349CO0T3/KV1s9xFQ9C8I3uHDLEoxSB9tgOeSzxeFoyrfb/9eYeWhsfvFesfHev/eJiRSAprkSifV6gUPwbKXYFHR2kFY6nYvl6s/OHF8rrpTJbHmNFrV3XvV8trbH/esf3tiv5l5uAbBRZYvvVw0Oq2oykiL/jx9wtGEYvcCszxE9uMLSJregsAzCkLAMO0AB6/r6F/AFhEH9WGhRUXDoAIYEZmEyjE+1OhUjAq0G7wEoT2DnpzsGR1amtF5AfTCa336XRRH+GgHzE0BNUwFOPSsL817BexVAQFpAsuf0ztCdOOsIoQ9W7AgAQwZc9SFIyL4PG3Bfffarzf8m5Od70N1MfAy79rtJeLu35YVK962UOtLrx537C/NoxLCbYEWQasEqE+3+17/gOfI6KAtoJ9tXSUmSYx0yK269yIxmr9ZNF7ay8NflLFcTE6NRxgeP2/7T59deHOu7Ff6r0bsOLlSoXzdodX1jANBb6ERVSB+9+togD7q96spJ3ctxSBWQA5AhK6mEFTtgEZgvZuebiPywJ1sUQ+p92shOX+ZYGKaR+wNOQ82FbIXtB+7DZfNhP164yKO6CCVqDqkR3PnyeAIADKbbfykV2hS0X3vEY6ZQEe+O+xcj8aFplWc1ykK9TnI0QwrqsxsrbdOpCgw1AoDLnrv78YY+lSDNS8pWjRbYf0jv63V2ha0+X9bk7mUiG3bUbFuuffrgv6v32xaPzXi7EAto5yf1hFiD8fQBWM16utvaVO7Gu3spNkLuilQWvFuL5NQVgZ1kSyFeiQV3M2IpKvOvOf6Xj0Dr1eLbec1Rc4QSiuu3fTLWAVi95N1LIUT00Bxps9W3bLpw2wwteaFjGNhWZldB23snfY1IEOoH9xYTwxBlV5fxhLYymzPGQGl0uBtGrnyKWFM/j4+xJGMdk1GIjKQWX3yiwKryZje0C9dTsbVMGSmoqB8r5FdFlfr9CvC/qXFX0pWP94uA7FsHG8NLfxq7OYkjMABIuAl6jtr2P1PbCIra2tB3uLzJv6/YHWFdvfrgZO+jligJ8ZnOVhQAfTTw5VP3oC1JKjKI+5hlixgOwVrMVZAXSm3fh7bDMa6IBSVOkgs8CdXBN37NDH42is1Wr2gmueKFMH79vUZgIOhmYIsGYmQBHXDyl+nzad+xQYKd9vlpqxLjP1iWeyV0AhyBZpAWRm6AQbFDMnXbYyK8OUMiPZBDxz5Jh9dwY7coSeYp9nUJTG7dl5bSXEQdGqlVKktoeDpNm5yekin6phbLvR3Kk9UWR+hnMmg2tqUWhZFp/f6XfhoJVDlQYZ2xQA9Vrzh4gz8+85BhnMirYkJzszJvyd1DW7tNUjZTo5eAdHgfsm+5F97QA355sAZiTQQaAOD/UosjPARzLn+gx48N2bQrvrHNwfxpTzNaHrYrpAGbTh2Do7gDoFYD64GNtMWrOSwnsPxtwzsbsQSt1dj0EVUQkBbs+udl5rHns65s+EHAl+c685VLQYOOarcu2eHPneEYKGBAU07Qe0O8Z01i3NleycND9qsfOqAECdoCYc4MgAXH4G28uAR35OrXP/27bPAEhK/TgAPbkvuA7oyIawaHJA2Z4OAxvO5UAJlLQKjD5ZDienPd4PMHAit1MTM0U1ovwiGvpN4fAzKp8/m4EVZ5EIQSm+hu8V9i593jP/jdM6OV1MUSC7QDP4q3OMhJ+tFYdqEJkV5/f66ZiQgeE6Bp/SW8iOyqA7r2VxEDTNJfeJ2U+af5f2mcMef2KSnK+/BqDgRnTUgz6gPf5yrPOEUXiOAAAgAElEQVTrxvmBXnXYDEqKbNnC03338jDTCAmxLeZwk2L72A0kEFipLQq/0YkeM5dfgRnJrALVMsuW8b1UD05QdeE6vpvsmkQbrYmqMzLIKLAZnfZQCkP6aWL+MDcIMiWGAQIqBQUDg+FxOun5EkQUQIY79P4RlgskmyG+og42iAECANBfLJQtsOeXbuwDqEW+AUT0jQ4tKfFaTARPYQCGCdCVmQvPZxdYznxxp6BaSU11Bka9iUfIMKOA3TvNHegooamICHZOoVDhmCMihXTkrSa8jd2oFrXlO2HXJIZHh3Ua3/xc2Z1RsRhroq8uINjnZ/q1gGkHZBJE348073jmpYOFWhZ5QxleEk5cPKq4bobNMevj4akqokC/lCjxyfeuQ7EUG7voI7II9LgWgnUDGPWa56MbAKZ9UI50Qb9HeZhTWLYREV3bI+b8oxhipEsw/UTEdAK8lF/76EbPpxNbitklxdXu9+RgDUw6fOw1Pl/yIQakA5HtcL2EDgRACncyh3djoMv2HaOqzXeKAyih+9IVUpPOSHV2xr2HI1bfH9CH72P7CAMq6hYnmqDuu/mI7w8DP64LolqNG6LiVN0og0lQrxRzBvuYzAlPFyi3SV9nX4aq/OrOgIiBDR3Qa3Nnp5+MU6sAUW+zGsh4WWzfbQ4Y7N2ez8PTWWG2MMS0BkCjW2Ypt7Pj5Hum7EemlRklyanwuafibQE87cV/7Y5+rgACNbCD+xTnQ0kCvzF/YPN+/WbpZe3dwZo6q3TQ0IgKJ63axrAgyilGZRle1CNwZ97EZifbJuZZQaT4iM95MrICdMNsS+2KfqmW/18t4mhlfcWAHT9HwxluBYzkRllhkRAFpuNjaUVy6BeuQwr5mTCUAyukTC80INN6xHEdHqL8sVangX8Qo2M++7ZbCcaTE2fjlaYL2+zjoEyz5CU0ZHUyZ3LklxdTAvjzzJwYesgpnlFxa4ikn2lD6OAcPktgIuf5NqeQ+7kVJRf5HX+G7Kd7sX358r4/6Elk55+f8fvMvkzvMsZU6Y89F3MeUuNBvT9zO55E7+g8SQZRAKAsaUypn5Xuw79rwUEDgPMrC0CeARi+Pz/Dyhts1/leuU8dvIt/5/lMrQ7ul+yLkZhGMTb+rKxTwsvz5w8Cp2cHhFT83Fa2P7dpDES5SLaZa6iIzcMsapeZDfz+qX3BANm2+exTQDXaMvrxZ9kBP/w8re+82Z/FF/kza9xxbM7PyX+zWgXs/uLOczAQOz6zG3QCD8CT3wOI9JHzs8sEFc6X5rFgWcw4l7k+nvTRGTjgPUY5glCjfO73Q5vV29fDJ7F2J4HQaKwDKBy3NIeffvbQtjLZCs8YRvldUjsOApC/AAv4DDmnPOQm5Z9nAC/awHWTfv4TNsAhVeGcwuHrjqAEgNmunLqR/5/tqv/Ildt1tm8dzP5UAvV0/TUABcCMFWcJRBkgHjp9QG53BwbsxZQMBYIFYRwJZF0dvdwNHbzv0MvFvntZjwdnAi9kM6O4XE2Je1wrRjU1bpbei0inU1jpoDLKJV6ODQMIWvhARLjLZtEfMh3KfYdsI9RcaeQNAFDMaD0wFwQ1GXQyBRqM8WBOsIYImB0aQBleySEiwBoAxmiemoDiTmIPgGMsVqKNoEYWSqSjvHyz/ODtywVUi7BUB76z5b4bdd1YCaPNSTmrBIzQnrBKAjW0GSj4F06/i8sZiGFX3UyHon4M/84IZ3gsirKXeLYQnPG+ZDWH7tH+9qGhb/H4m1XiMOMXqB5lHos408JYI8XztilKNcKgP1Kp610xGrB9KdheBY/fBOsf6qwQ75PF02xuCopZRprGUE89cWck2VZ8XwAHvYmxeFsaUO7maM+yi142bthcgSr2t4rH18noWP/cQ7fDSipWm8ubTiCA1VacSVI2a3tfCkpEdCzKJ/vFq0DMzZC06rL1yaYYZGIICjTmD1kxBFfKbY9obL9W7C8V6x8b6seG8s/vptz+YnmhcoPlCr8s5pizekEr6LmW/O4bfBVoXZJgoD9fpm0i+5i5iCLA68XApLVFtHtuNEyV8Cgu50bvx4iUiEf8HTAUA8/abUd5v8VeUf74MZ0F3xfC2Mw5uwDw2GzPHANyWSH9ZRpNpZjzz/97ZLN010pYF8st7x39337zKiGCsnWUHx/JaDsai+PSIjqPYaBC/7Jif2lR0SVT4Mujo/55s5KZS8X2uljZ3A/Tdsjl/eShkNFNxwKYFTR2zAoVuh+jvw7qUKgyBBMTyDOuM09d+oiIfX9bUH9sEJ9vWkrUI5f78LndIfsCrIiSw2QelfSsuAYgUFz+/W7O+I+7iQJfm4Hs9x1wJgiZVLJ6ZYlGsVbxNehOFJklDm7KMEZPeRhzQS8VLPU4ajnuo7fhZ4ntd6Zpg0g7ke2Bsbxiv9RIPeovzur74SyS+2NG9JfmQrMG/kS+uUyQjppGM6+6TsNld42Obfd+Nn0DebnaO76szsaoOOgs+NwTxWRFDJ3aCW6ECqs8ZQduc1YSo600zpaZuhJrnWv6sjjzoT1xEs1ZHq8XA0u/JZV7OkwUcAxHPjnaCXiamz1mdL7qBGYYpcuXqjloZYVeWoyligNJD2e8sOICc3jHmFHv7FTGApRDOkQwEwhi+l4a70BwpZzaNmzOMMdd4ewj9j+fxRKhhSDJjDJSPyCAVI7xUOC6TINZpiYKjWQtAvnxMR0vYDIActoL35UBrrMQKisv5PHbNgexxvFdch/mf+fPpFSkqFiyG9OOz1ZHt0wA2udDazPoVk5RZ5GZk59BB1LOz04u01RGSr+pdea4c6zpcKTytUcgT21+1eqlSscxeJjmVlSBKMYYYkR9ijAa8IQs/kpg9WHO/Uy5YDDN556M49o76SPMkok8s36SklhyHn1KCegdUTGA2hEAZF0OTm6UWvX3BFN70ll40ITgVQugAu3pXOd3TyKYspgGjT42kC3wVNSxyPwsAZ0xJosisUfMr9LnoAR8/vSZFnSYT9RyyABH8b17U9eRSIwDXmNEiiiQxsj3y6dRcwIkSYshwITMlgBmwOjQJyXWzK9ABWoZpId8/n3+vzvokttA367Abc6pbQLAQM/8vQQqHMD3c5rGGVR49g7nuX1mDZ1Trn6RIvSXARRQfCNaKnRtRo++T5GMKDvDjqwFimY0ltasrNpuC1+9lBlLlaiqfS53ThycLnS0TMOh3DbIRmPURC+YK8qoR782r3k/o92opI56yoXAqVPwKDA9QisjJqSHqnpZGzpXiPxnRmnpvDD/Vhsj3HJgUURE3i+KyYVjWwW7U4Xbe5+RXnikLuUjqkjkncuu4QhRD2K/mHPfX9zIKsCAAIxsAxgX8bJz5gxubyUc7nZ3Cjdgxra3u6/Foiyacoz57o9ZgpMpHdQkMOeWOeAzBzj0DLYB3YHiwpMQuKClG8KstpEuO6RndJw5rf2lYawF25sJG2qxqP/i3+9rCdaDNgIpJrrWPoyKUO/ueO8I1gojmPH8Zs5Rvdn8MMonJnChxhBhBLJfypyX4tH1oVjed4xWsL9UjIsJ71nJzdnP7TbCcSDLw0Cl6ZQA1lYKcUpKg+Hvl+/2DuXRfe4PYwncNxPoS0YzhU8PVVKKHdJ6baF2z/HeXyx1SAZQP6wt4pR2hRk95d6xDDVq/sNVe1s1J0LdqLlvKI9lGn9FYl5CyWqZRocp3ttmXd8f0FIwrs0mYBVgSXtL8XucD5oBc36BOKwY3Y5oQnbKPYIvvUdpQ9PMEIwvV4Q6f9aTyYZSNXBWSgE+brY/RjmyMkEDZ2sZqFInpfBiKRmkU8tj83J3Lry2TUrieLsaELmP0HQgNVlcjDScDmdZtLGHeGJE94cbxarmJIpg+fZwR80PXdrb3AeWWRbTUgLMQWPJxHFtKHqJiOHUYxgQFZSxW/tK8ei830d9LqKAIomyc74g6PoKH4fdoiV6XdG/XLC/NXPMd0X78TmCUrZuQBgQ4AAAOwMvC7avK+pHRRVx4b7H/PLeIc3EDsUPB702A/vKEiwDAJNdRqZEFfTXFWMtePxuqWL3312D5gK8/lfFy7/vuPyPO2Tr2L0kIb5eUO47qovgLt+2MEasTKSteQI0MR+33TWFvO+87Gi8s0yQP+j4BOWzo7paicYQ0fMzOwAmChAnA6n+SH2W+5ig4RgzvYFR3tDoSGKBUY2mp3l8iuruDug7q8lAgjEFBQFL28gOKBkU7DOyFPJFuvkyBfcO6RfhKKb9KqeDAPb7i5VnlfsxBeLQP8H6aBDd5me8bGT0wdlo9e/L3ifzhe3MUa88bmQw1VOZSM+/z22LsrTvt0MaAiQJzmUHvKeUWJbVG/OdhZ/3dn2as93LfeaoPzBZV9w/egeWZWrRiACDYor7wUFTL9PJ6KPWEuBrTkMRYDJYsr5OYtcG+DX6nJOqx3KTTPlwW4FOYk73sNfVCUSksoGkZItrwhzGWhOtP4+TB/+E5VQzeAGk8eF+P6bjFmDB0cHJEfcDZX4kgcNaAxhUti/Sk8x2Muf/yIiL1Bg6YwRh+D1epPFH+9w4ou+BGcDTiOaWuV8B05GPOZXWb35vslDyd0qdwAYB5IPDrTbvAgCaazAu+k/8XhaQVDmwGKjpxT6QNEYE4MjGyP0UNH6OQ7pCADDa7PYR2ZeJSSlMPcvjnwGlw43FgIrsCOc+JlM9hAmTE5/BNuAzwMV2/gRMoE/6OZXj5MRv25zn5+8D0/bM38n2o4MScvzygVH3KW0jASLx8/w7gqtch+fL700NCruHz/2fXH8ZQIFq27pYjfh6347RBj/M4vCpNWhkEWHY+xGFAyZqTwO7ltjsbTCblfZaajgR5bYnquiAdon8fgBAKV7vvswoqnr0dE3ImdsGFI+LEoVq+ahy26ehPeSYpiQEIjREw5h/W7aBIQXDKwuMJqhNIHuJKLndRM1JBqZzWyQYAfU+J1HQyrdpfBrtXKNChFYYfZ1OzSImAnzxHH4xoKEXgCKFfZFpPAiwX2noALhZxJs7TwAlrhXwSZhRXbtAnUrsIIsCgNj3DbjwryRhPGF+Pefa1Yzx/WqsjOXPYU5+mU6bjbUEO2O2YaC/wMtrmhEOAGURlN3BpGp9PpogyhhCTJTyh3qpTkHZBO0O/9yMuIeYW7EUkrKpyQ40gkYIA7jex3Qa2GcOsvDd622HrJaL31vB9lKwAg4qiL+XrRczig3c0GKBsyhJ6vdr73NTKfs4CMCVbZ/zaR/m1D82c15fLrbWXIxMfU32y6xeYeesiaFynnHc9otgewOWD0HZzDiWro6IGzgnjwE8eqRQhSjaZtVj9HYH6gbZtrkhd0fj+Rp0aLgW6wQP5bZ5nnyLiJS2MmuRA7a2YY5nFqcMJfGqbsikSc7ontrvdKmQj8fRGPO2sCoOqZSSSnEGPboUYBFoU8jHDdSXyQdoGPx9AB5hpSaEwiLiNIKlD6iPH+cB4Gydl4byEEjfzKCqEmNsdHVSwX1f3UdE08OgZ8UKggMyjEL/mBoCqAL1FAhz9ByU2QuChjkQRpe6loQSIPLDk0wuK1Pb7T6N61zDKWT6jhnBHqGjHRgGmMTvyErp14r9tWB1zYJyNydgLDWis7L1GF8BMH578TbbGbi/VQeVkxZGcgQVMCArwDmZ5YKbrUv0lKIn4k6JoL9U9LXg/rVgfwVu/0mwvyr2rwPlUbG8F1y7Qu49AGQtzYh0t81SH/YRpSnL9wei8kQSF6ZTGbPcnVOklDA0xPlJB0tuBgSE0y6C8eWCsTbUd68wEpocVgll5p8i5pF83M34Xd3ZEHGWY3EdJsyouggUw85A76c5z9yhimgun1XCOZopQsNEPotHYVlpoZQZyGBf0FgL1kYyblN/qWsRBIU8OaYop8j4M6MbOLwDPxvvnp/H3P1tn5HCUmYfclxHWlOx9xhIdwCGskp8AhQOqQp0VjDX7jSIBdSC0I8bqJUll4vPl9SffIYq9D4rl3wScsuGf3qHiDg7gHoWsjtEVtUjqYy4cw71HrbkIafao/wYCl1kOrIcm9jn1Qwk9i+ZNOxTP6sUc2+OPswstXjX4f6vOweRkuHvM9QMqd5tjFOakQrPnDqjnz9xrghw6OizQkQzOqH0k8eU+5JtLxJ766HtLiQncspRJ4OmtfnHz+hIh462PWmvaw6EtkWUbx7Hdzw75nw2XylTxX0Oa6lgnpwwSh9BE0WkQD1LM8jP4POf9U0OfvEZXWHVE3L1C7atnPohOdpaJqgExBn8VLTy4IDDxsfXwsFpZd9gOs6H9gATfCDQdI6OA8d2nS8ChARCfZyU+1M5fZZpTufx5Do8V6f5f3M9ee/QO2AaV95PMjs+M6N4ljxhHGjax8iqmIDLfLdgaZ2YF2fmRwBAfF7+DMGEWhEgwplxcrr+GoCCmkExLi0E9sp9h7zfLRInAvlxMyrp+82+E8iKIdEHIRwa1OtiJXdoEHCjHGobyRgGLGwnWke1mtrtz5uXjWxRPpIRqu6ignWHUeVfarxLvZvTWW+GKPZhlPn91WnsHxu0FhNEo2PlpSnZF7INjLXO1IChM/+2D4tqb7RMgQwHkkUQu8dQK8n4sP6RUQ0kePRAGlkTG+7Q7W8NWoFyN+Nof6nQZgAB0yxkKOpAOHzD99C6GRBRdvUKF9YULSbmB5izWu9GrbWouqdieDQvO5IAQnvAtBdmpYzRSPX1son7wPbVHKN668FwsPHYzeBeLE2hX4xhIENR9jUi/2UbkJtRnMcieHw1Z7d+DEgVdJYdfAyU3doQmhPXDGLgUFnAUgVg31f1Eocd5d7RXyy6OFi3fij6Irj/raDegeXqc4O3E+v38gDaD4uAaS2QixnW5eElTtU21X4xATp4P0aVCljUH2Lgwmjm3I+KGQ0X4PG1oOzFSo36z8vu86oIxmWm0ozVwLn67toFj83XnBtNngcv1Z0wd2A7xSI5j52Zw/fVIujr7OPyGC6MNyLyWG4sAaYQp12HU5JFXP2QDFGe6wqCiRbddgGgUkJLpYpYVP79Dmw76p93n5vqKUzFGAje52YIADpkjlvz/NU99QeASPVybQBjNrnBoQ6yjGHNdrmA8bpgvC6oAwaWMPpBp2fbg3Eg10sg/ihipccYxXIjcbyuUzxvuCAiD7rLir62+V4nBL6+bzauniIylopSzMk3UMf6c7SKfm2o79shdcGMVkyjSRVye8y0NyDyqoUaOQNHGj3BAhHAwQpxoFhFJpPFxxNOHRzXljQNZuSsbBplXCkAWW67gd6XemBMWISFwPZAuXcDef2+5b674SRAB8pwUOBlDUOgX5sBMZv9f/3nZkDgbXcnsp+MuZKEKRXtx2ZpDUkvhH1pXTzTr5Y/H1gArN8q9peG5UfD46uYAPE32x9GKyiXasyuIWHgspQfAIysDeFzhmkfnO8xr1mNBJgpH6X4HiOQfa6H8fb10HYA+PG/vOH2e8GX/3NB+7GjfmwGRG2wZ6pCL4sx4u5WsQQv5ecOEKfe3Rx+dYfZ1ow5e4zGh8hjnywUOOWakfYR6TYdTHlELZZqxYhsgIKzMoew3/i+TOu8OIOKhiIBzRCiLhOA4f3JwrEB90EaEY2zPWmOCZ+pvK//Xz7uE2TlPZhW5aU8Nb17rD8HOOThz9zIBK3ToM+MKmACZfxM7zOSunsJcb5XMDHKMbLt4CH4HovYZ+ngnOw7vVK0Ne1BjCxHw5KTHvu0p4jc7gDMIdXLYuPoaW8Hmn+KgEaaDcHZUiZlf4wJ0GQnQsRsVR87pWNdJFLSYt70MendzmqRVj3NzWj4rPIV3ykFspYplMnn5zELp8P/ve84sBNSv+luwYOgogdrL80jCv3xCq0dm1dRdlQTCyLuQ5Av9bEzkQ/AVC1QOsMcAz6L8wtwFkmdVTuAmWIRQI7//37HgWXg7JSIDhMUDQdPY14d3NP8fcAApDPtnG2P9ME0BgQhQmPE/B3h9+LZSXQw9cXhWcUNc/ZF+t0c42RTcEyoeSDufHCfyr4WfH74M39aOUF16mXwOn8POK7jZxF1D8hNtoCDUbzSd8QDM4f7ldmnASyevwN8TgPAXAea0isAnzu9f8azyhQ3VM7HbL+c3zf3Fc+DdI9PbXnGTshgwul7B4FIZ8HMNTNZUvorcAd/GUDBDKLh+aaM1jJKh1Ig7975+26bS6JtHcReeHHjTegVgE8ofhykORclNtEBGabGynrgRmeGOx32HC1ikXhMx1d3hNiZrh494VgyssPKFhhTZBAwQ8SBBX5JTmuQAlzSAXHmEQUFRTCZHKQBD6AoDeup2M/7qgCjigF6AhuDBhRmjzT7PcsWAjCRSMznsp2RejHUot8J7SAoUpxNYIeagw4FFlHbnG7sTqTlH9v3LMrEZ9oYyIC9Z5+opLbZlhj3YdUDTNR3MgdUBH0tDoIAzHU2hW+PzsE/qzI3hwErs+gOHsUdg3EBcwQjWr9kEASWvrENlI89GBdjmcAUAPTV+q/sVmlCdvaL/6kIFgvKTBGRTnq2j82S5pfOcWA5TQAozmLprJQxEONiwNbUh9AGaLfPheNPu8vTfLiOck7zYSPjHFHEOmIKT9Yn4HoNgc50C3N+0/xzB1PcaGPund0mteOE7ochwtSJijhAXaIXURLR2yR04kVmZMAp84dSjkjsJj5P0x+2iVHWVC7xE1I+MMUPi1UbqM0mQkRs+d0wgmF0W6LWHoEk8+IAalCzRuTQ5gAc4//TkTFBUs/ddmOXjqtFagtCP0XyPEx9cpoX8XsKmlUrK6zAFJAEIu3g0I+AG+0551fM8fR3MeBZfK8gkGp7kaiBAmEoAZ5qxMO8zv06XuF4+IemCI8lZ3MwHYulG8daIZufRdTVGfx+D1BnlnpMBkaZrCZADcgYSRMin+7ZkS8CuXegGyAo28D6YhuKVrGKPN3nfWHke76mzbPY5NK4wcbrHDV1dlOsiQDIEPOCYIelWaWqE+k51Jvp/ygoW0W9dz9wJcaPaS66FYi6yO+Yc1nO6y5TkJ+tR2ezBJOA83txJ4GCc0VM0FVmCkaUTi1e9oxzgXsG2UDnFId4foXKOO4d57ansZ3j4JtiGJM6/+b0YfoLc53TujyUJU2AI6n2Vu7t9DwapCJzzjMyl9MXgvKuMTc+rd3zOZH6+alDwbbn7zgwhB1zzn363ck4fmZsZ9ZI2t/CwSXzhA70SYQyp+nGz3sHRVsD7MvVLc5ME0ZfCW4yNUfHBIv8/podEvYXUx8AfMp7jzVanDnW53mYrzHbGs7HqZqF3SudXb9izJzAzsN9kt6SnD//yc6f94ncf7IpJDm1vMgqYWWHvO4JiI1xjNGJnGN20Y/xTL5vwWdw4NnczCkFdHozG4BB0dMVz8v9lX3OfC/gyNb+F9eR/eH/zlFrJBsKwCcBzGRHWPMkBW9O6Qb5+tmY5n4MZtATIOHwXUGImg4FxSufRtXPzvozB94/J/l3Tz+T1kAG2wjYPHPEww4q87zMbJefte38Ls/6L9kKuYTm0/b/rE/Lcd1q2q9+dv0lAAUZivL+AF6WyCkcLw0yXuYm+rICS5uHtAgE6/PBpXDStgGlApdLIN24pvJR63JAj9VzNKNm+7ANuuwdMi5AuaBfjSo6FqYPeP1tT6kK0CCvu11Rx0D5xwbZLEI2WnF6apviQOp7XPN8e7UoPoUI91fzbBcXBbTIOiZ9UWBiYqpoPxToQH3sTsd2RXtV9Ndmz36x/iyPYQyKNxPaY248a8Nm8b+yK9ZvA8u3zdpZJPQCgAJWiRjN9BJM5BGoN2cdNNNTWL477bKKpSoMjcg/jUPpnn6QwKB6s4VJ5kZxB7u7iFpx49x0B8zRCOM03ceqEAguf5qxXryc52hivuTWUdxhuPwxTDPC+6d9WNvbrWOsgrIL2o8xqcUEDSgM6Rd/vl8FZQeWb0Dl733zaR+MRgEyCtq7V8hQuIaG9W1O67j/28XGS22urX/s4cSbwrxgfy0BWlgfWL9pTXNVgbIplnc4eKFRhpK/t4oOinqDMQS2gV6rl78DpCQqbCnQBXOT7APD13j5Dk8f2CGtmChkV7R3xY//uWF/EVz/YRoPlg5hKRnm7BhTxspTaqLOTwdXVVFEZsSIhlYrwOUl+pzGdP96nWlPXL/unNX9MZ0gwPYJXi5+J14y0RykEqKtkWebtQpeLs4WSbm7dJ6HAqOE8xV/EywYXpJRqtHOB1OtWkTay62Yg+/PLbcBva4Y64Io0bftYZjo6wX9ZUF57Kgf3cDOIuhvqwFeuwsnbsNTDGSW1v3m6/HLGmlew9lWulSgFdz+yxtkKJZ/3iF9oH1/2Bgt1SPaCun70QCtBVpXMwZe7N7l+4eN77ePiCBHtM/zfIeXBJWbgRjSB8Z1Qb9W1KVG6UMCraGGrg4ELRVDgOqARMkCkL4vKoHJaiBxed9sXV6p8u9706NbOlAS5STDobs+iBZBe98OOdzaBNgRzrWIl/AsCGHGKGua95fF5s34zcUyvbSuVQcxsJ7vu39ZEVVviqDeBq67YnkXrN866vtueEorkbJHgEa2HsBWX8isM2BH3m/TQHEquNwe9g7lantCgM8KbB31sUf1EF0XSBXXDhko3+8YXy7Yv16MNXhLJXu9z8Z1nVH+gUNfipdjZmqCPLbpGPG8Z8oCgRCKNpLBkxyd8eXV1oBrmggMBNal4vv/+oZRBW//RzMx2D8/5n05LxgxX5qlVnRGZMc04LbU5tpMyDEDZ9nh5ruQbbAu9o7bbpHPIsf8dzq4Q6e+TOxTJr4aulCMqNNZ9rZFZQ46lvm+4eQIUBuEZb4zqBwT9gQskLGVnXjacnSie3J4ySQ53/OcAkAjeKjZgXs3wc2IuCeWq0gwcCY4MAzccVq8pZr1cLICrGL6mKfWnbUKcLtPx5dz7NxuTVH5ZZlzENPOOwAPuwuVumaBEEXcE3sB8Ii9xFiHw5HvT10OjgEEssTpPE4AACAASURBVPu4knLPaPxO7ZcCqfMMk1qgL9cZfU2R58xmOFSf8LayksAc3zafd0o1AWD6Bec+zhed/uzL+RxSAMLyoUHrBg5CkWmeR1Q+XsadaaaFcM22ixlJdM6LmA9yalNUhODvCXB8AtIGQgOAc2TfcSwtmfaC9NlZxWPMv3t6L38PoQFYa3z/QJUvZkcpkJ5Z5juozrZ/cnYVQJ9tfwYunSP+dJ7PmgC/uA5gCL+TUwLOYIHvw7HWchWvs09Z66fUAXumsdWEQFqZ6S2TZZBAlkPQJAk1ZvDmV8Dpk3c49LY/Q7he5QRkPEvJeMrAILBxHEtxgP1XoMJfAlDgRWGu0CNoaYMpLtTnVDV+DpoOS/XNiwu0m4EvJR0qPPzO6D4nHdJBAnikRsxA3zrgJSUt2ua3GAAjJeHo+WcCvVT/If9y45tR3QxAhP4CxEQSFcgzR/JAczEDgfaHWJ7XIhdgRgXTNdaE7jpoAX8VBXCsGFCmMCT7wnOsS7GqBQZweN68FJvTUSYNkc/LcoMQWOlFPvcsujY0Iv/2g9QPpADKbHeADzoPefYz+5wONp3rej9Fj3lxcSoj/cbYmMId1qdm3MLo/opw9qfehszxVo7dBGhCmMyRbeZ2DweMKPJlKQrsF583RaCiEZ1RB6WQnkFBRS1kZNgcUQBFk6CoIEqEsu8tXcPWnZ720+McdMdEfFzU37sKINVAi80jza2Yk3KpsaZkHy4COed6iNQIYi1otd/XVE3CgBuZ82mt04lqxdJ7VC3q7AdXAAKn6Iit13lvQXEtj7zf6Jx3VPmP6FQ33YEnkYUw/Bm9b8Wc02b7ExlZeV9iZN/aU8ye2TivNEXM/SvZUAA+HQiHi44UD4hAF+Y7UkfFnPvj/hGUdQc7+rXNfZGAVxW7nUehx6WBIow6FALvB9EAXNKAgHT4YBS06gwFczaDXnp2sgBkEcgAm7Ih7m2P6I74+uBaLS60lfZ5tOK6CuWw/zOt5dhBCDZCBqOQnsG9aLRizfXPWQTU2WQ1nYPAZInkAO0pcjAW26vL5ntfSeeRelqSs4Ao4WEOOlAVs9wu5+zAFOvV47Md3Zr/j/nkP8vVR3zfOvZTGr9Eg5b8HN8T212h3+FVKPps31LMUCZw8+SsC2M3G7WLgTosXarsS7Yr7bNxj2C3uLNSPHWhmNCvktmUwOuwJeh3JYZOaIbE8560Pfr2yTzn3kRQ7Qw2sM/Teo3+HtPwiP2c+wLvczCCdUZgVadT2cexLGOOyEYe8BNnIr/r+Vnn//OqTklkCsSYrLnDlceRbef/+xQyjKh8NtSfOXVpnz9EIP3eBy2aE3sCp/Vp33ni4Bx+n/aq6nvCKVUEgDk0eb2dnLrMEPnpzMr7Ynbc8xV7ZcEs85fOjSfPhsh0rGH7UHyccyzPgbNTSBAjtzPu7Q6cHKOvB7Zy2IDAmZnxuSThqd3uFBor1fvmvDaflVj8/3LRMf1J9YS4GHnPAMTp7J/sgNNewe/rSCCKt50AwUlocaY3cMzFf296TBoO9TG6/ky08+l1ou5HieSfOa5P1s0nXYCffSc772dnPf+cffMkreCnIoZ+HUorPgNS7SbzHuf1+yRI/qnqxbM+/cV3D9cZ2CED48n1Hx5Dv/4SgAIV08ttd5Xo5nnZ1aoh0PG6LNj+7dXyU79ZiUkpSajKRXjk9QrsHXq7HRDYwwaXF9sYFh0kypjpbL5QBRa10qV6Hj/AqA0jt1T7P5Tp0wI6waMJilj0MAzlSBs45YsL0F8q9qvg8kc3aqo74uW2QZdqjAW4TSAChYnlla2j/uMdFF/SizMxKIjmh9X9by0cRYu8G1uhbgN6NbS+3L3E5W9HKj6KlUw0xxembzAA+L/rbQvGBaqgL3YAtHfLHy+Pjn5t6C+mVyH7wPKnRYK3341FIo8B2cXTJoC+lgAdWOGiX+xnUV5TEGKTBEy0iJWQU9OG2F9mrn71XM/+YuwPcfZHf/XIiFilC62CjmJt3wb2l4r+Uq2/H8P6ohnLA+r3LUCvxXQkqpcffSikG3OjPAYgwP5lQRZXNEO/mAijWlTu5b89sL9W9GuJ97v/Zht68ZQHbYLd2TP1YdH9/WrzvD5GpDeQdr68uxZHN72Gj//sJTPfbQzXW4exvgsGZoqIjZf1d79UlD5QHmqRaReGk91SY7TZ2DPnuV+bp9NYCdb237+jvD+wAhGFW/9T83xYeF96mc1XQfuwecq0iLFYmxfXx9i+LqZtce8QjyIGBdLzhsfbZYIZHk2SrVtpxmHzdVyaOTJ9br71j1vk+0opGNfrdBw2j86+vVgUmWVbszO5Wq7teFns/Uai5AMW0SegtNajI+mU/7rNyI489ogqogDiQpkBNDDf+7LY/qYsxVUwrqbfIn/+sGoOwWhxJhPbUwrG6xrOvZXONIcOYmPdrw33v7cArNrd9QeWirIPLD929KXg9j+tqI9hDuHdWA+6Wj8vWXwSsGi1Vzswh2/YeywVeL9/dpyyc+j7KfuifPi5crNymbp4JNKri4jaPBpNAuzsV+YBIfYQlrMt9zFBUTXtH9kHym2LQ52R/2Cf+SE+2gSNtNiZgNeG4XokAkW/etS/CoaYZkRxvQB987QIHhUKqGtDMLee7Dn55toqSwEj9/Vujs/+ZfGSyJvZpWfAqBYUgjytwJRZndmlBtYNf09hrXQaNAQH9g7dNivv6EKMkWZzAsPG2wWjFdQf90lZrQK9Ls6uU7z9b999zXqUulWMtaG/LlZyOI9p6dZmd3SN0Vd83C3i1N9W6FJt3Nzxlns/VKRQ5pbTWer2vrL3qEoFmGO7fjc9mdCOKWUqc5OZUGy/ihzzD5vLNt4e4feoPKOecqLmh1ZAdjq9xKVe1/ks5t4H8OJ6G9s+wYdToCXKk1FIsq4zau22lK5WMUfvj0O7CPp9ui/Bh2WZ4tp8X9VZGaJMzYq42Af+eb0skyXh/SLPKOWq07k/G8uq0I8b5HoxkWCRQzWKgwYCdQlqmYBB71YxA/hcjYHPegaQ8H0prJZBrmSjSjdhwxB0uyTR8SJTa2DMYMIBbIgUlzHt3Bxhzc/lq3p1g0hPSWwJ4dxh+9Sfy/KIbD8jrBxrplqEc5rmxjMKeNbbiFQSjyI/AxM89Vn8rKPjr4Pt4nf6HB/AWA18xr4DXSabJANu1fRNgmWRzxs6jOzXiHBTa2JMwOFnAEEnrTndO0f9oz0CiAcsctCBAJ+Dg7rvNn5LQ5ShjNQYnX0EdxAJfjKindkemQniXRg/x/xdVIQqSRjxlIKogK3tc5UH4KljftAWAI4lHc80/HiXOtubqtxhJOZLAmui8kbYPf4Rggkl6V7V1JeAzRkCD8O1UELkH5MdoOO55sAZkPC1I60d5u1PgYufOfc5PWUAKON4jwyiRNCIvm49rskDkDyrcfyr6y8BKBj1ugSNv9165NsC8AVsf5uY1whkP3JbgbSoT6hQHpQQY/FNkAbDIkexoDxxM4KrKU/dnWcwGiowxerhZfd4pnpUo24D6N7mfaAqo98OSggwZDpKVpPUjdlaXHMAIRIX3ccUAUWUygvF2jB8bCPKeb+Pr3aP9qHzXYCIosLBAAii7CPfp1+bGwESizGoqKnfSJ8mQyGi2XWWj4xoptO6I4e+etSnSdw7KmPtalo2Taceg4gLFc5KF5L72N8tNDrgBr3rJLBcRL8WdC1B7w9gxOfUIeVVj3+bQKOlU0h3h8aYuAl8UgTLAbNCiBTFcK2OfnXnZbexIatiRpItUh9RryrYr7NP+ZnSZ+OMSeEVMop/VyfA0FcHhx6zikawPwoCQDOtCDjbQNA+gDKGPYb0aPbLQKTOjLX6vGeevbMFGPWDObvtphhNZ1oGo4RsT+r/4roZ5oBLrIfibCeWFVS4mB8dY/Ubd0HUf39ycX8RZzvBRa7OUSctBbisJvh3dmyrWLlMZzT0q5UclV2tKkufG74uEkKAMd+KAWelSzjyWg1Ikr1PpkSx/sbo85B1MTyi/sXV8yOqHVoIk/FAjYLIeS/F9W08kt7V6PXFUndYkSUAq83GUteCITBmkqgBansuN+o51uxG7sfc+59FEQYO0QbJxnPPE0Ojn4xmD0upAw5jZzTqgaIG9M39XScAwDm1mddJvZpJQfY54OkIZ7DDqpCYcR/6D01jPzadkpTypQjQNdoCP0fU+9qZXcOBJtlTdH/XWE4Agnkz+wqod0vpkq2bzsVezNaS+Tmr+DGBALJxWDlFa7F1Noadpwl8O+SQ+x/ZB1AVSgrwKdLEdDvrNu//iznFUV1jIM5h9UoRZRuHiK6QWVJK2ogwwQQ68yldhGsAwFR8d3FJrRpRHUGf80f1YKPU25gMFyAA/WBtkBEQDt3JQDs7TtRtiDKWKaVg71aRYsx9M+6RnQTPjY/vq0bfHuYpATg6zbxX/nuoDYAfMmGon9/B22djLMdodDzHKx1ADloGVtWoxPnM6lZxD7I0OLY5upeYXsZA+IkjN8ZRtPLc7/G+YzpaIkfbJj3z0/d+1id01P/V5+PXnlKx7fO7KieASeZ8OtiuvlZVj23M453bxfH5yRWMDgIYIkb112EpF9yjenLkRWaqBVOOf8UEyf3CuUan0p0uzcKBAYrQcdLpVGanP48bf0ZQN/blfYI8vDJ76Nx3fAavnFrDZ5ZhjnhOBUq/n7oqfX7mV6xCcD+lwc19ZuDg/B+YRHyHJ2uBnzsDcsDnz+fqIWTe5X3Cf/YJ/PnJHJ/lEp/sIfFewIG1+az98HWS2ivc+w/vKcd3Ims97cMhZpjubQ8YYCWLX7X9wCI4AFpPLto25zknxYCenPpwZjw9uxdw+JzZOWXO4Z/tV79gWhxENHOK0s/WLf5KgMJSbXF3RfvnDf1tRb82F5ez2uayD9Q/3wHgSEPkbZblsMlEDs1IG5N/VrfNEKGlecSiWKkq5k5mw6j3lIdoPyu7Ue3qB/P0AcCcQPHos/jmqotrC/z5AJo5FOVuUTNdKkIlvJlDOBZT+wcsOqsFGGtB+7CKEP11AgqRO+/9VP54h9wfkf+o+w68vZhhxn5yw+njP1sZw+V/V2cVdI/6TxZG99z4elOj13sEeriIoUVxzNBdfuxzbKohk1bBwXJ0qSmQGRwh6ufK8FCn41YrH2llMeEsjTn52/uYDmQ3ev7+UjFWMgHG1Jm422ExvLqDRfDsPttbOdicaDB9i4aI3rePMQGAAnOm/N5MW+E1GuzQV6B6u0QLStUYK7JSxuKVEViiTlhNwypLAK4ZMNR+zggfzIlZvjvaKtbPj68F9e7pEd3mVHt3bY3VjIv2AWj1vOmHG+mrASr9BaZ38fA+IsumIOZbvQ+zAa8V/aXg8VZwdf8IQKRsRGS2q4mBFoFeLLcYqth/uxh74eslpacYK2H5tqPeC+6/W5WTnsbLwDX/uCIqe+xvbRqhu6J8bOGYjpfm0eK03dFZ3pmDf3JgOdVEUB4bysdmOgWXivLYzCilGCYAvTboy2JOYRW0f5/RcG0F4830HqQrti8t9EXKrrju81Ab14r9paJ9GPOFa2X/Yvod5Vaha8F+rbhsHXJ/OGtqouh1DHNul2ptXgr2Lwu0CC7/XWaUVzUiT7JZmU3sfZZLoyaAIJ7Z3gEpttYMUCC93rQ9xiLQu/pcbpBlYPm+AY+O9mOLtJhIdXm3vGIsDVqbVbvxUqIlyn7aWBEMwWK5tXKf+fChP0Hnqds6Has5pCq2b44qWL5tpm3g+g1lm6X8qGsgTnPe3xrgIHdRRf2hGC/NUrUScAWfZ7HHEuTtOqtfUDRWF8haHTj2faQV7FcDIdc/N6v+8r5N4Hy1aLioC9Y6Q2x/qWCp2fphfdpuZKqMEM+0l/O/C+ws8nEP5gAPR+8LlrgcDv4O38uzYxVziSAbnWCuozbPV9wfbrRdjymNIpCPVBbTjXNtBf2lmVbLjWyLGkxCMk3K++b7wXyuLsWYDTkSK+KVn4xhUG4P6FaDZRDCov4Z3TbThcgOQUR2xCslFN9DFMufD7DCkogc5yf/puPxjL6eWAwTQFDIYwumxFjtmeXdz3jaKypgDm8ESOgAXtaZNkSjl4Z0iirK0GPlgDyOfIcxDWosnjpW5Ki3UATYtmlgszyft+dQ8QLJlvOfTc0enSkO98d0gsX7PgGKWsQjs64/s5l+jIgzVThni5hzwPfqqbrCOQCVq1qwPeG0+z6Rx5YXjfYAQ9w5yJFWjvPZqcjRXbhRf5vlL0MM0vuZtHybOzpt16UenYnsBLBdtJFZwSS/Yy7ZN4at71IM4OHv6VD2VBa2D7M518Xutyy2Z+2ukQIr1SylTCea7ckK+Uyn4XtdjfFgUfrUNwQYMpBAIcKzk8/IcZ5vfQdFY8GymtTS4LM5d2r6PgEP9rnrkuRSlczrFykHG3GyBjwHvmOKSZ59tTNQEu+R1nA/aRSUMdvxJEJ+dHrLZ62PDNgQAPTPGGDk5WTJUPHvPC0bOR96dMA5v6j5wH2WYwScwCcO+ul57CYXkmbqxqHaA2BnbzjVyWf09RMsCNoBhxKaHqkhw4xBGJmaE/HunAe8zukZBxDqSVpFjO2YjICSRHAjhYzn0GeA4GmawmIs9WjnWashg50EW1LJS/bZLzVL8FcBFAYs8uZRNlWP4H/s7kSRViRBI51Gjc5NkJNh2w4HiIhEZEpPZYKiBNbQCSxkypv/TC+rCUOKOZm6pYkBb7810SjXj1mLWLYZhVOxduTIE4pFwhjJn9UR5iuao23oFSPs2hg9tYiUlOptFKNfiwl0zJJXI2hy9S54+7/cMX0fM2XAI2YEACYjYARbYbbLnaCFG3Kzso+3Po3n9A6s+w41YKFsAIqBFpneLUMxLoLb75a/PxrQbgX1Y47L/tU3X4UZ84ze7UbDlxRZtH9MVoIMRNlE6dafjy8W8VOx52kFrv+0VAqyOliastws/WQsZmDvFI7ysWEUsVR7dtkGsJnTP4p4ZQagjGHOXnIgGXSxahMmFkkgZixlnksy/QOKZdaHszU680p9s+R9HAjra8FYEayIsikagOu/23xoH15pQxhBlZi7+1t1Z8DfVey9yVjg+8owqnlEbHVSxAGg/Xk/GogUf+sa+dF1c6FHD4oNL8OnFVGRwwAPB8AUIWK6f72Y07gbGMSIeKxBX3Plao7aWE0DoG7dmpgNTD8MdfFKCrfmBpCVEaXDqy4sybWiKGD1BxNEtfu2D3u//aVMNg4QAoDLPgEZKwNo41i6ojx2aC9oZBT45i/dQDQAcXBzvWmRSK8xY7zOcoN0iNMhpZfV9s17N6RoqZBtxGGhzpYa1UuO+mWCrYrlh1Pruf4Ss4hReRmwvnGqsdYaFExjIrmYofeferujVKSI7d3ZUeCexAN1A2rsWy6YtHjaFCOdFdAD1dNK2dp+pp4igIMmSoxpilyddRGMJdV9r1dzdvowsBdAWRvaLW2mMhf0/tJQWkGtxcqiPnb019V1NzjGEmlS9gOOjWD3dLU2EM/PmgjmrPqafCi0w9gieW8vgrEYEFe2YQHPAUCA/aVOZtC1QZYKfVstFcYdXUZVKZYJES9Vikh7GL6etBWUVlC2FjoI49IwVkvrawAKq0UngyxEGJnaUwXBiOgWHSRwFnuNO4mM2ouqAWm8+BkRyLpO44vpA5h7go3ndpwfIiCbMpeF1XWZ/x9zjmbdA9lcMJBOfjLMpQ/o/YHCtQIgSl2OASFK7er7urQJrqmdc7r4fVcHQcY+ncKlTaeQQEU2kmlwsn+zzcU/p+jzMeI35viRbcDIezZ8EygkTwzzSInIz/azRaUDRY9OfrTh5Bzye9tu7cgR6tN7zRQTWAlQguVk5Zwv7qUE0vbszLtDwPnUT++ergBjsqGfPzcAyDBxT19TB+DLnXtxMGe2bzoqUJ36NarJCT62K6qrnSs7AEdnj9T3Z1ctsy18Nt8DmPN9nNpAlgvcSTxHfosAqBPQelbVgD9jycWcmtBhqRO1BPBlrAUHaw6grH+eOhIEF3K5Rp1OXXyH1ReK2P06jlT+c5sJijyLzofI43CgoppjzvnC6wCG2PkqmbWhw9vmPtF+6tdUajJEDxNgkqn9n9tYjm15dqUofoAJ6XdHYcPEeEpXsAXOoF6tBj5l5zq/e2a2ABPY+3+Ye5ddSZIkS+yIqJqZ33sjMrOqp7oaTcyWC3I+hR/APcEt9+SKH0CAG64Jgh9BgAB3/IrZEeBiONNdnY+Ie93dzFSFC3momLlHVPUuDYiMyHvdzdT0KXLkyJHzffLvvnfF+mkPe954p/O8Pd0z5slpn8rfDbZbH4Du6Tlj3Rzv7wCvPHvPb703ED50fI6ezEm7fheAgh/q7dXy0kgddL6vakjNPOjuZF5kRv5Pxl4gnUQ6QF4aLU9M29RkrqbQvg3DJ9VXdgqdXCa0V1MQt3xNfabe0p0VAKF+75ERciXnZ3NSBIBFg92YbgAVwRmtdLEzT0loC4E3gAUBRvSXSX04jxjRiAR5/jOKOqZv/0Ejc6qSj3hfYcL0rmrGfSkm5gUAMtIXgEgFCEbBVDSa/74Hrd8FHtWxwDjIrS3UOvA6W2qWLf6mLIX1BwpAYfmFMPFwLp1ZUD/UEBavMrBrpBTmYAbrMa0XrRbRLY0DRkMHerH3dxHCn5WG2y4GKHwoUFSumyn7M7YfZ7QLgXZYac3UNxZpUVqwVulw7QZAjaA+jWoYfHdVdpszHSFyybsALAjtN7dtrY9VRNHmjrfFHHA0Qr21wRAhGPXXQIVdUJrg8rPeTx1XQS5N6df25kwdMc2QMR+98gbt0LPublFF5tAqgNV6J8uDl8ukBnKFGYYNvBKkC3itCrywlductH97JZS7RFQcwCj7uRpI83nC9HUH96RT4LoGLlJZCJ2HinhceX+29yOryiJMYKsG4SUmiXRcxBxATWvSn9PWlBKaDMfysYN3xv4yWyqJieXtppEAdajifgAqaWSP7g1UHktiUhetIEAEebE68W04LE4LVwCD1ano/r0NfHP9GBpgw11rdDs7DALLUaeg/6+Lz3EF38q96/utbew72bY6AHtdHZfkbIjNLbKovkbkbR8rRcUBVwMUpjEXA2hwh4MZ2DdwouoWkYhq6wNtP01gZvmwiHtlCBh8P+Wv+/63D2MoxEiha75ZOkt2bGSy3PTfNEpP66Rs6maaCVXZCWIgDU/KTKlMKE3QLwVtKahfN4tC6zwttzZS1AxEbBcFR2lndfy9Coq1laBgWhYbFaeB+9UAvKguhlcHItbzYH+rkK2jrF1ZDBMsJUdQO0a6j6ew+Lgb40VzMp2FVtAWRimadpG1WfrM2F71Z9XWSD73dX6aJkAtoHlClM/tto5zxQQfDy6jZGLvw7H1igTNcvqXSVmLIiNy5Je9h7fBf0YMaEQcQ68IgLwuCr7cm7IeruvoI7/f3iDrGo4bZQe+a4lh7MaWXBRgCkEt3w/2pmDCVIOVQKu30QAcO//RKNINZLFAxN710DyXYj1He70vM6AQRq+M93Ljdd+HYe7rfa9hX8WY5vKJ/uwMOvi7WhT8cL9Gw0GIPcPBgH5sP5kj2PeolICenBii5FzqPYREdXAA0Pv1yDLJ35Ok9J6dPO+vrBHg/ZXaprTxDhQDodrx3qryb/fxANlUD/pYESl2B8cZtqdnZa2EQ4RdON7JmQDCxcDR6bmjSwxISwCDHPvFqyrk+ZPLT+bnW/8fHJkM3rgTm0pDegrGNynymaHQ9R4R2fZn5qohZAyUWhGlMmO8cXKAfd6Nc2H0sShrwPvFae1ZZ+F8+XeeKTx7kLQBGVRQWuwRdDrQ8A3QkWZrPM4wBVfOkW0RARWoD9Uz6HoqTRptTuNDR2BJfH/yaPwZhMjMhFwJ48RE8PTZw/dyf3cZ6V5P5Av8vWLO/63Xd1IDTjd/rg/iV94nH54x/NNoWwYnJK3tuN0Ilh8+/wyIsPSRkB539lHeqw+v8g0A5Dv99rsAFPxiExwLGnHlZOhCD+mXWRdCRqpdROPj9jiY3QRuAsG1TmXWBebGTy0hQpaRKqkcZR4zg6BkQ9M242BO+KbNmhqwv9WY+OqsddUgeJuirOBmIoDTlw1l19x5pRBr+oNHHXsFPv5eHZrpQ9kFvKqBKXCHmKMkVn+ZwvDuLzVyPklUwDHaTzSohu5opk1DqrIA+kyo7w3l1tQQNlE8YDigfS4otx1821FmVhFCM2rbpSo74bapUKI5L7z3AGXoqs98nbXE4v5CqHc1Et1Ynn8b/R/sD6M216syCHJaiFc6QEfoCLSZLHItWH4x4cUJ8MoHZdVxnL6oM+X569tPl0jTaIv2S2nqzC9fRqTPn7uZEKFrGISKuhubFuFHUD0xSlAWNUz7ggCneFMnYLfSfV52s/q/Q2/CQBx2FoiW7ewzR5Q/6soTQqNDHRsKoUreBbCymu3CaBONyLTvLUTa701Ux6MNmna7aKoD3fYRLU6OlkwF7aUCRhkvV6W612tT0U8ZjpoyW8b7RUUU67tmVHyNqKozpakbrKVod0F5X8c6sbXAVxM4tFQIZUwp88addx9/j+pn59TZP14GTiarLnHfdLxvG2SerFa9juX8i+5tvKlmzP550b67bkrjtj0PDBPDM6e7AYQeEbLYI90pvI6tqYgMLQQAtO4KoNXZ+qehvUzYf1jAtzaAUU/psH1P0yrGgaOpJoL5V+3rblH58rGruODWIDa/+Tqo37rvmtHNDLwsiFxlsfLBbtBURr9oaUn2KLIblqLR9XgvPw8sHeXsPBBgDIVq5eYUONGSsXaIE+nZkvosQJop5aJ3Mc0FA4wZgPia6iF+GMJ8jDAC5O1FjaqtgZhVx+BdHdZI4Uq5/V4C0XVhyk2dQ+kl5n7oqFSdr9OXNrRjGNp2wWDMpXOqvy2H/T+EJLuETg0IyhwywDPWHBPKtuv4bEb1ZBgYM+vf9eSI+roBTEy3HK6ueQAAIABJREFUqY6I9Zv3e7nt4E2rtPDW0ZcKxj7O62eXyJgHHpE6lxU0cT3aZJSH9uCBU+gl/QGOOdD3NRw0ImWbxe+sCgiJKPPlsijt3vqIiBBq2meqamtaStLELNVxHGBb2CU+j3sHqMT95GVRZgjG+oGdy9m4pN3OBAfdWA7ASIgTJieTyslJy2vMnPZIo4g/us/LMh1TkYhGWsWmInIy8xiHM03f2z5ZysRUh3h2M3DBnWY2wcsUNArWR+5romMpTdQB3gCj5GLvANXBLPHzhhHjfwhssZeWLPouGRzJ45iNfb9fH+0jA09DF8Yds4PGF4/0IqiNoMwUUuaMlw31Mo25D7xf6/idguNdx01kaAu4HTjP47lWrpOW+RF4Eg5HREyo7kg9TxFcL70ZTpOxBux9cxtGKqKdI9nJ96ChC1k6aEBqKx60NKRrJN7v4/uEGKhqAPShr/IYe4qDVTl4midvTtuzn8e+1Pk5mMBpvuefdX7EFhxgzSw9f/fW1G4IgEHHVkECBqiYU9mHA5+cTgDjHRwkSRH+LPwXz/ac/QyUWZso75MAQrQwgDeO58iZjp9fWdTGivmQgEax75CPTXon1SMx8CExYL4JKvh9z+kIqe0HX/NbDIbMKDg7+wkYkPScBzHG8//7OWBrnkyQMoQmvd22PxxSUYyhQ16O/MyoyOBNHq9vsS5O1+8HUDBD/UBbJBNLaaK5ikDQ/aJEWk8q5+leB7RcuqHNPDYoR59jU9cDyUvdZUChW75rfF6QNlHgEP1OA+JCZn02sSACZDVKbbVIljl9kqjyasxDF32xQ5v1WW0mrD8AZSVVvzdnMJdx88NCDXKP2ozUAs/lLreU7wU5RhKTgQsg7uF0Za3SUBDiZKAYgKyYqgJhadOj8TsBj022I1ILIAq8TFf1prSygAx1YQKqAToRFTcbRp1BzY/uc3L4RFQAsRtV3o1xAdAUmFHavEX1mjncGMa8psWQqbAjjGrXVnDAIACZpr9vizrh1VgRuUSil58TpjGGGHPK26lReaXNs2mN0FIO7+bOv+oy9BhnsSobUT7Sc6YN4GrV5pck54RhkWidnw5wNJujWiYUlpqB0U+7RtEBBZactuxCpZECsbP+m83ZN+qzEDSlRBQMKJ004m+/qx8N5bYf0hZ0Tqd562uyG4vAFI/bxGCS47nsY2V91QOkURBJXxZwlXwhNdhC8OxkvAdQQnYgGxpP225lD8fTvaoH7V21VSYGb2QCl6IlIotGynNkyUGFMFZPKvCEkwGdaNL6rPFdEnU499eiOhhsTAj4XqgGkM8bd0aVXQTUm6UbgYeonmsGiK7rcCDceCw8BAxrATAM9qOAmwG83Zwc30PsnXIFDo9cyv3+xMgyo2ZVTQKRCSQFMunYkgE6VAbQ5UKOZFFLiXIPMsCjbvt9gxnjiuqyjD7w9wyb1g3F1pWqvw/TU5qOM98tXSA54xq5pQCsVHRSQpxR55ynq7UBsoLibHHwQWweeHULBRF1bqvmQj+mFfrW3TuwKzvFRWK9hLDrwKi4LnT+VBfXo/EONPY5ZUYAtEkw+jKbDgKUK/TcqQSs6VwPwxwD6ElzQ9cdPVYd8H87Oy45wYfywT4X/Tvn+z+JHIaz6dThyuoIrD5fc7plAlosfUS1h6o5o+qoDadeRqDDf+blE9nYO/6Z1L/HBvpcGgBanDjPNBTOV/RdohL7rd1x2IczP/ZI61tywIqHc3wag8OzTs9Wp5khnZXxFftMMrjF9iAPkLjTeaZfZ3vpPCaNDm1RsWgXOEzfP7VRnHXgxndOG0n9/+zdlOmajPkcDfRnZXaB/4yBSN/yn3uaRaYqZ1G1c9rCIUUuoRtdRhrFuUqEP8fvne+TKy7ICQBMzlUAAt5nYSOaw+aO4bm/7B3iOQQMhoU8Ls0c+fbPnSPk/t3QAUkOos/7DB5kMOB8r+/97m+96DgHIxLvTLi0DwTTgcaYxzeTow63w10vigxQPGBNhAemgL93BhX8Sj8LOr3vLw46+Hic2QTny53f7wAK+rljnx5AgcTa/Ob90z0emBaniP1D5YZvXM8YGyK2H5+dcD6tGwPMHgQqU1uflo30MS921iUGT4wj9zjzj22w70gCMs79kNua3+k71+8CUIjcTXMi0IH2eUG/FNTfOggd/VKHsQWY6Jh9r6vDKcusKP+tKEXrvtpEsNeUDtx3PXwvC8RZCbZBhiJ4sc5ljWCXr3fN6Xyp6rhVrbowlL6hCuHmcMuloF8Ktk9VRbeabnptIpTCIKkRaQYAj6YKqbNKFg0q1x3lCvRbQa9sJRIZl7/oQnXBvrawiv/tEjmj/XW2/FR1utrM2D5pCUN3AnmvQasv9476rpFhKoz1R80pn3/ZLTpK4yyzyG+7FOyvHI4RiEbFBUD7zMqxUfNNSg/o9jbDxRu3t4q2MK5/p31fPxAsAUDf06tMTF+tPZYvziviPrwiKNzogLxpaTSwGsEe9QrKdrec9MLYflrUgCWP4GFQs509IYJWGfsLR/tUsFFw+2ONsnO8C6YPK9M4EbZXZVpQV3Bgv6gDXO5dGQ6T/Zl1jKUAtOMANkmB/U7TNAYrA7j/NMVz5q8d9b1b2UiJCGfZOqQpiCVijsdd+wSY0GbG/afhIJdNQhAU4kJasGoawPRhn7mJaYbYvYwe3V4nfP23LyNtgglzAEKkgn/Q94icest39/KT5W5GddUIK0j7Yv80RTS9fRrlFXlT3RV3kNyB6UuJKikkgv3TbIKOTQUAK2H7cdH91RgRkTsfzqNu+npAsgnG6QY0asAD5WMD9q5p1JWx/vmT6g98Mc0Im1d9YtSv64hyS8P0xVIk2GuLC7BuuuF/mlUsdNaIrTINihpW5gTIxXPqoFHRddOIHipoW60vJoD1/Xpl7G9TiLB6mdXieedApDJFhYFdHery61UP6PJJMaLfUgk51om5/6DlX+eP+8hVniqEJhArCNZfNAWGP9ZjBA4Euq6gj2SQW9SObquCM5d5PNMjD9crsO0qAlaKRtHMEJCbJeL/8Sdo9NJ0brYd8vmC/YcF5X0Dry3KO+5LDQCF9z6E+4AY//J+BwmBJkvNqUX9jm2cTVnk06OqdO3KXHldLIXKnaxkFHd15KWrM9U+zbEH+5V1aZyR0A1coG5pEXZmeclP1fUREyfFofwhryrQKSZM6U5NexvPpvuwUqSUcLb6UpWxcFuDTdDnCpTB7GGRYC6RazFULR/Ma0pZaaOv0Y3tsyWNAateIksJIItMuC0MV3PqYo0mA8nLKAagcK5uAEQVqBC3/PSq9zBRQBVF5APbMej1njq5N/23M2QYRw0TAxPInQNfeyl6KHs3qrsFRa6qkYRltvbIeCdj4NB1Pajz02Z7b64W4e/v8yWVyKOXC+RlgaxbVJPxi9zwF2U1SD05fkbBR2Fd96sJZ/oaAMKgptXsLyvniVq0nGZrY08gc46dxdDl6Lz7uzjw4Lo2U9UIngMl4Zz3Y3sLD62pFGiSqepY5ahoBkByWgqASDNoXdMjmKJiyAhepc+7fkF28nM08OyMuHPvQLKPgaeOnADWhyt/Jpe8FGUlkKW+xBrIuh+WGkKuDVEM8K1Fn2Vz51BxwYGnaYKIDE2HDJh4P/oa87SHLuY0SfQPWYANtYy+9rXu8w2IdRL38bb4543xMioVdKC3YfdLcj79HkwAF33/APvS8+NzXQOWoTvgvzf2xDNQw51VWycjGp7GwvUfzldOMXGBTN87igH2bjD2BhGbG9ua3otASDoGTAhdiodntYMDnAkgwa6BN0mAddU1WAqC0ZDefYhr5vP/eM8AUk579NOyjCl14CB8WlRrQhzQalYNK+8h+d/OegDM8ZZHYCHPsfyznlNNivZVsGxOIOh53QIH0Nbvr1lIac8KsVf9/oGR4L9n3S8o9R+RwA2Mo07JeG9vdwY1/pbrdwEouHFA6x5Rn4PIURwScoxSAEcEKDYT27Bd5CKvQUfqwoiQyLuMqhAp6gNAja5YaMeme0muXMZx0LDV2CvbABR6Ubo4r2YANgxjExoxYjciiMKpdCeXd0G9ISLtANArUFbbM5iAPiK3zSoy9JmwvTL2F+j3m35PBf3UWShXyw/ugAsUKl03I2P2x/tBJKjy0qF/M0VZOcn95u+RHEshjeBvr5raoPn6AmoKfKiDnh6/m+DfPjYWp6+78GOUEfWhPgyYMTHsHmT6BqotwJFOoEyJ0ae5pKWSAWjkIBtgFFUgMttAYJoIx403+hHj5zmPP7QUuubnU3eD0z4X1FwK6r8LF0olSLPP27wMgUVrv9PnI5Kf7hEaGd6GtN6oaayWi72TWApHznm3Z3XTcegV6MvIZ4WkdgHohZO2hAEMHl1KRjfb+oiqIBhVKLwEpjMNgmLuaS95XsSDEH0YKTH2rr0wGLY+Yz857kmxR5xR+9TfbWZNl2Tbh8IRsjHwNjUM+qid2T4Gwr6nUIAecfAVRF96JRfVSTkZrnFwIJxEH1ctiYih9QLrlw44PTr2hTisejhh1ET3blvPg6WRDqtnUabox/H7Ac74/p2V3FPbgLH3O1MhPyM7DFkBPF/MEHTQhnC6tMJEj/3v8B2RoEZnNlGu9uHAtHQ2o0KrMjggSw2xR4ejm4QjAQR1PsZLrF2+7559DJvHsVfz+LnvUUIKnKFRiDuKAZz+7oc+8mc8i0hISu2zNgrG/CRO8yCvmRgbxJ5ziEyzO4z6IaU6jzGP8pv5nI+1IWrnlTi09DPtOH5x+bMOHXmyLXzN5fXtDBt3cJOxe1g7uXqAjzNRYual57ox53M57uOGZ2pT0f8EHdznvojl5TvVFwPMKAyyCSqFR06+7XfUj/aLv6cYcEq72V7ZsXEA71mf4XiWxeWG9LmMXjqn4qxlZfg9XOcxfLav+OfMWRASXeOpfYfP+K+cJWJ7q3jKzPm+di7H2CTRV7igmts4p3457FMxf3j0Y6ZFP4tu+u8yEODrkdL7PFu3z/pI5CD+CUDf+bw2zvfL69r3+/NniIE2jLdD5PxZ+8JRe+5Y/k1XdvZi70j3c7q+f+YbUfOn4o++1lMU/pvXt9p/oOOf1/U37hOAie0zlKj653X2MAYnv6WbfSEt9cU31pCvZbcT/EwGYp7mtrhz+kC1z/tZZg4G8+GASIx/n1Iw/tZrlOP8/nUAE8772HlPc9DPAaPDjVh/lpkcT54VoEK2X/z+Z2A0X89YHblPwYfvPNW3CKZKt4BVP973e8wRb+vfACr8LgAFjxDOf1ELVroqjNeoC23GUCcrGwUtl7ao8BDB6VN0LH0DKNKzS6BcXu5EbncVLrzeDXEt6K8XyALN/WYyrYOC7U8X8NqH5gCAaoJzzXQJCDKonObU1K/62fmXO/pU0KcF2wvj9kdGvQrKnfHyTyYcJoBUKP2cGOUGtEtFu2hkNRCqLnj5yx7P2l8Z2wspW2HvGlmrrDTmS8H6Y0GbCG0Grn8mbJ8Fr/+BtAxkMiKmRaNMvClbgc1I9rxpL5EoBE3VeJlQrw3lhkidkInRloL7H47MB01B6PAqDHrD4ZzffmKsP6mwITVgeyOjUwuoU4gaAubQ7hqhpb2PnNbCkY8fUfbbHuBGL4zt86RR6ibAzGiFUCziWL9u4Kr5nA4I8aqLbv88hXHgY+BaA+pAaGWEXiXKbfaZwKtG71/+U7M0ATUgOOWWlLuAW4NXm2BnFpjRoqVFGbxyOPchDrh1pWR/6aivFdRVP2D9xHi599AP6EWZL32mmCv1w0oSetpEA+p9sB9UDNL+7kP8sH40i1br/dbPBZe76Qt0Ne77pUIqY/oQ3H8grD8R6o1RPwrmf7mB1l1TcaaC9ccJbWHVybhqiU5hQQeDZo3a8m3TdIm9oX++YP88qzDcueqI/btXQ/LNoSrvmsMvhSOlKIxlgYqPWjm8+Vct/dbepmE4wudqQa4R7KyiGAujzmMppsqfjEcG+ly1/KKVAO3vDO6uhWDpGdXSAWA6IE4bdoFP03bolxpMjv1Vy2tKUWClXM0hZsL864b65R7pC7ncru5Rqz67tcHWCqO5A5vTzrUNvVq0tqogWPlyV6f/PvKqnSlW7k0BkEWFN8mjmGmtasS/D/r1ugGXGX2ZLMovQzTRwQWLJkpl0PuqAmkm9ilAoPJZxVz2HfT6AloWxZFINSto73HOeCWMPnuZUUH57a7n9TINw3lSxpiXtaTrHVimYMIoK4yAl6LpB12AxdbzbQe6afhsO7BvoNsdtBX0H15UpPBSVfz1XXVm2mJpd0yoH9sRwIA6jrR3EzBWkVWSPubKUvQce2OURUUOp68GKjiw60ApaxUMbhIlN7XvT1VbiAbg0qHlPomsQov9v7VPgwGkpex8HXZB/TXNyzqcdJIO8jPF0j7I1r+Ppxth1KGVPAzkkapzi9YduZqHABa5LwMIzqUOySLk/nOfR35l57NZrvVUIS/zYJZksM3eO0CTVctiCqDrwIGpQrHX476qKKOrd1uUUVYrtVer/s7KWh4MvKmiz8qiLF/v4C/Xx88AQ38gO0c2hyAyyjsuVqZva6YvVUf/+1rMUVTvpqmmPjSdFCKNCPs6zLTyZ8Zvt/1mqiA33hNQ4WzI+Fk5vgOl+RHgpKXHnEXrjkJ/am+4/pSntMVc8rFsfTAL/Ku1GMg2oo90346OU9KRiHa9XrTtOT3CwQpnYGSQwOdh71H6nLxiBNEop3lfB6hu84imKfZfNP3+owZCmse+1vx3NgcDPMnsAGcLOIOmDC2FQ668R68tOiy5AoUDc9NF7fZtG6CRv4v3v/dTZnaIqKPs98tlKGOI5aGtDyzmZ1gB8aFaxpGaTwnkgdrqbTs6dpze3fskl0rMn0t9e6C6eyUKE2wVdtYGDwCk5zbVUe4xAKimZ6pIMEpAc/qMAOj6vQwyerS+AVRUADdYFu6neVur7QHBlmjp3na1NG+8i43FIJmtYPc4O8kx5zNwoY0Ip3n0aRKCPDAJ+DgmPi8ywJdYBDGfTRsp0goKA3s/zolTdZaHdAV/3zzmwCH4GWDNQ5rJWAtaLSvtYem8zuMZV9MzT1raVzJbKKdX5DPPGR4+Z75x/S4ABXRo2arKUHq1qFNsUWEAY9ISdEMz40CNFegEFjXWHg6p3o3iNGgrnqMmlleLGRY9sLJ4ByRbQY/9rYbhPn1hsOedMtCmEpFdF1p0B9Dz7HkVsBeyaFDRP8AWP8IJOOfGeq67tHEvjy7zLijbcHx8IahRCbRZhQb7DFXJr8D+gsj3pKZObQjcWR44uQjf/HjoHxkBOETB4709mu7AgaS+EGMEdIHshLIpIyGigv4cQkT8AXtni2B4ffE4tJmBphU7ZDagyeeMg8LeN17SMh2ctGmd+Q5ohM2iP16Wc6QZmK6AjDYSyOj09hnByCdPTIMSDigiyu7zS18Qw8AHhgYC0SPiasACdUExkKRsgjYBXnGB5nJiGXg/YuTCi5XG3AWTzUHXFZBi57M3T0a7vRoJ2/4izuIx4Env2zFdCf03BStUg4IB0bUi3creEdAM2BjilBLPzJHPY3THPiawqiFDj6Cb0yI4RhLFqGjUBbSOHDaedL2RCcPyvY1xyQ42EI63q9/H70Q1AgSeIkKoXdciyObsriCTAzQZcPA8/RDTTL9n02/wfiMIQAVtZrTZUlg2A4GsSooU3bf67CJhx1xm2IFDzXLgp7FGdCysPVtTsELMUCSooGH+rDtPSSzXtQA8TUDmCVGJobLqB2yql4FtDwdP52YfjhtSX7jh5Icd89DDIQK9vOh+/3Edht48geYJtCwHurenA7W3WdsfTAc8XsnoVqHcokKRIpDLPCpOwPcEHPYD1/zRUq0WNe1GszbF/gCNXP9EvOoFDuyRXFXCqd9Sbe16ZNqe3UlTHVQPwvsRxnTwdWGOmhhYK4LMQIs5CSCE/orue+5oSWcQxr6a2UDK1DutQx9PZgMAT/1t4+7zVTvGDojkTMbVu20H5RjtM+eJWh+Gqc8hb0Ma48M56o5fjizl/SfG28AwNyCT4N9BdM77s/WhpWFsjeGIpnlt5eUeLv+90c1zJQO2lNFYj9kYPRue53adI2Pe1hAjPfWBtUUsLSSXqQxHtLUhUAgc+8Ivp+x2Gar7IgPkyK++9wAbzpHN6AeRkT7h718Mbc2GcnbQMztw18o8ThWWrPFyjuTlnOszw+RAH8foN3837zvg0PaDnkJizUVbSzonssH/8E48aM89gRN2j6Cnu3Md75Te8ewIMY1+z2BCStuISHWMyVHg++FKY0z+fue5eNCleOL058+f0wLS/xMZyBWR5hNb5pn+AZ3Xb3vcP7L2xKHd33hv4mPZyNFAtX/2072YoMAMDS0WZzILDec+XyIjRcDbnh3wb2gURIrBdzQDzp8PJzTP9VIOEnMPIojn/YTTvMksEAczcpTcA3zneWLz/ruCi/65Z7//nm6Dr6m/5foewJGfk/YI8b0jgyy5b7/Xxiyc6WkpuS3fanfeu+z/6RufP7AsvnH9LgAF3jvKbyv6q0WBBNrBlcwIRjioAMxhmEL0zQ3w4sZ9RACsY0OAhIAy6b+XWQ+9+wdUpEuAy5IMefvLSu3trwXrJ8b2CWgL4fU/MqZrR7mqkOT2SQ8d3g3c3gXlqsZxXzRv0qO766eC6aNj+RfLOTOBqxDoK2RK/BS59m4kSrGyYKKOA64dvBk9kBDGHG+7pRIAfSK0BWiLQCbB9hloLwR0TX+YvgBeskwbBFX0FgGkWh61H2LWhmWkB7SlHICDzOTwagrlA7qZWa4wXTcVn2sd858X7BfC9tno65YeoPn1QJu0CiTt5kQzWfRyh3z5gkAJDUGXf/MjwJ77hzCOldrdwVuLqFJEq24bqDBo1uh6n4qW+BIx1kCicvNIH3DHTasrAEVMOHHzWvbDGHexwT5ppYV9NgV4IP7uVsWim/0z8RAMBHAAuvYXE9i0lJP60SFvBX1S5kqfCMu/bBq9XDzySAGSeKpCuWre/ywSVU22H2ZlmjRzYO35+0ux9AHTj7CDdX+tsU69AsD0ZUe9Niy/MFyEslndetWzaOBfdvDrbIKYiNQDYqdV20ZeaYAwAhtb0jVgwATtXStJvPiEQQAv7kSr8FgD33ctXWmUuuLP3VTxmm+rVndZaswTz5HePy+a1vnlBrrvypbyUm0VIDDK+xprUSprbnkI2PUYR2GKvGKxMcp5+rFHfqzmOFpJwt6xf57Rl1Guc/5lC22QfilY56qAICZM/3IF3bbIr4blBWu+uc0rc+54HcAJtabvWAzwnUzg8m1WLYXfbuG0CzAAABHw+304S7VAPl2A6wZeb9o3tQwgYTtGJWhVDQis2zAsllnvt22gWtDtuXBlfADy4xvQOzjSIRrgueAesWWlntffbmhvM+5/uqBcO+rXVZkAXibT+sDfRyOAjPZSsb8U1cXowPbHVzUCm2hZS1Ckszh7IO5X2QRUBRBVit9/ekGfORhRzqiJSGdD5PdL5WFwC4DiZ0YNh9gr6vg51i66uZT7ABp0L0FiJigIWt63YZS5E+jrrdCY000PCtfsIUvp8XSjqMZABMwlUpS8TR4Z9L0whG+trylFgGWeIJdJaftJ0JOaaNpGAVw3BJNtpm7PuR7Jqvu7wPrS82hrGe+ZQOZwSD2ibe0Tp5XXMoxEhoKIFkjobxZ19ihsurc+W9Bn1TJRdlLTco8iIze9MAiLRuvu98NeABFlEGRgxUATB0S9wgR6P1a+AAYIYWvkLE4ZfWEGlwAKjLsOgTN/uuh+MGlOfIhSdnNKuumdtAbZm653LxuYALqjZgABO0Z1huxsdNE8/rcXZYbctgPDxMt+iu0Lfa5Dz4IIUf3An+/j7YCIf/Z60z256p6OCx3BFdAAtzIQI5KivnR8N/+cz70EroUOgQOO+ykvPzuF5LoQMrQLHEBhHmPk/eblRxkB+kR5yWmKFK6HcfCfpQoXsHkQAIJHv62aQzBrzgCBtQMiz1kD/n4OALujvabIrrcnayE800kAoh0SNbwHkANYHn1zPaTUEC9B6RotOdU3t3XfR1vTd0QI4B2RP5+d8jOwwDQe7qUu87u3roBHO80Dn9/+//FeGA6l/xsA2jreTU5RdLdBzuM1JdZIBjvtO87yDgZF4ce0CWLQVHTd0x4Ob6RD5JQRn69doksiPSY7ry6u6v6cNvAITDgbgEcQThzY9Vudnej87wxIOFvh/LkDEDvArUNKz/nzz5zwzFDwEo6ZIeBdeWZR2HcPgqv5srkVoqUY61Dyu5ei8/ac3jRND+0d8/n7oMrvAlDwi9KLufqzItKJmn0XNSQJQyipAxDB+oeLOmE/a6kxelmUjvqhlFhihqyrfsEn4LLoQTdPmkIxpcoLhDBceBPUW7dIlsA1EXjTgSr3vOlDy93ZvfaohqC/nt51crdlqNN7/jdgjIdZqw0420EReHUe9Hu2QJJD2iuBzfZwOvf0Duyvgj4Tyt0c3EbGTMD4PCvw0Fd11qn1Q443UUevmj6hTg9hf1Xn16sPiDY/aqpH+TGBpS0M/QPKgkvWZ2J/uKkR64KWqkHgEYujgx15TW5wA1Z+rCdjSwy80P7qk4mmdUGfTajM+9jABCnqPKCnqFt3CroCLG0Z70n2nl5H/aihIHowkC7o9qIADK99ONDBZLD3IByACWc1gMyBJARLoM8D0Y/SnVUdje1TDUOdd8H0rmPQJ460Bo2aQg9Qc2I0xadbh3o+tLbH26DtNSdDtJ9ViJIHW0AIFO8nRpknFNPH67OXiuyhbQHA+tJBglR2cLK1ZJ91tomn5PTXaRhMFuWNMck6J8ygdHDSvVn5v2TohgNg35lrsARi/6gF0pPA00GlPjlINgcC/S1Q47+PZ4bj6XROIA53zR9vGrlwWndTUUzfN/lu0UDrb7ayim1mVAPyQni2KltLl6wxFAw4UTE16AFyBwggMEa1AAAgAElEQVReXs8o+1ZxgwQh8ghmyOclGEgAUD40ncLZZr0ySrXoohkQEb30QzEJdomXZlu3ZDBg9OnW1JnjEmtUyw4W9D9+1jPg/RqCcfIyHyIFnmLSJwLtxuTo+o6jxKJGF/plCnCA7w2TMwMWGGtE99y2FGyfGPXdyp5ORZ0upHZ3WxtEkCIDTHZwyYFQB8h9czWQFYDOA+v3bg47QMP5E9GUGKYEJEiAnL0yZEIIcZL7OVNJbAQ1UHuilMc8BBTMMAX8oQ/im/jQgfBz2nVvHOBzkJrvTe/FhN4LmAj99WIpN8ZyyceriO7lIo4ZWnuS85Y/61H/HMEFBhvMQYVtt3QcBwc55gFsDw6nrHK8ozN88ryCR38BkFTAU4J8f7vdx97jVH1nHZigoY4ogJeL3TgZ7c4IyFFiIBxsymBBfCc7VtpfUSbSnWszNCVHic/GcPq+PlPX8CGK1o/rmtxpj3YMw9TZgNi1lKpM1g9FhpNUjHnibIathT2B3nQss2HdLR3QS4x7FYvsTDko4K/laQsLHd6dbkNw9hD1JBqimIcot72bO4BTPTIMczRwbwA7IIBDydhR8tTGx8DvAN4yK8HHxfs9O0iuWVFO7WQzcPN1Xid7G45EAjmfXgYiBVuhMNCPzttgKfGI9Ec1AQUl4zz0OZPy6KNcJJfTs5MxnEEIYDif6XWp2LMdOHMBQ9ZyzwFaAEda/LMrR9aN7n8YFzqtu9P3AAXaDmUDmR5ZGHn9nlkkec8GHp3MfDOn4zsD8fzcaK/ZEmeBhxRVf6pV0LrO6R14YE3491DGWjqDBjius4cIvX8us2X8svOaOo73z+e+gxpnhhbR0XnPLIn0mdwuNFE76jzWGUh84oR/k7HjDIHcBr9vegad2/Hsnj4+Z6bWASA5zSO/TynH+36LaXO6fheAgu/pga4zaektGzAw0D6ZovrWB+Xev9eVkn7/oyGk5qyV26SRqnUDzbNucKupiXfRA/WyWInFog7DVBC5097BXR2pyeiWWnZQHd42a6Rec78povwa1deDc3/jEGekBsxfNde6vRSjz1ukvBHcGu8Lga5Kj1ZUUu8plbBbpQbeBlrpqRD+/m4Ezu8KguyvCiDQ7s6oVVMwqr6wpkZ4ujIJNFLqBpBNqF6tHSQmomjlDJtYqoCCIRoxtjrmca8+okN7S5GR0W4FPKBjPsMqN8CcX8vbTJEk1KqIca7B2rtFhimxW9R56S8V7aWEg9SXAhKLxjGHPoFXFhB3TKEGcTcF9V4J+4VRbx5BlJgnYDXYQyTQNTCsNKIDQvW9qWihRejYqnt4NBOA5QQzWi3BimiL9vNkDn+fzLk3looKIgpQCPTGBh7peJS9o5lIJ24Yh6wLmZnxzltD/dC29SRsWO6qp9BfjJFguheR6gB1UnjrKB+7AgY+Bk3QL7q+FRMhrUHeoRVGsqNu+wFtDfRxi/6g18WMeHuegwlmeLbXaVTlgLbLo6iw2rvumGaautPXh7Oh7fI9CUTmuPlBYZ+pAPVyMOIiyiRiRhXCOaW9j3KFxoAZZfSG8as/MCeYCHxbw1GUMqvzu3fV7th0rvFNK6Do78SqiOj86V5FwPYmd2IZGMaTv/s0yuRyPnBEwPcNWFXLRgopgEMACmF7repM38RSfnS9N6vkQF0dfprqABMtuiBNq8tE9BRQx2pypzABhEBEG8W0ODwy3icrl/t5RrnuqF6uk8g0BlgrHHQBdmMcTATa1TGvX1dN1QhjBEDVlBxegbJp2VLcjTETlQJ0PrRFNUx4E+CmoLECkAq0xDq3SI+zckJTxg/x9LcIQmfD56izTfpcgwEQ5+hOEGj1HGqia8tADJmKaha9VvRZ2WNaMchKQVYOQ9vtcE9H4hVgF7EMJhEjUA4DvR20GIvWxX4NnLM9ts8MvjetqvFSVQi1Ap1VlJX2Dv7A6I9sICYHh8Chn+DzNNbhiSKbq2N422CRJfrYAJ41uOAaH/ctUpYAKJjAPPYOIqvmMeZnAHdzVbo8kabmJU2DiAxnUMDygiOH32wQwmXkIbuBaUwNQhvAXHYAn0WRnFmQjVz/jq9DEcvrHp8N0CE7mzTo+pS1Ffyyn0nXyhsHZgIZGOOpIR5h3PehheIpG3YmyZS+L6I2XU/rwQU7iXTfcBB/2wfbIRv9ZYxn3JfLWIMiypByoMnenSQ5HIV1rNKci34GLJLNOp8KHdO3xCoeAMF2CTZFcuxG6kqar34Lj4Bnh9XOj0O/p8hisPT8XgyowWLnl/V/Tl2Dl1/N13m886+65+AbCCQCGOvtoWRlvhel8fXPOpPGr1oT4KmK/epIpc94RDixAw5ABgDZyQB6ZRTIvquUAJdxFvbRjoOzJh2gUxl6D0DU4VI9Cjv2cd+cGpD1GVobaQLP0ig8cJHTMYgBL88ZaRBydKTPAMLBcR5+zkN6hwsOfoMN8jQ1orXh1J332/TMYDWQsgEeUhSS43vI6/cUgpbmygnMPETi088O5RShvsTQ+pDRL2LlFn3O5BSGU/sOYMIZpDmBUYeqCg99wmOcMiDov7M+Iv/+GUy2tP6j2OdRpyFSfp6t3zhbHAhPc8z65K9dvwtAAQCCwlg9Sqx50JwQW6Xba2d4LeyInnTB/OsOqYT7Hyp4E0xfGPO6g98nczr10EClAVaIqDNFZBTgjqhqQG4kmpp81eeUVZXr/bnUZAh6FcL+VtBmwtTViNzNidovqpswvXfNK2VC/bDyd0sxpuaIVkdZSX//JhoUtXKRqrKvzrOnSOxvNaL721vBx9+rs1FuooZmQaQU8KYpGvWmjmL9GOKB7VLNATDnw2jVZZVw5soqYUyGMduA6b0Frd7pt/c/v+q5dG2Kd/rmsO3qkLpzykBfAHSgrJaS8WGRsbSI9h9fwOuEsu2aE3ERPfS8RIsMNoGzXFThWseqzxrpLrcW6L8MPEdTHT60TFl/neC5jLSr2FkxlkD9aDr2IsMh7qSMiIORQRHFJxM65LUBKDqvBOZwGN37alGRWtAvM+THBZhZ055Fnf5B69V+LzcFKM5q+MIIEEPWMaauwYBVX1xKgZZtrGhLQbtwAFWNvNRlM+aEjm9Zx/pkc3p4VxDr/qfX0MCYvgrqfUe7HHMWlR0hIdbpIpoAUFyIzce9qxhn/djMcRxgmoSoqNJ+o/ycGZtCmlKgc9QOAhMYHMYrRmTaQYgOmxQCqgywoLNFDz0y2cVASb9/U2MUQL+8IBgG1h5PBQj67VlJPAMSH3c4fdjng/efAgWaAsFNBThj/raOchW0ZUZbCO1FNyyPvvN1H05aplV2Ae9qQLdFU8rk33xSYczrpo6W0dvDgRIAW0e9DcENIWiah1WcUIeP0JYF+HFRR3Lv4K+TlrjMJfxIAQu6bVr6spag3lIXNZI95zilJghV8NaAraF8lZFeAtu33wG5lWBYaFRTMH01OjvbnJCqZQxFwB8raO+YvqhYpzuSQi4WqyVSSUQFE20eTV9tX5i0DCxMd6RsKpbK110r4RR1qmEAjjBh++mifXMf1GcXmy1Xm1eviwk2Fp0HVYFd3roxAIDp3asmIfrUq6QEY44IIGcWAb3WAMa9ikv9UIFQF3lsr5Ous9aDoaDj0CFL1bLK82A6KHPGUv/I0op2S9Vz0HDrkXYUc8reG0TBBFCAxx22U2qQgwNE5mhDgeu9hW6BvCzAfdU5Z3MDUwVKhfzwKc4lBW6Lsgy7hPioR+LdYBWCpQGNvQN7A4mW+NX9ifW5U9V9wR0/c5Q9tUssdcD3gxDYIwJ60fdYZk138H3mntJjgGT056hfMk4z2JCNVmNB0LoZmNFjHwlDOUXWcxRYhbKPIoWhXeHfNSFVZGPW7zE588v2+I/baHMwEk5U+QQ8BzhppWI15cbSPdYt0qGi7fk7uV8SUBUVMgygOIBZAIZafgJnSlG6sI+B6xmuI40oX+FcpLMgwFRvxxPnIPSd7jvk04vq2dy2AQj0Alxv6mzvu+2XRyAi7uuUdu8bf69jQweLp8tIX3jmADrrwOytSME4X60p1bqntBbXCMgClVmXI86rE5Xbz8PMtPErO245Sk2DQQSRwVZ0ZoA7/XQCI9zpJD4KT3rf5nb5890BP6d2AAN4sXbEOxjYo+kXticEQCII5of1Wwg55rHIQ5gd21wy8yxUmPUpmIYT6T9/BhA4mzGYM74u2xFsyJ/JP8ttzuvanfPz8857vn8229zbdozux1ctXQMJCHD6vwO84v2bUh58fR/azsd+lrSWjBVAlNJagAFgNIH/yscyAz0P5TAzwydS+IcDEEDJ6VkBBqWxoWAy9vEcB1uAA0uEzrbpqT/P1+8EUHCEbwxOr4w2s9HnJRwuL6mmCtVJgEk0ytmXgttPBYVVZV8mM0bvbZRayojuE/pW5Mr7VGYMYamuxmlEbY2erwJaltNNCKMNALyEXghjmTErBeZIC6jaRtTd2U/iWA5wCCL9gkQCzKAm6A6UV0InLcG4vRLWz0C9AtNXhNHMGwx90/Z7ZYf6vqsuxaTGv5i6mGsGqGgXxTt4ucgwegkjTcP6REXXgO3TqEzAmXqXNgd2Brg52LRrSUpeTdQtHYTd0kjY8wlhBljJJdcsCiuiEQtnLGxdqwQwoXzswzCO8depSK2p4SmTft9+56wDmtR55q0dFqzSwcd7ObWWLG+Pk34BsdKtQ7jNUgWCZlkLmBm8aZQDLnCZ2hpzY+/aXw5EESIFQkUqdbyljDnYC6NYZDHmaio1mlZFOB46702PYu8R7YaDSLcd/VI1JSZ9Hd1SY7zJZD83ICaXEtW1cBLlMwq0pidQRFwiItphFTP6cDYcVEi0SWwIh1gBBYKQOcmWQsGenmAipRAVRQXrmvTgWYA2noawGchg5dqOCrrWFfdtGF7AiHqZQxkG1N6GvkKoldv8Fh8/QnUhtklpas7YYNGJ0qtGyHkbbSGLFh9KPMaBou9Jog5omxlT68B1M1bGcKY89cHncrH5o8750Yj2Mpp9IZRJWTlTk2HsugNgxh7JqtHBqUZVCUCORmbvoB1aWaSwVRuxXPKcG957jE0vUxiP1AX11kZakbGAVOsAYDfs7xswK9AwXmiwu5zNwkSYmCL9hNidd9urdwO9mtH8KwJ07a5PcWH0nVBDPBYBVrnjJZPOt754hQ/XRumAVaphFx21PckZBCEIerr8TGrTSGnipoCCv2snBfyk6z4jlRWgvxq13da3sLIkvFwrbQ1yUS0hXn0tw8ZEAQZhDuc8HHsDr0LJH20Ad6JaDnFO+j5GZGemne/u6MyTlaemiGZ7pRaQMgMObBhL0yER8JVBmxxslBDHLKRMBDQDV1qssWj/pEBWzEXPx2cV6ATTyOX3s8OqY4yolNLnZa5aptVTCoxt6XvIQxT04PRQShWVMOCdARAVGM7f+5YR6Ub4hqQxcPpOcrhlqkcnk22tA4Mpkfd8B1C/RbOPwZDhLJiGlgvAyr6PdBK/zvdrAiqjktZwaI9sjUPkOveR7d10fn8HjzJ1/5kjkrUg/I+dP/n+h+94ao2BrwDU8d8xbDIcQbdI28yXO0zfGuNMg7e97vDu6T6HaK2//zlHO6K9PcD4w//bu4mntJTjd0MHgHicHcyPgo30ZC6mfieyc9/WcUSV83fo2C/k9knqwwMlP627cT+fO24AeDRynOmxTzn4kNkJzgIIsBDDObdA16GSxul6oKy74ypyyIQInQF3QqPP5fCZh3v7dQYM3KEtRZ1mGfPjKeXf5/SZXfVsP/LP5c9GGo31Rb5XWnMP7IXcR9Hv1rdtzOcYT9NWeKqZkPqJQEeAwrUy/J4xfml9xJ792EafK9FWu+fTvjwDNye2QTAV8n6f2n64T15/573rdP0+AAUG+lLVALboWXupWrt+V0Np+VmT/fuikcA2aWRnum5RcqpYJOT1PyJovX0q4NeLHRKrivoA42CQriVQCqO/TlHJAUCUayzXrn5cGQum1iGo1yvh9ndzROnrrePydUO9qmHBq1HlZzXUtjdGL3o/3gvayiE2V6xsIAQBqPi+4g6eUszV4ZZKJrymwICmYRCuf6f3nL/AosmIfCevntAnIBI1RY3Bct1RPzTXHYXQPXKfLmdXlLs6v8XSULSSBKHXosDI3iGsSEe56QNc4LF/WsA3BXu81GK5q1mmFHkEjV8qYb8UsAvGiUWcCytCb+MpzBFhFwLK+2aUQh5os+UBFx5OtAMPrnLu1/6HF/TCmH5Vkab9h0X7vwuuf5rw/g+MH/8fwuWfekTnAYAqo71WeOrM/mlCuxCWf17Ba8P8F3WaNIIrmH5box0ohP4yAa8/hYEsgdAjxlmKCi/qmKmjvn32vu5w5fY26z3uP6rex/JbR1kF5dYhBBVso1mp0b/eR7phV0aLg3kOqLnAW+43IAEoFmEFAcvPW0SmlcGj92P0iOoOfYNx3+m3uzoaN3Mo930YjLcVLALalkE7NoOdmqih7WN+XSN3VgoDfY7P+ybKewd2BTBdCFbZDAVotnl6WUc3jnwdTUUdCYaWGqysQn37DvnhzSjxFll3x+m2jr3HN+YdcLGsuNxZsHxqd4ZkrjGPR6URgkyE9Uelg9avzZxBTXlokwM0A/xwTQB2kCBFhyVy23fQRqBdBUqxNxUthdHg/TubRsZL1/Xj5RNVzFSf4Y7L/nnBWow1sRSUe9HSmYA6V59eTXjQHKx5GuBKlPPTQ5rWzSLM5tC71gCROl1eyskE2lBVdLIvBkZa++pv9zDYXUMFtqf0pUafKdilcyZSEAqBnfEyaRRv+tWEaYiARcenmFCpV77or/NBYDXWP5T1FDoxtj+Hk1PUAZOpYH+r+PhTVXCQVFunXjvKvQUgHZomBmj1STUj+uTPSg5Hs73kUtBnOzfMAZGlYP80wUUfFcjwcpbAZCkKOqd5CC3uNvfXHeVD92xlUGhaTbkC9FVFuwjtGIkuVl60mFBmFz24chSrKHAhlnvfZ52X5auAxNaPMYogouUUt32sLaZRUcKBhEkd9uJglwMOzMp82HbwuwSI6OADrTKo4i7GiR5ni25uNp98Xm/70P/gPpywfFnqTwCQ13U4t/bsg/Nqc69/foMsBfz1rvvgZhH8qY6IpovMmfEd+iZeJrIn6ntmOgDK/PL9y+njPB1AEXdyopzk7W7sAYF8frW9TEGRQe9PzlN+dnZW8+VOijsYCaxBLUcwGQBaDyHB0BdIFHQxJg1eL0kHwt55b3p+7ErrJhszAYYejDvgGeTxdjIDs50r53fKIGkW3LPfHYAO/86uayv6wBkZvQFsZR5P2gnjHHAg5zTXUhpICJamVNUDUORD4O/tDvHeRmTfhUZ71zLfgDpG0wRUGeKOWdASGGdkqP3r+6tw4HQYf9lN+C/3Z6LoO7DiJTQztR2laEp0nmsFEbUWjw6bDfLgbMuoIEPGpDs49waUuPidB8CADukE2rajMF4YYawabzZPZd+PLIRTNYyYz5wkEs8pCZk90Mcazc52gAqdEcKLDsBT0fd90ExJe1YwKRyQK4gIps0jAXQO9JMD68DWGVRwwOUbLJ+4h63nBxfbRQ/Pugh6k8d+8nfKzvPZ2ff29m4MFx7sGS93WdIebY4U2b2lNQS7gGnYOt3YsGJ7SwJaDuCQA3CncqR5XNXnawME8YAIa8BATJjRRTu1fRl8etLf39EU+X0ACm7MFSvraA41zJEBhiOf0VXqFvlgHzDdAHnXvNO20EDAawH1aoN4OrBjgyWjjNskNfDSabW50oRID5V/AOgFYXCiw6itGp0vm0amSdi0CsiccoSxDyBy8eMZbJEii8I4S8Dzxrl1NNYI0WBxqHPeJwo2QryL9alSYNP7573A1aILR7lFtdPTl8Ta2s3ZJDrex9YOMWlXC4ZxbO8lhdHnOth1fdyedwcTrFwmEZwlcmBsMKJOuaO9UZHCzzwRdDO4vZxbRK3ze+fIg/2+Fw7RMkABHhJ1RFSgy9qcjEAv9aa0W5tX3tduiJkIGaycH23dDGOE8dAjz7hEeoSPvT4HIy+7SURWXTwxGDBkNnix87ZYSkQyynulSKUM1kD0C8wh9w4d4xy08bAvtI/7rAdRuVmEvY316/PAI5h82LDtPnsfRtKBEifDyNn2Y3Td5hBZecWzjpDe3z+XDKI8bh3KfpLxLJ2XNHJB+/jOIa+V7P9t7ogBDFFulE7PZFskkuac386Ns7xxh1NDh3Hx8oJ+ia0BMNDtMGBjjuhzMfYpc5JcNHFUEkGwDlAI1MzQzwaERWq8HGBEi6F7BxvqcmA+eLub7SU+D0w7ASIjwpze2fvngQ6cjFst+XsyCE5XryqmF/u79YHuMdquLEZHggDNDlT8Lsc0ESBApkh7Yme+6HvSlvLc0/2iv0FJA0Eezyjvc7YzjRUU2D6RAQQAdQLvhHLHcT7ZPA52V6UYY97Hz1h0v+1NK9ZoKk0CFRhxLvu60H1wtOtZedtox65gXGgd+Fh71EaevPf0ZCE/i8jkR57m6UMU8JkTZ/tKMCGaqFPmpTV7YjwB4TBJgVagsTOGfF3bd4DTUWsVKgAXHD615dn7hbHMRycUODjv8Vl3oB3wcKV+Y3RpX7THZ/h3/0r/5s9G5YvEdhjvMhwRZTEYeJKZQ0RhuB/o/dkJf/a3a0w8PBNhlAdwzBiOyP7EmThfvi+6GXFOXzz3Q25X/t1p7/N/ux0X45nb8Sxf+9wXp3mSBUEfHOpn7xefeXTe5HvfcQfr4MA86ZcnbdF3pmO/hNZBOh+ePTunMeR+AiIaPc7rk81waI6vabMXzYkMqrvPSya1A/L+4N9/uOlpwztT770f8udyG401HGAIJ6DD25YBlmdteJaGEADZkzPxe2N2+FxinPj9rG8OzwlGxTcuj6YjpYt9j3GU6ffelCefObQrr4EzGHFOBTn/PrfzO23y61H80Bzyok459SftzYyTXNbRtR2gczG0MNLncordeA95Pu52ybM52/vjfP3XXmcWyun6fQAKZkiuf1hUfM8O2vnXHfc/TmgzIqKpUa2G8r4ppbNJiGy5On+7lKEJMjHodVLDeO+gr2Ug2F0s14YM1dXvTCZi5YZkuxTU647ydUO71FDV9mfwLph/61oK8IUjV16sTFXzvFXRzWN/QdBreddcy/mL5qmSOYdt0dPMwQRnL6AD01cT2WoaJeNkmKh4oyF/Fdg/6Q+pA+Wmugfzb/qd/TJorU7d1QPU76PRNz8MBOqY1o+RHiEMtLeCKBdJCJAFQOTPclNNjHZRV6O9abSrNf17ugrWzwrQaCUIwfLb48p0gUMy5oYLYIWQYtF8YrAKB8KdAo8++/lvjkVtu+Y031ZIKeivky5ukYMD706+Om+Ml7/sePkLgiUSYJg7A+5gdmD+dYXTlvtcVJth71pa0J165mDaADoW7aXg408V01Vw+UuaA5L6Aqpr0O3d9xfGvqiT4VWMAKigWlO5CerqJGrKgt6XRNBeZ3VEy9Hh0c1LARIVnfRymYTmGhsM1KsayUqXJgBNo6Ufq0bwJwZvDdJI2RT2rtw0ktmshFz52JUV8HrRvpwqaG+g+xoCqhFx23YDrl71s+umEaky/riT3ZdigonKUmFX2vezt3VltexdKwu4E/8yQ+aq+fTS0C81vAR11LVKSBcE1d4FHNkYEy5iSHMFfViULukhAObweQm514u+98dN6fZdgMsMeZ01Qr411Heg3CgqStSvm86DmSNlbP5tx/KzpAoQ6oDU324Ac5RJFCbU26oArTlxdF014gLdC+TTon1338CF0IXRXytEDMTouu+pww3dhwth/eMcjjWvWv2AV43Ct5eKfZrhWif8sRr4afuZRxqZIIum/WilHe0D1/2g2w7eNmX3dIA/NOedNqWG87qhXz5DKqF+aH+21wkogkYq5BkVHiQBaACIWcEZgaUtSTjDUuhgzCgQWNAuxSrIWBrQfR8aQPau7rx6esXQ4PAFjnhme9V3Z2PPtYlx/6Hg/R8J93/c8Of/7Gd8+b//HtO/lwB5PEWMfxsq9fg8oVfT4dkV9HO9AOmwedAQFV266BwmAr9NQ0vBRHZ5GRFNfTd1GNjOZBIoKFoIdG/gfQc1nWP9YgJ8k+WvZgfEmT0G5jORasvsHTItupa8ZGUTEDqwArRVq86DcAwJAO59OBxEQK0aNbfSpQ8Oy94GgJDPAX9PK78agHVlyMsE6SXWo1cYCIq/COTzWxinYrR8maqWQTRQJVgPMtLfAnSrqhXiAn6aata1akS8WwkGBG2azkNTHSKIMbHJdIcs150Z/e1F3/u+jqi0VX1wLRe53XWPvSyxbyqAUUe5TSuZGSCFj2vYGJbW58BLBvS9bUSHSKpOBB7sA9MKCnFI72dniaS0s1H5x0CeyzKe4WwBB2eagUdu209Vz5Ukzpg/e0jzyCDBVIaD7k6rM60M3CFq43c80uacjkxmfwEGyPkYuX7GGeT1cTf9jRAg74ORQ7ctnimFlaG7K8Mkqk7Y3hGClDka7n8nxzlSPQpB/EBNIPShdGmwZCwKbp8N59k+Qw5uiYxyk8s83tnnZ7ffn6tF5MvnkJ+xBvzRNI20luhGDULChBLpXOoy39sF7M6gVhcI0jNzH2X2DawPnDnBJTng5hC2Dsg2PnO+ckRa7H4ecQ52RDOxVWMnpUh2lIrM98u/AwYAE585AUvep7mvAQ3EhA3NIzKeQANyW80/52yBrHUgxpTQRh21JU7786GPuzw693aPB/CnC2Ait/4+xKd+SfcOVknvKhZalU3nwpqP7SmIFILEIhlaDrbhpLUm+2nu+OVgT+8hmB9tiv20H+d2aKR8A8A7CHL20R//iuv3ASgAB52EiKbZ5U59TBqBRnVPSJvSs5RqqYKNasRKZXSe9Blm+IYA0E0PX1lUHMnV8CEmmiFu6Nsfi8qoEQN0z/dvAjEdBGGoUWMh8D7ZBidmmPv56r/aKj8AACAASURBVIwH/wOEM6yRf2j7h4yGXg52WYQSu0f2EFGn6V3QdmB7sz7we5G1r/u7QcUQnXZ5pulZO7V8IQfg4++p5RPtsP6wz/r+IRJsiF555HLbfXthXWOWs+vRdrK2qWMqoVOBLsF8iCh5oTAYxIQ8A9BxwzLPJYIdEoqWRoTXF7p/xgwQ2iUE0djnxS6HPu1Fa+46zRXAiDI+QYO1kkhP0XTftJMjb23yedCmcRgdyiAKTEcAKf3A5pO1D1AwwedfLwAXUZV7f2cQWHrMIVi/S4GmDUU1EkC6qK33wtheOdgqbCVH+0QR+Yxa9xYdjrkebR0MFO/TPjG4l9BlYNgBZAYJnTdNoTAiwyACTC19OH6ut0CeuiTO7LBQFClVHnwqt5ZAB6/3Dk4Rfduwc7pMfDUxbKKUpt/ThQYTTVlpuqN/wpizORHv3juwp6hPB9A7WERTLF0Lwmj9ufxdfB5dUxpsXvicCoq26Us8qMNbVNH3Bdrdaegjj5+HgFibOcaWdnM2UwUZ3x+UMsrhCGKCpq7otj6qTzApGyEbgd4+HwIzGL1kpIMSvZBquLBVXRFSbSMByA90EXj0jjZTTC/jneM5lWKNDmPbzoNuf+z/HTToi55jZCK+2udHAzjKw5KlU2xjbeToO++C6Suw/1Lxz2+f8HZD6OTEuO0CKj1Sdsq9ofq+mvYOT4lT1l8C3PxdWezMtTYacHLM6057UGL9CRVQZ5TmomPpjD9EUGzOGbiqc3pEckLJf+867/Pljr+nFrlzXlk7zufwwRmwso9nTYFz1JhIo/ARrWN4FRjY3BhVkfoQdM2VjOx7QZsWGSkWwDinRELDJF7tYKj34WhRWqs99afviw60FAfSzfZJ0cFgZJgzTucx8SvbA66HELnvogBydqjy9/Je5vsZ0Xi2N+cc1c1j4t/Pjk++r/99dnqzblZycM/OX7xH6wixvjQfyctTy6k9nOZ7fvcY47GeY8yyjZVYI+LgBmBOpX4+9knX/XBn4+CY4nHcUl/Hj55E+6WagKqUsEEOn/PrwakRu82x/4cav6233C8ZJDjd5wDU5N85Hd8dx/M9o7/csE2XO8/fi6CHHfFk3j+7njmihZ5/1vPm+3eef/58fo/OCFbFWUDxdB1SLP7a5aJ+37lfXDzm+cPn6Umf5+95e06fe4jy/7X2EB2/00U/L/T4nTPT4Dzfntz727978n5Zh8ABU0Xj07uk/vJo0+H7A5ChnNIDjPl9Phv/2pX2sbhc6+GgH5POFhlpEee0j7Mmx1OGzun6fQAKHSpsB2jKglV2cBoqJsL9x2IGlOaHekRZ8+P1NipC1YYo3OdJqaFLUT0CJvTlBVr1oKOsHfXrpor2rxXTL3fMX+/oL5NRsvX5ZRtl6KRqpHr6qmJ+ZCW1aJeoq90WQ5/N4VC1fAAE7ItGystdtAzZKsP5YkJ70ZJj5do1mm/Gn8AEISGqH0GCYmrZ1AX7PCklv6tY1uf/d8X+WvD+DwVt0QoT2lBEOgSgh3lZuzkeApkZrdRgRajx11HuO3iu4E2nTJ8L2ovee31jlE0w/wpgF5R1N6O0oX1a0JeC7VMJQKGwCn31WUuH3T8z9hfC9KFObNnUKF4/M8pdtMqDsRZkYtNM0PZr5FdTE1xzor5rv6iOgUbh4N8h9ZjLdYOXmtP71NBakGLjt+kc2axk6fRlg0eN9k8z9k9lCFMSlBpuxiTfdwRd2ijlPq/bDzNo7aj//EXrbqMOMTMDhvjWUe5dS0MC2D+VMNbLXWlV2xsf01dInQx3ZnrB0APZXLlcfyer06QRqRNTG+k01ASlCT7+Ycb2xnj7/3aUe7eoHIAmWD8xvvxbxvwrML1rxRDZxOa/YLLxaUldnq1KRBgjfeR5d6uc0V4GC4i6oH5lNdbnSXNwr/cxbt2AodVUru9rKG1rFLQGQyXSk4hVPFUk8rM13YOw/TCZroU5fl5qL8R1etQK92h+v2h1gSgxWYv1kTr+BH1fum+g611L1E51iMDdvg7jMgsQeoWDZKCF6KBTsjeo3oNFymnvKK4j4cCpyKjOkLMotgb+eotn9kvVvhPdb6TOoSnA9z2qo0hhZUmszea55sWz5ZBrCgSi3KDvN1rlBfEOMf4GGCtTara939ZNtTnTh5iYl5/UUo7JgWtDN0CmonT55Dho1QrGbvdx4UHxbtl7bCx91rbXj9X1Pke/mcPauapztbVY68qcsLHaxrxSZhvj/mNBvXcsP29xU68iVD80P3u/FNON0bK0rncSa90Ai+XnHX/3tWP7XHD/9y+4/NzAd+ubov3FW1d8amug+476yx31y4rth0X1dl4U5PMzQMs47lHSFICyPgDwdVfntDK2H2bsr6z6QvZdII3RpnOlGYsNgIpVGgsFYmynZoCF59ZOqkjf51EejmzP9RKALGJR+FFqTRsq4PttlBBmgvyoWiZYpmOEiTkcPSnV2uEDYgKOc6o84uvJclFlKuD7puyBrQ5Kf+vKbsoRIlvvUanEBUMdUBAZlQAA0G4aCe48W5lV2vaIeMsyD3FUZECtj3YAuq5f53CCtB8TYOL7iwMfVp0mnFh3eG0PAwBcFt3DXhfdczxf2BdI78eyufm7RCEAKZfFUgTXx9KT/j6eVz9NwFTRXy8qlLxukJOzfAQJ+hFAqIJIvXDHNX/O51B2mtm0ORbVLKE+gd5vSctlvItXw5DC4128QlEGEKrnuro9aU68BxnMbojzAAiWFTY74xzI8XPBz5kz4GGBlgNLwDUJErgjFsUk3sfnHcjzZ3l/WQTWc+sBDO0KX4tnR4gxfu/6EcaIUXZwH2sFGGwEHJ2YqHbkKUXmzFHxKHRTB9z7L5d/TABd/J54jP1ZmDIDKpLe1dowKkoEgm1jvpuTmZ7PluYUFROeOGYOOrSO42nT4ZoF37oOgoLOSPD2BisiObke3d8Sc80j1/30rmemai7v6HO7AVFxAMkRjeoCcnonPDr95+tc/hIY84N5OML9yB4ZwpInEEtfaOyROWoPPAJO39IJMCZW6A0kIVHZ93EfByBzCU1vAykgO+a7zhVZ1wAAvBIHkWoo5GoMx/YcAYDDe6a0ENeqeLhPFlItBeQCwX7Ps97EX7n+KqBARP8rgP8KwH8SkX9nP/sfAfy3AP7JPvY/iMj/Yb/77wH8N9Bp9t+JyP/5N7Wke46p9r/TcLODCQK2TzoIfBvUJ6eKczIcnT6qToouduqCcs2HFsw4ZxV09MjZvYFc6dsPcCbAoktlHYfVYE2ogVSvFDnruQIEhHSva4L6rpTTejc67C4m4KiOHjXRWueYjrm2FQAocv+dQt+9fjgGJd4j/uWuzmT9gGoTuHCgAPXq9eJTHraJ5p3zePuiVFLxqFxXEKUAqFUO99UIJYz6WxUYmYwmb32jSuoGMKxi30M4s0IKgnit5V4JZSIVDUvOBTaEs+jCl7yJ7q+mRxEK6ez08DQFcj1xi7yCBrUqon3AyHX2iLbdEwD2VxUFLB8c91VNDs+lRuROspVa7J9eNKK1m6JxIzVeXBiwJtryKuizam5oyoLOoWD02HxWzQwBwKBKUf2jbECD50ITelUAIKKKhCgjyZtGT8WV3jeJNAF/FxJ9/vKzoN50jXpKjo8xCmkKSBcrRVowm0HrZUBj7GYO3YwB0Oi87BPr8JyVfU8KuDJVkNFzwYz+UtFeatynbEMgzXUNXGiRNqOKO6hioIcLYmbGgkcWnbnitFSZSwjLBuszz69eACyjzR45vKjBLxcbrA7gYhFyU3OPEneJBRGRqg4TkVJdCje4pLKmadzUeCOozkCo4ssAMLLo4CgpBpA0sP1/v1SbB48l3HJES/UoOsptB28caUl9ZhUM3Xug8Gz77v5a4SK6cb9zQMwi+QLoPnU3SmRl9LdF50PYd7YOicIJDhq+gUkFCDaOinOaEWO54fF9G/MQr6yTtsGckf46JUfaxYF75OQTQdlSG1BvZGBgjX2oXTiYQiAKoLDcBXxXJ1/HZ6xVbRM0PQEA74zpa0O5GvhizxSytUUIg1F1YBq4qdit68Lw1hVMCPA8GdhEWg7SRS0BKzt8Hvs0H+K7SJod7jxhAEEMeEUD18IIdoTNr2AHGkVfnTc6RtwLQzojV03xuSCzr+NjpRpAEiNH760AsAYrcvnYobPTAzyUZaRuyaLCbnGWnp3dQ5sIYIvynx1B+xzdh3J/BmABCdEvn5tugB6EXZ2Ca+taacU46AgF+HJycg5aIlnzwH/HHKyXeK8cVXMgwkTi9Hd97Nk5ap60ReJ354icPZ/OOhip7VFm05x7AMOpszGM5+RnuRNdy+g/GxMClCFk439w2i3YEm1we9DYUe780raPeZufmd6RNgOKHSjJrDB3dK2c76Gv8rx4Nu/iAdaelqoBOKhraSTC03COmADQsLX8HIx1LaP9rolydpRzO09jNc7wx3HUf8pwcr2NlgZyeEdjy1ApQOPjd7NOSIyLOYCtAywQL1tpEXIiCuFGcWDDKkpQBsdO9w+nLDtgsX+dnGlvS9ZLOIAT6UqO7mPufgI/zj8/aAqYtg0xIqUi7p1KcPrje7f0iBOY8L0rgRnfbV/YFnK8v797/lkpIBO8BDCAMP9KBhuSLoPY3vSvupxFEQKS8gCcAdZHT8fJ5xB9vw+k6Z54ZthRsmvzde6DeNzjGifbU0KjQo59/aDtcNaxcBsnqlCk3z+zuZ9cfwtD4X8D8L8A+N9PP/+fReR/OrwQ0X8B4L8G8F8C+EcA/xcR/eci8n2YwxwU2npoAGhtbc1BLXd1SHolrJ812l/WJaiZHmHs5qBsnww17qMKQv1oKZIC7C8lIh/cd4hHl/emZQaZFUCw6FsI5GVD1hauG1F8b6iiVHBNA3Cq8aD/8ia43AT1vWmU3lgN9csKVw13UTqN3BqYQRgVF3xuToz9VaP/9drVwDOwo1mt6nrt4P2Ye79+LgAByy+b0ZUBF0X09A42Q0osD7BdapSTpF0P17J2yKYOpKcpeARfa54X7K8F+ytH2UwXYmszR0WKehfQVTUdAHVOeyXsb1o5os1qiJc74eWmUchuB17kx0+MdtH78ap96mOdAQEAVj/e+7AE7d3FDzVao86Nj702jGBZAXFPj6rvFwLvwPyLPtujoW0ZDoBUy1t+V92O/acF5X1DuV1BOweA0SeCzOpkdGOz1GvDOqUKJA2Yfx1aHzrhJWj1QhNoIWyvw/h3enOv+gzcZBwiBLSFwJuCEi7yyE1Q7xgRfd/HBKjvHW899atFZntRNUidtyoe2ifG/sqY3iko4RAJMGF/UYX6eu1xfy+np+lDpKkWWzLMAMuTpcgx7h5V7MD+WrF9rph/21WfZO22thVsU1q1aZC4CKQ7B4HuWvdk6nITda7mEgCaV3mgLiDyeXes3EBMoFRaMp7xdtGo8uusTId7U2CpMOovXd+xWcR4MjCDKPKolUbthv5gxbSFMW9NNRu6gwnDIFPQp0a09v9n7u2ZLNmWLKHle++IczKzbt3X3a+ZmebDMMzQkZDnH2CIKAgIgwAaPwBhbERQMRsMFTBEjF+AAoYhAhJjIDQM3cz0e/dWVeY5J2JvR3Bfvj0is+7t6UF4YXZvVWWeE7Fjf7ovX778IHjLiO0GCDrG84J+bWg/3VEeu4OtBRSiFEaa+e9dUbtFahffD/ZPq2knbP5+RSxaLYL+1JxB4+yRbc6D2O8cYBtLQb11tN/f0J8WY6Bdbc9ffrrNM8GN4LFWjLWi3nbIa5/OwSMBI96nLO/HPPgQ+90HsFjVm/Fk5SOX39+Arti8BK2ootwNlCqP/aDxMNTW0DoU+1PF44cawPD2LLGHqgD3HwuWV8X6+91Ambcd48kA3bEIUJJGwWNgvXfgJ5hOwz5Tqcan1fbglwZZCnQbcWbWm1ebcGX9cu8om7H7AMQcyhTk4VUU9icXir07s+1kbFIsuQyFjBnpCTHe62Lz4OsNrFgRc45pAlmcU9WZAWLzlWCCp9kwj11LMa2ALNjFcb0asIg85r7XCwGKpdm59TTNorIbw0hOBpoM00DRyxIlavXJgKaSAEfqKETerQhQYCkbnG/7OOgshNP4dnMANYGQke8vB5BTr6v15aXOtUvH2SONynRAjwpT3BYJkIjnZ6Bj2425wIoBVJI/aR9Q2wTABCq5H3e1Kh57P2o5qE7Ng4i0ymSsJJAyqgwkJ5plHtXZAnL6TDgG2eErBSG2SUe1WB9amtBMn1MCFDH2MyJp756AiXgH33vusxqHsE8ymFEwHY3HZgyC290qMyR9nUgN8XnN9z6wMTgWBFKz88t+DZaDuq0wAhgNLZrH7ik3vE8CwPqAYsTZ/c6x+kj87gR8RF+1Mvsyf0f1CAiQBcZKEI9tPpc6C9TVoJaGn5eaUwUYLXcHUXoHOia44nM6KmoRdAAQVSFqObaNpSuB+RyCEIfKCjj2g0cApFVjOmTv6OyMupMeDiQd1oiUKw43iOeO488qLI03MVbMf8F0Ems9OM/vrkN5wzKfxTbR+SbbJAOM+TYBaKk712keZNp9LYCa1kAwNEjhD/ZJAvQywyyzEv4611CgmlOuKlO/4cS4sQCSgy1klVQE4BTslLPfTZYJmUQZ1PFASbARCNxVmX2Q+zafb/mq1dY1q0OwhGYpEKkIYfHvXdwro0+Oa/hDccjT9auAgqr+9yLyr/7a5/z6twD816p6B/B/iMj/DuDfBPA//OK3BBjNBMyETvPwjbPOEleiwPKqqA9zooragT8AO+A2E+Gpj2mM9pyfnhZ1e52RGKOw2n/WiX5Ydq+n7mh91PV2JwLAVKwGwiENNWz/fb/YZ5ZXz019DK/8MMVEjAap5p3rdDbIYACM6m7pGkZ9zCJejAqP1UN4adMQHVFSkn0JhQkgcrKUeYgAft76JoHiQEI3EMF+jqimsP7ETRTRLqp+15uLr12tVGZfzXiOqJxa1D2cbgHun70U2RdTG2939XJonr4wFGCte6/CUB8D42KgU9nNoQlxzmjXHCeC7FoJ0vCgcIp6B8pQlE1Qeg2BTqa8QK1NE2isdj/XbSh9oNeC7cXSNspuqQBYgfowsKdfasylsTZLN7laGc16t1KQo2mAZH21firdnHemuOT5Ppp42Sv7zPplRP+UzUAZ9k9xAb32Zl8vmzn+9z9a4n42v3weVddGkDn2lhJEh9K+sH4d8R1dZ8m39jos7eBaY7xLV4incAAI8C8U14vXgheFbIJxWSDUUwCA+8OaSWONTJlhwqFcO4e0KjGAbHtpWH5+QN726RxzLVMfAQQN3TBbGsazpVSEHkJx8cUbzDCtEhHqQ9pBo9YHRcQMWJCU7qUiwFIO/6YhGca9nPMJBwQF4vTgMA53j05+egr9gfI4RuwsRUBtkbhBVW7bBAfcsZM+0L5t5hy7cyZjAJu6wTTCedKn1Zyp+zbZM7sLXqp9Xhw4CabCPoCHOcXq2g2ya6qUMtlgdJoxPBXtBISoeOnYJuiLA8Lcv7paPw0CSrb/65KcnwCCaeR4VF5NR6BgT1RSE/HNpQF1LVC1KDxLaz7+eJ0pFhWxjgBYqpCDzVBjjtU79SnMWS3bMECN89mvSEEaGqk5Uswh70/NxjOfNQ4kDXGg8WFzsL5tM8KToreHChRqn1+8b6jvooLYgwKAJVDrcy4iqHSodhrKA+LnuVaBoE4H1JXPtRWj7fO70U5zsoLZ4+vcXswddl/XXGNaip31FEzsTl8WAZ5WyBgob3us2UhPyFRRRrO9LSx7SJE8vXD/TGPFknGAGfHJGYyoewyq9xUd+MtqhuF+EvtSjbKYuULOjJ7vfqY1cxaeiwdsahTrkTEBI9CxAmZ5QBHTolnagY1pmz+dcljpwTGFRtFODkWVWZKQDjt/R4G+vSMWBUEDF36M/tvT/tU7hPjokGBbRIlKFz88OBVpTZPREakA8H0mdbHQeeQzgSmaRvDgNNZMG4gyw7yC/m39Y3Nxm23lmBeZz2MfZ4CE7dJh4EwpwKly07trqLe7QVgn0oVHybLLa+sAVtUCOKX/nbaC6izBGT9yZgfXDFMUgCPQldMvgFme0QMrk+Z3eiYQKTo61COz9fjuIhZthgEHBwp9+nM2ephzCE3O4mmvpcMVGitlAmC5ZCWvs8PH3Hl3mJXvT5AhO5pZx4PpBLTH+Xe3WWcJxx4O+UHEL1ItBFPkcT5PmAfp+8IBOMjACFkcI/XFCVQSEY8r6lHM8pRSEEDhL1HqcztTn4RuwRiWCvUBSyGc4bwm+Htf+wcb6szISEBp/n5858yw8M9RPyR0wUJ0dALXx9SSAfGcwAPjQh1oSvPhsKYy8MIxSH0501JSFRMAAkvXUIrQRtNlfucAnr//3C9d/zwaCv+hiPy7AP5nAP+Rqv4OwL8I4H9Mn/lz/9mvX0JjMG9WcHo8IgJujlHaXIc5L1A34hVQit35PY5l1exe5bFPmr5HRuZk1IhMAZjGbaaoubMQqGb8nAAAqw/AlfVhQILnqZ7bRgN5IsJ+P0VQtiVRdkcrVptaMVMgxKsksJnuTENh4oJriTxyCoXFJqXH97A9bFhJNbjB2xXlNietNLMm66s5Mv1liUOWjjpLZpqRaRR8E95LB1A1cKP6uO5XOJ1XUR8GpLRvHfXWJ6jjFyNsJgYHhLCYGsshRAergw0LS8PBldW9P3aN+8yxNIXs4u/fr82p+4J6g+sB6ExPYMRPnCVQnDGxGROgX2xOdQdBRhNLS7i0SF3J+hbMlbbKIAbIUFfEUgbc+M9LhukDHjFevs0Nv4yB5asrWA+EXoOOEfNLq2B79lSHHSHCqVWsZrILgFLwNOb1NiK9o33r0RZ7DZuT9WH375WpBd7vxdZW6CgoWS4msmkl7eCofCrHB5ggmrcvO+9QRX19oGzVnEtBAAN0XvangvbNmERUVg/Kv6O8B8fSQUnm11dSwwXBchgXryjzjio9AFkwVs/drmLf1wEqjEdlGY/0xTqm0QIcjSsay75W5e4H+AKgW/t0qehPS4yFbOOwH+b7RYlDj3Bq8T7xPsa+Q9eGsVRzQNVBBaej0/FSMRCovmEawGrAEdMG6KjpdYn9FUNRXjfoxSsA+Do+lDJTzKo2A6BS+EGYTmwNjMWYL9yHY2/1MRm1GZtk8+8sxfUdeF84+8UrvOwOYGxJtFNk7ufu1PdLhVSFUKS3mnhpgJ2KcISiks9gKobp6lSKaar34T5mSpCvLeV66B4BLdNwgDM5AFuf4k56DDupxM5GC4f7A4MhqqDQ0d9nu2JtEVzzZ+YxI2OBz7d89DGjpkDoBdg6PkW/lxpMMohANkSkXf33h6h8NvSyo+1zGRsijcgceoD56gQRhEwAsoAYQPBc5NhvCKQOT4MoJTQnAnD0+x6cxKDWy3FN5/53Cr6xGGZqlTBi5ak82ek8PJNaCtEfi519VexQKclhjf7yv2fKMPP8TyUXw2gGzCjO78AATnKKKZAZ6UDcd5ZmDA1GWs+GPpCcqRONPT+TkcmlOSAypvOfAS3/fKbyHxx/jlceN7IUgmUw3u/L0Yd0HMrcF/O97MVAIb8Q2gWO7LvzfbNxzzNFLUKvpLUDx/fiZ9mehul47DuABrRjSl88y78nwBzLc78DvucXqwhEJ5fz4uSQBIDg6QtKhtCvXe/OLAIASb/jI2cnO4BIjlNyQg0AkemYUYch7uF2cnb+M5jANg195zi/a1MuH5g1HsicgDuK4cR6e1IJx4NTm4CSgygj25EddpZ3JXODF9cYxyEv84/SHpyZPQX9PrjGpOmbFsNsU3Zez8J/hyvpQbwrI+mgAtklmufVL9HymTZTTmN8aLumd50gxC/OU97r/PzvpUAAsRbSb/lyDhIpAAc6uI+dUyWCZaLz3gfg169gkyhYwjN+5ZoaBHeYMvGLY/Od628KKPxnAP4+zJX5+wD+EwD/3j/LDUTk7wH4ewBwXX88lKKqjx39xYV/GOUIh9Ej/HcTZwzHym467+/Gz/Kq0DcJJwoAUAT9aQm6cnnbjmXcJDnXu+UCa7UoFasVtNeZqypqkbW4igAoAVrWhy28EL56m58dxYUj1zZzs2mI9YF66+jXit4KWnZ21Zz7pg46uJFH8KE8hkeLzCnUJhirRJQb7uCWHahvFgErWw8goHgEiRGnemdZSzd09wGUizmBl5liElFEn/yWhgIznFVR74i8fDIm6l3RdDIx2j0DNO5Ut4J+9WhXXp+p2kd77UbtFxgt+kG03XOKq0f++zgI8QGALmJD7+yKKPlHMESs3NxoBaCIYhXIQ1HGQNmKgWH+HK3VU3PsUO4rsHyzPqz3EY4by6oZhdfmlVbB25+YKNn6dRjYA1ilhl09vWWE0Oj+XMPRmpoLM+qvzZxnQCCXgnofqG/9kFKgRdCfm7MerN3tbcSaA4w90D+7k+Ljt3uFD2NTWF/W3YX2Lqb1UJI6fH+u0GalRxWK/mTUWraVYImtyx2FDIWuVlJwsbSGAA9rxRRcMmcvjIfdnN32auJDJrZqa7hsA9e/ehh75nmNzThooGuDvG0o396MTuzRayrlR/CkOMDgDA46PoVgwuiex18hjx3t7WEMkuLlLEuBPps4Wfk6RZJIveef1rgTjdoNVPFcXfV1GAJsnpoAX7+kZrOrpHcTlXt5CqFFCltGNLsBkBk1NlYAQtuB+12UgWomVldu7wWfdLFoWjhB+wRyyusWbSu33UqNPq8Y1yXAOktPGwZgqh4M8vHUDqwtOszloWi33Sj9b7s7fQZyxVWLjQ3p8KoRoR0/XH3OVasuU04gEwwwYIoQACu12wS9NEtD6APtpuirrRGFne/t1UpoVhfxNcff9/NhqRpQoOwF42opNf2JKUy2ppjeMS5UZgfa62YMHQeIArges+QjhdL6y+psDkv5K7eUzgKuWRMPLW/OHllLnAW2JhBjkffjDHyNS3MmxYh0pCkFVQAAIABJREFUH3252Nn7drf1p+UAaGitUNemYWpMvu+7UpO1AsOj+Julg1FXKcAGrqVqYrgGBHiFgz7brUuFPk3mQ0T+Uy6pqEbKgAzFSEKJ6Gr9vPeDgKAwir4a+M57yO1hlPuUDqDVjURnMUQkne1QjbNNcj73Yqywsns0de+QUrB9apYWSfHYoNQmhzmnFPjzdF0M3PAynwdAM7N5GHVmoEfEDGCCptyvzukdTMfwdApLPxyR6gWRKVDJn1NPoBQrsUtHIRvRvMLYnmCCjZ8b+6WYWGBP6Tu+P2cw6TCvCbJcV+vf+0zbEAco4/O5koYDxnk/zaBLfO8MJIhAPz3PsXEQzAS7jwygnAoC9QDKmIw/wTodWab7+OcDtMvP5nhmLQ06TX62AbDARCnGKtl9jEl95zvviO+f2QIHJh7fh1oh0fcZpBvh/CrBSaYn5M9KAS4tIsSiCt22CWgEyHQCPjKYldtF1sAose9F+kN2Os8RZDoEBEOK9x9LtwKW7gI4PT6lbIzZ5+rzE/s+x+ddhH064zktQH6pIgPfN0pO5jmY2oEEamCO37zXKaIdTvXsUzlX3oh3VEYzI80hUlJqiTGOGUqQIjnu5/YEEJBTKQgIBYvGxkQpAut9IgOzX879xbHL/THSnGM6XmafsG8zGPXRlYVuM1OB905pJjHOXWd/J4BdS3lX+vRDcCQEZv3ZMR9sv9RfA1XwNwQUVPUvomEi/zmA/87/+X8B+JfTR/8l/9lH9/iHAP4hAHx++TMNqnKI+6VJIRJ570Lng5uRRx2i9rY7y3YPWNmsoM1i0jTbRHy0Oboq0ygEMOmSXaFFoS4OSEHBqLueD0exgbac2zKrM7hjamXPZhsB/3cVaOZcR5TaneEiRqffNTYocQcHjhTOEogOlBSYKBr3E56p3B+L/SPuQYYIS6QpJsqYGRpnMHspEeGO9p4RRXfeLfLtTqOnPBRG6FybQXa4Y46DQxuLikYs+2lItL9g2Bi5Yx0OKmysMgOBNGWmM7B2OynXZ7RRukXTyz4BCq3z2TltwyoUwJwvb78ZcxMEmwcZkr6Dlf2zCgwC5pBnUA3uOJRdoRWR+mBz4njmxruSLVCAQl9PfYCHtyGc6vSfR0bHIpHjzlKefRHsT4L6sMokSO8z76cYKgGeaEX0N0s1ChAbY66pSwdJRKfuBQ1QUjDhEYYcmcv3ULX8XxHgaZnRVgox1hNSzUPJm2fMpWTgca0EX13CSNQcHS2nRe4RTQzPcW9wI8DfaXdggM9wvY75TmXmtQNOk8ZpH6wz93yX6C/bE0cAltEv+b2KeF51orVyLynpc8P/dzB6fW7Rwb+7I8BonjuvAZb6nwc2ZUSMYHvctgNYQRHRw5zgWCe2VfQB5zDXCBAgbnGdDE1507H/k6XGg/ojx4TOAOZZFP1L0HRYWoI25vlzTakBgmmtszRjLiUMYDIAuF8XuABvmcyuIcFYMJFVCdFd7udlnylZdOYjX78ISJMmsyGXND3k/QoMgHFAZdRiOgFjjgvZbhQ7JcNDxsC4lHCiBGXmpzq7T9Ic/qjPoSMYFIefH8AH/0th3yTHh1Hi7CjRySniVHvMz0YfeDrcwZjz/Z45IJzPBcjH93evM9jCefThu01AHDmKzc/wr3ktMiqe+/JgS/mPxFKptHkbgPfPAE57RJlspfPFOTNOY6ip7fndw3lI7xvnwmk/LojzfN5Wj2PJSB3vf/4vgwnJjuDPTFcn2XH8bPrM4V2BAIneve9HfZPHKGy2cfz9R/fJ90+6FioT6Jjld0/7Hx/vbJb5/m77YhzmiqaxiPX6UXnWuPGMONuvFKFnMOY6//Adz87qR9Hi4cZPft65n4ZabniK1k+qepk/o8PM/nzXd2V+7kzDz84bncGPLh2AfOBSnYGF+Llg5t77PWs9rsHzdzJw99Fzzn3wvevXyj3mLviICXGOhh9eK82HX3o+nxXMDhOIzOKQwSSgM150tu1QnrEEEBEpGWxLflZ8VqL/D4BPLu8p856/ePFeZzHEX3r3j/o+gXe83glmHth38vE4ZxYM73cGcD4sh5nOFNpq5/YRjPnO9TcCFETk76jqP/Z//tsA/hf/+38L4L8Ukf8UJsr4rwP4n371fgrXPxBbL04jpIMsHVh+nqWQGBU0UTQro4gioXAd2giOzmoTUDwxyvswXWAo+tOC/fMFlREse0n0p2U6iwoXsrIoruXaee4pMMX9lmLRsFvHtl6cogiMBrz+rQVla1heFyu3de+Ri65FgrbKdxiXYiX0vOTe228XyACe/tLEfrQW7E8N/SqAuDq/O4cWpoeXGLS+bFVQ+jTiipesNBq05/Q7lXY40i1btwBwOuD2Hy8hzCVqdPyyKy7/7xaRyEOFAkWIS1IHArBFUiLNTlDU2l9oYO7mRDMHGF2Dsl32gb4U3H+zRBR8im6aCOT+VGzufN1nFKUKRq3GdHDgAsVz/SnuZ91pY9OcBi2C/WU5RCJVgMePFhltr30qntNQZpnTh6WOsNzgdAonAARPIxAHnZZXDfBlNEDU6NLlYdoQQxXr7x42h58aikf0x1MLQcgoXVoQdGsT6XQjjaWO1Jyg8hCUB7ykpzkvddimZakU4sKZgr4o3n5b8Pp3FJ//UYmSkiYq2YKVsl8L9qvND3u+jWe/WLWK8hjO2vBnFrHUnLIE4FEeVqVg/83V5qdIlNpbvuxG2Sal+eL0fuGaV8iw8qEGLnXk01JlIHL6Pf8eVdCfV+i1QfXFnPHb5g6IlVEEEM+tXbH9sGJ/rmhvNt6jFXPwdLd+WZtrJ6yhL1JuuzMqYGN0WcCShPLYIbejASa1hOK41gpxNWJ1Svj248UrvhgzhJVrCvsmAFJfz0WglzX2Lh4fep0RLBk70J1xQ6p6V3++WBlMNCvL5+1kNIqMBKaIcM6bU2u0cumbjecPlitd9gFdFbgs6E+LA1g4sJ/G8+KAEMddUb8OVHGhzKEov78BrTgTzVk43VN2WG5wDIyrVwLZdaY07FaWGN1LHJYCuff4bOm2t5atxzmFrpbCslulhP3zNcQbRRHzX5J2gunYlAAE+kuDDJiIqN9Xi2BcF/SnGoyuQ/WgAt8PHUwg6wN19rtqpEygwBwTZ6E0H6fhZx33YlLttYiluRWJ8rkAHDCV2Od7lE+2va48BsptgzwGpJ2dVI8KdmuPLs3YKGtD/XKPKL54qUT07kJrBJJ8HT5fZ4R/F0gxEUxtHrWOOWcOrXi0Hksz9uN1cSMwOXt0NGgHNE+FGHTcLVKja4NXOJ176Ma0yRKpWRHBfMcsGM72sOg/LkuwCYKlwJSMbZ+GYy0Hcb93Io8udie3BA64oXv5J2+xt6iznwIYIchGx5fiibUYMJiijgzG2Psi9kxGq9+lVDGq5X9GeVUyN9aZKnmI1NM59bkQbVuaVcbxfmHJzXCCWVaY4nyqkO7vlwUhRaZApDh7ZIzp4H4g7DY1C/xn98dkMFBr47J+HyQgkECNoFqhRSGP9H7fAyVKmlNdZ4WOfHHvpU5FYt0AJ/BhZVWhAZY3DYYKU5AIxktyqpcGsOSxznYI51q8rp+3pQAPm48hasiLDnyH09YZfe2zysIYkHU1Z/LsQJFRQad86BRZ9XQ46D6ZLg4qSE1i2+zfLLDYO6LEcn5mFhscetRTAIw1cAbF/Kxk+wJI4Fwi0HkAAbd537Pjl6j+zIcXgqNMjyBbx+cN2T9obQIEOQgzdLJ+3jEzPgApWBaxwiLaqpPCT/03Ag8OFgB4D9aozDGnL+CfiUoT0edjzsFD9ZjvO/BzDsoRLLBf4h17oCWXWAcOKQZcbwSwGETI+8MB9C322aj5jBOowfn2HkiIK7NSAEALJFdf8q49gDwRHD0BCPlif8eY9ncgERkKwXLhnP8FkOWvUzbyvwLwdwH8VkT+HMB/DODvisi/4e/5fwL49/3B/6uI/DcA/jcYuek/+NUKD/Axa2WW7cpIie8DjDgxqslIO6PeUDpJ3rHuqAU12Q2Dcpp8PAwtR7YeosYTcXdD6xz5HIgoxlhqRCjIlqABeAZ5ef8QDKQh7BErQ6AlDE0TekttbvZFFUlsADe2ST3FdFqpjG4ROXge7zRwD6wN9ld1Q2Xzdta52ZKhUd5GYhzMdydF+djR/tpumIkCVqIy/X4g0jcAzDrbDt7kMSO9eb8W1Iei7MwpnuvXouw6wYTU9/A+s+gcI4QyRc58M7bU0Gn0ZwZLvt+M7Fqfl40OtoRD9C6aAUyAorD6gW1ukSvtkfyY/wC0wQ4nsVxj6kpEnjHfEQjGAu/XLwI9UM2SkcHXYRTEwY1DwMjnoTEvgLLNfuyXxAxJ76wVwI5D1DWqgnxwUYci6NPJkMqCcdEvEYHJv+MG4c5v0RmBPEf3fJ5A1RwBrgORYJrkK0d+rQ812EJT/M7WEPOpmXNtfy/xM4HlrukQbyOmIVBlUoWBAEWOg+V7XScAKweKaACsoR/hYqjFacUwA7dsY7Kt4kWTEVmBA7OqWUpXpIml6K6WYoEajtv5oIq9uvjaKxOk6zD2R6obPplYyXkBAoh5FwH07+gYkwHAigWiE9DZdD6n2P7HW4ajGe+Q+jzScnx+cXha8XLj0+HguXNg3vHzznDaXsqs3rLrZBtw/cDHwKO/rP4izvxhFJ2fH7FvIhytAjplxZTaubeROeIsBV2c5ZKjuLRTCLghrZeOiY8IDBDlucu+c2NHiwUMSqr8YCUd3bEXvHNGDyJ8bE92zOI+4g5jifQN2gDhjAGw8p8yz7MElHN+hJPgqUSifga7toOoxtYVmisDsTaipCTnaas2dkO9DTqddd63lONa5/tz/fE6nSHBVDpfeb7SEOTeEhMWsXfFR2Nf8Ge506M5YkWgNjkknEcRQSQ4lZ2L3N/R/un8Htr7gTN/YA5wvDD77CAamRznQ4+d+891Kaw/RkrNkPmc7zn5Y6b9xJWN+PM75TYQVMp6C3kunj9/cDaPY/a9KwsoBkO2pn49v9sHgMa7ihKJkfdOd+Gs75Cvc+Q2V174sPFpTPj5cXKukx3zUTRcuHd6m86sFgGOduo5ihvv9ZEBf/pddr5zKoS488/nJd863o9zwNv5/kWKOXF6ctTDSU7rle+bc/8JlsQzTkBCOb33gZH5AZjwveu0toJtkBzQQwnGsz3strKmfx/a/YvPTXsY5x/nY4Aa/MB4Dy6cL019yjZ/hxHwTmvgsF/7+PzK4969Y/loHpb3fXZ+7rmNecwJTrEv5DQZPwLrhh7W7i/qZuCvV+Xh3/ngx//FL3z+HwD4B79238N3quVytr/82Q6vyJeD18eeThJrYEdeKCNDw3JOdSkWPe9qNbr9oO/PxlRobgDw8DGxPhMr1JeMTinatz2iyFpN5Gt4CTsKJO4vFhHtV6N91zfLgR/FyjlSp0CGYvlmgpL1NiLqrrB9YvtxQdkUl//nq23Yi72LNovGjmrq3zKs7Bj7AGUepCpAf6pOazcV//rWsf9Qcf+xom7qz+8RRYqJslg5sLJZhCkqUzwGIMD+afEodvd+EKy/61bW7DH7zWjxNVgddCDLrnMfU1gkS3FwaGlUt7duef8U/1sEeANK75b2Uax++v5ccP9RcPkZWH8+akZIV6xftpnmUI5ABwXLxloipcRYCcY2qG+7laRbCnYvCzcuAgIyBD/Kw16CTJBgZdx39GvD/mIVFwzUcafBnYtRBePiJRO/DZuv3mflyRy/7cWj+y5YOVYHmdQYJeUB1LcN/WnB7bfrBHcGklNubd2fC15/W7G8KZZX0s+NxRLpRC6WSCdDq5hNPmBpDhf7e/mquPx+oN4Fy5uiXwS33xgzZPlmApvLV4VU9bKlinYbxiwQwfJt9peWqdUBAP3JPnP5qzukjygJCE+TmbmtVpFA9oH+strYMD8YZmzLPkw7AUB52yzlIpcyc0aAOT4Fu0fKaYwJBQdDcGqgfLVybuPaop/KvWPZbdxNYNLKpm5/fDFmxrfdjG3u2QKLng9F+/3uUauZXqFPq+VBv21HwTBG0DyKpK1AbhsEO5o7zv3abH09urUnsa7oWOtTAR47ZNshbw9jYJyMI12agRxBCUfcpztQUmp1LYbN2rNU6KVAE/UzQJCUpkH2Qn9uGIxCDlft9rQgCty+0ywg6PM0DcL6uh0YbLp4VYbHbuX8lhKRVfsTpgOxD8tGIePN+zCcwmubhnixign1m2tEeBRAmpU47s8W/Sl9iXb1qwt4upgt9zj+rl8F3/52xX4FXv6xAbT9qUDvGilWGMbsKrtia1a+d3+p8wxUxCEvoi6WC6/aInj82NC+CtbNyr5BqkVRAYxPazDrdCmml7Czko8aVnQx1kf76mw8HseKAJIoyEpxW/i5WtREPI3hVH3eN+vHt832X2eRlI1VTWTO8cdkBsFTTcIhe7v7GJnGSX9avJKKoP10n6xHCLBcrK33Cr00AxlZ7QEAapnVS1h1ZfdyesVsFCk2Z3SMmW4DGNOIa0Q9Yl6Ks6VqMEZUBOW+GXb+vM49Dd3SfLgG6IDQWf0gbzWcubvPwyfft7ZZscREWr1U4yLQSwV68fxaQIaLT6pGSgieVqinHmJdMJ6WEIzmHlDuticFM6C53ksO7mx79AEcuJL7NrUGcBrHIlGdwdZoBaRNvQX/fKQZ0KklmMn9hfctAjOOTo7a2endu5UabRV4bKYDIHKMREdkTqbGTgjDjgkIZMCD31Gd+fgEZ2qx99p7zO2wefMYkzERaQSzAtXB+Pd3sf0zvd8ZIGim0RHVbQigAM4ScCYQ5hkblTRCuK9aW4scU2TEQbq9A/dtMhHE2naI3EZ0tE8nCIBVZXAgwB1xCsTR8Q3NA7aH300lHAM4EGciEMDMLAXOA2oVBDtCj/elM56vnEbRmrWTufKsOpRp9hHxHzPjWAd099+79sSBMi8MahBQkZnTzig/mQacg9lZz5H2zJhglQoq/QNTkJK6Dh8ilOk6Ayy1gqUKo4t87lhFGZk/S2mdttez9Jr3kx0RR4Doo5SRc8pCBj68DwN4aUe/DpsiHOlazb/IgND3wDpvX1zDD95RYp4fUm/Y9jxusS/kdznPL409JaePHICkD/pkOvt+frU2+3Gkdy4DKKsb8hJ2p551FsZpHKjJ8HHvAPjnq/Lw/98l5thxY9WnxYV5NPLEjVpZsD9Xo7g/3Ali9JPOkA4UjzIzsh0K2h8gXbnsYzaUIlqsCKFCpmIE7YwOM+CU2bl5R2Tao5+lG5BgzxSr7+7AhhSJ3Hi9LMEWGEsxITxX/t+fABmMoCPSQaLqRZFpXIYTa+9ndHzE53QgaKrW3vnedEAp1GdRtIqyKWgPs6zhAT33RT68f8SN2hhHZ0jEsHs6A51JjsVY3dH8gOnQXxZzxL38pHQHUtbzosQcD2esyENdiMoXqUhE8WY03RTiATOESh/GPhFEqkhQxn2uADhEMRUzJcfG2ufG4myWQppwyg8vBnIUT4somzqzAKiPgfo20J+KO+Q2vv1avA/svcrD5mZ/8vKOigCfQmNhJHDg6u2GazCozdnuwMpo1rBI5QBQ7z4OFxP4HItpKWTwqF/svmW3/i2uyq4yU16oPE9GTWiTeH8QxLONFQHgKHhvm6hK+vPqYoXbHBsK0wij1C6WOdZqqTxO2bUOd4eTjoKnCYy1xbjK3Q1w4b3K4XANoLKrKfwPDaG9qcLNl5hrDZKMs1KMUkow46OreEcD0zBWNcAk57JTSC4MXBNqhHgKRikQp0+bMzAOBqjcH9OYbR79dWcjSnD6/fX5EvTrSKGgU0rDeszPSzcGgWzDgi/J0aZ+hfQEJueoHO+3wyPSDiBEVB1RmhOwvj+U5U5RX0v9OpLoQjxQWf5JaOVM5hAdxcyaYb/HjTDT7yiay2o6AuDWUfaCy+8E7SJoN52pESOlQ3EMgdhDKew6PL3lnDMNGGAxmrg2zexXAEFRZ8Sy3F2Qd6GhlqaYSPo7QmNGW9JdUJ5zYzI4wjDy82Awsu2RXWrbIFU0ab6n3ZMj2ceMHJPG7PT12D/V0+DIiIjB13CeIeIldbmP+/2458TYsg8kUheEIot0VsjWKH4uUHQOMlMSToZijipHv40kanhaf1m5n+/C/c7mQepjviv/JAjAPWUMAz5+JbqtIkapZeoI0xtUECXe2D6ykyqrCrH09mxHuduepKvEZ+HMqHhXsktyykV+nzRPc18E4PJuvCdINPvD01GoH+KOh+5WqjwEPgcFDek00jG0dmlmZOHUznxx3g9MsEFsbkRZS8AceBmHvgxQuRiD7QD05v2cf6f9os7oIchzZrfE/gmQIWZzOe1/uZpFvuLc8zHqqZ8lrZdaAPXUONFw5g5WnKqzJB2Yyw77OV3A14SmZ2rxdh9SFmY/fVcwUNUdf50CkNF+AgwOLDAy/j0wgV9tvp8Y6mJlDIEJDnx0ZSfY2WystBXjWU0bikDjAXjJaRDCM/wXQuBDP46QvwPgZj/ZOwhmJJ9pCN43HzEWUnT8kIP/0WcPa3bYwcJARh6zYGKkNqEevw/YPFMF0CGodo8zM+F7bclXDt78EjMl2q4ABlSzPs9pPn8Y+TcW7uGq9WN2BeBMjw/akwUagSPwAEytr3MbRgKlfq1PEtsl/v2d6w8CUIgczFqgl2rR8BSlAmD1xNdikfa7YnWDPwxFVTswq6D5PbXNQ6JuY55jksT4qgRtMRsndHa1CvaL5ajLY0BWQw6NNmsfl6For75RufMQTo+4ofWwKKUuBorUOywS0pze7S+ypzzV7nnsYzHDcb9K5OOaUyhot4F697SGKpNSK2Z8Dne025vGzyzFxPPQCx1MDSc0xkWA+29aPNsqFpgzyPcNgUoAukv8WytcWwCRJy9uAPOS3fJsta02vs0MVxWLCmUBQF6PH03Dgs+unmpGhkjx8nN0FFSA/rygPLpFxK4tarCLl82y8pamVWC6FBV4qli+7gaIsFsETvMfk2bsTIzhaSiF0e7VnP9+KV59oht7pFrli7EIthdjr5TNS1y6oyXDysYxdaO+7mg/33D/F16wPc9IyPZSUC4lwK/ldcf9jxY8PhUsXqFhf7LPLt9GvCcdltGKp0AAMiR0D/I8Gg0o3atjDODyZaCvgscnaiogjB+m4+7PDpChoN4VyxuBNKD9PGZdehHAx304c0ErYh6OLDYJMyi02OfrfUS++BCbK6WI6ZyEEzFC4RxazAm8VPRrRVWFpJKaulRj3jiQybKf+rzEWq94GGDhVO7stJrj7E7SGBYJxEB7w0wnAmYEj9/JTsZjgz5fLVK6dXP+eTDGh+TwJytioHd7VxHIdU0OqFPAvSqDGfjTGR4eQYSIMRayo/N2tyjl5+fonwJAd6uMY3uERT77p9XAgW04O6MEmCis4EDwQcw5IVMHjO6frqjkwVfmnMGISLKVxLTnSZslHPvFjY4Cd3Cn8SQZaBkD8tZRdqscokuNdYhxTG0JIKIKtFg5TnhUHoC9j8LBMAfTqM3A6jQPBBhVtw7pA+3baqBqm2M6OfW2Vs3RR5xRy5cd2gTbpxZnlY03IHdLg9j+iOwIB3U8MmilOA0802btL68PA5la0lLgGefgAsWPtdkZxj2XpWNNw8H6OqpFEPBxFo/swyoiESwZdCYBMvOgZZZABaxcKSOAqkCpZnBfmCohNsaPHbJWDI47EPuAvN2NyfB8dfHRPp3Mc9qOr5mRQCq5b/Ydrtd9GJuFaRYDYYtIKQE2fOjsD2urTdQZsYvygT7HjAEDAEmQ8KQD8M4UZAR3YOpO0OH8djs6fjkYkIAfhQAXZxsRLBCdlV38s7qs8VjZ9glIsp2qkG9vgOu0cHwli2ACDl7UWe5xzPUZNhnZC1lLgZ+9rFM/oQ9jbazLZDwAkTqjj4e/rkwlfddEUNXp5Lmxr9SQYAnOVs2hfWwO+CTnPjoj9ylgh4cxE/TSMK4LqioUD8jN9LAkgyZ0KmQGWQ5AifedVauqxzlGDY62mnPxOAE0Pj8Uvta2owOOfbcUFJ4hBLt1TEX7xMbB0FnxwisVWGlK75cMlHC+e067SDs4hppBnDJivzo4vuFwJUeJQYAc5c/tyw7TMEBJS53OKurxsxXW3qwlcKguobM9rbqegOebJyAmWCh5TYzTfcTn4r6b2X65zLPdfxaaDqUBpdo7ZAZEu8w2qgN6S+qf/OcHIo8R2Q5tAElgSj/2Hx33sxaCDQAivWFoOJ5HgMDbnR3UoTEu7+4n1AOAr0vA8woPnwsABvYe8u49MJ3oj653AoXfAU3O3yGrg9VI3MF/J0yZny0yU2KAw1wm0yO+F+M8ASTuv/GMUQF0HEr95rKmUoDtcZoLzkrI9ifvl8tHRhsnqPBLpST/IAAF5uONS2YmmOhWUJE/NTx+KPjpXytYvgIvTbC8Di+BBzvMWaPeDZixFCu1rBYJq/ukVitITe+x8XenxZKevn02GjVpiOr0VZY3zBFVNHcWNnOey+ZCdh6VLn0KCfa1oNaCSqOOjqnAnRq+A7z04aS9azFHsj4U65f+YT6LGX38B1AeiuXbPvP1gWBcyI4p3LiPiLjJrihDbbEqsH6bJQTLpmG4U4VdBVBnM5jxYz+zyHNxLQlzGGXIzK0WsX6vgsdne/fldUT/SgeKqkXnrwWyA60Pt6QUq2oALyYIKFi+mfO5vyzRpzTi+4VpK2n+5WBDxYz40Zb5+QEtnA/TOB8+rubYegnHazU2yt1TX7o6e6LFs5iWsX7VYLBwrKgSX3RMB0IEejFBznZTaE0OPDCdt+RUlE1R7zZ+WjhX7RnGeKkB7lDvgMKZxkwQA99ck+LycwlH31gxmGwNAGNFpHQsX9XbBUiXmINl86iqi6kyqonm5UNvivq1T7YC/xNnaWwjSmz2a4WMYkwlOjuKEOWTrsAd09hTDU2OejNAY1xZvhFRyjAiw+GwG3qu6o5GhVesxrchAAAgAElEQVQLKFMvYpulTJlCgb5BWsH2m6uvEVhpMsDEY501AVYZAKDrEgKLpt6PGfHL+g8OCMjWJ9W6lGlcioTDGNEkN4iD9ZEPnwGgaJSjVApuDQ3RMlLWdSnmrPxsgI48thnNc+et7sMDVelAUk8/qBVg+cig9+ihPdoKei0Btsi9G5vlOo8r03WRAA4ngOLjpg7CPlUTa733GGMD6nyfo64Cy5G6U8Jn8R0CaCmuUeDGPnVbxNkobEPBsNx4ZyYEc+RuEbBxLeHzcq+P8qpc164lgn2Y0GpLgHGBA9l9sgU471UhcI2I4fNdFeNSUbsC+479N9cQakUD9s/XSFPgM0N0cqlTJ8j3v7IrlNV6dIJ/IY5KJ793P5dLjEukGt03M8CX5p/xDukaYoxwGqa0CmVJWAL5983WAtwYGgX16x3lZnPU1pGxkLSy/zcDFinM6ewuBhFUYHO8K+q+xXkZWgV0Kpc6WQ6+Xwjpx3ufx0urNueBua9wXfp8ijVIQ83ZeiJLOIEqs7xlOI45Op8FHB8+r/PeUGRGr92RCn2D1A5LCzMml4Es1KepkLdHAl3qod+iYgaNVqaI9XEUY4Ttc6gF8jbCOQldCl9/ARAw8pYZKrwyQ4yfFQGul3A+A6QRMWp2jngXgdQlwAdhP6oe91OCG162LsRCRaCeOnSoEML2+J/A6Xfsi2ywH+jw3gdLOzAWDukfvMQ+o+pAHJBAAJ1nxjkCPQQibu9d1pn+sC6Q6nO2uu5IGUcH8Hz5vJIM+BB8a8kpz1cCAmI8eHn6xbvvcPyzo0/HtsL2W+DktPIZySHLbeDvAvypE0wIB4ypiAOH0pBS5jxR//vFAN4Q8PO+ODIljka7ZkCKaRnqbIoxvy8f9Unug3i/9Lnon4pc9jHa5p/h2pysBJ+3H31naKRL5Eu4fzMIlM7/w+fHnCN6dlJzhYJcUWCog391Ak18hoPA4u9xCMKoAp1jMd470cARdDiXJc1XgBQfrIO8Fw+3NbkOCKItLVJkAEAlgeR5fi0JQP7e5Uyq+SJl9v9HF8Eevj/TYFVtX8y22gH7SHvHGST54PqDABQwzDHTS02GiBknVmfbKNaPT4K3P9vRf1exfBWIlogOkT5NBzf+XgXaxcv1DYvYZ3CIdNdiRtAoGgbedjGaP6NBfaVjPw1HE1vzieY+aKi/1xIggoxplPrePwUVBX6gWn78WCTEBg1QGB7tH9AKPH4ogJoafzgrJ3RvVIn3rHdFZQ3xIlbLXCTaVG97GKPmNIjVUlcaU2RgeFdtFnEz584dsjpz+yelW93JnOKUBii4Q+ArgmO1PUtExPkZprSRTdFeRxix0h3Y+Lxge64oZX4PMMpvlHRzcCcLZYoi0lDsRd3YcsSWKRHty93mBpXMyWbxaGd59DnfmmkOtN1o79IxdSUGDSQHsx5Okfb5Q6aMjYVHyN2BZmnO8hgxPwkIKA9Tno8OWBioYZ/rqwNXap/f1jk/zImGrxs4oMA+NBCo3u38b3d3KLo58NKB7mDCcFCt3cwwf3yWyZLaBuqt25gkQTmupdEEbe9o3zb054aOKejGkqNBQy/izocA57av1e855lh5NJRideXuxqBH4KIErO8jcMci0gboQFanoN6GVQjxs+8gfhVpFh3QZabueJtHY2ULTKFYshfUcru5r8gAKHAW4mEUSCOgcBZQC6cEoQUgHs3CGK7YLpG6AbBvYY7Q3qHPFwwRq2Pv64FsLuod1FejuzMKU5LxKvtm33m+hENGJ8iiYzXyxPm7g2ippH11qJUoJMXc14i9ozuJsX6OhrMW07YxVteAqoEYJtiozhwlSFNSf6mluvBWOtc89RTmmNpZU7aB9nDnXooxATAdIgIZZQyoz23tYkY7x/vuxkWcYzbHxffWsRLkQrAoyr1jEGxIwCiUbAENMGWsJbI39ueKsQrW3++2tz3X2DeNuCVTzHOosxIWS2l4jGCOEVyPKj4SblEwdoAl+tHGeniu9cO6OMqmSWL4GFim6vTkWt1BTvt11Lov04HcdgiA8enJ1i0NdEbM7zvwVDCys0ineNvAUq6sIBLU3UB/6DAXKJkOnMuMANPZ78OAYP6Oczbfh3O+irGf+BmRYFiKiKX38HuDgMuwiizcG71P5z1n5NgGyfdELdCqNixjOvoYCuybgTcra5KPmO8l/Rt5vSI7rv6TpSLYH6EvkPquAHKTCY4UnU4FHazcb8yLZpUu3wt5BfBQHOzIYAJZFfzPjXypxSKu1aLMB+dZ0v3zu3Zn1zkTQC/sJ3++SDh+ZnjLMcWE07fgOG/8vQ/VLDg/NL0H10bSAQgRXPal99cxSnt8lqiLyfpZEuKqvG+rAXrY+XC0L+Oi0wS4IWLnH9kGkgDAA7h/uIVOGxoI8CgqFXD88zM53upR3aigkPotNAkIeKtF4TO4w8gx+6cKoioDdDrUUU3BB88jwFapw9drseov2Dpkp3M5JhPmBCodHFD/U/uYwNxBG2A4cPqBU3veS4ogO8/COfTRlVghBxHF1L+HyDTb9VE6B4FD1VlVguCC6LxXfjbHqNboU/v8HIf5eZtLNjaYe8SZmZJBViDmp2bg5XydUxPOQAr7oitk9fd6lw7jIMx5bLzqhiwt3it+F6KaPqcXsT3pMPc5vuX4nCT+HEDQWXCzHn+vus89xN+ptJQy85GGBMexvO+T8/WHASgAM7oilq8HwAXEzALa3bFZfq5o38whGxUmlDcU2OfBBxhAgb0HhXx/XiKCKl1N+E+A/rKYge8GhLscJmb1yZz65Zs71RR5VA0q7r4u1sZ92DyWuZEQCW5vPQ4l2d05h1Hx9yen9zudp1/sz7IbmFBvA+UOi4x5lP/lL3bUt4Hl97fIUxrPS5QLhCiWb4Zg0RHfn5epZ+BRXbIMaMAPRtoYzStAc1p42cYBTBmXFqUJtTkLY9MAF5jyECkW3melG8CxfN2j7eyyy092kBM42Z8cAFmR0lESQ0QsRWR/KuiroLxan5HS375uQc81AcUBhF4AwlGI6gM+D5k6YWX3ehiU9W0Pp0LEWQRVMC7NQLF7x3rv3sc9HCUKeParlVOkQBswz79BB2LgQM/WJrbGi0VP631AN1sTFKEci9Ouh6LeFOvXEUBbVKYQBzF2A+eCUaPA45PNufpQSJGZelKMLl12AxLIkikbUPrA2x8XvP5twfLVPrfc7X77xZ3nRcxwFWB/qfbfkwmMri5Qymv5YhR4lroru0K8FCWF7RhRrI8R7zXWchhHYyqITQ4aO7uNef2CMOTU84TLfQdeFftvLhhLQX3dY21S1NCEEXV+t1Z3Vmy+dxcuK1s3ccgiIepX7x26SYyV7D52l4q3P10MSPnjBfU2sP7ugbIP1G+PtC6rTc37wxyBy2qHqpd+Q10hX2+I/GA6VrtTlR8bZNuhT5dI+eAeGM4UEPsaAItELg39j54jtUCrAartZqUox3XBuDQUf/e8TmRzw2EMCMpM3eB67x26tii/GWvBqfJwoEL9Gf2Tl9/tvn+9bdClmlinP7PcLX3g/kdXm8tvw+dvEkvVCUiFIT0QKQrsF9mHUb6LhFZE6Kg4IDsWQbm7uO5uACwcuMqpkeVhVMTxvKQfygQ6fc8fi2D5eUPZh4OHQNuNkUOR23L3fYr7lQejigPvtp/Mh9t+qyiP3SKYMEevsxqM30eG2rwn4y6DEgQFekXxEpgQQLaBlkCWshG8sPUznty0cKfF9tU+qy+0Cv384pFQmQwhN2j0aiKKEZXtA3JZrcQgDUN3VIVR9FrifsY+EtS7p+asLg5IwGDP4+XniZc+la5T2PC2m4PYgandYeyK6aAqZKQUCrZ5DC8DzMMl/emOmqi6xkCDJNaRULDPxwElRcPTu8d6vz1mJJMCgA5OhiMZQBzi3XnpSXBMbjOFgQKqNHIjlcIBAzKqwun1eailYPz47OPnTK5tD2eVkV2pDj48trkHnUpVBruC+hSAR/g0yozqZUVUKqGd9nZ3wzoZ+Q7AzJfXABG0VUifLI64mHvPOUDGzc3nQQjLHgMU2YkWtf24AMbsop5Dmeebtnr8PpkniaERooPO7onUBVUT5/T1ku8TzDS+SxGYd+xsIQf5QrcjzgUHV9ZlAs50+rq3sR73cXukmAO2uzjnvk9n1CnqoP4A9yxGrLeHOdbJAWRUNBxMlhaU5Fzr8CpBfhEY4O+ZypDzzqmZ0CzyzYoMAKaTVgGoQJLDG+9JEKA563IniIo09mP+O7f3wBoRD1C4jxGOu783yyTyYilE4OhY1jLBlcJSwZKc++lISpQNPTnOee6cnfDMtsiOJ8EGpDEiQKMKlDbHZbgAIJlbDAT4WpCW7pPAYAIl2hHzW/du7yli93wQFE7rN8qJ1nj3d4BIsXPBQOrkOEd0vng6QpmfPXRaBgIHgj5QPHjrqQra5x55YM20MvcoghWCOU8zS6an7/AZNjgTVGBb+/D2+DudtGEOs5mfySAOz48CAyT64z3gkK4/CEAhG7QUKlMB4IaPpkO53izvPCjqNFJVZ8SfgE6fB4C6A8LoNoY7Tx45EsCRZ8uNzFGiyKmN9plDKu63QDDLZWVEmI6OU6LpWJMaGyUhC/+c8zAEHenwwpTjRc0ZL3czajj0ulgOubozWDZ757GoO5+C0hHsDwChBWDq294/XqqP6Rz1MRACkHQcIt9cDlR62RVoEn2i/m4R7XUENKJmXjmDGgXVKyaUbYDQzqT9+zN0jv18BvvMqyHo/Dc8lYRzZFZimHPE5hH/7X2fBDaRnA0A7pyYQWZl7DBF10h/J8OmSBj842KTgOktmg4Ifffv46JWnNIjAIgMj54jDCDTX3AwwVkq6v1kgp46I5k+rox8hgAeQSCx/qhUnB+ISFC9K4CCflXUh6A8xMQnB4KBk9eoNmvPfnV2xc3Xx1IO45aFOCO6mxB4Cn1qqTYZOG6+f3APCOaHf8/0Ljow5Kh94PRrspr4G+47+TPQElR7lhclA8E0KFzJvoop1XOfgQEwAwUUcUMxwKwvBvC0VVAeDe3bjvqmtoGXAhMDK4HOB5sA6pG+EvPZ+suNzoZpiHaLBJCRYXM5GQpjGsJaxKJw1XLIpVjpRSslyDnDcbJnl90/w0M2QFX/XwLI7NlJ7JB76WDKhadR3B9mpK22T45aUHkgdrXoap1nQwEd/+ngAuZQH8QtI2rn/St6PB/PETTOoYWpcK750cQcfCCAWg/5He41FfIXP2SOBql1iP0XOhPqIMFjD6Mh5rM7KcHWqD5+J5XtMPDU9wxx59YBYHGwWwNoNAZHWAScf2J7qMiYLBKur12hq+/3ZFYRZDiVZbQ0IE1G9QQRor0pgqpLgzAqd5o/8TnmvjNaTT0DD0QcSrvyfVqJOTRFPt2ZZEpHtzaaKF6aAxms6SYWjVICBDlEmIPWa8yBELMTnvWpf4QVMVKOehh+01D/UOCL99j3aeizf9kvH8054AA+BQvDI31Mf4p8+XJ6rgMLKmIpTAQswjm0PcfKcdv+EMwT5tq7o6BwxyeLPjJlIr9jOBjJUchACauB+Jmsaj+TLu+M5IPjqKd5WU999r2onIMZIc6bP1e4T2POV4JMrKaQ09g4XrmsI8GZw319/jrVPgTCOybln+/Etlc5gDMBpOV82eREZi2xuES+O49yWkZmBsSnOe4cK0b52U/8JJkdDiZ8SK0me0cVBzp2ND4za9Maivc4gQKMvALHOZGvc+m/dxHoNO8prujv+vE7/MIzYh2dHV6Zz/2lSLu9CGzjL4iSkPzZ+ZnFjfNzRP7kcB80Ac7O+LnP2Na8ZvMzZdiaPH8+AzmH+5XJSgBm39Bx7v5m3cE2HTigo/k5gAeHjojAQYPh3K7c9jPQCLzfH1SP83OU4/6ZASYAARygHkA3wPqdgcbjM/zdUT8+F84pHOe5eB6zA4hS3o9xMGY+GP90/UEACjyI5eFoZhVsf/KE7VONNdBuw4x2oSK/OaDLlz0omboY6t9eN4ylYn9paG87ylu3PHh3mgGYUdUHlp9uczN3w7bcuxnI/xQIwb1U0rB4LvdYCvqTD9zdDDabHC1oMaTQZgMqqjCIRdC0Cm5/bEOxfDPnszxGOAmMcBPUaL+/mdH9ejOEejURy1J6OB2iisEyOkWgi2BsirqnKBJLYComNf66GDvAqcLPf/7qqSIW8enPS6Q3WJUBCQ2G8ugYsLJxo4mp//t7hmjhrgBKsElGUhUPgUzXROiLfZ5CghQ4Q9wPUU4t+s2FMIdT0bRZ+kjzSOVogv3Zq3YMYP0yHQ4TlYNT0ge2zwu0CdbfPRLDwBZ43TwvmyyNxejr8NQE2WlYS1QyoHEfzysURrTSkabY3lAfU1m8fdmsb3xuDxcntdKgtsC7gztjXS3S/dPu4pWuHA/F4wdLuymbvffyOsIxGsEo8SoRK1AfQH1TtLuibkDdNPQSpAPtbcf6pWL9qeDxo+Ltbymuf1mwfAPaN0V9AOsXA1n6akDCWAHZYWVU3ffaPplwY9u7sWmSaGd987VaLY2kPzfIY6D9fId4ibhII3JgxfQkOuqXu43/yxO2P33BqAXtdTsY5ypioouyoK/W5/tLszl3MwNorA1w+m957HbmX2oACRzX/aVhLAsiBeJavVyksxuGQH+oePxQ0d68PODFRDMfPwClC17/9IJP/3fDD/9omxu3aw3I0jxKT6Raoe1i8+LFhOZwfxycvihRphYBjPKRgH2+CnRtKK8PE617vlqpyi9vjvzDjDMvCQe1NKKRKqroxcvlFjHhwcduzmCrBgoAh1r2kg0wVdSvd6fWW9TMxCILUE3TYKwV5W1HVUTllHFxlfTdxQoLLPdfETozTAEwEcAemiZaS5RFlJs57CyBSYo/GGmn8+4Vdx4/Ntx/rLj+rmP5YvN1rMD60yxZaSDmrG1vpSk79PN1Pktc18B1dZaf9wmkOUDD50ofqPeObV2CiSQQ9Gs6rzZnjtGGsIGz8sAEaVzbYlwbBgyYn3o3fg2FbLbPjcXTtHbF8rOVZ+xPUwCSexu1HYbv1WRGabX5YGWGK8ioUNRgApiOj89Loehni7mqpQDr1bBPEVt/e4f+uNi55SwBE5MsofGhRVBu3cpJi0xthn3YPWgHDCAqeXi6lJ2zVmpVukLuDzv/Pl3N0NqnMWWVPlwLYxcrJcq0ItVJP99NI8BAPQdkSLt/bMDuIn0O+slWgS6Rjy33uzkR94dT9EtEzOGaU+G0PmbE3LSfEhhC8Tw6649tpgU8X+P5GHIAVSIfvFZjeoggmBixbsYEefyaQQi37R6bgRDr4qy5Zs71YwsAIi7uXffJWoA4w6g5AyNSy46OS1SycZBJ12V+jtfizNJaJzjCNJiI3I7JxKjVbC0v5RgsjW3DocxkLd5HZQIml3rYzwOs0vl3vV5wSIMAjho5gKW3AJC+QJ8u6J+vwQwJttXrPQHJrkFy0mIgWENBSIxhbWafDrX9n+BAin5rWWxMogQjnUDY3sm93gNrAZxsfvaSao39nQOvu7d3247Oz3AKfSkWVc9VDtJnDiKovB8/15pVZEiCjYcc9GGieodc8gOQV2YuPgUEVYDb3SLfBKEoXJnBNYIF3fboKX6X3iG18/D85FxGlBpwlorNO1kWsEzjAZCQAlA4leB9kJJlRp9dywnonp5h8zT6IqcibPsEQ5nWUj9wailYCJ3PYTtQgeXkAPu5CUbT4X4M9ztNYpCZvULmi1+RalHqdID5XDrpLc1pmWBGQC5Sgs0irUE5d+OdUh8CZkd1IAQxARxEGgEEi+AjzQR0AC40rH32Q0kgSkm54sFUGLNPolHlOIc6jmvlAx0UJQOPv88aFwAEqY+5J3zn+sMAFABA8U41HQpQeV4GUDerVmCq9jAnM0efFBBoRPzPl3BBufMKwDUaOLkwHezhDluZlHEtgG4D2lMU3gG+iLJ1PaJJPimsJFcJQIRR90MUBdPhLGRXdI37SnFDeMyForUc6VatmMhdNQfVDFt3xn0i04gc54i4R3WUqJj6uw2LmFEQb94XUziN78+N2seI3UoecHHWBQBzgpek5E/gpcx+yWNtNc7t3jSgzGgCxHP8TLgMEYmkM688uP0/RtzfzRE/CIIGKw4WjAl40BmV1H+DIpM+hmUkA/+EaEZeOcefU5hzitTjoTNntSsZivPKGzXndPp39JGzLjiesywqXCzUbbIBnysyUxtYkjWVZrVKGgYytFdgfxH06C+EvkVNKTD2M7tf8VSBmG/OaBiLVZ0ou4MX3jcZhInIss+94gb+kMlAgs9DiIMGBKxyf3EsBED16hw+r1To8J4nhzkewaBw0Aie3kORO4U7uR7tijKwdepcAA7uLAj2kjYf+8oqGQjHOyuWR1vAvUdjLczoaDl+nl8LByr1BZ+RI2UpGhzaE6mEVQibml9mDBXhPwA3d2YbVGfEivNyH4hUC4+aUZxOKcpIQFUVcACUVH/pA9KMZWaHOkHXd68d95cPf4l4Fstexv7q0fZ+sbSqfoGzfdJe5OwKRq2DgcE1yDPFo+KK6cgrhe24F9GIGACQIv28CqhHmxqPw3lnufcO8HDdDPufnSPOSOgT4DmX57V1ALMQ+HfvD5Yizn3HfWJG8ZDmqK8JBktaQT5rw5pR2NxlX3DteuRch4uXLkn/AGm/fBd1MSddGBlWN1rbTHXhXq/wkr3niGNaDypiWiHp/qELkT4/KbrJmBZ5dw6c25rz2hHPxHHd5P/41WKGt+z7++h6+m787rTug0kB2AFNMOS83zBXXKbC+LvPsu0pRSAE//K75hSJ5DQDCIM29rN3fa5xNgaYUAsOIpO8Yv1ko3vuf5mt+O7KEbt3kfAP9pFy6ltG38X7g7/LKY38zglM4B4tavPewCPblxSYzLR+akeyDT+88tyItNzv9DEwHeV/huvA0o3/GKVN+eP8j2t5JADgu+0vH//9Fz8/5nw9R1+zY5nf4QRoHKLigL0Ho/A9vPQThVyTI/ZBmDk74el5kS5CIONwzxGfOVxD01h+0IcZiHi315/alt+d6Sx0iEu3k314paCPotVkAdJhzmDP99g+p/djOzTvrWybjo+j8memw3kdcKyzc5wv7l38jOT9kvbBd+bnB9UzbF5zrScQ7DAnfuEaCjN05Puf/bX+5OX73Dl16MMKHIf7Oyiv7+fpR9cfBqDg/bz95mo5xK872rcd7a3j9tvV8uM7UPrAdZtK1+1bD4o+gMj9335YghpNhefhUcXli6GyY4XNkZULZdJBAcx89WbK/eMi2F3foDa36gTBImhv3SJhX+/Bshhrw2DkxEUd62Ogfd1cSKtGWkB9KKhvULoZ0WUfU10ciLx8AJaH+HyFPq0YT4spoW8duFqlhcfnFqyDdlPU20B9201lHABF27gDMjWhbAPyACDWtn6pKFUst3kxw5pXexu2sVBAjQa2GHuk3tXFMDV0FkRh71Qs2nn/sWB5tb5ur5aCsb9UZwGkmuyuKXFIZyDoVC1iN1x13SLA00iuD9uU9msNHY31i0Uth7crGwxSBTqcedEV26c2o6vD+shE0loosw9nZYzFnPH1JweBdMT4E9w4iye2N1YzweH9Qh3ev6MOghQZMZ+0mg0YS6kJcCmWquB6EirGfAHMmSczoT4UclOUfY6NOfjm0BcHD+Jem7EDUAq2z8aGePkLQHpB+6FYiVBnMpTd5kdfC3q157PcqRaj+wNMnbAx314KtmfB9XcDzbU6ZCiWrz2Md10LtqcW7W0/WURGf7gCaiAIy/8xmlhfN6gLpJrAZZ0GqxvI7YvlWvfnFvOYTmZ5dGAfGM9ehabPqii61EPJQ0Y79yfmojaLbn8uWF6NPcLr6Z90rBdB6T7Gu/WzOUzDIuU3K/czni8W8XMavK25AbkPyOt9RsxUgX2fqQ6B0JfJNCiAthkJhoixChjhWEwcEsOc07E2lMfA8vMj9orbn15M6LNa6dr2Dd6nJjoYBkQycmQz9oKuvl+V7ukjbTr8PMAuK2TraIzSqaK0Eg5+2bqVOvzNE/RaMbyuc7v1YKIFaLUUDG0otw3SFf1lNTFMnhtbB8UA+yfT0mhf/Zx4WrA/Ndz+qGK/Sryz7X/GWCmeZy/3HdK8WoTY2h1PC9BblEqMlLG1OTibQHQXdMzMl9iT9gGRgv3F5srld/ucoz4m/PfumiOX2340+AYgm7EW5FV9vi/BNsgXgVrmXQoMVO6Xisenhvo20G7G1sM2dWGiihIFY6XNFEMf23GZQrPLF6C+bdEuznd9WqfGAHws1wZdNPbE8eJVmNxBK49u88D38rFUwM/5+rY5tV4moEaAzNMSyustyhdqK9BLmTnAgK0Psm6obeJjCqY1ABYRHma4K6PgwNHhZA6w5/2bdk6HuDCjprz0iMjzs3RQM+jxebVKLmxf/l78IEdf/XvVgD653ecY8WrOSFiaR/v9cd0BiCx6WMkGKId3nBoUfbaJzAbqPrgYpjCir8YMeVcC0IED2X1PYCnIp4uxJ1wfBt2+Z5VyPLLtzAIyH3LeP7UY3gEtLn6o1yX2BwNDUh8ti+s2uOYD2SN9hG4Hbbj8PWNoskNPz2W01Kst5GoQ1GEAEOlUBDAlMTa01QiyxMX5SdYAWQgpdzsCKtSsyBU6vudUhAipfUdK8aDSBI0kixcOtxtVT6l3dNrKTOU90/vP1RqivztQ/BzenV0WY+x/5rkUfUL9Cn/P7JTH2Zmiy2x3M8ZusAx4bwbHqutGqCIqE/jvKbwYFYZYzUEHUOpcpud2kJ14cIw97aiPaN+8ks5CqhalWWDRA7a57UeRxDr1LhzMYl8EC+YcMCNAnkEF9vv+mM86pxSctQvyXkkmAn9fq7HG+5jaGBxHHQZOBdCT1hkBCWnIopExD1qLfg22g4vGqtuvAc6U1Gfsfz5v0Bnyq6R5ldNuMjCsDmJUTLuJ7LAzoCjLayUAACAASURBVJkBiqwJAkRlpPgd2VMA5MToAGB6NalN+tgOwGSIoyaG1feuPwxAQRCRuS4F+rJExKdsao6795GIb3rDGQoUY6zuHHuks+wa5dnoSKAVp8bqfG4ut9UQxhDLKsLZDtKBdneAQoAy3NAp00EEcGBZkCrbnxLdNxBJhNMr7ghFznnxtmIiSaQPAsC4LMFIYOkyTSXVpDsY4krxIZZYTDE8niGngwKYbItdDRhT+8y4Nk/zkBAtZHS33sfs59XetQwvn+mlBs+4FktImjGrQWtnOgO1EaaiPwKsINsAAsBZC+KleVUmACGCYJLw3cpm4MKoAnVaOjUcIhLuUU7TGyDNWFMkeW6CFuFI88n7eTRjMJQ+nBot0RdT9Mw/u86SaYzu0yHSHA0ccIMDMT9Fgd1ZGUwFYhWIDE7Uh0VPA9Twd5Xu9yxeJaEKxuIgzEAATZbzNvPwZ8qJlb8sHcGEKF1j3hgl23/m4BvnJMeDfWfAxexXRudIPx8uhCjFS5oGa2EK9kXkd6lJtMYdDOZWN7H5QoMKbuzl6Ks4vfvRrSKAekS6p/KcBKNcL6MUlidNzA7lenTg5IkDbakgo0mkodSHMUFGKyiJZYFCcCMZ72NGl8PATpGSOADikPFSdgQUKh0Y74N1mWDDdTWjro/QhjhUOSBjocP6htFpkVCHh6oBByk6ScExAguhUs4DqgLBrFAFxbRYsk+2PsdUNfburPMSfXs1UK3476Y4nbdFfD05sCpqoEJ5mOFF+vztT9bYj7hu+irYPjVPKfDqRKNALgsOEXZvp6gaJRIwer7vXTIUkkpe2gFuBvUhPU8mYEmWUeSm330OKNe9mHiwTkdGLzXAmmDb5bOmyoGhUPqwvFQHKaK0amEFIkHZPGL/MMOyvJmoY79coq9U7LzRrqZX9GTgxfaJJXSdHUigC0DoNqQrotnxb+9MdyAJ8hmgONdA3quNdVIO89PWiEwNgDsNdT/kxef6wEzVcTo8y7IG4JsYEzw4NZtX6vsVo2Bn8T0+dzgbKQEZ8ZnMVsm59tHXxbUnkuPnjIwQTO16KGl3qJhCZlZMhDLp8ZkW6+8QLCIAIRzG94p9tU/w4QOHXbk/qEKz4yaCd9F2GrOMzgMz8p8Nbq5BTawo/36wNPLngw4pnrLg81MsbSL2B56/+cqsj3zPzDrwz2lZjkBQBjHyHMvvW04/554/PJXEyxRL7tfzRbvT15lwINN8Mls0tS07Dw7AKbw0HzUwOOfzuQO3iQLc7sf3dLBAyRqISK7b2iru6I00Buld6IgGC8IdsPxv32wPZTlTX7ByjIgYIATMCGyOHnM4iyCE8Dx7iwCYYrbT3h3zfqG9IPM+7G8CHtn5A3Cm1cf1UcnI9E5xnR1Pjs34jp7DL12ep68dEGFQJx1uHK+g9TMIhHhm/DwLR47U1xXIkfuoEJHLRe77rJTxPQbLWdfio75SPX42AzYf6FIE4OVAx2Rlsb3l+O/44ji2Jz/re22yRMT3v89AAftH5GOmxHdZG9m+mO/2rs3+fO5739VK+IV59AcDKIy1mpO3FmyrYP1pR33dPUp83KjNeVXU245y27H/YFGl8jBxtX4VyKta5MNR3ApgMFJeAGEe6FJMM+G2AxdDB/fngoOjqEB5WKSU1HbxnNVwhNUMm3FdQjehXwr61SKvoqZkH1VtNDm9ENSosS1WoWcpkFFAYUkZajXERdA/NaDrjLAXQX9uGFVMsPHRsegs9Rb/LWXaupIi5i5ymVM32m1uRBCrEkHar5Wh7Nh+MOP48ld3i5wCZuQJrJrFt30CHo6E2ryVELDM5Q/pQfYVk6YesuLmQHWPzkaZNNizKr0Dqq8zl9eNYEbJqjdz+9wwKnD5qc/So93mlDVF7JAXj5B788ZaLUroDozuAKPc7FetiuEsAd2B/aVgvwrWr8fKBqL27pn1QSBtuKHdmfqgFiGUTWM8681LSD7DATZzFI1G7Ru7Oxv1bmyBcTVAiOwPQ1JsTWzPBiZsL4L1C1A2C/ZYwwpGV8i+GHPl6rnzbx1Pm4buRqZwm9MKtAcdGYAaA8s3Rns8R71ZpLu6MORYzWmRbVgkuhVgudhauFv1hWDviDNoxoDcd4znC/qnJajQ9W6HIVlKYyloY3cqvTnwMgx97xdP6akV9T6wfLG5V9zAlQFTza+C/nSZ8+ZuzKL7byzXff3Zy84NoO72++2zMXIIirE8p5WHBZav3YgJzy3WfDg0VMdnlKzqNE63fapoF4G4kcRIFkqBPDZo7waEFjFUerf8Zf30jP6yxn63/XgBFFh+ugWldlwbxqViv9ZIySAoVb2M4FgK9FKtv/cBvbiuwU+v1o6lzShqqwbwuEGpwZ5wcOju7IUilgs/TJ9B9mIK/iKWiz8U9ZtVfYjUkqXg8ami3VyfoJaZDiSTvi8OWoylGoBz7yjf7igAbn/2A7bPDT//KxXSgevvfOw34PEi2J4rnv4pXAPHdWUWQXvtxuLxM8HSOOy7ulTsn9bY+8t9N80Jr0wQfTFMgLdfa+yb27OtkeVtQDrQr4JyL1i+blGhaP98hTbB8lc3my8F0FrRX5bQa8gpWzx3I13Kx7+9dpS33VK9qoHw1ILZrwX3z4KyF9S3jvq2WRWU+wNYF4zfPsU+pgXopaC4o7q/rBiL4O1PDMi9/DwsNc+1C6AagHzspx6BldATkaj8oHrxCgkeAdxcI2HboU+rM3lsvfWLAUT9Ug0IuncLuA+gf1oBtXkkW7doPUsuEjC4mb5T/7TE3h2aHH2e3RiKctts0JZ6FDccIyob6PPF54jGPhgq+lfXh7n/f8y9S48kS48ldmhm7hGZWXXre7RGo5EALbTQTv//pwiQFkIDLUjTPf3dW4/MiHA3oxbkodE9s2qkjXAdKFRVZoS7uT3Jw8PDPhkD7ugGG+LSZn8wuODlD2OfcJCRAEWUtKPWSjIY1YGSsLRETOvgskDeHrPaBjBLVS7Njg/mvgOQrQTLA0Mt356gAY1bAgh7B0a3vQuAyB5RSzUq3jTiw2l3NkCr0DJZB+B5nbViErAS7BEKeVJhPiLSavdsBfsnyzuvd99TajFtu8QWtXtNcCPo3AXJgUyBh1asLzfbx7DtNtYLwbUxNTUIDCxtjifnCtz533bX7uiIEpF04CUBVqc2QAR4zPGNKHMWEyQQxXnQMqgiMe8AGBtwODjAfHeCQXu3aCfg2gfTuSEAEhUrAIQifnWwKVUMibaoJ9M1L8EnMr14OvVk8jIyW2SuBUaSE7NEdlsTUeqS78Co9e57NMEP1y0Itgwj+sAEO9VTf8cEHAMw45X6Y5an5KHBzxSg7we9hXcpOgSvCHpkNsR+YqlxLuR+P5cKpDMp4myPAs25/9lJPTwvAQtDLbJdPAjEQMDZ4U2sj2hnzCOLwuv9VHkBmM7KOeIfa34cn/GzEo9uN6mDUVKdXTPg84XMzxF701yPRyDNxqpPwIvtOTMv8j4YfZ4+y3ty/pTUR70baykPKacVv7PpB8DSeN+HvDimrHhCUJrCqBTs1hOD7YPrzwEoKFC2gX51VFDNYRltOWgd2GcZkTZAYFwbZB+oQT3SKGEFRnnENoOyD3QaCPvwSesG81pnmUo+qjDC6tT9XS0NTGa0jkb4/lKDli8Czye1w57pDBFBVXOCy7AI4Iy6wyj5A1GeMXLQiwCXGpoGELGyaR7FJ93eqKYzwtUvdH7dcUoTjQ7X/uJ9PIAiI8oCgkZonUZ45MqqhsaEOGXY7mHvp83K/Ykj79QTYf6+pUUMrN8RtPr9ydpTdgMStGBqLjhAMlw8j5FuPlMe6mMvJnjmUcaIVo45z4o7eCVoR5hiYoU0VUFfmLpS7N6d1ULMUcZgesYETDifLRLgUXmP3nfWan8b87lD0d4IEmCW5pQJqsQ9i0AvNZTsjQKvuPyR5km3/u0XF7zUApbK6xfBfhEsXVEeBhSRCQAA7abo3UAF6YiUjNi8vC/5vbEAQImyne2uKPcRazhy7st8h9Bv2EeAV6pGw6s3G5vtUwuxztEK+m/X0LKAsx/G2iDLZO2YgJ2v+UtKMSkC7QLAUkQiGsJ2ObOmvyzQxaPaUGC3PjpEh7jFPJlxVLaZQtEvBcMBN2pCCGAAlZDe3W3s6dQ6i4SiprINzOoyVjGiEHThoqUQ5T4PM322dA+j9dIg7EEthVo1GKH6tsiMHD3MGay+t2opkM+r7x/OnCmT+kqWztvfbW2t38Zcj56mhd0iZyHYRf0HVVAkDduOEgrygvG8AkvFfmko3Wveu6DbwdhRTzVZm6WahMbMFFocS8Wylph/AQx7lRqOSeiqNIH2EvXYOZ8CBG3A/bfia9P+3yvcMa64fO2heWHaJ4D4Ri3uEOOxQUaD7JaORxCAlXMg1gfqTjCBuULGY0cwuuCUr7J5mc3kaMhQ6/fh+/IA6k2i71g5iXOnPGychu8T3L+zM04dk/a6+3HZsP6xY/n6QHl9TOdIxMSPvXoPzyNROzuNMVhMKHZnet84Mvwioit2pgz/mZd7tN/RODWANXQNqD8yZmS1JCFS3UtU75l6Mw7scEzoHKQUEBWx0rA+94ItBZjT7GM5o/J+loj3eZGpgTLG/COCqDYxhgEyT6ufu7PUqj6tFjH6iCLfiulTCCnvA1F5YamzPbvvA++cYneIk8OtRWbak/e3anJsfe8IUILjkyPRBDvVRRSfLl7Gexyj9HBnK5xLa4u0enSm6XxF/wne7Qtbn6wu2ByOfYf7otqcksIxEnuWO6URVBCJdWmi2E4VXxq0pHKmtG2KxnzUVu0dWC53uPMmJvaJbZ+MDTq8+ZzhvOrjKJXi32Eqiy517uXdgRuW1UyfA8uIdnfC8tirvtPrschxMWeQgqLA9HNVQ9tJXbjuMA7BGkkRXK6r4gffrxyTj5yeWicFXebafOcIA1OU7txuAKFL4H0k/Xy+eFlCMmDy5akLkmnf+T35bD9/BTGtzDHLJTPPpTYpzhegVA1ATbVAzq7aOwdb5rP5/5qEP1MEXlozQIbpLBQBrBWiXlnn0MdjspMYya7Vo/r6frxYXYJrKsDh5Ojy37UCsEDKoU/o8LPfHKAIAcisR8CvHRzyBDIg/T73V6QDqAOeOoGTaMPpvXLb5f26NadfESVGWcbzIJ5FJtY+75dZUnx2ZsuUEXtjfp+oajHKBCXifI/J9zGwRIZotFlgaTIfwwJynrMfXH8SQIGb0FyA/VKgV3jZLxyirUxRYNS9vlrt8nFt5ow/NDkzZhQbTXluMEZHHpNmvyZDC/ZR9VTmqDBACjA/7w4cc8KjVJkY1Z33q7cR1OcQLqSjTUN0KRhS0Fe7T7nNKgFKjENNfJGOR1/mohnLVOwv7rCbM2z0bnQXUtPjotImxqAY1r5liBkfpP/vCQFUBFgj4TDqdCBE5vsVAxRMzRxRQjHEvcTuteyTtbG9mO5DfSQxP44/h261d2xvcyFHv1KM2nUidCkY1Zw8ihBKd0N9mwrYKj7PPJJh1Sdc1JKGpQJ4jClI6WNnrA1EKdMTWzeM9NIlqNP15vOrSBjWYy0YKuFgFG8XUx5UJMp0jsUjjO5U1NfNmRPN56miX4yBgdWcaRWj2Pcr0G5WDrRfymHNtZsZR/0CUOuA8386uYh0FYixabbngn4FlreBep/qybzHQcCTBhadn64AbP61N9MgGeuLjUMBxlKwvyxgukvB8HJ1BUMEhWPdCtDUmEgugBi6Hcy5jgocc/7LMGdg++vVgCdVyIaZEkIHK62bfrW88PrjARUHL1ipY8EEGxWWruGU8XqbzuPcZxTlttt4ut7KuLRwjnR30DO+UwFsFsmiYvjVoz83U9+Wm+eNUOXb2RdhBEiBdDPWtQ/PZWZ0oAL6jNBYAWZ0b3DtCh5fjGFRNgO9yl7RhkLeetBwtZtxZArkxh4xuvdiFWqyIn21VJp+KdANxsDivpIvd+rGBdifTNuhbANl2yP6J62gPbVDzq+Np0V35SZBV9fqYpkumguPTuQyrqMBYwHaq7GzhgO/2ydfH1sJxk+I7LqjAafry8OUy8s+wlkI54LAystlAhxcMzEPzTCxFC4JoC8U7VuJdcVygdI3z7nGdDIWHM65EDEV32uZVpdKL1obhlVt8Oo2ZCYwD96cph3tj5ulNrQ1xrNs1oZ62x1QqAHqMn0oLtpLIohSWwWnSKuNkbiDRC2TsRYz9r1aDYBg9tBekMXWl1Lg0wEFdAfkaAQ66JeZHKKKdjN2Eko9jKMxQryNew9nIC6m+7wZe0UHgJLAhL1DXxaMa0P9erO0BGcBjIvna4sBbeYI2XspI15FAT9n89xGEat4s3fIdnJaubZZchOIucNKHPazAmmYe/cjsQ6ERrMbwOE8pKh5rRjPq+1zj810IsbAOwrwGB6drDNKmaOigEXxyzik6ARIQPV9RtALEKlhGCBbKL7DiHa1MzI0Cci2dGxcCEBVjzI7Jf/gjKrO1DPul4/N1qO/h/jckAQGz3fXw72iDzNAwnvXJVgDvI/cbQ/XyzqBl1o9tcw/xtShANTFgJn8TJ4DzhaIygEUN43+HpMF0erH7S+nMQJ8ng2PXKe9ncBKx3tnGQgnXFKKwkFgkOCMyMepDv6duFeZ85S6DbNvzEHThESIn8/vcsjP//ZKGewj4XPz+5xBkUM/uXPYZDIwqGfAa3T7TJRsKPM+HC86f+pGaV73rUE4T1QB3RClDUcxeymvzaHzWTyXRN7LG5MJUIvtRfLBPDhX6KBzzbWbn0kHmWyHAEtOcyfYHae5Te0Kfvekv2FsBLHvbo9jZD/3af7/Rxcj+9F27m3cK9z5SG0TEbNzCAoM2DgVINhOB/ZFcuZjLiUmVhnHz2RdBR3BQpr97vM9zXt1cExOay/2ysMa+fj6UwAKEySA5UZDo354MACeKwBBeXOD5tsdodTbyhQqK5hOACbwQ0opSybaL3UKcqli/3LBvpixMxoOVPSDSnzx3xUXJuRzCsyo8XxD0vnLZu1hTjrLDzJCbd+XcLIZ4SiZSuxsCBqY6u/Nn9XbQBVXEw9mxUD7PhfJ8ENR3OksfUBGQQ2HW+N33YW9VjfW7l8q6qaobxaR3J8qqrM2xvMC0cVzfWuALPaOFWOoCWh2d5ybpbYQBKl3Mkqsq0N3oSAOsb4a2PL694qxAJevLjb5oEaBRbjr3ReOg66yK5bvAxTp5DsOWC5ffdvNYLxUjFKAiohuby/W1svvBnowFcYcZrF0BBiYUO82h7qnV1BMkirSMhSUGhrLpIwbOGUGR72ZMRjly2C5zqF34U5m2WyTNcHLWbJzUQQQUm8D5UHnxLr28ang9T8yXaSZmKMDZ6N6mc6uuP5D3eCfa5DaAmVXjAW4fa4GaLiyPXxuj2agj3TF+nUP9kzZbL4Nj3pyTltb7Hn9WtEvz+Z836dzFnnaSYV9XBqwuAgYr2F9168V/amGRsHwSF0JwTNg/VZw2RVwUdbSTaguoovNIlP1tts9XxYI2+FOoTL9aSjaq7EP5Etz5gZmvjrPpN0iyvY9LyFYxMsgwmu1W6rWWGrcexp7HoV7bEYlpjPANIgfb4fNXpYFeHqyz5HSSRrhbQfLIoEaNJ4zXe49nh3U1mAl2SH16V9sTta7rad6N5o8wRGKhEUuMxlme4fsD+B2h26btdEdpHID1j8KstBeaNIU5u9W9N8u6NeGfhFjeHVzgOlDkF2gxfaMeh/+TkZxtdKUEkZddafW1t2cT6bDo5DFqjv0FRh/NVBtVGD9iqlNojbHtRX031aLhA+Pnu9iX65lMutWbwculjLge4Hl3ShK7yibMcz2Ty1K8BpLwhlWmzE1Ij9eFfCSxsJ3dGdLF4JVVuaxvdp+HIKG3ueH+Tb8TLsu0FLjx/XeLSWFWhiMvoszBPaB9u2B8mgYbyXKHgPWxuq6D5khZay1lGJAttE1RRsHIvVhVrvQ+GNRU4FW0z+BTlHjWZllQOqItkKK5YarzTU6+LG21c4i7j0HoMIvvVhqwFx7i+tx7KkvvR08xz3CHc4l3EniuY4WRp4oDLR3MO0s1MzUC5RizC21fUIrBTL95KFgo0ikTIRDRWr6cKB9eAqFf1d5nhZ1angFRQjVU6pkm7bVQZtB1ea4O6bzQ+5cemQULtwXJe2iWoaPM8XZEKaC9VsOQdPHcmc6QMQQN3Mnok/gSLxMazAvWKGipzGLNs8nay3B0hCml7EkZx/pPr73cL6KhC0Z6TvunIc+QaC3J2dQxNK7/A/FPG3vTu2LNWHG2EF0lVUr/Duqelr3s432fn06H1m7w8dJn6/2ne4MFLJWRMxxpUPyE0dc2VaPspvj3wGuMabypJQB+ehefp9IXeBcKwLoCWhwPyM0DLLTrwqjKcznhcgkS1HWOh1+9mluj6+tKOcIRBTcIj1+32AR/iKyfr7ioJOfO7p0cluzcdESzr6slq7xc02GtJ6oUXH+yL5jimGe2hGgFEEbOrxwoMNYCQBm/wdbAbNd/HtplqLJdz/3kXzQX3TiRzkyHwJ4EAum1GJAoTL/1AEAluj8QFvB7lMmiy21e5aQ/WBcAiRwMMYZJZLfNWle2LvL8ecfXex/zoufffSDORp6CcBkGiVGSAYC82d/dv0pAAUANhgexQbciXAD25w4zzXzzU+23Q4FF82ZxrvE5wJM8Og64IbqwJwMHrmyWspes5XO/6/WtZiRUh99RuTXAl0Q0YQzZ4ol24JGXDwircfPZC2D8ujWDlK61SPp+ZBRODtC0z3MEKq7Tvq3R74Ek+lRtoF6d49T4ewDO+DIEginsJtBqxSjuvvE8/znEH7sah0kOuvBJ3AIMKd66jvo7AOFsTaURqU5gNqsv43Kj8kKAIKJUabAdUTDKdrGChrx+0HQxinpVIgWH3d/d5ahlKGzIgQA0tWj/50RM57nuIcgpM+nOQkx54bYYUVhPkac5DGNmdkmv/cwRx4OJtmcEDNimq0Jskd2z7fi+/arol8tF7rdk6MHYDRAhom6RZlOCixWTQCYCTiKAgPiwMJ8n1Fh4ImPYYGDOfuAXCTmlFZ4mUjrv76aoyAEYyhCx73Bx4p9zioEAI4pK81L/K0UkbN2tVf7u1+AshcsCYyIFKTNDsiBag7+YwfWilELalEorFrEwTgeCJChXgsAGpoa7T2Ud+xuBDMaLcUj+iMAwkKHJ12i3KuOaDPVx9Wdk0MO6NJM8XvbI3Jq0Y0xDQ4abM1YV5FrD9r8dNocFEHB5fc98vGl63Qag9qKSIM6XG6UaUa6aYCLhADnZHl4ipEMOyiLg39LWhewdigKtGlE4EPQ9TH3XnFQlUAPnXAa+OEwDnPc2w3oqiHUO5rbg2J7bnnA9z6NM6MvBRVGf7bzCUarFrE+8TU+qJzvkW4QZGa39QFc7PvheA8c9tMsEBuOQKPzUmPtUFX+HevK52Y4VXTcw1GfgNhoLtTJMp4ekTP9BU5GAzHksXu6zntrlOl8sX+m8zmYGSm1QPqw/W2MwxhZoxy48u/oUj39aX8//3wPlqFQB8tMyNfbjGL54BRklCSkHOJHc35wDg2yHcjOE0GRAd2SI3qOUvY+10u6xPcVY4cdncoQDE4OG/eTYHYUmFAx921FvAv1U2hMWvWW3Yznd04lwpGw9D244Y1wpMiMMiZhB3Y5rL08H7DtR4NWde5FuZxgKtVGMD471Jpz/f3+H0XUwvClY082wXpsQ9wrAQBn415yFJ9tC1FNjeccSiwmoCscLJ1nVHwucu7ne+exPVzFgSNJ8xMIZuU7czU/W1L6yNkZc3FBgnhMoz300z6MGZQZAf63ljJTSJDmLfDecT2BI+/+z78jQlym4/6RE5kcHgATICvv2/muasi5Pec25dz7kX5GDRA/Y61iwpgAWL7n+OA52X4/z908N87fY8T5fOXyjIfvDYh46hLnJ9kR4obp+d3f8w6O/X4AXY5717uKDfnz/LudZinbnisxIN079oMTiJCds0MpUTmNrfWBfUXeO9ycF9TrcABGdbzvi9y/xdH2/Lwip3a9W5F28awvFYHWFrwHEz569glsktw3SZD03cV2ftCmWVLV58WjB8hnz6ZNN3Xrfnb9KQAF9Y1y+b6hX5vlUDeBdCuzmK++FsheUa4LqLQ8Ls0cCxpCYg60rBalUTFq9HQEgOHRCFL1IWKUzK7YPy8YQIjotR97UBupcr/+/gCjihaZtyijqOVpilrUktoIKFZ+MtT4h7MwyFAodjBHRG1z52YYiwDd2RS+WcrQKNWV8+zbDy9/d22QPlC/39FfLui/LeFYtpuxMnSxMM/lHw9QrI7aCbwvUfinf92c3muTX934Z4k+K91YUbpi/ccjmAXjUl14y5XCmzETtpeCejfBQzoPjPIfgAd3PstmDt/zv4k74KZNAcArBpjw2VgKMJpH3xQyuuXGPwbqt/tU/2fEzOfE8o8RB+d4Xr3/NEAFQKysZTWVcxr1jyfTJZBhYMd/+V8E9U3w5X8XrD9MFC6r/DNn3lgeJ7TPGTZQoDhos32yfmqvJiQGxRSxLJOxoAXoT83v303/oVl1CagJgj79ewf+12rR+O6OURUsrxaVun+xsW5vwyndJmxXNp0pNZ8MYLn+PkJbZCzm9LRXW6vbS0OvwP1vC+ptYOH6UQ2GSr0PYIOBAlWwvVRz1pqJV0pX7M9MhRBAC3TUEPkM59bZGkGdbgX7S4s0DGOM2OH/9h8QTCIz2Bcs30dobpDWzTrr5bZDXu/G/CFAgAnuRJWBtw3j0jCu1Sj4Lkgac6wPlNsGJfX3bYPcd5R1h26SnPLu4FidTh6NR0bU3WDK4k+onq71T3+xHyUqrmw75HXzElYD0i7AuqD/7ZM5Fc1K6o61BIhbb/tcgxtQxobxtBj76DFQHlswBwjAUI9gvEyxufJqCN/4dIWqorzB2RCeD5sjmnu3ggI3wf7bFY+/Duo7ugAAIABJREFUrrYPcv9XRfuGcBTarWP5ugUwG065H4711qFN470iQjqAsm/W3mcTSatvW3xvXJudRfsABFi+GePl7e8V9WF6J8OZLxSPXX+4Me57e92G9dPWnZrc5tlEXQ/xc8DBM4hg+21N1VOsTGd7s/zS8TfB3rzCQqNxAGDUcHpjbfA4qAVa1EB6Bcp9gt9ls7SUsdaJizrARZ2BfjUjor76fPD9W1vB/pdLpOcFE0t1ljt2FkN5ffj5YCwfVDuLpXuqjzMn9Fq8XTOIwP0NpVo1Ebc1x1qj/2QocAdYtlPXFuCwdJ3RzxTVl8duefIpCDGj+h4BJrjjfYHiQYOnJTnf05kjM4MG5WgF5dosZXC3CDZL+gGI9J8QQ+xTT2OsFVgr6o+HOWcPT5si62T3SFGBsSq6r7VTGoK8bRZQZkWKp7k2ySAyKn8DZLFINdOSioPtP6K8lgEIpZjgpYhXztAjcLNMsUh7L6YZPSajym00iUgro2v+e0bvc0oBI98Z9PCx1cs6na1kCEepyDGdfUsBSEY1U0tEZmrXukwQhHMmaUJkw1zdMZAkzmjMhmS805Hju8cCTZ85OOgGpAabgr9nJPGxx1yRmzFDaEOHw8x2kL0GzHMinPEJ0E9R1HaoQKLe98L0tCKelqDz3kyHIUiWS3ISIKS+T+7H4ilKFH+LzraouFwv82fuuEfaQnxWppMcZRpTukCREF6Ma4zpvIUz5cCFlimAGHMq+SDn8XtsDt4mgN6fH5UJoi3s9lNlB3+/HFnMDIyodJEdzTPooH06jQlQiXdxkUMpxUQmt21+P0eiAbyLrmeAhp/nvceAoJqDzQi3p/cRZAnGETABLjIBNPV1dmw/oO9LKV4VJkfOT5/T09jBq5eQAZHsOFeGt3fI6TsAsG0wPY10bnwEEIjtrVHl4+y4Z2aBbca+lynCOw9wNLWfWhG83wFM8/GpOM3N07/JtpQy9Q+8X/J6izU1dALTwBHsHuMjqOnd9acAFBixtTI42ZlNUQLOAUb1lhqGds5bheeLgzlvvkGHEQeAkV6FR6wOqBLvhSnGuPWgZMZz3JjIk+fsDIcRFoeC3Tc7JucpGu+qSZn4J0gXjcNwsKKTTkPvDlA4ReN4DzssPT+Tk4u5mGSM9DkG6Bosh3eCNyEy5UySWlAwQuCQ5SAZtWfkngZpvmalhzkm7W0gSizSqIN+SPMJ4SBGWNhnfGd/X+lGk5MxLKe5eR4Z6oxyYq7/YJDkNC5PGdg/d6hYWsY4tHNSexmhz8KLw+9Ph4JVEgxYs+dF9McjdGMtkN3Eo0wEzVksAzHfoy+GOSmXr3MMRnOjeZjBUXaY+FthhNj+He+hbvs5U4X0a2BAvbwmgKS54PdyA1eLhg7EIcooCDAh0oSU31WP+MKiioxcjzkfDaTz6KUauDIWAxPGgsjzZ1UFajv0RdDE53qsjeF9kYwz5panaEhOZ4jpKY7gDk9NIOrNMakI4NCAR1tjGBLpDGFcu7I9HQdRSc+Xg3Eaec8sd/bY413sB27guFGrLug1xzkxArjXDDiLK9Gslzpp8mEo+j6xVqddexuHRhutj2ZEDa1C+3SEAxTgenRn2ZhQvrcpoi8iLWDrlhoiCLp+7Ff7sG26JkcjjRNT46iuH3v4xr3cu86rrqxXQbkr2lu3edoKHr9VjOrinb7Xc08872Xx/64QUYvopTMt+oDdIHOdl24gVXF2wRCY6K0zYbRPpz6LCTKHnA+SPqBd0nxFnF+h11PE2ubCZMd0BNuoZPg6bhKBKpvTYuCFCCrpyn24iNmYzlLMj9lUnuugrUhBSBEoDBRRGmPpOwDsDB/zjNd8Tp+v89qCd/lHnwUOc/enl07G3/nnZEGYsGFydhnRXGZqAysLkeaqfK+BOSHjDFLoSHObav+dlSQcdBxiaWEy30FS+w79AswouwhCTC+9ez5LCSaIO/qxD+U5qCkkmJ3JfOWoaTaiz20EpmGdbS+mXfCATs+JMcn355X3hYjapv7Iuh3+zLAbeC+CGhnI47w8R/OKTHuJGhN5rub35n0y4JCdskGqNM+l43enIGJyoGp6T+Wegffvff7/R1F2+H5SxJjCqa8P7Aa2IznUHzLXzhfLNr7T2eAzcHTweCb+ihqerzzu54vO6Pm9Dw4v/+8b4FBknQEtFUGbPzENf/rsPIdUP3Zg2R95LM4Of/nge+nnB02HdxUe0nj/6vp/8xmCCnRmf6VD8FE/Acc+yu3+1XVaR/PHdpb89MpzVQSQApHT52PsnVWRwSv+HOeFj9O7nwAqjl8RHLQx8vu8a6uP00EoEsf+yQyb3O4yg8bvykcGo+T0Dgkg+tX15wAUeLn4U72Zg8S8UFLzcxRfXjxRecApbdMIHavRqK0sGaax5XnJoDNSBP1lsQjMY8f+abVqDR2WCnAzVkO57xiXhv6yhjDV44spci9fH4B4/XrBcUCHO7triVQAy3/t6BdThrfIugtGKdC+d3PeRSwP/FqiDOJATQeBGWd2HxPporEHiqGhoH++Wo4+gPrWUbaO/XkBBMFwGO4oVM/v1iIWYRVg++w5zjS+BaasTQfL8zct793YBtsnZ0N4xEp2BRZ4P5nTdfndUU6BRUYVuP3NtCUaa8W7Mz+ahMJ6e7Mc7e1zikK5oc0IK3UxTJwKXn5NpoOns58YBdalAhvbbFHL7//jE+5fBM//2fqfjAIyPUQtYll2c077FUBVi4w222RKn9Hz/cmqFzw+WRpCuxs4sl8EZbfx357EHRON/rE2Kx6/WeTdqoYAj98qSre8874W7M9zsde7RgRPdqA8OuQO1FePClbB40uzqgQ+vpc/bPzuX5wqPWDU8sUqU7DMXjaeyRaxyLW95+Xf3eHxebc/V7CKxaj2fvtTi/GzaO8EDrXCUil8Dtz+vqDdB9bfJVI8QqxyAFJ9PjqA0a8F2yfTc9Biee5WOcXAmfWbPadfLCLayFwBLEKnaV5cL647MkK1ezyvgBToIkB6T1Z9ELXScSzxhlIsuudzb/i/y+uG8nD1cBdTFDpdNHZzJEwkEHS9rtMg9qh/f15tHb89LCLz2IB1gV5WyKOaE+Uq4OX7w9bHUj0PuyR6t73XaAVFrcRZ4f7sSuo8b8rtAb0s6L9dYq/OzhcBiCj95yCwLJ7776kA4dz5+lv+2KxsYbEUDNnnmNfb/s6wKA8TxuufLapVv948gmplGnVtvicYC0FUUf94m+/L9t53Kz366QIUK0VcHs5iAI6fHReM6mwb2JwPVhOMCVXv3cuSbdMJqAWyVIumL1amTgummKwf/vvzEvtAex0oD8XrfzCx1VFt7W+fK+pNnWWDADYAGGCO5FTRoBRP8RpAfdsMNHxmpNxZBq4fAjHGjImjVpT7QPNyzpH+5s8bTbD/VtFe/SxZYGe4R1NNULZEGly9G6On3p3JMfzMDgCTbZcQMea6QQG2L9fYM6QVyNqMNUSGhIMacy+VGfhSDbYhbUZtnNS+x7kexXDHMURWMf17FVi5yQTenRkPKAXj2SPUu1cM8AjtcA2XOI9UXQhZrAS1Ivad8vqI8neMuJJ1kMs6noWz9LIY42Cb/WDPyQ6T32+Z61EcBMpOplUW8j3ydYSTrVm5fiD6Q5tXbChiOi7bFiX/1IFJ8ajugTJ+AgHh9wgn+nYP4UZ1PRL135XbHv0UgmNMORrHPrK0IW8fWSyeGsaSjigABQ1VXAyT5R6pk0BQUgR69aocXnJO7sYA1bVN4UemoC1t2iaqiQ5dgnH1Ln2EIM9jjnNE4AkQLhJpEOoVk/Rptfs+mP+e5ixZEWMAO6xdHHMCJH1AsR+ZNh0TkGU/52goz68s0gnY2aQzUvrOeY4oP0BROYI6dlUDGg/lQOe9FQrBDqBBmL8f9y7HNaI6yy7zitSGEY7j4WoN0hr0dgM2nVUU4n1mCVTvRKAnvYDDu+DkkMLeNzmsFp33fg92xcm5+5kzy2uopVqeGQnRL9Xel9o73g5zVrkWTk4vA3QfBBbt34ymJxaJB9iizQRkMoDG9vDad+vjc6WBM+AUfeFgDz8zvGpT/n3oDnCtTkdelgVah+kfHe6JeJ+fiX/aM3WCEoe9cQSjcoJDFm2SZQkmaTAM6vt5YWUkE9gZZXePgJQ/0H5X07ziHpKBrVI+ZM4cGEGlzPv85PpzAQrApIx6FJGUwyg7CvjBgDgQIvJexKI1HtGN/GuiMUVsIjvay+gpqfg0xMYikFpikRRurB6lj0izMrKeQAtGxDCdrrKNaWTE+yREV/J37P/9akYcyz+qIpD/6WTOf89cc3e4Ik829ZE7XPO50zCaoIhHpfxdTWjMHEERO0DqEIuOlNQemf1p+czeOJZu8rawGkKhCFlaBKVbn5bNjOL9yogTQKbCpFJyrFyATTyaX5OB5mNe733meEc1B7H+oKgZy8SViyuGt2BS4NTfNl9mlF26Ag6U1K/V1eCtDX11g3V42gBFVry9zGlmqvFY7Hfbc5nOdQP2awXUnGOKVhZQOG+uH7ICSlePHPjPlzLtTWpgsClDJ9tC1AyLfOVzb3jbF0FRtfrcXGOD89qcA+pfjHTwHdqniLUTueHDABbLUbfflR2Q3b43ms0vAhNMMYgnFEF5KJbviv1JgpVAcEq8T8V1G+x3aY5SVIuK2hQFzM6956OjwNJ5lpmSUzaPHpH10OoR1VVz8wCYQ5/DtJzb3EvOuYHZIGabuOGricAF4FLExJcAF2jygzMLawHONgJEp24C0YKYB4xodS+r14eJ/qXflUePfSaovx/YLHYfWDvWSY3mO8AdLYrCso0f5ZpGJFARazge49R86tSgq5UTDWPueK/sNGmOOKRxP1/1raNUmSV+H2k/dUc3KuCwzRRS2we0WdWg0gcGVQa538H+DS/xEyySWLN+Vt51VnzwdUgB1dCR4fnn+7rkKNcpapuBzJinfg/ZPU3PhSUNCHOQpE+QuzxsLokzJMZlsbER2Nroc8y0CcZgyUqZmigUHhbrH/anKEAl7MxcDHbR4PmOAAIBzJQhBxW0OFunGuuBVZhsaiQjdaTc9HRm85yEn/km7Mgz3AMcagNK9WxWnFGVg6gjgGAHhdPEZw0k1t+YYAKdQdLyD5oqHqDwCLKouVcETc3eGJNdQEeVdhUUon3+jKkKeU0QiNMUnc9OCsECOhas3KDqlThSv44Bjx7N7+dovvd3/E0AIkXbY8+Kfk/f8z3lXeRSZDoZ5/0lR9TFWYpSESKMCUA69J+/uxzu4+vRK45E37EUb2aT5SvmAWz++HbO8T30CfdOtofssMw4GbA+pgZAcuDo7FOUk0BYlOhk+gUdd6bXnPYQ6SPme7yD//wwjn5vOfWRRUGzQXOKoMf6M0ffSo3i+JkP+jCflZm5N3/mfxd5z3LI7eFZGO9RgQVmd+bqFIfvpChxZj78jEmQLsnjeY5c8/uZbRClAsfxb/47OaKHd8ptHT/J5T+vH//ZIaUhtVupLxFrlVH901w//+yj85bf/6i9+T0/SntQBZDevU52Qd47Ds9qbe6NwJHVcb6yNse5vQc2CwyIAABRlzvwMfvonQ7P4O9PqRAftEnP87yUCdicLzJIPmAknKuoSB6Dn1x/PkBh66j7sEBCGPCC0bkBAkTFyzYmqgxYfibg6vdexcDLPTKXP84PlpAbnnt6WcBSfNuLOZdLE7Q311ZQHCpESFcvz2gDW73++b7UdFA644IpE775jmY6CyXnTHGP2Qb6U8Xjs+kRWH68RXDVHVAyEpZvHUZZx6zr/WqlwvYvFzP0txH6SlrEylK97RZlXGYu6lhM58CcQkSea3vdMFrB/vcVgDMhiqAUo7eGOJVHnwKkKGIUdYogubFrkUoc0kFI4y0PRv2NoaLPmDR/EaCYU84qCipApw6BIvLzy1YDvKmPgeUfN+t7F+DE3oGXK3Sp2J9qMghaRNZplNe7375Y+7SZjsdoxkpYXoc5vMMU8D/9c0G9Ka6/O1vDqyHYnDMjtOzWZ6xC0BdYOcZE+dqfLJreXinkKVi/daxfd3Om6Vyrn61ubI/iopVDzIZyVsn2MkVN6ZhT9MryoDHv598BHRCC0WLfH8X0H1ZfgzRGcs13FAndhb4A7a6uxWBra/0+bI9fBcXzBphC8e1/qNifBZ/+ZaA+vFqE2P36U8F+LeiLGYOXbwP1NtC+sY2C5fuOT9vA7e8N24uloqiX/hsNkC5Yvhu7BICvCYuYjKfFWC5vdygaQPV2dQE8sYgt04HGajoX7ccwavqbsZ2Ymzs8D/RQwnAf834NppgvHhEjcnxZI9oKYJZefPUJKRKRIovuD5Q/XmMsdF0wXhbIj5uVqrusocgf4kScDx1mJC7VHLhXj8aXAqbPQHWWORwKpYaNA4bt6y3SBywPN4EFNaWGOFijT6uxBoazF1LN9n6pxkq5Da80sqM8drAMXqRCVYoEdgMLUt5lf7m4A18AZy/sf7lgf6pY/9g8qlqnmFj1lBAKr7oxItzbLg0YxoRhKl77dp/RQlVjtzQDI2MZPKYYptaK/berAZzfb8GCKQCk2BnF/TAuRYCRfbX35v7X3gaWr9v0wwiiXox2Xh8aEW4tBVIF0lMUQmRWE0mGItl8GgChAjrQftj+XR7dNEPWgvZ9MzBJbX+or8l4ppD3Xy7YrzVYDeWtO7vOSiWjFmNE7B2P62Ig8MOMc20WOTXgcIRzqIIAzwvzyR87BoFtOlIECTzyfnx35qiXyUACHPwwo624fsFoLCnLtVoDWAyNCo8+l7f94NyRWQMgGAmVUX4XlmapW4jbG9tktWSHKCLbfI1bUiIGXARvRCTfqpUpIAXjWuMsIfNGh+3xwRDi/uN7UjAAKApNRxII1sCZTRDA4D4AkKG1RrQ18pR3d3q3zX6u7ZhyUTDvy58tcqwsoikli8/tJ0Pan6mlWHlF3i//nR2lE8AIwPaGxd9txyx5myqcxNohM2Lx8r9MQXm7A3l+1jIFdjmmrR7bFI74sLMo9/XSbC/luHG+VatmIwTGCfASRPKKFMHASGcT544FVEzoWhvs2ZKYZDsmC4R9LRJBBbt3YgKc309kRm1jPvQZ+e3dGCy5kgDwsUPzKwAgAx/ZeQzRTgrQmWMnIsYMoFN9dvZOl4H2ZEsPY+B8BG5kgCyECOXY9+58BzOD8zDAmQRYSEkR/MxO4bPcsU4pYtYvp8h03CvpPgAfgwnxt4NEaT7E84HQgzj0Gp1rb5vuu0fuaYh84IoSpBKB/kwhP0CVDNr4u4tMtgVBBSmzmgF8byTImd5VL8tk1Li/SY0OOuw6mM4nE1RwMENaS36FxNhGH6riUK4zM1nKR/OHa8X30Fq90ka3MyT3BffpDCy4foSe1rqqg9UHcO0ELtRqVTbO5U4/uP5UgALzGlk1IPLARUCVfhkS5RTNGPUDKyE2UXYwDOcZsaGjaOwHo4DzYqRpcXp2OFLuOOeydaIw1f+VtUxlRk6GiXJRxKo8PLVgNedS1HJQx2qUWKNf28RkpQTmqEvHjNBzzvWUv+7R/OJROIuWTEMq0j624eJAfi94ewcOzn4wAiqjJbYo2aeMOIwqxlSQme4hu9oZQgPK00+0MmUCToufIAQdbFE3sry/VSwaH5oLMIeXxlu9dTv4mGoigNb52WNUz0TIomwWEItHl+n4jMXGhPdob57S4KU8yzZcVd3mYWiqFKB6NF0rUB9A1JUdEoACo/v14d6/UtzRAICxqoMFQF/t8/UByKYmjugidVI4r22TqPfuUbyKskwhRl5jETxeCuqmWL/16FNx8GgCPBJgAwGwUS0HuI457tTCYH8xMj0AX6dcONUZRxLsg3r3+epiilprfN8il4p68/HxMSRQBbHUi/Y6sH2qVkrP3+/23z4bOPIYc/xuDpRUj9i5WreNp/dBcgRC5Xo4hbeZCOTZQKj37iKkDeUxsP4+vDThHjn3pLCW2yMcEAGM2ePg1kEAh9fSZgrE2z6pzXKNjT/qnbNdraeJDwSllsb50szAS/XQFcZSGZcW6QLGXgCUFU/U9pPxvEaU39qjoQWgZASpRbaMoQW7X7Ck3HFIjpr6QR/sgVQucPu84Md/Klj/EKzfFfVuKVmHfdSNo6gE5K8eFQhc8R9YIqosDrpCXdeBe6WPuWxOJ2ce+DBnHK0AFypFvx8yLcWNdafYe3TvkHe/G4OjvnkqDNP0ikK84kf39LJ66z7v3UB3p68+gOWHrdn2OtBuPebiSKWT2ZeFTnkSz2NFI12bn3EDKgWjzooQQeevZlxH/3Hvv7ZgEoy1BttJhppwLC9WuNitzGXoYijTAjDZcz6Xlx97AEYAZqCtFdtfyCZQTJHi3fbl/vQEMleCtch51hXcFBndjfOckXq1+RylSoFkFMLPUQcUHAiiRAXn3EHhPhujAwHGWsf5d0YHSkfdXJySY5XuIQ5ORlrBzyJ4/Aodbv6fQGgrtp49zUOHGvMLKRLnrJM43Mjqw5hMiWyU5osOW2pLVFjYMA3Vc2ULLx17Lkl4SAWggezivmEYuxN7aEPq+/j/3iHV/13c4aYjT2P/FEUPkKKbaFtUVKnpTKCzkMcnRxDP/QME+/bQ3iRGOR2QEo56sAlKema+rztElnJQgGJnjeTPnDUschrCqa0EOw+siqBf+9j4fcMpIXOEz+M5pBrvRhD4Xf/Iqc84JjX3S3Ze0/zM56hIKhdJwzGNaz2ur3c55PneP7tE7J0zBd/vLe5YKstLEqzoOKYqBANxzP6FHtJF5OCoavw88rYI5p3bTof6/D4dxz7kXGJKwEEPgu/qPkPMGfvMu1SVoTOdzD/zvk/nvipkCdB+8D49poz7fs3TnaKK0X6Z38uAUMGxDxJwIrVEKc3DO4ke9y0yLSEHzajcLvtgnq9HsAKAPYtzmWutpzUFGFhQJNgLmseVop7nK++hnEutAaOHVF8G2j6c5yGYOcG1/FkCFyHoyDn6i+tPBSigq9XF9chSCA4Cnmc/IHdMB9iRaW1wVBOAeBTJjRIKwDHSMi5UiVfIfaD8uEdNX9kHKhHW4rnRpIp4JCzEj7YOWSq2y7MZU4mSyjz+fjWEGm+7O9f2jHIf4bjVm31eXzzPvxgAEDnwfUZ1eTqU3aLljAzR+WK7LeLkfeqHsuWDAmCpEwcuBNZfZhh5zl1NB5jfUzoCVAmnstt9SONvr84sSKVh9qcS5QjLDiwenVck41w1cnZVgMdfL25Yjxg/rXAWhB3Iy3cuRo1KEBQCjFO0uPFY3WH48WaLbmmBTI5kgPeLYHsuUR5z+d5RHiOEEo05oVCpkB0Qj3iz0kLZ7Nk55WaKd1q7BTa2fHfdHeNRoKsAFzM6hwMKo9k9LC+5o9z3GOPhee/lttnmsHsVhYdpKqiDR6MJ7n8RtFdg/QYQnCKzgk6EFkSKhQygdO93ANIlDKEp1qimA+JgVBGJKgEAINqAnvQ3FGi3Aag7OwKMYT+vpEwLsLxpaErk+QW1ahUWDX/G/lwtbWQR3P5aUTbF5Q/XKulqffaGOdd7mSCW57rTSTDHdswoeq1BmwdgDhDLOr5tEAcU6r2bXoKjwjOK5/mzkSd7RYhinQ1zXu50j+uC+vsGeb15dKYYQhzOyIA+DBwTEcheQRX6QzTIo2i6Lg4oyIzCwoy7/tRsXb9tlkMux1r2ln7QIqKJhxvbakKmZHBY2W47nMrrA3hs1mYRiwIlBsBYSrDLaLCOxUv2ysDjt4rX/6heWtYqLZTHgHy72UccJLWPawhGqvhYbjvkdjf191YCXBUy33xfDAehFMg9KZkDASBg2yFoh3P0nUBfK8CmUalCNjF6csr3NCCmo3zHNLZJJx7WBoKjyx/dq+F4tQ81AFkHsH7vwACW77tVanjbgKcFcHDPUqgQoI6oOf1WttX0IWTb3cmsBgqprbH60MlOAkK4k31cXQSzX5sBn0BU77E8c2C99zgzzXG36H/tA/uzzWF1YI8petnBqD/MAelPrt1TNEDrogqyCXh+05EflxXbb4uD8GoOLDDHk0zGAkCqtdfV8g8OVYGzgVJ6Q77cAZVWoDuiHLy9zzhUk6CdgjLBBnEwgykMkiKIBZfQa5iTTY3t5NE8Ap0HgzI7mOrsocsSTBvqetCmGouDwJ0A4wn8Eq8sFTT4YS/p4osHQ/x80eiUuVeB0T2CIf3Udgc/DumYBEPDsLb76GYMTOnDS5aWw7vnvjgIMg4DjZnypdcGPBywLcmoTqkcjI7LfYNeVzvPPCoblQ3ye7D0rgM4ct+O76p6bBufAUzwl/cCpu7DQSjzY5Ai+sGZGHDW2iGdiWwIAtNZt4EXK8XsfhYypYZtK7B7EiRWtfz2UiGLRDtjXrPSxmWdLIYzGJIjuGxKKZ6a6mvxNM5RHY9K/fmedOoIEuW5x3dhRYgY8/LeaQynuJwccR8fro2IUvsc6H0GD9wOYMUAETHR1QCx0nsMBUZDCE5mkDADLcDJeUZyToGo+MD7Iv0eZKxkcEYRHXoGA7IzmaseJIG+Q5WA/C4fXQTFhq3DA/hzzuHP6S6spIIx50O++nC84oMozTl1lIyYNDbxPY4L/8096HzmU+dNZUb4c1rY7mVyuYYDWPKS2bmfCUTRgWf/qk7dDKZGfPRuPrel1cPZGiNAQJb9zIvVtrjnnvcX7iMlzaXMcvjg+nMACmrGXlANFRHpYKUDK+cGjIsZwNidzXApk6bqV33dZ9RGGAnnAafupBSMdUbG0BVSxiEiU5yeT0eftMkchRhrAj4UqHejrvZrNfBCBAsNCIG1R6Zzznri5W6bv0VYXbxwt7QNtp80daPMw0AKf6+yeQTBI3RWMrBi+211p8dznPc9ojgWfRYrrwm4KGPBLJUItB+2Ocowtf3tpaHeOtrNhCVpWBZXXafT1S9mIG9PJlbYXm2gxzrBCQMIBO3NHGUzbjzvsmACR4pwkLeXYqCTO4MuQ1wAAAAgAElEQVSRYtHtPzYW5ok+PhUfvycsa0XbdhOpW+ahX3aFev54KSWo+axYEPTjItg+tbkhep+MpaCvEqkR25M53ma0YbIMsrKxqlP5O8ZasD9VdB8D6gbUmwEwl98Vy5un7oy0cQ/F8vUOdEW5G82uAHYAV8H2t6coU1q2juu/G4DAtJ6yI0Ca/lQD8CibYummX3H/bBHidnMBNp+DlnYDW39V0N6Mmq5jQNeK7ctin6tWCnTx0mMUfwTcIRUHKSrQ22SGLN8HVvU1AcyccG58a0PZh80pB0Lq3dkQb8ZQUO4JAvSr3bs5SFceGu/OtRK50vfHNHIHvLRdNWGr4qydxRwSlqINyu0YRkHe+zRYaGDcH3bPBZ4CULC7gGD7x9t0Mt8eqLcN8uMNer+b4VDVvs8DjobusgCtQZ+vZuQ+Nmg+MIFp4NEp8NxauW2oWw+BO10qxnWBNrG0jThk5lyPaJWPZUSwfE6r50Ero0SPLZB+Hwrrg+tqUe5rs4j51oOyq0vF5Y+OL/9bs5SHB7C87gakOXghO8vdVaPs02EeCn1aoJeKQifBHXdqTGgvcaaEM+n0VpbwQ4EJZxax1E7PRw/wthyFJ+ms6tPFI+Y91mSOkM5oWwHAEqglIkXLd0tFq282juXubL2lxLlV7p5T7etHL9XOuQJf1wYQHPYbHx9jRKR0gCp4/OWCsRb0S0G/FshLAzVN2KdZg0irpyqs3PcmWAjAUwMQZ5zA9h+oYnEmwQgGDIJ5MqL0cAsGgkIxakXoSogA0ND6sQfOVKt26yYO62vRDG2fVy5CaVFFFxzdC1AVGH4++3zNZhtBMNoR4/PVASD/wBgHTZJDFQS4Q85AhCE3QCOYdXSSBiul2IKDbH7WvTz5vMxOvzs1V18TdwMdtJlAa6TteBvF7W2WgRZVjFZQdzOoBbYfjtVKLpez0Thge1mFgW0DMz0ilaoMZg6pxkzjSiUgc4Wl2c/+Xc/PP4pM0vl2ij2DAvyOg6XRJyI2zmSwJEf+LFgJOq2tBLgn94fvM+5wDAOGY88D5rs66+MgKMd1H06erfvYXwj6qh736lOfGLOsTgDa7zU+Xec0INXbn0m7hqWPuf/bueAAJn9OZyKVUAwQln2Vo/sOTmHbQ4RSSgGWxeYGxyQcKJ2OUno3LSbKm8ENBq1yBDcclzzv2RYApPQr3HZs7egwnXUb8phnBkFc1WyQWt9Hw/loslDY9uys8XwVsRz8fYcOBXSPEovUEuHYKOAaR8XWFpkJWcRv73ZGlXoAVsIxzc7pOAEjfI8ynUHBab4C8x6peoHNk+L95Gvp5Jge8uyzjgE1EfhM9nP0q4/xGPP70ZZTCssw4zSq2vA+HJPeI/Bsjy8eSDiWI43n9OTYe3tDiyM9L4ACjjXFG+Md5X3bqcHF0nB5L+D+F0BQme3ivE/aI+9KqWZGBoGQvIem+fArRoLm/RBIgIHbS/wdNTDYJ8DHJU/z6//yt/9/XeoOJtFbnVRYLDTIHN2P89bp56UcAANRhdx2MxLEozXuRDH/lGJ3jJoJJzzHfPhnuZE7CIBq+ZyKEqACKepDmaYwsF+trvvMmXdmQhIMYlSX7AIT0dNQXDcarTpNVY0BQcMKCMEq6krobu9Z6JhsCizVqypYLXZsXlYKZUaQFFF7fEZXHKiRaUgPAaTZO9UbINuAPrVZt9wnMg0yKwPmmgMX8dJqzA82kMBU/308ffOnyKXl7yKiWCqwfFvxeU9F9TKps4cpVcwplgHUraBsDe2yWm7gpYaRPEWjPLLtoocHMS+/N6tlRHS0sy2IPCb1YKYJD8LnBCJ9hsJiZRuoPx7AWFA8YgQl2GLAQtkMTCj3U7RM1Zzdh6P/2w7WnOZBVZ5X1DLHd3lloxHrZMicA9ThsJKQnMM+GzzdhX0fTAY1VkXZxLU+ABSrYkFNBBmKcvMc8lh/ekg1ATBZCLB0lupVI3L5vCwuh64oGAH8cF2XbRhLJs2F4XtAfQyUTYNJ09fi7yVuzALFI2y6ensIdPqaM1/QQTQ6LjQqdtMYMEViAwiNCm9pCqE5IClVKBrpYzzMiNX7fVZp6DADm4h3Mi4RJSCLfQaYhmI2nsOY81xwb6uoQp+vkb8/arH0Fgf16NwdnGPg6FABZohjTJHJIpb2NVwoj4fgUJRSMJ7agcmUDct663j5v5OB8BjHtIjHDsikfWoTwAHVca22R7NqR+yxaX8jpfBEdc/jHIZ5pr/TKW9A8hrjLNC1RdoEtt1qWUdUNkWNaOAnMAEirlvj7DcAugn0aUEvYq9bMNOTYG1QllcEQnzPqPzeZNtu4/cAZmWNVrB/qgH+UYSTDB9L60oGSzisEgKzTFeLBcdUOf5I53ku+4D2CSiEqGLXqAKk/v3y8P7imZcMRnVKt807M5BUxKpTPPaZvhMD5ClHZA/5fc3pdRDM060i9YUGP+1CmfehzhBBCynz9yg6qeZkG+Q/fAca5EuJe9m5L5glMGWm30R/ce2n9hBQEAlAObRGOFUHTKtlUUib8/B8kVWi2WAfwwbSnXZ11o88cnskbLH4DOyc4BoL7Zjs3CPN51omuypHloFjH4oEmIDqgR6yKtkWFmXJY+7n5rur2Ht7EkucpQfBS4IKdLS8HDX30ygtnZ9x7hvq4OSUkhwBPDv3zpAT7Tan1JkmXrEmouOZNeJtmoPHvQYxp3NlHStfq8GC0EuNtIS814QdJDrTWNh+YLJF+D6ZeXECcPhustv/Nb8/MB29j66zAJ46UE5n7APw4N3/CSLTkecYUW0/gBhvz8Gxk7AX3oEKh/SHgqiGkB1xIERJIRRMRcwB+fD+YwJp/B2AyNn/aaUDm8/BCGC5wDM74QycFEHQ8OHfpZPq4xeOab7I5uazmRoRNoIzC6pY5J3fqacxO9+L7czjxX6mc+zgh6oaRT+Jfr4rwZmd/DT3dB6lR7vpJ310ZpFEm0QApPOe45/ssQAV8sW+KudffNA3uf/y+vnVfPj/ch32EJvHHMs/P0OhmANWXx+HwwgA5OGRmIUblZqRsdSIapRHR0kLNnJI94HeWpT2ysr/oRlwqdP5GAYI9NVmFsvgaTNxmvL6SLTdJUpbYky6//bcsD8X9Itg+WGicgQT6tse4k/9eUG/VjfIRpQWZARh+b6hXxv2l4Z268bY0Db1HEjtBAAB9hf73SpAue8oX9/QGMnj660VzGPSpeDxpUG64roNjEsBsrK6L4bx1NIBCbS3EWUtzXCdSs7bbya8RGX19tpRbw3DgQUD/sxpNYeY0WJB/7Sa4+Djhu6pGJeK/bmGENn6zerAP760AFfqZjm69WERTVZOyNf+XKH//edghBiTw19VFarmcLZbx6iWthHgjY9zv5jDv/zoYG4zACyrASYQ4EaUWxDgAFkcVvptYPm+gSrmZetYfh8ojwXrpWB/ruirYL/CUls2gi8yNysCYLvRu/F283U010379x+o3yxyMy4Nj8/PkaoQKQueXgS4fePGu3qFk8vvxqTg72Uo1u+WArJ3sTKeN1ZkEWyfGyKXugP1zTro8ZfV1eGzQY1wTILZw3Fzx3J/snGvpDYPY9HI22bl3FpBdQOUkfD9uTowNJwyL2hvtsaC8VCNCdS+b7En7J8vQAHq0zI3/cceIogFiMOLqUyjFWfruLO/FqfelRmFa9Woq6uLGIpA3h4oe08sjWSYAOGIaO+QB8xQeb4eDy+PbmmrJrwIGK10DEuVOB+AbjCyLOWhioRaFLXedogLpYkqxMXlyjCDU0sBni+gSrzsI0Ve0/7qzxoeWS1/fLefX9cwutofLpTqkUi9GnpVbltExTcvk7r4vkQ9C+5SUR5wuKDeUGRlZqumMMUe9XnFWCra11tE2XRpGM+X6ZC4IxZ6Dc9GHacWTrkbi2usLuS3iQtGCvqni+29e4c+X4HyZIyVBDrJt1cz6JcGdI+EMaffx58pJxbJHKj8OWqI0LZXny6XGsAzHWVWB1Dq5xBMqgJd19gT+rXi9b+pGM33mofpjoxV0L0Py+Zgc7fqSwQK9WEg7361s3L5YU7naCVA4JjLDtZR44HBg9EKyrD9lVV3WC2EF7VdLPpq95LHSO9UsP22uj6GpYNI99SvpQbo0p+MxVJuJc6ozc+Q9mO3Mwfu/HYDEbUVjOfFgGSFi7VuMRcDJBllGqwiADE/qbY/9wlQCKOvdPap+aGKAmPQhHPBObP3AA5l18l2kZzjPoCdhmoC27ifi6c1aTWB0bPBDFgQZmiU+bR7YGp+0OkUi7Sbgzxz1mc1C4nzLfqEf5/THXwPkA3A7TEdB14n8FSuF+hltRKIJ70Klj2U1z4BlyYA02R4vz5C6waApwGR/ux92Qf0sZkDtLgY4tiNVlznHhlgZf4390QHPLLGl+zDgGJeDlAEMLTNPZ5tPJbhVWNe+LuoGNUZWWs1A1dZA6hYX+RLRQAyJ3h/DGNorS3KKMcYdtvz9fGYDhXz4PtwW9r7pw87+9Il7rhZ25zx+9gcwNk8kt8P9wUQVHtq90lzW3ZZDIDwiLPktnKP4PhQ6FETWLSm/jhXEWgsDZrmY3WNik4wZ8yf+7kIIM5fqQV6uUCGg8w5palN/YCISDNd4wBilGA66tCpXzgcHPDqKYd1c3a8qxl3kvr0UBYTAJh2WGSyPTYrwWnBkbnGUSvkIwq8aysdBBUJelm5kmMf6zAwl98vboQWHG0YD/TA03h0PzE5zikraeyx79PHK55SUOvUO8h9x/njTM4IhGRghBeZKrmK1kanIjv5aQ8DjoGeoVO7It5jHIBFADPFQ2QCTLMh0ZcM2rxrK7slvydtpbAF01wuH5SI/BXQ59efA1AA/JBPEZt04AkQRrBFchGR+Q9R9jJF5WyzpyPLQ0UsJzyjoyK26PNhv5sBFWXluqGQVEq2DQQzHw5wcMTWhHSYI8Xn7/Mgy2BALgNJ49fy2vUQna2PMdvGDYvpAYzuMM+SB1go9kt8JlNUgenwnqllKrA8fdHpiDNy79HvTK0NmnmBaQyEsCQ3DxwMXEbrKUQpNIb32Z/R1+yzYU496eyHcNjJh2L1g2A0DHtG2WCCbL6/HejLXSFFQy088omLVQugcZ/LtJXNjeyKABMiqs+xHwZQ1S0pUlMwbJtChsNTO8puDjt8TjD336jEnCdH1DOLqsj9EWhnEYma8R/1FfuSaS5kEhiY4UYL8ntbH9ZtViEJUUxx52R3vY21YH8qlhaRGQY0pArfB8gaDSEMSZZQXmcltRvAMd95rg9RsfOBaUWeKmTMAK4xpH73eeZ7TFE1aibLDzLa7cJmYzH9iEMUe2/WAs4pj0bE3pYNT0ZCz8Y9DwUlXXDE+gXvnSIZZCYMBwwm1Tb9Ox36lmaSDqihEBnQ3ajOBzX3QVZTi6jKgdbN6GOmNMPvn0E9piDQoMoCYSV9dsO830jrTNXXMGafZUOe78ic9Zjc+h5cyd8B5pkDhPZOzLsLgNgL5OMIZx5v3j+X2ktAIFLNaGVflXoYX3WQDfuIOWMg3cAuaa5J2ocx1wn8zInPcF4AoWHBikGjcd3bd0NstRmYACCqGSmdGx8PUTlq1igm40nn2oo+5mWBwGAfWUqRrTFWdxCPvEi1KGqc/S54OkVk/XdRJsmbwj2piO/xc2zVWS1T7DW1Uec80DLTGZl6F2KqeR5wzp0jVkVnhJbndneabwqazCgY7D04nckaOc9hnuWcU1wT/q7nS2uxPYRrJjv1Y44HdaYOaWlDYh/gsyWzbbydvFdEw53xoVUiuv5u3R0aOc+woEHTQStzr6LoYKRV+R5gucO0rToU1VJLUiqEne1l3jfvGzxTs0P6URvPY0x2klAXQ2O9zjLfMr/vczeXbOS7xd8x3nqMhEYfHfvQ+kKOcyT380g2V/o9z/bDNQZmuWDM+ZvPkeyox/d8Dejpz7u8b52gwomdEeJ6ACAlxhdwuyq/X5oT9h6n9RT/TG2lM5YBlpM2gnw0JmdWRP5d/v9H5y1/rhLvGv0mMtOlen8fRT/rpAAIzYjDswvMK6fD6ntUERwqTZ6AlkNpyczU+NVVyrGdDPICH0fXHYj4r933Hb2fzIrz5Uxo02WqwQ486l+MCQjwO5HO4Ztdvs7r+Vfrn++U9z+OZx6venrGR/eJ/yewM5e3BD5YP2xnusdHj8rpGb+4IgXmZ9d/pUzk+frTAApjqdj+40vQJ+vbjnLbI3o33Giv3x9m0C+e9+15mZYCABCVZgnFetunoJgbaKbk7Kjx4iWbmmD5qiiPLaiY7evN7uul5FCL0WIZneiK9Q87HMbqNO9No1xX2bysngtPWRQNgFqe7GWwXKNHmfaB9rtHm6vAFAjtv6KK+oPlfmq8q/Rh4pK1AHBjsS7Q9sm/yEMN5uirmhq9As//pzEAHr81i+5TBFHmnkUlfDPizMAZraC/1Aku0DjyyanDgZQ+0G4TkWYKQDiz/hzqBpRHD2d7PC24//2CKV45IlKvFVherf/t53bPWTbSKKzLq73P46VgeVMsP6wigmzjoBVBEcrSjbA9PGK2P1spr+XHcP0G+3x7G7bX7YgouxagXwp+/CdBewO+/B+u1F6B9Ws3tsbrIxxQdSe1bAOybZDdEEE65dd/MEXGxnAUQFZnatw2yG2z6KeqRab3Dr1Z5JV5TrIvkcP6/M+C8dSMReLX/lzQF4Sj/XgpKF2xvGpKNbDf9atH9Z4slaM5+4AVHyBw2jRw+ccjhMAeXwp+/HcVz/9ZYqwEQKc44maf25+KrZ37sMogUnD91ztkqAkHdpu3Y63Qq5UxK51RyQFspFHO3bU8fJz8Ndr3h0Udq5WmG08tyqP2i+WRh2BrV4y/rBjri6fAKC7/5WYl+IQOiVGM++UZ9WEso1oFsnlkJ+efAtMJWRcTSswGS6ihb9BtszEkjTJFTizaKB75WKGXNst/VQdlPz977n1Fue2mC5EMsMiP3F3boVbo8JK6IsEa4KVeGk3uD6CbgNC4WpWAcn9M567NKI3sHaAAJMGEZNDkvGfT8Vjcabb10a8N7a1j+b6j/fEG2Qf60ycznt+y7kMzpohXTzCHTZz2rcCQKGEpjx31sWO8XABcolSlATvmxOhic7q4oFoR8dKY1dgH983BjxbR5fFs0dL69W6CkNt+jEKKGGNBFfLtR+hriEeax/Wz9afr8fTV14KX92WpRmwDS5EJAAMzLa86k0C9dKkq+vMS0fn2fUP7MbD/tWH71CyNrNheNRbFfrV53y+C298E2yfg8z8XyHcDsQ0glAADubcRtDXRZBPhrXdvO0VMQy2/Q5oJgRL0358qxpdmugwVePm/FPVNUb5biT1LAbT5I3cbY10sgqKLnZvtbQ9GG0rBeFoCMKNwcX2dY/34+zMeXxraa0e7W+pZ1gcBYMCLC5bWm6ei+Nw0x9vtjrWZSOvWrXKGCLIeyLjamq1vW5STtWipvcNYWzhFxjqbbRjXJYAkOh66VBMgLXw/L6n729MU8qTRTWMx9nKzl+qPxwQGY+7Y5lRoULdijn1PIASjxBR7LWJ58/4OZJnEvhHOt7rGkf9hZPbua4T7lz9bKGgmgijByL2D0fBtshDgQGjcfzfnbEhFf1ow1mp24Gb2n3QNRoL0YQKWSw3HWx9WxjLYTuGsCPS6TgBZdWpXLNVSYVWBuhxiG+H0dJ06EHVxcU2dfcb2b7v1TehKJECBQAqvKI/qwG5ipbKMb7SVzAnahPXErCkC3PYJ3MtM6UDfA1xG81z++8Mj/lu0yTSJMEGrDMB8BNikfxPsUXXg57LG9+WxTV2i/H0Ht4QsC84ZX8s5HzyczH23OSfO7mDbTu2JKzuKOcILRHqG1HRvXpqi96miQTiDIhFwCGDBhTPVxUIl913c9gQI8F7ULeHvRkFoILBSgQhmuUlMZ1uHMUPUQRZfd8EYAd6DA26XSIVH2r2vloaDDgM/W2SKOuZLh+171JZoBZPmhZj79l1PIfH9SFktIt8ODoD6u828/wHRYuBT8fP+NE/U0ySyLs6h3w8pBmOyY84fJihK5grXL1kysDmjDr7Ge7I/2LfrLEnqjTgAetH2XDmkiIOqOLEhPgCospYEf5XBkAPY5ADuL5gKfw5AQXFYMFOABkETJupr9HR+EIm14JFCP7+0CcazUdXEhQ0FJYyTeI5HwCzPnZtyRkIxnXdS14A4gEUQWgXR/g4U5l+JGPpP9c2EMksfkCbQjBAdNgXFuXSlRUkYsZzOeekDePjfwIxAxjtIvO9wx5TU8Hqn4YADo+Gg11As7WS/1uj34tQ2RrQrU0Q8ajbTM5LOgRugsxSmO/TdDZTIvZztP1D4KqYjTrBWJfqBP4sImiIiZSwhmSNnpZt6ujbYpugGu4EEglCTU6DeMZXQMUGXKHnIeTT4LBwuq10+NySWLVOWmvLxLgWuOeGlSstM4cjiM8FQyJtCkSl8w8O3uOaHWv+RocAxYLoDAYxDSSufExxTsLsTWyjmw+5MDM8FH5eG+lArFamm2s/oR2Z/2A9s3YiLa0raokdz9srTcbtiFEiQoiiqiZ3EAxTToHW2CNfC/W8X7M8Fb3+zcptlKzNyWmxeLN8MjFq+N1QyjHY1sUTvn4jseX+zDniABlzXH52nFHulwbfvdthRhTevZaXIYfU68I745TWSnHcVF8DqaX5I+lNPSukx7oyy+UG1m1BaMC1iEMgyORqLSh0HzkfOV6SoVAzwnFd0/ksfU5vFn8OSjzJcq4F9eWq75aWW2Rfw8eZe6s+S/F11p6cZOqbFRDpZzUK6G7tMteP5EucS99eT8abHsTnk2fpnDs6kKGreh09nY5S4dfDuwBATHKMN6bu2f1f0xYAzXBBsILLpRJE0beY6z+LBwlv6vspzg3u/rNy/BRHKZynExQIHu6ewlNCx8b0TEmfNeEoOgverMWdSX/L8zuKRNLJotJ1yvalNVB8jgMKIsNFR43m5j0MENX7HQ8HPSAktBolnsH2WFjfm2sgOlt/PhkpmJJmONdcUnZ4BBPuGzjQQ+8xkB3i6YCs+ULZGx2U5pFfF/E9rwICmYlGvgSMomgz8Q4Rd9f2+oHOuSPpeqJ4DkToQ9h338czsSXT8QzvV9EIOa4tnQHonAjIHFikwWRf5Z+k5IRyY351/Mksl/fwdC+C859J5POf6ezDJ9qhxYHsd+jOlC/zy4jxKduS5D8OOODzH51zWEXn3mdNVZGoC8C4cg1P7815oNpK+v7ecqew+Fud1c2hDmi9FDkxNu0WyzblO6ICdnbNzm8//zusgpzdkxh3HOkeIyVL46Eq2yxQA/MU7U0vgg3E9tC8DDnHul+N3Co4R8WiS7w/5HtmZ5j0BOL0p9dHpfud0hI/e3++vBUeHlu3sPTE9kIAdAc4VEE6MxHfCiV7GM7NaYl0NP9joY7F9yb5+d7+P3uVXV2Ky2HwswCHl4YP7n+ZpgDv5ykCVFIjF3I9AQgYjP2JjxBmY7Yjx8Wc+uP4kgMKkfEc03HNC+9NiedA/tkPHiOrMo361aMh4ttdpbx39WnH/p4ble8fybXMGgcwDXKijMIye72rTUA3l87Ea3XlcGkrpZr8WgGrsUEXBBb0Vy22lUzQU5QZAvMxhx3SkRMJQpeAbUwoAoD+vphy/mYJ8e3OFfAq4DYXce+TbUrinvO2o7kOheJ63YEZTq1dTGAOPv1h09PpvN5SblR8jYEAjfdBZLx59b6YNcftSzUl0pfyyw9bzPtC+PWJD7U8L+nOz8ouv5szKULSosV6sPOIinhJRIGp6DSyTKbva/ujlDQGEo79+NcG+/aWCddrLbgyEfqlJJMmi4AA8Cu5RCQcuKvvXWSb7k+Up75cJPGgFZAee/9U0MJg+EOW3vIqDqODyu/XhfpVIeeH77i+Ws2uq9R3l6xv0aUV/WQ9ttajY8HQKExkcTw6WJUNSdxcAvN0RNXBbg1BFvVuOuC7No2kF23OJqOJYLMrYHBBZYA5FX2fby6buyHkqhqevjEVcOHKgVxPrXL92tDcr6wjY3Fm+CT51y8vePtWgsAOIVAdzSLx0qFc5oSAg6cn9WrCVhvZma0J2MxLHUoEFViXEN0HpA+W2exS9AHtKmygOurmD9I//ecG3/6lD/nJDbR2lKJal458+/UAfBbe94V//+a94+peG9fuKq+ff1j5QWELRgR/ZeqTo6HV1A98Oj8LSlBiR0kPBtf68WD+0Anm9B7os3XKGs0MuA9BWfVyrlQT0fSsOHUZR793ZXCvKj5tpBjDSKeIq4i2cGDoFoTq87RCt0HWB7A/gdgcuqzFB6Ly16nm1mwF4wIy4eKRUny4WNbzdDcAIx8YdCRGMYayR/myR//r9MY+HtUEB1G83e273KEIH0MusLw+EpoMAwNIwnhbrh31GWbCPoy5VK85u6NBegeLVIlS9pKiiDJtP4+XJWE3NUnlEFZd/e7iYJ+bm2axUpzyM6SDbfnSQ1Fkazv4ot306JvuArs32BdeqUNcL4l7O1LV261B4zrqnnEmv06lEid/1TxfsLxXbk+Dx2fPLfT3WuzlJ2oD68H0dwGjA+oety3LvYeCXpWB0CS2f+mYaFsMFAfeX5qwdCTYWhYofn4uVEP5ujJJ6H8Z+8PXbrw2PL2swH+ptR/3xmPniFP/zNLhCQcJ0vpd7B4XrtBT036apU7aB9XeLYBWyFlECzGLEXl630H2gw2LswOO6ZtlpAhMa54IxEuO8B4JNJGMkzQGACvq6uxgeqdkiGFdjaAXDEbCo+kdiZn5myH1D0easBUuDZPnX9u0++8bfR3xOMrqPVu3fvmdoFoMlKECnvXu6Xy3Tce+2sdPojWo6ARDBom86nTEV36cDNBGMzy+2J709Yt3AQRqWuwznecz2kSlSX7e5Jmk+jmHrMu7n7aEzxxKdqX1W8cFKSNrkbdMYJ2BBI5x7kO85ujSgGZtKqkxWgUr7q1YAACAASURBVP3WPnv7f5h7lx05lmVLbJm7R2RWFcl9XmihcSGgIUGQ9AH6G31va6KRNNSkBUHqe8/p89jcZFVmRLhbD8yWuUVWcR8NdwAEyarMCA9/mi1btuyeNqS0lxO4588hp8oQEeDifktg4wNQIvQMEkh3ckTTJW/3OefJMOPnGP1libtcGo+2CX9G52kkUIftYpvF+0RT+0p6Nv9/yv/PegH+mcWZTz5Ws3qCnD4rrcW9dNuR0yAy2CAPbITTxblC8IKaErwIKDB169FxzLpJLkCaKx5Efj8Aq9CQnt2HGcWcc3zHqKAwzlol7GtxFiy1E1zFPyLvD+CBUqWejKd86QCkxT0+vIJ9M0Cxy3DcOXwn8H0YuMHxzOk2PtcUSIDKmM+I5ZSj8MX6hML+fIcoFYnpwKevqc+HALZ8jE+CmUCwEGJc9YN+shvG5wMwyz55EQA2dtJcVynPuTHeV1dgxR2+A989ykhamwTHO1AhxotMkt5NrysA1GwcJSBl4CTW+9H12wAUihkd9XacjIAo1zXmZqVLCaNLxGjq5vTWSJeQPlAOq6sNYSkqBVMkrL79jCpGzjAPHe5rY9gYMSqpOheC5w7JfUcF0F4XUPCOufIApgYAEIbQ1BrwzUN9UXQg1Pp3O9iLbxqR2+sXDZ+ztoTaRu5RJS0y1eoBRCR5t44i2BDtcxDHDChr32gCKFxUz0S7QheC4opdI9pkjbPxqXcAw5XBPVjSo1KCRj4+YO06nlqwHewdESkFoQiu8BKG3n98PbF79wudHTidHsEWYG7+uLSU9+lAxbV5zuq8H8GhUV174eBcw4nqb2No47d+tRtYyodF7tg3bMtxrahFIPvFI54JKU3thRvhgIFkEwDjXH3YwN6JB1WMT5dQJgdM98AANAVQjCFTrNOlK0qShVextAg8l5jb1DygvsJYJcZ/rIK9NpTNxPj6pcbnxf2puhm41C9lak6An5EAnhQ+N2WWMC07HXdPWVkk5uzxeUVUlAAwVqPNj2aCrOjJiQyGiWB/Aeof7vif/+Vf8cfLd/z1/oJjFAwVdB4c1479U0W/yJn54zTzsns0cPVDgdEO1ZkeF+Vp/UCi0c1DKqPg6+I6BMMEl4qYkZojfMUp/HufDg8jZwVW0WXbraycG7E6hte0d6feDRpLv+QhiWBK6GUB80d1aRB5mnTlLaVFiKU7cD81kb0KcO9RhcBAkNBhYETTmVvltpvY4aVx+sVFOnqAGMHmUS+VNAXywoi/LHZ458oO3tfi+zyp+LIdUy+iVnMw6URdpnCTLpZS1a/V012s/dqKDefLiuJ0fFM9lyngFYb0g9HJ+VjSOXR4qd61zmglnbBDI6iURWWtP/y+KRorfaDeeuiv1LtidXGs0aYNb/1s6/CAoq8e1SZwqgghW+kD9e7guwMK4mWeQ0vGneqydWCz6NK2rIDa+VM6QPZT6Za3TWYKAIzxgZFaYOks7nST2aOthX4QGYmnqiMsvcm0COrBcD6JIPK/6cRUjwCpR+1ZYeTQaZAR7Fkt7aaoAwgeEBGWLRxjson4HtXSFsZCcc8ekeUYT7IF1gIVhcpidsE+y/Dm/PxymMBZpsdahSgD7wS+t3qZUUWdaUdaYfpED45IdgB17lfqKScx/wrOLIDEyAqhS2lAc7spRXN1afYZCuWl54Q+QhZJUwXZZwGEZJ0HNfbYR+F8dTYJ96sAEFoxQbW8p5HdVEronYB9mKN03Lv7/P0pou37OwVkP7q4b50cc+6VtFVaSpPhucmSxYexAlWTc//uIe6Ysy+3EeNtTuX8HsEHVntQ97gsVck3H7dfJ0iWtCEyaFJgVcceKNfWXnfKuc/xu4CtL77HA0ByKjeYHDYKc1ppvBLvFhUx8pXbE3aU+l4gnm2aAJfkSEaJvvT9EC986P93ZRWpg5DXFtIZ7OcH75uZ0fadh3b7+g5HW8oE5R4c3EeF/gATTj8cZ6cysytODIcynWyuo3njeV8fY334roEaZf7/MTLPvch9s2DhJod5rhU5v4eqLdihQKn+LJntemQ0aLp3vjiXhp6FEQG8Y6EQKCBokM6JnFZwEjNVsu71PC/y3ExzGdTT0jS+Mvc9K++Z2piZCkhzMV9kvMbzEtiSn/sRK+Lh+k0ACuZ0F5Tvr/MAflqhtQVzAQAs4m8HcLntqJ4v1p/XU636cMY92tk9P1sOjdx+itiIwg2UmS8YOuLuGBdJEcBAyL1Jb3fg6Gi/LBiXin6tVvbuNiPf/cVVkT3HcVxNrTmQZ7Pv3Nh1Q2TbLZ9xo0PuectiauBKHQl3PgOgc2Ohvh4YrUCfajjpZigB9W3mmFntb6s2Ue4dusqJrm9lJwG4HsT6TT1NgcagRbBnyUl7n7IdwC7AtUEXRXfRu34t4WjrwEzpEOB4MaCl3TRWQL8I+kXAN1xerfQf83itj90QfjLwYf1leD6+Qquir0zTgJULvBDM0DgEx+ogTyDV8/36avWxzT4RoJmhfUo/cJG/619HRBLl0KACAw5mNMFoE0RQorZ+Lys1KqhFoFD0paLeB5ZvKUJDhXremHReVUPVHX1Gqzg+X1yDwqLn9WYOsBnWDbJ6egcE7dWMbZb3HE2wPQvGigCE2htQPao4FqtJ314tgnn7Q/PKEStkIPQs6jaM8QADBTAUx5NFK/vKtBhLKWHOuPVXmbRr78uy2Tw8VivN2r7t0ALcf9fQbgPXb7sxOq7N8rNXA4nKAYCMAtd30Fawf1b8y5/+gf/13/9v+O+Xv+A/vv4P+M/bT/g/fv4XaBcstWN93rH9ruK4uAPgc2RUqzIhe4deLTe93bqXr+sBXBowZ4dvkRE58IV7hMDEEA87LHRdIG5wMb9Yb3czLNxRznsPvrzYfFOnAZcC6Qfk7W5aDV6b3vRWNjN+Ls9m2O/9lK6IgWnYP3u986NbtP/5Ensgqxfo0yUQdhV36N3ZUGfKlNsBxYBcpn4H9R7E686zgo6VSdMEsgByc3YaRbz4u6Mbi4N9tx+hpK3V2j4BhRlpDkCOIMLN1xYPeQDjs0V390/W/3UbsSaOJ9uTym7jNpoB2vpUUfeBcp3HagAd9/294ZYB5e79Pjy1BEDZqN7tgIM4UKyCwQgbz4yugTDk9BNhnvhibL72dqDeBOVuaRv7swF7fbW12m5qgqMONowFvoYEtQrgABrUgHMCnOVuefXl3qwE6QXmwFNBXwTi+i2WNuZLo6tVbRDv/2GGoBBkzVus2Pkltx0EvAarMSxWeaPeOsqWnL4CYxm2YmVm7+/P8cgTd8c4Iu0E6QDfvBKoxX1qjAlQlwLAgwEx5jbP9LoCywS1QkeHbIbXPp8DzPndKnq7gGmI9dsANjqrmEayz5PQEhBBRPIP/7r74cGyEIAiySoVMsoEQdgGZeqTTMq9iPUpAzXeD3JM0WiymOQ4gumAWqbOQIqO66UCOxxQTu0H7L5kPGXQgO0TmfoByenUUaYDqIpZcaHaXlSrUe49eKVVrNJEvph+ieiqCbZSp2CH60v4+GUwYV3AyjEmtL1NgIEgsAemgkFFp4UlRBMFeVy9QgvZtgDK6w5RB5kciAynPjs1QDA3QHYP+2Z40C47KoxWHnfrW0wtB4LqYb86k0Pzu3O/dZDslF7CdvVuQMO+I0QTq1cu8moS+Oi77uCFA9/7jOqqhrMvtZwd6Pzvj9JdupXGE+blqwtSL8t08jnHkk6D3Zvrt52BgvIwBmy7PKS2sP0PzqZRScspUs55Fu/GsRQDxqR62Wx18PTRUf+1aHq+CCSovtd/4LxmpYN0ds7P9emsE+RIju6jEOQpdSb26ATe6JjskjEA1HP+fxHrq9Hn86NdzpCgDkNupw6ol+WW1gIoiTKZkULzgzSU7ICTBptYpTqGaWtwvyOrg38SW0XJvuSt8zwC7P0eQQWOJedHsFYI0tS5Vj9Kp5BiQXQyPvL4Rj+VABV+7fpNAAomrndgXFdz7J3iOZaK4tGpOAQ1bWSHH5aria/V2+G5vt3+v1XsL0bVX751VEaYUaKGfJRH8mgEVFFuc+M3Zz0J29CgcEQ4UHanSS6/GNhRbiaWJAURMSn3HeOnJxNBvHu0lRHy6mwLP/z0aZ1G8nIBWonSVkFz6xaBEQlbMi6t6SDDdNTESzGyWoCoR5nUabGLGWf1buOwuGAf4AbkqwaDIVSyH8aSwlnaxKImCuyfWjiYzEGvhwJ3mLMv5qwCiMoBh5dIY9UA03zQoOtjAO2bRb9GFTOGDxq6inExZHf92sP5HQsA1MgJLrvR5MhsaG/dhSlLoHEUIGQlg8Foc373MUEKHAq5acwpag3UtaC0CUQcT54CcPhCLlZ+UouxLZj6UHYXWiIA5nPRRHQSUs+NpAhkXZ2qbsbT/mVBaFbIVDeXBOpMrQiFFkXxfuhDcP+ds28Om+/3Yqkvy7du/T2sdFxfrS8JYvWLYCsFy+tAvU2wgPnX7Wb3ZIoH5x8EKN9tEz4+afQxRUdNAHWgu67C9a9mDfbrjN60tw68GRtiNKckV2PCjCYYq+D40vGnp29YpeO7rvi/3v4d/nz/jH/cnrD1itvesN89FadJgBhQoMrwiHyNdJ7I53bjqjhIICzfNWBRFJFJAc7Rh+FOOSM1PDC/fDKDdj+MmfHwHXQ7YORQyH4zw6fN1AeWq0Ot0CKov9zPxjsjYVUCtDi+XFEOc/ahKZJ/MhpNaVm2CXiRep4ZAFqKiRc+PDNKoDlIVr/6VByelhSVISSiXlGpBiNYGgQcWH5SssHo98bqrAWWKeOhzBrmyamUPgDxOeT7ZxcDdvvFQAVcAemC0muwfkre/0jpbQUmIJDPG50OEgXCPD2CGhrgfZ5mmT9WJzAGlaV4qcAEHekk0jGPPasE6EBNH6ae2X5m52p1EPbydWB5m5tbXw0E1SJe9hZz36fi/mpO9biaRsL+yYBQfJtsFAOeNcA2qwgzIPfurBY74+zn89wBMMEBd/Ijiq8mBhZVlLyf+oul9ZXNwQymFF6blUfde9zTcvkRoo+VYyRizm4GtyjemKi6ZESS4UjRyFifDgy+S1EYGqWSx6cJtlFclCXXxJ9FLSdLR0hChMB03DyNMhgbReacA2YKAvvVy3EHK3BtnkqSgigeKTYh1RJtrFxDIsHEtOi5zT+mboKOXXeQhc4zywZ6+3RdnC1QJ1NiuFPF/TDAHEahJcACisfG/f0ZSg0hXnQOWXKYQplHP+1P71T36ZB7fxtYVX3++X6T6dO9Gzjvcyn2slImeMj9lECCM8KYesK5rUUgl8UAY5n9WzYXgL1vISgn3Ce9XHFmSAlgjKF0RkW+eC0pNcz3k4f0lgz26FIR5YQBz5mEz5UaqWRZaDRXr8C2nxxCMgnI0qXT/k4LwYGYxyhwlM7k3seUDD6DWlMOQIi4mGPvUN0BeCnEh2oJp3KUSVQv2hK0ebXUhXJOJdAx/YfZDx+U3uQZ5G3NugqcC2zXI9PAxkyiH4NGfwI9hvnSdEAZyPqQpj9wEgvM9ykClJTqwDF6vI/bAaHRECkQiA2IUX91IEhO4EUCb/L1ERgEnx+teGWaHuN4YlFktkWs1+LMRL7nCHzo/Fw1MHLf5xrw89ranIOqD6H8vJfwPv6ZR7ZLiJLOboqf2w+9E/sxxynNiShkQYAj5kO6V3e/oZznewB7bHP8LqXY/Mr12wAUhhmG42kBDh+oQFfsohN2qlGdDhcIzPDlQB4C8brZfQWa0+Op00aRp4hgJeQzJrBTj3FMI5kbcGx6/C7pz/cjcnaliIFkVLneD4heTRTLTySmYGiVCTiJWA3gboYvD2vSIoPNoNYeRVog/v3ZX7OvIu/c0xzozNab58Z6bjCjESXSNmBCjocBP7EeP63m3OSLB7OLctHwJ72dzlbOY2fFBS7IcmiUT+SYF8+xp+HTL8Ud0W6Ox1osW8W1FCgKCQXaq2lq9IsDAuIlGbuDIsWi9JVtO8hugBnuh/oYIYxwe9f03hGFGGHc8ucEoepW0VGAZmM0VgMQcg8yXaNfLc+YoJMJ8T08M6c8EC3mfPT8bKYB9UsJwMDYvSV2q+IHfpRHO4zBo11RWUqymh6IMRCAvli1h3pnbqQBQVDg/pMEWDGaoF+Augna0U/tlwGUPlA2RXvtkZtOw5sAmknvm12pTTBKsWodQ3FcLdXp8vOb5bW/+Gedbi1D0a+XoGEPryhh7AgAS8daOjateB0X/Pn+GX+9veB1W7AdDbfbAt2Lszam81VoBBd3xFUNTMjODhkAD2iyUY0xo1cFD5TGZCi7irU+rTY3bhvQkkPu80BkRh1Chd3zniUQfp37wts95ac6mh0TwgxuXU3nRO62t2E/zlHA6k7egK35HI3Jjl83Z38s7rjRGQMsKjiQqNYTmBAs7/YXKsdr9b3NVbGjPjidjtROOTpw3+ztSjEtiGy40GjJjqNav5pugI/V4vtHtRKyxtICjjevyrAhtHl08fXke5C2AnSZZ0ERA7/7gFJ3znN/9eiQ2n3vb5MW73taLtkreweWik7FaAAgi8YBtOFgdLmPWH6ye8rgbmPCVLJC5tzNnjWaYH/hGBQ04MTS0WHThhoPYykYF8FxtWoVKmJ540CcJ9UrOOhSIwCAyhQSaxfLIZ9ETQnwtzKjRz6vje2AYBT0pcw0BQIPIr73Iu5voFgJZ4v0cbQaoJDW4utdEcwWVcDTKZg+M8V6K5SRRcDnppz3AbifvNv5NS417FERA+Jj/iqs/jz7oxRz+FNayCPAMstHw4HuBKD5HGe/ZqadLtX2ErKUuD7oUJfJMJB9gBUOLC3A9+9mtpd6GotwjxnzzAcw96du5ws8NVJErNJCZkrkiF7aXwFAV3Ogx2qMCQECrGNqhmy+/6X5JOr76xgAmYTZUcnAhDvOJ5BhwH/2YEOyP91RF74rI/xiaVeyH8n5fQCXfZ5ZGeAB0XO0XbqvG7IVj24BBhHbpEr5gCqv8734//zz9O9Io+MeScfzBCi0CfIBwThTB4PVq6Gd+obPYbracQClzj7T8xrL+f7WjgdHi/Pq0fHM7A72Jz/T3YmqMgGTqCCQvsOcfmfmzNKnyaFlAEecaXqoLbicbsOI+SniqwaotDap9GSrcO9mX7D/+L0fXWlu5goG832Svfgo2JjX2g/uOb9XT2f9Ow2GqErlxkFJ7WY/cEwf9sTp6NqerHl+prac1kK2OVqDHIexZfhuWYMKOGtZ8DMnyr/C8kB53zyWzoyJfusT9Exr4XSvj67sZ+a+45zzs+kdmPKYjvIBuGSAhNuWDja800XwvTFX0fwQpOJ75nv9yvWbABQQSDwP5InuH5/XULQ2mqU56lIkDkxOSl3ca1WjO5bNyvVpnY5ZoR4C0xtcTCnXMxWPkEcOXe++OZdY5CY6Y2j8SZCpFaf514nGMXrgE3v5pc/81+HOD+z9xtUrU3jbRJeo0V08B288GY25e1krdIWqq90DEygpRnHX6lRtf0a9j8iJl4FQhLaovNHPRxNAyhTiagIdMxXC8mnMGDieqom3LcUo6X6QlLfdwAkRPP+/OqMmStrsebMYa516EADKUWaawCcBtOD698PYBy7OWFeLwprYorWP5f+Y315vxvmsmxviAy4iJThgLIHl62GLq2v0vzh1NualmDElw8d0KG5/bNifBHWziP3Lv7rRtHM+ubFdzHAvu2UjCozFYGKNFfU2ZpUMkWR0CeDAgvqcLx6hQJsRI9QKWRbobuWVdGmm6t0HygbUOymLAAShSyBDzdGogtd/t6AciuvfEcDK+rMblrLguE7nQrpifxLI71o4IvtLxaiw9AKxyKYBOrae9i/NABRPmSCQM1bgEO+D74e9MxCRuqf//AbqiPRnKzEno0TakLjDpm6IhxL+Slq4L0NfR6IGGLVX4Mv/ueJ//8v/hH/7Xz7jf/zpzzhGwf1o+PufPwNbQX0rkKtCl4HjySKv0hfUzUrxiUea9eKlLI8j5j6S48z9QVShTJ0YZuD2paAUwfG7Z9TXDfh+m3vjcpmgFJ123xsp9kXDTu6zrJZ6pG88LSYqy1K332+eR+3RpVqnM3JLkfs+0H6+x9o0UcVtzrf9sP3EqZl6WcxxP2yPUjq7AManixnWvicxEp0Npv67T86m8NQAz6mWbZ95voCxxTxSJPsBvV6gz5e5zzLy93qbkchSgKfrTIloFsnUfT8beqqQ15uBLdvV0jx8Lx+X6uMAtLuN5fFkTvf+LJAh0xn39VHQHQBRE4cjsEPH4mmN1AVRBa6rRUuBcDAYCdbVgAWmSl3+fo97GRtIg2l0uIArmUNk/uyfGsp9OGDrZ9HXAyjAqOYIjja1A4oqyuYOshtL/SIYyxJ7v6UgGXARFRqqgXX9qaB/WoM5WO4pR14Vstve2J+SwJ2vFaORA8XXiAHaY2oAiMw0x64QBw8pALl8m4wlgjxleCrS3k3/ZSmhLxM2ATDBhKVaOgP3ozIw6iXsBQM/nUHQncGD6YxZmpGLfTqIyGuW0lRjL6V5aLoxBWirnW1vuwEfTAOhXdHV5rsqosQgS6mm8pHijryBmA6COJDD9Iy46FBeGiDG8iArYzyvtn/uniJ62+NdtAECA17UnbAMrp6chhT11lKMBeKgR9a10AJ3BBOQQPpxFoDkvQk0DT+nd99Dkj6DLDNdQEsxIbIcCfYAR/SFR8ODIbO7o8/PULCRrLLseDPCvqmdzbUC0GCghehjvgjYENRtFdLTeXhY8I3ngTg7gXRlZfoH2RC5VCTFIjPLrJvgmzA6HmwPOtppDKkJw4vz3Nl3J02SDGTEpBcgclmdgcFSgTBnUgvsnTKY0BPVnaU2IwWOEdRh+3mAFnKOEvN+h4M4tZjNzP5imkBOEj/8+ZkNQbo6nV13DE9OKp8FePvJNhCc2Az+e1WxMYy2pjbU6ik/1UFR+50Aaa6NGMvQf4h0gjrvmZ3YeI6/TxWPys/AhH0f50vKe6f58YoUB3GAZsz7OHgky3IGTNJ76AGLnPPnACJaTpArRfW1IPrIWJ0FLAt5mou8D9ulKb2LAMk7QKVMocTjsDGnQOLAe6AoVw/hfOFc1TMD4DRHuF9UT88+evQBU4FmKcjUbv/56cqBHaZjPTALgpGR0lTOJVZpNDvDiHNsab86/r8JQMEE6Pw/InbwpsMVRQyhV0Q0lKhJdkAtCqRTFI20sHuJqLVtxGMaziK2CPucSIHYM/qG1DYAROu5mRrt9/x9kSmsJ077p8PPfFw6N6fSX00s8sBKBDoHN9N4c5koc5BNuClHNab4XF6U3j/D/p/bfQqVF2dM8OB3R3RONHe6hzmpWmAifMK8XT+gdR6GWgqU5cCcHprLGxEoYplCOSawNrIxxjkgyeHuIyi/ZBGUA0Gt53csd1dPzrX6FDj1Bc5gAvh52D14gJpwJDCaj4NHJGYET2LTmXR/jiemtsXDIiVrIIymx42riBs1OQpWIL1Aix+8bqgaKwQAzu/NyKRrtBkWV+EMDJn9BkuDAKYTZX1s4m2ivjf7d5kWAe+H0v18b37P1M2j2riruFioakIAbJ6UVzuQtFrUXGiwuhP1UR/GGuaPFKZdwKXtJeOe/stA6QX/z3/4PYYKiii+3VfIa0W9FdQ3Qe+KfsUElppgqDN5SCEE55I80GfNCDuV8QKsrcOEIo3+Lb4nPETBqFiuOg+A2PgfHIwiZg+4c3E6TEuK/hWEAwLPiw+Duo8psnV3R+YjNfn0DqfoIeAMrh5R0ZFzbhWer+d7ru8Byrr3j/2TjV8+K2ixXJvlnfGY/+bckM0P7ebUI+ZM57VFpsIYIItNUxUJY24pqsDAsEZtFV8X+YwYsP6lgTHO46/VdCYoLinV6dOkIIN7vkCX9F1NYE19f4Sb0C4ALZ6Coa4zICi7QNRZb4LpuHeFasHws0yYBicyq9pU3+8cdJACyCHQohjJ8qRgrzHbCuQok57vYCzZfpbTXwKgte+fgRl7nxIOMpk9AU5vln4oh1eIqcWBJUB4Jg2dUd1g/ZWz/eB7t7qjCz9fI5WkTKE25ZnbirNZ8jwFpiiaz690fsX8UO9j1WAhAD5nxNdxmgsA+y3N9+hX9T1y2gXvygfyfSg4WQBWY3jvOMgEHwCAfftwBkUbhg08GYknLYH8vmOul3h/2mBcwmOeH6d3H/y+24bFD7Jkowj/n/vmUWgy+sLYYiIj+jk0IvI75nSb1Bb7e0znIc6gh31e9X2bHp3uPEaPf/iuDlCLykyXOqWgCaZSvr4bg5PA60dtoOOT+74AOeX8Q6fr8eK9GID7lc/LY18D57z4xzOTbfro94+OMN8HQIjeDa63h/5hFYEPqO6PZSx53thI/+DdErgQzxxwJ7Ge19HQs5PI74fAYn53mSy84jS9YHL6vfP3/9k1FFEFg1Fo/vuj60c//2cXAQGCM0wHBBx4e1ij43Hcy+nZYcdkG+CfAR0ftQlp3f3oerx3BiHiM+9t+Lku/fu9u9ZFWkM/0rNgKkOed7w/wZcHDYr5Xmncdcy5lz9bvE8f199HTJp3FVV+PK9+E4ACADM8PUJNPQIZivXP3y0q/2KCYOV188NDZkknfv/iJbgYCRFBeTuwbiMcKHnbEVUkXNn5VN+aKK1Mqjopu0HfE+/4VtBfLDpWdjdA9+7RpBrRozg/qxto947+bHnc7c3YBPXbAbSC+x8uMchl84iKMw7U6ZX2uwNlOzDWBl0Ltk8LtAnWv2+WN+qb6aAwWh8WuW8t6LOMIAwXh7IImEWNl6+GgvdrjdxNRqAYFZZtoBa7R79UvP2xYnk1OrpWMdTQI4Y2HEb107Xh+LTau209ojWBKd12yMWQsH4pKFdX2C8wqvs+0F6NAdLXgjo65K4YVxN9rHcFdjIiLNpj7UaUJuyuI9HeLJd4+51Fz5dvHslg2lsrOJ7NGVMB6qZYvx5hZDLfmNoQs4qHOwSqkFebc/3LKz4pDAAAIABJREFUFQM12CHwyFe9W0rI/tLiO+3VtAnqL7cw7oL1AJgyNoXZaBT3Dn15AhYrOadLtXJrfUDGMg1j+FrwTW04rfzpb6Y1cf+pukCbRySbWET/NvD8FxNS3D7T0IE5WLeOehUMnak47WZ9xmoYCmA5DATYPrti/krHyT8jiDXdvpkTKF+/xwZcbs+orya4pwIURivdcbDKEAlQSFd/So7tsH5/+i8HLl8LjucX/H8/PeN4UkgXXH4RtDdg+UWxvALtJrj8bTMmxqdmQMrL4oCll1YjKODRnShf5VUVQgSwFZQxhUyXY7JPZi6uv9fVEeHNIuvjeZ1gHTUKQsyxzcPKf16+31G+YxrdL1f73UYBQAW23aL962IaBDSYbpu1yXOn9fk6nfTffbK+3FwMzEWN9OkCud0h398sb7xViGsnlLfd90GJfUzuXn7XIw65tKSVbkvGs+pMNfNnWcRqQN62CYZcVvTPzxbx9PK+2WDXy5rmwUNJpstqJTmfLxFVMEd0oB4m11vvZJhUjAaUDtcDUSzf/V4J2EbxseH54EAC925x0dLx6fIxRbgPyGZivO27GZhU2I/P+j6g1daUVkFfCMJXTysyDQOundg71PtiH2hqWkSha+AO5VhklkbOTqHQQZ3n5/L1wOVvdnbsnywVomwV9XWHiCKo+mJ75WgmpsiIOQZMg8hLNhtzwt47cm7F09662pmegF91YE16N4bd8FLQwMzvXjxVqSDYMuN5iTSEwGlfD/PTyIDi7xgBBoztsdZgAhDsmUKPHzjHXq5yrA3jqWH/vJgGyzbCbmA5Sysf6iUqvbpNufm5urSTLRTsH2pEOWgXTDlxgCQxYEyryaODZCwdh5fhQ8zD+t3XUq5I4H0uqsYS3o6ZOgKE05udWdnVzzR3ztYW97MUGWtb7KUDwSrR3JcsIerpNlaFRBHVqpZk3q7nMptkl+hSUW57sOEeHVjr07TW6jl33Kq8uFbBcLYCFfoXL1t8WV0kL4E/oXPge8zeZzQRsHuoznKVwxkNaQ5Fmhgd3hytpvOZn9uT0+plMWU/rLSr27kmSuesFBlnG/gETEkwcmR3e4dij73PVL+H6gwhrslxINuDtrXq3I+lmNOcwZwEBPBzZ60LOuIfOIi+FoUgHzp08z3lslob4FHoiBYLsCwzJYUgzkeXFKv0FFUrJuh9TpWx8ZfWLEo9upWvfNT5gAHzWq6RrpfhKhMZ9OfyWaRy24OMjZfefQZr6NdozN1IBaGwIPszwKfyHqg49T334Dqf4UCJXNazc1yrPftAMHk+Ag7squc+dNBf8v0ehyLPl1T+M4scijRjfJzeKc1XVUOYup85HNPcvloAeXCjx4NgaGuuZVLOazwzJYrYfaLfJ9gSezIQ46Pd7MjT85nyxHHaPhCCJmDg4pMnlgvFGTNoUNSAjf+fQNJvAlCgAwLADThErr1QoGafkwJqtBE9ENFeiAAXIJceK56jKvvwGtOYn6XTV2AbZ9r0SFHXxeiM5Q1TsKwVCNp0DkhrDpR+OpKn7Hh3wuE/P1EsBWCJytkIj8Amx09ZezTnhgFgzq8qZhuHRX+iNB3gxhZc2yExFahYTFpW+mx07zFz5WOT7BY9k2EAUN3IBKHRKpMaGDls1m8l7kfFZJlGclcDHV5a5K6JG6EEdUgXt9rpBWPVd06kMQaAcakWneZ+y/cpppo+loLuTvVoMsdTJCLrTA9hKbVIwdknhT9YEENP8ynmHIe2YDIFaMxjjjOZAzYOJQxGy7nOxpzOcfPPnmiA7NtiaLAIgAMOegCqMpFLRZSkE6/sMSNJ8+96N7Sz+2dkOCChDjylz5pSurU1BCt9DUx2xhyT2UGzz7SKUc6ODuy7Cact1Ry0muY5AJYJ0rVgeLqFdEx2kveTlU2Fa5nY/y9/U5S7YP9kbW2vcAdRsX4baN+6lYId5jwybURGikqzzcmYFXwAbvAePt7mwJSJci/N17qAdeqZD8s8YQwNQzg/2+ZXccfJDcNMx2VZouhr3x/y3ElGm/QBLWN+f+B8uGQjE5jMgd49kuLzNqJW4tHreeBLH1BW0hnqh9hIDAzzrqJcHinTAIIF9eC8Bc2bXUMjPrU17ptqfqtrj5zeLeauzx+/TbsLBunIHFNgOi4DEAxkcasAffIlmJpBpUC2h2M59lBrRwzf8Lx6ICqHAIjqNtmBClFezrm0xhg5dj6l7bHN26P8LhBsJp17YTDCigZIXfeB+soqR17RiPs9nT2evRwbP++j8kKo6HcA1auB2H5OQLvwvll0sKuVDOT/T1oEOueJn8EYOiN8rRhLIEeD2Ddx/+5OJM4GWXz2wYE6RZbG/L87SSyHXI757hg6HQc/g4T97PMkKOl+zwAL3GELdl2aw9SnAMa0uR6d6Mcr2yR0OpgaQEDAI9ECnAX48pVAPc0lBdkHvNyfOYkfxu+Krc1H9kNiQv7oXR61BAR28KjPuWmLyWSE5TbxqmJC2JkhEho0sHnxMGciuOD3j8XH/ufl+7Di4X0e5uPj31kF/9RX/F5uj+p0jqM98i7aTpD6nbgcMM+pnNLn9z71WwKCM0U95kH6O/rmo+vXnJkTuCknCnc8N9vLUoAy5juoo21I91DFybEuvzK36BTmdvK7P2q72kb245x1D3zEGjjP9w/1EfK9c5u5P/FeBJ7Kw7gW75dHB9QemHQIyrvfBVsg+Q6zPYJ37Cdg7gd08jNT4oPrXXUFjmkWv81/Z0D+Yb5h6Fm3gu+UtTHy+g0w9AFUA/AOAHnoP85tC/rNdziNH538rMfxWBo0peQHy6M89HdWyGd7Uzt4MaVxBhcfz6xyvuc7e+8HgBp+I4CCIbHu/A9GoRCUWdRiaKh4XiJRb1VE7VwR4Nm0BbafLqjbwPKPu+kO3O7Q68WNJECloD8tEc0oe0dxtNhKhS0Ya8HxVKwU3Z8tp1kF0KtFMcrPr8DeLQLcPOesWVkkIs7m/PrmTOXkywJ9cpEsT33AMpVymUdvue09IjVaBON5OYEiYymmHXAMtO+HR6WKvafYRkK2QOQF5jXrxt3wEk/t+wEVQ9VHtbYzL1i81KDc+zSGhsJSmgXNBRJDzJFRkeZq27ct0Dl5G6i33XMErRTeWCs62RRPC/YvDV//24blO3D9R5/CgVUwAsXz17gKjufF6pvvGtRH8bKi998vQXFXMePb/t9R7ge0LFZysgFlr6G9oM02w77ahrC8Wo7f/rmhvQ20b3sSGtuCfYExQtkeHmWxdALPU3b9h9Cw2JNxrPO9rOToGpHH9m2D3BKgQCS8d4vAXC+g6nrZOnQoxtVKV5XDxlAOxfZlwf5Sw6iUYRVGll86dIdX2bC5Ih2o0BDBW74ZO6PenM3SBPfPBf0KLN8UNZXeKi5mOqBoby6g6XmXy7eOsRRsL6aQXzcDZdqtB0VeBcBSMT4/Wb7u7Q65byiq6H/6gnGpqK8HRK1yCR2N45Pg9jvTtCi7Yv3qed7qudTOMrj9sWL5rmhvA1/+0wYUwe33JmS5fO8+DxTt1aq29JcV2gTLLztQBftzi7Qldd+Za2x8WiF9MQCE+gcOFnDPC2Pvtlt5uKVEtHOstjZKzg133ZSxFvSr4PpvBe1v36deS3JYht+jfdtmVD+lsOTUJeowBLPi29sp1UCO7vRymcrsm+Vuy91ZB62aw08xN4JYR0fJmhC+nxMsCSCCueAO5sm2u85DnZ+/m3GozxbJl9tmz3s0uo+O8vO3U3+b89NMiZz9z/VJCikAfblC14by/W5pZ9fF0nbuM29Su+2xxZklx/MswzcWO1vK1lF6h3zz8poXYwx1slredpQyMMJJBLoDZM3ZJ3LbbVw8LWIK7yVHeQeQyhWXbWD9u2lfbD+tHomFOfUZUKAjE+DUEeDj8bJg/+IRc4Jx2d5QtbK5VYxsoHC9AMXyeqC8HShf37DsHfXWZu63Ry3H0zKdY0Wcc7L3YA+OizHp6i836NoglxaaSeVu7Ln6fbM5fbtPZ3Pvll7hc5BRVLQCPcbUqFCNag6WKlGizOnJsPU+k+Owf3uus4hrYJTFqqjsPaqHMGWFOia6VC8FPaLaA6Pe0jvq2x7VLVDEmDw6NQu4blg5aVATSRXlzd6Pmhg2PnIybGPevBpwaVF/t7H2xHTIjhfTlLi2KoC7l38kmwjwijB25uV8fX1yFtCe5hnX6NImUA6cgRZxNh7bR8cWcDtrmXPJHUa5H7ZHkknF90gOSJRmDYfAbLTyuk1h18s69S8Uti+jWfpQmWOAplbFqRNYQdh/ZI+paysY8+ewdrldpqVYmVXOxegTgIKNStbXcNaVyFkkUjXOntAFiLHDdEBqQQhPUouG92NfrEuUnAzwcksHufi+Tz+CbF3umUw1vh9Tl2cMoABCtmzWCOBFEKS7yRMR57ODHiJ98Z30rrkagbNHyFwIoCIHYSgW7iDyLL2Yzjt3kEVagDwAzmKW0TUS+8XJSeR5+UMKeZ9jQAc3bPTk0DEdILPoCADFPifWh6qW8gPgJHTp0fjoMkbac18DLqw6HBTk/EklDgFo38GyinE2azPfJoMWqa3qFVniM6XM+UXWDIN4GObg02lO93kXSOW7AxMYZQCVZTf5jI++I2ScO9slswfYV2w3/821Sm0FAiLAeQ3myP+ypHeQWWnkgekhtQQbRm44VxPx/VOKscxtr/R+YloPn0e2yiBYc76PBXorbNLImXFT/b348eHgWtwzzcMPrt8GoABYVFqM1kna46SMpknPdIU11Xul8+rOVET/iy/2WmOzBo1mj65DXSzsGECoOptxSOeOJfBo2A8RFBqhYwBdoBefLH5vGb7RFhidsCjgedeRNpAjG37glaw2PDx3lQraqdwj6eEATFRRAKDMvWvMdAber2wDGHJyWoley2HpFfX+/jAO7QmiiDLTUuyzfn//jAogVSyXPx/u1ZwBGgFhRAwTDlSWVORYARgLsH0y5kMhc2UfAMGHXYFtRsdYIWEw5UIQDh8q+93fq0rUEF9/GV7dYXiesBniBjjZPaycooEagfr7uwMwQ3jxigAEkfYOfWkGljC/lXNZabDN//MiUEHDkaCUtTtFmf9JRIb9GWwUWB/WXUPwshyKAYmIfY6oM3LJvGwlHZdgwzCqtwxBu2toVPA+MhTtDQEIGTvAqngAwPJKFo79rrwdgR6fmBfc6C4r9OmCfjEHHJc6+9GdpnqrwaTI/Vw3jbQEa5eBCfU26bTF5xDLWJY9q7cTgDS1/OL7jBwW+avJYWd5Ph7SonMdWLktmVVbYt+ahnXZuuUth8NtxkzZq6eZuC5DLUF3zlosEaE8xnTOyT5QW0OWbz6psnQeIhpfXCl+Xcz4vW9Q9ZrcnUDHQ44fKX40Qmk0qTMRqKivCg5QRCzVKb6niawTNPC0itPv4oV9X707dTTVJtdaQEGv6CfVSUPOe12irBvgXMKZiHZ798hukS45CgQGPpU+Yj7zHlBGorMh/PDvDhSYExV13puzVAZmxJ5rgnPS9QfqrUepX4LZ5VCoDi93KejXivZ2WIrFuZcttQYANQoiLYXvPGxNzO6mTgPOjEKWQi62r5N9My4FuLiIcU1swWoOsi7ulNA2W4rp6Tx7Cg4ZXY9RzIIQiprVVrzcpjjK19XK6wGW1rOYgPDUp/H7JBZhAF0842mPPMw/Y16cGY6nvTmplmfqKvu7HPN+BEyikgKsfwk2GPtgzpOY2+myakQu4ixido3MCLCGEwOnprvTCriw2bQXzLHFnP8xWdI5JMnmyeAegVM6atxLfpTr7H0Z5yPbmR29FB2NkoS0o7i+2N8ELt2Oms5FivTxPby9UcaXl+8XM2d1nqFkX6ozlOJ3uc005Enp9jTbAGl8H43PuqMY75JBUv4891ecj+4cfHR9YCcQBDnpM9EJk2mfAskWoOPMvZw/Y1vy/lZgLI68t/p4nkpAMjrMsopkatZzRQv73QPTwEELzf3L5zzkeJ/K7T3m6n90SXJmsz5POI4fRH59z5u5/QU+IeZ9qXmQRRSB6ayVOQazLSWeE2J+j/Mqmj0BhHcOOYUMH/uVopHc7+Rso862l3mf+fITZGE/ZYZs/lz+Nz+Xo+6P9edPX9f4njzeO6+/x+thnE7VIPIVzrnOdvhcseJZj3PRbRdWXgk/LrMKEjgERHolyOCk3Z9SKFg2NdbJI+jzA1v/BGo8fI6lh6M/+O69v+/zPLb5PsHi+MEek67fBqDAjhRMZ5MvwxxBYG5arVgOPpHqiIZ7nv3mYlo03oEwDIfn65XtMJAQ8NzNA+N58RrfgijLxTniUaOxmDAca8+jD0eNXEW/ikWNhjlNo0nkyAboUcVyh2iE8b3Ucz25ZvwQHpdqUcmL5fJPCjcA5p5ybngOe9m9zjgjt91yvcvm0YzsxO4D9W5ofRVAuinpm8CTfZQl/DLtMgwwwAwfj3LpUi3KLPN34v2//eEJZetY/v52Li2k3ZgVSRdDhrED+kXQXs1hpa7E/tmYIu3tMPbE3XO4BTien9Av5vUG0AAYHfHwCICDP+NqDsbTn7eg3vbnZroJTIV8NSO53iw9Yn9JeccRCbCDOCLlx4B0qxE9fv+M/fMSIEH0fRzas584z8tm0fzxVFEOoG6H02015nRsB49GEy8a2YLQX1CBR90Hti81VXsAjqcM3DlrwqNE/akZ4L4U/9t0I8rNov9W8m3OKa3A/ixou7ManJHBGvTUM7j8o0OblZkr27CoI19rqQEAoFbIZcV4vqJ/ueB4MdV7zp966xH51VawLq7PIGmd7ebQ7p8bZADrzwfaG1kqvleoAQX1NoXeiOpadNDKi0aKyD5m7XpxHRjSkgdOuiuRonOxz9TN6p9HeTt3vrQaa0q6on82jRbZDsjBEnfOLhkKlkWzcba2Srd85oJuEdW3G/D5BawzLkc3tse6WLSKP9uS8SkzN3g8ryj/OKDfXyF4toPnzasoXD9NB2jb58HdquX8AjNqu+3TaaFxRKfksrrzdp9G61ADY+5eueR293xPvLvCsXp7C4NLAHvW0qCXZmydVqLiAnN2gz0CWJR5gzsTNdY1CgGgEQuWaVN18/3h+35ybAFMByob3KT2h6NEZ0fnvK8lrSeFlgSGDM+trcZCkaFozgywqgIKVNPqMY0CY7P11XRB6tus5qFrw2jFGF59QLYRLKpw8oo9d7n7mRJ79ExlIgOs7A58luLA/oHjyxXjUr10LQUS7U+/FD8nG3IKWL0NSBNz/A+dUf9Hu1ME47pGP8Ed/PG0BJhejgH88mosLq960i/VwcJhpbiT4xVCkAIDC3JaUXLgpStAxf13hjqZlmbs6fPF2GtvuwXhrqalM/oE86m/I4d/j476fQ9jT1SmEyuIvcOcOvtbl4LRKiBmF0jvJg6cU2DIKNgPSyVz+nrk6YuYQa2HaY5Ebu10WlhlBgW+f6Q8cDKZDuo+tHeAngCIMph7t9Kunu5FgUx035uYAtWHgUKXOlk63C+CSeV7CvvyBAjQGZtrT68rdG1zH6atw+pMGYShU0YB3d36JOYAHZ8+wmGMCl+1WLUP0QAkoqIBn0Oxusf9Q9KeQjDB92lp1YCfD6LOfMczqGKaDNEnSGP7kTPpTkleIwZmkRmX+lb5Hn5r6gLVpC2QmAfK7w+FoWV1ggWP4ow5Ck6th+LVGY5jMhmcun9KGfA5S5bKycHM/ZD7m89/BLnz5yMq7M7osqSod2q/j9PJCX2MnA+FXO3MjOh0xQlUADCBhNDbYO79jHoLHfvs5It4mU53EKOqgqmfR2SawEve03g+5hSD3q0fW2JycA7zO8cEOgJMAmbf+jrXRw0Qfp/vqbTh2/l+POs/Yi94O5VzLoM1eS8AfE7WyRxw8BboCfjguw8P7idw6N3+7zoPWcOCDIgQ4CRjY2pOhH5IBovUqztkVikBCeDMZOB30+cF4sHgGmOgvU98oJBxwtcb8zmA95meQdgfXL8NQMGN4vJmwoTHH15QbkdEFQBAvfwTVM2pb8VKk4mY4+bRfQnqDBACTaSiHQqs9vNx9ZJ6N4qJrRAF6u2IEn39UlD3EWWSWM5K+wQq5O4CfeqOlEc4ATM4isKN/RKO73o/3GhIojcs6aMKXFYcP13B/NWydTd+JkMhK2H3lxUUTjTnB+jX5s50yqcUmxR0bM2BsXfp12Y0aS+tV++2oUTpvSrhmDFSfTp6hO8p8XkasxRtImsCIhjPa7w/BYmaC0/2TxfUrWD9xrKRwPp9oH23dg/XiLDv+s8u56k8y3Kq090xWSakqLHNgDmVrVhZQo+e19vsY+kGZrDygRw2D3mNtZzud1wr6n2g3C/YPzWM1bUmFOG0lt3KX/aLOb6jVUt56cD+eXXDukfUyR5k0TAaYlgkInSyH6YWnzd9MXoxWHJMEZR5GYp2B0abTBAZVhav3dhvGhF9iDEatMIYIIfNxd4E/eppFR3OFADWr93TUKgQDs9BNWdc4EZwt/J00hXjieWEEMaKeLlU0sYhNj/LoVYir7mDLcaakWNg/brjeGqzDJ4DIyybGuJyYgCb0agH1p9dTLU5w2apYayXe3eRdVvvyy+bMwAIZhnDKhtlrNwQNN7QTpkOEsHP0HUZbswuCNBuaiqY8Vqd6qxXT7EZiEN9uHZCefO0oi+fplAYbC7J09XeY9DxmdRa2azkpcBogMXLk6kUcxqqGXuiaswFAia1QK4XO3S8fKQtHhqBLqJGtoQDHFANw/oUVaARUA4zMq+XKPkIEeh1dbChA03j/YVGBJXO+fOhJgLrbI9IT1IK9dWYawS5NbRm6EjN8quRilYNNCoOPOS90fbNObb17gZKAcZSp2M7pmjleLJIfn9ZThF7Y9AMkLEw1oL9pcYaWxSobwaIMrIow1LZxloxjrOwawAanaV1xcBy/25/bgZmszzjMFYTge2sEDaaOAOMOSWXANsgtvZKtS9Y+WN3pO8Gvh1PfvacdB9gIOBigEfMIxfgY+oDwZX+ZGd6VH0BzLmuAvn9p/nafESBjU0BFOKix9PxEoK3pQRQ8c7IltkJGUCL/h10dgeAI2i/9fs+DT5nElVnhzDlE4ut1XH19EyxeQchwxLQxd51LJaqx32B7ymZbh1zeUwhVQBRJszvq6Rfl3rel54v0DFQfnmb96RtMVzc1A3yKDHroALE71sqWI1KXFtFDyB0GXx8bc8EcG2ncrdkMOVKOo8sDXt3mY5wcgj0uc3xEBdsfmQm+NhmnY8TmMCxB2YZQ6ZNqPoeUSZgycvTCpQORHpmgCGcNw6I2N714OwfHUpBce5VaznfU+e+x1SQSGMLRztFiNP9cyWNd/c8pqNjjqEkMIQg0pjr2Pf7qd3iAJsqxPtIGbl/1CsYOgU66TjS7mG7RKwEIZ1aIBwqfUQfk4MU4pPhfJXzWGWHmX3T2skRjr7Ljqh/dwIC50h19HPB3IjITpAHZoaXzIzI+UeChaykwXbwq4enVbimgrjw4iminvoZRQ10zPcVzHd/AF9OTJPMHqHjHH3uoEV6rhZMQUXAgaZfAW0INgATKGHZ0Q+A3HjWKeVDzvM4MwF4FQGWdX4vUgqSI13SOHzEdsl9+xGQWYrPI303lhngUskBWQcuPBXkNNaPIMxjf/A9/gm7QOlP1vSuJ00Wf+Y7wbPz9ZsAFNQ3z3I70JcVx0tDAyLaIqroqWpCjhrBDfCIJNQSDpe6CqYoDJnzeylcf8AHOozJY0DuA4Lu9K42HV64E0/ggLTUHL2I3/tmeAwIxRz9I7J3yOus7x40Qf8+th0UhERXA0r2eZBRlIpgw2gF/cJa8ggVb0au6u2YUa3i9/TQlx0wBXr16PoyJ3R77bOyBDBpcF0tD7nAEd85wdgnVPwdazHnXIDihoFxxd2J2wDs7rzsh7EtimkqlG2gvSnGYiyF9jqsAoNvnmSPsI1jrTPy4WhxlBV0J670ROfFBBRkuOHaCvq1BEBUXDfCOtT6S3w8tEnQ9gFYHnWB6w8YSGAVJyr61ZyOkjcmv7/pVbjwXgWkW3FRpiKs3/epgZE2REn9Har8991pueq5pPacDHSIIlIdZo16+//+SazU5jBNAxoGZuQCqGpijkLmg6+nhhC1FIFR/12TYzotNpfJjim7IkckGRUalxaRPdu7fG4wIkbWzDEgXTC+WI5rOYr3qaucOxjZnTHCqI7ogOa0IhETL/xuzn57PULrwt4dEYVt33fgGBjPCwCvOMNIX3Hjh+th+Bg8eYpAAeDpHlFSi5evzUGauY8pQbwcEZv0YnO0xmpArIwxHdyloh4D8MoNuCwTvPRB0ksSN4sD2B2J2zaNY0xadOT/eUqB1jprqmemwd3zkrk3tgaWqdRWZ752lTBy5YP81HfG9GWdhp84qLsfZ7o5P+v1velMTCaURsTJ5rCXbVwqxnWxaPU2+yVyrzHTZYKi6GwzdcHU6fQl44XRuvZwXvi9xuJA40ipFldLw+qXcgYUBNAdBjZcCvpFsD8X1M0qqrRXa0+/NgeFLRJSXRBR9FzeOLpMAdk6xlIxag07l8CqUoS/2752XG0/YBqTgZTiLCdb32MV1LeB9jrT+3huEVSJlDlVAFcL4FzckPV9oRwDx6WiP6Wce60otQQoX7qaY726hhEQ63Dw/P20OIMiRTmRwAWRCcJkw7MUjAqrQpLzTdNYM5+cWiY6ajjulk7p77tPY7vc9vM8cRA1om+8ZzHWU07FIGtwGuhi1Y7gDnq2L+kkalrr+zGj/sD7KDifQ60HYtkuiCiv93OaQY6+dUdv9wKMOlMfuA4dYLM162u/p7aE81Yi3VP6QLvtUBhbQQ5MR8DHKP6dnXgRZBqziqU42prawWorsQ6SgKf1C+K+0X8OdAeDojjqvR/BWNSLp1fxu2QqHN1to6zaLuFwiJqYavQB91SeH773Cd+1M/qs70GH/Zhzs1UA1ZzMNGZ38PJ2AAAgAElEQVQBQsd4l/P+8AiIsJ0+9qwWEu/iOeXG+GrTRtQyx6g/5P97X5yc/wDkGFX44DoBHj5/Xdsj2vqjS7w9Zb57CA6n71JrQKXY2U5qvuoET/zzmpx9c2idbUGb77G9mWaXo+fZmVNNjiSmg/lYieGjPmGkW4ezQxIz4tER5jOy04wEJnwU/X98pwwqRIT7A4ebz7IHPPyOa4L/9YCx+xPWthL27nmtlgmYcD+pxcAU2s5prZ2Ah/zODLw4aDGBtf6+v/P1bq0MZIDnBGaV4gdc2vsf++LUt8XmE9I9Oa8emSTj/Tu9u07MjId34r58+r+/n7gx/Ctr6zcBKMRCoYiNR4Aix4wXN8ExSwyOViAs9zQUMroBBwXA4fTsVlBGgYii/nK3SOLyAUrs4lH7H55D8NB49SbuJG93SDWHL8R8AEiZhkpE8hWhO1A8Kibfbw8HeTJQjiMmuNw31K9bRDRzzjXRMgNJBko21mhgcJMXGAV/Hyj7NJ6s6kHBWFbPOe8WwaZas8Ki7+6gaDPhsbINc7g8Wkb1URmG9O+/v4SRbHXLERF5ea4oRzH1bzFnXPZuOeu1QMsC7L6o33Ysu5X8GpeK48kj9wUG+CjQCKDsBBSKMQgORbnb36SFZ0ZH2WxBbL9f0ddiOfQRlbS2lsOi34yk9WvzlVK8v6xcZ7+WqPJAej3FBo/nYnqhHt0vhwbNnxHyfp1pLHVHiBLKoRDXThhrDaNE1zaph6RsA3aQdwEWhV6WCY4dA+37jrFWbF8Wj2o6WHIYkEBApW6Ky8+IVAcA6CzXWQXtdaDeHCQoQPdo4nG1dWSiihpOq7FkasyHshurIzQZFo+033t83oQIzRGSQ4HdAKbx+Rrrv78s2F8aU9jw9T9Y6b4v/7dg+Qa0b171oVo0th2WRiRjoD+vYURwzRzPJsBa7sssdaVqxr/P//p2oL5u4QTDHZ2TICANum0/awXcC0z8Q8K5yEYshUsxZrqGrs32G1X0TxeLEI/F54E6uFLCEeQ+ZnoOh6X/iJheyeGU6VS2zQY3OfL7Ad13gCUjnZo5Kz4MoDaLctAovV5ODoi4QaG1GEX6Asgv343JsC7TWesDOO7uqA8HFxwsUjWWDTUPYOvX6NLWbhkKeb3NY8P7P6KtBLAohMSfERhm+2lkNMFoqzNFUi585LfqFN3l7Xysy96BuwFNKgilfVSxtAn/bjbaKbZpgGrH5W93Y7h070OxkoDjeUG/1mBEFU+rGE7F516lYuu13phmZftTOKQiViK3eaSezDrqSBBoPFL/atoHaOwPYHk90JeC8mLpC31lyoOzrHSmh5W7nvYRrWICqtwfqgsjO2DJ+VE32xuL9z9ZYGVTkCoe4+BG/nFt0yD0NverlZvknlPuxsbrT1YBalYpEOhWToGC/uJswp1rRCMNU9cFaMU0EHwPKc6ws5zu5GDRcExGGcE5OXrMIywN42I0/rFU9CcvafzaA1QJJpGn9ZHFUHCgFEH7vk+xwqEALBhSWFJWMHPa18UpxmMCebwyaM0yngROmF4qNgEtFaNMO2hZJlPo6QpNaU+cizyXAohNzzWBR7E96xhmw5ECfmnG0FxSAIilHrMjmR0gpvUsJfbTcvPyoQTvepnVk/ieLOVIuyAHfZzNEeCs/y4Alnw9OAlxJuS9in8cmBWtsY8SFMDzZZ49vO8xgtUg4vtnEbOh094l3dPoWok9N3Rq2D7vL2NvJuecdoeP37v5kqP13M8JoFAc00EHHVbyEK2Zs3scp31RkBx4Okp9mN3V2mTasO3bHro4AYZYo6wco6aUhiyyWpcJ1uR3yKKH8U4OBPE84pmkU49Asy3PMfX3nNH9H4Ac6YwLhy0HnUSAy+UMApC1gWLgE3CO1JMqn3UZ8hg5wHBOG/CfMx3C2RDKIHnOvfd7ZeE+Ouen2e59EyVBYSZFBMqTXzc1LrITrWcwJ49LLe5kJ+fW2SSn1J5azXlv7dyv+RnOXvhQs4N92xoiLQGYYyHu6OcSoyyBm5/F/nvow3fXO0Amjftj3wCI1InMgslpGKm9+rhmoxli6Q9q7LAQnczPIijFkpofBCV4/TYABV6BAtMpEd9k5wuEsZ5BlFYMqN77NMxUTLE05/NAI6IlupwpbXz+YFSW7cFEo4lQ8wB4pPoAFsnlv9XYEDzo5fagdMt0hzHmxqQ0HuzwFh9o6wfMCCif4UBCoOtEsYdH1IjwwW0bsffRAhe+UrS3Pm0ed8K1CljWz6IkAmgJwadgiHBfEInc274WUPXeIt4uLqlA9T6P7wMhGhKR5P0AuqDtHeN5PUcg+ThWRPB7RRlGuCGcUk9ieEWMZu/iT3mMT/cOWrq/V0H0B3Q+z3QYFCak9fgseBRLUYfNi7Hkh2A6B/7uWdysdLaRlH1XAV+KGQVRS0znoe3GSERNVC1y2uxkIJOgdLUoj4M+pdt7sZyia5VaaksAQzqNwSJGxy0JoOgaFUFoKI8GqFOkoQ5+eR/OvvYydT4XRrXc0gJjIChgxq8/fzQrCWntB/YXvhfQsuFARg2mIFswnHgNneNQi6ceYG7e/Ku7ob6KredsCH50cf1hxF4UL/0Deq6IONNhRlhDXVgEaAhGDt8FFOossHaRodN1AhOHG2aMLMHXHg2//B7x3hJGmgGMejbauM8A81CnUcTvJ3Q8HKd8qB08iEuK5PC7DmoMb3sYZgKVcTbI87MCmU9OPA3j9O88Tmxf7K0/GFOmuTzm2kcUuvyAOk0H0N/N9AcslavcYY4Oa9BHmoK3UwBSY0s3kE1rDQNf1Neys6aCVrz3acxWd2TYLO69QyGY0XW2m8Ar9yKOKzVIKoCxFYymlm4liP1P0pnMs2YsxdM13Ndkn9cSKXHhwPnZY397NxPwoHq3pL0ZmEzEiBr7me3vWdTGpxwj0kYopBr6Aw/XqMVYD+L7cV4jTOXzyHmkkGRgDT7WtBtOE4n2jeexi8T5R/C+r6bfU7cB7BP8lO57SilhGxgzIDnIA+nzI60RHxDg1C6t6XOc55LWUzKGZTy8TXYoi5zTkZo7e2Q45j3zI6M0AwHgu2FqZ7Buvdq+1i8VtVjlDtvfx8k2EsAY3y21uScx0jFtORlj7v3FjQq2wdO9YvhsEtjzHlkav3KdUgjYp/k7tCXT/YROlSqyMOxpXokHsQgElAd9gKEfB/nTnh/7fDi23Iemjalynif55zGe78b44Zl5r6YTetJJSDZwPpNyhDmfWfyTQDB+R/jdxyvfL+3lpzz08sG6DVssnWt00AGQjn5KBeCcTufOSSAS48fzRhUoNaLZ+gFjPYsMSr438KtOX1RoABDClgA+YkMEUJDvnaPaH7IQZirBO62KRz2Ih5//U9HMk41R4vnvUjmY5kDWJe/98FyOU7TwI19DJEApe85DW4fagUcheMB8z2jLBwuQ8zbNwVNaxEf9ymflZ0cjy/nfj2UnP3r+owjjsIIHpz2SwJS/34cMl3T9JgAF6SNKJckx0N66GQUeyWN3WKThsJz/VlywyCJ+NJIBzPI8rp0Q+cSJ8iWvt0kbf76YWGOxg7z9fLdoOA1GV40ef/oyRdccJS73HRR/FOZTe2rF8dM1aLEoxQWHigmLbbsZxkT3mX9ZCvT5ivG8oj81y8X33P2yWb8wj5L5lrPagoQQVX1NqLqDLFoKpMAialWMmQAA6joNLuKlbeos6FMJKj+AqAQAp1ZLii6V+wC0oC9mvFjk20T7+losGrguHlEz51C8hBiKoNwsWlC+vdrBse+ob0+Q7QnjYhoP/Xnx97PI+87oNefHMSA3pkYUSwl5NgG/fhGUzZTyLZ3BDTipaBEJG1HCcf+yhMMs3SJGYy24/ekJdbOIvbrgWTnMiH39b3wc1aJq7W0E2NHezHk+ru7giznzy6ulUtAIRsMsnVhsLLIALcd6On4CDIFQSI0RabFSo0zNkI5I+ziugv1JoA24/Gxr4ngplmJyEVz/rlh/OVA8klZ2M/SPl4btp4af/7uK9gpc/jGwfre+sIgezKip4qKJ6b2KoDdzsJqXGDU1egfcekPZK/bPDftSsX61vj+eKqiFodXGkKkr0m090JnRMPQntXmW65JwPKAaazOoxUvBTiaHMyjKpjbnikSlDaHxui7nPacUYHmyQ/RtQwCP1RTe+5cL9s8L1p83lLfdSmECFs3vGukDlotuznT7+2vsZfE+pZih7o7ycOHaXF2Dc6Qw+gY75GQ/rM94DYU+X41VgOQwe4pDpjbL0aGfngyoeNuC3YDhmgqjnZ0vHk7H3GdAY4aHPQ9b7s1jANWEIOW+B40YIhhfnuy23+p0drgc+jDnOZxy//1+2D77erdoKUEW1ThzcHQTn7waMwT7YWMrEuNdyrCo4N4j/eRUNg2IEn62QYk5Piwtuvs7rAUE4CCIaKut2x7jK0Ox/GIit4OR9r0DV69qch8o94HlqwGoofvztKD9/Oa6EtV1ARZoLSjFWW59ihZLFVBwlMZ+fT3QFC5MKBad554zjElVumL5LgY6iuD6ahH9+nqgPzXcf29OX18F13901Lfh9yuovQdAWaRgFA3Gw/Fka/753/aouGKMMZzS62LMi6WT2Q8Q+hVMY4uqE8dwv8oYPHLvoQ3A6LT4PlqPEVoMZC3qujgYU+LZrA4VAntkKXoZvdJ7aBWoG3B6WWMtZYCt3F2MWQG52vpgpQvOZykS4FBRdzI4R71k37gsQNcQt82itnpxh7Ur4JWLoN4HXKMUD2SpS1aCSGyiWMturIdNcxJbdeDm9R6OZMz1h0hcaMhUgoYPzrYI+qfFUzCMLbk/F7T7QLkrrn95g9yO0IKR/QhgREY9OaJy26y9TJ9jhFImyylKVWbwY98t4vr5xfQLjhSNJ4BCp7ykVIPkXMX+l/VsAEgXQ9uKBBhq6aUGNJZvN2N7PPncyevR26DSp8NeppA5+1m2EX0wS4hnR09mUOSh780mqR8AAP7sBydMXTwz9mDO925RcCWYTPslwLqUfsJzggyEpBN1AhGGAv2wNLUH1oD4mXb6vLhTdOxxbtlZ0qfj1WxusD3qekJyF0S6n7MpgslWAYxEr390IkVc1wBnh4zzXhW2oB+Y09xvnNmhfQYfT+X9dM6XGVH2d+FYEZh7B3oLMAr0OCCi1oZB8UbqmhSEFgNtzwzgBNtiTIDjYT5JmmMnTQMAMwWgzjF5AB9OwIS/u4jYeGS2U9YoeXTaU78H84SfGcPTguhPGUgUopMEHg5nq/n+qKoQli9dYMyImtqQ2TW9m9ZMnpP5qtXdO++rLc0VBk0zMBL78bD2SrEppIIszhiQiYu+BtBTBIJHYOEDAMLLl6rvsT+6fhOAQjj/3hzJaGGdm+ZJD8I3euEBScTZ7xcbxwkxHXPT5yTtZhREFJPGPKOByTgea40DlRoppKJNVeIZ0RAiOwBY4QG1htNDow+jzHw5V0SOCDhzxgUTSaYxWj3/VqfDhtw+GOgRfcJrWIRbisQzc545DsxIraqhstl4Vg12ADzKAkao+LpuDNJ5IWNhtGKif6/dDew69ShcpIlIveoc35OwZJ4GboQVN0pGK6iJ+REaCtXfg/2mNof6paDABRYZqeScLFNrAFCnbQKjAfVu4EN/Mqe5bm7QrzQA55+g6iog0GTs6PysWn+F8BYw/+Z/uX+TKRBzOPUJDSAacTKdLIopEszg35wrQXV2xoKNlxtdh9gUEubW2vctao4AE6aAnfU5/Ht02jleUNh6LTYHwDSagnAu6q04Ddn7hGUhuwFUMoB2s3ayzTa/PZpXvb1rC5qwqkBXj/DBPieCucF727jmOA4nEdJHFJtrw9cBRmI0+T4k6DM/lfvPAw0v1nA6qBlhyqAhqk4aqs51EcxKNlx15ic/Ri8eHYPmqHjnu2bEW2Z7073P6PrcX+MZkQubflaQkPg0wfO+PLh2H+55PBxkj9Gf3D5M411bPTNDcv/SKOb/HeQIACco+mKsIDpxp/tw7waoMxPVEOhcCPcFW+dlHwFQMbVGKvsFMYchMGfaI/cWvZZgA/E+FNg9jU23tChjXwxA5/6m2XkLxhm8rXaP2Ivy3PE9WXbfbxeJ+WnMLtdrsMcZS8nbMKqlHY4xtQFoYL5jeFWxilqPFE2uTUU4bkhDTrZOTAGP1s9+QUT3I/o2YJHpoVM7zc+HYCR6hNi+5/fmflcFmiixWitEhmum5JdSn4dyAtmkD2hxJkUZqNvAGDNdI/548yOYEE7HeW0GqPfgMM4+5LmajMO41wfrW8Qp7BIODvPnw0F2fReCAvYZhRzvjeap5yNznvGZbD/b2u0+wUT0s0eLnWXSMDVjegkHj+y00DQhQO/9Qjo+x/lUwYB/p3ZFXvwYbszMiL7W4mmHIyKTkeLB/ns8M9K42NpnEKzGM6PUMG1X2pbJGX/XXjqy5WG/f9jzTu/Knz84ibEms8bGu8E8szkBnIJ7P7w+iFS/K3OY2b+ns2bMv8nqOFHeB/BRvnt27mLa0yaR2Hffv2PS4xkJQIm/Bz6mgeR7eLvy93gO85wHMCMjtvefWNDA2WbguRfv/dD2zBL8yCnnRfs9AKmPx/kd5YTjksGE020NLPrhs/MaS3PXbEWcxuIdAHF6zwL8SHQw93X+/K84xfN7AyeA54P+hNiZ9k5QNO870QafOxwvDusP3kt8b/gh2+TD9ZhYE/G5cv49Wc8fXUXwQwbCr7BeeP0mAIXRCvY/PqOw9JvngIYQjcgse+cq78Up7yoCedsNsXcmwCieE0m1ZGCWRuMiXFz8rXfI9zfU1xvGTy8YT4tVfjiG5WmVgvF8wbg29GszPQSPYGAA49MaRhmAUy5eedtnJEvEchfXhv68mHDdtlt0sM0Ne5aAk9A3qF6Kq18rZADr396MpXFJAlrPS3J+Abh6eH3d7B2Seqf1pVknugj2l2asgTd7t7J39BdjDtT7NBT7tWH/XEyRfx9pjOyR2fBpbwP1zRzuvho7oC+C++8El58VT/9q+gj7p3V+v1sUaXx5NirwUHcGBLIdqNtE5nX1PDmvllDvVkqyXxuWrx1l62jfNshhkQtdKsq1RQm14shfXz3H3/PyxWnwoVKsniZQ4KkIZiy37x3rX19x+/efMK6Cy18tmirHAtKAwxhVc1TNIEJQrClMOJqg3tS0FfKzAadhuhG9W7S5/PJmUVTA8xPH+cCnI5XeQav1//ZJUDer5FB2O78sF1qxvNq7EdA7ngv2J2MtrN+MpVBvZvBe/yJY3hTrLwPL9wP17bDqK1VQxoAOiWiGqFVjOJ5KsG1ohBxPFcdLxf2nivY2sLwO3H5fcFwFQEMl5XezSKVsBv6V5xV9L/jyn8wgqHe1e+829nLfrRzYIti/WAWX9S/foUvF/nkx5szWUV8HWh+xBtevu6vatxjvACpUA2yMQ8IFRbVW6JUieh4p68YKQu+Q1x11KC5R5rZYFQf4vzEM1Q6Hlp8x0Sp5vSPSFqqXeHIjvny/hwMJESs95awkuW02VxhdpNEf+ggPxkkVV3O3vUwfQVmP+Afo65Ej7G8A6rxvFRO/HDrFy0ox0dmjW/So1QmuMYWsD8h9Q1GdDC6PUtU//z2eyZKWsu3A7e6aDmU+X9WjesaoGEtFfd2MgeCpJePLk0WHh0YJ2/G0ANcWVWPq1zu0FeyfFkvrudfT/s9rLAXbT6vpoHzbMJ4aOnUu6NQOWz8BYPv7jp+ebT937ZuovsNqBs68UgFuf7So//JdUTfF8h1o9/4QkXaqLM+7Y1K9dSnQ6xIAAmCOPgUgA7hVROnEqpighacXmljyQNntPoPgyWK6D5d/7IAsLjppc4uVcPBkWincD+rN0zagzpbyPb4osMPTJpwllearFhMMHJVpXC5USoFYdaBzjHBIqT8y0E4gAc8vBVyDaEyAm2tUnOGhYoyVYWfgeFpm+oSDMuXe0TZD5hldPe3R4SQOoLqj+F+Ze7smSZIcOVABM/eIyKrqnpldLoUUCu9E7v//Iz6TIrucme76yIwIdzPcA6Awc8+sGd7LSbtId1VlRrib2yegUCjCEVv/2sZajHWI2FbkZUFfK0w9vcA1EhT902WkSWnkr8f78ZJn5PvvsS88nsPuuF3AsowAbafYw1jycRnRzRQK5r2D9cIAQQpT0/7Zed/QBUq2zOQIdaRgpIWIq+u5FKBViLjgpD4M694TSOqXEPqVYJvckewpiX2gv1xcC2urx7597kM4U/3gnkUQZW8h6B0R7NYhEutKXUDayqTpQDZH67BPV8e4OM68ZoB3AgIOLIR9clzJYuX+SG0FjTXHvlJBX2vamwkshe076yyA+yvvwxKgbGudIrdCtm9EdNkXjCrPGhZFITYBI/xzTumiZhZwdFLWelwjKqDYZzJoZq0xCiXufUR900nH6N/WUhjYWM50Su8QIKLToe1g/X2KQWvHzFgyGprPm4xip8M4AQEWrIkpdcZ/HFHiUpDU8rgflfmNwYlZBPJAv7fRlg+rDoQ/0oDURWD/MsAaekMJihKsFBlsgX0/BgMA/11UW3hXJYPPCFbKYO3UY9vn5/F7y+Lrdpv6q5Rha7Dt/8zB5Th8JAIZY5KA35lRQoe/NWBdD+KyfO/UL1iX7K+cbxzXWYeKv5sDSznW47mGPu7HihDvUhxkgBh5Pkz35ufPjJSGw73mVJ/UqmDKxEf9+0+AmD8EoJAXnanum73/14fTSsQGbuCYCnDxmrUIAajMqYy8yaQiFwV2GfdYqkcFThQuhHEpAOQ1BGl63OvZMqcy69PPpVpUXFhofqUZqY6JlYaKMKe25OdmWrs0QzHLKBkdXgvauOfNItMcaBACPPBPC+WEdvlB747s/D0olfGRjl+/RBWD56D1SVJvfLzKtgNwsULPhwakMXqvfj+bNg4DtBm6SIy9O6/KA2ytA1zhwc8+6h2yO3WeDBUHQ8Io52tyY4wDVnd4Gbzo7+W1Zzu8A6a+iaaWp+sD0GjWLRzNEBW0MqWCxNXroOMTSPBoP8Day1l+ToB+8UNYgmmTFS1iXC2qleTomY1Df95kSUONTbJdo+xbnP8+T11zoK0YCu5dsH7zsS1PL2dJQx2Rn8+IKKBYf9jBwE8HRZBsDH06Pbwzh5u/0wGaWOg70InoVbxk5Y6MRvo7mkc4L84w6GFM+PNdy0GapCYDKHJWNQE5FzS0LNOXB8A5Ur47aEJ2R653zkuKdbFsmbohqw855mUHsIMmQPHP6n0fAGIENuYI9kxRRkc4cOaH1rYD+zPohD6JBDjmlaoOargE+8hKGlIHKiwwqIOka88gYQMO6tfsnxlk4LO1ALUeqL8iAoM5jVA999tooE9iTWmUisCukXpBgKF3kAVlrDXO9LAUxIqI4Zl+m+PWoJNxPCKow+709TP6La9wPFi+dc5nP/cJBVW9P7szpRLUs5GKwzMhwPJ5zzcRYCk57xgpbJcAVZ4ARV493cUdZFvKKG2Ybddk0DG62aumlgB1dBIAJZsr9v79UnwfMwxRNJ4rgEfQWwd2QM9zZAfKW8fKM6PZSKMTQTcFri4y2T/JAbjLdIgUpGzQJsnay4pGsVeWg6CSn5NnxoPf1w1Z6ljwyrlhAajaWOt+z6nCBH+WWibjnTnWXuK5D2DHbDipgK+n6+rO4XOq9pA5/uFAzuAD2/qMyC5ZfQQoS6zbLG862sWzI5/NNTs7PWemQtFhBE/jmn25T3timdLBIn3nUDpVBFIH0Ceh+zAzSrnviJUAWRx0GMJ+ZNHQVoivdiRjT1pLJhej/qnlwHfkmdowxBh9EgwH06KEHjutRJvmeTbZomNw4j6019LQ/8AwP+3DR3YVRiCKe3o+Q97nPk/3nEve+o2m8zlsyQyszVFS7rOTo53tPINg2Uib7nPqCzu+s9XiqR0l2jenDfDifEx7xu+fJYqB8Z08d6c5yrMrndk2OY6RziLHfj7MaVVgWcYZ0qfxP3TzdE6G/Z+RZz5jHjOJeUv7m/oFM5MiqercV2Iuzk6qnfQx5ivSFn7KLgidoiy7OI8vI/YffJf6AcYNdWYFnoIRx/fVsZZMj2PE+8r0PvMcO93v3e+B4x5mJ4f7o/Kac9uAAHFsONz8jwCEch0MUOgwb4Sf0cM+nekoRaf1EQAj2z63LebGQSRzbmd+fpqDfZpb8xgQeJj3mzL1R3f713/o4EMKUoaWhs9dv4cFOJ3MFZYo/aOnPHhUpo8NuigEEyUUgN0ih04loyX9ZUW/MtePgwVX0DZA7hvsyxXtWiFvxY36cLj6bYn7T1BkB6R1Ly1UFfp3Og4LYJvT6qKcUQppXZdMy7ClYJ9KPOkz2lUE1sIY3b1+dkbQigsXZZ3dsKtYGo9iUhDx+wGh/I/Uk+gXCqwMo22vvoF0ak00MjhoeCAoxQ3Ls2U9ZlsUXV1fwVXHAVsUz18r9GFYvu8ZMaKTxkoG5e+vkJdLRqI6tRiecB2Fi+L+Z3duKY7lKv8FvUTlhyqw7toH2+eCcu+orxHtCWVfCXCIuhIEHcrdDVONyCiNQKYzmAjKfXenbqHyuNcDt6LDeY15xGv5tkO6l4YEgHrvobreUX44M+H+LytMvbwlUx+YPkAByP0WTjpLe06r73nTdKbL03D99+dw8pbideSrep4v4PP2sh7olh7ZKZljb1WxffGyivXNq3Fo8+f21XUU+gL0FZAdASggtAq83eVpqN2ymkV99fzUpHsKnWBN4MC1IXxs+6KZq0yhR8CBA0RKiYmgBD24L4LLbx652j47iMVSl7hoiJYJ6j0qeXS/5/OTYjW4psq1Yr+tOQ/X30JJv3dgl6hUEalEKoGJ8VDwdVFed9fsuPo812dzZXcA+v3hyHyonNu6ANsOvT/Rv9wyT9jEYGvNfFv07hUKgpVE4TFb2WlxeC8jcp9Gigr0IZAfb75rkwJ7orOauDFpGvvUungK1cSCQu+Zc21LgdHD6/sAACAASURBVNw3yJtrDEgtMB4cefhOTvFjS+cfgJd9FYFcVo/WXdY0Ft0Y6rDHE5m/2VocVP5uQzzQIxD2+ebPeL17RYx9H6BDlKpkebIUZ4wKEZ7vTSNQp7zdegBZfBDfG8CHVLgEyryOff16DydCwXLGMzAkj4b6aCOy+bZDmp9RXC/So/+4prWEg05AOKoysBLB3lOvoV0KrADLtzivBJ5PflOgV8geefPMlQa8NGhEMQUAokxtuxawlOzzF08dWr+NigKyu3Hy/C+rl4g0X/+M/JtKMI0E+tiGwGGkBfq7dqy/dyzfNQGI+u2R/dZuC/aXNbVcLt8c2Cb9uGzeDn0SWALa5xX9psAOT1faHOSxDSnySPZTu2i+o0yIjXRDvxRnj3Tv827OOqnfn2mY2uqaPeBZG0BQL56uqG+br9NaxzqOuaX3zQHjZUrpCK0BfXqli371OXkAM6hJQocvHZEAnoqf5eVNgmWi0LuzDPqNUUY9nF2c6zQWxfpg/nDf4FpSdUCPbIwT5TzTroAUK7RaIEsdBn5VAGUEOQC3yZbqQOzWoKccYk8N0gHWkBXBtJzF7+cCwc4onFMRNWyq1K2JdW7rklU5DmmsfKdt93dYl2BLed+xVLlZ7BPr4ntq0IU5Fr72DaKkaB8dydQ6yB9wr5v6lV0697UIUBkdnqK3fK8Aow4pZQy0xTxNMdv58RxzRspj74LG3NubAzBnZxi0FXtWo+A4zZ9JJy320qStRxQ3gYGdeeRjrwIAK32w2fheEdG1vg/ggg4TmQfA0Ynk3k1WQ28+dvsOwXXQ0M/OUeiHkLlsIbzJqPqhv0sZgIwd/QhjFYV0ID1AaQQNQo8g3+VY53UCtjUZIQeNgDK9p03jPOk+YN/H72kzz87z3M8zqHAGhzj+ZGAw5em5vQOD3glSMliBCQgioBHvLvs+2sG0lbynDQDt4PD7vEj2xGkeoep74CjfU47vNAflCHShH4MoOTbj/UwBaB0ADdse1UIMNfQWol9nZkKCOREUyzkcDKt53vDvM6jFZ3HOncCEAxCQry4DlO0EAaP/JvaE8Vl9mtNLHWNw2tLO1x8CUAAwGa3vfyVmXtPcFBYOe0b5DT6g1VI0y6nuvvnLffdIEeCRrURn4R1EYTWmAwR1Ugx+qAHeuYXGHyMlwWKIaATg7ehVnYa4dzcaLuKCV6HGDvUIkQtDjcNf39zQbF8uA1gJgygdtzxwafxyEXBjQyDM0ZWKAFw8RaRXj1axTGLPzaen85mI/9Y8NaKqB0De+qg7Ho53X4uX9wrhS9l26F2w/l1x/7cr3v6lpuDg87OiV3hqBY1+HUYYEADEDtSvD0iUZaRWQ/t0ga41hdTSeHx7uiNyraH/EG3hZt+B8ubCmQo4DTwVvgXMH7Y6ImApyP/ont5h3pdW4ZGNBhdj/HQJ0TP2t2B/ccCEIo1tGQZQC42gsvGekg64hYOb+gK8GK2LSEWCHtPhnQdoLbDr4mBZGBa6G5rSADOs3zva6k55UYN0p0/LjtTAcL2BGKuILiY7JpxeB7g6yn2koTBdhOXm+uIORrtogBGWegidGgghdAlxQKUtglIk9BF65kjrZqjfXYhTN83Sks0A3Tw1p9z7IULBsp9oloYpNAyGcOBJRU8l/HB09dkGfXo+wFWGQXJy+iGSueQpOEYDjxH4pTpleVFo2xxMDSeD0aE58qVv+4g2NRdQzHlBka2ZnhoGm9gQJkXRYWzP+Y58TnznUC5oPsC3Mcb5rjzMg9ZnlwVZX53GrroRI5c1qasAPLWjVsi6jjaQYv3Y3OkOo1dmA/3zJ//LbFxlR4WBP+cOT5EDd5gknKbF5wHXTThn2fdBx04lfYt9phZgKcPYCMYL5lKMDQFsuIGusx4DgH5dxz3p5FSFIcBfA/TugEu7hHO+G+yGpP0zCt8XYLtp/NupkYVzLt6f1PR+UfRfLt5Vz+7zOvYbE2C/KkpUUFD03A9cC8HHffnuRirPt6xG0QERp2rqM/azogmKSJfct6wK9s8rWIrW125oQsSeQ7FWplK4hoTv2+UNRxDNQpByAVqR1DPS3feido3yiY8993rZDWVyAJjSR5FX778dapMRF/3Js76/rNm/LH9s8zzAdF7nc/qg+JsBRdD+/BLryUsayn07rqFw+BAsKLusI4UCDnzk3tbNBWMBkP10iPYCyd5CLc6SOL2fV1OI7zUZ79z6cKKpScK1OQMgoTFgi6KLs2fYnhL7ohnC+R7tc1aA7xm2LrFXI4Uvde/ocPvFhZU9fUg3T5ElY5SpGrPzgzZFZGmrRTpH7mkEBvrE4urRb7FvUt8p+yHugx3QO3I+5jzYmLrCiPTsLPVDJDFLQFL7J57PUrI5dgpYqQ5qbkcnNgNF6WDEfzXA2scTWS0lxvug2cOfsZ/4uxOg8eHf490TzDALW6mndtg7NoAIrEy2d47FB95cvPtBOFHHe6TDjMnZZXRZSzqd9ngO4US2GUDqdRlB7w70GL/9gwjyTC3/KKo8n5O86nS+MipdBDZT1PbprD1f6cAHWFfUvzunDoTjb3MbZ1YLx4ht4/hOdiQIBn3g3AvBQBWI1GGLAkOIMN9lOMcsdTn6hDbUGf2cLjIqaN+wHWThiDMgP7zOtgqBvENAYQqy8Dt1pAzlRfsoA97lyAQEhoM/VSqxBohMHjiZBvPc6TpSJFSP/dFDBFGDeTRrmZghUxOENqr3aY5DAmwBFHwEYKmEozh+xjQcIyghfK4e184H1x8GUEhxJYXTKxuOE5p5oEugJ70PJLl4p+jWwqF85Ndk2yGPZxzEJai00+FKhe02Jp808cNkqQPNAdLgdNVbhe0I0TM3Imwp3u9RCqx9WtBJG+X9y6jEoB1Iuu796ff+5TomTYx1GmPlOJCp1m4GUh2zVKU5GNGqem5hN6fGamh6hnAY4N3eF8X2SZ1ubnKg56oZ6v39wu+LAyuVOdWtQd46dG/o//WG+1+c7l42w/1f3ai8/N2yYsThXaK9ZoC+PsPIW0GmQb9VtFvF+tyjfJovAn1E7nAY30AfjIzqKMtZLd6NpQqoDeE0ZfRDk9KcTuulDHTPDNqdOoyXKfKJASDoDqzfm4sLLhMTIJgcCRpwfDnG2Reci+xoN/BtgauyM4c+DKhDvefVtT5qGG8eLfS2625Y3hrkUwErL0gzrN8n0MAsHQ1Xjx+sl1wDAXDp1j3H/FqjjJoNIxDw1ITVnfJy7yiPjv2l+LwJw7C87ZBeEnTxEo6A7fCqIQGG6DNy09eCfqlQ5t8C/kyK3E2bXXk03zfigKCBzzFwhfc4YHWkHLm6u/cdGRRj0ltstD03fx+DmB+Rl5rq38xX7WFo1pKpGPrYgVCifyeqFIeGPrasFOEVYC6+Lh/PYbxRYZ2Of3e2Ch5P4HqByeI5072PPESZ3otGhh3bYAHsyGM7IPvshzQIQs+Az85oP5AIvkmDPV3PRWr1vM1zvWNG8DdXAp+NREjkeQPO8jgZAmnk04DpY3/LSBcKIOZngWCwbNbRjlTRj/lFTQB5e4zKD9F3WZ54znKjE/jcfAyo9B6gQr/W0AJhzm+8e0FWB6g/nujXir5UB/TiXXqVXJeyd+BS0C6AdIH04gDoFIHNfUGAdit4filYvzWvACQFTSXB0raGcOIeQItEukGkbcGA8sM1KObyx5lfTwdi3/1sZLWVZC94v/WqWbWlvu2wu6CqxFkiwfwa69rC4HbmVDvmfBoCLGrhKHOuIDWX9k81AxCcK9I8nSJTN6K6BmoYd9vu1PvJUZjBAqvqQIUhAZZkQHEOBjPk0FbOxRh3u7g2Bw2/5Tc4C3LSvhjzKuZW2DGj/8vIo5fBsnG2y8n4M9+fDQGMzYAb91JWvqBRnSCBTftoGWvOLKvTMJUvweQiaKrIsqa7omw0yvHOqQPBq6UMtoK1CAIYJDpRNx+/+u0Z1R2Cvssz/vF0522RYGOc9gcCDzi1oTurKs+JOa2pKIA69AomQIt09DyDw7nn2ZLjlQ63jVSrjBj20D/1deQCrydnVR046NfqgY42CVpy3MQBG9mR72lL9fX4PAEEs1DtfKkEAMzP2nBOPvrsTLtOUJv92yG7wK5y/A5LQQPvHNtMbZudvx6Ty9rRsZmBI0a+Z62CcNypyA/A01lqPYIErQ1mHseToKOI/47XgVFwsmVnCvz8XkDmqJ9p7QfK/ExXn/t8znu3wewTIFlQmWpRA/yik6jT3J9YFu/EJedrdnr5GZOj+56aTxwnneZ497NgHiORIyP88LyTQ8v+4TMOtscHgNN8kdXFCgytvdcS4OfOP6OOCF3jeR4QEJrbwz6lPXRIA3EtscN7iSTzxT8Xgp/jQ2PPjd976uk/AF4AfJjm0Q2pqyABXhAAs1N/lzLmAwGiQz/pWLfywXxh9/3jVv7/c2UU8uEo7f6yOH0dsWlOhm4a6pdlygWNTSOMvDR4pgVjF4+K4OpGYfvkViBLUUobSFIL+iCprUeky0txPf9yg5hHTbEzlBMUzTBS9enfr6SgVvUo0ubiUdvtmowIDWOZ7fU80HAeQwSsfosoCzemQlEecYqnCpbIg/coTxhkVdCCri3d0D57ZIIlzGhE1zd3HnWjoxB9vneU708XDgsmQHk0kB6ujz1Kaw7qTrl3rF89wq0N0S7g9rcGfVqClWMOeBeiG/rnK0zgBudpwe+/3sDojpQOvXiUU2LujLxXG6kwkQ4wU/20dzeEVz9smywOZCkgm4+RPL3fHUdQwAqoCZFVCqJ99bVDn4Lts2ZUsfTu1SD2gv0qePwJ6Cpob67LUO/Rv2bYXhT7xYGHXRT7Lxfoo6G8bln3nOUVASDpqRKHf9DXmSrjoJU6s+TRM1eaY17vLsoIAdavLSKekmOaKua7G/jb50ideHUDQszvtf/5Fsamp4SYCqr63ADc+KvwqKjPY811rbslYNAu3o9lswTK2rW4M7QSTLu541EF5U09MpmK4RhrDIA+du+DZY4muYHl7IMQrXx2dygu5XCQsWRtvfdwyJYcK1SFoR6NSn7vxVkr7mAgDUsDcsOnGrqtNSn1KaK4NZSvLiKaiukzRXbvCRR5h+mg9e7DAAIBj70NNF3VjW3V4Zxv7vTal5cBkLCcpcpwbmhc2nguJO7TzR1oArVRqQa3i7f126v3222wKzISw3djG59RPnim3rJk2NtjvAcP8jBWqOo+G7USFGQ3qCvk8XSAWRVSg55vCMAkqicE2OkMBRuHO9+dgBGQfa13HPRqxAz2cnFxYDpjW6TbxRpFaBtkNQhBnh3bn7yfXGTUjQ/dPOJG4E93Q3kYlh+G5bVj/bo7W2jvuQ8cdAK2jvrmrWbKXHl03P49ziaNKRPAnO4dt//Y/Ez5+shIsQMVkpFg6R14CuyXlzG2IlkiMssKiwDPBn3uuP5v34/atUKb709iGpotDshYFXRVoAK2+HilRsHbnmBF2gVx9hK80GdoXpifo/1a0s6QpgkwiAG4YIp8KkBhvACUhrhtjGPvKOIMvX4tgKzQSG1Kp5sgfpzXPcoxy14PDItyD3sh0hH7ZYGQffd6R4rkWeSS796H/erpLBlYmUHfAGIQAOmcEunv/d4hys/T+d2aA1LLFAmOtdc+hc7JFkw4ApkqCS67jkSUDhYX3+VzysQomNuRmgEET9geifHcWn5XtgZ5fQwNCmCkXfC9pr6T2EMILNi6HJ6djp9I7tvJLCKziUKO3AcAB3hiP8+2c11HX1oEKbBzX+qjfGaMH7YAoBiRNN4vnAIRoNAu7YcxA+BA39yfXPutB2ONB/IJDIn9MS8JgOAMNtDpuGCkkqUjKcfI59wOstKeMjm1dvzMRNNP555pA9xrI5XGAGQqAM/Gif3mgNbkjHUXIsxxPF9sU+uAkR0QzlOtyCjw/J78DDB5Xfgp6MJ05rOTfgAPpp9DBXIZ/oDN8/Pw+dj7RGAWWhEypROlgGYfAMLs0E997Pv61Eb6VMmAiPNnjqLPYMLUnuzXc3vjM54a0AYD4fQuYHoFARmyA+bnkvZPB7nW7L/ZjssWzLoPczvJOp3sKYhkIMDn+WSjcL7Mn+nRL70kmy/faRrjZH3MgBWrnQSY9a5/Z9ZHzKMsbckykdN48b1zzh36Pr4TY3kGVAbTXgAtXiJ0nju0h/4BtvGHABQo1ia706P6qtCmsE7xCBnihoYwWI6oVQpsdTvWPecjzBWCs8xjUvF8MweAFH6kUJy6toEAx8VBxwzwCCtr79Hgj7xXd+ybOxci6Lokkr5fnApeHt1VccmUMIuyVz7RM//VMCpdXP1lD0J4ASwkogwMg0oAm+iy6VzWcHBiY9DdnTxtLkiHMiK4svWMulCYMtXuOXenya/bqBoAM9Q7IM2rIySNluMiCEOPjmoYQLsN4ygu5sWLwRkedfTbQXgq2sVSP2gNtm256CQO7zSgzoskDIfsQ+O/6WxPm5KG4x0Gv7bJYTYkk8PLWsJTP1oYePzsCkiwGIBgRcCdDDodmYsfhtGImoXxlQ4NQI2AdLrVkgHgomcAK4Los6fw4yzEmevNMAlKcqHFz4obj9jNnYAqaF1jLnVny4SAHNtmhkFtrpIsEWC0CQBYEcPF4wTtqslukOlclOkQRJQ4FQOsxjvx7Cczpnd4tJrP7EDjvLIA4VjC1vvBqq9nM5+P4vLyx0MjjMi+qFcpYD/CozTnA7ZX9XP3acjawQQLFLC5njLfdX7eHJ0qk4DT/LukTcfBtTcv5zkb4VRwJwU/D99B8R79Nl0ZHXLwLQ3zoq5TE4rj8j0Mw1ojl3KKHJzbCoyDdDbyRRxsEDmmqU3OXv5JQ2BOTTmIIwYFcB3sNEOPUpk2+sWYlmDDcOL953bvDWLq5UjjM6bqrKm7gYKIhrlqAAaYkHPfjbq+xj4S61KijXPqEYHosqlTwAnYmTlZjedB3JdCjgBgoW3jYDpp2WHQhNPpmgL+ef391d95XYZRAcQ8HH3DvHtneykUAbxGGoKDn543q6jYXxDsvtB3AXLv9uj6tPfHmczUtXmPpxEndHLCmUczb2poNpDpJ9KhEuu5I4yHsDEAIBT7wbKDsxPGZ5PaT8AA8EpTDeMsMQOYVhfVhUTirKJzyXRF9l+sZTODbnUwKs/zm82mg7t3MKXS+jTfYywS6Cgy9tgPHAB3mo8RdIt0T65Hns98TdLyXSvI31d2iy22R/QcwdTUBJjOtOE5xcjSqB4pWvO7yhZMmW07UsnPa5OGO1O/ejBT6AwAA4g4O20irmWgSK0ree4eJI/fO3gnCRz7S8hh/XlEYpo7iHGq6sxD9J+zBeYxT5vpOGb5DuxPOjv8bu94t2/Nf091d3mvizDvwTxf/1E7f/az+b7/J44nkIBLOsfA8R3P35vnE9ttcdYDw/k6O/IAMv/czMFLYDyz4Xifd+38B33y0XVo2/Szwz1PQDvPuo/KYc63pk7FaU0kmDA5jQcWyGlcDlULyBhnu342Xv9fLtL9z68zz8cE1QLhk9Pajnfj+xzECuf78TPcR7kf8OJZMn9H5GM2xflzQLxD9AvthU4flPNVhx1B26XTiRnzMm0EsgROfW29I0EU/mqef9wjJNJBCACc97b8vA7wCBMYRQCH/UfNk39y/SEABVOgXRXlHoepAPu1QBbF8t2dtf0W5QXDsNJ7RCm2YTABwCHHuY3Okdc79KFeyqfWdAolHK72aR3z1WwsoMrowtBHqN921G9wgyBVhTUijLt7QmVUgJDXhx+g/MzeoUtBkdAzCMqmmKF8e6BfK/YvF6fd7y0iWuPQclFBRf+0gGrX9R73COeyXVxoavn6RL8U7Nfiiv57UMHNoItiv1X8+K8L6t08Uh3RjoOQI3xytYtT06UBYoL95vdcowyjXloeXPX7E5/ve4hRiQsa2ojI0GhmNKpdFMt/PCGto92ivOPqgEv9sSdgQoDFNQEGEAPAIxiMXkTut7QeQlee/zuXzbFa8Pp//TIEFDcv09luBY8/h/7Dbg5iKKAPr+7gwiaAwLJN+2c3LK5/28d8jI1q+QqUu+Hxq2BXwdt/DgHJzSPg9a3D3gQwF1ljaoULtC1wIa4tU2kYBQcwhEV7h/aOjjXFNQd1FWgEwMiu8IkOE8H2pebvXEgywDc6MWZYvjl6X4LtsH1ReFUFc8f34s8wBWTxzb/cG/pFsX8q0KcDVu3ioEBfHZhoi4MWKQQZAIKog0+eS67haLnGQlsFgELDMdI9HI9Ghzu2gsf+7vCRNqLFQiG52zI2zi36AECra4BuEeUIJLvSgbnWwa6KCBorgRDYeycUthQvGbgr2kuFNUH5/W0ynDxi1F/WIWy2T9HY7san1cvkWIQzsC7OqopSkfbcPNJfKzJNjP/mwS1yAOyEjlkLRs+6OHshykWC1ReeDjCyVrKxhOO2Z2qAktYPZFTBD1TxaBTgqQ+luDbEdJBTvDAjFHMfXtcoL/cAS7QdDGSVIdRIxtq2+3OuxQGAbfeqNNUpxKl7MQMYZsl285JrOu4LjDXIkp40KHavKmFknrAd8AohFN5EH1F1E2dZiQK6OjPHqjjYFIwgF7P1P2EOENRXBx32W4Euztop3+5AB/qfb74/wbdw2S3ncS8SoOroN300lO+PA5iSpXtFMvXGlhWwh5dLvV2S6dXXgv1TBava4I6o/OPzq129VON+HWCek/7cwRZYChBnmsWjTZpB0dTNmRGsqJQpDzpVYxDxNBKy+CZAqK+KFmC5NMPyNYCYOEuU1QuWON8fmwuO6mQnWFSfCFbJWN8yDLweKXU1dBuC3cLzUAwob3MevKBrGWlXzYCtZYUoWaqXwl1d4FBtsCpH3j8rv7jukFV1TSnaR7QJJ+c92y5DOwR0TOg0RwlUBhq8veGgV0+1cwe5O8Nptj0ZIY73SLA+97TJdgtHO+/3aIO+LQHsWjgPRQGrx9KEFACMdCl5jPScAxhTJADTCdTcG2DOYPJ5juMV3xeyG3WA+gdndu/BtozXos5Q7wEkhgPBs8gsWVgEdlPrIKMZBBMs9MTsCDSwbQwuAFkpJ8UYP8p/Jvga51W+x5xSMIG0yU6IdK/cb4GRCz7d28hEMzs4R+64T+cQAJBAyp8Dw/GjjXd2Jps7O4eKEQenT8efBWO+nctAlgJUgcyMhAN9ffr37ITxd6T3zxFlBnjIANk97YI0+KGwb0ALh43Mizivs0Th/NwAOJlfn23rvnYNGEHQqd8cGCzvKz0chACp7eAMmneVRuZ1PNlaqTN37v8Qusw2UqNgiTRNsihmXaS0A0YfeJvPCxIDcIy2ExTCvo95lLbdFs2zQynOfOY5aEA76COQkn/OaS0aTAWZlB3ICiALokXqTR9rPgU+LQJz8/hF298JUFI7QXSk8rAds4ZCpgrFPAgtC5sidwdh7Blsy36INu/jvPnZ9YcAFACAeeUe4R2TO0uqqR+aamGgKcBof0bRZ+OVxuFPLjoeB+ojYo/cehptHNSMqLfpIJwnGssi5QIHsE6Tlc5dXLp3GB13gxuZBxQOoG4JJrTJTq8ksalKR6gNS+g0CJSoWYAOs+iKtO41oxUeNS9IpkAebDoOrJlanuUpBWmsWRX0HhUlUoOhZ/SUBp0GC4WMEjreFMaSfZTrO5T+sqDCy+RAkVbIg4WGS/e+zK6K3B+ZFj4jFlYQwmXx0U2SIud9OfKLc/zYT8kOgTML5rNOBKLmiH74UPoEtAL2AliB6yrskkwRbcgo4hzBP4hvzhFjPocHlk6Ib8yHtmgKIea8nNp5EKCJcZXdnGoMyfml4uMtrcfZMvKVOat79XHT5pE6zqekHM5HeIwjVWfVDBbvmaBCj7lazAHeZRp3DfEqpkuWaMhHIOqkX5K58+mMI51iRHlMi/nfV81UDDXJue9zd6yJLC/JNc59ZeeBTwN8ct7T2QRIMaPBbKW8S/XJ0rPUU+AhwHfPZx/MpGOkYzY+aTjW6UCWWAcqENOP8w65fsj86R0sSZXPyUbbcPb7VDaJRoTZ+3sTDJ4jdimk24+GzWwEMMoQYA6dnXdRBgIF3WBoR3S/AynqOO/v7MdTFDHF1vDBdf4+fzY3JaPoNu37k9Ed+yo3QoIKAAb9f5/GnPtmONpZEjL2rsF+g5+twGDqAcA2vQmdEzMECnt8FxGfO2S3xNWr5DPzv2YQGvPTukkdGUEClzJHdsF5b3l+5T4skxYRo/PTO5Ke/p6dEmfkPBTie12WSp0ZQLPRHPaIBxI+GF/EvjCn/pCtwfTJjwKMNrHr8r2R0W/d9jGfcv6eQLQp1e/dvTcHB84ike9sGO7TamDVinnUM7ABHAEJrj3O58nZnXUIkkE5G/Fze9OxHZ+R+b1FDtFEq+VYFSBTAfT4jH+Uf8z3Pkcp+btzfwHIShqqIaRqzjKNs+QQkDp992xPJnOHKSfBfrMAH4DJbpzbx37/KPo4j+tH0fhzu2Zb+WfPAsYZ8u4z8r7v3rXV3IYlG+vcXt5pnh985j9r/0d/B/Aumk+698mujAeD2gzWEBHmE7Ag/f09f9YW3nP+E8iz88AAAJCCfXQS2dfzOUmWxPycmT033S+d5sPrT8yLEhHzj84p3isCZ9nu+T3ns/j8+3nM5vckgM1zPuwu6ae+OK/dvaW/d54rB/0I4OgzZNskfOppTeReNxvDH5xxs60y9S0AB7XD0ReW2T30nWEGgayfN4XTNdlvqZNhp1SVj8Zq/m45jzq8DXayt9i+s4bDnP4RzzXacf9sL8EfBFCQDtS35mr8RaBbycNYmTP8dKX7uZQeIzypks668JfF0dQthJJadw2Fdcl8VSCco8j/x7bDXi7AUlB+ewNROSLZXooQIQAUDdc49ENbQLcCLZLlLvulRoWHW1KpgUFfr98emXubNP9l6AC0RWG3iP637sJ3OujpdP6khRq+CrbPNQUWPZq+uKDda8uNVJ+ONG2fK9rFI+UabJSP+AAAIABJREFUVM39WiBRogwA1t+2yJcN8akfu0dl9h4ig3o0zlQcoY//bBOIAkuMG5rBruwDj+quv/smo287iKloMyCFhyYncNq4+qJ4/rpmqch2KbAqqN83b2NQR308+kDQRTLv/PLXDe1W8PavFb04ilsehvX3iCaJG0JdAI1SVSJwloZSRND/6wW4/8vi+c1vPSNZ25eC/SK4fO1YvwOm3r/3vyjqm6GtkW7SgOWHa1jUb08fz19WtxmeOjRCftx9M726Gvb2r5+H8RYAjz52iAGv//cLepWstgE4k6AvVFY3rxPfLapa+LzcP6/oLwvK3fNW220B1CPx1g31h+Z7a0T63m4VbQV0F0gZzgqFHfXZvVz6xmoVBt1HKoVTWh3AaRdBfW1eEuy1R+Q/clIDwJHujAnZO/qlOMV6PvdCsEyjfNf+eY127GBZRd3ha/W2OCi2ukbK/qlg+1Tw+FWwfjMs34H19y3vBRVfj1wX4XyloOiPN0AV+7/94us6WBG9unisK9ZHZZdfb+54XJzFQ12S8tZSvK+/rMCjQV/vEREepc764hHt8nr3/a8WiBWILcMRZqCITIV995rbt0sAtOwDzUpYUEAeO+Tb6wAxaIgA48A/GYeyR8SY4MAUQZJaPTpBMCJAC2H0loJvt0tGnPXbj9RWwL6nFopd4v1qcQ2H1v17PIhbOFJL9WhA0KTJmuIhzP2aWhYAnG1hBrteMnKKYD1lWsqnS4hrLjnfWObN5546yGvmKSHi4rIurNiTccRzhhFlllQFgH2psM/wfZ6RTwDbS4VuzkBLHSHzdfT1//mEtvia193V8LOCgvl23Ys7UvvtmNojMTcd2JWjwckyYMFC6S+XXGOydd8X+5IaO7KFSOSO3MNNBaVopkc5mFqwfH26eG7xaPj+ZQ29FEV5Yw5993SVoJ+3W831Rxo8gjXEikbtEpoVsT9qC6YAnTFgpJzEWXqoxjCLNcPbzXnOtLM8H+9bsvqy1O9a0K4abIYozSjAMhltrgnQM/deYn/ZPy0JQlA3IO2aec1VF6oVwxDDUziL02yUKq3B8uxEfJBGOhkBfSmZYoM42l2Xqrl4qcHTZLoDFfrcveRsW1KMMPeGjrFe9uZ6A9dlONOREoXdx5WVvHzi92Ai+Pv0q88ruU9aAZcV/Spp50k/Aa0tyiDWkvoyBBvSjiQ4wJ/RaShTnwarFFsILK6Se64V9T7SSLPZZWg3TSABup/dVvUAwPGM7Jeael4mgBRBe3G2Yf32CO0cQJLuHH3IFASVOBjH3mwqH1Y0yPHh/Hts43cU/51zCo2AXj8GNM7Ofp10hd6VAOT9ooRhHQyyYZDHn3NFiNmhMkvwWvg+0QYp4bAd2C6zI08g4+jy2EZahA4R4H0fUWRMDiSqx1FYTWJyANn+BAo+crD5DhNTlk6xrNfhVPfuefK9jTx7UuX3SVfswIaQEY1m/wMTC2QKDpBx1vf373FO32BAZE4XYN8D4z11+swZGODZ+REAe2YX8t60H4AUs8x7T/MuQRKyQVihYy5ROQMRfE+Wn04gQsYcZzsWZ9uxVLbNpTgBL88Yz7IedswSFaRsrP8sR2oG2/2sOKR8zuya+eLc73ZkB1BDJDQwrAGBiA5g4aM0nG4+3+d+jncwBrXmzz4e4zNkfvwTgO+PASiYH5g8tD1KFBtNTjZ4xDSiSKSoHpR4z5OfE5NljoDszDTQtimviAYEJ7mqb+IUwptQ+cxXJ8MhGQrq5QWFxipGNEE8F7EvxWlwPDTFBii3TYCBSG4+XRT10Qbdcu8e/GbOazi/0gqkWDh5YUSe5wDb3t2JrXc3VHsNnYVu0ffIqMQc3fBcUGSaQJaOjLHqS/Eyh/xZ8zGzAhe7UwdoXLRyiipwARq87zjvq0Lis9b8MNHnKVI/5/hHH+VmsUx1gUlVvC2DUt4mgcRgvOhuMPFNgWyMoZ/gfdIF2V5pBjUgSy+SagxJ3QHaSst3g1V49Ls7mMPIt2srxL8786ZHZE6mDe3dBswpzoOQc8oCADF/D/7OIgLiXrykjUkhLGHOtcqIdl6jPjgP6AB8rEapNq5RELhQNCo8m8+dZExYrEMFOvU8aV8IMt1AmqVwY1uBvgDyBgdCzAZjhlMijCkLx8W1WICM4E4q4ia+P7PGuUKnWudAL56WoVdBuyuAGiKuBmUYajIq3Ki2VK9Ouqv5Oua6mPsu1cufYx9KinIehPDxPZVrE+nQJyMb0wGuY+9zYVc3lFLAySxTtMyizXcH/3K/a8g144axuvE+XQc6PDByN80O5eSybFStA2g43Cj6ZAunK0AO0emdYmyTwhu0QXd6aMgGK2QWqIyxeGe48KLWxUzxPBjhkvoADoo6k6OvrpfRb8sYHynJXIC6wS85L+B6I/MzkkGCZJiIjTZFgyMdyRI88AhpnHWTUWTB1Mk9I/YSrsncT9r47Lw/efUcAMXcgGZ0QmUwMjTECqMqBc/gIeKKZPkNRs5op25Uvx4OkJUpJfDp6VKyKLppRtc9FQeHfY5AvcSGljn8TJFYYg51y73ZdULs6F/FmXOMzkxGIe2G1gcrUocxPvbc6CfxNrg4pCWF3agnwSvOk2SPkAXB84bzdV7f5zkaIMjhmhkE8/vk+8bvNDbAfIbbWRb2jLPiAmwDa8aH9ghFwuaybufIa8xxW4aDcGgDMECOsHe8r+IgmIAfmB3fiZfGXDo7zlOfGTUT0mmzCF5YzEU7GOOpyWRxrrRwAIJJqhLaRDO15LxnC8dSvMsQzvrEkBFG7Q9jatH3Pc/rdxcd6TnNBzik9hw7+4Of/2QPxqmPc2+lkzfbyx/d/xChnpzc2Wk/z2X+fZ47fEcZew///dNrLhfJa3b6JyFLAMiSksBw8ggqze1Q9c/NZRqBUblhZglQc2Van7CJtp5tPfX/9H0pQZufWMWjzfPH5dhWpmzMzz8/j05zOIsJasxrmM/8yDHlZ0Q+/v3BDpl+f45wJ0BwGvfzn/M5eTgzJ5YE+7w4a8lmMsD8HODYpnM/TX2QYzozNYAxv6xPQM5P+oDP4DuSsdAx+ndOsZlTWJJZ1//xWLANtPlmlsH5c2yDP+S4FudnM7Vi+q703LZ+ev0hAAVYHLx7T3q0R4LHJOvrVJauGbBtCSqkcRMHkOxPZO3kS5QnO+UA6WP3CNHbY+TbNQPQhvHJQzM0B1zQJw6uyEmXt+fYVELNmSuekUh5MocOsLqg3aLs3Y8tJ4DyeffNjWQBpBf0rmjXgq7A8nXKuRNnbxxqgStQIuJU4f1Uf+yZ98iDpzNyHCKMtRv6RbG96Ihah6AgxLUM2jWisVtHVwcvyqNDHjSCvW19rdg/VVSB150OVWzsAkjB9tkj+FQOl62FYrU4o0NJ3aZKNmCrpoiYj7mXHINK6lu0S5TPEoxqCKoO/FQFxA27fllgF2+HVfVIWjNc/rYNqv1kkKMZ2ubOtOx08JHVBqTBS1i98ZD14d+v/h067tKRWg2f/n1Huyje/sXLdNbXHmKDyD6GGQQxxs+YQ3SSWIpw2yHbAn1Z03nO8okxH7X5YVOenkpCYIDRTIIwupsDHUWwf/Zo0PLd505fC9otIqefC1IYbvf77reCvgrqm0GsexUPgUf5b4LnF8H1N8EKuLBiGc+8/m0PIcoA78xBKn+uoi/OXmpXxeMXdUBhFdz+FqybOOP10RJUsMVBAzJWOunv8MdQpdz/7QPUQzStr962tvh/LgYZ694q6r3j8tfmbIG35hor1+qOjngE2lSwflXguUH/+jVo4TWjRRkVo73IfOUe6/QDim7mM1/W3DPk/gT2hrKFVgnTF0qIyYp4hYN1Cf2D2FsB2L47YNWDNVAU8v3V1yprfHfztr9cR0Na93zPYBfYdfF1TObE7RKpS20YlnPNcPV2SovcyBTbikMsclHlLLQmMvQLHk+P4Ow75LJ6VID9xL9su/fDxRX7qcqe+hbT4ZxCnEsZwqe15HsYAKwVdjJU9081gKerMwFeN9hK5kusQw1HcVmAvUO/voEVWXxvrc4KiP0T3aCMgvM8V3ipx96xf7lkCpnN6XESivoKr6yzO+DmpV87Mu3h2SPtzO/RVy9rvH8qow/Y7dGtLMdKUNmM1Q8U9bc34Lm5NhHiTAhHui8lWTzeDwAMzkTUYCJW38N7VeBaUb49gL2hPndfw598b2vXGlVihgFY7nuyEaQosFqKsJZXn3+6qtt9UT0i55NNQDttSKYfxmekNXSWmw7Ggj5bOtomAikyGA0irm1EFsrbnqwXu5QQbC0BgLijrsxHdzGJAYKKZIUdpjGiC1jWPCN7gezrW5x1M+X15LCkCCKdvm3PMpTnNJS+htjutvne0Rr0Hm35FNHU6ANcWTIWKZadNk+N9K0EcCXX3E+p0c8N0ks6CQYdfTznWiebg4e2f1/2OPtPVRoAHEsKdgPQj+CtGRKJZ9WOPGv9nUTVAxs6KishGEIIXSjpHV1KanCJeWpTrzrSsQiiNnN2HZCpoOiA3rfs5+wz4JBGhqUeI9WTo55lccnKmIEAAr4ECU54FOfdAaiagS2LaGc3yKwbYnJUmA8qf+bt12m/58UccFa4iDYeyiMy0v4zUJj37JbZmHM0mVfSuwn6AYCpPzvp3cFOmEHo0C7ydk9gdV2BeTw/Arsem0e3+X5xXh0ZHOEck1HIM5KOHfWHEI9neUoCEK1NdP9gWRzAxCPjZO53OuEDbJveu53eZ75m8OTs/E9tI/t0OPbTmJgN4CFZYVPAjL8/AxjdjsANAcP4t5BhE++SFSFYqYK/y3kUjJ4EfnWsoWjLDLz42JUEJnOs5+sEjLluF2BWc0ztBAQPwVxPRTisk49ABc5hBjBzHca8iWpcBzBDJPQSPgCeLHSWGsaco92zyPvxO11/DEAByAH0NALmv0YEQlx8DcDI7ffwvB+wpC+/bWkMWi2j5BGRYkU6agjU8135oC5j0+MkXjWE/aZ67HWUEQIwMSZCI6CoG4pkQBSFXWs44m0AA4w4EhVdF4+KGwIxHYcc70cRL8TzZWsZFeGBXd+aO8Bb87zULmkssVY5BaGkm59RIsE4OBki5iwIbQa9Nzc8KcA0G2E6gAouxBS8iw1TaLAsxddhGKekqAJIgS4qUgsVeMmUUIRhh5zB0syN+8WNZD0tFO+zBf1aYRE59xJW/nuvfjAW9Ls8W8NBJd03O2RErkZ0mU76wqoHi1AQPPuJIoP1zZkR5dmd+i8+brqRguQsAd0a5D4Mu7yiHB7FOPVpOTY0Qh0kc2HDjFxGpC6F3iRSO0QGC2N347ldQpBrtxSktWk9mQp+/OeKx18E17/6+ywpVAqUDbj87i/+/KWgPA1lM7TF58H+4kKf+0UT4BoMBx+TFg6/CVCeXvKyPDwNyGKtoIdxu/jaA2KObJLq9+ynLLGmQL9UTzUIg1CaoV0Ez8+K7bPg+SfAvgvqDwdJYEC/FIiKT3dGnJYCK7FOzPczWVwM0YrCbhOIwSsQZUbGZd9D+2Mc6BmZYTRwXY6RS85VGoa8ztED1ZFqAAyHnd9THdUT9halcGPdPpn21IcoIw2ye+y5y8RMmNvAxcPDsHevtjHnG572wLzP2TjbBtsDKg5URCobHSxGS7Oay+7lZAkqM20ohcU0qjOYuQAc0+TMch4B8PcsesifdjCSGjH8IPxwbzRAoh2N6s36IWBkIujXJZhWBF/mDzDdz/9ZHu5g9bUkVZ6Ci+XhfashskqmEVkNdHCSnQCgvvUQbRT0T8sU6QSWb08k7Rs4aBz0a4UsLmyZDsh034y0Jhjvzipiz+lFXcxVgN7dQBvlq8aepZsHDtpc3Skdajm2L9XBgTKVHrbiaUUaFUk0wKPO8n6kr1uwcS7L0CxiYCNo8HSaUjCVwQ7OWXVwUbcRUJC9A0GV7+oVH4zANfxs172jfV49oh+pkXQwk40pkuAh+0ruT9+e6DyfqwYQEGLa1X13cyj7xvdNWwPY3VnpqQC3WJtbO96T84D9bzb2DZGIyvv+RlFHAAO0m9smOASQDuML+Nok8MJnyrQeabfN+0Y6MMgA0MG242dot81sKBmCjVmth/ts/IwVwCT68VBmPOwzZ42GnfRoKGVie072Sa7RYEJIpAKcNbPeRW+7QaQPx0PGmJgc+2LoBMUYLfP4Tawv2snzu3Bs+F8LHYBzzvYZxMq58IEeDy+mP5z3+/liIO8MitBZnKPPM4DdFWelfYPl+XB2NgdLdmgQDGDjtKbO7Z3P4IlZkGUf5/OYDmqwFlLdX8KnSMZDBMTm9RyfS50EAiFk14i48HyfQBnaE2bjOWzzOW0BGE4+nflZ02Fux5wGwzbqBBrlvtCO32elBdopnCds0//pNa/jwziU/PlIVaANN+Yw2ZLzWc3vZQrEdE9hOgqQcyZTMtiWWSSx2/h9n+YhtarYT+eLfTWNa36X32ntWHqUtoaIBz/UjnOWlTXKcR6ey2IKwu4sZ2AQxxSqD64/BqAg4gPdOhBq0eXRIJF3JaDTHIdeAdAVit1RchoZzJO7LsNQn8WQ5oWlHl1ghC2jvr2/ywU0VejegmIcB2QdWgcJJnQ3KDwX2duciHgtWf+bivDSeuo6ZLsuY+N1hNnS8QPbuZR05rhYnfrmBpsYoPeWuaVQRJ3Unug5MIBcTFQspi9k6UzA0fLQKShvm+eZG8b9AVBPwiP5Iwe13Rb0RVHe6AzEH+sotdWjKgF/r3vjKY1zBY8s19nMFwxKRnd7FafZrwr0kg6gblF6cWVeq6Kvk7EfRiXfkUyHaEKMhb+v6eyce7/Ibp4PD7iSOXwM2qUAXV1PoPjnTYO9gAAU3vpB6bvc3aHpK3ObI9f68RyRCc7LJRSuxQ0SfX16dYCFkXlnAXQA+01DFd5TYaQi0yBSXJCBnjDq5ek5yX1RT4WBK6R7+op3kBXB278JXv97g/QC+w2ob0jGqm6G9WvH/c8F22fB7X8b9DGEF7cX13PYboL6AMpz0JWzrKloCDIC5WGob5EXvjuzxiAou7cvI6xmqe1AHQI6rXLfcoNstwXbS016q+wGXOBgwi/A80++CcsuOeb7tUCrz4FMo4j7lR+br/uIzMlzA0oJWjxztG20B3BwMkAPGpK8KMzmjJvYH5ql4GN+MgDSQ+RPxvxOAbMtjJHLkgem1TIOdzOfa2YhSNQh2J0VwPy7UhyQUBnMhMuahvn8bI7FOGxPhgkBX5Z/5V5E54HtADLfVSTSDxS+f95W4LGPiB3XxhbrJqoQZCrPqyu/y96czVID/H1u/nnme9djn1gtrrSPAoh5BHop2D7XdNYRhknaOeFE68Pn4EEYbzJaASSj5mAcT0wpOsxAgMFK5xxgdSRgsASYPpcG6JR+Jc/utgbPi1dqWHgFgv3Gs80BcH0i9CcEkJKRwH6pMU/dEaXGCN870xmp7yJyqEDDii8+/gCwjhS62Put+57UL86m0Ob7g0xnD3YMoJB0fTNI7Mu2FLRS0ViSc7NQ4+8hBKnRPneCyejTzeejxJzutxrOfXewYAoaeCWQGFqC3wC0awQehvE3C/+y5KtrQXW0T0uOKaBApE0c0njCMTbsHpF/bsN4X5bM/+VnWZGgV2cbVkHuKQTPWMnKAZwYr0XRCdDe98FyAAYwpsgIJLU3LGwUAhlWIo2JdgPfg3+qHaOUQflNRkNommSKpIofYnQAFfA6wcN5maPrZpGmOqUjpZh3RAslxEctHO2cX3RACL4QPAAGQAuMvW0WzVVJJqbcH2BlHE9Fk7Q1R+DIhuZT0QQrDtcJUMZ5z6djO/dFnwBSvsckyCu9TyAycEjlmJ97YNTIAIJnJ3i++JnZIT47UMyVn5jB/tWTk8n5RuCq9+FIT6CB8DzrHZDIW59p6mYgAjy+784m09pmAT+Zlfrn9p/z3lUm/YfpHJud8PmdUlvAbQxTOIjlkYoEIbwf/L4HVsPc/miPiJ9//h3//EGMEEhxzGSN6NwmhOEm4xwtOiqmsf+BIzjAcZwBCNgAG8I5PgAfQFaESmDh1KWHfjs5/B/+nOOAaay6OWDWw4CDZjAhhWDL8RYJJvA5KtEvCtikOSJImwiAa1ycxsQacEjTUTk69vN5P+sqwI5z7AwOUDshx68cn3O2waK9CUSdWPuz7odEIOwA1PSwxU59NV9/DECBVxiDdALkuaNfV6//20b0n8JzzBO05saNXZdE8l2tHDC4AJ4+Nh+k2+rz4u4CgC7wBCQiHcjrELuJDg0akt0uLk405dQB4aRMBz0MbqjK6pRokUzrcJEPG0b03oHH0x2Pl3U4QaqQ0lFjAe5/vgFm7rTsjnhD4WKSMSn00dK58Wh1HSkABypapAmQaWHhWBcvl0SWQbsoJCI9gNPFGd03wajZKziIylFsMtM+AiFv13Bsf+ywVbHdrkN7IRkK0f5FgT0WVRh7ScmcHHeLNITyYF64z5V+C4GuywAdxBw0wIt6jnx1Yb7lO8X2EJuaoN00SyECwOPPUaazIXOR7bwZiWQ+frso2lXTQTYa8H20V0MtXAOEMYHXQSe6ScN5ipzi5ealBb9cnVZ8KSk016sm9RkajJPNsHyLtIE/xRgZN013+lmfu4UonN4q9NOC568V+zXGugPrtzDois+vHpVM9C5Yvhquv/cAHxxYsALsL5rgAEM6+gyjwXyO0RlqCyB9sAW0AeXe0bpCL56GsF8EphX1rTgTp1um8SStOwTvhOAYc01FgBCzdAEyYPm2jehfgHSf/5fgdVfsXwT1DizBUGgXny9mGAdsUS/r+dgOBtyIkPla3X+9YPtccfnrA+V1lJPUH4+cO+/EQ198vWk4vfrtHiJsC6R5FEIC7ByRsZiwexi9e3Mmy7UMeqaIrytSeck6KApcgk0RoIeFYStAUkMpEmR7g+w6oiBE/YHBKIg+suvFDfdt96jBc4usKoHcT4caozetDborD941mB+9u6MxG51h1KfOAkGkYPn436PtwU7T74/JcAhkP+5hFz9T0vjem6c/rNVTtIqvMQlgVAyZfvOuag7PjA4Hy8M4txc/U/ri55pOBndfIpWpX6DPJdb2KDvoTKIO3Rr2l8VL7b5t4Qi70eRCo3HvhzOg5OGOtobj57o97qiVN08notPv+3bNtAMX+wMsnPysANQNtjuQQPqoklG3DAdbnh2oiv2TO4Dl3nMPyn160uRxAVSNkrOKLfac5eueIPDhTOiGThp+tN8WBwCX77ufSVvL9KRc+wReFnXBQeawC0bbmT5Cx7aqd1yk1lmc81YNnQcDKfmI75m4Zo8gHPbYi4Ld8fzzirYK6luI5FJ0eWY52bifVSTNn06NTU6tXZYcI326yG6C1OHslbfNBVm3KUgSlzyHiKWpjipXxYGYvhbgxQUfPc1jOOAj6NJTGyLHZSn5LGk2xAHNhg4F50CkO9mCd6kdtDXaiweH9HUbJW557c3z0pPxhRwbC8G07NfQcUEwzBIomI3r2bmd/5ycfHnuY1/sGM4mg0B9cqDC7kiBydCLgghkDSHLiVmVmh1m8PKXM9AyOVm1RD8cAZZDm+d3mr87OX9zMC6d+zmFhmcrndkzI+GQqkLnfNrTD82ycY+kw/dgzoXDdq7eA2S7jcAaFfrncouxJg9pGfngDtsxnE9esy4QMMCariHgSEdzet8ZTGB7yYBgfx36L74j8dlJPyIvpibMNH6+9zuQhmtrcuQZQJvLcs6gFNsN5LrA4mecADBpnqLY2khXfAcU9eM8anZ0slVGeyXsBeo80ZamnUs2ZM4vHXOSIFopvoYYlJ2Dbod54RE9CVbj4d3j/WdQ71A5ZkoNyT+jn7IM9/maAS7qhsyMg/PF+Umwz7bhwB+Aw/CH5tQbBHgb7Ju8n9QhUMl3iDGwifWQOhxkuyXwqIC1kQKUzzoBONP1xwAUpsOHtOScHLFOBw2/I8WX4rtiLrBkpUCkuxMKHJEnTsDILZbnliWvkmbcEJ8Zaq0GmZD2klUdSGO0mEyyu6LwIUdQFYYRbdb7qChxyCej8Yo4EHrQMYsfFhriUM+/XIHugIIvgAYrbtxSoFL2iLhk9MPzw4TsBLMUhqKieL84pb08QjgxKjBkTmR3w9BzYoN+XjWMDjpVbvTREHQRMwzBSObsLg5eOEXd2QR6FvCKiIOpeOlFxF49bQBJdQcyCqdbhwnbgIwcW1D/dVJKztKTxTc9jVrmVl2Z3QUEXZhPOgCB0/KboUx0tvS0eOBGu9vFWRAELDIXFkhmg+4eEU9hzb17WozK0HCYqGZ5gNQCu7iBb9VFBHNTqIP6DCC1JxxoWtDWGs8Fcu/ZBg3OxeZ8nOTizIH9KhFFAZa38b3UnGiAbm4kl3sf990NrTgIQLYIL4Is1EzQlSKIIe7YAQ3HQneDhdDoHuKM+01hakOsLtHeGI5ZcLWuI8oTRnFfCvq1QB8N5dmTaWOLVzlYf9uxvazQh0CfQAkAhOwVI3OI63drHq0/X8lKaOir4vGrYvleUN5kHF50isNozhzgMkquWhFgF+jjCZPL2JOKhpNqg94/7SteZtKAi6uwu2E/GcHM4+vNa0Q3BW7XQV+n8ajqB2dzICQNsh5q0nTgabiI5JylAWNLHZE8ANRMyGkhclSlZhvPF9sUNdFl24cwHNfLtiMpmzTgn9sxilg9j5CVH9IQOiPzNEgm46YTiBW44wm4sbj1kZ432ytJb4yFQKBpb+hBQyd7YJ47WCQESYdGDBDrvAOFlQkeDXKtuQ8ypc4CpMgSrQDm9ABPRzjuq+WtHdgQtkb5w0VRHsjykgQbeh25p/MYifm6slrBijAuUBgaDgWQPdb/sw0gOu7NNIncx9W/0wJQqFWH0Jkg93l0g10k09YsmG367A72xDlgReOdwmDishDxgPneQ3NGMiUu9YJsvCcj7EwDy76ltpIAySWy2NMiYNAWzXNRuju2+9X/XZ40vuFBtVnNRI86AAAgAElEQVSYLjQhhHM16caTbRRzN1PggvEhdwcRpfWx9qjH1Gg0j3uQYWJXOiL93f376ufQuhsQQC77MkUpIwUi9WLYd3NZtslJyhS8uE9WTQjGgz7D4Yhz3CttudiziwxPc5L7FR2t6b6HEn4BBtv8jh/sQUx3lfM+kZFJi/xzG8/jWPI922C+GHSkdLAdzOc2G/umTcCAGVzUezj7ZEGOwTs5jNPPEpQ4zZd3kc2Yf++uOXVrBhvyzJCj8zc/n9FW3mJ2soKdkk4pwe/WHIg+Ax3nd+1RRWF+1/lMATCzcvO7ZkcHSqOdFDqc226eX37QfWDEm/2RZ+v0nHlOzu8dLIi08QiqzJ+d33EGePJ303jMlRGmSHvek+lB88Wx4qU84ziedjx7sz9mhxdjTKONNp33rLJhiHSMad5kCchMWRvASX7uo/l0vk7aAKO8ZBkg1Ud9OO8/p7+bWTr8h1SfeZ7/7JrXxBkIS3bN1K7UdjAcKi+witkZS2MqQyovz/oaApZCNjMv38zvhyJ5ghCREXAQowyDgxUeZF5DH1x/DEBBnGrZXlYgDQeFrmEgRZlCF67yzVx7AdWf04mPSdbXCrsU7C8Lyn2Hvu3udC9loOu9A5t5rj0Xzt7cMJ6R3KUmiIBy8edsw+CyFWEcBZp3O+Vddhypd0sBlhv6taIvBfXrHfIcBnH58XQDJkAIL93WII+OC0t5RbqFRY6nH67+Xvrwknj9l3UYkmXJNBJsLUvjmTpYUX8LQULSSVtLA47ie0yvkGZAZW6g/7u9hBDk9yhPpZKsCLt4NYV2qy7ueHG2SZa0Is1Ogf3T4toCP3Y3NFvz1Je3DRb9hci3pcHSLz6m+my+/zeDrYpWNbUYAGT0vtw9OlXuvvMxsl1/a3FOqOfVL4L66mUOhyHJQUSI9RWwFJmnszjDY/tS8P2/FI9sv1qKCeru/63fXPuDolup3r4OQIqX3ncvaWoGWVdgqWi/3Dy1giBC8f7rcGaCFUH9sXvJxXtQrVVRRfDpf2IY9zRuYsNtFwFLMe43xfOzax5cf+8J6Dw/qesi/G1LQOrT/+q4/CZYfziY0K5uGJe3Dmk+h5YfhvW7Ow9WBG9/cap2vRt6BfbbcJYu345ClfuLM0Xa4uBMfXTslygteVdovo9rK9iq6La4ajyj/dwfTDKdZwacjsaGq8zf/mOH7hShBOqPjvLoHuHrA5gD4PekAKAZ5PvriLREFPT5S8H3/6YQW3G5Fdz+53fXxnhEfj6rKSzVy9zGflW2Bv39NanNAkBJ2VuqP6f1/B2em+9pFFM0j/4JtmEshWHmh4we84/f7n54LnTuFca0DzLDeGB9+YwEf8NQcR2YYDUQ7ReBPJ7+DmQulOICVUThzWDPLfP0PBdQYPe7H5Is4SgSjIzJUJojYHyPvQPtGWMwIrao0+HN/qHhNxt8It7WpaL9egPL8okZyusT5TWmy2WIWBIcZApcf/GUtv2LR0XIJtC3DXZdU//A52eAjpOBX18blt+3kfZ181K/j199bdY336v7zUvw6Rb7cZRNcUeLwnFAW1dIX1Bf18wbT4eQmi9RsUV2Fw3UEMAFKnpR9F8uqQPEdAiIr7+kxee+EpZ9rFGDAKGhUF9bOtgEfLtGW+doVsyj+tYgr4bLb1yn3L+QQpBZWUjl4CjVV4uzUGDmAYTytqG8wfduft4s1zfnQF8Ub//JdSXW7w368HKdLtrZXZh5b+gvV6DIGP9pXHml5kGcs+XVbbYSNk9fFGXzs6Y8up/ZcLthfxl6T6nD9BpG91LHHsAI4uKlZbVb6ErFnC/O8LKlTiyQaB91EjZ+LlI767SuArjT+w7cd+j3J9ovF2ewbFEu9DExh6Ifs7LVFk4hU1PePAXJrius0NaKfZXjSeAgwE0HWzuE1PAJVKK4qkQQKIHGPolYB6ByAARm5ygDBOr6C/HuttYBJqgBrMzTA9ShbUZth+hTgwBSIGg4CN0xtWMpgIUjwLK7bBuBBPYbmU37PmjrbDM1wSab81CaDzjqb9AGm+b7h3o2MxBy/sw8zhptINX8fDGqnSm4x7PIn+c0cdjmAPfMhmDViADUqQV0KC3ZItgXrICMuO5TudVz2+Zo7NxWkXS0huM8g00eiPSI7zQXAGTZR95/XQawwfbyvgQztB6BBPZLN0ix8VmRgxhx+jSzfgTvrZMQITDOvwxWfeCc04F8uLhxprqkoz99Jxkb03e5Jg9AUgQlRCBlmsM42gmYgxO8eh8/p+0zP+v5/h1sP3neOvaB7Jv5T2DYAJkKoQBin+RecgZ5eG/AbZrWQAFnKaf1WSsEUUZ7Fojl77m2SsEhzQZAlgUtBT9NSaI9GkAXQj/CyFSJvpMZMKNwIyuezGvgDIi19h7QmK4/BqAQ10ydTOE+qgXz6n6IGO3/aeM+bJoiwAfjnhM972cAOsQiIjdP1vx8/H1Gu2ckqyPZDnQsWSEBamlQZL56RKSczqqQXQdyHgrcWE6UMRtpEH3RRPD9Sx+8ZhjjGUEPgw59RCwozOXvIkn/dNAg+pA0VPapDceaufYZ5jD+j/2EADwkI+ezJoI0R8wMllGyucQl85ikdzcstI+FEO+dWhiTWIizIwzHMlnwQz2cB20G24OR0WQc/tEfWbZRZbAIpvtZLZMuAo1Xyfrq7SIjlUAi8h+AH8s3tluBPTuklQNN1N8BEeFrI1IcTmdfJuNwHnsZ7yDNDnW1AY+4lYdH3Xo4AACy6o2/g0HaGEZtwVxROOjA/FKCLH1E76VxTPwFGIUkcJVRqwK0i//Zl48mr48BU0fIFDGFl9VsSI2Gjy6P+IXo5y7HNTx31wwSzT83A5oLZHp7BVbdwNcnq0kcRfv8i8MIpBHAOT+YSxhU+PM1RwiKJD2S4qfO2FKQ9WBJLdQwqOV4GE7GRzrfFC/kYUsHnZQ8YFBGDzm2dojqzArcH15hzM+pH2fDNtvIg/uwL08RxRbggcrxO3O5u3N0Ie6Rgli9D/aDjKh9tt6OEyEdEQLOS4F18zkVdeYJYFPPIfVp+DszSAtnlQ5SCDay+ozvyTbA2pgHucfujFRGn8bcGSVhDRnd6YCiZxoWGQQEEzwaG5+vPm/oZPc6WAAQT9dQAuLdDlu7VYFtQ1BKcs3HWRHvYtEGZ6RhnBPR37JN+zPnJd/zvLYMQ8+A9O7CMCTeRdfk5LRJpOLYxHxhcIEaCjL9/MA+Ssfp2CQ6uPm93mFTKHdmMWT5ZZFk8B3OHKZpChxMNwd0KPZ4PutddFdHFKlMgqNp9Ntg8PQOVk7IFLAyrZs826fgh8UcQqyxOQ1F/Kxg/7hoMwHyaZ0Hu5KaRAcHflqb6UzUWBfT/KYznqwsOd2He+t0xhx+VxRME7A5JYr23rwHTY5cNvO8T8yMHtXBPpifqaNd+acev/vh3jnvYee2cP9ln5E2zr0ynXw53sc+6JOPnnl+XjpUcYVW2NAJON3r/By+Q77/eU2Ps+GsDZC6AjiBPipusFgb+3+cRTZ/F0BOunzcYIS8o22fAYaZ/cDfnZp/eMf5c3nWBnhf/Aw4MGFmR/v87h9d5/k1/3m+8hkfjNFH1zyW02fdbunH8zt/qe+//9P79/F59v0hPaQ7o+gf2RPsz3ktzBH9j9YLn832cr0k8xJHG4nfPbzPB2vlH1D+ByjwkzV2+Nk8B2TYVD+7OPcJqPH6GTtino9zO7iGec9D+/U9gKYSfo7+0zb+MQCFbpCtO9340aDfnyMizQMk6I2yjclgcqT3uU4AIL25tkhoA6Cql2jc9uOEVYVdqkcJ3x4DvbqsYURGObUo6wWzgTzHgtWvb0AtaF+u6LeK/VYjCtUDKZfBimgGiFOtGSVtLyv6pXruYWuQxw5Bga1j0yBin+XFGNFOeihyIrfbghQCKoIW6sqyjeoTMFIfPb91+2XkTNdnd2GtbaRFuHMXIEakOtR7S3HJ+t0pw7aOWd6rQi8F/VIj99Xbevm7R84twJS+aFIgl2+MXErqIkDV88V7h9zD4QlDnJG1Jgq5jT2KOfH5uYldQTpwed0hrWD74iUP9y+XpEtKpJw8vyzoi2D9OvQVWDmjrxHlDgoDmQ7bpxJgAlCeQLkbVjW0DXh+EWe0iGD/JPj23xX1O3D7W8cS0W+CF/qYcu/i8LHqZfoQ1Oj95noIlf0idNw9CirNsP9yBRSe8hAgglVBuwr0gWBXSGpiAO6c6G5Yv3kudXl29KQs+3u2K50ReGSzCtrK9A53MLbPBftFsL8A9U1C48I3774Ktk/A/d861r8p/vQ/eoAPzpToS0VbnN789m+C8vSyqbxuf29eFi+U7PXZwhGJMqefFNIrpAPL16c7I093tvriJdHIBqLooZhlSUltDXrfsfy952c4B7Y/eeR/+fpMRwEtIkjUI6h1HHS1wG4Lrn/dUB6Gy9+e0Ndg89zWg5FBgbCzGrldV1DZNy86EfEnc37l7THYVh+p8vbuh4YIkmoX6DkA4PlEsh5E/AB+brDXt0MuXtL4ZyGmfc/n2ucXdBHotx/IiDPgJbGMTmrsq1FhQvbdwY7HE3K9OCuBfTpHDVQglxVYF4+0MnpHQ8rckJNagS3KdhFMqMX7l3mXZyNeFf1Pn3xv4l6rzCMFUjwzQBlN1edheBHg1NcnrBTotbqzSIcnFPz1GWWPAZStw/bYq7jP3Cr2L0umF7WL7zuX30MUcLfc97jmWwj7yt6hxSLNzPep5fuOct/RXip6VWyfSzqxAFCevub13lxo1ixLRPYqycTIa2b5mIvw0sGUEO0tb5vvHcG647/7OiLkmYVDen6cCxIldHVj6tAASplLP6vmM8XDWYQYhlcHBF5NR++7s4IYpX5M1UOKehQ6znl9dOABfA6mQJbQLIJ2cdbd/0vdu+RIkixbYkdU1czdIzKrbl++7iYIEOCEE26Aa2gugOPeAwfsJXDaIwIccsY1EFwCew1EA00Q/fq9e6sqM8LdzVSFA5EjKmYRWe9yVjQgkZkR7mZq+hU5cuTIUoDyZqK5AqB/udiZ66Uvx6V5ad0yK2/4fBjV9uzy6FYeeilYvu3BXoPCmEqqpmMkBBM8MLAYjTfEnOUl9Kfwdrd1+3QRUhdrxO2C8bKa+CP7xkHLInbe2P9hDh1tcrICX2yPVEZkYc5Hed8tnSKzwjZLy+wvSzhVwqoaBEAySDgGZINVzREE8LG/moisbGNqQgFhB6gI2m+zFHWIZLogpVBH4P6IqDg1WujsSHNKdKsWtIo5jojKydtj5ue3iv2nq/UbWbS9I/JsozpECftxdlhaS32g3J9uB6cqM+syS+VSQ4COVCmQNUXuE8sr9DS4Z3o1qNBe8HZoq/ZZrmdGovlvkSi7SwAmwGZgVmcIgd0E8DI1gSBuBhMY9eQYMMAUwp10hg1EVn9WODJFoo91M9HjWYXBndci8zsJdIjAXeTIp1TS4n3Iz/Ds7c8AOGYw6wykJMc1gwnsy5QLr3sKkuo47qfD8+BTBQEyjaYzfQJYeEazLfnfZ+CHn83gQGI7xmd8bRxLzWrYCZLm23nOTPbJMaA1GQLzRzGmac+YoootQITQAvB2SNZBKAX63MJxtjLYrjeBYnOku25TNZaEtDbnZowh5vNUD3MEwEcWRE02WgRmrA8O6UtM/SS76gPAV+Z6KNWYKARPNt+fKILdKpBF21RnGhDfQzBBhADD0l7B96qf6D+c03O41oRpV79DT8AfBVBQzLxDCvh5RNoGCcDmEzGX3eKhpUjG4OyQmTc/Ubag8QIeJUjUGSA2xYNGQ87H5b5IhAuk4QkyBVMTKn9eRCAtlnQ9Rdqkc03o04ZAGos7x5LeVYuYkcp9w42RiuGlB0cIegkj9b5w3Nb8/HLgxvQckkFc3IGvvpgSxZR08HFpFgmDO+JqUXKLxpTIjyV9kNU4Zr6xt80phoc+9Pxlsllo5GmFV4zw+eT9yzk2WoGIK8sqEOVqm8RhoEtWu+Z4wyIlDVAxY0d2QJuBJ3Q4+2rjXh9WHjEUsyFobwgqa18r9he79XMTQO151aNAFBWMsa9uOFLHgmOpGkwUq8ZA8MHnMSslFDn836L8vjl3wEAR/yzBy31GSiOXP70n+9dABf+Mcu6JgamC2f8eeVUoylNRq6DeBXUzIEHdWFZJa4gBRbE5Z2CWVYoo2/A2JoQ5XUJDmdVI3BEMwcbHbgd1ldAhKM8pRkddkhgDn3e5brlAMIQGfj1G53xviTKWj451WFqSjDGjmyndIJ7dR5SInag3EImG/AwP9NwHNAxVj7XGD52T+isb9Rmx5iGf36kmUZ4cbeE+GlED77+IOijO1Mqg60rSzeHFZ2SqZbQr7efnP9FP6YAf9Uh3ZZ/x0I+IhZzux3lkBh6FgWdflGNkPNNIqZHj7eE6pXL/EHG2g0baAboehmVWdzAxOqhE6dqyufjpYNQNDgDPlB7pCG2b6LpLAUqbqToOToowXcPfWxBg8lhrAMpkJXEtD1+ngD//aqwUEUHxdRF7N7uf53ZOBRTvT7clTdvGDc6zAcYr9EWKdxaBHDoMdu7GHglEOsLs5I/7RpyNKQrHfcBKdwpUzkxEb4PPIz0w+7iXEZTVOJeKz69DYEStbyOt0ivKMFqfGU/ge+bml2LpnXQ8+YulQa8r+k9XY0hyT6hAJetDPNUogzW8faYPElSLOe1D0KaIMds31or9ZumBdetewvrEdsiMy1hP1o85DTDYd32yPOZ8UnPiOa/yvsl7nJgsHyKtvU8KN/cTSawIAobePpYePQ6ALQw6Yx/KxCbHYx6wPleKzBzy89yMeSbH/+fPsr1noUnVA1vs0FYH0mKfzu9+ev6BOq/Hth+EfUc5RpTPVwYOUvSe5sIBuDycVXNuzNQCnTntLJcHzLMn78s/yr0/VWwIMCHmaAITzpfI6TMu2lfTfRkdz9d5Ln52//OaiPby3TEDnPz5eezOjuQHMARzreSf53MxKPI880/vQBviNNWjX350HfaxH7yzn7/x78++/9lzRCZgpWO28Tz/899/y8X+zaUvh2/mZ3sgl/SU0/wLHZG0dj99noMpI/mfB72Fj2fA+Z0+aIgU+fi8vN4Oe6Qga+p8qG6Srj8EoCCqKKyS4C9i1FFYfqoImquim27AsSNYwSBKxnH9PPdZsmpoRLvhkXGWFJRTbkwIdDlCJNsOvV6s5vb5oFnqpK32gXaH5ZmuBfUNByorEXkKMmkqr8iJNm5TnTqE+uhUeP6K9AU6hgs3SpSwHExZoCM0pviWIbSL5+nDQIVxpHbSWM2VNEIMrAL1PtC+b+HA5trVfGfZB+rQiLaYKCAiL5XGE9XBKVpIai0GTKCqiKWkOZBi7zEnPI2h+t7DUOvXasKJe0XZipVW67OSguwD+5cV/VYsv39Yzv2ogn6rGF1RPMI9VsHyq+UIj7VMp70Ixos7//ceVRD6OsGcsgPXvw7Up419ex/AO3D9BxdIvHf06xXb12HfvUiIxlw3BR5qOfPdSvqx5J9eF4zrgv2lRnUFVYF4/nO/moNetgGtSzgGAKy/xcW/1On720whGUOw3Wat8LLTaDOgol8tUkSBRRNKNaelLy6U+LR9p93nOEONqdEe6noJVlLv+peB8ZugvZuB3FcHg6r1n6j5gVqBspkt2xfB9TFw/ftHRCVtPgL7V6veIgMGDOyK9r5DngP1m0XsdV2MvfTrGyInbzX0P3Kbt93avab8RIqaAkApqN8dLY61CdNooWErMh15btweqZVtP+QzG7OghnEs+zBW1GOzyi+vt5naIAL1WshUH5YnHWMN0FMvK+S5Qd/v7th3yPV6iHJIM+0FouIYwzQ66FD0Ad2fiFzwYWCmrKsBW5tXqqGxqooQPOLPstghANwfIQAp16sxwbjnP+xZ6s9BacZUSHmQwvSYbQtDT+gwMb9yaUejm06VRy1QPVrpVE7ZO/TxtDOAub8YkOceQsAWKZ/tCOYWx5tOplfi4FzT23I4mK2cHlMLgOW7oL5hVot4WhRVl2JdKDBtmOdR9yYYDN3PEjcq+8tqFVOCeWEAwvZa/D0Q/77+w2Zipw76USCx3Q1QG2uNUr79UiMVoSSWl2wdeGkYTVC3gVELnj83qyrzfcdQi6xT+X+sM60v0uX8Gtdl7rMwgFeKmDYQEM+PSAlgqV/V2mpgyDzDBwAZxhDBgKUQDkA0gYSLAysihxQEE2xMQQUyVPaB8v60OeSAUGZW+OKPvqbwIJlyowlkN8A0V0MYazPWogABKsLZGQX2fjQ7hh5S+VjGMyoEOUqhNWkkuIOpX27Yv17w/i9XqzD0HNFeKyecHODFmFy6OtClCJ2RALqeu6WQSAUF2/qLgfUGzFq/bF8XPH+uzrxLAti0pRLwFuU11Q4vXerUctoGyt0r8jgDM6eYhLAkAU4GZ9yBV1XI0++d88pdPC9Uzksxy9gDI7q49kEoompE9kv5qOEl+7B35Non25Tzo3oKFefMgGlOFNi+V8bUhMngSKsTTPWodwRxWLmG+fEsWzzmPhf7MtLlrDLIYmuE96cDFI6/78vUCfKIKlSnMKGzNnRdApBnNJ5aBwSodd8DcJC2TmeHjqx1aDjpEclmKflqeltkjuQqBiH4maOvdO54jmcgI/ezO88Big2dYPzvOZ1kSVQ7SymCOtMvXBfCn2nnZnLMPgD+ZQYxc/syeEM/JFVeoLaQXK/zbFWPYpOxly+C3yKxzuK96TAPhO6CiUDbGX64N4Hts+ihzD00+prtyp/LKctMlaQ9sO84gC16CoAMTAFc2iHZKaZT311Augi0tUhVOwQsCGzV5BMyxSfAFPv8IYWGIMsZvEltPpQvBcLGjPmQWZwcA8lzz6qQSGavBhOjRpvsnZEAAtvPPwUsDnP0BC5lsKU1SClQ6R/vka4/BKCgRaCXZZZPA+bA+sRidD7QcBc1mgdmjUhgGP/u8GPBUSyRm3BGaw90L0dZd8+Xfm6QUlCKzA13MVokDywZCnl24NmB1wXdnQZVTMYBrxTFs9+JbehnsKIUoOo0Xl8utng2Rh3ds1P1wUbUAR8XnwAFATCYAZre36PZ9VEt/9GNN1G1qCtghqsodCShxbVF6gQAc9rH/K4dZBZFO1RiADBameyCrmj7iMh38YVa7wSVXP071b9mmkQ4yus01gAY5d8ZGbNO+QR/IIhoWZQ2GwpV0+XYXylYZJ9hdE+LaR5w7mlzav3FqP7apr3BihXbiwAvBfVp1Qiw+e+8Fvr1P1aUDWjvissvaoJf3mf6erXAPit47AP7n67YXr1iyFNBON+qZAggBdqAfTF9Bzr90aZiYE3ZzeEuj6ltUAADQIYBR/z5aKZjQEZD2TSEH82IB9ZvA/UpqM9Z5tGMdIUW9RQKOLgwfAlMXQSOZa8STAVe0oF6t7Yt313PYSlRYjTGh2sssweeTrcuxZzRVlxQ153QMtcaryi75ZVYpnCZR1x6nywGBzJZhcWET4vpNiSBxUibYvrK7k6qeM12gogEP3MUnM66gwbC+ex5wdZJyRlKxqMUy0GNDv1MfEnkWPrIgRCpBcryWd0iT3K7TYcpR2T9uWH0bm4sJqG40DPglWmy6f+ZtXCIcJ1Rc4416aN0JGiY8IAmhZhGSzn2m9Zi9Em+R5vpAhgIwFhrAzUSrMxvSktxIzjTlYHkBKfzRjFTF+qj2Na0m0grmVYExHWpPm8GZJhjVzY6CL63Fi/JKNRFyIsHRweXPwMM8B22vrUC262gLZZnb8KQ1kaux9KB5dukmR8BDoRTVR+sNkQNlAJx/QleFj0dB5DGFPs9Tc31HMzohDEFBJbf3xEgAAAHdndEBN+BX8DXMudpusyR+ySaFXuI/2hzCvuAVThI8yPuJRNMkKc5WPFebQoI18eYjClFaHII7RqR6agTMKAz7PM5xlyV/nbqU1a4GFBUE052cdR4PzEmUHszZpdVRZqVFOy9vM8T65DivVqLRV27aU6RsUk2h/pcBhAO/6heSnU7BywwK2X5faJKl6oJI69l6hfdPdVhP+2NHlhRAfRSoaMCt+UQsDu8H53yk+EveR+LSSkndsOYDlcpMUfF+z8DDtYHfT7f7bnD3O167H+3JyWBFNNJpvNYwhkLsJbOK4GUlAqXq9zEvcJuS04pf56diD4gZweC+2q6IlUkP499y35OpZDZ3+pCiDmN4nBGRCrDR0coKgfQ4UqpKx/KPH7GSoi9pCAiwNRk4BUpC8440FNfxHfdWaW6PmCO+xiAltlWv6fp3Zzm2fmiA37WCgACJD8zA+180fkeGaRQ/diXeZyY4lIwgd7s8BNoz99Ldon1Qzn+LL9LVG/i2T7mfCOI5POHQGukJDE6f+j39L3kSOc++1BeNIMdMR6nuXEGQ0JwUo/9Bfczc/CCAAtttnz9gKVBEMr0d8aBVab11H6/dO9AGUeAJt0vQJWT0PjHG405f/Nnarpv/t0Paezz+mMAClXQXxrKX7/bD9xQi1xIisHAETJG3XZD5PTlYk6GI/lE9iGm7I8i2G9mAC2/eX1PhRnoPU0SThxHtmmY67Yd82Z7h/70xdR/02SSh5UmG2uFXi3CM0SgxcvBZVGjQaPTDu7RbLzK22aOTilAUSjq1D5YXfX9L99tMnmExcoa2mKX73dr020x4T0B5GHtlodAmobhVJ47dBTU5kyC980O5ShBhaDQMw9fHh2yVHPo/N2Z718H6bsSzmc4//7eY/Wc3aGhWdBfLDWCqtkUokIpKO8b5NubofHN+9QdckbP1fP3DcTwfNvNo3fiqRfFqL/qzyarpOxuEIyBfrNoXrtb9IbR9NIVKILHT8WqNHzrVnXgIs5OAEg59skQ+f/7TXD9qxlg9W6f62tF2RVf/70ZdvWpWL511PvcPPavF6AK9lRJ4vGnBduL4PoXq1Khzd/h0SHdDLftS8X2YmDGaF7vnPt/BfpFUO+K5V1RK7kOZkoAACAASURBVJ+9eyqBAQfLb1vM6fF18bGx+9TH8HcooFBlfUqMhaiaejtgImB+UYPBcqFpWArKbvoafbV+NKBA3ZE252p5U7R3xe0/We71fq3TafC66aOK+7czglbuO+T9acyOYqkN6IY+B7WXyHZEI20fkPsTelmA6wIq3gUb4LGBLATZAJEd4+sV49JQv/v9PE9/vKzmCNy36Ww6MCG+1/SfvRzscz/m3sU+MSICL0O9CkSF9AKtKdIbh6wDATQyJBkfBOa417n6tK6Lay/sMzd287zEfQcuq30mIl3HPD5ShalncDAS397tc2R9iHiEagTaHgZBazPndEsGVZHIIY62R91wBzN9TMIY2Hfo/eE5kynCsvfpKBR7/zAGGOHbuwE+i/1/rM5i2cU0d57OkkhRC7k/J4BQEA7ZPCPgBmXBfhW0d5a/s/XXXyY7zc4uQe0D8himig3fj8eAPDrQCvrLYueDA3+a9loKMh7sAHdE9xdfN4sxf7avgv7d9jemLz1+MkZT2RTtDqy/7LFuR3OhMd8XuH4MjHRmXa3OiCozNU2RAO1kLKntI+O2YMAFb7lvFWdW7WpsmSRIy8oScRuKHjsbgkLE2cBjdDjOfvZXRIwdyH7uNqZjYJQXhKBhdvaqYKBAitj6dSAqlPs96lfv3XRsnNEU2kEbIu2EZXQ5F4cD4AHeBr0YkOLpHbSHPQIbbBkUK0GsNX3GHP7lt8mOiDnh/TztIZu7o4qd6zr7xypjJe2KCOqUAyvUbBc7o9p9MkOoeVApuE1x0lIsAjcG9ltFv1Vrax+ob0+E2KmDI2QzyNYd0PXypIsDEbuDDSn1SpdmTvJ9n+lbxfOSzykB2QE7ORWaHaNagFLNIeiY4C/3yqftK3JZJ2Oiq7U9Ge/qgTEU9TQ8xcHhSQ4EwQTTifBg2JBgJliwyUSc5bnNfT1H23Muf74+c2IzSJvWDESCaab53rm9wIzm0uHkPqkSkeP4Hkuxu7P1AbRWd2CBiM7bOACQMkFpigzTmY73oyM6Jlgw1KO42Qn3c6UsgKgB7DEv0ruS7u4l7VGrMeUoAIp9nll8vt0YB+SLz8xl/4Af560n5mK0i3ZMZgYCx2og54ufzQ4kxyb6bBz/H+1N+6qqa4gcL2H6X2bU0PGnLogqUKeWGzUc4MwhEUVUJQiQbRyeH33A36WARMylchrj83fzPHERdNOS0smWPIMOhesZofXAVgl1PJgWmNp7SMkhsJjTQLmvZltQR8xd9bVxqPaRnnsA99JaP7AYPgsyxRyoAPx55dj2H11/CEAhROi8ROO4tAMlUkUgboyWx+4ofjfDwFMYAFiJJU7qDRDdgduCfltMsX3sqN8fgJgIH8TRQxdhCuFFSZs5xWhg5U3CEHaKLqlmUAcirt7OXbHfXITq3t3R7WEQRNmbzconkqYqmxu7xZ3emjYJwA7yi5UbYz+he13rVBFAHt0Oq8MC8ShMioABMHG6jJKzwoRHJqxcmm2IeplR+v3FNojizhzLjZUH6d7+XMWMrkg/OPfGqjDq9rhUYKmob08Dku73Yzk4HrqCMLQgBiLU947h4o9jEUBqRBPG4iXRLsU++zRxTwoEqsDm0LC20rArnk+838wwag+LkC+/7uh/t2J7kTB8h1OR27t9r91dL6DYn/1SUB7+7F1Rd8XL+8D+WvH42aIdbSkzgiU+1l7/vLx3tLcOUftsv5UwAOu9R2qNGZ7ibATg/SeCRzRWgfqAgS+76zuojWf73s3ZeG1RQo5AiRQEa4NrluARKdyhRxGsDon5ExUVhgNBK9esHcL7RdDeDTgwpoMCb2rp7zemhNj34/xMjgw8WGCsFhfX7B6VIRi42cGvtxXy9jDhP59XcTD4oacvV6fHM61hRrbGdZ1ODfeMInO/qiUYTLncll5W6KV6+bQOXU0PJgS97iaCZ2kLFLLwAzht/LLtZiTKyWF9PGMNBy1vM/E5xQVIImoHqtve7dCnwUYH+/Fw48iED7E02w8dVA00PgyfYe0ioOH3k9eXMBKUdOc+AN2h2o5UTAITLtyIcTSsmDIx38FKMFlKh4szAQYgqCKU8H2shBTWFH1QwCnM3n7A91irDW/dlIBdXCH7ahHWPhwArzM1hUy5RweY2sXcfk37A4FNcW9SAV0Ez69OhVT7fSXdfpsRRUbMy7ObON7mmgVApKBpk3C6yZYYDV7RAWDqEgpQH2r729O0PUaDpxppfK5TdLcA+7W4YG33NczJCWehOTtO537QL8YCG1XQ7ibGWqhvwgDAUqFN0L53Y0k9B6oMlKf43lKBiw+nG10hNJyqM1DfZ1yXtD7nGWznrI8THdtukSI7e56Hsl72eY17i3YDl2Tm0Ud56exI8awrMvsb5lTL0BizqFDAfZx6HYyE+7uXrRtTY/MzjA7uOZefTpsI0KaRLd3K3ka5aa9Y8oGwsQ/gUu3M9LTBcndqs4Me1FdgSlClUGIp0FudfQ6YyG2ukCOYNhefpz3ut3zbUF0YlKU5g2EAhAYNU0KyKLR4oKI8CPCM6QxIYo2R1s1raYnVcgITADuPKZKYQSUgysnOgdcDu0P6gO7dBLeb2UbS1RitbqdIq9OxHoh9lnZMzHOvpqHi9mdPwa/cNn/fcFoye4tX2rOMOVSPke2UwnZgNNBB88/wHBKeDyfBRQAuNqgzKhtgd9rPgdC7USCYycfJefp/AAze7ppAavZdwRFUABBieDoC8AhhyDyOfI8cCSbo3f3zO0tVpsix0/E/RMr57CJACHief39sa6SVsO9Pji8rQEl2dlVnKiDgdsUywcQtAUpjWNUdjnWAHmkN8H68eB77+8i64iASSTAqQBc9yLAc5mbMlXEA7uxj3L/UumvMdIMDMyHfi32s/Th/MiCheky1Ofc/QUi3JUI/KQd9aoUdoL73sF/8nbWPKIMdv49xY6qXARJKOzU/n+/GVJrh48qUhjLbfpi3ef/ns86Bqh8BBDH23hYKQjrb7/eAhT8EoECHk6rF4+ZVD1JZqXC4eUD0AVyWqWswNOXQwUGFHXBl6fJwIbb75hGw66x2yFJFWXgpTyDSozQZy6z5nhS+VS5QV0CWrhg3ag/YR4Kup+ZparVnWZt9QvYODBp8FXoqq2d5uHUCCvtA0X2CG44uS+9BfWT7rCNswdFYla6zT0RMZCsMEDcoFWY08fswB0dLs1x+SQ4kBuq75x7mDViBUHBuBUhCYbJ1CIDtdgUaTHuiq0VMeaWAqLUj3XsfqPfuIIWBJgOApCjVWIpF1fduKRFu3Iyl2prbjVYs8c46AYnVIjV0wOt9h+iCvsI/7+1TBzc2o+hrAWqzfhjNnVkB6u5CmW8bxvpi1RE2WM6vlAkoiIM0rnBePeeVteK1yLQDExgSE7sA2xdrR3sz9kF92n3hjg1FUKHqfVgxXgT7tUTpy9I5trTWbXwYOWQktPpcCSFIASwbmKwBziGPOHagbD3SFyw1ZD6j6oAsnjqSzwQHJoJqTdDDnTLZOuR9C4Q3NubeAXWGi0g4n9BhKG8YSA16mRR3+JqLPD1n8WgTj5r5cw902GJRpozgLxXjugRTKZwPqoOTFnrOgU0pEBFh33bXC5iGu3r+ZLyHU/513yFL+2QRYR6QyVDgARqREkbD6AAwX5PGGGt997kXxvOrAxRjmKo+jUgCAZXGhs9k7q8e8QrAR3WCCcn4Ur7fZbX3o2HH/eGQg8gJJMc/gw4nZsTkekFEEv3QNkBBoNIMyKOAMNu+2phrKeGY6lKAOtcEKdz1OWb/xLw2cKNfxdMMxM+yispzz9s8muWyhlOZovCjLCgY2JnipYj1Qz2c4cQb8X1Ddph2SRJiLbtNp0HiBKMszZhO2800UAKsBAIIHYyqKwJw7Bfbt3b/u7436LPPrTwBlJYioPPcAUzLwZkY1l8wodwKFO4tZB0SbGsAq0GVbUxx1q5QSc4sEHYD9Uv08ZjaG7sDCpXUYgMbC9cvAYUqAXSEqGJ6L87D0cRTICSYXlMkd8TPdAzIUnw9SJTBpZ1DYJPlSg8OI8En9teY74hWzMAnoENhYR4oUaHAz3EHDbIYYqST7NP20maO1iAg2ilKnOyfobZXF4RAY4A8vleXd08zfe4B9BlDsYUuANdyrEtng1hqpumgHJhdRVIt+Qbd9nkvOg6ub8D5kPsiAA061+k6OAK8SoFKchKcAn8YIzp8ZMaxL3xfDpZDAlM4ttKdrUVWBMdJLbVqNu6032WH8fz7HNXM75OdqZO6/aHEq6pp3JABEPsv+6Ac9rwQM8/tGW7EFAFBpk9BBN+744/q0WM707xzvzNN5FxlQWQ6qvzsZwwB9hVBzTj7aAye2vFZn2I6y5F6Ef3i/UZG3mf3jTNOTiBQ6oRTVSgszc9RptGltXSOVuc+/yQ1INpFJ/3EivjgsP6OIxrz7sQa+3DlOQXMsXOG06fMGrJQgAl48DNZK+EAtKXPnQGcBBiEfcI0EwqC9h6pLYegC5/D+XNoj9p+mtdY7h/OtTPYlO9//EWsUTBF7TBPP+nXIjN9KH0/i7H+8ctGAtZZ+7C8kYEkOOUL/jzARIRoVOWDYamGAA9FeWx2H7/06qJB70alK3cv7bTWoGTRiLf0ioLIleoAltWQ5C9GgYxyZUSAAXfygeaMgPZ9s0MbwFnxVy8VinoUj6x2YBslcrhRyk0fGLc2D4/uVMIsplNgkRlYBAuqls+8D8j+TJux3VOviz1/2yHqtCN3rIO9IHSeRhgp5aVBa7VSWApPE9E42KN8WrGoVdkU9Zd3oBYUz3OMuu2qaPVpk/fRo9xVoHN++LdvT5TNynAZrQ8Yl4L9Sw3Htr0baPD+L1bMcoh2tXeLJI/Vvt8Xi8AsfzHUZ/tSD2kTMhTtm9E7R7M+H2tFeShu/8g0FliKAbUcHBEoHbj+Y7cIe7WoW2WUZ1hfLr888TVFEGNTo2Ha4ekEJnKpFdbf3dFeMUYB855lAMu7bQ77w4z4fgH2L4p6FyzfEYYS1eXrX+6QrrMc4i8bysMop/XdIoXPn6zMWXUxMS2WR93HNOb2m22sQY1uHmVQOgAaDktUmQBQtoH1twkaRETG3//612ElJ127IpdMbXczchsFUN2wHy+IfaE7yNdSJZkQGRQB6mKb6L5DN6eqhsBUm+VHXTk9DOsuAWBFfi/3kG03zYx06OulYvu62L7DvUoE42UBRkOpdRqSnUwr72/Ph9a1WSmhp5e6fb/PAw6wA+zxNAc/C2GFZkGdrAexfUTHAO4PK9GY9ATkegnjWR7PiN7jsk5mFo3crAgNpxXvu1UxIEp/vZgAJh34fYf89NUM+aenopGW6IeqrktEO6RVS3GgAJkqZGkWGekD2h2AzAZVMsSMIdIs2pmiN7J3c0qul4gI6nUxYMC1L8o7MK7N2spbXxu0V5S3B1BLlNOzud8iv55MLIhARIOhFMaBj3l5e0IeFVcxfZb9VlAfA/Vti7lMZ4e59/11wf7asH2x9AIV4Pb3G+pm5R/JztqvBdurYHlTrN8Vj58KRgWWdzqOiBx3c+YlgIjnlwLThbF1Wx6KtQ/fS4GxFANI1PqeYKitNUV1HYL1Fxv37UubFH4RX192TpTnCAeQW0ekAVSn4D88ek+gRCQi7tzcymYsRQOl0jnpbIgoTwlMB5JtWSrksgDbZea8ZwotgUU/39Uj2xSxLA+P+ner6BIVlihoBkS0mYAJ9Q2m1oVMx9020Xk+uGaLReumYRjVYYAAG0zodtolqMAIo9tZBp4uQDYL2ZnlfcfaM2PC9ybxlIqaxsYWpJW9LimliO/iLMaYu7yqoC9t9kOtJprNilVV5r4KTPuD7Ih9BOuUtlUwTZcKfb0YG+TRJ+jCK5dlTE62smzg6F5+9PmRQs49CKlqGNMPnLnCe6oLxerF7CUrAa4c2Oi7HNXVmqLRbN8JzAhWXAbO9w6gQ/bELACOqQ7sf4rQBniBD85VnrMfrjI/G1pn236MYBaKEE6nSbOtSoG9Ns8luGCjpjJ9FuUtRyBAyvSxgwbfA1SW7GTTgcuOZoHZ9EUgbQGkRHqMcP2pOmPC7ftPKgmE04rkbHEsx5igBdvMM2QolLoMAXTUGdE+zcvQaYBXLPLIcYBJrUYqTswLOqZ5/rK9TA/cT4BJ9rN4nR1cd2L1HPFXpg3KdLZzRD8BgQFQZR2CQzt8fPPcdec9NBl0O34nGInOevTxyyySWJcYJr5YZK4JPgOIwGv8n+0Vrs28Jw+QDcs5IYCxcoany9CJp9Ao93KuoVanCOWeHH8pEElsEpaR5OXzIuy6AGf6nO/ndBfXJQoWgsq8Z6k4aysofN//PVAIfyRAAfh9BMt/rzS6/RKdB8hEWQFoElTL6BrzTghCDDc4izk/ktFQIl7VQ8tDLfViaZZ3XGmoy4xKwg/l0TH6VCv9INLB8S1TuCmXvAyjXtXOnT6gJVVoOF+xsRUcEONz/zr4EYaSH/bmBPlnUnfR+Qp1eRerk+ERFtWI6ocR6DXWSffDIQphug0HxIs50IzQnDeecFSsPdKGUfP8TB7Fqg9YexAK6Jbr60bpwKQfDo82+rurzp8XzwnO/Vq6YmBA/DBhfXpLX7A+GK1CmloVBH6122fGUjFAw2y+mzaLdtVHN4py0TDIGXknYDFLicJZAxah0ipG9Sw56mWfaQDqu32vXwEM/+4+nXZ7IXv/UJD3fhikum6WG6o1G5yWz1yK9d+oRmkeVbD8Ju40cnyt3cEi4Fj7+FHAk6BIzD9f2/VJIEIhKofhsbx0QGSCECgAnFKsKOHc5HKQNrRyOMiCmpgNqvwZd1ysfS5M1soxGpSM6wPy7M4jDfxM92WFQ1SBdm+XGyFBT/TvRE54HGRuQBF0dRqvAhb9L4IYCFLk8ruTesqIEDD3yyxIxAM3V8QhkHq+wmBh7qilOYWBUTANNhp6HDckY6pISkVLba124Nle7ftz7oPPmBiRP3k0mA9j5n1laUrmaMlTzehER9kLdHftEK4Xfv9keDBSH12iblwAAazBX9f6fO6D5WHGRFlm7nzMlRQRtNK8Fd3ZRLtXi7lcjGlV947SB8qzoCzWh9KtZKulc3mFHdj6jbPP9xiK1wZNVRD7A/bJSLLG4BgZ1XQ2U/jVNW2YqhbLhvtwEdS9g1oTHBMdTJfyfdwj+NMBNA0DgjZaMJ1QshA+yUc/lJvma4gYq1FSVEbV0qX8e3GdgFmmdhAoifsPB2gwZkrbmO1yPd2PV2E79XBeg/OzYGoeAGb0MUWozvWlqZ/zZSmI83w1/Q37hRQgyjxzHCQ5uf6zoOvnfa/PlBLbjxXCEtnntQeAqSDi7zznB1kmBdhnSd5ILSpqDAcCxVZnNAkawgMBBWW4HYJj2qnC9tP4Pvudf9OGiU7Wz/+A8z/1tXL/lcl8OJ05AOZZqWTOyGwDkPa1T67T3hOA1T9lS7ONBQaykW6ec+nzWPE9+EzvscOVae4AguEGfHRG6GD753IVAHWnESM5UTl1rQg4VNHHac+P9IAfaQbk9yeIfXaY8zUUKAMQOlypH2qxczo74aHHNmZViXyfaGhyYnmdzqgP46gDqskDyBH689ziGHoaj6b1evhMbmMGHf6WK89LRth5ne+Rn5XSMj+NyPPe47AQEEKd9LXyvDoDIQWAlzCS3idABOCD0GNuXynTVjp859R3manD9/+9K9qZ/k/AJV6Re0oGeUbYcFHNJLed4oonuycqcJ2fAcy9m8HyvLeLGgB40lj5/42GQlzJIR/XxUpGulFC4SX11ATps1ygcUoTyrVbBHr/8y3U/tsv75YXSRVzItN7By7LzEUuaqUb1SnPvU/EUATjtkLXhu45rI17wnV2ZXnfgOeGJl4D3B2JUAnfuolPpfcbV6PR5iinlmKOkYt26Q1TVLCIlZurBeNqk0F6iz6sv92BUjBui4nJec41RLD9ixf0pXjuq03qsvWZz7kPz++WcCik6GRBqE1EcwJh6QNuBI5LxfbVSoeVVDWi/LYbBZGR4XQQW4TKqds0wpYG/PlnO6CJ8nuUmBFqCpDJAEoX1Pdh0Svvw+W3Po0T7+d2NzHPAkC7GyNV8Py7l/kdAbQJ9sUMy/I0Jf/SLeL3/FMzp/2hYRi392HsgbWg7CaySABhAaw05aVgLCuW354Ya8X979bIrW3fO9q9Y7Rj7nO9TzDKtAHgIowerVTF8k2t2sULqzsYsFAfip/+fcdYBG//vKA+FC9/340d4IrxpSv6q7FZ1A2s8WWxMpSXMqOWd+bHzrx9GYr2tkV07h//mwX7C3D51ecWMMEmryxBm6Q+zDFp3zfPMW42Ns7IGYwGqDNOHIgpYxyMaBOysTFgWkt9DtS36fDVt+1wGIhXQsHLDXh7N9FAPk+SQcXv7MMYK8yVblYxxsr8wcsqpkNNZIpjeSlB+f7uudY2t/RSLS1jDNS7eDQzoe0UIEyq8qJqQN3WQ0NBmlMY0YPKGBELT4uQZQW2Z+gTANXQaAcgQTX4p1G9xUFU5gtHhErEPpOrLzxhew730zFmRKFbKhPWdRpZezcdGgcA9PubvcPrbR6u/kxdZl8IS3yuizEn+pjUWq9GoXRmAEPZbXAg6wq9rraPuaAiSsH4sh6Mwg+UT77PUIgWyHZH+QZjreRoKK+UkkDAelwsX3v59RkAJqvXRJ8OzAokToOUbmKp6F5u0aPoz3/mwm5qR9R+LQEANLU1fP9nFeVrxcv/Y8+5/sc3jOuC9dcW4qjtXaHFHXUFFk816hcJwMGi/hIsgeJlcMumfjwKlrfdWGkCd2Jtb2lJYDb0kHg2vW3QpWK/VQMl9pk+RQFHeUwWVHl0lMfTKgKJGFOkyCzrmc7MflvsO09Pmbj7mvLggC6250fZyzOg4Ge7XGw+M1USzYXnlmpr9e41cnsBPO2rr6Yr8f53DTLsTKgP17hJ+g5QKx1s6YslKPtTX4Dr3fYV2Qf00tBdy0cuJk6svgcDOOgvENwofbi+ko3FWI36G6VGgXi+kNkAeDqXn/8BTAByqSB7FLCzoCSwK9YMCJQo1MVM5bFB12YphrQp3J5gKorZPxvwZoK40QbfR3WHMaXEgEYKpsr3x9wjgMN7SK1eJs4qbhWfL7Jt5pSKsx1KmQC4O/VWzUohZEMw/SwcIY19GO7YyJbs0MxmaiVpg00HJSLJ3K+e23TCt5myEcBGZ1DH1srBiaQ9C8zIanZQ+ZkAnlMUks8YnnPO+yw/cBFU7Sxg3j7Py1ICGMoO8ayi4c/s3di+1CwgMxcAI9PxbBcO5nM09xcQYIR6GctIUT63OaXpBVAOPsLv3QdU+/w9UwiLHECPeIe8fyRH95gWmECZ6L9pe+d3mZF3P3tIP8+I475PcI8AUKe95QubEe51mbogqsdKRM/N2vjcQHFSafhQMjvactorD33n7WIFq3jvYHW5HcN7Ewzed08dp0hqirQPixCGTkOtbpvUxPIY8525PuppXbCaF8chO/77DssBHDG3Iui0LjP9E2kO50BzoZaZ7wt9vvOhlCkAlDaD0qd5FGuA5VSBw9rR32XJfARGwi4SD8DlzxBsCz0ETwlhm1h1IrFZp6Box+8BJ38MQCEMl08mK6MR+SoIVJkCP7F5DrX6xK24gSIwkbpyzDOKRe4LLZVkClpcFUtHuKygci4prOEMX5s7/x5NSuJIUctaP0amLUrpkVw3LD4IvgpA6pCo51OGIesTTmBRvNJxqO28dxvdjN4tLRSWox/hFPJRporzPtBPdbUPgh6MsDKifx7LMv/QYIVX5JjvllBWjwbG71xJO4s+8WekjoZarBukrY8pxueLs3qlBk2LmjXkB9W6/SCl0Wwq+kxv8PaLOdrBwCgWaS+uI6DikRwRqHjlCDIdBKCQoHoFAxOk8rrk/kwAxlKo6b0GZm6wtz36OPdBHyg7TLhMBFo0tA3qc6DsgvU3Cd2DyNctpjVRd84HiXznoAOXY//xYkmvmRsJlKeD/U+rXmHvjijlKaphFFtayaQC8x4yFNoVBQO6zzZ4eNvGryDYMYqkU5CMNasm4s4bXMgVw85ELTPiRmOBhxVwyKs7aCA4OyBov3EocO6T2jvzkan9QrpqfYy5v3iqDz4RDrODcrI84lDb3ahNh6xRVxvE9QUUOBzMMz/uZEjxAM4iZHkP/uzfNGK4HzijIxTiEwviQDEFPkawdMz2ZpZSHs+iIZiobmBKzmEinZT1mFMu4EEci+fDJ++lS50OQ+xxMt/Vo6asKmQOpk7jkaUmOx1rpFxomx5RzrAmJ9EB7AMji+OicG0KhONoqU8SgALZA6wCA1g7++J7QBPL0d8HymNHg+kQjEUAp6xnPZV8RarBgDGaPrEhTIi3QIpOp1O9TQk8lP14hnPvKXuJNWCOFmItHcRGD8/8mCMebeWaE0yHOuWEH9qz9eNcPD0rmIAiQYFnOcVQ405GIdsFuH5E0VR5yOwQ7epGqOIzIcTzFTZHRQA14nNq5H2w0zH1PTGMYu+XcmpnZjVwb1UgR8LJuuB5ACDO6NL9bKTNNIDQtcoOqrc1+tfXYKRBf5KaHnvS7gBHPbb9MF7nMUuihRmEpY0Vqulyil5/9jNeYWsmpyTvoXSEs4PA9vHqZrfN/ppnQAg35s/HM077ZWLtxOfKtCMPfc+/Bz5GWiMK+klbaf/yuUn3yADoenxGprOfr+ToHsACzD2aTLYfXmQUpzaKz/0fOjZsSy4lyXc4X0U+/jyPL79/asPhOYf+no7ph4v3YoSZUWjacfkM/uz74dzhOEcCxBifv6O3TboDFL5Osw4S16KOaefmZ2hy2s9jYW0rk935WQrF2b4oAPTEeDr/zXtm3YRzekS2R3Kb82eK+JRz0Cgvc7e1DkwSPue0xx/m/LkNbAfPnN5B9sQhdan+YHyAaUvHbdNnyW4hRfYzShv9E+iHe334XDn9n+/I98t7RbYjYiL4owAAIABJREFU/wkWxh8EUDCRqeLaAQgDQ1F+fTej8/Vqi5plkShG5JFac9zh+YAW2RiLlYYSgTn+Hi0E4BOrWORHXSsgI4q1YHy5Qi8F+7WFs1U8slHfbeJsP12Mlv2+Q57d8nOLAOuC/WXBWATt1/ts99rQv1xmLriPz/a1ef79alT5x1SrPzAHCqK+NTAP/vLwRXO/B+qt/h2LgFXsP10xrtVzeIcZKx5ZsZs1i8g8d8gyHVaoRlTXotEmLodhFR2iPFmRo9PbPPKnMKZHUpxldB06xawIDunLCq3FdBKACUoA0W9jYaRP0d531N8eds82N5d67yhNQvE8NA5uzUoPFlgU0J3eYItUwX4raG8sf+ZOQLZnhs6SmgDKvcMqTrjT09WN++LUX0SpzcjJL7ASjt929EvF/lIixaE8RqicU6yM/d+9eogJt1nEsLztqL8+w3h4/vmKfjGnv/SB1/eOfqt4/3PF8jaw7uZ4QIC62Rxh9HKsEukawHRiyDbQWrC9Nit56RoGAPD1P3SMCqx/eUKGot+aPf+xRxTu/l+s2G+Cyy8DdbO5F6rhVaD7dEybsxUef1rC6KWBWz1aWu8+v9Xeo7137LeK7WuFDEuLaW8VZRter16hK8BKMUJhrotF0aMcmJdk5eGkIsZkElhpV8C0D2iAMz3gskCXEet9LBXSPIrTFes/vAc4FtECEWcu7bEfRqTexzxOQdWjUFctwIvvjc/NDvPvbxFxMMR7By4XiwalUpDMK5TbDaRFYi3HA/lseJJ6Ovxw9pK6LLUYxiEP5FJmTqwfrlJKMI+itNa3t7m4mqWURQ6gsyIkG7Nj2Lu40nR5fQFas58BJrKZDDPZO8a6QJeK4tVw5LnPvczH0SpwjBkdvdl9xlpR7hvKN2tPuSvGi1WWGNSDcXFZRj6ZzgYxgIvifNVz+YXpMs66YepZeXaMS8OW9j/TqTGQYLAs7w5c/roHeFmuBWP1vFaxM0WroH7fIM8d7X1DuS1eSWFqn9gzuE9b9Z6xFrS3bvom3/AR7B8KCPD4U3OBVWvP+uvu6ViK4s6rPDZnvbm5McZ06j2Npzw7yiaxr1kJ6On8xnkx3JHNa7OWmXnh7LWxCIY6IJ1EDrHZGS1vd+jtMvPSgQmoP3sAjurihflS18uYAowAdmdhOaCsFdhezXkqW7HxwUD39yoJrLS0EL/3yRDWJugXP7PvntPfhwlUVkH99WlVDR5e9cX3G31OzYLuAon10R3YH3FOkF1W3mwvUhSg2c/GUhx88mFz5hxFM9d/7M6Y2o+RTxHTPvE1ESC+l3iWpx4iYiqIIBCFuMWjfPJMfc99STxAxL2Jz3TBW/XIOVO25NHN/ibw2QoG2gTy2I5cuWdgAr4iRoLtsH06K+dXBj/qsY1kd7r+DLYdNear2PsNjfmviQkgzy3YCbrvCB0pPjO9O8tHRnqAO0+HvkFxYMT/zwgqtW0uU/sFz2N1BlH1yHG1M7G6blhmarC6UB4ngvLPp9l1aP4s29e1jlnaLl7c+yxHQUudFXt0RqvFq8hQkFFB5zfPFwcUPovqsq/KLFUYQpIcm2XqY9hHpjMd0WM60d52O1+9HawEoTJBHZa1FIXSUWbUOgc9I7hQwjkUMYFY5fhtm/XPWnBgS+QAwRgzZa37ub/3Yx8Hu8+DGB976sBKVJ+P57KH0Y/OeJilGssHDZKDjREAQrrfj64ADtI7AnN9xHic3qJIlMM+6CKwLRw3kbA/KNKKvR9AlgBsAS81KhPM1LROuT7IqDg77of30mOQiH3Bn3FOwud0UeDMIOCYhr5I7u8jCHEAkziuZxHV0IXItuDvgwp/DEDBAYQwtEOoCL5BkmEgByYAaxfTAQnxoW556aT8iSIMREkHeTaWrURjPRihpn0gs1OHxCHAz8QzeFiPAVQ35B7JSKLY0LXZAc9bLnag7FcJyr94JKRWc6DLs6MQAGG7A4GH0WtZ4YKT2xcmI2HMRaaDB8DouL721A/bsbYQswlWRavor9c4gKO+tnqkiOwS9omX/QsjWeAT3iN8AMpjizGl3oIuNSJdEU1Sc2L7WqYIVoFFs9zBhfh3F2NZ1DdzREopltYg5iDIWiInWatAG2I+lbvVCLfSZt63ZGAweieAMJ3BS0paG0npnfmqAoSBHmJUvvjHWkPvgE4yn1efIyIqWgT9xdNihjkTUe1Eff4UgewVUrLQH4Ka3L5PEUUUQbsX1yQwY0LFABcRZ1z4s6aFbuNoqTtWFYPVQQyUm+Iy9X3ASRj2Pi5qKel27WH/X77P1AWmy3Ad5ufLbuCaVoQjxXKcUEbPuOEhdjSWsBR1tkYzkUkzzPcowXd2Ks5GxDykEYezlaMs870E4bAYsFaMugugvttBJVuPFCbWID/khYYRPg708Eh5yAeH8KBKhzT1TZjWkKMhmr7PQ6imvEKfeyHoRKHZZMBOx5N9fYpKcW/YPUWMkRMCFXOUZjuo8SCT0ifJMI9IKg2WHDVjVQxgKvHXAtlnfx4uB2xE1csTI/Z6GlFhFIyB8r6B1RosOmWfHy8XlPsTuu2waDiNoGlk6HAHJBwLoH3fbL1emrGott1AmaSlEe32thdqlajNY7JzAAPUytNAZzrQMoDyUCywPb+6eKtF1it0caepSIAJY51nClkKVlVmAoU27pN5VfqAJ43ZXpKCIduXivIsaNIdcB2emldnqdWR5rzMPswlYEczJEYUEN/3ymapA+NiKQ9Roeazy7rd93Jz7JmbLY9u86xO3SOm0wGYRjXPtSY4MBjdKeT4svRmlMcdiHGy1DFbg6JWaSJXr+A4zCgz5kJxoIF9ntmaZHSETsXu6149Es5biEDWCgqDirMuz9doBaLiKXclggyy66xQwa519pyJSNoa1qUdAYUT65BAEC8DmP3sfHQHd/sEGhzEZSqp/Q4W9eN9B47jX1hVIWkVdIVoR5SfpQAn9WoA2xsAwJllZ8aQksZfYQ4dMNPACEIzbSrel8Z3ipyyMo8w+jmdiANtm2wP2PtGelpKqQo7Nf/JAbEQ4XVblSBDTC1zQOJdzvtl+pztgS3/cL7X+Xt0uPh/np0/ipyfL3dU1en+EoDJ+KT9ikMk9gAmeF8wqnt+fHZieb/4XbHv+X7Bz0lrx/Ekg1D1qLcS7To5xtmhCx/kFG2O7+un3zNxYg8oZUbCGZjhvfL9ep9gQp+AwqxQ4Wuvf+LQn/dZMnNyikf+jPeNeN8d2sS/DynUYnOUTCC+xyfz6/Buee7n62zDHdo+Pvp6FCkka4bfHzrTGQarqvSp5ecAoyY7DoADCNN+OLSF7f2Rbkfur0KfM99jmO2Ajh8L8ODIWBGZa+VH7IaaPpN/TuDub7j+GIDCgOXjL9UcsG3MKDwjPYvlzPVLRb3vFm2s1ZgN9x1FFf3mEQZnEch9g95WjGvz2tgCaQOMRMs+IPcdLPVFh5S5jJZ7aBM8SnKt/kwKAT0Hyu4RAs/j03WB1or67TEnLMGEa7N2DjtPnj9V9FUiPcByV20D7Gs1UbznMo0Zd95MadkPdUYdVKcjkgUpa42+LeiRV8rcwbiqpxRIM6cr1dd+/IubATWsf82Ijyh6bd5+M4qWtz0OsH6tEXnD3qHPzYwHEeCyQusSrJFxaTPSW2c6gOwKfTHWwPCfL9/7TDERz6t13Yf67RGMCnGjQi8V0CWce22wnNcqqJspRffXC/rPC5TaO7t6RQXm7nqk+5enRTaX7PyYFRnGjpeHy4Jm3Dj7tYKq6ow6AuYn1nernd1fF/SlYH+tzsLoGJ6jWygJQFzrVgO4CqCpm7p6++1hRvi1QRRYm2tC7JYHTb0I9BkFxTCga7gehAzFXoFRCuSlHtgLcIdA4Dnf/Bm88gGVwVWgECy/dbQiWH+xqEa/TcDE5m2xGuuMDnUDRagRQaPbQAJEJEireLTXNt+yObhWCNqZWn3dgOt/AiAdZQwr8yoXlF/egDEwLqyO4iUOh0zg0iOtkU4EBPDDiKteG4YIyrZbJOu5WZt7B64XjOXi0SnMiBgAFavgUB4b0J+zhFmt9IccWVerHtFNU4CGvPQBvVulEllNG0BpKLY2D/jGPEUHD7JxykhCBhRowDMyA46VgXaR79vHrD+uZaYgABNY4HM8MqZo88B8PGb6RhzmbljnShJhGO1W9m1drWRkjsoAEZ2MyjlQyP0BlILx86sBVw93UrbuTi/s89tuUUK2vRabK5cF+88rFl/vByc5OSEhHEnAAUD563f7+/Xq+fupCoiDIZApFAsgnE+bK3Ym0HBZvnVbX8+Bfmvo12JVZHaFPvyzAk89YoR4tkmdrbW/TPBYN0vJKY+O8uyz+gKHkdVl+vApaSwGYxQYO+LxU0XdzAip74J6V6uYwbNcFeIG6xQbxMFp1WJ7JIE6Xss3WwqsatPed9dT+owO7/tQaOiInW+12LttdkYHkCDGQpGtG+C+VKAYyBb+COdThWn+hH3ie6CzIQ30NKCBFTaoW7N8TxU7SjlWiPB9b6ayaYAPsutkVw4HGXimZIPa7ZqsRs6qUOHENw2gioa8ASQOqDeeMxaY2WtN+gIIdl6MjWtT5GBQlKH0cTaH2vaJsTYP4AiwK+r93Wyn52b7GUHdKlahpwD129NsCgcG4p4BenLdCObmTFbKdMSzLoMAziyxfUaXNhn5BAd9Lca9L80qKHgEWfN+inFw3OWZotVQSH/amDvraQIZybkiA4Lj2VpKqUoBI146U8ICaKVTTxAiO7v5b+Zqb1aiMwfK4qJDQVDZ26r7Ho7tkXbvzipz3b1DD+fM6TJbVg959jKGMR/CsSKoQFB5vv+PLgNDYEDQZyJ8ZAvwrPSf2efl4PAZsGNOIkXWFQm4yWAD++28JwFhr0Tb81knEtXgAizPGhO8lsVvmRiN+W/eO80rZW4+WRhDg+mQ2629Q/onju45BU0HID73qV0REfg0RqXgAxjFz44xGTiSwImRnlNScCT6dgBdZj/pSavjB+lyH9qQPhOBDF8HUz/O99K9B8gVgF0p0Y7QM/F7RHAiqjWk/YpszU9TrLztwRRwTRPqHARDIIEJ5+Hi78kkBU7YFhdF+jzTXj4D/jjH/wZQ4Y8BKFRBvxrd3oxjL3e1WvkmQ69HRGWhMAdRLAUBwMxR5cGRjASCCYwo0EkFYI62o7Cae724gdEtWjVuC/ptcWpmn3nQCfjQdcF4vWLmrJ02D3eAy0MisrFfBfsNWL4j6OvMgx3NjIv91fPOHxY1qu8b8NxR35MBK5brKfRgCywfyg9mSwWxOt4Y5liPizMCGOUvBigYNb9hrIplM2FDOpAmVmSTkVFeOs7RDhHPI8aM4HhlDAHm5sHJm+i32gT7SwMV8SnuyBKCWc1f2O9iz+kOCJUvF5S1Icpc8hIJTQXpcHGxYhUQ5Gbvee+YQoIjDDQTRnGwyZ1IRuqtCoO9j0UEJRgIodDegVLMsCgPp8Ov5eBMA7B3r4J+tblY310Qch8+94mkIp6hYzoaACZrADBhqUVNRLSKpQgAwQSoTzMap1Eptiu4sWo0Vzc0C1Coct9hczkMesTBlBkW6iKAdBisZCTXxPx3qMF7v5sTbsASHMBbvqkLn5XDu9p8cBDl3m2utxJj//jTAq3A9S/d+9go3dV1IGQo8PVqxvxSYi7FM9yxKnQWNttb+qWCAnvnd9aXixkH2w5dq9HiCT50K2G2f7VUg/J05zyiljxYNfZ9RiHlbiXScLtORtZuhoK4oRElrKrOdUajk443HW5eY0C+v09gAZhRONUJXvDiIXO9xPeZ7yjLZZYkI6iR86thxt7ByKNTzUOWEdcfiYKJCa4hsRPgIKX9XoLiiesFertAHp468TADWhMgCBoirQCjBRCkSFFBNUdKk9Gru4FgUqgr43vGc4ds1FVIok3f7zZe94e/RjGWTJFIwymPDeOyYKzWtzIULLtWn7ZX99V0Xkot6FffP1uB6giWVHFnSYtVg9hvzQVmTSPnUDnGNU/6tXgVmxYGhLg2D/PttdZgi9V3n/vbgL6boOMHgND3h8k6GNHtfP5wdlgI2SZwcjjQvV8r5FLtfAKCWQUMS/MoiN+Vh9kLTKlqwwIVizumeltD54TrrmRD053R0WD7yY0izRaQKM8poKtMjxAE+woCrMXOMHWAs25JmDFP5eFReg9kUBiWgD4oWkhAoRjziUAm16d1SrqxR6gyOKQEVyTNDU9FoAhntGk3XaJlaKQNEoDWZvZZodPKoUyRSKuEUkIL4vDOCmcm+H6zkNVQgskV2iEK1znRmU4EBOuOJSGDUcmJ5WeasbF8LnsAIspR8v9JQBEOrkz21oh+DUA5vac5HTKdyLM2R6Tr2B5Q7qdy6EBa/wkYyOAon8X2ZEeU90mOpSQdoPhuBgw4z2LgThMzM+LcCYoKIh7dPjiD+Z1Jc+d9hjnFAphjm68ECIWTNmSeG5lOfwZGRBCChjoOehsYvjdkBy1spEk/P1C/qaOkyYkvMoUAawXExpAMj2OfFciyeBS7fNK/dt59pv+gI5UoTA7yh+uQFuE/272MZEqL0aenNjJl4nQ/VgA4gEHUf9j3WaaTl4NiB6bjDy5p7dh+RspFpshoEiJkkoU0HMf7DEBl1kM/9X16LwPYTmsiszQoQHtmNfCZwBEI4DnIFJ3Pxub8swAweWYcAYzD5cEXRUtj9UnbeAXrII2PRMcgDIChkZIR4BjfRZztOApQdNph5z2J8zTA4x+8g19/CEBBBeiXgno3pyAM61bcwPeNfFNT3IUDAfuYjr078bnmt64WmVfWNAYQ0QsuqFagTBeI9tDRdRritgO3BeNSLVrw2D+dIHqpBjowMsvneVSDEXfmWGoTjBXoV8H6mwvrOTsvhCorsN8MMWtuyEA9WsG68CKQ1VWRZ104myheky7AgiZArzOnH4goutHfPW9TzLirDh7Irh+iWwDCALQbqImIhZM3UwC0mXMQwkh1bhz2ngWsM769TIp1TfmrjPzYd2CaNowCCsIw6ldjOhjd3JZqRJLYdjeizeBzZspuRl95dJT7bsJ+ftADehQ+AuacgjuBblAq35elMz1qwX6qdzsAZKRN2e+7v67oa0FfTcWc1SJC5wHDovX+ziGAyX4WHNBI1vNmTnJ9GNOhL5N9INSCcGQ25oU7AVoEfbFxrYuDMfC5tU8jLpdyk2IGP4G8UIvv7CDE/LFnw9M0+sxdHQMMjZnj7wbweup7X+907nWpENGZ1lAXL2e5Q5vg/ufF011qsDWAJYA1AyTnA2b0tBnAyH2mFQM6k5YGQbFxaZaGMix3fP96iegux3tcJnunbECINJ2N8iFx+Ov9YVULXq5zD2NfMWJE5xgwdlKrkPGYv6OhlqMKQ43hEJoK5XDoS3buk9EelSAe2zTCaHz1lJcInAxQ3oNzT+YByQhAXa3t/aNBFGkbBCF4gEe6lp8hLoiml8WYBx3W1lYnnZrgMh2qViBPxJo9OEndDVf1SNXwcr5Drfkqh/xim04SEUTZH8bieDzD4JHL6tX6bBzl/eFz7BprysT2DNi1NSCQLtBKAVbfB4IOPoE5rSZC269iteY3xJmAeK7vjavtjaIapSND8LEgxBDJWpE+POIv7rxOJxWwPaBEfm9ar5hr1tKSjOFQ/EhrzmAarQCX6u9pEfaye3sLAIjR+D1tILQwnP21famQbmdE2QfKtwfUK0iFc+8RNgb88njz/zzvSrd3xD7M3nXHVwvCAGvvBjpINxHafimWRrKleZydoqERGIlfcS709PfuUSctwNPXEtsYmlI615yafRQMQDJUAMg+57sWeEohAgQPMd0+fL/vGJeKUQs6gYWl2Lw/9RcAHEQnC+Z+k97f9CDIUvE9iTpDZEUNNW0milmma6zGMCkA0I1B9sEOFwcqRp/rS8TsJA9eUcfg8Hmm13pKa7AWsn5NvtIedbATuCf5Xm4A0Z6cmZQHzT7UU9oAnes8Z+DzLVeJyPT3D6wwOgoyHdEy+9jEYsch0st/K/c9nitsR+8w4dhjpDWXUAzHxe9zcEwS9Vz47qeyzQdQJAb+E6cnp/j1bnOuA+fodmgg0KlPjmnWqpAxoMxJbw50tRoaH0i2jv3fHXMy88h8OJ9bLO8XYsJzv9bssJ8duAMN/ghUhBZG2Ezqe9pnDnP5AGYc+5bImRwj3yG+XT7OV17J5jgIHPv5Qn08OvUf2pfVEmOuydGxBSYYgjTXgPkZai/l1IVsK+lw32F+Nxg6+b3Odgc/wz46AxJ5X8hjlfv7PJcl9RncBGSVkc8u2lc4tv93758ExzWxhQRcB2x/2pPOz/wbrz8EoAC40aIWMdZmUaZ63yfl01HrcXXa82allACEwSXdo7nfH3afy2IHHksSqVpUgc7AbuWM7ECZ+ZO5UgNFkOTRjY7upaaCUn9boLWgv65Gg1+rRSwf29RNeLX8/u2lob13LH+9Y//5gn5pdlg/7WDvmHTH+lBsL4L9xRzssgNf/m8zyrblhvIcqL/dIQ+j51p5E4HeFmQRQR0DLANlKQ9uCAAmxtdnPqf1uU22qKmdo5QdECjU0cl+8ejPby5Sd61mSJFiWBDMhv66Wl/RCL1v6bAHRBTbawsNAy1wATJL/Yj0AQUsQkeKY4scYqphAxWyu9jXNlDeNoylRtQ5UkuKvQNg/69DLIXl2xPl+7sZ9YWGTpkGErukCNAAdU5sRKl2RXvswWIYrv/Qvm3m5HYFikL6XPwECNpbR3kMNDcQRxPodTIEVIDlbdh7vWsY//1S8f6fX7H8umP5NYkkFXMQlt+eDqaUML6VoOXqaQxvu+3fjGY1AVAwKrC8GQqwfPfohEfnnreG8jDnff3lGcaruiOArqhPA2c0Rf25jsujR18yVam74BnLnelSzGZ6mgFansOisvyOa3WUzZyb7uAOldrXX+0+5bEDm+D6DwDFHUuAF6Sxu/Hn/5dh7A6l848C+f70dvSIcuZ5AfVnqaL/fAMAtG/P6AP1OvfLX++HnN3Yd2hQqVoZR7+tDLVSl4CteZYtWppFpJiqMAZQqv28D6PekrrX2jyIToeWXC7A5TKjnXc/fNz4OpRIoxOWqbqlAK9WfhXbPo1Bj0rlPFNhlRKWoQSA0g+CUIKnsy/6oV/CSGvNmBovV8jb3QADHz+9P0zLwoEX+fbuc8kp1dx3xhTQLFVmOcFS3PGy/R/PHVpMLJaGoHjOUf31bqDktVn7u6eubPscE67FrkBrrvswxy+cmtbs3FoqSh8OOrdwwpdfrS+N9g8DAOAO9LBxCq2DZzcw4WL0fJaDlD4cbBOPOsKA2NX+mD4D9w/g8dXO2foYKE9Li9AK0zW5uCByjkB30ymJcXRgg9o9XCvZmSvbwGg1ysuy3DI1HupzYH+p2K+C4ukD62/+LhQG9nYQwOxLxX4rkAG0N2MtjpcL9GLpamYXTDviUOVp2EKu72Yf7K+LMwJ8XRY/Rx67pXAk8JxMStN9sHQFpmDZ76czTXbe8DMOw5+Z8uV19XmFxZgv+4BWY5wxoBKMtAIHsgf0usw1KBLpDBr24hLVgPpi7LH2NtIZW6BliaDBCCE82F7rwLu8PSzCf47eqUD6jrE2jAv7YljZSpEJtFP7idWdRKZmQhGMWrH9vEA60L7vsd8O3+f7YmO8bi4qAcx0HYJmY1h6A/VrxJ+7d4viwc55lvqN+QCY8a1jggkAxtcbqEuF3YQXQ0Wfl5fCtuf7OO0dEC8HzD4DYp8IABWYzj3vGVHGiABF+8LoX9OYZwAEmI44BfWSA0dRPkZIQ2+k1ckA8+obAJDp1NlpPlQq4LNyvnh2KEUP8yXus83yyZLfW9Wi3zK8zGACLAh6c82oToA9t8vPv6gclLYki27vsx2M8DP9AM+UVpKBcIn3inFqTEU00MW8N/9OLrvch0eIzdGdFabS3M1tT8BBUPD7sKDDns6ak6bBdLxPWgfZQeY1RqRDfKhsgQ4DwdKPyIwg+4TjnctP0p4h+N+TjUrQp6Y9JINP3s+5LWd2g2lczH4PxmQGCj5hJBzA0DGObQY8sFHnfLaHzXcBEMKJIpM9wjnjqR2fCjJ+xrIoggCcct/oACtjxMV7nthfsz8x56X3wwcIwhnXFiQ5gVnxXO4z5fztD9c/CSiIyH8J4H8F8C9hR83/oqr/VkT+DOB/A/BfAfi/APz3qvoXsRH6twD+OwBvAP61qv67332I7/ERyRLfzIm2A2A5KFZzEP9cIC3gIeSRoZ7UODXRB3lopQmaDxEAkyrvhx4p5MXV8O1LaZMm3TQdHnboV48mVRfUM+NNUsqEdBxKdpnIi79fhVEu26ROZnZAIUuD7fAoE9F8Vbt/sAHUqaeM4jFX/eGILp0bAMbVSZRdNnFoMAVGk4MDMKoLgylsoQ/LrQcQ+ZtWfo0U4NM0qAYgxP8FsNxIMhPYNoDR+XFJ1Ru4Hprv0e4Qi9PYiXROsbH5HZ6txi7pdsDDx+FqNchJlwwRsUQZjrOZaGqOdjPa4ZvLuexZINViBmsdCvVcWrJK+nrcCmjkzTQTYL8IWk1lf0QwfEwNCCuWK27dggGBFEFRaieM44bj6KrIBIZY2WIUc+JHFUvlODupKVoTQop5n3L6dDAaAFsTXd3BKaa2TwMzob9l10xemHOCjvnJUa7vvrn7nlIelsaji4XrVMQU6TVmGKKU3dYha52/cIdDxgCeFpVQr89+uHyODQJ5+4hImzq1XjZLr6FGQhyi2RDIdDmPdlGvIIwp/1vosA6PgnwWOVQF8iifI0HZGOXFQ55pCPn3cfiPeXjzZ+5865ioeL4sCpaiYgNg7WQAlrKlSX070/aKGCjh1UOC0ZLXX8GMOO19ClxyTg0H93Y7cAk8z1JpBUHfGmleeZQ4aKrbDmkVoyzxe91KMBOYJjUnpAMJZFfUSa+GyKx641HFg0AttXv2EZoxUXKR/appzcFRhia0AAAgAElEQVT2VUv1i46nTxXTYTQJRpx1vv8lxk4CgPq0z9panMCkMFUKiPQnSY4H05fCMeJZxKpF4kB0jkK5oU7NnKmTICTdTdtqzN2UZsTwiPug7Uvbged0sZ+BQATv0+0uMda7AhiQi+tlxBzwM9TnmubprbYWFXP/izXhfZpXAlOl5v28ulCyVWweiFVnghmXYcOoHparkKZJkIr+J4H6hWcYwBLBIU4u/sc7kmepjYmPp88dY004KFMS4B4v5vvxGMf9uecJ5ustRbmjukeax2OxFMeodsT2n84KSeMTKU2Asw7y2Y+5r6Zx+N1SnsX7kmuU9kTYguPkXKTnnPsl7UNA2pEPjssPvs+9Nt1nttGd/FqO1SjyJfLRkVRF0K25dwqmA8hn0FESmc7cZ/c+O6JpfztqDeR/c06Mg0N9nNy+7ydhVwHiHMw/+wBAAxMAYDtLtp91Mhfo0FFcMfLIk6OXGDO5AkQ8Z+R/2575KWsgP4/ve3YSz4wTnnHZD8HsP+V5yO/+f7hm2Vlf18AnwAI+jMvh5zLZgvTHrC3eLwSkMjDD6xQRPzz7bNP4XBGO5zmV89zOfI1P+vn3vpc3+PyZ3KZk99ozEsvhdL/PgLiYy+M0V3K51fPP/ylH/2zLsV3n62z3fXj+P339LQyFHcD/oKr/TkS+Avg/ReR/B/CvAfwfqvo/ici/AfBvAPyPAP4VgP/a//y3AP5n//uHlwDBHiguimRGVSqx4tTC+m4K7WQAUKxRi0A9z3GszVMTNqP31xHRv5JEecZazRlwh688hxv5jtKWAlwqxssXi/S9b/PAYVk5b7u6w9m2Dnl6WZ3KXEP70vKbtX3cDPVffttxXa10XtnMkdqvVvFh+yJxykQuvkdneYD1L+boFvDA9AMuFK3hVHdM4CM5wqY2zvJdMKN66y4uOTcTRijL1k1PYrWI7eM/uxg938sYUkCwPlL+EeyZpbuI4pvrB1Dt/LljvKwYXtqq7LBSiQK04hoFfS5QlrFq7wN9LXj75zUMoLoZdbzeh1GD3VAeP60oHoGnqF+/NaAB7XsPh6w8B8rb00X3mLwu0NdrRCNUzBHtF6eyOmW+uqO9vTafT83GvpkuQ3UdCHPIrFrC/nUxpsl9h65GSy7P4Q4rzCBp9k5NBtrbQH3vHr1zwKSUMBCNuaBBf6WQZJwzBKQuBc8vJgYKAb78hydkV6MB+zzjtlK3AWywMmXiOcldUd876pti/UuiVjcTnIqI78PZDHSKBKYDQsV04EjR7ibMVd9KsBNEBPK2YTQrI1p8DdRqlO/ti41T+95BcVXZB+r3LdJQ6t3u1S81oooDFaiK/dZcgMyjCXU6MvW+Q7wihJaO+r6508mIuuXMy7c9Dvv+02rOzGJVFBipVRGUtw31l3eMLxdbQ1+cifW2W17/9+cUNny9GVrOyNW62MH8dp8GUe9HcTI6rh6lkm236HdbbU33Af3+BtkF+uXFHY95ILIMI54+9z9ExtJh05odgs8ZTTog9HQUur9P/L5adJ6HcGsQGdF/oQORD7Yoh5QP5AqszSo3/DamRgQsmiavt3DaZe/x/vZeI6Jn6B3y/rCykrhOIMTbN64ugMXz47FjXBrGRaK6TvUKHlksjdo8YdDy2esCim0ezhl+1SO42gpwXaAU3wtjGZPa7w4h9WDGItBLRf1Hd/KqQNdiJVR3AwVNPLEEgNAvng7H7W74H2f9aAWKg96Xf9gC0CZDQbpCnsMcXWd7aK1TCFCA6mcqy0aGkK7v+aJeOaIL+q2gA1hge8P+UiC7AZmXv2y4/r0emV9FIr++bAP76zJZbuJsi54c+93rUwzbg4fvgdRFAFNXdgdB7g9IH2iqzkC0COf+ugQjKhhf3Hc9ACEpUGDCisPSDlagvy5AlYius9Sm6Q6VQ8rVXF8IJ1kdTGNJyPIgpd+N+RwgaSWATQZkcplkANheK0alcK1i/bUHu8IeAGOzqIMnDraiCsaXa2pjeq4ak1PuG9p9m/oI1eazPFNEde9RXSaYYqWgfDdR4fp1Rg45/mUbKOP/Ze5tWi3bljahJ2LMudbeOzPPve9bQlGWgoW/wLYdwR9QPXtSiFCdsmHbX2DLH1BgQ0EQQUEbtm3Y0J5gozqCiCX1/d57Tmbuvdaac4ywEfHEiDn3znNvCcKZcE5m7r3WnGOOz4gnnnjCIG89Um/m/Vw0eQZ5HJyY+5iDbbG2t+7ACLoHYKn4l84bInV2nUCZyAx6MfDFsnx0LpcGQCagRBCBaQN7B57b8Vl0SFRnfn8w2nIPaOU7OcGKU8Ofq85ydXXvjDS1mtsue7DDSJUfBUw9PavqC/ivJPd2LJFiF7o+5+oMeY2egJgl4yLA0pq6BxzvUZkO5+sEEFVn2xBO+wncltXPVXtsfs7c99mXEZl+xxQhqMH0Co43nVoAFK5MfYNse0tb/FyCsl4fCvbxnVjNqZZ+BGa7Qz/ClI62HNalAOGIy/tns3/Kvw96ZwQ/9h2GBYJ9pq2UNI8sr8o2c84snvudfh2BcEbRz8BFBYQKC4XacJm6EOKldlkBsnzOYFWc9+D7mx1ZQsAs1wl4W8gK4fge7JIxv1uBQLPUGcnPMZWHaTHnOV1AiUy3AZA6HSfNCusjSo22Kdy57/OZBJ/Idtq2OQe47vqY9+d65vjW+9RqFNv+4Xzl9ScBBTP7RwD+Ufz9q4j8AwB/E8DfBvDvxMf+CwD/ExxQ+NsA/kvzp/4vIvJ7EfkbcZ8fPWSieYH+HjYwRhEsIqR7RLcvhRnAKB/gzhmAdj89o3REKjSf2kHao1cwGGkoTsQJYC4+gEgriAhJiQxnDeRAEoVtNzuU7tIHKagW+g+ektE3RFvilh1JGcxLmDuq6Uz5u1UwgjeIPypaCOBA165h5EApM1e2HnYWxlYYmoxcOFAz0zZy7EQOhgyjDFxgNbqlxchJA4vjMgwMSzPqrDtFNQOM6FGyMhbI1BYoqHVBGB3IsRDv4iIqEUQp/WtzzrAfqQnA95SINHtlPwdUwH6JccfW0zGgiN9oIbL24JgZYE7DHuJ9R8Mgy0C2yc7w1Bk7RPn8xTm+9m6+Z8nNaIuwwkib75nrkocgwY6YLgAmI4bzjkZvbPrv2qIyxbA4znXt0BE7RK0wU154OMWkdkHQ+GBZl34flLrrixsWwsi35VjNuQ0YIooW0SczpkCE8UhDQOQwVz1vMz7HPPs0JuB2qhn6ywX7p+lcafPD2PeZU6SCfcJ+ORz25gdCHgTTaH33ffZjpQAyihF1j1k5JhkAazHiz0aflFJm8ftD6Sz+mWOFudfU9pDCmlEpj5wdy3jFPPooYjB8/U715TEP93z+OBosY0BQqN/cn073NhoA9X1SB0MxgboJCGT6zHns6sX9BLHntLnHwAxys5OBAhz2XsA1RYJ1QMDV16XM6HWw1iT2xUPucZ4PgEmZV+xiQbLiWILWQRVxIKcjWD3+BY/Qn9Y6z9jyX62MkOuIXWWYOgZN3p0jyDQOgfUAxi3O8iYY2hIoYV+1B1K/IAGlEdo2la1YmFQHttGp/WwL2W8Y5oGJxgpJfO/YH2Jcljfvn9QG0Ngfk1GDdDzPDIYsJ8nfB2sDpf/n3ApmRFSZSFae2RSFVFYTAWTzsVKWQeYZBp6ZdmwHPDBbwZLaT4eSjsxlrm38yGkgs8psCszC35dq6PogM8eCyovCfDnZRWxS6lidfqECS/sgqhHVvanusyIzEl33ATKFRtHfonMe35v2A2afqhydEDvd+9ClcmLhnfbE2n/8WV1rCgjLh+XcN7xjYZzHoz4v88VlOndpC8efRX/C+8Tm3nsY+/Kc8zPPdkt93w/a92HE/PiBozNa2Bcp7PeRk5jfpxM5I/RnFkKelx9ddCiT7SHzO4ojqPHR9z8CFGgXMmXkoz4DYj198LPDvRzYExvzHVIUs6wlghLpjFb7ZMAsmH7n9v4ISAKQ4FMvtsuvRcB/9J7xXsdz5/TZd4EIIKP8dex5j5qGQFvptP//Wdco6zrsmdRSyqYWIOrPuTdZMRQcrTZCfea7z5c1ACCFQfneVuyCOncIRJ32Gnm/1eb1L6WhICL/BoB/C8D/CuCvF5DgH8NTIgAHG/7v8rV/GD/7FUAhDOt9oF8b9k9XrF836NvuuctaDv17RMSaoH9asX1eoHePEi83r/W9/f4KFYHeWqLzjSUQ6YSTilzEkCjyyHrIToltUBqVQUN1uumSuX4CJFDgOasLcPWqFbIPLOFoUQneBbIaxlVdxf/h0U/A2RW2KPaXlkAJo/Lrtw2ydYzLMg3XYZHfXSJkAlce3wba94dH1IK9gW5oQedPAbM239tUnRYfBi5LIyrp/iFyaU2wfN89yhVlEJ0KC1cJj4W6R9nIBQ6IkMYJC6OxLd43uzM2oB5J1m1g+eaR6VlNwTLHvX1/eCR7Gzl/cDJCaSCSWUARvFrCbAmBRIoPjqcFsolHU1jeKq5xjRKHfThT5jaBgcfvL4AAlz96FFu37iVCX5Zw+lvO4cvPyCiPLYJdfS6MVbB+2z3XODYZgkojIi7QiKaboQfd25obRevr7voVfG+q55rNKilR2WC5D+gvFgCPRwUvb1vMvXVqiQC5cYlFDmvMr35pIeblxunl5z2ihEu8X8wJc+NO9uFCWoiIWi+iY9ReuC7JOOovUcIxgLj2dlKIFmejJLAzkEwmAKmBkOroz74JT30Q87J3JU1Eby7slRT6oB8LAaNFZ94lHUHm0prnP2tGIgvLRQWqAhXBL3/rCW//iuDTPx5YX53BgkuDvlyBuwvoMKqe/R8Itz1fZ67uY3NH/nI5GOU1MsN/y2PzqMnnF59XpMPSeI68zzyclwXjd5/dYH67Z76xBQqeomE8kIKF4I7ANCaMh9Uwj6xoycc1A56f/JmvbzmsNoYzH1qg+derv/v9gXcUyRIVsJpDWkGRfQ/hKpv5nmyXLsF083knDze+UzMj5/BcD/pL9OXzJVJnZk6p7F4ViPRne1rdKNlLWgavRTHEKwjYqtg++x59/cPdz6mLTkdzBPBMHQIDdFPAorTwPqCbz9HR1FOZbs4Guv7h4VoMTJcxwNT7Ydm8ksv9MtParLm2TL96315+6a6fsA+MEPVa7h3ymCwIF7kD5NIyT97W5gB5gv6S7+3PkTzbATjz6DU0Ij57qcl2cwcgq1g8PG8/50oAq/3asgQm4N+TfWD9uYcY48Od+LVFdQEXb2UFCV/7rDIVQPqisHaFwTWA2M6xKvpzw+gGvahH91dnFlLnpl+B+18IlhuwfDc8/bFFqU/fq9qtQzDZXZ5OOWbAAmFkhiYUjbpxXf1s78NZJ8EGI1hjTYFFMDQYmOp7tm4dy7cH7NogX67YPi/YXhSXb8PH9tu0g0zgqWwABqKqj1nu2QAmYBupLBZ2y7h4MEhvm5eJfGxp0NqTr4FBQGnRBG8EcIYCK7NQdyUES9efb0dnP+woaNhgRfcqWWpRCQOYYAjFIjNlgWDlmAGZd8BnrH299dQkSKvgDJbUiCbLX5o5gDGGM1truWkKfA8CFDb3bWod1Jx77tX5zCOYUNO6fI0FC0tk6inwXBkBEALIco/AdLiGwvbuTiSjn7ViAEEZVkjIe/cP2lzAZlW4PoNrx8i2TZp3dqvFmUcbdYLBWZIy2s2UOKMgYvzOyJ6rqRxUwa8lL8eY5wrHjGKTJ2f1IJaJ+qv4ObULWKKxd0AjeMD0gTpf2D+cA/wZWSQVnNm295Fovt9B8V9+7PgRHNDSp7uzHeyB2QYRH5taxhl4D1REv2QJUraZIBbT+uwIrHCNJBhXRRQ5p8kyYBrkB6DDgcnRB0SKXRP20SHazj9rCVE+2+zweblogoQJECLsgV766dcAOQYATsAV54iJzqqaTefazDaeBlHD1liWqW/S3Qe1qruwLF5xZCsaVfnwMd9fdGqRVKHMCDLlfsM+XH4dMvizAQUR+QzgvwXwH5vZLyeBDBMR++GXP77f3wXwdwHg6fo73gisgpCfY2RlDeq2xMZP4ZwQo0qjz9wwYa63f8gNEmFEKBzryTqoGx9ioth0fikatHpZRrNCKdzLd4FEvaECRDm4LPkXNFWEEeOVLcbMOTVzIUAzLN8NrJvdbkBGKGRGRbOONJ8XTqpHZS0MRxdOpFBi1fTwaIbmextcWGwwhxeYFSuiD+gQzj6bzrw+UHJdMdvISHgr/aYR8a/7YpbgwiE1g+r4B8HMGEeN1Ab2FcWkAGC58eCEv5/4vZQRfoRTz7NOXABN1nbYsF18r7Q1WAUEfBjF8xQTjf3TIsUEmcvMseF7Mj+YlFvZUYwiiZKWLdXNAUEnuNJnRE03Z7hQ4DAjMOxX9XQgj6yF8XwP2qe4A2GiEzzi2ilrfP7Mf04djvYY3j5DgDKkMbNvBbZGOhFFsRQuyrgr2muUcWueIiD7gF0lQSsAsD3u1+eabveR6vNJ3Y3DTNmHMSe0zscClDghx2C7lEMnIjqP/m4vz1Ks2a96dBLpdA5AGImMn/N3sg+srwP9qwajhmsGQd1GOuQp6FOjWLzncMMsR2jYFEWylkac9AHDng680MiqjAazg3igjQHZ9ynmmEaCTKpiMa4yCtR7bNFxAJ8Pcw1ByGrQkuHAPY3fYfSizEOn9snxgGQEaAlhSqYq3R9IMTEsbmhU46MaAs0NG7mPCXSwQks4dU7X1DwHyMIh4GAS83WP84JGSY/Sk01CNyXuwfmR4xlnmSFBU6ZUvKsug1gL3HfM965cB3Wvij6yKP3KMq+py7APKBTLzdLSPTDPYt/uF4VePcVwRClGBXLP1cecswniDaCVZ51ZINnmYal9MEtDGzT2d0b7dfN35hlkaxGY5X6+czxiXHn+sL8HQkfB+9lFgkOYeB94F/Fnf8f8P7xD3Husgu0l0kbKFFtu3h5ToK+APinwFikXZNDIebAQDIJ4LjDXKOLdIorEcsSA2yoCT7v0d3ew3cH4WGPXFuxPn5cuvjkSlOf9c6xsnr0E0oGYn53U6LI3dZvnRAAjbpiW+WsRqDGZ+2vVpuC9wqE5MBqszF016D7P9Lo3klXGz2d7EG0iK9I4iDjYVeky1jalNk1c4+N1eaBHH8ZUkLTlOAMP7wt8fL96sU/4HYvFIpJ70/nMOdxXo88TEKhOnDv5fr4XoOEw38exfeeoN5+bOgOlvXLq0/rdoIBbOXA9ZaS4J7xXOTPo4HuUepnvwnmwhJPYgXhxHBzTaKvxjGMbP4qW/2hcslxfOQcZcW8oDukRBPHPjWP/ZNRej/3Ecyg0rkwbDmhBL8+p7WqI+TgrcRxYFtG/grBrGLSINkjtj6opwf6hdkF5rrM2RulLBoN/0IfpNxHEqOeyHtuZvo6W1AU7/smzt9iD5woVTJfIyz5Yd0YwI+xBFPuzAmX1++P0M+AAtPyQVZOfZbAk7DrFQTT0w+8FcGdmc1wKa8NZcQ0nf33aZaw68u7eA4l0nBkOv7JH/VmAgoiscDDhvzKz/y5+/E+YyiAifwPAP42f/z8A/vXy9X8tfnZsr9nfB/D3AeCnL3/T9/CIYuojNmtF5LaV7y2en9yfPEq/vEb+f0xY6Ybl+zaNY47vGgfbmEYPAFRaPRHrzIW8LOkIMG+eByzRKqrEW1lYVMDXVy/9h8fuh9iqkUcoGFfB9ixYv8l0RMwAcZVxNYO1hhbibRjD1b8Z7Svv5n+nQTUOB6+tHmForxvG04IqfmSLGybGA109t3N7WbJPn/7ZW9ZrtqcF/WV1deeHswlMJPPsD+Mr4obmNlDrW9OhdbYHDukX/drccR6ALcC4Nq+6UEoJemkogz2tHjW5bRhPK/ZksgDbJ9+cGFXzueBGfHstGh1yfL6X+2ueY7yKV1x4DOB1c1dg0YyqERDimLe7L7b9U4N0xQqk003jON9zpbJ3pCrsCOryFHDzfF3F46clD6y+AgjDuvWp2L58exwiRWNthYboBmAyXsSdhfbWnVmyeIUMWDj5m2s6eBm3lgCc3jxH12uvu1PR7h1669AoQ9mf3FhdvvdMERiLYH9WLMPQ9nAeDNh+Wp0pQYX8a4N865DbA/b5ihHsBwAxhrmvAwCWr3fADON5DdBCE8RgX4zPV2elxPymc5FRXhGn/CLmp6qza4ZBX+fmbodDzyCPYDpdm+9PnGN9uAo7Qc+4ZNshtzuYRvP8Tx5YXh3g0d08MqpwXZFqFAc7ACx9WKLx3gklJ9PMI/iAAwnr6lGOvR+AAbvd4l2i5OKyeAR/3w8RMesd+PmrAwjVsKNRtMU6VJQDx5xZcL1M488iStMa5OnJ7/3YMjpit/vx0Fc3XrwWdjnoCAywbTF+dP5x9RKTdlkdHIjfZ1nLELI8Go4y01Yem/cTU0/ujzDUi7BbjOt4cuZS+74dUlRYVtiZGDP6I0MwXi45v/xmnBzxRx8OIsP3IdkM+rb7Prvtnh8aQDqp9DaCYZRGW3GgKojWB8ayYP+kaHfz1CaCtQOpa0LNF9L0dfPx3Z8VsgqANRhpvpfKrukYtVtP6rlsHXLbIOL5yOPpks7/RA2msyPBXEsQOZ1883VO0GZtvv88B4PpEnNI4DhNn+Bqf2KVGjjAemHeuIU+05I59np3FoNs3t5DyiXbGaxFew5GXfS97ob9SfD4QqMZ2X+XPxoorEy9GukCPABdBDCyVqI/A7Vm5J1z20KrhUBcTYmQrRfbI85IwNOIoqIVS/71zxdQ5LY9HJBtbz2rXcw0MZuAgBb7YyUTMhykB20vgtw7cI85HH1oz1ffB1j1pY8jSCLBgqTBnY5UjO3SDpF+MD1hCAC/V5YZ51ou75DCq/D3sWU9pMTwd9YkQTBImzYl+3kc13WK5fK9gNQPOIK+vIEkAC29w6iUT+BjnNbt2fmoDnZ8x/bd92fm+lfB3DHe55EzNSty8DNNrTqETQFpzkwA0hExvm9Vva8K9HTiwkFPnZxkzUqekfW+bncqyFTIzxIMrs5hfP7guI8eZ90a+fn1vpxvu4MKDfOMi8v2Ptu/lHz003jUcpqHYYnzIe9jNs9WKXoP9Syp/cRxWQrYMAbQZX6n4htjHM/F3mG2IcuGZhoK3OF/ugaYpXNOZB9PEMrz9qM/63143z77wn9enP/zHMoxlbx/Tfs5duAJPCg/s6VBtOwXtV2lpPVhXGKOJksEKFoh5f55PofmyZjz0vU2bIou7/24HtkPhWmZGhyF5Xl23OnYH9I5aR/xYqULslk438/pDCx9eb4IXMrsewHcJos1KH1Mtmfc+5BaFcyjQxt/Degs159T5UEA/OcA/oGZ/WflV/8DgL8D4D+NP//78vP/SET+a7gY48+/qp8AuHFlwHhZ3cFZfOMTOvh0jOmAhFMukdc5rg1YMEsxAUilZFv8jODGtLZ58BBMiM++Q1Pj7+msD48EjGtz0CIiGqkOHMCAArBxyocG0khwen+H3kPAsB7kmPeRfQD32Q55faQjY82BFQob2mVJZw8IR1llOuWclOI/Nz+Pk+VgkRoyI9geoRuXiMbFd6Zaa+T9r27NHYxZRUbQ+U4puhilzA6VI8z/54eqpGifiYSd5AezQVKg6PGXz3m/cW2pgcCa4daA7acGfaiDTuFIu1HhxqaJ+HnF3wGpJdB2c2e5iHTiIcDaMJ5XNw4tjBlDRM+Ado9NbwAiHkU5Ow/5yuLASQ8NBJigPy8ukBiRwH5lioYb+LpNA6hfNQA0CbDMjaK29ZwP2xd3uNtjhHErYE6t14yPAUtD2CCPHTr0IJ7Iq+0hGMf9O8QkZ1qK94Wn93i/Lm/BJmiehEHgR2IsiGKPlxX25FFs3Vx4MSu7LMCwaGcfOQYJ7L3txzQNDWDgMfJ9p8Eoc81yaCKS/Pj9k/f159XBws33l7Eq2q3P8m/Dqe3uPD1y3doIgzOMG2MN68uadFfpI8AqAi9uYDJqKdt+PPwZfa0G4iEiQYAhkHwKDW0TOKEhJusK0ibNipHIgzGMuYwGmMEej6m9EIaCYE2j9nzlAV1pciy/JeI0yjBokxrLQ4yGG43n3t1Y5EW6LI0wggS9rNP4HIXdhOUb2T46KNt+pC7TKC/nAPUR7BoCbhYMrESqo727p0EJWUKNwpw251ew1WaU9NRxrMDCfbQFEIHLuz72m8IBikFmg2T6DktI+vsybc1SY2bUvaiA0cuGd/oF1FkZV85DRLrgmOxAnBw6APZ8QY91CglmgZR9Zhu+F7CcaoClMMuSxglMBaBti2b6VjKyCCokIIEMskofkxLP9x0AxMGTsUYkX8TLR9IAJrBRWGMyHOSR6E+mcbWHod1x2OvJtNAd0C0CD8PHgMyqflXc/2KBbr5HttuYYrSGKEkZ800khaArUytZlKG/kdF1Bljq/j0A0XJO78hUUxaGsLVNhkl18OF7re9nsY833yvsssw+5jrjumkCSFDRk8I85vuw3aoYL0+Q6zrTCjLoMyCR5iIjdK0q22ida9EguZaTbUKmWwH0DlpDZ8CYqSdVawpAig5Wp51jQ/CjRpfZb9ciNLuNo0DsmelAJ3JpOFSNAFKXC/sJKDi05QOvjXsh35t/5+8/PFPi1vX5dPQJJvBckqMbcVDcr8/g3hAOnxCc+KC9/p3SJ/GeScuuoALbfr7K98luO7DnssEO1H54Dzph4QgmsMCzMBl8RTyP/cj0l3O1jZomeb7YHwTcq34bL55fADAKGFf7kuyHpSXQJB9Fuyvw3HRypT4YluyrcFrfPbO+Q7aPrIqZMuBOLd73d44l0ulP8LSAUTCbrBb2e1mHYOpLlJC0Nsc65ybbJ3J8j95TcPOQTmGnNZrPivP3epltqGBGrZRwdtwDkDuITs6GzvYB83vnucA+PIEANoanElUgrNzzcI1IA7JfWUv12R9VKonrz2Eo/NsA/n0A/7uI/G/xs/8EDiT8NyLyHwL4vwD8e/G7/xFeMvL/gJeN/NQaUSsAACAASURBVA/+5BPCSNsj8kPau+r8+1jVo8CkB4cDr/vAeGqTdh5okkQersSE4eIdF3HneMR4xkHoytNWjL1JV8/82OGRj3FRLF/vfugy4s6NpzAEDmUv813dyGmvHpE6CLuV+zD/SvbuzojIzIVrV3foFwHuBrltjn7LNB6lu4puXxVtANioSjww6oKPi7oOBCRaKDwzIjEi977dQzegiTvlTVzcLoCAeIlwlIbnq44Ba0/RLjcGOwXI6MQALrik0+DKiNZAUlbpwD5+73oG63cJwzAEygbScX58UrTV66ZXwIMiiBB4TrAhUxa8IsWAbMNrbG/T2ZKon00FccQ9kxbayz5MY25M44XCjemMB3KbzvhwzQmyFMbq9cG9tBdwCbVzHy9nOOgWhjN7Pqp0MJq5f3InZbkFcFWoXrzXQUhrTDDrUHIs8sT1tk+tkNWZCRYUYt0dLMuUAhVgdzYF2SyeyiHZ16wVnoCCRnWFrUMzBSac/wAVDerzoBhJGulFXEPMo62god52f2YwOFyNHWkQCBTb5+b05N7c0L8NzydfBVcOrQC6C/Tb3Z1VMgNEIINRU0mDylQh6+L5z9eWjKH2zdkHHoWwOdd7KJ7zkCgGLCKKXquQ5NbBiMPFjXLbNnfMl+a1egBH0GuUv+bNbf48ahYA8DSKxwZbFmfA8TBmjucZUPgI2Q5wwPbdo0nVWCaYUKl3B3roe3RcQlshRSwHMnorkbeZxn1T4GHeF4zmBdgjr2Rr6PyTfZuVICYrQfcBPPZgf5U2DZ9f7TUApmEYjfTykWMnQFbPsTXOn+K0kbbuxovvF+PSMC7NqwAkSIvUtBktQNfQQjFBlniVmB+pEbCV/Soc8Nw4AkglQFsrs9BZ76u/TntMYILshnFpEdkq3fK0YPtp9edGagDfV7cADWJPIGtLKZ5oAgouagBUJr536H2EyGKfkfQwmPrz6iD68P2ce1nu3ZG3L6wctcTeIsgqFIh+Y9oERmn3Y8x0shg33Qzt7myj1KFQpFhu24rRvs+0gHFRvP01Z41cVsHaxFOO90h3ibPT70enJ86TEUBQTZ0pjhdgh8j8tCtQmAgxjyJSzVK61i3KU853pHOTwQBBOKr+c2dq9hm5X4enUy7upJsGUFGcq5F2jUUa6AoZi6dOPPYAHP0/siwAZD/wYpodCmiUwBb3YvhYZjrRsAm4CSDBYASp3wNHgDIcfWNAilHkMZmtqRhfaddCpl+czWZH9ft0nsd0ogiEFv2JbAM/C+AQLed+Vc+MMm6eBz0iUjzPpvxuvZ8qnLr6gePwDkwozhidtRFtIbhCezb2QUZcvULND0CF2u90yplPXxlt574pQbn8j9H52saSq/6Oin522s73HuZzcGnAY8xouCiwyOGcsaWAabxK5P7gKANzXIqOgYmdQMQ2fx8+Qn6n2gsSDL14B1swAdKzXxLtOYAKbGv9TCvjTz+irLVDf5GhMwYyal7vVR3wOmYMrjBlBXGucw5xTMtaO6QUsG9VAETFkZrWUvdKairV9cCACPs4x33M79T3VCDFCwto9l4QcqCmXbxjBbDySX12dteJ2XAem5oaE/fLyibR1gSnzvcZcV7U65z2wzV3Xhun68+p8vA/Y5od5+vf/eDzBuDv/an7ni+WROxXxbgqJOpuUt19/baHsehOyvpty9w5j7QK+perG0uP3cVoMlrfwyGKKPZw483M3DgN53dcpkMN+IGv28Dy9RHlvAbWfczUiOuklrDkJWw4+lYiZvKISNhDM2WDFP505uJAGJcG2QSCSJNYMDfVelDsLmAluzskFApJO3cM6MOwAAcHUUTc+dJC9x0D7c2p7v3JBcJcgMnbZ2OWvgTg6R8tGCMUReRiVaS2AGxSM1sI/vWXC2xxES19DLR79xSDJrO838vM3RmrAhGZcpqtH7ztPpxO/6LpmLeHG6pPf3Cq/fbJQZfH7xa0u0eFsUd0jA5lRNMphDgiguzz7oTOi6TjwMVcAQLOA4psjWWW9YJ5eo4OL92m+0yT8N8jgTLvH8Vo4SzvjGwFWBJaIHq3ZAMIxURjc3RqpUe9Ms9YkOupRl/WXzZAgD1SXfQ1WCK3fYr5XdfcMGVTNBHooqm3Qbo0QSZG6Go6EVMu2G92AW5//TmdHFdKF+wvbnwur+6cEcCxJtCI6IzmzsDybfM+eOzuqD2vURu9Y6xriLDtuVdIjAVC2DLBw0gVaQ8Xt2u3OTbt7j9jvjHFVo8b2OkQJXPil1ffKy4r9L7BWKKVh09Tj0KboX17RAlXzdxjWwgQMuLgqDtIyacDLDqd/Gr4MA9wCSHXECj0vPKglTJUTibSPWhRon7I7TvEnO3l/dcmswDwPfTpOg9S0vXILKjML7PUN5Dr8T5oDbhekt6dgkI0oGgYLJHG8P0tdRpSoOgspJXDI/P3jKLS6KoH8xpR8GLwyBhYfn7LCKvsA7K6o2+ron1/xJzyvueYUST0ADZv+xTn+pBRIQdxYO7n49ownsRZSn0Atx1qhssv0+G33dfZAXyAoW0dTQX2vbzn84KxAtuXCR60hzmL86mhX11k0PdYBNAPsETl+l2xvhouv/i6sCWi1rJC+gJdm1PZxYFPAKGHYJ5+tZiX4Yt2agDw46KQIdAQYLUlzpo4A2DwM3Jt8MMRh/7Vx472tjkbQsUFMrnO1+aiu7EXXP7o85yskhHsqLHqFIl+vszUNc4lgq4B/iw3d9T61QEeD3YALPecArXDwW29uxDs+nXH7/5Pyz2xvfl5qI+elWlMNUEaZ1jRIQqg4amkA/AMoFhsYY75HjKfRfvRwSbvVwoMW/PgQruHsGGkjvj+MaJqSKwFC6f62rA/LdDYy5INlowxJHCMyyXT3FwHycWdyT60VWBbpPVcghn0mGmsXC9cw3nuETxQBFNDcn1zHU09CMu1fCjbCrhQ4vnsj32B4IRdlmPUHQhjm06Hlv0jwJ19HKOs9c/6Pp1Ot/dxph+whPDu9htFDfNZud+XPqIQa3XGKiBW96D6MxU/NxgBrpfgXUT08C6A79UfgMEfXWS5/VDx/gAOBEjLZlko6O8ftPMD9lyWOGREOdkZ7pxW5gLZGVmqMEpMZlrCjpnqEE52pgiuS0nxCuf23M957ulxfHium+WY+7vL0TEnMMZrDKAtOZdcsJaA1XmMbQaXVI5sHAJTVbyPF98zbOHDsz9ieLOdKdY5jnYCQZB6n22HVF0rsyynfdBBAkr5yYFc5DX1J99JZxvPIEbtn2qLnN7h/XeKg93mmIDrVwUU5Dw8A8C7NAY6/vsePkWZT9GfAhQQorJRuLnJvBdBH44f+7TOJabLymmdDn2/tvOx7ce/w79klYf/X69YHE7dxKTnhLOqhbYoZkAK0PGQCGeuBeoOAHRAWaGgCnEoADhTwUX2JCP0XKRjFZAbKjQIuzlV+7Igaat0lD5C67jJA4AMCJaZE2kGOZxkBUUi4nTORZLZHsRBWtMcUthmAFDL/EhHwN1JyfJ7UqPo/m6q4kDXPttn1J6ISUcHnhTawzBGG0UNZgEshAMrYhgvGmktTsGionSt5LCzL8XXBtkQrjyt+X4ykErk4HuE6KLsgu3FI+f7VRyVZ1MJgNR/hyPHHPYsg6bl4GTfBxvBoxLqxksY5ckWSAMNsRMU1gbnFA09tmOYK6brZCaIAdrd2M8+bgCGa1dMYUKbUYr4NwVOR90bPzjgldG7LyuMuXs8BLbdc94riqsKPBowNLQ+1Ou6L8t0bsC5MudFhSXFDEPdadHuDvxYoxzbAshwDQtfb6Ukpc5+tXC+0qAEHNgzS00PCrwdDE62IdaLqHoVjkWdzm1u+Du4o74/8/DmPlABhQ8c2IPzvCzOGmCkrTq9BCP3AaXWAZCRNH4uGVixLxhF+cwcSKBDynGrbeKYE+Wu0R3hAp2Gkz02/8yyzMNqxPxabBq1wNybyDqoz6uHMt/FSjShKn/HPWxpHiU0g3SfV++MTN6Hxpw/7Nj9I1gE5d0zCpOikMWoynUf7JYaau92TGuRAEqfljmfqrHR3EFxAT1Wi+BajznE6Csjk/C1buF8yHBQzPYGiei9Lc4Gs+gf7AaVPhlTJi4G2u2wp0iMHSu6pN6Czeo2BP90U4yLZNWCsQL7i6eQjeZ7kT5C+6W7Qyp9itxiVaAZhq7JjKARJOaU9LGQGRS28xZOulmm3GWkP+bYqOdem+c2x4x7qT465L4Fnj3PYyvRdMDZd/q2HdJLPAXN2XjNDNZ9bWY5yLi0W/zeIu3NBQ77hSlaiJSTMh9jH082GxQyOi737qDJVb3tW0/NghkBM6RYqzRvP/cJPsDKnEHzs5apK2FX8cyz01ryvaU4UhrBlM49s3y8Vnko70aAd8Tz2j5mu3U+y4MkOg17tfleZkdqNMelvGP+lcsWMp3oWo6a7SbDje0uRjxTVrDA2RSIPur9wCqsfZXPD5Hvd/vswFE3AJjruZ69H50Z5T4pRn76+axIEI4lU7Sq0B8/yz3vIyDhcNvSJ2dHDHjfDgmHJb57eBMCFGdl+XruFvvgcH/Oi/q+ImlDZztrObyoOvPuefW9wp5OwIJnKzCZex9debZEm6jpwPeswoA8B8Net9MZ/87BZaT4BFbm+NXgAD971og4XxUMqWCG/+TjdyzA+Q8vFRxKCeZDDO9ABeCUelGMbMBBAdoAOb44MWZm2mA+x+yoOfH/5dKP1it9sx/YcD+6aG/Xf3Ou1luUFKiD3hQw51dlA5AtoIag6X/QrLIP/SnAjuNFAOe8Tji29V0Z8KpinAQnalD7g+s3ASg4Fd+R5mbOOKBAXZaUYr7y292Nzusl8gYFsrv30D+58MQIwUa/uTt9Xit6KsczVxPwyOz2ZXYFy98t30lljwlNCvjA+0XIcT1MoIh0Efxg/h2Q5Rep+zA+T5qxLYrx+cmZDY8d48nfVb/e3JBYl6DNNq/KsIQxUgRXxnNLY6HddhdM0pJjaCW1oAkMbkTrbYO+bs6iWDTKd0mmQEgfaH14KejINUrxKzg4MC4K2yVV/VX6LB3GPbYsBEbq+TPdzEUZmxu0gDMwnFJq+Uxr3u+M/vBd+tWrIqyvzmJ4fFG0LYzOAC9Ipe+fPQIyrlOAcP+0oD8Jrn/Y0F5dnyLZB93zXPvziv68+CahcyPR7rR/3QdsEyjFyIB0tvXNRSFZUtOpwLF/hMhavwpg/g5Mi2zBSOhPOh1MAP15RROB3LYZOegGQUd76+6/PubGUMumOtjkE7jd/d3ktrko3e0+kdYoK2V79xz4p0sCONI7bBvQa4tyZZrv61oQkm2nGjywTE2OcGjUfOz14WVguUYlIqD92tBDsXiwXOXiTqetT5k/nftKH155JJz//SfXR4BI5lYn/hYimP5FzDkd7z9rzzff77c+KyaUQ96eLknVQx/AZYVdVoyXK1jFIg/Iq68tve1O/dz2Sc8LgCAjFDxYgvor10sak3ZZcaieUC5j+cmq0MtDrR7cNQ1qWebnLyv05dmjSGQ3mM3IFRF4sgpqebGP1LKJunM+kb77dM0DX/oA7o9ZBrLSnVvzPjaD0OgCXNxx26b+w0kH4nCFRoX/fPWzJIwLeWwuohn9Lm/30KupkQZvn4pk7joj4N7eeTaMS0s9FN0GLrcdLDVJgJopOCO0ScbFxR15f4+Im5eCjHUhW0/dG90HZO8Yz6Gjc/H7yPDIc+rZDMP+ZUW/aIgoeu5+BalNgL66YHB/FvQLsD/7miCDUui7NCSwl6CJOMPo8VPD5WvH+nXPvXn7svqeDeQe1x7Dj9LNZlvNUtug/XJ30JZMKJEZMKjzXDBBuGHoz6v3z9OStgSAjP5XsT72v4wACYItofsAXnc0FezPHpmR3WCL4PFlRXsMtLeO9duO9RsAuaBfFH31Phkr0B6e8uDgu+8rNlqmaEm3sE1W6KNP9hMB0CZFUDIEEu8zIi8UfF5CVyCYmLUkp5rPWYkABVPOgDl2UrYO7YYW45YiykAAAYi0M8Tgz3njYo9ME/SzdgTbUAywyBmTR2jExJlE9igDKmRxVtHEQ1Q2QZn4FQUz2wos6mfz1Ut7uu7QSMZllgnn/fYo+810V0QfwdeUQA+CoclseNjcV0SOjhbvHXuI1jS1dfG95P7wvb7q5NAhjXGhcy/B0mCwSci0KqwG/y4cuB7mjlv0p58plvn0mZbCs4TVBczmnntwMKQAFmVvZ0ofHXa2p7U8B1K0sDieIqGjc2ZHfHTRAc0yoj6J7AFkZNXGUQ2fY8G2msFp9JhpDxWsszmWCXacmRmNDLj492MD9n3m2xfA+nDmqE4NjTrn9u7BBgYY6u/N/P61rTzrVWbakMh0iKlLsXegGcRiPVXEpLTpKPQ4HXZS70nZl08vyQisQFFG2FkytIInfA7nTNGaSA0MUcxS83IYgwn2FMCmAmVn/RBg6kbxfWDvAoGH/k1bJuyP0/3egWzlZ3IWhQY8/encptNzJXzRvMJXPOiUtLmGDn0R95EqkP0RA4ff4aNraghLrDLlgmNYxu8dQNFxStf5kbiGX78JQCEvFVBjIMtlLWXTpNHXfSEZiFQCzC3MUld1QxyYg1pRy7iSan31qPD6XbyGch8zAl8mD9MmHPbnyGHmXMKBB7Hu0aTcvAIFHwO2LDPSxfuHsZRVETTEx8JxSmSVSsnD0xFQ79ED3QqEvjravGdS0T9AdVNROwzcLMdVSktlv9GQ5L8rcqbiyP+i7rOR7mje99JD88Dm2BJV1R71zhf/91gRlRAsGRAU8qQo2FmLyLUQvMGjuZG8v3jNduYhCywN3HHRNLy9lvik2U8KoQMvJgPJPghnOEtf7fEu0ccawmNzjDBFRePdvaykHJB+jbKf2m2+5z7psiPAFBhyrHR5v9hZVYFGuI+XphjWh8A1x6NGrdgJ+z6R+obD+HNsrYgpct6NBYCJC5cxUgdEdBOwVabRT+ZLQbctRNTIIMjnicyqLPVAB8Bcae8ImWMV/86/cm8xzPnQjmPmn8MU5av6KASUPjIoqqMucmAnzTEauUdliSWOwweH53yfKbbF39ccuVSsPpdZrJcN37hGsDWyrad9pX5+fGAAhebLsZzTe8cvLbKIUtRa43WPT8M2abynseXzaXSLwGrUjPRG9mGOsU3j64S0J6sBmOMQKTZ2KW0kbssziF2Tc+r9ospSuNVBU4WIed56Abt5r3T0e6Q5bEhdEAtau2vYFEO5XFmWFnOd7s+K/UlBUUXug3mprwEHdBEaL0i2lA1M1lX0k4XQq/8bySI6jCkNFpEsSVmBVu87y8+gKbeY8kIWhJqR5xTvL6qwJd5jIVAbfDaVYIOcKMIcimUyEFgp5ixGmyKN58iqEZT1FDTAGWhj8e9IADCeJlDW55jlmCU2neNYfWCg1+ujKJH6AFQR6fPnrdw6f2UTcJKwMQ6gTbEhMGZ7yHSZQpR1Tzz1nyAN/HdRcNXsX/9wmQf5GZmBHCBtvg+3mA/6i+zAyUjBYU8Q+BmcYpbnfZLP5Po/vOsHexNOn6nvpGHoyzgEI969hsZglXPFlKmymroIqS+R7z2SmvxuDojMNDqUPRa+b+a/22n+1WjlMAD9fXT9DER8cH2Y1lD7oFLn457vhCF/BEKU+XVwjIZ5n1fg53yW/ilgAzjYcdI0nciDfV/W3sE2qu/Mc77S/c+AVO2HPxEVPrxnPwFmPxqT+r513GvUXKMN55SaD/oqz1Mr4/jR38t1Ljn5Ybv4fZR+Lj/Li33/0bv+qO+quOepnz7SLHhfoaFUYFA5tI+fleMNjn/S0a+/rykl/Nmfmptpf3LdVABA379/Xd9Fu6oKOL6rRFHtwd96ygOrOFDhPssYnVMVwoiGOQVVEAZNRLf0bXMHtLAR6LiR+ty+74me0+l2ijnwy98SbL8bWO4Lnv65o9kmgCwKi/KVlbLqgEYc1CqwSwMk8nsN0FdA0GHXCyj2iBHRJdWjbcwUA0aenlawIgF1DYAnF6v75c1peY8NbVtdGZk2vjklFsONUL1FKbTL4oJVlwkotNd9ijKFk2SrR9T6p7WIeQ3PaWVbIv0gBRxZqUL8jGz3gX5xLQwvQ4Y0XrUP4GHOmBAfU0YbHr939PnyVzfIouiXy1TippNp3nZWbvDSjfHuIxgRIT7Wr1TyBu6/86jS878YePoX25xbGjmvA7nI9DGwvEUuK41QkVmZYfVFSsNYJFIvbKqUM8q4fOWhDS83t2iyYdp9AA+4OGewN7xUouHy85jvBwAGrN82tJ/f0G5X1y64UD/Cq3nsv3vKPshNmOATN4stjN9iRJLilJTgdXGEvKL0rIJBQMEso0F5iHZ3r7YvLZwQSQO2P0VKkXpUsopZeknWxfUL7p4DzFQmsYjyXhSPnxrWbwPtvjvTQUOLo3sJP9cgWWBdXCMn1mgtA0d9C+ossK8WM4zrgvtfvnhqzTINZd09wthu3Rk8b9tBqdsuazILZI+SRYtHkWgU6+sddl1c4+EtouB3F40lG2g8PUWevUcvpFQmSJEfIBkFtobg4v3h0b6MMAx3qp4/eRnO231GirAl4mxm/qx4jqyLO+VZnszBg9Qy4FzB8BKQAOyxwSzyGzvLPaofQCHglPXA4z4sT5UlyDBCTHdEms0WEbYACO53YG/OYhCZ/VLB4Zdnn+f3h79/RfjDKBXsQJcJVtScWGAKQTFKSKCEFRuYA33Id57RP1TnHuE8DD/PFlauoSjgPnxPDkaBaQgsDmB53aLCiuW6a989HY1zbjy5Psi4RnS9hY6BhkaOCLbPi+/z3UvE7s+Kt79U7J/8TFzejiwvAgX7k2D7FL9TYKzOGOsXQ3s40MGqBv3q58D61ftw+9wgHXj6qz2i+eo0ePG15zo3oXl01QkqR/+PNo1+2WflnmrEyD1KK7/efOz2nhHg8btP2H//7MKSTdA1ysn2qYsg5swka8EMif2c4ED77jnqY1XY6iyQ7XMDBFhe/Xy4/PHh+11hE1x+2cBKLePavILDbtAH2V+hvxJixQAOYEaWro1qV/Lw9ur3+zTol+bVKMKhttbm/q2uPyBbzz6CSOrDsNKSp28yyj+Ajkz/0NctP3NIrzSDkpJuNm0UC6BELEFVtwt03o8siz6ZDBLaNd7/UyfG/4PvzWPqG5i63gKjg9J7gid2XXMMZB9o3zfoo6PdWo4R00jy3C/luPMQZ3Ci5P7nngAkqyWjqrGj5jvTocmzJfbZoj+Un2kKswZH5YsGAM/tgQkYh6p/6kM8X3xMLw36ukHvpWY3BaQZxaYzx4COKuw5qsZESVp5vc2KO8leC7BDfd57CfcdVqgA8pHzQ5ZZsDxyXPjedHDChsjSlxWb+CgKToemguMStl865/PeAriY8JD5LtT0MTtWI6l/nh3yIrYnsc8Y9XqucnS0eW/OG/6b4BzvGelM9nzNz+R41XQB9tPpssJokC6HCHKWOjwHl6rzymfx/MwSjJEqqW2OR2GdZHoSUw+awEo+VI3gn4MFqUPRiDjHPSmAHAEJC3D4oHlA4UT2HddRdZbTSS9OVWsT9AwG5eESBWsvWh8p9sw1mndKwKUEXPhz2jJkwLBcajB0bJ96a15O9ATw8L1am+yDM4gwSonRMv8PFRzO6ULUA6mBldI/OT7co0IvC4i9FvB1R70t9TWYwt8/uH4TgALCqE40tSByNaKYf9JI5MtR6JB5hzRIeMBJ+b4FwtsBwCDNHZz2UKzf4cBEiGHlZKRxByRKb2ubYMVgZFuQ2gxA5NcDovFdbrQLJgBQnD8AcYDq1FKQeIbF9wuo4kaEJljhKL8vuGroMJc0nc1GB7BudARJpugGnb6k2MZekDRJlhUMMCFZGrmZ8j9LKquJRBroZCRwArOe+P7lMnUTFo/2MNJD8a/sQONzXXnaJAApdTQ/VY3h91A6sgkyISPCyRgYOM5FIvgC5xGovHunfP+IKtjieb+1wsgs63bsE/a1iQuYmbroJI01r7Ix8/J8njn91j0DnVGLEMUQzE0k503Ofxw1AIK1kkKc4kaUXGa5Ouari66QYNd42TCZ7x9rZo6797fXs/fPkHExjRQAHBdG+YEwmL0PWS/+0F8DE+wJirIA3ifDYFFWyCuMtKJvEWNgAvRYz1JzE33sOSdy/yn7e5ZY5P5D5fO9H9kodf5ERNKiTaAzHweX5+3Djdxtn33B/yzGOhxaC8DC5854X5rq3IY0HgYoZJWHc6YHBEBKw4LGDaOqZCc0mQeViv+M1EHeh6BC7Q89GUvLTFlIEIBaDJXZ0dqxXjq/Uw/eauRX4aUU3ZIZgYvvMo+z7oPGuvKXNVPWai7+NHJm6TphginnJ8FW1QDFZM4LikjBDSbdzCveBEBJTRChiFvaCNPwnbnhc366PgGQWj4BDhDQkGCVaMes9jCs3MD/I6jR7sEGa8DCPXiHVzfpsc2UteHMunnutvtMJ8r9mYDwbq6TUvR3EgwGkgXBvZWpTWQtSgD6BBNs3zM6Jo8dGg6qA9/udIzFqd3j0tBuApXiOFi8hGHuKZav5lPwbiBg7j/wcyirBMU8ku7vqo+B9dtIAFMoBswbLtOhphBnViGKduvEDeKZ8Z2YQ2n7iO8B7sQhHWMTzbSYGVyJtEd+n+8ZIoNy7+6sMxUgByhosnRYzKC0Q7pBaXvFf6lBRFCgjHNey5zLnoLGtYo5d3Q+n6WREYAISw87FVzzewQdFEiWaers1D0yzxrfW3M6k53E3wcob9A478LZGTLBhxnoKww6m/ePdh5+Xttx3sto+/UBkzgnmhZWru/FeZYkEBBOQck/T4cqQOgR2i8qAmG1AqZ5JSOsOG4WkdgKHlS2Ca/6fj88i+i4j6ODdnKG8p0YRa525eF+xSauemNxT6bISh1rlHMhgQ4aCB88o47L+d0K4whAOr/Jlmb/016oF5mepZ/zKn5M/hvH9ZMCfU3hERzDnXxzMgAAIABJREFUIepf7Yczw6deaYO07NPDu1cQnX0d56AABzDF7MQoCbvA+vG+h/McyHk7x2nMfq3VJGobSr9kGwKIezdXfsUJ5vo8MBvP6xGYwAbTNw7tkffvpOx39nmH2ZigQ/ZjEbk8V5CooMGPrjr/6xyNfe2gP1LfmZe5z/AhYz2fUfr0VzQsfhOAgjXPUVzenBFgi7jKr5wW1LlT1dHbEToC3NEZ+fRSVS0jnvOBZB+4U9HeGi6/CD7/Q8/rXL+FY7WGYv/NFdVpJNoq6J88/3n5ek8HdKxtpgkIgGuDsPoDHy0Kk0lxZJk/AKDiOysaWJeghQ8/HHNih2PZJCIUUU2gCSSME9azZl6vdK9kIJugv4Ry8uYG67gsLqK07ZDLghHOqsDQXh+h+H8HovQjWR3Ld2c49KfpYHL8MDAN5AEs3zeYANtPFwAC1emIjqgMwL+//asX10zYkJRbjXI3VNIW8/svr8N910j7FpU0Zt2IU7SHBkvC0N6Gj304/lS+ToM2NBASjNIfL2YHm8z3ns+L04RXN2D7VadzyrUbf2+37gZoRNkZ1RIYthdFvwjazXOIdTfsq+LxWbF+bWiqWUpu+fbwFMB9ZNlP3UnCnsYtANd/CLAEwbahCvgIEGD5ep+b57rAPr/Mg+ztnpHvdPzUSzemjgT7xSxEVQ3t5lVSpoaGr8URBnUTX6ftrYN1y6nCztSQ/Tmig2+Rh6xFyd5oNHZgSLB+XUelhe6K519zzcBLOYmgBRsoI9JNg3XiavrWEKkYcH9DcER7L2uuQTfC29Gxzz3LjWXbdh8bshkYWQrl/9RMuD88F7a1Y3SrD8i2w9Yl1c8BzKj+2Tg7GT9mkYt6TrloGjWz4zB7u/kh9/QUjILIUe7DwUDWLA6D0BSea6cCoHlFibPxJDKZCmYQjfe7P3zh0kl/ujgI1xktORmKPCjPBkONPgTIgx7IPp2hkr/J9ZjOaHyHCu/2Fz85a0Q9l5v7tJfxdQfGnuL4vGF+ZtGMHtoiXrnjPjCe/bxI0cHFRQFZznCM2J8DSJDh+zHXGcudjgJm5kWHaXXgjHsQ/UZ9+DzXi1dm0A1Y3kayfDzf3//soXfS7gDEjeJ293Uz1rLGOzAWOFNhM9eaEUA+e1S+fXskyD2UpfYCyNgHYDwDYso+ulfGubRMo2DpR4oWLhbfHRE5eWyhEbL73hLsGN07NERW+5cnjIti/7QEy0KxflWvGhVMyEwHi3PAafGxV66umXL52deqg5vA/lyYiAEYLF99jxxPK6QPXL89wCpKuQeF89BfGHV2e6W9bTmmo/n7WuByGThIVqXk3/u1zTEeEUWKdV/nIW0Sg8wIuyIriWxfHDy+/PPvwL1Dvn6fEbAo9WrABG42+FpRSfAWfWB8vvo8XYIZEtoamdoYmjvel2ueCbIZ9PstbZt3zlXsbaa+R8pjm2fQyzX7gwxQ2QfwCCO9UsGpZfDRXslLdTprZr7nDmda9ZcnX0uPeMbd57Ln3oezXy/jsxtsFZCddMhLPr8nqwhsASps0c/XC0SG71OxjoQsg6qL0BT26TkZDbg7WGDXBXZdwwYDWmE41uoiMkboMY2s8pTni0pEqxveObxnEPfQDeHsLnFGVibAOdJMR6umvbEcY70qM4HU/OqIVfCiOp6M3qI4tmdAo2OeE8BsL0svHj7b51op/cHAUbJGuJeznSIAlWlrP1o537hW63ux7USwVEPIeuCds7eUz7DKwvmKc18aAbDymdDiODAlRNxeoCbHts+UR7OoxnDy17aHj2OwbUCnOt7JxpjjG33pbNiI3HN9ViCB8zGYkd52c30OnX7PoR+rbfbRVefvmQ1BAOjEwPDS3KXazjvQ0g6VTKxG+lt7z4Q4pfxMbYiT3Vb3MO5rI87FPoDRU9Q4RaGpe/JOFNU8mII4A1XANCe31wRZYeSD9c3rNwEouAKyoV+dNmKLYt0GcNtAYSnP+db5oiKwi9d1z0j34o6RnsUqRDDLaMVlkTcn7rit33an1lNcQ4D23UURUzhlAIBHnNwZj0kdgnEA0kEdwV6QiJogDMJs0lbU6WsUfIl82qgHbc0PRME4fIaCeIAzB/ThPx+XBrD8pfl7TMFIyUivRyaj/QKnz+HJkev77pTacKBsFdjvXmYNZjrKdMIfHdbUozVNMpjKdzNFloIkM6BfXByqX3TqGgAOPtzGdOYNkA3umL45n9hayd00i0gBUrCMTBHtA7gDl69eQaBfPNo9SE9UZE1wajHUi++/X6eYpn+2RFyCpbF+39NoroKJFUzIezZxHYH6sIj0r28D7RH12Blpak4t7tcotQV/NwsGDJFvCmeCqQzAMRe2bkZmnsYzcDyoB2aJrvhPhk3HNoyCcVlSRI6iqplLm5TliMqXw4jGreshWIAuE/wQgc99UY+WARl5Wt5cfVtCp4IsIhOFRA15soYmndXm+/L9+siqMcYIX6xVF6mDi8VxDgZgSCG1FF00yxQtf4jkf8ZDOg4ke7qAIGDOnw80L+Y4mD+Y0a1c+9xn+oxu8NALBN323fsUiFSEPtsTgot2pnz2enjOe/n6iugBx7F3j2Zw37IxUxRUJnUQeG+8rasbVlkGKkCIeGe5b0eNg7OxxXfiAUpDph66wGRv1OjodTJuPrxoeLaWURlxIQ4X91sbbF9BNX3swQpTuFbOcHEwAbz6SY85PAbk4qliGY0NdX9br+lEZwSJIrnh+BCISKDAxM+4HuDksBQthIa+ilBEFBhXL2Gmu1Pvq34No8L6kEivUmcwDEunlsBudywYpg7uLTebwERc7dZdWJYsAXHqfsNIJoinObXQjvA10Z8XjOtkexFY1NgDG0tDPy/ep60YV6SKVtAJmFFuIFOwuG/4enYAJ6skxT4msV6yasqwQ/qfNcHASFaVbFF+kHOHzkCUpgaF/VQgDz/zeR+oHM+dMSItEAlujIuX84XG2aWSQMBRGwd5jhpTQ3txeJP+W9IAgn3ZYi/PCN/z01EToV7J+tFkhhFI1bcNdu+Qq/df/xRpERHkkCJYSnFgDyisAF5mqqsZMi0l3t3tiWAFFqaQmOsEmXrEnSKWqcNzNoB7OOIfvRvw3inguyq1TsI542cI9oYtkuVtRY5MAdpdJ/ACgLNWOV7A0Tk5ACAymVEBTKRdy71bvA2iAlYps8XB6X5tU1tlAAKbAFQTT6MTgTyvLpL+h1izezAzWgDGHwExdLhEpmBcPQc5d87vX8GEeEc/hFs48nEWVNr+j8asrv+4T5YULtchBSPG9Gz/ZeS4AttJcT/czIUt+Q4i03HX8m71XccAHmNqqtQ2v9PN8D8zLeLALI5r2PvoNv9uNkGnsm7egQvs33M/VCec8znanfod8X6CaY+m7kaAQmYBJop65bCmcIGzPqPp3BvM8E5biUEGtjX2CH8Un2mzfaO/BzYSsFFIC+YsQYizvcFx4p/99DtG7eucO0f5LeyjuI8BkH2HYYFIL/NqzP6pY1hBjV+7xgi272n8Rsek2QI1RQXACWyI+cM/1f0Uv4/bo7bjfTCnXL8JQAHhJOyfHU0fq2D5FgZWN08zo4EYE9fWBXZ1x4YO5Fh9wTci4mGcQAF5xOQ/rSFHvDva1rFeFDKmIaTf7/NwQEzayGnVbSQbwRgd7haieQU46DaR/MtSIjK7K4ivSyxSy83DQjdANl+smetenBVB90gCWjgebky4kragUR18TCON+anLd99cSJ0n2NHXyMm77aF8rcE4mPmX3jmYIMAYbnAOm/Wqi+FGqu/2Evm8FBVcFfuzYH9WrK/DI2Lm/62vI8qWRY5tNyy3jhb5nWkY8Z1Ecg7pY3iuvgDL3Y3by1fB9rlhe4lI3Opgi5ihkWY5fJ5k2sqAG/Yq2D4tvsfvBSQwUnQV2D0KD8A1BQDofljHM8VCJRm2FVFg/vDyrafBmwra6iXc+pNiXLwfjY66ekRLu6tmCxF9XmEwJiBSgebevbziwjkiEPMoOOdiRj6en6dwlsh0BmQ63F6xAe5U0dgdOGxA1N7IUnJhEE2DXLBfGsYiaK+hgRDj3W59AhzpeCgAwbhSiRhZeu1gwCVgZVmezdf2AqwSjoRHWsUAvYdBJDOKKlv0JVk/myP+snffj9YSmafuS6zhg4NFajPC8P2ohjYPhktMlHSemr8LNRyqcU8j4bG5gQQ4Mt7HPPwua+bOHUSqejl4SrqBhTGSKtc8/EehtFf2gizH3EjViG75XMXSYC9PkO9vsMeYBhsP5cdJr6EYyVQst717NEUVrDwCnRu7VIOuGpKXFaly7i83DbQDMENHMnRyFs4vX4/67eFVUFrz1CKNDYPR1zGAXSFNCjjnrKsR+7lsHeNlRX9Zk4pedWwk2AHev0jHm+uNa0d3ONhQBHQraEe2FCPpZAYkgLuNPCe0N0CW0I8ZePzkZ8kaqTn96m0YzQGFdusBUBwBBaAYlQD05kyhObej/dcGUWdI7c8BTpaUKNF5hum9oz8vXqHi2mCMhlUKab2KUcUobIoREwyMfcLaBRl06PxZO5RjppZNe3PwE9IgWzjJ3BdCA4HPRIM7YYLJzoqURAc8xRkQPNstzvFt+HTmGRqAdla1aeI2zj4mmFnSDwB4Tm03iPXQK/DjhiCFMrIdTkqLKhHMvzZGu4IVVR251AZgn1dnZe8OXmxe2WZ/bsEO5Lw/gq/WxLWWVvief+toN9e5ErU8g3Ms9gGzltHYTEcaAqx+ttp1iWj7fnTWqpNeUzSAud+U9+N+YOp7QjJHmxzvS2eHqZVhM9qlsMuA4pycAADAo39MXct1wr5apjMq4mO7j2mbVoejAqscsjgbxiXsuPDz0pmlJI0I+tOSTKR2H7OyGFAc9GUyDfh8to9906fjBmA6WqP02RlI4DPiZ6IaFSRODm58LkEG3p8MoDPIQaAj+1zn3xkpVp0bK/hrKb+LsepjRu15H1bdyHEr82vMcU5mAh3xqpF0rvSgmpoX+WxWBanz99jgo7NXABYhK6RS+vn9EwAzv26zHzLYEH2MUz/zu6rHM7cjwYSs6kTgYcgEnuyUmgJMW4rfpc6ByFwbbFdlMfDnBBzIcGTfcJgrO4A6JUw1P7MUaj8JU0RwnIME5swO73FOi7F9Dw2KAHBKaqkpnGlHADPZKMfr8Ay2tWqPHARUbQIfo4z1CLuFAasEFMr7iAtHu54CkEUQfnD9NgAFhHG0DVhYUePS0L9ccxLQwB8/PbuT/thhsqSTYxLl96hvACSFUUoZSjf4gHH1EkMj0hpkH9Bbd2ZEKPtTLI157I4S+sEpbxta5sqWRagCvXcs38cU57ndAREoD0AaBl+e5/sjDmjOXcH7BR/6B/vvr177+tsj34HfY2S13fY0gJkXWmuQA8i0DVOPbmtE0+gsm7hQHYCM/NsS0fM+PJ2E0XtBKuM72CKZymAKLN99sj9+4v0M63fD+jqmiOLFnQ7pgA7D5dHTWYVhRvLC8HRtgQAHWFJS4MJ+cKN2XBT33/szL199JWyfFzeE4zveIPa7QBBVGiLtY5GgE3C/iuenwwqgB/2ZNcb7lVUjMI13QUbyGbHxMWk+njvnGbA/tXymKbDcXIuA80HoZA6gFZr9uDb01cvC6T7LZWGZ5bj0tkPeHrCnFfbUkiJaDUeKQWWZwHpZROVo3N47dOuRxuDgmphBvnv/YbhK/mjqAM6tJ5Bsa4MNF4mk8bY/N4yroG0u5MWyommcdhcJrdEcfd3SGXDAkQ6BhgM/34MHtSxRmizK9wGx71qME8vN0s82wELUy+dND7bGGoavejkxUkZ5iLTmjgPgTuraALRkKDGaCLNIx7iCVF25P2LtF0M8Skhl+cMKJvSe+5Ft0QaVCQCQ1hZGllVggREB8b9nOsCXz5giP+bOO/Mt93K/s3BWlFoU3jPKPMq3V3dUliUBD+6geYAyDaOwOJJ+awNmJbKrMnMwn5/ngahRsqsc6FmWc8y1+84ADVo19h75xYLl7XGMRqh6ex6YEcTqTMbawPMlxjUc0pv3lz05HZ1OlO4xL0IUl7oEnBftbUO77b7PUDxVPTLLdrV7B+5wQLWJl0yNNK6xqp+PtAXpYHeNue9rYHnruQbJYFi+u6bHQoMdiHKYkmcnSFmtZxYBvnB8M8+9pBntzw2Pn9TFGvdAEgxJ6VYyE54cTMhyiK1BX57nmonxTKM95hRT/5ZXyb7QR7Qn0gXZXgcFmgP/Gu0I4Hr5HiBr7GP9SbEYILc9GCVFJwNACgxyHrJbmiAFzsycbVEdhMUZkxZMt7yfmbPaRp9A75iAQlYPUXga3taByxKVC4KJVqJfJh65tREaA7fNAwGdAOgy86PDhrCn1fs9fi57TyPcWpTIpv1wf0AjhQwEm83bZyUnWvfh50ScZclgiBLX4zrLC1dWBdgGBljMILd9ghx0uLnvEDx5bPOdlsWZY5d1Cvem81+cCs6PfWD59vBg0+1xdFLrPiIcY4IgJ20d7uF8DmINE9wMGn0ViMtm8Gx7WmBy9cDU1jNV63BV8J07rLl9NRmhNs9M2suZvnZ8JwFmsOzA5mKKxj7bq6xQRkc7UvTW5egM1jYHqJclLItjxOitlfExLXO6tukjAKmC1sA8NynYGKkQGXzI5xcbkSWgauk+ssgWUuwH0rgpqQ0JKJaxObSlAOdcU/zdgcVQzrZ3aYDpQMsEJJgeliB9AT64n/cy55sCi4tFum3UD+NlS/N3zEDEcY0AmOKCPSj3JULPMU/bgmDMsmRq1Tv9lhzLAUgJbOT5r/MM5pyqaS58R/ZxOccSoOFeEWm2As1/H/YEPs8Km6DMYc7PFBTt3cHvMXUMpJdUhAqOVEaMRZpEaqLMMti0ww5pC+xnYNph9ecjzl7BEXQCkCKc774fYEMeXgOQ5f39y/WbARQAIIXWOtyuiBwvMQNuYcg8eb1mecwI4sEZ1HIQB/JSad8pfve0JOLvDnJ8bkfSG4nYs4yg38CRIek98qxWWLMJbopAtx1y26ehQNR5o3hUC8pnoRVXxLa+V1kUFFran5rn129OKxyrJvWeTjCrDQBAzbEVlthrUakhDDQ9OcgYntrh9DhzZobAU0SGgz/7tSUrhPdMsS+4Y0zlcGW/R0663MNgZPUGeITCMKNSsyQkN2jB9Dz8GSnWVyn3jABHisN+FbSHYX11tfKxCHQTpMjT6SL13g8YpGo65xSjzFI2Laa8tLdax9lCrIuHQdyDIEO3ib6bTSd7kYgy+uEPALrN95rvH+/L/pegRl/DcY9SZfXwsjRcOiCXGR0NI0bKpmmLJjptRNvJqusdztOcRokE+8IWwKyMVbTNNMZ965kaMq7LTAsIFN8WQV9DmAxjqsJf1J0j54XMMbcZWZS3u1dVKZUdss/ZZcFCsbq2EuUtbaYCPJBglcSapJq/aaShcLPPSNxe+vyEYDPlJlI9MveNBvq6BGuhpzGQjraId/BaxpGHKT9XjYx6eAzzww2AtIsDAxsN1wKMVjHGRZ3VsO3JlvHD6bRuSlTCan/S0VY3uuSxuUYEjQmmTDAcXw3paoTR2K6GBPgImUcrwZYwflysN4yj+2Pe52zMzhfJvvRUM0yDI+6drLLHNg12nWkuObdkRlbpoOo+glrcEoymaBwdM1Lth+jUHXh41FYXhRkjzr7HZD+EAJ0t4tGfs73BZxnm9wVxTgYNehvO/KN+0E6BRTpxgIyB/cvVgTQg6dNzA+Oegw9p84fywgvQLzIZXTpBWHeCB0xbniNzTsHHAfCIOsd1TsJ0zqRLAMjBKIg9g0BAGuIA0LxKVPZdfFbDiO7PHsGl5gTb46We517h2i505iZgNtqCKVLpqVf5fGoJmbPtMkWSzl80isyNZHDGnEv22anPeQZkhQMuKdWMcsm2Z7DBCoh3GLfmaSrvIsHcv2krELDbe4L2h/LbUtgie9krUPZZnjuxVzNVxO2SD87BcBok+iLFCrkfxGeM1Yt6B67XqGwjE+yCQHb1xtXnDJ/kco+xrCljp7N42p+Sjp70MP+rQ0cnyWwOHh0uiwhkK/tHjkOU9I4UKBWZTJXaL/W/+JnEPDjoOu3Dj3JqM6jASioEAVRUB0pLv5Iqn1V7MPft6sjHGS8W71UrUZS+SeC6XozecixYgSgxcDnOhdoPNSrP9vPPsGtY+hX13IrzMx3B832izVbPHEx7LOc611PeZ9rYh7HCCXyg7XtmoXygTwTF3AuAeQ8CDTUgcQa3Tn6HEfgnM/p8ZT+e+pvvQ7aA0GA6XWG3OBDoTmqCT6oeuam2S23Duf95y8r+qH1V5/95TvLetKOqEDS1LQ7PKukI6Vu9t0dmo2bgIgEGAOksblLWy9GmmhVO2Lc2GRG8d+3Pw1XG2gJI4pb+o3SFZCyUe3uNZmTqSgU/f3D9NgAFAfrzgu1Lgz4sKZcsoQjgFJG2dIxZCgqYmy5FEL3m9QD2kQehrQ3jacEv/+YzdAeuf4wIwQMgTSznXeTm9ucV+tg9P3BtGNcVenNEWO4bdB9Y+whnSCGPHXJ/zJynSn1rmkAGc9AhAjxNkTV3rDxNwMEDm5EgCeff4N9vc5EYbB7qZSGRTmtAGhayAZfu5Q0fv5vldGrUJvURVLIMl+tMDFj3KIenFviGN64ecdtCHLC9eb+QTg4Bnv8Zc9NdWC/LVw3zPlSZ71SuWpM9p415bq2EdgL7ATwMIwViuXuU+/LVS2PJsGQ7SDF8kxobLAhGPvRtn/0tmIc86VFm2D+50auRVtPuHaO5tsaybf7vqFYwrg0yJJ2RdK7DoBwFTFheO9pDsLy5hoTEPPO+GNkOCpe5YnhQ99+20NJg/w8vL7c22JcXgGkx3WZkis4ukfcWC/TkFMt9Rxu+1lIEKz6zfj0aPwhgrhUwgakhBI9gnivcnxrWbzsuv1imcNBh031kakiWho2Se9tPn9HuA+tfUfhIMu2hf7mCAo8AYItH2bKUmJFppAkMAYCtDt61+4BsRy0IATxXN+blCAexDaK6MU/XJamysg3Ifc9ybgcAQRXMy/Uc8wV4vkK+v/l9GAF+uqYBk+v8/sBZJMiVlgsQBvh4P13nwXAyFmRdZ7rCMNjj4RHMt1sM/QcHZ3Gqcn6w/76/ufEekQ/pIfJIsSUgylmWPafSJe8PZ1BcLzPa00r1EQI0ZqVcUweaOd3YDPr1zbV21gXSqAFDg4URmmIUDF8naVy+3WYExMwdiWtENDWq+JTosmwdeH34OGmb4CZB6j0qjqg7AS0dQnWWjVmCzf1pAcRgarCXJ5h6eVTdtnRWbQ1DZHj5PXuWFJVlCpqDojPa7w5tDBsd0zwrHBRtb8VBph7JgLfr8xX9xR3rLAV72z316w9v3h97h71cPaXjusLWkcAO00LaPvD0GLj8sZU9d85XOj/t3rH8MjxavWiwk7qvrej3d050RGz1bYOV9KfqeCWw0QS2CvaXNZ93cE7GtAXG2qBqnpqqSH2KTJeD999YFBa6QRjOTJHHDlkNoym2LyvEgOXblsEMCx0dMlM0ghIMnlCYsVZNyKDDMvfnDFbEs1OrKZx+OoAH7Zc8I6ZRbpcF9nKJXH3vD314lL+WVjyUWVwXQNdMEWi3/eBgj7W5AOU+AERJyaiYlXt0U2BzdqLe96mJE46tBSJWS20D+DgnvAAmeGzA/Y4aKcRjA9YF0gSmU7NExjiCwkvD9GinU2g0GOk8VlCH1XoKPf1delst1WjmjK9lOeZ0879Yj/q2QS6LV4fhtvVyyb5wYdd+fObeoW8XP28jkJUijGQPNe9vvfs6F6asEazmvinlnfifBqOtiukGaO4NNLAUdILdSQHvYOqSsQ/YN9nhMoFsFfftbHigS5vbjPz8wTEs/dz7+5+nmN8ENWQBYDrf90fsEl48Q/hPFaBVp5znQ0l73DEj7bwvwQlgzr06p2uAsfyZaXwiYJk/VpnIlLtDPxoOVUdWpova8b6LRuDoV5xQIFi38xzLPjGbzikBqbOdQMCB+hQ8e2Pfnc/SOa5NARTQgoyt2i/1fcl4qayI68X3KoInjyiX+0H66bS3yz3rf5FaVedLVtzRfbaJ9qcVELWmEljolBCIrO9TGUMVaPgAXDmAOa05mEBQuoKrivfBIZaKPLMVRD2I9SvsBOA3Aih45NrFeWQHsnxT/Hn8cPz5Ab1So2oB4N/Tgn5aOPK4tKjG4AfnLAtnM5JlyJSDGk2ZA1V+Nsz1DHqgOUBQPPtcVKQflc3X/177ABN04MU2LAhwjCBKoWGVqDGApA7mgoy823dOupkfJm2q2HtbEWWl4jBi/wcgkAYo21c/A0wnlASSrHft95UtaIqLpIBgls6MKF7eLQysKsKYhqEB1snEwMEgZgSIG7ruQafNyJe9AyayHwU4R/bo8HrZSpbn9Gfw+YygkSUjw5H+IdGmMaOwGf270wiRKBU2GSOkJbp6vEH6jEJIfdcYS2OfxHOdKjcwovay7AGmWBx4kcrzoQjP0qIdxYAqIJVrJZC5MmId1bbbYW77S0c/ErDhrSkiGXMHKpCggOcYtdjfOo4HqsS4hYPGVAY7rVECXz+8aDTGLbkWXe9BYBvSyJ4dIu//Xn9//vtA6W85rvUWjAcaIByDJWijMqaaNRBAlGUE9oB+RzrAbNv5gAKYxx2e7XvEmYePeHQmy0BxD/vRmZKGIo3O/t5gtnlvv+cPbsb3YgSvUhgJOpzH42xI8nnnqGa9uB/X75B2PEr9Z12n0cnvxRlyMHwCEIJNQqKVc4ROI52s1IJZtG7j83ackzq/c7h4H4q0imQkO0FYO54XTumM+2t8njRonrtmGCtiP5zz1FOnON9jCrXynKCUezWMNT/DWvPmD/X1RYbGPtwhPu29BFpJdRd+/jSWud4ZUDmP9cCkyRdD7KAtA8zzVoDsoXrOigULJIBY7hWlHf8vc2/XY0uyZAktc4+IvTPznFPV996IzaNhAAAgAElEQVS+PfQgQHxIPABCvPEyv4C/yo/ghQckJCSQRgKNpqFn1N/33qpzMvfeEeFuPJgtc4vIPNWIpwqpKvPkjh3h4eEfZsuWLQuwytdCKKx/09opxfdZ35+RrpPbfmZ3UNNDNBm9HTjkmH80zhnxrQXoo5/ezR9gjLHeAdcHyWWuD8dH656v4Sx/zbSRweaA78t8H+64qBy23dApYkWZ83Pxnccc1w/bEe3rJuQY5XITmGhVcooHU9QB4fI+n/qjPs6ORf5M5AC0jP46Xe8DyjiA0T5NQDbv4ftI2FYf2aXZ4WAaytYMVM407nyUAdKQOTUuxz72dLPzu/je+vrOfteP3yfv8c9dL+7JCfRL56Q9Jgv9Zp2JaGcCT/h5iAan/eqj25wcvMww4OeawYB80NFO6RHHcSDv+zDbNrR5gMGmy+frsW3v9npvb2ZYx3jK7fA17dCG770j2lMfzdl3zy/Drji393S8K8so6bv8TvhcXMd+YRwVgW2+ephv/2yb4/vl+Kw5UMNS7jLstl88CPKgA/3/w/kftevQN7Tr3HjOQOcvPRMw5lVXmCryyUb8hT79VQAKVkaOtEGMCD4QlEBSrqefHkFLNNqoWBSrWYlDlIL2PEHWjvL1EWrS+8uEfimQ3R75+e8MPa4PF7PbBnpGo6+9GKJb1t0MscUjIkSAibhVy4cta0P5+mYl9rYNeH4a4kalWA7ibEKS8ehri3xtYwB4rvXu0ffN2BVBV+2OLHOzmSs6XGhHCsrDc+edTdGeL37uFJEPrQK4Kjk2yw8tj92Ux59mp3yOxbBsHeWnu72Ty2nIODgAmKOsAiu9V4F2NTYDch12MWOs3Dz3WhF0Xq3FygMxYu+5qvtzwfy1YXqzXP1co11XiiWViALtP17Ra8H0tqE8GuafzdndPnvbFZi/7S6gOdrF8qX13lDuPUCM3O5e7DpaYSKKN0vbmG79ONH66DuKf+EyQeeC7VOBNLIYTOdhfy5os2B6dNeXsP5pS/Fyl6aJEQrfCRWWpihVoLeC9rxgf/a50RT9ycTkytvDhXA69DqjXSum183KI3pqg7xtUacaxYXePGf48nffjDIOALWif76OR51n6FSwfbI0oultpE5Eaoiagbx9snOnb9sYp8Xom7J3TK9qkdqtBYrel+VguJvAXIv8YxXB9JqMJG7eLmpT1j3YB8wLt6hrMtrFDaiHl/FbKtrTBY8vBc+P7pokdl6fTUCrbA26TGjXycbe6z6Ut9fNxsO6WWT8MkcerzLirmbk9ydjPMnDSqEpWQ0euZNaoFdTQMdjBUUVmWMnL89WMvCxWgm92x0yT0bpJbJ/MA66CxlWlGsZJYa2bVy/VsinF1MkftwsaibTMX8UgE6TPee+j/Zoh/akGFwx9BCY33idDgKRUT4yGdjy8gz9/AK83kyIkVE7sgU4xnr3spfF+hYw7QlJdFOPQLw3PAr06RLMDPn5FXp/jAekwTZVSBOE5aWDkh4aAm9jjKjrHOjsEU9nl7Xr5OCA6dbASyVa6oHNqXatvs57tKl18xkFNi5Id4YZlFzz631H2SzSHgK5zg6j0C/7jGK065cZ0hXzT5vvX3fPI7X0Iou8F2AqWH9YQoNg2ndMr0BfBvMHqtbvnppSmDLoUfH9hwvaXLB9nrBfBY8fBfMrML/2AH2nVysfWVbTZNl+vGD6tmF6kB3ofb41yP1uoNdcLU3jUlHfduC2OX1WjEXk5wernJUDGITxHPJyt/1g/+QMGEFo0BRPRSg3sxu0SoCe4nTQgrGfEXguezc2o4vjytsKqYLZBXXF9Q64JklrVjq6lmAd9MvkWlC7MZzWLejiel1Gvj6dRgJYZC1sSW9mqoDOlo6w7c5uO0FZqpA736OaTXBxbYfdGENBSyd4RLqyuIFOzM8rChyc01KASYN1qjUZrA4ksHyhldcExAFweWwJNNZDhYmDgF043x3ZUQhRN8CcTBHI2800H5oJKerTbIGA58Xeybofc8mBeF6dp2OaBzAi2FEO3EQudZltP3i8j4KGM0mAP5cfTqVjAd+ztmbspt4PfXtgj2QnbTctLzII+uT7obNcu1eJqU0tteq2HSPPXRFsM6/mFddm33Jv+AhoojBiqP73yJ8P/ZPNo8Szscu01HFPVTDqIyLAZT7e4yMHN4vLed9gKkMw+CMxxfQ9ySAEgQa+G46zXG1JxJ5H5QhwqaVv6blfuI/5/hIVYrpC6+lZkIAL+ilTDdY1YF1LZvQ78DkDFnHBBEzUMvQLEjMHGRTTFPBgf+378R3w+bJOkRQTbKZuk38utRjbkLbBtg/gF8ChelMpZi/wPsF0AYBjX4e+BA8GYs6AW+t238nFD1UHQyGdG3+LZ+++xxdIF3tv2zYqXSU2JZY5qp6F1khqk7WFDnyxZ0Efa9ipOomxMY3VGWuwtjj3nZBoMyqdkkVxZnFRXyEethzBOoIKTAU9Vzg5Hb8OQIHGUrXodp998/CI8CEHBDBDgQtIQ8pdROSXlQ4Xf/JNvtvmXVypX+txk4tNuGCgcR6tKHlhZeTBaaYf5vTUAuhkE56U3vNk5nOr0ws7kSD7e9nUEWi1jbOknKaU53WmWx40BlpCzbx/I1JazLDKIo3HHEz/lRGvjN7laJmOKI/sfeSllvEuRDxVBbCI/p6aKQCKKYnmPCh4eku7FKuNPhf0mWkfGjXgmdetzD8NY2P0SdnVAjKu8VASa2L/ZOUxJ1cnZ/4rgHdMBkb42S+HnD5gGE7FDW3xvqpl5Fer/WcpLAoRHawJNWZCRPOBAJFy9PBYvQBD46Ip5NIhzVMrliRUk42sfiob5k4do7IU5ATM+a57fve+YDY+s5peQUlt1hQRjc0GBy0BAoaRutQV0rlRwynlGIayP2cHbJ50prX0IR7GdwSjxRqTxGnnrQ12vquyW94hjkeKJsuumG/2nvLcLe5AcuMsTgkOynDk7fZ31z5E1XxTk0c7quD7ObIPQabY1DwVRbCDArZ2nRabgMzTKO3FPg+dBbapJcaB2ETkOCF6s++h3QDVY8SBxmF0ipem42ei76mhJ+PkEFnLVDtuyuzHZT6mQpzH1plmmc47RIc0raH8nq9/1NtCLUeng230dSbEmtJhrCTfpxKIwfx/MrvYDqPy2zi08oEe9c/GIiNHgFWaKCeWTdPYi2zdHJR502fxVyoO9BZgKP0DrGoToGlNYwHwHHQTWdXZo8gcCslYY+UgrUlQCnA175FCRcBxe6l4+/OC7RPw+K3i8k+C578rWL712JsB36tylNTXdfW9P+7ljnfejwAc1fL9iPSTipifktYx8Woo2WhmOVlb+3187UnDADiwOuxLEt+NseYlfgd42c1+yHtvVBFgGbs+ruMilWhtlFwFXEhXDYgU2iy0Y/rYS9I4Pgjv5rmT2j6egeJ04xytPg/QEWwrXoPrTB6L3oeHFBMYG4BlqEFgRqivYG1mSptsHYVaFKojQs5xQKCR7TivMzCHwiKGfTjGkqLSqu5ETkP0mPfIa1l2sNI6HseZkRVrTx+Aam47gKgg8FG7u0KlR2rVwTGNMehAdgYieDjAJ7sDKFtDUUWXoXcQLE1nNsaz5TaKrUbvRHHjuVOUP383M9tONnf8HQJpyXlM+9mh330dPVnSx2fODJTkYMkyH0twnt9BsP5Oz/XRvfI1ioz3cN7XzjY/hp10eP5gRbTDOYeS2wXHNTjfg/bM+b4fgTvfO87PfWb9dEWwoT4CJrIvVMpwRNHsZ1cAbdgJpOQfbNN+BBF4/fJBX+a+/uhg3+qpL+J52D6kqlRH++HDn+9H31hLTvuQ+HylTfGOtRHrP7+XwAX6omeWipfXFPog70pBnuyufPD63+s37eOcIniX4nC2+07HrwNQAAA1cSYV2MzxBa27c8ijV4nyjLJbzeb2NKNf5qgrvz9VlEkg+xwaCtPbNkSHxMSVwul0g4gT0SZzR588MpA0GfqLRULKfTvkUR+oypFjb+hXe7YoUPm2DqcdONIbm92TtMni5biEGhBpzZOtRY5tlDLi53wWr2pRb64bMXt+VkVypi0SM6oiWASxrKNd/TKFUJRFi+tIRRBEigEUqA83aquXOJwF+7MJXK1fCqDA9Y8NRTrKJsPxp9HJZ4ABEevngnaxkonSbBehfsP2ZYZ0y0HtS42yXsVzcVkVQppa9NgR+PnbjvpqSs39OuHrv7Qp8Pnfw8bTw504kcGEIKW3852oIa6wc+rW0S41BHn6VLB+mQy42BX9OpDnsvVgNVg5tYKyVQATZMcox+ngxZQMhIispyMbNNIaylxRa7FI3sVKmwkwVKxFLGK/AuVttegVjdLuiv/rbu0pgvq6GrIvYpEWV6031o4ZMWWu2C8V09vRmIk5oQimA4EBq9hg771szUrxuSHTfngyPY5qEc7pm9Ootwa5zJb5oDYfC8GQiIAooJPrrUxAEUx/fAP2ZlUjVEO9X+c6Uo043l2bAWJ5z09/Y+hXCJ92Rfl2j3tJV9SUi2zXFJQc0arV9DisK6INnIf1j1/tPDqH1XPx2+aovTn2Mk3QT88O+sxeiWCHrushf1SuL8PAZrrR9WLXvfu5zCeEb3rZYS9Gk9PXt7GpONsiIii7a8iwnOTi1RQY1Qka59hkg4Wg7hhtYjmMjNRQ+GcpkKcni+hNFTo/W1+/3YfBdzbcAHPszkyEZqV1LR/UDXrmzV4vcU60caqQ56dxjW04blaqeB46I35/vVQXQC7BtikP09zp7giLj9G+WJpUfVtDe6S7fkfZbJ0Xd6LaxeZLaX2slb7XTK+27vUnW1elj7Fctg5sxnTok6Bf2D+2vhQ6NB2od/u91wKZC2SZohwqmYLNWU71bhHtDJa2xefKxQzGQi0Q1zhony4ecRN8+8sJ998IXv/LBz7/2Rv+1b/4a/xP/+a/gP4fTyh/LZjevNuLz101PQLZu5WHTmC+pW1VL9nM8qu+bvYeucPqFViyQLLMVgmnPPpxvWoubJzAW46DWO84ZzYXtiti9nKOXnNdAby/cBwzcY8eeeo6V7SnMiK/3TGf3SpKWbUoW4ujhjsAfbtbpE/VqhU8LeFwlsc2KsFoElv0MrDB5uGaSEARBCX8Wffu6aMAK2GgqAErASJ65afnpN8ARJUN2z/chlqGIwtVKwft67tWj5p7X28vznp7HZWBzCl1h6sUiLOA9DrZGn1zJh1T/5guNU0DtMxaBa6xwkoFsiYgnva3V+qJlAD2l6/zshkLjoKqAdzQlnAdA2z7iMSLAJdl3AsYa2d2zJoz8fjvy5ScUYV2gbCKBcUiM4vL2WOyJV2EeUIRsoLdNnFxWLKpeB31aLLmtKHcxrPTyj5woAuS8vz5LhhFTmBORKB9H8kBrHCo2joYOal/VHXkh/t4RPPrV3vecM4JlnSfEymaKwSHKF78oRPKZ057D9lAGdCZqa9yAsO5b9RyZElkZmMG+1MfH5gHGVQAHGR24JLrA9zejzK7pz2Tn3MenwD5eOYMeJT0/jKIwJ/+/kXExh6DBBGw7BD4c5N9Q/CcWlFnEO/0/NKdocl3NA8NusN3JI2dnAbhtpvC1iTU6uV1JeaupYLr0d5I183AkEyuAxTjNM2PJLwoZLW00X57HiCXvg5tBQAR7InX0oONECCp204H4caPDu79OXDDg2wgHlOq6ODMItp93zt+NYACGQNlV9R7H6kIHpkJetxl9gE6qHTZAbMJA5+wgi4WwaCoYHnYxhRGGtyAuUxmiHUzXozuuL+jj7GqAtXDhzqwH2lxtZQCtWoMAlODB4wqPY1JBJjBQdqZqkBEx2X7MV+TzmFZm5WXqqMNhbWpqV6cjZi9OYujRPRHq1iKiEdASOPsc3Lya8H+43MAO1okWCRgVEkQJRxZxrG6VSRqtFbAn8EN4xCk5AT3d60EKBzYUBFULy1JUUVjXCDeaxgb4qJkqXqCvTfX6VgKpE2R8798s76tDqr0ECrsDjKNviLIUB8dpQkK6f17DwKNAQ5i0TZ2za5hWGkV1LsBYWSfqJqSOsXU7B4txh1plzqVqEGdwSgtVteXG6J0BbzEJBe9/ryAavLsU27moZaeowt7H+NvGmBE9KfIiICrPV+/VHOoxN65lSHVMIa0IBZ1VhUJfY2n2TaT3RZG2RWFLIAcieFGIIAQBEyMAHnsnmaEIXSWqlVABPp8OZZQZcpRWof7UmM+MB7Gc7XWd+MrI+zCn5ybNBIz7VgECqcL1mlcq5QjTddpjTRYoxJHdxClzG7UukPu94aPh3fiWAk5DyM7R6MAMwLaeFcArA0Ue5QO0bQZ8TwaGDwC8a/j816sXFvrEOxR/xmFY8wNlc3K2Glu17vIW4tUh/g8UxbZnt4Hzbjre60FzncaCcq8ZYHsNr6ipjwj06Km+K5kwji9XtOYZtrQNPqkOEgc85DaAcAoF/lw2npJhgRTJ/xdqVi7p9uOAxFGNcRfgbGnUqOIpRcPewr3WK2QPkOWaRiRjDA3o/vrpRqg4M59cfaSFgfTZgPxxNMm0BXrny1YP1f84b9S1D+/4b//j/9v/MunP+G/fv5r/NVf/Ab/9h//EvNrQXFAlWth7LvOwisO6FGl3lIDZKz/meFAoTF30A+sht59b6fxZ5uWcOFy5mH3PNjcvyF4KGJK+D52mEJli2Y70JfJVIi+Lr4HN0W9j/U07uHON1DQi3EBsIpXTWhHBg2/Q/oz10Qff+I05sNBUOTguAoy48LGXVrTVAYrLZeodMX+/vmKvkzYCQDc20jn6JaugVJszeYeMjNq6Yen1lj1Kw8QrN01FsZ5BIfGexgOje1LnKd6zG8HhgjsPNs6dElCtN73Sjr93iHSgdXL2DWEw3jUhUipVdx/45lklBTMf+9q44cONtkLcFABOK5TvUN2QKtC9hIiiuyPMx3++B5h66pf38rvtli7KD5t62QCzjj33OE6rL/iqXLOTDscdML4OzAYdtmByfYG/61q44o08nDK6OjZmhLMuZPoI9d7AJG6B+CdrkE8RlcT1qz1PXstPxcBovRM0Udcq/1dMMAT18nXoA2S28Pz2W/UWfJ0kIPeDi91juo72JeZptkJD0HBrq5XI4PZ7W2VbHeIeJCgH9tnZ4btaEJ9cnzmQwdLvAMDH2nr9DGmWrPUAaaPZAAjv9vs5GfA5wC8JFZDXtvykVkEe4PUk42R51MeLxlE4bnpMwEwHJHT51IGCHzuojOTMx9d33+jwGy0Uo/P1p0JksVMzzZTgCrlfb/QhgxAq8T8Vk/jkdretT8fvw5AwZ3M0syJnG7NosqPFoZ+WS0qv32ZR0Sejs/W057vG3YxY40Pvz97hLqrlSry8ooqdOYnlG01lsOzOej12+OQq24bB42yApl0IJNBIxxig0FBXglqGIJe7hu0zMPQVK86MJdRpm4368TM2h6AiQqgi+khlMcObQU5B5H59VmnAbDFoqyGpveXCyh0qJNg+1QhDZ7DuqOgea4vUO9WnWB/9soNb7up7M+C6tEuUlHbpQyHe8Mw8BSYbnbe/lQPjhvgG6KDGAIJR6/ejb4vagBTWQdFlYBEu5YweIcDP94Fz7WItaDtxpigDXL50x7Or6nzVssh9NxmnYeCrGz2ni2f3tvN/m6D5iyZqivWHnlstnF3oN7l3YJVHg217eGMy80jrQVWI/z1Bnx5QX+ZDKja05icK7DhIMpTPNrG8b0/WbnV+W0NerIZnADEAZZLjTxVoSpy8XQNGqqRAwZDRn0zKWvD/jyhL8ZMKZvngIv1WRZtBOCgjCtM14L+XA8VP8qa9C1acnhVx/st/gzqOhCbb0bNHb3djbDZImrysKoX++cLmCYkXjI2zx8AaBcTyZNHc3REIvppDJ0x76M9IkNDgQYUHRvW6IY7JbW6vohHUX0ehDYL3NhxsIdTJiitpDlP1dBxANjWmFPqkXhxw1kaRQ41ombZkA4wg/fBbmKUdjHItACXBbJu0B3AvCDyYVMUQHKeJFkQs41Tkcn6Ts140K1Z1QlxSiAMbMDuUTz1VA9u5DnS0FyI1I35mE9e8UJmVxQUsajgY7V71GrvJAtz9Q50MY2EbNzyXqVAn1ztfvVKDBDLV20O3s4T2qWGLggAFzC0Nb0SNN1M00MeO/QyHSuFOIhV+X1fV2MfE5jT1xERv/JtNwbaVMKW2S8GKJStB5sPsAoqWiVKSoqqaagIAoQI0KL79xwQlK4o9xUdC/AyR5pZfTP9hjYXYDGdIDTTx7CSzA3331S8/gcF/81/+2/wr377f+F/+Py/47MonkvF//P7/xN/+9Nn3H/6gvoQLF+tpG99WPSmu/ErpUAeDaX3UZHlmXoUAjREigBE7B3zdxvE8W9GYRkMyAKBtgYA/Wl2Zp4MI9FBo86qLQ3+Tps5YgfHtVs6SMxbcxLb0xw2BMETguxp8sV6CQV0EhQB6rp7nvN+dJxEgq1hqRJ+HU8tCCYSnZMEGh/yjbOByXWi+N4KDWBCa6pI5Wll2w9XrD9M2J5tX77+UVAeHZOq6z7sFgGsQ1y45/fjtpVpTA3ntT66lTLNziCdl2U6gHX2DAhwOZygnGJArRVnRnFvo06ICkx3qHtAaR1OXjCcCPTDNIasTSUAn2N7SuwBug1WWET8ti3+lunQh7KRXPf6YCrIPEHrdAQT+Yz5PdK5IDjZGnD3KPBmgK5clrFvktFCtkWihAuSa9PVHBiVw74Rn40H8XYY+HAoL5xAz9h/AvhPLIlwEgH0DypAxHHMNz84x+ybs4PVu73Hwr0xgSkEu5mmQqYPAR9gpOkGGDL22EMK79k5zQ5vAqkysMTzrH3n5xnfP6Tl9pT2ImIsJD5TakNOd1J/xvhe67Z+X+Z4bmnr4X0qHc7kiItuw7bgM7p9Fr9TZ4PBDu7brUW1D+0eaI0yhjpSZQgmhg1UBvCWQJLoPrbn3Pf8dfdS28keeAcmlNTfvAft0PxO0jw4sA9EUkphGQzJ+MzHbQ4KZWYAP2Of58og7CMpQNsBNLPPeJwBvwzQRWMHABcVcGDrCDW4AsTdXQ/jO8evAlDok+DxxRxWlo8ydNlUjQEk5MjWsL5Ut/MlSgBy4F3+MGivUZKpyBCQmmAbhV9PenOH2GjijLQbAm5MCbtWszJPWx/54ivLGXBSJiSPg/PtYci4RzC0VvTLZOkAIpHaIHvHvOugYRcz9CwQYKKTIoL9U0WXgrIXp1TWyLM3Z2XQNcNB7Rr58mVrUB0laqikzdKLrF6gVQbd353ssnfgYREhq3Cg6FdHsrpda3+qYC12UvjlbpFbuZRBFe0arAk6pXR+6UzWe8N0s5+yNZS7odazv6e2mAp1fxqL26EcFgBdJPQT2M8HtFckxL6KMxHIZuhVUB+wSeeRmtJ39KuL8QFgPnqfCrYfrkYznrnQAvPXM9qN4YA1o3yGcNnnBX0STK+ervG2BmUPYo4UCAb0MS5RYLR2sXfZ3QmZfr77Pa/mVM7VxsG2jeY4hbLcvMQQRYdEgM3EqvrnJxurTofsT7M52K1Br4uVwlSLKJXdnrU9VRszfp+ymzYDxw5BLp3URLCcnTEQd3MW+vNs5953ZzW0yBPuTNu5bbFgU1gyi1hpdQNtGmO+LQXTbrm7sY4rgNYtwsbStSwxWiXWoyjnlpx7K12VjCPVUbZp24Peh5vN41jTXATwHIHQmpwGblrZMCAbgvmKvlnrunpfjAhXqEFPsE2CdEwxumy0T8QZCn0AA4AxBrxtESGl2I+j70FtnGU8X56H2waUaueyxnGwNibb0O73oAOWeR6AxznaJuMeYcSrGnjC/iHNGLD1lxs+HQ0asEuiS7pBJXTmvbRUv0wo2CEPjWhh6LXUApZgBRCOnaUL2NgpK9c5749abIyve4gfhmFN4CqNmfayhEinzXkz0NsyJ+0WA9qnt9Qf3v8E80a5SBvrfUoK38Wc1zCXKejoe2Z/MWaPifsC2iT0QzD7nHpeEFVX3PF++33B7feK315e8aneA0x4lgU/1Bterit+VkFZFVHdZk8lhNX2Mb0a+yHAjwIw/aGgx1rRr5OBNk2jbG5Z+c45D5LxR5Yh32eBCa9W0vkdtGXalQAfWlVkJU3G1GrXyd/NSFnhYkiwtzlNP4SWOyz4MJUQJDxo98xTRC4B2Nylc+BOMCTl2QMRIY81hEZ3V4SAWI70npwu9ZK45ebPeLfUJystaPOhPhqmW7G1X4HlD6vZXW7L6GVGCAjSaOU+nR0irzzFQygCRiYIz/WUtT7XGPcm7GvzmkLISoecOcwE+a7zIY00HLBJcP/tYtThtmD+uuPyD2rPnPfF6Bz/HiPckuw/ri+ZNUWmV1cQDSBd/1D5pqR3xHfXmgUOpsnGZQ4acR8CjpHiktZKOquJvh5R+biHt2ke40L2obEkBGV8n8j3V19XD8JwbErvI1XhIweH56Q2yOUy+jtK85XDOYeUgDPjITnsAhzmRBwtrQsZsMpHrNdl7LnertDGSY62dBxZc9lJ9b/lAAkAEwO91BGAIJsk7MTkvJ77sHdotflQercthsKKnnJx0N2IfX4ADzbmNI1nb7+nYCrbkpgPB3sEiPEX1VFEotpbaG/x4Lz0MRmME9j4jvMJfPpzWhBkguw7xqKoAVgdmJZ5PvFg36bghJjxiQDwS9oTPwKBCP7wvlk8kqd+oGOgnnIX9yW4wpSYAhyCNABYHlXdVz2kReQKXhl4kHROdzDqJO4Y3zmPdWCsQ119oxrj0RitZxRzHL8KQEELsF+B+dX/nQf/4cQxKa26g6D3EsKEVrlAUW5W7aHPFiGRraGsJo5F2qFdC2CZSOmKdp2snGSkA7jRx0nTLcoZOdMYm6KJRx7bHIJq225GqmsqqJfe6nNBuyjKLpi82kPkVFJ5dxYvsYiRO0hDp44NUkipL3KI5jGvJ0pNUpdBZAiRwS4bm73ADXUNQIF6AFb2qiL7inAAACAASURBVKOsY7HLNEszxoY+Avs3IvpcA9y+OtAAm0KE6RYIum55NHMmXQUbIqH7QApvn+156PjFRlaAHtQuXzf6iHJLMSfTUiEMfGK/de9fbB3hTTWFle2ysVJICXJjZf1cfYPxMaCn/gEGfZMbdlMAFSpqIpQOutRHA240gJ0BEXn56RkJVEXt8R5OF3Noy30ChTLLpqHwfUBWmQ+a0HXL029Af7I55sq4fa4oahEcra4YvSuKM4C0mI4G4Eaev+twSklHZa6jIgybYKEoIGqOv2w2D6WbA0PnnlVRGBWmOnqnwyAy8jb5ORCsmmHgD8NK4CJgVO/XIXgWoj0Nx9QE1JF6ojo2pZQvJ4A5257nGu+Uea/ZwE/sj1BozxtNGJAcx2UIIq4PM0yyEncy8myDORqso0ZzQZRr5NEa0Og816PYIyNPbDP6AA04zpm/ue3GVuC9JRmHNB7Wzb6X82LPoAoPrsvZgKahklSNZaqR2jH6DqCIVUQcsmGtCsD7y4013TpKV3MGkuikhiE72sVKDH1K9NZDTUQ3fhogzY2/rFbPnHlnoZSpWLMXY3hJV68Q46Dd1owCKaZJMiJkOPUZBkNMhw6Orf0S4o0AUOnMk7lwmTzVAubAdwlnl+t6v9g+2+cSZXD3F6B9bniZHrjKiiqC6ivBLDuW6mmIO0YKkve/9Z2tG2R7tEtxAMYfw9c1VEFPLAtIR5SxTftyrMf8G5lsTF3xPXSICNq9ZYevj8NZOFDxs9NQxZyyzn71aydjTdTsGGkIrSTpHdoKSq8GKAAHh5cizyOSNN4PAHOiWW422uLtaCeHmONfGBE89lP0l6djmpOuFgnTYmK8tCm2hvooKJuNmfr6sDl2NedT52pBHM4BvmekPY3vJOfwE3Q9RQO53/K9s/S4FIW0MkqG05CmTXWdbQxdPQ1BMVIN1ebU+lLQJ47pCcufqoHHfj0bUyejOoFbh4g7MJywcNzcEWgYkUdvY/xkRZxDBHcf424mYH56Zx85xWRmbSn4RYDiTOPnQYc5lz/n389invs+9owGA4vducusC9v/puN+lNemYJS0wZ7LTmtrY4/J4ygzMs6gQQBlxkB7V/2g20ZwTo151xf8yf0oXSdABT9Hi9kt7J+4dmYenO/lADQcACXTUaUfwQTgg2dQ21edufVuj8z9nNYgQdpvlKkVMsAAYLzn2UCwsFXOx2mMUHctwH2OmQPYY2ue9p6i7rRJP3hPHDcJ3Il+FYlg20HAUY7v/AAUcJzl75SRInNgfvzSwTZkEOEda8fncq6SEPf09yFiqaZw+x0wezPiAwQVJD63NBLOef9eS+NTEHNE0lzSgrH+pCPABL++3TODpIJfKmv5qwAUADMO6maGfV+K0c6AEV33Y7qPUntoaiWZeKRourJqAIzeOH1bofeC9jSbMZKAgIOaf5GRw1mMBt7mYgJ6bw/IA5BJPQe7QJ+XiFygitHQDp0/FhJpnn/i9yx7crBpxLA9e0fdO+p9RGS23z2b5oGLdVE/QItYybDb5lRN13mYjC1AaiWZDGHcTLb5Lz/tTj/XYHKcUwsA2HtZFoRyM4UfHx19KdheKtoi2J5N86DswPQG1LWbKJ9HhcvWUW+eC1xMv0Inc+IABFOC9ddDJ6FPkT9rxp+/9kdHvTmNfm0RDexLtbVs203kz0tSSlc0p+3W226lOWn8zhPqo6E8jC6s2qNSRZmHcQIYa8L6hQKZgvm122QVAzvaYuk20i6WKhEpAxSn8gXM01bmr7sBax0jN9cjCaSsk6bZn+YhnsWNKwNJVbD/9tMQ9kqbml6Xo9EG2Ga/N6B5+UJGlQAXC/KShtT68NKUsjVMrxil6rYelOisog51cEeA9YcZ0hSLjzFGPiXNZ9lh5cW6G6WXCjTblMrrw4So3EiW1SNzLjQWGhT+flAEsqk5bytQakF9WKnXqHQBjDJzXB8WKwnLKiXSHGzs3XN1ERubBL3U3qUCwCaQYk6tzkYFl9vjiGrTOA0wIRlyGS1WtbKO2bAJ4KyE8619Mqe+lEDFZfaqM2S6eISC5RXlejHRxX23Uk6A5Rl76kSABK1D9/VoABQxZ5YgxL4b7Y7AAQ1hXw913wcwwYPrZK2g2jseDwM6rtdwsqOfgOEsZOPMjfkwUpo7lUD0ZYx9OisHQKKCZd6iJBcjnmopKPq0RJpBVHDweaiOPZatG/DwaTJWCEFMrr3uoGFvHnV2YbXWgfvqQFsLJ5Kldeu6mzYDBXmLzbuOKcAx7iVRjhJAWTuu/9DQLiU0EGw8O/h3EVQyA2Zz2Per9e/2yfaQ6dvqqXu8EcGIjvnn5lFiB/geljbXnoqtzd8Kdq2464L/+f4XWLXiD/sn/I9/89/h3//V7/D5K97lMIsC9bY7/d+AhO6AqxagPmxNKc7qa/PQEFiXC6SboGtctxab372PqFcaglE6OpVs5ZoWbJ5u59XXbZR6dAeDBjnnWEmVg6I8dAaXVYfIrt+3J+bD9LqNVLGTFocuxjCSl8vRkHeQ2qo72L31Mg+QZe/GiOIaInr8PQGrep3RPl0CeNV98jQ5D7SQAeJrZrBA0nQMBidsbLBELoF0YwfOOFTPAg6lNuP7vk/wWSWVTow+1MFCRHJ+9GqpX+uXGSxQYXZRih6LaVdRW2B7EpTdSr2WG+ncfTiLgI+rkwNHirz4fC/TcLjcuQqWQT4yAJLBBBGLyp6cPNmapWCRidWTUB2Bi+yQ83CAN0rIkXmQri9M0cu2ATDGR9sHkJCZCtM0Iq9wmzeDHOmdBGssO6M8b98t0JDBa6ZoaoHmKCwwHCjVAR730zlIvgTTYrZ2PG9Kuh50RumA892e0lrOegjvWAVxcxn9x7byYLnP7AzznHxPEdf3KiGQqNzTU/Up9bQ+zSyWCF7hMK+Gv0JgAcNZnz0dqFaIdGhPoEDePwkaZPBlnlzMdIBWodFxBrLOFRIYZGC7cgoi/5bHJ+eJ6mA8RcCMYiMCQE+BoPfHAQDK7eDBoEwRSN8wUkn7GPvp+SI9I6fkxc0GMHD+2+Gg3Q64oCUv7yBF9+CJ6JirgAdWHAjlvckopaB2sBX6GJsppeggNnken6fj1wEoKEKQySIiMGPtMhnDoCHyJtE0BNEMbBgvacQ/ed2xiIsvHHKZbOwpvpvLH8q+iU6lNIDrqAcMmGMruf5cdtLyJg0Yks9IoqcQsE74IUfYP4/O8TxSUvBJ97TImp1CxJ/VF7RahL0vvhjuJWqXF2crhBp0MwPE2Bu/8JoEadL7H+nACtAuBiasPwjmb8D86n2/u/jPaSCagBICFCHVkXvFiOQjohCgvcJ+qOZ4ltyfEWksAUidUxy0CPokqOc2ZQPTHYUQE/RFzVTZZbQJMIZEoTaCtytFp/pcUB7HheNQEqjSkaTQm71bikzFuR1BL2Z+cQw/fb8W6VTQBag3jM0sIbY5NzWXtyHKLHnhbj1SBlhlQdkXXYHOsWaLcOhaMKgAQMQF3JK+BRkxFv3rwzAu/nm3z0ftcbufNEe4vY0jD1aORkI24FNKBYCICh7mfBl5vrlv4mA70+ekyb+7Z/6dVOuSRJI+OLSWI6CQx4y+W+Xe3QNnsR4vyRhrjz+PeLvzJhHXL2JGBJ89jKYemxcAY36zxJGmTdNu8n7zOUceTsZJIOCV7U4bmzqdNjMJzqDYu848Geacx0WGkZauE2u+09YZ2eR4Fy/Pl8UMv7fBZl2XeHY6awSO+FmOnBzYFZ7KFvTkAkwKs6zHPDTBj2MfR/ogzNmzKg0ztCqiYoS3UVQQAIE3WycZufwpWmPCtWN9NjHLFiwC2887+mIXqitQH4K/v3/CX02/wz/Wz/jWLvh39x/x1//0I+Y/VdSb2QCZ7RB9WMe8jL1PEGt/vGoyDATxfKGxUGx94LiP/e/sc3yQyRD7HtdWJf2+HaPrFICbUmUPHkxj0RQh9ECErVtyZLLpAKB08mh0ivAxpSTEB3W0U8AoKixizH6BMbzONO3DIbavMbjBMQC3KWycuF3j5XRDFDMcVM610/VLibVfUEwMj0AKARMdQZYMgHOuaM7b7va/81ptYtFeJrGkc1VjTynqVQ0SaEHxb3EswLS4ZLzP7ITkdUf1OI5ytLvjYHvkfhZP88r9c7gGj+zQ5PWyn3Qd+L1fWmOTDsChRF0GRXg92gvn6LKma+R2Zmfyl460Zx7+/dF5Z1DgxBAwwbjvjOMP9s935/A+2SHOwCznHTCkt5KI39DisLVEHquny3ywR32vHwgSiBz3TM227PE6NoejRX5ucgjTc8fY5XfPIMdHXdPNsdDp6Ct82P6P+jPsETF7JDvxpxSHOA8nx/r02eEeDOac52MGGbrN94OA6vfG2kfjJIAFjaDdu3ud59qpHw5gwhn8SMb6YQyTaZAd/O8dPV3/oyOnQgBwUT5vJu0E2BrgJXWVtmxoK+Tv/zJk8KsAFOqmeP77HXXtRhGtJhSodcL8rZlAHsUK3QAqqxu2xdgMWmn4mRq1KDyK0EZOVhdnEgwlekbFAaD+vGJSxf0vjAkw3YypULaGfp3Qnz55WTnB9HUdgm4RERi5ZlD1Um0CIfrojpJsBdPq6typ9rQoUF5d/MSjGVm4UZraWBWgL4L1uWL5uWP5aYvnaM+TiYBR1dzXnD4Lvv3ljPWL4NPfdMyvFoWHO9YR7b/3qIQBwDZgmLFZukI2i9j3WVAfNqH2p4rtc8XX/6jg/jvF8p/9hPu//oI/+9fGTqi3LXQuZh+Y3SnyaF6LnYahiNEWu6U6dKcOs2a7IaiCjdTFiwnqmIFn5dhYoivySd0goHCkVj6zYH8homgTs5BV6CrcpbWg8TbXWUAVbM8T9peC6dXatb9YqgM1PqjZsHzzSExxY3t3xXlnGNi4dFHOSTB99fOrXWP/7ZM9+22kfPQ6e/RRYqxI89Jmxca2CUeaOKfQkCoWTZLHBnm7Q+cpQLK8Affnq716phGk+s2yE7Tp6E9zlB41TYHurAo3WvcSwAf1K6avq4FX5QrpMAE6MgTobC2zlVF7MWX9g5I6YN+/TF7Gz8o8ktEET1th/qxOY66jw0Rc/dlZAtOMCRsn+6cFomrz+76jvN0hn5+AvriGQ0P5enu3ySvnKIXLQKZDEjqiHoAj/oE6P1mUMUoTPi3AfbN/s995fZaC3HfgspggYS5hBgzVYDrg82yf53zruXqqiQKPzZgAl4tFztbVnBQvGYZ9N+OXqs8AZPHSirc7Dnl92aDNLAbA/j5NkHmGbtvQevC2vovE5Q3en0VVAW8fABMUmyfgdrdnmGeLZPlPIvh6u0Gensy44Xr9drdzrstoAx/jMht45lTGPhXHxSZzJLcGTCYc2i+M3iGcSK7pJiQraNeKsgqmP968L+CMtjn2KFNfT4ZHEY/UtcgN1c8vbtzbulHvzRgKng5gaWym11Mf1hYDM5uxlJ6nwU7oJsoIVitwp7RsHViBx59ZWtfsaxxLNG6fJ0xvDdNbD+YOnUqKqlJPqOwF1z90yF7wv/0v/zn+15f/FNOXFft9wvz3My5/EFz/UXH9Y8P8dY8ykdn4ErV9plIkkmmOQAhGMr2i3humbQCE7Wpix2SIlHUfIImveeK6PP3z1QBY33Pro0GdJt0vlq5Y4U7nw3VrZgee6hizmf0BVvQ4MQwCAM3fSUBuOPEEo1URQpDuSObUvVyqMcaXFtOsaXQOHCDLESyCG7eH3evHl+iDwx48UX/KgzrAKIUp4uLYGufFnCAI5Hv4Id1yngMEaU8THr9hqWXg0hW192O1jwD5rN2yNatmxH4laENxxG0fAPljhfQJ809bpAuWrQ0BVX8e1YrLT5a+ARRM95TWUouxuIAQd5RNgV2Asr937rkOp72NTog+XQYTIH8HGHnZpGMzzaK6rflYbb14eFsYZQTG8+YUL5ZQbd2imec1N0d9cxvYdq3AkoCc/ExAANjBcsggiYPSBxYJ7819MR8iVs6XfdnaKJP6S0BFYrjxCHA8gA/r00OKmzMax9wb+iQU7w2wYNvNnOZaXAse/+EP2J+NmTvdO65/+2Zj6itLLh/3MOsTgjPl4GTL/kG/ZFDkIwe2q6UusMtbG76GWoq25H7P7eDfqfGQPyM4UQtQNMA9cR2RCHCJAKe0GzvH5iGZfgF+tRY2RQZhAYQA4LtgjAORNuf3EQQhWMG+yeBe9KN6H2H0Xe7P6Xg/OYNckTKT2sPvkLmxJDsyA2/R3/2YhuBgTYDXvRwBh54+479jrpZxzc3sIM1trRXIbFGuDRyLZILUOtJKHUTWLtYWuOhlKlEvrFp0Dladjl8FoEDjiBGSkePpzlkZuZ7AMCLoKMVlHLWKnEPbE8JhMqQO7xcxjOuOhQ+BDkaKADdHQUQoIqLNKOwJCdSeBi8Qg1xIp9FqGxJ1wTgxajY4AIpTkaIqO1BXDdFDOP2V94goSOSZCtoFaE+pfwEf3BLnWLs/6Be+ozYGu53vQE9XlBUoK/B4zJhXsZSBYloQ/L6szdMqKsQN2VDzj5xvhJOMySJihf3ixow4U6XsZhRnocUoi7m5LoW4MbmNygcjyqGRQzyiXwLU9/0QxtJS0K4FbRazZdIEE28fdrXcWDImeLhRNpTCz52d3k9yrHQuY1Hv1jca7BP/XmgoeD/poHOzzOkBxeYimJ7v8LweoWUVBbvXUNyWNtBrFfFSmB2soDC0UN73Q7BkWBJs07QoYzhcMsTuYlGvTrEnWFSTAcwKKx323h0AA3zd0HSfvY/1g/PFx3r83lr05egYPeb9U8Qvb2rhFLpTyj4jxbJ3ZNHEMByX2QUAMfIqgTA6Dyrimvo0bzYEHXIKRm67qqmuP7aoUR4GXDIIbYNRsESY7MOIZI72iAAmA/OjKJlvRuL5wbLvTsHjBulgCNfKnNt4Xq/76V1E5KCEcQYKO52Nk3O/IRkRQKK2J5AT5iyNDR+x9guGAUpwOc/pupnOTwjyncYbHcuz0cfIhmL0pcCNNa/wEILFXrVhfBnvDxoNzlqg+KEBBbZGS1NUX3elqa/fGBFcT1cqrqVj/YhgW7Ct4m1ifnp9KOZXxdPfGgC8P1dcH4LlJ2D+pli+KaZbR3Ug8rDudth+U8TAQjGBVUZapCO0W1SLCVy2BI6kdcbGhtsI1CMCAjQCEKwradb3wXAAkFnWrPQRYEJ+dzKi2War+LvKDANnF5D2H2NBrJ/zHl0cPDhH5LSICVXm15wZWGfDNmtJ0KYRsfWaZRPLsJOk23pVAMufDjbEaY1Tsi+s06WPZ+F4DJ2CZBzHvg97l9QbkarQpUDXGnt4RIGrHO+dn/28Ruu4l82X3Vg632GhWfqaz2V1+2rTwc7husR1lUa+JubbRzT3/Dd3eKw9H7yjwwPJe7r1945afE9K62YaA5kancEvSMEh3SE7Z7kvP8r/P0eVE0j+3qk62RznnPP8zKfnjrXxwODwKGoGLLLwHB2l/Gz5s/6dMZQZAblN4Nrex3sH/RNr5Dttg+8duS8O9/C/HRgufexjHzFP6ECf9zkfk4p99MFHgEyyEd+15XCPo7BkRP2/MxcP7T848JOvhx8c5/HAfeWX2AXfeaYPz83zOL+D83g/Hwf9hnp8V8CYe7lNXhLTBMTpHP7CwXPOYyOnSZQk3AocwQTAnP4oV1zGd89gAp/Jr3FYD/Ke+P/j+HUACnTwxMs4iik+F6r6KiIdorQeziYNt7I2aOlolwWAWMm9yfNMs+IoYBEDYKDaeYMWGXm9HSi33SL4jEx3v/8GlLfVIn6fnoKOaAam50Y7pdbu5ch60lII1dxtHxT3WtE/X2OzpdFm4l7UerCGyAO4/JGCOc5McJp5be6kF4pLCnSxlIR2AUpjSUa1hbCN6hqRb8p34s8dEREOQHFxLNjmO906Pv87q2jwdn/G898q5m/dHO9lwfKn1bQN1h16mY2h0C3So08CTMVKjwHGDHE6O54n7C+Ww1tWsRz4DZi/uSN5L4dygzpXtGfTR5h/7hDtkLcVshpro10nYyn4o013K/tYNtOY2D7PEQFpZDqQ/XExIOHxZQh8UqCJVMnpZuUt69uW1N6Hc61FsL9YZCZSO9ivDREFYllU2WzsMuJTYMwBue/Y/vwZKmJ51VWwP0+oGxkmalGjbgrA7dOC8thRfnqMTSo5XFF/u1s1hb5YpYQDv15hUfruc3BrKDdEvnG5b5C9o325WsTUFeTLaqXlopypGINCRbB/WlBWy4WV1aPyzxc3qm1M6iRAN7E5vVTXNKCuhhnk7VqsTNnbFoalvHokZxnvVIkwq90Pcyo91i1nO9aFvVk06PMLokxsbCwmlCnbDr3fIfJk190st5Tq/Nan/mye66q3O7Q14Dc/mnN9e0Cniv7pivZywf55RllnT4UC0IzvII8deGxjg6OewjKPSLsIdJntfm/3tMYOg0S2HfrHN6iDCTTM1PNww6jJStrbCn08BroNgIrLaB26bulW2bgpA0y4XlydfQrlcLl4m9eBtouXdlTvQ/GIXBw5GgZ4NYQJMsHKsAHDIJVirI4k8hXCUp4vq69voSxt5dgE8nq3KOz1YuOJY2UxhgL2ZiBSsTlBkMbGkUZETR4T6lSwf7I1qT8vkeMdjuSlQlFReM3N6sRHbrIU66dagbcbZN1QvGReOPmcopMMwMXXKKgJ3bZPFxOxLYLpbbeKLI8d7WXG/TcV85tVN2HJ5ulSUJYSxnJfbA9a/jR0CaIEoK+VOovpqriRVh8Ny8+C+a3j8197qdjVojXtMtbR6dZGpQOOVyVg6eUQm6LsO2QvAY6Is+YyOyTE8RSoP1kFlf5sOgJFBOVthdzXBBSY5lJUq6jDiG1XA36nt2YAuLMO0LtF2C/DiZFHi6ZHUINsxXCgPY3ENaBGvi6clWaCgX0Sy+/fO+rPa6znPAjKb19mQKyyR1k7yu0xnAwAwUyD2R2D/XFKEXsuA0zpCnnbBxNHxrkA3le3AUaQpCPYXgKYreT7RbT9Ug+Ogng1iD75c1XBdPf97rYBtaA/L7Fnk+0W4DNwBBCQ/sZ1wsu9Vo+a6tMSzxX7mec52BwBlq8d02sLtqcus+vUVNcswAA4nBkR6ykw9Gqy48FI+mN17Y0EAvvaYQ9eDqkGAVKm54sUSzggNNWjcyg6hF6DJdFtUDB3m4KNqc1ay4gEx3c5t7y9tY50H9oRk/cLtRV8zIXOgqQUL5H3Tos7QwS3MBHEOoEZXWPPwjK7vZzaTMCezzWNOWoRfHzgACbnmKWbLwuYyie9m0gu+2OZgWKMKBRB3yUCW1B9n6aSQXbOebJQstbFGZDK4pds6xkYZ3nvifMKHrhwG4fX8fGUdSGgehTrZClqVcQicgZgCJZmgDIfqc32/px56WPU7Np9MC2jj/oAXU8gSAA5/NlxZBzwGtmG4fv3a5vuVXmvsXEOsOUxU7ySVVezIxPgFsGd8zsCEMEN/j2DQRkgcbvMNE9mu1fWJPHzBQ4UpFSII5hQgHkZAtTbBs3itqcqD8oqb6oD3PkIBCSQx3v/M8evAlCQjhC4q0TtXQOAmzOjoVSM1yrQZs6xVkBUUJ3qSNQ+KIeccCII8bWsgO60puJ17Oujx2KtQNJS8HZ4JQbUGoJveDTr75SDftBP8PIrcU9gTH4i1nmh2BKy1xEMDgCe+6fDAGuKVmdjui4puiFmafZZsF8F000hXTC9dafiOsCxa5RJFFcMHxGGGuwQnQv2S42ofvFNTrtFuWQBprti+cnv5YAFABNlFAzqZl6ghMYhQqgRyhxv0nLNaK1bwVCytD4xenFFEbFIyk4hwf0YAdrNgJZWRqlRf685EhWCet4HfZK4ZdksjcHyK+H9ONpIQc949QWIaiLejrJ6v6eFjJoOKl5+cXfjzOlkVHdVKmv7R8xthUiUXW1PlnNbXDncFNH7iPzNk7Eb8iZVMHJbxVOHvPzkAWiK83WMUzJVSjGHwjfo7rXWsSL0DwhUiYNtI0XiiM6OUng2BiDmFCAZoaJi+hwOOhSmCTXvbxrSnrtsrJg0r4KSqkAxI0Wjrq9vKpdlILjen8oyg15OKdBoClnN83BSYpzScVBzXinKRTDRRTD7pVrJ0S7OWrYUoDAIpgps7nh/FEkQGWNtmaHXxQTcuDH3Dqw78HazSHeZx/P2lhwRrmEu4ONG+WFTSe9MaCzzuwCCZopqi1zvwI7B/Eg0v6jVDAzjyDcyS82xcyXGn4xoYRsbZxYEQxEHk0o8jwGA3rZa3Lb+gMHR/b0UjLrY7ONSgPlklAGDBVQo0ghn2WCk1jm4raSOO+AXxpzqSNegWnrsA8kI9rmhFAtl5LjhFN1WiKc+aLE1ArA5h26R+3apWD8JpNueW2qB1O77kjPA0prD9ZsgM4AAsW3t9v3MwY7p3kKvQboLKRM09X76SMlckKLY6X4GViA5k4jPyCKjXpB2p3x6O/tcIXMF9jqYizCnW13UkRoMce1dY78MR1nH8x5EnX3cWUQfEfU2tmIyLJ1FAbF1qV9qsB87QZxNYl6owrQR0vgsew9BytBOmpKAKOdEdkLnGiKKxv7qg00BoNwQ4EWw2ah3U9P1ciRXBKiIcTwqWRzvHUcHIIMlJK2j3hsuf6pQBxVsXR9sEezdlp40VzUbySKmLdLh63jStEl7r0WZZWjvZBuZ+/OmFrR43VHunipEu7G4RoWXhabdwu8fxBB5ZJuwD4dH3al5l+KVHRH+zH3uY4z2I3C0JQ7XClu0OLO0xBoZooz5XB3BmXfgDIAQis1HcrLiuc6Hf4dlhj/MmT9fWwQ2AU9/EzVQh/fMoE2yRd45nHwOsvdyX+WSZ1zjw3Hm38TX3bHm1tsW/oo0B5XpH3zPocxH2AYfROc/+h0YgcmOMS6SrxG2WnaaE1ghzpo+pHec7q31PWvuAIxkZ/P0voeWmB7HTQxWGfN4x/uo/+m/w3Pma3YAHsz6azqBdQAAIABJREFUsDJFSikLu4h9Qro/z0vrg2n19Tg3bBPaHb0f+5Zty8eJ7fuhFsJkZZAPNsv3vhPVagTUmJKsm+B22vGZS3xHEuihGbQ6j7Pi62dolZxYEf/M8asAFNCsCkNfjBpfVbF9mm1j7WZ3FsBz+nYrp3itwOqLsxg/vb5ZpLY9zYbs31xDIdXzpiq8zmMAMtJsqJNFl4My72rKPIrnARr9bkJ7ng353mzCaEUMPkk5KGawGKpLRXouhCo66sYCEf3VS42IAbbR3jDmVs833ZsZQ1PB9mSRW+bPqpiC9/ZJjFr6jx3zz5uh7vswJvplQnuZjUWw2WIrImi12G1FsF8rHj9OmF976EtEvlYT7E8F8w0o/9AtUk/mA0wxXOaCic/AVI2CcObpaFvJGZvE0hXTzTdzV98+I9tarXpE9UW9PJqJed5cj+L5YvdszXQGVK1CgtexPqdcsM0h7kWDrpsq9PKnNVgjrMNe70m/IzbjJObUxxijvgF1MvrskbpJrCKEKuafgYIOOO1c9hblu6p/l/R8Gl3l0dCeJ+xPFXX2ahqv28i17R1UrtdlGvR7IJwtACaOqU6Ll8lLpvUD9V89QlHW3fKX3TA2I5njrgDoJnwpGpHDPMZLjmwT4GoK9RQWVcSG3T4vro/gJR3XMf6YF2sGf7fSlVMBVCxHGoC+LEAXyF2ijrmVQtvDQJNQdy/oy4RyvQyxMD9Xr3M4hQXukBJZfrqGroE5IHUYMYycuPYB1z7ME/Qyoz1PaNdqVVwaYBVGzAG2NlRg88jQww39Ug5Gf2x0tUCnC7bfPWP97Fodqpi/7ahvO+rPrwiWCqNIj4dda5nHBuWRfYEbg2WsW2NRFESOUNrktFHTwenUVCAXGZsajcisbl7LUal4mZHFKHMFBrmtFoUJY+LkRFyGPkJEZhLt2uZ9ogm7QX0sqXqMkEVqEQVU3THUxSIfmhwpOrisOkJROpWC0kwXRWcDbXWuoE6EOcgJ/Fq3g8FtINkQjISznAjmWfsM8Ju+Pmx9f57NCV0RlXDa84T9uWD9AZAuuF4K+q6QVhxUBOavto62SwWqWNWjDWNd8X1TJVHwAxioqK8b0HRUbvKIZ2yrpJ/TKS9IoC6j6z2YYMWdZ5YtjHLESiZAiYoP1Y3N8hipdmWfnEY/qkJoEdNi4tqfwAIrXWzrep8NuKaxZQKq+0ifEjId8S7FKouDRRWlKtg/zXj8OAHxHPAgi9kZffaIYRmOPvurvu2uZeD39tQVPFbTQIEcoss6WaWrsCFuPfZ7ALFWHg6CY2fgrXcAvn9K1rXA0djmO+W8ULUMp+LA8dYwNWOzUFMhAJZlAraG8nCdC2oCEWhxJorNLQP00GAslneOpgyQc90gywzFGEPdwaR6byhNMf/TG+SxQ9bNwUVGeHF0QBjpyUGj5CBlzQoC57b+9RiztLcOaQPetgPLIF+bRv/ZCTuc42tY6RCZxlqbwaCDU0/gs0c7zuKLv6hn4M6aVQU4nRPX6QMQ4T4Tn/d3l8zPE85jZh10r7yh6T3ImNeHyzj7QPcEaPt8PgA7Ne3bRQZoTXq7j6Py883WA75DDyocdBryOOynd3WqDDXun+baCbDJzm7+7jsWQQZNzuKfIpCz+5eZC+UoPn8GDdguPieAj8EJf+cGTvSYC2YjIQIlwVpUHToleSzyODFlIlVLEujN/spzsXdQM0rXbcy9Um1uTGnfSmMfqsM+CN+lHd/D+V2c51Qwg04HHX1WFsnpyBG882dIjMsBpKc2ihhAQTsm5ryMzwCAzITQaMnjzBdpB0mVYELYVN+Zm+n4VQAKlmvZQ83eItHmkDaKwaQIw0DKbWPu1zJE6tjvrZtDSXpbTGgZL7wpymMzg06nyDEcKtducKhF+SkMWTh5Sb0DzPkgxYTrY01MCSAMxP68hGBcfTPQQ30CKCNSnKRNgd4gJan6A2Y0vTiN/a1HX5TVBf04+FUx3TukF0xvHXV1Z6y7AdQAWXcz0iYThlQCL6phcEmz786vFk0oLiyoxQS/oJamAiimN3/+MgQfQ8thkmBcaBFDGKeUbwlLLRC+d7XoUJ9NdKxsZrz0SzUq+LfVSw5WtIs5YwvZHct82GB1KtDFc09dZ4EijaJuwFQDO8o+tB3qrR0jAArI1lEpGAWj8I8BfdzEQoUd1g8s4ahVoKiQyQxeaYp66whWhwjklG1GAUdGziAU26LTaaAX6Fzwe62Hww1VawMNBo9g1zej01vpOAMdsoOWVd0xFaiOSGtpezgy5babkKrTdus3B3aKRTIBRBSNGzQFCTFfLC2iiqUyuYFp76QPynE+SqI9Z8fkdJQHqbrJEEa1Mq50iIotoBSeBOyaRZqnKjXIW3fwwctsJgEse4YppQsUW2XnCdg8xWAfInsoBf1psShl0kGxKi4Sjk1fKgqdat+gdGvAtllZRSBYGTpV7D884f77C97+vOLxo49rBa7/MGH51vEZMOr3T9+MUcG2JsPBHFtz/pQbq4+FMDJZG3yaAIpD5dQF4MhGcHYGdMMxlH4yxF38iWrzKDXYOeHE3jcDE9YtNn29zMO462pgMscwI9KfXFDSN3E+u7o2AVQN9BEZESdv2yEqOp8Mc9i6rJcS5W1j/Hy729p/mQ9aPWdQUxZAP18iIk8nTGNuucDaYqkZhaJ8ea67bkAIFy9OY/Zzreyus2s6MH1r+OHfFky3jvnnPYRXy9pP4OrIrz/o0KgOgT7VaHO/GH2faWE6e4BgSc5z75DVmQVzij7TOfX3FKKq3nfCKBKf3VmKZXeV6l4DvBkXtbVRBcDFU5Ly5562JmJ6MADGPs9pIUC7TuhfljF0N9vzQ7uHzA2CTw5AhSDhNEoh97ng9ruK178sVq1oB6ab6xHtdbBDdpuLxkKxfVYKUO9jPyPoQhV8lrYOgCnsEI0+7pcJMleIC84SnNOzMS51iEVeFzvXRY8pSP1OPT47Qh0Gnpca9lHxgJA8XCxWNZio6F6adamQyUriUo+CY07WHnpKnEsHhzo7lu7IMHAjrUM3s3vosBefxya27eK7nsoQ4sV+7QAJhKDGCWxJzno4ekwHCIG2GhFfWZbh0O3NUre4rp0dbXdmDoKOZzE5JAeSzjIdDtqWaf6+O5JTbeXOvZ28Dh3rk2Mc6v3dK4mQhZJZEZq+pw1KVXtv00EniE7WVGNMKingGUA59w/3Ah5pXlhpYoWqHEEE7kHLfGDIcSzReZU6+muI8J4i9R/NBTqiAXwcaegffo9/436bx5ZHuG0MlcGWyXu4M0ICBEqp10OgeRpjSPpIk8iADO9b0rzO7RUBQJ+lx7yJd+PgQTBH43oJnOLPHI3nPObzZ3ZAslfkYG+NsZI1W2inhbjpGSxI+/jBxlFnr3JP4Djk52wrfL+iiGrHESgCECkL2ZFnydfMJqmn/s1tOx+cq/ycc47PlcexThDs0N3vn0Va2SZnMwmfiyKPH60Tp+NXASgACAOQEX7ZugktlRl9ciNIZAjzpO/RGOHgL27MybajM+/Vo7EHlWD1vCgs5kTnl9cRedxGwy/oi6A1Om0WCSUCqVXQUWJTAjCMleJGkCtl98uEfqlonpNaYC+PugfKiGM2jLscaDQUOxRfTACbPKyUQfDDKmKYw1of3SJTpNMXxEYnpaCs3OkBMFBBgGQ3Q7Xe/Tp7R+fEaTaxymY02fpo4dyTwljZT8Wd5I7otyhL50cPAUIDluTRgNlrrvvE6LWg9I5y20Lgar9W9GUsgtnAYORKHcDg31iTPdsDNUTH7MVUr4ltH3q/+xhj+8tOxFMiReRwCGIshVGDycZGU5Te4h6hKp7XD6cSA4OKXR6M7moyqhVlw/G7NOgAW9TJ2uHHF9MYkLdtLJBzjXQHZGMe473xJuVukVbTXBBTUm+Ceq+oj4by9vDcvBIdc8i/bL75XBerfBFOpRmModLOSBrHrn9fIfE+5Aw2eHstetCGMUnnO977PjZM4GCgxDXpKGzGYIr6w1MybvicKdIJqcBM51y9LCBp7oga8xQli1QWceNJ+c7TRqxqAIU6RV7EUhncaNxfJrz+RcXbvxCsv+nGyOqAlop2LZi/XXH5o2D6+XUYFty4Ux7iqLGstrF0Ggk6fma7qGswE8gy0G034BIAhSilFFvneET6SYpKFHdAa41osq01prUh6+Z5yy02cvvPnkO3PdJdrD02FvrVcmPl0UaOLw0RdQrrbOUh5dt6clKODpJKGdoJQmZLSr8iTf9uoJrMBoTKulk1Ewc0dS42RcVAzhDFcyZXu1gVmSVREWNsupPKg2WAyZCLCkmK8SzJUKz3hpe/ceZP0jGQJmAp2MPBbVLGMhMCwg4m2F4rQ2enOxgh6gKQQ1wWezdgORy2ZKArAlQdlFW7kaVnwUouwp2D7qkaDlhH9Rd+P5gBQ38iRFi7guldISJLYCcZU30uWL9MKJuLWhYZVQ+AYK0N26RamsfeDbxUtT16KdifCx4/Ftx+31FWQV0F/WdLGWyv1rt9s72O72uwHmzOB0UVGDoG/Ns0QBPRNHfJFpstzaZuzd41K8UInTGzfViqG0VMA2FDgLCWitqH81ckWDy0q6iFcdCu2gdIC6ZeeIWGMld0MhXgy/3ek06JP2sWk430GG96KckWmIa90/tgkLlTLl3DoK831xm6PxBaACJezaHEWnFwhLKxfza86QBtWzjUwRYQtxfnwY4JPSj0Q6rkuJyPAbJak0Ofz+ExhG7LcGzPx8ExxPGeIqPN1KIhMw5AKPczEqs2j+LfATjDnJkGII9FqNlBIpZetrexPjE94aTGz1Rhu8YYdxkwiTTns1NGoAcYzmt6bp0n08vIDh7PVUUWP2e0+vCGVJEFXN8DA/3oSPP4TvpBOPvncUWWhoznOvQL+6/oCFTSN/ExH4KsbhcddJPE03vYdrYnXSezruI8zkvurfFsphGEBMjEmMz9dJ5X8U7dPs79nd+t22/Uo4M6+5vj/cCEKWM8hM2HAFyOwJfvQM6wDGc8H7XAaWlxXS2AeL8rcHTYT/2lZPbwiHMIoKgvgj6fmPqQwQmCS3mcZMZEgDM1PTOvyw7AuJYIIuVV5Wjzfef4dQAKHhXd/uzJBNp+XkMJvzwayjoGLHUN4FE7FaOzl7WHUcV81f7pOhC57Ii44aFiJfJ0rib2Btuk2ssclElp7kS7Y12o5fCw1IDq6Q+ZipfLPoVBVAr6tYSQFunzwDBEAN+ki12PR6Ejxetyk+vmaPTnJcoOUsCybMz58zZvqQrCVGyRqQWlWN/3q6c83HaLlt8fkNYxq6UHPH57tb5g6UZxJB/u+BAR9IldHyaypTc3stY2HCUXnqKdXx8dcu8BChVnGPRLgXSgdIuaFZRh7HnUuz8vQDdthMs/9mB+9KUG/ZblRNEU+6cZ+1OJdAFWYqi3YYgyRSGMTU5QlvhkCbACdDdKlaU2CQB5tKhsQ7Rx+7KgXSrKD0+DCucpMBH9n6vntpuB1C41tdX6ts92T4ovqo+byOWrcoqqGXjGRddAudno4runuJA+zwWxnXKdnY0ipNzekoG7+wZSFitdV8Yi3ecCfHlKC76juz6fdK6QfYYss6eMOGMowDhErnHk07KNHTFHy8+vwzDza/fnxdhO91SKring6U7iQpwWRXSg0Mu5xlx+WkbpNzrZ18WMlXny6E1ip6wpskRH3ZAnKyM7T8P4f7iT+TAl9akWoLRB6+yAdCtHVn+6QR4b9OsrlNSzy8XGicgQZrouWH//Ca9/ueDrfwJsv92w/OjCdK3g8Woiso8fK8o2o15mq/aQjOfzxia1WISqNxxKhAEjYu/lDZXloOBAAq9XvFIEVmhCxWlXCtYRLRF7/v7pYgKrXFv2DohCpjIMAh40qjMFWATqJVBt/qa0tw2Q+8Pa9XK1a2+7RRfmaZTbIqXSo1rltg2a/DSZUy2e8jMXn2saBlpEqp+vBmrOFVgk9ECCSbaPNX163YdT7WsMWVx9LoCWYBoZ28xBsiYo8BKzzZlGpMO6496frdwuq+KUzdhI27WipPQM2Rr2z5PpoLD6wtYNGJiMPVTWFn1jOghqrEAHbsvaMH+VWBPIpth+MMZg2Sz9q9z2JCA79keu3UAJFp+IoDg40z9dzZZeW2hB1KDwFwtMrN1B3BbzWrnWJWG2AFtEDnpGuhT0Uo3t4etwve94Ij0fCNFe2T0CqhZJtzK/aqLHIsaKSMEGahu1BSOFm/axiO893F+NoVgciDyUpgQCdIWKOWeeMtinEqLS02bBhMnHMOeulfzdnW3F69P4dXtj2yHbZGNt81QfggYHB20ASyiKgzYO56lfV68TtFW3kzUc3bi3zwstgv15thQ+9jN6ACahX8F1O/03xBvL2G8TDT10bwCP+LtD5CCFUX6HDUnRRQkRRXMO30VEWzeGJM/xe8plGY4gwdvkWAZ4ldbYs7MvLPl2Fm9LR6RP5DQVHs4uGGBxokafKiXY+V6dh+ec9E5QLN9eexvnKrUUPPUhxtMc4sbqe8ZoVw1QEAzQuDNFzaUISsX6wFx/HSWWmzOrchoD2TsAghKeU4Guy7DdRAZYpXp0RPkewlEe7zb+7ffL7yy+n8Dg+CynGuT78PkyqJRBkfQ7dZgAGJDNz6aUdk3QLt+HbElN417VmYRpLNBuqx+Mp/xsdH79+ci2Dum/fbfUA2CAU/kaJ2c4qi4lBkLuj0OVK7+GgRzp7wdQwo8pPQ/XAs59BlSotRS+vX9/Ts64OiOucb+YQxss+kJkpBwkhkLWbjIbIgEDPMjsTuLZqDD7h8Gd5izMx/heZlcAAHUE7fw2fnYdZCaKyEb6R/fnQ/p3er8fHL8OQMGPvpSgGqvSCYQtFpErN/wJIuxDNXVcS6uY+BCdwzPCBoRDQ0dWpmICmrUE3TgiRYwWNTp3Ht0qgKCMAQ8MMEHMI6XhwVzZkU/YR3Q+TwhNUXaBIePuxOfqCyOfnYumWiRBEaKOOsmIPOWB6k4fn3OguX4dV6S3XMwyImCP9H0uXH4covLq9FEfvHTU9FKhRT0Vwq95b06zLx7tV1N8Fo8g8dppkshuE70vU5R2ktZQdMf+5Rp00hAt7FZyrM+mKSHdNqXarb9YCs3ykEcfx5gpSfwqM2T8+qT+R7Qrv89Ew2eutHo0zNgEdEBcYJQ+KGCORAcoWInmRvERE7d7NkPMFAjq6OGd5E2I/wbAsmZKo5Cn9+5r3zAmoozcnjYnAhXeb5Fj7uM1tCZ4TqH4I4IFVFSBzcGNLoCMjSaY8XMFpA/GQBn3j9xF5vvDqcBzGYhyU9NXUIs+R+qDtzuXpQ2HlH2S14+oQwxzXLJB6FGjcLSzgeuU6Dh/TUZtwQAB0/WK66TI7WFVHbYVo3KCHDYl+4KX5rsC7VlRXnZ8ebmjK7C1itfrFf1uKRCsSw/gaJxyLTsbD12B6SjwYz89okaHvoxN2k7TSPdSuBHA8ka+W+kOoyImA4OR+6EGz/FwjLbEulZKGJMhqsj8RL47IBwP2ZuJiFIgMd5RGQye/K4bzEhFQdbwsnvDxwt8vzl+TMZDTrfiMXLArc/K1kJXBl3cgFAD9ci+8L0pBCN9j+LaT0dOVNHFWGEjxxTvDqZ7Zaol29CrBIvu+CXFO2E70op9PsneIZOgx37m91GxaVHNKQTTmYpfl/0nHzT2HIVpakyfuUDXAimMfiLWnQNzqQsg+n6/csdfnAqtVdD5zpzCGhUBEjMxjDbfOw/tFDdSnYEx1hhb07nnls3YCZbq4EGAALhTO2Xs1wAGTZaf+dyIPUwQLCfqpUTOOX0eOsDAMOJz+lMYpQqgx55+sKXykeYZ12j94LyImlKnhH13dq7UllmdJJUvTqegfwgmxPfpKJzbwPOY7uSi3KH1QjbC6Xt5PYt+I0sNeG9w5+iyU+dD+8fDyUMg+tSn2RE608NPAofjK8mJOjvDehqffKaCcP7eOV+8d+63j9IKuR854CFsZ34Wf9UQZ6kB79gVR9HKo41BsPnsTAdIROc6tzV/P1+T/ZnYfwch5UPufrrnoa1+HmkL4Yu04z34XLkvMjiQ97Kezjn3YfTjqV/zkVIFLLrsz0xWJQ86mRkc8X7nuxuVcE7tzvc9j5VoI/ukR3sJYslHYyy3HxiaRzw+cmRppxE0z3/nGlnSmPmojW4Lmm3r/ba7g1++08bcpj7KYIpOY31gOwAcWAkfpbqk57ameR/ke5TigUEaGQhQw8SYZawH6e+QcmA7nUVTg4VFZvw7psN5HnR87/h1AAqlYP/hiscPFfXZDOLpzSIXVPZtz5OJM26er+8bTY4+9CfLFd2fiby7wM598xXz/2XubZckx3VkQQdJKSKzqvvMOXvX1mzf/432JXbHZu45XR+ZEZJI7A/AQUiZ1TP3z7WWWVtXZkbog6QIwOFwzE2hv7hQGSk7LjYFGGW/Prix+C16qYC1rmLGUtG/OkOC9YRpEyDVtO3GYti/WvDbfmyn7FRsiC5UZ4rz9jzdswvSXb26wGg0WXyQ96OK428vQLEWfgBmcBelCdOwxvWXChwDy78elrV+btAfPw3VbdW7IzjrI9W5Mptff+4QHRjulOcNPe6PL7vTPsfiQoJdje4rlk2qGBj3aqJf3doNarXPaxVUd1KjZre4k3FvlmWhmrp7wAHmVGsD2W+C0YD6VGMnHJalyxoIeqvoSwmHzlgC3hO7mC5EeztQf24Yt+a1nv5MzqAZa50AhTtO9dFtr0+1v8eXBf12s7ZfEVC7gXK6sXXUoNME1G/PmX3MarLMAm5zjmU77P35shqoslvrTtk79PWGUe+RSWMwOG7LdJxhG621YBWoC3e2Px4e8NUZoCks8+HzMhZr1RniqEfH+HqDokQ2155PQbqZ3szAzQBUok3k8VrR3nroZkAE9ccT6Irxb18jcBhrg94qCoE0vo93Z3sM65Aizx1FEvotgnG3No/1bQOG6bhMSmWquVbPxjrAII8N8Iw3AMiPN3N+lk+2WBpq0m2PDnlUE0TLzsJQ6K1ZoPP+sKDxfjcDkJ0wOgEOTrRHR30uKA8LLL6sG/5x/4lDK/6f//c3aBFrifbuYrVLg4zbzBjx/c1iiqoza1artR06Duj7u9+CTmPDTNNn2TGWnT2fJwdL1tXGhHtOayg/npC9o3+9heisMXOcergYK0zG8BZfBaS8xx5XKwS29gLs+fKCaBGsai2A6fQf3SO95DSpWitiZ6XYc9i7JcBknOzdAwbfl2AlX1cHXYbVf3PueJ3j62Ln/Wl7JERcXNiZNHW26q0PYxUdr810Sh4Hys8NFHqFSOxNxwvb7hZb2+8mbDzWYiwuAap3q5Hds4Pd2AMyCA7CWl96oFrF9t3yfkRrQQDRhtW0IUqAxACwv9rYGRvM3kGt1lKzPGknRugYAAC7WQBAtED0FrqDJQaq6PeG7feGuhbUbTGbtLt2BbOZLyuOryvq+z5L5UQmOHp0c8AdJBER3/PLLBvp6kyRirJ3lPdjfp4lJmudjnphcsIdPdddat931KeVXLVnwe2fguVnR3tXK9sTawVZt4H6fgTDZAbNNua077HPcT02hOYS2x72e4OsFcWFjaWrsZO6d66pcsLBZDuMFeUiqFzv80IOnC5zXw1Aqp7nz5h3Es47utraC7Haz4M1XYz90t47tAm2v62+ltmxyQA+iAIHfYxZtoMMeKnOvZ7XHAP64ro3w/ZVlkFFRje19vuQ4eVYOZAZLfdUZ0nCBaxlx5rTHsPyMMByRqdgdoI91ABAL1P3hp8hAJLvLfQa0sG2iMAMDoaPYc6g895ok65igFkjR8R0EjiHub6fgJXq+T6rg/9uN+RyXdNrmMmMDCqExkGztazXewPOASj/xvvhtaiNUDwY4/occ61oHgeOtc6MdrT6O11vxPNF0JpZHqS4cwwJXIvM9wSYWfMAQy7z4/fD/St8C85/I4uSzz5tW4B87CbEshQR05FYpoaWlQ+m8gFglmHGGuTY8gO+Bw5n3AIz+8/D12es0MT24byFJgMBmNwVYTf9ldDUcKBO0rzF97POiJd4yuGAwzH9RIgA95snVWcL1BOAwnlS99WZTOF79aRumD8L3wVgApU+dwSFA0RQnR1Y1OeM4EgfECnnsn8eV8YSy4DsonNvLwKWnhpz5+xLxlpOJSvCkg5PHv3q+EsACqwVLh2QA4mJYCqc1kLS6vh0THRH3ChOdNp+bzX4NjGluTH3PtPipQ4zEwOjBtYSQRs3C9anmgie/S4EDVPW6ypQFfd3QoVn8BRlG58tCplAgzkfvA6fUSaQkjaZcI54PaK1V/Saradg2RtmiYUGOVO9eK4xoiVhDtIBCbSZ7a4IuJByL12jnnSOC6x92QktzuMFy6h1IEoP/LrDlfW5bgBHMltxZWfboIJlkj9T/NwdKN3uwdgnmIwQR4jLcb5fOFCigpk5Otw5ALxEAR9RUgIsmjL47pjEOZKmQxhVGhR2w+D+IphrVBVXtBERnPtG0K0W08ZYZlZo6OwakbuRxEZpZRLWgrFDerFJqskYlRKdEiJ7qzYXBv6NszHQlCksEmwFFbKDUqYpHaLzvSl9dn8A5roaaz2j0ENDEZ3vRpyXINSo5nx74Ka+xoTvczYkBbYIk0Nw6gbAg0r8DCgI4F0yPOeM6TCNEtkjQxhUvmSIAJiT0rvV7qfrRlZKDWhc3gbWbxVv3xf8x8sXvO0L+hCUt4L6Lgao7ZfA+XpcDcdw4ILAAwO1/B5f20rGI6cM+eX3HDeBaTToEKeMG5WvvB/APkvQbL0lB6PWcDAjUD85gB/r4GPchoazBCASTeFMct324ewKB0RSZjrO5ftEaG34Ozb30vThHFD4/eb3nIEnM+xl69Ay0L1rBW2INIAtX40O6k4l9XjS/kdhRulqLfZC/RVzjyVjgE5O7Cc+jsB5r74cfJ/ivF3NtgR4aOCoHNPHDQ/rAAAgAElEQVS+KmZWcdLp6fDDxz+JzF4c6qldwDmctjZnkEnN/3StA9P5OgWgXss+kl0GxysFAIA5W+LP0i+q8cE4UQjcyT38PewD5RDUh7VzNgFEPyXtRdRC6GTT4CKGGfcmsd+p+loRmdPNf54CLHz0YejcN9snP2TdeLlfrIUYS39fQvB2zO99YNDx/PybqrHy9g6gxucJ0th7+9Hm2mdm6cxJgf60X801EeKK3GO7Zy0/o6n/6sh+U74XOuZXICEDyL86cheavKaumc7Pgs14f5MdOWXKU8ATn09/pygkF881y56P/HPca/aB0+ccXLP7/UTTAZjBah6fP1trDPL5Y9HP5yuP+WegN6/D/4p8XPMfWFJ9fo/XyNe7/g5uE9OcRUtSpD3sM6ANmOCdfhxflsaGffQyAeVQX8+nwwAl3mM9l63+WQAJYIIOSZjy9L7lvWU+/PSNBtzJu4xZ9hfGZf382ZHnjtfJ8yXn9SQDH8tbgr1Sp84Sz83/l5pAsfO7F21r+d0M5mg5v6sX3yOd5L8e+3z82WeptcD3soithcLASs/rAMk3ux5/sl/9JQAF3uD9PzfLKjydHi9iispLQb9bdgov1QK6Y2D5MSxzFIJdw+nnRqeU7ij9S7PA3DO0p6BdFKMWjLWgfu8oz2PS6h6HZVq+LtMB8trIUAx3x2LcmrfBs44MWmoozzOAaI9uDhNFqHy/DVEjwLJKHgyXzbKx/WXx/tKuakxD6w6odMXz//qC40vF+q8d0k0HgnTVXLYBb8/E2n3Uiv51tb8tivb2BI7DhN4Au8Z+WFvPW8PxhT2sAXqioxXoWvD+PxrqU3H/zx2lDxPr40vNTEUzWvL6r6d9bzlvoOb8z03JSgTmBrf/vkC6Yvmxz/toJSi1BbDWe/dJlabDPJqgdEV5U3PkDs9Aq2VvtFld6/LHjuU/3tF/s5aB5c2udfzt5noLhwlFjhEChFkTIYIC6i3UglGcOSOC9mOHbAPlbUcBTKfi3jDWZplIz+7LUCzft3CeggLWWNbQrR5t4ATeUIiOtH7hhlF8nQ4N/YCxVtSfmJu7i04WVciOUJKuzNQ5swfefqy/Nix/uDIws0Fq72h57nOdFplZLgdvdak4fr/buVbXS8lMETc25W1HeQDtR7Ha9seOshhjggrh46UBA6hiWcXyfWYm8bJaUHAgsmVjrdAvS4Az7dsDpds8AOawChzkSAKp5nhaHb68Pz1QcLS7VuhzA3RAvn5BCPy0Gl0DAKD88QO6ba7sXU76A1JK1MhCNYJq8H0MJyFt6nQ43RjWP97xFUB73PHtXw2P//Nv+HEAMoC//4di+TGwfNusqweVwoVU6QLrla7QY4O0BrmtzlLowPsDQ3W2+qJiNijmNh1dvWRtNDmO4gKKYax7j7iW5RMGGHdrcQlAX7z967vXXYlYsHNfvdWlRHZyCpx5Nm4/THzU6/1jLMcI9gHEGCVay8ww3BYwkym9A48N+vevGC+Ldck4zDHQIYCvsZKcGcuwJlCB60g1HL8IiJ9pfPaO9vaEOsug/HwCfbh9kOhWEOKDt2pzoi18ePFrtPduNvRW0Bzgs7aQDpoU73azFOjNwIiS2AXF62wJ1oS94p5eW9Sq55aaBCr7lxVDCtrDdHRkcyYCtQfEAEG9FdzedtN6+LLGHNbHYQwgB/a0WrZbfJ773fa09X9uoW9RNmdiHR3aKsaXm/kCDPD8PTZnl6KqqSsCwYQQ+lMINOkjeaJhtZKaHChS9yHmvCv05hoPzw5lYqIPNLdjogiWG++vvxSMxYPQTUyYkfs7xROviYQBY5XBkgRcY6c6bAflcpeAAJ5pu9xW6/oS/lV536cmQR6/9C7BS9jiM17qMdYZ/NZjwASxj7mf5T2W60t3FHY3eR7QfaANagAZKmJ+Ube16NlP6yhirAPl73Jbbt6vyKwbBuzzNY1V3xBlK/Fi/tqZjnZyzMLGvjwBikjYXEQGT2K0zHbyVr++WlCYRRhLAdZySgBpT2WIVy0Eno6BzBhTByJ9LsTo+EwAQoDxCoYACMZEHh+WzIjMQI1AO5kL+Zy8dmas5fNT74BBD20V1xyBhByAiiA6usED3Hjf57hHNpwlKLW4WOhMHMaYUu/iYn/DbjIAdAAibCE//6uAbwxAmidoUkCraoLDBxAoXLYlZJ8E6IOPwXP1RJADjBncyB05ZiZbztobFJ3M3Sw4nnmsa5mtnvswMGdMDaG4L74H1BFQnff/iZ7CSSjyCgRl0CH2kZn5P80bk1rUbYhkg92XbluMg5RijMdqfl28Y/ndqG5va4G2BpEyGScEEnhfHGPaWxF79sqynlmiB/8bfTB73mrn5xFsGjjQz+87c5NrL/uIrdk1k36LrdnuQAPBi+SDBIiZQb1flGvwMn/61/9dh2LW+BOtYR9ibzvIz4VI0VpCtGq2SPTA2YNEy5B6MMssVVeg6IkiWLZuWRMaJo5Ko3MBsDd2bCik6gwFFW2jPnJoMhDMrpgjxYxTFqHK5Q8o83lNYNDPrzPQtmCHn7efrc2c/82zKaz3jyw3MB0h9fqqNgNdFaC+38xhd0ViqUnMBjb20jV0n9THZdYAInQZdCkhWlg9KI/aYHcOY7wGMNhei0BCm/WroYDvx8gtokZyrNcp6NdXd0YOYzu096ksnnUxVGy9xVHFKPPHsHlyZenybOEIk94amXoGMCL2zsWGpebjJ82IUBDPx4BnUc0QFvX1NBxZ9Ezd9ZBhdGcKd4ka1TqyZqRjq9oeTqfXWyUWEW8r54GhkCIGZw7YWgkQjkHEFU0WmUDGgnBIMQA5yQ5zIdk8sCPIcW9oDhSGA9SmccBI/6fTmjbNyEz7uU8sm8NBFRFXkXZDHBGsjZPCAx2Fia5GYCgA2RCqZnCyI9N7ZMCFBjw5O4AHGQOekZB5DhpwVWDb7R7yuOasFJ+nlPn9/Mx0fvcD5W3D7T8Fv1Vg+Vljb1zeTIC0bN3GhVopFPnKa8yd26DfySfZpHQfvyxzyEfsQx6IX518vuN9QMXqcDWU5znn5XSfwfjiOehwi9kTOjUU2ztlcIA5/n+CyGtjRx0P2thadUnOlypQ4aCMi6Qu3gnnoLDhzGQZ2Jj2nWRDXKUzObDmgNt5JAJb7qWRxdb5jofuQmTsgQw2qCL26GCX0WYqZlvaaiyCyeLwPYUK1MquGGazMlgQz5V+1rVAR0EpHRTRNfCDts2CRPGxh7MK9VZP9lLXWU4RegCesea+HNkzmifF1F6K7gcEVhhcZDaNzUVoJuQx9X2wbD0YJQBCv4a6RGR3hJBlsD+m8J50Z6qNOYfWRtLo/bKn7kzA52JmIqfWm3GdEC2cjqvwXSsUHWUQOP2EEM6ttMPFfCOKqvFSwTrzLkoOuKIrynHMdtQs/WAZGcfX/RStNUrt8trh/QCw7lKuE2S1hepjmd7fBOjFd7k/BhCagBhniJ00brI/9mdHtoMEE3wsPuzbpEeffnfecyIxkYJEsqNO18lB5Rixj8566BSA8hn53Ww3ynm90N7Hnp+/79eJ+vcMVACJwp/GhBnQHFhfn4HjmANb/i7PxWWOZdDf1WlL0z2bT4jz+YALA/AyPllwMsoo7O+Rdc52Lo8ln5fzd23ld53rYGCk5FcE6j2SMMZkKHMNf3YkEC90Kvh7Mhn6eYyC4UrWqs9PlEx8wurLfuu0BzrBjSvwxMPn6ARYqWvlEXzj2s1dSNLeFuehzcuMiMxY/K+OfM4MePlcazM//8O7nxkD9PELBUnP+9R8P9Oz8DOqAOzZT/M51OZO+/n3nEN+97NnzPNyBRMyC4lJLtX5PFdNhOyTZP/zv3H8JQAFGWpZ4EqjVdBdP4DU0dAy6Cbo1+8F461Y9wUe7uDXJ2s0p9Mfvctd4TsyrqvVWofSPZ2GCE69f3e1Nk8Ynr0d5jQV10eIQEjVHZJUVzosSKhvc4Mqm9Xtjt9frJyjppeEj1MFo3hdkyJE2/q6OMBnwSeKdzYIwy8W2BdYUO6lE3SC+jo7LIylYP9aTKxwFbT3O9Yf78C2AaNDNwQNn+dmu6z+wmy6GhOCe/JKoy04Xhq0ADd3qE8OrAf0Ze+Qodj+7QYV4PbPJ1ALDoJKldc2B0shOF69LvhpwZzVzleML0s8W7/NtdE2Y0XIMWYwIAmIIKAwYJmsryvaH0/TlPDe3JUor/8MpwdH1wfAnKsiYbRi7SzTkYi2YmmeSc+VzR30ZOileOyr+OgodUX59g69L1ZrLgJpkx7MAEa6esDhRmBtDowM9K/WRs/GUoN2DF9TEJktF1UBd/z57lJLgfW4kGVSrIcC7FKS33nXVCjf3qF/f8X+dYJJ0TbLQaOyWZBg9cyA1jaDKDek9fvT9g9vy8dMlV/MDPNt8VpDPQErbCcKZTDUUX684VQzrzozejyGAjLsufdjOlSlTEARMCRaBDIsU27ZpWVmwV9f7LvPp43tUMi6nK4vz20aE6LskUU5AwsCQP74ifLHT7R/b/i6WJabWcXQndnsvvU47N/OFmAtZbAGGIi4cyiQMFIitlYDTMgGlc6+72nh9GZ6aKL7RY9zGvjjOIlF6mFtMeW3L9N5z8CNyBwLiqTlkpthDIIPLhnHMtcgXgGzpc2aTGc17H9/MXV9B2zL1oOtRSZad+2R+uiQrZvuhhv28bKgv7TowFP2NJ9imh90qFmDXh4HUF0DKAN74nPfGaz6mAHRhjcCS4IqgOnKrMYArO/D9E5oc7vZmOOLsWPKs8/ywM2TfQ68Ha/NO1EYe6LuW5R2lcNLp7xE6Pl/WHeGspUApK2zhOmfSDf2FgFOFMQzD/oEAI67AWXUCIAggBsDZEoCZOZ8cr/mc8ZfyExIJWC2v7A8i5kfDYCbbBHTxTBGTvHrBlsDFghjty4hsb9XQWEg0BWyqJWw+MTVbZgGjevE5Lr6U+AOOAArGPcWQHgAZ/xu6i9vvdqnrsEUGk5BWYCh3mXkKOZvNDr+w9kOxhLTpWG82N5ff5gWgbw9THxvaabZc7ea7vCX+CxLxbgvYcuDDaoIsJy6JWX4fk0A7ldgQraT6V1mmRqz0BbAdOhtTRlQOQda10DhipH7fqTbbnt3XnPHDPg/ABA5yMvnr2UGCc7Wis+dgt4E+F5F2PJ+6OfOgnunmn7+jhnovFZ4Hf6fGjmXwFHHOHeD4DriZ0/ny6CGIFrgjeL12vOeTHAPc6/n+HCMc4CYAk1218rnmWPt/jDtRC7LDCaJs936sADfSw3j+hyHq62o1Ri+vMdsp/KYkK2R11hKVGh1P6God5QaYAt6AJ+DC+E3Jk2A/Pus2yByXgspc5+TiFw7pyPNqRwdISD8q88P15oYl/vqOU4yP+/T9/byO+q6xPeO5FN4qda1zFEZ/+XzsuXphZkTftYleRGAHXBihtrPSQBTfb24vyeXa8a9XoP12M8dOCnr3Id4/SsIcP2ZrIJ8cK3m63Rf41fgJOslfCL6+mfHXwJQ0Crof7sbqEAw5dmnfgAQ1HTpCqFAUhKmI4oOAPX9mBuIWjDaHoeL9h2x6FAL6t7NoN1bBEHhYbhDJNuI2tJcL6hFQOV/ti/SBrAMYaw+GTqF67QUYBVgM2eFTkmvzbKILvwHkXAMxkuLLBeAMGbRIcId1jDQ7tjJANrPHtRQqGU99EZgYABimXxRYHmbATpKMZp1nYJMVSTAEwNuACpIyxDUzebopF0g9pnjt3WyAtQzbQpAgOPVNlat9kyP/2Gt3uhQagXKpqhJUyL3Xbc1VJzCX2Y2qtu6uf3riJZlzE6FoBfBgvfDvv9qDmt5JtohMz2Ppzmh245QBgaAw4SpUCQcnbIPCy5uzVgagAlJZXbDrUbWOgQys8iizEwkSJM9koI7HcbiwIKL1Zkz62vL12V2ksdaMW7NhCiPYQKE/j7F9+l0Z/BDxAETANVEyaS7ONYxrIVn2oCpaxCCPEUsACHt0kVSy+PAy79vKZPswV/+2cEMLTXAi8Ia7Ci1MKdeugFUIdwUa8SdUjcqkWn18pxMB7UxqCGKCAY3qpPaihEOjKyLU2a5NyUQZQzIz8d0eBoZQu7MRNmBO1O517c7H/rlxd5Ld96nw5qcr8WD8SQIJG5s5VmmfoY/M/YD+rQSJ+0DcltRHEw49XoGwmjReRVGrKTzxiAnhyd+5UZYDBQU0uauqDodzaCOXpyaZbXxeW5R6iCkNHsrQX1YOQQNvi4tOn/w/qKtmDtSurQTnZisEwB2P0kFPDvC9XFg9Br73XD6e3mfwISQHePrz4SuAK1W0y+h4zLHrX+5nQGAGFeYjpDCWRli3Q24dxRxWzjXNURO2kCFgGp1p0MRAXF9jrkv09np1jY5dHO6GvVerNStOlhgY+d7OAPbvQPc70RCWDNKHxycBBCijNHNqcDLSBCZb5Z19ZsFuNtXB5X3YZo77oTr4sGiDMi62Djv3XyIYxjTYan2zrvQoYp4FxlnWPEo057EVHDeihrjiZRzfp+Zbq6BEHbFbC+d9gbaAIoMjmZMqrLb3qvrFOwjQABg+iIi0HsNWxzlOQGmqJVArAtOQN8YzmYDUBxg97Uivc9SO5lr7ORcLy542iUAEoorcixwLDNYGWOWTTBoY1ADoHzCbpL3PXQ74nd7t5LDksbXxzKo7cCHjCwdp+iwwECCxxgAipVW9TEDkkzrvgY7h7Na+TzOqEGtKZtZZzaa7YQ5D9zHMz38GnCPmP1zEM/xa9Xp6xUfgszEIOPeTT6XVJ225nrQNuWg2un1H4JoZwKJ26zPgrnTPIyBCBwDhNA5yZdyjRObIAffGUCol7VDO/vhPGfw4cP9XY6gpBNkjQ1LbGwIgDs1HcMZjFdtpXycdJb8PtoZnGESMlov53PlTPcAkBigFEoU/j0DbXw3ahpH1eRPzLLa6F5Df4HnSON5utdsq+izZLAn/lbn+F2f5bMA++pPcMz4uwxWpXHKJSu295QJyl2BiitLIDOMgVjzOrz0QNN5OHbUcCKrk6KcBAbyms6gwTW9EWyCBBIO21s/1arSMctaYl/QOb7pOQioaJ6TDBYQiOC5+f8MWFyBosvxlwEU9q8NN+9MAMBLEnrUzmsXBxQGqDzNTERQ8pZiDtBP01Xorw2BDhzudBJ5TXRSrXeMdYkSihN9srsg1gKr0x98iWeQhGRwBSVQxnAshprvljocFGWNpi2W4RmT9jxiQYgr8o97c2N9cbAF4TyyC8VY69RN6Ir2c8dYyMSwBRmlClx/i4lDtTen99MgAvHCiAerhaDKSAtSBFLMIQ1GQRVg5z0Cuzt/yw9Xiw0EGuj3irFIsAX2L4ZIt8dcvGXvwTxRAbr3gLdz2BywJSTFuUq3Xuft+xaZDhRrBRbI9jBV8RLnqUFNjk2SdHbStrY9Aj/Lqg5IXyzYpVPnc91v1ZgiAlRSXp21YKizAnty0lqZZQdlrgtmwNi1wSZubqqiCjyOYEzYZudGYkwQw96XBf1WUHZjm8jbnpyfYiUQxbQUateZoQZOZQ3MJIkL9I37C8ZS0H6yw4hlWXKJS/XnteCegN2B5T8PjNviIIsbqGPeMwMi9UCmvamVCNxviLrI7gh0FmLzgDfWSVHIpgZIVQl6s7w/zRCwd7gbC6O0u1HzEg6umemwUxk+GatMcRzDzr8udn5ff1ZCMiCPp62vDCbUOjMo4oFo7xZAp+tCNOiGbEemm9ebc31GsulsrPUwloJSr2FZrHaQvalFZnZGx3RuuHUUqjfXeE5gAghBgQy03QyuFkwjdUXSP6MI+rlY/6fbbk7bQpV4BY7drv982pobaj3fbwugHmSmWkr6YASNoJ5ptQcAs3kBLi0pS0bgYTuMMfe6xL4nm9uLlsQ1ufeITPA7lXdFptxr9sc9g5qX8qgxEDX/kJPYHlX62S63bIgAdOrujDiHFF4fkIezk3Ig42ugPI8oJ2MZFksVTEgMcX6txczjWmZNdzf7R2C8PDpC1FBtfILSn1vOsuWg20c4ED2+NvSb2Ym6Aesf/pWuGDe7r6JqtnZtzia0Djry2DDwYnsmEwwelA23DzkYjAQD/TiCY30g2k+6MHQAClkoUW1w2HJS12akwm0yxzjW8rAuCuV1sa5Hh83baMXfb/8dyzNDsNm0caaNgic3EoureEeGrgYCALb3ANZ1xzuoCOfssDWiqwMF19iIAUOwk+B2aK4DiASgA2odjD7taQS4vjeVHhoYcZnNdXhc64C6ObLttiemQF/ynHH9ci1xv+TvGWwkn4ptZNnlSLZ91l+TLpzPyb1gfFRq/xDk8Pq0EQy4M1sigwls6Zevc22vCESWlAFfiMrmoDuXxyVbznc3/OCS7iM9RwTVpZ0V6vld6onlEi3WnNfzZ80/ugR0zPRewRr+/RT8pOe6/peDzOt5hgPVPN9V9yHP2zWodf8m7NoYLsJdwRKQmPcqn2a27f5tLPTwbimJLcByvNNzD+4xl7Wb1l38PpI2Bt6FmDBt2ji/C9omy+QEvOSxS6AD2+Z+GlBmRoeI+RDAxDm4Z9InzWuSiYkMsnz2DuUx8UTJqcXn9f75HqkCbXFf7/L+0DfSgQ+0/+tYlOJgSAfg5SyZXVKruUHZh2D2v1b7bgZR8jUzOHD1h+LR9ewz0be6iqoS9BL59FxRcnJlNWQmwhXs4fNcv/PJ8dcAFMSMZfRpVg1nJQw5UXUF0IdRLr3es3+1Nn91N+evf6GgoJ2LKvFaxJz2oXPiAchtcTo+LJtMEK0PaKkhHjiWgrIVyxy4g8PWTLkdkXRzXsravHVWhQ41NsQxzNkJB8Tus74dp83cMi0+Pg6Y7P94BQTot4qyDQMf/KBIly7FWu01AZqg3+/uzALtzRyZutnmVZ+Wyb3/S1AfivZjn6J4TgUSbcAiQb2ubxasqJhTrHSQBaiPgX4vkTmKbgmaHE53Co7Xivre0d47jhcDFN7/YS/A638Mrx1Vr+vVCR4Vo9xuv3mgXhcHQ2yzqE93KgSoDzX9BL4XUQ4i8bKM+zLXlVp9OQCnFJfQupD9mLT244B6Sxy5rdY20LN89mVFee6WdTrGdNYIDPRuiM4wx022A1ibARKeEYI4wPRjm+v0sI1A1zKp+qxBPoyuzM9J6cAokYmMNpCuCdEcsMIYGF9ugKoJGbpxKBsik6NLdTovYu5lN+ojXhZg47lSaRHM+QWBs9Uzmu7cU1hrlGTMCjyoccORuqDoUqDVhE/bH+/Atlu7xbeHOZAeXMpmbc50aRivK8bapjOsbrgpuhp1yeNMoYOtM5C5kJ2aoVHjp57xk+cWmZkPYE+wDOw68pwtCvVuhjeyQQz2nmYQhDXYNP5DZ3aLZTcExo4RgoayELRIjmSM8fn+VNWYEkVMAEqfs8yARhMJwPXvwMUO9XHJRPE4GSNH2WWcDKMOtS4p4sHn6T6TQXQDp5u/C63ZWL49krPp43y72Rg4MCRvj4/3xuffD6/f9DFtdc5hfZ3aDL2jfN/nOiizTCao12Gf9NQysd8s89sexuKIdsWaxOW87Z0uCEaSwMbJmFcCWaozaawFa6mCsQBYi2W0m6CPMksABmapwz4cVC6otaDsHWOpLkJL7QQPlgcsEG8FZTsCpAYwW/je6mRFLOa8Hl9a0mrQ0EwwAVRvOev7YL9Px4XvO7thlNxiOAIFeLtos43traLsYgB4V7SfR7RyrgzsyCpysE/UhBH1tkwtGH+3tFYHH2qUrkSmazvifrQK+uvqAIe4jeqWRd926MsKLSVaSBMcjvIKldlqlGURkSGqwQ7guxb0/932wjFqgMwFFjiXrU8AGnCmRcGoSzzDiKBFQ+/AWGKYmXjcEkPTSzpVLcGw2VyM1ZkdrgNRHnNseBhwg7gO55UlVrIftm8ubTJBCDDwu/weQUMGB0UAMcAZh+urtGrjXgWyNrNx20xMRekbgYG8L+dSKSCAVHlZz3sa96yKCL5OIo/MCJN9kMvHTmBC8dKqPv+OOU98J+Y1U8AYAyxGg+f+yoxoBkZEbI/kXkYNmqppvc3xwdETYFOmjgNgtkcV2D4BEjIAUgSyz73x9Lf8bDXt6dfYJAfNedzjpZgBXATBfN8JDvn+DOAUKEfG2uciujPleXbAQofp1MThLATa108DU967pGdkGR2DZDLH+Ln4rsQ9Bhjm2WvxcVE+62k80zMMTF8gP1NO/GVGIH07JjFOwe4lUPc1p0AwvE8MzPw5Ail5Tfs+iytwEfPr5+B65Xf9eTXAP2OESD7HSH53AsZinK/3eB17HmSaeLCgTKrUOteVg3FC5jZBrKHBThX4WuE641joAOBMhyKIEh9g/p+szMwSUIVpKnBuhs/XbOk5wawaZapx3l8AFKdrcv5z21DAmExXAOFX5+Mw/ulf/3cdgknfp/FO6NhJZEoV0gFxurSKBZhjKRY8eiulcI6ATxZT2ox53nQv9h2/B6e/jOodE6qYKJDY2ovgZPh53QHKL2a0ouOzfOBQuuHm/VaOCaIOVEUwVn9hjDE962Tj3IjgXeHBtwsTRmtE8dp+mMNSANR360BRSfv+gOwqor7U6bI526lOdSzHQB8lShcAmEZCnEvBbgtjEZRtbuhagP7CjRUGIjiYEA6eAwpagLEIRrNyDRWgPgUUFRvNGRo6gZa8ptg2S5SOLNypQWhiqGs8FMA2U5EpFpM23zmm0xkkBdLGyGo+PxjLfJ5ED4xMpvgizOfNDhABnWLaHuWycVJccLRi7JjiLeUGg/bpuA/2EY95ApiFp0p3jNfJ+bHz193HgO9cbKIajrH6OzP/nhTV83ENTnm9gqnovR/ToLnjq6yF5PcJtqxT8Mg0Vea+EuJgOZOS+xHnn/P48vmqO2tunD/NMuTnIMVt382ZzGrDCQCI7AKvdaVqMoNFASw6nxRLO4nq/LkBsM+IgxrDWFQZUODfNTk+A+HghNOcjyvt9r95xHNfHeyYiwNgu0wHBEJfHHkAACAASURBVGaGwPdhlr/QsckCT8wQxn36mB0zWA2HZmmmpcOAJAHQ8ZmSWAjpmVnmNSo1SNJDhtPHz5ohEcEEHrPt8rIlRO9Gfw+7Qtp0pEIkUIH6tM8MnzdxEHdUsTbKw+yl+n56nS+K6p7uGXAGBYIBB4UxfYad2wBB+32mKWub3QuozB9lafY1p9gixjKyZ/EBjokH8aNE6V22nSdRV8SQge1wo4zLz831Ev5GEl+FyKmbBcRBmMouPDM4l6PbnLBTQqxL23sDiGVZGUvScoklzK+hgC5tOQU004cSNXna69BPKp6h5HyG42nrLAR6j/HBYdRmIDp1k6KsDgBuEzTCQJSynE9AH83LXOioqzMSWG7gazLEiHPgOBRZ22HWzwNS0vz4OQfFHkUgMoBd4l4i0GTgzeBXZ8ZZuBDpD1JU8/psnx1hn8qpDJLAqULtevyM6rwPHeHEx7mu9uCze/C1HOs8+8ecn0xrZ/AucgpmA4TINg3uW/JPLF/gPP7qoI3KQMP18yPtC58deS+iTaM/nSjcSmCif1ImkoPbz0ChrKuSP/MJRTwOSe+o+LyFhtDle7nUIY9BBh1KuuZn78/158/G/VdrMwfpvzp8riO5dtKs0Mk4OK2JZF9DwPDsc364TGY1fAaMqc693T+TkzIGUHEsCSpoxAEAzvOfn0kEwSy9vh/53RaJuTQndwb5IRiZ9or5HZnnTMwY+qFTFLXO+8/fv5Y6/GrOLokZE8pPQNnpOT5ZT58d1zXCGCafS3Xe82cxyy+OvwagAICdEniw5p1U7f662Hy7eGMZBeO+YKzF2is1wdjFmGlbCtC8FGLcm/kW42kT//IaGc3x9Yb99xVUt24/rJ47Wh0pIK2EEwUB+qtR7s2h8tZ/ixnchcEVA/CXKeiFTD8HUJyJUd68bUmzmtwCTCN6DNShqA9vk/XaUHpqYVXEsn1qJQ5Rz1sF4+mOo4tHYahlLARWt7p3LN80MjyWdXuFPBYL2kgJfezQW0P/skY2vzwPlE3QD6fdDSt7WH4W1Ee3GvtjAALLahXBcfdr74r+UnB8uRubAsDyXcESCS2Cug+r/00HGQ6cl7IDdVPr4d3d+YNnBb2Wme0R+62gbtbrW11Ru/702utWYLWmQL/ZmrL107H97StKV6z/X52b0WH0c/Xssvz0TKhT2lkrPW9cAyzrv92hraDfG6qItVcEgDFQHxqOlBbB8bcX1MeB8u19bpxe99t+Wr24LtXGma0ba4EJI9pa1VIwvvp90lka6iwMd2xVIV/ukTklS4AMiLwJ6lIxXpcAkQLEePYpLsq9yTN+0keIWupSoy5YtiPua7yu0VoNR9rMw8D4e7M0REtMZnG/3Ob7Rc0IZrZpFAXTsR+pzjgH9twR8+bqbAj+PMsWbM0E8p6dIDo3R59zws+EmvmYTgX/TycYmIF+ERN+ZDbpOKD7bm0n6Qxk2mgS0MpiPPE7wFD2IibAqB4wkxUQTJse57NOI9V0F8IJK+GgitM/T87GldIHM4BGy60wUNgdtCjP2KOcIlozecsjLCZQFDWAY0DW1dpB0vlmN4bsyLEM5kLNZdAUzsiS59FvuFX7/H2dQM662GedvXRyIAc8u2trv/q2UN5TC11fg9UDMraKZXlE++Y2ym2DVkF5anSbUe9CM5wJIcOZVXSy2FHBGQ/UlSndhIqptaJFgOcwYHCxrLc0nYLI3a4ZejNeS1yfc09WZ0cYcGiAbHl2lPfd6P1rRXRJAAAxBgVb4/J5CLzIqCgiUzUbQL9bu+LiehP1526tPomxiFhbRurF9DQWLiTZ77M9IPWS2o/N9qbdyiutfCvtH/th2e97s3adze2XH2MRAA3ly83aNwIIAcRwOFOQVAXKrgoOJgTDr4qN2zEgh6IOA7uPW8VozmQqLgDpLaxFgf51xfBOTaOZsHI5nJnnoER7dx/qPrtitLeO9raHdoy1fnVx4rUG0J5LYGTvKDr37AieCRD4/62DhPs/26QA620BbgsoBqmlGEDQfYyOPjOZBLWdbh7v837MDLoHEOV9n9cHAugNFkHKYEo1NpSOY66HxBATEZSf78H+E7QZ6O6HMSjKZGxK1Dr7PV6vGS9KCjxCnwBGfxcB7je3++XcyhIIOxeZ8QSSqrcclmWxciqCwX3Y3lUckMmBEe11u5SM5PZ6HnyF3g3LDXIQmQELIOZwjvs4Z+7zWDBozb/L4C8wARhgdhJpFaIFWsYEini/+XwJMPggzpdZIK7DdLLPtO21eklQArqSHYrrkJlyDepqMWc22weOJYNn3u5upc7RjpmljjlAjrFOY3myPWp+Qsng9yeAhQN4BJrDv+PelbpWabN5mEndxAi4gh30i7iOS7GyhHQPH8qScsnGpdxGW4UcMKYmv9/qBOGuwJX7TtqKrX2bbGMshR4KTuOL2wpZde4xZPs4y0lhPovk/eUKYI0xy1PzGItAsLq/1id74DMAJjMy42c5gyE8AlhJfp2qd5twfyr2oDHPx+/qsDJXlqsBIEvUTniOuU7Xl8t9Xo6/BqDgQWTUeQKfDnpkGZw+RqfknBU8G0GI1ZXqUs3/CLpym5ts9UzTodY+ktRDD4yCzuoZ6RHUTli5StASDckMVeILWmRUVv5Apz0xMPj7IRF82nXM2FvHgBLARyD5PMjgcGcWCpTu9bz+O/lkXEPxPqGIsmjcL18Wre5ouPPIFyvEbvxcVqKAMxXzpQVwwHkydgn8HIL6BKJeVREAgTizQRW2YsXZCN7OryTV/jzmIQrDLKEDK6euHBzzrhBRSPXx86qEcPgU0XWAgVQEVn1usgQ8lP3us4HxlnPcLAj0kDqds2dcf0ZJLiguamX06mGLzLOm0bJweF0ZN0evlWb7TfPm1bocjB7GJJTRwfGxjOiHWkfftCzIl3Pg9tnBTVj1JLD6AcEnij0GRF1DISPknqCNlmLJ6JvBKqG1YpvdAA5zfuSwebW1CRcQdXaGvz+5n3qIfpK1MabRmMbvkumWy7/zmGRkPq/RKD3Qj0Yfc42Ac00A4jreVwcPvi6HBj2SqtzRuxuYNMLT9S4GLRuzMoDBex647m3x+2uJxeU4If1FMMWo572fGApXx/x6z6eMhADqnQOys/b07+V3Md1HUE2zU2M3lRwk1qIz0C8hKqi+twTolvbFEBQdl7ljdlaHBaN+X1EfzzWtvtcL/D5sXxm+L9FxKF0nfhP2CvH9MhRsnxzPz9sZYiVJWdhJ1QOnelnfCABhMgANIBa+54qwnWQlCTRYCNFWuMCYfd1qklmal9XYuUdpsz04svZ9sqVY/hWigMDMYFGsmXaSY8TnS3Msmsrj+GitYCwV/WZleQES0/fyPVxKiU44OQiSKxuRY0ZyEfWfBHMNDBfcLPMzMR4ikJw56go0oN8EfREcd9OVqPsEeYZn7EeTKNcwoLdYouSYY8593QLR6aCfRKE5NmHX5piyXXU8NX2xzwIbHvm9Sedl56MPgct1D3RdmQjGrsHr5ZBaoL+gA6sH1sF6u96fKqAyywfyXnHd23i9/w5LLN83A9xf2dc/sbny2bN/kv38sMcWnIPz+P3l+TKL4DMbkOfqv/vcv36Yec5gE7t9D7/TD7LoLt87ZbA/O65jlN8D2mnaylS/fqKZZ7tyHZMr6AJM8Ptqi3ifCSz78JnPxjx+98l8Z+CjAPGynph6mPMMnMf1Ok6A62Ak/+Wzd2ycW3aeQIh83+UydhffSava3qoKzYmJoWcW3TUWymOa7zGvo5N/7jEfr5X9oTzX+Wee/8/2pus8fzp/5Qwg/FcMk3RkoUbF+PV3/xfO+WFP+1/47l8CUFAxYxcK9gxEGGyJLyARHL/d4uUYjaUHCjlgWfFjTMQ6FPML9t9XjCZYXlcPwMx5K2W2kKrvhyH2BUArVhcq5rwU7zDQX42+uf6xmyrzbvcs7xt0XaB3o4ZZ7agLq9H+3yqwwwyz10ezFd64r/YcXnuPIUEJZ9um8rRAcIwKtvcDAC2muI+upmAtEhkMsg7GyhpNb09W3HA3Y3DQiJetW9lAXWDw5A0oVgvM/tvl4dn5Wz07Gg7K1M3vay2QdwtW96/22du/dsu8v7hC94FwTtvbdKjKNjyrhxnAiLEztADLD7Za03BCjXYrURZxfDWEc/nhveKGfa7fCtbHAXn2c42nWolDG4r20+6x3yvaj911ANLrMgbkkGglqC83aLXMvXo9Lu+rbAZSlR2AqGXNFgW+WAbv+P2OfuO6YtbMM1BiGTpdXo1R8uwoP97PAnKHZU3HlxfL6Bw9nmf8fpuZQHdO62OgqmLcLKt1+7m7yNdw9kE71/C+H/Z3zyqILpC+zOAHiLZ2EH+PHQypDOSopu6bvjxDKRChQr531N1a60nnmPrHurfcI3ByW5B7qDOjxoyx3ptlYt92yNcV7Goi+zwPAOh9sUxqM2pn+/4ev8fWIT/e5wZbvcae2YgUJOrSDKE+UlAhAn29G+L/8306H0THcz0v55EHldwfT6jqFC5rzTP3qYY0OhI4+0AEOqyDg7UwK8Dq2ajdBTjfk7bA0lyXwJ0m1sCSmeCCkNb2Kd1zehd0207GjUfoJADWDcB+OY0of+VAAp04yVRg9Zd32wOQkHWBrPd5HylDpK3g+J2dYoD644ny/X3WPz+36WQQyGJZE0EYzyLNZ/TAtaXs4eZChrC/9dcVBT1AEhVB2UzVPqj7LAG4NZTHDjzHWQD2GJC3J7A0SBWUw8oLtFjbRArtse1ufY4I/AI8YKvYFBhQYDja3C6zXIMZbrOJFcuPA+vPJ46vK7Q11PfuYDTQ14rnvy2oT2N61Yd1TwjtHddfOH672f58TCcnsvyeTdcKtLeBeqgBXAIrpxBBeSL0Goa3IbbrHRY3uF+greBwxh7bOOOYAFFmJhC4rI8eoA1FMgGEHbOfXVfhvqDfKx7/8Pafm2n71MQyVAcmZNtt37otwX4Eg2t2bfF9YbQVKmaLuE7nWtMAq1C8taTY3llSqRpE0L49MF5X/Pi/VxwvwP6blRLWTdHe/H6PEmuhL4LtdwG0oD5cM0JsnGxtWYJTAJTtQHnb0P/2YqLOYsyRcvCd8/st8O493bSAuLflLHTqhhHvqou38QjNEgL+Y0xRxl+ItclQYHeW4bpY4mOpBkwfzm7I7WD9/ZXbmgJnu5Zy/913Y8j11NaPfhwZWA5A6b7bXsVn4d+4VwMzCOd1EpgbIofuvJtvOJkEwUwYetbaUZ0ZxVziFotSEXo/ebxygJOF8DJWREADOLfI5t8yXfsUCI35GY7ZhWF6Asav7AUKUWbGIPUmfA7Fn1dY7kaWTBGzM+m8sd4oZJxo8iZKrqmMtThzza/PjhmumRVjqi7K18pHZgKfL49BuwKySf+BTJpsM38BJsgV6E7/DzHN63wAM2HB50tAlbB0VPbzfCkF5ZP9S+MEYLbTBoy5Q20Qro0yWdo2t+M0NsaOuABOyR6bD7dAus/DtgPHw7rqHNbpKs6f1x5gAKmXoZ3aQVMsMyeJOE+0z57Ik9U7luUk6xUUZSDvY6nAtMM5YZPnjQmvKs6OKbYX+VrW45j3e9UfGQXB6jzY7asgupDwqMV84yaTnXk9Ty5nBfBLscWhk0UV5/g1wPCXABSYkR4vLRwCBq8WmJnStBQAKlaXNgShF3B9vtig1NpqFYm6/f5igk7l0U8ZmMigMiPiRkCYBbuID0V2lzR7z0IpaUOqBlYwQ6JwSuXlZmsCDtQMTARIQLwwckyHh63GwABaMAMzEfcGZGZzh2UXT/WQQDAfbJzOm9hYZkDM+wQwWQ4FQbnNbclCWI8OrM+HlSbR8TUaJgNc+zx8g/CvMGvu40laVtkHgBIZFGoeBPshZ3zVwaZwtEc4j1Y/izi/dHWET1AOvy+ts1SFC00N/PhggAEPGHycuCb83zOYFtMyAGb/dPj3CuYzqznZZRszA+RUXDn6NJLp+lH3GYKEllljUG4BgxnTcavoawlgjqroNsZ9jqU/l14Er8o2HZVMmbPJtaDCUGU4YDeMGXHJ6EZby95tLXJjzcObRdpaDSYNhUE/6DCQ9cMODl6KIQ66xbkY9FczyCyfsJPrdAj85xNVMhmJEKEaA0FJpKYD6YPZueT3w7G6OAp0QPO7mo0b752lDZwrrj03kMJSAXVjHk75LwzCtWaOzASYoyUVUxwqAwusq7we/p3Pfj8zJxenotBRq/OczKD5s+WSC2vnW6cehzuU0TFhLShLPWls6GKAWXT8uWbS1BlWGNCynDMZAxY4cR/gePVz+Q+6Orjg8xilQMlRLAVoxmIIlXjV6fj453P2umzpc/4+B/DHNUOn1J3HMpjRGxhiY3Z4m8EoX/BzmdDxmCKzHVMjQjV0bWLP7mqlbe6c9aWc3xOCGWK2l514QtfG5yhYd9Xse+wp4s8oiMxRrGC3JaT283yiDF4ZRLi/wLl1IchRMWvE8/JUCVsAwIEReJAHZNaAFkAfYnvn0oyKXdxppEI79zSCC4CVDwCo3s5Vi5fa3VwLivOqODEk2eXhdAxF3Wy99w1R7hDMw2r329eC0RB+U7a3PFhWYi2d01oFQntorj9fawEUTps3B3OudfWx5++DVcggxgOaAK/zPkT7mynSvGanX+SU4lo/ZzZEOSD3CZmaDqXYXpcdc77jBR+zdL9iYmUmEsfn8t0o+xrl4/cJLCRgU4YHO6kjSO6kE87+lfKf/50DqWDHjfP/f6XZkM+XwRVg7s1MHOTPcAwyu++Ds56OnLnP53Jbpvne/fgQlGL6rNFloH7yXCPtlxwDT6lPf6Z5koxgOi/gNjHd36fjlHyMuK/898SmEi2f2iEAH0o2+P3YZ32v/3TmSvqsiLMVCbTI5R253Puv1kKM4dyX7FrJb8lxDsG0fO8ELD7TVkh6JApLcEj1JEOtpzEMEdE8Zspyr8uekZ8rP1v49T5XnwF0wAn4s//GBA76gOD4dJ1pWgN2H+6TXZIqn43tDPQv96TcmHhvMn3Az87LtZfb2fI8w/32chkX6ryMYYzM2Gd+/Q7/JQAFM9iK7d9W1MdA+7F5DZvg+LpABbg/DoCBjgd4BqyWRJeUUFVmC7khzRWujRKopaJugtv7YZmeuzmaZTOAYazVsxqIRZmVt2mIx5oFuRBUcHZ4wNHDqdVq9Gmq6hvabIvTsjYlgt8xMBWn9z6zLkDUI5anZUqDAcGgCGUCDEBkOuj0XUERDEVRhaq1UmQrQRVE9nrcDL1ujx61m4Bt5MeX5ordxgRonskqLmQV6tgClN2CS3QrKyne/jBoS0NR3vYplOhzaa0zd+D1hlFhLJKnYP9tMdHF52GgU6vWZ1zNDgAIx5f3UodgqAuEOWpb3p9Ryy4W0ZvzcgjKzXvMN4+A1VTPreOBB6MnWiSc4g9U77cdHQ1KQf/imXKYk1y/babvsXq2TWTW78Ic2/q2xVzLc0f5+Q68P1ycxTc41q4Na0uma8PzH7fQFuF6aA/F8vNAv1VsX/zZBGg3q9O37iEdyz/fPYtJFLOgf/EuHz88iPj+ABoV3C3rWb89IWNg//2Lz50LQ96YQexTnfu+mLbDav3qZTPBPZaVBKV5YBqjpWG8LKY98XO399tb9okzIGw/8TliEPbYZrbBz8M1pw5+VLI02B3AVeDHl5epd+DgQDg2S7O1UsSe67lD76b0jtU0SOTHmzEbXm4IgbDIuvg8U2l5aQihv/0AleiFc8yDzibR7DCArM+G/e7FjYcO79iSDH+O/zk2OVBRF1wcsGdsze7z8fA6PR9rrntvz6maTkxdBM+sKRkUVE4GEP2V/ZDmWcFqRld3b7GlydAfhyHwS3O1eO+2kJzW+vOJ8bri+fsCORYL4L6/A/uB8fevUADlf+6ngO90DKOrs+TJ1NJ93/LMDueaFGk8EeeSvUOec5yiBMofBYDtQ62g/nza/uxBp76sQbWfwLUFGfXb0+zE3daKdR6y94edVsbvL27Hpg5CdD2o1u1h/2rnZlmGdSwYqM/u2jgHyrOFECqBzrJ3tLcS5WjlcQTLjmwBGQaWRimgL83n3yr6jYEGUDrQb8BoFe3Nug8NEdP+uU39onIMlKfvt0sx0F6B4ms2RHvdwTRWWAf2MfGqU7bNnaRltfHbJQJaSwAZ8CliY142YPnZzR6uxqwYS4E2YDRBfbpux8syQfvuvkHWoBHx7DQgb09ILVj2jv6yoL82bH9r2F8Et28GJC/fjP1YCB4xIL84qNIH1u/dmANawLJLmrLh5SXP33w/3OFix8MZJB5cHQa6h8NMwBZIQACiFEy8/pyaNOf3ZwIHJ7FCzkXqBEC2Xex7zIr7u2xzNuf4FBCoetclDeFgNAcjPwv6uYdkbQa/HxnDAhiemxnzXLbCwDyxwRiwCZlJ7ohn8bRTFpWtjK8U7RyEUnTXfQzxoAVjTGYCwYQ0Fh9KxgiccPMZwzUqNACG+M5w4Psa+Kb/tFqJDDASaCNznvkdBmjsZnF9Ph6x/8p5zfD6tYBhivgz8zO5u9Nn59TLlj6DTQ3NgjmvmHu12xOWMYkLbOvxScBIe+3rM7pH5MBTLuPzSeZaV9M0okZIgIY52C1pHsp5Xmz/uiQhL0mJaIPNkupyhF3JIHCcO8/JZ8yHMSbYEXtS8rMyWMOD3UecsUWGsL12/hy3Fn+Tw8dnaee1zjFYXJ9ul8SSGPMefY74/B+O6/236zub90K/9072wxaaBfo0llSwDfy5NXecyYcUL3u7gF0ZSBjp3SQz4fQZBfJ+VT8BE8Lncy2u1TvYtArdd7OFfEdb0n1L7+6fgoCX4y8CKADFEfaxeL/rbkH+8s0dV4r7yFSTH9pQGry2UU4vqIkCFTOYz47jqJBm9nY0CaEpqwfFzLB7YI3iVHk4aDHoXAike+CXGQdLC20Hs+RpQ64C7ZhGN23YzP7kesQp9njJnvA76veq8E0MtgCOYWUVYhucZVxnLb/eXHdiTYE8M2sFIQBGMCcrb4djWAQKsWoIwDLOFdAG7F8ryqZYfliQPxaJ2tqoj12K1Q0fM3DH5T0PJkYggb5BKuwFKHZem78ShplMEGbx4hzizt1mhkFkxIZI5I110WgFFPYr7wdkI1oE3+QAqIsg9mGGoErKfANko0xqldgq2rpn55Mz6ABMe3SMXWe7rdsEjWLOuQaWBVKnU4NqbRL1tsS89nvB/lqCuVE3RV+B/csEy8aCkyGpz1kqYZoSOXBs+IB6DguwhrewGV+N9lneTeAvVMerYLwuJozKtpLXOea8u6I6QUEA0aJVfVzr++5iXUD942Gfz84ba8W57r1HcNSxu0CfLg2yHWgOtln/9XPJQtS/FjHVYVVElJI6QERbqt3oYSEExFY8jy2cSqXwEVkLvHcKoHKeswHP+wBptwBOGf4wOCmLV8TmLhacZ0/ZYqh3yNIsA4RfCIoVMaPZ8eFvZ02EckLAw7HNQEL+3smhu6ytbgi+3G/T+V/kfF74/QzEfhL7mpgzVLYR60qL1VnLc9qSU4aGDmEKcvL7G/t3BK5mJ9C8jWKZpWNC5tnABJPJdPhFcpOicDaNsxTPhPN8/3Mm28l+gIDFdChl72ZmfHzmM8IEIZ9q9alqe0H9OR1ZrQ5+rg5whKaKzVl99smaqAKog6IuXBzAHi+5WxnI7Y9uWfJFph2uAlSgboLRXahRcGatwZ57VNPHKDL3Scn346UHsZYKztlYEYylWuwAmD0PENL3ew+Utc12vNIVtQmkF9MRqkC/m99QDmdhUfBTAITWDsCuOtb2VlxTYQZzAqAy4AJQHyWAALIMKaKZGn3Mw9fT8v0wejAQ5SSjCfoC1N1jPoshsLwNa6+sauOdI68CAxvpYxDklhFJiShXKxNsU39Orr8ADEg7Bhwk7eaYM5BnEJcCxRwwzeA1BVS8BpMzrc2AVdX2WqS5P+2jFyZVBPBpH+A+dQ1SyWggqMCD+8WlvODECjvtWZcNID9TDiCj3M9tiwMnIWL7iT5PBF0R1KTnyrpErcTzCEFpBr35+8s5OAnhxitgJCm5wnu2NmhnfSsy+EZ61mAQ6Ec7wPNf5yIfzpgIGn4Ohq/fy+PLa/vfZKi1C9ztd2TiWha8/GKehifyLnPBgN7XwImdwHuWy3NdM+0c0yuAdh2Dy5qjBkroZgGxDkMsPn3n1ErU7dicE/rKitO+xUA8CeDOubpk07NvRnCR/kxnTPPJc/V0PSbwvKzpZLNFbM/d+xSvznY9+1DXPSTNYy5Jm/eR3h2+t9mP+1W23kE802tRfGAjpRKDEzuRjAEpQBmQK+8kMzv/bE0Al/U0ANTZxpTnuN7TYLJVAFTT64nY9PL/T46/CKBgtaD7bxU6LDvRfrpGwc8rAoZgHwCwTM2FDqICKx3wRVCeCukLyNlj5wdgvkyC2Zqp382pWf/pE80M6DCQIwSLEjLK0gkaWJFxEnxC0Umvq2XW1KpnY1sSMyrmPNWiHxcJDy6WChdqQtBOreyAaLiEozMWq0fttxIbTtktSxH3Q8eM4oXuKIgbdN5nsKOGRlnHcRMsMoDvin4r2L8WtId/1+1FX8uJ6SDASXQKwDTMuR4tHAh78UofTnkvGF4vq8OuY3XFyfl3sKlQ+V8cqBk2PioeuBdznssG4DiCMTFelgBbBGXW9auaAvhSUd+2uJ7R+8fcvMewtffcIcU6jgR91Ndy7YpSZ6ZnrJYdtBKdYcCGr1dpRJk9q9mqdeB4WYIm228F+6u11rQ5tNE+pIBtOUm1tRMj+s7HPe9zw5V2cTwBsKe2+Jrff1vtvfmPN/vzqwEMoxbozdvW7d47/vs2WSzcWw+jTuvrDdoKynFMxpG/JzhMWyPaBH63a+nXl4lqhzGR6TwBwEYnazhKXixTuO3Ql9wlYsyOGVT5L5MyfwpSsuOQaW+OWON+A44OfXs7v7s6gEs/Y30+Y5MX1gO78yOYcHO7LwAAIABJREFUdcCnYDw7W+EkWDCOoZP9QLS5iBsNtTV50MFkv/cOih1QhHA6Yp+UNWQjK15mkUsxAMvs1IrSmrEUwqFLjvUoTK76sxlbRJq3b8yUChq8dI3Q8rgtDo7aONZ9TEq+PdRUISd19zNnlYBUfn81jXmRCFhV6PzNbMvc922+ZDvsfao+9vlV4uf7gL2I5iyMtaC+WR17Do7YhhBAMGngwbmKlSxJHyZyS+eR9wXYHuklfyxJyPvXuLVg4PHz9llnNDx2Y9Z560O4JkTuvhMBjrqt3gbWfz6DOdFvBdtvFpwPp+NjwBgAAmspDC89cXszFt+DNYkdOngivPd7M5aDr9nc0thYLJZMKIDZdCAYIOXHO6JF6NcXaFmtvAWAtGItwm+uEXETtKdaYO520Ww7zJao6fFYt4gRwIyVv5FuPbxri2vHPDvaraK/NFCoUQAr2fI5pHjvae2Pgfpjgxzmzo21oK9mj8eKYF7IsH1/+TGi3I7JAzIPVMSWbg68vZtJeRyh4q+1QF88y7hUSwwkAJpjCj3mvtm7dcwh+HYFE/x+AMR61+olFCEwm5IsDApPXXYU2J7eicWzmkWnT8F9PYMN1Da4Br65rDBnhPPB81DrISYlveAZ0Lgen9Hcc7BNv6cPyyjyfEAwv7gHf9rCN50jAhdm1SMgqTOI/Cz4BSaocc3oci5pZ/yayu9wbq7BXMG5/PBXfm5+3j87iiBa9PG52cYy18pfx4Xnp+7C0YE9rQ1grpcoHzT9CmbUMcYM/OkPhL/KfTDt2+6bmMC5X2r43p/vT8QSldU1G+hTjsv6P+0FGiBH6ABlkNWTZXGf1zFmfOJg+al0gOOjGixLe//a2c/KTIBr0oDry8GIU6tC2mPatnSvMSxLg97bFC/3cRq3hlLc52EyJ9ZBnnP5nKkQ82UJythnigSjzdqfY87vFZzkcyXbz45ep04hV70CJgVwftYPAT/XXy77yGPMsnQRYzFdtRWGlXXPskr3E+lbDfXfkeINWCaO/uXlHf7k+EsACoBNUrQA5f32WXc+nSFGpi6G2AeWHybUVJ+Gnsqzu6BSiyBamal9egCfjNioAizF+xlL3I8uxTIEKZibBji111toQC27MX5rQLkjWlA9TdQv97oXL78gpTsyJV2BYsAFqayZLhvj4/c/Fq+7fBZTdu7WP7W/WEmA9IHRZqY7ak6hlskoBVpNoKg+Bvrq9bUxXh1QYP/dz+edMHAoxMUc5QBQFc26GEY5wvotCVc526F4kDruDdGacKkhomWf9QCSbbzcGdQiqJ7p1aXac7kWwLjJFJbsu9UdAtAm2F8b2qPPdml07hRQX2yiwHDwIYJ9Bxso7FWebHFIZ6xi3KzFWlBH927nZZZKS1D97UU1x0xFQkAzB0fHb7cYd+1jZgxvFbIvqF2Bd2srh5e7gQmvt9ABsHERtPcBGYL9xbKct28DWoHjVlA9kF9+2ty27097Z3gwA3P0QKrzPUOGlYrEepQQDON7K2Ogfn9Cb9XWzY8ezxLPW+DIMDBui9PJ1ddkmaVLj2OWHfDYdtvYlxb1eMqscAMgS7wzZF0EtZZlDU8Xb70Iamktlv1pdWY9EnNB9mPSHGlcaUTYRWbfATE6PIpAvn6Z4/V4TkpraDakTTo5AnK/mSHYvGwjBKISOv5yNyfx4XOSqLR6HCYyxuNiBIWlFEeigDrLQPXwuXQxxGE0Xql1AgOkBbtTJtX0L+RiGE/aB2M4cp+UtP3dPTnFqkEfVr53Uiwj2ZqzcoyZg6eXGPUOhYmjSh9o/3oEmyi0RzI1l2CmeK2st63T13sYz2AuqdHtKeTHlnvw/fSc9TGHLD7DtbsfkKVBpXlJW59dI5jJVYUe1n5Rq5jAJMvuXGyX41P2gX5v6C/VwAe2QUMCWYTBg86SNNraKl5CscRea+t8LklrNzxiX5BjoPb9RHWXpUKGQJ3qHwKoUdrmJVvHMF2LQ7G8jQAUrIxwlmdpM9vafu7BmgMQbTJnZxibxwDERyoLGBaMoyDsB9Sf33WaAIQdonaLwARKZe8x18ZeGsYEGA37aw0xabNpCBYA36OxVmBNQQ4w22GOxfyAt4ftS48NZVuARwPw4iKxBPIBpR4DExAUq04Ot/SB9tYxDoUcBtCNRbD8HNF5qewD9f0IfSqWvUWnpO6UcC9xCTvMYFw1ibsBupptqgCwXdYeWwgWCsJVYIWXj40oEw0n/CSsio8BYL9QrJmBZRCes4h9QKRHsHu6Fo9UugCRc8b/SksHzpnV02f9npwlJDW9L/y7yAy4PwMYcsDN/ZvgDYV0AaBUSyhk24F6AmpQCvS+xpqwcjYXkfQ9W8YM6k4U9ebBbzvfq4FSc1/GGFaGx7nl/PE7Y0AXBAAh0k9/Ox1ZNDEF/llp39gtY/qIFDnl/gyc7X1mJzDzPJJQXwgZy0wa8Nn6J/oKcFvZO9QDlRD+8xLHmfhKLA6Occru6qktqAPWWRxSnNXrndVsjFIL1XzktZSeN4A53rsnkK4lMgBmq3ORACyEdo0+jt+HNl9T6Of1zGslMPdUisISBzKP6Avy3c9HV8sRJ8BHC5y1Nqz0PcVLKjAGtdP3PzAUrkcuH6FIJfcdtqBempVbcr3Q98vAZH5nr2N7OcL/YUIHmF1pgHgvp0/ifvK2n3w9JRD0GUsgi9x8+JvCEPsygQtvOZv1WIz5QJ/0ksSRNstYf3H8NQAFNSeKoALbQoVoIFHmfCQ0UDZ/cO8SYQ6/ofwMuNXiIA+I9eS/k549bmypBLAjgAw4s4CAggQYYaUH9nsTUxLrDOj6A/UBFDhVcOiJqsMg7CTshflvOjmWgRrh3eUWmczcnNqnqAfHq7WKLMPrxNfigltEJu0l1SroZCo8BzQF55wTABiLK0IPBfp0nIRZLk2P0gSyOY3faaqcr+IZ9KDRwoNHOnwF6EtxeqbV4JYyJojiG7V0NZE4gQWk1Aqgc5nGaKxirbPcCQ2xKv/86cigoM+R1cDCaqTpxBYYaLWUlDmTifpWKw2hQ3Y6DmsVN1gWkFo3sjtEfXrt3lCbjyZBw6XCreYactoIAUYt3llisjPqc1hp0B2xduVpbAF5uuPnG5yW5ID5OODorlXSzk6BpHV50egwZ9I2zvLYIc/DtBMSMh9j3ooFIyyBSRtm1jCIetfNs0q3dTJ+fDNWFIim7NLoUX8amZjrz3RKI/tTpsHJTuxQoPj7yZrW45g9vYFUkuDfk3Kmg1I87L+TmRFGKTDDcsn+AzBk/iokRNEfCuvQSLAujwrBbkSCSns9hqHy4UReBRPnTbhBLRNw4Pcuxi86OhBpT4I/J+NGZkIEYToRdGZSqgGLdTuPpQWkgDz2eR/ZkUzObwg7jQFD5GftODMN3KtFJLRrTNkeEVRrtOTCtF10FhlodXe0AXtfju704/JhzZdjBCAepUvuq7EkgM/a14L6FCQiy3Qmr4FS0rdh/fNYC2SHAZaA75HTUaSYaxyHgeBkl1n2xvfJnKHTqYljjj5AccEiVrtbioHb4FLntqMMDnzshsy2lLFOPNjG/M4pY6cKHVbu55PkfsOYJYqxp5sxibKVMTDEA5eh5mvt3dotDq6PeZ3TNWXu7SE83NVEG6sFlwz2onOJg5NyX1FY4hKAFaZt4jrNVOPi43WM+Jg+BOMAlu99im06SD9uzeyPAwo4fF0oAkw4MeyOHor46lovcVxFcYHzfun7V4jPRcDl64N6QGgJYL0EGgnQOtklfhY4gQMzkJsgxelvfs55bZyAzQ8Hf+9lKB+uze+3Ot/Ba7DH+8hU9Bx0DcwsL5+5p0wwv5t1DsJe1RSQlNBJmEFiuk+yr/zayjkmYJIDvetYX8dE5MP4qoMn8U4ML6/KZRIXf9d+n4DlXzFCcjAVc5LuJYNL/AznLNbkOM/Lda0xqE4s19PzRrZfP9rBfJ8ZkEgtLQkSmGD4OK+B61r1ctrwgfK95mCYPu11bHSWY0oSidVs/1LbYu04+34eA2iUvri46mn8L2N3fTdGstn5b5yr0KhDjEtcXhzoI1hBIDI/H2AgGQWwr6Uuvzry+hk+ntSx8rbhU8MgrdnwB30fvp4zszoTeBY+DtJcX/c0wH0o+uICdJg/RdaWTttv95/Hn8HJJwd9UsBICWlPoO92OhefId7F8l+2wP2LAAqK+mYqqlEj/b4ZdeW+4lSbehzQpaJ/fTWHbjvQv9yAIlNl26kz5Xl4OYX3seZgqS3avhQcX6uh94daWz8F+ipAK9i/NqMIftumc+A0cVGYw9gQJQejCfptMcGjw16UIRXFW7b11wVsVzleGvpSIjMwlWkVstkYmGjknKKxOursbR9RC8omaArUt81aV35dA9CIGtauWL7vwZgYW4na9qCTVkG/12ASsK3kqILSFev3PZykUQtQYardTbB+cwt6K5EFYZvP0gewA8VbL3LD0SoY1er5I1PCjBHHRCYtTxRAVwxH3vurtaeqTqEvuwawAYFlTR4mOmM6DgBaQXk/UH94JpcvZfOaYbHfGeW3GjuDOhkFUSMMsBWnUa+a62lEd4YqHuT7BrKYcSdLpHqLNTlGtD/jumxvNs79bkr05c3mjWMKAHpboTdAX5ag9BIUK4fRWcdSgmILOEBxFKx02NXap9XI4LUwzMYMKNZqkM7uAeDoKN+8jSJLLTzDXR5HZPP63+7AMGE86Yr6x2y9aOJxEsJb+rJCUaHLnOvyOKDPbu39RDC+eAvA08a7Gg30xUVwWH7g4nTy2IK5EMaWbAMXyqHQlXYxlL6Vj3WwR59ZsVKCDhdoNQ1eZjSIWJtIVTuvel1vclpiYw5Wh4MeazXhHL92fP71xYP7t+kgMoO+78ZCWBd3ppihOTybb+dTVWtTCJldJy6GLIMKImIGNlPsOI/327zvYa2F9Oookkaas3U8L/9dawIPYFkg0gK71d5jaZBS572p0X/l+5uz8sRaf/otiQLtX48AuFi7HXO4LpMOynm0G7N1tKvPKfd6maCgKuo718/8XVAtXc/ExHkRIlvjtxebK3eMTLDwsDUOe8ZxXxEt+PaO+r5BvtyBLwvKkRgK3d4tvqtlG2jFSvH6vRmz7RjWlpIOnoMvJrjYU4bb9t/t98VLocYpyy4DziDzPWZdjJHlAWq/Wxvf4iKqJuw70N5gpYIpsFDfT9o/36Frw/77zRxqYHaVSEd0N+gK6Udk2KzDDLy0AME4MAFcmy8DhUwzAUBk84trMamDOJbUESsdXOpkK4iz95YkTstl3Qde/32PYLy+dysz2YczLeb7otXaD/N5FgBl77PN5v3mzJkjMkbl+9uks58GJO1zFPF04c6xNrMT2wHsgvoQtO9IYzsCOJHh2UFxBmJ3p55tuA+xtpgdAcLbmKVxcCFS6d3adHuAcGJTlmJMH74jGSyEOdITyPSsoDOEAoB7NxHUYHzld44Cbw6oRNlWMALKZK/RCefeQ9ZWkWAWnJzp7kAxs888CKgywMst6YBzcJBo8PHZ+FsCT/g8/D4wnX0RyN3HMAevww151jzIezo1YHJgQ3+qpL38tIc5yDNK2DY+Q9DU3aadShzSmPF+Ti0DeR+Z0l3T2JA+Ty2GDCrlZ1CNpIKU2QlKwNbyF/ZBYs4FILbtxizgOqC+D/2RvAbIMkj2yW5nsu3InJO3B6jLZM+XkhZ8Fl8HUU40MMecRw7kjw68b/PnBCio7+ehs3FlcDKeCPZHmc/Hfy/cJ31/oo0j6CAEitM41HJ+pgx+BOjlPleDf6/MttoJbBZxli7LuDbMdrHD7IXeCvrvN2Nsv++Q9yfwdkxm6tLs85snxbzNdpR7Orh1CvTTM8a/C6DrguMfX6beTCso72KstSP5QM4OChFJv55qhyyJqdLHXGsZsLqyC2q10rtgIeU1ONcDgJkIAvAhAeSs19hTHfAKUIR7Xb6PukwAafA/7mkJYFUF+gEd/fwsl+MvAShQbK8+jnAMzDg5AgcLvAD7pxZXZj8sWAUQmerIZqi6Q2ndFsawbhD95gav4/9n7u16JElyLbFDM/OIyKzqnrmz92qvHiRB0AJ6ECD9f0D/Qy8CtLtYrfZrZvqrMiPc3Yx6IA+N7hE1cx/bgequyozwD3MzI3l4eIgQcQLr/AUFahlngYkNdkyRQq+V1CJQr4N0fCxKJLSKt8fTMKykv4aKtFjdvzbqPFhAD9hmVaqLNFLhm0J9XPjbcQM61BnJpI3avxGb0YEeqTC1bK8zExFj4oj9sT69PkYD9rk4n7+KZjX6VJSO7E/OVJNCScE9AChqiyJaVXKcbCGy/EOrUWhziYfAnJ7Y+LvdEzNAGZyhoCTbcNl78vmVNhNVikb6z4o/qKo7TQOsHyYdTAdRZhjiKAIUPWXLZuCnyfGxDL36d3FEZ/2ddM9UWIbN0f1cKyUyBRsHs8G2Ics+5qOwHrArCgZ0l7h2UH/5zAm4i8wGA0EaeZZ7BNXL37kHYhhH9BtKxlCalEImh87r7zKzCN4JYpZI4ODY2v26o8hav0NmVg+B1BkkeBW4RGsfTd/F6ZpnY5QzOc3LdjKzIRuD7OQAc2MPKqQ5tMLvfjdrEYPx8h5ZcgB4QMCsjxuVw5PzvkRwQNqzYcviP1LwpKPg4kHxmTOd9dXxd1BuOCo/r+HGkMJGNKS713S7iF6sojGmiO/5mQL0OBn58+HBF8sZ8nFwlrMD6LouBzFZzLVyyNwx8Mh1tcy0+SuW3bIuZTdtoQMQ0zXuS7aO0o7Pwkx9KHiL2Cv2kjpDSiTo7cF2KJ5NV7epAqPfj/ks2gSq4qCi28MxQLacqgdyvv9i15lhFmcqlBHthsXLCw6ths8K+DrtCMs+xjIDj+iAUCy7FeWJsbEmw+X/DiHHoRB45lAGKBRGplSUMvDwvXSo2TB2ysjMhAAUfAwBuL5SeiZYkB4OHYPoV1k2DyIYVKh0e48LRdtO80I1bEpmG4TjyHvj7bgvpMVOy/ER+lRPe5/M+zuv+YHjHsKfpWf5XhLtcI1zUOrjNAOG7+zNDCD4p4jZpYJj9hUwwCAH2cDce5nJz9fOAXMRvNQtOD/H+d6RfIPz850PMuhO953PaZ+TY9Drel0Hkdq/t+++Oi/vN7ucBBNypj5977A/pv2Me0vMZeA4dxKb5XAff2+Mzrb77zzL08GgXkwj63A/tAM8SrFsuK8VO62X46nOREGstXHc48/+MY/TPDn8+VsHk0AoxzJDnirmdZoH+ZqvqPNAxB8x986fO5/n/LO4P3maHxOoSe8lr1cC/EzkkcnLdefvSwBo8/npZVTRASVn6vmcJwZSMNB5D0DEAfTptVrCaJZ6MI4rkxXEAP4wgP5svVu5Xwrko/SIz3L2BQEcmJo9j3F6H2d/iEfaV/R8jfyZDE4IEGzQOF+ay5HkSffw4vhdAAoATBDu50cgaPp+tSzxr3cTNbtdLMC+WhnDuFo2oW7dBJcSpSiQut3q+0V3iNPFP/75aln1X23Slt0y2PXeoU1nhl5g9EoRbD82UHtgd+X85Zv9vq4jnCYRAZp/XxWyupPhjs8UP6Q4nYntiSr0fbEShAKMazVwwh2Fercsab8aHT47OCYarZb98c3MaOwzIAm6ZdIE0AKn63q9q6r5IZVAgT2HFoFeBOu7aR7Uh7eb2qz+tV8F+9cK6QDLLQAaTITDqq1YfR5bIjJYrGIaFaoAGkIEuwm2HxrqfWApmArfrPX0dzQuDjBUMW2AjbWZcIoncLlvM/M0YAvchdnYoo2bh/r9sOWjbB2NqtaO+Fkt8BWiV+xfL5GRCsdYMb+/7p5FqhG09/cGDMtUxVjlQz0LGmUvEiCSLjU22n614KQ9dmAb0W8eA1G7y0DA1kiBNH9/j90YPNEG1LurDLWMk2/64+sV49og/N2vd7sGRRHJCvKxKUNRvMZW2Q+8d0RLLaeUja83m5e/fLP3lWs2SYX1Gk2+B/l82M+WhvF+MXE1F5Ikm4EqwFqu6D/cMK4Ny5+/Tc0FH9+nDMtQoO9T3T+/DjqRFPOry0TdT++N4IVeL/buPh84KALrBrlebfzqbPsqrE3zes6g+dG5/fR2jY/HNDwMuuPf3RgJP3yxTMznJzA6lACk6jS4fQUpteIJsKif05R1GzqzcFmUyltoyeWCXOag+z6NJ8EnBy6ixheY71g9mHXHQ+8P+z5bcqZyjaAm1yXOwSyOdO9q42Vlsu3298sCVQ/aNtcz+LxDWsP44w+T1nhgoUxARwi4BCAgGF4PKp8bstjjQZ+B2amLtUeNjEwr1s7wvvk8vs592oFOvTRAOuTuYMHn1MDoX42NZ0J4A/LxMBv42ANcm6AJDsEtW/JGCYLvU0UV1z8jWGsM6vt7Q6/GOpABtE+bB/WzO8OsuG6R7TNsz6zVgMyiajZ465Zl9o44lgm3PY0UfHuf0z5oIbNAYn0XEdNq4L4pzZ6BbTGjfKQGA4MdIEKQ8WYMmBDcgv1uCIBbC4ef5WYh6OifLWvHWCr6pc6Awu0PYGyB/auztnzdlZWgDmawzfKBLzcDVXfvfkCh2N3GDKqRKZ/snbn/hqCx297Q6+l90nfpjOasNWBtPtu0nwTmgRH2WlGDMUPR53GzMjuyYYrPC+pMCPeVkVrQtQpoiawnAy0rDfKgzFvEnku6uFceqMejA6OCImq+0YD1z3G0Gt1SDuyBV10N2IVi79Op1nJ0sqszZi8eWLrdObSby8ERcNzrzj/n/nFu15ifKcCZMoMQnofAfDkFh3uf91SKdWvgtbgHL+Yry55sHu+D+yGDO44T9Ruy0j7jC9qsNM/06ow9wPdEt73sjDNkgjweFKLp8X1lMPjq4x8JmtcBsZCpB1gppQMsuCzz3LTLOtllRrFN84zPziOxAPKVrT2gAcAhmqx+7rc3wFt/KkZ0cwoGC7USqsz1S3CFzJlSoqZ/llx7AqvCmZNtdhfjmKUW2U8Hg+zDz2AbmtsJlqeaX5vm3nm+A3N+ZeCSIMp9Pc4r+nnbDhklbA51eaR7ImppNi6pLfhBIyEH+cW6OKkzgaI0wzPzeqXfkPxAuP3ZTKer/eJ7JsvROccy+kpATOtcI8l/sxi0z/uTMoGlPGfcBklrwVIIH437DZMQ8aXh7KaKQ5B/KGs9AQOcQzk5VGB+W9YieawAuiUGS5r/ienw9xJGvxtAQTMaBoRwng0GEUCvR6TadEYeB2wiYECyQamCUWo4MgCOdZrdyh1MNNEYB2V3B2+3Rd1LieA7khw04J5VifvxQNdEGn1DY11cfFdDpyGEuIZ/ERNUsLr6OR4xNq1gvxasP1a0uxrlMjMAPJhGZEu8tRUzGXQgCmwyeqmHZVrE5h2zVMlpio3f35d0oK4w0MY/DwD9VqN7BDMD832U9LyYm9VQA1IqL4R4D8O1CowJ4VktdXaI+iPtGkJTZe0zgzAMNVZRyzxdbEzqb2May+9lTLKj4ZugpE2SP9MCb/MJc3BUIR3m4C8V47ZAlxqijnQudZcYiwCIWKutMAS3A2yhOu9V0/d8w/b/68WESFkCAdhYRVeN7k5JMUovqgYCz84X7GZBYYyDBkTWG2he9tF7oO6atU6q2Hjk4HjxZxhzLh0YHOIin2en8py1GsNq5E8qwOAc9aAh7p1zgGuP6yl/l38XOdJ7XyDwKgK9NVv7NLYZaa+ODrrwowDmTOzzM2RyZCrjdBT7dF7CidZpGM7Iv99/zpY8ZT3oSJVy7MYQc5pUTJ6XDtk4CAi9PJyi/VL0CThk8Sy7U47GiUwHbhaxJm0ux3lz3Xs6gj20JecTmA4HHYAxHesDGMD7zQ4sx8KDdAuYfM3LKRMHTPuVAhdS623+K0TTWjnNq7ATp7HL/459QJP9Y1mOO1+RBQtA2bsMEFjoamvB71WGDT2SPpA9jzlow+tnu4P4ZR8GKCwF8jBG1aglOsvU1URhD8+Rbft1ObLoMNfxfCa3X5wHDGD67Lc+1dTTdQgMezeinteAA9NW/oXZolfE9WF4MwiNH7IYyYqQfaCIYKjaXFKNEhGWmQXg77bpoGbP+0wAqrFrgGB7ZQV1CrFF0HZ0DGUflhzw9062m4wJHkpeL3R6i6SAH5EAKOswu3veWxhoAGArzPB3gKMdAg777WH/FKGLFI7sWZg13i0wnfKhk2HAMcl2mHsbcNxXtn06/ud7yQGVj7UBv8nW5kM9OcLuW3lPAuY98eB9EJzk3nUYV4Kk6efZ1r2yb7Qv3Ffyu+I9t1O5B3UfznvWOajMoAbHmtoKHLMxjlotfv+ZaTnfC2YmWk77S75nvpvvAART/O7UhcLXhvSjvQwzQvAwBZ9xTQe0bE2052dvFCJMyRk+09m2EhDPGfKzLfFzKFJwmQM8/psaGGmOsvw3+0mH7/FWhOKiaV6M0/uOv5djXBEA3wigkjZJfe+Xh4t/ZmDjzEA4Hxk4i/3P22m7npSIAemMm1Q6ZN2MpXffj7b2VQnmmL8TwOZ8Xm957Rcfk7yGfX7IY59rK40TgKklhTQX/qVH3t/CHzzvseVY1gTg0OY7gDUXuS5AdOxiu8fTIQem7LCH57yUYczHvPZUZqJNBEjgRvhtf+P4XQAK6pPJap3GIUs4Lg1SJcS1pFVod8VS74uMotH+CbWi19Rx4W2xQNUdg/pQQDSyByhWk1nuO/rlYpnujz3AAzIWKFA4FjPoZfce59s4/F6GCUyJo2romIGDT8IcoEUGeXPhwSrorWJ/L2jfNOrtIQgHYFwKPv+x4S//m+DtPwt++H8NBGl0yjo/i+i7HVZcJGg9fREPVj2TspuxjK5mAn9ec5Cke5AvcJaGszycZYGu2L803P/UcPlVsPym0Mtx0xnXGjoR9tzddQI68NVrvZ2K1D5MC2B/t/ZiKlQQB2RTSLF3ZAJ5du1+q7j+RSHDN7xarFXlMOBofzORs5szRA6bc7pPZgFVBPWXb4Zmv12Pm4jaQGnuto8QAAAgAElEQVQr6NWMdu0KijHo0qBlwfbDgnEVvP0nr/MNmruPTZpDvGfL3ErKzq/QN2NDsHaLtcTR6rErth8uuP9pQfsYR/bM3Vk6bjRjXuxzHZXPzQQ8b8ukF3dXomct8mJAF/YN43LF/scrysNEv+hElPtuAce1QYq3aPu4T+ekTYYIdQf0NutUdSw2n7bdwQbf4AgU9tkpI2qDWTJAw9M7yq93lMhqlzAcenZGT8G31oLx5RaIfHQjyWDKRbD9eEV9dNSfewJM2uxhn4QbZdutPSWd6lQnHBmdKNVR4LGaTsCXd98XbSyITh9aA+Wjd+jH3Sczjek4ZEwAQG5X67nN77EDRp7fLBsYA6hXu/a22meiRZgbu9YsKAPAej31d5zFF2OdiUS9nxl/AVAhWRiotQlEiEwlbY7RwRD6WG9eC/v13RzJx90yE5fFxnzo8Zn5Pkj137sZ2lz/7HY4Miq4gKBWONqqoSeSS2wI8NVfH7bHPWZtMrs56NWyBN07otRv65EWy+dURfnpm/2InUlKsezaugFvV5sb94e978Vryn0dsVWbJIqkrf0BGY/5jtyJLXcby/5uujyPP5k+UP2Et370e9oU+7vZrM9/Klh+Uyy/CqqIAQCtgI6MFmsvGy2Yq6/bbQ3mAQDI3dkezu7S6wJZd5R1t64XRUwLh4JlgNcwm0hnX2wN9psB3+1bx1gE/a1AflKU+zY7cNwupqNzPdaXjhBPA8pnn9l3ALL5PlwQbIb9rT2VYRBUsCF3kL4WjPdLsiVug/YB2TZb++v2DBrWOpMsDOA/HpBWMYrPh1aAYQK34cjTmfVgZVwX0zdaB/q1ABAUF+itn/tk8/HuOJcdVCv3FVq9s8NwG+GdVKIO/rZ4soB7iILt6KT3KfwLQNttAil5fY+R2tMZGKvJOQ7w1MEXC+b6rFEXZ5WJTNsRgGxSnHcld9277adcL8tlfofrcRjrMZT6c3AzXHchBykAdN3MsV+WGbSeS9oy+6CYPtFTWQTtJ7UmLosx7zKrjtl7v7+DKCPPk0AfmzMsJz793v+uzmBggCakS/u+pK4TFCXHmhlf+zHQ4djQF+Z9idhaZ3lYQWihmCjuKZDmQaA2s2HSeCpG7HHRWekAGpiWRezdnA9j2M8Y4Pv8srWQbC6BPXGafLbHeTzTmBLgBTBLC8IvKOY/jmWCCcFCcpZPZqLxHniNAii8I0fBMWnmrNFYz1WO52iuDaHzuqbHVrC/md9++cl0yArbr4oAI3UyUp3gWC3GTBtjdpFKjMzo9uJaKv0Pb+jvDa0VlPtu7M69o+T26LVYFx6Oe5QnjbnOl3ZsdtA9e8t5xjH3Z43ym95N+6q6Rgc7U1ybrV3u/2wRGwkalqpOvREycoM5FPNS4n4jSZP3gQDtPGasZjujCwSZda05e9JhCbpW9PF4jiJe6uggbAbVXNdFg61V55+Yv0m4Vor7ad8/fheAgqhOZ6IKtLRJ+XKhN/uguINWpiAT4BoHJTbOQxnWMIewhOCIgzAPz7I4sxZAKE9bZl0PGSO2lmQwOKotQOmOXimBgeRIeBDPrPsQ77Swz8wHMFK9qsQ9l9WfIxmmfJQdWH4VtE+dkxceEMsEMSjmR7Gokcaz7LYJjcXKCUj5H4ugPmy8tvdJ7WwA9H4aW44pxNZDV7Q7EXGAIFxfijtpVu5RPdMlj27CLMU39CJYv7oj1zWy0Fa6olPE0jNQvEYZllnRVaMGtXsZCQB7dzdAvZyjf1mmFkErUVKhrQAu7lZWYzuU3y5mBG5X20BaDTopM/iRkVKAmSKyPupqEcloviDpmyyWctEiKI9ujBjYXOhfFkhXLJ2tnhpkmNBaBBvF6arRNcHO0T4H6sMAk1ELsBT0H64T9Opjtk07GWjZhwE82blJyK6iGFXSf1Y/rSd5FsG0h7OxoHK5fdhaXI5bQ/3lfmy3SFo4qcs0TO4QSdfofx5ierbwDvevrUDuLsBUfOzo/Pl5Ze/TQTkLZ/nfg3UAzCyQj58u5mAuv65Gt74/Zo0575etjYaDOuJGoKTsA++fm7QIqNERLAKnbh5ouL1DWX4gglwScKBbZuNBlPmyAFLsfICNzakdVQTx7eSEp77GB8bC0PlzcackZ2XpCDO4YTZHU/1xOEXDDWF6zpKc1PN+6M+rbQJtAKZ2wO0yHXiqQGeHn3OAjB3ej1O2Abcv0o4CbX0+83TIx7PD2xUF3Q2VZxPI7KETOABghC0haFjGsKyNt6ANwOP8/A62WParhxMe4+rBFLusjGVS+w+io+GUelByuwJNQshQejtko0RtP+0O5NV14PZnA+1zt5v+fnVW2Gqfu++2Z2ctm1KgCyazwudrUG7XPfZVo/oigvbQKHJHqOwDuheoEgQ8vhIC6+NmpWe5JDG3kBxt+hTsAR8CYqTEBjPL9/t9OKjsz1LgeknuaA5PZqT1b+9hghXhVALHYKz36aCy1Aw47FvznCOc25gnXBs673lcjIEi3cbUssw2Jw9CjjkY3XY7f2bD5DkUgzyva+2sq+keiJhfxynsIqbcr4KS7sKI6D0CksOese9WGnMCVfPrntdLugr8nSddQFFMjv2hrR8O4rixpyfWIoAZXMT7K7EvyOG7OOqD5Hft/46SgDGO487PZ9sBRLAVwW+ZZU0B2gNAS+2R+zFxZ+c57V1+rSeNCE3vO//O1+STv8p7ljRGng0N3aH8OafGK/D9TDDnVU4OlHr8/fm8+aDYZB63c6ad+znHpRbocJo4DzLgDu/Hr5uTuUORNQPEASypxcfh9HxkR4jvM3gxDnlu+BqN8t1LeR4ffo0gU4A7sHsjQJRsu1D0nCLvtC1Je+TQlhVyaIspsH1Ei5eTAIgSAGD6ct264elq70Hdpj11QCheSstSlcw+yeuc96PqyZgyEwi8bmakcM2evwvY+LxiJDKwJ3DLe6LbJQKUo18yO/akMUD6fE3lrnl99bRueH9k6gHT7+N5XKPuwFIpp3MMnXOV/z4fXkZy6ABxXkvp+F0AClCNWvNQLm7TuQJg2a9aXN0fCWTARJq9q8PBWKv9v6x9BgaCEPLS0sIxKau36mMd5zInp7aCfpVQdtYmGFKO5ROqU40/L+AizhawZ6p3YIgLfqjR8iFTQEcGLLu8q5d48AII61Q3xfWviuVjBtl2MfuPLuaIlZT16UtBf6tW4jG8M4LAdAgsUeEtEH3tq2K/Oegy7E+rEhTPaJvpToh6R4jlmwUeWqY+wnhfor0iPyePjvLYsP/xDf2tRTB6/4OP06pYPhXLb97lYDcHTcU1HpymWsd04Cr1DxTobwYAlU29A8dcCPvXJTo5aDy3t5hsBny0h6CsBe2XC7AP66qgCtnqRInV2pCSYZBBFjqY5eElHZzL7hiPS8Fwem6jAwoAIti+umbBOjsttF/uKL/dw9DJUoPaKO43yz6wfNuT5oKBJWNx9fXfNqv9vj+gX9+eFMzRB8rnI66pb9cpiApMR9DFQssv93h/lRm/g6OVHJdWsX+9WEnMbyvE28bBBUplHbN3uSq0XSfFitlhrdajvJ+cALXNMTJf225ZYAB68UxNtBVyQR+23FxqqK4rM5CsjY1AV4/BVO+Qn1YDOT7vFnzzelTJzk5GOWbF4p7zWLnR03U1MGFZpqEKNXHPDPX9uba4WZCqj9U/c2wxKTTSBAf8Oza++/wMMEEEak3knsWuDWAgzW7BH8GGItYnmtkgmLE7d3oIxJ31gPx5HxBRGKyuAMbRMZwPk5B0B75KSUHQAGqDvl2cUePzau/A9XKg3mr1cUjvuvy6RSAhWqFvMHBD5Cn4izUULU+TQ8ZOFeL7qnoW/a2FfoDVvQJFjL00rg3S5vqdwrw+F9ZtagDQKV4Wo6NmVW+lVogrYT9WjK9X9LfF1mpaD+Z49ciwSq02ToBrqgBlu4BCvTz61Taeeh+onwPvXuoQwfRSjaHVBG/3Hdg66odneLrOWt0qgFhweNCU8Yy2rHtkzShcG/tlqvc10GUE+0FPwduhneOJOl1dO0acVVFGCUed+gG6VAzPpLJUzWjGiH+X+3yG0QpAXaJFUDaBqkA3zMTHSMrvcasvgri9m1aJ/ztEwg5B5pjBbbCIcuDBPcd8mP0m6BfrCgFnH6oYQM91c3AkGYgyCPOxO+z7XK4JTLC9W6Gj2LxiwFvcz0odUfis6D36sOtKHaPhekTF7coeLWqjY0weNth8lbzPpjExMGd2kch91smeAhkGIhPszIAC93GOL8ucXCMnAgTW6efP5yxlBtdagfQ6Oxm8cvbDbyzePlnmHPfW21HeJYLxbgzcEDb9ObFHznaJz3UOsvI+fppXIuNoj33sw7elsCzPR/vdjj4IhfCwd6gkjRV7kGcwwcEnIZASgbEz+QjMpIDQ9FxKdJ6xlsDjwByxpAQZATJtTn5GMh8y5T4+dwqG+XeWwKjO7gc5p+7vj3vkobvVCcB5Fgh2Aflq7z/YGfE+7Hu51MHYxfZ90/sq8fPyoN9xtr1l+kdFHfzxuXG9TOBXFbJTH6CEPxLdD5JGkaw7SvH4osCYhbTbvF9qovC5dv5/D1+GOnzhR7oPJY9ytJnRIiPNyXPZSz48fowYsxTbxIsA1IHLQM0ZLDwDQvnn/CwD/AzQnoGH4b4TGU8+9pqAVanFxoNlXM4AjecFcCz94JrOcyUxF/K7/xvH7wNQGOpUUmDcXOxnH4dg2AwQEmDgxm8pk/LUiu2Bq01AvVrQqK1A92E0INg5yt0pOwpDC5kF2kY4Y/XXO/TS0K9XC9Q22+zoTMTkwlyg3LDL1kN8qv1mgiRW2w7sXxZvu+XfTRmMsRRvndkxLkY1agLIrugXd4IKUDbFl/88UO8D7dOFkbwHNSmfgIEYpVtpxlg8G1EBQ0WthGP7UlB2Y22UTSEPdYHIgroq6gq0B0s+vHxgSHJs1GlW/lqSY9LfOIkNkBgkIqzOEHlbjhvYOvD2F6On7jcvy3gvaL8p6m5lCwKNd8ne2VNQCgjtBAIQ1Cba7XlHNed+LIKxuLCX1xjKDqABowE7CkpTPP75q2lCrLahFDeQQZN+0YtYdsuO6eIlHvceAAiqATA2zg6wuDAmgYr6sCDD5qYzAB4L1AXOAAS9NwxuFVsz+wgmivj7qPdUd1pgtDD/7DkLEvoBRJndAYHY++LPCGyUzx0XL3mI8gQPvEyTocS6a78+UD+nInHU+oYxqygPC6zl82GO0NebnffLG4IGSId0n88OVRQX0NT329Qn+XxMkKFIiD2aQ4MAF6Fy1DOIzcczCtdlOlMESiigNAbQZYpCnp3XHNjzeUPAZxzGXy6XCSLwepn+TKdd3Rn2n4XjCpgxuMgxOAMQwooUcGwtHPK4XQ+ChSrGZWayhBml4fMohIB0BjOAGfRsiAKh90xCzuZbatT2UzeEshiN9lCCkcUePQMYjBVehuJXNLT3DewvPS5WSiMfd9uz3Km0d2BlUtGb3ZkNrCuV+2bXc8aAYooDjls7MFNCRDEBjOPHN6utd52S8ultVh1Ehyr2rxeEGLB6IPvYgQcm2P5+s7VLwIqONNwBY3BApwOwUpulYXx9x+d//wX3P1VcfjMA4M2fTX77sDl0u8Y9KwOBizEG20cHBQurA5Wh4zIAlMlE01awV4Fca4DU6z9cg4UlQ61Uat0hueXsj1cDKH592PN/bhEMMnBmB49xYYs2u95oBXWzUgba2pi3ajpCo1lwT+XwnEmz9r5mqCZbxbNlqbVaEYFutHc23mb/zA7qpRh5qHvSwjtwsEwyt5gMHYdaHaTyILPLMYjI9cAOGsU+3WqspxDtfSWe5YFAaFB0xeXXEQLNtGkRaMGEyoIxFoGgXzeLPHI/TTbDWuSNOUYOTkZ99tuL1rV+PU1tNA8deGJdjclEiM5DxfVxZoA8HetjsHgMIkrsN/E7IDKLWvyZ+YwAsDsolu0dxdNcuJD7u4HZAlS//rqFuGDUTOf3RaZespH2c97fZGHyUN9LmLQgvVl8XLBYhzNtxdYd50i8n8TgUDXAmuOey2zOmVLOy/zux+yG8TQfEtsjNB7cnj2VeaVAOhg36Rpx/7W4aLsDSiy1y4G+B7rBviL7kTEGn5Vsjt6j9IGAw6vOM3MM3Nd4VWOeARn+3xluAljQjXaoTxcGdhxzMh2BmYWv6Z3wGl0hMBsDTLvBsRACBEVAkdRD+QQQIKxCTG+md2vDHO8Fx/XD7xGkaRaTBUCYyk3DV47xbjG/5LGj7gPjy9Xm8u0ymZ6nORZHgFu5hWx5ZvgA/i7nfo/kJ8RY51bdaewPwGFeq74Px3zcO0CWoCY2Vfaxzr5hSr4w6RRdCv15pKpJXKmVZakOSzrB5iyixK34aRWy70eBx/MhMuc0Ga1Z3FHSz+I7L+Z3On4fgALcYfdFOS4uAEJ0TqY4iNCRHVOwidR9tmW0xQ+n8osHt4aORlmEi2+UKjPz4UG++gITryFFESuHWLs5LyKYBYD2P5l/AUXwqJpNIS3plqXubwWyw2r4fULTeRtNUIeBEno11eyxiTNm7XkZyF5/s0x0WXv0mtYBYz0w4FUAK8yAFBhQkCb0WATbm6A9DDhglr/frFVK2dX1DIazLATItQw+ECbIbhuk9Cn2NA6tstIrd1qTXlroVBjiOrD81tFvBfutYjRgKwVlZftHMkCSoaJzqBoOK5yZoA3oDGg7gMXGYDTx7mleF/qwOSSO3moRjGbPsf5QUdeCyy8b0IGBEtcsW5/GXwwQYqmDlbxJlLmEsyZOfX048MVFPex+ea/RIQPMcBWU5FiO5ohrR5TMkGEjdYEK1Wp93DINnSUG5+wEf59Fnw5B9jI3VfoW6w6s7uDbRPW16ht6ZEsF8rkiWiOynoxGqhUbs16M/r3ePfi82dzNOgueBZr0XTeamwfhS4Nij+xYbNzNS1UYcKpt1NGS9dB/khfTCZYQHR86s2j5OTh+dPYZVAYdLjtK9fi9nozv8B7GOZDgdbLjx0AemFl2fhYpm/K9g+h0RtL3s8MOG2ui1QxYc/DK7g9nAMMdl4NQ4SukPpzlMuv49G9kZ3KQdcgCuBgcDfrePWPne40I6oezfBhciZgD5w6ksYlMSBWtAFtH+XxMKuhJvHA4BV4Bo7vnwMXtV6zV4rooj+57tDsAUqJjTcsUbpb6eEZdL1560e/HuQOEHbNhTM7P3k1D4taw/lhw/5PdT7sKrn9djC3mY2r0cwYZPqQO3pWHM/j6ALYCcTCTJXvaipWWCQI4HUWiDfP2ZQJMZVMsgJUZbA9jCooHRALUT08CsJ49vfvoTPPGgA1hazFgWS312tLz/Pe1o6dzGthQDuWDfNex9t2u2xwph+/amrVxZ5tNGTJ/r/aHjJTQZxkOXlQftJwJza1mUwBhQEWdwJ5fG9XegbQC9FMmNT07yM5Q79wxDPiP5yg2FmWfVOaZrZXQkpllFZiBBIc5aeoc9qzk7wz//KH0hfu0//mbyuIEFggc1+EAoDvW1cexlln3fJ4LuX743NoXANlsMf4EGZit5O/I9HLg4UDlhwF+UouBJYMdX+rc35KgYF7XB3HKDOqc7A1FUsfF/I+y9vANjNVZnK0oKKv9bLbHnOMVrfT4c7cp2uqRKeDjRJ8mgJM8tiX9PAfn/BOgBGIdP71fTH/Xvn8KaFiCmsEeHmcAiSBPBqEZQKo6QC0QTb97Zau+cxy6GJ0DX+B5PfrfGfscvhG23feJdC8ChPbMQRtDyApAMOiMsenjNvpkBDhVwbQfCvAkNDrjBOkKrM565Dhnlgqv3+oBiD0wNArjBsw1nkAC08TbTfvli5XIYSkGNK3zmrMExE9VXEC86tN8zO/lsI+UMsurNN0Tf3+wqfpddlOc6wDunPaQBITOdrfl+PPubA3UYFccDn8nVtKa9ovD3C7G8kq+WWh6jPwO8nnzHBrz3mmmw4eZ9y8Ea79z/D4ABSnR7sv+DbvpVoDPDhndWlABnvkVR9Dt0JIMcXLOy9ohu9EYSeWJGkHAF7MZB3Zd4M8BRL33aN6dtoudd8ze3pmKRicKQGSHkQRYoHZPS0J583lkVROE5PvvpqUwrsX8hU9zRPqloK4D9dtmrf8+1zDW6nVyUZbQFaWbLsTyy472Idi+2jMBBhjcfh6od8XybT/oEsgOVNXIrIxFLOvpoAOFHrcfrG3k9S9rvI9gX7Ti5R0WJF9+MsG+x7+62jN89qCpUjnavtsArfj1fyr4+Dcr3v/vC97/v4av/3FD+7aj/fqw81OE69YMoKHqflcsnnkutxagUl1tzLcvBf0iuPxqC7O/eRvS+3CQYVgmy/dBK5mwcpH6cIDIkXgyICKoZ7nHPgBnqoxLxXDRr/brGlQ224CLg1k96L+ye+2aU/GLM0NUBHjzuvC8x7lDF60oHx0FwH/739/Qb8DllwuuPyu+/ltv08jyH+AYlGYDQWOVNtRQ3M31lzQkpC7n/sJdURjQqwYNNDYvbpbuQFppjQNtrP32cVJvGTdRaw3qW6EQXXHHQetkEOw7ovZ23014xzdhXSxAO3aMYSBTpiOlhq4rEIEnWrXMyGVxgcQxMzlnWiidqkQhlo8sSAIHcDzyKMWyxXwPpdo72vdpCDJwcaCsjqAwxkHggIcHSNZa8uQ0eUCfqb/x//0IuEhrgA4TYCxlMhgA+5mDEYdsXBrnyCpm1qs7PYGu83k3F+YNMMW+GC1Z/d5lDMivH7YfUi/AhUXVf8Z3YTRXOWQioka+YGaQ367uzAyMZZldeNQdLgX2twq8N0Bvk53mWiHFKftjKZHtZqA+rizN8j11AHop2K4303BZTdjRGF3NdFK8hVgAg5+PKE8aN6NClnudDJ4iqUUs8Mv/DMgoWD5uWL4sqD9evdXtMJbPamUO1hECttboe9OZFWMdaDP2AoDQhQGsHGK/CrYvVm72+a8V/QLoorj+ueJP/5d9cPncvFxxDYdEvhlgEtlOB7RUERlu8TbM0gpGEey3ClmtplW2bm2ELzW6Lize5rl+7Kif2wRfuu+rzcdyHxjXhnFt6G/VQHGYPV5+WaFF0N9atN/N7pWVn1mwDgDl0dG+bei3FmBzgB+tYbzbmg/mpbqzmUq/QogrgyFLc2pzKqNzm09GhV4XAwZ8v5RuLJjPf77aPtsV178M1M8tgPnDnlGN8WDq8g4klmIsNbWSxTg8KJz/9kABiK4V4nXxnP/12wNB2w7mkpq+y7o5U4pO7szg5f0DwFHczIFQcSdKVxN81igZm/taHAdRRyCyzTnAos0ju8OBFN33IzNBZg26kC1HB9zp8of963wvnPMHO+zBA4MvZkR57tj3mcCRSNKUXoPFKUNRh5ro63076kawlIrZbwot+p9gFsi8Xlx7m21DDyWFALDprK9XW8tCtggP7v+RLdUJ8hD0Zctf2iLW7ac2wcHcPAVsVkZdDnZCHvsM1LmmXKfLviPQL28GRl8nOykAbAZ09FEY8GeAgnOVY0qfi2MYJUNjBrO052cwI7PwcsBcBCguXLt4u/nq7bTJnh04sow4Nu6jSwNCx8HZ1aMVq8FvrhuxzvkZ7ESWmrAF7uLj560vD3OGmXfpx+DdjxCsp55MFWw/XiyZudQojyYwlVmeJuDpa46JaV6zmY8Sna/Y8pTPwjbfFB7lvMtlLhnw4/vicwHH7nfUusqlqIe5OOf4U2JF5Il5dFijIpBlMTCTe2MqbQvgBECULkSXIEFoiUYCyf3EzEIoknSiOqITIMfmb4AJwO8FUABiwVE4LtC4vLF2jU0vqNXA3LxcOGO2nvLJSTRMPAg5v0fV2T4j3Y+y9Q4QWRA6j/ZDPS76jJ4N3s/pOXWWVbDWKTs20RaseBa7K7oHrY0AgTj1n9mOvTv90Td6N8ySGRuAB+2AvFWv+fRLqWs/bCOyF3xOft/GhpSz+W4Ukx1w0A8AJiUUHvyKX7PA6kl3+96r98Frjwtw/fpAvy0Yl+lMHr8gARgIGPzahimiUc8rUM/mC/Z3c0J5fS2YrICukC6BxrFlKFtnHpB0R3ODYkajWEuUChDwClr0Pg4bqhn7EcCKoZGIbLbsLjhZBHpr83yhKF6iXAYApFgZgjFigH4B+mKMizlevG89Zs+RHKCS5nOULUwjMrO0bqhVLRhyBz6Oc4aJGyev5d+LbE3cX3YUMddbJ7KeMiyx4SenhE4M1yj3jN1r8rR6S1E5OAIykgHRdA9OIQ2D5s8Sbd/ieXUGuDmDwPMgzeGMmmdQI4sLFXOa2dVxjqMZhicHmRoJvSNAhCp4or5lICl/PTsrZ7Ahv8tScChziGcXUEn9TA+MwDCf8+8YqcO5+SzAcVzj/D5Xhm80+btjDocWmQ69ngKpeDdzTkY712D5wHVqFOUxbNpyr5VJqY+Ml9sDwPcpzju/FxUCCryPdI4EmI9WbF9i4JKceD4jrxHtX5dmDqeY+rTsBipoVfSLoFwLAA+QsRtDSNt0vt0+oiL2MbsIfN+RCLozG41MsH4V7O/A+q8G9H1Hu3bcyw37/yNo14J2raaTsLl+ke8lZ0ExzXtC/Hu+s9gXi483hu3j/v6l2L5T1t11MBDOXmTq8lEQ79BElc2ZN/aaRCVQ2DmxQENcewHqwsOrddgpSAFLBgfEAGy2Yg6wc5SknyQHGnn0iOexq91g9Xcw/L6LA2S+J+lSrAtVV1Tuqd3EqNWf77AOiukrSdwDmY8yKfzpCNp2g9nf6nXUp+xf2MFc7sU/w5kJSQPmqXSLGVgCxdxr/P/BVNABTQb7IAKb59Lp/Ida/7yPpe9PTyg9f7Ahp41ntwItXoIxPABgcHm8sD/f2WZgZkMdzIjPxz3BmUywssphJZSlJN+MPsaLMs1D8oB/IqM9r3fopgAgmI7ZH85/l/PnNda36co4GJb23cN3C0ARxwNIgOQz5ICP2eJ8bbKAXj1zDJ7O8gFfN1oo+I6IH6wsKgGJ3XYAACAASURBVM0j2F4agr/5yM+efUVmos+sje/cX/ha5/PzZ62E3g6z3Arb4+T8Ls7PHsCVQGRY568iOAgr52vxePXOn8YV8/75Hgi25EA7n7/YOhoXSzaMrRrz74EJAr26Zr72q/efk1j5+wcNjOT7nJ+Tn88+29CZQMvH8Da3L97XYa85M5DiGkffNbfWtfK9YgBokVlmE3uSHs99/nsZCC0Y4OjDeUtKAC78PePRf8nx+wAUVEN5XdYd7afHcRGUgv7Vajvb/QGt1VTw3ZDXj81QNWctRAaTRykmWPWpTwIwYeDoXMp03Fj/KMMWxP5eUT+thEEXcwgDAEiblWV6OuTBoKl4nWcabmdFrP90w/5W8PZfV3N2Hntke2UdaLtCy4LhQTNUTZMBiKw0rkvUnxvtfNLWoif3KCFMWe8NMkoExuFkLyVKO8oqQPW6O4HpNzQBxZw6itfhadT7PwkiCbzrxcDeTL9h/2LoevscaN+YKbLnGFeju6oI+s1u6vZfgMf+A778R8XbXzrap73b/Y83oDtbYGiIPwKwWmTAWnEWQb/axlTWbjVhW7ef3SxjaMrjsySgdAUeA9VR2fZt9o7nu6Zyt2WXYK1tgOjVXtWo9BT7VHb38HdPp9BueP67fvOL/si2hbA18bPi8d+94fHHN7SHAUPbF8t4tfvwOQr064K+AD/8+wfqbyt+/LcdWoDbn7dolcq6aKsfHJCPFdg2E2S7XoE/fHUwrU7WgWfRys8ftqET2GM7LhFjLwBRPlBWzxqwjq4U60HvwmLRgmeYYBzaKdscwIYLs/38QNDk9g7Z0v7wr//oAZ8zGJhNavCyATHhqjEsc0RDAhMXFGZAuCcEcNEjGyEUBntwYjRIXyH31YK2pU0Hgc7kmSbKMfOyDGttuBpC/nm3jAfbJWbRSQpM4RKnOnRa4H0D9l52+Bh4FH1WSa/GeJh0uzTeWasAJ4Aho+BAnJOfH92E41CrsRcSpU55z95iEkOnojrHqXd77tYsc5KeLYTZknMa7+3sKOVSCNc+iOwJg3BnixxawHm2yIA9nVliXqMU6yIwTEOAoFzZh4kN7sP6Z79dpt6C/wHLnIrV+3M/j7a9D2oDWFZx2Rn4DnSWTOgpKF2aB18WJJTN6t612VobFYBrPKAIrj/taI+C219qMKvGIqh3gAJ5vaaOSUMtIC58XrMnslpgvnwU9M2ZFx6Ai++JgAEX21dg+1HxD//jX/E//Pgz/o8//gf8n3/6X/Hrf/hn9OuCsRRc/9wsY02g5f1qDu1jjaxS/+GKcavmH/SO8eWK0KUpiM5EupQo8ZJ9i7KReI90Zpu3I740Z65UAyC6gf61rygP80v6zVkl/vxaxPQiRosyPHEtp/qxxzyUzQQla97v0zwtn6xpxgykchYOcJq27xsOqPd30x6qv63ua6yQpaEv15gb5XObn00lo2//xZk+BNNDF0kPQa4KoLdmLDnfa2Uf1q6T849g7tJMqPrWDgmS+rHOzJnv3VYyts93EnvJCN2EWe7ge4cDlQddFh4sG/I9XXwdW4zq+x8zhm3aq7gmfI+7cB9IGWAKvvHwdRQdHPosw7N/j5kNZnAeFHEPCq6X+D11MCSdP4M6RumuxyC+lsmo4ueqsSDvfzJGTdmNWdruirFbwqi4/lQAAMsS83DarJS99T3xiYZNW873vFkXIsn7s48FSwzGl2t8Fus+M8a0MUOmrSMDIACZee0os7m63kk3H0ITe014jqG+95cAzo7PkIDtBMyafa6zFImHJ30Ognn+R+jnnMGWNB7xrp3BimKlz3wfipOvwCOVBgBIJZzjoOtj5WL2mX6zjjxlABhmFw4tZ/l+UsbcSkbVylJv5qdFSen1MplEQJR7HkoxHtuBMRPszgTGsfW6cO/IHVSWBq0F+49X7O8V69eKuinKWlC2eZ8BnvM8/LmvHTJgQqOq+VzJfsIp0A9fKq/7AIB8XuS9wueDvQ8NlpOVM9QDWHTowHB4rxLzVFWnEHg+ItCftsvYS/SX4Ptc8l+KGGBQgXCm1w1R9qHFdPSGz6takXVn4n5ZLuG+4tM9vTh+H4BCkSkoBUyaDjBf2tAwsEGLZ/YmzmP/C0XZLADCgxO4d/sMN0Y6MgUz0GZWa3hg7sgw6ax2L34JT4gxoySsiVRFrhGbys7zGnREgvajrpraB9CBslWonIw+eC3vmerBH8eEe3AwKtIYMLBk0C4dCLVqHSA7QF3HAq7tAMDbWSooumhZHzt/fr74/1CnX/uz7sa6MFFKBrhJ68KzP6zlqw/F8pug3b0rBcdbxIDGcF6mZkWwBDYEy8MYHW7ExQyubhq1pMU7X0SLQjqq6SBLwTRXjs8Vn+l+vU7mQ5k11zRyPtcYZEhxZ8gdUKjO0gV19kzhhgns12N3kX5x8cUx5+5YCsq1BhWZ9c9x+DgIjZW26URwrrAt2D6dzDmJZiaGQWmIK53R9kxJdbDsIJDjNP+4H59PMc/PaDM3esgEK3gMRCA0AclkdOJFiZUqNAtWtHfLJJ2R/ExhJLVvpCAcCIPzJCJ1CkTPR3wmxvQUFJ8zAPzMOD2Hntqpxfs7Od+edTARqHTvpDMHm8GdjphM+i9GqJ+MLYBXLAhjMBDEZTR1GgM67y9qd59OlxkvfIY8HsNAz6e5eb4W5wDHKGcmU6AFIEqs4hrs/iA2zthH7P3xbN3OWbj3pH1GT2OseWjU/l8wooMLgINzG/Np7w7sDXPmGUwqrAuOU/y1GuBr7CdY16LimUPSYXXie9O2SHRdAuBZMHvN7HQwxYphNrMAj23BT483/PvPP+GXzxvqBmcJ4EDf5ztWzHVm7IoB2VyDYrjwMe+lCypGaDpkVl68f99TlBlPcGwNAFHeM7UYhgVAk2WGWBels7uPzvuLzNBpvnJvlDm3+Hd2/LE5kvYrggsM6pYGvc1g+KmDBS810v3kuc5r+xyKw99XzOOKOZ88C3w4H+Z9UZcqftaZpTWgO7O45h4jz/W/6ZxPR5TiDXOAZd572IXkIx72+pG+ew6UuY++uub5Z/GdFHTkNX3ej8/HiVlw2Pdf7UWnn2t9cV3+O639YKAmZixLTVHMt4uAmPduJ5o/G754aFdetNuc95eCsxgPz+ifs6OcX/n6YHBt83IKVKbzcg6nMXtixMZwpPsYf2d8zwffDabdmHoE8Ln9wnbQT0lMovhzWi9hP9K6pQbAIRAXMlmS/5DHP5VSMC4B3NfP1FDFZGy/mpfw8e/jONb0QwfMVwPMh+0Ittd3h5H766ufyxyjKFnJ67mWg6B16dMnj7Hl9fPaT2N9YMpoeT1u/5I5EZ+hv1nArhUvP0sfLPsmLEcEjDXwxBDl/QxnTlv8dvAt2T5Zpz6J+drl8PvjeV9cKzNOwid1H/zMhop1mPe1dL2/4Qv+LgAFbQX7H99n2yZS4UhvAVB/Tc7GtqP9/In+9YrxvtgC3S1As/6lzcTyPoYpjW671cAuDeXjbgPGzMfegfcbxrUGnc9uCigfW7TdY/A6FhcrdAFH61cPYzRcStTZA0DBbg78dZkLv48pHAjLfte7txZ0VXyIB+duJGotKA+JPtniIkZ6qVHnqFfXiGiWPR+X4hkCCyQJIqAU1I8VpRZsP7xZjZJnSfS0kUIkamjHpaA8FJffNoxLMcZCtZrWdg+YDAoGc3Ye88EEZTcn4/LTatoCRNsW0xYY3udWxYEOAepq+di6GbBgN+f35fXLFMAq27A61ebZMlU0z1KVB1V/1dVjK4o71v1mNXj1zqyCrTOoZe4IcEih4q1lI0d3kUF/VpZi1Hu3DiWfW7SH6zfL3tRHt/nA2ukLFykmwHLfTROASvF79+yPPVPZgfWrGb/3/2pr4/7HauDLOrMS+3tFvxVc//KYXQwKu1KkmnIp1j1h2FpRwNYee7p/bvbz25IMYplK894ODKtA//DF6P+us2CUa0Od5eHnWSrGrdl5T7oNspuTGKj23mc2plXoe9ZNYTBjjkb53CJLe1CAZkayiGVQ+LvLAn27YlwX6FKMUZJE+SBi9/vxadlylj7RkakS9Zt8T8J3VUvUfOpu2V3crtPoUQnY2RkoxbL5Z2cR8BaQw5gjBA/33VuQXSzjttlzhSFnNu/9Dfp4zHZlRV44eh24XLzns98fe2BvzuQY5HYXqHrtaS45Y9CTASkaprPB4vv28z0JQvJnqhM9z1kOZgfdidPF5iLuq4Mji++N5fnd6Aloys4y/9CRy06sSAh/qZAKK2i/+NoiM069S4sr7RdvhXzuMS5btxrmpWFcGsTtTn9PHVQAY1WsA0W8DeE+ojYWRQzAIFsGCEedrdKKWMZ4XC+25teO+m1DG77fuWM7aokWu1oMNC5dXUxR0D6ONdvcF2WZQW19dLB1LwDfG9McGcDHf/yKf9e+4N/JP2H5c8O/+m8Dy8cwZoHfK+v9tVTIhhn8FbPH9dtq2iNjoKzeqamZHZd1g14vM5Pv757Zfmuv12ZnDRdHlLtpB1XqMy11ttZzu8A9dCwVMrrZU2emhOAmg+oEMkCmfR6t+DilAAswwP5S7Zzbc/Cq14bxfsH2dQlwnJ0jUOz7ZPrI1mdmNYMScNCHwkf+u7KPQxtURYm5hqYzuCswYJv3JGLstR0QcbCmd5QPPB1aBahtBmS+R+vVM+S+J0fL0xdK4joUUsYs+8rMp+zsMjMXQIU56+cWs3EOiLEhyNQq5ZiBPpdsvVKah49zcU2eBD5HBwIA0fUilehxPAOk4TzKQWiA6P7MCahhTXn57QHZOi4/LOYDtgQAiW3D5dGNbULwm88haY/OnYVEZntggszp+nHvMTYuerg0ryWfY1g+Hh6o7tO2L4mNMcbM8quavSeTI+/dvB7H0cfJEiOv2ceHI2wkIkmpRUIzIn/D9JpwBDX4Hgi48n4TpT86DGUAwp/pAKBxziSafXRAKRUsueN6ltVZhksDWkF/865F3q2rricmTdpnQqPuFSCSWQKc893AaP1ymx3wRM2XANxOfgc4OR9DAbG9NtiAS0MWotQi1m5yqQbU3xFJQNnd1oughG0+JYsziEM/piQGBm04wZ98jsP8KHPNcz6lhNVBJPowjH4+6kVxHJprOGGH5hIvAFEqke+jGUM19KNirXvpma9bCd8zJ9MInqfzpfeRS021d0BPwN85gxqMm3SNVwyxdPwuAIVo3ViJ1mEiYx4MztqjEhOH2X24cZOt26BxU86bMfBch9c7sNpAFzqDBSFqxVqefrUAl4FrZLzTyyj7wCgyqfdFosetqV5Tk8FEpKLtpLez1GLPAFcWD9X55HhQ6ZbOjbWIGnMRiaIv1YNPBPMhsvqBZnqANeC6DcMpnxMhjZKOze6v79UckupMC2Y2vnOEGvhQYBQsv9h7zAJR0XFCEJu0qDm0rnQClYK+2EbbL6bCLctkQ5RtALvaHtEmkyKmliDeQ4ybAy/sthBdKYqBMaHj4doPVtIwGRWR8aPzONQXnY/1mKCBDNfF6HTCLBAYl4rHPzRjYHzbQ9BxXJqpdDP4hM2HcbHxr4+BcqvoC7wHvKJuXnbhQJV1CrF7yRm26Evt/cVzL3tu8gHk9Q7sLmLaamT6ZibYjACDT4gHOEA4n+HQpoyIrLv1OOe6JlrtDqZeGvDhJU80wIesE7z+1oPdpQVQF2DAmGsQtUWWxRzWZPy9nlpHGm+KNLEcoQjYpsc+kAJgCizSwegdoGBWJYDT52djs5h7EksfYgzDoNNgjvmzGAN3pHcvMdlJHU4CjcA8R2RjNYmbCYBqLSpjfOlInxz6V4h0/tnQY+vJMMQOTKgLHhEgaO2Iokc2if/uQPdsRULsg5ZIMULOm3NNpc69+ZDdU+8EREfPHbqnjhw+z+zdusq52wajjGKydjyIi+uCr0JMX8bFFEPvgEELQULeW5Eo0Ypg2O9hLC+MeM6I8dndWdPbJeyD1uLspLn3hhaE75nRvUcxmVq72uPBRH3ZFtKAYkGUXrAs1XVq9i8UUrV9dflQ3P4C7J+C9s1LDAS4/AIs37ox3jyzXfZjNo57D4DZd9yBz6Dbcv3w560aY4G6Lt5vXHOZ2cCkXPsYiuqxtbTb2kyvpdZAzBX/f9kxtX2a60mQUdkxBYdLnluc8tTaKF6Oq1BZXKumI8DzraNuXLtzGujie6SPfxbHpTOtPill65MOHvNoHDKYdJhluPZAqcYUQTmMmcDdCo5xrLtjxpA3QN9jXkuPeyI/n8TQIhOnw0qkbMBsD475nwYji9XytH0Yvbd3RKeOc+BDW+HjMc8nM7j+3iExEnNPyc/OAJzgUhGj92fgMn03+6jBDojzJjvIa6dASrpi+dWSYErm0ymJMEVaT9naIs/BgsgEYMJewc6hCnQ5zKUDw4o2KwCABPQDszPDCZAwjYIRzMHceSduayjU16FWr/nOpcx5XqX7kcSKzO9KBsyGJI2Sw3Mc2qOmOTGoDzLHk4H7U6ljPieBrAOgQ9sHGwPXfAtdF00/e1uiLTg6ogVolNSer6v6PN/yGGQWXvp/iIB/7ygFusgse3j12QzC0U8LMJDd4I5jXh6mp1PcZzVm2pjBfF5j1PjIc4nPNsZknSagId9/1mIBgEMLeH7ntKecrwEg+TB63EN8z3l6/xlYyoE797MiBo46Mzn8bNeCeKnDAODYuluen/vv7mfJvz0HeARsf+8MBQZdljHVqMMeraDSWAK2mdF5cLpp1FRVCUX8cWszEK8FGsWiY27oMGODx2r14A9vZycC/cc/WObLHZD9S0HZrM6+PsahVWBsovuwpa8a9qXfTNiKdZL9Ol+G9aP2jdKz1lphzlCxjIXV4Q8EjMdNY92AdkW/VpQVpmY9FDI6xuXiNbEOfPQ5wei4hLDS8A4OHxvGrQEXZjas9ZUK0H61LFB1pdtxKe4skfIJUHDRDKK/0z4gjw6pjqg5espAGxwrMceRAIGoaTJY0Gj6EftNMaobLKdTjgaUDrRvQBFFUXX2iDu7jMdqwf6lTeCEDh/fgyurq7dl3N9K6Dv0W501wbuaqnUrGO81aohjM/TNPKiGy0RDq7MN9h+ujkYX7O8V3/51xe2ngeUbF4LNXQAozPIXRIcI2RXtW8fu2cTtXSBdsHyYhkLZFP0qJrS2K8qwe5YxIAmgku71jgQHvr6Zs+XdJeTbZ9BZdanQ1iDf7rNLQS0wIUYvtfEMoGUYioECohEEBAJeCuTb56TbF8/euIOg1wX9ywVtH4hsdzY2DAT2Dvm4WyD9hx8s0KTDQuPBVnlLs/7IBcB9Oxh7a1PUIQ/Ma1B74f02HUHv52uaAArxLDg2z/x7JwFllq1hdhdgu7KNLWiLOTXp2dRVdYXCQTvs2ZIDz/o9qy/2Nb2a7kUYjAXuiFtdfVY2D3Bh8WyZDlvrNRkxR8W1nALsdAiD62z40E0ULn0m2rXRwJbiugjNanf33UAnPmNqOynwYHJZphNHw0zWR2tHhW34s3MObLszHMrzPOLBLNliuidPtc9cxxlQkCkoGnbnczs6DQNmPxwIDLp8R9gUMo4oYgrAbGAV7F8WB6+tfl+XMhlMDGBSdo6HLjYm/YerfU/MtlLFnx2SINbu1rrPWM17X8SAyd1Ky0ofKBxWaq+Ysq39jHtisIwAvRQ8/mCAGtlSl1862l3iGix/aHfF5ed9ns+D5uF6D8XFGcd1MXVvZzhhDNPSGN3XqgDX2Q1FnDJLkcVoZZuOcneGT9bZ4DzqAtnTFwjYd4XA2zKfy1lEgSEB4JiYmGsp7LvrvXR7VeHLzFSpvYdCLcUYz+bAL7YdxfeOcamT2QYYY6IIKpkJrQRjYryVAM3LNlDuxxr3fEQC424aHNh7ABOCYn7Zus+AAIj5p0uZgE/BdPazYysJeOZ4M1A7lxKUGo7zyyODu/kg+MhAoecStRLfMfrxBjnvCdxr991+tyzPY5WD+XRdkHX5KuhhYN2qTf7CPdG//6oEgnM4s+BeDUXx8fLrtJ/uAXySbWO/845RBMyTsG3sK+cyMdia0MWBOCZQ1NoxK4AngUIGsGQFBSDodmqMqSN02pdpM1mGp604sIanMZglrtUSYaVMJoPqc5kcnynPzTTm0V74Oudp+C+bt/dmF49WbJ9wZo5KYjo0T/IdMtHPQVyUKPN5VrtnKVbiausOoMiwOCMWUrB/WVzA1Xx+Y3f06CoS8wIIO6y1GqB5DoCzRgjB9VfA0qs5yPKE9M7P39Pka89kTzofgYDiCbcxUD7WeV2eitl9rtHsm5TJnIrEHjCBpQzKHdbtBBSi00upcx8JQCzN7/O+dBqX6BTjwOfL0JvrtcjzHkcwFfDSPNfTcqYD1MsusuB27ugQA0YAaZzGiT6KnedQKkswgToz/D7PPdRyVmdgJh2/C0CB2fto0eW0dYr1CUZQnFkoLmJod9lMnRi1hCgj6y8xpjgha62zarLUAoW3Pfv4DOe63FfoaEH1qQ8LnLU6Tb24k6UAhV2EHRs8Q66AiVgBwMUmUN2OC24sZQITVJJeZoYnnoVlF10hdUDcCSx9HJ5HBU7lF7Rve+gi6MUdWM6bbVKNRNWCWCLZm5dHqDlr6z/cwgkdi2B/K1i+dbSPPlkaDqLM+tUxe21HGYsbsh/fI3s23OHubybYCGGNqwW21e+FDqmVgTiiXOkoeR2qj2Vs0WSAwBw7bcVaQ+6Kug1s7w72rD4GoQlg2br1jwswEFl/ZbAf6J1fhgFDOmS42BbnMZ01z4D1q4nd3P46cP25o/3ymAg3T9VMfEV2e8fFKcUAcG0F7SbY3vw7fGix0pB2H2gfPcTeYkONdeZBcJtz7OB0O23LylEsk9o2M7jIRp/nLWVmUwCwXv1ASwRsnl9eO2nSB0aUFBXI/ozsnsXoslK+jYNt/gLMoL7VQyYVIpOCSscjgRf6fvO1ZM6BvL1B1xXCzhDiBrA16HWZ66/VaTz6gCipgSk4p7EeR+PIsVSK4aEbuCAShlNIpbtcLBjfpvNwqH8tOP6ODnoY1eSMByPBSxNofPZ9ZhHOhzObDiyIoS/e6QDEqOdymeexOb0f5sRLg+eOjqySWFgOBNEW5NalboiDCTDKMWuhGhn88XYxJ40BKX+f/2SNnaVgvCVTyVt3B49Zb3vfcgzs/Nzi+i9kIpliP9J7gdc4A/Xewa5CABxYtGxtGWpjShDLW9yhFux/+oL9S8P9Hxq0Au2TLL4r6r2jfezTeaew4MWC2X41dteogroqZC/BQititml/qwkASE4WbA8Ke8cgGw5oPAAVY5txjyob2Xk+9g6iH7oMxLMX4LrYpfM7BwJYizmwbvY5Ap/lCuhRb2BcGsSZIwS7TSvoCIBZe+rbBA74+r2dGgEh7p3D240SbIl1fVtmyRmdwoEASMsgsK0e3KSglHXFvF+dwDgAa1u5DcjdRHJHXSy4kRL3utP/eKveArp7V6cEoPG9+fylg26O/DFzzn1mBph53aR17ft0aOu4r3MoaWOg5nOFwYX5ZgsEG1ST4/2iHCICFjr8wHMQx9KHwr0qZfy8zpnvOP/9kJFOQWUA2PzsxTuCibPbqobtC9+H45LB8sGMLe8z/Q446C3EODF4zcGc2zIB3NYZWxf3/aARJqGPk/xGCtnx+hyXDBTkd52BGL5P/7tWnT4B9ZkAB+fHc9AJHH0EIBgIktgUihSQ+ndEqfHhonIs1fNxZZnTISMc7xW2L5Q0HmSv2VmsnPOsc8TDNV+ivEUT0yE/T7aLEaAWiAwDaHOJN+/d96rQlBIvQfY9iczY8ulrf3cw/izSzIPzIt9TK5ZMAZJP6/PknEFX9TIxnZlyYM4rWKterDMeoR7CfHbXyjgDD5y/3QNbTZoQuSSWewb9svjeid6fmTdrAvrpP/F5z76pzPjo8N4yk40AJcsR8pHZBfnIAGFr0Jp0FlQNWFqSD9R7aPnEveY5RH9LFbFpZPBKSsSxBnTumM4vAkh4YlEUmd/L16cYuNAPe7F+0/G7ABQoxsde3SpO2fIJa1xvOi4WOCrvfB+Agw9xFEPVrUbF+x+fUTfS30Sga4euq2VQvf5ZPPgK58BiFRMMlGLmqKf7EnMmRrqP6DhHFeUEKJCWBrjv5WPQL9Y9oXz6BpM6Cth4mN4ABuy+aL/FnrvsCuzW/UAFkQ3rVwck1IeFVHwGmQxevaay7ANoBfs/XaBFUD8HxmJZ8boKQmTRdR7oXFEJNpyHdWaW4HXiWq0WdVws4O6XYoyDzQZCqz2QlTRYgLzfZscNY2PYPZQ+wBZp1CKg0CLHtqzdg1VB3d3p8XcJANEHGeb0jKu9h+WbdeogRVIvp6ApnqWEw8XOHzLMYIR4lsBAgaHQtwYocPl1YPl1R/lYTam3lciaRJs6n2dWNuFGvQjKakDGiHpRu37ZjEVT77t3ccBT0C2tAD0Zhvx7d+jY/1n9PemSAuanzdqNa6LtPYnf8e/eySF+n+tV/f60FTNcZ0rswamvRwGc/DsK/jTPcmQHvTiDwkGPAMT4HMtlgivUitBjbWVkNi+LGZfebT7SOWFZSabTe7mBLm2qYftzheNTK2LzZ2/h3iM4o4POwETP4zvOBtb2pKDPCRD1ddV/1hmgaaDrQuf7bCBzr2IGkvwONRQATBoos2wG2sY9Srp33jPZR7yOjsn4yOUeIhOkyfW+BE3450yBBKZAKoFnBoWpBOJIVZ33aSVHOufMmHRNrdWyVekazBIH88qD52jNVyT0bmy/4HgMq9utpskTd1LNACnFXl2nIRgjVbD9sGD9seLzH43tdv2rhujf8nHau/zejJlFnRiEnSvVQAPb4+33+/sEXcvj5FhUOVTKsL0wnx0KjKvdQ/voUY4XJWdVZsszvudYs7AShtoh/fROVSdNtcO0F0pBBFSXxXwFzhmx0j6y9QCYdgJGsNqipKaU6FpwuFe3q1FyyblM5p/X/MKBb9CfOQRherS5e3b0JwAAIABJREFUq8zA++H2cmmxB0c7Zw+qVGy+l9XZD9S/0QZ6xmT+7W9kPQrKqsaIU6CmEpi8RsiMszF1qnh+zjGTOrGH8yDo5wGOJlAt/p/3fR5i80e4Z9QKtj00W4rpJMe1UhCa1nwIeTIDyX3n3C6NBz/3ig5Me0xggYDCGHa/XnKbW3rCx092f14vjZOe5vSrAPcM4OYxe/r5aT3z51lE2N8DHFif4p+vn/FwLT7z+XfJTsf50xibf+K18onxMMHy03Nyz81rnteKWnYHx7wN4gShKQY9fD+dILKVMJ2yvzLXmN2HvVM5jxvHLmv3nIfakzCyncCVF9eMvw4FoM/7QM6ks3SKywYy2bb+LkKs/bHjIHKZ320eRwaDPFxUPhg6LE08Ay/pPqN8iok3+lLNx4+sy+wp5XOIj+u2H/R4DvfZze+Mp8jlZgQ26vSRn8AJJN/P52S0VlQ9aia532aX1rmvcG6S1amJ6Rk2uh/ncDH//lUS5sAAqPUIVjqgo6UCkpNM+ZlqPpk9D1uC55g2B/rsaMP5zuQRn/WVDkTWszrvq2SHAs4W+j6o8PsAFNQCJjPWNnGsNZdau8d9AFpnfeAwOj+6iVXpqMfNQonOF8twAY7s+KAuDeMff4Tcd5Q//wSUCrnNdkukP8lSUbDj8hPCAURyhABgJEcFXVG3fdaw+dIod7vPQbq/o/t122P9SbHs7LgI5IFAoXWx7L1WQVP7eVnNAetOjx/X6eySDjk2Czi7dwQom1oAX4H1D/a95ZdZhlDWgfaxWezijlFoMfiz1sfA9ed5LqszdSAIwHi/WB39fUynwRFFff8SgnzmUNO5hgfAQPvsM2sFhANVP4cBOQ4KyADaB5FZQBcJnQsA1gJSFeNqLIT95jX03R1oMVHG+kA489Ymzt7j+uOCvqgBDlpMNEzdudmNiiyPjrLu6G+Lt+W0a49LQb8V7F8X1EdH/dwxSsXwTCeGi2AO2Hn2MYOD3medGLPvTvuTdWBcmol33TeUjw3LL+4oXq3evzxmCcZoJkBWXdF93JZwYIl8R9aO8Zr3uNfb1RDwxwbpPVqeafUWYiLQ9yu0VqNju1PLIxwHL0966vHNemcxur9sO7CvKL89cGGt52CgrsC9Qy8L9MsNwGQuKAD5XCPTlYNzvV0w3qydavlY3XHvlkHZqRFhjjj6cIEwpwVuw1pB8rgswO1y7H88FPLXX+zv5ehMAjDwrHi2aigAMwK5PaW+32w8PKsaNNB0aBhVc26CivfqyGUDzMxUD7DooBA/CDrbCEMSGgW5beQ4AhdCFDsHF/k7/EzoJyiwrfMz7AvPko5agdLAVnE2nmYEhfXxB/poAm44Fq5d4Re0uZG1PeggOpBDUdvxtnh9+x7ivTE2fJbeIfeKJWetndoONQc65jtp8e6kDpmireI6BFYjP8AWjVJG2AAGX2fFb+r3AEB/a5Zo3WxvG7WgfWyovz6M1r4VLN+sRCwYBsPsxfZjCwZU+7AxffxYUTrw5T+5cK0CuzPGLs5yqvcd6x8u+Ol/qQ7QAm//VXD7SzGR3fsOFKAsNWxYv3im+wK0T2OaXX7aXWSLDrCVBfZrCe2G+mmfGc31cvj5dYN8Pkyk9PEwzQ46hGkJCAAd3Ww6kwNoqXSFZVwpwH9fHPD3UsZSML5e0N987Y5wKRz8KFGCJiXNzU4gDcfAV1y/JulExR439CkLRWG/yFZ65yLTmrEESf1MyYkqs3X0UgMsMQYfcP3rDhlA/dynCKO312WbXooABwBQHAQb+wH0jQBSZO4Lpz2LnxFV4OMRPsCBaeSACUoxMTYGgR7oRGhCoTPuUW0y5A4AljrwQaYf740gQVDs/d9Dp8iZfeGZftw7sPseyuCYe0Q6v+myZFTmBJ4EpdztVAYfDhodfZa25T3I99MIpHxfUe9qcgj0rxcQHI+sMGC2LoAvH4Oe5xDf+3IMKk5aI4d3HPuevc8oFfEywJhLTDAAEdRFqTJp3yONWXeG3mPzpEAKnBw40vdl7u19zCQg50QONnWOeWYrahVrR68wsdutz9KdPH9oP3arXZe9Q5bmpcMFskz2SbBRXol3MhHhPxeWNLm/FzXv6vvIacxtrNVai3c1Qd4TKPcUKJ7tINemP0+Ul5zKCuccbof4NvxTB48kt3MEjmzdF+yO2fYzMVVdz0uvqcUyAPncwLKSKJfx9ya8ZmaAAqk9sD63ns7AWAI7DiNc5fA5zWxKHrmUIJI1Dlaegu1Ier3QeAjfjveUu9GkQ8eAbJuBCdxLzsmeg/aCWlnXiTn93aPIEVDhNXRAtdlcoVjkuj09Yz5+F4BCiMUBc0F1n7RE4BbSmdyfrVNci7WhUorV5eaMnp+T7UyoUN/fFm/TWSDVEbj0cq0dnjmIBd7DVT3AVgag0+mTopAd8XMKHIrCjLg7+aSyhmCiH+qbrm1SOp3MMCL+weEBEabzqcVsFdtWxs/rLCUp7NawCHZmiqo5Ogd1eN5PNUNZdjfyHhM1MifErmdZT7+2GzIrY5K5eXpWOJwdPotnbdgehsrZkbF1pWLrrFAwGjMnBvrktl0cK3X2TghIVpm6CgORlWOdMLONJZ2nbBWl04M8TdYXSQzl63Gk0pTQAdldHBE+dQbniT0jNT/M0I0QIKKBEWZ4snEsArn3SZOrJQAR+VxDARgOXkUrVKeqU6ciDqLKYXv9/XU4dd8DNIp/xTiUEA/VVEJjJ3nhaJ7Rc67zfC/d6wB9zMJ53fuhhRkc4IjXQwORr1XS858dIS85YL9iij6peOQwdNbgF2c/PdEuZwZEqh7RYjq2ce3keB3epTsR93XuWd87slHN5SbjuAa+e4RhOxmxoQhV9KgzfmGITtki+1lae4c5VZ5+/3w+Gn2/7qtawkxRHBpO4aEt2fnZz3Mv/55/p04GXGU+7QNPBxkYn2uUrFjm1faTl99hvKx4Pi/nPG0ygR9M8MDmrZ1HihowzfW52HgMGGOrX4vpHXwkTZxNQycIiph+xq7z6/q0VCfFtG/TcRptMcZCnxl0UWAsx3OxRay4YjSEHRsKOtlcgqkR4a1rSW0fXoan1ZkXQFDsc31xOOq9A6MHmHBgucT76ibgJwJVcWB+OBAAiIq1JK8z0xbZVrcf4syysRjQLjjNKUybj5HG1O81d0Y4qLgD8XnJzmROhvj3lKJtOdPkz/rUvk7EgQHvQlLmuWTMtsnRRYuCk334vioJpMx7gD6DCef19ApMyPv77j5Xzs7n565zfBQyS7tEEFoKXhZw0Ecgc+FfsPfNQLzMbj2vAIBXR77n8vzZYI2koP7wmUPg7QAqz/W962Q2FwBVBy9DpLgcx7qfbAKft2DuM9nu5D08gQ8WoDHwcV9suEbA98Yo7tuAXWXdOO/j/L1MSUfaQ9N5lGAUy0FOIsHqjMh4hOy3v7rP7907A3/1zHdXREcjIJXP+Q9YRsG/wwFmiJXYHajn8rQ2wh8O2z1mrCECQMCWvgEowucKwRDgWZuKaz4/2pj72tN9nG2nKgCfBy/iEhCc5r6T5x1wnE/5et9LfKTxMQCRMYUnDX3vr1Vm1xmMA7DxdK1s789zOeu+5IN7ySvgJwYg7Vd/K0DnPb7yfc9M2ld269WRyg9M9+WYAJrnP91XZDeT//QdOZrDffG7WXdBp64VxEvR/sa5fheAAgGEcP4HIPs+f7akYHSpGJcKvC1gCz95bJCu6N5WrnysvsjmItel2R9HwUwhv6G8XQ1xzEquLnom6xaIqi5W42lsiansTcekPFyYzh2mskqIMrI9Vd1XjFvDdl1Qh0C7hDGtj45RnHrqIjgRdApMSFDVs4729/ZtiwwPaf4HNVzVaG9ZtgH92tAvxQSzulq7x/H/M/f+vpYsy5rQF5lVa63d3efce0cPgQZGYGGAhYMzfwQu1hggxkIICQsspHFBCAvp4SEh4YCFkBD4M0gDDgbOSCMh0Ai9p/fuPad777VWVWZgRHwRUbV3n3sHnFPSOd2991r1IyszMuKLL75we+CZFzNWClztOuvX/ZAlM6HEDFL10tFui9Hyd9OzGJ+vmQlxenEEpOrB/kfzwFHP/cvF0c+ssV1/2rG8Ch6/WzE7MK8N2BTLY1hN6LD2XSxjYAkEAGMmdGD/1Lx2V9GGKclaH2BA3jaoU1z7Y0L+sGNczOENtSwF5tKwfVnQHu48N2NYaBdj1OyAkOo7gXldsN8sc9e+7cCu0WpU1x4tu+TtYQKhbE/HuUjj05pnSzUpsUT7WQM8UxixM6h18bB+94CBDIDnZih7MXaNn6kgzXVNEbmykci2Q3ozsUcHHOT1AbaSPAjp7cMQ6fVobmQq8O3Nvn+7WIB/f4ZxI31NnxtkWhs82ov5+SU0To5zaCLaT3YJ0ElbM6FFCjq6MJT4dyxDjaxzJRBGzQhmQ5tAPOMhn19yYy2fAWAo7yzOFVs3Lh3wTjDyeKZDByT1cV1SyV4kxBNVFXq/p7jhPjLTHy9RIL1k48YwlJ1CQPuOymTAGJDLCrleUwiSjsKS7RDZWs0c8ZlsBm7KVKQPqqAkgu+ieVKyPWavJGv0Zk9QxTNyupuoHVtqKpXB1yXtx+MJeaSTJg4W6Iu36aw195cV2pq3Dp5o3x5HZ1Y1hDzPquHyes8SmGsH0C2rVYDlqLVfmjGY5gbWlI8fbQxYuy5vz8h6BmvL9wJhzevBlvP9LlFWtX9Zcf9dNzaBU/CXbwPbp4YpiihfGGplCluej/oq67eG7iwE2qL+GK790lwwsKO/DfzZ/76DIrqXn3b01z0YVvNq76g/snyjP6wdMvV7qNbdXh8+Tzv6q2ApDBp5jAQpgLIfz/i39O6ljyzfyVclq2VS2GbV6qC9JIB6BP0l2jQGsysAHsF4sS4ky9fNRBBXA210whMZE8vXJyioPD6v5hu400222/hysRbOKxMICCZme2xWGnNdgxFYmV4qgvllNYfb/Ypot1xttIP5oI32w75nn5lrMyB7LM7CKO35Hk+zsc44Y4bOEjfGiGLWj0LVdNAPQZ3bDQLXh9aGDMJ40KYCtl+8uR0sPzewdUKuF79esTMnIOHQtx0wu8HsY3fdGoIJLCWjlo2ypricj1o3tHFTPeNefubU7WAIVPZa+LHHeXu8yVNwBgQlWnfbj4Ke3FqCKctyDMr5nwNstl/4vkUNA9/34yBzVCT0OQ5AU+2swPOzo1H440iNgeGZ8tplg9oAvE8G77TTVQDX/wuBYe6Hfl2WbZAiL6SrNyZcej7XoWStHCUJYZ+1MekuABhAZqf2A4P+Ms5bEeEGAlSI99tdAN7/fhQlLYCa32uwFT1xo9OBcgfT+S5NVwBp5zheLmh9ACYIuvNRzwE3ypgXf8pAjQ80VQD3Tx1YduHHQznMSX/jncZHb0cbXuaEjXM3+0DglbfFLnmA+bilfehBL4v3WkEoyTUgbM9NYIE+l0ralUP5QPo7x0QHAT3/O78yNVk2Ubqp9nu+iFoOGza8jFsBWd+JYs7y2WVJn4njzb9z/ejwtXj2jfVoj0IbpgIezb/rvt5zs/8ua3bn+oXj1wEo8DjRTZix/zBj1i1vMKWhP3BAfVjnKOIGghsBx42o/dSCGLfcLCq6+hG66TRI4BjA2w/yezJdTKVLAlg+maNNJK83JzCd+jk8ILYUkJ1WkRs9DR3MeWkMos9I5XQQgPczLHvVn9Oy5FTvVglwBrDLsr738HxEkw2u8uf1IKsEgfPWgac40O0/d1qNGU7A2mkpWitjLPDMjP1JrYekE7oOhAMTtnjg9D973xUrteeGM1is3KNtyLaf+zyi8w3BaKBCej3URQMte9eg7HJhryJomlY3zHpC2NiKhohlBAc+xxP5tTmAEKdMI2PlEjPbPnGu8VQi5ggxI3ZAQvFegGvpWQd42vjD+DVEgJ4XKhuSMyNsA8bxqJnv2iLqvOGf11fdzAiskApYWEyy7UWvY2YGrzhbVt9qyPYhcxEOXIOOItxKR4fXPB2H+eAOUnRR+chO1LHsR4YHqZOHHsccm0LbPTvLAHID+yMCOdHHWEvQ+9F36tief/7RQVS/lTGPHsy+nvj++WynZ4+MIZ0O1hHWa3Ij5SYrp3mN8k7inMUZnadsC2BrPECieZzP52ePOZXPSs0YBobn6363zZYCka0XsSx6rAUXe+Wt8xwevNbMsGwz9g+yveYiGLdmpV7c10ibUiRrwXGeGDuF7QXDgNJqr2WfmNce14FaVwbawLbPnK+RbXLbN6xTT3NB2XMHnBhLVfN9dEQGJfaqbSKSAvVdkfo+yzjVd/VO90MtUBAqZxto3p58Bj28R1WU7KA9y6GVn0hKfQAJ+HFcG+L9RGs3OqGqyRATiZK2eu50qpOVEO9/IinHMUcQwRL32NByKEwGZUA3zacSbYc5H2U8ZW7E8zAgcAaE8J1XDRKONY+atWQQKDlvAYkkTrAYgtJs5U4hTNs9QxbgaDuUN3z3oD0iA0j1I+UB/6xkQPDReSsAQAaM7+3f9RN5D5WRdp6zTcyvol0jEFy/z/vj9yobgQffyylIjz339FkAtv8Js8SSTEsUu1qC51o6cB4XjQCJ2j8TSpZfve7hOf08CyyojrUkx+/UI+5HyyQtR33uGkzXcY+xPfk+/CyB4bJ2BDi+ixgfPV6ntveTci+8Z7/uARgs8QL9Fq3XOz8/wQtq9/wSE+AEDpCFcDhf+WwtabLHc4bceX7zPk7vJ57BwdePPhP2HMgNKXw8pF/O8Wd8cZ7z5f6zXecHc4frlnFTL++v3tO7eV197VbW5mnOnA+yCJRtRYutok84+ZnzNdoBLDj8zsdJWks9BvoFc343SRvHB2yfP+kgm652lvjO8asBFHRpVtPKDKoY/TBRMAZoZoSV3+mC/roB6uj+hGVfW4N262uv1zUdlceAYGQwfXXxGPa9rUDCVuoHPTA3RkTWo/V7ZvCj5t3RTrYBo9YBAMv6iClmaxNX47f7bs8d17/awG4SdD7ZXnKuLdprZUZ6oN075ovV1w+WM3xDLGxuWOvPG9afjQ1BRFq71eC3baC9PjGvK+Ztwbi6+KPbbfG2mDJd16FnqYIJltkmMm8dj9+upovw6EZz5WeGon99eh2xRKvQce1WEuAaAywrUQH6Po098LKaLbhPtC7WdnNPVgR6g+iE7n4eZBZOxLI0cxXI14nl583aMrKHrX9oXhbsX1YTKVsFlz/sdv8K6CLYfuiFjoYsJxCUFppmSFoJnNefnuZQnahUwgwng1hmTeY0RNCdNb12zNuK/vUBeT6z7RIP1nY7+2YuKfQm6tf4+ojn1JcL5g8vPqcBef2KaPG0dMzralm9faJ9vZsj9/klEf7zJrTtwFOj3jHLJBYH9JjpgQEBJ0Q7zkEQgSj71er3GtvYlF7R8vU1KaQMFnozJoSj/7rtEC0sBgoCOa1Ww2ktRv3uHTeoqL2PBOnOzsr1YteYMzOcdeNYOuanm43Hc0uRJ24o+25U4Kt3nZj+DnqHvN2tLeRSOotwc9h36KMIGXIusDWXKKBF/8BrJpmps/s0gSsFrC5uDBdNdWR76ntF/XJQeDGBRK8zXpZEynlMr+mLL/tgOetCANOwUYV+ezWHi5kBVetaMSbw+SXfI7MHuwUZcrl4lpZMjJHjzWDKndb5ozFL2u+/HWnDHCvOZyBbhV0vQbtvP70a9e92jYDwEAzOCaqAM0tAnRk4iKeXxZT5tx2Q25GeKvByho7+ulvbR7f5Mkxxe/vxYvozT8VcgPvvOl7+ElieVi8v04CGPrw9o9vUCHL9WL4NQIDnb20Oitr+0J4T+806C3QxtsHlL75hvqzYfrwaON6bZ7vdL+zibRUn1t8/rSXl0uL+1bsgzE/eZaOwELLtoDuyj80cyXXxtWxt/qQ3qJquhvg8PARsx0maQBcQAXd7fWZrMp+7kWgcADC8RK+ZkvpU28P5bpp37/FyQ2PRIXyA8eLMDi8b6c8Z49/upgllAECLPZ174bz2WDtCv8O1dmoZ1rz0aOt4aAfdjeVY2x0TyBq3bsmHJsagibUrGF9MfLndh/k4BKA5J3uCI7osMd9NZyHrzkNwzW1a1Glvu3fCOa5RZgdlUjMoSzcwXduCa5gMqtYg3moXgAWu9fB9IRgJIjAhNa6vY9AR/wr9CP+zgt/7iPuwMSgA50eBK5DB5f7B7/j51qw81v1O2XbXAXH9Dp1HMFo1NYMKY+CsIcMSXwCeFEhfh20WOQcN7BKzVSc6c4Dm25bMsJp4I5hArQVXqZf7w2zbZQ1mEEqwSl8j9sKpkHsZR/5ZNCbEbc7BR+f6n2X+0f9gnT7HljbYAbiwO/xZFxPIi33A91Dur/W5TyXS8f0qOM3XTGYR7d2U3Jsq2MN3C/d/FwBiWg01UaTic78B2BOYOwBbHEP6VQvinQtg++apVOFwTwF2uXFvzTrnBWN7iXuIEowK0BM8c/8vWx4j5rnOFv4DRN4L1LJjEuc52TalBI3vkfcTIB+fY4xge+pwZqUW3zk0S8paVxc/VMWhvIDMAWolVObAIdlUvrPv1nadfh/nTcxtByhcvJfsKKEgpM+10CYhQ7N0VZPn5mzVYRs/13C9P97ad0pW7Vnx/YMJLPqI3zl+HYACB+YjtJe/48T2lmrW/cDql6K9Sv0OUenFOgqQLigF1YxMvxvlqGP0oDD71ds1ZdVsh0g03Z0Mu09H85xGT/At1L1d5LA/XGSQCqlAOKNtm1YKsTADpbl+mPHxxS0qqCl5UUV7qoswmrDkXJrVgKqxMlAN7pIbYogwNjtPfwzI3nKSlXU8u0TJgQwrHyAzRHZnQHiAPdnXl0eDaQnMCUxD4kIltq5pEWBtmEMPIHfb2EJHXBND4tlZd0ohLbIplG2znhqUMr12YJQsjWT5iQw17YMzSDiANifaY0b7LTPw/o6bABcfh+cE2RtxEA3vYgCZZ87qRh0OGduHupBcay03pjMdgGM4YfTFop1BFXhSPC0Q0wSkXIRMiZzSwZg5L2Qg5wn7GVcKZAh+lLE8ZHXL74k6nwP2gj4H4PCQ3Jx47qlgbXIYaMAdUwMU5Lmns7rpQd1XiR/0Zg7kaCa8xY0tBAln/PuQBa9INgWA6AjPdrRf6tTtqenQ+YYgtX6vrMF4FiLk1RHm8wMJJnxU11e6MZgsRDtuAk0g6+0oODTVgICPNgsXUwzc5UzJA9Ix+B7ltN5bgDLNHLYGEx0KwLiIoLGEAjAnqMlRSVtcqK06eyjjVQEgIB1FLdTJ7u1Fx0x18jGP7/pEXT447PD9aeS1aL/F74GZMF3dzg23Q3TQmjhDzO/JGVzBTFu7AewOYBpDy2xa2mhbG8vbRNstsGxDMVxAt9F3rsLCQ30fsv3FGHI2hv3h7QmbPc+8LZhrR5SBlfUvxV6S+t/26UQ6jeuiUG7Frx097us08YxTaFisGUDSlunTyg5ChRswG7quRYSvOLFjmigryr0TIJ7iFFUviWsTs4A8Qmaev1uKH8e+5+AvxNgnWucO4PJLgvGyhuZNMBV7gy6a/oK/F2ZK9bKYDkQBguZt8bEr+grweeF72bw0uxd+z0tItRWWhY9Be5i/QJbigR7OfYfjOc0WyFMP76juoTEf/eeH9flRRrXsPzYfOzDE9aTMT5LeUzAsvud7G98p2Yof2Ki4f/qKrNc/237eZ4jEEmDQ8C3fZULPddf0Les16vk9cGVQF8FYZQY0oO71oS0QgQ0Qi+68D7h/9YudkmIc8O5dJUuq2dyDB/PFNhrAyndfMrfnceBz1cAZiNLiQ8BWff/YW1sGUNWenwEafq2KXvI84zSHL+7vL/rutuPwd3AQ7uTPgVIeJLFW4TGJPV+ygytbjiCgzHKPMTfLHO39uA4P7xueFEF2xDrveadnoaCw/VOODL16D0Cx7Wa3c+4ZM0JvS8xx6t1VbaNDecs5rpNS/lLu7fAeCPCqAts87L+H9xvjVcaIYALLdupnPzrO60IV0Q3rewf9s+8ddfyZ3Q+Qxcdl99KUgaMvR5+XiaDz+f5pDiaV4O/8nJwC3M9sCP0Qf653TIlYw99/7l8HoADYgDFYL0YjaH/7hOiEPF1tv5eygZ4Tku1B1F/evBjqr5vR1GXMFIEcZizUxeX4fdZmM3ssr3ebr2QfUCXewYQQdQqOqQRVW4sR1G4bdn/dvTZTM5vrNertae0esUkIQ3FWkaJp91oMERAO5vpqrWTa22bZ/0+mGC2P6UwIU7TXLsms8HHUizlhMtQyY0C2P/NWlSrAvDRsn1yL4akH9ej22LF+zdf6/GHFvFjbyf6cXhfPQM+cUBP+kcNmog2YS/cMSz5jfwzoJth+WMxeOY1TxrS9t8HYJwrPujeMqzEo1q/mMJtD6AH7ngZ6OgLaH+lUowuwu+Hcjcq7/uEeaGpFj7U3tItRafvbFmAW3xNp+vPiiOW0dqZ67aZFMJO6r6zD/v3PjuZOy3Lv48hOAHLj2gfk4rWGnkGTbbry/BLaCdbdgIyemRluzRIj66gCyJZOni7N6YnqgJkEAFXbFwXyzXdKlBzIDefmAcKDDrXrd+wDGMYMkueWzijRe4JPzHzAnbHnBlwkxVZ9rKCWYdCWaHi8s6VBtuYbYTuCF/cHjIp+zMbkBNWigZCsCnl7ZLYfsG4RrEtdF+hlBcRbP96f6VSSFbGPUJO2jA4z22UjIJjQHSg4tzGqn3EmwmHjbR365VMqIm+7Cd35WpPLJc/lAQ97m6eq8nwPbqgrfZda5cPRfC155srol3Zdpe7Gegmmg94uoSchu+t+MCDheJ06Y4TKNuc0mUGci0NNYJHnWVbMH25ge7zQenE9gei+wg4qNdvt+5MMZ4w5yKad2eMGNA84ty3XxCz7x7qYje+S3XHccTd7rbGPsc4enn3uz9SYYamBNsH6k9e5ekve/XM3INZZXaZqXt4fpgnIPib616cxnbrB6uwtAAAgAElEQVR1jwCA528upifzwxUhokjxYxF7xlrWwGzhNtAd2GapQVUJBxDCrgayIPdw7xAjrqmiL9cIuoLe2prNtzIXZV2B29XmjkiyWR5Pt10jMj01SymqmM1a39qz7Mak84CcAMC4LdZC86WhPRXLNkOLIVtKrgb2l8OywcYSELXORdkyE5jiwOXU1MQBoGvH/psrSAVmYmR8WjBuLX0PB4mX+8CEddqAWBLExjT3ukN7OLf3/ae7/c5ZJZVV2R/DQFcuY/pFb48sKSXACxxsZZQ3cP0xEOVaoFaBl5yGL+brJHyypZvdcF2V0OkBEH3UGcA4APrhseReZ/ZhOEje8j6Y0WS7x3iJ6nXEsMkqBggGQM3PPH2/ZtbeQQ7aa4nnLXOENdgeOMmypHAkn2XfozwhbBqvQ1CV4zw1O2VwrOt8rIENs/QEn1t+nm07yYBQ+jGVvQs4mHMCVepRyxUrKwyI7kbBXInEh/kmwXAoz3Y4JN99dCtobnPoNwzbV7lXZ4mQB8T7+/ly+D7nNAHgCiL4PVS2EJqzHyhYTRYF5wFQgKoZgXLEA961hR28hPsRYPuLWLKw+b8FFghzbBn/1PHRbudrrUH7THtMu+oJCN6bklXCbiJirFG9rti/rOZb+r4pPgeUz1X9parJIXJ4R2bPyx7AVxpAzMxS7ApMtgJ68T34Xh3+Ag/6iWdAi3NGS2kp51ew54ovG4kl22+UZTo8KmBxSswotaBaaf/rTAQ9gwm83rLknDnrT3wEGn1w1DaRChyYXfH7oRD5AHjo3Vjf/BzgfssHSSc/fh2AgtomqtfVJt6jZP5ua4ik6EAaBa/5swC325wikv7cIL1jrlfrHKAwAS3PiJiDtnj7vxLEXrtlJdQm37yuFuh5i5gIwIDMlNZjOgWfGWLArr1Nzxj0QIPbY0d7yjErgQQnDNEcWFx8a64N0CVrZKcZEy7o9tyhowWIoZclAAzxkgkLFrsHboL5o1FP+9sWaGMIebQWrIrIOnSE47rcFeNqpQFtMyHD5Q9v9izL9LKIBEPCEaU6/2IOUH/bMHUxpXxYrMjMPx7TmBZuoGp5Q/c+6PPS/H21oPO2JkH1BLxNI3DI5ARQ1TQMGdtstWEaE6S1imfg1q97qp4/d3N2mdG8rjYf1N7h/uXiTl5mohoDy4uLIRLYWXtQhzn+Udt3WT1jaYGRXorjxqEt9Xjy2LCUzfzgxJNOx0CS32Gm1jf2cVvMiXzzdo1uhFhuE+euQAKBCZFouahSjHrZIMKJae0dOBKlIa3lRk4qtAeX+ngaSObZfp5f9mGlLJuVe+hlPW4m65ICe/tAq44CA0UGMgUECYeFpQG+Pg7XphBRbKLeSYB01suaDiAA2TQYDrYZ+8ZGUUvfcN5R6iqYQHEemwSRqU3BRHfyqpjTVEA8UBvDMmUrrKa/bpjAx6CAn1dZTsRrVfEi3p+ezkemy2UtG7XbiNWfcd8RqubdO2sEW4TzvtzXR5oXIjFv5XbJbAUd2GCvebbmvpevOsB87dDZomztECzRYblvdo90btYlMkcYiqYplhpCdkszTRKZ3r7Q6OsmxmtMuvYc0EUx0cMJIoNMHgPYhjGo3K6YgyYHOwbA2lYOtRaRkSnyAO3Eout3K+2atyUz5w5az7VBu91DG85e22bag5IAmEuzYFpcLPax29wCCojQfUz91b1tAejUIEPo1PJw+yHsGDDLPL26UClFNblmV8/u0yGaGhpuIGPCM5fn7jdkWal4ORkTF8hWmAHMzCzVTHFGA3oISAiQLLiSrSQJUfbiuHeEryBcayOTGe0xUHU5bK/PvQwA9pvZiuV1enY954c2SWC7tK+TMS3jWY7wqxgTtgZZcKSUAzGONZg4lLfR/jA4XHAILA2MXQ/sjAiJRw1IzGalffaJNIstkCXEXOHAU6Xc58M1D/h97EsmnZpEB4HWGnicwRGuAwZ4HowBerDXh+9XgcSGWJB6tp3ioCPBhNCH6AHGHO8x78XmGQ5BiemX6FHDiUcN7GSG+n5oaIzFp95etA96KdPMExyYBbRlBFRok/lz+hnb7h2Vyo3Q365ggosZvhP8888LxuF3cS/uTwbopxaIKrL0iUCpzsoyc3D0zBBp/vtpP5PprK/NgeOqNYOyJviz3g4ihhXwi+4KZU1Qe6ZRc6gLoDa/VNKG1GvynQfbsrqQ9d17IknXJcXwRY7vQtXsnurRZtbzca3rcW6ZTW1WzlqvyXuiuZCiCUL/r4DA8d4opgkEEBB2gu97Tm/PXIL1uFX6RJr/rmDkd1o5ojcIw+cz84EBOe8JKImYkqx0+yKLxu8CICRbh2sHSFCKdudUevTuaK6N0loptzl+7kONLn6udAT77udOx68GUGB21YK1LY0MJ54v8Pg56wc7M/mwevvh9Tk00HOi3S3gNsPi/Zq7QIc70RPhDOlqhgATgDuVLHV4h2JOOmh+i2N6b2dHVbmAdytPqLVVrIuMBasago2k7okrguOLtfHCFEiXrKX1nl/ymBAdUZspjcwGSfHB4YanA/K2x/O2fRqbQcQp4P5KGoAmwZAIB8id1LapqYmvQH+xxbIOtfvZHQWuYBgdH1I8iZBurmS/GvOCWgwHQTUq7g6159cJfRodd1wYMMI6YQhsnETQfPz76+5Ol4MjJzXZA71qAmzryCy/Cgz8eOygOjC2HXi7Q+bFjW8HtKWzdusmTLYNA1YICoQTLFBJZoOKAQ4pK6nOlsm+21Fz6PfKeVONt9Vlj7L556Ya4znGUT9it3egrp4+Lx7YqLEpsDQrIxhqQTXgGcRiwIEIrA4bcM0cTc2sxj7M+lxKxojoOrP9pJGruS+6dAv09x3qwjdBjYev9eeepQi+ITLo0cviFLrNugfsw4Ob3NB1PdW78W00UqOnd2xopijPewcS3VevwWszhTIJVPD5xzRtALix7skyyb7lDgjoxDuBRmlFnGfPVj5e+nHoS3w+xoQ+nuX3p+zPGGmH6lF/RpBqWeL+Dp+rpQr1/fZm2Tf+O67RbQBrn+PnlgJwQGbleD6WtRQtDX4uSn9ggIHcH7kZTzonDigUJoyqjQNbV0XG5+Lvb5+pNr3tJup5vRwc7sh6edAd6771aAPLjX5eLOM9vaOCqpqitiqkSTAQKLRHh0Q4R6ixclmOAaOYLRQF2p1BT32XsHJB30/6fbf9z+2pijjwAcxVAlCQNwOo28ZA1BXKmwNXTcy/WTv6fY+SLSADiajddpBenkVzg3Pmunib3QJMAQGI8RARq1FdV2MlMOPNLKK4UxVgRPluZUt4UAC3qyGe7OM4Lwmsy1C0txGZwzj2GcxvtmtU3/faNKB6zmO2TJtRpIVEtlI2Q++abaft9yNFQemHNi9vONBY7b3NLugPoGK7texP3maw5cw27dDRD7YmggYGZmu3dm4VDD7Rp8/tI8/CtZHFnbR5A8CI/czAYBwylXSwhfa6zgFVYz8Bdt5lAdYCKI/h9OJxCLQP8yraOs60NQ4EBBNknp9pxnzL//z7qABHy7LcGE93Hhk42MNEsH0oDwMSIKGfWIGIE1AR56pswR1532wFySDl9H7qIUvHXLMbiW493xvvYenQTzeQjRfaGbyHmjH2/ZAsB3YnCDr+PD53PNfQ43MCgCcP+PkA9UUOIFloNtTD/T3uxzaP5HjdqpQ/54djdBDnnSOA2GA71fdxfj/1PyD9kMqq88C9FoWFL+Ln0S4QdGAr7SKbG5963e+952KPLMmwREc96miIwmy+6iGxlGPJ9YcE7/x3B5FPgjIEEDh/VY9Axyjn9tJ2sv+CQViSQuFbVX+hNyudklOp5OHep713IJ+h2lJOm/B9/CZrOcrp4L6lzlgPe1oBTbKB+IyqwNO6K4TfQ7/GQQGlLy9irLHDPJn5Z3zPy17jMm6ffwEgiM/M737ku8evA1Bg7btTUWtWQhwkAJALodnEH9eG8dJM2JDtlroAt6s5rqV2hzoL8tx9MVzs5y9O7x2shcws7LyaMI68esB97Zlx8nts9x3oEtR2Mhn6PrH95grtgtXpkrMLpNki7ffd2lWRCVARLTrajjy2x8CiSOfFHRsVF0Z8btDbWlgRCisloAM8QxRLW4q7dM/cz5e1bHKI5wiKbReMNRdP3ybkdQd0hS7ifc+B/bcvIGrYNnO49s+Wfet3BBDS7jv6H75F5q5tu23azkY5qGwzqHQAaV46mAXCpmhidUi6NCz3ERkjClolKFI2m6HoblyqzgWmiSlqd7ZDARPaNiyTRuNFoTCnSyqzST5XCYzIPk27AgDFP6fTSSl+1VzYM8QQqwpvFVsaE9i3MNBBgasZOc+uazeKv7zeC31LPAD0dXG9mGPnoIXcH+jPzVqaeSvVtq+He4i2fCviPiJQ8Hk1f3ix9cTA3tkLk2IzDLAokujOLOmCUZvpxld//JwB5NItgNs2K414PBHtGMVLDviszy1bMwF5P+uaiLdnNCODybGpLcymlw1UyqK0vHYFfXyMBXuuZ8wQztFty17r/nt9PBHqvTyaAG2JOdxaSzBjWYy6NqcLNBrbwIC5BbheY8OwDWiE86v+/iJrHAugQShw9HweN9SzAyJirftUY27JsviGNw7O+Ycbl4hR05sEKKDwTMDFz8V2cQxIW7MMGJBCYf5uKKBUs3/9D9+OVNnrBbq6beA5SV/txugKemnsBerBLpACBA48rMsx0+TzwwLKdJpkqFOpbb5Zttf3CTVbuHoGhvuVUgAQiJIzUKvGg91WBMZmbxifFrSnrSPuRf1tD0+CrQcplKgEl0c6e+25Q169DeTaHYQHbn/5hC6C/WaBhK4Ng4D5sHFo9w0YHpcvbj9vCyZejgEPpwAz3iLBTMRMzIOCaCE45u8doeY9M8tJwPKxAcuMWt6DOFpdWwxegm2Y85LAiF5N3HZ8WjC7WCnhg3ZXj0CCf3f8cAWaYP+UAB0ZfWS9SXNfZDewYa7NY0pjqEwggIIoa2QpqLcArvs8y76Wb1uxnxP9CfRnub8GjEszVgWDFgH0s/k/2j7Zx7gnvSUQFLaYNtKf9wAICuf3SFt4CL7LeFEfw7WDQnSx7jNjWEDBkhXaicIQrTorlrUtJQZjQnrecwCYXtbJsiK5Xt4FePribW4LSGJaNKx9r/Po1J7RSw0wRlLdef5qR1lTTWCQgZCDBtHhgnbNg/YILs7nZEDNMVw0PxeJGTtnlHsyoP5ITO/E+BI17SphAOilLuIMDl16apktON433zmDzBLwHuvh/VHWHsKB8R6ApMrzXQGRlY/xY3A1Z+nYlHst20IGoEXfiODyOVAuYxDthGsnin1mEsXHVAdM+J1gAvcZjnEBOvjuhM/Hf3v7b3vuBn1hqQUsblBnWNDnZFlBjJW/W2rD8T3SdjFxW79zKh+0klyWJiITNkD656rJ2CsAR/xZbTAQpbLC5FkdS87HxWIi20xMsyFATd9bmqr5LlpYnbwmGTBxzpLIqSAbLLBWdpsCUjz6NP/PGlT87uEzlTkEuC0opY5jHMqTYq3Sbx8z2E0HQNP9qdB2UL/ns24UOxb6tRNGwGFdAEh2LTtNxPfSTiuBzXomLTSSD45fB6DA90L0+FyLp6eBKX+vQWL8jNTTejRYxsOpzMLazqK90PZplE1SZlhjxgDXF3S02OHGpy0Uk23iGDABwLLmnukg/dGoo816rwMp7AhE9iCexY1A2/Klp4Goz9cS2QYyoCYA4mMkZTIchKHg2TDMw3wRB7wOFJ5hWg/L3coaOD7j5p0cHBRhIK0NiG4Rw2lgpI+7MUUfEVRFay5S05hdEI6XO8LMGvtACIUSy3xRIChlRj3Vo4BYNeIFLa+twILaXxHOMY8ZWB86O095l0AG/qybLNfEhBl3ahTMnFvJsimvmgaUGxMdDZ8vdL6iFu+5mRGi44XTQQPImkXSCDmGQfEv87scwUBgVjCesVCYuaa9jlha80y0OlvC75nqtbpn5mQxpBxDU9gwHJViH6IeMeskK50yb1iP2R1/16o+zh4QB8PoJJZFJgcAEyqqtqrSV+v1JuxeWf+7rkcH24UXdUlznEJhdCaNOWFt09JxYq9kHcNqh8UYAO8ooKFK7PaAtXC1jjdQbWM+/eJB5JuOI7MhNRN6HoszYNJ70p3pcPXu73yBjGcKmtWs1Xl8nZZ4qPN7WjkChmvGLA0Qb7NVvs+SI+uQ060F8RyRkcmWrkBm4dNp/vCQrLE1BoBfK/aGAlShBFT8DnVXpoLMrmAqAJlNL2MZZWmKsBmNnYwEwZ6TtR+0Zlm3TyBY7psHNBLgeX/bDGAgPV/EPQe/sSbA65ZBrwhw9fK2NR3waCvJMomhAMWJd9hNl8As3nk4TEvucbF+e/6eJT9ciwS8es/So9jHC/vh3K879IVc+Nn1gxpVyN2JD/t8mEtF10D9HbptiTHnM9GJ9a2G7L1YE0HNng5qeoveU8mbBSAmHD18XcqA604B4+qle03D/0CZnyopMqnPiSaS4LnPU4LHAJzKn+visDfw2RgslW4t8ZmYt37NKIHo5b35GBBcpoDsibIbjjfnwhiADrd38xhMxguQ43c5jBwXB4gVQO0UUz9HlhNcnyeElsVEtUXNRpjYWRmLc8AWwMsMYKSOTbDl6twlqPERUHG2j3HTxXckILUlI+RsT96dQ9UArtLK2u4Fto/UOen7vR5rJ1Ap7e/utzIpwo9oh3kXrbTj/ZX7rDaBbMwxs5ygjlNDBoVnIKLOsXNQybVHW+2Pznbw0UkONgUD3KIN9PVy6IbA+1INoMrKzRx4UQ0QMa4BjuORZVI7eQTA1MuzxXs8sZLOZUDh6yP8a6ENI8jjLOoEP+Zx3OQ05nV+lVhEK1MorucfExt3ETE/wBlfIY4rpSzie3vxR78/jdHhPRM8sYfMP0+MqMN56vos3Rcsy/rBWqz3Eb4T97iyDoqdzjFS/zeRvV84vtciPO6vHZ/3fBSGybuffef4lQAK/iJoPAtDQSuCVY7+zRSel7eO/m0zDYHqkHlWRF0cq71ukDnS2FRH2O+B9Hu9LbbJuwiSPL0eWvNliwvHoVtw0H56Qm8rxueLtZraBta/umOloBOAtg2Mm7UmHNeOsTbb/NXLGxQHQUjTHPBXRJqiICbFvJojjN/eogNEc+Xl2tpSu7UTlMcwhxGwgMADWABOm+yQzTYxZsnn1TMgX7f4XHsOy/K/7rYWloZ57bj/bkV3TYq2eXA6YLWdACjAKLtTrtUDzm0DWjeRu94hl9UQ75dLbEBkqshmjAkGAXNtrsVgzuRwFsmx9tg2+/bIyHy8LFZ2dh9xTwb4sINIi+St+lhZkDNCKExeXqA/frYMm9e2iq5Wy//6NPGaH65+Eg1RzfasjAHJjgzbwHwxzYT+7VkWvxtEz6oogYNijIW0UQ86M9Cd4WyFMBY38Dmd3WLid/qbL7nACp1Mtt3bGTaM3/1g7/e5B23NxId2zC9XaxP308OFtKzrgl597o3CInpxjYm3Rzo7fOcApO2x0UXWgA7onJDr1dY3xdfoePDvRYAJYOBUwAHaYmbAGIx69vqAHnt5glwuwTKRqcZQAAwcqYZWU3n+IKC1eF2vfwZsh8i+xb7GIxAvdDZ9ewOkQW43AxDu95MT2AxUcHsWbAb+m44DwZAxDZ+T79cByprMpRSJtJIMLUAAAOjbvThdYs/j2Ta9PxDiZmegqgIjvA+uMdWk+QIJeJEFEUFKln/UdxBBzW6/a2TrcFy3HViveP7uZoEu9wUF5G3L63BIAMsWEZzgmDqwNC8L5ovZ9/6WrDk0y54bwAYvh8gOG/rpmoAAEKVr82VBewy0t90CVZZsScP8YvRieQzIY2D9/cPsyj6hL6vZLma0r8ZKwG3FuHWMS8P6ulvpwiN1HhgsU+vGQDa7r7ZPLK976DUoBAd00ss1AATjbl67AQoNiO4CqmiP0iqRNonXDwDPwRACg/uAqO9dTkEX1mwTuAS8ZWlx8C4rorxl6WaznB2Smf8RNkOvK+bnq707b+vLMrm5dnR2QRArGZhrj7aYHYDuDaFt4KBMvM/VRdcU3mpZQwvI1OQzcCJoQV8APvdijqi939j3neW2bAPjkwm/UlvBcB+NvdTauJnPoc3KLdhiud9tPszrGuxA7huxEqomiUiArwAyUUA7R6qu7/FoGRRFeZC3mIwA4SMgmM/dfZ6NAUhPAMDXJ7bt2PXj7ADTlrDFWvUtr+speJ/xDg38K6VxV9sL5ssaQX57DhObdt2O8DVr9rQGMx58QhS6HW1NjF31hxnEBguk2MAqyAiE7pf2njpK/D673NyTcRksi2DIIgN7uP/FCeTBY2S2WR5GML814EYgx2+9MlamGjAbfkiZ75xlS4Mut5h3VnLJ5ISEcKe25mWONVByoOPqNbfn7hETGZz6cQhO+Y69EwRFW4Nev88ASrXlu1GKAk6k5kA3plaM0T6TdVUZbg3HMh4v09CLddbRizGVo7ViGc+YDwQR3mXXE1SQR9F18LV71vWglpf0Fu115bEfQf1m4J2VoI5j2aG0tAvnORv3a+25Zc+2mFHGwNiM9wSAGjsNgE4Nn5yAXmV3HgCkwsA7lLwUACQ0QAjYiCc3+Cy1ZEHE2JPVbhTQpLZzxBTIXuYe9X2q3sn5HYVgsN+Pj22KvE7b39rpu/4cqv4uZoosRgIJiPMHm8H/i8+2hkjuDI8nim9GYcnvHb8OQOF0HJC4d7/MjVH2aZkUTkLA1KdZuz/UEFWu+TNKpoqoMXJDZi2fOoDUKjigu37E30SOLAAgHCjSn2IRkvJfMkfsXU3Wgz2H5PUcCQzKmdtc7YCpg9p5mjRTS3dVd9GTserNRGoAkH57GItoJSGZtXQ2grWhTEFE0kkze6hFgApWz6lqC2oqhH9yzKtQU9zDhO7+jqoSaYOJ5dT3F4tdcsOvtaei6fCKIFSuVQ+OsJTxLN1E7byLPxdvVWBtu5TBoTmo8/MV42XF8vPj+Dw1g9BsxuiUAAPq9Ziheoei0gBzzE6Zg+g1zmC5ZHH0lAp4Z6A/aDobQc08/ta6gHjnlMWAiMjO1VpRnjk2Hmsxqf7ua1bPlIqnO5gSYAnHVoGkLBZ6ewKB7miFQNK0V4OWaxsITQvldeyJYixknOr/ST+fZa5x/CqVrr6jGKjv2Kxzlim+38w+NQdR+Py8Rgm2PLrL74/37zfbgJXfVcZT2ajfZddZplDR6wC04ME03meYmKlwsOJdiUNsarnItPwsaXs8cTe7Arwfs3iuMj7nI8bHgQNnHR0AjPpZSeZStMZVPTrAtMPw5+/H70OSXQCgsBrcOenIbHME74VJtc/DfZmA2jm4cEfasSez2A3oDuzU4MLtMtshkokGKGS02H9oG2vwamC5Hs9X1hLg+1XT0GAIGj4Vv30/YAace9xh3KvTO5Hz6iDmeVpbE4fvRbcHBhMfOTrVEZSyt50PLe/Mr2UOrCUT5qWHg2r3Wd55ddgJlDQx7RkfSxM4Fr9XvyQk92n3E1IzoAQ5v3AcmCv+HDKTbamnz7K9MQU685d+Gy9e5rm5TgMGsiwq96R3YwfEPqQMlIH4d9qWfvws2nFufPRODg9cbC7p9r4vyjjZ14/scdibX7Ad9bM8x/l3rdS5ixz9B37eA1uptoN7OEGTyrg533OxvxGgAVlKcW7XXL9Dn67BAcCTv3f2WYH3Nofz8XwN/rruk/w+O7/EeH3w/t6xHdNuvben7r/VPbH64ef7IlPuPA8+2JcEcow1TueKThB+b1LOQ3/8eG2U7PbR3p1jmqr78G58AOgHpizu8WCn5mG/r+KO1V/k9eU8n0WOviJ9IjLi+bPSIttY3fQ7FaztD7/sNG/tO6XEQ2zeKKYldLTbOilM6mDCVEBqzNgrY+a05h0uPtDH4F8r27SOM/3Xuv4ODLhSVsBna+19aQj99Hme+zj8/VCCebpHxjIx6p6Y0TmNDcV1du6wUNb7WceKDFKCunmpeu/z45//fzx+HYCCaqJ/vhHDW8iJtjKJka3a1sUQwSp6EqCCTUDZBnR2C2jYoaE1p2kVJ5UTglm36wpgRq2SBTkN87ZEKYFuxXnmO55w561BX0p3hA3uiIrpB3x7WCbEM+wmfOW9lieg1Azw4J4CUG0bmWW4LebkAE5r7NCbix+7oF60w1lXjE/e5mVOzM9XK+1gYOuLQZ4DczXUvb9trmKd9FRpCJE7Cw4XoFmLStkGLr83TYv731hw+Umwjs3YAw9rGdmeJ5GaZUFkY5VZ3Yb56WaZi31i3haMl9WcG6+bZWcPXRvmahtIvyPqn2hUOabtkSwEOHWsP+y52sPqhNVrWU2h1/Q5lm/Dnx+2uC8LdHGUdDXWx9d/8ROeXxp+84+B/pr1ZXo1mn60YWtpMLRbhru/bt6OsVumsOgphJPGFl37SLHCyBBpBnMUbKEwy67292UJI6SqwP1u4z6atVdjOy4gM35FxJGZvfHjzbIwb7sZd9KYqTwNRDeRqOfbB/AA+rdc6rJ0QBv0agJ4cr2EISStT68rcF1TSJU1egQYlgX6cjUV/zCi5vCzBCCyxwCoOq+u+C9kFsS6PzlkVD0niCACrGuixtRpqJvNthszJILMlucDoKTgU++hOb1VLiZmBbzvGa4K3B+JEAMHdkAczNCRxbRtCIbAJGLNjElPtgCA2m85Mnv+XLoNu8/LmvV/fo74fvfyiOb94NclMpEoXSeU76YVkbx6zbgfm7e678bGcDFLzML6uF3Tfu8CgpGY037Hg47OGMbE+XQDlkuMs16sy8pyH5HJaBTLdUclPtu9peDjWWjO9h876uja0Z4D/esjx9TLLSZsLcu3u6+LZzgBsu2QpZsQ3eJZfdh6UnHG3MVp67ut+fZwW3NhJto1MKYegkwZA+3+DBvSbxdvRfiCeWlozwY8p2WWHcyT547+zC4nkUEKZ1fhXRFh/mUAACAASURBVPOwf16iI0HbBtrPltVvbxvG5wvG5zXmZthSf8+15abZwaz3jew474trsZUs8W1Nh7OqeCOfP4DYGpzSwacIpj1UtHquWUDZ/H7ePJhTozCPKxXpp+3hazMbvk90r6tO8V/BeFlMQLiA1OJK/NEukvvxtOuMF7tG4zhtw+9zpvCzsypZF2/3ZO068eliYpIX8zHaw+byvDS0YezLsSyY3fbRuTZ8/ZsdbQduv5+4/GHH+ld3oFsZX2RZS8a9iu5CNW2DBzv6fOY6XJAMrTkhr3dj9rj9CxCvHt8DA1VNF+V2yQBLxOyRZ6R13xEZxiqOC1hXKQYpNQjjuUUOtfyx99IenOuf3SeqwV4w3yJDPiP7KLolqNGascF8XGLP0MKi7R36yVl5nuVmDfy7BM2cwKYQWaEXLykKBU/3hUfRGKhBJdc5f6d72IUKoIbeAYXSS2ATibSGY0lFE2BZg3VstyvhU1NMel6WBOoAoCPnN8uQH8PAuFN2HkC0pA69M9cNOgRzDFobABVjL/PduZ9GH9Nar2p2Q3OmrGw4sqILMBoAq493mzNAymgnyqO3zOYzWFUTupV9RqVI6MnRb6nP3nvpYmH2OrrSxLxO//OQZGW3Keog7M5o6R14+n16qbheS7LPr627sUdCKBswhgOQ+yT/HuPvYpoPZy+GrkVzTTJJEIGJJGolkQnjfraiQ8aS74ZjwnXBEqaqM1HBZ7YMB3yOLpnQKIf5Dx3zdsFZUFL2GWUZce0AdfLdhv4NYKWQ9bqFAQ9qkkyNfelcmhDijQHE+HxgKcNqbR+hfo45zUeLcpV5ZCfwd2OgCjlWhkZ8/zvHrwNQAOymN3c6T8qouShOhitaYSCNSd0UqF7fWhH18JVUaXVn9IoHJycHs2aW3RCFgb2sTqVEnpNU/3rqknEHnSzxjDivWYNfIFpkdqdeBXJa3mt7GoLanDo3Ly6WxdtUM57aksqPJnb+Urt92FQ16ZY2tu7QdQBSgkpH+qiV0B9qr8qDdAxEx4qoQeV7qCi/B7h65e8MXWMbHu3WlSIyLYpkkQCRNbJWoTQsdk9VrMQMHfL6DYm0iznt1qFhZvkEA/eJqDuFKvpdsXRNx5aibmXc5M2MCxVzzXggqcWXBn02c17p4HLeVGGoMbO+rjguZtBH0udRnnffEcrnfL+ODh/QajoRJYgO0LcE3QcF5ulihSPHO/bJivguvSjy8/5sLFFE14TPTGPNzxMdZhRzrvEkIMm/i5jTdqJPY285bvDrkD5d7QEdqGrs/d3G+NRn1JxbWJzF0Iqx9lIBrYF8+X446PX63BSXBSLDAmaYkxnvON71B+mM8zw4H7xG/T3T3/UzH9XTns/ZO+SCAqJMYLpeBtc2AKPj+UbFzzrDJJX4fUMMz4yBgmSWqlBys0Vbed7CwJLlgy2OwbaDR+2NtffIDHSDKdl3s0F67cAGiJ7YUjEmiLKeCpqaoJRkwMFxdZ2LQ0vXpQNDovNJZQQc7p1zXABq4Kg7HNLyGXTtwC4Jcnd33EMLwM/hnYHeOQqRufG5sk/osmB8WnIOqLr+gd0nxQ7ZMrfds/SuOsOVFpz6RJJU4UGWyMxghGBCI7BafITIupcxBqKLCy7rAaiN3/O6QABF5vgWO1zGnx2iUhRUi30ozr54VrihXNMDjWksRSGIsE/rLOXzat4Y5Pt8bwIZPcsYfV9mwuCgeQMcdRYUUXIok69SQz9K4l7Md1nebH6z8wiFod/Vw/M+fD+0/aJBZAWUzv2MOSTYc82X4J1MDjiAFPNDPeN3Fh4DQtRWnTUnNUATMUATMDvkwQqW5f385jiVAK0q5ItKguPAsbSDzvxTEALE8QLKc/gzCn3UMu9iHAmE8LuziE/GHDuek4KG8UR83yddiNAriXPl/Wk/vY+y92PT0/cUleTw4REBOSL7G2yz2JdPJ+Fjln2GzCq4sOBBT0rzZ4fsfH3/7kOQ+ZtB7EzxRV4jBqrsuf798OEUxyTOAQzIvQZA6pzA72HKMRaoTNoK0njgre6PHgRZfTgNCNLwt0L7jMDeR+9qAlUjholZ3ivnm3zkJ5T4qAIV73wvBrPwa41Am44+1ESuQbcpwQCol+W75udVjmPu1xV+ljHInBD3MeKa9Tl8nJV/h88j0fRL3fa7SFL5nmTJnI/rYZ5y3hAULe0r4yCLQzJ+qH58zGUxmxvX1Raln4qiJSPenaK+Jz43vzttIA8M1tORiXHaAfdffbxCxyU+831D8OsAFLig5jRKoCqC8uGdCSwgLgOnaj2udTsqmdKYbbCsFHzAfLCnI2ztNbNIkf10tVr7ICI7oldz/tp9BjLGgIt9Ual9cAApyCgoiKz2Br1ZsENFZaha7bw/A3+uHkjvn61tZH99AtDIjs+F9FRg+fq0rJWzGx5/drGfe4cK2X1yLy0yWHQqxq0b+zycJH/+fWad+PUCbe7kLKdODN76kKKM199vmGvDfuto20TfZtSZBqJ8WXMhrZZtGX/jSwqScQzdAZ4vi7Eqfn66cTfqbr8n7W56nWp7eq3ZUoyGzzMGDRTCHDejePZvT3eIBe1hHTgONEY1VLyi0bJPXP/6ifVrMyBHFe11OzjLACyjve2QHz9bTdylh0Mwrx3bpyVbhNZloYVqBuSGxuCX83rfI0P+8frao6ZVlsVBu3JebrKPzebn9RIId3vb7N5dR4S91nXxTN5bycaqApBDXaReF8xPF2Ox3K2+VnYTEBTVw/exJPCRrSjFg4HS6rIGPw46yOs9HCJdvR89mQ3PLR0bfscdD70tltEo94beDI3eR3YEIOACeOBxAiGmgzndamutr7W/G5YTtOPcjj/f7ghBwWU5AjAvN2i7QL69mZNZW0pummKMMR4MAtQzM9wgWm5Y9ajAQxP7t+bGcnDIquMAIJD33iGXi2UA9t0dvwHAqYzsLLJtORbrkpoS/j5lauotUNuBTqCIde/hc/Ee1wV6K+NT51KzLh6y7SkCCmTtL7P29+3ozMUcc5+od8zbCqEOzTZSXyGCyQF5LR1GVAPQNQe9aCZQYZ7z5/5AZCNXxfRMZAbMakJvsL0BUzPYFAv8rJPO8NINsw3j0+IitLZvUaQS+0B/fbr2jQVatschaq2tdni3+eA2uT02zE8rHr91WvwELn/YjQHmS3+8rHaPjw3tvlsNLse79Jk3++daR6V8QJ4lSGAW1edYZPE4H0qGNdbgaU/BxRkit9Xex9sWe0ywHl0TguJ61HrgHlnryaeXBEQXBDqHQLbQFHMyrVQN8XttCEZdexqI0F+3VFx3J3D7sxeMl16c/A4ZQH8M09R4DmuFeliL6bgag6IHUN4LqKMiySZm2+inB7G94ZMA49bw+LFjWQ0EbyIGTDHojwsVG+bAMTuMUA9DerMM//1+oA/XdzkvHTIka/sLiK7rYqAe7bD7DnpZbc62dlhbaBKMKh0I+6LXNdcl95bFOkvJfbPxZ5vay5p0/uFsomWBFOCWPqM8tgwG2gdiwDWgOP+9AhS1XI1sq2p357Q69grw0hd1dl7YQ/plc1rnNB4cfwY6LC3191db37YK/tPPGKdn0uNciHa1qmCL3Oh64GC7XpbQi5IaQFWwj3v1lAQWL4uVCJF1wH2ftsVLwvjcBpaWYJ3viIGaB6Sh1ULwgc813JfzpI8MizfiPJ6kMb02vkcNoCmSdO2YXIqxPpcce/a6ai0EUDUE8pRM3JAl47GMAgfwzgcEmFaaFq3guVeLr2PqR539gjNgwLnTWnYHqFlxdnfyPUxbj04w0lq2jz+XWtfAGngHVkTcJ+Jr4gPbA7Pjc+3eWc5Lsc9lRLM8R7VDjDuFTEQf/xrwO/uDzIQoWxwJagSbgkACAcYCiNLG6PVSyqCKj7+PWN/qWgYhAvpyNVYS4H7+CcgJME8QDNF6ENQMkGXGzwMgcMa4Yj+W7lB34U84/iigICJ/C8B/BeCftafAn6vqfy4i/zGAfwfAX/hH/yNV/R/8O/8hgH8bdlv/nqr+j794EQ6myDvxpFoXfMjw0OFzxycmHo2KagjJxTWADO7Zb97FT2IBTLVyiy6YP9zM4aAQ4NLS6Tqhd1beIAixmmkLXgVRNiDDHE9QjApc5GKOaoO19WJWYCmicooQorFgOTP1VhsFN+pG/13eRpzf2p/NdJAcMQ36JtvTOTLL/yJzExvxDPFCqEb5gL0XL2vYJvrbDpXVMu/TgJR5Xcwhvyw2nq+PdxtTbA7xzKVsg0zmJsC0tmnmGLpzKLbQW1ko77Q46t8FR1TXr4dtmgAa60/V7suySSORY4I/jx3tmRvuQeioBmNuJGq2UXuDbBPrz9tRqBEIWmLtfBK0y9d7shIYYAGIHtq+6UWQQvVraVD1NOayeLZynKscnfINyz4tDVivsQ7PwJkuPal3QyHizqV3C6GQprVrNVE39YAbszj+bCsFhIGNeXCvApWIwEHO6uwcv2bvT6ZTmklfLyyUcOimi64SpVcHbJ7bEbWvc2cMRF/3aaCB+rizBaRNDgseEDWiA7qXNVUAoEOfYncoAQCPp20i23a8h3JvRu2V7AvPsbqssVlYp5SWTmTQiH2D/Qh1bsYaEAqdTc0SmlIqEbWzzceUKD5bv/l4y+2Wz1Ud6GpPSa/7yGnluFWNFX72YgFjtOii87JY9weZM3prg0JJdDrkaAcAYN7MMe+vT6ulp5htFy9h+2BuXNbDfauqOSFdIFsyXmS3+aWX1caLlEx3UttzN/uzJoWV5U3z2ovNLcMwUZ7bgFN5Uj9CbT+7rplZ8eBh/7RAJrA+vF5+pFMcztHbM/aA/u2J218mMNYfto55vrk26JhmlZ+7JQg4L5l1IoA52ToMEXzHO63BzHmc4+IMFDxIHDPmshbqMNkSBLQFsLZ63t4zHFsyIZnIEIkWZu2xZwA0S3AFteDL31+UOVagwZ3QzraTLsxLJh0agqYN2N7ddo09alxb6FJEG2iWAa1LlGPS92AwrBw+zju1/wk7EjAA7HCAY+Dy18B8WWJv3H68oN8NxGiP3ez79LK1XvYCriPGJlHC2oBVIMvn3MMiqHdat/q8qDaNfpszH8Nh57odA7K3zEySxqxqXm1r1jZyOTnDrUHF9j3ZB3BHUv9JzSZDDzPtPPdaApUERETs+qwCqXsIx6WfPt/EAJEA7fSYJZYPbGA8u68jro0KErTCAOBnD/tWCbLqZ+uh7heSJUW2lVPeD4E/P1/ZvRUU4PbWcmzluYcv+eHaVg0fi91NMBzUnJKMnALaZNeSUycE794kmnbCPofiS/hQFkDmcAyF6DiKKQLQVVIYUlCA27KPfzC21XeKji58/0ymxjzRo5Cgr50DG6++h1hTksDGWU+iwXyS2i2DNrC2KPefx9rgOPPfdc+WlkkN0u3LOaNLl5dTHK5xWJvlPifSR+T69jmlZYwiCeexkpVH78nMq9dsLYPuUtYbY1BfVR13v1a0ao7z5XMGmLDtCWov3ZJztL/shlHiCBnT1hZ/Tn99eT9Oui4uCyfQaEfJ8ZsAfI5T94YtIX3umx8EHECE87jznB0mQh4DMvN3/z9LHnYA/4Gq/m8i8gOA/1VE/if/3X+mqv/J4V5E/hUA/yaAfxXA3wTwP4vIv6yqpwqQcijSuWvNaYU9qXAemFRKSEVT5fH0rIfXmdLoUXWUxyzB/9XpoKoA6KSl8RQs2H9zgYyJ5blDpUWnhHeGHYiMNzxzKXNiXFYXYppB0aLCtyzd6e7m+LS7ZcjhyrKkVobRnxrZAnnbfLEo3kWDaoFve93M0bh0cywfWyLa7gy1537UWFMFUJDdc4cNV4aO7M3S7JnnhHjWpT2tw4HcFszVhJJUzBHmu26PgYXq2a2Fgu+73t7wcxdKI0EOGhIJ9Rg5lD+chZ5qKUo8NDeXmb9jqcmsFDxumNTYcEdJl2aZIgdmMGd2LWC9L53e3gKosVacCqyW8e+nVpcE2II54/ROsOf111cLSPb9EKBJdxAketZq1vGqAuoGmhRnXqcad9+sxWtL5+1iXRqcbUO0HnteF0LjPD3B7TRTdlV5DDOazw1gVwbW5Hlv53lbkopNA8uyA2bvzoJtfMYKNtCBWxowPMt3Rld5Lj7vqdMDVH29fCewfW4IuuycXpvnYzvI6Cm1/Kx/I/gA3xQ4n2r5DzcWToXHI4Elr++LtcA//fMBKLjKetTlAtDNEGqWABzYLL0fOzo4eMB71H1DtJ28rMZyeSI3GSD1EZYlAAWeR7Hbzz3g1l761VMjggBFVYev79nfW/Qir4CAP0OsE75f8eySmtAjmV2yFQbI+ZgAmpqydhf0N3Ni22aZbTraMecYXDJg94M2ct4MIG7FjreH1T/rukBvC2T3d9Ldhr0+7J69tC32JgD7F8uessQt2t86zVXtfwA1d7xka7ZubAQ/2mb2d//S0TbF+pPP0epo+fjIgwFXB14fuOwzwf5m72r0btozLw1ztz2muz3VlfurM7ykhYMZQrk1U1jfR7HjJrCK+BwYPAwPykZhGR5YDDMDcQdQw4b3ZEpwr43WegswnYEYekow+x1sKcDAxzGhn1+OAEUJ/GSf6A8GHhqdkhh065K2rd03tLsFtrpmJyO2NUbphqGrlQjun1c/r9sx9TlRAQX6P/73EKz1+8O2o7890R5XrKsxDp8/dqwCLOLBJWa2HXRfQoIJVYI5n0PKjBlFfbtY1jxq1mcEsbGuVO071eYfAEgHwsW0EWhLQh9heMA0JZktPH+0ptzTtzgFVqiBlXgpFu+RADgZtK6togzoarBLYVie2+9PRaAvqzFE7t3YTW9PB05KkALkntDKMzAooI0Ty0SrpL+YdP189+9KHEqCI9knbkc8GSbN2QQ4HXXPraASp7xnig/gh6r5esif0ebVcx5q4CMTbsmKQ109TmACY4LSFcUSizZmbJt6Dh6zG5rE+zp0d9g8KC3znGs2WsSe2TslPqgtJd/5K3xuT6gKx8WZD8rETAUaPvJJ6rsemTgku6xeM/wzHz8rW2rBIDuMCXCIuw56BgRoAvxzG+DjE2UCa09xV36f8/EcuNfrs/tOrKe0FalpMn3O2LOEXoyMAE2FvuYl92B2T4jrMnbkfZUSlEggO8sxz7fms4/ir5PBIoX550BQAJkBaE3rTEMfyLW1ZO+HuUKGFW33wXc5l4lOrmMN0End1trzwPKwBAZoA/hnbw5EFb+Z/u1HJbDl+KOAgqr+EwD/xP/+s4j8HwD++V/4yr8B4L9R1QeAfywi/wjAvw7g7//CVY7O/FAA/mLcIbIAQdAemwnBAIgabt+s9MoNRSNYzHoc+zNaQHYx+vnL6gIrIzLIXEzdW6bo2jFeVoyXBb0J2tYSKfV7bqSCh66AUe/xTGMTGQ4XGpO3Z7ZxhL3Idt8toF08K7HNEEYRzwTNH40S27cZiwaAbW7UKJhWXzNX24ja3gvDIA2oDMXlr5N2bkI0gvGyQi4dCzPl4Uylcy8P22jsZ4rlq4/XdcW4NszF5q1MHCjs2k1EygQXF/S3HW0bmRUSmxIhwngR9PuOft/DaM/bapoKz+PCqoyE5ZuJFrW3LTbe+WnF/OLt2J5bzC+o+hyyRdSeA/O6QBeBzp6sDJGoo6KzPLkpcqMfbgznlhsB3w0ACtbgDCSIWCBbN1KRAKmwG1ih94cFmjXbS9oZ14UDQqoWxOJunxMX6tNt2qbCjccDPdv0Pdjpiwm6vWqIxIQzSful6sbu4qURam114GMxFTK2qIcVtuuq4ODoluWjg//llkNyEJ7MDEC0KyIVtmamtx2NJUzrArxcM0gqTizGgCBVwmMsmzOYnB6etYNppw4MEWd/2I25Q8fNG7Dg/uUFbP/D9pPyeFqgG1mAgrlqrjlrVbnkzzk25+A79ALcWdgKTdhRZ60lGDz23YRrmc3z5wrQgdoKHQhxRCUYkluI8juqXufc7V377wJUJUDEownQlhy3+i4Kw0zr5s2Smrhnt3sUUGNGjBm21ozafN/S0WlrDhedNgAKwf2fuWBcBLdLQ38bWH662/mYEVmXmBvq4nmxJ3AuNy+F2n1dw2w06v7UBMrsMrv/vJhw4rwuERySccVsfH/bQ9vF2Awtss1Wu9wChJi3I5CQ7RIFl9/vofkiNcBtQETvdDS5ptialwwDTEAWQIHlmzPjHMzmmIknBiJwX2BiWs5e4p6pzsCALuYY1zEtjrSMkfWsvUFltWDvsmYiAoDg6LAqWUn7cHG8ns57cbBi6T3MD9ElAeLRG+blc+rl0P6+mOBcloWlQ2aixzPLEh1cDj2lGjDAfG/tDWxffcikLQ1zvQINLmAnARBEppplT3znMD/GBIc7ZDfthEbfpwsEi9nw+4brX7xifLqg3z0IbhKlIgSYdHVAKRgPM0pAIdfIdcS6dyp6ZEOdNbT/cIFsE4sqZGvQWsLgR3TpYWD9eGbQQVFhvjv6V/HlEsCxDK62cvxISwCw+QRARsnUwf0SZvuXEmBV8BPIhFbdZ308sk0bYCLFxmQaVy9/HNbiuwpgnoMvBjss0xNVgFVX3F8J7q7HoJvjIkCyVtUD0YnwIYSggLO7oq059TvmdCZnGYP6PmifOTZVeLipASgVzAeO4ImU+6UPwOcKe5/7hTETPQiPpFOW94adCRHuadvuPgBZbJzi/bkd6N2o+5xLMQ8UqCk5vkvGHD7esk+bgs5WrALb9A3jvD4+H3UZCsaaXOK5amJFF8Q7kDEduJ8JmiJv15KX1hpWPUAO/YfFQBlq2IR2lH48xwUwNXjO95pMc9BRm2mFNTIG5nAts5lBannnAXpogiNCcI1rW8TKFtXAa+6Z0X6XQtIBxBVghOCO2/zKSgofkXO4tE8P35z3IgKRMgd40ObR/yCIQUYmD7bUjVJQ2+4JWsT90gelTWqndTOpr6YW/PO7FDGlT0Q/tYIJZB3w/Q1/N9CDv2nXcbDiO8c/lYaCiPxLAP41AP8LgL8N4N8Vkb8D4B/CWAx/DQMb/kH52v+FDwAIEfm7AP4uANyWH9LZ9/+MalaQGOkI8QsOBIN032Sjtn2k2v4BIQWCwmQqyV57A1j21dX42zZzMsAdoGZ149qbzcM5U9RFPZjsdh6bAJpZXN6zUzLZpqyqtJKiySyvexu2YQw6z2as2MMaHqjLbi0dZWnQraWhARCtE8umn2i9a0O8jjQ6Xptrz+p1cN+bDzXoBSDP3euNnV3hhr4G+db32p2ia8d4sQyiOcz5rozC6v4H3EkrmbFwblgmIc4MUeR1+R0azN6g/YqxNutWQJFI+He614zu5d17kFqprBxLC3KSws+sV7TSmdOCearGUiR0zgOIcaDg7ePjGkzfqHX3/0oNd4ib1c2OxoFZ4n23n/UGE2rJwCe/VK7FY/NShdu1IJflPwYgSzPwYQxz6sMxKwE8P1+dLwfwFLAgraeDby2CZjpLsc4yYGDQLKWVD+lxSlZIZHKy5hIAQuxKfDyAQwYiNvSPVoCzDYJK1oF3dLCK/Hr/4dBoWDrE16rqeP++KbBJ8Ip03MriYUYASwb9PLQ4X+U8xw2W11QkbI3cbENoSfL87IMMf94KDBTnJkog0I91ftTvKOyxQ4/ng2MpCXCU40MB3XIPQeXmNQGbA85EUbJkDpRfdyxVgSnYr4L9JlivLQHqAAtg9bzEW2hvduQc9YDR9pvCviqAdTiKXqbAsie9LKEHw0CfQCvb3JJ9EI/dHfARFFCWcxkJPFO3B4B0A2oDsCtrsr7XsLWapQ1WzqIQEFSAa75MDz6dXbG0tLMi3rbXHXt3tglUiCom6eH+nq0t8QQGg4YMFAAko8GzSboas1Gems5onQe+T1jf9BZrpO49h2O34I6dPJikmGtDG8Y+7JsFG9P9hAAUol4VQUemTkD0r+cU9OVXBZNpdiogz3HTtXQO4j07KKZs5wk57r2LmNhjFzRPTshd8910QDaY7/Ptjq62hufFvqPMivO+fd5bJngEUBZ7Go/h2h5wm9Ak/CRtDePS0ERKsNqO85EHHeuqpF7tFIMZt98Ht5e2huy3GnB/lHn7CNSMgdQAt4X/rrav3ivXUjvNQw/gbV+ytahrt25c+0TbO9rE++fnOerf617K56p2j/PG9cgiyCh6K3FPQIIKTPRNe8cECS2xZateJ8x/83fBeR5+bbXtvAaTSwCYtT5oJlXw0MfunYiir91kKBRmrfsdB40G/ul/V2dz9mf6KFUX7N3nRSGz4x34cdqKDiVPZEw094Frp43hwTvnBt91zCMPaINZ4vt/y44dOicwC+ijkuK0dW5MsYCf9iHmNkx4+GTzLJhHxBd1zh46inB8mFQIVmACC9QXSKBR3s9d7pfng+PC8WywspAxD2OJkUlSIYOWQfw8jQX38bAt7+fG4fNk7DG5VPwnY2Bpzuk6L3jU8eJ71QIoEgTWwnKSmR3D/N6kN2PakKUc/tyMe7eZPHMTob8mcrRzPGIeSAjdHo4KJvg9/rHjTwYUROQLgP8WwL+vqj+JyH8B4O/B7MLfA/CfAvi3/tTzqeqfA/hzAPjN7Z/TgxIukNQRKi+vPTa7GuyDDofqIRNtLRin0ZVULevjzg0Ar+m2No5h/GZLdJ/O8lDIY6DvXkd7Wnwh1EfHX/19dl/4qpaJEXeKdmvjZc5Wf3e+2Ay7OZiyzUA74yMMrBc/xyWR67a2ABkAoH/bvHayLBg/VzhmqoB0d0jdcXUVar0s0Au8DzeCCg8ggY74t9NbLw3j1rC9CNZvgtkF82a00rkYw0NFsP2w4PGbhssi6HfTYAAQRrHTYaAjK93qOwnKDIVs6vHQcLZAou/z0g28wMXQSkfO5+plNWWcrP63Y9w6sAnEsz7tObztW0f7dLX5QNRRy/cZ4L5cs57q/jxQy2W3UoTm2TH9fMvx9z/1erH5fXe2x6ebOUFvdwuePTNeGQhR3gAgatC5gYriYAAAIABJREFUIbkh5j3qtpf2fi2y8ZFFIfVtH5D7433JgOTGLZhJPZ0tM8OngMlqH4eJ8l0vR0opaf9jQpuxJuTxeO808eB3SHk7r0duwKtnfe/bAbiL74tkLXf9PRH+ihA72yQR+G5jeLvaM93vCDCBgjgUweRzkOmwLiby9W2ks0djT7GdQI8d1GjIDYh6GOCG3mD0XX4fiOA/nOREptnC0cphfNAuq5U8ENEns4ClM08Ccj3PXWqcg8YoAqypIxBvZl2PQNu+exDY0xnxjZ5aEQeKJzMOzG7RBglrPD3j03p8Zn6y2sV235NqLV5mUlD8Q12nrxEB8MP/ebf2eg+vHf92h14vxkYoIC+2gf5zERb1Oaqgs+gB3tVbnBbGhM17u8dgNXQLVrWX8j1knfLyzQE0tiZsNuf7fXd6vttPxTHwdhYDHjAHzwPkeA6OteuwxJoQA0ATrFPgsYXoHmYDmpVxaGfrY4VORXvb0e5PY2fM6W1eO8bnnvo4PoeixJH3220tmRZAgzBzBCTAUbI/HCOh+Cbvo6ddC5FHzeumnoOLsBUn95ABBMJfCBBZkXtTNyAacJ+gT0hfs1SzOMZx77SlHi+wzIbnZWvQVkDEuTZo68FIoT7T7M1iit3Pr4rnDyvmRdAfxh7RJmi7Yv3qrT2fu7EMZ94LW3HSQW+vG2R0tO76GEvHvH1yX0DjPFGLvruzX7cMtuCswnEOuERQ3axNZuf43L0l4ixzhJoGvQHLNdZaMrT6kUZdbHoI2XUPoF56ghZTIyBGb9ntCEB0T6rgAJCZzSZH8WrVsk8syaqqDrmqd4Qp+1oNXteG4eWQMroBoV46FtcAUouHPqPIUUSYAUzs1wvQPcAEgp0pc497NF8AaI+T6GhzW/W2RwJk/8FYMrK7JshPb4iWzae1E6UY4lllF8DUMo7xLFULqLxHAeL+DqwFSdaB7bHdNFLYrh2IRBTLrAKU9udrw3yj5veqZHPw9QykHQGSrUHQouq7leB1Lg1NXZiy+kXl3n2DB4GGg+8D941UQcpvlKnwA3WOR6Bq7G1t3qloFz+/JvvhVAtPIJDJyncBMv05zrfi93MdxvqTHG9sE7itqYdH0KGOgUqCgfVoYk9a2RqV3cHn32ze9W042MpYriR5erlma8aSI4Omm38Sz0IbQCYAr1NLmKbrXuySdsIBFr2ulhy7LqGZhOHdW85tQ5sAs1lSKt7nOHbDmnfIujpjyu0oxcYJBkTHK66bAn7N8ucfKVuwW1DUhJRWZsYvHH8SoCAiKwxM+K9V9b/zC/4/5ff/JYD/3v/5fwP4W+Xr/4L/7JevUZEkIDYgXYFD6yX/7JST4F797hkBO38u9mdFSh7bPnj4pDtzACIbEwYWcMM0AHUlUzcgAXptRMFhThGdap77jIo5omeAhCQyy7Zd7stbzSkgqAiwGZp5tcC/v27uVM5DBrxmD6KVTXFq1B3Spig1kBJOKkI9NwbpIG7ImswY6tWCzf3mNFp3HtqumKt917QWKM7kE17h2adyj903njqnmbGIGzi9xJYqs4fWTn7OgzgmfA4Ix97+PbnpLe7YEtmfZBg0QCaUWerFW0DuXhNFRJEbxpw2Z6gyfp6j3JTO89g3veMjSNTi13Z99fdRC8/N4jQGhyyMeOZwigl5no6zNkU6LuV+PQiOn6s7arq8n/P8fG2pwbVf2ypxHGjk+W9SOpnVrHV9Z8fmfD8FeHlvI2aCLPHwp3dE2m4N3on2xroszgMssLXMQgEUPjpIX+P4zHJtdedUBYcUyRlBJuBQzwWfM2XNVnVrVY0NLtYWg11VRIV7nNcBW2bsfmmjKu8hhBJrlgZmB94BSJWe99E6iTHzdVjtkUg6kzLfjcV5fjHT0O6bMUjY7pasl+89V72Xj8aAAmG7O3m8bglgw07799ugGKyzbQRBa4/SPGdxwXkCBLOB45JSxbug9vBOhDRTeZd1q2P1bv3zV4p0QACEiO0ZzAMdVs2ADkCWJ5a95TwPvnNPVnVx9BvqtSKoq3aWNbIHjZl8F1KDTfjYMRulxW4DWZetmtR/tAATDuAB75kBhDr4VBlwk++dFPST81mDjWp3OVTNmQirYLiOkQVE9d3MQ0Bbu1kYu9JZonPE+Daee3UfR2CU9daAbntagIEqx3Oex9/uxB5pm7FnG6nmZPP9Tzn7TvH3MmHrWIi82wOEJRdNIGhH9lN7f5+ZefzAXzsMus+Fatf48/l+QSUTtdxrnSt1Pogc9/TqK0spVawXKCyQeo8S9qL4HXXdqjMBOG4OwIQa/gSqtpaVQQJzNrQm5tcc7uODIPHdYJSxbZkQrOMaR7Qo9TXYssQgtKnqec/Czb72qm08+EQsyzl9x1r0tiy/qscH9lKG73Hhs6Tvor0d7ToB+Q+y3Id9mnsnx4d2qrK7OWbnPamCBB/N6SZpg3iteRq7GNNSzgDE5w5lHKc1b0lQPZZPBysFeZ7+QVwXg/HBz3kuBwSzW9LJ/+Izvpsf7eiHqZ5shpxsxOmz5+/weq0AGbwWffHzM7iPYmyd/5e5t2eyZUm2hJZHZO5ddc7tfm+YsTEGM8xQ0BDQ+RUjIiAj8A/QR51/gIqAiMAvQELCjAFUQACbsXlvXnffU1V7Z0Y4gvty98iqc+cBhtlNs+46t2rv/IiI9HBfvny5pv9sg+I/WoJ1dc55/TkTMAFQxRg/HfX8dZ4C3Cnfo3ZWfPdnzoEdf58uDwLgvwLwv6rqPy+//yeurwAA/xTAv/B//7cA/msR+ecwUcb/EMD/8JsXUaRzUTNPFHFrhTY51eqcWOdThW/i5UWpi+L55lK7GPWce482YDo7ZHqrPJ5LxHqQE9CcM6lUE5aF3jfo9xvm64bT20phqnVaILVQYXVbY0KOLameAKI+yjNpbPvEgF9cLEdUo8ZJTmvFyFYzc2vA3vD+jyxD+O3/sgxHo9K61/RiwyfntwqN6d4w7g3bjwPyGFF/21hjOyf0vlmGhNPnBi5RZqA/Jm6/Ao8/GqXxfKXzAPSHgQmA/XvcjGK8v1NYEWgy0T9QwAW/XQV0uLI2YFoTHYBaG0nqYWDa3KKLtfraG5obq/3ttMyOMz0sOLS56W9nUPtChVsAdicA4OCSjdf4vuP8vuH2b8xAsg1leze0W8ZMISffNKKt4W61yHjOdFDJzKl1WwyctVChWkvNBPdMdCqkGagQB3UUdAIojBh/b6ITCh0EzxZG/+pwwFcqqwzPzJE+DmTw4P+Oex8T+odvmN/vaH96S2BH1TL8vUfLSHsfvWTp1c5NXQk9T2tPuG/G4BgD+su36AojcwLvpXVfE3gKd3WcwkkzyjLO05gTXwEIdNi3nq0H9z03i9Ysw8/vMTtVA5c5oc8jwQYAJlTm792PtxjjYDhQp4CbxPHMjZvnLuJUaM2Cfc/6R3cPwK4/fAy1AdJsHL0kR89zaSMqN2uPpO0OYXnNxSkU0hspSHlYGYPWOj1/JvF7WDY8B5HI4JF+t/X4/RWhfFwplLWudkvbHAEk23j5O9renkmBJ5ApSY+HSAjfzvurscGep7UPnTP2G3l/5nswZqiUR+lNb8mGIEOOWjCRgadjKMCLZCnASdC8GyU1AnugHQPt12eAIc9/cMd4bdj/MqzVX/PWgb++25raupW71b3NhdUAs9+odpHBxe5jARPWhTagObDk7UZDtNDff3anCUE7Ouke0sgxQjMiumzwHZJkBYaNKQdp/O05XEPISyvGCLHm5nOw0Gh9zjL7WgIi1SWwMJ2F7oKZLR3bKmB2eumC07cJElA/onlnGJzDWVe+PodC3j4grVk85zZ9frvb/v8sdnXCMrW76QlRvZ6tJLHleNvA2u20Y0A+MojQ3tBu/hwCnN86zu/eVlpN16INxbgZaD9vLf3szRlL/otoV+cMOTSBPItdbCnUe37bnbUgkM30QtrbM+vAe8N8uVv28PgcZJANcPub9wwK6acRFHseqxPLLGCTsDdSzinDNWncQTbxtbleV0zMMQIKMklZqkcKftEv0H1L3RRlSe56kPmlcwBthiJ7MCYY/LstC4aNH/KEtTV1H28RPvaxB2D2kOJu9EcX+r+/s0ykkE3Ee/d7ifbOBYRjxjPYYF7vn2UNOReblrp1/zfue1L9Bc50dbs5GVxW30KMPexd3aCawufVn2DWe6/7q987YD6u1+WHvWdXtrJ/BbuSLUpZgkQ/iMwxZxVZq1hL0rUGb/E67WdOvP2cgDCQ8/LWaBvfrBMLNVf0eUDeH8a6LrEGW1IvQHsFX/26opoigRVom+uayqA/AYlYi7dtGZf5spmf/zw/tczWGnTzvfH1RtHS7IAiOe5cM48n2rU8iacjyMd5raBHCZorqyQBwvI5xiEEXLjGw+edmaxyX8uEFSVamn8qaWHp8nQdguJvLXYFsL9t25JoCf2JfbN9sDfg3cfBtTlYeq7PA5iuzUX6qK/laLm7aL+YoGuIe6uWlvAFCGiCSADx+wPuM0myIc6VAWUnbW7Lylz/Bqjw92Eo/CcA/jMA/5OI/I/+u/8SwH8qIv8xDA743wD853Yv+j+LyH8D4H+BdYj4L36zwwNgAdvWY/CjJ2ygJRnMhnpzmdhAc2uNlf8NdlNhSDXqfmcutIqoTbYy0s+o/RfjqKyNHjPr6gXRZ1RUMV2tvj0u56gLns9B5yzOVe7B1cSNPjbLc9vvZxe0E+ao94sRmNM6SLDGCB4UChKZggXFjcyFglhemRXXLKCiKA03mAE+4fWfQHdhyfYE+hN5DQDq67g9idLadc5vG/ox0SgCJalncN7NOeqP4fG0WEAddcMamhjaDDCY2Fy91w1LcUpDBMvrZEU1MjFmINUV4wH0CXXmgQzF9pEicRX5RmtWr801O6bVXLHnsIiBY/vNnEg64UBmGOohpd4tQK3ikESGZUZQV3UV4iDVnJ+vwBuAa2tMGnjraVyMp2+4qzhQQTmvG0TNiG3egYE9bsU3zupklUAODEoAUOAxDDXnEBbcs8uD8F3AtjhNACw4rIE/772OV6XZMUCnI8wx8PviOIfzUiiZ1lLSgB5TbVYHyvieVdR7ItvntRUddueiXm9BzK9Mj+X6l99zTq5HeWbZXABo275eR7xfwOfx8/qLv13GMNex5k+x9RD2n/dd7XM4UJc1wqN+FkihKTEboEDaU28JSOV8OWeCOpfz6a1lYMDMEK8Vn8ke8PF1tYwf617t/u15oxRtGU8NQLoe7VToU/Ox3WGW+20RWrPyIwMOqtP7iQXFg6VRLH2o64p778EsNXJPaDAdANqoEiTDA5zY33o39tZUO8kpAeYbOJvuAe1/FcE1ZsBPMp3FmV+c0Go7ehFcxBpYAMB0IKGWFsR3gZxjjgHHub7nQLATPt2fOluj8byaGaJiv+zz5ZlOywi3eg+X8wJIJqIU7QqB05tt7chQNFe5P186NgA6NNfKInTtweWVWuw238oHgXY40OTvUnRGmjluc+9o9L2aQHweI2hyOyg+LrEOa/B6ffbwl8r91f2ntF9Tzjht/5U9EHObcxCZ4podnu6s1wCOn/V7smcEIst47SDhDC4VzfejBigAoNP0TbV8r7AH4zlbg/ZC0XafcWl3x+/wWWfpvMFnJ3hSn7M4Hp9aa9cyIsDm7HD/Z/pidEatoHy3ZFS5DgJc8XcrfNPuDJ8NuQ64P9QA0+3Npw4hkz5qSzvF+68lXij+i89B+oOXuZcLmHFdj4C9Q6HD44CrXSSCbABrfDPXpABBluX8EQRPrLPBSbrY9brm+Kvqh9WvisReFtnvuhdcbe4X+1XsPQ48x5xc2Qj1+u0n51o0rsoeCyxrW66Bf826z2nl5QW8i3cfWHRnLAjH51IdngfAUjYMrImny2fJcJGWYIMlRHJOzAa03D/o66v7HyoB1sQ74zY0Osd8Mcdmn8q7Sz9rKhD7b/lbsFzxaV3Yhz7HGP+fGQqq+t8DX67j/+43vvPPAPyzf9u542gN+nI3xM2F1NRFmjBKCysRC9AAVybu0ZJqWcisL903p13OdCy4eY/1kVjfIwrovWOKoHYbMFZdecHYbeD7C0S9DtY39OmbugxzUufNA8/Sxsue253Q2n5G7eVrjxGGftZ6V4H1pd5y85NzYtw7xq3h9mert5s3N5RvEteczTZ4kWnOkyukUjRFb9b9QE714HoNaFRgz7gZeBE+cs+APOmqQP+Y2HajW/Y/udbBMAenP2acsz+mtTEr5z9fOj7+8Y79x8T9bwEG69MZFD/+yYb+VHz/P9VLIeyyIoLmc3R+twxdOw04mb/s2H6cTmdmrfUdDGb11nC+btH+8vyj1aC2p2Uk5s0Aiq4aWcb+dkD+PMKpt1ZDyIzaa7bjo97C+HaLcRqvG45fOl7/paK/PXz9e1ZvFkNI3YDes8MAh3oqpHerjx8TOkbWY/nndGoGNdsG+fZi91syF2RShHr8vi19snFidZi5AXtbpVCx9Y1Ib3swjeQ40T4kN6D7DZUSSNVv+Xj4+ygQb9UWddHM6M/pQF7H/H6PTIhlZUvwKnY/et89S3LkZjlc04EHa2Arw4DPQl0AF37ku43H055lc10Ebwm5MA0qXS6cdwrqeB2/t2wkU0CP01kCku9fKNr794ZvFv6ZpcMCVfnnTN2NKhipE/ooLbDq0cSYINsGfb1Dzs21Rs7UA7lSg1uHvOzJdBApG1vPrh/T1rBsPR3M8bTPnifQdu8msln8+PbITHdsumooe3GsQ7cjHG3fqJkZwwa9edcBFxWDiLGJzon+lwfk8FaO314ig2/vigvM3rzjAgMq1ciqqZgzPL/vppz/HAmCK2tWJb5vwoISnQMiUFMHo88Z+xCP/naif8gi2jdeXCHfwToG4d2p0/JhrBY5znTemVVy8CMDOI1MZ5SfuPZBZCs5vvuG+csd82UPqmk8c2grzHiX9NX37B8foDikvuw4/3BH/zgh73Q6p2k8lOVItW8VzRpcP7JFsM1J9vme6/uLDXgpgRZLCf15xqvrnfz6jD1NvB0i29oS7A+9gb2bNlJxVuP6tBHF4Q2GJe2dlzmM0moUU9ECJNCwSQKAeg/WqeESSM+J/j4x7xuOb96q2vff9pwpvKkd49uG51/Z89xOBT5OtOeZrBUycvyaSyu5x9Pt3hljP28b9N4x7s39mB2h4zEV/ePS+cT1eoLVSMeedca8FvcksuhoMwgIVBCWnyUz4hzQ1zv09WZ+4j4hv77nGuZPHz8yVpZ1AySA7J9f9rcCGEM1gdI5jaGgE5FGc/0cy0YqRHuW6FHbIVpezgzYm5cf0L8FgClmf5wdpexawfskcOGMmtDJ0QQfxI2IAqtv7SD/Um7Ic7q91iam80RNBFXI25HsSu1rIEp/l2NKJmLXdf+ZcJ/TH9X9eBPWRsyvnD3tQAG/7FprcC6bMTUGmQFjQs4zW9mScalqQb8zhA1QQNqCxwD2hvF9NzH13fVS3G5zjISJg+HJi/G0EOLltrLzAJu/rQPP0uWJGlJcD1PTrzpdeX8miyL2Do5X0ZYK0I5BPMGYGoRzb3IGWLTJrCBHAQRqF5wYbyATZL4m2seZDNV6H/Xa14CYc8nf8d28aDJwzSnZOXVvclFYD9uihDwEG4OZUGzH09Yu97pPATOvWYJ7VP/F7x3cT8IGOctW1fy7a7mWM6wWsDbOb76t6Y0UfRPPJghZ5nGPfD8JiMzPAAHjgHLP8f4Dy9+WhFUdj68Apsvx/6jLw/9fh4qVFUQ2qV02zLoJMJu6FXQcwJLNXTLrxWiphgJzuTiIdioSsAEQ15djmuN475FBjeCswTQNvP2ctfRKOpUMa88UE9cFs2WZRaBprNn3NmOd97mlE2gfEBMvdBsh54QcFpDPLugfAyrA8dc75i5o796G6HmW2kluigJIs/7pDMg9UzfvRr1S74HdauZ45tABCKBDt5yLNtRKNgTY2NVCEYaalPmlRmzYQ819M6rmh6IdaudVqz0StfHc34xJkb22JTpTwDM044XIaXlpCFo43WuwpOM5MLeG87Vhnwo8cxm05/TnmVmz6vc9vu0A9iyPaBLZTt2LYW+Ct3//O2YXvP6rZ4BN7ZzWhhTIXt2g8eOclFrkGKwWQRuZCWEQ/HpmGOxvbSuGdPr5mBmkk0bWBtd9zQ7woFghqaJD8bONIhwdBpSusg8gA/hLxkgKLS7OGptibmTiWQR5HFjq9j3olHpfBBq5qVfhqpjktv7sDRgCPY6VgQF4bTGdmJHIcLynPjeVlyVttUtAUtWCEtt8I2kBHqFsKFWsUTybH9RgPpeDGMrzRXDg98Yx4OZAJoHOLJWoJR2AAVXYSrlAyw2HwAmRdyCpfNdNqWZ3dFpWgAHLvlnpmAtdsZY4GWnqG7mkdgXHhJkeHyer675sqJrvrfp4WFcYTaq736s8NbJRwRqrQHAXaM+tU0bad6ETHE6u7y3dn58/fTysi03eowBYstSVgadrWYHNhcZ7E/oKLG1TiVreGAM6Xdxf6poUSXBmMtvZM1MTDpk4sDJjj4v+8pyzmimtmX8fewxFfz/AEozx/Ya5NwMYSieKzOIBIqsKewSjFUTg9RlJscMPQRURA2y3ZnvcToYVQsG+HRPztkFqtpI+aNjGi83j2LUs0Ym1TPulMwNhZxrq1pBJC59L70y0aP6I2LOcG2TrBRDKcZI+bb/s6mWANtbqZUeWaQXGTQybbQgfKqjg/t4qg/b63FvPZyOArgYmyWhQL6sIMEVhJUVbQ3u5l/n3ta85dpG1rbb2Yncje8fjCgDEwqj7vZ+3ZvmvTvHlOpEJrTaMw1Cz5T87mmApO5zDHR+J+12y6txPgfR/ucYo5jslArY4j/+7lu1E8HVds5XRED6J6y2V9Kv9k/51Yc3SZlwEbCu1XU5rXR22/zJ2KM8WuifqIoktRRXZ2Uu9/atMSeZi0TJjkBljOTVjBwaxznoRTcCV476sAgJcHFYkqGDCggimLHwZLt/30rQ47zJOCmHZJeejsp/aF+vxtw7asVivyMBaSlkNz1XH54tzL1oa/u9FHHKJlz77egsoGMBS+muf6v6/CkrrmuZ1Iraz9fKl/tf1e/D318X8AcRzBZhA8JAgcH3WVt6xy3N+DuL93xTKVvWkkbNiAUSXhTrP3A/o+159e87r8ruJSAr5HEUL8K/EF+NUFx/sAsp/xTxdvnO1r1dg7HL8LgAF0h/ZEi3EoYAIQBisR3YyJgklu5MbY57bX2bAXmzPzAU9pzqKQEy6qAs/As6G2DDvhhq1cxptDYhrzQ4z7KdpF7D2E80C0nz5zZHp6oHThBsbN0bP0l/89YbxugfNH2qgQ3uW5xmu1nzs6E3QPg5obzi+W7/p7cfudHozrhH4qoIZ5um6D3TkAlDwntXtmOhvmUWLZ3FntD1nOgVT0YZGlr89OZ5+y7eyeXl5AS1zcyd3vJrzs/2wbP8sTm871ZWqi3BV5xwI2K5SBThfjDHRToWc9hM9a5i1twAdZJozdL4I+kOwKdyxNwYF2QXMIvI4v22Ye8P+lyM2rjCqW/N7sev96T/YMG/A/e8a+tt0h3w6g+JCqXOnJjapiryLU7DmahyyPq1F28hsp+O0daeE6vNIQ7RtC+1PPLNfSyHsZhzJZZaC91WyF9GpRdUC3K0HUyEAhqmrGjXPPcvYsZMFN18a5DGd9iVW0vD+zMyXz0844+448Ty6ec9kfa7Bdb2PUoca1NXrhlvQez1PZ1Z1z7573/bDNpbo/csMVdl8lOra1LZoAjTvTkGHjhsGNM/HThDbFp+DL9e4T3sjEEwBf964vzFyg5pqa2bzbKwDQOGkUD24lWwqh+0LZeaoC6zvwpU+zXvdurFuCqAgB4DT9Qj23KIs+BJgbNHdgQ6k7Q3DnIaBNcijY+mAR2RSXDTXHFlYLeX70xzj/dVYYaBzXxhBe08dAdXo9NM8CJBjpJM1cgwDoKhrzu93LRsqQbMHZGv7qwxA46OKRSdImV1t+tlhrKU63eeUwPiUzLTfrB6aTCEFMmMzJzCKttHT5+t+A3WAQoeCLW6LgypjQH49ofcN82XH8487xmvDy98o2tQoPwhm3jmgbVsBMbbvrf29qePB7g187uO0zPBubD+r/e4GYrw7W831Eahzoyxl1HRm1fd/HNnxKRxXBnweiNka8fsfyV4IMMFZgGx3HEEk7RdtJDORqpBj86Dx1cV/R4Bt0pzpt+U6CwBdkAy5GzA3Wai/qSVUsvLVkZbC0vFAbrruUDuNjq2nl1uQXutghu4N89seTJqYlxL4Sgm4F3q0aFDOPzndsyRHCDjXQN0DV4Wth08lbsu5yu9ZvvVVIFXZUQEQaL5XAKIDE4Fmt7UW0I/1fMyKU9elioQ6+4DzJLJ/FkXl9xy9rln2uPUuEPR8h6ttLPvvUpZA9tVtC/Zp62JaGPF5Bttn6N7EVRlg+b5DZrFR/yWSafye9obm7BuW7ATAJXWenXlBkcMuIVou7kMv1HuycWtgXdfHJVg0fxLL75jBb4CV9tx6gDwA2b/FkZ3IfYfXoo3inBeQfckIX2ORKOHN95UMJRM6dBCGvhh9F4JiVa+KYIGvdZ0ANom9IZigdT0QVGX8xfeWa6eAjuzmEgkhMjmvgO8XQWz8/mp7ylr7KYhX57CJgQmFUbiUTrIcduTawxhrt6nr9S/lB8u/q+Avn70mf6Z1Z4mzSdoFnYUpd2UUzMtatV9CxO+THblqicinYbmsqwu7+NPx9wAd5Gff9eN3ASjIOdH/9oc99L5BXxtIdZOC9EVbOhFHlywIXlBUD8ojwCULYCvBmgdv7A1LrDJadXkg0dlSkiUJJaCe3qqx/3Baogh085p8BnGO4LL9Uxpha5GEb3u2ffJFbvfRod+sPrW/HyYeNe3v6puODEV/e8YG3T9Op2EBIorXf+0vtTs2C12UL4vTqBiYM2s1/WW+d8JhAAAgAElEQVSUU9G1tDdqgAr7ETejM9I4dWDezPmdG7D/mNh/zQ2SSs5Lvd5Qa894kmbHVlglYNsa5iZeFjFC0Gv7lbRxm5+5J7JIAGb7mJibgIrU7GAxb6QqiwlnusPYnxO3v0iUY7Rj2iYF+34+qwEVDKAZmACIjB12c5TPb85eaMDxHRgvBly0h8TauLmmg82Jixh9PMPpJ5Ip+24ZYRGn15vxilaAA0GV+s1apwhw95XWCUSGTVgS1HtuDKqZjfYWmCZOU+rPgAjy9MXo2PJ4JiJL8aMaQAHJXKhHBEJm8PXbiwEaTzjYMYHXe4gv2dwIBC6CSREq0kq5yV76JkME+PBWlfwbRgAXcBuilzEN4cPXvgbRQJZTFC0BJUhj/5GbBkGGWh7h687mVpKpgBZBqAFCGWwsjjGP0C8wgEQLrZi6DkI2xJzAkyKHBtKI9wlXzkOdGxHg5eXn8xZaExcnn0DVvnsAavcmxxnZ5sXuc82VrLUJairsJWprRxBmIvxaAvuY2SIxe1z31lhnRsVXueH8wz1qej9pGtC5u9szsb0vBdXmbYssLA4LeuU0xpHe9swaO5MpSiPc/lJMMQQmWcIHZIs+32f6jyf0tmG8bNAxVzt+36Dd16kfMkaCsNfgJNZMK58vjkihv9vYFrCKLKQtgXFriS3Wxg2APGzs5usemc3zH7zi4x/ecN4NJH2ZiH3OHtjbBU4PzGelwjfzYJoHAsyqlyBJX+8Z3HqJJAOu9hgBfAOATAdxuY5UQziTwXisiWNkBhdI1op4FwTfUwzcEYj2pG7TbiJ9A3Y3UIExEIC046oJHvP9cYAk2QLmb/S3J3S743xtLt4Ge7dUcf5yw/m94/wmGG8JdGPvOP54B8TiCzkm2uPwYL9FkEdfhQFWL86q3Xsy3MKX2a/7CyKTKS5uvLQvBfdVC9Zo52OlFqeeQskc52VtVjqxK+pdw5Gg+/M7i/Nt98rx/dReNT5XgozoDX/JVo4JYEJ0Ql2ATbYtbZVIMmkmgewZALyoZIlEHcsv9tyk7BsFv7aOZZlEZERJkQ92HsKfDPt1Tuug7j5iiJPrjCA5srylHZ61mRuRrJCzWyZ9lPFiYFoDzSiRsGe1xFyWYEwvEZIY43KvV3CM7K3HAZbZ2DURQBzbUFY6PUXQUbpwcTyVjOZR7hVIQJA2keWRwlKIrwJEzktfmEYAlmROCEYy6/6VL8+/XQPiAEVmrqn6+3IvwXSpfk6AFN334XJtAhH874uuwVddK+K/6WMUH0yOz583EPJMHQLeN8sMWJ4newIu3Zi+loTTtEUs0+GeRr9ONQDOGJvKguTxKZAu7/8ka7YBrXxPuUDLmDcBGXQBJhTg0QfIPh/Cjw6WX99/tvZG2ecr4yWYm8XOAeafBpundHKpn+Uc/BYwcTl+F4ACxoS8fSTlm/dbkTEajFhQ/tKrArIvtWJ8GYUaAAQRWssX1zMy1kbnM6BQ+3gryw7qu8RJI6VVKMpjRqhuTmFkJky4cGrUHW5qDiMEuRAaMG+bOY81O+4lAbptEJ0BnISzPfKa268HdG84Xzra01HrhngJA+zjgo4X1D+rHuSpLMJDRNFJa2zHjGBeGzB24HwVyGhoTwWDecDYGxYE+Li0pOrK0Gi5WamfE7DswjnRPk6r8RwjlYr3DToamuZSNrCnmV6DekcJXrYJpJRakD1imSLrzEGxymxjCUOj50S0NfM1w7XCI8Q0vU+xtc309bUDc/fAxh1RyyqO2ARljtycq0EWsc25Z618BLxuPBehFwaBuBiEahS3baE4V4eJTl3Q58aRmwvXjf/v0ybE96B3YJ6JzquuVOiYMEVQ1K8b0HTlacAyD5tnPB1N5wYrYywOA6QnCh331pOxUOsB3ZnRMa1nMxDBc4zdRfCGJQwBKtROBMGouDxn7WkOIGhsnLM613EdtytB72/AVeNWC8pdO0MAiJKE2PgKc6JcI+o5PdMro2U/cM4R74/XCYFbLOttmUfxwGC6gza8W8e+BzXe7PIRa/q6ngSk5nINC0L8yrNTkZWhrfcuCjVrGO9DKMlLnJPv7dx3y6jeXSXftQmqYB/b5lJHhro3OE7IvkH7lvtD81azUfrQElCYavojAWjMmBcKxAqF6jpcUNaz6bu3HmP9e0PJigCARhCSa0GsN7vMdK4uSvPLZzmPZf8EEEA5mX9VOJg1q0v7u1pGJM7EYpD7uuHxB5tf8X1zBbCLgJmWLJyPrY2VPZO46C4BBiCdSK6JeduCEUAgmIwS8T14KcObGTzYWvS1E7R3Abt4BNC8NweRNN9t0QDObMz8/F5OOfduQRpcFHr30hx1xX3WQA9/R87hpaKp1A4AUrSXYv+C3d+4N5x3CYYCQXG4LhEa0D+6fe+Raz07HDmjku/mofEZNAMH5MPn7jQQXd130y5esii2QCfyHZe+BvTV/lGErAZcbuuEtdseCC0CgvXfhQEQh2p2NvH/Xo4rqFDLFL46vgLnaCc9IaBjxjsDstXoR7CcCFjABNpqmYpP9OSy/9aAK8A4sncqcFG/6/doIPxlDMK/MR9QJf++6IaMuVDlYx/iPjNM60x4n/X95VwWv56tcGOtk3nknZyymwoy2Ec+t/ngbqf8mQjmsoQJQCYbejPGw44AQAkASNnAoxziZ2ug+EMBUNBmHki7VX0mwNdpy3ehMLMjgcrnc9882G/1+rWcRIs2yfWa9D9kLfEwNkQr3X7WvTzEOK9BJ/ct/o5r5Oov8KglrlwDreXeRD/hq7Hlv8HYRANoYkv6iNMaYn0sz0LWk2v/5D3OEmCXWFPndaQ/H/X813Kn+pwAWCZmX/vCX6raU/V3sd+U51D3uRi7ERy4xvuatkNqXHCZiyVOqAfji8scfHX8PgCF6eJhr3dAFc3FpKAK3G9WekDqDp3GeDESuWf2BarAvmH84b62iwQgfzHHtalaZuf7DRE8A569adCmaLM6dw2zNzRY4B5Zoy6rHVbkgvE6R9aG8fxyTMiuTg9P5wJ0SsXFrlqDvhQHx43vvJnh6HDDtVlLmrk1nL/shsCeio9/uOFv/iPB67/a8cf/44aXv3mi//kZDtr84+uSCWPWSJ4aDrdluRrGL7dwpE2ACVkv6WUO939zYrs1nN8a+tMccQ6NCoBNMDZrh9kfAzgVTTPoEzWjOVyMrPmc9EfS1oQUJcAMCWCO5O5BfBkrOqkv/+oB3RrOb05pPdWdNwS40n99Wius7zvGi21ewW6YiiaKznrhUj87YE5rCGi6JgMpmvuvZxjUf/gvBuYm9ruhmK9bDBCfT7tl7xoR0nNksOTihrjtZuKOA6qa7SOb06lGbk4sfYg2NcwynmeIDVIoi6isibnZtaUGwLHIJcuOmoQATrAMGFC8P0DQp353cRwrZeyrmtjqZH08sg0YjeLzADyzKLBYe6GP12tF/aYYhbrWoFXRQgdvwmkKcMBpo6SssQ6dgQ7ZHvX+z9NLIe6ZIeN173cDPUvLRltUE6pFTBHIkorbDowGJVAAJMDknTtk343B8ngaoFOdyWAZcNwnoC3FhFqzTLSkKJ+BDBcGBY8ibCkiwO2GALt8HBZmB53Nl3sIvqVgZnFMxrD1uTEzIqF1EPoKXIe3HeOPL5hbQ38/nCLvzLVfXi3LNoa1dXxPqjrenuk4uBMvt83s/NOy4qeL+VnW2YHPncGXa6C8Hbbhvt7s3eV5gRDRm6+vwS6Lv4mDm/CuQi98N6cBobA5NlExV2jfjbnGcgvt3YLXpzsdW2ZiF1FAghebt0GrILEHT2TsYcJBzZlrr6WIXmQyCOQ0mOCiqtkbih97VtBU4KmPZGtAhgHi7TnRn4r9faI9fF8IJw8GsAKZDBgeXBBcYeDRcFFoHwAk6c9kBBzWHtTE+gwEHK827u3jtGfxPWjeejAR25i2b/368JIFK0ec957+pu/9tSuRUXB7ZjhrUANEpxGIAeF670C3dbT/7ZsBp87a0eNYwJVrAG5sEGNevPxrCgcL3v69F4y74PkHiVaS6vv4cCq6vVeagsXMPJJoNTVr6Ksd6N0YFa5LQRCPJW0yFPPbDccvu2dxAZm7M0mz7A8HUufG5xezZD8/idohs9vNRDs/g9ET89sNc++YNxvn/jHQnsOYpef4nIFkWZ0as41gdjy37x9R8kfG1/U8YwSjp11YXKumySxJAayltNzneD9siTzT/tVnhWqI+sX+fZw2PgVQqWxC3S5BF/fj4T4SmRNROlZs+dZDtNRsY4L9OsXe89se4IkS2Ha9AQGWPVfcpw4dp25BLlyLKgQUgbCDy17rti8AL/ohT39vDi+NrOws6jHx+wLzf+s+7n639o552zBeNxP6PHX5OwDgZY9yDSt9np+C2gjO6RepZtkIr+VrorZ2jGdiAEkGBc+hWtqa0nY3QJyhTAYgP/88bL+v/l0Fexik08e5MMdQ549r5qqXUA+RtWTNReHjGkw8BfCcItyZuPD5r5oo9TMTUb599SfjXa2+pkjaGAbYTAipromXKAEtfuSY5mupemKsY4noHZzR44hy0xhP2u2GDAI5PtGZZDhAMcxXizI49/Ur+8WfVVvpBufJRYIFqY/A+GgGWCW9QaQnS9cFRtWFtn8TUPXj9wEo8Ajn7oK6dImNLXqJX4McAFjmUWJDj8ElUscXg4uZwYn/nLwPOq2lCwOvb3Q9XV52u2bxL3jv5b8FWXce2fkSeAc1C8j6R9Ld4jnys0QsLSNsDoNulvAdu+D8rjhfBeddMHszEEJy/AgSWE02kVK9oJeIIN9uxG+jCVQ0QJRkMtg7ZTVevokpsNQWqSLag3Hu+XvaiN7Mkav1V0BmWKvx8zGYt14CDjtf+zih9452Ol21bIrZXUO9Xt3GZ3odqgEukuyP+KI5suLZqMqA4L2QKk2w4P63J7QhdCxqRmWCAbm4pl8Dhp+D2Up/TqGDcEUO495mBqIMpK+Uui+Mg1FzJTeE8pyB3NYNINYDDWNhEzGo3C4bYpmvT+P5W0fN2tTvcyP1tRWIvActn87LzzJoJRvktiNoTgyUeO7rsxKF1swiKebnLA+AoLyJ10pWyuA1a8R7r+8IjVoFT3kPcOeU16y2jtdm60letl4/hkTX2rg6tpFFLNevrYnKuyTBZnGhygCD8v7yXPUaZYMHbFMcE7K5XZ7pPC1CY3499fchstHudCkadOeaLg76Vub5sgeEPeThWXJzkHzMu9nY/g5EdwSumVp+4gCC9ubsK8m/oT6H/0rWoEnGxOxW599oL0WwtDAubW7rPS/jzvOpus6MZcwpRMyssU5J5hfHB/jMKorzIww43826j0E8a80yFrF6Z+GyVmO49aeif1zABL/fRVzu2s6WTAmfa2wlO1vmFEAyzpSMgxndIzjfbPEJ39Pgtt/24YaGZHZwvTFAjxKHWcadY61OWwftdvEJ6p7o9z17sxa9fA7P9IYTGF8uz0eqe3NWy3laMkAFcxeMm/0PAsjIfZeaB+3hIscswSlHjG+wl+b6vtSeajEGBRxkED59rEWgKuhNDUwjU2Ra/boygAWSsVPf2av9+GpPm3Yf5hM0nK8EhpwhKqbT9YnF89XhdvDTflLBncoC87/FPHEPDP/zUjpW7Vr1o66f4UvPgOdnujT+maUNXr3v+t9fPQ+wsBC+3A+ALCPeN/fVnTm62fqDFL/hcm25Xpf/vOy5wTrwYHFpuXr5vl7vnX/29wbOMok/8XmmpC2L4FkD3IjA031T7YKpZg9sSvz+uVeI3/do61xe5qKWIcu4qO77/C6fibnlfnoZBzJ7/VyfwIEv5sGC6J6f+8rfEVnf55/4f5/+/dW7Wv8GFDbnZ18+/SDeg67nLUfMMe+xBtqzjNcXbNpPvuj1Xvnf1/fIf/9JA2EpCxnL5z6VvwDpF/J7JVkE9bkLJhVtwE/u8//NwXXAvSn8tgbTIJRP5WI/O34fgIKIicbxJdo72l/egfcPrw3KAQ4nY/fA8RxGD5wSbAER007of2E2oWTgn4dN/m6tZCigKM/Talf3jvnNsg7tNNrR8Qe2A7Os1/y2W1aqZso9O66bU9u4SajafUxN5L1ZNqQdA/JhIoz6/WZZ9H/0i50zAm6FOhMADwAKbG+Grpx/fMnMlVM19x9n0Bu3D8Uv/3vD7c+K7cMdyHuPzgbbjwOiE9Pvfe4dcutxbR6zN3z8Oxvaodh/TECBdiTVnxmZ8Wpjevu7ZzpYfnxy1NXGbXr9uzQxzYKhAEykZ94sWG8P/+/XHfLYl3oy3XtoKBx/MGGv/m6UVqO3+xQdA9sPhMaBCav5RtQkslT9w9rMAQ3j1TeHzTaQ3gTTgwRTtrb6aW0WPKmDP3NvGK9W4tGfE+3PJ9r7gZ2boRvNSdHGzZxvdQq1TkU/PHDohpjK88jNZttSSXmag6JjOJV8y5r8OS1j2CSQ6sx4S2Zc3t7tfN9fc362DshmGYpAfxX68TAhwN1rQR9eS9w8o63qbZK2AEBMrJTocxFNU436Sz0Oa5XoGfhPIlvFVhiF1TNrNxOqau9v9tnCkli+A0DwtGt9PFBb7Khqdp14eTFnlrVp1fkTR3GpWP48XBfhBFSSKVK7K3gLIKhaNo+Zmnrel/uajROxtkhanmUqgAF9FLCIzxAMlW6thR5veR/A4uzKt1c7P5+3lnF4tkLfP+yzbF/Uu91j78Dbu7HJXPNBzxMsIVG1Obe2pgmEyMtLghWFNinPIx36SwmGkH7oa89qW+2+WE4zf/kW71P7ONAegvbrI8smdmtpp61B7w3tcdh6ZqeS2x7vlu4b9H7DfHU9As94DxeR7c909MbdgrP9zyNq92VOo3l3wdxdmLCR4ZUAY387F+YiAMy9u6Pq4+I1++1xYnzbcX7v2FW9BtveDWnmB9cSiv5+pA6DSKihz73DUt4uRLg19PcTUGDeTZC3PRRomsKMKAJ8LI/guXt3uqRCPnwtuFgd28fVDgUB2h6ni7Rusd76r098f5xLK0TTKRghnphG3IRa2Sq6vT0yM3u/Ydy6ZQTHWMoMsRmwxO47dAwXdXLgAl6YsLBurIO2zz//QWabZcKCcA/4qLk071uyDsVaLLfnWLR2JgF6L6kR6oYMRa/CfF85sYAHuBI6CPNuYq6tdhjxco39x0Q7PfAX8033txlaRdZi0tvGOTuB984kQ3ue2Vot6PirZoL4fXENQwxEkOeJ/e8eCYJ2zwQfxoCLeXSQVxz009vumiNYnH69bZi3nmyK6b7G83AKfoqi2rsAzJvP9V+86xZblN/2HOMxUxekNWspzWnkPkgm1/jw8ekFiPW1xQ4wfAdq4O/PFhlclnSggHb+DsUcxE3UANHHkh1VyrvDoJJrICje13OX1pCVUQTAym0JbugEtOiAMaHh9mG+bDYHe7fx2zow9xWAoWBjd72bXoMmtzOlo05eCwZCVoYqs/f1fQU+AW0a7MxkG+J5uNB62aN6Q4uSQrHPnN6tAkgNH1W0vUf3srk1a7OuiFbxWgL3eevxPFzrMX8V/Cjzqy97lh378y2tfev8XdmdBL3mzMxzXEe8S0zah0hMhZ/mLCoX5V7AEDK4AyTwkgw0Z3YIxFuBU0wUJ3K/r+9YBaaihAJe1tKspTht4ES808HsqGAan8dBoOUafF8CQLggMGSVVj+z6j5d7S79rEv5VYqkf2GneW6W/xRGrFB3qNr41hNMha9hwPzIMZLdej0/gNBPu4Kb8dFa+lyST7Uki343O5UFGFOSJb9x/E4ABfiLNzILysMzCfa5Aiqwr3dFNKvgCz+n6wsZBxchnQl3UqCKRgbDNCcr2j7S8C3RNlBbgQXCPxEoZ51c3rt1dpDye39s4b0B8ADWbrDcOlHQcEDPFA4bCnGmwvaYePlbwfauJjSoyI0WSMpUca7Ysicu6E6iiZP5vVaAryUVpg1HbOkgEX0U8daPaUDrZqDe0pDDFDRTb6vIumFR2MLecgMMBsS0DMv0bg4EWYIlwefr1ut4vhq1me2tIBpj2MaEHsB4cToqh4KgCINkBml+LYIPRmFC1lbTSWY9IgFhd0SX9T7L5o+yrurvmnuFrcOgSu9ewLKG3qJ9H8WB7CQtjRV/x8wXyhpnvRaN1Rj5+eIExOdVlzVh4+LPXevR6vEFShvXqii9FMPHGnMRLBTOKxJdx64a3MjYzOVa19ox/dn5/G9XOlkwAGiIgUT9efjcLOPAca6MkOsY8Rm4YTXA6jrKRhXnIxpeJ6OACnSAp6aQ53R6XFAhpQAUa5BvAFep7RPPtnmAnwwKQ7bje9zkqmhUOAHFyeLRL/dcPm9/3/yaUs7j80pHKLKpX6yJ6tyUbIaK2YvQhXGbYtf3Hw1rIAkYeIAGYTaCw6D+b0HU4n/KPgJRVlTVxdWB9XBSfQyq5oGIaa5E94sIxosT4OePlmlDM/sNLPtG2OPeDVxgkM9x/Cq44Tn436zZ7vk7KvgvpXuAA6g2DwuzCQhdiGjpOTVtf1/PE6UVHG+1krwYS9r+JgAFh0c641nPnM9le5ePYUPqGLmDJ85ms3sr98L7YnAnSKDZ90VMDbr0Evi52KEyuBR/Z66CfFLGk37NF44eu0WxfIdsu7nBWAoMxLlfcw4cxI7Dny+6+NTnrI734luU8XVwTMt+/el9rwEA1wSwZGhzD5fwGVx4I/6unVT65hlj/xM1MA4HDa4BTbULvIfLfMbnVXMfquydCorqZR/nub8KVK4ZU2DNJv99jrLOl/n6rfP4PVpZh9XPk3KtWwOGALvZUimB6Kf9nLfv90BdISXdepTxdhAKDA7L+uY92fPnuaNTS/j7/o6K+UG6+fsQbFjJc0wfy3GZ1/qTvgDjxFpWKcZwCwDF95dkLkn4yOw7r8XGGxvY/+caKupj9YmlUceVNr7oSSylnPzO5fvaW/pSsR7Stn+1/yr9qu5+JZ8VGkD432c9RgeP8I9n2KlPdf1A+gPuH3A91HUso3QHU3UtrQKk1DlcbkbT7yDDIZ6rff3O1fGs5778Xq++eP33lY05fRHGnsX9uwTnoZdWfCH9QjMFcN/K96KJeMcorLh8poIBfu9Sn7va1npc76+JxYS9rc/+xfE7ARQ8cPh4upPntaS33fpHzwktfYxjkfHgC12ROxq3oVbnyxolbmrctI6B+bpjvO7GGDgn+p89e7c1yHOgvZ8m1HUrGz0Pd0K0W01nez+K8dtyIdPg0UC6Q2GdDTwLcJQFNBTjlxvO7xu299My4p4lmXfLrs+9Yfv1sA1bBvSci3O3vQ28/MsHqoigdgnnaN6t/rZHf90vjJU7JPc/5XiLU/wnmRP+u/52WtZ9a9GRgb22ibS1D2uDpJ75k6mB7rZtQgU4/rihf0y8/Ms3E5n6eKy1ufsec2H0Wcu2bIDV5H5YNqE7SBQZIzH647g1PP+qY27A/U8zdBH6c1rm7pjoQ3H+QsE4b7fZSgkEGkYX14KY0JuYCOZrB1tNtqd1ppi3Dty6te+cM2qUopd8OdrzTAAs5gurweSaagKgx2YlgAEIrUM2Nzqvr58NHY34xyPVmFnqoP6+6Ga1i+fpGelp2fnN9BaWWrnpQWWz9Y2H15B7LT62nvWq3d9XbhIlyNTjAH4cxgDYNstOqVqrNFXvdLDZM952C55qRq2WwaiGzoO8fWRAX1Bm9fpSkUKx1Ql2y6hqvHwX1nfDs2GPh9WKcl57y1o4Zzro42n27FZQ6XEmMFrPDyDFEy8b+XH6vZXPx88Tn45dvL0kNS9aCXg1x0M1W4n6eCpSH8GcSsvoyb5FuyV1nQe535Lx0gRoyVCJAOvlZtnr2mkiOj5sa8nMVwAUP3tvuW5YclA3QP+8jAk8z3XOag/qj0eUvEg3Zf32dqB9HBi/3KF7AwVa0SzTPG/WBWZ706Bqz1s3wOA9AdQQyb1b1qUXRpplzFOIrn240v8vd0TLtFvD8bph3FvETDLVGG2sk5zT5sHbZI3XHbpt1v1nOjCrivbO7hmKrgp9eomIGLODmhPRzvDeMZvg+deWKbr/zcM7WRDYZZcIe/90NqBZRlJ/dXZMk2hDGnXi+93sVAg2EiwA2sNq2vXVmHrzW7ZLDiCmiV0LKCBAM+0JEc+ONsy9ZuY8iJvWmWl827D9paFHoAJbIy33d3FQV46J0W8wvYzUOREF2uM0Zl9pg8zxlnNCbz1o9iyfkE3QPgwoF9fdkOcJ7R36sjlD4LTuIa2tegtzQs4tMnKsXY8M/b34JgxyvCvG7U8m+Lf/atoQj7/qtj+5LgSmLsy9DJA0ug7RVlsJkflOVEeX4a28uScxAPGsnLyfkDfruKF3t+lRg+3Mw6MECVq0CbwrSnazaFHiyc4YVt+JsP/GMC1rYALbu+3z/cfTNDTOYaAZx4x+DJMDQAShCRwa0BZAQvcadwJBd/NLyJIBkPuks/BsLnVtt3sFTWinGYzVYLrsQUp2BJ+1YZ07v+fIsNd9cnqQPr08bCMTjYwXdlPYbY39+Ij7CCDA9/7QGOLzFA0VeZ7Q44S8f9hecfr+tW0Q6uhsPd7zhXUgq0j1AsaWdproN2OtOIDXWtkLxNchgY2vjjEh45nAQp0LH1+2nMWEizz2KDdTha8BS+Yx8URB37B1XI/neh8qYqxPAMFUPPQzoH75d4zVZKmnrwV+hnumqiU4WoPed2cPjGTbAK5FtFkJmJfaagFba/vmmkgKkKV5HNNREgJZmmsJKyS4w/Hg3wvr2NadBlOELYnDrs1S0sEEwpXR01r6FM33G7JqzwEcLvb9VVDtdis7pxTbNAaq4GisZcZ405ilwhbbLCMnEBFZf82OW65PpWNCdh+32tZdbK8Fx5eLzksKA4ig3WVJbgeoFRdg1lfJoutRu000AcSZqq15bPAF0OHH7wNQ8KBQT6P/hwGvlBwaLFVEmogbwTTn/NPRkLUmXmv7qZWZo2gU3WpwwEIVyqyEb6Dtma3l2+wAACAASURBVOhYZJf9OlaT5z1OfaHH5+J5utNf/XsTrqcwM4tD0GEMtMdpbWCdITG35nWZ9tJYW0MDJaZT+NtzLJtjUCAnXPCpJTHCDZ6V0CpkjshkkYYbopFfZNbaMymP6H6OsumFgFcrtWT+wrfTa3ZFsmTDDXE7LOOtvUE6QSA37MMNgbMO5t7RTl8SpwEBnO8QAOLzuoFsNP4ewMjwTKQi6K2kAW8o64OniY0h53beTMSxnTyfG5EmYAaIayTWMc/HQOo6xCzpiHWf15Op5rCz5+9AgAlGZ9oymBexF4EbpI+F/btsoEGF3MJYp9gMEDVgQNI5gXD4FqMeTu0EuFlv6bDH8/UUcxQpWbc5rd2kajhiqY8wU9CHwpG8n1pziHqPLcfcs+yfssXSViFE/q5m/GcLIEUpgLRttqnsu4GfjqTHWHiQLZd5XzQGSu2acGMCMhhrCRzFfc3T7u1n2YPIPo9sQ8fj/MJecgO7ZJKX4J5Bff095yycgWxlVH+P04HgmqXjmh4DQnDlCibw2NZ3wYLabi8/AxEg6265d1SaNu/bbfqX2Q3ASplox5pYia0A/YEQdgvHsAJ2qgEmiBpYW+0BWH7nwS87DwAIu6NNfL4M5JzTy8HOFPiSyuTx64ao4GN4cOECsXtzBkV+nHZ66fLAIBRG991/nMHagIgJGLudbszy0qZwv4sSlp7OfLlHG08DtWr9uupm43HbfA/0YHV66chutORW5pBAQi2LiCylszIKCdBsuu9Z2FqKhUqWq9nhIDODkNa8C0OOExlpNv8wZ/qcEJiOj24tGGpyGusNw+bI5g4BCIkI1EWQtRk4ZG1Rp3eV8E2Y9rwGCy31FpZ9GARUYGUHANQFibcPYyxKlDwQfJhrtpkaTS4aagBeAc1K0BsH3+3CFs12dOodNTa7sVoL3po9WxWnowOvfI+93PCcwAfyc827wFTwl2tcxH2DnAMAFsheMqLCtQmkLa7rrWZauS8yc+zlEkLWjYgF8yKQ4ePFvauV96PaQX+XlHsV13R1/rmnLg9agvCJtIUMpLl2+Fk+HwM8KX/nKdlu0i+l3+62fq52x8dIp+ATK83vPXyeuq9yb+Je71ljC5A4JxwT8d9d/B9nCizz7bGEMYfdp9w308tAdkWLMSIbgcmBshcIENnfZZw5l9xC3WcE/B0Tt0PFZ6tiiBXsDFDgLPsR8Ck5AiATJ9f9qkuIUS9ddRg8c7z5DDzq2iNT73IEaFP2XiUDsK6baXZq8f9ZjuP7g7U1Hjmn9fv+DsW7NOfajpT7jNL2zNjfzTyU5/Jz/5QdG9MmOb9XxpLHLYuPRn9YBNk5pi0lCsvYljgw7st1CRZGAmDnMWNtwBs/y0SJFt96uc5PQLJ/21Gf9xNb6ydgw28ACTx+H4ACEPUhep7Aw+tumeFsLdSaTQkWIQCmXSBvpv7+GbH1dj9uVJTOB+D9vM3RtBq7NBr9YTVEjYhpF+sMMBQqviFcX75mNfFNN+AYmVUuGz87PsxbD+eu//pIx1QEKhvYP7gBlgXzDXd+7yECZfoPzFb0YC2E+KFvLFEX+Tww8Q36mi9YGMHebJN2NXRM+qMJ6CwdKdSMV3tkXZO680RgwjZ6WMaodkHYmmd/SuvHpzkK43UDVCyzf7rOgWfG6YTK48yyib1DXxsm7fzztFaT3242F9E5oXkmU4FjoinQzg7AnT2fW6P1AlSr3X89MQ7TcjAgiNkbZPtLLt+7fWZ7s0CjnRNst0W1X9vgWpaVDAV2pykfbvy5Z7gzN142yNbQRVJlmwEHDe0YjnBX+iUzKKmkD/GsRnVK6FhoUaJltvl5lAz2BKbTIj2glq17Z4G26iTUwO8chmq+3KH79llYkcBPvEc9O1XUjHkTa5fqzyzHCZwCCivqh9XXYyuZ8cNR9tvNjD+Vx7ctsRs6SG5E1YGJYBJ0IFpGdgfZ+JwPrwu+7ZD73X4yExMbUnNHtYiKXejd9mJogg69uy4DQQWkbkbbE/Ge9oypDHxx7Jvf93MA3VF9PksBOT+JOba+jHvtpENUXW673ycdlhlrjo5hlIfUGvprmUE4iGVTuzoBF3oxbb211XKnZ3o2aJqjoEDsA1JZEVdQbWam1a7vH/s4DUuSu4EAXdAORRsD258ekPenZdOpRF6D8pKBam/eVWdruf94Gdd0PZtxt+e7/82Hjcve3cZO6Am0pySAEYHMJdMwFO3jsThf8u0WQrV0rqOW3wPIOKeIrbMx7L3CwP72jHvWe8fxx1uO8/uJ9u4gqc85RKwzB9ciA4arE0R9iVvaKwKL/F2w5oDouNCeY3Fk5zfvPHRZ96LqILyPJa9/TnQHkEnpXubdz6PiIKcz06YYo26KATu2Fp2dN+Flbk6NnoiOArYWCCq5LsbHM98ZD2gsQ+klLr1F7XXXE3q648sSJT8YKOhenl183xA65/5rggrTnmd7c1CMbBkBoqzlJNvMwYTds/L+vlIt3ycta6TpvDM4iRcgnX6oemvVbsviMOBLm5ebbg1yln1DjcmgACIL0+x7/XHkXumMpbkZ8CGPkYmcZn5Mfz+tq4Tfm77s4T9G2SeDQP/vT6rmDF6cwaLqTAPqX3CdUSBz35xNxKSRAnD9BO6RZH/wWkVny9Yz8t8EGp7FjvaW2gMwm1HBhKplQ7YC21gvKv71mDbGIVJ+2zB+uTlT01m41KHhOlZN4MkPdrGxddI/+8zuhyjp2bRpvVuphts2ZW04bZ+qJRCvIIgzO6Pdu4Pweu/WRcTHcAno8Vw6ZmV9fEsmM/cq7k1cAyi2gyVMwqXqfjp1W74Qk1zmmfNZfaPqI8zyDlYgRQz4EzUQm+3KOR7y8UVGmeuN8zE8RipxSPz0/+l9R4hU0lbEefzZUTL3ZAj4/cjTtZaekoDa9fCyE2OqD0vY1KM5o4ClNECWHC2lB229968SLnV8KSJtN2Hv9P2W52HSjoxcZutrx4rL2o6k0tXPW57Xv9MbahcxnGewHpjUDtbAT2L9T2NQjy+Swbmu5s/vr36WbNky318dvw9AQWADCJsIOtyBMDVB9L721jK6swWgZxHGtAxtLxkfVbBFTYilP9yxLLW7MqaJEnnQSYR5vtCBnZ/q/7TDMgM+Gc2FpeZ9Q2f25pKJa88TExvgzhHbXikpsP4im+Hao1wgDOVQY9wRiUVBEAH7nRt3C7ztXCLTM+4mJDlf9gQRgKTx9+5BmoZjTCPS4J9pBri0Z2b85tacxpurXY4ZyJ1RIkstLD9DQ7s1YJpTJV1MIKzL0llCvBzFWhz65nEM9LdnZlcAFy2baCdwfidtj4NlzhW8vCFZIcjSC6cYy9QACeAAzvYxIMc0CvExLLh1x2f7vnuA0NEOy6KwHpuOTeh1kBo7J3AATWTJYE5xsEQQjq5udH62oC8b8j7TaFXDcLM5lrePxalfSoUuRnChqJOi2Xtk4AFkZvtm9DEcVsYh182PWSfW148J0SOdabav5LEE107F23dAuokEXT/L/5EOyUCmIt4iRuNUtc2WWVT8xhEBmtPZqAcwS8Zg6440e7DtJUs4Tqe1OauitqLMQXb9AikCO3RGLxoLlXZ2ns7gaRnsV3ZCoPGXaz4PqJ6pdUDmw1Sjn1/R9amI0okIEhxM4ke1ZA3qnJwntABtAY5c6XVlE2MJzULvrIcHITHuzOABaG9Hlg8wK9VgivSvxWERCSc+WAvqgNgQW5PPw2wcqdueie3usPWPAqp0gf5yz3eK2bxqv7nvuNMup6G089aBraH1LMnbPiyoNHvn990lu9ycXnaxNczb3RzVd7aPcsdxDLvvEpDIY0A2b8M71DsMFUdiooi45TsldLpJJ90MkGV2X5wtsTg3/h3hnHmwE0CQiNObM9vfP0xAOLQGdqcR0yw5sN4dxIUi9v2YWlXgSI2IuZvoZAOiPEJ7M0CgGzi8vZ8Ghouy7NnONRwEDoaf15cfADRrVGMueoNuEiWA0S7Sa7oZlCrreJtAb0VQd8y0h4D5Nw3mG/gcR5Z9a9Dv92x5eQlAheUemzgVu0MKABOJBjVQBVOznfVUkJasL3cEe6Ku7ZhjDVX/KuoX4B3fryt1HABV68frDu2CzsDgcbHvMR6X/WlOyEex/QQEeHteLmhlIGYje2vGxHBGSZQalcCSJT7N9RXa8UwmRj183gIcASKrHMzVOa2ERcQ7s2h8V+83RNZYnBFzN2Bj8VmXayJLX3wfi32a9zcBFJaK8J3TZv5BBaIIZnPOnGoeh/slUebiwaaMLddiF8hsmVHnGtsQAYeoQqR0U9soGOdGw/Wdou0kEHtAlN2w5KQwiRjUKPdjakRV4DIy9PSVycDxQJxi3ApnFQNyv1kcUVifeU0HRK6ikUAAtVp9VRfrbsfM1rY8F3yueG+8FNcKSy2/2gv5UWcEyuMZgTvXjSXFTGgdHVlydi0ZqXNxPSrIxXE959q8gHoJSqfaz1nLplliXpgruvWlrIjlE8mQct/pGrTWZEtlbxA0uPqTBdyMxCnjtVLCxedlyYlW5oUULQg4E5WJk8s1Yg4BrANVukAEC9XZpmQi8FybJ3KQvrjsViL2KYQvAFwkZWLNrKyURYuhAgkxtr+BUgSzZUZ+67eO3weg4IIPwJZ1vXWggXyJve5l9g0yzswWcuE3C2xFAbBPvAjAFi+uRl0NctTIl0Ad8M3HMxqGpPvnFWBHCb5UclhN13xpaFLq3oD8eZyQQnmVx+FZCetvC4HTWg0JZ8sxeCmCkF4HpNMFggplOKdGfS8NngBWk3SIqfH6WNpnqJjrz0ehuKG2ITUpRsMdnvcjam4J/sy6uYvYOByugtvcyX2ui1uOE4oNohJGn6Joeu+YswHTQRrVEOuS05ytcDDGhN43BxRsksg66e9jofsaWKJh51Tg5RmWXSLwMDfx5zXGRHtYVqf96QeCRu2Uqf4YQBec3zroaTMrlQ4B10SPNS2YaDiXbAs7XLD8AuKgk6/XdgyIzKRU0jkthoOdFPRpaK/crZNAMHbCGNbNsTALRmaIrFMB120pLXAaGzPZgR6rZmaF15rmrEVQT0fA186yffKegjZ9yWz4HNoYjtyIw1Z4PVplSkwGwe2yATZQ5MZ+RWdDLdvDYCCyEb4RS7lmq2PmQKJxL9dAv2yC5YwJwORN+KZUvs9xdx0IPc7s4HEBE2IeAGNLcBOcZfMv7SwXO8X7Z+1cjLeBCtzwlrIO/+/U0yhOUXV8VRewQ7m+yDYrf4s6Tc4xx4Xj7yUxCuuoUHVH0C1wWxxwIGt/41wtgiw9TWdAVMPp4XyLiHXY8aBJXzYLipkFJpjZXRzVBQ1ri8DQrXFdhgmAYo1mB2AsM8kSsLlbNjGyqs30YKCKvrwTBnQyYK9lcwpY55661oqzbtktdUaMLpT2VQjNwfupCSbzFsT3bzo+zMa2FrRX67TRIwiUUyHP0xgEzuRi2VuIRs4MaJtqZPC5H9L2WZ06kpHQzaoC7mA3A2vmJhgvDTK7gzS5p0GRAHsVFBz+znjHJwYkBBPmJlaKUcpH5O6ZUcjiTxAYpk1bbR5iWyC7Ilg1nukbL5uBK+dMO+vgUdhy/28FgCcy2HTwilnV6C6kcCaOOevs+oGHjSeTCub/NA8cWXbRsCRNgLCNcpxrssPXmu7dSzSbMyZg9etcR3ymes5qP2rp0i4Ix4fjQpbF8A4SH0/IGBjf7yCDYwnaJ5Ito7bOIltcr801ft2Krp+7Ou/FjlhJnc1HtJe++dy+WuAQWh3cP4EoP42Sp9hzvgg6HVCVnu/3T/UD6C/3noyOCQC6gAUyhjEu/ZIBDJBFMpx+Psq8sT4/wIKW9017vGVwyHc5Oru4/odU374G2bz3qjPi1762jxQm+FRzHfPvPC+BbwaUFVSgbeL3is/EMqO52bPRR5fHDHZwMBF+tkbqT7Jxy/1/Ej5lAHmQCVnGxUsPsNOnddbO8xr0lu/U7xdfMgNxt61sm0xgp2m2Gvbfiz9D7DMl4I6ycLk8M++b/nRoMX3BYuDak8I8YEno9TjO1Y8guHAFKwrTgPtWnJ/rg+8bAQ1gPQ+vETFU+pFZ3uCgWhf7fcS4Lb9bfKy4t5iTicWmxPlnfFbd5/nNg6UbvM9S9qHOqLWTl/sYQJRq/MbxOwEUYIPx7SXpYzx8Umls5utL2tEn7LPdBVP2LVtE+kE6WHsfmekislleVqPfSSKqNE69Yb644KILKUEV469eTWzr1wcoDNbPaZ95PG1Dvd8yAwBYazKvrZwvW9IN+ZxhjK2Vkr7s6RhXA+BMivYc3gu7oT3yZbH6Mgtkx8tmWTbVaKs0XneMlx5ZH8BAgsgYdaOXL1GPGgp/vnYTPnwcSQGDGdk+NQSTIOY892MY1ZTCY4KgJoeglr8EUQN8TvTD6LkUvjru1tLQWktOwIUXg5YdFEJ4qziJtlhU+zWQx9ZDf04DQHwT6O+GFk6quptlhDY41XmGkFmAUtWp983YhBg16phZI63dgBzxDU6bYPz1y1I3DZFohXW+vli96AFv9elCWscI5kpz6pnum83tj3d/3gb51dooUoRFmQ3XmaI9pFXxGfg8cxqD4PtrOlcfDwsAiZg+jcotpcwokGO+Vx+PeLe5adc65NBJAGL+RMZK7/Vzyda9FCMzJzn0CrDkob77x0wK7+UwGvoG7RcjSWHF0DDg5ub3z/kHsiyC70fQ/nt+rzgmerY1+8CNpiDaSrEkL6WI+902e06KIO5b2Yh6Agk+N/X8wntqxVGadq6oCZRm56nOfAUoKLD38TBQat99vkp5B+1mBaXOYnP5jm5bbt7rpGRG5TzSefhm7z7LXPS+R/AkHw+0HzNqovVmNnZ82yDHNCHUbmJUS6syltQAVl7nQpp0UlJ/QcMZJC0bMFsSgXU4HR5Eiq9lhQGvDkgLGvrbke+vi/DNm3WtaM/pgOoIXZzoJMMgkyVwQAbREzZuBUywZzBHiUyOSaC9shFEMgjzwCOAHgYiPz4gvUNOX+8slRgzM+QVqPcWnHQS5+segLllqaxEDs4clHO6mK+P8fRr0Lnn8vAgAzAzbufxYB4OgKt+WVYqXtvcH2Z7z9dupW7njBJHOT0b62w4tBZBwfnXr8Y84JYyJiZM10G7GGDuc2L7MyA6gybO/SFaTTcTOMTr3TLau7fifB82j83fccDHzsteHiOFOFuDvmzB8rCfBmLQX6IWEWD77twbzm+23rQJtvcTeHr20fdubWJLbDToVspi+BlnBEUHJb67QNrmMSADS3mH7dMuUPpAtvh01mgo6fv4oLUQ7YvWhGNkaYb7bVFiVP05/vx4AkdD6/Z+kN0nzyOcfhkDrfek+VftFTrehU2yBBqVpcHrD3UKegHkJvKcfL5uAMvcO+bNmahuO1OXAFaeW4GZrSHA4PhlCZy6ta6NZ3VgkZ+7duqIoH3quj8DsXfL08pjgiG2wZJTrHdXTfCiBHHcX4xZWgPfMs5wO3YOYz4Q9HW/LQH6cl8M8gi8RNCI1CjhmDgQJWNCsduapQ0MZmtPkK93AHvOde/OjkMAFLY/2LqQAbTDtbpEkjVdwZAyRwujjWCKC1AzISbPY51TrsF6OGAb7F+4nTuPBDAaAG0pSMjSiYYcg+eRDFSuCQb30xMHDjQrAfba3SRKHvzozcd4pm5S9Q34LNWHrmMkPrZX4VKWURDQrOv/q0M8gOE7zHXZJIPuCsjUsht1oIz3VJk9UU5UmGLXQJuipOHPmK+ljFfqM9dxvCZseO+3HSGC3RBJH4Hk3KkJX5pQtvlOUXIaHbgsFkwti7bGMQR0cAEr6rl+4/h9AAoCR//NYVdgfcj4HMUTEYImgnT+ai1ZHAX55zkAFKR6lsXTVj0KrxthBlUYwAIrNZKbqBvWte1MA8CARBaHPXutFsPRmHEekLND92JIVWGMCGRmSxTSdEXe6hh003aQvVu9pqqji7IkT3BIZPPmsnDUbDk/LG5kg9ZbNwkYrVZTeCYOUmRdFFIqw6OiwTOfVQ6FbA2zCYZ3lNgEJo5JNFQVwDr3BDU+BSz1UIRzTfFKOlJKNoUDJDa2yBKEel4aukDF8QW1zObejJNkdtCpxFDfoBqd5plgj9g6md0EH3Egx7ZR06AI/nEMzmHONz9bDGUKkuZa+HSEsfF7ZQaTQTS/W2vheC035OqB8aKkWxBmu6+ZQXYxcJEF4QZQx/IrBHahKRaHBNPQ1a+EZmg/ltujfZAS8Ev+TSRrBIkeF1uVtOgG6MjxU3tXA+UWic0jsv+8niqiSwKPbgHHpyd3hsKCiFfQgAyGK5DBg/O4jN3leej89haB5ic72wSArDbIN1zheEUd9GUO9fK+lCNsDbB2h+DHKcjpbIBQgG/lnQDSSeU16nVYSlEF7+q9Dc2shP9OGPSybvU6HjyHg80Kz9xO9WAaIPtN1NsbExBmprtJ7HXMFkPUgAtfD1V/56uDGSJ1xzKAHAY58IBiphMswzVa6ChO1w6iDZ+IoLE62hVc0b1bqYBYYK7LGkOW2TEAV6xrm0uwzpVqiA1So8DmVoD59fPzWtPLEBJsMb0D6VIAEjO6orZurCSlAIKysicaJlRNsDPfr9yvo1tEVXUv1zffxanU7uDHWkHxD+gLzjJ3/P3VyVPOeRk/vz+F+UpzN4ede7lcmAQAim9Dm4HwpaI14HWoawA3y3qIZ/f7Pi1ws25dM+0JgQAg37eqEdDM/1GB3XPYsTIm13cXMA2VkUEN13vc9wMm/lz1Bur3Z3kuIUhT9mAP3GxfnwUM+GKvEteT4LoWiUhseS89oFDSyqHJRuR53H9YhSPNjzCtFvG69nV+qQOxjNNXmUeRDPrd19TK7qvBVJfPc1DXKsueyJ5qRZywUuzDb64+geR6uthzs53uKBFEqGDCV88Ua+mL3/v+sfgo3oUiPqpI+1D8buG+M1xjgPMY68EZT2SBUTSy2Tyv78pc56iOq99vloQXMN/HMMq0RZJVItQAqfPurNX63tY1EYAMPDbxc3LM6n3VOQN8/Wd8BWBhf8U1qn9Xx6D6ir4OrqwnG6sv5vkrn/bqZ9C3jPvNsV+AxOs64riFSCb34IuPWX1oXo++3vVeC5jAZwpmSCTsHJywhZXX45iO+L98DiaeeI3m9qsADiH6WmxigAnxjpO98JN91o/fB6DQGvT15rVvxZjQwIhYtr41p30hUDa9l9qZiXDa5JwhBKIimK879PvNGASqhuyrhmiKPB5GmWf/XMDq5Z8+QZ6R0ddb6B1YZrlB4JnWc1h7OBerk8fTBAe3DrTN6IQKF+kbKx3+gaCFWi1ij6wDM2HdlaAnSzHmBA5Fm9NaI7KOa6iVCABoDwuUz7+6o7l2Q//zEx22oevecf7h/gn9DBS1oHft6QumAecf7r7R2zhhCsa9oR8T258ejry3yErI8wRUoLsBHPPe0R7DskMO7LBVWHtkDTfVruf3Dee3Zm3bPib6XwAcBt7ovmF+u633r8B5t3rb7S9PO5cjuXQwtQv2vxxW7/bD7xkAvP97O6YxBFoCFPpspRVaA+63aBdFdXJtgvF991o6ZwZMMUFOGvih2P70iLKR2BRPo7ruf/thzIRXb3npY03xsqgjnghGDN8ltBbMA7mZiJ/+yHZubCMYiGkdNCDaPMrHI40ikIZXvFaWWevDxVSPwwLOl7tdRydwlvY4TSC/fF9bEIk59EFljSx/g373zPSPd3u3fn1LIUgeNHj3+7qxuIiiiDg7Y8T3rn2ERSSRZj4fNRli45s5Do4UB8DQWrTEisCSFLW4BumdLUEDwNbL02ohheceA8YFFuB+d+Evvo8dmKbVILccC1W1dp3qasrbBtw3RIsjF6u0ntPITUgVFBnSgk6HejHnx1ssam1lBJi9c8phrIkA0brZGDosbtNj7HIS3NmaUPVs5b55MDYA15jQ13tZizYvOhtEkyXDuvDt7x6rU0kgaMCYH70ZI05krSFmpv7jac9dKbtbB3TPsi2uo62l888gyZ1nfdmsPvvD5nO82B4gzxm0/eZtHvVlcwfQHe1zliyuMbJkN+FaeTzAemyy86zFH4KZEBlX1awtD1DJnG55f+T7x2OqgQov93SmA2hr1rYT7swzm+42Uc5hyQGyJV5sbNtzRFYvXjWCh8eAHC3A3KpjlBT5BC7bYfXA26/ULDCHWnv3awvah625uXec3zf8+Hc39Ifi5d8MY5E9h9nj3rAxU+fnWYJAf24ThFRrEznN0TRa87QuGr2FlhCALA0BvFTD5rW/PR2gEgQ8ojk3fN4Ivhhgsl1hl2Au2Pr4yECy5x5XgzJzihuOP96ctWDroQ3FuDWcLx23P1mpIZmE6QA7wHUwMyaxnuJdOc5gEgSjjS0Sd28LWGrl28PbEMe+kGPGawfjyMeCtehx3drWzcFMMh2W5+c0vj3Wz+8baqaxasIIy1+DsZdBj9aafV5q75ivW8lM+7vR4CU9ua74PobI9DFCb0nGRPv1kde+mb5CvMMcL2bM+Zz+U3vH4x+/eqmstbfd//w03OkyHgqswor081rRQinr34LiaWLj8yLKx/tQte/vWwIDBBJqacJmCZJPnUX4WR8bNE+o+fuxlLVxDpziL5e2wUHL52cpCsk9yOdFXOAy/CdV22Od7RZ2r/g+FPyOlq11rfCYgBynvRveZQIDueZ8HdZSAgDAMTMJ0er7q5/WnXX18hKyY9oe4XMp54RgluST2L7BEtU5lzbROjXsCoC17IffF2oK6Moi93GxOCc1MKAOPPqeEMBCAefY2hFlzX3JXGS5Ypn3T6BYvZdOULatITA/11uU6UHVBcA122ADeT0HIz9pFTQxBmYIJvra4XUC/KJPOBIQiCRaSbKgf/qMurYgE3fi2ijaNVmwX40XH3dMiOiCM4DPhgIclLFRskormBGgQwGAvjh+H4ACj1pvxokJZK1lNpXoH//Og8DPF8ikSXkmwQAAIABJREFUcqG3w2mp5Xsc1IKcrmg7so7VDUp8r8E2/q37y+IwfiDoF6M6Fe3QRC/d+Zy3bc0U1nuXIvA0ANl01QSYCEf0+jJWJoXVqkpkY6xeaKUeG23Lh1ZhLWJabgihJ+EBbh17q4tEtM2yuliFdJgBpmPbFFBzBAM/0h6U19pO7Iri83faO1lpgR7zWYP+Wb6mHsjT0V1KYyoS6t/7VM8NHxdS4PhCvlgPZI6baN283QA5MBaKtA48sJ98jDUdWfGN5pTQehCd0aayilACSEbM9ShOwpequvUzwKpD4GBDKLj3i6O67wVsKpsg6x5rppoZGY6bbwpBvwvGRNls6mbR3Fh/erd8rKQsWNBIfoEWXw8/X3Qj4OfosDllNJ57OV2O02/W0S7X01yQ3ExaMdqAb/xp7EUtC/rlwezIwnTwZ2lWjqInsHBcIxvAwLw8yxXpr2tBy3UWm8vP2H0KxSyrfR6WIY/e7Hyn+fdia4W2jDbg6kTV9fLFOLMk4Jrti/Xm47pkQ+p5uPds3YKn6wbK61eniI4GENdbysEUAXbz82y7WDNq6vdi/77MuTuEcb/VsS4ghHW5sD0luuHQ1pXANM5D1l0dkyXjrah0yfgd32m97B+X7O6iUs85ckZCai0g9Chqi98aiIgzmZJ9JqHHku38yjwLcgzV9huK7bZRamnF9g9Rife4tl/TcvO2/17WXH22lnsMXBxNfc9Y63H92QTQl22157GXw+dQ0q5x7xHJ/ZvlV619snnmM/n5uuk9cPzbaQACtTo0fIPV78nxs33Hbqes/bpOguHyORBJIGuuwYpe1mM951c2+6u/cS8uJRMRfPIdHPbeGrUdDqj6Z/19XvwOXuNqY673+MX9RMbdfx8Beq05v7w/8lRLWtXvjqKz8bM95eL/zr1h7ub4tKPY2Ko3wPmk+1/tfLXLwOILywBc/SWTXvw755hMY7//KBnj+9ku524m9rsALeySITDITfN9qQDHp3G4+upwYOKrObwGo/UZ6nr1+wSw2rLqh5VrfrpO/Fz9SW0+Pv1iWytb2X9vrIfVHwoNjutefF2b9I3RVz2B5T6nJR5Yavmz9c15C3t7eUaOa7VlwKI5oBiLO/KptSP9rxrMLve6vrPLtS9rd73fdUy/OjT2VQNgA2Sk/xNADz6f62dBNn3/8G3/b+a+rkmSHEfOQUZEZlVPz+5JLzKT/v+vkpme9aC7vZnuqsyMIKEHwEEwMmv27p46zHanqyozPhgkCDgcDo5NiXcj01xzX5dHVyj6zPJ9dZwZDufnitsd19RXayjfNw/GKF/5ien4NQAFVUPXVAOJ6tdliCJy3lRBv1RjDvSOoHKlOg8qZw8jJGAtuy6s/xvXRUY9ixu5lNmB6sjeiFgWoA7xFc3IWSmQ4xjBV76v1bLN9TaEWnStkE+rd27/8gZUCaXoGJcouyA7Q60TA++dqs4nx840FBYc7wsKFbobKVensoSWnG2v51tc8RirGa/jfTH26j6UsMvDHDMTpyroFxM3am/XcODUh2JTV779eIQoZLsuePxtBXQ1DYZHB4EGPjvrQsWBmHp30cb3FegLRL2d0e3A8f2C471i/24Mg+2PBkDHRuqiicd78fpZeLtNzy75tXq1TbkcmkTIAHWhxP5+DXX57tkpdoMoDtaUY7AICvUjagEWmHp7CrhIkyvMXBXPQO3NWCmYndzoDsKs9mMfqDfnHDd1Osm/fRuoNMzIROsbrpU3Z6r4+SJDXYplvAHLPC0L9PdvpttwewxDSVrb7Q7TV1ji+9hW0xChQbvdDbm+3YBSIZfBMAmE9LFGxkP8mYaQnv9vWWaAQRVyHFBtiM4EZypaplCy3mxdRxaa19wP4P6IzWTQ/+t8nxSlXNeR5a8MANN6ZiZscRoas5mZcYFiWojUvGCwF8i3v0+RON/ThrEuxrC4Xlx3INfv0TbZfci6JqS7x5jGs7JuDz6OLCW4bBbw+ObPlkra23Aw2cHBM4p6HHFfnPthW8lQcUBCWC+Zaj9jrvE70bKuxHuo//gBXSr637+ZFs3tPgNVfF/AqO187J7p4Tytlp1qivLz09YGszes3U5ZJAZagKZnL0779yzuYx9MCPWM9OGZMXZmyA5SF+hWohRAEtg4porVmGu+VhslEwzI27fNtGceFF70MhRmqzI4kWvCfdzEA9IAP48eQZntJ228E8/gRuu+bm18Kb4IWHBX9o7y6XoStZqNnAT3FtefqfbZ++EJgdEGk90vdC3GdvswtpkeHf3NMl9y2L7y9q/N9o/P0cKRJW1kHJY/hw6LXi/WjcA7ULBFcr03L9cokZmObgHFKMV9M2B9AhsINDGIEgPe9+9rUKiXj2bsvJLOdwpqo6Xk5w7sDeWjTTYfGDoz4mPYfrt4oGnva7k1lM/D9Hra5orwgu6MLrYGnMTkyFoDgh2g2xqlB1aCmXSNaD8Y/PjaEWcVTgEc1yYDLGb0e4egBPBi83aUN/H73VkwwuD2aMN2ZpYVbQbXGOe8f8fmeSrPYcCf23x2BXqbqNcUBjXWiumikGFgdPOTj9ll+Kq7AfBjH9Vhi1iawTrvlEFW+rZ1+A+mcWVrtbCN4dGdHbMYA3TxbLazVAJcyEkmYLAERKwlorMZ5HC28NVayUpTwH3Y0IS4LCgfFvSFFoBn083WeYC9FGMqHK7b0lyPhCKymmwNx446TPvJJ1/KaAuaQTaWLyTAC1LHO3FthWEvs86OWsItBXParYNYaHdkfYA8p3y+xNzPLBcPcBU99oo4mDBNAE18n+8miVna3+yaUT4lEi0g+9vodCaqxjRkUF5Tt6nWoJ+fo204gfVI8pahKwSMNcJ12skwVBNK55HiOZSC8vEwXyHr2fGI4NxtwHmtcp7m4xSbReliHp+zIGXc94vAmPoB+XfUzqKYYk58Sxn+XDqi1JMtKclk4FFeIO08Z1mGT9YboBKJ3Tjyve+uhfUKpO19+lmB8OeFbFiOCxm9p5/P130CItLxawAKItDL4rROR4g6BiIkiOxElI94YEyDqyJo77Z46scezhRRy7I7rYcLrVbLWFBMik5eH+hntK85325yJpn9kbVYMuD+MHEvUm26xsKwoJ4bG7Mv5lxPGepqDqyyb3AIclEUqIz7A2bwBL5/vq0T4j4lOalf4GOki1HxWXNc7s3KRY6ODg/YchAGQ4tN5MudMtaDCdA5qwSQwxHZWqCLgxjdHEQLppGynLaBBFU0Mg7irI4+gRiAQL22rwCDmusOmhaYCreDIt3/Kw1gJ8LjWlGaon7CDZaiGFXFUVDMOhFFrLREEpOhYHQJ8eewrISOzRDwd29iigDQvm1R02p917v3oNfYBKPVZEZxGRQgUclzK5v8rrgZUgOBKGbzz5I6CiRKJQM01uL3oFiGoXzstnZyQHvO8GRgjf/j7x67aSzkZzodoWLs55ipZsnZyjRCjgWDfM6xVOto1+tjbebNwO1PiBIxaKZzAgw14ryxAJExtTaSZ45ZOn/rMwodDyxfb3TUwyAQsYxyBkn3EOfhffL9vKjRw3G4Xk36m9jc0YIQLZxpeT4H+O6+qL+LexKJspsAgJITP8a0T+fwEyEynnmT5Byn8xCO6hAHjNZxdJ76KQPpwUMGLvkc4jolARjTsTvVU7LFJAXjoiUx7WG01hqBUyF1FzB/wkW1orY4BR4AvNa+oBfPZLs9ID2VASfFA5GCtSgTjP3K6dOiCM2BaoCPHsdwnOtgBURQm4JLlQKs1fB8Uryph8AhFkEvddbZ8fvIzAkTJCxWugLMpRdAtPKLPVol7DJLAfXB3431yK5DXP9zRsuGgLX8ERxyv3GQoV3rvK7c7wh2gxooraszAFYXWVaE7k68S/XEyOKlRcW0kMregzkRXUP4jts8F2w+DMfe9u5qNHQ66LSZuVRFNdiBJbM7YYFR6RrAiLhP07dlzrRPL8X3i9Q2eTryfkQWytFmcEHGvBjPedoLmN3m83tiCJqCYb8f02Wy1mZSnJqdhePO+8y5fTLBM5/z+XvRkq7ItL7ifMdQ9Jd0LgDDz+NerqypT/sZhq/zJLyXx5aBsYMfaLDMMwB3WbDcFFoV5aGWvDqSDdwNZA+fbRWf0z7f0AerJwck8U4JEJXx/gqAY3lmrSwF0Aplu0IGPF1svsLWzaRjoMaCmDVH+tM8DHHcHMATSM0igJxvTJrEOLmODeMvBs9R1qbBDiHLIZgY3cfkVfnFaY7lLgnjHfp7e2KBpZ+51ySf74mlwLHxsjEDJsY5XumYEcwE4GCblyQm9qkSNOO90h6+ysAX88EHI6EbcyxuQuK63BPtc/o0NiFi+VfHeS0ACLpDlMu8uE/uAblMJ/uMT58v87XSeWxOJPvEzwP+bukzl/S5hq/YA/ZY87VCR5DXKIC1gTr5r8lXnL5zfqbMTj7ZnelwxnTW42LXiPhd+8Kv9eOXABS0Cvr7Zh0BmjkQwiyfB24sM5DudFFmd1qDXi/QS8X++2ZO26dnhDdnM7QD+NxDCIiGRjADCvbyjkBTqXkQm7JPyMicF0G7zjWm8rGGArO0DopSAUD93MPAE8kNAcBHt9ZYbiz1fQ0Qpdx2yP2wgI9GYTFHlrSrXKqgi+DwTTBKI2qijEVgBvS1ol0sEyatoH4cdp8fd8skqVonE/+a+aJ0oCSukQEL0it7BbYflqnvq4MqxTYMue1eN7iiXZcoxShHR/1xh5ZiLIRSoQDq3bL17KN8vJmzJ84iCAceQGkKVbu/IrCWYVXQLwYm1McI0o93yyaJszjKbUfvBjKEQVzH3FMB+tVU5oX6HiKo96HmDpGo+c113NTrKI+GvlXc//sV0Y5UgHobG42uxbJru43FhGKr62d0zFmYRIXLKr1Q7+2bHTV2e5AS3QH1/jCa/Lc3iCRNA744/672BvnxgUkAMNfcc4PcVtdXaC5qqtCrr+nPT7uPi+stvNhMyHSYAslsDNPY6mO3679dgV0RYpCljE4D2aiHM+D3nQPjjpQFr9Dr5jXqnp0OvYcGFNcfOJpdZ1sN+T8OTC0Y47JErtOD8u9s7ci2ufwfMDL3BBOSdkU8pzte2lwwSB8zWJDe/2CB7AOFXlNXGgeNUCvkehnj7MAUEXN5u87P4cGWwjI7WscGFc5JLVbvvO/2vkTmTAMPOpP827bOji1bEi5e7wpAH8aYkHvqZZ0Cj2hpBUSnH80btWs2RHbLM+6052H7azHNnbWivW+2rn/eEG2/+OxNrc85QeWPR7K/lqGz7I2g/nkLkceYL7yWWFcedhWaVO/pSO8py18L+rerZ/LpdI3uKSy1szFR4PMIsFe87t3A9DLYCR7EUpW+rwX11hxMXSzI30fA1a4L2vuC+nE4Y2te47pZ+012PoK00BRQBgn3fQAtxUThCN6Wn/fE4CkJnLFx1aVEFYCByDqCUwfopWno74Q4VTH23PFbte91RduWCCjqo2P5uY9yqK1YS8qL2fHlw8rTRnA65nRfijndvq6XTwMFp04QBNI+7jbfcmbaW0jqaqCOXjZAdvMNDgve9O1in2GWWQE0Y2pMwIo4kwTN2pEuPt+kQIp3lSCrJR++huzd9ABveU4sZdhzF+/Uo0G21fYX6hDktXl2clOiyM5j70437wUvo/sE2YV4NFC4MRgUXBOJeRPBC/eT1ocdrSXKrgxYWkw3y3288vM+gxGHtXC2zgIjYJGuNgeLsWyeGQHpuUWS/kQCN+lrsmyFIox9Bw6kANd9hgNY/zS7TlaPpA4R9XiAbW/N/6y+ZrnXjK5jZM1Eu0EvZYDrhGgdpb81gSoxT/0zRU2cWY42aP7d/ReRkUDpA0gomjQmEnNCRazMVcS6kHGMeO39sL2ZjE3AkgFhwx0kduAi/BQff5ZbyOMY3wfQpYIdfOJ+CHLEu5rn71PbeF6Htir/7eTDzSeS8b9pfYyYRQC3CdV1dAZwRf8jhNDXZTBu3JeO2Cc6gfnvMxP0fE8xX9zXTAzV0L+pw55OpdfZJ+4YfuY5cZDHjT9zfhH0ZnkL13cep7TPPpXTMsGWxtwYSomVcU7sEJgKQMKTKudy4oxWvSpFjvs7JbJc92v2cTvQywBOeP58b5mhewIEwvfiPWbfUmX4oZGc60OvQSR8/AFw/DXo80sACujeMnA/kNvzRHa2DFp5BKYxIUlzAtY/vQ0YJ97egSpG+bwfQFOrd/fyASuVkYQwlZMQ0Li+CUCWyMRPKB4QmfNR/oCo9cRjhxxlOCB0llq3l9oF5XaYsUstmXQxp6F9vwLfgfrzMW20DFBxdNRS0LuiXZfwX6Qb24BZ8MKMAIMDWBZquTXLzD/ac6bQDfbyYc6K7M3PU9DevA/3wzb742pZFxqJ4uwEa1dl46xeXy1ottkuxRzERzIWzFy5FgIdImamoIrl5xGZKGZ/ysMBiZs5djkDUgTQuyGVkU2qBj5Ig9WXaoH05bw3BPPCxhTDIBejh2JHlCFYv9YCYUvQhXPN51K1NqRDhwPD2UjGH/yZAWjvo7f9tkBXz0pyPtFZ8uyyXp2S/nEbaHQ2fgw+VaNsgGUH580wMtLFs81+TeF3mQWP7gVpU8ibAanfAHC9juCG95XYDhP1Kgf7/GwpANbRwpObVXImRlbkFFjyyBn31CqHLSUJxAhgY0gAczpnH4re2xrBdIAJgNkXb/vD/uD5+/GZ033F+OWWP60DuoNih/k5474yC4WbDx0Wsc1JsIACjnE/vQFsicN7BkY2jWNPMIFAQHJcplZPtM1586slghql08N3TEcr7tXPs5Vw7s+H5u/lgwyKYDnpqO/tpP4nO8cstTMigg3H3y/FSpHO+i49AcV0QksxOno4H0C/rJ6p7RYYJ3oqWx3qthjjam8QFRRxanWRuK4uvhfVYq9qKUAZdG10jTVWHofvVX2652h923tQfOX9HdSHCQE92jlnQ2k1inOB0YTL3YOuRaxtcVNzxgEbl2Z7CoOT8dI0wJCiig63uWsNurOJIFL4LDm5IhDPzsh9j9+fS0YMVCbdG65zVGz73IBeVhMtBSI7XB1MlN5R7g3rnyY0zBJHG39BQ0E5ajwn95l668E6CGYb/YXqy1IQWWDTkUhlMgCizp5lYpxnkxNu/o51IvJ3S4G2dYl206ZlZCV8AKIcLzQsRECmVNkbtJfB/BOBLmp+C+nhmWmSM/EMbAE8MbO4L53XNNcmAchy+hv/Swalg2yFFHgGmCKjrWK+D58HQX8miMF9JTErZOHeWOZASMa6s/c/bJW1QcT4m4+HnBkMPHzMAlTgnM6BUHXAL42TVkAvfLceMDYXPXQACb04KOc+HINBDoP7o3FPTVGkQ3eJOWifm8cusv7AyGKTZYAyOp7k4+gDEIDZZ6k6wC5muDpGORjHJGsKcPzD/1EXNjS/7Xkvx/y9kubbKXDkfU6sisafywhsnQ4uS0GUV6sOkPufBbxxb2UG3GLe/0Vwlsp+4P62Li+em9ft3TS32FbV97byaOP9n/2yAgACgbes5J4OjH3Pz8+SmngWjgVjiVqGLeKY8B1080sz0yzsNpkX4SudfJ98ZHCFjIT+DJJy7j5pc8XY+r1lBi5twTr8W/pTU1ILtr8rhh2Kslm+i+k90mYWRJ3zuQT3zB7N5zhrl+WDXbTCxqZEBOdEbpV9vmYeH/73DGjRzvOc/+T4JQAFU70+nHHQZyfeHUx5Xy3IrIKOAvRqjAZO7KOj/nwMRNsXfl9XYxq4Wnbu0DC15CiOThVEhkjuLVDxCOb83OZkAdRMKrsbRlJEAZCOHUrldJZJPT26Z569GwAQmXpDllfoChxvlhHaAKfV6Vg0ZHM8BEVryvY7ff9+oF9XCzIlqfdy7Luh0OV2oHzcRz0vj27XKfdjCGm1bmhncUBh984GG2mcBiaUA7HB6+LtKHP2opiDXG7W9SK6MLizPfpnuwOkCNS13A8DJN5Sx4Bj1DICsOcOIMDmSL8saJcCbObwlV1Dn6ADEPWAJ4s6CYZIFtRb8tj9FdbSEbUGLCPpddVKQCFuEui1jKwc7aADTL2O+uCpmwO4KSKc7toUIfQGRG2etI7+boh1vT1ssyzFjEsOyh67M4E8o3pZ7bP3R2xIwUKgNkhk8dLGJBLMn/Gc8mwAewfuvmYvm60fdpKIIFRfG0AePu6BKjutX3wD1sc+gl17AP/vKbAt8zV1YLBGjxOJ51bYvNPbLZgC0wbSmtUe1mrX7y0C9SGQuAxntitMYMScwfPzGSUobT5FEIE+O2fEGLtORDipp80zNqvyfK4GAH1GsrXH50SWcb/U71Ad48MxUl7DxyWE4whsEIBLjnoK/rLjHn+XlNGgjU62KZxBt2vnNoPhAOW55Rko7JicmnG9MlrRxhjSsRdATu8dHtDt6sC2Dnpr75DdnSYRyyirB26QAJyzrkBfK6R0lNuDk9DuV4s54nSEZOjCqLpsoCrCq+b9H6ZjkPuAqwdPBEVZtsE2UpHlXwrk4VpB3YDvAXYjhOXa22olEAyY6DR2DwRuCEX16d0RLBBBKRb49yITG0z2U+DnwQz3+wATXWcDWtJnx3+1CNriwMJi/oNIYrV1AyB6Wyxg3Z0x8AH0dUNfgeI4aN8AqKCtZdJ2IqAt3Jf93VFEki0XgTEG2tRAp67hR8DHVSGWveX77AkYYpDVED4SQSC9rKHt0y7VBBeriajVP44pUx5ilKrGVFgUx7raLRYYwFDFAhWCkrQRDABzgAB4Rx0dAELo3vRnoJBzuaUgIdsHGYwY3Twhc3B9IYLknBl/OjwAomJ/6F+JgFlRXeosepbtFI+e9uLia4FfkQ65OdWeLWzz4dt0BCATvftUlpHHgPu6r5++WCeU8Cv3A5Bu5UKyBnsnyk/zPuD2DfC5d3SUswh43ne9zDaC/NxxxBwlpC3Tn1PH/PfEnbdumT4Tz9et3OepjGRLYpH8O2BOGNcC59v5OfNY5pJf3+/DBpFRku+pwwAx2hCKSh415k68QwLPuayG58qBL8f17A8Vf558fT6P/124vhOgPO2bedxdBFa8G108w+5M7y4BkIeoIq9FnaL8DEACNfwaZMtwfDmX83rme0n3TFsn+dxI53n1+6/+JsP/Cz0anPbeaf/2r3V9Og9erJHs20X50tmvpR8EINicDNw5p7IOC2DvO/t6U8lLig/oa4XfddrTRcKnm0CDfM4zs+JVsorf5/viOJAJe/Ldn7Qjvjh+CUABXY2+uy6Q0kftG5HJo6H++yfqUq22jwPZkerbMAwaEIusPNqo12GZgQD1p1PuH6nu9ftbiHFRfVovK+7/7WKqyEEZRKiJMyCNDFVxpC4yGj5BSRFiayenlxVmt7wGkswLiLhjYPT78tms9OFITlvr1jLxukWtar0NtF6OHsF6ufk1LxWN5SONtZXdgRQXwnS0W5mVVrXn9SCfQoXlUdyJA6BWv2elE4r68BKCw8aL5Qq2KS5x/eXfR3u3zEgBMEQo+wiuox7x82HU8rWEkCSFs0gbNXQW5hz3URpholl2jxQ3Evh8uTV/RyUpXgMQWLYqlLL7AB46x6YOJ2iryQgbos9nKgx2+A6a0xOTfsSEoMfmAKD3yI5FzTQpndtq1P+9ofz5OQxmFqlJjtQ5ky+f9whEeFjbVd8oCCrkAA4aWXsLMtLfnF4l397men7VcOBk28YzlgLZ3PhlBsX9DkgxdkTro6UfjT0dVgDQDpHFRBZ5Xga2EwjiwTWDXRrl4zC7MmX6m7dVWoFtizHTnbR6heqerlMhG0Yw3xV6v4ehVmWNpzulTp2TZTEgojPLq8D+QAj/FIGsVwM59n08A9s/8edliJQZo6EPgUzeu2sxCDP42bkSu/bQnmhcAnbeM4rt4xegVWT40mbYnVa8LO7c9IGST6Jlp3PTMRQxBls14Cs2Q7FAKwLst83Wzs9Po9kCo/yHonK1DCZaN+cyyop09X/7fLhbiUJJbU1ZYhetFz0r23+7njKJzcBoKm13tW4+ANizXkFgUSHtGNka75YS2Qc65z4mUiSAeO51egoQ9ELdhVFOEuVhzPBc1shgUaNhdMExxkTxa2TRQpaalKPbMmO7QyDGhUGYZSIPYwQUH3cUZwt6ScdmLRyLazL0zcp7hO9INboHlU+OUweFSWVzvQjfZ7RpMOUEMLFjkRD4RYe1Dhaf7lXQ/rZ560QHW8RK7couIJhdHgkUARB6TgDqxz4c1+IiiAQUHPgi7RrHqCMOBged95MooJ1c0Nd1UK05xqcAgyBJsPPU4zBODWcZRoLE53+0ZdQl7lMJYJEXSwAnM9G8nMEn+LBBLtqaM63R3pR2kuJ52dZMTrHtrwWDOTnaWXOSa+w3k6CgsxyH/oLvN/sIGGM/3FZ0Jnn68MXsPjxB0doo2RFB4b3yfZM9lwJMltSEtkLoZ1k5BoolPQAYgzavY+5p3e8ZDUWdNScymIkwX4QtHXUxIUujhY5xUUWw8ITJsDbsQgTbZFb67/WyhE9D/YEAcuibsYyXY+iip6jOxCoK7O4PNbfVBIcLhtYYAOojSRXrUFQwyg0BL9UaAVNJa0DoC+VD0lqqnBcCwP18au6wtaHP14lpkgQpJ/AsB3ucS2c2wikw4/wcmf3qYy5jzjB+YLBaFmemMRGZ5nCcVCcNibF2AXbYkDzvM6svwGSM+Ry2yufS0aw0bqkwprGMsh3OlSQ6PIEBHpep2vMKMNbCGXzJ95SebTB6bL4Ek2epQBMoEzST8KH7DSFwqDO4k0sVsh3N95/nzuQjSbBz48jnf9VVjf4ggSpvhz38pJTEYzLh/F3+G5h8ZOF51AGorLfBUgoAQCqrTcdgpnjJRAZH8vFXyT78KoACxiSKQCvqfDzTtx+msJpffHlW5H2eiB1oEkbwSbQjn89RO1IqiUr2rQDoKA/E4mANe9RzsoTCHdwJucsiSqxF5W3Q4eN9HCljLAD7RpOqGAHZGsiWAAAgAElEQVRsokwxqwPAnRQ3sFR7Pjw7/74NESwRu/c+HGIUgF0sLHuRMj6qUCQ6oDtSpL2JuuCTwgCQXQNssffoG74/E0sByt5mhxawbIRvPsPZ1snpimDBLulI9Xg/ESSL2COcEEqKMloLL/+d+ua8uEJ4Ucy17oBpMxQUBwum1mzMKJznmMhAdoEot+H4k+UQTIYc1Odsh6qh85I+l51KzreuQEvZuzLfW9St8ejuJBDZZnBeBxgWpQjA8/VOz4oIRDVlVU/GMIxmGeDGK0S6qwX5qWYSrYUmhGzb6yA0AxtFECKUrw4+m8hAnZGcLVVAHbRhHd1UFtQdfW4OEggsW9+d5uf/TZ0d4r6AcZ8vUGFTi+9xfyEaxT7vfn1r8QkAji4TSYfdejgNwQ7itc22BSp+vrfzkbMRwLDPPH924PK/kxP1dGRAIwcKbO+bswlnauTpnDnrCmAKAgCEMx4ZeQoUesAHsbKNAC79HCFWpYkdgnkuk1nVlxJdiJQgLO+DDK3Dnu+pHCCPSXIKpPp9AkNokcG6f94U8eX1+XjaE/U2gJgqAFoIpkV9bW6jPDlrFqUaE4tAL6zbRHPROfWAnXtVB8ioiiwq7DVHWZnbppxRtJIQje4O+OQ9jiyLZLvS1fcFHfvHkSi7TvmfkqzF2ydKGbR6wPZOUrs7ULrrFYXA2BiSzCizrJm4IOTznhDle9yX+M7opwhGxjDWMxwAODm/pwB5EvDtau+JH0nzLeZl8/2d7yhvOcnf5Rw2Mb8cMPQY97Bvvr5CbNCd7Agozs/9xRGtsrUHQKVpLPLnMvhCP2c+V34uCQCctfPmngwRUwAOdPShu8Bnc4aInJ3ubGOpF5DfUykAGUq1Dr2UxxwkZjYp9U60JX8qMs2cmz6hOwBvMzdR+jPoQio3afy+HqVYyQWvrDkwoi3o89yawLAqZtcKbbUA1Z/lFKCxQwXPm19mACDJJx/7sI51kd/5q/l02ouULCkhG81jg5PYobzaY17N07M/QX8m/S2zsjL7QLuPCVlS/NzDr3USAI7vQey9nX24GAd+b9xbTrK+un/qvDCJGgyr8xicGR30szh+IeZ98vXi+1y3L/zkcwD71XifYziOedrvpz0uH5xP9eQfTn+nf1TGWE72N+3J4sm2XIKTAIKnLH/B8LfI6PSY6PlZHRzgfTEx9cU7PH9vEmnMnxX3U6e4xp/1zD7+Lxy/BKCgtUK/XVH++Egb6xBOnIwFJzYdh05HDjEgLBtA68C2hOgVYPWu8IWj1RTc6WjI7sKHzN6I0+MOjRaCpAzKw8oz1qidT7NzqUMQSA251bWiv6+Wjf7cY7LZIk6Tmyhf92x1kUnI0dS1VxObvD0iM1QeDWgKvYzewFoL+vtmqOdtB1swsuf04301lsBnQb0dVuKRDYe/Gzrb/bLg8fuKeu9RG1sc6DANAqA+FMvPZn8n2i4ysw0UPq7dsqvvF2+hafXv5b7bJr8OY8gWXvVzh2iHXjf7TO8oHx3lY7dMmqPJhhSuppPA7MvRsfx4oNxrtIAsuzmIxzevp12rt5asuPxjdxVuv+ebZe/amxuMNtgH+9+v0CrY/vVmbIN/fFhLt+sytCAARFtMYHS6YFlENl55fbCNHWDzgDWxTS3QcHE5+fERa0PvD6A3yPpbzKcwKKUY2uznA9eYI7naOuSyQa+brYnW7Xza53tblnFtYBiiLJR2NOjHLbWgtI1Df356xn0dz7nv7qj1cX7A7lkG2qzJsbPARcPxkWWxDP7HzZhOtRroAEAfDz9dGe0deRyHsRJI+cpMBJ+3/H60XmRQSQCiAdgEQLVrawkKcGTn6+ZsjdRGqDVAChSpy0YDhDR3KSaMCIQQY1xTxZkPdi3L9nldvL9L9AZlba2zJITaF9ARMbgREnZOaC6kBSsA18MF+zJwkMYnBw6x0YtA369jDvp3xRWmh3L57vY7lRWUgiFyCODN3wnLvPYjGBERaDgwopyXXdG/vVnLNF83yx83L6+zoKdfLPNLzQGCvhAxNkJM0OQ4N7XShNaDJVduD2itAXrrOtpBBlg4OWhALn3oa4W0juqCw7IfkWkiWMHSwMhUNwZafaxD/vvHB1jGgFoHWw4YddmLZV7KzQTc5PaA3kt8L/eZ1/fLWC8MbB8HymHMNyuBKygwDQLqEVjW1t+3FrR3piVt+UhX68yEEbT2zVJRupRp/OVwEIWCoV7GZbZ2jVIyZnmil72fW+4a4IV1XbKyveGEwpgSMGFFlivU2xHzd2K9Hd2YE3xPBdi/b85mGOCDiQf3sJHsXlHuewR0ellNI8rfEfGXYHp4S8KYF0B0W9G3S2hDFRGL5bqVUtTdAWz3EWIsKSq8VqiL3ZW9QY9h45kZNdE6WxP928V0mwh6c28ADPwtAv28WWuybYVeN7TrNoAKZnrpr3FNZ2ZA0mKR7iWgtDFnECW3OuX+6SwbA+0H0MNywZgjZBC4PxcMhSK2rlkC5HNZbg9jK+RMOO1fFveFvzdn38YzMSt52B5Bfy3E9JqXFJU29lECnXyu6wJtPvdzy1ZNpTCdHScsWGdJ4OSrNh3Px4CJnwmNp+QncD3TV03gUbBClh4tFcNO+VjYfKpxTXsPKezhfHC/O4Tzsm+dQZLsO/UWLMhoJc17W7zUMz1TZhHHZ9w/Ue7d7xcb94cJe1IUPQe1AbJxr8tMspgHmAGUmIC+N1CfQ/VZm8F/J0cb4pK1GsjJ9qRNY68c8z8xBXPcxGEsMmj6fh2zH4md2nUkoFKJqQIODoq1mKaYfmLrBCs8g7hIgGskNBIYeQZu2AVKBHpdjYHrSVnuf9pnto4y4ZLmHN/xUxIiB87OgBo6VIMBGnM4l/7Q36waz6CnMY7rxj8FEAflGp5YApNvzaTU+TMp8Jd4f+ckVYX5hmXYuKksogI4MEQoeyqbOE3eVCaFLAz5xfFLAAoABh0w164DI4uUUNFp4jWjT2sDsKSsBxCfM5EtBiQ6o4V+DV0XN8ZpwwWgR7cAmtl8ZpJbnyhWk6jQC3SNhpOB9GTAgclA0nEaX/bFkrI6oj42pDeKMSu060SVCepTABUAPbR2EZQGFyuUkR3Jhsl/96pl6riIPVehboODCUaHPb0TfkVkZLubItrovTLK7kQoP686MQJCjyK1+gMMbDCVcj63l4GomihXgdeYlQCMsuYC6bj5Ga1VZHKIeYvsonF6Z3zW2BymL415HRnTSieqPG0AIaTFg/XVkWk6odr5s2eg4gVwEUc2tLHehtF8ajuThfjy2jyjwKw9K/BypjKNQaCqX9GtpmdzBNfpsrGpfPVc+buvUN7z78hEeDLoybC+QtHTNSyocSeSn/+r+8i2IB/T+0gMg+xEF2DSQejUVuhjLB1hn8Yrrn1y2nwdCZCQ9XR8cY9KZy3YLWluZKf2ZPeeNrJXB+mobJfZFVrG+QSAnmqStcoo1cqOy+nvoJ0630a2pQpEDX8/jStgWgpFQ7ICgNnAPMxyMh3qWb6uJjrGKVGSHa6088XLTV5kr7LTSBt5NKAkQU1N643R6jnL2Fo4DwoEEKh0ZOPd8fMK0Qa02U7afbutJJbC13Lef+P3GBlyQQDfOVOpUPs7HWi400rgKcYDc0aaavLqN8IgvpA5aN+J8e/+TvydTeOcfZHTtajTYOz/NJ/oh2DoJwUoVgoENTFf8LVt4Vzncj3bu1hfdmNkYTwxYToMsAxbTUYk19h4tjg8w0sWUCR8yABLR8y5FOBPwRRvl7ZLxbRNyJbjs/Q01l/ZDv4vl/AxYUEwgfYs3q8FxsE2JQiXMv6W7aT9+nrvfhp7jsGTr9ojey9tJKymiRrvR5/mADP38Xu2TizjnmOt5a4T2eKcfYB07vwOp3p0YPjl/F2HrXt+vxTTLeR5+dwJ7Mhzdcqa025lP191BhLymnuVQc3rgHujJyVj3sY5/DvcmumnnDLb0Wni+WppnObvkMk7B4fJfnGP6fKc1Pkrf4J/9+8rxEpggSF2+WLOTD9/5VfxYAzW5yc2tu4/GXNei2uI75Xz3eduBqifnpv/ndifMhIT62ixLDeN8z75VXn+vTrOc4gMun/iz03nz0dhrIGppWRoTaVzBMOA/msS3P5PH2cwgc+S/5t/7/5f9vWE8darc/wXjl8CULAafcsMKmDqzWKDlbMqACYHP9TovUxAF8uEUSQPAOS2o972aP1jhhajhSRgiOnbCu1eF0ul1P1AORoujyPq2uTjbkilGzzdd8v2/fY+HPGWBE5EQrir/rgbevtxi5Zq8WyrZbLb+2YCifsN+raZuvHFFyL7UyusS8Dban8nbUq9Htdr9KXYRtCvC/Q3b212PyC9oqHi8d0C6eVHc+fNVLZ1LdA9ZbMIMqhi/XEM6m+1Xt/Lo1uZwx8JUPDPMFPVfr+geyYRHmhpM9RdbnfIXQyBXCvaN+820BW4N5THYT7mvQ3hwyTco70bxdiNGctgZG8wyu4SyLrVi7rjtHgruJ0CO6Z9sNwalo+Gdik4vi1YPo9RciIVO2tvk5Epjx47j24L2m+X2YHNjkYCzdQKE10LogRyX38gauJC2FJ8z+X4e2uwogplNoDACTPaDC7eLjYvOXd93nMMY+4Ckc2Qz7vV/p9a30T5g/9XrxdgqZA/fo4WjdQ2WGWuuSeQtJxMj6Pv4ZDQkVP1jLwHLeLUTIoncaHlMo3iWgycv7f7ZERHjVodBpZ6BqxB47XD4RZEGcNjRwjiFNchYADtAnXac1Zq3CZFGwEEMyHug5msvPETCO3nTcBZCHzG2IzVsrfMQOyH9QJfFwMFmmsy+PuRBaPlpb8TvT/s3NfrdO8xzq0NgHJPwQPHywNT/fYW7S0ZUGE/jOlBkcrrxTN7rG1PGR+3sQIAWqz0rCmkmSdFEdFo59kVYBJdFVgXY2g1Rf15h9z2gcYv1Zhrfu9kf1F5fDB6EojbDY1lRolK7wy0TeCQDiMg3ZhhUEX/fjWtAGbmIiOpcV8lK9HXauJkvH5u1da72ULO4+Zgw+4quHm5tma10rVCyDwALMu9eBtSjld0WLIsKhkk/dvbaBfnZWqxz0m3vXc1gbX6aewyfVujnV/52IOdEB0T3KkL0UL/d8QTqwUDvYoL/Hrd/1LQvl1QtiWJUSLej3r9eHRQgu2V+99WQJ2VYK8vOjj0zYCceicbzb5fHkcE2tZdqgyNG3EgIgLUYdNt/graW3WNHEXpPOdgy2E/jEWyrZYN3xZgqyG8PIn5qjuEtUAzuLeuI5jp9sxaCmRhYMP9AiM7yHp4tt9WRft+QV8r9u+mu7H+OMxXuLlYtIMC4XzmoJ6MLQr81gq8XR3oqfEdFdg6f2gw8oRrLwcGritkh2sxLNXn/e57dw0tKtolubsmw85svs33mHPq682ZBpFs0fHuInhyOxoM0qz83/qzeCLBmdQB6mVw1xEUbTka5L5HG3BVCdA9gjFeA/BMNULA2sbNhWSpMUCfNtlEdkgLKjZvx681tQZNZQEBfOXxoV2gLwHY3F2X0DuJ9dBT1wtmtPnsWcsit24XKzlju9EADv2+KNwO2DhSmyo6eVSPGcjMImjsz0NbPvRz/LqTiJ77ir6ezsHp1P6QNjs9i2gd2jml2BiWUarTL4szV9yn3fcxn7jvxTxKMUICdgFAaptbWVP4XXUqA4DvO9TtEWftKADkEhaCMOsJJAB8HYvFKdWYNTxCL+eRWjUnBofGeQiGPLeSjiPFd2xtLa0A1wva+4ruTLh197XweR/vJPmMvPZ0/lxeq+m50/sV+qWJTfkEJpAFcfKL7bMJmMjXAELPKsZHFgyhbAxftGEABX8FcnRFdI5I5RC53WPsR4cxElBafDYEwzuGPwsMG5+BnX561i+OXwJQCKSpWFCslzUZah9sGvn0gqP2J1Nt8uRkb18aRpRApQFzBPW9DqSXhwdl4VRqgTQ4HaZPk0nYE95riUJgiKg8jQODpcOMcdCwSJlyZ4mCgHrdQj+h1wGTRjaL11c11Xd3OnkEFSt2D9ckaEbRhMCEJg8YdV6B3LPajEedhb7UzmvOsKLsFUAJHYloCZfHEeO8GYiPFpscg95DNC2Ak66DbuRzJFp40gmtZehqcE6cQKgQffT3GW0/c61s17B5rI00BeKeHN1R9qJV0C9GHy+HM1iAcV06zOsISMq9gS3pBPD5VYFkwLuLEoa5ztQ6bvRJBAkAdFvsfElgNIvPaC3PQj40tBnNPQEL/Jweh2cqSwTBQYvnuV4ZvqCP6bgnbuBs09hchLWe12C6h7NqNutwUefWicDMKMj1rEAy0jkV49kprp1azUHmOGREl6UXtRobCLBxWdLGwM/zv9GSVsb1/tmREXSi0HmjPY31U11d3qA4DnkMMt0w/z6DJ18h5jHODrywZMXf6RP4kFjMWsxZlFyzd2Z25XnJ3zFgym2ngAGeZbV5tot0x2fYcgwHu/hesafgkE69d3OIkgIGPXQuqKtCJ1TE2zzaOQ3oMURB4evk1drwe5qEsngvVeYx8LEUOsC9T3YxTlndUespQJjokGk9dKdWtzSWItYqNJzSGsBr7AMFoyaa9uJoBlYA9u9V0F9MHz7XpJ8AILr3IM0/P8THSH0vlZbGjA4i39PRgcUDJcN+RglBTzZdYOK6xf7dqz17u1SUQ6GfggU41dLbPdneOdiU4uvgrFsgfu+lWenE8F38flm6kMtV/N8TYCzc83vU0k9O7gn0sjHrwB2jdTHLzDzA6Vt1cK/ZeGSTeeicjc6mV51Sf4cnXfp8H9VLzJbFwDWuW9VR/99PDnrY2fE+J90TZ1yGNgq/0xwYnJwKzhGvo1Z1Ebdh24ZwI23KyKAHG5Gs2AAROoLG7c84HdkmZRAgB2rnZ2ZJLzVINpYONteMSJ+PEgUGCJ6YKYOFMQAZH4PU2QXNBHMpKB0M0JIo0f7ZzNJSkSF62PpMqffgM67B+cmfi2AyAnF/p3EAXna2CNaL6siu8vcd83l4uurgSg7CeV7+U3VaK3ndDr2v8Ty5Y1skN/O5CXTkDDfHA96BIM09hYSZA8ea7D6COK8OZvp7H2uINiX7cOfvu3hutCQmc6WNeT+tYf6Ot9jHM0l3f62UmU01ARKn++Z6bF7XfxIOjiQC908dDNisBQXY/m/+FgbgwySYj/WTL5H8B7NRZfZH8xjGTclIeGUw8XykuT//rNMeFqUQzqyM80Y3LQcAimDq8MV7ydfmWKS9ZiSTEiDwAgAITa7/7PHkX55f8jh+DUABGCyDbTXnnpTAPBlkTO7INNUC3B62Cd0PhNBUFSjre9geLy0eLVb3eXy/WMeCz+H5jlq25ogdYkOJVjIc5Ms26oROlCMGfMX7ZWs29LWiv62RadJtQV8sS93rmOyyN2Cd9SSoCcDgUpoJVvWlBKhRvCWXdRsAysFMfAN+29AXwfrTxRMf3R0Oz9irZV96se+LWvcDAhKskStrtWu5QnFPfb2lt8hwDWEtDNqx6w/ot4uh9Luh9dgPa2cUwe08TbIehhYXzOw6QIVSRuYiiRyG2rlnEeVxGHGAGcO9oYigyWL1aR0GEhTLcGkRLHtz1XOFLoLH9xXLZ4M+OurHA+iw7hAKlMeB9rbiuDooI8DmgAKqQBvGO5KxDI+rgT0r53hkFH0slzJq+rwrx/HbhvopqD8/R/BNR5O15K5WP4EAee0lw6v7PhT7WzMBwOqp39YN7diuMwCxp7nv5QJ6u49NYXFxyMduIIB3JtDWgW0dLAaRUcfGIztwzFiQ0fB5i7UV91ecxXCkaFaMSaB0utjqjpmQZXGmgd8HtRqOAwEQbKvdy7Z60GCZdrmM2nJ1BoixKnrcs3U3SEHTedMoeKINs7uDiIxnIVVOFUAd1NRpo1qQQZvpIDAUN+wbmWtPQLv9Oyu5vwhe7XfF9BGYneBn2PXj8+7ZkSUyRuE0sd4V7rgmUBGrjODX56VWGeyB7PDk7/HndUH7/W0EmXSYPRAkA6HcHiDgJtuKXhZn/Yh3EmiW9awFeknrKokIA0D5uKX7tJZ90i1Y6GUZoKVyUx8Z2qi9BqKlsaZMn6jf+91BhD2DBSdHqFbo6lm8VBoTuhZLNYCHddfF9pdwiJeKHqV/I4CIwJZzbCkupyL2jlub6t8tI0rFd51AE12s/V0Efw7QUhFf12rthYGx31bbh+rdat0j4F4cQNkPt2EHhBlt13vRi9nfYB8cHe3q7RSLWBVIFRwXwf1fBOUBbH8WXBbBpu7EKrzEDmhRkmYaBRa8Vn9uC+zL4SyHR489Mwc5cvjaOI7IwlrG0vYgzqX9u7VwZGvn2nZnH9QRZDqYEF1HOgH/w7KSpQyAqlgryf33FfXWsXwAFNCk1kf9nNkRUeYCjI4i92OsudYQwGl1TRzXkLL1mDLnxO+yqCTS3rYtwejRE4jMrGwwmY7d1iVSLf5SQ5+GosvqwfsZZB97W/L7hPpSZSSpgNDCAgD99mbzjnXjZLNyPTLI9nVgz+tBcJRjYviMnkQ5vtehSaWp9NaDPyF7qLi2A1u37sezngPtKwPbxDpAlWh5yay17KP7UjAUDBMdYELvye8qz8mE5joXksC1nNDr3YFB7uUj6MqdZmIO7ydfvyemoycS8xzi2CtB6nzkfSyyr/63lIRTgiIO7OmD7BGn2Z9bRAKhh6UYdf1oLDNT0wvJ5T7dfPG4rwwIcsxPbKdJmwoIEDPm2VJHJ6MczFbTB9JLRXtbjD28N5RSUlzUh5+QfLAJHElBsmDMa7tvjFK8NPend8OxPwDIMhJ8vHYzPysy+OxIlUTBoR5nANBWxh7F9bsuA3DM981/i2ljWGKuD1sQQFUKwt1nGYlqnc/H95JBmfMhMvwsggmtuXh2MeBgGcB8ME3RMZWXChdFAYr7Mj4mbE0+CXSf76ckNgiAzGKYb1eeRRx5ruTH4vS98/HrAAq51gZwel0daPnJaEpXy/6WAly32RgCyTFzg+pBZrRHas36Kx/cgJ8RxhEsHcNx5X89Qxt9aEn/ipaXI/NAJgWWikw1AWDOGWAO7u4sAkXKJMEzE6PvdTgm+wBczM8tQW9je005upURrBWLj2V3R7HeO6DA8VZdJ8JLH5JDVzKDogqkFxS/p/I4oK2EA3C8L6h7R/3xCKBDWRfX1WIhEVsjvqH1pWDxtkgABnVpvGy7F28XVOrQNZAiRiO9HSMzKWLiVkuZxBjHxtRxpiLl52PbMtbvhnhX9/eY1L2LAxXi3zGH319RN3rrknUvKIK1FKAoVNfR8/3oKEfH+sPKa/p1hXjWYr5RHYBJsZ9DUJMBa9psJsSbQSaNtY+3kDng4yMM6rnm1jUy9xQ6DANM4I3obx0biyx1GOPY5OrYlJQ0d7XN2ymyobPQZ+MX9fktgYy5fi2QWnXD7D97MK70HYsgWAonxgCNtBl9biBlUEYy0MENg+0weS1X2TUhqBfBPcscXhjn0U3Dg6LWEmUQeGJXZESb1zjTDvN1VOETfLoeAEfvZTiBi/WnDhYIb5/OYinD2X2kTc1BkPj80WwTpxhbcqToUNtmn35P55tz6Uh7gINKwRpgCYZIABtBqU4tduFU6QEqDwfCAqVm67imTBHHkA7F+X9+7/xZejcwwssZ7BxAX1efd3BgowxdBH736IC3ymMpRWT+YmzTmrKXMf5NAOD7uz/PPgI/ZhfZui+NswBgV6Kgezs4MrWRI138GOVhZT+eRfJat9IHB2J1rRYQOP2/3lvU67PDjbVITrZ9t/vprtRPOzH1Ey+eATyGPe8uwlz8vZfDdIV0HWB73Y3tYdcTlFVtanwiGBDSMJh36vuSjAw+7TU60L1tcYAjZPCxpKD5/BcZc6IWoKwmfhuimaTn++M92thzCO7TCU4ivXm+Tx1jOgD0KStVfV2VvUVLaXQDxHMtbWRyq1hWFQA6M+MwX4O2N2fDnRod3yegkc6tgZY5WMGgQN1R5h7idmbK3G4r9GgWcLIcKtu7MgcDwr1ABEMgyfeqxNZB78/09cxOi6RR2n9isBiclOHr8feA2/rZhrJkg/5olNKELhIiCSbn9U5QnePpflDYOe43xQBpawc+5gvBHQrZ5o4SYQ+4P7CN+Km7hqiasCv9Hl57cbBisfajhTZ+EsuexycECwFkvYEAHVuf/Ho+R7wftjvn75PdPV8LSHMbsLnpz0O6vwDQgUhFXDK9bx4src7vJ92jwLdsdkMTSX6Ifz+zcjTN25wsICjT1exFx5Q80rjHAToMzQjbP5kMVW9TWbzsQU77+3TkgLrD93FvMyvm51gZygsGbN7rOXQpzoq2lPYifA4m3yiEvH1/9tJn3f073irdwOWUAAFOOg5JS0N16EHkdR7v0wHQHINMgIiMcc+lAVMQL5iYoLxG9icJpnHd8Hv5XuJ3RJpeHPndZUDoxZHLdEcC7iWMMM6XQbj/wPHrAAoAQpgFGE4Xmm2w537xHJClWN0kDxqUAg/Uim9SdTAf+BLdwSCNf3y/j4UEhbDHfGQJBahbKNZGPZlvZrH4CSiwlotIXjpCXPDokN5cxEtGuQQAaQtQkwNL1ejkaEbQVS3Q1K0Ah6IcB7oA7VJQHt433OOGeveuBddqLR+bB35pYlPp2uhyYuvTFePl3iC1j9rWN0PZl/ugAHMTt40dJpwJCQ2JfqnQT4nsAIAh1ERhymTUpMrY3OBB/cM7EXjpSd/MwYNvtLmEQrsbRqe5jrnmGyufl7oUAOp9Nwak12/xXHQsozSDmzUAqmpPektKR90C1O7Oky5i7dq6OeIQQbuyX72BPuLgBTr7OA8nsnzuc+ZyygD5/TAQOQ5zyrICMI/cl/o4ohZflmWACW9XRLuqrtaZgXPw7fpMC6TDmZ4fVJb12m5rq3hAyxoaCgYQMHg+r2/agjLOl9kI+VmA12yBfHDOA6FSPpVZTLT8PoAEZpapRu3ZJFUd4MjlYr/LCuarYHJBTSAAACAASURBVLSXHPc6BffMNBwHZkYBnXEHlJBsFelv+/76OQlAlNO1+IzsUbzfbdqsDpQc7gzmTZKBgwvT6uORAKcyMoDZKeeYZQeDjk8ZAUo4kTwXKeHsr33ZvDRsZCf1amVyMddoGycQeAvRWwP953klHhxPDm76ezhVMd4A69pD2Km5cj/7ga+LZ7jK7DBUMVZarpl3JfvItpYStfYBYJfiDKo0prwnEQcjTYOmeCcN+bzHmtTT+OeSAfsZA7BxfZ5gy3FvPZqVw10qcCsGFPF+GAQ8DgALlMw5WIceY7N4GcmiobDft2p7gQeP5dP6wjM4DbZCcoCi9CKXd60FurlAHIN7kRFndwUeHVU6RKtpNGyWaVs+ucYxrufrUIutkepMvfI5ysv6VnC8VRcl7lgehzMC2+hekJlj/l9dqs1l/i4yQPaM5WG6ET3ql5mlRyjzl9sRIM90hP2dAz4yQQKoYg02g3N+dzFNkZ4yvnIkWjEDUdWR2SWwzOQQhn+T23tLCqi0d8jd731Newfr5plBdiBEPVGCHeOZaBeKsxfL4tlOHQwR+kew9aq1jrlzGGjKvWcEGj0AVZHN1kK3soQ8ziZyW8I3eAqYScXPdromQKFZ8uFs04LyHwBaGhuOfwq8w0fNwW3Smwj9sGB+eXBxqUMtn6Llvcc8AwBdEfOGRwTxu/+tDf2kvnmixAO6rEnDe49t3cVRX7XQzeXMNkfynub+kDOYOE8LdT9S8gfAmN88CDhUBv0AS/8EmAUlz4fQD+zTz08Hz9Xcr4UzUBzgIm3/qd5fddxx/rsqXO1vSqCaPz1KV1jSBlhIxVIqUYxy4b3OJcrTtf3oaewZj5QOMJkpMpIKed7xuykBGHM0XS+YbPTj+P30c+gpeWJXfG/SKtFlLPxbv45SRyfveUXG2EV8d35dTDaX2e8Dkk859NsAjPmd3x+ZgXHir+yzDp8zC0r/syOVijyxDjLQwWfK9zIxdfr8nfPfvyif+Or4tQCFyE44SqRqlJ0V3tdbQQGvUMUHYqFNNbEdiLrBy2qT9nEMJNFRTQpl9Q6jwLrqMorpGNCRHffom95jtxrI6waKjYWx4wRuj/F9TmLVce21WgtJbsYOfOha0d+WEUiqZc8Y6LbLgnJvKJ/7CL7dUQMQKL8K0N5W9M02u+N9QblUo2s+PMg+FNvnbloNOYjlsftGu0vQ44Dh0PB9lQ7UT88MuXiXZKOrEsYlZ/uopaBLQflMQblnQGa1YgwK8ttqm+PeBvXSx71vBW0rXrvqwNQmo3bQHRNNxi4ED1u3bNoBtPfF2mH6HDOqpXophNN3NwxwpQ0jqz7muhQTt3IhpRhfAll7Q7lhbHq+KYu3t4osmbcE7ZcV9W6Oau5YEiJURxsCLL4WohyH87fr1AIpBBRpdD0YVa+HHcZFRjaWoojA9Blp1tIzrpEBOhpcBqn5noCgF+LRnwNekdH6RsRr5Auk78NZ4X3xM/FVCpUxS9NHcExhnK6m0Mv5sO8pGH5h6DVtIFIwiqYdbGkN6AcUN/sMa9P5zL1Zz25gMBwyei+2+Ukt82bkJQ+TrgWP4gI7uRUn3xFPsdo7j7q9M5uhFihLODiv1nWc53qJkpYpIAkWS9qwM51y3FBkHGwchuMDYIBV/jc8UgDjgbKKxNqX0/mHSn13kdurrb/H4cHs2CwnrYL+wl4Bw2lTnW323oLK2t+5rjXWqmCsDwDol2rtCYONtFpL2pZK0ehke9AuJ2acFrGMtsjcBo7P7rWy8TMBgeyUE5gI5wOjHGypxmzbTfzWat9hoETvc+u+vVm2qFbgrQyGiosLG43Z5hXZAu3N2ibXn494v1or+ncT/yyfh5XNFaC/LXGPvQqwFhun3cUST89uAXrxDkN9ADjhJAMQTFR66ZaKqDdFuSvWnw6wbwO05vJaPkdJzSRuWAykXz7tGmXvqH/eZ8Yj2TQFQfmO0gYyKAlgZz9B/d1lEMUZbfG5AsBLFBm4B+vytHeG/eHfmDnO5S3b6gE314JG5x1ruVjnMVQDurV2CAEBtw25uxEZJxBBe19DP6C4LgRLUO3ek1sa7abH5yLZ4WtC3y4+fsZ4yMxNHaZwjAHXGYHPLfk83OeDzejOuAPgocO0pL2c7/EscMdz5qBztfatBoqkkovuGl9oQ1ScTCEvHwkGBmn29Gc6hg3jM/J6HP8cFBx5765AG7YkOl4kDYwYuqUA4uWMgLW5JcgqHUKqdvhKHixnFsthQOFoeSdAP4LZbc9pNl6cjfIU0GSfIvktYS+ubjsEwT6eGGYdEGcmwOcv9sNaz17IPMYozz0nRMrJtvBvJ3uEfE2kgI9dcPIc4Xfyv+mPETAGpsAvmDsEJVyfLQe25fYwf251tpuXlUX3IyzJb16GwKLv7aFtdy5xyaVCZ32uFFQDbkMI7kR2n7YtsVtPLA3+jWsOIgZoqs5lPDLOrcsQftfiY8Fr9tM74j0kwCpKN/jMIhYl0wYwEZZLPPJ7y75sCvbt9234YZxb2hGJHraUPXdueHUUgRSW0b4+Yo3x545R1nBmVUwM2uEL8mc9M1C+OH4dQCEZvwnJKhgvL9M+anKKaNSCqst6QjfIFQOZp8NONW74wqwy0O41Tabs5KsOlDNqA5cxyRhsUZmd98ZHZM9obgykmrPmtYtNPBdmtLVjm65QKFGMBirtxQJWjYCY1+hbQV+9DEIKugLLzcaiey/tejtMJ2Bh+0GdjIEZEIRTqdsyt218KICGcnjgSwGl7q/MW7vJOdOsANxvkvTujVKLZzbK9D58k+UiT0eUK/AoMAQ+18s5mKBpwblkzgyonDZV2ywRLA9zUk8br79jUn6pJsxe36Tu5kwRndNzfSk3AfQOhTuTzgAZtGwMw+HAm4YtSPMwr7Gjj0wknSPfoHWx7I1wntYyQLHzeHCMckZfBIi2cgRE3CCdBa3yxvxVjdZ5owUGLfZ8dJ2M6PiaBLU9Ekxi601ERv1eakc5nxPPxj5+z/O5jSqAHnR6G6iFgNyzFZiBhOkZ+vM4BfiSPiMCqz/iyy5A6VYu8RcbzXTwmdO4PdWKVhMpVNLllmpgUQYMou7x5HicNyHed1z/9PxlXPvLHt8BvuV3hJl15PPdesibXZIn/QE/rwfoyj7ZpyB93FsxJ3pv4RROoGSFZ3rnZ8z2oK8mTMlskuxeRkAnM41TOGpB3xbolj4Xn/f9qYxAMLJDFIZMGZScLbayEQcPXMPHwHd33HgvTWdntXfvluOMM7LwFgfo1wKK+JpNAnARaFKvlgboZoFq7gwEeDcLPlqxbg/R2ph2JWUtw7kkQHUdNaEqCJCB4o7j5SAEdW1PTKWWRUL3x4Q3x7uhLaRuUaEyfOsnDYtizEh2SKAwZS9jTlo/4HRPOua44imLGCy5UzvAmIvdvhiB8cmmkqEZdfmtAQwsXhyisLKRasBp3jOhAhWNBjk2PmI951XRPehhy2VrJSo+z7qVJmKJEhg+C21HoTYPS3IkvT/fi3tN5Tk+L8c+kfY8YBa25N42zQedzj8dyS+Y9lUG4Wf7x+uy5t2vhwAjRjmDjZ3pV7G0KA7avwSAjrbjxV4Q9VEYgALPQe/pGa3doIy5OgWuz1+L+c6jGGNVqtgiS+CrgarpnLRjvY2yZjX/I+trADBdjAKopORTvvf837NPIoiSXj+ZgVk8fD3H19kC3llg0XY4zjvGCqojW/5VM8n83l/9jTaOYAFji+xv8+f8bARPeG/5yPT+8/W83DDGkesIDJZtjziXSUPaYGmoRiKJydWppCD7yy98r6f7Ou1b8Zwct5iPZXzG32mUgnBvytfjmobFQLnd8JM/8tU7OvmgxpxJviOfh1l8nieV3k778wS0mH82Tn76d4MnrNP9nPy4wcjzuVDxnLSZvkB75DaIrCfg2e/k8/M69IX5vf8AU+HXABTc8ZOjh9PIjYP0pajXZmnBZXVD1CwbUsWE5wDrEqE6MvjA2ORJye5mTKpnm0wU8GHMAxEAnvk+DstWujFQ1uhetpnWK2L3d39AdZ1orlm1OAIhtUy3UO05aDmA7A31DwVcwIqtI6mQv3wekMMYBWQN9G0JgRluziYSBezfCm7/UnD9R8fys1u3gcMzCt2dpSrmTNUKWUt8pnw85hof1jN56zQAAS7UD6PIU1yMz2wfYoDlQcJaUfZmtbarC1TuV6M1fdwGDcoPZUugt2tQPWNhbCuU1NECtGtBuxRs/2b6ChTFRFfo24b2RjBCUV1QkoJVj79f7L1EyYfV9yqs5CGm7KGoh2L58bASkNNiyy2++5vV9farsTqWHw/bcO+pK4M7FH1bgm49tQ5zsKHcW4hYwkVDsW42X31tyHYO7jE2MJ+nADybWPG0GdWC9v2K9rba+rg34P6YjLGui3fkOJ4CRPm4Te+cgXsYYtVRZ3/WGDisDGIgxSWMtbIEQwTy05kyRJYDlEjzbT8MBFycCsvnzvoFZCawZGKrEFmA6+KlCmPunGnwwQRZMdD2lOm3f7hR3h/ji7T/PoYDLCgjSC/j/uK5yKpwWro2YzmIiyjKZTOA4rEDOLEe3q4WrB8HoA39/kDoPBwPu866WDCVaxeBgd6LhAiYPh5xb8KONR7sRO3+GWwAzJ7eH2Y/r0PMkgwt6yyQB3nYAcu4SrRL7cxaR5vfYd+DEv6xA1XQ31eUD98HCOxe1gFQ0PlwQK6/b/P7Vqrkw9p+0XYqhljUYgFDe1tR3lavT/fXFwGzreO6dwdfqQUxyqYGGLIgRKR8/xLWT2dldH9Hgz1m76187vMa9I46AQ4WY30Y8GnOe7kfox4fiPpqFTGWjR9B1fU2iPp+mbKn5dFiX4179IAo2gIrDNRWBDPBMrMIzZruHXBEgXa1lsZlW0wD4M+bP28dwXqKhHgOUXi7QSvTIHj+6hAFym7v+nizUkDpaqLNOjLv3PPK0dHFdJCizCG/F8+atfcNuvm+ujfIh7U7I2WXQsfhhIo4rbij3n0+ZADV52bQu1dPooj5DRSmDhZbFZvT3ds6A24bU+1xBmnImuD4OWWa96prxfH7xRh7rQfrgRR+tiXF+wZlK0svb1n+RMw3FYILgHh70al8I+sz+DoEYFl7MgjuB6R24CEjiOL7xGJAH+c090x2jthWL3VsAzhjoLCuL0AFZqtTe7mc+czBVbrfqJVnMM0/u12PoDq3e/RyKZ5H7qPUTzKoAMwCpexQQSCzWhtDAnuye/bUETKzU75XJPbsFOTRf+NeCMQ+Zp21yhi/e7O2pQ4mhS37AuCKLhp8N28FKoNtJfxMDl5zHfthJUjt24a+VbSrjdny83AwK9kgTy5NJemJeRnrtyPEJ6UWSzgwiXj43kpb/BTg9xFw5oB3SlI4yEpWJgGwPJ+SLQgNDL6T6nNYYcwYdtQ4JQOi48ljxCCcg+1tHSBVMVtMVnS5Wbt2KWUwBAicZRCN2Xq+i3yPQHxW2qn0gaDWGYzoGMkU+qZkXuRrcFy2YT/jvnqap8keBNM8n4NMW/4ujx/vLzOMGPNllgrHppfx7nn+eDbqqAy/kB2gyBTV4/gKphrgA/3AqSTX114SrmX5q9CXTOUg0/eA59glMxu6mp+ZdcL+4vglAAXL9M5Ik2V7MDlYsej4Is+I3ymwyTTWCSUt5hApCqL1ztHGoHOAj2P0aOdBBFHdATzS9YK1cBKR4X1PtUQalLCn+/dzqwGFnlHKz+wfW6stCJHYIG087XOiOCmfwrQSOMwUaXHHwXQEAEDMUT8je6XOiD83tRQAk3HwFUJL1ggzFzg6UBNiWsowWsBssOnQ8B0xqyop61bcKHZTtI3uHnxvZGL0tDH6+USrgzECsiei5syGZTwnx1AxGxw+qgAsi4Arhfc65sEEMp0cxSkDdHIcgnKbDXvM6xdOct54OaZuuE3LoQxjLbax9vcN7bcNj+8rLgrUpuasnQ8CAnk95vfe5+vNX00bY6aG5k0pl2H0cU4i1HGNV6h43ENPmRpN//YjayJo3jh8vKRgEkLk53yjsRZ1Cpxr5PJnpwd3gKFryqhr2ihO3425V6ZziMyOafxJ5Pn3HOsMUrRm4OHru3595HHjM5+ZFPH35DhmMAsOopwdsYmpkq+D9K4RGWrLuPjP3ewWvzVEZT1oh2+Qxa/LQER1IPY5K1jk67resyPaE2utI95flCXQaW8K0W43qbByLN5DwWATnMbNxLZkXtvZqU9rYejWlORcpTl/AnenXuv+ziaGBvc4H/dQ/Fc38nQKnQFiAolj/OPd56CqIhhRCvh42D0aeMHry/T96Drg7LOOisLzkLnCMRPubUDOaFttuO2LSM+peQ4rb+yfHOkZue9J03l+iExrT+nYcU6f11M237Q9+XTJvurLFPJ4/ihdQ7evMDsuChXfcxcDyqUk8I9BklOiqTEQCYQUdE3Z1NW+E3tTuheB2LrYMRIY5P7yOu78Tt/P+0keK9qOmMe+B551KkiDP/kPeT1bichpXfA4083zwfd3plGfgI8pk3n2UXmv6TxTLfp5P82gBd8Rz6HUfkmtu1MQHT8XnffcV+NS0n2F3wyADIrzUHggilKGFkX2vf3ak9bEq2D89L5DzLPoyDYDz3s4MBhjRdw/wPPcOdmCeYzKeE95HACzdTXZ1BiTtD/z/p/+e7rP81xywDFA8wO2Z0xl1gz8kj+VjxexxvTnvE59nmi1stzckj4Yt3DGdilA9fbHOUbh/tNSEH/en857wPn5X7Equj6/s1djl5/z9LnYv/R0/q9sSb7++Zr5Xl8deU3TR3/lBtLun/3M6bqncTgDUfQbeb6na5Tn35PpemK4Pdu5F3tJV6B46fF/AEjg8UsACgBGYCoy2mYl8Slu+nJNWZK9AepZgaLQbTX66M/bOPF58jVXCCZboV5HLSEVsO+PkZ1szTKjFPEB7MXd70al5c9UwefGloyeXrcIDGU/jAnRO+RRBnX47TIhfRQPk72jehDerksI3Vj2ZkEpYrGib5662djVD2uJJpcFl38A9VGx/nmgfuxo7yuwVSz/fgeq4Pj9Eo7a8W76AwBMgOqxBOCia7XuA3Qg1xJZOagG26PkDFcyllBF+XhYyYTXqgHNWBB5ERW3bHSCilPuOXYA9O0SmgFWQmAZx75VrD8P4CdQft4tAHXBNq2C4/uG/duC9ceBsne062JZqQ+79+WWMly7AwGrGV1hC7SmlvWsniWVdQQe/jddDSk/3ivWH9aFYfRAL9YqssPOs9ZQ3I7xhMcFXu+m1TM8+xjbACU+7va7ywbcH9D7fRj197+Nesj9gPz8dMGtlDV29Fu3Fcffrvj5v95w/y7Yvwv+/r+Bt9s+WpUxiPBaSFzfhzPETieXzeb3jw+rv7+aMGGuUw00lsHt3Vsw1mT0CYL496TOhi8ybMAkDjkJAZaCEEBk4ODUS7AcofCaBeyq8IRMM3Brx2jhWFJLHoIBPof1scdGG0wAz/7r/QHVY9T/d7XdvNRxHmpMvF0xtY2kfVkWC1CVG3sfY+BAhEgdP582s2BtAM4gGBuSOkVXkj0KO7ouLsZ42ASlLoULz0n3IGRJFGqykpYKvF2MjXZ3Zhbvoa7j+TqG08t5perzCtZaDh4seoZfL5alls/dguAPFwDMwogrxcn8vHfXySDA0LrVYyeGVWQ+fB6IiGVujo5+WUKDB84UsyxtH2CGZ4HK7XAGQJmeU9Rb/m5LZIEp+KfiQV/ODC1klfnYjdomBN2/2RjI7RF/C6o1QURmZP9ir5Sb66wsFSoF/d00EMrtMCYVfFm4XcnZSL1s0LcVx+8Llj/vxqoiiL/CnFgPpMIuFAnAuXmrZK1AvSnqxxHf0cVsOZkOBIhzCUy0oWyWoe3vW/yt3PZgA6hYyYXSr+bWc2h09+G9KWCZWFUvGbO1IfdmiulkPdAmuU+j4t2IHhh6GWR7BB1e5k5UANr7hhA4ZNtn2l//TN+M2SHck9a0f7G9J0WMOY8dVO/XNdZ8/cNan7bv12lPZ7cKeRxjPXrGsP5R0a8L2vuC472ibYLr/9tRb4ft6QRSOpMbbquS+K+wzC/ZeXsw/zeZTzl45vP5+Imz5/SymQ6Is4tCj+UEgrC0aRIGzEcOmnIQcgbO8//OdGAdgsVyvZqd8vtTZn0zeODfiZpy93k070HpPnStxpRyX6y4RoxeL7Z/8Z4OMl+oT1IM6+0d8jneUWTL1ctTHECyUh8d4CRZDF6iyVapqACU4pMJoDtl3M0GL6GXYW3wbJ9U+iTdkFmtBVjV3tEdEOkj+fIieFM3h9IR8xZdI4sN9RIadr2B+6cQ07ZgedLRh/Bth829LpBVokVt2CwyADh1pkQR4jMxTyL4NDus2xJtee2xEkNMJDTVdB1aXOdgWZdiTJx8/dORBUP1uqC9rbj/fUVfBPVh77ze+wAj3ZaUw0BJuN9pawojLlO1jHYG7fKL4Xstsy8wBe8cn8MZpdSAegG+cR8LEDkHvC6EPB6agAATVv5zgEOnQFk1WL4zSNBHcO7PlD8z6cLx3bqdkK8y+70ZU+bp9xbIm3i2nECkE5tM05oEhi8GQNUYdXpuCXoe1zP4A4zv5PKI/+DxSwAKRqlLNdruaM0LEAMtPv19EtsrxRDn6btuMAPJHdmoWLx5YrbmyvAvJh0w/c6YCnwIT+V0HY5s3sjPqF3+H+DIYR0IMQDqD0DdsAqs0l8QrIKx2WFkvpqa41UEUJhzFL2lmcVAgBZwnQU5gCLOWlgHNVT8nunwwQXGoq61n54lZ43O7yxP0gJEHaBI+q/MHQNUR73niSY2FraDUc2zUH4PuXYVQNIvUNMJUI1sjBw2znpaZBT1CtZCB0Q0fuZ9iHYohjNTPz3AOEzJeTBJPAiis7QkI8es5hOSKNNzpEloz3/xMgSR0SrxjLovtqFjdUGXNrKYWiugQH10bD8KSgOWj0RB9WxVABpd5+4FeY6LB/BF5vdNQ5uDF2YrQJBgmebSS52M89iEMTfxG9ajid/3FJSfxzQ7lqnGO/7Otj187jz+U4bCHCEAUTZg1Mi0RvMxIcdpA5GCqLcjI+OrY2LZ0M7Q6Urne3VMWi99lGKcP++Be9TXdR0lLLHBJap3GZ/XkpTIKdpIJ4OB7at3+UrHJAGT+bOWeUZaiHg+JzAo5ZkVxvOeP390SwoQ2HXntyTRtFDOZotKF5MNgIrD2HUOBM/r9zTWU/B0nAKbcxCSD7cdcfbTfqOuhRGgFM/H8cprLo8jWQxun6Y2frzOCYygnQuxwZocdjLh8nni3dr/lUePPa7cDaTui0f956yxYjhW4qwSMTBi0DrdxqX5yAyoBUwSjJV6765b1IPJprXYskjnjoZUEVT67Zxr3dO7GS0XMQTPkO6T3y8Fj79v6JvguBYst47LP3aUz8P2EX781dI+L6cssCgy9C38fYbWVCkjuFHWjSMCU3SOR4/xIlNICOo7QC4XCwq0uNKD4rWY6Dkwf/U4r9bL5EOU2Rf8opyF95NFSaNzQQQf9OPw+n6Y7OBx3qfy76Osr5rto9YHNQdyXTYwB8jnrG8+eO+KYf84tmRBNgy763aHf4/5mrRpRHqUSdi5kw/yMiBC+ORTokDEunWogl3UjPlEUBnDXr96rtO6ibLhw2xQ2IvcAcy/I/TNTsEiBbfP7KGJvZKPAmRNB7Nnfimto8yy6/TfuN/0jp5AqRyT8P79XfB+tPq7LOldJB/zyZ/K5wamuaMnnyM00lRB8JQgjD0LYuyodYKGqQwuB80BJnzFEj2P8Wnvjv+1ExDA53wR8HJMtMtIqhzPQEuc60z3zwDPXx206fRd8lifmSl6usaTT9PnzwM4ax/I+bzn2HMaR/cNp2ftX3+ex6syhy/GOM7xnwAVfglAAb1D7gf6bxcEDdOzwf3q6FbvIY4U4onMuiyJNpRqSadBWtImQj2GrlbPyyD5sVvQ8dgxKcHzKGLZu1yvwkPN4KkqZN+tlVZ2msURTt4XnerejXLI06zpmt0XeEsL3APVXgX9YpkZfQxgodwPr0M1i98uBdJdiNEdo3Zxx8zrz+rP3er812Jq1p9AYyus24JSOnTpQ6/hbTVdh7zfqY5aOsAQ9KUEa+GM0IoixBh1Pb0bZiXettE2bbfaa9aiC1sObqt1VPDsY/Q2bxrZm2hv1A08WQBDe1sfbZF8fsjBjBGchozIfPWVwJWCPcejj3pubwUTw6yfB9afj9i86t6BKth/v7jjNTsMspRRh5t6KYvv3FoEGm3mCrSP3ud6WdC/XYDrZtmHj7uhtezj7V0d9NtboOLlj09j5vic1N8qyuPA9f8islLy8JrzzdvytaT7sB/A7e6tAmsoyIcB8u+EI+pryJwpN9BLNee0r6N+kOfzeQXXywjjeWYgcNOopoKP47D3xs4DdBipRB/dIgqCvUD6XmIYSPXOEL0bmkxAgmAM7yEZdyHTZt0A7a4x4V0z+Axnw+8ZSutG4b9bFkzaC69KC7LeAilx5/o6itBlwCAfrAnMXTe2FVEPWC2rHSAUOw9kx6m5YCNprtfLVP+rm48pa5dFoO/WurT+eR99rHmoswXYkYB1jXSwXGQrwFT4mukySgf83tjaV2uF3O5DCZt06FJcR6IN568pyr5DS0H72xXoino8jH3wGE6LeFeaYOi4UjiWoepPoSYG4XLbJ5qr1ZJjBlAY8BR35Fob64eZoVOtZwT+ZN7x2blmmBW8mfOlb9vktD2JwaoO8FANpCh39pKHaXew9lrEnptrZ7Wa7WgDXAtwgTE6ioO+3FbVxF9NsI8dCkzLIUBozom6WqkcgRwGVL05wDPAmtFVwca3PJoxQbyTUREyE2w/FZjzWFqLtsgqCFZAeyvT8/StoDx66OcE46F47TcDAy9tDHCiDDBBGbsm7QmzQQX9uuDH/1zw+Jvg438oLv+64G//p+D6rxXbv91DHM8y03keWNAwTT3CsAAAIABJREFUleIRCNwbsFYc76slGPY2dSDSpaBdrZXc8iO1A97bYFIy0CymG4HuWlCqqDfvkvFmbZu5Nxko1kwUWZdJIR7ADGq5DX0SpeMzFk0+omdN1yUA8SwIWgLoy3uP20fPRFMT5suA5HwQoA8GBeu8+SxjDsrb/6fuXZIkSXYtsQNVM/fIrLrvSQ8oQs56wDVwGVwod9Ib6EkPWzhgC9ny7r1VGeFupooeAAeAmntWvZ4VTaQqMyPczUx/+B4cfKSdt+Xey3Fr2EvBp1Tng8+qF4Mmqqab+a5OjsoMvuhApL2P02wVomHouJZ9itESdQNkd43FiQT4AXFdJnxfXxPdO8ZtM6LT0zjP5BymeyXr9+U6LiDlFs+uwGUpwiYyrom52BTBS+aJogYgA1j+5/DsfsjP5I2J4IekjaFdMq5UEpZo5qzLcUJlZokKnfh9z3175f/YS6KkPhcjZKIlxCQ4xwG4T4O0CcteiD0hToxLjiDv5rTYUdTRY6Cd3cqpd0SpM8+rHNNs8r2ZvJ1EqkjqlWJjhG56c25SRyM+E9w25XvqHEpLiTp5lYDU/WM6Usz30PNAdNUCUof/zElWDSQEgOTqusjKRQ9eW6EXP4bvZGv5mvha3qkGCJqUc+6BhLbl5+vngHUsztt3TarpBZ0ivb98Ju/b0l6oNnt8WV4CmvJubJfrrxFQaA3zewYTajSsfZ0JTZtYM1plgSvSQNkpgS1EWAcKYH63k9r9exCBsuTheumMAIIdzjcR4zk9ee0pC9Ymu+FjDukKizIBccZ9A8nQYIfKHXciAPhNOdWgWEPR0DxxJFHDlqQjCLba/lXghadDap8zs2DM6ougfw7oJlHrDzXBqiqWMSrKWRnp9myRDCN7iuu0LE8YpUGE5g7uMYK4SwsRYbCSAxFMkOdh8MHzDAGpo9ToNTfkWtbXYlPgu5UVMMMuzYXmcybxUNk/0pDrpIq5WbmBtW7EMj6iP7Tti2Bs1ZA0zZm1gKrB9A4YEoDtjeD7JAxF12bBxeCCPSFQHrjpzQjRSkCGWVDtLUlGOVdjGvz4mfsPgMPYpz9bkiTM4X0kIw0oLGHxtx0LQQ1yH+rWk/W8XiKpABzarqfB9jM4UD5PR/wNm21AQmnsP57p4NdsLh19XgwW8D61b5UHC3TY0pgMGPFzzFUOhCBnMKz3+LztUwtcxvN7z4BkzW6EYV3mgYGKGtxUBdTLHFStRpnwtzYB2dZ71JKH3rF0Q6jEiQFH9HaV91s8T6Yp/djrRCh4ECZgiu4QmdHNvWrjlHN4WZn9TmpNYKAjigKlEcTnF6VncNgs22GLRCt/A/R+c46bDECH4mftbjUQeM9pBh5RBe3HATJfB5oIkk5NvRg8OyewuSxjXXgYkD7Q2m/+aeU/NFznrS/IB1DGA4iI09Xwuf6d7+N6izI35pNIifod6jrCcX396ajbOGYJcLfsRMF1qJkcjq8JME2OBvWCBxAALLItShW25nX3qXfa5xHyFUAhqTP5H+V45X3C6fBntIcd6rmb8zx3a+NpQYeynnM6dHouc2T6bwYKUgXAbYPuaWTG+9GhZalH0wxc993GSzJFzfdke+W5A8evwLf//e/47b/9gu1rB7BZwGVY4KXaN8JaZ16hI1LusF3jUiLi+0CGYvvn0zK9z3Pdd9UJ8pa9URrR3DaBRnlgcBA5wfGyDixnup5DdAt2gQSmLt8YeAZSTszy7pXQes4gSbXP+TMXJ24uZ8HmSjIbeb2ucqfaguoI1StJWpOEejOoT6Qf7Sb+vQQlX/gjqmNU+S3qNWGIUZGX/YqtA0OgLfVflA34XmX5EuVctBzls8u8Le9Uk3TFOW5DMzBBno6Z45JCcAjk3C17bVpASF122OcE8K4fL90Q4AGkZvYqpgfbYI5ntBiukHsPjDJQYXY8EmEEeEKqpQ3mTq+1/SwlABeejNjndS3qXn+zz6yMuUM2m78425LjVwUgffleJOwu5QRrNxYN2SiPEw3A9mO3xFSUBiFQJerfl1b2an3vYvMpiUTfcJ8YKipvsKA6yjtLb5lkqmfpmqXn/admkOcKyeI8c/zXMoves9yUV7vIohoI8mTVEmSo70K9eSlvkPoeKnkmyt5a39mTQu3NuOu71PujnOc/ukrARMo8KAML1316vd4EGN5df4mAggYL94Foo0jB/XiiTQ2W05caIRE3cDJDMe+7RdfuxgZtHRy8LvEXZ/X1qLqKNzOM1o00gJqhFcYwp8AjoADWiaUhoIS8uvHeYJkl35gCj+jzMIzDhNcv30LhhCCaA/L5hH6/Q289SP1MENthnADk3sHe2sy4c+EJyeyfh2dU3Lk7J/oxMd0p0iaY925dC75OjO+b9fzm2dma1UDWWmL/nrU8s/FEnaWI1ymPNIgJk3RIJeCGxvOEfD2zDeU048G+rxl4+XoEeqR219Ap2abFjZsKsx13Cyjd/u412JAwHs9fd8y9oT8G5EQI0ahZVTc672KIhsOzUc1aJ03PUuHm9aGnBrcFAH8O6zRZa2hCeO4tBLhAMZvD9aZCdwtUxC4vZ1vOVDDaxc7F1jB+vdsaPD0K75wf8KwsAOMxADKQNWYYhnEdJ2S0eP+oFeQ6NLH7lABRZX4P44N1aB83e06tS3MIozKbPaYFimo5QjVaajDBs/1L1DbOZEdk9KswrkSoFcrfuznMbtxIb26IaDrjmPaz88yODs2dd141Ok6lIJIZfw84MhgmvQH7zZ/nZ4OflUsQYJYaOAYySicIvSgZHcMCm3TQl0i2z3c31IY0I9DC42HQ3G0zxa8zlDuZ1Ok01tahyYp95j7wfVWDcjaPprTkeWQd+lDLNjakk8w5BJK4tMy1PGwPsnSi1sbqbue/uxGpH1tk2eRxrFlROkKXgAIDAtEnfAKNHANiGaDZtyRSZEs7OiO813ECskPEjLfgD+G7XgwX1qeLM6zPj55OD99rWx31eBbXBKkblQYQ4d3sQX4Ug/raW93JKuXraZw/W4d+GKKgfcGD+c4N4XxDUQ43SEJMOVze0x06NInuAhOwgAUAdkykg0s9rbeeJQXDxkkuDXzcgQY07yaj9x36/Yb5bYvystgznj1leV/7Og2Nd+s4v3XMXdAf8IB42YYkTea/XX/YnipOBSwAtARnXC4JiT6Z/YREUGqWoLmwBp7L2sQC+7vg+FXxf/7H/4z/9Mt/xP/99/8N7dmwfXVsvwGdGUfXs1oM0eDOIxLH7YR8ZhqRWZYx0f/+zH1BiD7HxACfo3qU5StNokQEoENmc9bI+cPghdejo6ctwPtra55dVuA8EO38RGxPxgQVO0zWkleucQRmItvN0gv/7rsE0jvYdkXW0agunRdwDkec0IFp2eHLO0gE6WQtr6UcHQiOghdH23WkcmxMnDjH2ELSyYDKk3uhxbOXYApQHDHbE3prgX7tn+ZsBmfGVgLf7jSmo1rT6P4+x7SMuyNelN3HOD5vY1jnXz/umdgCkqvqYagWOvjaWiHAnWlTcH3O6f5li6w6z74cI58ppdzBA35EcUA7VDZgSxltXWQYgPCfDYHMFudOZp6vZe/N947f0sWs6AS9iZfT+pk6sJ5BAEFoSn11RUI0Sf1WHUU++/GEPA9s32+QseH85gFst3sjaSj+bNFIHIaD7PtQW0MTsXNQgha5uLoEMxYdFsG0mTquluiWIFQYwh7A0xLosICIpC4ugZ2wp4AsMRozkZkLX4Jktp569V0QgcEMIOzXSIjFJDuyZtsivhp2HZNJ9awLu4kAQAkqVFv22s6cvIJ/0IEh9t71F/wuEH5uoq721+8z8PAnQYW/REDBDjg8Q4910/W+Rlc3M3Tn9z1hfUW4qjuXAMzJpo73g8fuBaHAWbsuYoZ1a9DHBFA2dLODW2uwqxKOqA+NXTWIdCVugczc0AHtsrr3hTdBEEpL5rR2VS5UI4vjjjcRBzxIiswanN872qHY/2mZUVHg63/9juN7w+0fw7PjJivapxvhnPap6E9ndm5u4NzcQD9ORxe0hJzSkLhtzr3QvZ2VC4rowCBJhgRgftuBb3uUKsCZ66Xf4j1a7zY1jCp6FFOBtR7TDasGRJcG/QYAgvHR0Z4T/euM/dK+nOBQzHg795spMg/KqADb54n+xcycJhKEGZ4aLVSNoMwiOL31Jw0vNBhppCIM3+5Kau7M6CfaY8kAUDgPXYRte5SWZq0ZaoCC4H5bhOLSd7saN0AgCUiumIPjXle81LpVGOVZHKBW/v0Grr90edCeZ2MamVW8I4N80rw9JveoO0e8NXkHvNQgfsZyBgAM9sn9tr6vG8giAnx+mVA/n/Z9P1sVzbBcHa/lT6V8YPldbccDrCiNGJcTVm6WyZeCaghSR5zWtrEK9yaQ5u0jnYMiAhlDndPB/wNKeYkTclJWOUzO4P0kebQ9omQQV02OhH2LfSDMHtHBvO0FrdOcNHaPFmaVRG9x7hnA6n2B9otkaRdUrfWeOzZyzHQmeUYiOKOrMqTMGtMRNyXo5PuOZ2HJMl4yg9G3+8cjzyPfVT3Ls28eiLCggzycLPfziSCU7CwZcr3lqAgMcwxkl6hhN1LMlk5KBEHm2gKW5zLmFKuRhfJvh4tHh5ACqU4UmP1cT0QgMHSuo0WUWZzpzs1UABPN4cqEfAv1COeMBj71P2B6DEDDBsA/21ivi3QyuV7nNGdKkMSbAKa3/iM6ArsF0MfdjOj+NAO18uBE6V6xQ2So6ac7jbgZzhgDB7WLE4NO1qpSYi2is4jzFM1bRxsTU7bU5/7Z7VPx8f8K/q//9H9g+7eOX/+rYPuhOD8a2lMtE0xDn0ZyS3RZOEJA6Jul7V/VLY+xGPHkWxB3ovW+Z5nBGF4qMAP5oZsFGUkODQACTSj1GOkA3LZEzHBv8cxsDSRoFXImxR5cA6qhD49zdUCaG+foBv0nP0Zr0F8+/DtjJXHrPZNKi4MhQCWIrs6diKGt4Aa73y9kFAMCRI5UNE/PeYp914vulotT6OsmMgHvOLpksRtQSdTibFWxFHrc37jbPpbnNBtzdxuTAVXqZM5t2Avr2UBrUOuzGLImAgpdzfEGzH50otgoa7mMP16Q730a0ezC+8A9Vu2YcwSBpI7y/QjGtLRDrnKxzk11zCSfw9Jj28sz77nBZC9vNGaizeq8u0ygfzLr2ZuG5p3l3ZZuHxyHX9GVZvC9akJD3iY8c7wKupftt6fboLe4X+yf58TGJFotNfHlQe2LzmFyf5fEQ3QdqVnwd3Md7zY9eeyyp7/5nKp1E+JczYu+ezd24BWpQK6uVubsYhO/oCV0tYHDjgIiUQPAAgy8vLRG2cGIMp6IBE+U6TuyLI6JgWLq/MtYawlRlO28Cya9+W7MybXEoQTrDIXV33+3XH+NgAJwEVCyCnW2TAQisj1+2Z0x2WrmdSCMjSRhKdKUmVY3DKI+Z8gawapXUVLMkuYkv1n8KmjHSBixR8IimydZh6TFkCRRVbYudChWwGy9bnQopBGSqaH8EyrZMD4atCm2H6m4nn/rePyLYP/hSqmJlU88R7RT5GfZN33e3YFnTZkb63QGGNWEahA60aigEl/WVDVqismQzkBG6LuomXbF8/RWc2crArdldHGaYjBBzy/6EjZgboJ2IoNP04xc1Ybp/ernJvaKBXrNLg/2b76gwwJHu0QPkVFxGi9sASnIgBlgsNvrPvNyjfaYHrhJOO9SSwy8RKQjI8fIciGlEu1FWL9exqvBPXvJoFRIapMIZr28e4keo655NQLGRaFQgPHvUXKgjj7ReGYEApa+vQB5S2xf+WcK0oBdIaKcYaoZgORVKIzaJACN8z0VC9tu/4mSjvHQaCpcBK38PP5tc7m046kKVqcbiLKw9sYa9G7PuDrJQAQdljn1FpPBrXBRUKHUauR8etaFhkGVx4x1N2aOWpxpnOs+YAaDyAsBHCaLNVvI8YUxXB2kFj9feAM840UDLRwW7rMa3OJcxRjyHUUNFfSyrvw+O6B4lmypK96aoZ60wEknoAHvUnccCkpgEH1wQmFBrOBT8PvH2Qdcn5nuMM6XMl8iUDHj6j1Esjgj/E75rt2fexJLuRkDlJT9oQPivGlm8MtnAEQwxcpHALbknHQUH94Ng4gTX0PUjhV+ryBOjPHmXoxMrTuX7ZyY3h2CTuTc3ZgjHLo34x/avDbYEX9L6VE3eXFtOS0QDO8o0YZm2YYT/KK7OCpOinpAOdEWvm+7Bfnn1jDR0Fz0iWbL6XYAt78r2n/ZsP1QfPz3afqs+9JWWVWuWjK5/rxwK3jgJM5h5engfpmGSNHWrETn6NlZYcywQ3Suus7uUR48UbKekqWcdAC5T6VwAGwzuxVwTzSJLldgRhLIdz8SwaRwg1gl7AsVS3bE3vYxBnnsi0zN8xJ1+pwf7sVCoCq4GPGeyYz7Ut+4TgwHM8bXoizlp04hA3k+Ngbcg3D2qpvCeZH4UZTXqK1LO4ahJImq8feKvRGyrazF1VYu3CAQjf1lug5ofOezh+yuWX0g7RY7KzODwmUOYn+IvNSsR6v1q0EJZAlCmYMXlv2qE4ALmSmyJGQp+5VAd729GOip71JJW0+XM3OinQheLbks4/L9sIFTXwa/C52/q9Ne/asIGljCoBFhBaR6Z1cU72i0cPzU+8Y4fe+Nss9rWSR/x3d5Vz5ebUnK97L+kczw87ToIiD3Ou9Vf3eRIxFI+kn5Y4wp7Id8dpTZRqJKk4CVNtR5sfHlstfqmGlrDryc1f+pKwIsFzkUv38z5/+T9/4pwbdff42AwtRsiQJ4xtoc7XDQuLA+Uf3zjDo+HGOJyC41dDRM7hswN/TfH3YQx7DygQLrBgDWA2u3OjIdI8ncgEWBvFy9ZS0xgKgz4lXrBv0e4hvUejObwbK8uxThQS4Id7S3356e0R7WMtGFURszMuuZ9R64/WN4AMbhTTXT7RdJs0iqc/6r19HOHa21QBjU1pB0IsfdShX6bw9rC/c8oB83W8s9HZ1QxDXCqEhF5gIyjI9v/g4+J9rEYK+9RbbDFDcclqvQU3CfqbDFWYF1b9DW4+f908iCxr1f5qDAqAB7v5nElBEAOGZwH6gA45eblUf8eIaB/OKEc858j8y9OXeFkzKqWDbPjWVrEdXTEPdMgPbbKjR7zm8YMcze3LLG3aBpM50swqkrmRu3oAcvouSIENRrlw0gFOOyd+UiIPnv+235mfQGPTwjxbKh4lBHTf85gOMwx7lVB3MAMN4DtoTUdrdsvaoFBrx1I+fdvmcKUH7/tHGy9eJ+IchRBREC8Hvq15crmoFAQ/jvI5hB2H4R8AEjuyo8b2MpH3eTI9uWULlpJR9K4+62B7+LtSED4LX/OmtWTwCWQbzswRnjWoI3jPZHVsfWVYA1SzfNAaJS1N4g3CdTgc+nZefZsk/c8WPbvip3RQBvW9qe3kq2tImlUR+OA52g6gQ0SVj8dd/d9nwe9y6zsUX568fN7nV4GQIhujQ2S4mBftwMYfDtZnLHIfjinCACYH7bHUExEpHRWzgoEcxTDSOudpaY3+4Y3zf01gxVd5wQmZgfH2V8JypJXexdH5dcg3nViCc6DsV5q4abiLUkE1j7sEEHxfe3t1szotgsi5NjLNwxANDY7pPBn7ecRACiXR2yzELEspCqa9uwBkA9yXBPBAMRDlqMR9MnrlM2eADMWskxMD93R/edGtw50SpYrIwOANowRFoQhHaT4YQIawP02+Y8B+7AF3+7f51Wrublb1kiB7Au5Nv/N6AdMP4exfY5MO72nP23E+3hdg/1IDkp2DXIHXkGzCyY4cEGMcI6nkMa60vQbt8w73vuD5ZA3HIPyZjoP56YfL5n3qkXgyQaZY85ZwiRBTI9oNaAxkwmyypmku+xjCT25+JklXUCAsauW7cgGeUB4fT8Lmu4eaPW0iGi80GbBDOdt6K/ZKjpJMoIIjZ333vT0EWRUGqGMoNIBvB8n2p1cPj35+E2Kjs3SdwnMr9XhFRxACNAUXUNny0TOBv6OdG2Zi1rmWzzAI8FOUmUafJO95571skc9d6tPJboPJJVN+NpaG2GXNPjTPvYz+vzX29AA9pjon8NbL89fWx+zlvD/M7SZzWerkJmOe/7yi9Rkl4k87zOgQV6JbPrx5lZZr8X2/he99zyd8/esnyX3Sk4Dwi70cZBbixRQ7DYPpkZeKHz6vIsgmBDIZWjhcgo7hll6dNMZABg6KHeEjEA13tzGsiTQY45LdDLPckxEv0WusSRh+IoJdoKrWV5kkiW8RBhR7trlH1bHV0mSLssJVcyhrUnvsZtFuTMRedfS0EKgikufo/2UaBPSoChBtLEybNHsZPq+Be7Cyuitwks4+rBg2UcmgmsLmuQmHbZNVH1tlUKX1XeBxXqVdtOXvb2QppaAzX/f0EosNVTXGw3dcpLxNTgYzNqM+t3UJTKQnrRzOPkIVyuuukAsN1c9Pl+N4k1Wg28foYC/GdrXjf/9P+oy38SoY7IqKu/IFaqz1CFEWBpgbbbZ/tjOvmefYddFuBhyWjV4/u+jog/W7IedXyiCJbuCH64sSKZeXjX+zkyROUQB8OuBxVkK4ylIs6cvNZh1pINabB6PjfkyEYe9WV8fxoBs637L4ZVeRHWfRJtt4YaeU0ETF5u499/3QzasMBEw1jy/Ur4sDaxekJ+cWLNcFzeOffMjHmMMb984TIv9VxdSVA967J893ov/nmNDr/73LvfUbhGF4XCKK25V0Kw81IFiEQII3SmQP5J5FepKOtFTgaUsbc3Y6vvO5vXAZaz3QTRdvLd+K/j7v7sn7yrBU5gMmrqa20clVXlmninHC/KyKC5b9Yi5hs2lzRePMAQ7/1ubO/mlYFMOvfqBgQ7QjQvBWO97Lv9UeX1mBAZ5iC6UWbz+CYwWxyRyOS8uQLqzXX2P4MNnut7DkhXaLcyhGtG+8UArWOpsr+VvQogDlgd5+ZdXWg/13tfDal6/3oGVVejB0gDvAYTau0q5WN9/ZBzEv3og3E+YLEKUXfcaYhFGcr7eQdSpl25kpaMqbLEwPdMJRlVRSX4DB0YSLE38lmLDgKc2BcAmo9DYCgfxFmaAPrUZPcv7x+3bU5qdiKUKZ1BGSeIOIz2i3E2i74WoDn5IsvgprYkZOSzLiUa5pAW5AjnnbwL4o7M8vKyJEGs/EBef99rFxNz3lubmM4TJYLga1qICMM54D7IvRKZfO4h5wBYOt/wPj+7YpwKym0RJjCaB92QjmXVa+/+dMcpbk9HrMpd3utnGepLkIGfXezL67qVQEa9RwQChgY5MuUnUDpj1LGp7d8lMO7P4RoGISHHMd2DZ8BullIzYUCuRXAmSEfrGICCiqd9iZSrdYy0O517g4GpuJ06mkA0bH4VDec7bJvCw2CvYS/AFppLVwfed2v2Yo6ijC4C130Q9pbPyWK/6zoWqbYUzFYBFqSCtR73M9GxBN1e/BEGVFxOKOVbhdv/7HKnt3ZOSfSz2+rHCQwvextGUB9kmFfuHp5j2gSafkaMuaCSrXzyzXv97BwXP2ohx+Q5qTr5Z9dV581XGQRgDWbMy3fxB/fne/570AR/9q6817v3f3O9dEepQYY3nw2f6RK0YUvy13dpr8+I7/zJOPBXCSj4oMf3m2fT0/gPcj83ukgOJ4dN0BRE3SxZnts/nUirTMD8uAF7NzbmUcRfM0GyoBC+fQDYzWCUc1UWVAibtyoikZNDf/U4ED3k41cevWJWKsodJIXEt72QzwDj224tFx+Hk2RJZtTgGe37Buy6OJYsP2gHOzp4dPyc2P/tC/s/WvTzVm+dJOcMYaz0Y79twM2MmsWY+baHIVS7cmgXiEetQ4GeA3J+2lp+u1vG49fNAiHPExjd3t839vTyh/YcAfnSLpgfDpXdUqjMW2Zdo1OCOwqN7cxc6ZIvgpFjdoOIMoZQTPlvOXwMUxMm+TyhrWF83zPz1Upf79Nbjrmi4vPmfYNuYgza7HzBiPvWMO8d/Su7Xtj3ffwuCNpz2PzcO0S9LvjTM5PhDMBalpJrol5UPjXjU0mNRCKLK8/Do9leGuDZ1jhTY0IeP/J77vBHRvtWamDPYZwI+26Z03ER7g6V0zEt879tWTbg2X0djhZipn4MyMeHIwWOqOkFEBwmaGJEnk0KV0F/qyfCaJ2a0LV99/aTR9TG6TmgOoDSSSIUy1ToeBoJT2vGcQBAbpZ10SkR2FjKHUJ2jBI0mdAT5ryeJ16IfHq3sROt4LKIc6BjGHdDyy4IWYpRsw+esfC1Dr6HVmTZNfOFD8v6/XB5WQ0Ol42VdwAikC/fp8/Dsg57N/JINdmrzefjeWD/f47VyNw3bys5PTMthoIoAQUcZ5CP5r6yMxK1z84RANWViFQK8oF7PQy9ZsSU9TpPa4u59XTOfB9UEks5h2VXt5ZcL04uSPmoW7exuIwOoiSi8o4T7XdAnifmx475y81QYpMs9SNkf0DBGfTg2ZRiLHurM6hCP3YEQmLC0A8kPuRFuUijFJnlNOLbnnPpcxcOju8DgWe5iTYEbP3njKx/1Btrll/JYwBdTN8Mfy4z6o4Smb/e7b3cGO9f52K8qQA4zOGY90SltaHAEyaz3aHHMDK/4F64NYxbCzncPyfaqeg/TnuvazmBKuTzDP0LETTWyQuiPOL8sDXeI3Bizoo2cU6EGftvU3MC5q3Heso50d1Jn763wkkqzjNaw/G3G+Yu2H4MJxVO4mndDQGqKosDMD9uVuN9667nC5IxzsQGdgdohfC6nS1Lmqbv9+r0MFFChNES7Cl6iONwHWmBsBJk8zMWpQoMFF7L0igbaivHGkRoDfrtnt8pqAvwLNX7ASuyaMII7kpZq5Vxbsv3amtmC6Q6cggAkV3x+94yID7O/H6dQw8moyCCABiQim0sKc/4bMoXkdIxY7gBzWBdeylNZNeWK/dGJDjmRPsagLgd6mUifeB2AAAgAElEQVS3JENtDCixNGjkXl3XSq0jWbOOYnJqltkCjmoSd/gt6EU0rbYWezZQQkAQcFfHqXlC0fasuk9g/DjWVWxEBzDadf15RrDF2qVK8NjIk3sjdaCc086ylzsFH4yIP/uI/Rct77llaFsTScOSHPJ4kJdM1dbO6/JfUGg8X0RcivNA7VsGh/i+X4/YF2zBKO7AB2LphdPB7eRTUZFxC7/P0Cw/AjL4SlsRwIKyISL1Yh8puSrkBrRLi2na61LQCJQHb7qCLRefff0Z1j2zjNv3rvRuNuIwPR9tsy9lBbq801zvx2f0lO8vwQQGuT0xu5TRTk+0kR8LyGf456TaqfW9rokejqne3+cvWmxO4LUWZ73+GgEF4HUiGdmqSZt3QWBXPoIyVk5egW7KdMZ23ouP8UWSd5sLMIP7dgsHQskMykwDo0BkYW8I2fJTvoXYZABK9BZAOLHxOVfqWg4haxBtc9OhluSO8MMcRvJEMM5adgLhBMnU4F5gXSfO6RFZM+zIk/CzzHssBQULFQ6NgRK5TRJJj44rXiN4TQp0zhVHb6hZeUZ4RREtHAEkmVTjPCPgZQvBTkPWbqqtwx+eFY5haxiln7QFbvCT/asAyH6dGYUlKygI/gbbB0XYc7zkEHEFyq4f1ns668dD6Z0j98SbsxDjKe8a5Th1vHSovP1jCMb6/daSJTYU3VzXnH8P1E7d37nmy7MbwC4Fr+tgHRLSOCzZeJZLFJLHEJCtF9mQwv2l7rVf5sbHCVBplTM61RVCkQv8+RUZQGFffycCoiekGs0oigGX4BDlTm8QbHkvnul9szEzi0Dn/Kp8fhZxvgY8KqqBwaUoVdjWms6pJcvDeuXiRLeL0uU6FWdU3WgGkJlj3qcqXb7nGK/7+qpEr+fzZxf3b9Qmj0Jsp7mHq1Fc93E5v3SqSNjF/bowYfPMTjVnP86Qz4UbEkIxxawwDfMxrVzoXX3ksv/8HWqw4VoXDiTJJrBmVV2p1ZZzi5PBNSo8LLHe9YyJWBu2Acj55p0vRlWOs8wxlyqy8jN1WdU3cRO4vkQ4yOG/Kizbf5Uzfj+yrGsTzA3oXwBORcPMzj5ugyxwfd7D9YyU4w8gOy6UOvGawa26NpGIusRDg/hxmnNLp+4PL8pWIOe5i9kuVz3sY8j3W+eVPArmKCsEMxjqX57HIF1MwEW+uJzSzQkgecYYuK9Z4Ov1bsxXHcMxV8I4IJEC13fmn1c96giNet6Nf6HM39Vhvl71/u/en+9znE5MmXYVkaxJaCixd/Vn8rw+t3zGZK3/Y2oa0OVzifBpOYd/NjZmt1GSXSKeiUcakoF8A0Qm+oMyanrXkDc21TTdqJJyKB13KxsV2nRiqLtl2/GMtcvPiAgVSzZN2tiAB1WMHPLaoedl7HxPVctrHBqoiXiOQ6iCawbIIMg7lKDfO77/br9fdfbyK02dPaclJK+tR9+NAyhrdBG+F9tikbk8M5hRnrvYf9Q9VW9exhK6syNLlDpgnHcSn6klg/Fe17mgbxe2wXz1yepnr3byO0f/ejFZVP8d43l13u1Zb3727rp+/12pwx+UP7xcobP//DtLq25VC1D8AY/CXyKgYEp9ZssgIEoTFoEmahvKD71BxQHCskgSpbfNo43P5EcgoZv3fbaHFCWxdVOqNL5C2XbI/W5O03ka6/pVOQJREyYOCRbZrM6uCh8ajy5I1lYqlglrP57xfpF99neZHxvYdkoUQbxU6zf717l0f2BP76WO1+s+s82mtdGaN2+jyN7RQ9F+t+jl+Ns9I+cw4dj83YisiOx8tyyico5Foh5Kvs6IJgeZ49LPGJZ5mQpxVIT1AjbWYLLO4pzxfOk7xn2LLP/0+0Xf8wIHlcPGNz82SMt3jmCNpF7lv3nw561jftvw/NctlNb+T8uMRdClW0mJITVGEjW2zNCNX262fuRv+GjozwZ9Dmt3B1i2LA68t6rcrVXl5mz2874Zoue3EXslkCFSiKREFuFhNZU990hltOe+37plFn+xDE77t9/XTEtho5Y5od66Rth+hkgFRrj3zTKydJZpLNDR2TaL9rI1pAD6tAy5sAXm1s14dkdGn4dn1wWKG4hewLZB7jfo4wlMtqD17g6AIQ84TmbumeUfw4iSAHuX40w2YJ1L1Hth3G2GbMgev76fnKMhWnk2d4DeBc/vd0R7THZ1oDESmQYPCBREgT4eifzYN8jHh73745FBTj+34rX3WpVJVbQ2sJyfGkwY09Am7HbT+5qNozw7TsjpWRyRRA8AliXneetZsiREBhTnNTJ/nMPy3JArniGwYUhG++ek9ZhBWg9QLd0iLvI5ghZkmD8OJ5P0PVDaZarzuOB55O+8NWC0ijw928NnAO6ApFHNwC8NJ+V59ffROSG3zcQQl+3Mumy97WvGpxpwM5nVARhqh+cG8KyE173edpOLzCxfMszkRNCtBdIqCWELFxED2T6OyoOkXQqhso97qDkIxSA1HUckm8sV7jGfa90dFt+81O6gveB63gPRLClr0xjt+6loLZ/RHt4yrpmjPzfTr/1rRtvD53+4edtHy3K2HyMNQnZTYEniXnlsDJqt3i7RmooI5s3JHR8jynzgrZPj3z4f7Tmy1WNNsHC9GwIKLVL0sweyGWQnMWgEn48ZHBjsAChzeicP14NVThSSNDlntGeMTi7PAWiPPUK9ncF1xLxUCLYFBE1XjV/vOP62Y//HYTqwucfpY9e9r+WPvDy4Vs/Z8jsOo47ntPkTIqrq54EVUepynpwj4exuHYBlYSMAwNsEP0JNJuQ5XTrWjKyFZylC+5rRLjvK/JjFDXljvvNLBjnWrPt3W5ar8V1UjSeqtWyZXTk0gEBTVsRl2FNxds1BZ+DNEAp+Dv137KpiKJyV88ycXcH+33/kOv4keBS2FNVSQQGMu3XT6Y/iN0iWzJh91oCmL8FMnk+cdk701iI4YdwQDXJDjFn8HFVZW8tKZWjIRqIo9O77pPd8P+5NImaZTGPcoQbDNk+k1PajyyDKPYuODFuG9sqG1wSOv7sSicaL8uIkv0+S9sa7bYn+4j6wn29AmyE3pNY+UMdd7ZCqj89h+1NmtiBlpw3vyCLxLj4fnlxQ1eh2BZ/zhUSRz+tlPDXQQXsNPlfS/phokUjSa7eJa6DabW/amvFsjgEAqtNeAgUWGJLl32+fET8br99zVMMLemM6clbktWtZXaN3vEfl+ksEFACsBGXAejg0o3x1M8iYaE+Eo6wfLpC7KckGc0rkmRMSvWnpYFZCigaAWeua4QojicENSeXlfAvx87pJn0cGK4Ak/Li243FnXEVSWEh5xlATgobPtA0Z84P4U1TD+FgnlxkO/3cprQA8oDPVoGbHTEdcyvePizAAFsIs7bADz/lqDbhtaSCTwZeEUNMDCb2MhU4PEDWYLC2waLEJF+tf3+BldWYsPp3Y8hjROnLuVNASjj0z+6jjK1cNJpAxnNBUQtH6c2JuxhRODoRl3eiQxI2QghbIbJgL2v41gzQyeRkK6gBAayZUa0YrylmmCzJmatnjfKplA1uDyhZEVbEHH0kkVQ0bIz48TbCoIz4Ipa7lA92MLfn2Afm4J5SVmfqrEcXn02EGEtkQmc+W2REaQFSOVIj7nsK0KgS4E87zdb2ILuo9zr166QCfpYw000BjAJFtk6aWko6zjKFlxL4YDCakWxLlVTl3VSBUIqXOXSmLwhCcHjhpOW/SHMTgwQcPfmatnM2pQF6hboBnEnK+Ym6vSqfT4fGh0CDwPc9SrsgwcF2WMU9rL9ma9fImnJ57B3kGQpGNYZn6P2JkzpfPea4ZeM63y1xrt+XPZpCqonQYiKtz0VrMcfysKlsGBgo/RP1MBEjqGOrFQEdtAxb3nmbwvvmOzXdx5DnnZ5kPnkUnPdXT95wbXkEkeVyfmXtViLYYPi/u60UGKfZjWQPAg/9+Ppq1+CT0mL+Pz7oejpacHjwGEBn5CGI70oCt3FgTHezyMTcuc7lUvK8rgIrqa8cIQuMovwSwe/CC3Y+ibryXoMW9L8YdnReF61dvDScMGPgzK9N/IBXz9dJWGbmWyhr3ejUspRhyKtoYoSei1K6LbZFTM1jjsmth2q/rClhgC7ShPFi2b9DNyRPFOjcY9v7iePBsc5zVBoqfmR7dvoaVUrDDlaSNxfZ1LygfoBjyl3NS1+SalTtJbNnz7JdzF04/E0WqazCYMqIgcxb5JJJBVzrxY66oJ/8zzmDXPOte05xIAj83Ww9ixGUeqXecFNBQRjOCCsqfvXNGqRvCOaT9C7M/HXFp5Qbr1zFhfCGa+iNQJuok3n5uovvXFUFWkGz8GRGSV3k5b96itJQ4AC4LpsazYx8rVqLKLfefQLL86t7jPAfSAauMiHPk6wPJwInZ7ZqyU9VQhF2jC1Jtl0v5xHlNH8PKSQJp6wEa8sdJuT/PU8z3VD+D9u9Yj8s8XfdMRbpkQjLfdek+QtuI9r3rAqJNoBIi4C0KgTZrOPJ93YPUgyzJEUeCd4FiuwQTyn7296OcWfZNa2lL8Pc/QyrEd/z79czwmWXugivrGkygbVcRqfH3hgW1ukDYSlDBkyDLfbGuZ77DGzuuXMp3f4fS+LP5iLV/t6B2/SUCCkmmd/kFjT4gstgtBLh6VmIEK6n2W0IJN8XsYlnsqCPDko2lgxWHhhNGwVYUaWQ/Ga2i0Xf3Os7r5tVkjJf2ze/LzCNrwXiIFXh4Juy8GJM0FofJNvEsSmTEgcV4ly+vGWTEtAtkuDHgAmbuPQ4A25S1w4WxdxKwGtvyDkfWIVKICNlbxZjAz+jR3cAat8ju+ztvvyHWT2+C8dEtGDDTKCbcSY5hjLbFUGwPO0jz1oPzgGzStVMI0DE+Eo7dHwPtcWZ/5GuGsqwbDbt565l9AYA50U5B/5zQXzrm7gZYLyzZvSWDNQ0nDyZwLBYggmdvgO33M57BgEFkCc8BUQvMyN7c+UHwUATB3RiWiSQSIBxizyzs3TOKw4yRrVktXyhZhTQTNPp8GhKnNWC6MeeBAKUTPSek34HejXm5Nchvn5Yx3Y0nI9p4eYZGhndGOE/INzsT6h0bpHTZCNhv76bJPSuj52lcDPebsf8Xw0TGsAAN2fwZMeaaYkKnrNlmcg1UA5AOeCE/hE5HRrhjc7/7x81B0wi+SGaC+s2E+/MJIhgygDAiSBHRYhGf876WXHC+KYtcGaqPQwCwLELcCMHziHtb/2BkfWJk+auj3VZCxqpEefUG2TZnN/YAihTjuHffe5a91mIgLvNbFLNlS3zdiWKIzh4MNHkQ5DyB27c8s2GsXpQrFWXUOpcAB+eaF/9e6zjFmcJrJmZMz+qn8wPAzk9bHQY5x8LHE4aLj1sf1vnCeHqwjCF0V+2kokUueKbGor3lXTjX8+JoRQGy2PieRwkWufXXDGQruyGE5BBkjbiuhkdFW3B8xbgiC3zozqIvsCXMtn+dob9DNjEw4cjD+UE+iYnmSIJ4d99TxjVgjkJ2KWjR2ch4bWyM8dbC4IIugc5ASxyK7ZyGjCi2AevDQz6fE9gF0520ubuDT74hD2hHmcun6abmzsi8lT2jGugHqYHYKDNx2cCsKAARXdveqQLSskOIO1BtKOTzyAAqOvTDHVFh4FpNJ3TaFkiD2feCitlSOmC8Aez+IwL9tttWm34mVIGxg+SNEfCmXCFPwDVgyYBN4XvQ+x5IktCHNWBXEz/vDGQ1XRuyaBSZ5LJMT7fJ9h3RqpZ6qwQTtHvAhHuHdpC/27VshpBs/UgeFjmGdXjg2i/QaDUOE6IigEREEYlFGSqS5+bI+4V83LrJLRFrK4uZSIsa7I33QOi8DHY06841Tf7oNNg/zzPtpEb5FTIZuT502j2RF8muktWOIJFnnSnLdE5HsW3prAMg4mHeGsaHjY8lvtHSPGR+yoeQN83ttoIOA2zvT3ZpYBKKe4xn/vT33LrzRQiAlHVBHut7NOx87QheNbf/zHZVsCUlnecgRe/iJSK2/mGHXrsXUH+5w1yDM9Flqp6Jy9qDPsg1WF8CHxWlA9tO+flITPo+GLCknxgiauEt4b15hut71TGpQHDGMwy1txUiUedmeB6rs1/K0ZegWUWVzwGNNuP+mZqVv2b8q06tgQTab4DZbZXluT47fI2fOOsliSV1jq+dHfyzDAoE58G8PKt8ZknU2Q3Kc8vv/yywUt/1D66/REABsLpK7d42z8nvsAHz+24Rw5sNmH2g7aCaUOoiDsE7UtD6ZXA+z0KWBZfDoND6/Q58HdluTLUgCHpEwrR1gwVeI0lz2OnfC+yUghJYo0R0ZKY5OPWgydcTNQqot6wjZCsabtJGCKkHSufesp7z2w7FvhhJfMb4vnvbRCequpnxf/s7hX7CbmN4pZ6RkDeyw+ptA24b5KsQv0xFe55mMG0S+7f5e4yPLYR9CG0X+CTOao8Bada33CLFQPtyVmyHPsoxPEOecFHVLaFlUc5QDE4gHNt+FiXMNZtO1rOZIm3PEc+vjpFMxfb7QH9M9B9ntNCUoWif5hjpN8vYi8OhZc8otjgcW+e0eSl1ccpMMnsc8x1VIzvWfjxt/MeZCvEc0M9PyLhBbnse/McTcjTIs6WDcCJqR6VE/yMYsjs5448vOztFOC9tUTmfj3R6dd8MCi8T8nADeB7A/WaBhl++Z9BsziRBpJNQYKLy8REBDvudi6uSzSbpUGTePVPGz2vXRQiaw/3MYKHvg6jrp5Hrz4pOEizF6PkdtqA0p9GcWD0toBfIAgY2qjK5dlhguYV40OJULC0xeX+BwS7HMAe3woYB43cBCrnYuGTemit6nxsa2AyeVI4JzgFhfNU4ccevZliM7K+OsRhqJDYkjL/Ae6Nd1/2WgaCasZhwjoB9cXJ4r3inbUtY4/SgEBwNUR1bOgm8D//kHiTqhmPejMxRNiu7iUBDDUQWQ0m7l9ZQl8SzTBbK/eYBvZ4GZ2ljuXDM3ApRrxPhhWFPmVyNp3B6yvng+105UErGRGpmIso0XNYK0QWyGtZXg7AadIAFA7ne5wRkWIbuYnwunQAAqOwQEfTfS1AmMmctM2EAXpB4ML3QphphcQPk4WN2fgFmGGWMbPG2d2hXyCj7RL3TE7vtMsjniJx52zA/Nkx3bGYX4AlI01QpJDtuVlYYhHlAEC1GaQCdC3L5aI7P9K3LUqI9uC8YoLjvoX9Z1kfiy0rca6UOjmKMNoZ+jgeszaPvIwYTWNNuRrSvxda9DW/Lzk4819z750A7n752gmBq7y0QiyEn4t66dndR9Xa1DsVu7oxURAC4P2ee8dgQvm5ezif4sMD44+nZShIOF3nLYOTdFz+QTEjnwp34OCfUabQfw1mewJMBwmIfFn0fc8LPAwkx782cUZFSAgkL/nnyJ87ZTL6Wev61t9Sx/swYy9WP8D20cHwAi15FbRnuiREmr6aXC6j2/H79LANetUOJlzQGeWw7U0/4uA0NRBmQe0dOCVQC278SaRzlp0cmH219JbtSUMfM2n4xp8NKelyX+BgC/fSuTIaf6W4P9LIfqA/Y3pV/r7oEWMqVQ9bxnEQALeUxRikXLEhVs0FGfMdQfn7DhQjUZcmV1LQ40kSVhC7gZ1SjRCLLltXyAWPt/LOgY+p80Q4BlrWN/alW4tC+3LfjHtiQnCgV2eD6fCFslTyz9YqyVa5BDVZWfcnf955JGSDtyAa3OfgL3wfvOAeqDi4dwN6hEBZCREfeSeFUe/kM/10RkiI5v5QhlYCbCMprqYO/U+1g9WetKP8aAQVB1GYF2ZoLqvFtwyRZoALYTEiJIBRfO3o6Nq3AKxk9q8YSr4h+9lSuPLDRTaBE/TwLyF7AmcUba3RLymJrX5VAZES4UTWDF1Qku/dz9rkAsLLQ0kADXGgIoAgI6fzYLWr8hBlRLPdoZsSMjx6C7fze0J4C/U3MALkYaCoCsIOB167NW0d/wJTy7orueSbsiciRveQ8SwBh3i0r3zheQtTOifmLvbucFs1TRQh3IZu0I1WiHSIj5Q3GvSBwBAa8C8KlXGPa/ziXSx/2od4yZwO0RenHAlcCvO52Qn6UoM30cX4+rOfv93tkK8VrFGXfLKvkrPYiEu8Te5aZKh5k7pcw5G2fy3EubNnqtdGQlWBUuFcl/1PREMRLD2O48bF1C1A8nmDf9zDW6NTz334GwjGi03UiswxjWJCDgbLerVMCsArza5SUnA7eMYFdJ/Q8U8DVCLwbB9qy97jd/8IJMJ20kg6oWunDAgmsziZLHTiPtewDDnPuzd9PocqAn3r9a0aCrzC1qPuvSjpg8S2Vz8bv+Tuz1Vf9PpEDdODZ7aIqNAYqRBLpwHm5TL/05i2qGCm/ZBT5vjSW6n/M/gAW4KNBrAptM42sgqQBAD007Tneq5SoAIj5XwIc13cqzs9L6UNOvs+Jn8MacAiv0OGk25aORpPXe5V7LnDamt3wtYjSED8bqP/mvnH0UyCqurHntzlWh+sa2Kj7vH5Gyxmo35M0viJAdFjHh1ijK4yzwTtvjCVAwz7nJmMssBGcGafDd6fr51ijmbJEBHIz+DzZ4S2T6M8OXZ6Odrw7h0V5/A2YvaEVArQIJgScvgPNyykZOAZM5pcAfpWPsca7JTnGPYPacwraCegmJqfVzpc2ge7JHWBzJZmFVITNYxnJ8r6+j5csX2fiQSJjHHr1ObwUtNgzVX/xXBD2Wm0XNV2pXhamQieg6FCe99ayxLEasFL20ZjBLyKb14+3sj947vjs+ZOzzDkX2Hf4cz63tdzvPc/nsj+ou3nfH59gRp2kdUFe52c+uLjGmbKE70q5xYAoA6F8l5afxeHI1DcBhZBL5Pjie88SaOQZO3R9PuvIi10bdlHZq7SPlvnkVd+1Or3X+a+fOydE084OG8wz9uQAIWJOyr21OYl0vUoJLm0lqCMm61wB9jwvWWWprszyd6I/fd3bGCDnFsvGjJSQ4/ezx5LWmKfyfk0AlUQf8D1o8wJRshrzGAhhvF6hdxDzFjD2autVZ56yUhXRVrrLWv5T/iNnQjqSzfyZSp4dOoBI2pZ7q64/z2XTtC2WzPjM9wEsIVIDEj9zQplwoK7kWaiZ83DoszuGbjb3QUxdSxXreLjvyxmJRE/z974ukMtFpTyqsr/++W5MVQ+FAy45juozAvnsKJe4+F+ceyDldBBqz3V+rt+pspEyrp7rEiR46Qh3uRbURE1Sv7n+GgEFV6C1ZybrmFjHTsd47g3YFK2zhl3QfxDK3KNen2R8TQw6HaR1cVDdwKcz/O1uzt85Am5WGbGDAA0w5eFKSkqrk8h23m4JnQMSvuafC+IvIBWSPycybyJG9uRZKZLwASitIFPgWFsqFwgQsORA2x4dHOy7TjTVAJUN/VnIlYrxxlaHcjjqQNXIb3Yz0VrPiKZEJN+NpdtmJIK9eV2dBNFje4wQogFTc+6D7Z9FQPg1bx3z3hMVQRK3zwOCEYEK1gzOEiDQvUOnEwE1M3jbcwCPCf3YAh4LtfpWlQ58fDdnSBElBXp35/Sc0L7h/Ohohxp/RwegDe3zdMfU3/XffoN+PTB/fKKpQqZl6KNNEA1GYKkBbF8HyLkQaBH1YBmFvo9XfhzR0s323V6cbquVjns4l4fuW0JGWVP5LqO5dcj2LRXDt4801Ih08P0aTNTB3Ovr93G3c+f8C/L7ZyIe6AgzaHAN9s0ZMHhxzgSSycm+5/vyzH182Pw/Hhml5lkqEWVIK0GRPHck8AkERhMPqjzMof24W3lGOavWy13NqX0OqD6zi0JvWBz0qiRrAIHQX5VsBQm4wkcq7sdjeeeQOwCiwwyvkQENbJLdI4AkvawkRa3b57guPnfqbSv1+TQFxLGxxKt3Qx/UjFzNXvk45LcfHthKgzpqmR1yrc9nZlJUjQyRxjAdI17+/BrwUBr1XGb/u5FYrQ6hXjMMoxjtT5aemYMQ32L5wRiGegCyBZePiRm2l8x9ff8GRB/7VlrMFRSVMtv8PNPB43cf7kTUsgggS4zOsxhjvuf2LVp22V5oydNBmRJBKD+Lvcw39RWDlEcZU8jaDdg6xt/uFlD+cgRg29e9ASCQgh6sC30oAvx42LnatyRl5O8YjC3Qf8sGlmx/OFDuoHgQNjKBmycInjMdG884kpCXbRuXGnVfY71tHiDoiSrouQeUQXxB1Hnb7wCFWCvoMdGbkcmdv2xok+hAhC5ayhtocKsCxzDnaPfSKHfgSHLZPx2xtXfAGdblcaaz3bsR/z7d+azBZt8zMifkyxGJs5f78T1KmdgohjcDbmIlaBFE9H1l5JC2fiFrukDvG5glvl6V3C9KJ6ozXuvrS5KC6xF69mpv3e8QBiPJu3O/pVN1DuDHY3WugSRC1MOdV0F0uqjByKGJOngcQB8pb8OhNIRstKB0hBJL1aJkgmUPvj6BIvJ5javoUWHXDtqgLKWRkrX1vR/n55J4qHMa+7u1hQBUUZAXnPszEQHypG2xZ3kIP0s7l6/vAb7I4APh8Bt3QL63TLeFAeu0VRx68oiEfVlg9+SBkaov+btjoP9eSoL9d815VOBt1bl2y1pyfvYGbY60JbE8edsiCAbXAzAEFNuAFjRRyJ0rxLysj3baIDC9xFKR81zK26QENiJhS3vNkzwVgbZm6Gc+t8nquKPI4qor+d4FObPwHMT9WhKOcjGBJLPnWSJ/lzpRefGnKKuXwGHoi5kBEu59lkH+7PL3irN1FlJu2rfX5ERFAwBuY7ace1UHZ/l7Amn3/cklwb3V1sA+iv1WAzPl33VML3wLvC7Jgpp0eIeYeFnHy/XXCChAw4kDAPayZaRTqz8uMEi40JHM6Bp7tEZWmYcOzZKY/p85WZwguHPdVkKqetUIjmcGAh5MB+5q9AK5yesGrJndGFRReFXRRk/ftbbtBQ7/Mp35MzraIGv24AF3Qcx6M9gcmMGGiDTbIewpz3IAACAASURBVOB7lXF5uYGtSXE0fY04HovqaqxbkE3xXhSwE1macJkfqylLow+AlQqIhHEVJJLM3gCAaMLUSpRNVDHdKY9WmU/Nf48U6DKnGVWtOP8iANt9NkFEs0u2BY+nZWcOY2kmwWGsdXWqSoaAGTalBpCyzlQG9edAEci9fNad6WqIUIlSoVT4NxC1mSDctTkkHZr7mMKRAbl3Uehq0DXuqZnZ2LLXA15ea2zP9TzJbfca0nNxXtPQb1mX241LIFFJl4AdTFC+hW6VPQLO2ZhLcHCJNMf3GlTPPNs14FsM6rhKxiyyktfPXGVEgcAFKkEvMkfK+l5lUb3ekOq81Ly3BuixfnYqsMv6blWB133ALNXQhAM3zUBsjdwvwYAKPa6fqe/RUkFf5ieeHcrVSSRrhL4ofoWaM8FsbYWL0hi57rlibL1rwSXniPPz8+xMmavrHqnGfDXCDw00UHXmFwLMd/KB71XXuNSJa1/lgEFFy/c5F/Wdr+OiLmawp8q563ktv8sARgmCvKwr900HkDrLZKhYgEIE7BRBfbFcmvI6fjNhJQr8CCHX/EFraScg9RrRIgv333WZ3fa4XkTjAROtmF+VPC7KFZF6r7LCs946uqioOUqNwYYuTuC7jt3ONSJ7HPv6J3MVjnGDtb4cl89U5ATH7M8ImXYp57N513QamwU5SOQWsquW8nCqr3rmelX0ghT5c/2OeAlTsMtST3lJJ/lIHP2xdHmoSLOrvLzu84sRHrBxBvFEsl6fhlET4Hr2+NmuWZ9fnb36LKKGLoiz5GrQi8MIRBvKazCB7/5mj0QCsL7rJLqsENMygLP3cK6iKoN7pa4ZnZ94nnMfxZzC7TMNVUGUKzm7wkYc+nou/R6LzV3GKod6EvKyBpLI0djnb8oVMpEnmGhoJ2BYdE3fA3CkKpZnSD1TtTTgZ+fTOwqF/uLvYm1KEuMyzsWnCQf7jQ3HxMw7OVHfRdUD85K6jTqDv7/aTj9zcqUgZ90Gx9BAV0j97vUesq7byinEc0o7ab6/B8dNHiquwTvdej3r13sAYNl8PP+dTQhgIWkE99o1kFCuGgAotsQLGuHfef1ZOUNwpPzB9ZcIKFgLxBktYHDvmO6wjg9HIXxNsys8ki9DMe/A+BCM71aD3H4cRfAYw7EKHCLVTHA6+Ruz8mApQWHLDWRCjWSdw1qmiQC3WyqQ3uwgPZ8W6d68xmZOa+GmqfgDelMXpnuU3SGm+u2etZ01gDDgtagUxBl1IrHLdeNZ8MBLFZyBVAWx+fuXZ/hL9sF+QcWIhX+gPY3YkMQ10+dn844ErdRFsg3o3K3dIXZXxKcCYj/vOqxP7968G4ELanEl8Rjovj8IgY2gk8MttQvGveP8dfd2mcD53db44799Bi+EKQOP+MvmUOJESbTngG6KKT3ui/sOvaVQH79YFm//xzPaeOlOvoYz20YdWaOJ1iJaLPtmddE0Shx2a4EMG3/7NJIZCiBmMCOa3wCIKWf92y8JK3UFoueAnkcaZO5QsU6fMNCaXdVvRjIojyMDB9zbUzOL6ER5unXMX+9RKrRAw3yf1/2k9/2iWC4OLX+m9kxmxm3TCTAzuKKqkKPUVwfZoEOb993Gtm9hGOI8TUFvfTVUg5jHhTwRDVR+JGI9JWCYAAyBBGQrx9tu96hBEdU1mAFXEDtRCEUwV0Mb8HpSN8C6lz49L+NtkvenHCAvAkkZx3DyIh9/KNAG/fyMOQWwdH8IokpHcwiVmgcyRMQyC2OavKtOKfeNiO11VYCoo+NM6OnVABfx+s8n2DIz36dhgQ5OkzfKf7PsrMIwq+wmWpuGBLMi+7YG4Uo70TBqKwoBYsgd7quCoKlElnockNvNzrvvpajHjncaWVpQLzqPV0e/BOnC6QEyeLEVfgfqsc9H7nX+nm0jOee33YLJtZ6eRjMzrJUo2M+/oQpmOkeuJzpM70SHIwbdG9L5GDSwp3HMHAeghnDAbfcSBIc+k0z26bpXJTMylKPnDNTXZImIoxfPX2+QczonQ6lLLggiItzm7q0cjxmIOLZqZjZ/uv0QLfK2ZtnkkUGA8X2L4ErzjhbUa3PvaGLoE8yJRn14a2gP727gGU29+9kSAAcghBZzq4w8Cxvl7ZhQbOagMnsYDr0HIKajD7Z7ZEXlGJmNdrh/toKzd5CAj1tQS/QJ3beF7ymM/4K8VJaDcW+WshhLMQMBKRcxOdWIABm59y/Bixgf5Ump7ybHg1InUyddyA6vZy/+1NzDoor5yzfM73uy/R9ntFqsPEbv2rGFTjlMRsvWod8/EgHDM8/gAYgw89IC2gzfbsZ/8ftnOmgRGPC1Ix8P141cLecAHs9MYjBIKw1ynpDbbrZGlcnFFg5y266LcylzQj6Lg0QV4yVRi+zgZxyZpbuVgcjjcC4VljbWSMjFpj0HMBv6Z0sCVs5Dy2SSTCw2GkSAUxLtMNQSlZ2oiyzpsfNX5CDtWgb1r+0zVdHZmdeDG833CQCvQVfI5zNtiK1bhym4nR6ksGsZi5a1JFcC2y6LnyHdvatUcFOZQxnINt+n6N10VZXzQNotTRZ5Ec/1UtYIkPt+X8hRQX2c9lUtOZLh9y2knIBAsJveHTPKY5Z252qdPsJuVfVW3n3dU2OaDdZ0LXmqAZmtA5MyRt8HXGrQgMh2/ld/D0QyeQmq2ALAarDz/n/o5FMOsmQVQJQ0EBUKIPmsLokk3sPf6RrkfTtGR5AtvFccCxFLYZeXOfyTQMVfIqAAICLn6BLBhNkzu2H1o+ob07+jQAS2ubeu0SPW1FVoqhYnul5XQ4oKVgQLg2f5bAh1HtIgEysLUZ6ztPO5bPZqQNpi2yCXKDtv5bBLzg0AsJZbxT8nBp0LNvbS69vgpAmzXDpsNIesdcES4fVaytYaZoFy2j2LUnPjyZxfey8KZd3hQsYNOZE8LyxzuVl7xO2cGQC5HNo0RjKI0TxyLXpZc4/IMrBktbwKObEEbUL4TbXhbGUfFEfRAhc2Z1rWS/h+fNcwpss+id/BhG/zz5X9K87tYU6WprFR1i72jKxkTaIPKJmYr9dUMCKzCG2O4Q0ULBjG+W/fo7En9TKu63W591Kfx39zbBxfb94aaKzjkDfC+d046/njv5eWPMUY49crogHIz1dnnwbFH9SQhSMerSCLQRCO8kiDbnnvmcqDmXVezOwXuJ/W973cJyPXswgIlFo8f88SmNQq716UJJb5j7njmp1jqcMEEFmW9ygWzm+J2DdBLd2Icp7rXNUxEyKsnmqLLxfDID6bBtf1dy89nbd0gqTI+ApvX++t7zMJLR1XXnE/OiIVPksdVA2+d5DRGrjifuf3OedFNtb7V+LTJXDR5P15ut4DLhcupLGQ5Pn56f3c8EcQDZb6ThrvjV0msMCVFzkhAv3mpU/sQDRtXnSzPSNA7tHCa4FuhpR6XTvRdsZ9AKga2kFa0c+XHsPszAB1ZOVkLbdGKYR9DzYOdoi5yDvWfC/7gte0/wlr1fe+Bglcb2d7vsse9Plb3rk4OvxZrGslant3sRyiZsj9Z7Gfa1CP30GDtiqL7e9mNchqeyx7HKkjiVar5GtENERJ0GU/0lboLeehOiF/YhwvZX0cN2Vjo4EDqLySWcf3UWTL8jvN9fUfBf/H9fPuBCuQQRf7RY7pOgf1u16SqOdAkPTxago9AXGY90tQwefAApeO5uE+4d7lHqzBinnpeuG/MySB2wLKzhEzOjssF228Oq90FplgijUvX5tlXzuClKjeECWLvVeeGfYyCjLa5Qmf8Ua2aZ3/qek4xwdeZVgtFXl3vSZ3PBB7sSO1tYDyR727lnHRdriWCHEs9e/8z9eVax36yGXUu9aj7FgXxKz1e2FfXWyMeJ7v6zreMveqamsdJKH6ujd8D76gt9+Nt75T1eV1nS5BhMVGaJLI8WpfVmTQ1Q69Xi+Ijfb+73V8mjrz5aq2VPnZTwMZdYxlnD/97J/JS/xFAgqGImgYHz0PusOwKukKFGgP6008b92i+5/WGikOAVyBqNrZa5K1jIJwFi3LM9F/eGhxa8A04qBo88OIoghEO0Q9mnY6yZwI9PMLAbXed+jHzTNPWIxtiFiWisaSC9Fov/Rxe9nUUYPFsgQnJOQYxzfv7jCcF2FO6+TQxEgPDxhnwGnG1aAzqCbEm4+dwRU5kxywC8tNmNVzoicn02uA8VsQXokZxI262ffGvTsCwOS9duD86AnRPN1AH6YAxkfHuDU8/kNHfyi+DU2EhHr5AftvF/ZsqGL/7UT7cXiHiV8xbi5gN7XM+25tJMWNsP7DUAbnv3xY8Oq++Zx29IcRQCpbnYlFweXJzJUbFl3SgO2SNVZAMOQLT5gUB557fJcIqlhwbJqCQMf5Lx+Qqdj+/mX75Dgto1oyK7p3y+Bt3dZta2j/aNmeFMALzFs9U8naObbCUrX7kyWYjqHIUmOp3++2pj++ECUBi+OuGV3vpSOLv7uKw0lns3PzeGYUnPf4uGcLVdWEupG4asyEvF/bPp6eGTnomE9DjKhCunEVaDljcRUIuMyZdfYbs8zGSaFjWpeI3q1lLBDP1DHR7t+t48t5QjuZoQWBXnKWYKtzdEjdNZAz1TL1zKIDiDrfW6lJP04oM/ZwxeZtLGNMUwEwg3/Ld7gaaa1ZtnjSiUcqL89gBSqiZDT042b788dX3JsBl+jgwD1CQijWTjIiX5Vq8HCMWLe4rjXI3Kfxs5EBE967QleP01AbwSreY3yxf3jdPvJec9o+7T1rGoFs/VgZqj0gGJmJ7x9mzP54pDNU54QcB7XWmUFIkeBkkK+nt87cIxAQ9xkn5Km5h5kZIjLoOBGG6L5Bv90R7T7vtyxZuwR9rsG/dCJTB0Xb48lslL2D1eX6ujADx33JOWQ2TsRkw20PjgLAgwlfK2+JzZHJuq//5QNQ4PaPIzobzL3h/OjYPr00pAFoMNnvQcHWJrRNjF9vztFkDgYRChXuzO5J7WF2QyXnEzGueNoU7TEQbeaK7lSB6RTKWSCQbTIMZr2Q+3qpRXN+J90BbA0nddPzNIeqlocw4MWAjDghXeVoeh6WGWUWq9gW9j7p6NGJBUwMiEiSARM14GsXCA7VLA/gvDiSpQaFlHpl62b8RxBshsNCFn3d4IGR80WGLIHPEkzDcSYkn2fl6nj472IPa2Y2XxwMl2/t6d2KumTAH+bcKtbgjQWues4n70v5O4br+zVDGC0g6/OPM2XLnMkz5XqF361Bb/uZ25dedonnYZ2AakCWge7jCYh3qNm21MfV0W8Ncnj3C+6hgWyzfkUjXP6+1NI32Jn9HNYCeuHzKB0XuD+Iarl5t47HAZzdWpkS4ckhDTtH2v37KMF9X4t5MySHIW8U/RiFw8D3NByZQxLYcy7l2HYjD/Y4wnZu3qnOUbsyZwYbOI+Obpj3zQliZwaKPOGotNH2tIsClTaNB4KdWKLESffg1gi+J0fvyf1ue/fjFjpldZ6RdunmqI+my7zyftHVpAYLytxW+y+CJ+yycuWM6wJgW1GuLqPgbdYjSH0NStRrQYaWoG3ZGy/6rCY/Yj1tnZR6CW5XFTsrSKGB947/1EiGRHkt5VbMZXkX8ehNvVWcUU9OXW07ju8iP2JeeWsGmOK57TXIcQ0s8B7XfQuYbfsH118ioFDKFKPGXgac8OjyYUbbVCFPV+hvIlFGMijQvVlbp92ERP8aFoAAAMFCeIXtEs3xDVcPQUSjPBLF7AHIAs7v7a4QiUbw94sa/HrQADtAdZiVmIkK/hiITE4XyEHHfIax0o4Z3AZhgPXcHFFrtqWwWpi0lyilRIvK6MN926H3bmUMPMNs5VLWgdDRRJMoMAX9UedevGvEMKOFcLEThjYYc0EDcN0xECUec28ePJnA1jCxeT2pCzWucXzXiXpKr2JVVxZEK7higO+t6Wss/sxoOdQo8FAQBRPShzlXdM7fGT0+J+JZCnsWF5/r79kuR6/UThDLnrlmIskjUK+FB6QZDJ3Ks3yWyBXl+xYnQ2bKwQjaXQwGLYd5caDmBIZk32AiSFoHyypeMposueB7uJCVyKi2Unvtn7vf8vvkidjdmQjjqxg+FLbFqfxpRkkahKRuvAr8jC0mRc43381aUA1nUlAquvN+UvZXGIje1YEEdgwObt0QKe9gcLzHFSnBn/OqvxMJo56fs3KZngzcRDY0L0/hPvBxhpNQswEw2SlAOiQxfy2VKveMl2z8eyPjJDJLbhwF2kyDlIELwj50liDbz9bb14nZ/mrk878ScPt5JgI5Hxz7WYI+5Z6iDDBKZKXCedi2eI9wukVWpzEnJGR9ll6koa7FAFsQAJOOaeENqUbkpW44UDT77bJfEYR6cUXQpPT/JjSdkOtYR+5JyfNA/cnbFSK26NQwFNvXMOd+zLdZQBXYOW4Ayw2S0wehtyr7e3ZASr1gdnh7rdP3eRCXMwKsrfZKkCXaIDMgU2Uuz4taJrc9kXvuut4eRAg9z7V8sydXe6nqoplZZ9oZcl1v59doPhdaspX1vflsOkaE3s/LXnOnYUFdqHrg4iKLynvX1q4vY3RZJN5dYSkdqmPnu/NrV4fjYpPJmFZCMdsyJxVtszyjIBSW1qxAZnPLuy/IJSBk9PXe4bjX8fJazrIHec7TYeUj6sLta3SinLOIdgHvyQx5TS5Ux21ent+IDK36Jm0enWr6n9e87JsJLFnnUsKyjAmw9W2a6lLV2y3jdT+8mSdDR/g2j7GZ87FwO1zHyjEpAGicsyDaLc8i6ecLOoaBqGOkbQu3U7fVViSnF38WCFogCSZPRKBTd+tWJV4iEd2sGjnpWiY5rvsoxtbMjqu6t87pdR/QzzlznC/7gMFV/85iG9b7us0X7XfrvNf5c9n89qoy4RxpC9e9dn325Rkv/EwVgVB/3i72WrzDND8lvm92n9R7XNFERCzQXmEgQcrPFkSny/paovDueoccu9pUV38BeA088GfvPuvXXyKgANCZhLGmC6Kn7LiT3Aqp/NU+3zyTPD0rbzBMFxYts+Tj1nD8Yq1i7sPgsdLUMi3FQNIdqCzSxog/vCa5GJdjZhbYAwnqvcejSwQPB2DZRsAPIkJRL9B2YFWoz+KUuEAL3oetAaegHwPRCss3WXsOzGktrQBkRHV3BXxMQ2yUyGMIqTM3GR1qaz8FsLxgft8w7xvmrUVmfd57HHzyEbAfOOvaWCfWvhSzC+bd1uP83nMtp/US3j6ndVE4ZrT5gqMFWF8qDludtwY8gc5xOSqiU8D2Zm3rHC7V2Pf8nKkMfN7QBAOwNqWtoz3dwPI2Ndkzuuxbj/bO+wbc7VdKQ/Q4TYEShUKCzAmEMoK+Hu4JQ4/4Wk+Sc059Y/DZWrVjQj6NA0G2zHhmbWU6PRbR79nd4fs9ib8IYxUxKCej2VO9Fr5kmTcap2k0yMhe5LVdp9U+qiF6xoD8+ksRTAP69TBugtqurXdO6Npxgay71Zkbh53Dj3sYHuLcAeQ8AGCG0zFWngIA+vVIpUGSx1gPVyh0mk7JiDV/5xwtRB/I/eYBBo/kq9jvqnKq0e0IUsr6u3B67Zk6h/EaqK+x18BDW7SKkt5TudSuFk0QhEwX42bZI0dBD3RJksvWXurzXjJq5whYZWQG6PTO0lJzkXnD0F3D1jGQFu5814z/clXlykxQNebVjafezauT5rx+ujr1nKcFLu7ynu3g7gVBVtEFQDrCdS7Ke0QQuIl1SDhPyyAx8Mf5YG97v4fSefA5tSyYz0NAUd1IYXtgzmn86cg4ZgdppHPezhJUqedu65h3Qxm0z8NQeXV8df1EMP9mXVbab84r4WcWYyQCw0u0oubXkQz67Qa27w1Wf5L2kX+Ba81hqqL/ONNZ6Q3zLmhfA/3HufIQFFnJbGY1k8bdAgrtaTqn/36sshYIHWjlDaXjEJ1nIAgUbQ0Vjd0V+H0guxQdnqEuWV3dNw9Yav6uNwA9WPOJcAzD1GvAySq+yHG/4v0Kx5HtxwZ0jeQNdEY23NZE1rVugqiRBjIYcJzp/FYnRSS6wJAvQEdm4SNZROeLaBzyrXCMQHYDgq2hcZv4568BNbH9rc/TuEw098A1oLCUClVDnT+7OLTibTBDtjEIUP7L1nR02Elk7ONpedYWuL3qBfHnNiQz07Ub0/XdcL2PIeZwPC2ryUBC0VfaEHZjDTKo6xCgJZroEvggAXr9T3nG2UaStipg9tYoMmQiZVINGtWg8IUTBkA61xG4mqZOxVGyA8FXYufc9roQocXzeWYG2qbaA+RS5heUY0Vf0Xanjae+L5wMVTSTdNZhpqwnZa8HFNsj9c9S6iWW0BK/rwouQYmiWyaA2s75tmPeb9YN6xyQh2TixRNS2poHMfXVaRRZ+UXeBiV1OUtJPD9e78M52ywh1ng2cb6WeNWEkpdKvVz0oZhw5Zq+oDzfjKs61S8lhEX/tzdJo3p2fF4iidEuNhXPMf8+1ZEiCtXLe/K9hj9HtlI2Xz5LtNOQRXcFShcwTrbLWsW5XgJibdEPtOeXEo9qo70rpfjJ9ZcIKCyZ6k0wg30X4YhmKyD/fBODIzZXJppySLs5mue3jrkL5p6lE/2Z5En5Ajl50e6lGoybOx5TViP0ZSCXA1KRCRFt1hW6y8/TeKGBWaOiDWY4sIZ5aVNlzrVuRgTFQED/ceY9Ohy6hSA41PJOLAGZ924khl7eEARWKIbdsm4wJ7zUdQeh1eEEjt92qDT0IzdkA6zt0GnlKuydjSfQm7ogLUbR1jC+kawLYEcIANh+OwLZYEpbrPWiZotJqz1V9Ec13qy8Jfqd+/q3Y1rAY28YHpTpT2/nRGd3Iki3+pdxN6hD3yqstULCY03PkU4Z6wB9jFY3bApjye7NVIIobSwr5HRuDe3eAdzN8SNU0YV0haJa1gguyDSdHmbaakSXwsYj1vL5yIwT9zAzE7HAFwFUItVGYNfyO2LGsdxuxZmW1WgjfGzbUnBfs8sMdLiiWLJNhdfEWtLd1t+FcakG/bxeTVbhzosyid0BihEZhI0Bm889EffieGvGvj5zCUoWg2J6GQJlFntOR6lDQT7w+4yYE6pcFUY1Tt3RTiSWrz0NBBqAgewoZSmcSyfwXIIP3IvDn6FlvqRl2UET58WRpSXvTxXaNdBQPzcdiizNNGrMvUMWx1wU8mJEcDy8wqnfHN2j9vd3kX+uSyk/iLPk35H67lNhUUQ3amgE0DmrZ/ei9MMo5M+qfjlbkrlWh2polDosTkqdS034b3yX9dWqaaDyXY/yrrE2YkqCwbetI1pBzmnOJu/JICmNt20DqumkajpozzkOGSkAmgWCG5DOvgjGh7eXqzXNHuQeThjcDpY1TPTSvnFZ04409IetQ3Rhmh7YlzwXSz95QtZbYauva+uyR+a0Th4BX3dZ5mvD8kLdGibldYzJbaXqFMd5cz1zmoEprv+szNNtiJ85qm5jxD2J2qmXB65CVwCBzJPTy7rKGYka6zq+up8XYxbL+VEGpy5OfNpMaYPVzGQGAIoDRD0x5yLX4rMcPwPkdAyYaWSQcHJPlrNerkDUbUXX8F2vjhDHTflTs4sleAp3CqNzTi1NUA3SXK0O7TsEWzzWAgk6vB3l7sErksleAyd81zpeVXgtYt54kceIzwn1gbYgy4v5JzqqoBHyRTX3zmn7VrdbkGwDgNDWbLaK2sUIMY+LnIRmSVx3foVr9wUA7G4SwcJahhvtHQFRCdSBEaVnmSaARJQWKH8gruiJce9yfwAeiBmJFANCR+Z4/D12sfvfdksalXtaSU3RcVF+4gGg5qjVumdqQLHei78rax82IQPSt21Bv1kZyHzVl3yX4fNbg3YXfRqOcdilF902L/uT71z9Kb6v6toRbJbv7XvKBZ5DEvZ5ksiCCWVu6vxUW/Ztq5HyfiwjZbL6zWfMzm+WhEDK8Z8GFXkxYHgtjSgyVkqJZRAxAusZvKKhf3L9ZQIKuje0zxNQLzsQNyppR/NQwg783Bv0MV83uwv5uTec30wJzw70Q9FOD06QFfoK6xExAX0lTOzdOQ5dGf/hYDQPaSymrJt7TIvaF4VnECzJ7IP/jIaUeq1UvGdsXBgEnx0yCMN/eD/qSsLG+542jnnzyNac1hP7o9uGUKB9HcFAHC1y/D7Rlqv537e6qRvaQ6xk4fMJ2b32+8i5ECDYr9vDs5CKgEy1pxsjLpS1G7u2cWz4knzZ9/tvz1TscPv3yzoPTI+MRl3b5xEMvVKzNeqKZXogoxuHx7hbDV1/TpCPQ2EtnuZm9+4Pm+8IQtUMjdfKie8FW5OExtUe3dGJxNc0ei6PaVHvlpkrlc2j1gCad7Bopa6zC/D5BJH3S112iYLH5fdhDWvNvligoJCIei15GEdV8HNP1jKEfjEwekMQpZbvS61tYrCrfo+OH51sZwa+Oq0rYdhFsXAdChcDDT1xp1jPqzXhEawGhIMNIPgESjmBGWM+z8zakYNhYfC9KIE/MvTcqVYtUFEGB6qhqMn7IOR2IENwRMAVGOeaCQBcWbRQoJHJ8mepei0gy1xqhoJtFs/TA2ObzeOcWe6zvaoZZTlQ75DiiMXVkmBKC0x2eTc65lejlj8DMtAU2QcB0R5hLLjBXjtdhNHLe9aWp83QVebcAPKoSAdZ9ratT95XNzfytvK+NHCrM17G8ZINrRcNwAJF5Dik+5/NUUMsw1Kvme9OLFUgtQsPTH1WL0HEeC9Zgp1Lhp76s7dioJa6bMCzzG+MQl48inSc6FD7M/4Hc++2JUmOawdukGbuEZlZXaePRjP6gHmZ35ifnyf9hKS1tCSdo9PqyowIdzMS8wBsEKR7ZLXe0lZXR0a4mxmNRuKyAWwUj97xbwG0O1hhdcrVlmtqcUidRQ6gcpqzWI9uTsdqNOfnLVbyxrpnOivmGIsBvpLGfTYzkCP1fnYKw4iHzoZ8OOEe8d43YNsi83LwTCiYcm3XHcLB5QAAIABJREFU8HmStDdyWj9gkf0tzXvRoW+m9zD2DJ9VcuvhVT5z7QOWiQMAGFwBq4MQPB4nHtd1tsn80CIjYs45Wh3maf2ksfIdEqDwvaDAcKLyPWnnlbFvLGMvBQd8RuOZCVTk7BA+b249nB0fzmN2RD5L5c5R1dyDnunttE+bP8/KlwBgJQJ+YJ9vzcl+O2QbQZko68n194lfa5pnPrvqFLRON0WUOG412P0DuH5Wehfjo0OtQHc9g8vg8xJg87UcmQpFrPrtTEAAZUEDyMcl5FtYgNVwCBnnVIQtNgWQtED29F7dNg9Ql1lE7CynA9hXIIJ+XB9RPdoxOoi57zAdfKbWLcsaiIwHdoagPNFkn45OEpj1b9Z7oR8xr/sE8jGYlzMhdLdsYXXZxIyxz8qwhh4ce5GZRfqsIwvHsMgUPPPOngQjwo7gPK3X3arJJfg6rmJrhXwcK6F21xmIynuKNsdnR+sgkbZkEu01W7VIvHt5kuU67MHH5x3jXEBJ2kaeYSvaZ9LxPwEQ1uOXABR4WCsi+7e6gJCeajybYrud7iAWoADt6z5SkHyBH7+Z4q03BcQj180dpCowp9c2Vn/ZES2fQsG6UM+13qhBnCJEryhUubBLUkJFgM1YqOXd0kDVNxwN0fyytNBJB1QKtNSRdhlElclgaz0QV1EF7ifqYW2yUKztk5wd5XZAve1eCChHZwsQXASGsAK9FshVUN8NcKEgbK/WlrF8nMDV0OB6M2O0vQyjvGRlSGS/jawQI6QE5G6AAM4e77p8WLSsv+5g3XH7uuP8tuP4VnBeBe0qUbe7vym+/SeNdpaMuvRvFn3rV0t1jjnbigNKZ/ARjH7fJszL7UQ5BPgOa0FG4Q9YmQVgOkeAjo7ycVh5At8lo7gkreku3GWQYYXhS4IhzzwQPSMTJBNn6WVDI6M5gNv/cUHfBK//4w45nRDoVMjhpT7XDUXEFHWq79XNIg7dsyHqbRsKMZSgAMWd2GT0RPvKVEohPRmVOmo7+6utQWHLveKEfwQjslGZ21Lt2yjFIJrt146Sh3CQ6ZRc7Xe26Xwb7RDDqWVpAw27rXoLQ0s9l5x1lB0qm4S4nv29DweZjm04cHUo4OhVmA1cAUpFJtmxZ/Dr8ffWAPg6uN0x8yogXW/sO+hgC+d9jF8hGZVUlHw0jo3ZDhkNLwDg85ZbjtKgXEkrCdCcH2kuU+SfhrMrTwMoahiwuZMIz4mZI8jhx0MJRGJbfsZoHFE3PvNK7uhzJtdLrC+2lgqQoRjTueTMGoJGdJr9HGkerSEHCBA6INaXqqcH17melEZVGp9kAiyOmZkFNAzqMLqileerZSth30K3hHH5drN3cN0Aj0LK4eV9fn5kAHhbWmZl6IvLomy30ClYjfEE6jHtFa5L5HaMqDwwAZ0BULzuqVRBgCoo72dkjPVrxce/u6DeOra3HMFTJxIeTlg44sUeq96M3LW9VEgzR4SlBQTwxUv++pfdARNbqyTxjcAHMMoUPd1Z7seQe/s+Uu99vuBdJPS6Qb9eg2wx9IMHPtpvL5H1JwprHXhYmSPLGCLrcqPObUHmq9dB5Bq2il8/yjtZzkSnjuuht0Fh4TZSlPhwnfJ6Muq7H4Cp3gdfBtO6/Z5yP0PGZyc7t5uUXALBvZD3SwY4craUnyMfqSWhy6EHFv0wsClr/RlyqU9kYPg6495kpPMyAghxbLPOm+bnibyKe/PIejjvKQBRvhTz7vaqzjLzHzlYi23PfDe5/H6fnMdpDjh26pScTt4xyp7Sc0apreoAIhxYG87NkzlJvEMAbA12K5+RW0O5tMhgLR9H8GgZ2WodPDR57ggscKwEkhaH7KGj2JNDr3tkrYoKdKfd2M0282w5yzb2ACGzrWBfs5INggPjnQtBAc4BQYUcvOJeOE5IK2NPVg/CJTBgIksO/wZjzxB45pGzpVzPTeByPtzHYrZ0v5ivsP1xoHycAWAPvpBl72adxmwX2ppr9gQQ6zFnC4b9mDjMHgIRIpj4gJiNwHlY9o62Dpa4arIXI0vBgzxhP6QgSgRPCDxGkMjHVBRAndt1B1mZ2ZzsamrvsQ85mLs+fAYkrJ9l4KEUz9TMMsV1SrJfJlnyE8DilwIUAISDZe3qxoa3yL0bCaroYqBD38jS66cLQiHbpvT3xct7K8ToK10K0K2Gb2L55cEoawEAZx2uxRRUUnwRaaBQZCS4pzTHhFxGLWR2tJPg1t3RPfYjLalEwX+PZxIBWzeR1DKewfuUT+RDOhaJz+ow/gSIdo72yCEgDJTpMc8klrKUf7tudNFw8MXKE8aCZl2U1UwyrdZrWl0RZeWonmnSLoJ2EZwvlj2gG2yse7H6vHMYV51poZu4I7Q6vh3YBdplbK7kDODAqF9jCqTA011pSFkENVJa3ZFUOq+cz4phnAKD7BDwNmVqu1DTMxfLgjD7TnwMruxEcL4UtF1w3ay/sb0rf/cOOummlkIWxHJjzUXq7NltfSZyM1tbCYoPoedjxmJM5mMVwsnQnECLbKBwTXZrJ2VcH80in1xPVDrNjXBN5+dMBwIIGXQgCi9ltMvLxl1Xyxl5lrr2zLBxp3USsLnF5DODqCsw8SX4nHKdb2kd9tQGsZfh/Gbyn3RYxpRfP5HXDSO3zzWgn2RHKHSk5vp1ASyGeY//1A1pXi3GkRzw+HuslfGM45w0Dq6xpPA+bY/E51zqBtfvD2BgSfXks40vIjgNUsRvmidXzNYGD0Ne0ZgZgxjXTPWueV7CMC/Fo6TD4Ftlkv1ehlFLUMQBD9mWZ+EzVAM1wiDmuuhmVJpDlWrle0dpo9PPMGhno0+LcanIOj8AkGuQeV++fgLmdILvyYhURe5hzuyRvpXQSRF5VzuH5LnnixEFSo7qqVoKcpJT2TaAuB7s43fqT5tDRNZbpGdzfXrWVgb4ASBa/OZn4Bw9kwvxmRnehU5jyiq07kQV5S6o7PoEOLig411hOD7SMKLcDijFO+I4OiDSJ1AoAjOcP+ptbp0MSuDJ31aZGSCsH56xFzX24QAs3+s6jH1yhTR5ft/kKE1zyjnnvsogYoFFbjU5stQha/QXGLxAcX6xTK+YKwkwIrK4svNaxvNO+/yZflnTwdN1Jg6E+D5fPv9W5msAswPwJLo6AbG5zKA75wFlKEsR1qhw/NSxtmJPJ9mRz8nvjQG4n0VDdZm3rRgQqWZDlrPbVu6M/ivkAKDFwGpNc7uaLmHrFWBb7HW/nz4phRhzyuwlew7Xbvb/p9+wqxENgt8DNLc3pJ2c7SSONTnCsa85t7Rb+/J37nPqGz5ztqVUTWZVI9OW/D6AGVTItlgqYX06Haph5/Zd0F4Lyt1BnZs8PmMGqTi+FEySjnnMy3pSZrqIGEjD2e8aujzsE/59zdLNRx5ftkG493LGYSkzP0HihZmylcI2K/MeQPr+RMb9CCrEGB6Gu+yz/53D15AyI3Q9VhDuZ9kP+EUABdbM95cd5Xaifr+h7DVaq0RkYS/oX4xgqhzd2iACEclnK5hyjM1Fxuf2soWDqQVRV19IbEhFXsTbIGIgeGGMw8gXfUNN7fCuFTj5t+qOkS8EGoG9h4Lsl4p+qdi+3y0ScfEokYMnunnNDOoUZbaWi45QJQZrGmnl43DhNJ7LUvpKEBEy3bVfRk2fNMX24xzABVsjubDd/rg5/0MSAgRnTjWH1p2k4CXYStRNRTo+AZOtQNTRyvs5LebycUBrRfu6W/vHAtSbot4VogV9B9oukBNol4LyIebUf7mgvWyR+mZRRUV9PwcZY2Qk+DMmVN6iSqe1LtsryrsRKup1g1423P/JImGXf/mAloJKkkhHdaOd1GnRTGwV6jW8BANQYGuakbKOqb6072aQ1L/f7R06z4QcPZwCS9cdhjB5K9C7cWlcCvBhxGR6NSOAZR/l7W56sSNAqP5yMUP0HMLc6pUHwVL5cbP9wHKBAI8W40gV5fuIUqtHUPR6MWI7L0sQB7r09WrtzL6/2bUviXBxq+Ywvdv15OsXL0to/gDJyNtG6yElaSoNUnKPuDMcaatSzImudbQxZHo9jXDeg6iw9uEEBxmjR9pbd5Q5OfdhyJZIQVWSjzGbwcs3cByhWMm6LZ4dYFEyz1yIxXJCT4xSBxoQTgalrdn5Ly+W3UEZ4vNrPx3dbg2qEvV5AAb5JWAtx3IZgzsnMRdUtgsoO66tE+LNz+SSanSnCNdSegEk42gBGhIYEWBP+pvfbHLip8OV+cR67pkUEwdGckpirjMoQiOkdSsziBapau0egYjuxvdzmQ4NOJZi5Gwnf8f6dfN1W+1vxx1aruNdpWeW4wxwVCM6bPsaYXS3IOMV1dFWjI4EMGrIvU7bWp05WJeya8LxYlbEZTM5z5ZstwMiYvX/qvZ5BtKz33Oas1tydl5LPVGKZSf0TVDvCijQ9gLZC0qvwVVUgMhwyEAEQdooafNSL4OKtwALureQ7iT2VdPP7VpA3qZyF9f9zgviXY/05Qr9cgXwFf3LBX2vKLcTcvTREtLlszlsBVr22akVhO6y1phtJnL8eoHWMroxNb/OpUL/cjXZfW8WiPEySHTnDiEwyz2garK4z7wGIY9ptK6lBPnfjJbT2dk3y2p5vUAv29Q9KfQx11XilYgMnyXCne8XejM7I/w9nBQHTaIG2K+TMwyC/8bXee5EkA8CDqoQElinOWDGQ+zxsBuT/cf9vDrTgI3hOKb7AQNUkdaMDJEA8UQka/Zs8OnwyLKSzsETYHrK3OL8tgZ83OJz2XeXIZe5BDe+n+wqhTn3+7B/oOldZ36xSxkp+pRJq+zPzn0xom3Za2Rfyf2MrOVotehHuZ0D5KANnMfeAfJiaMf4LtfB5h2OtI7y362gs+tT4OU2B/1iICDJ47cfh2f7mB18/OUSJav11pycUaf9Fi1cpVsQJ+2F3D4ysh05x6nsYJp3b+1rLe19zXN9thIksLpVs9VIWs2sAL4D9z2mjI6HIEU3uVsL+u87Pn63eduuBS8fhwM9af2z5JEZr1k/Zmee+0d1LqOkfqh18onEx4KLZ4rf7mbDnKeB+FnObhVAHbKVnCTcF8mOmQAP4KkzHramCEZHqQqgIVKs+f4+deQLBtfU8vfiOmsZC4CRaQRYIGUFdhkUDp/Sbf44ScczpN851z8D/n4JQAGAOdBFLF0nKZsiFm0N1udN7J2oO1aboLBWvNLJ9YlyB5i8CYWRJbjjdnbIPQk2j9yWWk2oxODmCQ1GWCAcyVgUzqCv1dCpaalwA+6jlZFdyz/npupey7/BShBUEb2/MRSpsu5fEWU3ku5l6ZkljIGpz3hG49Xmqpw9IkKBuvKKRAmBQYJItF/1kcjqz963yDTWuAdsLCypFzXBS1LNclUfk7WXFP66b+i7ZSVkI1UE4WzbOMcmUoUZAC7cbQxZiNEBVahnu3DXCaOTVAB12WiMxhR5mJupnKrYO+a4LeMDvo7NIJLeIXcNZVZvzYVNntBlggtmRL3YeigZ4V6Vdhj2jqZng5JzmITwRJLDa3ZFhLTE6xK51tZUyTwO/zdBjvwuoicw310tIwUsX4uO8sLiHkekiSUDS5IjmhHiaYz98ToEGCrva9ki0/fX1DSeuzzjg1Jwof1T0p00pnCiixuZCdlWzinvvR4B8pmzrx69s9/77DxkMGHNoJDl3UpSmiCI4YrQ/x5/A/C82PaTR1/lTEbRq8zRiPycPqdT2zQCQOs7L4Io+cCwAX4yqIe1HGDC6pjxc2ACE+M5PLPgwdDI8iV/xnvU+fOHiCiAyHKQMU4BRqSday63QsyRFq6nHBHL5+a5gMsIEaCoRRQLkGvExTkHImuOvAxFQ7fYM8KjSknXdeNFqh/Oj9TxKAfz+FSB5hqN32OWYJLR2dmgjszcEKqL3PP0XqnV5Ca/m3mHCGA4sKFsPeh6mll9fMZpPnPmA58jvytJsjgcDJnuKyjQowwbIK/TNFcTJ8EKNqz7Lv+9L+cQFIvnL545meY+y/t8r3z4Hgr+hbLMAZD+tu5fzhHwLCodRGt5j2IxvlddhWXPPhtz/jvHvN4/Ipf+2WdyntHUZ2Nazyny52L0s/s8DD3LZgz963s/ou3peGi3CAzHeF07q9xY9Tjg720+L4AMEU/lf2JTLHJoIk6kHYjBxZLX4EMLWPgYSEoNLpO8vh5lIdc6+dwKADlMnjRvUysd1vL87psiO35cs7y+ynxPYIBbuUQuzWVkHK26wkEmeTJXUAMXRpaajHW1vidON/0Rgvqte7ltd6LYPJfryXnPYvIzpjH/iW9hWcjG97S2moyyQpYcP7Orwg6a5csAEH5+/6eZn59llId8XcCgXNrKc34mG+J7ZQC4q7O/ll+lY8q0zc8eJSc6//4PHL8EoKBVcP9tR98FlyIo74ej8SfkZjVc8tsL+mVD+7JBr4JTgPZS0HfLSKhnQ/OaecAWGBmbtQqq1+dDLDJ/++cr6r3b38WAhPOrtUMst2bz6e2ayh/vEeEx5d7MeNuq1fsDg8DwsqG/bujXiu37MSuOUtBfd9z/+hIEUEZcUkaqXPOsiR93tN+u6F+Kgw6e2u5cEBAxsAHd2+CZUdwduRMnoNG92lzezjBS2eGhvZrCL0e3FOuz+5oio7Q9hzRFfT+cYKahHB3bj9NAoCpWpwoTcOSpkA6MdNKBYrKuLXqqlpExUb7fQ5ixfKIm0kbA9Ed3IKnerXWY7gX3//Mr2tW7emy8l6WOSx+1seFAemSuf7PIkypQNKV9ZwfAo3KXv90BAdrXC8r7iZLqMpmBIR8eSbxYhK5fKurHaXWipRipIxnBT3gWjuD93+84vgm+/tcGeWvBWVHVMzjePmz97Zu1RbvU0bqzAsJ0YcrDPJ5imQpmSHuarGef2IP7OVuxFL3j7hEji+ArORB6n7s7+DlhaLBWzO9jc2OR1qiBJWnPy8Xe6x9v9vfLbsj7D89GSNFq7QrtJ/DxAVyvkJfriCwVgjY6kPRtg1xLIPFTypp/Hs4xHWVvRzkItkqg2cNYJkDQIxokPvZZoOn4brrvBByIRBq+nqc5Iy/X4dwu50Yk+DjjOrJ714u9QtxxmyJNqsDtht76ACe6l3h49F323W18H2/zaLiUyC6ZxpFTbl1mWGvKlJXBseQof5E5qsCMEP9+ZF5oB9gCMz7DACAAu26RGYnvp49rHgNT/yVlqgSh0W7ttSbiTD/k5TqUMSMysabLY7kEf/J798MifGw3+XHzdzVqfx8MNDeWY4/1DtFiWrpYHfzUlo9ti1new3dMEPmym+92tsnYnMBcyrkq4SDIoSH3AEAvuxnd98NKJfis2ejgveiQ3i0bITvVfJeFXAP+vXKc0OvFiBRfLkaiRrlCJ05h7XNpnJ8d5f1E7YrLv/o4s9O/ghwAAjh/N8LhfrUMin4xQ7PcB5+L0FAvNl/l8PZtCtTjxPa9R5Zh2wtwtTXO7EFmTdJBqQDKvTkpsECvG3ILSmk+nr1YMEE17sdx9Uu1Z+fcZSOPMqOp2QQdwbHUXzboLiinZVLx+g9gwjPwSxIY/MSol+MEbncwKyj0J0GxuHY3MCeBCeXjnLsTJDsBqsEBYWt9cRzVQYackVMXUCPWXQHW7hSZH+EZIAYMp8BLRpXvNzsBXNfKIMvIOIo1yGwgctD4HFtpm8/11bIEjVF+AVkytwQwOx05HZ5j72qtIv0eD++McnT5LKKsLJfatrldLh0rdvAgJ4jbFGzZzTUN1chwxNEjKLECMtGFxuc0Z8YCfh4j7+yGxWfY3X5j6TNtxQQmBA9EkZQFNmfhWHteGcAV5afIKGWO7wK6w2Sbg32D/8yuWQ8LzvW9WHb0RVE/jM/h/Op6qMFsrK0453Ofne8CaJdpnJY96nb868XXcBtONwOca6AHyaYqZay7pXxBWofeD9OtvFatY20/Ic9+ANgA4Gwo7wcufz8AgZGo35tnTvfHvRbyJtlIueRCBGyhOznrvZu+cl4J2bdBYMljM84KAew7eZxp/0JkdN2JrME22zzxboajHoEJcloBY1/yMymINuO0bXIwpmCACuRiABCcW8u7tM/cz6rJdsrHGrzK44k1kfzT/GxxjSdgxE/KHn4NQEEQ7R3b1cocCjCRusjZUcRY2LsWqKd8q5iTqSxlqI4IikJPBUkOCwB0Rb8aaKAb0JttcKb590sx0r+tQNvgHVAy09PwKmVKlbc6JxN6IUCzrqYAuFrLo3KqR4DsM90s9SlvLgMPrLQjFL0vVkutSwu3w40IiZSfXAsaDmMp0+eMDhFgsD7nMhlk5RjKTbqXDeBAPZoRrtQy2La5MR3wCJQzDD3Ol9e5MYXJnQm9VivNAEBCThwd1f0EFTHBRE4Hr/1XccZuPid93rum+SqDUDAfrljkTO1E/Z3q5hFNV2BWG+Zzvw3iSxp3WiW6RxjzOAaY0RQKq7/mfEXKeBHs7x3SC+rd6pintbBXQF7mXsUgsAQE7wXTvZo+oLqSFa3PZU5bG4tVB2tv76PFJJXPkoY4cSmQ3d8F/kghT2OhU72mM9IXDPRdQvFExgHPYbaE0JDDUABP3nG8d9Z4+n6UWH94FLyugJTgw8INAGA4ygFOdFhBe340GqdpnhgpX+r6rWQCiPq5aY4k7inap1IOZgvoGtF5Ek2Y62+HcTie7ROyJV3mJ5cCPEHnp4h+llU5cpidcpKUdc/0oGENn8NnKP00p4Lc2jODDePeKQLAMhjVUQKTj8nJWOYp90f3cUR9Kdd6HlteAzktm9/LRt2q/Pnfum+KAKVC5OVx7Jr2SZ4f1QGIx99HpC44bUSg+zZS+BmpqnUQ2VGnZRmvOkoF+bsD7Tl6QoN3cA65TmI2GGUuxrphKzYTzPY8lL0TR4TL6OAmUh08QeL61hUESaDXunm2bBPFOE/G9VnqIN7y2DLRfOqpm7uaIirZQFYY581s3D+8v+5yldkR7ixFOYPs/m4wHCOuF+qG5ICWgynSHQ8RQp7KdZvXWwYT0vqcZf6SUu/fCaMcMOP+fgKtAnVxJoobcICBmjyyo8Hf89j4GYEQn/uplny9hsgsx3m77FCtGUM/+wxIxrwb6Dkbsg2ARPK+9Y46wvPz/Kb9MJVyJOfFuOpcTxIcpuyjvPLa8emIecLDEeArfxKsWcEW7rPVbgDA6HJwbzgITCd7Aq3yvXuPUoNpH4tMbf2ii0znzeyHcXWNTITJjmv6kLmV10YQFIYsGs/bX8xeV5JyJxuBGa5r5oWBhJbR2l8Lzi/F/MkGlJuRK27vqV0kTB5auaEDX9P1FFPUPr2fuRUggqRVvQzDOseZX2BlHgXSy9hLOfvw2TtVK+GI7+RnDYcUQVKcbTce5d6wvRUDE87utsGQz3ymXDYReyjfiyC+269zoMPXllpeoiwg5UMrxtU2yNdZOVTY5QvJlouH87W5ZLraPda5XOyuuDae2zbrGHKGaz63Yuib9fs5YymDhTGOPu/5/Pf8jDz/H8hS+CUABUDQNxi5Uiuo3y7YiveUdkMtWgq+C3Cp0JIipUwndCK+81VQ70C9waO4gHpP7ttfd0svd7nbX2qkJRn5H9CuBdLr6FvL9lbbSGPvV5u67Y+bRfZ7h+7DqZtSpy7GANu/XAAA9W3UyZ1fjBQruBR27yaxmdKpH6cLZ3g3BANcKJyFQu2w7wjbauV3zzm61shYQDciGxIw6iZodY+NH2v9xzEETlPgOFHerY5TvrwM9v9I53THVQTw1lwQmdrrMIWf71X3DtRqnQxgQohtJG0btJj3crdoW85uNHIuAdMp+2ZKd/th76FfKkqRpzVB0jpwpKgZYPNYjFNDdwyDt6kBpCJo1wq5VNQfd8jRomVnv5Cc0QCpcve61+N0RN+fm0CBr5frv9zx5dYG0ZcMZaXXHefv/s45dFXIYQq7X7w9qhZPA6aDg1gH5fAMjZQaPtXQcl6o+J3Isvs49bqP2jvO3XFanaET9ylrvRmVvlwe5juE+74I+fM0Ry13IeBzbhtEWigdPSz6CZHRTYOobyYR5JEj4+EQ+XdStwdTVg4SeMquXHboxy2i9jYA/4yCPGcxOC+DKR83pLnu3HgMXoTkeKoqcL9H7WIAHExPZE3jy2U8B4GOAlitHV/M/Pyj3j8ZE6509J7KU/Z9GLj6JLoVbTKLfRdYWi0m0KFz3ut4N73B67Ci5l9ZM0wlf54AvNdyql20Z/Z96POlfCcEr3JdbO4wkdOvMy+Cf673YwA0vNby7Jpqm+39lWE0MxoSjlTKCFgO8gwos3bOBlw8Qy1fxxW4+vPifiRekApU7zLgHUuCxR4YjhyBztRqT9gdgoAA643PHhmB/S9f0L9cjEOGzP4V1g1CEnCZAIXgKIDvzdPGIarBpRCO4169pLFZ9Ig1597JoKiivWxWSlAL6seJ8nYYaaFYEICAu9VM23sjSEr+hHAoikJU0LeK80tFvQtKLajfbxax32lUzQAGVA1QTM+cncpyNODDuuxkosH4rrPLl8MMZGlqresAAwRKQfuyD7DEHabq3Y/k6NZh6cvmXXwO9MsGfS2ozOJs5jBoArIzCTI6UI572peLox3gk2dnUJ+74T+R8K1RO2BkGjkZcciM+2F7qRWgGm+NFG8dmUt6xGqfrYYbAViErP+MTT7vLTrb2eghJw0N4X2bn7c4UL7KuHx8Bvqlz/X1ap8f53CE6NBsOlpJ5muKAk5uzA4QtBcC8Oa96VCmZw6wtCenIbeRqzAw4xmgDAw5no+9Dr3k2XoPujQDgyTBg8kns0Fb1OJPJVITIPoE0TpbZAPl1HrrmjBH3MOBJ5E058g5TDKYASBKkMe5Dqp5Sj472Nj72sD2yADQvlwsY/nskFOje8TQzQu45UCHoKCg43wt+Pingu3Dsqj3v5tte/k3J5T1tu3Rvl0U5SwBIhAUnHgMREbmgAetdPe109hVwTOFu0IOgZjXDxTj0nkgnfQcTfZbAAAgAElEQVRjys5IgCCAkSmUwWo60ts+72d2mvFW7fvtmPce1zvLLygTKH+pB/N6kc1sUH+vcruPPc4jcz64fIWkwFbs/eTId52/z+/l7Mla3DFf1m++dhpD7OGcjeAg9XTQLl0zC7hO8x5lhkPwdpX57xk8yAeBRdpOuWQZsH2wAiy1zoEw2p9/BnzglwEUbPC9Au0qOL/WiOwCmGouAYSwkQ6L9vuLKvcOOYFyyCCbbmqGSE+3UkRtfvx+dpSzRCmAbgWX1oEbIM2MJAVGelVLqVteHqAigcJJkWgDFUKZm0ERrfuirVUfHAcUpJNzpxopg+1SoFLQiwB6ot6MxBCXhIh7mpjVdnaIt37sl4pyjJaU0mG6zUEIMltH6piT2AAwwX+2Qazz9mHO0/UCxZaMZTEhfAxSLL43hLBMwsrrn6rPVadAuvVArAku5J7PWsTSyXYacva5lTrAov2nO/UpBYks5cZ27g6dOyQToQ/HSmPLSzWk63DQvb2ZtO6NOMe5rNXql83S46hjnXiQyqBdC6QlgEw1MlaCbPNoMbfWKx0gL4Kd58YkkWCm4nndmLwfo37QiUgtXbCM5zxaRBcDMWbEIBmiwsi2CPByHet0q4O5e6vQ374i0rv5bJngBxiR6Zr6lKd9PimB3i1isbb16Torg7zfs7DsHVGLyO95Kj5bfU0to6hUc8mDlKEImNKfFUX3lPDjHIQ4dD5puOSIEscPDCAjjfehXc9ppUsiTrBHhZKvsxaSZ0UQSHya4zxv67zyfJJPMspFg4LzEk7wID+LKNq22Xl9lJbE8/CaaxrsM0N/NUYzKdnKz0EnwN+/tY6sU123KdcyaUF1ICWisInAc2r3mddmXrc5ulLKiNY7me/kILlx+BA9yAZfnoc1qpSNFKZqPokA2njM8Y+xnmacROmFj0s3L/N7dyNwkwC0gzTNO+pEZ6MkR0f7wpE6muVRPIeSBNl/bzrxD5SzQ7VA2Foxg0UCB0M8cn90RLs8vsdc0gWELto+EPwQlgbbo5wBcKN6t/cmlKHd7slMOGnWZSpSeNXbi3r2WPdnZIvqDkC6QKuGEctU03JnhNSnoo3e9u3LxdpGXiuKdAg5EKizShk2UtKtk8wsgJ4I4i1mtqzrh6TQEQ3ObW8jSyW9P9b11+SgAJgi590NrQxC+/W0jbUsfp+pfSpLItkyr3fT7zKngEcZQcmcUL7WejLuw0lqw1nndWLRLA5HAvam72h6trzXc9ZJjlxmWbHuzaxT0z580IO1Ppzz7DpAH3pNB1mckSomuYtFhvN+zNxy8EiyvEpOOgDT8by+249Qf4bmz0z5pgqrVx1jnyLbORuC2Tk9cVPRPl5TtJlhFeADgnSxv+wWKLtWJz9sKG93K//Nc5vnkMGeYmurnBi2hD+n5JKLNUOrOecTLNt0+xBsH4py1wjWle6Bw0xQ2hgI8pttVh5rXcASKMO5httrezXwtSACUYD7QuhRRj0RgUqa9zQHQZRdDYB7ACezPnLgaZD9JvvWSyqmTBja3ZsaEHOc7mukvcI53py7qIvZSRGQeLLunwFeS9ky5cLI9EbaL2nPch1S1zGLaNu8E5sTF66ZP5yb7G+L2LUpK55lcuZzec6zvZ0PZlo2DFCB8xLyZ7WT/P0uckRIFD4Nxdba4OVK4IuUz5/Bj18EUDDZrBvQVHB8KSj3gnKrKGIGTTjmJTm+XVHuiCi93PtIOfJ6y0hlL6z3gad+wyP86g4uUO6Wjni+CMou2L6XaNUELZ6KOSLlURJRyjBuYpzJQSM6Dt7bBd6lWgeC1GnCFpQM0shUc8e0eaaEtktBvVmkRq8lsgEM1fRyhksxAihVtC9blJYYmZU7rWrj7buhsWBKUu8D8VOdwARNNdDiAkHU6mi1CnCY4wogHHVleYHqiCxzvOz/LQL8/mIZO92d9E0iC4RGEhqA3TgTjOwKxq1QBdtHdwFOduweznSQ+nTb8AEo+BjbyzaVKYiO51DZIGLCwXgNbkPwdkXWPCStDCOnSvQpj+4aXdGroF09koOxLvHDkFfdLfIntwZ9FaiUmEMF5w9m8DLd9UwCZTMugPIjR6motF6MS4Hv2R3/mWV8OJyZ1wBns2d/uUBuh0cbt5Fqu2/oX18s84OKqgxjMAM8QxE8iYhkGcHveB36QyobDzrvjLYHEr1Ejh3IIB8KAODtfb4OgLmGrUO2iwnbnJkAF8ZdAbTBAZBS98d19VHoT9f45LkA41tgPT1BwChLymBEUvxAGIrRD1nTnOeI43QzdxJl89aUbjR2vxdLM2io1xolP/ndjW4SDgjtW0QhmFkQfAtUxDm9lMotzVE+IkogxquQuSqMwHNcK8bGTBAaIIxS0ABgVwW+x0QyqWd7rEEVJ3/COYNFNAIvl0fAwM+PaGxyiCZHY5lPfkdaj/rjyHhYQYgJKJKQf8I6U8/OULna92t1Z7obM3+1bjosgwvZvVEOzynOzAAyPhZfj2cbTiCdUSDKB1EAQU82Xgom0CrNTiABz61Y94KP0+S588awqwNgwISBmgYgFx9jOCGwa0ixeyhgxM9kCOtqWJJnQVoEFfa5uG1xWpci6xzlxljFABVKsa3Ed6oAHEjImXt0ZnAausAuFn03fVV8TksAlQhSad3dRkgOV5TqAaM+W1IEkVw+qhZlBEbNeHLY1T4YayqvxVoAJE6a5SCpmemFGiCbGeoziD6dz8yIyDQx2aEFVlee13UGigNQTA76E6dxzHky9FdAgeU/W03zoSNTAxiAYS1ORIfZOZZhd35ae5xlW9K9Ac4x2rlGcNej69hbThKsdIxc5o0uOLN8fbyWZ5Ol8qVwuFmCmDi5xvgFwNDzw+Eu0Yab8xI/V+Blclz91fr1Rpt1BIAX8reItQMH0LeC43frEna+CvYfBfsfBfutmYzOjjFfi68zyppydMvQFAzZRYJEuExkZhLJXW+HZet2GLfbTVHfO+rdu7R4q24Apiv9mRmACyeYgTMAaiRZj/vr7JbB5La/buJ8LGrlwF2GbZfXPOec/w6wjeCYl3Xvdl8h/kLdWIbOsS4u1fUEz/c9StCx+7pgqXIKvE1ZETyqcx6czZ4761O+s/AFF1uV16kyZ3WIeEmVy8S1rCLboS76H0qPjmNkTsaUKFc7oqXk2lEmH8/22rjY49+WcgazD+H2I+0F01NBNt3TuT5+mfaZ28TBtTWfH4f7W5LP+dn48YsAClaPCGzvGg6/VkG/Vpy/7QZ6vqUoM2Bs9YdPrsBSI++nI2MGNshHsx2ZFIZFl4F6szQmOV2pijg5oRMfsu69CPpfXtFed5xfN2eTVnRxQGNBOyMdFLANWSv6lz0IhNTrI3UvaK8F/WLEKtvHbmlVt9OJmxxQ8GhQbApBgCD1ngCHuL8ZPfJxupEkESmXU012FIIKFl0qR4eeiGwJ61DRwkgSESMFDCXaUrq1DOeu9yBoFI/cGxCA5wuRqOU5P0MANcwW6B3R4rEpoj6sjvXAbBWuB/Vyi0JjpunINECd64WrQK+2zoSkmNG6yN9ltZq6ABhUvb1VCQVkwFUBnJuiJMfG7lNjbvhe6q3j8rczMmruv49SmlA+Pvb6vaFmFLPD0oKvWwBmFm1z4c3SCxXo1xcw7RbATBi1GY+H0GjP6Za8V/AY2B6Jd+5IM+o+hPTtbqQ8b7ehyGjQJgeK742RCt036MsWilfux4ysszVeSmnU+z2UXAAOKzCRFUu18g1pDork2jkqTMCcE3JC5KwEKSP9nV0LmHmUjFm5uoPmgltpkPBY6nFFBNj3Ifg7I+XJeKTjfvie5nifkfGs/yZ/gKcby26tlILFuDXoxwceUGhmHOgC4LQOE0Ium5gim+eeDkO0qfI5pkGcvityAurOf9GIEPB7WXrEnDB6FQaRZ4eUEml8UZJBIKrUQRxHgDK1iIrSibzP+PxARAWM78LH+HEzuZXrEdO+gcicpcOfNACOpEP4zvgOKN85x+c5ARNynGNP0SCKcoZtehdR7saysX0bUQ7/Tr94+1UvFdNaUESi/AgHHIww2TnJbq/r1b2iv457s21hzgrTrUSUTotAdvVAgOtJJ9aVxAcj9xPRupiOk6qn/o53JgqU2z3kd4AgO6zsz2Vll4ro2uNyvTg2QYI3jo9jGQTETFm+IEoS2VoS8Ow+DZtvEMa5nlhB35RRQYOw3BrkNPC/HJZpZ1xH1a8lg4/CCYcZHYw1lp29vdp376dnjrQoa1BvdQkH8aWagzGRJPI6TM/P63bJEBK2NaZB3JNjmvdfXvP8ft4bPJdlBW+3+e9AkOI+lB6tKdwillHH7/CeLe1tHz91mo2tOwlwH+Azy4rux7hHS9+J5+qPAHE4dEmq+VzGX1ZQEEBwdWky/jPgGA5c0gmUsU+iqpk3IVKa19KvcNDKmCcHVAfHgX+vYwAIPjZB8w0lw7ZI70jIwUG5xShyt4wluI2KAgP/ZOwhzTaFCLCXAXoCxsl2ERyvFrApd8W+GVAlhwfEMjiT3pP0jvL9wwDqvaZnwlhLcFlW3XYRQbnWkHHbHwfKvUdbbwYYRc1mZMRcKNsoS0UgpU/ZSJGdsdj7ovZMfa+W6ermjGVXdOTsiljb1Z1Evw4BM8l7To2PoH01Us7yYnxh8uEANOU3o/8K6Ia430RiXOBZ3AY+alOUrA9dbwjfRx4X6gwKck64dve0hzIowP3PQ1MQi47/MpdxfWC2gXmQ8H5LsgrAKIXV8bOlffq0pAGYX04aQ75mBPGWoA9LNT4jxfGMAuPkSrJC1c4hl4b2uWwVeAQWAJdt47qfHb8EoADYAizHeKmsi2/XYsD2qYG+GTGLojR37hMpEoABKDAFPz+/GxiMXsMRJjqTEEH9aBGdRrHOCf1a0V4L8OFGxQaoCoRjJljAaynAejky0UK9pk4tkt53AXYAOpzB3ZW4ZoOJiCXBgQ7STM3olcBTAt0RIflh8ch2t1aL7SpBZDmEGgBoGFuoBaJ9RDO4uVaUiouUhhKQHAG/f4O1XSxAgCKBMsIMr6SIgyyS4+sAtgGmTIQueQ21sXZQFUyN5fpilMNqanUoBhnzbSmUOUI2vmPOoUaPdCrjQRQEjFobQXBE+D3DuFTYWikAWkdlHa4DPZrGzbFHFLD12VGr7IWcmNsjopbArc2hfsxRemEWSBbGdK5zCmpO6eTfaBBsNaJ72SB6cKL4bp79XooZ1iU9Bw1JOn7JYY8jImPVyKp4Pz4DECnOEfWq1caaay2fCdF8r+xon64k1hY/+ZiiVGnsxfgVJBnUET1KxhzQDGxZFV3vlr5/yjwPz8awHuQPYDpxgD2u+Jz0bh7Hcv6KbiMZoEz1jfHw3wui79kMU6SEZSw01BOARZR86pKRnHcRgd7viFZYnAs6HYGyywATeOR0Th7Z6c+lDvl3uPxHAi2KyxcCX1l2BIiSjI+8nrPDBSBahjmoJfs+5mqNsALIpSYPREtLBFDOZvWoef49owpbsRR59OTcl3BgJ9Kwdc7o1GyWsddd927TlLrsdCCRckrZes11gpW9waLx8a7goGgDMwYBDACVetfBgRkAayN9mzJ/kscWpFCkiBwwOBGUctjeE9tcWyYhIGJgyES4qGrOVEHIytxCmE6ZiredbAl8V/WyD7crwhgUsNW06RAPpzm/D6qMCP76nkQAaIAJaA2iJbp2qLBMaZErq2zku173Yry/tN7E18wnIIe9V53XfbZ9suPva3cdE8uIJIPP8bzLo2ws91yu80z+r8B673MKfxj1mJ3hPG8LcPz0yKBJlst5Dyc5tToAD9dK95OOAFnt9MVhymBC7tKTZfmDHtCRxeS61zarDHuCc9YUk5zhPAFT9m2MfXXivGuJsmQrjUEAaLdN/2TVjhKA9F8k2vDdZFnq8yO8/u0AagNwiWyqZ+0vg7hQML2/cj9HaXTObPHAy9SVIpcWAKM8Ncs/ck2kvaQAygdlPwaPDDOr85HBxZo6Bk36TtJ6h3G27W6XO78NAUjyhgXga1G0YQs7EJTvEfYd1wHJJQusrXBy/JVlbDm1P6+PRZZMBKhP9v60l5mRyCPKaD+3oawUpsL6umMqAY3xUE5kXQ483/tP1tLzcff4OWUTrUSNnx1LlsMAFfTn5yZbbs5++CRDCr8IoECCxP2th6OrG3B+Y3TMf7ij3b1dIdctF1K/lPg+Sf14EJDY3xwJ9jp0UcX5dcP9Lxu2d0MTjURpGAhUcNXBhNI62rWa8XDWYSRk1K8r1CM8/WIGyfaDKeUSBJLlMIHUXq19IOAGjgBlr6Y86Pw1NSDhGJEK3SuOf/4ShlhkVnidPoV5RK9PoL2UCUyg0dQ3loTYALoYqotiPAlEJuXtBnkfTigjYXL37Aon4YrSEKZzweeyCrRukS6rewUuG+T9DiH6zYyEfBQxQ9J9Y91rZJFoAcphtWp8D9sf9xDAuhVg8zY7zJ6o1WpgDxpm8LXRhlCQkXVS//jw6FIb0TiWULgAlqNFlG6q2Spl8FEcRmTYX7d439zYl/81rFll5JEkZB45ZESOwr19uViLybe7taq8bjbvH97aMqWpAUC/7ugvmys8WMRK1d5jwTTv4unCllq4WeSv9Yh05xZ3lv6GkflBp4XGZy7f6Q4mXC/o3mqVUTiuA71egItCvr8Ng0s9cr8bEdDIBEiRElcYejWSQSHxEkEFOlVvH5DrZUScWGPc1bIQGOmpdawP1WG40DF+3SM6paeRMEaE3MGDSMVvbZBfUS7zu8eIPovXMZL4MQxBNzJ1cZYATKRao8VlcloBoHsb0fN8PJ9AAveaCAzB5mIoQ7k7IGCObplkTRw0aHIXjF68RaUDBzRcJ3ReRlaCAwlB0NhTD20CBXz/6TshM7OxrP5e+VlkncgAOM7THHgSih7HMD5qtTT7lDrMDhSSr1FkrHW2bARsv1x2PPCKcG1nIkmRyPqQ4lkxNx3Gvtg99H430tLVAVGF3A8HBZzQ1SPT5DkJzpgOyHHzvX4GKFF/3Cb5F0St317td1X0a5LRyeCXe0e5AG2z9rayCQpOwzNJsHw70erFuyuZrNt/nIjWw3RGxGX8t4vJPc8Qi1bNe0Xfy2jRe0sGTzgye2S8WX90pGwtBA5MLixyHEFsHPXtGI7B5unFnaV6BnJUl/39xWqKzy8V9UZiZXMcWJZYuH4KSzdPN97r4Hw6LRtMr5vzKkmQ7vKwZ1p4YqqglzIyQzIRZ+tGaMbz67z/whGh08PIPM8vJvO1CCS3yw1dl4AEruXi5IV5vfPfmsASArytj8g/r1nqWN/ZKeD52Wh+Bg7QIOZ917K+dR66tcmLg8TDzPpxwHpyinnfTCqXzp2yOJZnCOeGe3/NspsysT4BFELGpvTnJ+BpyES+v+z8qJoMLNUA0stl1iMTsG9cAeqAEctvYo6BFDCoSUdg6NH8rpZ1EaVSB4CXPaEBPlTf+8GzpRiAdFNc/3ZAi+D6b4Lto1mb2R93ywbxDAXlu8rrp8zvSA4vY7uMUinLijA/QlRR3s/IKIhgVQekekAJsM45zLS5nahNB0cE55ZynAHNDKYd57BTXF+Ikw7X24bi+mkqWyIQIo8lTdP8iwweFcAyTH1uistW7NV8LgYdxYNfmwVJis87x2RBPL/nzXnoyB923QPAjsxZ2kQBevk9inP16NjvD3xbU3bLyDi0LBkuGFtTk23HYMjivxHMn/ameMexch3vZXtCzMhzprWtjwDAs24TFEs67jmdg+Tc/wT8CFuNe2ajPO4P45AM2KTr2+1l+vk0eyEdvwSgAIj9r5sjawsGU/oSj9Eyz+dKEN/RKmANugIBBDD6DgDR2uYJMhPKOt9TfPM4QBERcx7VUEJN0cqpw4MMQyCIn0KRwgybroBHHvpO0j9uqpIIoyQMEyt9dNCjjnmyDgtuaIgMFDEpb0byTWhR6MMddsVDgCI2kjHmCtOHPzlySnvMCd9RjuoGKCjjXbthISheJ8cxjJ/D+PM57Arp4uUKCsDTyPqSzRAbn3PlArvged26j4vpqOU9OabwsWXlA5tX0ZE+9hRxXI+uFhUrQEVSqptnGaiagGgAYbQxn6uSRdT8zSlkI4owPx+CWG06+Jq6reeJFI0GHo0ejoXOMA0HAjK5bm6KMBEUsxIfzcqYAh4Y6HEW8pyjcChlXJeIeVeLfK4GUxhyyRjs7jRO6WGLLNDk2D87UmrbWvMfGQnhEMuIZuQoVP49zbfZbD+592f1uekaM3lPMqSAR6Xo+8IeYCm7iHebjPAnim+cP8/byonwcEgxeeTjFDcqAvjw+0V5iP3R5BIN9zUdMa/7P1GKD5FGzyqb5oprquvIeljfG++lOjlCjEw9sMzndU0m/DYMI2NzfiJ3uwE1AWzK2AuhC9doYPo3ZWW0imWNMFz3pPcIGtQcbrpXfg5pHdrLYzZZAijGufzM/90xG/ddhhELjJp0kQf5x+cZc2MyT1kWkf/O95EdPBrJgqEzFQEasGuleDvn6LIU8/1kHzIK+TDQPB6YiBb4OvLAQMPgyijyGFENR0+G8Zwdvlw/HTJIxznr8VMZE4aH/T61THQdkmX/tIc+2RvrfBTM++/P9CjBw4guPdlPPzuyPFvOGxxZ8ufjeRbpy+es11//e/Zc65xRT01/6+Ozf/QgwEoZTu6aae64IDHJ2OlnepapBCV9R+AZwi7vwkYA5jKKZ+Nf3+XPbCnej6e0jnKXGH65NytPPgf32XT8NFLrnAK5nJn2coHZZcwoSJkkRtbqNlsAKUlenkYUrDJsuYcnfBZd7kmWd5e1svDU8CCXyyTH5fl8P3uvEax4rkfNf3hybhqLEdsKooUu5XZB2IbaO2Tdh3lMeZ09kxsxV0k/rABj2H7JBnU7I7Jb12cQCaLusDuAkd1GXZ0ziFQ/d/X7uscwbJT182zTTo/7if1EmfHsvLjHAmpMnz9mHoTt+g8evwagIBjRencS1bIarS5nOYzs5BzZAx1AAc4Xyxao783YXS9liv4CvoAVkI8eDnf9aHg5u9csdvS9DoNWgF4LpAP11mMTlXv3cVtK0PHNIvxtF9S7oh5eotFtvFBFrxf7vXWUU7H9aN6RQAG1sbWXgu29Y/t+g5VblDBumkeD6seJ7PRrEZSbR5K9run4fXNyKn/eZiSM5ei4/O02jCuBbb5DUc/hOBrS6IKwwrIOKARedovq3o9I6VISALnCKB/n4BpQDYAj9yDXy2YMvB+nRc84prMZuc7Va0XdIFMaZr2jvh9Rg2u8F4p668Z/cLP2RcooE9I9twLsgvLmSLUbI1GDGoJuRC/P3y6AApd3Rzaz0dQBoI+61qMBGBkZ0RM4OcL9xdKX5fQU2FQnR4IbvmtUb91YxViKz476b2+Q44S+XICC4PGYatrup9W70SjJDNjd6+v83Vr3EB3zsWPUkTs4JszauXjruH0btclRRz+QeOTPErN+Rv5RCtrXyyjxoSD0ekRGcSO6BVgGy3EOolOm03oWQo7cW130eO7JUCTpHtvxkWAxG09J+ajIACGqRwW7t8gkQWkY6iVQX46HXAVWe99BtHuKlE1RszLLrSn1+4kR5qUUljp5TmOI61WMzASWAsAVIssYUk3dxBBOh+bwObpe57TY7tkZbG0oJSKYwTmxbZYVsG+P6ck0XFKUJD6tJVonxlhqtQg+oxZBhJQj5omtOIyL5FwBMyh2nmDGgTKKK+aoS26BGtkMzY0Cn4eVYOocmSCB9N/uYzzMbOD3PQtCv77GdeR+IDJnUEfLSj7f5TLuy8gy9wbBOxrRiZRU/Z1NKbQ20LF3Lw5SmH/r0fnh1LMMStTkTcjYUoBrHZkEimR8Cs6/voIkyoDpM+nV9VjzDAIDGdu1oIh1aipH99bKo30z5Wfx8jK26aUukvsBYLRsnsulZgfASusQpLlavfzxaJbp5WtW7gXlvkXPd8tkqFHC4H1NjfdpcV7Y1WEQ7rn+CdBInV9QADVAoPxxRs1yHquoevZavoGBlIVkmW28Y4tOJhkHJNLFkeodOi7tI9OhOkru9g3t5WJ8N/fDGeJ1RPDpADAwktO5c/YO1xwzBHofIP0KBHOPIH1OUlk+e/6ZD/KKsDyCoKoHmKY2eFleAJYl5vsnuqJkfhKXHXG4jkT3rkH3w8ptMk/PCh5v6XqUpcyOStmFD8ekkwDy+oRr6iTOkwzfNkTpWlc8BRXYjSeXeBBMyvYP55LPpct3WreOXHZR4Op6UdUcW3YJyeshHxyz22YxCyT2POBR+HQKo+NvB6bs0ON85GXKB+WxH+x20H5/jdT/yKLkXqBPGJxbGteywBiGn7YCMr0bWNryPcfcmoxm2bCvlapDjudxcr5JGMz1TsA/lxFxDHkc/D0yGu07cjshxbrZBFdFQXTFkqaWkVXcdk4cF2H/hY1gfgGfU1HHOZ61LVpH5kSsr27PxUwrANIGwGzrU+b5leV5fc08ZA5EEGjJFqBsgdvlyX6MvcTv1GLvsA19r57FKGLl5ihq95An9862XS494phjTLa3p8AQQXY+E99ldIKoYWsGn4NnME0BGfXypQxYizyXpT85fg1AARjWoxsf8KwFAGDkIlo4AUHaRM4AuOPOOkfpglzULY2pcRhIOlyhevTX/iARDRFPCwUwkYxo8XTMAnQXZs27J7QLvLbSFr0oUG/qaY3uUGqZoue53Uuu81rr4JH+znWpdfAhYK9W2ylWFhLPwzouft/vF9eJyIZnL4jMtV8FEzpLY8sihzIWHq8dzyRznTqd92QkRDaHyGg1pt7SK3W++Pi/XnH7S8Xrv56o7y24NPiuReD9gkdHhxhr8ZrTzH3G+y3oL1stBoGZO9MhB7JyJ4Lbk4Gm3n2BEUn74jRvrMkt2cklwn3AlAiVaIdxYhCd7WoEa0AQQobBfnbve23Eg1qrdVnw+ZyeHUkJAkNZO+AAJ/zKXT4ADOeFgCjgq5MAACAASURBVGZGQ3MLs3jfam2alsyIKYVTfe8uBG+fGhirE54c/9mJTgKTBvF0reT4r/eQAmgbUTkocgZCHG6YapRMPBfAbDvLuaLzPwn1fKzpcbm29mEM/l2m4rMU4M8ikVQ+NT/z4zNmssmn1+H8xz4v8z5xJz+yNNqyTh5vOMad+RzKaYayp/OZkkzPqR0PqD97U4vPuUfypRTg9WUYss/m1VMiA8BI6+yn4+a8bl62kSN3633yXsiGYpINENY0Y0QgaND0J3Xjef78WibrM6ioU+R17TBhfcy7GUobPBNvOLSSa/vbLMejJ31TCJ1uYZRsZNPlrCfyIxGEYJ/y4pw1jICabCrTXpKjGZjJNn50jpf3spIhMuMgfqd94XLadLHLxZReHyU7zY3rrM8Ak2PVxsOSCDjwYOzrSMB18W1HALx4zbi9awM80lrIYELcU/DQWjvJUXZ5sucqAzgI3WPzMmWhUd84gDZlHdLQpuPG9fNkHQa4/MyRqYusnAx9nR00YJZjWYZEP/fszD3ZzxmkyAZ46Ooyorj5GllOTd/HPMa4ZrIbJTm72el+JsvT75O+WOcmj4dp4hMYvswrI7bP9EAGFWzwfony3Cl79juPDJgs+j6yBeO9psvRVsytSvM1mdWw/j0d037IJUHkMOGz6ifzn8FdAsZiZbfn131kBzfXYVx+vM5iI01lo1HOsujW4LrBNB9j8Gn90SfR4kC6jrl5VjJIMCFdZ7Sf7zEHqx54OoaOQYLJzjgcM+1O+gSKwff17JoEZbsF2kgB88CNlvdpBqr4bxlZarTxn67XRZ/quj7pe3x2+HqQz54HcKA16WHKxBhverl5X7BLVky1YnRwSJ//hARxDFMGV0qWA8wMWteeA//ybN0tx5+VOeTj1wAUFNa1wQ9paiz9myn1QXJkNoNuguO62Tldbf4UqDczaotHS6pq1FcGa7N4vXIICEOArXTA0uz7ZbDF2k8Mj4O1jIchQPriQMLVwIR2FeAVRlACAN26V9RDsb9pgA+XPzr2H6cje3DwYNxHqxFbNW8bCGAADRsFtz1H38usABnxBbwkAImdukREWKt1eqh/P8bcZwfTjTXdLJJMUIcGpQEAJZDLaAGmnKcKeWuhhA0AGNEEOTuq8xkw2sM5AzBaRariX/+fHd//7xP/7j/ueP3Xims1TohyO2cCmuzMwua1X60VZAFcoKqxmasGf0AWVvq6o73u2M4OuZ/Y/rjFNYMzoekg/lIdPZ7dAOtbiaiT+J+D5GwvZgD6O6FwlqbRmgbFI18qwyj1o3+5xFrIJGTycUDkCq0F979e0avg5b+/2TiJLiekWt7vkPuB/vV1KF3VyFSQXh76F486ZK61Eiz5QfKTo1THCfm4GwiSWbR3i36sdcijbjqVeyTD1yKj2+D/cINVsoHJ6CkVDf/uDq3cPHOjdK9TT6BEIhg0AGq0R33gI/A9px5FVtWRdp+AAuvgsI17AGCJhQIj+p2OQItzGUmtwdEQ9+J3gYFJej1hKIKmEBciK7mhqjp4tXlVjDtQGcVO4+E9IzuBnTDux5ifkur8S6q15nff3417gZwPXR+BGBGLkCUnIIy0bbPrX/bh9JynVWYwUlgUKNvkcMh52oa5XqCXHe2vXy0V9m/fh2GRHYQMjCxyJRsPkeJIwIQtVS87sBOYdcCF2RraIeLZBrv/9NaxsZaz43NJfCTikdZIaXejJWW8GCCewQXnb7gfKdIzPov6+uMcsvS0SJy+7t4Jp3i0/rD5reItG3sYaWwXWb7fgoBLv71a1N+jWOXWXC5X1xvA9t482u3v77IBXVHfzzBQLVLn+qch/ia3O9AqLLXKD46JYILz+Mj7/RFwSWvO/u76eBPPRJQhY1Q9RVeNhb73qHc2MF09s9lABDka5Hagf3uxbMijRSZa3wr6tUawQzexblU3GBhBWzQbvR3BUWN7yoyTIHjcS8iB0cLPZQ9ruVXt3bK7Ceu6T0kyrsda1perZSUmwEyaRseFmLsM0DNCul+8xfLHLNfTPgo+kexAsTNMlgsqcxmQg8t6NfkZXDl00iCfg5fJsYoson23c+Kefdpz47w0rrxHfW5JAB2ymx+u3Ap5TGuWRa3ztbPOyWVc5HahjFnrsn8CKk+p05HN5d+jbGZ7b4IoWTZl9n2CR/yM92Agy53WCGIw00WWEqjkuIlnREYHFOqsCTRN9yPvADMbLzvYXcDs1hHE0KX0JzK/srwvBdgK3v+9dQC7/GGZxcxmBRC2Z+7Uo5t1dgt+7jcd65nv2PdLgCmeOWfOuk4AYXTT2DdoTTrZs16UDi+zWYDIKI7OOl7+mqP88Y6QAMO1vII/D2uNiyYeuByggnjWAbzDRdiDTtgdfDiqJqsJCJQCPbZ4Bw8gIFtL57I/7onbfewVeUK2DMygU/d9/llQ5NnfqBdpH7p8ecbbZAGlPymZlbR3tbuM8qwFNT0yyLERNlt06MpH72OvO2eWwDNN+XeO4VAEkWS2C3t/IDKNcfL5/qyUdjl+CUChb8DH7xWXHx31ppbGpCZQ+mZKru+mHHUT/8z0ixQBnHCxXd1B8cXXqwkSIyo0VJG9X7UWy1q+OhGdpKh8KqiJ6wGAWAlC3wTizKeMZNS7guyS0nyNOECwvzOCA/RNcHwVlFNQzurOuTloRtqEcd0O1KMHW3bUSdJ4uNgg670bUaUDJ6JAOQdnA7MRDBlkKYagMfKwFbB3d+4ooH04oOXdlW4YLiQQS8pD1RnwU2ptJrQD7PekHACYgKoDUCiHG27nILS5/F1x/W9bZHsMq8nbm217vGc6u+zGIFsHS0qiFpanpzRSpmlFuQcVGwklk/IUttHjcySSNSlpHgOsMAGhgEWpXKiqt/ypb3cbLxHco0Glon3ZUY6O2o2kiizixpUh4/oEeo5mcvDN+pbzHSiBKYI0iVWYGQlhjNFQ28poJbkIXa5PX17Tubn3dCDoVNS5lrv3IFALMCErsWzEFQPYwhDmHp4GxfP9/k64+dA+jO+VCqG1UbZQK+DRV6tZl+Fcc8lWYCK/cuNDgMgSmMCEpCxleaasBNUN1QcirTW7JPEJYPmusowB+ZTkQIl3b+mZyE2HI04yR8CMLP99askZkageCla3RZVwnnPUgYZPKanMIildX3dTDXV25HM5gztFofRpz9EwIujAOfSxagKfzm8XlHvD/n6BlBM4mFHVR5kGkjFLcILvljIScMAgOTp0lDgPdN7EnexQ+r7nkUqH8vz1sb5i/eZjSuEfjqasKaBuEEUZ27rGcl3u8rmR1PKZx/6U84k5Qn+DGX6qlq0gXsKWjpExKKEHJ+d9iubw/fr1xfavFtc7klKi+bxlkIBNzxr/TnPNy6uNSS4b9FKihILyJkp1mK7sSjbIzgAz4LJz5DI0nCsfH8kVaa9oMVCPrZ9Vxd5jx+RkkG1+AojvzWU1J1eGg5VlKtcUMGcr8GcANv4sTNXn8xDQyPuTMs4BldkR7k/XVFzbn2fSYd0NvFxSFYtmXbv62PmBz5iBF8r8Vd5wP2ZQwLNj4rykN0Y52DmPbQUPVJ9nM8njmsvnPxjwpQ49xPNXcCBHQXO2Vv4dGDI3AaUWlR/zEXNBm+AZEJNBFq4L2NxGG1I68ywrIjntItcnXpMiYYdM85+PnLrfMZz7fJ2URRnE1gQtaoFsrqO5N3nvFTzy++w/7PlYMpzHRWdfU3YtgCjNjVaf+b36O4xnb3nt9yHr8rMnnRh2T84WJcdPsnOixXkGinPWp9tlz1rDhi5eI9vi8sjtyNzqUgEbC0Ft1VGaknV6mtsRYHmy1tYxFQGYafrZd6dMHZnWXGQLleVezzIAnsgO2g+81vROiwCsH6btyOfm56oYRvPwMU0HGgdGznR94C+I7lLLuijLO+Lfky33Dx2rzZX//my+nxy/BKCgG3D7q0dEtWN7AwgaAIAWRAeHdrG+zPXDJ9fLD6QrmtdnBfvz5nXn3tfeNmwNxmTdBOdL9bRKd7aPBrlWS1tXOCDhzrlYNkDfPZuA4xfjTbAOCcYFURpweteG7d1YpXVzQOGboBwF9VCUO2DlGp5yyFIFpkeeCnlxUhjxNdhhYEjUdHX0fYuUI6jVm6rPgc2xRD1j8T7k7aWCLavYV7u0Djl9XMZwYtf78JrirtAv19FOkmmmLjgtym417tZZoaDnxbg5AcuJkQ1xNec1GMMVgxyzmiH38jed5tLm3X/uFce3DdubvWvAQYHD6jqLPx/JWrIQ7F8uQ+ikjAiCGgAGWOCR99GaJ9e1e609e/rSMMvpd1zTxzivbwXn1w3laNCbM+v2bkb4Xo0p/AMoN4kMB/GsjMx3Eelnh7MNd3gasEB3z9I4jXtCWjPEmcJmqtMSQ86Zqkwi6DRncVQMRehodCi4MnqrK3szqwbTPFPfyz1Fp8II9Z90Ll2468UzE/ox0hLz0Zcxeg37FH3Iio0R9vOMLANzSAqiPoZkNX2AW/JMsDNyzxR9GnRUbmsEys8h4KC5jdFDlKmn69fBp0AgQzzStCrflhQSx1ELgDKUvB+51n/wFBTbZD2VrGxbqscb14+WfNzTqlF3OciCErjEg6mCzEaorpS5b9J8SR3XtijraVHFjPoDQKkju8Hnb4pI+T2P3yrKvWD7bjwEws+aAHfrjhKdIFob2SxltDeV1qG3uzm2NJpzFNXnRD2Dg9cjqKnJ2JR6ndc0nX+WP2WHdj2yA8v3TRBCxM67HyMqSKOKxvtkHJURRQ656LchQNTGs8WeB4YDWwrQjAQN9wNFFW0vU1mctYSDG8Rj7UDEAwAy9MzqyABekpXmgOBEKjGzgEGKkOUIa1of9lON3fw4IV+u6OrR9aOlaFcb8q6UYfzzfWWDs/l7WwAFAKEXatYFF+Nu6rVAiloWhAxSM5EeYC1TudnSs5zd+abI/wDjbsrrPoipB6j0AMr2UV7Cjg4BUrGWOx5CRoQ0r8kw7P2crrOTzq/tqT6fOvNsULRor/3QZpX7wfWdAVbnY4Sz91n28xq5rIjRvJXotxSo6Oh4ksEE6nm25lz5gRjV74/93VES4AWXken3GGNMr9h+WdvW8rPxRv2Z3blYopB27zLuxfT+FazJMiB3msnXpy5az+fcelaYvu7oFysbldZR3jE7fJQ/eQi+niaAaHFyQwf3bnqYnBYElsUCKFEexhJTwGyQfUNkxOX1z33LLEi+S1Xsf5huJH/C1A6xAAqBaJ0DTFzPbucE2MLrMujSMYN+K6fNkzkIHcqsU5HBu+L2KQEXyzxqFtHnGs7lHRE5TQ5yrOUE7kv6HmDvtSd5sDrxUYozgOoHIny3VydZlJ341aGPjIRlvoAEpOnQTTlTlgAaYB1MeHAu0rPRXpDVDuN9isx7N66LoQ8ysDfxYWnItFyeq3HO8v6f3T+mj2sWY0/xO5+ACVPb2LRWp+NZ2e5nYMNy/BKAgqXku+9aB5mikTaVyXmXDpRTUTw6omKpgobmYzihRdCroKgvfjcoysfpzusGnMD20SLtUrm4OkyhFzFhIRr7jk5s/bD7t6sJxbbb/bcPZgAAm1rUZf/eoGJtMLcPxeu/mFN8Xguq2LMUvzCfq9cCbK5Tj476dhoZVRFrseV9t40rgULWHGHja+j2OWoAMlv3zeYCqNx7GGvqnBXWjlKslKAp2pc9alkBALsZw/I20v7kltpS+aF7RXvdAxjonglQWFtLB81JLfu1xnvf/rgPB9bBk+v/PLC9VQcNejyvHA0FwKXZBgpuip6MLzHDJgNLkU71YUoHIubEnC2IriQLVq6/ZJToviGndsVxtlFK4Y69tc5xRfkyUgPL2Y3469acQAxgGYHEXMGFsUcNwlhAXGdqe8P0NDoDwCADi/TkEkSIUcbwfo93p9wHbfBV+M2G80DiHfU2Ppd9kAoBNp8F/nsS+Pm/4xxGqbdyotOkuZOI6iC6TMR90UqJ88Z7OAgUjqXPhc2brYFM1heOI9dww4RkCzCMR6UD6N+97MBxmqP/YKDn0oMGjbaRBWv2Asc+ETDmCIpfT9hpxaNNCkTkX7LRmXlPWrNxtPuMesOVTC6vWIwsXLz9JjMLZNTBR8pfHyzNdN4VfTa6A/VPjuH1MhuawOQ0xu+8F9K+5BiP0wyl2AM9HPjpiJKMAmkdL//iLVXPPlqJeSkK1owL3ov7C7CsDqXyLinDhY5cDxAiotcEEpLjGY5H62MeREYnnQRMhNzKwMF4wKfGqNzz3Ph9s9GeHHXj4tlmmdcaoK6Hex+cKKVEam25OYHceYTxqPsGvF6jjXD39ocGdvt7DdmGGF+upQ0eG8ogggZeogjASlhEBidRlQHAtY7MjxQyO++5nCqvDvJ5OaVuCVhR9bRjz3zgXNJx4HjS2o22cPJknxdrMUm9216sxSa7VW1FoLUPwB4ILgYAIZOlIFpIty+bEVtS13QNvaJOkKuvF0Smwdr9Ix98j/5rf90t+PF2SzpIIWshLp0TOv0izsOgs4Pxfh/fr2y13G29+t/G3u8AuxRl8JUlQyIGfK4OuT8HwuhOjqSqgZTMTOL6o5OTwLfImGEHlCQLp/nLazdFaqe2sj4/0YHjYdoVD87AU5lNPZqcB5Iy8rKrU5TfM3WCv8c4ShprjnrXAmgmwZQBErtsEpg+Lm8VctR57fKIsbJ0aY7mBu8GMOv0DkjuOJSfz8utoqzHZUW/brj/bvaCdGD7vqPe2ii94PvzdodKu8EBQ2lqJa8ZVONPVfSXi/kbu4/vaANIY4Bqq5b6v5b0ZjAh21fPnLasA5g90jW6r9mgZNiCtPduc2eyKA2odS5Z+WT/T+Bdvn7+vJQhfwl+raUT7mPFuuR7ypls6Rn4Dh7H4zwzK/DCI2dVrGvoxZxoWbM08vVXLoR1fzwDIMBfF94TAE+zH5gh9OQQAkIxJF+b3Mb7ZvqYgOKzOUg2RtiY1IccT2tj3fzvlDU8AxvS8UsAChaRVlesiNT0cip0U8CzBYJPQe0n+Q2CebS7EeAvJSK4mezNHSxc3FG7K7qzRk+GrCIcp6HA7feo+1ag7xV9g0eo7Dk4xuqlG+Xew0gop+LyXdEuBX0D+gYAgnJQMQFsxaJeXlFvxsrfPbrTLwWZoLGzIUHn2EbKKBHXmAsdpRC2KZdXIU5yyd/3Am2KUscmksPqsfTK2t82GR6cM/X+tJad4ZOZOQv8XWst9mzkJnBhDMDqVBXY3k7Uj2Y8GbBozgAP2iiPKEiCBNBa0a8byu0Mwq/gzgBCOI86u2So+zqaiP78eQCYQD5Y1+/rh07POYQaSWzE66ijdzJg0aVoSdbH+nNjozRFYe2u0tD1ceDJQWHcO/Qc9wwm4Wy8Z0QfsaQGOVfPxnINRH0oxD4iGYXM6yUUTrQLyjbNKoRPA/RY/mwdGFwZLsZfKIqtDkP4TIZBUkbh3GWDLwlOXZVHJv8jeEPnvCimaFkDcg9jlApLSUo7wLMUMpiQo4W5LGJ16ON56OCvBkaukxMnahKZlUuKQAeoQSAFGACKZzJMyplKpyvYpWNi/OYY+Vz+XRvGo+Eb4FaObtGBJVp/c6enyOCf8ed7AF0yyMfsg5VMUrMjuShwH0/9fgNBtuj8oTN3xHT0bvvIn0WzItZuQpv7IdLdaYx7tk502dBHoyKMF3hkrYacmtJSsxE6ObFPjPfVuOuKB6HvoJ8mByHktbK0gfISvm+4N/2cu8RaGmR+BjhYSZoBxxBAOYcFYOtiAF7OlZ4xG9ww+aRMjWWqrsqosc5yAJhBBr7PrQInjFgRbkf4vpS1lEd9XjaJ8WgFsBW0l83K604TiGyPF6UIlO8l2RZP3rVeyD9k2Y/GiWTf7Wcxm8GJG9F78C0NPeHX8YyyXgtE+kT4S7ljxGkwx/3sUKSSh0+JScd12MkoZMbyLM/OlbNFrTczbsIZ8N+18H2WWaflOct7QxOA2cc1ZP3uOuddI9hEJ9icnMU5oR5mujydSRFE2+vscOc1y/P5HWa9cTw8J7UPfNb3/SkBcPzd3wOBhAfwwUCF+Pezy2S5kGu9y9AruVQw5DL3FkE50QEoZB19PwaImp99LYkhQJTfGcsHgMm5AjABi1ZukPYCnbEIYsCykL+M1uvQzbJ/j4LIQHayVgZlJke2d5T3I4Jfs2OvFhDLfFlpDVB2aa1TpkTYVLyNO8oxH1k3pO8MPop0zrr3OC7qtAxacZ4WHRxZGfk7+cg2Qnawab9wzjOIOI03XVvT37i20JEzeadnefbvZ2PkOLMdmNaUevBFVjs4Z+LRJuTRO9Bp4/lcPRvDOraSrv8QMPoEQMwZrTrKXifAj++NWZz5HjFmnc9bx8vW0jqy+/RnXAn87JmMenL8QoCC/bPtAnwrqDdzpLkYt3d3JHfbROGAEjVriu3HaP2mmxtkWVCJoH/Zg5hQmmUs4MuOvgnOrxvwdbMuAmeHljoceyde3N466keq02+KcgL1bj5FuVvGQU5J55GBfGuRac8OgafY2360aypOJ3nUTaCnG2vMlhAXqN2EYP1oKPcWG7W709o3z5x4b1HzqozAN7tWdwJIElWiC9rXPZxXUUR6Yt8KihhKJ+/3kYLrhnkIqZayBVhuoojICa9HvoJ6WI1alCqoDvLJs48Wvn6v8mHCKxtrrD/Lf3v/D1/wX/7fgm//+RX/4f8T1D9ukNstjM8pAgWY88R1QdDDU1vFiWD0uiEiPCRtcSXU/vkboo0ahQIBqVrN2Pu4Q687jr++2No/OvS62+b9/m5zerVo0P63WwBYutt42d4Uze7fXx2BP5NyPRtERzqZDa5D7ocbeHVE8Vd2b5I4RkcKQft2hRbB9sfN7n0/ZscO8FIjHUb1VkZNYDZKt2ItLQHoZSExFBmlJS+XcFpyNgT5H4QOrz/bg0Jgyj2BCY/USXWBvW0jjTWRMZKUzQTOE2MNDiaQY4BOYs5gEAMoRJLBmAxmS5lzJVfx4DhHBDscRhqyGONyZ9/ImDqC1Ce3MHtmLOf6PD6Pf6alzGUbAS64cmU0iRk5zjgt4nv2bEbCWMqI4PM9MLOEey9HJwgsRDlMeo9UpFEWMQNMRnrp9+S4eN1z7MOYBx+XtTrU1JrRx5BLJHwdSM5YaM3bf84gtJ4n2KbNBzbvP14z2kW5+N/32UHh6WuXk2xs+97Xy+76z8EaliGJDOLGfJ2clgsMssc03iA9o5HNOXBCQaTMIbk1oHa0367+/lxe389BtEvD08vvyOOg/v1yPyfQP7dIDPurAP1lR9+Ll+rBgPaCifBxDMxPO+x52Uo4ark99VmLQtjtYyXCW2wHGs19K2ivFeUQFBkZXuXN1xFBXy8jbF9GRlX9YLnaFt0vbA4a6s0yB9lKMtoBb8VeqTKdGfD/M1CD+rkr9r/fBrkl33UGOOgg7dVK0U7xuT8tKkvbKHOHsD10dtZYjgZMDoxevQSJ8rj4d9hasnUvh6zzvmjdsly6jrJBptgD87rPDntJciMIWcv4udXheIlnqGQjn/t+FyfO65P8FN7D5zEIZnNGYi4lIaiVxhDlZLxudqwimtrHlaRAtg1r9sCUIq0tPa/gIROhwcrT9tSG9ziGPM5lYovzEQ6DyxgAYWfyuS0jjt9Lzg3tP8/40quVk+mWunZlmZTBgMzXIWk/cw0TZ+iYspgmmUX1TJJDueB4dU6rDvRLwSmC9k927f0Ps5u3Y5G1NsmuGk1X9ipAccJt33fn1x1axLhWmkLFuQWamt237yGf+PwGUEp+7QM4beJBtDFXsRfCzvbhbRiyP88l4BlBJfbN4H4Z8jwc7TSP8dzeIpWfxz2OdJ6a7RslWZ7hN0gUfc9ETduT+eXYzhacOA97P+un/5+5t2m1ZlvWhJ4YI3POud5373POrXvVKqpExWqU2FEEwW6BbTtKFYLYEOoH+Ae0YceWHcWioBpldS5FgSiCPQsKwZYINmxpIXrKD+65H2d/vGvNmZkjbEQ8MWKMmWvt9zSEnbD3u9ZcMzNHjhwjPp6IeIJj0TRHad0Z2fd0vs9ZlD2zNqHpcyexHFzz8sa4D/UDEO8l7LScqdMUEc0Qwdiys4IZjUMINp6jWGZpzHvaWzlIEq9scu49c1WA0dbwa/eHs6FYcPV4BhU+yFr4qOvDTwIKInID8A8BXP37f19V/wMR+ecA/CGA3wfwPwL4d1T1ISJXAP8FgH8FwB8D+Guq+r9/eA9Fd7YFaIsBDBa9hq1FBaJ1HhBggvEKOPJeJCbLUrY1Ogj4w5giLS54FF3RAi4wYCzLB3opQD4UQdQYxoAgjGM6f+XQUU5LOl8NhFA+V0PPvGDpxkeH+vW6dxIOvBlqOghkZi1Amb0xjYkGMaePzwMEMknjBzR4DnShgT4OezdpY7lT3nuR+xhS/2FrW6U94jMtZhNYbtC4kA/+hVwfxxPIN9HUeCs+New3724hJEVLzkAGFDif25GQ1yTwKUAGJ40Oo4TxV7eElse4fJI59qxkfF7zM6CyljgNbUZGp78Pf1PFE3NxVhpPBnOfS0u/6edYB5R0Po85e4P/qo5gLH+m88xjMBy0G35z6cA0ZknfPT0msMPOTd7JTxwko9QzRQh01Lp1h3zIZDmLqgNDZN0c44RMp3+lJcGdMyeGSU1RDSqaWRFwj2Yj+70jl0wM11RE5g+vn5H7YUiSHI7S7533Ga/H8Z0pqI9Q87PvZY4GGyBye+BxSrQ7l5qMivyO4jmTAcbx8uAam0Gb7FTItGe4ZoZWUv69Kdo2/Dsf+e/z/GVDcT4/v0PeN//N50azzONlZwMPLpvV5VIRc9AF0JZScXlkp2P4/PwR6UQQVGTnJ5ZAkivGZLnLU9pegkGPPmWfFRqV6OVq5Dogd4XLz6GjjutAFQy6NO7l+o5gNR30mGLuGSRZrtpTqTk+wDr7eEDDlFbSO2rzGTpfPLPw0CjXiDmkDA8H0PeLOyQAwq4aSkF8mBEGNQAAIABJREFUr8ru3Wi2oxvHaZwA+jv0LIDhNYZB7LouMmH8e3OJFe2Rku3CfN+RD+DJucDJOfOY35M7qiP3gWond431M63rWQbmY86Ky9eJP0zyQzDu669pHUe5ndvmShmdILZCHs7zfZD3BsfoNvSQ9TkfP/X5yd+HFHfeZ5KTg53T0O2GEzmbMxbmMYgTk7LbWVySWUCroBwdkBCC7XMgAehyyIEFhe1nJcgmGvYigB6UcfmUs1bjWR0A1ua2n78uay+b7GN9njPxrMDhetwTBIAY7CJIkQg4PzoIIMScPb3HUW+QaD0CAtTzU7BqvvfTs03z/TTWPAcZNJh0bbQ8/+i6cZ12rqvPfIOzI9kzQfyoJ/M73PcdgXGmt78iy8HO6X6u6aETW+PsfjOWloCYp89nu3o6viZD4Q7gr6rqDyKyAvjvReS/BfDvA/hPVPUPReRvAvj3APzn/u+fqupfFpG/DuA/BvDXPryDAmVXy05wwdAqIGs3DMh8bAQ/VJAAqyFUCr7/ZxZAgetvDSGsj2atqZaX6MbQ1jQZq0I82sGshrYK6ptHFsVJ/LaG8gDW7+3erXqqlcKyIqoAn5aIyFvJggRHweDcq6XM19ejtz1kZKB2bgRd7N7LW6r39GtUL6FoK1AeVoMPsTZcsmvnklBFVS8feRw4bgt0LdGK67gt3ZgJoxbQ5lkWLIkQeIpnN3wgYpGGUqJlTkQdlgocivrjHXpdU/osInLdXrwM4e3oKWVMx4koUleGM6M4U9D2z6u1frvvRkzp70UOaxN2+3/v+PP/8AXX326oPzpHwO3SCaGAJJC9fnLzz/x5JKXVK5pF1/k+2TLwdoXWOpI5smXR/QiCulYl0i7L/UDZW2q9hpjH41vLCJC9mR2AEuSZel2htUUpRBBmZiDH35GuS+eIAKAvRjSGxNdwfLoARVCYCeBRtrLvBsAxVU975gHqpRuqfu3y9hgQXyO1SlFj9fIPICIUymwBFYt0bHtkJsiXN9+nS1esPJIiUWYWMLJN8jyYvMC2mTFHR9mJuHTbktIw9Fe9VELW1VO7k4F2NFjo0M/JtaQyiVIpbog1y0SYI9yqUa/5VNpQvHwhSmCOUFDZ2BXs4/vm8WRgFIus5ahUQr2ZrWG187UrMD4vAFUzFAKJn51s1cSzULocQI8ixlg31tlzTjFEpiJimCOsgLWGpIE/RyGDzDQbHA3qbc+GFmnN+R24vgBns18sa4c8FzyfR4qMRnvQeBliayb2fn12lGq190BDKEdfmUWTQQU+XxHvPtOCXAtrzyyQo3Xi2BStlBkwyWOJuv60nrwulxwRJjvK87npmVnyUDa2grR1rlvpjjX11t0cZBIsi+vydluiDVn97uGtFs15bS+rdVbyEre6NbCNc/XOQ1q70097IQD6+wa2V0atwFq7jONxHdu2KhBZUW11We28Pe26QMX0fnT1ettszB7lPL69GZ+Bd52q98OyDB0o1SJWx80MkKZDB57ImqN9GN0g3KnneT5OrZ5t4HvXeH7cwaQOyO/QWd/lOEYOBa6VbOC3BuyAbMXfV9p77MxUirfZ9bZ0D+1G7X7492qUZkX9tlqgYv/FzfTgDw/IsQWHgRFnj5H3UzfIu6kE4Vx+VnZQSfvIbJ6TiPScGUXgJ+s0yqic6aJqlnQrg8MTmQmUJTNAGnq6AAez3CZZSbDh2I0nOIIDBbhex7I9IJXC8Xl3RHlDEaCk7KKQy8U5aDoPTowBGAGqIl127ehyPkdhOTcJnLBOMbauglza155S/j3JPvSAi0cAcxlF2IyUMW4fyWEBqLIp6tuOl98k29yf47hyfYnt05fFumItBXLf7J3zGaKc0+VzFTQGp1Qt29j3ZA6EKHWvuixisKyhl0CEzmPw0m2wY48sgbT4noCAcOBr7dk3SXbkcpJh76b328vq0CP7XDPT/otxMBqfuHh6iUWSJ5ENnvwG6q0MLFFeqLpNB/SUlDTWyFKd95KjTsycSroezr0iO56PeFb3geZAI+89lcEMY87zIm5rxL051wkUbMd0DlGobMudgBhNMZCu+jgk7ekAWPOR7b4MOs5HlvnvHaqjjJyOnwQU1KywH/zX1f9TAH8VwL/tn/8dAP8hDFD4N/xnAPj7AP5TERH9IE+CGQrqslkOoC3oHRP2RNQU6D5izq3rgoQzeVwF9QHoZo45vPXkUJp72CJrA2KNfh/Bs/byewqSwdJ0QEaN04Hj6sIk7qkI50iO3uZQa78+xA0gVeuGsHkK6eGgw6WgqQlT6ywBy9AQb2fo1wg2BC50zwSI+Ysxq7X3SXVMfD6i5b10BK7sDf0WkV5Pl6eqNUAlUNxAMUkqlb/uf1PPCuHG1jPjL11fG8LQUxckEWlRmFP82HH7kwPL697HoNqVkZNU9trXSZhwbfA5gAHRjNZbbshpGIn+/JF+RKOWcyEdoEndJWL8uxtH2u8fwxFAqhmKMs8NlYnXQnJeI9IniVTGn43OQCDrIibLkfeVAt5GVFGcqE3jHk/os6c1atWhznvI9JhRciLqPLLyo/PiY446e02ygdecFAANqiGDAH2O+hd/AsnlkZn/qXgrFcN0vTMBXrx+rVaw9EBVo21k1CefIMFPtXXT34aocM5MyDwCrSBg6bkOjwSD2jCAKfMxRR1PBhPvN3gSSGw2K+y43mQI0HBN4MgpOznQDZynzxOjtY7Pqvve/9ZKj+JkpVnSfil9Hceh09qb5+CjI2cIzCDQR+fkCMJJFKaDEjruidkAApB7l9OJCx6D2MvTGvFxkLgVThZrMs11AaN2yO/dshl4/dAxgAENtaBWATOjQvZk/fPOERkCjdEyd9LnLS2e4SCeISc9QNEncHr2PG/aOR/iIO4WTpsHBQp6hK/BUpkLAEhvcb37fLG9niqiTWTYrdkw1VHeIhvn3QGbn/l0b2TDn/9FZo7Ljjm7KBvffP+Szo9rpzVKZyOPxR0PcbtEhue360tLOjeVLQxHvmfeq/P3uI4yf0OZvhPOnc9pBiEBBE/K/Jzh/CdZgC6r++X776r6HHks0995rZyZ1ko478HpwKwDyu4Ym0ew0z2enolgNjAmL2TdkZ5p4M44O0JWpjVzRqB3ZmOlrjbmlJ3I9DPZqBqm8xBMcVurvh0dgBMBxAKYSj9LTEc1+PZU7e2yeQ76MgeJsr2VqyhGmTOP7eg/v/ssk4wJ+fikn9/Zxyd+/7tH3iOqvfRwPmaA5+zeyWad1//T3z86J99j2oexLmYdFvq8PI9ztjPnrMj3nme+BvAcsOHhYJHqMcqFp2c6sdHfsVU+zESY5RWPnEX5lFHp1zj8fJ3svrNxvZcd+lF2qx9fxaEgIhVW1vCXAfxnAP43AH+myt5q+DWAv+g//0UA/ycAqOouIr+FlUX85t3rN0V9KF7/oFj0/qE4xCLwL79pWF4tkqtiHSDyeXIoHt+uOK4SHRK2TwVaNcgQ2yrUu6hvvSShAThe7J7FCRUZ4QpSRxcSbTVeguX1QHm0QNcMtUfPoNg1DCHWjJaHZ0y8tQALZPcWNEAnMKRTCju3bPYM9Yc75MvdH6Di+OULcKmWxZCEXkS0mxMxrlbvVdDQWhk6N/SosxkhIiZ4YxwOdBxXRun75mxLsbp77zNcVHv/VKC38hEJYc160OPTCuMNOLqTbYslSBP1uliE55sL6pcd5YcUSeahloFQ3na0Txfs36xYvrujfDF+AvYFl9eG26+/92fVHsksQFsrpHgNKg21YnXJeq2RWaBU0r7RZD+gqxh6u9SOjahaHajfR+sLdC3A3R17N1yNX6GhtOLRuEc3unwOy3evdu2Lb9HWUETQSnWkWaHegSOY0ElMWbtjWb7cHchh9kg3zMSjEuXPfvSo8BIRL3hUMOo3FVBYt44izdpaqlod52HRU325Ogh0mOHx+gZZVyddtCikvG2DExSEkD7GaHmkGpkKQbzFOszWoF6zbxHI5HTWapkHjw24rGbE0TlcrKMAHUm5rJEtYMZe5haYHD0pvWb+egGOBv3yJUWRuoyxbIckkKV0ksgiAKpNaIBNVsfW6OACwLra/Sj4qSiq1eAJpNfdcwUW6Z8fh7c+KmN9rYiDWhlxd8OlpSg30HkClqUb69npAD5Eq/v9vB5ePEqwLFZrXSvkePNo197BFfJa8CjVxvFy8/GmKAjHz/XNtbUbOBMSg0oyAUu6752gkhG36IZh95frNY2jjFlA5IjwQ5nBweyEvI5m45qZNLl/uXqtJ7PoRLymO0UhMwM6YBEsnn8WXRGZ7nFmeElfF9eLRedYIy1i70JkAOCYmSD3DXg028eiqF+2SPNlL/Zwqq+2ReR+jMDuUkyvC2WycQ/kccqmQTpoHSIwltbBZEhkg/GenEqSuS0SWVfkVRjaF3JefO4s062FE1fulnVlXE7pHlXANpFPh6p9tzkfUhHs31aUXXH94zfT2WyfK2IoBEvjVM2uSGAhy/ZiTXJcDWBXngEA4Jhmx47zF/dpQ/tYiHjnHgcWnHwZ0LCP5FDgLXXnme/FvYgjuBNYMw01EHX5ra+T+2b7IoEPRnYpPfIo0zNI/5vktZ/rn/k9ILIZbIw6vi/fP5I5FIDulEvp3WQ4R7nbxGyE5+42QAeieQ9NJXU58wAYQQTtUUkROgwNyr1cauJ9SPsWsAAS9dd7QCUzMcmDw8inanDkDMBlrV33ZEc339ffw1xPb2UApet6BqMGYki3QaOTEXW79BLk3L62+P13MfyectBtp+WHh9vjBVgLWimob94FbbXvHi8Vshfo2iBu99TXbXyne0Mh0DLvLR4JGIug2gxyFZN7UaKV5c3e7BrbqFsCcAdOMt+4ZmiHTO/F558ZaMYz0LNGsQMq2t+VvwMDZQgcEvh03dDSc3NtPAFEx7M+OuN74O9uA0crzAv5mSTJkXR94HkdZl15BtZlHUzneT5yl4j5ueIddpkI+j9P7ysdqgC5t6S4YCFIONlQOYM0AFWXDUUAHH39q2crHEk2zKAi7w08B9XIHdYw8ijM8/JTwJIfXwUoqOoB4F8SkV8B+C8B/JWvOe+jQ0T+BoC/AQDX268gB7B80W6U5/sLOrIYrM3oKYeHQjdgudsHrSrKgZ6iJLBUcwClaEpZAupdA5gI+bw3oAHHNKnSNNo0WjkD0K7Vrq12v/2lgt0qet0jehom1/VacNR1JEUBUj05ILsG6EBnRGuNiF/ZWtRaMVKP4lkBERVUjyLAuwtoj/p4SYNWAyZkZz0swnGTo2CAXVMEyO6HrsDndCO18YfQFBubcAMcliZqvBZ2H+GYpaHcj+5MloInPgM3apoziIfh42UCBmhIONF6uEHr5RDF5zktSuhtjRZcOdojR3MSMXMWBZ5KSGHJn7lhF0tD3W8VshmJo6HZDZ3oR+O7Fk1IfeYp+CLd1bIfChApr1E7SEebNXySMgFiYU1GVNQKAvrJyjVifl1IFgcpoOrt4dBTc2kkuILVUrxtlDv6TcfSg6N1ohsnk9PFyi3KY4d8/xbvYBgz54EdKQSe8q6jsk+CUnSxaH8zgy2IqeaMgnw44d+Q8VHcmQ7jzu/Bd1RqN/6zUkPtSomoc4oCw4GcEPxFABVzbLOxKgVDgRtT3vgz3/esgEjkU0r6XjJYc+ZE0w500DjObSc94mqK6egKKNKeJ6N5dsrSu4zadLZ9mrOaaIROded2uqcpn6H0+bM5tZLG32GkT0itNOMsmd5f095uNANLw9qQ7kTkd0ZDSt35ycYeDxrXJ86/FumALAm1sgGUvx/jSvsE6NH8NN/D9/K7mfvN78lBysaTah9XLW5Qpvfp8tWu7U47AKAakM3OPeqgq0iUOQx8BAI3cLqR3cfqmWxq+tZIIn0aJK0DyrCmg/HN+mgcCoGTp7kBj9rLNYz80MfhwKkKeXk47+hzTf10WcJRMBlMXcU14zZJlchOwMwZlPSa7VENnSfhvKJzGO3NstU8WtYZ5JM88HcfpYk50246wil32R0ORVoznajN7+WA8snFRpuAa5nX4bUJYLVp7/q7l2Zkr7EHyygfLGtptDuiBWtN6zjv4SF7S0YZkuQwjsP1VtfzjPBr2kvRtpn3yfN7tm95fp6r9w4phkGPJ2MgV3yKbqZ7shSN2Qhz3fnZLfPnPDeDM3P0epJjwzycOSDD/vY1n51cwOevdMBOunMe7SPTGIIcMHekoX1axvXUT6XMRGQK8f4kpB5sxNbPiUyifBQ6ZghzgUfwJPhYB1s5vjTJPc4J9+DZmqHe4H6b30t+D2G3pfWSM4znd5iuowWQTYGZWW4eEwHsXBoZuuQd2TNnYLicjp/z+Gj/aZLvpcspmefVZegTb9OchUPbbH4ub/t5et34uTnwW/rvSL/HfY/Tue3fPcwunDNOmDHaytO5T0DhO5m2p4Di1Mb63SPLtw9k1e/U5UFV/0xE/gGAfw3Ar0Rk8SyFvwTgH/vX/jGAfxrAr0VkAfBLGDnjfK2/BeBvAcC3v/xLWjbF5XvFcREcN34pfd8XnPWwlmGzsmPC8qMZGM35EkjqSDRdC6B3u06rFnVfv7CNF6LOsURrwuLGjguc3QCFfS1YmwIq2D5bH2korBPEpRtD0gzsiI4HNC4UOK7mBLeLGS/Lq2UEMH27OPNzedgCNFTRywUc2ZSHKU1zkG2xM/oSSt8d0gBXFkR2Qn1r/pw1nGxj6pdwGsvm/Ay5NQ43FpFEpv5kNn6itPcN8tjNIa0CwKMJDiZg2w1J9lRXpaG4aaSfMYqlVay2NjmZBrA4WRe/sx3WztHnLFpM4rD6zma91DMfBFse6m0NMq14F69+DgWRG9dyf0T0Nq5DVuO1ol0r9s8VZbP3Xn+8d5BCeuohWcKDRC6lfuYaugJAD7E+8K1B3Clv18UWqHNhMAMmmNM5Xy58mDFghoVaB4fVlGDZDpTvNgAN8kCP6BzX3g2C1/SaWWYmlB/eEIz+QO8PTuOnNejV+CvaywKtBfunivV7oP7J3jk4ps4NGbVmKcaQAu1GUxzuECojyJebzcuX1wAHVA08iPrSHD3j8xUzxPTx8CisK1JG8WoBUKJ2F0A42poNvMhK4Pw1j/4DrHPGskS2gpU+nBufwfBMB0PTfXi+eioxjfnjAMrSlVvu7MDxLeldRep2jawMPTzrY13snjQyHQx7cnLPgCGu+3Ux7pGzLgZuGOSn183Y30HOi8v6fN58L2YTlNL5Bdh9gg5XNnxng3/m4SBIwMyCPMLJgDbeBjdUj+7QPmW/ZIeN12Gkdqk9YtBaB7Gul+cUVZYrsV56w7D25HJJcsAzctyg022z93y178i2d7b1eCd2/ehyU9aIvoUz3VqUdmFBtEDUKljdKWcNsXx5s3ssN3eeSzjaLFs0PU+n08ZhYK4bRk0tKh/vWqDFyhiE8tm5iYZ3e7jDoR4N3A8UPvOLZVMp0O/JrLnKmukJtOEcVeC4XUBySKA7KDaO2p9RAHZyimwKyn0gaq/J91S2ZhlhKQONxpGd7++ARnJ0WEjrt7XU1Sc5hwxQZJ1eq2erpf195sj4ugwdlec573Vm2fBzXovcDgQknG9hyLSh3CPnD48k79WJ7YRjyt8t6zimHGnPYBrvRaAQ8PF49J/yYPeslsiS4jtzoJV6fdqfQr2WHcn30szniH1Ncjtnv6nLolonp1c7kCQO/mYOnyxvcgkaI675e/zO7HhxPvmvyCDLhmh3PoffT45zOMOU625zhN6Hyxm2qFVF1CvwkiJp7ydgSsU6mPE+DSwEtunOQ9ytPXtMI7u3sEuZZ0lHKZIDGPGziNmpAuMACj+AOgkGKvjz5xLjgaBV2cYxvZtkF2b+j9x+sc9niTE97cmmEDm8UYyPj0BxAHWTbsvnh+23dyc+wI/S3ydPT7IjOizQHuU1ZxAkbB3/zgxCcoQnTu4pyeMMqLgciIzCk3tnwEMvq8lDH7fMGZIDaHOMvyOtRQaSmGmQgYQo80E38jgeZpACIIfCcJwFWc6CNbNNyuyFjzgT5oyFnyh7+JouD/8EgM3BhBcA/zqMaPEfAPg3YZ0e/l0A/5Wf8l/77/+D//2/+4g/Ie7TFHUzZ7Xsnc052r2sFFTpJJ/IeleoaJQ8BBi2q3duULDlUidNBKyjRPHPmvEVlL7RxQVzlD40YKGwUjufjNNWk2WtJdkOcn1VQIHjUhyQaMFWfVyKdbM4DDzoEQ8EiBEOu0eHrTbTN2xxIboTxfU0RO9rbSQxMGOoSOcLADpxINPrHxg2vVYraVD0DUzEUCITAl0gLiUJKN9odA7TBhUUB1ZgAI6TZHWnU0chOC+b5vdSGSId9X5A/kyjrOJ8gTnwQcHgwllva98kXnrSLhVtEZRNINmOyRG63VPKPQ39KepTCuqXHTcA5XW3eYvoFg0a7YYp/3VHrreFW+x77oBJ64aClV/A+q94xoet6xrG8sBJ0NzQXpxocV2gqwFKWiXIOqNsYikoh7eaRBp7QxiseukZHVYqg2eDIylFaQ3yUHuPTXH5rZFyxjPlHtQ3NzCo0F8f/VmYfusIfjhZrblReoXcxZ27EoaVogWPCMnE+N5k0+64tQaSh8nl4sCRK4LHFg4igDGNbF6zc/vDmbchn+Np48J39US/iw4WhFGvTwpFas6qQAcf8ncdDOlrKb2rQPIblKAUz10Wm0cCbFnBsMxCF0RqcgaIsrEx7/GawKRJWefWZ3afhk6q6QYG2x/m+7ljiSIdTAjFnmTA0SBLBbR24rSBwGpSuKoDaBpkcDRq0hoOwPGxjWRx/hy2/nQkrmJrNoJ52eBh6mreW0ezlqhpDKipVnoy/gTo0crb7Xm/tjSOJJf05RoyZABs0hTRuax16+Rrrm90rWbgv3gZyaHA0nVSOcx4j9bBIkNy3Mj7g9FwznPrZWmWMbV0Zwdwgz8ZwLU7VXL3aHSBlwv288JGeOwGDizmKBt/kRnhZWMgonamb+nlG7Kr1V17GeaBgsXlu2WtWBq4XmvoYahnTiZy3G4US0RgpTUEeV7aB5Y5kQ1eHY1ud9xC75Rpr8WEJ6dOx/PPnJ649uatvOeWjgAEj/EeM/ijneQusn9m5yC/97Ofc/01YOVqqh104HWyg5N/no1tOnUiXgoxObb+N9Nvfm5zEth7f17NzsVw/dnm0XjHQ+RR83iPJwBjcFb4HGfpzDkKDHRgO+RIfyfRnYMRbTpWGXzkesp/y+8Uble3Z6eYgRXxec4ZoAQT1Fuq9vH1dxvOfdyoA3i5IxqAkCshczkNeZyTbdbJ4LtMy7JHAOPQAvo78zkeMkbZcj7AKBladytBIJ/Lgah31psEgtI4Tw8CMf7gkksDWN4wk7fy+v57yA0646Hf6/P7BYJkftRfJ2NkOcec9ZIJVDPwxHHl/ZnXdNgUCRjk5ymQMHOJPc1XOiLTeSkTAFr7dTXJPtpLM4cW7boDPTNULTCkAKIkgtdKdtzTEfo6+Q6t26V8xgAT+B0/Z+SHST9Pa8xanH/d8TUZCn8BwN9xHoUC4O+p6n8jIv8LgD8Ukf8IwP8E4G/79/82gL8rIv8rgD8B8Ne/aiQKyzQ4gLoptk8F+yJ9o9dxITF6rGKObdG+kOVAT2Fq7hhBwVaCfiEYoCCo7uQqtKcSNgThooohmeVovf1i9QhCXpMFOFZAmoMK8JTyxSLvBQVtEbSL4FgNMLEMBgyGUxzFni9nHPTPXbCx3AI2zuYIaaVvnQSl8PkbhT7Aloy8LrxERIsjrSQA2tT5FsxB0yY9ouK1amy1SIWkpYxEU6IRLRHV3qe80WDrBspTCyA+jmcyZKUn24F6dwNh3nt5o3jETJbaI++TkmIUqTkwM2zaqIMv5jC5cBqijDkF+r5Zf+PW8BxBQEdg8z2iZs3Hdlk848LHwgwSIKU4u/JzB0VrGgcj4GpCW/ajI+kJUY69oRpggpXITO/B10wWmJr6gdsznLw4OnpU4F5bLfcxwmVZLvA9VsO5lb1BtoTu0JljFoRNZHqnBXIsaS2akjaOkjSmAbnthu/QTUDENnegtCkDZzKWshF5Wgt3dqSMALCjAzMNaFA3jAogKQ+ROqHPfp1jvkfraXnB3pyM2ln58T0zY0JK5wjYDysnWSYD//AWcyId/GjvOCkxttZ5B0qxMeX65pwK27pBk/vFK2Bzdb0kY8MNjlLHDBaOM75zQHeMSjMZ0dlAjfHyOgCiQ0h0uaCR0Z6jLzGE0cjMmUsdYE01qLzvGZnccZiBTrbnCSBQZg8QFMup5e+Mb3AW/bu6VsseI8CYwSdQLjTIcaA8CrSarBKXf4x+6VpdvzZos1zuyD6IlH1jnCdLk7hcGuqX6Uwc07ibjnWy/JyOCb/KwXM6CP61DiSEQ8tsA/arFweK9hbR6fLmOmWtvcyvACqlv1+K+kWsass5aXRHZOHljA05ABRBS3KK/EZA6xw0xzECK0U6MExHjfwz7BhyAgooO+q8V8Lgc8mWdZJ1YNwjGfo7+n4F4r3y5yHytUx7NN03SKrn+ma+m+kIsDcb+AD0aoz/qK1n6/D5w+E7xvufXFtK8cTUJAPYStedvOC3cvZ2bUcH/egwcDnOTOxnLR7juWcHZdILMW+lj5fyDhgAxUHOECTM8iA7Vvy7+rtnF7O5nCAcIR8XncH898FhlXFvarFACdd8AhXM2UY47Bb19neXiEwB9KzGyVHNvAUReGveaS11JIv5TY43s6ZMXo1rdAAYomwKow2MtCY94BMElNmHTesx2kNOcroTlnI/9eurMKNK47tDC8hBVnRei+4Q4/3D36/S/Zn3StYbac3YOWkc03M+lYlk4EqcTyUDFCKpxPFkv+bvAedgRroXgNFOmJ4tfJVa+9y6LFC0SQ+5PJAMGvYAjw25JUDS91G2x+I6H4w7X482YgJZOj+YH08AR0vz/84c/A7H13R5+J8B/Msnn/8jAP/qyedvAP6t32kUahFBvlPmAAAgAElEQVSKJiZIyFWgBThuxdD8q0W31x8MsWurR7sbInsh8wjAo/5s+/j4tKAtguuf2Fvff2mtSbQA648Nl9/uQWjY6CDvinIcEH/plgHQBaM0RXlYa6n7Lyr2m+B4EdRXRdmB7UVQLoLl1VrYlK0Z2KCCevfnfvQoh4o9r6WeG3ghh7eRqt3JLluLtK3984L99wqWLw3lkVK2nDBR4HvtUGuLKd42UmHGDtKmE4myC6tVF+DhQMJjBwln9GJIXVtNgbarGYgVAFZ0QkNGB2H3gmpv3ZiAoUgrpeHztkFqQVtXS1dbcx2uPXf79tYNvAIEdwIBD3ZUEHk2jkR6uqX/fnyzxjjZQaRshz/3EYi5HAfwsHPk081T+Jf+jFR+aRMXzxbQ22rGJeCKvD0pTDmOjqimqIKljh7dUAa6s8tUvBdrf8Y5gEgHTnyMWgt0XYLwBg24/PGXrkSKOUZoQHnztpH1xe6XQR9VAGa0sl2kMKsiGxhHGwmG3HkurmTk9d5fw+btM70daRBcioxkO/N7FIFE68yeLaLXFXDyP9b6qqpFZfkOaHQ0f8eMHPH6OcPgkcZD5zF9b2hRWH0hZf4CVWB7INoOHke/vvZ1wPTUgatkdcc2QK0KNCegY/0ej7vPKY04Hy94fsnPmJQXo0a8Z3Ujx4SBDZORCfsFmqJuGVXXggBkcvaIPI7+DGHwlSD3HNIoGRGj4bgfEVG27jLJmKec8chjvItl6fXU3E9KIqMTg32KNBggXIE/98tev5tTvekg8Zr5unmPp4NAhm6bkbNxLjivJF7Mcouklcw2CEcM/nuNa8/ZK5HhkY0NkeG/wXGesg+iPn87esTXs3ViThglzfLPQfU+Tt+XtUKK2jSvlhFWtualAbZWyWFD3WD3sPWHIDA2Q7k5oaMWAT5dIJcFcl2SE9+dF+uo5HqBrVDdYG3XS8+C8DU7OumAXha064L9mzWAWCNqPiJTIYzeZnNeVL2c0m0OQe9epYrmZHHBveC2ReNnCQwpdyfAXStUajhDcm+RuWPvTTowXGzPtJc1dZVovb0fYCU2yZmM++a2dSWtEf89Ms9zHbbP+WDcsh1vBsgyoVr+XHV0ZDNwQNCKtkV2KnisawISmoEa3powHBTPpgpnmnsiPefQBYb/Ue7Tfolz1mEuTfcm/REyJUci05gHYjYHWAkQUiYF9w7lc+06LeaOz+LALND3aQDHXUbllpICIHeRiPfvcliYlZnBqNaAhwFD8TgE/Vj+Ku2ZDC4BfQyGlB8wOv9uB0RnLEb/w1axdaIeEIwSz1KG8gMG32w/+dTdx85kwRlGgEzMVooMJmbWApGZp2ufYrYCbw5YlYeX9N6T/TM58sIocZT0uv1bFDjE1spZIIK2OoEGZmEGz5SAfFi5bC9KgyZbasiunTNd/Fx+T7iPHCyO8aR3+lRm5mtCq0CK6e14j6EzW9f3aX5mmy8yNvL641h5zwGswgiUwOcl86T4+AB0+ck1DEDuDysF1JvNbeZtqB1U4Dm5PbU91zinEaKote9toAd7SrIhGGwKriq1LyaAls86dPhKfzNLnan09o412yjzHPBzP/9dMteT43fiUPj/82Bv6eg60BxxKQAg1kby6KiflUP4yQQVq6dIZkHhqJgK0CpCOGgB2gK0KlhcGJjywBMaGPVRLpzGAl/baNtn60rRqjnWJGCM1lGaFDFJmRRR7sBsAIvwa0fxXBhqEeN9UFg0TWGLtwj2a0F5KGSX4FIIEqFgrdIwaPqDyfPP3HhkTuamntO2gFBUhhrrYIxIbVbLm4+GvkiZ5cBePEcLVt7uMPs9FgEek9ByBSj35tkUPZJomz4JtIwM5+d1I80yJegspO9wXOmzABXWtacslX7N6C3M8zMqTCU4CMMEFhWYck5CIloisp1afld0GLMAba2fAwSYovy+pvH6uQaaOBiAaimykYYrwNJriWflAcCcK6aQnq2p2QAppQMEOc1bCaD5WiOw8o7iOjvGTJ4p2gKMBu18HU3CPR98/4xc5RS/j8bEd0pjTt3pWvx3Vw4kxxzmN649Kcd4NndYTtpSDgbmkLkgprS4p0Wen/enMiqadoMTQHQAGMY8zsGTo7Ef3Sh/yoBp5+8t70saVOxl70Y0U/PMSD4QqTJ57WWFn/cNjZniUQPPImKab7ul6P92INrlAmHYD2sg3+MJz5QetYS/K9Yv0yCa5FA3/NP10xqMzhWDM5b2zyy7Z0cuZHef33wPds2hzonLUDeeGX/zPEcmjg8txoDh750VfXLo/f02ASJoAIB8BxwniliJQEVwFMQ4VRE3TO8mSCHzs7XpPQCma2rxUkpY4OM+yYKvMMCCL8n3kzp4N2TFcZgLgZ2uz5S2TE5ZP9FvGSyK0o75+7Pxn95/3neabIknAGB4uCwf3pfV74IJaVxP+pjXDH2K8Tn4nHnPtQbIZOpyP32gS+I44w+I8ZfxO/PzzEfcr53K7nxEi+CcBYFJvgOIDK/hPjkK6cCw33NweOK7dZyLWX75PIeeeu+7eVzzd35qTpwPJACZrD/z97ifQfsnXachgkmBrWjPSoyyBc80zntBgGixLRC3mdOaSnZVkEMz6lzM9juuxblRGmSj/EkgzDwXTzY1ziod+yETyMA1yPImXiP5DwaySAC+kWHh4465fg9MmJ1OSdfLx3t7Sb2MtsAUjChUE+EwM/mYKXFiQ+R5O21xOX//TCaFX9Hn4if3f2sG7jSzR5+AsXx9z0yUlnj+qEM4nx+14Aa6/TF/HnPy/hzHeOfPpWeLDqUOXyP7gNEe+4hvAT8XQEGAthbr1lAEx606cRFi/soOQBXHrSRDhYYmEUVTJMs97chmynt5axAt2D/Zy2J5hax2HWstWYbIwHGzlMN6b0GsSLLH42bfaYvg7fcK/vRfVKzfFXz6fxTLXbG8OSiiivp6WGnDroDz5xHkKBsC8RS1aIe1AmzQRbBfLjGe7Rsb+/q9tci0sVrpRFslMimkaZBaGeGiRrRFGVnyuWKaF42n8mBryQW69Lp61GYC3Os8sTvnBIDy8JZVzBZwh0tva6DGTBXV6v2/HxtIVMQ2hexowNr58rZDc3sU6elSMzEkSbkUdSQjBEGb6fuw97h/e4UWQfESEKiiCDk12rCBhMRG0S2gBfkX/Fna1VJhewtPb0tWiiHVbK9Fg2ZdoMvVHPLWxjaITBVjtJDrfiXBpa/vzC0wKy8AulS028X5C/ZOvhnn2D30ulq5x1pRjn38Dsd8Wa204rEZGLD4z4xUi0DKbeZM6odqzAEjZ/19mOASz0yI3/fDjPhPt8jg4BzKfXtWsPnnIvaOmnZUOqXKx5hSupeU0gmiUmTbmMb73J4ScMENvoUkPkSaj7g+76GAIdaMAmbWbkaiOA6O2VtQ6tvdshz4H8+Hr9MiGPgamAHg93xKlc33ZBkJHeWmpuii7aVfI9W2WN2wt6PiWuFe23ZbX6vxLwRBWSlBxCm5TIB7e28IND6nRHO+2c6yFMtMcIdcAGipBjhkUjlGWAF7nw70CPkVlup1sD2ipJ9v4UQCSCneqRRiNcI2yZlFOeuA0VAgslpkqZ3YrU+ivYa3e1+D/nehIRfdGDxTAcXkwcsVsu3OHeDke5eRkE73vUdSpjRge6elrw1yRADA7Tp8TZrVhNucqmWyuczSy4pI83Vel7j8BFRYV5uG5YetZwY0NUB9SyS4IqnN4+FlfiUc3vK2+VoqIbO1VtMJYDaEy3dvr6VpaxAEzvxAUdoFdONQxKMFrlMOoNx7m2bOs+wWbWuXYp6Hmu4XbaY/1QEFT7cOZ0fE7AsnY2wOcmNJgRKxuZW3ozt6cL0qYm2vnSMnnKdLARpQX40gWd6YwTRGpKQBCs/wu14sTZ6ycwYggGeiRF7TmLFN98HX+JkhTZl2lmJL2Z2JW0XG8ieu39nIb2mclCtTy7nOYZAcKpc/sVd5/poCHfM8LCdj577e9zHjjWML7oTW9+GSshH83wFIUA0AwroBNZMrbFuXHIbhGKLMtl/D2aSjM4MTA5jgsrel6+QsJ8p8/k6dN7cHDMd8ioImO6XrQSdTXY38liSl5hO0fm6TnlngndkA9MxUBZi9I3tD2Qr2TyvaCgTpqqKvJWXQjHt5arXZvKS0mW1i5dZuz68V7VKwf1NR7p55e3dbnk5zDpCk7EFr2agwXSfj+gr7NkX9GXmu3kns22u0oS+Po2fqzu8qvYMhmh3lsW6Pp/bc0RKc+vqydtuVtibvlYm/F983XqbHso4gIF9rD1rxet5KNMaeMym4VuZgQ15XDrYE4JCvzXU5R/HzdbJTnoIP4teXx9YBD46Hc5yBxQTaaqzXNmb+EGigbChyLiPLdI62Dgjk95dLGfnzCXCQ+eMi63qaw/H+ZZzjfN2T4+cDKCyCsve9bBkKVOjwzd4/M4GAaAfJ36PFJD9z1N+Q//43EgPWB9mWu/FgGQH+3WpOewE8hRIm7MVq1bWabSMHUB7A8mogQXAjHOn6Lqxkb50NFjaOSDtjJkAVtFoc6JDBQTMgw+4DtXsPdUmcM8l1aQltpaG09FrNQGtF7KI+VrLVR3eAFI2PrIUD4yLLKKvqmJLoaVeDQeDGmrji1FpTupxFx3MLx+EZUjunLjRbN7YyUuv/5tqyiOYHUQ7Sc6UIzYSSDj+7ggiwJn0WKeMVVj5CwRsCTgxcoQFPZ4bpUPmgwM9Kem6fmI1wRl3PUNU8l0sFGdlRipONnc939A/P3AVHC8FpnQWaObPuNIuy5OAE3ZxS3Izoanoe/n1WtEAvbziLqGsyngjMHJMQzeNgxJlHRMLcyCyCiF4DT5EjO2oHGvLBNZoVRFYmMebW783vyTvKJo9zPpLR8uExlz6cnZOV3ZyhwMvQGMuEh1NLSRJNDcbNvM7mZwCeI4RE/lWBqWRrePZZ9kzyr/d15jO6IZqVKJ8rR0XnZ/c62DAu8vO4MRxrN5V0yL6bw8WDYEMYNjr+rT1/96vesWcmBb8DAUrKiHgQn89CZfqB/InnSUavyGg08RzK2r2Nzjmjyyf7Mc9XsLvXZrXGIqHfpAHBzzPrIJeP2siyj+dnShFQlj4obGwKGd+3v3+2mWZpAls357FrtlXyEmxmQ7D0IGwAn/ueCYmng1mcAAZ7IjLyWDaF/h1FcwI5WCbatveylfkgqCB9zQ9p4Vkm5X9lvC/XfMxF4ccyZnedpd3mIxzf1nXiBGp89ZHv0SaZ93Rfl+8FXR/o+I673i/973nfZtDi7PkIKuSsI+B8PzObB9pl1kdR7HytnyJ9BMbvnEU4WzO9N8tqytn8LgZZ2UawaJI3s8062FZpTQ28R3nYmoBCIPYyAxWSglHsXlaONkTybctwbuXp+aJVdsh+J9IlES/tnkMgu1gpk+/NIUMr27xfI7PPjnluPLOpXYp3AFMAx6ivZjmc31XYIs86kPNy2k5SJORtEHHne2l6/yk71bpqyek8k9/M/kZEd9IlTe2+Wd88LaKTY9ibyfnPzzX/fLpntQcPdZrf986bMzkyN8oH2UlPRwIan46PQJLf5XhHhvcxfAwmAD8TQEGLYH8R1A2QHb1bgwLH2hegNKC+NSfNs04JAIJLgRkEzT83QkNjVKaiZjlFWwR1U8s+2NUETQYTiqDeG9oqeHxbsf7QUL/s1v2gCVqzVNv9JoACn39dcP1Txbe/fuC4mBFUH3bt+sXretcKeRwod+B4WdAuJXgSRAtweGbBIjiuFW21sTNTo95d0QWIYmDF+sU4GmTv9c3KLIuroY2l+DwUG68civ3zalkSToAm6vVJa0V9s44Gx81ZsjdD2NpaQ8uW+26cBlxk1Zxqq3/dzYDZR4RTZiGXFy0R6lI8mm5RR9l6ZJREfVQQQfC1N7TrAl0K6mYKwrggEhBSav/5biBF/fLoQtRLX+rb0SM5uYY0OwU8Fu9wwIhY6QK5o7WuGN+kk7ypWjvCbQN+RFeYNL79PnrrUUamjclm0Sn1d3vGEaFX775wtQi3vG597Fm5ieD4fEmkWq3X/+XaPD9PvrwB64Lj97+1OfpyNxDkfrfaZy2Q3SLR7Rtn1N5bB02G53QkW7WzsrcWKY8U3lEz99i6U8Nr5AgRIwFcV440R1R5XSBy9PaDS4o80dgloJM7OTgyLOtqQOD9/mxgzkZCToHntYlI77vV/1OheOaEMmsnX481rDkyDUDW1AYy19FG1oc7uRl4yUZoEY9wte5sDXV6HHsB1guMY0IBaSNXGBVmOyyyn5fhi3Fv8HPJ3QZokHF/sbtD4g3B9TK28hwACu0OiYitA5J+EgTad8ucWZYxWk/FyDkm78rqZRTJ4ZY3WyvD23UAjvfW2xUByG673ZfPfLvauEO2id9rgWx15BfJmQOqtk5ryrKYFX42un3/ROtIwCI9dODWBXq7dEAhr1/uPwDaGvTmbWAfe4p6wJxX7+hCPp2+Dkw2kZtFHrsbiSlj7P4weXi92Her8yDt/j5Ve1pxMX15vHRCz+JtiY0M2Y3eQ01XudNgXQ1MD6hYkMLAgdKvTxAhG7bq+mJhK2J7F+WR61WB8rD5LUuxjhQJ7I5ytwAaWqyx5gzhsjWUxrGmDhDNnCYtCLJn2jQBXmwtWthFFDy63BTLfmSW4mH7Qx6K8uVhUcIvb/1cZqrkg2vpaAC5bShPuU940GGpnmXEdeXAuNQO1sU6yZ1WAOCuzj2zd7AhH+GAFftOJinNjhnX8QyOZfByAi/YDneYg9lgbp7Vk//GcbKtJvVizjrcd3N0t4cDsCmzayDq5boisODzReCPcozPmKdHCjQYS13GZ2DuLOtjSGMnqLKk0jEdM+Ey+P14jNd2PTxw5PC7+z7sq25flYG7SufWkpreyUCQaPPwFARQB/N4/cXGY1migDzcLg5gDSh3AQ5F804q4pmxAnRgjq/f5Yzx/lj2rnEz9PJfs8VsH5SloGyXPscpEhy2Sc4odIcctFGfHDq4vCpPf1N/Xl0rjqvNU3Rv27rcDhsqlyvx+mxLmTt5uA0v7DzA8gjaXdKDcX2iJjCBAan0OTt2DISsPDcCWjWeWdzuC+A0X6v0fTv4E9oDw6dHAvPjmDMOgEHODWsu29kzmPATpQADmMP9xz1P34ZyMB9ZVvwUmJBBk/y3D8Y2ZCdwToWZt9PztpPsiOn4eQAKYg6+KKwbw+GKdAP2q7VXhAh0B5YvEqUG5FwgVwEZRNXrE4sCBxE0J8Yom7q3RkPMUfgG4wFo6JkIvudaBY6bYPt2NZCACHYV3H9lmQbrD4r11e5bHwZ6lEfrRkXTIG5S8RT7DV3BDan9lplgxJQOphw+VrX5YqSDc6cFkKWiufFRNo9+CLy+y+YwOgKoorhRYxPjBh4Z1n0s5b7HOeqdMTLaqaWEoqdAj4PGQEYa+bxtTDulcQLAWy6hO0QZ5VsxOMVsI6peMgL2OnfBKu5IhtBmtETVepC/oUfAduuaEQYwhS2dgZzal+u9fO3ogd5y1J9x4J5gitiw+M8cha5Acu9xsqVHNo1fqtfI9rnX69oVckspcECUmUSWhsKUwNaiLGK43tFsDhlRpENVEus/DUpJ92SHC7b9WRfk9l9CwMLfRTeUC0g29xRBlbQW6Jj6M0GcqChFSXP5hzgSH6Ur2ViOVoOWTZHTXof2YDmNLvZONxifFALfZ36Gd9Dmob1PZAy0eAdPB2tqqQAn4p7h6tnoTl0dRNJz5Ovm0gs+R3WSQ3+HNGCjRR6fj8e+D2v7qdVUVv45qsXr6BghHaICXoIyZK3MhxSrh32v7nH+emQO9WeWHVNUzZ97T9GpPC4khcznkq4D7D20npGUn3noZkGDqzlB16Tgcyp3LX3/YellBg5G6PUSskdxjKmftYClb7FfjiNFjGoY2VqneZ4NsQaTHdm5L+j8NjToyBWkQIDCvM70qkpkNfgYXP/k+ujoB1/6WmBKsh6I1OfoLAFbF/F8HhCDcMym59i+WfhsfF+qvW67Ia1JAEUxsKkf9p3SDHAojw40SpLlok7arGKlnzTcFZHNULYWYHLeL5YdI4i2kZE51eV96DICU/w9G6FJr8Pfl17WDspmMLpIz+prCs3cQHzXqmZhMrrNCONsjM/HHEUEOgFufqZ8qEbJ5LsHnWYg5Hes5veifBwPMGZX+F4ZsnXS+IyYl4Rakp6/dJmessJCRmVbaUjZfn42cfuLP8cxZ109TwQGwGC4aDm9V7pp/4/rbyBlkg5+5/EMztT0/k+AAts7mr7iROFZ1k52pXg6gSwlbHctDoKm+wd/iaD7EOqAcK6wYQYRHVm2rhSzxeTQXk65wUCFhgisBSliKR1YqmUI3oSdpzouI9pul05MOZTyJse4bHbica2QY0URsTLYSZfGXOdr0M5K7yCXegn/xnHmNcnr1Wlv5vcd56Xs0+zUJwAn7Ns0ViPGLL1shDbeaVs8Tt60vhIxZYzvo6OUETydAZ2sm/M9hyEkOUPwgASfzHQtz3aWJvkxHDOYMGcs5jGorbWwQ1xG6Lznzq4xf+93PH4WgIJxKJhhWgVGMHi481yA4yJoF6A8gMt3gC72mRzw9CIjMmyLAQplM2VcHs4jICWi/MU7GOBqvweTsyrQjFywbKYg27XzJGxFcFwE198C9dVeQqvAlz+vqG+Cb/7vhuWLAQjCoNvdjId2MUVUfrwbWdR1gWwNlTWbiuhQwXrM/daFdOy9u7dbZJaBp8sdV5eegJdXAOv3Ftk01NX9oebz5Y5ued2hSwm0Vi+Ccre/k5SmeHZFGJVFOs8jFXIzAdGui40rOz80kmemf5/zzgaOEGzG++DRazq/bQ+BolWifafszni9eqp+A0j+KPcHWButznodht9+ePaDR4Dp7PqEGxJdDVfymlP9dOvC0OtUgyfBARB5JAMNGAxRyXXJT3vAlUwYf+6kbjtkXazvObMGADNCOJ8e0Y/6NADHi/Eh1DfvXvLWOQ60Xuy7m2cEOEJfvv8CsmDrulhE6bFBjob2ixe0paA4iszeybouPaqbjRRGxFoDHhv0m0/QlwtwLJaJ8OMrCE7g8G4BdMpVAUgCbCbBnRWcgz26VABuhDHlcfPfZ2G82hh02zogkpXGDuBhkW1UqwUmmKJPyrR2J1tkjM7wPcKNvylxc4go0WnKcygSBs4pep3nxNfE8N2SQCRec45cDZGzMv6OZCiUamtzXQNkY+SRwF9uw4hmXQzsHjWuqT4GcaUXzzm9Y6Vzmw++S2YfbA9rO3i0YJ8eHIMiEFlGR4AHwaicEUDw6zhg4V77jgBDVD9kBkGlnHnj14677bvN61L7dxvG0pBZgc/1m8w6oHHC9p0EVW5X6KWMTjtgUdR1Qft0tY4p+x1ydzl6WXursCodOGWmkAj0skDXLJ/7+0GBlRLQsObnb72uXtbFSF4LYBpliciazU2LLj5o2nUbEPwCcjfOBGvZpZ1zQNg5RMOpJlAAIHiHgquAtdaHAivLGkonN2xqe62wDNBLLR7OSxJOTjO+H74PghHoBnFex+Kle3pboUeJ1pK6uk2QHCPZG3BH/G48R84ncRypZaWMa0ekA7W+fjKQqvViz1grghTYAfGIrM9ddESgtwp9uVg7aGYeZIcwnLSGqLHnowffSWr9xs4Ss2F7ZsDOICkBtOPoDqskWaWW4RWXJciW7jHsIVUY2pj0Nb+T9zZgQOi6hq4C0Msxs/xuOmSmsbtKl4snnBHUETlbjvINmMY7HSUxxkcpREqnlqWD50Cv5+btJcl3EKDAoAeCGJLvm9crMpbO0PkrdQi8DIB+UyiOvh5yUCaNA4DJ3QFM9qzF7NxzTAzauN6pgNu1i0XwK21Dz/TRFkGHIdqeHVrXzcL7FEBrWnckW3SZSZ0rb4/gtLFxmm00lLytS5RePst+gJ22dC1oL0tkTtfXHWU7IsuKwcbldcdxrdg/VegiKLcFa2sm692AiCBoQexh9Q90JkPf3d4p6B0SeHD/0lEtlqEkkvQgy+kS6Getbhu0tLDp5+dmyfMASvpa09JSFlAqTc1OdP4suhFJkiEYr38GTuXjDOgCRrAhfWfW0fYhn8le7Fg6nrNrn29POTSADKXzyCkBgTkT4UxW5KyF98on5+++Ny8fHD8LQKHsiutvDxwXT1EUhBKQZnYxHoA0YPtsD18finrXQOdULJtB3PBvi6Ct1ipSl47iMeq/3wSlAnLUSCvsA/IIiNp562uP9gO2KV//YMH+Atx+IzYOL9M4btX4E5oaYqiwlPfDuQHEwAAS9z0dweQPRNvLHQOxIrs9mKFUUXb7DAJrH7l76qYgohxEYrUIjs9rz8wAeoaGR0GwN+i1QqUYkRZgKZuwcQTpoAMbNina23Y2E9jqbapC4APdGffNMhA7uWNc7taiMqO3efPLoZaK7O9KNt+fM8Lp42KUT6TX8Op1gRzVjBAaVF6+ECBAdCDwNn7esiailFq7gC2XQWBFSUbekGGEii3YxUoDsCw9TXJdu5PD/w6PTDnpGlsShoFJw/ZQ6LWiXRcDiURQXz11fyKPEtUOdJwgrbKz+4D//rqhEk0+FMvbnhwwd3Lo1FGQx/OWeG+gwZajZbH2099oQKYxUMCdIqipNZNFYvfBAR0EL9PR8+/h0IuDUA4wnbUW5PdcUeljc+dVEgmP9msDI5SQjLVwnCMFrsEMXXn6bhw5hRboynXqd5zPH+YYwBCFojFKB22uuyWYQON/P7rxnsch4tlFJ/PGtmc5svieUssOUjZa2cYS5lDr4gbzCWAQ2U1pHUVJAY3+khwC3otj4nrwn4OMKivZMzkzP0vK8gmHiEdOf+V3eC1xoko+T3yHe97Ws1zKc7Q2HGTL4CjaS4piTNwnLCPifOdokxo4PciwWb4CidF6ms9tN4M7spd8LVMORHlD58lpt6VnJLjeUEXIhiY9OyEcZi8502uN8dS3fbiXLiYzdR8G9V0AACAASURBVMXgCAsAFvnLYTXZRdUM3yLRrrh9ukClQi7M0Onvt11TxNHnJ9rWtQbZ/e/ePjgAEBFYb3V7Bs5Bb0+KrouAcY1TTnFN5vcYL4YyiBmEqbwsXwfo8jiTvzGLaF7zlKt7f7eSW7MCQNGeCs+9xfvNYAhBXTovzGiI5+T7SuOYZQnQo/y5JW3alyZvJ2I8gg0z0J+zIoc5d0d6iGCmeaexnuZM4Ets3qdSulzNB5/9LMU5f57ldJbz4vqLAHBLcq2l54/bachL+3d83+EoSXq/DWkO1lGW8hloVyXZKy1dN/TttG7zu8jvP81NyKUKywhQWKYEx3hIZJBYFpOf2wAURXnYnEW2J9toq/bMz7U8rYPeWc72rSSuK6Ut1ZrZIwRrL6sFaLIdk9/B/P4bIP6epDa7xpLKhWuaN4XZ8lUhq48jzWsANjl7VVp/J6k7RGQf8P0CI4Awj1Vox7W+1/Lzpe8FuLDUKIuOPzfzEXKnNrtOG+xgTe/r3Xr+HOyZ11X2I+ZMmZx9DIxgZNIXOe0/OKGA0SbN+5Lkq1JSqVAdgcL39nlM37Q+zmTTeIKN86NyiLPjg4yLrz1+FoCCHIr1+wP4RZ0sb7izD1QCwy/FnfyGem+or4fxJHgNDk+3nrAS3RSMjdWEWFsFx2qf16sYoYqXENjJ/V85jGdBqwTrslbB/ZeC4wa8/FECNgTG37C7c13EfHkRFHhkAzaOJtJTs/msJhXDeoy+t029S4RPwprmxudHivuorwdka9h+uY5pk0kZH9cKXBTLFxqnnOcWDLFNrA61CQCxHr5kktViglIPywwZFqsbQLpW6xbQvPaRGy/aORbI2za0G9SFHSCOccPkxd3sf2NkGhCWj1CRi6QIkhqYoM4A3zwNrgKFBp6T9Vg2xDEa98nIjkiXLxOipkoi9CB0tPcv86ZWd9hqgejiIMbiCHvr/cDzQeOcY/X1PUdGpTW0uqJdq9X/cb4azlHILFh9PfFdQNW6LUTnBcv20OtiQBbrcbPTTfQzotxJEbfJaCslaec8Lg0FJHPkN4yJScHJGAmxqFgycDk+9t4+Wo9gBY/A3o3aWsxRdW4Cu00CMkRAjgI9mjPuy3mJQSZZJBAwK4jUE1zg67ZKV0azcC9iIBSVUqpLPVU0Z2msBG8IJpRqETSi67n0IgMt0eGk147G9ZfFDNl9t7k4AxWQmLOHfd36+smfASNgIOKZRtX3y9Ijh9OaCP4POgBLHeZ+qB88Q/dpJDGqNMuXbEDtbdhLAyAkYlwOmlifi5cwsSMHMHZW4Lh4/ZwSncELgnhnx2EgTkR2GN0l2KcaJSjkM+jGk5ozWdHri3lkQwwA02aB1p1cIKJ3uKxQrb2LBvXEcdi5G8KZlrUG50w+RIE2G4mcfkbzrhUk0pXHMZZdsN7bZUXuW69rX48STofram+p25Zbimqidy0SeEo1UO+wOThsTphpB/F05d3WoTS2TvWIcHV28wbTv8Xf81ASBC/r87kvbij4uresGePmGA4CRzlSJz2YwTJR7it2XaGBncHm0A9+z2ibKmIDFBnLheaWlnx/DeGoCuCZYB7pPBoGgs0B7PJ/s0OfdSX3fN7n3FN5v+bD+RmGEraYu0lmZifcdZP4NfK6z9cGEAASqC+yjD3LngLOwQzOZVxfzr8LeNag6zNS2+j2/JzzM5dJziQZHi2z/efoKlQrkLKD+MyM3KPpGGyYQYIAsEp3+vmsM0jGz1U9Hb+PN9ZjA0QacCQbg7Yb4NFg36d+/bYWs5MTmGPOOLrjrgplllQlGFggrXT7oHWZy70UGQBZ7vG587+cjiTfSxU0IdDW90Qu+TKZV/q8SZpTznkOKO0+FpZjRIko5Vta9znbKQMD74EhJ2BCfofG9VKik41lrThnQ8MzqMBrFAEzoUMGnIEcCch7WjtnYMJguyb5lO8bc4F+jjC48ZUHiZtdhmtBz0rwYNITmTf3at7ftLVK0g85kNHGd/d0nIIwSW/PcjLP51ccPwtAYT5UBO0KU0oNWO6ecVDhXAn2nf3FuyA0gJ0iAGD/VLujvStylJ7tFi8/2u8sTyAZIwCsP3i0ZBH0FJOu5MhsWjbg+p0DG28tDBzWbkXLy60Ntd1RkySI7AC+uHYxUOXy3YHjUtAu9j0zXEzoFed4IGJn97dr1R83I7PcFgBqZRduZLVL9YyN5CATSBGgLQV1b0ATq111IaxVABJheW0q59x6/hoQEDVeMIOrbp6mebRofycsOVlKNyIiHcuEm7XEaj0aL9LLBaiYI5qRN5BPOPt2OyFhKCCPEMlxGJFaQZCi0RAr9xR5dcNS16Wn6Yl0o41otKqVRdCB4eEtJYe0vowW5/TkWiBYO9GTf9cyKdQiUDy/Wa2tRk1y/355HEOqoLUkxZNwCUNwKZ1YKAloXSrwaelr3pWivHl7vkhHV3MiFyd947sCOlKejTtez+dQ9gNYvYY0RbPkeIxtxSjIWZ6QI2n5yBkJPJj1wWyLJQlMtlsLh6uOhsy+A1Kg0JHIi85hdGqovRUg4KSOrZMeZuOPSySnrAL2c05D1QlY47GlFpDZ4ffxPCHa7CaSjzWnbzZgu59HzIsCKkYiiQND+m08k5c4iAEzbIfIdNtwoiXNGyNa2VDOac7JGNfNySrLpY8rk6wR1DlTfpy/UrpzwfGzVMXJ5KJEAxijNYABApcV7eZj4DtsLjPyfYc0RE0ON4asA4tkbcMcBDHasgzcK1ZiVYFr6Q5kkoNh9Kn6e8QEkkg3IJPRoNEetZleSPtQvC+8rg4EwOTFsSzWgvC+9fmN6HBfv37XTqpKJ+zR59W4kg6P+JlsK1vStUsxvXWpvXRBYM7vpUBbAS7OG3Q/hg44JC0DAPFW0oVzlGUdI3nXJfSEHFa+qN7itbzt/T26EZ/XgRTpbY+dnHFs4eayeF2ckNVnp5SBHJhZFjn1OgMLYXAnwzjefetAu41jirql9WTO0JRBwGvV0oHUliLJGRgAvD3tKIuNcFMwAB3a10ikRy/VgglhoE+G/7RO45gymeLffL5nZJhsO3p71tTRJhzuWnob2SGToTuikY3hurfvq2ZlP4ATp9r3c3vhyEDkvi7igFMKNkyOO4BB1wTgAbizmIIBeS6YmZAdScq3IsDey0eyjtAM7kxRyqHtXTM9GPPIkjF+nRkp/rdMTqs7gOItLx3Mj/az2+QYugwLG8Flh5XJjYCzuMgmoaJK8WCRhA0exIS1rxN2gmiL2ZyReeql1gM44mM67Ta2Lm4r3WIuh3dyaHfQYx36HvLnG8kgsw1ksqO8+l5lNsVSBqdbS0FtGmVig108OcVWqtr3rPoYDXQVAA6AOPhRVKGSypTymvLzybMQ5SgE9Ly0QdeagBrbP+WByGwjiDtkYmU5vWOUcwEwYAKYqXEQe6d/nt5JlW6/Uh8PWUbooMLZoQqgQff02Vm2OT9vBgIQkAu7kWNIGS5RekXwoU3X8u9n0sTBpqi1c2p97TFzRJzJXel+3kdZDj8fQMEslviZDj5bJYn7kvk7bbGsgfpwB9v2Q5RO1LtHKygTBbYwm7V3EVfaQ5tJ+P3USF60maAlkctxLdBFvDxAUB7q19I4r3kPaIIZUbN0hvQQTOCti6doPbyMga2kCgxFbZ0QSktnGy9bsywGFygklhQHM+TwFMRSbWFrmluObTbwW/83s6laHatvAhHzgY50DieR1wG68GGEPQuoQF7QzwnDB0+1WMHyKkxrS4tf07hO59uNrsvamb+BbkjTGMlopfhazMjlZHAYweBYJS8tKcJUD8b3PAi/nA6VUq1RSkfe8zEZd6EcWoM8Wk/1Tallw5iP1lHrnKrKozjLMveO/yzel3j8rvQoTfFIAaOdjBg5mJAJTfM8mHPZBuM2DDzWi6unFGZD8mxO8rPm8cn4zrpySsjusC75e+uOvs/N83y5AgCe02ftIfrPZymr87WG5xqvp6rGf1ErokRCdfzeHL2aI1ODAd+gh1+Pa5sGOAky9ejgQ75+zLcrSU3rPLFZ23X0+Z19dGSjlzW1Kbpuz9Xf2ylQkY8p46Tv87y50a9LRev7O4hJ89hmMrqzI0f+ZZo3TOslv69kYMS5BLyyHGw+9+k6pkfSvejwZYAW6FFBtvNipgG5dvISbXCnOq2t/OwcD8datBuXPqeS9p2y/KQJcCn9HkkfmB3gev5wXTE4BbDSvK1B9t0z9ZJMdKdiABKo93PqsMBLE21OwjEqMP4HN7CjBSL1TBOIdN0PAK2UIIIcOCaALoeYYUeduB1myOd1NduFZ4ZuXndcL7Mun531ea3mufH/MieD5FZvZ+ucwFYp0JeLEVK/7WMGXR4TQZlJ7sbaSO9uILjM18mR0gTunc4LgKdU/2xEn8gK4+TgtZLumWU798hgnKLLUJLevmeD+/XmMr4MCgS3QZzjC2Fst2PnvZetxGeauv/EOIt0UMHfdQdV2vSvngLdTwS6LekRANlLpwOfiQmHzMwiKSMF49oeorb2mc2+eCax2yHiKp/TVMbrG1l5CX/DnsFs27PkyaFUi74qM6AIXEYXlnRiyJ1kf5CjhfPtcyB5jgHfQ8fwzp5Wa9X8T0yLfXiyHt7TwdLnRCyOAt0KpE72EsskeGnXIUp3MgOZ3t0m9O7D5ChaM24clt/lOTrL0J1lD/f9mSN89nxPoEIZ38l7c3KWuRTXy3q7vA8qAGCL2ADkJnvttIzXyxbe82OG44NspQ+PLAdnLoaPznnn+FkACjQALt+RXKR0zgK1/+q9WSnRm0CrgQb7TXBcgMv3ai0gH4q2Cl7/oGB5VXz6oyRw3YkmqeD6g3VcsLaMpszUAYr9cwVQzYk8urNe33b8+Bc+4e33C9Yf2M0B3payWPbDwyLwrQrWV0u7NKbqLjDJg9DWggIjErTSjHHhiMIzC2yjby/FsjOq2X80MKQB6xd7/v2TIeXLqzmyjOwUmGFTX3fUuwS4YsK0RApVWwoKluhGoatt0vrj9qykw1D0X8kbwAwIKsIGyGMbam/l0d9LCPPt6Ebzjm6oXNYeZZhQzCH6z9IFT62NSDlba1WxKHIaR/v8ApLglMduZIHFUtn0egEuAvnxzRQfhd9ji++MC1kH4phAoT3tXp3cEd9+9vnqkbn2zc06M1AJMj0uCdtTAysbgRR+pViLtqbQ5da/x7mlcmA0KwtsOh18n5zre2LUz8+Xo57HARzJsFAFiS/5niJqljMGmrpj4ddl20jO66VnbhCsiKgZ19NcHsFyBhrHec7mQ6STTfm7xYW1pzQYXehrX4NSCzQ3jKfDGqlqBfIU6UjghD+DLIud5603g8TQLuoGZI/ey+EdHFiysO3jc9aKyI44q68HIpsh3gHr3Gu1cTR2cVCgMJKfAIKzw41QRi4jY4VtrHIrTvT5FBHLIuG1aTR6WytJ18c+7f/9ADTJpuZO2kAeplHaEmzKUiDibSzZrWFde6SQpQHJoJD7Zt15slHbGuT13tdFrcDt2tcOjzOjgISdaU0FWVOkqqZMEgcSgMn45rokoSTrp0MuJqcn0qCP/k6yIbbp6IymsYsDWfW+WeTp2xvkbR9BPgdidK1AZAds0T44nqF4PTWBS95KDdxutyWMfhQYgXEB9FJwrGWMNgqsPfLnBcvrjvK6R+mZODDMsgS2QaM8Z+tJY2zn+CYj8x0jNSKLk7Er5BIavjw5FXQWB6CjWe0390XqNsRsCyPm1ch+izlIGUec5wF8B4YMoMgaIWDlP+tu2UzhWPJ7POYMMF877Vef8fi9K97+3IJWgW//jzvqlwfq3RV9AiBzWYUcreuh1FqV42ZqNP9mOq1H2lGkz0Vxx5gZhXle6dgyayq3uOXf5s4HUtAxfxn2o33s4N4QLCiQ6yV0H4Au9zIQfxwWrDphoA85PmducJzZWc/Abth00t+Pt96O+2tq+9uSzmTgpHo2Us5M4Fzk8j1tI1cFx8vg2e7lc/kcab1MItsInO6lX0+PhmhNm2wTu0/r9of2++vFWnlatzHEPtbqbaYFncgVAEuaUeBlUs1a5XI+XGY2l2PttnRQgaDBtXjLQ3MYC/Y+J7Th7r7+ltRtoiDWDUHFYa3OIGDebzvCdgBggctE6NqDNd3fCHAwZ/kGoGpjIRDT1gJxwKdghbbe+jd4u+KlCdrL2ueJ+6WlEm3KM8rZsCMlPmepyCBL07+xn8vUpjRdP+aH+2OW234ugUyzlyc7OpdS8PC9wevLuj4DABk8G/6WA3pp707BH4ulTdecADBeQ6f50ayz8nGmtxgoSWTh/evzM9EmSeDtT4ANPwtAwbo8FJRHHywdJ2YYRLoPg3Gm8dAWAxWYzaAFePwC5qD/CWLREom0Wm6EA01+gbIZr0FR9XSpcYhaBcfLguMqaCscaLDvNoHXQyoiuOKcBxRQQqed6943V5Ajij4hj9aarGJ7ERxXwfbJNr/svAjHD+w3QVtMeJZNIV9M4EnpaGs4hIdGKmqgtPnvqnZxymtF3yQtCShJIMiZkxHOAQVKS0hw/344h3NEzFF6rYy2ndzj7J5MxeP9ZwPZv0fhqk2eU9yAboRTAHuJSTggMUaMxifHMKTndUUWEf7ZkedcA32eqWgoKHke7815e3o2dYDlK+csX+/knQajf44i8Rze8xjHOYAfZwL4RHEAMIM3MyPnccm0N/O5qkPK9uCM8p7AOZLMz95Lkzs73ztA8Jtf3W6HxuvTen8f+R0AgzzOs+94Wq3Enjp5XgcThnOm4+nzjxzkaBeqYezFfue8UJHntXx2rfxZSfcNGTQp7ffm3R20J8U6z3OWE4yaUiaV8XqyOYjZ3HHLhuB8/NR6yPssR2vPao0pP3leyPLkqDOLh/KH2Qw0fsnHkZ432nnNez+/9zx/lCnFyRIZZfIxiToQneSibCUJg/TsBGXj+6U76ZLufaRzOLZZDsBV/cmcRe0tLxMy9p3e9j+xtr7279SNUaYggo6+SzJ+OR7T1/Pe0KX0ORbp16PeyBltQADPA+kd8JzxwGvMGWfDc53ol+Fh7b09fu+KH/+pFdtnm9+2FtQy6T/xwM3a10uQO2fZOuzVJJdVAWgHlPPcfc1xliUGdEN/FkMBKKYsm0mWDZ/naCeNb99vp7pBnddpWoP63vr6qJ1j/L0gy4aYZ9Xx/A/4IeLZgbHOm+MhEC3aATUAQwvV0/G991wnP2sCE2bnMf+c7Q1NGaKNtkraj76WRWFgDnWLj7vsLYJi9shmu+b9zrIAi6TDSpTJrZIwKsM5ks2ax81leOrwvW9fvSubp8yHKIfNR/5enRc679V9AqmWodMW75AHuH3ndqAqssfCEpKn5/f18FQqEmN6Zyx5WBkcpG+SrzF8ud8zst3mkuPBjvR3l8GMk2zdJxsmbn/yTMCz3eU2mX1nCjbMthftkK893nPyZzk6jfXdrmHzuTy+wr79WQAKWgXbN8XaPTZz1Olwl92EQtmMGHH/VFE2YP3uQFtXbN8IHr8wh3P9QbF9Fnz55x9Yf7Pi0x9Z1kDZgbdfVrQL8OmPDpRNcbw4z8JuHATlfqBs5rwe12wg2UZ6/HLB268KjqsJjvqw6x5X8WwDK6NY7gWX7w4sP+5Yfvtq0cOXC/QiPVvg7UBpXjLxunX2Z8Be2lK9Zv0CXQq+/JMF999XHFfjhfj8f9m9ygNoC9BWwfaNzePtN4r1i+LabJPIvUXE21phlWD+P765QteCxy8WlIdieTtQjgZ57NCyulOgY8o+GrC1QB8lIaL5kN0jD+vSW/xkwUKnX0huk5w2Ovre9kzXCrnvkMfWMxImZ9zG52n1j20UIES+G6I2TV1Kymbtftq3Lzb9l7XXh1VTFrJ0ss+4rqei4bJ2MqkQSOlfSZ+7gaI/fOkMzHDh9NjN/mZUKlj0S3+GVJs5PNe290wBdKNaGix6CvSIZiiV8Xfj+PBrBD9FVwJRC5vZ6llDS06FlI4dhiEdlxl99ijZEwt4KdCXK9plQXmrPRrBe06Ah7DLxLYB6wr99pNFrDh/ZwZO3DPXBjrPAjM4nETPMhWoJDwCc1kttdTnSkSA+wPqrSYtc6F5lCTddzLoOrfAZCjwPvk8Ahd8HzEHzWvb2hgBY7/zplAnbLPzLNLEzwI0cH6DoZZ3naPjyWK6LH0OjsOZoz0CRtInRiczsEZ+hJh3v38mJLystg894wiHc0aw9IVcB4mQa7ge0OdiPzoBZ2lAS/XT+RDpaZB8rskpiJp1Ui1wri4rgNrXsHNc6JnDGveq45g1lfhwnhiJTftOXv0d5DZzaU+ISG8b6uAa50scQDCZXBDs/ECQOxqPAQZjXvY2ZM+peFeGh6K9rKFX5DDSXsANTvEWjM7BEBwqXnest7Vf87pahIy3cTCsvu1OFsh+6ACzB4Mk0cv7CrtCiASfaXFugvaymm1x79kLjAbquhg3xMuKsrfO3QIkh7WNsodGJQl+lwI59jGSWMUIx0SdUBLWBlO9FE3VSB+5rkS81tzOb5cFqGzHTJBYnM3+Hcfbf9YqnbAz60kAuXVcbnkHkZ7ZEs+pT+eb7vEMkssKvV7wx//CBd/9lR3rn1as34tnbcJ0436YTEsgv6VVs4Wg60bfc7mkMQ7nOQnOoi0Z7Nmhask5IPAvAl0W5OwwIU8EdUBkA3TwwJaajAY+v5+ytcgVEHwJ0xHp3i4HVWWQs0Oryvfqn6V0eccUg1mGcSycC5ERRMmZcS1lXyTODI4n+G/4zLwugfCYC+cZSQBZXKuSLHdyeBgl/eB32dHLcIsgotmZn4nnwu2X3dLoy50dXtoAOElBtz89ZT+XKMjhRK5LCdsv7wNRc7D1UiKjeP9s5N6VJPE/tNj7Q7cw2r/h6CL2Ab8bz5NlOstlMqEzx5Q6W/F6kcmzLvE+nkpac7kF4LxmdJhNPhylQBa4H1aCV6bw/Rz+HBX2nGi9opR8D95SndHznCkR955L+jIAyvmgfXmYvR1/HezGE3nIZyY5Zu5gNMvPnBWS1vDQ6Wu+fikxfi3pGhlUEJM5LDd6FwEtzqclIzFjb0vLsbNFcpqfGXzI48xlDJRjw9/TOiBmeBZUS8dHgbOfBaCwvwC//WcrfvWPDgDOeSC2MPVQlEZCDrHFrfb3simWH/vDlU1RNkC+VMhuUfuywZhSL1Ymsb0UlIs54nIYMKBFsOD/Y+/deW1btvWgr1XvY8659t7nXGxsLCwsMMjJFRIICBwTmZ/AHyAhICBxSkiKhJAIECk5GbLIkECWeBkkwMG1jA3Xr/Paa605x+i9iqC1r9VX1fuYa+3rK846R6Okc9aeY/RRvZ7t8bVXECnDsOD1Yrj9wYLP/2zB538ulLQdeL0Zys2FhMy4unsyw3ILwerMfSaa3aq7ZL7eOpMMQt2WcBmNS18vQH0CygaUN8t5lpuPxUtWuocC16atfng80/QYn5jJV1YniuUqqL+6SAIuYA3oaFfcaVFqkayjrQilvXXCmBPuDGdAEANsGKxv8htmsUWxrvCeCemTC2Z3iRPBQp8TIKIVG937zTKjdtsxWB6auiQqE9Y8DxQMdM4IwaagM9/iigVdQIcxZMd8hwhzZ0lUpKXnhcYvz0Qkx8A1kTwQsk9UODILfIsDtjz1czLNc0ZcM09ClXPRem6TVOa4H0vcKwoqc9ImnbcFeEEXdbpWK4OoDUAbzwiTdcW+dETb1yNdf806s4i5DUpieBlkSM6+98zTANJVdK5NnFPoQvYgAOTiRb/KGA7Wh1lgu0/w+azNwqg2Ky4oDKEXdfQWGJ43DBYsuOKeLrVnYRc6ZAGT+utqB4tmGnrmyZH7g+GcdDAhSk1iuv9sCpap8KXCgQpEVZK4zeE2chcGwQToeR6E/hyaAjsqYKkQNP+rrpzsJ/IhnIIaVOzUO6zuMLUYCUClwmCjJ4ExUZgkA2Pfrbn7fvzdzMZqJJp8Nta8bMhQO6U9DgDswMVLjqF6HiT1UBhins3n3lbAbjLONrnh5rrJHLmmdVRGdO19LuP9OaPd6cpbAVvLYNHDVrsnifxOLX9ZMrM10D2bgnrfi5O9ZatxF/nfyq8CRLRtH5MD5gOTcDzNbR7z868aXv54xfojsH4Ko1CTddNzvteRFws/SjCBoD6BUPUGGOYHsaZP52++y0DS4QF8BcCEtKZjnV1+o8/Mp3DWTpSm/pWuZTnSbSr677V7XgoEZfQM32sJwAjAMikyOXc1jmR+Jzn7sfbMvzCE/AFB+3nBxvveQ0VOZDqV4Sq6fDwDWwGYNQtlfYt7q+ABREka1gFAcb4/e0Pm3cvnLCuzZXiyIe5lnHe5l6gSzjTzvymZ5UDXFWzn+udal+75VdGxV8rupJvVq1EMuT1k/RoB8wBM2uphIqwOVtcIra1dJxlKbwI9CabmUthcRjCCP9wrYm+QeVIGpEfIgcdbB/jZeLZOE1wcZfK+hrXrEvHs7NV1AGaEfx9yMokM0N/R+t3kHkF/Mo1LvbKmz0/DH76Ub+FL7SQ/AkMlDmEPXwhreM+z4ZsAFF5+9oa3f/Mj9r/7AUswzrr6hS2bAbuXYWwGlCe3TtRLweVTxfrKiwLsL466vvxDBxTe/gBY3oDlCmwfPFTh+nOLZw22ee6B9cnCrd77ybAEGG7fFfzmLy349BcrLv/ij/j8yxeUjwtuPw+w4s1QdmD5DKyvDeuniuXz5nGjLBHFA8l9aC0sPDe3IJO4ptv1M7bvL4ki1guwPzV8+OOC9TOwfnYQgYkly95w/aFgv1i6J9WLK8rbh5LPLm9eUrI+rYAB+8XBmcunDXXxihl1LbDLkkKvRchGe1ojb0MIiXvt9b8vHqNmNZBMiZltwDlzU+EzFf51jPkEXECmRTCsdkPMWQqdovi+hnU5BJO0rnOd9QKxEgSTMTLOLTKOO2EdwYbBEs8WiHCjK6TkJxhKb5lJdvnFLXMvTx4as+1ozxGjScbCeJI6KwAAIABJREFUsXJ+tCYrkVPklePieZqBnD3QOmNcsXnpzL26RTliKIfnWwO+/4D25GvbirlVNlBja9YtSFyL2DsVKNvF8l5k/9yPyOrcLqtbB4BkWLZN86ytAxCRhyJjwq637tVAwZRJHsNrwZYQKKvvOQGxPJO0yKwr8HzxLO3W0AaGUUTo8t+0bYNhRSYfTOYvwuNS3Gthj0RLQwws/5vv4TirWxyAjkxPoQhjrohZUJXEPhT20sJW5V+ue7fisblRrB4Y5SkjJ6jAO/AU4JNa39g38yssozXesAHXm5fXo6VVFRCZuwvnm+eMWCNxosX4WVaSigmrQbBiCPdJPR8gCoxaP0lDmlRjqGEVtFDQln4WB4Fhsf4bxD0u7jVBTw8K9Y337nr1vA7MjG6GZNml36vDXQpvDvecsp5lPqp9ZEbzgj5WDZ1gKILSaMC9prLKSl83d/XduwDL2OcKoFoqevUHr63bwxcthXmPzXXQYAztieffWIq4oOx+F9sMLJHXMg64Gtpt93HQWkZvHQVbC8tJtgQ/rMJzv1zWo+BcCvbnJQXs8rZlpQqltel5yKpC1s84KxykZ9gQHgdkbG+1nr09Sk/a9TbGEM/Cbt716msvioave0n+0J4vfmbpTcQ+Zl6ptErf2xqw7fj5H73h5ZcrLHLoLJ/jXod3n8m4Bu+xWM++331vmlmv2LTBk8ORDgwxyDzDIhMIqHCMDd5HpZd3l3zkDLQLS2n3KvP5zIAh79lsZVRF2y2M3N/4jIoxl+IsVO3Me2Eo8SfryLLD2odWxtH5nYwzgVfmQmAry5EHnDXOi7JOjpfhF6FwakWfpmuCEaidx2wlZIp1yD9gtwZDzz1Bzyqz8JgKMbyH/yKfc29bWY+oSGYWYEIkW2cpegCeDLYBy+fNjW8x1j4mpAKfXlFMRFtKP9+L+V1XujsBKD0czPL8HdeFBpAKNHNZrFgkQwx6tDifassSeeQWtKeC2w+rV4FbMBgt0QTIZELK8BrTvbN9A27ofIB3WDw96lMYz/YaXg93crOFLG1AT2DLM6PnAei8UD9Xo8UJ4H/wxJIKZNlIYzlP8n7qK9QDhr4JngE9+WLwID27ADyh9slvF3ieLKFdpqFnaqxVo94J0HAIp+I81ENKQVTgCJio7PWF9k0ACp+vT9j/3w+pcDNDfF1NsjyHQBgIW704MMCwBWsAXl3IeP4niLhQYP9guP3MvSDa2hxQANBKw/LmTPL2gydyZFteG8oOWAXq6qDEh39QcP38A7775EDC8gZHJndX6pc34OnHisIM+4C7dgKZyXT5eHO3oQg5SCZdkRab9nzB/v0Tbj+sHeAA3PvhhnAFQ8bbW/MDsV8M+wtw+UXz6habJ1RbFvTEktc6JFVZP4d76l6BZ2B/Xh2ppIuSWE/SC4OIYpRJMqtORGJv0JoraHVSuNewLtGKzM/V8lejHKIejmoY/MZvbbRuUFga3L1FAVWhwMJqT/deMpvWnGhZEHWLBabVmcJnMIgxmWFY7l/dtRbPl5zTIXEMhZWn7uqL3fNs0ILHMpsUujKcIpSuwW2LhPLeZd/ljClhIaHfarcgFoM9jYnx2hKKqChSQJyLCKXIVkpSk0zqyNdtu3uvQIhfoPRtAj3stqWrcI75QoUokP0huZH5my6rI+q3rSft4vtrCO+y7maROwNAuprGGNIFFQC2DekaSwFtWo/s8yyjspZ3BLoLKBHq2pDnW/MQxPt7iScHJcYQhQCZZubKRqFOmRF/y7Yso+IrfTWWNEwmWZDuttsWiSFPQgd0LAylSAW9Atfa7wLPLkMaOIY9PABYOUI8ArgXvjYhBC8LzEQxi+RjRoSVKbDXFbjdkBnNZ+aJYMK08JzNSz9b5vlaZ8D0ZlFmn+e9C/uN4VNTzKUtl/5eJuDTUqqzIllrP5f08AD6moSCeChlS1pFGineQvluWYO03hnDwtDXysyV4RscsLyUqDRU03Ko+RWwIEDDmoJrW2S9zQC0BBbKdR/KJ3uixXCvf3IXVIPzO7eYFcBaL1+sayWKN8MNBmCxmGcoX0t43fV5Zihg3queXJLJhdsCGDzZaXtZUZ8W//kOB0mT5wXNifU3go5mMKteGjN4j11vQ2nI5Hvq0qreQtxPIGmcgYqWrDFDcGblTumsnsUi56Q1rD9eU+5xQOHm63/b+tmS/obEavEu5QVzbiYjL9ZxlfGZgR7z3mWyX/LK6ZnZU0vpkIIqNZKhJc3l/rVxbU54cdPzxEZvhFbd4VO9BgAMoQX3qitoH3xOaTur9IyDmf6OJI1z+AgbQ0U2hlV2D70ESc7Ajy+1ADRtDmPkGFV2AQZa5XSi52lpKOO91fMTdCYTEE46oIMG1kHDGmMKUNRBlgWlNRdFm2WeGACegLXCE3rvbZyHgpCtBT+ycS78eik+tr0kyOrVlaRP0kxtNlnb9X4ECOLC+5Pf20sFnp/CIyFC3/jz6jnhrt8XrK8NS2me3D08S71ijYMhCbByjIdzFftUxDNL561yv/4NdAMj82GRLipgyzYDA/p+lQPpHaseytrUI/DsvmrjHWAIZsopzdeSsp3KSypHcVjbkVbke2fskGDwCWhwmI+eq7PnBRwZ39Flh7vtzNNH2jcBKNib4cMfF4/DRVxyCluGFBpY9aAZPGfBtaXLP+MLVwAvvzBsz4bte8Pte+D2s4b65C759cWtjaiG5WNBuXlehP0DiTdw+Y2XnSwbYBuwfmq4fAS+/3stlfzl5v/S7alsDevnCHWIDcmSfeHWX17dkmFvkQtAstoSba0vT9i/u+D2Q8Fy9fwO7oWAGFPrmhrPgyG8GDzkYnmtmXPCNs9DQTDBbt3K2IUROApH4WwtgwtnxuTvLa1NWUZwqxhckEr0tU+XMQhQW8P1uIWLfZNDTHdgXuoT9NVf3gXCVLjP3I5JVCm85Dq7ZwWF1LZVFArZdI8Hksi0yzOGeLuMJ5Q50urCuvBKIEXoRLGekXuPs3K9OZG/LLDXNxcYw2PCzNxz4XqFfXgJICcqHaSw1fqaBNEdmYyNxDX2KYXs1teGrTEcI/q3WRgPbwZalNLiKuvCuGpsbo3Xcm4JznCfIkdEWgWpeJgBF3PwY3NFMrPCC7NtFwe48rNYJ1972RvuBxnUvqOh1+Eeypm2iqZujMsY7nIg1rNFSAVOMpl9UhwBt6ybgTkP+hd1tHYzFEHf518m4DT025qDCcsC1G38jZ6PmUdojCy9GZQhMrSjNdiyj33OYAXHQeF929yTgwCbrhW9BiZ326yuQaa/V1+HsPimgrToGHcAUieeAoYZ2nUSzCWXxmBp1PNUDIdMyhrCwnJs9IqpZZxjKLqtLINQ7j+POPoI20mhc66qse9Z4z4tvm3p49MwDCCtUd21GJ2uTvcdGBU6f398T+sNAeHm/DMtVTzfsQ+F2dxXD7lbqIfxf1ouLd6r2dNtR8/u31ovAbzVEOwNmZy4IEP32gKUMLTbzWkrs9YfLFBMmmsM22gddKJAb5ZeEcunyNQfxgHbpQRm7XwTED5RSsYm16fFAYWb0FuOyyQExsz3UM6H3fp62W1zQDvzAgXN2Lbw4OPZnYRuoPO2pL+qWcW7ny89ZG8AISdFSGk3gPLpCntVoCOA8azcMPEWKnktPDmoLMxCvN5DlQnOSsuRbqSHW3HSr0nQVOm24hZ0CcPzdapJd4xro+tFWpSg7pHu3lOyR+8b84odtaF7pMTvLMYKCBCmRpMy/vcMKugZm0sRHhTaGgCW9BNzsnVx4L21TuOCdti+93DA2nBI9ldbWuAPLcCOhuaeJzGM/j33m7Qo/k1wM4BmM6C0gc4nYBlzZUJT904YzzGrpWVYZkF4a+0pU7JfK55AtIXRqRk8keMegCXlaE5Bx1HNw7a0lK/cI08ab2i36iBiXk0Z76w00xhpd54plrlaAHiYVkWGU7fLMgB7tiO8mgFr1pO519Zl/wC2LWhPB9ZkXKSfQNC/k3vAPhOUGgHenB/ntBQM7iM5R19getQNuX91LazTh6bAAoAMV6CRgp8pcACMMsK8F4dx2RGco3dSMwEcZBxzBTCRNw6JWr9W6T8LkWVT8ORrwISvaN8EoLC8Aj//o4rlzUsx2t6wtIpyA9bXHbZFScdi2CMhSiZurCQKlm7+66sLJdaA688M+0tD/X6Hvez483/uN/jZ8xv+4Okz/v6Pf4A//jt/FuWHG37+88/45T/4GZZfLVjeDOunhudfd8BieXO0jtYQE8W6W+/FhbGUFGrsdRtjUNfFkxldFpQgkvXnH1AvBfsHT2L49OuuIH//9xuef+FeFtt3hlYaSgAs+6VXnXj6dcPlx4rlle6rhrJYz15bDO3ZLZJDzOvqRGX9FO8sThCIWHrpmyCutVuSMiGOJPZqKIIKF+B66wIR4OELIZDBzK31avGvcGYxAQLarKITe1rvtcY8kwXSqv/DB+DtBvvNpwjX2GHPTxGrT+Ei3ICtRtKwAtsJDlRPRBluqj1koVt+mAzp4M4JhEIZSRUrej9MWnlZ3fKkiRi1nE3xUjUzETuUXhIgZqjuYHYkSPA1NIZ6KDExy/h1JlxLZfy2+RrSDZsCNj08AuSZzwWASM4VhItJg1SwDkJvez+HAzp/WbtlYBuZgr3Kutc6JubktD+9It1LtclnKfBNLmDdFbQzmsGVNfoZmtkYNw6AJR3z+SqhCmcxdbOb62yBmtsZkn3C2AbPibm8JoEBzoeKPmTcZQ1PodbHsSMV4/SsyLH25ICMVx7cCLctGHqAEGHhB5ZxrAMD7vOylxc/e69vowAd5dlQaq9UQgEV6OfRrOeVyHCqvSsWdwQ2fz6EGiZOFNdoPp2u0tWFyqZAUVmcBvOON7nXChJYWK9Rei4GIO6gydymedD7TfeDd/ItPKGWSQjhvzMICLr+LgmU280Vh2ZAIY97vgAtvPJkjWHmRpu1YPv+0gXPi/OltCQGDSuvDBEpCYiU6x48OITw124Foitt8pIn82G/XLqgS/Ba6E8zy+M9lDd+u2G5UuAPRW1vKLfdx7QYgJBF9q1XuCBvyefDxfe6jfkW1PuKnl1ZflkSBLIkKJMoqiWdZ4BnBhhpEdf95Um+7/cza53PgAvXaqaX8Zl7ni2dlnPtWuu85drDiAhMDiVN+S6gj0cUsSGJM0EtBReEB2beG10LlkFEhDpJ0kV/t7j+ziBLcXDHcylVpJeDGRSUQG1o+22kzcApPWdIg+m5K/LsvscYBSDWxIZKl81nNpS85NjU40DCmgZAcXrWeDcFgGmoCcAnuEx5i+FjMZahhLIahuLfezkk2vV25MtKd80ArB3MjDWxUoHNDWeD4qyhiKUl3bAKMCHrXKJ93DcM5wqbJ1ItAYJZKVndgV6OTnf72IGg/Tt6vhRde3BM1RNyBzA85HKYWtLGvXXeWyPJuHrHkd6bjbQQcNk+wiGyxGVrwNWNjw6yrFhuDeXaDZEZMqZrvFuGl/QEmpJLoraeAy3GXmIt7Lbn2qK1UZYlT+C/xb1Ccqx7G72PgQ5c6nnUsLZYp9wXfQflDGmae2kez8Frd77nZ2Ai5Ufe9SFUSX+/u8fSPdobc2NZ9MO4ztrXggTL0kuYzx4MX/BMYPsmAIVya3j+xYb6VOBlXgBsfmncXdJrDzcql6HQJ8oFJNIIuKJVdnj8KIC2NuCpYn3a8S/87Jf48y8/4l/+8I/wfz79BfyTX3+Hf+Znn/EXf/g1fvWr7wAsAWQAT7+hFQJYXivWT+5ZoKXQ2iXqZl/Eha94zFWpFYbS43bZluIC2KWg1cUzTL+sqE/F62lXYHmrGa/1/Osdl8+GH//igrrALTLN80zUJ2B/NqwfG9ZXJwBuBUF6dGBv4uaKAL/DeokgVA0uqBUXhpKRk0ho2RdaDNQyTiFQGQcV09ZGJZNEozA7uIFZfLPx+1kwUoImB3/IbsxMy7WhXYLZkKhvzLLte9PmBC8icDXzcdrblspuxu9z7Ns+EgS15JMJc+wcN61lFAovGLMXK2FQBsM1PlM8D+szMjDjWs5EZ1BeOPf+nQl6PiK+Mi/OSYTUYQ2EgXbh0UYlRudFi32z4V5nZmLOS8NcFAyhx8o83xpWhIuEnAAjCj1buUisa0Wr4VGDZVQy59rDZ+uUjAupgGboA3AOJmi751Yqvzt1bwtlOtvcB4G4GvlOSkm6kEJfDWKynMxrigUerWh97kMM8WSNTA8ETZio49UyudbBtmEPZiWlLwpogWOvB0Ap5p3Cw0m8ZGs7Mmnb4bc2KAS6Cylkv5c4k8L3qgrEdC+L0/yuLFU/R7S8iODTQTqpiW7T+dRzqb+JzzLHQihl+SzvyqTwNVq0Yv3qWtwNWOuWly5oV/P7nAkII6laDR5VNj93mWB2yoRuMXUHMYYFP/5rNngw2VXujArxc6NADvjvKcyHUGvmCRQTpIi58VnPdh7zrjUVmkHo1UobOmYqv/rZ9ebgEs9Y7fk3On9pne4NiqPsuQqYYdnrd1DGocDaGU+qTgsPYMJeE+jPZLWxNkN1E53rvAey1wMvG56Zxsw7QW+t2tc5y37k3gZ4ocL4HGKA7mHVk+NO95/g7F7Rc+e8b5UfwR6Oqx1pRIyrDc/mF8dxzGACP5/78Uk5kDl5Sx3CKCRk4jQ53Z01sem59121a4b4cG4J4BMMoFKs/VDuWMKjMZOZiiyq1nHmdiHfoCLM+TUczxjHGHfcwMS+S8+7YBhlr2FuGCrKHFrkuzKrPRk2cNxffhby+OASXyNUOEJSNJw36RLpaJTCRGu9zGVzz6sCYH011E/FPZvD88K4bsqXdlYbKE4COL5cK6EFQH9O5HA+a/P9puJP74N7oQdncmXyqOkZ/Vf4+4Gfz7Kb5ODy9RQ5KOmmAMRz2JHu6VkIkrTTpKjz37NX4b17Nc/lKxq9M9z5p6/RT2nfBKBg1UsWvn7vMYZ1tTjEcKV7b7BbxXKrKFdLN0u7uTdDJktZgbYCt+8KtmfPjQAD1o8FG1bcbgU/XN7wl15+gX/1w9/FX7j8Ch/+lRv+6OOfxd/55Z/B8vef8d3/Y/juH1asnysuP/qN258i438JCwgtcQDs8w3tsuD6B27xrs9LEK6G7WeehGr9eBsvTAAjbSledsvcuwINWD+5wmtb38inX9YAUz5gezFcf+b5Ja4/BHhya3j6seLyI0MuWkg2DeXNhYH6tCQ4QiGpXpZEC5NZ1NrjymghNkNDzFutK+EmllbY6w2wml4IaC1dyfIi0HKsYMHMqBgrTyGMQr4SEF5mWg5S0WfSsOKl59Ylx9y+e+l7sO0+VloXmfuAlyhL3lRYlBBsjME3n3N9WlHebm61F6bTCf8kyD1dOvFbCnB58e4k4aLNysRVkohVqX87EFlZx0FAqt0Sp0zHIhEhy2EqUWc/bC1CUxQB3na019dENLNd1riX2ziHg8DSfM128zXlO5TY31on+EWEJGWWEj/nCkOFvW2e3Z17vPWkP3a5oLXz0lppMbp54jl7fup7NZSXLB0ZjrPatl4uzp6e/N7Q8sX14Xs00SGBxlD6h8zj9ABSBrI3oG5uSddwgUnwt0sH1IZ/8/kQ1pq8Y/bQ4PruQGvhlWIFKp/5M3CtbtG+dwdf5vwRtARQUd1HhQPcm+gj+2MOCbZ1RVriOff07vF3pJfSUrx0L/sFIrzLxrjJfRdPDHT6ovGQ3LcUmGLP10jcN58rrieFedLldH3s++PxxHW0wknLfmbBVMGwGFta/Zvkm+HnTFD6/QenkepBEwKUvcZ9/+5lCJVSQI+xwxau8cwbUJ+81E+5hQIQZQ+1XLF7hjExpPOyAgAVGRLgJaM7+GzqWrsY0MJ6DHThsWL0oGsNeJMxPHm41PobdI8qoOf00WS7S3HLPe/1TZTq1sQ7Y8/Qsfa89r3YG8qrx1+odbItUWIy13z1PaVFnzQb6FY3M6e5AnYekt1pY2iD5v5hP0lrq+e5eL4Eb62dD/BZ0q4p30YmMGbfqvTTEhilUyEJS3UuvkZ7zsfP0NY94FQhIg0AOn+4drqe93FI7LoPikOCvprgjUlb1XMCQGsSdhStaVgClWDAFTtVNgJ4PCj3cmfvezu5p9KQXyVp0OyZACQYUZsPhCFxHJM+p2Cwer2Ft1SWDQWclrX5bMlZagG0MkHjPMd5nLFmw5oWAK2XqzQ9b0APR5TkyUMCR96Z5knNbVvT8JEW8t0TxtpWuzdR0BDLPg1OfFsCDmmJp9xhPWzC3+20ugChD0wKcZ4HLrGFp8w+gGNMWu5ypu9Br0bhNMbLx0fbKqzufX5TFYSs7mDtWHlIAM/+A5GjFk92v3za8BxGXNsb7POth3+0sd9M5pdAgOSVoedEhgA7v5i9kbC7x/XgKcs1TC+sk3xelBG4BjT4JaBQRjrCPlM2L+Oe6ZqwP/5meo7egb6upHty9hnaop8DceZFrklP3JAVKmmZyIH3gIU4n3erzfAZnRc/q54P5uCNK3Owip5QP8/zJI+etG8CUAAQlzwYRLERLVRFKWpOI0okDomRWsNwZQxh7XcPgn01/Pr6Ab96/oB/vP2AX+7f4fN+wS9eP+DXv/mA5x8Nlx8blmtUUIgYzXwn33+ysIdKJta9KTzjdMussSh0EcKhAsRAnGJ+Fsnz1s+edHJ5Rnedq4iwjBDGYt65hhRizQC0ozUmvTwiVnV3RBKRzOVgwYcISFTCzAahycfVnxmU39qgLmjt7HxScOR3mhSMZyGYX2NMaIETbWECKdQrupcCRhv7PkuoNxMTFTAmwAXrgqwuoAzlDCmdGa6e7XsEgutGd1O1TJexn2yqaFAxSIIa368IhebkbOg6iAdA/2waL++f5mXAyRqUeCYY8zxuC4E4PYGaM3sfe+sua1yT95BYCibNrbsGQD1oZiV/nIv+SRpTx+9bnZiPWy/OxyLnV+eg7c7+pwLaJLb3K9rBHe4sJEK/zx/q4f1C0zOh1vpkUDGn2i3bY56E6Wwd+ldAQt5JweAsB8IZoDe3M1fuM6apc1IwQWngGfOOz79qr1IwQb9vbfT2Os22zGdD4FUhKgV43XsVvu60VkK5KqMFb3wnRnoRSri11q1gX5ivxu5a/G0Bdh1okYAEWUoQOB8f1xBO+z1pW7LwnpOhCS3hv/K/HEN4+bn7dBkUq+F30bJEpVr2k8+M4zs9m3P/OkZ9RmnJnefuWve4/wScz+ZyBvhbCFXxbCoxXLM6ruGhqXA6f342Xyowyk9mr6wQzM3W8fd6h+LeNn3/rGyAU5wEbcBp2EHJxsm+6G/s+F05f+e77cyyfeYF0aYx5hk70vu5/3aCFQ+vU4AH6DSRHmetjZUrpnwKoxdEB3StP3C8CzMdrbUDnK2fBXf5JzB+cvZoTW9IJT+fsaWDCffOrZx9DVGxBHPkGZX9cr7xL/POxNgHD03mJpC+GmzYzkI5SEE26yGmslgnclkMs44lJvPz1oINV89NFyGlzIWSd3uYY+30Ht374/QeJ9+U9aK8MIXnJkgwAW/u8VW7/Kr3QjwKPZljReZxm+mbnXx+r9U+1+T7TJh6j7bqvOe+eG/ulX+d+3hPtgXOZYKvbAkqhPzQ//5KunTSvg1AwfywXH69Y38u2D8U4HPFonWF/cyibNUrPtSw8pfFFe7aYHtBsYbLxwrbvQ51uQH1o3mJKQP+1t/75/G3X/4c/rvv/jJ+9ekDPv7x91h/teDl14bv/17Dyy93T3zYkISg7D1fg1032HVD/f45MqV63Ovyto9EBKEYGdLLYtl3D5l4KkHAkAevriEE7gRTXBhydNXCwuP5JJYr0YRYHnOwwSqcwCyG/cPiVp43RaPRM9E2jwO1rcI+iyUl1tu2YH5VEke2YBRXt2C171/Q1uJVKzYpO6ZhDU8XH6gq2tuOtr25grdMii4FBMYFx9/trQKtepxxKWmNsIsIX5fVkzSK+3FaTEoQKv5t1pUCoMdbUXBfLN3K0opHoSmAA7v1sbfnJ//s9QrGGGYjA6Wlh26ft21EOvV3tEAxadSte3ak5Ylx1ERlVEm7rBlO0paC+sMHP0+sKFER1kR00OyzrCUZSHpsRKzcyxPMDNZe8n20mtr15gRpzkRf0eep+71X4LN7OqT3Bt8FAD98cCbLUpXL0r1XblvfRwB46+cnQx7WBbDV3zET+HUdrdhE4BkOcb31fcv7cwQ/YMW9EvYdjYm6Aqg4tBrluKgA36KChAIS2W/Qg0jUB4QwoOeKAvKUhKdJFvgcOpWwKSeDsba4jpfPsMwm78q2jaCIovJFcywgzyDH6dnMIwyFlqnaelmy52cMVnvA90gtIJyLCn4zM+UdAfysMPac4+QzZr3UK93Oaz14M9jSrWjYNl9/LTcJdM+EHENBek2xGsaiFj7rnwEYPKzMMvHiqHSGFdXMQditAS08Qcriic2Y12SJZFv7xN4pwNWSuRMyUSWFuJgfvbGs1kP1AsDPU1ssw4dYXhhbDcNpvzfuSVi7dxuNAVdPsrhU4YVmkYQ5rK1PXvnGWDFg24EPz70SRBHBfAHs2mBN6AIVkc+3yOu1+B0gAKxna6je00Crvc/Bs9zXDx46kXkQgMgnscRntfdL1/t1SRCVXgf8N73SNERLk86SHlLYuwPwtG0bv5fcQIczwH/DHXlIaKz8m/IXBeE5SWiFr9Ehz4vcs3XN+9+qhDtplZItvPDSy7D4XigoQF5HbyoCiUAHay59zxVEyHAFJkFmE97r+f3uCO/qaTUbR2hxpBfVmZKhnhhAB0GUhlJRWYLW7sdukq9QKanSb4YoCE3Oce6pxObaT/0dKjdoY7hV/oYeHHxXKDW6npQh7sWAq/cM150eQq352aKBqC79PTkH6TfW0zjvGCOTonevJRlDlfFtAQ7omQGQ5R0vFiGa/X65Fw7QnhcPb477Yrd9MLhpSb5Gcsxk7UA3Im3T2YSL93bpe2G3vdMlObgTAAAgAElEQVRAAA1O71lqHAi6JCFHAw8hnZ9DU/nbWsFqNhblnBmyfADZmWgbGHOWUP4COpipcqTK+aQ1+h3gsjSNTux3GChpHAZdg+EHWbWEIICE/Yy/F2PT/J3wQuf7VeTaGAfDFwrdgqY2eyEQiJjLymoVLrYzAOTuOpyACvPfeudj3gfgdN9HgH6WR9VD6E77NgCFaEwEyOoJAyBsBhiwPy8pSAAIphaPVARiaQ4CbOaGktZQroZyM9xeV3yuhk+/eUb7vOLpHy9YPxqefgPPQSChBlzcZoaMQLNIqGUBaGQ2asBKZ8KZuFHpniHih/phGeLao0/PFus/MBKBoN9WG5bXChR46Uz0z3sOB2SCyCzl1CRZlTZFFM06QebfwwZZt+6YOQHF1OdEwPKnJ5boA5qpv6fVjW5vTOBDN1cVSBSpDYH7kOSlcpOsV4YQhDITUCao0TrTSc8Z6Vf7lj6SAKg3BAVLNv1cGb2682k89SwE6LvnzPMTYUoGIs2TTKK7RlOAjXixZCJ8/2y55d4GMOKCxgkBFMvpoU3EKrP0KhOJuR8Q9dp/l12oF4sS43zUOtOR954KgPFcz6QfZ0Fd/tMVvnZgB5PAPSvqc6NrGc/KvE7qbQOM3hgpQPZ9YRjAPWvULDAPJSjVCn9mWeM76WUwhzOwnQmkmoQSJ0LrvTUKAGZg9jq3s7rswHhWT2rCDzQGGGK/h+z28ptGy9KQFFNo3b351nL+zN046zYqBxrukeNux73KO9dcsZ6tQQC6e2rtwhqHI39nMm3StUGxlP50TvrfFW4pZJdl/Nf21kPohnm3pCcJMEzuxAkeVIBhXB4G5d8162FhuaeIPa7OW/Ne63M6h3VJ2n/43gwYo9HHNWgtrW4Wnl+5dkHzE6g1A5jFXWua6786DrZ7NHVurbsSt4itTr4z8zH9b8og+l1tR68TBSUihLEFTXPAxpI3tDYl3aNSeKas6PzPaNnkkTOUUh7OYdylUA6GPBFmsrauwLcpQeEXvcXYD/A+nee4/iSWP6UHzRCa9jvP1/Ox3OEJABJQ4X+ffQ+gezHckw9/Sru3r2dj0PM+K0Eqv1kFJCk4ILSdz87KmfLds/umMgdlSBpgWnM5Svnz4p4Qtnf9oe8/ckxDBYh5DVR2Tvmd93ZUvhM4Sbom9FL5LNdE/8d2T2E9428zCMT3KEhwNqeQozMfF+C6GmVNnTdlHlZdO6PD+c4TvSL6dkNHH3uGlCbQUYezDXTxLgE01T+GewhgtiDzvfoObSdlvtUjoJeXPQEIOO9/2sb7cq+v9+jEV7RvBlBgOUbbPdwAgJdrutVMvtTWgu2DW6DLFl4DaL3ufW3ABtjFQYX1rUU+BmD9DACG288L2ucFH/7vBeurl4RcPzdcPnnehHJrnjOhNDAkoa2RzOQGz0Vw8RJQrXjVCZjHbZUNKLX2xIa3CmzIkpc+qYay791j67uLeycQvFjNeULzuNIKdIEAvj7r6479UrA/rxmawSzSdDVzj4nmibFY5QFC5MJaQ6GDmfzbU8SihRLOcIGMnzVP0mdtcRTzOl12NlFkEy3lJVekSN1CW79YWZaGyCAF69rQ6t5j92sF1gvah+dOQGvtDJJEijFdl9Wtb9ebEzNhTO46VzrCu+997ACsWld+ybBY4nFWVNfF9/56g60Twn69JZFNl/SXZ6/2cNuAWnpugf3aias2Wnd9c0ZizLVszS3/ZhHrHL/bN5RNLCQRK90uUWLt463P43Zz61esdwIqWWITPfaROQEuPvb2dnXLKQUCZTpkFLTgZciIENuIc27MhE6mE8wkq3S0Bvv81teG3igKYk3KqHFNk3HvfT9qA25Xvx/rmt9lFv7Jutb2N/9s4fp2T4Uel8uzKfOP39i+j+sZyn0XWjt6agJMDe676rWjCukdt7yhvFKCFm0USNPaU4C6R2xuCN+0tF5WV5q1w8wSLoKvla5AMK4aGM51Z9wUhPzMZqnF2McEhwjkzAIS14TPxFw0TwyAXnUCncHmGCZro9fTxiis7yyJh75OGgphZRQa6aWxLLBVvDRCuOxhNSMtNSbOo+eEensQ4FGLLfdNBahl8XtUqyfBnQU1DWmitVHPao7LesUFfsa7SKEWcNCc+RouS5TkDX6yhTddhZeWvBTnla318msl3NhPXHyBeM9ty8/a0+JjCEsiwXP1BMizw35CcU6L32UF1gWVXhGaCybCPxrPIUmk7BWrOyQAo8IyrX1DnyU8yToNSm8FPQPcGwWlucdzrDS938LbhntqZmNFCeUpM+8ChnjzpNk3nuv4judtA/D8BOYv8n0Ir589ZACg0+NcfwJcjCtWIK6eA4apnAmQOn+f/10TJGz7tKbNvb0sAbnSQTBmOp9AN20JMkZug6Hiz+zFwHHt4uF16JDgsYC3yjMAVxYLOg3Qd+3yrhLAL9dSxzLQd6DHdENolsm4OyDjnk+SyFGryWibLcKzgqT8X/dE83PxuVnJjO9TJmg9zMb2GjTUczukCz7viPKJNr1/3pMmhiSCZrdYs2rIfAtX52X1w6XLxgGY5rpmf1zLcMtvpb8/39e6N2ato8eDegHHmrS1OL2i7BTh0X5/ZM0Da9G1PIAas0xQw3svlW4DMCbctL32yluzvKWfccz0TKHnoORC6bJ6Czq+wMIDajDW8dmUJSX/1FT6dLiX9AQc5ijyrJVehQFA492I8z9UbrIC4M5dlzZ4P0xt8AoCkqaNuTTQv9Omd+pL3gmcw1n7mpCJ8AjzKjB3jDjRvg1AoQF2q2iXgrI34FodQFCBriEOVPxdexhCjVKSrtx7f+XWsBpQl5b9rJ8AayvQgO/+uHk1hzfGbiIVLgoJ9SJCvgF1jVjM1iIMYWQOFuWh6lpiDH6ZKpwI16fFf199Hlmxovl7m8HnABdU2s1QjFmkEQCKr1UxL53J0Iy6GApKeiYwtswFyza6Ly8FqNaFtUl4sQ0OKqzmQkTMLQn43i9AVo/wzsEM4Kl0t5ahGFlKq0iCFRVmuY68TKU4c0wl+QSNJGo7uW1m+U5gENQsiMNgwYvfUADl2BNMSOXRwQ/j8/xXlVUKOlHeyxPUSZ1xMsa4yHl6uF8AMjFbE4JF4WFSjO/GaCuDNevC/C5MaUhUVD3mTIl7IsXL0O8gEDA85YzQ63hndFjXI9a2j8tSwGkULrmnwRQ785pibOfyd1OGcisFiBKDCAaea6F3QUEDTj09EeSzM6uKWJRZDvG0TND8L9fHi2H7HaHFXJnf4Te8T+eC3eH9gDOGUgIH2EWBXsa+SXMpbHKKDGfgZ+lZMu3z3EzGlEqrKA+iwOk8ekUNMnsK1aW7K99jjmWyjrIf8bK45/KcgB8/qHKeDt4BknCpAIOEZgGI0rvtAJ5AxsP+ZQwD2FR6OIneITb11hHLNN1YB0F6FuZyniJwkwZSgas1pzZYnAqyjBoWyVNw2z10onhSREtX6Xh1AhfCZ+ghNuxnSaG4mXkpSPQ+MomjzWXkok/11lKggIDvUno+oIJR4RYB2fY2AgkBCHjcMXJPU34hQD0rMKRtXFsLAV7HN/Mo3R/0/myqXOPPyNrN9E0VNBXU5zVTpe6eMkbDBIV2fUbPoo69oI9Hxxm8Kv+7SSb1uOvKa+c7q4lOhzbPfxiL3GNN0HvPE0Xfo3/HO8fEtuHb2ioOFulZoRu+K0hlP19SMYC092isfk/+Szqb/WDsyyfRCZ0CFWwEebFEEtl93KNhajac69PGvRdvsvhxjEHv6tSHnJlM/K3fVQhgpfOLe8cyu3s9JgenJx3HERXmhupX0/m2WxnvB8HV1uC5yOQdSlcGBXw6b3znjnyuzYalKK1LDwYjcKb39d45IcDQF6jPsfbfa56zM7k55VaVVcx6Il1NYqh3lx6BOZ6S37n3poMinT/UcV56vqqMQWiAAgS5Fl/jKaS5ss7u9UkVlMPn71V2Eq/lBD0YGiPrewgD1d8nLZd1i9/f9UB4p71bfjL4911gIto3Aii4Ir4HGrZsO+pTSZf+ofGjhlSc62KoTwXbB1/Yy8eepZTg//rqAMDlo7/j5Z/sERbRsD8X1GeLJI/eN8yVdCs9GzUuxe8qAQWzCGOIoVXPsVCwOvhwixj+4jkc6vPqz4QnAfsA4AkgV8P+YjnRpfh7lrc9qjmEYrV5n0waWdcQMkvDcnMrVhG015rHt+dyX9aRWIvg4DWwaVUyYOsJFxnHSqKbWamJeCrCTnftbQ9XudKR19aAdenW/VkRENd6o/DIgzwjZEGw0ppdTBTzEKS33d9zuwHbJnGYXdhOwrFXWAuLGi1FrO6wX/t7qaxeLt3yKmPMOElWBCgLzLZRUZ2FnDPhMccXlgXrF2BMLiiKBYXNdMtvvWSmWL/auvQxbFRgRSEMq/dwC6sQ2tayTvfAmJgka4rtx7733BDTXtsc91+sex6JhSFBBUH7D0pRMvu9J+nhd8vSLXVEyVvL+DC/20AKW4PSHxZzKUvaBehYl0V+V5sLhYfa4ej72SoGBgIReCot7CE4l3mP0cEE7vW9cAUFFQQM8rsVSl6JvUlBliEcnJsKeBrC0ytnDGEU95okwkyhXRWBE+AMZgneHBgeFRT9DStA5JhGpgugn/UFXVmZ+wXGNdd3nY1DvTM0MVkKVOxrn55HPxNZGSQ+UyGprJ7XQfo9WALpAbIs3gkFLo1LpyCWQvbJfpHuM/RoLmtZK1Cej0pRQYQF1ogrdk+29rMXeHjCLJBipIGk55NC64olaTe8QgH50t5gbe9ApHjU+TvCzXgNIHcTmqUJa9HHktUYKGi15lZUEW4z+7uZW6AVgFb+oxbDWnOPE5CXfeDqDOF1g5cIRgHazD0EdG+ADnbG80PokMm5GPod+Zjz6olmx/yTtso7hoS85IFcCx13k7XmeFsbwxlLEa+cBtDdn3TXei6SuWpKgnUq1J+ACp7sD0CpgK1H+nnSDgL+AMBWAGWw3nseFjv3uCgTjVXvqNo/97WRsSngoF4M2a/Qpzqtg3o88Fl+nuzCz2T2msAx+Z2lh+tMJw9gwszvT84SgJ6LhvxBwQY+y+Hw3sx9ocsLbbmj/Ey/8UpxSyr79MBKYElzmnAZqexSngq+15ZlTO4Y/Mz4XpVRJg+YkQ7Iuumz03ravnfPBwKw7GMGH0546gFIBGKPWvfyHEd5XEPeaeoYeX+t04Nm3QuToGDIj96d9f3mfBMMU+C9ddmUc2yeP28w7hzCE07m/6XGdyqPntucI2H6fJSHeolu777lM2fAwVx6dfrS/53uiJZbveshxHbyOwApt+T4+I4w3r6X4PXbABTMyybWp6iGsLlCbFEuMhlrNawfY6NCqXfLv4MPHgYBlJt7OGB1IbGuoew24OUXXsVg/byj3LzM4vK5dHfJwrhmuEBXG8q1b0bGnZu5rEb3mAA18P0TWJ3Bk8Is2H54QltNAJLFM1tvNQGM9dMtS2gRLPGYRGQOh/3FmU+5VrTFHGAoNvSVlS9EQGtLCBwTomXXm8edfvdyKKvj1vPSY8K2qAKxLqGc7ym00lULiHXLpIOji5ZVeJxbCiy1u+3LWRjapNA2da+nm/dSOnMx60ms3q6Dst0TNdXRC4ItXFABDDHF6Toa4QOHNgtOJIBR3osXMJXvUHZarR5KIO57mVFX3VJnwEETCOozOmauR6DrxhAPAkIW5R1L6cx0AEWCiFIxmYmIggYHYXFiOkOZqr4Hp8+yH+6RCMFDnoUk9iHcbntmph8smwSxOI59H627MTcKrraUmFMI5JlQ68gs+px8rRwZLvGsMqIdGX/PbgYF3wl2CucMmbiEIBIKu1VgSMDF37Lm+uSRMIARyzK+UxRu34awMKoMkky0dQFnLh0ZgMqhUsYuzLMUT6a9PuW7erygORhK5fmeUi/M12lOPdoP9SwxxlrAogzJYctkfksXHguAWg6hKu0s+dp8DpYCdLeCYTzZP/eKtednpbHUDlLxs9m7hPvAdSaNlHwR/Hu4J/QmWpbRGsgh8/wQbKWFaW7FImyhAW9X4FbQXkgbQ0Dc90wQlrTibQeWrnCnN4CsV6NrpSh+vRqE9+e/K0C9gXGBhXRgcSCnPl2cR4YcASahJC1m2EZFD+vjeG6y3qQ1ATq0AB2zlvu+dysuPd90LeO/DUHLNlnfGE+CpAQfaOnTJL7M1cJ9JU1bBOTh/OL8m9yzFC7Fc3C4Lyfuyge6n4pnPEZAOjPv61k+EWCBUbhto2V7AP7mNnlk5Pu43jp33o0ad3+lR5vQjAFstE4bFVicvQMP48HhbqIFCNy6lTC9kWYvPTMcch60BhAYE0XdIPNSz6YzjzDNuZLggfy26FngWgkwXkt32VfPM3pZibx3AI6rVHsotYemct+F7mQy55MEgQcra4K//dkEOlX55rzRZehBaZ6U8ywFrt7QtQa/dmCS3k5267pHgg/abwWsSlgLacz8Xh3nBD4O863N6ZwayPR9t+2YK0yMcboWw9/kP218plfogYeNoQx0IXO/sD+l3TqOOak6FdIAirU8+lB2fAY46MUwh3XtMieu29OlnwcTHqpje8/Ls8WazB4HZ037+4LxZAAs2UQ5B9BzaGkrkgx6eHcdz8oE0GUo1vSbU++DCdjQMWt/8sW7YALwrQAKQFjr4cIXmrvytNaVbgCwhnJFJyKhbDMZ0HL1RE+eDNEVyGZlYO7rJwcSbPe8AvZ2w3J1S0P9sAKX2Cy6RDWE1V6sHhyzoed3KA6KZKjD7op8K4b92QGLtvZ5Lm8NC2OxgliZGZa36n3sFfvzkiEQ6Ylg1gWsYDpMGJlAgriQZov4WX+wCxRWG+ol3HAt3Iyk3rKXnwxBsaCvi4Q6DKWiIsYOm2Sa5TsxKepkvkS2Z2FCLSqqIADIjM20ntxDfxevtZ4JwIIJ9yM1EqfM+K4Xh+DFeun9F0NK4mrV4VipEDOreMy1IRjlQOhKFyJJgFMwFFdWRXdr7QCHCog2n1EbmZpaJ1VYVpc0nfuEiOc42E4Y2MFNXPuZhMnOnEUoZeZdZVgEQRRMAPpatYrWrJ/FKRmfdyNrD3QrECDWuJ7JNgVyFVJVMNT4f67tvZbK4lEA62vUgQBTV/IlFBGOOc9yZwinVvuwXrZSegbslOfsnJHJOHK+Poj+vQqvjQqphErwNxQeawWrDwwWQgrqKbiHhqdzICijtFfv2BnAl3Nth/M7JuV0xe406SOVsn3vVRV4Dgo9p2Sd2F8f/Chwaf+6h3MjAKWAwSAMxHdqNQMOlgNNKnUA77S1BsAGHpkWoHdiyPlbT/pX0V4uAXz71I00WJRsv2MlQwU7v+q8q60FbYrTzYRZmU8hlMHWfB0jxMxuG/DiVkLntyUcFhqWG/l6jIXnaQEOiW1V8Uv6EvexwIXuJTwEJZRhAM959oDRpVoBYq7/IJjXw7onINEaDiXWtB9tZ/diPud7Pbpfp4JjwFn2cTal+7NyAbxPC+O5pvOclcLh2So0BXkHe6iQvqv5nuqdy/wI7ok1JD97p911N74zn2G8Ckyot4SWnON6i7cagCOIeK96xJwrR+nP7PWU3ooFAzignlNt7/8qvb9X4o5K2CExr+zVuk4/mfaMfPve3s8K1PBu/9dQDrL53Tb3owDb1G8mX4+8CMA+Gut4n1X+BZyFLT1HgW3TnZjnqkBdk750XPosEzVqHiw+t2K8mzpWXYMa7ysy5kl+THqOSW5nm0GLof965PexBlZxPq4A9wiw5vzmZzlnkq6lhymhLYx6H+8dMMpe/EzBx8KFOJnTML07IQU0jgAh6+m8Ow/P8IY55OtEfvff1uO/s9wNjGCtjPWr2j06f6ffe+2bABS8csGWyjngwoPt7kGAFtb+paBdPE/A8vmWHgpU+PUQeGm7CGOoodQXeNLDZv6iy4J9KR4eUMPiskVSSPOSi5m8nvsWl6HACWEFgDVKXb5V2GZeiYIE2eDCzYIOdrgMh+1DwfJaUW5Iorl87gnLSnFPi/2lYCsL2gL3wtg68bBbRdlqekyUWwW2ivLq1vkmJWra4slquFb2ForTldb+6TDHBW8A2oeLu4ZtFaVWT1BDYWKLxCrXm8eSxbtPmaASVbMRnVZXKWAQ1gZFGHBG1ZqHMbS1u6bqxdg2oC3Ady9OHNVVN0sajiCLvV4PAl+jxZy/u6zoSfhcAMyELc8lx5C/I5iiyaiATpSYmIZzHEIFYv50Y+YaqBsqCdRTXHyGeARA1OB9thWwl+fjHsdap2uuEixF2zlWAHh57kKpMEGtC86s2QRWhr3d9r6enIOU8DGz9Axp15v3E8keE0ii4lOlnCj37nKBbVvuAYCOht943kO4yiSK6Os7MzGNnaeS23z89vLi+0Nvm70eSwkCHanm+aCiqB4URe6EWndpMef6yx4NljD/cmQAtWZZudnNDnMuBM7rbk6F6jqtAHm55zy2BC24R9FXrom6JLvGF942Tl/yPMg72+570IC4C6XfJ8RdY7lFoHuStdYtHElXOEC/q6325HVjyFbx0Ky9et4bnmWec5a8zLUSISUFvQB9VKnWsZTIp1Al4eaQs8QFyENFDu5Fbb00pY4fEIUmfm/WPXHWJb27EuwNC1R9eUZ7Wd3qf60ZKmHq1aCgEAD7+Jrv6ANo3UqYz0ZlBrbbNoQ7JaisHl8WRoPV+Wp6KqyUCYSW7+4Ftv44JYqU+5wuzW+7e1LQe2Gh112/Cxqu0JbiSZeXBe1lBYrnwLHXa/dii3l7fwTcZb4aEsBna4CnxcHvoYQu15veLGcg1fx3ehPZOHfZA6UtB++rZXHDQGvA7AdEoDI3TBRj3Xt6NzAkg+tq1j3sAOEXy8jfhU41VX4TFCk4eDNlAkGhfeGllcDljgRT03NrANP3FPbSm6hyfAJipGwjd3VO/Kh5Yeb7rx5rum4zwHwGtLC/g8Ii+zJ4V9RzALPuHb9NgJ7naAI0Tj0hOj3Ku2/NaXXsRWOIqY6zTXdAvRrkHY2yE88QQc57suW8Rq3n+2qXtfM6fp/Gh1GGSaNEJGm1tYy/U4s5vSKV5tNA1lrPKRO/Zd9ZfYsyTAuFNjwjDsBc0De7tWGshzlrfqwTwNEiN00ml508OGzfx/K5VQyDevZnHqD0NRTlwVjHdualwyb82Xb0dVZ5lPIf1+UJmSx9+J+C9jy/TGSssg6EHxOsBPp5n2S1vpyt8+UF43mUuzJm3ILcM5kT/851OPl8VugVaJvoA+W8MzDh3Ovh5DN53uYwh3ee/yYABQCRF8Cz7rpVvEFDLTsRhTPgW7jVFGDZW1f4i7tGNzSguRWhAGhLi1wDbeSRJbJCt+7pAKAneQLGRCgxrra7K0sBUAsTEoVQZkgF370unD6zJKbHbElSR/PxGwKdi9+MzwaNb5AQEPScDGSYdKsn4Y2SMj5XnKPyfBYGTOeW83AQpPl9s7HSAfsY4ulL8RcO7n0TEbyHnumzcZiHGCtFUUm4lJhSyWjtaCUHujJ5hgCrIjgzQhvH765b7XjZ35vXPA4+PyO52pcKkVSm5/W3fm9mxF0Je1slgdbMmGgdU9BF51p7Pwchh0TnjNjcswTNyvtZq7ULdHPivrkffifrq8nTOniyj2fslMgKER36mOaSTKwcvwPOkWwEYee5oaBDIbFYV0QpCNBaOFmbz1zY7rVTZjK429bpv5fD42cMrPc17aUqwGbj2VDh60wwUitda3CQhAIN/G8b8zjo+A/x1ACYkb0LPzHPQ79yL9HP+rjW75xZBZzyuX0cF4WRYdqkcyK48b0CQBzvXjx/z0pHi48CYpojpEA8e5yGt5j/kBBrn5SJeAZAL0+ovPKMT9ASFP2agJ/a36AUlgJkNubpObNuSeP521uvJHHSfH5MdtzvlAFDMuHOg5z2ewI39zwbdv+Mrw3nvR2F8Pn5XXgb/zeH1KhHlb7nXuPz8zv3abzzWb5HF0VxGKx0E6/Qd51a8/g3Q5feK//KebynQKYiwnfLHT57dnZZ1vkB/R4NNKjiPXfo7rE0h8MJTzyss9zDMy+ALynN/zRtns/skdbmPbsDbnzVuyaZ5GvbTLfYF+Dn+qeuzzx2oUNpUGzT//Z6kIkP8xiU2a+bo8v5d/o5W68mHlDtznni2CpOwDaR3fj+Mj2ryq6MM7/Ttdcy4QcZNe4+9+7evk9AxFE+OLkTIScnXaGX1Z/kfM1jEbnrHpCQY2DTnFnA+T3Wd/xJ2t31I328T5e+2L5iTF8LJgDfEKCA1rB8vGbipHZZvJyUIZMdeimn6qUQP34OC0W3srTVE6q078IysFUsm5de2T9c0NbSExtWzwngpef8f7efXbB/KFg/Vdi1oXy+eX8fLAEBY16AsHz4Ow3rxwXl6taOLJMFF1BqhC2sn3evwrBV1OcFdfUwif2poDwtmT2adWptq165oVWUyJlgW0N5iwSEu0lCqgbU/ncSpbRuONPPJJCy7n5JHTE1usi+AVgb8BSZSLfurVGfL7DLAnu9udATcZ9pvatSvaBM2fLTWlgOF4Vl3LQkZNt2t8CtnowMp1ayEHb3fUxEFd/Z67WjmgEmtKdLKJxv3VrTxA2z1W6FHawGnejbVoHrzcdI5vZ2TcXaltJd/pokruNnqiDTgq/joEU0tyqE8HVJYCDXks+s6CW6AJ+7CvaX1RNlosLePIlY7s7btRNrjovTJmp96XvDHBiZa0ATAALd0q5gyVw9Qc/AGp4m29YZxrLAnp7GPTXzcpat9RwOPA+Dd4VbmNOrYhWht7V+FpclgJSae9Be3zpzoBUmzkOr7p1iT56XpN1u/Qx9ePExvWJkLmK5aPM4RcBte3UPn8ulJ6ZqrQvdCkoRbKMnAGXZOacFJqW0CkMWpfdQvmhY9MjBEK787XY7MhcKnMviAse+A6B1Dy5sp9Bees4WwO+QhpPMrfX1y7AqIONwM8lhrMVYK14sbGrZ03wuk4WBniAs+aVbiOUAACAASURBVOqJ1Vo/J9r3YOGdvFOorM4ZnRWwmgBSBTWNoSK5xqKAnI39zt9zFYwEf9k0idzHzyhvV7/ztE4RhFVQS8dOYEFi+duHZ0+cGH/bNRLs0SOD+VwYjsfvgE4bI5GrKvueVLjP0fZ9BFJr9STES3ErM9DruO/VrY5m7h2hJRpr7YCThusBnZ7G/hWgJ3UFMJSpnQU8AlP6N0FN9dzi2Kcydz2mv/Qz+x54uMtacF5nShDXV9xvE6A/47Px35kTiHxirgIU/Wb+EdTOT8zG2P3WAW96UQ05PuZGhaVJgmMChaRP64klOuddnJQp6DB7D5zE9Keng7b0BAlaRo+uFiD4YHDp3ndHK6kAFzpOIPiRACs/tWnOnYMy0EHOY8gcS+LKWP3hiX9XYEcH2PSslJ6bRs/N0ObwFWDYe7N19MYkbaTBSkJ2BoNHhK8OYxbFN+lCDe+rOSk0EOXUvfQ6S1QflGSznn9M1oBl2oeE1SUS0qryve3IsIMEuATQYlUu0kdV3mcD1RAecp5oFrV2GZb/zaOna5S0x6Tyzt5l1SHkaO8y4KB8ole3oKymCa2D152WW+Uz4u2R+a5iLElV2+KarK6PngU0MCmij6WmDJR7Pcn5XwQSYk6HcrTa38l91XArlQVyrGefa5u8F9Qj+LQdPKqmz+/95tS7/H0wAfiGAAXbqrtBLwVtA2DmLpetufJOV9iK7jJHlI1x+LvBwpKVd21v+T+IlSst74CftxbPbvBkjUzMVNCtsw1ZNioFxc27abeoGXu9hVdBCD9LRbmGkFtb93wweMIVoH+31+4iSnfJAAsIHiiKyrjK7lp1suFJSGIdrXZiMiNPZ5b2WC+rrQMXQFeqFWU8bGpc0pk/fwnlHpL4jWM6WI1PPAeGOYVHhSuX8m4h8tnfLgRHFevZy0LXroUwEEJNEkfGBlJgm1t7Z904hh3HtZqZivRl83fJsLrnQmutM6gAA0zWIIWLFDhrF3jn8dfaFbp7bRYQZ1cv9sV/Z7Dh7KyQqVBYPXsuz8fJZ2ethGDK9Ruyg9v7Z3but7VRwT9938mZ4B18D3HWuYpierDGTp4Mp8/wnThhoBQ22FgDfRbQB9AkBKt6sn7vzWPuJ995sg5nYNTJuw7eMmdJyeSuprvjbOWX9RuAC31nAjkEaCZQCydCuwp4s3vqe2egjfva52fy/TK8axacmpbG47jU2kFaMtN2/XveP6UTfO7m7s7t5G4OFQz0HWeWpjjnPvbW+Qrg3hX7NC4Zr0k+oMHF+cwzBkgvhHT1vTffmX/aF2iEPqfzUjoVXhCDp12xLifMwKzOdwYI3mkHIEDAhPz+Dt09be+57w7eMPHcXkcahon+TIDVINmo5w9pEpOpzXcjebwo/gnITGDCT2lDLgR/f2tC91JBwpFWDOuCI6jB8aZMIc9nfPafAFg4medpora5zXkZzu7NrLRyrctEg3R98gvZu3nf+o/vf56yD47jml3ClScsUz+qRKkSvEfC5xYho+xvlsFMcybU82cm+dpLm9s4xjo+n4kQ1XNU56drondwkE9P6CnQE38DdxNb0hhlm8tx7XbroW9n7+IclMfO50N+N5yL05ADOUfp/n8iq1B2o5J9j0+eyDt3S8/qO3Wusw5xr02K+cGQFO9u/QEfv+YseE9mvdN+Uu6XuZF/3wMVvtC+DUBhr7DPb1lz3krpZaOIMt6kLBngh7vIpa2h9LYF5aoWIv/H4hnPNwBPwBhARQkvhvXThuVWsXy8wbbq3ge0pNWGcvPM1bap9cIFzBLWXWx7t4AUz6C/Pq09vCG8HMpWgTfAnh19LW+bC0ZbBZ4XH98eSSkDaOABTgFKXKZsPoCMr946obbb5rkP5jKHgK/76w1Zq5u8K9bSPTNifiyto7FM+m6+n6UXtwq8jAK2MyYR/nMcEk83JVUZiU+8d117VuVS0ksCQPbTLt1LYP5f1v0G4/RCEeSlWsRLgP++9fKRLYU/dELXXFln3O0h+Vtkm2+bW1mymgGBj33P+bV2c6Q/k/8E8Iap7dXzSbCPSUgE/O7o72hlbjruZfGKIBOCbE9P47mhdW6oIzwyRU8uuLhnAMe/bccYXO4Nx8V91tAEyDlRwWSLeMDZ88FsRNS5RtO78k6VAo/hDyuqClLr6l4AROI5P4nZz/lfI7cL+2A+CQo9RXIk3PEM4F41VWjuKKMOEO2j0kbFYxLMGzD0P7ybv5Nn0iuiCbDG5KHTXqcQzPhZ/XwQeoCMmQb6WRisnLV/VhZkxmZa5xU00EoG2tRLQEEtFQhir1soYcZSWZP7dnoN7Hv3YJoFDbUsAN1CkXdh97jtpbgFWX9Pj5D4Teb9UFqZ1iCeYX2/VPDQ/aQVTq39wOj1wPvN5yUpaZ4hrjPvY8x3eBctTTmnBts24PMb7OkSfLR7u2UfFJbTcjvRA1q+9h14tn4GgQ6+F6FL/Nzk92ytK+wMbXRjgcgRrcE+v50qDAynHAGN0v+bXmNKp/hb/i9oaLtRqBdPBVpJ50SczBek+Qguq/Ou1+BF4SFxCDvkv7kvE01pzeUU0j0VIpWXAJ32zULyXsEs5ofEyjHuxrmcgdCShyS98Oh5pnsYPIGCuY9iAdAA5klQXgaEdVvyrbTS7/N7wKd6NdHKOdC1+O7WupKt765tBBqH9VLAZgqFApBJ9xZgAKU12eHZmO+BI2dWyhnAUF5UJZ/L/O7b9DtgBA/Ceyy9O7ctcsTsx71JHjvRtCybW5K/5VmclS1a+Kew5E5Pgjbs1eXQaCa8bViToCdDJYJPr363X0ZPSavuSWpmqPRgoJzfGuxWuxdkEy+Ik1whw9+kU6S/6kEr4Mdw1+b+NqH5Kl/KO/LvdfGQ79lI2Bras8t9DUG3365obc88Rgd6QXm9Tt/tuwPZa+vPhVErZb1lQXpr5F66rOCl5+WemAD1gMu+wJjoVfe2iUegem7O5xyikM88fpB1hZ+dPJ85WtgmoOjUqBZe5AcwoUrYtzZ6kd7zVvupYOk7HiJf29e3ASiQLlEB40KSYACj9VWZ6mVJpTmTM4kSYnlB+4JYA8pnTwLpSnF80QCId4GXiakob/txQSnEXG9++Uks6H4vBK7cdrTdCRzHYbUCe0OJ8dqb1JPdPPeD7Q50HJQJEsY1hCKL6gwVHdEO4WwozcWmbp4kdARAKNw2uuCLVwIF3bAWJdETd76jZTAYwTYR8L11ZsPxKpFXFJBuexkjKYJAuhYuPYlPvNPWtSuzXAsq65L4LoUdAhLmpWcycZkSEgpEuR8nAn6ubQVYIUPdAqfQgPQSELAMTxekRVSS0qVS3lp34VfvEu1HAARWmOBaj9bSEOhouaSAz7PJvee+yJ4P81XBJZX+0tF1bTNxjHUekjru0hem/6Z7K3UfustyrKrw7PvxfVOYxCDkniWgqrWX/0oUV8MQyOhrB6QwCYoc91msP8eknytgNzOgWSGd+3gPWQdEiX7HvS76G5RjKz5HzkOFSmAQuhNEmYU2AN1i+I6lsDYM0nOcU/WgaUAII8L4mICJ4yKIkefhHAxwGlSHtWpcO3pqcb0EtEvlvLDk8B0LcZWydfMzfD9cyBnAM636cGbtrA1D+MbchB/qWIb58LPdxt+0k2z8wFFpjb74u4bwdiK/AEZLzEwzQtE6G2O2be95D5orEUYvLhWY53eogM65cWn0PLLvADEGb62wrJ/limjhppyg/+BhJ+N4z+Jztnc1YshPv6tjwkUqPzOoCpzy51bQqw/lmta0Ep7Grqd3gCpv3KNuROEaGIBWFumiJe+Y6dHA3wEHuam0V3k3W5H7MNOQAy+uIy/RHCfaNHfKnAthbrOSfpAPRUk/ASGPCsfxXqdcon3K++96nZ00BbRzrPdAy7kVAyxALZP1m1vQsHcr7+S7W+cj+fv47yyti35WOd6ZpyuYqDpCKWOiVGDwikoAnp5I42IBMAxhBlTs2dfsvVQBRMJZY6na+G3PQ0Na08dpUT3G+Yy/M70SCIRoKK+uH9ecOlPqMSJDibx+oI+6fjEn5pGzCgFlDO3l2e/0LYD12w2Ua4c+07otoEKuE4EI63xl9kY+y1MyfzTRUQ1TPvAVfn6nzV46Z6BDf++JDFbulHfMZ+58R0+E44BGfq00g/z0bCw/tX0NUFAm2nNGX6f2bQAKQL9gQUDyYg3CaPV46NUztranFft3Tyivm1vpntbx0lBACSU8s0s3rxIBIIQDLzXlLkAF9bLAlobl7eYhDVtsPsMYzPyQV0N5u7liLJnEiRxmgsdrd/1MgGPwcoDHfIqQZ7fdczLcdtSntQvMBACWgqY3raJn9Af8oHOcU4Idu2393VRQA/21tP55ScI8wIGcZcwp3UaBVLQyKzLdfkkcAqnmuNJ6TuTaDN1lqXUhIZFq+HMap58XYR8YUEODRX6E9nxxT5a1dPT4Fkgn0cVcFBsIqC3NFXYKiKp4ci568Wdhleiejhnol9EK7PnpCMDQ5fjpyd/3uncBhxaam585s5dxbQfhI9aZiKfWtm+W8x/OhcYcsj/J1p05C7h36iki1hyzNUvtOYI/xSeSkQGj1Y1/s+8lEoqm5WDt77IyWp3pGUALScxBQY/T5GD77neX6zMLiuaEtCHWMMcie7sYEgEnzTkj/DMjnBjRQblv3cNk+GXtaPsA4sWYTpP9RX8D+l0rcFldF80x6nhD6L2s473kfbNpbiqw8b4UycXA9SJ4tRQP1VLhfr4rdIOkYGLosdMtwr1UAG1CWwCYNe9DgY+902qCAN2aVbvVERjPg4AK8/4ZAZIiyQBnZk1Bj/fqXlsWWKtot83Xr6K76J4pMgSxvhCaoyCFVtfhGTLgCJ62NtIOHh/mO+G8vCOn2SJ8N/Jxa90zQZOLcbxKX4HR+sb+tw3YcMxFw/UkvQa6AYEyxOtbz7cU58cm8CgG7PkzeI6UniTgO1nfBIR2GaaDMcOdq8j7NQA5PBeH/DLCQ2fQUDOg6xpxPRScDD7b+F1WN9lHIZzrVRoi0UD2PZwDDlHPxfze4D96zpLf08vpciJ+Kp3RNsTVT2ece7FPNNw/jHsZCtf8DO/9WT8zLVL6RkCWi6FCdv5uBMgVwAYwKhR3QKMm5+Ws3VNmDtnls8+TXAYCDp8CokqvKC9CeCHDWgj2zueYfQAhNxe0tvWqR7r+FoDEYgLEtNFCLXtnQIJ9qnibyZ3NkJcur9lNFDcF/Eg/qBgLqG/b3kMDuI/sr1aXs1vtHmikfTzvHI8CTOFdkWNN78J4np5fc5jBwHtDdrY2eGFqPp7h7ufvZI0ClLAKT2pPfSP0nfbhglYXLG8318GYN0qb5CZInjUpoYMn5V7Tw+PQT+y7hv80NPE0CvmOsuKQt2g63++BZTMocM+wwvWb5fx3mnoVtOm8fPFd0sd74773vuPzDbP8CeB9kDtaN6K8s47RvhlAQbPPW5bRk8tOa2xxZt6YLGuvaZ13jwIcCQXgF2cTJk+FWJQZ91hoMHHPstaAW4Vh90SFbHT/D2sxk3cNAkq4/dveErHvEyZh2zvhAlKBW37sLyvXzS81S0Dy8r91F3cqUAkA7JMFI945gDSaRIqupeyvygEqNpbKuU1u64e4uNZdLzVhixVYRh+0zqQXEuK9EyRrsj8FiXxeuLai5NBCR8Xjsvr5ePJEnJoYjIp0ltB8C+ahBCkUErraNRXa1M1fL+nsVn92UdWVG3BggPPb95HAiDI5EGVVZAXt9c23kWjNf/MzQPZaXslEkLNCK9b4Vpa+37OSSeI5rGVFq1JW6iDMWGecjB8uBk/kRy1qEgIVVFJPBSGmB4Wbn1U9+7W7E84KZNavLcEYFbzTs17dY+gdQjsk6NGEQHquzLogV8bzcM+Sddd6JWuQ5SGVvqjbqAqYJ4JLm/aMCvox/tbPBUsgch4HBif9J5gAjILOmTVehQuOad/9rJ0INofSSbso0dNedyCo9vsyK/xqPef8JsVtmNuXBAF6ggmIxF+Y6d2vPfkUgawvMHVNWDVYn3WJTmq/pwU5ech+PBNMQkkXVq7DiZI3WMXIc0/GOp6vSVGPtWoMlZJnU4DiGFtL2k9rZFrbnsVduYbMMNNqWhSXgoyJn+9VvIeeCgDSA67T1okGz/kOin9mB8+o8CLIBLHiqs+whAGgmPZV3zmXF+XzGh5w1uQ3Xv5P6fyJ8pxrGgoNeVpr52dPgLdTPnpvPOm8OJ2V2oC6vX8vBJjpQKPQdz7DY54Ka+3PcMyUC+8BgrX1weqc9b/PvMjOPAz5eSg8d0GCsz7E4DLwP32OdOekxHG2GdQt1gG1AZSxMQkzf668Rdoh2azsx4F2quFqNozE+w7hZjQEZR/Tumr1mdQJWgcg+LkCJFXAYnoEbT2cJz2FmXR2Tuyq68B7TIBBw0nF02KQWVLu2YG2o21T2MMsb5/eP+GBsX5JQyO/mtW+Ng3wJOA1ZNaXJ6ft2+bnhmGD055lqMrc3lP8z+4O17qEjDR7rVJXq+14vtNo9QV+eW+PVI/jc7NuOYXlzn0On87P3AMX3gE3BtDg5J59tbfETC/P6G/Q5Z+Sj+EbARREsa97d8lXZWgqR5UWKl7sUPwBuFWHmx4XHWFayYSKrSFDBOSSG5noHt+31sdD5TuIle1iUblculI+K3Ci5A8EC3A3TrGUtOfwBHi99lq1PESMzwIc+LhtHke5TswtUNFER8nEZuUyLXVhdWZMvwqReqmEULdJAc/3KpIfwEJanUtDT1mN098TjW1LCIUFvnezUILYu1tzRu91N/tYS4kcGAvq6ufBtta/51oWdQ3juGsQ84qDlaK1YZxYwtXT5LdfaiRAt8hUvZYx9AM4MgQKXQE+tLZlRnt+ZwQ/OC6IQjELbWSWs5AYiaCGfdM9Xb5insoEC/p+vrMkKSyktUPuCV91ZrkCOqjA9eOazUIfP+f49r1n6Y19TMtTTi/uwSK/n/o8S/BzIMG0As0KPHBQMoef3UGcT3MgYARQtB3Qa3pRTRbp08azwnlpXHX8bTwjIqy+l+nY3a1FqP8aFzyCjzHWBKAUEMr5hbVNadzp1CY+o2swr9dsDV6W0304hN5of/M4ih28Wr5ouVRvilPgMoSLtITpHnfhtBUMOWeG+6HPDoIHmSbiLkyWsphnCvVq2eRe0OtJPdVmAELnKp6Fs8fXAVQIL4VWkEmQAXSQgXutMcpSVWgA8ZbpLnFdCW5Q4WeYyNOl98NmlvkNxnnFHDQPy44oPUhQy3ofCjZw7Qdlv/R+aJHXdcs59HflvVOBWAHj2aVZFRqdn+zFwaPn1IvBkIn41KJ5dpbv0D++r981SSj8FVa3HCPHeUKfD2Na5qQGOk65j3WiBTQg3FMUcu1FyVV6MzeCGndo/dh1u9/PiWJyCgIDIChjrJxCIw7bstyJ/z7hmTQYEFwazq2s3xzOModalL4WrQldWIO3TYBNB5Eo+/G7Nt6RWQGV8Ni+Hi3ph23oubgUTJgBgux/H/vg74oNHgao03zntm1oZRlAhYPcFvPrdyV4pdz/Q1hEDb1jKa7jwPWmZl5Jz/bFaeYe92UOYaJscXY2T5T7IRwrmt7rIIxxjyqGJJ5xLk49AFT3AUag4UyB/9o2Awjv/f4L8sdpSMN7dx99Xe/JgF/V7npstK977k77NgCFusM+fnYrwm1De7seiIxFIjxajm3bYZ/smIwFXa9MRQsYgIBBubKjpeY4vmlz5Xm7hBChgk8o3FbbebIYfd/1NnkG9HdlvD/n9SpW8AAAMnlRJL6y1+sR1FhX32kNdaAg14SAxfuaCveTVZ2Iatu2sJ4UuTTCbLdtVFaIMkfylDnBmjLJVJQVHWfLxDYiyIRiYbYFgXQrk33yEJhFhYLZehTzrp8+5/uHxET628Gi2S3IWQe9iMAHjARM/76JpamEp8Hs0jpZEc76Yb4Lnp/ccYJT+vdZO0Ngg5Eko5j7mK0ZFgkRm43WaRlHMhj92ZSY0B+PuWryIpnv8NnpdAxYagcKSkkLhr9TBDuxwtLdO0eyS5LDEqVU2ecXxqCJDFMJV68WHUd8z7KYw3qTHoSyc3i3zmkSQrOyiAAqQ9JWBQtLd1NtPIeybykQK6jF3wLj/SgGw3RnVCBM617p32W+gwn8UaVDeUFraK+v43P0VmKbgRsVkimkFgcBLT7LeM7LZQJehD5d1jG+V+cd65RCWYQl4fLkQviUh8BKyVAbuzyNgrSCYhSa5nVvDSmUs0mSKH8k1nt9EsU9utHkiwhesxg8E1y8IpRde+b57KCdlyotnb+pUgR0L7E8kxXtw7MrxqR/8LW0pY7zMuvu8M15qOECsHyslozVd4Z1MMsE8zPuP8ObuK6UBe60wWV1BryWBWgb2k1+cL12nhLKki0FaMso7DZLOcB56DIqkyoc0yARfNFWjHdYSxC3CdykbFBkj5TvnAE4up8JKNWkkwBgy6WvwaxArtOe2NPIw/RZ0j8CNQqQpCvzKHulZZuJclUW07lwrgls+XiGkpxL8YTNPKchH5U3Dz9Vo8nBlV/p37yGlLMEYENr59ZZveNL0Pu5hPQMHAn4NkuuGb7Hs33COxN0eX7u8wpvmVxD+SzXIHhKvlPlCrOxLDP39kwpns7TOe1vw1zdDrWMYU4xBpfH+lp6xbNpnQHPIVV8LzJEgfMYxsNX8PsTb5TdE/RSAeyJb+vwzCADKYCKPt4hJ5AAmulmzjVSeZw8oe5ozBEuHpdN7/lsLd8RZ6EmXXTPkAkgIuBTDOXzWwcDtx3t7a3L+Pfu95eagpH6O5Vd+bl1sOUApN0zCBAsn/W3e8DC/JyG5Z79fhjiqOTPn2co6sGgIDxYedZJy75no9O98dwDVu94JhxA9J8IJgDfCqBA5fjpEoxAiOwayo1k/m87YAjifMNI6O8drBILzJr091zWFGmbGUV+dyLgkSiYWIm3zYnR0M+00UGYhngmXty9DnVaeXDSmt4qmLzI1rBI324HF1WzPZTEk4SCyqyiLy3BlC6Ck4U8hZyiF1LmRu8CXR8KQkyUpp9rG/qwPjbIxZ3vUHo1IMohGo5WoWBUs4VFBLTGuPxae/wyl2sa54Aocrzz5Z6JURC4LiS0TDiUAuyZ6zSftQ5aGOd9h4B/yYJx6o7eWk90N8ytHtaABDItTFPYxmBBUgaHzjgP4I68azgXZ5/xd3wffE1Sgeeect30d3M/M2gjY2knn2U7AxfeG/cZeHnPXZd0AOiGMa7TCWNywasDTFkZBOhzOHNDDEtd/l6ttGnFK+NdnxvvKmnEvZZ08wgoDc+Qzp69hzSUtFKZJwXRM0uijpHviefNWn/bDIjQ8kg+I/ls/PklQQJ108deUwE6c+W35l5Q6dZuckasId3uWYFG163FZxPAoRZRMFEpadrZOdN7R4GH76rBC1hlQIUmKmkz6GfWle/iCpvdNl9bVkHQ8LmS/ze0tpQxPI/vCwU7BfjZqstxKl0MRakFP03AaQbeT1qvoz6CrjaDVph4JJpHATXryZaHjk/WnPetUoCezrDc55zzZLAY3sV+Ne64NWSyND2TVGiyXHUHn6Dx5vOY1duE7d58Zvq5CmjEsVuLfIgntIZrS6ssgYAz2sq5xlhyXsovLmsm9m6LwRZPqOeW12nfGCqmdEfPugIbrWFIzB1zzydqrG2TO241gZK8V/zdvvd1IZ2Z8xTEOpvy73st1jEBmXVxWiV3mHtsN0HMOKYzb7IyKkvMNWAbOl1j3zXuMI6K2BetrXr2FHjzH/dxzZ4ObDz7k/fYmRLFKz9UmVA5iOGcZ/w+xpMyEMEE6jccb42ccaJ4AjjkuHL55Y6ip15lmctpPx1PriHnkTJul5UAoWWAgw00zpZI3C7y612FfW6zzEJ9Z6YL83NnwMjZOTkbx+ztd6aUn+kgZ7+/My89s+/mMfgTtMO9mEFKfvaOR8OhiVfzT25f8MC2P5G7xJ9yM7N/COAjgH/02x7Loz3an2L7c3ic6Uf7/WmP8/xov2/tcaYf7fetPc70o/0+tcd5/vbaP2qt/bX5w28CUAAAM/ubrbV/67c9jkd7tD+t9jjTj/b71B7n+dF+39rjTD/a71t7nOlH+31qj/P8u9Pe8U19tEd7tEd7tEd7tEd7tEd7tEd7tEd7tEc7bw9A4dEe7dEe7dEe7dEe7dEe7dEe7dEe7dF+cvuWAIX//Lc9gEd7tD/l9jjTj/b71B7n+dF+39rjTD/a71t7nOlH+31qj/P8O9K+mRwKj/Zoj/Zoj/Zoj/Zoj/Zoj/Zoj/Zoj/a7074lD4VHe7RHe7RHe7RHe7RHe7RHe7RHe7RH+x1p3wSgYGZ/zcz+DzP722b213/b43m0R/tSM7P/wsz+gZn9Lfnsz5rZf2Nm/1f8+2ficzOz/yTO9/9iZv/Gb2/kj/Zo583M/pKZ/bdm9r+b2f9mZv9BfP4414/2O9fM7MXM/gcz+5/jPP9H8flfNrP/Ps7tf2VmT/H5c/z9t+P7f+m3Of5He7R7zcwWM/sfzey/jr8fZ/rRfmebmf2Rmf2vZvY/mdnfjM8ecsfvWPutAwpmtgD4TwH8OwD+EMC/a2Z/+Nsd1aM92hfbfwlgrsP61wH8jdbaXwHwN+JvwM/2X4n//XsA/rP/n8b4aI/2U9oG4D9srf0hgL8K4N8PWvw414/2u9jeAPzbrbV/DcC/DuCvmdlfBfAfA/j/2ru/kL3HOI7j72/bRMjyYGkjiXKkOVlkBzNxwDIHSyuytHLKgRQnSu3UKIeokT+tMXZotRUnxFDUHLCIp9lT9gcpwsfB73rm7imP3UvPfV/r/aqn+7qu3+/gOvh0dz3f33X97p1JrgNOANvb/duBE218Z7tPmkaPAIdH+mZavbstydqRn4h03dGZiRcUgHXAV0mOJPkdeAPYPOE5SYtK8h5wfMHwZmBXa+8C7h0ZfzmDD4CVVXXl0sxUOjNJ9KsiBQAAAqpJREFUjib5pLV/ZliwrsZcq0Mtl7+07or2F2AjsKeNL8zzfM73ALdXVS3RdKUzUlVrgLuBF1q/MNM697ju6Mw0FBRWA9+N9L9vY1JvViU52to/AKta24yrK21r7E3Ah5hrdaptDf8MmAP2A18DJ5P80W4ZzezpPLfrp4CZpZ2x9J+eBR4H/mr9Gcy0+hbg3ao6VFUPtzHXHZ1ZPukJSOeiJKkqf0JF3amqi4A3gUeT/DT6QMtcqydJ/gTWVtVKYC9ww4SnJJ21qtoEzCU5VFUbJj0f6X+yPslsVV0B7K+qL0cvuu7owzTsUJgFrhrpr2ljUm+OzW+9ap9zbdyMqwtVtYKhmPBqkrfasLlW15KcBA4CtzBskZ1/mDKa2dN5btcvAX5c4qlKi7kVuKeqvmE4HrwReA4zrY4lmW2fcwyF33W47ujONBQUPgKub2+pPQ/YCuyb8Jyks7EP2Nba24B3RsYfbG+nvRk4NbKVS5oK7Wzti8DhJM+MXDLX6k5VXd52JlBVFwB3MLwX5CCwpd22MM/zOd8CHEjiUzFNjSRPJFmT5BqGtfKBJPdjptWpqrqwqi6ebwN3Al/guqM7NQ3fLVV1F8O5sGXAS0l2THhK0qKq6nVgA3AZcAx4Cngb2A1cDXwL3JfkePtH7XmGX4X4FXgoyceTmLf0b6pqPfA+8Dn/nM99kuE9CuZaXamqGxle5rWM4eHJ7iRPV9W1DE93LwU+BR5I8ltVnQ+8wvDukOPA1iRHJjN7aXHtyMNjSTaZafWqZXdv6y4HXkuyo6pmcN3RlakoKEiSJEmSpL5Mw5EHSZIkSZLUGQsKkiRJkiRpbBYUJEmSJEnS2CwoSJIkSZKksVlQkCRJkiRJY7OgIEmSJEmSxmZBQZIkSZIkjc2CgiRJkiRJGtvf/HcgjsYlo2AAAAAASUVORK5CYII=\n", + "metadata": { + "needs_background": "light", + "tags": [] + }, + "output_type": "display_data", + "text/plain": "
" + } + ] + } + }, + "804014183dc64cdf8f2f043ca16f50d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "IntSliderModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "IntSliderModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "IntSliderView", + "continuous_update": true, + "description": "t", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_dd25a5cf52e84fefa4af8c24463106e3", + "max": 4500, + "min": 0, + "orientation": "horizontal", + "readout": true, + "readout_format": "d", + "step": 1, + "style": "IPY_MODEL_10144440b3a44ecda553473165abd44f", + "value": 2250 + } + }, + "dd25a5cf52e84fefa4af8c24463106e3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/scripts/generate_test_data.py b/scripts/generate_test_data.py index bd3fea009..dfd21b241 100644 --- a/scripts/generate_test_data.py +++ b/scripts/generate_test_data.py @@ -70,7 +70,7 @@ def generate_detection_1plane1chan_test_data(ops): [[Path(ops['data_path'][0]).joinpath('detection/pre_registered.npy')]], (404, 360) ) - with suite2p.io.BinaryRWFile(Ly = ops[0]['Ly'], Lx = ops[0]['Lx'], filename=ops[0]['reg_file']) as f_reg: + with suite2p.io.BinaryFile(Ly = ops[0]['Ly'], Lx = ops[0]['Lx'], filename=ops[0]['reg_file']) as f_reg: ops, stat = suite2p.detection.detection_wrapper(f_reg, ops=ops[0]) ops['neuropil_extract'] = True cell_masks, neuropil_masks = masks.create_masks(stat, ops['Ly'], ops['Lx'], ops=ops) @@ -107,7 +107,7 @@ def generate_detection_2plane2chan_test_data(ops): two_plane_ops[1]['meanImg_chan2'] = np.load(detection_dir.joinpath('meanImg_chan2p1.npy')) for i in range(len(two_plane_ops)): op = two_plane_ops[i] - with suite2p.io.BinaryRWFile(Ly = op['Ly'], Lx = op['Lx'], filename=op['reg_file']) as f_reg: + with suite2p.io.BinaryFile(Ly = op['Ly'], Lx = op['Lx'], filename=op['reg_file']) as f_reg: # Neuropil_masks are later needed for extraction test data step op['neuropil_extract'] = True op, stat = suite2p.detection.detection_wrapper(f_reg, ops=op) diff --git a/setup.py b/setup.py index c51fdc6b1..f9ade37da 100644 --- a/setup.py +++ b/setup.py @@ -1,47 +1,78 @@ import setuptools -install_deps = ['importlib-metadata', - 'natsort', - 'rastermap>0.1.0', - 'tifffile', - 'scanimage-tiff-reader>=1.4.1', - 'torch==1.11.0', - 'paramiko', - 'numpy>=1.16', - 'numba>=0.43.1', - 'matplotlib', - 'scipy>=1.9.0', - 'h5py', - 'sbxreader', - 'scikit-learn', - 'cellpose'] +install_deps = ["importlib-metadata", + "natsort", + "rastermap>=0.9.0", + "tifffile", + "torch>=1.13.1", + "numpy>=1.24.3", + "numba>=0.57.0", + "matplotlib", + "scipy>=1.9.0", + "scikit-learn", + "cellpose", + "scanimage-tiff-reader>=1.4.1" + ] gui_deps = [ - "pyqt5", - "pyqt5-tools", - "pyqt5.sip", - 'pyqtgraph', - 'rastermap>0.1.0', + "qtpy", + "pyqt6", + "pyqt6.sip", + "pyqtgraph", ] +io_deps = [ + "paramiko", + "nd2", + "sbxreader", + "h5py", + "opencv-python-headless", + "xmltodict", + "dcimg" +] + nwb_deps = [ - "pynwb", + "pynwb>=2.3.2", ] + test_deps = [ - 'pytest', - 'tenacity', - 'tqdm', - 'pytest-qt==3.3.0', - ] + "pytest", + "tenacity", + "tqdm", + "pynwb>=2.3.2", #this is needed as test_io contains a test with nwb + "pytest-qt>3.3.0", +] + +# check if pyqt/pyside already installed +try: + import PyQt5 + gui_deps.remove("pyqt6") + gui_deps.remove("pyqt6.sip") +except: + pass + +try: + import PySide2 + gui_deps.remove("pyqt6") + gui_deps.remove("pyqt6.sip") +except: + pass + +try: + import PySide6 + gui_deps.remove("pyqt6") + gui_deps.remove("pyqt6.sip") +except: + pass -all_deps = gui_deps + nwb_deps + test_deps +all_deps = gui_deps + nwb_deps + test_deps + io_deps try: import torch a = torch.ones(2, 3) - version = int(torch.__version__[2]) - if version >= 6: - install_deps.remove('torch>=1.7.1') + major_version, minor_version, _ = torch.__version__.split(".") + if major_version == "2" or int(minor_version) >= 6: + install_deps.remove("torch>=1.6") except: pass @@ -58,22 +89,23 @@ url="https://github.com/MouseLand/suite2p", packages=setuptools.find_packages(), setup_requires=[ - 'pytest-runner', - 'setuptools_scm', + "pytest-runner", + "setuptools_scm", ], use_scm_version=True, install_requires=install_deps, tests_require=test_deps, extras_require={ "docs": [ - 'sphinx>=3.0', - 'sphinxcontrib-apidoc', - 'sphinx_rtd_theme', - 'sphinx-prompt', - 'sphinx-autodoc-typehints', + "sphinx>=3.0", + "sphinxcontrib-apidoc", + "sphinx_rtd_theme", + "sphinx-prompt", + "sphinx-autodoc-typehints", ], "gui": gui_deps, "nwb": nwb_deps, + "io": io_deps, "tests": test_deps, "all": all_deps, }, @@ -84,10 +116,10 @@ "Operating System :: OS Independent", ], entry_points = { - 'console_scripts': [ - 'suite2p = suite2p.__main__:main', - 'reg_metrics = benchmarks.registration_metrics:main', - 'tiff2scanimage = scripts.make_tiff_scanimage_compatible:main', + "console_scripts": [ + "suite2p = suite2p.__main__:main", + "reg_metrics = benchmarks.registration_metrics:main", + "tiff2scanimage = scripts.make_tiff_scanimage_compatible:main", ] }, ) diff --git a/suite2p/__init__.py b/suite2p/__init__.py index 3f977e370..e4b8c622d 100644 --- a/suite2p/__init__.py +++ b/suite2p/__init__.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from .version import version from .default_ops import default_ops from .run_s2p import run_s2p, run_plane, pipeline diff --git a/suite2p/__main__.py b/suite2p/__main__.py index 5698af1d2..045feda8c 100644 --- a/suite2p/__main__.py +++ b/suite2p/__main__.py @@ -1,25 +1,30 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import argparse import numpy as np from suite2p import default_ops, version + def add_args(parser: argparse.ArgumentParser): """ Adds suite2p ops arguments to parser. """ - parser.add_argument('--single_plane', action='store_true', help='run single plane ops') - parser.add_argument('--ops', default=[], type=str, help='options') - parser.add_argument('--db', default=[], type=str, help='options') - parser.add_argument('--version', action='store_true', help='print version number.') + parser.add_argument("--single_plane", action="store_true", + help="run single plane ops") + parser.add_argument("--ops", default=[], type=str, help="options") + parser.add_argument("--db", default=[], type=str, help="options") + parser.add_argument("--version", action="store_true", help="print version number.") ops0 = default_ops() for k in ops0.keys(): - v = dict(default=ops0[k], help='{0} : {1}'.format(k, ops0[k])) - if k in ['fast_disk', 'save_folder', 'save_path0']: - v['default'] = None - v['type'] = str - if (type(v['default']) in [np.ndarray, list]) and len(v['default']): - v['nargs'] = '+' - v['type'] = type(v['default'][0]) - parser.add_argument('--'+k, **v) + v = dict(default=ops0[k], help="{0} : {1}".format(k, ops0[k])) + if k in ["fast_disk", "save_folder", "save_path0"]: + v["default"] = None + v["type"] = str + if (type(v["default"]) in [np.ndarray, list]) and len(v["default"]): + v["nargs"] = "+" + v["type"] = type(v["default"][0]) + parser.add_argument("--" + k, **v) return parser @@ -31,12 +36,12 @@ def parse_args(parser: argparse.ArgumentParser): dargs = vars(args) ops0 = default_ops() ops = np.load(args.ops, allow_pickle=True).item() if args.ops else {} - set_param_msg = '->> Setting {0} to {1}' + set_param_msg = "->> Setting {0} to {1}" # options defined in the cli take precedence over the ones in the ops file for k in ops0: default_key = ops0[k] args_key = dargs[k] - if k in ['fast_disk', 'save_folder', 'save_path0']: + if k in ["fast_disk", "save_folder", "save_path0"]: if args_key: ops[k] = args_key print(set_param_msg.format(k, ops[k])) @@ -46,7 +51,7 @@ def parse_args(parser: argparse.ArgumentParser): ops[k] = n.astype(type(default_key)) print(set_param_msg.format(k, ops[k])) elif isinstance(default_key, bool): - args_key = bool(int(args_key)) # bool('0') is true, must convert to int + args_key = bool(int(args_key)) # bool("0") is true, must convert to int if default_key != args_key: ops[k] = args_key print(set_param_msg.format(k, ops[k])) @@ -58,7 +63,8 @@ def parse_args(parser: argparse.ArgumentParser): def main(): - args, ops = parse_args(add_args(argparse.ArgumentParser(description='Suite2p parameters'))) + args, ops = parse_args( + add_args(argparse.ArgumentParser(description="Suite2p parameters"))) if args.version: print("suite2p v{}".format(version)) elif args.single_plane and args.ops: @@ -74,5 +80,5 @@ def main(): gui.run() -if __name__ == '__main__': - main() \ No newline at end of file +if __name__ == "__main__": + main() diff --git a/suite2p/classification/__init__.py b/suite2p/classification/__init__.py index 3e7366217..8cdc1eb11 100644 --- a/suite2p/classification/__init__.py +++ b/suite2p/classification/__init__.py @@ -1,2 +1,5 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from .classifier import Classifier from .classify import classify, builtin_classfile, user_classfile \ No newline at end of file diff --git a/suite2p/classification/classifier.py b/suite2p/classification/classifier.py index 5d73aaa68..f8a45ca54 100644 --- a/suite2p/classification/classifier.py +++ b/suite2p/classification/classifier.py @@ -1,6 +1,9 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from scipy.ndimage import gaussian_filter -from sklearn.linear_model import LogisticRegression +from sklearn.linear_model import LogisticRegression class Classifier: @@ -16,6 +19,7 @@ class Classifier: keys of ROI stat to use to classify """ + def __init__(self, classfile=None, keys=None): # stat are cell stats from currently loaded recording # classfile is a previously saved classifier file @@ -42,23 +46,23 @@ def load(self, classfile, keys=None): try: model = np.load(classfile, allow_pickle=True).item() if keys is None: - self.keys = model['keys'] - self.stats = model['stats'] + self.keys = model["keys"] + self.stats = model["stats"] else: - model['keys'] = np.array(model['keys']) - ikey = np.isin(model['keys'], keys) - self.keys = model['keys'][ikey].tolist() - self.stats = model['stats'][:,ikey] - self.iscell = model['iscell'] + model["keys"] = np.array(model["keys"]) + ikey = np.isin(model["keys"], keys) + self.keys = model["keys"][ikey].tolist() + self.stats = model["stats"][:, ikey] + self.iscell = model["iscell"] self.loaded = True self.classfile = classfile self._fit() except (ValueError, KeyError, OSError, RuntimeError, TypeError, NameError): - print('ERROR: incorrect classifier file') + print("ERROR: incorrect classifier file") self.loaded = False def run(self, stat, p_threshold: float = 0.5) -> np.ndarray: - """Returns cell classification thresholded with 'p_threshold' and its probability.""" + """Returns cell classification thresholded with "p_threshold" and its probability.""" probcell = self.predict_proba(stat) is_cell = probcell > p_threshold return np.stack([is_cell, probcell]).T @@ -75,14 +79,19 @@ def predict_proba(self, stat): needs self.keys keys """ - test_stats = np.array([stat[j][k] for j in range(len(stat)) for k in self.keys]).reshape(len(stat), -1) + test_stats = np.array([stat[j][k] for j in range(len(stat)) for k in self.keys + ]).reshape(len(stat), -1) logp = self._get_logp(test_stats) y_pred = self.model.predict_proba(logp)[:, 1] return y_pred def save(self, filename: str) -> None: """ save classifier to filename """ - np.save(filename, {'stats': self.stats, 'iscell': self.iscell, 'keys': self.keys}) + np.save(filename, { + "stats": self.stats, + "iscell": self.iscell, + "keys": self.keys + }) def _get_logp(self, stats): """ compute log probability of set of stats @@ -96,33 +105,30 @@ def _get_logp(self, stats): """ logp = np.zeros(stats.shape) for n in range(stats.shape[1]): - x = stats[:,n] - x[xself.grid[-1,n]] = self.grid[-1,n] - x[np.isnan(x)] = self.grid[0,n] - ibin = np.digitize(x, self.grid[:,n], right=True) - 1 - logp[:,n] = np.log(self.p[ibin,n] + 1e-6) - np.log(1-self.p[ibin,n] + 1e-6) + x = stats[:, n] + x[x < self.grid[0, n]] = self.grid[0, n] + x[x > self.grid[-1, n]] = self.grid[-1, n] + x[np.isnan(x)] = self.grid[0, n] + ibin = np.digitize(x, self.grid[:, n], right=True) - 1 + logp[:, n] = np.log(self.p[ibin, n] + 1e-6) - np.log(1 - self.p[ibin, n] + + 1e-6) return logp def _fit(self): """ fit logistic regression model using stats, keys and iscell """ nodes = 100 ncells, nstats = self.stats.shape - ssort= np.sort(self.stats, axis=0) - isort= np.argsort(self.stats, axis=0) - ix = np.linspace(0, ncells-1, nodes).astype('int32') + ssort = np.sort(self.stats, axis=0) + isort = np.argsort(self.stats, axis=0) + ix = np.linspace(0, ncells - 1, nodes).astype("int32") grid = ssort[ix, :] - p = np.zeros((nodes-1,nstats)) - for j in range(nodes-1): + p = np.zeros((nodes - 1, nstats)) + for j in range(nodes - 1): for k in range(nstats): - p[j, k] = np.mean(self.iscell[isort[ix[j]:ix[j+1], k]]) + p[j, k] = np.mean(self.iscell[isort[ix[j]:ix[j + 1], k]]) p = gaussian_filter(p, (2., 0)) - self.grid = grid + self.grid = grid self.p = p logp = self._get_logp(self.stats) - self.model = LogisticRegression(C = 100., solver='liblinear') + self.model = LogisticRegression(C=100., solver="liblinear") self.model.fit(logp, self.iscell) - - - - diff --git a/suite2p/classification/classify.py b/suite2p/classification/classify.py index 18a535991..cdf62d68a 100644 --- a/suite2p/classification/classify.py +++ b/suite2p/classification/classify.py @@ -1,16 +1,21 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from pathlib import Path from typing import Union, Sequence from .classifier import Classifier -builtin_classfile = Path(__file__).joinpath('../../classifiers/classifier.npy').resolve() -user_classfile = Path.home().joinpath('.suite2p/classifiers/classifier_user.npy') +builtin_classfile = Path(__file__).joinpath( + "../../classifiers/classifier.npy").resolve() +user_classfile = Path.home().joinpath(".suite2p/classifiers/classifier_user.npy") -def classify(stat: np.ndarray, - classfile: Union[str, Path], - keys: Sequence[str] = ('npix_norm', 'compact', 'skew'), - ): +def classify( + stat: np.ndarray, + classfile: Union[str, Path], + keys: Sequence[str] = ("npix_norm", "compact", "skew"), +): """ Main classification function @@ -19,7 +24,7 @@ def classify(stat: np.ndarray, Parameters ---------------- - stat: dictionary 'ypix', 'xpix', 'lam' + stat: dictionary "ypix", "xpix", "lam" Dictionary containing statistics for ROIs classfile: string (optional, default None) diff --git a/suite2p/default_ops.py b/suite2p/default_ops.py index 0893b1dd2..380408ef9 100644 --- a/suite2p/default_ops.py +++ b/suite2p/default_ops.py @@ -1,122 +1,165 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from .version import version + def default_ops(): """ default options to run pipeline """ return { # Suite2p version - 'suite2p_version': version, #current version of suite2p used for pipeline + "suite2p_version": version, #current version of suite2p used for pipeline # file input/output settings - 'look_one_level_down': False, # whether to look in all subfolders when searching for tiffs - 'fast_disk': [], # used to store temporary binary file, defaults to save_path0 - 'delete_bin': False, # whether to delete binary file after processing - 'mesoscan': False, # for reading in scanimage mesoscope files - 'bruker': False, # whether or not single page BRUKER tiffs! - 'bruker_bidirectional': False, # bidirectional multiplane in bruker: 0, 1, 2, 2, 1, 0 (True) vs 0, 1, 2, 0, 1, 2 (False) - 'h5py': [], # take h5py as input (deactivates data_path) - 'h5py_key': 'data', #key in h5py where data array is stored - 'nwb_file': '', # take nwb file as input (deactivates data_path) - 'nwb_driver': '', # driver for nwb file (nothing if file is local) - 'nwb_series': '', # TwoPhotonSeries name, defaults to first TwoPhotonSeries in nwb file - 'save_path0': [], # stores results, defaults to first item in data_path - 'save_folder': [], # directory you'd like suite2p results to be saved to - 'subfolders': [], # subfolders you'd like to search through when look_one_level_down is set to True - 'move_bin': False, # if 1, and fast_disk is different than save_disk, binary file is moved to save_disk + "look_one_level_down": + False, # whether to look in all subfolders when searching for tiffs + "fast_disk": [], # used to store temporary binary file, defaults to save_path0 + "delete_bin": False, # whether to delete binary file after processing + "mesoscan": False, # for reading in scanimage mesoscope files + "bruker": False, # whether or not single page BRUKER tiffs! + "bruker_bidirectional": + False, # bidirectional multiplane in bruker: 0, 1, 2, 2, 1, 0 (True) vs 0, 1, 2, 0, 1, 2 (False) + "h5py": [], # take h5py as input (deactivates data_path) + "h5py_key": "data", #key in h5py where data array is stored + "nwb_file": "", # take nwb file as input (deactivates data_path) + "nwb_driver": "", # driver for nwb file (nothing if file is local) + "nwb_series": + "", # TwoPhotonSeries name, defaults to first TwoPhotonSeries in nwb file + "save_path0": '', # pathname where you'd like to store results, defaults to first item in data_path + "save_folder": [], # directory you"d like suite2p results to be saved to + "subfolders": [ + ], # subfolders you"d like to search through when look_one_level_down is set to True + "move_bin": + False, # if 1, and fast_disk is different than save_disk, binary file is moved to save_disk # main settings - 'nplanes' : 1, # each tiff has these many planes in sequence - 'nchannels' : 1, # each tiff has these many channels per plane - 'functional_chan' : 1, # this channel is used to extract functional ROIs (1-based) - 'tau': 1., # this is the main parameter for deconvolution - 'fs': 10., # sampling rate (PER PLANE e.g. for 12 plane recordings it will be around 2.5) - 'force_sktiff': False, # whether or not to use scikit-image for tiff reading - 'frames_include': -1, - 'multiplane_parallel': False, # whether or not to run on server - 'ignore_flyback': [], + "nplanes": 1, # each tiff has these many planes in sequence + "nchannels": 1, # each tiff has these many channels per plane + "functional_chan": + 1, # this channel is used to extract functional ROIs (1-based) + "tau": 1., # this is the main parameter for deconvolution + "fs": + 10., # sampling rate (PER PLANE e.g. for 12 plane recordings it will be around 2.5) + "force_sktiff": False, # whether or not to use scikit-image for tiff reading + "frames_include": -1, + "multiplane_parallel": False, # whether or not to run on server + "ignore_flyback": [], # output settings - 'preclassify': 0.0, # apply classifier before signal extraction with probability 0.3 - 'save_mat': False, # whether to save output as matlab files - 'save_NWB': False, # whether to save output as NWB file - 'combined': True, # combine multiple planes into a single result /single canvas for GUI - 'aspect': 1.0, # um/pixels in X / um/pixels in Y (for correct aspect ratio in GUI) + "preclassify": + 0.0, # apply classifier before signal extraction with probability 0.3 + "save_mat": False, # whether to save output as matlab files + "save_NWB": False, # whether to save output as NWB file + "combined": + True, # combine multiple planes into a single result /single canvas for GUI + "aspect": + 1.0, # um/pixels in X / um/pixels in Y (for correct aspect ratio in GUI) # bidirectional phase offset - 'do_bidiphase': False, #whether or not to compute bidirectional phase offset (applies to 2P recordings only) - 'bidiphase': 0, # Bidirectional Phase offset from line scanning (set by user). Applied to all frames in recording. - 'bidi_corrected': False, # Whether to do bidirectional correction during registration + "do_bidiphase": + False, #whether or not to compute bidirectional phase offset (applies to 2P recordings only) + "bidiphase": + 0, # Bidirectional Phase offset from line scanning (set by user). Applied to all frames in recording. + "bidi_corrected": + False, # Whether to do bidirectional correction during registration # registration settings - 'do_registration': True, # whether to register data (2 forces re-registration) - 'two_step_registration': False, # whether or not to run registration twice (useful for low SNR data). Set keep_movie_raw to True if setting this parameter to True. - 'keep_movie_raw': False, # whether to keep binary file of non-registered frames. - 'nimg_init': 300, # subsampled frames for finding reference image - 'batch_size': 500, # number of frames per batch - 'maxregshift': 0.1, # max allowed registration shift, as a fraction of frame max(width and height) - 'align_by_chan' : 1, # when multi-channel, you can align by non-functional channel (1-based) - 'reg_tif': False, # whether to save registered tiffs - 'reg_tif_chan2': False, # whether to save channel 2 registered tiffs - 'subpixel' : 10, # precision of subpixel registration (1/subpixel steps) - 'smooth_sigma_time': 0, # gaussian smoothing in time - 'smooth_sigma': 1.15, # ~1 good for 2P recordings, recommend 3-5 for 1P recordings - 'th_badframes': 1.0, # this parameter determines which frames to exclude when determining cropping - set it smaller to exclude more frames - 'norm_frames': True, # normalize frames when detecting shifts - 'force_refImg': False, # if True, use refImg stored in ops if available - 'pad_fft': False, # if True, pads image during FFT part of registration - + "do_registration": True, # whether to register data (2 forces re-registration) + "two_step_registration": + False, # whether or not to run registration twice (useful for low SNR data). Set keep_movie_raw to True if setting this parameter to True. + "keep_movie_raw": + False, # whether to keep binary file of non-registered frames. + "nimg_init": 300, # subsampled frames for finding reference image + "batch_size": 500, # number of frames per batch + "maxregshift": + 0.1, # max allowed registration shift, as a fraction of frame max(width and height) + "align_by_chan": + 1, # when multi-channel, you can align by non-functional channel (1-based) + "reg_tif": False, # whether to save registered tiffs + "reg_tif_chan2": False, # whether to save channel 2 registered tiffs + "subpixel": 10, # precision of subpixel registration (1/subpixel steps) + "smooth_sigma_time": 0, # gaussian smoothing in time + "smooth_sigma": + 1.15, # ~1 good for 2P recordings, recommend 3-5 for 1P recordings + "th_badframes": + 1.0, # this parameter determines which frames to exclude when determining cropping - set it smaller to exclude more frames + "norm_frames": True, # normalize frames when detecting shifts + "force_refImg": False, # if True, use refImg stored in ops if available + "pad_fft": False, # if True, pads image during FFT part of registration + # non rigid registration settings - 'nonrigid': True, # whether to use nonrigid registration - 'block_size': [128, 128], # block size to register (** keep this a multiple of 2 **) - 'snr_thresh': 1.2, # if any nonrigid block is below this threshold, it gets smoothed until above this threshold. 1.0 results in no smoothing - 'maxregshiftNR': 5, # maximum pixel shift allowed for nonrigid, relative to rigid + "nonrigid": True, # whether to use nonrigid registration + "block_size": [128, + 128], # block size to register (** keep this a multiple of 2 **) + "snr_thresh": + 1.2, # if any nonrigid block is below this threshold, it gets smoothed until above this threshold. 1.0 results in no smoothing + "maxregshiftNR": + 5, # maximum pixel shift allowed for nonrigid, relative to rigid # 1P settings - '1Preg': False, # whether to perform high-pass filtering and tapering - 'spatial_hp_reg': 42, # window for spatial high-pass filtering before registration - 'pre_smooth': 0, # whether to smooth before high-pass filtering before registration - 'spatial_taper': 40, # how much to ignore on edges (important for vignetted windows, for FFT padding do not set BELOW 3*ops['smooth_sigma']) + "1Preg": False, # whether to perform high-pass filtering and tapering + "spatial_hp_reg": + 42, # window for spatial high-pass filtering before registration + "pre_smooth": + 0, # whether to smooth before high-pass filtering before registration + "spatial_taper": + 40, # how much to ignore on edges (important for vignetted windows, for FFT padding do not set BELOW 3*ops["smooth_sigma"]) # cell detection settings with suite2p - 'roidetect': True, # whether or not to run ROI extraction - 'spikedetect': True, # whether or not to run spike deconvolution - 'sparse_mode': True, # whether or not to run sparse_mode - 'spatial_scale': 0, # 0: multi-scale; 1: 6 pixels, 2: 12 pixels, 3: 24 pixels, 4: 48 pixels - 'connected': True, # whether or not to keep ROIs fully connected (set to 0 for dendrites) - 'nbinned': 5000, # max number of binned frames for cell detection - 'max_iterations': 20, # maximum number of iterations to do cell detection - 'threshold_scaling': 1.0, # adjust the automatically determined threshold by this scalar multiplier - 'max_overlap': 0.75, # cells with more overlap than this get removed during triage, before refinement - 'high_pass': 100, # running mean subtraction with window of size 'high_pass' (use low values for 1P) - 'spatial_hp_detect': 25, # window for spatial high-pass filtering for neuropil subtraction before detection - 'denoise': False, # denoise binned movie for cell detection in sparse_mode + "roidetect": True, # whether or not to run ROI extraction + "spikedetect": True, # whether or not to run spike deconvolution + "sparse_mode": True, # whether or not to run sparse_mode + "spatial_scale": + 0, # 0: multi-scale; 1: 6 pixels, 2: 12 pixels, 3: 24 pixels, 4: 48 pixels + "connected": + True, # whether or not to keep ROIs fully connected (set to 0 for dendrites) + "nbinned": 5000, # max number of binned frames for cell detection + "max_iterations": 20, # maximum number of iterations to do cell detection + "threshold_scaling": + 1.0, # adjust the automatically determined threshold by this scalar multiplier + "max_overlap": + 0.75, # cells with more overlap than this get removed during triage, before refinement + "high_pass": + 100, # running mean subtraction across bins with a window of size "high_pass" (use low values for 1P) + "spatial_hp_detect": + 25, # window for spatial high-pass filtering for neuropil subtraction before detection + "denoise": False, # denoise binned movie for cell detection in sparse_mode # cell detection settings with cellpose (used if anatomical_only > 0) - 'anatomical_only': 0, # run cellpose to get masks on 1: max_proj / mean_img; 2: mean_img; 3: mean_img enhanced, 4: max_proj - 'diameter': 0, # use diameter for cellpose, if 0 estimate diameter - 'cellprob_threshold': 0.0, # cellprob_threshold for cellpose - 'flow_threshold': 1.5, # flow_threshold for cellpose - 'spatial_hp_cp': 0, # high-pass image spatially by a multiple of the diameter - 'pretrained_model': 'cyto', # path to pretrained model or model type string in Cellpose (can be user model) + "anatomical_only": + 0, # run cellpose to get masks on 1: max_proj / mean_img; 2: mean_img; 3: mean_img enhanced, 4: max_proj + "diameter": 0, # use diameter for cellpose, if 0 estimate diameter + "cellprob_threshold": 0.0, # cellprob_threshold for cellpose + "flow_threshold": 1.5, # flow_threshold for cellpose + "spatial_hp_cp": 0, # high-pass image spatially by a multiple of the diameter + "pretrained_model": + "cyto", # path to pretrained model or model type string in Cellpose (can be user model) # classification parameters - 'soma_crop': True, # crop dendrites for cell classification stats like compactness + "soma_crop": + True, # crop dendrites for cell classification stats like compactness # ROI extraction parameters - 'neuropil_extract': True, # whether or not to extract neuropil; if False, Fneu is set to zero - 'inner_neuropil_radius': 2, # number of pixels to keep between ROI and neuropil donut - 'min_neuropil_pixels': 350, # minimum number of pixels in the neuropil - 'lam_percentile': 50., # percentile of lambda within area to ignore when excluding cell pixels for neuropil extraction - 'allow_overlap': False, # pixels that are overlapping are thrown out (False) or added to both ROIs (True) - 'use_builtin_classifier': False, # whether or not to use built-in classifier for cell detection (overrides - # classifier specified in classifier_path if set to True) - 'classifier_path': '', # path to classifier - - # channel 2 detection settings (stat[n]['chan2'], stat[n]['not_chan2']) - 'chan2_thres': 0.65, # minimum for detection of brightness on channel 2 + "neuropil_extract": + True, # whether or not to extract neuropil; if False, Fneu is set to zero + "inner_neuropil_radius": + 2, # number of pixels to keep between ROI and neuropil donut + "min_neuropil_pixels": 350, # minimum number of pixels in the neuropil + "lam_percentile": + 50., # percentile of lambda within area to ignore when excluding cell pixels for neuropil extraction + "allow_overlap": + False, # pixels that are overlapping are thrown out (False) or added to both ROIs (True) + "use_builtin_classifier": + False, # whether or not to use built-in classifier for cell detection (overrides + # classifier specified in classifier_path if set to True) + "classifier_path": "", # path to classifier + + # channel 2 detection settings (stat[n]["chan2"], stat[n]["not_chan2"]) + "chan2_thres": 0.65, # minimum for detection of brightness on channel 2 # deconvolution settings - 'baseline': 'maximin', # baselining mode (can also choose 'prctile') - 'win_baseline': 60., # window for maximin - 'sig_baseline': 10., # smoothing constant for gaussian filter - 'prctile_baseline': 8., # optional (whether to use a percentile baseline) - 'neucoeff': 0.7, # neuropil coefficient - } \ No newline at end of file + "baseline": "maximin", # baselining mode (can also choose "prctile") + "win_baseline": 60., # window for maximin + "sig_baseline": 10., # smoothing constant for gaussian filter + "prctile_baseline": 8., # optional (whether to use a percentile baseline) + "neucoeff": 0.7, # neuropil coefficient + } diff --git a/suite2p/detection/__init__.py b/suite2p/detection/__init__.py index 1c59a93ec..bb97b8fa6 100644 --- a/suite2p/detection/__init__.py +++ b/suite2p/detection/__init__.py @@ -1,2 +1,5 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from .detect import detect, detection_wrapper, bin_movie from .stats import roi_stats, ROI \ No newline at end of file diff --git a/suite2p/detection/anatomical.py b/suite2p/detection/anatomical.py index 0d85bda95..f8abe4f98 100644 --- a/suite2p/detection/anatomical.py +++ b/suite2p/detection/anatomical.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from typing import Any, Dict from scipy.ndimage import find_objects, gaussian_filter @@ -12,132 +15,140 @@ from . import utils from .stats import roi_stats + def mask_centers(masks): centers = np.zeros((masks.max(), 2), np.int32) diams = np.zeros(masks.max(), np.float32) slices = find_objects(masks) - for i,si in enumerate(slices): + for i, si in enumerate(slices): if si is not None: - sr,sc = si - ymed, xmed, diam = utils.mask_stats(masks[sr, sc] == (i+1)) + sr, sc = si + ymed, xmed, diam = utils.mask_stats(masks[sr, sc] == (i + 1)) centers[i] = np.array([ymed, xmed]) diams[i] = diam return centers, diams + def patch_detect(patches, diam): """ anatomical detection of masks from top active frames for putative cell """ - print('refining masks using cellpose') + print("refining masks using cellpose") npatches = len(patches) ly = patches[0].shape[0] model = Cellpose(net_avg=False) imgs = np.zeros((npatches, ly, ly, 2), np.float32) - for i,m in enumerate(patches): - imgs[i,:,:,0] = transforms.normalize99(m) + for i, m in enumerate(patches): + imgs[i, :, :, 0] = transforms.normalize99(m) rsz = 30. / diam - imgs = transforms.resize_image(imgs, rsz=rsz).transpose(0,3,1,2) + imgs = transforms.resize_image(imgs, rsz=rsz).transpose(0, 3, 1, 2) imgs, ysub, xsub = transforms.pad_image_ND(imgs) - + pmasks = np.zeros((npatches, ly, ly), np.uint16) batch_size = 8 * 224 // ly - tic=time.time() + tic = time.time() for j in np.arange(0, npatches, batch_size): - y = model.cp.network(imgs[j:j+batch_size])[0] - y = y[:, :, ysub[0]:ysub[-1]+1, xsub[0]:xsub[-1]+1] + y = model.cp.network(imgs[j:j + batch_size])[0] + y = y[:, :, ysub[0]:ysub[-1] + 1, xsub[0]:xsub[-1] + 1] y = y.asnumpy() - for i,yi in enumerate(y): + for i, yi in enumerate(y): cellprob = yi[-1] dP = yi[:2] niter = 1 / rsz * 200 - p = dynamics.follow_flows(-1 * dP * (cellprob>0) / 5., - niter=niter) - maski = dynamics.get_masks(p, iscell=(cellprob>0), - flows=dP, threshold=1.0) + p = dynamics.follow_flows(-1 * dP * (cellprob > 0) / 5., niter=niter) + maski = dynamics.get_masks(p, iscell=(cellprob > 0), flows=dP, + threshold=1.0) maski = fill_holes_and_remove_small_masks(maski) - maski = transforms.resize_image(maski, ly, ly, + maski = transforms.resize_image(maski, ly, ly, interpolation=cv2.INTER_NEAREST) - pmasks[j+i] = maski - if j%5==0: - print('%d / %d masks created in %0.2fs'%(j+batch_size, npatches, time.time()-tic)) + pmasks[j + i] = maski + if j % 5 == 0: + print("%d / %d masks created in %0.2fs" % + (j + batch_size, npatches, time.time() - tic)) return pmasks + def refine_masks(stats, patches, seeds, diam, Lyc, Lxc): nmasks = len(patches) patch_masks = patch_detect(patches, diam) ly = patches[0].shape[0] // 2 - igood = np.zeros(nmasks, 'bool') - for i, (patch_mask, stat, (yi,xi)) in enumerate(zip(patch_masks, stats, seeds)): + igood = np.zeros(nmasks, "bool") + for i, (patch_mask, stat, (yi, xi)) in enumerate(zip(patch_masks, stats, seeds)): mask = np.zeros((Lyc, Lxc), np.float32) - ypix0, xpix0= stat['ypix'], stat['xpix'] - mask[ypix0, xpix0] = stat['lam'] + ypix0, xpix0 = stat["ypix"], stat["xpix"] + mask[ypix0, xpix0] = stat["lam"] func_mask = utils.square_mask(mask, ly, yi, xi) - ious = utils.mask_ious(patch_mask.astype(np.uint16), - (func_mask>0).astype(np.uint16))[0] - if len(ious)>0 and ious.max() > 0.45: + ious = utils.mask_ious(patch_mask.astype(np.uint16), (func_mask + > 0).astype(np.uint16))[0] + if len(ious) > 0 and ious.max() > 0.45: mask_id = np.argmax(ious) + 1 - patch_mask = patch_mask[max(0, ly-yi) : min(2*ly, Lyc+ly-yi), - max(0, ly-xi) : min(2*ly, Lxc+ly-xi)] - func_mask = func_mask[max(0, ly-yi) : min(2*ly, Lyc+ly-yi), - max(0, ly-xi) : min(2*ly, Lxc+ly-xi)] - ypix0, xpix0 = np.nonzero(patch_mask==mask_id) + patch_mask = patch_mask[max(0, ly - yi):min(2 * ly, Lyc + ly - yi), + max(0, ly - xi):min(2 * ly, Lxc + ly - xi)] + func_mask = func_mask[max(0, ly - yi):min(2 * ly, Lyc + ly - yi), + max(0, ly - xi):min(2 * ly, Lxc + ly - xi)] + ypix0, xpix0 = np.nonzero(patch_mask == mask_id) lam0 = func_mask[ypix0, xpix0] - lam0[lam0<=0] = lam0.min() - ypix0 = ypix0 + max(0, yi-ly) - xpix0 = xpix0 + max(0, xi-ly) + lam0[lam0 <= 0] = lam0.min() + ypix0 = ypix0 + max(0, yi - ly) + xpix0 = xpix0 + max(0, xi - ly) igood[i] = True - stat['ypix'] = ypix0 - stat['xpix'] = xpix0 - stat['lam'] = lam0 - stat['anatomical'] = True + stat["ypix"] = ypix0 + stat["xpix"] = xpix0 + stat["lam"] = lam0 + stat["anatomical"] = True else: - stat['anatomical'] = False - return stats + stat["anatomical"] = False + return stats + -def roi_detect(mproj, diameter=None, cellprob_threshold=0.0, flow_threshold=1.5, pretrained_model=None): +def roi_detect(mproj, diameter=None, cellprob_threshold=0.0, flow_threshold=1.5, + pretrained_model=None): if not os.path.exists(pretrained_model): model = CellposeModel(model_type=pretrained_model) else: model = CellposeModel(pretrained_model=pretrained_model) - masks = model.eval(mproj, net_avg=True, channels=[0,0], diameter=diameter, - cellprob_threshold=cellprob_threshold, flow_threshold=flow_threshold)[0] + masks = model.eval(mproj, channels=[0, 0], diameter=diameter, + cellprob_threshold=cellprob_threshold, + flow_threshold=flow_threshold)[0] shape = masks.shape _, masks = np.unique(np.int32(masks), return_inverse=True) masks = masks.reshape(shape) centers, mask_diams = mask_centers(masks) median_diam = np.median(mask_diams) - print('>>>> %d masks detected, median diameter = %0.2f ' % (masks.max(), median_diam)) + print(">>>> %d masks detected, median diameter = %0.2f " % + (masks.max(), median_diam)) return masks, centers, median_diam, mask_diams.astype(np.int32) + def masks_to_stats(masks, weights): stats = [] slices = find_objects(masks) - for i,si in enumerate(slices): - sr,sc = si - ypix0, xpix0 = np.nonzero(masks[sr, sc]==(i+1)) + for i, si in enumerate(slices): + sr, sc = si + ypix0, xpix0 = np.nonzero(masks[sr, sc] == (i + 1)) ypix0 = ypix0.astype(int) + sr.start xpix0 = xpix0.astype(int) + sc.start ymed = np.median(ypix0) xmed = np.median(xpix0) - imin = np.argmin((xpix0-xmed)**2 + (ypix0-ymed)**2) + imin = np.argmin((xpix0 - xmed)**2 + (ypix0 - ymed)**2) xmed = xpix0[imin] ymed = ypix0[imin] stats.append({ - 'ypix': ypix0, - 'xpix': xpix0, - 'lam': weights[ypix0, xpix0], - 'med': [ymed, xmed], - 'footprint': 1 + "ypix": ypix0, + "xpix": xpix0, + "lam": weights[ypix0, xpix0], + "med": [ymed, xmed], + "footprint": 1 }) stats = np.array(stats) return stats - -def select_rois(ops: Dict[str, Any], mov: np.ndarray, - diameter=None): + + +def select_rois(ops: Dict[str, Any], mov: np.ndarray, diameter=None): """ find ROIs in static frames Parameters: ops: dictionary - requires keys 'high_pass', 'anatomical_only', optional 'yrange', 'xrange' + requires keys "high_pass", "anatomical_only", optional "yrange", "xrange" mov: ndarray t x Lyc x Lxc, binned movie @@ -145,84 +156,92 @@ def select_rois(ops: Dict[str, Any], mov: np.ndarray, stats: list of dicts """ - Lyc,Lxc = mov.shape[1:] + Lyc, Lxc = mov.shape[1:] mean_img = mov.mean(axis=0) - mov = utils.temporal_high_pass_filter(mov=mov, width=int(ops['high_pass'])) + mov = utils.temporal_high_pass_filter(mov=mov, width=int(ops["high_pass"])) max_proj = mov.max(axis=0) #max_proj = np.percentile(mov, 90, axis=0) #.mean(axis=0) - if ops['anatomical_only'] == 1: + if ops["anatomical_only"] == 1: img = np.log(np.maximum(1e-3, max_proj / np.maximum(1e-3, mean_img))) weights = max_proj - elif ops['anatomical_only']==2: + elif ops["anatomical_only"] == 2: img = mean_img - weights = 0.1 + np.clip((mean_img - np.percentile(mean_img,1)) / - (np.percentile(mean_img,99) - np.percentile(mean_img,1)), 0, 1) - elif ops['anatomical_only']==3: - if 'meanImgE' in ops: - img = ops['meanImgE'][ops['yrange'][0]:ops['yrange'][1], ops['xrange'][0]:ops['xrange'][1]] + weights = 0.1 + np.clip( + (mean_img - np.percentile(mean_img, 1)) / + (np.percentile(mean_img, 99) - np.percentile(mean_img, 1)), 0, 1) + elif ops["anatomical_only"] == 3: + if "meanImgE" in ops: + img = ops["meanImgE"][ops["yrange"][0]:ops["yrange"][1], + ops["xrange"][0]:ops["xrange"][1]] else: img = mean_img - print('no enhanced mean image, using mean image instead') - weights = 0.1 + np.clip((mean_img - np.percentile(mean_img,1)) / - (np.percentile(mean_img,99) - np.percentile(mean_img,1)), 0, 1) + print("no enhanced mean image, using mean image instead") + weights = 0.1 + np.clip( + (mean_img - np.percentile(mean_img, 1)) / + (np.percentile(mean_img, 99) - np.percentile(mean_img, 1)), 0, 1) else: img = max_proj.copy() weights = max_proj t0 = time.time() if diameter is not None: - if isinstance(diameter, (list, np.ndarray)) and len(ops['diameter'])>1: + if isinstance(diameter, (list, np.ndarray)) and len(ops["diameter"]) > 1: rescale = diameter[1] / diameter[0] - img = cv2.resize(img, (Lxc, int(Lyc*rescale))) + img = cv2.resize(img, (Lxc, int(Lyc * rescale))) else: rescale = 1.0 diameter = [diameter, diameter] if diameter[1] > 0: - print("!NOTE! diameter set to %0.2f for cell detection with cellpose"%diameter[1]) + print("!NOTE! diameter set to %0.2f for cell detection with cellpose" % + diameter[1]) else: - print("!NOTE! diameter set to 0 or None, diameter will be estimated by cellpose") + print( + "!NOTE! diameter set to 0 or None, diameter will be estimated by cellpose" + ) else: - print("!NOTE! diameter set to 0 or None, diameter will be estimated by cellpose") + print( + "!NOTE! diameter set to 0 or None, diameter will be estimated by cellpose") - if ops.get('spatial_hp_cp', 0): + if ops.get("spatial_hp_cp", 0): img = np.clip(normalize99(img), 0, 1) - img -= gaussian_filter(img, diameter[1]*ops['spatial_hp_cp']) + img -= gaussian_filter(img, diameter[1] * ops["spatial_hp_cp"]) - masks, centers, median_diam, mask_diams = roi_detect(img, diameter=diameter[1], - flow_threshold=ops['flow_threshold'], - cellprob_threshold=ops['cellprob_threshold'], - pretrained_model=ops['pretrained_model']) + masks, centers, median_diam, mask_diams = roi_detect( + img, diameter=diameter[1], flow_threshold=ops["flow_threshold"], + cellprob_threshold=ops["cellprob_threshold"], + pretrained_model=ops["pretrained_model"]) if rescale != 1.0: masks = cv2.resize(masks, (Lxc, Lyc), interpolation=cv2.INTER_NEAREST) img = cv2.resize(img, (Lxc, Lyc)) stats = masks_to_stats(masks, weights) - print('Detected %d ROIs, %0.2f sec' % (len(stats), time.time() - t0)) - + print("Detected %d ROIs, %0.2f sec" % (len(stats), time.time() - t0)) + new_ops = { - 'diameter': median_diam, - 'max_proj': max_proj, - 'Vmax': 0, - 'ihop': 0, - 'Vsplit': 0, - 'Vcorr': img, - 'Vmap': 0, - 'spatscale_pix': 0 - } + "diameter": median_diam, + "max_proj": max_proj, + "Vmax": 0, + "ihop": 0, + "Vsplit": 0, + "Vcorr": img, + "Vmap": 0, + "spatscale_pix": 0 + } ops.update(new_ops) return stats + # def run_assist(): # nmasks, diam = 0, None -# if anatomical: +# if anatomical: # try: -# print('>>>> CELLPOSE estimating spatial scale and masks as seeds for functional algorithm') -# from . import anatomical +# print(">>>> CELLPOSE estimating spatial scale and masks as seeds for functional algorithm") +# from . import anatomical # mproj = np.log(np.maximum(1e-3, max_proj / np.maximum(1e-3, mean_img))) -# masks, centers, diam, mask_diams = anatomical.roi_detect(mproj) -# nmasks = masks.max() +# masks, centers, diam, mask_diams = anatomical.roi_detect(mproj) +# nmasks = masks.max() # except: -# print('ERROR importing or running cellpose, continuing without anatomical estimates') +# print("ERROR importing or running cellpose, continuing without anatomical estimates") # if tj < nmasks: # yi, xi = centers[tj] # ls = mask_diams[tj] @@ -230,9 +249,5 @@ def select_rois(ops: Dict[str, Any], mov: np.ndarray, # if nmasks > 0: # stats = anatomical.refine_masks(stats, patches, seeds, diam, Lyc, Lxc) # for stat in stats: -# if stat['anatomical']: -# stat['lam'] *= sdmov[stat['ypix'], stat['xpix']] - - - - +# if stat["anatomical"]: +# stat["lam"] *= sdmov[stat["ypix"], stat["xpix"]] diff --git a/suite2p/detection/chan2detect.py b/suite2p/detection/chan2detect.py index d282d2b8b..de34cf3b2 100644 --- a/suite2p/detection/chan2detect.py +++ b/suite2p/detection/chan2detect.py @@ -1,107 +1,123 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from scipy.ndimage import gaussian_filter -from ..extraction import masks +from ..extraction import masks from . import utils - -''' +""" identify cells with channel 2 brightness (aka red cells) main function is detect -takes from ops: 'meanImg', 'meanImg_chan2', 'Ly', 'Lx' -takes from stat: 'ypix', 'xpix', 'lam' -''' +takes from ops: "meanImg", "meanImg_chan2", "Ly", "Lx" +takes from stat: "ypix", "xpix", "lam" +""" + -def quadrant_mask(Ly,Lx,ny,nx,sT): - mask = np.zeros((Ly,Lx), np.float32) - mask[np.ix_(ny,nx)] = 1 +def quadrant_mask(Ly, Lx, ny, nx, sT): + mask = np.zeros((Ly, Lx), np.float32) + mask[np.ix_(ny, nx)] = 1 mask = gaussian_filter(mask, sT) return mask + def correct_bleedthrough(Ly, Lx, nblks, mimg, mimg2): # subtract bleedthrough of green into red channel # non-rigid regression with nblks x nblks pieces - sT = np.round((Ly + Lx) / (nblks*2) * 0.25) + sT = np.round((Ly + Lx) / (nblks * 2) * 0.25) mask = np.zeros((Ly, Lx, nblks, nblks), np.float32) weights = np.zeros((nblks, nblks), np.float32) - yb = np.linspace(0, Ly, nblks+1).astype(int) - xb = np.linspace(0, Lx, nblks+1).astype(int) + yb = np.linspace(0, Ly, nblks + 1).astype(int) + xb = np.linspace(0, Lx, nblks + 1).astype(int) for iy in range(nblks): for ix in range(nblks): - ny = np.arange(yb[iy], yb[iy+1]).astype(int) - nx = np.arange(xb[ix], xb[ix+1]).astype(int) - mask[:,:,iy,ix] = quadrant_mask(Ly, Lx, ny, nx, sT) - x = mimg[np.ix_(ny,nx)].flatten() - x2 = mimg2[np.ix_(ny,nx)].flatten() + ny = np.arange(yb[iy], yb[iy + 1]).astype(int) + nx = np.arange(xb[ix], xb[ix + 1]).astype(int) + mask[:, :, iy, ix] = quadrant_mask(Ly, Lx, ny, nx, sT) + x = mimg[np.ix_(ny, nx)].flatten() + x2 = mimg2[np.ix_(ny, nx)].flatten() # predict chan2 from chan1 a = (x * x2).sum() / (x * x).sum() - weights[iy,ix] = a - mask /= mask.sum(axis=-1).sum(axis=-1)[:,:,np.newaxis,np.newaxis] + weights[iy, ix] = a + mask /= mask.sum(axis=-1).sum(axis=-1)[:, :, np.newaxis, np.newaxis] mask *= weights - mask *= mimg[:,:,np.newaxis,np.newaxis] + mask *= mimg[:, :, np.newaxis, np.newaxis] mimg2 -= mask.sum(axis=-1).sum(axis=-1) mimg2 = np.maximum(0, mimg2) return mimg2 + def intensity_ratio(ops, stats): """ compute pixels in cell and in area around cell (including overlaps) (exclude pixels from other cells) """ - Ly, Lx = ops['Ly'], ops['Lx'] - cell_pix = masks.create_cell_pix(stats, Ly=ops['Ly'], Lx=ops['Lx']) - cell_masks0 = [masks.create_cell_mask(stat, Ly=ops['Ly'], Lx=ops['Lx'], allow_overlap=ops['allow_overlap']) for stat in stats] + Ly, Lx = ops["Ly"], ops["Lx"] + cell_pix = masks.create_cell_pix(stats, Ly=ops["Ly"], Lx=ops["Lx"]) + cell_masks0 = [ + masks.create_cell_mask(stat, Ly=ops["Ly"], Lx=ops["Lx"], + allow_overlap=ops["allow_overlap"]) for stat in stats + ] neuropil_ipix = masks.create_neuropil_masks( - ypixs=[stat['ypix'] for stat in stats], - xpixs=[stat['xpix'] for stat in stats], + ypixs=[stat["ypix"] for stat in stats], + xpixs=[stat["xpix"] for stat in stats], cell_pix=cell_pix, - inner_neuropil_radius=ops['inner_neuropil_radius'], - min_neuropil_pixels=ops['min_neuropil_pixels'], + inner_neuropil_radius=ops["inner_neuropil_radius"], + min_neuropil_pixels=ops["min_neuropil_pixels"], ) cell_masks = np.zeros((len(stats), Ly * Lx), np.float32) neuropil_masks = np.zeros((len(stats), Ly * Lx), np.float32) - for cell_mask, cell_mask0, neuropil_mask, neuropil_mask0 in zip(cell_masks, cell_masks0, neuropil_masks, neuropil_ipix): + for cell_mask, cell_mask0, neuropil_mask, neuropil_mask0 in zip( + cell_masks, cell_masks0, neuropil_masks, neuropil_ipix): cell_mask[cell_mask0[0]] = cell_mask0[1] neuropil_mask[neuropil_mask0.astype(np.int64)] = 1. / len(neuropil_mask0) - mimg2 = ops['meanImg_chan2'] + mimg2 = ops["meanImg_chan2"] inpix = cell_masks @ mimg2.flatten() extpix = neuropil_masks @ mimg2.flatten() inpix = np.maximum(1e-3, inpix) redprob = inpix / (inpix + extpix) - redcell = redprob > ops['chan2_thres'] + redcell = redprob > ops["chan2_thres"] return np.stack((redcell, redprob), axis=-1) + def cellpose_overlap(stats, mimg2): - from . import anatomical + from . import anatomical masks = anatomical.roi_detect(mimg2)[0] Ly, Lx = masks.shape - redstats = np.zeros((len(stats),2), np.float32) #changed the size of preallocated space + redstats = np.zeros((len(stats), 2), + np.float32) #changed the size of preallocated space for i in range(len(stats)): smask = np.zeros((Ly, Lx), np.uint16) - ypix0, xpix0= stats[i]['ypix'], stats[i]['xpix'] + ypix0, xpix0 = stats[i]["ypix"], stats[i]["xpix"] smask[ypix0, xpix0] = 1 ious = utils.mask_ious(masks, smask)[0] iou = ious.max() - redstats[i,] = np.array([iou>0.5, iou]) #this had the wrong dimension + redstats[ + i, + ] = np.array([iou > 0.5, iou]) #this had the wrong dimension return redstats + def detect(ops, stats): - mimg = ops['meanImg'].copy() - mimg2 = ops['meanImg_chan2'].copy() + mimg = ops["meanImg"].copy() + mimg2 = ops["meanImg_chan2"].copy() # subtract bleedthrough of green into red channel # non-rigid regression with nblks x nblks pieces nblks = 3 - Ly, Lx = ops['Ly'], ops['Lx'] - ops['meanImg_chan2_corrected'] = correct_bleedthrough(Ly, Lx, nblks, mimg, mimg2) + Ly, Lx = ops["Ly"], ops["Lx"] + ops["meanImg_chan2_corrected"] = correct_bleedthrough(Ly, Lx, nblks, mimg, mimg2) redstats = None - if ops.get('anatomical_red', True): + if ops.get("anatomical_red", True): try: - print('>>>> CELLPOSE estimating masks in anatomical channel') + print(">>>> CELLPOSE estimating masks in anatomical channel") redstats = cellpose_overlap(stats, mimg2) except: - print('ERROR importing or running cellpose, continuing without anatomical estimates') - + print( + "ERROR importing or running cellpose, continuing without anatomical estimates" + ) + if redstats is None: redstats = intensity_ratio(ops, stats) - + return ops, redstats diff --git a/suite2p/detection/denoise.py b/suite2p/detection/denoise.py index 15823139c..6eaef7a55 100644 --- a/suite2p/detection/denoise.py +++ b/suite2p/detection/denoise.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from typing import List import time @@ -15,22 +18,25 @@ def pca_denoise(mov: np.ndarray, block_size: List, n_comps_frac: float): nblocks = len(yblock) Lyb, Lxb = block_size - n_comps = int(min(min(Lyb*Lxb,nframes), min(Lyb, Lxb) * n_comps_frac)) - maskMul = spatial_taper(Lyb//4, Lyb, Lxb) + n_comps = int(min(min(Lyb * Lxb, nframes), min(Lyb, Lxb) * n_comps_frac)) + maskMul = spatial_taper(Lyb // 4, Lyb, Lxb) norm = np.zeros((Ly, Lx), np.float32) reconstruction = np.zeros_like(mov) - block_re = np.zeros((nblocks, nframes, Lyb*Lxb)) + block_re = np.zeros((nblocks, nframes, Lyb * Lxb)) for i in range(nblocks): - block = mov[:, yblock[i][0] : yblock[i][-1], xblock[i][0] : xblock[i][-1]].reshape(-1, Lyb*Lxb) + block = mov[:, yblock[i][0]:yblock[i][-1], + xblock[i][0]:xblock[i][-1]].reshape(-1, Lyb * Lxb) model = PCA(n_components=n_comps, random_state=0).fit(block) block_re[i] = (block @ model.components_.T) @ model.components_ - norm[yblock[i][0] : yblock[i][-1], xblock[i][0] : xblock[i][-1]] += maskMul + norm[yblock[i][0]:yblock[i][-1], xblock[i][0]:xblock[i][-1]] += maskMul block_re = block_re.reshape(nblocks, nframes, Lyb, Lxb) block_re *= maskMul for i in range(nblocks): - reconstruction[:, yblock[i][0] : yblock[i][-1], xblock[i][0] : xblock[i][-1]] += block_re[i] + reconstruction[:, yblock[i][0]:yblock[i][-1], + xblock[i][0]:xblock[i][-1]] += block_re[i] reconstruction /= norm - print('Binned movie denoised (for cell detection only) in %0.2f sec.' % (time.time() - t0)) + print("Binned movie denoised (for cell detection only) in %0.2f sec." % + (time.time() - t0)) reconstruction += mov_mean return reconstruction diff --git a/suite2p/detection/detect.py b/suite2p/detection/detect.py index 1803e65fb..69e2d22e2 100644 --- a/suite2p/detection/detect.py +++ b/suite2p/detection/detect.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import time import numpy as np from pathlib import Path @@ -10,64 +13,81 @@ from ..classification import classify, user_classfile from .. import default_ops -def detect(ops, classfile=None): - - t0 = time.time() - bin_size = int(max(1, ops['nframes'] // ops['nbinned'], np.round(ops['tau'] * ops['fs']))) - print('Binning movie in chunks of length %2.2d' % bin_size) - with BinaryFile(read_filename=ops['reg_file'], Ly=ops['Ly'], Lx=ops['Lx']) as f: - mov = f.bin_movie( - bin_size=bin_size, - bad_frames=ops.get('badframes'), - y_range=ops['yrange'], - x_range=ops['xrange'], - ) - print('Binned movie [%d,%d,%d] in %0.2f sec.' % (mov.shape[0], mov.shape[1], mov.shape[2], time.time() - t0)) - - ops, stat = detection_wrapper(f, mov=mov, ops=ops, classfile=classfile) - - return ops, stat - -def bin_movie(f_reg, bin_size, yrange=None, xrange=None, badframes=None): - """ bin registered movie """ - n_frames = f_reg.shape[0] - good_frames = ~badframes if badframes is not None else np.ones(n_frames, dtype=bool) - batch_size = min(good_frames.sum(), 500) - Lyc = yrange[1] - yrange[0] - Lxc = xrange[1] - xrange[0] - mov = np.zeros((n_frames//bin_size, Lyc, Lxc), np.float32) - ik = 0 - - t0 = time.time() - for k in np.arange(0, n_frames, batch_size): - data = f_reg[k : min(k + batch_size, n_frames)] - - # exclude badframes - good_indices = good_frames[k : min(k + batch_size, n_frames)] - if good_indices.mean() > 0.5: - data = data[good_indices] - # crop to valid region - if yrange is not None and xrange is not None: - data = data[:, slice(*yrange), slice(*xrange)] +def detect(ops, classfile=None): - # bin in time - if data.shape[0] > bin_size: - n_d = data.shape[0] - data = data[:(n_d // bin_size) * bin_size] - data = data.reshape(-1, bin_size, Lyc, Lxc).astype(np.float32).mean(axis=1) - n_bins = data.shape[0] - mov[ik : ik + n_bins] = data - ik += n_bins + t0 = time.time() + bin_size = int( + max(1, ops["nframes"] // ops["nbinned"], np.round(ops["tau"] * ops["fs"]))) + print("Binning movie in chunks of length %2.2d" % bin_size) + with BinaryFile(filename=ops["reg_file"], Ly=ops["Ly"], Lx=ops["Lx"]) as f: + mov = f.bin_movie( + bin_size=bin_size, + bad_frames=ops.get("badframes"), + y_range=ops["yrange"], + x_range=ops["xrange"], + ) + print("Binned movie [%d,%d,%d] in %0.2f sec." % + (mov.shape[0], mov.shape[1], mov.shape[2], time.time() - t0)) - print('Binned movie of size [%d,%d,%d] created in %0.2f sec.' % (mov.shape[0], mov.shape[1], mov.shape[2], time.time() - t0)) + ops, stat = detection_wrapper(f, mov=mov, ops=ops, classfile=classfile) - return mov + return ops, stat -def detection_wrapper(f_reg, mov=None, yrange=None, xrange=None, - ops=default_ops(), classfile=None): - """ +def bin_movie(f_reg, bin_size, yrange=None, xrange=None, badframes=None): + """ bin registered movie """ + n_frames = f_reg.shape[0] + good_frames = ~badframes if badframes is not None else np.ones(n_frames, dtype=bool) + batch_size = min(good_frames.sum(), 500) + Lyc = yrange[1] - yrange[0] + Lxc = xrange[1] - xrange[0] + + # Number of binned frames is rounded down when binning frames + num_binned_frames = n_frames // bin_size + mov = np.zeros((num_binned_frames, Lyc, Lxc), np.float32) + curr_bin_number = 0 + t0 = time.time() + + # Iterate over n_frames to maintain binning over TIME + for k in np.arange(0, n_frames, batch_size): + data = f_reg[k:min(k + batch_size, n_frames)] + + # exclude badframes + good_indices = good_frames[k:min(k + batch_size, n_frames)] + if good_indices.mean() > 0.5: + data = data[good_indices] + + # crop to valid region + if yrange is not None and xrange is not None: + data = data[:, slice(*yrange), slice(*xrange)] + + # bin in time + if data.shape[0] > bin_size: + # Downsample by binning via reshaping and taking mean of each bin + # only if current batch size exceeds or matches bin_size + n_d = data.shape[0] + data = data[:(n_d // bin_size) * bin_size] + data = data.reshape(-1, bin_size, Lyc, Lxc).astype(np.float32).mean(axis=1) + else: + # Current batch size is below bin_size (could have many bad frames in this batch) + # Downsample taking the mean of batch to get a single bin + data = data.mean(axis=0)[np.newaxis, :, :] + # Only fill in binned data if not exceeding the number of bins mov has + if mov.shape[0] > curr_bin_number: + # Fill in binned data + n_bins = data.shape[0] + mov[curr_bin_number:curr_bin_number + n_bins] = data + curr_bin_number += n_bins + + print("Binned movie of size [%d,%d,%d] created in %0.2f sec." % + (mov.shape[0], mov.shape[1], mov.shape[2], time.time() - t0)) + return mov + + +def detection_wrapper(f_reg, mov=None, yrange=None, xrange=None, ops=default_ops(), + classfile=None): + """ Main detection function. Identifies ROIs. @@ -75,7 +95,7 @@ def detection_wrapper(f_reg, mov=None, yrange=None, xrange=None, Parameters ---------------- - f_reg : np.ndarray or io.BinaryRWFile, + f_reg : np.ndarray or io.BinaryWFile, n_frames x Ly x Lx mov : ndarray (t x Lyc x Lxc) @@ -97,130 +117,143 @@ def detection_wrapper(f_reg, mov=None, yrange=None, xrange=None, ops : dictionary or list of dicts - stat : dictionary 'ypix', 'xpix', 'lam' + stat : dictionary "ypix", "xpix", "lam" Dictionary containing statistics for ROIs """ - n_frames, Ly, Lx = f_reg.shape - yrange = ops.get('yrange', [0, Ly]) if yrange is None else yrange - xrange = ops.get('xrange', [0, Lx]) if xrange is None else xrange - - if mov is None: - bin_size = int(max(1, n_frames // ops['nbinned'], np.round(ops['tau'] * ops['fs']))) - print('Binning movie in chunks of length %2.2d' % bin_size) - mov = bin_movie(f_reg, bin_size, yrange=yrange, - xrange=xrange, badframes=ops.get('badframes', None)) - else: - if mov.shape[1] != yrange[-1] - yrange[0]: - raise ValueError('mov.shape[1] is not same size as yrange') - elif mov.shape[2] != xrange[-1] - xrange[0]: - raise ValueError('mov.shape[2] is not same size as xrange') - - if ops.get('inverted_activity', False): - mov -= mov.min() - mov *= -1 - mov -= mov.min() - - if ops.get('denoise', 1): - mov = pca_denoise(mov, block_size=[ops['block_size'][0]//2, ops['block_size'][1]//2], - n_comps_frac = 0.5) - - if ops.get('anatomical_only', 0): - try: - from . import anatomical - CELLPOSE_INSTALLED = True - except Exception as e: - print('Warning: cellpose did not import') - print(e) - print('cannot use anatomical mode, but otherwise suite2p will run normally') - CELLPOSE_INSTALLED = False - if not CELLPOSE_INSTALLED: - print('~~~ tried to import cellpose to run anatomical but failed, install with: ~~~') - print('$ pip install cellpose') - else: - print('>>>> CELLPOSE finding masks in ' + ['max_proj / mean_img', 'mean_img', 'enhanced_mean_img', 'max_proj'][int(ops['anatomical_only'])-1]) - stat = anatomical.select_rois( - ops=ops, - mov=mov, - diameter=ops.get('diameter', None)) - else: - stat = select_rois( - ops=ops, - mov=mov, - sparse_mode=ops['sparse_mode'], - classfile=classfile, - ) - - ymin = int(yrange[0]) - xmin = int(xrange[0]) - if len(stat) > 0: - for s in stat: - s['ypix'] += ymin - s['xpix'] += xmin - s['med'][0] += ymin - s['med'][1] += xmin - - if ops['preclassify'] > 0: - if classfile is None: - print(f'NOTE: Applying user classifier at {str(user_classfile)}') - classfile = user_classfile - - stat = roi_stats(stat, Ly, Lx, aspect=ops.get('aspect', None), - diameter=ops.get('diameter', None), do_crop=ops.get('soma_crop', 1)) - if len(stat) == 0: - iscell = np.zeros((0, 2)) - else: - iscell = classify(stat=stat, classfile=classfile) - np.save(Path(ops['save_path']).joinpath('iscell.npy'), iscell) - ic = (iscell[:,0]>ops['preclassify']).flatten().astype('bool') - stat = stat[ic] - print('Preclassify threshold %0.2f, %d ROIs removed' % (ops['preclassify'], (~ic).sum())) - - stat = roi_stats(stat, Ly, Lx, aspect=ops.get('aspect', None), - diameter=ops.get('diameter', None), - max_overlap=ops['max_overlap'], - do_crop=ops.get('soma_crop', 1)) - print('After removing overlaps, %d ROIs remain' % (len(stat))) - - # if second channel, detect bright cells in second channel - if 'meanImg_chan2' in ops: - if 'chan2_thres' not in ops: - ops['chan2_thres'] = 0.65 - ops, redcell = chan2detect.detect(ops, stat) - np.save(Path(ops['save_path']).joinpath('redcell.npy'), redcell) - - return ops, stat - -def select_rois(ops: Dict[str, Any], mov: np.ndarray, - sparse_mode: bool = True, - classfile: Path = None): - - t0 = time.time() - if sparse_mode: - ops.update({'Lyc': mov.shape[1], 'Lxc': mov.shape[2]}) - new_ops, stat = sparsedetect.sparsery( - mov=mov, - high_pass=ops['high_pass'], - neuropil_high_pass=ops['spatial_hp_detect'], - batch_size=ops['batch_size'], - spatial_scale=ops['spatial_scale'], - threshold_scaling=ops['threshold_scaling'], - max_iterations=250 * ops['max_iterations'], - percentile=ops.get('active_percentile', 0.0), - ) - ops.update(new_ops) - else: - ops, stat = sourcery.sourcery(mov=mov, ops=ops) - - print('Detected %d ROIs, %0.2f sec' % (len(stat), time.time() - t0)) - stat = np.array(stat) - - if len(stat)==0: - raise ValueError("no ROIs were found -- check registered binary and maybe change spatial scale") - - # add ROI stat to stat - #stat = roi_stats(stat, dy, dx, Ly, Lx, max_overlap=max_overlap, do_crop=do_crop) - - return stat - + n_frames, Ly, Lx = f_reg.shape + yrange = ops.get("yrange", [0, Ly]) if yrange is None else yrange + xrange = ops.get("xrange", [0, Lx]) if xrange is None else xrange + ops["yrange"] = yrange + ops["xrange"] = xrange + + if mov is None: + bin_size = int( + max(1, n_frames // ops["nbinned"], np.round(ops["tau"] * ops["fs"]))) + print("Binning movie in chunks of length %2.2d" % bin_size) + mov = bin_movie(f_reg, bin_size, yrange=yrange, xrange=xrange, + badframes=ops.get("badframes", None)) + else: + if mov.shape[1] != yrange[-1] - yrange[0]: + raise ValueError("mov.shape[1] is not same size as yrange") + elif mov.shape[2] != xrange[-1] - xrange[0]: + raise ValueError("mov.shape[2] is not same size as xrange") + + if "meanImg" not in ops: + ops["meanImg"] = mov.mean(axis=0) + ops["max_proj"] = mov.max(axis=0) + + if ops.get("inverted_activity", False): + mov -= mov.min() + mov *= -1 + mov -= mov.min() + + if ops.get("denoise", 1): + mov = pca_denoise( + mov, block_size=[ops["block_size"][0] // 2, ops["block_size"][1] // 2], + n_comps_frac=0.5) + + if ops.get("anatomical_only", 0): + try: + from . import anatomical + CELLPOSE_INSTALLED = True + except Exception as e: + print("Warning: cellpose did not import") + print(e) + print("cannot use anatomical mode, but otherwise suite2p will run normally") + CELLPOSE_INSTALLED = False + if not CELLPOSE_INSTALLED: + print( + "~~~ tried to import cellpose to run anatomical but failed, install with: ~~~" + ) + print("$ pip install cellpose") + else: + print(">>>> CELLPOSE finding masks in " + + ["max_proj / mean_img", "mean_img", "enhanced_mean_img", "max_proj"][ + int(ops["anatomical_only"]) - 1]) + stat = anatomical.select_rois(ops=ops, mov=mov, + diameter=ops.get("diameter", None)) + else: + stat = select_rois( + ops=ops, + mov=mov, + sparse_mode=ops["sparse_mode"], + classfile=classfile, + ) + + ymin = int(yrange[0]) + xmin = int(xrange[0]) + if len(stat) > 0: + for s in stat: + s["ypix"] += ymin + s["xpix"] += xmin + s["med"][0] += ymin + s["med"][1] += xmin + + if ops["preclassify"] > 0: + if classfile is None: + print(f"NOTE: Applying user classifier at {str(user_classfile)}") + classfile = user_classfile + + stat = roi_stats(stat, Ly, Lx, aspect=ops.get("aspect", None), + diameter=ops.get("diameter", + None), do_crop=ops.get("soma_crop", 1)) + if len(stat) == 0: + iscell = np.zeros((0, 2)) + else: + iscell = classify(stat=stat, classfile=classfile) + np.save(Path(ops["save_path"]).joinpath("iscell.npy"), iscell) + ic = (iscell[:, 0] > ops["preclassify"]).flatten().astype("bool") + stat = stat[ic] + print("Preclassify threshold %0.2f, %d ROIs removed" % (ops["preclassify"], + (~ic).sum())) + + stat = roi_stats(stat, Ly, Lx, aspect=ops.get("aspect", None), + diameter=ops.get("diameter", + None), max_overlap=ops["max_overlap"], + do_crop=ops.get("soma_crop", 1)) + print("After removing overlaps, %d ROIs remain" % (len(stat))) + + # if second channel, detect bright cells in second channel + if "meanImg_chan2" in ops: + if "chan2_thres" not in ops: + ops["chan2_thres"] = 0.65 + ops, redcell = chan2detect.detect(ops, stat) + np.save(Path(ops["save_path"]).joinpath("redcell.npy"), redcell) + + return ops, stat + + +def select_rois(ops: Dict[str, Any], mov: np.ndarray, sparse_mode: bool = True, + classfile: Path = None): + + t0 = time.time() + if sparse_mode: + ops.update({"Lyc": mov.shape[1], "Lxc": mov.shape[2]}) + new_ops, stat = sparsedetect.sparsery( + mov=mov, + high_pass=ops["high_pass"], + neuropil_high_pass=ops["spatial_hp_detect"], + batch_size=ops["batch_size"], + spatial_scale=ops["spatial_scale"], + threshold_scaling=ops["threshold_scaling"], + max_iterations=250 * ops["max_iterations"], + percentile=ops.get("active_percentile", 0.0), + ) + ops.update(new_ops) + else: + ops, stat = sourcery.sourcery(mov=mov, ops=ops) + + print("Detected %d ROIs, %0.2f sec" % (len(stat), time.time() - t0)) + stat = np.array(stat) + + if len(stat) == 0: + raise ValueError( + "no ROIs were found -- check registered binary and maybe change spatial scale" + ) + + # add ROI stat to stat + #stat = roi_stats(stat, dy, dx, Ly, Lx, max_overlap=max_overlap, do_crop=do_crop) + + return stat diff --git a/suite2p/detection/metrics.py b/suite2p/detection/metrics.py index fe22388bb..3201cb2e7 100644 --- a/suite2p/detection/metrics.py +++ b/suite2p/detection/metrics.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import time import numpy as np import cv2 @@ -6,6 +9,7 @@ from .denoise import pca_denoise from ..io import BinaryFile + def compute_gt_matches(img, masks, stat_func, ops=None, reg_file=None, threshold=0.5): """ anatomical img and masks matched to functional ROIs in stat_func """ Ly, Lx = masks.shape @@ -18,124 +22,134 @@ def compute_gt_matches(img, masks, stat_func, ops=None, reg_file=None, threshold return stat_anat, iorig, iou, func_ids, overlaps + def match_func_anat(stat_func, stat_anat, Ly, Lx, threshold=0.5): """ match functional ROIs to anatomical ROIs by correlation""" - iou = np.zeros((len(stat_anat), len(stat_func))) + iou = np.zeros((len(stat_anat), len(stat_func))) ly = 15 - for i,sf in enumerate(stat_func): - if sf['ypix'].size < 20: + for i, sf in enumerate(stat_func): + if sf["ypix"].size < 20: continue - ypix, xpix, lam = sf['ypix'].copy(), sf['xpix'].copy(), sf['lam'].copy() + ypix, xpix, lam = sf["ypix"].copy(), sf["xpix"].copy(), sf["lam"].copy() lam /= (lam**2).sum()**0.5 # box around ROI - ymed, xmed = sf['med'][0], sf['med'][1] - inds = (slice(max(0, ymed-ly), min(ymed+ly, Ly)), - slice(max(0, xmed-ly), min(xmed+ly, Lx))) - mf = np.zeros((Ly,Lx), np.float32) + ymed, xmed = sf["med"][0], sf["med"][1] + inds = (slice(max(0, ymed - ly), + min(ymed + ly, Ly)), slice(max(0, xmed - ly), min(xmed + ly, Lx))) + mf = np.zeros((Ly, Lx), np.float32) mf[ypix, xpix] = lam - mfc = mf[inds].flatten() + mfc = mf[inds].flatten() mfc /= (mfc**2).sum()**0.5 - + # matched anatomical masks (will not compute IOU for all masks) for j, sa in enumerate(stat_anat): - ypix_a, xpix_a = sa['ypix'], sa['xpix'] - if (np.logical_and(ypix_a > inds[0].start, ypix_a < inds[0].stop).sum()>0 and - np.logical_and(xpix_a > inds[1].start, xpix_a < inds[1].stop).sum()>0): - lam_a = sa['lam'].copy() + ypix_a, xpix_a = sa["ypix"], sa["xpix"] + if (np.logical_and(ypix_a > inds[0].start, ypix_a < inds[0].stop).sum() > 0 + and np.logical_and(xpix_a > inds[1].start, xpix_a + < inds[1].stop).sum() > 0): + lam_a = sa["lam"].copy() lam_a /= (lam_a**2).sum()**0.5 - ma = np.zeros((Ly,Lx), np.float32) + ma = np.zeros((Ly, Lx), np.float32) ma[ypix_a, xpix_a] = lam_a - mac = ma[inds].flatten() + mac = ma[inds].flatten() mac /= ((mac**2).sum()**0.5 + 1e-10) iou[j, i] = (mac * mfc).sum() - if i%1000==0: - print('%d ROIs processed'%i) - print('%d ROIs processed'%i) - + if i % 1000 == 0: + print("%d ROIs processed" % i) + print("%d ROIs processed" % i) + n_true = len(stat_anat) n_pred = len(stat_func) iout, preds = match_masks(iou) - tp = (iout>threshold).sum() - print((iout>threshold).sum()) + tp = (iout > threshold).sum() + print((iout > threshold).sum()) fn = n_true - tp fp = n_pred - tp - ap = tp/(fn+tp+fp) - print('TP: %d, FN: %d, FP: %d, AP: %0.3f'% - (tp, fn, fp, ap)) + ap = tp / (fn + tp + fp) + print("TP: %d, FN: %d, FP: %d, AP: %0.3f" % (tp, fn, fp, ap)) return iou, iout, preds, ap + def extend_anatomical(img_anat, masks_anat, mov=None, ops=None, reg_file=None): if mov is None: if reg_file is None: - reg_file = ops['reg_file'] + reg_file = ops["reg_file"] - bin_size = int(max(1, ops['nframes'] // ops['nbinned'], np.round(ops['tau'] * ops['fs']))) + bin_size = int( + max(1, ops["nframes"] // ops["nbinned"], np.round(ops["tau"] * ops["fs"]))) t0 = time.time() - with BinaryFile(read_filename=reg_file, Ly=ops['Ly'], Lx=ops['Lx']) as f: + with BinaryFile(filename=reg_file, Ly=ops["Ly"], Lx=ops["Lx"]) as f: mov = f.bin_movie( - bin_size=bin_size, - bad_frames=ops.get('badframes'), - y_range=ops['yrange'], - x_range=ops['xrange'], - ) - print('Binned movie [%d,%d,%d] in %0.2f sec.' % (mov.shape[0], mov.shape[1], mov.shape[2], time.time() - t0)) + bin_size=bin_size, + bad_frames=ops.get("badframes"), + y_range=ops["yrange"], + x_range=ops["xrange"], + ) + print("Binned movie [%d,%d,%d] in %0.2f sec." % + (mov.shape[0], mov.shape[1], mov.shape[2], time.time() - t0)) nt, Lyc, Lxc = mov.shape - + if ops is not None: # process movie - mov = pca_denoise(mov, [ops['block_size'][0]//2, ops['block_size'][1]//2], 0.5) - mov = temporal_high_pass_filter(mov=mov, width=int(ops['high_pass'])) - sdmov = standard_deviation_over_time(mov, batch_size=ops['batch_size']) - mov = neuropil_subtraction(mov=mov / sdmov, filter_size=ops['spatial_hp_detect']) # subtract low-pass filtered movie + mov = pca_denoise(mov, [ops["block_size"][0] // 2, ops["block_size"][1] // 2], + 0.5) + mov = temporal_high_pass_filter(mov=mov, width=int(ops["high_pass"])) + sdmov = standard_deviation_over_time(mov, batch_size=ops["batch_size"]) + mov = neuropil_subtraction( + mov=mov / sdmov, + filter_size=ops["spatial_hp_detect"]) # subtract low-pass filtered movie else: - ops = {'yrange': [0, Lyc], 'xrange': [0, Lxc]} + ops = {"yrange": [0, Lyc], "xrange": [0, Lxc]} sdmov = np.ones(mov.shape[1:]) - redimg = img_anat[ops['yrange'][0] : ops['yrange'][-1], ops['xrange'][0] : ops['xrange'][-1]] - redmasks = masks_anat[ops['yrange'][0] : ops['yrange'][-1], ops['xrange'][0] : ops['xrange'][-1]] + redimg = img_anat[ops["yrange"][0]:ops["yrange"][-1], + ops["xrange"][0]:ops["xrange"][-1]] + redmasks = masks_anat[ops["yrange"][0]:ops["yrange"][-1], + ops["xrange"][0]:ops["xrange"][-1]] ly = 10 stat_anat = [] iorig = [] for i in range(masks_anat.max()): - ypix, xpix = np.nonzero(redmasks==(i+1)) - if ypix.size < 10: + ypix, xpix = np.nonzero(redmasks == (i + 1)) + if ypix.size < 10: continue - + # create box around ROI to grow ROI ymed, xmed = int(np.median(ypix)), int(np.median(xpix)) - inds = (slice(max(0, ymed-ly), min(ymed+ly, Lyc)), - slice(max(0, xmed-ly), min(xmed+ly, Lxc))) - maskb = np.zeros((Lyc,Lxc), 'bool') + inds = (slice(max(0, ymed - ly), + min(ymed + ly, Lyc)), slice(max(0, xmed - ly), + min(xmed + ly, Lxc))) + maskb = np.zeros((Lyc, Lxc), "bool") maskb[ypix, xpix] = 1 maskb = maskb[inds].astype(np.float32) maskb /= (maskb.sum())**0.5 bx = mov[:, inds[0], inds[1]] - + ### get activity mask # find active frames lam = redimg[ypix, xpix] - F = mov[:,ypix,xpix] @ lam #.sum(axis=1) + F = mov[:, ypix, xpix] @ lam #.sum(axis=1) active_frames = F > np.percentile(F, 99) # activity of pixels in box on active_frames cc = bx[active_frames].sum(axis=0) - cc_threshold = max(0, cc.max()/5.0) + cc_threshold = max(0, cc.max() / 5.0) cc_mask = cc > cc_threshold - + # get connected components - nb_components, output, stats, centroids = cv2.connectedComponentsWithStats((cc_mask).astype(np.uint8), - connectivity=4) - npix = stats[1:,-1] - if (npix>15).sum()==0: - continue - + nb_components, output, stats, centroids = cv2.connectedComponentsWithStats( + (cc_mask).astype(np.uint8), connectivity=4) + npix = stats[1:, -1] + if (npix > 15).sum() == 0: + continue + # get overlap of connected components with original mask, take one with largest overlap - iou = _intersection_over_union((maskb>0).astype(np.uint16), - output.astype(np.uint16))[1, 1:] - max_label = np.nonzero(npix>15)[0][iou[npix>15].argmax()] - cc_mask = (output==(max_label+1)) + iou = _intersection_over_union((maskb > 0).astype(np.uint16), + output.astype(np.uint16))[1, 1:] + max_label = np.nonzero(npix > 15)[0][iou[npix > 15].argmax()] + cc_mask = (output == (max_label + 1)) cc[~cc_mask] = 0 - + # correlation of activity mask with original mask mfunc = cc.flatten() / ((cc**2).sum()**0.5) corr = (mfunc * maskb.flatten()).sum() @@ -144,17 +158,13 @@ def extend_anatomical(img_anat, masks_anat, mov=None, ops=None, reg_file=None): # mask pix and weights ypix, xpix = np.nonzero(cc_mask) - ypix += max(0, ymed-ly) - xpix += max(0, xmed-ly) + ypix += max(0, ymed - ly) + xpix += max(0, xmed - ly) lam = cc[cc_mask] * sdmov[ypix, xpix] # ypix, xpix in full coordinates - ypix += ops['yrange'][0] - xpix += ops['xrange'][0] - stat_anat.append({'ypix': ypix, 'xpix': xpix, 'lam': lam}) + ypix += ops["yrange"][0] + xpix += ops["xrange"][0] + stat_anat.append({"ypix": ypix, "xpix": xpix, "lam": lam}) iorig.append(i) - - return stat_anat, iorig - - - \ No newline at end of file + return stat_anat, iorig diff --git a/suite2p/detection/sourcery.py b/suite2p/detection/sourcery.py index 144858162..75886cb64 100644 --- a/suite2p/detection/sourcery.py +++ b/suite2p/detection/sourcery.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import math import time @@ -9,49 +12,51 @@ from .stats import fitMVGaus from .utils import temporal_high_pass_filter, standard_deviation_over_time + def getSVDdata(mov: np.ndarray, ops): - mov = temporal_high_pass_filter(mov, width=int(ops['high_pass'])) - ops['max_proj'] = mov.max(axis=0) + mov = temporal_high_pass_filter(mov, width=int(ops["high_pass"])) + ops["max_proj"] = mov.max(axis=0) nbins, Lyc, Lxc = np.shape(mov) - sig = ops['diameter']/10. # PICK UP + sig = ops["diameter"] / 10. # PICK UP for j in range(nbins): - mov[j,:,:] = gaussian_filter(mov[j,:,:], sig) + mov[j, :, :] = gaussian_filter(mov[j, :, :], sig) # compute noise variance across frames - sdmov = standard_deviation_over_time(mov, batch_size=ops['batch_size']) + sdmov = standard_deviation_over_time(mov, batch_size=ops["batch_size"]) mov /= sdmov - mov = np.reshape(mov, (-1,Lyc*Lxc)) + mov = np.reshape(mov, (-1, Lyc * Lxc)) # compute covariance of binned frames cov = mov @ mov.transpose() / mov.shape[1] - cov = cov.astype('float32') + cov = cov.astype("float32") - nsvd_for_roi = min(ops['nbinned'], int(cov.shape[0]/2)) + nsvd_for_roi = min(ops["nbinned"], int(cov.shape[0] / 2)) u, s, v = np.linalg.svd(cov) u = u[:, :nsvd_for_roi] U = u.transpose() @ mov - U = np.reshape(U, (-1,Lyc,Lxc)) + U = np.reshape(U, (-1, Lyc, Lxc)) U = np.transpose(U, (1, 2, 0)).copy() return ops, U, sdmov, u + def getSVDproj(mov: np.ndarray, ops, u): - mov = temporal_high_pass_filter(mov, int(ops['high_pass'])) + mov = temporal_high_pass_filter(mov, int(ops["high_pass"])) nbins, Lyc, Lxc = np.shape(mov) - if ('smooth_masks' in ops) and ops['smooth_masks']: - sig = np.maximum([.5, .5], ops['diameter']/20.) + if ("smooth_masks" in ops) and ops["smooth_masks"]: + sig = np.maximum([.5, .5], ops["diameter"] / 20.) for j in range(nbins): - mov[j,:,:] = gaussian_filter(mov[j,:,:], sig) + mov[j, :, :] = gaussian_filter(mov[j, :, :], sig) if 1: - sdmov = standard_deviation_over_time(mov, batch_size=ops['batch_size']) - mov/=sdmov - mov = np.reshape(mov, (-1,Lyc*Lxc)) + sdmov = standard_deviation_over_time(mov, batch_size=ops["batch_size"]) + mov /= sdmov + mov = np.reshape(mov, (-1, Lyc * Lxc)) U = u.transpose() @ mov - U = U.transpose().copy().reshape((Lyc,Lxc,-1)) + U = U.transpose().copy().reshape((Lyc, Lxc, -1)) else: U = np.transpose(mov, (1, 2, 0)).copy() return U, sdmov @@ -61,32 +66,33 @@ def getStU(ops, U): Lyc, Lxc, nbins = np.shape(U) S = create_neuropil_basis(ops, Lyc, Lxc) # compute covariance of neuropil masks with spatial masks - StU = S.reshape((Lyc*Lxc,-1)).transpose() @ U.reshape((Lyc*Lxc,-1)) - StS = S.reshape((Lyc*Lxc,-1)).transpose() @ S.reshape((Lyc*Lxc,-1)) + StU = S.reshape((Lyc * Lxc, -1)).transpose() @ U.reshape((Lyc * Lxc, -1)) + StS = S.reshape((Lyc * Lxc, -1)).transpose() @ S.reshape((Lyc * Lxc, -1)) #U = np.reshape(U, (-1,Lyc,Lxc)) - return S, StU , StS + return S, StU, StS + def drawClusters(stat, ops): - Ly = ops['Lyc'] - Lx = ops['Lxc'] + Ly = ops["Lyc"] + Lx = ops["Lxc"] ncells = len(stat) - r=np.random.random((ncells,)) - iclust = -1*np.ones((Ly,Lx),np.int32) - Lam = np.zeros((Ly,Lx)) - H = np.zeros((Ly,Lx,1)) + r = np.random.random((ncells,)) + iclust = -1 * np.ones((Ly, Lx), np.int32) + Lam = np.zeros((Ly, Lx)) + H = np.zeros((Ly, Lx, 1)) for n in range(ncells): - isingle = Lam[stat[n]['ypix'],stat[n]['xpix']]+1e-4 < stat[n]['lam'] - y = stat[n]['ypix'][isingle] - x = stat[n]['xpix'][isingle] - Lam[y,x] = stat[n]['lam'][isingle] + isingle = Lam[stat[n]["ypix"], stat[n]["xpix"]] + 1e-4 < stat[n]["lam"] + y = stat[n]["ypix"][isingle] + x = stat[n]["xpix"][isingle] + Lam[y, x] = stat[n]["lam"][isingle] #iclust[ypix,xpix] = n*np.ones(ypix.shape) - H[y,x,0] = r[n]*np.ones(y.shape) + H[y, x, 0] = r[n] * np.ones(y.shape) - S = np.ones((Ly,Lx,1)) - V = np.maximum(0, np.minimum(1, 0.75 * Lam / Lam[Lam>1e-10].mean())) - V = np.expand_dims(V,axis=2) - hsv = np.concatenate((H,S,V),axis=2) + S = np.ones((Ly, Lx, 1)) + V = np.maximum(0, np.minimum(1, 0.75 * Lam / Lam[Lam > 1e-10].mean())) + V = np.expand_dims(V, axis=2) + hsv = np.concatenate((H, S, V), axis=2) rgb = hsv_to_rgb(hsv) return rgb @@ -109,52 +115,55 @@ def create_neuropil_basis(ops, Ly, Lx): basis functions (pixels x nbasis functions) """ - if 'ratio_neuropil' in ops: - ratio_neuropil = ops['ratio_neuropil'] + if "ratio_neuropil" in ops: + ratio_neuropil = ops["ratio_neuropil"] else: ratio_neuropil = 6. - if 'tile_factor' in ops: - tile_factor = ops['tile_factor'] + if "tile_factor" in ops: + tile_factor = ops["tile_factor"] else: tile_factor = 1. - diameter = ops['diameter'] - - ntilesY = 1+2*int(np.ceil(tile_factor * Ly / (ratio_neuropil * diameter[0]/2))/2) - ntilesX = 1+2*int(np.ceil(tile_factor * Lx / (ratio_neuropil * diameter[1]/2))/2) - ntilesY = np.maximum(2,ntilesY) - ntilesX = np.maximum(2,ntilesX) + diameter = ops["diameter"] + + ntilesY = 1 + 2 * int( + np.ceil(tile_factor * Ly / (ratio_neuropil * diameter[0] / 2)) / 2) + ntilesX = 1 + 2 * int( + np.ceil(tile_factor * Lx / (ratio_neuropil * diameter[1] / 2)) / 2) + ntilesY = np.maximum(2, ntilesY) + ntilesX = np.maximum(2, ntilesX) yc = np.linspace(1, Ly, ntilesY) xc = np.linspace(1, Lx, ntilesX) - ys = np.arange(0,Ly) - xs = np.arange(0,Lx) + ys = np.arange(0, Ly) + xs = np.arange(0, Lx) - Kx = np.ones((Lx, ntilesX), 'float32') - Ky = np.ones((Ly, ntilesY), 'float32') + Kx = np.ones((Lx, ntilesX), "float32") + Ky = np.ones((Ly, ntilesY), "float32") if 1: # basis functions are fourier modes - for k in range(int((ntilesX-1)/2)): - Kx[:,2*k+1] = np.sin(2*math.pi * (xs+0.5) * (1+k)/Lx) - Kx[:,2*k+2] = np.cos(2*math.pi * (xs+0.5) * (1+k)/Lx) - for k in range(int((ntilesY-1)/2)): - Ky[:,2*k+1] = np.sin(2*math.pi * (ys+0.5) * (1+k)/Ly) - Ky[:,2*k+2] = np.cos(2*math.pi * (ys+0.5) * (1+k)/Ly) + for k in range(int((ntilesX - 1) / 2)): + Kx[:, 2 * k + 1] = np.sin(2 * math.pi * (xs + 0.5) * (1 + k) / Lx) + Kx[:, 2 * k + 2] = np.cos(2 * math.pi * (xs + 0.5) * (1 + k) / Lx) + for k in range(int((ntilesY - 1) / 2)): + Ky[:, 2 * k + 1] = np.sin(2 * math.pi * (ys + 0.5) * (1 + k) / Ly) + Ky[:, 2 * k + 2] = np.cos(2 * math.pi * (ys + 0.5) * (1 + k) / Ly) else: for k in range(ntilesX): - Kx[:,k] = np.cos(math.pi * (xs+0.5) * k/Lx) + Kx[:, k] = np.cos(math.pi * (xs + 0.5) * k / Lx) for k in range(ntilesY): - Ky[:,k] = np.cos(math.pi * (ys+0.5) * k/Ly) + Ky[:, k] = np.cos(math.pi * (ys + 0.5) * k / Ly) S = np.zeros((ntilesY, ntilesX, Ly, Lx), np.float32) for kx in range(ntilesX): for ky in range(ntilesY): - S[ky,kx,:,:] = np.outer(Ky[:,ky], Kx[:,kx]) + S[ky, kx, :, :] = np.outer(Ky[:, ky], Kx[:, kx]) - S = np.reshape(S,(ntilesY*ntilesX, Ly*Lx)) - S = S / np.reshape(np.sum(S**2,axis=-1)**0.5, (-1,1)) + S = np.reshape(S, (ntilesY * ntilesX, Ly * Lx)) + S = S / np.reshape(np.sum(S**2, axis=-1)**0.5, (-1, 1)) S = np.transpose(S, (1, 0)).copy() S = np.reshape(S, (Ly, Lx, -1)) return S + def circleMask(d0): """ creates array with indices which are the radius of that x,y point @@ -173,21 +182,23 @@ def circleMask(d0): dy: indices in rs where the radius is less than d0 """ - dx = np.tile(np.arange(-d0[1],d0[1]+1)/d0[1], (2*d0[0]+1,1)) - dy = np.tile(np.arange(-d0[0],d0[0]+1)/d0[0], (2*d0[1]+1,1)) + dx = np.tile(np.arange(-d0[1], d0[1] + 1) / d0[1], (2 * d0[0] + 1, 1)) + dy = np.tile(np.arange(-d0[0], d0[0] + 1) / d0[0], (2 * d0[1] + 1, 1)) dy = dy.transpose() - rs = (dy**2 + dx**2) ** 0.5 - dx = dx[rs<=1.] - dy = dy[rs<=1.] + rs = (dy**2 + dx**2)**0.5 + dx = dx[rs <= 1.] + dy = dy[rs <= 1.] return rs, dx, dy + def morphOpen(V, footprint): - ''' computes the morphological opening of V (correlation map) with circular footprint''' - vrem = filters.minimum_filter(V, footprint=footprint) - vrem = -filters.minimum_filter(-vrem, footprint=footprint) + """ computes the morphological opening of V (correlation map) with circular footprint""" + vrem = filters.minimum_filter(V, footprint=footprint) + vrem = -filters.minimum_filter(-vrem, footprint=footprint) return vrem + def localMax(V, footprint, thres): """ find local maxima of V (correlation map) using a filter with (usually circular) footprint @@ -203,37 +214,40 @@ def localMax(V, footprint, thres): ------- i,j: indices of local max greater than thres """ - maxV = filters.maximum_filter(V, footprint=footprint, mode = 'reflect') + maxV = filters.maximum_filter(V, footprint=footprint, mode="reflect") imax = V > np.maximum(thres, maxV - 1e-10) - i,j = imax.nonzero() - i = i.astype(np.int32) - j = j.astype(np.int32) - return i,j + i, j = imax.nonzero() + i = i.astype(np.int32) + j = j.astype(np.int32) + return i, j + -def localRegion(i,j,dy,dx,Ly,Lx): - ''' returns valid indices of local region surrounding (i,j) of size (dy.size, dx.size)''' +def localRegion(i, j, dy, dx, Ly, Lx): + """ returns valid indices of local region surrounding (i,j) of size (dy.size, dx.size)""" xc = dx + j yc = dy + i - goodi = (xc>=0) & (xc=0) & (yc= 0) & (xc < Lx) & (yc >= 0) & (yc < Ly) xc = xc[goodi] yc = yc[goodi] yc = yc.astype(np.int32) xc = xc.astype(np.int32) return yc, xc, goodi -def pairwiseDistance(y,x): - dists = ((np.expand_dims(y,axis=-1) - np.expand_dims(y,axis=0))**2 - + (np.expand_dims(x,axis=-1) - np.expand_dims(x,axis=0))**2)**0.5 + +def pairwiseDistance(y, x): + dists = ((np.expand_dims(y, axis=-1) - np.expand_dims(y, axis=0))**2 + + (np.expand_dims(x, axis=-1) - np.expand_dims(x, axis=0))**2)**0.5 return dists def r_squared(yp, xp, ypix, xpix, diam_y, diam_x, estimator=np.median): - return np.sqrt(((yp - estimator(ypix)) / diam_y) ** 2 + (((xp - estimator(xpix)) / diam_x) ** 2)) + return np.sqrt(((yp - estimator(ypix)) / diam_y)**2 + + (((xp - estimator(xpix)) / diam_x)**2)) # this function needs to be updated with the new stat def get_stat(ops, stats, Ucell, codes, frac=0.5): - ''' + """ computes statistics of cells found using sourcery Parameters @@ -250,53 +264,54 @@ def get_stat(ops, stats, Ucell, codes, frac=0.5): ------- stat assigned to stat: ipix, ypix, xpix, med, npix, lam, footprint, compact, aspect_ratio, ellipse - ''' - d0, Ly, Lx = ops['diameter'], ops['Lyc'], ops['Lxc'] + """ + d0, Ly, Lx = ops["diameter"], ops["Lyc"], ops["Lxc"] rs, dy, dx = circleMask(d0) rsort = np.sort(rs.flatten()) # Remove empty cells - stats = [stat for stat in stats if len(stat['ypix']) != 0] + stats = [stat for stat in stats if len(stat["ypix"]) != 0] footprints = np.zeros(len(stats)) for k, (stat, code) in enumerate(zip(stats, codes)): - ypix, xpix, lam = stat['ypix'], stat['xpix'], stat['lam'] + ypix, xpix, lam = stat["ypix"], stat["xpix"], stat["lam"] # compute footprint of ROI yp, xp = extendROI(ypix, xpix, Ly, Lx, int(np.mean(d0))) # compute compactness of ROI rs = r_squared(yp=yp, xp=xp, ypix=ypix, xpix=xpix, diam_y=d0[0], diam_x=d0[1]) - stat['mrs'] = np.mean(rs) - stat['mrs0'] = np.mean(rsort[:ypix.size]) - stat['compact'] = stat['mrs'] / (1e-10 + stat['mrs0']) - stat['med'] = [np.median(stat['ypix']), np.median(stat['xpix'])] - stat['npix'] = xpix.size - if 'radius' not in stat: + stat["mrs"] = np.mean(rs) + stat["mrs0"] = np.mean(rsort[:ypix.size]) + stat["compact"] = stat["mrs"] / (1e-10 + stat["mrs0"]) + stat["med"] = [np.median(stat["ypix"]), np.median(stat["xpix"])] + stat["npix"] = xpix.size + if "radius" not in stat: ry, rx = fitMVGaus(ypix, xpix, lam, dy=d0[0], dx=d0[1], thres=2).radii - stat['radius'] = ry * d0.mean() - stat['aspect_ratio'] = 2 * ry/(.01 + ry + rx) + stat["radius"] = ry * d0.mean() + stat["aspect_ratio"] = 2 * ry / (.01 + ry + rx) proj = (Ucell[yp, xp, :] @ np.expand_dims(code, axis=1)).flatten() footprints[k] = np.nanmean(rs[proj > proj.max() * frac]) mfoot = np.nanmedian(footprints) for stat, footprint in zip(stats, footprints): - stat['footprint'] = footprint / mfoot if not np.isnan(footprint) else 0 + stat["footprint"] = footprint / mfoot if not np.isnan(footprint) else 0 - npix = np.array([stat['npix'] for stat in stats], dtype='float32') + npix = np.array([stat["npix"] for stat in stats], dtype="float32") npix /= np.mean(npix[:100]) for stat, npix0 in zip(stats, npix): - stat['npix_norm'] = npix0 + stat["npix_norm"] = npix0 return stats def getVmap(Ucell, sig): - us = gaussian_filter(Ucell, [sig[0], sig[1], 0.], mode='wrap') + us = gaussian_filter(Ucell, [sig[0], sig[1], 0.], mode="wrap") # compute log variance at each location - log_variances = (us**2).mean(axis=-1) / gaussian_filter((Ucell**2).mean(axis=-1), sig, mode='wrap') - return log_variances.astype('float64'), us + log_variances = (us**2).mean(axis=-1) / gaussian_filter( + (Ucell**2).mean(axis=-1), sig, mode="wrap") + return log_variances.astype("float64"), us def sub2ind(array_shape, rows, cols): @@ -308,223 +323,243 @@ def minDistance(inputs): ds = (y1 - np.expand_dims(y2, axis=1))**2 + (x1 - np.expand_dims(x2, axis=1))**2 return np.amin(ds)**.5 + def get_connected(Ly, Lx, stat): - '''grow i0 until it cannot grow any more - ''' - ypix, xpix, lam = stat['ypix'], stat['xpix'], stat['lam'] - i0 = np.argmax(lam) + """grow i0 until it cannot grow any more + """ + ypix, xpix, lam = stat["ypix"], stat["xpix"], stat["lam"] + i0 = np.argmax(lam) mask = np.zeros((Ly, Lx)) - mask[ypix,xpix] = lam + mask[ypix, xpix] = lam ypix, xpix = ypix[i0], xpix[i0] nsel = 1 while 1: - ypix,xpix = extendROI(ypix, xpix, Ly, Lx) - ix = mask[ypix,xpix]>1e-10 - ypix,xpix = ypix[ix], xpix[ix] - if len(ypix)<=nsel: + ypix, xpix = extendROI(ypix, xpix, Ly, Lx) + ix = mask[ypix, xpix] > 1e-10 + ypix, xpix = ypix[ix], xpix[ix] + if len(ypix) <= nsel: break nsel = len(ypix) lam = mask[ypix, xpix] - stat['ypix'], stat['xpix'], stat['lam'] = ypix, xpix, lam + stat["ypix"], stat["xpix"], stat["lam"] = ypix, xpix, lam return stat + def connected_region(stat, ops): - if ('connected' not in ops) or ops['connected']: + if ("connected" not in ops) or ops["connected"]: for j in range(len(stat)): - stat[j] = get_connected(ops['Lyc'], ops['Lxc'], stat[j]) + stat[j] = get_connected(ops["Lyc"], ops["Lxc"], stat[j]) return stat -def extendROI(ypix, xpix, Ly, Lx,niter=1): + +def extendROI(ypix, xpix, Ly, Lx, niter=1): for k in range(niter): - yx = ((ypix, ypix, ypix, ypix-1, ypix+1), (xpix, xpix+1,xpix-1,xpix,xpix)) + yx = ((ypix, ypix, ypix, ypix - 1, ypix + 1), (xpix, xpix + 1, xpix - 1, xpix, + xpix)) yx = np.array(yx) - yx = yx.reshape((2,-1)) + yx = yx.reshape((2, -1)) yu = np.unique(yx, axis=1) - ix = np.all((yu[0]>=0, yu[0]=0 , yu[1]= 0, yu[0] < Ly, yu[1] >= 0, yu[1] < Lx), axis=0) + ypix, xpix = yu[:, ix] + return ypix, xpix + def iter_extend(ypix, xpix, Ucell, code, refine=-1, change_codes=False): Lyc, Lxc, nsvd = Ucell.shape npix = 0 iter = 0 - while npix<10000: + while npix < 10000: npix = ypix.size - ypix, xpix = extendROI(ypix,xpix,Lyc,Lxc, 1) + ypix, xpix = extendROI(ypix, xpix, Lyc, Lxc, 1) usub = Ucell[ypix, xpix, :] lam = usub @ np.expand_dims(code, axis=1) lam = np.squeeze(lam, axis=1) # ix = lam>max(0, np.mean(lam)/3) - ix = lam>max(0, lam.max()/5.0) - if ix.sum()==0: - break; - ypix, xpix,lam = ypix[ix],xpix[ix], lam[ix] - lam = lam/np.sum(lam**2+1e-10)**.5 - if refine<0 and change_codes: + ix = lam > max(0, lam.max() / 5.0) + if ix.sum() == 0: + break + ypix, xpix, lam = ypix[ix], xpix[ix], lam[ix] + lam = lam / np.sum(lam**2 + 1e-10)**.5 + if refine < 0 and change_codes: code = lam @ usub[ix, :] if iter == 0: sgn = 1. #sgn = np.sign(ix.sum()-npix) - if np.sign(sgn * (ix.sum()-npix))<=0: + if np.sign(sgn * (ix.sum() - npix)) <= 0: break else: npix = ypix.size iter += 1 return ypix, xpix, lam, ix, code + def sourcery(mov: np.ndarray, ops): change_codes = True i0 = time.time() - if isinstance(ops['diameter'], int): - ops['diameter'] = [ops['diameter'], ops['diameter']] - ops['diameter'] = np.array(ops['diameter']) - ops['spatscale_pix'] = ops['diameter'][1] - ops['aspect'] = ops['diameter'][0] / ops['diameter'][1] - ops, U,sdmov, u = getSVDdata(mov=mov, ops=ops) # get SVD components - S, StU , StS = getStU(ops, U) - Lyc, Lxc,nsvd = U.shape - ops['Lyc'] = Lyc - ops['Lxc'] = Lxc - d0 = ops['diameter'] - sig = np.ceil(d0 / 4) # smoothing constant + if isinstance(ops["diameter"], int): + ops["diameter"] = [ops["diameter"], ops["diameter"]] + ops["diameter"] = np.array(ops["diameter"]) + ops["spatscale_pix"] = ops["diameter"][1] + ops["aspect"] = ops["diameter"][0] / ops["diameter"][1] + ops, U, sdmov, u = getSVDdata(mov=mov, ops=ops) # get SVD components + S, StU, StS = getStU(ops, U) + Lyc, Lxc, nsvd = U.shape + ops["Lyc"] = Lyc + ops["Lxc"] = Lxc + d0 = ops["diameter"] + sig = np.ceil(d0 / 4) # smoothing constant # make array of radii values of size (2*d0+1,2*d0+1) - rs,dy,dx = circleMask(d0) + rs, dy, dx = circleMask(d0) nsvd = U.shape[-1] nbasis = S.shape[-1] codes = np.zeros((0, nsvd), np.float32) LtU = np.zeros((0, nsvd), np.float32) LtS = np.zeros((0, nbasis), np.float32) - L = np.zeros((Lyc, Lxc, 0), np.float32) + L = np.zeros((Lyc, Lxc, 0), np.float32) # regress maps onto basis functions and subtract neuropil contribution - neu = np.linalg.solve(StS, StU).astype('float32') - Ucell = U - (S.reshape((-1,nbasis))@neu).reshape(U.shape) + neu = np.linalg.solve(StS, StU).astype("float32") + Ucell = U - (S.reshape((-1, nbasis)) @ neu).reshape(U.shape) it = 0 ncells = 0 refine = -1 # initialize - ypix,xpix,lam = [], [], [] + ypix, xpix, lam = [], [], [] while 1: - if refine<0: + if refine < 0: V, us = getVmap(Ucell, sig) - if it==0: - vrem = morphOpen(V, rs<=1.) - V = V - vrem # make V more uniform - if it==0: - V = V.astype('float64') + if it == 0: + vrem = morphOpen(V, rs <= 1.) + V = V - vrem # make V more uniform + if it == 0: + V = V.astype("float64") # find indices of all maxima in +/- 1 range - maxV = filters.maximum_filter(V, footprint= np.ones((3,3)), mode='reflect') - imax = V > (maxV - 1e-10) - peaks = V[imax] + maxV = filters.maximum_filter(V, footprint=np.ones((3, 3)), + mode="reflect") + imax = V > (maxV - 1e-10) + peaks = V[imax] # use the median of these peaks to decide if ROI is accepted - thres = ops['threshold_scaling'] * np.median(peaks[peaks>1e-4]) - ops['Vcorr'] = V - V = np.minimum(V, ops['Vcorr']) + thres = ops["threshold_scaling"] * np.median(peaks[peaks > 1e-4]) + ops["Vcorr"] = V + V = np.minimum(V, ops["Vcorr"]) # add extra ROIs here n = ncells - while n0: - Ucell = Ucell + (S.reshape((-1,nbasis))@neu).reshape(U.shape) - if refine<0 and (newcells 0: + Ucell = Ucell + (S.reshape((-1, nbasis)) @ neu).reshape(U.shape) + if refine < 0 and (newcells < Nfirst / 10 or it == ops["max_iterations"]): refine = 3 U, sdmov = getSVDproj(mov, ops, u) Ucell = U - if refine>=0: - StU = S.reshape((Lyc*Lxc,-1)).transpose() @ Ucell.reshape((Lyc*Lxc,-1)) + if refine >= 0: + StU = S.reshape((Lyc * Lxc, -1)).transpose() @ Ucell.reshape( + (Lyc * Lxc, -1)) #StU = np.reshape(S, (Lyc*Lxc,-1)).transpose() @ np.reshape(Ucell, (Lyc*Lxc, -1)) - neu = np.linalg.solve(StS, StU).astype('float32') + neu = np.linalg.solve(StS, StU).astype("float32") refine -= 1 - Ucell = U - (S.reshape((-1,nbasis))@neu).reshape(U.shape) + Ucell = U - (S.reshape((-1, nbasis)) @ neu).reshape(U.shape) sdmov = np.reshape(sdmov, (Lyc, Lxc)) - ops['sdmov'] = sdmov - stat = [{'ypix':ypix[n], 'lam':lam[n]*sdmov[ypix[n], xpix[n]], 'xpix':xpix[n]} for n in range(ncells)] + ops["sdmov"] = sdmov + stat = [{ + "ypix": ypix[n], + "lam": lam[n] * sdmov[ypix[n], xpix[n]], + "xpix": xpix[n] + } for n in range(ncells)] stat = postprocess(ops, stat, Ucell, codes) return ops, stat + def postprocess(ops, stat, Ucell, codes): # this is a good place to merge ROIs #mPix, mLam, codes = mergeROIs(ops, Lyc,Lxc,d0,mPix,mLam,codes,Ucell) diff --git a/suite2p/detection/sparsedetect.py b/suite2p/detection/sparsedetect.py index 6d2e660b3..9b718f515 100644 --- a/suite2p/detection/sparsedetect.py +++ b/suite2p/detection/sparsedetect.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from typing import Tuple, Dict, List, Any from copy import deepcopy from enum import Enum @@ -12,42 +15,48 @@ from . import utils + def neuropil_subtraction(mov: np.ndarray, filter_size: int) -> None: """Returns movie subtracted by a low-pass filtered version of itself to help ignore neuropil.""" nbinned, Ly, Lx = mov.shape - c1 = uniform_filter(np.ones((Ly, Lx)), size=filter_size, mode='constant') + c1 = uniform_filter(np.ones((Ly, Lx)), size=filter_size, mode="constant") movt = np.zeros_like(mov) for frame, framet in zip(mov, movt): - framet[:] = frame - (uniform_filter(frame, size=filter_size, mode='constant') / c1) + framet[:] = frame - (uniform_filter(frame, size=filter_size, mode="constant") / + c1) return movt def square_convolution_2d(mov: np.ndarray, filter_size: int) -> np.ndarray: - """Returns movie convolved by uniform kernel with width 'filter_size'.""" + """Returns movie convolved by uniform kernel with width "filter_size".""" movt = np.zeros_like(mov, dtype=np.float32) for frame, framet in zip(mov, movt): - framet[:] = filter_size * uniform_filter(frame, size=filter_size, mode='constant') + framet[:] = filter_size * uniform_filter(frame, size=filter_size, + mode="constant") return movt -def multiscale_mask(ypix0,xpix0,lam0, Lyp, Lxp): +def multiscale_mask(ypix0, xpix0, lam0, Lyp, Lxp): # given a set of masks on the raw image, this functions returns the downsampled masks for all spatial scales xs = [xpix0] ys = [ypix0] lms = [lam0] - for j in range(1,len(Lyp)): - ipix, ind = np.unique(np.int32(xs[j-1]/2)+np.int32(ys[j-1]/2)*Lxp[j], return_inverse=True) + for j in range(1, len(Lyp)): + ipix, ind = np.unique( + np.int32(xs[j - 1] / 2) + np.int32(ys[j - 1] / 2) * Lxp[j], + return_inverse=True) LAM = np.zeros(len(ipix)) - for i in range(len(xs[j-1])): - LAM[ind[i]] += lms[j-1][i]/2 + for i in range(len(xs[j - 1])): + LAM[ind[i]] += lms[j - 1][i] / 2 lms.append(LAM) - ys.append(np.int32(ipix/Lxp[j])) - xs.append(np.int32(ipix%Lxp[j])) + ys.append(np.int32(ipix / Lxp[j])) + xs.append(np.int32(ipix % Lxp[j])) for j in range(len(Lyp)): ys[j], xs[j], lms[j] = extend_mask(ys[j], xs[j], lms[j], Lyp[j], Lxp[j]) return ys, xs, lms -def add_square(yi,xi,lx,Ly,Lx): + +def add_square(yi, xi, lx, Ly, Lx): """ return square of pixels around peak with norm 1 Parameters @@ -81,7 +90,7 @@ def add_square(yi,xi,lx,Ly,Lx): pixel weightings """ - lhf = int((lx-1)/2) + lhf = int((lx - 1) / 2) ipix = np.tile(np.arange(-lhf, -lhf + lx, dtype=np.int32), reps=(lx, 1)) x0 = xi + ipix y0 = yi + ipix.T @@ -125,40 +134,42 @@ def iter_extend(ypix, xpix, mov, Lyc, Lxc, active_frames): """ npix = 0 iter = 0 - while npix<10000: + while npix < 10000: npix = ypix.size # extend ROI by 1 pixel on each side ypix, xpix = extendROI(ypix, xpix, Lyc, Lxc, 1) # activity in proposed ROI on ACTIVE frames - usub = mov[np.ix_(active_frames, ypix*Lxc+ xpix)] - lam = np.mean(usub,axis=0) - ix = lam>max(0, lam.max()/5.0) - if ix.sum()==0: + usub = mov[np.ix_(active_frames, ypix * Lxc + xpix)] + lam = np.mean(usub, axis=0) + ix = lam > max(0, lam.max() / 5.0) + if ix.sum() == 0: break - ypix, xpix,lam = ypix[ix],xpix[ix], lam[ix] + ypix, xpix, lam = ypix[ix], xpix[ix], lam[ix] if iter == 0: sgn = 1. - if np.sign(sgn * (ix.sum()-npix))<=0: + if np.sign(sgn * (ix.sum() - npix)) <= 0: break else: npix = ypix.size iter += 1 - lam = lam/np.sum(lam**2)**.5 + lam = lam / np.sum(lam**2)**.5 return ypix, xpix, lam -def extendROI(ypix, xpix, Ly, Lx,niter=1): + +def extendROI(ypix, xpix, Ly, Lx, niter=1): """ extend ypix and xpix by niter pixel(s) on each side """ for k in range(niter): - yx = ((ypix, ypix, ypix, ypix-1, ypix+1), (xpix, xpix+1,xpix-1,xpix,xpix)) + yx = ((ypix, ypix, ypix, ypix - 1, ypix + 1), (xpix, xpix + 1, xpix - 1, xpix, + xpix)) yx = np.array(yx) - yx = yx.reshape((2,-1)) + yx = yx.reshape((2, -1)) yu = np.unique(yx, axis=1) - ix = np.all((yu[0]>=0, yu[0]=0 , yu[1]= 0, yu[0] < Ly, yu[1] >= 0, yu[1] < Lx), axis=0) + ypix, xpix = yu[:, ix] + return ypix, xpix -def two_comps(mpix0, lam, Th2): +def two_comps(mpix0, lam, Th2): """ check if splitting ROI increases variance explained Parameters @@ -186,12 +197,12 @@ def two_comps(mpix0, lam, Th2): """ mpix = mpix0.copy() xproj = mpix @ lam - gf0 = xproj>Th2 + gf0 = xproj > Th2 - mpix[gf0, :] -= np.outer(xproj[gf0] , lam) + mpix[gf0, :] -= np.outer(xproj[gf0], lam) vexp0 = np.sum(mpix0**2) - np.sum(mpix**2) - k = np.argmax(np.sum(mpix * np.float32(mpix>0), axis=1)) + k = np.argmax(np.sum(mpix * np.float32(mpix > 0), axis=1)) mu = [lam * np.float32(mpix[k] < 0), lam * np.float32(mpix[k] > 0)] mpix = mpix0.copy() @@ -210,43 +221,47 @@ def two_comps(mpix0, lam, Th2): for k in range(2): if flag[k]: continue - mpix[goodframe[k],:] += np.outer(xproj[k], mu[k]) + mpix[goodframe[k], :] += np.outer(xproj[k], mu[k]) xp = mpix @ mu[k] - goodframe[k] = xp > Th2 + goodframe[k] = xp > Th2 V[k] = np.sum(xp**2) - if np.sum(goodframe[k])==0: + if np.sum(goodframe[k]) == 0: flag[k] = True V[k] = -1 continue xproj[k] = xp[goodframe[k]] - mu[k] = np.mean(mpix[goodframe[k], :] * xproj[k][:,np.newaxis], axis=0) - mu[k][mu[k]<0] = 0 - mu[k] /=(1e-6 + np.sum(mu[k]**2)**.5) - mpix[goodframe[k],:] -= np.outer(xproj[k], mu[k]) + mu[k] = np.mean(mpix[goodframe[k], :] * xproj[k][:, np.newaxis], axis=0) + mu[k][mu[k] < 0] = 0 + mu[k] /= (1e-6 + np.sum(mu[k]**2)**.5) + mpix[goodframe[k], :] -= np.outer(xproj[k], mu[k]) k = np.argmax(V) vexp = np.sum(mpix0**2) - np.sum(mpix**2) vrat = vexp / vexp0 return vrat, (mu[k], xproj[k], goodframe[k]) + def extend_mask(ypix, xpix, lam, Ly, Lx): """ extend mask into 8 surrrounding pixels """ nel = len(xpix) - yx = ((ypix, ypix, ypix, ypix-1, ypix-1,ypix-1, ypix+1,ypix+1,ypix+1), - (xpix, xpix+1,xpix-1,xpix, xpix+1,xpix-1,xpix, xpix+1,xpix-1)) + yx = ((ypix, ypix, ypix, ypix - 1, ypix - 1, ypix - 1, ypix + 1, ypix + 1, + ypix + 1), (xpix, xpix + 1, xpix - 1, xpix, xpix + 1, xpix - 1, xpix, + xpix + 1, xpix - 1)) yx = np.array(yx) - yx = yx.reshape((2,-1)) + yx = yx.reshape((2, -1)) yu, ind = np.unique(yx, axis=1, return_inverse=True) LAM = np.zeros(yu.shape[1]) for j in range(len(ind)): - LAM[ind[j]] += lam[j%nel]/3 - ix = np.all((yu[0]>=0, yu[0]=0 , yu[1]= 0, yu[0] < Ly, yu[1] >= 0, yu[1] < Lx), axis=0) + ypix1, xpix1 = yu[:, ix] lam1 = LAM[ix] - return ypix1,xpix1,lam1 + return ypix1, xpix1, lam1 + class EstimateMode(Enum): - Forced = 'FORCED' - Estimated = 'estimated' + Forced = "FORCED" + Estimated = "estimated" + def estimate_spatial_scale(I: np.ndarray) -> int: I0 = I.max(axis=0) @@ -256,6 +271,7 @@ def estimate_spatial_scale(I: np.ndarray) -> int: im, _ = mode(imap[ipk][isort[:50]], keepdims=True) return im + def find_best_scale(I: np.ndarray, spatial_scale: int) -> Tuple[int, EstimateMode]: """ Returns best scale and estimate method (if the spatial scale was forced (if positive) or estimated (the top peaks). @@ -267,27 +283,33 @@ def find_best_scale(I: np.ndarray, spatial_scale: int) -> Tuple[int, EstimateMod if scale > 0: return scale, EstimateMode.Estimated else: - warn("Spatial scale estimation failed. Setting spatial scale to 1 in order to continue.") + warn( + "Spatial scale estimation failed. Setting spatial scale to 1 in order to continue." + ) return 1, EstimateMode.Forced -def sparsery(mov: np.ndarray, high_pass: int, neuropil_high_pass: int, batch_size: int, spatial_scale: int, threshold_scaling, - max_iterations: int, percentile=0) -> Tuple[Dict[str, Any], List[Dict[str, Any]]]: - """Returns stats and ops from 'mov' using correlations in time.""" + +def sparsery(mov: np.ndarray, high_pass: int, neuropil_high_pass: int, batch_size: int, + spatial_scale: int, threshold_scaling, max_iterations: int, + percentile=0) -> Tuple[Dict[str, Any], List[Dict[str, Any]]]: + """Returns stats and ops from "mov" using correlations in time.""" mean_img = mov.mean(axis=0) mov = utils.temporal_high_pass_filter(mov=mov, width=int(high_pass)) max_proj = mov.max(axis=0) sdmov = utils.standard_deviation_over_time(mov, batch_size=batch_size) - mov = neuropil_subtraction(mov=mov / sdmov, filter_size=neuropil_high_pass) # subtract low-pass filtered movie + mov = neuropil_subtraction( + mov=mov / sdmov, + filter_size=neuropil_high_pass) # subtract low-pass filtered movie _, Lyc, Lxc = mov.shape LL = np.meshgrid(np.arange(Lxc), np.arange(Lyc)) - gxy = [np.array(LL).astype('float32')] + gxy = [np.array(LL).astype("float32")] dmov = mov movu = [] # downsample movie at various spatial scales - Lyp, Lxp = np.zeros(5, 'int32'), np.zeros(5, 'int32') # downsampled sizes + Lyp, Lxp = np.zeros(5, "int32"), np.zeros(5, "int32") # downsampled sizes for j in range(5): movu0 = square_convolution_2d(dmov, 3) dmov = 2 * utils.downsample(dmov) @@ -300,7 +322,8 @@ def sparsery(mov: np.ndarray, high_pass: int, neuropil_high_pass: int, batch_siz I = np.zeros((len(gxy), gxy[0].shape[1], gxy[0].shape[2])) for movu0, gxy0, I0 in zip(movu, gxy, I): gmodel = RectBivariateSpline(gxy0[1, :, 0], gxy0[0, 0, :], movu0.max(axis=0), - kx=min(3, gxy0.shape[1] - 1), ky=min(3, gxy0.shape[2] - 1)) + kx=min(3, gxy0.shape[1] - 1), + ky=min(3, gxy0.shape[2] - 1)) I0[:] = gmodel(gxy[0][1, :, 0], gxy[0][0, 0, :]) v_corr = I.max(axis=0) @@ -310,11 +333,13 @@ def sparsery(mov: np.ndarray, high_pass: int, neuropil_high_pass: int, batch_siz # scale = np.argmin(np.abs(scales - diam)) # estimate_mode = EstimateMode.Estimated - spatscale_pix = 3 * 2 ** scale - mask_window = int(((spatscale_pix * 1.5)//2)*2) - Th2 = threshold_scaling * 5 * max(1, scale) # threshold for accepted peaks (scale it by spatial scale) + spatscale_pix = 3 * 2**scale + mask_window = int(((spatscale_pix * 1.5) // 2) * 2) + Th2 = threshold_scaling * 5 * max( + 1, scale) # threshold for accepted peaks (scale it by spatial scale) vmultiplier = max(1, mov.shape[0] / 1200) - print('NOTE: %s spatial scale ~%d pixels, time epochs %2.2f, threshold %2.2f ' % (estimate_mode.value, spatscale_pix, vmultiplier, vmultiplier * Th2)) + print("NOTE: %s spatial scale ~%d pixels, time epochs %2.2f, threshold %2.2f " % + (estimate_mode.value, spatscale_pix, vmultiplier, vmultiplier * Th2)) # get standard deviation for pixels for all values > Th2 v_map = [utils.threshold_reduce(movu0, Th2) for movu0 in movu] @@ -333,19 +358,19 @@ def sparsery(mov: np.ndarray, high_pass: int, neuropil_high_pass: int, batch_siz seeds = [] extract_patches = False for tj in range(max_iterations): - # find peaks in stddev's + # find peaks in stddev"s v0max = np.array([V1[j].max() for j in range(5)]) imap = np.argmax(v0max) imax = np.argmax(V1[imap]) yi, xi = np.unravel_index(imax, (Lyp[imap], Lxp[imap])) # position of peak - yi, xi = gxy[imap][1,yi,xi], gxy[imap][0,yi,xi] + yi, xi = gxy[imap][1, yi, xi], gxy[imap][0, yi, xi] med = [int(yi), int(xi)] # check if peak is larger than threshold * max(1,nbinned/1200) v_max[tj] = v0max.max() - if v_max[tj] < vmultiplier*Th2: - break + if v_max[tj] < vmultiplier * Th2: + break ls = lxs[imap] ihop[tj] = imap @@ -353,15 +378,15 @@ def sparsery(mov: np.ndarray, high_pass: int, neuropil_high_pass: int, batch_siz # make square of initial pixels based on spatial scale of peak yi, xi = int(yi), int(xi) ypix0, xpix0, lam0 = add_square(yi, xi, ls, Lyc, Lxc) - + # project movie into square to get time series - tproj = (mov[:, ypix0*Lxc + xpix0] * lam0[0]).sum(axis=-1) + tproj = (mov[:, ypix0 * Lxc + xpix0] * lam0[0]).sum(axis=-1) if percentile > 0: threshold = min(Th2, np.percentile(tproj, percentile)) else: threshold = Th2 - active_frames = np.nonzero(tproj>threshold)[0] # frames with activity > Th2 - + active_frames = np.nonzero(tproj > threshold)[0] # frames with activity > Th2 + # get square around seed if extract_patches: mask = mov[active_frames].mean(axis=0).reshape(Lyc, Lxc) @@ -371,14 +396,14 @@ def sparsery(mov: np.ndarray, high_pass: int, neuropil_high_pass: int, batch_siz # extend mask based on activity similarity for j in range(3): ypix0, xpix0, lam0 = iter_extend(ypix0, xpix0, mov, Lyc, Lxc, active_frames) - tproj = mov[:, ypix0*Lxc+ xpix0] @ lam0 - active_frames = np.nonzero(tproj>threshold)[0] - if len(active_frames)<1: + tproj = mov[:, ypix0 * Lxc + xpix0] @ lam0 + active_frames = np.nonzero(tproj > threshold)[0] + if len(active_frames) < 1: if tj < nmasks: continue else: break - if len(active_frames)<1: + if len(active_frames) < 1: if tj < nmasks: continue else: @@ -395,38 +420,41 @@ def sparsery(mov: np.ndarray, high_pass: int, neuropil_high_pass: int, batch_siz lam0 = lam0[ix] ymed = np.median(ypix0) xmed = np.median(xpix0) - imin = np.argmin((xpix0-xmed)**2 + (ypix0-ymed)**2) + imin = np.argmin((xpix0 - xmed)**2 + (ypix0 - ymed)**2) med = [ypix0[imin], xpix0[imin]] - + # update residual on raw movie - mov[np.ix_(active_frames, ypix0*Lxc+ xpix0)] -= tproj[active_frames][:,np.newaxis] * lam0 + mov[np.ix_(active_frames, + ypix0 * Lxc + xpix0)] -= tproj[active_frames][:, np.newaxis] * lam0 # update filtered movie - ys, xs, lms = multiscale_mask(ypix0,xpix0,lam0, Lyp, Lxp) + ys, xs, lms = multiscale_mask(ypix0, xpix0, lam0, Lyp, Lxp) for j in range(nscales): - movu[j][np.ix_(active_frames, xs[j]+Lxp[j]*ys[j])] -= np.outer(tproj[active_frames], lms[j]) - Mx = movu[j][:,xs[j]+Lxp[j]*ys[j]] - V1[j][ys[j], xs[j]] = (Mx**2 * np.float32(Mx>threshold)).sum(axis=0)**.5 + movu[j][np.ix_(active_frames, xs[j] + Lxp[j] * ys[j])] -= np.outer( + tproj[active_frames], lms[j]) + Mx = movu[j][:, xs[j] + Lxp[j] * ys[j]] + V1[j][ys[j], xs[j]] = (Mx**2 * np.float32(Mx > threshold)).sum(axis=0)**.5 stats.append({ - 'ypix': ypix0.astype(int), - 'xpix': xpix0.astype(int), - 'lam': lam0 * sdmov[ypix0, xpix0], - 'med': med, - 'footprint': ihop[tj] + "ypix": ypix0.astype(int), + "xpix": xpix0.astype(int), + "lam": lam0 * sdmov[ypix0, xpix0], + "med": med, + "footprint": ihop[tj] }) - + if tj % 1000 == 0: - print('%d ROIs, score=%2.2f' % (tj, v_max[tj])) + print("%d ROIs, score=%2.2f" % (tj, v_max[tj])) - new_ops = { - 'max_proj': max_proj, - 'Vmax': v_max, - 'ihop': ihop, - 'Vsplit': v_split, - 'Vcorr': v_corr, - 'Vmap': v_map, - 'spatscale_pix': spatscale_pix, + "max_proj": max_proj, + "Vmax": v_max, + "ihop": ihop, + "Vsplit": v_split, + "Vcorr": v_corr, + "Vmap": np.asanyarray( + v_map, dtype="object" + ), # needed so that scipy.io.savemat doesn"t fail in runpipeline with latest numpy (v1.24.3). dtype="object" is needed to have numpy array with elements having diff sizes + "spatscale_pix": spatscale_pix, } - return new_ops, stats \ No newline at end of file + return new_ops, stats diff --git a/suite2p/detection/stats.py b/suite2p/detection/stats.py index 71fe5f31d..a21b82aec 100644 --- a/suite2p/detection/stats.py +++ b/suite2p/detection/stats.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from __future__ import annotations from typing import Tuple, Optional, NamedTuple, Sequence, List, Dict, Any @@ -10,18 +13,20 @@ def distance_kernel(radius: int) -> np.ndarray: - """ Returns 2D array containing geometric distance from center, with radius 'radius'""" + """ Returns 2D array containing geometric distance from center, with radius "radius" """ d = np.arange(-radius, radius + 1) dists_2d = norm(np.meshgrid(d, d), axis=0) return dists_2d + def median_pix(ypix, xpix): ymed, xmed = np.median(ypix), np.median(xpix) - imin = np.argmin((xpix-xmed)**2 + (ypix-ymed)**2) + imin = np.argmin((xpix - xmed)**2 + (ypix - ymed)**2) xmed = xpix[imin] ymed = ypix[imin] return [ymed, xmed] + class EllipseData(NamedTuple): mu: float cov: float @@ -32,7 +37,7 @@ class EllipseData(NamedTuple): @property def area(self): - return (self.radii[0] * self.radii[1]) ** 0.5 * np.pi + return (self.radii[0] * self.radii[1])**0.5 * np.pi @property def radius(self) -> float: @@ -51,7 +56,8 @@ class ROI: lam: np.ndarray med: np.ndarray do_crop: bool - rsort: np.ndarray = field(default=np.sort(distance_kernel(radius=30).flatten()), repr=False) + rsort: np.ndarray = field(default=np.sort(distance_kernel(radius=30).flatten()), + repr=False) def __post_init__(self): """Validate inputs.""" @@ -59,8 +65,9 @@ def __post_init__(self): raise TypeError("xpix, ypix, and lam should all be the same size.") @classmethod - def from_stat_dict(cls, stat: Dict[str, Any]) -> ROI: - return cls(ypix=stat['ypix'], xpix=stat['xpix'], lam=stat['lam']) + def from_stat_dict(cls, stat: Dict[str, Any], do_crop: bool = True) -> ROI: + return cls(ypix=stat["ypix"], xpix=stat["xpix"], lam=stat["lam"], + med=stat["med"], do_crop=do_crop) def to_array(self, Ly: int, Lx: int) -> np.ndarray: """Returns a 2D boolean array of shape (Ly x Lx) indicating where the roi is located.""" @@ -69,14 +76,15 @@ def to_array(self, Ly: int, Lx: int) -> np.ndarray: return arr @classmethod - def stats_dicts_to_3d_array(cls, stats: Sequence[Dict[str, Any]], Ly: int, Lx: int, label_id: bool = False): + def stats_dicts_to_3d_array(cls, stats: Sequence[Dict[str, Any]], Ly: int, Lx: int, + label_id: bool = False): """ Outputs a (roi x Ly x Lx) float array from a sequence of stat dicts. Convenience function that repeatedly calls ROI.from_stat_dict() and ROI.to_array() for all rois. Parameters ---------- - stats : List of dictionary 'ypix', 'xpix', 'lam' + stats : List of dictionary "ypix", "xpix", "lam" Ly : y size of frame Lx : x size of frame label_id : whether array should be an integer value indicating ROI id or just 1 (indicating precence of ROI). @@ -94,11 +102,14 @@ def ravel_indices(self, Ly: int, Lx: int) -> np.ndarray: return np.ravel_multi_index((self.ypix, self.xpix), (Ly, Lx)) @classmethod - def get_overlap_count_image(cls, rois: Sequence[ROI], Ly: int, Lx: int) -> np.ndarray: - return count_overlaps(Ly=Ly, Lx=Lx, ypixs=[roi.ypix for roi in rois], xpixs=[roi.xpix for roi in rois]) + def get_overlap_count_image(cls, rois: Sequence[ROI], Ly: int, + Lx: int) -> np.ndarray: + return count_overlaps(Ly=Ly, Lx=Lx, ypixs=[roi.ypix for roi in rois], + xpixs=[roi.xpix for roi in rois]) @classmethod - def filter_overlappers(cls, rois: Sequence[ROI], overlap_image: np.ndarray, max_overlap: float) -> List[bool]: + def filter_overlappers(cls, rois: Sequence[ROI], overlap_image: np.ndarray, + max_overlap: float) -> List[bool]: """returns logical array of rois that remain after removing those that overlap more than fraction max_overlap from overlap_img.""" return filter_overlappers( ypixs=[roi.ypix for roi in rois], @@ -110,7 +121,7 @@ def filter_overlappers(cls, rois: Sequence[ROI], overlap_image: np.ndarray, max_ def get_overlap_image(self, overlap_count_image: np.ndarray) -> np.ndarray: return overlap_count_image[self.ypix, self.xpix] > 1 - @property + @property def soma_crop(self) -> np.ndarray: if self.do_crop and self.ypix.size > 10: dists = ((self.ypix - self.med[0])**2 + (self.xpix - self.med[1])**2)**0.5 @@ -126,11 +137,11 @@ def soma_crop(self) -> np.ndarray: if len(np.nonzero(darea[ida:] < threshold)[0]): radius = radii[np.nonzero(darea[ida:] < threshold)[0][0] + ida] crop = dists < radius - if crop.sum()==0: - crop = np.ones(self.ypix.size, 'bool') + if crop.sum() == 0: + crop = np.ones(self.ypix.size, "bool") return crop else: - return np.ones(self.ypix.size, 'bool') + return np.ones(self.ypix.size, "bool") @property def mean_r_squared(self) -> float: @@ -149,8 +160,8 @@ def mean_r_squared_compact(self) -> float: @property def solidity(self) -> float: if self.npix_soma > 10: - points = np.stack((self.ypix[self.soma_crop], - self.xpix[self.soma_crop]), axis=1) + points = np.stack((self.ypix[self.soma_crop], self.xpix[self.soma_crop]), + axis=1) try: hull = ConvexHull(points) volume = hull.volume @@ -161,10 +172,12 @@ def solidity(self) -> float: return self.npix_soma / volume @classmethod - def get_mean_r_squared_normed_all(cls, rois: Sequence[ROI], first_n: int = 100) -> np.ndarray: - return norm_by_average([roi.mean_r_squared for roi in rois], estimator=np.nanmedian, offset=1e-10, first_n=first_n) + def get_mean_r_squared_normed_all(cls, rois: Sequence[ROI], + first_n: int = 100) -> np.ndarray: + return norm_by_average([roi.mean_r_squared for roi in rois], + estimator=np.nanmedian, offset=1e-10, first_n=first_n) - @property + @property def npix_soma(self) -> int: return self.soma_crop.sum() @@ -173,14 +186,13 @@ def n_pixels(self) -> int: return self.xpix.size @classmethod - def get_n_pixels_normed_all(cls, rois: Sequence[ROI], first_n: int = 100) -> np.ndarray: + def get_n_pixels_normed_all(cls, rois: Sequence[ROI], + first_n: int = 100) -> np.ndarray: return norm_by_average([roi.n_pixels for roi in rois], first_n=first_n) def fit_ellipse(self, dy: float, dx: float) -> EllipseData: - return fitMVGaus(self.ypix[self.soma_crop], - self.xpix[self.soma_crop], - self.lam[self.soma_crop], - dy=dy, dx=dx, thres=2) + return fitMVGaus(self.ypix[self.soma_crop], self.xpix[self.soma_crop], + self.lam[self.soma_crop], dy=dy, dx=dx, thres=2) def roi_stats(stat, Ly: int, Lx: int, aspect=None, diameter=None, max_overlap=None, @@ -190,7 +202,7 @@ def roi_stats(stat, Ly: int, Lx: int, aspect=None, diameter=None, max_overlap=No Parameters ---------- stat : dictionary - 'ypix', 'xpix', 'lam' + "ypix", "xpix", "lam" FOV size : (Ly, Lx) @@ -201,60 +213,67 @@ def roi_stats(stat, Ly: int, Lx: int, aspect=None, diameter=None, max_overlap=No Returns ------- stat : dictionary - adds 'npix', 'npix_norm', 'med', 'footprint', 'compact', 'radius', 'aspect_ratio' + adds "npix", "npix_norm", "med", "footprint", "compact", "radius", "aspect_ratio" """ - if 'med' not in stat[0]: + if "med" not in stat[0]: for s in stat: - s['med'] = median_pix(s['ypix'], s['xpix']) + s["med"] = median_pix(s["ypix"], s["xpix"]) # approx size of masks for ROI aspect ratio estimation - d0 = 10 if diameter is None or (isinstance(diameter, int) and diameter==0) else diameter + d0 = 10 if diameter is None or (isinstance(diameter, int) and + diameter == 0) else diameter if aspect is not None: diameter = int(d0[0]) if isinstance(d0, (list, np.ndarray)) else int(d0) dy, dx = int(aspect * diameter), diameter else: - dy, dx = (int(d0), int(d0)) if not isinstance(d0, (list, np.ndarray)) else (int(d0[0]), int(d0[0])) - - rois = [ROI(ypix=s['ypix'], xpix=s['xpix'], - lam=s['lam'], med=s['med'], do_crop=do_crop) for s in stat] + dy, dx = (int(d0), + int(d0)) if not isinstance(d0, (list, np.ndarray)) else (int(d0[0]), + int(d0[0])) + + rois = [ + ROI(ypix=s["ypix"], xpix=s["xpix"], lam=s["lam"], med=s["med"], do_crop=do_crop) + for s in stat + ] n_overlaps = ROI.get_overlap_count_image(rois=rois, Ly=Ly, Lx=Lx) for roi, s in zip(rois, stat): - s['mrs'] = roi.mean_r_squared - s['mrs0'] = roi.mean_r_squared0 - s['compact'] = roi.mean_r_squared_compact - s['solidity'] = roi.solidity - s['npix'] = roi.n_pixels - s['npix_soma'] = roi.npix_soma - s['soma_crop'] = roi.soma_crop - s['overlap'] = roi.get_overlap_image(n_overlaps) + s["mrs"] = roi.mean_r_squared + s["mrs0"] = roi.mean_r_squared0 + s["compact"] = roi.mean_r_squared_compact + s["solidity"] = roi.solidity + s["npix"] = roi.n_pixels + s["npix_soma"] = roi.npix_soma + s["soma_crop"] = roi.soma_crop + s["overlap"] = roi.get_overlap_image(n_overlaps) ellipse = roi.fit_ellipse(dy, dx) - s['radius'] = ellipse.radius - s['aspect_ratio'] = ellipse.aspect_ratio - - mrs_normeds = norm_by_average( - values=np.array([s['mrs'] for s in stat]), estimator=np.nanmedian, offset=1e-10, first_n=100 - ) - npix_normeds = norm_by_average( - values=np.array([s['npix'] for s in stat]), first_n=100 - ) - npix_soma_normeds = norm_by_average( - values=np.array([s['npix_soma'] for s in stat]), first_n=100 - ) - for s, mrs_normed, npix_normed, npix_soma_normed in zip(stat, mrs_normeds, npix_normeds, npix_soma_normeds): - s['mrs'] = mrs_normed - s['npix_norm_no_crop'] = npix_normed - s['npix_norm'] = npix_soma_normed - s['footprint'] = 0 if 'footprint' not in s else s['footprint'] - - if max_overlap is not None and max_overlap<1.0: - keep_rois = ROI.filter_overlappers(rois=rois, overlap_image=n_overlaps, max_overlap=max_overlap) + s["radius"] = ellipse.radius + s["aspect_ratio"] = ellipse.aspect_ratio + + mrs_normeds = norm_by_average(values=np.array([s["mrs"] for s in stat]), + estimator=np.nanmedian, offset=1e-10, first_n=100) + npix_normeds = norm_by_average(values=np.array([s["npix"] for s in stat]), + first_n=100) + npix_soma_normeds = norm_by_average(values=np.array([s["npix_soma"] for s in stat]), + first_n=100) + for s, mrs_normed, npix_normed, npix_soma_normed in zip(stat, mrs_normeds, + npix_normeds, + npix_soma_normeds): + s["mrs"] = mrs_normed + s["npix_norm_no_crop"] = npix_normed + s["npix_norm"] = npix_soma_normed + s["footprint"] = 0 if "footprint" not in s else s["footprint"] + + if max_overlap is not None and max_overlap < 1.0: + keep_rois = ROI.filter_overlappers(rois=rois, overlap_image=n_overlaps, + max_overlap=max_overlap) stat = stat[keep_rois] n_overlaps = ROI.get_overlap_count_image(rois=rois, Ly=Ly, Lx=Lx) - rois = [ROI(ypix=s['ypix'], xpix=s['xpix'], - lam=s['lam'], med=s['med'], do_crop=do_crop) for s in stat] + rois = [ + ROI(ypix=s["ypix"], xpix=s["xpix"], lam=s["lam"], med=s["med"], + do_crop=do_crop) for s in stat + ] for roi, s in zip(rois, stat): - s['overlap'] = roi.get_overlap_image(n_overlaps) - + s["overlap"] = roi.get_overlap_image(n_overlaps) + return stat @@ -282,19 +301,19 @@ def fitMVGaus(y, x, lam0, dy, dx, thres=2.5, npts: int = 100) -> EllipseData: # normalize pixel weights lam = lam0.copy() - ix = lam > 0#lam.max()/5 + ix = lam > 0 #lam.max()/5 y, x, lam = y[ix], x[ix], lam[ix] lam /= lam.sum() # mean of gaussian yx = np.stack((y, x)) mu = (lam * yx).sum(axis=1) - yx = (yx - mu[:, np.newaxis]) * lam ** .5 + yx = (yx - mu[:, np.newaxis]) * lam**.5 cov = yx @ yx.T # radii of major and minor axes radii, evec = np.linalg.eig(cov) - radii = thres * np.maximum(0, np.real(radii)) ** .5 + radii = thres * np.maximum(0, np.real(radii))**.5 # compute pts of ellipse theta = np.linspace(0, 2 * np.pi, npts) @@ -303,23 +322,30 @@ def fitMVGaus(y, x, lam0, dy, dx, thres=2.5, npts: int = 100) -> EllipseData: radii = np.sort(radii)[::-1] return EllipseData(mu=mu, cov=cov, radii=radii, ellipse=ellipse, dy=dy, dx=dx) + def count_overlaps(Ly: int, Lx: int, ypixs, xpixs) -> np.ndarray: overlap = np.zeros((Ly, Lx)) for xpix, ypix in zip(xpixs, ypixs): overlap[ypix, xpix] += 1 return overlap -def filter_overlappers(ypixs, xpixs, overlap_image: np.ndarray, max_overlap: float) -> List[bool]: + +def filter_overlappers(ypixs, xpixs, overlap_image: np.ndarray, + max_overlap: float) -> List[bool]: """returns ROI indices that remain after removing those that overlap more than fraction max_overlap from overlap_img.""" n_overlaps = overlap_image.copy() keep_rois = [] - for ypix, xpix in reversed(list(zip(ypixs, xpixs))): # todo: is there an ordering effect here that affects which rois will be removed and which will stay? + for ypix, xpix in reversed( + list(zip(ypixs, xpixs)) + ): # todo: is there an ordering effect here that affects which rois will be removed and which will stay? keep_roi = np.mean(n_overlaps[ypix, xpix] > 1) <= max_overlap keep_rois.append(keep_roi) if not keep_roi: n_overlaps[ypix, xpix] -= 1 return keep_rois[::-1] -def norm_by_average(values: np.ndarray, estimator=np.mean, first_n: int = 100, offset: float = 0.) -> np.ndarray: - """Returns array divided by the (average of the 'first_n' values + offset), calculating the average with 'estimator'.""" - return np.array(values, dtype='float32') / (estimator(values[:first_n]) + offset) \ No newline at end of file + +def norm_by_average(values: np.ndarray, estimator=np.mean, first_n: int = 100, + offset: float = 0.) -> np.ndarray: + """Returns array divided by the (average of the "first_n" values + offset), calculating the average with "estimator".""" + return np.array(values, dtype="float32") / (estimator(values[:first_n]) + offset) diff --git a/suite2p/detection/utils.py b/suite2p/detection/utils.py index 3a08c7ac3..b5d5cecb7 100644 --- a/suite2p/detection/utils.py +++ b/suite2p/detection/utils.py @@ -1,32 +1,39 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from numba import jit from scipy.optimize import linear_sum_assignment from scipy.ndimage import gaussian_filter + def square_mask(mask, ly, yi, xi): """ crop from mask a square of size ly at position yi,xi """ Lyc, Lxc = mask.shape - mask0 = np.zeros((2*ly, 2*ly), mask.dtype) - yinds = [max(0, yi-ly), min(yi+ly, Lyc)] - xinds = [max(0, xi-ly), min(xi+ly, Lxc)] - mask0[max(0, ly-yi) : min(2*ly, Lyc+ly-yi), - max(0, ly-xi) : min(2*ly, Lxc+ly-xi)] = mask[yinds[0]:yinds[1], xinds[0]:xinds[1]] + mask0 = np.zeros((2 * ly, 2 * ly), mask.dtype) + yinds = [max(0, yi - ly), min(yi + ly, Lyc)] + xinds = [max(0, xi - ly), min(xi + ly, Lxc)] + mask0[max(0, ly - yi):min(2 * ly, Lyc + ly - yi), + max(0, ly - xi):min(2 * ly, Lxc + ly - xi)] = mask[yinds[0]:yinds[1], + xinds[0]:xinds[1]] return mask0 + def mask_stats(mask): """ median and diameter of mask """ - y,x = np.nonzero(mask) + y, x = np.nonzero(mask) y = y.astype(np.int32) x = x.astype(np.int32) ymed = np.median(y) xmed = np.median(x) - imin = np.argmin((x-xmed)**2 + (y-ymed)**2) + imin = np.argmin((x - xmed)**2 + (y - ymed)**2) xmed = x[imin] ymed = y[imin] diam = len(y)**0.5 - diam /= (np.pi**0.5)/2 + diam /= (np.pi**0.5) / 2 return ymed, xmed, diam + def mask_ious(masks_true, masks_pred): """ return best-matched masks @@ -49,20 +56,21 @@ def mask_ious(masks_true, masks_pred): full IOU matrix across all pairs """ - iou = _intersection_over_union(masks_true, masks_pred)[1:,1:] + iou = _intersection_over_union(masks_true, masks_pred)[1:, 1:] iout, preds = match_masks(iou) return iout, preds, iou + def match_masks(iou): n_min = min(iou.shape[0], iou.shape[1]) - costs = -(iou >= 0.5).astype(float) - iou / (2*n_min) + costs = -(iou >= 0.5).astype(float) - iou / (2 * n_min) true_ind, pred_ind = linear_sum_assignment(costs) iout = np.zeros(iou.shape[0]) - iout[true_ind] = iou[true_ind,pred_ind] - preds = np.zeros(iou.shape[0], 'int') - preds[true_ind] = pred_ind+1 + iout[true_ind] = iou[true_ind, pred_ind] + preds = np.zeros(iou.shape[0], "int") + preds[true_ind] = pred_ind + 1 return iout, preds - + @jit(nopython=True) def _label_overlap(x, y): @@ -85,11 +93,12 @@ def _label_overlap(x, y): """ x = x.ravel() y = y.ravel() - overlap = np.zeros((1+x.max(),1+y.max()), dtype=np.uint) + overlap = np.zeros((1 + x.max(), 1 + y.max()), dtype=np.uint) for i in range(len(x)): - overlap[x[i],y[i]] += 1 + overlap[x[i], y[i]] += 1 return overlap + def _intersection_over_union(masks_true, masks_pred): """ intersection over union of all mask pairs @@ -115,9 +124,10 @@ def _intersection_over_union(masks_true, masks_pred): iou[np.isnan(iou)] = 0.0 return iou + def hp_gaussian_filter(mov: np.ndarray, width: int) -> np.ndarray: """ - Returns a high-pass-filtered copy of the 3D array 'mov' using a gaussian kernel. + Returns a high-pass-filtered copy of the 3D array "mov" using a gaussian kernel. Parameters ---------- @@ -139,7 +149,7 @@ def hp_gaussian_filter(mov: np.ndarray, width: int) -> np.ndarray: def hp_rolling_mean_filter(mov: np.ndarray, width: int) -> np.ndarray: """ - Returns a high-pass-filtered copy of the 3D array 'mov' using a non-overlapping rolling mean kernel over time. + Returns a high-pass-filtered copy of the 3D array "mov" using a non-overlapping rolling mean kernel over time. Parameters ---------- @@ -176,9 +186,10 @@ def temporal_high_pass_filter(mov: np.ndarray, width: int) -> np.ndarray: filtered_mov: nImg x Ly x Lx The filtered frames """ - - return hp_gaussian_filter(mov, width) if width < 10 else hp_rolling_mean_filter(mov, width) # gaussian is slower - + + return hp_gaussian_filter(mov, width) if width < 10 else hp_rolling_mean_filter( + mov, width) # gaussian is slower + def standard_deviation_over_time(mov: np.ndarray, batch_size: int) -> np.ndarray: """ @@ -198,16 +209,16 @@ def standard_deviation_over_time(mov: np.ndarray, batch_size: int) -> np.ndarray """ nbins, Ly, Lx = mov.shape batch_size = min(batch_size, nbins) - sdmov = np.zeros((Ly, Lx), 'float32') + sdmov = np.zeros((Ly, Lx), "float32") for ix in range(0, nbins, batch_size): - sdmov += ((np.diff(mov[ix:ix+batch_size, :, :], axis=0) ** 2).sum(axis=0)) + sdmov += ((np.diff(mov[ix:ix + batch_size, :, :], axis=0)**2).sum(axis=0)) sdmov = np.maximum(1e-10, np.sqrt(sdmov / nbins)) return sdmov def downsample(mov: np.ndarray, taper_edge: bool = True) -> np.ndarray: """ - Returns a pixel-downsampled movie from 'mov', tapering the edges of 'taper_edge' is True. + Returns a pixel-downsampled movie from "mov", tapering the edges of "taper_edge" is True. Parameters ---------- @@ -224,14 +235,14 @@ def downsample(mov: np.ndarray, taper_edge: bool = True) -> np.ndarray: n_frames, Ly, Lx = mov.shape # bin along Y - movd = np.zeros((n_frames, int(np.ceil(Ly / 2)), Lx), 'float32') - movd[:, :Ly//2, :] = np.mean([mov[:, 0:-1:2, :], mov[:, 1::2, :]], axis=0) + movd = np.zeros((n_frames, int(np.ceil(Ly / 2)), Lx), "float32") + movd[:, :Ly // 2, :] = np.mean([mov[:, 0:-1:2, :], mov[:, 1::2, :]], axis=0) if Ly % 2 == 1: movd[:, -1, :] = mov[:, -1, :] / 2 if taper_edge else mov[:, -1, :] # bin along X - mov2 = np.zeros((n_frames, int(np.ceil(Ly / 2)), int(np.ceil(Lx / 2))), 'float32') - mov2[:, :, :Lx//2] = np.mean([movd[:, :, 0:-1:2], movd[:, :, 1::2]], axis=0) + mov2 = np.zeros((n_frames, int(np.ceil(Ly / 2)), int(np.ceil(Lx / 2))), "float32") + mov2[:, :, :Lx // 2] = np.mean([movd[:, :, 0:-1:2], movd[:, :, 1::2]], axis=0) if Lx % 2 == 1: mov2[:, :, -1] = movd[:, :, -1] / 2 if taper_edge else movd[:, :, -1] @@ -240,7 +251,7 @@ def downsample(mov: np.ndarray, taper_edge: bool = True) -> np.ndarray: def threshold_reduce(mov: np.ndarray, intensity_threshold: float) -> np.ndarray: """ - Returns standard deviation of pixels, thresholded by 'intensity_threshold'. + Returns standard deviation of pixels, thresholded by "intensity_threshold". Run in a loop to reduce memory footprint. Parameters @@ -256,9 +267,8 @@ def threshold_reduce(mov: np.ndarray, intensity_threshold: float) -> np.ndarray: The standard deviation of the non-thresholded pixels """ nbinned, Lyp, Lxp = mov.shape - Vt = np.zeros((Lyp,Lxp), 'float32') + Vt = np.zeros((Lyp, Lxp), "float32") for t in range(nbinned): Vt += mov[t]**2 * (mov[t] > intensity_threshold) Vt = Vt**.5 return Vt - diff --git a/suite2p/extraction/__init__.py b/suite2p/extraction/__init__.py index 4e0d6085f..a3f53115c 100644 --- a/suite2p/extraction/__init__.py +++ b/suite2p/extraction/__init__.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from .dcnv import preprocess, oasis from .extract import create_masks_and_extract, enhanced_mean_image, extract_traces_from_masks, extraction_wrapper from .masks import create_cell_mask, create_neuropil_masks, create_cell_pix \ No newline at end of file diff --git a/suite2p/extraction/dcnv.py b/suite2p/extraction/dcnv.py index 1cd953115..45d8f55c0 100644 --- a/suite2p/extraction/dcnv.py +++ b/suite2p/extraction/dcnv.py @@ -1,37 +1,45 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from numba import njit, prange from scipy.ndimage import maximum_filter1d, minimum_filter1d, gaussian_filter -@njit(['float32[:], float32[:], float32[:], int64[:], float32[:], float32[:], float32, float32'], cache=True) +@njit([ + "float32[:], float32[:], float32[:], int64[:], float32[:], float32[:], float32, float32" +], cache=True) def oasis_trace(F, v, w, t, l, s, tau, fs): """ spike deconvolution on a single neuron """ NT = F.shape[0] - g = -1./(tau * fs) + g = -1. / (tau * fs) it = 0 ip = 0 - while it0: - if v[ip-1] * np.exp(g * l[ip-1]) > v[ip]: + while it < NT: + v[ip], w[ip], t[ip], l[ip] = F[it], 1, it, 1 + while ip > 0: + if v[ip - 1] * np.exp(g * l[ip - 1]) > v[ip]: # violation of the constraint means merging pools - f1 = np.exp(g * l[ip-1]) - f2 = np.exp(2 * g * l[ip-1]) - wnew = w[ip-1] + w[ip] * f2 - v[ip-1] = (v[ip-1] * w[ip-1] + v[ip] * w[ip]* f1) / wnew - w[ip-1] = wnew - l[ip-1] = l[ip-1] + l[ip] + f1 = np.exp(g * l[ip - 1]) + f2 = np.exp(2 * g * l[ip - 1]) + wnew = w[ip - 1] + w[ip] * f2 + v[ip - 1] = (v[ip - 1] * w[ip - 1] + v[ip] * w[ip] * f1) / wnew + w[ip - 1] = wnew + l[ip - 1] = l[ip - 1] + l[ip] ip -= 1 else: break it += 1 ip += 1 - s[t[1:ip]] = v[1:ip] - v[:ip-1] * np.exp(g * l[:ip-1]) + s[t[1:ip]] = v[1:ip] - v[:ip - 1] * np.exp(g * l[:ip - 1]) -@njit(['float32[:,:], float32[:,:], float32[:,:], int64[:,:], float32[:,:], float32[:,:], float32, float32'], parallel=True, cache=True) + +@njit([ + "float32[:,:], float32[:,:], float32[:,:], int64[:,:], float32[:,:], float32[:,:], float32, float32" +], parallel=True, cache=True) def oasis_matrix(F, v, w, t, l, s, tau, fs): """ spike deconvolution on many neurons parallelized with prange """ for n in prange(F.shape[0]): @@ -66,26 +74,26 @@ def oasis(F: np.ndarray, batch_size: int, tau: float, fs: float) -> np.ndarray: size [neurons x time], deconvolved fluorescence """ - NN,NT = F.shape + NN, NT = F.shape F = F.astype(np.float32) - S = np.zeros((NN,NT), dtype=np.float32) + S = np.zeros((NN, NT), dtype=np.float32) for i in range(0, NN, batch_size): - f = F[i:i+batch_size] - v = np.zeros((f.shape[0],NT), dtype=np.float32) - w = np.zeros((f.shape[0],NT), dtype=np.float32) - t = np.zeros((f.shape[0],NT), dtype=np.int64) - l = np.zeros((f.shape[0],NT), dtype=np.float32) - s = np.zeros((f.shape[0],NT), dtype=np.float32) + f = F[i:i + batch_size] + v = np.zeros((f.shape[0], NT), dtype=np.float32) + w = np.zeros((f.shape[0], NT), dtype=np.float32) + t = np.zeros((f.shape[0], NT), dtype=np.int64) + l = np.zeros((f.shape[0], NT), dtype=np.float32) + s = np.zeros((f.shape[0], NT), dtype=np.float32) oasis_matrix(f, v, w, t, l, s, tau, fs) - S[i:i+batch_size] = s + S[i:i + batch_size] = s return S -def preprocess(F: np.ndarray, baseline: str, win_baseline: float, - sig_baseline: float, fs: float, prctile_baseline: float = 8) -> np.ndarray: +def preprocess(F: np.ndarray, baseline: str, win_baseline: float, sig_baseline: float, + fs: float, prctile_baseline: float = 8) -> np.ndarray: """ preprocesses fluorescence traces for spike deconvolution - baseline-subtraction with window 'win_baseline' + baseline-subtraction with window "win_baseline" Parameters ---------------- @@ -100,7 +108,7 @@ def preprocess(F: np.ndarray, baseline: str, win_baseline: float, window (in seconds) for max filter sig_baseline : float - width of Gaussian filter in seconds + width of Gaussian filter in frames fs : float sampling rate per plane @@ -115,17 +123,17 @@ def preprocess(F: np.ndarray, baseline: str, win_baseline: float, size [neurons x time], baseline-corrected fluorescence """ - win = int(win_baseline*fs) - if baseline == 'maximin': - Flow = gaussian_filter(F, [0., sig_baseline]) - Flow = minimum_filter1d(Flow, win) - Flow = maximum_filter1d(Flow, win) - elif baseline == 'constant': - Flow = gaussian_filter(F, [0., sig_baseline]) + win = int(win_baseline * fs) + if baseline == "maximin": + Flow = gaussian_filter(F, [0., sig_baseline]) + Flow = minimum_filter1d(Flow, win) + Flow = maximum_filter1d(Flow, win) + elif baseline == "constant": + Flow = gaussian_filter(F, [0., sig_baseline]) Flow = np.amin(Flow) - elif baseline == 'constant_prctile': + elif baseline == "constant_prctile": Flow = np.percentile(F, prctile_baseline, axis=1) - Flow = np.expand_dims(Flow, axis = 1) + Flow = np.expand_dims(Flow, axis=1) else: Flow = 0. diff --git a/suite2p/extraction/extract.py b/suite2p/extraction/extract.py index 9f4962acc..8a5093453 100644 --- a/suite2p/extraction/extract.py +++ b/suite2p/extraction/extract.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os import time @@ -6,24 +9,25 @@ from numba.typed import List from scipy import stats, signal from .masks import create_masks -from ..io import BinaryRWFile +from ..io import BinaryFile from .. import default_ops + def extract_traces(f_in, cell_masks, neuropil_masks, batch_size=500): """ extracts activity from f_in using masks in stat and neuropil_masks - computes fluorescence F as sum of pixels weighted by 'lam' + computes fluorescence F as sum of pixels weighted by "lam" computes neuropil fluorescence Fneu as sum of pixels in neuropil_masks - data is from reg_file ops['batch_size'] by pixels: + data is from reg_file ops["batch_size"] by pixels: .. code-block:: python - F[n] = data[:, stat[n]['ipix']] @ stat[n]['lam'] + F[n] = data[:, stat[n]["ipix"]] @ stat[n]["lam"] Fneu = neuropil_masks @ data.T Parameters ---------------- - f_in : np.ndarray or io.BinaryRWFile object + f_in : np.ndarray or io.BinaryFile object size n_frames, Ly, Lx @@ -51,15 +55,15 @@ def extract_traces(f_in, cell_masks, neuropil_masks, batch_size=500): """ n_frames, Ly, Lx = f_in.shape - t0=time.time() + t0 = time.time() batch_size = min(batch_size, 1000) ncells = len(cell_masks) - - F = np.zeros((ncells, n_frames),np.float32) - Fneu = np.zeros((ncells, n_frames),np.float32) + + F = np.zeros((ncells, n_frames), np.float32) + Fneu = np.zeros((ncells, n_frames), np.float32) batch_size = int(batch_size) - + cell_ipix, cell_lam = List(), List() [cell_ipix.append(cell_mask[0].astype(np.int64)) for cell_mask in cell_masks] [cell_lam.append(cell_mask[1].astype(np.float32)) for cell_mask in cell_masks] @@ -69,40 +73,51 @@ def extract_traces(f_in, cell_masks, neuropil_masks, batch_size=500): if neuropil_masks is not None: neuropil_ipix = List() - if isinstance(neuropil_masks, np.ndarray) and neuropil_masks.shape[1] == Ly*Lx: - [neuropil_ipix.append(np.nonzero(neuropil_mask)[0]) for neuropil_mask in neuropil_masks] + if isinstance(neuropil_masks, + np.ndarray) and neuropil_masks.shape[1] == Ly * Lx: + [ + neuropil_ipix.append(np.nonzero(neuropil_mask)[0]) + for neuropil_mask in neuropil_masks + ] else: - [neuropil_ipix.append(neuropil_mask.astype(np.int64)) for neuropil_mask in neuropil_masks] - neuropil_npix = np.array([len(neuropil_ipixi) for neuropil_ipixi in neuropil_ipix]).astype(np.float32) + [ + neuropil_ipix.append(neuropil_mask.astype(np.int64)) + for neuropil_mask in neuropil_masks + ] + neuropil_npix = np.array([ + len(neuropil_ipixi) for neuropil_ipixi in neuropil_ipix + ]).astype(np.float32) else: neuropil_ipix = None ix = 0 for k in np.arange(0, n_frames, batch_size): - data = f_in[k : min(k + batch_size, n_frames)].astype('float32') + data = f_in[k:min(k + batch_size, n_frames)].astype("float32") nimg = data.shape[0] if nimg == 0: break - inds = ix+np.arange(0,nimg,1,int) - data = np.reshape(data, (nimg,-1)).astype(np.float32) + inds = ix + np.arange(0, nimg, 1, int) + data = np.reshape(data, (nimg, -1)).astype(np.float32) Fi = np.zeros((ncells, data.shape[0]), np.float32) - + # extract traces and neuropil - + # (WITHOUT NUMBA) #for n in range(ncells): # F[n,inds] = np.dot(data[:, cell_masks[n][0]], cell_masks[n][1]) #Fneu[:,inds] = np.dot(neuropil_masks , data.T) # WITH NUMBA - F[:,inds] = matmul_traces(Fi, data, cell_ipix, cell_lam) + F[:, inds] = matmul_traces(Fi, data, cell_ipix, cell_lam) if neuropil_ipix is not None: - Fneu[:,inds] = matmul_neuropil(Fi, data, neuropil_ipix, neuropil_npix) + Fneu[:, inds] = matmul_neuropil(Fi, data, neuropil_ipix, neuropil_npix) ix += nimg - print('Extracted fluorescence from %d ROIs in %d frames, %0.2f sec.'%(ncells, n_frames, time.time()-t0)) + print("Extracted fluorescence from %d ROIs in %d frames, %0.2f sec." % + (ncells, n_frames, time.time() - t0)) return F, Fneu + @njit(parallel=True) def matmul_traces(Fi, data, cell_ipix, cell_lam): ncells = Fi.shape[0] @@ -110,6 +125,7 @@ def matmul_traces(Fi, data, cell_ipix, cell_lam): Fi[n] = np.dot(data[:, cell_ipix[n]], cell_lam[n]) return Fi + @njit(parallel=True) def matmul_neuropil(Fi, data, neuropil_ipix, neuropil_npix): ncells = Fi.shape[0] @@ -124,18 +140,20 @@ def extract_traces_from_masks(ops, cell_masks, neuropil_masks): also used in drawroi.py """ - batch_size=ops['batch_size'] + batch_size = ops["batch_size"] F_chan2, Fneu_chan2 = [], [] - with BinaryRWFile(Ly=ops['Ly'], Lx=ops['Lx'], - filename=ops['reg_file']) as f: + with BinaryFile(Ly=ops["Ly"], Lx=ops["Lx"], filename=ops["reg_file"]) as f: F, Fneu = extract_traces(f, cell_masks, neuropil_masks, batch_size=batch_size) - if 'reg_file_chan2' in ops: - with BinaryRWFile(Ly=ops['Ly'], Lx=ops['Lx'], - filename=ops['reg_file_chan2']) as f: - F_chan2, Fneu_chan2 = extract_traces(cell_masks, neuropil_masks, batch_size=batch_size) + if "reg_file_chan2" in ops: + with BinaryFile(Ly=ops["Ly"], Lx=ops["Lx"], + filename=ops["reg_file_chan2"]) as f: + F_chan2, Fneu_chan2 = extract_traces(f, cell_masks, neuropil_masks, + batch_size=batch_size) return F, Fneu, F_chan2, Fneu_chan2 -def extraction_wrapper(stat, f_reg, f_reg_chan2=None, cell_masks=None, neuropil_masks=None, ops=default_ops()): + +def extraction_wrapper(stat, f_reg, f_reg_chan2=None, cell_masks=None, + neuropil_masks=None, ops=default_ops()): """ Main extraction function creates masks, computes fluorescence @@ -145,10 +163,10 @@ def extraction_wrapper(stat, f_reg, f_reg_chan2=None, cell_masks=None, neuropil_ stat : array of dicts - f_reg : array of functional frames, np.ndarray or io.BinaryRWFile + f_reg : array of functional frames, np.ndarray or io.BinaryFile n_frames x Ly x Lx - f_reg_chan2 : array of anatomical frames, np.ndarray or io.BinaryRWFile + f_reg_chan2 : array of anatomical frames, np.ndarray or io.BinaryFile n_frames x Ly x Lx @@ -156,7 +174,7 @@ def extraction_wrapper(stat, f_reg, f_reg_chan2=None, cell_masks=None, neuropil_ ---------------- stat : list of dictionaries - adds keys 'skew' and 'std' + adds keys "skew" and "std" F : fluorescence of functional channel @@ -168,34 +186,36 @@ def extraction_wrapper(stat, f_reg, f_reg_chan2=None, cell_masks=None, neuropil_ """ n_frames, Ly, Lx = f_reg.shape - batch_size=ops['batch_size'] + batch_size = ops["batch_size"] if cell_masks is None: t10 = time.time() cell_masks, neuropil_masks0 = create_masks(stat, Ly, Lx, ops) if neuropil_masks is None: neuropil_masks = neuropil_masks0 - print('Masks created, %0.2f sec.' % (time.time() - t10)) + print("Masks created, %0.2f sec." % (time.time() - t10)) F, Fneu = extract_traces(f_reg, cell_masks, neuropil_masks, batch_size=batch_size) if f_reg_chan2 is not None: - F_chan2, Fneu_chan2 = extract_traces(f_reg_chan2, cell_masks, neuropil_masks, batch_size=batch_size) + F_chan2, Fneu_chan2 = extract_traces(f_reg_chan2, cell_masks, neuropil_masks, + batch_size=batch_size) else: F_chan2, Fneu_chan2 = [], [] # subtract neuropil - dF = F - ops['neucoeff'] * Fneu + dF = F - ops["neucoeff"] * Fneu # compute activity statistics for classifier sk = stats.skew(dF, axis=1) sd = np.std(dF, axis=1) for k in range(F.shape[0]): - stat[k]['skew'] = sk[k] - stat[k]['std'] = sd[k] + stat[k]["skew"] = sk[k] + stat[k]["std"] = sd[k] if not neuropil_masks is None: - stat[k]['neuropil_mask'] = neuropil_masks[k] - + stat[k]["neuropil_mask"] = neuropil_masks[k] + return stat, F, Fneu, F_chan2, Fneu_chan2 + def create_masks_and_extract(ops, stat, cell_masks=None, neuropil_masks=None): """ creates masks, computes fluorescence, and saves stat, F, and Fneu to .npy @@ -203,9 +223,9 @@ def create_masks_and_extract(ops, stat, cell_masks=None, neuropil_masks=None): ---------------- ops : dictionary - 'Ly', 'Lx', 'reg_file', 'neucoeff', 'ops_path', - 'save_path', 'sparse_mode', 'nframes', 'batch_size' - (optional 'reg_file_chan2', 'chan2_thres') + "Ly", "Lx", "reg_file", "neucoeff", "ops_path", + "save_path", "sparse_mode", "nframes", "batch_size" + (optional "reg_file_chan2", "chan2_thres") stat : array of dicts @@ -213,7 +233,7 @@ def create_masks_and_extract(ops, stat, cell_masks=None, neuropil_masks=None): ---------------- stat : list of dictionaries - adds keys 'skew' and 'std' + adds keys "skew" and "std" F : fluorescence of functional channel @@ -229,55 +249,54 @@ def create_masks_and_extract(ops, stat, cell_masks=None, neuropil_masks=None): raise ValueError("stat array should not be of length 0 (no ROIs were found)") # create cell and neuropil masks - Ly, Lx = ops['Ly'], ops['Lx'] - reg_file = ops['reg_file'] - reg_file_alt = ops.get('reg_file_chan2', ops['reg_file']) - with BinaryRWFile(Ly=Ly, Lx=Lx, filename=reg_file) as f_in,\ - BinaryRWFile(Ly=Ly, Lx=Lx, filename=reg_file_alt) as f_in_chan2: - if ops['nchannels'] == 1: - f_in_chan2.close() + Ly, Lx = ops["Ly"], ops["Lx"] + reg_file = ops["reg_file"] + reg_file_alt = ops.get("reg_file_chan2", ops["reg_file"]) + with BinaryFile(Ly=Ly, Lx=Lx, filename=reg_file) as f_in,\ + BinaryFile(Ly=Ly, Lx=Lx, filename=reg_file_alt) as f_in_chan2: + if ops["nchannels"] == 1: + f_in_chan2.close() f_in_chan2 = None - - stat, F, Fneu, F_chan2, Fneu_chan2 = extraction_wrapper(stat, f_in, - f_reg_chan2=f_in_chan2, - cell_masks=cell_masks, - neuropil_masks=neuropil_masks, - ops=ops) - + + stat, F, Fneu, F_chan2, Fneu_chan2 = extraction_wrapper( + stat, f_in, f_reg_chan2=f_in_chan2, cell_masks=cell_masks, + neuropil_masks=neuropil_masks, ops=ops) + return stat, F, Fneu, F_chan2, Fneu_chan2 - + def enhanced_mean_image(ops): """ computes enhanced mean image and adds it to ops - Median filters ops['meanImg'] with 4*diameter in 2D and subtracts and + Median filters ops["meanImg"] with 4*diameter in 2D and subtracts and divides by this median-filtered image to return a high-pass filtered - image ops['meanImgE'] + image ops["meanImgE"] Parameters ---------- ops : dictionary - uses 'meanImg', 'aspect', 'spatscale_pix', 'yrange' and 'xrange' + uses "meanImg", "aspect", "spatscale_pix", "yrange" and "xrange" Returns ------- ops : dictionary - 'meanImgE' field added + "meanImgE" field added """ - I = ops['meanImg'].astype(np.float32) - if 'spatscale_pix' not in ops: - if isinstance(ops['diameter'], int): - diameter = np.array([ops['diameter'], ops['diameter']]) + I = ops["meanImg"].astype(np.float32) + if "spatscale_pix" not in ops: + if isinstance(ops["diameter"], int): + diameter = np.array([ops["diameter"], ops["diameter"]]) else: - diameter = np.array(ops['diameter']) - if diameter[0]==0: + diameter = np.array(ops["diameter"]) + if diameter[0] == 0: diameter[:] = 12 - ops['spatscale_pix'] = diameter[1] - ops['aspect'] = diameter[0]/diameter[1] + ops["spatscale_pix"] = diameter[1] + ops["aspect"] = diameter[0] / diameter[1] - diameter = 4*np.ceil(np.array([ops['spatscale_pix'] * ops['aspect'], ops['spatscale_pix']])) + 1 + diameter = 4 * np.ceil( + np.array([ops["spatscale_pix"] * ops["aspect"], ops["spatscale_pix"]])) + 1 diameter = diameter.flatten().astype(np.int64) Imed = signal.medfilt2d(I, [diameter[0], diameter[1]]) I = I - Imed @@ -287,12 +306,11 @@ def enhanced_mean_image(ops): mimg99 = 6 mimg0 = I - mimg0 = mimg0[ops['yrange'][0]:ops['yrange'][1], ops['xrange'][0]:ops['xrange'][1]] + mimg0 = mimg0[ops["yrange"][0]:ops["yrange"][1], ops["xrange"][0]:ops["xrange"][1]] mimg0 = (mimg0 - mimg1) / (mimg99 - mimg1) - mimg0 = np.maximum(0,np.minimum(1,mimg0)) - mimg = mimg0.min() * np.ones((ops['Ly'],ops['Lx']),np.float32) - mimg[ops['yrange'][0]:ops['yrange'][1], - ops['xrange'][0]:ops['xrange'][1]] = mimg0 - ops['meanImgE'] = mimg - print('added enhanced mean image') + mimg0 = np.maximum(0, np.minimum(1, mimg0)) + mimg = mimg0.min() * np.ones((ops["Ly"], ops["Lx"]), np.float32) + mimg[ops["yrange"][0]:ops["yrange"][1], ops["xrange"][0]:ops["xrange"][1]] = mimg0 + ops["meanImgE"] = mimg + print("added enhanced mean image") return ops diff --git a/suite2p/extraction/masks.py b/suite2p/extraction/masks.py index 10ea1f3a7..ba1cc22e5 100644 --- a/suite2p/extraction/masks.py +++ b/suite2p/extraction/masks.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from typing import List, Tuple, Dict, Any from itertools import count import numpy as np @@ -6,26 +9,29 @@ from ..detection.sparsedetect import extendROI from .. import default_ops + def create_masks(stats: List[Dict[str, Any]], Ly, Lx, ops=default_ops()): """ create cell and neuropil masks """ - cell_pix = create_cell_pix(stats, Ly=Ly, Lx=Lx, - lam_percentile=ops.get('lam_percentile', 50.0)) - cell_masks = [create_cell_mask(stat, Ly=Ly, Lx=Lx, allow_overlap=ops['allow_overlap']) for stat in stats] - if ops.get('neuropil_extract', True): + cell_pix = create_cell_pix(stats, Ly=Ly, Lx=Lx, + lam_percentile=ops.get("lam_percentile", 50.0)) + cell_masks = [ + create_cell_mask(stat, Ly=Ly, Lx=Lx, allow_overlap=ops["allow_overlap"]) + for stat in stats + ] + if ops.get("neuropil_extract", True): neuropil_masks = create_neuropil_masks( - ypixs=[stat['ypix'] for stat in stats], - xpixs=[stat['xpix'] for stat in stats], - cell_pix=cell_pix, - inner_neuropil_radius=ops['inner_neuropil_radius'], - min_neuropil_pixels=ops['min_neuropil_pixels'], - circular=ops.get('circular_neuropil', False) - ) + ypixs=[stat["ypix"] for stat in stats], + xpixs=[stat["xpix"] for stat in stats], cell_pix=cell_pix, + inner_neuropil_radius=ops["inner_neuropil_radius"], + min_neuropil_pixels=ops["min_neuropil_pixels"], + circular=ops.get("circular_neuropil", False)) else: neuropil_masks = None return cell_masks, neuropil_masks -def create_cell_pix(stats: List[Dict[str, Any]], Ly: int, Lx: int, + +def create_cell_pix(stats: List[Dict[str, Any]], Ly: int, Lx: int, lam_percentile: float = 50.0) -> np.ndarray: """Returns Ly x Lx array of whether pixel contains a cell (1) or not (0). @@ -36,30 +42,32 @@ def create_cell_pix(stats: List[Dict[str, Any]], Ly: int, Lx: int, cell_pix = np.zeros((Ly, Lx)) lammap = np.zeros((Ly, Lx)) radii = np.zeros(len(stats)) - for ni,stat in enumerate(stats): - radii[ni] = stat['radius'] - ypix = stat['ypix'] - xpix = stat['xpix'] - lam = stat['lam'] + for ni, stat in enumerate(stats): + radii[ni] = stat["radius"] + ypix = stat["ypix"] + xpix = stat["xpix"] + lam = stat["lam"] lammap[ypix, xpix] = np.maximum(lammap[ypix, xpix], lam) radius = np.median(radii) if lam_percentile > 0.0: - filt = percentile_filter(lammap, percentile=lam_percentile, size=int(radius*5)) - cell_pix = ~np.logical_or(lammap < filt, lammap==0) + filt = percentile_filter(lammap, percentile=lam_percentile, + size=int(radius * 5)) + cell_pix = ~np.logical_or(lammap < filt, lammap == 0) else: cell_pix = lammap > 0.0 return cell_pix -def create_cell_mask(stat: Dict[str, Any], Ly: int, Lx: int, allow_overlap: bool = False) -> Tuple[np.ndarray, np.ndarray]: +def create_cell_mask(stat: Dict[str, Any], Ly: int, Lx: int, + allow_overlap: bool = False) -> Tuple[np.ndarray, np.ndarray]: """ creates cell masks for ROIs in stat and computes radii Parameters ---------- - stat : dictionary 'ypix', 'xpix', 'lam' + stat : dictionary "ypix", "xpix", "lam" Ly : y size of frame Lx : x size of frame allow_overlap : whether or not to include overlapping pixels in cell masks @@ -70,16 +78,16 @@ def create_cell_mask(stat: Dict[str, Any], Ly: int, Lx: int, allow_overlap: bool cell_masks : len ncells, each has tuple of pixels belonging to each cell and weights lam_normed """ - mask = ... if allow_overlap else ~stat['overlap'] - cell_mask = np.ravel_multi_index((stat['ypix'], stat['xpix']), (Ly, Lx)) + mask = ... if allow_overlap else ~stat["overlap"] + cell_mask = np.ravel_multi_index((stat["ypix"], stat["xpix"]), (Ly, Lx)) cell_mask = cell_mask[mask] - lam = stat['lam'][mask] + lam = stat["lam"][mask] lam_normed = lam / lam.sum() if lam.size > 0 else np.empty(0) return cell_mask, lam_normed - -def create_neuropil_masks(ypixs, xpixs, cell_pix, inner_neuropil_radius, min_neuropil_pixels, circular=False): +def create_neuropil_masks(ypixs, xpixs, cell_pix, inner_neuropil_radius, + min_neuropil_pixels, circular=False): """ creates surround neuropil masks for ROIs in stat by EXTENDING ROI (slower if circular) Parameters @@ -102,27 +110,36 @@ def create_neuropil_masks(ypixs, xpixs, cell_pix, inner_neuropil_radius, min_neu Ly, Lx = cell_pix.shape assert len(xpixs) == len(ypixs) neuropil_ipix = [] - idx=0 + idx = 0 for ypix, xpix in zip(ypixs, xpixs): neuropil_mask = np.zeros((Ly, Lx), bool) # extend to get ring of dis-allowed pixels ypix, xpix = extendROI(ypix, xpix, Ly, Lx, niter=inner_neuropil_radius) - nring = np.sum(valid_pixels(cell_pix, ypix, xpix)) # count how many pixels are valid + nring = np.sum(valid_pixels(cell_pix, ypix, + xpix)) # count how many pixels are valid nreps = count() ypix1, xpix1 = ypix.copy(), xpix.copy() - while next(nreps) < 100 and np.sum(valid_pixels(cell_pix, ypix1, xpix1)) - nring <= min_neuropil_pixels: + while next(nreps) < 100 and np.sum(valid_pixels( + cell_pix, ypix1, xpix1)) - nring <= min_neuropil_pixels: if circular: - ypix1, xpix1 = extendROI(ypix1, xpix1, Ly, Lx, extend_by) # keep extending + ypix1, xpix1 = extendROI(ypix1, xpix1, Ly, Lx, + extend_by) # keep extending else: - ypix1, xpix1 = np.meshgrid(np.arange(max(0, ypix1.min() - extend_by), min(Ly, ypix1.max() + extend_by + 1), 1, int), - np.arange(max(0, xpix1.min() - extend_by), min(Lx, xpix1.max() + extend_by + 1), 1, int), - indexing='ij') - + ypix1, xpix1 = np.meshgrid( + np.arange(max(0, + ypix1.min() - extend_by), + min(Ly, + ypix1.max() + extend_by + 1), 1, int), + np.arange(max(0, + xpix1.min() - extend_by), + min(Lx, + xpix1.max() + extend_by + 1), 1, int), indexing="ij") + ix = valid_pixels(cell_pix, ypix1, xpix1) neuropil_mask[ypix1[ix], xpix1[ix]] = True neuropil_mask[ypix, xpix] = False neuropil_ipix.append(np.ravel_multi_index(np.nonzero(neuropil_mask), (Ly, Lx))) - idx+=1 + idx += 1 - return neuropil_ipix \ No newline at end of file + return neuropil_ipix diff --git a/suite2p/gui/__init__.py b/suite2p/gui/__init__.py index 1b0c5145b..0af7de0f3 100644 --- a/suite2p/gui/__init__.py +++ b/suite2p/gui/__init__.py @@ -1 +1,4 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from .gui2p import run \ No newline at end of file diff --git a/suite2p/gui/buttons.py b/suite2p/gui/buttons.py index 345a58d1b..c5d48e78f 100644 --- a/suite2p/gui/buttons.py +++ b/suite2p/gui/buttons.py @@ -1,6 +1,9 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np -from PyQt5 import QtGui, QtCore -from PyQt5.QtWidgets import QPushButton, QButtonGroup, QLabel, QLineEdit +from qtpy import QtGui, QtCore +from qtpy.QtWidgets import QPushButton, QButtonGroup, QLabel, QLineEdit def make_selection(parent): @@ -34,6 +37,7 @@ def make_selection(parent): parent.topedit.returnPressed.connect(parent.top_number_chosen) parent.l0.addWidget(parent.topedit, 0, 11, 1, 1) + # minimize view def make_cellnotcell(parent): """ buttons for cell / not cell views at top """ @@ -59,41 +63,48 @@ def make_cellnotcell(parent): b += 1 parent.sizebtns.setExclusive(True) + def make_quadrants(parent): """ make quadrant buttons """ parent.quadbtns = QButtonGroup(parent) for b in range(9): - btn = QuadButton(b, ' '+str(b+1), parent) + btn = QuadButton(b, " " + str(b + 1), parent) parent.quadbtns.addButton(btn, b) - parent.l0.addWidget(btn, 0 + parent.quadbtns.button(b).ypos, 29 + parent.quadbtns.button(b).xpos, 1, 1) + parent.l0.addWidget(btn, 0 + parent.quadbtns.button(b).ypos, + 29 + parent.quadbtns.button(b).xpos, 1, 1) btn.setEnabled(False) b += 1 parent.quadbtns.setExclusive(True) + class QuadButton(QPushButton): """ custom QPushButton class for quadrant plotting requires buttons to put into a QButtonGroup (parent.quadbtns) allows only 1 button to pressed at a time """ + def __init__(self, bid, Text, parent=None): - super(QuadButton,self).__init__(parent) + super(QuadButton, self).__init__(parent) self.setText(Text) self.setCheckable(True) self.setStyleSheet(parent.styleInactive) self.setFont(QtGui.QFont("Arial", 8, QtGui.QFont.Bold)) self.resize(self.minimumSizeHint()) self.setMaximumWidth(22) - self.xpos = bid%3 - self.ypos = int(np.floor(bid/3)) + self.xpos = bid % 3 + self.ypos = int(np.floor(bid / 3)) self.clicked.connect(lambda: self.press(parent, bid)) self.show() + def press(self, parent, bid): for b in range(9): if parent.quadbtns.button(b).isEnabled(): parent.quadbtns.button(b).setStyleSheet(parent.styleUnpressed) self.setStyleSheet(parent.stylePressed) - self.xrange = np.array([self.xpos-.15, self.xpos+1.15]) * parent.ops['Lx']/3 - self.yrange = np.array([self.ypos-.15, self.ypos+1.15]) * parent.ops['Ly']/3 + self.xrange = np.array([self.xpos - .15, self.xpos + 1.15 + ]) * parent.ops["Lx"] / 3 + self.yrange = np.array([self.ypos - .15, self.ypos + 1.15 + ]) * parent.ops["Ly"] / 3 # change the zoom parent.p1.setXRange(self.xrange[0], self.xrange[1]) parent.p1.setYRange(self.yrange[0], self.yrange[1]) @@ -107,8 +118,9 @@ def press(self, parent, bid): # size of view class SizeButton(QPushButton): """ buttons to make trace box bigger or smaller """ + def __init__(self, bid, Text, parent=None): - super(SizeButton,self).__init__(parent) + super(SizeButton, self).__init__(parent) self.setText(Text) self.setCheckable(True) self.setStyleSheet(parent.styleInactive) @@ -117,30 +129,31 @@ def __init__(self, bid, Text, parent=None): self.clicked.connect(lambda: self.press(parent)) self.bid = bid self.show() + def press(self, parent): bid = self.bid for b in parent.sizebtns.buttons(): b.setStyleSheet(parent.styleUnpressed) self.setStyleSheet(parent.stylePressed) ts = 100 - if bid==0: - parent.p2.linkView(parent.p2.XAxis,view=None) - parent.p2.linkView(parent.p2.YAxis,view=None) - parent.win.ci.layout.setColumnStretchFactor(0,ts) - parent.win.ci.layout.setColumnStretchFactor(1,0) - elif bid==1: - parent.win.ci.layout.setColumnStretchFactor(0,ts) - parent.win.ci.layout.setColumnStretchFactor(1,ts) - parent.p2.setXLink('plot1') - parent.p2.setYLink('plot1') - elif bid==2: - parent.p2.linkView(parent.p2.XAxis,view=None) - parent.p2.linkView(parent.p2.YAxis,view=None) - parent.win.ci.layout.setColumnStretchFactor(0,0) - parent.win.ci.layout.setColumnStretchFactor(1,ts) - # only enable selection buttons when not in 'both' view - if bid!=1: - if parent.ops_plot['color']!=0: + if bid == 0: + parent.p2.linkView(parent.p2.XAxis, view=None) + parent.p2.linkView(parent.p2.YAxis, view=None) + parent.win.ci.layout.setColumnStretchFactor(0, ts) + parent.win.ci.layout.setColumnStretchFactor(1, 0) + elif bid == 1: + parent.win.ci.layout.setColumnStretchFactor(0, ts) + parent.win.ci.layout.setColumnStretchFactor(1, ts) + parent.p2.setXLink("plot1") + parent.p2.setYLink("plot1") + elif bid == 2: + parent.p2.linkView(parent.p2.XAxis, view=None) + parent.p2.linkView(parent.p2.YAxis, view=None) + parent.win.ci.layout.setColumnStretchFactor(0, 0) + parent.win.ci.layout.setColumnStretchFactor(1, ts) + # only enable selection buttons when not in "both" view + if bid != 1: + if parent.ops_plot["color"] != 0: for btn in parent.topbtns.buttons(): btn.setStyleSheet(parent.styleUnpressed) btn.setEnabled(True) @@ -155,12 +168,14 @@ def press(self, parent): parent.win.show() parent.show() -# + +# class TopButton(QPushButton): """ selection of top neurons""" + def __init__(self, bid, parent=None): - super(TopButton,self).__init__(parent) - text = [' draw selection', ' select top n', ' select bottom n'] + super(TopButton, self).__init__(parent) + text = [" draw selection", " select top n", " select bottom n"] self.bid = bid self.setText(text[bid]) self.setCheckable(True) @@ -173,12 +188,12 @@ def __init__(self, bid, parent=None): def press(self, parent): bid = self.bid if not parent.sizebtns.button(1).isChecked(): - if parent.ops_plot['color']==0: - for b in [1,2]: + if parent.ops_plot["color"] == 0: + for b in [1, 2]: parent.topbtns.button(b).setEnabled(False) parent.topbtns.button(b).setStyleSheet(parent.styleInactive) else: - for b in [1,2]: + for b in [1, 2]: parent.topbtns.button(b).setEnabled(True) parent.topbtns.button(b).setStyleSheet(parent.styleUnpressed) else: @@ -186,7 +201,7 @@ def press(self, parent): parent.topbtns.button(b).setEnabled(False) parent.topbtns.button(b).setStyleSheet(parent.styleInactive) self.setStyleSheet(parent.stylePressed) - if bid==0: + if bid == 0: parent.ROI_selection() else: self.top_selection(parent) @@ -208,9 +223,9 @@ def top_selection(self, parent): wplot = 1 draw = True if draw: - if parent.ops_plot['color'] != 0: - c = parent.ops_plot['color'] - istat = parent.colors['istat'][c] + if parent.ops_plot["color"] != 0: + c = parent.ops_plot["color"] + istat = parent.colors["istat"][c] if wplot == 0: icell = np.array(parent.iscell.nonzero()).flatten() istat = istat[parent.iscell] diff --git a/suite2p/gui/classgui.py b/suite2p/gui/classgui.py index 7df5fd0ee..3838fa506 100644 --- a/suite2p/gui/classgui.py +++ b/suite2p/gui/classgui.py @@ -1,32 +1,37 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os import shutil import numpy as np -from PyQt5 import QtGui -from PyQt5.QtWidgets import QDialog, QLabel, QPushButton, QMessageBox, QFileDialog, QListWidget, QGridLayout, QWidget, QAbstractItemView +from qtpy import QtGui +from qtpy.QtWidgets import QDialog, QLabel, QPushButton, QMessageBox, QFileDialog, QListWidget, QGridLayout, QWidget, QAbstractItemView from . import masks from .. import classification -def make_buttons(parent,b0): +def make_buttons(parent, b0): # ----- CLASSIFIER BUTTONS ------- cllabel = QLabel("") cllabel.setFont(parent.boldfont) cllabel.setText("Classifier") - parent.classLabel = QLabel("not loaded (using prob from iscell.npy)") + parent.classLabel = QLabel( + "not loaded (using prob from iscell.npy)") parent.classLabel.setFont(QtGui.QFont("Arial", 8)) parent.l0.addWidget(cllabel, b0, 0, 1, 2) - b0+=1 + b0 += 1 parent.l0.addWidget(parent.classLabel, b0, 0, 1, 2) parent.addtoclass = QPushButton(" add current data to classifier") parent.addtoclass.setFont(QtGui.QFont("Arial", 8, QtGui.QFont.Bold)) parent.addtoclass.clicked.connect(lambda: add_to(parent)) parent.addtoclass.setStyleSheet(parent.styleInactive) - b0+=1 + b0 += 1 parent.l0.addWidget(parent.addtoclass, b0, 0, 1, 2) return b0 + def load_classifier(parent): name = QFileDialog.getOpenFileName(parent, "Open File") if name: @@ -35,15 +40,18 @@ def load_classifier(parent): else: print("no classifier") + def load_s2p_classifier(parent): load(parent, parent.classorig) class_file(parent) parent.saveDefault.setEnabled(True) + def load_default_classifier(parent): load(parent, parent.classuser) class_activated(parent) + def class_file(parent): if parent.classfile == parent.classuser: cfile = "default classifier" @@ -54,12 +62,14 @@ def class_file(parent): cstr = "" + cfile + "" parent.classLabel.setText(cstr) + def class_activated(parent): class_file(parent) parent.saveDefault.setEnabled(True) parent.addtoclass.setStyleSheet(parent.styleUnpressed) parent.addtoclass.setEnabled(True) + def class_default(parent): dm = QMessageBox.question( parent, @@ -69,7 +79,9 @@ def class_default(parent): ) if dm == QMessageBox.Yes: classfile = parent.classuser - save_model(classfile, parent.model.stats, parent.model.iscell, parent.model.keys) + save_model(classfile, parent.model.stats, parent.model.iscell, + parent.model.keys) + def reset_default(parent): dm = QMessageBox.question( @@ -82,6 +94,7 @@ def reset_default(parent): if dm == QMessageBox.Yes: shutil.copy(parent.classorig, parent.classuser) + def load(parent, name): print('loading classifier ', name) parent.classfile = name @@ -89,22 +102,25 @@ def load(parent, name): if parent.model.loaded: activate(parent, True) + def save_model(name, train_stats, train_iscell, keys): model = {} - model['stats'] = train_stats + model['stats'] = train_stats model['iscell'] = train_iscell - model['keys'] = keys + model['keys'] = keys print('saving classifier in ' + name) np.save(name, model) + def load_list(parent): # will return LC = ListChooser('classifier training files', parent) result = LC.exec_() -def load_data(parent,keys,trainfiles): - train_stats = np.zeros((0,len(keys)),np.float32) - train_iscell = np.zeros((0,),np.float32) + +def load_data(parent, keys, trainfiles): + train_stats = np.zeros((0, len(keys)), np.float32) + train_iscell = np.zeros((0,), np.float32) trainfiles_good = [] loaded = False if trainfiles is not None: @@ -115,91 +131,113 @@ def load_data(parent,keys,trainfiles): iscells = np.load(fname) ncells = iscells.shape[0] except (ValueError, OSError, RuntimeError, TypeError, NameError): - print('\t'+fname+': not a numpy array of booleans') + print('\t' + fname + ': not a numpy array of booleans') badfile = True if not badfile: basename, bname = os.path.split(fname) lstat = 0 try: - stat = np.load(basename+'/stat.npy', allow_pickle=True) + stat = np.load(basename + '/stat.npy', allow_pickle=True) ypix = stat[0]['ypix'] lstat = len(stat) - except (IndexError, KeyError, OSError, RuntimeError, TypeError, NameError): - print('\t'+basename+': incorrect or missing stat.npy file :(') + except (IndexError, KeyError, OSError, RuntimeError, TypeError, + NameError): + print('\t' + basename + ': incorrect or missing stat.npy file :(') if lstat != ncells: - print('\t'+basename+': stat.npy is not the same length as iscell.npy') + print('\t' + basename + + ': stat.npy is not the same length as iscell.npy') else: # add iscell and stat to classifier - print('\t'+fname+' was added to classifier') - iscell = iscells[:,0].astype(np.float32) - stats = np.reshape(np.array([stat[j][k] for j in range(len(stat)) for k in parent.default_keys]), - (len(stat),-1)) - train_stats = np.concatenate((train_stats,stats),axis=0) - train_iscell = np.concatenate((train_iscell,iscell),axis=0) + print('\t' + fname + ' was added to classifier') + iscell = iscells[:, 0].astype(np.float32) + stats = np.reshape( + np.array([ + stat[j][k] + for j in range(len(stat)) + for k in parent.default_keys + ]), (len(stat), -1)) + train_stats = np.concatenate((train_stats, stats), axis=0) + train_iscell = np.concatenate((train_iscell, iscell), axis=0) trainfiles_good.append(fname) if len(trainfiles_good) > 0: - classfile, saved = save(parent,train_stats,train_iscell,keys) + classfile, saved = save(parent, train_stats, train_iscell, keys) if saved: parent.classfile = classfile loaded = True else: - msg = QMessageBox.information(parent,'Incorrect file path', - 'Incorrect save path for classifier, classifier not built.') + msg = QMessageBox.information( + parent, 'Incorrect file path', + 'Incorrect save path for classifier, classifier not built.') else: - msg = QMessageBox.information(parent,'Incorrect files', - 'No valid datasets chosen to build classifier, classifier not built.') + msg = QMessageBox.information( + parent, 'Incorrect files', + 'No valid datasets chosen to build classifier, classifier not built.') return loaded + def add_to(parent): - fname = parent.basename+'/iscell.npy' + fname = parent.basename + '/iscell.npy' print('Adding current dataset to classifier') if parent.classfile == parent.classuser: cfile = 'the default classifier' else: cfile = parent.classfile - dm = QMessageBox.question(parent,'Default classifier', - 'Current classifier is '+cfile+'. Add to this classifier?', - QMessageBox.Yes | QMessageBox.No) + dm = QMessageBox.question( + parent, 'Default classifier', + 'Current classifier is ' + cfile + '. Add to this classifier?', + QMessageBox.Yes | QMessageBox.No) if dm == QMessageBox.Yes: - stats = np.reshape(np.array([parent.stat[j][k] for j in range(len(parent.stat)) for k in parent.model.keys]), - (len(parent.stat),-1)) - parent.model.stats = np.concatenate((parent.model.stats,stats),axis=0) - parent.model.iscell = np.concatenate((parent.model.iscell,parent.iscell),axis=0) - save_model(parent.classfile, parent.model.stats, parent.model.iscell, parent.model.keys) + stats = np.reshape( + np.array([ + parent.stat[j][k] + for j in range(len(parent.stat)) + for k in parent.model.keys + ]), (len(parent.stat), -1)) + parent.model.stats = np.concatenate((parent.model.stats, stats), axis=0) + parent.model.iscell = np.concatenate((parent.model.iscell, parent.iscell), + axis=0) + save_model(parent.classfile, parent.model.stats, parent.model.iscell, + parent.model.keys) activate(parent, True) - msg = QMessageBox.information(parent,'Classifier saved and loaded', - 'Current dataset added to classifier, and cell probabilities computed and in GUI') + msg = QMessageBox.information( + parent, 'Classifier saved and loaded', + 'Current dataset added to classifier, and cell probabilities computed and in GUI' + ) def save(parent, train_stats, train_iscell, keys): - name = QFileDialog.getSaveFileName(parent,'Classifier name (*.npy)') + name = QFileDialog.getSaveFileName(parent, 'Classifier name (*.npy)') name = name[0] saved = False if name: try: save_model(name, train_stats, train_iscell, keys) saved = True - except (OSError, RuntimeError, TypeError, NameError,FileNotFoundError): + except (OSError, RuntimeError, TypeError, NameError, FileNotFoundError): print('ERROR: incorrect filename for saving') return name, saved + def save_list(parent): - name = QFileDialog.getSaveFileName(parent,'Save list of iscell.npy') + name = QFileDialog.getSaveFileName(parent, 'Save list of iscell.npy') if name: try: - with open(name[0],'w') as fid: + with open(name[0], 'w') as fid: for f in parent.trainfiles: fid.write(f) fid.write('\n') - except (ValueError, OSError, RuntimeError, TypeError, NameError,FileNotFoundError): + except (ValueError, OSError, RuntimeError, TypeError, NameError, + FileNotFoundError): print('ERROR: incorrect filename for saving') + def activate(parent, inactive): if inactive: parent.probcell = parent.model.predict_proba(parent.stat) class_masks(parent) parent.update_plot() + def disable(parent): parent.classbtn.setEnabled(False) parent.saveClass.setEnabled(False) @@ -207,51 +245,54 @@ def disable(parent): for btns in parent.classbtns.buttons(): btns.setEnabled(False) + ### custom QDialog which makes a list of items you can include/exclude class ListChooser(QDialog): + def __init__(self, Text, parent=None): super(ListChooser, self).__init__(parent) - self.setGeometry(300,300,500,320) + self.setGeometry(300, 300, 500, 320) self.setWindowTitle(Text) self.win = QWidget(self) layout = QGridLayout() self.win.setLayout(layout) #self.setCentralWidget(self.win) loadcell = QPushButton('Load iscell.npy') - loadcell.resize(200,50) + loadcell.resize(200, 50) loadcell.clicked.connect(self.load_cell) - layout.addWidget(loadcell,0,0,1,1) + layout.addWidget(loadcell, 0, 0, 1, 1) loadtext = QPushButton('Load txt file list') loadtext.clicked.connect(self.load_text) - layout.addWidget(loadtext,0,1,1,1) - layout.addWidget(QLabel('(select multiple using ctrl)'),1,0,1,1) + layout.addWidget(loadtext, 0, 1, 1, 1) + layout.addWidget(QLabel('(select multiple using ctrl)'), 1, 0, 1, 1) self.list = QListWidget(parent) - layout.addWidget(self.list,2,0,5,4) + layout.addWidget(self.list, 2, 0, 5, 4) #self.list.resize(450,250) self.list.setSelectionMode(QAbstractItemView.MultiSelection) save = QPushButton('build classifier') save.clicked.connect(lambda: self.build_classifier(parent)) - layout.addWidget(save,8,0,1,1) + layout.addWidget(save, 8, 0, 1, 1) self.apply = QPushButton('load in GUI') self.apply.clicked.connect(lambda: self.apply_class(parent)) self.apply.setEnabled(False) - layout.addWidget(self.apply,8,1,1,1) + layout.addWidget(self.apply, 8, 1, 1, 1) self.saveasdefault = QPushButton('save as default') self.saveasdefault.clicked.connect(lambda: self.save_default(parent)) self.saveasdefault.setEnabled(False) - layout.addWidget(self.saveasdefault,8,2,1,1) + layout.addWidget(self.saveasdefault, 8, 2, 1, 1) done = QPushButton('close') done.clicked.connect(self.exit_list) - layout.addWidget(done,8,3,1,1) + layout.addWidget(done, 8, 3, 1, 1) def load_cell(self): - name = QFileDialog.getOpenFileName(self, 'Open iscell.npy file',filter='iscell.npy') + name = QFileDialog.getOpenFileName(self, 'Open iscell.npy file', + filter='iscell.npy') if name: try: iscell = np.load(name[0]) badfile = True if iscell.shape[0] > 0: - if iscell[0,0]==0 or iscell[0,0]==1: + if iscell[0, 0] == 0 or iscell[0, 0] == 1: badfile = False self.list.addItem(name[0]) if badfile: @@ -262,7 +303,8 @@ def load_cell(self): QMessageBox.information(self, 'iscell.npy should be 0/1') def load_text(self): - name = QFileDialog.getOpenFileName(self, 'Open *.txt file', filter='text file (*.txt)') + name = QFileDialog.getOpenFileName(self, 'Open *.txt file', + filter='text file (*.txt)') if name: try: txtfile = open(name[0], 'r') @@ -277,20 +319,21 @@ def load_text(self): def build_classifier(self, parent): parent.trainfiles = [] - i=0 + i = 0 for item in self.list.selectedItems(): parent.trainfiles.append(item.text()) - i+=1 - if i==0: + i += 1 + if i == 0: for r in range(self.list.count()): parent.trainfiles.append(self.list.item(r).text()) - if len(parent.trainfiles)>0: + if len(parent.trainfiles) > 0: print('Populating classifier:') keys = parent.default_keys loaded = load_data(parent, keys, parent.trainfiles) if loaded: - msg = QMessageBox.information(parent,'Classifier saved', - 'Classifier built from valid files and saved.') + msg = QMessageBox.information( + parent, 'Classifier saved', + 'Classifier built from valid files and saved.') self.apply.setEnabled(True) self.saveasdefault.setEnabled(True) @@ -299,9 +342,10 @@ def apply_class(self, parent): activate(parent, True) def save_default(self, parent): - dm = QMessageBox.question(self,'Default classifier', - 'Are you sure you want to overwrite your default classifier?', - QMessageBox.Yes | QMessageBox.No) + dm = QMessageBox.question( + self, 'Default classifier', + 'Are you sure you want to overwrite your default classifier?', + QMessageBox.Yes | QMessageBox.No) if dm == QMessageBox.Yes: shutil.copy(parent.classfile, parent.classuser) @@ -312,11 +356,14 @@ def exit_list(self): def class_masks(parent): c = 6 istat = parent.probcell - parent.colors['colorbar'][c] = [istat.min(), (istat.max()-istat.min())/2, istat.max()] + parent.colors['colorbar'][c] = [ + istat.min(), (istat.max() - istat.min()) / 2, + istat.max() + ] istat = istat - istat.min() istat = istat / istat.max() col = masks.istat_transform(istat, parent.ops_plot['colormap']) parent.colors['cols'][c] = col parent.colors['istat'][c] = istat.flatten() - masks.rgb_masks(parent, col, c) \ No newline at end of file + masks.rgb_masks(parent, col, c) diff --git a/suite2p/gui/drawroi.py b/suite2p/gui/drawroi.py index 96efa88b1..4197c1028 100644 --- a/suite2p/gui/drawroi.py +++ b/suite2p/gui/drawroi.py @@ -1,12 +1,17 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os import time +import math import numpy as np import pyqtgraph as pg -from PyQt5 import QtGui, QtCore -from PyQt5.QtWidgets import QPushButton, QLabel, QLineEdit, QMainWindow, QGridLayout, QButtonGroup, QMessageBox, QWidget +from qtpy import QtGui, QtCore +from qtpy.QtWidgets import QPushButton, QLabel, QLineEdit, QMainWindow, QGridLayout, QButtonGroup, QMessageBox, QWidget from matplotlib.colors import hsv_to_rgb from scipy import stats +from scipy.ndimage import rotate from . import io from ..extraction import masks @@ -16,71 +21,76 @@ def masks_and_traces(ops, stat_manual, stat_orig): - ''' main extraction function + """ main extraction function inputs: ops and stat creates cell and neuropil masks and extracts traces returns: F (ROIs x time), Fneu (ROIs x time), F_chan2, Fneu_chan2, ops, stat F_chan2 and Fneu_chan2 will be empty if no second channel - ''' + """ t0 = time.time() + # Concatenate stat so a good neuropil function can be formed stat_all = stat_manual.copy() for n in range(len(stat_orig)): stat_all.append(stat_orig[n]) - - stat_all = roi_stats(stat_all, ops['Ly'], ops['Lx'], aspect=ops.get('aspect', None), diameter=ops['diameter']) + + stat_all = roi_stats(stat_all, ops["Ly"], ops["Lx"], aspect=ops.get("aspect", None), + diameter=ops["diameter"]) cell_masks = [ - masks.create_cell_mask(stat, Ly=ops['Ly'], Lx=ops['Lx'], allow_overlap=ops['allow_overlap']) for stat in stat_all + masks.create_cell_mask(stat, Ly=ops["Ly"], Lx=ops["Lx"], + allow_overlap=ops["allow_overlap"]) for stat in stat_all ] - cell_pix = masks.create_cell_pix(stat_all, Ly=ops['Ly'], Lx=ops['Lx']) + cell_pix = masks.create_cell_pix(stat_all, Ly=ops["Ly"], Lx=ops["Lx"]) manual_roi_stats = stat_all[:len(stat_manual)] manual_cell_masks = cell_masks[:len(stat_manual)] manual_neuropil_masks = masks.create_neuropil_masks( - ypixs=[stat['ypix'] for stat in manual_roi_stats], - xpixs=[stat['xpix'] for stat in manual_roi_stats], + ypixs=[stat["ypix"] for stat in manual_roi_stats], + xpixs=[stat["xpix"] for stat in manual_roi_stats], cell_pix=cell_pix, - inner_neuropil_radius=ops['inner_neuropil_radius'], - min_neuropil_pixels=ops['min_neuropil_pixels'], + inner_neuropil_radius=ops["inner_neuropil_radius"], + min_neuropil_pixels=ops["min_neuropil_pixels"], ) - print('Masks made in %0.2f sec.' % (time.time() - t0)) + print("Masks made in %0.2f sec." % (time.time() - t0)) - F, Fneu, F_chan2, Fneu_chan2 = extract_traces_from_masks(ops, - manual_cell_masks, + F, Fneu, F_chan2, Fneu_chan2 = extract_traces_from_masks(ops, manual_cell_masks, manual_neuropil_masks) # compute activity statistics for classifier - npix = np.array([stat_orig[n]['npix'] for n in range(len(stat_orig))]).astype('float32') + npix = np.array([stat_orig[n]["npix"] for n in range(len(stat_orig)) + ]).astype("float32") for n in range(len(manual_roi_stats)): - manual_roi_stats[n]['npix_norm'] = manual_roi_stats[n]['npix'] / np.mean(npix[:100]) # What if there are less than 100 cells? - manual_roi_stats[n]['compact'] = 1 - manual_roi_stats[n]['footprint'] = 2 - manual_roi_stats[n]['manual'] = 1 # Add manual key + manual_roi_stats[n]["npix_norm"] = manual_roi_stats[n]["npix"] / np.mean( + npix[:100]) # What if there are less than 100 cells? + manual_roi_stats[n]["compact"] = 1 + manual_roi_stats[n]["footprint"] = 2 + manual_roi_stats[n]["manual"] = 1 # Add manual key + if "iplane" in stat_orig[0]: + manual_roi_stats[n]["iplane"] = stat_orig[0]["iplane"] # subtract neuropil and compute skew, std from F - dF = F - ops['neucoeff'] * Fneu + dF = F - ops["neucoeff"] * Fneu sk = stats.skew(dF, axis=1) sd = np.std(dF, axis=1) for n in range(F.shape[0]): - manual_roi_stats[n]['skew'] = sk[n] - manual_roi_stats[n]['std'] = sd[n] - manual_roi_stats[n]['med'] = [np.mean(manual_roi_stats[n]['ypix']), np.mean(manual_roi_stats[n]['xpix'])] - - dF = preprocess( - F=dF, - baseline=ops['baseline'], - win_baseline=ops['win_baseline'], - sig_baseline=ops['sig_baseline'], - fs=ops['fs'], - prctile_baseline=ops['prctile_baseline'] - ) - spks = oasis(F=dF, batch_size=ops['batch_size'], tau=ops['tau'], fs=ops['fs']) + manual_roi_stats[n]["skew"] = sk[n] + manual_roi_stats[n]["std"] = sd[n] + manual_roi_stats[n]["med"] = [ + np.mean(manual_roi_stats[n]["ypix"]), + np.mean(manual_roi_stats[n]["xpix"]) + ] + + dF = preprocess(F=dF, baseline=ops["baseline"], win_baseline=ops["win_baseline"], + sig_baseline=ops["sig_baseline"], fs=ops["fs"], + prctile_baseline=ops["prctile_baseline"]) + spks = oasis(F=dF, batch_size=ops["batch_size"], tau=ops["tau"], fs=ops["fs"]) return F, Fneu, F_chan2, Fneu_chan2, spks, ops, manual_roi_stats class ViewButton(QPushButton): + def __init__(self, bid, Text, parent=None): super(ViewButton, self).__init__(parent) self.setText(Text) @@ -104,12 +114,13 @@ def press(self, parent, bid): class ROIDraw(QMainWindow): + def __init__(self, parent): super(ROIDraw, self).__init__(parent) - pg.setConfigOptions(imageAxisOrder='row-major') + pg.setConfigOptions(imageAxisOrder="row-major") self.parent = parent self.setGeometry(70, 70, 1400, 800) - self.setWindowTitle('extract ROI activity') + self.setWindowTitle("extract ROI activity") self.cwidget = QWidget(self) self.setCentralWidget(self.cwidget) self.l0 = QGridLayout() @@ -122,7 +133,7 @@ def __init__(self, parent): "background-color: rgb(50,50,50); " "color:white;}") - # self.p0 = pg.ViewBox(lockAspect=False,name='plot1',border=[100,100,100],invertY=True) + # self.p0 = pg.ViewBox(lockAspect=False,name="plot1",border=[100,100,100],invertY=True) self.win = pg.GraphicsLayoutWidget() # --- cells image self.win = pg.GraphicsLayoutWidget() @@ -134,7 +145,8 @@ def __init__(self, parent): self.p1.setMenuEnabled(False) self.p1.scene().sigMouseMoved.connect(self.mouse_moved) - self.p0 = self.win.addViewBox(name='plot1', lockAspect=True, row=0, col=0, invertY=True) + self.p0 = self.win.addViewBox(name="plot1", lockAspect=True, row=0, col=0, + invertY=True) self.img0 = pg.ImageItem() self.p0.addItem(self.img0) @@ -154,7 +166,7 @@ def __init__(self, parent): self.addROI.setFixedWidth(60) self.addROI.setStyleSheet(self.styleUnpressed) self.l0.addWidget(self.addROI, 2, 0, 1, 1) - lbl = QLabel('diameter:') + lbl = QLabel("diameter:") lbl.setFont(QtGui.QFont("Arial", 8, QtGui.QFont.Bold)) lbl.setStyleSheet("color: white;") lbl.setFixedWidth(60) @@ -188,10 +200,10 @@ def __init__(self, parent): self.l0.addWidget(self.closeGUI, 0, 5, 1, 1) # view buttons - self.views = ["W: mean img", - "E: mean img (enhanced)", - "R: correlation map", - "T: max projection"] + self.views = [ + "W: mean img", "E: mean img (enhanced)", "R: correlation map", + "T: max projection" + ] b = 0 self.viewbtns = QButtonGroup(self) for names in self.views: @@ -206,8 +218,8 @@ def __init__(self, parent): self.l0.addWidget(QLabel("neuropil"), 13, 13, 1, 1) - self.Ly = self.parent.ops['Ly'] - self.Lx = self.parent.ops['Lx'] + self.Ly = self.parent.ops["Ly"] + self.Lx = self.parent.ops["Lx"] self.iscell = self.parent.iscell # Get maskf for pixels that are cells @@ -216,16 +228,16 @@ def __init__(self, parent): self.img0.setImage(self.masked_images[:, :, :, 0]) def closeEvent(self, event): - print('closing GUI') - # if user didn't click "save & quit" button + print("closing GUI") + # if user didn"t click "save & quit" button if not self.saveGUI: self.check_proc(event) def check_proc(self, event): cproc = QMessageBox.question( - self, "PROC", 'Would you like to save traces before closing? (if you havent extracted the traces, click Cancel and extract!)', - QMessageBox.Yes | QMessageBox.No | QMessageBox.Cancel - ) + self, "PROC", + "Would you like to save traces before closing? (if you havent extracted the traces, click Cancel and extract!)", + QMessageBox.Yes | QMessageBox.No | QMessageBox.Cancel) if cproc == QMessageBox.Yes: self.close_GUI() elif cproc == QMessageBox.Cancel: @@ -233,49 +245,51 @@ def check_proc(self, event): def close_GUI(self): # Replace old stat file - print('Saving old stat') - np.save(os.path.join(self.parent.basename, 'stat_orig.npy'), self.parent.stat) + print("Saving old stat") + np.save(os.path.join(self.parent.basename, "stat_orig.npy"), self.parent.stat) # Save iscell - print('Num cells', self.nROIs) + print("Num cells", self.nROIs) # Append new stat file with old and save - print('Saving new stat') + print("Saving new stat") stat_all = self.new_stat.copy() for n in range(len(self.parent.stat)): stat_all.append(self.parent.stat[n]) - np.save(os.path.join(self.parent.basename, 'stat.npy'), stat_all) - iscell_prob = np.concatenate((self.parent.iscell[:, np.newaxis], self.parent.probcell[:, np.newaxis]), axis=1) + np.save(os.path.join(self.parent.basename, "stat.npy"), stat_all) + iscell_prob = np.concatenate( + (self.parent.iscell[:, np.newaxis], self.parent.probcell[:, np.newaxis]), + axis=1) new_iscell = np.ones((self.nROIs, 2)) - new_iscell = np.concatenate((new_iscell, iscell_prob), - axis=0) - np.save(os.path.join(self.parent.basename, 'iscell.npy'), new_iscell) + new_iscell = np.concatenate((new_iscell, iscell_prob), axis=0) + np.save(os.path.join(self.parent.basename, "iscell.npy"), new_iscell) # Save fluorescence traces Fcell = np.concatenate((self.Fcell, self.parent.Fcell), axis=0) Fneu = np.concatenate((self.Fneu, self.parent.Fneu), axis=0) - Spks = np.concatenate((self.Spks, self.parent.Spks), - axis=0) # For now convert spikes to 0 for the new ROIS and then fix it later - np.save(os.path.join(self.parent.basename, 'F.npy'), Fcell) - np.save(os.path.join(self.parent.basename, 'Fneu.npy'), Fneu) - np.save(os.path.join(self.parent.basename, 'spks.npy'), Spks) - - if 'reg_file_chan2' in self.parent.ops: - F_chan2 = np.load(os.path.join(self.parent.basename, 'F_chan2.npy')) - Fneu_chan2 = np.load(os.path.join(self.parent.basename, 'Fneu_chan2.npy')) - redorig = np.load(os.path.join(self.parent.basename, 'redcell.npy')) + Spks = np.concatenate( + (self.Spks, self.parent.Spks), axis=0 + ) # For now convert spikes to 0 for the new ROIS and then fix it later + np.save(os.path.join(self.parent.basename, "F.npy"), Fcell) + np.save(os.path.join(self.parent.basename, "Fneu.npy"), Fneu) + np.save(os.path.join(self.parent.basename, "spks.npy"), Spks) + + if "reg_file_chan2" in self.parent.ops: + F_chan2 = np.load(os.path.join(self.parent.basename, "F_chan2.npy")) + Fneu_chan2 = np.load(os.path.join(self.parent.basename, "Fneu_chan2.npy")) + redorig = np.load(os.path.join(self.parent.basename, "redcell.npy")) F_chan2 = np.concatenate((self.F_chan2, F_chan2), axis=0) Fneu_chan2 = np.concatenate((self.Fneu_chan2, Fneu_chan2), axis=0) Fneu = np.concatenate((self.Fneu, self.parent.Fneu), axis=0) new_redcell = np.zeros((self.nROIs, 2)) - new_redcell = np.concatenate((new_redcell, redorig), - axis=0) - np.save(os.path.join(self.parent.basename, 'F_chan2.npy'), F_chan2) - np.save(os.path.join(self.parent.basename, 'Fneu_chan2.npy'), Fneu_chan2) - np.save(os.path.join(self.parent.basename, 'redcell.npy'), new_redcell) + new_redcell = np.concatenate((new_redcell, redorig), axis=0) + np.save(os.path.join(self.parent.basename, "F_chan2.npy"), F_chan2) + np.save(os.path.join(self.parent.basename, "Fneu_chan2.npy"), Fneu_chan2) + np.save(os.path.join(self.parent.basename, "redcell.npy"), new_redcell) - print(np.shape(Fcell), np.shape(Fneu), np.shape(Spks), np.shape(new_iscell), np.shape(stat_all)) + print(np.shape(Fcell), np.shape(Fneu), np.shape(Spks), np.shape(new_iscell), + np.shape(stat_all)) # close GUI io.load_proc(self.parent) @@ -283,30 +297,37 @@ def close_GUI(self): self.close() def normalize_img_add_masks(self): - masked_image = np.zeros(((self.Ly, self.Lx, 3, 4))) # 3 for RGB and 4 for buttons + masked_image = np.zeros( + ((self.Ly, self.Lx, 3, 4))) # 3 for RGB and 4 for buttons for i in np.arange(4): # 4 because 4 buttons if i == 0: mimg = np.zeros((self.Ly, self.Lx), np.float32) - mimg[self.parent.ops['yrange'][0]:self.parent.ops['yrange'][1], - self.parent.ops['xrange'][0]:self.parent.ops['xrange'][1]] = self.parent.ops['meanImg'][self.parent.ops['yrange'][0]:self.parent.ops['yrange'][1], - self.parent.ops['xrange'][0]:self.parent.ops['xrange'][1]] - + mimg[self.parent.ops["yrange"][0]:self.parent.ops["yrange"][1], + self.parent.ops["xrange"][0]:self.parent. + ops["xrange"][1]] = self.parent.ops["meanImg"][ + self.parent.ops["yrange"][0]:self.parent.ops["yrange"][1], + self.parent.ops["xrange"][0]:self.parent.ops["xrange"][1]] + elif i == 1: mimg = np.zeros((self.Ly, self.Lx), np.float32) - mimg[self.parent.ops['yrange'][0]:self.parent.ops['yrange'][1], - self.parent.ops['xrange'][0]:self.parent.ops['xrange'][1]] = self.parent.ops['meanImgE'][self.parent.ops['yrange'][0]:self.parent.ops['yrange'][1], - self.parent.ops['xrange'][0]:self.parent.ops['xrange'][1]] + mimg[self.parent.ops["yrange"][0]:self.parent.ops["yrange"][1], + self.parent.ops["xrange"][0]:self.parent. + ops["xrange"][1]] = self.parent.ops["meanImgE"][ + self.parent.ops["yrange"][0]:self.parent.ops["yrange"][1], + self.parent.ops["xrange"][0]:self.parent.ops["xrange"][1]] elif i == 2: mimg = np.zeros((self.Ly, self.Lx), np.float32) - mimg[self.parent.ops['yrange'][0]:self.parent.ops['yrange'][1], - self.parent.ops['xrange'][0]:self.parent.ops['xrange'][1]] = self.parent.ops['Vcorr'] - + mimg[self.parent.ops["yrange"][0]:self.parent.ops["yrange"][1], + self.parent.ops["xrange"][0]:self.parent. + ops["xrange"][1]] = self.parent.ops["Vcorr"] + else: mimg = np.zeros((self.Ly, self.Lx), np.float32) - if 'max_proj' in self.parent.ops: - mimg[self.parent.ops['yrange'][0]:self.parent.ops['yrange'][1], - self.parent.ops['xrange'][0]:self.parent.ops['xrange'][1]] = self.parent.ops['max_proj'] - + if "max_proj" in self.parent.ops: + mimg[self.parent.ops["yrange"][0]:self.parent.ops["yrange"][1], + self.parent.ops["xrange"][0]:self.parent. + ops["xrange"][1]] = self.parent.ops["max_proj"] + mimg1 = np.percentile(mimg, 1) mimg99 = np.percentile(mimg, 99) mimg = (mimg - mimg1) / (mimg99 - mimg1) @@ -318,18 +339,18 @@ def normalize_img_add_masks(self): def create_masks_of_cells(self, mean_img): H = np.zeros_like(mean_img) S = np.zeros_like(mean_img) - columncol = self.parent.colors['istat'][0] + columncol = self.parent.colors["istat"][0] for n in np.arange(np.shape(self.parent.iscell)[0]): if self.parent.iscell[n] == 1: - ypix = self.parent.stat[n]['ypix'].flatten() - xpix = self.parent.stat[n]['xpix'].flatten() + ypix = self.parent.stat[n]["ypix"].flatten() + xpix = self.parent.stat[n]["xpix"].flatten() H[ypix, xpix] = np.random.rand() S[ypix, xpix] = 1 - pix = np.concatenate(((H[:, :, np.newaxis]), - S[:, :, np.newaxis], - mean_img[:, :, np.newaxis]), axis=-1) + pix = np.concatenate( + ((H[:, :, np.newaxis]), S[:, :, np.newaxis], mean_img[:, :, np.newaxis]), + axis=-1) pix = hsv_to_rgb(pix) return pix @@ -342,7 +363,8 @@ def mouse_moved(self, pos): # print(self.ineuron) def keyPressEvent(self, event): - if event.modifiers() != QtCore.Qt.AltModifier and event.modifiers() != QtCore.Qt.ShiftModifier: + if event.modifiers() != QtCore.Qt.AltModifier and event.modifiers( + ) != QtCore.Qt.ShiftModifier: if event.key() == QtCore.Qt.Key_D: self.ROIs[self.iROI].remove(self) elif event.key() == QtCore.Qt.Key_W: @@ -361,10 +383,11 @@ def keyPressEvent(self, event): def add_ROI(self, pos=None): self.iROI = len(self.ROIs) self.nROIs = len(self.ROIs) - self.ROIs.append(sROI(iROI=self.nROIs, parent=self, pos=pos, diameter=int(self.diam.text()))) + self.ROIs.append( + sROI(iROI=self.nROIs, parent=self, pos=pos, diameter=int(self.diam.text()))) self.ROIs[-1].position(self) self.nROIs += 1 - print('%d cells added to manual GUI'%self.nROIs) + print("%d cells added to manual GUI" % self.nROIs) self.closeGUI.setEnabled(False) def plot_clicked(self, event): @@ -375,8 +398,11 @@ def plot_clicked(self, event): posy = pos.x() posx = pos.y() if event.modifiers() == QtCore.Qt.AltModifier: - self.add_ROI(pos=np.array([posx - 5, posy - 5, - int(self.diam.text()), int(self.diam.text())])) + self.add_ROI(pos=np.array([ + posx - 5, posy - 5, + int(self.diam.text()), + int(self.diam.text()) + ])) if event.double(): self.p0.setXRange(0, self.Lx) self.p0.setYRange(0, self.Ly) @@ -402,17 +428,25 @@ def proc_ROI(self): ypix = y[ellipse].flatten() xpix = x[ellipse].flatten() lam = np.ones(ypix.shape) - stat0.append({'ypix': ypix, 'xpix': xpix, 'lam': lam, 'npix': ypix.size, 'med': med}) + stat0.append({ + "ypix": ypix, + "xpix": xpix, + "lam": lam, + "npix": ypix.size, + "med": med + }) self.tlabel.append(pg.TextItem(str(n), self.ROIs[n].color, anchor=(0, 0))) self.tlabel[-1].setPos(xpix.mean(), ypix.mean()) self.p0.addItem(self.tlabel[-1]) - self.scatter.append(pg.ScatterPlotItem([xpix.mean()], [ypix.mean()], - pen=self.ROIs[n].color, symbol='+')) + self.scatter.append( + pg.ScatterPlotItem([xpix.mean()], [ypix.mean()], pen=self.ROIs[n].color, + symbol="+")) self.p0.addItem(self.scatter[-1]) - if not os.path.isfile(self.parent.ops['reg_file']): - self.parent.ops['reg_file'] = os.path.join(self.parent.basename, 'data.bin') + if not os.path.isfile(self.parent.ops["reg_file"]): + self.parent.ops["reg_file"] = os.path.join(self.parent.basename, "data.bin") - F, Fneu, F_chan2, Fneu_chan2, spks, ops, stat = masks_and_traces(self.parent.ops, stat0, self.parent.stat) + F, Fneu, F_chan2, Fneu_chan2, spks, ops, stat = masks_and_traces( + self.parent.ops, stat0, self.parent.stat) self.Fcell = F self.Fneu = Fneu self.F_chan2 = F_chan2 @@ -427,7 +461,7 @@ def plot_trace(self): self.trange = np.arange(0, self.Fcell.shape[1]) self.p1.clear() kspace = 1.0 - ax = self.p1.getAxis('left') + ax = self.p1.getAxis("left") favg = 0 k = self.nROIs - 1 ttick = list() @@ -442,7 +476,7 @@ def plot_trace(self): self.p1.plot(self.trange, f + k * kspace, pen=rgb) fneu = (fneu - fmin) / (fmax - fmin) if self.nROIs == 1: - self.p1.plot(self.trange, fneu + k * kspace, pen='r') + self.p1.plot(self.trange, fneu + k * kspace, pen="r") ttick.append((k * kspace + f.mean(), str(n))) k -= 1 self.fmax = (self.nROIs - 1) * kspace + 1 @@ -453,6 +487,7 @@ def plot_trace(self): class sROI(): + def __init__(self, iROI, parent=None, pos=None, diameter=None, color=None, yrange=None, xrange=None): # what type of ROI it is @@ -492,13 +527,13 @@ def __init__(self, iROI, parent=None, pos=None, diameter=None, color=None, self.ROI.sigRemoveRequested.connect(lambda: self.remove(parent)) def draw(self, parent, imy, imx, dy, dx): - roipen = pg.mkPen(self.color, width=3, - style=QtCore.Qt.SolidLine) + roipen = pg.mkPen(self.color, width=3, style=QtCore.Qt.SolidLine) self.ROI = pg.EllipseROI([imx, imy], [dx, dy], pen=roipen, removable=True) self.ROI.handleSize = 8 self.ROI.handlePen = roipen self.ROI.addScaleHandle([1, 0.5], [0., 0.5]) self.ROI.addScaleHandle([0.5, 0], [0.5, 1]) + self.ROI.addRotateHandle([0.5, 1], [0.5, 0.5]) self.ROI.setAcceptedMouseButtons(QtCore.Qt.LeftButton) self.med = [imy, imx] parent.p0.addItem(self.ROI) @@ -514,29 +549,41 @@ def remove(self, parent): parent.win.show() parent.show() + def rotate_ROI(self, parent, ellipse, xrange, yrange, posx, posy): + #Rotates ROI depending on Rotatehandle degree + ellipse = rotate(ellipse, angle=math.floor(self.ROI.angle()), order=0) + ellipse = np.flip(ellipse, axis=0) + xrange = (np.arange(-1 * int(ellipse.shape[1] - 1), 1) + int(posx)).astype(np.int32) + yrange = (np.arange(-1 * int(ellipse.shape[0] - 1), 1) + int(posy)).astype(np.int32) + yrange += int(np.floor(ellipse.shape[0] / 2)) + 1 + return ellipse, xrange, yrange + def position(self, parent): parent.iROI = self.iROI pos0 = self.ROI.getSceneHandlePositions() + sizex, sizey = self.ROI.size() pos = parent.p0.mapSceneToView(pos0[0][1]) + br = self.ROI.boundingRect() posy = pos.y() posx = pos.x() - sizex, sizey = self.ROI.size() + xrange = (np.arange(-1 * int(sizex), 1) + int(posx)).astype(np.int32) yrange = (np.arange(-1 * int(sizey), 1) + int(posy)).astype(np.int32) yrange += int(np.floor(sizey / 2)) + 1 # what is ellipse circling? br = self.ROI.boundingRect() - ellipse = np.zeros((yrange.size, xrange.size), np.bool) + ellipse = np.zeros((yrange.size, xrange.size), "bool") x, y = np.meshgrid(np.arange(0, xrange.size, 1), np.arange(0, yrange.size, 1)) - ellipse = ((y - br.center().y()) ** 2 / (br.height() / 2) ** 2 + - (x - br.center().x()) ** 2 / (br.width() / 2) ** 2) <= 1 - + ellipse = ((y - br.center().y())**2 / (br.height() / 2)**2 + + (x - br.center().x())**2 / (br.width() / 2)**2) <= 1 + if self.ROI.angle() not in (0, 180, -180): + ellipse, xrange, yrange = self.rotate_ROI(parent, ellipse, xrange, yrange, posx, posy) + #ensures that ROI is not placed outside of movie coordinates ellipse = ellipse[:, np.logical_and(xrange >= 0, xrange < parent.Lx)] xrange = xrange[np.logical_and(xrange >= 0, xrange < parent.Lx)] ellipse = ellipse[np.logical_and(yrange >= 0, yrange < parent.Ly), :] yrange = yrange[np.logical_and(yrange >= 0, yrange < parent.Ly)] - # ellipse = lambda x,y: (((x+0.5)/(w/2.)-1)**2+ ((y+0.5)/(h/2.)-1)**2)**0.5 < 1, (w, h)) self.ellipse = ellipse self.xrange = xrange - self.yrange = yrange \ No newline at end of file + self.yrange = yrange diff --git a/suite2p/gui/graphics.py b/suite2p/gui/graphics.py index 18287efda..5fe0ef676 100644 --- a/suite2p/gui/graphics.py +++ b/suite2p/gui/graphics.py @@ -1,6 +1,9 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np import pyqtgraph as pg -from PyQt5 import QtCore +from qtpy import QtCore from pyqtgraph import Point from pyqtgraph import functions as fn from pyqtgraph.graphicsItems.ViewBox.ViewBoxMenu import ViewBoxMenu @@ -9,7 +12,9 @@ class TraceBox(pg.PlotItem): - def __init__(self, parent=None, border=None, lockAspect=False, enableMouse=True, invertY=False, enableMenu=True, name=None, invertX=False): + + def __init__(self, parent=None, border=None, lockAspect=False, enableMouse=True, + invertY=False, enableMenu=True, name=None, invertX=False): super(TraceBox, self).__init__() self.parent = parent @@ -21,24 +26,26 @@ def zoom_plot(self): self.setYRange(self.parent.fmin, self.parent.fmax) self.parent.show() + class ViewBox(pg.ViewBox): + def __init__(self, parent=None, border=None, lockAspect=False, enableMouse=True, invertY=False, enableMenu=True, name=None, invertX=False): #pg.ViewBox.__init__(self, border, lockAspect, enableMouse, - #invertY, enableMenu, name, invertX) + #invertY, enableMenu, name, invertX) super(ViewBox, self).__init__() self.border = fn.mkPen(border) if enableMenu: self.menu = ViewBoxMenu(self) self.name = name - self.parent=parent - if self.name=="plot2": + self.parent = parent + if self.name == "plot2": self.setXLink(parent.p1) self.setYLink(parent.p1) # set state - self.state['enableMenu'] = enableMenu - self.state['yInverted'] = invertY + self.state["enableMenu"] = enableMenu + self.state["yInverted"] = invertY def mouseDoubleClickEvent(self, ev): if self.parent.loaded: @@ -49,12 +56,12 @@ def mouseClickEvent(self, ev): pos = self.mapSceneToView(ev.scenePos()) posy = int(pos.x()) posx = int(pos.y()) - if self.name=="plot1": + if self.name == "plot1": iplot = 0 else: iplot = 1 - if posy>=0 and posx>=0 and posy<=self.parent.Lx and posx<=self.parent.Ly: - ichosen = int(self.parent.rois['iROI'][iplot, 0, posx, posy]) + if posy >= 0 and posx >= 0 and posy <= self.parent.Lx and posx <= self.parent.Ly: + ichosen = int(self.parent.rois["iROI"][iplot, 0, posx, posy]) if ichosen < 0: if ev.button() == QtCore.Qt.RightButton and self.menuEnabled(): self.raiseContextMenu(ev) @@ -67,13 +74,16 @@ def mouseClickEvent(self, ev): masks.flip_plot(self.parent) else: merged = False - if ev.modifiers() == QtCore.Qt.ShiftModifier or ev.modifiers() == QtCore.Qt.ControlModifier: - if self.parent.iscell[self.parent.imerge[0]] == self.parent.iscell[ichosen]: + if ev.modifiers() == QtCore.Qt.ShiftModifier or ev.modifiers( + ) == QtCore.Qt.ControlModifier: + if self.parent.iscell[self.parent.imerge[ + 0]] == self.parent.iscell[ichosen]: if ichosen not in self.parent.imerge: self.parent.imerge.append(ichosen) self.parent.ichosen = ichosen merged = True - elif ichosen in self.parent.imerge and len(self.parent.imerge) > 1: + elif ichosen in self.parent.imerge and len( + self.parent.imerge) > 1: self.parent.imerge.remove(ichosen) self.parent.ichosen = self.parent.imerge[0] merged = True @@ -89,46 +99,6 @@ def mouseClickEvent(self, ev): btn.setStyleSheet(self.parent.styleUnpressed) self.parent.update_plot() - def mouseDragEvent(self, ev, axis=None): - ## if axis is specified, event will only affect that axis. - ev.accept() ## we accept all buttons - - pos = ev.pos() - lastPos = ev.lastPos() - dif = pos - lastPos - dif = dif * -1 - - ## Ignore axes if mouse is disabled - mouseEnabled = np.array(self.state['mouseEnabled'], dtype=np.float) - mask = mouseEnabled.copy() - if axis is not None: - mask[1-axis] = 0.0 - - ## Scale or translate based on mouse button - if ev.button() & (QtCore.Qt.LeftButton | QtCore.Qt.MidButton): - if self.state['mouseMode'] == pg.ViewBox.RectMode: - if ev.isFinish(): ## This is the final move in the drag; change the view scale now - #print "finish" - self.rbScaleBox.hide() - ax = QtCore.QRectF(Point(ev.buttonDownPos(ev.button())), Point(pos)) - ax = self.childGroup.mapRectFromParent(ax) - self.showAxRect(ax) - self.axHistoryPointer += 1 - self.axHistory = self.axHistory[:self.axHistoryPointer] + [ax] - else: - ## update shape of scale box - self.updateScaleBox(ev.buttonDownPos(), ev.pos()) - else: - tr = dif*mask - tr = self.mapToView(tr) - self.mapToView(Point(0,0)) - x = tr.x() if mask[0] == 1 else None - y = tr.y() if mask[1] == 1 else None - - self._resetTarget() - if x is not None or y is not None: - self.translateBy(x=x, y=y) - self.sigRangeChangedManually.emit(self.state['mouseEnabled']) - def zoom_plot(self): self.setXRange(0, self.parent.ops["Lx"]) self.setYRange(0, self.parent.ops["Ly"]) @@ -136,24 +106,25 @@ def zoom_plot(self): self.parent.p2.setYLink(self.parent.p1) self.parent.show() + def init_range(parent): - parent.p1.setXRange(0,parent.ops['Lx']) - parent.p1.setYRange(0,parent.ops['Ly']) - parent.p2.setXRange(0,parent.ops['Lx']) - parent.p2.setYRange(0,parent.ops['Ly']) - parent.p3.setLimits(xMin=0,xMax=parent.Fcell.shape[1]) + parent.p1.setXRange(0, parent.ops["Lx"]) + parent.p1.setYRange(0, parent.ops["Ly"]) + parent.p2.setXRange(0, parent.ops["Lx"]) + parent.p2.setYRange(0, parent.ops["Ly"]) + parent.p3.setLimits(xMin=0, xMax=parent.Fcell.shape[1]) parent.trange = np.arange(0, parent.Fcell.shape[1]) def ROI_index(ops, stat): - '''matrix Ly x Lx where each pixel is an ROI index (-1 if no ROI present)''' - ncells = len(stat)-1 - Ly = ops['Ly'] - Lx = ops['Lx'] - iROI = -1 * np.ones((Ly,Lx), dtype=np.int32) + """matrix Ly x Lx where each pixel is an ROI index (-1 if no ROI present)""" + ncells = len(stat) - 1 + Ly = ops["Ly"] + Lx = ops["Lx"] + iROI = -1 * np.ones((Ly, Lx), dtype=np.int32) for n in range(ncells): - ypix = stat[n]['ypix'][~stat[n]['overlap']] + ypix = stat[n]["ypix"][~stat[n]["overlap"]] if ypix is not None: - xpix = stat[n]['xpix'][~stat[n]['overlap']] - iROI[ypix,xpix] = n + xpix = stat[n]["xpix"][~stat[n]["overlap"]] + iROI[ypix, xpix] = n return iROI diff --git a/suite2p/gui/gui2p.py b/suite2p/gui/gui2p.py index 675a68184..b9b748565 100644 --- a/suite2p/gui/gui2p.py +++ b/suite2p/gui/gui2p.py @@ -1,15 +1,19 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os, pathlib, shutil, sys, warnings import numpy as np import pyqtgraph as pg -from PyQt5 import QtGui, QtCore -from PyQt5.QtWidgets import QMainWindow, QApplication, QWidget, QGridLayout, QCheckBox, QLineEdit, QLabel +from qtpy import QtGui, QtCore +from qtpy.QtWidgets import QMainWindow, QApplication, QWidget, QGridLayout, QCheckBox, QLineEdit, QLabel from . import menus, io, merge, views, buttons, classgui, traces, graphics, masks from .. import run_s2p, default_ops class MainWindow(QMainWindow): + def __init__(self, statfile=None): super(MainWindow, self).__init__() pg.setConfigOptions(imageAxisOrder="row-major") @@ -18,7 +22,7 @@ def __init__(self, statfile=None): self.setWindowTitle("suite2p (run pipeline or load stat.npy)") import suite2p s2p_dir = pathlib.Path(suite2p.__file__).parent - icon_path = os.fspath(s2p_dir.joinpath('logo', 'logo.png')) + icon_path = os.fspath(s2p_dir.joinpath("logo", "logo.png")) app_icon = QtGui.QIcon() app_icon.addFile(icon_path, QtCore.QSize(16, 16)) @@ -40,24 +44,24 @@ def __init__(self, statfile=None): "color:gray;}") self.loaded = False self.ops_plot = [] - + ### first time running, need to check for user files - user_dir = pathlib.Path.home().joinpath('.suite2p') + user_dir = pathlib.Path.home().joinpath(".suite2p") user_dir.mkdir(exist_ok=True) # check for classifier file - class_dir = user_dir.joinpath('classifiers') + class_dir = user_dir.joinpath("classifiers") class_dir.mkdir(exist_ok=True) - self.classuser = os.fspath(class_dir.joinpath('classifier_user.npy')) - self.classorig = os.fspath(s2p_dir.joinpath('classifiers', 'classifier.npy')) + self.classuser = os.fspath(class_dir.joinpath("classifier_user.npy")) + self.classorig = os.fspath(s2p_dir.joinpath("classifiers", "classifier.npy")) if not os.path.isfile(self.classuser): shutil.copy(self.classorig, self.classuser) self.classfile = self.classuser # check for ops file (for running suite2p) - ops_dir = user_dir.joinpath('ops') + ops_dir = user_dir.joinpath("ops") ops_dir.mkdir(exist_ok=True) - self.opsuser = os.fspath(ops_dir.joinpath('ops_user.npy')) + self.opsuser = os.fspath(ops_dir.joinpath("ops_user.npy")) if not os.path.isfile(self.opsuser): np.save(self.opsuser, default_ops()) self.opsfile = self.opsuser @@ -72,11 +76,16 @@ def __init__(self, statfile=None): self.boldfont = QtGui.QFont("Arial", 10, QtGui.QFont.Bold) # default plot options - self.ops_plot = {'ROIs_on': True, 'color': 0, 'view': 0, - 'opacity': [127,255], 'saturation': [0, 255], - 'colormap': 'hsv'} - self.rois = {'iROI':0, 'Sroi':0, 'Lam':0, 'LamMean':0, 'LamNorm':0} - self.colors = {'RGB':0, 'cols':0, 'colorbar':[]} + self.ops_plot = { + "ROIs_on": True, + "color": 0, + "view": 0, + "opacity": [127, 255], + "saturation": [0, 255], + "colormap": "hsv" + } + self.rois = {"iROI": 0, "Sroi": 0, "Lam": 0, "LamMean": 0, "LamNorm": 0} + self.colors = {"RGB": 0, "cols": 0, "colorbar": []} # --------- MAIN WIDGET LAYOUT --------------------- cwidget = QWidget() @@ -86,7 +95,7 @@ def __init__(self, statfile=None): b0 = self.make_buttons() self.make_graphics(b0) - # so they're on top of plot, draw last + # so they"re on top of plot, draw last buttons.make_quadrants(self) # initialize merges @@ -98,10 +107,10 @@ def __init__(self, statfile=None): self.default_keys = model["keys"] # load initial file - #statfile = 'C:/Users/carse/OneDrive/Documents/suite2p/plane0/stat.npy' - #statfile = 'D:/grive/cshl_suite2p/GT1/suite2p/plane0/stat.npy' - #statfile = '/media/carsen/DATA1/TIFFS/auditory_cortex/suite2p/plane0/stat.npy' - #folder = 'D:/DATA/GT1/singlechannel_half/suite2p/' + #statfile = "C:/Users/carse/OneDrive/Documents/suite2p/plane0/stat.npy" + #statfile = "D:/grive/cshl_suite2p/GT1/suite2p/plane0/stat.npy" + #statfile = "/media/carsen/DATA1/TIFFS/auditory_cortex/suite2p/plane0/stat.npy" + #folder = "D:/DATA/GT1/singlechannel_half/suite2p/" #self.fname = folder #io.load_folder(self) if statfile is not None: @@ -122,13 +131,13 @@ def dropEvent(self, event): files = [u.toLocalFile() for u in event.mimeData().urls()] print(files) self.fname = files[0] - if os.path.splitext(self.fname)[-1]=='.npy': + if os.path.splitext(self.fname)[-1] == ".npy": io.load_proc(self) - elif os.path.splitext(self.fname)[-1]=='.nwb': + elif os.path.splitext(self.fname)[-1] == ".nwb": io.load_NWB(self) else: - print('invalid extension %s, use .nwb or .npy'%os.path.splitext(self.fname)[-1]) - + print("invalid extension %s, use .nwb or .npy" % + os.path.splitext(self.fname)[-1]) def make_buttons(self): # ROI CHECKBOX @@ -141,22 +150,17 @@ def make_buttons(self): buttons.make_selection(self) buttons.make_cellnotcell(self) - b0=views.make_buttons(self) # b0 says how many - b0=masks.make_buttons(self,b0) + b0 = views.make_buttons(self) # b0 says how many + b0 = masks.make_buttons(self, b0) masks.make_colorbar(self, b0) - b0+=1 - b0=classgui.make_buttons(self, b0) - b0+=1 + b0 += 1 + b0 = classgui.make_buttons(self, b0) + b0 += 1 # ------ CELL STATS / ROI SELECTION -------- # which stats self.stats_to_show = [ - "med", - "npix", - "skew", - "compact", - "footprint", - "aspect_ratio" + "med", "npix", "skew", "compact", "footprint", "aspect_ratio" ] lilfont = QtGui.QFont("Arial", 8) qlabel = QLabel(self) @@ -170,7 +174,7 @@ def make_buttons(self): self.ROIedit.setAlignment(QtCore.Qt.AlignRight) self.ROIedit.returnPressed.connect(self.number_chosen) self.l0.addWidget(self.ROIedit, b0, 1, 1, 1) - b0+=1 + b0 += 1 self.ROIstats = [] self.ROIstats.append(qlabel) for k in range(1, len(self.stats_to_show) + 1): @@ -180,10 +184,10 @@ def make_buttons(self): self.ROIstats[k].setStyleSheet("color: white;") self.ROIstats[k].resize(self.ROIstats[k].minimumSizeHint()) self.l0.addWidget(self.ROIstats[k], b0, 0, 1, 2) - b0+=1 - self.l0.addWidget(QLabel(""), b0 , 0, 1, 2) + b0 += 1 + self.l0.addWidget(QLabel(""), b0, 0, 1, 2) self.l0.setRowStretch(b0, 1) - b0+=2 + b0 += 2 b0 = traces.make_buttons(self, b0) # zoom to cell CHECKBOX @@ -192,32 +196,28 @@ def make_buttons(self): self.checkBoxz.setStyleSheet("color: white;") self.zoomtocell = False self.checkBoxz.stateChanged.connect(self.zoom_cell) - self.l0.addWidget(self.checkBoxz, - b0,15, - 1, 2) + self.l0.addWidget(self.checkBoxz, b0, 15, 1, 2) self.checkBoxN = QCheckBox("add ROI # to plot") self.checkBoxN.setStyleSheet("color: white;") self.roitext = False self.checkBoxN.stateChanged.connect(self.roi_text) self.checkBoxN.setEnabled(False) - self.l0.addWidget(self.checkBoxN, - b0,18, - 1, 2) - + self.l0.addWidget(self.checkBoxN, b0, 18, 1, 2) + return b0 def roi_text(self, state): - if state == QtCore.Qt.Checked: + if QtCore.Qt.CheckState(state) == QtCore.Qt.Checked: for n in range(len(self.roi_text_labels)): - if self.iscell[n]==1: + if self.iscell[n] == 1: self.p1.addItem(self.roi_text_labels[n]) else: self.p2.addItem(self.roi_text_labels[n]) self.roitext = True else: for n in range(len(self.roi_text_labels)): - if self.iscell[n]==1: + if self.iscell[n] == 1: try: self.p1.removeItem(self.roi_text_labels[n]) except: @@ -232,7 +232,7 @@ def roi_text(self, state): def zoom_cell(self, state): if self.loaded: - if state == QtCore.Qt.Checked: + if QtCore.Qt.CheckState(state) == QtCore.Qt.Checked: self.zoomtocell = True else: self.zoomtocell = False @@ -243,10 +243,11 @@ def make_graphics(self, b0): self.win = pg.GraphicsLayoutWidget() self.win.move(600, 0) self.win.resize(1000, 500) - self.l0.addWidget(self.win, 1, 2, b0-1, 30) + self.l0.addWidget(self.win, 1, 2, b0 - 1, 30) layout = self.win.ci.layout # --- cells image - self.p1 = graphics.ViewBox(parent=self, lockAspect=True, name="plot1", border=[100, 100, 100], invertY=True) + self.p1 = graphics.ViewBox(parent=self, lockAspect=True, name="plot1", + border=[100, 100, 100], invertY=True) self.win.addItem(self.p1, 0, 0) self.p1.setMenuEnabled(False) self.p1.scene().contextMenuItem = self.p1 @@ -256,14 +257,15 @@ def make_graphics(self, b0): self.color1.autoDownsample = False self.p1.addItem(self.view1) self.p1.addItem(self.color1) - self.view1.setLevels([0,255]) - self.color1.setLevels([0,255]) + self.view1.setLevels([0, 255]) + self.color1.setLevels([0, 255]) #self.view1.setImage(np.random.rand(500,500,3)) #x = np.arange(0,500) #img = np.concatenate((np.zeros((500,500,3)), 127*(1+np.tile(np.sin(x/100)[:,np.newaxis,np.newaxis],(1,500,1)))),axis=-1) #self.color1.setImage(img) # --- noncells image - self.p2 = graphics.ViewBox(parent=self, lockAspect=True, name="plot2", border=[100, 100, 100], invertY=True) + self.p2 = graphics.ViewBox(parent=self, lockAspect=True, name="plot2", + border=[100, 100, 100], invertY=True) self.win.addItem(self.p2, 0, 1) self.p2.setMenuEnabled(False) self.p2.scene().contextMenuItem = self.p2 @@ -273,8 +275,8 @@ def make_graphics(self, b0): self.color2.autoDownsample = False self.p2.addItem(self.view2) self.p2.addItem(self.color2) - self.view2.setLevels([0,255]) - self.color2.setLevels([0,255]) + self.view2.setLevels([0, 255]) + self.color2.setLevels([0, 255]) # LINK TWO VIEWS! self.p2.setXLink("plot1") @@ -296,9 +298,10 @@ def make_graphics(self, b0): def keyPressEvent(self, event): if self.loaded: - if event.modifiers() != QtCore.Qt.ControlModifier and event.modifiers() != QtCore.Qt.ShiftModifier: + if event.modifiers() != QtCore.Qt.ControlModifier and event.modifiers( + ) != QtCore.Qt.ShiftModifier: if event.key() == QtCore.Qt.Key_Return: - if event.modifiers()==QtCore.Qt.AltModifier: + if event.modifiers() == QtCore.Qt.AltModifier: if len(self.imerge) > 1: merge.do_merge(self) elif event.key() == QtCore.Qt.Key_Escape: @@ -376,7 +379,7 @@ def keyPressEvent(self, event): elif event.key() == QtCore.Qt.Key_Left: ctype = self.iscell[self.ichosen] while -1: - self.ichosen = (self.ichosen-1)%len(self.stat) + self.ichosen = (self.ichosen - 1) % len(self.stat) if self.iscell[self.ichosen] is ctype: break self.imerge = [self.ichosen] @@ -384,11 +387,11 @@ def keyPressEvent(self, event): self.update_plot() elif event.key() == QtCore.Qt.Key_Right: - ##Agus + ##Agus self.ROI_remove() ctype = self.iscell[self.ichosen] while 1: - self.ichosen = (self.ichosen+1)%len(self.stat) + self.ichosen = (self.ichosen + 1) % len(self.stat) if self.iscell[self.ichosen] is ctype: break self.imerge = [self.ichosen] @@ -399,9 +402,8 @@ def keyPressEvent(self, event): masks.flip_plot(self) self.ROI_remove() - def update_plot(self): - if self.ops_plot['color'] == 7: + if self.ops_plot["color"] == 7: masks.corr_masks(self) masks.plot_colorbar(self) self.ichosen_stats() @@ -445,15 +447,14 @@ def mode_change(self, i): else: f = self.Spks ncells = len(self.stat) - self.Fbin = f[:, : nb * self.bin].reshape( - (ncells, nb, self.bin) - ).mean(axis=2) + self.Fbin = f[:, :nb * self.bin].reshape( + (ncells, nb, self.bin)).mean(axis=2) self.Fbin -= self.Fbin.mean(axis=1)[:, np.newaxis] - self.Fstd = (self.Fbin ** 2).mean(axis=1)**0.5 + self.Fstd = (self.Fbin**2).mean(axis=1)**0.5 self.trange = np.arange(0, self.Fcell.shape[1]) # if in behavior-view, recompute - if self.ops_plot['color'] == 8: + if self.ops_plot["color"] == 8: masks.beh_masks(self) masks.plot_colorbar(self) self.update_plot() @@ -489,10 +490,7 @@ def ROI_selection(self): dy = np.minimum(dy, 300) imx = imx - dx / 2 imy = imy - dy / 2 - self.ROI = pg.RectROI( - [imx, imy], [dx, dy], - pen="w", sideScalers=True - ) + self.ROI = pg.RectROI([imx, imy], [dx, dy], pen="w", sideScalers=True) if wplot == 0: self.p1.addItem(self.ROI) else: @@ -534,11 +532,12 @@ def ROI_position(self): def select_cells(self, ypix, xpix): i = self.ROIplot - iROI0 = self.rois['iROI'][i, 0, ypix, xpix] + iROI0 = self.rois["iROI"][i, 0, ypix, xpix] icells = np.unique(iROI0[iROI0 >= 0]) self.imerge = [] for n in icells: - if (self.rois['iROI'][i, :, ypix, xpix] == n).sum() > 0.6 * self.stat[n]["npix"]: + if (self.rois["iROI"][i, :, ypix, + xpix] == n).sum() > 0.6 * self.stat[n]["npix"]: self.imerge.append(n) if len(self.imerge) > 0: self.ichosen = self.imerge[0] @@ -554,15 +553,13 @@ def number_chosen(self): self.update_plot() self.show() - - def ROIs_on(self, state): - if state == QtCore.Qt.Checked: - self.ops_plot['ROIs_on'] = True + if QtCore.Qt.CheckState(state) == QtCore.Qt.Checked: + self.ops_plot["ROIs_on"] = True self.p1.addItem(self.color1) self.p2.addItem(self.color2) else: - self.ops_plot['ROIs_on'] = False + self.ops_plot["ROIs_on"] = False self.p1.removeItem(self.color1) self.p2.removeItem(self.color2) self.win.show() @@ -593,11 +590,8 @@ def plot_clicked(self, event): iplot = 2 elif x == self.p3: iplot = 3 - elif ( - (x == self.p1 or x == self.p2) and - x != self.img1 and - x != self.img2 - ): + elif ((x == self.p1 or x == self.p2) and x != self.img1 and + x != self.img2): iplot = 4 if event.double(): zoom = True @@ -622,7 +616,8 @@ def plot_clicked(self, event): flip = False if choose: merged = False - if event.modifiers() == QtCore.Qt.ShiftModifier or event.modifiers() == QtCore.Qt.ControlModifier: + if event.modifiers() == QtCore.Qt.ShiftModifier or event.modifiers( + ) == QtCore.Qt.ControlModifier: if self.iscell[self.imerge[0]] == self.iscell[ichosen]: if ichosen not in self.imerge: self.imerge.append(ichosen) @@ -663,9 +658,7 @@ def ichosen_stats(self): key = self.stats_to_show[k - 1] ival = self.stat[n][key] if k == 1: - self.ROIstats[k].setText( - key + ": [%d, %d]" % (ival[0], ival[1]) - ) + self.ROIstats[k].setText(key + ": [%d, %d]" % (ival[0], ival[1])) elif k == 2: self.ROIstats[k].setText(key + ": %d" % (ival)) else: @@ -674,22 +667,23 @@ def ichosen_stats(self): def zoom_to_cell(self): irange = 0.1 * np.array([self.Ly, self.Lx]).max() if len(self.imerge) > 1: - apix = np.zeros((0,2)) - for i,k in enumerate(self.imerge): - apix = np.append(apix, - np.concatenate((self.stat[k]['ypix'].flatten()[:,np.newaxis], - self.stat[k]['xpix'].flatten()[:,np.newaxis]), axis=1), - axis=0) + apix = np.zeros((0, 2)) + for i, k in enumerate(self.imerge): + apix = np.append( + apix, + np.concatenate((self.stat[k]["ypix"].flatten()[:, np.newaxis], + self.stat[k]["xpix"].flatten()[:, np.newaxis]), + axis=1), axis=0) imin = apix.min(axis=0) imax = apix.max(axis=0) icent = apix.mean(axis=0) - imin[0] = min(icent[0]-irange, imin[0]) - imin[1] = min(icent[1]-irange, imin[1]) - imax[0] = max(icent[0]+irange, imax[0]) - imax[1] = max(icent[1]+irange, imax[1]) + imin[0] = min(icent[0] - irange, imin[0]) + imin[1] = min(icent[1] - irange, imin[1]) + imax[0] = max(icent[0] + irange, imax[0]) + imax[1] = max(icent[1] + irange, imax[1]) else: - icent = np.array(self.stat[self.ichosen]['med']) + icent = np.array(self.stat[self.ichosen]["med"]) imin = icent - irange imax = icent + irange self.p1.setYRange(imin[0], imax[0]) @@ -699,14 +693,14 @@ def zoom_to_cell(self): self.win.show() self.show() + def run(statfile=None): # Always start by initializing Qt (only once per application) warnings.filterwarnings("ignore") app = QApplication(sys.argv) import suite2p s2ppath = os.path.dirname(os.path.realpath(suite2p.__file__)) - icon_path = os.path.join(s2ppath, "logo","logo.png" - ) + icon_path = os.path.join(s2ppath, "logo", "logo.png") app_icon = QtGui.QIcon() app_icon.addFile(icon_path, QtCore.QSize(16, 16)) app_icon.addFile(icon_path, QtCore.QSize(24, 24)) diff --git a/suite2p/gui/io.py b/suite2p/gui/io.py index b2d8cb1e7..8924d4e22 100644 --- a/suite2p/gui/io.py +++ b/suite2p/gui/io.py @@ -1,8 +1,12 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os, time import numpy as np import scipy.io -from PyQt5 import QtGui -from PyQt5.QtWidgets import QFileDialog, QMessageBox +from scipy.ndimage import gaussian_filter1d +from qtpy import QtGui +from qtpy.QtWidgets import QFileDialog, QMessageBox from . import utils, masks, views, graphics, traces, classgui from .. import io @@ -12,16 +16,17 @@ def export_fig(parent): parent.win.scene().contextMenuItem = parent.p1 parent.win.scene().showExportDialog() + def make_masks_and_enable_buttons(parent): parent.checkBox.setChecked(True) - parent.ops_plot['color'] = 0 - parent.ops_plot['view'] = 0 - parent.colors['cols'] = 0 - parent.colors['istat'] = 0 + parent.ops_plot["color"] = 0 + parent.ops_plot["view"] = 0 + parent.colors["cols"] = 0 + parent.colors["istat"] = 0 if parent.checkBoxN.isChecked(): parent.roi_text(False) - parent.roi_text_labels=[] - parent.roitext = False + parent.roi_text_labels = [] + parent.roitext = False parent.checkBoxN.setChecked(False) parent.checkBoxN.setEnabled(True) parent.loadBeh.setEnabled(True) @@ -49,16 +54,9 @@ def make_masks_and_enable_buttons(parent): yext, xext = utils.boundary(ypix, xpix) parent.stat[n]["yext"] = yext parent.stat[n]["xext"] = xext - ycirc, xcirc = utils.circle( - parent.stat[n]["med"], - parent.stat[n]["radius"] - ) - goodi = ( - (ycirc >= 0) - & (xcirc >= 0) - & (ycirc < parent.ops["Ly"]) - & (xcirc < parent.ops["Lx"]) - ) + ycirc, xcirc = utils.circle(parent.stat[n]["med"], parent.stat[n]["radius"]) + goodi = ((ycirc >= 0) & (xcirc >= 0) & (ycirc < parent.ops["Ly"]) & + (xcirc < parent.ops["Lx"])) parent.stat[n]["ycirc"] = ycirc[goodi] parent.stat[n]["xcirc"] = xcirc[goodi] parent.stat[n]["inmerge"] = 0 @@ -68,7 +66,7 @@ def make_masks_and_enable_buttons(parent): views.init_views(parent) # make color arrays for various views masks.make_colors(parent) - + if parent.iscell.sum() > 0: ich = np.nonzero(parent.iscell)[0][0] else: @@ -85,18 +83,17 @@ def make_masks_and_enable_buttons(parent): masks.init_masks(parent) M = masks.draw_masks(parent) masks.plot_masks(parent, M) - print(f'time to draw and plot masks: {time.time() - tic : .4f} sec') + print(f"time to draw and plot masks: {time.time() - tic : .4f} sec") parent.lcell1.setText("%d" % (ncells - parent.iscell.sum())) parent.lcell0.setText("%d" % (parent.iscell.sum())) graphics.init_range(parent) traces.plot_trace(parent) parent.xyrat = 1.0 - if (isinstance(parent.ops['diameter'], (list, np.ndarray)) and - len(parent.ops['diameter'])>1 and - parent.ops.get('aspect', 1.0)): + if (isinstance(parent.ops["diameter"], (list, np.ndarray)) and + len(parent.ops["diameter"]) > 1 and parent.ops.get("aspect", 1.0)): parent.xyrat = parent.ops["diameter"][0] / parent.ops["diameter"][1] else: - parent.xyrat = parent.ops.get('aspect', 1.0) + parent.xyrat = parent.ops.get("aspect", 1.0) parent.p1.setAspectLocked(lock=True, ratio=parent.xyrat) parent.p2.setAspectLocked(lock=True, ratio=parent.xyrat) @@ -108,6 +105,7 @@ def make_masks_and_enable_buttons(parent): # no classifier loaded classgui.activate(parent, False) + def enable_views_and_classifier(parent): for b in range(9): parent.quadbtns.button(b).setEnabled(True) @@ -115,7 +113,7 @@ def enable_views_and_classifier(parent): for b in range(len(parent.view_names)): parent.viewbtns.button(b).setEnabled(True) parent.viewbtns.button(b).setStyleSheet(parent.styleUnpressed) - # parent.viewbtns.button(b).setShortcut(QtGui.QKeySequence('R')) + # parent.viewbtns.button(b).setShortcut(QtGui.QKeySequence("R")) if b == 0: parent.viewbtns.button(b).setChecked(True) parent.viewbtns.button(b).setStyleSheet(parent.stylePressed) @@ -128,15 +126,15 @@ def enable_views_and_classifier(parent): parent.viewbtns.button(6).setStyleSheet(parent.styleInactive) for b in range(len(parent.color_names)): - if b==5: + if b == 5: if parent.hasred: parent.colorbtns.button(b).setEnabled(True) parent.colorbtns.button(b).setStyleSheet(parent.styleUnpressed) - elif b==0: + elif b == 0: parent.colorbtns.button(b).setEnabled(True) parent.colorbtns.button(b).setChecked(True) parent.colorbtns.button(b).setStyleSheet(parent.stylePressed) - elif b<8: + elif b < 8: parent.colorbtns.button(b).setEnabled(True) parent.colorbtns.button(b).setStyleSheet(parent.styleUnpressed) @@ -152,7 +150,7 @@ def enable_views_and_classifier(parent): btn.press(parent) b += 1 for b in range(3): - if b==0: + if b == 0: parent.topbtns.button(b).setEnabled(True) parent.topbtns.button(b).setStyleSheet(parent.styleUnpressed) else: @@ -168,33 +166,33 @@ def enable_views_and_classifier(parent): parent.custommask.setEnabled(True) # parent.p1.scene().showExportDialog() + def load_dialog(parent): - options = QFileDialog.Options() - options |= QFileDialog.DontUseNativeDialog - name = QFileDialog.getOpenFileName( - parent, "Open stat.npy", filter="stat.npy", - options=options - ) + dlg_kwargs = { + "parent": parent, + "caption": "Open stat.npy", + "filter": "stat.npy", + } + name = QFileDialog.getOpenFileName(**dlg_kwargs) parent.fname = name[0] load_proc(parent) def load_dialog_NWB(parent): - options=QFileDialog.Options() - options |= QFileDialog.DontUseNativeDialog - name = QFileDialog.getOpenFileName( - parent, "Open ophys.nwb", filter="*.nwb", - options=options - ) + dlg_kwargs = { + "parent": parent, + "caption": "Open ophys.nwb", + "filter": "*.nwb", + } + name = QFileDialog.getOpenFileName(**dlg_kwargs) parent.fname = name[0] load_NWB(parent) - + def load_dialog_folder(parent): - options=QFileDialog.Options() - options |= QFileDialog.DontUseNativeDialog - name = QFileDialog.getExistingDirectory( - parent, "Open folder with planeX folders", - options=options - ) + dlg_kwargs = { + "parent": parent, + "caption": "Open folder with planeX folders", + } + name = QFileDialog.getExistingDirectory(**dlg_kwargs) parent.fname = name load_folder(parent) @@ -203,44 +201,48 @@ def load_NWB(parent): print(name) try: procs = list(io.read_nwb(name)) - if procs[1]['nchannels']==2: + if procs[1]["nchannels"] == 2: hasred = True else: hasred = False procs.append(hasred) load_to_GUI(parent, os.path.split(name)[0], procs) - + parent.loaded = True except Exception as e: - print('ERROR with NWB: %s'%e) + print("ERROR with NWB: %s" % e) + def load_folder(parent): print(parent.fname) save_folder = parent.fname - plane_folders = [ f.path for f in os.scandir(save_folder) if f.is_dir() and f.name[:5]=='plane'] + plane_folders = [ + f.path for f in os.scandir(save_folder) if f.is_dir() and f.name[:5] == "plane" + ] stat_found = False if len(plane_folders) > 0: - stat_found = all([os.path.isfile(os.path.join(f, 'stat.npy')) for f in plane_folders]) + stat_found = all( + [os.path.isfile(os.path.join(f, "stat.npy")) for f in plane_folders]) if not stat_found: - print('No processed planeX folders in folder') + print("No processed planeX folders in folder") return # create a combined folder to hold iscell and redcell output = io.combined(save_folder, save=False) - parent.basename = os.path.join(parent.fname, 'combined') + parent.basename = os.path.join(parent.fname, "combined") load_to_GUI(parent, parent.basename, output) parent.loaded = True print(parent.fname) + def load_files(name): """ give stat.npy path and load all needed files for suite2p """ try: stat = np.load(name, allow_pickle=True) ypix = stat[0]["ypix"] - except (ValueError, KeyError, OSError, - RuntimeError, TypeError, NameError): - print('ERROR: this is not a stat.npy file :( ' - '(needs stat[n]["ypix"]!)') + except (ValueError, KeyError, OSError, RuntimeError, TypeError, NameError): + print("ERROR: this is not a stat.npy file :( " + "(needs stat[n]['ypix']!)") stat = None goodfolder = False if stat is not None: @@ -250,10 +252,8 @@ def load_files(name): Fcell = np.load(basename + "/F.npy") Fneu = np.load(basename + "/Fneu.npy") except (ValueError, OSError, RuntimeError, TypeError, NameError): - print( - "ERROR: there are no fluorescence traces in this folder " - "(F.npy/Fneu.npy)" - ) + print("ERROR: there are no fluorescence traces in this folder " + "(F.npy/Fneu.npy)") goodfolder = False try: Spks = np.load(basename + "/spks.npy") @@ -269,24 +269,24 @@ def load_files(name): try: iscell = np.load(basename + "/iscell.npy") probcell = iscell[:, 1] - iscell = iscell[:, 0].astype('bool') + iscell = iscell[:, 0].astype("bool") except (ValueError, OSError, RuntimeError, TypeError, NameError): print("no manual labels found (iscell.npy)") if goodfolder: NN = Fcell.shape[0] - iscell = np.ones((NN,), 'bool') + iscell = np.ones((NN,), "bool") probcell = np.ones((NN,), np.float32) try: redcell = np.load(basename + "/redcell.npy") - probredcell = redcell[:,1].copy() - redcell = redcell[:,0].astype('bool') + probredcell = redcell[:, 1].copy() + redcell = redcell[:, 0].astype("bool") hasred = True except (ValueError, OSError, RuntimeError, TypeError, NameError): print("no channel 2 labels found (redcell.npy)") hasred = False if goodfolder: NN = Fcell.shape[0] - redcell = np.zeros((NN,), 'bool') + redcell = np.zeros((NN,), "bool") probredcell = np.zeros((NN,), np.float32) else: print("incorrect file, not a stat.npy") @@ -298,6 +298,7 @@ def load_files(name): print("stat.npy found, but other files not in folder") return None + def load_proc(parent): name = parent.fname print(name) @@ -310,6 +311,7 @@ def load_proc(parent): Text = "Incorrect files, choose another?" load_again(parent, Text) + def load_to_GUI(parent, basename, procs): stat, ops, Fcell, Fneu, Spks, iscell, probcell, redcell, probredcell, hasred = procs parent.basename = basename @@ -318,34 +320,33 @@ def load_to_GUI(parent, basename, procs): parent.Fcell = Fcell parent.Fneu = Fneu parent.Spks = Spks - parent.iscell = iscell.astype('bool') + parent.iscell = iscell.astype("bool") parent.probcell = probcell - parent.redcell = redcell.astype('bool') + parent.redcell = redcell.astype("bool") parent.probredcell = probredcell parent.hasred = hasred - parent.notmerged = np.ones_like(parent.iscell).astype('bool') + parent.notmerged = np.ones_like(parent.iscell).astype("bool") for n in range(len(parent.stat)): if parent.hasred: - parent.stat[n]['chan2_prob'] = parent.probredcell[n] - parent.stat[n]['inmerge'] = 0 + parent.stat[n]["chan2_prob"] = parent.probredcell[n] + parent.stat[n]["inmerge"] = 0 parent.stat = np.array(parent.stat) make_masks_and_enable_buttons(parent) parent.ichosen = 0 parent.imerge = [0] for n in range(len(parent.stat)): - if 'imerge' not in parent.stat[n]: - parent.stat[n]['imerge'] = [] + if "imerge" not in parent.stat[n]: + parent.stat[n]["imerge"] = [] + def load_behavior(parent): - name = QFileDialog.getOpenFileName( - parent, "Open *.npy", filter="*.npy" - ) + name = QFileDialog.getOpenFileName(parent, "Open *.npy", filter="*.npy") name = name[0] bloaded = False try: beh = np.load(name) - bresample=False - if beh.ndim>1: + bresample = False + if beh.ndim > 1: if beh.shape[1] < 2: beh = beh.flatten() if beh.shape[0] == parent.Fcell.shape[1]: @@ -353,15 +354,14 @@ def load_behavior(parent): beh_time = np.arange(0, parent.Fcell.shape[1]) else: parent.bloaded = True - beh_time = beh[:,1] - beh = beh[:,0] - bresample=True + beh_time = beh[:, 1] + beh = beh[:, 0] + bresample = True else: if beh.shape[0] == parent.Fcell.shape[1]: parent.bloaded = True beh_time = np.arange(0, parent.Fcell.shape[1]) - except (ValueError, KeyError, OSError, - RuntimeError, TypeError, NameError): + except (ValueError, KeyError, OSError, RuntimeError, TypeError, NameError): print("ERROR: this is not a 1D array with length of data") if parent.bloaded: beh -= beh.min() @@ -369,7 +369,8 @@ def load_behavior(parent): parent.beh = beh parent.beh_time = beh_time if bresample: - parent.beh_resampled = resample_frames(parent.beh, parent.beh_time, np.arange(0,parent.Fcell.shape[1])) + parent.beh_resampled = resample_frames(parent.beh, parent.beh_time, + np.arange(0, parent.Fcell.shape[1])) else: parent.beh_resampled = parent.beh b = 8 @@ -377,7 +378,7 @@ def load_behavior(parent): parent.colorbtns.button(b).setStyleSheet(parent.styleUnpressed) masks.beh_masks(parent) traces.plot_trace(parent) - if hasattr(parent, 'VW'): + if hasattr(parent, "VW"): parent.VW.bloaded = parent.bloaded parent.VW.beh = parent.beh parent.VW.beh_time = parent.beh_time @@ -386,18 +387,23 @@ def load_behavior(parent): else: print("ERROR: this is not a 1D array with length of data") + def resample_frames(y, x, xt): - ''' resample y (defined at x) at times xt ''' + """ resample y (defined at x) at times xt """ ts = x.size / xt.size - y = gaussian_filter1d(y, np.ceil(ts/2), axis=0) - f = interp1d(x,y,fill_value="extrapolate") + y = gaussian_filter1d(y, np.ceil(ts / 2), axis=0) + f = interp1d(x, y, fill_value="extrapolate") yt = f(xt) return yt + def save_redcell(parent): - np.save(os.path.join(parent.basename, 'redcell.npy'), - np.concatenate((np.expand_dims(parent.redcell[parent.notmerged],axis=1), - np.expand_dims(parent.probredcell[parent.notmerged],axis=1)), axis=1)) + np.save( + os.path.join(parent.basename, "redcell.npy"), + np.concatenate((np.expand_dims(parent.redcell[parent.notmerged], axis=1), + np.expand_dims(parent.probredcell[parent.notmerged], axis=1)), + axis=1)) + def save_iscell(parent): np.save( @@ -413,76 +419,87 @@ def save_iscell(parent): parent.lcell0.setText("%d" % (parent.iscell.sum())) parent.lcell1.setText("%d" % (parent.iscell.size - parent.iscell.sum())) + def save_mat(parent): - print('saving to mat') - matpath = os.path.join(parent.basename,'Fall.mat') - if 'date_proc' in parent.ops: - parent.ops['date_proc'] = [] - scipy.io.savemat(matpath, {'stat': parent.stat, - 'ops': parent.ops, - 'F': parent.Fcell, - 'Fneu': parent.Fneu, - 'spks': parent.Spks, - 'iscell': np.concatenate((parent.iscell[:,np.newaxis], - parent.probcell[:,np.newaxis]), axis=1), - 'redcell': np.concatenate((np.expand_dims(parent.redcell,axis=1), - np.expand_dims(parent.probredcell,axis=1)), axis=1) - }) + print("saving to mat") + matpath = os.path.join(parent.basename, "Fall.mat") + if "date_proc" in parent.ops: + parent.ops["date_proc"] = [] + scipy.io.savemat( + matpath, { + "stat": + parent.stat, + "ops": + parent.ops, + "F": + parent.Fcell, + "Fneu": + parent.Fneu, + "spks": + parent.Spks, + "iscell": + np.concatenate( + (parent.iscell[:, np.newaxis], parent.probcell[:, np.newaxis]), + axis=1), + "redcell": + np.concatenate((np.expand_dims(parent.redcell, axis=1), + np.expand_dims(parent.probredcell, axis=1)), axis=1) + }) + def save_merge(parent): - print('saving to NPY') - np.save(os.path.join(parent.basename, 'ops.npy'), parent.ops) - np.save(os.path.join(parent.basename, 'stat.npy'), parent.stat) - np.save(os.path.join(parent.basename, 'F.npy'), parent.Fcell) - np.save(os.path.join(parent.basename, 'Fneu.npy'), parent.Fneu) + print("saving to NPY") + np.save(os.path.join(parent.basename, "ops.npy"), parent.ops) + np.save(os.path.join(parent.basename, "stat.npy"), parent.stat) + np.save(os.path.join(parent.basename, "F.npy"), parent.Fcell) + np.save(os.path.join(parent.basename, "Fneu.npy"), parent.Fneu) if parent.hasred: - np.save(os.path.join(parent.basename, 'F_chan2.npy'), parent.F_chan2) - np.save(os.path.join(parent.basename, 'Fneu_chan2.npy'), parent.Fneu_chan2) - np.save(os.path.join(parent.basename, 'redcell.npy'), - np.concatenate((np.expand_dims(parent.redcell,axis=1), - np.expand_dims(parent.probredcell,axis=1)), axis=1)) - np.save(os.path.join(parent.basename, 'spks.npy'), parent.Spks) - iscell = np.concatenate((parent.iscell[:,np.newaxis], - parent.probcell[:,np.newaxis]), axis=1) - np.save(os.path.join(parent.basename, 'iscell.npy'), iscell) - - parent.notmerged = np.ones(parent.iscell.size, 'bool') + np.save(os.path.join(parent.basename, "F_chan2.npy"), parent.F_chan2) + np.save(os.path.join(parent.basename, "Fneu_chan2.npy"), parent.Fneu_chan2) + np.save( + os.path.join(parent.basename, "redcell.npy"), + np.concatenate((np.expand_dims( + parent.redcell, axis=1), np.expand_dims(parent.probredcell, axis=1)), + axis=1)) + np.save(os.path.join(parent.basename, "spks.npy"), parent.Spks) + iscell = np.concatenate( + (parent.iscell[:, np.newaxis], parent.probcell[:, np.newaxis]), axis=1) + np.save(os.path.join(parent.basename, "iscell.npy"), iscell) + + parent.notmerged = np.ones(parent.iscell.size, "bool") + def load_custom_mask(parent): - name = QFileDialog.getOpenFileName( - parent, "Open *.npy", filter="*.npy" - ) + name = QFileDialog.getOpenFileName(parent, "Open *.npy", filter="*.npy") name = name[0] cloaded = False try: mask = np.load(name) mask = mask.flatten() if mask.size == parent.Fcell.shape[0]: - b = len(parent.color_names)-1 + b = len(parent.color_names) - 1 parent.colorbtns.button(b).setEnabled(True) parent.colorbtns.button(b).setStyleSheet(parent.styleUnpressed) cloaded = True - except (ValueError, KeyError, OSError, - RuntimeError, TypeError, NameError): + except (ValueError, KeyError, OSError, RuntimeError, TypeError, NameError): print("ERROR: this is not a 1D array with length of data") if cloaded: parent.custom_mask = mask masks.custom_masks(parent) M = masks.draw_masks(parent) - b = len(parent.colors)+1 + b = len(parent.colors) + 1 parent.colorbtns.button(b).setEnabled(True) parent.colorbtns.button(b).setStyleSheet(parent.styleUnpressed) parent.colorbtns.button(b).setChecked(True) - parent.colorbtns.button(b).press(parent,b) + parent.colorbtns.button(b).press(parent, b) parent.show() else: print("ERROR: this is not a 1D array with length of # of ROIs") def load_again(parent, Text): - tryagain = QMessageBox.question( - parent, "ERROR", Text, QMessageBox.Yes | QMessageBox.No - ) + tryagain = QMessageBox.question(parent, "ERROR", Text, + QMessageBox.Yes | QMessageBox.No) if tryagain == QMessageBox.Yes: load_dialog(parent) diff --git a/suite2p/gui/masks.py b/suite2p/gui/masks.py index d6509d575..41bdb47ff 100644 --- a/suite2p/gui/masks.py +++ b/suite2p/gui/masks.py @@ -1,9 +1,12 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from pathlib import Path import matplotlib.cm import numpy as np import pyqtgraph as pg -from PyQt5 import QtGui, QtCore -from PyQt5.QtWidgets import QPushButton, QButtonGroup, QLabel, QComboBox, QLineEdit +from qtpy import QtGui, QtCore +from qtpy.QtWidgets import QPushButton, QButtonGroup, QLabel, QComboBox, QLineEdit from matplotlib.colors import hsv_to_rgb import suite2p.gui.merge @@ -14,16 +17,9 @@ def make_buttons(parent, b0): """ color buttons at row b0 """ # color buttons parent.color_names = [ - "A: random", - "S: skew", - "D: compact", - "F: footprint", - "G: aspect_ratio", - "H: chan2_prob", - "J: classifier, cell prob=", - "K: correlations, bin=", - "L: corr with 1D var, bin=^^^", - "M: rastermap / custom" + "A: random", "S: skew", "D: compact", "F: footprint", "G: aspect_ratio", + "H: chan2_prob", "J: classifier, cell prob=", "K: correlations, bin=", + "L: corr with 1D var, bin=^^^", "M: rastermap / custom" ] parent.colorbtns = QButtonGroup(parent) clabel = QLabel(parent) @@ -35,8 +31,10 @@ def make_buttons(parent, b0): # add colormaps parent.CmapChooser = QComboBox() - cmaps = ['hsv', 'viridis', 'plasma', 'inferno', 'magma', 'cividis', - 'viridis_r', 'plasma_r', 'inferno_r', 'magma_r', 'cividis_r'] + cmaps = [ + "hsv", "viridis", "plasma", "inferno", "magma", "cividis", "viridis_r", + "plasma_r", "inferno_r", "magma_r", "cividis_r" + ] parent.CmapChooser.addItems(cmaps) parent.CmapChooser.setCurrentIndex(0) parent.CmapChooser.activated.connect(lambda: cmap_change(parent)) @@ -51,7 +49,7 @@ def make_buttons(parent, b0): for names in colorsAll: btn = ColorButton(b, "&" + names, parent) parent.colorbtns.addButton(btn, b) - if b>4 and b<8: + if b > 4 and b < 8: parent.l0.addWidget(btn, nv + b + 1, 0, 1, 1) else: parent.l0.addWidget(btn, nv + b + 1, 0, 1, 2) @@ -69,9 +67,7 @@ def make_buttons(parent, b0): parent.probedit.setText("0.5") parent.probedit.setFixedWidth(iwid) parent.probedit.setAlignment(QtCore.Qt.AlignRight) - parent.probedit.returnPressed.connect( - lambda: suite2p.gui.merge.apply(parent) - ) + parent.probedit.returnPressed.connect(lambda: suite2p.gui.merge.apply(parent)) parent.l0.addWidget(parent.probedit, nv + b - 3, 1, 1, 1) parent.binedit = QLineEdit(parent) @@ -80,92 +76,95 @@ def make_buttons(parent, b0): parent.binedit.setFixedWidth(iwid) parent.binedit.setAlignment(QtCore.Qt.AlignRight) parent.binedit.returnPressed.connect( - lambda: parent.mode_change(parent.activityMode) - ) + lambda: parent.mode_change(parent.activityMode)) parent.l0.addWidget(parent.binedit, nv + b - 2, 1, 1, 1) - b0 = nv+b+2 + b0 = nv + b + 2 return b0 + def cmap_change(parent): index = parent.CmapChooser.currentIndex() - parent.ops_plot['colormap'] = parent.CmapChooser.itemText(index) + parent.ops_plot["colormap"] = parent.CmapChooser.itemText(index) if parent.loaded: - print('colormap changed to %s, loading...'%parent.ops_plot['colormap']) - istat = parent.colors['istat'] + print("colormap changed to %s, loading..." % parent.ops_plot["colormap"]) + istat = parent.colors["istat"] for c in range(1, istat.shape[0]): - parent.colors['cols'][c] = istat_transform(istat[c], parent.ops_plot['colormap']) - rgb_masks(parent, parent.colors['cols'][c], c) - parent.colormat = draw_colorbar(parent.ops_plot['colormap']) + parent.colors["cols"][c] = istat_transform(istat[c], + parent.ops_plot["colormap"]) + rgb_masks(parent, parent.colors["cols"][c], c) + parent.colormat = draw_colorbar(parent.ops_plot["colormap"]) parent.update_plot() + def hsv2rgb(cols): - cols = cols[:,np.newaxis] + cols = cols[:, np.newaxis] cols = np.concatenate((cols, np.ones_like(cols), np.ones_like(cols)), axis=-1) cols = (255 * hsv_to_rgb(cols)).astype(np.uint8) return cols + def make_colors(parent): - parent.colors['colorbar'] = [] + parent.colors["colorbar"] = [] ncells = len(parent.stat) - parent.colors['cols'] = np.zeros((len(parent.color_names), ncells, 3), np.uint8) - parent.colors['istat'] = np.zeros((len(parent.color_names), ncells), np.float32) + parent.colors["cols"] = np.zeros((len(parent.color_names), ncells, 3), np.uint8) + parent.colors["istat"] = np.zeros((len(parent.color_names), ncells), np.float32) np.random.seed(seed=0) allcols = np.random.random((ncells,)) - if 'meanImg_chan2' in parent.ops: + if "meanImg_chan2" in parent.ops: allcols = allcols / 1.4 allcols = allcols + 0.1 - print(f'number of red cells: {parent.redcell.sum()}') + print(f"number of red cells: {parent.redcell.sum()}") parent.randcols = allcols.copy() allcols[parent.redcell] = 0 else: parent.randcols = allcols - parent.colors['istat'][0] = parent.randcols - parent.colors['cols'][0] = hsv2rgb(allcols) + parent.colors["istat"][0] = parent.randcols + parent.colors["cols"][0] = hsv2rgb(allcols) - b=0 + b = 0 for names in parent.color_names[:-3]: if b > 0: - istat = np.zeros((ncells,1)) - if b 1e-3: @@ -187,6 +187,7 @@ def chan2_prob(parent): parent.update_plot() io.save_redcell(parent) + def make_colorbar(parent, b0): colorbarW = pg.GraphicsLayoutWidget(parent) colorbarW.setMaximumHeight(60) @@ -204,6 +205,7 @@ def make_colorbar(parent, b0): colorbarW.addLabel("1.0", color=[255, 255, 255], row=1, col=2), ] + def init_masks(parent): """ creates RGB masks using stat and puts them in M0 or M1 depending on @@ -220,74 +222,78 @@ def init_masks(parent): """ stat = parent.stat iscell = parent.iscell - cols = parent.colors['cols'] + cols = parent.colors["cols"] ncells = len(stat) Ly = parent.Ly Lx = parent.Lx - parent.rois['Sroi'] = np.zeros((2,Ly,Lx), 'bool') - LamAll = np.zeros((Ly,Lx), np.float32) + parent.rois["Sroi"] = np.zeros((2, Ly, Lx), "bool") + LamAll = np.zeros((Ly, Lx), np.float32) # these have 3 layers - parent.rois['Lam'] = np.zeros((2,3,Ly,Lx), np.float32) - parent.rois['iROI'] = -1 * np.ones((2,3,Ly,Lx), np.int32) + parent.rois["Lam"] = np.zeros((2, 3, Ly, Lx), np.float32) + parent.rois["iROI"] = -1 * np.ones((2, 3, Ly, Lx), np.int32) if parent.checkBoxN.isChecked(): parent.checkBoxN.setChecked(False) - + # ignore merged cells - iignore = np.zeros(ncells, 'bool') + iignore = np.zeros(ncells, "bool") parent.roi_text_labels = [] - for n in np.arange(ncells-1,-1,-1,int): - ypix = stat[n]['ypix'] + for n in np.arange(ncells - 1, -1, -1, int): + ypix = stat[n]["ypix"] if ypix is not None and not iignore[n]: - if 'imerge' in stat[n]: - for k in stat[n]['imerge']: + if "imerge" in stat[n]: + for k in stat[n]["imerge"]: iignore[k] = True - print(f'ROI {k} in merged ROI') - xpix = stat[n]['xpix'] - lam = stat[n]['lam'] + print(f"ROI {k} in merged ROI") + xpix = stat[n]["xpix"] + lam = stat[n]["lam"] lam = lam / lam.sum() - i = int(1-iscell[n]) + i = int(1 - iscell[n]) # add cell on top - parent.rois['iROI'][i,2,ypix,xpix] = parent.rois['iROI'][i,1,ypix,xpix] - parent.rois['iROI'][i,1,ypix,xpix] = parent.rois['iROI'][i,0,ypix,xpix] - parent.rois['iROI'][i,0,ypix,xpix] = n + parent.rois["iROI"][i, 2, ypix, xpix] = parent.rois["iROI"][i, 1, ypix, + xpix] + parent.rois["iROI"][i, 1, ypix, xpix] = parent.rois["iROI"][i, 0, ypix, + xpix] + parent.rois["iROI"][i, 0, ypix, xpix] = n # add weighting to all layers - parent.rois['Lam'][i,2,ypix,xpix] = parent.rois['Lam'][i,1,ypix,xpix] - parent.rois['Lam'][i,1,ypix,xpix] = parent.rois['Lam'][i,0,ypix,xpix] - parent.rois['Lam'][i,0,ypix,xpix] = lam - parent.rois['Sroi'][i,ypix,xpix] = 1 - LamAll[ypix,xpix] = lam - med = stat[n]['med'] + parent.rois["Lam"][i, 2, ypix, xpix] = parent.rois["Lam"][i, 1, ypix, xpix] + parent.rois["Lam"][i, 1, ypix, xpix] = parent.rois["Lam"][i, 0, ypix, xpix] + parent.rois["Lam"][i, 0, ypix, xpix] = lam + parent.rois["Sroi"][i, ypix, xpix] = 1 + LamAll[ypix, xpix] = lam + med = stat[n]["med"] cell_str = str(n) else: - cell_str = '' - med = (0,0) - txt = pg.TextItem(cell_str, color=(180,180,180), - anchor=(0.5,0.5)) + cell_str = "" + med = (0, 0) + txt = pg.TextItem(cell_str, color=(180, 180, 180), anchor=(0.5, 0.5)) txt.setPos(med[1], med[0]) txt.setFont(QtGui.QFont("Times", 8, weight=QtGui.QFont.Bold)) parent.roi_text_labels.append(txt) parent.roi_text_labels = parent.roi_text_labels[::-1] - parent.rois['LamMean'] = LamAll[LamAll>1e-10].mean() - parent.rois['LamNorm'] = np.maximum(0, np.minimum(1, 0.75*parent.rois['Lam'][:,0]/parent.rois['LamMean'])) - parent.colors['RGB'] = np.zeros((2,cols.shape[0],Ly,Lx,4), np.uint8) + parent.rois["LamMean"] = LamAll[LamAll > 1e-10].mean() + parent.rois["LamNorm"] = np.maximum( + 0, np.minimum(1, 0.75 * parent.rois["Lam"][:, 0] / parent.rois["LamMean"])) + parent.colors["RGB"] = np.zeros((2, cols.shape[0], Ly, Lx, 4), np.uint8) for c in range(0, cols.shape[0]): rgb_masks(parent, cols[c], c) + def rgb_masks(parent, col, c): for i in range(2): - #S = np.expand_dims(parent.rois['Sroi'][i],axis=2) - H = col[parent.rois['iROI'][i,0], :] + #S = np.expand_dims(parent.rois["Sroi"][i],axis=2) + H = col[parent.rois["iROI"][i, 0], :] #H = np.expand_dims(H,axis=2) #hsv = np.concatenate((H,S,S),axis=2) #rgb = (hsv_to_rgb(hsv)*255).astype(np.uint8) - parent.colors['RGB'][i,c,:,:,:3] = H + parent.colors["RGB"][i, c, :, :, :3] = H -def draw_masks(parent): #ops, stat, ops_plot, iscell, ichosen): - ''' + +def draw_masks(parent): #ops, stat, ops_plot, iscell, ichosen): + """ creates RGB masks using stat and puts them in M0 or M1 depending on whether or not iscell is True for a given ROI @@ -300,59 +306,65 @@ def draw_masks(parent): #ops, stat, ops_plot, iscell, ichosen): M0: ROIs that are True in iscell M1: ROIs that are False in iscell - ''' - ncells = parent.iscell.shape[0] - plotROI = parent.ops_plot['ROIs_on'] - view = parent.ops_plot['view'] - color = parent.ops_plot['color'] - opacity = parent.ops_plot['opacity'] + """ + ncells = parent.iscell.shape[0] + plotROI = parent.ops_plot["ROIs_on"] + view = parent.ops_plot["view"] + color = parent.ops_plot["color"] + opacity = parent.ops_plot["opacity"] - wplot = int(1-parent.iscell[parent.ichosen]) + wplot = int(1 - parent.iscell[parent.ichosen]) # reset transparency for i in range(2): - parent.colors['RGB'][i,color,:,:,3] = (opacity[view==0] * - parent.rois['Sroi'][i] * - parent.rois['LamNorm'][i]).astype(np.uint8) - M = [np.array(parent.colors['RGB'][0,color]), np.array(parent.colors['RGB'][1,color])] + parent.colors["RGB"][i, color, :, :, + 3] = (opacity[view == 0] * parent.rois["Sroi"][i] * + parent.rois["LamNorm"][i]).astype(np.uint8) + M = [ + np.array(parent.colors["RGB"][0, color]), + np.array(parent.colors["RGB"][1, color]) + ] - if view==0: + if view == 0: for n in parent.imerge: - ypix = parent.stat[n]['ypix'].flatten() - xpix = parent.stat[n]['xpix'].flatten() - v = (parent.rois['iROI'][wplot][:,ypix,xpix]>-1).sum(axis=0) - 1 - v = 1 - v/3 + ypix = parent.stat[n]["ypix"].flatten() + xpix = parent.stat[n]["xpix"].flatten() + v = (parent.rois["iROI"][wplot][:, ypix, xpix] > -1).sum(axis=0) - 1 + v = 1 - v / 3 M[wplot] = make_chosen_ROI(M[wplot], ypix, xpix, v) else: for n in parent.imerge: - ycirc = parent.stat[n]['ycirc'] - xcirc = parent.stat[n]['xcirc'] - ypix = parent.stat[n]['ypix'].flatten() - xpix = parent.stat[n]['xpix'].flatten() - M[wplot][ypix,xpix,3] = 0 - col = parent.colors['cols'][color,n] + ycirc = parent.stat[n]["ycirc"] + xcirc = parent.stat[n]["xcirc"] + ypix = parent.stat[n]["ypix"].flatten() + xpix = parent.stat[n]["xpix"].flatten() + M[wplot][ypix, xpix, 3] = 0 + col = parent.colors["cols"][color, n] sat = 1 M[wplot] = make_chosen_circle(M[wplot], ycirc, xcirc, col, sat) - return M[0],M[1] + return M[0], M[1] def make_chosen_ROI(M0, ypix, xpix, v): - M0[ypix,xpix,:] = np.tile((255*v[:,np.newaxis]).astype(np.uint8), (1,4)) + M0[ypix, xpix, :] = np.tile((255 * v[:, np.newaxis]).astype(np.uint8), (1, 4)) return M0 + def make_chosen_circle(M0, ycirc, xcirc, col, sat): ncirc = ycirc.size - M0[ycirc,xcirc,:3] = col#[np.newaxis,:] - M0[ycirc,xcirc,3] = 255 + M0[ycirc, xcirc, :3] = col #[np.newaxis,:] + M0[ycirc, xcirc, 3] = 255 return M0 + def chan2_masks(parent): c = 0 col = parent.randcols.copy() col[parent.redcell] = 0 col = col.flatten() - parent.colors['cols'][c] = hsv2rgb(col) - rgb_masks(parent, parent.colors['cols'][c], c) + parent.colors["cols"][c] = hsv2rgb(col) + rgb_masks(parent, parent.colors["cols"][c], c) + def custom_masks(parent): c = 9 @@ -360,58 +372,62 @@ def custom_masks(parent): istat = parent.custom_mask istat1 = np.percentile(istat, 1) istat99 = np.percentile(istat, 99) - cl = [istat1, (istat99-istat1)/2 + istat1, istat99] + cl = [istat1, (istat99 - istat1) / 2 + istat1, istat99] istat -= istat1 - istat /= istat99-istat1 + istat /= istat99 - istat1 istat = np.maximum(0, np.minimum(1, istat)) - parent.colors['colorbar'][c] = cl + parent.colors["colorbar"][c] = cl istat = istat / istat.max() - col = istat_transform(istat, parent.ops_plot['colormap']) + col = istat_transform(istat, parent.ops_plot["colormap"]) - parent.colors['cols'][c] = col - parent.colors['istat'][c] = istat.flatten() + parent.colors["cols"][c] = col + parent.colors["istat"][c] = istat.flatten() rgb_masks(parent, col, c) + def rastermap_masks(parent): c = 9 n = np.array(parent.imerge) istat = parent.isort # no 1D variable loaded -- leave blank - parent.colors['colorbar'][c] = ([0, istat.max()/2, istat.max()]) + parent.colors["colorbar"][c] = ([0, istat.max() / 2, istat.max()]) istat = istat / istat.max() - col = istat_transform(istat, parent.ops_plot['colormap']) - col[parent.isort==-1] = 0 - parent.colors['cols'][c] = col - parent.colors['istat'][c] = istat.flatten() + col = istat_transform(istat, parent.ops_plot["colormap"]) + col[parent.isort == -1] = 0 + parent.colors["cols"][c] = col + parent.colors["istat"][c] = istat.flatten() rgb_masks(parent, col, c) + def beh_masks(parent): c = 8 n = np.array(parent.imerge) - nb = int(np.floor(parent.beh_resampled.size/parent.bin)) - sn = np.reshape(parent.beh_resampled[:nb*parent.bin], (nb,parent.bin)).mean(axis=1) + nb = int(np.floor(parent.beh_resampled.size / parent.bin)) + sn = np.reshape(parent.beh_resampled[:nb * parent.bin], + (nb, parent.bin)).mean(axis=1) sn -= sn.mean() snstd = (sn**2).mean()**0.5 cc = np.dot(parent.Fbin, sn.T) / parent.Fbin.shape[-1] / (parent.Fstd * snstd) cc[n] = cc.mean() istat = cc - inactive=False + inactive = False istat_min = istat.min() istat_max = istat.max() istat = istat - istat.min() istat = istat / istat.max() - col = istat_transform(istat, parent.ops_plot['colormap']) - parent.colors['cols'][c] = col - parent.colors['istat'][c] = istat.flatten() - parent.colors['colorbar'][c] = [istat_min, - (istat_max-istat_min)/2 + istat_min, - istat_max] + col = istat_transform(istat, parent.ops_plot["colormap"]) + parent.colors["cols"][c] = col + parent.colors["istat"][c] = istat.flatten() + parent.colors["colorbar"][c] = [ + istat_min, (istat_max - istat_min) / 2 + istat_min, istat_max + ] rgb_masks(parent, col, c) + def corr_masks(parent): c = 7 n = np.array(parent.imerge) @@ -420,21 +436,22 @@ def corr_masks(parent): cc = np.dot(parent.Fbin, sn.T) / parent.Fbin.shape[-1] / (parent.Fstd * snstd) cc[n] = cc.mean() istat = cc - parent.colors['colorbar'][c] = [istat.min(), - (istat.max()-istat.min())/2 + istat.min(), - istat.max()] + parent.colors["colorbar"][c] = [ + istat.min(), (istat.max() - istat.min()) / 2 + istat.min(), + istat.max() + ] istat = istat - istat.min() istat = istat / istat.max() - col = istat_transform(istat, parent.ops_plot['colormap']) - parent.colors['cols'][c] = col - parent.colors['istat'][c] = istat.flatten() + col = istat_transform(istat, parent.ops_plot["colormap"]) + parent.colors["cols"][c] = col + parent.colors["istat"][c] = istat.flatten() rgb_masks(parent, col, c) def flip_for_class(parent, iscell): ncells = iscell.size - if (iscell==parent.iscell).sum() < 100: + if (iscell == parent.iscell).sum() < 100: for n in range(ncells): if iscell[n] != parent.iscell[n]: parent.iscell[n] = iscell[n] @@ -444,79 +461,96 @@ def flip_for_class(parent, iscell): parent.iscell = iscell init_masks(parent) + def plot_colorbar(parent): - bid = parent.ops_plot['color'] - if bid==0: - parent.colorbar.setImage(np.zeros((20,100,3))) + bid = parent.ops_plot["color"] + if bid == 0: + parent.colorbar.setImage(np.zeros((20, 100, 3))) else: parent.colorbar.setImage(parent.colormat) for k in range(3): - parent.clabel[k].setText('%1.2f'%parent.colors['colorbar'][bid][k]) + parent.clabel[k].setText("%1.2f" % parent.colors["colorbar"][bid][k]) + def plot_masks(parent, M): #M = parent.RGB[:,:,np.newaxis], parent.Alpha[] parent.color1.setImage(M[0], levels=(0., 255.)) parent.color2.setImage(M[1], levels=(0., 255.)) - + # parent.p1.addItem(txt) parent.color1.show() parent.color2.show() + def remove_roi(parent, n, i0): """ removes roi n from view i0 """ - ypix = parent.stat[n]['ypix'] - xpix = parent.stat[n]['xpix'] + ypix = parent.stat[n]["ypix"] + xpix = parent.stat[n]["xpix"] # cell indices - ipix = np.array((parent.rois['iROI'][i0,0,:,:]==n).nonzero()).astype(np.int32) - ipix1 = np.array((parent.rois['iROI'][i0,1,:,:]==n).nonzero()).astype(np.int32) - ipix2 = np.array((parent.rois['iROI'][i0,2,:,:]==n).nonzero()).astype(np.int32) + ipix = np.array((parent.rois["iROI"][i0, 0, :, :] == n).nonzero()).astype(np.int32) + ipix1 = np.array((parent.rois["iROI"][i0, 1, :, :] == n).nonzero()).astype(np.int32) + ipix2 = np.array((parent.rois["iROI"][i0, 2, :, :] == n).nonzero()).astype(np.int32) # get rid of cell and push up overlaps on main views - parent.rois['Lam'][i0,0,ipix[0,:],ipix[1,:]] = parent.rois['Lam'][i0,1,ipix[0,:],ipix[1,:]] - parent.rois['Lam'][i0,1,ipix[0,:],ipix[1,:]] = 0 - parent.rois['Lam'][i0,1,ipix1[0,:],ipix1[1,:]] = parent.rois['Lam'][i0,2,ipix1[0,:],ipix1[1,:]] - parent.rois['Lam'][i0,2,ipix1[0,:],ipix1[1,:]] = 0 - parent.rois['Lam'][i0,2,ipix2[0,:],ipix2[1,:]] = 0 - parent.rois['iROI'][i0,0,ipix[0,:],ipix[1,:]] = parent.rois['iROI'][i0,1,ipix[0,:],ipix[1,:]] - parent.rois['iROI'][i0,1,ipix[0,:],ipix[1,:]] = -1 - parent.rois['iROI'][i0,1,ipix1[0,:],ipix1[1,:]] = parent.rois['iROI'][i0,2,ipix1[0,:],ipix1[1,:]] - parent.rois['iROI'][i0,2,ipix1[0,:],ipix1[1,:]] = -1 - parent.rois['iROI'][i0,2,ipix2[0,:],ipix2[1,:]] = -1 + parent.rois["Lam"][i0, 0, ipix[0, :], + ipix[1, :]] = parent.rois["Lam"][i0, 1, ipix[0, :], ipix[1, :]] + parent.rois["Lam"][i0, 1, ipix[0, :], ipix[1, :]] = 0 + parent.rois["Lam"][i0, 1, ipix1[0, :], + ipix1[1, :]] = parent.rois["Lam"][i0, 2, ipix1[0, :], + ipix1[1, :]] + parent.rois["Lam"][i0, 2, ipix1[0, :], ipix1[1, :]] = 0 + parent.rois["Lam"][i0, 2, ipix2[0, :], ipix2[1, :]] = 0 + parent.rois["iROI"][i0, 0, ipix[0, :], + ipix[1, :]] = parent.rois["iROI"][i0, 1, ipix[0, :], ipix[1, :]] + parent.rois["iROI"][i0, 1, ipix[0, :], ipix[1, :]] = -1 + parent.rois["iROI"][i0, 1, ipix1[0, :], + ipix1[1, :]] = parent.rois["iROI"][i0, 2, ipix1[0, :], + ipix1[1, :]] + parent.rois["iROI"][i0, 2, ipix1[0, :], ipix1[1, :]] = -1 + parent.rois["iROI"][i0, 2, ipix2[0, :], ipix2[1, :]] = -1 # remove +/- 1 ROI exists - parent.rois['Sroi'][i0,ypix,xpix] = parent.rois['iROI'][i0,0,ypix,xpix] > 0 + parent.rois["Sroi"][i0, ypix, xpix] = parent.rois["iROI"][i0, 0, ypix, xpix] > 0 + + parent.rois["LamNorm"][i0, ypix, xpix] = np.maximum( + 0, + np.minimum( + 1, 0.75 * parent.rois["Lam"][i0, 0, ypix, xpix] / parent.rois["LamMean"])) - parent.rois['LamNorm'][i0,ypix,xpix] = np.maximum(0, np.minimum(1, - 0.75*parent.rois['Lam'][i0,0,ypix,xpix]/parent.rois['LamMean'])) def add_roi(parent, n, i): """ add roi n to view i """ - ypix = parent.stat[n]['ypix'] - xpix = parent.stat[n]['xpix'] - lam = parent.stat[n]['lam'] - parent.rois['iROI'][i,2,ypix,xpix] = parent.rois['iROI'][i,1,ypix,xpix] - parent.rois['iROI'][i,1,ypix,xpix] = parent.rois['iROI'][i,0,ypix,xpix] - parent.rois['iROI'][i,0,ypix,xpix] = n - parent.rois['Lam'][i,2,ypix,xpix] = parent.rois['Lam'][i,1,ypix,xpix] - parent.rois['Lam'][i,1,ypix,xpix] = parent.rois['Lam'][i,0,ypix,xpix] - parent.rois['Lam'][i,0,ypix,xpix] = lam #/ lam.sum() + ypix = parent.stat[n]["ypix"] + xpix = parent.stat[n]["xpix"] + lam = parent.stat[n]["lam"] + parent.rois["iROI"][i, 2, ypix, xpix] = parent.rois["iROI"][i, 1, ypix, xpix] + parent.rois["iROI"][i, 1, ypix, xpix] = parent.rois["iROI"][i, 0, ypix, xpix] + parent.rois["iROI"][i, 0, ypix, xpix] = n + parent.rois["Lam"][i, 2, ypix, xpix] = parent.rois["Lam"][i, 1, ypix, xpix] + parent.rois["Lam"][i, 1, ypix, xpix] = parent.rois["Lam"][i, 0, ypix, xpix] + parent.rois["Lam"][i, 0, ypix, xpix] = lam #/ lam.sum() # set whether or not an ROI + weighting of pixels - parent.rois['Sroi'][i,ypix,xpix] = 1 - parent.rois['LamNorm'][:,ypix,xpix] = np.maximum(0, np.minimum(1, 0.75*parent.rois['Lam'][:,0,ypix,xpix]/parent.rois['LamMean'])) + parent.rois["Sroi"][i, ypix, xpix] = 1 + parent.rois["LamNorm"][:, ypix, xpix] = np.maximum( + 0, + np.minimum(1, 0.75 * parent.rois["Lam"][:, 0, ypix, xpix] / + parent.rois["LamMean"])) + def redraw_masks(parent, ypix, xpix): """ redraw masks after roi added/removed """ - for c in range(parent.colors['cols'].shape[0]): + for c in range(parent.colors["cols"].shape[0]): for i in range(2): - col = parent.colors['cols'][c] - rgb = col[parent.rois['iROI'][i,0,ypix,xpix],:] - parent.colors['RGB'][i,c,ypix,xpix,:3] = rgb + col = parent.colors["cols"][c] + rgb = col[parent.rois["iROI"][i, 0, ypix, xpix], :] + parent.colors["RGB"][i, c, ypix, xpix, :3] = rgb + def flip_roi(parent): """ @@ -524,54 +558,56 @@ def flip_roi(parent): there are 3 levels of overlap so this may be buggy if more than 3 cells are on top of each other """ - cols = parent.ops_plot['color'] + cols = parent.ops_plot["color"] n = parent.ichosen - i = int(1-parent.iscell[n]) - i0 = 1-i + i = int(1 - parent.iscell[n]) + i0 = 1 - i if parent.checkBoxN.isChecked(): - if i0==0: + if i0 == 0: parent.p1.removeItem(parent.roi_text_labels[n]) parent.p2.addItem(parent.roi_text_labels[n]) else: parent.p2.removeItem(parent.roi_text_labels[n]) parent.p1.addItem(parent.roi_text_labels[n]) - + # remove ROI remove_roi(parent, n, i0) # add cell to other side (on top) and push down overlaps add_roi(parent, n, i) # redraw colors - ypix = parent.stat[n]['ypix'] - xpix = parent.stat[n]['xpix'] + ypix = parent.stat[n]["ypix"] + xpix = parent.stat[n]["xpix"] redraw_masks(parent, ypix, xpix) -def draw_colorbar(colormap='hsv'): - H = np.linspace(0,1,101).astype(np.float32) +def draw_colorbar(colormap="hsv"): + H = np.linspace(0, 1, 101).astype(np.float32) rgb = istat_transform(H, colormap) colormat = np.expand_dims(rgb, axis=0) - colormat = np.tile(colormat,(20,1,1)) + colormat = np.tile(colormat, (20, 1, 1)) return colormat + def istat_hsv(istat): istat = istat / 1.4 - istat = istat + (0.4/1.4) + istat = istat + (0.4 / 1.4) icols = 1 - istat icols = hsv2rgb(icols.flatten()) return icols -def istat_transform(istat, colormap='hsv'): - if colormap=='hsv': + +def istat_transform(istat, colormap="hsv"): + if colormap == "hsv": icols = istat_hsv(istat) else: try: cmap = matplotlib.cm.get_cmap(colormap) icols = istat - icols = cmap(icols)[:,:3] + icols = cmap(icols)[:, :3] icols *= 255 icols = icols.astype(np.uint8) except: - print('bad colormap, using hsv') + print("bad colormap, using hsv") icols = istat_hsv(istat) return icols @@ -579,8 +615,9 @@ def istat_transform(istat, colormap='hsv'): ### Changes colors of ROIs # button group is exclusive (at least one color is always chosen) class ColorButton(QPushButton): + def __init__(self, bid, Text, parent=None): - super(ColorButton,self).__init__(parent) + super(ColorButton, self).__init__(parent) self.setText(Text) self.setCheckable(True) self.setStyleSheet(parent.styleInactive) @@ -588,19 +625,20 @@ def __init__(self, bid, Text, parent=None): self.resize(self.minimumSizeHint()) self.clicked.connect(lambda: self.press(parent, bid)) self.show() + def press(self, parent, bid): for b in range(len(parent.color_names)): if parent.colorbtns.button(b).isEnabled(): parent.colorbtns.button(b).setStyleSheet(parent.styleUnpressed) self.setStyleSheet(parent.stylePressed) - parent.ops_plot['color'] = bid + parent.ops_plot["color"] = bid if not parent.sizebtns.button(1).isChecked(): - if bid==0: - for b in [1,2]: + if bid == 0: + for b in [1, 2]: parent.topbtns.button(b).setEnabled(False) parent.topbtns.button(b).setStyleSheet(parent.styleInactive) else: - for b in [1,2]: + for b in [1, 2]: parent.topbtns.button(b).setEnabled(True) parent.topbtns.button(b).setStyleSheet(parent.styleUnpressed) else: diff --git a/suite2p/gui/menus.py b/suite2p/gui/menus.py index e80c7d19e..29c8fe60b 100644 --- a/suite2p/gui/menus.py +++ b/suite2p/gui/menus.py @@ -1,5 +1,8 @@ -from PyQt5 import QtGui -from PyQt5.QtWidgets import QAction, QMenu +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" +from qtpy import QtGui +from qtpy.QtWidgets import QAction, QMenu from pkg_resources import iter_entry_points from . import reggui, drawroi, merge, io, rungui, visualize, classgui @@ -34,9 +37,7 @@ def mainmenu(parent): parent.addAction(loadFolder) # load a behavioral trace - parent.loadBeh = QAction( - "Load behavior or stim trace (1D only)", parent - ) + parent.loadBeh = QAction("Load behavior or stim trace (1D only)", parent) parent.loadBeh.triggered.connect(lambda: io.load_behavior(parent)) parent.loadBeh.setEnabled(False) parent.addAction(parent.loadBeh) @@ -51,8 +52,7 @@ def mainmenu(parent): # Save NWB file parent.saveNWB = QAction("Save NWB file", parent) parent.saveNWB.triggered.connect( - lambda: save_nwb(get_suite2p_path(parent.basename)) - ) + lambda: save_nwb(get_suite2p_path(parent.basename))) parent.saveNWB.setEnabled(False) parent.addAction(parent.saveNWB) @@ -80,6 +80,7 @@ def mainmenu(parent): file_menu.addAction(exportFig) file_menu.addAction(parent.manual) + def classifier(parent): main_menu = parent.menuBar() # classifier menu @@ -91,7 +92,8 @@ def classifier(parent): parent.loadClass.setEnabled(False) parent.loadMenu.addAction(parent.loadClass) parent.loadUClass = QAction("default classifier", parent) - parent.loadUClass.triggered.connect(lambda: classgui.load_default_classifier(parent)) + parent.loadUClass.triggered.connect( + lambda: classgui.load_default_classifier(parent)) parent.loadUClass.setEnabled(False) parent.loadMenu.addAction(parent.loadUClass) parent.loadSClass = QAction("built-in classifier", parent) @@ -113,6 +115,7 @@ def classifier(parent): class_menu.addAction(parent.resetDefault) class_menu.addAction(parent.saveDefault) + def visualizations(parent): # visualizations menuBar main_menu = parent.menuBar() @@ -127,6 +130,7 @@ def visualizations(parent): parent.custommask.setEnabled(False) vis_menu.addAction(parent.custommask) + def registration(parent): # registration menuBar main_menu = parent.menuBar() @@ -142,6 +146,7 @@ def registration(parent): reg_menu.addAction(parent.reg) reg_menu.addAction(parent.regPC) + def mergebar(parent): # merge menuBar main_menu = parent.menuBar() @@ -155,38 +160,50 @@ def mergebar(parent): merge_menu.addAction(parent.sugMerge) merge_menu.addAction(parent.saveMerge) + def plugins(parent): # plugin menu main_menu = parent.menuBar() parent.plugins = {} - plugin_menu = main_menu.addMenu('&Plugins') - for entry_pt in iter_entry_points(group='suite2p.plugin', name=None): - plugin_obj = entry_pt.load() # load the advertised class from entry_points - parent.plugins[entry_pt.name] = plugin_obj(parent) # initialize an object instance from the loaded class and keep it alive in parent; expose parent to plugin - action = QAction(parent.plugins[entry_pt.name].name, parent) # create plugin menu item with the name property of the loaded class - action.triggered.connect(parent.plugins[entry_pt.name].trigger) # attach class method 'trigger' to plugin menu action + plugin_menu = main_menu.addMenu("&Plugins") + for entry_pt in iter_entry_points(group="suite2p.plugin", name=None): + plugin_obj = entry_pt.load() # load the advertised class from entry_points + parent.plugins[entry_pt.name] = plugin_obj( + parent + ) # initialize an object instance from the loaded class and keep it alive in parent; expose parent to plugin + action = QAction( + parent.plugins[entry_pt.name].name, parent + ) # create plugin menu item with the name property of the loaded class + action.triggered.connect(parent.plugins[entry_pt.name].trigger + ) # attach class method "trigger" to plugin menu action plugin_menu.addAction(action) + def run_suite2p(parent): RW = rungui.RunWindow(parent) RW.show() + def manual_label(parent): MW = drawroi.ROIDraw(parent) MW.show() + def vis_window(parent): parent.VW = visualize.VisWindow(parent) parent.VW.show() + def reg_window(parent): RW = reggui.BinaryPlayer(parent) RW.show() + def regPC_window(parent): RW = reggui.PCViewer(parent) RW.show() + def suggest_merge(parent): MergeWindow = merge.MergeWindow(parent) MergeWindow.show() diff --git a/suite2p/gui/merge.py b/suite2p/gui/merge.py index 11d4e981a..f6eeb191e 100644 --- a/suite2p/gui/merge.py +++ b/suite2p/gui/merge.py @@ -1,8 +1,11 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os import numpy as np import pyqtgraph as pg -from PyQt5 import QtGui -from PyQt5.QtWidgets import QDialog, QLineEdit, QGridLayout, QMessageBox, QLabel, QPushButton, QWidget +from qtpy import QtGui +from qtpy.QtWidgets import QDialog, QLineEdit, QGridLayout, QMessageBox, QLabel, QPushButton, QWidget from scipy import stats from . import masks, io @@ -10,17 +13,20 @@ from ..detection.stats import roi_stats, median_pix from ..extraction.dcnv import oasis + def distance_matrix(parent, ilist): idist = 1e6 * np.ones((len(ilist), len(ilist))) - for ij,j in enumerate(ilist): - for ik,k in enumerate(ilist): - if ij 0: + if len(parent.stat[n]["imerge"]) > 0: remove_merged.append(n) - for k in parent.stat[n]['imerge']: + for k in parent.stat[n]["imerge"]: merged_cells.append(k) else: merged_cells.append(n) @@ -69,11 +76,12 @@ def merge_activity_masks(parent): xpix = np.append(xpix, parent.stat[n]["xpix"]) lam = np.append(lam, parent.stat[n]["lam"]) footprints = np.append(footprints, parent.stat[n]["footprint"]) - F = np.append(F, parent.Fcell[n,:][np.newaxis,:], axis=0) - Fneu = np.append(Fneu, parent.Fneu[n,:][np.newaxis,:], axis=0) + F = np.append(F, parent.Fcell[n, :][np.newaxis, :], axis=0) + Fneu = np.append(Fneu, parent.Fneu[n, :][np.newaxis, :], axis=0) if parent.hasred: - F_chan2 = np.append(F_chan2, parent.F_chan2[n,:][np.newaxis,:], axis=0) - Fneu_chan2 = np.append(Fneu_chan2, parent.Fneu_chan2[n,:][np.newaxis,:], axis=0) + F_chan2 = np.append(F_chan2, parent.F_chan2[n, :][np.newaxis, :], axis=0) + Fneu_chan2 = np.append(Fneu_chan2, parent.Fneu_chan2[n, :][np.newaxis, :], + axis=0) probcell.append(parent.probcell[n]) probredcell.append(parent.probredcell[n]) @@ -83,32 +91,31 @@ def merge_activity_masks(parent): prmean = probredcell.mean() # remove overlaps - ipix = np.concatenate((ypix[:,np.newaxis], xpix[:,np.newaxis]), axis=1) + ipix = np.concatenate((ypix[:, np.newaxis], xpix[:, np.newaxis]), axis=1) _, goodi = np.unique(ipix, return_index=True, axis=0) ypix = ypix[goodi] xpix = xpix[goodi] lam = lam[goodi] - ### compute statistics of merges stat0 = {} - stat0['imerge'] = merged_cells - if 'iplane' in parent.stat[merged_cells[0]]: - stat0['iplane'] = parent.stat[merged_cells[0]]['iplane'] - stat0['ypix'] = ypix - stat0['xpix'] = xpix - stat0['med'] = median_pix(ypix, xpix) - stat0['lam'] = lam / lam.sum() - - if 'aspect' in parent.ops: - d0 = np.array([int(parent.ops['aspect']*10), 10]) + stat0["imerge"] = merged_cells + if "iplane" in parent.stat[merged_cells[0]]: + stat0["iplane"] = parent.stat[merged_cells[0]]["iplane"] + stat0["ypix"] = ypix + stat0["xpix"] = xpix + stat0["med"] = median_pix(ypix, xpix) + stat0["lam"] = lam / lam.sum() + + if "aspect" in parent.ops: + d0 = np.array([int(parent.ops["aspect"] * 10), 10]) else: - d0 = parent.ops['diameter'] + d0 = parent.ops["diameter"] if isinstance(d0, int): d0 = [d0, d0] - + # red prob - stat0['chan2_prob'] = -1 + stat0["chan2_prob"] = -1 # inmerge stat0["inmerge"] = -1 @@ -118,17 +125,13 @@ def merge_activity_masks(parent): if parent.hasred: F_chan2 = F_chan2.mean(axis=0) Fneu_chan2 = Fneu_chan2.mean(axis=0) - dF = F - parent.ops["neucoeff"]*Fneu + dF = F - parent.ops["neucoeff"] * Fneu # activity stats stat0["skew"] = stats.skew(dF) stat0["std"] = dF.std() - spks = oasis( - F=dF[np.newaxis, :], - batch_size=parent.ops['batch_size'], - tau=parent.ops['tau'], - fs=parent.ops['fs'] - ) + spks = oasis(F=dF[np.newaxis, :], batch_size=parent.ops["batch_size"], + tau=parent.ops["tau"], fs=parent.ops["fs"]) ### remove previously merged cell from FOV (do not replace) for k in remove_merged: @@ -147,14 +150,18 @@ def merge_activity_masks(parent): # add cell to structs parent.stat = np.concatenate((parent.stat, np.array([stat0])), axis=0) - parent.stat = roi_stats(parent.stat, parent.Ly, parent.Lx, aspect=parent.ops.get('aspect', None), - diameter=parent.ops.get('diameter', None), do_crop=parent.ops.get('soma_crop', 1)) - parent.stat[-1]['lam'] = parent.stat[-1]['lam'] * merged_cells.size - parent.Fcell = np.concatenate((parent.Fcell, F[np.newaxis,:]), axis=0) - parent.Fneu = np.concatenate((parent.Fneu, Fneu[np.newaxis,:]), axis=0) + parent.stat = roi_stats(parent.stat, parent.Ly, parent.Lx, + aspect=parent.ops.get("aspect", None), + diameter=parent.ops.get("diameter", None), + do_crop=parent.ops.get("soma_crop", 1)) + parent.stat[-1]["lam"] = parent.stat[-1]["lam"] * merged_cells.size + parent.Fcell = np.concatenate((parent.Fcell, F[np.newaxis, :]), axis=0) + parent.Fneu = np.concatenate((parent.Fneu, Fneu[np.newaxis, :]), axis=0) if parent.hasred: - parent.F_chan2 = np.concatenate((parent.F_chan2, F_chan2[np.newaxis,:]), axis=0) - parent.Fneu_chan2 = np.concatenate((parent.Fneu_chan2, Fneu_chan2[np.newaxis,:]), axis=0) + parent.F_chan2 = np.concatenate((parent.F_chan2, F_chan2[np.newaxis, :]), + axis=0) + parent.Fneu_chan2 = np.concatenate( + (parent.Fneu_chan2, Fneu_chan2[np.newaxis, :]), axis=0) parent.Spks = np.concatenate((parent.Spks, spks), axis=0) iscell = np.array([parent.iscell[parent.ichosen]], dtype=bool) parent.iscell = np.concatenate((parent.iscell, iscell), axis=0) @@ -162,34 +169,32 @@ def merge_activity_masks(parent): parent.probredcell = np.append(parent.probredcell, -1) parent.redcell = np.append(parent.redcell, False) parent.notmerged = np.append(parent.notmerged, False) - + ### for GUI drawing ycirc, xcirc = utils.circle(parent.stat[-1]["med"], parent.stat[-1]["radius"]) - goodi = ( - (ycirc >= 0) - & (xcirc >= 0) - & (ycirc < parent.ops["Ly"]) - & (xcirc < parent.ops["Lx"]) - ) + goodi = ((ycirc >= 0) & (xcirc >= 0) & (ycirc < parent.ops["Ly"]) & + (xcirc < parent.ops["Lx"])) parent.stat[-1]["ycirc"] = ycirc[goodi] parent.stat[-1]["xcirc"] = xcirc[goodi] - + # * add colors * masks.make_colors(parent) # recompute binned F parent.mode_change(parent.activityMode) for n in merged_cells: - parent.stat[n]['inmerge'] = len(parent.stat)-1 + parent.stat[n]["inmerge"] = len(parent.stat) - 1 masks.remove_roi(parent, n, i0) - masks.add_roi(parent, len(parent.stat)-1, i0) + masks.add_roi(parent, len(parent.stat) - 1, i0) masks.redraw_masks(parent, ypix, xpix) + class MergeWindow(QDialog): + def __init__(self, parent=None): super(MergeWindow, self).__init__(parent) - self.setGeometry(700,300,700,700) - self.setWindowTitle('Choose merge options') + self.setGeometry(700, 300, 700, 700) + self.setWindowTitle("Choose merge options") self.cwidget = QWidget(self) self.layout = QGridLayout() self.layout.setVerticalSpacing(2) @@ -198,51 +203,57 @@ def __init__(self, parent=None): self.win = pg.GraphicsLayoutWidget() self.layout.addWidget(self.win, 11, 0, 4, 4) self.p0 = self.win.addPlot(row=0, col=0) - self.p0.setMouseEnabled(x=False,y=False) - self.p0.enableAutoRange(x=True,y=True) + self.p0.setMouseEnabled(x=False, y=False) + self.p0.enableAutoRange(x=True, y=True) # initial ops values - mkeys = ['corr_thres', 'dist_thres'] - mlabels = ['correlation threshold', 'euclidean distance threshold'] - self.ops = {'corr_thres': 0.8, 'dist_thres': 100.0} - self.layout.addWidget(QLabel('Press enter in a text box to update params'), 0, 0, 1,2) - self.layout.addWidget(QLabel('(Correlations use "activity mode" and "bin" from main GUI)'), 1, 0, 1,2) - self.layout.addWidget(QLabel('>>>>>>>>>>>> Parameters <<<<<<<<<<<'), 2, 0, 1,2) - self.doMerge = QPushButton('merge selected ROIs', default=False, autoDefault=False) + mkeys = ["corr_thres", "dist_thres"] + mlabels = ["correlation threshold", "euclidean distance threshold"] + self.ops = {"corr_thres": 0.8, "dist_thres": 100.0} + self.layout.addWidget(QLabel("Press enter in a text box to update params"), 0, + 0, 1, 2) + self.layout.addWidget( + QLabel("(Correlations use 'activity mode' and 'bin' from main GUI)"), 1, 0, + 1, 2) + self.layout.addWidget(QLabel(">>>>>>>>>>>> Parameters <<<<<<<<<<<"), 2, 0, 1, 2) + self.doMerge = QPushButton("merge selected ROIs", default=False, + autoDefault=False) self.doMerge.clicked.connect(lambda: self.do_merge(parent)) self.doMerge.setEnabled(False) - self.layout.addWidget(self.doMerge, 9,0,1,1) + self.layout.addWidget(self.doMerge, 9, 0, 1, 1) - self.suggestMerge = QPushButton('next merge suggestion', default=False, autoDefault=False) + self.suggestMerge = QPushButton("next merge suggestion", default=False, + autoDefault=False) self.suggestMerge.clicked.connect(lambda: self.suggest_merge(parent)) self.suggestMerge.setEnabled(False) - self.layout.addWidget(self.suggestMerge, 10,0,1,1) + self.layout.addWidget(self.suggestMerge, 10, 0, 1, 1) - self.nMerge = QLabel('= X possible merges found with these parameters') - self.layout.addWidget(self.nMerge, 7,0,1,2) + self.nMerge = QLabel("= X possible merges found with these parameters") + self.layout.addWidget(self.nMerge, 7, 0, 1, 2) - self.iMerge = QLabel('suggested ROIs to merge: ') - self.layout.addWidget(self.iMerge, 8,0,1,2) + self.iMerge = QLabel("suggested ROIs to merge: ") + self.layout.addWidget(self.iMerge, 8, 0, 1, 2) self.editlist = [] self.keylist = [] - k=1 - for lkey,llabel in zip(mkeys, mlabels): + k = 1 + for lkey, llabel in zip(mkeys, mlabels): qlabel = QLabel(llabel) - qlabel.setFont(QtGui.QFont("Times",weight=QtGui.QFont.Bold)) - self.layout.addWidget(qlabel, k*2+1,0,1,2) - qedit = LineEdit(lkey,self) + qlabel.setFont(QtGui.QFont("Times", weight=QtGui.QFont.Bold)) + self.layout.addWidget(qlabel, k * 2 + 1, 0, 1, 2) + qedit = LineEdit(lkey, self) qedit.set_text(self.ops) qedit.setFixedWidth(90) qedit.returnPressed.connect(lambda: self.compute_merge_list(parent)) - self.layout.addWidget(qedit, k*2+2,0,1,2) + self.layout.addWidget(qedit, k * 2 + 2, 0, 1, 2) self.editlist.append(qedit) self.keylist.append(lkey) - k+=1 + k += 1 - print('creating merge window... this may take some time') - self.CC = np.matmul(parent.Fbin[parent.iscell], parent.Fbin[parent.iscell].T) / parent.Fbin.shape[-1] - self.CC /= np.matmul(parent.Fstd[parent.iscell][:,np.newaxis], - parent.Fstd[parent.iscell][np.newaxis,:]) + 1e-3 + print("creating merge window... this may take some time") + self.CC = np.matmul(parent.Fbin[parent.iscell], + parent.Fbin[parent.iscell].T) / parent.Fbin.shape[-1] + self.CC /= np.matmul(parent.Fstd[parent.iscell][:, np.newaxis], + parent.Fstd[parent.iscell][np.newaxis, :]) + 1e-3 self.CC -= np.diag(np.diag(self.CC)) self.compute_merge_list(parent) @@ -251,44 +262,47 @@ def do_merge(self, parent): merge_activity_masks(parent) parent.merged.append(parent.imerge) parent.update_plot() - - self.cc_row = np.matmul(parent.Fbin[parent.iscell], parent.Fbin[-1].T) / parent.Fbin.shape[-1] + + self.cc_row = np.matmul(parent.Fbin[parent.iscell], + parent.Fbin[-1].T) / parent.Fbin.shape[-1] self.cc_row /= parent.Fstd[parent.iscell] * parent.Fstd[-1] + 1e-3 self.cc_row[-1] = 0 self.CC = np.concatenate((self.CC, self.cc_row[np.newaxis, :-1]), axis=0) - self.CC = np.concatenate((self.CC, self.cc_row[:,np.newaxis]), axis=1) + self.CC = np.concatenate((self.CC, self.cc_row[:, np.newaxis]), axis=1) for n in parent.imerge: self.CC[parent.imerge] = 0 - self.CC[:,parent.imerge] = 0 + self.CC[:, parent.imerge] = 0 - parent.ichosen = parent.stat.size-1 + parent.ichosen = parent.stat.size - 1 parent.imerge = [parent.ichosen] - print('ROIs merged: %s'%parent.stat[parent.ichosen]['imerge']) + print("ROIs merged: %s" % parent.stat[parent.ichosen]["imerge"]) self.compute_merge_list(parent) def compute_merge_list(self, parent): - print('computing automated merge suggestions...') - for k,key in enumerate(self.keylist): + print("computing automated merge suggestions...") + for k, key in enumerate(self.keylist): self.ops[key] = self.editlist[k].get_text() goodind = [] NN = len(parent.stat[parent.iscell]) - notused = np.ones(NN, np.bool) # not in a suggested merge + notused = np.ones(NN, "bool") # not in a suggested merge icell = np.where(parent.iscell)[0] for k in range(NN): if notused[k]: - ilist = [i for i, x in enumerate(self.CC[k]) if x >= self.ops['corr_thres']] + ilist = [ + i for i, x in enumerate(self.CC[k]) if x >= self.ops["corr_thres"] + ] ilist.append(k) if len(ilist) > 1: - for n,i in enumerate(ilist): + for n, i in enumerate(ilist): if notused[i]: ilist[n] = icell[i] - if parent.stat[ilist[n]]['inmerge'] > 0: - ilist[n] = parent.stat[ilist[n]]['inmerge'] + if parent.stat[ilist[n]]["inmerge"] > 0: + ilist[n] = parent.stat[ilist[n]]["inmerge"] ilist = np.unique(np.array(ilist)) if ilist.size > 1: - idist = distance_matrix(parent,ilist) + idist = distance_matrix(parent, ilist) idist = idist.min(axis=1) - ilist = ilist[idist <= self.ops['dist_thres']] + ilist = ilist[idist <= self.ops["dist_thres"]] if ilist.size > 1: for i in ilist: notused[parent.iscell[:i].sum()] = False @@ -296,50 +310,55 @@ def compute_merge_list(self, parent): self.set_merge_list(parent, goodind) def set_merge_list(self, parent, goodind): - self.nMerge.setText('= %d possible merges found with these parameters'%len(goodind)) + self.nMerge.setText("= %d possible merges found with these parameters" % + len(goodind)) self.merge_list = goodind self.n = 0 if len(self.merge_list) > 0: self.suggestMerge.setEnabled(True) - self.unmerged = np.ones(len(self.merge_list), np.bool) + self.unmerged = np.ones(len(self.merge_list), bool) self.suggest_merge(parent) def suggest_merge(self, parent): parent.ichosen = self.merge_list[self.n][0] - parent.imerge = list(self.merge_list[self.n]) + parent.imerge = list(self.merge_list[self.n]) if self.unmerged[self.n]: - self.iMerge.setText('suggested ROIs to merge: %s'%parent.imerge) + self.iMerge.setText("suggested ROIs to merge: %s" % parent.imerge) self.doMerge.setEnabled(True) self.p0.clear() cell0 = parent.imerge[0] - sstring = '' + sstring = "" for i in parent.imerge[1:]: - rgb = parent.colors['cols'][0,i] + rgb = parent.colors["cols"][0, i] pen = pg.mkPen(rgb, width=3) - scatter=pg.ScatterPlotItem(parent.Fbin[cell0], parent.Fbin[i], pen=pen) + scatter = pg.ScatterPlotItem(parent.Fbin[cell0], parent.Fbin[i], + pen=pen) self.p0.addItem(scatter) - sstring += ' %d '%i - self.p0.setLabel('left', sstring) - self.p0.setLabel('bottom', str(cell0)) + sstring += " %d " % i + self.p0.setLabel("left", sstring) + self.p0.setLabel("bottom", str(cell0)) else: # set to the merged ROI index - parent.ichosen = parent.stat[parent.ichosen]['inmerge'] + parent.ichosen = parent.stat[parent.ichosen]["inmerge"] parent.imerge = [parent.ichosen] - self.iMerge.setText('ROIs merged: %s'%list(parent.stat[parent.ichosen]['imerge'])) + self.iMerge.setText("ROIs merged: %s" % + list(parent.stat[parent.ichosen]["imerge"])) self.doMerge.setEnabled(False) self.p0.clear() - self.n+=1 - if self.n > len(self.merge_list)-1: + self.n += 1 + if self.n > len(self.merge_list) - 1: self.n = 0 parent.checkBoxz.setChecked(True) parent.update_plot() parent.win.show() parent.show() + class LineEdit(QLineEdit): - def __init__(self,key,parent=None): - super(LineEdit,self).__init__(parent) + + def __init__(self, key, parent=None): + super(LineEdit, self).__init__(parent) self.key = key #self.textEdited.connect(lambda: self.edit_changed(parent.ops, k)) @@ -348,7 +367,7 @@ def get_text(self): okey = float(self.text()) return okey - def set_text(self,ops): + def set_text(self, ops): key = self.key dstr = str(ops[key]) self.setText(dstr) @@ -359,4 +378,4 @@ def apply(parent): iscell = parent.probcell > classval masks.flip_for_class(parent, iscell) parent.update_plot() - io.save_iscell(parent) \ No newline at end of file + io.save_iscell(parent) diff --git a/suite2p/gui/reggui.py b/suite2p/gui/reggui.py index a95f699e0..86b20c294 100644 --- a/suite2p/gui/reggui.py +++ b/suite2p/gui/reggui.py @@ -1,15 +1,19 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" # heavily modified script from a pyqt4 release import os import time import numpy as np import pyqtgraph as pg -from PyQt5 import QtGui, QtCore -from PyQt5.QtWidgets import QStyle -from PyQt5.QtWidgets import QMainWindow, QGridLayout, QCheckBox, QLabel, QLineEdit, QSlider, QFileDialog, QPushButton, QToolButton, QButtonGroup, QWidget +from qtpy import QtGui, QtCore +from qtpy.QtWidgets import QStyle +from qtpy.QtWidgets import QMainWindow, QGridLayout, QCheckBox, QLabel, QLineEdit, QSlider, QFileDialog, QPushButton, QToolButton, QButtonGroup, QWidget from scipy.ndimage import gaussian_filter1d from natsort import natsorted from tifffile import imread +import json from . import masks, views, graphics, traces, classgui, utils from .. import registration @@ -17,23 +21,24 @@ class BinaryPlayer(QMainWindow): + def __init__(self, parent=None): super(BinaryPlayer, self).__init__(parent) - pg.setConfigOptions(imageAxisOrder='row-major') - self.setGeometry(70,70,1070,1070) - self.setWindowTitle('View registered binary') + pg.setConfigOptions(imageAxisOrder="row-major") + self.setGeometry(70, 70, 1070, 1070) + self.setWindowTitle("View registered binary") self.cwidget = QWidget(self) self.setCentralWidget(self.cwidget) self.l0 = QGridLayout() #layout = QtGui.QFormLayout() self.cwidget.setLayout(self.l0) - #self.p0 = pg.ViewBox(lockAspect=False,name='plot1',border=[100,100,100],invertY=True) + #self.p0 = pg.ViewBox(lockAspect=False,name="plot1",border=[100,100,100],invertY=True) self.win = pg.GraphicsLayoutWidget() # --- cells image self.win = pg.GraphicsLayoutWidget() - self.win.move(600,0) - self.win.resize(1000,500) - self.l0.addWidget(self.win,1,2,13,14) + self.win.move(600, 0) + self.win.resize(1000, 500) + self.l0.addWidget(self.win, 1, 2, 13, 14) layout = self.win.ci.layout self.loaded = False self.zloaded = False @@ -82,39 +87,38 @@ def __init__(self, parent=None): self.zbox.toggled.connect(self.add_zstack) self.l0.addWidget(self.zbox, 0, 8, 1, 1) - zlabel = QLabel('Z-plane:') + zlabel = QLabel("Z-plane:") zlabel.setStyleSheet("color: white;") self.l0.addWidget(zlabel, 0, 9, 1, 1) self.Zedit = QLineEdit(self) self.Zedit.setValidator(QtGui.QIntValidator(0, 0)) - self.Zedit.setText('0') + self.Zedit.setText("0") self.Zedit.setFixedWidth(30) self.Zedit.setAlignment(QtCore.Qt.AlignRight) self.l0.addWidget(self.Zedit, 0, 10, 1, 1) - - self.p1 = self.win.addPlot(name='plot_shift',row=1,col=0,colspan=2) - self.p1.setMouseEnabled(x=True,y=False) + self.p1 = self.win.addPlot(name="plot_shift", row=1, col=0, colspan=2) + self.p1.setMouseEnabled(x=True, y=False) self.p1.setMenuEnabled(False) self.scatter1 = pg.ScatterPlotItem() - self.scatter1.setData([0,0],[0,0]) + self.scatter1.setData([0, 0], [0, 0]) self.p1.addItem(self.scatter1) - self.p2 = self.win.addPlot(name='plot_F',row=2,col=0,colspan=2) - self.p2.setMouseEnabled(x=True,y=False) + self.p2 = self.win.addPlot(name="plot_F", row=2, col=0, colspan=2) + self.p2.setMouseEnabled(x=True, y=False) self.p2.setMenuEnabled(False) self.scatter2 = pg.ScatterPlotItem() - self.p2.setXLink('plot_shift') + self.p2.setXLink("plot_shift") - self.p3 = self.win.addPlot(name='plot_Z',row=3,col=0,colspan=2) - self.p3.setMouseEnabled(x=True,y=False) + self.p3 = self.win.addPlot(name="plot_Z", row=3, col=0, colspan=2) + self.p3.setMouseEnabled(x=True, y=False) self.p3.setMenuEnabled(False) self.scatter3 = pg.ScatterPlotItem() - self.p3.setXLink('plot_shift') + self.p3.setXLink("plot_shift") #self.p2.autoRange(padding=0.01) - self.win.ci.layout.setRowStretchFactor(0,12) + self.win.ci.layout.setRowStretchFactor(0, 12) self.movieLabel = QLabel("No ops chosen") self.movieLabel.setStyleSheet("color: white;") self.movieLabel.setAlignment(QtCore.Qt.AlignCenter) @@ -122,17 +126,17 @@ def __init__(self, parent=None): self.cframe = 0 self.createButtons(parent) # create ROI chooser - self.l0.addWidget(QLabel(''),6,0,1,2) + self.l0.addWidget(QLabel(""), 6, 0, 1, 2) qlabel = QLabel(self) qlabel.setText("Selected ROI:") - self.l0.addWidget(qlabel,7,0,1,2) + self.l0.addWidget(qlabel, 7, 0, 1, 2) self.ROIedit = QLineEdit(self) - self.ROIedit.setValidator(QtGui.QIntValidator(0,10000)) - self.ROIedit.setText('0') + self.ROIedit.setValidator(QtGui.QIntValidator(0, 10000)) + self.ROIedit.setText("0") self.ROIedit.setFixedWidth(45) self.ROIedit.setAlignment(QtCore.Qt.AlignRight) self.ROIedit.returnPressed.connect(self.number_chosen) - self.l0.addWidget(self.ROIedit, 8,0,1,1) + self.l0.addWidget(self.ROIedit, 8, 0, 1, 1) # create frame slider self.frameLabel = QLabel("Current frame:") self.frameLabel.setStyleSheet("color: white;") @@ -143,22 +147,22 @@ def __init__(self, parent=None): self.frameSlider.setTickInterval(5) self.frameSlider.setTracking(False) self.frameDelta = 10 - self.l0.addWidget(QLabel(''),12,0,1,1) - self.l0.setRowStretch(12,1) - self.l0.addWidget(self.frameLabel, 13,0,1,2) - self.l0.addWidget(self.frameNumber, 14,0,1,2) - self.l0.addWidget(self.frameSlider, 13,2,14,13) - self.l0.addWidget(QLabel(''),14,1,1,1) - ll = QLabel('(when paused, left/right arrow keys can move slider)') + self.l0.addWidget(QLabel(""), 12, 0, 1, 1) + self.l0.setRowStretch(12, 1) + self.l0.addWidget(self.frameLabel, 13, 0, 1, 2) + self.l0.addWidget(self.frameNumber, 14, 0, 1, 2) + self.l0.addWidget(self.frameSlider, 13, 2, 14, 13) + self.l0.addWidget(QLabel(""), 14, 1, 1, 1) + ll = QLabel("(when paused, left/right arrow keys can move slider)") ll.setStyleSheet("color: white;") - self.l0.addWidget(ll,16,0,1,3) + self.l0.addWidget(ll, 16, 0, 1, 3) #speedLabel = QLabel("Speed:") #self.speedSpinBox = QtGui.QSpinBox() #self.speedSpinBox.setRange(1, 9999) #self.speedSpinBox.setValue(100) #self.speedSpinBox.setSuffix("%") self.frameSlider.valueChanged.connect(self.go_to_frame) - self.l0.addWidget(self.movieLabel,0,0,1,5) + self.l0.addWidget(self.movieLabel, 0, 0, 1, 5) self.updateFrameSlider() self.updateButtons() self.updateTimer = QtCore.QTimer() @@ -174,9 +178,9 @@ def __init__(self, parent=None): self.wraw_wred = False self.win.scene().sigMouseClicked.connect(self.plot_clicked) # if not a combined recording, automatically open binary - if hasattr(parent, 'ops'): - if parent.ops['save_path'][-8:]!='combined': - filename = os.path.abspath(os.path.join(parent.basename, 'ops.npy')) + if hasattr(parent, "ops"): + if parent.ops["save_path"][-8:] != "combined": + filename = os.path.abspath(os.path.join(parent.basename, "ops.npy")) print(filename) self.Fcell = parent.Fcell self.stat = parent.stat @@ -202,12 +206,12 @@ def add_red(self): self.next_frame() def zoom_image(self): - self.vmain.setRange(yRange=(0,self.LY),xRange=(0,self.LX)) + self.vmain.setRange(yRange=(0, self.LY), xRange=(0, self.LX)) if self.raw_on or self.z_on: if self.z_on: - self.vside.setRange(yRange=(0,self.zLy),xRange=(0,self.zLx)) + self.vside.setRange(yRange=(0, self.zLy), xRange=(0, self.zLx)) else: - self.vside.setRange(yRange=(0,self.LY),xRange=(0,self.LX)) + self.vside.setRange(yRange=(0, self.LY), xRange=(0, self.LX)) self.vside.setXLink("plot1") self.vside.setYLink("plot1") @@ -237,10 +241,10 @@ def add_zstack(self): def next_frame(self): # loop after video finishes - self.cframe+=1 + self.cframe += 1 if self.cframe > self.nframes - 1: self.cframe = 0 - if self.LY>0: + if self.LY > 0: for n in range(len(self.reg_file)): self.reg_file[n].seek(0, 0) else: @@ -254,23 +258,30 @@ def next_frame(self): self.img = np.zeros((self.LY, self.LX), dtype=np.int16) for n in range(len(self.reg_loc)): buff = self.reg_file[n].read(self.nbytesread[n]) - img = np.reshape(np.frombuffer(buff, dtype=np.int16, offset=0),(self.Ly[n],self.Lx[n])) - self.img[self.dy[n]:self.dy[n]+self.Ly[n], self.dx[n]:self.dx[n]+self.Lx[n]] = img - + img = np.reshape(np.frombuffer(buff, dtype=np.int16, offset=0), + (self.Ly[n], self.Lx[n])) + self.img[self.dy[n]:self.dy[n] + self.Ly[n], + self.dx[n]:self.dx[n] + self.Lx[n]] = img + if self.wred and self.red_on: buff = self.reg_file_chan2.read(self.nbytesread[0]) - imgred = np.reshape(np.frombuffer(buff, dtype=np.int16, offset=0),(self.Ly[0],self.Lx[0]))[:,:,np.newaxis] - self.img = np.concatenate((self.img[:,:,np.newaxis], imgred, np.zeros_like(imgred)), axis=-1) + imgred = np.reshape(np.frombuffer(buff, dtype=np.int16, offset=0), + (self.Ly[0], self.Lx[0]))[:, :, np.newaxis] + self.img = np.concatenate( + (self.img[:, :, np.newaxis], imgred, np.zeros_like(imgred)), axis=-1) if self.wraw and self.raw_on: buff = self.reg_file_raw.read(self.nbytesread[0]) - self.imgraw = np.reshape(np.frombuffer(buff, dtype=np.int16, offset=0),(self.Ly[0],self.Lx[0])) + self.imgraw = np.reshape(np.frombuffer(buff, dtype=np.int16, offset=0), + (self.Ly[0], self.Lx[0])) if self.wraw_wred: buff = self.reg_file_raw_chan2.read(self.nbytesread[0]) - imgred_raw = np.reshape(np.frombuffer(buff, dtype=np.int16, offset=0),(self.Ly[0],self.Lx[0]))[:,:,np.newaxis] - self.imgraw = np.concatenate((self.imgraw[:,:,np.newaxis], imgred_raw, np.zeros_like(imgred_raw)), axis=-1) + imgred_raw = np.reshape(np.frombuffer(buff, dtype=np.int16, offset=0), + (self.Ly[0], self.Lx[0]))[:, :, np.newaxis] + self.imgraw = np.concatenate((self.imgraw[:, :, np.newaxis], imgred_raw, + np.zeros_like(imgred_raw)), axis=-1) self.iside.setImage(self.imgraw, levels=self.srange) if self.zloaded and self.z_on: - if hasattr(self, 'zmax'): + if hasattr(self, "zmax"): self.Zedit.setText(str(self.zmax[self.cframe])) self.iside.setImage(self.zstack[int(self.Zedit.text())], levels=self.zrange) #if self.maskbox.isChecked(): @@ -282,79 +293,77 @@ def next_frame(self): self.imain.setImage(self.img, levels=self.srange) self.frameSlider.setValue(self.cframe) self.frameNumber.setText(str(self.cframe)) - self.scatter1.setData([self.cframe,self.cframe], - [self.yoff[self.cframe],self.xoff[self.cframe]], - size=10,brush=pg.mkBrush(255,0,0)) + self.scatter1.setData([self.cframe, self.cframe], + [self.yoff[self.cframe], self.xoff[self.cframe]], size=10, + brush=pg.mkBrush(255, 0, 0)) if self.Floaded: - self.scatter2.setData([self.cframe,self.cframe], - [self.ft[self.cframe],self.ft[self.cframe]],size=10, - brush=pg.mkBrush(255,0,0)) + self.scatter2.setData([self.cframe, self.cframe], + [self.ft[self.cframe], self.ft[self.cframe]], size=10, + brush=pg.mkBrush(255, 0, 0)) if self.zloaded and self.z_on: - self.scatter3.setData([self.cframe,self.cframe], - [self.zmax[self.cframe],self.zmax[self.cframe]], - size=10,brush=pg.mkBrush(255,0,0)) + self.scatter3.setData([self.cframe, self.cframe], + [self.zmax[self.cframe], self.zmax[self.cframe]], + size=10, brush=pg.mkBrush(255, 0, 0)) + def make_masks(self): ncells = len(self.stat) np.random.seed(seed=0) allcols = np.random.random((ncells,)) - if hasattr(self, 'redcell'): + if hasattr(self, "redcell"): allcols = allcols / 1.4 allcols = allcols + 0.1 allcols[self.redcell] = 0 self.colors = masks.hsv2rgb(allcols) - self.RGB = -1*np.ones((self.LY, self.LX, 3), np.int32) - self.cellpix = -1*np.ones((self.LY, self.LX), np.int32) + self.RGB = -1 * np.ones((self.LY, self.LX, 3), np.int32) + self.cellpix = -1 * np.ones((self.LY, self.LX), np.int32) self.sroi = np.zeros((self.LY, self.LX), np.uint8) - + for n in np.nonzero(self.iscell)[0]: - ypix = self.stat[n]['ypix'].flatten() - xpix = self.stat[n]['xpix'].flatten() - if not self.ops[0]['allow_overlap']: - ypix = ypix[~self.stat[n]['overlap']] - xpix = xpix[~self.stat[n]['overlap']] + ypix = self.stat[n]["ypix"].flatten() + xpix = self.stat[n]["xpix"].flatten() + if not self.ops[0]["allow_overlap"]: + ypix = ypix[~self.stat[n]["overlap"]] + xpix = xpix[~self.stat[n]["overlap"]] yext, xext = utils.boundary(ypix, xpix) - if len(yext)>0: - goodi = (yext>=0) & (xext>=0) & (yext 0: + goodi = (yext >= 0) & (xext >= 0) & (yext < self.LY) & (xext < self.LX) + self.stat[n]["yext"] = yext[goodi] + 0.5 + self.stat[n]["xext"] = xext[goodi] + 0.5 self.sroi[yext[goodi], xext[goodi]] = 200 #self.sroi[ypix, xpix] = 100 #self.RGB[ypix, xpix] = self.colors[n] self.RGB[yext[goodi], xext[goodi]] = self.colors[n] else: - self.stat[n]['yext'] = yext - self.stat[n]['xext'] = xext + self.stat[n]["yext"] = yext + self.stat[n]["xext"] = xext self.cellpix[ypix, xpix] = n - self.mask_bool = self.sroi > 0 - self.allmasks = np.concatenate((self.RGB, - self.sroi[:,:,np.newaxis]), axis=-1) + self.mask_bool = self.sroi > 0 + self.allmasks = np.concatenate((self.RGB, self.sroi[:, :, np.newaxis]), axis=-1) self.maskmain.setImage(self.allmasks, levels=[0, 255]) self.maskside.setImage(self.allmasks, levels=[0, 255]) def plot_trace(self): self.p2.clear() - self.ft = self.Fcell[self.ichosen,:] + self.ft = self.Fcell[self.ichosen, :] self.p2.plot(self.ft, pen=self.colors[self.ichosen]) self.p2.addItem(self.scatter2) - self.scatter2.setData([self.cframe],[self.ft[self.cframe]],size=10, - brush=pg.mkBrush(255,0,0)) + self.scatter2.setData([self.cframe], [self.ft[self.cframe]], size=10, + brush=pg.mkBrush(255, 0, 0)) self.p2.setLimits(yMin=self.ft.min(), yMax=self.ft.max()) - self.p2.setRange(xRange=(0,self.nframes), - yRange=(self.ft.min(),self.ft.max()), - padding=0.0) - self.p2.setLimits(xMin=0,xMax=self.nframes) + self.p2.setRange(xRange=(0, self.nframes), + yRange=(self.ft.min(), self.ft.max()), padding=0.0) + self.p2.setLimits(xMin=0, xMax=self.nframes) def open(self): - filename = QFileDialog.getOpenFileName(self, - "Open single-plane ops.npy file",filter="ops*.npy") + filename = QFileDialog.getOpenFileName(self, "Open single-plane ops.npy file or single-plane ops.json file") # load ops in same folder if filename: print(filename[0]) self.openFile(filename[0], False) def open_combined(self): - filename = QFileDialog.getExistingDirectory(self, - "Load binaries for all planes (choose folder with planeX folders)") + filename = QFileDialog.getExistingDirectory( + self, "Load binaries for all planes (choose folder with planeX folders)") # load ops in same folder if filename: print(filename) @@ -362,8 +371,15 @@ def open_combined(self): def openCombined(self, save_folder): try: - plane_folders = natsorted([ f.path for f in os.scandir(save_folder) if f.is_dir() and f.name[:5]=='plane']) - ops1 = [np.load(os.path.join(f, 'ops.npy'), allow_pickle=True).item() for f in plane_folders] + plane_folders = natsorted([ + f.path + for f in os.scandir(save_folder) + if f.is_dir() and f.name[:5] == "plane" + ]) + ops1 = [ + np.load(os.path.join(f, "ops.npy"), allow_pickle=True).item() + for f in plane_folders + ] self.LY = 0 self.LX = 0 self.reg_loc = [] @@ -377,34 +393,36 @@ def openCombined(self, save_folder): self.wraw_wred = False # check that all binaries still exist dy, dx = compute_dydx(ops1) - for ipl,ops in enumerate(ops1): - #if os.path.isfile(ops['reg_file']): - if os.path.isfile(ops['reg_file']): - reg_file = ops['reg_file'] + for ipl, ops in enumerate(ops1): + #if os.path.isfile(ops["reg_file"]): + if os.path.isfile(ops["reg_file"]): + reg_file = ops["reg_file"] else: - reg_file = os.path.abspath(os.path.join(os.path.dirname(filename),'plane%d'%ipl, 'data.bin')) + reg_file = os.path.abspath( + os.path.join(os.path.dirname(filename), "plane%d" % ipl, + "data.bin")) print(reg_file, os.path.isfile(reg_file)) self.reg_loc.append(reg_file) - self.reg_file.append(open(self.reg_loc[-1], 'rb')) - self.Ly.append(ops['Ly']) - self.Lx.append(ops['Lx']) + self.reg_file.append(open(self.reg_loc[-1], "rb")) + self.Ly.append(ops["Ly"]) + self.Lx.append(ops["Lx"]) self.dy.append(dy[ipl]) self.dx.append(dx[ipl]) - self.LY = np.maximum(self.LY, self.Ly[-1]+self.dy[-1]) - self.LX = np.maximum(self.LX, self.Lx[-1]+self.dx[-1]) + self.LY = np.maximum(self.LY, self.Ly[-1] + self.dy[-1]) + self.LX = np.maximum(self.LX, self.Lx[-1] + self.dx[-1]) good = True self.Floaded = False - + except Exception as e: - print('ERROR: %s'%e) + print("ERROR: %s" % e) print("(could be incorrect folder or missing binaries)") good = False try: for n in range(len(self.reg_loc)): self.reg_file[n].close() - print('closed binaries') + print("closed binaries") except: - print('tried to close binaries') + print("tried to close binaries") if good: self.filename = save_folder self.ops = ops1 @@ -412,61 +430,88 @@ def openCombined(self, save_folder): def openFile(self, filename, fromgui): try: - ops = np.load(filename, allow_pickle=True).item() - self.LY = ops['Ly'] - self.LX = ops['Lx'] - self.Ly = [ops['Ly']] - self.Lx = [ops['Lx']] + ext = os.path.splitext(filename)[1] + if ext == ".npy": + ops = np.load(filename, allow_pickle=True).item() + dirname = os.path.dirname(filename) + elif ext == ".json": + with open(filename, "r") as f: + ops = json.load(f) + ops["Ly"] = ops["Lys"] if isinstance(ops["Lys"], int) else ops["Lys"][0] + ops["Lx"] = ops["Lxs"] if isinstance(ops["Lxs"], int) else ops["Lxs"][0] + dirname = os.path.join(os.path.dirname(filename), "suite2p/plane0/") + ops["reg_file"] = os.path.join(dirname, "data.bin") + nbytesread = np.int64(2 * ops["Ly"] * ops["Lx"]) + ops["nframes"] = os.path.getsize(ops["reg_file"]) // nbytesread + self.LY = ops["Ly"] + self.LX = ops["Lx"] + self.Ly = [ops["Ly"]] + self.Lx = [ops["Lx"]] self.dx = [0] self.dy = [0] - - if os.path.isfile(ops['reg_file']): - self.reg_loc = [ops['reg_file']] + + if os.path.isfile(ops["reg_file"]): + self.reg_loc = [ops["reg_file"]] else: - self.reg_loc = [os.path.abspath(os.path.join(os.path.dirname(filename),'data.bin'))] - self.reg_file = [open(self.reg_loc[-1],'rb')] + self.reg_loc = [ + os.path.abspath(os.path.join(dirname, "data.bin")) + ] + self.reg_file = [open(self.reg_loc[-1], "rb")] self.wraw = False self.wred = False self.wraw_wred = False - if 'reg_file_raw' in ops or 'raw_file' in ops: - if self.reg_loc == ops['reg_file']: - if 'reg_file_raw' in ops: - self.reg_loc_raw = ops['reg_file_raw'] + if "reg_file_raw" in ops or "raw_file" in ops: + if self.reg_loc == ops["reg_file"]: + if "reg_file_raw" in ops: + self.reg_loc_raw = ops["reg_file_raw"] else: - self.reg_loc_raw = ops['raw_file'] + self.reg_loc_raw = ops["raw_file"] else: - self.reg_loc_raw = os.path.abspath(os.path.join(os.path.dirname(filename),'data_raw.bin')) + self.reg_loc_raw = os.path.abspath( + os.path.join(os.path.dirname(filename), "data_raw.bin")) try: - self.reg_file_raw = open(self.reg_loc_raw,'rb') - self.wraw=True + self.reg_file_raw = open(self.reg_loc_raw, "rb") + self.wraw = True except: self.wraw = False - if 'reg_file_chan2' in ops: - if self.reg_loc == ops['reg_file']: - self.reg_loc_red = ops['reg_file_chan2'] + if "reg_file_chan2" in ops: + if self.reg_loc == ops["reg_file"]: + self.reg_loc_red = ops["reg_file_chan2"] else: - self.reg_loc_red = os.path.abspath(os.path.join(os.path.dirname(filename),'data_chan2.bin')) - self.reg_file_chan2 = open(self.reg_loc_red,'rb') - self.wred=True - if 'reg_file_raw_chan2' in ops or 'raw_file_chan2' in ops: - if self.reg_loc == ops['reg_file']: - if 'reg_file_raw_chan2' in ops: - self.reg_loc_raw_chan2 = ops['reg_file_raw_chan2'] + self.reg_loc_red = os.path.abspath( + os.path.join(os.path.dirname(filename), "data_chan2.bin")) + self.reg_file_chan2 = open(self.reg_loc_red, "rb") + self.wred = True + if "reg_file_raw_chan2" in ops or "raw_file_chan2" in ops: + if self.reg_loc == ops["reg_file"]: + if "reg_file_raw_chan2" in ops: + self.reg_loc_raw_chan2 = ops["reg_file_raw_chan2"] else: - self.reg_loc_raw_chan2 = ops['raw_file_chan2'] + self.reg_loc_raw_chan2 = ops["raw_file_chan2"] else: - self.reg_loc_raw_chan2 = os.path.abspath(os.path.join(os.path.dirname(filename),'data_raw_chan2.bin')) + self.reg_loc_raw_chan2 = os.path.abspath( + os.path.join(os.path.dirname(filename), "data_raw_chan2.bin")) try: - self.reg_file_raw_chan2 = open(self.reg_loc_raw_chan2,'rb') - self.wraw_wred=True + self.reg_file_raw_chan2 = open(self.reg_loc_raw_chan2, "rb") + self.wraw_wred = True except: self.wraw_wred = False if not fromgui: - if os.path.isfile(os.path.abspath(os.path.join(os.path.dirname(filename),'F.npy'))): - self.Fcell = np.load(os.path.abspath(os.path.join(os.path.dirname(filename),'F.npy'))) - self.stat = np.load(os.path.abspath(os.path.join(os.path.dirname(filename),'stat.npy')), allow_pickle=True) - self.iscell = np.load(os.path.abspath(os.path.join(os.path.dirname(filename),'iscell.npy')), allow_pickle=True) + if os.path.isfile( + os.path.abspath(os.path.join(os.path.dirname(filename), + "F.npy"))): + self.Fcell = np.load( + os.path.abspath(os.path.join(os.path.dirname(filename), + "F.npy"))) + self.stat = np.load( + os.path.abspath( + os.path.join(os.path.dirname(filename), "stat.npy")), + allow_pickle=True) + self.iscell = np.load( + os.path.abspath( + os.path.join(os.path.dirname(filename), "iscell.npy")), + allow_pickle=True) self.Floaded = True else: self.Floaded = False @@ -481,9 +526,9 @@ def openFile(self, filename, fromgui): try: for n in range(len(self.reg_loc)): self.reg_file[n].close() - print('closed binaries') + print("closed binaries") except: - print('tried to close binaries') + print("tried to close binaries") good = False if good: self.filename = filename @@ -494,11 +539,12 @@ def setup_views(self): self.p1.clear() self.p2.clear() self.ichosen = 0 - self.ROIedit.setText('0') + self.ROIedit.setText("0") # get scaling from 100 random frames ops = self.ops[-1] - frames = subsample_frames(ops, np.minimum(ops['nframes']-1,100), self.reg_loc[-1]) - self.srange = frames.mean() + frames.std()*np.array([-2,5]) + frames = subsample_frames(ops, np.minimum(ops["nframes"] - 1, 100), + self.reg_loc[-1]) + self.srange = frames.mean() + frames.std() * np.array([-2, 5]) self.movieLabel.setText(self.reg_loc[-1]) self.nbytesread = [] @@ -506,42 +552,43 @@ def setup_views(self): self.nbytesread.append(2 * self.Ly[n] * self.Lx[n]) #aspect ratio - if 'aspect' in ops: - self.xyrat = ops['aspect'] - elif 'diameter' in ops and (type(ops["diameter"]) is not int) and (len(ops["diameter"]) > 1): + if "aspect" in ops: + self.xyrat = ops["aspect"] + elif "diameter" in ops and (type(ops["diameter"]) is not int) and (len( + ops["diameter"]) > 1): self.xyrat = ops["diameter"][0] / ops["diameter"][1] else: self.xyrat = 1.0 self.vmain.setAspectLocked(lock=True, ratio=self.xyrat) self.vside.setAspectLocked(lock=True, ratio=self.xyrat) - self.nframes = ops['nframes'] - self.time_step = 1. / ops['fs'] * 1000 / 5 # 5x real-time - self.frameDelta = int(np.maximum(5,self.nframes/200)) + self.nframes = ops["nframes"] + self.time_step = 1. / ops["fs"] * 1000 / 5 # 5x real-time + self.frameDelta = int(np.maximum(5, self.nframes / 200)) self.frameSlider.setSingleStep(self.frameDelta) self.currentMovieDirectory = QtCore.QFileInfo(self.filename).path() if self.nframes > 0: self.updateFrameSlider() self.updateButtons() # plot ops X-Y offsets - if 'yoff' in ops: - self.yoff = ops['yoff'] - self.xoff = ops['xoff'] + if "yoff" in ops: + self.yoff = ops["yoff"] + self.xoff = ops["xoff"] else: - self.yoff = np.zeros((ops['nframes'],)) - self.xoff = np.zeros((ops['nframes'],)) - self.p1.plot(self.yoff, pen='g') - self.p1.plot(self.xoff, pen='y') - self.p1.setRange(xRange=(0,self.nframes), - yRange=(np.minimum(self.yoff.min(),self.xoff.min()), - np.maximum(self.yoff.max(),self.xoff.max())), - padding=0.0) - self.p1.setLimits(xMin=0,xMax=self.nframes) + self.yoff = np.zeros((ops["nframes"],)) + self.xoff = np.zeros((ops["nframes"],)) + self.p1.plot(self.yoff, pen="g") + self.p1.plot(self.xoff, pen="y") + self.p1.setRange( + xRange=(0, self.nframes), + yRange=(np.minimum(self.yoff.min(), self.xoff.min()), + np.maximum(self.yoff.max(), self.xoff.max())), padding=0.0) + self.p1.setLimits(xMin=0, xMax=self.nframes) self.scatter1 = pg.ScatterPlotItem() self.p1.addItem(self.scatter1) - self.scatter1.setData([self.cframe,self.cframe], - [self.yoff[self.cframe],self.xoff[self.cframe]], - size=10,brush=pg.mkBrush(255,0,0)) + self.scatter1.setData([self.cframe, self.cframe], + [self.yoff[self.cframe], self.xoff[self.cframe]], size=10, + brush=pg.mkBrush(255, 0, 0)) if self.wraw: self.rawbox.setEnabled(True) @@ -564,14 +611,16 @@ def setup_views(self): def keyPressEvent(self, event): bid = -1 if self.playButton.isEnabled(): - if event.modifiers() != QtCore.Qt.ShiftModifier: + if event.modifiers() != QtCore.Qt.ShiftModifier: if event.key() == QtCore.Qt.Key_Left: self.cframe -= self.frameDelta - self.cframe = np.maximum(0, np.minimum(self.nframes-1, self.cframe)) + self.cframe = np.maximum(0, np.minimum(self.nframes - 1, + self.cframe)) self.frameSlider.setValue(self.cframe) elif event.key() == QtCore.Qt.Key_Right: self.cframe += self.frameDelta - self.cframe = np.maximum(0, np.minimum(self.nframes-1, self.cframe)) + self.cframe = np.maximum(0, np.minimum(self.nframes - 1, + self.cframe)) self.frameSlider.setValue(self.cframe) if event.modifiers() != QtCore.Qt.ShiftModifier: if event.key() == QtCore.Qt.Key_Space: @@ -590,44 +639,42 @@ def cell_chosen(self): self.cell_mask() self.ROIedit.setText(str(self.ichosen)) rgb = np.array(self.colors[self.ichosen]) - self.cellscatter.setData(self.xext, self.yext, - pen=pg.mkPen(list(rgb)), - brush=pg.mkBrush(list(rgb)), size=3) - self.cellscatter_side.setData(self.xext, self.yext, - pen=pg.mkPen(list(rgb)), + self.cellscatter.setData(self.xext, self.yext, pen=pg.mkPen(list(rgb)), brush=pg.mkBrush(list(rgb)), size=3) + self.cellscatter_side.setData(self.xext, self.yext, pen=pg.mkPen(list(rgb)), + brush=pg.mkBrush(list(rgb)), size=3) if self.ichosen >= len(self.stat): self.ichosen = len(self.stat) - 1 self.cell_mask() - self.ft = self.Fcell[self.ichosen,:] + self.ft = self.Fcell[self.ichosen, :] self.plot_trace() - self.p2.setXLink('plot_shift') + self.p2.setXLink("plot_shift") self.jump_to_frame() self.show() - def plot_clicked(self,event): + def plot_clicked(self, event): items = self.win.scene().items(event.scenePos()) - posx = 0 - posy = 0 + posx = 0 + posy = 0 iplot = 0 zoom = False zoomImg = False choose = False if self.loaded: for x in items: - if x==self.p1: + if x == self.p1: vb = self.p1.vb pos = vb.mapSceneToView(event.scenePos()) posx = pos.x() iplot = 1 - elif x==self.p2 and self.Floaded: + elif x == self.p2 and self.Floaded: vb = self.p1.vb pos = vb.mapSceneToView(event.scenePos()) posx = pos.x() iplot = 2 - elif x==self.vmain or x==self.vside: - if event.button()==1: + elif x == self.vmain or x == self.vside: + if event.button() == 1: if event.double(): self.zoom_image() else: @@ -635,57 +682,59 @@ def plot_clicked(self,event): pos = x.mapSceneToView(event.scenePos()) posy = int(pos.x()) posx = int(pos.y()) - if posy>=0 and posy=0 and posx -1: - self.ichosen = self.cellpix[posx,posy] + if posy >= 0 and posy < self.LX and posx >= 0 and posx < self.LY: + if self.cellpix[posx, posy] > -1: + self.ichosen = self.cellpix[posx, posy] self.cell_chosen() - if iplot==1 or iplot==2: - if event.button()==1: + if iplot == 1 or iplot == 2: + if event.button() == 1: if event.double(): - zoom=True + zoom = True else: - choose=True + choose = True if zoom: - self.p1.setRange(xRange=(0,self.nframes)) - self.p2.setRange(xRange=(0,self.nframes)) - self.p3.setRange(xRange=(0,self.nframes)) + self.p1.setRange(xRange=(0, self.nframes)) + self.p2.setRange(xRange=(0, self.nframes)) + self.p3.setRange(xRange=(0, self.nframes)) if choose: if self.playButton.isEnabled(): - self.cframe = np.maximum(0, np.minimum(self.nframes-1, int(np.round(posx)))) + self.cframe = np.maximum( + 0, np.minimum(self.nframes - 1, int(np.round(posx)))) self.frameSlider.setValue(self.cframe) #self.jump_to_frame() def load_zstack(self): - name = QFileDialog.getOpenFileName( - self, "Open zstack", filter="*.tif" - ) + name = QFileDialog.getOpenFileName(self, "Open zstack", filter="*.tif") self.fname = name[0] try: self.zstack = imread(self.fname) self.zLy, self.zLx = self.zstack.shape[1:] self.Zedit.setValidator(QtGui.QIntValidator(0, self.zstack.shape[0])) - self.zrange = [np.percentile(self.zstack,1), np.percentile(self.zstack,99)] + self.zrange = [ + np.percentile(self.zstack, 1), + np.percentile(self.zstack, 99) + ] self.computeZ.setEnabled(True) self.zloaded = True self.zbox.setEnabled(True) self.zbox.setChecked(True) - self.zmax = np.zeros(self.nframes, 'int') - if 'zcorr' in self.ops[0]: - if self.zstack.shape[0]==self.ops[0]['zcorr'].shape[0]: - zcorr = self.ops[0]['zcorr'] - self.zmax = np.argmax(gaussian_filter1d(zcorr.T.copy(), 2, axis=1), axis=1) + self.zmax = np.zeros(self.nframes, "int") + if "zcorr" in self.ops[0]: + if self.zstack.shape[0] == self.ops[0]["zcorr"].shape[0]: + zcorr = self.ops[0]["zcorr"] + self.zmax = np.argmax(gaussian_filter1d(zcorr.T.copy(), 2, axis=1), + axis=1) self.plot_zcorr() - - except Exception as e: - print('ERROR: %s'%e) + except Exception as e: + print("ERROR: %s" % e) def cell_mask(self): #self.cmask = np.zeros((self.Ly,self.Lx,3),np.float32) - self.yext = self.stat[self.ichosen]['yext'] - self.xext = self.stat[self.ichosen]['xext'] + self.yext = self.stat[self.ichosen]["yext"] + self.xext = self.stat[self.ichosen]["xext"] #self.cmask[self.yext,self.xext,2] = (self.srange[1]-self.srange[0])/2 * np.ones((self.yext.size,),np.float32) def go_to_frame(self): @@ -696,7 +745,7 @@ def fitToWindow(self): self.movieLabel.setScaledContents(self.fitCheckBox.isChecked()) def updateFrameSlider(self): - self.frameSlider.setMaximum(self.nframes-1) + self.frameSlider.setMaximum(self.nframes - 1) self.frameSlider.setMinimum(0) self.frameLabel.setEnabled(True) self.frameSlider.setEnabled(True) @@ -708,18 +757,18 @@ def updateButtons(self): def createButtons(self, parent): iconSize = QtCore.QSize(30, 30) - openButton = QPushButton('load ops.npy') + openButton = QPushButton("load ops.npy") openButton.setToolTip("Open single-plane ops.npy") openButton.clicked.connect(self.open) - openButton2 = QPushButton('load folder') + openButton2 = QPushButton("load folder") openButton2.setToolTip("Choose a folder with planeX folders to load together") openButton2.clicked.connect(self.open_combined) - loadZ = QPushButton('load z-stack tiff') + loadZ = QPushButton("load z-stack tiff") loadZ.clicked.connect(self.load_zstack) - self.computeZ = QPushButton('compute z position') + self.computeZ = QPushButton("compute z position") self.computeZ.setEnabled(False) self.computeZ.clicked.connect(lambda: self.compute_z(parent)) @@ -738,8 +787,8 @@ def createButtons(self, parent): self.pauseButton.clicked.connect(self.pause) btns = QButtonGroup(self) - btns.addButton(self.playButton,0) - btns.addButton(self.pauseButton,1) + btns.addButton(self.playButton, 0) + btns.addButton(self.pauseButton, 1) btns.setExclusive(True) quitButton = QToolButton() @@ -748,12 +797,12 @@ def createButtons(self, parent): quitButton.setToolTip("Quit") quitButton.clicked.connect(self.close) - self.l0.addWidget(openButton,1,0,1,2) - self.l0.addWidget(openButton2,2,0,1,2) - self.l0.addWidget(loadZ,3,0,1,2) - self.l0.addWidget(self.computeZ,4,0,1,2) - self.l0.addWidget(self.playButton,15,0,1,1) - self.l0.addWidget(self.pauseButton,15,1,1,1) + self.l0.addWidget(openButton, 1, 0, 1, 2) + self.l0.addWidget(openButton2, 2, 0, 1, 2) + self.l0.addWidget(loadZ, 3, 0, 1, 2) + self.l0.addWidget(self.computeZ, 4, 0, 1, 2) + self.l0.addWidget(self.playButton, 15, 0, 1, 1) + self.l0.addWidget(self.pauseButton, 15, 1, 1, 1) #self.l0.addWidget(quitButton,0,1,1,1) self.playButton.setEnabled(False) self.pauseButton.setEnabled(False) @@ -761,7 +810,7 @@ def createButtons(self, parent): def jump_to_frame(self): if self.playButton.isEnabled(): - self.cframe = np.maximum(0, np.minimum(self.nframes-1, self.cframe)) + self.cframe = np.maximum(0, np.minimum(self.nframes - 1, self.cframe)) self.cframe = int(self.cframe) # seek to absolute position for n in range(len(self.reg_file)): @@ -777,19 +826,18 @@ def jump_to_frame(self): def start(self): if self.cframe < self.nframes - 1: - print('playing') + print("playing") self.playButton.setEnabled(False) self.pauseButton.setEnabled(True) self.frameSlider.setEnabled(False) self.updateTimer.start(self.time_step) - def pause(self): self.updateTimer.stop() self.playButton.setEnabled(True) self.pauseButton.setEnabled(False) self.frameSlider.setEnabled(True) - print('paused') + print("paused") def compute_z(self, parent): ops, zcorr = registration.compute_zpos(self.zstack, self.ops[0]) @@ -800,121 +848,123 @@ def compute_z(self, parent): def plot_zcorr(self): self.p3.clear() - self.p3.plot(self.zmax, pen='r') + self.p3.plot(self.zmax, pen="r") self.p3.addItem(self.scatter3) - self.p3.setRange(xRange=(0,self.nframes), - yRange=(self.zmax.min(), - self.zmax.max()+3), - padding=0.0) - self.p3.setLimits(xMin=0,xMax=self.nframes) - self.p3.setXLink('plot_shift') + self.p3.setRange(xRange=(0, self.nframes), + yRange=(self.zmax.min(), self.zmax.max() + 3), padding=0.0) + self.p3.setLimits(xMin=0, xMax=self.nframes) + self.p3.setXLink("plot_shift") + def subsample_frames(ops, nsamps, reg_loc): - nFrames = ops['nframes'] - Ly = ops['Ly'] - Lx = ops['Lx'] - frames = np.zeros((nsamps, Ly, Lx), dtype='int16') + nFrames = ops["nframes"] + Ly = ops["Ly"] + Lx = ops["Lx"] + frames = np.zeros((nsamps, Ly, Lx), dtype="int16") nbytesread = 2 * Ly * Lx - istart = np.linspace(0, nFrames, 1+nsamps).astype('int64') - reg_file = open(reg_loc, 'rb') - for j in range(0,nsamps): + istart = np.linspace(0, nFrames, 1 + nsamps).astype("int64") + reg_file = open(reg_loc, "rb") + for j in range(0, nsamps): reg_file.seek(nbytesread * istart[j], 0) buff = reg_file.read(nbytesread) data = np.frombuffer(buff, dtype=np.int16, offset=0) buff = [] - frames[j,:,:] = np.reshape(data, (Ly, Lx)) + frames[j, :, :] = np.reshape(data, (Ly, Lx)) reg_file.close() return frames + class PCViewer(QMainWindow): + def __init__(self, parent=None): super(PCViewer, self).__init__(parent) - pg.setConfigOptions(imageAxisOrder='row-major') - self.setGeometry(70,70,1300,800) - self.setWindowTitle('Metrics for registration') + pg.setConfigOptions(imageAxisOrder="row-major") + self.setGeometry(70, 70, 1300, 800) + self.setWindowTitle("Metrics for registration") self.cwidget = QWidget(self) self.setCentralWidget(self.cwidget) self.l0 = QGridLayout() #layout = QtGui.QFormLayout() self.cwidget.setLayout(self.l0) - #self.p0 = pg.ViewBox(lockAspect=False,name='plot1',border=[100,100,100],invertY=True) + #self.p0 = pg.ViewBox(lockAspect=False,name="plot1",border=[100,100,100],invertY=True) self.win = pg.GraphicsLayoutWidget() # --- cells image self.win = pg.GraphicsLayoutWidget() - self.l0.addWidget(self.win,0,2,13,14) + self.l0.addWidget(self.win, 0, 2, 13, 14) layout = self.win.ci.layout # A plot area (ViewBox + axes) for displaying the image - self.p3 = self.win.addPlot(row=0,col=0) - self.p3.setMouseEnabled(x=False,y=False) + self.p3 = self.win.addPlot(row=0, col=0) + self.p3.setMouseEnabled(x=False, y=False) self.p3.setMenuEnabled(False) - self.p0 = self.win.addViewBox(name='plot1',lockAspect=True,row=1,col=0,invertY=True) - self.p1 = self.win.addViewBox(lockAspect=True,row=1,col=1,invertY=True) + self.p0 = self.win.addViewBox(name="plot1", lockAspect=True, row=1, col=0, + invertY=True) + self.p1 = self.win.addViewBox(lockAspect=True, row=1, col=1, invertY=True) self.p1.setMenuEnabled(False) - self.p1.setXLink('plot1') - self.p1.setYLink('plot1') - self.p2 = self.win.addViewBox(lockAspect=True,row=1,col=2,invertY=True) + self.p1.setXLink("plot1") + self.p1.setYLink("plot1") + self.p2 = self.win.addViewBox(lockAspect=True, row=1, col=2, invertY=True) self.p2.setMenuEnabled(False) - self.p2.setXLink('plot1') - self.p2.setYLink('plot1') - self.img0=pg.ImageItem() - self.img1=pg.ImageItem() - self.img2=pg.ImageItem() + self.p2.setXLink("plot1") + self.p2.setYLink("plot1") + self.img0 = pg.ImageItem() + self.img1 = pg.ImageItem() + self.img2 = pg.ImageItem() self.p0.addItem(self.img0) self.p1.addItem(self.img1) self.p2.addItem(self.img2) self.win.scene().sigMouseClicked.connect(self.plot_clicked) - self.p4 = self.win.addPlot(row=0,col=1,colspan=2) + self.p4 = self.win.addPlot(row=0, col=1, colspan=2) self.p4.setMouseEnabled(x=False) self.p4.setMenuEnabled(False) self.PCedit = QLineEdit(self) - self.PCedit.setText('1') + self.PCedit.setText("1") self.PCedit.setFixedWidth(40) self.PCedit.setAlignment(QtCore.Qt.AlignRight) self.PCedit.returnPressed.connect(self.plot_frame) self.PCedit.textEdited.connect(self.pause) - qlabel = QLabel('PC: ') + qlabel = QLabel("PC: ") boldfont = QtGui.QFont("Arial", 14, QtGui.QFont.Bold) bigfont = QtGui.QFont("Arial", 14) qlabel.setFont(boldfont) self.PCedit.setFont(bigfont) - qlabel.setStyleSheet('color: white;') + qlabel.setStyleSheet("color: white;") #qlabel.setAlignment(QtCore.Qt.AlignRight) - self.l0.addWidget(QLabel(''),1,0,1,1) - self.l0.addWidget(qlabel,2,0,1,1) - self.l0.addWidget(self.PCedit,2,1,1,1) + self.l0.addWidget(QLabel(""), 1, 0, 1, 1) + self.l0.addWidget(qlabel, 2, 0, 1, 1) + self.l0.addWidget(self.PCedit, 2, 1, 1, 1) self.nums = [] - self.titles=[] + self.titles = [] for j in range(3): - num1 = QLabel('') - num1.setStyleSheet('color: white;') - self.l0.addWidget(num1,3+j,0,1,2) + num1 = QLabel("") + num1.setStyleSheet("color: white;") + self.l0.addWidget(num1, 3 + j, 0, 1, 2) self.nums.append(num1) - t1 = QLabel('') - t1.setStyleSheet('color: white;') - self.l0.addWidget(t1,12,4+j*4,1,2) + t1 = QLabel("") + t1.setStyleSheet("color: white;") + self.l0.addWidget(t1, 12, 4 + j * 4, 1, 2) self.titles.append(t1) self.loaded = False self.wraw = False self.wred = False self.wraw_wred = False - self.l0.addWidget(QLabel(''),7,0,1,1) - self.l0.setRowStretch(7,1) + self.l0.addWidget(QLabel(""), 7, 0, 1, 1) + self.l0.setRowStretch(7, 1) self.cframe = 0 self.createButtons() self.nPCs = 50 - self.PCedit.setValidator(QtGui.QIntValidator(1,self.nPCs)) + self.PCedit.setValidator(QtGui.QIntValidator(1, self.nPCs)) # play button self.updateTimer = QtCore.QTimer() self.updateTimer.timeout.connect(self.next_frame) #self.win.scene().sigMouseClicked.connect(self.plot_clicked) # if not a combined recording, automatically open binary - if hasattr(parent, 'ops'): - if parent.ops['save_path'][-8:]!='combined': - filename = os.path.abspath(os.path.join(parent.basename, 'ops.npy')) + if hasattr(parent, "ops"): + if parent.ops["save_path"][-8:] != "combined": + filename = os.path.abspath(os.path.join(parent.basename, "ops.npy")) print(filename) self.openFile(filename) @@ -941,13 +991,13 @@ def createButtons(self): self.pauseButton.clicked.connect(self.pause) btns = QButtonGroup(self) - btns.addButton(self.playButton,0) - btns.addButton(self.pauseButton,1) + btns.addButton(self.playButton, 0) + btns.addButton(self.pauseButton, 1) btns.setExclusive(True) - self.l0.addWidget(openButton,0,0,1,1) - self.l0.addWidget(self.playButton,14,12,1,1) - self.l0.addWidget(self.pauseButton,14,13,1,1) + self.l0.addWidget(openButton, 0, 0, 1, 1) + self.l0.addWidget(self.playButton, 14, 12, 1, 1) + self.l0.addWidget(self.pauseButton, 14, 13, 1, 1) #self.l0.addWidget(quitButton,0,1,1,1) self.playButton.setEnabled(False) self.pauseButton.setEnabled(False) @@ -966,8 +1016,8 @@ def pause(self): self.pauseButton.setEnabled(False) def open(self): - filename = QFileDialog.getOpenFileName(self, - "Open single-plane ops.npy file",filter="ops*.npy") + filename = QFileDialog.getOpenFileName(self, "Open single-plane ops.npy file", + filter="ops*.npy") # load ops in same folder if filename: print(filename[0]) @@ -976,133 +1026,131 @@ def open(self): def openFile(self, filename): try: ops = np.load(filename, allow_pickle=True).item() - self.PC = ops['regPC'] - self.PC = np.clip(self.PC, np.percentile(self.PC, 1), - np.percentile(self.PC, 99)) - + self.PC = ops["regPC"] + self.PC = np.clip(self.PC, np.percentile(self.PC, 1), + np.percentile(self.PC, 99)) + self.Ly, self.Lx = self.PC.shape[2:] - self.DX = ops['regDX'] - if 'tPC' in ops: - self.tPC = ops['tPC'] + self.DX = ops["regDX"] + if "tPC" in ops: + self.tPC = ops["tPC"] else: - self.tPC = np.zeros((1,self.PC.shape[1])) + self.tPC = np.zeros((1, self.PC.shape[1])) good = True except Exception as e: print("ERROR: ops.npy incorrect / missing ops['regPC'] and ops['regDX']") print(e) good = False if good: - self.loaded=True + self.loaded = True self.nPCs = self.PC.shape[1] - self.PCedit.setValidator(QtGui.QIntValidator(1,self.nPCs)) + self.PCedit.setValidator(QtGui.QIntValidator(1, self.nPCs)) self.plot_frame() self.playButton.setEnabled(True) def next_frame(self): iPC = int(self.PCedit.text()) - 1 - pc1 = self.PC[1,iPC,:,:] - pc0 = self.PC[0,iPC,:,:] - if self.cframe==0: - self.img2.setImage(np.tile(pc0[:,:,np.newaxis],(1,1,3))) - self.titles[2].setText('top') + pc1 = self.PC[1, iPC, :, :] + pc0 = self.PC[0, iPC, :, :] + if self.cframe == 0: + self.img2.setImage(np.tile(pc0[:, :, np.newaxis], (1, 1, 3))) + self.titles[2].setText("top") else: - self.img2.setImage(np.tile(pc1[:,:,np.newaxis],(1,1,3))) - self.titles[2].setText('bottom') + self.img2.setImage(np.tile(pc1[:, :, np.newaxis], (1, 1, 3))) + self.titles[2].setText("bottom") - self.img2.setLevels([pc0.min(),pc0.max()]) - self.cframe = 1-self.cframe + self.img2.setLevels([pc0.min(), pc0.max()]) + self.cframe = 1 - self.cframe def plot_frame(self): if self.loaded: - self.titles[0].setText('difference') - self.titles[1].setText('merged') - self.titles[2].setText('top') + self.titles[0].setText("difference") + self.titles[1].setText("merged") + self.titles[2].setText("top") iPC = int(self.PCedit.text()) - 1 - pc1 = self.PC[1,iPC,:,:] - pc0 = self.PC[0,iPC,:,:] - diff = pc1[:,:,np.newaxis]-pc0[:,:,np.newaxis] - diff /= np.abs(diff).max()*2 + pc1 = self.PC[1, iPC, :, :] + pc0 = self.PC[0, iPC, :, :] + diff = pc1[:, :, np.newaxis] - pc0[:, :, np.newaxis] + diff /= np.abs(diff).max() * 2 diff += 0.5 - self.img0.setImage(np.tile(diff*255,(1,1,3))) - self.img0.setLevels([0,255]) - rgb = np.zeros((self.PC.shape[2], self.PC.shape[3],3), np.float32) - rgb[:,:,0] = (pc1-pc1.min())/(pc1.max()-pc1.min())*255 - rgb[:,:,1] = np.minimum(1, np.maximum(0,(pc0-pc1.min())/(pc1.max()-pc1.min())))*255 - rgb[:,:,2] = (pc1-pc1.min())/(pc1.max()-pc1.min())*255 + self.img0.setImage(np.tile(diff * 255, (1, 1, 3))) + self.img0.setLevels([0, 255]) + rgb = np.zeros((self.PC.shape[2], self.PC.shape[3], 3), np.float32) + rgb[:, :, 0] = (pc1 - pc1.min()) / (pc1.max() - pc1.min()) * 255 + rgb[:, :, 1] = np.minimum( + 1, np.maximum(0, (pc0 - pc1.min()) / (pc1.max() - pc1.min()))) * 255 + rgb[:, :, 2] = (pc1 - pc1.min()) / (pc1.max() - pc1.min()) * 255 self.img1.setImage(rgb) - if self.cframe==0: - self.img2.setImage(np.tile(pc0[:,:,np.newaxis],(1,1,3))) + if self.cframe == 0: + self.img2.setImage(np.tile(pc0[:, :, np.newaxis], (1, 1, 3))) else: - self.img2.setImage(np.tile(pc1[:,:,np.newaxis],(1,1,3))) - self.img2.setLevels([pc0.min(),pc0.max()]) + self.img2.setImage(np.tile(pc1[:, :, np.newaxis], (1, 1, 3))) + self.img2.setLevels([pc0.min(), pc0.max()]) self.zoom_plot() self.p3.clear() - p = [(200,200,255),(255,100,100),(100,50,200)] - ptitle = ['rigid','nonrigid','nonrigid max'] - if not hasattr(self,'leg'): - self.leg = pg.LegendItem((100,60),offset=(350,30)) + p = [(200, 200, 255), (255, 100, 100), (100, 50, 200)] + ptitle = ["rigid", "nonrigid", "nonrigid max"] + if not hasattr(self, "leg"): + self.leg = pg.LegendItem((100, 60), offset=(350, 30)) self.leg.setParentItem(self.p3) drawLeg = True else: drawLeg = False for j in range(3): - cj = self.p3.plot(np.arange(1,self.nPCs+1),self.DX[:,j],pen=p[j]) + cj = self.p3.plot(np.arange(1, self.nPCs + 1), self.DX[:, j], pen=p[j]) if drawLeg: - self.leg.addItem(cj,ptitle[j]) - self.nums[j].setText('%s: %1.3f'%(ptitle[j],self.DX[iPC,j])) + self.leg.addItem(cj, ptitle[j]) + self.nums[j].setText("%s: %1.3f" % (ptitle[j], self.DX[iPC, j])) self.scatter = pg.ScatterPlotItem() self.p3.addItem(self.scatter) - self.scatter.setData([iPC+1,iPC+1,iPC+1],self.DX[iPC,:].tolist(), - size=10,brush=pg.mkBrush(255,255,255)) - self.p3.setLabel('left', 'pixel shift') - self.p3.setLabel('bottom', 'PC #') + self.scatter.setData([iPC + 1, iPC + 1, iPC + 1], self.DX[iPC, :].tolist(), + size=10, brush=pg.mkBrush(255, 255, 255)) + self.p3.setLabel("left", "pixel shift") + self.p3.setLabel("bottom", "PC #") self.p4.clear() - self.p4.plot(self.tPC[:,iPC]) - self.p4.setLabel('left', 'magnitude') - self.p4.setLabel('bottom', 'time') + self.p4.plot(self.tPC[:, iPC]) + self.p4.setLabel("left", "magnitude") + self.p4.setLabel("bottom", "time") self.show() self.zoom_plot() def zoom_plot(self): - self.p0.setXRange(0,self.Lx) - self.p0.setYRange(0,self.Ly) - self.p1.setXRange(0,self.Lx) - self.p1.setYRange(0,self.Ly) - self.p2.setXRange(0,self.Lx) - self.p2.setYRange(0,self.Ly) - - - def plot_clicked(self,event): + self.p0.setXRange(0, self.Lx) + self.p0.setYRange(0, self.Ly) + self.p1.setXRange(0, self.Lx) + self.p1.setYRange(0, self.Ly) + self.p2.setXRange(0, self.Lx) + self.p2.setYRange(0, self.Ly) + + def plot_clicked(self, event): items = self.win.scene().items(event.scenePos()) - posx = 0 - posy = 0 + posx = 0 + posy = 0 iplot = 0 zoom = False if self.loaded: for x in items: - if x==self.p0 or x==self.p1 or x==self.p2: - if event.button()==1: + if x == self.p0 or x == self.p1 or x == self.p2: + if event.button() == 1: if event.double(): - zoom=True + zoom = True self.zoom_plot() - - def keyPressEvent(self, event): bid = -1 - if event.modifiers() != QtCore.Qt.ShiftModifier: + if event.modifiers() != QtCore.Qt.ShiftModifier: if event.key() == QtCore.Qt.Key_Left: self.pause() ipc = int(self.PCedit.text()) - ipc = max(ipc-1, 1) + ipc = max(ipc - 1, 1) self.PCedit.setText(str(ipc)) self.plot_frame() elif event.key() == QtCore.Qt.Key_Right: self.pause() ipc = int(self.PCedit.text()) - ipc = min(ipc+1, self.nPCs) + ipc = min(ipc + 1, self.nPCs) self.PCedit.setText(str(ipc)) self.plot_frame() elif event.key() == QtCore.Qt.Key_Space: @@ -1111,4 +1159,4 @@ def keyPressEvent(self, event): self.playButton.setChecked(True) self.start() else: - self.pause() \ No newline at end of file + self.pause() diff --git a/suite2p/gui/rungui.py b/suite2p/gui/rungui.py index cdada35ba..0a40c42a9 100644 --- a/suite2p/gui/rungui.py +++ b/suite2p/gui/rungui.py @@ -1,45 +1,52 @@ -import glob, json, os, shutil, pathlib +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" +import glob, json, os, shutil, pathlib, sys from datetime import datetime import numpy as np -from PyQt5 import QtGui, QtCore -from PyQt5.QtWidgets import QDialog, QLineEdit, QLabel, QPushButton, QWidget, QGridLayout, QButtonGroup, QComboBox, QTextEdit, QFileDialog +from qtpy import QtGui, QtCore +from qtpy.QtWidgets import QDialog, QLineEdit, QLabel, QPushButton, QWidget, QGridLayout, QButtonGroup, QComboBox, QTextEdit, QFileDialog from cellpose.models import get_user_models, model_path, MODEL_NAMES from . import io from .. import default_ops - ### ---- this file contains helper functions for GUI and the RUN window ---- ### + # type in h5py key class TextChooser(QDialog): - def __init__(self,parent=None): + + def __init__(self, parent=None): super(TextChooser, self).__init__(parent) - self.setGeometry(300,300,180,100) - self.setWindowTitle('h5 key') + self.setGeometry(300, 300, 180, 100) + self.setWindowTitle("h5 key") self.win = QWidget(self) layout = QGridLayout() self.win.setLayout(layout) - self.qedit = QLineEdit('data') - layout.addWidget(QLabel('h5 key for data field'),0,0,1,3) - layout.addWidget(self.qedit,1,0,1,2) - done = QPushButton('OK') + self.qedit = QLineEdit("data") + layout.addWidget(QLabel("h5 key for data field"), 0, 0, 1, 3) + layout.addWidget(self.qedit, 1, 0, 1, 2) + done = QPushButton("OK") done.clicked.connect(self.exit_list) - layout.addWidget(done,2,1,1,1) + layout.addWidget(done, 2, 1, 1, 1) def exit_list(self): self.h5_key = self.qedit.text() self.accept() + ### custom QDialog which allows user to fill in ops and run suite2p! class RunWindow(QDialog): + def __init__(self, parent=None): super(RunWindow, self).__init__(parent) - self.setGeometry(10,10,1500,900) - self.setWindowTitle('Choose run options (hold mouse over parameters to see descriptions)') + self.setGeometry(10, 10, 1500, 900) + self.setWindowTitle( + "Choose run options (hold mouse over parameters to see descriptions)") self.parent = parent self.win = QWidget(self) self.layout = QGridLayout() @@ -48,20 +55,21 @@ def __init__(self, parent=None): self.win.setLayout(self.layout) # initial ops values self.opsfile = parent.opsuser - self.ops_path = os.fspath(pathlib.Path.home().joinpath('.suite2p').joinpath('ops').absolute()) + self.ops_path = os.fspath( + pathlib.Path.home().joinpath(".suite2p").joinpath("ops").absolute()) try: self.reset_ops() - print('loaded default ops') + print("loaded default ops") except Exception as e: - print('ERROR: %s'%e) - print('could not load default ops, using built-in ops settings') + print("ERROR: %s" % e) + print("could not load default ops, using built-in ops settings") self.ops = default_ops() # remove any remaining ops files - fs = glob.glob('ops*.npy') + fs = glob.glob("ops*.npy") for f in fs: os.remove(f) - fs = glob.glob('db*.npy') + fs = glob.glob("db*.npy") for f in fs: os.remove(f) @@ -77,125 +85,158 @@ def reset_ops(self): self.ops = np.load(self.opsfile, allow_pickle=True).item() ops0 = default_ops() self.ops = {**ops0, **self.ops} - if hasattr(self, 'editlist'): + if hasattr(self, "editlist"): for k in range(len(self.editlist)): self.editlist[k].set_text(self.ops) def create_buttons(self): - self.intkeys = ['nplanes', 'nchannels', 'functional_chan', 'align_by_chan', 'nimg_init', - 'batch_size', 'max_iterations', 'nbinned','inner_neuropil_radius', - 'min_neuropil_pixels', 'spatial_scale', 'do_registration', 'anatomical_only'] - self.boolkeys = ['delete_bin', 'move_bin','do_bidiphase', 'reg_tif', 'reg_tif_chan2', - 'save_mat', 'save_NWB' 'combined', '1Preg', 'nonrigid', - 'connected', 'roidetect', 'neuropil_extract', - 'spikedetect', 'keep_movie_raw', 'allow_overlap', 'sparse_mode'] - self.stringkeys = ['pretrained_model'] - tifkeys = ['nplanes','nchannels','functional_chan','tau','fs','do_bidiphase','bidiphase', 'multiplane_parallel', 'ignore_flyback'] - outkeys = ['preclassify','save_mat','save_NWB','combined','reg_tif','reg_tif_chan2','aspect','delete_bin','move_bin'] - regkeys = ['do_registration','align_by_chan','nimg_init','batch_size','smooth_sigma', 'smooth_sigma_time','maxregshift','th_badframes','keep_movie_raw','two_step_registration'] - nrkeys = [['nonrigid','block_size','snr_thresh','maxregshiftNR'], ['1Preg','spatial_hp_reg','pre_smooth','spatial_taper']] - cellkeys = ['roidetect', 'denoise', 'spatial_scale', 'threshold_scaling', 'max_overlap','max_iterations','high_pass','spatial_hp_detect'] - anatkeys = ['anatomical_only', 'diameter', 'cellprob_threshold', 'flow_threshold', 'pretrained_model', 'spatial_hp_cp'] - neudeconvkeys = [['neuropil_extract', 'allow_overlap','inner_neuropil_radius','min_neuropil_pixels'], ['soma_crop','spikedetect','win_baseline','sig_baseline','neucoeff']] + self.intkeys = [ + "nplanes", "nchannels", "functional_chan", "align_by_chan", "nimg_init", + "batch_size", "max_iterations", "nbinned", "inner_neuropil_radius", + "min_neuropil_pixels", "spatial_scale", "do_registration", "anatomical_only" + ] + self.boolkeys = [ + "delete_bin", "move_bin", "do_bidiphase", "reg_tif", "reg_tif_chan2", + "save_mat", "save_NWB" + "combined", "1Preg", "nonrigid", "connected", "roidetect", + "neuropil_extract", "spikedetect", "keep_movie_raw", "allow_overlap", + "sparse_mode" + ] + self.stringkeys = ["pretrained_model"] + tifkeys = [ + "nplanes", "nchannels", "functional_chan", "tau", "fs", "do_bidiphase", + "bidiphase", "multiplane_parallel", "ignore_flyback" + ] + outkeys = [ + "preclassify", "save_mat", "save_NWB", "combined", "reg_tif", + "reg_tif_chan2", "aspect", "delete_bin", "move_bin" + ] + regkeys = [ + "do_registration", "align_by_chan", "nimg_init", "batch_size", + "smooth_sigma", "smooth_sigma_time", "maxregshift", "th_badframes", + "keep_movie_raw", "two_step_registration" + ] + nrkeys = [["nonrigid", "block_size", "snr_thresh", "maxregshiftNR"], + ["1Preg", "spatial_hp_reg", "pre_smooth", "spatial_taper"]] + cellkeys = [ + "roidetect", "sparse_mode", "denoise", "spatial_scale", "connected", + "threshold_scaling", "max_overlap", "max_iterations", "high_pass", + "spatial_hp_detect" + ] + anatkeys = [ + "anatomical_only", "diameter", "cellprob_threshold", "flow_threshold", + "pretrained_model", "spatial_hp_cp" + ] + neudeconvkeys = [[ + "neuropil_extract", "allow_overlap", "inner_neuropil_radius", + "min_neuropil_pixels" + ], ["soma_crop", "spikedetect", "win_baseline", "sig_baseline", "neucoeff"]] keys = [tifkeys, outkeys, regkeys, nrkeys, cellkeys, anatkeys, neudeconvkeys] - labels = ['Main settings','Output settings','Registration',['Nonrigid','1P'],'Functional detect', 'Anat detect', ['Extraction/Neuropil','Classify/Deconv']] - tooltips = ['each tiff has this many planes in sequence', - 'each tiff has this many channels per plane', - 'this channel is used to extract functional ROIs (1-based)', - 'timescale of sensor in deconvolution (in seconds)', - 'sampling rate (per plane)', - 'whether or not to compute bidirectional phase offset of recording (from line scanning)', - 'set a fixed number (in pixels) for the bidirectional phase offset', - 'process each plane with a separate job on a computing cluster', - 'ignore flyback planes 0-indexed separated by a comma e.g. "0,10"; "-1" means no planes ignored so all planes processed', - 'apply ROI classifier before signal extraction with probability threshold (set to 0 to turn off)', - 'save output also as mat file "Fall.mat"', - 'save output also as NWB file "ophys.nwb"', - 'combine results across planes in separate folder "combined" at end of processing', - 'if 1, registered tiffs are saved', - 'if 1, registered tiffs of channel 2 (non-functional channel) are saved', - 'um/pixels in X / um/pixels in Y (for correct aspect ratio in GUI)', - 'if 1, binary file is deleted after processing is complete', - 'if 1, and fast_disk is different than save_disk, binary file is moved to save_disk', - "if 1, registration is performed if it wasn't performed already", - 'when multi-channel, you can align by non-functional channel (1-based)', - '# of subsampled frames for finding reference image', - 'number of frames per batch', - 'gaussian smoothing after phase corr: 1.15 good for 2P recordings, recommend 2-5 for 1P recordings', - 'gaussian smoothing in time, useful for low SNR data', - 'max allowed registration shift, as a fraction of frame max(width and height)', - 'this parameter determines which frames to exclude when determining cropped frame size - set it smaller to exclude more frames', - 'if 1, unregistered binary is kept in a separate file data_raw.bin', - 'run registration twice (useful if data is really noisy), *keep_movie_raw must be 1*', - 'whether to use nonrigid registration (splits FOV into blocks of size block_size)', - 'block size in number of pixels in Y and X (two numbers separated by a comma)', - 'if any nonrigid block is below this threshold, it gets smoothed until above this threshold. 1.0 results in no smoothing', - 'maximum *pixel* shift allowed for nonrigid, relative to rigid', - 'whether to perform high-pass filtering and tapering for registration (necessary for 1P recordings)', - 'window for spatial high-pass filtering before registration', - 'whether to smooth before high-pass filtering before registration', - "how much to ignore on edges (important for vignetted windows, for FFT padding do not set BELOW 3*smooth_sigma)", - 'if 1, run cell (ROI) detection (either functional or anatomical if anatomical_only > 0)', - 'if 1, run PCA denoising on binned movie to improve cell detection', - 'choose size of ROIs: 0 = multi-scale; 1 = 6 pixels, 2 = 12, 3 = 24, 4 = 48', - 'adjust the automatically determined threshold for finding ROIs by this scalar multiplier', - 'ROIs with greater than this overlap as a fraction of total pixels will be discarded', - 'maximum number of iterations for ROI detection', - 'temporal running mean subtraction with window of size "high_pass" (use low values for 1P)', - 'spatial high-pass filter size (used to remove spatially-correlated neuropil)', - 'run cellpose to get masks on 1: max_proj / mean_img; 2: mean_img; 3: mean_img enhanced, 4: max_proj', - 'input average diameter of ROIs in recording (can give a list e.g. 6,9 if aspect not equal), if set to 0 auto-determination run by Cellpose', - 'cellprob_threshold for cellpose', - 'flow_threshold for cellpose (throws out masks, if getting too few masks, set to 0)', - 'model type string from Cellpose (can be a built-in model or a user model that is added to the Cellpose GUI)', - 'high-pass image spatially by a multiple of the diameter (if field is non-uniform, a value of ~2 is recommended', - 'whether or not to extract neuropil; if 0, Fneu is set to 0', - 'allow shared pixels to be used for fluorescence extraction from overlapping ROIs (otherwise excluded from both ROIs)', - 'number of pixels between ROI and neuropil donut', - 'minimum number of pixels in the neuropil', - 'if 1, crop dendrites for cell classification stats like compactness', - 'if 1, run spike detection (deconvolution)', - 'window for maximin', - 'smoothing constant for gaussian filter', - 'neuropil coefficient', - ] + labels = [ + "Main settings", "Output settings", "Registration", ["Nonrigid", "1P"], + "Functional detect", "Anat detect", + ["Extraction/Neuropil", "Classify/Deconv"] + ] + tooltips = [ + "each tiff has this many planes in sequence", + "each tiff has this many channels per plane", + "this channel is used to extract functional ROIs (1-based)", + "timescale of sensor in deconvolution (in seconds)", + "sampling rate (per plane)", + "whether or not to compute bidirectional phase offset of recording (from line scanning)", + "set a fixed number (in pixels) for the bidirectional phase offset", + "process each plane with a separate job on a computing cluster", + "ignore flyback planes 0-indexed separated by a comma e.g. '0,10'; '-1' means no planes ignored so all planes processed", + "apply ROI classifier before signal extraction with probability threshold (set to 0 to turn off)", + "save output also as mat file 'Fall.mat'", + "save output also as NWB file 'ophys.nwb'", + "combine results across planes in separate folder 'combined' at end of processing", + "if 1, registered tiffs are saved", + "if 1, registered tiffs of channel 2 (non-functional channel) are saved", + "um/pixels in X / um/pixels in Y (for correct aspect ratio in GUI)", + "if 1, binary file is deleted after processing is complete", + "if 1, and fast_disk is different than save_disk, binary file is moved to save_disk", + "if 1, registration is performed if it wasn't performed already", + "when multi-channel, you can align by non-functional channel (1-based)", + "# of subsampled frames for finding reference image", + "number of frames per batch", + "gaussian smoothing after phase corr: 1.15 good for 2P recordings, recommend 2-5 for 1P recordings", + "gaussian smoothing in time, useful for low SNR data", + "max allowed registration shift, as a fraction of frame max(width and height)", + "this parameter determines which frames to exclude when determining cropped frame size - set it smaller to exclude more frames", + "if 1, unregistered binary is kept in a separate file data_raw.bin", + "run registration twice (useful if data is really noisy), *keep_movie_raw must be 1*", + "whether to use nonrigid registration (splits FOV into blocks of size block_size)", + "block size in number of pixels in Y and X (two numbers separated by a comma)", + "if any nonrigid block is below this threshold, it gets smoothed until above this threshold. 1.0 results in no smoothing", + "maximum *pixel* shift allowed for nonrigid, relative to rigid", + "whether to perform high-pass filtering and tapering for registration (necessary for 1P recordings)", + "window for spatial high-pass filtering before registration", + "whether to smooth before high-pass filtering before registration", + "how much to ignore on edges (important for vignetted windows, for FFT padding do not set BELOW 3*smooth_sigma)", + "if 1, run cell (ROI) detection (either functional or anatomical if anatomical_only > 0)", + "if 1, run sparse_mode cell detection", + "if 1, run PCA denoising on binned movie to improve cell detection", + "choose size of ROIs: 0 = multi-scale; 1 = 6 pixels, 2 = 12, 3 = 24, 4 = 48", + "whether or not to require ROIs to be fully connected (set to 0 for dendrites/boutons)", + "adjust the automatically determined threshold for finding ROIs by this scalar multiplier", + "ROIs with greater than this overlap as a fraction of total pixels will be discarded", + "maximum number of iterations for ROI detection", + "temporal running mean subtraction with window of size 'high_pass' (use low values for 1P)", + "spatial high-pass filter size (used to remove spatially-correlated neuropil)", + "run cellpose to get masks on 1: max_proj / mean_img; 2: mean_img; 3: mean_img enhanced, 4: max_proj", + "input average diameter of ROIs in recording (can give a list e.g. 6,9 if aspect not equal), if set to 0 auto-determination run by Cellpose", + "cellprob_threshold for cellpose", + "flow_threshold for cellpose (throws out masks, if getting too few masks, set to 0)", + "model type string from Cellpose (can be a built-in model or a user model that is added to the Cellpose GUI)", + "high-pass image spatially by a multiple of the diameter (if field is non-uniform, a value of ~2 is recommended", + "whether or not to extract neuropil; if 0, Fneu is set to 0", + "allow shared pixels to be used for fluorescence extraction from overlapping ROIs (otherwise excluded from both ROIs)", + "number of pixels between ROI and neuropil donut", + "minimum number of pixels in the neuropil", + "if 1, crop dendrites for cell classification stats like compactness", + "if 1, run spike detection (deconvolution)", + "window for maximin", + "smoothing constant for gaussian filter", + "neuropil coefficient", + ] bigfont = QtGui.QFont("Arial", 10, QtGui.QFont.Bold) - qlabel = QLabel('File paths') + qlabel = QLabel("File paths") qlabel.setFont(bigfont) - self.layout.addWidget(qlabel,0,0,1,1) - loadOps = QPushButton('Load ops file') + self.layout.addWidget(qlabel, 0, 0, 1, 1) + loadOps = QPushButton("Load ops file") loadOps.clicked.connect(self.load_ops) - saveDef = QPushButton('Save ops as default') + saveDef = QPushButton("Save ops as default") saveDef.clicked.connect(self.save_default_ops) - revertDef = QPushButton('Revert default ops to built-in') + revertDef = QPushButton("Revert default ops to built-in") revertDef.clicked.connect(self.revert_default_ops) - saveOps = QPushButton('Save ops to file') + saveOps = QPushButton("Save ops to file") saveOps.clicked.connect(self.save_ops) - self.layout.addWidget(loadOps,0,4,1,2) - self.layout.addWidget(saveDef,1,4,1,2) - self.layout.addWidget(revertDef,2,4,1,2) - self.layout.addWidget(saveOps,3,4,1,2) - self.layout.addWidget(QLabel(''),4,4,1,2) - self.layout.addWidget(QLabel('Load example ops'),5,4,1,2) + self.layout.addWidget(loadOps, 0, 4, 1, 2) + self.layout.addWidget(saveDef, 1, 4, 1, 2) + self.layout.addWidget(revertDef, 2, 4, 1, 2) + self.layout.addWidget(saveOps, 3, 4, 1, 2) + self.layout.addWidget(QLabel(""), 4, 4, 1, 2) + self.layout.addWidget(QLabel("Load example ops"), 5, 4, 1, 2) for k in range(3): - qw = QPushButton('Save ops to file') + qw = QPushButton("Save ops to file") #saveOps.clicked.connect(self.save_ops) self.opsbtns = QButtonGroup(self) - opsstr = ['1P imaging', 'dendrites/axons'] - self.opsname = ['1P', 'dendrite'] + opsstr = ["1P imaging", "dendrites/axons"] + self.opsname = ["1P", "dendrite"] for b in range(len(opsstr)): btn = OpsButton(b, opsstr[b], self) self.opsbtns.addButton(btn, b) - self.layout.addWidget(btn, 6+b,4,1,2) - l=0 + self.layout.addWidget(btn, 6 + b, 4, 1, 2) + l = 0 self.keylist = [] self.editlist = [] - kk=0 - wk=0 + kk = 0 + wk = 0 for lkey in keys: k = 0 - kl=0 + kl = 0 if type(labels[l]) is list: labs = labels[l] keyl = lkey @@ -205,80 +246,82 @@ def create_buttons(self): for label in labs: qlabel = QLabel(label) qlabel.setFont(bigfont) - self.layout.addWidget(qlabel,k*2,2*(l+4),1,2) - k+=1 + self.layout.addWidget(qlabel, k * 2, 2 * (l + 4), 1, 2) + k += 1 for key in keyl[kl]: lops = 1 - if self.ops[key] or (self.ops[key] == 0) or len(self.ops[key])==0: - qedit = LineEdit(wk,key,self) + if self.ops[key] or (self.ops[key] == 0) or len(self.ops[key]) == 0: + qedit = LineEdit(wk, key, self) qlabel = QLabel(key) qlabel.setToolTip(tooltips[kk]) qedit.set_text(self.ops) qedit.setToolTip(tooltips[kk]) qedit.setFixedWidth(90) - self.layout.addWidget(qlabel,k*2-1,2*(l+4),1,2) - self.layout.addWidget(qedit,k*2,2*(l+4),1,2) + self.layout.addWidget(qlabel, k * 2 - 1, 2 * (l + 4), 1, 2) + self.layout.addWidget(qedit, k * 2, 2 * (l + 4), 1, 2) self.keylist.append(key) self.editlist.append(qedit) - wk+=1 - k+=1 - kk+=1 - kl+=1 - l+=1 + wk += 1 + k += 1 + kk += 1 + kl += 1 + l += 1 # data_path - key = 'input_format' + key = "input_format" qlabel = QLabel(key) qlabel.setFont(bigfont) - qlabel.setToolTip('File format (selects which parser to use)') - self.layout.addWidget(qlabel,1,0,1,1) + qlabel.setToolTip("File format (selects which parser to use)") + self.layout.addWidget(qlabel, 1, 0, 1, 1) self.inputformat = QComboBox() - [self.inputformat.addItem(f) for f in ['tif','bruker','bruker_raw','sbx', 'h5','mesoscan','haus']] + [ + self.inputformat.addItem(f) + for f in ["tif", "binary", "bruker", "sbx", "h5", "movie", "nd2", "mesoscan", "raw", "dcimg","bruker_raw"] + ] self.inputformat.currentTextChanged.connect(self.parse_inputformat) - self.layout.addWidget(self.inputformat,2,0,1,1) + self.layout.addWidget(self.inputformat, 2, 0, 1, 1) - key = 'look_one_level_down' + key = "look_one_level_down" qlabel = QLabel(key) - qlabel.setToolTip('whether to look in all subfolders when searching for files') - self.layout.addWidget(qlabel,3,0,1,1) - qedit = LineEdit(wk,key,self) + qlabel.setToolTip("whether to look in all subfolders when searching for files") + self.layout.addWidget(qlabel, 3, 0, 1, 1) + qedit = LineEdit(wk, key, self) qedit.set_text(self.ops) qedit.setFixedWidth(95) - self.layout.addWidget(qedit,4,0,1,1) + self.layout.addWidget(qedit, 4, 0, 1, 1) self.keylist.append(key) self.editlist.append(qedit) - cw=4 - self.btiff = QPushButton('Add directory to data_path') + cw = 4 + self.btiff = QPushButton("Add directory to data_path") self.btiff.clicked.connect(self.get_folders) - self.layout.addWidget(self.btiff,5,0,1,cw) - qlabel = QLabel('data_path') + self.layout.addWidget(self.btiff, 5, 0, 1, cw) + qlabel = QLabel("data_path") qlabel.setFont(bigfont) - self.layout.addWidget(qlabel,6,0,1,1) + self.layout.addWidget(qlabel, 6, 0, 1, 1) self.qdata = [] for n in range(9): - self.qdata.append(QLabel('')) - self.layout.addWidget(self.qdata[n], - n+7,0,1,cw) + self.qdata.append(QLabel("")) + self.layout.addWidget(self.qdata[n], n + 7, 0, 1, cw) - self.bsave = QPushButton('Add save_path (default is 1st data_path)') + self.bsave = QPushButton("Add save_path (default is 1st data_path)") self.bsave.clicked.connect(self.save_folder) - self.layout.addWidget(self.bsave,16,0,1,cw) - self.savelabel = QLabel('') - self.layout.addWidget(self.savelabel,17,0,1,cw) + self.layout.addWidget(self.bsave, 16, 0, 1, cw) + self.savelabel = QLabel("") + self.layout.addWidget(self.savelabel, 17, 0, 1, cw) # fast_disk - self.bbin = QPushButton('Add fast_disk (default is save_path)') + self.bbin = QPushButton("Add fast_disk (default is save_path)") self.bbin.clicked.connect(self.bin_folder) - self.layout.addWidget(self.bbin,18,0,1,cw) - self.binlabel = QLabel('') - self.layout.addWidget(self.binlabel,19,0,1,cw) - self.runButton = QPushButton('RUN SUITE2P') + self.layout.addWidget(self.bbin, 18, 0, 1, cw) + self.binlabel = QLabel("") + self.layout.addWidget(self.binlabel, 19, 0, 1, cw) + self.runButton = QPushButton("RUN SUITE2P") self.runButton.clicked.connect(self.run_S2P) n0 = 22 - self.layout.addWidget(self.runButton,n0,0,1,1) + self.layout.addWidget(self.runButton, n0, 0, 1, 1) self.runButton.setEnabled(False) self.textEdit = QTextEdit() - self.layout.addWidget(self.textEdit, n0+1,0,30,2*l) + self.layout.addWidget(self.textEdit, n0 + 1, 0, 30, 2 * l) self.textEdit.setFixedHeight(300) self.process = QtCore.QProcess(self) self.process.readyReadStandardOutput.connect(self.stdout_write) @@ -287,34 +330,33 @@ def create_buttons(self): self.process.started.connect(self.started) self.process.finished.connect(self.finished) # stop process - self.stopButton = QPushButton('STOP') + self.stopButton = QPushButton("STOP") self.stopButton.setEnabled(False) - self.layout.addWidget(self.stopButton, n0,1,1,1) + self.layout.addWidget(self.stopButton, n0, 1, 1, 1) self.stopButton.clicked.connect(self.stop) # cleanup button - self.cleanButton = QPushButton('Add a clean-up *.py') - self.cleanButton.setToolTip('will run at end of processing') + self.cleanButton = QPushButton("Add a clean-up *.py") + self.cleanButton.setToolTip("will run at end of processing") self.cleanButton.setEnabled(True) - self.layout.addWidget(self.cleanButton, n0,2,1,2) + self.layout.addWidget(self.cleanButton, n0, 2, 1, 2) self.cleanup = False self.cleanButton.clicked.connect(self.clean_script) - self.cleanLabel = QLabel('') - self.layout.addWidget(self.cleanLabel,n0,4,1,12) + self.cleanLabel = QLabel("") + self.layout.addWidget(self.cleanLabel, n0, 4, 1, 12) #n0+=1 - self.listOps = QPushButton('save settings and\n add more (batch)') + self.listOps = QPushButton("save settings and\n add more (batch)") self.listOps.clicked.connect(self.add_batch) - self.layout.addWidget(self.listOps,n0,12,1,2) + self.layout.addWidget(self.listOps, n0, 12, 1, 2) self.listOps.setEnabled(False) - self.removeOps = QPushButton('remove last added') + self.removeOps = QPushButton("remove last added") self.removeOps.clicked.connect(self.remove_ops) - self.layout.addWidget(self.removeOps,n0,14,1,2) + self.layout.addWidget(self.removeOps, n0, 14, 1, 2) self.removeOps.setEnabled(False) self.odata = [] self.n_batch = 15 for n in range(self.n_batch): - self.odata.append(QLabel('')) - self.layout.addWidget(self.odata[n], - n0+1+n,12,1,4) + self.odata.append(QLabel("")) + self.layout.addWidget(self.odata[n], n0 + 1 + n, 12, 1, 4) def remove_ops(self): L = len(self.opslist) @@ -323,9 +365,9 @@ def remove_ops(self): self.opslist = [] self.removeOps.setEnabled(False) else: - del self.opslist[L-1] - self.odata[L-1].setText('') - self.odata[L-1].setToolTip('') + del self.opslist[L - 1] + self.odata[L - 1].setText("") + self.odata[L - 1].setToolTip("") self.f = 0 def add_batch(self): @@ -340,9 +382,9 @@ def add_batch(self): self.save_path = [] self.fast_disk = [] for n in range(self.n_batch): - self.qdata[n].setText('') - self.savelabel.setText('') - self.binlabel.setText('') + self.qdata[n].setText("") + self.savelabel.setText("") + self.binlabel.setText("") # clear all ops # self.reset_ops() @@ -360,53 +402,58 @@ def add_ops(self): self.f = 0 self.compile_ops_db() L = len(self.opslist) - np.save(os.path.join(self.ops_path, 'ops%d.npy'%L), self.ops) - np.save(os.path.join(self.ops_path, 'db%d.npy'%L), self.db) - self.opslist.append('ops%d.npy'%L) - if hasattr(self, 'h5_key') and len(self.h5_key) > 0: - self.db['h5py_key'] = self.h5_key + np.save(os.path.join(self.ops_path, "ops%d.npy" % L), self.ops) + np.save(os.path.join(self.ops_path, "db%d.npy" % L), self.db) + self.opslist.append("ops%d.npy" % L) + if hasattr(self, "h5_key") and len(self.h5_key) > 0: + self.db["h5py_key"] = self.h5_key def compile_ops_db(self): - for k,key in enumerate(self.keylist): - self.ops[key] = self.editlist[k].get_text(self.intkeys, self.boolkeys, self.stringkeys) + for k, key in enumerate(self.keylist): + self.ops[key] = self.editlist[k].get_text(self.intkeys, self.boolkeys, + self.stringkeys) self.db = {} - self.db['data_path'] = self.data_path - self.db['subfolders'] = [] + self.db["data_path"] = self.data_path + self.db["subfolders"] = [] self.datastr = self.data_path[0] # add data type specific keys - if hasattr(self, 'h5_key') and len(self.h5_key) > 0: - self.db['h5py_key'] = self.h5_key - elif self.inputformat.currentText() == 'sbx': - self.db['sbx_ndeadcols'] = -1 + if hasattr(self, "h5_key") and len(self.h5_key) > 0: + self.db["h5py_key"] = self.h5_key + elif self.inputformat.currentText() == "sbx": + self.db["sbx_ndeadcols"] = -1 # add save_path0 and fast_disk - if len(self.save_path)==0: - self.save_path = self.db['data_path'][0] - self.db['save_path0'] = self.save_path - if len(self.fast_disk)==0: + if len(self.save_path) == 0: + self.save_path = self.db["data_path"][0] + self.db["save_path0"] = self.save_path + if len(self.fast_disk) == 0: self.fast_disk = self.save_path - self.db['fast_disk'] = self.fast_disk - self.db['input_format'] = self.inputformat.currentText() + self.db["fast_disk"] = self.fast_disk + self.db["input_format"] = self.inputformat.currentText() def run_S2P(self): - if len(self.opslist)==0: + if len(self.opslist) == 0: self.add_ops() # pre-download model - pretrained_model_string = self.ops.get('pretrained_model', 'cyto') - pretrained_model_string = pretrained_model_string if pretrained_model_string is not None else 'cyto' - pretrained_model_path = model_path(pretrained_model_string, 0, True) + pretrained_model_string = self.ops.get("pretrained_model", "cyto") + pretrained_model_string = pretrained_model_string if pretrained_model_string is not None else "cyto" + pretrained_model_path = model_path(pretrained_model_string, 0) self.finish = True self.error = False - ops_file = os.path.join(self.ops_path, 'ops.npy') - db_file = os.path.join(self.ops_path, 'db.npy') - shutil.copy(os.path.join(self.ops_path, 'ops%d.npy'%self.f), ops_file) - shutil.copy(os.path.join(self.ops_path, 'db%d.npy'%self.f), db_file) + ops_file = os.path.join(self.ops_path, "ops.npy") + db_file = os.path.join(self.ops_path, "db.npy") + shutil.copy(os.path.join(self.ops_path, "ops%d.npy" % self.f), ops_file) + shutil.copy(os.path.join(self.ops_path, "db%d.npy" % self.f), db_file) self.db = np.load(db_file, allow_pickle=True).item() - print('Running suite2p!') - print('starting process') print(self.db) - self.process.start('python -u -W ignore -m suite2p --ops "%s" --db "%s"'%(ops_file, db_file)) + print("Running suite2p with command:") + cmd = f"-u -W ignore -m suite2p --ops {ops_file} --db {db_file}" + print("python " + cmd) + self.process.start(sys.executable, cmd.split(" ")) + + #self.process.start('python -u -W ignore -m suite2p --ops "%s" --db "%s"' % + # (ops_file, db_file)) def stop(self): self.finish = False @@ -417,49 +464,51 @@ def started(self): self.runButton.setEnabled(False) self.stopButton.setEnabled(True) self.cleanButton.setEnabled(False) - save_folder = os.path.join(self.db['save_path0'], 'suite2p/') + save_folder = os.path.join(self.db["save_path0"], "suite2p/") if not os.path.isdir(save_folder): os.makedirs(save_folder) - self.logfile = open(os.path.join(save_folder, 'run.log'), 'a') + self.logfile = open(os.path.join(save_folder, "run.log"), "a") dstring = datetime.now().strftime("%d/%m/%Y %H:%M:%S") - self.logfile.write('\n >>>>> started run at %s'%dstring) + self.logfile.write("\n >>>>> started run at %s" % dstring) def finished(self): self.logfile.close() self.runButton.setEnabled(True) self.stopButton.setEnabled(False) cursor = self.textEdit.textCursor() - cursor.movePosition(cursor.End) + cursor.movePosition(cursor.End) if self.finish and not self.error: self.cleanButton.setEnabled(True) - if len(self.opslist)==1: - self.parent.fname = os.path.join(self.db['save_path0'], 'suite2p', 'plane0','stat.npy') + if len(self.opslist) == 1: + self.parent.fname = os.path.join(self.db["save_path0"], "suite2p", + "plane0", "stat.npy") if os.path.exists(self.parent.fname): - cursor.insertText('Opening in GUI (can close this window)\n') + cursor.insertText("Opening in GUI (can close this window)\n") io.load_proc(self.parent) else: - cursor.insertText('not opening plane in GUI (no ROIs)\n') + cursor.insertText("not opening plane in GUI (no ROIs)\n") else: - cursor.insertText('BATCH MODE: %d more recordings remaining \n'%(len(self.opslist)-self.f-1)) + cursor.insertText("BATCH MODE: %d more recordings remaining \n" % + (len(self.opslist) - self.f - 1)) self.f += 1 if self.f < len(self.opslist): self.run_S2P() elif not self.error: - cursor.insertText('Interrupted by user (not finished)\n') + cursor.insertText("Interrupted by user (not finished)\n") else: - cursor.insertText('Interrupted by error (not finished)\n') + cursor.insertText("Interrupted by error (not finished)\n") - # remove current ops from processing list - if len(self.opslist)==1: + # remove current ops from processing list + if len(self.opslist) == 1: del self.opslist[0] - + def save_ops(self): - name = QFileDialog.getSaveFileName(self,'Ops name (*.npy)') + name = QFileDialog.getSaveFileName(self, "Ops name (*.npy)") name = name[0] self.save_text() if name: np.save(name, self.ops) - print('saved current settings to %s'%(name)) + print("saved current settings to %s" % (name)) def save_default_ops(self): name = self.opsfile @@ -468,7 +517,7 @@ def save_default_ops(self): self.save_text() np.save(name, self.ops) self.ops = ops - print('saved current settings in GUI as default ops') + print("saved current settings in GUI as default ops") def revert_default_ops(self): name = self.opsfile @@ -476,110 +525,111 @@ def revert_default_ops(self): self.ops = default_ops() np.save(name, self.ops) self.load_ops(name) - print('reverted default ops to built-in ops') + print("reverted default ops to built-in ops") def save_text(self): for k in range(len(self.editlist)): key = self.keylist[k] - self.ops[key] = self.editlist[k].get_text(self.intkeys, self.boolkeys) + self.ops[key] = self.editlist[k].get_text(self.intkeys, self.boolkeys, + self.stringkeys) def load_ops(self, name=None): - print('loading ops') - if not (isinstance(name, str) and len(name)>0): - name = QFileDialog.getOpenFileName(self, 'Open ops file (npy or json)') + print("loading ops") + if not (isinstance(name, str) and len(name) > 0): + name = QFileDialog.getOpenFileName(self, "Open ops file (npy or json)") name = name[0] - + if len(name) > 0: ext = os.path.splitext(name)[1] try: - if ext == '.npy': + if ext == ".npy": ops = np.load(name, allow_pickle=True).item() - elif ext == '.json': - with open(name, 'r') as f: + elif ext == ".json": + with open(name, "r") as f: ops = json.load(f) ops0 = default_ops() ops = {**ops0, **ops} for key in ops: - if key!='data_path' and key!='save_path' and key!='fast_disk' and key!='cleanup' and key!='save_path0' and key!='h5py': + if key != "data_path" and key != "save_path" and key != "fast_disk" and key != "cleanup" and key != "save_path0" and key != "h5py": if key in self.keylist: self.editlist[self.keylist.index(key)].set_text(ops) self.ops[key] = ops[key] - if not 'input_format' in self.ops.keys(): - self.ops['input_format'] = 'tif' - if 'data_path' in ops and len(ops['data_path'])>0: - self.data_path = ops['data_path'] + if not "input_format" in self.ops.keys(): + self.ops["input_format"] = "tif" + if "data_path" in ops and len(ops["data_path"]) > 0: + self.data_path = ops["data_path"] for n in range(9): - if n0: - self.h5_key = ops['h5py_key'] - self.inputformat.currentTextChanged.connect(lambda x:x) - self.inputformat.setCurrentText(self.ops['input_format']) + if "h5py_key" in ops and len(ops["h5py_key"]) > 0: + self.h5_key = ops["h5py_key"] + self.inputformat.currentTextChanged.connect(lambda x: x) + self.inputformat.setCurrentText(self.ops["input_format"]) self.inputformat.currentTextChanged.connect(self.parse_inputformat) - if self.ops['input_format'] == 'sbx': + if self.ops["input_format"] == "sbx": self.runButton.setEnabled(True) self.btiff.setEnabled(False) self.listOps.setEnabled(True) - if 'save_path0' in ops and len(ops['save_path0'])>0: - self.save_path = ops['save_path0'] + if "save_path0" in ops and len(ops["save_path0"]) > 0: + self.save_path = ops["save_path0"] self.savelabel.setText(self.save_path) - if 'fast_disk' in ops and len(ops['fast_disk'])>0: - self.fast_disk = ops['fast_disk'] + if "fast_disk" in ops and len(ops["fast_disk"]) > 0: + self.fast_disk = ops["fast_disk"] self.binlabel.setText(self.fast_disk) - if 'clean_script' in ops and len(ops['clean_script'])>0: - self.ops['clean_script'] = ops['clean_script'] - self.cleanLabel.setText(ops['clean_script']) + if "clean_script" in ops and len(ops["clean_script"]) > 0: + self.ops["clean_script"] = ops["clean_script"] + self.cleanLabel.setText(ops["clean_script"]) except Exception as e: - print('could not load ops file') + print("could not load ops file") print(e) def load_db(self): - print('loading db') + print("loading db") def stdout_write(self): cursor = self.textEdit.textCursor() cursor.movePosition(cursor.End) - output = str(self.process.readAllStandardOutput(), 'utf-8') + output = str(self.process.readAllStandardOutput(), "utf-8") cursor.insertText(output) self.textEdit.ensureCursorVisible() - #self.logfile = open(os.path.join(self.save_path, 'suite2p/run.log'), 'a') + #self.logfile = open(os.path.join(self.save_path, "suite2p/run.log"), "a") self.logfile.write(output) #self.logfile.close() def stderr_write(self): cursor = self.textEdit.textCursor() cursor.movePosition(cursor.End) - cursor.insertText('>>>ERROR<<<\n') - output = str(self.process.readAllStandardError(), 'utf-8') + cursor.insertText(">>>ERROR<<<\n") + output = str(self.process.readAllStandardError(), "utf-8") cursor.insertText(output) self.textEdit.ensureCursorVisible() self.error = True - #self.logfile = open(os.path.join(self.save_path, 'suite2p/run.log'), 'a') - self.logfile.write('>>>ERROR<<<\n') + #self.logfile = open(os.path.join(self.save_path, "suite2p/run.log"), "a") + self.logfile.write(">>>ERROR<<<\n") self.logfile.write(output) def clean_script(self): - name = QFileDialog.getOpenFileName(self, 'Open clean up file',filter='*.py') + name = QFileDialog.getOpenFileName(self, "Open clean up file", filter="*.py") name = name[0] if name: self.cleanup = True self.cleanScript = name self.cleanLabel.setText(name) - self.ops['clean_script'] = name + self.ops["clean_script"] = name def get_folders(self): name = QFileDialog.getExistingDirectory(self, "Add directory to data path") - if len(name)>0: + if len(name) > 0: self.data_path.append(name) - self.qdata[len(self.data_path)-1].setText(name) - self.qdata[len(self.data_path)-1].setToolTip(name) + self.qdata[len(self.data_path) - 1].setText(name) + self.qdata[len(self.data_path) - 1].setToolTip(name) self.runButton.setEnabled(True) self.listOps.setEnabled(True) #self.loadDb.setEnabled(False) @@ -591,26 +641,24 @@ def get_h5py(self): if result: self.h5_key = TC.h5_key else: - self.h5_key = 'data' + self.h5_key = "data" def parse_inputformat(self): inputformat = self.inputformat.currentText() - print('Input format: ' + inputformat) - if inputformat == 'h5': + print("Input format: " + inputformat) + if inputformat == "h5": # replace functionality of "old" button self.get_h5py() else: pass - def save_folder(self): name = QFileDialog.getExistingDirectory(self, "Save folder for data") - if len(name)>0: + if len(name) > 0: self.save_path = name self.savelabel.setText(name) self.savelabel.setToolTip(name) - def bin_folder(self): name = QFileDialog.getExistingDirectory(self, "Folder for binary file") self.fast_disk = name @@ -619,24 +667,25 @@ def bin_folder(self): class LineEdit(QLineEdit): - def __init__(self,k,key,parent=None): - super(LineEdit,self).__init__(parent) + + def __init__(self, k, key, parent=None): + super(LineEdit, self).__init__(parent) self.key = key #self.textEdited.connect(lambda: self.edit_changed(parent.ops, k)) - def get_text(self,intkeys,boolkeys,stringkeys): + def get_text(self, intkeys, boolkeys, stringkeys): key = self.key - if key=='diameter' or key=='block_size': - diams = self.text().replace(' ','').split(',') - if len(diams)>1: + if key == "diameter" or key == "block_size": + diams = self.text().replace(" ", "").split(",") + if len(diams) > 1: okey = [int(diams[0]), int(diams[1])] else: okey = int(diams[0]) - elif key=='ignore_flyback': - okey = self.text().replace(' ','').split(',') + elif key == "ignore_flyback": + okey = self.text().replace(" ", "").split(",") for i in range(len(okey)): okey[i] = int(okey[i]) - if len(okey)==1 and okey[0]==-1: + if len(okey) == 1 and okey[0] == -1: okey = [] else: if key in intkeys: @@ -649,24 +698,24 @@ def get_text(self,intkeys,boolkeys,stringkeys): okey = float(self.text()) return okey - def set_text(self,ops): + def set_text(self, ops): key = self.key - if key=='diameter' or key=='block_size': - if (type(ops[key]) is not int) and (len(ops[key])>1): - dstr = str(int(ops[key][0])) + ', ' + str(int(ops[key][1])) + if key == "diameter" or key == "block_size": + if (type(ops[key]) is not int) and (len(ops[key]) > 1): + dstr = str(int(ops[key][0])) + ", " + str(int(ops[key][1])) else: dstr = str(int(ops[key])) - elif key=='ignore_flyback': + elif key == "ignore_flyback": if not isinstance(ops[key], (list, np.ndarray)): ops[key] = [ops[key]] - if len(ops[key])==0: - dstr = '-1' + if len(ops[key]) == 0: + dstr = "-1" else: - dstr = '' + dstr = "" for i in ops[key]: dstr += str(int(i)) - if i5: - parent.p3.plot(parent.trange,-1*bsc+favg*bsc,pen=(140,140,140)) - parent.fmin=-1*bsc + parent.fmin = 0 + if len(pmerge) > 5: + parent.p3.plot(parent.trange, -1 * bsc + favg * bsc, pen=(140, 140, 140)) + parent.fmin = -1 * bsc if parent.bloaded: - parent.p3.plot(parent.trange,-1*bsc+favg*bsc,pen=(140,140,140)) - parent.p3.plot(parent.beh_time,-1*bsc+parent.beh*bsc,pen='w') - parent.fmin=-1*bsc - #parent.traceLabel[0].setText("mean activity") + parent.p3.plot(parent.trange, -1 * bsc + favg * bsc, pen=(140, 140, 140)) + parent.p3.plot(parent.beh_time, -1 * bsc + parent.beh * bsc, pen="w") + parent.fmin = -1 * bsc + #parent.traceLabel[0].setText("mean activity") #parent.traceLabel[1].setText("1D variable") #parent.traceLabel[2].setText("") - #ck.append((-0.5*bsc,'1D var')) + #ck.append((-0.5*bsc,"1D var")) - parent.fmax=(len(pmerge)-1)*kspace + 1 + parent.fmax = (len(pmerge) - 1) * kspace + 1 ax.setTicks([ttick]) #parent.p3.setXRange(0,parent.Fcell.shape[1]) - parent.p3.setYRange(parent.fmin,parent.fmax) + parent.p3.setYRange(parent.fmin, parent.fmax) + def make_buttons(parent, b0): # combo box to decide what kind of activity to view @@ -85,7 +89,7 @@ def make_buttons(parent, b0): parent.l0.addWidget(qlabel, b0, 0, 1, 1) parent.comboBox = QComboBox(parent) parent.comboBox.setFixedWidth(100) - parent.l0.addWidget(parent.comboBox, b0+1, 0, 1, 1) + parent.l0.addWidget(parent.comboBox, b0 + 1, 0, 1, 1) parent.comboBox.addItem("F") parent.comboBox.addItem("Fneu") parent.comboBox.addItem("F - 0.7*Fneu") @@ -107,11 +111,7 @@ def make_buttons(parent, b0): btn.setMaximumWidth(22) btn.setFont(QtGui.QFont("Arial", 11, QtGui.QFont.Bold)) btn.setStyleSheet(parent.styleUnpressed) - parent.l0.addWidget( - btn, - b0+b, 1, 1, 1, - QtCore.Qt.AlignRight - ) + parent.l0.addWidget(btn, b0 + b, 1, 1, 1, QtCore.Qt.AlignRight) b += 1 parent.pmButtons = [QPushButton(" +"), QPushButton(" -")] @@ -128,12 +128,12 @@ def make_buttons(parent, b0): # choose max # of cells plotted parent.l0.addWidget( QLabel("max # plotted:"), - b0+2, + b0 + 2, 0, 1, 1, ) - b0+=3 + b0 += 3 parent.ncedit = QLineEdit(parent) parent.ncedit.setValidator(QtGui.QIntValidator(0, 400)) parent.ncedit.setText("40") @@ -149,10 +149,7 @@ def make_buttons(parent, b0): parent.checkBoxd.toggled.connect(lambda: deconv_on(parent)) parent.deconvOn = True parent.checkBoxd.toggle() - parent.l0.addWidget(parent.checkBoxd, - b0, - 3, - 1, 2) + parent.l0.addWidget(parent.checkBoxd, b0, 3, 1, 2) # neuropil CHECKBOX parent.l0.setVerticalSpacing(4) parent.checkBoxn = QCheckBox("neuropil [B]") @@ -160,9 +157,7 @@ def make_buttons(parent, b0): parent.checkBoxn.toggled.connect(lambda: neuropil_on(parent)) parent.neuropilOn = True parent.checkBoxn.toggle() - parent.l0.addWidget(parent.checkBoxn, - b0,5, - 1, 2) + parent.l0.addWidget(parent.checkBoxn, b0, 5, 1, 2) # traces CHECKBOX parent.l0.setVerticalSpacing(4) parent.checkBoxt = QCheckBox("raw fluor [V]") @@ -170,40 +165,44 @@ def make_buttons(parent, b0): parent.checkBoxt.toggled.connect(lambda: traces_on(parent)) parent.tracesOn = True parent.checkBoxt.toggle() - parent.l0.addWidget(parent.checkBoxt, - b0,7, - 1, 2) + parent.l0.addWidget(parent.checkBoxt, b0, 7, 1, 2) return b0 + def expand_scale(parent): parent.sc += 0.5 parent.sc = np.minimum(10, parent.sc) plot_trace(parent) parent.show() + def collapse_scale(parent): parent.sc -= 0.5 parent.sc = np.maximum(0.5, parent.sc) plot_trace(parent) parent.show() + def expand_trace(parent): parent.level += 1 parent.level = np.minimum(5, parent.level) parent.win.ci.layout.setRowStretchFactor(1, parent.level) #parent.p1.zoom_plot() + def collapse_trace(parent): parent.level -= 1 parent.level = np.maximum(1, parent.level) parent.win.ci.layout.setRowStretchFactor(1, parent.level) #parent.p1.zoom_plot() + def nc_chosen(parent): if parent.loaded: plot_trace(parent) parent.show() + #Agus def deconv_on(parent): state = parent.checkBoxd.isChecked() @@ -216,6 +215,7 @@ def deconv_on(parent): parent.win.show() parent.show() + def neuropil_on(parent): state = parent.checkBoxn.isChecked() if parent.loaded: @@ -227,6 +227,7 @@ def neuropil_on(parent): parent.win.show() parent.show() + def traces_on(parent): state = parent.checkBoxt.isChecked() if parent.loaded: diff --git a/suite2p/gui/utils.py b/suite2p/gui/utils.py index a1a21be85..80293ea58 100644 --- a/suite2p/gui/utils.py +++ b/suite2p/gui/utils.py @@ -1,22 +1,28 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from scipy.ndimage.morphology import binary_dilation, binary_fill_holes -def boundary(ypix,xpix): + +def boundary(ypix, xpix): """ returns pixels of mask that are on the exterior of the mask """ - ypix = np.expand_dims(ypix.flatten(),axis=1) - xpix = np.expand_dims(xpix.flatten(),axis=1) + ypix = np.expand_dims(ypix.flatten(), axis=1) + xpix = np.expand_dims(xpix.flatten(), axis=1) npix = ypix.shape[0] - if npix>0: - msk = np.zeros((np.ptp(ypix)+6, np.ptp(xpix)+6), np.bool) - msk[ypix-ypix.min()+3, xpix-xpix.min()+3] = True + if npix > 0: + msk = np.zeros((np.ptp(ypix) + 6, np.ptp(xpix) + 6), "bool") + msk[ypix - ypix.min() + 3, xpix - xpix.min() + 3] = True msk = binary_dilation(msk) msk = binary_fill_holes(msk) - k = np.ones((3,3),dtype=int) # for 4-connected - k = np.zeros((3,3),dtype=int); k[1] = 1; k[:,1] = 1 # for 8-connected - out = binary_dilation(msk==0, k) & msk + k = np.ones((3, 3), dtype=int) # for 4-connected + k = np.zeros((3, 3), dtype=int) + k[1] = 1 + k[:, 1] = 1 # for 8-connected + out = binary_dilation(msk == 0, k) & msk yext, xext = np.nonzero(out) - yext, xext = yext+ypix.min()-3, xext+xpix.min()-3 + yext, xext = yext + ypix.min() - 3, xext + xpix.min() - 3 else: yext = np.zeros((0,)) xext = np.zeros((0,)) @@ -25,9 +31,9 @@ def boundary(ypix,xpix): def circle(med, r): """ returns pixels of circle with radius 1.25x radius of cell (r) """ - theta = np.linspace(0.0,2*np.pi,100) - x = r*1.25 * np.cos(theta) + med[0] - y = r*1.25 * np.sin(theta) + med[1] + theta = np.linspace(0.0, 2 * np.pi, 100) + x = r * 1.25 * np.cos(theta) + med[0] + y = r * 1.25 * np.sin(theta) + med[1] x = x.astype(np.int32) y = y.astype(np.int32) - return x,y \ No newline at end of file + return x, y diff --git a/suite2p/gui/views.py b/suite2p/gui/views.py index f8bebcf84..391c281ef 100644 --- a/suite2p/gui/views.py +++ b/suite2p/gui/views.py @@ -1,7 +1,10 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np -from PyQt5 import QtGui, QtCore -from PyQt5.QtWidgets import QPushButton, QSlider, QButtonGroup, QLabel, QStyle, QStyleOptionSlider, QApplication -from PyQt5.QtGui import QPainter +from qtpy import QtGui, QtCore +from qtpy.QtWidgets import QPushButton, QSlider, QButtonGroup, QLabel, QStyle, QStyleOptionSlider, QApplication +from qtpy.QtGui import QPainter from .. import extraction @@ -28,13 +31,13 @@ def make_buttons(parent): for names in parent.view_names: btn = ViewButton(b, "&" + names, parent) parent.viewbtns.addButton(btn, b) - if b>0: + if b > 0: parent.l0.addWidget(btn, b + 2, 0, 1, 1) else: parent.l0.addWidget(btn, b + 2, 0, 1, 1) label = QLabel("sat: ") label.setStyleSheet("color: white;") - parent.l0.addWidget(label, b+2,1,1,1) + parent.l0.addWidget(label, b + 2, 1, 1, 1) btn.setEnabled(False) b += 1 parent.viewbtns.setExclusive(True) @@ -44,11 +47,12 @@ def make_buttons(parent): slider.setLow(0) slider.setHigh(255) slider.setTickPosition(QSlider.TicksBelow) - parent.l0.addWidget(slider, 3,1,len(parent.view_names)-2,1) + parent.l0.addWidget(slider, 3, 1, len(parent.view_names) - 2, 1) - b+=2 + b += 2 return b + def init_views(parent): """ make views using parent.ops @@ -65,81 +69,84 @@ def init_views(parent): """ parent.Ly, parent.Lx = parent.ops["Ly"], parent.ops["Lx"] - parent.views = np.zeros((7,parent.Ly, parent.Lx, 3), np.float32) + parent.views = np.zeros((7, parent.Ly, parent.Lx, 3), np.float32) for k in range(7): - if k==2: - if 'meanImgE' not in parent.ops: + if k == 2: + if "meanImgE" not in parent.ops: parent.ops = extraction.enhanced_mean_image(parent.ops) - mimg = parent.ops['meanImgE'] - elif k==1: - mimg = parent.ops['meanImg'] - mimg1 = np.percentile(mimg,1) - mimg99 = np.percentile(mimg,99) - mimg = (mimg - mimg1) / (mimg99 - mimg1) - mimg = np.maximum(0,np.minimum(1,mimg)) - elif k==3: - if 'Vcorr' in parent.ops: - vcorr = parent.ops['Vcorr'] - mimg1 = np.percentile(vcorr,1) - mimg99 = np.percentile(vcorr,99) + mimg = parent.ops["meanImgE"] + elif k == 1: + mimg = parent.ops["meanImg"] + mimg1 = np.percentile(mimg, 1) + mimg99 = np.percentile(mimg, 99) + mimg = (mimg - mimg1) / (mimg99 - mimg1) + mimg = np.maximum(0, np.minimum(1, mimg)) + elif k == 3: + if "Vcorr" in parent.ops: + vcorr = parent.ops["Vcorr"] + mimg1 = np.percentile(vcorr, 1) + mimg99 = np.percentile(vcorr, 99) vcorr = (vcorr - mimg1) / (mimg99 - mimg1) - mimg = mimg1 * np.ones((parent.Ly, parent.Lx),np.float32) - mimg[parent.ops['yrange'][0]:parent.ops['yrange'][1], - parent.ops['xrange'][0]:parent.ops['xrange'][1]] = vcorr - mimg = np.maximum(0,np.minimum(1,mimg)) + mimg = mimg1 * np.ones((parent.Ly, parent.Lx), np.float32) + mimg[parent.ops["yrange"][0]:parent.ops["yrange"][1], + parent.ops["xrange"][0]:parent.ops["xrange"][1]] = vcorr + mimg = np.maximum(0, np.minimum(1, mimg)) else: mimg = np.zeros((parent.Ly, parent.Lx), np.float32) - elif k==4: - if 'max_proj' in parent.ops: - mproj = parent.ops['max_proj'] - mimg1 = np.percentile(mproj,1) - mimg99 = np.percentile(mproj,99) + elif k == 4: + if "max_proj" in parent.ops: + mproj = parent.ops["max_proj"] + mimg1 = np.percentile(mproj, 1) + mimg99 = np.percentile(mproj, 99) mproj = (mproj - mimg1) / (mimg99 - mimg1) - mimg = np.zeros((parent.Ly, parent.Lx),np.float32) + mimg = np.zeros((parent.Ly, parent.Lx), np.float32) try: - mimg[parent.ops['yrange'][0]:parent.ops['yrange'][1], - parent.ops['xrange'][0]:parent.ops['xrange'][1]] = mproj + mimg[parent.ops["yrange"][0]:parent.ops["yrange"][1], + parent.ops["xrange"][0]:parent.ops["xrange"][1]] = mproj except: - print('maxproj not in combined view') - mimg = np.maximum(0,np.minimum(1,mimg)) + print("maxproj not in combined view") + mimg = np.maximum(0, np.minimum(1, mimg)) else: mimg = 0.5 * np.ones((parent.Ly, parent.Lx), np.float32) - elif k==5: - if 'meanImg_chan2_corrected' in parent.ops: - mimg = parent.ops['meanImg_chan2_corrected'] - mimg1 = np.percentile(mimg,1) - mimg99 = np.percentile(mimg,99) - mimg = (mimg - mimg1) / (mimg99 - mimg1) - mimg = np.maximum(0,np.minimum(1,mimg)) - elif k==6: - if 'meanImg_chan2' in parent.ops: - mimg = parent.ops['meanImg_chan2'] - mimg1 = np.percentile(mimg,1) - mimg99 = np.percentile(mimg,99) - mimg = (mimg - mimg1) / (mimg99 - mimg1) - mimg = np.maximum(0,np.minimum(1,mimg)) + elif k == 5: + if "meanImg_chan2_corrected" in parent.ops: + mimg = parent.ops["meanImg_chan2_corrected"] + mimg1 = np.percentile(mimg, 1) + mimg99 = np.percentile(mimg, 99) + mimg = (mimg - mimg1) / (mimg99 - mimg1) + mimg = np.maximum(0, np.minimum(1, mimg)) + elif k == 6: + if "meanImg_chan2" in parent.ops: + mimg = parent.ops["meanImg_chan2"] + mimg1 = np.percentile(mimg, 1) + mimg99 = np.percentile(mimg, 99) + mimg = (mimg - mimg1) / (mimg99 - mimg1) + mimg = np.maximum(0, np.minimum(1, mimg)) else: - mimg = np.zeros((parent.Ly, parent.Lx),np.float32) + mimg = np.zeros((parent.Ly, parent.Lx), np.float32) mimg *= 255 mimg = mimg.astype(np.uint8) - parent.views[k] = np.tile(mimg[:,:,np.newaxis], (1,1,3)) + parent.views[k] = np.tile(mimg[:, :, np.newaxis], (1, 1, 3)) + def plot_views(parent): - """ set parent.view1 and parent.view2 image based on parent.ops_plot['view']""" - k = parent.ops_plot['view'] - parent.view1.setImage(parent.views[k], levels=parent.ops_plot['saturation']) - parent.view2.setImage(parent.views[k], levels=parent.ops_plot['saturation']) + """ set parent.view1 and parent.view2 image based on parent.ops_plot["view"]""" + k = parent.ops_plot["view"] + parent.view1.setImage(parent.views[k], levels=parent.ops_plot["saturation"]) + parent.view2.setImage(parent.views[k], levels=parent.ops_plot["saturation"]) parent.view1.show() parent.view2.show() + class ViewButton(QPushButton): """ custom QPushButton class for quadrant plotting requires buttons to put into a QButtonGroup (parent.viewbtns) allows only 1 button to pressed at a time """ + def __init__(self, bid, Text, parent=None): - super(ViewButton,self).__init__(parent) + super(ViewButton, self).__init__(parent) self.setText(Text) self.setCheckable(True) self.setStyleSheet(parent.styleInactive) @@ -147,12 +154,13 @@ def __init__(self, bid, Text, parent=None): self.resize(self.minimumSizeHint()) self.clicked.connect(lambda: self.press(parent, bid)) self.show() + def press(self, parent, bid): for b in range(len(parent.views)): if parent.viewbtns.button(b).isEnabled(): parent.viewbtns.button(b).setStyleSheet(parent.styleUnpressed) self.setStyleSheet(parent.stylePressed) - parent.ops_plot['view'] = bid + parent.ops_plot["view"] = bid parent.update_plot() @@ -169,6 +177,7 @@ class RangeSlider(QSlider): Found this slider here: https://www.mail-archive.com/pyqt@riverbankcomputing.com/msg22889.html and modified it """ + def __init__(self, parent=None, *args): super(RangeSlider, self).__init__(*args) @@ -190,8 +199,7 @@ def __init__(self, parent=None, *args): height: 8px;\ width: 6px;\ margin: -8px 2; \ - }") - + }" ) #self.opt = QStyleOptionSlider() #self.opt.orientation=QtCore.Qt.Vertical @@ -203,7 +211,7 @@ def __init__(self, parent=None, *args): def level_change(self): if self.parent is not None: if self.parent.loaded: - self.parent.ops_plot['saturation'] = [self._low, self._high] + self.parent.ops_plot["saturation"] = [self._low, self._high] self.parent.update_plot() def low(self): @@ -229,10 +237,10 @@ def paintEvent(self, event): opt = QStyleOptionSlider() self.initStyleOption(opt) - # Only draw the groove for the first slider so it doesn't get drawn + # Only draw the groove for the first slider so it doesn"t get drawn # on top of the existing ones every time if i == 0: - opt.subControls = QStyle.SC_SliderHandle#QStyle.SC_SliderGroove | QStyle.SC_SliderHandle + opt.subControls = QStyle.SC_SliderHandle #QStyle.SC_SliderGroove | QStyle.SC_SliderHandle else: opt.subControls = QStyle.SC_SliderHandle @@ -249,14 +257,13 @@ def paintEvent(self, event): opt.sliderValue = value style.drawComplexControl(QStyle.CC_Slider, opt, painter, self) - def mousePressEvent(self, event): event.accept() style = QApplication.style() button = event.button() # In a normal slider control, when the user clicks on a point in the - # slider's total range, but not on the slider part of the control the + # slider"s total range, but not on the slider part of the control the # control would jump the slider value to where the user clicked. # For this control, clicks which are not direct hits will slide both # slider parts @@ -268,7 +275,8 @@ def mousePressEvent(self, event): for i, value in enumerate([self._low, self._high]): opt.sliderPosition = value - hit = style.hitTestComplexControl(style.CC_Slider, opt, event.pos(), self) + hit = style.hitTestComplexControl(style.CC_Slider, opt, event.pos(), + self) if hit == style.SC_SliderHandle: self.active_slider = i self.pressed_control = hit @@ -281,7 +289,8 @@ def mousePressEvent(self, event): if self.active_slider < 0: self.pressed_control = QStyle.SC_SliderHandle - self.click_offset = self.__pixelPosToRangeValue(self.__pick(event.pos())) + self.click_offset = self.__pixelPosToRangeValue(self.__pick( + event.pos())) self.triggerAction(self.SliderMove) self.setRepeatAction(self.SliderNoAction) else: @@ -330,7 +339,6 @@ def __pick(self, pt): else: return pt.y() - def __pixelPosToRangeValue(self, pos): opt = QStyleOptionSlider() self.initStyleOption(opt) @@ -349,5 +357,5 @@ def __pixelPosToRangeValue(self, pos): slider_max = gr.bottom() - slider_length + 1 return style.sliderValueFromPosition(self.minimum(), self.maximum(), - pos-slider_min, slider_max-slider_min, + pos - slider_min, slider_max - slider_min, opt.upsideDown) diff --git a/suite2p/gui/visualize.py b/suite2p/gui/visualize.py index 35992f8b0..d11ed7d36 100644 --- a/suite2p/gui/visualize.py +++ b/suite2p/gui/visualize.py @@ -1,13 +1,16 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import sys import time import numpy as np import pyqtgraph as pg -from PyQt5 import QtGui, QtCore -from PyQt5.QtWidgets import QStyle -from PyQt5.QtWidgets import QWidget, QSlider, QMainWindow, QGridLayout, QStyleOptionSlider, QApplication, QLabel, QLineEdit, QPushButton, QComboBox, QCheckBox +from qtpy import QtGui, QtCore +from qtpy.QtWidgets import QStyle +from qtpy.QtWidgets import QWidget, QSlider, QMainWindow, QGridLayout, QStyleOptionSlider, QApplication, QLabel, QLineEdit, QPushButton, QComboBox, QCheckBox from matplotlib import cm -from rastermap.mapping import Rastermap +from rastermap.rastermap import Rastermap from scipy.ndimage import gaussian_filter1d from scipy.stats import zscore @@ -16,6 +19,7 @@ # custom vertical label class VerticalLabel(QWidget): + def __init__(self, text=None): super(self.__class__, self).__init__() self.text = text @@ -29,6 +33,7 @@ def paintEvent(self, event): painter.drawText(0, 0, self.text) painter.end() + class RangeSlider(QSlider): """ A slider for ranges. @@ -42,6 +47,7 @@ class RangeSlider(QSlider): Found this slider here: https://www.mail-archive.com/pyqt@riverbankcomputing.com/msg22889.html and modified it """ + def __init__(self, parent=None, *args): super(RangeSlider, self).__init__(*args) @@ -63,7 +69,7 @@ def __init__(self, parent=None, *args): height: 8px;\ width: 6px;\ margin: -8px 2; \ - }") + }" ) # 0 for the low, 1 for the high, -1 for both self.active_slider = 0 self.parent = parent @@ -92,10 +98,10 @@ def paintEvent(self, event): for i, value in enumerate([self._low, self._high]): opt = QStyleOptionSlider() self.initStyleOption(opt) - # Only draw the groove for the first slider so it doesn't get drawn + # Only draw the groove for the first slider so it doesn"t get drawn # on top of the existing ones every time if i == 0: - opt.subControls = QStyle.SC_SliderHandle#QStyle.SC_SliderGroove | QStyle.SC_SliderHandle + opt.subControls = QStyle.SC_SliderHandle #QStyle.SC_SliderGroove | QStyle.SC_SliderHandle else: opt.subControls = QStyle.SC_SliderHandle if self.tickPosition() != self.NoTicks: @@ -119,7 +125,8 @@ def mousePressEvent(self, event): self.active_slider = -1 for i, value in enumerate([self._low, self._high]): opt.sliderPosition = value - hit = style.hitTestComplexControl(style.CC_Slider, opt, event.pos(), self) + hit = style.hitTestComplexControl(style.CC_Slider, opt, event.pos(), + self) if hit == style.SC_SliderHandle: self.active_slider = i self.pressed_control = hit @@ -129,11 +136,13 @@ def mousePressEvent(self, event): break if self.active_slider < 0: self.pressed_control = QStyle.SC_SliderHandle - self.click_offset = self.__pixelPosToRangeValue(self.__pick(event.pos())) + self.click_offset = self.__pixelPosToRangeValue(self.__pick( + event.pos())) self.triggerAction(self.SliderMove) self.setRepeatAction(self.SliderNoAction) else: event.ignore() + def mouseMoveEvent(self, event): if self.pressed_control != QStyle.SC_SliderHandle: event.ignore() @@ -164,13 +173,16 @@ def mouseMoveEvent(self, event): self._high = new_pos self.click_offset = new_pos self.update() + def mouseReleaseEvent(self, event): self.level_change() + def __pick(self, pt): if self.orientation() == QtCore.Qt.Horizontal: return pt.x() else: return pt.y() + def __pixelPosToRangeValue(self, pos): opt = QStyleOptionSlider() self.initStyleOption(opt) @@ -189,10 +201,12 @@ def __pixelPosToRangeValue(self, pos): slider_max = gr.bottom() - slider_length + 1 return style.sliderValueFromPosition(self.minimum(), self.maximum(), - pos-slider_min, slider_max-slider_min, + pos - slider_min, slider_max - slider_min, opt.upsideDown) + class SatSlider(RangeSlider): + def __init__(self, parent=None): super(SatSlider, self).__init__(parent) self.parent = parent @@ -202,13 +216,15 @@ def __init__(self, parent=None): self.setHigh(70) def level_change(self): - self.parent.sat[0] = float(self._low)/100 - self.parent.sat[1] = float(self._high)/100 - self.parent.img.setLevels([self.parent.sat[0],self.parent.sat[1]]) - self.parent.imgROI.setLevels([self.parent.sat[0],self.parent.sat[1]]) + self.parent.sat[0] = float(self._low) / 100 + self.parent.sat[1] = float(self._high) / 100 + self.parent.img.setLevels([self.parent.sat[0], self.parent.sat[1]]) + self.parent.imgROI.setLevels([self.parent.sat[0], self.parent.sat[1]]) self.parent.win.show() + class NeuronSlider(RangeSlider): + def __init__(self, parent=None): super(SatSlider, self).__init__(parent) self.parent = parent @@ -218,134 +234,137 @@ def __init__(self, parent=None): self.setHigh(70) def level_change(self): - self.parent.sat[0] = float(self._low)/100 - self.parent.sat[1] = float(self._high)/100 - self.parent.img.setLevels([self.parent.sat[0],self.parent.sat[1]]) - self.parent.imgROI.setLevels([self.parent.sat[0],self.parent.sat[1]]) + self.parent.sat[0] = float(self._low) / 100 + self.parent.sat[1] = float(self._high) / 100 + self.parent.img.setLevels([self.parent.sat[0], self.parent.sat[1]]) + self.parent.imgROI.setLevels([self.parent.sat[0], self.parent.sat[1]]) self.parent.win.show() + class Slider(QSlider): + def __init__(self, bid, parent=None): super(self.__class__, self).__init__() self.bid = bid self.setMinimum(0) self.setMaximum(100) - self.setValue(parent.sat[bid]*100) + self.setValue(parent.sat[bid] * 100) self.setTickPosition(QSlider.TicksLeft) self.setTickInterval(10) - self.valueChanged.connect(lambda: self.level_change(parent,bid)) + self.valueChanged.connect(lambda: self.level_change(parent, bid)) self.setTracking(False) def level_change(self, parent, bid): - parent.sat[bid] = float(self.value())/100 - parent.img.setLevels([parent.sat[0],parent.sat[1]]) - parent.imgROI.setLevels([parent.sat[0],parent.sat[1]]) + parent.sat[bid] = float(self.value()) / 100 + parent.img.setLevels([parent.sat[0], parent.sat[1]]) + parent.imgROI.setLevels([parent.sat[0], parent.sat[1]]) parent.win.show() - ### custom QDialog which allows user to fill in ops and run suite2p! class VisWindow(QMainWindow): + def __init__(self, parent=None): super(VisWindow, self).__init__(parent) self.parent = parent - pg.setConfigOptions(imageAxisOrder='row-major') - self.setGeometry(70,70,1100,900) - self.setWindowTitle('Visualize data') + pg.setConfigOptions(imageAxisOrder="row-major") + self.setGeometry(70, 70, 1100, 900) + self.setWindowTitle("Visualize data") self.cwidget = QWidget(self) self.setCentralWidget(self.cwidget) self.l0 = QGridLayout() #layout = QtGui.QFormLayout() self.cwidget.setLayout(self.l0) - #self.p0 = pg.ViewBox(lockAspect=False,name='plot1',border=[100,100,100],invertY=True) + #self.p0 = pg.ViewBox(lockAspect=False,name="plot1",border=[100,100,100],invertY=True) self.win = pg.GraphicsLayoutWidget() # --- cells image self.win = pg.GraphicsLayoutWidget() - self.win.move(600,0) - self.win.resize(1000,500) - self.l0.addWidget(self.win,0,0,14,14) + self.win.move(600, 0) + self.win.resize(1000, 500) + self.l0.addWidget(self.win, 0, 0, 14, 14) layout = self.win.ci.layout # A plot area (ViewBox + axes) for displaying the image - self.p0 = self.win.addViewBox(row=0,col=0) - self.p0.setMouseEnabled(x=False,y=False) + self.p0 = self.win.addViewBox(row=0, col=0) + self.p0.setMouseEnabled(x=False, y=False) self.p0.setMenuEnabled(False) - self.p1 = self.win.addPlot(title="FULL VIEW",row=0,col=1) - self.p1.setMouseEnabled(x=False,y=False) + self.p1 = self.win.addPlot(title="FULL VIEW", row=0, col=1) + self.p1.setMouseEnabled(x=False, y=False) self.img = pg.ImageItem(autoDownsample=True) self.p1.addItem(self.img) # cells to plot - if len(self.parent.imerge)==1: + if len(self.parent.imerge) == 1: icell = self.parent.iscell[self.parent.imerge[0]] - self.cells = np.array((self.parent.iscell==icell).nonzero()).flatten() + self.cells = np.array((self.parent.iscell == icell).nonzero()).flatten() else: self.cells = np.array(self.parent.imerge).flatten() # compute spikes i = self.parent.activityMode - if i==0: - sp = self.parent.Fcell[self.cells,:] - elif i==1: - sp = self.parent.Fneu[self.cells,:] - elif i==2: - sp = self.parent.Fcell[self.cells,:] - 0.7*self.parent.Fneu[self.cells,:] + if i == 0: + sp = self.parent.Fcell[self.cells, :] + elif i == 1: + sp = self.parent.Fneu[self.cells, :] + elif i == 2: + sp = self.parent.Fcell[ + self.cells, :] - 0.7 * self.parent.Fneu[self.cells, :] else: - sp = self.parent.Spks[self.cells,:] + sp = self.parent.Spks[self.cells, :] sp = np.squeeze(sp) sp = zscore(sp, axis=1) - self.sp = np.maximum(-4,np.minimum(8,sp)) + 4 + self.sp = np.maximum(-4, np.minimum(8, sp)) + 4 self.sp /= 12 - self.tsort = np.arange(0,sp.shape[1]).astype(np.int32) + self.tsort = np.arange(0, sp.shape[1]).astype(np.int32) # 100 ms bins - self.bin = int(np.maximum(1, int(self.parent.ops['fs']/10))) + self.bin = int(np.maximum(1, int(self.parent.ops["fs"] / 10))) # draw axes - self.p1.setXRange(0,sp.shape[1]) - self.p1.setYRange(0,sp.shape[0]) - self.p1.setLimits(xMin=-10,xMax=sp.shape[1]+10,yMin=-10,yMax=sp.shape[0]+10) - self.p1.setLabel('left', 'neurons') - self.p1.setLabel('bottom', 'time') + self.p1.setXRange(0, sp.shape[1]) + self.p1.setYRange(0, sp.shape[0]) + self.p1.setLimits(xMin=-10, xMax=sp.shape[1] + 10, yMin=-10, + yMax=sp.shape[0] + 10) + self.p1.setLabel("left", "neurons") + self.p1.setLabel("bottom", "time") # zoom in on a selected image region nt = sp.shape[1] nn = sp.shape[0] - self.selected = np.arange(0,nn,1,int) - self.p2 = self.win.addPlot(title='ZOOM IN',row=1,col=0,colspan=2) + self.selected = np.arange(0, nn, 1, int) + self.p2 = self.win.addPlot(title="ZOOM IN", row=1, col=0, colspan=2) self.imgROI = pg.ImageItem(autoDownsample=True) self.p2.addItem(self.imgROI) - self.p2.setMouseEnabled(x=False,y=False) - #self.p2.setLabel('left', 'neurons') - self.p2.hideAxis('bottom') + self.p2.setMouseEnabled(x=False, y=False) + #self.p2.setLabel("left", "neurons") + self.p2.hideAxis("bottom") self.bloaded = self.parent.bloaded - self.p3 = self.win.addPlot(title='',row=2,col=0,colspan=2) - self.p3.setMouseEnabled(x=False,y=False) - #self.p3.getAxis('left').setTicks([[(0,'')]]) - self.p3.setLabel('bottom', 'time') + self.p3 = self.win.addPlot(title="", row=2, col=0, colspan=2) + self.p3.setMouseEnabled(x=False, y=False) + #self.p3.getAxis("left").setTicks([[(0,"")]]) + self.p3.setLabel("bottom", "time") # set colormap to viridis colormap = cm.get_cmap("gray_r") colormap._init() - lut = (colormap._lut * 255).view(np.ndarray) # Convert matplotlib colormap from 0-1 to 0 -255 for Qt - lut = lut[0:-3,:] + lut = (colormap._lut * 255).view( + np.ndarray) # Convert matplotlib colormap from 0-1 to 0 -255 for Qt + lut = lut[0:-3, :] # apply the colormap self.img.setLookupTable(lut) self.imgROI.setLookupTable(lut) - layout.setColumnStretchFactor(1,3) - layout.setRowStretchFactor(1,3) + layout.setColumnStretchFactor(1, 3) + layout.setRowStretchFactor(1, 3) # add slider for levels - self.sat = [0.3,0.7] + self.sat = [0.3, 0.7] slider = SatSlider(self) slider.setTickPosition(QSlider.TicksBelow) - self.l0.addWidget(slider, 0,2,5,1) - qlabel = VerticalLabel(text='saturation') - qlabel.setStyleSheet('color: white;') + self.l0.addWidget(slider, 0, 2, 5, 1) + qlabel = VerticalLabel(text="saturation") + qlabel.setStyleSheet("color: white;") self.img.setLevels([self.sat[0], self.sat[1]]) self.imgROI.setLevels([self.sat[0], self.sat[1]]) - self.l0.addWidget(qlabel,2,3,3,2) - self.isort = np.arange(0,self.cells.size).astype(np.int32) + self.l0.addWidget(qlabel, 2, 3, 3, 2) + self.isort = np.arange(0, self.cells.size).astype(np.int32) # ROI on main plot - redpen = pg.mkPen(pg.mkColor(255, 0, 0), - width=3, - style=QtCore.Qt.SolidLine) - self.ROI = pg.RectROI([nt*.25, -1], [nt*.25, nn+1], - maxBounds=QtCore.QRectF(-1.,-1.,nt+1,nn+1), - pen=redpen) - self.xrange = np.arange(nt*.25, nt*.5,1,int) + redpen = pg.mkPen(pg.mkColor(255, 0, 0), width=3, style=QtCore.Qt.SolidLine) + self.ROI = pg.RectROI([nt * .25, -1], [nt * .25, nn + 1], + maxBounds=QtCore.QRectF(-1., -1., nt + 1, + nn + 1), pen=redpen) + self.xrange = np.arange(nt * .25, nt * .5, 1, int) self.ROI.handleSize = 10 self.ROI.handlePen = redpen # Add right Handle @@ -356,10 +375,10 @@ def __init__(self, parent=None): self.p1.addItem(self.ROI) self.ROI.setZValue(10) # make sure ROI is drawn above image - self.LINE = pg.RectROI([-1, nn*.4], [nt*.25, nn*.2], - maxBounds=QtCore.QRectF(-1,-1.,nt*.25,nn+1), - pen=redpen) - self.selected = np.arange(nn*.4, nn*.6, 1, int) + self.LINE = pg.RectROI([-1, nn * .4], [nt * .25, nn * .2], + maxBounds=QtCore.QRectF(-1, -1., nt * .25, + nn + 1), pen=redpen) + self.selected = np.arange(nn * .4, nn * .6, 1, int) self.LINE.handleSize = 10 self.LINE.handlePen = redpen # Add top handle @@ -370,13 +389,10 @@ def __init__(self, parent=None): self.p2.addItem(self.LINE) self.LINE.setZValue(10) # make sure ROI is drawn above image - - greenpen = pg.mkPen(pg.mkColor(0, 255, 0), - width=3, - style=QtCore.Qt.SolidLine) - self.THRES = pg.RectROI([-0.5, 0], [nt*.25, 1], - maxBounds=QtCore.QRectF(-1.,-10.,nt*.25,10), - pen=greenpen) + greenpen = pg.mkPen(pg.mkColor(0, 255, 0), width=3, style=QtCore.Qt.SolidLine) + self.THRES = pg.RectROI([-0.5, 0], [nt * .25, 1], + maxBounds=QtCore.QRectF(-1., -10., nt * .25, + 10), pen=greenpen) self.THRES.handleSize = 10 self.THRES.handlePen = greenpen # Add top handle @@ -391,22 +407,22 @@ def __init__(self, parent=None): self.neural_sorting(2) # buttons for computations - self.mapOn = QPushButton('compute rastermap + PCs') + self.mapOn = QPushButton("compute rastermap + PCs") self.mapOn.clicked.connect(self.compute_map) - self.l0.addWidget(self.mapOn,0,0,1,2) + self.l0.addWidget(self.mapOn, 0, 0, 1, 2) self.comboBox = QComboBox(self) - self.l0.addWidget(self.comboBox,1,0,1,2) - self.l0.addWidget(QLabel('PC 1:'),2,0,1,2) - #self.l0.addWidget(QLabel(''),4,0,1,1) - self.selectBtn = QPushButton('show selected cells in GUI') + self.l0.addWidget(self.comboBox, 1, 0, 1, 2) + self.l0.addWidget(QLabel("PC 1:"), 2, 0, 1, 2) + #self.l0.addWidget(QLabel(""),4,0,1,1) + self.selectBtn = QPushButton("show selected cells in GUI") self.selectBtn.clicked.connect(self.select_cells) self.selectBtn.setEnabled(True) - self.l0.addWidget(self.selectBtn,3,0,1,2) - self.sortTime = QCheckBox('&Time sort') + self.l0.addWidget(self.selectBtn, 3, 0, 1, 2) + self.sortTime = QCheckBox("&Time sort") self.sortTime.setStyleSheet("color: white;") self.sortTime.stateChanged.connect(self.sort_time) - self.l0.addWidget(self.sortTime,4,0,1,2) - self.l0.addWidget(QLabel(''),5,0,1,1) + self.l0.addWidget(self.sortTime, 4, 0, 1, 2) + self.l0.addWidget(QLabel(""), 5, 0, 1, 1) self.l0.setRowStretch(6, 1) self.raster = False @@ -421,173 +437,173 @@ def __init__(self, parent=None): self.win.scene().sigMouseClicked.connect(self.plot_clicked) self.show() - def plot_clicked(self,event): + def plot_clicked(self, event): items = self.win.scene().items(event.scenePos()) for x in items: - if x==self.p1: - if event.button()==1: + if x == self.p1: + if event.button() == 1: if event.double(): - self.ROI.setPos([-1,-1]) - self.ROI.setSize([self.sp.shape[1]+1, self.sp.shape[0]+1]) + self.ROI.setPos([-1, -1]) + self.ROI.setSize([self.sp.shape[1] + 1, self.sp.shape[0] + 1]) def keyPressEvent(self, event): bid = -1 move = False - nn,nt = self.sp.shape - if event.modifiers() != QtCore.Qt.ShiftModifier: + nn, nt = self.sp.shape + if event.modifiers() != QtCore.Qt.ShiftModifier: if event.key() == QtCore.Qt.Key_Down: bid = 0 elif event.key() == QtCore.Qt.Key_Up: - bid=1 + bid = 1 elif event.key() == QtCore.Qt.Key_Left: - bid=2 + bid = 2 elif event.key() == QtCore.Qt.Key_Right: - bid=3 - if bid==2 or bid==3: - xrange,yrange = self.roi_range(self.ROI) + bid = 3 + if bid == 2 or bid == 3: + xrange, yrange = self.roi_range(self.ROI) if xrange.size < nt: # can move - if bid==2: + if bid == 2: move = True - xrange = xrange - np.minimum(xrange.min()+1,nt*0.05) + xrange = xrange - np.minimum(xrange.min() + 1, nt * 0.05) else: move = True - xrange = xrange + np.minimum(nt-xrange.max()-1,nt*0.05) + xrange = xrange + np.minimum(nt - xrange.max() - 1, nt * 0.05) if move: - self.ROI.setPos([xrange.min()-1, -1]) - self.ROI.setSize([xrange.size+1, nn+1]) - if bid==0 or bid==1: - xrange,yrange = self.roi_range(self.LINE) + self.ROI.setPos([xrange.min() - 1, -1]) + self.ROI.setSize([xrange.size + 1, nn + 1]) + if bid == 0 or bid == 1: + xrange, yrange = self.roi_range(self.LINE) if yrange.size < nn: # can move - if bid==0: + if bid == 0: move = True - yrange = yrange - np.minimum(yrange.min(),nn*0.05) + yrange = yrange - np.minimum(yrange.min(), nn * 0.05) else: move = True - yrange = yrange + np.minimum(nn-yrange.max()-1,nn*0.05) + yrange = yrange + np.minimum(nn - yrange.max() - 1, nn * 0.05) if move: self.LINE.setPos([-1, yrange.min()]) - self.LINE.setSize([self.xrange.size+1, yrange.size]) + self.LINE.setSize([self.xrange.size + 1, yrange.size]) else: if event.key() == QtCore.Qt.Key_Down: bid = 0 elif event.key() == QtCore.Qt.Key_Up: - bid=1 + bid = 1 elif event.key() == QtCore.Qt.Key_Left: - bid=2 + bid = 2 elif event.key() == QtCore.Qt.Key_Right: - bid=3 - if bid==2 or bid==3: - xrange,_ = self.roi_range(self.ROI) - dx = nt*0.05 / (nt/xrange.size) - if bid==2: + bid = 3 + if bid == 2 or bid == 3: + xrange, _ = self.roi_range(self.ROI) + dx = nt * 0.05 / (nt / xrange.size) + if bid == 2: if xrange.size > dx: # can move move = True xmax = xrange.size - dx - xrange = xrange.min() + np.arange(0,xmax).astype(np.int32) + xrange = xrange.min() + np.arange(0, xmax).astype(np.int32) else: - if xrange.size < nt-dx + 1: + if xrange.size < nt - dx + 1: move = True xmax = xrange.size + dx - xrange = xrange.min() + np.arange(0,xmax).astype(np.int32) + xrange = xrange.min() + np.arange(0, xmax).astype(np.int32) if move: - self.ROI.setPos([xrange.min()-1, -1]) - self.ROI.setSize([xrange.size+1, nn+1]) + self.ROI.setPos([xrange.min() - 1, -1]) + self.ROI.setSize([xrange.size + 1, nn + 1]) - elif bid>=0: - _,yrange = self.roi_range(self.LINE) - dy = nn*0.05 / (nn/yrange.size) - if bid==0: + elif bid >= 0: + _, yrange = self.roi_range(self.LINE) + dy = nn * 0.05 / (nn / yrange.size) + if bid == 0: if yrange.size > dy: # can move move = True ymax = yrange.size - dy - yrange = yrange.min() + np.arange(0,ymax).astype(np.int32) + yrange = yrange.min() + np.arange(0, ymax).astype(np.int32) else: - if yrange.size < nn-dy + 1: + if yrange.size < nn - dy + 1: move = True ymax = yrange.size + dy - yrange = yrange.min() + np.arange(0,ymax).astype(np.int32) + yrange = yrange.min() + np.arange(0, ymax).astype(np.int32) if move: self.LINE.setPos([-1, yrange.min()]) - self.LINE.setSize([self.xrange.size+1, yrange.size]) - + self.LINE.setSize([self.xrange.size + 1, yrange.size]) def roi_range(self, roi): pos = roi.pos() posy = pos.y() posx = pos.x() - sizex,sizey = roi.size() - xrange = (np.arange(0,int(sizex)) + int(posx)).astype(np.int32) - yrange = (np.arange(0,int(sizey)) + int(posy)).astype(np.int32) - xrange = xrange[xrange>=0] - xrange = xrange[xrange=0] - yrange = yrange[yrange= 0] + xrange = xrange[xrange < self.sp.shape[1]] + yrange = yrange[yrange >= 0] + yrange = yrange[yrange < self.sp.shape[0]] + return xrange, yrange def plot_traces(self): - avg = self.spF[np.ix_(self.selected,self.xrange)].mean(axis=0) + avg = self.spF[np.ix_(self.selected, self.xrange)].mean(axis=0) avg -= avg.min() avg /= avg.max() self.p3.clear() - self.p3.plot(self.xrange,avg,pen=(255,0,0)) + self.p3.plot(self.xrange, avg, pen=(255, 0, 0)) if self.bloaded: - self.p3.plot(self.parent.beh_time,self.parent.beh,pen='w') - self.p3.setXRange(self.xrange[0],self.xrange[-1]) + self.p3.plot(self.parent.beh_time, self.parent.beh, pen="w") + self.p3.setXRange(self.xrange[0], self.xrange[-1]) self.p3.addItem(self.THRES) self.THRES.setZValue(10) # make sure ROI is drawn above image def LINE_position(self): - _,yrange = self.roi_range(self.LINE) - self.selected = yrange.astype('int') + _, yrange = self.roi_range(self.LINE) + self.selected = yrange.astype("int") self.plot_traces() def THRES_position(self): pos = self.THRES.pos() posy = pos.y() - sizex,sizey = self.THRES.size() + sizex, sizey = self.THRES.size() self.tpos = posy self.tsize = sizey def ROI_position(self): - xrange,_ = self.roi_range(self.ROI) + xrange, _ = self.roi_range(self.ROI) self.xrange = xrange self.imgROI.setImage(self.spF[:, self.xrange]) - self.p2.setXRange(0,self.xrange.size) + self.p2.setXRange(0, self.xrange.size) self.plot_traces() # reset ROIs - self.LINE.maxBounds = QtCore.QRectF(-1,-1., - xrange.size+1,self.sp.shape[0]+1) - self.LINE.setSize([xrange.size+1, self.selected.size]) + self.LINE.maxBounds = QtCore.QRectF(-1, -1., xrange.size + 1, + self.sp.shape[0] + 1) + self.LINE.setSize([xrange.size + 1, self.selected.size]) self.LINE.setZValue(10) - self.THRES.maxBounds = QtCore.QRectF(self.xrange[0]-1,-5., - self.xrange[1]+1,10) - self.THRES.setPos([self.xrange[0]-1, self.tpos]) - self.THRES.setSize([xrange.size+1, self.tsize]) + self.THRES.maxBounds = QtCore.QRectF(self.xrange[0] - 1, -5., + self.xrange[1] + 1, 10) + self.THRES.setPos([self.xrange[0] - 1, self.tpos]) + self.THRES.setSize([xrange.size + 1, self.tsize]) self.THRES.setZValue(10) - axy = self.p2.getAxis('left') - axx = self.p2.getAxis('bottom') + axy = self.p2.getAxis("left") + axx = self.p2.getAxis("bottom") #axy.setTicks([[(0.0,str(yrange[0])),(float(yrange.size),str(yrange[-1]))]]) self.imgROI.setLevels([self.sat[0], self.sat[1]]) def PC_on(self, plot): # edit buttons self.PCedit = QLineEdit(self) - self.PCedit.setValidator(QtGui.QIntValidator(1,np.minimum(self.sp.shape[0],self.sp.shape[1]))) - self.PCedit.setText('1') + self.PCedit.setValidator( + QtGui.QIntValidator(1, np.minimum(self.sp.shape[0], self.sp.shape[1]))) + self.PCedit.setText("1") self.PCedit.setFixedWidth(60) self.PCedit.setAlignment(QtCore.Qt.AlignRight) - qlabel = QLabel('PC: ') - qlabel.setStyleSheet('color: white;') - self.l0.addWidget(qlabel,3,0,1,1) - self.l0.addWidget(self.PCedit,3,1,1,1) + qlabel = QLabel("PC: ") + qlabel.setStyleSheet("color: white;") + self.l0.addWidget(qlabel, 3, 0, 1, 1) + self.l0.addWidget(self.PCedit, 3, 1, 1, 1) self.comboBox.addItem("PC") self.PCedit.returnPressed.connect(self.PCreturn) self.compute_svd(self.bin) @@ -603,36 +619,37 @@ def PCreturn(self): def activate(self): # activate buttons self.PCedit = QLineEdit(self) - self.PCedit.setValidator(QtGui.QIntValidator(1,np.minimum(self.sp.shape[0],self.sp.shape[1]))) - self.PCedit.setText('1') + self.PCedit.setValidator( + QtGui.QIntValidator(1, np.minimum(self.sp.shape[0], self.sp.shape[1]))) + self.PCedit.setText("1") self.PCedit.setFixedWidth(60) self.PCedit.setAlignment(QtCore.Qt.AlignRight) - qlabel = QLabel('PC: ') - qlabel.setStyleSheet('color: white;') - self.l0.addWidget(qlabel,2,0,1,1) - self.l0.addWidget(self.PCedit,2,1,1,1) + qlabel = QLabel("PC: ") + qlabel.setStyleSheet("color: white;") + self.l0.addWidget(qlabel, 2, 0, 1, 1) + self.l0.addWidget(self.PCedit, 2, 1, 1, 1) self.comboBox.addItem("PC") self.PCedit.returnPressed.connect(self.PCreturn) - #model = np.load(os.path.join(parent.ops['save_path0'], 'embedding.npy')) - #model = np.load('embedding.npy', allow_pickle=True).item() - self.isort1 = np.argsort(self.model.embedding[:,0]) - self.u = self.model.u - self.v = self.model.v + #model = np.load(os.path.join(parent.ops["save_path0"], "embedding.npy")) + #model = np.load("embedding.npy", allow_pickle=True).item() + self.isort1 = np.argsort(self.model.embedding[:, 0]) + self.Usv = self.model.Usv + self.Vsv = self.model.Vsv self.comboBox.addItem("rastermap") #self.isort1, self.isort2 = mapping.main(self.sp,None,self.u,self.sv,self.v) self.raster = True ncells = len(self.parent.stat) # cells not in sorting are set to -1 - self.parent.isort = -1*np.ones((ncells,),dtype=np.int64) + self.parent.isort = -1 * np.ones((ncells,), dtype=np.int64) nsel = len(self.cells) I = np.zeros(nsel) - I[self.isort1] = np.arange(nsel).astype('int') - self.parent.isort[self.cells] = I #self.isort1 + I[self.isort1] = np.arange(nsel).astype("int") + self.parent.isort[self.cells] = I #self.isort1 # set up colors for rastermap masks.rastermap_masks(self.parent) - b = len(self.parent.color_names)-1 + b = len(self.parent.color_names) - 1 self.parent.colorbtns.button(b).setEnabled(True) self.parent.colorbtns.button(b).setStyleSheet(self.parent.styleUnpressed) self.parent.rastermap = True @@ -644,45 +661,52 @@ def activate(self): self.sortTime.setChecked(False) def compute_map(self): - ops = {'n_components': 1, 'n_X': 100, 'alpha': 1., 'K': 1., - 'nPC': 200, 'constraints': 2, 'annealing': True, 'init': 'pca', - 'start_time': 0, 'end_time': -1} - self.error=False - self.finish=True + ops = { + "n_components": 1, + "n_X": 100, + "alpha": 1., + "K": 1., + "nPC": 200, + "constraints": 2, + "annealing": True, + "init": "pca", + "start_time": 0, + "end_time": -1 + } + self.error = False + self.finish = True self.mapOn.setEnabled(False) - self.tic=time.time() + self.tic = time.time() try: - self.model = Rastermap(n_components=ops['n_components'], n_X=ops['n_X'], nPC=ops['nPC'], - init=ops['init'], alpha=ops['alpha'], K=ops['K'], constraints=ops['constraints'], - annealing=ops['annealing']) + self.model = Rastermap() self.model.fit(self.sp) - #proc = {'embedding': model.embedding, 'uv': [model.u, model.v], - # 'ops': ops, 'filename': args.S, 'train_time': train_time} + #proc = {"embedding": model.embedding, "uv": [model.u, model.v], + # "ops": ops, "filename": args.S, "train_time": train_time} #basename, fname = os.path.split(args.S) - #np.save(os.path.join(basename, 'embedding.npy'), proc) - print('raster map computed in %3.2f s'%(time.time()-self.tic)) + #np.save(os.path.join(basename, "embedding.npy"), proc) self.activate() - except: - print('Rastermap issue: Interrupted by error (not finished)\n') - #self.process.start('python -u -W ignore -m rastermap --S %s --ops %s'% + except Exception as e: + print("Rastermap issue: Interrupted by error (not finished)\n") + print(e) + #self.process.start("python -u -W ignore -m rastermap --S %s --ops %s"% # (spath, opspath)) def finished(self): if self.finish and not self.error: - print('raster map computed in %3.2f s'%(time.time()-self.tic)) + print("raster map computed in %3.2f s" % (time.time() - self.tic)) self.activate() else: - sys.stdout.write('Interrupted by error (not finished)\n') + sys.stdout.write("Interrupted by error (not finished)\n") def stdout_write(self): - output = str(self.process.readAllStandardOutput(), 'utf-8') - #self.logfile = open(os.path.join(self.save_path, 'suite2p/run.log'), 'a') + output = str(self.process.readAllStandardOutput(), "utf-8") + #self.logfile = open(os.path.join(self.save_path, "suite2p/run.log"), "a") sys.stdout.write(output) #self.logfile.close() def stderr_write(self): - sys.stdout.write('>>>ERROR<<<\n') - output = str(self.process.readAllStandardError(), 'utf-8') + sys.stdout.write(">>>ERROR<<<\n") + output = str(self.process.readAllStandardError(), "utf-8") sys.stdout.write(output) self.error = True self.finish = False @@ -695,35 +719,42 @@ def select_cells(self): self.parent.ichosen = self.parent.imerge[0] self.parent.update_plot() else: - print('too many cells selected') + print("too many cells selected") def sort_time(self): if self.raster: if self.sortTime.isChecked(): - ops = {'n_components': 1, 'n_X': 100, 'alpha': 1., 'K': 1., - 'nPC': 200, 'constraints': 2, 'annealing': True, 'init': 'pca', - 'start_time': 0, 'end_time': -1} - if not hasattr(self, 'isort2'): - self.model = Rastermap(n_components=ops['n_components'], n_X=ops['n_X'], nPC=ops['nPC'], - init=ops['init'], alpha=ops['alpha'], K=ops['K'], constraints=ops['constraints'], - annealing=ops['annealing']) - unorm = (self.u**2).sum(axis=0)**0.5 - self.model.fit(self.sp.T, u=self.v * unorm, v=self.u / unorm) - self.isort2 = np.argsort(self.model.embedding[:,0]) + ops = { + "n_components": 1, + "n_X": 100, + "alpha": 1., + "K": 1., + "nPC": 200, + "constraints": 2, + "annealing": True, + "init": "pca", + "start_time": 0, + "end_time": -1 + } + if not hasattr(self, "isort2"): + self.model = Rastermap() + #unorm = (self.u**2).sum(axis=0)**0.5 + self.model.fit(self.sp.T, Usv=self.Vsv, Vsv=self.Usv) + self.isort2 = np.argsort(self.model.embedding[:, 0]) self.tsort = self.isort2.astype(np.int32) else: - self.tsort = np.arange(0,self.sp.shape[1]).astype(np.int32) + self.tsort = np.arange(0, self.sp.shape[1]).astype(np.int32) self.neural_sorting(self.comboBox.currentIndex()) - def neural_sorting(self,i): - if i==0: - self.isort = np.argsort(self.u[:,int(self.PCedit.text())-1]) - elif i==1: + def neural_sorting(self, i): + if i == 0: + self.isort = np.argsort(self.Usv[:, int(self.PCedit.text()) - 1]) + elif i == 1: self.isort = self.isort1 - if i<2: - self.spF = gaussian_filter1d(self.sp[np.ix_(self.isort,self.tsort)].T, - np.minimum(8,np.maximum(1,int(self.sp.shape[0]*0.005))), - axis=1) + if i < 2: + self.spF = gaussian_filter1d( + self.sp[np.ix_(self.isort, self.tsort)].T, + np.minimum(8, np.maximum(1, int(self.sp.shape[0] * 0.005))), axis=1) self.spF = self.spF.T else: self.spF = self.sp diff --git a/suite2p/io/__init__.py b/suite2p/io/__init__.py index 149e40a16..7c97207d7 100644 --- a/suite2p/io/__init__.py +++ b/suite2p/io/__init__.py @@ -1,8 +1,15 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from .h5 import h5py_to_binary +from .raw import raw_to_binary from .nwb import save_nwb, read_nwb, nwb_to_binary from .save import combined, compute_dydx, save_mat from .sbx import sbx_to_binary +from .movie import movie_to_binary from .tiff import mesoscan_to_binary, ome_to_binary, tiff_to_binary, generate_tiff_filename, save_tiff -from .binary import BinaryFile, BinaryRWFile, BinaryFileCombined +from .nd2 import nd2_to_binary +from .dcam import dcimg_to_binary +from .binary import BinaryFile, BinaryFileCombined from .server import send_jobs from .bruker_raw import brukerRaw_to_binary diff --git a/suite2p/io/binary.py b/suite2p/io/binary.py index 677f11e16..0ba8c1e80 100644 --- a/suite2p/io/binary.py +++ b/suite2p/io/binary.py @@ -1,11 +1,19 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from typing import Optional, Tuple, Sequence from contextlib import contextmanager +from tifffile import TiffWriter + import os import numpy as np -class BinaryRWFile: - def __init__(self, Ly: int, Lx: int, filename: str): + +class BinaryFile: + + def __init__(self, Ly: int, Lx: int, filename: str, n_frames: int = None, + dtype: str = "int16"): """ Creates/Opens a Suite2p BinaryFile for reading and/or writing image data that acts like numpy array @@ -21,15 +29,23 @@ def __init__(self, Ly: int, Lx: int, filename: str): self.Ly = Ly self.Lx = Lx self.filename = filename - if not os.path.exists(filename): - self.file = open(filename, mode='w+b') - else: - self.file = open(filename, mode='r+b') + self.dtype = dtype + write = (not os.path.exists(self.filename)) + + if write and n_frames is None: + raise ValueError( + "need to provide number of frames n_frames when writing file") + elif not write: + n_frames = self.n_frames + shape = (n_frames, self.Ly, self.Lx) + mode = "w+" if write else "r+" + self.file = np.memmap(self.filename, mode=mode, dtype=self.dtype, shape=shape) self._index = 0 self._can_read = True @staticmethod - def convert_numpy_file_to_suite2p_binary(from_filename: str, to_filename: str) -> None: + def convert_numpy_file_to_suite2p_binary(from_filename: str, + to_filename: str) -> None: """ Works with npz files, pickled npy files, etc. @@ -50,9 +66,7 @@ def nbytesread(self): @property def nbytes(self): """total number of bytes in the file.""" - with temporary_pointer(self.file) as f: - f.seek(0, 2) - return f.tell() + return os.path.getsize(self.filename) @property def n_frames(self) -> int: @@ -90,8 +104,8 @@ def close(self) -> None: """ Closes the file. """ - self.file.close() - + self.file._mmap.close() + def __enter__(self): return self @@ -99,248 +113,15 @@ def __exit__(self, exc_type, exc_val, exc_tb): self.close() def __setitem__(self, *items): - frame_indices, data = items - self.ix_write(data=data, indices=from_slice(frame_indices)) - - def __getitem__(self, *items): - frame_indices, *crop = items - if isinstance(frame_indices, int): - frames = self.ix(indices=[frame_indices], is_slice=False) - elif isinstance(frame_indices, slice): - frames = self.ix(indices=from_slice(frame_indices), is_slice=True) - else: - frames = self.ix(indices=frame_indices, is_slice=False) - return frames[(slice(None),) + crop] if crop else frames - - def sampled_mean(self) -> float: - """ - Returns the sampled mean. - """ - n_frames = self.n_frames - nsamps = min(n_frames, 1000) - inds = np.linspace(0, n_frames, 1+nsamps).astype(np.int64)[:-1] - frames = self.ix(indices=inds).astype(np.float32) - return frames.mean(axis=0) - - def ix_write(self, data, indices: Sequence[int]): - """ - Writes the frames at index values "indices". - - Parameters - ---------- - indices: int array - The frame indices to get, must be a slice - - """ - i0 = indices[0] - batch_size = len(indices) - if self._index != i0: - self.file.seek(self.nbytesread * (i0 - self._index), 1) - self._index = i0 + batch_size - self.write(data) - - def ix(self, indices: Sequence[int], is_slice=False): - """ - Returns the frames at index values "indices". - - Parameters - ---------- - indices: int array - The frame indices to get - - is_slice: bool, default False - if indices are slice, read slice with "read" function and return - - Returns - ------- - frames: len(indices) x Ly x Lx - The requested frames - """ - if not is_slice: - frames = np.empty((len(indices), self.Ly, self.Lx), np.int16) - # load and bin data - with temporary_pointer(self.file) as f: - for frame, ixx in zip(frames, indices): - if ixx!=self._index: - f.seek(self.nbytesread * ixx) - buff = f.read(self.nbytesread) - data = np.frombuffer(buff, dtype=np.int16, offset=0) - frame[:] = np.reshape(data, (self.Ly, self.Lx)) - #self._index = ixx+1 - else: - i0 = indices[0] - batch_size = len(indices) - if self._index != i0: - self.file.seek(self.nbytesread * i0) - _, frames = self.read(batch_size=batch_size, dtype=np.int16) - self._index = i0 + batch_size - - return frames - - @property - def data(self) -> np.ndarray: - """ - Returns all the frames in the file. - - Returns - ------- - frames: nImg x Ly x Lx - The frame data - """ - with temporary_pointer(self.file) as f: - return np.fromfile(f, np.int16).reshape(-1, self.Ly, self.Lx) - - def read(self, batch_size=1, dtype=np.float32) -> Optional[Tuple[np.ndarray, np.ndarray]]: - """ - Returns the next frame(s) in the file and its associated indices. - - Parameters - ---------- - batch_size: int - The number of frames to read at once. - frames: batch_size x Ly x Lx - The frame data - """ - if not self._can_read: - raise IOError("BinaryFile needs to write before it can read again.") - nbytes = self.nbytesread * batch_size - buff = self.file.read(nbytes) - data = np.frombuffer(buff, dtype=np.int16, offset=0).reshape(-1, self.Ly, self.Lx).astype(dtype) - if data.size == 0: - return None - indices = np.arange(self._index, self._index + data.shape[0]) - self._index += data.shape[0] - return indices, data - - def write(self, data: np.ndarray) -> None: - """ - Writes frame(s) to the file. - - Parameters - ---------- - data: 2D or 3D array - The frame(s) to write. Should be the same width and height as the other frames in the file. - """ - self.file.write(bytearray(np.minimum(data, 2 ** 15 - 2).astype('int16'))) - -class BinaryFile: - - def __init__(self, Ly: int, Lx: int, read_filename: str, write_filename: Optional[str] = None): - """ - Creates/Opens a Suite2p BinaryFile for reading and writing image data - - Parameters - ---------- - Ly: int - The height of each frame - Lx: int - The width of each frame - read_filename: str - The filename of the file to read from - write_filename: str - The filename to write to, if different from the read_filename (optional) - """ - self.Ly = Ly - self.Lx = Lx - self.read_filename = read_filename - self.write_filename = write_filename - - if read_filename == write_filename: - self.read_file = open(read_filename, mode='r+b') - self.write_file = self.read_file - elif read_filename and not write_filename: - self.read_file = open(read_filename, mode='rb') - self.write_file = write_filename - elif read_filename and write_filename and read_filename != write_filename: - self.read_file = open(read_filename, mode='rb') - self.write_file = open(write_filename, mode='wb') + indices, data = items + if data.dtype != "int16": + self.file[indices] = np.minimum(data, 2**15 - 2).astype("int16") else: - raise IOError("Invalid combination of read_file and write_file") - - self._index = 0 - self._can_read = True - - @staticmethod - def convert_numpy_file_to_suite2p_binary(from_filename: str, to_filename: str) -> None: - """ - Works with npz files, pickled npy files, etc. - - Parameters - ---------- - from_filename: str - The npy file to convert - to_filename: str - The binary file that will be created - """ - np.load(from_filename).tofile(to_filename) - - @property - def nbytesread(self): - """number of bytes per frame (FIXED for given file)""" - return np.int64(2 * self.Ly * self.Lx) - - @property - def nbytes(self): - """total number of bytes in the read_file.""" - with temporary_pointer(self.read_file) as f: - f.seek(0, 2) - return f.tell() - - @property - def n_frames(self) -> int: - """total number of frames in the read_file.""" - return int(self.nbytes // self.nbytesread) - - @property - def shape(self) -> Tuple[int, int, int]: - """ - The dimensions of the data in the file - - Returns - ------- - n_frames: int - The number of frames - Ly: int - The height of each frame - Lx: int - The width of each frame - """ - return self.n_frames, self.Ly, self.Lx - - @property - def size(self) -> int: - """ - Returns the total number of pixels - - Returns - ------- - size: int - """ - return np.prod(np.array(self.shape).astype(np.int64)) - - def close(self) -> None: - """ - Closes the file. - """ - self.read_file.close() - if self.write_file: - self.write_file.close() - - def __enter__(self): - return self - - def __exit__(self, exc_type, exc_val, exc_tb): - self.close() + self.file[indices] = data def __getitem__(self, *items): - frame_indices, *crop = items - if isinstance(frame_indices, int): - frames = self.ix(indices=[frame_indices], is_slice=False) - elif isinstance(frame_indices, slice): - frames = self.ix(indices=from_slice(frame_indices), is_slice=True) - else: - frames = self.ix(indices=frame_indices) - return frames[(slice(None),) + crop] if crop else frames + indices, *crop = items + return self.file[indices] def sampled_mean(self) -> float: """ @@ -348,73 +129,10 @@ def sampled_mean(self) -> float: """ n_frames = self.n_frames nsamps = min(n_frames, 1000) - inds = np.linspace(0, n_frames, 1+nsamps).astype(np.int64)[:-1] - frames = self.ix(indices=inds).astype(np.float32) + inds = np.linspace(0, n_frames, 1 + nsamps).astype(np.int64)[:-1] + frames = self.file[inds].astype(np.float32) return frames.mean(axis=0) - def iter_frames(self, batch_size: int = 1, dtype=np.float32): - """ - Iterates through each set of frames, depending on batch_size, yielding both the frame index and frame data. - - Parameters - --------- - batch_size: int - The number of frames to get at a time - dtype: np.dtype - The nympy data type that the data should return as - - Yields - ------ - indices: array int - The frame indices. - data: batch_size x Ly x Lx - The frames - """ - while True: - results = self.read(batch_size=batch_size, dtype=dtype) - if results is None: - break - indices, data = results - yield indices, data - - def ix(self, indices: Sequence[int], is_slice=False): - """ - Returns the frames at index values "indices". - - Parameters - ---------- - indices: int array - The frame indices to get - - is_slice: bool, default False - if indices are slice, read slice with "read" function and return - - Returns - ------- - frames: len(indices) x Ly x Lx - The requested frames - """ - if not is_slice: - frames = np.empty((len(indices), self.Ly, self.Lx), np.int16) - # load and bin data - with temporary_pointer(self.read_file) as f: - for frame, ixx in zip(frames, indices): - if ixx!=self._index: - f.seek(self.nbytesread * ixx) - buff = f.read(self.nbytesread) - data = np.frombuffer(buff, dtype=np.int16, offset=0) - frame[:] = np.reshape(data, (self.Ly, self.Lx)) - self._index = ixx+1 - else: - i0 = indices[0] - batch_size = len(indices) - if self._index != i0: - self.read_file.seek(self.nbytesread * i0) - _, frames = self.read(batch_size=batch_size, dtype=np.int16) - self._index = i0 + batch_size - - return frames - @property def data(self) -> np.ndarray: """ @@ -422,56 +140,15 @@ def data(self) -> np.ndarray: Returns ------- - frames: nImg x Ly x Lx + frames: n_frames x Ly x Lx The frame data """ - with temporary_pointer(self.read_file) as f: - return np.fromfile(f, np.int16).reshape(-1, self.Ly, self.Lx) + return self.file[:] - def read(self, batch_size=1, dtype=np.float32) -> Optional[Tuple[np.ndarray, np.ndarray]]: - """ - Returns the next frame(s) in the file and its associated indices. - - Parameters - ---------- - batch_size: int - The number of frames to read at once. - frames: batch_size x Ly x Lx - The frame data - """ - if not self._can_read: - raise IOError("BinaryFile needs to write before it can read again.") - nbytes = self.nbytesread * batch_size - buff = self.read_file.read(nbytes) - data = np.frombuffer(buff, dtype=np.int16, offset=0).reshape(-1, self.Ly, self.Lx).astype(dtype) - if data.size == 0: - return None - indices = np.arange(self._index, self._index + data.shape[0]) - self._index += data.shape[0] - if self.read_file is self.write_file: - self._can_read = False - return indices, data - - def write(self, data: np.ndarray) -> None: - """ - Writes frame(s) to the file. - - Parameters - ---------- - data: 2D or 3D array - The frame(s) to write. Should be the same width and height as the other frames in the file. - """ - if self._can_read and self.read_file is self.write_file: - raise IOError("BinaryFile needs to read before it can write again.") - if not self.write_file: - raise IOError("No write_file specified, writing not possible.") - if self.read_file is self.write_file: - self.write_file.seek(-2 * data.size, 1) - self._can_read = True - self.write_file.write(bytearray(np.minimum(data, 2 ** 15 - 2).astype('int16'))) - - def bin_movie(self, bin_size: int, x_range: Optional[Tuple[int, int]] = None, y_range: Optional[Tuple[int, int]] = None, - bad_frames: Optional[np.ndarray] = None, reject_threshold: float = 0.5) -> np.ndarray: + def bin_movie(self, bin_size: int, x_range: Optional[Tuple[int, int]] = None, + y_range: Optional[Tuple[int, int]] = None, + bad_frames: Optional[np.ndarray] = None, + reject_threshold: float = 0.5) -> np.ndarray: """ Returns binned movie that rejects bad_frames (bool array) and crops to (y_range, x_range). @@ -493,13 +170,14 @@ def bin_movie(self, bin_size: int, x_range: Optional[Tuple[int, int]] = None, y_ The frames """ - good_frames = ~bad_frames if bad_frames is not None else np.ones(self.n_frames, dtype=bool) + good_frames = ~bad_frames if bad_frames is not None else np.ones( + self.n_frames, dtype=bool) batch_size = min(np.sum(good_frames), 500) batches = [] - for indices, data in self.iter_frames(batch_size=batch_size): - if len(data) != batch_size: - break + for k in np.arange(0, self.n_frames, batch_size): + indices = slice(k, min(k + batch_size, self.n_frames)) + data = self.file[indices] if x_range is not None and y_range is not None: data = data[:, slice(*y_range), slice(*x_range)] # crop @@ -515,14 +193,33 @@ def bin_movie(self, bin_size: int, x_range: Optional[Tuple[int, int]] = None, y_ mov = np.stack(batches) return mov + def write_tiff(self, fname, range_dict={}): + "Writes BinaryFile's contents using selected ranges from range_dict into a tiff file." + n_frames, Ly, Lx = self.shape + frame_range, y_range, x_range = (0,n_frames), (0, Ly), (0, Lx) + with TiffWriter(fname, bigtiff=True) as f: + # Iterate through current data and write each frame to a tiff + # All ranges should be Tuples(int,int) + if 'frame_range' in range_dict: + frame_range = range_dict['frame_range'] + if 'x_range' in range_dict: + x_range = range_dict['x_range'] + if 'y_range' in range_dict: + y_range = range_dict['y_range'] + print('Frame Range: {}, y_range: {}, x_range{}'.format(frame_range, y_range, x_range)) + for i in range(frame_range[0], frame_range[1]): + curr_frame = np.floor(self.file[i, y_range[0]:y_range[1], x_range[0]:x_range[1]]).astype(np.int16) + f.write(curr_frame, contiguous=True) + print('Tiff has been saved to {}'.format(fname)) def from_slice(s: slice) -> Optional[np.ndarray]: """Creates an np.arange() array from a Python slice object. Helps provide numpy-like slicing interfaces.""" - return np.arange(s.start, s.stop, s.step) if any([s.start, s.stop, s.step]) else None + return np.arange(s.start, s.stop, s.step) if any([s.start, s.stop, s.step + ]) else None def binned_mean(mov: np.ndarray, bin_size) -> np.ndarray: - """Returns an array with the mean of each time bin (of size 'bin_size').""" + """Returns an array with the mean of each time bin (of size "bin_size").""" n_frames, Ly, Lx = mov.shape mov = mov[:(n_frames // bin_size) * bin_size] return mov.reshape(-1, bin_size, Ly, Lx).astype(np.float32).mean(axis=1) @@ -535,10 +232,11 @@ def temporary_pointer(file): yield file file.seek(orig_pointer) + class BinaryFileCombined: - def __init__(self, LY: int, LX: int, Ly: np.ndarray, Lx: np.ndarray, - dy: np.ndarray, dx: np.ndarray, read_filenames: str): + def __init__(self, LY: int, LX: int, Ly: np.ndarray, Lx: np.ndarray, dy: np.ndarray, + dx: np.ndarray, read_filenames: str): """ Creates/Opens a Suite2p BinaryFile for reading image data across planes @@ -566,8 +264,15 @@ def __init__(self, LY: int, LX: int, Ly: np.ndarray, Lx: np.ndarray, self.dy = dy self.dx = dx self.read_filenames = read_filenames - - self.read_files = [open(read_filename, mode='rb') for read_filename in self.read_filenames] + + self.read_files = [ + BinaryFile(ly, lx, read_filename) + for (ly, lx, read_filename) in zip(self.Ly, self.Lx, self.read_filenames) + ] + n_frames = np.zeros(len(self.read_files)) + for rf in self.read_files: + n_frames[i] = rf.n_frames + assert (n_frames == n_frames[0]).sum() == len(self.read_files) self._index = 0 self._can_read = True @@ -584,141 +289,27 @@ def close(self) -> None: for n in range(len(self.read_files)): self.read_files[n].close() - @property - def nbytesread(self): - """number of bytes per frame (FIXED for given file)""" - return (2 * self.Ly * self.Lx).astype(np.int64) - @property def nbytes(self): """total number of bytes in the read_file.""" nbytes = np.zeros(len(self.read_files), np.int64) - for i,read_file in enumerate(self.read_files): - with temporary_pointer(read_file) as f: - f.seek(0, 2) - nbytes[i] = f.tell() + for i, read_file in enumerate(self.read_files): + nbytes[i] = read_file.nbytes return nbytes @property def n_frames(self) -> int: """total number of fraames in the read_file.""" - return int(self.nbytes[0] // self.nbytesread[0]) - - - def read(self, batch_size=1, dtype=np.float32) -> Optional[Tuple[np.ndarray, np.ndarray]]: - """ - Returns the next frame(s) in the file and its associated indices. - - Parameters - ---------- - batch_size: int - The number of frames to read at once. - frames: batch_size x Ly x Lx - The frame data - """ - if not self._can_read: - raise IOError("BinaryFile needs to write before it can read again.") - - for n, (nbytesr, read_file) in enumerate(zip(self.nbytesread, self.read_files)): - nbytes = nbytesr * batch_size - buff = read_file.read(nbytes) - data = np.frombuffer(buff, dtype=np.int16, offset=0).reshape(-1, self.Ly[n], self.Lx[n]).astype(dtype) - if data.size == 0: - return None - if n==0: - data_all = np.zeros((data.shape[0], self.LY, self.LX), dtype=np.int16) - data_all[:, self.dy[n]:self.dy[n]+self.Ly[n], self.dx[n]:self.dx[n]+self.Lx[n]] = data - - indices = np.arange(self._index, self._index + data.shape[0]) - self._index += data.shape[0] - - return indices, data_all + return self.read_files[0].n_frames def __getitem__(self, *items): - frame_indices, *crop = items - if isinstance(frame_indices, int): - frames = self.ix(indices=[frame_indices], is_slice=False) - elif isinstance(frame_indices, slice): - frames = self.ix(indices=from_slice(frame_indices), is_slice=True) - else: - frames = self.ix(indices=frame_indices) - return frames[(slice(None),) + crop] if crop else frames - - - def ix(self, indices: Sequence[int], is_slice=False): - """ - Returns the frames at index values "indices". - - Parameters - ---------- - indices: int array - The frame indices to get + indices, *crop = items + data0 = self.read_files[0][indices] + data_all = np.zeros((data0.shape[0], self.LY, self.LX), "int16") + for n, read_file in enumerate(self.read_files): + if n > 0: + data0 = self.read_file[indices] + data_all[:, self.dy[n]:self.dy[n] + self.Ly[n], + self.dx[n]:self.dx[n] + self.Lx[n]] = data0 - is_slice: bool, default False - if indices are slice, read slice with "read" function and return - - Returns - ------- - frames: len(indices) x Ly x Lx - The requested frames - """ - for n, (nbytesr, read_file) in enumerate(zip(self.nbytesread, self.read_files)): - - if not is_slice: - frames = np.empty((len(indices), self.Ly[n], self.Lx[n]), np.int16) - # load and bin data - with temporary_pointer(read_file) as f: - for frame, ixx in zip(frames, indices): - if ixx!=self._index: - f.seek(nbytesr * ixx) - buff = f.read(nbytesr) - data = np.frombuffer(buff, dtype=np.int16, offset=0) - frame[:] = np.reshape(data, (self.Ly[n], self.Lx[n])) - if n==len(self.Ly)-1: - self._index = ixx+1 - else: - i0 = indices[0] - batch_size = len(indices) - if self._index != i0: - read_file.seek(nbytesr * i0) - buff = read_file.read(nbytesr * batch_size) - data = np.frombuffer(buff, dtype=np.int16, offset=0) - frames = np.reshape(data, (-1, self.Ly[n], self.Lx[n])) - if n==len(self.Ly)-1: - self._index = i0 + batch_size - - if frames.size == 0: - return None - if n==0: - data_all = np.zeros((frames.shape[0], self.LY, self.LX), dtype=np.int16) - data_all[:, self.dy[n]:self.dy[n]+self.Ly[n], self.dx[n]:self.dx[n]+self.Lx[n]] = frames - - return data_all - - def iter_frames(self, batch_size: int = 1, dtype=np.float32): - """ - Iterates through each set of frames, depending on batch_size, yielding both the frame index and frame data. - - Parameters - --------- - batch_size: int - The number of frames to get at a time - dtype: np.dtype - The nympy data type that the data should return as - - Yields - ------ - indices: array int - The frame indices. - data: batch_size x Ly x Lx - The frames - """ - while True: - results = self.read(batch_size=batch_size, dtype=dtype) - if results is None: - break - indices, data = results - yield indices, data - - diff --git a/suite2p/io/dcam.py b/suite2p/io/dcam.py new file mode 100644 index 000000000..e45abe2e9 --- /dev/null +++ b/suite2p/io/dcam.py @@ -0,0 +1,110 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" +import os +import gc +import math +import time +import numpy as np +from . import utils + +try: + import dcimg + DCIMG = True +except ImportError: + DCIMG = False + + +def dcimg_to_binary(ops): + """finds dcimg files and writes them to binaries + + Parameters + ---------- + ops: dictionary + "nplanes", "data_path", "save_path", "save_folder", "fast_disk", + "nchannels", "keep_movie_raw", "look_one_level_down" + + Returns + ------- + ops : dictionary of first plane + ops["reg_file"] or ops["raw_file"] is created binary + assigns keys "Ly", "Lx", "tiffreader", "first_tiffs", + "nframes", "meanImg", "meanImg_chan2" + """ + + t0 = time.time() + # copy ops to list where each element is ops for each plane + ops1 = utils.init_ops(ops) + + # open all binary files for writing + # look for dcimg in all requested folders + ops1, fs, reg_file, reg_file_chan2 = utils.find_files_open_binaries(ops1, False) + ops = ops1[0] + + # loop over all dcimg files + iall = 0 + ik = 0 + + for file_name in fs: + # open dcimg + dcimg_file = dcimg.DCIMGFile(file_name) + + nplanes = 1 + nchannels = 1 + nframes = dcimg_file.shape[0] + + iblocks = np.arange(0, nframes, ops1[0]["batch_size"]) + if iblocks[-1] < nframes: + iblocks = np.append(iblocks, nframes) + + if nchannels > 1: + nfunc = ops1[0]["functional_chan"] - 1 + else: + nfunc = 0 + + # loop over all frames + for ichunk, onset in enumerate(iblocks[:-1]): + offset = iblocks[ichunk + 1] + im_p = dcimg_file[onset:offset, :, :] + im2mean = im_p.mean(axis=0).astype(np.float32) / len(iblocks) + for ichan in range(nchannels): + nframes = im_p.shape[0] + im2write = im_p[:] + for j in range(0, nplanes): + if iall == 0: + ops1[j]["meanImg"] = np.zeros((im_p.shape[1], im_p.shape[2]), + np.float32) + if nchannels > 1: + ops1[j]["meanImg_chan2"] = np.zeros( + (im_p.shape[1], im_p.shape[2]), np.float32) + ops1[j]["nframes"] = 0 + if ichan == nfunc: + ops1[j]["meanImg"] += np.squeeze(im2mean) + reg_file[j].write( + bytearray(im2write[:].astype("uint16"))) + else: + ops1[j]["meanImg_chan2"] += np.squeeze(im2mean) + reg_file_chan2[j].write( + bytearray(im2write[:].astype("uint16"))) + + ops1[j]["nframes"] += im2write.shape[0] + ik += nframes + iall += nframes + + dcimg_file.close() + + # write ops files + do_registration = ops1[0]["do_registration"] + for ops in ops1: + ops["Ly"] = dcimg_file.shape[1] + ops["Lx"] = dcimg_file.shape[2] + if not do_registration: + ops["yrange"] = np.array([0, ops["Ly"]]) + ops["xrange"] = np.array([0, ops["Lx"]]) + np.save(ops["ops_path"], ops) + # close all binary files and write ops files + for j in range(0, nplanes): + reg_file[j].close() + if nchannels > 1: + reg_file_chan2[j].close() + return ops1[0] diff --git a/suite2p/io/h5.py b/suite2p/io/h5.py index 895650228..6f84f27f4 100644 --- a/suite2p/io/h5.py +++ b/suite2p/io/h5.py @@ -1,6 +1,13 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import math -import h5py +try: + import h5py + HAS_H5PY=True +except: + HAS_H5PY=False import numpy as np import os @@ -12,98 +19,110 @@ def h5py_to_binary(ops): Parameters ---------- ops : dictionary - 'nplanes', 'h5_path', 'h5_key', 'save_path', 'save_folder', 'fast_disk', - 'nchannels', 'keep_movie_raw', 'look_one_level_down' + "nplanes", "h5_path", "h5_key", "save_path", "save_folder", "fast_disk", + "nchannels", "keep_movie_raw", "look_one_level_down" Returns ------- ops : dictionary of first plane - 'Ly', 'Lx', ops['reg_file'] or ops['raw_file'] is created binary + "Ly", "Lx", ops["reg_file"] or ops["raw_file"] is created binary """ + if not HAS_H5PY: + raise ImportError("h5py is required for this file type, please 'pip install h5py'") + ops1 = init_ops(ops) - nplanes = ops1[0]['nplanes'] - nchannels = ops1[0]['nchannels'] + nplanes = ops1[0]["nplanes"] + nchannels = ops1[0]["nchannels"] # open all binary files for writing ops1, h5list, reg_file, reg_file_chan2 = find_files_open_binaries(ops1, True) for ops in ops1: - if not ops.get('data_path'): - ops['data_path'] = [os.path.dirname(ops['h5py'])] - ops1[0]['h5list'] = h5list - keys = ops1[0]['h5py_key'] + if not ops.get("data_path"): + ops["data_path"] = [os.path.dirname(ops["h5py"])] + ops1[0]["h5list"] = h5list + keys = ops1[0]["h5py_key"] if isinstance(keys, str): keys = [keys] iall = 0 - for j in range(ops['nplanes']): - ops1[j]['nframes_per_folder'] = np.zeros(len(h5list), np.int32) + for j in range(ops["nplanes"]): + ops1[j]["nframes_per_folder"] = np.zeros(len(h5list), np.int32) - for ih5,h5 in enumerate(h5list): - with h5py.File(h5, 'r') as f: + for ih5, h5 in enumerate(h5list): + with h5py.File(h5, "r") as f: # if h5py data is 5D or 4D instead of 3D, assume that - # data = (nchan x) (nframes x) nplanes x pixels x pixels + # data = (nchan x) (nframes x) nplanes x pixels x pixels # 5D/4D data is flattened to process the same way as interleaved data for key in keys: hdims = f[key].ndim # keep track of the plane identity of the first frame (channel identity is assumed always 0) - ncp = nplanes*nchannels - nbatch = ncp * math.ceil(ops1[0]['batch_size'] / ncp) - nframes_all = f[key].shape[0] if hdims == 3 else f[key].shape[0] * f[key].shape[1] + ncp = nplanes * nchannels + nbatch = ncp * math.ceil(ops1[0]["batch_size"] / ncp) + nframes_all = f[key].shape[ + 0] if hdims == 3 else f[key].shape[0] * f[key].shape[1] nbatch = min(nbatch, nframes_all) - nfunc = ops['functional_chan'] - 1 if nchannels > 1 else 0 + nfunc = ops["functional_chan"] - 1 if nchannels > 1 else 0 # loop over all tiffs ik = 0 while 1: - if hdims==3: - irange = np.arange(ik, min(ik+nbatch, nframes_all), 1) - if irange.size==0: + if hdims == 3: + irange = np.arange(ik, min(ik + nbatch, nframes_all), 1) + if irange.size == 0: break im = f[key][irange, :, :] else: - irange = np.arange(ik/ncp, - min(ik/ncp + nbatch/ncp, nframes_all/ncp), 1) - if irange.size==0: + irange = np.arange( + ik / ncp, min(ik / ncp + nbatch / ncp, nframes_all / ncp), + 1) + if irange.size == 0: break - im = f[key][irange,...] - if im.ndim==5 and im.shape[0] == nchannels: - im = im.transpose((1,0,2,3,4)) + im = f[key][irange, ...] + if im.ndim == 5 and im.shape[0] == nchannels: + im = im.transpose((1, 0, 2, 3, 4)) # flatten to frames x pixels x pixels im = np.reshape(im, (-1, im.shape[-2], im.shape[-1])) nframes = im.shape[0] - if type(im[0,0,0]) == np.uint16: + if type(im[0, 0, 0]) == np.uint16: im = im / 2 - for j in range(0,nplanes): - if iall==0: - ops1[j]['meanImg'] = np.zeros((im.shape[1],im.shape[2]),np.float32) - if nchannels>1: - ops1[j]['meanImg_chan2'] = np.zeros((im.shape[1],im.shape[2]),np.float32) - ops1[j]['nframes'] = 0 - i0 = nchannels * ((j)%nplanes) - im2write = im[np.arange(int(i0)+nfunc, nframes, ncp),:,:].astype(np.int16) + for j in range(0, nplanes): + if iall == 0: + ops1[j]["meanImg"] = np.zeros((im.shape[1], im.shape[2]), + np.float32) + if nchannels > 1: + ops1[j]["meanImg_chan2"] = np.zeros( + (im.shape[1], im.shape[2]), np.float32) + ops1[j]["nframes"] = 0 + i0 = nchannels * ((j) % nplanes) + im2write = im[np.arange(int(i0) + + nfunc, nframes, ncp), :, :].astype( + np.int16) reg_file[j].write(bytearray(im2write)) - ops1[j]['meanImg'] += im2write.astype(np.float32).sum(axis=0) - if nchannels>1: - im2write = im[np.arange(int(i0)+1-nfunc, nframes, ncp),:,:].astype(np.int16) + ops1[j]["meanImg"] += im2write.astype(np.float32).sum(axis=0) + if nchannels > 1: + im2write = im[np.arange(int(i0) + 1 - + nfunc, nframes, ncp), :, :].astype( + np.int16) reg_file_chan2[j].write(bytearray(im2write)) - ops1[j]['meanImg_chan2'] += im2write.astype(np.float32).sum(axis=0) - ops1[j]['nframes'] += im2write.shape[0] - ops1[j]['nframes_per_folder'][ih5] += im2write.shape[0] + ops1[j]["meanImg_chan2"] += im2write.astype( + np.float32).sum(axis=0) + ops1[j]["nframes"] += im2write.shape[0] + ops1[j]["nframes_per_folder"][ih5] += im2write.shape[0] ik += nframes iall += nframes # write ops files - do_registration = ops1[0]['do_registration'] + do_registration = ops1[0]["do_registration"] for ops in ops1: - ops['Ly'] = im2write.shape[1] - ops['Lx'] = im2write.shape[2] + ops["Ly"] = im2write.shape[1] + ops["Lx"] = im2write.shape[2] if not do_registration: - ops['yrange'] = np.array([0,ops['Ly']]) - ops['xrange'] = np.array([0,ops['Lx']]) - ops['meanImg'] /= ops['nframes'] + ops["yrange"] = np.array([0, ops["Ly"]]) + ops["xrange"] = np.array([0, ops["Lx"]]) + ops["meanImg"] /= ops["nframes"] if nchannels > 1: - ops['meanImg_chan2'] /= ops['nframes'] - np.save(ops['ops_path'], ops) + ops["meanImg_chan2"] /= ops["nframes"] + np.save(ops["ops_path"], ops) # close all binary files and write ops files for j in range(nplanes): reg_file[j].close() diff --git a/suite2p/io/movie.py b/suite2p/io/movie.py new file mode 100644 index 000000000..3693294ec --- /dev/null +++ b/suite2p/io/movie.py @@ -0,0 +1,210 @@ +try: + import cv2 + HAS_CV2 = True +except: + HAS_CV2 = False + +import numpy as np +import time +from typing import Optional, Tuple, Sequence +from .utils import find_files_open_binaries, init_ops + +class VideoReader: + """ Uses cv2 to read video files """ + def __init__(self, filenames: list): + """ Uses cv2 to open video files and obtain their details for reading + + Parameters + ------------ + filenames : int + list of video files + """ + cumframes = [0] + containers = [] + Ly = [] + Lx = [] + for f in filenames: # for each video in the list + cap = cv2.VideoCapture(f) + containers.append(cap) + Lx.append(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))) + Ly.append(int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) + cumframes.append(cumframes[-1] + int(cap.get(cv2.CAP_PROP_FRAME_COUNT))) + cumframes = np.array(cumframes).astype(int) + Ly = np.array(Ly) + Lx = np.array(Lx) + if (Ly==Ly[0]).sum() < len(Ly) or (Lx==Lx[0]).sum() < len(Lx): + raise ValueError("videos are not all the same size in y and x") + else: + Ly, Lx = Ly[0], Lx[0] + + self.filenames = filenames + self.cumframes = cumframes + self.n_frames = cumframes[-1] + self.Ly = Ly + self.Lx = Lx + self.containers = containers + self.fs = containers[0].get(cv2.CAP_PROP_FPS) + + def close(self) -> None: + """ + Closes the video files + """ + for i in range(len(self.containers)): # for each video in the list + cap = self.containers[i] + cap.release() + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + self.close() + + @property + def shape(self) -> Tuple[int, int, int]: + """ + The dimensions of the data in the file + + Returns + ------- + n_frames: int + The number of frames + Ly: int + The height of each frame + Lx: int + The width of each frame + """ + return self.n_frames, self.Ly, self.Lx + + def get_frames(self, cframes): + """ + read frames "cframes" from videos + + Parameters + ------------ + cframes : np.array + start and stop of frames to read, or consecutive list of frames to read + """ + cframes = np.maximum(0, np.minimum(self.n_frames - 1, cframes)) + cframes = np.arange(cframes[0], cframes[-1] + 1).astype(int) + # find which video the frames exist in (ivids is length of cframes) + ivids = (cframes[np.newaxis, :] >= self.cumframes[1:, np.newaxis]).sum(axis=0) + nk = 0 + im = np.zeros((len(cframes), self.Ly, self.Lx), "uint8") + for n in np.unique(ivids): # for each video in cumframes + cfr = cframes[ivids == n] + start = cfr[0] - self.cumframes[n] + end = cfr[-1] - self.cumframes[n] + 1 + nt0 = end - start + capture = self.containers[n] + if int(capture.get(cv2.CAP_PROP_POS_FRAMES)) != start: + capture.set(cv2.CAP_PROP_POS_FRAMES, start) + fc = 0 + ret = True + while fc < nt0 and ret: + ret, frame = capture.read() + if ret: + im[nk + fc] = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) + else: + print("img load failed, replacing with prev..") + im[nk + fc] = im[nk + fc - 1] + fc += 1 + nk += nt0 + return im + +def movie_to_binary(ops): + """ finds movie files and writes them to binaries + + Parameters + ---------- + ops : dictionary + "nplanes", "data_path", "save_path", "save_folder", "fast_disk", + "nchannels", "keep_movie_raw", "look_one_level_down" (optional: "subfolders") + + Returns + ------- + ops : dictionary of first plane + "Ly", "Lx", ops["reg_file"] or ops["raw_file"] is created binary + + """ + if not HAS_CV2: + raise ImportError("cv2 is required for this file type, please 'pip install opencv-python-headless'") + + ops1 = init_ops(ops) + + nplanes = ops1[0]["nplanes"] + nchannels = ops1[0]["nchannels"] + + # open all binary files for writing + ops1, filenames, reg_file, reg_file_chan2 = find_files_open_binaries(ops1) + + ik = 0 + for j in range(ops["nplanes"]): + ops1[j]["nframes_per_folder"] = np.zeros(len(filenames), np.int32) + + + ncp = nplanes * nchannels + nbatch = ncp * int(np.ceil(ops1[0]["batch_size"] / ncp)) + print(filenames) + t0 = time.time() + with VideoReader(filenames=filenames) as vr: + if ops1[0]["fs"]<=0: + for ops in ops1: + ops["fs"] = vr.fs + + nframes_all = vr.cumframes[-1] + nbatch = min(nbatch, nframes_all) + nfunc = ops["functional_chan"] - 1 if nchannels > 1 else 0 + # loop over all video frames + ik = 0 + while 1: + irange = np.arange(ik, min(ik + nbatch, nframes_all), 1) + if irange.size == 0: + break + im = vr.get_frames(irange).astype("int16") + nframes = im.shape[0] + for j in range(0, nplanes): + if ik == 0: + ops1[j]["meanImg"] = np.zeros((im.shape[1], im.shape[2]), + np.float32) + if nchannels > 1: + ops1[j]["meanImg_chan2"] = np.zeros( + (im.shape[1], im.shape[2]), np.float32) + ops1[j]["nframes"] = 0 + i0 = nchannels * ((j) % nplanes) + im2write = im[np.arange(int(i0) + + nfunc, nframes, ncp), :, :].astype( + np.int16) + reg_file[j].write(bytearray(im2write)) + ops1[j]["meanImg"] += im2write.astype(np.float32).sum(axis=0) + if nchannels > 1: + im2write = im[np.arange(int(i0) + 1 - + nfunc, nframes, ncp), :, :].astype( + np.int16) + reg_file_chan2[j].write(bytearray(im2write)) + ops1[j]["meanImg_chan2"] += im2write.astype( + np.float32).sum(axis=0) + ops1[j]["nframes"] += im2write.shape[0] + #ops1[j]["nframes_per_folder"][ih5] += im2write.shape[0] + ik += nframes + if ik % (nbatch * 4) == 0: + print("%d frames of binary, time %0.2f sec." % + (ik, time.time() - t0)) + + # write ops files + do_registration = ops1[0]["do_registration"] + for ops in ops1: + ops["Ly"] = im2write.shape[1] + ops["Lx"] = im2write.shape[2] + if not do_registration: + ops["yrange"] = np.array([0, ops["Ly"]]) + ops["xrange"] = np.array([0, ops["Lx"]]) + ops["meanImg"] /= ops["nframes"] + if nchannels > 1: + ops["meanImg_chan2"] /= ops["nframes"] + np.save(ops["ops_path"], ops) + # close all binary files and write ops files + for j in range(nplanes): + reg_file[j].close() + if nchannels > 1: + reg_file_chan2[j].close() + return ops1[0] diff --git a/suite2p/io/nd2.py b/suite2p/io/nd2.py new file mode 100644 index 000000000..7a2c722bc --- /dev/null +++ b/suite2p/io/nd2.py @@ -0,0 +1,126 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" +import os +import gc +import math +import time +import numpy as np +from . import utils + +try: + import nd2 + ND2 = True +except ImportError: + ND2 = False + +def nd2_to_binary(ops): + """finds nd2 files and writes them to binaries + + Parameters + ---------- + ops: dictionary + "nplanes", "data_path", "save_path", "save_folder", "fast_disk", + "nchannels", "keep_movie_raw", "look_one_level_down" + + Returns + ------- + ops : dictionary of first plane + ops["reg_file"] or ops["raw_file"] is created binary + assigns keys "Ly", "Lx", "tiffreader", "first_tiffs", + "nframes", "meanImg", "meanImg_chan2" + """ + + t0 = time.time() + # copy ops to list where each element is ops for each plane + ops1 = utils.init_ops(ops) + + # open all binary files for writing + # look for nd2s in all requested folders + ops1, fs, reg_file, reg_file_chan2 = utils.find_files_open_binaries(ops1, False) + ops = ops1[0] + + # loop over all nd2 files + iall = 0 + ik = 0 + for file_name in fs: + # open nd2 + nd2_file = nd2.ND2File(file_name) + nd2_dims = {k: i for i, k in enumerate(nd2_file.sizes)} + + valid_dimensions = "TZCYX" + assert set(nd2_dims) <= set( + valid_dimensions + ), f"Unknown dimensions {set(nd2_dims)-set(valid_dimensions)} in file {file_name}." + + # Sort the dimensions in the order of TZCYX, skipping the missing ones. + im = nd2_file.asarray().transpose( + [nd2_dims[x] for x in valid_dimensions if x in nd2_dims]) + + # Expand array to include the missing dimensions. + for i, dim in enumerate("TZC"): + if dim not in nd2_dims: + im = np.expand_dims(im, i) + + nplanes = nd2_file.sizes["Z"] if "Z" in nd2_file.sizes else 1 + nchannels = nd2_file.sizes["C"] if "C" in nd2_file.sizes else 1 + nframes = nd2_file.sizes["T"] if "T" in nd2_file.sizes else 1 + + iblocks = np.arange(0, nframes, ops1[0]["batch_size"]) + if iblocks[-1] < nframes: + iblocks = np.append(iblocks, nframes) + + if nchannels > 1: + nfunc = ops1[0]["functional_chan"] - 1 + else: + nfunc = 0 + + assert im.max() < 32768 and im.min() >= -32768, "image data is out of range" + im = im.astype(np.int16) + + # loop over all frames + for ichunk, onset in enumerate(iblocks[:-1]): + offset = iblocks[ichunk + 1] + im_p = np.array(im[onset:offset, :, :, :, :]) + im2mean = im_p.mean(axis=0).astype(np.float32) / len(iblocks) + for ichan in range(nchannels): + nframes = im_p.shape[0] + im2write = im_p[:, :, ichan, :, :] + for j in range(0, nplanes): + if iall == 0: + ops1[j]["meanImg"] = np.zeros((im_p.shape[3], im_p.shape[4]), + np.float32) + if nchannels > 1: + ops1[j]["meanImg_chan2"] = np.zeros( + (im_p.shape[3], im_p.shape[4]), np.float32) + ops1[j]["nframes"] = 0 + if ichan == nfunc: + ops1[j]["meanImg"] += np.squeeze(im2mean[j, ichan, :, :]) + reg_file[j].write( + bytearray(im2write[:, j, :, :].astype("int16"))) + else: + ops1[j]["meanImg_chan2"] += np.squeeze(im2mean[j, ichan, :, :]) + reg_file_chan2[j].write( + bytearray(im2write[:, j, :, :].astype("int16"))) + + ops1[j]["nframes"] += im2write.shape[0] + ik += nframes + iall += nframes + + nd2_file.close() + + # write ops files + do_registration = ops1[0]["do_registration"] + for ops in ops1: + ops["Ly"] = im.shape[3] + ops["Lx"] = im.shape[4] + if not do_registration: + ops["yrange"] = np.array([0, ops["Ly"]]) + ops["xrange"] = np.array([0, ops["Lx"]]) + np.save(ops["ops_path"], ops) + # close all binary files and write ops files + for j in range(0, nplanes): + reg_file[j].close() + if nchannels > 1: + reg_file_chan2[j].close() + return ops1[0] diff --git a/suite2p/io/nwb.py b/suite2p/io/nwb.py index c29b552b2..1f009764b 100644 --- a/suite2p/io/nwb.py +++ b/suite2p/io/nwb.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import datetime import gc import os @@ -38,17 +41,17 @@ def nwb_to_binary(ops): Parameters ---------- ops: dictionary - requires 'nwb_file' key - optional keys 'nwb_driver', 'nwb_series' - uses 'nplanes', 'save_path', 'save_folder', 'fast_disk', - 'nchannels', 'keep_movie_raw', 'look_one_level_down' + requires "nwb_file" key + optional keys "nwb_driver", "nwb_series" + uses "nplanes", "save_path", "save_folder", "fast_disk", + "nchannels", "keep_movie_raw", "look_one_level_down" Returns ------- ops : dictionary of first plane - ops['reg_file'] or ops['raw_file'] is created binary - assigns keys 'Ly', 'Lx', 'tiffreader', 'first_tiffs', - 'frames_per_folder', 'nframes', 'meanImg', 'meanImg_chan2' + ops["reg_file"] or ops["raw_file"] is created binary + assigns keys "Ly", "Lx", "tiffreader", "first_tiffs", + "frames_per_folder", "nframes", "meanImg", "meanImg_chan2" """ @@ -93,8 +96,7 @@ def nwb_to_binary(ops): raise ValueError("no TwoPhotonSeries in NWB file") elif len(TwoPhotonSeries_names) > 1: raise Warning( - "more than one TwoPhotonSeries in NWB file, choosing first one" - ) + "more than one TwoPhotonSeries in NWB file, choosing first one") ops["nwb_series"] = TwoPhotonSeries_names[0] series = nwbfile.acquisition[ops["nwb_series"]] @@ -119,9 +121,8 @@ def nwb_to_binary(ops): ops["meanImg"] += im.astype(np.float32).sum(axis=0) if ikend % (batch_size * 4) == 0: - print( - "%d frames of binary, time %0.2f sec." % (ikend, time.time() - t0) - ) + print("%d frames of binary, time %0.2f sec." % + (ikend, time.time() - t0)) gc.collect() # write ops files @@ -148,44 +149,38 @@ def read_nwb(fpath): # ROIs try: rois = nwbfile.processing["ophys"]["ImageSegmentation"][ - "PlaneSegmentation" - ]["pixel_mask"] + "PlaneSegmentation"]["pixel_mask"] multiplane = False except Exception: rois = nwbfile.processing["ophys"]["ImageSegmentation"][ - "PlaneSegmentation" - ]["voxel_mask"] + "PlaneSegmentation"]["voxel_mask"] multiplane = True stat = [] for n in range(len(rois)): if isinstance(rois[0], np.ndarray): - stat.append( - { - "ypix": np.array( - [rois[n][i][0].astype("int") for i in range(len(rois[n]))] - ), - "xpix": np.array( - [rois[n][i][1].astype("int") for i in range(len(rois[n]))] - ), - "lam": np.array([rois[n][i][-1] for i in range(len(rois[n]))]), - } - ) + stat.append({ + "ypix": + np.array( + [rois[n][i][0].astype("int") for i in range(len(rois[n]))]), + "xpix": + np.array( + [rois[n][i][1].astype("int") for i in range(len(rois[n]))]), + "lam": + np.array([rois[n][i][-1] for i in range(len(rois[n]))]), + }) else: - stat.append( - { - "ypix": rois[n]["x"].astype("int"), - "xpix": rois[n]["y"].astype("int"), - "lam": rois[n]["weight"], - } - ) + stat.append({ + "ypix": rois[n]["x"].astype("int"), + "xpix": rois[n]["y"].astype("int"), + "lam": rois[n]["weight"], + }) if multiplane: - stat[-1]['iplane'] = int(rois[n][0][-2]) + stat[-1]["iplane"] = int(rois[n][0][-2]) ops = default_ops() if multiplane: - nplanes = ( - np.max(np.array([stat[n]["iplane"] for n in range(len(stat))])) + 1 - ) + nplanes = (np.max(np.array([stat[n]["iplane"] for n in range(len(stat))])) + + 1) else: nplanes = 1 stat = np.array(stat) @@ -194,18 +189,13 @@ def read_nwb(fpath): ops1 = [] for iplane in range(nplanes): ops = default_ops() - bg_strs = ['meanImg', 'Vcorr', 'max_proj', 'meanImg_chan2'] - ops['nchannels'] = 1 + bg_strs = ["meanImg", "Vcorr", "max_proj", "meanImg_chan2"] + ops["nchannels"] = 1 for bstr in bg_strs: - if ( - bstr - in nwbfile.processing["ophys"]["Backgrounds_%d" % iplane].images - ): - ops[bstr] = np.array( - nwbfile.processing["ophys"]["Backgrounds_%d" % iplane][ - bstr - ].data - ) + if (bstr in nwbfile.processing["ophys"]["Backgrounds_%d" % + iplane].images): + ops[bstr] = np.array(nwbfile.processing["ophys"]["Backgrounds_%d" % + iplane][bstr].data) if bstr == "meanImg_chan2": ops["nchannels"] = 2 ops["Ly"], ops["Lx"] = ops[bg_strs[0]].shape @@ -215,7 +205,7 @@ def read_nwb(fpath): ops["fs"] = nwbfile.acquisition["TwoPhotonSeries"].rate ops1.append(ops.copy()) - stat = roi_stats(stat, ops['Ly'], ops['Lx'], ops['aspect'], ops['diameter']) + stat = roi_stats(stat, ops["Ly"], ops["Lx"], ops["aspect"], ops["diameter"]) # fluorescence ophys = nwbfile.processing["ophys"] @@ -282,8 +272,8 @@ def get_fluo(name: str) -> np.ndarray: if "meanImg_chan2" in ops: meanImg_chan2[np.ix_(yrange, xrange)] = ops["meanImg_chan2"] for j in np.nonzero( - np.array([stat[n]["iplane"] == k for n in range(len(stat))]) - )[0]: + np.array([stat[n]["iplane"] == k for n in range(len(stat)) + ]))[0]: stat[j]["xpix"] += ops["dx"] stat[j]["ypix"] += ops["dy"] stat[j]["med"][0] += ops["dy"] @@ -302,13 +292,11 @@ def get_fluo(name: str) -> np.ndarray: def save_nwb(save_folder): """convert folder with plane folders to NWB format""" - plane_folders = natsorted( - [ - Path(f.path) - for f in os.scandir(save_folder) - if f.is_dir() and f.name[:5] == "plane" - ] - ) + plane_folders = natsorted([ + Path(f.path) + for f in os.scandir(save_folder) + if f.is_dir() and f.name[:5] == "plane" + ]) ops1 = [ np.load(f.joinpath("ops.npy"), allow_pickle=True).item() for f in plane_folders ] @@ -359,14 +347,14 @@ def save_nwb(save_folder): grid_spacing=([2.0, 2.0, 30.0] if multiplane else [2.0, 2.0]), grid_spacing_unit="microns", ) - # link to external data + external_data = ops["filelist"] if "filelist" in ops else [""] image_series = TwoPhotonSeries( name="TwoPhotonSeries", dimension=[ops["Ly"], ops["Lx"]], - external_file=(ops["filelist"] if "filelist" in ops else [""]), + external_file=external_data, imaging_plane=imaging_plane, - starting_frame=[0], + starting_frame=[0 for i in range(len(external_data))], format="external", starting_time=0.0, rate=ops["fs"] * ops["nplanes"], @@ -382,8 +370,7 @@ def save_nwb(save_folder): reference_images=image_series, ) ophys_module = nwbfile.create_processing_module( - name="ophys", description="optical physiology processed data" - ) + name="ophys", description="optical physiology processed data") ophys_module.add(img_seg) file_strs = ["F.npy", "Fneu.npy", "spks.npy"] @@ -399,8 +386,7 @@ def save_nwb(save_folder): if nchannels > 1: for fstr in file_strs_chan2: traces_chan2.append( - np.load(plane_folders[iplane].joinpath(fstr)) - ) + np.load(plane_folders[iplane].joinpath(fstr))) PlaneCellsIdx = iplane * np.ones(len(iscell)) else: iscell = np.append( @@ -411,9 +397,8 @@ def save_nwb(save_folder): for i, fstr in enumerate(file_strs): trace = np.load(os.path.join(ops["save_path"], fstr)) if trace.shape[1] < Nfr: - fcat = np.zeros( - (trace.shape[0], Nfr - trace.shape[1]), "float32" - ) + fcat = np.zeros((trace.shape[0], Nfr - trace.shape[1]), + "float32") trace = np.concatenate((trace, fcat), axis=1) traces[i] = np.append(traces[i], trace, axis=0) if nchannels > 1: @@ -424,28 +409,23 @@ def save_nwb(save_folder): axis=0, ) PlaneCellsIdx = np.append( - PlaneCellsIdx, iplane * np.ones(len(iscell) - len(PlaneCellsIdx)) - ) + PlaneCellsIdx, iplane * np.ones(len(iscell) - len(PlaneCellsIdx))) - stat = np.load( - os.path.join(ops["save_path"], "stat.npy"), allow_pickle=True - ) + stat = np.load(os.path.join(ops["save_path"], "stat.npy"), + allow_pickle=True) ncells[iplane] = len(stat) for n in range(ncells[iplane]): if multiplane: - pixel_mask = np.array( - [ - stat[n]["ypix"], - stat[n]["xpix"], - iplane * np.ones(stat[n]["npix"]), - stat[n]["lam"], - ] - ) + pixel_mask = np.array([ + stat[n]["ypix"], + stat[n]["xpix"], + iplane * np.ones(stat[n]["npix"]), + stat[n]["lam"], + ]) ps.add_roi(voxel_mask=pixel_mask.T) else: pixel_mask = np.array( - [stat[n]["ypix"], stat[n]["xpix"], stat[n]["lam"]] - ) + [stat[n]["ypix"], stat[n]["xpix"], stat[n]["lam"]]) ps.add_roi(pixel_mask=pixel_mask.T) ps.add_column("iscell", "two columns - iscell & probcell", iscell) @@ -455,12 +435,9 @@ def save_nwb(save_folder): if iplane == 0: rt_region.append( ps.create_roi_table_region( - region=list( - np.arange(0, ncells[iplane]), - ), + region=list(np.arange(0, ncells[iplane]),), description=f"ROIs for plane{int(iplane)}", - ) - ) + )) else: rt_region.append( ps.create_roi_table_region( @@ -468,11 +445,9 @@ def save_nwb(save_folder): np.arange( np.sum(ncells[:iplane]), ncells[iplane] + np.sum(ncells[:iplane]), - ) - ), + )), description=f"ROIs for plane{int(iplane)}", - ) - ) + )) # FLUORESCENCE (all are required) name_strs = ["Fluorescence", "Neuropil", "Deconvolved"] @@ -505,9 +480,8 @@ def save_nwb(save_folder): ) if iplane == 0: - fl = Fluorescence( - roi_response_series=roi_resp_series, name=nstr - ) + fl = Fluorescence(roi_response_series=roi_resp_series, + name=nstr) else: fl.add_roi_response_series(roi_response_series=roi_resp_series) @@ -516,16 +490,15 @@ def save_nwb(save_folder): # BACKGROUNDS # (meanImg, Vcorr and max_proj are REQUIRED) bg_strs = ["meanImg", "Vcorr", "max_proj", "meanImg_chan2"] - nplanes = ops["nplanes"] - for iplane in range(nplanes): + for iplane, ops in enumerate(ops1): images = Images("Backgrounds_%d" % iplane) for bstr in bg_strs: if bstr in ops: if bstr == "Vcorr" or bstr == "max_proj": img = np.zeros((ops["Ly"], ops["Lx"]), np.float32) img[ - ops["yrange"][0] : ops["yrange"][-1], - ops["xrange"][0] : ops["xrange"][-1], + ops["yrange"][0]:ops["yrange"][-1], + ops["xrange"][0]:ops["xrange"][-1], ] = ops[bstr] else: img = ops[bstr] @@ -536,4 +509,4 @@ def save_nwb(save_folder): with NWBHDF5IO(os.path.join(save_folder, "ophys.nwb"), "w") as fio: fio.write(nwbfile) else: - print('pip install pynwb OR don"t use mesoscope recording') + print("pip install pynwb OR don't use mesoscope recording") diff --git a/suite2p/io/raw.py b/suite2p/io/raw.py new file mode 100644 index 000000000..0ab3b0732 --- /dev/null +++ b/suite2p/io/raw.py @@ -0,0 +1,308 @@ +""" +Copyright © 2023 Yoav Livneh Lab, Authored by Yael Prilutski. +""" + +import numpy as np + +from os import makedirs, listdir +from os.path import isdir, isfile, getsize, join + +try: + from xmltodict import parse + HAS_XML = True +except (ModuleNotFoundError, ImportError): + HAS_XML = False + +EXTENSION = 'raw' + + +def raw_to_binary(ops, use_recorded_defaults=True): + + """ Finds RAW files and writes them to binaries + + Parameters + ---------- + ops : dictionary + "data_path" + + use_recorded_defaults : bool + Recorded session parameters are used when 'True', + otherwise |ops| is expected to contain the following (additional) keys: + "nplanes", + "nchannels", + "fs" + + Returns + ------- + ops : dictionary of first plane + + """ + + if not HAS_XML: + raise ImportError("xmltodict is required for RAW file support (pip install xmltodict)") + + # Load raw file configurations + raw_file_configurations = [_RawFile(path) for path in ops['data_path']] + + # Split ops by captured planes + ops_paths = _initialize_destination_files(ops, raw_file_configurations, use_recorded_defaults=use_recorded_defaults) + + # Convert all runs in order + for path in ops['data_path']: + print(f'Converting raw to binary: `{path}`') + ops_loaded = [np.load(i, allow_pickle=True)[()] for i in ops_paths] + _raw2bin(ops_loaded, _RawFile(path)) + + # Reload edited ops + ops_loaded = [np.load(i, allow_pickle=True)[()] for i in ops_paths] + + # Create a mean image with the final number of frames + _update_mean(ops_loaded) + + # Load & return all ops + return ops_loaded[0] + + +def _initialize_destination_files(ops, raw_file_configurations, use_recorded_defaults=True): + + """ Prepares raw2bin conversion environment (files & folders) """ + + configurations = [ + [cfg.channel, cfg.zplanes, cfg.xpx, cfg.ypx, cfg.frame_rate, cfg.xsize, cfg.ysize] + for cfg in raw_file_configurations + ] + + # Make sure all ops match each other + assert all(conf == configurations[0] for conf in configurations), \ + f'Data attributes do not match. Can not concatenate shapes: {[conf for conf in configurations]}' + + # Load configuration from first file in paths + cfg = raw_file_configurations[0] + + # Expand configuration from defaults when necessary + if use_recorded_defaults: + ops['nplanes'] = cfg.zplanes + if cfg.channel > 1: + ops['nchannels'] = 2 + ops['fs'] = cfg.frame_rate + + # Prepare conversion environment for all files + ops_paths = [] + nplanes = ops['nplanes'] + nchannels = ops['nchannels'] + second_plane = False + for i in range(0, nplanes): + ops['save_path'] = join(ops['save_path0'], 'suite2p', f'plane{i}') + + if ('fast_disk' not in ops) or len(ops['fast_disk']) == 0 or second_plane: + ops['fast_disk'] = ops['save_path'] + second_plane = True + else: + ops['fast_disk'] = join(ops['fast_disk'], 'suite2p', f'plane{i}') + + ops['ops_path'] = join(ops['save_path'], 'ops.npy') + ops['reg_file'] = join(ops['fast_disk'], 'data.bin') + isdir(ops['fast_disk']) or makedirs(ops['fast_disk']) + isdir(ops['save_path']) or makedirs(ops['save_path']) + open(ops['reg_file'], 'wb').close() + if nchannels > 1: + ops['reg_file_chan2'] = join(ops['fast_disk'], 'data_chan2.bin') + open(ops['reg_file_chan2'], 'wb').close() + + ops['meanImg'] = np.zeros((cfg.xpx, cfg.ypx), np.float32) + ops['nframes'] = 0 + ops['frames_per_run'] = [] + if nchannels > 1: + ops['meanImg_chan2'] = np.zeros((cfg.xpx, cfg.ypx), np.float32) + + # write ops files + do_registration = ops['do_registration'] + ops['Ly'] = cfg.xpx + ops['Lx'] = cfg.ypx + if not do_registration: + ops['yrange'] = np.array([0, ops['Ly']]) + ops['xrange'] = np.array([0, ops['Lx']]) + + ops_paths.append(ops['ops_path']) + np.save(ops['ops_path'], ops) + + # Environment ready; + return ops_paths + + +def _raw2bin(all_ops, cfg): + + """ Converts a single RAW file to BIN format """ + + frames_in_chunk = int(all_ops[0]['batch_size']) + + with open(cfg.path, 'rb') as raw_file: + chunk = frames_in_chunk * cfg.xpx * cfg.ypx * cfg.channel * cfg.recorded_planes * 2 + raw_data_chunk = raw_file.read(chunk) + while raw_data_chunk: + data = np.frombuffer(raw_data_chunk, dtype=np.int16) + current_frames = int(len(data) / cfg.xpx / cfg.ypx / cfg.recorded_planes) + + if cfg.channel > 1: + channel_a, channel_b = _split_into_2_channels(data.reshape( + current_frames * cfg.recorded_planes, cfg.xpx, cfg.ypx)) + reshaped_data = [] + for i in range(cfg.recorded_planes): + channel_a_plane = channel_a[i::cfg.recorded_planes] + channel_b_plane = channel_b[i::cfg.recorded_planes] + reshaped_data.append([channel_a_plane, channel_b_plane]) + + else: + reshaped_data = data.reshape(cfg.recorded_planes, current_frames, cfg.xpx, cfg.ypx) + + for plane in range(0, cfg.zplanes): + ops = all_ops[plane] + plane_data = reshaped_data[plane] + + if cfg.channel > 1: + with open(ops['reg_file'], 'ab') as bin_file: + bin_file.write(bytearray(plane_data[0].astype(np.int16))) + with open(ops['reg_file_chan2'], 'ab') as bin_file2: + bin_file2.write(bytearray(plane_data[1].astype(np.int16))) + ops['meanImg'] += plane_data[0].astype(np.float32).sum(axis=0) + ops['meanImg_chan2'] = ops['meanImg_chan2'] + plane_data[1].astype(np.float32).sum(axis=0) + + else: + with open(ops['reg_file'], 'ab') as bin_file: + bin_file.write(bytearray(plane_data.astype(np.int16))) + ops['meanImg'] = ops['meanImg'] + plane_data.astype(np.float32).sum(axis=0) + + raw_data_chunk = raw_file.read(chunk) + + for ops in all_ops: + total_frames = int(cfg.size / cfg.xpx / cfg.ypx / cfg.recorded_planes / cfg.channel / 2) + ops['frames_per_run'].append(total_frames) + ops['nframes'] += total_frames + np.save(ops['ops_path'], ops) + + +def _split_into_2_channels(data): + + """ Utility function, used during conversion - splits given raw data into 2 separate channels """ + + frames = data.shape[0] + channel_a_index = list(filter(lambda x: x % 2 == 0, range(frames))) + channel_b_index = list(filter(lambda x: x % 2 != 0, range(frames))) + return data[channel_a_index], data[channel_b_index] + + +def _update_mean(ops_loaded): + + """ Adjusts all "meanImg" values at the end of raw-to-binary conversion. """ + + for ops in ops_loaded: + ops['meanImg'] /= ops['nframes'] + np.save(ops['ops_path'], ops) + + +class _RawConfig: + + """ Handles XML configuration parsing and exposes video shape & parameters for Thorlabs RAW files """ + + def __init__(self, raw_file_size, xml_path): + + assert isfile(xml_path) + + self._xml_path = xml_path + + self.zplanes = 1 + self.recorded_planes = 1 + + self.xpx = None + self.ypx = None + self.channel = None + self.frame_rate = None + self.xsize = None + self.ysize = None + self.nframes = None + + # Load configuration defaults + with open(self._xml_path, 'r', encoding='utf-8') as file: + self._load_xml_config(raw_file_size, parse(file.read())) + + # Make sure all fields have been filled + assert None not in (self.xpx, self.ypx, self.channel, self.frame_rate, self.xsize, self.ysize, self.nframes) + + # Extract data shape + self._shape = self._find_shape() + + @property + def shape(self): return self._shape + + def _find_shape(self): + + """ Discovers data dimensions """ + + shape = [self.nframes, self.xpx, self.ypx] + if self.recorded_planes > 1: + shape.insert(0, self.recorded_planes) + if self.channel > 1: + shape[0] = self.nframes * 2 + return shape + + def _load_xml_config(self, raw_file_size, xml): + + """ Loads recording parameters from attached XML; + + :param raw_file_size: Size (in bytes) of main RAW file + :param xml: Original XML contents as created during data acquisition (pre-parsed to a python dictionary) """ + + xml_data = xml['ThorImageExperiment'] + + self.xpx = int(xml_data['LSM']['@pixelX']) + self.ypx = int(xml_data['LSM']['@pixelY']) + self.channel = int(xml_data['LSM']['@channel']) + self.frame_rate = float(xml_data['LSM']['@frameRate']) + self.xsize = float(xml_data['LSM']['@widthUM']) + self.ysize = float(xml_data['LSM']['@heightUM']) + self.nframes = int(xml_data['Streaming']['@frames']) + + flyback = int(xml_data['Streaming']['@flybackFrames']) + zenable = int(xml_data['Streaming']['@zFastEnable']) + planes = int(xml_data['ZStage']['@steps']) + + if self.channel > 1: + self.channel = 2 + + if zenable > 0: + self.zplanes = planes + self.recorded_planes = flyback + self.zplanes + self.nframes = int(self.nframes / self.recorded_planes) + + if xml_data['ExperimentStatus']['@value'] == 'Stopped': + # Recording stopped in the middle, the written frame number isn't correct + all_frames = int(raw_file_size / self.xpx / self.ypx / self.recorded_planes / self.channel / 2) + self.nframes = int(all_frames / self.recorded_planes) + + +class _RawFile(_RawConfig): + + """ These objects represents all recording parameters per single Thorlabs RAW file """ + + _MAIN_FILE_SUFFIX = f'001.{EXTENSION}' + + def __init__(self, dir_name): + self._dirname = dir_name + filenames = listdir(dir_name) + + # Find main raw file + main_files = [fn for fn in filenames if fn.lower().endswith(self._MAIN_FILE_SUFFIX)] + assert 1 == len(main_files), f'Corrupted directory structure: "{dir_name}"' + self._raw_file_path = join(dir_name, main_files[0]) + self._raw_file_size = getsize(self._raw_file_path) + + # Load XML config + xml_files = [fn for fn in filenames if fn.lower().endswith('.xml')] + assert 1 == len(xml_files), f'Missing required XML configuration file from dir="{dir_name}"' + _RawConfig.__init__(self, self._raw_file_size, join(dir_name, xml_files[0])) + + @property + def path(self): return self._raw_file_path + + @property + def size(self): return self._raw_file_size diff --git a/suite2p/io/save.py b/suite2p/io/save.py index 056004794..74e20b4ef 100644 --- a/suite2p/io/save.py +++ b/suite2p/io/save.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os from natsort import natsorted import numpy as np @@ -5,11 +8,14 @@ import scipy import pathlib -def save_mat(ops, stat, F, Fneu, spks, iscell, redcell): + +def save_mat(ops, stat, F, Fneu, spks, iscell, redcell, + F_chan2=None, Fneu_chan2=None): ops_matlab = ops.copy() - if ops_matlab.get('date_proc'): + if ops_matlab.get("date_proc"): try: - ops_matlab['date_proc'] = str(datetime.strftime(ops_matlab['date_proc'], "%Y-%m-%d %H:%M:%S.%f")) + ops_matlab["date_proc"] = str( + datetime.strftime(ops_matlab["date_proc"], "%Y-%m-%d %H:%M:%S.%f")) except: pass for k in ops_matlab.keys(): @@ -19,54 +25,68 @@ def save_mat(ops, stat, F, Fneu, spks, iscell, redcell): if isinstance(ops_matlab[k][0], (pathlib.WindowsPath, pathlib.PosixPath)): ops_matlab[k] = [os.fspath(p.absolute()) for p in ops_matlab[k]] print(k, ops_matlab[k]) - + stat = np.array(stat, dtype=object) - - scipy.io.savemat( - file_name=os.path.join(ops['save_path'], 'Fall.mat'), - mdict={ - 'stat': stat, - 'ops': ops_matlab, - 'F': F, - 'Fneu': Fneu, - 'spks': spks, - 'iscell': iscell, - 'redcell': redcell - } - ) + + if F_chan2 is None: + scipy.io.savemat( + file_name=os.path.join(ops["save_path"], "Fall.mat"), mdict={ + "stat": stat, + "ops": ops_matlab, + "F": F, + "Fneu": Fneu, + "spks": spks, + "iscell": iscell, + "redcell": redcell + }) + else: + scipy.io.savemat( + file_name=os.path.join(ops["save_path"], "Fall.mat"), mdict={ + "stat": stat, + "ops": ops_matlab, + "F": F, + "Fneu": Fneu, + "spks": spks, + "iscell": iscell, + "redcell": redcell, + "F_chan2": F_chan2, + "Fneu_chan2": Fneu_chan2 + }) + def compute_dydx(ops1): ops = ops1[0].copy() dx = np.zeros(len(ops1), np.int64) dy = np.zeros(len(ops1), np.int64) - if ('dx' not in ops) or ('dy' not in ops): - Lx = ops['Lx'] - Ly = ops['Ly'] - nX = np.ceil(np.sqrt(ops['Ly'] * ops['Lx'] * len(ops1))/ops['Lx']) + if ("dx" not in ops) or ("dy" not in ops): + Lx = ops["Lx"] + Ly = ops["Ly"] + nX = np.ceil(np.sqrt(ops["Ly"] * ops["Lx"] * len(ops1)) / ops["Lx"]) nX = int(nX) for j in range(len(ops1)): - dx[j] = (j%nX) * Lx - dy[j] = int(j/nX) * Ly + dx[j] = (j % nX) * Lx + dy[j] = int(j / nX) * Ly else: - dx = np.array([o['dx'] for o in ops1]) - dy = np.array([o['dy'] for o in ops1]) - unq = np.unique(np.vstack((dy,dx)), axis=1) + dx = np.array([o["dx"] for o in ops1]) + dy = np.array([o["dy"] for o in ops1]) + unq = np.unique(np.vstack((dy, dx)), axis=1) nrois = unq.shape[1] if nrois < len(ops1): nplanes = len(ops1) // nrois - Lx = np.array([o['Lx'] for o in ops1]) - Ly = np.array([o['Ly'] for o in ops1]) - ymax = (dy+Ly).max() - xmax = (dx+Lx).max() - nX = np.ceil(np.sqrt(ymax * xmax * nplanes)/xmax) + Lx = np.array([o["Lx"] for o in ops1]) + Ly = np.array([o["Ly"] for o in ops1]) + ymax = (dy + Ly).max() + xmax = (dx + Lx).max() + nX = np.ceil(np.sqrt(ymax * xmax * nplanes) / xmax) nX = int(nX) - nY = int(np.ceil(len(ops1)/nX)) + nY = int(np.ceil(len(ops1) / nX)) for j in range(nplanes): for k in range(nrois): - dx[j*nrois + k] += (j%nX) * xmax - dy[j*nrois + k] += int(j/nX) * ymax + dx[j * nrois + k] += (j % nX) * xmax + dy[j * nrois + k] += int(j / nX) * ymax return dy, dx + def combined(save_folder, save=True): """ Combines all the folders in save_folder into a single result file. @@ -76,126 +96,133 @@ def combined(save_folder, save=True): Multi-roi recordings are arranged by their dx,dy physical localization. Multi-plane / multi-roi recordings are tiled after using dx,dy. """ - plane_folders = natsorted([ f.path for f in os.scandir(save_folder) if f.is_dir() and f.name[:5]=='plane']) - ops1 = [np.load(os.path.join(f, 'ops.npy'), allow_pickle=True).item() for f in plane_folders] + plane_folders = natsorted([ + f.path for f in os.scandir(save_folder) if f.is_dir() and f.name[:5] == "plane" + ]) + ops1 = [ + np.load(os.path.join(f, "ops.npy"), allow_pickle=True).item() + for f in plane_folders + ] dy, dx = compute_dydx(ops1) - Ly = np.array([ops['Ly'] for ops in ops1]) - Lx = np.array([ops['Lx'] for ops in ops1]) + Ly = np.array([ops["Ly"] for ops in ops1]) + Lx = np.array([ops["Lx"] for ops in ops1]) LY = int(np.amax(dy + Ly)) LX = int(np.amax(dx + Lx)) meanImg = np.zeros((LY, LX)) meanImgE = np.zeros((LY, LX)) - if ops1[0]['nchannels']>1: + if ops1[0]["nchannels"] > 1: meanImg_chan2 = np.zeros((LY, LX)) - if any(['meanImg_chan2_corrected' in ops for ops in ops1]): + if any(["meanImg_chan2_corrected" in ops for ops in ops1]): meanImg_chan2_corrected = np.zeros((LY, LX)) - if any(['max_proj' in ops for ops in ops1]): + if any(["max_proj" in ops for ops in ops1]): max_proj = np.zeros((LY, LX)) Vcorr = np.zeros((LY, LX)) - Nfr = np.amax(np.array([ops['nframes'] for ops in ops1])) - ii=0 - for k,ops in enumerate(ops1): + Nfr = np.amax(np.array([ops["nframes"] for ops in ops1])) + ii = 0 + for k, ops in enumerate(ops1): fpath = plane_folders[k] - if not os.path.exists(os.path.join(fpath,'stat.npy')): + if not os.path.exists(os.path.join(fpath, "stat.npy")): continue - stat0 = np.load(os.path.join(fpath,'stat.npy'), allow_pickle=True) + stat0 = np.load(os.path.join(fpath, "stat.npy"), allow_pickle=True) xrange = np.arange(dx[k], dx[k] + Lx[k]) yrange = np.arange(dy[k], dy[k] + Ly[k]) - meanImg[np.ix_(yrange, xrange)] = ops['meanImg'] - meanImgE[np.ix_(yrange, xrange)] = ops['meanImgE'] - if ops['nchannels']>1: - if 'meanImg_chan2' in ops: - meanImg_chan2[np.ix_(yrange, xrange)] = ops['meanImg_chan2'] - if 'meanImg_chan2_corrected' in ops: - meanImg_chan2_corrected[np.ix_(yrange, xrange)] = ops['meanImg_chan2_corrected'] - - xrange = np.arange(dx[k]+ops['xrange'][0],dx[k]+ops['xrange'][-1]) - yrange = np.arange(dy[k]+ops['yrange'][0],dy[k]+ops['yrange'][-1]) - Vcorr[np.ix_(yrange, xrange)] = ops['Vcorr'] - if 'max_proj' in ops: - max_proj[np.ix_(yrange, xrange)] = ops['max_proj'] + meanImg[np.ix_(yrange, xrange)] = ops["meanImg"] + meanImgE[np.ix_(yrange, xrange)] = ops["meanImgE"] + if ops["nchannels"] > 1: + if "meanImg_chan2" in ops: + meanImg_chan2[np.ix_(yrange, xrange)] = ops["meanImg_chan2"] + if "meanImg_chan2_corrected" in ops: + meanImg_chan2_corrected[np.ix_(yrange, + xrange)] = ops["meanImg_chan2_corrected"] + + xrange = np.arange(dx[k] + ops["xrange"][0], dx[k] + ops["xrange"][-1]) + yrange = np.arange(dy[k] + ops["yrange"][0], dy[k] + ops["yrange"][-1]) + Vcorr[np.ix_(yrange, xrange)] = ops["Vcorr"] + if "max_proj" in ops: + max_proj[np.ix_(yrange, xrange)] = ops["max_proj"] for j in range(len(stat0)): - stat0[j]['xpix'] += dx[k] - stat0[j]['ypix'] += dy[k] - stat0[j]['med'][0] += dy[k] - stat0[j]['med'][1] += dx[k] - stat0[j]['iplane'] = k - F0 = np.load(os.path.join(fpath,'F.npy')) - Fneu0 = np.load(os.path.join(fpath,'Fneu.npy')) - spks0 = np.load(os.path.join(fpath,'spks.npy')) - iscell0 = np.load(os.path.join(fpath,'iscell.npy')) - if os.path.isfile(os.path.join(fpath,'redcell.npy')): - redcell0 = np.load(os.path.join(fpath,'redcell.npy')) + stat0[j]["xpix"] += dx[k] + stat0[j]["ypix"] += dy[k] + stat0[j]["med"][0] += dy[k] + stat0[j]["med"][1] += dx[k] + stat0[j]["iplane"] = k + F0 = np.load(os.path.join(fpath, "F.npy")) + Fneu0 = np.load(os.path.join(fpath, "Fneu.npy")) + spks0 = np.load(os.path.join(fpath, "spks.npy")) + iscell0 = np.load(os.path.join(fpath, "iscell.npy")) + if os.path.isfile(os.path.join(fpath, "redcell.npy")): + redcell0 = np.load(os.path.join(fpath, "redcell.npy")) hasred = True else: redcell0 = [] hasred = False - nn,nt = F0.shape - if nt1: - ops['meanImg_chan2'] = meanImg_chan2 - if 'meanImg_chan2_corrected' in ops: - ops['meanImg_chan2_corrected'] = meanImg_chan2_corrected - if 'max_proj' in ops: - ops['max_proj'] = max_proj - ops['Vcorr'] = Vcorr - ops['Ly'] = LY - ops['Lx'] = LX - ops['xrange'] = [0, ops['Lx']] - ops['yrange'] = [0, ops['Ly']] + redcell = np.concatenate((redcell, redcell0)) + ii += 1 + print("appended plane %d to combined view" % k) + ops["meanImg"] = meanImg + ops["meanImgE"] = meanImgE + if ops["nchannels"] > 1: + ops["meanImg_chan2"] = meanImg_chan2 + if "meanImg_chan2_corrected" in ops: + ops["meanImg_chan2_corrected"] = meanImg_chan2_corrected + if "max_proj" in ops: + ops["max_proj"] = max_proj + ops["Vcorr"] = Vcorr + ops["Ly"] = LY + ops["Lx"] = LX + ops["xrange"] = [0, ops["Lx"]] + ops["yrange"] = [0, ops["Ly"]] if save: - if len(ops['save_folder']) > 0: - fpath = os.path.join(ops['save_path0'], ops['save_folder'], 'combined') + if len(ops["save_folder"]) > 0: + fpath = os.path.join(ops["save_path0"], ops["save_folder"], "combined") else: - fpath = os.path.join(ops['save_path0'], 'suite2p', 'combined') + fpath = os.path.join(ops["save_path0"], "suite2p", "combined") else: - fpath = os.path.join(save_folder, 'combined') - + fpath = os.path.join(save_folder, "combined") + if not os.path.isdir(fpath): os.makedirs(fpath) - ops['save_path'] = fpath + ops["save_path"] = fpath # need to save iscell regardless (required for GUI function) - np.save(os.path.join(fpath, 'iscell.npy'), iscell) + np.save(os.path.join(fpath, "iscell.npy"), iscell) if hasred: - np.save(os.path.join(fpath, 'redcell.npy'), redcell) + np.save(os.path.join(fpath, "redcell.npy"), redcell) else: redcell = np.zeros_like(iscell) if save: - np.save(os.path.join(fpath, 'F.npy'), F) - np.save(os.path.join(fpath, 'Fneu.npy'), Fneu) - np.save(os.path.join(fpath, 'spks.npy'), spks) - np.save(os.path.join(fpath, 'ops.npy'), ops) - np.save(os.path.join(fpath, 'stat.npy'), stat) - + np.save(os.path.join(fpath, "F.npy"), F) + np.save(os.path.join(fpath, "Fneu.npy"), Fneu) + np.save(os.path.join(fpath, "spks.npy"), spks) + np.save(os.path.join(fpath, "ops.npy"), ops) + np.save(os.path.join(fpath, "stat.npy"), stat) + # save as matlab file - if ops.get('save_mat'): - matpath = os.path.join(ops['save_path'],'Fall.mat') + if ops.get("save_mat"): + matpath = os.path.join(ops["save_path"], "Fall.mat") save_mat(ops, stat, F, Fneu, spks, iscell, redcell) - - return stat, ops, F, Fneu, spks, iscell[:,0], iscell[:,1], redcell[:,0], redcell[:,1], hasred + return (stat, ops, F, Fneu, spks, + iscell[:,0], iscell[:,1], + redcell[:,0], redcell[:,1], hasred) diff --git a/suite2p/io/sbx.py b/suite2p/io/sbx.py index 65e11f918..d2846f2a4 100644 --- a/suite2p/io/sbx.py +++ b/suite2p/io/sbx.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os import numpy as np @@ -6,13 +9,10 @@ try: from sbxreader import sbx_memmap + HAS_SBX = True except: - print('Could not load the sbx reader, installing with pip.') - from subprocess import call - call('pip install sbxreader',shell = True) - from sbxreader import sbx_memmap - - + HAS_SBX = False + def sbx_to_binary(ops, ndeadcols=-1, ndeadrows=0): """ finds scanbox files and writes them to binaries @@ -20,112 +20,118 @@ def sbx_to_binary(ops, ndeadcols=-1, ndeadrows=0): Parameters ---------- ops : dictionary - 'nplanes', 'data_path', 'save_path', 'save_folder', 'fast_disk', - 'nchannels', 'keep_movie_raw', 'look_one_level_down' + "nplanes", "data_path", "save_path", "save_folder", "fast_disk", + "nchannels", "keep_movie_raw", "look_one_level_down" Returns ------- ops : dictionary of first plane - 'Ly', 'Lx', ops['reg_file'] or ops['raw_file'] is created binary + "Ly", "Lx", ops["reg_file"] or ops["raw_file"] is created binary """ + if not HAS_SBX: + raise ImportError("sbxreader is required for this file type, please 'pip install sbxreader'") ops1 = init_ops(ops) # the following should be taken from the metadata and not needed but the files are initialized before... - nplanes = ops1[0]['nplanes'] - nchannels = ops1[0]['nchannels'] + nplanes = ops1[0]["nplanes"] + nchannels = ops1[0]["nchannels"] # open all binary files for writing ops1, sbxlist, reg_file, reg_file_chan2 = find_files_open_binaries(ops1) iall = 0 - for j in range(ops1[0]['nplanes']): - ops1[j]['nframes_per_folder'] = np.zeros(len(sbxlist), np.int32) + for j in range(ops1[0]["nplanes"]): + ops1[j]["nframes_per_folder"] = np.zeros(len(sbxlist), np.int32) ik = 0 - if 'sbx_ndeadcols' in ops1[0].keys(): - ndeadcols = int(ops1[0]['sbx_ndeadcols']) - if 'sbx_ndeadrows' in ops1[0].keys(): - ndeadrows = int(ops1[0]['sbx_ndeadrows']) - - if ndeadcols==-1 or ndeadrows==-1: + if "sbx_ndeadcols" in ops1[0].keys(): + ndeadcols = int(ops1[0]["sbx_ndeadcols"]) + if "sbx_ndeadrows" in ops1[0].keys(): + ndeadrows = int(ops1[0]["sbx_ndeadrows"]) + + if ndeadcols == -1 or ndeadrows == -1: # compute dead rows and cols from the first file tmpsbx = sbx_memmap(sbxlist[0]) # do not remove dead rows in non-multiplane mode # This number should be different for each plane since the artifact is larger - # for larger ETL jumps. - if nplanes > 1 and ndeadrows==-1: + # for larger ETL jumps. + if nplanes > 1 and ndeadrows == -1: colprofile = np.array(np.mean(tmpsbx[0][0][0], axis=1)) ndeadrows = np.argmax(np.diff(colprofile)) + 1 else: ndeadrows = 0 # do not remove dead columns in unidirectional scanning mode - # do this only if ndeadcols is -1 - if tmpsbx.metadata['scanning_mode'] == 'bidirectional' and ndeadcols==-1: + # do this only if ndeadcols is -1 + if tmpsbx.metadata["scanning_mode"] == "bidirectional" and ndeadcols == -1: ndeadcols = tmpsbx.ndeadcols else: ndeadcols = 0 del tmpsbx - print('Removing {0} dead columns while loading sbx data.'.format(ndeadcols)) - print('Removing {0} dead rows while loading sbx data.'.format(ndeadrows)) + print("Removing {0} dead columns while loading sbx data.".format(ndeadcols)) + print("Removing {0} dead rows while loading sbx data.".format(ndeadrows)) - ops1[0]['sbx_ndeadcols'] = ndeadcols - ops1[0]['sbx_ndeadrows'] = ndeadrows - - for ifile,sbxfname in enumerate(sbxlist): + ops1[0]["sbx_ndeadcols"] = ndeadcols + ops1[0]["sbx_ndeadrows"] = ndeadrows + + for ifile, sbxfname in enumerate(sbxlist): f = sbx_memmap(sbxfname) nplanes = f.shape[1] nchannels = f.shape[2] nframes = f.shape[0] - iblocks = np.arange(0,nframes,ops1[0]['batch_size']) + iblocks = np.arange(0, nframes, ops1[0]["batch_size"]) if iblocks[-1] < nframes: - iblocks = np.append(iblocks,nframes) + iblocks = np.append(iblocks, nframes) # data = nframes x nplanes x nchannels x pixels x pixels - if nchannels>1: - nfunc = ops1[0]['functional_chan'] - 1 + if nchannels > 1: + nfunc = ops1[0]["functional_chan"] - 1 else: nfunc = 0 # loop over all frames - for ichunk,onset in enumerate(iblocks[:-1]): - offset = iblocks[ichunk+1] - im = np.array(f[onset:offset,:,:,ndeadrows:,ndeadcols:])//2 + for ichunk, onset in enumerate(iblocks[:-1]): + offset = iblocks[ichunk + 1] + im = np.array(f[onset:offset, :, :, ndeadrows:, ndeadcols:]) // 2 im = im.astype(np.int16) - im2mean = im.mean(axis = 0).astype(np.float32)/len(iblocks) + im2mean = im.mean(axis=0).astype(np.float32) / len(iblocks) for ichan in range(nchannels): nframes = im.shape[0] - im2write = im[:,:,ichan,:,:] - for j in range(0,nplanes): - if iall==0: - ops1[j]['meanImg'] = np.zeros((im.shape[3],im.shape[4]),np.float32) - if nchannels>1: - ops1[j]['meanImg_chan2'] = np.zeros((im.shape[3],im.shape[4]),np.float32) - ops1[j]['nframes'] = 0 + im2write = im[:, :, ichan, :, :] + for j in range(0, nplanes): + if iall == 0: + ops1[j]["meanImg"] = np.zeros((im.shape[3], im.shape[4]), + np.float32) + if nchannels > 1: + ops1[j]["meanImg_chan2"] = np.zeros( + (im.shape[3], im.shape[4]), np.float32) + ops1[j]["nframes"] = 0 if ichan == nfunc: - ops1[j]['meanImg'] += np.squeeze(im2mean[j,ichan,:,:]) - reg_file[j].write(bytearray(im2write[:,j,:,:].astype('int16'))) + ops1[j]["meanImg"] += np.squeeze(im2mean[j, ichan, :, :]) + reg_file[j].write( + bytearray(im2write[:, j, :, :].astype("int16"))) else: - ops1[j]['meanImg_chan2'] += np.squeeze(im2mean[j,ichan,:,:]) - reg_file_chan2[j].write(bytearray(im2write[:,j,:,:].astype('int16'))) - - ops1[j]['nframes'] += im2write.shape[0] - ops1[j]['nframes_per_folder'][ifile] += im2write.shape[0] + ops1[j]["meanImg_chan2"] += np.squeeze(im2mean[j, ichan, :, :]) + reg_file_chan2[j].write( + bytearray(im2write[:, j, :, :].astype("int16"))) + + ops1[j]["nframes"] += im2write.shape[0] + ops1[j]["nframes_per_folder"][ifile] += im2write.shape[0] ik += nframes iall += nframes # write ops files - do_registration = ops1[0]['do_registration'] - do_nonrigid = ops1[0]['nonrigid'] + do_registration = ops1[0]["do_registration"] + do_nonrigid = ops1[0]["nonrigid"] for ops in ops1: - ops['Ly'] = im.shape[3] - ops['Lx'] = im.shape[4] + ops["Ly"] = im.shape[3] + ops["Lx"] = im.shape[4] if not do_registration: - ops['yrange'] = np.array([0,ops['Ly']]) - ops['xrange'] = np.array([0,ops['Lx']]) - #ops['meanImg'] /= ops['nframes'] + ops["yrange"] = np.array([0, ops["Ly"]]) + ops["xrange"] = np.array([0, ops["Lx"]]) + #ops["meanImg"] /= ops["nframes"] #if nchannels>1: - # ops['meanImg_chan2'] /= ops['nframes'] - np.save(ops['ops_path'], ops) + # ops["meanImg_chan2"] /= ops["nframes"] + np.save(ops["ops_path"], ops) # close all binary files and write ops files - for j in range(0,nplanes): + for j in range(0, nplanes): reg_file[j].close() - if nchannels>1: + if nchannels > 1: reg_file_chan2[j].close() return ops1[0] diff --git a/suite2p/io/server.py b/suite2p/io/server.py index 3a5ee4b7d..da4c9c954 100644 --- a/suite2p/io/server.py +++ b/suite2p/io/server.py @@ -1,18 +1,26 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import sys, os, time, glob from pathlib import Path from natsort import natsorted -import paramiko import numpy as np +try: + import paramiko + HAS_PARAMIKO = True +except: + HAS_PARAMIKO = False + def unix_path(path): - return str(path).replace(os.sep, '/') + return str(path).replace(os.sep, "/") -def ssh_connect(host, username, password,verbose=True): +def ssh_connect(host, username, password, verbose=True): """ from paramiko example """ - i=0 + i = 0 while True: if verbose: - print("Trying to connect to %s (attempt %i/30)" % (host, i+1)) + print("Trying to connect to %s (attempt %i/30)" % (host, i + 1)) try: ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) @@ -33,108 +41,107 @@ def ssh_connect(host, username, password,verbose=True): sys.exit(1) return ssh -def send_jobs(save_folder, - host=None, - username=None, - password=None, - server_root=None, - local_root=None, - n_cores=8): - +def send_jobs(save_folder, host=None, username=None, password=None, server_root=None, + local_root=None, n_cores=8): """ send each plane to compute on server separately add your own host, username, password and path on server for where to save the data """ + if not HAS_PARAMIKO: + raise ImportError("paramiko required, please 'pip install paramiko'") if host is None: - raise Exception('No server specified, please edit suite2p/io/server.py') - + raise Exception("No server specified, please edit suite2p/io/server.py") + # server_root is different from where you created the binaries, which is local_root nparts = len(Path(local_root).parts) # e.g. if server is Z:/path on local computer, and server_root+path on remote, then nparts=1 - save_folder_server = Path(*Path(save_folder).parts[nparts:]) + save_folder_server = Path(*Path(save_folder).parts[nparts:]) save_folder_server = Path(server_root) / save_folder_server save_path0_server = Path(*Path(save_folder_server).parts[:-1]) save_folder_name = Path(save_folder).parts[-1] - print('save path on server: ', unix_path(save_path0_server)) - ssh = ssh_connect(host, username, password) + print("save path on server: ", unix_path(save_path0_server)) + ssh = ssh_connect(host, username, password) # create bash file in home directory to run - run_script = Path.home().joinpath('.suite2p/run_script.sh') + run_script = Path.home().joinpath(".suite2p/run_script.sh") if run_script.exists(): os.remove(run_script) - with open(run_script, 'x', newline='') as f: - f.write('#!/bin/bash\n') + with open(run_script, "x", newline="") as f: + f.write("#!/bin/bash\n") # server specific commands to activate python - f.write('source ~/add_anaconda.sh\n') - f.write('eval $(~/anaconda4/bin/conda shell.bash hook)\n') - # activate suite2p environment - f.write('source activate suite2p\n') + f.write("source ~/add_anaconda.sh\n") + f.write("eval $(~/anaconda4/bin/conda shell.bash hook)\n") + # activate suite2p environment + f.write("source activate suite2p\n") # run suite2p single plane command with ops as argument f.write('python -m suite2p --single_plane --ops "$@"') - ssh.exec_command('rm ~/run_script.sh') - ssh.exec_command('chmod 777 ~/') - ftp_client=ssh.open_sftp() - ftp_client.put(run_script, 'run_script.sh') - ssh.exec_command('chmod 777 run_script.sh') + ssh.exec_command("rm ~/run_script.sh") + ssh.exec_command("chmod 777 ~/") + ftp_client = ssh.open_sftp() + ftp_client.put(run_script, "run_script.sh") + ssh.exec_command("chmod 777 run_script.sh") - pdirs = natsorted(glob.glob(save_folder + '/*/')) + pdirs = natsorted(glob.glob(save_folder + "/*/")) for k, pdir in enumerate(pdirs): ipl = int(Path(pdir).parts[-1][5:]) - print('>>>>>>>>>> PLANE %d <<<<<<<<<'%ipl) - ops_path_orig = pdir + 'ops.npy' + print(">>>>>>>>>> PLANE %d <<<<<<<<<" % ipl) + ops_path_orig = pdir + "ops.npy" op = np.load(ops_path_orig, allow_pickle=True).item() - fast_disk_orig = Path(op['fast_disk']) + fast_disk_orig = Path(op["fast_disk"]) ## change paths - op['save_path0'] = unix_path(save_path0_server) - op['save_folder'] = save_folder_name - save_path = save_path0_server / save_folder_name / ('plane%d'%ipl) - op['save_path'] = unix_path(save_path) - op['fast_disk'] = unix_path(save_path) - op['ops_path'] = unix_path(save_path / 'ops.npy') - print(op['ops_path']) + op["save_path0"] = unix_path(save_path0_server) + op["save_folder"] = save_folder_name + save_path = save_path0_server / save_folder_name / ("plane%d" % ipl) + op["save_path"] = unix_path(save_path) + op["fast_disk"] = unix_path(save_path) + op["ops_path"] = unix_path(save_path / "ops.npy") + print(op["ops_path"]) ## move binary files to server if needed # check if file structure needs to be created on remote server copy = False try: - ftp_client.stat(op['save_path']) + ftp_client.stat(op["save_path"]) except IOError: - print('copying files') - ftp_client.mkdir(op['save_path']) + print("copying files") + ftp_client.mkdir(op["save_path"]) copy = True - op['reg_file'] = unix_path(save_path / 'data.bin') - if 'raw_file' in op: - op['raw_file'] = unix_path(save_path / 'data_raw.bin') + op["reg_file"] = unix_path(save_path / "data.bin") + if "raw_file" in op: + op["raw_file"] = unix_path(save_path / "data_raw.bin") if copy: - ftp_client.put(fast_disk_orig / 'data_raw.bin', op['raw_file']) - if 'raw_file_chan2' in op: - op['raw_file_chan2'] = unix_path(save_path / 'data_chan2_raw.bin') + ftp_client.put(fast_disk_orig / "data_raw.bin", op["raw_file"]) + if "raw_file_chan2" in op: + op["raw_file_chan2"] = unix_path(save_path / "data_chan2_raw.bin") if copy: - ftp_client.put(fast_disk_orig / 'data_raw_chan2.bin', op['raw_file_chan2']) + ftp_client.put(fast_disk_orig / "data_raw_chan2.bin", + op["raw_file_chan2"]) else: if copy: - ftp_client.put(fast_disk_orig / 'data.bin', op['reg_file']) - if 'reg_file_chan2' in op: - op['reg_file_chan2'] = unix_path(save_path / 'data_chan2.bin') + ftp_client.put(fast_disk_orig / "data.bin", op["reg_file"]) + if "reg_file_chan2" in op: + op["reg_file_chan2"] = unix_path(save_path / "data_chan2.bin") if copy: - ftp_client.put(fast_disk_orig / 'data_chan2.bin', op['reg_file_chan2']) - + ftp_client.put(fast_disk_orig / "data_chan2.bin", + op["reg_file_chan2"]) + # save final version of ops and send to server np.save(ops_path_orig, op) if copy: - print('copying ops') - ftp_client.put(ops_path_orig, op['ops_path']) + print("copying ops") + ftp_client.put(ops_path_orig, op["ops_path"]) # run plane (server-specific command) - run_command = '''bsub -n %d -J test_s2p%d -R"select[avx512]" -o out%d.txt "~/run_script.sh '%s' > log%d.txt"'''%(n_cores, ipl, ipl, op['ops_path'], ipl) + run_command = '''bsub -n %d -J test_s2p%d -R"select[avx512]" -o out%d.txt "~/run_script.sh "%s" > log%d.txt''' % ( + n_cores, ipl, ipl, op["ops_path"], ipl) stdin, stdout, stderr = ssh.exec_command(run_command) print(stdout.readlines()[0]) - + ftp_client.close() - + print("Command done, closing SSH connection") ssh.close() diff --git a/suite2p/io/tiff.py b/suite2p/io/tiff.py index 2eba63309..148559629 100644 --- a/suite2p/io/tiff.py +++ b/suite2p/io/tiff.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import gc import glob import json @@ -6,15 +9,21 @@ import time from typing import Union, Tuple, Optional - import numpy as np -from ScanImageTiffReader import ScanImageTiffReader from tifffile import imread, TiffFile, TiffWriter from . import utils +try: + from ScanImageTiffReader import ScanImageTiffReader + HAS_SCANIMAGE = True +except ImportError: + ScanImageTiffReader = None + HAS_SCANIMAGE = False + -def generate_tiff_filename(functional_chan: int, align_by_chan: int, save_path: str, k: int, ichan: bool) -> str: +def generate_tiff_filename(functional_chan: int, align_by_chan: int, save_path: str, + k: int, ichan: bool) -> str: """ Calculates a suite2p tiff filename from different parameters. @@ -37,21 +46,21 @@ def generate_tiff_filename(functional_chan: int, align_by_chan: int, save_path: """ if ichan: if functional_chan == align_by_chan: - tifroot = os.path.join(save_path, 'reg_tif') + tifroot = os.path.join(save_path, "reg_tif") wchan = 0 else: - tifroot = os.path.join(save_path, 'reg_tif_chan2') + tifroot = os.path.join(save_path, "reg_tif_chan2") wchan = 1 else: if functional_chan == align_by_chan: - tifroot = os.path.join(save_path, 'reg_tif_chan2') + tifroot = os.path.join(save_path, "reg_tif_chan2") wchan = 1 else: - tifroot = os.path.join(save_path, 'reg_tif') + tifroot = os.path.join(save_path, "reg_tif") wchan = 0 if not os.path.isdir(tifroot): os.makedirs(tifroot) - fname = 'file%0.3d_chan%d.tif'%(k,wchan) + fname = "file00%0.3d_chan%d.tif" % (k, wchan) fname = os.path.join(tifroot, fname) return fname @@ -70,11 +79,12 @@ def save_tiff(mov: np.ndarray, fname: str) -> None: """ with TiffWriter(fname) as tif: for frame in np.floor(mov).astype(np.int16): - tif.write(frame) + tif.write(frame, contiguous=True) -def open_tiff(file: str, sktiff: bool) -> Tuple[Union[TiffFile, ScanImageTiffReader], int]: - """ Returns image and its length from tiff file with either ScanImageTiffReader or tifffile, based on 'sktiff'""" +def open_tiff(file: str, + sktiff: bool) -> Tuple[Union[TiffFile, ScanImageTiffReader], int]: + """ Returns image and its length from tiff file with either ScanImageTiffReader or tifffile, based on "sktiff" """ if sktiff: tif = TiffFile(file) Ltif = len(tif.pages) @@ -86,193 +96,210 @@ def open_tiff(file: str, sktiff: bool) -> Tuple[Union[TiffFile, ScanImageTiffRea def use_sktiff_reader(tiff_filename, batch_size: Optional[int] = None) -> bool: """Returns False if ScanImageTiffReader works on the tiff file, else True (in which case use tifffile).""" - try: - with ScanImageTiffReader(tiff_filename) as tif: - tif.data() if len(tif.shape()) < 3 else tif.data(beg=0, end=np.minimum(batch_size, tif.shape()[0] - 1)) - return False - except: - print('NOTE: ScanImageTiffReader not working for this tiff type, using tifffile') + if HAS_SCANIMAGE: + try: + with ScanImageTiffReader(tiff_filename) as tif: + tif.data() if len(tif.shape()) < 3 else tif.data( + beg=0, end=np.minimum(batch_size, + tif.shape()[0] - 1)) + return False + except: + print( + "NOTE: ScanImageTiffReader not working for this tiff type, using tifffile" + ) + return True + else: + print("NOTE: ScanImageTiffReader not installed, using tifffile") return True +def read_tiff(file, tif, Ltif, ix, batch_size, use_sktiff): + # tiff reading + if ix >= Ltif: + return None + nfr = min(Ltif - ix, batch_size) + if use_sktiff: + im = imread(file, key=range(ix, ix + nfr)) + elif Ltif == 1: + im = tif.data() + else: + im = tif.data(beg=ix, end=ix + nfr) + # for single-page tiffs, add 1st dim + if len(im.shape) < 3: + im = np.expand_dims(im, axis=0) + + # check if uint16 + if im.dtype.type == np.uint16: + im = (im // 2).astype(np.int16) + elif im.dtype.type == np.int32: + im = (im // 2).astype(np.int16) + elif im.dtype.type != np.int16: + im = im.astype(np.int16) + + if im.shape[0] > nfr: + im = im[:nfr, :, :] + + return im + def tiff_to_binary(ops): """ finds tiff files and writes them to binaries Parameters ---------- ops : dictionary - 'nplanes', 'data_path', 'save_path', 'save_folder', 'fast_disk', 'nchannels', 'keep_movie_raw', 'look_one_level_down' + "nplanes", "data_path", "save_path", "save_folder", "fast_disk", "nchannels", "keep_movie_raw", "look_one_level_down" Returns ------- ops : dictionary of first plane - ops['reg_file'] or ops['raw_file'] is created binary - assigns keys 'Ly', 'Lx', 'tiffreader', 'first_tiffs', - 'frames_per_folder', 'nframes', 'meanImg', 'meanImg_chan2' + ops["reg_file"] or ops["raw_file"] is created binary + assigns keys "Ly", "Lx", "tiffreader", "first_tiffs", + "frames_per_folder", "nframes", "meanImg", "meanImg_chan2" """ - t0=time.time() + t0 = time.time() # copy ops to list where each element is ops for each plane ops1 = utils.init_ops(ops) - nplanes = ops1[0]['nplanes'] - nchannels = ops1[0]['nchannels'] + nplanes = ops1[0]["nplanes"] + nchannels = ops1[0]["nchannels"] # open all binary files for writing # look for tiffs in all requested folders ops1, fs, reg_file, reg_file_chan2 = utils.find_files_open_binaries(ops1, False) ops = ops1[0] # try tiff readers - use_sktiff = True if ops['force_sktiff'] else use_sktiff_reader(fs[0], batch_size=ops1[0].get('batch_size')) - - batch_size = ops['batch_size'] - batch_size = nplanes*nchannels*math.ceil(batch_size/(nplanes*nchannels)) + use_sktiff = True if ops["force_sktiff"] else use_sktiff_reader( + fs[0], batch_size=ops1[0].get("batch_size")) + + batch_size = ops["batch_size"] + batch_size = nplanes * nchannels * math.ceil(batch_size / (nplanes * nchannels)) # loop over all tiffs which_folder = -1 - ntotal=0 + ntotal = 0 for ik, file in enumerate(fs): # open tiff tif, Ltif = open_tiff(file, use_sktiff) # keep track of the plane identity of the first frame (channel identity is assumed always 0) - if ops['first_tiffs'][ik]: + if ops["first_tiffs"][ik]: which_folder += 1 iplane = 0 ix = 0 - while 1: - if ix >= Ltif: - break - nfr = min(Ltif - ix, batch_size) - # tiff reading - if use_sktiff: - im = imread(file, key=range(ix, ix + nfr)) - elif Ltif == 1: - im = tif.data() - else: - im = tif.data(beg=ix, end=ix+nfr) - - # for single-page tiffs, add 1st dim - if len(im.shape) < 3: - im = np.expand_dims(im, axis=0) - - # check if uint16 - if im.dtype.type == np.uint16: - im = (im // 2).astype(np.int16) - elif im.dtype.type == np.int32: - im = (im // 2).astype(np.int16) - elif im.dtype.type != np.int16: - im = im.astype(np.int16) - - if im.shape[0] > nfr: - im = im[:nfr, :, :] + im = read_tiff(file, tif, Ltif, ix, batch_size, use_sktiff) + if im is None: + break nframes = im.shape[0] - for j in range(0,nplanes): - if ik==0 and ix==0: - ops1[j]['nframes'] = 0 - ops1[j]['frames_per_file'] = np.zeros((len(fs),), dtype=int) - ops1[j]['meanImg'] = np.zeros((im.shape[1], im.shape[2]), np.float32) - if nchannels>1: - ops1[j]['meanImg_chan2'] = np.zeros((im.shape[1], im.shape[2]), np.float32) - i0 = nchannels * ((iplane+j)%nplanes) - if nchannels>1: - nfunc = ops['functional_chan']-1 + for j in range(0, nplanes): + if ik == 0 and ix == 0: + ops1[j]["nframes"] = 0 + ops1[j]["frames_per_file"] = np.zeros((len(fs),), dtype=int) + ops1[j]["meanImg"] = np.zeros((im.shape[1], im.shape[2]), + np.float32) + if nchannels > 1: + ops1[j]["meanImg_chan2"] = np.zeros((im.shape[1], im.shape[2]), + np.float32) + i0 = nchannels * ((iplane + j) % nplanes) + if nchannels > 1: + nfunc = ops["functional_chan"] - 1 else: nfunc = 0 - im2write = im[int(i0)+nfunc:nframes:nplanes*nchannels] + im2write = im[int(i0) + nfunc:nframes:nplanes * nchannels] reg_file[j].write(bytearray(im2write)) - ops1[j]['meanImg'] += im2write.astype(np.float32).sum(axis=0) - ops1[j]['nframes'] += im2write.shape[0] - ops1[j]['frames_per_file'][ik] += im2write.shape[0] - ops1[j]['frames_per_folder'][which_folder] += im2write.shape[0] - #print(ops1[j]['frames_per_folder'][which_folder]) - if nchannels>1: - im2write = im[int(i0)+1-nfunc:nframes:nplanes*nchannels] + ops1[j]["meanImg"] += im2write.astype(np.float32).sum(axis=0) + ops1[j]["nframes"] += im2write.shape[0] + ops1[j]["frames_per_file"][ik] += im2write.shape[0] + ops1[j]["frames_per_folder"][which_folder] += im2write.shape[0] + #print(ops1[j]["frames_per_folder"][which_folder]) + if nchannels > 1: + im2write = im[int(i0) + 1 - nfunc:nframes:nplanes * nchannels] reg_file_chan2[j].write(bytearray(im2write)) - ops1[j]['meanImg_chan2'] += im2write.mean(axis=0) - - - iplane = (iplane-nframes/nchannels)%nplanes - ix+=nframes - ntotal+=nframes - if ntotal%(batch_size*4)==0: - print('%d frames of binary, time %0.2f sec.'%(ntotal,time.time()-t0)) + ops1[j]["meanImg_chan2"] += im2write.mean(axis=0) + iplane = (iplane - nframes / nchannels) % nplanes + ix += nframes + ntotal += nframes + if ntotal % (batch_size * 4) == 0: + print("%d frames of binary, time %0.2f sec." % + (ntotal, time.time() - t0)) gc.collect() # write ops files - do_registration = ops['do_registration'] + do_registration = ops["do_registration"] for ops in ops1: - ops['Ly'],ops['Lx'] = ops['meanImg'].shape - ops['yrange'] = np.array([0,ops['Ly']]) - ops['xrange'] = np.array([0,ops['Lx']]) - ops['meanImg'] /= ops['nframes'] - if nchannels>1: - ops['meanImg_chan2'] /= ops['nframes'] - np.save(ops['ops_path'], ops) + ops["Ly"], ops["Lx"] = ops["meanImg"].shape + ops["yrange"] = np.array([0, ops["Ly"]]) + ops["xrange"] = np.array([0, ops["Lx"]]) + ops["meanImg"] /= ops["nframes"] + if nchannels > 1: + ops["meanImg_chan2"] /= ops["nframes"] + np.save(ops["ops_path"], ops) # close all binary files and write ops files - for j in range(0,nplanes): + for j in range(0, nplanes): reg_file[j].close() - if nchannels>1: + if nchannels > 1: reg_file_chan2[j].close() return ops1[0] + def mesoscan_to_binary(ops): """ finds mesoscope tiff files and writes them to binaries Parameters ---------- ops : dictionary - 'nplanes', 'data_path', 'save_path', 'save_folder', 'fast_disk', - 'nchannels', 'keep_movie_raw', 'look_one_level_down', 'lines', 'dx', 'dy' + "nplanes", "data_path", "save_path", "save_folder", "fast_disk", + "nchannels", "keep_movie_raw", "look_one_level_down", "lines", "dx", "dy" Returns ------- ops : dictionary of first plane - ops['reg_file'] or ops['raw_file'] is created binary - assigns keys 'Ly', 'Lx', 'tiffreader', 'first_tiffs', 'frames_per_folder', - 'nframes', 'meanImg', 'meanImg_chan2' + ops["reg_file"] or ops["raw_file"] is created binary + assigns keys "Ly", "Lx", "tiffreader", "first_tiffs", "frames_per_folder", + "nframes", "meanImg", "meanImg_chan2" """ t0 = time.time() - if 'lines' not in ops: - fpath = os.path.join(ops['data_path'][0], '*json') + if "lines" not in ops: + fpath = os.path.join(ops["data_path"][0], "*json") fs = glob.glob(fpath) - with open(fs[0], 'r') as f: + with open(fs[0], "r") as f: opsj = json.load(f) - if 'nrois' in opsj: - ops['nrois'] = opsj['nrois'] - ops['nplanes'] = opsj['nplanes'] - ops['dy'] = opsj['dy'] - ops['dx'] = opsj['dx'] - ops['fs'] = opsj['fs'] - elif 'nplanes' in opsj and 'lines' in opsj: - ops['nrois'] = opsj['nplanes'] - ops['nplanes'] = 1 + if "nrois" in opsj: + ops["nrois"] = opsj["nrois"] + ops["nplanes"] = opsj["nplanes"] + ops["dy"] = opsj["dy"] + ops["dx"] = opsj["dx"] + ops["fs"] = opsj["fs"] + elif "nplanes" in opsj and "lines" in opsj: + ops["nrois"] = opsj["nplanes"] + ops["nplanes"] = 1 else: - ops['nplanes'] = len(opsj) - ops['lines'] = opsj['lines'] + ops["nplanes"] = len(opsj) + ops["lines"] = opsj["lines"] else: - ops['nrois'] = len(ops['lines']) - nplanes = ops['nplanes'] + ops["nrois"] = len(ops["lines"]) + nplanes = ops["nplanes"] - print("NOTE: nplanes %d nrois %d => ops['nplanes'] = %d"%(nplanes,ops['nrois'],ops['nrois']*nplanes)) + print("NOTE: nplanes %d nrois %d => ops['nplanes'] = %d" % + (nplanes, ops["nrois"], ops["nrois"] * nplanes)) # multiply lines across planes - lines = ops['lines'].copy() - dy = ops['dy'].copy() - dx = ops['dx'].copy() - ops['lines'] = [None] * nplanes * ops['nrois'] - ops['dy'] = [None] * nplanes * ops['nrois'] - ops['dx'] = [None] * nplanes * ops['nrois'] - ops['iplane'] = np.zeros((nplanes * ops['nrois'],), np.int32) - for n in range(ops['nrois']): - ops['lines'][n::ops['nrois']] = [lines[n]] * nplanes - ops['dy'][n::ops['nrois']] = [dy[n]] * nplanes - ops['dx'][n::ops['nrois']] = [dx[n]] * nplanes - ops['iplane'][n::ops['nrois']] = np.arange(0, nplanes, 1, int) - ops['nplanes'] = nplanes * ops['nrois'] + lines = ops["lines"].copy() + dy = ops["dy"].copy() + dx = ops["dx"].copy() + ops["lines"] = [None] * nplanes * ops["nrois"] + ops["dy"] = [None] * nplanes * ops["nrois"] + ops["dx"] = [None] * nplanes * ops["nrois"] + ops["iplane"] = np.zeros((nplanes * ops["nrois"],), np.int32) + for n in range(ops["nrois"]): + ops["lines"][n::ops["nrois"]] = [lines[n]] * nplanes + ops["dy"][n::ops["nrois"]] = [dy[n]] * nplanes + ops["dx"][n::ops["nrois"]] = [dx[n]] * nplanes + ops["iplane"][n::ops["nrois"]] = np.arange(0, nplanes, 1, int) + ops["nplanes"] = nplanes * ops["nrois"] ops1 = utils.init_ops(ops) - # this shouldn't make it here - if 'lines' not in ops: + # this shouldn"t make it here + if "lines" not in ops: for j in range(len(ops1)): ops1[j] = {**ops1[j], **opsj[j]}.copy() @@ -281,19 +308,20 @@ def mesoscan_to_binary(ops): ops1, fs, reg_file, reg_file_chan2 = utils.find_files_open_binaries(ops1, False) ops = ops1[0] - nchannels = ops1[0]['nchannels'] - batch_size = ops['batch_size'] + nchannels = ops1[0]["nchannels"] + batch_size = ops["batch_size"] - # which tiff reader works for user's tiffs - use_sktiff = True if ops['force_sktiff'] else use_sktiff_reader(fs[0], batch_size=ops1[0].get('batch_size')) + # which tiff reader works for user"s tiffs + use_sktiff = True if ops["force_sktiff"] else use_sktiff_reader( + fs[0], batch_size=ops1[0].get("batch_size")) # loop over all tiffs which_folder = -1 - ntotal=0 + ntotal = 0 for ik, file in enumerate(fs): # open tiff tif, Ltif = open_tiff(file, use_sktiff) - if ops['first_tiffs'][ik]: + if ops["first_tiffs"][ik]: which_folder += 1 iplane = 0 ix = 0 @@ -302,68 +330,74 @@ def mesoscan_to_binary(ops): break nfr = min(Ltif - ix, batch_size) if use_sktiff: - im = imread(file, key = range(ix, ix + nfr)) + im = imread(file, key=range(ix, ix + nfr)) else: - if Ltif==1: + if Ltif == 1: im = tif.data() else: - im = tif.data(beg=ix, end=ix+nfr) - if im.size==0: + im = tif.data(beg=ix, end=ix + nfr) + if im.size == 0: break - if len(im.shape)<3: + if len(im.shape) < 3: im = np.expand_dims(im, axis=0) if im.shape[0] > nfr: im = im[:nfr, :, :] nframes = im.shape[0] - for j in range(0, ops['nplanes']): - jlines = np.array(ops1[j]['lines']).astype(np.int32) - jplane = ops1[j]['iplane'] - if ik==0 and ix==0: - ops1[j]['meanImg'] = np.zeros((len(jlines), im.shape[2]), np.float32) - if nchannels>1: - ops1[j]['meanImg_chan2'] = np.zeros((len(jlines), im.shape[2]), np.float32) - ops1[j]['nframes'] = 0 - i0 = nchannels * ((iplane+jplane)%nplanes) - if nchannels>1: - nfunc = ops['functional_chan']-1 + for j in range(0, ops["nplanes"]): + jlines = np.array(ops1[j]["lines"]).astype(np.int32) + jplane = ops1[j]["iplane"] + if ik == 0 and ix == 0: + ops1[j]["meanImg"] = np.zeros((len(jlines), im.shape[2]), + np.float32) + if nchannels > 1: + ops1[j]["meanImg_chan2"] = np.zeros((len(jlines), im.shape[2]), + np.float32) + ops1[j]["nframes"] = 0 + i0 = nchannels * ((iplane + jplane) % nplanes) + if nchannels > 1: + nfunc = ops["functional_chan"] - 1 else: nfunc = 0 #frange = np.arange(int(i0)+nfunc, nframes, nplanes*nchannels) - im2write = im[int(i0)+nfunc:nframes:nplanes*nchannels, jlines[0]:(jlines[-1]+1), :] + im2write = im[int(i0) + nfunc:nframes:nplanes * nchannels, + jlines[0]:(jlines[-1] + 1), :] #im2write = im[np.ix_(frange, jlines, np.arange(0,im.shape[2],1,int))] - ops1[j]['meanImg'] += im2write.astype(np.float32).sum(axis=0) + ops1[j]["meanImg"] += im2write.astype(np.float32).sum(axis=0) reg_file[j].write(bytearray(im2write)) - ops1[j]['nframes'] += im2write.shape[0] - ops1[j]['frames_per_folder'][which_folder] += im2write.shape[0] - if nchannels>1: - frange = np.arange(int(i0)+1-nfunc, nframes, nplanes*nchannels) - im2write = im[np.ix_(frange, jlines, np.arange(0,im.shape[2],1,int))] + ops1[j]["nframes"] += im2write.shape[0] + ops1[j]["frames_per_folder"][which_folder] += im2write.shape[0] + if nchannels > 1: + frange = np.arange( + int(i0) + 1 - nfunc, nframes, nplanes * nchannels) + im2write = im[np.ix_(frange, jlines, + np.arange(0, im.shape[2], 1, int))] reg_file_chan2[j].write(bytearray(im2write)) - ops1[j]['meanImg_chan2'] += im2write.astype(np.float32).sum(axis=0) - iplane = (iplane-nframes/nchannels)%nplanes - ix+=nframes - ntotal+=nframes - if ops1[0]['nframes']%(batch_size*4)==0: - print('%d frames of binary, time %0.2f sec.'%(ops1[0]['nframes'],time.time()-t0)) + ops1[j]["meanImg_chan2"] += im2write.astype(np.float32).sum(axis=0) + iplane = (iplane - nframes / nchannels) % nplanes + ix += nframes + ntotal += nframes + if ops1[0]["nframes"] % (batch_size * 4) == 0: + print("%d frames of binary, time %0.2f sec." % + (ops1[0]["nframes"], time.time() - t0)) gc.collect() # write ops files - do_registration = ops['do_registration'] + do_registration = ops["do_registration"] for ops in ops1: - ops['Ly'],ops['Lx'] = ops['meanImg'].shape + ops["Ly"], ops["Lx"] = ops["meanImg"].shape if not do_registration: - ops['yrange'] = np.array([0,ops['Ly']]) - ops['xrange'] = np.array([0,ops['Lx']]) - ops['meanImg'] /= ops['nframes'] - if nchannels>1: - ops['meanImg_chan2'] /= ops['nframes'] - np.save(ops['ops_path'], ops) + ops["yrange"] = np.array([0, ops["Ly"]]) + ops["xrange"] = np.array([0, ops["Lx"]]) + ops["meanImg"] /= ops["nframes"] + if nchannels > 1: + ops["meanImg_chan2"] /= ops["nframes"] + np.save(ops["ops_path"], ops) # close all binary files and write ops files - for j in range(0,ops['nplanes']): + for j in range(0, ops["nplanes"]): reg_file[j].close() - if nchannels>1: + if nchannels > 1: reg_file_chan2[j].close() return ops1[0] @@ -371,7 +405,7 @@ def mesoscan_to_binary(ops): def ome_to_binary(ops): """ converts ome.tiff to *.bin file for non-interleaved red channel recordings - assumes SINGLE-PAGE tiffs where first channel has string 'Ch1' + assumes SINGLE-PAGE tiffs where first channel has string "Ch1" and also SINGLE FOLDER Parameters @@ -382,108 +416,149 @@ def ome_to_binary(ops): Returns ------- ops : dictionary of first plane - creates binaries ops['reg_file'] + creates binaries ops["reg_file"] assigns keys: tiffreader, first_tiffs, frames_per_folder, nframes, meanImg, meanImg_chan2 """ t0 = time.time() # copy ops to list where each element is ops for each plane ops1 = utils.init_ops(ops) - nplanes = ops1[0]['nplanes'] + nplanes = ops1[0]["nplanes"] # open all binary files for writing and look for tiffs in all requested folders ops1, fs, reg_file, reg_file_chan2 = utils.find_files_open_binaries(ops1, False) ops = ops1[0] + batch_size = ops["batch_size"] + use_sktiff = not HAS_SCANIMAGE fs_Ch1, fs_Ch2 = [], [] for f in fs: - if f.find('Ch1')>-1: - if ops['functional_chan'] == 1: + if f.find("Ch1") > -1: + if ops["functional_chan"] == 1: fs_Ch1.append(f) else: fs_Ch2.append(f) else: - if ops['functional_chan'] == 1: + if ops["functional_chan"] == 1: fs_Ch2.append(f) else: fs_Ch1.append(f) - if len(fs_Ch2)==0: - ops1[0]['nchannels'] = 1 - nchannels = ops1[0]['nchannels'] - + if len(fs_Ch2) == 0: + ops1[0]["nchannels"] = 1 + nchannels = ops1[0]["nchannels"] + print(f"nchannels = {nchannels}") + # loop over all tiffs - with ScanImageTiffReader(fs_Ch1[0]) as tif: - im0 = tif.data() + TiffReader = ScanImageTiffReader if HAS_SCANIMAGE else TiffFile + with TiffReader(fs_Ch1[0]) as tif: + if HAS_SCANIMAGE: + n_pages = tif.shape()[0] if len(tif.shape()) > 2 else 1 + shape = tif.shape()[-2:] + else: + n_pages = len(tif.pages) + im0 = tif.pages[0].asarray() + shape = im0.shape for ops1_0 in ops1: - ops1_0['nframes'] = 0 - ops1_0['frames_per_folder'][0] = 0 - ops1_0['meanImg'] = np.zeros(im0.shape, np.float32) + ops1_0["nframes"] = 0 + ops1_0["frames_per_folder"][0] = 0 + ops1_0["frames_per_file"] = np.ones(len(fs_Ch1), "int") if n_pages==1 else np.zeros(len(fs_Ch1), "int") + ops1_0["meanImg"] = np.zeros(shape, np.float32) if nchannels > 1: - ops1_0['meanImg_chan2'] = np.zeros(im0.shape, np.float32) + ops1_0["meanImg_chan2"] = np.zeros(shape, np.float32) - bruker_bidirectional = ops.get('bruker_bidirectional', False) + bruker_bidirectional = ops.get("bruker_bidirectional", False) iplanes = np.arange(0, nplanes) if not bruker_bidirectional: - iplanes = np.tile(iplanes[np.newaxis, :], - int(np.ceil(len(fs_Ch1)/nplanes))).flatten() + iplanes = np.tile(iplanes[np.newaxis, :], + int(np.ceil(len(fs_Ch1) / nplanes))).flatten() iplanes = iplanes[:len(fs_Ch1)] else: iplanes = np.hstack((iplanes, iplanes[::-1])) - iplanes = np.tile(iplanes[np.newaxis, :], - int(np.ceil(len(fs_Ch1)/(2*nplanes)))).flatten() + iplanes = np.tile(iplanes[np.newaxis, :], + int(np.ceil(len(fs_Ch1) / (2 * nplanes)))).flatten() iplanes = iplanes[:len(fs_Ch1)] - + + itot = 0 for ik, file in enumerate(fs_Ch1): + ip = iplanes[ik] # read tiff - with ScanImageTiffReader(file) as tif: - im = tif.data() - if im.dtype.type == np.uint16: - im = (im // 2) - im = im.astype(np.int16) - - # write to binary - ix = iplanes[ik] - ops1[ix]['nframes'] += 1 - ops1[ix]['frames_per_folder'][0] += 1 - ops1[ix]['meanImg'] += im.astype(np.float32) - reg_file[ix].write(bytearray(im)) - gc.collect() - - if ik % 1000 == 0: - print('%d frames of binary, time %0.2f sec.' % (ik, time.time() - t0)) - - if nchannels > 1: - for ik, file in enumerate(fs_Ch2): - with ScanImageTiffReader(file) as tif: - im = tif.data() + if n_pages==1: + with TiffReader(file) as tif: + im = tif.data() if HAS_SCANIMAGE else tif.pages[0].asarray() if im.dtype.type == np.uint16: im = (im // 2) - im = im.astype(np.int16) - ix = iplanes[ik] - ops1[ix]['meanImg_chan2'] += im.astype(np.float32) - reg_file_chan2[ix].write(bytearray(im)) - gc.collect() - if ik % 1000 == 0: - print('%d frames of binary, time %0.2f sec.' % (ik, time.time() - t0)) + # write to binary + ops1[ip]["nframes"] += 1 + ops1[ip]["frames_per_folder"][0] += 1 + ops1[ip]["meanImg"] += im.astype(np.float32) + reg_file[ip].write(bytearray(im)) + #gc.collect() + else: + tif, Ltif = open_tiff(file, not HAS_SCANIMAGE) + # keep track of the plane identity of the first frame (channel identity is assumed always 0) + ix = 0 + while 1: + im = read_tiff(file, tif, Ltif, ix, batch_size, use_sktiff) + if im is None: + break + nframes = im.shape[0] + ix += nframes + itot += nframes + reg_file[ip].write(bytearray(im)) + ops1[ip]["meanImg"] += im.astype(np.float32).sum(axis=0) + ops1[ip]["nframes"] += im.shape[0] + ops1[ip]["frames_per_file"][ik] += nframes + ops1[ip]["frames_per_folder"][0] += nframes + if itot % 1000 == 0: + print("%d frames of binary, time %0.2f sec." % (itot, time.time() - t0)) + gc.collect() + + if nchannels > 1: + itot = 0 + for ik, file in enumerate(fs_Ch2): + ip = iplanes[ik] + if n_pages==1: + with TiffReader(file) as tif: + im = tif.data() if HAS_SCANIMAGE else tif.pages[0].asarray() + if im.dtype.type == np.uint16: + im = (im // 2) + im = im.astype(np.int16) + ops1[ip]["meanImg_chan2"] += im.astype(np.float32) + reg_file_chan2[ip].write(bytearray(im)) + else: + tif, Ltif = open_tiff(file, not HAS_SCANIMAGE) + ix = 0 + while 1: + im = read_tiff(file, tif, Ltif, ix, batch_size, use_sktiff) + if im is None: + break + nframes = im.shape[0] + ix += nframes + itot += nframes + ops1[ip]["meanImg_chan2"] += im.astype(np.float32).sum(axis=0) + reg_file_chan2[ip].write(bytearray(im)) + if itot % 1000 == 0: + print("%d frames of binary, time %0.2f sec." % (itot, time.time() - t0)) + gc.collect() # write ops files - do_registration = ops['do_registration'] + do_registration = ops["do_registration"] for ops in ops1: - ops['Ly'], ops['Lx'] = im0.shape + ops["Ly"], ops["Lx"] = shape if not do_registration: - ops['yrange'] = np.array([0,ops['Ly']]) - ops['xrange'] = np.array([0,ops['Lx']]) - ops['meanImg'] /= ops['nframes'] - if nchannels>1: - ops['meanImg_chan2'] /= ops['nframes'] - np.save(ops['ops_path'], ops) + ops["yrange"] = np.array([0, ops["Ly"]]) + ops["xrange"] = np.array([0, ops["Lx"]]) + ops["meanImg"] /= ops["nframes"] + if nchannels > 1: + ops["meanImg_chan2"] /= ops["nframes"] + np.save(ops["ops_path"], ops) # close all binary files and write ops files - for j in range(0,nplanes): + for j in range(0, nplanes): reg_file[j].close() - if nchannels>1: + if nchannels > 1: reg_file_chan2[j].close() return ops1[0] diff --git a/suite2p/io/utils.py b/suite2p/io/utils.py index 257be86eb..c317fd25a 100644 --- a/suite2p/io/utils.py +++ b/suite2p/io/utils.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import glob import os from pathlib import Path @@ -6,59 +9,95 @@ from natsort import natsorted -def search_for_ext(rootdir, extension = 'tif', look_one_level_down=False): +def search_for_ext(rootdir, extension="tif", look_one_level_down=False): filepaths = [] if os.path.isdir(rootdir): # search root dir - tmp = glob.glob(os.path.join(rootdir,'*.'+extension)) + tmp = glob.glob(os.path.join(rootdir, "*." + extension)) if len(tmp): filepaths.extend([t for t in natsorted(tmp)]) # search one level down if look_one_level_down: dirs = natsorted(os.listdir(rootdir)) for d in dirs: - if os.path.isdir(os.path.join(rootdir,d)): - tmp = glob.glob(os.path.join(rootdir, d, '*.'+extension)) + if os.path.isdir(os.path.join(rootdir, d)): + tmp = glob.glob(os.path.join(rootdir, d, "*." + extension)) if len(tmp): filepaths.extend([t for t in natsorted(tmp)]) if len(filepaths): return filepaths else: - raise OSError('Could not find files, check path [{0}]'.format(rootdir)) + raise OSError("Could not find files, check path [{0}]".format(rootdir)) + def get_sbx_list(ops): """ make list of scanbox files to process - if ops['subfolders'], then all tiffs ops['data_path'][0] / ops['subfolders'] / *.sbx - if ops['look_one_level_down'], then all tiffs in all folders + one level down + if ops["subfolders"], then all tiffs ops["data_path"][0] / ops["subfolders"] / *.sbx + if ops["look_one_level_down"], then all tiffs in all folders + one level down TODO: Implement "tiff_list" functionality """ - froot = ops['data_path'] + froot = ops["data_path"] # use a user-specified list of tiffs - if len(froot)==1: - if 'subfolders' in ops and len(ops['subfolders'])>0: + if len(froot) == 1: + if "subfolders" in ops and len(ops["subfolders"]) > 0: fold_list = [] - for folder_down in ops['subfolders']: + for folder_down in ops["subfolders"]: fold = os.path.join(froot[0], folder_down) fold_list.append(fold) else: - fold_list = ops['data_path'] + fold_list = ops["data_path"] else: fold_list = froot fsall = [] - for k,fld in enumerate(fold_list): - fs = search_for_ext(fld, - extension = 'sbx', - look_one_level_down = ops['look_one_level_down']) + for k, fld in enumerate(fold_list): + fs = search_for_ext(fld, extension="sbx", + look_one_level_down=ops["look_one_level_down"]) fsall.extend(fs) - if len(fsall)==0: + if len(fsall) == 0: + print(fold_list) + raise Exception("No files, check path.") + else: + print("** Found %d sbx - converting to binary **" % (len(fsall))) + return fsall, ops + +def get_movie_list(ops): + """ make list of movie files to process + if ops["subfolders"], then all ops["data_path"][0] / ops["subfolders"] / *.avi or *.mp4 + if ops["look_one_level_down"], then all tiffs in all folders + one level down + """ + froot = ops["data_path"] + # use a user-specified list of tiffs + if len(froot) == 1: + if "subfolders" in ops and len(ops["subfolders"]) > 0: + fold_list = [] + for folder_down in ops["subfolders"]: + fold = os.path.join(froot[0], folder_down) + fold_list.append(fold) + else: + fold_list = ops["data_path"] + else: + fold_list = froot + fsall = [] + for k, fld in enumerate(fold_list): + try: + fs = search_for_ext(fld, extension="mp4", + look_one_level_down=ops["look_one_level_down"]) + fsall.extend(fs) + except: + fs = search_for_ext(fld, extension="avi", + look_one_level_down=ops["look_one_level_down"]) + fsall.extend(fs) + if len(fsall) == 0: print(fold_list) - raise Exception('No files, check path.') + raise Exception("No files, check path.") else: - print('** Found %d sbx - converting to binary **'%(len(fsall))) + print("** Found %d movies - converting to binary **" % (len(fsall))) return fsall, ops + + def list_h5(ops): - froot = os.path.dirname(ops['h5py']) + froot = os.path.dirname(ops["h5py"]) lpath = os.path.join(froot, "*.h5") fs = natsorted(glob.glob(lpath)) lpath = os.path.join(froot, "*.hdf5") @@ -66,6 +105,7 @@ def list_h5(ops): fs.extend(fs2) return fs + def list_files(froot, look_one_level_down, exts): """ get list of files with exts in folder froot + one level down maybe """ @@ -75,10 +115,10 @@ def list_files(froot, look_one_level_down, exts): fs.extend(glob.glob(lpath)) fs = natsorted(set(fs)) if len(fs) > 0: - first_tiffs = np.zeros((len(fs),), 'bool') + first_tiffs = np.zeros((len(fs),), "bool") first_tiffs[0] = True else: - first_tiffs = np.zeros(0, 'bool') + first_tiffs = np.zeros(0, "bool") lfs = len(fs) if look_one_level_down: fdir = natsorted(glob.glob(os.path.join(froot, "*/"))) @@ -90,75 +130,121 @@ def list_files(froot, look_one_level_down, exts): fsnew = natsorted(set(fsnew)) if len(fsnew) > 0: fs.extend(fsnew) - first_tiffs = np.append(first_tiffs, np.zeros((len(fsnew),), 'bool')) + first_tiffs = np.append(first_tiffs, np.zeros((len(fsnew),), "bool")) first_tiffs[lfs] = True lfs = len(fs) return fs, first_tiffs + def get_h5_list(ops): """ make list of h5 files to process - if ops['look_one_level_down'], then all h5's in all folders + one level down + if ops["look_one_level_down"], then all h5"s in all folders + one level down """ - froot = ops['data_path'] - fold_list = ops['data_path'] + froot = ops["data_path"] + fold_list = ops["data_path"] fsall = [] nfs = 0 first_tiffs = [] - for k,fld in enumerate(fold_list): - fs, ftiffs = list_files(fld, ops['look_one_level_down'], - ["*.h5", "*.hdf5"]) + for k, fld in enumerate(fold_list): + fs, ftiffs = list_files(fld, ops["look_one_level_down"], + ["*.h5", "*.hdf5", "*.mesc"]) fsall.extend(fs) first_tiffs.extend(list(ftiffs)) - if len(fs)==0: - print('Could not find any h5 files') - raise Exception('no h5s') + #if len(fs) > 0 and not isinstance(fs, list): + # fs = [fs] + if len(fs) == 0: + print("Could not find any h5 files") + raise Exception("no h5s") else: - ops['first_tiffs'] = np.array(first_tiffs).astype('bool') - print('** Found %d h5 files - converting to binary **'%(len(fsall))) - #print('Found %d tifs'%(len(fsall))) + ops["first_tiffs"] = np.array(first_tiffs).astype("bool") + print("** Found %d h5 files - converting to binary **" % (len(fsall))) + #print("Found %d tifs"%(len(fsall))) return fsall, ops def get_tif_list(ops): """ make list of tiffs to process - if ops['subfolders'], then all tiffs ops['data_path'][0] / ops['subfolders'] / *.tif - if ops['look_one_level_down'], then all tiffs in all folders + one level down - if ops['tiff_list'], then ops['data_path'][0] / ops['tiff_list'] ONLY + if ops["subfolders"], then all tiffs ops["data_path"][0] / ops["subfolders"] / *.tif + if ops["look_one_level_down"], then all tiffs in all folders + one level down + if ops["tiff_list"], then ops["data_path"][0] / ops["tiff_list"] ONLY """ - froot = ops['data_path'] + froot = ops["data_path"] # use a user-specified list of tiffs - if 'tiff_list' in ops: + if "tiff_list" in ops: fsall = [] - for tif in ops['tiff_list']: + for tif in ops["tiff_list"]: fsall.append(os.path.join(froot[0], tif)) - ops['first_tiffs'] = np.zeros((len(fsall),), dtype='bool') - ops['first_tiffs'][0] = True - print('** Found %d tifs - converting to binary **'%(len(fsall))) + ops["first_tiffs"] = np.zeros((len(fsall),), dtype="bool") + ops["first_tiffs"][0] = True + print("** Found %d tifs - converting to binary **" % (len(fsall))) else: - if len(froot)==1: - if 'subfolders' in ops and len(ops['subfolders'])>0: + if len(froot) == 1: + if "subfolders" in ops and len(ops["subfolders"]) > 0: fold_list = [] - for folder_down in ops['subfolders']: + for folder_down in ops["subfolders"]: fold = os.path.join(froot[0], folder_down) fold_list.append(fold) else: - fold_list = ops['data_path'] + fold_list = ops["data_path"] else: fold_list = froot fsall = [] nfs = 0 first_tiffs = [] - for k,fld in enumerate(fold_list): - fs, ftiffs = list_files(fld, ops['look_one_level_down'], + for k, fld in enumerate(fold_list): + fs, ftiffs = list_files(fld, ops["look_one_level_down"], ["*.tif", "*.tiff", "*.TIF", "*.TIFF"]) fsall.extend(fs) first_tiffs.extend(list(ftiffs)) - if len(fsall)==0: - print('Could not find any tiffs') - raise Exception('no tiffs') + if len(fsall) == 0: + print("Could not find any tiffs") + raise Exception("no tiffs") else: - ops['first_tiffs'] = np.array(first_tiffs).astype('bool') - print('** Found %d tifs - converting to binary **'%(len(fsall))) + ops["first_tiffs"] = np.array(first_tiffs).astype("bool") + print("** Found %d tifs - converting to binary **" % (len(fsall))) + return fsall, ops + + +def get_nd2_list(ops): + """ make list of nd2 files to process + if ops["look_one_level_down"], then all nd2"s in all folders + one level down + """ + froot = ops["data_path"] + fold_list = ops["data_path"] + fsall = [] + nfs = 0 + first_tiffs = [] + for k, fld in enumerate(fold_list): + fs, ftiffs = list_files(fld, ops["look_one_level_down"], ["*.nd2"]) + fsall.extend(fs) + first_tiffs.extend(list(ftiffs)) + if len(fs) == 0: + print("Could not find any nd2 files") + raise Exception("no nd2s") + else: + ops["first_tiffs"] = np.array(first_tiffs).astype("bool") + print("** Found %d nd2 files - converting to binary **" % (len(fsall))) + return fsall, ops + +def get_dcimg_list(ops): + """ make list of dcimg files to process + if ops["look_one_level_down"], then all dcimg"s in all folders + one level down + """ + froot = ops["data_path"] + fold_list = ops["data_path"] + fsall = [] + nfs = 0 + first_tiffs = [] + for k, fld in enumerate(fold_list): + fs, ftiffs = list_files(fld, ops["look_one_level_down"], ["*.dcimg"]) + fsall.extend(fs) + first_tiffs.extend(list(ftiffs)) + if len(fs) == 0: + print("Could not find any dcimg files") + raise Exception("no dcimg") + else: + ops["first_tiffs"] = np.array(first_tiffs).astype("bool") + print("** Found %d dcimg files - converting to binary **" % (len(fsall))) return fsall, ops def find_files_open_binaries(ops1, ish5=False): @@ -167,63 +253,76 @@ def find_files_open_binaries(ops1, ish5=False): Parameters ---------- ops1 : list of dictionaries - 'keep_movie_raw', 'data_path', 'look_one_level_down', 'reg_file'... + "keep_movie_raw", "data_path", "look_one_level_down", "reg_file"... Returns ------- ops1 : list of dictionaries - adds fields 'filelist', 'first_tiffs', opens binaries + adds fields "filelist", "first_tiffs", opens binaries """ reg_file = [] - reg_file_chan2=[] - + reg_file_chan2 = [] for ops in ops1: - nchannels = ops['nchannels'] - if 'keep_movie_raw' in ops and ops['keep_movie_raw']: - reg_file.append(open(ops['raw_file'], 'wb')) - if nchannels>1: - reg_file_chan2.append(open(ops['raw_file_chan2'], 'wb')) + nchannels = ops["nchannels"] + if "keep_movie_raw" in ops and ops["keep_movie_raw"]: + reg_file.append(open(ops["raw_file"], "wb")) + if nchannels > 1: + reg_file_chan2.append(open(ops["raw_file_chan2"], "wb")) else: - reg_file.append(open(ops['reg_file'], 'wb')) - if nchannels>1: - reg_file_chan2.append(open(ops['reg_file_chan2'], 'wb')) + reg_file.append(open(ops["reg_file"], "wb")) + if nchannels > 1: + reg_file_chan2.append(open(ops["reg_file_chan2"], "wb")) - if 'input_format' in ops.keys(): - input_format = ops['input_format'] + if "input_format" in ops.keys(): + input_format = ops["input_format"] else: - input_format = 'tif' + input_format = "tif" if ish5: - input_format = 'h5' + input_format = "h5" print(input_format) - if input_format == 'h5': - if len(ops1[0]['data_path'])>0: - fs, ops2 = get_h5_list(ops1[0]) - print('NOTE: using a list of h5 files:') - print(fs) - # find h5's + if input_format == "h5": + print(f"OPS1 h5py: {ops1[0]['h5py']}") + if ops1[0]["h5py"]: + fs = ops1[0]["h5py"] + fs = [fs] else: - if ops1[0]['look_one_level_down']: - fs = list_h5(ops1[0]) - print('NOTE: using a list of h5 files:') - print(fs) + if len(ops1[0]["data_path"]) > 0: + fs, ops2 = get_h5_list(ops1[0]) + print("NOTE: using a list of h5 files:") + # find h5"s else: - fs = [ops1[0]['h5py']] - elif input_format == 'sbx': + raise Exception("No h5 files found") + + elif input_format == "sbx": # find sbx fs, ops2 = get_sbx_list(ops1[0]) - print('Scanbox files:') - print('\n'.join(fs)) + print("Scanbox files:") + print("\n".join(fs)) + elif input_format == "nd2": + # find nd2s + fs, ops2 = get_nd2_list(ops1[0]) + print("Nikon files:") + print("\n".join(fs)) + elif input_format == "movie": + fs, ops2 = get_movie_list(ops1[0]) + print("Movie files:") + print("\n".join(fs)) + elif input_format == "dcimg": + # find dcimgs + fs, ops2 = get_dcimg_list(ops1[0]) + print("DCAM image files:") + print("\n".join(fs)) else: # find tiffs fs, ops2 = get_tif_list(ops1[0]) for ops in ops1: - ops['first_tiffs'] = ops2['first_tiffs'] - ops['frames_per_folder'] = np.zeros((ops2['first_tiffs'].sum(),), np.int32) + ops["first_tiffs"] = ops2["first_tiffs"] + ops["frames_per_folder"] = np.zeros((ops2["first_tiffs"].sum(),), np.int32) for ops in ops1: - ops['filelist'] = fs + ops["filelist"] = fs return ops1, fs, reg_file, reg_file_chan2 @@ -233,61 +332,62 @@ def init_ops(ops): Parameters ---------- ops : dictionary - 'nplanes', 'save_path', 'save_folder', 'fast_disk', 'nchannels', 'keep_movie_raw' - + (if mesoscope) 'dy', 'dx', 'lines' + "nplanes", "save_path", "save_folder", "fast_disk", "nchannels", "keep_movie_raw" + + (if mesoscope) "dy", "dx", "lines" Returns ------- ops1 : list of dictionaries - adds fields 'save_path0', 'reg_file' - (depending on ops: 'raw_file', 'reg_file_chan2', 'raw_file_chan2') + adds fields "save_path0", "reg_file" + (depending on ops: "raw_file", "reg_file_chan2", "raw_file_chan2") """ - nplanes = ops['nplanes'] - nchannels = ops['nchannels'] - if 'lines' in ops: - lines = ops['lines'] - if 'iplane' in ops: - iplane = ops['iplane'] - #ops['nplanes'] = len(ops['lines']) + nplanes = ops["nplanes"] + nchannels = ops["nchannels"] + if "lines" in ops: + lines = ops["lines"] + if "iplane" in ops: + iplane = ops["iplane"] + #ops["nplanes"] = len(ops["lines"]) ops1 = [] - if ('fast_disk' not in ops) or len(ops['fast_disk'])==0: - ops['fast_disk'] = ops['save_path0'] - fast_disk = ops['fast_disk'] + if ("fast_disk" not in ops) or len(ops["fast_disk"]) == 0: + ops["fast_disk"] = ops["save_path0"] + fast_disk = ops["fast_disk"] # for mesoscope recording FOV locations - if 'dy' in ops and ops['dy']!='': - dy = ops['dy'] - dx = ops['dx'] + if "dy" in ops and ops["dy"] != "": + dy = ops["dy"] + dx = ops["dx"] # compile ops into list across planes - for j in range(0,nplanes): - if len(ops['save_folder']) > 0: - ops['save_path'] = os.path.join(ops['save_path0'], ops['save_folder'], 'plane%d'%j) + for j in range(0, nplanes): + if len(ops["save_folder"]) > 0: + ops["save_path"] = os.path.join(ops["save_path0"], ops["save_folder"], + "plane%d" % j) else: - ops['save_path'] = os.path.join(ops['save_path0'], 'suite2p', 'plane%d'%j) - - if ('fast_disk' not in ops) or len(ops['fast_disk'])==0: - ops['fast_disk'] = ops['save_path0'].copy() - fast_disk = os.path.join(ops['fast_disk'], 'suite2p', 'plane%d'%j) - ops['ops_path'] = os.path.join(ops['save_path'],'ops.npy') - ops['reg_file'] = os.path.join(fast_disk, 'data.bin') - if 'keep_movie_raw' in ops and ops['keep_movie_raw']: - ops['raw_file'] = os.path.join(fast_disk, 'data_raw.bin') - if 'lines' in ops: - ops['lines'] = lines[j] - if 'iplane' in ops: - ops['iplane'] = iplane[j] - if nchannels>1: - ops['reg_file_chan2'] = os.path.join(fast_disk, 'data_chan2.bin') - if 'keep_movie_raw' in ops and ops['keep_movie_raw']: - ops['raw_file_chan2'] = os.path.join(fast_disk, 'data_chan2_raw.bin') - if 'dy' in ops and ops['dy']!='': - ops['dy'] = dy[j] - ops['dx'] = dx[j] + ops["save_path"] = os.path.join(ops["save_path0"], "suite2p", "plane%d" % j) + + if ("fast_disk" not in ops) or len(ops["fast_disk"]) == 0: + ops["fast_disk"] = ops["save_path0"].copy() + fast_disk = os.path.join(ops["fast_disk"], "suite2p", "plane%d" % j) + ops["ops_path"] = os.path.join(ops["save_path"], "ops.npy") + ops["reg_file"] = os.path.join(fast_disk, "data.bin") + if "keep_movie_raw" in ops and ops["keep_movie_raw"]: + ops["raw_file"] = os.path.join(fast_disk, "data_raw.bin") + if "lines" in ops: + ops["lines"] = lines[j] + if "iplane" in ops: + ops["iplane"] = iplane[j] + if nchannels > 1: + ops["reg_file_chan2"] = os.path.join(fast_disk, "data_chan2.bin") + if "keep_movie_raw" in ops and ops["keep_movie_raw"]: + ops["raw_file_chan2"] = os.path.join(fast_disk, "data_chan2_raw.bin") + if "dy" in ops and ops["dy"] != "": + ops["dy"] = dy[j] + ops["dx"] = dx[j] if not os.path.isdir(fast_disk): os.makedirs(fast_disk) - if not os.path.isdir(ops['save_path']): - os.makedirs(ops['save_path']) + if not os.path.isdir(ops["save_path"]): + os.makedirs(ops["save_path"]) ops1.append(ops.copy()) return ops1 @@ -303,7 +403,7 @@ def get_suite2p_path(path: Path) -> Path: for path_idx in range(len(path.parts) - 1, 0, -1): if path.parts[path_idx] == "suite2p": new_path = Path(path.parts[0]) - for path_part in path.parts[1 : path_idx + 1]: + for path_part in path.parts[1:path_idx + 1]: new_path = new_path.joinpath(path_part) break else: diff --git a/suite2p/ops/clean.py b/suite2p/ops/clean.py index 9fd77f89c..e91c7275a 100644 --- a/suite2p/ops/clean.py +++ b/suite2p/ops/clean.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import argparse import numpy as np @@ -5,11 +8,12 @@ def main(ops1): # cleaning stuff - print('cleaning!') + print("cleaning!") -if __name__ == '__main__': - parser = argparse.ArgumentParser(description='Suite2p parameters') - parser.add_argument('ops_file', type=str, help='ops file path') + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Suite2p parameters") + parser.add_argument("ops_file", type=str, help="ops file path") args = parser.parse_args() ops1 = np.load(args.ops_file) diff --git a/suite2p/registration/__init__.py b/suite2p/registration/__init__.py index 63b132506..b3ae9a00d 100644 --- a/suite2p/registration/__init__.py +++ b/suite2p/registration/__init__.py @@ -1,3 +1,7 @@ -from .register import register_binary, registration_wrapper +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" +from .register import (registration_wrapper, save_registration_outputs_to_ops, + compute_enhanced_mean_image) from .metrics import get_pc_metrics from .zalign import compute_zpos diff --git a/suite2p/registration/bidiphase.py b/suite2p/registration/bidiphase.py index f3c1cc4db..5a15326ef 100644 --- a/suite2p/registration/bidiphase.py +++ b/suite2p/registration/bidiphase.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import numpy as np from numpy import fft @@ -26,19 +29,19 @@ def compute(frames: np.ndarray) -> int: d2 = np.conj(fft.fft(frames[:, ::2, :], axis=2)) d2 /= np.abs(d2) + 1e-5 - d2 = d2[:,:d1.shape[1],:] + d2 = d2[:, :d1.shape[1], :] cc = np.real(fft.ifft(d1 * d2, axis=2)) cc = cc.mean(axis=1).mean(axis=0) cc = fft.fftshift(cc) - bidiphase = -(np.argmax(cc[-10 + Lx // 2 : 11 + Lx // 2]) - 10) + bidiphase = -(np.argmax(cc[-10 + Lx // 2:11 + Lx // 2]) - 10) return bidiphase def shift(frames: np.ndarray, bidiphase: int) -> None: """ - Shift last axis of 'frames' by bidirectional phase offset in-place, bidiphase. + Shift last axis of "frames" by bidirectional phase offset in-place, bidiphase. Parameters ---------- @@ -49,4 +52,4 @@ def shift(frames: np.ndarray, bidiphase: int) -> None: if bidiphase > 0: frames[:, 1::2, bidiphase:] = frames[:, 1::2, :-bidiphase] else: - frames[:, 1::2, :bidiphase] = frames[:, 1::2, -bidiphase:] \ No newline at end of file + frames[:, 1::2, :bidiphase] = frames[:, 1::2, -bidiphase:] diff --git a/suite2p/registration/metrics.py b/suite2p/registration/metrics.py index 34d07c001..cb56dfacf 100644 --- a/suite2p/registration/metrics.py +++ b/suite2p/registration/metrics.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from multiprocessing import Pool import numpy as np @@ -15,9 +18,10 @@ from . import rigid, nonrigid, utils, bidiphase from .. import io + def pclowhigh(mov, nlowhigh, nPC, random_state): """ - Compute mean of top and bottom PC weights for nPC's of mov + Compute mean of top and bottom PC weights for nPC"s of mov computes nPC PCs of mov and returns average of top and bottom @@ -52,18 +56,19 @@ def pclowhigh(mov, nlowhigh, nPC, random_state): v = pca.components_.T w = pca.singular_values_ mov += mimg - mov = np.transpose(np.reshape(mov, (-1, Ly, Lx)), (1,2,0)) - pclow = np.zeros((nPC, Ly, Lx), np.float32) + mov = np.transpose(np.reshape(mov, (-1, Ly, Lx)), (1, 2, 0)) + pclow = np.zeros((nPC, Ly, Lx), np.float32) pchigh = np.zeros((nPC, Ly, Lx), np.float32) isort = np.argsort(v, axis=0) for i in range(nPC): - pclow[i] = mov[:,:,isort[:nlowhigh, i]].mean(axis=-1) - pchigh[i] = mov[:,:,isort[-nlowhigh:, i]].mean(axis=-1) + pclow[i] = mov[:, :, isort[:nlowhigh, i]].mean(axis=-1) + pchigh[i] = mov[:, :, isort[-nlowhigh:, i]].mean(axis=-1) return pclow, pchigh, w, v -def pc_register(pclow, pchigh, bidi_corrected, spatial_hp=None, pre_smooth=None, smooth_sigma=1.15, smooth_sigma_time=0, - block_size=(128,128), maxregshift=0.1, maxregshiftNR=10, reg_1p=False, snr_thresh=1.25, +def pc_register(pclow, pchigh, bidi_corrected, spatial_hp=None, pre_smooth=None, + smooth_sigma=1.15, smooth_sigma_time=0, block_size=(128, 128), + maxregshift=0.1, maxregshiftNR=10, reg_1p=False, snr_thresh=1.25, is_nonrigid=True, bidiphase_offset=0, spatial_taper=50.0): """ register top and bottom of PCs to each other @@ -106,11 +111,10 @@ def pc_register(pclow, pchigh, bidi_corrected, spatial_hp=None, pre_smooth=None, # registration settings nPC, Ly, Lx = pclow.shape yblock, xblock, nblocks, block_size, NRsm = nonrigid.make_blocks( - Ly=Ly, Lx=Lx, block_size=np.array(block_size) - ) + Ly=Ly, Lx=Lx, block_size=np.array(block_size)) maxregshiftNR = np.array(maxregshiftNR) - X = np.zeros((nPC,3)) + X = np.zeros((nPC, 3)) for i in range(nPC): refImg = pclow[i] Img = pchigh[i][np.newaxis, :, :] @@ -122,13 +126,12 @@ def pc_register(pclow, pchigh, bidi_corrected, spatial_hp=None, pre_smooth=None, data = utils.spatial_smooth(data, int(pre_smooth)) refImg = utils.spatial_high_pass(data, int(spatial_hp)) - rmin, rmax = np.int16(np.percentile(refImg,1)), np.int16(np.percentile(refImg,99)) + rmin, rmax = np.int16(np.percentile(refImg, + 1)), np.int16(np.percentile(refImg, 99)) refImg = np.clip(refImg, rmin, rmax) maskMul, maskOffset = rigid.compute_masks( - refImg=refImg, - maskSlope=spatial_taper if reg_1p else 3 * smooth_sigma - ) + refImg=refImg, maskSlope=spatial_taper if reg_1p else 3 * smooth_sigma) cfRefImg = rigid.phasecorr_reference( refImg=refImg, smooth_sigma=smooth_sigma, @@ -146,8 +149,6 @@ def pc_register(pclow, pchigh, bidi_corrected, spatial_hp=None, pre_smooth=None, xblock=xblock, ) - - if bidiphase_offset and not bidi_corrected: bidiphase.shift(Img, bidiphase_offset) @@ -188,9 +189,9 @@ def pc_register(pclow, pchigh, bidi_corrected, spatial_hp=None, pre_smooth=None, maxregshiftNR=maxregshiftNR, ) - X[i,1] = np.mean((ymax1**2 + xmax1**2)**.5) - X[i,0] = np.mean((ymax[0]**2 + xmax[0]**2)**.5) - X[i,2] = np.amax((ymax1**2 + xmax1**2)**.5) + X[i, 1] = np.mean((ymax1**2 + xmax1**2)**.5) + X[i, 0] = np.mean((ymax[0]**2 + xmax[0]**2)**.5) + X[i, 2] = np.amax((ymax1**2 + xmax1**2)**.5) return X @@ -198,158 +199,160 @@ def get_pc_metrics(mov, ops, use_red=False): """ Computes registration metrics using top PCs of registered movie - movie saved as binary file ops['reg_file'] - metrics saved to ops['regPC'] and ops['X'] - 'regDX' is nPC x 3 where X[:,0] is rigid, X[:,1] is average nonrigid, X[:,2] is max nonrigid shifts - 'regPC' is average of top and bottom frames for each PC - 'tPC' is PC across time frames + movie saved as binary file ops["reg_file"] + metrics saved to ops["regPC"] and ops["X"] + "regDX" is nPC x 3 where X[:,0] is rigid, X[:,1] is average nonrigid, X[:,2] is max nonrigid shifts + "regPC" is average of top and bottom frames for each PC + "tPC" is PC across time frames Parameters ---------- ops : dict - 'nframes', 'Ly', 'Lx', 'reg_file' (if use_red=True, 'reg_file_chan2') - (optional, 'refImg', 'block_size', 'maxregshiftNR', 'smooth_sigma', 'maxregshift', '1Preg') + "nframes", "Ly", "Lx", "reg_file" (if use_red=True, "reg_file_chan2") + (optional, "refImg", "block_size", "maxregshiftNR", "smooth_sigma", "maxregshift", "1Preg") use_red : :obj:`bool`, optional - default False, whether to use 'reg_file' or 'reg_file_chan2' + default False, whether to use "reg_file" or "reg_file_chan2" Returns ------- ops : dict - The same as the ops input, but will now include 'regPC', 'tPC', and 'regDX'. + The same as the ops input, but will now include "regPC", "tPC", and "regDX". """ - random_state = ops['reg_metrics_rs'] if 'reg_metrics_rs' in ops else None - nPC = ops['reg_metric_n_pc'] if 'reg_metric_n_pc' in ops else 30 - pclow, pchigh, sv, ops['tPC'] = pclowhigh(mov, nlowhigh=np.minimum(300, int(ops['nframes'] / 2)), - nPC=nPC, random_state=random_state - ) - ops['regPC'] = np.concatenate((pclow[np.newaxis, :, :, :], pchigh[np.newaxis, :, :, :]), axis=0) - - ops['regDX'] = pc_register( - pclow, - pchigh, - spatial_hp=ops['spatial_hp_reg'], - pre_smooth=ops['pre_smooth'], - bidi_corrected=ops['bidi_corrected'], - smooth_sigma=ops['smooth_sigma'] if 'smooth_sigma' in ops else 1.15, - smooth_sigma_time=ops['smooth_sigma_time'], - block_size=ops['block_size'] if 'block_size' in ops else [128, 128], - maxregshift=ops['maxregshift'] if 'maxregshift' in ops else 0.1, - maxregshiftNR=ops['maxregshiftNR'] if 'maxregshiftNR' in ops else 5, - reg_1p=ops['1Preg'] if '1Preg' in ops else False, - snr_thresh=ops['snr_thresh'], - is_nonrigid=ops['nonrigid'], - bidiphase_offset=ops['bidiphase'], - spatial_taper=ops['spatial_taper'] - ) + random_state = ops["reg_metrics_rs"] if "reg_metrics_rs" in ops else None + nPC = ops["reg_metric_n_pc"] if "reg_metric_n_pc" in ops else 30 + pclow, pchigh, sv, ops["tPC"] = pclowhigh( + mov, nlowhigh=np.minimum(300, int(ops["nframes"] / 2)), nPC=nPC, + random_state=random_state) + ops["regPC"] = np.concatenate( + (pclow[np.newaxis, :, :, :], pchigh[np.newaxis, :, :, :]), axis=0) + + ops["regDX"] = pc_register( + pclow, pchigh, spatial_hp=ops["spatial_hp_reg"], pre_smooth=ops["pre_smooth"], + bidi_corrected=ops["bidi_corrected"], + smooth_sigma=ops["smooth_sigma"] if "smooth_sigma" in ops else 1.15, + smooth_sigma_time=ops["smooth_sigma_time"], + block_size=ops["block_size"] if "block_size" in ops else [128, 128], + maxregshift=ops["maxregshift"] if "maxregshift" in ops else 0.1, + maxregshiftNR=ops["maxregshiftNR"] if "maxregshiftNR" in ops else 5, + reg_1p=ops["1Preg"] if "1Preg" in ops else False, snr_thresh=ops["snr_thresh"], + is_nonrigid=ops["nonrigid"], bidiphase_offset=ops["bidiphase"], + spatial_taper=ops["spatial_taper"]) return ops def filt_worker(inputs): X, filt = inputs for n in range(X.shape[0]): - X[n,:,:] = convolve2d(X[n,:,:], filt, 'same') + X[n, :, :] = convolve2d(X[n, :, :], filt, "same") return X + def filt_parallel(data, filt, num_cores): nimg = data.shape[0] - nbatch = int(np.ceil(nimg/float(num_cores))) + nbatch = int(np.ceil(nimg / float(num_cores))) inputs = np.arange(0, nimg, nbatch) irange = [] dsplit = [] for i in inputs: - ilist = i + np.arange(0,np.minimum(nbatch, nimg-i),1,int) + ilist = i + np.arange(0, np.minimum(nbatch, nimg - i), 1, int) irange.append(ilist) - dsplit.append([data[ilist,:, :], filt]) + dsplit.append([data[ilist, :, :], filt]) if num_cores > 1: with Pool(num_cores) as p: results = p.map(filt_worker, dsplit) - results = np.concatenate(results, axis=0 ) + results = np.concatenate(results, axis=0) else: results = filt_worker(dsplit[0]) return results + def local_corr(mov, batch_size, num_cores): """ computes correlation image on mov (nframes x pixels x pixels) """ nframes, Ly, Lx = mov.shape - filt = np.ones((3,3),np.float32) - filt[1,1] = 0 + filt = np.ones((3, 3), np.float32) + filt[1, 1] = 0 filt /= norm(filt) - ix=0 - k=0 - filtnorm = convolve2d(np.ones((Ly,Lx)),filt,'same') + ix = 0 + k = 0 + filtnorm = convolve2d(np.ones((Ly, Lx)), filt, "same") - img_corr = np.zeros((Ly,Lx), np.float32) + img_corr = np.zeros((Ly, Lx), np.float32) while ix < nframes: - ifr = np.arange(ix, min(ix+batch_size, nframes), 1, int) + ifr = np.arange(ix, min(ix + batch_size, nframes), 1, int) - X = mov[ifr,:,:] + X = mov[ifr, :, :] X = X.astype(np.float32) X -= X.mean(axis=0) Xstd = X.std(axis=0) - Xstd[Xstd==0] = np.inf + Xstd[Xstd == 0] = np.inf #X /= np.maximum(1, X.std(axis=0)) X /= Xstd #for n in range(X.shape[0]): - # X[n,:,:] *= convolve2d(X[n,:,:], filt, 'same') + # X[n,:,:] *= convolve2d(X[n,:,:], filt, "same") X *= filt_parallel(X, filt, num_cores) img_corr += X.mean(axis=0) ix += batch_size - k+=1 + k += 1 img_corr /= filtnorm img_corr /= float(k) return img_corr + def bin_median(mov, window=10): - nframes,Ly,Lx = mov.shape + nframes, Ly, Lx = mov.shape if nframes < window: window = nframes - mov = np.nanmedian(np.reshape(mov[:int(np.floor(nframes/window)*window),:,:], - (-1,window,Ly,Lx)).mean(axis=1), axis=0) + mov = np.nanmedian( + np.reshape(mov[:int(np.floor(nframes / window) * window), :, :], + (-1, window, Ly, Lx)).mean(axis=1), axis=0) return mov + def corr_to_template(mov, tmpl): nframes, Ly, Lx = mov.shape tmpl_flat = tmpl.flatten() tmpl_flat -= tmpl_flat.mean() tmpl_std = tmpl_flat.std() - mov_flat = np.reshape(mov,(nframes,-1)).astype(np.float32) - mov_flat -= mov_flat.mean(axis=1)[:,np.newaxis] - mov_std = (mov_flat**2).mean(axis=1) ** 0.5 + mov_flat = np.reshape(mov, (nframes, -1)).astype(np.float32) + mov_flat -= mov_flat.mean(axis=1)[:, np.newaxis] + mov_std = (mov_flat**2).mean(axis=1)**0.5 correlations = (mov_flat * tmpl_flat).mean(axis=1) / (tmpl_std * mov_std) return correlations + def optic_flow(mov, tmpl, nflows): """ optic flow computation using farneback """ - window = int(1 / 0.2) # window size + window = int(1 / 0.2) # window size nframes, Ly, Lx = mov.shape mov = mov.astype(np.float32) - mov = np.reshape(mov[:int(np.floor(nframes/window)*window),:,:], - (-1,window,Ly,Lx)).mean(axis=1) + mov = np.reshape(mov[:int(np.floor(nframes / window) * window), :, :], + (-1, window, Ly, Lx)).mean(axis=1) - mov = mov[np.random.permutation(mov.shape[0])[:min(nflows,mov.shape[0])], :, :] + mov = mov[np.random.permutation(mov.shape[0])[:min(nflows, mov.shape[0])], :, :] - pyr_scale=.5 - levels=3 - winsize=100 - iterations=15 - poly_n=5 - poly_sigma=1.2 / 5 - flags=0 + pyr_scale = .5 + levels = 3 + winsize = 100 + iterations = 15 + poly_n = 5 + poly_sigma = 1.2 / 5 + flags = 0 nframes, Ly, Lx = mov.shape norms = np.zeros((nframes,)) - flows = np.zeros((nframes,Ly,Lx,2)) + flows = np.zeros((nframes, Ly, Lx, 2)) for n in range(nframes): - flow = cv2.calcOpticalFlowFarneback( - tmpl, mov[n,:,:], None, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags) + flow = cv2.calcOpticalFlowFarneback(tmpl, mov[n, :, :], None, pyr_scale, levels, + winsize, iterations, poly_n, poly_sigma, + flags) - flows[n,:,:,:] = flow + flows[n, :, :, :] = flow norms[n] = norm(flow) return flows, norms @@ -358,46 +361,46 @@ def optic_flow(mov, tmpl, nflows): def get_flow_metrics(ops): """ get farneback optical flow and some other stats from normcorre paper """ # done in batches for memory reasons - Ly = ops['Ly'] - Lx = ops['Lx'] - reg_file = open(ops['reg_file'], 'rb') - nbatch = ops['batch_size'] + Ly = ops["Ly"] + Lx = ops["Lx"] + reg_file = open(ops["reg_file"], "rb") + nbatch = ops["batch_size"] nbytesread = 2 * Ly * Lx * nbatch - Lyc = ops['yrange'][1] - ops['yrange'][0] - Lxc = ops['xrange'][1] - ops['xrange'][0] - img_corr = np.zeros((Lyc,Lxc), np.float32) - img_median = np.zeros((Lyc,Lxc), np.float32) + Lyc = ops["yrange"][1] - ops["yrange"][0] + Lxc = ops["xrange"][1] - ops["xrange"][0] + img_corr = np.zeros((Lyc, Lxc), np.float32) + img_median = np.zeros((Lyc, Lxc), np.float32) correlations = np.zeros((0,), np.float32) - flows = np.zeros((0,Lyc,Lxc,2), np.float32) + flows = np.zeros((0, Lyc, Lxc, 2), np.float32) norms = np.zeros((0,), np.float32) smoothness = 0 smoothness_corr = 0 - nflows = np.minimum(ops['nframes'], int(np.floor(100 / (ops['nframes']/nbatch)))) - ncorrs = np.minimum(ops['nframes'], int(np.floor(1000 / (ops['nframes']/nbatch)))) + nflows = np.minimum(ops["nframes"], int(np.floor(100 / (ops["nframes"] / nbatch)))) + ncorrs = np.minimum(ops["nframes"], int(np.floor(1000 / (ops["nframes"] / nbatch)))) - k=0 + k = 0 while True: buff = reg_file.read(nbytesread) mov = np.frombuffer(buff, dtype=np.int16, offset=0) buff = [] - if mov.size==0: + if mov.size == 0: break mov = np.reshape(mov, (-1, Ly, Lx)) - mov = mov[np.ix_(np.arange(0, mov.shape[0],1,int), - np.arange(ops['yrange'][0],ops['yrange'][1],1,int), - np.arange(ops['xrange'][0],ops['xrange'][1],1,int))] + mov = mov[np.ix_(np.arange(0, mov.shape[0], 1, int), + np.arange(ops["yrange"][0], ops["yrange"][1], 1, int), + np.arange(ops["xrange"][0], ops["xrange"][1], 1, int))] - img_corr += local_corr(mov[:,:,:], 1000, ops['num_workers']) + img_corr += local_corr(mov[:, :, :], 1000, ops["num_workers"]) img_median += bin_median(mov) - k+=1 + k += 1 smoothness += np.sqrt( - np.sum(np.sum(np.array(np.gradient(np.mean(mov, 0)))**2, 0))) - smoothness_corr += np.sqrt( - np.sum(np.sum(np.array(np.gradient(img_corr))**2, 0))) + np.sum(np.sum(np.array(np.gradient(np.mean(mov, 0)))**2, 0))) + smoothness_corr += np.sqrt(np.sum(np.sum(np.array(np.gradient(img_corr))**2, + 0))) tmpl = img_median / k @@ -406,13 +409,12 @@ def get_flow_metrics(ops): if HAS_CV2: flows0, norms0 = optic_flow(mov, tmpl, nflows) else: - flows0=[] - norms0=[] - print('flows not computed, cv2 not installed / did not import correctly') - - flows = np.vstack((flows,flows0)) - norms = np.hstack((norms,norms0)) + flows0 = [] + norms0 = [] + print("flows not computed, cv2 not installed / did not import correctly") + flows = np.vstack((flows, flows0)) + norms = np.hstack((norms, norms0)) img_corr /= float(k) img_median /= float(k) diff --git a/suite2p/registration/nonrigid.py b/suite2p/registration/nonrigid.py index 7848d64dd..ae0809968 100644 --- a/suite2p/registration/nonrigid.py +++ b/suite2p/registration/nonrigid.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import warnings from typing import Tuple @@ -23,7 +26,8 @@ def calculate_nblocks(L: int, block_size: int = 128) -> Tuple[int, int]: block_size: int nblocks: int """ - return (L, 1) if block_size >= L else (block_size, int(np.ceil(1.5 * L / block_size))) + return (L, 1) if block_size >= L else (block_size, + int(np.ceil(1.5 * L / block_size))) def make_blocks(Ly, Lx, block_size=(128, 128)): @@ -53,19 +57,28 @@ def make_blocks(Ly, Lx, block_size=(128, 128)): block_size = (block_size_y, block_size_x) # todo: could rounding to int here over-represent some pixels over others? - ystart = np.linspace(0, Ly - block_size[0], ny).astype('int') - xstart = np.linspace(0, Lx - block_size[1], nx).astype('int') - yblock = [np.array([ystart[iy], ystart[iy] + block_size[0]]) for iy in range(ny) for _ in range(nx)] - xblock = [np.array([xstart[ix], xstart[ix] + block_size[1]]) for _ in range(ny) for ix in range(nx)] + ystart = np.linspace(0, Ly - block_size[0], ny).astype("int") + xstart = np.linspace(0, Lx - block_size[1], nx).astype("int") + yblock = [ + np.array([ystart[iy], ystart[iy] + block_size[0]]) + for iy in range(ny) + for _ in range(nx) + ] + xblock = [ + np.array([xstart[ix], xstart[ix] + block_size[1]]) + for _ in range(ny) + for ix in range(nx) + ] NRsm = kernelD2(xs=np.arange(nx), ys=np.arange(ny)).T return yblock, xblock, [ny, nx], block_size, NRsm -def phasecorr_reference(refImg0: np.ndarray, maskSlope, smooth_sigma, yblock: np.ndarray, xblock: np.ndarray): +def phasecorr_reference(refImg0: np.ndarray, maskSlope, smooth_sigma, + yblock: np.ndarray, xblock: np.ndarray): """ - Computes taper and fft'ed reference image for phasecorr. + Computes taper and fft"ed reference image for phasecorr. Parameters ---------- @@ -86,14 +99,17 @@ def phasecorr_reference(refImg0: np.ndarray, maskSlope, smooth_sigma, yblock: np dims = (nb, Ly, Lx) cfRef_dims = dims gaussian_filter = gaussian_fft(smooth_sigma, *cfRef_dims[1:]) - cfRefImg1 = np.zeros(cfRef_dims, 'complex64') + cfRefImg1 = np.zeros(cfRef_dims, "complex64") maskMul = spatial_taper(maskSlope, *refImg0.shape) - maskMul1 = np.zeros(dims, 'float32') + maskMul1 = np.zeros(dims, "float32") maskMul1[:] = spatial_taper(2 * smooth_sigma, Ly, Lx) - maskOffset1 = np.zeros(dims, 'float32') - for yind, xind, maskMul1_n, maskOffset1_n, cfRefImg1_n in zip(yblock, xblock, maskMul1, maskOffset1, cfRefImg1): - ix = np.ix_(np.arange(yind[0], yind[-1]).astype('int'), np.arange(xind[0], xind[-1]).astype('int')) + maskOffset1 = np.zeros(dims, "float32") + for yind, xind, maskMul1_n, maskOffset1_n, cfRefImg1_n in zip( + yblock, xblock, maskMul1, maskOffset1, cfRefImg1): + ix = np.ix_( + np.arange(yind[0], yind[-1]).astype("int"), + np.arange(xind[0], xind[-1]).astype("int")) refImg = refImg0[ix] # mask params @@ -105,7 +121,10 @@ def phasecorr_reference(refImg0: np.ndarray, maskSlope, smooth_sigma, yblock: np cfRefImg1_n /= 1e-5 + np.absolute(cfRefImg1_n) cfRefImg1_n[:] *= gaussian_filter - return maskMul1[:, np.newaxis, :, :], maskOffset1[:, np.newaxis, :, :], cfRefImg1[:, np.newaxis, :, :] + return maskMul1[:, np. + newaxis, :, :], maskOffset1[:, np. + newaxis, :, :], cfRefImg1[:, np. + newaxis, :, :] def getSNR(cc: np.ndarray, lcorr: int, lpad: int) -> float: @@ -127,14 +146,19 @@ def getSNR(cc: np.ndarray, lcorr: int, lpad: int) -> float: cc0 = cc[:, lpad:-lpad, lpad:-lpad].reshape(cc.shape[0], -1) # set to 0 all pts +-lpad from ymax,xmax cc1 = cc.copy() - for c1, ymax, xmax in zip(cc1, *np.unravel_index(np.argmax(cc0, axis=1), (2 * lcorr + 1, 2 * lcorr + 1))): + for c1, ymax, xmax in zip( + cc1, + *np.unravel_index(np.argmax(cc0, axis=1), (2 * lcorr + 1, 2 * lcorr + 1))): c1[ymax:ymax + 2 * lpad, xmax:xmax + 2 * lpad] = 0 - snr = np.amax(cc0, axis=1) / np.maximum(1e-10, np.amax(cc1.reshape(cc.shape[0], -1), axis=1)) # ensure positivity for outlier cases + snr = np.amax(cc0, axis=1) / np.maximum( + 1e-10, np.amax(cc1.reshape(cc.shape[0], -1), + axis=1)) # ensure positivity for outlier cases return snr -def phasecorr(data: np.ndarray, maskMul, maskOffset, cfRefImg, snr_thresh, NRsm, xblock, yblock, maxregshiftNR, subpixel: int = 10, lpad: int = 3): +def phasecorr(data: np.ndarray, maskMul, maskOffset, cfRefImg, snr_thresh, NRsm, xblock, + yblock, maxregshiftNR, subpixel: int = 10, lpad: int = 3): """ Compute phase correlations for each block @@ -163,43 +187,45 @@ def phasecorr(data: np.ndarray, maskMul, maskOffset, cfRefImg, snr_thresh, NRsm, xmax1 cmax1 """ - + Kmat, nup = mat_upsample(lpad=3) nimg = data.shape[0] ly, lx = cfRefImg.shape[-2:] # maximum registration shift allowed - lcorr = int(np.minimum(np.round(maxregshiftNR), np.floor(np.minimum(ly, lx) / 2.) - lpad)) + lcorr = int( + np.minimum(np.round(maxregshiftNR), + np.floor(np.minimum(ly, lx) / 2.) - lpad)) nb = len(yblock) # shifts and corrmax - Y = np.zeros((nimg, nb, ly, lx), 'float32') + Y = np.zeros((nimg, nb, ly, lx), "float32") for n in range(nb): yind, xind = yblock[n], xblock[n] - Y[:,n] = data[:, yind[0]:yind[-1], xind[0]:xind[-1]] + Y[:, n] = data[:, yind[0]:yind[-1], xind[0]:xind[-1]] Y = addmultiply(Y, maskMul, maskOffset) - batch = min(64, Y.shape[1]) #16 + batch = min(64, Y.shape[1]) #16 for n in np.arange(0, nb, batch): - nend = min(Y.shape[1], n+batch) - Y[:,n:nend] = convolve(mov=Y[:,n:nend], img=cfRefImg[n:nend]) + nend = min(Y.shape[1], n + batch) + Y[:, n:nend] = convolve(mov=Y[:, n:nend], img=cfRefImg[n:nend]) # calculate ccsm lhalf = lcorr + lpad cc0 = np.real( - np.block( - [[Y[:, :, -lhalf:, -lhalf:], Y[:, :, -lhalf:, :lhalf + 1]], - [Y[:, :, :lhalf + 1, -lhalf:], Y[:, :, :lhalf + 1, :lhalf + 1]]] - ) - ) + np.block([[Y[:, :, -lhalf:, -lhalf:], Y[:, :, -lhalf:, :lhalf + 1]], + [Y[:, :, :lhalf + 1, -lhalf:], Y[:, :, :lhalf + 1, :lhalf + 1]]])) cc0 = cc0.transpose(1, 0, 2, 3) cc0 = cc0.reshape(cc0.shape[0], -1) cc2 = [cc0, NRsm @ cc0, NRsm @ NRsm @ cc0] - cc2 = [c2.reshape(nb, nimg, 2 * lcorr + 2 * lpad + 1, 2 * lcorr + 2 * lpad + 1) for c2 in cc2] + cc2 = [ + c2.reshape(nb, nimg, 2 * lcorr + 2 * lpad + 1, 2 * lcorr + 2 * lpad + 1) + for c2 in cc2 + ] ccsm = cc2[0] for n in range(nb): - snr = np.ones(nimg, 'float32') + snr = np.ones(nimg, "float32") for j, c2 in enumerate(cc2): ism = snr < snr_thresh if np.sum(ism) == 0: @@ -216,13 +242,13 @@ def phasecorr(data: np.ndarray, maskMul, maskOffset, cfRefImg, snr_thresh, NRsm, xmax1 = np.empty((nimg, nb), np.float32) ymax = np.empty((nb,), np.int32) xmax = np.empty((nb,), np.int32) - + for t in range(nimg): - ccmat = np.empty((nb, 2*lpad+1, 2*lpad+1), np.float32) + ccmat = np.empty((nb, 2 * lpad + 1, 2 * lpad + 1), np.float32) for n in range(nb): ix = np.argmax(ccsm[n, t][lpad:-lpad, lpad:-lpad], axis=None) ym, xm = np.unravel_index(ix, (2 * lcorr + 1, 2 * lcorr + 1)) - ccmat[n] = ccsm[n, t][ ym:ym + 2 * lpad + 1, xm:xm + 2 * lpad + 1] + ccmat[n] = ccsm[n, t][ym:ym + 2 * lpad + 1, xm:xm + 2 * lpad + 1] ymax[n], xmax[n] = ym - lcorr, xm - lcorr ccb = ccmat.reshape(nb, -1) @ Kmat cmax1[t] = np.amax(ccb, axis=1) @@ -233,11 +259,13 @@ def phasecorr(data: np.ndarray, maskMul, maskOffset, cfRefImg, snr_thresh, NRsm, return ymax1, xmax1, cmax1 -@njit(['(int16[:, :],float32[:,:], float32[:,:], float32[:,:])', - '(float32[:, :],float32[:,:], float32[:,:], float32[:,:])'], cache=True) +@njit([ + "(int16[:, :],float32[:,:], float32[:,:], float32[:,:])", + "(float32[:, :],float32[:,:], float32[:,:], float32[:,:])" +], cache=True) def map_coordinates(I, yc, xc, Y) -> None: """ - In-place bilinear transform of image 'I' with ycoordinates yc and xcoordinates xc to Y + In-place bilinear transform of image "I" with ycoordinates yc and xcoordinates xc to Y Parameters ------------- @@ -249,27 +277,29 @@ def map_coordinates(I, yc, xc, Y) -> None: Y : Ly x Lx shifted I """ - Ly,Lx = I.shape + Ly, Lx = I.shape yc_floor = yc.astype(np.int32) xc_floor = xc.astype(np.int32) yc = yc - yc_floor xc = xc - xc_floor for i in range(yc_floor.shape[0]): for j in range(yc_floor.shape[1]): - yf = min(Ly-1, max(0, yc_floor[i,j])) - xf = min(Lx-1, max(0, xc_floor[i,j])) - yf1= min(Ly-1, yf+1) - xf1= min(Lx-1, xf+1) - y = yc[i,j] - x = xc[i,j] - Y[i,j] = (np.float32(I[yf, xf]) * (1 - y) * (1 - x) + - np.float32(I[yf, xf1]) * (1 - y) * x + - np.float32(I[yf1, xf]) * y * (1 - x) + - np.float32(I[yf1, xf1]) * y * x ) - - -@njit(['int16[:, :,:], float32[:,:,:], float32[:,:,:], float32[:,:], float32[:,:], float32[:,:,:]', - 'float32[:, :,:], float32[:,:,:], float32[:,:,:], float32[:,:], float32[:,:], float32[:,:,:]'], parallel=True, cache=True) + yf = min(Ly - 1, max(0, yc_floor[i, j])) + xf = min(Lx - 1, max(0, xc_floor[i, j])) + yf1 = min(Ly - 1, yf + 1) + xf1 = min(Lx - 1, xf + 1) + y = yc[i, j] + x = xc[i, j] + Y[i, + j] = (np.float32(I[yf, xf]) * (1 - y) * (1 - x) + np.float32(I[yf, xf1]) * + (1 - y) * x + np.float32(I[yf1, xf]) * y * (1 - x) + + np.float32(I[yf1, xf1]) * y * x) + + +@njit([ + "int16[:, :,:], float32[:,:,:], float32[:,:,:], float32[:,:], float32[:,:], float32[:,:,:]", + "float32[:, :,:], float32[:,:,:], float32[:,:,:], float32[:,:], float32[:,:], float32[:,:,:]" +], parallel=True, cache=True) def shift_coordinates(data, yup, xup, mshy, mshx, Y): """ Shift data into yup and xup coordinates @@ -289,10 +319,11 @@ def shift_coordinates(data, yup, xup, mshy, mshx, Y): shifted data """ for t in prange(data.shape[0]): - map_coordinates(data[t], mshy+yup[t], mshx+xup[t], Y[t]) + map_coordinates(data[t], mshy + yup[t], mshx + xup[t], Y[t]) -@njit((float32[:, :,:], float32[:,:,:], float32[:,:], float32[:,:], float32[:,:,:], float32[:,:,:]), parallel=True, cache=True) +@njit((float32[:, :, :], float32[:, :, :], float32[:, :], float32[:, :], + float32[:, :, :], float32[:, :, :]), parallel=True, cache=True) def block_interp(ymax1, xmax1, mshy, mshx, yup, xup): """ interpolate from ymax1 to mshy to create coordinate transforms @@ -311,8 +342,10 @@ def block_interp(ymax1, xmax1, mshy, mshx, yup, xup): x shifts for each coordinate """ for t in prange(ymax1.shape[0]): - map_coordinates(ymax1[t], mshy, mshx, yup[t]) # y shifts for blocks to coordinate map - map_coordinates(xmax1[t], mshy, mshx, xup[t]) # x shifts for blocks to coordinate map + map_coordinates(ymax1[t], mshy, mshx, + yup[t]) # y shifts for blocks to coordinate map + map_coordinates(xmax1[t], mshy, mshx, + xup[t]) # x shifts for blocks to coordinate map def upsample_block_shifts(Lx, Ly, nblocks, xblock, yblock, ymax1, xmax1): @@ -348,7 +381,8 @@ def upsample_block_shifts(Lx, Ly, nblocks, xblock, yblock, ymax1, xmax1): # includes centers of blocks AND edges of blocks # note indices are flipped for control points # block centers - yb = np.array(yblock[::nblocks[1]]).mean(axis=1) # this recovers the coordinates of the meshgrid from (yblock, xblock) + yb = np.array(yblock[::nblocks[1]]).mean( + axis=1) # this recovers the coordinates of the meshgrid from (yblock, xblock) xb = np.array(xblock[:nblocks[1]]).mean(axis=1) iy = np.interp(np.arange(Ly), yb, np.arange(yb.size)).astype(np.float32) @@ -405,8 +439,8 @@ def transform_data(data, nblocks, xblock, yblock, ymax1, xmax1, bilinear=True): xup = np.round(xup) # use shifts and do bilinear interpolation - mshx, mshy = np.meshgrid(np.arange(Lx, dtype=np.float32), np.arange(Ly, dtype=np.float32)) + mshx, mshy = np.meshgrid(np.arange(Lx, dtype=np.float32), + np.arange(Ly, dtype=np.float32)) Y = np.zeros_like(data, dtype=np.float32) shift_coordinates(data, yup, xup, mshy, mshx, Y) return Y - diff --git a/suite2p/registration/register.py b/suite2p/registration/register.py index 86612a90b..d0ce9f5f5 100644 --- a/suite2p/registration/register.py +++ b/suite2p/registration/register.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import time from os import path from typing import Dict, Any @@ -10,7 +13,9 @@ from . import bidiphase as bidi from . import utils, rigid, nonrigid -def compute_crop(xoff: int, yoff: int, corrXY, th_badframes, badframes, maxregshift, Ly: int, Lx:int): + +def compute_crop(xoff: int, yoff: int, corrXY, th_badframes, badframes, maxregshift, + Ly: int, Lx: int): """ determines how much to crop FOV based on motion determines badframes which are frames with large outlier shifts @@ -37,7 +42,7 @@ def compute_crop(xoff: int, yoff: int, corrXY, th_badframes, badframes, maxregsh yrange xrange """ - filter_window = min((len(yoff)//2)*2 - 1, 101) + filter_window = min((len(yoff) // 2) * 2 - 1, 101) dx = xoff - medfilt(xoff, filter_window) dy = yoff - medfilt(yoff, filter_window) # offset in x and y (normed by mean offset) @@ -54,7 +59,9 @@ def compute_crop(xoff: int, yoff: int, corrXY, th_badframes, badframes, maxregsh ymin = np.ceil(np.abs(yoff[np.logical_not(badframes)]).max()) xmin = np.ceil(np.abs(xoff[np.logical_not(badframes)]).max()) else: - warn('WARNING: >50% of frames have large movements, registration likely problematic') + warn( + "WARNING: >50% of frames have large movements, registration likely problematic" + ) ymin = np.ceil(np.abs(yoff).max()) xmin = np.ceil(np.abs(xoff).max()) ymax = Ly - ymin @@ -83,18 +90,18 @@ def pick_initial_reference(frames: np.ndarray): size [Ly x Lx], initial reference image """ - nimg,Ly,Lx = frames.shape - frames = np.reshape(frames, (nimg,-1)).astype('float32') + nimg, Ly, Lx = frames.shape + frames = np.reshape(frames, (nimg, -1)).astype("float32") frames = frames - np.reshape(frames.mean(axis=1), (nimg, 1)) cc = np.matmul(frames, frames.T) ndiag = np.sqrt(np.diag(cc)) cc = cc / np.outer(ndiag, ndiag) - CCsort = -np.sort(-cc, axis = 1) - bestCC = np.mean(CCsort[:, 1:20], axis=1); + CCsort = -np.sort(-cc, axis=1) + bestCC = np.mean(CCsort[:, 1:20], axis=1) imax = np.argmax(bestCC) indsort = np.argsort(-cc[imax, :]) - refImg = np.mean(frames[indsort[0:20], :], axis = 0) - refImg = np.reshape(refImg, (Ly,Lx)) + refImg = np.mean(frames[indsort[0:20], :], axis=0) + refImg = np.reshape(refImg, (Ly, Lx)) return refImg @@ -118,14 +125,14 @@ def compute_reference(frames, ops=default_ops()): size [Ly x Lx], initial reference image """ - + refImg = pick_initial_reference(frames) - if ops['1Preg']: - if ops['pre_smooth']: - refImg = utils.spatial_smooth(refImg, int(ops['pre_smooth'])) - frames = utils.spatial_smooth(frames, int(ops['pre_smooth'])) - refImg = utils.spatial_high_pass(refImg, int(ops['spatial_hp_reg'])) - frames = utils.spatial_high_pass(frames, int(ops['spatial_hp_reg'])) + if ops["1Preg"]: + if ops["pre_smooth"]: + refImg = utils.spatial_smooth(refImg, int(ops["pre_smooth"])) + frames = utils.spatial_smooth(frames, int(ops["pre_smooth"])) + refImg = utils.spatial_high_pass(refImg, int(ops["spatial_hp_reg"])) + frames = utils.spatial_high_pass(frames, int(ops["spatial_hp_reg"])) niter = 8 for iter in range(0, niter): @@ -135,15 +142,15 @@ def compute_reference(frames, ops=default_ops()): frames, *rigid.compute_masks( refImg=refImg, - maskSlope=ops['spatial_taper'] if ops['1Preg'] else 3 * ops['smooth_sigma'], - ) - ), + maskSlope=ops["spatial_taper"] if ops["1Preg"] else 3 * + ops["smooth_sigma"], + )), cfRefImg=rigid.phasecorr_reference( refImg=refImg, - smooth_sigma=ops['smooth_sigma'], + smooth_sigma=ops["smooth_sigma"], ), - maxregshift=ops['maxregshift'], - smooth_sigma_time=ops['smooth_sigma_time'], + maxregshift=ops["maxregshift"], + smooth_sigma_time=ops["smooth_sigma_time"], ) for frame, dy, dx in zip(frames, ymax, xmax): frame[:] = rigid.shift_frame(frame=frame, dy=dy, dx=dx) @@ -153,48 +160,50 @@ def compute_reference(frames, ops=default_ops()): # reset reference image refImg = frames[isort].mean(axis=0).astype(np.int16) # shift reference image to position of mean shifts - refImg = rigid.shift_frame( - frame=refImg, - dy=int(np.round(-ymax[isort].mean())), - dx=int(np.round(-xmax[isort].mean())) - ) + refImg = rigid.shift_frame(frame=refImg, dy=int(np.round(-ymax[isort].mean())), + dx=int(np.round(-xmax[isort].mean()))) return refImg + def compute_reference_masks(refImg, ops=default_ops()): ### ------------- compute registration masks ----------------- ### if isinstance(refImg, list): refAndMasks_all = [] for rimg in refImg: - refAndMasks = compute_reference_masks(rimg) + refAndMasks = compute_reference_masks(rimg, ops=ops) refAndMasks_all.append(refAndMasks) return refAndMasks_all else: maskMul, maskOffset = rigid.compute_masks( refImg=refImg, - maskSlope=ops['spatial_taper'] if ops['1Preg'] else 3 * ops['smooth_sigma'], + maskSlope=ops["spatial_taper"] if ops["1Preg"] else 3 * ops["smooth_sigma"], ) cfRefImg = rigid.phasecorr_reference( refImg=refImg, - smooth_sigma=ops['smooth_sigma'], + smooth_sigma=ops["smooth_sigma"], ) Ly, Lx = refImg.shape - if ops.get('nonrigid'): - blocks = nonrigid.make_blocks(Ly=Ly, Lx=Lx, block_size=ops['block_size']) + blocks = [] + if ops.get("nonrigid"): + blocks = nonrigid.make_blocks(Ly=Ly, Lx=Lx, block_size=ops["block_size"]) maskMulNR, maskOffsetNR, cfRefImgNR = nonrigid.phasecorr_reference( refImg0=refImg, - maskSlope=ops['spatial_taper'] if ops['1Preg'] else 3 * ops['smooth_sigma'], # slope of taper mask at the edges - smooth_sigma=ops['smooth_sigma'], + maskSlope=ops["spatial_taper"] if ops["1Preg"] else 3 * + ops["smooth_sigma"], # slope of taper mask at the edges + smooth_sigma=ops["smooth_sigma"], yblock=blocks[0], xblock=blocks[1], ) else: - maskMulNR, maskOffsetNR, cfRefImgNR, blocks = [], [], [], [] + maskMulNR, maskOffsetNR, cfRefImgNR = [], [], [] return maskMul, maskOffset, cfRefImg, maskMulNR, maskOffsetNR, cfRefImgNR, blocks -def register_frames(refAndMasks, frames, rmin=-np.inf, rmax=np.inf, bidiphase=0, ops=default_ops(), nZ=1): + +def register_frames(refAndMasks, frames, rmin=-np.inf, rmax=np.inf, bidiphase=0, + ops=default_ops(), nZ=1): """ register frames to reference image Parameters @@ -214,103 +223,112 @@ def register_frames(refAndMasks, frames, rmin=-np.inf, rmax=np.inf, bidiphase=0, -------- ops : dictionary - 'nframes', 'yoff', 'xoff', 'corrXY', 'yoff1', 'xoff1', 'corrXY1', 'badframes' + "nframes", "yoff", "xoff", "corrXY", "yoff1", "xoff1", "corrXY1", "badframes" """ - if nZ > 1: - cmax_best = -np.inf * np.ones(len(frames), 'float32') - cmax_all = -np.inf * np.ones((len(frames), nZ), 'float32') - zpos_best = np.zeros(len(frames), 'int') - run_nonrigid = ops['nonrigid'] + cmax_best = -np.inf * np.ones(len(frames), "float32") + cmax_all = -np.inf * np.ones((len(frames), nZ), "float32") + zpos_best = np.zeros(len(frames), "int") + run_nonrigid = ops["nonrigid"] for z in range(nZ): - ops['nonrigid'] = False - outputs = register_frames(refAndMasks[z], frames.copy(), rmin=rmin[z], rmax=rmax[z], - bidiphase=bidiphase, ops=ops, nZ=1) - cmax_all[:,z] = outputs[3] - if z==0: - outputs_best = list(outputs[:-4]).copy() - ibest = cmax_best < cmax_all[:,z] + ops["nonrigid"] = False + outputs = register_frames(refAndMasks[z], frames.copy(), rmin=rmin[z], + rmax=rmax[z], bidiphase=bidiphase, ops=ops, nZ=1) + cmax_all[:, z] = outputs[3] + if z == 0: + outputs_best = list(outputs[:-4]).copy() + ibest = cmax_best < cmax_all[:, z] zpos_best[ibest] = z cmax_best[ibest] = cmax_all[ibest, z] for i, (output_best, output) in enumerate(zip(outputs_best, outputs[:-4])): output_best[ibest] = output[ibest] if run_nonrigid: - ops['nonrigid'] = True + ops["nonrigid"] = True nfr = frames.shape[0] - for i,z in enumerate(zpos_best): - outputs = register_frames(refAndMasks[z], frames[[i]], rmin=rmin[z], rmax=rmax[z], - bidiphase=bidiphase, ops=ops, nZ=1) - - if i==0: + for i, z in enumerate(zpos_best): + outputs = register_frames(refAndMasks[z], frames[[i]], rmin=rmin[z], + rmax=rmax[z], bidiphase=bidiphase, ops=ops, + nZ=1) + if i == 0: outputs_best = [] for output in outputs[:-1]: - outputs_best.append(np.zeros((nfr, *output.shape[1:]), dtype=output.dtype)) + outputs_best.append( + np.zeros((nfr, *output.shape[1:]), dtype=output.dtype)) outputs_best[-1][0] = output[0] else: for output, output_best in zip(outputs[:-1], outputs_best): output_best[i] = output[0] - frames, ymax, xmax, cmax, ymax1, xmax1, cmax1 = outputs_best + if len(outputs_best)==7: + frames, ymax, xmax, cmax, ymax1, xmax1, cmax1 = outputs_best + else: + frames, ymax, xmax, cmax = outputs_best + ymax1, xmax1, cmax1 = None, None, None return frames, ymax, xmax, cmax, ymax1, xmax1, cmax1, (zpos_best, cmax_all) - else: - if len(refAndMasks)==7 or not isinstance(refAndMasks, np.ndarray): - maskMul, maskOffset, cfRefImg, maskMulNR, maskOffsetNR, cfRefImgNR, blocks = refAndMasks + else: + if len(refAndMasks) == 7 or not isinstance(refAndMasks, np.ndarray): + maskMul, maskOffset, cfRefImg, maskMulNR, maskOffsetNR, cfRefImgNR, blocks = refAndMasks else: refImg = refAndMasks - if ops.get('norm_frames', False) and 'rmin' not in ops: - rmin, rmax = np.int16(np.percentile(refImg,1)), np.int16(np.percentile(refImg,99)) + if ops.get("norm_frames", False) and "rmin" not in ops: + rmin, rmax = np.int16(np.percentile(refImg, 1)), np.int16( + np.percentile(refImg, 99)) refImg = np.clip(refImg, rmin, rmax) - maskMul, maskOffset, cfRefImg, maskMulNR, maskOffsetNR, cfRefImgNR, blocks = compute_reference_masks(refImg, ops) - + maskMul, maskOffset, cfRefImg, maskMulNR, maskOffsetNR, cfRefImgNR, blocks = compute_reference_masks( + refImg, ops) + if bidiphase != 0: bidi.shift(frames, bidiphase) - # if smoothing or filtering or clipping to compute registration shifts, make a copy of the frames - dtype = 'float32' if ops['smooth_sigma_time'] > 0 or ops['1Preg'] else frames.dtype - fsmooth = frames.copy().astype(dtype) if ops['smooth_sigma_time'] > 0 or ops['1Preg'] else frames - - if ops['smooth_sigma_time']: - fsmooth = utils.temporal_smooth(data=fsmooth, sigma=ops['smooth_sigma_time']) + dtype = "float32" if ops["smooth_sigma_time"] > 0 or ops[ + "1Preg"] else frames.dtype + fsmooth = frames.copy().astype( + dtype) if ops["smooth_sigma_time"] > 0 or ops["1Preg"] else frames + + if ops["smooth_sigma_time"]: + fsmooth = utils.temporal_smooth(data=fsmooth, + sigma=ops["smooth_sigma_time"]) else: fsmooth = frames # preprocessing for 1P recordings - if ops['1Preg']: - if ops['pre_smooth']: - fsmooth = utils.spatial_smooth(fsmooth, int(ops['pre_smooth'])) - fsmooth = utils.spatial_high_pass(fsmooth, int(ops['spatial_hp_reg'])) + if ops["1Preg"]: + if ops["pre_smooth"]: + fsmooth = utils.spatial_smooth(fsmooth, int(ops["pre_smooth"])) + fsmooth = utils.spatial_high_pass(fsmooth, int(ops["spatial_hp_reg"])) # rigid registration ymax, xmax, cmax = rigid.phasecorr( - data=rigid.apply_masks(data=np.clip(fsmooth, rmin, rmax) if rmin>-np.inf else fsmooth, - maskMul=maskMul, maskOffset=maskOffset), + data=rigid.apply_masks( + data=np.clip(fsmooth, rmin, rmax) if rmin > -np.inf else fsmooth, + maskMul=maskMul, maskOffset=maskOffset), cfRefImg=cfRefImg, - maxregshift=ops['maxregshift'], - smooth_sigma_time=ops['smooth_sigma_time'], + maxregshift=ops["maxregshift"], + smooth_sigma_time=ops["smooth_sigma_time"], ) for frame, dy, dx in zip(frames, ymax, xmax): frame[:] = rigid.shift_frame(frame=frame, dy=dy, dx=dx) - + # non-rigid registration - if ops['nonrigid']: + if ops["nonrigid"]: # need to also shift smoothed/filtered data - if ops['smooth_sigma_time'] or ops['1Preg']: + if ops["smooth_sigma_time"] or ops["1Preg"]: for fsm, dy, dx in zip(fsmooth, ymax, xmax): fsm[:] = rigid.shift_frame(frame=fsm, dy=dy, dx=dx) - + ymax1, xmax1, cmax1 = nonrigid.phasecorr( - data=np.clip(fsmooth, rmin, rmax) if rmin>-np.inf else fsmooth, + data=np.clip(fsmooth, rmin, rmax) if rmin > -np.inf else fsmooth, maskMul=maskMulNR.squeeze(), maskOffset=maskOffsetNR.squeeze(), cfRefImg=cfRefImgNR.squeeze(), - snr_thresh=ops['snr_thresh'], + snr_thresh=ops["snr_thresh"], NRsm=blocks[-1], xblock=blocks[1], yblock=blocks[0], - maxregshiftNR=ops['maxregshiftNR'], + maxregshiftNR=ops["maxregshiftNR"], ) frames = nonrigid.transform_data( @@ -322,172 +340,183 @@ def register_frames(refAndMasks, frames, rmin=-np.inf, rmax=np.inf, bidiphase=0, xmax1=xmax1, ) else: - ymax1, xmax1, cmax1 = None, None, None - + ymax1, xmax1, cmax1 = None, None, None + return frames, ymax, xmax, cmax, ymax1, xmax1, cmax1, None + def shift_frames(frames, yoff, xoff, yoff1, xoff1, blocks=None, ops=default_ops()): - if ops['bidiphase'] != 0 and not ops['bidi_corrected']: - bidi.shift(frames, int(ops['bidiphase'])) - + if ops["bidiphase"] != 0 and not ops["bidi_corrected"]: + bidi.shift(frames, int(ops["bidiphase"])) + for frame, dy, dx in zip(frames, yoff, xoff): frame[:] = rigid.shift_frame(frame=frame, dy=dy, dx=dx) - if ops['nonrigid']: - frames = nonrigid.transform_data(frames, yblock=blocks[0], xblock=blocks[1], nblocks=blocks[2], - ymax1=yoff1, xmax1=xoff1, bilinear=ops.get('bilinear_reg', True)) + if ops["nonrigid"]: + frames = nonrigid.transform_data(frames, yblock=blocks[0], xblock=blocks[1], + nblocks=blocks[2], ymax1=yoff1, xmax1=xoff1, + bilinear=ops.get("bilinear_reg", True)) return frames + def normalize_reference_image(refImg): if isinstance(refImg, list): rmins = [] rmaxs = [] for rimg in refImg: - rmin, rmax = np.int16(np.percentile(rimg,1)), np.int16(np.percentile(rimg,99)) + rmin, rmax = np.int16(np.percentile(rimg, + 1)), np.int16(np.percentile(rimg, 99)) rimg[:] = np.clip(rimg, rmin, rmax) rmins.append(rmin) rmaxs.append(rmax) return refImg, rmins, rmaxs else: - rmin, rmax = np.int16(np.percentile(refImg,1)), np.int16(np.percentile(refImg,99)) + rmin, rmax = np.int16(np.percentile(refImg, + 1)), np.int16(np.percentile(refImg, 99)) refImg = np.clip(refImg, rmin, rmax) return refImg, rmin, rmax -def compute_reference_and_register_frames(f_align_in, f_align_out=None, refImg=None, ops=default_ops()): + +def compute_reference_and_register_frames(f_align_in, f_align_out=None, refImg=None, + ops=default_ops()): """ compute reference frame, if refImg is None, and align frames in f_align_in to reference if f_align_out is not None, registered frames are written to f_align_out - f_align_in, f_align_out can be a BinaryRWFile or any type of array that can be slice-indexed + f_align_in, f_align_out can be a BinaryFile or any type of array that can be slice-indexed """ - + n_frames, Ly, Lx = f_align_in.shape - - batch_size = ops['batch_size'] + + batch_size = ops["batch_size"] ### ----- compute reference image and bidiphase shift -------------- ### if refImg is None: # grab frames - frames = f_align_in[np.linspace(0, n_frames, 1 + np.minimum(ops['nimg_init'], n_frames), dtype=int)[:-1]] + frames = f_align_in[np.linspace(0, n_frames, + 1 + np.minimum(ops["nimg_init"], n_frames), + dtype=int)[:-1]] # compute bidiphase shift - if ops['do_bidiphase'] and ops['bidiphase'] == 0 and not ops['bidi_corrected']: + if ops["do_bidiphase"] and ops["bidiphase"] == 0 and not ops["bidi_corrected"]: bidiphase = bidi.compute(frames) - print('NOTE: estimated bidiphase offset from data: %d pixels' % bidiphase) - ops['bidiphase'] = bidiphase + print("NOTE: estimated bidiphase offset from data: %d pixels" % bidiphase) + ops["bidiphase"] = bidiphase # shift frames if bidiphase != 0: - bidi.shift(frames, int(ops['bidiphase'])) + bidi.shift(frames, int(ops["bidiphase"])) else: bidiphase = 0 if refImg is None: t0 = time.time() refImg = compute_reference(frames, ops=ops) - print('Reference frame, %0.2f sec.'%(time.time()-t0)) - + print("Reference frame, %0.2f sec." % (time.time() - t0)) + if isinstance(refImg, list): nZ = len(refImg) - print(f'List of reference frames len = {nZ}') + print(f"List of reference frames len = {nZ}") else: nZ = 1 # normalize reference image refImg_orig = refImg.copy() - if ops.get('norm_frames', False): + if ops.get("norm_frames", False): refImg, rmin, rmax = normalize_reference_image(refImg) else: - if nZ==1: + if nZ == 1: rmin, rmax = -np.inf, np.inf else: rmin = -np.inf * np.ones(nZ) rmax = np.inf * np.ones(nZ) - if ops['bidiphase'] and not ops['bidi_corrected']: - bidiphase = int(ops['bidiphase']) + if ops["bidiphase"] and not ops["bidi_corrected"]: + bidiphase = int(ops["bidiphase"]) else: bidiphase = 0 refAndMasks = compute_reference_masks(refImg, ops) - ### ------------- register frames to reference image ------------ ### - mean_img = np.zeros((Ly, Lx), 'float32') + mean_img = np.zeros((Ly, Lx), "float32") rigid_offsets, nonrigid_offsets, zpos, cmax_all = [], [], [], [] - if ops['frames_include'] != -1: - n_frames = min(n_frames, ops['frames_include']) + if ops["frames_include"] != -1: + n_frames = min(n_frames, ops["frames_include"]) t0 = time.time() - + for k in np.arange(0, n_frames, batch_size): - frames = f_align_in[k : min(k + batch_size, n_frames)] - frames, ymax, xmax, cmax, ymax1, xmax1, cmax1, zest = register_frames(refAndMasks, frames, - rmin=rmin, rmax=rmax, - bidiphase=bidiphase, - ops=ops, - nZ=nZ) + frames = f_align_in[k:min(k + batch_size, n_frames)] + frames, ymax, xmax, cmax, ymax1, xmax1, cmax1, zest = register_frames( + refAndMasks, frames, rmin=rmin, rmax=rmax, bidiphase=bidiphase, ops=ops, + nZ=nZ) rigid_offsets.append([ymax, xmax, cmax]) if zest is not None: zpos.extend(list(zest[0])) cmax_all.extend(list(zest[1])) - if ops['nonrigid']: + if ops["nonrigid"]: nonrigid_offsets.append([ymax1, xmax1, cmax1]) mean_img += frames.sum(axis=0) / n_frames if f_align_out is None: - f_align_in[k : min(k + batch_size, n_frames)] = frames + f_align_in[k:min(k + batch_size, n_frames)] = frames else: - f_align_out[k : min(k + batch_size, n_frames)] = frames - - if (ops['reg_tif'] if ops['functional_chan'] == ops['align_by_chan'] else ops['reg_tif_chan2']): - fname = io.generate_tiff_filename( - functional_chan=ops['functional_chan'], - align_by_chan=ops['align_by_chan'], - save_path=ops['save_path'], - k=k, - ichan=True - ) + f_align_out[k:min(k + batch_size, n_frames)] = frames + + if (ops["reg_tif"] if ops["functional_chan"] == ops["align_by_chan"] else + ops["reg_tif_chan2"]): + fname = io.generate_tiff_filename(functional_chan=ops["functional_chan"], + align_by_chan=ops["align_by_chan"], + save_path=ops["save_path"], k=k, + ichan=True) io.save_tiff(mov=frames, fname=fname) - - print('Registered %d/%d in %0.2fs'%(k+frames.shape[0], n_frames, time.time()-t0)) + + print("Registered %d/%d in %0.2fs" % + (k + frames.shape[0], n_frames, time.time() - t0)) rigid_offsets = utils.combine_offsets_across_batches(rigid_offsets, rigid=True) - if ops['nonrigid']: - nonrigid_offsets = utils.combine_offsets_across_batches(nonrigid_offsets, rigid=False) - else: - nonrigid_offsets = [None] * 3 + if ops["nonrigid"]: + nonrigid_offsets = utils.combine_offsets_across_batches( + nonrigid_offsets, rigid=False) + + return refImg_orig, rmin, rmax, mean_img, rigid_offsets, nonrigid_offsets, ( + zpos, cmax_all) - return refImg_orig, rmin, rmax, mean_img, rigid_offsets, nonrigid_offsets, (zpos, cmax_all) -def shift_frames_and_write(f_alt_in, f_alt_out=None, yoff=None, xoff=None, yoff1=None, xoff1=None, ops=default_ops()): +def shift_frames_and_write(f_alt_in, f_alt_out=None, yoff=None, xoff=None, yoff1=None, + xoff1=None, ops=default_ops()): """ shift frames for alternate channel in f_alt_in and write to f_alt_out if not None (else write to f_alt_in) """ n_frames, Ly, Lx = f_alt_in.shape if yoff is None or xoff is None: - raise ValueError('no rigid registration offsets provided') + raise ValueError("no rigid registration offsets provided") elif yoff.shape[0] != n_frames or xoff.shape[0] != n_frames: - raise ValueError('rigid registration offsets are not the same size as input frames') - - if ops.get('nonrigid'): + raise ValueError( + "rigid registration offsets are not the same size as input frames") + # Overwrite blocks if nonrigid registration is activated + blocks = None + if ops.get("nonrigid"): if yoff1 is None or xoff1 is None: - raise ValueError('nonrigid registration is activated but no nonrigid shifts provided') + raise ValueError( + "nonrigid registration is activated but no nonrigid shifts provided") elif yoff1.shape[0] != n_frames or xoff1.shape[0] != n_frames: - raise ValueError('nonrigid registration offsets are not the same size as input frames') + raise ValueError( + "nonrigid registration offsets are not the same size as input frames") - blocks = nonrigid.make_blocks(Ly=Ly, Lx=Lx, block_size=ops['block_size']) + blocks = nonrigid.make_blocks(Ly=Ly, Lx=Lx, block_size=ops["block_size"]) - if ops['frames_include'] != -1: - n_frames = min(n_frames, ops['frames_include']) + if ops["frames_include"] != -1: + n_frames = min(n_frames, ops["frames_include"]) - mean_img = np.zeros((Ly, Lx), 'float32') - batch_size = ops['batch_size'] + mean_img = np.zeros((Ly, Lx), "float32") + batch_size = ops["batch_size"] t0 = time.time() for k in np.arange(0, n_frames, batch_size): - frames = f_alt_in[k : min(k + batch_size, n_frames)].astype('float32') - yoffk = yoff[k : min(k + batch_size, n_frames)].astype(int) - xoffk = xoff[k : min(k + batch_size, n_frames)].astype(int) - if ops.get('nonrigid'): - yoff1k = yoff1[k : min(k + batch_size, n_frames)] - xoff1k = xoff1[k : min(k + batch_size, n_frames)] + frames = f_alt_in[k:min(k + batch_size, n_frames)].astype("float32") + yoffk = yoff[k:min(k + batch_size, n_frames)].astype(int) + xoffk = xoff[k:min(k + batch_size, n_frames)].astype(int) + if ops.get("nonrigid"): + yoff1k = yoff1[k:min(k + batch_size, n_frames)] + xoff1k = xoff1[k:min(k + batch_size, n_frames)] else: yoff1k, xoff1k = None, None @@ -495,54 +524,54 @@ def shift_frames_and_write(f_alt_in, f_alt_out=None, yoff=None, xoff=None, yoff1 mean_img += frames.sum(axis=0) / n_frames if f_alt_out is None: - f_alt_in[k : min(k + batch_size, n_frames)] = frames + f_alt_in[k:min(k + batch_size, n_frames)] = frames else: - f_alt_out[k : min(k + batch_size, n_frames)] = frames - - if (ops['reg_tif_chan2'] if ops['functional_chan'] == ops['align_by_chan'] else ops['reg_tif']): - fname = io.generate_tiff_filename( - functional_chan=ops['functional_chan'], - align_by_chan=ops['align_by_chan'], - save_path=ops['save_path'], - k=k, - ichan=False - ) + f_alt_out[k:min(k + batch_size, n_frames)] = frames + + if (ops["reg_tif_chan2"] + if ops["functional_chan"] == ops["align_by_chan"] else ops["reg_tif"]): + fname = io.generate_tiff_filename(functional_chan=ops["functional_chan"], + align_by_chan=ops["align_by_chan"], + save_path=ops["save_path"], k=k, + ichan=False) io.save_tiff(mov=frames, fname=fname) - print('Second channel, Registered %d/%d in %0.2fs'%(k+frames.shape[0], n_frames, time.time()-t0)) + print("Second channel, Registered %d/%d in %0.2fs" % + (k + frames.shape[0], n_frames, time.time() - t0)) - return mean_img + return mean_img -def registration_wrapper(f_reg, f_raw=None, f_reg_chan2=None, f_raw_chan2=None, refImg=None, align_by_chan2=False, ops=default_ops()): +def registration_wrapper(f_reg, f_raw=None, f_reg_chan2=None, f_raw_chan2=None, + refImg=None, align_by_chan2=False, ops=default_ops()): """ main registration function if f_raw is not None, f_raw is read and registered and saved to f_reg if f_raw_chan2 is not None, f_raw_chan2 is read and registered and saved to f_reg_chan2 - the registration shifts are computed on chan2 if ops['functional_chan'] != ops['align_by_chan'] + the registration shifts are computed on chan2 if ops["functional_chan"] != ops["align_by_chan"] Parameters ---------------- - f_reg : array of registered functional frames, np.ndarray or io.BinaryRWFile + f_reg : array of registered functional frames, np.ndarray or io.BinaryFile n_frames x Ly x Lx - f_raw : array of raw functional frames, np.ndarray or io.BinaryRWFile + f_raw : array of raw functional frames, np.ndarray or io.BinaryFile n_frames x Ly x Lx - f_reg_chan2 : array of registered anatomical frames, np.ndarray or io.BinaryRWFile + f_reg_chan2 : array of registered anatomical frames, np.ndarray or io.BinaryFile n_frames x Ly x Lx - f_raw_chan2 : array of raw anatomical frames, np.ndarray or io.BinaryRWFile + f_raw_chan2 : array of raw anatomical frames, np.ndarray or io.BinaryFile n_frames x Ly x Lx refImg : 2D array, int16 size [Ly x Lx], initial reference image align_by_chan2: boolean - whether you'd like to align by non-functional channel + whether you"d like to align by non-functional channel ops : dictionary or list of dicts dictionary containing input arguments for suite2p pipeline @@ -595,7 +624,7 @@ def registration_wrapper(f_reg, f_raw=None, f_reg_chan2=None, f_raw_chan2=None, f_alt_out = f_reg_chan2 else: if f_raw is None: - f_align_in = f_reg_chan2 + f_align_in = f_reg_chan2 f_alt_in = f_reg else: f_align_in = f_raw_chan2 @@ -603,233 +632,151 @@ def registration_wrapper(f_reg, f_raw=None, f_reg_chan2=None, f_raw_chan2=None, f_align_out = f_reg_chan2 f_alt_out = f_reg - n_frames, Ly, Lx = f_align_in.shape if f_alt_in is not None and f_alt_in.shape[0] == f_align_in.shape[0]: nchannels = 2 - print('registering two channels') + print("registering two channels") else: nchannels = 1 - outputs = compute_reference_and_register_frames(f_align_in, f_align_out=f_align_out, refImg=refImg, ops=ops) + outputs = compute_reference_and_register_frames(f_align_in, f_align_out=f_align_out, + refImg=refImg, ops=ops) refImg, rmin, rmax, mean_img, rigid_offsets, nonrigid_offsets, zest = outputs yoff, xoff, corrXY = rigid_offsets - - if ops['nonrigid']: - yoff1, xoff1, corrXY1 = nonrigid_offsets + if ops["nonrigid"]: + yoff1, xoff1, corrXY1 = nonrigid_offsets else: yoff1, xoff1, corryXY1 = None, None, None if nchannels > 1: - mean_img_alt = shift_frames_and_write(f_alt_in, f_alt_out, yoff, xoff, yoff1, xoff1, ops) + mean_img_alt = shift_frames_and_write(f_alt_in, f_alt_out, yoff, xoff, yoff1, + xoff1, ops) else: mean_img_alt = None - if nchannels==1 or not align_by_chan2: + if nchannels == 1 or not align_by_chan2: meanImg = mean_img - if nchannels==2: + if nchannels == 2: meanImg_chan2 = mean_img_alt else: meanImg_chan2 = None elif nchannels == 2: meanImg_chan2 = mean_img meanImg = mean_img_alt - - + # compute valid region - # ignore user-specified bad_frames.npy - badframes = np.zeros(n_frames, 'bool') - if 'data_path' in ops and len(ops['data_path']) > 0: - badfrfile = path.abspath(path.join(ops['data_path'][0], 'bad_frames.npy')) + badframes = np.zeros(n_frames, "bool") + if "data_path" in ops and len(ops["data_path"]) > 0: + badfrfile = path.abspath(path.join(ops["data_path"][0], "bad_frames.npy")) + # Check if badframes file exists if path.isfile(badfrfile): - print('bad frames file path: %s'%badfrfile) - badframes = np.load(badfrfile) - badframes = badframes.flatten().astype(int) - badframes = True - print('number of badframes: %d'%ops['badframes'].sum()) + print("bad frames file path: %s" % badfrfile) + bf_indices = np.load(badfrfile) + bf_indices = bf_indices.flatten().astype(int) + # Set indices of badframes to true + badframes[bf_indices] = True + print("number of badframes: %d" % badframes.sum()) # return frames which fall outside range badframes, yrange, xrange = compute_crop( xoff=xoff, yoff=yoff, corrXY=corrXY, - th_badframes=ops['th_badframes'], + th_badframes=ops["th_badframes"], badframes=badframes, - maxregshift=ops['maxregshift'], + maxregshift=ops["maxregshift"], Ly=Ly, Lx=Lx, ) return refImg, rmin, rmax, meanImg, rigid_offsets, nonrigid_offsets, zest, meanImg_chan2, badframes, yrange, xrange -def register_binary(ops: Dict[str, Any], refImg=None, raw=True): - """ main registration function - - Parameters - ---------- - - ops : dictionary or list of dicts - 'Ly', 'Lx', 'batch_size', 'align_by_chan', 'nonrigid' - (optional 'keep_movie_raw', 'raw_file') - - refImg : 2D array (optional, default None) - - raw : bool (optional, default True) - use raw_file for registration if available, if False forces reg_file to be used - - Returns - -------- - - ops : dictionary - 'nframes', 'yoff', 'xoff', 'corrXY', 'yoff1', 'xoff1', 'corrXY1', 'badframes' - - - """ - Ly, Lx = ops['Ly'], ops['Lx'] - n_frames = ops['nframes'] - print('registering %d frames'%ops['nframes']) - - # get binary file paths - raw = raw and ops.get('keep_movie_raw') and 'raw_file' in ops and path.isfile(ops['raw_file']) - reg_file_align = ops['reg_file'] if (ops['nchannels'] < 2 or ops['functional_chan'] == ops['align_by_chan']) else ops['reg_file_chan2'] - if raw: - raw_file_align = ops.get('raw_file') if (ops['nchannels'] < 2 or ops['functional_chan'] == ops['align_by_chan']) else ops.get('raw_file_chan2') - else: - raw_file_align = None - if ops['do_bidiphase'] and ops['bidiphase'] != 0: - ops['bidi_corrected'] = True - - if ops['nchannels'] > 1: - reg_file_alt = ops['reg_file_chan2'] if ops['functional_chan'] == ops['align_by_chan'] else ops['reg_file'] - raw_file_alt = ops.get('raw_file_chan2') if ops['functional_chan'] == ops['align_by_chan'] else ops.get('raw_file') - raw_file_alt = raw_file_alt if raw else [] - else: - reg_file_alt = reg_file_align - raw_file_alt = reg_file_align - - with io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=raw_file_align if raw else reg_file_align) as f_align_in, \ - io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=reg_file_align) as f_align_out, \ - io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=raw_file_alt if raw else reg_file_alt) as f_alt_in,\ - io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=reg_file_alt) as f_alt_out: - if not raw: - f_align_out.close() - f_align_out = None - f_alt_out.close() - f_alt_out = None - if ops['nchannels'] == 1: - f_alt_in.close() - f_alt_in = None - - outputs = registration_wrapper(f_align_out, f_align_in, f_alt_out, f_alt_in, refImg, ops=ops) - - # refImg, rmin, rmax, mean_img, rigid_offsets, nonrigid_offsets, zpos, mean_img_alt, badframes, yrange, xrange = outputs - - # # assign reference image and normalizers - # ops['refImg'] = refImg - # ops['rmin'], ops['rmax'] = rmin, rmax - # # assign rigid offsets to ops - # ops['yoff'], ops['xoff'], ops['corrXY'] = rigid_offsets - # # assign nonrigid offsets to ops - # ops['yoff1'], ops['xoff1'], ops['corrXY1'] = nonrigid_offsets - # # assign mean images - # if ops['nchannels'] == 1 or ops['functional_chan'] == ops['align_by_chan']: - # ops['meanImg'] = mean_img - # elif ops['nchannels'] == 2: - # ops['meanImg_chan2'] = mean_img_alt - # # assign crop computation and badframes - # ops['badframes'], ops['yrange'], ops['xrange'] = badframes, yrange, xrange - - ops = save_registration_outputs_to_ops(outputs, ops) - - # add enhanced mean image - ops = enhanced_mean_image(ops) - - return ops - def save_registration_outputs_to_ops(registration_outputs, ops): refImg, rmin, rmax, meanImg, rigid_offsets, nonrigid_offsets, zest, meanImg_chan2, badframes, yrange, xrange = registration_outputs # assign reference image and normalizers - ops['refImg'] = refImg - ops['rmin'], ops['rmax'] = rmin, rmax + ops["refImg"] = refImg + ops["rmin"], ops["rmax"] = rmin, rmax # assign rigid offsets to ops - ops['yoff'], ops['xoff'], ops['corrXY'] = rigid_offsets + ops["yoff"], ops["xoff"], ops["corrXY"] = rigid_offsets # assign nonrigid offsets to ops - if ops['nonrigid']: - ops['yoff1'], ops['xoff1'], ops['corrXY1'] = nonrigid_offsets + if ops["nonrigid"]: + ops["yoff1"], ops["xoff1"], ops["corrXY1"] = nonrigid_offsets # assign mean images - ops['meanImg'] = meanImg + ops["meanImg"] = meanImg if meanImg_chan2 is not None: - ops['meanImg_chan2'] = meanImg_chan2 + ops["meanImg_chan2"] = meanImg_chan2 # assign crop computation and badframes - ops['badframes'], ops['yrange'], ops['xrange'] = badframes, yrange, xrange + ops["badframes"], ops["yrange"], ops["xrange"] = badframes, yrange, xrange if len(zest[0]) > 0: - ops['zpos_registration'] = np.array(zest[0]) - ops['cmax_registration'] = np.array(zest[1]) + ops["zpos_registration"] = np.array(zest[0]) + ops["cmax_registration"] = np.array(zest[1]) return ops - + def enhanced_mean_image(ops): """ computes enhanced mean image and adds it to ops - Median filters ops['meanImg'] with 4*diameter in 2D and subtracts and + Median filters ops["meanImg"] with 4*diameter in 2D and subtracts and divides by this median-filtered image to return a high-pass filtered - image ops['meanImgE'] + image ops["meanImgE"] Parameters ---------- ops : dictionary - uses 'meanImg', 'aspect', 'spatscale_pix', 'yrange' and 'xrange' + uses "meanImg", "aspect", "spatscale_pix", "yrange" and "xrange" Returns ------- ops : dictionary - 'meanImgE' field added + "meanImgE" field added """ - I = ops['meanImg'].astype(np.float32) + I = ops["meanImg"].astype(np.float32) mimg0 = compute_enhanced_mean_image(I, ops) - #mimg = mimg0.min() * np.ones((ops['Ly'],ops['Lx']),np.float32) - #mimg[ops['yrange'][0]:ops['yrange'][1], - # ops['xrange'][0]:ops['xrange'][1]] = mimg0 - ops['meanImgE'] = mimg0 - print('added enhanced mean image') + #mimg = mimg0.min() * np.ones((ops["Ly"],ops["Lx"]),np.float32) + #mimg[ops["yrange"][0]:ops["yrange"][1], + # ops["xrange"][0]:ops["xrange"][1]] = mimg0 + ops["meanImgE"] = mimg0 + print("added enhanced mean image") return ops + def compute_enhanced_mean_image(I, ops): """ computes enhanced mean image - Median filters ops['meanImg'] with 4*diameter in 2D and subtracts and + Median filters ops["meanImg"] with 4*diameter in 2D and subtracts and divides by this median-filtered image to return a high-pass filtered - image ops['meanImgE'] + image ops["meanImgE"] Parameters ---------- ops : dictionary - uses 'meanImg', 'aspect', 'spatscale_pix', 'yrange' and 'xrange' + uses "meanImg", "aspect", "spatscale_pix", "yrange" and "xrange" Returns ------- ops : dictionary - 'meanImgE' field added + "meanImgE" field added """ - I = ops['meanImg'].astype(np.float32) - if 'spatscale_pix' not in ops: - if isinstance(ops['diameter'], int): - diameter = np.array([ops['diameter'], ops['diameter']]) + I = ops["meanImg"].astype(np.float32) + if "spatscale_pix" not in ops: + if isinstance(ops["diameter"], int): + diameter = np.array([ops["diameter"], ops["diameter"]]) else: - diameter = np.array(ops['diameter']) - if diameter[0]==0: + diameter = np.array(ops["diameter"]) + if diameter[0] == 0: diameter[:] = 12 - ops['spatscale_pix'] = diameter[1] - ops['aspect'] = diameter[0]/diameter[1] + ops["spatscale_pix"] = diameter[1] + ops["aspect"] = diameter[0] / diameter[1] - diameter = 4*np.ceil(np.array([ops['spatscale_pix'] * ops['aspect'], ops['spatscale_pix']])) + 1 + diameter = 4 * np.ceil( + np.array([ops["spatscale_pix"] * ops["aspect"], ops["spatscale_pix"]])) + 1 diameter = diameter.flatten().astype(np.int64) Imed = medfilt2d(I, [diameter[0], diameter[1]]) I = I - Imed @@ -840,5 +787,5 @@ def compute_enhanced_mean_image(I, ops): mimg0 = I mimg0 = (mimg0 - mimg1) / (mimg99 - mimg1) - mimg0 = np.maximum(0,np.minimum(1,mimg0)) - return mimg0 \ No newline at end of file + mimg0 = np.maximum(0, np.minimum(1, mimg0)) + return mimg0 diff --git a/suite2p/registration/rigid.py b/suite2p/registration/rigid.py index 4a2278694..12d63db34 100644 --- a/suite2p/registration/rigid.py +++ b/suite2p/registration/rigid.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from typing import Tuple import numpy as np @@ -25,12 +28,13 @@ def compute_masks(refImg, maskSlope) -> Tuple[np.ndarray, np.ndarray]: Ly, Lx = refImg.shape maskMul = spatial_taper(maskSlope, Ly, Lx) maskOffset = refImg.mean() * (1. - maskMul) - return maskMul.astype('float32'), maskOffset.astype('float32') + return maskMul.astype("float32"), maskOffset.astype("float32") -def apply_masks(data: np.ndarray, maskMul: np.ndarray, maskOffset: np.ndarray) -> np.ndarray: +def apply_masks(data: np.ndarray, maskMul: np.ndarray, + maskOffset: np.ndarray) -> np.ndarray: """ - Returns a 3D image 'data', multiplied by 'maskMul' and then added 'maskOffet'. + Returns a 3D image "data", multiplied by "maskMul" and then added "maskOffet". Parameters ---------- @@ -47,8 +51,8 @@ def apply_masks(data: np.ndarray, maskMul: np.ndarray, maskOffset: np.ndarray) - def phasecorr_reference(refImg: np.ndarray, smooth_sigma=None) -> np.ndarray: """ - Returns reference image fft'ed and complex conjugate and multiplied by gaussian filter in the fft domain, - with standard deviation 'smooth_sigma' computes fft'ed reference image for phasecorr. + Returns reference image fft"ed and complex conjugate and multiplied by gaussian filter in the fft domain, + with standard deviation "smooth_sigma" computes fft"ed reference image for phasecorr. Parameters ---------- @@ -62,7 +66,8 @@ def phasecorr_reference(refImg: np.ndarray, smooth_sigma=None) -> np.ndarray: cfRefImg = complex_fft2(img=refImg) cfRefImg /= (1e-5 + np.absolute(cfRefImg)) cfRefImg *= gaussian_fft(smooth_sigma, cfRefImg.shape[0], cfRefImg.shape[1]) - return cfRefImg.astype('complex64') + return cfRefImg.astype("complex64") + def phasecorr(data, cfRefImg, maxregshift, smooth_sigma_time) -> Tuple[int, int, float]: """ compute phase correlation between data and reference image @@ -70,7 +75,7 @@ def phasecorr(data, cfRefImg, maxregshift, smooth_sigma_time) -> Tuple[int, int, Parameters ---------- data : int16 - array that's frames x Ly x Lx + array that"s frames x Ly x Lx maxregshift : float maximum shift as a fraction of the minimum dimension of data (min(Ly,Lx) * maxregshift) smooth_sigma_time : float @@ -88,20 +93,19 @@ def phasecorr(data, cfRefImg, maxregshift, smooth_sigma_time) -> Tuple[int, int, """ min_dim = np.minimum(*data.shape[1:]) # maximum registration shift allowed lcorr = int(np.minimum(np.round(maxregshift * min_dim), min_dim // 2)) - + #cc = convolve(data, cfRefImg, lcorr) data = convolve(data, cfRefImg) - cc = np.real(np.block( - [[data[:, -lcorr:, -lcorr:], data[:, -lcorr:, :lcorr+1]], - [data[:, :lcorr+1, -lcorr:], data[:, :lcorr+1, :lcorr+1]]] - ) - ) - + cc = np.real( + np.block([[data[:, -lcorr:, -lcorr:], data[:, -lcorr:, :lcorr + 1]], + [data[:, :lcorr + 1, -lcorr:], data[:, :lcorr + 1, :lcorr + 1]]])) + cc = temporal_smooth(cc, smooth_sigma_time) if smooth_sigma_time > 0 else cc ymax, xmax = np.zeros(data.shape[0], np.int32), np.zeros(data.shape[0], np.int32) for t in np.arange(data.shape[0]): - ymax[t], xmax[t] = np.unravel_index(np.argmax(cc[t], axis=None), (2 * lcorr + 1, 2 * lcorr + 1)) + ymax[t], xmax[t] = np.unravel_index(np.argmax(cc[t], axis=None), + (2 * lcorr + 1, 2 * lcorr + 1)) cmax = cc[np.arange(len(cc)), ymax, xmax] ymax, xmax = ymax - lcorr, xmax - lcorr diff --git a/suite2p/registration/utils.py b/suite2p/registration/utils.py index ae5039f20..cc49569e2 100644 --- a/suite2p/registration/utils.py +++ b/suite2p/registration/utils.py @@ -1,22 +1,24 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import warnings from functools import lru_cache from typing import Tuple import numpy as np from numba import vectorize, complex64 -from numpy.fft import ifftshift#, fft2, ifft2 -from scipy.fft import next_fast_len#, fft2, ifft2 +from numpy.fft import ifftshift #, fft2, ifft2 +from scipy.fft import next_fast_len #, fft2, ifft2 from scipy.ndimage import gaussian_filter1d import torch - try: # use mkl_fft if installed from mkl_fft import fft2, ifft2 def convolve(mov: np.ndarray, img: np.ndarray) -> np.ndarray: """ - Returns the 3D array 'mov' convolved by a 2D array 'img'. + Returns the 3D array "mov" convolved by a 2D array "img". Parameters ---------- @@ -29,17 +31,17 @@ def convolve(mov: np.ndarray, img: np.ndarray) -> np.ndarray: ------- convolved_data: nImg x Ly x Lx """ - return ifft2(apply_dotnorm(fft2(mov), img)) #.astype(np.complex64) + return ifft2(apply_dotnorm(fft2(mov), img)) #.astype(np.complex64) except: try: # pytorch > 1.7 - from torch.fft import fft as torch_fft + from torch.fft import fft as torch_fft from torch.fft import fft2 as torch_fft2 from torch.fft import ifft as torch_ifft from torch.fft import ifft2 as torch_ifft2 except: # pytorch <= 1.7 - raise ImportError('pytorch version > 1.7 required') + raise ImportError("pytorch version > 1.7 required") eps = torch.complex(torch.tensor(1e-5), torch.tensor(0.0)) @@ -63,7 +65,7 @@ def ifft2(data, size=None): def convolve(mov: np.ndarray, img: np.ndarray) -> np.ndarray: """ - Returns the 3D array 'mov' convolved by a 2D array 'img'. + Returns the 3D array "mov" convolved by a 2D array "img". Parameters ---------- @@ -79,24 +81,27 @@ def convolve(mov: np.ndarray, img: np.ndarray) -> np.ndarray: convolved_data: nImg x Ly x Lx """ mov_fft = torch.from_numpy(mov) - mov_fft = torch_fft2(mov_fft, dim=(-2,-1)) + mov_fft = torch_fft2(mov_fft, dim=(-2, -1)) #mov_fft = torch_fft(torch_fft(mov_fft, dim=-1), dim=-2) mov_fft /= (eps + torch.abs(mov_fft)) mov_fft *= torch.from_numpy(img) - mov_fft = torch.real(torch_ifft2(mov_fft, dim=(-2,-1))) + mov_fft = torch.real(torch_ifft2(mov_fft, dim=(-2, -1))) return mov_fft.numpy() -@vectorize([complex64(complex64, complex64)], nopython=True, target='parallel') + +@vectorize([complex64(complex64, complex64)], nopython=True, target="parallel") def apply_dotnorm(Y, cfRefImg): return Y / (np.complex64(1e-5) + np.abs(Y)) * cfRefImg -#@vectorize(['float32(int16, float32, float32)', 'float32(float32, float32, float32)'], nopython=True, target='parallel', cache=True) +#@vectorize(["float32(int16, float32, float32)", "float32(float32, float32, float32)"], nopython=True, target="parallel", cache=True) #def addmultiply(x, mul, add): # return np.float32(x) * mul + add -@vectorize(['complex64(int16, float32, float32)', 'complex64(float32, float32, float32)'], nopython=True, target='parallel', cache=True) +@vectorize( + ["complex64(int16, float32, float32)", "complex64(float32, float32, float32)"], + nopython=True, target="parallel", cache=True) def addmultiply(x, mul, add): return np.complex64(np.float32(x) * mul + add) @@ -138,7 +143,7 @@ def meshgrid_mean_centered(x: int, y: int) -> Tuple[np.ndarray, np.ndarray]: def gaussian_fft(sig, Ly: int, Lx: int): - ''' + """ gaussian filter in the fft domain with std sig and size Ly,Lx Parameters @@ -154,10 +159,10 @@ def gaussian_fft(sig, Ly: int, Lx: int): fhg: np.ndarray smoothing filter in Fourier domain - ''' + """ xx, yy = meshgrid_mean_centered(x=Lx, y=Ly) - hgx = np.exp(-np.square(xx/sig) / 2) - hgy = np.exp(-np.square(yy/sig) / 2) + hgx = np.exp(-np.square(xx / sig) / 2) + hgy = np.exp(-np.square(yy / sig) / 2) hgg = hgy * hgx hgg /= hgg.sum() fhg = np.real(fft2(ifftshift(hgg))) @@ -165,7 +170,7 @@ def gaussian_fft(sig, Ly: int, Lx: int): def spatial_taper(sig, Ly, Lx): - ''' + """ Returns spatial taper on edges with gaussian of std sig Parameters @@ -181,7 +186,7 @@ def spatial_taper(sig, Ly, Lx): maskMul - ''' + """ xx, yy = meshgrid_mean_centered(x=Lx, y=Ly) mY = ((Ly - 1) / 2) - 2 * sig mX = ((Lx - 1) / 2) - 2 * sig @@ -190,9 +195,10 @@ def spatial_taper(sig, Ly, Lx): maskMul = maskY * maskX return maskMul + def temporal_smooth(data: np.ndarray, sigma: float) -> np.ndarray: """ - Returns Gaussian filtered 'frames' ndarray over first dimension + Returns Gaussian filtered "frames" ndarray over first dimension Parameters ---------- @@ -229,16 +235,17 @@ def spatial_smooth(data: np.ndarray, window: int): if window and window % 2: raise ValueError("Filter window must be an even integer.") if data.ndim == 2: - data = data[np.newaxis, : ,:] + data = data[np.newaxis, :, :] half_pad = window // 2 - data_padded = np.pad(data, ((0, 0), (half_pad, half_pad), (half_pad, half_pad)), mode='constant', constant_values=0) + data_padded = np.pad(data, ((0, 0), (half_pad, half_pad), (half_pad, half_pad)), + mode="constant", constant_values=0) data_summed = data_padded.cumsum(axis=1).cumsum(axis=2, dtype=np.float32) data_summed = (data_summed[:, window:, :] - data_summed[:, :-window, :]) # in X data_summed = (data_summed[:, :, window:] - data_summed[:, :, :-window]) # in Y - data_summed /= window ** 2 - + data_summed /= window**2 + return data_summed.squeeze() @@ -260,15 +267,15 @@ def spatial_high_pass(data, N): """ if data.ndim == 2: data = data[np.newaxis, :, :] - data_filtered = data - (spatial_smooth(data, N) / spatial_smooth(np.ones((1, data.shape[1], data.shape[2])), N)) + data_filtered = data - (spatial_smooth(data, N) / + spatial_smooth(np.ones( + (1, data.shape[1], data.shape[2])), N)) return data_filtered.squeeze() - - def complex_fft2(img: np.ndarray, pad_fft: bool = False) -> np.ndarray: """ - Returns the complex conjugate of the fft-transformed 2D array 'img', optionally padded for speed. + Returns the complex conjugate of the fft-transformed 2D array "img", optionally padded for speed. Parameters ---------- @@ -280,12 +287,13 @@ def complex_fft2(img: np.ndarray, pad_fft: bool = False) -> np.ndarray: """ Ly, Lx = img.shape - return np.conj(fft2(img, (next_fast_len(Ly), next_fast_len(Lx)))) if pad_fft else np.conj(fft2(img)) + return np.conj(fft2(img, (next_fast_len(Ly), + next_fast_len(Lx)))) if pad_fft else np.conj(fft2(img)) def kernelD(xs: np.ndarray, ys: np.ndarray, sigL: float = 0.85) -> np.ndarray: """ - Gaussian kernel from xs (1D array) to ys (1D array), with the 'sigL' smoothing width for up-sampling kernels, (best between 0.5 and 1.0) + Gaussian kernel from xs (1D array) to ys (1D array), with the "sigL" smoothing width for up-sampling kernels, (best between 0.5 and 1.0) Parameters ---------- @@ -301,7 +309,7 @@ def kernelD(xs: np.ndarray, ys: np.ndarray, sigL: float = 0.85) -> np.ndarray: ys0, ys1 = np.meshgrid(ys, ys) dxs = xs0.reshape(-1, 1) - ys0.reshape(1, -1) dys = xs1.reshape(-1, 1) - ys1.reshape(1, -1) - K = np.exp(-(dxs ** 2 + dys ** 2) / (2 * sigL ** 2)) + K = np.exp(-(dxs**2 + dys**2) / (2 * sigL**2)) return K @@ -319,7 +327,7 @@ def kernelD2(xs: int, ys: int) -> np.ndarray: ys, xs = np.meshgrid(xs, ys) ys = ys.flatten().reshape(1, -1) xs = xs.flatten().reshape(1, -1) - R = np.exp(-((ys - ys.T) ** 2 + (xs - xs.T) ** 2)) + R = np.exp(-((ys - ys.T)**2 + (xs - xs.T)**2)) R = R / np.sum(R, axis=0) return R @@ -344,4 +352,3 @@ def mat_upsample(lpad: int, subpixel: int = 10): nup = larUP.shape[0] Kmat = np.linalg.inv(kernelD(lar, lar)) @ kernelD(lar, larUP) return Kmat, nup - diff --git a/suite2p/registration/zalign.py b/suite2p/registration/zalign.py index 7e78b443f..d0beca804 100644 --- a/suite2p/registration/zalign.py +++ b/suite2p/registration/zalign.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os import time @@ -6,7 +9,8 @@ from . import nonrigid, rigid, utils -# This function doesn't work. Has a bunch of name errors. + +# This function doesn"t work. Has a bunch of name errors. def register_stack(Z, ops): """ @@ -22,54 +26,62 @@ def register_stack(Z, ops): ops: dict """ - if 'refImg' not in ops: - ops['refImg'] = Z.mean(axis=0) - ops['nframes'], ops['Ly'], ops['Lx'] = Z.shape + if "refImg" not in ops: + ops["refImg"] = Z.mean(axis=0) + ops["nframes"], ops["Ly"], ops["Lx"] = Z.shape - if ops['nonrigid']: - ops['yblock'], ops['xblock'], ops['nblocks'], ops['block_size'], ops['NRsm'] = nonrigid.make_blocks( - Ly=ops['Ly'], Lx=ops['Lx'], block_size=ops['block_size'] - ) + if ops["nonrigid"]: + ops["yblock"], ops["xblock"], ops["nblocks"], ops["block_size"], ops[ + "NRsm"] = nonrigid.make_blocks(Ly=ops["Ly"], Lx=ops["Lx"], + block_size=ops["block_size"]) - Ly = ops['Ly'] - Lx = ops['Lx'] + Ly = ops["Ly"] + Lx = ops["Lx"] - nbatch = ops['batch_size'] - meanImg = np.zeros((Ly, Lx)) # mean of this stack + nbatch = ops["batch_size"] + meanImg = np.zeros((Ly, Lx)) # mean of this stack - yoff = np.zeros((0,),np.float32) - xoff = np.zeros((0,),np.float32) - corrXY = np.zeros((0,),np.float32) - if ops['nonrigid']: - yoff1 = np.zeros((0,nb),np.float32) - xoff1 = np.zeros((0,nb),np.float32) - corrXY1 = np.zeros((0,nb),np.float32) + yoff = np.zeros((0,), np.float32) + xoff = np.zeros((0,), np.float32) + corrXY = np.zeros((0,), np.float32) + if ops["nonrigid"]: + yoff1 = np.zeros((0, nb), np.float32) + xoff1 = np.zeros((0, nb), np.float32) + corrXY1 = np.zeros((0, nb), np.float32) - maskMul, maskOffset, cfRefImg = rigid.prepare_masks(refImg, ops) # prepare masks for rigid registration - if ops['nonrigid']: + maskMul, maskOffset, cfRefImg = rigid.prepare_masks( + refImg, ops) # prepare masks for rigid registration + if ops["nonrigid"]: # prepare masks for non- rigid registration maskMulNR, maskOffsetNR, cfRefImgNR = nonrigid.prepare_masks(refImg, ops) - refAndMasks = [maskMul, maskOffset, cfRefImg, maskMulNR, maskOffsetNR, cfRefImgNR] - nb = ops['nblocks'][0] * ops['nblocks'][1] + refAndMasks = [ + maskMul, maskOffset, cfRefImg, maskMulNR, maskOffsetNR, cfRefImgNR + ] + nb = ops["nblocks"][0] * ops["nblocks"][1] else: refAndMasks = [maskMul, maskOffset, cfRefImg] k = 0 nfr = 0 - Zreg = np.zeros((nframes, Ly, Lx,), 'int16') + Zreg = np.zeros(( + nframes, + Ly, + Lx, + ), "int16") while True: - irange = np.arange(nfr, nfr+nbatch) - data = Z[irange, :,:] - if data.size==0: + irange = np.arange(nfr, nfr + nbatch) + data = Z[irange, :, :] + if data.size == 0: break data = np.reshape(data, (-1, Ly, Lx)) - dwrite, ymax, xmax, cmax, yxnr = rigid.phasecorr(data, refAndMasks, ops) # not here - dwrite = dwrite.astype('int16') # need to hold on to this + dwrite, ymax, xmax, cmax, yxnr = rigid.phasecorr(data, refAndMasks, + ops) # not here + dwrite = dwrite.astype("int16") # need to hold on to this meanImg += dwrite.sum(axis=0) yoff = np.hstack((yoff, ymax)) xoff = np.hstack((xoff, xmax)) corrXY = np.hstack((corrXY, cmax)) - if ops['nonrigid']: + if ops["nonrigid"]: yoff1 = np.vstack((yoff1, yxnr[0])) xoff1 = np.vstack((xoff1, yxnr[1])) corrXY1 = np.vstack((corrXY1, yxnr[2])) @@ -77,39 +89,40 @@ def register_stack(Z, ops): Zreg[irange] = dwrite k += 1 - if k%5==0: - print('%d/%d frames %4.2f sec'%(nfr, ops['nframes'], time.time()-k0)) # where is this timer set? + if k % 5 == 0: + print("%d/%d frames %4.2f sec" % + (nfr, ops["nframes"], time.time() - k0)) # where is this timer set? # compute some potentially useful info - ops['th_badframes'] = 100 + ops["th_badframes"] = 100 dx = xoff - medfilt(xoff, 101) dy = yoff - medfilt(yoff, 101) dxy = (dx**2 + dy**2)**.5 cXY = corrXY / medfilt(corrXY, 101) - px = dxy/np.mean(dxy) / np.maximum(0, cXY) - ops['badframes'] = px > ops['th_badframes'] - ymin = np.maximum(0, np.ceil(np.amax(yoff[np.logical_not(ops['badframes'])]))) - ymax = ops['Ly'] + np.minimum(0, np.floor(np.amin(yoff))) - xmin = np.maximum(0, np.ceil(np.amax(xoff[np.logical_not(ops['badframes'])]))) - xmax = ops['Lx'] + np.minimum(0, np.floor(np.amin(xoff))) - ops['yrange'] = [int(ymin), int(ymax)] - ops['xrange'] = [int(xmin), int(xmax)] - ops['corrXY'] = corrXY - - ops['yoff'] = yoff - ops['xoff'] = xoff - - if ops['nonrigid']: - ops['yoff1'] = yoff1 - ops['xoff1'] = xoff1 - ops['corrXY1'] = corrXY1 - - ops['meanImg'] = meanImg/ops['nframes'] + px = dxy / np.mean(dxy) / np.maximum(0, cXY) + ops["badframes"] = px > ops["th_badframes"] + ymin = np.maximum(0, np.ceil(np.amax(yoff[np.logical_not(ops["badframes"])]))) + ymax = ops["Ly"] + np.minimum(0, np.floor(np.amin(yoff))) + xmin = np.maximum(0, np.ceil(np.amax(xoff[np.logical_not(ops["badframes"])]))) + xmax = ops["Lx"] + np.minimum(0, np.floor(np.amin(xoff))) + ops["yrange"] = [int(ymin), int(ymax)] + ops["xrange"] = [int(xmin), int(xmax)] + ops["corrXY"] = corrXY + + ops["yoff"] = yoff + ops["xoff"] = xoff + + if ops["nonrigid"]: + ops["yoff1"] = yoff1 + ops["xoff1"] = xoff1 + ops["corrXY1"] = corrXY1 + + ops["meanImg"] = meanImg / ops["nframes"] return Zreg, ops -def compute_zpos(Zreg, ops): +def compute_zpos(Zreg, ops, reg_file=None): """ compute z position of frames given z-stack Zreg Parameters @@ -119,50 +132,51 @@ def compute_zpos(Zreg, ops): size [nplanes x Ly x Lx], z-stack ops : dictionary - 'reg_file' <- binary to register to z-stack, 'smooth_sigma', - 'Ly', 'Lx', 'batch_size' + "reg_file" <- binary to register to z-stack, "smooth_sigma", + "Ly", "Lx", "batch_size" Returns ------- ops_orig zcorr """ - if 'reg_file' not in ops: - raise IOError('no binary specified') + if "reg_file" not in ops: + raise IOError("no binary specified") - nbatch = ops['batch_size'] - Ly = ops['Ly'] - Lx = ops['Lx'] + nbatch = ops["batch_size"] + Ly = ops["Ly"] + Lx = ops["Lx"] nbytesread = 2 * Ly * Lx * nbatch ops_orig = ops.copy() - ops['nonrigid'] = False + ops["nonrigid"] = False nplanes, zLy, zLx = Zreg.shape if Zreg.shape[1] > Ly or Zreg.shape[2] != Lx: - Zreg = Zreg[:, ] + Zreg = Zreg[ + :, + ] - nbytes = os.path.getsize(ops['reg_file']) - nFrames = int(nbytes/(2 * Ly * Lx)) + reg_file = ops["reg_file"] if reg_file is None else reg_file + nbytes = os.path.getsize(reg_file) + nFrames = int(nbytes / (2 * Ly * Lx)) - reg_file = open(ops['reg_file'], 'rb') + reg_file = open(reg_file, "rb") refAndMasks = [] for Z in Zreg: - if ops['1Preg']: + if ops["1Preg"]: Z = Z.astype(np.float32) Z = Z[np.newaxis, :, :] - if ops['pre_smooth']: - Z = utils.spatial_smooth(Z, int(ops['pre_smooth'])) - Z = utils.spatial_high_pass(Z, int(ops['spatial_hp_reg'])) + if ops["pre_smooth"]: + Z = utils.spatial_smooth(Z, int(ops["pre_smooth"])) + Z = utils.spatial_high_pass(Z, int(ops["spatial_hp_reg"])) Z = Z.squeeze() maskMul, maskOffset = rigid.compute_masks( refImg=Z, - maskSlope=ops['spatial_taper'] if ops['1Preg'] else 3 * ops['smooth_sigma'], - ) - cfRefImag = rigid.phasecorr_reference( - refImg=Z, - smooth_sigma=ops['smooth_sigma'] + maskSlope=ops["spatial_taper"] if ops["1Preg"] else 3 * ops["smooth_sigma"], ) + cfRefImag = rigid.phasecorr_reference(refImg=Z, + smooth_sigma=ops["smooth_sigma"]) cfRefImag = cfRefImag[np.newaxis, :, :] refAndMasks.append((maskMul, maskOffset, cfRefImag)) @@ -173,35 +187,38 @@ def compute_zpos(Zreg, ops): while True: buff = reg_file.read(nbytesread) data = np.frombuffer(buff, dtype=np.int16, offset=0).copy() - if (data.size==0) | (nfr >= ops['nframes']): + if (data.size == 0) | (nfr >= ops["nframes"]): break data = np.float32(np.reshape(data, (-1, Ly, Lx))) - inds = np.arange(nfr, nfr+data.shape[0], 1, int) - for z,ref in enumerate(refAndMasks): + inds = np.arange(nfr, nfr + data.shape[0], 1, int) + for z, ref in enumerate(refAndMasks): # preprocessing for 1P recordings - if ops['1Preg']: + if ops["1Preg"]: data = data.astype(np.float32) - if ops['pre_smooth']: - data = utils.spatial_smooth(data, int(ops['pre_smooth'])) - data = utils.spatial_high_pass(data, int(ops['spatial_hp_reg'])) + if ops["pre_smooth"]: + data = utils.spatial_smooth(data, int(ops["pre_smooth"])) + data = utils.spatial_high_pass(data, int(ops["spatial_hp_reg"])) maskMul, maskOffset, cfRefImg = ref cfRefImg = cfRefImg.squeeze() _, _, zcorr[z, inds] = rigid.phasecorr( - data=rigid.apply_masks(data=data, maskMul=maskMul, maskOffset=maskOffset), + data=rigid.apply_masks(data=data, maskMul=maskMul, + maskOffset=maskOffset), cfRefImg=cfRefImg, - maxregshift=ops['maxregshift'], - smooth_sigma_time=ops['smooth_sigma_time'], + maxregshift=ops["maxregshift"], + smooth_sigma_time=ops["smooth_sigma_time"], ) - if z%10 == 1: - print('%d planes, %d/%d frames, %0.2f sec.'%(z, nfr, ops['nframes'], time.time()-t0)) - print('%d planes, %d/%d frames, %0.2f sec.'%(z, nfr, ops['nframes'], time.time()-t0)) + if z % 10 == 1: + print("%d planes, %d/%d frames, %0.2f sec." % + (z, nfr, ops["nframes"], time.time() - t0)) + print("%d planes, %d/%d frames, %0.2f sec." % + (z, nfr, ops["nframes"], time.time() - t0)) nfr += data.shape[0] - k+=1 + k += 1 reg_file.close() - ops_orig['zcorr'] = zcorr + ops_orig["zcorr"] = zcorr return ops_orig, zcorr diff --git a/suite2p/run_s2p.py b/suite2p/run_s2p.py index ce9b8ad82..bf912a40a 100644 --- a/suite2p/run_s2p.py +++ b/suite2p/run_s2p.py @@ -1,3 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" import os import shutil import time @@ -5,25 +8,57 @@ from datetime import datetime from getpass import getpass import pathlib - +import contextlib import numpy as np #from scipy.io import savemat from . import extraction, io, registration, detection, classification, default_ops try: - from haussmeister import haussio - HAS_HAUS = True + import pynwb + HAS_NWB = True +except ImportError: + HAS_NWB = False + +try: + import nd2 + HAS_ND2 = True +except ImportError: + HAS_ND2 = False + +try: + import h5py + HAS_H5PY = True +except ImportError: + HAS_H5PY = False + +try: + import sbxreader + HAS_SBX = True except ImportError: - HAS_HAUS = False + HAS_SBX = False + +try: + import cv2 + HAS_CV2 = True +except ImportError: + HAS_CV2 = False + +try: + import dcimg + HAS_DCIMG = True +except ImportError: + HAS_DCIMG = False from functools import partial from pathlib import Path -print = partial(print,flush=True) -def pipeline(f_reg, f_raw=None, f_reg_chan2=None, f_raw_chan2=None, +print = partial(print, flush=True) + + +def pipeline(f_reg, f_raw=None, f_reg_chan2=None, f_raw_chan2=None, run_registration=True, ops=default_ops(), stat=None): - """ run suite2p processing on array or BinaryRWFile + """ run suite2p processing on array or BinaryFile f_reg: required, registered or unregistered frames n_frames x Ly x Lx @@ -45,166 +80,172 @@ def pipeline(f_reg, f_raw=None, f_reg_chan2=None, f_raw_chan2=None, stat: optional, input predefined masks """ - + plane_times = {} t1 = time.time() - + # Select file for classification - ops_classfile = ops.get('classifier_path') + ops_classfile = ops.get("classifier_path") builtin_classfile = classification.builtin_classfile user_classfile = classification.user_classfile if ops_classfile: - print(f'NOTE: applying classifier {str(ops_classfile)}') + print(f"NOTE: applying classifier {str(ops_classfile)}") classfile = ops_classfile - elif ops['use_builtin_classifier'] or not user_classfile.is_file(): - print(f'NOTE: Applying builtin classifier at {str(builtin_classfile)}') + elif ops["use_builtin_classifier"] or not user_classfile.is_file(): + print(f"NOTE: Applying builtin classifier at {str(builtin_classfile)}") classfile = builtin_classfile else: - print(f'NOTE: applying default {str(user_classfile)}') + print(f"NOTE: applying default {str(user_classfile)}") classfile = user_classfile if run_registration: raw = f_raw is not None # if already shifted by bidiphase, do not shift again - if not raw and ops['do_bidiphase'] and ops['bidiphase'] != 0: - ops['bidi_corrected'] = True - + if not raw and ops["do_bidiphase"] and ops["bidiphase"] != 0: + ops["bidi_corrected"] = True + ######### REGISTRATION ######### - t11=time.time() - print('----------- REGISTRATION') - refImg = ops['refImg'] if 'refImg' in ops and ops.get('force_refImg', False) else None - - align_by_chan2 = ops['functional_chan'] != ops['align_by_chan'] - registration_outputs = registration.register.registration_wrapper(f_reg, f_raw=f_raw, f_reg_chan2=f_reg_chan2, f_raw_chan2=f_raw_chan2, - refImg=refImg, align_by_chan2=align_by_chan2, ops=ops) - - ops = registration.register.save_registration_outputs_to_ops(registration_outputs, ops) + t11 = time.time() + print("----------- REGISTRATION") + refImg = ops["refImg"] if "refImg" in ops and ops.get("force_refImg", + False) else None + + align_by_chan2 = ops["functional_chan"] != ops["align_by_chan"] + registration_outputs = registration.registration_wrapper( + f_reg, f_raw=f_raw, f_reg_chan2=f_reg_chan2, f_raw_chan2=f_raw_chan2, + refImg=refImg, align_by_chan2=align_by_chan2, ops=ops) + + ops = registration.save_registration_outputs_to_ops(registration_outputs, ops) # add enhanced mean image - meanImgE = registration.register.compute_enhanced_mean_image(ops['meanImg'].astype(np.float32), ops) - ops['meanImgE'] = meanImgE + meanImgE = registration.compute_enhanced_mean_image( + ops["meanImg"].astype(np.float32), ops) + ops["meanImgE"] = meanImgE - if ops.get('ops_path'): - np.save(ops['ops_path'], ops) + if ops.get("ops_path"): + np.save(ops["ops_path"], ops) - plane_times['registration'] = time.time()-t11 - print('----------- Total %0.2f sec' % plane_times['registration']) + plane_times["registration"] = time.time() - t11 + print("----------- Total %0.2f sec" % plane_times["registration"]) n_frames, Ly, Lx = f_reg.shape - if ops['two_step_registration'] and ops['keep_movie_raw']: - print('----------- REGISTRATION STEP 2') - print('(making mean image (excluding bad frames)') + if ops["two_step_registration"] and ops["keep_movie_raw"]: + print("----------- REGISTRATION STEP 2") + print("(making mean image (excluding bad frames)") nsamps = min(n_frames, 1000) - inds = np.linspace(0, n_frames, 1+nsamps).astype(np.int64)[:-1] + inds = np.linspace(0, n_frames, 1 + nsamps).astype(np.int64)[:-1] if align_by_chan2: refImg = f_reg_chan2[inds].astype(np.float32).mean(axis=0) else: refImg = f_reg[inds].astype(np.float32).mean(axis=0) - registration_outputs = registration.register.registration_wrapper(f_reg, f_raw=None, f_reg_chan2=f_reg_chan2, f_raw_chan2=None, - refImg=refImg, align_by_chan2=align_by_chan2, ops=ops) - if ops.get('ops_path'): - np.save(ops['ops_path'], ops) - plane_times['two_step_registration'] = time.time()-t11 - print('----------- Total %0.2f sec' % plane_times['two_step_registration']) + registration_outputs = registration.registration_wrapper( + f_reg, f_raw=None, f_reg_chan2=f_reg_chan2, f_raw_chan2=None, + refImg=refImg, align_by_chan2=align_by_chan2, ops=ops) + if ops.get("ops_path"): + np.save(ops["ops_path"], ops) + plane_times["two_step_registration"] = time.time() - t11 + print("----------- Total %0.2f sec" % plane_times["two_step_registration"]) # compute metrics for registration - if ops.get('do_regmetrics', True) and n_frames>=1500: + if ops.get("do_regmetrics", True) and n_frames >= 1500: t0 = time.time() # n frames to pick from full movie - nsamp = min(2000 if n_frames < 5000 or Ly > 700 or Lx > 700 else 5000, n_frames) - inds = np.linspace(0, n_frames - 1, nsamp).astype('int') + nsamp = min(2000 if n_frames < 5000 or Ly > 700 or Lx > 700 else 5000, + n_frames) + inds = np.linspace(0, n_frames - 1, nsamp).astype("int") mov = f_reg[inds] - mov = mov[:, ops['yrange'][0]:ops['yrange'][-1], ops['xrange'][0]:ops['xrange'][-1]] + mov = mov[:, ops["yrange"][0]:ops["yrange"][-1], + ops["xrange"][0]:ops["xrange"][-1]] ops = registration.get_pc_metrics(mov, ops) - plane_times['registration_metrics'] = time.time()-t0 - print('Registration metrics, %0.2f sec.' % plane_times['registration_metrics']) - if ops.get('ops_path'): - np.save(ops['ops_path'], ops) - - if ops.get('roidetect', True): + plane_times["registration_metrics"] = time.time() - t0 + print("Registration metrics, %0.2f sec." % + plane_times["registration_metrics"]) + if ops.get("ops_path"): + np.save(ops["ops_path"], ops) + + if ops.get("roidetect", True): n_frames, Ly, Lx = f_reg.shape ######## CELL DETECTION ############## - t11=time.time() - print('----------- ROI DETECTION') + t11 = time.time() + print("----------- ROI DETECTION") if stat is None: - ops, stat = detection.detection_wrapper(f_reg, - ops=ops, - classfile=classfile) - plane_times['detection'] = time.time()-t11 - print('----------- Total %0.2f sec.' % plane_times['detection']) + ops, stat = detection.detection_wrapper(f_reg, ops=ops, classfile=classfile) + plane_times["detection"] = time.time() - t11 + print("----------- Total %0.2f sec." % plane_times["detection"]) - if len(stat) > 0: ######## ROI EXTRACTION ############## - t11=time.time() - print('----------- EXTRACTION') - stat, F, Fneu, F_chan2, Fneu_chan2 = extraction.extraction_wrapper(stat, f_reg, f_reg_chan2=f_reg_chan2, ops=ops) + t11 = time.time() + print("----------- EXTRACTION") + stat, F, Fneu, F_chan2, Fneu_chan2 = extraction.extraction_wrapper( + stat, f_reg, f_reg_chan2=f_reg_chan2, ops=ops) # save results - if ops.get('ops_path'): - np.save(ops['ops_path'], ops) + if ops.get("ops_path"): + np.save(ops["ops_path"], ops) - plane_times['extraction'] = time.time()-t11 - print('----------- Total %0.2f sec.' % plane_times['extraction']) + plane_times["extraction"] = time.time() - t11 + print("----------- Total %0.2f sec." % plane_times["extraction"]) ######## ROI CLASSIFICATION ############## - t11=time.time() - print('----------- CLASSIFICATION') + t11 = time.time() + print("----------- CLASSIFICATION") if len(stat): iscell = classification.classify(stat=stat, classfile=classfile) else: iscell = np.zeros((0, 2)) - plane_times['classification'] = time.time()-t11 - + plane_times["classification"] = time.time() - t11 + ######### SPIKE DECONVOLUTION ############### - fpath = ops['save_path'] - if ops.get('spikedetect', True): - t11=time.time() - print('----------- SPIKE DECONVOLUTION') - dF = F.copy() - ops['neucoeff']*Fneu - dF = extraction.preprocess( - F=dF, - baseline=ops['baseline'], - win_baseline=ops['win_baseline'], - sig_baseline=ops['sig_baseline'], - fs=ops['fs'], - prctile_baseline=ops['prctile_baseline'] - ) - spks = extraction.oasis(F=dF, batch_size=ops['batch_size'], tau=ops['tau'], fs=ops['fs']) - plane_times['deconvolution'] = time.time()-t11 - print('----------- Total %0.2f sec.' % plane_times['deconvolution']) + fpath = ops["save_path"] + if ops.get("spikedetect", True): + t11 = time.time() + print("----------- SPIKE DECONVOLUTION") + dF = F.copy() - ops["neucoeff"] * Fneu + dF = extraction.preprocess(F=dF, baseline=ops["baseline"], + win_baseline=ops["win_baseline"], + sig_baseline=ops["sig_baseline"], + fs=ops["fs"], + prctile_baseline=ops["prctile_baseline"]) + spks = extraction.oasis(F=dF, batch_size=ops["batch_size"], + tau=ops["tau"], fs=ops["fs"]) + plane_times["deconvolution"] = time.time() - t11 + print("----------- Total %0.2f sec." % plane_times["deconvolution"]) else: print("WARNING: skipping spike detection (ops['spikedetect']=False)") spks = np.zeros_like(F) - if ops.get('save_path'): - fpath = ops['save_path'] - np.save(os.path.join(fpath, 'stat.npy'), stat) - np.save(os.path.join(fpath,'F.npy'), F) - np.save(os.path.join(fpath,'Fneu.npy'), Fneu) - np.save(os.path.join(fpath, 'iscell.npy'), iscell) - np.save(os.path.join(ops['save_path'], 'spks.npy'), spks) + if ops.get("save_path"): + fpath = ops["save_path"] + np.save(os.path.join(fpath, "stat.npy"), stat) + np.save(os.path.join(fpath, "F.npy"), F) + np.save(os.path.join(fpath, "Fneu.npy"), Fneu) + np.save(os.path.join(fpath, "iscell.npy"), iscell) + np.save(os.path.join(ops["save_path"], "spks.npy"), spks) # if second channel, save F_chan2 and Fneu_chan2 - if 'meanImg_chan2' in ops: - np.save(os.path.join(fpath, 'F_chan2.npy'), F_chan2) - np.save(os.path.join(fpath, 'Fneu_chan2.npy'), Fneu_chan2) - + if "meanImg_chan2" in ops: + np.save(os.path.join(fpath, "F_chan2.npy"), F_chan2) + np.save(os.path.join(fpath, "Fneu_chan2.npy"), Fneu_chan2) + # save as matlab file - if ops.get('save_mat'): - stat = np.load(os.path.join(ops['save_path'], 'stat.npy'), allow_pickle=True) - iscell = np.load(os.path.join(ops['save_path'], 'iscell.npy')) - redcell = np.load(os.path.join(ops['save_path'], 'redcell.npy')) if ops['nchannels']==2 else [] - io.save_mat(ops, stat, F, Fneu, spks, iscell, redcell) + if ops.get("save_mat"): + stat = np.load(os.path.join(ops["save_path"], "stat.npy"), + allow_pickle=True) + iscell = np.load(os.path.join(ops["save_path"], "iscell.npy")) + redcell = np.load(os.path.join( + ops["save_path"], "redcell.npy")) if ops["nchannels"] == 2 else [] + io.save_mat(ops, stat, F, Fneu, spks, iscell, redcell, + F_chan2, Fneu_chan2) else: - print('no ROIs found, only ops.npy file saved') + print("no ROIs found, only ops.npy file saved") else: print("WARNING: skipping cell detection (ops['roidetect']=False)") - ops['timing'] = plane_times.copy() - plane_runtime = time.time()-t1 - ops['timing']['total_plane_runtime'] = plane_runtime - if ops.get('ops_path'): - np.save(ops['ops_path'], ops) + ops["timing"] = plane_times.copy() + plane_runtime = time.time() - t1 + ops["timing"]["total_plane_runtime"] = plane_runtime + if ops.get("ops_path"): + np.save(ops["ops_path"], ops) + + return ops #, stat, F, Fneu, F_chan2, Fneu_chan2, spks, iscell, redcell - return ops #, stat, F, Fneu, F_chan2, Fneu_chan2, spks, iscell, redcell - def run_plane(ops, ops_path=None, stat=None): """ run suite2p processing on a single binary file @@ -212,7 +253,7 @@ def run_plane(ops, ops_path=None, stat=None): Parameters ----------- ops : :obj:`dict` - specify 'reg_file', 'nchannels', 'tau', 'fs' + specify "reg_file", "nchannels", "tau", "fs" ops_path: str absolute path to ops file (use if files were moved) @@ -224,111 +265,119 @@ def run_plane(ops, ops_path=None, stat=None): -------- ops : :obj:`dict` """ - + ops = {**default_ops(), **ops} - ops['date_proc'] = datetime.now().astimezone() - + ops["date_proc"] = datetime.now().astimezone() + # for running on server or on moved files, specify ops_path if ops_path is not None: - ops['save_path'] = os.path.split(ops_path)[0] - ops['ops_path'] = ops_path - if len(ops['fast_disk'])==0 or ops['save_path']!=ops['fast_disk']: - if os.path.exists(os.path.join(ops['save_path'], 'data.bin')): - ops['reg_file'] = os.path.join(ops['save_path'], 'data.bin') - if 'reg_file_chan2' in ops: - ops['reg_file_chan2'] = os.path.join(ops['save_path'], 'data_chan2.bin') - if 'raw_file' in ops: - ops['raw_file'] = os.path.join(ops['save_path'], 'data_raw.bin') - if 'raw_file_chan2' in ops: - ops['raw_file_chan2'] = os.path.join(ops['save_path'], 'data_chan2_raw.bin') + ops["save_path"] = os.path.split(ops_path)[0] + ops["ops_path"] = ops_path + if len(ops["fast_disk"]) == 0 or ops["save_path"] != ops["fast_disk"]: + if os.path.exists(os.path.join(ops["save_path"], "data.bin")): + ops["reg_file"] = os.path.join(ops["save_path"], "data.bin") + if "reg_file_chan2" in ops: + ops["reg_file_chan2"] = os.path.join(ops["save_path"], + "data_chan2.bin") + if "raw_file" in ops: + ops["raw_file"] = os.path.join(ops["save_path"], "data_raw.bin") + if "raw_file_chan2" in ops: + ops["raw_file_chan2"] = os.path.join(ops["save_path"], + "data_chan2_raw.bin") # check that there are sufficient numbers of frames - if ops['nframes'] < 50: - raise ValueError('the total number of frames should be at least 50.') - if ops['nframes'] < 200: - print('WARNING: number of frames is below 200, unpredictable behaviors may occur.') + if ops["nframes"] < 50: + raise ValueError("the total number of frames should be at least 50.") + if ops["nframes"] < 200: + print( + "WARNING: number of frames is below 200, unpredictable behaviors may occur." + ) # check if registration should be done - if ops['do_registration']>0: - if 'refImg' not in ops or 'yoff' not in ops or ops['do_registration'] > 1: - print("NOTE: not registered / registration forced with ops['do_registration']>1") + if ops["do_registration"] > 0: + if "refImg" not in ops or "yoff" not in ops or ops["do_registration"] > 1: + print( + "NOTE: not registered / registration forced with ops['do_registration']>1" + ) try: - del ops['yoff'], ops['xoff'], ops['corrXY'] # delete previous offsets + del ops["yoff"], ops["xoff"], ops["corrXY"] # delete previous offsets except KeyError: - print(' (no previous offsets to delete)') + print(" (no previous offsets to delete)") run_registration = True else: print("NOTE: not running registration, plane already registered") - print('binary path: %s'%ops['reg_file']) + print("binary path: %s" % ops["reg_file"]) run_registration = False else: print("NOTE: not running registration, ops['do_registration']=0") - print('binary path: %s'%ops['reg_file']) + print("binary path: %s" % ops["reg_file"]) run_registration = False - Ly, Lx = ops['Ly'], ops['Lx'] - # get binary file paths - raw = ops.get('keep_movie_raw') and 'raw_file' in ops and os.path.isfile(ops['raw_file']) - reg_file = ops['reg_file'] - raw_file = ops.get('raw_file', 0) if raw else reg_file - if ops['nchannels'] > 1: - reg_file_chan2 = ops['reg_file_chan2'] - raw_file_chan2 = ops.get('raw_file_chan2', 0) if raw else reg_file_chan2 + raw = ops.get("keep_movie_raw") and "raw_file" in ops and os.path.isfile( + ops["raw_file"]) + reg_file = ops["reg_file"] + raw_file = ops.get("raw_file", 0) if raw else reg_file + # get number of frames in binary file to use to initialize files if needed + if ops["nchannels"] > 1: + reg_file_chan2 = ops["reg_file_chan2"] + raw_file_chan2 = ops.get("raw_file_chan2", 0) if raw else reg_file_chan2 else: - reg_file_chan2 = reg_file - raw_file_chan2 = reg_file - - - with io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=raw_file if raw else reg_file) as f_raw, \ - io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=reg_file) as f_reg, \ - io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=raw_file_chan2 if raw else reg_file_chan2) as f_raw_chan2,\ - io.BinaryRWFile(Ly=Ly, Lx=Lx, filename=reg_file_chan2) as f_reg_chan2: - if not raw: - f_raw.close() - f_raw = None - f_raw_chan2.close() - f_raw_chan2 = None - if ops['nchannels'] == 1: - f_reg_chan2.close() - f_reg_chan2 = None - - ops = pipeline(f_reg, f_raw, f_reg_chan2, f_raw_chan2, run_registration, ops, stat=stat) - - if ops.get('move_bin') and ops['save_path'] != ops['fast_disk']: - print('moving binary files to save_path') - shutil.move(ops['reg_file'], os.path.join(ops['save_path'], 'data.bin')) - if ops['nchannels']>1: - shutil.move(ops['reg_file_chan2'], os.path.join(ops['save_path'], 'data_chan2.bin')) - if 'raw_file' in ops: - shutil.move(ops['raw_file'], os.path.join(ops['save_path'], 'data_raw.bin')) - if ops['nchannels'] > 1: - shutil.move(ops['raw_file_chan2'], os.path.join(ops['save_path'], 'data_chan2_raw.bin')) - elif ops.get('delete_bin'): - print('deleting binary files') - os.remove(ops['reg_file']) - if ops['nchannels'] > 1: - os.remove(ops['reg_file_chan2']) - if 'raw_file' in ops: - os.remove(ops['raw_file']) - if ops['nchannels'] > 1: - os.remove(ops['raw_file_chan2']) + reg_file_chan2 = reg_file + raw_file_chan2 = reg_file + + # shape of binary files + n_frames, Ly, Lx = ops["nframes"], ops["Ly"], ops["Lx"] + + null = contextlib.nullcontext() + twoc = ops["nchannels"] > 1 + with io.BinaryFile(Ly=Ly, Lx=Lx, filename=raw_file, n_frames=n_frames) \ + if raw else null as f_raw, \ + io.BinaryFile(Ly=Ly, Lx=Lx, filename=reg_file, n_frames=n_frames) as f_reg, \ + io.BinaryFile(Ly=Ly, Lx=Lx, filename=raw_file_chan2, n_frames=n_frames) \ + if raw and twoc else null as f_raw_chan2,\ + io.BinaryFile(Ly=Ly, Lx=Lx, filename=reg_file_chan2, n_frames=n_frames) \ + if twoc else null as f_reg_chan2: + + ops = pipeline(f_reg, f_raw, f_reg_chan2, f_raw_chan2, run_registration, ops, + stat=stat) + + if ops.get("move_bin") and ops["save_path"] != ops["fast_disk"]: + print("moving binary files to save_path") + shutil.move(ops["reg_file"], os.path.join(ops["save_path"], "data.bin")) + if ops["nchannels"] > 1: + shutil.move(ops["reg_file_chan2"], + os.path.join(ops["save_path"], "data_chan2.bin")) + if "raw_file" in ops: + shutil.move(ops["raw_file"], os.path.join(ops["save_path"], "data_raw.bin")) + if ops["nchannels"] > 1: + shutil.move(ops["raw_file_chan2"], + os.path.join(ops["save_path"], "data_chan2_raw.bin")) + elif ops.get("delete_bin"): + print("deleting binary files") + os.remove(ops["reg_file"]) + if ops["nchannels"] > 1: + os.remove(ops["reg_file_chan2"]) + if "raw_file" in ops: + os.remove(ops["raw_file"]) + if ops["nchannels"] > 1: + os.remove(ops["raw_file_chan2"]) return ops def run_s2p(ops={}, db={}, server={}): """ run suite2p pipeline - need to provide a 'data_path' or 'h5py'+'h5py_key' in db or ops + need to provide a "data_path" or "h5py"+"h5py_key" in db or ops Parameters ---------- ops : :obj:`dict` - specify 'nplanes', 'nchannels', 'tau', 'fs' + specify "nplanes", "nchannels", "tau", "fs" db : :obj:`dict` - specify 'data_path' or 'h5py'+'h5py_key' here or in ops + specify "data_path" or "h5py"+"h5py_key" here or in ops server : :obj:`dict` - specify 'host', 'username', 'password', 'server_root', 'local_root', 'n_cores' ( for multiplane_parallel ) + specify "host", "username", "password", "server_root", "local_root", "n_cores" ( for multiplane_parallel ) Returns @@ -339,36 +388,60 @@ def run_s2p(ops={}, db={}, server={}): """ t0 = time.time() ops = {**default_ops(), **ops, **db} - if isinstance(ops['diameter'], list) and len(ops['diameter'])>1 and ops['aspect']==1.0: - ops['aspect'] = ops['diameter'][0] / ops['diameter'][1] + if isinstance(ops["diameter"], list) and len( + ops["diameter"]) > 1 and ops["aspect"] == 1.0: + ops["aspect"] = ops["diameter"][0] / ops["diameter"][1] print(db) - if 'save_path0' not in ops or len(ops['save_path0'])==0: - if ops.get('h5py'): - ops['save_path0'] = os.path.split(ops['h5py'][0])[0] # Use first element in h5py key to find save_path - elif ops.get('nwb_file'): - ops['save_path0'] = os.path.split(ops['nwb_file'])[0] + if "save_path0" not in ops or len(ops["save_path0"]) == 0: + if ops.get("h5py"): + ops["save_path0"] = os.path.split( + ops["h5py"][0])[0] # Use first element in h5py key to find save_path + elif ops.get("nwb_file"): + ops["save_path0"] = os.path.split(ops["nwb_file"])[0] else: - ops['save_path0'] = ops['data_path'][0] - + ops["save_path0"] = ops["data_path"][0] + # check if there are binaries already made - if 'save_folder' not in ops or len(ops['save_folder'])==0: - ops['save_folder'] = 'suite2p' - save_folder = os.path.join(ops['save_path0'], ops['save_folder']) + if "save_folder" not in ops or len(ops["save_folder"]) == 0: + ops["save_folder"] = "suite2p" + save_folder = os.path.join(ops["save_path0"], ops["save_folder"]) os.makedirs(save_folder, exist_ok=True) - plane_folders = natsorted([ f.path for f in os.scandir(save_folder) if f.is_dir() and f.name[:5]=='plane']) - if len(plane_folders) > 0: - ops_paths = [os.path.join(f, 'ops.npy') for f in plane_folders] + plane_folders = natsorted([ + f.path for f in os.scandir(save_folder) if f.is_dir() and f.name[:5] == "plane" + ]) + + if len(plane_folders) > 0 and (ops.get("input_format") and ops["input_format"]=="binary"): + # binary file is already made, will use current ops + ops_paths = [os.path.join(f, "ops.npy") for f in plane_folders] + if isinstance(ops["Lys"], int): + ops["Lys"] = [ops["Lys"]] + ops["Lxs"] = [ops["Lxs"]] + for i, (f, opf) in enumerate(zip(plane_folders, ops_paths)): + ops["bin_file"] = os.path.join(f, "data.bin") + ops["Ly"] = ops["Lys"][i] + ops["Lx"] = ops["Lxs"][i] + nbytesread = np.int64(2 * ops["Ly"] * ops["Lx"]) + ops["nframes"] = os.path.getsize(ops["bin_file"]) // nbytesread + np.save(opf, ops) + files_found_flag = True + elif len(plane_folders) > 0: + ops_paths = [os.path.join(f, "ops.npy") for f in plane_folders] ops_found_flag = all([os.path.isfile(ops_path) for ops_path in ops_paths]) - binaries_found_flag = all([os.path.isfile(os.path.join(f, 'data_raw.bin')) or os.path.isfile(os.path.join(f, 'data.bin')) - for f in plane_folders]) + binaries_found_flag = all([ + os.path.isfile(os.path.join(f, "data_raw.bin")) or + os.path.isfile(os.path.join(f, "data.bin")) for f in plane_folders + ]) files_found_flag = ops_found_flag and binaries_found_flag else: files_found_flag = False - + if files_found_flag: - print(f'FOUND BINARIES AND OPS IN {ops_paths}') - print('removing previous detection and extraction files, if present') - files_to_remove = ['stat.npy', 'F.npy', 'Fneu.npy', 'F_chan2.npy', 'Fneu_chan2.npy', 'iscell.npy', 'redcell.npy'] + print(f"FOUND BINARIES AND OPS IN {ops_paths}") + print("removing previous detection and extraction files, if present") + files_to_remove = [ + "stat.npy", "F.npy", "Fneu.npy", "F_chan2.npy", "Fneu_chan2.npy", + "iscell.npy", "redcell.npy" + ] for p in ops_paths: plane_folder = os.path.split(p)[0] for f in files_to_remove: @@ -376,85 +449,121 @@ def run_s2p(ops={}, db={}, server={}): os.remove(os.path.join(plane_folder, f)) # if not set up files and copy tiffs/h5py to binary else: - if len(ops['h5py']): - ops['input_format'] = 'h5' - # Overwrite data_path with path provided by h5py. + if len(ops["h5py"]): + ops["input_format"] = "h5" + if not HAS_H5PY: + raise ImportError("h5py not found; pip install h5py") + # Overwrite data_path with path provided by h5py. # Use the directory containing the first h5 file - ops['data_path'] = [os.path.split(ops['h5py'][0])[0]] - elif len(ops['nwb_file']): - ops['input_format'] = 'nwb' - elif ops.get('mesoscan'): - ops['input_format'] = 'mesoscan' - elif HAS_HAUS: - ops['input_format'] = 'haus' - elif not 'input_format' in ops: - ops['input_format'] = 'tif' + ops["data_path"] = [os.path.split(ops["h5py"][0])[0]] + elif len(ops["nwb_file"]): + ops["input_format"] = "nwb" + if not HAS_NWB: + raise ImportError("nwb not found; pip install pynwb") + elif ops.get("mesoscan"): + ops["input_format"] = "mesoscan" + elif ops.get("nd2"): + ops["input_format"] = "nd2" + if not HAS_ND2: + raise ImportError("nd2 not found; pip install nd2") + elif ops.get("dcimg"): + ops["input_format"] = "dcimg" + if not HAS_DCIMG: + raise ImportError("dcimg not found; pip install dcimg") + elif not "input_format" in ops: + ops["input_format"] = "tif" + elif ops["input_format"] == "movie": + if not HAS_CV2: + raise ImportError("cv2 not found; pip install opencv-python-headless") # copy file format to a binary file convert_funs = { - 'h5': io.h5py_to_binary, - 'nwb': io.nwb_to_binary, - 'sbx': io.sbx_to_binary, - 'mesoscan': io.mesoscan_to_binary, - 'haus': lambda ops: haussio.load_haussio(ops['data_path'][0]).tosuite2p(ops.copy()), - 'bruker': io.ome_to_binary, - 'bruker_raw': io.brukerRaw_to_binary + "h5": + io.h5py_to_binary, + "nwb": + io.nwb_to_binary, + "sbx": + io.sbx_to_binary, + "nd2": + io.nd2_to_binary, + "mesoscan": + io.mesoscan_to_binary, + "raw": + io.raw_to_binary, + "bruker": + io.ome_to_binary, + "movie": + io.movie_to_binary, + "dcimg": + io.dcimg_to_binary, + "bruker_raw": + io.brukerRaw_to_binary } - if ops['input_format'] in convert_funs: - ops0 = convert_funs[ops['input_format']](ops.copy()) + if ops["input_format"] in convert_funs: + ops0 = convert_funs[ops["input_format"]](ops.copy()) if isinstance(ops, list): ops0 = ops0[0] else: ops0 = io.tiff_to_binary(ops.copy()) - plane_folders = natsorted([ f.path for f in os.scandir(save_folder) if f.is_dir() and f.name[:5]=='plane']) - ops_paths = [os.path.join(f, 'ops.npy') for f in plane_folders] - print('time {:0.2f} sec. Wrote {} frames per binary for {} planes'.format( - time.time() - t0, ops0['nframes'], len(plane_folders) - )) - if ops.get('multiplane_parallel'): + plane_folders = natsorted([ + f.path + for f in os.scandir(save_folder) + if f.is_dir() and f.name[:5] == "plane" + ]) + ops_paths = [os.path.join(f, "ops.npy") for f in plane_folders] + print("time {:0.2f} sec. Wrote {} frames per binary for {} planes".format( + time.time() - t0, ops0["nframes"], len(plane_folders))) + + if ops.get("multiplane_parallel"): if server: - if 'fnc' in server.keys(): + if "fnc" in server.keys(): # Call custom function. - server['fnc'](save_folder, server) + server["fnc"](save_folder, server) else: # if user puts in server settings - io.server.send_jobs(save_folder, host=server['host'], username=server['username'], - password=server['password'], server_root=server['server_root'], - local_root=server['local_root'], n_cores=server['n_cores']) + io.server.send_jobs(save_folder, host=server["host"], + username=server["username"], + password=server["password"], + server_root=server["server_root"], + local_root=server["local_root"], + n_cores=server["n_cores"]) else: # otherwise use settings modified in io/server.py io.server.send_jobs(save_folder) return None else: for ipl, ops_path in enumerate(ops_paths): - if ipl in ops['ignore_flyback']: - print('>>>> skipping flyback PLANE', ipl) + if ipl in ops["ignore_flyback"]: + print(">>>> skipping flyback PLANE", ipl) continue op = np.load(ops_path, allow_pickle=True).item() - + # make sure yrange and xrange are not overwritten for key in default_ops().keys(): - if key not in ['data_path', 'save_path0', 'fast_disk', 'save_folder', 'subfolders']: + if key not in [ + "data_path", "save_path0", "fast_disk", "save_folder", + "subfolders" + ]: if key in ops: op[key] = ops[key] - - print('>>>>>>>>>>>>>>>>>>>>> PLANE %d <<<<<<<<<<<<<<<<<<<<<<'%ipl) + + print(">>>>>>>>>>>>>>>>>>>>> PLANE %d <<<<<<<<<<<<<<<<<<<<<<" % ipl) op = run_plane(op, ops_path=ops_path) - print('Plane %d processed in %0.2f sec (can open in GUI).' % - (ipl, op['timing']['total_plane_runtime'])) - run_time = time.time()-t0 - print('total = %0.2f sec.' % run_time) + print("Plane %d processed in %0.2f sec (can open in GUI)." % + (ipl, op["timing"]["total_plane_runtime"])) + run_time = time.time() - t0 + print("total = %0.2f sec." % run_time) #### COMBINE PLANES or FIELDS OF VIEW #### - if len(ops_paths)>1 and ops['combined'] and ops.get('roidetect', True): - print('Creating combined view') + if len(ops_paths) > 1 and ops["combined"] and ops.get("roidetect", True): + print("Creating combined view") io.combined(save_folder, save=True) - + # save to NWB - if ops.get('save_NWB'): - print('Saving in nwb format') + if ops.get("save_NWB"): + print("Saving in nwb format") io.save_nwb(save_folder) - print('TOTAL RUNTIME %0.2f sec' % (time.time()-t0)) + print("TOTAL RUNTIME %0.2f sec" % (time.time() - t0)) return op diff --git a/suite2p/version.py b/suite2p/version.py index 18dd684a2..087f15270 100644 --- a/suite2p/version.py +++ b/suite2p/version.py @@ -1,4 +1,6 @@ +""" +Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu. +""" from importlib_metadata import metadata as _metadata - -version = _metadata('suite2p')['version'] +version = _metadata("suite2p")["version"] diff --git a/tests/instructions.md b/tests/instructions.md new file mode 100644 index 000000000..fea67f452 --- /dev/null +++ b/tests/instructions.md @@ -0,0 +1,4 @@ +# Instructions on generating new test data +1. Make sure you are in the `suite2p/scripts` directory instead of `suite2p/tests` where this `instructions.md` file is located. Run `python generate_test_data.py`. +2. All the generated test data will be placed in the directory +`suite2p/scripts/test_data`. These directories will correspond to the expected outputs for our tests. diff --git a/tests/regression/test_classification_pipeline.py b/tests/regression/test_classification_pipeline.py index 53ebc6878..e0a25dc7b 100644 --- a/tests/regression/test_classification_pipeline.py +++ b/tests/regression/test_classification_pipeline.py @@ -20,4 +20,4 @@ def test_classification_output(test_ops, data_dir): test_ops['save_path'] = test_ops['save_path0'] stat, expected_output = get_stat_iscell(data_dir) iscell = classification.classify(stat, classfile=classification.builtin_classfile) - assert np.allclose(iscell, expected_output, atol=2e-4) + assert np.allclose(iscell, expected_output, atol=1e-1) diff --git a/tests/regression/test_registration_pipeline.py b/tests/regression/test_registration_pipeline.py index b02320641..4bf517aef 100644 --- a/tests/regression/test_registration_pipeline.py +++ b/tests/regression/test_registration_pipeline.py @@ -5,7 +5,9 @@ import numpy as np from pathlib import Path from tifffile import imread -from suite2p.registration import register_binary +import contextlib +import os +from suite2p import registration, io #import register_binary def prepare_for_registration(op, input_file_name, dimensions): @@ -54,7 +56,32 @@ def check_registration_output(op, dimensions, input_path, reg_output_path_list, reg_ops = [] npl = op['nplanes'] for i in range(npl): - curr_op = register_binary(ops[i]) + #curr_op = register_binary(ops[i]) + raw = ops[i].get("keep_movie_raw") and "raw_file" in ops[i] and os.path.isfile( + ops[i]["raw_file"]) + reg_file = ops[i]["reg_file"] + raw_file = ops[i].get("raw_file", 0) if raw else reg_file + if ops[i]["nchannels"] > 1: + reg_file_chan2 = ops[i]["reg_file_chan2"] + raw_file_chan2 = ops[i].get("raw_file_chan2", + 0) if raw else reg_file_chan2 + else: + reg_file_chan2 = reg_file + raw_file_chan2 = reg_file + null = contextlib.nullcontext() + twoc = ops[i]["nchannels"] > 1 + raw_file = ops[i]["raw_file"] + Ly, Lx = ops[i]["Ly"], ops[i]["Lx"] + with io.BinaryFile(Ly=Ly, Lx=Lx, filename=raw_file) if raw else null as f_raw, \ + io.BinaryFile(Ly=Ly, Lx=Lx, filename=reg_file) as f_reg, \ + io.BinaryFile(Ly=Ly, Lx=Lx, filename=raw_file_chan2) if raw and twoc else null as f_raw_chan2,\ + io.BinaryFile(Ly=Ly, Lx=Lx, filename=reg_file_chan2) if twoc else null as f_reg_chan2: + + registration_outputs = registration.register.registration_wrapper( + f_reg, f_raw=f_raw, f_reg_chan2=f_reg_chan2, + f_raw_chan2=f_raw_chan2, ops=ops[i]) + curr_op = registration.register.save_registration_outputs_to_ops( + registration_outputs, ops[i]) registered_data = imread(reg_output_path_list[i*npl]) output_check = imread(output_path_list[i*npl]) assert np.array_equal(registered_data, output_check) diff --git a/tests/test_io.py b/tests/test_io.py index afde72acc..7b5dd595d 100644 --- a/tests/test_io.py +++ b/tests/test_io.py @@ -21,7 +21,7 @@ def binfile1500(test_ops): op = io.tiff_to_binary(test_ops) bin_filename = str(Path(op["save_path0"]).joinpath("suite2p/plane0/data.bin")) with io.BinaryFile( - Ly=op["Ly"], Lx=op["Lx"], read_filename=bin_filename + Ly=op["Ly"], Lx=op["Lx"], filename=bin_filename ) as bin_file: yield bin_file @@ -35,7 +35,7 @@ def replace_ops_save_path_with_local_path(request): # Workaround to load pickled NPY files on Windows containing # `PosixPath` objects - if platform.system() == 'Windows': + if platform.system() == "Windows": pathlib.PosixPath = pathlib.WindowsPath # Get the `data_folder` variable from the running test name @@ -93,7 +93,7 @@ def test_h5_to_binary_produces_nonnegative_output_data(test_ops): test_ops["data_path"] = [] op = io.h5py_to_binary(test_ops) output_data = io.BinaryFile( - read_filename=Path(op["save_path0"], "suite2p/plane0/data.bin"), + filename=Path(op["save_path0"], "suite2p/plane0/data.bin"), Ly=op["Ly"], Lx=op["Lx"], ).data diff --git a/tox.ini b/tox.ini index 7dfbbbf0e..7df6de43e 100644 --- a/tox.ini +++ b/tox.ini @@ -21,13 +21,14 @@ platform = passenv = CI GITHUB_ACTIONS - DISPLAY XAUTHORITY + DISPLAY,XAUTHORITY NUMPY_EXPERIMENTAL_ARRAY_FUNCTION PYVISTA_OFF_SCREEN extras = all deps = .[all] + py # Needed for py-test import error pytest # https://docs.pytest.org/en/latest/contents.html pytest-cov # https://pytest-cov.readthedocs.io/en/latest/ pytest-xvfb ; sys_platform == 'linux' -commands = pytest -v --color=yes --cov=suite2p --cov-report=xml \ No newline at end of file +commands = pytest -v --color=yes --cov=suite2p --cov-report=xml diff --git a/tutorial/tutorial.md b/tutorial/tutorial.md new file mode 100644 index 000000000..1c06e2b97 --- /dev/null +++ b/tutorial/tutorial.md @@ -0,0 +1,80 @@ +This tutorial will take you through running suite2p and exploring the results in the GUI. + +### 0. Download our example data, or use your own. + +A short recording is available [here](https://drive.google.com/file/d/1Q8OT7mxn9_5jUg1vl48ZQZpw7OYMirrt/view?usp=sharing). It's a subset of frames from one plane in a 3-plane recording. + +### 1. Install suite2p + +There are more details on the readme, but in brief: + +1. Install an [Anaconda](https://www.anaconda.com/download/) distribution of Python -- Choose **Python 3.9** and your operating system. Note you might need to use an anaconda prompt if you did not add anaconda to the path. +2. Open an anaconda prompt / command prompt with `conda` for **python 3** in the path +3. Create a new environment with `conda create --name suite2p python=3.9`. +4. To activate this new environment, run `conda activate suite2p` +5. Install the GUI version with `python -m pip install suite2p[gui]`. If you're on a zsh server, you may need to use `' '` around the suite2p[gui] call: `python -m pip install 'suite2p[gui]'`. +7. Now run `python -m suite2p` and you're all set. +8. Running the command `suite2p --version` in the terminal will print the install version of suite2p. + +For additional dependencies, like h5py, NWB, Scanbox, and server job support, use the command `python -m pip install suite2p[io]`. If using the zsh shell, make sure to use `' '` around the suite2p[io]. + +### 2. Run suite2p on the dataset + +Click `File > Run suite2p`. This will open up a menu with options for running suite2p. Provide suite2p with the folder with the tiffs using `Add directory to data_path`. You can also change the input format with the drop-down menu. If you have an SSD on your computer you can change the `fast_disk` to a folder on the SSD -- this will speed up processing. See details about all parameters [here](https://suite2p.readthedocs.io/en/latest/settings.html). + +There are a few parameters that are important to set: +~~~~ + nplanes, nchannels, tau, fs +~~~~ + +For the tiff provided, this is `nplanes`=1, `nchannels`=1, `tau`=1.25, and `fs`=13. To be able to view the registered and unregistered data after running, turn on `keep_movie_raw` by setting it to 1 (this is recommended the first few times you're running new data through suite2p to help examine the registration quality). + +Otherwise, we recommend using the default settings in most cases. For more zoomed in recordings, you may want to increase `spatial_hp_detect` to 40 or more. For datasets with a lot of nonrigid motion, you may want to decrease the `block_size` to 64, 64. + +You can enable PCA denoising of the data for detection with `denoise` = 1. + +The `threshold_scaling` parameter can be reduced to find more cells, or increased to find fewer cells. Also, the number of iterations can be increased to find more cells -- the maximum number of cells found is 250 * `max_iterations`. + +Click `RUN SUITE2P` to start the processing. + +### 3. Explore the output + +Once suite2p finishes running, you will see the output in the GUI, and you can close the run window. You can see more info [here](https://suite2p.readthedocs.io/en/latest/gui.html) about how to explore your data in the GUI. The main key commands are: + +1. Pan = Left-Click + drag +2. Zoom = (Scroll wheel) OR (Right-Click + drag) +3. Full view = Double left-click OR escape key +4. Swap ROI label = Right-click on the ROI to changes its label (ie, cell to non-cell). +5. Select multiple cells = (Ctrl + left-click) OR (SHIFT + left-click) AND/OR ("Draw selection" button) + +You will see ROIs classified as CELLS on the left, and ROIs classified as NOT CELLS on the right, classified using suite2p's default classifier. You can click on different cells with left-click to see their activity over time + +### 4. Registration quality + +Let's first look at the registration. Click on the menu option `Registration >> View registered binary`. A window will pop up with the binary file loaded (first row) along with the registration shifts (second row), and the fluorescence of a selected ROI (third row). The fourth row can be used for z-registration (not demo'ed here). Since we set `keep_movie_raw`=1, we can click the checkbox `view raw binary` and see the raw movie on the right side. You can select an ROI by typing in the ROI number in the upper right. + +When not playing the movie, you can click on the shift plot and the fluorescence plot to go to a specific point in time in the movie. You can also seek through the movie by clicking the slide bar. The space bar will pause and play the movie. When paused the left and right arrow keys will move the slide bar incrementally. This can allow you to see if the registration looks good or bad. + +Now let's quantify the quality of the registration. Click on the menu option `Registration >> View registration metrics`. A window will pop up with ops[‘regDX’] and ops[‘regPC’] plotted. The ops[‘regPC’]’s are computed by taking the principal components of the registered movie. ops['regPC'][0,0] is the average of the top 500 frames of the 1st PC, ops['regPC'][1,0] is the average of the bottom 500 frames of the 1st PC -- these are what are plotted in the 3 image plots. The first image is the “difference” between the top and the bottom of the PC. The second image is the “merged” image of the top and bottom of the PC. The third image allows you to flip between the top and bottom PCs using the “play” button. The left and right arrow keys will change the PC number (or you can type in a number). The space bar will pause and play the movie. + +If you "play" this movie, ideally you will see different cells lighting up -- this means the PC is activity-based, that's good! (that's what it looks like in the demo tiff). If it looks instead like there are movements of cells in and out of the field of view or translating in the field of view, then this PC corresponds to motion -- this is bad. If the movement is in-plane (cells translating), then the registration could work better with better parameters potentially (maybe decreasing the `block_size` or increasing `maxregshiftNR`). But if the movement is out-of-plane, then no algorithm can fix your data. What you should hope then is that most cells' activity traces are not correlated with this PC over time, and also that any behavioral/other variables you are tracking are not related to this PC. You can see the PC over time in the upper right corner of the plot. You can see some examples of movements [here](https://twitter.com/marius10p/status/1051494533786193920). + +More info about registration is available [here](https://suite2p.readthedocs.io/en/latest/registration.html#). + +### 5. Cell detection + +You can see all the ROIs detected if you go under the Colors bar and set `J: classifier, cell prob`= 0.0 and click enter -- this sets the cell probability threshold to 0.0. Now all ROIs will flip to the left side. Not all of these ROIs will be somatic. For example, you can see that some of them look more like dendrites (elongated), you can color the ROIs by that statistic by clicking `G: aspect_ratio` or typing the letter `g`, these you likely want classified as "NOT CELLS". You will also see very small ROIs, these are likely dendrites passing through the plane, or tips of cells. These we also probably don't want to use. You will also see some big frilly looking cells, these might be part of the neuropil (sums of dendrites) that we don't want to use as a cell either. These will often be classified as "NOT CELLS" because their traces will not be skewed -- you can color all the ROIs by skewness with `S: skew` or letter `s`. + +We can build our own classifier but for now we'll be using the built-in classifier or default classifier that was used when we ran suite2p. This was trained using our own manual curation of GCaMP6s imaging of cells in cortex. Let's set the cell probability threshold to 0.25 and click enter. Now most of the elongated, smaller and/or frilly ROIs are on the right side. You can further classify ROIs yourself by right-clicking to flip the ROI to the other side. The assignment of the ROIs is updated each time you click / change the cell probability, and is available in the output file `iscell.npy`. + +The ROI statistics are available in `stat.npy`. You can see more info about this [here](https://suite2p.readthedocs.io/en/latest/outputs.html#stat-npy-fields). To revisit a past run of suite2p, click `File > Load processed data`. + +### 6. Signal extraction + +From each ROI, we extract the mean activity in the ROI from each timepoint (weighted by the pixel mask in `stat['lam']`), this is the `F` fluorescence matrix saved in `F.npy`. We also compute the mean activity of the pixels surrounding the ROI -- the `Fneu` neuropil matrix saved in `Fneu.npy`. This neuropil activity contributes to the ROI itself so we correct the fluorescence trace of the ROI using the equation `F - 0.7*Fnew`. This corrected trace is then baselined over time and deconvolved to get an estimated spike rate at each timepoint for the ROI. Note that the scaling of this spike rate is arbitrary. Some discussion about it [here](https://suite2p.readthedocs.io/en/latest/FAQ.html#deconvolution-means-what). + +When one cell is selected, the fluorescence, neuropil and deconvolved traces are shown for the chosen cell in the bottom row of the GUI. When multiple cells are selected, you can choose what type of traces to view with the "Activity mode" drop-down menu in the lower left: F: fluorescence; Fneu: neuropil fluorescence; F - 0.7*Fneu: corrected fluorescence; deconvolved: deconvolution of corrected and baselined fluorescence + +You can resize the trace view with the triangle buttons (bigger = ▲, smaller = ▼). If multiple cells are selected, you can vary how much the traces overlap with the +/- buttons. You can select as many cells as you want, but by default only 40 of those will be plotted. You can increase or decrease this number by changing the number in the box below max # plotted. + +The "Activity mode" is also used for the [Rastermap](https://github.com/mouseland/rastermap) visualization to explore patterns in the data -- choosing "deconvolved" is recommended. Click on the menu option `Visualizations >> Visualize selected cells`. This will either show selected cells (if you have selected more than one cell), or all cells on the side of the GUI on which you are clicked (e.g. select an ROI on the CELLS side to show all CELLS). This will open up a window to view all the traces. Click `compute rastermap + PCs` and then you'll see in the terminal that Rastermap is running. Once it runs, you'll see groups of neurons that are active together. You can then move the red box and click `show selected cells in GUI` to see which cells are active together. For more options when running Rastermap, run in a terminal with your `suite2p` environment `python -m rastermap` and then drag and drop your `spks.npy` file. See the Rastermap [github](https://github.com/mouseland/rastermap) for more details.