forked from instantX-research/InstantStyle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_style.py
43 lines (36 loc) · 1.54 KB
/
infer_style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
from diffusers import StableDiffusionXLPipeline
from PIL import Image
from ip_adapter import IPAdapterXL
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
device = "cuda"
# load SDXL pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
add_watermarker=False,
)
pipe.enable_vae_tiling()
# load ip-adapter
# target_blocks=["block"] for original IP-Adapter
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
image = "./assets/0.jpg"
image = Image.open(image)
image.resize((512, 512))
# generate image
images = ip_model.generate(pil_image=image,
prompt="a cat, masterpiece, best quality, high quality",
negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
scale=1.0,
guidance_scale=5,
num_samples=1,
num_inference_steps=30,
seed=42,
#neg_content_prompt="a rabbit",
#neg_content_scale=0.5,
)
images[0].save("result.png")