-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
141 lines (114 loc) · 4.89 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
# coding: utf-8
import torch
import torch.nn as nn
import torch.optim as optim
from tools import *
from modules import feature_extraction
from modules import detector
from modules import recognizer
from modules import roi_extract
import pretrainedmodels as pm
class Model:
def __init__(self, config, characters):
self.mode = config['model']['mode']
bbNet = pm.__dict__['resnet50'](pretrained='imagenet')
# bbNet = bbNet.to(torch.device('cuda'))
self.characters = characters
n_class = len(characters) + 1
self.sharedConv = feature_extraction.SharedConv(bbNet, config)
self.recognizer = recognizer.Recognizer(n_class, 32, 256, config)
self.detector = detector.Detector(config)
self.roi_extract = roi_extract.RoIExtract(8)
def parallelize(self):
self.sharedConv = torch.nn.DataParallel(self.sharedConv)
self.recognizer = torch.nn.DataParallel(self.recognizer)
self.detector = torch.nn.DataParallel(self.detector)
def to(self, device):
self.sharedConv = self.sharedConv.to(device)
self.detector = self.detector.to(device)
self.recognizer = self.recognizer.to(device)
def summary(self):
self.sharedConv.summary()
self.detector.summary()
self.recognizer.summary()
def optimize(self, optimizer_type, params):
optimizer = getattr(optim, optimizer_type)(
[
{'params': self.sharedConv.parameters()},
{'params': self.detector.parameters()},
{'params': self.recognizer.parameters()},
],
**params
)
return optimizer
def train(self):
self.sharedConv.train()
self.detector.train()
self.recognizer.train()
def eval(self):
self.sharedConv.eval()
self.detector.eval()
self.recognizer.eval()
def state_dict(self):
return {
'0': self.sharedConv.state_dict(),
'1': self.detector.state_dict(),
'2': self.recognizer.state_dict()
}
def load_state_dict(self, sd):
self.sharedConv.load_state_dict(sd['0'])
self.detector.load_state_dict(sd['1'])
self.recognizer.load_state_dict(sd['2'])
def training(self):
return self.sharedConv.training and self.detector.training and self.recognizer.training
def forward(self, images, boxes, mapping, is_train=True):
if images.is_cuda:
device = images.get_device()
else:
device = torch.device('cpu')
feature_maps = self.sharedConv.forward(images)
score_maps, geo_maps = self.detector(feature_maps)
if is_train:
rois, lengths, indices = self.roi_extract(feature_maps, boxes[:, :4], mapping, device)
pred_mapping = mapping
pred_boxes = boxes
else:
scores = score_maps.permute(0, 2, 3, 1)
geometries = geo_maps.permute(0, 2, 3, 1)
scores = scores.detach().cpu().numpy()
geometries = geometries.detach().cpu().numpy()
pred_boxes = []
pred_mapping = []
for i in range(scores.shape[0]):
s = scores[i, :, :, 0]
g = geometries[i, :, :, ]
bb = restore_rbox(score_map=s, geo_map=g)
bb_size = bb.shape[0]
if len(bb) > 0:
pred_mapping.append(np.array([i] * bb_size))
pred_boxes.append(bb)
if len(pred_mapping) > 0:
pred_boxes = np.concatenate(pred_boxes)
pred_mapping = np.concatenate(pred_mapping)
rois, lengths, indices = self.roi_extract(feature_maps, pred_boxes[:, :4], pred_mapping, device)
else:
return score_maps, geo_maps, (None, None), pred_boxes, pred_mapping, None
rois = rois.to(device)
lengths = torch.tensor(lengths).to(device)
preds = self.recognizer(rois, lengths) # N, W, nclass
preds = preds.permute(1, 0, 2) # B, T, C -> T, B, C [W, N, nclass]
return score_maps, geo_maps, (preds, lengths), pred_boxes, pred_mapping, indices
class FOTSLoss(nn.Module):
def __init__(self, config):
super(FOTSLoss, self).__init__()
self.mode = config["model"]["mode"]
self.detector_loss = detector.DetectorLoss()
self.recognizer_loss = recognizer.RecognizerLoss()
def forward(self, y_true_cls, y_pred_cls, y_true_geo, y_pred_geo, y_true_recog, y_pred_recog, training_masks):
"""
:return:
"""
cls_loss, geo_loss = self.detector_loss(y_true_cls, y_pred_cls, y_true_geo, y_pred_geo, training_masks)
rec_loss = self.recognizer_loss(y_true_recog, y_pred_recog)
return cls_loss, geo_loss, rec_loss