diff --git a/halo2_proofs/src/poly/kzg/multiopen/shplonk/prover.rs b/halo2_proofs/src/poly/kzg/multiopen/shplonk/prover.rs index ba1e2822ce..31fe3a0c10 100644 --- a/halo2_proofs/src/poly/kzg/multiopen/shplonk/prover.rs +++ b/halo2_proofs/src/poly/kzg/multiopen/shplonk/prover.rs @@ -135,7 +135,7 @@ where R: RngCore, { // TODO: explore if it is safe to use same challenge - // for different sets that are already combined with anoter challenge + // for different sets that are already combined with another challenge let y: ChallengeY<_> = transcript.squeeze_challenge_scalar(); let quotient_contribution = |rotation_set: &RotationSetExtension| { @@ -151,7 +151,7 @@ where // define numerator polynomial as // N_i_j(X) = (P_i_j(X) - R_i_j(X)) // and combine polynomials with same evaluation point set - // N_i(X) = linear_combinination(y, N_i_j(X)) + // N_i(X) = linear_combination(y, N_i_j(X)) // where y is random scalar to combine numerator polynomials let n_x = numerators .into_iter() @@ -223,7 +223,7 @@ where // calculate difference vanishing polynomial evaluation let z_i = evaluate_vanishing_polynomial(&diffs[..], *u); - // inner linearisation contibutions are + // inner linearisation contributions are // [P_i_0(X) - r_i_0, P_i_1(X) - r_i_1, ... ] where // r_i_j = R_i_j(u) is the evaluation of low degree equivalent polynomial // where u is random evaluation point @@ -238,8 +238,8 @@ where // define inner contributor polynomial as // L_i_j(X) = (P_i_j(X) - r_i_j) // and combine polynomials with same evaluation point set - // L_i(X) = linear_combinination(y, L_i_j(X)) - // where y is random scalar to combine inner contibutors + // L_i(X) = linear_combination(y, L_i_j(X)) + // where y is random scalar to combine inner contributors let l_x: Polynomial = inner_contributions .into_iter() .zip(powers(*y)) @@ -252,7 +252,7 @@ where }; #[allow(clippy::type_complexity)] - let (linearisation_contibutions, z_diffs): ( + let (linearisation_contributions, z_diffs): ( Vec>, Vec, ) = rotation_sets @@ -260,7 +260,7 @@ where .map(linearisation_contribution) .unzip(); - let l_x: Polynomial = linearisation_contibutions + let l_x: Polynomial = linearisation_contributions .into_iter() .zip(powers(*v)) .map(|(poly, power_of_v)| poly * power_of_v)