-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfmm_julia.jl
199 lines (153 loc) · 4.76 KB
/
fmm_julia.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
using Pandas
using DataFrames
using GLM
using StatsBase
using Rmath
using Optim
using Distributions
#read in data
df= read_csv("HHdata.csv")
Y = Array(df["Price"])
#house attributes
varsIndp = df[["SquareFoot","Lot","HouseAge","Garage","ExpBird"]]
varsIndp = Array(varsIndp)
X=[ones(size(varsIndp,1)) varsIndp]
#demographic variables
Z = [ones(size(varsIndp,1)) Array(df["Educ"]) Array(df["Inc"])/10000 Array(df["Age"]) Array(df["HHSize"])]
#aggregate linear model
model = lm(X,Y)
#getting residuals and starting values for mixing algorithm
res = StatsBase.residuals(model)
coeffs=coeftable(model).cols[1]
ncolX = size(X,2)
beta_start = [coeffs; coeffs]
ncolZ = size(Z,2)
gamma_start = [0.01 for i=1:ncolZ]
sigma_start = [sqrt(mean(res.^2)) sqrt(mean(res.^2))]
#
val_start = vcat(beta_start,gamma_start,sigma_start')
vals = val_start
types = 2
Iter_conv = 0.0001
j = types
niv = ncolX
gvs = ncolZ
n = size(X,1)
conv_cg = 5000
conv_cb = 5000
#Define some functions for mixing algorithm
function FnOne(par,x,y)
return map((y,multi)->pdf(Normal(multi,par[1]),y),y,x*par[2:end])
end
#FnTwo max prob densities over type probabilities
function FnTwo(par,d,x,y)
f = zeros(n,j)
b = par[1:(niv*j)]
s = par[(niv*j+1):((niv+1)*j)]
for h=1:j
f[:,h] = FnOne(vcat(s[h],b[((h-1)*niv+1):(h*niv)]),X,Y)
end
return sum(d.*map(log,f))*-1.0
end
#FnThree logit for gamma estimates
function FnThree(g,z)
return map(exp,z*g)
end
#FnFour max gamma estimates, type probabilities
function FnFour(par,d,z,y)
V = zeros(n,j)
V[:,1]=ones(size(V[:,1]))
for m=1:j-1
V[:,m+1]= FnThree(par[((m-1)*gvs+1):(m*gvs)],z)
end
V2 = (sum(V,dims=(2)))
Pi = V ./ hcat(V2,V2)
return sum(d.*map(log,Pi))*-1.0
end
function FMM(par,X,z,y)
V = zeros(n,j)
f = copy(V)
d = copy(V)
b = copy(par[1:(j*niv)])
g = copy(par[(j*niv+1):((j*(niv+gvs)-gvs))])
s = copy(par[(j*(niv+gvs)-gvs)+1:end])
b = reshape(b,niv,j)
iter = 0
conv_cg=5000.0
conv_cb=5000.0
parms =0
dvector=0
while (abs(conv_cg)+abs(conv_cb) > Iter_conv)
#store parameter estimates of preceding iteration of mix through loop
beta_old = copy(b)
gamma_old = copy(g)
iter = iter+1
for h=1:j
f[:,h]=FnOne([s[h] b[:,h]'],X,Y)
end
for h=1:j-1
V[:,1]=0*V[:,1]
V[:,h+1] = z*g[((h-1)*gvs+1):(h*gvs)]
end
V2 = (sum(map(exp,V[:,(1:j)]),dims=(2)))+ones(size(sum(V[:,(1:j)],dims=(2))))
#estimate Pi (P) and individual probabilities of belonging to a certain type (d):
P=map(exp,V)./hcat(V2,V2)
for i =1:n
multi = P[i,:].*f[i,:]
summation = sum(P[i,:].*f[i,:])
d[i,:] = [multi[j]/summation for j=1:size(d[i,:],1)]
end
#use individual probs (d) to estimate beta (b), gamma (g)
b1 = reshape(b,niv*j,1)
par1 = vcat(b1,s)
beta_opt = optimize(par1->FnTwo(par1,d,X,Y),par1,Optim.Options(iterations = 100000))
b = reshape(beta_opt.minimizer[1:j*niv],niv,j)
s = beta_opt.minimizer[j*niv+1:(j*(niv+1))]
gamma_opt = optimize(g->FnFour(g,d,Z,Y),g,Optim.Options(iterations = 100000))
g = gamma_opt.minimizer
#convergence check
conv_cg = sum(abs.(g-gold))
conv_cb = sum(abs.(b-bold))
#recollecting parameter estimates to impute log likelihood
par2 = reshape(b,(niv*j),1)
par2 = vcat(par2,s)
LL = FnTwo(par2,d,X,Y) + FnFour(g,d,Z,Y)
print("\n\nFnFour: ",FnFour(g,d,Z,Y),"\n")
print(b)
print(g)
print(iter)
print(conv_cg)
print(conv_cb)
bvector = reshape(b,j*niv,1)
vals_fin = vcat(bvector,g,s)
dvector = d
end
return vals_fin
end
results = FMM(val_start,X,Z,Y)
print("\nhere\n")
#final updating and repeating computation in FMM to extract standard errors
V = zeros(n,j)
f = V
d = V
b = results[1:(j*niv)]
g = results[(j*niv+1):((j*(niv+gvs)-gvs))]
s = results[(j*(niv+gvs)-gvs)+1:end]
b = reshape(b,niv,j)
for h=1:j
f[:,h]=FnOne(vcat(s[h],b[:,h]),X,Y)
end
for h=1:j-1
V[:,1]=zeros(size(V,1),1)
print("\nhere loop ")
V[:,h+1] = Z*g[((h-1)*gvs+1):(h*gvs)]
end
V2 = (sum(map(exp,V[:,(1:j)]),dims=(2)))+ones(size(sum(V[:,(1:j)],dims=(2))))
P = V ./ hcat(V2,V2)
for i=1:n
multi = P[i,:].*f[i,:]
summation = sum(P[i,:].*f[i,:])
d[i,:] = [multi[j]/summation for j=1:size(d[i,:],1)]
end
b1 = reshape(b,niv*j,1)
par3 = vcat(b1,s)