forked from IntelRealSense/librealsense
-
Notifications
You must be signed in to change notification settings - Fork 1
/
depth-metrics.h
222 lines (183 loc) · 8.23 KB
/
depth-metrics.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// License: Apache 2.0. See LICENSE file in root directory.
// Copyright(c) 2017 Intel Corporation. All Rights Reserved.
//
// Plane Fit implementation follows http://www.ilikebigbits.com/blog/2015/3/2/plane-from-points algorithm
#pragma once
#include <vector>
#include <mutex>
#include <array>
#include <imgui.h>
#include <librealsense2/rsutil.h>
#include <librealsense2/rs.hpp>
#include "rendering.h"
namespace rs2
{
namespace depth_quality
{
struct snapshot_metrics
{
int width;
int height;
rs2::region_of_interest roi;
float distance;
float angle;
float angle_x;
float angle_y;
plane p;
std::array<float3, 4> plane_corners;
};
struct single_metric_data
{
single_metric_data(std::string name, float val) :
val(val), name(name) {}
float val;
std::string name;
};
using callback_type = std::function<void(
const std::vector<rs2::float3>& points,
const plane p,
const rs2::region_of_interest roi,
const float baseline_mm,
const float focal_length_pixels,
const int ground_thruth_mm,
const bool plane_fit,
const float plane_fit_to_ground_truth_mm,
const float distance_mm,
bool record,
std::vector<single_metric_data>& samples)>;
inline plane plane_from_point_and_normal(const rs2::float3& point, const rs2::float3& normal)
{
return{ normal.x, normal.y, normal.z, -(normal.x*point.x + normal.y*point.y + normal.z*point.z) };
}
//Based on: http://www.ilikebigbits.com/blog/2015/3/2/plane-from-points
inline plane plane_from_points(const std::vector<rs2::float3> points)
{
if (points.size() < 3) throw std::runtime_error("Not enough points to calculate plane");
rs2::float3 sum = { 0,0,0 };
for (auto point : points) sum = sum + point;
rs2::float3 centroid = sum / float(points.size());
double xx = 0, xy = 0, xz = 0, yy = 0, yz = 0, zz = 0;
for (auto point : points) {
rs2::float3 temp = point - centroid;
xx += temp.x * temp.x;
xy += temp.x * temp.y;
xz += temp.x * temp.z;
yy += temp.y * temp.y;
yz += temp.y * temp.z;
zz += temp.z * temp.z;
}
double det_x = yy*zz - yz*yz;
double det_y = xx*zz - xz*xz;
double det_z = xx*yy - xy*xy;
double det_max = std::max({ det_x, det_y, det_z });
if (det_max <= 0) return{ 0, 0, 0, 0 };
rs2::float3 dir{};
if (det_max == det_x)
{
float a = static_cast<float>((xz*yz - xy*zz) / det_x);
float b = static_cast<float>((xy*yz - xz*yy) / det_x);
dir = { 1, a, b };
}
else if (det_max == det_y)
{
float a = static_cast<float>((yz*xz - xy*zz) / det_y);
float b = static_cast<float>((xy*xz - yz*xx) / det_y);
dir = { a, 1, b };
}
else
{
float a = static_cast<float>((yz*xy - xz*yy) / det_z);
float b = static_cast<float>((xz*xy - yz*xx) / det_z);
dir = { a, b, 1 };
}
return plane_from_point_and_normal(centroid, dir.normalize());
}
inline double evaluate_pixel(const plane& p, const rs2_intrinsics* intrin, float x, float y, float distance, float3& output)
{
float pixel[2] = { x, y };
rs2_deproject_pixel_to_point(&output.x, intrin, pixel, distance);
return evaluate_plane(p, output);
}
inline float3 approximate_intersection(const plane& p, const rs2_intrinsics* intrin, float x, float y, float min, float max)
{
float3 point;
auto f = evaluate_pixel(p, intrin, x, y, max, point);
if (fabs(max - min) < 1e-3) return point;
auto n = evaluate_pixel(p, intrin, x, y, min, point);
if (f*n > 0) return{ 0, 0, 0 };
auto avg = (max + min) / 2;
auto mid = evaluate_pixel(p, intrin, x, y, avg, point);
if (mid*n < 0) return approximate_intersection(p, intrin, x, y, min, avg);
return approximate_intersection(p, intrin, x, y, avg, max);
}
inline float3 approximate_intersection(const plane& p, const rs2_intrinsics* intrin, float x, float y)
{
return approximate_intersection(p, intrin, x, y, 0.f, 1000.f);
}
inline snapshot_metrics analyze_depth_image(
const rs2::video_frame& frame,
float units, float baseline_mm,
const rs2_intrinsics * intrin,
rs2::region_of_interest roi,
const int ground_truth_mm,
bool plane_fit_present,
std::vector<single_metric_data>& samples,
bool record,
callback_type callback)
{
auto pixels = (const uint16_t*)frame.get_data();
const auto w = frame.get_width();
const auto h = frame.get_height();
snapshot_metrics result{ w, h, roi, {} };
std::mutex m;
std::vector<rs2::float3> roi_pixels;
//#pragma omp parallel for - TODO optimization envisaged
for (int y = roi.min_y; y < roi.max_y; ++y)
for (int x = roi.min_x; x < roi.max_x; ++x)
{
auto depth_raw = pixels[y*w + x];
if (depth_raw)
{
// units is float
float pixel[2] = { float(x), float(y) };
float point[3];
auto distance = depth_raw * units;
rs2_deproject_pixel_to_point(point, intrin, pixel, distance);
std::lock_guard<std::mutex> lock(m);
roi_pixels.push_back({ point[0], point[1], point[2] });
}
}
if (roi_pixels.size() < 3) { // Not enough pixels in RoI to fit a plane
return result;
}
plane p = plane_from_points(roi_pixels);
if (p == plane{ 0, 0, 0, 0 }) { // The points in RoI don't span a valid plane
return result;
}
// Calculate intersection of the plane fit with a ray along the center of ROI
// that by design coincides with the center of the frame
float3 plane_fit_pivot = approximate_intersection(p, intrin, intrin->width / 2.f, intrin->height / 2.f);
float plane_fit_to_gt_offset_mm = (ground_truth_mm > 0.f) ? (plane_fit_pivot.z * 1000 - ground_truth_mm) : 0;
result.p = p;
result.plane_corners[0] = approximate_intersection(p, intrin, float(roi.min_x), float(roi.min_y));
result.plane_corners[1] = approximate_intersection(p, intrin, float(roi.max_x), float(roi.min_y));
result.plane_corners[2] = approximate_intersection(p, intrin, float(roi.max_x), float(roi.max_y));
result.plane_corners[3] = approximate_intersection(p, intrin, float(roi.min_x), float(roi.max_y));
// Distance of origin (the camera) from the plane is encoded in parameter D of the plane
// The parameter represents the euclidian distance (along plane normal) from camera to the plane
result.distance = static_cast<float>(-p.d * 1000);
// Angle can be calculated from param C
result.angle = static_cast<float>(std::acos(std::abs(p.c)) / M_PI * 180.);
callback(roi_pixels, p, roi, baseline_mm, intrin->fx, ground_truth_mm, plane_fit_present,
plane_fit_to_gt_offset_mm, result.distance, record, samples);
// Calculate normal
auto n = float3{ p.a, p.b, p.c };
auto cam = float3{ 0.f, 0.f, -1.f };
auto dot = n * cam;
auto u = cam - n * dot;
result.angle_x = u.x;
result.angle_y = u.y;
return result;
}
}
}