You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I try to train a 'tanks and temples' scenario my GPU runs out of memory, even when using a batch size of 1. Has anyone had this problem or know how to work around it? I am using a GPU with 8192 MiB of memory (GeForce RTX 3060 Ti Lite Hash Rate).
Defaulting to extended NSVF dataset
LOAD NSVF DATA data/TanksAndTempleBG/Truck split train
100%|█████████████████████████████████████████| 226/226 [00:02<00:00, 88.77it/s]
NORMALIZE BY? camera
scene_scale 1.4712800415356706
intrinsics (loaded reso) Intrin(fx=581.7877197265625, fy=581.7877197265625, cx=490.25, cy=272.75)
Generating rays, scaling factor 1
/home/pedro/anaconda3/envs/plenoxel/lib/python3.8/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1646755903507/work/aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Defaulting to extended NSVF dataset
LOAD NSVF DATA data/TanksAndTempleBG/Truck split test
100%|███████████████████████████████████████████| 25/25 [00:00<00:00, 90.10it/s]
NORMALIZE BY? camera
scene_scale 1.4712800415356706
intrinsics (loaded reso) Intrin(fx=581.7877197265625, fy=581.7877197265625, cx=490.25, cy=272.75)
Render options RenderOptions(backend='cuvol', background_brightness=1.0, step_size=0.5, sigma_thresh=1e-08, stop_thresh=1e-07, last_sample_opaque=False, near_clip=0.0, use_spheric_clip=False, random_sigma_std=0.0, random_sigma_std_background=0.0)
Selecting random rays
Eval step
100%|█████████████████████████████████████████████| 5/5 [00:01<00:00, 3.03it/s]
eval stats: {'psnr': 6.178773452430829, 'mse': 0.24226271510124206}
Train step
epoch 0 psnr=19.43: 100%|████████████████| 12800/12800 [00:35<00:00, 361.73it/s]
Selecting random rays
Eval step
100%|███████████████████████████████████████████| 25/25 [00:06<00:00, 3.64it/s]
eval stats: {'psnr': 13.061549072084956, 'mse': 0.049624104797840116}
Train step
epoch 1 psnr=19.68: 100%|████████████████| 12800/12800 [00:32<00:00, 394.01it/s]
Selecting random rays
Eval step
100%|███████████████████████████████████████████| 25/25 [00:06<00:00, 3.82it/s]
eval stats: {'psnr': 13.122755637793855, 'mse': 0.04888920813798905}
Train step
epoch 2 psnr=16.00: 100%|████████████████| 12800/12800 [00:31<00:00, 403.39it/s]
* Upsampling from [256, 256, 256] to [512, 512, 512]
turning off TV regularization
Pass 1/2 (density)
100%|███████████████████████████████████████| 187/187 [00:00<00:00, 9483.18it/s]
Grid weight render torch.Size([512, 512, 512])
Pass 2/2 (color), eval 27227553 sparse pts
100%|██████████████████████████████████████████| 38/38 [00:00<00:00, 877.03it/s]
Traceback (most recent call last):
File "opt.py", line 631, in <module>
grid.resample(reso=reso_list[reso_id],
File "/media/pedro/5e563db5-5ede-4fd6-8484-570f2f48099a/models/svox2/svox2/svox2.py", line 1394, in resample
sample_vals_sh = torch.cat(all_sample_vals_sh, dim=0) if len(all_sample_vals_sh) else torch.empty_like(self.sh_data[:0])
RuntimeError: CUDA out of memory. Tried to allocate 2.74 GiB (GPU 0; 7.79 GiB total capacity; 4.27 GiB already allocated; 386.88 MiB free; 5.96 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for (plenoxel)
The text was updated successfully, but these errors were encountered:
I managed to solved it by applying a grid resolution of [256, 256, 256] without any upsampling. Now the problem is with the render video quality, which is very bad (PSNR of ~13).
Maybe you are using a config that is intended for bounded scenes? From the video it looks like the model is trying to squeeze everything into the foreground, which it shouldn't have to do if you allow a background. Try configs/tnt.json if you haven't already.
When I try to train a 'tanks and temples' scenario my GPU runs out of memory, even when using a batch size of 1. Has anyone had this problem or know how to work around it? I am using a GPU with 8192 MiB of memory (GeForce RTX 3060 Ti Lite Hash Rate).
The text was updated successfully, but these errors were encountered: