forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathesrgan_psnr_x4c64b23g32_g1_1000k_div2k.py
130 lines (123 loc) · 3.79 KB
/
esrgan_psnr_x4c64b23g32_g1_1000k_div2k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
exp_name = 'esrgan_psnr_x4c64b23g32_g1_1000k_div2k'
scale = 4
# model settings
model = dict(
type='BasicRestorer',
generator=dict(
type='RRDBNet',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=23,
growth_channels=32),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=scale)
# dataset settings
train_dataset_type = 'SRAnnotationDataset'
val_dataset_type = 'SRFolderDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='PairedRandomCrop', gt_patch_size=128),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]
test_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='lq',
flag='unchanged'),
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
flag='unchanged'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0, 0, 0],
std=[1, 1, 1],
to_rgb=True),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'lq_path']),
dict(type='ImageToTensor', keys=['lq', 'gt'])
]
data = dict(
workers_per_gpu=8,
train_dataloader=dict(samples_per_gpu=16, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/DIV2K/DIV2K_train_LR_bicubic/X4_sub',
gt_folder='data/DIV2K/DIV2K_train_HR_sub',
ann_file='data/DIV2K/meta_info_DIV2K800sub_GT.txt',
pipeline=train_pipeline,
scale=scale)),
val=dict(
type=val_dataset_type,
lq_folder='data/val_set5/Set5_bicLRx4',
gt_folder='data/val_set5/Set5',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'),
test=dict(
type=val_dataset_type,
lq_folder='data/val_set14/Set14_bicLRx4',
gt_folder='data/val_set14/Set14',
pipeline=test_pipeline,
scale=scale,
filename_tmpl='{}'))
# optimizer
optimizers = dict(generator=dict(type='Adam', lr=2e-4, betas=(0.9, 0.999)))
# learning policy
total_iters = 1000000
lr_config = dict(
policy='CosineRestart',
by_epoch=False,
periods=[250000, 250000, 250000, 250000],
restart_weights=[1, 1, 1, 1],
min_lr=1e-7)
checkpoint_config = dict(interval=5000, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=5000, save_image=True, gpu_collect=True)
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
dict(type='TensorboardLoggerHook'),
# dict(type='PaviLoggerHook', init_kwargs=dict(project='mmedit-sr'))
])
visual_config = None
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]