-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_sgmcmc_vr.py
252 lines (214 loc) · 10.9 KB
/
run_sgmcmc_vr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
import torch
from torch.nn import functional as F
from tqdm import tqdm, trange
import pickle
from copy import deepcopy
import argparse
from pathlib import Path
import json
import random
from sklearn.model_selection import train_test_split
import copy
from statsmodels.tsa.stattools import acf, acovf
from utils import load_trajs, random_seed
from mnist_utils import load_mnist_dataset
from UCI_utils import load_uci_dataset
from control_variates.cv_utils import (
SampleVarianceEstimator,
SpectralVarianceEstimator,
state_dict_to_vec,
#compute_naive_variance,
)
from bayesian_inference.neural_networks import LogRegression, get_binary_prediction
from control_variates.cv import PsyLinear, SteinCV, PsyConstVector, PsyMLP
from control_variates.uncertainty_quantification import ClassificationUncertaintyMCMC
from control_variates.train_test_cv import train_cv, test_cv
from control_variates.spectral_variance import construct_Tukey_Hanning
def get_cv(psy_input_dim, device, args, potential_grad=None,
train_x=None, train_y=None, N_train=None):
if args.psy_type == 'const':
psy_model = PsyConstVector(input_dim=psy_input_dim)
psy_model.init_zero()
elif args.psy_type == 'linear':
psy_model = PsyLinear(input_dim=psy_input_dim)
elif args.psy_type == 'mlp':
psy_model = PsyMLP(input_dim=psy_input_dim, width=args.width, depth=args.depth)
psy_model.init_zero()
psy_model.to(device)
ncv = SteinCV(psy_model, priors=None, N_train=N_train,
train_x=train_x, train_y=train_y, potential_grad=potential_grad)
return ncv
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--cv_lr', default=1e-6, type=float)
parser.add_argument('--n_cv_iter', default=100, type=int)
parser.add_argument('--psy_type', type=str, choices=['const', 'mlp', 'linear'], default='const')
parser.add_argument('--var_estimator', type=str, nargs='+', choices=['evm', 'esvm'], default=['evm'])
parser.add_argument('--centr_reg_coef', type=float, default=0)
parser.add_argument('--n_train_traj', type=int)
parser.add_argument('--n_test_traj', type=int)
parser.add_argument('--max_sample_size', type=float, default=1000)
parser.add_argument('--keep_n_last', type=int)
parser.add_argument('--cut_n_first', type=int, default=0)
parser.add_argument('--n_points', type=int, default=100)
parser.add_argument('--sample_points', action='store_true')
parser.add_argument('--n_batches', type=int, default=1)
parser.add_argument('--predictive_distribution', action='store_true')
parser.add_argument('--data_dir', type=str, default='..data/mnist')
parser.add_argument('--figs_dir', type=str)
parser.add_argument('--metrics_dir', type=str)
parser.add_argument('--prefix_name', type=str)
parser.add_argument('--model_config_path', type=str, required=True)
parser.add_argument('--train_trajs_path', type=str)
parser.add_argument('--test_trajs_path', type=str, required=True)
parser.add_argument('--cv_path', type=str, nargs='+', default=[])
parser.add_argument('--cv_dir', type=str)
parser.add_argument('--dataset', type=str, choices=['mnist', 'uci'], default='mnist')
parser.add_argument('--not_normalize', action='store_true')
parser.add_argument('--standard_scale', action='store_true')
parser.add_argument('--classes', type=int, nargs='+', default=[3, 5])
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
return args
def main(test_trajs, test_traj_weights, test_traj_grads, ncvs, x, device, args,
train_trajs=None, train_traj_weights=None, train_traj_grads=None):
if train_trajs is not None:
train_trajs = (train_trajs, train_traj_weights, train_traj_grads)
test_trajs = (test_trajs, test_traj_weights, test_traj_grads)
batches = []
randperm = torch.randperm(x.shape[0])
for idx in range(0, min(x.shape[0], args.n_batches*args.n_points), args.n_points):
if args.sample_points:
x = x[randperm[idx:idx + args.n_points]]
else:
x = x[idx:idx + args.n_points]
batches.append(x)
function_f = lambda bayesian_nns, x: get_binary_prediction(bayesian_nns, x, classes=[0, 1])
if train_trajs is not None:
preds = None
for var_estimator, ncv in zip(args.var_estimator, ncvs):
if var_estimator == 'evm':
var_estimator = SampleVarianceEstimator()
elif var_estimator == 'esvm':
n = train_trajs[-1].shape[-2]
bn = int(np.sqrt(n))
window = construct_Tukey_Hanning(n, bn)
var_estimator = SpectralVarianceEstimator(window)
else:
raise KeyError(var_estimator)
loss_history, preds = train_cv(train_trajs, ncv, batches, function_f, var_estimator,
preds=preds,
cv_lr=args.cv_lr,
n_cv_iter=args.n_cv_iter,
centr_reg_coef=args.centr_reg_coef,
predictive_distribution=args.predictive_distribution)
_, ax = plt.subplots()
ax.plot(np.arange(len(loss_history)), loss_history)
plt.savefig(f'sgmcmc_vr_cv_opt.png')
mean_avg_pred, mean_avg_pred_cv, metrics = test_cv(test_trajs, ncvs, batches, function_f)
return mean_avg_pred, mean_avg_pred_cv, metrics
if __name__ == "__main__":
args = parse_arguments()
args.max_sample_size = int(args.max_sample_size)
assert len(args.cv_path) == 0 or len(args.cv_path) == len(args.var_estimator)
random_seed(args.seed)
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
if args.dataset == 'mnist':
Path.mkdir(Path(args.data_dir), exist_ok=True, parents=True)
train_dl, valid_dl = load_mnist_dataset(args.data_dir,
batch_size=-1, classes=args.classes, normalize=not args.not_normalize, standard_scale=args.standard_scale)
elif args.dataset == 'uci':
train_dl, valid_dl = load_uci_dataset(args.data_dir,
batch_size=-1, normalize=not args.not_normalize, standard_scale=args.standard_scale)
N_train = len(train_dl.dataset)
print(f'N_train: {N_train}')
x, _ = next(iter(valid_dl))
x_shape = x[0].shape
config = json.load(Path(args.model_config_path).open('r'))
if args.train_trajs_path is not None and len(args.cv_path) == 0:
train_trajs, train_traj_weights, train_traj_grads, _ = load_trajs(
args.test_trajs_path,
config,
x_shape,
max_sample_size=args.max_sample_size)
# train_trajs = train_trajs[:10]
# train_traj_weights = train_traj_weights[:10]
# train_traj_grads = train_traj_grads[:10]
else:
train_trajs, train_traj_weights, train_traj_grads = None, None, None
test_trajs, test_traj_weights, test_traj_grads, _ = load_trajs(
args.test_trajs_path,
config,
x_shape)
# test_trajs = test_trajs[30:60]
# test_traj_weights = test_traj_weights[30:60]
# test_traj_grads = test_traj_grads[30:60]
#test_trajs = train_trajs[30:60]
#test_traj_weights = train_traj_weights[30:60]
#test_traj_grads = train_traj_grads[30:60]
#train_trajs = train_trajs[:30]
#train_traj_weights = train_traj_weights[:30]
#train_traj_grads = train_traj_grads[:30]
print(f'N test trajs: {len(test_trajs)}, len of traj: {len(test_trajs[0])}')
psy_input_dim = state_dict_to_vec(test_trajs[0][0].state_dict()).shape[0]
ncvs = []
for cv_id in range(len(args.var_estimator)):
ncv = get_cv(psy_input_dim, device, args)
if len(args.cv_path) > 0:
ncv.psy_model.load_state_dict(torch.load(args.cv_path[cv_id]))
ncvs.append(ncv)
mean_avg_pred, mean_avg_pred_cv, metrics = main(test_trajs, test_traj_weights, test_traj_grads, ncvs, x, device, args,
train_trajs=train_trajs, train_traj_weights=train_traj_weights, train_traj_grads=train_traj_grads)
n_traj = len(test_trajs)
traj_size = len(test_trajs[0])
n_batches = args.n_batches
n_pts = args.n_points
Path(args.figs_dir).mkdir(exist_ok=True)
fig_path = Path(args.figs_dir, f'{args.prefix_name}_{n_traj}traj_{args.psy_type}_psy_{traj_size}size_{n_batches}batch_{n_pts}pts.png')
Path(args.metrics_dir).mkdir(exist_ok=True)
metrics_path = Path(args.metrics_dir, f'{args.prefix_name}_{n_traj}traj_{args.psy_type}_psy_{traj_size}size_{n_batches}batch_{n_pts}pts.json')
_, _ = plt.subplots()
plt.grid()
sns.boxplot(data=[mean_avg_pred]+list(mean_avg_pred_cv))
plt.xticks(np.arange(1 + len(args.var_estimator)), ['vanilla'] + args.var_estimator)
plt.savefig(fig_path)
plt.close()
json.dump(metrics, metrics_path.open('w'))
for cv_id, ncv in enumerate(ncvs):
if len(args.cv_path) == 0:
Path(args.cv_dir).mkdir(exist_ok=True)
cv_path = Path(args.cv_dir, f'{args.prefix_name}_{args.var_estimator[cv_id]}_{args.psy_type}.pt')
torch.save(ncv.psy_model.state_dict(), cv_path)
# plot traj parts
ind = random.randint(0, len(test_trajs)-1)
traj, traj_weights, traj_grads = test_trajs[ind], test_traj_weights[ind:ind+1], test_traj_grads[ind:ind+1]
x = x[:100].float()
traj_part = np.array([F.softmax(m(x), dim=-1)[:, 1].mean().item() for m in traj])
cv_vals = [ncv(traj_weights, x, potential_grad=traj_grads) for ncv in ncvs]
traj_part_cv = [np.array([(F.softmax(m(x), dim=-1)[:, 1] - cv_v[0, i]).mean().item() for i, m in enumerate(traj)]) for cv_v in cv_vals]
sample_acf_vanilla = acovf(traj_part, adjusted = True,fft = True)#,nlags=100)
sample_acf_cvs = [acovf(traj_part_cv_, adjusted = True,fft = True) for traj_part_cv_ in traj_part_cv]#,nlags=100)
_, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 5))
N1 = len(traj_part) // 2 - 500
N2 = len(traj_part) // 2
axs[0].grid()
axs[0].plot(np.arange(len(traj_part))[N1:N2], traj_part[N1:N2])
axs[1].grid()
axs[1].plot(np.arange(len(traj_part_cv[-1]))[N1:N2], traj_part_cv[-1][N1:N2])
N_cov_1 = 0
N_cov = 30
axs[2].grid()
axs[2].fill_between(N_cov_1+np.arange(N_cov-N_cov_1), sample_acf_vanilla[N_cov_1:N_cov],alpha=0.5,label='ACF Vanilla')
for var_estimator, sample_acf_cv in zip(args.var_estimator, sample_acf_cvs):
axs[2].fill_between(N_cov_1+np.arange(N_cov-N_cov_1), sample_acf_cv[N_cov_1:N_cov],alpha=0.5,label=f'ACF {var_estimator.upper()}')
#axs[2].set_ylim(0,5e-6)
axs[2].ticklabel_format(axis='y',style='sci',scilimits=(-2,2))
axs[2].tick_params(axis='y',labelsize = 16)
axs[2].tick_params(axis='x',labelsize=16)
plt.legend()
plt.savefig(Path(args.figs_dir, f'{args.prefix_name}_{args.psy_type}_traj_aconv.png'))
plt.close()