This page contains descriptions of all parameters in LightGBM.
List of other helpful links
External Links
The parameters format is key1=value1 key2=value2 ...
.
Parameters can be set both in config file and command line.
By using command line, parameters should not have spaces before and after =
.
By using config files, one line can only contain one parameter. You can use #
to comment.
If one parameter appears in both command line and config file, LightGBM will use the parameter from the command line.
config
🔗︎, default =""
, type = string, aliases:config_file
- path of config file
- Note: can be used only in CLI version
task
🔗︎, default =train
, type = enum, options:train
,predict
,convert_model
,refit
, aliases:task_type
train
, for training, aliases:training
predict
, for prediction, aliases:prediction
,test
convert_model
, for converting model file into if-else format, see more information in IO Parametersrefit
, for refitting existing models with new data, aliases:refit_tree
- Note: can be used only in CLI version; for language-specific packages you can use the correspondent functions
objective
🔗︎, default =regression
, type = enum, options:regression
,regression_l1
,huber
,fair
,poisson
,quantile
,mape
,gammma
,tweedie
,binary
,multiclass
,multiclassova
,xentropy
,xentlambda
,lambdarank
, aliases:objective_type
,app
,application
- regression application
regression_l2
, L2 loss, aliases:regression
,mean_squared_error
,mse
,l2_root
,root_mean_squared_error
,rmse
regression_l1
, L1 loss, aliases:mean_absolute_error
,mae
huber
, Huber lossfair
, Fair losspoisson
, Poisson regressionquantile
, Quantile regressionmape
, MAPE loss, aliases:mean_absolute_percentage_error
gamma
, Gamma regression with log-link. It might be useful, e.g., for modeling insurance claims severity, or for any target that might be gamma-distributedtweedie
, Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any target that might be tweedie-distributed
binary
, binary log loss classification (or logistic regression). Requires labels in {0, 1}; seecross-entropy
application for general probability labels in [0, 1]- multi-class classification application
multiclass
, softmax objective function, aliases:softmax
multiclassova
, One-vs-All binary objective function, aliases:multiclass_ova
,ova
,ovr
num_class
should be set as well
- cross-entropy application
xentropy
, objective function for cross-entropy (with optional linear weights), aliases:cross_entropy
xentlambda
, alternative parameterization of cross-entropy, aliases:cross_entropy_lambda
- label is anything in interval [0, 1]
lambdarank
, lambdarank application- label should be
int
type in lambdarank tasks, and larger number represents the higher relevance (e.g. 0:bad, 1:fair, 2:good, 3:perfect) - label_gain can be used to set the gain (weight) of
int
label - all values in
label
must be smaller than number of elements inlabel_gain
- label should be
- regression application
boosting
🔗︎, default =gbdt
, type = enum, options:gbdt
,gbrt
,rf
,random_forest
,dart
,goss
, aliases:boosting_type
,boost
gbdt
, traditional Gradient Boosting Decision Tree, aliases:gbrt
rf
, Random Forest, aliases:random_forest
dart
, Dropouts meet Multiple Additive Regression Treesgoss
, Gradient-based One-Side Sampling
data
🔗︎, default =""
, type = string, aliases:train
,train_data
,train_data_file
,data_filename
- path of training data, LightGBM will train from this data
- Note: can be used only in CLI version
valid
🔗︎, default =""
, type = string, aliases:test
,valid_data
,valid_data_file
,test_data
,test_data_file
,valid_filenames
- path(s) of validation/test data, LightGBM will output metrics for these data
- support multiple validation data, separated by
,
- Note: can be used only in CLI version
num_iterations
🔗︎, default =100
, type = int, aliases:num_iteration
,n_iter
,num_tree
,num_trees
,num_round
,num_rounds
,num_boost_round
,n_estimators
, constraints:num_iterations >= 0
- number of boosting iterations
- Note: internally, LightGBM constructs
num_class * num_iterations
trees for multi-class classification problems
learning_rate
🔗︎, default =0.1
, type = double, aliases:shrinkage_rate
,eta
, constraints:learning_rate > 0.0
- shrinkage rate
- in
dart
, it also affects on normalization weights of dropped trees
num_leaves
🔗︎, default =31
, type = int, aliases:num_leaf
,max_leaves
,max_leaf
, constraints:num_leaves > 1
- max number of leaves in one tree
tree_learner
🔗︎, default =serial
, type = enum, options:serial
,feature
,data
,voting
, aliases:tree
,tree_type
,tree_learner_type
serial
, single machine tree learnerfeature
, feature parallel tree learner, aliases:feature_parallel
data
, data parallel tree learner, aliases:data_parallel
voting
, voting parallel tree learner, aliases:voting_parallel
- refer to Parallel Learning Guide to get more details
num_threads
🔗︎, default =0
, type = int, aliases:num_thread
,nthread
,nthreads
,n_jobs
- number of threads for LightGBM
0
means default number of threads in OpenMP- for the best speed, set this to the number of real CPU cores, not the number of threads (most CPUs use hyper-threading to generate 2 threads per CPU core)
- do not set it too large if your dataset is small (for instance, do not use 64 threads for a dataset with 10,000 rows)
- be aware a task manager or any similar CPU monitoring tool might report that cores not being fully utilized. This is normal
- for parallel learning, do not use all CPU cores because this will cause poor performance for the network communication
device_type
🔗︎, default =cpu
, type = enum, options:cpu
,gpu
, aliases:device
- device for the tree learning, you can use GPU to achieve the faster learning
- Note: it is recommended to use the smaller
max_bin
(e.g. 63) to get the better speed up - Note: for the faster speed, GPU uses 32-bit float point to sum up by default, so this may affect the accuracy for some tasks. You can set
gpu_use_dp=true
to enable 64-bit float point, but it will slow down the training - Note: refer to Installation Guide to build LightGBM with GPU support
seed
🔗︎, default =0
, type = int, aliases:random_seed
,random_state
- this seed is used to generate other seeds, e.g.
data_random_seed
,feature_fraction_seed
- will be overridden, if you set other seeds
- this seed is used to generate other seeds, e.g.
max_depth
🔗︎, default =-1
, type = int- limit the max depth for tree model. This is used to deal with over-fitting when
#data
is small. Tree still grows leaf-wise < 0
means no limit
- limit the max depth for tree model. This is used to deal with over-fitting when
min_data_in_leaf
🔗︎, default =20
, type = int, aliases:min_data_per_leaf
,min_data
,min_child_samples
, constraints:min_data_in_leaf >= 0
- minimal number of data in one leaf. Can be used to deal with over-fitting
min_sum_hessian_in_leaf
🔗︎, default =1e-3
, type = double, aliases:min_sum_hessian_per_leaf
,min_sum_hessian
,min_hessian
,min_child_weight
, constraints:min_sum_hessian_in_leaf >= 0.0
- minimal sum hessian in one leaf. Like
min_data_in_leaf
, it can be used to deal with over-fitting
- minimal sum hessian in one leaf. Like
bagging_fraction
🔗︎, default =1.0
, type = double, aliases:sub_row
,subsample
,bagging
, constraints:0.0 < bagging_fraction <= 1.0
- like
feature_fraction
, but this will randomly select part of data without resampling - can be used to speed up training
- can be used to deal with over-fitting
- Note: to enable bagging,
bagging_freq
should be set to a non zero value as well
- like
bagging_freq
🔗︎, default =0
, type = int, aliases:subsample_freq
- frequency for bagging
0
means disable bagging;k
means perform bagging at everyk
iteration- Note: to enable bagging,
bagging_fraction
should be set to value smaller than1.0
as well
bagging_seed
🔗︎, default =3
, type = int, aliases:bagging_fraction_seed
- random seed for bagging
feature_fraction
🔗︎, default =1.0
, type = double, aliases:sub_feature
,colsample_bytree
, constraints:0.0 < feature_fraction <= 1.0
- LightGBM will randomly select part of features on each iteration if
feature_fraction
smaller than1.0
. For example, if you set it to0.8
, LightGBM will select 80% of features before training each tree - can be used to speed up training
- can be used to deal with over-fitting
- LightGBM will randomly select part of features on each iteration if
feature_fraction_seed
🔗︎, default =2
, type = int- random seed for
feature_fraction
- random seed for
early_stopping_round
🔗︎, default =0
, type = int, aliases:early_stopping_rounds
,early_stopping
- will stop training if one metric of one validation data doesn't improve in last
early_stopping_round
rounds <= 0
means disable
- will stop training if one metric of one validation data doesn't improve in last
max_delta_step
🔗︎, default =0.0
, type = double, aliases:max_tree_output
,max_leaf_output
- used to limit the max output of tree leaves
<= 0
means no constraint- the final max output of leaves is
learning_rate * max_delta_step
lambda_l1
🔗︎, default =0.0
, type = double, aliases:reg_alpha
, constraints:lambda_l1 >= 0.0
- L1 regularization
lambda_l2
🔗︎, default =0.0
, type = double, aliases:reg_lambda
,lambda
, constraints:lambda_l2 >= 0.0
- L2 regularization
min_gain_to_split
🔗︎, default =0.0
, type = double, aliases:min_split_gain
, constraints:min_gain_to_split >= 0.0
- the minimal gain to perform split
drop_rate
🔗︎, default =0.1
, type = double, aliases:rate_drop
, constraints:0.0 <= drop_rate <= 1.0
- used only in
dart
- dropout rate: a fraction of previous trees to drop during the dropout
- used only in
max_drop
🔗︎, default =50
, type = int- used only in
dart
- max number of dropped trees during one boosting iteration
<=0
means no limit
- used only in
skip_drop
🔗︎, default =0.5
, type = double, constraints:0.0 <= skip_drop <= 1.0
- used only in
dart
- probability of skipping the dropout procedure during a boosting iteration
- used only in
xgboost_dart_mode
🔗︎, default =false
, type = bool- used only in
dart
- set this to
true
, if you want to use xgboost dart mode
- used only in
uniform_drop
🔗︎, default =false
, type = bool- used only in
dart
- set this to
true
, if you want to use uniform drop
- used only in
drop_seed
🔗︎, default =4
, type = int- used only in
dart
- random seed to choose dropping models
- used only in
top_rate
🔗︎, default =0.2
, type = double, constraints:0.0 <= top_rate <= 1.0
- used only in
goss
- the retain ratio of large gradient data
- used only in
other_rate
🔗︎, default =0.1
, type = double, constraints:0.0 <= other_rate <= 1.0
- used only in
goss
- the retain ratio of small gradient data
- used only in
min_data_per_group
🔗︎, default =100
, type = int, constraints:min_data_per_group > 0
- minimal number of data per categorical group
max_cat_threshold
🔗︎, default =32
, type = int, constraints:max_cat_threshold > 0
- used for the categorical features
- limit the max threshold points in categorical features
cat_l2
🔗︎, default =10.0
, type = double, constraints:cat_l2 >= 0.0
- used for the categorical features
- L2 regularization in categorcial split
cat_smooth
🔗︎, default =10.0
, type = double, constraints:cat_smooth >= 0.0
- used for the categorical features
- this can reduce the effect of noises in categorical features, especially for categories with few data
max_cat_to_onehot
🔗︎, default =4
, type = int, constraints:max_cat_to_onehot > 0
- when number of categories of one feature smaller than or equal to
max_cat_to_onehot
, one-vs-other split algorithm will be used
- when number of categories of one feature smaller than or equal to
top_k
🔗︎, default =20
, type = int, aliases:topk
, constraints:top_k > 0
- used in Voting parallel
- set this to larger value for more accurate result, but it will slow down the training speed
monotone_constraints
🔗︎, default =None
, type = multi-int, aliases:mc
,monotone_constraint
- used for constraints of monotonic features
1
means increasing,-1
means decreasing,0
means non-constraint- you need to specify all features in order. For example,
mc=-1,0,1
means decreasing for 1st feature, non-constraint for 2nd feature and increasing for the 3rd feature
feature_contri
🔗︎, default =None
, type = multi-double, aliases:feature_contrib
,fc
,fp
,feature_penalty
- used to control feature's split gain, will use
gain[i] = max(0, feature_contri[i]) * gain[i]
to replace the split gain of i-th feature - you need to specify all features in order
- used to control feature's split gain, will use
forcedsplits_filename
🔗︎, default =""
, type = string, aliases:fs
,forced_splits_filename
,forced_splits_file
,forced_splits
- path to a
.json
file that specifies splits to force at the top of every decision tree before best-first learning commences .json
file can be arbitrarily nested, and each split containsfeature
,threshold
fields, as well asleft
andright
fields representing subsplits- categorical splits are forced in a one-hot fashion, with
left
representing the split containing the feature value andright
representing other values - see this file as an example
- path to a
refit_decay_rate
🔗︎, default =0.9
, type = double, constraints:0.0 <= refit_decay_rate <= 1.0
- decay rate of
refit
task, will useleaf_output = refit_decay_rate * old_leaf_output + (1.0 - refit_decay_rate) * new_leaf_output
to refit trees - used only in
refit
task in CLI version or as argument inrefit
function in language-specific package
- decay rate of
verbosity
🔗︎, default =1
, type = int, aliases:verbose
- controls the level of LightGBM's verbosity
< 0
: Fatal,= 0
: Error (Warning),= 1
: Info,> 1
: Debug
max_bin
🔗︎, default =255
, type = int, constraints:max_bin > 1
- max number of bins that feature values will be bucketed in
- small number of bins may reduce training accuracy but may increase general power (deal with over-fitting)
- LightGBM will auto compress memory according to
max_bin
. For example, LightGBM will useuint8_t
for feature value ifmax_bin=255
min_data_in_bin
🔗︎, default =3
, type = int, constraints:min_data_in_bin > 0
- minimal number of data inside one bin
- use this to avoid one-data-one-bin (potential over-fitting)
bin_construct_sample_cnt
🔗︎, default =200000
, type = int, aliases:subsample_for_bin
, constraints:bin_construct_sample_cnt > 0
- number of data that sampled to construct histogram bins
- setting this to larger value will give better training result, but will increase data loading time
- set this to larger value if data is very sparse
histogram_pool_size
🔗︎, default =-1.0
, type = double, aliases:hist_pool_size
- max cache size in MB for historical histogram
< 0
means no limit
data_random_seed
🔗︎, default =1
, type = int, aliases:data_seed
- random seed for data partition in parallel learning (excluding the
feature_parallel
mode)
- random seed for data partition in parallel learning (excluding the
output_model
🔗︎, default =LightGBM_model.txt
, type = string, aliases:model_output
,model_out
- filename of output model in training
- Note: can be used only in CLI version
snapshot_freq
🔗︎, default =-1
, type = int, aliases:save_period
- frequency of saving model file snapshot
- set this to positive value to enable this function. For example, the model file will be snapshotted at each iteration if
snapshot_freq=1
- Note: can be used only in CLI version
input_model
🔗︎, default =""
, type = string, aliases:model_input
,model_in
- filename of input model
- for
prediction
task, this model will be applied to prediction data - for
train
task, training will be continued from this model - Note: can be used only in CLI version
output_result
🔗︎, default =LightGBM_predict_result.txt
, type = string, aliases:predict_result
,prediction_result
,predict_name
,prediction_name
,pred_name
,name_pred
- filename of prediction result in
prediction
task - Note: can be used only in CLI version
- filename of prediction result in
initscore_filename
🔗︎, default =""
, type = string, aliases:init_score_filename
,init_score_file
,init_score
,input_init_score
- path of file with training initial scores
- if
""
, will usetrain_data_file
+.init
(if exists) - Note: can be used only in CLI version
valid_data_initscores
🔗︎, default =""
, type = string, aliases:valid_data_init_scores
,valid_init_score_file
,valid_init_score
- path(s) of file(s) with validation initial scores
- if
""
, will usevalid_data_file
+.init
(if exists) - separate by
,
for multi-validation data - Note: can be used only in CLI version
pre_partition
🔗︎, default =false
, type = bool, aliases:is_pre_partition
- used for parallel learning (excluding the
feature_parallel
mode) true
if training data are pre-partitioned, and different machines use different partitions
- used for parallel learning (excluding the
enable_bundle
🔗︎, default =true
, type = bool, aliases:is_enable_bundle
,bundle
- set this to
false
to disable Exclusive Feature Bundling (EFB), which is described in LightGBM: A Highly Efficient Gradient Boosting Decision Tree - Note: disabling this may cause the slow training speed for sparse datasets
- set this to
max_conflict_rate
🔗︎, default =0.0
, type = double, constraints:0.0 <= max_conflict_rate < 1.0
- max conflict rate for bundles in EFB
- set this to
0.0
to disallow the conflict and provide more accurate results - set this to a larger value to achieve faster speed
is_enable_sparse
🔗︎, default =true
, type = bool, aliases:is_sparse
,enable_sparse
,sparse
- used to enable/disable sparse optimization
sparse_threshold
🔗︎, default =0.8
, type = double, constraints:0.0 < sparse_threshold <= 1.0
- the threshold of zero elements precentage for treating a feature as a sparse one
use_missing
🔗︎, default =true
, type = bool- set this to
false
to disable the special handle of missing value
- set this to
zero_as_missing
🔗︎, default =false
, type = bool- set this to
true
to treat all zero as missing values (including the unshown values in libsvm/sparse matrics) - set this to
false
to usena
for representing missing values
- set this to
two_round
🔗︎, default =false
, type = bool, aliases:two_round_loading
,use_two_round_loading
- set this to
true
if data file is too big to fit in memory - by default, LightGBM will map data file to memory and load features from memory. This will provide faster data loading speed, but may cause run out of memory error when the data file is very big
- set this to
save_binary
🔗︎, default =false
, type = bool, aliases:is_save_binary
,is_save_binary_file
- if
true
, LightGBM will save the dataset (including validation data) to a binary file. This speed ups the data loading for the next time
- if
enable_load_from_binary_file
🔗︎, default =true
, type = bool, aliases:load_from_binary_file
,binary_load
,load_binary
- set this to
true
to enable autoloading from previous saved binary datasets - set this to
false
to ignore binary datasets
- set this to
header
🔗︎, default =false
, type = bool, aliases:has_header
- set this to
true
if input data has header
- set this to
label_column
🔗︎, default =""
, type = int or string, aliases:label
- used to specify the label column
- use number for index, e.g.
label=0
means column_0 is the label - add a prefix
name:
for column name, e.g.label=name:is_click
weight_column
🔗︎, default =""
, type = int or string, aliases:weight
- used to specify the weight column
- use number for index, e.g.
weight=0
means column_0 is the weight - add a prefix
name:
for column name, e.g.weight=name:weight
- Note: index starts from
0
and it doesn't count the label column when passing type isint
, e.g. when label is column_0, and weight is column_1, the correct parameter isweight=0
group_column
🔗︎, default =""
, type = int or string, aliases:group
,group_id
,query_column
,query
,query_id
- used to specify the query/group id column
- use number for index, e.g.
query=0
means column_0 is the query id - add a prefix
name:
for column name, e.g.query=name:query_id
- Note: data should be grouped by query_id
- Note: index starts from
0
and it doesn't count the label column when passing type isint
, e.g. when label is column_0 and query_id is column_1, the correct parameter isquery=0
ignore_column
🔗︎, default =""
, type = multi-int or string, aliases:ignore_feature
,blacklist
- used to specify some ignoring columns in training
- use number for index, e.g.
ignore_column=0,1,2
means column_0, column_1 and column_2 will be ignored - add a prefix
name:
for column name, e.g.ignore_column=name:c1,c2,c3
means c1, c2 and c3 will be ignored - Note: works only in case of loading data directly from file
- Note: index starts from
0
and it doesn't count the label column when passing type isint
categorical_feature
🔗︎, default =""
, type = multi-int or string, aliases:cat_feature
,categorical_column
,cat_column
- used to specify categorical features
- use number for index, e.g.
categorical_feature=0,1,2
means column_0, column_1 and column_2 are categorical features - add a prefix
name:
for column name, e.g.categorical_feature=name:c1,c2,c3
means c1, c2 and c3 are categorical features - Note: only supports categorical with
int
type - Note: index starts from
0
and it doesn't count the label column when passing type isint
- Note: all values should be less than
Int32.MaxValue
(2147483647) - Note: using large values could be memory consuming. Tree decision rule works best when categorical features are presented by consecutive integers started from zero
- Note: all negative values will be treated as missing values
predict_raw_score
🔗︎, default =false
, type = bool, aliases:is_predict_raw_score
,predict_rawscore
,raw_score
- used only in
prediction
task - set this to
true
to predict only the raw scores - set this to
false
to predict transformed scores
- used only in
predict_leaf_index
🔗︎, default =false
, type = bool, aliases:is_predict_leaf_index
,leaf_index
- used only in
prediction
task - set this to
true
to predict with leaf index of all trees
- used only in
predict_contrib
🔗︎, default =false
, type = bool, aliases:is_predict_contrib
,contrib
- used only in
prediction
task - set this to
true
to estimate SHAP values, which represent how each feature contributes to each prediction - produces
#features + 1
values where the last value is the expected value of the model output over the training data - Note: if you want to get more explanation for your model's predictions using SHAP values like SHAP interaction values, you can install shap package
- used only in
num_iteration_predict
🔗︎, default =-1
, type = int- used only in
prediction
task - used to specify how many trained iterations will be used in prediction
<= 0
means no limit
- used only in
pred_early_stop
🔗︎, default =false
, type = bool- used only in
prediction
task - if
true
, will use early-stopping to speed up the prediction. May affect the accuracy
- used only in
pred_early_stop_freq
🔗︎, default =10
, type = int- used only in
prediction
task - the frequency of checking early-stopping prediction
- used only in
pred_early_stop_margin
🔗︎, default =10.0
, type = double- used only in
prediction
task - the threshold of margin in early-stopping prediction
- used only in
convert_model_language
🔗︎, default =""
, type = string- used only in
convert_model
task - only
cpp
is supported yet - if
convert_model_language
is set andtask=train
, the model will be also converted - Note: can be used only in CLI version
- used only in
convert_model
🔗︎, default =gbdt_prediction.cpp
, type = string, aliases:convert_model_file
- used only in
convert_model
task - output filename of converted model
- Note: can be used only in CLI version
- used only in
num_class
🔗︎, default =1
, type = int, aliases:num_classes
, constraints:num_class > 0
- used only in
multi-class
classification application
- used only in
is_unbalance
🔗︎, default =false
, type = bool, aliases:unbalance
,unbalanced_sets
- used only in
binary
application - set this to
true
if training data are unbalance - Note: this parameter cannot be used at the same time with
scale_pos_weight
, choose only one of them
- used only in
scale_pos_weight
🔗︎, default =1.0
, type = double, constraints:scale_pos_weight > 0.0
- used only in
binary
application - weight of labels with positive class
- Note: this parameter cannot be used at the same time with
is_unbalance
, choose only one of them
- used only in
sigmoid
🔗︎, default =1.0
, type = double, constraints:sigmoid > 0.0
- used only in
binary
andmulticlassova
classification and inlambdarank
applications - parameter for the sigmoid function
- used only in
boost_from_average
🔗︎, default =true
, type = bool- used only in
regression
,binary
andcross-entropy
applications - adjusts initial score to the mean of labels for faster convergence
- used only in
reg_sqrt
🔗︎, default =false
, type = bool- used only in
regression
application - used to fit
sqrt(label)
instead of original values and prediction result will be also automatically converted toprediction^2
- might be useful in case of large-range labels
- used only in
alpha
🔗︎, default =0.9
, type = double, constraints:alpha > 0.0
- used only in
huber
andquantile
regression
applications - parameter for Huber loss and Quantile regression
- used only in
fair_c
🔗︎, default =1.0
, type = double, constraints:fair_c > 0.0
- used only in
fair
regression
application - parameter for Fair loss
- used only in
poisson_max_delta_step
🔗︎, default =0.7
, type = double, constraints:poisson_max_delta_step > 0.0
- used only in
poisson
regression
application - parameter for Poisson regression to safeguard optimization
- used only in
tweedie_variance_power
🔗︎, default =1.5
, type = double, constraints:1.0 <= tweedie_variance_power < 2.0
- used only in
tweedie
regression
application - used to control the variance of the tweedie distribution
- set this closer to
2
to shift towards a Gamma distribution - set this closer to
1
to shift towards a Poisson distribution
- used only in
max_position
🔗︎, default =20
, type = int, constraints:max_position > 0
- used only in
lambdarank
application - optimizes NDCG at this position
- used only in
label_gain
🔗︎, default =0,1,3,7,15,31,63,...,2^30-1
, type = multi-double- used only in
lambdarank
application - relevant gain for labels. For example, the gain of label
2
is3
in case of default label gains - separate by
,
- used only in
metric
🔗︎, default =""
, type = multi-enum, aliases:metrics
,metric_types
- metric(s) to be evaluated on the evaluation set(s)
""
(empty string or not specified) means that metric corresponding to specifiedobjective
will be used (this is possible only for pre-defined objective functions, otherwise no evaluation metric will be added)"None"
(string, not aNone
value) means that no metric will be registered, aliases:na
,null
,custom
l1
, absolute loss, aliases:mean_absolute_error
,mae
,regression_l1
l2
, square loss, aliases:mean_squared_error
,mse
,regression_l2
,regression
l2_root
, root square loss, aliases:root_mean_squared_error
,rmse
quantile
, Quantile regressionmape
, MAPE loss, aliases:mean_absolute_percentage_error
huber
, Huber lossfair
, Fair losspoisson
, negative log-likelihood for Poisson regressiongamma
, negative log-likelihood for Gamma regressiongamma_deviance
, residual deviance for Gamma regressiontweedie
, negative log-likelihood for Tweedie regressionndcg
, NDCG, aliases:lambdarank
map
, MAP, aliases:mean_average_precision
auc
, AUCbinary_logloss
, log loss, aliases:binary
binary_error
, for one sample:0
for correct classification,1
for error classificationmulti_logloss
, log loss for multi-class classification, aliases:multiclass
,softmax
,multiclassova
,multiclass_ova
,ova
,ovr
multi_error
, error rate for multi-class classificationxentropy
, cross-entropy (with optional linear weights), aliases:cross_entropy
xentlambda
, "intensity-weighted" cross-entropy, aliases:cross_entropy_lambda
kldiv
, Kullback-Leibler divergence, aliases:kullback_leibler
- support multiple metrics, separated by
,
- metric(s) to be evaluated on the evaluation set(s)
metric_freq
🔗︎, default =1
, type = int, aliases:output_freq
, constraints:metric_freq > 0
- frequency for metric output
is_provide_training_metric
🔗︎, default =false
, type = bool, aliases:training_metric
,is_training_metric
,train_metric
- set this to
true
to output metric result over training dataset
- set this to
eval_at
🔗︎, default =1,2,3,4,5
, type = multi-int, aliases:ndcg_eval_at
,ndcg_at
,map_eval_at
,map_at
num_machines
🔗︎, default =1
, type = int, aliases:num_machine
, constraints:num_machines > 0
- the number of machines for parallel learning application
- this parameter is needed to be set in both socket and mpi versions
local_listen_port
🔗︎, default =12400
, type = int, aliases:local_port
,port
, constraints:local_listen_port > 0
- TCP listen port for local machines
- Note: don't forget to allow this port in firewall settings before training
time_out
🔗︎, default =120
, type = int, constraints:time_out > 0
- socket time-out in minutes
machine_list_filename
🔗︎, default =""
, type = string, aliases:machine_list_file
,machine_list
,mlist
- path of file that lists machines for this parallel learning application
- each line contains one IP and one port for one machine. The format is
ip port
(space as a separator)
machines
🔗︎, default =""
, type = string, aliases:workers
,nodes
- list of machines in the following format:
ip1:port1,ip2:port2
- list of machines in the following format:
gpu_platform_id
🔗︎, default =-1
, type = int- OpenCL platform ID. Usually each GPU vendor exposes one OpenCL platform
-1
means the system-wide default platform- Note: refer to GPU Targets for more details
gpu_device_id
🔗︎, default =-1
, type = int- OpenCL device ID in the specified platform. Each GPU in the selected platform has a unique device ID
-1
means the default device in the selected platform- Note: refer to GPU Targets for more details
gpu_use_dp
🔗︎, default =false
, type = bool- set this to
true
to use double precision math on GPU (by default single precision is used)
- set this to
LightGBM supports continued training with initial scores. It uses an additional file to store these initial scores, like the following:
0.5 -0.1 0.9 ...
It means the initial score of the first data row is 0.5
, second is -0.1
, and so on.
The initial score file corresponds with data file line by line, and has per score per line.
And if the name of data file is train.txt
, the initial score file should be named as train.txt.init
and in the same folder as the data file.
In this case LightGBM will auto load initial score file if it exists.
Otherwise, you should specify the path to the custom named file with initial scores by the initscore_filename
parameter.
LightGBM supports weighted training. It uses an additional file to store weight data, like the following:
1.0 0.5 0.8 ...
It means the weight of the first data row is 1.0
, second is 0.5
, and so on.
The weight file corresponds with data file line by line, and has per weight per line.
And if the name of data file is train.txt
, the weight file should be named as train.txt.weight
and placed in the same folder as the data file.
In this case LightGBM will load the weight file automatically if it exists.
Also, you can include weight column in your data file. Please refer to the weight_column
parameter in above.
For LambdaRank learning, it needs query information for training data. LightGBM uses an additional file to store query data, like the following:
27 18 67 ...
It means first 27
lines samples belong to one query and next 18
lines belong to another, and so on.
Note: data should be ordered by the query.
If the name of data file is train.txt
, the query file should be named as train.txt.query
and placed in the same folder as the data file.
In this case LightGBM will load the query file automatically if it exists.
Also, you can include query/group id column in your data file. Please refer to the group_column
parameter in above.