-
Notifications
You must be signed in to change notification settings - Fork 0
/
sklearn_classify.py
80 lines (58 loc) · 3.25 KB
/
sklearn_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from get_stats import get_metrics
from plot_functions import plot_important_words, plot_LSA, plot_confusion_matrix
def sklearn_vectorize(train_data, test_data, vectorizer):
train = vectorizer.fit_transform(train_data)
test = vectorizer.transform(test_data)
return train, test, vectorizer
def get_relevant_features(vectorizer, model, n=5):
index_to_word = {v: k for k, v in vectorizer.vocabulary_.items()}
# loop for each class
classes = {}
for class_index in range(model.coef_.shape[0]):
word_importances = [(el, index_to_word[i]) for i, el in enumerate(model.coef_[class_index])]
sorted_coeff = sorted(word_importances, key=lambda x: x[0], reverse=True)
tops = sorted(sorted_coeff[:n], key=lambda x: x[0])
bottom = sorted_coeff[-n:]
classes[class_index] = {
'tops': tops,
'bottom': bottom
}
top_scores = [a[0] for a in classes[1]['tops']]
top_words = [a[1] for a in classes[1]['tops']]
bottom_scores = [a[0] for a in classes[1]['bottom']]
bottom_words = [a[1] for a in classes[1]['bottom']]
return top_scores, top_words, bottom_scores, bottom_words
def classify(X_train, X_test, y_train, y_test, vectorizer):
clf = LogisticRegression(C=30.0, class_weight='balanced', solver='newton-cg',
multi_class='multinomial', n_jobs=-1, random_state=40)
clf.fit(X_train, y_train)
y_predicted_counts = clf.predict(X_test)
accuracy, precision, recall, f1 = get_metrics(y_test, y_predicted_counts)
cm = confusion_matrix(y_test, y_predicted_counts)
top_scores, top_words, bottom_scores, bottom_words = get_relevant_features(vectorizer, clf, n=10)
plot_confusion_matrix(cm, classes=['Irrelevant', 'Disaster', 'Unsure'], normalize=False, title='Confusion matrix')
plot_important_words(top_scores, top_words, bottom_scores, bottom_words, "Most important words for relevance")
print(cm)
print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accuracy, precision, recall, f1))
def cv_classify(X_train_raw, X_test_raw, y_train, y_test):
X_train, X_test, vectorizer = sklearn_vectorize(X_train_raw, X_test_raw, CountVectorizer())
plot_LSA(X_train, y_train)
classify(X_train, X_test, y_train, y_test, vectorizer)
def tfidf_classify(X_train_raw, X_test_raw, y_train, y_test):
X_train, X_test, vectorizer = sklearn_vectorize(X_train_raw, X_test_raw, TfidfVectorizer())
plot_LSA(X_train, y_train)
classify(X_train, X_test, y_train, y_test, vectorizer)
if __name__ == '__main__':
questions = pd.read_pickle('ready_data.pkl')
list_corpus = questions['text'].tolist()
list_labels = questions['class_label'].tolist()
X_train_raw, X_test_raw, y_train, y_test = train_test_split(list_corpus, list_labels, test_size=0.2,
random_state=40)
cv_classify(X_train_raw, X_test_raw, y_train, y_test)
tfidf_classify(X_train_raw, X_test_raw, y_train, y_test)