-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathproject_tests.py
170 lines (134 loc) · 6.71 KB
/
project_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import sys
import os
from copy import deepcopy
from glob import glob
from unittest import mock
from sklearn.model_selection import train_test_split
import numpy as np
import tensorflow as tf
def test_safe(func):
"""
Isolate tests
"""
def func_wrapper(*args):
with tf.Graph().as_default():
result = func(*args)
print('Tests Passed')
return result
return func_wrapper
def _prevent_print(function, params):
sys.stdout = open(os.devnull, "w")
function(**params)
sys.stdout = sys.__stdout__
def _assert_tensor_shape(tensor, shape, display_name):
assert tf.assert_rank(tensor, len(shape), message='{} has wrong rank'.format(display_name))
tensor_shape = tensor.get_shape().as_list() if len(shape) else []
wrong_dimension = [ten_dim for ten_dim, cor_dim in zip(tensor_shape, shape)
if cor_dim is not None and ten_dim != cor_dim]
assert not wrong_dimension, \
'{} has wrong shape. Found {}'.format(display_name, tensor_shape)
class TmpMock(object):
"""
Mock a attribute. Restore attribute when exiting scope.
"""
def __init__(self, module, attrib_name):
self.original_attrib = deepcopy(getattr(module, attrib_name))
setattr(module, attrib_name, mock.MagicMock())
self.module = module
self.attrib_name = attrib_name
def __enter__(self):
return getattr(self.module, self.attrib_name)
def __exit__(self, type, value, traceback):
setattr(self.module, self.attrib_name, self.original_attrib)
@test_safe
def test_load_vgg(load_vgg, tf_module):
with TmpMock(tf_module.saved_model.loader, 'load') as mock_load_model:
vgg_path = ''
sess = tf.Session()
test_input_image = tf.placeholder(tf.float32, name='image_input')
test_keep_prob = tf.placeholder(tf.float32, name='keep_prob')
test_vgg_layer3_out = tf.placeholder(tf.float32, name='layer3_out')
test_vgg_layer4_out = tf.placeholder(tf.float32, name='layer4_out')
test_vgg_layer7_out = tf.placeholder(tf.float32, name='layer7_out')
input_image, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path)
assert mock_load_model.called, \
'tf.saved_model.loader.load() not called'
assert mock_load_model.call_args == mock.call(sess, ['vgg16'], vgg_path), \
'tf.saved_model.loader.load() called with wrong arguments.'
assert input_image == test_input_image, 'input_image is the wrong object'
assert keep_prob == test_keep_prob, 'keep_prob is the wrong object'
assert vgg_layer3_out == test_vgg_layer3_out, 'layer3_out is the wrong object'
assert vgg_layer4_out == test_vgg_layer4_out, 'layer4_out is the wrong object'
assert vgg_layer7_out == test_vgg_layer7_out, 'layer7_out is the wrong object'
@test_safe
def test_layers(layers):
num_classes = 2
vgg_layer3_out = tf.placeholder(tf.float32, [None, None, None, 256])
vgg_layer4_out = tf.placeholder(tf.float32, [None, None, None, 512])
vgg_layer7_out = tf.placeholder(tf.float32, [None, None, None, 4096])
is_training = tf.placeholder(tf.bool)
layers_output = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, is_training, num_classes)
_assert_tensor_shape(layers_output, [None, None, None, num_classes], 'Layers Output')
@test_safe
def test_optimize(optimize):
num_classes = 2
shape = [2, 3, 4, num_classes]
layers_output = tf.Variable(tf.zeros(shape))
correct_label = tf.placeholder(tf.float32, [None, None, None, num_classes])
learning_rate = tf.placeholder(tf.float32)
logits, train_op, cross_entropy_loss, accuracy_op = optimize(layers_output, correct_label, learning_rate, num_classes)
_assert_tensor_shape(logits, [2, 3, 4, num_classes], 'Logits')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run([train_op], {correct_label: np.arange(np.prod(shape)).reshape(shape), learning_rate: 10})
test, loss = sess.run([layers_output, cross_entropy_loss], {correct_label: np.arange(np.prod(shape)).reshape(shape)})
assert test.min() != 0 or test.max() != 0, 'Training operation not changing weights.'
@test_safe
def test_train_nn(train_nn):
epochs = 1
batch_size = 2
data_folder = "./data/data_road/training"
image_shape = (160, 576)
data_dir = './data'
data_folder = os.path.join(data_dir, 'data_road/training')
image_paths = glob(os.path.join(data_folder, 'image_2', '*.png'))
training_image_paths, validation_image_paths = train_test_split(image_paths, test_size=0.2)
def get_batches_fn(batach_size_parm):
shape = [batach_size_parm, 2, 3, 3]
return np.arange(np.prod(shape)).reshape(shape)
train_op = tf.constant(0)
cross_entropy_loss = tf.constant(10.11)
accuracy_op = tf.constant(0.11)
input_image = tf.placeholder(tf.float32, name='input_image')
correct_label = tf.placeholder(tf.float32, name='correct_label')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
with tf.Session() as sess:
parameters = {
'sess': sess,
'epochs': epochs,
'data_folder': data_folder,
'batch_size': batch_size,
'image_shape': image_shape,
'training_image_paths': training_image_paths,
'validation_image_paths': validation_image_paths,
'train_op': train_op,
'cross_entropy_loss': cross_entropy_loss,
'accuracy_op': accuracy_op,
'input_image': input_image,
'correct_label': correct_label,
'keep_prob': keep_prob,
'learning_rate': learning_rate
}
_prevent_print(train_nn, parameters)
@test_safe
def test_for_kitti_dataset(data_dir):
kitti_dataset_path = os.path.join(data_dir, 'data_road')
training_labels_count = len(glob(os.path.join(kitti_dataset_path, 'training/gt_image_2/*_road_*.png')))
training_images_count = len(glob(os.path.join(kitti_dataset_path, 'training/image_2/*.png')))
testing_images_count = len(glob(os.path.join(kitti_dataset_path, 'testing/image_2/*.png')))
assert not (training_images_count == training_labels_count == testing_images_count == 0),\
'Kitti dataset not found. Extract Kitti dataset in {}'.format(kitti_dataset_path)
assert training_images_count == 289, 'Expected 289 training images, found {} images.'.format(training_images_count)
assert training_labels_count == 289, 'Expected 289 training labels, found {} labels.'.format(training_labels_count)
assert testing_images_count == 290, 'Expected 290 testing images, found {} images.'.format(testing_images_count)