-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
50 lines (45 loc) · 1.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pickle
from sklearn.neighbors import KNeighborsClassifier
import math
Nearest = pickle.load(open('./model/Nearest.sav', 'rb'))
def slope(p1,p2):
dy=p1['y']-p2['y']
dx=p1['x']-p2['x']
return dy/dx
def dis(p1,p2):
dy=(p1['y']-p2['y'])**2
dx=(p1['x']-p2['x'])**2
return dy+dx
def angle(m1,m2):
val=(m1-m2)/(1+(m1*m2))
if val<0:
val=val*(-1)
val=math.degrees(math.atan(val))
return val
def render(l):
#dist=dis(l['1'],l['2'])
dist=dis(l['5'],l['6'])
print(dist)
#dis_lim=[15500,8000][l['7']]
#max_lim=[2500,2000][l['7']]
dis_lim=[140000,120000][l['7']]
max_lim=[50000,34000][l['7']]
alpha_lim=[0.1,0.07][l['7']]
beta_lim=[95,95][l['7']]
m0=slope(l['5'],l['6'])
m1=slope(l['5'],l['0'])
m2=slope(l['6'],l['0'])
alpha=slope(l['5'],l['6'])
if alpha <0:
alpha*=-1
gama1=angle(m1,m0)
gama2=angle(m2,m0)
beta=(180-gama1-gama2)
if dist>dis_lim:
return 2
elif dist<max_lim:
return 3
elif alpha>alpha_lim or beta>beta_lim:
return 1
else:
return 0