generated from stratosphereips/awesome-code-template
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhermeneisGPT.py
370 lines (309 loc) · 15.5 KB
/
hermeneisGPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""
hermeneisGPT is a tool and framework to translate messages and/or
text from hacktivist channels or forums from Russian to English
using Large Language Models.
"""
# flake8: noqa: E501
import argparse
import logging
import os
import yaml
from dotenv import dotenv_values
from openai import OpenAI
import tiktoken
from lib.utils import get_current_commit
from lib.utils import get_file_sha256
from lib.utils import get_file_content
from lib.db_utils import get_db_connection
from lib.db_utils import create_tables_from_schema
from lib.db_utils import has_channel_messages
from lib.db_utils import insert_translation_parameters
from lib.db_utils import get_channel_messages
from lib.db_utils import exists_translation_for_message
from lib.db_utils import upsert_message_translation
# Set up logging
logger = logging.getLogger('hermeneis')
logger.setLevel(logging.DEBUG)
# Create file handler for logging to a file
file_handler = logging.FileHandler('logs/hermeneis.log')
file_handler.setLevel(logging.DEBUG) # Log all levels to the file
# Create console handler for logging to the console
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.ERROR) # Log INFO and above to the console
# Create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
# Add the handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
def set_key(env_path):
"Reads the OpenAI API key and sets it"
env = dotenv_values(env_path)
return env["OPENAI_API_KEY"]
def load_and_parse_config(yaml_config_path):
"""
Takes a config yaml and loads it to a variable for later use.
"""
try:
with open(yaml_config_path, 'r', encoding="utf-8") as configuration_yaml:
yaml_config = yaml.safe_load(configuration_yaml)
logger.debug("Loaded data from YAML file: %s", yaml_config_path)
except Exception as e:
logger.error("Error reading YAML file: %s", e)
raise
config = {
'system': yaml_config['personality']['system'].strip(),
'user': yaml_config['personality']['user'],
'model': yaml_config['personality']['model'].strip(),
'temperature': float(yaml_config['personality']['temperature'].strip()),
'max_tokens': int(yaml_config['personality']['max_tokens'].strip()),
'log': yaml_config['personality']['log'].strip()
}
return config
def calculate_cost_analysis(config, args):
"""
Calculate cost for messages
"""
logger.debug("Starting cost estimation")
limit = int(args.max_limit)
count = 1
total_tokens = 0
# cost in $ per 1k tokens as per 22.3.2024
# TODO: parametrize the cost functionality so the prices can
# be retrieved from OpenAI or through a configuration file
input_price = 0.0005
output_price = 0.0015
try:
logger.debug("Initializing the tokenizer")
encoding = tiktoken.encoding_for_model(config['model'])
logger.debug("Connecting to DB: %s", args.sqlite_db)
connection, cursor = get_db_connection(args.sqlite_db)
logger.debug("Retrieving messages for channel: %s", args.channel_name)
channel_messages = get_channel_messages(cursor, args.channel_name)
for message_id, message_text in channel_messages:
count = count + 1
logger.debug("Processing channel %s message %s (%s bytes)", args.channel_name, message_id, len(message_text))
if len(message_text) > 1:
logger.debug("Creating query to OpenAI")
translate_messages = [{"role":"system", "content": config['system']},
{"role":"user", "content": config['user']+message_text}]
tokens = len(encoding.encode(str(translate_messages)))
logger.debug("Tokens for message %s (+prompt): %s", message_id, tokens)
total_tokens = total_tokens + tokens
if count >= limit:
# Translation quota reached
logger.debug("Translation limit reached, stopping translation")
break
logger.debug("Total tokens for %s messages (+prompts): %s", count, total_tokens)
# The estimated total cost is calculated as the sum of the cost of the input messages
# and the cost of the output messages. These prices are per 1000 tokens.
estimated_total_cost = ((total_tokens*input_price)/1000)+((total_tokens*output_price)/1000)
logger.info("Estimated cost of translating %s messages: $ %.2f", count, estimated_total_cost)
connection.commit()
connection.close()
except KeyboardInterrupt:
connection.commit()
connection.close()
return
def translate_mode_automatic(client, config, args):
"""
Run the LLM translation in automatic mode using a
SQLite database. Translations will be written on
the same DB.
"""
limit = int(args.max_limit)
count = 1
translation_tool_name = os.path.basename(__file__)
translation_tool_commit = get_current_commit()
translation_model = config['model']
translation_config_sha256 = get_file_sha256(args.yaml_config)
translation_config = get_file_content(args.yaml_config)
try:
logger.debug("Starting automatic translation")
logger.debug("Connecting to DB: %s", args.sqlite_db)
connection, cursor = get_db_connection(args.sqlite_db)
logger.debug("Creating tables needed for translation using schema: %s", args.sqlite_schema)
create_tables_from_schema(connection, cursor, args.sqlite_schema)
has_messages = has_channel_messages(cursor, args.channel_name)
logger.debug("Checking if there are messages for channel %s: %s", args.channel_name, has_messages)
logger.debug("Retrieving translation parameters based on user input")
logger.debug("Retrieving the tool name: %s", translation_tool_name)
logger.debug("Retrieving the tool current commit: %s", translation_tool_commit)
logger.debug("Retrieving the LLM model: %s", translation_model)
logger.debug("Retrieving the YAML config file SHA256: %s", translation_config_sha256)
logger.debug("Retrieving the YAML config file: %s bytes", len(translation_config))
translation_parameters_id = insert_translation_parameters(cursor,
translation_tool_name,
translation_tool_commit,
translation_model,
translation_config_sha256,
translation_config)
logger.debug("Storing translation parameters to DB and retrieving ID: %s", translation_parameters_id)
logger.debug("Retrieving messages for channel: %s", args.channel_name)
channel_messages = get_channel_messages(cursor, args.channel_name)
logger.info("Processing '%s' messages for channel '%s'", len(channel_messages), args.channel_name)
for message_id, message_text in channel_messages:
logger.debug("Processing channel %s message %s (%s bytes)", args.channel_name, message_id, len(message_text))
exists_translation = exists_translation_for_message(cursor, message_id, translation_parameters_id)
if not exists_translation:
# There is no translation for this message
if len(message_text) > 1:
count = count+1
# Message is not empty, translate it with OpenAI model
logger.debug("Translating message %s with translation parameters ID %s", message_id, translation_parameters_id)
message_translated = translate(client, config, message_text)
# Update the translation for that row
msg_translation_id = upsert_message_translation(cursor, message_id, translation_parameters_id, message_translated)
logger.debug("Message %s translated with translation ID %s", message_id, msg_translation_id)
else:
# Message is too short (1 byte), do not translate
logger.debug("Translation cancelled for message %s, too small (%s)", message_id, message_text)
else:
# There is a translation for this message
logger.debug("Found translation for message %s with translation parameters ID %s", message_id, translation_parameters_id)
# Check if we did not reach the translation limit (number of iterations)
if count > limit:
# Translation quota reached
logger.debug("Translation limit reached, stopping translation")
break
logger.info("Finished translating %s messages for %s channel", limit, args.channel_name)
connection.commit()
connection.close()
except KeyboardInterrupt:
connection.commit()
connection.close()
return
def translate(client, config, message):
"""
Run the LLM translation
"""
try:
translate_messages = [{"role":"system", "content": config['system']},
{"role":"user", "content": config['user']+message}]
# Initialize the OpenAI LLM (Language Learning Model)
llm_response = client.chat.completions.create(
model = config['model'],
messages = translate_messages,
max_tokens = config['max_tokens'],
temperature = config['temperature'],
)
return llm_response.choices[0].message.content
except Exception as err:
logger.debug("Exception in translate(): %s", err)
def translate_mode_manual(client, config):
"""
Run the LLM translation in manual interactive mode
"""
user_input_msg = "Input your message to translate:"
try:
logger.debug("Starting manual translation")
while True:
# Read user input to translate
print(user_input_msg)
input_lang_ru=input().strip()
if input_lang_ru and input_lang_ru != user_input_msg:
message_translated = translate(client, config, input_lang_ru)
print(message_translated)
else:
# User input is empty or matched the system message
pass
except KeyboardInterrupt:
return
def main():
"""
Take a message input and use the data from the yaml file to translate
the text from Russian to English.
Command-line arguments:
yaml_config: Path to the configuration file (.yaml)
env: Path to the .env file with secrets (API keys, etc)
"""
try:
# Set up the argument parser
parser = argparse.ArgumentParser(
description='HermeneisGPT: Translate hacking messages from '
'Russian to English using LLMs.')
parser.add_argument('-v',
'--verbose',
action='store_true',
help='run hermeneisGPT in verbose mode')
parser.add_argument('-d',
'--debug',
action='store_true',
help='run hermeneisGPT in debug mode')
parser.add_argument('-c',
'--yaml_config',
default='config_EXAMPLE.yml',
help='path to the YAML file with challenge data (default=config_EXAMPLE.yml)')
parser.add_argument('-e',
'--env',
default='.env',
help='path to environment file (.env)')
parser.add_argument('-m',
'--mode',
choices=['manual', 'auto-sqlite'],
default='manual',
help='select the mode (manual or auto-sqlite)')
parser.add_argument('--channel_name',
help='name of the hacktivist telegram channel to translate')
parser.add_argument('--max_limit',
default=10,
help='maximum number of messages to translate automatically (default=10)')
parser.add_argument('--sqlite_db',
help='path to SQLite database with messages to translate')
parser.add_argument('--sqlite_schema',
default='assets/schema.sql',
help='path to SQLite database schema for translations')
parser.add_argument('--sqlite_chn_table',
default='channels',
help='DB table where channels are stored (default="channels")')
parser.add_argument('--sqlite_chn_field',
default='channel_name',
help='field on channels table that contains name of the channel (default="channel_name")')
parser.add_argument('--sqlite_msg_table',
default='messages',
help='DB table where messages are stored (default="messages")')
parser.add_argument('--sqlite_msg_field',
default='message_text',
help='field on messages table that contains message text (default="message_text")')
args = parser.parse_args()
if args.verbose:
console_handler.setLevel(logging.INFO)
if args.debug:
console_handler.setLevel(logging.DEBUG)
# Read YAML Configuration file
config = load_and_parse_config(args.yaml_config)
# Set the API key
openai_key = set_key(args.env)
client = OpenAI(api_key=openai_key)
# Match the mode to run on
match args.mode:
case "manual":
logger.info("hermeneisGPT on manual mode")
# If a DB is provided, make sure the user knows it will be ignored
if args.sqlite_db:
logger.info("Running on manual mode, ignoring the DB file '%s'", args.sqlite_db)
# Run interactive manual mode
translate_mode_manual(client, config)
case "auto-sqlite":
logger.info("hermeneisGPT on automatic SQLite mode")
# Automatic DB mode requires the database arg to be passes/
if not args.sqlite_db:
logger.error("--sqlite_db is required when running on automatic SQLite mode")
return
# Automatic DB mode requires the hacktivist channel_name to translate messages from
if not args.channel_name:
logger.error("--channel_name is required when running on automatic SQLite mode")
return
# Run automatic mode with sqlite db
calculate_cost_analysis(config, args)
print("Proceeding with the following actions will incur costs. Do you wish to continue? (Y/N)")
user_input = input()
if user_input == "Y" or user_input == "y":
# Run automatic mode with sqlite db
translate_mode_automatic(client, config, args)
except Exception as err:
logger.info("Exception in main()")
logger.info(err)
if __name__ == "__main__":
main()