-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScript.R
99 lines (76 loc) · 2.93 KB
/
Script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
library(Quandl)
library(ggplot2)
library(lubridate)
library(dplyr)
library(reshape2)
library(scales)
library(ggthemes)
library(PerformanceAnalytics)
read.quandl <- function(qcode){
data <- Quandl(qcode$Code)
colnames(data) <- c('Date', qcode$Name)
data
}
returns.data.frame <- function(x){
df <- x[[1]]
for (i in seq(x)[-1]){
df <- full_join(df, x[[i]], by = 'Date')
}
return(df)
}
to.xts <- function(x){
x1 <- as.xts(x[,-1],order.by = x[,1])
}
attach <- function(x) paste(BASE, x, sep='/')
add_zeros <- function(x){
zeros <- x[1,1:ncol(x)]
zeros$Date <- zeros$Date %m-% months(1)
zeros[,2:ncol(zeros)] <- 0
return(rbind(zeros, x))
}
Quandl.api_key("jU9SSmUJFjivxgnYcFLp")
BASE <- 'EUREKA'
QC <- read.csv('CodeList.csv',stringsAsFactors = F)
QC <- data.frame(Code = sapply(QC[,1],attach), Name = QC$Name, stringsAsFactors = F)
QC <- setNames(split(QC, seq(nrow(QC))), QC$Name)
# Get raw data from Quandl
returns <- returns.data.frame(lapply(QC, read.quandl))
# arrange the returns by Date, format to decimal, add 0s at first row
returns <- arrange(returns, Date)
returns[sapply(returns, is.numeric)] <- returns[sapply(returns, is.numeric)] / 100
ret <- add_zeros(returns)
# Select returns of interest
# ret <- filter()
# Create the value index
perf <- data.frame(Date = ret[,1], cumprod(1+ret[,-1]))
snapshot <- filter(returns, Date == '2016-12-31')
recent <- filter(returns, Date >= Sys.Date() %m-% months(6))
# In order to display on ggplot we need to melt the returns data frame
melt.snapshot <- melt(snapshot, id='Date')
ggplot(data = melt.snapshot, aes(x = reorder(variable, -value), y = value, group=value)) +
geom_bar(stat = "identity", position="dodge") +
labs(y = "Return (%)", title = "Hedge Fund Performance in " , x = "Strategy") +
theme(axis.text.x = element_text(angle = 60, hjust = 1))
# Correlation Heatmap
melt.corr <- melt(cor(na.omit(returns[,-1])))
ggplot(melt.corr, aes(Var1, Var2)) +
geom_tile(aes(fill = value)) +
scale_fill_gradient(low="green", high="red") +
labs(title = "Correlation Heatmap") +
theme(axis.text.x = element_text(angle = 90, hjust = 1), axis.title = element_blank(), legend.position="none")
# Chart performance curves
melt.perf <- melt(perf, id = 'Date')
ggplot(data = melt.perf, aes(x = Date, y = value, group=variable)) +
geom_line(aes(colour=variable)) +
labs(y = "Performance Index", title = "Hedge Fund Performance Curve ")
# Return Distribution
melt.returns <- melt(returns, id = 'Date')
ggplot(data = melt.returns[,-1], aes(x=variable, y=value)) +
geom_boxplot(aes(fill = variable)) +
labs(title = "Return dispersion", y = "Return") +
theme(axis.text.x = element_text(angle = 60, hjust = 1), axis.title.x = element_blank(), legend.position="none")
ggplot(data = melt.returns[,-1], aes(value)) +
geom_histogram(aes(fill = variable)) +
facet_wrap(~variable) +
labs(title = "Return Distribution") +
theme(axis.title.x = element_blank(), legend.position="none")