Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The grad is none, please help me. #14

Open
yiyi123123132 opened this issue Sep 22, 2022 · 1 comment
Open

The grad is none, please help me. #14

yiyi123123132 opened this issue Sep 22, 2022 · 1 comment

Comments

@yiyi123123132
Copy link

I don't know why the grad is none.? this is my net code. CNN+ESN

class CNN_ESN(nn.Module):
def init(self, output_size,channel_num, device,drop_prob=0.5):
super(CNN_ESN, self).init()
self.conv = nn.Sequential(
nn.Conv2d(channel_num, 64, (5, 5), padding='same'),
nn.ReLU(),
nn.Conv2d(64, 128, (4, 4), padding='same'),
nn.ReLU(),
nn.Conv2d(128, 256, (4, 4), padding='same'),
nn.ReLU(),
nn.Conv2d(256, 64, (1, 1), padding='same'),
nn.ReLU(),
nn.MaxPool2d((2, 2)),
nn.Flatten(),
nn.Linear(1024, 512)
).to(device)
self.esn = ESN(4,128,128,output_steps='mean', readout_training='svd').to(device)
self.fc = nn.Linear(128,output_size).to(device)
self.dropout = nn.Dropout(drop_prob)
self.sig = nn.Sigmoid()
self.washout_rate = 0.2
def forward(self, x):
conv_result = self.conv(x).reshape(128,x.shape[0],-1)
conv_result =self.dropout(conv_result)
washout_lst = [int(self.washout_rate * conv_result.size(0))] * conv_result.size(1)
out,hn = self.esn(conv_result,washout_lst)
hn = hn.transpose(1,0)
logit = self.fc(hn).squeeze(1)
return self.sig(logit).squeeze(1)

    for inputs, labels in train_loader: 
        net.train()
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()  
        output = net(inputs) 
        pred = torch.round(output)
        loss = loss_func(output, labels)
        pred_list = [float(i) for i in pred.tolist()]
        for p, l in zip(pred_list, labels.tolist()):
            tr_pre.append(int(p))
            tr_lab.append(l)
        tr_loss.append(loss.item())
        loss.backward()
        optimizer.step()

and I print the grad as below, the 2nd epoch reulst:

conv.0.weight None
conv.0.bias None
conv.2.weight None
conv.2.bias None
conv.4.weight None
conv.4.bias None
conv.6.weight None
conv.6.bias None
conv.10.weight None
conv.10.bias None
esn.reservoir.weight_ih_l0 None
esn.reservoir.weight_hh_l0 None
esn.reservoir.bias_ih_l0 None
esn.readout.weight None
esn.readout.bias None
fc.weight tensor([[ 0.0480, -0.0079, 0.0929, 0.1358, 0.1022, -0.1127, 0.0495, 0.1056,
-0.0923, 0.0720, 0.1122, 0.0139, -0.0619, 0.0796, 0.1433, 0.0295,
0.0884, -0.0504, 0.0305, 0.0264, 0.1352, 0.0467, -0.0607, -0.0363,
-0.0114, -0.1393, -0.0917, 0.0194, 0.1076, -0.0713, -0.0487, 0.0433,
-0.0875, 0.0212, 0.1007, -0.0711, 0.1098, 0.0577, 0.0607, 0.0299,
0.0380, 0.0955, 0.0062, -0.0620, -0.0463, -0.0354, 0.1050, -0.0920,
0.0742, -0.0550, -0.1270, -0.0597, 0.0736, 0.0246, 0.0521, -0.0866,
-0.0065, -0.0764, 0.0087, -0.0810, 0.0551, 0.0999, 0.1078, -0.0082,
-0.0940, -0.0628, -0.0624, 0.0779, -0.0107, -0.0069, 0.0793, -0.0318,
0.0086, -0.1427, 0.0617, 0.0839, -0.0904, 0.0535, 0.0678, -0.0232,
0.0361, -0.0065, -0.0806, 0.0824, -0.0336, 0.0707, -0.1042, -0.0336,
-0.1039, 0.0715, -0.1403, -0.0068, -0.0912, -0.1043, 0.0455, -0.0223,
0.0448, 0.0321, 0.0844, -0.0734, -0.0050, 0.1083, 0.0027, -0.0897,
-0.1176, -0.1059, 0.1006, 0.0873, -0.0715, -0.1130, 0.0707, -0.0015,
0.0257, -0.0536, -0.0769, -0.0671, -0.0329, -0.0666, -0.0631, 0.1100,
-0.1013, -0.0392, -0.1062, 0.1276, -0.0686, -0.1200, -0.0669, 0.0424]])
fc.bias tensor([0.1520])

could tell me the reason?

@yiyi123123132
Copy link
Author

net = md.CNN_ESN(output_size,channel_num, device,drop_prob=0.5)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant