-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtesting.py
50 lines (50 loc) · 2 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
from cvzone.HandTrackingModule import HandDetector
from cvzone.ClassificationModule import Classifier
import numpy as np
import math
cap = cv2.VideoCapture(0)
detector = HandDetector(maxHands=1)
classifier = Classifier("Model/keras_model.h5", "Model/labels.txt")
offset = 20
imgSize = 300
folder = "Data/C"
counter = 0
labels = ["A", "B", "C"]
while True:
success, img = cap.read()
imgOutput = img.copy()
hands, img = detector.findHands(img)
if hands:
hand = hands[0]
x, y, w, h = hand['bbox']
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
imgCropShape = imgCrop.shape
aspectRatio = h / w
if aspectRatio > 1:
k = imgSize / h
wCal = math.ceil(k * w)
imgResize = cv2.resize(imgCrop, (wCal, imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((imgSize - wCal) / 2)
imgWhite[:, wGap:wCal + wGap] = imgResize
prediction, index = classifier.getPrediction(imgWhite, draw=False)
print(prediction, index)
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap:hCal + hGap, :] = imgResize
prediction, index = classifier.getPrediction(imgWhite, draw=False)
cv2.rectangle(imgOutput, (x - offset, y - offset-50),
(x - offset+90, y - offset-50+50), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, labels[index], (x, y -26), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
cv2.rectangle(imgOutput, (x-offset, y-offset),
(x + w+offset, y + h+offset), (255, 0, 255), 4)
cv2.imshow("ImageCrop", imgCrop)
cv2.imshow("ImageWhite", imgWhite)
cv2.imshow("Image", imgOutput)
cv2.waitKey(1)