-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0094.cpp
171 lines (149 loc) · 6.09 KB
/
euler-0094.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// ////////////////////////////////////////////////////////
// # Title
// Almost equilateral triangles
//
// # URL
// https://projecteuler.net/problem=94
// http://euler.stephan-brumme.com/94/
//
// # Problem
// It is easily proved that no equilateral triangle exists with integral length sides and integral area.
// However, the almost equilateral triangle 5-5-6 has an area of 12 square units.
//
// We shall define an almost equilateral triangle to be a triangle for which two sides are equal and the third differs by no more than one unit.
//
// Find the sum of the perimeters of all almost equilateral triangles with integral side lengths and area and whose perimeters do not exceed one billion (1,000,000,000).
//
// # Solved by
// Stephan Brumme
// March 2017
//
// # Algorithm
// I came up with two solutions:
// 1. a brute-force solution based on geometry which needs about 5 seconds to solve the problem (see ''findMore'')
// 2. a super-simple sequence based on "is there a pattern in the numbers of my brute-force approach ?" (see ''sequence'')
//
// Let's start with algorithm 1:
// The height in such a triangle with two equal sides is
// `h = sqrt{twoSides^2 - frac{oneSide^2}{4}}`
// Thus its area can be computed as
// `A = (oneSide/2) * h`
// `= (oneSide/2) * sqrt{ twoSides^2 - frac{oneSide^2}{4}}`
// `= (oneSide/2) * sqrt{4 twoSides^2 - oneSide^2}/2`
// `2A = oneSide * sqrt{4 twoSides^2 - oneSide^2}`
//
// `oneSide` is always integral and `2A` will be integral if the square root is integral, too,
// that means that `4 * twoSides^2 - oneSide^2` must be a perfect square.
// That's what my function ''isValidTriangle'' is for.
//
// ''findMore'' looks for triangles with a perimeter between ''perimeter'' and ''limit''.
// It checks every possible triangle which makes it pretty slow.
//
// I had a prototype that printed the lengths of all sides and their perimeter:
//
// || 7 || 7 || 7 || 7 || 7 ||
// || a || b || c || c - b (or a) || perimeter ||
// || 5 || 5 || 6 || +1 || 16 ||
// || 17 || 17 || 16 || -1 || 50 ||
// || 65 || 65 || 66 || +1 || 196 ||
// || 241 || 241 || 240 || -1 || 722 ||
// || 901 || 901 || 902 || +1 || 2704 ||
// || 3361 || 3361 || 3360 || -1 || 10082 ||
// || 12545 || 12545 || 12546 || +1 || 37636 ||
// || 46817 || 46817 || 46816 || -1 || 140450 ||
// || 174725 || 174725 || 174724 || +1 || 524176 ||
// || ... || ... || ... || ... || ... ||
//
// Obviously there is an alternating pattern in the difference between the length of the single side c and the other two sides a or b.
// In the most unscientific way - plotting the numbers in Excel - I found that
// `a_n = 14a_{n-1} - a_{n-2} - 4` for all triangles where the single side is 1 unit shorter
// `a_n = 14a_{n-1} - a_{n-2} + 4` for all triangles where the single side is 1 unit longer
//
// That's by no means something I can proof (and I don't intend to) but it gives the correct answers pretty much instantly. I can live with that ...
//
// # Hackerrank
// The second approach solves all problems in less than 10 milliseconds, even for perimeters of `10^18` while
// the brute-force approach fails for 2 out 7 test cases.
#include <cmath>
#include <vector>
#include <iostream>
// valid perimeters
std::vector<unsigned long long> solutions;
// return true if area is integral
bool isValidTriangle(unsigned long long oneSide, unsigned long long twoSides)
{
unsigned long long check = 4 * twoSides * twoSides - oneSide * oneSide;
unsigned long long root = sqrt(check);
return root * root == check;
}
// brute-force approach
unsigned long long findMore(unsigned long long perimeter, unsigned long long limit)
{
// check all perimeters
while (perimeter <= limit + 3)
{
// length of the two equal sides
auto twoSides = perimeter / 3;
// assume single side is one unit smaller than the other two sides
auto oneSide = twoSides - 1;
if (isValidTriangle(oneSide, twoSides))
solutions.push_back(perimeter - 1);
// assume single side is one unit bigger than the other two sides
oneSide = twoSides + 1;
if (isValidTriangle(oneSide, twoSides))
solutions.push_back(perimeter + 1);
// next group of triangles
perimeter += 3;
}
return perimeter;
}
// just compute sequence
unsigned long long sequence(unsigned long long limit)
{
// initial values of the equal sides
unsigned long long plusOne [] = { 1, 5 };
unsigned long long minusOne[] = { 1, 17 };
solutions.clear();
// smallest solutions where:
solutions.push_back(3 * plusOne [1] + 1); // single side is 1 unit longer than the equal sides
solutions.push_back(3 * minusOne[1] - 1); // single side is 1 unit shorter than the equal sides
while (solutions.back() <= limit + 3)
{
// compute next length of equal sides
unsigned long long nextPlusOne = 14 * plusOne [1] - plusOne [0] - 4;
unsigned long long nextMinusOne = 14 * minusOne[1] - minusOne[0] + 4;
// store it, shift off oldest values
plusOne [0] = plusOne [1];
plusOne [1] = nextPlusOne;
minusOne[0] = minusOne[1];
minusOne[1] = nextMinusOne;
// we are interested in the perimeter
solutions.push_back(3 * nextPlusOne + 1);
solutions.push_back(3 * nextMinusOne - 1);
}
// largest perimeter found
return solutions.back();
}
int main()
{
solutions.push_back(16); // perimeter of smallest triangle
unsigned long long perimeter = 18; // check 18-1 and 18+1 in next step
unsigned int tests = 1;
std::cin >> tests;
while (tests--)
{
unsigned long long limit = 1000000000;
std::cin >> limit;
// check all perimeters
while (perimeter <= limit + 3)
//perimeter = findMore(perimeter, limit);
perimeter = sequence(limit);
// sum of all relevant triangles
unsigned long long sum = 0;
for (auto x : solutions)
if (x <= limit)
sum += x;
std::cout << sum << std::endl;
}
return 0;
}