-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0080.cpp
393 lines (350 loc) · 10.6 KB
/
euler-0080.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
// ////////////////////////////////////////////////////////
// # Title
// Square root digital expansion
//
// # URL
// https://projecteuler.net/problem=80
// http://euler.stephan-brumme.com/80/
//
// # Problem
// It is well known that if the square root of a natural number is not an integer, then it is irrational.
// The decimal expansion of such square roots is infinite without any repeating pattern at all.
//
// The square root of two is 1.41421356237309504880..., and the digital sum of the first one hundred decimal digits is 475.
//
// For the first one hundred natural numbers, find the total of the digital sums of the first one hundred decimal digits for all the irrational square roots.
//
// # Solved by
// Stephan Brumme
// March 2017
//
// # Algorithm
// Dealing with floating-point numbers is hard, especially with the limited precision of C++.
// Therefore my program performs all computations on integers only.
// The main idea is: `sqrt{2} = sqrt{2 * frac{1000000}{1000000}} = frac{sqrt{2 * 1000000}}{1000} = 1414`
// ==> to find the first three fractional digits of `sqrt{2}` we need to "shift" 2 by `10^{2 * 3} = 10^6 = 1000000`.
//
// Computing the first 100 digits of `sqrt{2}` means that `2` must be converted to an integer with about 200 digits,
// which is obviously too much for C++'s native data types.
// It's showtime for my ''BigNum'' class - again ! About 2/3 of this solution is just ''BigNum'' code.
//
// My first experiments were based on the Newton square root algorithm (see https://en.wikipedia.org/wiki/Newton%27s_method ).
// The code worked but was too slow (mainly because of several ''BigNum'' divisions).
// Browsing through the internet people recommended a surprisingly simple and efficient digit-by-digit square root algorithm
// nicely explained in a paper by Frazer Jarvis (see http://www.afjarvis.staff.shef.ac.uk/maths/jarvisspec02.pdf ).
// That paper is quite accessible - read it if you know to know more about it.
//
// My code can be found in the function ''jarvis''. Its parameter ''precision'' is a huge number `10^{digits+extra}`.
// (due to the way this algorithm works, ''precision'' has 100 digits, not 2*100=200 digits).
// I deliberately compute more digits than required because I use a trick for faster calculations:
// only the square roots of __prime numbers__ are actually computed.
//
// For any composite number `c = a * b` where `a` and `b` are arbitrary factors of `c`, the square is
// `sqrt{c} = sqrt{a * b} = sqrt{a} * sqrt{b}`
// A single multiplication of two ''BigNum''s is much faster than a full square root computation.
//
// # Hackerrank
// I worked really hard to get 100% on this problem but I am stuck at 77.78%. Apparently only one person solved it in C++ so far.
//
// My class ''BigNum'' isn't the fastest code. I used ''operator+='' and ''operator*='' instead of ''operator+'' and ''operator*'' which helped a bit
// but I still need to be about twice as fast for the two remaining test cases.
#include <iostream>
#include <vector>
// store single digits with lowest digits first
// e.g. 1024 is stored as { 4,2,0,1 }
// only non-negative numbers supported
struct BigNum : public std::vector<unsigned int>
{
// string conversion works only properly when MaxDigit is a power of 10
static const unsigned int MaxDigit = 1000000000;
// store a non-negative number
BigNum(unsigned long long x = 0)
{
do
{
push_back(x % MaxDigit);
x /= MaxDigit;
} while (x > 0);
}
// add an integer
void operator+=(unsigned int other)
{
unsigned int carry = other;
for (size_t i = 0; i < size(); i++)
{
carry += operator[](i);
if (carry == 0)
return;
if (carry < MaxDigit)
{
// no overflow
operator[](i) = carry;
carry = 0;
}
else
{
// yes, we have an overflow
operator[](i) = carry % MaxDigit;
carry = carry / MaxDigit;
}
}
while (carry > 0)
{
push_back(carry % MaxDigit);
carry /= MaxDigit;
}
}
// add a big number
void operator+=(const BigNum& other)
{
// add in-place, make sure it's big enough
if (size() < other.size())
resize(other.size(), 0);
unsigned int carry = 0;
for (size_t i = 0; i < size(); i++)
{
carry += operator[](i);
if (i < other.size())
carry += other[i];
else
if (carry == 0)
return;
if (carry < MaxDigit)
{
// no overflow
operator[](i) = carry;
carry = 0;
}
else
{
// yes, we have an overflow
operator[](i) = carry - MaxDigit;
carry = 1;
}
}
if (carry > 0)
push_back(carry);
}
// subtract a smaller-or-equal number
void operator-=(const BigNum& other)
{
int borrow = 0;
for (size_t i = 0; i < size(); i++)
{
int diff = (int)operator[](i) - borrow;
if (i < other.size())
diff -= other[i];
else
if (borrow == 0)
break;
if (diff < 0)
{
borrow = 1;
diff += MaxDigit;
}
else
borrow = 0;
operator[](i) = diff;
}
// no high zeros
while (size() > 1 && back() == 0)
pop_back();
}
// multiply a big number by an integer
void operator*=(unsigned int factor)
{
// nulled
if (factor == 0)
{
clear();
push_back(0);
return;
}
// unchanged
if (factor == 1)
return;
// append an empty block
if (factor == MaxDigit)
{
if (size() > 1 || operator[](0) > 0)
insert(begin(), 0);
return;
}
// multiply all blocks with the factor
unsigned long long carry = 0;
for (auto& i : *this)
{
carry += i * (unsigned long long)factor;
i = carry % MaxDigit;
carry /= MaxDigit;
}
// store remaining carry in new digits
while (carry > 0)
{
push_back(carry % MaxDigit);
carry /= MaxDigit;
}
}
// multiply two big numbers
BigNum operator*(const BigNum& other) const
{
if (size() < other.size())
return other * *this;
// multiply single digits of "other" with the current object
BigNum result = 0;
result.reserve(size() + other.size());
for (int i = (int)other.size() - 1; i >= 0; i--)
{
BigNum temp = *this;
temp *= other[i];
result *= MaxDigit;
result += temp;
}
return result;
}
// compare two big numbers
bool operator<(const BigNum& other) const
{
// different number of digits/buckets ?
if (size() < other.size())
return true;
if (size() > other.size())
return false;
// compare all digits/buckets, beginning with the most significant
for (int i = (int)size() - 1; i >= 0; i--)
{
if (operator[](i) < other[i])
return true;
if (operator[](i) > other[i])
return false;
}
return false;
}
// convert to string, MaxDigit must be power of 10
std::string toString() const
{
std::string result;
for (auto x : *this)
{
// process a bucket
for (unsigned int shift = 1; shift < MaxDigit; shift *= 10)
{
auto digit = (x / shift) % 10;
result.insert(0, 1, (char)digit + '0');
}
}
// remove leading zeros
while (result.size() > 1 && result.front() == '0')
result.erase(0, 1);
return result;
}
};
// find square root of x
// see http://www.afjarvis.staff.shef.ac.uk/maths/jarvisspec02.pdf
BigNum jarvis(unsigned int x, const BigNum& precision)
{
static const BigNum Fortyfive = 45;
BigNum a = x * 5;
BigNum b = 5;
// avoid re-allocations when growing (plus a few bytes when exceeding target)
a.reserve(precision.size());
b.reserve(precision.size());
// until we have enough digits
while (b < precision)
{
if (!(a < b)) // same as a >= b but currently there is no operator >= in my BigNum class
{
a -= b;
b += 10;
}
else
{
a *= 100;
b *= 10;
b -= Fortyfive;
}
}
return b;
}
// for reference only:
// Newton's method
//BigNum newton(const BigNum& square, BigNum estimate)
//{
// while (true)
// {
// // minimize error
// auto next = (square + estimate * estimate) / (estimate * 2);
// if (next == estimate)
// return estimate;
// estimate = next;
// }
//}
// return the sum of the first digits
unsigned int countDigits(const BigNum& x, unsigned int numDigits)
{
unsigned int sum = 0;
for (auto i : x.toString().substr(0, numDigits))
sum += i - '0';
return sum;
}
int main()
{
// all square roots from 2 to maxNumber
unsigned int maxNumber = 100;
// the first digits include the integer part, too (first six digits of sqrt(2) are 1,4,1,4,2,1)
unsigned int digits = 100;
std::cin >> maxNumber >> digits;
// precompute precision
// a single 1 and then 100 zeros
// => since BigNum stores everything in reverse it is technically 100 zeros and then a single 1
// actually we need a slightly higher precision because square roots of composite numbers will be computed as
// the product of the square roots of their prime factors
const unsigned int ExtraDigits = 15; // maybe I can get away with less extra digits, haven't tried it
BigNum precision = 10;
for (unsigned int i = 1; i < digits + ExtraDigits; i++)
precision *= 10;
// all square roots (initially 0)
std::vector<BigNum> roots(maxNumber + 1, 0);
// digits(sqrt(2)) + digits(sqrt(3)) + ...
unsigned int sum = 0;
for (unsigned int i = 1; i <= maxNumber; i++)
{
// handle perfect squares
unsigned int intSqrt = 1;
while (intSqrt * intSqrt < i)
intSqrt++;
// found a perfect square ?
if (intSqrt * intSqrt == i)
{
// compute its root, too (needed for roots of composite numbers)
roots[i] = precision * intSqrt;
continue;
}
// try to number split into a product (only possible for composite numbers)
auto factor = intSqrt - 1;
// find a factor close to the square root
while (i % factor != 0)
factor--;
// composite ?
if (factor > 1)
{
// sqrt(composite) = sqrt(factor) * sqrt(i / factor)
auto& current = roots[i] = roots[i / factor] * roots[factor];
// remove digits beyond required precision
if (current.size() > roots[i - 1].size())
current.erase(current.begin(), current.begin() + (current.size() - roots[i - 1].size()));
while (current < roots[i - 1])
current *= 10;
}
else
{
// number is prime ? must find the square root the hard way ...
roots[i] = jarvis(i, precision);
}
// compute digit sum of sqrt(i)
sum += countDigits(roots[i], digits);
}
// print result
std::cout << sum << std::endl;
return 0;
}