-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0078.cpp
129 lines (113 loc) · 4.03 KB
/
euler-0078.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// ////////////////////////////////////////////////////////
// # Title
// Coin partitions
//
// # URL
// https://projecteuler.net/problem=78
// http://euler.stephan-brumme.com/78/
//
// # Problem
// Let `p(n)` represent the number of different ways in which `n` coins can be separated into piles.
// For example, five coins can be separated into piles in exactly seven different ways, so `p(5)=7`.
//
// ''OOOOO''
// ''OOOO O''
// ''OOO OO''
// ''OOO O O''
// ''OO OO O''
// ''OO O O O''
// ''O O O O O''
//
// Find the least value of `n` for which `p(n)` is divisible by one million.
//
// # Solved by
// Stephan Brumme
// March 2017
//
// # Algorithm
// Brute-forcing the solution for small `n` yielded the sequence:
// 1,2,3,5,7,11,15,122,30,42,56,77,101,...
// I searched the web and found these numbers in OEIS A000041.
//
// After that I read the problem description again and looked up "partition" on Wikipedia: https://en.wikipedia.org/wiki/Partition_%28number_theory%29#Recurrence_formula
// And found a link to Euler's formula which is based on pentagonal numbers: https://en.wikipedia.org/wiki/Pentagonal_number_theorem
// ''result(i) = result(pentagonal(+1)) + result(pentagonal(-1))''
// '' - result(pentagonal(+2)) - result(pentagonal(-2))''
// '' + result(pentagonal(+3)) + result(pentagonal(-3))''
// '' - result(pentagonal(+4)) - result(pentagonal(-4))''
// '' ...''
//
// ''result(417)'' is too big for a 64 bit integer (and there is no solution among the first 416 partitions).
// Luckily, we need to find the first number that is divisible by one million, that means where ''result(x) % 1000000 = 0''.
// Hence I store the number of partitions modulo 1000000. Whenever it is zero, my program can abort.
//
// # Hackerrank
// The modified problem asks for the number of partitions of an input value (modulo `10^9 - 7`).
// Results from previous test cases are kept in ''partitions'' to speed up the process.
#include <iostream>
#include <vector>
int main()
{
// store result (modulo 10^6 or 10^9 + 7)
std::vector<unsigned long long> partitions;
// degenerated case, there's one partition for an empty pile
partitions.push_back(1);
//#define ORIGINAL
#ifdef ORIGINAL
const long long modulo = 1000000; // 10^6
#else
const long long modulo = 1000000007; // 10^9 + 7
unsigned int tests = 1;
std::cin >> tests;
while (tests--)
#endif
{
unsigned int limit = 100000; // the solution is < 100000, program ab
#ifndef ORIGINAL
std::cin >> limit;
#endif
// fill cache
for (unsigned int n = partitions.size(); n <= limit; n++)
{
// sum according to Euler's formula
long long sum = 0;
// all pentagonal numbers where pentagonal(i) <= n
for (unsigned int i = 0; ; i++) // abort inside loop
{
// generate alternating numbers +1,-1,+2,-2,+3,-3,...
int alternate = 1 + (i / 2); // generate the digit 1,1,2,2,3,3,...
if (i % 2 == 1)
alternate = -alternate; // flip the sign for every second number
// pentagonal index, "how far we go back" in partitions[]
unsigned int offset = alternate * (3 * alternate - 1) / 2;
// can't go back that far ? (array index would be negative)
if (n < offset)
break;
// add two terms, subtract two terms, add two terms, subtract two terms, ...
if (i % 4 < 2)
sum += partitions[n - offset]; // i % 4 = { 0, 1 }
else
sum -= partitions[n - offset]; // i % 4 = { 2, 3 }
// only the last digits are relevant
sum %= modulo;
}
// note: sum can be temporarily negative
if (sum < 0)
sum += modulo;
#ifdef ORIGINAL
// "divisible by one million" => sum % 1000000 == 0
// last 6 digits (modulo was 10^6) are zero
if (sum == 0)
break;
#endif
partitions.push_back(sum);
}
// print (cached) result
#ifdef ORIGINAL
std::cout << partitions.size() << std::endl;
#else
std::cout << partitions[limit] << std::endl;
#endif
}
return 0;
}