-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0061.cpp
208 lines (181 loc) · 6.15 KB
/
euler-0061.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// ////////////////////////////////////////////////////////
// # Title
// Cyclical figurate numbers
//
// # URL
// https://projecteuler.net/problem=61
// http://euler.stephan-brumme.com/61/
//
// # Problem
// Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:
//
// || 6 || 11 || 9 ||
// || Triangle || `P_{3,n}=n(n+1)/2` || 1, 3, 6, 10, 15, ... ||
// || Square || `P_{4,n}=n^2` || 1, 4, 9, 16, 25, ... ||
// || Pentagonal || `P_{5,n}=n(3n-1)/2` || 1, 5, 12, 22, 35, ... ||
// || Hexagonal || `P_{6,n}=n(2n-1)` || 1, 6, 15, 28, 45, ... ||
// || Heptagonal || `P_{7,n}=n(5n-3)/2` || 1, 7, 18, 34, 55, ... ||
// || Octagonal || `P_{8,n}=n(3n-2)` || 1, 8, 21, 40, 65, ... ||
//
// The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.
//
// The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
// Each polygonal type: triangle (`P_{3,127}=8128`), square (`P_{4,91}=8281`), and pentagonal (`P_{5,44}=2882`), is represented by a different number in the set.
// This is the only set of 4-digit numbers with this property.
//
// Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal,
// is represented by a different number in the set.
//
// # Solved by
// Stephan Brumme
// March 2017
//
// # Algorithm
// The container ''all'' contains a simple bitmask for each number ''x'':
// - if the 3rd bit is set, then ''x'' is a triangle number
// - if the 4th bit is set, then ''x'' is a square number
// - if the 5th bit is set, then ''x'' is a pentagonal number
// - if the 6th bit is set, then ''x'' is a hexagonal number
// - if the 7th bit is set, then ''x'' is a heptagonal number
// - if the 8th bit is set, then ''x'' is a octagonal number
//
// Function ''deeper'' recursively builds a ''sequence'' of number, where each number's highest two digits are equal to its predecessor's lowest two digits.
// Even more, all numbers represent differetn categories (triangle, square, pentagonal, ...).
//
// Some numbers belong to multiple categories. In such a case, all combinations have to be tried.
// A number must not occur twice in a sequence. And finally, the last number's lowest two digits have to match the first number's highest two digits, too.
#include <set>
#include <vector>
#include <iostream>
// all sums of valid sequences
std::set<unsigned int> results;
// 4 digits => all numbers must be below 10^4 = 10000
const unsigned int Limit = 10000;
// all number sets per number as a bitmask
std::vector<unsigned int> all(Limit, 0);
// bit mask of all categories (e.g. 1<<3 for triangle numbers, 1<<4 for square numbers, ...)
unsigned int finalMask = 0;
// add a category to a number
void add(unsigned int x, unsigned int category)
{
// reject if not exactly 4 digits
if (x < 1000 || x >= 10000)
return;
// set one bit
auto bit = 1 << category;
// adjust its bitmask
all[x] |= bit & finalMask;
}
void deeper(std::vector<unsigned int>& sequence, unsigned int mask = 0)
{
// all four digit-numbers
unsigned int from = 1000;
unsigned int to = 10000;
if (!sequence.empty())
{
// we only have to look at those numbers where the highest two digits match
// the previous numbers lowest two digits
auto lowerTwoDigits = sequence.back() % 100;
from = lowerTwoDigits * 100;
to = from + 100;
}
// try all relevant numbers
for (auto next = from; next < to; next++)
{
auto categories = all[next];
// not a member of any relevant set ?
if (categories == 0)
continue;
// must not use the same number twice
bool isUnique = true;
for (auto x : sequence)
if (x == next)
{
isUnique = false;
break;
}
if (!isUnique)
continue;
// extract all categories it belongs to
for (auto j = 3; j <= 8; j++)
{
auto thisCategory = 1 << j;
// not a member of that category ?
if ((categories & thisCategory) == 0)
continue;
// must be a new category we haven't seen yet in the current sequence
if ((mask & thisCategory) != 0)
continue;
// we have all categories ?
auto nextMask = mask | thisCategory;
if (nextMask == finalMask)
{
// must compare against first number, too
auto first = sequence.front();
auto lowerTwoDigits = next % 100;
auto upperTwoDigits = first / 100;
if (lowerTwoDigits == upperTwoDigits)
{
// we found a result, store its sum
auto sum = next;
for (auto x : sequence)
sum += x;
results.insert(sum);
}
}
else
{
// go deeper
sequence.push_back(next);
deeper(sequence, nextMask);
sequence.pop_back();
}
}
}
}
int main()
{
// only some sets are relevant to current problem
unsigned int numSets;
std::cin >> numSets;
for (unsigned int i = 0; i < numSets; i++)
{
unsigned int x;
std::cin >> x;
finalMask |= 1 << x;
}
// build sets
unsigned int n = 1;
while (true)
{
auto triangle = n * (n + 1) / 2;
// triangle numbers grow the slowest, once we have all of those then we are done
if (triangle >= 10000)
break;
// add a triangle number
add(triangle, 3);
// add a square number
auto square = n * n;
add(square, 4);
// add a pentagonal number
auto pentagon = n * (3 * n - 1) / 2;
add(pentagon, 5);
// add a hexagonal number
auto hexagon = n * (2 * n - 1);
add(hexagon, 6);
// add a heptagonal number
auto heptagon = n * (5 * n - 3) / 2;
add(heptagon, 7);
// add an octagonal number
auto octagon = n * (3 * n - 2);
add(octagon, 8);
n++;
}
// start search with an empty sequence
std::vector<unsigned int> sequence;
deeper(sequence);
// print all results in ascending order
for (auto x : results)
std::cout << x << std::endl;
return 0;
}