-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0027.cpp
95 lines (86 loc) · 2.63 KB
/
euler-0027.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// ////////////////////////////////////////////////////////
// # Title
// Quadratic primes
//
// # URL
// https://projecteuler.net/problem=27
// http://euler.stephan-brumme.com/27/
//
// # Problem
// Euler discovered the remarkable quadratic formula: `n^2+n+41`
//
// It turns out that the formula will produce 40 primes for the consecutive integer values `0<=n<=39`.
// However, when `n=40`, `40^2+40+41=40(40+1)+41` is divisible by 41, and certainly when `n=41`, `41^2+41+41` is clearly divisible by 41.
//
// The incredible formula `n^2-79n+1601` was discovered, which produces 80 primes for the consecutive values `0<=n<=79`.
// The product of the coefficients, `-79` and `1601`, is `-126479`.
//
// Considering quadratics of the form:
// `n^2 + a * n + b`, where `|a|<1000` and `|b|<=1000` where `|n|` is the modulus/absolute value of `n` e.g. `|11|=11` and `|-4|=4`
//
// Find the product of the coefficients, `a` and `b`, for the quadratic expression that produces the maximum number of primes for consecutive values of `n`, starting with `n=0`.
//
// # Solved by
// Stephan Brumme
// February 2017
//
// # Algorithm
// Nothing fancy: ''isPrime'' determines whether its parameter is a prime number or not.
// And then two nested loops check every combination of ''a'' and ''b''.
//
// # Note
// ''isPrime'' can be optimized in various ways - but the basic algorithm is fast enough for the problem.
#include <iostream>
// return true if x is prime
bool isPrime(int x)
{
// reject invalid input
if (x <= 1)
return false;
// process all potential divisors
for (int factor = 2; factor*factor <= x; factor++)
if (x % factor == 0)
return false;
// no such divisor found, it's a prime number
return true;
}
int main()
{
// upper and lower limit of the coefficients
int limit;
std::cin >> limit;
// make sure it's a positive number
if (limit < 0)
limit = -limit;
// keep track of best sequence:
// number of generated primes
unsigned int consecutive = 0;
// its coefficients
int bestA = 0;
int bestB = 0;
// simple brute-force approach
for (int a = -limit; a <= +limit; a++)
for (int b = -limit; b <= +limit; b++)
{
// count number of consecutive prime numbers
unsigned int length = 0;
while (isPrime(length * length + a * length + b))
length++;
// better than before ?
if (consecutive < length)
{
consecutive = length;
bestA = a;
bestB = b;
}
}
#define ORIGINAL
#ifdef ORIGINAL
// print a*b
std::cout << (bestA * bestB) << std::endl;
#else
// print best factors
std::cout << bestA << " " << bestB << std::endl;
#endif
return 0;
}